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Zusammenfassung

In der  vorliegenden Dissertation wird mit den Werkzeugen der statistischen Physik, 
insbesondere mit  coarse-graining (“Vergröberungs-”) Methoden, die biologische Frages­
tellung untersucht, welchen Einfluss die statischen und dynamischen Eigenschaften der 
räumlichen  Struktur  von  Nukleinsäuren  auf  Translokationsprozesse  ausüben.  Dabei 
kann die Nukleinsäure entweder die Rolle des Translokationsobjektes übernehmen, wie 
bei  der  RNA-Translokation  durch  Ribosomen  im  Translationsprozess,  oder  die  der 
Translokationsumgebung,  wie bei der Protein-Translokation bzw. -Zielsuche auf DNA 
zum Zwecke der Transkriptionsregulation. Hier werden beide Translokationstypen an­
hand der genannten Beispiele behandelt.

Der erste Teil dieser Dissertation hat daher Faltung und Translokation von RNA 
zum Thema, insbesondere die Art und Weise, wie bestimmte Tertiärstrukturmotive wie 
beispielsweise Pseudoknoten das Pausieren des RNA-Moleküls im Ribosom (ribosomal 
pausing)  bewirken,  das  bei  vielen  RNA-Viren  (z.B.  HIV)  für  eine  Verschiebung  im 
Leseraster des Ribosoms (ribosomal frameshift) notwendig ist.

Ziel ist dabei,  ein vergröbertes (coarse-grained) dreidimensionales RNA-Modell auf 
der Ebene einzelner Nukleotidbasen aufzustellen und mit seiner Hilfe den Mechanis­
mus des Pausierens von RNA-Molekülen in Ribosomen über die geometrischen, mechan­
ischen und energetischen Eigenschaften des Modellmoleküls zu klären. Das Modell soll 
dafür  eine  Vielzahl  von Anforderungen  erfüllen:  Es  soll  damit  möglich  sein,  sowohl 
spontane Faltung als auch kraftinduzierte Auffaltung im Detail zu studieren; die geo­
metrischen (räumlich-helikale Moleküldomänen) und mechanischen Eigenschaften (Tor­
sions- und Biegesteifigkeit der Helizes) der gefalteten Tertiärstruktur trotz fehlender 
innerer Struktur der Modellbasen korrekt nachzubilden; prinzipiell  beliebig komplexe 
Tertiärstrukturen zu untersuchen, was hinreichend lokale intramolekulare Modellwech­
selwirkungen erfordert.

Die Aufstellung eines solchen Modells  ist  gelungen: Das RNA-Molekül wird dabei 
durch  eine  Kette  über  Federn  miteinander  verbundener  Basen-Punktteilchen  (bead-
spring-Modell)  repräsentiert,  die  Faltungseigenschaften  durch  basenpaar-spezifische 
Lennard-Jones-Wechselwirkungen realisiert.  Helikale  Moleküldomänen  mit  Torsions- 
und Biegesteifigkeit  entstehen durch lokale Basenpaar-Basenpaar-Wechselwirkungen, 
die  von  der  gegenseitigen  Ausrichtung  und  der  momentanen  Bindeenergie  der 
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beteiligten Basenpaare abhängen. Aufgrund der Komplexität von Geometrie und Poten­
tialstruktur erwies sich Brownsche Dynamik als Simulationsmethode der Wahl.

Nach dem erfolgreichen Test von Faltungsdynamik sowie der mechanisch-geomet­
rischen  Tertiärstruktureigenschaften  wurde  mit  Hilfe  detailliert  gemessener  zeitab­
hängiger geometrischer und energetischer Größen der Prozess der Molekültranslokation 
durch eine enge Modellpore mit lokaler Drift in einzelne für die geometrischen Elemente 
der verwendeten Tertiärstruktur charakteristische Phasen unterteilt (z.B. Auftrennen, 
Drift,  Rekombination).  Anhand  dieser  Phasensequenzen  wurden  mehrere  Transloka­
tionsregimes identifiziert (Rückwurf, Pausieren, einzelsträngige Translokation), je nach 
Porenenergie, Basenpaarenergie und Temperatur. Schlussendlich wurde im relevanten 
Translokationsregime die Ursache der  im Vergleich zum Hairpin festgestellten stark 
verlangsamten Translokation des Pseudoknotens geklärt:  Das Auftrennen von dessen 
Primärhelix wird durch den hinter der Sekundärhelix gelegenen wenig beweglichen Se­
quenzabschnitt behindert,  der dafür nötige Kraftübertrag geschieht über die noch ge­
faltete Sekundärhelix, die es beim Hairpin nicht gibt.

Für die Effizienz der Genregulation ist eine möglichst schnelle Suche der Transkrip­
tionsfaktoren nach ihren spezifischen Bindeorten auf der DNA essentiell. Aus diesem 
Grund wird im zweiten Teil der Dissertation die Translokation von Proteinen auf DNA 
behandelt.  Es  ist  bekannt,  dass  Transport  solcher  Transkriptionsfaktoren  auf  DNA-
Molekülen, der Teils über 1D-Diffusion erfolgt, Teils über Sprünge entlang konforma­
tionsabhängiger Sprungkanäle, die u.U. entfernte DNA-Segmente miteinander verbind­
en,  bei  asymptotisch schneller  DNA-Dynamik (“annealed”  Limes)  superdiffusiv,  ohne 
DNA-Dynamik (“quenched” Limes) jedoch paradoxerweise diffusiv ist.

In dieser Arbeit werden die postulierten Korrelationen, welche dieses diffusive Ver­
halten  verursachen,  und  ihre  statistischen  Eigenschaften  im  Detail  charakterisiert. 
Dabei wird mit Hilfe eines coarse-grained Modells insbesondere zum ersten Mal einge­
hend der Mechanismus beleuchtet, der zu quasi-diffusivem Transport auf eingefrorenen 
DNA-Molekülen führt.  Desweiteren wird anhand explizit dynamischer DNA-Moleküle 
mittels  einer  Monte-Carlo-Simulation  das  schrittweise  Aufbrechen der  Korrelationen 
demonstriert, das sich in einem nichttrivialen Übergang von Quasi-Diffusion bei großen 
Zeiten zu Superdiffusion bei kleinen Zeiten äußert.

Es wird also gezeigt, dass das Transportverhalten der Transkriptionsfaktoren von 
der – gegebenenfalls dynamischen – Topologie des Intersegment-Verbindungsnetzwerks 
und damit wiederum von der räumlichen Gestalt der DNA-Kette bestimmt wird.



Abstract

In this dissertation the tools of statistical physics, especially coarse-graining methods, 
are used to examine the biological question what influence the statistical and dynamical 
properties of the spatial structure of nucleic acids exert on translocation processes. In 
such processes the nucleic acid can either take the role of the translocated object, as for 
RNA translocation through ribosomes during the process of translation, or the role of 
the translocation environment, as for protein translocation and target search on DNA 
for the purpose of the regulation of transcription. Here, both types of translocation are 
treated using the mentioned examples.

Therefore,  the  first  part  of  this  dissertation is  about  folding and translocation of 
RNA, especially the manner by which certain tertiary structure motifs  – like for in­
stance pseudoknots – cause the RNA-molecule to pause within the ribosome (ribosomal  
pausing), an effect needed by many RNA-viruses (HIV, e.g.) to shift the reading frame of 
the ribosome (ribosomal frameshift). 

The goal is to create a coarse-grained three-dimensional RNA model on the level of 
single nucleotide bases and to use it as an instrument to clarify the mechanism of RNA-
molecules pausing in ribosomes via the geometrical, mechanical and energetic proper­
ties of the model molecule. For this, the model should fulfill a multitude of demands: It 
should be able to be used to study both spontaneous folding and force-induced unfolding 
in detail; to emulate the geometrical (spatially-helical molecule domains) and mechanic­
al properties (torsional and bending stiffness of the helices) of the folded tertiary struc­
ture correctly, although the model bases lack any inner structure; to study in principle 
arbitrarily complex tertiary structures, which calls for sufficiently local intra-molecular 
model interactions. 

The modeling has been successful: The RNA molecule is represented by a chain of 
point-shaped  bases inter-connected by springs (bead-spring-model), the folding proper­
ties are realized by base-pair-specific Lennard-Jones interactions. Helical molecular do­
mains with torsional and bending stiffness emerge because of local base-pair base-pair 
interactions,  which depend on the directions and the current binding energies of the 
participating base-pairs. Because of the complexity of the model in terms of geometry 
and interactions Brownian dynamics was chosen as simulation method.
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After having tested the folding dynamics and the mechanical and geometrical proper­
ties  of  the  tertiary  structure  successfully,  the  process  of  translocating  a  molecule 
through a narrow model pore with local drift was subdivided into single phases (e. g. un­
zipping, drift, recombination) characteristic for the geometrical elements of the tertiary 
structure in use, by the means of time-dependent geometrical and energetic variables 
measured in detail. Using these phase sequences, according to the values of pore energy, 
base-pair energy and temperature several translocation regimes were identified (rejec­
tion, pausing, single-stranded translocation). Finally, the cause for the extremely decel­
erated observed translocation of the pseudoknot – if compared to the hairpin – was clari­
fied  in the  relevant  translocation regime:  The unzipping of  the primary helix of  the 
pseudoknot is interfered by the hardly mobile sequence part behind its secondary helix; 
the still folded secondary helix, which does not exist for hairpins, is able to perform the 
necessary force transfer.

To make gene regulation efficient it is essential that the target search of transcrip­
tion factors for their specific binding sites on DNA is as fast as possible. Therefore, the 
second part of the dissertation is about translocation of proteins on DNA. As is known, if 
transport of such transcription factors on DNA molecules is partially done by 1D-diffu­
sion and partially by jumps along conformation-dependent jump channels  connecting 
DNA segments possibly distant, it is superdiffusive for asymptotically fast DNA dynam­
ics  (“annealed”  limit)  but  paradoxically diffusive if  there is  no DNA dynamics  at  all 
(“quenched” limit).  

In this thesis the postulated correlations causing this diffusive behavior and their 
statistical properties are characterized in detail. In doing so, especially the mechanism 
leading to quasi-diffusive transport on frozen DNA molecules is treated thoroughly and 
for the first time.  This is done by the means of a coarse-grained model. Furthermore, a 
Monte-Carlo simulation for explicitly dynamical DNA molecules is used to demonstrate 
the gradual destruction of the correlations, which manifests in a non-trivial cross-over 
from quasi-diffusion at long times to superdiffusion at short times.

Therefore, it is shown that the transport behavior of the transcription factors is de­
termined by the – possibly dynamical – topology of the intersegment linking pattern and 
thus in turn by the spatial configuration of the DNA chain.



1  Introduction

1.1  Translocation processes occurring within the central dogma

The central dogma of molecular biology as introduced by Crick [1] describes the transfer 
of genetic information from DNA to RNA and from RNA to proteins (Fig. 1.1). Transloca­
tion of and on such biopolymers (nucleic acids and proteins) is ubiquitous in the pro­
cesses of the central dogma.

Fig. 1.1: The Central Dogma describes the transfer of genetic information 
from DNA to RNA (transcription) and from RNA to proteins (translation).  
The sequence of nucleotides in the nucleic acid (DNA and RNA) determ­
ines the sequence of amino acids in the protein produced.

(Graphics by George Rice, Montana State University [2])

For example, the process of transcription, which denotes the synthesis of a particular 
messenger RNA molecule by copying a part (operon) of the original DNA sequence with 
the help of DNA polymerase, is regulated by a certain type of proteins, the transcription 
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factors. These regulatory proteins bind to specific sites (operators) on the DNA contour 
and stabilize or block the binding of DNA polymerase near these sites. This way, tran­
scription of the structure genes the DNA operon behind such a site consists of is either 
facilitated or suppressed. According to the effect they have on transcription, stabilizing 
proteins are called activators, blocking proteins repressors. In order to find their specific 
binding  sites,  the  transcription  factors  have  to  translocate  along  the  contour  of  the 
double-stranded DNA in a target search process.

The process of translation,  during which the single-stranded messenger RNA mo­
lecule produced by transcribing a DNA operon unfolds and traverses the narrow channel 
of a ribosome, is another example for translocation in the central dogma. During trans­
lation, the ribosome reads the information encoded in the RNA molecule codon by codon 
and simultaneously concatenates the corresponding amino acid pendants to form the fi­
nal protein according to the blue-print on the RNA.

In both types of translocation occurring in the central dogma – translocation of pro­
teins on DNA for the regulation of the transcription process and translocation of mes­
senger RNA through ribosomes during the process of  translation – the translocation 
time is (within certain limits) determined by the geometry and the topology of the cor­
responding nucleic acid. This is true, although for protein translocation the nucleic acid 
(DNA)  is  the  translocation  environment  and  for  RNA translocation  the  nucleic  acid 
(RNA) is the translocated object. 

The geometric determinant for the transport properties in either case are intricate 
patterns of intra-molecular connections within the chain-shaped nucleic acid molecules: 
For entropic reasons DNA molecules have numerous loops facilitating protein transport 
by allowing intersegment transfer between DNA sites near in Euclidean space but pos­
sibly distant in contour space. On the other hand, the base-pair bonds of an RNA mo­
lecule which is in a folded state for enthalpic reasons constitute a geometrically complex 
three-dimensional  tertiary structure.  Since this  structure is voluminous,  it  has to be 
destroyed in order to allow single-stranded translocation of the RNA molecule through 
the narrow ribosomal channel. Therefore, the pattern of DNA loops facilitates protein 
translocation, whereas the pattern of RNA base-pair bonds impedes RNA translocation.

1.2  Translocation of RNA hairpins and pseudoknots through 
ribosomes

Characterizing the process of RNA translocation through ribosomes kinetically and dy­
namically is of great importance for lots of biological questions because genetic informa­
tion encoded in RNA is read codon by codon when translated in the ribosome. Codons 
are units of information, each consisting of three successive bases along the RNA chain. 
Every type of codon corresponds uniquely to a distinct amino acid. Thus, the sequence of 
codons  along the RNA chain determines  the sequence  of  amino acids  in the protein 
chain produced by the ribosome during the RNA translocation process.
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Under  certain  conditions  pausing  during  the  process  of  translocation  (ribosomal  
pausing) causes -1 ribosomal frameshift, which is a 1 base upstream shift of the reading 
frame the ribosome uses for reading out the codons and changes which base belongs to 
which codon: every 3-base-codon gives its upstream rim base to the codon that is imme­
diately upstream, receiving in turn one base from its downstream neighbor codon. Due 
to this massive change in codon structure, the resulting sequence of amino-acids in the 
protein chain generated by the ribosome is in general totally different from the sequence 
which  would  have  been  generated  without  ribosomal  frameshift  (cf. Fig.  1.2,  which 
shows the opposite case of a +1 frameshift). So, ribosomal frameshift causes the produc­
tion of proteins highly different from the non-frameshift case. That means, more than 
one protein structure can be encoded within the same RNA base sequence, an advantage 
heavily used in nature, especially by many RNA viruses (HIV, e.g.).

       

Fig.  1.2: The HI virus,  as depicted top left,  is one of numerous RNA viruses  
whose RNA, when passing through a ribosome (figure top right) during transla­
tion, undergoes ribosomal frameshift events. These events imply regrouping of  
the nucleotides to codons, so that proteins with a different sequence of amino 
acids are produced (bottom figure).

(HIV  graphics  by  Dr.  Ebert-May,  Michigan  State  University  [3],  ribosome 
graphics by George Rice, Montana State University [4])

As ribosomal pausing, although not sufficient for -1 ribosomal frameshift to occur [5], is 
one necessary main condition [6][7], and as a change of pausing times affects frameshift 
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efficiency (as reviewed in [8]), the mechanisms causing the RNA translocation process to 
stop are of great interest from a biological as well as from a physics point of view. Only 
special tertiary structure motifs such as some types of pseudoknots have been observed 
to cause high level ribosomal pausing [7]. By contrast, simple hairpin structures of com­
parable length lack this property completely.  Therefore,  the subject of the numerical 
studies done with this RNA model will be to explain how a pseudo-knotted structure is 
able to slow down translocation appreciably as soon as it arrives at the ribosome, where­
as a hairpin structure is not. The question is whether, and if yes, how the opening pro­
cess of the pseudoknot is decelerated compared to the opening process of the hairpin.

A variety of models has been proposed to explain the deceleration mechanism pre­
sumably responsible for the high frameshift efficiency measured experimentally for cer­
tain types of pseudoknots: The frameshift efficiency has been causally connected with 
differential  transition  state  energy barriers  [9],  with the  mechanical  stability  of  the 
pseudoknot as measured by unzipping experiments [10] or with the degree of rotational 
freedom of the first stem of the pseudoknot, which is typically restricted by the second 
stem. This 'torsional restraint model'  [11] has been supported experimentally by com­
paring the frameshift efficiencies of so-called pseudo-pseudoknots, which are hairpins 
with additional RNA strands attached to form a pseudoknot-like binding topology [12], 
as well as by cryo-electron microscopic imaging of ribosomes and pseudoknots [13].

All these models find possible causes for the occurrence of ribosomal pausing during 
pseudoknot  translocation,  implicitly  assuming  that  such  pausing  can  increase  the 
frameshift  efficiency,  as  explained  by  the  9-angstrom  model  [14]:  If  an  upstream 
pseudoknot motif blocks the entrance of the ribosome, the mechanical tension a 9 ang­
strom step of downstream translocation generates in the piece of mRNA already in the 
ribosome channel can only be released by shifting the reading frame by one base up­
stream (-1 frameshift).

So the question is  whether the different  translocation times  for  pseudoknots and 
hairpins emerge from topological, geometrical or energetic differences between the two 
types of structure. In order to address this question by the means of numerical simula­
tions it is necessary to implement a model for RNA folding in three dimensions. The pro­
cess of RNA folding is relatively well understood on the secondary structure level, that 
means as far as structure formation in the abstract space of base-pairing patterns is 
concerned. On this level not only numerous prediction algorithms, which often account 
even for pseudoknots, have been developed [15][16][17][18][19], but also the dynamics of 
RNA base-pairing has been studied explicitly [20][21][22][23][24] (including the translo­
cation of  RNA through nanopores  [25][26])  using the method of  calculating partition 
functions  [27]. However, on the level of the three-dimensional structure in real space, 
there are hardly any modeling approaches, apart from fully-fledged molecular dynamics 
simulations  [28][29],  which are challenging even for small  RNA molecules,  or hybrid 
prediction algorithms like Kinefold [30], which operate still on the secondary structure 
level but include topological and geometrical constraints emerging from tertiary struc­
ture.  Towards the ultimate goal of filling this gap, in this work a coarse-grained bead-
spring type polymer model for RNA is constructed, which behaves like a freely jointed 
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rouse chain as long as the bases are unpaired. However, when the short-range sequence-
dependent interactions between the bases set in, more complex interactions between ad­
jacent base-pairs act to spontaneously create double-helical segments with a non-vanish­
ing bending rigidity and torsion stiffness, mechanical properties of folded nucleic acids 
well-studied in experiments [31][32]. The rich behavior of this model, including folding 
dynamics as well as static and dynamic properties of the folded tertiary structure and – 
last but not least – the unfolding and translocation of differently-structured model mo­
lecules (RNA hairpins and pseudoknots) through narrow pores is studied by the use of 
Brownian  dynamics  simulation  techniques,  a  well-established  procedure  for  solving 
many-body problems with complex interactions numerically, particularly appropriate for 
simulating polymers [33][34]. Polynucleotides have also been translocated through nan­
opores experimentally, studying the translocation of ssDNA [35], the unzipping kinetics 
of dsDNA [36] and especially of DNA hairpins [37][38], as well as the unzipping of DNA 
duplexes [39] and the translocation of ssRNA and folded dsRNA [40].

1.3  Translocation of proteins on DNA: A target search process

As suggested  above,  search  processes  are  wide-spread  throughout  molecular  biology: 
they are relevant for gene regulation (cf.  Fig. 1.3), where transcription factors have to 
find their specific binding sites on a DNA molecule (the original Jacob-Monod hypothesis 
for gene regulation [41] was modified by Bourgeois and colleagues, who showed that the 
regulatory function of lacI is mediated by a protein instead of an RNA transcript [42]), 
as well as for bacterial self-defense against invading viruses, for which restriction en­
zymes have to find cleavage sites marked by specific DNA sequences  [43][44]. Despite 
their molecular biological nature these search processes combine features and concepts 
of  various mathematical  and physical  areas:  polymer physics,  statistical  physics,  the 
mathematics of stochastic processes and the theory of transport and transport networks 
[45][46][47][48][49][50][51][52][53][54][55].  Especially,  characterizing  protein  target 
search for specific binding sites on DNA quantitatively has become a paradigmatic ques­
tion  in  biological  physics  [56].  Furthermore,  in  vitro [57][58][59][60] and  meanwhile 
even in vivo single-molecule experiments [61] allow the direct observation of this search 
process.

Therefore,  the search of a particle (protein) for a specific  site on a heterogeneous 
polymer (DNA) is an interesting physics problem posed by the molecular biology of gene 
regulation. Historically, the study of this problem was initiated by early in vitro experi­
ments [62], which showed that the lac repressor finds its specific binding site on short 
pieces of DNA faster than expected from the limit of three-dimensional diffusion. Since, 
as Adam and Delbrück pointed out [63], reaction rates can be increased in principle by a 
reduction of dimensionality, Richter and Eigen proposed a two step search process to ex­
plain the experimental results  [64]: after a phase of three-dimensional diffusion in the 
solvent the transcription factor binds non-specifically to the DNA and eventually finds 
its specific binding site by one-dimensional sliding along the DNA. Finally, Berg, Winter 
and von Hippel established an inspiring theoretical framework highlighting a great vari­
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ety of the facets of protein DNA search kinetics [65][66][67][68][69]. By this theory they 
were able to explain their striking experimental results: The occurrence of an optimum 
in the dependence of the search time on non-specific binding strength.

Fig. 1.3: Transcription factors are proteins that regulate the transcription  
of genes on the DNA into pieces of messenger RNA by binding to specific  
DNA target sites near these genes. The optimality of the target search pro­
cess the transcription factors perform in order to find such sites is of cru­
cial importance for gene regulation.

 From the perspective of the theory of stochastic processes, the existence of such an op­
timal search time is a generic feature in search processes with hidden targets [70]. Es­
pecially, if the search process consists of periods of one-dimensional sliding along the 
DNA contour and periods of three-dimensional diffusion in the solvent, the search time 
is optimal if both types of diffusion have equal duration on average, i. e. if the probabilit­
ies to find the protein in the solvent or non-specifically bound to the DNA are equal [68]. 
The reason is that stochastic local search, represented here by sliding along the DNA, is 
exhaustive but redundant. This redundancy is destroyed here by periods of three-dimen­
sional diffusion, which allow the protein to reattach at remote and therefore unexplored 
regions of the DNA contour.  However,  these excursions into the solvent cost time as 
well, which is the cause for the condition for the search time optimum [49]. 

Another possibility to destroy redundancy and thus enhance a search process are in­
tersegment transfers [53][55][66]. An intersegment transfer is the translocation of a pro­
tein with two DNA-binding domains from one segment of the DNA contour to another 
segment possibly distant in contour space without entering the solvent, given both DNA 
segments are neighbors in three-dimensional space due to DNA looping. Since three-di­
mensional diffusion is rare under  natural conditions in bacterial cells  [71], where the 
generic (electrostatic) attraction between the protein and DNA is strong, and as their 
time cost is very low compared to excursions into the solvent, intersegment transfers are 
a very important alternative.

Whereas starting and ending point of 3D-diffusion events are uncorrelated sites on 
the DNA that are relatively independent of the chain conformation, intersegment trans­
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fers happen only between DNA sites correlated because of back-looping of the chain. 
Very similar to intersegment transfers – as far as their correlatedness and their ability 
to destroy redundancy in search processes without high time cost are concerned – are 
hopping events to DNA sites nearby in three-dimensional space, which by contrast in­
clude short protein passages through the solvent [66].

To imitate the regime relevant in nature, this study will concentrate on protein tar­
get search on a dynamic DNA conformation proceeding by local one-dimensional sliding 
along the DNA and intersegment transfers. For the first time, the influence of the DNA 
dynamics on the search dynamics of the protein will be analyzed. As the protein has to 
cross an intersegment link,  which is a geometrical  feature of the DNA conformation, 
every time it performs an intersegment transfer, such an influence exists indeed.

If the time between two intersegment transfer events is sufficiently long, such that 
the DNA conformations  at subsequent events  are uncorrelated,  the dynamics of  this 
search process can be described [51] within the elegant framework of the fractional Fok­
ker-Planck equation [72], which predicts superdiffusive behavior. However, such a treat­
ment is only valid if the DNA dynamics is very fast compared to protein dynamics, thus 
eliminating any correlations (“annealed limit”).

If on the other hand the DNA conformation is frozen (“quenched limit”), the correla­
tions between subsequent intersegment transfer events persist and the search dynamics 
changes drastically, displaying quasi-diffusive instead of superdiffusive behavior. This 
“paradoxical” result has been found by numerical studies [73]. 

Since in biological systems typically neither of these limits (quenched or annealed) 
with  their  contradicting  types  of  transport  behavior  is  realized  (relevant  biological 
timescales: 1s−1s ) [68], studying the physics of the intermediate regime will prove of 
great relevance. This treatment of the full target search problem, where not only the 
protein dynamics but also the DNA dynamics is implemented explicitly, is done for the 
first time within this work: In the intermediate regime, where the rate of DNA dynam­
ics is finite, a non-trivial rate-dependent crossover between the two limits of transport 
behavior is observed, which is due to a dynamical breakdown of the correlations present 
in the intersegment linking patterns of frozen DNA conformations. These correlations 
and the mechanism by which they render the expected superdiffusive transport behavi­
or to the paradoxical quasi-diffusive transport behavior observed for frozen DNA con­
formations are characterized in detail: There, quasi-diffusion is caused by the formation 
of regions of the DNA contour which are special in terms of their local intersegment 
linking patterns. These regions are a manifestation of the postulated strong geometrical 
correlations. Their remarkable properties cause a competition between long jumps and 
long trapping times of the protein within these regions, which finally leads to quasi-dif­
fusion.





2  RNA folding, deformation and pore translocation

2.1  Model

2.1.1 Geometry
An RNA molecule is a chain whose backbone monomers consist of phosphate (5 atoms) 
and sugar (ribose, 20 atoms) to which bases with 8 (uracil) to 16 (guanine) atoms are 
connected, predominantly occurring in a double-helical folding geometry which is known 
as canonical A-type RNA and whose parameters were measured in diffraction experi­
ments for the first time by Arnott et al. [74][75]. (A survey of the most important angles 
and distances for A-RNA can be found in [76].)

Fig. 2.1: Coarse-graining.

The coarse-grained model for RNA to be established here substitutes this comparably 
large number of atoms per backbone/base-monomer by one single point-shaped monomer 
(cf. Fig. 2.1). This is a much higher degree of coarse-graining than current non-atomistic 
three-dimensional RNA models exhibit (Hyeon and Thirumalai represent one base by 



10  2    RNA folding, deformation and pore translocation

three beads [77], Ouldridge et al. by one backbone rod and one binding rod [78]). The ad­
vantage of this high degree of coarse-graining, the simpler and clearer three-dimension­
al structure, has the price of intricate considerations for the local coordinate systems 
needed for the angular potentials.

To begin with, a N-base RNA molecule is modeled essentially as a chain of N point-
beads at positions rk connected along the chain contour  by harmonic  springs.  Vectors 
connecting two such bases to a pair (base connectors) - especially important for the base-
pair forming Lennard-Jones potential in the process of folding - are denoted

rij=rj−ri . (2.1)
Vectors connecting the centers of mass of two adjacent pairs (base-pair connectors) 
are denoted:

 zij=
1
2 ri1rj−1−ri−r j (2.2)

Their direction can be identified as direction of the local stem axis if an RNA stem is 
formed during folding. They are important for all angular potentials, which endow the 
stem with its characteristic double-helical geometry. In the following the relevant angles 
are listed:
The local bending angle ij of the stem axis is defined by

cosij=zij⋅zi1, j−1  (2.3)
The local torsion angle ij between adjacent base-pairs  is defined by

cos ij =rij⋅ri1, j−1 (2.4)
and

sin ij =rij×ri1, j−1⋅zij ,  (2.5)
where the rij denote the directions of the base-pair vector components perpendicular to 
the local stem axis:

rij=[rij− zij⋅rij zij]0  (2.6)
The local tilt angle ij of base-pair inclination towards the local stem axis is defined by

 cos ij =rij⋅zijzi1, j−10 .   (2.7)
Fig. 2.2 shows the - although coarse-grained still complex - three-dimensional double-
helical structure of a fully folded RNA hairpin (right) consisting of Nbases compared to 
its  relatively simple  base-pairing scheme (left)  used by RNA models  that operate on 
base-pairing space only. The two helices of the stem are marked red and green, the loop 
is marked yellow.



2.1  Model 11

Fig. 2.2: Space of base-pairing and 3D space.

In order to visualize all vectors and angles defined above it is helpful to zoom into the 
part of the stem in the neighborhood of the base-pair (i, j), as is shown in Fig. 2.3.

Fig. 2.3: Denotation of all vectors and angles in the model.
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On the left part of the figure, where a so-called local cell of the stem (two fully formed 
adjacent base-pairs) is shown, the local bending angle vanishes, so that the tilt angle 
can be measured relative to the constant direction of the local stem axis. The (red) base-
pair vectors are always directed from a low index base to its high index partner base, 
the (blue) backbone vectors are directed from one base to its successor along the back­
bone and the (green) base-pair connectors describing the local stem axis are always ori­
ented in the direction of the low index backbone. 

In general, however, the bending angle does not vanish, as shown to the right, and 
therefore the tilt angle has to be measured relative to an effective stem axis direction 
determined by the two stem axes touching the tilted base-pair.

If (and only if) a local cell consists of two equally-sized base-pairs (rij=ri1, j−1≡ ) that 
have equal tilt  angles (i−1, j1=ij≡ ) and are connected by two equally-sized backbone 
segments (ri ,i1=r j−1, j≡r ) , some analytical geometry yields the following relation with the 
torsion angle ij≡ and the cell axis length zij≡z :

r2=z22 sin2sin2/2 (2.8)
This is a kind of Pythagoras relating the relevant dimensions and angles of a local cell of 
a folded stem to each other. As one will see later, this local relation is extremely useful 
in describing global properties of stems in symmetric situations.

2.1.2 Dynamics
Using  the  Forward-Euler-Method,  the  time-dependent  positions rkt of  the Npoint-
shaped bases the modelized RNA chain consists of are determined numerically by integ­
ration of the Langevin equation of motion:

∂t rk=
1
 [−∇k URNAUpore  kt] ∀ k : 1≤k≤N (2.9)

The motion of each base is governed by forces from potential gradients and by random 
forces  within  the  framework  of  a  Brownian  dynamics  simulation  [34][79].  For  the 
thermal random forces  kt isotropic white noise is used, i.e. there are no correlations 
between random forces at different points of time:

〈it j t ' 〉=2kT ijt−t' 
〈 it〉=0

∀ i , j , , : 1≤i≤N, i j≤N ,  ,=1,2,3 (2.10)

The forces from potential gradients can be subdivided into forces within the RNA mo­
lecule itself (intra-molecular interactions) and into external forces exerted on the mo­
lecule by a pore.

The interaction between the RNA molecule and the pore is modelized as a su­
perposition of two potentials (cf. Fig. 2.4): 

• The pore wall potential is a Gaussian wall (diameter lpore , height Ebarrier ) in the xy-
plane with a single axially symmetric Gaussian-shaped hole (diameter dpore ) at 
the origin. This potential is repulsive enough to allow the RNA molecule to pass 
the xy-plane only through a small cylindrical channel at the origin.
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• The pore drift potential exerts a force on the RNA molecule that is strongest for 
bases in the pore channel, thus translocating the molecule base for base through 
the pore. The energy gain per translocated base is Edrift , the force on a base at the 
origin Edrift /lpore .

Upore=∑
k=1

N

Ebarrier[1−exp−rkx
2rky

2

2dpore
2 ]exp− rkz

2

2l pore
2 1

2 Edrift tanh 2rkz
lpore  (2.11)

Fig. 2.4: RNA chain in pore potential.

The  intra-molecular  interactions of  the  model  consist  of  the  harmonic  springs 
between next neighbor bases along the RNA backbone, of the Lennard-Jones interac­
tions between chemically distant bases and of the angle-stabilizing interactions between 
adjacent base-pairs:

URNA=UbondULJUbp (2.12)
Harmonic springs between successive bases along the RNA backbone:
The RNA backbone is modelized as a bead spring chain, i.e. the Npoint-shaped bases 
are inter-connected along the chain contour by N−1 harmonic springs (spring constant
Kbond , spring length r0 ). These (almost rod-like) springs are the main carrier of geomet­

ric stability of the model molecule.

U bond=
1
2 K bond∑

k=1

N

rk, k1−r0
2 (2.13)

Lennard-Jones interaction between compatible and incompatible bases:

ULJ=∑
i=1

N

∑
j=i1

N

c ijLJ
comp r ij1−cij LJ

incomp rij (2.14)

To enable the formation of base-pairs and hence folding of the chain, one has to intro­
duce pair interactions between bases that are compatible (compatibility tensor c ij=1 ). 
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The interaction potential used is of the Lennard-Jones type (potential depth ELJ , equilib­
rium distance R ):

LJ
comp r=ELJ[ R

r 
12

−2Rr 
6] (2.15)

If base-pair-sizes are large compared to backbone segment lengths ( Rr0 ) , in order to 
achieve self-avoidance of the chain without hindering the folding process a much shal­
lower version of the Lennard-Jones potential ( ELJ

incomp≪ELJ ) has to be used for the incom­
patible bases (c ij=0) .  However, to avoid divergences when integrating the equation of 
motion numerically (with time steps whose duration minimum is limited by computa­
tion capacity), one has to circumvent the divergence in potential curvature for small dis­
tances. This is done by substituting the Lennard-Jones form by a harmonic potential 
there:

LJ
incomp r={ELJ

incomp[Rr 
12

−2Rr 
6] for   r≥R

2

ar2brc for   0≤rR
2} a,b ,c from  LJ

incomp

∂rLJ
incomp

∂r
2LJ

incomp continuous (2.16)

Interactions between pairs of bases:
An RNA stem forms a regular (A type) double helix which is resistant to a certain de­
gree to bending of its axis, to torsion and to shearing. In nature these mechanical prop­
erties  are mainly caused by interactions  of  overlapping orbitals  of  neighboring base-
pairs. That is why in this coarse-grained model local interactions between base-pairs are 
employed to simulate these properties. These interactions control the relative orienta­
tion of a base-pair relative to the local coordinate system made up by its neighboring 
base-pairs. Up to three subsequent pairs of bound bases are needed to establish such a 
coordinate system. Thus the weight of the interaction contribution (e.g. U torsion

ij ) depends 
on the states of boundness of each of these base-pairs, which are expressed by predicates
Hi

j continuously  depending on inter-base distance (cf. Fig. 2.5). Therefore the total po­
tential for interactions between base-pairs reads:

Ubp=∑
i=1

N

∑
j=1

N

 j≥i2 Hi
j Hi1

j−1 [Uaxis
ij U torsion

ij ] j≥i3 Hi
j Hi1

j−1 Hi2
j−2[Ubending

ij U tilt
ij ] (2.17)

Fig. 2.5: Binding weights.
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Contributions:
Only summands with weight factors near unity, i.e. only those where all participating 
base-pairs are bound strongly,  contribute appreciably to this total potential.

The bending potential generates the non-vanishing bending stiffness of the stem, 
thus making it semi-flexible and its equilibrium form rectilinear. This bending stiffness 
is  controlled  by  the  bending  energy  parameter Ebend in  each  local  contribution Ubending

ij , 
which is in turn weighted by the combined binding predicate of three subsequent base-
pairs and tries to set the local stem bending angle ij to zero.

Ubending
ij =−Ebend cosij (2.18)

The  torsion potential is responsible for the torsional resistance of the stem and its 
chiral and regularly helical form in equilibrium. The resulting torsion coefficient is con­
trolled by the torsion energy parameter Etor . For the weight of each local contribution
U torsion

ij the binding predicates of two subsequent base-pairs are needed. The signed equi­
librium angle between the corresponding projected base-pair vectors is 0 . 

U torsion
ij =−Etor cosij−0=−Etor [cos ij cos0sin ij sin 0] (2.19)

The tilt potential effects the shear resistance of the stem, which is controlled by the tilt 
energy parameter Etilt . Furthermore, the radial dimensions of the stem are stabilized by 
keeping the angle of base-pair inclination relative to the local stem axis at 0 in equilibri­
um. As for the bending potential, again three subsequent base-pairs are needed for each 
local contribution, because the axis ij is related to goes through the centers of mass of 
the two base-pairs neighboring the inclined base-pair symmetrically.

U tilt
ij =−Etiltcos ij−0=−Etor [cosij cos 01−cos2ij sin 0] (2.20)

Sigmoidal Hill function as a continuous predicate indicating the degree of ex­
istence of a base-pair:
The total potential of interaction between base-pairs Ubp consists of three angular poten­
tials for the angles of bending, torsion and inclination. The contributions to such an an­
gular potential are local, i.e. they describe the interactions within a local group of a few 
subsequent base-pairs (e.g. 2 group members per torsion contribution, 3 group members 
per bending contribution etc., cf. Fig. 2.5). These local groups are uniquely identified by 
their first base-pair (i, j). A priori, every pair (i,  j) can be the first base-pair of such an 
angular potential  contribution.  However,  a local  group is only fully valid if  all  of  its 
members are fully formed base-pairs.  This gives rise to continuous weighting factors 
between zero and unity describing the degree of simultaneous boundness of all members 
of the corresponding local group. This is expressed by a product of distance-dependent 
Hill-type functions (one function per group member) which reflect how strongly a group 
member (i.e. base-pair)  is bound. These functions Hi

j are sigmoidal with values between 
zero (base-pair unbound) and unity (base-pair maximally bound) and can be seen as con­
tinuous logical predicates for the statement "The base-pair (i, j) is fully formed.":

Hi
j=cij h 1−LJ

comp rij /LJ
compR

  (2.21)



16  2    RNA folding, deformation and pore translocation

hx= 1
1x2 (2.22)

A visualization of these predicate functions is given in Fig. 2.6. 

Fig. 2.6: Binding predicate function.

For incompatible pairs of bases the compatibility tensor c ij in Hi
j vanishes. That is, local 

angular potential contributions containing at least one incompatible pair of bases have 
vanishing weighting factors. For compatible pairs of bases the threshold parameter 
(between zero and unity) determines how small the deviation between actual inter-base-
distance and equilibrium distance R has to be in order to consider a pair of bases bound. 
Low threshold parameters correspond to small maximal deviations.

The complete algorithm for simulating the model numerically by using the Euler-
Maruyama integration method for Brownian dynamics is described in appendix A.

2.2  Folding of RNA

In the  Watson-Crick model all bases within so-called Watson-Crick pairs (AU, CG, 
GU) are considered compatible, which yields a compatibility tensor with possibly more 
than one non-zero entry in a row or column. That means, a base can have more than one 
possible  binding partner (Fig. 2.7, left).  In nature simultaneous binding of  a base to 
more than one partner base is impossible due to steric effects caused by the internal 
structure of the nucleotides. However, the coarse-grained RNA model introduced above 
neglects such effects. Therefore, chains with  homopolymeric sequence segments tend to 
form clusters of bases instead of pairs in the process of binding. In a hairpin with se­
quence A8C 5U8 for example, the A-bases do not only interact with their exactly op­
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posite U-partners but with all neighboring U-bases as well, as one can see from the non-
vanishing off-diagonal Lennard-Jones contributions in the left part of Fig. 2.8.

In order to find the compatibility tensor in the more restrictive Go model [80], one 
has to determine the (Watson-Crick) base-pairs formed in the ground state of a RNA 
molecule. Only the bases within this native base-pairs are considered compatible in the 
Go model. The resulting compatibility tensor contains at most one non-zero entry in a 
row or column, i.e. a base has at most one possible binding partner (cf.  Fig. 2.7, right). 
Testing the interaction pattern of the example hairpin again (Fig. 2.8, right) results in 
finding only diagonal non-zero Lennard-Jones contributions. Therefore, base-clustering 
is impossible and the binding process in the Go model will lead to the formation of base-
pairs.

Fig. 2.7: Base compatibility in the Watson-Crick model and in the Go 
model.

One can modify the Watson-Crick model in a way that base-clustering is prevented as 
strictly as in the Go model by the means of continuously suppressing bound states with 
more  than two  participating  bases.  This  model,  referred  to  as  “suppressor  model” 
here, shares its compatibility tensor with the Watson-Crick model, thus being less re­
strictive than the Go model, where only native base-pairs can occur. However, in the 
Lennard-Jones potential ULJ each summand concerning compatible pairs of bases has to 
be multiplied by a weighting function Sij (suppressor function):

Sij=∏
k=1

k≠i, j

N

1−Hi
k1−Hk

j  (2.23)

This function relying on the binding predicates defined above and thus depending con­
tinuously on distances between bases has values between zero and unity and reflects 
how strongly the two bases i and j are already bound to competing bases. If at least one 
of them is already bound strongly to at least one other base k, the suppressor function 
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takes small values, whereas if none of them is strongly bound to other bases, the weight 
is almost unity. Again the Lennard-Jones interaction matrix for the example hairpin is 
purely diagonal, as already seen in the Go model (Fig. 2.8, bottom). 

This suppressor model (Watson-Crick model with suppressor function) combines the 
advantages of both the Watson-Crick model (not only native base-pairs can form) and 
the Go model (multiple-base binding states are avoided).  It allows perfect folding for 
short base-pairs ( R≤r0 ) . For long base-pairs ( Rr0 ) the rising mean number of compet­
ing binding partners per base causes very small weights, thus reducing the folding prob­
ability drastically, so that in this case the Go model has to be used. For very short base-
pairs  ( R≤r0/2) the Watson Crick model is sufficient (multiple-base binding states are 
improbable there).

Fig. 2.8: Lennard-Jones energy contributions in several binding models.

In order to test the  folding properties of the suppressor model for an RNA with 
short base-pairs  ( R=r0 ) , the time-dependent behavior of a heteropolymeric RNA chain 
(sequence AUCGGGCCCGAU) is observed.  Initially, the chain is not folded, all of its 
backbone springs already have their equilibrium extensions and its joint angles are dis­
tributed randomly (Fig. 2.9, left part). 

After some time, the first base-pair forms (Fig. 2.9, middle part) due to Lennard-
Jones attraction and serves as a nucleation center for further base-pairs. Because of the 
suppressor  function,  these  base-pairs  form  without  showing  multiple-base  binding 
states, which would have been the case if an unmodified Watson-Crick model had been 
used. 

As soon as local groups of adjacent base-pairs emerge, the corresponding local stem-
fragments begin to obey the thereby continuously activated angular potentials. Finally 
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(Fig. 2.9, right part), all possible Watson-Crick compatible bases are zipped to pairs, the 
RNA chain is folded completely to a hairpin with a 4-bp stem and a 4-base loop and the 
angular potentials cause a perfectly regular chiral helicality of the stem (torsion poten­
tial) with constant base-pair inclination angle (tilt potential) and vanishing axis bending 
angle (bending potential).

This  example  for  simulated  folding is  consistent  with the  concept  of  hierarchical 
RNA folding as suggested by Tinoco and Bustamante [81]: Since the energies for second­
ary structure formation are larger then those for tertiary structure formation, there ex­
ists a hierarchy of thermodynamical stability with secondary structure elements (helices 
and hairpin loops etc.) on its top. Moreover, for RNA molecules (as opposed to proteins) 
the folding kinetics, i. e. the shape of the folding path, is linked closely to the thermody­
namics: tertiary structure elements (loop-loop base-pairing, base triples etc.) will form 
after the formation of the secondary structure.

In the short  example sequence used here only the process of  secondary structure 
formation plays a role. Nevertheless, the suggested close correspondence between ther­
modynamics and folding kinetics can be observed: The initial base-pair is stabilized by 
the formation of consecutive base-pairs and the helical geometry is stabilized in turn by 
the existence of adjacent base-pairs for the angular interactions.

Fig. 2.9: Process of hairpin folding.

Next, the  folding properties of the Go model at different temperatures are tested. 
This is done by equilibrating an initially stretched sequence which can form maximally 
8 stem base-pairs (all adjacent), whose equilibrium size is 3r0 (long base-pairs), and - as 
soon as equilibration is complete – by averaging the number of fully formed base-pairs 
over a long interval of  time.  The resulting probabilities  P(n) for observing a distinct 
number n of base-pairs are shown in Fig. 2.10.
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Fig.  2.10: Distribution of the base-pair number at several temperat­
ures.

From there one can see that the number n of formed base-pairs in a stem with maxim­
ally m possible base-pairs obeys the binomial distribution: 

Bn, p=mnpn1−pm−n (2.24)

That means that in the Go model the probabilities pij=Prob Hi
j0.5 to form single base-

pairs are statistically independent, as expected. For the m pairs of Go-compatible bases 
the probability p decreases with increasing temperature.

The temperature-dependence of hairpin stem opening and closing processes has been 
studied in experiments using fluorophore-quencher set-ups  [82][83]. Bonnet et al.  [83] 
measured  the  temperature  dependence  of  the  opening  (-)  and  closing  (+)  rates  of  a 
(DNA) hairpin stem. From these rates the probability that the hairpin is totally open is 
deduced easily:

P n=0,T =
k-T 

k-T k+T 
(2.25)

This can be used to calibrate the model parameters relevant for folding (Lennard Jones 
potential depth, energy parameters of the angular potentials). However, as will be dis­
cussed in chapter 2.4   where the RNA model will be calibrated quantitatively, angular 
energy parameters producing realistic values for double-stranded persistence length and 
torsional modulus necessarily make this probability very small.
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2.3  Deformation of folded RNA

2.3.1 Stretching a hairpin
As will be seen, a good way to test the interplay of some important model potentials is 
stretching a completely folded hairpin structure at temperatures far below the melting 
temperature (then all base-pair binding distances as well as the number of fully bound 
base-pairs can be regarded constant). 

Experimentally, the stretching of DNA is well-studied. Smith, Finzi and Bustamante 
were the first to measure the elasticity of single (double-stranded) DNA molecules and 
demonstrated the freely jointed chain model to be inconsistent with their data [84]. Be­
low stretching forces of  15 pN entropy dominates such that the DNA behaves like a 
stretched elastic tube under thermal fluctuations (worm-like chain model)  [85]. How­
ever, at forces of about 70 pN, where entropic effects are already negligible, there exists 
an  overstretching  regime,  where  the  chain undergoes  a  structural  transition  during 
which its length increases appreciably [86]: Computer simulations suggest [87][88] that 
the final state of this transition is a so-called “S-DNA”, which is either planar and lad­
der-like or still double-helical but with inclined base-pairs [86]. 

The coarse-grained RNA model constructed in this thesis is able to reproduce this 
structural transition in principle. In order to observe and identify clearly the relevant 
geometrical effects and since in the overstretching regime entropic effects can be neg­
lected anyway, all thermal fluctuations have been switched off. Pulling symmetrically at 
the centers of mass of the base-pairs at the model molecule's ends, by that avoiding any 
torsional constraints or unzipping forces, results of course in a ladder-like final conform­
ation, which is consistent with the mentioned numerical simulations. 

By contrast,  Mameren et al.  [89] showed experimentally (by the use of multicolor, 
single-molecule fluorescence imaging) that for double-stranded B-DNA this transition 
implies force-induced melting into single strands instead of double-stranded unwinding, 
even for symmetric pulling without torsional constraints. The corresponding theoretical 
framework was set up earlier by Rouzina and Bloomfield [90][91].

On the other hand, Rief, Clausen-Schaumann and Gaub had shown in 1999 [92] by 
single-molecule  force  spectroscopy  based  on  atomic  force  microscope  technology  that 
there is an additional transition at a much higher force than the already known 70-pN 
transition:  At 150 pN a non-equilibrium force-induced melting transition with strong 
hysteresis upon relaxation had been observed. This relaxation had proven indistinguish­
able from single-stranded stretching and relaxation, thus indicating a molten DNA state 
above the transition.

Eventually, the experiments of Fu et al.  [93] gave evidence that both force-induced 
melting ('”unpeeling”) and the formation of a stretched double-stranded “S-DNA” con­
formation are competing processes occurring during the overstretching transition, the 
percentage of each depending on parameters that influence base-pair stability, like se­
quence, salt concentration and temperature.
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However, it is still unknown what happens to A-RNA hairpins when overstretched. If 
they exhibit a double-stranded stretching mode as well, the RNA model constructed here 
can be used to obtain additional insight into the geometrical effects of the unwinding 
process involved. Within this RNA model torsion effects may impede the unwinding pro­
cess occurring during axial overstretching, thereby effectively decreasing double-stran­
ded stretching elasticity in this force regime. This interplay between backbone elasticity 
and stem torsion stiffness in causing double-stranded stretching elasticity will be stud­
ied quantitatively in the following.

The first task is trying to predict theoretically the behavior of the model molecule 
when performing a numerical stretching experiment, i. e. the relation between the (kept 
fix) axial extension of a hairpin stem L and the corresponding response force F z which 
attempts to equilibrate this extension. For that, it is useful to remember that due to 
reasons of symmetry the stem can be subdivided into independent segments, each con­
sisting of two subsequent base-pairs. The geometry of such a segment is determined by 
the direction of the two base-pairs ( ,  ) , their binding distance  (=const=R) , the dis­
tance z of their centers of mass, i.e. the segment extension, and the current length r of 
the two connecting backbone springs. All angles and lengths just mentioned are connec­
ted by the Pythagoras relation of the local cell (cf. equation 2.8), which will be extremely 
useful in what follows.

For unbent stems the segment extension is equal to the axial extension per segment
( L=z⋅Nseg ) .  Similarly, one gets for the total potential  energy of the stem Ustem=U⋅Nseg , 
where U denotes the contribution of a single segment, from which in turn the response 
force F z is obtained. 

In the two the simplest cases, which yield the first of the two analytically tractable 
limit curves (green line) in the force extension diagram of Fig. 2.12, the torsion energy is 
set to zero and the response force is caused purely by the deformation of the back-bone 
springs:
a)vanishing torsion and tilt energy

U=Ubond r , , z=Kbond [ r , , z−r0]
2 (2.26)

b)vanishing torsion energy, but large tilt energy (i.e. inclination angle fixed)
U=Ubond r ,0 ,zU tilt 0=Kbond [ r ,0 , z−r0]

2
−Etilt (2.27)

Although simply harmonic, these potentials lead to rich geometrical and dynamical be­
havior, which can be summarized within three distinct regimes (cf.  Fig. 2.11). The ex­
pected Hookean relation between axial extension and response force is only observed for 
the regime of backbone spring stretching (third column). 
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regime of spring compression
(exists only if Rr0 )

regime of equilibrium spring 
length

regime of spring stretching

range of segment extension z:

a) 0zr0
2−R2

b) 0zr0
2−R2 sin20

range of segment extension z:
a) and b) 0zr0  if Rr0

else:

a) r0
2−R2zr0

b) r0
2−R2 sin20zr0

range of segment extension z:
a) and b) zr0

geometry in energy minimum:
a)

r* z=  z2R2r0

*= ±
*= /2

b)

r*z=  z2R2 sin20r0

*= ±

geometry in energy minimum:
a)

r* z= r0

sin2*/2=
r0

2−z2

R2sin 2*

b)
r* z= r0

sin2*/2=
r0

2−z2

R2sin 20

geometry in energy minimum:
a)
r* z= zr0

*= 0
*= arbitrary

b)
r* z= zr0

*= 0

non-linear response force:

Fz
0z=2Kbond [r0−r*z]

z
r*z

0

vanishing response force:
F z

0 z=0
Hookean response force:
F z

0 z=−2Kbond  z−r00

Fig. 2.11: Regimes of axial stem deformation for vanishing torsion energy.

From the form of the potential one determines the angles which minimize energy for a 
certain segment extension. Then one differentiates with respect to segment extension. 
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The force obtained by that is the response force trying to equilibrate segment extension. 
From that, a dimensionless response force can be calculated (the index 0 denotes zero 
torsion energy):

f 0L=−
F z

0L/Nseg
Kbond r0

(2.28)

However, allowing for non-zero torsion energy (while keeping the inclination potential 
strong) results in corrections to the pure case (b) that has already been treated. By that, 
the sharp regime boundaries described above cease to exist. For finite torsion energies 
the corresponding potential contribution reads:

U=Ubond r ,0 ,zU torsion Utilt 0=Kbond [ r ,0 ,z−r0]
2
−Etor cos−0−Etilt (2.29)

Now the equilibrium torsion angle needed before differentiation cannot be determined 
analytically for all segment extensions  z, as it had been possible for the pure case (b). 
Only its asymptotic behavior for very large z can be derived:

cot*≈cot0[ 1
2sin0Rsin0

r0 
2]Kbond r0

2

Etor
 for z≫r0 (2.30)

Obviously, for very large torsion energies this changes to
*≈0  for z≫r0 , (2.31)

as expected. However, in this asymptotic  z-region the response force becomes increas­
ingly independent of the torsion angle, so that for all torsion energy values it approaches 
the same Hookean form as derived for the spring stretching regime in Fig. 2.11. There­
fore this Hookean form can be considered as universal asymptote for large segment ex­
tensions. 

In the limiting case of vanishing torsion energy the response force is already known 
exactly for all possible segment extensions. For finite torsion energies it can only be pre­
dicted asymptotically for large segment extensions. In the opposite limiting case of back­
bone spring energies that are small compared to the torsion energy the response force is 
predictable again for the whole range of segment extensions. The potential contribution 
one has to consider in this limit is:

U=Ubond r0 ,0 ,z=Kbond [ r0 ,0 , z−r0]
2
−Etor−Etilt (2.32)

By differentiating one obtains the dimensionless response force function f ∞L for very 
large torsion energies, which deviates substantially from f 0L , the function for vanish­
ing torsion energy (cf. equation 2.28, Fig. 2.11):

F z
∞ z=−2Kbond [r0 ,0 , z−r0] z

r0 ,0 , z
≡−Kbond r0 f ∞Nseg z (2.33)

The theoretical predictions for these two functions can now be confirmed by simulation 
experiments. The hairpin stem under consideration consists of 4 subsequent base-pairs, 
i.e. of 3 stem segments or local cells ( Nseg=3) . In order to exclude entropic effects and 
keeping the base-pairs stable, the temperature is set to zero.  For several values of kept 
fix axial extension L the stem with all its angles and lengths is allowed to equilibrate be­
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fore measuring the resulting response force F z . This force is plotted against the axial ex­
tension for several values of torsion energy (cf. Fig. 2.12). The data points for vanishing 
torsion energy follow exactly the theoretically predicted function f 0L with its different 
regimes. Because the base-pair size is larger than the length of the backbone springs
( Rr0 ) , it is impossible to observe the regime of spring compression there. For very high 
torsion  energy,  the  data  points  follow  the  prediction  for  the  opposite  limiting  case, 
namely the function f ∞L . For average torsion energy values the data point series in­
terpolate systematically between the two limiting functions. Two features are independ­
ent of torsion energy: the Hookean asymptote for very large axial extensions and that 
the response force vanishes at the equilibrium axial extension L=Nseg z0 , where

z0=r0
2−R2 sin20sin

20/2 . (2.34)

Fig.  2.12:  Force  extension  relation  for  a  folded  hairpin  when  
stretched axially.

2.3.2 Bending a hairpin
The total bending energy of the hairpin stem is distributed discretely over the joints 
between its elementary segments. The bending stiffness of each joint can be adjusted 
locally by varying the bending energy parameter.  However,  in order to  calibrate the 
model by the use of experimental data (persistence length of folded stems in nucleic 
acids, which should be comparable to the results of Abels et al. [31], who used magnetic 
tweezers  and  atomic  force  spectroscopy:  P=55±2nm  for  double-stranded  DNA  and 
P=63.8±0.7nm  for double-stranded RNA), the effective bending stiffness of the whole 

stem needs to be measured. Is it simply proportional to the bending energy parameter, 
or are there anisotropic effects emerging from the complex geometry of the folded stem 
with all its potentials stabilizing lengths as well as angles? How does temperature influ­
ence  this  effective  stem bending stiffness  if  the base-pairs  at  the bending joints  are 
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bound more and more weakly due to thermal fluctuations and entropic forces become 
dominant? 

The bending experiment is performed on a helical hairpin with a 4 base-pair stem 
folded according to the Go-model. The base-pair directions are perpendicular to the ini­
tially straight stem axis.  (For a quantitative calibration of  the persistence length by 
measuring the decay of tangent correlations in an 11-bp stem see chapter 2.4  .)

For simplicity, the closed stem can be considered as a chain of Nseg line segments with 
lengths zij (=stem chain), each of them connecting the centers of mass (=bending joints 
with inter-segmental bending angles ij ) of two subsequent stem base-pairs (Fig. 2.13). 
The direction of the loop-next segment and the position of its bending joint are kept fix 
during the bending procedure, yielding the  z-axis and the origin of the coordinate sys­
tem. An external harmonic force (spring stiffness Kspring ) acting in x-direction on the first 
bead of the stem chain (=hairpin foot) tries to shift it from the z-axis into the x0 -plane:

Fspring=−Kspring  x−x0 x (2.35)
For small x0 , stem stretching effects are negligible, so that the mean transverse elonga­
tion 〈 x〉 of the already equilibrated stem originates purely from stem bending. Similarly, 
the mean external force is given by

〈F spring 〉=−Kspring 〈 x〉−x0 (2.36)
The measured relation between the mean transverse elongation of  the stem and the 
mean external force for several values of x0 and/or Kspring allows to determine the trans­
verse elasticity of the stem and from that its effective bending stiffness.

Fig. 2.13: Geometry of the bending experiment.

However, if x0 and Kspring are chosen such that the resulting mean transverse elongations 
are large enough to stretch the stem segments considerably, the force elongation rela­
tion is not linear anymore (Fig. 2.14), at least for low temperatures. Therefore, in order 
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to determine the effective bending stiffness correctly one has to find the regime of small 
transverse elongations:

In this regime one observes a relation of linear response between the external force 
exerted on the hairpin foot and the resulting elongation. This linearity is maintained for 
all temperatures and all bending energy parameters, thus allowing the definition of an 
effective transverse spring constant of the hairpin stem from the inverse slope of the 
force elongation diagrams:

KHP T , Ebend=−
 Fspring

x T , Ebend ; x≪Nseg z0 (2.37)

Fig.  2.15 shows such a diagram:  For a bending energy parameter of Ebend=1.25 ELJ and 
temperatures  ranging from kT=0.025 ELJ to kT=2.5 ELJ one obtains straight lines crossing 
the origin,  indicating Hookean behavior  for  all  temperatures.  However,  it  is  already 
clear from this diagram that KHP T , Ebend depends on temperature in a non-trivial way.

Fig.  2.14: Force elongation diagram for large 
elongations.

Fig.  2.15:  Force  elongation  diagram  for  small  
elongations.

For low temperatures one obtains large slopes (small effective transverse spring con­
stants) that are independent from temperature. For high enough temperatures, though, 
slopes decrease with increasing temperature. This fact is demonstrated more clearly by 
Fig. 2.16 (identical slopes for low temperatures) and Fig. 2.17 (slopes decreasing with in­
creasing temperature for high temperatures), where a larger bending energy parameter, 
Ebend=2.5 ELJ , is used. Obviously the dependence of KHP T , Ebend from temperature is dif­

ferent in the low and the high temperature regimes.
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Fig.  2.16: Collapsing  curves due to identical  
slopes for low temperatures.

Fig. 2.17: Slopes decreasing with increasing tem­
perature for high temperatures.

Furthermore, its dependence from the bending energy parameter differs substantially in 
the two regimes, as can be seen from Fig. 2.18 (low temperature regime) and Fig. 2.19 
(high temperature regime). Again both figures show force elongation diagrams, but now 
temperature is kept fix within each diagram ( kT=0.025ELJ resp. kT=0.75ELJ ), varying the 
bending  energy  parameter  instead:  Ebend=1.25 ELJ , Ebend=2.5 ELJ , Ebend=5ELJ .  In  the  low 
temperature diagram one observes a decrease of the slope with increasing bending en­
ergy parameter, whereas in the high temperature diagram the slope is independent of 
the bending energy parameter.

Fig.  2.18: Slopes are sensitive of the bending 
energy parameter  for low temperatures.

Fig.  2.19: Slopes are insensitive of the bending  
energy parameter for high temperatures.

How can the observed behavior of the inverse slope KHP T , Ebend as a function of temper­
ature and the bending energy parameter be explained? Comparing for several bending 
energy parameters,  Ebend=1.25 ELJ , Ebend=2.5 ELJ , Ebend=5ELJ ,  the temperature dependence 
of the slope (cf. Fig. 2.20 and Fig. 2.21) with the temperature dependence of the probab­
ility that the hairpin is closed completely (Fig. 2.22) reveals that the difference between 
the low and the high temperature regime has structural reasons:

The melting temperature, above which the hairpin is totally unfolded due to thermal 
fluctuations, separates the low and the high temperature regimes. Below the melting 
temperature energy dominates over entropy,  causing the hairpin to be closed and all 
base-pairs to be stable, which leads to maximal binding weights and well-defined bend­
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ing joints.  However,  above the melting temperature  entropy dominating over energy 
destabilizes all stem base-pairs, thus opening the hairpin and leaving it without well-
defined bending joints (the binding weights are very small).

Fig. 2.20: Slope as function of temperature for  
several  bending  energy  parameters  (low tem­
perature regime).

Fig.  2.21:  Slope  as  function of  temperature  for  
several bending energy parameters (all temperat­
ures).

Fig.  2.22: Probability that the stem is closed as  
function  of  temperature  for  several  bending  
energy parameters.

As a consequence, KHP T , Ebend is  a measure  for  the effective bending stiffness  of the 
stem only below the melting temperature. Above this temperature its value is a mere ar­
tifact resulting from entropic forces (Although the RNA chain is totally unfolded, the fix­
ation of its loop-next bases during the measurements causes a bias towards low trans­
verse elongations of the hairpin foot. This bias increases with temperature, yielding in 
turn an increasing effective transverse spring constant.).

A priori one would expect KHP T , Ebend to be proportional to the bending energy para­
meter. However, looking at the inverse slopes in Fig. 2.20 one observes deviations from 
this proportionality. The reason is that the non-vanishing torsion potential prevents the 
stem conformation from changing from helical  to  planar  (This  has  already been the 
cause for the non-Hookean stretching behavior studied in  2.3.1.) during bending. This 
leads to a bending anisotropy, because for some base-pair orientations in the helix the 
need to deform backbone springs in order to bend the stem chain (Fig. 2.23 left) results 
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in an additional contribution to bending stiffness independent from the bending energy 
parameter. Only if the torsion potential vanishes, the stem is allowed to become planar 
during bending, making deformation of backbone springs unnecessary (Fig. 2.23 right) 
and the expected proportionality is restored (Fig. 2.24).

Fig. 2.23: Bending within the local stem plane  
enforces  deformations  of  the  backbone  (left),  
whereas bending perpendicular to it does not  
(right).

Fig.  2.24: A vanishing torsion potential restores 
the  proportionality  between the  bending  energy 
parameter and the effective bending stiffness of  
the whole stem.

In this chapter the qualitative behavior of a hairpin stem under bending forces has been 
studied, especially the complex interplay between bending, torsion and backbone poten­
tials  in producing the effective  bending stiffness.  The quantitative  calibration of  the 
bending energy parameter E bend with respect to experiment will be carried out in chapter 
2.4  .

2.3.3 Drilling a hairpin
The torsional resistance of hairpin stems in nucleic acids is well-studied in experiments: 
Zev Bryant and co-workers recently tested the linearity of DNA's twist elasticity and 
directly measured the torsional modulus (C tor=410±30 pNnm2 ) [32]. In order to be able to 
adjust the model to these experimental results it is necessary to perform simulations 
similar to these experiments. In a first qualitative model experiment, a completely fol­
ded, regularly helical 4-base-pair stem with a straight axis, to which all base-pairs are 
perpendicular, is used (Later, in chapter 2.4  , the torsional modulus of an 11-bp hairpin 
stem will be measured directly from the thermal fluctuations of the total rotation angle 
of the stem helix.): It is drilled initially by rotating the loop-near and the loop-far base-
pair around the stem axis - out of their equilibrium positions - into opposite directions 
by equal amounts, thus gaining a total drill angle  . Then the stem is fixed in space at 
its loop-near end by keeping fix the corresponding base-pair.  Fig. 2.25 shows such a 
hairpin before drilling (above) and after drilling it by a positive total angle (below).
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Different from the torsion energy parameter ( Etor=0.25 ELJ ), whose effect is to be stud­
ied here, both the bending and the tilt energy parameters are set to zero. 

During the simulation the total drill angle  between the loop-far base-pair and the 
(spatially fixed) loop-near base-pair is kept constant. As soon as the simulation is star­
ted, the stem begins to equilibrate internally by rotating base-pairs and changing its 
axis length. This equilibration process endures until all single drill angles  belonging 
to the Nseg elementary cells of the hairpin stem are equal on average (cf. Fig. 2.26):

=Nseg=Nseg −0 (2.38)
As Fig. 2.26 shows, the resulting torque is obtained by measuring the torsion forces Ftor

that try to rotate back the base-pairs (vectors r ) at the loop-near and the loop-far end of 
the stem:

=r×Ftor (2.39)

Fig.  2.25:  3D  representation  of  the 
hairpin  used  in  the  torsion  experi­
ment  (figure  above:  zero  total  drill  
angle,  figure  below:  positive  total  
drill angle).

Fig.  2.26: The drill  angles from the elementary cells of  
the stem contribute additively to the total drill angle. The  
torque  within  elementary  cells  compensates  for  stems 
equilibrated at constant total  drill  angle.  The response  
torque can be measured at the ends of the stem.

The effect the equilibration process of the stem has on the time-dependence of the axial 
component ∣∣ of this torque can be seen from Fig. 2.27, where this dependence is shown 
at zero temperature for several total drill angles  (All non-axial components vanish, 
data not shown.). The long-time horizontal asymptotes define the values of the (axial) 
response torque after equilibration. These values are plotted versus their corresponding 
total drill angles in Fig. 2.28, each curve belonging to a distinct temperature. For suffi­
ciently low temperatures ( T≪Tmelt ), all base-pairs are bound strongly and the torsion 
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potential  contributions U torsion
seg =−Etor cos−0 from the Nseg elementary cells yield the ex­

pected sine-shaped behavior of the axial torque after equilibration:

≡∣∣
equ≡r×F tor∣∣

equ
≈−

∂U torsion
seg 
∂

=−Etor sin /Nseg (2.40)

For high temperatures, however, one obtains
≈−TEtor sin /Nseg  (2.41)

with an sine amplitude T1 that decreases considerably with increasing temperature 
because of the loss of torsion joints if the base-pairs are bound more and more weakly.

Fig.  2.27: Axial component of the torque over 
time for  different  constant  total  drill  angles  
(positive and negative drill). Note the asymp­
totic  long-time  behavior  after  the  process  of  
stem equilibration.

Fig. 2.28: Equilibrium axial torque as a function  
of the total drill angle, parametrized by temper­
ature.  All  curves  at  low  temperatures  obey  the 
same sine-law,  for  high temperatures  the amp­
litude decreases, however.

To summarize, for temperatures so low that the base-pairs are stable the torsional res­
istance of the model hairpin stem is directly given by the torsion energy parameter. For 
high temperatures, the base-pairs begin to melt, yielding a much lower torsional resist­
ance. The quantitative calibration of the torsion energy parameter E tor with respect to 
experiment will be carried out in chapter 2.4  .

2.4  Quantitative calibration of the RNA model

Up to now, the highly entangled interplay of  backbone bond,  helix torsion and helix 
bending potentials has been analyzed by simulated mechanical stretching, twisting and 
bending of a short hairpin. The goal is now to exactly calibrate the energy parameters 
belonging to those potentials in a way that the torsional modulus and the persistence 
length of a 11-base-pair model hairpin are comparable to experimental data. This will be 
done  by  equilibrium  measurements  instead  of  mechanical  deformation  by  external 
forces.



2.4  Quantitative calibration of the RNA model 33

First of all, the  geometric properties of the hairpin, which consists of an 11-bp 
stem ( N seg=10 ) and a 4-base loop, have to be set, i.e. its characteristic equilibrium length 
ratios and equilibrium angles:

R
r0
=3 , 0=

2
11 , 0=0.39 (2.42)

First the helix twist 0 and the base-pair tilt 0 are set to their experimentally measured 
values directly and the base-pair distance R is set three times the bond length r0 . Then 
the bond length is chosen such that the resulting rise z0 per base-pair (in Å ) equals ex­
periment (r0=4.2  Å ) . This is done by making use of the stem cell Pythagoras relation, 
which describes equilibrium stem geometry in this coarse-grained model:

r0
2=z0

2R2 sin20 sin20 /2 (2.43)
In this geometry the helix axis contains all base-pair centers of mass. However, in real 
A-RNA stems these centers of mass form a helix around the stem axis themselves, by 
that making the diameter of real A-RNA larger than in the coarse-grained model, where 
it is given by:

dstem=R sin 0 (2.44)
Apart  from that,  comparing the geometric  parameters of  the model  with experiment 
yields geometric properties matching perfectly (Fig. 2.29):

Simulated RNA
translocation

RNA/DNA 
parameters [76]

A-RNA
parameters

A-DNA
parameters [94]

Bond 
length

r0 [Å ] 4.2 / 4.3 [95] /

Base-pair 
distance

R [Å ] 12.6 / / /

Rise  per 
base-pair

z0 [Å ] 2.52 2.52 2.81 [76] 2.4

Helix
diameter

dstem [Å ] 11.9 / 22 [95] 26

Helix 
twist

0 [° ] 32.7 33.3 32.7 [76] 33.6

Base-
pair tilt ∣2−0∣[° ] 19 19.3 16.7 [76] 19

Fig. 2.29: Geometric parameters of RNA.

Having implemented the hairpin geometry correctly, the next step is to calibrate the en­
ergy parameters of the model. This is done by measuring geometric properties describ­
ing the whole stem, such as the fluctuations of the total helix rotation angle or the mean 
cosine of the angle between the vectors of the first and the last tangent of the helix con­
tour. 
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The necessary definitions read:

• Torsional modulus
C tor

k T
= 〈L〉
〈2〉−〈〉2

with total helix rotation angle =∑
k=1

N seg

k and contour length L=∑
k=1

N seg

zk

• Persistence  length  per  segment  length  or  number  of  persistent  segments:

sp=−
∣i− j∣

ln 〈 zi⋅z j〉
where i=1, j=N seg

In these definitions 〈 〉 denotes a time average over one single trajectory.
The  energy  scale  of  the  model  is  set  to  body  temperature  ( kT=4.28  pNnm ) ,  its 

length scale has been set earlier to r0=4.2  Å . Base-pair binding energy and single-stran­
ded stretching modulus are experimentally known:

• Mathews  et  al.  [96] summarize  known  thermodynamic  parameters  for  RNA, 
which have been obtained by performing calculations on experimental results. 
This yields the following free energy per base-pair:

Gbind
RNA-bp≈2.5  kcal  mol−1=17  pN nm=4 k T (2.45)

• Stretching experiments with single-stranded DNA carried out by Smith, Cui and 
Bustamante [97] yield the following stretching modulus:

Sstretch
ssDNA≈800  pN (2.46)

Therefore, the calibration starting point is:
ELJ

 kT
=4,

K bond r0
2

 kT
=80 (2.47)

Sufficient stability against base-pair tilt and axial shearing of the stem is obtained by 
setting  E tilt/k T=4 . In order to get realistic values for the persistence “length”  sp  and 
the torsional modulus C tor , which are comparably high, one has to increase both the tor­
sion and bending energy parameters ( E tor , Ebend ) appreciably.

However, too high values of these energy parameters destabilize the stem, thereby 
causing  negligible  persistence  length  and  torsional  modulus  –  unless  the  backbone 
springs are hard enough. This causal connection between backbone stability, base-pair 
stability and angular stability is shown in Figs. 2.30 (torsional modulus vs. angular en­
ergy  parameters),  2.31 (persistence  length  vs.  angular  energy parameters)  and  2.32 
(stem integrity vs. angular energy parameters), where the backbone spring stiffness is 
increased gradually  ( Dbond≡K bondr0

2/k T ) .  Obviously,  the model's  backbone spring stiff­
ness has to be corrected by a factor of at least 20:

K bond r0
2

 kT
=1600 (2.48)

Then one can set E tor /kT=Ebend/k T=160  without loosing stem stability, which results in 
realistic values for persistence length and torsional modulus.



2.4  Quantitative calibration of the RNA model 35

Fig.  2.30: The torsional modulus of  
the  model  RNA  hairpin  stem 
increases monotonically with the tor­
sion energy parameter only below a 
critical value. The harder the back­
bone  springs  are,  the  higher  this  
critical value is.

Fig. 2.31: The persistence length (per 
segment  length)  of  the  model  RNA 
hairpin  stem  increases  monotonic­
ally  with  the  bending  energy  para­
meter  only  below  a  critical  value.  
The  harder  the  backbone  springs 
are, the higher this critical value is.

Fig.  2.32: The base-pair stability of  
the  model  RNA  hairpin  stem 
decreases  with  increasing  torsion 
and  bending  energy  parameters.  
This  destabilization  effect  is  the 
weaker,  the  harder  the  backbone 
springs  are,  and  causes  monoton­
icity  breaking  of  torsional  modulus 
and persistence length for high tor­
sion  and  bending  energy  paramet­
ers.
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In order to further validate this result,  40 independent runs with 4 millions of steps 
each are performed with the same geometric and energy parameters as above (case 1 of 
table  2.33) and compared with contrasting parameter sets (case 2, 3 and 4) as well as 
with experiment:

ELJ

k T
=4 ,

K bond r0
2

k T
=1600 ,

E tilt

kT
=4 (2.49)

Case 1 Case 2 Case 3 Case 4

E tor /kT=160
Ebend/k T=160

E tor /kT=0
E bend/k T=160

E tor /kT=160
E bend/kT=0

E tor /kT=0
E bend/k T=0

Experiment

C tor/k T r0 158±7 5.44±1.12 133±3 1.83±0.10 220 [32]

C tor [pN nm2 ] 285±13 9.87±2.01 235±6 3.29±0.18 400 [32]

sp 155±5 167±5 4.01±0.56 3.39±0.54 240 [31]

〈 z i⋅z j 〉 0.9436±0.0018 0.9476±0.0014 0.107±0.032 0.072±0.029 0.96 [31]

ideal

〈 /N seg〉 [° ] 31 0.52 32 -0.34 32.7 [76]

〈L /N seg〉 [ Å ] 2.7 3.4 2.9 3.4 2.52 [76]

〈cos〉 -0.30 -0.37 -0.04 -0.29 -0.33 [76]

Stem integrity 0.97 1.00 1.00 0.98 /

Fig.  2.33:  Torsional  modulus  and  persistence  length  for  correctly  strong  torsion  and  bending  
energy parameters (case 1) and contrasting test simulations in which one or both energy paramet­
ers vanish (case 1 to 3). Only in case 1 both torsional modulus and persistence length are compar­
able with experiment.

Case 1 is the parameter set that causes both persistence length and torsional modulus 
to be in the same range as the corresponding experimental values, case 2 to 4 are only 
tests of significance, where either the torsion potential, the bending potential or both are 
switched of. One observes that persistence length and torsional modulus depend signi­
ficantly on bending and torsion energy parameters respectively. The correct parameter 
set (case 1) furthermore leads to high stem stability and approximately ideal total helix 
rotation angle, stem contour length and inclination cosine.

To conclude, the parameter set
ELJ

 kT
=4,

K bondr0
2

 kT
=1600,

E tor

 kT
=160=

Ebend

 k T
,

E tilt

 kT
=4, R

r0
=3 , 0=

2
11 , 0=0.39 (2.50)

causes realistic helix geometry (obtained from X-ray RNA crystallography data summar­
ized by Holbrook and Kim [76]), realistic persistence length (obtained for double-stran­
ded RNA and DNA from magnetic tweezer experiments and atomic force microscopy by 
Abels and co-workers  [31]), realistic torsional modulus (obtained from the experiments 
by Zev Bryant and co-workers, who measured torque vs. twist in over- and underwound 
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double-stranded  DNA molecules  with  the  help  of  rotating  beads  [32])  and  sufficient 
shear stability.

However, it does not reproduce the base-pair melting behavior correctly. The reason 
is an effective increase of base-pair binding energy for large angular energy parameters: 
If all angles are near their equilibrium values, the cosines in the corresponding angular 
potential contributions are near unity. Then the base-pair binding predicates (H-func­
tions) in these angular potential contributions generate attractive forces which are the 
larger, the larger the corresponding angular energy parameter is. For torsion and bend­
ing energy parameters so large as in this parameter set, these attractive forces appre­
ciably increase the effective base-pair binding energy, thereby preventing the stem from 
melting at realistic temperatures or from being unzipped by realistic pulling forces. 

One could possibly solve this problem of base-pair stability changed by strong angu­
lar potentials by shifting the level of zero energy of the angular potential contributions. 
This is done by varying a0 away from zero up to unity in the following terms:

H i
j H i1

j−1 E tor [a0−cosij−0] (2.51)
H i

j H i1
j−1 H i2

j−2 Ebend [a0−cos ij] (2.52)
H i

j H i1
j−1 H i2

j−2 Etilt [a0−cos ij−0] (2.53)
For a0=0 equilibrium  angles (0 , 0=0,0 ) cause  base-pair  stabilizing  forces,  for a0=1
these forces vanish. However, for all other angles a0=1 leads to base-pair destabilizing 
forces, which is a strong bias towards unstable stems, whereas a0=0 balances  in angle-
space between stabilizing and destabilizing forces (cf. Fig. 2.34 for the torsion potential). 
Therefore,  this  model  stays  with a0=0 as  long as  the  angular  energy parameters  are 
small,  despite  the  resulting  base-pair  stabilization  effects.  For  high  angular  energy 
parameters  a  possible  solution could  be  setting a0=1 and compensating  the  resulting 
base-pair destabilization effects by increasing ELJ /kT .

Fig. 2.34: Torsion potential contribution for several levels of base-pair binding. The parameter a0

controls  for  which  ranges  of  twist  angles  the  contribution  produces  base-pair  stabilizing  and  
destabilizing forces, respectively. For a0=0.0 destabilization and stabilization range are equally-
sized and the largest stabilization effect is obtained for the equilibrium angle. For a0=1.0 only the 
equilibrium angle is neutral, all other angles cause destabilization.
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Because for studying translocation of RNA molecules through narrow pores, which is the 
goal of the following chapters, one has to rely on correct base-pair melting and unzip­
ping behavior, a different parameter set will be used:

ELJ

 kT
=4,

K bondr0
2

 kT
=400,

E tor

 k T
=4=

Ebend

 k T
,

Etilt

 k T
=4, R

r0
=3 , 0=

2
11 , 0=0.39 (2.54)

Here, torsion and bending energy parameters are much lower than above, yielding too 
low torsional modulus and persistence length. However, this disadvantage is inevitable 
(for a0=0 ) if base-pair melting and unzipping should be realistic. As the angular poten­
tials are weak enough within this parameter set, their base-pair stabilizing effect plays 
only a negligible role.

2.5  Translocation of hairpins and pseudoknots

In the previous chapters the static and dynamic properties of isolated model RNA mo­
lecules have been investigated. Now, the model is extended by a narrow pore with local 
drift potential in order to study the translocation properties of these molecules. The (loc­
ally repulsive) pore plane separates space into a cis and a trans side and the pore chan­
nel is short enough to harbor only one RNA base at a time and too narrow to allow 
double-stranded translocation without major deformation of the folded RNA molecule. 
Of special interest from a biologist's as well as from a physicist's point of view is the 
mechanism causing highly different rates of RNA translocation through ribosomes for 
pseudoknot  motifs  on the one hand and hairpin motifs  on the other hand:  Whereas 
pseudoknots may induce ribosomal pausing and in turn ribosomal frameshift, the hair­
pin translocation rate is comparably high. Therefore the main attention in the following 
chapters will lie on a comparative study of the translocation behavior of these two RNA 
motifs, especially taking into account effects of geometry and binding topology.
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2.5.1 Structure of hairpins and pseudoknots
An RNA hairpin is a secondary structure element consisting of one Stem (S) and one 
loop (L), which are arranged along the RNA chain from its 5' to its 3' end according to 
the sequence

sHP=S i LS  j . (2.55)
However, the most prominent RNA folding motif involved in ribosomal pausing and thus 
in -1 programmed ribosomal  frameshift  is  the pseudoknot.  Pseudoknots,  which were 
identified in RNA first by Rietveld and coworkers [98][99] are ubiquitous RNA tertiary 
structure elements  [9], occurring not only in messenger RNA [100][101][102][103][104]
[105],  but also in ribosomal RNA  [106],  transfer-messenger RNA  [107],  catalytic and 
self-splicing RNA [108][109][110], ribonucleoprotein complexes  [111] and viral genomic 
RNA (reviewed in [112]). 

Among  all  the  different  pseudoknot  topologies  the  particularly  simple  H-type 
pseudoknot, which often plays the role of a stimulatory element for ribosomal pausing 
and frameshift during the translation of messenger RNA, is most common [113]. It con­
sists of  two stems (S A ,SB ) and two loops ( L1 , L2 ) . The corresponding sequence is

sPK=SA iL1 SBi S A  j L2 SB j . (2.56)
In both the hairpin and the pseudoknot structure a loop is a sequence of unpaired bases 
connecting regions of the chain where bases are paired. On the other hand, a stem is a 
cylindrical structural motif (axis z ) consisting of two complementary right-handed back­
bone helices (index i for the helix nearer to the 5' end, index j for its counterpart) con­
nected to each other by base-pairs.

The structure of frameshifting pseudoknots has been studied extensively [114][115]
[116]. The two stems of an H-type pseudoknot are stacked onto each other, forming a 
quasi-continuous double-helical structure [117], which – as NMR studies show – may be 
bent in some cases [118]. Whereas the 3' and 5' end strands of a hairpin point into the 
same direction, the end strand directions in an H-type pseudoknot are opposite, a topo­
logical difference proposed to be relevant as far as the ability to provoke ribosomal paus­
ing is concerned [119][112]: Even if the total numbers of base-pairs in a pseudoknot and 
a hairpin structure are equal, only the pseudoknot increases frameshift efficiency appre­
ciably [7].

In  order  to  make  clear  the  three-dimensional  structures  of  both  hairpin  and 
pseudoknot,  Fig. 2.35 resp.  Fig. 2.36 visualize the special symmetric case where there 
are 10 base-pairs in the hairpin stem and 5 base-pairs in each pseudoknot stem.
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Fig. 2.35: Schematic view of the 3D geometry of a hairpin with loop L and 
stem S, whose 5' end is threaded in a nanopore P. The stem is helical: its  
base-pairs perform one total rotation around the stem axis z. The right­
most figure shows the initial geometry for the simulations.

Fig. 2.36: Schematic view of the 3D geometry of a H-type pseudoknot with  
two loops L1, L2 and two stems SA, SB, whose 5' end is threaded in a nano­
pore P. The stems are helical:  their  base-pairs perform a half  rotation  
around each of the stem axes zA, zB. The rightmost figure shows the initial  
geometry for the simulations.
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This causes a full rotation of the base-pair direction around the hairpin stem axis and 
half  rotations  around  the  axes  of  each  pseudoknot  stem.  For  both  hairpin  and 
pseudoknot this is shown by the comparison between the planar (first column in  Fig.
2.35 and Fig. 2.36) and the helical representation (second column). The two pseudoknot 
stems connected to each other at  their  heads complement one another  by forming a 
right-handed double helix that continues at the connection site and thus encompasses 
the  whole  pseudoknot.  Adding  the  feature  of  base-pair  inclination  ( 0/2 ,  third 
column) to the 3D representation scheme, one recognizes that the loop length symmetry 
observed in the planar (first column) and helical (second column) representations of the 
pseudoknot geometry disappears: For inclination angles larger than 90 degrees loop L1

has to be shorter than loop L2 .
The previous  geometrical  contemplations  help  to  construct  three-dimensional  and 

fully folded initial configurations for hairpins and pseudoknots that are near to mechan­
ical equilibrium (cf.  rightmost column in  Fig. 2.35 and  Fig. 2.36). After some further 
equilibration steps with the chain's 5' end kept fix within the channel of the narrow pore 
(denoted P in the figures) the translocation process of such RNA structures can start.

2.5.2 Characterization of the system using the hairpin paradigm
Before the translocation process of a pseudoknot can be compared to that of a hairpin 
the behavior of the system “pore – RNA chain” has to be characterized. This will be done 
for the simpler case of the RNA hairpin, from which one can then abstract results easily 
to the more complex pseudoknot case. Before the hairpin translocation process and its 
various time regimes are studied in detail it is most important to answer the questions 
which types of translocation behavior exist and – because of the complexity of the model 
with its large collection of energy parameters ( Edrift , ELJ , kT , Etilt ... )  – which parameter ra­
tios are relevant for the characterization of the translocation behavior. Having charac­
terized this behavior with respect to these energy ratios it will be easy to find the appro­
priate regime in parameter space to perform the hairpin-pseudoknot comparison.
2.5.2.1 Exploration of the parameter space: finding the relevant regime
In order to study the parameter space for hairpin translocation by variation of temperat­
ure  T and pore drift  energy Edrift ,  a regularly folded hairpin (0=2/11, 0=1.9, R=3r0)
with  an  11-bp  stem  and  a  4-base  loop  is  initially  threaded  into  the  pore  channel
( lpore=2r0 , dpore=r0 , Ebarrier=500 ELJ ) with its first base, which is connected to the stem by a 
chain of  6 bases.  The energy parameters  of  the  angular potentials  are equal  to  the 
Lennard-Jones energy parameter ( Etor=Ebend=Etilt=ELJ ) .  As usual,  the backbone springs 
are strong ( Kbond r0

2=100 ELJ ) , the base-pairs form according to the Go model with low bind­
ing  threshold (=0.1)  and  the  repulsion  between  incompatible  bases  is  weak
( ELJ

incomp=10−4 ELJ ) .
A first subdivision of parameter space is shown in Fig. 2.37, where for high thermal 

energies kT (compared to the energy gain per translocated base Edrift ) the chain is rejected 
from  the  pore  into  backward  direction  (“rejected,  -”)  instead  of  being  translocated 
through the pore channel. This effect is due to entropic forces outweighing the pore drift 
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force: The deeper the chain is in the pore the less is its conformational entropy. Since 
this entropy gradient between chain configurations differing from each other only by one 
translocated base is largest at the begin (and the end) of translocation, it causes an ini­
tial rejection of the chain if temperature is so high that S T TEdrift .  This explains 
qualitatively the shape of the monotonically increasing coexistence line between the re­
gime with chain rejection and the one without (Fig. 2.37, “coex. with (-)”).

Fig.  2.37: Regimes of chain passing, chain pausing and chain rejection  
with their respective coexistence lines in parameter space.

However, the main interest lies in the complementary non-rejection regime, which in 
turn consists of two sub-regimes, as one can see from Fig. 2.37. In the regime of single-
stranded translocation (“passing,  +”)  the stem is  opened totally in order to  allow all 
bases to pass the narrow pore. By contrast, in the pause regime (“pausing, 0”) the stem 
remains closed causing the translocation process to stop as soon as the stem, which is 
not thin enough to pass the pore in its closed state, reaches the pore (cf. Fig. 2.48 later).

The ability of the pore to open the whole stem in the course of single-stranded trans­
location depends on the rate for breaking up the base-pair containing the base immedi­
ately in front of  the pore and subsequently translocating this base through the pore 
channel. For simplicity one can assume that this rate is – in zeroth order – a monotonic 
function of the ratio

g Edrift /ELJ ,kT /ELJ=
bind ELJ−Edrift

kT (2.57)

(where bind1 is  a  dimensionless  factor  accounting  for  contributions  to  the  base-pair 
binding energy that do not originate from the Lennard-Jones potential but from the ef­
fectively attractive  binding predicates Hi

j in the  angular potentials).  This  assumption 
uses the fact that in order to unbind and translocate one base an energy barrier has to 
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be crossed which increases with the base-pair binding energy and decreases with the 
pore drift energy. If the ratio g is greater than some constant g0 , one is supposed to ob­
serve chain pausing, else chain passing. And indeed this order of regimes is observed in 
simulation, moreover, the coexistence line between the passing and pausing regimes in 
Fig. 2.37 (“coex. (+)/(0)”) is monotonically decreasing, just as predicted from the assump­
tion (2.57) by setting g=g0 :

Edrift

ELJ coex
=bind−

kT
ELJ

g0 (2.58)

To conclude, as long as the deformability of the stem is low, one observes three regimes, 
separated by coexistence lines in parameter space. The coexistence line between the re­
jection and the non-rejection regimes is determined by the competition between entropic 
forces and the pore force.  The coexistence line between the two non-rejection sub-re­
gimes of single-stranded translocation and chain pausing can be explained as a competi­
tion between an energetic barrier, which is increased by the base-pair binding energy 
and decreased by the pore drift energy, on the one hand and thermal fluctuations on the 
other hand.

But what if the stem deformability cannot be assumed low? In that situation a fourth 
regime emerges, the regime of double-stranded translocation. To observe it, it is suffi­
cient to use a relatively low temperature ( kT /ELJ=2−3 ) and energy parameters for the an­
gular  potentials  that  are  considerably  higher  than  in  the  previous  simulation
( Etor=Ebend=Etilt=10 ELJ ) . All other parameters have their old values. The pore drift energy 
is varied between two values, the results are shown in  Fig. 2.38 for Edrift/ELJ=30 and in 
Fig. 2.39 for Edrift/ELJ=56 .

Fig. 2.38: The chain gets stuck within the pore  
(fraction of translocated bases does not reach  
unity)  because  the  stem  neither  opens  (con­
stantly  high  stem integrity)  for  single-stran­
ded translocation nor deforms sufficiently  to  
allow double stranded-translocation.

Fig. 2.39: The chain translocates totally (fraction 
of translocated bases reaches unity) although the 
stem does not open (constantly high stem integ­
rity):  The  stem is  translocated double-stranded 
(high backward cross probability during period 
of high translocation rate).
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For Edrift /ELJ=30 , translocation stops as soon as the stem begins to sense the barrier po­
tential of the pore, as can be seen from the fact that the mean fraction of translocated 
bases – after a short initial increase – never exceeds a relatively low value. That the 
pore drift force is not able to open the stem in order to allow single-stranded transloca­
tion is clear from the constantly high stem integrity, which is the mean fraction of closed 
base-pairs within the stem. The chain line always crosses the pore plane exactly once: 
The probability for crossing  the plane in cis-trans direction is always one, the probabil­
ity for crossing the chain in trans-cis direction is always zero (cf. probabilities for for­
ward respectively backward crosses in  Fig. 2.38).  Putting this evidence together, one 
concludes that the chain gets stuck in the pore due to a stem that neither opens nor de­
forms considerably.

By contrast,  for Edrift /ELJ=56 all bases finally reach the trans side of the pore,  as is 
shown by a mean fraction of translocated bases increasing with time up to unity. How­
ever, this does not happen by single-stranded translocation: First, the mean stem integ­
rity remains high, indicating a stem relatively closed for all times.  Secondly, one ob­
serves a time interval of high translocation rate during which the chain crosses the pore 
plane not only in cis-trans direction but in trans-cis direction as well (cf. high probabil­
ity for backward crosses in  Fig. 2.39). The only possible conclusion is that within this 
time interval one has double-stranded translocation, that is, the stem is translocated 
through the pore in its closed state, necessarily deformed to fit the narrow pore channel.

The explanation for this transition from the pausing chain regime to a regime of 
double-stranded translocation is as follows: The relatively high angular potential energy 
parameters shifts the coexistence line between the pausing and the passing regimes in 
Fig. 2.37 considerably upwards by rising the relative base-pair binding energy according 
to:

bind≈1E tor /E LJE bend/E LJEtilt /ELJ (2.59)
Therefore both parameter points kT /E LJ ;E drift /ELJ  used in the simulation lie below this 
coexistence line, causing the hairpin stem to remain closed in both cases and thus for­
bidding single-stranded translocation. In the second case (Fig. 2.39) the pore drift en­
ergy is high enough to deform the stem to an extent where double-stranded transloca­
tion is possible, in contrast to the first case (Fig. 2.38), where the stem cannot cross the 
pore channel. The value of the critical pore drift energy separating these two cases is de­
termined in theory by the energy cost needed in order to reduce the stem radius such 
that it equals the diameter of the pore channel: 

E drift
crit =E deformdpore (2.60)

Here the deformation energy cost E deform is  a monotonically decreasing function of  the 
stem radius and vanishes at the equilibrium stem radius. The energy scale of this func­
tion can be assumed linear in all energy parameters that stabilize the stem radius (e.g., 
the tilt energy parameter and the energy parameter for the repulsion between incompat­
ible bases). 
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For example, a hypothetical two-dimensional hairpin stem whose resistance against ra­
dial deformation is caused solely by the inclination potential acting on its m base-pairs 
would yield for very narrow pore channels:

E drift
crit ≈1

2
mE tilt

dpore
2

R2 (2.61)

To summarize, the regime diagram of Fig. 2.37 has to be updated in general. The regime 
of chain pausing is in fact a regime where the hairpin stem remains closed (stem closed 
regime). Only as long as the pore drift energy lies below the critical pore drift energy the 
chain really pauses in the stem closed regime (as it is the case in Fig. 2.37). If within 
this regime the pore drift energy can be chosen such that it is higher than the critical 
pore drift energy, one obtains a new sub-regime of the closed stem regime, namely the 
regime of double-stranded translocation.

The hierarchical structure of all regimes treated so far is depicted in Fig. 2.40. The 
regime most interesting for the following studies will be the regime of single-stranded 
translocation near the coexistence line to the regime of chain pausing.

Fig. 2.40: Case differentiation resulting in the four regimes of chain behavior the model parameter  
space can be divided into: chain rejection, chain pausing, double and - most important - single  
stranded translocation of the chain.
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2.5.2.2 The process of translocation in detail
After having explored the pore/chain parameter space and having mapped the four ob­
served types of hairpin behavior to distinct energy regimes,  whose origins have been 
able to be explained by simple theoretical arguments, the next step is to study the pro­
cess of single-stranded hairpin translocation in detail and in a time-resolved way. For 
this purpose it is useful to return to the original values for the energy parameters of the 
angular potentials  (cf.  chapter  2.5.2.1  ) to avoid the existence of a regime of  double-
stranded-translocation and to regain the three-regime structure of the parameter space 
diagram shown in  Fig. 2.37. In this diagram it is best to study an intersection line of 
constant temperature ( kT /E LJ=2−2 ) which crosses both the coexistence line between the 
regime of chain rejection (-) and the regime of chain pausing (0) and the coexistence line 
between the regime of chain pausing and the regime of single-stranded chain passing 
(+), as visualized in Fig. 2.41,

Fig.  2.41: Again the three regimes of hairpin behavior (green, blue and 
red)  with  their  coexistence  lines.  The  isothermal  intersection  line  
(magenta) used for all future studies is chosen such that it intersects both 
coexistence lines (orange and black). 

by varying the dimensionless “pore strength”,

=
E drift

ELJ
. (2.62)

These coexistence lines are crossed for
=-

0kT /ELJ  and =0
+kT /E LJ (2.63)

respectively, where the indices at the coexistence line functions denote the correspond­
ing adjacent regimes.
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The time regimes of the translocation process
In Fig. 2.42 and Fig. 2.43 the mean fraction of translocated bases is plotted as a func­

tion of time for a collection of pore strengths  lying entirely within the regime of single-
stranded translocation. Obviously, the total translocation time – the time when the plot­
ted fraction reaches unity – decreases when the pore strength increases, as expected. 
But how can the different time regimes into which each curve is divided be explained?

Fig.  2.42:  The fraction  of  translocated  bases  
increases linear in time for short times: regime 
of  stem  unzipping.  The  relatively  low  short  
time translocation rate (also called unzipping  
rate) increases with increasing pore strength.

Fig.  2.43:  The  fraction  of  translocated  bases 
increases linear in time for long times: regime of  
free translocation. The relatively high long time 
translocation rate (also called free rate) increases  
with increasing pore strength.

The first time regime emerges due to the translocation of the initial sequence of un­
bound bases located in front of the stem, which remains still closed. This time regime 
of initial threading ends as soon as the first base that belongs to a stem base-pair is 
reached. The fact that the bases are not bound within base-pairs makes the mean trans­
location rate high.

By contrast, in the second time regime, the so-called time regime of stem unzip­
ping, each base is bound within a stem base-pair, which has to be forced open in order 
to allow the base to pass the pore channel. The rate of the combined process of pair un­
zipping and base translocation – the  short time translocation rate or unzipping 
rate ktransloc

-   – is constant over time and much lower than it would be if the translo­
cated bases were unbound from the beginning. 

As soon as all stem base-pairs have been unzipped, all bases to be translocated from 
now on are again unbound and the third (and last) time regime, the  time regime of 
free drift, starts. Again the corresponding translocation rate – the long time translo­
cation rate or free rate ktransloc

+   – is constant over time, but without need for pair un­
zipping the translocation process is much faster.

In order to verify the physical causes for these three regimes it is useful to compare 
the time dependence of the mean fraction of the translocated bases with the time de­
pendence of the base-pair integrity of the hairpin stem. This is done here for a high pore 
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strength, far off the coexistence line between chain pausing and chain passing ( =20 , cf. 
Fig. 2.44). Again, one distinguishes between different time regimes (A,B,C,D,E,F):

• Regime A has to be identified with the regime of initial threading: The stem re­
mains completely closed, the mean translocation rate is high and the maximal 
fraction of translocated bases is low.

• Regime B has to be identified with the regime of stem unzipping: The stem opens 
with initially constant rate, thus indicating a step-by-step opening of all of its 
base-pairs (cf. the stem integrity). Accordingly, the translocation rate is constant 
and relatively low (cf. the mean fraction of translocated bases). Furthermore, the 
fraction of bases translocated during this regime equals the fraction of the bases 
in the pore-next stem helix Si  (cf. the sequence representation to the right).

• Regime C and D together correspond to the regime of free drift: 
◦ In regime C (“free  drift  without  stem re-zipping”)  the  stem remains  com­

pletely open whereas the translocation rate is as constant as in regime B but 
much higher because of the complete lack of base-pairs on the cis-side of the 
pore. Thus, the bases drift freely through the pore channel. 

◦ In regime D (“free drift with stem re-zipping”) there are no base-pairs on the 
cis-side,  just as in regime C. In this sense,  there is still  free drift.  On the 
trans-side, however, the stem begins to close again – base-pair by base-pair. 
This recombination process produces an additional drift force on the bases on 
the cis-side, thus increasing effectively the translocation rate.

• With the beginning of regime E the process of base translocation is already fin­
ished. The recombination of stem base-pairs on the trans-side, which has already 
started in regime D, continues – but more slowly than there.

• With the beginning of regime F this recombination process comes to an end: The 
hairpin is completely folded again.

Fig.  2.44:  Subdivision 
of  the  process  of  hair­
pin  translocation  into 
different  time  regimes 
by the means of a com­
parison  between  the 
mean fraction of trans­
located  bases  and  the 
stem integrity.
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Beginning and end of each time regime can be assigned to a distinct amount of translo­
cated bases, as can be seen from Fig. 2.45. Accordingly, the pore position in the sequence 
space  of  the  RNA chain determines  the  time regime:  To  be  in the  regime of  initial 
threading, the pore has to sit within the threading sequence set in front of the hairpin 
stem. For the regime of cis-side stem unzipping, the pore position has to be within the 
sequence region corresponding to the first helix (S i ) of the hairpin stem. The regime of 
free drift starts, as soon as the pore enters the loop region of the hairpin ( L ) . This free 
drift can be accompanied by trans-side recombination of base-pairs and stem re-zipping, 
as soon as the pore is within the sequence region for the second stem helix (S j ) . Devi­
ations from these predictions emerge from the fact that in the simulations the length of 
the pore channel is not zero and the repulsion caused by the Gaussian-shaped pore bar­
rier destabilizes base-pairs long before they approach the pore center. This can be seen 
if one returns to Fig. 2.44 and compares the sequence representation to the right with 
the mean fraction of translocated bases.

Fig.  2.45: Relation between the position of the pore P with respect to the 
RNA chain and the current time regime of the hairpin translocation pro­
cess.

Translocation rates and their dependence on pore strength
After the discussion of the physical origin of all the time regimes within the process of 
translocation let us look at the regime of stem unzipping and the regime of free drift in 
more detail and study the dependence of the translocation rates on pore strength in both 
regimes. For each pore strength these two rates are determined by performing linear 
fits  in the two time regions of  constant translocation velocity,  as shown in  Fig.  2.42 
(stem unzipping) and Fig. 2.43 (free drift). The resulting slopes are plotted as functions 
of the pore strength, as can be seen in Fig. 2.46 (translocation rates for low and interme­
diate pore strengths) and Fig. 2.47 (translocation rates for high pore strengths): 
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Because of the additional energetic barrier needed to cross in the time regime of stem 
unzipping, the unzipping rate is always lower than the free rate, except at the coexist­
ence line between chain pausing and chain passing, where – as expected – both rates 
vanish:

ktransloc
- -

0=0=ktransloc
+ -

0 with -
0≈4 (2.64)

For pore strengths even lower (so-called low pore strengths) there is no translocation at 
all and both rates remain zero.

On the other hand, both rates show a linear dependence on pore strength for high 
pore strengths, the corresponding slope being greater for the free rate than for the un­
zipping rate. This linearity of both rates may serve as a criterion that the pore strength 
can be considered high.

When the pore strength decreases to intermediate values, this linearity continues for 
the unzipping rate even until the pausing/passing coexistence point is reached, whereas 
it is lost by the free rate. In this example the region of intermediate pore strength goes 
from 4 to approximately 10.

Fig.  2.46:  Rates  for  translocation  by  stem 
unzipping  and  for  free  translocation  as  a  
function of pore strength at constant temperat­
ure. Here one focuses on the pausing/passing  
transition between low and intermediate pore  
strengths, where both rates vanish.

Fig.  2.47: Rates for translocation by stem unzip­
ping and for free translocation as a function of  
pore strength at constant temperature. Here one  
focuses  on the linear  increase  of  both rates  for  
high pore strengths.

 

Behavior for low, intermediate and high pore strengths
In Fig. 2.48 and Fig. 2.49 the mean fraction of translocated bases respectively the stem 
integrity are plotted as functions of time for low and intermediate pore strengths. One 
observes that two coexistence lines are crossed: 

• Pore strength 3 lies in the regime of chain rejection: The fraction of translocated 
bases vanishes for long times, whereas the stem remains completely closed.

• Pore  strength 4 lies  in the regime of  chain pausing:  Again the stem remains 
closed, but the fraction of translocated bases becomes stationary at a low positive 
value, thus indicating that only the bases of the threading sequence are translo­
cated.
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• Pore strength 4.8 and 5.0 already lie in the regime of chain passing: More and 
more bases are translocated as time passes, and the stem opens completely. This 
has been confirmed by counting how often the chain crosses the pore plane at dif­
ferent points of time (data not shown). Paradoxically, the stem integrity does not 
reach  zero  during  the  process  of  stem  opening.  The  reason  is  that  the  pore 
strength is still not high enough to locate the events of stem opening and stem 
closing within narrow time intervals. Therefore, averaging yields a stem integrity 
with a non-zero minimal value.

Fig.  2.48: Fraction of translocated bases as a function of time for pore  
strengths in the regimes of chain rejection (red),  chain pausing (green)  
and chain passing (blue, magenta).

Fig.  2.49: Stem integrity as a function of time for pore strengths in the  
regimes of chain rejection (red), chain pausing (green) and chain passing  
(blue, magenta).
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This non-zero minimal value of the stem integrity can be found for all intermediate pore 
strengths, where base translocation is still slow. The effect decreases with increasing 
pore strength until the minimal stem integrity becomes zero, as is shown in the stem in­
tegrity plots of Fig. 2.50. The explanation for this behavior is that the greater the pore 
strength is, the narrower are the time distributions for the events of stem opening and 
stem closing and the more similar  to each other are the single integrity trajectories 
(each of which reaches zero at some time) one has to average to obtain the stem integ­
rity.

Fig.  2.50:  Stem  integrity  as  a  function  of  time  for  slow  translocation  by  intermediate  pore  
strengths. The stem opening occurring in each single run is always complete, the non-zero minimal  
values result from averaging. This effect  decreases with increasing pore strength, where the open­
ing and closing events are located more sharply in time.

If on the other hand the pore strength is high, making translocation fast, as it is the 
case in the stem integrity plots shown in Fig. 2.51, the stem integrity always has a zero 
minimal value of certain time duration. The time distributions for the events of stem 
opening and stem closing are indeed very narrow in this pore strength regime. This can 
be demonstrated by collapsing those parts of the integrity curves in Fig. 2.51 onto each 
other that correspond to the time regime of stem unzipping, simply by rescaling the time 
axis by the value the unzipping rate has for the respective pore strength. This collapse is 
shown in Fig. 2.52. For intermediate pore strengths such a collapse is not possible.
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Fig.  2.51: Stem integrity as a function of (non-rescaled) time for fast translocation by high pore  
strengths. Due to the strong pore forces the time distributions for the events of stem opening and 
stem closing are narrow. Therefore the stem integrities resulting from averaging over the single  
runs have vanishing minimal values.

Fig.  2.52: Stem integrity as a function of time after having rescaled time by  
the rate of stem unzipping, which in turn is a function of pore strength. Due to  
the strong pore forces the time distributions for the events of stem opening and 
stem closing are narrow. Therefore, the parts of the curves that correspond to  
the time regime of unzipping can be collapsed onto each other.
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2.5.3 Hairpin translocation versus pseudoknot translocation
The goal of this chapter is to identify, analyze and quantify the similarities and differ­
ences between the translocation processes of hairpins and pseudoknots, and especially 
to  study  under  which  circumstances  pseudoknot  translocation  is  appreciably  slower 
than hairpin translocation, thus giving rise to such phenomena as ribosomal pausing. To 
this end, the translocation process of pseudoknots has to be characterized. This task is 
simple after having done such characterization in the previous chapter for the hairpin 
case. The hairpin and pseudoknot sequences used in performing the necessary comparis­
ons are shown in the overview of Fig. 2.53. Especially the corresponding patterns of nat­
ive base-pairs will  prove important.

Fig. 2.53: Above: Hairpin and pseudoknot sequences without upstream chain residues (last base N 
with normal friction coefficient). Below: Hairpin and pseudoknot sequences with large upstream 
chain residues (last base N with a friction coefficient much higher than normal). In each of the 
sequences below the positions in three-dimensional space of the bases labeled yellow are regarded  
as being correlated to the position of the last base due to base-pairing. The effect of this will be dis­
cussed later.

2.5.3.1 Analogous time regimes for pseudoknot structures
If one compares especially a hairpin with a stem consisting of 5 base-pairs (the sequence 
can be found in the top part of Fig. 2.53) to a pseudoknot with two stems (stem A with 5 
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base-pairs, stem B with 6 base-pairs, again depicted in the top part of Fig. 2.53), one re­
cognizes from Fig. 2.54, where the mean fraction of translocated bases is plotted against 
time, that in both cases the translocation process can be subdivided into a number of 
time  regimes,  there  denoted  by  A,  B  and  C (hairpin)  and  by  A,  B1,  C1,  B2,  and  C2 

(pseudoknot).    
Fig.  2.54:  A  long  hair­
pin (blue), a short hair­
pin  (red)  and  a 
pseudoknot  (green)  are 
compared to  each other 
by looking  at  the mean 
fraction  of  translocated 
bases  as  a  function  of 
time  at  constant  pore 
strength  and  temperat­
ure.  Stem  A  of  the 
pseudoknot  and  the 
stem  of  the  short  hair­
pin  have  equal  base-
pair  numbers,  as  it  is 
the  case  for  the  whole 

pseudoknot and the long hairpin. The stem unzipping rates (look at stem A for the pseudoknot) are  
equal for all three sequences (cf. the slope of the magenta line). This is also true for the free rates  
(the dotted lines have equal slopes) after the stems have opened. A description of the time regimes  
(A,B,C, ...) can be found in the text.

Since this subdivision has already been studied in the hairpin case (cf. chapter 2.5.2.2 ), 
it is sufficient to explain the differences emerging in the pseudoknot case.

• Both the hairpin and the pseudoknot sequence feature regimes of initial thread­
ing (denoted by A).

• Whereas the hairpin has only one stem and accordingly only one regime of stem 
unzipping (denoted by B), the pseudoknot exhibits two regimes of stem unzipping 
due to its two stems. These regimes are denoted by B1 for the first stem (stem A) 
and by B2 for the second stem (stem B) and can be recognized from the comparat­
ively low translocation rates (cf. the small slopes within the unzipping regimes in 
Fig. 2.54).

• Unlike the hairpin, the pseudoknot features an additional short time interval of 
free drift just after the first stem is completely open. This interval is denoted by 
C1 and separates the regimes B1 and B2 of pseudoknot stem unzipping.

• Finally, both hairpin and pseudoknot show regimes of fast translocation for long 
times,  denoted by C and C2 respectively.  There the process of  translocation is 
dominated by the free drift of bases not bound any longer within  cis-side base-
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pairs and accompanied later even by re-zipping of the stem(s) on the trans-side of 
the pore.

Fig. 2.55 shows a visualization of the time regimes newly discovered for the pseudoknot 
in terms of the translocation coordinate, which is the number of bases that are already 
on the trans-side of the pore. Here this number is presented as the pore position on the 
chain contour. The corresponding diagram for the hairpin is already known from  Fig.
2.45. The main difference to that hairpin diagram is the existence of two regimes of 
stem unzipping (B1 and B2) in the pseudoknot case.

Fig. 2.55: In which time regime of pseudoknot translocation the system is depends on the pore posi­
tion P on the chain, whose native base-pairs form two stems SA and SB. Accordingly, there are two 
regimes of stem unzipping whereas hairpin translocation has only one.
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2.5.3.2 Geometry versus total binding energy
Translocation is  much slower  for  pseudoknots  than for  hairpins.  Generally,  it  is  as­
sumed that the reason for this fact is that pseudoknots have special geometrical proper­
ties which prevent their pore-next stems from opening fast, whereas hairpins lack these 
properties.  This  hypothesis  contradicts  the naive assumption that  total  translocation 
time – if  dominated by the total unzipping time – is a mere function of the total binding 
energy and not influenced strongly by geometry:

For high enough pore strengths  the total unzipping time tunzip of all stems of a fol­
ded RNA chain is proportional to the total base-pair binding energy of those stems E LJ

tot

divided by the energy gained when translocating a single base through the pore E drift :

tunzip=
N unzip

kunzip
∝
N unzip

−c

Nunzip


for ≫c (2.65)

Therefore:

tunzip∝
ELJNunzip

Edrift
≡

ELJ
tot

Edrift
for ≫c (2.66)

Especially, the unzipping time does neither depend on the concrete order of the base-
pairs that are unzipped nor on their initial geometrical  loci.  This would predict that 
pseudoknots and hairpins have equal total unzipping times, as long as their total base-
pair binding energies are equal. However, it has been established that the frameshift ef­
ficiency, an indirect indicator for the extent of ribosomal pausing, is not correlated with 
the thermodynamic stability of the folding motif [120][121].

2.5.3.3 Confirmation of the influence of total binding energy
For example,  the sum of the unzipping times of two pseudoknot stems with 5 and 6 
base-pairs should equal the unzipping time of a hairpin stem with 11 base-pairs. How­
ever,  because  the  angular  potentials  contribute  additively to  the  binding energy per 
base-pair and these contributions are weaker for the first and last base-pairs of a stem 
than for its interior base-pairs, it is clear that this equality does not hold exactly in this 
case: As the hairpin and pseudoknot unzipping rates are equal only in the interior of the 
stem(s), the equal numbers of base-pairs that have to be unzipped ( N unzip=11 ) makes the 
hairpin unzipping time slightly larger than the pseudoknot unzipping time. In Fig. 2.54 
the time-dependence of the respective mean fractions of translocated bases is shown.

2.5.3.4 How to detect the influence of geometry
The goal is to observe a pseudoknot structure which is translocated much slower than a 
hairpin structure not for reasons of binding energy but for geometrical reasons. That is, 
differences in the total unzipping time that emerge from different total binding energies 
brought about in turn by different numbers of base-pairs can be regarded as irrelevant. 
Therefore, it is legitimate to compare a shorter 5-bp hairpin to a 11-bp pseudoknot in­
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stead of using an 11-bp hairpin: One cannot decide to what extent it is the total binding 
energy or  geometrical  reasons  that  influence  the  translocation process  if  only global 
properties of the translocation process, such as the total translocation time or the total 
unzipping time, are examined. That is why one has to focus on the process of transloca­
tion  and  unzipping  of  the  pore-next  stems  (the  hairpin  stem  and  stem  A  of  the 
pseudoknot) instead, which now have equal numbers of base-pairs and thus are compar­
able  in  terms  of  their  intrinsic  energetic  and  geometric  properties.  The  question  is 
whether stem B of the pseudoknot is able to influence the unzipping and translocation 
behavior of stem A to an extent that it differs appreciably from the behavior of the single 
hairpin stem.

2.5.3.5 Detection impossible without upstream sequence extensions
Since the hairpin stem and stem A of the pseudoknot have the same number of base-
pairs, a difference in their unzipping times can only be caused by different stem unzip­
ping rates. However, in Fig. 2.54, which shows the mean fraction of translocated bases 
over time for both the 5-bp hairpin and the 11-bp pseudoknot, unzipping times as well 
as stem unzipping rates are equal for the pore-next stems of both sequences. Further­
more, the two respective stem integrities (Fig. 2.56) show identical time behavior, espe­
cially they become minimal at the same point of time. Altogether, this indicates that the 
unzipping process of stem A of the pseudoknot is unaffected by stem B, since it behaves 
like an isolated stem, represented here by the 5-bp hairpin.

Fig. 2.56: Stem integrity 
as  a  function  of  time.  
Pore  strength  and  tem­
perature  are  as  in  Fig.
2.54.  Again  the  long 
hairpin (blue), the short  
hairpin  (red)  and  the 
pseudoknot  are  com­
pared.  The  integrity  of  
stem  A  of  the 
pseudoknot  and  the 
stem  integrity  of  the 
short  hairpin  behave 
similar.  This  indicates 
that  stem  B  of  the 
pseudoknot  has  no 

influence on the opening process of stem A. By contrast, the stem of the long hairpin opens later.
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2.5.3.6 Detection successful with upstream sequence extensions
Motivation and prediction
Up to now the stem unzipping rate has been regarded as a mere function of base-pair 
energy, pore drift energy and temperature. One will see that under certain conditions it 
also depends on the geometrical properties of the RNA motif to be translocated, as does 
the corresponding stem integrity.  Thus both stem unzipping rate and stem integrity 
may serve as indicators for the strong influence of geometry on the translocation pro­
cess. Geometrical properties like force directions will prove important, as in recent com­
parative H-pseudoknot (the -1 frameshifting infectious bronchitis virus pseudoknot with 
11 base-pairs in stem A and 6 base-pairs in stem B) and hairpin (a hairpin consisting of 
the same 17 base-pairs as both pseudoknot stems together) experiments by Green and 
co-workers [122]. They used optical tweezers to unfold and refold these motifs mechanic­
ally at constant force as well as with force ramps and measured the end-to-end molecu­
lar extension in order to compare the resulting unfolding and refolding characteristics. 
The hairpin was  unzipped  by a localized  tensile  force  perpendicular  to  its  axis,  the 
pseudoknot, however, by an axially parallel shearing force affecting its whole structure. 
This situation is very similar to the pore translocation simulations studied in this thesis 
if one compares stem A of the pseudoknot with the hairpin stem.

In Green's experiments the (mechanically more stable) pseudoknot required a higher 
unfolding force, showed slower unfolding kinetics and an unfolding rate less dependent 
on the unfolding force than the hairpin, in spite of similar thermodynamic stabilities of 
the two motifs. They conclude that pseudoknot unfolding is a kinetically controlled pro­
cess and suggest that in nature pseudoknots play the role of a kinetic barrier against 
unfolding by a ribosome.

As far as the pore-next stems are concerned, the translocation simulations in this 
thesis will yield similar results: If compared to the hairpin stem, the unzipping rate of 
stem  A  of  the  pseudoknot  will  be  appreciably  lower  and  furthermore  depend  more 
weakly on pore strength (in the regime of intermediate pore strength), although both 
stems  have equal  number  of  base-pairs  and  thus  similar  thermodynamic  stabilities. 
These observations can be explained by the geometric influence stem B, which remains 
intact during the unzipping of stem A of the pseudoknot, has on the directions of the un­
zipping forces acting on stem A and thus on its unfolding kinetics.
Modeling the upstream sequence extensions
In order to make the geometrical influence detectable, which slows down the transloca­
tion of pseudoknots compared to the translocation of hairpins, it makes sense to extend 
both the pseudoknot and the hairpin sequences appreciably by appending a number of 
bases to their upstream ends. To keep things simple, these appended bases are repres­
ented in simulation by decreasing the motility of the last base of the chain. The result­
ing pseudoknot and hairpin sequences are depicted in Fig. 2.53 (bottom right and bot­
tom left): The motility of the last base is decreased by a factor of 100.
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Total translocation time: pseudoknot  slower than hairpin
These sequences differ strongly in global properties of the translocation process. For ex­
ample,  the total  translocation time of  the pseudoknot is  much higher than the total 
translocation time of the hairpin and this time difference increases with decreasing pore 
strength. This can be seen from  Fig. 2.57 (hairpin) and  Fig. 2.58 (pseudoknot), which 
show the probability that the chain has still not left the pore ("survival probability") 
over time for different pore strengths. There, the total translocation time is the time 
when the chain leaves the pore channel, i.e. the time when the survival probability has 
decreased to 50 percent. For very low pore strength (=5.0) the direct comparison of the 
survival probabilities yields an considerable difference Prob in total translocation times, 
as shown in Fig. 2.59.

Fig.  2.57: The probabil­
ity  that  the  process  of  
hairpin translocation is 
still  in  progress 
decreases  from  one  to 
zero  the  faster  the 
higher the pore strength 
is.  Therefore,  the  total 
translocation  time 
(defined here as the time 
when  this  probability  
sinks  below  0.5) 
decreases  with  increas­
ing pore strength.

Fig.  2.58: The probabil­
ity  that  the  process  of  
pseudoknot  transloca­
tion  is  still  in  progress 
shows  a  time  behavior 
similar  to  the  hairpin 
case  (Fig.  2.57):  Again 
the  total  translocation 
time  decreases  with 
increasing  pore 
strength.
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Fig. 2.59: Comparison of the probabilities that the translocation is still in 
progress  in  the  hairpin  and  in  the  pseudoknot  case  for  a  low  pore  
strength. The respective total translocation times show an appreciable dif­
ference Prob : The pseudoknot is slower than the hairpin.

But: Insignificant for the detection of geometrical influence
Although the pseudoknot is obviously slower than the hairpin, one has no evidence that 
this time difference emerged from geometrical differences: Since the pseudoknot's total 
binding energy outweighs the total binding energy of the hairpin, the time difference 
could be explicable by mere binding energy arguments as well.  To check doubtlessly 
whether stem B of the pseudoknot exerts geometric influence on stem A one has to com­
pare directly the translocation behavior of stem A with that of the isolated hairpin stem, 
both again identical in terms of binding energy and local geometry, rather than to exam­
ine insignificant global translocation properties.
Primary stem unzipping rate much lower for the pseudoknot
And indeed, the corresponding stem unzipping rates differ, a feature not observable for 
the original sequences. If one plots the mean fraction of translocated bases against time 
for different pore strengths in the case of the hairpin sequence (cf. Fig. 2.60) as well as 
in the case of the pseudoknot sequence (cf.  Fig. 2.61), the most striking observation is 
that in spite of equal energetic and (local) geometric conditions the stem unzipping rate 
(represented by the slope of the linear fit shown in the respective figures) of stem A of 
the pseudoknot is much lower than that of the hairpin stem. This rate difference be­
comes more and more manifest as pore strength decreases. This can also be seen from 
the slopes of the fit lines in Fig. 2.62, where a direct comparison between hairpin and 
pseudoknot is shown for low pore strength (=5.0) : The unzipping rate of stem A of the 
pseudoknot is almost four times lower than the unzipping rate of the hairpin stem.
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Fig. 2.60: Mean fraction  
of  translocated  hairpin 
bases  plotted  against 
time  for  different  pore 
strengths.  The  stem 
unzipping rate, which is  
given  by  the  slope  of  a 
linear  fit  within  the 
time  regime  of  stem 
unzipping,  increases 
with  increasing  pore 
strength.

Fig. 2.61: Mean fraction  
of  translocated  pseudo-
knot  bases  plotted 
against  time  for  differ­
ent pore strengths. As in 
the  hairpin  case  (Fig.
2.60),  the  stem  unzip­
ping rate obtained from 
the fit line slopes in the 
time  regime  of  unzip­
ping  stem  A  increases 
with  increasing  pore 
strength.
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Fig. 2.62: The mean fraction of translocated bases is plotted against time 
for  a  low  pore  strength  in  order  to  compare  the  hairpin  and  the  
pseudoknot case. In the time regimes of unzipping the hairpin stem resp.  
stem A of the pseudoknot the translocation rate is constant. The slopes of  
linear fits in these regions yield the corresponding stem unzipping rates.  
The pseudoknot' s stem A unzipping rate is much lower than the hairpin's  
stem unzipping rate, although both have equal total binding energy.

Primary stem integrity decays much slower for the pseudoknot
Likewise, the time behavior of the stem integrity now shows drastic differences between 
the pseudoknot and the hairpin sequence whereas both sequences behaved identically in 
their original version. In Fig. 2.63 (hairpin) and Fig. 2.64 (pseudoknot) the integrity of 
the pore-next stem is plotted against time for several pore strengths. As expected, for 
the hairpin as well as for the pseudoknot, increasing the pore strength means an in­
creasing rate of stem integrity reduction (cf. the slope of the falling part of each stem in­
tegrity curve) and accordingly a shorter average period of time until the stem is totally 
open (cf. the time positions of the stem integrity minima) and furthermore an increasing 
definiteness of the stem opening events in terms of time (cf. the increasing deepness of 
the  stem integrity  minima).  Comparing  now hairpin  and  pseudoknot  for  equal  pore 
strength one finds: The pseudoknot has a lower rate of stem integrity reduction, its stem 
opening process  is  complete  earlier  and its  stem opening events  are less  definite  in 
terms of time. These differences are most pronounced at low pore strengths. This is es­
pecially demonstrated by Fig. 2.65 for a pore strength of =5.0 , where the time differ­
ence int between the stem integrity minima of the hairpin and the pseudoknot (stem A) 
is shown to be comparatively large and even of the same order of magnitude as the dif­
ference Prob in total translocation time.
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Fig.  2.63: Mean fraction of fully formed base-pairs in the hairpin stem 
(hairpin stem integrity) plotted against time for different pore strengths.  
The higher the pore strength is  the faster  the stem opens (slope in the  
declining  region  becoming  steeper),  the  earlier  the  minimum region  is  
reached where the stem is completely open (shift of the minimum position  
to short times) and the more temporally well-defined the event of complete  
stem opening is (deeper integrity minimum).

Fig.  2.64: Integrity of stem A of the pseudoknot plotted against time for  
different pore strengths. As in the hairpin case, the stem opens faster with  
increasing pore strength. Accordingly, the time interval when the stem is  
completely open is defined more sharply for higher pore strengths, which  
is indicated by a minimum value of the stem integrity approaching zero.  
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Fig.  2.65:  Comparison 
between the integrity  of  
the  hairpin  stem  (red) 
and the integrity of stem 
A  of  the  pseudoknot 
(green)  for  a  low  value 
of  pore  strength.  The 
minimum  positions  dif­
fer strongly (time differ­
ence int ):  The  point  of  
time  of  complete  stem 
unzipping  is  much 
earlier  in  the  hairpin 

case than in the pseudoknot case. The unzipping process of stem B of the pseudoknot (cf. blue stem  
integrity curve) does not start until stem A (green) is almost completely open. 

Summarizing the observations
To combine all observations,  as long as pore strength is low, the translocation of the 
pore-facing helix of stem A of the pseudoknot proceeds much slower than the transloca­
tion of the corresponding helix of the single hairpin stem. This fact is reflected in base 
translocation rates differing strongly during the respective time regimes of stem unzip­
ping as well as in the corresponding stem unzipping behavior itself and may serve as 
evidence for the non-local geometrical influence stem B of the pseudoknot exerts on stem 
A, an influence totally lacking in the hairpin case.
Interpretation of the observations concerning the pseudoknot
Obviously the cause for this difference in translocation speed has to be searched for in 
the only difference between the pseudoknot and the hairpin sequence: Both sequences 
are equal in terms of base number and initial geometry, their pore-next stems even in 
terms  of  binding  energy.  However,  unlike  the  hairpin  sequence,  the  pseudoknot  se­
quence is stabilized by additional base-pair bonds forming a second stem (stem B).

If pore strength is low, these base-pairs remain stable until stem A is totally open. 
This is shown in  Fig. 2.65 for a pore strength of =5.0 , where the integrity of stem B 
does not begin to decrease until the integrity of stem A has decreased almost to its min­
imal value.  With increasing pore strength this  effect  gradually disappears,  until  the 
opening processes of stem A and stem B start almost simultaneously. To see this, one 
has to compare Fig. 2.64 and Fig. 2.66, where the integrities of stem A resp. stem B are 
plotted against time for different pore strengths. This almost simultaneous stem open­
ing for high pore strength can be explained as follows: The pore force is not only strong 
enough to deform and unzip the pore-next base-pairs of stem A but also – due to the 
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short loop 1 and the high friction coefficient of the 3'-base – to immediately exert an ap­
preciable tensile force on the base-pairs of the pore-remote end of stem B.

Fig.  2.66:  Integrity  of  
stem  B  of  the 
pseudoknot  plotted 
against  time  for  differ­
ent pore strengths, to be 
compared  to  Fig.  2.64, 
where the same is done 
for the integrity of stem 
A.  For  low  pore 
strengths  the unzipping 
process  of  stem  B  does 
not start until stem A is 
almost completely  open,  
whereas  for  high  pore 
strengths  both  stems 
start  unzipping  almost  
simultaneously.

Since for low pore strengths stem B remains closed during the whole unzipping process 
of stem A, it can be regarded as a single particle with very low motility: The particle's 
friction coefficient is the sum of the friction coefficients of all bases stem B consists of, 
and the large friction coefficient of the last base dominates this sum. Therefore, the drift 
rate of the particle during the translocation process is inversely proportional to the fric­
tion coefficient of the last base:

kB
drift∝ 1

B
= ∑

base i∈B
i

−1

≈ 1
N

(2.67)

The particle has to be dragged towards the pore in order to allow the translocation of the 
bases of the pore-facing helix of stem A after unzipping the corresponding base-pairs: 
Because the translocation of a single base of this helix requires a drift motion of the 
stem B "particle"  before the corresponding base-pair in stem A can be unzipped,  the 
translocation rate is related to the rates of both sub-processes via an addition of charac­
teristic times:

1
kbase of stem A

transloc  ,{i}
≈ 1

kB
drift {i}

 1
kbp of stem A

unzip 
(2.68)

For large friction coefficients of the last base of the sequence (N≫ ) the translocation 
process of the pore-facing helix of stem A is impeded strongly by the dragging process of 
stem B, which results in a very low translocation rate:

kbase of stem A
transloc ≈kB

drift∝ 1
N

because kB
drift≪kbp of stem A

unzip (2.69)
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This reducing effect on the translocation rate increases if the friction coefficient of the 
last base increases, as demonstrated in  Fig. 2.67, where the mean fraction of translo­
cated bases is plotted against time for different values of this friction coefficient at equal 
pore strength =5.0 , thereby focusing on the time regime of stem A unzipping.

Fig. 2.67: Mean fraction  
of  translocated 
pseudoknot  bases  plot­
ted against time at low 
constant  pore  strength 
for  different  friction 
coefficients  of  the  last  
base.  The  process  of 
unzipping stem A (time 
region  with  low  slopes)  
is  slowed  down  more 
and more when the fric­
tion  coefficient 
increases.

Interpretation of the observations concerning the hairpin
This rate-reducing effect is not observable in the case of the hairpin sequence (data not 
shown), so that, unlike the unzipping of the pore-next stem of a pseudoknot, the unzip­
ping of a hairpin stem cannot be slowed down appreciably by increasing the friction coef­
ficient of the 3'-end of the sequence. The reason is that, despite a large friction coeffi­
cient of the last base, the hairpin will always lack the base-pairs needed for gluing bases 
together to a particle which contains the last base. Therefore, the bases of the pore-fa­
cing helix of the hairpin stem do not sense the high friction coefficient of the last base as 
long as the stem is still unzipping: Their translocation process is not impeded by the last 
base of the sequence, thus being controlled only by the local stem unzipping rate:

kbase of stem A
transloc ≈kbp of stem A

unzip (2.70)

2.5.3.7 Translocation with realistic angular energy parameters
Up to now the translocation process of model RNA with realistic base-pair melting beha­
vior but too low torsional modulus and persistence length has been studied. The goal of 
this chapter is to simulate the translocation of hairpins and pseudoknots with realistic 
torsional modulus and persistence length.

To unzip an RNA stem the pore drift energy has to be larger than the effective bind­
ing energy per base-pair. For realistic angular energy parameters, this effective binding 
energy is increased largely by the base-pair stabilizing forces generated by the binding 
predicate functions of the angular potential  contributions (cf.  chapter  2.4).  Therefore, 
large pore drift energies are needed for the translocation of such model RNA molecules. 
Because of these high pore drift energies, the pore barrier energy has to be increased in 
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order to avoid barrier crossing events and the pore diameter has to be decreased in or­
der to avoid double-stranded translocation by stem deformation. The low angular energy 
RNA parameter set used for the comparison between hairpin and pseudoknot transloca­
tion up to now for reasons of realistic base-pair melting behavior,
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produces slow single-stranded translocation for a pore parametrized by
E barrier
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The high angular energy RNA parameter set, which has been found by exact calibration 
of torsional modulus and persistence length (cf. chapter 2.4),
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however, needs a different pore parameter set to allow slow single-stranded transloca­
tion and thus a comparison between hairpin and pseudoknot translocation:

Ebarrier

k T
=10000, Edrift

kT
=350, dpore

r0
=0.5, lpore

r0
=2 (2.74)

This comparison is done for the known hairpin (5-bp stem) and pseudoknot (5-bp stem 
A, 6-bp stem B) sequences (all base beads have identical friction coefficients now). One 
averages over 38 non-rejected hairpin configurations (out of 60) and over 44 non-rejected 
pseudoknot configurations (out of 60). Chain pausing or double-stranded translocation 
has not been observed in this regime, only single-stranded translocation and chain rejec­
tion. The comparison between hairpin and pseudoknot translocation via the time evolu­
tion of the RNA-within-pore-channel probability (Fig. 2.68),  the time evolution of the 
fraction of translocated bases (Fig. 2.69) and the time evolution of the stem integrity 
(Fig. 2.70) shows respectively:

• a non-vanishing difference Prob in  the  total  translocation  times  of  hairpin  and 
pseudoknot:  the  total  hairpin  translocation  process  is  faster  than  the  total 
pseudoknot translocation process;

• that the unzipping rate of  the hairpin stem is approximately 1.6 times larger 
than the unzipping rate of stem A of the pseudoknot;

• that the minimum of the integrity of stem A of the pseudoknot occurs later than 
the minimum of the integrity of the hairpin stem, leading to a time difference 
int between the respective states of open primary stems; even later, stem B of 
the pseudoknot is open;
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Fig. 2.68: Comparison of the probab­
ilities  that the translocation is  still  
in progress in the hairpin and in the  
pseudoknot  case  for  realistic  tor­
sional  modulus  and  persistence 
length.  The respective  total  translo­
cation times show a difference Prob :  
The  pseudoknot  is  slower  than  the 
hairpin,  as far as the total translo­
cation process is concerned.

Fig.  2.69:  Mean fraction  of  translo­
cated  bases  vs.  time  in  the 
pseudoknot and in the hairpin case 
for  realistic  torsional  modulus  and 
persistence length. The focus lies on 
the  unzipping  of  the  respective 
primary  stems.  Despite  equal  num­
bers  of  base-pairs,  the  unzipping 
rate of the hairpin stem is approxim­
ately  1.6  times  larger  than  the 
unzipping  rate  of  stem  A  of  the 
pseudoknot (cf.  slopes of  the corres­
ponding black fit lines).

Fig.  2.70:  Comparison  between  the 
integrity  of  the  hairpin  stem  (red)  
and  the  integrity  of  stem  A  of  the 
pseudoknot  (green)  for  realistic  tor­
sional  modulus  and  persistence 
length.  The minimum positions dif­
fer  (time  difference int ):  The  hair­
pin stem is unzipped completely  at  
an earlier point of time than stem A 
of  the  pseudoknot.  Stem  B  of  the 
pseudoknot does not start unzipping 
until  stem  A  is  almost  completely 
open.
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In the comparison between hairpin and pseudoknot performed in chapter  2.5.3.6  the 
high friction coefficient of the last base of the sequence caused a high effective total fric­
tion coefficient of stem B of the pseudoknot, thus impeding its axial translation, which 
in turn retarded the unzipping of stem A. Although the last base of the sequence has the 
same low friction coefficient as all other bases in the current translocation simulation 
now, surprisingly the unzipping of stem A is retarded again. What could be the reason 
for this?

In spite  of  high stem torsional  modulus,  no difference could be observed between 
pseudoknot and hairpin as far as axial rotation of their primary stems during unzipping 
is concerned (none of them rotates). However, such a difference was proposed by Plant 
and Dinman in their torsional restraint model [12]. That it could not be observed here is 
clear from the cylindrical shape of the pore channel and the point-shape of the travers­
ing bases, which lack any geometric information about direction.

To circumvent this problem, one could choose an ellipse instead of a circle as the slice 
plane of the pore channel, causing the pore-adjacent cis-side base-pair to orient accord­
ing to the long axis of the ellipse before being unzipped. Due to the high torsional modu­
lus this change of base-pair direction would propagate along the stem, causing it to ro­
tate. Such rotation of the primary stem would progress freely in the hairpin case, where­
as it would be impeded by the secondary stem in the pseudoknot case. Because the cur­
rent pore model is cylindrical, however, the reason for the retarded unzipping of stem A 
of the pseudoknot – if compared to the unzipping of the hairpin stem – cannot be im­
peded stem rotation. 

However, the high torsional modulus has other effects: In the still folded parts of the 
hairpin  stem and stem A of  the  pseudoknot  as  well  as  in  the  whole  stem B of  the 
pseudoknot it leads to relatively stiff torsion angles between successive base-pairs and – 
as a consequence – to a relatively fix short axial rise per base-pair. Due to this reduction 
of angular and axial degrees of freedom the presence of stem B of the pseudoknot can in­
fluence the unzipping process of stem A appreciably, which could explain that stem A of 
the pseudoknot unzips slower than the isolated hairpin stem.

An alternative explanation could be the stronger repulsive force field of the pore bar­
rier,  which tries to repel  the closed – and due to the high torsional modulus axially 
shortened – stem B from the pore plane, thus impeding the translation of the pore-next 
strand of stem A towards and through the pore. In the hairpin case no stem B exists, 
making such repulsion effects much smaller than in the pseudoknot case.

On the whole, two mechanisms have been identified within this model that could 
cause ribosomal pausing of pseudoknots in nature: Firstly, the unzipping of stem A can 
be impeded by an intact stem B by preventing free translation of stem A due to the large 
effective friction of long base sequences upstream stem B (simulated by using a high 
friction coefficient for the last base of the sequence). Secondly, the unzipping of stem A 
can be impeded by an intact stem B due to strongly restricted angular and axial degrees 
of freedom in all base-paired regions (simulated by using a realistically high torsional 
modulus).
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2.6  Conclusion

In order to study the folding, unfolding and unzipping dynamics of RNA molecules in 
three-dimensional space a novel coarse-grained RNA model was developed and used in 
Brownian dynamics  simulations.  Although the complex geometry  and interactions  of 
real  RNA biomolecules  are modeled in a very coarse-grained way (bead-spring chain 
with binding interactions between compatible  bases and continuously activated base-
pair-orientating interactions between fully-formed base-pairs), the model is able to pro­
duce geometrically exact tertiary structures from initially unfolded chain configurations. 
For example, for a hairpin sequence the formation of a straight regular stem double-
helix could be observed.  By measuring base-pair binding probabilities and comparing 
them to stem opening probabilities known from experiment, it is possible to calibrate 
the model  system,  which switches permanently between the folded and the unfolded 
state.

The mechanical properties of the folded state, which originate mainly from the ori­
entating interactions between base-pairs, were tested below the unfolding temperature 
by deformation simulations and can be used to adjust the model parameters on the basis 
of the results obtained for stem bending stiffness, stem torsional stiffness and longitud­
inal stem elasticity to experimental data. A parameter set with realistic bending stiff­
ness and torsional stiffness was found by simulating a hairpin molecule in thermal equi­
librium without external forces.

After having studied the static and dynamical properties of the free model molecule 
in detail the model was extended by a short, narrow pore channel through which the 
molecule is driven by the use of a local potential gradient. By this model extension it is 
possible  to  simulate  the unzipping and translocation behavior  of  arbitrarily complex 
RNA tertiary structure motifs through nanopores or ribosomal translation channels.

The translocation behavior of the model molecule was characterized – in terms of en­
ergy and temperature as well as in a time-resolved way – using a generic hairpin struc­
ture. Neglecting a regime of double-stranded translocation, which only occurs if the fol­
ded structure is deformable by the pore force to an extent where the stems do not need 
to unzip in order to allow their bases to pass the pore, the parameter space spanned by 
temperature and the ratio between pore drift force and base-pair binding energy can be 
divided into three relevant regimes of chain behavior: In the regime of chain rejection 
the folded structure is rejected from the pore by entropic forces, in the regime of chain 
pausing it remains in the pore channel, because the pore force is to weak to break base-
pairs  or to deform the stems sufficiently,  and in the regime of single-stranded chain 
translocation the folded structure unzips in order to pass the pore.

Of course, of these three regimes the regime of single-stranded translocation proved 
most important for all further observations: Recording simultaneously for each point of 
time the mean fraction of RNA bases on either side of the pore as well as the mean frac­



72  2    RNA folding, deformation and pore translocation

tion of base-pairs fully-formed within each stem the RNA tertiary structure consists of, 
it was possible to decompose the translocation process into a number of distinct and sub­
sequent time regimes whose sequence (for example initial threading, stem unzipping, 
free drift,  stem re-zipping)  corresponds directly to the used base sequence.  This was 
shown for both the hairpin (1 stem) and the H-type pseudoknot (2 stems). Most promin­
ent among these time regimes is the regime of stem unzipping, where the time per base 
passing the pore is usually dominated by the (long) unzipping time per base-pair, which 
in turn depends on base-pair binding energy.

In order to identify the mechanisms that slow down the translocation of certain H-
type pseudoknots compared to that of hairpins in nature, thus being responsible for ri­
bosomal pausing, which in turn is necessary for ribosomal frameshift during RNA trans­
lation, the translocation processes of both motifs were simulated and compared to each 
other. Since the total pore translocation time of an arbitrary RNA tertiary structure is 
usually dominated by the sum of its stem unzipping times, and to filter out those time 
differences that emerge trivially from different numbers of native base-pairs in the hair­
pin and the pseudoknot case, only the unzipping processes of the respective pore-next 
stems, which had equal length and total binding energy, were examined in the compar­
ison. 

For not  too low pore forces the unzipping of  these stems proceeded in an almost 
identical manner. Therefore, the hypothesis that the low motility of the closed second 
stem of the pseudoknot impeded the opening process of the pore-next stem (for example 
by imposing rotational constraints on it) could be falsified in this regime: The pore-next 
stem of the pseudoknot unzips in the same way as an isolated stem would do.

However, if pore forces are low and both the hairpin and the pseudoknot motifs have 
long upstream chain rests, which is usually the case in ribosomal translocation of RNA, 
such an impeding effect is observable noticeably for pseudoknots. Thus, in this regime 
the pore-next stem of the pseudoknot cannot be regarded as isolated any longer: Be­
cause the base-pair bonds in its closed second stem connect the long upstream chain rest 
mechanically to the 5'-helix of the pore-next stem, the low motility of this chain rest is 
able to slow down the translocation of that helix (and the unzipping process of the pore-
next stem) appreciably. By contrast, the hairpin lacks such connecting base-pair bonds. 
Therefore, the low motility of the upstream chain rest cannot slow down the unzipping 
process of its stem.

To conclude, there is strong evidence that ribosomal pausing during the translocation 
of an H-type pseudoknot is caused by geometrical constraints imposed on its pore-next 
stem by long upstream RNA structure parts.  These constraints  are conveyed by the 
base-pairs of its second stem, which function as mechanical connections.

The obtained  simulation  results  are  consistent  with the  experimental  findings  of 
Plant and Dinman [12], who compared the ribosomal frameshift efficiencies of pseudo-
H-type-pseudoknots. These were hairpins with a 5'-end slippery sequence (12 bases) and 
identical stems (13 base-pairs) but additional RNA strands (~15-20 bases) attached to 
their  long  3'  dangling  ends  (22  bases)  in  a  way  that  a  pseudo-stem  B  and  thus  a 
pseudoknot-like binding topology is formed. According to the 'torsional restraint model' 
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[11], they proposed that the appreciable frameshift efficiencies gained for those artificial 
topologies – if compared to a pure hairpin – were caused by a loss of the freedom of rota­
tion of stem A due to the constructs imitating a stem B. However, no kinetic observables 
like unzipping rate or angular velocity of stem A were studied in these experiments. 
Therefore, one could as well propose an alternative (or additional) mechanism: The at­
tached RNA strands may slow down the translation of the (remaining intact) pseudo-
stem B towards the pore,  thus impeding the translocation of the pore-next strand of 
stem A and the unzipping process of stem A. This mechanism was observed in the RNA 
translocation simulations in this thesis when giving a high friction coefficient to the last 
bases of the pseudoknot and hairpin sequences to be compared. Simulations with real­
istically high torsional modulus but normal friction coefficient of the last base as well 
yielded slower unzipping of stem A of the pseudoknot, possibly indicating torsional re­
straint effects in pseudoknot translocation (although the corresponding hairpin stem did 
not rotate during unzipping).

Experiments explicitly studying the unfolding and refolding kinetics of hairpins and 
H-type pseudoknots by the means of unzipping the corresponding RNA motifs with op­
tical tweezers were performed by Green and co-workers [122]. Their experimental setup 
is comparable to the pore unzipping simulations in this thesis, at least for hairpins: The 
unzipping forces act perpendicular to the hairpin stem and are localized at its open end. 
For pseudoknots, however, the optical tweezer setup and the pore simulation setup dif­
fer sightly in the directions of unzipping forces: 

The pore simulations show local forces at the pore-adjacent end of stem A, which are 
directed stem-perpendicular (the attractive drift force in the pore channel vs. the repuls­
ive pore barrier force), as well as a drag force emerging from the high effective friction 
coefficient of the intact stem B. This axially-directed force counteracts the shearing and 
unzipping of stem A by impeding the translation of its pore-next strand.

By contrast, in the optical tweezer setup there is no pore and the unzipping forces act 
simultaneously on opposite ends of the pseudoknot sequence, by that trying to shear and 
unzip  its  two  stems  at  the  same  time.  Consequently,  the  experimentally  measured 
pseudoknot unzipping rate corresponds to both of its stems, whereas a crucial element 
in the pore simulations of this thesis was the serial unzipping of stem A and stem B: 
This allowed to study the kinetic influence stem B exerted on the unzipping of stem A by 
measuring the unzipping rate of stem A separately.

Apart from these differences, the results of Green et al. are consistent with the res­
ults in this thesis: Although the studied structures in the pseudoknot case (a combina­
tion of stem A and stem B in the optical tweezer setup / stem A alone in the pore simula­
tion setup) have been compared to thermodynamically equivalent counter-parts in the 
hairpin case in both setups, their unzipping kinetics – quantified by the unzipping rate 
in both setups – is appreciably slower in the pseudoknot case than in the hairpin case 
(cf. the slopes in Fig. 2.62). Furthermore, in both setups, this unzipping rate is more in­
dependent on the unzipping force in the pseudoknot case than in the hairpin case (cf. 
the slopes in Fig. 2.60 and Fig. 2.61).



74  2    RNA folding, deformation and pore translocation

On the whole, the main result of the comparative pore translocation simulations pre­
formed in this thesis, that stem B of the pseudoknot impedes the unzipping of stem A by 
imposing geometrical constraints on it, by that making the unzipping kinetics of stem A 
slower than the unzipping kinetics of the hairpin stem, is consistent with the experi­
mental findings discussed above.
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3.1  Model

Fig.  3.1: Simultaneous dynamics of a DNA chain on a simple cubic lattice (rate K DNA ) and of a 
protein on the contour of the chain (rate K protein ). Each local DNA chain move (Advanced Verdier 
Stockmayer move set) changes not only the three-dimensional DNA conformation but also the pat­
tern of intersegment links the protein uses besides sliding when traveling on the chain contour.  
Therefore the dynamics of conformational changes of the DNA affect protein transport in a signi­
ficant way.

The model represents – in a coarse-grained way – the simultaneous dynamics of a DNA 
chain in three-dimensional space and of a  protein sliding and jumping on the DNA 
chain's contour, as one can see from Fig. 3.1: 

• Euclidean space is discretized by replacing it with an infinite cubic lattice. 
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• The DNA chain's initial conformation is formed by a three-dimensional trajectory 
of an unbiased random walker on that lattice, so that it consists of N unit length 
segments. 

• The protein is a point-shaped particle solely residing on the  N+1 points of the 
DNA chain, the so-called chain contour space. 

The simultaneous dynamics of the DNA chain on the one hand and the protein walker 
on the other hand are simulated using the kinetic Monte Carlo method (Gillespie al­
gorithm). Of these, the chain dynamics is implemented by the Advanced Verdier-Stock­
mayer algorithm [123][124], where every move changes only a local region of the chain. 
By allowing chain points to overlap (more than one chain point per lattice point) the 
random walk nature of the chain is preserved by that algorithm. Furthermore, the move 
set  is  ergodic  and makes  the chain exhibit  Rouse-type dynamics.  The three types of 
chain moves, each of which is performed with equal rate K DNA are:

• DNA chain end turn. Both end segments of the chain can be rotated by 90 de­
grees, i.e. there are four possibilities to rotate an end segment.

• DNA chain crankshaft turn. A set of three adjacent chain segments forming a 
crankshaft-shaped region can be rotated by 90 degrees around its axis, either in 
forward or in backward direction.

• DNA chain kink flip move.  A set of two adjacent chain segments which are 
perpendicular to each other ("kink") can be changed by swapping the directions of 
the two segments and shifting their connection point along the diagonal of the 
lattice square they span.

The  combination  of  such  chain  moves  changes  position  and  shape  of  the  modelized 
three-dimensional DNA chain conformation  in the surrounding cubic lattice, i.e. in Euc­
lidean space. By contrast, protein moves, which are all performed with equal rate K protein

, change only the position of the protein on the chain contour, which means one-dimen­
sional transport carried out exclusively in  chain contour space. The reason is that the 
protein is not allowed to detach oneself from the chain and enter surrounding lattice 
points but can only move from one point of the DNA chain to another. The two types of 
protein moves used here are:

• Protein sliding move. The protein performs an unbiased random walk step of 
unit length in chain contour space, thus arriving at an adjacent point of the DNA 
chain contour.

• Protein intersegment transfer. If the DNA chain forms a loop onto itself so 
that  the same point  in Euclidean space (in this model:  the same point  of  the 
simple cubic lattice) is occupied by two distinct points of the DNA chain, which 
are possibly remote in chain contour space (in this model: separated by a number 
of chain segments), a protein sitting at one of these two points is allowed to jump 
to the other one. Since such a loop is a connection between different segments of 
the DNA chain it is called an intersegment link whereas protein jumps over such 
intersegment links are named intersegment transfers.
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If sliding was the only type of protein move, protein transport in chain contour space 
would be nothing else than a diffusion process on a finite one-dimensional system. Espe­
cially, protein dynamics would be unaffected by the dynamics of the DNA chain. Adding 
the possibility of intersegment transfer has two important effects:

• The intersegment links connecting remote points of the chain contour form a net­
work for protein transport with non-trivial topological and geometrical  proper­
ties, even if the chain conformation is stationary (In this stationary case protein 
sliding is necessary in order to reach different intersegment links.).

• Although chain dynamics cannot influence the position of the protein in chain 
contour space directly, they do influence the protein transport process, because 
changes  in the  DNA chain conformation  mean changes  in the  network  of  in­
tersegment links.

The interplay of chain dynamics and protein dynamics is shown in Fig. 3.1, where the 
effects of chain moves on the shape of the DNA chain conformation in Euclidean space 
(left part of the figure) as well as on the structure of the network of intersegment links 
in chain contour space (right part of the figure) and thus on the path which the protein 
can take are exemplified by means of a fictitious sequence of DNA chain and protein 
moves (the protein sits initially at chain point 1):

1. One DNA chain end turns by 90 degrees. The intersegment linking pattern is un­
affected by that.

2. The protein slides from chain point 1 to its neighbor chain point 2.
3. A DNA chain crankshaft rotates around its axis in a way that one of its points 

(chain point 10) coincides with the protein location in Euclidean space. By that, 
an intersegment link connecting chain point 2 (protein position at the moment!) 
and chain point 10 is created. 

4. Using  this  intersegment  link,  the  protein  performs  an  intersegment  transfer 
from chain point 2 to chain point 10 (part of the crankshaft region), which are 
identical in Euclidean space at the moment.

5. The same DNA chain crankshaft rotates back into its original position, taking 
the protein along. The corresponding intersegment link between chain point 2 
and chain point 10 is destroyed again.

6. The same DNA chain crankshaft rotates even further, thus causing an Euclidean 
coincidence between its chain point 10 (still occupied by the protein) and chain 
point 14.  Thereby a new intersegment link between these two chain points  is 
generated.

7. The  protein  performs  an  intersegment  transfer  using  this  intersegment  link, 
thus leaving the DNA chain crankshaft and arriving at chain point 14.

8. The protein slides from chain point 14 to its neighbor chain point 15.
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9. A kink of the DNA chain is flipped, thereby separating chain point 14 from chain 
point 10 in Euclidean space and destroying the intersegment link between these 
two chain points.

3.2  Protein transport simulations on the DNA chain

3.2.1 Observations
Transport on long DNA chains (here: length N=5000) is simulated in the following way: 
First an instance of a chain is generated as a random walk on the cubic lattice. Then the 
trajectory of the protein walker initially sitting at the central point of the chain contour 
is recorded over a certain number of (Poissonian) time steps, during which the protein 
as well as the chain are moving. Then another instance of the chain is generated at ran­
dom, the protein starts again and so on. Collecting the information from all these pro­
tein trajectories (16000 trajectories for K DNA=0 , 1200 for K DNA=500 , 1500 for K DNA=2000  
and 900 for K DNA=10000 ) in chain contour space one obtains the time evolution of the 
protein density along the chain contour, the so-called probability density function (PDF) 
of the protein:

W x ,t  (3.1)
Due to the initial condition, this density is symmetric with respect to the central point of 
the  chain  contour  where  it  is  typically  peaked.  As  time  elapses,  this  peak  becomes 
broader and broader, until the protein density is equally distributed along the chain con­
tour. A measure of this broadening process is the interquartile distance t , which is 
the (contour) distance between the first and the last quartile of the PDF and character­
izes its width according to the universal scaling form:

W x ,t = 1
t 

 x
t  (3.2)

A transport process is called diffusive if the width of the corresponding PDF obeys the 
following proportionality relation:

t∝ t1/2 (3.3)
By contrast,  subdiffusive  transport  processes  yield 01/2 ,  superdiffusive  transport 
processes 1/2 in the generalized proportionality relation

t∝ t . (3.4)
Remarkably,  Fig.  3.2 shows  that  for  finite  DNA  rates
(here: K DNA=500, 2000, 10000, K protein=1) the time evolution of the protein PDF's width 
exhibits a cross-over between a short-time superdiffusive regime (exponent ≈1.6 , ex­
pected value for infinite chain length is =2 , deviations emerge only due to finite size ef­
fects which reduce the effective exponent) as well as a long-time diffusive regime. The 
corresponding cross-over time tc K DNA  is rate-dependent and increases with increasing
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K DNA . This dynamic cross-over between superdiffusive and diffusive protein transport 
behavior can be expressed for infinite chain length by:

t∝{ t2 for t≪tc K DNA

t1/2 for t≫tc K DNA∣ (3.5)

That for times even longer the width approaches a stationary value which equals half 
the contour length of the DNA chain is a mere finite size effect, which can be neglected 
in this discussion.

On the other hand, protein transport for vanishing and diverging DNA rates does not 
show such a cross-over: Protein transport on frozen DNA chains ( K DNA=0, K protein=1) is 
diffusive for all times because the cross-over time vanishes, protein transport on infin­
itely  fast  moving  DNA  chains ( K DNA∞ , K protein=1 ) is  superdiffusive
(again: ≈1.6  for N=5000 , 2 for N∞ ) for all  times because  the cross-over time di­
verges. This limit of infinitely fast changing shape of the DNA chain can be achieved by 
replacing the DNA chain by an entirely new chain instance generated as a random walk 
trajectory (preserving the protein position in contour space) before each protein move. 
This has already been shown by Sokolov and co-workers [73]. By contrast, the fast chain 
limit in Fig. 3.2 is simulated by the equivalent procedure of drawing the jump lengths 
for the protein from the distribution of intersegment link lengths of the chain before per­
forming a jump. Since this distribution is position-dependent,  it incorporates effects of 
finite chain size correctly. In the fast chain limit, the probability density function of the 
protein was averaged over 20000 trajectories.

Fig.  3.2:  The  protein's 
transport  behavior  for  
different  DNA  chain 
rates  can  be  character­
ized by viewing the time 
evolution of the width of 
the  protein  density 
along the chain contour.  
For frozen chains highly 
correlated protein jumps 
result  in  purely  diffus­
ive transport (cyan). For 
non-zero but finite chain 
rates  these  geometrical  
correlations  are  broken 
dynamically,  resulting 
in a cross-over in trans­

port behavior. The faster the chain moves, the less correlated the protein jumps are, which is reflec­
ted in  the  growing  short  time regime  of  superdiffusive  transport  and the shrinking  long  time 
regime of diffusive transport (magenta, blue, green). For infinitely fast moving chains the entirely  
uncorrelated jumps of a Lévy flight yield purely superdiffusive transport (red).
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3.2.2 Theoretical explanation of the observations
Before the intermediate regime of finite DNA rates can be understood, the two opposite 
limits of frozen and infinitely fast moving DNA chains have to be examined.

The origin of the superdiffusive protein transport behavior in the limit of infinitely 
fast moving DNA chains is clear: Since before each protein move the protein finds an en­
tirely new DNA chain conformation and – which is even more important – an entirely 
new  intersegment  linking  pattern,  each  intersegment  transfer  which  it  performs  is 
totally independent from its predecessor. This independence and entire absence of cor­
relations  between  intersegment  transfers  is  like  drawing  subsequent  protein  jump 
lengths independently from a broad power-law jump length distribution:

ps∝s−1 with =1
2 (3.6)

This relation emerges directly from the distribution of intersegment link lengths and – 
since every DNA chain conformation is a three-dimensional random walk – is in turn 
connected closely to the distribution of return times [125] of a random walker in three-
dimensional space:

wreturn t∝ t−3/2 (3.7)
According to the Lévy-Gnedenko generalized central limit theorem [125][126][127][128]
[129][130] a continuous time random walker (CTRW, introduced in  [131], extended to 
explain anomalous diffusion in [132]) whose waiting times are drawn from a Poissonian 
distribution and whose jump lengths are independent and identically distributed ran­
dom variables  drawn from a broad (02) power-law jump length distribution  per­
forms a so-called Lévy flight. The corresponding PDF, which measures the probability 
that the walker is at position x after time t, is a Lévy stable law of index   [73]:

W x ,t ~ 1
t1/ Lx /t

1/ (3.8)

Obviously, the width of this PDF grows superdiffusively, as observed in the simulation 
of the fast chain limit:

t∝ t1/=t 2 (3.9)
Unlike the fast chain limit, the limit of frozen DNA conformation has very paradoxical 
properties which cannot be described simply by the Lévy formalism but have to be ex­
amined further. Although the PDF in this limit has power-law tails just as expected for 
a Lévy type PDF, its width grows diffusively as expected for a Gaussian type PDF (re­
markably, the PDF is neither of Gaussian nor of Lévy type [73]):

t∝ t1/2 (3.10)
The cause of this is proposed to be strong geometrical correlations [73] between the in­
tersegment transfers, whose lengths – although identically distributed according to the 
broad power-law distribution (equation  3.6)  – are not  independent  random variables 
anymore. The cross-over from superdiffusive to diffusive transport behavior present for 
finite DNA rates could then be explained by a crossover between an uncorrelated regime 
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at short times and a correlated regime at long times. The fact that for increasing DNA 
rate the superdiffusive regime increasingly dominates the transport behavior can be ex­
plained by a dynamic destruction of these correlations which is the more effective the 
faster the chain's intersegment linking pattern changes. Therefore, in order to under­
stand this cross-over it is essential to characterize these correlations and their effects on 
protein transport in detail.

3.3  Protein transport and correlations

3.3.1 Lévy-type superdiffusion vs. quasi-diffusion and the role of correlations
The faster  the  DNA chain  changes  its  conformation  in  three-dimensional  space,  the 
faster existing intersegment links break and are recreated elsewhere. The limit in which 
an infinite number of such conformation changes occurs before the protein performs a 
new move can be simulated either by creating a new random chain conformation (and 
setting the protein on it, preserving its contour coordinate) before every protein move or 
simply by having the protein perform a Lévy-flight on a finite line without intersegment 
links which is as long as the DNA chain. The jump length distribution from which one 
has to draw independently before every protein jump in this flight must be chosen equal 
to the intersegment link length distribution of the DNA chain (equation 3.6). For either 
method, the resulting distribution of the protein's contour coordinate spreads superdif­
fusively (equation 3.9).

In the opposite limit, where the chain conformation is frozen in space while the pro­
tein is performing its moves, all existing intersegment links are preserved in perpetuity, 
thus yielding a time-invariant topology of intersegment transfer pathways placed onto 
the chain contour. Therefore, these pathways can be used by the protein repeatedly in 
forward as well as in backward direction. This would be impossible in the limit of infin­
itely fast changing chain conformation with its randomly disappearing and reappearing 
intersegment links.  Different from that limit,  one obtains diffusive protein transport 
along the chain contour for frozen chains (equation 3.10).

Whereas Lévy-type superdiffusive protein transport on infinitely fast moving DNA 
chains is a  result explicable theoretically by the Lévy formalism (cf. chapter 3.2.2), dif­
fusive transport on frozen chains is a paradox result [73], which cannot be explained by 
this formalism in a straight forward way: Since both limits (infinitely fast changing and 
frozen chain conformation) feature identical (broad) length distributions of intersegment 
links  (equation  3.6),  one would expect  identical  (superdiffusive)  time behavior  of  the 
width of the distribution of the protein position on the chain contour as well. However, 
superdiffusion occurs only in one of these limits. As a consequence, one has to postulate 
that, different from the simple limit of infinitely fast changing chain conformation which 
lacks correlations completely, in the limit of frozen chain conformation there are strong 
correlations which cause transport to be diffusive [73].
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Therefore, the relevant questions are: How can these correlations be characterized 
and why is the resulting transport behavior exactly diffusive?

3.3.2 Spatial vs. temporal correlations
As mentioned above, for frozen chain conformations the resulting pattern of interseg­
ment links in contour space is frozen as well, allowing intersegment transfers of the pro­
tein that are highly repetitive and recurrent because they are always reversible. How­
ever, the resulting temporal correlations between measured properties of intersegment 
transfer events (for example jump length, contour coordinate before and after the jump) 
occurring at different points of time are not sufficient to cause diffusive transport and 
thus have to be regarded as irrelevant. 

To show this,  one has to create an intersegment link pattern which obeys the in­
tersegment link length distribution of a real random walk chain conformation and – al­
though kept frozen during the whole transport process – exhibits superdiffusive trans­
port behavior. Of course, the raw intersegment link pattern taken from a random walk 
chain conformation will still lead to diffusive transport. But if one destroys all geomet­
rical correlations of higher order by shifting the positions of its intersegment links ran­
domly while preserving their link lengths in order not to violate the intersegment link 
length distribution, the subsequent transport process on the resulting frozen interseg­
ment link pattern is purely superdiffusive. Equal results are obtained for intersegment 
link patterns created artificially by placing a number of links which is comparable to 
that which occurs in a real chain conformation on an initially empty contour (cf.  Fig.
3.3): First their position x on the chain contour (length N) is chosen at random and then 
their length s is drawn from a (position-dependent) intersegment link length distribu­
tion:

pN s | x ∝s−3/2N−s−x  (3.11)
Consequently,  only the spatial  correlations between subsequent protein intersegment 
transfers remain as possible cause for diffusive transport. If these correlations are des­
troyed,  sparing only the temporal correlations that exist between these intersegment 
transfers and necessarily come about due to the frozenness of the intersegment link pat­
tern, transport is superdiffusive again – in spite of the temporal correlations. Therefore, 
the reason for the fact that an intersegment link pattern representing an infinitely fast 
moving chain conformation  produces  superdiffusive  protein  transport  is  that  the  in­
tersegment transfers loose their spatial  correlations due to the fast pattern changes. 
The loss of temporal correlations is only a side-effect and cannot be seen as cause for the 
fact that transport is no longer diffusive but superdiffusive in this limit. Hence, in order 
to characterize the correlations further, it is sufficient to concentrate on static interseg­
ment link patterns and their geometric and topological properties.
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Fig.  3.3:  The  width  of  
the  protein  density 
along the chain contour 
grows  superdiffusively 
(before  saturating  at 
N/2  due  to  finite  size 
effects)  not  only  for  a 
Lévy  flight,  which  is 
equivalent  to  transport 
on  an  infinitely  fast 
changing intersegment 
link  pattern  and where 
subsequent  protein 
jumps  are  entirely  
uncorrelated  (blue  and 
orange  lines),  but  also 
for  transport  on  frozen 

intersegment link patterns (red and green points), as long as the links are geometrically uncorrel­
ated (here the link lengths are independent, identically and broadly distributed random variables  
and the link positions are randomized.): “Frozenness” is not sufficient for diffusive transport beha­
vior.  

3.3.3 Geometric properties of static intersegment link patterns
One can distinguish  the quality of  the geometrical  correlations  a given artificial  in­
tersegment link pattern contains by the type of probability distribution (more exactly: 
by the number of links not distributed independently there) used in order to generate 
the pattern by drawing the lengths and positions of the links. Of course, the correspond­
ing probability distribution has to be measured from real random walk chain conforma­
tions first. The hope is to find a relatively simple distribution which involves as less cor­
related intersegment links as possible but brings about all necessary correlations to ob­
tain diffusive transport in a frozen pattern, even if the length distribution for single in­
tersegment links is broad.
For example,  one could draw frozen patterns  from the – complex but hypothetically 
measurable – joint probability distribution that contains correlated geometrical informa­
tion about all original intersegment links within a random walk chain

pN s1 ,s2 ,12 ,s3 ,23, ,sM ,M−1, M =? , (3.12)
where  the si denote  the  lengths  of  the  intersegment  links  and  the i−1,i the  distances 
between them. Such patterns are expected to show diffusive transport behavior, since 
literally all geometrical correlations present in the original random walk chain conform­
ations are preserved (maximal  correlation).  However,  this  procedure is equivalent  to 
taking the intersegment link pattern simply from the random walk chain itself.
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By contrast, only superdiffusive transport is obtained if the frozen pattern is drawn 
from the length distribution of single intersegment links, which is the simplest type of 
probability distribution one can use and which does not preserve any geometrical correl­
ations between the links (zero correlation):

 pN s1∝s1
−3/2 N−s1

N (3.13)

One could ask whether the geometrical  correlations generated by drawing the frozen 
pattern from the length (and position) probability distribution of  pairs of intersegment 
links are sufficient to make transport diffusive, since the calculation of this pair distri­
bution is theoretically tractable, as will be shown in the following:
3.3.3.1 Generic calculation procedure for arbitrarily complex intersegment link probab­
ility distributions
The probability in one dimension to find a random walker (constant step length x and 
time update 1) at time t at position x, if it had been initially in the origin, is given by the 
Gaussian propagator:

G x∣t= 1
2x 2 t

exp− x2

2 x 2t  (3.14)

This result can be easily extended to describe three-dimensional random walks. Since 
the trajectory of such a walker can be seen as a three-dimensional random walk chain 
conformation, there is a close correspondence between the time appearing in the Gaussi­
an propagator and the contour coordinate l of the chain. Therefore, the probability that 
within such a chain there exists a sub-chain with contour length l which connects two 
points in space with Euclidean distance vector r is given by: 

g r∣l∝l−3/2exp− r2

2 l  (3.15)

A given intersegment link geometry can be represented by a product of such probabilit­
ies, incorporating the contour lengths and Euclidean distance vectors occurring in that 
geometry. Then integrating out all remaining spatial degrees of freedom yields a joint 
probability distribution for all relevant contour lengths the geometry has.
3.3.3.2 Calculating the probability distribution for intersegment link pairs
Although this procedure is capable of determining probability distributions for arbitrar­
ily complex intersegment link geometries, it will be used here for pairs of intersegment 
links, since their probability distribution can easily be measured from real random walk 
chain conformations and be compared to the theoretical findings. The contour space geo­
metry of such link pairs is best described by three distances (contour length s1 of the 
first link, contour length s2 of the second link and contour distance 12 between the start­
ing points of the two links), which will be called contour variables. Depending on these 
distances, all link pairs can be divided into three separate topological classes, namely 
nested pairs, knotted pairs and independent pairs (cf. Fig. 3.4), which is why the domain 
of the pair probability distribution separates into three subdomains as well.
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Fig. 3.4: The domain of the intersegment link pair probability distribution p s1 ,s2 ,12  is divided 
in three subdomains, where the two links a intersegment link pair consists of are either nested,  
knotted or independent in chain contour space. The distribution depends on its arguments (link  
lengths s1 and s2 , contour distance between the links 12 ) in a different way for the different sub­
domains: Only for independent links the distribution factorizes. For nested or knotted links the  
overlapping region of  the chain contour results  in a correction term depending on the contour  
length of the overlap (marked in red).

The subdomain of nested links contains only pairs of links which fit into one an­
other:

s2s1 and 0≤12≤s1−s2 (3.16)
In this subdomain the pair probability distribution is given by

p s1 ,s2 ,12∝∫ d3r2−r1 g r2−r1∣12g r2−r2∣s2g r1−r2∣s1−12−s2∝[s2 s1−s2]
−3/2 (3.17)

for infinite chains and by

pN s1 ,s2 ,12= p s1 , s2 ,12
N−s1

N (3.18)

for finite chains of length N. The additional finite size factor results from the fact that 
for finite chains not all link pair positions are possible anymore because of the size of 
the link pair (here: s1 ) .
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The subdomain of knotted links contains only pairs of links which intersect each 
other (as if they represented base-pairs forming a pseudoknot):

s1−s212≤s1 (3.19)
The corresponding pair probability distribution reads

ps1 ,s2 ,12∝∫d3 r2−r1g r2−r1∣12g r1−r2∣s1−12 g r2−r1∣12s2−s1∝[s1 s2−s1−12
2 ]−3/2

(3.20)
for infinite chains and

pN s1 ,s2 ,12= p s1 , s2 ,12
N−12−s2

N (3.21)

for finite chains. Again the finite size factor depends on the pair size (here:  12s2 ) in 
the same way.

All other link pairs can be found in the subdomain of independent links, where 
the links are separated from each other in contour space:

s112N (3.22)
According  to  this  separation,  the  pair  probability  distribution  factorizes  for  infinite 
chains:

ps1 ,s2 ,12∝∫d3 r2−r1g r1−r1∣s1 g r2−r1∣12−s1g r2−r2∣s2∝ [s1 s2 ]
−3/2 (3.23)

Because the dependence of pair size on the contour variables of the link pair is the same 
in both the knotted and the independent subdomains, one obtains the same finite size 
factor:

pN s1 ,s2 ,12= p s1 , s2 ,12
N−12−s2

N (3.24)

Comparing the three function parts the pair probability distribution is composed of for 
infinite chains, one easily recognizes that they are all power-laws with the same expo­
nent (-3/2), whose arguments are polynomials of second degree in the three contour vari­
ables of the link pair (Generally, a link geometry consisting of M links yields polynomi­
als of M-th degree in 2M-1 contour variables.). Depending on the extent of link intersec­
tion within a pair the polynomials in the  nested and in the knotted subdomain contain 
subtractive corrections to the independent case where the polynomial factorizes (cf. in­
tersections and term marked in red in Fig. 3.4).
3.3.3.3 Excursus: Probability distribution for intersegment link M-tupels
Whereas the domain of  the probability distribution of  link pairs  is  divided into only 
three subdomains, the number of subdomains needed for the probability distribution of 
link M-tupels is so large that this probability distribution shall only be calculated in two 
very special subdomains:

In the subdomain of multiply nested links arrays, which contains all link tupels 
obeying the conditions

sMsM−1s3s2s1 (3.25)
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and
0≤12≤s1−s2 ∧ 0≤23≤s2−s3 ∧  ∧ 0≤M−1, M≤sM−1−sM , (3.26)

the probability distribution on infinite chains can be calculated recursively:

ps1 ,s2 ,12 ,s3 ,23 , ,sM ,M−1,M ∝[sM sM−1−sM ⋯s2−s3s1−s2]
−3/2 (3.27)

The finite size factor needed to adapt this result to finite chains depends only on the size
s1 of the outermost link of the nested M-tupel:

pN=
N−s1

N
⋅p (3.28)

The  subdomain of  entirely independent  link arrays contains  all  link  tupels 
which obey the condition

s112N ∧ s223N ∧  ∧ sM−1M−1, MN (3.29)
and shows a completely factorizing probability distribution on infinite chains: 

ps1 ,s2 ,12 ,s3 ,23 , ,sM ,M−1,M ∝[s1 s2 s3⋯sM−1 sM ]
−3/2 (3.30)

In order to obtain the probability distribution valid on finite chains, one has to multiply 
by a finite size factor which again depends on the size of the M-tupel. Here this size is 
dominated by the sum of all inter-link distances: 

pN=
N−1223M−1, M −sM

N
⋅p (3.31)

3.3.3.4 Measuring the probability distribution for intersegment link pairs
Comparing the intersegment link pair probability distribution deduced theoretically to 
histogram measurements performed on frozen intersegment linking patterns obtained 
from three-dimensional random walk chain conformations one finds perfect congruence. 
This is demonstrated in  Fig. 3.5 for several inter-link distances (i.e. distance between 
primary and secondary link in an intersegment link pair) by varying the length of the 
primary link in a pair while keeping the length of the secondary link constant. Clearly 
in evidence is the tripartite structure of each histogram curve which corresponds dir­
ectly to the three link pair domains of independent, knotted and nested links.
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Fig.  3.5:  The  interseg­
ment link pair probabil­
ity distribution deduced 
theoretically  (solid 
black lines) is confirmed 
exactly  by  histogram 
measurements on three-
dimensional frozen ran­
dom  walk  chain  con­
formations  (chain 
length N=100). One link 
length  is  kept  fix  (
s2=20 ),  the  contour 

distance 12 between the 
links  parametrizes  the 
array  of  curves.  Each 
curve  consists  of  three 

subdomains (1. independent, 2. knotted and 3. nested links). The boundaries between these subdo­
mains are marked by filled black circles. For inter-link distances approaching zero the probability  
at the knotted/nested boundary diverges since for vanishing distance knotted/nested pairs would 
consist of “identical” links (cf. vertical asymptote at s1=s2 ), whereas the subdomain of independent 

links ( pN∝s1
−3/2 ) disappears entirely.

3.3.3.5 Transport via pairwise correlated intersegment links
Having thus confirmed the correctness of the theoretical form of the intersegment link 
pair probability distribution, this form can be used in order to study protein transport 
on frozen intersegment linking patterns lacking all types of geometrical correlations ex­
cept for those conveyed by this pair distribution. The question is whether these pair cor­
relations are sufficient on their own to make transport diffusive instead of superdiffus­
ive or whether correlations of even higher order are necessary in fact. To answer this 
question the intersegment linking pattern of a random walk chain, which ab initio con­
tains geometrical correlations of every order, is changed by shifting the positions (not 
the lengths!) of the intersegment links in contour space by the means of an Metropolis 
Monte-Carlo  algorithm.  This  algorithm is  designed  to  preserve  the  pair  correlations 
present in the original intersegment linking pattern while destroying all  geometrical 
correlations of higher order. To achieve this, its probability of move acceptance,

P shift={exp[−c t1−c t] ct1−ct0
1 else } , (3.32)

has to be essentially an exponential of the change of the following time-dependent (pos­
itive) cost function:    

ct=
1

kT∫ ds1∫d s2∫ d12∣nts1 ,s2 ,12−pN s1 ,s2 ,12∣ (3.33)
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This cost function measures the deviation of the link pair density nt present in the in­
tersegment linking pattern at time t from the theoretical intersegment link pair probab­
ility distribution, which can be regarded as an averaged initial link pair density (before 
shifting links!):

〈n0s1 ,s2 ,12〉patterns pN s1 ,s2 ,12 (3.34)
After a number of such preparing Monte-Carlo annealing steps the intersegment linking 
pattern is kept frozen and a protein is started on it. Fig. 3.6 shows the width of the pro­
tein density along the chain contour as a function of time as obtained by the use of the 
following simulation parameters:

• 100 distinct intersegment linking patterns
• each taken from a closed random walk chain of length 10000
• variable number  of  preparation steps  per  initial intersegment  linking pattern 

(0, 102 ,103 , ,107 )  , each step performed at temperature kT=200

• 10000 protein runs per prepared intersegment linking pattern 
Fig.  3.6: Time evolution 
of the width of the pro­
tein  density  in  contour 
space,  characterizing 
protein  transport  per­
formed  on  frozen 
intersegment  linking 
patterns  (from  closed 
random walk chains  of 
contour  length  10000) 
after  gradual  elimina­
tion  of  all  geometrical 
correlations  of  higher 
order than link pair cor­
relations.  This  elimina­
tion  is  done  by  Monte-

Carlo steps that shift the intersegment link positions while preserving the initial link pair density  
on average. Without such steps, transport is diffusive (black circles). The more steps are performed 
the more superdiffusive transport becomes (gray, orange, ... , green points), until it behaves similar  
to transport on patterns with entirely randomized intersegment link positions where even the link  
pair correlations have been eliminated (red squares). Therefore, pair correlations in intersegment  
linking patterns are not sufficient to make transport diffusive.

Without annealing (0 preparation steps), the width of the protein density grows diffus­
ively, as expected: no geometrical correlations have been destroyed. The longer the an­
nealing process endures (here: up to 107 preparation steps), the more thoroughly geomet­
rical correlations between intersegment links of higher order than pair correlations are 
destroyed  and  –  surprisingly  –  the  more  superdiffusive  protein  transport  becomes. 
Transport on intersegment linking patterns that have been annealed very long ( 107 pre­
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paration steps) even exhibits the same superdiffusive value for the transport exponent 
as transport on patterns with totally randomized intersegment link positions. In other 
words:  Although all  pair  correlations  have been preserved  by the  annealing process, 
transport behaves as in the entirely uncorrelated case. Therefore, one has to conclude 
that not pair correlations, but correlations of higher order than pair correlations cause 
protein transport on frozen chains to be diffusive. It is not clear whether there exists a 
minimal order of correlations one has to preserve in an intersegment linking pattern in 
order to obtain diffusive transport. This makes the problem of characterizing the nature 
of the geometrical correlations present in random walk chains a difficult one. However, 
a different approach helps to solve this problem, as will be shown in the following.

3.4  Islands

For a successful  characterization of  the geometrical  correlations  that  make interseg­
mental protein transport on stationary DNA conformations diffusive, it is essential to 
look at the intersegment linking pattern of a frozen random walk chain from a more 
global point of view. The question is, whether there are any effects induced by the geo­
metrical correlations that are visible on such native patterns. And indeed, native pat­
terns exhibit a very striking feature: the divisibility of the random walk chain into an 
array of adjacent sub-chains each containing an entirely separate set of intersegment 
links. Since these sub-chains are not connected to each other by intersegment links, they 
are isolated units in terms of intersegment transfer. That is why these sub-chains are 
called islands: Whereas the protein can make heavy use of intersegment transfer within 
an island, it can change between adjacent islands only via sliding along the chain con­
tour. Fig. 3.7 (above) shows exemplary intersegment linking patterns of frozen random 
walk chains of length 1000. Clearly in evidence is the high number of islands these nat­
ive patterns can be divided into.

However, this divisibility is not necessarily the case for an intersegment linking pat­
tern with broad link length distribution, but truly emerges from the strong geometrical 
correlations present in a frozen random walk chain. This fact can be shown by looking at 
artificial linking patterns, which have been generated by randomly re-positioning the 
intersegment links of native patterns while preserving the link lengths: As one can see 
from Fig. 3.7 (below), the resulting artificial patterns cannot be subdivided into smaller 
islands at all.

Such an artificial intersegment linking pattern lacks all types of geometrical correla­
tions. This causes superdiffusive transport even if the pattern is stationary (cf. chapter 
3.3.2). On the other hand, stationary  native patterns have strong geometrical correla­
tions and thus exhibit only diffusive transport. Since  both diffusive transport  and the 
existence of islands seem to be direct effects of these correlations,

strong correlations⇒ islands∧diffusive transport , (3.35)
the idea of a causal connection between islands and diffusive transport suggests itself:
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strong correlations⇒ islands⇒diffusive transport (3.36)
It will  be shown that  this  causal  connection exists  indeed,  and that  it  is  possible  to 
coarse-grain the intersegment linking pattern of a frozen random walk chain, regarding 
it as a chain of independent black-box elements representing the original islands. Due to 
the process of coarse-graining, these elements ought to be independent from the details 
of the link geometry in the islands they represent but be described only by a very re­
stricted set of relevant statistical properties. The goal is to demonstrate that transport 
on a chain consisting of such elements is diffusive as long as they have the same statist­
ical properties as random walk islands. From this proof it would be clear that the relev­
ant characteristic of the strong geometrical correlations present in frozen random walk 
chains, as far as protein transport behavior is concerned, is the ability to form interseg­
ment link islands with the correct intrinsic statistical properties.

Fig.  3.7:  Above:  Native  intersegment  linking  patterns  originating  directly  from frozen random  
walk chains (here: length 1000) can be divided into numerous separate islands (green) of interseg­
ment links (magenta) due to strong geometrical correlations between the links.  Below: If these  
links are set at random positions in contour space in order to destroy all geometrical correlations,  
the resulting artificial intersegment linking pattern cannot be divided further: there are no islands 
at all.

But not only transport on frozen chains could be explained with the help of islands 
then, they would also be useful when describing transport on dynamic chains: Up to now 
the cause for the fact that protein transport on dynamic DNA conformations is superdif­
fusive for short times has been attributed to the dynamic destruction of geometrical cor­
relations. Now, this destruction of correlations can be depicted more precisely as a chan­
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ging  island  landscape,  where  islands  continuously  appear,  move  their  boundaries, 
change their size and disappear again. This is shown in Fig. 3.8, where the time evolu­
tion of the color-coded intersegment link density of a dynamic chain of length 100 is 
plotted, by that visualizing the changing island boundaries.

Fig.  3.8: Time evolution of the intersegment link density in contour space for a single dynamic  
DNA chain of length 100. The colored chain contour regions contain intersegment links and are  
separated from each other by black linkless regions. The boundaries between colored and black 
regions  are  island  boundaries.  Shape  and  position  of  the  (colored)  islands  change  over  time,  
because conformational changes of the DNA chain cause changes in its intersegment linking pat­
tern.

3.4.1 Definition
Before the statistical properties that characterize islands and are necessary in order to 
coarse-grain intersegment linking patterns describing random walk chains can be selec­
ted and measured, a mathematically stringent definition of such intersegment link is­
lands and their boundaries, which does not depend on representation, is needed:
Choose a sub-chain  M of a random walk chain arbitrarily, by doing so separating the 
whole chain into a chain region A in front of M, the sub-chain M itself and a chain re­
gion B behind M. Then the sub-chain M is called an unconnected island of intersegment 
links (or short hand "island") if and only if (conditions C 1 - C 4 ):

1. the boundary points of the sub-chain M are connected to each other or to other 
chain points belonging to M by intersegment links,
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2. there is no intersegment link which connects a chain point belonging to the sub-
chain M with a chain point outside the sub-chain M,

3. there is no intersegment link which connects a chain point belonging to region A 
with a chain point belonging to region B,

4. the sub-chain M does not contain smaller sub-chains obeying these connection 
conditions (C 1 - C3 ) simultaneously.

Fig. 3.9 visualizes this definition in Euclidean representation as well as in contour space 
representation, especially by showing typical counter-examples.

Fig.  3.9: A three-dimen­
sional  random  walk 
chain can be divided in 
sub-chains  that  are 
independent in terms of  
their  intersegment  link 
pattern  (magenta)  and 
called  islands  (green).  
These  islands  are  the 
shortest  sub-chains pos­
sible ( C 4 ) for which the 
following statements are 
valid: An island is never 
empty  of  intersegment 
links, its boundaries are 
always  link  boundaries 
( C 1 ). The interior of an 

island is never connected to its exterior (i.e. the rest of the chain) by intersegment links ( C 2 ). An 
island is never bridged by an intersegment link connecting chain regions that are exterior ( C3 ).

3.4.2 Statistical properties of RW islands
The most relevant properties of a single island as far as protein transport is concerned 
are its  length in contour space and its conformation-specific mean exit time. However, 
since this time strongly depends on the intersegment linking pattern of the island, it is 
related to the island length itself only weakly and can vary even between equally long 
islands. Therefore, from a statistical point of view it is useful to look at the distribution 
of island lengths and accordingly at the length-specific but disorder-averaged mean exit  
time which involves averaging the conformation-specific mean exit times over many is­
land conformations of equal contour length.

The distribution of island lengths is a power-law, which – not surprisingly – in­
herits its exponent directly from the intersegment link length distribution:

 s∝s−3/2 (3.37)



94  3    Protein target search on DNA 

The reason for this fact has to be looked for in the self-similarity of intersegment linking 
patterns: Since the lengths of single links as well as the distances between them are dis­
tributed algebraically with exponent -3/2 (cf. for example the joint length distributions 
for complexes of many intersegment links in chapter 3.3.3.3 ), the lengths of the islands 
composed of these links are distributed equally, namely just like the lengths of their 
components.

Fig. 3.10 shows the power-law nature of the distribution of island lengths: In order to 
filter out discretization effects and finite size effects, the island length distribution has 
been  measured  for  several  lengths  of  the  random  walk  chain  (from L=1000
to L=100000 ) . Each curve exhibits a region of algebraic decay. All curves are congruent 
within this generic power-law region. The corresponding exponent is -3/2. In order to ob­
tain the island length distribution for a distinct length L of the random walk chain sev­
eral random walk conformations are generated. However, one randomly selects only one 
island per conformation. The reason is that islands in the boundary region of a finite 
random walk chain may behave different from inner islands, which could influence the 
shape of the island length distribution especially if all islands within each conformation 
were used.

Fig.  3.10:  Contour  length  distribution  for 
intersegment link islands found in random walk 
conformations (selecting one island per conform­
ation) of several lengths. All curves share a com­
mon  power-law  region.  The  exponent  results  
from the  intersegment  link  length  distribution 
and corresponds to an island length parameter 
of =1/2 .

 

Fig.  3.11:  Disorder-averaged  (but  length-spe­
cific)  island  trapping  time.  This  mean  time a  
protein initially sitting in the center of an island  
in contour space needs to escape from the island 
scales  superdiffusively  with the contour  length 
of  the  island.  The islands  have  been obtained 
from random walk conformations of length 4000 
by  selecting  one  island  per  conformation.  The  
scaling exponent results  in an island trapping  
parameter of k=3/2 .

However, the distribution of island lengths can not explain the paradoxical properties of 
protein transport on a frozen random walk chain conformation on its own. The comple­
mentary  statistical  determinant  of  transport  is  the  scaling  of  the  disorder-averaged 
mean island exit time with the island length, the so-called  island trapping time. As 
Fig. 3.11 shows, the island trapping time scales superdiffusively with island length:

s∝s3/2 (3.38)
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To  find  this  result  the  island  trapping  time  has  been  measured  for  several  island 
lengths. The island trapping time for one specific island length has been obtained by av­
eraging over the mean exit times of several island conformations of this length. This dis­
order average is necessary because the mean exit times strongly depend on the particu­
lar island conformation for which they are determined, even for equal island lengths. 
The mean exit time is defined here as the time needed on average by a protein walker 
initially sitting in the center of the contour length interval of a specific island conforma­
tion to leave this island conformation at one of its boundaries (central mean exit time). 
As for the island length distribution, all islands needed for this procedure are chosen 
from distinct random walk conformations (length L=4000 ).

The exponent of the island length distribution and the exponent connecting island 
length and island trapping time yield together only global information about islands. It 
is important to clarify the question whether this information is sufficient to explain how 
the geometric correlations expressing themselves in the formation of islands can make 
protein transport on frozen random walk chains diffusive. To this end, it is necessary to 
examine the details of protein transport within islands. This will be done by performing 
first passage processes on intersegment linking patterns of islands.

Generally, the process of escape from a finite size interval of length s with absorb­
ing  boundaries  at x=0 and x=s is  characterized  by  the  unconditional  mean  exit  time 
(without specified escape direction), which in turn depends on the conditional mean exit 
times for escapes either to the left (− ) or to the right ( ) , weighted by the respective 
probabilities of escape direction, the so-called splitting probabilities [133]:

texitu0=P exit
- u0texit

- u0 Pexit
+ u0texit

+ u0  (3.39)
All these are functions of the initial position of the walker within the interval, rescaled 
by the interval length:

u0=
x0

s (3.40)

Both transport processes on directionally unbiased systems (like line intervals for pure 
one-dimensional diffusion) and transport processes on directionally biased systems (like 
islands with specific intersegment linking patterns) – if this bias has been eliminated by 
a disorder average – show a number of  universal symmetries: Initial positions that 
are symmetric about the center of the transport interval result in

• equal unconditional mean exit times:
texit1−u0=texitu0 (3.41)

• equal deviations of the splitting probabilities from equiprobability (0.5):
Pexit

+/- 1−u0 Pexit
+/- u0=1 (3.42)

• equal conditional mean exit times for opposite exit directions: 
texit

+/- 1−u0=texit
-/+ u0 (3.43)
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As a consequence, the unconditional and both conditional mean exit times are equal for 
central initial positions and can be identified with a time  only depending on interval 
length, the so-called central mean exit time:

texit
+/- 1/2=texit1/2≡ (3.44)

As already known, the scaling of this central mean exit time is superdiffusive for island 
intervals

K protein∝s3/2 (3.45)
and diffusive for intervals without intersegment links

 2K protein=
1
4 s2 .  (3.46)

However, this difference in scaling is not the only effect the intersegment linking pat­
tern of an island has on escape behavior. The examination of how unconditional and con­
ditional mean exit times as well as the splitting probabilities  depend on the initial 
position will reveal even more striking differences to purely diffusive escape, although 
both escape from islands and diffusive escape share the same symmetry properties dis­
cussed above.

To this end, escape processes are performed on intervals (length s=50 ) with absorb­
ing boundaries, starting 10000 runs for each interval instance and for each of the initial 
positions. The left part of Fig. 3.12 compares the splitting probabilities for diffusive es­
cape, for escape from one specific island conformation and for an escape process aver­
aged over 1000 different island conformations of equal length (disorder-average). In the 
right part of the figure the same is done with the unconditional mean exit time. In Fig.
3.13 escape from an island interval (with disorder-average) is compared to diffusive es­
cape in terms of the conditional mean exit times.
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Fig. 3.12: Process of escaping from an interval (length s=50 ) with and without intersegment link­
ing pattern. Both the probability to leave to the right (left figure) and the unconditional mean exit  
time (right figure) depend much less from the initial position for disorder-averaged (1000 islands)  
transport  on  island  intervals  (blue)  than  for  purely  diffusive  transport  on  intervals  without  
intersegment links (green). Without such a disorder average the island escape probability as well  
as the island mean exit time (red) are related strongly to the specific shape of the intersegment  
linking pattern (magenta). 10000 escape processes were averaged per interval instance and initial  
position.  Altogether,  different from diffusive transport,  intersegment links delocalize the walker  
over the entire island interval before it can escape.

Fig.  3.13: Comparison between escape from island intervals (disorder-averaged over 1000 island 
instances, left figure) and purely diffusive escape from intervals without intersegment links (right  
figure) by looking at the unconditional (blue) and the conditional (red, green) mean exit times as  
functions of the initial position of the walker. Each curve has been obtained by averaging over  
10000 escape events per interval instance (length s=50 ) and initial position. Although both types  
of escape processes obviously share the same universal symmetries (for details cf. text), they differ  
appreciably in terms of walker localization:  Since diffusive escape is a next-neighbor transport  
process, the conditional mean exit times are monotonically decreasing functions of the distance to  
the boundary where the walker is actually  absorbed. By contrast,  the intersegment links of an  
island delocalize the walker over the entire interval. Therefore, the conditional mean exit times are  
not  only  less  dependent  on  the  distance  to  an  absorbing  boundary.  Moreover,  a  boundary  is  
reached comparably fast by walkers started at far and near initial positions, as long as they are  
symmetric about the interval center.
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Escape from an interval without intersegment links by pure diffusion is a next-
neighbor process. Therefore, the protein is quite localized during the entire escape pro­
cess, which makes the exit direction depend strongly on the initial position. This is re­
flected in the fact that the splitting probabilities are linear functions of the initial posi­
tion:

Pexit
+ u0=u0 Pexit

- u0=1−u0 (3.47)

Another effect of this localization is that the protein reaches the boundary where it is 
absorbed the faster the smaller the distance between this boundary and its initial posi­
tion has been. That is why the conditional mean exit times are monotonic functions of 
the initial position,

2K protein texit
+/- u0={13 s22−u0u0

1
3 s21−u0

2 ∣ , (3.48)

unlike the unconditional mean exit time, which is symmetric:
2K protein texitu0=s2 u0 1−u0 (3.49)

By contrast, escape from islands is by no means a next-neighbor process. On the con­
trary, the intersegment links an island consists of enhance protein transport by allowing 
for long-range jumps and thus delocalize the protein position over the entire island in­
terval very quickly, by that causing the memory for the initial position to become lost. 
This is even the case without disorder average, although then splitting probabilities as 
well as mean exit times are strongly related to the specific intersegment linking pattern 
in use. Having performed a disorder average, the delocalization becomes even more evid­
ent: First, the exit direction depends then only very weakly on the initial position, which 
results in splitting probabilities almost constant for initial positions in the interior of 
the island interval:

Pexit
+/- u0≈

1
2

for ∣u0−
1
2∣≪1

2 (3.50)

Moreover, unconditional as well as conditional mean exit times depend much weaker on 
the initial position than in the diffusive case. The most striking feature is, however, that 
the conditional mean exit times are no longer monotonic functions of the initial position 
but resemble the unconditional mean exit time, which is symmetric:

texit
+/- u0≈ texitu0 (3.51)

That means: If a protein that gets absorbed at a distinct boundary (e.g. the right-hand 
boundary) escapes fast, its initial position has not been next to the same boundary ne­
cessarily. An initial position next to the opposite boundary would have the same effect, 
despite the large contour distance to the target boundary. The reason is that due to the 
presence of intersegment links initial positions which are symmetric about the interval 
center are almost equivalent with respect to first passage to a distinct boundary.
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Intersegment links cause quick delocalization of the protein within the island. This 
is expressed by the weak dependence of the exit direction and the mean exit time on the 
initial position, as well as by the equivalence of symmetric initial positions for the mean 
exit time if the exit direction is specified. Therefore, the protein can be regarded as ap­
proximately uniformly distributed over the entire island interval. This suggests that – 
as far as transport on random walk chain conformations is concerned – it is legitimate 
to view islands as coarse-grained entities that can be described by two properties, their 
length and the trapping time corresponding to this length, neglecting any internal fea­
tures.  In this sense,  a frozen random walk chain is equivalent to a chain of islands, 
whose length distribution and length-dependence of trapping times is well-known.

3.5  Toy model
Fig.  3.14:  Toy model  to 
study  transport  on 
chains  of  independent 
entities  with  known 
statistical  properties 
such  as  random  walk 
islands. The model con­
sists of a hopping envir­
onment  (above)  and  a 
leaping  environment 
(below)  of  sites  with 
nearest  neighbor  con­
nections. The lengths of 
the  site-surrounding 
regions  in  the  leaping 
environment  are  algeb­
raically  distributed,  the 
site-specific  character­

istic waiting times are powers of these lengths. In the hopping environment the characteristic wait­
ing times are preserved, whereas the region lengths are set to zero for simplicity.

These statistical properties of islands in frozen random walk conformations can be used 
within a coarse-grained toy model,  which is designed to solve the problem of under­
standing why transport on such conformations is diffusive. The model exploits the fact 
that random walk islands are independent entities concatenated in contour space.

Correspondingly, the transport environment in this toy model is a chain of N sites P i

(with  1≤i≤N ) with nearest neighbor connections between them. Each site has a posi­
tion x i , is surrounded symmetrically by a region of length si and has an intrinsic charac­
teristic waiting time i , which is a power of this length. This is shown in the lower half 
of Fig. 3.14.
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The sites represent the islands of a frozen random walk conformation: The length of 
the region surrounding a site corresponds to the finite length of an island and the site-
specific characteristic waiting time to the island trapping time.

Accordingly, in order to generate an instance of such a coarse-grained transport en­
vironment the region lengths are drawn independently from a power-law distribution:

 si∝si
−1 (3.52)

And the characteristic waiting times are calculated from the region lengths using
i=si

k . (3.53)
In other words, lengths and times are distributed according to a joint probability distri­
bution that reads:

j si ,i =si  i−s i
k (3.54)

The length distribution index  and the waiting time power k are freely adjustable para­
meters of the toy model. This fact will be used to characterize transport by deducing the 
transport exponent as a function of both parameters and – especially – to answer the 
question  whether  and  why transport  is  diffusive  for =0.5 and k=1.5 ,  which  are  the 
parameter values corresponding to islands of a frozen random walk conformation.

The toy model environment described so far will be denoted as leaping environment, 
due to the possibly large distances between adjacent sites. However, by neglecting the 
lengths of the site-surrounding regions but only keeping the site-specific characteristic 
waiting times, the leaping environment can be transformed into a so-called hopping en­
vironment, where the distances between adjacent sites are irrelevant.

According to this, the site positions in the hopping environment are denoted by num­
bers,

n∈{1 ,2 ,, N } , (3.55)
in contrast to the leaping environment, where contour coordinates are used:

x∈{x1 ,x2 , ,xN } . (3.56)
The interrelation between both types of environment is visualized in Fig. 3.14.

Transport on either environment is characterized best by a scaling relation between 
the size of an interval and the mean time a walker initially sitting in its center needs to 
leave it for the first time (first passage problem). This relation is called transport law. In 
the leaping environment one uses contour space intervals with length x which are sym­
metric about the walker's initial position at xN /2 . By contrast, the intervals used in the 
hopping environment are site number intervals which are symmetric about the walker's 
initial position at N /2 and contain n sites.

Given an interval of certain length ( x or n ) in an environment conformation with N
sites, averaging the interval exit time over several walker trajectories yields the mean 
exit time for this interval length in this conformation. Then this mean exit time is aver­
aged in turn over  several  independently  generated  environment  conformations  (each 
with N sites), which results in the mean first passage time for the interval length given. 
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In order to avoid divergences occurring in some parameter regimes, this disorder aver­
age is performed logarithmically:

T mfp=tmean exit ⇔ lnT mfp=〈 ln tmean exit〉conformations (3.57)
By varying the interval lengths ( x or n ) the transport laws for each type of environment 
are obtained:

T mfp∝x∝n (3.58)
The next question is, how the leaping and hopping transport exponents  and  depend 
on the length distribution index  and the waiting time power k .

3.5.1 Transport on the hopping environment: Simulations
In the hopping environment the transport exponent depends only on the ratio k / of both 
toy model parameters:

 ,k ={2 for k

1

1k


for k

1∣ (3.59)

If this ratio is below unity, transport on the hopping environment is diffusive and sub­
diffusive otherwise.

To get this result the mean first passage time T mfp has been measured on the hopping 
environment as a function of the interval length n . This function is a power-law for all 
combinations of  parameter values  and k (data not shown).  The corresponding trans­
port exponents  ,k  have been obtained by fitting a power-law to each function. Strik­
ingly, the hopping transport exponent does not depend on the waiting time power and 
the length distribution index separately, but only on their ratio. This fact is shown in 
the collapse plot of  Fig. 3.15, where the hopping transport exponent is plotted against 
this ratio: Although the exponent as a function of the waiting time power can be repres­
ented only by a set of curves, which is parametrized by the length distribution index, all 
the curves collapse to  one single curve if  the function variable ( k ) is  rescaled by the 
curve set parameter ( ) .
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Fig.  3.15: The hopping transport exponent, which relates mean first passage time and interval  
length to each other in the hopping environment of the toy model, depends only on the ratio of  
waiting time power and length distribution index: All curves, which are functions of the former  
and parametrized by the latter, collapse to one single curve when rescaled this way. For parameter  
ratios below unity, transport on the hopping environment is diffusive (orange region), and subdif­
fusive otherwise (yellow region).

3.5.2 Transport on the hopping environment: Theory
The first goal is to explain the observed scaling relation between the mean first passage 
time and the interval length for transport on the hopping environment of the toy model 
theoretically. To do so, one cannot simply make use of the Lévy and the fractional Fok­
ker-Planck formalisms, although the waiting times occurring during a random walk on 
the hopping environment are distributed according to a heavy-tailed power-law:

w≡∫
0

∞

j s ,  ds ∝ −1/k (3.60)

The transport law that would be obtained if the Lévy formalism was used in spite of the 
quenched disorder of the characteristic waiting times obviously does not correspond to 
the observations in the previous chapter:

T mfp
uncorrelated∝n2k / (3.61)

The reason is that the correlations between subsequently drawn waiting times, which 
result from this quenched disorder, are neglected illicitly by doing so.
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Although inappropriate here, the  Lévy formalism will become useful below when 
performing the disorder average on the hopping environment and finally when transfer­
ring these results  back to the leaping environment.  Nevertheless,  the formalism ad­
equate to accounting for the quenched disorder present in a single conformation of the 
hopping environment is the generic mean first passage time formalism, as described 
by Gardiner  [134]: Given an interval of length m containing m1 sites (0,1, ,m−1,m ) , 
the  boundary  sites  0  and m being absorbing  sites,  the  mean exit  time  for  a  nearest 
neighbor random walk starting from site m0 with fixed transition rates k j

+/- for hopping 
from site j to its neighbor sites j1 or j−1 , respectively, reads:

texitm ,m0 , { k j
+/- }=P exit

+ m0∑
i=m0

m−1

i∑
j=1

i 1
k j

+ j

[1−P exit
+ m0]∑

i=1

m0

i∑
j=i

m−1 1
k j

+ j
           (3.62)

The characteristic waiting time before a hopping event in the hopping environment of 
the toy model only depends on the walker position and not on the hopping direction. 
Therefore, both hopping rates belonging to a site are equal:

k j
+/-= 1

 j
(3.63)

This lack of directional bias leads to rather simple expressions for the products of hop­
ping rate ratios and the probability for being absorbed at the right boundary:

 j≡∏
i=1

j ki
-

ki
+=1, j∈{0,1, ... ,m−1} (3.64)

Pexit
+ m0≡

∑
j=0

m0−1

 j

∑
j=0

m−1
 j

=
m0

m (3.65)

Inserting these expressions simplifies the mean exit time formula considerably:

texitm ,m0 , { j }=
m0

m ∑i=m0

m−1

∑
j=1

i

 j1−m0

m ∑i=1

m0

∑
j=i

m−1
 j (3.66)

In order to compare to the simulation results one has to start each random walk from 
the center of the interval, which yields:

texitm ,m /2, { j }=
1
2[m2 ∑j=1

m−1
 j

m
2 m /2 ∑

j=1

m /2−1
j jm− j] (3.67)

As this expression shows, the mean exit time for escape from an interval with absorbing 
boundaries scales approximately with the number n=m−1 of the inner sites of the inter­
val multiplied by the sum of the site-specific characteristic waiting times:

texit∝n∑
j=1

n

 j (3.68)

Since the characteristic waiting times are independent random variables with known 
distribution (equation 3.60), this important relation is a valuable input for the calcula­
tion of the disorder average: A sum of random variables is a random variable in turn. If 
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the summands are independent and identically albeit broadly distributed random vari­
ables – as it is the case here, the distribution of their sum is calculable by applying the 
Lévy Khinchin theorem, which generalizes the central limit theorem for broad distribu­
tions.

Following these considerations, one has to define the so-called time sum Y as a new 
random variable representing the sum of the characteristic waiting times belonging to 
the set of sites of a particular escape interval within a particular conformation of the 
hopping environment:

Y≡∑
j=1

n

 j (3.69)

For k the waiting time distribution w is not broad and a mean waiting time, which 
equals the disorder average over all characteristic waiting times occurring in the entire 
set of environment conformations, exists:

=〈〉≡∫
0

∞

wd  ∞ (3.70)

Therefore, the disorder average of the time sum exists in turn:
Y ∝n  (3.71)

This results in diffusive scaling of the mean first passage time, which is the disorder av­
erage of the mean exit time:

T mfp≡t exit≡n Y ∝n2 for k (3.72)
Whereas in the previous parameter regime the disorder average of the mean exit time 
has been calculated straight-forward, one has to make use of the Lévy-Khinchin theor­
em for k , where the waiting time distribution is broad and accordingly has no mean. 
Therefore, the normal (non-logarithmic) disorder average of the time sum diverges in 
this regime, as well. However, a scaling relation between time sum and number of sum­
mands is obtained from the fact that the time sum is distributed according to a stable 
Lévy distribution [135][126]:

W Y ,n=n−1/L ,1 n
−1/Y  (3.73)

The divergent normal disorder average of the time sum can be replaced by its character­
istic value, which scales with the number of summands like the width of the stable Lévy 
distribution:

Y ∝n1/ (3.74)
The function L,1 in this distribution is defined for Lévy indices ≡/k≠1 by its Fourier 
transform (Since all summands in the time sum are positive, the bias index is 1) [125]:

L ,1=exp−∣q∣[1−itan2 sgn q] (3.75)

The scaling behavior of the time sum in the regime of diverging mean waiting time res­
ults in subdiffusive scaling of the mean first passage time:
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T mfp≡t exit≡n Y∝n1k / for k (3.76)
On the whole, the previous theoretical deduction confirms and explains the simulation 
results of chapter 3.5.1 qualitatively as well as quantitatively, so that the characteriza­
tion of transport on the hopping environment of the toy model is complete:

• The transport exponent is a function of the ratio of both parameters of the toy 
model there.

• There are two types of transport: diffusion for existing mean waiting time and 
subdiffusion for diverging mean waiting time.

As random walk islands have a waiting time power greater than their length distribu­
tion index,  transport on the hopping environment is subdiffusive if  this environment 
represents the island chain of a frozen random walk conformation. However, it is neces­
sary to prove that, if these islands are represented instead by the leaping environment 
with its site-surrounding regions spanning contour space, transport is diffusive – just 
like in the contour space of the original random walk conformation. For that purpose, 
the results obtained for the hopping environment will be used in the following in order 
to characterize transport on the leaping environment for the whole parameter space of 
the toy model.

3.5.3 Transport on the leaping environment: Theory
To  achieve  that,  a  scaling  relation  between  distances  on  the  hopping  environment, 
where the sites are mere points without surrounding regions, and distances on the leap­
ing environment, which represents contour-space correctly by assigning an algebraically 
distributed region length to each site, is needed.  Then, not only the influence the site-
specific characteristic waiting times have on transport is taken into account, but also 
the influence of the site-specific region lengths.
The distance covered in the leaping environment when n particular adjacent sites are 
crossed in the hopping environment is given by summing the region lengths of these 
sites:

X=∑
j=1

n

s j (3.77)

The question is how the characteristic value of this length sum, which results from a 
disorder average over many possible sets of region lengths, scales with the number of 
sites. Since the region lengths are independent and identically distributed random vari­
ables, the length sum X is a random variable whose distribution can be determined in 
turn.
If the length distribution index, which governs the exponent of the distribution of region 
lengths (cf. equation 3.52) is big enough (1 ) , a mean region length exists:

〈s〉≡∫
0

∞

 s sd s  ∞ (3.78)
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In this case, the characteristic length sum is simply proportional to the number of sum­
mands:

X=〈X 〉∝n (3.79)
However, if 1 , the distribution of region lengths is broad, which means that no mean 
region length exists. Then, the distribution of the length sum is – again according to the 
Lévy-Khinchin theorem – a stable Lévy distribution with Lévy index  and bias index 1:

W X ,n =n−1/L ,1 n
−1/X  (3.80)

In this case the characteristic length sum is proportional to the width of this stable Lévy 
distribution, which is a power of the number of summands:

X∝n1/ (3.81)
To visualize this, the distribution W X ,n of the total contour length X occupied by the 
site-surrounding regions of n adjacent sites in the leaping environment has been meas­
ured for several site numbers n in the regime of diverging mean region length (1 ) . 
Fig.  3.16 shows  such  sets  of  contour  length  distributions  obtained  for  two  different 
length distribution indices  .  The contour length distributions  collapse to an n -inde­
pendent function if rescaled by a power of the corresponding site number n . That means 
that the distribution width is proportional to that power. Therefore, this power meas­
ures the characteristic total contour length for the respective site number. As expected 
for a stable Lévy distribution, the power-law tail of the collapse function reflects the 
power-law of the region length distribution.

Fig. 3.16: The distributions W of the total contour length covered by a set of n adjacent sites in the 
leaping environment collapse to a function independent of the number of sites if rescaled by the 
corresponding  distribution widths.  For diverging mean length of  the  site-surrounding  regions
(1 ) this distribution width is a  -dependent power of the number of sites and measures the 

characteristic total contour length. In this case the collapse function is a stable Lévy distribution 
with a power-law tail determined by the length distribution index  .
To summarize results, the scaling relation between distances x on the leaping environ­
ment and distances n on the hopping environment is given by:

x∝{n1 / for 1
n for 1∣ (3.82)
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Inserting this into the transport law of the hopping environment (equations  3.72 and 
3.76) yields the transport law of the leaping environment and the leaping transport ex­
ponent  :

T mfp∝n ,k∝{x ,k for 1
x , k for 1}={x

2  superdiffusive for 1 ∧ k
xk superd., diff., subd. for 1 ∧ k
x2 diffusive for 1 ∧ k
x1k / subdiffusive for 1 ∧ k

}=x  ,k       

(3.83)
This mean first passage time scaling relation characterizes transport on the leaping en­
vironment of the toy model in the entire parameter space (see appendix B for a compar­
ison with uncorrelated continuous time random walks whose jump lengths and/or wait­
ing times have power-law distributions). Especially, it can be used to predict the scaling 
exponent  for  transport  in  the  contour  space  of  a  frozen  random walk  conformation, 
which is representable by a particular point of the parameter space of the toy model. 
The transport law of the leaping environment has been deduced theoretically from the 
transport behavior in the hopping environment, which is already known from simula­
tions that have been confirmed theoretically. However, before it can be applied to the 
random walk question, the transport law of the leaping environment has to be verified 
by toy model simulations in the relevant parameter regime.

3.5.4 Transport on the leaping environment: Simulations
To this end, 3000 conformations of the leaping environment of the toy model are gener­
ated, each with 10000 region-surrounded sites. The length distribution index  is set to 
0.7 (below 1!) in order to obtain a diverging mean region length when drawing the region 
lengths from their distribution, just like the mean island length diverges in frozen ran­
dom walk conformations. Within this regime, the waiting time power k , which relates 
the characteristic waiting time of an interval site to its region length, is varied over its 
entire domain in order to explore all sub-regimes. The mean first passage time for an in­
terval length x in contour space results from taking the exit time for one particular in­
terval with this length and performing a disorder average over 3000 such equally long 
intervals, one for each conformation of the leaping environment.

The results are shown in Fig. 3.17: For each combination of the two toy model para­
meters  and k the mean first passage time scales with contour length like a power-law. 
Moreover, the observed transport exponents follow the theoretical prediction concerning 
their dependence on  and k quantitatively:

T mfp∝{x2  for 1 ∧ k
xk for 1 ∧ k} (3.84)

As a consequence of this observation, transport on the leaping environment is superdif­
fusive for k2− , diffusive for  k=2− and subdiffusive for k2− as long as the mean 
length of the site-surrounding regions diverges.
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The numerical results in the regime of existing mean region length (1 ) , which is, 
however, irrelevant when studying transport on frozen random walk chains, confirm the 
theoretical results as well (data not shown).

Fig.  3.17: The disorder-averaged mean first passage time for escaping from an interval on the 
leaping environment of the toy model after having started from the interval center, plotted as a 
function of the contour length covered by the interval, is a power-law for each parameter combina­
tion. The length distribution index is chosen such that the mean length of the regions surrounding  
the interval sites diverges (=0.71) . For waiting time powers smaller than this value ( k ) the 
transport  law  is  independent  of  the  waiting  time  power  (independence  regime),  otherwise  the 
transport exponent is the sum of waiting time power and length distribution index (dependence 
regime).  The independence regime is purely superdiffusive (light green), the dependence regime  
consists of a superdiffusive regime (dark green) for k2− and a subdiffusive regime (yellow)  
for k2− . The orange line represents diffusive scaling (exponent 2).

3.5.5 Parameter space diagrams
Having now characterized both transport environments of the toy model entirely by nu­
merical as well as by theoretical studies, the results can be summarized with the help of 
two parameter space diagrams (the left part of  Fig. 3.18 for the hopping environment 
and the right part for the leaping environment).

In both the hopping and the leaping environment the transport exponent is inde­
pendent of the waiting time power if and only if the mean characteristic waiting time 
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exists, i.e. if the waiting time distribution is narrow and not broad. Therefore, this inde­
pendence regime is given for k , its counterpart, the dependence regime with broad 
waiting time distribution and diverging mean characteristic waiting time for k .

In the hopping environment, where there are no site-surrounding regions, only the 
shape of the waiting time distribution decides on the quality of transport: In the inde­
pendence regime, where the mean characteristic waiting time exists, transport is nor­
mal diffusive whereas in the dependence regime, where the mean characteristic waiting 
time diverges, it is subdiffusive.

In the leaping environment however, where the length distribution of the site-sur­
rounding regions plays an additional role, this subdivision into a normal diffusive and a 
subdiffusive  transport  regime for  existing and diverging mean characteristic  waiting 
times respectively is only valid for length distribution indices  greater than one: Then 
the region length distribution is narrow and a mean region length exists.

However, if the length distribution index is smaller than one, thus causing a broad 
region length distribution with diverging mean region length, transport on the leaping 
environment deviates substantially from transport on the hopping environment:

If – unlike the mean region length – the mean characteristic  waiting time exists
(1 ∧ k ) , transport is superdiffusive (with an transport exponent independent of 
k ) . If both the mean region length and the mean characteristic waiting time diverge
(1 ∧ k ) , the resulting regime, whose transport exponent is the sum of  and k , 
exhibits tripartite transport behavior, depending on the value of this sum: superdiffu­
sion for values smaller than two, quasi-diffusion for a value of two and subdiffusion for 
values greater than two. 

This manifests oneself in a thin separating line of quasi-diffusion in the parameter 
space diagram of the leaping environment, which originates from the spacious regime of 
normal diffusion. Whereas normal diffusive transport needs the existence of both the 
mean region length and the mean characteristic waiting time (1 ∧ k ) , quasi-dif­
fusive transport results from a subtle balance between the length distribution index and 
the waiting time power in a regime where both the mean region length and the mean 
characteristic waiting time diverge (1 ∧ k ) . 

This balance can be formulated generally as a so-called balance condition for quasi-
diffusive transport on environments consisting of concatenated but independent entities 
whose lengths are distributed according to a broad power-law (index  ) and whose trap­
ping times are proportional to a power of the corresponding lengths (exponent k ):

k=2 (3.85)
As the contour space of a frozen random walk chain conformation is an environment 
consisting of concatenated but independent entities,  namely the intersegment link is­
lands, whose lengths are distributed according to the broad power-law

 si∝si
−3/2 (3.86)

and whose trapping times are related to the corresponding lengths by 
i∝si

3/2 , (3.87)
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the balance condition is fulfilled for frozen random walk chains (=1 /2, k=3 /2 ) . Accord­
ingly, the theoretical results deduced with the help of the toy model predict that trans­
port on the contour space of frozen random walk chain conformations is quasi-diffusive.

Fig.  3.18:  Parameter  space  diagrams  for  the  hopping  (left)  and  and  the  leaping  environment  
(right)  of the toy model,  each spanned by the length distribution index  and the waiting time 
power k . Both diagrams are subdivided by the quality of transport: subdiffusion (yellow), diffu­
sion (orange) and superdiffusion (green). Depending on the quotient of the toy model parameters  
and thus on the existence of the mean characteristic waiting time, transport on the hopping envir­
onment is either normal diffusive ( k/1) or subdiffusive ( k/1) . In the leaping environment,  
this bipartite behavior is observed only for existing mean region length (1 ) . However, if the  
region length distribution is broad (1 ) , transport on the leaping environment is either super­
diffusive (k2 ) , quasi-diffusive (k=2 ) or subdiffusive (k2 ) .  The point  of parameter  
space representing transport on frozen random walk conformations (magenta) lies in the subdif­
fusive transport regime for the hopping environment and on the line of quasi-diffusion between the 
super- and subdiffusive regimes in the leaping environment. Therefore, diffusive transport in the  
contour space of frozen random walk conformations, as observed in simulations, can be explained  
theoretically with the help of the toy model.

3.6  Conclusion

Optimizing the time proteins need to find their specific binding sites on DNA chains is 
of central importance for the efficiency and performance of cellular functions. The inter­
play of protein sliding and protein intersegment transfer with simultaneous conforma­
tional changes of the DNA is of special interest in this optimization problem: 

Protein sliding is needed for thorough exploration of short intervals of the DNA con­
tour and eventually allows the protein to arrive at its target site. Protein intersegment 
transfer, on the other hand, denotes long-range jumps necessary for quickly changing 
between remote regions on the DNA contour. And finally, conformational changes of the 
DNA connect and disconnect such remote regions dynamically. Implementing the com­
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bination of these types of protein and DNA movement within a coarse-grained lattice 
model allows to study protein transport in contour space of a DNA chain varying its 
shape. 

This model can reproduce the known limits of protein transport behavior, which have 
already been studied numerically and theoretically [73]:

• Superdiffusion is observed for infinitely fast conformational changes of the DNA 
and caused by uncorrelated long jumps. This limit has been predicted using the 
Lévy-Khinchin theorem.

• By contrast,  without  conformational  changes  transport  is  purely  diffusive,  in 
spite of the long jumps. The postulated cause for this paradoxical behavior are 
strong geometrical correlations.

Beyond the reproduction of these limits, the model is also able to represent the interme­
diate transport regime in between, due to a freely adjustable rate for conformational 
changes.  Interestingly,  this  intermediate  regime  exhibits  a  dynamical  cross-over 
between superdiffusion for short times and diffusion for long times. 

In order to obtain a theoretical starting point to explain this cross-over, it is neces­
sary to develop a theory of diffusive protein transport in contour space of frozen DNA 
chains in spite of a broad jump length distribution and poissonian time steps. This the­
ory should verify Sokolov's postulate of geometrical correlations and explain the cause of 
their existence and their effect on transport in detail. This is the goal of these studies.

To this end, at first all relevant types of correlations that may occur in systems with 
broadly distributed jumps and poissonian time steps have been analyzed with respect to 
their ability to make transport diffusive. The results are as follows:

• Without  spatial  and  temporal  correlations  between  the  jumps  (annealed 
disorder), transport is superdiffusive and one obtains a Lévy-flight.

• Eliminating  all  spatial  correlations  but  keeping  the  temporal  correlations  by 
freezing the resulting intersegment linking pattern (quenched disorder without 
spatial correlations) still yields superdiffusive transport.

• By contrast, transport on frozen native intersegment linking patterns is diffusive, 
because all spatial correlations have been preserved (quenched disorder with spa­
tial correlations).

Therefore, frozenness alone is not sufficient for diffusive transport. In fact, one needs 
temporally invariant spatial correlations to observe diffusive transport in spite of long 
jumps. These can be identified with the strong geometrical correlations mentioned in 
Sokolov's postulate.

A further characterization of these geometrical correlations has been attempted by 
studying their order in terms of the number of participating intersegment links: It ex­
ceeds the order of  pair  correlations.  And due to the self-similar  nature  of  native in­
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tersegment linking patterns probably all orders contribute to the correlations necessary 
for diffusive transport.

However, the geometrical correlations manifest themselves in another feature, which 
can be characterized more easily: They cause the formation of separate and independent 
islands in the intersegment linking pattern of frozen chain conformations. These islands 
have interesting properties:

• As they consist of intersegment links arranged in a self-similar way, their length 
distribution in contour space equals the length distribution of intersegment links. 

• The disorder-averaged mean time needed for symmetric escape from the contour 
space interval covered by an island scales superdiffusively with the island length.

• The exact position of the protein within an island plays only a negligible role, 
since the intersegment linking pattern the island consists of quickly delocalizes 
the protein over the entire island range.

All these facts allow to coarse-grain islands as black-box entities without internal struc­
ture and in turn frozen DNA conformations as chain of  such entities.  Each entity is 
defined by its length and its intrinsic trapping time only. The lengths of the entities rep­
resenting islands are distributed according to the measured island length distribution, 
their trapping times are calculated from the corresponding lengths by making use of the 
measured transport law for symmetric escape from islands.

In order to study transport on chains of independent black-box entities with freely 
adjustable length distribution and escape time scaling law in general, a toy model has 
been created. This toy model is especially able to represent chains of islands, i.e. the 
random walk chains frozen DNA molecules are modeled by. The numerical and theoret­
ical characterization of transport on this toy model allows the following conclusions con­
cerning transport on frozen DNA conformations:

• Diffusion in the contour space of frozen DNA conformations is not normal, but in 
fact a kind of quasi-diffusion, which is rendered possible by the existence of is­
lands.

• The particular shapes of island length distribution and island escape time scaling 
law together are necessary conditions for this subtle balance between super- and 
subdiffusion.

Therefore, the goal to establish a theory of diffusive transport on frozen DNA conforma­
tions which verifies Sokolov's postulate has been accomplished:

The intersegment linking pattern of any DNA conformation (i.e.  a native pattern) 
contains strong geometrical correlations in all orders of link-tupels. If the conformation 
is frozen, these correlations of the linking pattern are preserved. They manifest them­
selves in the formation of separate islands,  which form a chain covering the contour 
space of the conformation. The local length and escape time properties of these islands 
create a subtle balance which makes next-neighbor transport on the island chain quasi-
diffusive.
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The dynamical cross-over between superdiffusive transport for short times and dif­
fusive transport for long times then can be explained as follows: The faster the DNA 
conformation changes with respect to the protein's motility, the faster the strong geo­
metrical correlations in the intersegment linking pattern are destroyed and the faster 
islands change their size, shift, split, merge or even appear and disappear and the larger 
– as a consequence – the superdiffusive regime of uncorrelated protein jumps becomes.





Appendix A: Brownian dynamics algorithm

The new position (time t t ) of each of the N beads the RNA model chain consists of is 
calculated from the corresponding old position at time  t by using the forward Euler-
Maruyama integration method:

rktt =rkt 
t
k
F totalk r1t ,r2 t , ,rN t 2kT t

k
k t  for 1kN (A.1)

Thermal  fluctuations  are  included  by  the  random  vectors kt  ,  whose  components, 
which are uncorrelated and obey a normal distribution with zero mean and unity vari­
ance, are calculated from random variables X k  uniformly distributed over the unit in­
terval by using the Box Muller method:

kt =−2 ln1−X kt sin 2X kt  (A.2)
The total conservative force consists of forces calculated from potentials by differenti­
ation:

F totalk=F poreF bondF LJF torsionF bendingF tilt k (A.3)
The resulting contributions to the conservative force will be enlisted in what follows:

• Every bead of the RNA model chain interacts with the barrier and the drift chan­
nel of the pore:

F porek≡−∇k U pore=−
Ebarrier

dpore
2 [rkx exrky ey ]exp−rk x

2rky
2

2dpore
2 exp− rkz

2

2lpore
2 


Ebarrier

lpore
2 rkz ez[1−exp−rk x

2rky
2

2dpore
2 ]exp− rkz

2

2lpore
2 

−
Edrift

lpore
ez cosh−2 2rkz

l pore 
(A.4)

• Beads adjacent along the chain backbone interact by harmonic forces:
F bondk≡−∇k U bond=1kN−1 K bond rk ,k1−r0  rk, k1

−2kN K bondrk−1,k−r0 rk−1, k
(A.5)

• The shape of the binding interaction within an arbitrary pair of bases depends on 
the compatibility of the bases:
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F LJk≡−∇k U LJ= ∑
j=k1

N

rkj
∂
∂ rkj

[ckjLJ
comprkj1−ckjLJ

incomprkj]

−∑
i=1

k−1−

rik
∂
∂r ik

[cikLJ
comp rik1−cikLJ

incomprik]
(A.6)

Binding  interactions  between  two  compatible  bases  are  mediated  by  
Lennard-Jones forces for all distances: 

∂
∂r
LJ

compr =
12 E LJ

R [ R
r 

13

−Rr 
7] (A.7)

Binding forces between two incompatible bases become harmonic for small  
distances, where the interaction is already repulsive:

∂
∂r
LJ

incomp r={12ELJ
incomp

R [ R
r 

13

−Rr 
7] for   r≥R

2

2arb for   0≤rR
2
} (A.8)

• Torsion forces involve angular interaction between two strong base-pairs, which 
causes two pairs of sums, each containing products of two binding functions:

F torsion k≈ ∑
j=k3

N
Dk [H k

j Hk1
j−1 U torsion

kj ] ∑
i=1

k−3−
Dk [H i

k H i1
k−1 U torsion

ik ]

 ∑
j=k2

N
Dk[H k−1

j H k
j−1U torsion

k−1, j ] ∑
i=1

k−2−
Dk [H i

k1 H i1
k U torsion

i , k1 ]
(A.9)

• Bending and inclination forces involve angular interaction between three strong 
base-pairs, which causes three pairs of sums, each containing products of three 
binding functions:
F bendingF tiltk≈

∑
j=k5

N
Dk [H k

j H k1
j−1 H k2
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kj U tilt
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ik U tilt
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(A.10)
Due to the product-type structure of the angular potentials (torsion, bending and inclin­
ation potential) force calculation by numerical differentiation is – from a computational 
perspective – much more efficient than analytical differentiation. Therefore all angular 
forces are obtained applying the difference quotient operator instead of the nabla oper­
ator:

Dk [ f rk ]=
1

hdiff
∑
=1

3
e[f rk

hdiff

2
e−f rk−

hdiff

2
e] with hdiff

r0
=10−2≪1             (A.11)

All other conservative forces are calculated by analytical differentiation.
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There are two types of CTRWs: CTRWs whose jump lengths are correlated with the cor­
responding waiting times (inter-correlated CTRWs), and CTRWs without such length-
time correlations (normal CTRWs). The latter type is intensively treated in [135], which 
shall be summarized here in order to understand the special properties of the inter-cor­
related CTRW's playing an important role in this dissertation.

Regardless  of  its type,  a CTRW is characterized by the joint distribution of jump 
length and waiting time (joint jump distribution):

jx ,t  (B.1)
Integrating over all waiting times yields the jump length distribution:

x=∫
0

∞

d t j x ,t (B.2)

Integrating over all jump lengths yields the waiting time distribution:

wt =∫
−∞

∞

d x j x ,t (B.3)

The Fourier-Laplace transform of the walker probability density function W x ,t  (walker 
PDF) can be calculated from the Laplace transform of the waiting time distribution and 
the Fourier-Laplace transform of the joint jump distribution [136]:

W F , Lk ,u=
1−wLu 

u
1

1− jF ,L k,u  (B.4)

In some cases the walker PDF is the solution of a differential equation containing frac­
tional derivatives, a so-called fractional diffusion equation. Temporal fractional derivat­
ives are expressed by the Riemann-Liouville fractional operator,

0 D t
1−= ∂

∂ t 0 Dt
− for 01 (B.5)

spatial ones by the Weyl fractional operator:

−∞D x
={ ∂∂x −∞D x

−1 for 01

∂2

∂x 2 −∞D x
−2 for 12} (B.6)
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Both operators are defined via the Riemann-Liouville fractional integral [137][138][139]
[140][141]:

y0
Dy
− f y = 1

∫y 0

y

d y ' f y' 
y−y' 1−

for Re 0 (B.7)

B.1. Normal diffusion

A jump length distribution which is narrow (i. e. whose second moment exists) and its 
Fourier transform:

x =42−1/2
exp −x2 /42 F k ~1−2 k2 (B.8)

A waiting time distribution which is narrow (i. e. whose first moment exists) and its 
Laplace transform:

wt =−1 exp −t / wLu~1−u (B.9)
The resulting walker probability density function – a Gaussian, its likewise Gaussian-
shaped Fourier transform and its Fourier-Laplace transform:

W x ,t = 1
42/t

exp− x 2

4 2/t  (B.10)

W F k ,t=exp [−2/k2 t ] W F ,L k ,u= u−1

12 /u−1 k2 (B.11)

The walker probability density function solves the diffusion equation, which is a con­
sequence of the central limit theorem [142][126][130]:

∂
∂ t

W x ,t=2 / ∂
2

∂ x2 W x ,t (B.12)

The characteristic length scale of the walker PDF grows normal diffusively:
x char t~t1/2 (B.13)

B.2. Long rests: subdiffusion

Again the narrow jump length distribution and its Fourier transform:

x =42−1/2
exp−x2 /4 2 F k ~1− 2 k2 (B.14)

Now a waiting time distribution  which is  broad  (i.  e.  which lacks  its  first  moment:
01 ) and its Laplace transform [143][144][145]:

wt ~A
−1t /−1 wLu~1−u (B.15)

The resulting walker probability density function, which is a Fox H-function [146][147]
[148][149][150][151],  its  Fourier  transform,  which  is  a  Mittag-Leffler  function  [152]
[153], and its Fourier-Laplace transform:
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W x ,t = 1
42/ t

H 1,2
2,0− x2

42 /t [1−/2 
0,1 1/2 ,1] (B.16)

W F k ,t=E [−2/k2 t ] W F ,L k ,u= u−1

12 /u− k2 (B.17)

The walker probability density function solves a fractional diffusion equation containing 
the Riemann-Liouville operator:

∂
∂ t

W x ,t =2 / 0 Dt
1− ∂2

∂x2 W x ,t  (B.18)

The characteristic length scale of the walker PDF grows subdiffusively:
x char t~t /2 (B.19)

B.3. Long jumps: Lévy flights

A jump length distribution which is broad (i. e. which lacks its second moment: 02 ) 
and its Fourier transform:

x ~A
−1∣x /∣−1 F k ~1−∣k∣ (B.20)

A narrow waiting time distribution and its Laplace transform:
wt =−1 exp −t / wLu~1−u (B.21)

The resulting Fox-type walker probability density function  [154][155],  its exponential 
Fourier transform and its Fourier-Laplace transform:

W x ,t = 1
∣x∣

H 2,2
1,1− ∣x∣

[/t ]1/[1,1/ 1,1 /2
1,1 1 ,1 /2] (B.22)

W F k ,t=exp [− /t∣k∣ ] W F ,L k ,u= u−1

1 /u−1∣k∣
(B.23)

The walker probability density function solves a fractional diffusion equation containing 
the Weyl operator [156][157]:

∂
∂ t

W x ,t = / −∞Dx
W x ,t  (B.24)

The characteristic length scale of the walker PDF grows superdiffusively:
x char t~t1/ (B.25)

B.4. Competition between long rests and long jumps

A broad (02) jump length distribution and its Fourier transform:
x ~A

−1∣x /∣−1 F k ~1−∣k∣ (B.26)
A broad (01) waiting time distribution and its Laplace transform:



120    Appendix B:Fractional calculus and CTRWs

wt ~A
−1t /−1 wLu~1−u (B.27)

The resulting Fourier-Laplace transform of the walker probability density function:

W F ,L k ,u= u−1

1 /u−∣k∣ (B.28)

The walker probability density function solves a fractional diffusion equation containing 
both the Riemann-Liouville operator and the Weyl operator:

∂
∂ t

W x ,t =/ 0 Dt
1−

−∞Dx
W x ,t (B.29)

The  characteristic  length  scale  of  the  walker  PDF  can  grow  subdiffusively (2 ) , 
quasi-diffusively (2= )  or superdiffusively (2 ) :

x char t~t / (B.30)

B.5. Competition in inter-correlated CTRWs

In the idealized cases seen up to now (normal CTRWs), the joint jump distribution fac­
torized:

jx ,t =x wt  (B.31)
However, if waiting time correlates with jump length (inter-correlated CTRWs), as in 
the present work,  where the walker explores a frozen intersegment link pattern,  the 
competition between long rests and long jumps cannot be described by the use of frac­
tional diffusion equations. In this quenched case the joint jump distribution reads:

jx ,t ∝x−1t−xk  (B.32)
Integration yields the jump length distribution, which looses its first moment for 1 ,

x ∝x−1 (B.33)
and the waiting time distribution, which is broad for k :

wt ∝t−1 /k (B.34)
Since random walks on frozen intersegment link patterns are not only inter-correlated 
(i. e. jump length and waiting time within one jump are not independent) but also geo­
metrically correlated (resulting in successive jump lengths which are not independent), 
it is clear that the fractional diffusion approach must fail. Nevertheless, there is again a 
competition between long rests and long jumps which exhibits tripartite transport beha­
vior, however in a manner very different from the uncorrelated competition in normal 
CTRWs: subdiffusion (k2 ) , quasi-diffusion (k=2 )  or superdiffusion (k2 ) :

tchar x ∝xk (B.35)
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DNA-binding proteins find their targets by a combination of 3D diffusion in solution, 1D diffusion
along the DNA, and “jumping” between sites distant along the DNA contour but close in 3D
space. Depending on the timescale of the protein jumps relative to the equilibration time of the
DNA contour, the search dynamics is qualitatively affected by temporal and spatial correlations
in the jumps. We characterize these correlations, their effect, and their breakdown using a target
search model with explicit DNA dynamics. In particular, we rationalize the previously described
paradoxical quasi-diffusive transport regime as a subtle compensation between long jumps and long
trapping times of the protein in “islands” within the random configurations of polymers in solution.

PACS numbers: 123

The quantitative characteristics of proteins searching
for their specific target sites on long DNA molecules has
become a paradigmatic question of biological physics [1–
6]. The question is of considerable biological interest,
since search processes of this type are key steps in cellu-
lar functions. For instance, in signal transduction, a pro-
tein belonging to the large class of transcription factors
conveys an external signal and triggers the appropriate
genetic response by binding to specific operator sites on
the genomic DNA. Similarly, restriction enzymes, used
by bacteria to fight invading viruses, search for cleavage
sites marked by specific DNA sequences. It is generally
assumed that the target search mechanism has been op-
timized by evolution, due to a significant selective pres-
sure for fast signaling and rapid responses in competitive
environments. From the physics perspective, the protein-
DNA target search is a complex but tractable stochastic
process that combines basic aspects of Brownian motion,
polymer physics, and information theory [7–17]. Experi-
mentally, the search process can be probed on the single-
molecule level in vitro [18], and even in vivo [19].

Early in vitro experiments [2] indicated that the as-
sociation rate of lac repressor to its specific binding site
embedded in short pieces of DNA is faster than the dif-
fusion limit, ka = 4πDb, for a direct binding reaction (D
denotes the diffusion constant of the protein in solution
and b the reaction radius for protein-DNA binding). In-
spired by Adam and Delbrück’s idea that reduction of
dimensionality is a generic way to enhance reaction rates
[20], Richter and Eigen [3] interpreted these experiments
with a two-step mechanism where three-dimensional (3D)
diffusion and non-specific association to DNA (idealized
as a cylinder) is followed by one-dimensional (1D) diffu-
sive sliding into the target site. In a seminal series of
papers [4–6], Berg, Winter, and von Hippel then estab-
lished much of what is known today about the protein-
DNA search kinetics. Experimentally, they varied the
strength of non-specific binding via the ion concentra-

tion, clearly identifying an optimum where association
to the specific target site is fastest. Theoretically, their
analysis within the framework of physical chemistry ex-
plained the observed dependence.

Recent work reformulated the problem using the the-
ory of stochastic processes [10–13, 17], which led to a
number of further insights. For instance, the existence
of the optimum reflects a generic tradeoff in search pro-
cesses for hidden targets [21]: A stochastic local search
is exhaustive but redundant; interrupting the search by
phases of rapid movement to new territory is a time in-
vestment that pays off by significantly reducing the re-
dundancy. The optimal fraction of time spent in each
of the two “modes” depends on the statistical charac-
teristics of the search mechanism. The simplest scenario,
where proteins slide diffusively along the DNA, dissociate
spontaneously, and then randomly reattach at an uncor-
related position, leads to an optimal non-specific binding
strength such that, on average, only half of the proteins
are bound somewhere on the DNA and the other half is
free in solution [6]. Physically, this optimality condition
is best understood [11] in terms of the typical dwell times
of a protein in the sliding mode, τs, and in the dissoci-
ated state, τd. The latter should be regarded as a fixed
parameter, set by the size and composition of the cells,
whereas τs can easily be adapted by molecular evolution
of the DNA-binding domain of the protein (to adjust the
non-specific affinity). If τs < τd, the protein spends too

1D diffusion

DNA dynamics
“Jumping” at 

transient loops

FIG. 1: Illustration of the target search by sliding (1D diffu-
sion) and jumping on a dynamic polymer.
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little time searching, while if τs > τd, the search is too
redundant; the mean search time is minimal when they
are equal.

However, in bacterial cells, well studied transcription
factors are bound to the genome & 90% of the time [7].
This fact has drawn attention to the ‘intersegment trans-
fer’ [4, 13, 15, 17] of a protein within the same DNA
molecule, between sites close in space but distant along
the contour. Potentially, this process can destroy the
redundancy of the 1D search without the price of in-
terrupting it by long excursions into the solvent. The
term intersegment transfer was introduced for proteins
with two DNA-binding domains and refers to a process
during which the protein never detaches from the DNA
molecule; a similar transfer but with a brief period in
an unbound state is referred to as ‘hopping’ [4]. In both
cases, the essential difference to the uncorrelated random
reattachment discussed above is the correlated nature of
the process: Transfer does not occur with equal probabil-
ity to every site on the DNA, but to “linked” sites. Here,
we simply refer to both processes as ‘jumping’.

As illustrated in Fig. 1, the interplay of protein slid-
ing and jumping leads to intricate search dynamics. No-
tably, the physics of this interplay depends crucially on
the dynamics of the DNA, which has so far never been
considered explicitly. An elegant analytical study [13]
considered the effect of long-range jumps on the level of
the fractional Fokker-Planck equation [22]. However, by
design this framework assumes that consecutive jumps
are uncorrelated, i.e. that the DNA configuration com-
pletely randomizes between two jumps of the protein. In
contrast, a numerical study of sliding and jumping on
a random but frozen contour [23] showed that the cor-
relations between jumps drastically alter the dynamics,
leading to “paradoxical” quasi-diffusive behavior instead
of super-diffusion along the contour. These findings, and
the fact that the dynamics of real DNA is neither frozen
nor annealed over the relevant range of µs to s timescales
[6], calls for an analysis of target search on a dynamic
DNA.

Here, we study the crossover between the two regimes
and clarify the mechanism whereby correlated jumps cre-
ate the paradoxical behavior. We take the dynamics of
the polymer and the TF into account and explicitly show
the crossover from the search on annealed to the search on
quenched polymer configurations. We study the search
dynamics of a TF on a frozen polymer chain in detail and
show that the quasi-diffusive behavior is due to a compe-
tition between long sojourn times in some stretches of the
polymer, interspersed by long jumps. The long waiting
times are caused by a hierarchical organization of possi-
ble jumps, causing a maze from which the TF takes long
to escape.

Model.— To make the problem tractable, we describe
the DNA contour as a path of L segments on a simple
cubic lattice, and generate its conformational dynamics
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FIG. 2: The width Λ of the protein distribution as a function
of time for different kinetic ratios k = kD/kp (chain length
L = 5000; for each ratio, 103 − 104 simulation runs were
performed, each with a different initial DNA configuration).
In the annealed limit, the DNA dynamics is not simulated
explicitly, but instead after each jump of the protein, a new
link set is randomly drawn. For finite k, a crossover from
super-diffusive dynamics to quasi-diffusive dynamics is clearly
visible.

with a kinetic Monte Carlo scheme. The scheme is based
on a generalized Verdier-Stockmayer move set [24] with
moves for kinks, chain ends, and crankshafts, as illus-
trated in Fig. S1. These moves, carried out at the rate kD,
implement Rouse dynamics on a lattice for an ideal chain
(no self-avoidance). We describe a protein as a point par-
ticle on the lattice, which diffuses along the DNA contour
at rate kp. If another DNA segment passes through the
same point, the protein can randomly jump to it (at the
same rate kp, for simplicity). As initial condition, we
use a random DNA configuration with the protein on
the central segment. Of course, the configuration of the
DNA inside a bacterial cell is far from random, due to
genome packaging and confinement, but a random con-
figuration is an interesting starting point for exploration
of the physical principles, and mimics the situation of in
vitro experiments.

Simulation results.— To characterize how a protein ex-
plores the search space, we study the time evolution of
its probability distribution P (s, t) along the DNA con-
tour (0 ≤ s ≤ L). Fig. 2 plots the width Λ(t), defined
as the interquartile range [23] of P (s, t), for different ki-
netic ratios k = kD/kp. Here, P (s, t) is obtained by
averaging over many trajectories and initial DNA config-
urations with L = 5000, see caption. In the ‘quenched
limit’ k → 0 (squares), the protein moves on a frozen
contour, and the width grows quasi-diffusively with time,
Λ ∼ t1/2, despite the long-range jumps along the contour
and a heavy tail of the distribution P (s, t) at a fixed time
[23]. In the opposite ‘annealed limit’ k → ∞ (crosses),
the distribution initially spreads super-diffusively along
the contour, Λ ∼ tα (here: α ≈ 1.7). The width saturates
at Λ → L/2 as the protein explores the entire DNA. In
the regime of intermediate k, which is relevant in most
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experimental situations, Λ(t) displays a crossover from
super- to quasi-diffusive scaling. The curves for different
k show that the crossover timescale τc increases with k.

Annealed limit.— For large k, the connectivity of the
DNA meshwork on which the protein moves changes
rapidly, such that successive protein jumps are uncor-
related, since they occur on a different set of links. It
is then sufficient to describe the dynamics by the aver-
age jump probability P (s, s′) from site s to site s′, which
is physically determined by the DNA looping probabil-
ity. For a random ideal chain, this probability decays
as |s − s′|−3/2 for large loops, before it is cut off by the
finite DNA length. When successive jump lengths are
independently drawn from this distribution, the typical
distance Λ from the initial position is dominated by the
largest jump, which grows with the number of jumps (and
the time t) as Λ(t) ∼ t2 [25]. Indeed, our numerical ex-
ponent α defined above approaches 2 at large L (data
not shown). What is the effect of this super-diffusive
exploration of the DNA contour on the target search?
Clearly, without a guiding “funnel”, no search process
can be faster than linear exploration, i.e. faster than lin-
ear spreading along the DNA leads to “sloppy search”
[13] where typically patches distributed over the entire
contour are explored before the target is located. This
implies that in the annealed limit, the jumping process
efficiently destroys the redundancy of simple 1D diffu-
sion, even without interrupting the search by phases of
3D diffusion.

Crossover timescale.— The crossover between super-
diffusive and quasi-diffusive dynamics is associated with
a timescale that is characteristic for the interplay of the
DNA dynamics with that of the protein. A simple scaling
argument captures much of the physics of this interplay:
The Rouse dynamics equilibrates a DNA contour seg-
ment of length ` on a time scale τ ∼ `2. Within a time
τ after a protein docks onto the DNA and starts explor-
ing, it will typically visit a DNA stretch of size Λ(τ).
During this time, a DNA segment of size ` ∼ (kDτ)1/2

equilibrates. Superdiffusive protein dynamics results as
long as Λ(τ) < `, however the fast growing Λ(t) ∼ (kpt)α

quickly outruns the “equilibration blob”, and the passing
point marks the crossover to the quasi-diffusive regime.
With α = 2, this crossover timescale tc then depends
on the kinetic ratio k as kptc ∼ k1/3. Our simulations
cannot explore a wide range of k values due to computa-
tional cost, and hence do not allow a precise numerical
determination of this scaling. However, the scaling expo-
nent that best describes our limited data deviates only
by 0.08 from the expected value 1/3 (see Fig. S2).

Quenched limit.— Ironically, the seemingly simple,
quasi-diffusive scaling at k = 0 is theoretically the most
challenging phenomenon. When first reported [23], it
was described as arising from geometrical correlations.
However, the question remains what the nature of these
correlations is and how they render the long-range jump-

FIG. 3: Link diagrams originating from random DNA con-
formations are separable into islands (A, top). Transport on
such link diagrams is quasi-diffusive due to strong geomet-
rical correlations. Destroying all correlations by reshuffling
links destroys islands (A, bottom). Dynamical phase diagram
(B) of our transport model, which explains the quasi-diffusive
protein dynamics by a cancellation of the effect of traps and
long-range jumps.

ing process quasi-diffusive. To address this question, our
first step is to distinguish between two types of correla-
tions, which we refer to as temporal and spatial. Neither
type can be included in a fractional Fokker-Planck de-
scription. Temporal correlations arise given any static
set of links, where proteins can jump back and forth be-
tween distant parts of the polymer by using the same
link multiple times. Additionally, the positions of differ-
ent links are spatially correlated, since an existing link
strongly enhances the probability to find another link
nearby (e.g. a loop in the DNA favors further contacts
within the loop).

To clearly separate the effect of temporal and spatial
correlations, we can destroy the latter by choosing a new
random starting point for each link while conserving its
arc length |s− s′|. The protein dynamics on such reshuf-
fled link sets is super-diffusive as revealed by simulations
shown in Fig. S3. Hence temporal correlations alone are
not sufficient to cause the quasi-diffusive behavior. A
simple argument makes this observation plausible: If the
region visited by the protein grows super-diffusively as
Λ(t) ∼ t2, the protein visits only a fraction ∼ 1/t of
the sites within Λ. Since it sees each site O(1) times, it
mostly uses novel links and temporal correlations become
unimportant.

Islands.— A striking consequence of the spatial corre-
lations is revealed in Fig. 3A, where all links in a typical
DNA configuration are depicted as arcs. The arcs clus-
ter into “islands” with many internal links but no links
between islands. These islands disappear when the same
links are randomly placed on the DNA. Intuitively, it is
clear that the existence of islands slows the exploration
of the DNA, since the protein can move from one island
to another only by sliding. In fact, if the islands had a
well-defined typical size s, the protein dynamics would
be diffusive on long scales s� s. However, the problem
is more intricate, since the distribution of island sizes
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has the same heavy tail p(s) ∼ s−3/2 as the link length
distribution, see Fig. S4. Nevertheless, the existence of
islands is a crucial clue; we show below that it leads to a
dynamics that can be described by a 1D transport model
with traps and long-distance jumps. To this end, we first
note two essential transport properties of islands: (i) Due
to the internal links, the position of a protein is rapidly
randomized within an island, such that for most starting
positions within an island, it leaves the island with nearly
the same probability to each side, see Fig. S5. (ii) The
typical trapping time within an island scales as τ ∼ s3/2
with the island size, see Fig. S6.

Given these properties, we now consider protein trans-
port on an array of islands with sizes si drawn from the
distribution p(s). Each island has an associated trapping
time τi(si). It will be instructive to allow for adjustable
exponents µ and κ in the scaling behavior,

p(s) ∼ s−1−µ and τ ∼ sκ . (1)

Combining these relations, we obtain a distribution of
trapping times

w(τ) ∼ τ−1−µ/κ , (2)

since w(τ)dτ = p(s)ds. The transport behavior of the
protein in the space of islands is then entirely determined
by the ratio of the two exponents: Using the first passage
time calculus [26], the typical time needed to move over
n islands is

T ∼ n
n∑
i=1

τi ∼
{
n1+ κ

µ for κ > µ
n2 for κ < µ

, (3)

where the sum is dominated by the largest term for the
case κ > µ (leading to sub-diffusive dynamics in island
space) while a typical trapping time exists for κ < µ (dif-
fusive dynamics in island space). To map the dynamics
in island space back onto the DNA, we note that the total
DNA length S of n islands scales as

S(n) ∼
{
n1/µ for µ < 1
n for µ > 1

, (4)

where the S is dominated by the largest island for µ < 1.
Combining (3) and (4) yields the transport behavior
along the DNA, i.e. the typical time to travel a given dis-
tance. Fig. 3B shows the phase diagram spanned by the
exponents µ and κ. It exhibits four different regimes. For
µ > 1, the distribution of island sizes has a well defined
mean and no super-diffusion can occur, but sub-diffusive
dynamics results when the trapping time distribution has
a sufficiently heavy tail (µ < κ). If µ < 1, the dynam-
ics is super-diffusive unless long trapping times in islands
compensate for long jumps. In particular, t ∼ sκ+µ for
µ < κ, which includes the case of interest here, where
the two exponents precisely add up to 2, explaining the
quasi-diffusive dynamics in the quenched limit. Within

our more general island model, a whole line of points
exists where the dynamics is quasi-diffusive.

Discussion.— We found that protein jumping (includ-
ing intersegment transfer) is an effective mechanism to
destroy the redundancy of a diffusive 1D search only if
the DNA dynamics is sufficiently fast (compared to the
timescale between consecutive protein jumps). We have
characterized the crossover from annealed to quenched
DNA dynamics. Furthermore, we have explained the
paradoxical quasi-diffusive dynamics in the quenched
limit [23] as a subtle cancellation of the effect of traps
and long-distance jumps in a random DNA configuration.
An interplay between traps and jumps in 1D transport
has been studied before in statistical models [27]. Here,
we have identified a physical system where such an inter-
play occurs naturally, and surprisingly is self-tuned to a
critical point of the dynamical phase diagram.
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