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I EINLEITUNG 

Die meisten chirurgischen Eingriffe beim Kalb werden in Allgemeinanästhesie 

durchgeführt, auch wenn es bei bestimmten Indikationen möglich wäre, die Tiere 

ausgebunden, unter Sedation und Lokalanästhesie, zu operieren. Bis jetzt existiert 

jedoch weder bei Mensch noch Tier ein „Goldstandard“ zur Bestimmung der 

Narkosetiefe. Dennoch ist es für den Anästhesisten wichtig, einerseits zu flache 

Narkosen zu vermeiden, da sie das Risiko intraoperativer Wachheit mit 

Schmerzwahrnehmung bergen. Andererseits führen zu tiefe Narkosen zu einer 

unnötig hohen Belastung des Körpers und zur Verlängerung der Aufwachzeiten. 

Da der Bedarf an Anästhetikum von Tier zu Tier sehr unterschiedlich sein kann, 

wird eine individuelle Dosierung angestrebt, um stets eine optimale Narkosetiefe 

zu erreichen. Als Orientierungshilfe gelten hier klinische Parameter, welche 

jedoch lediglich ein Nachregulieren der Narkosetiefe anhand bereits eingetretener 

Reaktionen ermöglichen. Zudem können nur sensorische, motorische und 

vegetative Komponenten der Narkose erfasst werden, der hypnotische Anteil 

bleibt unberücksichtigt. Erst mit der Einführung des Elektroenzephalogramms 

(EEG) in die Narkoseüberwachung konnte dieser mit einbezogen werden. Die 

Auswertung des EEGs während der Narkose ist jedoch sehr zeitintensiv und 

erfordert viel Erfahrung. Die Entwicklung von computergestützten EEG-

Monitoren erwies sich als großer Fortschritt, da sie die Überwachung für den 

Anästhesisten deutlich vereinfachen. Dieser erhält die berechneten Werte zeitnah, 

was ein schnelles Handeln ermöglicht. Hier gibt es verschiedene Monitore, die in 

der Humanmedizin zunehmend eingesetzt werden, darunter auch den 

Narcotrendmonitor, welcher bereits in vielen Studien erfolgreich zu einer 

Verbesserung der Narkosesteuerung beitragen konnte (WILHELM et al., 2002; 

SCHULTZ et al., 2006; WILLIG et al., 2010). Zusätzlich lässt sich durch ein 

EEG-Monitoring auch das Risiko einer intraoperativen Wachheit reduzieren 

(SCHULZE et al., 2004). In der Veterinärmedizin wurde dieses Gerät bereits bei 

Hunden eingesetzt. Hier konnte der Narcotrendindex zwischen adäquater und zu 

tiefer Narkose unterscheiden (TÜNSMEYER, 2007). 

In der vorliegenden Studie soll die Einsatzmöglichkeit des Narcotrendmonitors für 

die Narkoseüberwachung beim Kalb überprüft werden. Hierfür wird das 
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Standardnarkoseregime der Klinik für Wiederkäuer, eine kombinierte Injektions-

Inhalationsnarkose, beibehalten. Als Vergleichswert für den Narcotrendindex 

dient eine auf klinischen Parametern basierende Einteilung in Narkosestadien. Für 

die Durchführung der Studie wird das Patientengut der Klinik verwendet. 
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II LITERATURÜBERSICHT 

1 Elektroenzephalogramm 

1.1 Geschichtlicher Hintergrund 

Die ersten Untersuchungen, die sich mit bioelektrischen Aktivitäten am tierischen 

Hirn befassten, waren von Richard Caton durchgeführt worden. Er stellte seine 

Experimente, die er an Kaninchen- und Affengehirnen gemacht hatte, 1875 in 

Edinburgh vor. Mit einem Galvanometer hatte er elektrische Ströme in der grauen 

Substanz nachweisen können. Diese zeigten sich als elektronegative Schwankung 

bei Kopfdrehungen und Kaubewegungen, also Reizen aus der Peripherie 

(CATON, 1875). Anfang des folgenden Jahrhunderts begann Práwdicz-Neminski 

mit seinen Versuchen an Hunden. Seine direkten Ableitungen vom Schädel-

knochen, der Hirnhaut und der Hirnrinde teilte er in sieben Wellentypen ein 

(PRÁWDICZ-NEMINSKI, 1925). 

1924 gelang es dem Psychiater Hans Berger, die ersten Hirnstrombilder von der 

unversehrten Kopfhaut des Menschen abzuleiten, jedoch veröffentlichte er dies 

erst fünf Jahre später in seinem ersten Artikel „Über das Elektrenkephalogramm 

beim Menschen“ (BERGER, 1929). Auch aufgrund seiner weiteren Arbeiten gilt 

er heute als Begründer der klinischen Elektroenzephalographie. Von dieser neuen 

Technik versprach man sich eine wissenschaftliche Aufklärung über das Denken. 

Von einem medizinischen Nutzen konnte noch nicht ausgegangen werden 

(BORCK, 2005). Heute ist das Elektroenzephalogramm in vielen Bereichen der 

Medizin nicht mehr weg zu denken. 

1.2 Grundlagen 

Bis heute gibt es keine völlig gesicherten Erkenntnisse über die Entstehungs-

mechanismen des EEG (NEUNDÖRFER, 2002). Sicher ist nur, dass die erfassten 

Signale von der Hirnrinde ausgehen. Die schnelle Tätigkeit der weißen Substanz 

sowie des Kleinhirns zeigen sich nicht in den Ableitungen. Daher kann das EEG 

nur als Darstellung eines Bruchteils der gesamten elektrischen Aktivität des 

Gehirns verstanden werden (SCHNEIDER et al., 1978). Die Grundlage aller 

Theorien stellt das Bestehen eines Ruhemembranpotentials an den Zellen dar, 

sowie darauf aufbauend die Tatsache, dass Neuronen Informationen über 
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elektrische Signale vermitteln. 

Die ursprüngliche These, dass die Potentialschwankungen auf eine Summation 

von Aktionspotentialen synchron arbeitender Ganglienzellen zurückzuführen sind 

(ADRIAN & MATTHEWS, 1934), kann die sehr langsamen Potential-

schwankungen des EEG nicht erklären. Mit Hilfe von intrakortikalen Mikro-

ableitungen konnte diese Synchronisationstheorie widerlegt werden. Es wurde 

gezeigt, dass bereits in einem Abstand von 1 µm zu einer Ganglienzelle das an ihr 

ausgelöste Aktionspotential kaum mehr erfassbar ist (ZSCHOCKE, 1991a). 

Zudem sind Aktionspotentiale von so kurzer Dauer, dass sie sich kaum addieren 

können (ZSCHOCKE, 1991a; GALLINAT & HEGERL, 1998).  

Heute weiß man, dass es sich bei den im EEG registrierten Potential-

schwankungen um die sogenannten postsynaptischen Potentiale handelt. 

Erregungen werden zwischen zwei Nervenzellen zunächst über eine Synapse über 

einen Neurotransmitter, also chemisch vermittelt. An der nachstehenden, post-

synaptischen Membran werden sie jedoch elektrisch entlang der Dendriten 

weitergeleitet. Hier baut sich dabei ein elektrischer Dipol auf. Abhängig vom 

Transmitter entstehen exzitatorische oder inhibitorische Potentiale, welche die 

Auslösung eines Aktionspotentials am Axonhügel erleichtern beziehungsweise 

erschweren (ZSCHOCKE, 1991a). Jede Nervenzelle besitzt viele Synapsen, von 

denen jede einzelne, wenn sie aktiviert wird, einen Dipol bildet. Die synchrone 

Aktivierung mehrerer Synapsen führt zu einem komplexen „Summendipol“, der 

sich aus den einzelnen, addierten Dipolen zusammensetzt. Dieser kann nun 

aufgrund seiner ausreichend starken Potentialfelder noch von der Kopfoberfläche 

abgeleitet werden (ZSCHOCKE, 1991b). Die Summendipole bilden oft 

regelrechte Dipolschichten, die auch als kortikale Feldpotentiale bezeichnet 

werden (ZSCHOCKE, 2005). Wichtig für die Erfassung dieser kortikalen 

Feldpotentiale ist deren räumliche Anordnung, die durch die Ausrichtung der 

Nervenzellen bestimmt wird. Die langen, apikalen Dendriten der großen 

Pyramidenzellen spielen hier die Hauptrolle, da sie senkrecht zur Kortex-

oberfläche verlaufen und damit auch ihre Dipole entsprechend senkrecht orientiert 

sind. Aufgrund der gewundenen Anordnung des Kortex sind insgesamt lediglich 

etwa ein Drittel seiner Neuronen vertikal zu der Schädeloberfläche ausgerichtet 

und können so im EEG erfasst werden (ZSCHOCKE, 1991b). 

Es wird also die spontane elektrische Aktivität der Hirnrinde abgeleitet. Das heißt, 
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dass keine Stimulation notwendig ist (HOLLIDAY & WILLIAMS, 1999). Es darf 

jedoch nicht vergessen werden, dass die kortikale Aktivität laufend über 

subkortikale Schrittmacher beeinflusst wird und somit auch Rückschlüsse auf 

pathologische Veränderungen in tiefer gelegenen Strukturen gezogen werden 

können (SCHMIDT & BISCHOFF, 2005; ZSCHOCKE, 2005). 

1.3 Roh-EEG 

Nach den Richtlinien der deutschen Gesellschaft für klinische Neurophysiologie 

und funktioneller Bildgebung wird das Roh- oder Original-EEG anhand folgender 

Parameter beschrieben: Frequenz, Amplitude, Lokalisation, Morphologie, 

zeitliches Verhalten und Reagiblität (Reaktion auf externe Stimuli). 

Die Einteilung des Roh-EEGs erfolgt anhand des aussagekräftigsten Parameters, 

der Frequenz, in den griechischen Buchstaben α, β, δ und θ. Die alphabetische 

Zuordnung erfolgt nicht mit steigender Frequenz, sondern nach deren 

Erstbeschreibung. Die Grenzen der vier Bereiche sind willkürlich festgelegt 

(KUGLER, 1981). Sie wurden in dieser Form auch für die Veterinärmedizin 

übernommen (OTTO & SHORT, 1991). 

β-Wellen: 14 – 30/s 

α-Wellen: 8 – 13/s 

θ-Wellen: 4 – 7/s 

δ-Wellen: 0,5 – 3/s 

Das Wach-EEG des Menschen ist durch α- und β-Wellen charakterisiert 

(KLEMM, 1969; GALLINAT & HEGERL, 1998; SCHMIDT et al., 2008). Bei 

Zufuhr von Anästhetika kommt es zu einer Verschiebung Richtung langsamerer 

Frequenzbanden. Wird die Narkose weiter vertieft, so zeigt sich das isoelektrische 

Nulllinien-EEG, das zunächst noch von kurzen Aktivitätsphasen durchbrochen 

wird. Diese Muster werden als „Burst-Suppressionen“ bezeichnet (KLEMM, 

1969; WILHELM, 2005). Fehlen diese, kommt es zur „kortikalen Stille“ 

(KLEMM, 1969). 

Frequenz und Amplitude verhalten sich in der Regel umgekehrt proportional 

zueinander. Hohe Frequenzen gehen meist mit niedriger Amplitude einher und 

umgekehrt. Eine Ausnahme stellen hier die hohen β-Wellen in Narkose dar 
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(NEUNDÖRFER, 2002). Bei den Ableitungen von der Kopfoberfläche erreichen 

die Amplituden maximal etwa 100 µV. Der Informationsgehalt ist jedoch 

beschränkt, da die Amplitudenhöhe sehr stark von den Ableitebedingungen 

abhängig ist. Sie ist lediglich ein Ausdruck für die Potentialdifferenz zwischen 

zwei Elektroden (ZSCHOCKE, 2002). 

Anwendung findet das Roh-EEG sowohl in der Human- als auch in der 

Veterinärmedizin. Es liefert Hinweise darüber, ob eine Gehirnerkrankung vorliegt, 

welcher Teil bei fokalen Erkrankungen betroffen ist, ob es sich um ein akutes oder 

chronisches, entzündliches oder degeneratives Geschehen handelt, und wie weit 

der Schaden ausgedehnt ist. Über Serienaufnahmen können der Krankheitsverlauf 

sowie der Therapieerfolg kontrolliert werden (KLEMM, 1974). Als alleiniges 

Diagnostikum ist es jedoch oft nicht ausreichend (FAISSLER et al., 2007) . 

In der Anästhesie erwies sich das Roh-EEG als nicht sonderlich praktikabel, da 

die Auswertung sehr zeitintensiv ist und sehr viel Erfahrung notwendig ist, um die 

Änderungen visuell zu erfassen (FLEMING & SMITH, 1979). 

1.4 Frequenzanalyse 

Ein abgeleitetes EEG setzt sich aus schnellen und langsamen Potential-

schwankungen zusammen. Dadurch wird die visuelle Auswertung erheblich 

erschwert. Heute wird diese durch digitale, computergestützte EEG-

Signalverarbeitungen erleichtert (SCHMIDT et al., 2008). 

Die Spektralanalyse bezeichnet die Auswertung des Spontan-EEGs mit Hilfe der 

Fast-Fourier-Transformation. Der wichtigste Schritt ist dabei die Korrelations-

analyse. Hier wird die Kovarianz, also die Ähnlichkeit zwischen dem EEG-

Abschnitt und Sinuswellen unterschiedlicher Frequenz ermittelt. Der Vergleich 

des Roh-EEGs erfolgt je mit der Sinus- und Kosinusfunktion sowie deren 

einzelnen harmonischen Oberwellen. Durch den zusätzlichen Einsatz der 

Kosinusfunktion wird die Phasenverschiebung der Funktionen berücksichtigt. 

Grundlage dieser Technik ist die Annahme, dass jedes Potentialmuster mittels 

Addition verschiedener Sinuswellen erzeugt werden kann. Umkehrt lässt sich das 

Roh-EEG in die entsprechenden Wellen zerlegen. Hierbei handelt es sich jedoch 

lediglich um eine mathematische Vereinfachung, da Sinuswellen bei der 

Entstehung des EEGs keine Rolle spielen. Nach weiteren Zwischenschritten 

liegen das Amplituden- und Phasenspektrum vor. Diese werden miteinander 
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verrechnet, und man erhält als Endergebnis das Leistungsspektrum, auch Power-

spektrum genannt. In einem Diagramm wird die Leistung [µV
2
] gegen die 

Frequenz [Hertz (Hz)] aufgetragen. Dies ermöglicht eine visuelle Erfassung der 

Frequenzverteilung (ZSCHOCKE, 2002). 

Zur Auswertung wird das Original-EEG in einzelne, kurze Epochen zerlegt. Beim 

Narcotrendmonitor sind diese 20 Sekunden lang (SCHULTZ et al., 2003). 

Folgende Parameter lassen sich anhand des ermittelten Leistungsspektrums 

bestimmen. Sie beziehen sich immer auf die gerade ausgewertete EEG-Epoche: 

Absolute Gesamtpower [µV
2
] über den zuvor festgesetzten Frequenzbereich (z.B. 

1,5 – 30 Hz). Sie dient als Ausgangswert für die Berechnung der relativen 

Leistung einzelner Frequenzbänder (SCHWENDER et al., 1996). 

Absolute [µV
2
] und relative Power [%] der einzelnen Frequenzbänder (δ, θ, α, β). 

Die relative Power gibt den prozentualen Anteil des jeweiligen Frequenzbandes 

an der Gesamtpower an (DE BEER et al., 1996; SCHWENDER et al., 1996). 

Die dimensionslosen Frequenzband-Leistungs-Quotienten geben das Verhältnis 

der jeweiligen Powerspektrumanteile wieder. Hierzu gehören der Alpha-Delta-

Index (α/δ) (STOECKEL et al., 1979), der Beta-Delta-Index (β/δ) (SCHWILDEN 

& STÖCKEL, 1980), der Theta-Delta-Index (θ/δ) sowie der Delta-Index (α+β/δ) 

(SCHWENDER et al., 1996). 

Die Medianfrequenz (MED) [Hz] gibt die Frequenz an, bei der die Fläche unter 

dem Powerspektrum halbiert wird, so dass je 50 % der elektrischen 

Gesamtaktivität ober- und unterhalb davon liegen (SCHWILDEN & STÖCKEL, 

1980). 

Bei der Spektralen Eckfrequenz (SEF) [Hz] liegen 80 % (SEF 80) (OTTO & 

SHORT, 1991), 90 % (SEF 90) (SCHWENDER et al., 1996) oder 95 % (SEF 95) 

(HUDSON et al., 1983) der Gesamtaktivität unterhalb dieser Grenze. 

Die Peakfrequenz oder dominante Frequenz [Hz] gibt die höchste spektrale 

Leistung an (DE BEER et al., 1996; HEGERL, 1998; SCHMIDT & BISCHOFF, 

2005). 

Bei der Auswertung gilt es zu bedenken, dass die Größe der Parameter jeweils 

sehr stark von den zuvor festgelegten Frequenzgrenzen abhängen.  
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Verwendung finden diese Parameter in der Veterinärmedizin in der Schmerz-

forschung. Dabei werden mit Hilfe des „minimal anaesthesia model“ 

Schmerzreaktionen erfasst, ohne dass das Tier die Schmerzen wahrnimmt. Beim 

Enthornen von Kälbern sowie bei der Kastration von Lämmern konnte 

entsprechend ein Anstieg der MED und SEF 95 nachgewiesen werden (GIBSON 

et al., 2007; JOHNSON et al., 2009). In einer früher durchgeführten Studie stieg 

die SEF 95 bei der Lämmerkastration hingegen nicht signifikant an (JOHNSON et 

al., 2005b). Als Reaktion auf ein Kürzen des Geweihs bei Rothirschen stiegen 

sowohl die MED als auch die SEF 95 an. Der Anstieg war in der Gruppe ohne 

zusätzliches Lokalanästhetikum deutlicher ausgeprägt (JOHNSON et al., 2005a). 

OTTO und MALLY (2003) zeigten jedoch bei Schafen, dass hier nach einem 

schmerzhaften chirurgischen Reiz die MED und SEF 80 entweder anstiegen oder 

absanken, aber nur selten unverändert blieben. Die jeweilige Reaktion hängt 

vermutlich von der Narkosetiefe sowie der Stärke des Reizes ab. 

Des Weiteren findet das verarbeitete EEG Anwendung in der Schlafforschung, bei 

der Erforschung neuer Medikamente, die ihre Wirkung im Gehirn entfalten 

(PICHLMAYR et al., 1983) und zunehmend auch beim Narkosemonitoring. 

2 Narkosemonitoring 

Damit eine ungewollte intraoperative Wachheit ausgeschlossen werden kann, 

werden zwei Ansätze verfolgt. Zum einen wird über klinische Parameter das 

vegetative Nervensystem überwacht, zum anderen werden mit Hilfe des EEGs die 

Aktivität der Zellen des Kortex gemessen (BURGHARDT & THEILEN, 2008). 

Die Aussagekraft der vegetativen Parameter ist limitiert, da sich die pharmako-

dynamische Wirkung der eingesetzten Anästhetika nicht auf das zentrale 

Nervensystem (ZNS) beschränkt, sondern auch auf die vegetativen Funktionen 

Einfluss haben kann. Mit dem EEG ergibt sich die Möglichkeit, die Hauptwirkung 

der Anästhetika zu erfassen (SCHWILDEN & STÖCKEL, 1980). 

Die Narkose lässt sich nach GUEDEL (1951) in vier Stadien einteilen, die 

nacheinander durchlaufen werden: Analgesie (I), Exzitation (II), Toleranz (III) 

und Asphyxie (IV). Das Stadium der Toleranz wird noch in vier Unterstadien 

aufgeteilt. Andere Autoren teilen dieses Stadium lediglich in folgende drei 

Unterstadien: Hypnose (III/1), chirurgische Toleranz (III/2) und Depression (III/3) 

(THURMON & BENSON, 1986; ERHARDT & HABERSTROH, 2004b). 
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Die Einteilung in Narkosestadien wird dadurch ermöglicht, dass die Funktionen 

des ZNS in einer bestimmten Reihenfolge ausfallen. Zuerst ist die Großhirnrinde 

und damit das Bewusstsein betroffen. Anschließend werden die Zentren des 

Mittelhirns mit den unbewussten Reflexen erfasst. Es folgen die spinalen 

motorischen Reflexe des Rückenmarks und erst sehr spät schließlich Atem- und 

Kreislaufzentrum in der Medulla oblongata (WESTHUES & FRITSCH, 1961). 

2.1 Konventionelle Überwachung 

Bei der konventionellen Überwachung stehen vor allem die Reaktionen des 

Patienten auf Schmerzreize, wie Blutdruck oder Herzfrequenz, im Vordergrund. 

Die Narkosesteuerung stellt somit das Nachregeln der Dosis anhand bereits 

eingetretener Reaktionen dar (DETSCH & KOCHS, 1997). 

Die Überwachung der Narkosetiefe kann anhand der drei Organsysteme zentrales 

Nervensystem, Atmungsapparat und Herz-Kreislaufsystem vorgenommen werden 

(RIEBOLD et al., 1982).  

2.1.1 Zentrales Nervensystem 

Zur Überprüfung des ZNS gehören okuläre Parameter, sowie Reflexe und 

Schmerzreaktionen. 

Die Stellung des Bulbus ändert sich mit zunehmender Narkosetiefe. Er rotiert 

anfangs aus seiner zentralen Position ventral, so dass im Stadium der 

chirurgischen Toleranz lediglich die Sklera sichtbar ist. Während tieferer Narkose 

steigt er wieder in eine zentrale Stellung auf (THURMON & BENSON, 1986; 

MUIR, 1995; HALL & CLARKE, 2001). Dies kann auch bei der Gabe von 

Ketamin aufgrund eines erhöhten Muskeltonus der Fall sein (HALL & CLARKE, 

2001). In der Aufwachphase ändert sich die Bulbusstellung in umgekehrter 

Reihenfolge (THURMON & BENSON, 1986). 

Auch die Pupillenweite ändert sich entsprechend der Narkosetiefe. Zu Beginn des 

Toleranzstadiums sind die Pupillen eng und weiten sich noch als Reaktion auf 

Schmerzstimuli. Mit Vertiefung der Narkose weiten sich die Pupillen. Gewünscht 

ist eine mittelweite Öffnung (WESTHUES & FRITSCH, 1961). Dilatierte 

Pupillen sind bei der Inhalationsnarkose ein Zeichen für eine zu hohe Dosierung 

(MUIR, 1995). Dieses Bild zeigt sich auch im Exzitationsstadium, hier jedoch mit 

erhaltenem Pupillarreflex (WESTHUES & FRITSCH, 1961) oder nach 
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Ketamingabe (HALL & CLARKE, 2001). 

Der Kornealreflex sollte während der Narkose erhalten sein (WESTHUES & 

FRITSCH, 1961; MUIR, 1995; RIEBOLD, 1996). Hierbei wird der reflektorische 

Lidschluss bei Berühren der Kornea im lateralen Lidwinkel überprüft. Bei einem 

ventral rotierten Bulbus ist er jedoch nicht auslösbar (WESTHUES & FRITSCH, 

1961). 

Der Lidreflex wird durch Berühren der Wimpern oder des Lidrandes am medialen 

Augenwinkel ausgelöst. Als Reaktion erfolgt hier ebenfalls der Lidschluss 

(WESTHUES & FRITSCH, 1961). Dieser Reflex sollte gerade noch erhalten sein 

(ERHARDT & HABERSTROH, 2004a) oder nicht mehr auslösbar sein 

(WESTHUES & FRITSCH, 1961). Unter dem Einfluss von Ketamin kann er 

dagegen stark ausgeprägt sein (HALL & CLARKE, 2001). 

Laut RIEBOLD et al. (1982) können beim Kalb, abgesehen von der Bulbus-

stellung, keine okulären Parameter zur Abschätzung der Narkosetiefe heran-

gezogen werden. 

Der Zehenreflex wird durch starkes Zusammendrücken der Klauen überprüft. Ist 

dieser nicht mehr auslösbar, so spricht dies für eine tiefe chirurgische Narkose 

(WESTHUES & FRITSCH, 1961). 

Des Weiteren wird auf Reaktionen auf Schmerzstimuli geachtet. Hierzu gehören 

ein Anstieg des Blutdruckes, der Herzfrequenz, die Pupillendilatation, Speicheln 

sowie Schwitzen (SOMA, 1971). Reagiert das Tier mit einer bewussten 

Bewegung, so kann von einer unzureichenden Narkosetiefe ausgegangen werden. 

Für eine adäquate Tiefe spricht, wenn auf den chirurgischen Reiz zwar der 

arterielle Blutdruck ansteigt, aber bewusste Bewegungen ausbleiben (RIEBOLD, 

1996). Im gewünschten Narkosestadium herrscht eine völlige Muskelrelaxation. 

Dieses Kriterium ist bei Einsatz von Muskelrelaxantien nicht beurteilbar und 

sämtliche Muskelreflexe sind aufgehoben. Schmerzreize werden dann über eine 

erhöhte Pulsfrequenz erfasst (WESTHUES & FRITSCH, 1961). 

2.1.2 Atmung 

Die Beurteilung der Atmung erfolgt über das Beobachten der Bewegungen von 

Brustkorb oder Atembeutel (WESTHUES & FRITSCH, 1961; RIEBOLD et al., 

1982). Die Atemfrequenz beträgt bei Kälbern 20 – 40/min (RIEBOLD, 1996). 
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Werden sie in Narkose mit spontaner Atmung auf dem Rücken gelagert, so hypo-

ventilieren sie meist stark (HALL & CLARKE, 2001). 

Im Stadium der chirurgischen Toleranz steigt die Atemfrequenz und das Atem-

zugvolumen nimmt ab. Letzteres ist auf die Reduktion der Aktivität der 

Interkostalmuskulatur zurück zu führen. Die Atmung ist langsam und regelmäßig. 

Mit weiterer Vertiefung der Narkose wird die Atmung immer mehr von den 

Zwerchfellbewegungen abhängig. Dadurch kommt es zu einer Verkürzung der 

Inspiration mit verlängerten Pausen zwischen den Atemzügen und einer 

Verminderung der Atemtiefe (SOMA, 1971). Dies zeigt den Anfang der Lähmung 

des Atemzentrums, welche zuerst das Inspirations- und anschließend auch das 

Exspirationszentrum betrifft. Sauerstoffmangelreize aus den Glomerula geben nun 

den Stimulus für die Atmung (WESTHUES & FRITSCH, 1961). Beim 

Wiederkäuer ist die reine Zwerchfellatmung bereits gefährlich, da der Druck der 

Eingeweide auf das Diaphragma die Atmung stark beeinträchtigen kann. 

Ruckweise, schnappende Atmung ist ein Zeichen für eine zu tiefe Narkose. Sie 

stellt die Überleitung zum völligen Atemstillstand dar (WESTHUES & 

FRITSCH, 1961). 

2.1.3 Herz-Kreislaufsystem 

Das Herz-Kreislaufsystem wird mittels Herzfrequenz, Blutdruck, Schleimhaut-

farbe sowie kapillärer Rückfüllzeit beurteilt. 

Die meisten Anästhetika wirken dämpfend auf das Kreislaufsystem. Eine zu hohe 

Dosierung bewirkt, dass das Herz weniger effektiv arbeitet und daraus ein Abfall 

der Pulsintensität resultiert (RIEBOLD, 1996). 

Der Blutdruck gilt als präziser Parameter zur Abschätzung der Narkosetiefe, da er 

rasch und dosisabhängig auf Veränderungen reagiert. Desweitern gilt er als 

zuverlässigster Indikator für eine ausreichende Blutzirkulation (WAGNER & 

BRODBELT, 1997).  

Puls und Blutdruck liegen im Toleranzstadium im physiologischen Bereich. Ein 

Anstieg der beiden Parameter als Reaktion auf einen Schmerzstimulus deutet auf 

eine zu flache Narkose hin. Mit zunehmender Narkosetiefe sinkt der Blutdruck 

(WESTHUES & FRITSCH, 1961). In der Narkose liegen beim Rind mit 

Spontanatmung folgende Blutdruckwerte vor: systolisch 150 – 180 mmHg, 

diastolisch 100 – 150 mmHg, mittlerer Blutdruck 110 – 140 mmHg (RIEBOLD et 
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al., 1982). Es ist darauf zu achten, dass der mittlere arterielle Blutdruck nicht unter 

60 mmHg fällt, denn dieser Druck ist für die Sicherung einer ausreichenden 

Durchblutung der lebenswichtigen Organe notwendig (STOELTING, 1991). 

Die Pulsüberwachung findet nichtinvasiv über die Palpation der Arteriae digitalis, 

auricularis caudalis, radialis und saphena statt. Beim Kalb kann auch noch die 

Arteria facialis herangezogen werden (RIEBOLD, 1996). Bei der invasiven 

Methode wird der Blutdruck in der Regel über die Punktion einer Ohrarterie 

gemessen (MUIR, 1995). 

Die Durchblutung des Gewebes wird über die Schleimhautfarbe sowie die 

kapilläre Rückfüllzeit beurteilt. Beim Kalb ist die Schleimhaut physiologischer 

Weise blassrosarot (GRÜNDER, 1990). Die Kapillarrückfüllzeit sollte maximal 

zwei Sekunden betragen (HENKE et al., 2004). 

Die Herzfrequenz beträgt beim Kalb 90 – 130/min. Sie nimmt sowohl mit 

zunehmendem Alter als auch der Narkosetiefe ab (RIEBOLD, 1996). Zu Beginn 

der Anästhesie kann sie aufgrund der Exzitation oder zur Kompensation eines 

niedrigen Blutdrucks kurz ansteigen, normalisiert sich jedoch innerhalb von 10 bis 

20 Minuten (RIEBOLD, 1996). 

2.2 Einsatz des Narcotrend EEG-Monitors 

Das Narcotrend EEG-Gerät wurde von einer Arbeitsgruppe der Medizinischen 

Hochschule Hannover entwickelt und ist seit dem Jahr 2000 im Einsatz. Es misst 

das Roh-EEG-Signal und führt eine automatische Interpretation durch. Diese 

wurde auf der Grundlage einer visuellen Auswertung des Original-EEGs 

entwickelt, welche auf der Einteilung des Schlaf-EEGs nach KUGLER (1981) 

vorgenommen wurde. Im Verlauf von Wachzustand bis Tiefschlaf ändert sich 

physiologisch bedingt das EEG. Die Frequenz nimmt ab, während die Amplitude 

zunimmt. Ebenso verhält es sich bei der Narkose. Die Unterschiede, die dabei 

bestehen, wurden gesondert behandelt. So wurde ein eigener Algorithmus 

entwickelt, um Burst-Suppressions-Muster zu tiefer Narkosen zu erkennen, die im 

Schlaf nicht vorkommen (SCHULTZ et al., 2003). Die Klassifikationsalgorithmen 

wurden einer klinischen Untersuchung mit verschiedenen Inhalations- und 

Injektionsanästhetika unterzogen (SCHULTZ et al., 2003), sowie ein Vergleich 

zwischen visueller und automatischer Klassifikation bei über 1000 artefaktfreien 

EEG-Epochen durchgeführt, wobei eine hinreichende Übereinstimmung 
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nachgewiesen werden konnte (SCHULTZ et al., 2002). 

Die Klassifikation erfolgt in insgesamt 15 Stadien (A, B0-2, C0-2, D0-2, E0-2, F0-1). 

Diese wird durch eine Transformation dieser EEG-Stadien in eine numerische 

Skala von 100 (= wach, Stadium A) bis 0 (= sehr tiefe Narkose, Stadium F1) noch 

genauer unterteilt (SCHULTZ et al., 2003). Für die Einleitung wird das Stadium 

D2 (Index 35 – 45) angestrebt, intraoperativ D0 – D1 (45 – 60) und in der 

Ausleitung C1 (70 – 75) (KREUER & WILHELM, 2005). 

Tabelle 1: Narcotrend-EEG-Stadien und zugehörige Indexbereiche aus 

SCHULTZ et al. (2003) 

  Narcotrend-Stadium Narcotrend-Index 

Wachheit A 100 – 95 

Müdigkeit / Sedierung B0   94 – 90 

B1   89 – 85 

B2   84 – 80 

Oberflächliche Anästhesie C0   79 – 75 

C1   74 – 70 

C2   69 – 65 

Allgemeinanästhesie D0   64 – 57 

D1   56 – 47 

D2   46 – 37 

Tiefe Allgemeinanästhesie E0   36 – 27 

E1   26 – 20 

E2   19 – 13 

Burst-Suppression-EEG bis Nulllinie F0 12 – 5  

F1   4 – 0 

 

Neben dem Roh-EEG und der Stadieneinteilung liefert der Narcotrend auch 

folgende Daten: das Cerebrogramm, das Powerspektrum, die mediane und 

spektrale Eckfrequenz 95 sowie die relativen Bandleistungen. 

Das Cerebrogramm bildet die jeweils ermittelten Stadien (A – F1) im zeitlichen 

Verlauf der Narkose als Diagramm ab. 

Aufgrund der Linksverschiebung des Powerspektrums in der Anästhesie nehmen 

die MED und SEF 95 mit zunehmender Narkosetiefe ab. 

Die Medianfrequenz liefert bei zu flacher und adäquater Narkosetiefe eine gute 

Korrelation mit der klinisch-vegetativen Beurteilung. Beim Menschen unter 

Etomidate-, Ethrane- und Fentanylnarkose liegt der Median bei ausreichender 

Narkosetiefe unter 5 Hz. Dadurch, dass die Burst-Suppressionen großteils 
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unterhalb des gewählten Frequenzbereichs (0,5 – 24 Hz) liegen, werden zu tiefe 

Narkosen mit dem Median alleine nicht erkannt. Hier sollte zusätzlich die mittlere 

Amplitude angegeben werden, die in diesem Falle abnimmt (SCHWILDEN & 

STÖCKEL, 1980). DRUMMOND et al. (1991) kommen bezüglich des MED bei 

einer Isofluran-Lachgasnarkose zu ähnlichen Ergebnissen, geben jedoch den 

Schwellenwert als Bereich von 5,2 – 6,2 Hz an. Die SEF 90 konnte einigermaßen 

sicher zur Unterscheidung des intraoperativen Zustands und des Erwachens 

herangezogen werden. Unter Isofluran- und Lachgasnarkose konnte mittels MED 

am deutlichsten zwischen dem intraoperativem Stadium und der Aufwachphase 

unterschieden werden. Starke Veränderungen der EEG-Frequenzen können mit 

diesem Parameter erfasst werden (SCHWILDEN & STÖCKEL, 1987). RAMPIL 

et al. (1980) zeigten an Hunden zwar eine gute Korrelation der SEF mit der 

Halothan- und Enflurankonzentration, die Sensitivität schwankte aber inter-

individuell. 

Beim Vergleich der klassischen EEG-Parameter mit dem Narcotrendindex zeigte 

sich unter Propofol- und Remifentanil-Narkose, dass die analgetische Potenz von 

Remifentanil ohne chirurgischen Stimulus nicht vom Narcotrendindex dargestellt 

wird. Die MED sowie SEF 95 zeigten jedoch signifikante Veränderungen. 

Änderungen der Propofolkonzentration konnten hingegen mit dem Narcotrend 

verfolgt werden (SCHMIDT et al., 2002). In einer Folgestudie mit den gleichen 

Wirkstoffen erwies sich die Beurteilung verschiedener Anästhesiestadien mit dem 

Narcotrendindex gegenüber klassischen EEG-Parametern sowie hämo-

dynamischen Veränderungen als zuverlässiger (SCHMIDT et al., 2004). 

In verschiedenen Studien aus der Humanmedizin konnten die Vorteile der 

objektiven und zuverlässigen Narkoseüberwachung mittels der Narcotrendstadien 

bereits gezeigt werden. Es kann für die Ermittlung des individuellen 

Hypnotikabedarfs eines Patienten genutzt werden, der durch verschiedene 

Faktoren wie Alter, Geschlecht, Allgemeinzustand und die individuelle 

Konstitution beeinflusst wird (SCHULZE et al., 2004; SCHULTZ et al., 2006). 

Dies ermöglicht neben einer optimalen Narkoseführung mit einer anschließenden 

verkürzten Aufwachphase (WILHELM et al., 2002) auch eine Verminderung der 

Arzneimittelanwendung und eine Kostenreduktion durch Vermeidung unnötig 

hoher Narkotikadosierungen (SCHULZE et al., 2004). 

In der Veterinärmedizin wurde das Gerät bereits bei Hunden eingesetzt. Hier soll 
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es gut zwischen adäquater und zu tiefer Narkose unterscheiden können. Der 

klinischen Einschätzung des aktuellen Narkosestadiums unter Isoflurananästhesie 

standen folgende durchschnittliche Narcotrendindices gegenüber: 34,1 bei zu 

tiefer Narkose, 49,6 bei adäquater Narkosetiefe und 50,0 bei zu flacher Narkose. 

Somit fallen auch die Werte für eine zu flache Anästhesie in das Stadium D, 

welches beim Menschen eine ausreichende Tiefe anzeigt. Das Stadium F konnte 

hingegen zuverlässig erkannt werden, jedoch wurde hier bei manchen Tieren das 

Stadium E nicht durchlaufen (TÜNSMEYER, 2007). 

3 Eingesetzte Medikation 

3.1 Xylazin 

Xylazin ist das Mittel der Wahl zur Sedierung des Rindes (LÖSCHER, 2006). In 

der Allgemeinanästhesie wird es zur Sedation ängstlicher und unruhiger Tiere 

etwa fünf bis zehn Minuten vor der Narkoseeinleitung eingesetzt 

(ABRAHAMSEN, 2008). 

3.1.1 Pharmakokinetik und Pharmakodynamik 

Xylazin gehört zu den α2-Agonisten, ist jedoch wenig selektiv und besitzt noch 

eine relativ hohe α1-Aktivität (ERHARDT et al., 2004). Wiederkäuer reagieren im 

Vergleich zu anderen Tierarten sehr sensibel auf den Wirkstoff und benötigen 

daher nur eine geringe Dosierung (HOPKINS, 1972; EBERT et al., 2002; 

LÖSCHER, 2006; ABRAHAMSEN, 2008). Die Dosis variiert jedoch abhängig 

vom Verhalten des Tieres. So werden zum Erreichen der Sedation bei ruhigen 

Patienten geringere Mengen benötigt als bei ängstlichen oder unruhigen 

(ABRAHAMSEN, 2008).  

Xylazin wirkt lang andauernd sedativ, jedoch nur sehr kurz analgetisch. Diese 

Wirkungen werden über eine Stimulation der α2-Rezeptoren im Gehirn erreicht. 

Der zusätzlichen Muskelrelaxation liegt eine Blockade der Reizübertragung im 

Rückenmark zugrunde (ERHARDT et al., 2004). Der Wirkungseintritt erfolgt je 

nach Applikationsart innerhalb von 3 – 5 min (intravenös) oder 10 – 15 min 

(intramuskulär) (LÖSCHER, 2010). 

Die Analgesie erstreckt sich sowohl auf viszerale als auch auf periphere 

Schmerzen (EBERT et al., 2002), ist jedoch für viele Operationen, zum Beispiel 

an den Klauen, alleine nicht ausreichend (ROSENBERGER et al., 1968). 
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Xylazin wirkt depressiv auf das Herz-Kreislaufsystem. Neben einem Rückgang 

der Herzfrequenz, des Herzzeitvolumens sowie des arteriellen Blutdrucks kommt 

es zu einem Anstieg des peripheren Widerstands (CAMPELL et al., 1979). Initial 

zeigt sich ein Blutdruckanstieg aufgrund der Erregung peripherer postsynaptischer 

α1-Adrenozeptoren. Im Folgenden bewirkt die Stimulation zentraler Rezeptoren 

im Bereich des Kreislaufzentrums eine Abnahme des Sympathikustonus, was sich 

in einer Blutdrucksenkung manifestiert. Zusätzlich besteht Bradykardie, 

vermutlich aufgrund des Überwiegens des Vagustonus (LÖSCHER, 2006). 

Die Atmung wird ebenfalls gedämpft. Sie vertieft sich anfangs, im Folgenden 

wird die Atmung jedoch bei geringerer Atemfrequenz oberflächlicher 

(GORANOV et al., 1971). Die Atemdepression tritt bereits bei ordnungsgemäßer 

Dosierung auf (LÖSCHER, 2006). 

Die kreislauf- und atemdepressive Wirkung von Xylazin kann durch eine 

Kombination mit Ketamin gemildert werden. Die beiden Substanzen ergänzen 

sich sehr gut (ERHARDT et al., 2004). Ein Teil der Wirkungen lässt sich durch 

selektive α-Rezeptor-Antagonisten aufheben. Hierzu gehören Yohimbin oder 

Idazoxan (LÖSCHER, 2006), von denen jedoch derzeit keines für die Anwendung 

beim Rind zugelassen ist (UNGEMACH et al., 2011). 

Als Nebenwirkungen sind Salivation (ROSENBERGER et al., 1968), Hemmung 

der Pansenkontraktionen (GORANOV et al., 1971), leichte Tympanie, 

Hyperglykämie (ROSENBERGER et al., 1968), Hypoinsulinämie sowie Polyurie 

(EBERT et al., 2002) bekannt. Bei einigen Tieren konnte nach einer Sedation mit 

Xylazin Durchfall beobachtet werden (ROSENBERGER et al., 1968). 

Die Metabolisierung erfolgt rasch und nahezu vollständig (EBERT et al., 2002) 

über die Leber (ERHARDT et al., 2004). Die dabei entstehenden Substanzen 

werden über den Harn ausgeschieden (ERHARDT et al., 2004). 

3.1.2 Auswirkungen auf das EEG 

Die EEG-Muster unter alleiniger Xylazinsedation können beim Hund in drei 

Phasen eingeteilt werden. In Phase 1, in der sich die Tiere noch als Reaktion auf 

eine Stimulation hin bewegen, zeigen sich langsame Wellen im Frequenzbereich 

von 6 – 8 Hz und einer Amplitude zwischen 30 und 70 µV. Phase 2 zeichnet sich 

durch eine vollständige Sedation und sehr geringe Reaktionen aus. Im EEG 

kommt es zu einer Verlangsamung (3 – 5 Hz) und einer Amplitudenzunahme 
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(50 – 200 µV). In Phase 3 zeigen sich, ebenfalls unter Sedation, rhythmische 

Wellen (3 – 7 Hz, 10 – 50 µV) und Wellen mit kleiner Amplitude (5 – 10 Hz, 10 –

20 µV). Phase 2 dominierte bei Tieren mit einem Alter unter 15 Wochen und ist 

den EEG-Veränderungen bei mittlerem bis tiefen Schlaf sehr ähnlich. Bei älteren 

Tieren liegt vor allem Phase 3 vor. Sie entspricht nahezu dem EEG bei leichtem 

Schlaf (TOURAI et al., 1985). Auch bei Katzen konnte unter Einfluss von 

Xylazin ein EEG-Bild ähnlich dem normalen Schlaf registriert werden 

(HOPKINS, 1972). 

3.2 Ketamin 

Ketamin wird in der Tiermedizin vielfach für die operative Schmerzausschaltung 

eingesetzt. Meist wird es in Kombination, vor allem mit Xylazin eingesetzt 

(LÖSCHER, 2006). 

3.2.1 Pharmakokinetik und Pharmakodynamik 

Ketamin wurde als Derivat des Phencyclidin entwickelt. Es handelt sich um eine 

weiße, kristalline Base, die gut wasserlöslich ist. Die Injektionslösung hat einen 

pH-Wert von 3,5 – 5,5 (ENGELHARD & WERNER, 2009). Dadurch ist die 

intramuskuläre Verabreichung schmerzhaft und kann Gewebsnekrosen hervor-

rufen (ERHARDT et al., 2004). Eine intravenöse Gabe ist vorzuziehen. Es liegt 

als Racemat vor, wobei das S(+)-Enantiomer stärker wirksam ist (SCHÜTTLER 

et al., 1987). 

Ketamin ist kein klassisches Narkotikum, das alle Teile des Gehirns dämpft, 

sondern bewirkt eine „dissoziative Anästhesie“, das heißt, es wirkt selektiv auf 

kortikale und subkortikale Bereiche. Es hemmt thalamokortikale Bahnen, 

während Teile des limbischen Systems aktiviert werden. Unterschiede treten auch 

innerhalb des Neokortex auf (CORSSEN et al., 1968). Auf molekularer Ebene 

hemmt Ketamin den N-Methyl-D-Aspartat-Rezeptor im Gehirn (YAMAMURA et 

al., 1990; ORSER et al., 1997) und verhindert die Wiederaufnahme von 

Katecholaminen an postganglionären sympathischen Nervenenden (STOELTING, 

1991). 

Innerhalb von 1 – 2 Minuten nach intravenöser (i.v.) Applikation setzt neben einer 

starken Analgesie eine mäßig tiefe Hypnose ein. Das chirurgische Toleranz-

stadium (LÖSCHER, 2006) sowie eine hinreichende Muskelrelaxation wird 

hingegen nicht erreicht, weshalb es nicht als Monoanästhetikum eingesetzt 



18 II Literaturübersicht 

werden kann (ERHARDT et al., 2004). 

Die Analgesie tritt bereits bei subanästhetischen Plasmakonzentrationen auf 

(ABRAHAMSEN, 2008), hält jedoch nicht lange an (LIN, 1996). Sie ist gut 

ausgeprägt für die Haut, die Extremitäten und Gelenke. Im viszeralen Bereich des 

Abdomens ist sie jedoch nur mäßig (ERHARDT et al., 2004). 

Kennzeichnend ist auch, dass keine Muskelrelaxation erreicht wird, sondern im 

Gegenteil der Muskeltonus zunimmt. Die Katalepsie beruht auf der Erregung der 

limbischen Zentren (EBERT et al., 2002). Es können dadurch einerseits sowohl 

zielgerichtete als auch reflexartige Bewegungen der Skelettmuskulatur un-

abhängig von chirurgischen Stimuli auftreten (LIN, 1996), andererseits kann sich 

der Patient im Zustand der Katalepsie, obwohl er schmerzempfindlich ist, nicht 

mehr gegen schmerzhafte Eingriffe wehren. Daher sollte stets auf die richtige 

Dosierung geachtet werden (LÖSCHER, 2006). Am Auge zeigt sich nach 

anfänglichem Nystagmus eine zentrale Bulbusstellung. Palpebral- sowie Korneal-

reflex sind erhalten. Ebenso sind andere Reflexe im Kopfbereich, wie der 

Schluck- und Hustenreflex, erhalten (LÖSCHER, 2006). Zudem sind durch die 

Erhöhung der Muskelspannung der Sauerstoff- und Energieverbrauch erhöht 

(ERHARDT et al., 2004). 

Ein großer Vorteil von Ketamin ist, dass es im Gegensatz zu anderen Anästhetika 

weder atem- noch kreislaufdepressiv wirkt. 

Die Auswirkungen auf das Herz-Kreislaufsystem ähneln einer Sympathikus-

stimulation. Es steigen der arterielle Blutdruck, die Herzfrequenz, das Herz-

minutenvolumen sowie die Leistung des Myokards. Die Atemfrequenz nimmt 

nach der Applikation für etwa 2 – 3 Minuten ab. Bei schneller intravenöser Gabe 

kann ein Atemstillstand eintreten (STOELTING, 1991). 

Das Nachlassen der Wirkung beruht auf Umverteilungsphänomenen. Zusätzlich 

wird Ketamin in der Leber metabolisiert, und die zum Teil noch aktiven Produkte 

werden über den Harn ausgeschieden (ENGELHARD & WERNER, 2009). Mit 

dem Nachlassen der Wirkung treten beim Menschen oft unangenehme Träume 

und Halluzinationen auf, für die im Folgenden dann keine Amnesie besteht 

(EBERT et al., 2002; ENGELHARD & WERNER, 2009). 

Zu den Nebenwirkungen gehören eine Erhöhung der Blutungsneigung aufgrund 



II Literaturübersicht 19 

der vasopressorischen Wirkung, sowie Salivation. Eine Überdosierung kann zu 

Krämpfen, Atemlähmung und Herzarrhythmien führen (LÖSCHER, 2006). 

3.2.2 Auswirkungen auf das EEG 

Mit dem Wirkeintritt verschwindet die Grundaktivität und gleichzeitig kommt es 

zu einem typischen Leistungsaufbau im θ-Bereich (4 – 7 Hz) mit einer Amplitude 

von 40 – 90 µV. Oft kommen auch noch hohe β-Wellen (28 – 32 Hz) dazu 

(PICHLMAYR et al., 1983). Der Beginn der Delta-Aktivität geht mit dem 

Bewusstseinsverlust einher (STOELTING, 1991). 

An Katzen wurde die Wirkung differenzierter untersucht. Hier konnte gezeigt 

werden, dass nach intravenöser Ketamingabe vor allem in neokortikalen 

Bereichen, aber auch im Bereich des Thalamus Delta-Aktiviät zu verzeichnen ist. 

Während der allmählichen Regeneration von der Wirkung zeigt sich deutliche 

Theta-Aktivität im Hippocampus. Wechselndes Bild von hypersynchronen Delta-

Wellen und Aktiviät mit niedriger Spannung und hoher Frequenz in den 

kortikalen Regionen bleiben – zu einem geringeren Maße auch im Thalamus. 

Nach 30 Minuten haben die kortikalen Bereiche sowie der Thalamus im 

Wesentlichen die Ausgangswerte (oberflächlicher Schlaf) erreicht. Im 

Hippocampus zeigen sich jedoch noch maximale, theta-ähnliche Aktivitäten 

(CORSSEN et al., 1968). 

Beim Menschen wurden die Reaktionen der elektrischen Gehirnaktivität auf die 

beiden Enantiomere verfolgt. Hier konnte das gleiche EEG-Muster wie bei 

CORSSEN et al. (1968) gezeigt werden, jedoch erwies sich S(+)-Ketamin in 

seiner Wirkung als potenter. Zur Quantifizierung dieser Veränderungen wurde die 

MED aus der Spektralanalyse herangezogen. Diese bietet hier jedoch keine gute 

Aussagekraft für den klinischen Effekt von Ketamin. Ein signifikanter 

Unterschied bestand jedoch zwischen der MED bei maximalem Effekt und den im 

wachen Zustand ermittelten Basiswerten. Die MED veränderte sich ohne zeitliche 

Verzögerung mit den Plasmaketaminkonzentrationen. Dies spricht für einen 

raschen Ausgleich der Konzentrationen zwischen Blut und Gehirn (SCHÜTTLER 

et al., 1987). 

3.3 Isofluran 

Inhalationsanästhetika werden gerne in der Anästhesie verwendet, da sie eine 

rasche Anpassung der Narkosetiefe ermöglichen (STEFFEY, 1996). Isofluran ist 
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derzeit das einzige Inhalationsanästhetikum, dessen Anwendung beim Kalb 

entsprechend der Umwidmungskaskade möglich ist (UNGEMACH et al., 2011). 

3.3.1 Pharmakokinetik und Pharmakodynamik 

Isofluran gehört zu den Inhalationsanästhetika. Es ist ein Strukturisomer des 

Enflurans, das als Racemat vorliegt und chemisch sehr stabil ist. Bei 

Raumtemperatur handelt es sich um eine klare, farblose Flüssigkeit, deren 

Anwendung in der Narkose über einen Verdampfer erfolgt (ENGELHARD & 

WERNER, 2009). 

In der Einleitungsphase werden 2 – 4 Volumenprozent (Vol%) verwendet. Für die 

Erhaltung reichen dann 1 – 2 Vol% aus (MUIR, 1995). Die minimale alveoläre 

Konzentration (MAC) beschreibt die Konzentration eines Inhalations-

anästhetikums bei einer Atmosphäre, bei der 50 % der Patienten keine Reaktion 

auf einen chirurgischen Reiz zeigen (STEFFEY, 1999). Der MAC-Wert beträgt 

beim Rind 1,3 (CANTALAPIEDRA et al., 2000). 

Inhalationsnarkotika bewirken eine reversible, generalisierte ZNS-Depression 

(STEFFEY, 1996). Neben der guten Hypnose umfasst das Wirkspektrum von 

Isofluran auch eine gute Muskelrelaxation, die analgetische Komponente ist 

hingegen nur schwach ausgeprägt (SCHULTE AM ESCH et al., 2002). Im 

Gegensatz zu Enfluran bewirkt es keine zentralen Erregung (LÖSCHER, 2006). 

Isofluran führt zu einer dosisabhängigen Atemdepression (ERHARDT et al., 

2004). Bei geringen Konzentrationen nimmt das Atemzugvolumen stärker ab als 

die Atemfrequenz ansteigt. Die Reaktion auf Hypoxie sowie einen erhöhten 

arteriellen Karbondioxidpartialdruck (paCO2) ist vermindert. Es erfolgt keine 

angemessene Reaktion zur Kompensation von Belastungen des Atmungs-

apparates, wodurch die Gefahr einer Hypoxie und respiratorischen Azidose steigt 

(EGER, 1981). 

Im Bereich des Herz-Kreislaufsystems kommt es zu Hypotension. Der 

systemische arterielle Blutdruck sinkt aufgrund einer Verminderung des 

peripheren Widerstands in nahezu allen Geweben. Dies wird über eine Erhöhung 

der Herzfrequenz ausgeglichen (EGER, 1981). Isofluran wirkt in geringem Maße 

negativ inotrop (ERHARDT et al., 2004; ENGELHARD & WERNER, 2009). Es 

erfolgt weder eine Sensibilisierung des Herzens gegenüber Katecholaminen 

(EGER, 1981; ERHARDT et al., 2004) noch wirkt es arhythmogen (HOMI et al., 
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1972; PAUCA & DRIPPS, 1973). Insgesamt ist die kardiovaskuläre 

Sicherheitsspanne größer als bei anderen Inhalationsnarkotika (EGER, 1981). 

Aufgrund seiner schlechten Löslichkeit im Blut findet eine sehr schnelle An- und 

Abflutung statt, wodurch auch eine rasche Änderung der Narkosetiefe möglich ist 

(ERHARDT et al., 2004). Des Weiteren ergibt sich daraus, dass die Elimination 

fast vollständig über die Lunge erfolgt, so dass kaum Rückstände (0,2 %) im 

Körper verbleiben, die eine toxische Wirkung auf Leber oder Niere entwickeln 

könnten (EGER, 1981; EBERT et al., 2002). 

3.3.2 Auswirkungen auf das EEG 

Bei Hunden zeigen sich je nach Isoflurankonzentration folgende Bilder: bei 1 % 

endexspiratorischer Konzentration dominieren langsame Wellen im δ- bis θ-

Bereich mit hoher Amplitude, womit die Gesamtpower abnimmt. Die MED sinkt 

von ihrem Ausgangswert (5,9 Hz) auf 1,4 Hz, ändert sich aber mit weiterer 

Dosiserhöhung nicht mehr. Über 2 % treten Burst-Suppressions-Muster auf und 

ab 3 % sind die isoelektrischen Phasen verlängert (KOCHS et al., 1993). 

Beim Menschen bewegt sich die Aktivität im Roh-EEG bei geringen Konzentra-

tionen im Bereich 15 – 30 Hz. Im Folgenden treten kleine Wellen (2 – 4 Hz) mit 

einer 14 Hz-Aktivität auf. Wird die MAC erreicht, so dominieren 4 – 8 Hz große 

Wellen das Bild. Mit weiterer Konzentrationserhöhung wird das EEG langsamer 

und es zeigen sich auch hier Burst-Supressions-Muster (CLARK & ROSNER, 

1973). 
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III PATIENTENGUT, MATERIAL UND METHODEN 

1 Ziel der Untersuchung 

Ziel der Untersuchung war es, die Frage zu klären, inwiefern, unter Verwendung 

des in der Klinik für Wiederkäuer gebräuchlichen Narkoseschemas, der vom 

Narcotrendmonitor angegebene Index das durch klinische Parameter ermittelte 

Narkosestadium bei Kälbern widerspiegelt. Um eine mögliche Übereinstimmung 

bei verschiedenen Narkosetiefen untersuchen zu können, sollten die Parameter 

nicht nur während der Operation, sondern auch darüber hinaus in der darauf 

folgenden Aufwachphase oder Vertiefungsphase bei Tieren, die euthanasiert 

werden mussten, verfolgt werden. 

2 Patientengut 

Im Rahmen dieser Untersuchung wurden insgesamt 43 Narkosen an 42 Kälbern 

der Rasse Deutsches Fleckvieh durchgeführt, welche alle zum Patientengut der 

Klinik für Wiederkäuer in Oberschleißheim gehörten. Aus praktikablen Gründen 

wurden nur Tiere bis zu einer Körpermasse von 130 kg berücksichtigt. Die Studie 

erstreckte sich über einen Zeitraum von acht Monaten (März bis November 2010). 

Tiere, bei denen intraoperativ Befunde erhoben wurden, die eine sehr schlechte 

bis infauste Prognose nahelegten, wurden daraufhin euthanasiert. 

3 Material 

3.1 Narkosegerät 

Für die Aufrechterhaltung der Narkose wurde das halb geschlossene Inhalations-

narkosegerät Sulla 808 (Dräger, Lübeck) zusammen mit dem Isofluranverdampfer 

Vapor 19.3 (Dräger, Lübeck) verwendet. Der Einstellbereich am Verdampfer 

betrug 0 bis 5 Vol%. Das Narkosegerät wurde vor jedem Einsatz auf Dichtigkeit 

überprüft. 

3.2 Narcotrend 

Die EEG-Überwachung erfolgte mit Hilfe des Narcotrendmonitors (Version 4.7) 

der Firma MT Monitor Technik (Bad Bramstedt, Deutschland). Dieser erhält seine 

Rohdaten wahlweise über eine frontale Ein- oder Zweikanalableitung mit 
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entsprechend drei oder fünf Elektroden. Hierbei sind immer folgende Filter 

eingeschaltet: ein 50 Hz Notchfilter, ein 0,5 Hz Hochpassfilter sowie ein 64 Hz 

Tiefpassfilter. Das Roh-EEG der beiden Ableitungen wurde kontinuierlich auf 

dem Bildschirm angezeigt. Ebenso wurden im Statusfenster alle fünf Sekunden 

der Index (100 bis 0) sowie das EEG-Stadium (A bis F1) aktualisiert, die jeweils 

aus der letzten 20 Sekunden-Epoche ermittelt worden waren. Im Statusfenster 

wurden zusätzlich der Elektromyogramm(EMG)-Index, die Ergebnisse der Elek-

trodentests und Informationen über erkannte Artefakte angezeigt. Hierzu zählten 

„Offset“ bei Verschiebungen der Grundlinie eines Kanals entlang der y-Achse, 

„Hohe IMP/EP“ bei Überschreitung der maximalen Grenzwerte der Impedanzen 

(IMP) oder Elektrodenpotentiale (EP), „50 Hz“ bei Wechselstromartefakten sowie 

„Störung“ bei anderen Störungen im EEG wie sie beispielsweise durch 

Hochfrequenzchirurgie hervorgerufen werden. Der EMG-Index reichte von 

0 (= keine Muskelaktivität) bis 100 (= sehr starke Muskelaktivität) und konnte 

auch aufgrund anderer Artefakte angezeigt werden. Alle zehn Minuten erfolgte 

der automatische Elektrodentest. Hierbei wurden die Impedanzen sowie 

Elektrodenpotentiale bestimmt und die Werte im Statusfenster angegeben. 

Zeitgleich wurde im Orginal-EEG eine Nulllinie mit dem Hinweis „Test“ 

angezeigt. 

Über das Diagrammfenster konnte zwischen der Darstellung des Cerebrogramms, 

des Leistungsspektrums, der relativen Bandleistungen und dem Frequenzverlauf 

für Median und Eckfrequenz gewählt werden. 

Zu den Zeitpunkten „Hautschnitt“ sowie „Operationsende“ konnten Marker 

gesetzt werden.  

Die dazugehörige Software NarcoWin (Version 1.1) wurde für die visuelle 

Auswertung des Roh-EEGs am Computer herangezogen.  

3.3 Atemgasmonitor 

Zur Bestimmung der Atemfrequenz, des endexspiratorischen Karbondioxid-

partialdrucks (pCO2), sowie inspiratorischen und endexspiratorischen 

Isoflurankonzentrationen wurde der Monitor PM 8050 (Dräger, Lübeck) 

verwendet. Über einen flexiblen Kunststoffschlauch wurde die Verbindung 

zwischen dem Y-Schlauch am Patienten und dem Gerät hergestellt. Über diesen 

wurde ständig ein geringer Teil des Atemgases abgesaugt und analysiert. Die 
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Bestimmung des pCO2 und der Isoflurankonzentrationen erfolgte mittels 

Infrarotabsorptionsspektrometrie. 

3.4 Überwachung des Herz-Kreislaufsystems 

Zur Überwachung der Herz-Kreislauffunktionen (Herzfrequenz (HF), Blutdruck, 

arterielle Sauerstoffsättigung (SpO2)) fand der Monitor CARDIOCAP II (Datex-

Ohmeda, Freiburg) Verwendung.  

Die Erfassung der Herzfrequenz [Schläge/min] erfolgte über ein angeschlossenes 

Elektrokardiogramm (EKG) (Datex-Ohmeda, Freiburg). Die drei farblich 

gekennzeichneten Elektroden wurden mittels Krokodilklemmen am narkotisierten 

Tier befestigt. Hierzu wurde die rote und gelbe Elektrode rechts und links kaudal 

des Ellbogens und die grüne Elektrode an der linken Brustwand angebracht. Für 

die graphische Darstellung auf dem Monitor wurde die zweite Ableitung nach 

Einthoven gewählt. 

Für die direkte Blutdruckmessung wurde der Druckwandler MX960 LogiCal
®

 

(Medex Medical GmbH & Co. KG, Klein-Winternheim, Deutschland) verwendet. 

Dieser wurde auf Herzhöhe des Patienten an einem Infusionsständer angebracht 

und vor Beginn der Messungen ein Nullabgleich gegen die Atmosphäre 

durchgeführt. An den arteriellen Zugang wurde der mit physiologischer 

Kochsalzlösung gespülte und entlüftete Druckdom angeschlossen. An diesen war 

patientenfern ein Beutel mit 500 ml isotoner Kochsalzlösung 0,9 % (Braun, 

Melsungen) angeschlossen, auf die mit einer aufblasbaren Manschette ein Druck 

von rund 300 mmHg ausgeübt wurde. Auf dem Monitor CARDIOCAP II wurden 

kontinuierlich die arterielle Druckkurve, der systolische, diastolische und mittlere 

Blutdruck dargestellt.  

Das angeschlossene Pulsoximeter der Firma Datex-Ohmeda (Freiburg) diente der 

kontinuierlichen Bestimmung der arteriellen Sauerstoffsättigung. Diese erfolgte 

mittels spektralphotometrischer Messung des durch das durchblutete Gewebe 

gesandten, absorbierten roten und infraroten Lichtes. Der Klemmsensor wurde in 

der Maulspalte, an der Zunge oder am Flotzmaul angebracht. 
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4 Methoden 

4.1 Narkoseeinleitung und Operationsvorbereitung 

Zur Sedation wurde jedem Tier Xylazin (Xylazin 2%, Serumwerk Bernburg AG) 

in einer Dosierung von 0,2 mg/kg in den Musculus triceps brachii injiziert. Die 

Phase der Sedierung wurde nach etwa fünf Minuten zum Legen eines 

Venenverweilkatheters der Größe G22 oder G20 (VASUFLO
®
-T, Dispomed Witt 

oHG, Gelnhausen) in eine Ohrvene genutzt. Zehn Minuten nach Xylazingabe 

erhielt der Patient Ketamin (Ursotamin
®

 10 %, Serumwerk Bernburg AG, 

2,0 mg/kg) intravenös über den Katheter. Die Lagerung auf dem Operationstisch 

erfolgte abhängig von der Indikation des Eingriffs in Rücken- oder Seitenlage. 

Sobald die Maulspannung ausreichend nachließ, wurde das Kalb mit einem Tubus 

adäquater Größe intubiert und an das Narkosegerät angeschlossen. Der Isofluran-

verdampfer wurde zum rascheren Anfluten auf 4 Vol% aufgedreht, bis der Bulbus 

ventral rotierte, dann konnte er wieder auf 2 Vol% zurückgedreht werden. 

Währenddessen wurde der arterielle Zugang für die direkte Blutdruckmessung 

gelegt. Hierfür wurde ein Venenverweilkatheter der Größe G22 (VASUFLO
®
-T, 

Dispomed Witt oHG, Gelnhausen), nach Scheren und Desinfektion des Ohres, in 

die Arteria auricularis caudalis gelegt und an den Blutdruckwandler ange-

schlossen. Im Folgenden wurde das Operationsfeld chirurgisch vorbereitet und die 

präoperative Körpertemperatur rektal gemessen. Am Ende der Aufwach- bzw. 

Vertiefungsphase erfolgte die zweite Temperaturmessung. 

Jeder Patient wurde vor seiner Operation antibiotisch (Procain-Penicillin, 

Cefquinomsulfat oder Amoxicillin) und analgetisch (Flunixin-Meglumin oder 

Meloxicam) versorgt. Des Weiteren wurde vor der Narkoseeinleitung das 

Allgemeinbefinden sowie das Sensorium der Tiere als ungestört (Gruppe 1) oder 

gestört (Gruppe 2) eingestuft. Hierfür wurde auf Haltung, Verhalten sowie 

Lidreflex, Blinzelreflex und Ohrabwehr geachtet. 

4.2 Narkoseerhaltung 

Zur Erhaltung der Anästhesie während der Operation wurde die Isofluran-

konzentration anhand der erhobenen klinischen Parameter gesteuert. Der 

Narcotrendindex wurde lediglich im Narkoseprotokoll erfasst, hatte jedoch keinen 

Einfluss auf die Anästhetikagabe. Der zugeführte Sauerstoffflow betrug 10 –

 20 ml/kg pro Minute. Die Tiere atmeten während der gesamten Zeit selbstständig. 
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Sie wurden nicht künstlich beatmet. 

4.3 Ausleitungs- und Vertiefungsphase 

Nach dem letzten Hautheft wurde Isofluran am Verdampfer vollständig abgedreht 

und die Aufwachphase solange überwacht und dokumentiert, bis die Tiere erste 

Anzeichen von Wachheit zeigten. Hierzu zählten große Bewegungen mit den 

Gliedmaßen, Heben des Kopfes, Schlucken sowie spontaner Lidschluss. Erfolgte 

vor oder zu diesem Zeitpunkt keine Indexberechnung aufgrund eines zu hohen 

EMG-Einflusses, so wurde die Messung beendet. Bei Tieren, bei denen während 

der Operation Befunde erhoben wurden, die eine sehr schlechte bis infauste 

Prognose nahelegten, wurde der Verdampfer maximal (auf 5 Vol%) aufgedreht 

und die Vertiefung der Narkose über fünfzehn Minuten verfolgt. Im Anschluss 

daran erfolgte für die Euthanasie die Gabe von mindestens 45 mg Pentobarbital 

pro kg Körpermasse streng intravenös (Release
®
, WDT, Garbsen, Deutschland). 

4.4 Anwendung des Narcotrend 

Das Alter der Patienten wurde am Narcotrend für alle Probanden mit drei Jahren 

angegeben, um bei allen Tieren die Anwendung desselben Algorithmus zu 

garantieren und somit einen besseren Vergleich der Daten zu ermöglichen. Es 

wurde eine Zweikanalmessung durchgeführt. Hierfür wurde die Referenzelektrode 

auf dem Nasenrücken angebracht, die erste Ableitung (1a, 1b) lag über der 

rechten, die zweite (2a, 2b) über der linken Gehirnhälfte. Die Arbeitselektroden 

wurden jeweils 2 cm paramedian gesetzt: 1a und 2a jeweils zwei Zentimeter 

kaudal des medialen Augenwinkels und 1b und 2b sechs Zentimeter weiter kaudal 

auf der Stirn. Die Referenzelektrode wurde in einem Abstand von sechs 

Zentimetern zur rostralen Arbeitselektrode median auf dem Nasenrücken 

angebracht. Die Positionierung der Elektroden zeigt Abbildung 1. Für die 

Platzierung der Elektroden wurden mit Hilfe des Hautklammergeräts Manipler
®

 

AZ-35W (Braun Surgical SA, Rubi, Spain) Klammern (6,9 x 3,6 mm) an den 

beschriebenen Stellen in die Haut gesetzt. An diese wurde dann jeweils ein mit 

einer Krokodilklemme versehenes Kabel angesetzt. Erfolgte keine Index-

berechnung durch den Narcotrend, so wurden alle Elektroden überprüft und 

gegebenenfalls eine neue Messung gestartet. 
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Abbildung 1: Positionierung der EEG-Elektroden. 

(Ref =  Referenzelektrode; 1a, 1b = Arbeitselektroden der ersten Ableitung; 

2a, 2b = Arbeitselektroden der zweiten Ableitung) 

 

4.5 Datenerfassung 

Währender der Operation erfolgte alle fünf Minuten die Erfassung folgender 

Daten in einem Narkoseprotokoll (siehe Abbildung 12 im Anhang): Uhrzeit, 

Narcotrendindex, inspiratorische und endexspiratorische Isoflurankonzentration, 

pCO2 in der Ausatemluft, Atemfrequenz, Herzfrequenz, systolischer, diastolischer 

sowie mittlerer Blutdruck, SpO2, Bulbusstand, sowie die Reaktionen auf das 

Testen von Lidreflex, Kornealreflex und Zwischenklauenreflex. Zusätzlich wurde 

auf Anzeichen für Wachheit geachtet. Hierrunter fielen Schlucken, spontaner 

Lidschluss sowie große Bewegungen mit Gliedmaßen und Kopf. Für das 

Überprüfen von Lid- und Kornealreflex wurde ein mit Augensalbe befeuchtetes 

Wattestäbchen benutzt. Der Zwischenklauenreflex wurde mit Hilfe einer Pean-

Arterienklemme überprüft. Der Bulbusstand wurde in folgende Kategorien 

eingeteilt: ventral, ventral-zentral, zentral, zentral-temporal, temporal und zentral-

dorsal. 

Eine zusätzliche Datenerfassung erfolgte präoperativ, zum Zeitpunkt des Haut-

schnitts sowie bei Manipulation am Peritoneum (Durchtrennen zum Eröffnen der 

Bauchhöhle und Nähen zum Verschluss der Bauchhöhle). Nach dem letzten 

1a 

2a 

1b 

2b 

Ref 
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Hautheft wurde das Isofluran abgedreht und die Aufwachphase überwacht. 

Hierbei wurde das Dokumentationsintervall auf eine Minute verkürzt. Bei den 

Tieren, die während der Operation euthanasiert werden mussten, wurde Isofluran 

am Verdampfer vollständig aufgedreht (5 Vol%) und die „Vertiefungsphase“ über 

einen Zeitraum von 15 min ebenfalls jede Minute erfasst, bis die Gabe von 

Pentobarbital erfolgte. 

4.6 Klinische Bestimmung der Narkosetiefe 

Anhand der erhobenen klinischen Parameter wurde eine Einteilung in vier Stadien 

vorgenommen: „wach“ (0), „zu flach“ (1), „adäquate Tiefe“ (2) und „zu tief“ (3). 

Abbildung 2 zeigt das dazugehörige Fließdiagramm zur klinischen Ermittlung der 

Narkosetiefe. 

Zeitpunkte, zu denen der Bulbus dorsal rotiert war, wurden von der Auswertung 

ausgeschlossen, da hier kein eindeutiges Stadium zuzuordnen war. 
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Zeichen für 
Wachheit

Bulbus

Korneal-
reflex

Lidreflex

Reaktion auf 
chir. Reiz

Zwischen-
klauenreflex

negativ

nein/
nicht 

gemessen

nein

positiv

negativ

negativ

ja

ja

positiv

positiv

zentral

„wach“
(Stadium 0)

„zu flach“
(Stadium 1)

„zu tief“
(Stadium 3)

„chirurgisch 
tolerant“

(Stadium 2)
v, v-z,
z-t, t

 

Abbildung 2: Darstellung des Entscheidungsbaums zur klinischen 

Ermittlung der Narkosetiefe. 

Zeichen für Wachheit: Schlucken, spontaner Lidschluss, große Bewegungen 

von Gliedmaßen oder Kopf; Reaktion auf chirurgischen (chir.) Reiz wurde 

nur zu den Zeitpunkten Hautschnitt, Durchtrennen des Peritoneums sowie 

Naht des Peritoneums erfasst; Bulbusstand: v = ventral, v-z = ventral bis 

zentral, z-t = zentral bis temporal, t = temporal 
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4.7 Datenauswertung 

Die Untersuchungen und deren Auswertungen wurden von ein und derselben 

Person durchgeführt. 

4.7.1 Datenauswahl 

Für die Auswertung der während der Operationen und der folgenden Aufwach- 

und Vertiefungsphasen erhobenen Daten wurden lediglich Tiere mit ungestörtem 

Allgemeinbefinden und Sensorium herangezogen. Zusätzlich wurden gesondert 

die Vertiefungsphasen ausgewertet. Hierbei wurden auch Tiere mit beein-

trächtigtem Allgemeinbefinden oder Sensorium betrachtet. 

4.7.2 Visuelle EEG-Auswertung 

Bei allen Tieren beider Gruppen wurde zu jedem Zeitpunkt der Datenerfassung 

der Roh-EEG-Abschnitt der ersten Ableitung, der zur Berechnung des 

Narcotrendindex als Grundlage diente, visuell beurteilt. Hierzu wurde das mit 

dem Gerät mitgelieferte Programm NarcoWin (Version 1.1) verwendet. Folgende 

Kriterien wurden dabei berücksichtigt: Abweichungen der Grundlinie, 50 Hz-

Störungen sowie Burst-Suppressionen. Es konnten keine 50 Hz-Störungen 

beobachtet werden. Bei 16 EEG-Abschnitten zeigte sich eine Abweichung der 

Grundlinie. Diese Datensätze wurden aus der Auswertung ausgeschlossen. Burst-

Suppressions-Muster sind durch isoelektrische EEG-Abschnitte gekennzeichnet, 

die von hochfrequenten Anteilen durchbrochen werden. Ein Beispiel hierzu findet 

sich im Anhang in Abbildung 13. Da bekannt ist, dass Burst-Suppressionen unter 

Isofluraneinfluss in tiefen Anästhesiephasen auftreten und diese im Algorithmus 

des Narcotrend berücksichtigt sind, wurden diese Zeitpunkte lediglich erfasst, 

jedoch nicht von der allgemeinen Auswertung ausgenommen. Im Folgenden 

wurden sie gesondert auf eine korrekte Einordnung in Narcotrendstadien 

ausgewertet. Als richtig wurde eine Einordnung von EEG-Epochen mit Burst-

Suppressions-Mustern in die Stadien F1 bis E2 (Index 0 – 19) und von EEG-

Epochen ohne Burst-Suppressions-Muster in die Stadien E1 bis A (20 – 100) 

gewertet. 

4.7.3 Statistik 

Die statistische Auswertung der erhobenen Daten erfolgte mit Excel (Version 

2007, Microsoft, Seattle, USA), Statcalc (www.epiinfo.com) und PASW Statistics 

(Version 18, SPSS Inc., Chicago, USA). Als Signifikanzniveau wurde α = 0,05 

http://www.epiinfo.com/


III Patientengut, Material und Methoden 31 

zugrunde gelegt. 

Die Ermittlung von Mittelwerten, Standardabweichungen sowie Minimal- und 

Maximalwerten erfolgte in Excel. Im Folgenden wird die Schreibweise 

„Mittelwert (± Standardabweichung)“ verwendet. Auch die Auswertung der 

korrekten Einordnung von EEG-Abschnitten mit und ohne Burst-Suppressions-

Mustern wurde in Excel durchgeführt. Hierfür wurde eine Vier-Felder-Tafel 

erstellt. Der Chi-Quadrat-Test zur Überprüfung auf einen signifikanten Unter-

schied bezüglich korrekter Einordnung zwischen den Gruppen 1 und 2, und der 

zweiseitige Test nach Fischer, bei kleinen erwarteten Häufigkeiten, erfolgte in 

Statcalc. Die übrige Auswertung wurde in PASW Statistics (Version 18) 

vorgenommen. 

Die Daten wurden visuell auf Normalverteilung untersucht. Falls die Daten nicht 

normal verteilt waren wurden nicht parametrische Tests verwendet. Der 

Narcotrendindex beruht auf keiner linearen Skala (WEBER et al., 2005b), 

weshalb nicht parametrische Tests eingesetzt wurden. 

Die Überprüfung auf signifikante Unterschiede verschiedener Parameter 

(Narcotrendindex, Herzfrequenz, mittlerer Blutdruck, endexspiratorische 

Isoflurankonzentration) bei den verschiedenen Narkosestadien erfolgte mittels 

Kruskal-Wallis-Test als übergeordnetem Gruppentest. Falls dieser statistisch 

signifikant war, wurden anschließend mit dem Mann-Whitney-U-Test je zwei 

Narkosestadien bezüglich des jeweiligen Parameters auf einen statistischen 

signifikanten Unterschied untersucht. Aufgrund der angewandten Bonferroni-

Korrektur ergibt sich ein korrigiertes Signifikanzniveau von 0,0083 (= 0,05/6). 

Zusätzlich wurden die Mediane und Quartile ermittelt. Diese werden in folgender 

Schreibweise angegeben: „Median (25% Quartil; 75 % Quartil)“. Die graphische 

Darstellung zwischen den einzelnen Parametern und den Narkosestadien erfolgte 

mittels Boxplots. Die „Box“ reicht vom unteren bis zum oberen Quartil und 

enthält somit 50 % der Werte. Innerhalb dieser ist noch in Form einer horizontalen 

Linie der Median dargestellt. Die Länge der Box entspricht dem 

Interquartilsabstand. Die angrenzenden T-Balken („Whiskers“) vermitteln einen 

Eindruck, wie weit die restlichen 50 % der Werte streuen. Ihre Länge entspricht 

maximal dem 1,5-fachen Interquartilsabstand. Werte, die außerhalb liegen, 

werden als Ausreißer (1,5 bis 3 facher Interquartilsabstand) mit einem Kreis und 

als Extremwerte (größer dreifacher Interquartilsabstand) mit einem Stern 
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dargestellt (KUCKARTZ et al., 2010). 

Diese Tests wurden ebenfalls bei der Überprüfung auf signifikante Unterschiede 

des Narcotrendindex bei der Reaktion auf chirurgischen Stimulus eingesetzt. Der 

Mann-Whitney-U-Test diente, pro chirurgischem Reiz, zur Überprüfung auf einen 

Unterschied zwischen Tieren, die eine Reaktion zeigten und solchen, die dies 

nicht taten. Innerhalb der Tiere mit Reaktionen beziehungsweise ohne Reaktionen 

wurde ebenfalls auf Unterschiede im Narcotrendindex zwischen den einzelnen 

chirurgischen Stimuli mittels Kruskal-Wallis-Test untersucht. Auch hier erfolgte 

eine Ermittlung der Mediane und Quartile sowie die graphische Darstellung 

mittels Boxplots. Für den Nachweis eines Zusammenhangs zwischen Narcotrend-

index und endexspiratorischer Isoflurankonzentration wurde eine Korrelation nach 

Spearman durchgeführt und der Korrelationskoeffizient r berechnet. Die 

Darstellung erfolgte mittels Punktediagramm. 

Die graphische Darstellung des Zusammenhangs zwischen intraoperativ erfasstem 

mittleren Blutdruck und Zeitdauer nach Xylazinapplikation erfolgte ebenfalls 

mittels eines Punktediagramms. Zusätzlich wurde in die Punktewolke eine 

Anpassungslinie (Loess-Linie) gelegt, um einen linearen oder quadratischen 

Trend zu erkennen. 
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IV ERGEBNISSE 

1 Patienten mit ungestörtem Allgemeinbefinden und 

Sensorium (Gruppe 1) 

Bei 33 (79 %) von insgesamt 42 Kälbern, davon 20 (61 %) weibliche und 13 

(39 %) männliche Tiere, wurde präoperativ das Allgemeinbefinden, sowie das 

Sensorium, als ungestört eingestuft. Eines der weiblichen Tiere musste zweimal 

operiert werden und wurde daher mit beiden Narkosen in die Studie 

aufgenommen. Tabelle 2 im Anhang gibt einen Überblick über Alter, Körper-

masse, Geschlecht sowie erhobene Befunde und Dauer des operativen Eingriffs 

bei den Tieren der Gruppe 1. Bei 30 Tieren erfolgte der chirurgische Eingriff 

aufgrund einer Indikation im Bauchraum, davon waren 27 Nabelerkrankungen, 

zwei diagnostische Laparotomien (Tiere Nummer 5 und 28) sowie eine Hernia 

inguinalis (Tier Nummer 21). Bei den restlichen drei Tieren handelte es sich um 

orthopädische Fälle. Die Tiere waren zum Zeitpunkt der Operation zwischen zwei 

und 136 Tagen alt. Das arithmetische Mittel (± Standardabweichung) lag bei 

33,8 Tagen (± 31,3). Die Körpermasse variierte von 29,0 bis 132,0 kg. Im 

Durchschnitt wogen die Kälber 66,8 kg (± 22,1). Die Zeitspanne zwischen 

Xylazinapplikation und Hautschnitt betrug durchschnittlich 50 min. Das 

Minimum lag bei 33 min, bei den beiden Tieren mit Femurfraktur dauerte dies mit 

93 und 104 min am längsten, da sie vor Operationsbeginn noch in Narkose 

geröntgt wurden. Im Durchschnitt gingen die Operationen über einen Zeitraum 

von 79 min, die kürzeste dauerte 17 min, die längste 179 min. 

Drei Tiere mussten während der Operation aufgrund der dabei erhobenen Befunde 

euthanasiert werden. Hierbei handelte es sich um eine Omphaloarteriitis, die bis 

an die Aorta reichte und daher nicht vollständig reseziert werden konnte, eine 

nicht vollständig reponierbare Femurfraktur sowie ein Tier mit generalisierter 

fibrinöser Peritonitis. Bei den restlichen 30 Tieren dauerte die Aufwachphase 

durchschnittlich 16 min (± 9).  

Bei 19 der 33 Tiere konnte ein arterieller Zugang gelegt und eine direkte 

Blutdruckmessung durchgeführt werden.  

Die geringste gemessene rektale Körpertemperatur am Ende der Aufwach- bzw. 
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Vertiefungsphase lag bei 36,0 °C. Durchschnittlich sank sie zwischen 

Vorbereitung zur Narkose und Ende der Datenerfassung um 1,4 °C ab. 

1.1 Atmung und Atemgaswerte 

Während der Operation lag die inspiratorische Isoflurankonzentration 

durchschnittlich bei 0,87 Vol% (± 0,23), bei der endexspiratorischen Isofluran-

konzentration lag dieser Wert bei 0,80 Vol% (± 0,21). Das arithmetische Mittel 

des pCO2 lag bei 34,8 mmHg (± 7,9). Die Atemfrequenz betrug durchschnittlich 

47/min (± 8). 

1.2 Herzfrequenz, Blutdruck und arterielle Sauerstoffsättigung 

Die mittlere Herzfrequenz lag intraoperativ bei 86 Schläge/min (± 16). Bei dem 

Blutdruck verhielt es sich wie folgt: systolischer Blutdruck 102 mmHg (± 24), 

diastolischer Blutdruck 59 mmHg (± 28), mittlerer Blutdruck 76 mmHg (± 27). 

Die arterielle Sauerstoffsättigung lag im Durchschnitt bei 98,5 %. Der Wert 

schwankte im Bereich von 90 bis 100 %. 

2 Patienten mit gestörtem Allgemeinbefinden oder 

Sensorium (Gruppe 2) 

Tabelle 3 im Anhang gibt eine Übersicht über Alter, Körpermasse, Geschlecht, 

erhobene Befunde und Dauer der operativen Eingriffe bei den zehn Kälbern mit 

gestörtem Allgemeinbefinden oder Sensorium. Es handelte sich hierbei um 

jeweils 5 männliche und weibliche Kälber. Das Alter zum Zeitpunkt der 

Operation variierte von zwei Tagen beim jüngsten und 68 Tagen beim ältesten 

Tier. Im Durchschnitt betrug das Alter 20,0 Tage (±20,8). Die Körpermasse der 

Patienten lag in einem Bereich von 41,0 bis 104,0 kg. Das arithmetische Mittel 

betrug 56,6 kg (±17,9). 

Die Tiere dieser Gruppe wurden für Auswertungen intraoperativ erfasster Daten 

nicht herangezogen. Sie wurden jedoch für die Auswertung der Vertiefungsphase 

sowie die visuelle EEG-Auswertung berücksichtigt. Lediglich eines der Tiere 

(Nummer 2) musste nicht aufgrund der erhobenen Befunde euthanasiert werden 

und wurde damit nur für die visuelle Auswertung mit ausgewertet. 

Die Operationsdauer lag durchschnittlich bei 29 min (± 30). Bei den neun Tieren, 

die euthanasiert werden mussten, lag das Maximum bei 34 min, bei dem Tier 
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Nummer 2 dauerte die Operation hingegen 111 min. 

Die innere Körpertemperatur betrug präoperativ im Durchschnitt 38,5 °C, 

postoperativ 38,2 °C. Die minimale gemessene Temperatur am Ende der 

Aufwach- bzw. Vertiefungsphase lag bei 36,4 °C. 

2.1 Atmung und Atemgaswerte 

Während der Operation lag die inspiratorische Isoflurankonzentration 

durchschnittlich bei 0,80 Vol% (± 0,27), bei der endexspiratorischen Isofluran-

konzentration lag dieser Wert bei 0,70 Vol% (± 0,24). Das arithmetische Mittel 

des pCO2 lag bei 48,0 mmHg (± 18,8). Der Wert schwankte zwischen 16 und 

99 mmHg. Die Atemfrequenz betrug durchschnittlich 49/min (± 12). 

2.2 Herzfrequenz, Blutdruck und arterielle Sauerstoffsättigung 

Die mittlere Herzfrequenz lag intraoperativ bei 91/min (± 19). Bei dem Blutdruck 

verhielt es sich wie folgt: systolischer Blutdruck 84 mmHg (± 16), diastolischer 

Blutdruck 40 mmHg (± 8), mittlerer Blutdruck 57 mmHg (± 11). 

Die arterielle Sauerstoffsättigung lag im Durchschnitt bei 95,4 %. Der Wert 

schwankte im Bereich von 40 bis 100 %. 
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3 Narcotrendindex und klinischer Score 

3.1 Operation, Aufwach- und Vertiefungsphase (Gruppe 1) 

Bei den Tieren mit ungestörtem Allgemeinbefinden und Sensorium wurden die 

Narcotrendindices präoperativ, während der Operation, sowie in der 

anschließenden Aufwach- oder Vertiefungsphase mit den klinisch ermittelten 

Stadien verglichen. Der Median (25 % Quartil; 75 % Quartil) des Narcotrend-

index lag bei den klinisch als „wach“ eingestuften Tieren bei 25 (23; 27) bei den 

„zu flach“ anästhesierten Kälbern bei 26 (24; 27), bei den Tieren die sich im 

Stadium der chirurgischen Toleranz befanden bei 25 (24; 28) und bei den 

Patienten, deren Narkose „zu tief“ war, bei 25 (23; 32). Es lässt sich kein 

signifikanter Unterschied im Narcotrendindex zwischen den verschiedenen 

Narkosestadien nachweisen. Abbildung 3 zeigt die Verteilung der Narcotrend-

indices auf die jeweils zeitgleich ermittelten klinischen Stadien. 

 

Abbildung 3: Zusammenhang zwischen Narcotrendindex und zeitgleich 

erhobenem klinischen Score (0 = „wach“; 1 = „zu flach“; 2 = „adäquat“; 

3 = „zu tief“) während der gesamten Datenerfassung in Gruppe 1, dargestellt 

mittels Boxplots. 
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3.2 Vertiefungsphase (Gruppe 1 und 2) 

Die Phase der Vertiefung der Narkose wurde bei allen Tieren aus den Gruppen 1 

und 2, die aufgrund während der Operation erhobener Befunde euthanasiert 

werden mussten, verglichen. Abbildung 4 zeigt die entsprechende Grafik. Die 

jeweiligen Mediane liegen bei 20 (12; 21) für „zu flach“, 23 (21; 25) für 

„adäquat“ sowie 17 (9; 25) für „zu tief“. Auch hier konnte kein signifikanter 

Unterschied im Narcotrendindex zwischen den Stadien nachgewiesen werden.  

 

Abbildung 4: Narcotrendindex und klinisch ermitteltes Narkosestadium in 

der Vertiefungsphase bei Tieren aus Gruppe 1 und 2, dargestellt mittels 

Boxplots (1 = „zu flach“; 2 = „adäquat“; 3 = „zu tief“). 
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4 Narcotrendindex und Isoflurankonzentration 

Bei der Gegenüberstellung von Narcotrendindex und der zum jeweiligen 

Zeitpunkt erhobenen endexspiratorischen Isoflurankonzentration konnte in der 

Gruppe 1 eine schwache signifikante Korrelation nach Spearman (r = 0,309) 

ermittelt werden. Die Verteilung der Wertepaare ist in Abbildung 5 dargestellt. 

Die Wertepaare Narcotrendindex und endexspiratorische Isoflurankonzentration 

für die Vertiefungsphase (Tiere der Gruppe 1 und Gruppe 2) sind in Abbildung 6 

dargestellt. Auch hier ergab sich eine schwache signifikante Korrelation nach 

Spearman (r = 0,317). 

 

Abbildung 5: Abhängigkeit zwischen Narcotrendindex und endexspirato-

rischer Isoflurankonzentration (Vol%) bei Kälbern mit ungestörtem 

Allgemeinbefinden und Sensorium (Anzahl (n) = 1177 Wertepaare (unter-

schiedliche Anzahl an Wertepaaren pro Tier)). 
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Abbildung 6: Abhängigkeit zwischen Narcotrendindex und endexspirato-

rischer Isoflurankonzentration (Vol%) bei Kälbern während der 

Vertiefungsphase in Gruppe 1 und 2 (n = 156 Wertepaare (unterschiedliche 

Anzahl an Wertepaaren pro Tier)). 
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5 Narkosestadium und Isoflurankonzentration 

Die Isoflurankonzentration innerhalb der jeweiligen klinisch ermittelten 

Narkosestadien in Gruppe 1 sind in Abbildung 7 dargestellt. Die Mediane 

verteilen sich wie folgt: „wach“ 0,3 (0,3; 0,4), „zu flach“ 0,6 (0,3; 0,9), „adäquat“ 

0,6 (0,4; 0,8), „zu tief“ 0,7 (0,6; 0,9). Abgesehen von den Stadien 1 und 2 

unterscheiden sich alle anderen Stadien statistisch signifikant (p < 0,001). 

 

Abbildung 7: Höhe der endexspiratorischen Isoflurankonzentration bei 

verschiedenen Narkosestadien in Gruppe 1, dargestellt mittels Boxplots 

(0 = „wach“; 1 = „zu flach“; 2 = „adäquat“; 3 = „zu tief“). 
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6 Reaktion auf chirurgischen Reiz 

Zum Zeitpunkt des Hautschnittes sowie bei Manipulation am Peritoneum wurde 

gesondert auf Schmerzreaktionen geachtet. Hier wurden sowohl Zuckungen im 

Bereich von Haut und Muskulatur, als auch Bewegungen von Gliedmaßen als 

positive Schmerzreaktion gewertet. Abbildung 8 zeigt sowohl für Tiere mit als 

auch ohne Reaktion die Verteilung der Narcotrendindices auf die jeweiligen 

chirurgischen Reize. 

 

Abbildung 8: Vergleich des Narcotrendindex mit Schmerzreaktion auf 

verschiedene chirurgische Reize (Haut = Hautschnitt, Peritoneum 1 = 

Durchtrennen des Peritoneums beim Eröffnen der Bauchhöhle, Peritoneum 2 

= Nähen des Peritoneums) Schmerzreaktion: nein = keine Reaktion, ja = Tier 

bewegt die Gliedmaßen oder zeigt Muskelzuckungen im Bereich der 

Schnittlinie. Darstellung mittels Boxplots. 

 

Bei der Durchtrennung der Haut wurden 34 Zeitpunkte erfasst, da bei dem Kalb, 

bei dem eine Tenotomie durchgeführt wurde, an beiden Vordergliedmaßen jeweils 

ein Hautschnitt erfolgte. Insgesamt reagierten zwei Tiere (5,9 %) auf diesen Reiz. 

Das arithmetische Mittel des Narcotrendindex betrug 27 bei den Tieren, die eine 

Reaktion zeigten gegenüber 24 bei Tieren, die keine Reaktion zeigten. 
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Insgesamt reagierten die Tiere in 8,8 % der Fälle mit einer Abwehrbewegung auf 

Manipulation am Peritoneum. Beim Eröffnen des Peritoneums zeigten drei Tiere 

(10 %) eine Reaktion auf den Schmerzreiz. Da bei den drei orthopädischen Fällen 

keine Manipulation am Peritoneum stattfand, wurden hier insgesamt lediglich 30 

Werte ermittelt. Der Narcotrendindex lag im Mittel bei den Tieren mit Schmerz-

reaktion bei 25. Im Gegensatz dazu lag er bei den restlichen Tieren bei 26. 

Zum Zeitpunkt des Bauchhöhlenverschlusses zeigten 7,4 % der Tiere eine 

Reaktion auf die Manipulation am Peritoneum. Bei sechs Tieren konnte dieser 

Wert aus folgenden Gründen nicht erfasst werden: drei orthopädische Fälle, zwei 

Tiere wurden während der Operation euthanasiert, eine Messung musste während 

der Operation abgebrochen werden, da der Narcotrendmonitor die Fehlermeldung 

„Offset“ zeigte und auch nach einem Neustart des Geräts keinen Index mehr 

berechnete. Das arithmetische Mittel des Narcotrend betrug 29 bei den Tieren, die 

eine Reaktion zeigten gegenüber 26 bei Tieren, die keine Reaktion zeigten. 

Innerhalb der drei Gruppen konnte kein signifikanter Unterschied im 

Narcotrendindex zwischen den Tieren, die keine oder eine Reaktion zeigten, 

nachgewiesen werden. Anzahl erhobener Werte pro chirurgischem Reiz, 

prozentualer Anteil an Abwehrbewegungen sowie Mediane der jeweiligen 

Narcotrendindices finden sich in Tabelle 4 im Anhang. 
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7 Blutdruck und Herzfrequenz 

Für die Auswertung wurde nur der mittlere Blutdruck (MBD) herangezogen. Die 

Darstellung der Höhe des MBD innerhalb der verschiedenen Narkosestadien 

findet sich in Abbildung 9. Der Median lag für das Stadium 0 bei 101 (86; 122), 

für das Stadium 1 bei 76 (59; 94), für das Stadium 2 bei 87 (64; 103) und für das 

Stadium 3 bei 89 (59; 104). Lediglich Stadium „wach“ unterschied sich statistisch 

signifikant von den Stadien 1 – 3. Zwischen den restlichen Narkosestadien konnte 

kein statistisch signifikanter Unterschied festgestellt werden. 

Den zeitlichen Verlauf des intraoperativ gemessenen mittleren Blutdrucks nach 

Xylazingabe zeigt Abbildung 10. Bei der Anpassungslinie nach Loess konnte 

weder ein linearer noch ein quadratischer Trend festgestellt werden. 

 

 

Abbildung 9: Darstellung des mittleren Blutdrucks bei verschiedenen 

Narkosestadien in Gruppe 1 mittels Boxplots (0 = „wach“; 1 = „zu flach“; 

2 = „adäquat“; 3 = „zu tief“). 
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Abbildung 10: Verlauf des intraoperativ gemessenen mittleren Blutdrucks 

nach Xylazingabe mit Anpassungslinie nach Loess in Gruppe 1. Darstellung 

aller erfassten Werte bis 160 min nach Xylazingabe. (n = 338 Wertepaare 

(unterschiedliche Anzahl an Wertepaaren pro Tier))  

 

Abbildung 11 zeigt die Herzfrequenz zwischen den verschiedenen 

Narkosestadien. Der Median lag für „wach“ bei 80 (69; 94), für „zu flach“ bei 82 

(74; 92), für „adäquat“ bei 82 (76; 99) und für „zu tief“ bei 84 (78; 91). Es besteht 

kein statistisch signifikanter Unterschied zwischen den einzelnen Stadien. 
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Abbildung 11: Darstellung der Herzfrequenz bei verschiedenen 

Narkosestadien in Gruppe 1 mittels Boxplots (0 = „wach“; 1 = „zu flach“; 

2 = „adäquat“; 3 = „zu tief“). 

8 Erkennung von Burst-Suppressions-Mustern 

In Gruppe 1 traten in 1,6 % der betrachteten EEG-Abschnitte Burst-Suppressions-

Muster auf. In Gruppe 2 waren es 31,3 %. In den Tabellen 5 und 6 im Anhang 

sind deren Anzahl während der Operation und Aufwachphase sowie der 

Vertiefungsphase in den beiden Gruppen aufgelistet. Insgesamt traten 91,8 % der 

erhobenen Burst-Suppressions-Muster in der Vertiefungsphase und lediglich 

8,2 % während der Operation auf. EEG-Epochen mit Burst-Suppressionen waren 

in 83,5 % der Fälle korrekt eingeordnet (Sensitivität), ohne Burst-Suppressionen 

waren es 98,7 % (Spezifität). Insgesamt wurden 97,7 % der Werte richtig 

klassifiziert. 

Hinsichtlich der korrekten Einordnung von Abschnitten mit und ohne Burst-

Suppressions-Mustern konnte kein Unterschied zwischen den Gruppen mit 

ungestörtem und gestörtem Allgemeinbefinden und Sensorium festgestellt werden 

(p = 0,126). Die Anzahl der jeweiligen eingeordneten Epochen findet sich in 

Tabelle 7 im Anhang. 
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9 Fehlen von Werten 

Bei acht Tieren konnte die Messung aus unterschiedlichen Gründen nicht bis zum 

Eintreten erster Anzeichen für Wachheit (Stadium 0) verfolgt werden.  

Bei einem Tier zeigte der Narcotrend noch während der Operation aus 

unbekannter Ursache die Fehlermeldung „Offset“ an. Die Messung konnte nicht 

weitergeführt werden. Die Aufwachphase konnte bei sieben Tieren nicht 

vollständig erfasst werden. Ein Tier war zu schwer (132 kg) und schreckhaft, um 

es im Operationssaal aufwachen zu lassen, bei zwei weiteren musste aufgrund 

eines Notfalls die Messung abgebrochen werden und bei einem vierten Tier 

erfolgte keine Messung durch den Gaswertemonitor. Ein Kalb mit Femurfraktur 

wurde nach der Operation geröntgt, weshalb die Überwachung nicht fortgeführt 

werden konnte. Bei zwei Tieren wurde zum Zeitpunkt „wach“ kein 

Narcotrendindex mehr berechnet. Das Gerät zeigte jeweils erhöhte EMG-Werte 

an. 
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V DISKUSSION 

1 Diskussion der Methodik 

1.1 Patientengut 

Für die Untersuchung wurde auf das alltägliche Patientengut der Klinik für 

Wiederkäuer zurückgegriffen. Da es aufgrund des Charakters des Rindes möglich 

ist, können die meisten operative Eingriffe bei adulten Rindern lediglich unter 

Lokalanästhesie, also bei erhaltenem Bewusstsein durchgeführt werden 

(STÖBER, 1990). Auch wenn es bei bestimmten Indikationen möglich ist, 

Milchkälber und Jungrinder ausgebunden, unter Sedation und Lokalanästhesie, zu 

operieren (DIRKSEN, 2006), werden sie an der Klinik für Wiederkäuer unter 

Allgemeinanästhesie operiert. Somit wurden vor allem Kälber (Alter bis drei 

Monate) untersucht. Lediglich zwei Jungrinder waren in Gruppe 1. Weitere 

Jungrinder, die während dieses Zeitraums operiert werden mussten, wurden 

aufgrund einer zu großen Körpermasse von der Studie ausgeschlossen, da hier 

eine für Mensch und Tier sichere Aufwachphase im Operationssaal nicht 

gewährleistet werden konnte. 

Es ist jedoch sowohl beim Menschen (DAVIDSON et al., 2005) als auch bei 

Tieren (PETERSEN et al., 1964; KLEMM, 1969) bekannt, dass sich das EEG mit 

zunehmendem Alter verändert. Das Gehirn neugeborener Tiere ist weder von 

seiner Struktur, noch seiner Funktion vollständig entwickelt. Die Unreife der 

neuralen Strukturen zeigt sich auch im EEG (KLEMM, 1969). Bei jungen Tieren 

treten generell langsame Wellen mit hoher Amplitude auf. Mit der Zunahme des 

Alters werden die Aktivitäten hochfrequent (MYSINGER et al., 1985; 

KERSTEN, 1993). Bei Pferden konnte etwa ab einem Alter von 100 bis 

200 Tagen ein dem Erwachsenen ähnliches EEG abgeleitet werden (MYSINGER 

et al., 1985). Bei Hunden wurden sogenannte Junghundwellen bis zu einem Alter 

von 4 Monaten gefunden (KERSTEN, 1993). Beim Menschen zeigt sich ein 

adultes EEG erst ab einem Alter von 10 – 12 Jahren (KLEMM, 1969). Auch hier 

kommt es mit Zunahme des Alters zu einer Frequenzerhöhung der 

Hintergrundaktivität (DAVIDSON et al., 2005). Daher wurden für die 

Klassifizierung des Narcotrendindex altersspezifische Grenzwerte für Artefakte 

verwendet (SCHULTZ et al., 2003). Der Narcotrend ist momentan der einzige 
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kommerzielle Monitor zur Überwachung der Narkosetiefe, der das Alter des 

Patienten bei der Berechnung des Index berücksichtigt. Einzelheiten dazu, in 

welcher Form das Alter des Patienten im Algorithmus berücksichtigt wird, 

wurden jedoch nicht veröffentlicht (WEBER et al., 2005a). Des Weiteren 

klassifiziert das Gerät bei Kindern unter 12 Monaten nur unvollständig. Es werden 

nur die Stadien F0 und F1 erkannt. Um eine Klassifikation aller Stadien zu erhalten 

und die Auswertung mit demselben Algorithmus zu garantieren, wurde nach 

Rücksprache mit den Entwicklern des Narcotrend bei allen Tieren das Alter mit 

drei Jahren angegeben (persönliches Gespräch Professor A. Schultz, Hannover, 

05.10.2009). 

Da auch das Allgemeinbefinden einen Einfluss auf das EEG haben soll (BINNIE 

et al., 1982; SCHMIDT et al., 2008), wurden, abgesehen von der 

Vertiefungsphase, nur Tiere mit ungestörtem Allgemeinbefinden und Sensorium 

für die Auswertung herangezogen. 

1.2 Spontanatmung 

Die Tiere atmeten während der gesamten Narkose spontan. Im Gegensatz zur 

künstlichen Beatmung kann hier keine Normokapnie sichergestellt werden. Die 

erhobenen pCO2-Werte lagen in Gruppe 1 im Durchschnitt bei 35 mmHg, sie 

schwankten jedoch in einem Bereich von 14 bis 62 mmHg. Als physiologischer 

Bereich des paCO2 gelten 35 bis 45 mmHg. Liegt der paCO2 darunter oder 

darüber, spricht man Hypo- bzw. Hyperkapnie (GROS, 2005). 

Prinzipiell kann die endexspiratorische Kohlenstoffidoxidkonzentration zur 

Überprüfung einer ausreichenden Beatmung dienen, da sie nahezu der alveolären 

Konzentration und somit auch dem arteriellen CO2-Partialdruck entspricht 

(BYRNE, 2007). Voraussetzung hierfür ist, dass die Plateauphase ausreichend 

ausgebildet ist, da der endexspiratorische pCO2 an deren Ende gemessen wird 

(ALEF & OECHTERING, 1995). Es gibt jedoch auch Umstände, bei denen dies 

nicht der Fall ist. So wird bei einer hohen Atemfrequenz oder einem geringen 

Atemzugvolumen ein niedrigerer endexspiratorischer Wert gemessen (BYRNE, 

2007). Es ist bekannt, dass anästhesierte Wiederkäuer generell ein geringeres 

Atemzugvolumen aufweisen als andere Spezies (RIEBOLD, 1996). Auch speziell 

für narkotisierte Kälber ist beschrieben, dass diese bei erhaltener Spontanatmung 

in Rückenlage meist stark hypoventilieren (HALL & CLARKE, 2001). Weitere 
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Ursachen können Obstruktionen oder Bronchospasmen sein (WEINGARTEN, 

1990). Falsch niedrige Werte werden auch durch Fehler im System, wie 

beispielsweise wenn die Probenentnahme weit entfernt von den Atemwegen liegt 

oder die Gase dazu neigen, sich im Kreissystem zu mischen, gemessen (BYRNE, 

2007). In der vorliegenden Studie wurde der Schlauch für die Gasanalyse 

patientennah, am Ende des Y-Stücks, angebracht. Klappen im System sorgten für 

einen gerichteten Gasfluss.  

Eine weitere Voraussetzung für eine korrekte Messung ist, dass eine gemischte 

Probe von Alveolargas bis zur Probenentnahmestelle transportiert wird und dort 

ausreichend lange verbleibt, damit die CO2-Messung durchgeführt werden kann. 

Dies ist jedoch bei Neonaten sowie kleinen Kindern nicht der Fall, weshalb hier 

der endexspiratorische CO2-Wert deutlich und anscheinend unvorhersehbar vom 

arteriellen CO2-Partialdruck abweicht (GOOD, 1996). Auch BYRNE (2007) hält 

es für schwierig, aussagekräftige CO2-Messungen bei Kindern durchzuführen. 

Zusätzlich ist zu bedenken, dass die Voraussetzung dafür, dass der 

endexspiratorische CO2-Partialdruck dem paCO2 entspricht, ist, dass der pCO2 in 

den Alveolen und Kapillaren ausgeglichen ist (HASKINS, 1996). 

Auch Anästhetika können den paCO2 beeinflussen. So führt Ketamin bereits in 

niedrigen Konzentrationen, bei grundsätzlich erhaltener Spontanatmung, zu 

Atemdepression, welche sich als Hyperkapnie manifestiert (ENGELHARD & 

WERNER, 2009). Auch beim Einsatz von Xylazin wird die Atmung nach einer 

anfänglichen Vertiefung im Folgenden bei geringerer Frequenz oberflächlicher 

(GORANOV et al., 1971). 

Die minimal gemessene SpO2 lag mit 90 % deutlich über der physiologischen 

Untergrenze von 80 % (HASKINS, 1996). Ein Einfluss einer Hypoxie auf das 

EEG im Sinne einer Verlangsamung des EEG-Spektrums (KÖNIG et al., 2004) 

kann somit ausgeschlossen werden. 

Bei der endexspiratorischen Isoflurankonzentration sollte ebenfalls berücksichtigt 

werden, dass diese den arteriellen Isofluranpartialdruck nicht ausreichend 

widerspiegelt, wenn sie zu stark von der inspiratorischen Isoflurankonzentration 

abweicht. Eine Ursache hierfür kann beispielsweise Hypoventilation oder ein 

hoher Blut-Gas-Verteilungskoeffizient λ sein. Beim Einsatz hochlöslicher 

Anästhetika sollte daher den Messungen eine Äquilibrierungsphase vorausgehen 
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(EGER & BAHLMAN, 1971). Der Löslichkeitskoeffizient liegt für Isofluran 

(λ = 1,4), welches in der vorliegenden Studie verwendet wurde, deutlich niedriger 

als für das in der Studie von EGER (1971) verwendete Halothan (λ = 2,3) 

(ERHARDT et al., 2004). EGER und BAHLMAN (1971) konnten bei 

spontanatmenden Patienten trotz Reduktion der Atemfrequenz aufgrund 

steigender Halothankonzentration im Vergleich zu kontrolliert beatmeten 

Patienten keinen ersichtlichen Unterschied zwischen den Konzentrations-

differenzen alveolar zu arteriell und inspiratorisch zu alveolar feststellen. 

1.3 Klinisch ermitteltes Narkosestadium und Fließdiagramm 

Es gibt keinen „Goldstandard“ für die Ermittlung der Narkosetiefe (SCHMIDT et 

al., 2004). Daher wurde auf Literaturangaben für „zu flache“, „adäquate“ und „zu 

tiefe“ Stadien zurückgegriffen.  

Bei der Erstellung eines Entscheidungsbaums für die Einordnung des jeweiligen 

Status in ein Narkosestadium wurden nacheinander Kriterien gewählt, die bei 

einer der möglichen Antworten bereits eine sichere Zuordnung in ein Stadium 

erlauben. An die zweite mögliche Antwort wurde das nächste Kriterium gehängt. 

Daher wurde beispielsweise als erstes Kriterium „Zeichen für Wachheit“ gewählt, 

da es hier, wenn diese Frage mit „ja“ beantwortet wird, keine Rolle mehr spielt, 

ob das Tier auch auf den Zwischenklauenreflex reagiert.  

Bei der Beurteilung des Bulbusstandes wurde eine dorsale Rotation nicht in den 

Entscheidungsbaum mit eingebunden. Der Grund hierfür ist, dass dies in der 

Literatur lediglich für die Phase der Einleitung beschrieben ist (RIEBOLD et al., 

1982). Hier trat dies jedoch in Gruppe 1 zu elf Zeitpunkten bei drei verschiedenen 

Kälbern während der Narkose, ohne Anzeichen einer zu flachen Anästhesie, auf. 

Unter Berücksichtigung der restlichen erhobenen Parameter hätten diese 

Zeitpunkte lediglich als „chirurgisch tolerant“ oder „zu tief“ eingeordnet werden 

können. Von den elf Werten wurden sieben in der Vertiefungsphase ermittelt. In 

Gruppe 2 wurde bei zwei Tieren insgesamt viermal eine Dorsalrotation des 

Bulbus verzeichnet, davon eine in der Vertiefungsphase. Auch hier sprachen die 

klinisch erhobenen Parameter nicht, wie in der Literatur beschrieben, für ein zu 

flaches Stadium. 

Da die Parameter Blutdruck und Herzfrequenz eine hohe interindividuelle 

Variabilität zeigen (SCHMIDT et al., 2008) und zudem durch den Einsatz 
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bestimmter Anästhetika, darunter auch Xylazin (LÖSCHER, 2006) beeinflusst 

werden, wurden sie für die Einschätzung der Narkosetiefe nicht verwendet.  

1.4 Eingesetzte Arzneimittel 

In der vorliegenden Studie wurde eine kombinierte Injektions-Inhalationsnarkose 

unter Verwendung von Xylazin, Ketamin sowie Isofluran durchgeführt. 

Für den Einfluss von Xylazin auf den Narcotrendindex liegen bislang noch keine 

Daten vor. Jedoch ist bei Hunden und Katzen bekannt, dass Xylazin zu EEG-

Veränderungen führt, die dem normalen Schlaf sehr ähnlich sind (HOPKINS, 

1972; TOURAI et al., 1985). Auch die Klassifizierung des Narcotrendmonitors 

basiert ursprünglich auf einer Einteilung in Schlafstadien (SCHULTZ et al., 

2003). 

HAACK (2008) konnte bei der Überwachung von Propofol-Remifentanil-

Narkosen mit und ohne zusätzliche Ketamingabe bei Frauen keinen Unterschied 

im ermittelten Narcotrendindex feststellen. Hierbei ist jedoch zu berücksichtigen, 

dass lediglich eine sehr geringe Ketamindosis, etwa 0,4 mg/kg, verabreicht wurde. 

Im Gegensatz dazu weist SCHMIDT (2008) darauf hin, dass die Anwendung von 

Ketamin Schwierigkeiten bei der automatischen EEG-Analyse bereitet. Den 

Grund sieht er darin, dass Ketamin zu einer Aktivitätssteigerung im β- und θ-

Bereich führt, wodurch die Aktivität im δ-Band abnimmt. Dies entspricht 

paradoxen EEG-Veränderungen. In dieser Studie wurde Ketamin einmalig zur 

Narkoseeinleitung i.v. gegeben. Bei Hund und Katze ist die Wirkdauer für diese 

Applikationsart mit 3 – 10 min angegeben (intramuskulär (i.m.) 20 – 30 min beim 

Hund und 30 – 60 min bei der Katze) (PADDLEFORD & ERHARDT, 1992). 

Beim Kalb beträgt die Anästhesiedauer nach intravenöser Gabe und einer 

Dosierung von 5 mg/kg etwa 20 min (WATERMAN, 1981). Allerdings gilt es 

hier zu berücksichtigen, dass die Wirkdauer von Ketamin nicht nur tierartlich, 

sondern auch individuell große Unterschiede zeigt. Dabei spielen sowohl Art der 

Metabolisierung und Ausscheidung als auch das Alter und Allgemeinbefinden des 

Tieres eine große Rolle (ERHARDT et al., 2004). 

Die verwendeten Klassifikationsalgorithmen des Narcotrend wurden von den 

Entwicklern neben anderen Inhalationsanästhetika auch für Isofluran getestet 

(SCHULTZ et al., 2003).  

Da weder Chemotherapeutika noch nicht stereoidale Antiphlogistika ihren Wirk-
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ort im Gehirn haben (KIETZMANN et al., 2002; KROKER et al., 2002), ist 

davon auszugehen, dass sie keinen Einfluss auf das EEG nehmen. Aus diesem 

Grund wurden hier auch keine Vorgaben für einen bestimmten Wirkstoff 

gemacht. 

1.5 Anwendung des Narcotrendmonitors 

Der Hersteller schlägt für den Einsatz des Narcotrend handelsübliche EKG-

Klebeelektroden vor (SCHULTZ et al., 2004). Für die frontale Einkanalableitung 

werden die beiden Messelektroden mit einem Mindestabstand von 8 cm 

positioniert. Die Referenzelektrode wird auf der Stirn befestigt 

(BEDIENUNGSANLEITUNG, Stand 26.06.2007). Es können jedoch auch andere 

Elektrodentypen und -positionen verwendet werden. Auch eine Zweikanal-

ableitung, wie sie hier gewählt wurde, ist möglich (SCHULTZ et al., 2004).  

Die Elektrodenpositionierung erfolgte ähnlich wie OTTO und MALLY (2003) 

dies beim Schaf durchführten, nahe der Medianen. Allerdings wurde die 

Referenzelektrode nicht okzipital sondern auf den Nasenrücken gesetzt. Zudem 

wurden die Arbeitselektroden etwas versetzt. 

Da Tiere auch an den Ableitungsstellen behaart sind, ist es hier einfacher, mit 

Nadelelektroden oder, wie in dieser Studie, mit Hautklammern und angesetzten 

Krokodilklemmen zu arbeiten. Sowohl Nadelelektroden als auch Krokodil-

klemmen werden häufig beim Tier eingesetzt (MYSINGER et al., 1985). Somit 

kann auf ein Scheren der Haut verzichtet werden. Im Rahmen dieser Studie hat 

sich gezeigt, dass das Gerät zum Setzen der Hautklammern wirklich fest auf die 

Haut aufgesetzt werden muss, damit die Klammern dann auch entsprechend gut 

verankert sind. Des Weiteren ist darauf zu achten, dass beim Ansetzen der 

Krokodilklemmen keine Haare mit erfasst werden. Wenn diese Grundprinzipien 

befolgt werden, ist das Setzen der Elektroden meist problemlos. In einigen Fällen 

zeigte der Narcotrend über mehrere Minuten keinen Index an. Es war jedoch meist 

ausreichend, den Sitz der Elektroden zu überprüfen und am Gerät eine neue 

Messung zu starten. 

1.6 Körperinnentemperatur 

Es ist bekannt, dass Hypothermie Auswirkungen auf das EEG in Form einer 

Zunahme langsamer Frequenzen zeigt (KLEMM, 1969; LEVY, 1984). 

MICHENFELDER und MILDE (1991) zeigten an Hunden, deren Körper-
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temperatur langsam von 37 °C auf 14 °C abgesenkt wurde, deutliche 

Veränderungen im EEG. Dies kann bei sehr niedriger Körpertemperatur neben 

Burst-Suppressions-Mustern (MICHENFELDER & MILDE, 1991) sogar zur 

Isoelektrizität führen (STEEN et al., 1983). Die Haupteffekte einer Hypothermie 

auf die gesamte neuronale Funktion und damit auch das EEG treten zwischen 27 

und 17 °C auf (MICHENFELDER & MILDE, 1991). 

Die Körpertemperatur sank bis zum Ende der Messungen im Durchschnitt um 

1,4 °C auf 37,5 °C. Die geringste gemessene Temperatur betrug 36,0 °C. Daher 

kann davon ausgegangen werden, dass es hierdurch zu keiner nennenswerten 

Beeinflussung des EEGs kam. Dass ein Temperaturabfall gemessen werden 

konnte, lässt sich sowohl durch eine anästhesiebedingte Abnahme der 

Wärmeproduktion als auch durch eine Erhöhung des Wärmeverlustes erklären. 

Letzterer resultiert aus der Operationsvorbereitung mit Scheren und Desinfektion 

und auch durch eine Eröffnung der Bauchhöhle während der Operation (HENKE 

& ERHARDT, 2004). Zusätzlich wurde während der Narkose auf die 

Verwendung einer elektrischen Wärmematte verzichtet, da eine mögliche Störung 

des Narcotrends ausgeschlossen werden sollte. 

2 Diskussion der Ergebnisse 

2.1 Narcotrendindex 

Die Medianwerte des Narcotrendindex lagen bei den verschiedenen 

Narkosestadien bei 25 („wach“, „chirurgisch tolerant“, „zu tief“) und 26 („zu 

flach“). Damit konnte keine nennenswerte Unterscheidung zwischen den 

einzelnen Narkosestadien erfolgen. Auch die „wachen“ Tiere konnten nicht 

abgegrenzt werden. Des Weiteren fallen alle Medianwerte in das Stadium E1. 

Narcotrend-Zielwerte beim Menschen sind jedoch intraoperativ mit D0 bis D1 

(Index 45 – 60), in der Ausleitungsphase mit C1 (70 – 75) angegeben (KREUER 

& WILHELM, 2005). In der Ausleitungsphase konnten hier jedoch nur bei drei 

Tieren zu insgesamt fünf Zeitpunkten Werte größer 70 gemessen werden.  

DRUMMOND (2000) stellt zwei Mindestanforderungen an einen Monitor, der die 

Narkosetiefe messen soll, damit dieser für den Kliniker von Nutzen ist: zum einen 

müssen sich die Durchschnittsindices zweier unterschiedlicher Zustände, z.B. 

wach und bewusstlos, deutlich signifikant unterscheiden, zum anderen sollen sich 
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die jeweiligen Wertebereiche nicht überschneiden. Die beiden Anforderungen 

sind voneinander abhängig. In den vorliegenden Untersuchungen konnten sie 

jedoch beide nicht erfüllt werden. Im Gegenteil – die Werte und Wertebereiche 

waren (nahezu) identisch. 

Prinzipiell ist es schwierig, einen Monitor, der die Narkosetiefe überwacht, zu 

validieren, wenn keine einfache Definition für Narkose- oder Hypnosetiefe 

existiert (DAVIDSON et al., 2005). Zusätzlich muss berücksichtigt werden, dass 

die Allgemeinanästhesie kein einheitliches Konstrukt darstellt, sondern sich aus 

verschiedenen Bestandteilen zusammensetzt. WOODBRIDGE (1957) unterschied 

zwischen vier Komponenten: sensorischer (Analgesie) und motorischer Block 

(Muskelrelaxation), Block vegetativer Reflexe (Atmung, Kreislauf, Magendarm-

trakt) und mentaler Block (Hypnose). Andere Autoren unterteilen die 

Allgemeinnarkose in Bewusstlosigkeit, Analgesie, keine Bewegungen als 

Reaktion auf schmerzhafte Reize, Regungslosigkeit, Muskelrelaxation sowie 

kardiovaskuläre Stabilität (ANTOGNINI & BERG, 1995; DE BEER et al., 1996). 

Der Narcotrendmonitor beurteilt lediglich die hypnotische Komponente einer 

Narkose (SCHULTZ et al., 2002), welche von den klinisch erhobenen Parametern 

nicht oder kaum erfasst wird. Diese spiegeln eher die sensorische und motorische 

Komponente wider. Somit werden unterschiedliche Anteile der Narkose einander 

gegenübergestellt, was die Vergleichbarkeit einschränkt. Es existiert jedoch kein 

Vergleichsparameter, der alle Komponenten einbeziehen würde. 

CO2 

Aufgrund der Spontanatmung während der Narkose kann trotz physiologischer 

Werte im Kapnogramm ein erhöhter paCO2 nicht ausgeschlossen werden. Die 

Aussagen zu Auswirkungen von Hyperkapnie auf das EEG, sind in der Literatur 

nicht einheitlich. So beschrieb KALKMAN (1991) einen signifikanten Abfall der 

α- und β-Power bei unveränderter δ- und θ-Power. Wohingegen SMITH (1994) 

eine Zunahme der absoluten Power im δ-Band bei gleichzeitiger Abnahme im α-

Bereich ermittelte. Diese Auswirkungen konnten auch unter CO2-Zufuhr bei 

wachen Patienten gezeigt werden (XU et al., 2011). Gemeinsam ist allen Studien 

jedoch, dass ein Effekt auf das EEG gezeigt werden konnte. Eine Veränderung im 

Roh-EEG würde damit auch zu einer Beeinflussung des daraus berechneten 

Narcotrendindex führen. 
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Alter 

Bei kleinen Kindern konnte der Narcotrendindex sowohl unter Sevofluran- 

(Median Alter 2,7 Jahre) (WEBER et al., 2005a) als auch unter Desflurannarkose 

(Alter 3 – 6 Jahre) (WEBER et al., 2005b) eine gute Unterscheidung zwischen 

Bewusstlosigkeit und vorhandenem Bewusstsein gewährleisten. Unter Desfluran 

wurde hierfür lediglich die Narkoseeinleitung, unter Sevofluran zusätzlich auch 

die Aufwachphase berücksichtigt. Es zeigte sich in beiden Studien eine 

signifikante negative Korrelation zwischen der jeweiligen endexspiratorischen 

Inhalationsanästhetikumkonzentration und dem Narcotrendindex (WEBER et al., 

2005b; WEBER et al., 2005a). Diese negative Korrelation konnte für 

unterschiedliche Altersgruppen nachgewiesen werden (WEBER et al., 2004; 

WEBER et al., 2005b). In einer anderen Studie an Kindern wurde die 

Narkoseeinleitung mit Propofol mit dem Narcotrendmonitor überwacht. Hierfür 

wurde der Sedationsgrad in fünf Stufen eingeteilt, welche vom Narcotrend 

ermittelt werden konnten. Allerdings überschnitten sich die Bereiche des 

Narcotrendindex der jeweiligen Sedationsstufe. Daher ist die Aussagekraft 

begrenzt. Zudem bestand eine relativ große Wahrscheinlichkeit (0,18), 

Veränderungen im Bewusstseinszustand, wie sie durch das angewendet Schema 

definiert waren, nicht korrekt vorherzusagen. Des Weiteren konnte hier ein 

altersabhängiger Effekt des Narcotrend gezeigt werden. So hatten jüngere Kinder 

innerhalb einer Sedationsstufe einen höheren mittleren Indexwert als dies bei 

älteren Kindern der Fall war (MÜNTE et al., 2009). Von Seiten des Herstellers 

sind die Indexbereiche für bestimmte Narkosetiefen jedoch altersunabhängig 

angegeben, da das Alter bereits im Algorithmus berücksichtigt ist (SCHULTZ et 

al., 2003). In der Studie von WALLENBORN et al. (2007) wurde bei Säuglingen 

(0 – 6 Monate) unter Sevoflurannarkose in der Aufwachphase in 64 % der Fälle 

der wache Zustand fälschlicherweise mit einem Index kleiner 30 bewertet. Auch 

in der vorliegenden Studie wurde in 88 % der Fälle dem Zeitpunkt, an dem die 

ersten Anzeichen für Wachheit auftraten, ein Index kleiner 30 zugeordnet. Die 

Mittelwerte der Indices während der Narkose bei Säuglingen entsprachen 

allerdings denjenigen, die auch bei der Überwachung von Erwachsenen erhoben 

wurden (WALLENBORN et al., 2007). Zusätzlich zeigte sich bei den jüngsten 

Teilnehmern eine größere Bandbreite an Narcotrendwerten zum Zeitpunkt des 

Erwachens. Diese nahm mit Zunahme des Alters ab (WALLENBORN et al., 
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2007). Auch bei dem EEG-Narkosemonitor BIS (Aspect Medical Systems Inc., 

Norwood, USA) rieten die Autoren bei Kindern im Alter bis 6 Monate zur 

Vorsicht bei der Bewertung des angegebenen Index (BANNISTER et al., 2001). 

Eine zuverlässige Aussage des Narcotrendmonitors bei Neugeborenen und kleinen 

Kindern scheint nicht so einfach möglich zu sein. Da die Hauptursache vermutlich 

in der Entwicklung des Gehirns liegt, ist anzunehmen dass dies beim Tier, und 

damit auch beim Kalb, ähnlich ist. Unterstützen würde diese These, dass nicht nur 

bei Nesthockern (KERSTEN, 1993) sondern auch bei Nestflüchtern (MYSINGER 

et al., 1985) mit einer Zunahme des Alters Veränderungen im EEG nachweisbar 

waren. Bei Fohlen zeigten sich zwischen Neugeborenen und Tieren im Alter von 

20 bis 60 Tagen deutliche Unterschiede im EEG. Ein dem adulten EEG ähnliches 

Muster konnte erst im Alter von 100 bis 200 Tagen abgeleitet werden 

(MYSINGER et al., 1985). DAVIDSON et al. (2005) hingegen sehen die Ursache 

eher in dem Wesen des Aufwachens und Bewusstseins von Kindern. Sie wechseln 

abrupt von einer Bewusstlosigkeit oder tiefen Sedation in das Erwachen. 

Isofluran 

Zwischen Narcotrendindex und endexspiratorischer Isoflurankonzentration wurde 

eine schwache positive signifikante Korrelation berechnet. Zu erwarten wäre 

jedoch eine negative Korrelation zwischen dem Index und dem verwendeten 

Inhalationsanästhetikum gewesen, wie sie in vielen Studien, teilweise ebenfalls 

ohne Durchführung einer Äquilibrierungsphase, nachgewiesen werden konnte 

(KREUER et al., 2002; KREUER et al., 2004; WEBER et al., 2005b; KREUER et 

al., 2008). Dies konnte auch beim Hund sowohl für Isofluran als auch Sevofluran 

bestätigt werden (TÜNSMEYER, 2007). Grundsätzlich gilt es noch zu 

berücksichtigen, dass die Narkosetiefe nicht zwangsläufig linear zur Anästhetika-

dosierung verlaufen muss. Des Weiteren können auch individuelle Unterschiede 

im Anästhetikabedarf zur Senkung der Koeffizienten führen (SCHMIDT et al., 

2008).  

Anästhetikaverbrauch 

Als Vorteil der Anwendung des Narcotrendmonitors wird auch das Vermeiden 

eines zu hohen Anästhetikaverbrauches aufgrund einer individuellen Anpassung 

der Narkosetiefe gesehen (SCHULZE et al., 2004; WEBER et al., 2005a; 

SCHULTZ et al., 2006). Daraus resultieren sowohl niedrigere Kosten als auch 
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verkürzte Aufwachzeiten. Da in dieser Studie allerdings weder eine Unter-

scheidung verschiedener Narkosetiefen noch eine negative Korrelation zwischen 

dem Index und der endexspiratorischen Isoflurankonzentration nachweisbar 

waren, kann der Narcotrend unter den gewählten Bedingungen keinen Beitrag zu 

einer Verbesserung der individuellen Narkotikadosierung leisten. 

Tierart 

Der Narcotrend wurde auch bereits in der Tiermedizin eingesetzt. An Hunden 

unter Sevofluran- oder Isoflurannarkose konnte eine Unterscheidung von 

adäquater und zu tiefer Narkose anhand des Narcotrendindex nachvollzogen 

werden. Es war jedoch keine Unterscheidung zwischen zu flacher und adäquater 

Anästhesietiefe möglich (TÜNSMEYER, 2007). Im Gegensatz zur vorliegenden 

Studie wurden die Tiere jedoch künstlich beatmet, und das Mindestalter lag bei 

neun Monaten. Somit konnten sowohl Beeinflussungen durch unphysiologische 

arterielle CO2-Partialdrücke, als auch durch ein noch nicht adultes EEG 

ausgeschlossen werden. 

Aufwachphase 

Für die Klassifikation des Stadiums A werden typische Wachartefakte, darunter 

neben Lidschlag und Augenbewegung auch die Muskelaktivität herangezogen 

(SCHULTZ et al., 2003). Bei zwei Tieren konnte die Aufwachphase jedoch mittels 

Narcotrendindex nicht vollständig verfolgt werden. Der Monitor zeigte in beiden 

Fällen erhöhte EMG-Werte an und berechnete keinen Index mehr. Diese Tatsache 

wurde bereits in anderen Studien aus der Humanmedizin beschrieben. Auch hier 

konnte bei wachen Patienten teilweise kein Index ermittelt werden (WEBER et al., 

2005b; WEBER et al., 2005a). Im Vergleich mit dem EEG-Monitor BIS zeigte der 

Narcotrendmonitor in der Aufwachphase mehr Fehlermeldungen („>30 Hz“ oder 

„EMG“) an. Das heißt, es konnten weniger Werte erfasst werden (WALLENBORN 

et al., 2007). 

2.2 Burst-Suppressions-Muster 

Zusätzlich zu der allgemeinen Auswertung der erhobenen Daten wurde gesondert 

eine visuelle Auswertung des EEGs zu allen erfassten Zeitpunkten im Narkose-

protokoll vorgenommen. Hier wurden EEG-Abschnitte hinsichtlich des 

Vorkommens oder Fehlens von Burst-Suppressions-Muster eingeteilt und mit dem 

jeweils ermittelten Narcotrendindex verglichen.  
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Laut Herstellerangaben besteht ein zusätzlicher Algorithmus, basierend auf der 

Erkennung flacher EEG-Abschnitte, um diese Muster richtig klassifizieren zu 

können. Das heißt, dass diese Abschnitte, je nach Anteil und Intensität der in der 

Auswerte-Epoche vorhandenen Suppressionslinien in die Stadien F1 (entspricht 

Index 0 – 4), F0 (Index 5 – 12), sowie E2 (Index 13 – 19), welches den 

Übergangsbereich von kontinuierlicher δ-Aktivität zum Burst-Suppressions-EEG 

darstellt (SCHULTZ et al., 2004), eingeordnet werden (SCHULTZ et al., 2003). 

Bei den im Rahmen dieser Studie erfassten EEG-Epochen konnte der Narcotrend-

monitor Abschnitte ohne Burst-Suppressions-Muster zu 98,7 % korrekt einordnen. 

Epochen mit Burst-Suppressions-Muster konnten zu 83,5 % richtig eingeordnet 

werden. Hier zeigte sich kein statistisch signifikanter Unterschied zwischen den 

beiden Gruppen. Dies ist zu erwarten, da lediglich das Erkennen eines bestimmten 

Musters, unabhängig von der Ursache des Auftretens, überprüft wurde. Die beiden 

Gruppen unterscheiden sich jedoch sehr deutlich hinsichtlich der Häufigkeit von 

Burst-Suppressions-Mustern. In Gruppe 1 lag der Anteil mit 1,6 % deutlich 

niedriger als mit 31,3 % in Gruppe 2. Dies lässt sich dadurch erklären, dass in 

Gruppe 2 90 % der Tiere euthanasiert werden mussten und somit eine 

Vertiefungsphase mit steigender Isoflurankonzentration erfasst wurde. In 

Gruppe 1 lag der Anteil euthanasierter Tiere jedoch nur bei 9 %. Zusätzlich lag 

die durchschnittliche Operationsdauer in Gruppe 2 (18 min) deutlich unter der in 

Gruppe 1 (79 min). Es ist sowohl beim Menschen (EGER et al., 1971; HOMI et 

al., 1972; CLARK & ROSNER, 1973), als auch beim Tier (NEWBERG et al., 

1983; KOCHS et al., 1993) bekannt, dass Isofluran in höheren Konzentrationen 

Burst-Suppressions-Muster oder sogar Isoelektrizität hervorrufen kann. Diese 

ZNS-Depression resultiert aus einer Reduktion der zerebralen metabolischen 

Aktivität und kann bereits in klinisch relevanten Konzentrationen auftreten 

(NEWBERG et al., 1983). Dieses Muster zeigt nach Aussage von EGER (1971) 

und HOMI (1972) somit eine angemessene bis zu tiefe Anästhesie an. Bei der 

Einteilung der Narcotrendstadien werden diese Muster jedoch in die Kategorie 

„tiefe Allgemeinanästhesie“ oder tiefer eingeordnet (SCHULTZ et al., 2003). In 

beiden Gruppen traten die Burst-Suppressions-Muster vor allem in der 

Vertiefungsphase auf.  

Prinzipiell können als weitere Ursachen für Burst-Suppressions-Muster oder 

Isoelektrizität eine schwerwiegende zerebrale Ischämie, Hypoxämie (STÖHR & 
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KRAUS, 2002; ZSCHOCKE, 2002) oder Hypothermie (MICHENFELDER & 

MILDE, 1991) zugrunde liegen. Dies scheint jedoch in Gruppe 1 keine Rolle zu 

spielen, da die Sauerstoffsättigung hier während der gesamten Überwachung im 

physiologischen Bereich lag und auch kein großer Temperaturabfall zu 

verzeichnen war. In Gruppe 2 hingegen schwankte die SpO2 bei einem Tier 

bereits intraoperativ zwischen 40 und 60 %. Gleichzeitig traten hier Burst-

Suppressionen auf. Da die Isoflurankonzentration unter dem ermittelten 

durchschnittlichen intraoperativen Wert lag, ist davon auszugehen, dass diese 

nicht ursächlich für die Burst-Suppressionen verantwortlich war. Bei zwei 

weiteren Tieren lagen die SpO2-Werte am Ende der Vertiefungsphase unter der 

physiologischen Grenze von 80 %. Gleichzeitig war die endexspiratorische 

Isoflurankonzentration erhöht (2,0 – 2,4 Vol%). Welche Komponente hier für das 

Auftreten von Burst-Suppressions-Mustern hauptsächlich verantwortlich war, 

kann nicht geklärt werden. 

2.3 Reaktion auf chirurgischen Stimulus 

Für die jeweilige Einordnung in ein klinisches Narkosestadium wurde die 

Reaktion auf einen chirurgischen Reiz mit herangezogen. Tiere, die positiv 

reagierten, wurden automatisch als „zu flach“ eingestuft (sofern sie nicht Zeichen 

von Wachheit zeigten und bereits als „wach“ eingestuft waren). Der klinische 

Score kann hierfür also nicht ausgewertet werden. 

Insgesamt reagierten mehr Tiere auf einen Reiz am Peritoneum (8,8 %) als auf 

den Hautschnitt (5,9 %). Dies mag daran liegen, dass das Peritoneum ein sehr 

schmerzempfindliches Gewebe ist (HENKE & ERHARDT, 2001; 

ANDERHUBER & BREHMER, 2003). 

Grundsätzlich  kann es während einer Narkose unter Ketamineinfluss auch zu 

Spontanbewegungen kommen, was fälschlicherweise als ungenügende Narkose-

tiefe gewertet werden kann (HALL & CLARKE, 2001). Da in der vorliegenden 

Studie jedoch immer zeitgleich mit einem chirurgischen Reiz auf eine Reaktion 

geachtet wurde, erscheint es wahrscheinlicher, dass es sich tatsächlich um 

Abwehrbewegungen handelte. 

Hinsichtlich des Narcotrendindex konnte keine Unterscheidung zwischen Tieren 

mit und ohne Reaktion auf den chirurgischen Stimulus getroffen werden. Es gilt 

jedoch zu berücksichtigen, dass der Narcotrendmonitor dafür entwickelt wurde, 
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die hypnotische Komponente der Narkose beim Menschen zu objektivieren 

(KREUER et al., 2003). Die analgetische Komponente des Opioids Remifentanil 

während einer Propofol-Narkose konnte weder während der Einleitungsphase 

(SCHMIDT et al., 2004) noch während der Narkoseausleitung (SCHMIDT et al., 

2002) vom Narcotrendindex widergespiegelt werden. Hypnotika wirken auf den 

Cortex und beeinflussen damit das EEG. Im Gegensatz dazu entfalten Opioide 

ihre analgetische Wirkung bereits auf Höhe subkortikaler Strukturen, darunter 

auch das Rückenmark (GUIGNARD et al., 2000). Jedoch wurde für 

Inhalationsanästhetika ebenfalls eine Wirkung auf Rückenmarksebene 

nachgewiesen (DE JONG et al., 1968; NAMIKI et al., 1980). Es wird vermutet, 

dass die Reaktion auf einen chirurgischen Reiz bereits subkortikal stattfindet und 

somit nicht im EEG registriert werden kann (RAMPIL et al., 1993; ANTOGNINI 

& BERG, 1995). SCHMIDT et al. (2002) gehen jedoch trotzdem davon aus, dass 

das Fehlen von Änderungen im Narcotrendindex nicht auf diese Tatsache 

zurückzuführen ist, da sich zusätzlich erfasste klassische EEG-Variablen (wie 

Leistungen der Frequenzbänder, SEF oder MED) sehr wohl auf die Gabe von 

Remifentanil veränderten. Daher vermuten die Autoren, dass die Ursache auch in 

dem Algorithmus liegen könnte, welcher der Berechnung des Index zugrunde 

liegt. 

Auch TÜNSMEYER (2007) wollte in ihren Untersuchungen an Hunden 

überprüfen, ob sich die analgetische Komponente der Narkose mit Hilfe des 

Narcotrend beurteilen lässt. Da jedoch kein Tier zu irgendeinem Zeitpunkt auf den 

somatischen Stimulus reagierte, konnte diese Frage nicht beantwortet werden. 

2.4 Herzfrequenz und Blutdruck 

Ob Herzfrequenz und Blutdruck zur Bestimmung der Narkosetiefe herangezogen 

werden können, wird kontrovers diskutiert. Hierbei ist auch zu berücksichtigen, 

welche Anästhetika verwendet werden, da einige von ihnen Auswirkungen auf das 

Herz-Kreislaufsystem haben. 

Da die Gabe von Anästhetika zu einem dosisabhängigen Blutdruckabfall führt, 

kann die Blutdruckmessung neben der Beurteilung des Kreislaufs auch zur 

Einschätzung der Narkosetiefe herangezogen werden (WAGNER & BRODBELT, 

1997). So resultiert während einer Inhalationsnarkose der Abfall des MBD aus der 

anästhetikainduzierten Reduktion des Herzminutenvolumens (KLIDE, 1976; 
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STEFFEY & HOWLAND, 1977, 1980; GRANDY et al., 1987). Chirurgischer 

Stimulus führt hingegen zu einem Blutdruckanstieg (WAGNER et al., 1996). Als 

Hinweis für eine unzureichende Narkosetiefe gilt hier ein Anstieg des MBD oder 

der HF um mindestens 10 % (OTTO & GERICH, 2001) oder 20 % (WHITE & 

BOYLE, 1989). In einer dieser Studie vorangegangen Arbeit konnte jedoch unter 

Verwendung des gleichen Narkoseregimes bei Tieren, die Abwehrbewegungen 

zeigten, keine Erhöhung von Herzfrequenz oder mittlerem Blutdruck 

nachgewiesen werden (HEFTI, 2010). 

In der vorliegenden Studie konnte mittels Herzfrequenz und Blutdruck nicht 

zwischen den verschiedenen Narkosestadien unterschieden werden. Lediglich 

beim Stadium „wach“ wurde ein signifikanter Anstieg des mittleren Blutdrucks 

gegenüber den anderen Stadien festgestellt. Auch andere Autoren halten diese 

Parameter für nicht geeignet, um die Narkosetiefe zu steuern (WEBER et al., 

2005b), da sie keine Möglichkeit bieten, die Hypnosetiefe abzuschätzen 

(SCHMIDT et al., 2008). Zudem zeigen autonome Reaktionen wie Herzfrequenz 

und mittlerer Blutdruck eine große Variabilität und entsprechen nicht unbedingt 

einem bestimmten Bewusstseinszustand. Dadurch kann auch eine intraoperative 

Wachheit unentdeckt bleiben (WHELAN & FLECKNELL, 1992). Dies zeigt auch 

eine Analyse aus den USA, in der retrospektiv über einen Zeitraum von 35 Jahren 

Narkosen mit intraoperativer Wachheit ausgewertet wurden. Intraoperativer 

Wachheit ging lediglich bei 15 % mit einem Blutdruckanstieg und bei 7 % mit 

Tachykardie einher. Nur in 2 % der Fälle reagierte der Patient mit einer 

Bewegung. Die meisten Patienten hatten jedoch Muskelrelaxantien erhalten 

(DOMINO et al., 1999). 

Auch bestimmte Anästhetika zeigen einen Einfluss auf Herzfrequenz und 

Blutdruck. So kommt es nach Gabe von α2-Agonisten aufgrund von 

Vasokonstriktion und dem damit einhergehenden erhöhten intravasalen 

Widerstands initial zu einem Blutdruckanstieg (KNIGHT, 1980; WAGNER & 

BRODBELT, 1997; LÖSCHER, 2006). Nach etwa 15 min lässt dieser Effekt nach 

und es kommt zu einem Blutdruckabfall (SAGNER et al., 1968; GORANOV et 

al., 1971; LÖSCHER, 2006). Da die ersten Messungen 30 min nach Xylazingabe 

stattfanden, zeigt sich der initiale Blutdruckanstieg nicht in den erhobenen Daten. 

Es lässt sich jedoch ein langsamer Anstieg des mittleren Blutdrucks bis etwa 

100 min nach Xylazingabe beobachten. 
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Die mittlere Herzfrequenz der anästhesierten Kälber lag mit 86/min im von 

RIEBOLD (1996) angegebenen Bereich von 70 – 90/min. Diese sinkt mit 

zunehmender Anästhesietiefe (RIEBOLD, 1996). 

Als Mindestmaß für den mittleren Blutdruck gelten 60 mmHg. Fällt er unter 

diesen Wert, so ist davon auszugehen, dass eine adäquate zerebrale und coronare 

Durchblutung nicht mehr gewährleistet ist (HASKINS, 1996). In der vorliegenden 

Studie lag der mittlere Blutdruck im Durschnitt bei 76 mmHg, jedoch mit einer 

Standardabweichung von 27 mmHg. Es konnte also nicht zu allen Zeitpunkten ein 

ausreichend hoher Blutdruck gewährleistet werden. Hier spielt sicherlich der 

Blutdruckabfall infolge der Gabe von Xylazin eine Rolle. Zusätzlich führt auch 

Isofluran zu einer Reduktion des Blutdrucks (EGER, 1981). 

2.5 Endexspiratorische Isoflurankonzentration 

Die intraoperativ gemessene endexspiratorische Isoflurankonzentration lag im 

Durchschnitt bei 0,8 Vol%. Diese liegt damit deutlich unter dem für Rinder 

ermittelten MAC-Wert von 1,3 (CANTALAPIEDRA et al., 2000). Dieser wird im 

Rahmen einer Monoanästhesie ermittelt (MERKEL & EGER, 1963), hier wurde 

jedoch eine Kombinationsanästhesie durchgeführt. Durch die Kombination mit 

anderen Anästhetika reduziert sich der MAC-Wert (ERHARDT et al., 2004). 

Mit zunehmender Isoflurankonzentration zeigte sich auch eine Vertiefung der 

Narkose. Lediglich zwischen „zu flacher“ und „adäquater“ Narkosetiefe konnte 

kein Unterschied hinsichtlich der Isoflurankonzentration festgestellt werden. Ein 

Richtwert für die Narkoseüberwachung lässt sich dennoch nicht ableiten, da sich 

die einzelnen Wertebereiche deutlich überschneiden. Zusätzlich wies die 

Isoflurankonzentration bei den Narkosestadien eine relativ große Streuung auf. 

Ein Grund hierfür mag sein, dass keine Äquilibrierungsphasen durchgeführt 

wurden und rasche Änderungen der endexspiratorischen Isoflurankonzentration 

damit nicht exakt den Partialdruck in den Arterien und im Gehirn widerspiegeln. 

Es ist bekannt, dass die endexspiratorische Isoflurankonzentration nicht als 

geeignetes Maß für den arteriellen Anästhetikumpartialdruck dient, wenn eine 

große Differenz zwischen inspiratorischer und endexspiratorischer 

Isoflurankonzentration besteht (EGER & BAHLMAN, 1971). Dies kann jedoch 

bei raschem An- oder Abfluten des Narkotikums in der Aufwach- oder 

Vertiefungsphase der Fall sein. Zudem muss die Ausgleichsphase zwischen 
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arteriellem Blut und Gehirn berücksichtigt werden. Diese gibt MUNSON (1966) 

bei Halothan mit 15 min an. Die Angaben für Isofluran variieren sehr stark. So 

geht SCHULTE AM ESCH (2002) auf Grund der guten Durchblutung des 

Gehirns von einer Zeitspanne von lediglich 4 – 8 min aus. Im Gegensatz dazu 

ermittelten LU et al. (2003), abhängig von der Höhe der inspiratorischen 

Isoflurankonzentration, jedoch eine Dauer von 40 bis 50 min für eine vollständige 

Äquilibrierung. 

3 Fazit 

In der vorliegenden Studie war es anhand des Narcotrendindex nicht möglich, 

zwischen wachen Tieren sowie zu flacher, adäquater und zu tiefer Narkose zu 

unterscheiden. Somit kann dieser unter den gewählten Bedingungen nicht zur 

Narkoseüberwachung beitragen. Zu beachten ist jedoch zum einen, dass es sich 

hier um ein Gerät handelt, das eigens auf EEG-Muster beim Menschen 

abgestimmt ist. Zum anderen waren die Tiere in dieser Untersuchung sehr jung, 

der Narcotrend dient jedoch vor allem dem Einsatz bei Kindern mit vollendetem 

ersten Lebensjahr und Erwachsenen. Aufgrund der vorliegenden Ergebnisse 

scheint der Narcotrendalgorithmus nicht eins zu eins auf das Kalb übertragbar zu 

sein. So stellt sich die Frage, ob ein eigens für das Kalb entwickelter Algorithmus 

dieses Problem beheben könnte. Hierbei sollte jedoch bedacht werden, dass 

Narkosen beim Kalb aus wirtschaftlichen und praktikablen Gründen in der Praxis 

meist als reine Injektionsnarkosen mit Xylazin und Ketamin durchgeführt werden. 

Auf ein Gerätemonitoring wird hier in der Regel vollständig verzichtet. Somit 

erscheint es fraglich, ob es einen ausreichend großen Markt gäbe, der die 

aufwendige neue Programmierung rechtfertigt und wirtschaftlich rentabel macht. 

Aufgrund der erhaltenen Spontanatmung kann ein Einfluss einer Hyper- oder 

Hypokapnie nicht ausgeschlossen werden. Zur Gewährleistung einer Normo-

kapnie hätte eine künstliche Beatmung stattfinden müssen. Ziel der Untersuchung 

war es jedoch, den Einsatz des Gerätes unter dem in der Klinik für Wiederkäuer 

gängigen Narkoseregime zu testen. 

Die Handhabung des Gerätes ist nach einer kurzen Einarbeitung problemlos und 

kann einfach in die Narkoseüberwachung integriert werden. Teilweise fand, vor 

allem zu Beginn einer Messung, keine Berechnung des Index statt. Nach einer 

Neujustierung der Elektroden und dem Neustart der Messung konnte dieses 
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Problem in den meisten Fällen gelöst werden. 

Die Parameter Herzfrequenz und Blutdruck zeigten sich als wenig geeignet, die 

Narkosetiefe zu überwachen.  

Aus der Untersuchung geht hervor, dass sich der Anästhesist, unter den gewählten 

Bedingungen, bei der Narkoseüberwachung des Kalbes weiterhin an klinischen 

Parametern orientieren sollte. Zusätzliche wertvolle Hinweise können ein 

Pulsoxymeter, ein Kapnograph und die Bestimmung der inspiratorischen und 

endexspiratorischen Isoflurankonzentrationen liefern. 
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VI ZUSAMMENFASSUNG 

Evaluierung des Narcotrend EEG-Monitors zur Überwachung der Narkose bei 

Kälbern 

(Maria Doll, 2011) 

Die meisten chirurgischen Eingriffe beim Kalb werden unter Allgemeinanästhesie 

durchgeführt. Die Narkoseüberwachung und -steuerung erfolgt in der Regel 

lediglich anhand klinischer Parameter. In der Humanmedizin werden jedoch 

zunehmend zusätzlich EEG-Monitore eingesetzt. So handelt es sich auch beim 

Narcotrendmonitor um ein computergestütztes Auswertungssystem für 

Elektroenzephalogramme (EEG), welches das Roh-EEG in einen numerischen 

Index von 0 (sehr tiefe Narkose) bis 100 (wach) umwandelt. 

Das Gerät wurde für die Humanmedizin entwickelt und soll hier eine verbesserte 

Narkoseüberwachung und individuelle Anästhetikadosierung ermöglichen. 

Ziel der vorliegenden Studie war es, die Anwendbarkeit des Narcotrendmonitors 

(Version 4.7) beim Kalb zu überprüfen.  

Material und Methodik: 

Hierfür wurde bei 43 Fleckviehkälbern sowohl während der Operation als auch in 

der sich anschließenden Aufwach-, oder Vertiefungsphase bei Tieren, die 

euthanasiert werden mussten, die Narkose überwacht und die Daten erhoben. 

Somit wurden auch Wachzeitpunkte oder Phasen zu flacher oder zu tiefer 

Narkosestadien mit erfasst. Des Weiteren wurde vor der Narkoseeinleitung das 

Allgemeinbefinden sowie das Sensorium der Tiere als ungestört (Gruppe 1) oder 

gestört (Gruppe 2) eingestuft. Das Alter der Tiere lag zum Zeitpunkt der 

Operation zwischen 2 Tagen und 4,5 Monaten. 

Für die Narkose wurde das Standardregime der Klinik für Wiederkäuer 

verwendet, das heißt Sedation mit Xylazin (0,2 mg/kg i.m.), Einleitung mit 

Ketamin (2 mg/kg i.v.) und Narkoseerhaltung mit Isofluran (per inhalationem). 

Die Tiere atmeten während der gesamten Narkose spontan. Die Einschätzung der 

Narkosetiefe erfolgte anhand der klinischen Parameter Reflexe (Zwischenklauen-, 

Lid-, Kornealreflex), Bulbusstand und Abwehrbewegungen in vier Stadien: 

„wach“, „zu flach“, „adäquat“ und „zu tief“. Der Narcotrendindex wurde lediglich 
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miterfasst, hatte jedoch keinen Einfluss auf die Narkosesteuerung. Zu den 

Zeitpunkten Hautschnitt und bei Manipulation am Peritoneum wurde gesondert 

auf Schmerzreaktionen geachtet. Das Roh-EEG wurde im Anschluss in einer 

visuellen Auswertung auf Burst-Suppressionen (Muster, welche in tiefer Narkose 

auftreten) überprüft. Dies geschah für beide Gruppen, ebenso wie die Auswertung 

der Vertiefungsphase. Für die restliche Datenauswertung wurden lediglich Tiere 

mit ungestörtem Allgemeinbefinden und Sensorium herangezogen. 

Ergebnisse: 

Zwischen Narcotrendindex und den klinisch ermittelten Narkosestadien „zu 

flach“, „adäquat“ und „zu tief“ gab es keine erkennbare Beziehung. Auch das 

Stadium „wach“ konnte nicht abgegrenzt werden. Des Weiteren konnte der 

Narcotrendindex die analgetische Komponente der Narkose nicht widerspiegeln. 

Auch hier gab es keinen signifikanten Unterschied zwischen den Tieren, die auf 

einen chirurgischen Reiz hin eine Reaktion zeigten oder nicht. Zwischen dem 

Narcotrendindex und der endexspiratorischen Isoflurankonzentration zeigte sich 

in beiden Gruppen eine schwache signifikante Korrelation nach Spearman 

(Gruppe 1: r = 0,309, Vertiefungsphase (beide Gruppen): r = 0,317). 

Hinsichtlich der Klassifizierung von Burst-Suppressionen konnten 83,5 % der 

EEG-Abschnitte mit und 98,7 % ohne diesem Muster korrekt eingeordnet werden. 

Hier zeigte sich kein statistisch signifikanter Unterschied zwischen den beiden 

Gruppen. Sie unterschieden sich jedoch sehr deutlich bezüglich der Häufigkeit 

von Burst-Suppressions-Mustern. So waren es in Gruppe 1 1,6 %, in Gruppe 2 

hingegen 31,3 %. 

Schlussfolgerung: 

Eine eins zu eins Anwendung der Algorithmen des Narcotrendindex, der für 

Menschen entwickelt wurde, auf das Kalb war unter diesen Voraussetzungen nicht 

möglich. Somit konnte der Narcotrendmonitor unter den gewählten Bedingungen 

keinen Beitrag zum Narkosemonitoring beim Kalb leisten. 
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VII SUMMARY 

Evaluation of the Narcotrend EEG monitor for supervising anesthesia in calves 

(Maria Doll, 2011) 

Most surgeries in calves are done under general anesthesia. Monitoring and 

control of anesthesia is done by clinical parameters alone. In humans, additional 

EEG monitors are increasingly used. The Narcotrend monitor is also a computer 

assisted evaluation system for electroencephalograms (EEG), which converts the 

original EEG into a numeric index from 0 (deep anaesthesia) to 100 (awake). 

The monitor was developed for humans and is intended to improve anesthesia and 

to enable individual dosing of anesthetics.  

The aim of this study was to test the Narcotrend (version 4.7) in calves. 

Materials and methods: 

In 43 Simmental calves anesthesia was monitored and data collected during 

surgery and during the subsequent waking phase or deepening in those animals 

which had to be euthanized. Additionally, waking times were measured as well as 

the phases in which the level was too light or too deep. Before anesthesia, the 

animals were divided into two groups according to the general condition and 

sensorium – either unremarkable (group 1) or disturbed (group 2). At the time of 

surgery the age of the calves ranged between 2 days and 4.5 months. 

For anesthesia the standard protocol of the Clinic for Ruminants was used, namely 

sedation by xylazine (0.2 mg/kg i.m.), induction by ketamine (2.0 mg/kg i.v.) and 

maintenance of anesthesia by isoflurane (by inhalation). The patients breathed 

spontaneously throughout the entire anesthesia. Depth of anesthesia was assessed 

by clinical parameters such as reflexes (pedal, palpebral and corneal reflex), 

position of the bulbus and response to surgical stimuli. It was divided into four 

planes: ”awake”, “too light”, “adequate” and “too deep”. The Narcotrend index 

was noted but did not influence control of anesthesia. At the moment of skin 

incision and manipulation of the peritoneum it was noted whether or not 

movement following the surgical stimulus occurred. The EEG was visually 

analyzed, looking for burst suppressions (patterns which occur in deep stages of 

anesthesia). This, as well as the evaluation of the deepening phase was done for 
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both groups. All other analyse were done only for animals with undisturbed 

general condition and sensorium. 

Results: 

There was no discernable relationship between the Narcotrend index and the 

clinically determined plane of anesthesia. Furthermore “awake” could not be 

distinguished, nor did the Narcotrend index reflect the analgesic part of 

anesthesia. There was no significant difference in the index between animals that 

reacted to the surgical stimulus and those that did not. Between the Narcotrend 

index and end-tidal isoflurane concentration there was a weak significant 

correlation (Spearman) (group 1: r = 0.309, plane of deepening (both groups): 

r = 0.317). 

Regarding the classification of burst suppressions, 83.5 % with and 98.7 % 

without these patterns were correctly classified. There was no statistically 

significant difference between the two groups. However, there was a large 

difference in the incidence of these patterns. In group one it was 1.6 %, whereas in 

group two it was 31.3 %. 

Conclusion: 

A one-to-one application to calves of the algorithm developed for humans was not 

possible under these constraints. Therefore the Narcotrend could make no 

contribution to the monitoring of anesthesia in calves, under the given 

circumstances. 
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IX ANHANG 

Narkoseprotokoll

Medikamente Xylazin ..……………

Ketamin …………..

Isofluran …………..

Uhrzeit ……………………

AB/Sensorium …………………………………

Datum …………………….

Narcotrend …………

Ableitung ………………………………………..

Indikation …………...………………………

    □ ♂     □ ♀Alter ……………………….

Patient …………………………………….....

Kliniknummer ………………...………….

Rasse …………………………………...……..

Gewicht …………………….…………………

Temp. A …………. °C

    E .…….….. °C
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Bemerkung

Narkosestadium:  0= wach, 1= zu flach; 2= chirurgisch tolerant; 3= zu tief

Bulbus: v= ventral, z= zentral, t= temporal, d= dorsal

 

Abbildung 12: Protokollbogen für die Narkoseüberwachung. 

Legende siehe nächste Seite. 
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Legende zu Abbildung 12: 

Temp. A = innere Körpertemperatur anfangs (Zeitpunkt der Narkose-

einleitung), Temp. E = innere Körpertemperatur am Ende der Daten-

erfassung 

AB = Allgemeinbefinden 

♂ = männlich; ♀ = weiblich 

Bemerkung: hier wurden unter anderem Zeichen für Wachheit eingetragen 

 

 

 

Abbildung 13: Burst-Suppressions-Muster in der Vertiefungsphase einer 

Narkose in der ersten (K1) und zweiten (K2) Ableitung (Anzeige des 

Narcotrendmonitors). 
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Tabelle 2: Tiere mit ungestörtem Allgemeinbefinden und Sensorium. 

Übersicht zu erhobenen Befunden, Alter (in Tagen), Körpermasse (in kg), 

Geschlecht (m = männlich, w = weiblich) und Operationsdauer (OP-Dauer; 

in Minuten) 

Tier Befund(e)
Alter 

(Tage)

Körper-

masse (kg)
Geschlecht

OP-Dauer 

(min)

1 Urachusabszess, Ophaloarteritis, 

Omphalitits

10 51,0 w 46

2 Nabelbruch, persisitierender 136 132,0 m 68

3 Urachuszyste, Omphalitis 8 47,0 w 86

4 Omphaloarteriitis 85 79,5 m 123

5 nicht durchgebrochenes 

Labmagengeschwür

44 60,5 w 65

6 unkomplizierter Nabelbruch 39 61,0 m 52

7 unkomplizierter Nabelbruch 18 48,0 w 17

8 Omphalophlebitis 43 84,5 w 145

9 Omphalitis 22 72,0 w 76

10 Omphalitis 55 94,5 w 60

11 unkomplizierter Nabelbruch 8 61,0 w 52

12 Omphaloarteriitis, Urachusabszess 44 83,5 w 175

13 Nabelabszess 19 67,0 w 106

14 Neuromyodysplasia congenita 6 33,0 m 57

15 unkomplizierter Nabelbruch, 

Omphalophlebitis

19 52,0 w 67

16 Femurfraktur 8 53,0 w 48

17 Omphalitis 11 56,5 w 41

18 Femurfraktur 2 29,0 m 112

19 unkomplizierter Nabelbruch 10 51,5 w 33

20 persistierender Urachus 61 87,5 m 119

21 Hernia inguinalis, "Penisplastik" 2 45,5 w 92

22 unkomplizierter Nabelbruch, 

Omphaloarteriitis

30 53,0 m 88

23 unkomplizierter Nabelbruch 59 73,0 m 55

24 periarterielles Hämatom, 

Urachuszyste, Peritonitis

8 64,5 w 179

25 Nabelabszess 56 106,0 w

26 nekrotische Omphalourachitis, 

lokale Peritonitis

4 37,4 m 107

27 unkomplizierter Nabelbruch 64 76,0 w 66

28 fibrinöse Peritonitis 8 39,5 m 39

29 unkomplizierter Nabelbruch, 

Omphalourachitits,

107 92,0 m 76

30 Omphaloarteritis 15 60,0 m 110

31 Nabelvenenabszess 36 85,5 w 74

32 unkomplizierter Nabelbruch 55 88,0 m 45

33 unkomplizierter Nabelbruch 25 80,5 w 49   
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Tabelle 3: Tiere mit gestörtem Allgemeinbefinden oder Sensorium. Übersicht 

zu erhobenen Befunden, Alter (in Tagen), Körpermasse (in kg), Geschlecht 

(m = männlich, w = weiblich) und Operationsdauer (OP-Dauer, in Minuten) 

Tier Befund(e)
Alter 

(Tage)

Körper-

masse (kg)
Geschlecht

OP-Dauer 

(min)

1 generalisierte fibrinöse Peritonitis 4 49,0 w 8

2 Labmagen - und Blinddarmdilatation 36 62,0 m 111

3 Colonaplasie 2 45,0 w 25

4

generalisierte Peritonitis, 

Darmnekrose 68 104,0 m 14

5 Coloninvagination, Adhäsionsileus 44 69,0 m

6

Volvolus, Jejunumanschoppung, 

paralytischer Ileus 11 50,5 m 24

7 Blinddarmnekrose 10 55,0 w 34

8

Darmperforation, generalisierte 

Peritonitis 7 41,0 w 11

9 Bridenileus, Darmnekrose 13 48,2 m 15

10 Colonaplasie 5 41,8 w 15  

 

 

Tabelle 4: Übersicht zu Zeitpunkten der definierten Schmerzerfassung (Haut 

= Hautschnitt, Peritoneum 1 = Eröffnung der Bauchhöhle, Peritoneum 2 = 

Nähen des Peritoneums beim Verschluss der Bauchhöhle) mit gesamter 

Anzahl der erfassten Werte, prozentualer Anteil der positiven und negativen 

Schmerzreaktionen sowie jeweiliger Median des Narcotrendindex 

 Schmerzreaktion prozentualer Anteil [%] Median Narcotrend 

Haut 
n = 34 

ja 5,9 27 

nein 94,1 24 

Peritoneum 1 
n = 30 

ja 10,0 25 

nein 90,0 25 

Peritoneum 2 
n = 27 

ja 7,4 29 

nein 92,6 26 
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Tabelle 5: Verteilung der EEG-Epochen mit und ohne 

Burstsuppressionsmustern auf die jeweiligen Narcotrend-Stadien in 

Gruppe 1. Die zugehörigen Indexbereiche sind in Klammern angegeben. 

(BS = Burst-Suppressionen, OP = intraoperativ)  

F1 – E2 E1 – A

(0 – 19) (20 – 100)

OP + Aufwachphase 1 2 3

Vertiefungsphase 7 9 16

OP + Aufwachphase 13 1154 1167

Vertiefungsphase 0 24 24

21 1189 1210

gesamt

BS ja

BS nein

gesamt         

 

 

Tabelle 6: Verteilung der EEG-Epochen mit und ohne 

Burstsuppressionsmustern auf die jeweiligen Narcotrend-Stadien in 

Gruppe 2. Die zugehörigen Indexbereiche sind in Klammern angegeben. 

(BS = Burst-Suppressionen, OP = intraoperativ) 

F1 – E2 E1 – A

(0 – 19) (20 – 100)

OP + Aufwachphase 4 0 4

Vertiefungsphase 59 3 62

OP + Aufwachphase 5 91 96

Vertiefungsphase 0 49 49

68 143 211

gesamt

BS ja

BS nein

gesamt         

 

 

Tabelle 7: Übersicht zu korrekter oder falscher Einordnung der EEG-

Epochen hinsichtlich des Kriteriums „Burst-Suppressions-Muster“ in den 

Gruppen 1 und 2 

richtig falsch

Gruppe 1 1186 24 1210

Gruppe 2 203 8 211

  gesamt 1389 32 1421

gesamt

Einordnung
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