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Zusammenfassung

In dieser Doktorarbeit werden Methoden entwickelt um Streuamplituden innerhalb der
String Theorie auf Baum- und Schleifenniveau zu berechnen. Insbesondere betrachten wir
Korrelationsfunktionen von Ramond–Neveu–Schwarz Feldern in vier, sechs, acht und zehn
Raumzeit-Dimensionen. Schließlich berechnen wir auf Baumniveau die Streuamplitude von
zwei Eichfeldern und vier Gauginos.

Superstring Amplituden sind in theoretischer als auch in phenomenologischer Hinsicht
von besonderem Interesse. Die Neveu–Schwarz Fermionen und Ramond Spinfelder tragen
durch Vertexoperatoren von bosonischen und fermionischen Stringzuständen zu Streuam-
plituden bei. Da diese Felder miteinander wechselwirken, müssen die entsprechenden Kor-
relatoren von Grund auf bestimmt werden.

Auf Baumniveau können diese Korrelationsfunktionen mittels ihrer Lorentz- und Singu-
laritätsstruktur berechnet werden. Wir zeigen in vier Dimensionen ein Methode um Korre-
latoren mit beliebig vielen Ramond–Neveu–Schwarz Feldern zu bestimmen. Diese basiert
auf der Tatsache, dass man die entsprechenden Ausdrücke in links- und rechtshändige
Spinfeld-Korrelatoren zerlegen und diese allgemein berechnen kann. Mit weiteren Techni-
ken gelingt es uns in sechs, acht und zehn Dimensionsn gewisse Klassen von Korrelatoren
mit beliebig vielen Feldern zu bestimmen. Des Weiteren ist in acht Dimensionen die SO(8)
Trialität zur Berechnung von besonderem Nutzen.

Auf Schleifenniveau werden die jeweiligen Korrelationsfunktionen berechnet, indem
man Fermionen und Spinfelder mit Hilfe von SO(2) Spinsystem-Operatoren ausdrückt. Die-
ser Technick folgend bestimmen wir alle Korrelatoren mit bis zu sechs externen Zuständen
und präsentieren außerdem Ergebnisse für gewisse allgemeine Klassen von Korrelations-
funktionen. Unsere Ergebnisse sind für Streuamplituden mit beliebig vielen Schleifen gültig.

Zum Schluß bestimmen wir für eine String-Kompaktifizierung nach vier Dimensionen
die Amplitude für einen Streuprozess mit zwei externen Eichfeldern und vier Gauginos auf
Baumniveau und bestimmen den Feldtheorie-Limes. Diese Amplitude von offenen Strings
ist von besonderem Interesse, da sie zu einer offen-geschlossenen Amplitude aus Eich- und
Modulifeldern in Beziehung gesetzt werden kann. Auf diese Weise ist es möglich, die Ab-
bildung zwischen dem offenen und offen-geschlossenen Sektor genauer zu studieren und
Kopplungen zwischen Branen- und Hintergrundfeldern mit Hilfe von offenen Stringkopp-
lungen anzugeben.
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Abstract

In this thesis we provide calculational tools in order to calculate scattering amplitudes in
string theory at tree- and loop-level. In particular, we discuss the calculation of correlation
functions consisting of Ramond–Neveu–Schwarz fields in four, six, eight and ten space-time
dimensions and calculate the amplitude involving two gauge fields and four gauginos at
tree-level.

Multi-parton superstring amplitudes are of considerable theoretical interest in the
frame-work of a full-fledged superstring theory and of phenomenological interest in describ-
ing corrections to four-dimensional scattering processes. The Neveu–Schwarz fermions and
Ramond spin fields enter the scattering amplitudes through vertex operators of bosonic
and fermionic string states and determine the Lorentz structure of the total amplitude.
Due to their interacting nature their correlators cannot be evaluated using Wick’s theorem
but must be calculated from first principles.

At tree-level such correlation functions can be determined by analyzing their Lorentz
and singularity structure. In four space-time dimensions we show how to calculate Ramond–
Neveu–Schwarz correlators with any number of fields. This method is based on factorizing
the expressions into correlators involving only left- or right-handed spin fields and calcu-
lating these functions. This factorization property does not hold in higher dimensions.
Nevertheless, we are able to calculate certain classes of correlators with arbitrary many
fields. Additionally, in eight dimensions we can profit from SO(8) triality to derive further
tree-level correlation functions.

Ramond–Neveu–Schwarz correlators at loop-level can be evaluated by re-expressing the
fermions and spin fields in terms of SO(2) spin system operators. Using this method we
present expressions for all correlators up to six-point level and show in addition results
for certain classes of correlators with any number of fields. Our findings hold for string
scattering at arbitrary loop order.

To complement the discussion we calculate the tree-level amplitude of two gauge fields
and four gauginos for string compactifications to four dimensions and give its field theory
limit. This open string amplitude is of particular interest because it can be related to an
open-closed amplitude involving gauge fields and bulk moduli. In this way the mapping
between the open and the open-closed sector can be studied in great detail and brane-bulk
couplings can be determined in terms of open string couplings.
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CHAPTER 1

Introduction

Particle physics is entering a very exciting time. In 2009 the Large Hadron Collider (LHC)
at CERN began its operation after many years of construction. Experimental and theo-
retical physicists alike are excited what new insights can be gained in the coming years
from the proton-proton collisions taking place in the detectors. With the same eagerness
physicists gaze at other earth-bound experiments and satellite missions waiting for new
results. Future findings are going to challenge our current understanding of the universe
on small and large scales and will point the way to correct theories of particle physics and
gravity.

1.1 Particle Physics and Gravity

Our current knowledge about the interactions of the smallest constituents of matter is
manifested in the standard model of elementary particle physics (SM) [5–7]. It successfully
describes the strong and electroweak interactions down to distances of at least 10−16 cm
and has been tested to high accuracy. Its underlying mathematical concept is that of local
quantum field theory [8], which is renormalizable. In detail, the gauge group of the SM
is given by SU(3)c × SU(2)L × U(1)Y and the matter sector consists of three generations
of leptons and quarks. Mass terms for the fermions and gauge bosons in the SM are
not gauge invariant and therefore must be generated dynamically. This is achieved via
spontaneous symmetry breaking [9–11]. One scalar SU(2) doublet, the Higgs field, breaks
the SM gauge group down to SU(3)c × U(1)em. At the time of writing the Higgs particle
is the only constituent in the SM yet to be discovered. In the broken theory the gluons
represent the gauge bosons of the strong interaction, while the photon and the massive W
and Z bosons depict the quanta of the electromagnetic and weak interactions.

Despite its great achievements the SM does not resolve all issues from a conceptual point
of view1. The most prominent example is the hierarchy problem [13–15] which questions
why the two fundamental scales in physics, namely the electroweak scale Mew ≈ 102 GeV

1In discussing the problems of the SM we follow [12].
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and the reduced Planck scale MPl ≈ 1018 GeV differ by sixteen orders of magnitude.
Although this discrepancy does not pose a threat to the SM itself it has far-reaching
consequences for the Higgs mass. Through loop diagrams the square of the bare Higgs mass
receives quantum corrections, which grow quadratically with a cut-off scale introduced in
order to regulate the momentum integral. The natural scale for the physical Higgs mass
would then also be this cut-off scale. If the SM is taken to be valid up to energies where a
theory including quantum gravity takes over, this cut-off scale would be the Planck scale,
whereas for a Grand Unified Theory (GUT) replacing the SM at higher energies this scale
would be still be as high as MGUT ≈ 1016 GeV. However, searches at the Large Electron-
Positron Collider (LEP) and indirect constraints from electroweak precision measurements
favor a Higgs mass between 114.4 GeV and 186 GeV [16]. There must be an enormously
contrived fine-tuning over roughly 30 decimals such that the bare value and the radiative
corrections cancel and yield such a low Higgs mass.

Another fine-tuning problem within the SM is the strong CP problem [17]. Gauge
symmetry does not prohibit to introduce a new CP-violating term θQCD to the Lagrangian
of Quantum Chromodynamics (QCD). Such a term induces an electric dipole moment
for the neutron, which is however heavily constrained from experiment. The SM fails to
explain why θQCD is so small compared to the observed CP violation in the electroweak
sector.

Next to these naturalness problems there are further issues in the SM worth mention-
ing. The SM cannot explain why the gauge group has its peculiar structure and more
important it fails to illustrate why charges are quantized. All leptons and bosons come
with electromagnetic charges that are multiples of e/3, which is crucial for the neutrality
of atoms. In addition, we do not know why there are exactly three families of leptons
and quarks, although under ordinary terrestrial conditions all matter is only built out of
the first generation. The masses of the fermions is another mystery. Going from the top
quark to the electron they vary over five orders of magnitude. The masses arise from the
Yukawa couplings, but the SM does not predict why these couplings have such a hierar-
chical structure. In the same way there is no indication why the other parameters of the
SM, like mixing parameters of quarks and leptons and further parameters in the neutrino
sector, have their precise values. Additionally, recent data, e.g. from cosmic microwave
background measurements, shows that a large fraction of more than 80% of the matter in
our universe is not accounted for by SM particles, but is existent in the unknown form of
dark matter [18].

In view of all these shortcomings an extensions of the SM is highly desirable. A widely-
used approach to address some of the open questions is guided by the idea to incorporate
new symmetries. As the symmetry principle has been a major point in the construction
of the SM itself such advances are with good prospects. An elegant solution to the strong
CP problem in this sense is given by the Peccei–Quinn mechanism [19, 20]. Here, the
QCD angle is promoted to a dynamical field charged under an additional U(1) symmetry,
which then is dynamically broken and gives rise to a massless Goldstone boson, namely the
axion. Such a particle has not yet been discovered, but various experiments are looking
for possible signals.
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The most promising extension of the SM with additional symmetries is the idea of
low energy supersymmetry (SUSY) [21] which adds fermionic generators to the symmetry
algebra [22] and thus evades the Coleman-Mandula theorem [23]. From a phenomenologi-
cal point of view a supersymmetric extension like the Minimal Supersymmetric Standard
Model (MSSM) [24] is very attractive as it keeps the radiative corrections to the Higgs
mass under control and can provide a viable dark matter candidate in form of the lightest
SUSY particle. However, SUSY cannot be an exact symmetry. The SUSY algebra implies
that particles and their superpartners have the same mass but a superpatner of the electron
with a mass of 511 keV has not been discovered. SUSY must therefore be broken so that
the superpartners are heavy and have not yet shown up in experiments. This breaking
introduces many new parameters, whose values are not addressed by the theory as well as
the Yukawa matrices and neutrino parameters. In this sense a SUSY extension of the SM
is not a fully satisfactory solution.

A very promising feature in SUSY theories though is gauge coupling unification. The
renormalization group evolution of the gauge couplings is changed in such a way that they
perfectly meet at an energy scale MGUT ≈ 1016 GeV. This unification provides strong
evidence that the SM gauge groups are replaced at such high energies by a single group
like SU(5) [25] or SO(10) [26]. In such GUTs it is also possible to address the origin and
nature of quark and lepton masses and their mixing because these particles appear in the
same multiplets. Charge quantization can also be explained in such a framework. However,
common problems in the construction of GUT models are to suppress proton decay to an
acceptable level and further (little) hierarchy problems.

However, extending the SM in such ways fails to provide an answer for the cosmologi-
cal constant problem. Dark matter and SM model particles alone cannot account for the
current phase of accelerated expansion of our universe. Therefore another form of energy
driving this expansion has to be introduced. This dark energy must amount to nearly
73% of the total energy content of our universe [18]. In the standard model of cosmology,
the ΛCDM model, dark energy is incorporated by a cosmological constant in Einstein’s
field equations of general relativity (GR) [27–29]. Trying to explain dark energy naively
as the vacuum energy of some quantum field leads to a discrepancy of 118 orders of mag-
nitude between the theoretical and experimental value [30]. In SUSY this disagreement is
reduced to 60 orders of magnitude, which is still tremendous. This defect might be deeply
intertwined with our current lore of gravity in the form of GR.

The concept used in GR is that of curved space-time, i.e. a four-dimensional manifold
with Minkowski signature. Every form of energy causes space-time to curve which is
encoded in the metric. The motion of an object due to a gravitational field is explained as
the object moving along geodesics on the manifold. Compared to the other fundamental
interactions in the SM the gravitational force is by far the weakest and can safely be
neglected when studying particle collisions at “low” energies up the electroweak scale.
However, gravity is dominating on large distances and therefore GR constitutes a good
framework to describe macroscopic motion within the universe and the extension of the
universe itself. Einstein’s theory of GR is a classical theory and it might be just this fact
which makes our current predictions of the cosmological constant and its actual value gape
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so tremendously. Furthermore in the present formulation of gravity we cannot describe
physical effects at energies around the Planck scale where gravity is expected to become
as dominant as the other fundamental forces. Although these energies might never be
accessible in a laboratory experiment, this situation was existent shortly after the big
bang.

The theory seems to be incomplete in another fashion. The validity of general relativity
ends if the Schwarzschild radius of an object exceeds its size. The object collapses into
a black hole, which is mathematically described as a point-like singularity. Transitions,
like a massive star collapsing into a black hole, from an initially well-defined setting to
a singularity of space-time are troublesome and signal the break-down of the theory. A
possible solution would be that such singularities get smeared by quantum effects. Yet
further issues arise in the discussion of black holes if thermodynamics is taken into account
[31,32]. A black hole must carry a vast amount of entropy which is proportional to the size
of its event horizon. Generally, the number of microstates leading to a thermodynamical
configuration accounts for the entropy of the system. General relativity, however, does not
have the necessary degrees of freedom to explain the enormous entropy of a black hole and
fails at providing a microscopic explanation of the Bekenstein-Hawking formula.

These defects of general relativity propose to construct a quantum theory of gravity.
Doing quantum field theory based on the action of general relativity yields, however, a
non-renormalizable theory. Infinitely many parameters have to be introduced in order to
render the theory finite which makes the theory un-predictive. Thus new revolutionary
approaches are necessary.

1.2 String Theory

The most promising candidate for a theory of quantum gravity is string theory [33–36]. It
was originally discovered as a by-product in the late 1960s in order to explain hadronic
resonances appearing in the CERN accelerators and elsewhere. The discovered resonance
peaks exhibit Regge behavior j = j0 +α′M2, a relation between their mass M and spin j.
Physicists were able to construct an S-matrix with these properties [37], which was later
discovered to arise from the scattering of bosonic strings. Although QCD turned out to
be the correct theory to describe strong interactions and asymptotic freedom the interest
in string theory did not fade. It was discovered that string theory yields a massless spin-2
state which can be associated with the graviton, the exchange boson of gravity. In contrast
to loop quantum gravity [38] the big advantage of string theory is that it also incorporates
gauge interactions like in the SM and thus provides a unified framework to describe all
fundamental interactions of nature.

At the moment only a perturbative formulation of weakly coupled string theory is
available, by which the motion of quantized strings in a given space-time with certain
background charges can be described. Five different string theories (type I, type IIA, type
IIB, heterotic E8 × E8 and heterotic SO(32)) are known which are related by different
dualities. Although the formulation in this form is sufficient for the discussion of many
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phenomena the final goal is still to obtain a fully quantized version of string theory which
might be provided by a so-far poorly understood theory in eleven dimensions called M-
theory [39].

The integral parts of string theory are one-dimensional objects, namely strings, sweep-
ing out a two-dimensional surface in space-time, the string world-sheet. The action is
mathematically described by a non-linear σ-model embedded into a higher-dimensional
target-space. The case of one-dimensional objects is singled out because in this case the
symmetry algebra of conformal transformations is infinite dimensional. The strings can
oscillate in different modes due to their extended nature which results in a discrete mass
spectrum. This is also special to the case of strings and is lost if the quantization of higher-
dimensional membranes is considered [40]. The mass gap in the spectrum is characterized
by the single free parameter of the theory, the string length ls = 2π

√
α′, where α′ is the

Regge slope. Promoting the world-sheet action to a supersymmetric theory solves two
problems of bosonic string theory. Firstly, it gives rise to fermionic states in the spec-
trum. Secondly, the troublesome tachyonic ground state is projected out via the GSO
projection [41]. This results in a theory that exhibits target space SUSY. In order for the
theory to be free of a superconformal anomaly the target space must be ten-dimensional
space-time [42].

Strings come in two topologies, they can be either closed or open. Closed strings can
propagate in all ten space-time dimensions. Upon quantization these yield at the lowest
mass-level the spin-2 graviton. The situation is different for open strings. The end-points
of the latter must satisfy either Neumann or Dirichlet boundary conditions. The latter
imply in type II string theories that the endpoints of open strings are confined to higher-
dimensional D-branes [43]. The spectrum of open strings gives rise at the lowest mass-level
to gauge fields which endow the D-branes with a super-Yang-Mills (SYM) theory living
on their world-volume. If D-branes intersect, open strings can stretch from one brane to
the other in the vicinity of the intersection. In the presence of two-form flux these new
string states depict massless chiral fermions. In such a way it is possible to construct string
models which contain many of the phenomenological features of the SM [44].

With string theory at hand it is possible to confront the problems arising in general
relativity. A big success has been the explanation of the Bekenstein-Hawking formula
for extremal five-dimensional black holes. [45]. String theory as a fundamental theory
is furthermore a distinguished candidate to discuss physics at high energy scales. Active
research is going on in studying string cosmology [46], building string GUT models from F-
theory [47] or heterotic orbifolds [48]. Many new insights into geometry and gauge theory in
general have been gained, as well as the existence of non-commutative and non-associative
structures in string theory [49–51]. The most significant achievement of string theory
within the last years has been the discovery of gauge/gravity duality. This correspondence
relates the partition function of a gravity theory on the one hand with the generating
functional of correlation functions in a conformal field theory (CFT) on the other hand. In
its original form the correspondence links type IIB string theory on AdS5×S5 with N = 4
SYM in four dimensions [52–54]. The correspondence is often studied in the limit of large
t’Hooft coupling and a large number of colors. Type IIB string theory then reduces to type
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IIB supergravity (SUGRA), which is well understood. Furthermore, the relation between
gauge and gravity theory becomes a weak/strong duality. This opens up to the possibility
to investigate either theory at strong coupling via its weakly coupled dual theory. This is
a very promising attempt to study strongly coupled effects in physics as they occur e.g. in
QCD [55] or certain condensed matter systems [56–59].

The problem of the cosmological constant in string theory is deeply related to the vac-
uum problem. Obviously there is a mismatch between the ten dimensions of string theory
and the four dimensions in which the SM is set. The standard approach to resolve this issue
is compactification, where six of the ten spatial dimensions in string theory do not extend
to infinity but form a compact manifold, while the remaining four dimensions constitute
four-dimensional Minkowski space. The claim to obtain a phenomenological attractive
theory in four dimensions with N = 1 SUSY constricts the compactification manifolds to
Calabi-Yau (CY) manifolds [60], where in type II theories orientifold projections must be
included. Today also further mechanisms to break SUSY in the compactification proce-
dure are available. Carrying out the compactification without further ingredients leads to
a vast number of massless scalar fields in four dimensions characterizing the shape and
volume of the internal manifold. These moduli fields would mediate long-range fifth-force-
like interactions which are phenomenologically not acceptable. A proposed solution is to
turn on background fluxes that result in a potential for the moduli and thus renders them
massive [61]. The vacuum energy of the (local) minimum of the potential then corresponds
to the cosmological constant in string theory which can accomplished to be small and pos-
itive [62, 63]. However, there is no distinguished minimum. String theory loses a lot of its
uniqueness by going down from ten to four dimensions in the sense that there does not exist
a unique six-dimensional compactification manifold and the fluxes have to be quantized
but apart from that are arbitrary. This leads to an incredible large number of different
string vacua, a commonly quoted estimate is 10500 [64]. So there might not be just one
vacuum that can explain the observed four-dimensional physics, although it has turned
out hard so far to construct four-dimensional string models, which satisfy all consistency
conditions of the compactification and yield the gauge and matter content of the SM or
MSSM in a generic way.

1.3 Scattering Amplitudes

A different approach in connecting string theory with low energy particle physics rests on
the calculation of quantities that do not depend on the exact details of the compactifica-
tion. In particular scattering amplitudes in weakly coupled string theory involving gluons
and at most two fermions are such quantities which are insensitive to the respective com-
pactification model. If in addition the mass scale of string theory is as low as the TeV scale,
such a scenario gives rise to fascinating phenomenology of physics beyond the SM [65–68]
that could be detected in the coming years at LHC.

This idea of low string scale physics is deeply related to the proposal of Arkani-Hamed,
Dimopoulos and Dvali (ADD) [69, 70]. They argue that in the presence of large extra
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dimensions the electroweak scale can be the only fundamental short distance scale in nature.
In this framework gravity and the three fundamental forces of the SM unify at the TeV scale.
At low energies fermions and the gauge bosons of the strong and electroweak interactions
are confined to a four-dimensional Mikowskian sub-space, while gravity can also propagate
into the bulk. The large size of the extra dimensions pushes the four-dimensional Planck
scale to its high value and makes gravity look so weak from a four-dimensional point of
view. In this sense the theory nullifies the hierarchy problem. Already the case of two
extra dimensions is in concordance with all experimental bounds [71] as Newtonian gravity
is tested at the moment only down to distances of ≈ 1 mm.

Due to the presence of extra dimensions string theory is the perfect ground to study
such models. As mentioned above SM-like gauge groups can be realized in type II com-
pactifications via intersecting D-brane models. A very common attempt in type IIA is to
use four stacks of intersecting D6-branes with an intersection pattern as shown in Figure
1.1. This setup gives rise to the gauge group U(3)a × U(2)b × U(1)c × U(1)d. The U(N)’s
can be further decomposed as U(N) = SU(N) × U(1). This results in the SM gauge
group, where the SM hypercharge is a linear combination of the different U(1)’s. New
gauge bosons like a heavy Z ′ can be included by different combinations of the U(1)’s2.
This D-brane setup is embedded in a compactification manifold. The cycles around which
the branes wrap have to be small as their size determines the gauge couplings. Other cycles
of the manifold, however, must be large such that the total volume of the compactification
manifold in total becomes large. This can yield a string scale of the order Ms = O(TeV).
Popular examples of such models are compactifications on “Swiss cheese” CY manifolds.
In addition, the dilaton must be stabilized at large values. The string coupling will then
be small and we can rely on perturbation theory.

The phenomenology of such SM D-brane constructions is very rich. If the string scale
is really that low and the string coupling small the discovery of new, massive gauge bosons
at LHC can be expected. These new force-carriers stemming from additional U(1) gauge
symmetries could mix with the photons and yield interesting effects. In the same fash-
ion the formation of black holes and other gravity effects could be observed at energies
above the string scale. The most promising and so-far best studied phenomena are cor-
rections to hadronic SM processes at energies around the string scale. At these energies
the scattering partners can exchange apart from the SM particles also stringy states in
the form of Regge recurrences, Kaluza-Klein states and winding modes. The latter two
have a model-dependent spectrum and will give a handle on determining the details of the
compactification geometry if strings are discovered. A promising discovery channel is the
detection of photon production in gluon fusion [74, 75] as these processes do not exist at
all in the SM. Most interesting are certainly stringy corrections to the hadronic production
of dijets [75–77]. As shown in Figure 1.2 in such a case a clear excess over the SM signal
in the range of the string scale will be discovered. The CMS experiment has been able to

2At the time of writing the origin of the excess in W → 2 jets events measured by CDF [72] is not
clear. A physical interpretation could be the existence of a leptophobic Z ′ which can be realized in such
a D-brane model [73].
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Figure 1.1: Four stacks of intersecting D6-branes resulting in the gauge group of the
MSSM, taken from [66].

exclude such string resonances up to 1.67 TeV already [78]. Nevertheless, it will remain an
interesting channel to look at in the future when the LHC exploits its full potential.

Apart from these phenomenological considerations string scattering amplitudes play an
important role in many other fields. From the conceptual point of view they turn out to
be of great use in string compactifications. Instead of working with the complete theory
one usually takes the field theory limit of string theory in order to derive four-dimensional
actions. Massive string levels and the extended nature of the strings are hereby neglected.
Corrections to the effective action like gauge couplings and metrics for moduli and matter
fields can then be derived via string amplitudes [79–81].

The fact that string theory also includes quantum gravity provides a perfect setup to
juxtapose gauge and gravity amplitudes. Nowadays recipes are forthcoming how to re-
late amplitudes involving only open strings with open & closed string amplitudes [82, 83]
and learn in this way about the relations between brane-bulk and pure brane couplings.
An issues related to this topic are the recently found Bern–Carrasco–Johansson (BCJ)
relations, a duality between color and kinematics in field theory amplitudes [84]. These
relations have profound consequences as they lead to many new non-trivial relations be-
tween distinct amplitudes. Furthermore gravity amplitudes can be obtained in a rather
simple way by simply squaring the corresponding gauge theory amplitudes [85]. The same
procedure carries over to loop amplitudes via the unitarity method [86]. So far the BCJ
relations are just a conjecture, but string theory amplitudes can shed more light onto their
structure and existence [83, 87, 88].

A further open issue in theoretical physics deals with the UV finiteness of N = 8
SUGRA [89]. Although of no phenomenological relevance such an investigation might
yield unexpected new insight into the structure of quantum gravity and whether enough
symmetries can render a point-particle theory of gravity finite. Explicit calculations have
proven that the theory is finite up to four-loop order but various arguments suggest that
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Figure 1.2: Differential cross section vs. invariant mass of the dijet in four parton
scattering as calculated in weakly coupled string theory with a string scale of Ms = 2
TeV, taken from [76]

the first divergences occur not until the seventh loop order. In construction of the loop
amplitudes and the possible counterterms string theory has proven to a be successful
tool [90, 91].

1.4 Motivation & Outline

These topics show that scattering amplitudes in string theory are of high interest. Espe-
cially the fact that exact results can be obtained which capture the complete α′ behavior
of a physical quantity makes them beautiful objects to study.

In the manifestly covariant Ramond–Neveu–Schwarz (RNS) formalism of the super-
string the underlying superconformal field theory (SCFT) consists of the Neveu–Schwarz
(NS) fermion ψm, a Ramond (R) spin field SA, the string coordinate Xm and further ghost
and superghost fields. These fields enter the calculation of a string scattering amplitude
through vertex operators creating bosonic and fermionic states. The Lorentz structure of
the amplitude is solely determined by the NS fermions and the R spin fields. Unfortu-
nately, these are interacting fields and their correlation functions are therefore difficult to
determine. The evaluation of RNS correlators involving ψm and SA is the main topic of
this thesis. We consider these quantities both for tree and loop-level scattering in four, six,
eight and ten space-time dimensions.

In the case of string compactifications to four dimensions the ten-dimensional spin field
splits into an internal and an external part. The interaction of the internal vectors and
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spin fields is captured by a six-dimensional RNS correlation function, while the interac-
tions of the external spin fields with the NS fermions is contained in the four-dimensional
counterpart. In ten dimensions RNS correlators are needed for studying aspects of non-
compactified string theory like duality symmetries. In contrast, we study eight-dimensional
RNS correlators in this work mainly because of their mathematical beauty.

The outline of this thesis is as follows. In Chapter 2 we lay the groundwork for the
calculation of scattering amplitudes in the RNS formalism of the superstring. We in-
troduce the RNS formalism, review the corresponding SCFT and show how to calculate
scattering amplitudes. Chapter 3 deals with calculational methods for the evaluation of
RNS correlators at tree-level. We first present how RNS correlation functions can in gen-
eral be calculated and discuss the individual components of the latter. Furthermore we
state calculational tools special to each even number of dimensions. Most important we
demonstrate how to evaluate any RNS correlator in four dimensions. In Chapter 4 we
state results for all RNS tree-level correlators in four-dimensions up to eight-point level.
Additionally correlation functions involving arbitrary many NS fermions but only two R
spin fields are solved. These are of great use for the calculations of hadronic string inter-
actions, which are independent of the compactification scheme. Chapter 5 is devoted to
the evaluation of RNS correlators at loop-level. We show how to express the RNS fields in
terms of SO(2) spin system operators and calculate loop correlators of these fields. This is
used then to derive various loop correlators at least up to six-point level in six, eight and
ten dimensions. In addition, we present results for certain general classes of correlation
functions, especially such with at most two spin fields. Equipped with these techniques it
is then possible to calculate the correlation function of two gauge fields and four gauginos
in Chapter 6. We check gauge invariance, write the results in terms of spinor variables and
give the field theory limit. This particular purely open string amplitude is of interest as it
can be mapped onto an open-closed amplitude involving two gauge fields and four RR bulk
moduli fields. In this way it is possible to study the mapping procedure in more detail and
determine brane-bulk couplings in terms of pure brane couplings. In Chapter 7 follow our
conclusions. Five Appendices finalize this thesis, in which we comment on gamma matrices
in higher dimensions, state all necessary index term relations for the previously calculated
correlators and give some details on generalized Θ functions. Furthermore we present the
details of the calculations in Chapter 6 and review the spinor helicity formalism.



CHAPTER 2

Scattering in String Theory

In this Chapter we lay the groundwork for the succeeding calculations of RNS correlation
functions and tree-level scattering amplitudes. We are using the well-known RNS formalism
of string theory [92–94], which introduces supersymmetric partners ψm to the bosonic string
coordinates Xm on the world-sheet. The focus in the following lies on the description of
supersymmetric string theory in terms of a SCFT. We discuss the separate actions of matter
and ghost fields and introduce vertex operators that create bosonic and fermionic string
states in ten and four dimensions. In the last part of this Chapter we present some details
on the calculation of scattering amplitudes at tree- and loop-level. We follow the standard
textbooks and reviews on string theory [33–36,95] and conformal field theory [96–98], where
additional information can be found.

A drawback of the RNS formalism is the lack of space-time spinors which nevertheless
can be incorporated by the inclusion of the R spin field [99]. Alternative approaches are
the Green–Schwarz formalism, which contains manifest space-time SUSY, but is difficult
to quantize in a covariant way, and the pure spinor formalism [100]. The latter retains
Lorentz invariance and space-time SUSY and is a promising approach to the calculation
of string scattering amplitudes [87, 88, 101–103].

2.1 Conformal Field Theory on the World-Sheet

In the following we present the actions of bosonic and supersymmetric string theory in the
RNS formalism, as well as the ghost and superghost action. We focus on the description
in terms of the underlying SCFT.

2.1.1 Matter Fields

Strings are one-dimensional objects sweeping out a two-dimensional surface, the string
world-sheet, which is embedded in aD-dimensional space-time. The world-sheet is parame-
trized by a time-like coordinate τ and a spatial coordinate σ running from 0 to l, where
l = 2π for closed strings and l = π for open strings. For the moment we focus our
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attention on closed strings. The embedding of the string world-sheet into the target space
is accomplished by the bosonic string coordinate fields Xm(τ, σ), which are subject to the
identification Xm(τ, σ + 2π) = Xm(τ, σ) under shifting the spatial coordinate by 2π. This
physical system is described by the Polyakov action

SP = − 1

4πα′

∫
d2σ

√
− det h hab ∂aX

m ∂bX
n ηmn , (2.1)

where hab is the metric on the world-sheet and ηmn the metric of the flat target space.
Apart from D-dimensional Lorentz invariance the symmetries of this action are

• diffeomorphism invariance:

δhab = ∇a ξb +∇b ξa , δXm = ξa ∂aX
m , (2.2a)

• Weyl invariance:
δhab = Λ hab , δXm = 0 (2.2b)

with arbitrary infinitesimal functions ξa, Λ that depend on τ and σ. Making use of three
local symmetries (two reparametrizations of the world-sheet and one Weyl scaling) hab can
be set to the flat, two-dimensional Minkowski metric ηab = diag(−1, 1). Note that this does
not exhaust the full gauge freedom because one can still perform conformal transformations
satisfying

∂aξb + ∂aξb = Λ ηab , (2.3)

where the change of the metric due to a reparametrization is absorbed by a Weyl scaling.
We perform a Wick rotation by introducing Euclidean coordinates (σ0, σ1) ≡ (iτ, σ) and
define

w ≡ σ0 + iσ1 , w̄ ≡ σ0 − iσ1 . (2.4)

Via z = ew these coordinates on the cylinder are mapped onto to complex plane. Intro-
ducing the derivatives ∂ ≡ ∂z and ∂̄ ≡ ∂z̄ the Polyakov action in conformal gauge becomes

S =
1

2πα′

∫
d2z ∂Xm ∂̄Xm . (2.5)

In the following the coordinates z and z̄ are assumed to be independent, although they are
related by complex conjugation for real σi. On account of (2.3) this action is still invariant
under conformal transformations z 7→ f(z), where f is a holomorphic function.

Upon quantization the Polyakow action unfolds some shortcomings. The spectrum
contains a tachyonic ground state and no fermions. To cure these problems one adds
world-sheet supersymmetry to the action1. The new action involves the superpartners
of Xm and hab, a Majorana spinor Ψm = (ψm, ψ̄m) in two dimensions and a gravitino χa.
Auxiliary scalar fields can be eliminated via their equations of motions. The resulting action

1We just sketch the constructions of such a supersymmetric action. The explicit procedure is nicely
explained in [95].
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is invariant, apart from Lorentz transformations and local SUSY, under diffeomorphisms,
Weyl and super-Weyl transformations. As in the bosonic case these symmetries can be
used to bring the action in so-called super-conformal gauge, where the degrees of freedom
of the world-sheet metric and the gravitino drop out. In complex coordinates the action
then reads

S =
1

4π

∫
dz2
(

2

α′ ∂X
m ∂̄Xm + ψm ∂̄ ψm + ψ̄m ∂ ψ̄m

)
. (2.6)

Similar to the bosonic case, this action is still invariant under certain diffeomorphisms and
local SUSY transformations where the contribution to the world-sheet metric and gravitino
can be absorbed by a Weyl and super-Weyl transformation. Indeed it can be shown that
the action remains invariant under z 7→ f(z) if i(α′/2)1/2 ∂Xm and ψm are primary fields
with conformal weight h = 1 and h = 1/2, respectively.

The equations of motion,

∂(∂̄Xm) = ∂̄(∂Xm) = 0 , ∂̄ψm = ∂ψ̄m = 0 , (2.7)

imply that ∂Xm(z) and ψm(z) are chiral fields, while ∂̄Xm(z̄) and ψ̄m(z̄) are anti-chiral.
Apart from the equations of motion the variation of the action yields a surface term that
also must vanish. From this constraint the periodicity condition of the closed string co-
ordinate under rotating z by 2πi is recovered. The fermions, however, can satisfy either
symmetric or antisymmetric boundary conditions in z. This gives rise to two different
fermion sectors:

ψm(e2πiz) =





+ψm(z) : Neveu–Schwarz (NS) sector ,

−ψm(z) : Ramond (R) sector .
(2.8)

As the action is invariant under conformal and SUSY transformations Noether’s theo-
rem predicts two conserved currents. The energy momentum tensor and the world-sheet
supercurrent can be derived by varying the non-gauged supersymmetric action with re-
spect to the world-sheet metric and the gravitino. The non-vanishing components of these
tensors are holomorphic fields which in super-conformal gauge take the form

T (z) = − 1

α′ ∂X
m(z) ∂Xm(z)−

1

2
ψm(z) ∂ψm(z) ,

G(z) = i

√
2

α′ ψ
m(z) ∂Xm(z) (2.9)

and appropriate expressions for their antiholomorphic counter-parts. In the quantum the-
ory these operators must be normal-ordered, which we do not denote explicitly. This
conserved currents generate the superconformal algebra. Upon radial quantization we find
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for their operator product expansions (OPEs)2:

T (z) T (w) ∼ 3D

4(z − w)4
+

2

(z − w)2
T (w) +

1

z − w
∂T (w) ,

G(z)G(w) ∼ D

(z − w)3
+

2

(z − w)
T (w) ,

T (z)G(w) ∼ 3

2(z − w)2
G(w) +

1

z − w
∂G(w) . (2.10)

These equations show that T (z) and G(z) are tensors of weight (2, 0) and (3/2, 0). The
central charge of this SCFT can be read off from the first equation. Each boson contributes
1, every fermion 1/2 and in total we find

c =

(
1 +

1

2

)
D =

3

2
D . (2.11)

Later we will add (super-)ghost fields to the action (2.6) that will also give a contribution
to the total central charge. If the total central charge does not vanish, this leads to a
superconformal anomaly because the superconformal symmetry of the action is broken at
the quantum level. Requiring that the total central charge vanishes will determine the
number of dimensions D of the target-space.

In order to derive the OPEs of the primary fields ∂Xm and ψm we calculate the cor-
responding two-point functions on the sphere. These are determined by the conformal
properties of the fields and the Dyson-Schwinger equation:

〈
∂Xm(z) ∂Xn(w)

〉
S2 = −α

′

2

ηmn

(z − w)2
,

〈
ψm(z)ψn(w)

〉
S2 =

ηmn

z − w
,

〈
Xm(z, z̄)Xn(w, w̄)

〉
S2 = −α

′

2
ηmn ln |z − w|2 ,

〈
ψm(z) ψ̄n(w)

〉
S2 = 0 . (2.12)

From these two-point functions the OPEs can easily be read of. One finds:

∂Xm(z) ∂Xn(w) ∼ −α
′

2

ηmn

(z − w)2
, ψm(z)ψn(w) ∼ ηmn

z − w
. (2.13)

The CFT of the fermions in D = 2m dimensions has a simple representation in terms
of m chiral bosons. This equivalence of the CFTs is known as bosonization [98, 99, 104].
For this purpose we introduce H(z) =

(
H1(z), . . . , Hm(z)

)
containing m chiral boson with

the singular behavior Hi(z)Hj(w) ∼ −δij ln |z − w|. Exponentials of these fields hence
suffice the OPE

eipH(z) eiqH(w) ∼ (z − w)p q ei(p+q)H(z) , (2.14)

where p and q are m-dimensional lattice vectors with entries ±1. This yields indeed the
fermion OPEs if the exponentials are identified with the Cartan-Weyl elements of the ψ’s

2In all following OPEs the sign ∼ should be understood as ‘equal up to non-singular terms’.
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in the following way:

e±iHj(z) ≡ ψ±j(z) ≡ 1√
2

(
ψ2j(z)± iψ2j+1(z)

)
. (2.15)

Correlation functions of these operators on the sphere are easily calculated with the formula

〈∏

i

eipiH(z)
〉

S2
= δ
(∑

i

p
) ∏

i<j

z
pi pj
ij (2.16)

with zij ≡ zi − zj , which also holds for more general vectors pi.

2.1.2 The Spin Field

Let us have a closer look on the boundary conditions of the fermions. These fields live in
the double cover of the complex plane because they are only defined up to a sign as shown
in (2.8). Their Laurent expansion is therefore

ψm(z) =
∑

r

ψmr z
−r−1/2 , r ∈

{
Z+ 1

2
: NS sector ,

Z : R sector .
(2.17)

We see that in the R sector ψm introduces a branch cut due to the presence of z−1/2 in its
expansion. The OPE (2.13) implies that the Laurent modes satisfy the anti-commutation
relations

{ψmm, ψnn} = ηmn δm+n . (2.18)

The spectra of the R and NS sector are entirely different due to the integer and half-integer
mode numbering. In the R sector there is no zero mode and the ground state is defined to
be annihilated by all positive modes:

ψmr |0〉NS = 0 ∀ r > 0 . (2.19)

The modes with r < 0 act as creation operators. Every mode can be excited at most once
because they square to zero as can be seen from (2.18).

The ground state of the R sector |0〉R has more structure due to the presence of the
zero mode ψm0 . Again, it is annihilated by all modes ψmr with r > 0, but not by the zero
mode. In fact ψm0 |0〉R is another ground state because it is annihilated by the positive
modes on account of {ψmr , ψn0} = 0. Thus, the ground state is degenerate. In fact it is
a representation of the Clifford algebra with dimension 2D/2 because the ψ0’s satisfy the
Clifford algebra for Γm = i

√
2ψm0 . States created from the R vacuum are then space-time

fermions as the creation operators ψmr , r < 0, change the spin by integers. States in NS
sector in contrast have bosonic character.

Operators creating R ground states out of the NS vacuum are called spin fields SA
[99, 105]:

|A〉R = lim
z→0

SA(z) |0〉NS . (2.20)
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A is a spinor index in the target space and spin fields thus transform as space-time spinors.
As these fields intertwine the R and NS sector and thereby change the boundary conditions,
their action leads to an opening and closing of a branch cut on the string world-sheet.
Their conformal weight can be understood by calculating the Laurent modes of the energy
momentum tensor. These are given by

Lm =
1

2

∑

n

αmm−n αmn +
1

4

∑

r

(2r −m)ψmm−r ψmr + a δm,0 , (2.21)

where αmn , n ∈ Z, are the expansion modes of the bosonic string coordinate. The constant
a arrises from normal ordering. It vanishes in the NS sector, but takes the value

a =
D

16
(2.22)

in the R sector. Therefore, SA has conformal weight D/16 because L0|A〉R = D/16 |A〉R.
The two-point function of two spin fields on the sphere hence becomes

〈
SA(z)SB(w)

〉
S2 =

CAB
(z − w)D/8

. (2.23)

Here we have introduced the charge conjugation matrix CAB in order to obtain Poincaré
invariant results3. The OPEs of spin fields and fermions can be determined by considering
the three-point function 〈SA(z1)ψm(z2)SB(z3)〉 in the limits z1 → ∞, z3 → 0. The findings
can be summarized as

ψm(z)SA(w) ∼
(Γm)A

B SB(w)√
2 (z − w)1/2

,

SA(z)SB(w) ∼
CAB

(z − w)D/8
+

(Γm C)AB ψm(w)√
2 (z − w)D/8−1/2

. (2.24)

Spin fields in D = 2m can also be presented by m chiral bosons. The leading singularity
in the OPE of one fermion and one spin field in (2.24) suggests in comparison with (2.14)
that the lattice vector of a spin field must contain half integer values p = (±1

2
, . . . ,±1

2
).

In even dimensions it is always possible to decompose a Dirac spinor into left- and right-
handed Weyl spinors. The spin field SA thus decomposes into left- and right-handed spin
fields Sa and S ḃ. We follow the convention that in bosonized form the lattice vector of
a left-handed spin fields contains an even number of −1/2 entries, while the number of
negative entries is odd for a right-handed spin field.

2.1.3 Ghost Fields

We have mentioned above that the non-gauged action of the supersymmetric string is
invariant under diffeomorphisms and (super-)Weyl transformations. Therefore, it is not

3A detailed discussion of spinors in higher dimensions and the charge conjugation matrix follows in
Chapter 3 and Appendix A.
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possible to naively plug this action into the path integral. One must only integrate over
configurations of the world-sheet metric and the gravitino which are not related by these
symmetry transformations. Otherwise this leads to a massive over-counting. Usually, this
is settled by introducing a Fadeev–Popov determinant to the partition function. As can be
shown this is equivalent to adding a ghost action to (2.6) which becomes in superconformal
gauge

Sgh =
1

4π

∫
d2z
(
b ∂̄c+ b̄ ∂c̄ + β ∂̄γ + β̄ ∂γ̄

)
. (2.25)

The fields b, c are anticommuting ghost fields, which are necessary for the quantization
of the bosonic action (2.5), while the commuting super-ghost fields β, γ are required in
addition for the supersymmetric action (2.6). The equations of motion, derived from the
action above, identify these fields as chiral or anti-chiral, respectively:

∂̄b = ∂̄c = 0 , ∂̄β = ∂̄γ = 0 . (2.26)

We restrict our discussion to the chiral fields in the following and quickly summarize their
conformal properties. The energy momentum tensors

T b,c(z) = −2 b(z) ∂c(z) − ∂b(z) c(z) ,

T β,γ(z) = −3

2
β(z) ∂γ(z)− 1

2
∂β(z) γ(z) , (2.27)

imply that the ghost fields have the conformal weights

h(c) = −1 , h(b) = 2 , h(γ) = −1

2
, h(β) =

3

2
. (2.28)

The central charges of the ghost and superghost CFTs can be obtained from the OPEs of
the energy momentum tensors. One finds that c b,c = −26 and c β,γ = +11. If the central
charge of the matter system (2.11) is also taken into account, the total central charge
vanishes for D = 10:

cX,ψ + c b,c + c β,γ =
3

2
D − 26 + 11 = 0 . (2.29)

As previously described the quantum theory does not suffer in this case from a supercon-
formal anomaly. The cb- and γβ-propagators, derived from the action (2.25), demand that
the ghost fields satisfy the OPEs

c(z) b(w) ∼ 1

z − w
, γ(z) β(w) ∼ 1

z − w
. (2.30)

As in the case of the matter fields we can perform a Laurent expansion of the ghost
and superghost fields. We obtain for the former

c(z) =
∑

n

cn z
−n+1 , b(z) =

∑

n

bn z
−n−2 , (2.31)
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where the modes have to satisfy the anticommutation relations

{bm, cn} = δm+n , {bm, bn} = {cm, cn} = 0 (2.32)

due to the OPE of c(z) and b(w). The operator-state correspondence implies that vacuum
state of the ghost system is annihilated by all bn, n > −2 and cn, n > 1, but not by the
mode c1:

lim
z→0

c(z) |0〉b,c = c1|0〉b,c ≡ |1〉b,c 6= 0 . (2.33)

Due to [L0, c1] = −1, where L0 is the zero mode of the energy momentum tensor T b,c(z),
the state |1〉b,c is the state with lowest energy and therefore the proper ground state of the
ghost system. It is also annihilated by c1 because of {c1, c1} = 0.

We now discuss the superghost fields. These are associated to the fermions ψm and
hence satisfy the same periodicity conditions. Therefore, the mode expansion also yields
an NS and an R sector,

γ(z) =
∑

r

γr z
−r+1/2 , β(z) =

∑

r

βr z
−r−3/2 , r ∈

{
Z+ 1

2
: NS sector ,

Z : R sector .
(2.34)

The modes must satisfy the commutation relations

[γr, βs] = δr+s , [βr, βs] = [γr, γs] = 0 (2.35)

because the superghost fields are of bosonic type. As in the case above, the shift in the
mode expansion implies that the vacuum in the NS sector is not a highest weight state.
In fact, due to [L0, γ1/2] = −1/2 γ1/2, the vacuum can be lowered to arbitrary negative
energies because γ1/2 does not square to zero. In the R sector an operator analogous to the
spin field is needed creating a branch cut and interpolating between the different boundary
conditions. As shown in [36] by bosonizing the superghost system, the proper ground states
for the two sectors are

e−φ(0) |0〉β,γ ≡
∣∣q = −1

2

〉
β,γ

: NS sector ,

e−φ(0)/2 |0〉β,γ ≡
∣∣q = −1

〉
β,γ

: R sector . (2.36)

These states are annihilated by γ1/2 and γ1 as required.
The action (2.25) is invariant under two chiral U(1) symmetries generated by the cur-

rents

jb,c = −b(z) c(z) , jβ,γ = −β(z) γ(z) . (2.37)

The OPE of these currents with the respective energy momentum tensor T b,c or T b,j

T (z) j(w) ∼ Q

(z − w)3
+

j(w)

(z − w)2
+
∂j(w)

z − w
(2.38)
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exhibits an anomaly. The charge Q takes the value −3 for the ghost and +2 for the
superghost system. The anomalous conservation law of the currents reads

∂̄j(z) =
1

4
Q
√
hR , (2.39)

where h is the determinant of the world-sheet metric and R the corresponding curvature
scalar. It can be shown that the anomaly arises from the presence of (super-)ghost zero
modes. It is possible to calculate their number from (2.39) using the Riemann-Roch theo-
rem:

Nc −Nb = 3− 3g , Nγ −Nβ = 2− 2g . (2.40)

This has profound consequences. For string scattering at g loops the string world-sheet
is a Riemann surface of genus g. The vertex operators creating string states have to be
inserted with the right superghost factors in order to cancel the superghost background
charge of 2 − 2g. Furthermore, at tree-level, i.e. g = 0, the presence of three ghost zero
modes follows from the three globally defined diffeomorphisms on the sphere. In order
to cancel this residual gauge freedom three vertex operators positions can be fixed in the
calculation of the amplitude.

2.1.4 Open strings

So far our discussion has been centered on closed strings. The closed string nature entered
the considerations through the boundary conditions of the fields Xm and ψm at σ1 = 0, 2π.
These were chosen in such a way to make the surface term vanish which arises from the
variation of the action (2.6) apart from the equations of motion. Let us have a closer look
on this surface term for the open string case:

∫
d2σ

(
− 2

α′ δX
m ∂1Xm + δψm ψm − δψ̄m ψ̄m

)∣∣∣∣
σ1=π

σ1=0

≡ 0 . (2.41)

It is obvious that the respective terms for the fermions vanish if ψm = ±ψ̄m at either end
of the string. The overall relative sign between ψ and ψ̄ is a matter of convention and we
set

ψm(σ0, 0) = ψ̄m(σ0, 0) . (2.42)

The sign at the other end becomes meaningful and we again obtain two sectors, similar to
the closed string case:

ψm(σ0, π) = − ψ̄m(σ0, π) : NS sector ,

ψm(σ0, π) = + ψ̄m(σ0, π) : R sector . (2.43)

Via the doubling trick the fields ψm and ψ̄m can be combined into a single field Ψm with
range 0 ≤ σ1 ≤ 2π. We define

Ψm(σ0, σ1) ≡
{
ψm(σ0, σ1) : 0 ≤ σ1 ≤ π ,

ψ̄m(σ0, 2π − σ1) : π ≤ σ1 ≤ 2π .
(2.44)
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The field Ψm is on the same footing as ψm in the closed string case. First, they are
both holomorphic in z and they satisfy the same boundary conditions (2.8). The CFT
results for the closed string sector therefore also apply to the open string sector. In the
following discussion of the open string we simply denote Ψm by ψm, which has then the
same properties as the world-sheet fermion in the closed string action.

The boundary term for the open string coordinates vanishes if Xm satisfies at the
endpoints σ1 = 0, π one of the following conditions:

δXm = 0 : Dirichlet conditions ,

∂1X
m = 0 : Neumann conditions . (2.45)

Dirichlet boundary conditions are solved by Xm(σ0, σ1 = 0, π) = const and thereby state
that the endpoints of the string in these directions are fixed to hypersurfaces, so-called D-
branes [106]. Neumann boundary conditions imply that strings are always perpendicular
to these surfaces. Historically, only Neumann conditions were considered, but T duality
forces the inclusion of Dirichlet conditions as well [107]. At first glimpse the concept of
D-branes seems to break Lorentz invariance because they single out certain regions of
space-time. However, D-branes are dynamically objects. Under the influence of gravity,
i.e. the interaction of closed strings with the open strings ending on their world-volume,
they can fluctuate in form and position.

At the endpoints of an open string one can introduce new degrees of freedom i, j which
run from 1 to n and label the states of the two endpoints. A general string wavefunction
can thus be decomposed as

|φ, a〉 =
∑

a

T aij |φ, ij〉 , (2.46)

where the Chan–Paton factors T aij form a complete set of n× n hermitian matrices. These
Chan–Paton degrees of freedom have trivial world-sheet dynamics and therefore do not
change superconformal nor Poincaré invariance. However, they have profound impact on
space-time physics as they add gauge degrees of freedom to scattering amplitudes. For the
scattering of oriented strings the underlying gauge group is found to be U(n), while for
unoriented strings one obtains the groups SO(n) or USp(n). An operator creating gauge
bosons from the vacuum must therefore contain T aij .

In the D-brane picture the Chan–Paton degrees of freedom have a nice geometric inter-
pretation. If n branes coincide there exist open strings stretching between them. These are
massless because they can have vanishing length. Quantization of an oriented theory yields
n2 massless vectors that form the adjoint of a gauge group U(n). Hence, the Chan–Paton
degrees simply count on which branes the string starts and ends.

2.1.5 Vertex Operators

With all the previous results it is now possible to write down vertex operators which create
string states from the vacuum in ten dimensions. These are local operators on the world-
sheet. As a particular position z on the world-sheet has no physical meaning one must
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integrate over all vertex operator positions. The requirement that the integrated vertex
operators are independent of coordinate transformations on the world-sheet requires that
the vertex operators should have conformal weight h = 1.

In the supersymmetric string a vertex operator V (z) can create bosons in the NS sector
and fermions in the R sector from the vacuum. The operator splits into a plane wave
eikX and a remaining conformal field v(z). The plane wave generates eigenstates of the
momentum generator

Pm =
1

2α′

∮
dz

2πi
i ∂Xm (2.47)

with eigenvalues proportional to the momentum km. With respect to the energy momentum
tensor (2.9) the plane wave has conformal weight h(eikX) = α′k2. In the following we only
consider massless string states for which k2 vanishes. From our previous considerations v(z)
must then have conformal weight 1. The exact form of v depends on whether a fermionic or
bosonic string state is created by the vertex operator. For bosons, i.e. in the NS sector, the
fermion ψm is combined with the corresponding superghost contribution e−φ/2 from (2.36).
In the R sector fermions are created by the spin field as shown in (2.20). Combining this
field with the superghost in bosonized form eφ from (2.36) yields the correct expression
for v. The most general open string vertex operators for bosonic and fermionic states are
therefore

V
(−1)
Aa (z, ξ, k) = gA T

a ξm ψ
m(z) e−φ(z) eikX(z) : NS sector ,

V
(−1/2)
λa (z, u, k) = gλ T

a uA S
A(z) e−φ(z)/2 eikX(z) : R sector , (2.48)

where we have included coupling constants gA, gλ, Chan–Paton factors T a and a polariza-
tion vector and spinor ξm, uA. These vertex operators create gauge bosons and gauginos,
respectively. Although ψm is a world-sheet fermion it appears in the vertex operator creat-
ing space-time bosons, while the spin field excites space-time fermions. In the following we
call ψm an NS fermion and SA the R spin field. Due to the presence of the exponential epφ(z)

stemming from the superghost fields the vertex operators (2.48) are said to be in the (−1)
or (−1/2) ghost picture. Keeping in mind that epφ(z) has conformal weight h = −p2/2− p
and h(ψ) = 1/2, h(S) = 5/8, this shows that the vertex operators have indeed conformal
weight 1 in total.

A more rigorous way to derive the vertex operators (2.48) makes use of the BRST
operator QBRST as shown in [98]. After gauge fixing the RNS world-sheet action still has a
symmetry that mixes ghost and matter degrees of freedom. The integral over the associated
current gives the BRST operator. The cancellation of anomalies in D = 10 translates into
Q2

BRST = 0, but the operator has another task. Unphysical states must be decoupled from
the spectrum. The BRST operator therefore annihilates all physical states. This implies
for the vertices of the NS and R sector that

[QBRST, V ] = 0 (2.49)

up to total derivatives in z which vanish upon integration over the world-sheet. This BRST
condition constrains the operators (2.48) to be on-shell, i.e. the polarization vector must
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be transversal to the momentum, ξk = 0, and the polarization spinor has to satisfy the
massless Dirac equation, uα /kαβ̇ = 0. Yet in another way the BRST operator proves to be
very useful. Given a vertex operator in ghost picture q, one can show that

V (q+1)(z) ≡ −2 [QBRST, ξ(z) V
(q)(z)] , (2.50)

where ξ is from the bosonization of the superghosts, is not BRST exact but is a vertex
operator with ghost charge q + 1. Higher ghost pictures are particularly necessary for
calculating higher-point amplitudes at tree-level because the vertex operators have to be
inserted with such ghost contributions in order to cancel the background ghost charge of
2−2g. For the purpose of this thesis only the boson vertex operators in the 0 ghost picture
is needed. One finds from (2.50):

V
(0)
Aa (z, ξ, k) =

gA
(2α′)1/2

T a ξm
[
i ∂Xm(z) + 2α′ (k ψ(z)

)
ψm(z)

]
eikX(z) . (2.51)

Space-time SUSY requires that the vertex operators (2.48) are related. Acting with the
supercharge

Q
(−1/2)
A ≡ α′−1/4

∮
SA(z) e

−φ(z)/2 (2.52)

and its counter-part in the +1/2 ghost picture on the vertex operators shows that the
coupling are related, gλ = gA α

′−1/4, but more important:

[Q(−1/2)(η), V
(−1/2)
λa (u)] = V

(−1)
Aa (ξ) , ξm =

1√
2
ηa(γmC)ab u

b ,

[Q(1/2)(η), V
(−1)
Aa (ξ)] = V

(−1/2)
λa (u) , uβ =

1√
2
ηa(γmn)a

b km ξn . (2.53)

These relations are major ingredients for SUSY Ward identities [108] which allow to re-
late different string scattering amplitudes, where the scattering partners sit in the same
multiplet.

Our considerations so far have been devoted to string theory in ten space-time dimen-
sions. We focus now on string compactifications to four dimensions, which are highly
interesting from a phenomenological point of view. Under the decomposition of the ten-
dimensional Lorentz group SO(1, 9) → SO(1, 3) × SO(6) vectors split into direct sums,
Xm = Xµ ⊕ X i, while spinors decompose like χA = (χα ⊗ χI) ⊕ (χ̄α̇ ⊗ χ̄J̄). Here χ
and χ̄ are left- and right-handed spinors, whereas µ and α are external, i and I internal
Lorentz indices. The conformal fields ∂Xm, ψm and the left- and right-handed parts of SA
decompose as

∂Xm = (∂Xµ, ∂Z i) , Sa = SαΣ
I ⊕ Sα̇ Σ̄Ī ,

ψm = (ψm,Ψi) , S ȧ = Sα Σ̄Ī ⊕ Sα̇ΣI . (2.54)

The external fields ∂µX , ψµ as well as the left- and right-handed spin fields Sα and S β̇

transforming under the Lorentz group SO(1, 3) form a SCFT with central charge 6 which
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decouples completely from the SCFT of their internal counter-parts ∂Z i, Ψi, ΣI and Σ̄Ī
with charge 9. In addition, the decomposition yields the following conformal weights:

h(∂Xµ) = h(∂Z i) = 1 , h(ψµ) = h(Ψi) =
1

2
, h(Sα) =

1

4
, h(ΣI) =

3

8
. (2.55)

From these it is easy to determine the OPEs of the external and internal CFT. In fact,
they coincide with the chiral version of (2.24) for D = 4 and D = 64:

ψµ(z)Sα ∼ 1√
2 (z − w)1/2

σµ
αβ̇
S β̇(w) ,

Sα(z)Sβ ∼ εαβ
(z − w)1/2

,

Sα(z)S
β̇ ∼ 1√

2
(σµ ε)α

β̇ ψµ(w) , (2.56a)

Ψi(z) Σα ∼ 1√
2 (z − w)1/2

γIJ̄i Σ̄J̄(w) ,

ΣI(z) Σ̄J̄ ∼ CI
J̄

(z − w)3/4
,

ΣI(z) ΣJ ∼ 1√
2(z − w)1/4

(γk C)
IJ Ψk(w) . (2.56b)

Maximally supersymmetric toroidal compactification of type I or type II string theory
yield a SYM theory in four dimensions with N = 4 supercharges. The gauge vector
multiplet consists of three complex scalars φI , four gauginos λI and one gauge field Aµ.
The corresponding vertex operators in the canonical ghost pictures have the form

V
(−1)

φa,i (z, k) = gφ T
aΦiΨ

i(z) e−φ(z) eikX(z) ,

V
(−1/2)

λa,I
(z, u, k) = gλ T

a uαI Sα(z) Σ
I(z) e−φ(z)/2 eikX(z) ,

V
(−1)
Aa (z, ξ, k) = gA T

a ξµ ψ
µ(z) e−φ(z) eikX(z) (2.57)

with the polarizations Φi, uα and ξµ. A comparison of field theory and string theory
scattering amplitudes in the limit α′ → 0 shows that the couplings are related by

gA = (2α′)1/2 gYM , gλ = (2α′)1/2 α′1/4 gYM , gφ = (2α′)1/2 gYM . (2.58)

The D = 4 gauge coupling gYM can be expressed in terms of the ten-dimensional coupling
g10 and the dilaton field φ10 through the relation gYM = g10 e

φ10/2 [36].
The breaking of SUSY can be incorporated into the SCFT by orbifold projections acting

on the internal fields Z i and ψi. Only the fields which are invariant under the projection

4These OPEs look very distinct because the chirality structure of the charge conjugation matrix differs
in four and six dimensions, which will be explained in Chapter 3.1. Please also note that the internal space
has Euclidean signature.
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remain in the spectrum. For N = 1 SUSY all scalars and three of the internal spin fields
are projected out. Therefore one gaugino and one gauge field remain as required. The
vertex operators take the simple form

V
(−1/2)
λa (z, u, k) = gλ T

a uα Sα(z) Σ(z) e
−φ(z)/2 eikX(z) ,

V
(−1)
Aa (z, ξ, k) = gA T

a ξµ ψ
µ(z) e−φ(z) eikX(z) . (2.59)

Apart from the vector multiplet there can be additional massless fields like chiral scalars
and fermions stemming from D-brane intersections. Their vertex operators are very similar
to (2.57), however, the internal fields are replaced by bosonic and fermionic twist fields [66].
These have an angular dependence on the D-brane intersection angle and are more difficult
to handle [109–112].

An important fact to notice is that no internal fields ∂Z i, Ψi or ΣI enter the four-
dimensional gluon vertex operator in (2.57) or (2.59). Tree-level scattering amplitudes
in string theory involving only gluons are thus completely independent of the compactifi-
cation details and even hold if SUSY is completely broken [113–115]. A further class of
correlation functions which do not depend on the compactification are correlators involving
arbitrary many gluons and at most two scalars, gauginos or chiral fermions. Under these
circumstances the arising two-point function of the internal fields is completely determined
by their conformal weights, but no further compactification details enter at tree-level.
The analysis of such amplitudes is therefore a promising attempt to bypass the landscape
problem [116].

2.2 String Scattering Amplitudes

So far our CFT description was centered on the free string. We come now to string inter-
actions which result from strings splitting and joining. On account of the diffeomorphism
invariance of gravity one cannot calculate off-shell amplitudes in string theory. We can only
evaluate entries of the S-matrix, i.e. scattering processes with asymptotic (on-shell) states.
Conformal invariance allows to bring the initial and final string states to finite distances.
The quantum numbers of the external states are then created by local operators on this
compact world-sheet. These operators are exactly the vertex operators introduced above
which can be understood as conformal projections of the initial and final string states.

In the Polyakov approach the amplitude is given by the functional integration over
the world-sheet metric, gravitino and the matter fields weighted by the exponential of the
action. The world-sheet of open string scattering at g loops is a two-dimensional surface
with g holes and one boundary. For the total amplitude we must now also sum over different
topologies of the world-sheet as depicted in Figure 2.1. A general n-point amplitude can
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· · ·

Figure 2.1: Summing over different world-sheet topologies.

then be computed by the following path integral:

Mn =
∑

g

M(g)
n

=
∑

g

∫
DX DψDhDξ

∫
dz1 . . .dzn V−1 V1(z1) . . . Vn(zn) e

−S[X,ψ,h,ξ]

=
∑

g

∫
dz1 . . .dzn V−1

〈
V1(z1) . . . Vn(zn)

〉
. (2.60)

We mentioned before that the action of the superstring is invariant under diffeomorphisms
and (super-)Weyl transformations. The integrals in (2.60) are therefore divergent. The
measure of the integral must be changed in such a way that only configurations are taken
into account which are not related to another by a symmetry transformation. This is
achieved by the inclusion of the volume factor V−1 of the symmetry group. Its derivation
is, e.g., greatly discussed in [95], we just sketch the results. At this point the ghost fields
b and c enter the stage again. Their zero modes determine the number of moduli of the
world-sheet and the number of conformal Killing vectors. For different genus they take the
values:

Nb =





0 : g = 0 ,

1 : g = 1 ,

3g − 3 : g ≥ 2 ,

Nc =





3 : g = 0 ,

1 : g = 1 ,

0 : g ≥ 2 .

(2.61)

A detailed discussion shows that the volume factor demands to additionally integrate over
Nb moduli in (2.60), while Nc integrated vertex operators

∫
dzi V (zi) can be replaced by

c(wi) V (wi) at a fixed position wi. At this point we furthermore would like to mention that
the vertex operators in (2.60) must be inserted in appropriate ghost pictures in order to
cancel the background ghost charge of 2 + 2g given in (2.40).

2.2.1 Tree-level Amplitudes

Let us now discuss the easiest case g = 0 in more detail, i.e. tree-level scattering. The
following discussion will find application in Chapter 6, when we calculate the tree-level
amplitude of two gauge fields and four gauginos. The Riemann mapping theorem states
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Figure 2.2: Mapping the string world-sheet onto the unit disk D.

that there exists a biholomorphic mapping of the tree-level world-sheet onto the unit disk
D = {z ∈ C : |z| ≤ 1}. The string states are then inserted by the vertex operators on the
boundary of the disk as shown in Figure 2.2. Along the boundary the vertex operators have
a definite ordering. For the calculation of the complete amplitude it is therefore necessary
to sum over all cyclic non-equivalent permutations of the vertex operators:

M =
∑

ρi ∈Sn−1

∫
dw1 . . .dwn V−1

〈
V1(w1) Vρ(2)(wρ(2)) . . . Vρ(n)(wρ(n))

〉
. (2.62)

For the integration over the vertex positions it is more convenient to map the unit disk
via the Möbius transformation

w 7→ z = i
1− w

1 + w
(2.63)

onto the upper half plane H = {z ∈ C : ℑ(z) ≥ 0} as shown in Figure 2.3. The boundary is
mapped onto the real axis, where the vertex operators then sit. The integration over each
position zi runs over R, where the cyclic ordering of the positions must be kept. Depending
on the purpose either the formulation of tree-level scattering on the disk or on the upper
half plane can be more convenient.

The volume factor V rendering the integration finite has an easy expression for tree-
level scattering. At genus 0 the world-sheet has no moduli which have to be integrated
over. However, three c ghost zero modes exist. These are due to the fact that the disk has
three globally defined conformal transformations that respect the boundary. The symmetry
group is SL(2,R)/Z2 and acts on the coordinates z ∈ H in the following way:

z 7→ a z + b

c z + d
with

(
a b
c d

)
= −

(
a b
c d

)
, det

(
a b
c d

)
= 1 . (2.64)

The volume factor is then the volume of the conformal Killing group VCKG which is canceled
by fixing three vertex operator positions and including three c ghosts. The tree-level
amplitude for a certain ordering takes the form

Mρ =

∫

R

dz4 . . .dzn
〈
cV1(z1) cV2(z2) cV3(z3) V4(z4) . . . Vn(zn)

〉
. (2.65)
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w1 = 1

w2 = i

w3 = −1

z1 = 0 z2 = 1 z3 → ∞

H

Figure 2.3: Mapping the unit disk D onto the upper half plane H via the Möbius
transformation w 7→ z = i 1−w

1+w .

The ghost correlator is easy to calculate. These fields decouple from the rest and their
conformal weight h(c) = −1 determines

〈
c(z1) c(z2) c(z3)

〉
= z12 z13 z23 . (2.66)

The first step in the calculation of the amplitude is to evaluate the correlation function
of the vertex operators. From the vertex operators (2.48), (2.57) and (2.59) it is clear
that the matter fields, among them in particular the RNS fields ψµ and SA, as well as the
scalars bosonizing the superghost fields enter the amplitude. Only the RNS fields form an
interacting CFT as shown in (2.56), all others simply decouple. The correlation function
of the vertex operators therefore factorizes, written schematically as

〈
V1 . . . Vn

〉
∼ CX Cφ Cψ,S CΦ,Σ , (2.67)

where the last correlator only appears in the case of string compactifications. The cor-
relation functions involving the string coordinates Xµ or superghost scalars φ are rather
trivial to calculate as they are free fields. The RNS correlators are much more difficult
to evaluate due to their interacting nature. The calculation of such n-point functions for
massless interactions is the topic of the following Chapters 3-5. RNS correlators for higher
spin scattering have been considered in [68, 117].

For gauge theory amplitudes also the Chan–Paton matrices T aij occur in the amplitude.
As previously explained these arise from a stack of D-branes, where the indices i, j label the
particular D-branes to which the endpoints are attached. An interaction, i.e. the joining
of two string ends, can only occur if these are attached to the same D-brane. This in turn
implies that the indices of the Chan–Paton factors of the two strings must coincide: T a1ij and
T a1jk . Repeating this argument for all other string ends implies that the amplitude contains
the trace over all Chan–Paton factors as illustrated in Figure 2.4. The full amplitude then
reads

M =
∑

ρ∈Sn−1

Tr(T a1 T aρ(2) . . . T aρ(n))A
(
1, ρ(2), . . . , ρ(n)

)
. (2.68)
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(T a1)α1
α2

α3α1
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α4(T a4)α4

α1

Figure 2.4: Chan–Paton factors in a four-string interactions. String can only join or
split when the respective endpoints have the same Chan–Paton label.

The sub-amplitude A is calculated by stripping of the Chan–Paton factors off the vertex
operators and integration over the positions of the latter. It is called the color-ordered or
color-stripped amplitude and satisfies among others the cyclic property

A(1, 2, . . . , n) = A(n, 1, 2, . . . , n− 1) . (2.69)

The next step in the calculation is the integration over the world-sheet positions z,
which is very challenging for higher-point amplitudes. The six-gluon amplitude for example
contains hypergeometric functions and Euler-Zagier sums [118]. Let us discuss as an easier
example the partial four gluon amplitude [113, 114]:

M(g−1 , g
−
2 , g

+
3 , g

+
4 ) = 4 g2Tr(T a1 T a2 T a3 T a4)

〈12〉4
〈12〉 〈23〉 〈34〉 〈41〉 V (k1, k2, k3, k4) . (2.70)

The integration over the vertex operator positions leads to the formfactor

V (k1, k2, k3, k4) =
su

s+ u
B(s, u) , (2.71)

where B is the Euler beta function and s, u, t are the stringy Mandelstam variables

s ≡ 2α′k1 k2 , t ≡ 2α′k1 k3 , u ≡ 2α′k1 k4 . (2.72)

An expansion of the formfactor in α′,

V (k1, k2, k3, k4) ∼ 1− ζ(2) su+ ζ(3) stu+ . . . , (2.73)

reveals that the kth order in α′ is accompanied by the zeta value ζ(k), where ambiguities
occur at higher order due to multi-zeta values [90, 118]. At level five for example one can
have ζ(3, 1, 1) = 2 ζ(5)− ζ(2) ζ(3). In the limit α′ → 0 the formfactor reduces to 1 and the
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α′2

|k, n〉

Figure 2.5: String contact interaction and exchange of Regge resonances, taken from [66].

amplitude (2.70) simply becomes the Park-Taylor amplitude of four gluons [119]. In the
field theory limit only massless strings participate in the interaction, while interactions of
massive string states sum up to finite terms of order α′2 and higher. In an effective field
theory description these can be interpreted as new contact interactions. Another way of
looking at (2.70) is to expand V as

V (k1, k2, k3, k4) ∼
∞∑

n=0

γ(n)

s− n
α′

, γ(n) ≡ 1

n!

Γ(−u+ n)

Γ(−u) (2.74)

with an infinite number of s-channel poles. The physical interpretation of this expression
is that the scattering partners can exchange string Regge excitations of mass M2 = n/α′,
which is depicted together with the contact interaction in Figure 2.5.

2.2.2 Loop-Level Amplitudes

The schematic form of an n-point g-loop amplitude of open strings has the form [120–122]:

Mb =

∫
dNbΩ

detΩ

∫ ∏N
i=1 dz

i

VgCKG

∑

(~a,~b)

Z(~a,~b)
〈
V1(z1,Ω) . . . Vn(zn,Ω)

〉~a
~b
. (2.75)

In this expression Z is the genus g partition function, i.e. the vacuum to vacuum amplitude.
The first integral in (2.75) runs over the moduli space of dimension Nb as stated in (2.61),
the second one over the vertex operator positions on the boundary of the disk with g holes.
At g = 1 the volume factor of the conformal Killing group is taken care of by fixing one
position and including the corresponding c ghost. For higher genus no position can be
fixed as dictated by (2.61).

The correlation function of the vertex operators factorizes again into correlators involv-
ing the fields X , the external RNS fields, internal fields and superghosts. Correlators of the
latter are well understood [123], whereas the internal correlation functions can be described
by some character valued partition function or elliptic genus [124–129]. The ghost charges
of the vertex operators must sum up to 2g − 2 in order to cancel the ghost background
charge (2.40).

In addition, g-dimensional vectors (~a,~b) with entries 0 or 1 enter the calculation of loop
amplitudes. They are called spin structures. Let us explain their meaning with the help of
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α1 α2 α3

β1 β2 β3

Figure 2.6: One-cycles αI and βI of a Riemann surface.

the RNS fields. The doubling trick (2.44) extends ψm and SA to their counterparts of the
closed string. The chiral field ψm(z) is only defined on the upper half-plane. Combining it
with the anti-chiral field ψ̄m(z̄) yields a new field that is defined on the full complex plane.
Therefore, the resulting RNS fields do not have support on the disk with g holes but in fact
on the sphere with g handles. Such a Riemann surface of genus g has 2g homology cycles αI
and βI , I = 1, . . . , g, as illustrated in Figure 2.6. The fermions must either be periodic or
antiperiodic if they are shifted around the one-cycles. These periodicity properties define
the entries of the spin structure vectors (~a,~b). As we have learned before the spin fields
SA create branch cuts on the world-sheet. The brunch cut extends all along the cycle if
these fields are shifted around. Hence, shifting the spin fields changes the complete spin
structure of the RNS correlator. Further details can be found in [130] and Appendix C.
The summation over different spin structures is a delicate business. In the RNS correlators
the spin vectors (~a,~b) enter through generalized Θ functions. So the spin sum requires
various relations between Θ functions like generalized Riemann identities [121, 131–135].

In this work we do not attempt to calculate a full loop amplitude. We concentrate on
calculating the analogs of the tree-level RNS correlation functions which are needed for
loop scattering. These are presented in Chapter 5.



CHAPTER 3

Ramond–Neveu–Schwarz Correlators at
Tree-Level

We consider in this Chapter correlation functions involving the RNS fields ψµ and Sα, S
β̇

at tree-level in arbitrary even space–time dimensions D = 2m, m ∈ N0. As the Ramond
spin fields are of fermionic type we review first the Clifford algebra and spinors in higher
dimensions. Then we discuss the CFT and the OPEs which govern the short-distance
behavior of the RNS fields and show how correlation functions can be calculated therefrom.
Before we present special techniques how to calculate correlators in the dimensions D =
4, 6, 8 or 10 and give some results for general D, we comment on the index terms, which are
important ingredients in the RNS correlators. The work presented here has been published
in [1, 2].

3.1 Prerequisites

Before we discuss RNS correlators at tree-level we have to lay the groundwork for their
calculation. The conformal field theory of the RNS fields plays an important role here, as
it provides sufficient input to calculate correlation functions. Additionally, we comment
on spinors in higher dimensions as the R spin fields are of this type. Further information
is found in Appendix A and in [36, 136–138].

3.1.1 Spinors in Higher Dimensions

Dirac spinors in D space-time dimensions form a complex vector space of dimension 2D/2.
They are representations of the Clifford algebra

{Γµ,Γν} = −2 ηµν . (3.1)

The 2D/2 × 2D/2 matrices Γµ are known as gamma matrices. In even dimensions - as we
consider here - Dirac spinors can be decomposed into two irreducible Weyl representations.
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This implies for the R spin fields

SA ≡ Sα ⊕ Sα̇ . (3.2)

We call the Weyl spinors Sα and Sα̇ in the following left- and right-handed spin field. In
component notation the gamma matrices read

(Γµ)A
B =

(
0 γµ

αβ̇

γ̄µ α̇β 0

)
, (3.3)

with the generalized Pauli matrices γµ and γ̄µ as off-diagonal blocks. In terms of these the
Clifford algebra becomes

γµ
αβ̇
γ̄ν β̇γ + γν

αβ̇
γ̄µ β̇γ = −2 δγα η

µν , γ̄µα̇β γνβγ̇ + γ̄ν α̇β γµβγ̇ = −2 δα̇γ̇ η
µν . (3.4)

The charge conjugation matrix C acts like a metric on the space of spinors. It is defined
in even dimensions by the equations

Ct = (−1)
m
2
(m+1) C , (3.5a)

(Γµ)t = −C−1 Γµ C . (3.5b)

The chirality structure of the charge conjugation matrix depends on D because of the
representation theory of the associated Lorentz group SO(1, D−1). One finds in component
notation:

D = 0 mod 4 : CAB =

(
Cαβ 0

0 C α̇β̇

)
,

D = 2 mod 4 : CAB =

(
0 Cα

β̇

C α̇
β 0

)
. (3.6)

The inverse matrix C−1 reads then

D = 0 mod 4 : (C−1)AB =

(
(C−1)αβ 0

0 (C−1)α̇β̇

)
,

D = 2 mod 4 : (C−1)AB =

(
0 (C−1)αβ̇

(C−1)α̇
β 0

)
. (3.7)

In the following we refrain from writing out C−1 explicitly because the position and order
of the spinor indices distinguish C and C−1 from each other.

Equation (3.5a) states that C is antisymmetric in four dimensions. For appropriate
representations of the Clifford algebra, in particular where γµ are the standard Pauli ma-
trices σµ, it coincides with the ε tensor. We adopt the same conventions and denote in the
following

σµαα̇ ≡ γµαα̇
∣∣
D=4

, εαβ ≡ Cαβ
∣∣
D=4

(3.8)

for the calculation of RNS correlation functions in four space-time dimensions.
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3.1.2 The Underlying Conformal Field Theory

The short distance behavior of the RNS fields is given by their OPEs [98,99,104]. As we see
below this is sufficient input to calculate RNS correlation function at tree-level. The OPEs
of the NS fermions and R spin fields have been stated in (2.13) and (2.24), we present now
their chiral versions involving left- and right-handed spin fields Sα and S β̇.

The singular behavior of the fermions as well as the interaction between one fermion
and one spin field does not depend on the number of dimensions:

ψµ(z)ψν(w) ∼ ηµν

z − w
, (3.9a)

ψµ(z)Sα(w) ∼
1√
2
(z − w)−1/2 γµ

αβ̇
S β̇(w) . (3.9b)

In contrast, conformal weights and therefore the OPEs of two spin fields depend on the
dimensionality. Furthermore, as the chiral structure of the charge conjugation matrix C
depends on D, one encounters two distinct scenarios:

• D = 0 mod 4:

Sα(z)Sβ(w) ∼ (z − w)−D/8Cαβ , (3.10a)

Sα(z)S
β̇(w) ∼ 1√

2
(z − w)−D/8+1/2 (γµC)α

β̇ ψµ(w) , (3.10b)

• D = 2 mod 4:

Sα(z)S
β̇(w) ∼ (z − w)−D/8Cα

β̇ , (3.11a)

Sα(z)Sβ(w) ∼
1√
2
(z − w)−D/8+1/2 (γµC)αβ ψµ(w) + . . . . (3.11b)

Using these OPEs it is in principle possible to construct every correlator involving RNS
fields as we describe in Chapter 3.2.

The reader should note that in contrast to [1] the spin fields in (3.10) have been redefined
by a factor of i to avoid proliferation of minus signs. In order to be consistent with the
original literature, we use (3.10) and (3.11) for the calculation of correlators in six, eight
and ten dimensions following [2], while in four dimensions we use the conventions from [1],

Sα(z)Sβ(w) ∼ −(z − w)−1/2 εαβ , (3.12a)

Sα̇(z)Sβ̇(w) ∼ +(z − w)−1/2 εα̇β̇ , (3.12b)

Sα(z)Sβ̇(w) ∼
1√
2
σµ
αβ̇
ψµ(w) , (3.12c)

together with the identifications (3.8). It is easy to check that these OPEs are consistent
with (3.9).
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3.2 The Evaluation of Correlators

We now present various methods to calculate RNS correlators at tree-level. The starting
point for the evaluation are the OPEs of the RNS fields.

3.2.1 The Iterative Procedure

One possible way to calculate correlation functions involving NS fermions and R spin fields

〈
ψµ1(z1) . . . ψ

µn(zn)Sα1(x1) . . . Sαr(xr)S
β̇1(y1) . . . S

β̇s(ys)
〉

(3.13)

with n, r, s ∈ N0 is by considering the correlator in all possible limits zi → zj , zi → xj ,
zi → yj, . . . and applying the respective OPEs from (3.9), (3.10) and (3.11), where we
only keep the most singular part. In this way (3.13) reduces to a lower-point correlation
function. If the expression for this function is known one can match the findings from the
different limits to construct the final result. Using this iterative procedure we can determine
higher-point correlation functions from already known correlators. As an example let us
discuss the correlation function 〈ψµ(z1)Sα(z2)Sβ̇(z3)〉 in four space-time dimensions. By
examining this correlator in all possible limits zi → zj we find with zij ≡ zi − zj ,

〈
ψµ(z1)Sα(z2)Sβ̇(z3)

〉
∼





1√
2
σµ
αβ̇

(z12 z13)
−1/2 : z1 → z2 ,

1√
2
σµ
αβ̇

(z12 z13)
−1/2 : z1 → z3 ,

1√
2
σµ
αβ̇

(z12)
−1 : z2 → z3 ,

(3.14)

where the OPEs (3.9), (3.12) and the two-point functions of the fermions and spin fields
have been used. The result of the correlation function should reduce to these terms in the
respective limits. We therefore find

〈
ψµ(z1)Sα(z2)Sβ̇(z3

〉
=

1√
2
σµ
αβ̇

(z12 z13)
−1/2 , (3.15)

where we have replaced z−1
12 by (z12 z13)

−1/2 in the limit z2 → z3 in (3.14). From this
result we can deduce the general structure of RNS correlation functions. They will always
consist of terms that carry all Lorentz indices of the involved RNS fields, in the case above
σµ
αβ̇
. We denote such expressions in the following as index terms. These are accompanied

by a coefficient which depends on the positions of the fields zi. The index terms play an
important role in the evaluation of correlation functions and are discussed in great detail
in Chapter 3.3.

As a more complicated example let us have a look at the correlation function of four
left-handed spin fields in four dimensions, 〈Sα(z1)Sβ(z2)Sγ(z3)Sδ(z4)〉, which is known
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from [108]. With the OPE (3.12a) we find

〈
Sα(z1)Sβ(z2)Sγ(z3)Sδ(z4)

〉
∼





εαβ εγδ (z12 z34)
−1/2 : z1 → z2 or z3 → z4 ,

εαγ εβδ (z13 z24)
−1/2 : z1 → z3 or z2 → z4 ,

εαδ εβγ (z14 z23)
−1/2 : z1 → z4 or z2 → z3 .

(3.16)

Three different index terms arise in the limits and at this point it is simply impossible to
match the different contribution to obtain the final result. However, not all index terms
are independent, one can be eliminated:

εαγ εβδ = εαβ εγδ + εαδ εβγ . (3.17)

Only with this identity it is possible to match the z coefficients in the different limits and
derive the following result:

〈
Sα(z1)Sβ(z2)Sγ(z3)Sδ(z4)

〉
=

(
z12 z14 z23 z34

z13 z24

)1/2(
εαβ εγδ
z12z34

− εαδ εγβ
z14 z32

)
. (3.18)

To check the consistency of this expression with the separate limits in (3.16) the z-crossing
identity

zij zkl = zik zjl + zil zkj (3.19)

proves to be useful. This four-point function is our first example of an RNS correlator,
where the possible index terms are not independent from each other. Determining the
number of independent index terms is a crucial task in order to calculate the correlation
function and we address this problem in Chapter 3.3.1.

Some care is required to incorporate complex phases which arise upon performing the
OPEs in the limits like (3.14) and (3.16). Since OPEs are defined by the action of the
involved fields on the vacuum state |0〉, it is necessary to “shift” the respective fields first
to the right end of the correlation function before applying the OPE. Commuting the RNS
fields with each other results in factors of i or −1 due to the different powers in (z−w) in
(3.9), (3.10) and (3.11).

Particular easy results can be obtained for the 2n-point function involving only NS
fermions in even dimensions and also for the correlator consisting of only left-handed spin
fields in 0 mod 4 dimensions. This is due to the OPEs (3.9a) and (3.10a) which state that
in these cases ψµ and Sα are free fields and do not interact with the other RNS operators.
Such correlation functions can hence easily be determined by Wick’s theorem [139].

We come now to the proof that the matching procedure of the different limits indeed
yields the correct result for the correlation function. It relies on Liouville’s theorem stating
that every holomorphic bounded function has to be constant. Let R denote the result of
(3.13) which has been obtained by forming all limits, applying the OPEs and matching the
different results. In the following we keep all positions of the RNS fields fixed but arbitrary
apart from z1 and consider the function

〈
ψµ1(z1) . . . ψ

µn Sα1 . . . Sαr S
β̇1 . . . S β̇s

〉
− R(z1) . (3.20)
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Poles in the correlator originate from the OPEs as z1 approaches the position of another
RNS field. By construction R(z1) has the same poles and therefore (3.20) has no singu-
larities and is a holomorphic function. The correlator and R vanish both for z1 → ∞. In
fact they vanish with z−2h1

1 as required by CFT, where h1 is the conformal weight of ψµ1 .
Therefore the function (3.20) is bounded. Altogether, Liouville’s theorem then implies
that the function vanishes. Repeating this argument for all other field positions instead
of z1 completes the proof. Thus the iterative method indeed gives the correct result for a
tree-level correlation function.

3.2.2 From Fermions to Spin Fields

Another way of calculating RNS correlators is to reduce them to correlation functions
involving only spin fields. Indeed, by using the relation Tr{γµγ̄ν} = −2(D−2)/2ηµν the
equations (3.10b) and (3.11b) can be inverted:

ψµ(w) = −2(3−D)/2 lim
z→w

(z − w)D/8−1/2 ×
{
(C−1 γ̄µ)β̇

α Sα(z)S
β̇(w) : D = 0 mod 4 ,

(C−1 γ̄µ)βα Sα(z)Sβ(w) : D = 2 mod 4 .

(3.21)
Hence, every fermion ψµ appearing in a correlation function can be replaced by two spin
fields Sα, S

β̇ or Sα, Sβ depending on the number of dimensions. So the following correlators
can be calculated from the respective spin field correlators via (3.21):

• D = 0 mod 4:

〈
ψµ1 . . . ψµn Sα1 . . . Sαr S

β̇1 . . . S β̇s
〉
−→

〈
Sα1 . . . Sαr+n S

β̇1 . . . S β̇s+n
〉
, (3.22a)

• D = 2 mod 4:

〈
ψµ1 . . . ψµk+l Sα1 . . . Sαr S

β̇1 . . . S β̇s
〉
−→

〈
Sα1 . . . Sαr+2k

S β̇1 . . . S β̇s+2l
〉
, (3.22b)

where also k, l ∈ N0. This method of reducing an arbitrary correlator to a pure spin
field correlator leads to higher-point expressions that seem at first to be more difficult to
calculate. Yet for D = 4 the correlators appearing on the r.h.s. of (3.22) can be calculated
for arbitrary many spin fields, while for D = 6 one can at least evaluate the correlation
function with the same number of left- and right-handed spin fields. The reason for this is
that such correlators can be expressed by index terms which are only products of charge
conjugation matrices but no γ matrices enter. In this sense replacing the fermions with
spin fields turns out to be a useful method. Furthermore, (3.22) provides nice consistency
checks if the correlation functions on both sides are known.

Let us discuss this in more details. In Chapter 3.4 it is shown that in the case of D = 4
dimensions every RNS correlator can be reduced to the correlation function consisting of
2M left-handed spin fields: 〈

Sα1(z1) . . . Sα2M
(z2M)

〉
. (3.23)
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M D = 4 D = 8 (2M − 1)!!

1 1 1 1
2 2 3 3
3 5 15 15
4 14 106 105
5 42 981 945

Table 3.1: Number of independent index terms for the correlator 〈Sα1 . . . Sα2M
〉 in four

and eight dimensions, as well as the number of possible index terms of the type (3.24).

A solution for this correlation function can be derived by induction and hence we are able
to calculate every RNS correlator in four dimensions at tree-level. The only index terms
that enter the result of (3.23) are products of the charge conjugation matrix:

Cα1α2 . . . Cα2M−1α2M
. (3.24)

The number of index terms of this type is calculated by simple combinatorics. Distributing
the 2M spinor indices to the tensors C yields

(
2M
2

) (
2M − 2

2

)

. . .

(
2
2

)
=

M∏

i=0

(
2M − 2i

2

)
(3.25)

possibilities. This must be divided by M ! to account for permutations of the C’s. In
total one finds (2M − 1)!! terms of the type (3.24). These are sufficient because only
2M !/M ! (M + 1)! are independent in four dimensions due to relations like (3.17) as we
show in Chapter 3.4.1. Meanwhile the situation in D = 8 dimensions is different. In
Chapter 3.3 it is discussed that more index terms then the ones from (3.24) have to be
taken into account for M ≥ 4. The respective numbers are juxtaposed in Table 3.1. In
addition to the tensors (3.24) terms involving γ-matrices like

(γµ γ̄ν C)αβ (γµ γ̄ν C)γδ (3.26)

are now required, where the vector indices are contracted as pure spin field correlator do
not carry indices of this type. Therefore we are not able to directly construct an easy
expression for the correlation function of 2M left-handed spin fields in eight dimensions.
Even more complicated correlators, like the ones appearing on the l.h.s. in (3.22a), have
to be calculated by hand. Still, SO(8) triality, as we describe in Chapter 3.6, is a powerful
tool to relate different correlators in eight dimensions at tree-level.

In the case of D = 6 and D = 10 dimensions we encounter a similar scenario. Due to
the different chirality structure of the charge conjugation matrix Cα

β̇ we consider here the
correlators 〈

Sα1(z1)S
β̇1(z2) . . . SαM

(z2M−1)S
β̇M (z2M)

〉
(3.27)
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M D = 6 D = 10 M !

1 1 1 1
2 2 3 2
3 6 19 6
4 24 210 24
5 119 3514 120

Table 3.2: Number of independent index terms for the correlator 〈Sα1 S
β̇1 . . . SαM

Sβ̇M 〉
in six and ten dimensions, as well as the number of possible index terms of the type (3.28).

from (3.22b) with r + 2k = s + 2l = M . In D = 6 space-time dimensions one is able to
derive a general expression for these 2M-point functions, where only index terms of the
form

Cα1

β̇1 . . . CαM

β̇M (3.28)

enter. In total there areM ! terms of this type, arising from permuting the β̇’s while keeping
the α’s fixed. These index terms are sufficient in six space-time dimensions and thus we are
able to calculate (3.27). In contrast, for D = 10 the number of independent index terms is
greater then M ! for M ≥ 2 as discussed in Chapter 3.3. Apart from the expressions (3.28)
additional terms are needed which involve Lorentz contractions of γ-matrices, like

(γµC)αβ (γ̄µC)
γ̇δ̇ . (3.29)

The respective numbers of index terms are summarized in Table 3.2. Thus, all RNS
correlation functions in ten dimensions have to be calculated by hand.

However, the situation in eight and ten dimensions is not as unpromising as it first
seems. We derive in Chapter 5.3 results for the correlation functions

〈
ψµ1 . . . ψµn Sα Sβ

〉
,

〈
ψµ1 . . . ψµn Sα S

β̇
〉

(3.30)

with arbitrary many NS fermions and two spin fields in four, six, eight and ten dimensions.
These results even hold at loop-level.

3.2.3 Alternative Methods

In the literature RNS correlators have also been calculated using different methods. One
technique we like to mention is bosonization as described in Chapter 2.1. For this purpose
the fermion and spin fields in D = 2m dimensions are expressed through exponentials

ψµ(z) = eipH(z) c , SA(z) = eipH(z)/2 c′ (3.31)

of a vector H = (H1, . . . , Hm) with m free bosons and the m-dimensional lattice vector p
with entries ±1. The free bosons fulfill the normalization convention:

〈
Hi(zi)Hj(zj)

〉
= δij ln(z − w) . (3.32)
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The factors c in (3.31) are so-called cocycle operators which ensure that the correct (anti-)
commutation properties of the RNS fields arise. Bosonization of the RNS fields does not
yield results in manifestly Lorentz covariant form. For this purpose the cocyle factors have
to be related to the index terms via the OPEs (3.9), (3.10) and (3.11). This has been
achieved up to six-point level e.g. in [104, 140, 141]. In the following however, we pursuit
our method which directly yields results in covariant form.

Another possibility for the evaluation of tree-level correlation functions with several NS
fermions inserted at the same position on the string world-sheet is via the o(2m) current
algebra. The operators

Jµν(z) ≡ ψ[µ(z)ψν](z) (3.33)

realize the SO(1, D − 1) current algebra at level k = 1 [142], see also [98, 99, 104]. The
action of the current on the other fields is determined by the OPEs

Jµν(z)ψλ(w) ∼ − 2

z − w
ηλ[µ ψν](w) ,

Jµν(z)Sα(w) ∼ − 1

2 (z − w)
γµνα

β Sβ(w) (3.34)

and the central term of the current-current OPE

Jµν(z) Jλρ(w) ∼ 1

(z − w)2
(
ηµρ ηνλ − ηµλ ηνρ

)

+
1

z − w

[
ηµλ Jνρ(w)− ηµρ Jνλ(w)− ηνλ Jµρ(w) + ηνρ Jµλ(w)

]
. (3.35)

Hence, any correlator including Jµν can be reduced to a correlation function with one
current insertion less:
〈
Jµν(z)ψλ1(z1) . . . ψλn(zn)Sα1(x1) . . . Sαr(xr)Sβ̇1(y1) . . . Sβ̇s(ys)

〉

= −
n∑

j=1

2

z − zj

× δ
[µ
λj

〈
ψλ1(z1) . . . ψ

ν](zj) . . . ψλn(zn)Sα1(x1) . . . Sαr(xr)Sβ̇1(y1) . . . Sβ̇s(ys)
〉

−
r∑

j=1

1

2 (z − zj)
γµναj

κ

×
〈
ψλ1(z1) . . . ψλn(zn)Sα1(x1) . . . Sκ(xj) . . . Sαr(xr)Sβ̇1(y1) . . . Sβ̇s(ys)

〉

+

s∑

j=1

1

2 (z − zj)
γ̄µνκ̇β̇j

×
〈
ψλ1(z1) . . . ψλn(zn)Sα1(x1) . . . Sαr(xr)Sβ̇1(y1) . . . Sκ̇(yj) . . . Sβ̇s(ys)

〉
. (3.36)

However, the goal of our work goes far beyond the application of (3.36). All the corre-
lation functions in the following will be derived in full generality without any coinciding
arguments. Of course, by a posteriori moving fermion positions together, one can obtain
nice consistency checks for the results in the following Chapters.
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3.3 The Index Terms

We have seen above that the index terms and their relations play an important role in the
calculation of RNS correlation functions. Therefore we discuss them in the following in
more detail.

3.3.1 The Group Theory Behind the Correlators

Let us have a look at the ψ–S correlators from a group theoretical point of view. The
NS fields ψµ transform as vectors under the Lorentz group SO(1, D− 1), while the R spin

fields Sα, S
β̇ as left- and right-handed spinors. Therefore an arbitrary correlation function

made up of these fields lies in the corresponding tensor product

〈
ψµ1 . . . ψµn Sα1 . . . Sαr Sβ̇1 . . . Sβ̇s

〉
∈ (V )⊗n ⊗ (S)⊗r ⊗ (Ṡ)⊗s , (3.37)

where (V ) is the vector representation, (S) and (Ṡ) are the left- and right-handed spinor
representations of SO(1, D − 1). From the results of the correlators (3.15) and (3.18) we
conclude that the coefficients depending on the vertex operator positions zi transform as
scalars with respect to the D-dimensional Lorentz group. The index terms must then be
Clebsch-Gordan coefficients associated with the particular scalar representation.

The decomposition of the tensor product (3.37) does not help in finding the precise
expressions for the Clebsch-Gordan coefficients. Yet it is possible to determine the number
of independent index terms from the appropriate tensor product. This is simply given by
the number of scalar representations. If a correlator has no scalar representations, i.e. there
exist no Clebsch–Gordan coefficients, then the whole expression has to vanish1. This has
non-trivial consequences for full string amplitudes in which these correlators enter. Certain
string amplitudes involving bosons and fermions then simply vanish.

In Table 3.3 we state the number of independent index terms for certain correlators in
four, six, eight and ten space-time dimensions. For D = 4 these number can be calculated
analytically as we show in Chapter 3.4.1. For other dimensions these are difficult to
evaluate [143], so we have used the computer program LiE [144]. The cases D = 4, 8
and D = 6, 10 are treated separately because of the different chirality structure of the
spinor representations in these dimensions. One observes that the number of independent
Clebsch–Gordan coefficients for a given correlation function increases with the number of
dimensions. We comment on this circumstance in Chapter 3.3. This makes the calculation
of seven- and higher-point correlators troublesome as more and more index terms have to
be taken into account. We refrain from calculating any RNS correlation function beyond
eight-point level in D = 4 and six-point level in D = 6, 8, 10, although this is in principle
possible with the techniques presented in this work.

1In bosonization or in the loop methods displayed in Chapter 5 conservation of Ramond charge ensures
that these correlators vanish as well
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D = 4 D = 8 D = 6 D = 10
〈
Sα Sβ

〉
1 1

〈
Sα S

β̇
〉

1 1〈
ψµ Sα S

β̇
〉

1 1
〈
ψµ Sα Sβ

〉
1 1〈

ψµ ψν Sα Sβ
〉

2 2
〈
ψµ ψν Sα S

β̇
〉

2 2〈
ψµ ψν ψλ Sα S

β̇
〉

4 4
〈
ψµ ψν ψλ Sα Sβ

〉
4 4〈

ψµ ψν ψλ ψρ Sα Sβ
〉

10 10
〈
ψµ ψν ψλ ψρ Sα S

β̇
〉

10 10〈
ψµ ψν ψλ ψρ ψτ Sα S

β̇
〉

25 26
〈
ψµ ψν ψλ ψρ ψτ Sα Sβ

〉
26 26〈

ψµ ψν ψλ ψρ ψτ ψξ Sα Sβ
〉

70 76
〈
ψµ ψν ψλ ψρ ψτ ψξ Sα S

β̇
〉

76 76

〈
Sα Sβ S

γ̇ S δ̇
〉

1 2
〈
Sα Sβ Sγ Sδ

〉
1 2〈

Sα Sβ Sγ Sδ
〉

2 3
〈
Sα Sβ S

γ̇ S δ̇
〉

2 3〈
ψµ Sα Sβ Sγ S

δ̇
〉

2 4
〈
ψµ Sα Sβ Sγ S

δ̇
〉

3 5〈
ψµ ψν Sα Sβ S

γ̇ S δ̇
〉

4 9
〈
ψµ ψν Sα Sβ Sγ Sδ

〉
6 11〈

ψµ ψν Sα Sβ Sγ Sδ
〉

5 10
〈
ψµ ψν Sα Sβ S

γ̇ S δ̇
〉

7 12〈
ψµ ψν ψλ Sα Sβ Sγ S

δ̇
〉

10 24
〈
ψµ ψν ψλ Sα Sβ Sγ S

δ̇
〉

17 31〈
ψµ ψν ψλ ψρ Sα Sβ S

γ̇ S δ̇
〉

25 68
〈
ψµ ψν ψλ ψρ Sα Sβ Sγ Sδ

〉
45 88〈

ψµ ψν ψλ ψρ Sα Sβ Sγ Sδ
〉

28 71
〈
ψµ ψν ψλ ψρ Sα Sβ S

γ̇ S δ̇
〉

48 91
〈
Sα Sβ Sγ Sδ S

ǫ̇ S ζ̇
〉

2 10
〈
Sα Sβ Sγ Sδ Sǫ S

ζ̇
〉

4 16〈
Sα Sβ Sγ Sδ Sǫ Sζ

〉
5 15

〈
Sα Sβ Sγ S

δ̇ S ǫ̇ S ζ̇
〉

6 19〈
ψµ Sα Sβ Sγ S

δ̇ S ǫ̇ S ζ̇
〉

4 24
〈
ψµ Sα Sβ Sγ Sδ Sǫ Sζ

〉
9 40〈

ψµ Sα Sβ Sγ Sδ Sǫ S
ζ̇
〉

5 26
〈
ψµ Sα Sβ Sγ Sδ S

ǫ̇ S ζ̇
〉

12 45〈
ψµ ψν Sα Sβ Sγ Sδ S

ǫ̇ S ζ̇
〉

10 68
〈
ψµ ψν Sα Sβ Sγ Sδ Sǫ S

ζ̇
〉

29 125〈
ψµ ψν Sα Sβ Sγ Sδ Sǫ Sζ

〉
14 76

〈
ψµ ψν Sα Sβ Sγ S

δ̇ S ǫ̇ S ζ̇
〉

32 130
〈
Sα Sβ Sγ Sδ S

ǫ̇ S ζ̇ S θ̇ S ι̇
〉

4 71
〈
Sα Sβ Sγ Sδ Sǫ Sζ Sθ Sι

〉
14 175〈

Sα Sβ Sγ Sδ Sǫ Sζ S
θ̇ S ι̇
〉

5 76
〈
Sα Sβ Sγ Sδ Sǫ Sζ S

θ̇ S ι̇
〉

19 196〈
Sα Sβ Sγ Sδ Sǫ Sζ Sθ Sι

〉
14 106

〈
Sα Sβ Sγ Sδ S

ǫ̇ S ζ̇ S θ̇ S ι̇
〉

24 210

Table 3.3: Number of independent Clebsch–Gordan coefficients for various correlation
functions in D = 4, 8 and D = 6, 10 space-time dimensions.
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3.3.2 Relations between Index Terms

It was just explained how the number of independent index terms can be obtained from
the tensor product (3.37). In general it is possible to write down more Clebsch–Gordan
coefficients for a given correlator then there are independent index terms. The easiest
example of such a case is the already familiar correlation function of four left-handed spin
fields in four dimensions, 〈

Sα(z1)Sβ(z2)Sγ(z3)Sδ(z4)
〉
. (3.38)

The tensor structure of this correlator suggests that the result can be expressed in terms
of εαβ εγδ, εαγ εβδ and εαδ εβγ. However, Table (3.63) for M = 2 tells that only two
independent index terms exist. Indeed, the identity

εαγ εβδ = εαβ εγδ + εαδ εβγ (3.39)

allows to reduce one index term. This relation is crucial for the calculation of this correlator.
Otherwise, deriving a result for (3.38) by analyzing its singularity structure and applying
the OPEs (3.12a) leads to inconsistencies as the contributions to the different index terms
cannot properly be separated. Therefore it is very important to start with a minimal set of
index terms and know how they can be related to the Clebsch–Gordan coefficients which
are not included in this set. This turns out to be also most important for the calculation
of RNS correlators at loop-level.

The identity (3.39) is easily derived by noticing that a Weyl spinor in D = 4 dimensions
has only 2D/2−1 = 2 independent (complex) components. Therefore, all expressions which
are antisymmetric in three or more Weyl indices, have to vanish. This is indeed the case
for (3.39) as it can be written as

εα[β εγδ] = 0 . (3.40)

We want to stress that the same relations does not hold in D = 8 dimensions,

Cα[β Cγδ] 6= 0 , (3.41)

because a Weyl spinor then has eight independent components. Therefore all three index
terms Cαβ Cγδ, Cαγ Cβδ and Cαδ Cβγ will appear in the correlator of four left-handed spin
fields, which is consistent with the corresponding entry in Table 3.3. Hence, the number
of independent index terms for a given correlator increases in general with the number of
dimensions.

Additional relations for correlation functions involving fermions can be obtained in the
same fashion. The anti-symmetrization argument proves e.g. that in four dimensions

(σµ1 σ̄µ2 . . . σµ2n−1 σ̄µ2n ε)α[β εσδ] = 0 , (3.42)

which is needed for the correlator involving 2n fermions and four left-handed spin fields.
This procedure can easily be extended to higher dimensions D. Then however, one has to
anti-symmetrize over at least (2D/2−1 + 1) Weyl indices as these run from 1 to 2D/2−1.
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Multiplying known equations with further γ matrices gives also rise to new relations.
If (3.39) for example is multiplied with σ̄µ δ̇δ εǫ̇ δ̇ we obtain

σµβǫ̇ εαγ = σµγǫ̇ εαβ + σµαǫ̇ εβγ , (3.43)

which is needed for the calculation of the correlator consisting of one fermion, three left-
handed and one right-handed spin fields in four dimensions.

Further relations between different index terms can be derived from Fierz identities
[136, 145, 146]. The antisymmetric γ-products Γµ1...µn form a complete set of 2D/2 × 2D/2

matrices. Therefore any bi-spinor ψα χβ or ψα χ̄
β̇ can be expanded in terms of these

forms. The expansion prescriptions are referred to as Fierz identities. One arrives again
at two scenarios due to the different chirality structure of the charge conjugation matrix
in different dimensions:

• D = 0 mod 4:

ψα χβ =2−D/2
D/2−2∑

n even

1

n!
(γµ1...µn C)βα (ψC

−1 γµn...µ1 χ)

+
2−D/2

2 (D/2)!
(γµ1...µD/2 C)βα (ψC

−1 γµD/2...µ1 χ) , (3.44a)

ψα χ̄
β̇ =− 2−D/2

D/2−1∑

n odd

1

n!
(γ̄µ1...µn C)β̇α (ψC

−1 γµn...µ1 χ̄) , (3.44b)

• D = 2 mod 4:

ψα χβ =− 2−D/2
D/2−2∑

n odd

1

n!
(γµ1...µn C)βα (ψ C

−1 γ̄µn...µ1 χ)

− 2−D/2

2 (D/2)!
(γµ1...µD/2 C)βα (ψC

−1 γ̄µD/2...µ1 χ) , (3.44c)

ψα χ̄
β̇ =2−D/2

D/2−1∑

n even

1

n!
(γ̄µ1...µn C)β̇α (ψ C

−1 γ̄µn...µ1 χ̄) . (3.44d)

Note that only forms up to degree D/2 appear as every n-fold product γµ1...µn is related
to (D − n)-fold products via Hodge duality. By making clever choices for the spinors ψ
and χ in (3.44) one obtains relations between various index terms. Choosing χα = εαγ and
χβ = εβδ for D = 4 (3.44a) implies that

(σµν)α
β (σµν)γ

δ = 4 δβα δ
δ
γ − 8 δδα δ

β
γ , (3.45)

while (3.44b) directly yields

(σµ)αβ̇ (σµ)γδ̇ = −2 εαγ εβ̇δ̇ . (3.46)

Equations (3.44) are discussed separately for D = 4, 6, 8 and D = 10 in Appendix A.
In eight dimensions there exists another way of deriving relations between different

index terms, namely SO(8) triality. Details on this can be found in Chapter 3.6.
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3.3.3 Manipulation of Index Terms

In the calculation of correlators it is sometimes necessary to manipulate Clebsch–Gordan
coefficients, especially interchanging vector and spinor indices. The Clifford algebra (3.4)
for the Weyl blocks γµ, γ̄µ plays an important role here. It can be used to interchange γ
matrices in longer γ-chains, e.g.

γν γ̄µ γλ = −γµ γ̄ν γλ − 2 ηµν γλ . (3.47)

Relations of this type provide the basis to use only index terms with ordered γ-products,
where the Lorentz indices appear in ascending order. In the same way antisymmetric
γ-products like γµν can be reduced to ordinary γ-products and η terms.

Often it is also important to know how chains of γ matrices like γµ1...µp C and γ̄µ1...µp C
behave under interchanging their spinor indices. These 2m−1 × 2m−1 matrices appear as
blocks in the 2m × 2m matrix Γµ1µ2...µp C,

• D = 0 mod 4:

(Γµ1...µp C)AB =





(
(γµ1...µp C)αβ 0

0 (γ̄µ1...µp C)α̇β̇

)
: p even ,

(
0 (γµ1...µp C)α

β̇

(γ̄µ1...µp C)α̇β 0

)
: p odd ,

(3.48a)

• D = 2 mod 4:

(Γµ1...µp C)AB =





(
0 (γµ1...µp C)α

β̇

(γ̄µ1...µp C)α̇β 0

)
: p even ,

(
(γµ1...µp C)αβ 0

0 (γ̄µ1...µp C)α̇β̇

)
: p odd .

(3.48b)

By analyzing how these matrices behave under transposition one finds relations for the
(off-)diagonal blocks. From Chapter 3.1.1 we know that

(Γµ)t = − C−1 Γµ C , (3.49a)

Ct = (−1)
1
2
m(m+1) C . (3.49b)

Taking these together the anti-symmetric Γ-chains behave like

(Γµ1...µp C)t = (−1)
1
2
[m(m+1)+p(p+1)] (Γµ1...µp C) . (3.50)

We can translate this relation back to the level of Weyl blocks and find e.g. in four dimen-
sions for p = 1 and p = 2:

(σµ ε)α
β̇ = (σ̄µ ε)β̇α , (3.51a)

(σµνε)αβ = (σµνε)βα . (3.51b)
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D = 4 D = 6

Cαβ = −Cβα Cα
β̇ = +C β̇

α

(γµC)α
β̇ = +(γ̄µ C)β̇α (γµC)αβ = −(γµ C)βα

(γµν C)αβ = +(γµν C)βα (γµν C)α
β̇ = −(γ̄µν C)β̇α

(γµνλC)α
β̇ = −(γ̄µνλ C)β̇α (γµνλC)αβ = +(γµνλC)βα

(γµνλρC)αβ = −(γµνλρ C)βα (γµνλρC)α
β̇ = +(γ̄µνλρC)β̇α

D = 8 D = 10

Cαβ = +Cβα Cα
β̇ = −C β̇

α

(γµC)α
β̇ = −(γ̄µ C)β̇α (γµC)αβ = +(γµC)βα

(γµν C)αβ = −(γµν C)βα (γµν C)α
β̇ = +(γ̄µν C)β̇α

(γµνλC)α
β̇ = +(γ̄µνλC)β̇α (γµνλC)αβ = −(γµνλC)βα

(γµνλρC)αβ = +(γµνλρC)βα (γµνλρC)α
β̇ = −(γ̄µνλρ C)β̇α

Table 3.4: Symmetry properties of certain tensors built from γµ and C in different
dimensions.

Together with the Clifford algebra (3.4) this implies

(σµ σ̄ν ε)βα = (σµ σ̄ν ε)αβ + 2 ηµν εαβ . (3.52)

Relations between index terms similar to (3.51) can easily be derived from (3.50) for higher
dimensions and higher p. The relevant cases for the following calculations are summed up
in Table 3.4.

We summarize that knowing relations between the relevant Clebsch–Gordan coefficients
for a given RNS correlation function is crucial for its calculation. These can either be ob-
tained by anti-symmetrization techniques, Fierz identities or multiplying known identities
with further γ matrices. In Appendix B we give all necessary index term relations for
the correlators that are calculated in Chapters 4 and 5. Obtaining these relations can be
a very tedious task. We have checked these identities in all conscience and furthermore
tested them with Mathematica [147] for a particular representation of the Clifford algebra,
which is given in Appendix A.4.

In the remainder of this Chapter we present special methods how to calculate RNS
correlation functions in four, six, eight and ten space-time dimensions. Concrete results
follow in Chapters 4 and 5.

3.4 Techniques in Four Dimensions

Let us start the discussion with the case D = 4. Four-dimensional RNS correlators play an
important role in the calculation of string amplitudes, where ten-dimensional space-time is
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compactified to four dimensions. In such a scenario it is possible to connect string theory
with four-dimensional particle physics and string scattering amplitudes might describe
corrections to SM processes [66–68]. Before the calculations we shed some light on the
number of independent index terms.

3.4.1 The Number of Index Terms

In Chapter 3.3.1 we have seen that the number of independent index terms for a certain
correlator is given by the number of scalar representations in the respective tensor product
(3.37). This tensor product can be evaluated analytically in four dimensions. It is well
known that the Lorentz algebra so(1, 3) decomposes into a direct sum of two su(2) subal-
gebras, a left- and a right-handed one. General representations of SO(1, 3) with spins j1, j2
with respect to the left- and right-handed SU(2) are denoted by (j1, j2). The fermions ψµ

then transform as
(
1

2
, 1
2

)
under SO(1, 3), whereas the spin fields Sα and Sβ̇ transform as

(1
2
, 0) and

(
0, 1

2

)
respectively. The tensor product then becomes

〈
ψµ1 . . . ψµn Sα1 . . . Sαr Sβ̇1 . . . Sβ̇s

〉
∈ (1

2
, 1
2
)⊗n ⊗ (1

2
, 0)⊗r ⊗ (0, 1

2
)⊗s , (3.53)

where as usual

0⊗ 1

2
= 1

2
and i

2
⊗ 1

2
= i+1

2
⊕ i−1

2
, i > 1 . (3.54)

The product in (3.53) then reads

〈
ψµ1 . . . ψµn Sα1 . . . Sαr Sβ̇1 . . . Sβ̇s

〉
∈ (1

2
, 0)⊗(n+r) ⊗ (0, 1

2
)⊗(n+s) . (3.55)

This is a first hint on the fact that RNS correlators in four dimensions factorize into
correlation functions that only contain left- or right handed spin fields. This is achieved by
replacing each fermions with a left- and a right-handed spin field as described in (3.21) and
then splitting the correlator up. We discuss this in more details below. For the moment it
is thus satisfactory to consider

〈
Sα1 . . . SαN

〉
∈
(
1

2
, 0
)⊗N

=
(
1

2

⊗N
, 0
)
. (3.56)

Applying (3.54) this can be expanded as

(
1

2
, 0
)⊗N

=
N⊕

i=0

q(i, N)
(
i

2
, 0
)
. (3.57)

Finding the integer coefficient q(i, N) is a common counting problem in combinatorics
which is e.g. equivalent to a random walk with step size 1/2 on the positive real axis
[148, 149]. It is obvious that q(0, 0) has to fulfill

q(0, 0) = 1 . (3.58)
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Following (3.54) the representation
(
i

2
, 0
)
in (3.57) stems either from the representations(

i−1

2
, 0
)
or
(
i+1

2
, 0
)
in the lower tensor product

(
1

2
, 0
)⊗(N−1). Therefore, the second defining

equation for q(i, N) is

q(i, N) = q(i− 1, N − 1) + q(i+ 1, N − 1) . (3.59)

By induction one can show that

q(i, N) ≡ i+ 1

N + 1

(
N + 1
N−i
2

)
(3.60)

fulfills the defining equations (3.58) and (3.59). For (N − i) /∈ 2N0 the binomial coefficient
is not defined and in this case we set q(i, N) to zero. In Table 3.5 we list some values of
q(i, N). By replacing i with n− k and N with n+ k (3.60) yields the standard form of the
numbers appearing in the Catalan triangle:

cn,k ≡ q(n− k, n+ k) =
(n + k)! (n− k + 1)

k! (n+ 1)!
. (3.61)

From (3.60) we can read off the number of scalar representations in the tensor product
(3.56). It is given by

q(0, N) =
1

N + 1

(
N + 1

N/2

)
, (3.62)

which is only non-zero if N is an even number. Then q(0, N = 2M) takes the well known
form of the Catalan numbers:

q(0, 2M) =
1

2M + 1

(
2M + 1

M

)
=

2M !

M ! (M + 1)!
. (3.63)

We conclude that q(0, 2M) yields the number of index terms of the RNS correlator in
four dimensions consisting of 2M left-handed spin fields. For an odd number of spin fields
there exists no scalar representation and hence this correlator has to vanish:

〈
Sα1(x1) . . . Sα2r−1(x2r−1)

〉
= 0 . (3.64)

Together with (3.55) this yields that the following correlators vanish as well (n, r, s ∈ N0):

〈
ψµ1(z1) . . . ψ

µ2n−1(z2n−1)Sα1(x1) . . . Sα2r(x2r)Sα̇1(y1) . . . Sα̇s(ys)
〉
= 0 ,

〈
ψµ1(z1) . . . ψ

µ2n−1(z2n−1)Sα̇1(y1) . . . Sα̇2s(y2s)Sα1(x1) . . . Sαr(xr)
〉
= 0 ,

〈
ψµ1(z1) . . . ψ

µ2n(z2n)Sα1(x1) . . . Sα2r−1(x2r−1)Sα̇1(y1) . . . Sα̇s(ys)
〉
= 0 ,

〈
ψµ1(z1) . . . ψ

µ2n(z2n)Sα̇1(y1) . . . Sα̇2s−1(y2s−1)Sα1(x1) . . . Sαr(xr)
〉
= 0 . (3.65)

Let us give two examples of tensor product decompositions and their help in determining
the linear independent set of Clebsch–Gordan coefficients. Let us start with the familiar
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N, i 0 1 2 3 4 5 6

0 1
1 1
2 1 1
3 2 1
4 2 3 1
5 5 4 1
6 5 9 5 1

Table 3.5: Values of the coefficients q(i,N) in the tensor product (3.57).

correlation function in four dimensions consisting of four left-handed spin fields. The tensor
product 〈

Sα Sβ Sγ Sδ
〉
∈ (1

2
, 0)⊗4 = 1 (2, 0)⊕ 3 (1, 0)⊕ 2 (0, 0) (3.66)

contains two scalar representations and therefore the correlator can be written in terms
of two Clebsch–Gordan coefficients. This coincides with our previous result (3.18). The
correlator formed by three fermions and one left- and right-handed spin field each

〈
ψµ ψν ψλ Sα Sβ̇

〉
∈ (1

2
, 1
2
)⊗3 ⊗ (1

2
, 0) ⊗ (0, 1

2
)

= 1 (2, 2)⊕ 3 (2, 1)⊕ 3 (1, 2)⊕ 2 (2, 0)⊕ 2 (0, 2)

⊕ 9 (1, 1)⊕ 6 (1, 0)⊕ 6 (0, 1)⊕ 4 (0, 0) (3.67)

can be written in terms of four index terms.

3.4.2 Replacing Fermions with Spin Fields

We turn now to the problem of finding a result for the correlation function

〈
ψµ1(z1) . . . ψ

µn(zn)Sα1(x1) . . . Sαr(xr)Sβ̇1(y1) . . . Sβ̇s(ys)
〉

(3.68)

with arbitrary many vector and spin fields. Luckily, this can be solved in full generality at
tree-level in four space-time dimensions. Applying (3.21), which reads in four dimensions

ψµ(z) = − 1√
2
σ̄µ κ̇κ Sκ̇(z)Sκ(z) , (3.69)

it is possible to replace all NS fermions in (3.68):

〈
ψµ1(z1) . . . ψ

µn(zn)Sα1(x1) . . . Sαr(xr)Sβ̇1(y1) . . . Sβ̇s(ys)
〉

=
n∏

i=1

(
− σ̄

µi κ̇iκi

√
2

)

×
〈
Sκ1(z1) . . . Sκn(zn)Sα1(x1) . . . Sαr(xr)Sκ̇1(z1) . . . Sκ̇n(zn)Sβ̇1(y1) . . . Sβ̇s(ys)

〉
. (3.70)



3.4 Techniques in Four Dimensions 49

We see that an arbitrary correlation function can be written as a pure spin field correlator
contracted with some σ matrices. The next step is to systematically determine these
correlators.

The correlator consisting of two left- and two-right handed spin fields has been calcu-
lated in [108] to determine the scattering of four gauginos. It is given by the expression

〈
Sα(z1)Sβ̇(z2)Sγ(z3)Sδ̇(z4)

〉
= −

εαγ εβ̇δ̇
(z13 z24)1/2

. (3.71)

One can identify this result as the product of the two-point functions

〈
Sα(z1)Sγ(z3)

〉
= − εαγ

z
1/2
13

,
〈
Sβ̇(z2)Sδ̇(z4)

〉
=

εβ̇δ̇

z
1/2
24

. (3.72)

We prove now that this factorization property holds for an arbitrary number of spin fields.
In order to do this it is most convenient to treat them in bosonized form. The left- and
right-handed spin fields in four dimensions can be represented by two boson Hi=1,2(z)

Sα=1,2(z) ∼ e±
i
2
[H1(z)+H2(z)] ≡ eipH(z) ,

Sβ̇=1,2(z) ∼ e±
i
2
[H1(z)−H2(z)] ≡ eiqH(z) (3.73)

with the notation H(z) =
(
H1(z), H2(z)

)
for the bosons and the weight vectors p =

(±1/2,±1/2), q = (±1/2,∓1/2). Note that the weight vectors of distinct chiralities are
orthogonal, p q = 0. The two bosons fulfill the normalization convention:

〈
Hi(z)Hj(w)

〉
= δij ln (z − w) . (3.74)

Cocycle factors which yield complex phases upon moving spin fields across each other are
irrelevant for the following discussion and are therefore neglected. The necessary OPEs
and n-point functions are

eipH(z) eiqH(w) ∼ (z − w)pq ei(p+q)H(w) , (3.75a)

〈 n∏

k=1

eipkH(zk)
〉
∼ δ

(
n∑

k=1

pk

)
n∏

i,j=1
i<j

z
pi pj
ij . (3.75b)

Hence the correlation function of r left-handed and s right-handed spin fields becomes:

〈
Sα1(z1) . . . Sαr(zr)Sβ̇1(w1) . . . Sβ̇s(ws)

〉
=
〈 r∏

k=1

eipkH(zk)
s∏

l=1

eiqlH(wl)
〉

= δ

(
r∑

k=1

pk +
s∑

l=1

ql

)
r∏

i,j=1
i<j

z
pi pj
ij

s∏

ı̄,̄=1
ı̄<̄

w
qı̄ q̄
ı̄̄

r∏

m=1

s∏

n=1

(zm − wn)
pm qn

︸ ︷︷ ︸
=1
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= δ

(
r∑

k=1

pk

)
r∏

i,j=1
i<j

z
pi pj
ij δ

(
s∑

l=1

ql

)
s∏

ı̄,̄=1
ı̄<̄

w
qı̄ q̄
ı̄̄

=
〈 r∏

k=1

eipkH(zk)
〉〈 s∏

l=1

eiqlH(wl)
〉

=
〈
Sα1(z1) . . . Sαr(zr)

〉 〈
Sβ̇1(w1) . . . Sβ̇s(ws)

〉
. (3.76)

From the second to the third line we have used that pm qn = 0 and the δ-function has been
split into the linearly independent p and q contributions. So we see that a general spin
field correlation function in four dimensions splits indeed into two correlators involving
only left- and right-handed spin fields.

We would like to stress that this factorization property does not hold for tree-level
correlators in other dimensions. The reason for this lies in the fact that the weight vectors
p, q of left- and right-handed spin fields then do not satisfy anymore p q = 0 and thus the
whole argument (3.76) breaks down.

Using the factorization property (3.76) our previous result (3.70) becomes:

〈
ψµ1(z1) . . . ψ

µn(zn)Sα1(x1) . . . Sαr(xr)Sβ̇n+1
(yn+1) . . . Sβ̇s(ys)

〉
=

n∏

i=1

(
− σ̄

µi κ̇iκi

√
2

)

×
〈
Sκ1(z1) . . . Sκn(zn)Sα1(x1) . . . Sαr(xr)

〉 〈
Sκ̇1(z1) . . . Sκ̇n(zn)Sβ̇1(y1) . . . Sβ̇s(ys)

〉
. (3.77)

This formula shows how correlators involving NS fermions factorize into a product of
correlators involving only left- or right-handed spin fields. Hence, if the latter correlators
are known for an arbitrary number of spin fields it is possible to calculate in principle any
correlator. We address the calculation of these correlators in the following.

3.4.3 Pure Spin Field Correlators

It has been shown in Chapter 3.2.2 that pure spin field correlator in four dimensions can
be stated in terms of Clebsch–Gordan coefficients that are products of ε tensors. For 2M
spin fields there are (2M − 1)!! possible index configurations of this type, whereas only
q(0, 2M) = (2M)!/M !(M + 1)! are independent due to (3.63). The necessary relations
arise from generalization of the Fierz identity (3.40),

ε[α1α2
εα3α4 . . . εα2M−1α2M ] = 0 , (3.78)

where we antisymmetrize over the underlined indices. Yet we will show that the results
assume a nicer form if we use a special non-minimal basis of M ! index terms.

The RNS correlator consisting of four left-handed spin fields has previously been cal-
culated:

〈
Sα(z1)Sβ(z2)Sγ(z3)Sδ(z4)

〉
=

(
z12 z14 z23 z34

z13 z24

)1/2(
εαβ εγδ
z12z34

− εαδ εγβ
z14 z32

)
. (3.79)
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From the 3!! = 3 possible index terms we have eliminated the term εαγ εβδ using the Fierz
identity (3.39). The remaining two terms are independent which coincides with (3.63) for
M = 2. For the six point correlator M = 3 there exist 5!! = 15 possible index terms,
however, only five are independent. Taking into account all possible OPEs one finds:

〈
Sα(z1)Sβ(z2)Sγ(z3)Sδ(z4)Sǫ(z5)Sζ(z6)

〉
= −

6∏

i<j

z
−1/2
ij

[
εαβ εγδ εǫζ z14 z15 z23 z26 z36 z45

+ εαβ εγζ εǫδ z14 z23 z56 (z15 z26 z34 − z12 z35 z46) + εαδ εγζ εǫβ z12 z13 z23 z45 z46 z56

+ εαδ εγβ εǫζ z12 z36 z45 (z15 z26 z34 − z13 z24 z56) + εαζ εγβ εǫδ z12 z14 z24 z35 z36 z56

]
.

(3.80)

However, the result assumes a more symmetric form and has a less complicated z depen-
dence if we introduce a sixth index term εαζ εγδ εǫβ:

〈
Sα(z1)Sβ(z2)Sγ(z3)Sδ(z4)Sǫ(z5)Sζ(z6)

〉
= −

(
z12 z14 z16 z23 z25 z34 z36 z45 z56

z13 z15 z24 z26 z35 z46

)1/2

×
(
εαβ εγδ εǫζ
z12 z34 z56

− εαβ εγζ εǫδ
z12 z36 z54

+
εαδ εγζ εǫβ
z14 z36 z52

− εαδ εγβ εǫζ
z14 z32 z56

+
εαζ εγβ εǫδ
z16 z32 z54

− εαζ εγδ εǫβ
z16 z34 z52

)
.

(3.81)

Comparing (3.79) and (3.81) a number of similarities become visible. In both cases the
pre–factor consists of all possible terms of the schematic form (zodd even zeven odd)

1/2 in the
numerator and (zodd odd zeven even)

1/2 in the denominator. Furthermore, the first index at
every ε tensor belongs to a spin field of position zodd whereas the second index stems from
a spin field located at zeven. Finally every ε tensor comes with the corresponding factor
(zodd − zeven)

−1. The overall sign can be traced back to (−1)M coming from the OPE
(3.12a), whereas the relative signs between the index terms can be understood as the sign
of the respective permutation of the spinor indices.

The results (3.79) and (3.81) suggest the following expression for the 2M point function
of left-handed spin fields:

〈
Sα1(z1)Sα2(z2) . . . Sα2M−1

(z2M−1)Sα2M
(z2M)

〉

=(−1)M

(∏M
i≤j z2i−1,2j

∏M
ı̄<̄ z2ı̄,2̄−1

∏M
k<l z2k−1,2l−1 z2k,2l

)1/2 ∑

ρ∈SM

sgn(ρ)

M∏

m=1

εα2m−1αρ(2m)

z2m−1,ρ(2m)

. (3.82)

We prove this expression by induction. For the base case M = 1 this gives correctly the
two-point function of left-handed spin fields. The inductive step makes use of the fact that
the 2M − 2 correlator should appear from the 2M correlator if we replace two spin fields
by the OPE in the corresponding limit zi → zj . As every spin field can be permuted to
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the very right in the correlator we study without loss of generality the case z2M−1 → z2M :

〈
Sα1(z1) . . . Sα2M−2

(z2M−2)Sα2M−1
(z2M−1)Sα2M

(z2M )
〉∣∣∣
z2M−1→z2M

= − εα2M−1α2M

z
1/2
2M−1,2M

〈
Sα1(z1) . . . Sα2M−2

(z2M−2)
〉
+O(z2M−1,2M )

= − εα2M−1α2M

z2M−1,2M
z
1/2
2M−1,2M (−1)M−1

(∏M−1
i≤j z2i−1,2j

∏M−1
ı̄<̄ z2ı̄,2̄−1

∏M−1
k<l z2k−1,2l−1 z2k,2l

)1/2

×
( ∏M−1

p=1 z2p−1,2M z2p,2M−1
∏M−1

q=1 z2q−1,2M−1 z2q,2M︸ ︷︷ ︸
=1+O(z2M−1,2M )

)1/2 ∑

ρ∈SM−1

sgn(ρ)

M−1∏

m=1

εα2m−1αρ(2m)

z2m−1,ρ(2m)

+O(z2M−1,2M )

= (−1)M

(∏M
i≤j z2i−1,2j

∏M
ı̄<̄ z2ı̄,2̄−1

∏M
k<l z2k−1,2l−1 z2k,2l

)1/2 ∑

ρ∈SM

sgn(ρ)
M∏

m=1

δρ(2M),2M

εα2m−1αρ(2m)

z2m−1,ρ(2m)

+O(z2M−1,2M ) . (3.83)

The most singular piece of (3.82) in z2M−1,2M is the subset of permutations ρ ∈ Sm with
ρ(2M) = 2M . This is precisely what we obtain by applying the OPE for Sα2M−1

(z2M−1)
and Sα2M

(z2M ) and then assuming the claimed expression for 〈Sα1(z1) . . . Sα2M−2
(z2M−2)〉.

This completes the proof of (3.82).
The correlator of 2M right-handed spin fields can easily be read off from (3.82). The

factor (−1)M drops out due to the different sign in the OPE (3.12b) and all ε tensors carry
dotted indices instead:

〈
Sα̇1(z1)Sα̇2(z2) . . . Sα̇2M−1

(z2M−1)Sα̇2M
(z2M)

〉

=

(∏M
i≤j z2i−1,2j

∏M
ı̄<̄ z2ı̄,2̄−1

∏M
k<l z2k−1,2l−1 z2k,2l

)1/2 ∑

ρ∈SM

sgn(ρ)

M∏

m=1

εα̇2m−1α̇ρ(2m)

z2m−1,ρ(2m)
. (3.84)

By plugging (3.82) and (3.84) into (3.77) it is now possible to calculate any RNS correlation
function involving arbitrary many fermions ψµ and spin fields Sα, Sα̇ in four dimensions.

3.5 Techniques in Six Dimensions

Next we focus our attention on RNS correlators in D = 6 space-time dimensions. They en-
ter the calculation of string amplitudes, when ten-dimensional space-time is compactified to
six dimensions. Furthermore they describe the interaction of the internal fields appearing
in the vertex operators of scalars and gauginos (2.57) and (2.59) in the phenomenological
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interesting case of compatifications to four space-time dimensions. For this purpose how-
ever we have to switch from Minkowsian to Euclidean signature. Let us start the discussion
with the special class of correlation functions consisting of r left- and right-handed spin
fields: 〈

Sα1(z1)S
β̇1(z2) . . . Sαr(z2r−1)S

β̇r(z2r)
〉
. (3.85)

In Chapter 3.2 it has been discussed how to relate these expressions to correlators involving
fermions. Indeed, using equation (3.11b) for D = 6

ψµ(w) = − 1

2
√
2

lim
z→w

(z − w)1/4 (C−1 γ̄µ)βα Sα(z)Sβ(w) (3.86)

and its complex conjugate, every fermion ψµ can be replaced by two spin fields of the same
chirality. Therefore the correlator (3.85) can be used to derive expressions for the large
class of correlation functions

〈
ψµ1(z1) . . . ψ

µk+l(zk+l)Sα1(x1) . . . Sαr−2k
(xr−2k)S

β̇1(y1) . . . S
β̇r−2l(yr−2l)

〉
. (3.87)

Before giving a general formula for (3.85) we show the results for lower-point expres-
sions. In the case r = 2, i.e. two left- and two right-handed spin fields, one finds

〈
Sα(z1)S

β̇(z2)Sγ(z3)S
δ̇(z4)

〉
=

(
z12 z14 z23 z34

z13 z24

)1/4(
Cα

β̇ Cγ
δ̇

z12 z34
− Cα

δ̇ Cγ
β̇

z14 z32

)
. (3.88)

The correlator consisting of three spin fields of each chirality is given by

〈
Sα(z1)S

β̇(z2)Sγ(z3)S
δ̇(z4)Sǫ(z5)S

ζ̇(z6)
〉
=

(
z12 z14 z16 z23 z25 z34 z36 z45 z56

z13 z15 z24 z26 z35 z46

)1/4

×
(
Cα

β̇ Cγ
δ̇ Cǫ

ζ̇

z12 z34 z56
− Cα

β̇ Cγ
ζ̇ Cǫ

δ̇

z12 z36 z54
+
Cα

δ̇ Cγ
ζ̇ Cǫ

β̇

z14 z36 z52

− Cα
δ̇ Cγ

β̇ Cǫ
ζ̇

z14 z32 z56
+
Cα

ζ̇ Cγ
β̇ Cǫ

δ̇

z16 z32 z54
− Cα

ζ̇ Cγ
δ̇ Cǫ

β̇

z16 z34 z52

)
. (3.89)

These last two results have a similar structure as the four and six spin field correlators (3.79)
and (3.81) in four dimensions. They only differ in the chirality of the charge conjugation
matrix and the power of the overall coefficient due to the different conformal weights of
the spin fields. Hence, also the general formula for an arbitrary number of left- and right-
handed spin fields is very similar to the four-dimensional expression (3.82). It is given
by

〈 M∏

i=1

Sαi
(z2i−1)S

β̇i(z2i)
〉
=
( M∏

i≤j
z2i−1,2j

M∏

ı̄<̄

z2ı̄,2̄−1

)1/4( M∏

i<j

z2i−1,2j−1 z2i,2j

)−1/4

×
∑

ρ∈SM

sgn(ρ)

M∏

m=1

Cα2m−1
β̇ρ(2m)

z2m−1,ρ(2m)
, (3.90)
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where the proof proceeds in the same way as in Chapter 3.4.3. Note that the factor (−1)M

vanishes as the corresponding OPE in six dimensions (3.11a) comes in our conventions
with a plus sign.

In contrast to four dimensions, knowing (3.90) is not sufficient to solve all RNS corre-
lation function with arbitrary many fields. Therefore only the class of correlators (3.87)
can be evaluated in six dimensions using (3.90). Every other correlation function up to six
points is collected in [2]. As these have been calculated using methods for loop correlators
we present them in Chapter 5.3.2.

3.6 Techniques in Eight Dimensions

RNS correlators in eight dimensions are of less phenomenological relevance than their
relatives in four, six and ten dimensions. However, they come with a nice mathematical
peculiarity which we present in the following.

3.6.1 SO(8) Triality

The S3 permutation symmetry of the “Mercedes star-shaped” SO(8) Dynkin diagram in
Figure 3.1 – also referred to as triality – plays an important role for the RNS CFT. In eight
dimensions fermions and spin fields have equal conformal dimension h = D/16 = 1/2.
Therefore, the OPEs (3.9) and (3.11) become particularly symmetric and we will make use
of SO(8) triality to rewrite them in unified fashion.

2-form

β̇α

µ

Figure 3.1: Dynkin diagram of the group SO(8).

The short distance behavior of conformal fields is sufficient input to determine their
correlations on the sphere. This is why triality covariance of OPEs is inherited by tree-level
correlators. However, at higher genus, the different global properties of the ψµ and Sα, S

β̇

fields under transport around the world-sheet’s homology cycles will break this covariance.
Hence, triality does not hold for correlators at loop-level.

Before we apply SO(8) triality to RNS correlators we have to introduce some notation.
Firstly, it is convenient to work with generalized fields P i, Qj, Rk of conformal dimension
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h = 1/2 that can be either ψµ, Sα or S β̇:

(P i, Qj , Rk) =
(
ρ(ψµ), ρ(Sα), ρ(S

β̇)
)

for ρ ∈ S3 . (3.91)

On the level of Clebsch–Gordan coefficients, we introduce a universal metric g

gij ≡





ηµν : (i, j) = (µ, ν) ,

Cαβ : (i, j) = (α, β) ,

C α̇β̇ : (i, j) = (α̇, β̇) ,

0 : otherwise ,

gij ≡





ηµν : (i, j) = (µ, ν) ,

Cαβ : (i, j) = (α, β) ,

Cα̇β̇ : (i, j) = (α̇, β̇) ,

0 : otherwise ,

(3.92)

and the three-point couplings G

Gijk ≡
{

1√
2
(γµC)α

β̇ : (i, j, k) =
(
ρ(µ), ρ(α), ρ(β̇)

)
with ρ ∈ S3 ,

0 : otherwise ,
(3.93)

where the general indices fulfill i, j, k ∈ {µ, α, β̇}. The above definitions allow us to rewrite
the D = 8 OPEs (3.9) and (3.10) in unified fashion:

P i(z)P j(w) ∼ gij

z − w
, (3.94a)

P i(z)Qj(w) ∼ Gijk

(z − w)1/2
gklR

l(w) . (3.94b)

As before the OPEs are the only input that is necessary to calculate the tree-level correla-
tion function 〈P i1(x1) . . . P

in(xn)Q
j1(y1) . . . Q

jr(yr)R
k1(z1) . . . R

ks(zs)〉. The arising index
terms are then built out of the metric (3.92) and the three-point coupling (3.93). Upon
specifying the generalized fields as in (3.91) we can derive from the generalized result the
six RNS correlators, written schematically as
〈
ψn Sr Ṡs

〉
,
〈
ψn Ss Ṡr

〉
,
〈
ψr Sn Ṡs

〉
,
〈
ψr Ss Ṡn

〉
,
〈
ψs Sn Ṡr

〉
,
〈
ψs Sr Ṡn

〉
.

(3.95)
Triality can also be used to derive new correlators from known ones. Suppose the correla-
tion function 〈

ψµ1 . . . ψµn Sα1 . . . Sαr S
β̇1 . . . S β̇s

〉
(3.96)

is known. The result can then be written in triality covariant form making use of the
generalized fields P i, Qj , Rk and re-writing the index terms using (3.92) and (3.93). We

can then play the same game as above and re-assign (P i, Qj, Rk) = (ρ(ψµ), ρ(Sα), ρ(S
β̇))

for some ρ ∈ S3 and thus obtain the missing correlation functions in (3.95). This method
of course fails for triality invariant correlators, i.e. n = r = s. Such correlators have to be
calculated by first principles.

Triality implies that correlators involving only one type of field, like 〈Sr〉, are related

to 〈ψr〉. Therefore each field ψµ, Sα, S
β̇ by itself behaves like a free world-sheet fermion.

The respective correlators in eight dimensions can be calculated using Wick’s theorem and
are simply given by products of two-point functions.
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3.6.2 Examples

Let us apply the triality-based methods to the five-point functions 〈P P P QR〉. In Chapter
5.3 we show that in eight dimensions

〈
ψµ(z1)ψ

ν(z2)ψ
λ(z3)Sα(z4)S

β̇(z5)
〉
=

1√
2 (z14 z15 z24 z25 z34 z35 z45)1/2

×
[
ηµν

z12
(γλC)α

β̇ z14 z25 −
ηµλ

z13
(γν C)α

β̇ z14 z35

+
ηνλ

z23
(γµC)α

β̇ z24 z35 +
z45
2

(γµ γ̄ν γλC)α
β̇

]
. (3.97)

By inserting the generalized fields P = ψ, Q = S and R = Ṡ this can be translated into
triality covariant notation,

〈
P i1(z1)P

i2(z2)P
i3(z3)Q

j4(z4)R
k5(z5)

〉
=

1

(z14 z15 z24 z25 z34 z35 z45)1/2

×
[
gi1i2

z12
Gi3j4k5 z14 z25 −

gi1i3

z13
Gi2j4k5 z14 z35

+
gi2i3

z23
Gi1j4k5 z24 z35 −Gi1j4k gkk′G

i2jk′ gjj′ G
i3j′k5 z45

]
, (3.98)

where we have replaced the index terms in (3.97) by (3.92) and (3.93). Note that

(γµ γ̄ν γλC)α
β̇ = −2

√
2Gi1j4k gkk′ G

i2jk′ gjj′ G
i3j′k5 . (3.99)

The minus sign arises from (γ̄ν C)γ̇γ = −(γν C)γ
γ̇ ≡ −Gi2jk′. Choosing now another

configuration, e.g. P = S, Q = Ṡ and R = ψ yields the new correlator

〈
ψµ(z1)Sα(z2)Sβ(z3)Sγ(z4)S

δ̇(z5)
〉
=

−1

(z12 z13 z14 z15 z25 z35 z45)1/2

×
[
Cαβ
z23

(γµC)γ
δ̇ z13 z25 −

Cαγ
z24

(γµC)β
δ̇ z14 z25

+
Cβγ
z34

(γµC)α
δ̇ z14 z35 +

z15
2

(γµ γ̄ν C)γβ (γν C)α
δ̇

]
. (3.100)

In the same way, by specifying P = Ṡ, Q = S and R = ψ, we can derive the correlation
function

〈
ψµ(z1)Sα(z2)S

β̇(z3)S
γ̇(z4)S

δ̇(z5)
〉
=

−1

(z12 z13 z14 z15 z23 z24 z25)1/2

×
[
C β̇γ̇

z34
(γµC)α

δ̇ z14 z23 −
C β̇δ̇

z35
(γµC)α

γ̇ z15 z23

+
C γ̇δ̇

z45
(γµC)α

β̇ z15 z24 +
z12
2

(γ̄µ γν C)δ̇γ̇ (γν C)α
β̇

]
. (3.101)

This exhausts all correlators that can be derived from (3.97) using triality.
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A further application of the triality techniques lies in the derivation of relations between
index terms. Using (3.92) and (3.93) one finds that the Clifford algebra (3.4) and the Fierz
identity (B.39a)

Cαβ C
γ̇δ̇ =

1

2
(γµ C)α

γ̇(γµC)β
δ̇ +

1

2
(γµC)β

γ̇(γµC)α
δ̇ (3.102)

are special cases of the triality covariant tensor equation

gi1i2 gj1j2 = Gi1j1k1 Gi2j2k2 gk1k2 +Gi1j2k1 Gi2j1k2 gk1k2 . (3.103)

Further identities are found in a similar way. Generalizing

2ηµν (γλC)α
β̇ = −(γµ γ̄ν γλC)α

β̇ − (γν γ̄µ γλC)α
β̇ , (3.104)

which easily follows from the Clifford algebra, to

Gi4j3k gkk′ G
ij1k′ gii′ G

i′j2k5 +Gi4j3k gkk′ G
ij2k′ gii′ G

i′j1k5 = gj1j2 Gi4j3k5 , (3.105)

and then making the choice (j1, j2, j3) = (α, β, γ) and i4 = µ, k5 = δ̇ yields

Cαβ (γ
µC)γ

δ̇ = −1

2
(γλ γ̄µC)βγ (γλC)α

δ̇ − 1

2
(γλ γ̄µC)αγ (γλC)β

δ̇ . (3.106)

As a last application of triality let us discuss the correlation functions consisting of
arbitrary many fermions and only two spin fields in eight dimensions. In Chapter 5.3 it
is shown that results at loop-level for this large class of correlators can be derived. For
tree-level scattering the findings take the form:

〈
ψµ1(z1) . . . ψ

µ2n−1(z2n−1)Sα(zA)S
β̇(zB)

〉
=

1√
2 z

1/2
AB

∏2n−1
i=1 (ziA ziB)1/2

n−1∑

l=0

(
zAB
2

)l

×
∑

ρ∈S2n−1/Pn,l

sgn(ρ)
(
γµρ(1) γ̄µρ(2) . . . γ̄µρ(2l) γµρ(2l+1) C

)
α
β̇

×
n−l−1∏

j=1

ηµρ(2l+2j)µρ(2l+2j+1)

zρ(2l+2j),ρ(2l+2j+1)

zρ(2l+2j),A zρ(2l+2j+1),B , (3.107)

〈
ψµ1(z1) . . . ψ

µ2n−2(z2n−2)Sα(zA)Sβ(zB)
〉
=

1

zAB
∏2n−2

i=1 (ziA ziB)1/2

n−1∑

l=0

(
zAB
2

)l

×
∑

ρ∈S2n−2/Qn,l

sgn(ρ)
(
γµρ(1) γ̄µρ(2) . . . γµρ(2l−1) γ̄µρ(2l) C

)
αβ

×
n−l−1∏

j=1

ηµρ(2l+2j−1)µρ(2l+2j)

zρ(2l+2j−1),ρ(2l+2j)

zρ(2l+2j−1),A zρ(2l+2j),B . (3.108)



58 3. Ramond–Neveu–Schwarz Correlators at Tree-Level

Via triality these correlators can be related to the unknown correlation functions

〈
ψ2n−1 S Ṡ

〉
↔
〈
ψ S2n−1 Ṡ

〉
,

〈
ψ2n−2 S2

〉
↔
〈
ψ2 S2n−2

〉
↔
〈
S2n−2 Ṡ2

〉
. (3.109)

For this purpose we need the triality covariant versions of (3.107) and (3.108). In terms of
the generalized fields one finds

〈
P i1(z1) . . . P

i2n−1(z2n−1)Q
j(zA)R

k(zB)
〉
=

1

z
1/2
AB

∏2n−1
i=1 (ziA ziB)1/2

n−1∑

l=0

(−zAB)l

×
∑

ρ∈S2n−1/Pn,l

sgn(ρ)Giρ(1)jr1 Giρ(2)q1
r1 G

iρ(3)
q1
r2 Giρ(4)q2

r2 . . . G
iρ(2l+1)

ql
k

×
n−l−1∏

j=1

giρ(2l+2j)iρ(2l+2j+1)

zρ(2l+2j),ρ(2l+2j+1)

zρ(2l+2j),A zρ(2l+2j+1),B , (3.110)

〈
P i1(z1) . . . P

i2n−2(z2n−2)Q
j1(zA)Q

j2(zB)
〉
=

1

zAB
∏2n−2

i=1 (ziA ziB)1/2

n−1∑

l=0

(−zAB)l

×
∑

ρ∈S2n−2/Qn,l

sgn(ρ)Giρ(1)j1r1 Giρ(2)q1
r1 G

iρ(3)
q1
r2 . . . Giρ(2l)j2

rl

×
n−l−1∏

j=1

giρ(2l+2j−1)iρ(2l+2j)

zρ(2l+2j−1),ρ(2l+2j)

zρ(2l+2j−1),A zρ(2l+2j),B . (3.111)

The former gives rise to a new result by setting P = S, Q = ψ, R = Ṡ:

〈
ψµ(zA)Sα1(z1) . . . Sα2n−1(z2n−1) S

β̇(zB)
〉
=

(−1)n−1

√
2 z

1/2
AB

∏2n−1
i=1 (zAi ziB)1/2

n−1∑

l=0

(
zAB
2

)l

×
∑

ρ∈S2n−1/Pn,l

sgn(ρ) (γµ)αρ(1)δ̇1
(γλ1 C)αρ(2)

δ̇1 (γλ1)αρ(3) δ̇2
(γλ2 C)αρ(4)

δ̇2 . . .

× (γλl C)αρ(2l)

δ̇l (γλl C)αρ(2l+1)

β̇

×
n−l−1∏

j=1

Cαρ(2l+2j)αρ(2l+2j+1)

zρ(2l+2j),ρ(2l+2j+1)

zA,ρ(2l+2j) zρ(2l+2j+1),B . (3.112)
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The latter yields two classes of correlation functions. First, we assign P = S and Q = ψ:

〈
ψµ(zA)ψ

ν(zB)Sα1(z1) . . . Sα2n−2(z2n−2)
〉
=

1

zAB
∏2n−2

i=1 (zAi zBi)1/2

n−1∑

l=0

(
−zAB

2

)l

×
∑

ρ∈S2n−2/Qn,l

sgn(ρ) (γµ)αρ(1) δ̇1
(γλ1 C)αρ(2)

δ̇1 (γλ1)αρ(3)δ̇2
(γλ2 C)αρ(4)

δ̇2 . . .

× (γλl−1
)αρ(2l−1) δ̇l

(γν C)αρ(2l)

δ̇l

×
n−l−1∏

j=1

Cαρ(2l+2j−1)αρ(2l+2j)

zρ(2l+2j−1),ρ(2l+2j)
zA,ρ(2l+2j−1) zB,ρ(2l+2j) . (3.113)

Secondly, one can specify P = S, Q = Ṡ:

〈
Sα1(z1) . . . Sα2n−2(z2n−2)S

β̇(zA)S
γ̇(zB)

〉
=

1

zAB
∏2n−2

i=1 (zAi zBi)1/2

n−1∑

l=0

(
− zAB

2

)l

×
∑

ρ∈S2n−2/Qn,l

sgn(ρ) (γλ1 C)αρ(1)

β̇ (γλ1)αρ(2) δ̇1
(γλ2 C)αρ(3)

δ̇1 (γλ2)αρ(4)δ̇2
. . .

× (γλl C)αρ(2l−1)

δ̇l−1 (γλl C)αρ(2l)

γ̇

×
n−l−1∏

j=1

Cαρ(2l+2j−1)αρ(2l+2j)

zρ(2l+2j−1),ρ(2l+2j)
zρ(2l+2j−1),A zρ(2l+2j),B . (3.114)

This completes our discussion of the powerful and far-reaching methods making use of
SO(8) triality for tree-level correlators in eight dimensions.

3.7 Techniques in Ten Dimensions

RNS correlation function in D = 10 are of importance whenever non-compactified string
theory is considered. This might not be directly relevant for four-dimensional physics, but
string amplitudes in ten dimensions are nevertheless useful and important when considering
formal or mathematical aspects of string theory.

However, in ten space-time dimensions it is not possible to derive a formula for the pure
spin field correlator 〈Sα1 . . . Sα2M

〉 as has been described in Chapter 3.2. Furthermore, there
are no tools like triality as in eight dimensions to relate different correlation functions. So
each RNS correlator has to be calculated separately. This has been achieved for RNS
correlators at loop-level in [2] up to six points. As tree-level expressions can be obtained
from these we postpone showing results to Chapter 5.3.
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CHAPTER 4

Results in Four Space-Time Dimensions

In this Chapter we present all tree-level RNS correlation functions in four space-time
dimensions up to eight points, as well as correlators with arbitrary many fermions but
only two spin fields. This work is based on [1]. The calculations have been carried out
using either the iterative procedure presented in Chapter 3.2.1 or applying the factorization
method from Chapter 3.4. The necessary relations between different index terms for each
correlator are collected in Appendix B.1. We restrict our calculations in the following to
correlators with equal or more left-handed spin fields than right-handed, i.e.

〈
ψµ1 . . . ψµn Sα1 . . . Sαr S

β̇1 . . . S β̇s
〉

(4.1)

with r ≥ s, because the results for the correlator with r and s interchanged can be obtained
by complex conjugation. In order to transform the index terms one has to use

(εαβ)
∗ = εα̇β̇ , (σµ

αβ̇
)∗ = σµβα̇ . (4.2)

In addition, we have to take into account a phase (−1)(r−s)/2 that can be explained as
follows. The result of (4.1) comes with a sign (−1)(r+n)/2 due to (3.82), whereas (4.1) with
interchanged spinor indices accounts for (−1)(s+n)/2. Hence they differ by (−1)(r−s)/2.

We want to stress again that in four dimensions the index terms as specified in (3.8)
are used and that the OPE of two left-handed spin fields (3.12a) comes with a minus sign.

4.1 Review of Known Results

The four-point amplitude of one gauge field, two gauginos and one scalar has been derived
in [108]. Its Lorentz structure is determined by the correlators

〈
ψµ(z1)ψ

ν(z2)Sα(z3)Sβ(z4)
〉
=

−1

(z13 z14 z23 z24 z34)1/2

[
ηµν

z12
εαβ z13 z24 +

1

2
(σµ σ̄ν ε)αβz34

]
,

(4.3a)
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〈
ψµ(z1)ψ

ν(z2)Sα̇(z3)Sβ̇(z4)
〉
=

1

(z13 z14 z23 z24 z34)1/2

[
ηµν

z12
εα̇β̇ z13 z24 +

1

2
(ε σ̄µ σν)α̇β̇ z34

]
.

(4.3b)

A more involved five-point amplitude involving three NS fermions and two R spin fields
has been worked out in [115]:

〈
ψµ(z1)ψ

ν(z2)ψ
λ(z3)Sα(z4)Sβ̇(z5)

〉
=

1√
2 (z14 z15 z24 z25 z34 z35)1/2

×
[
ηµν

z12
σλ
αβ̇
z14 z25 −

ηµλ

z13
σν
αβ̇
z14 z35 +

ηνλ

z23
σµ
αβ̇
z24 z35 +

z45
2

(σµ σ̄ν σλ)αβ̇

]
. (4.4)

This correlator enters the computation of the six-point amplitude involving four scalars
and two gauginos or chiral fermions. In addition to these cases also some pure spin field
correlators with four spinor indices are known. These correlators are basic ingredients of
four-point amplitudes involving gauginos or chiral matter fermions [66, 108]. The correla-
tion function consisting of two left- and right-handed spin fields each is given by

〈
Sα(z1)Sβ̇(z2)Sγ(z3)Sδ̇(z4)

〉
= − 1

(z13 z24)1/2
εαγ εβ̇δ̇ , (4.5)

while for spin fields of the same chirality one obtains

〈
Sα(z1)Sβ(z2)Sγ(z3)Sδ(z4)

〉
=

(
z12 z14 z23 z34

z13 z24

)1/2(
εαβ εγδ
z12 z34

− εαδ εβγ
z14 z23

)
, (4.6a)

〈
Sα̇(z1)Sβ̇(z2)Sγ̇(z3)Sδ̇(z4)

〉
=

(
z12 z14 z23 z34

z13 z24

)1/2(εα̇β̇ εγ̇δ̇
z12 z34

−
εα̇δ̇ εβ̇γ̇
z14 z23

)
. (4.6b)

With the results (4.3) and (4.6) we can explicitly check how the correlators change if
the numbers of left- and right-handed spin fields are interchanged. Indeed, the index terms
are replaced by their complex conjugate as stated in (4.2),

(εαβ)
∗ = εα̇β̇ , (σµ σ̄ν ε)αβ

∗ = (ε σ̄ν σµ)β̇α̇ = (ε σ̄µ σν)α̇β̇ , (4.7)

and the correlators capture a sign (−1)(r−s)/2. From now on we only state the results for
correlation functions with pre-dominantly left-handed spin fields.

4.2 Five-Point Functions

At the five-point level the only non-vanishing correlation functions are (4.4) and the corre-
lator consisting of one fermion, three left-handed and one right-handed spin field. Either
by factorization or the iterative procedure we find for this five-point function in minimal
form

〈
ψµ(z1)Sα(z2)Sβ(z3)Sγ(z4)Sδ̇(z5)

〉
=

−1√
2 (z12 z13 z14 z15 z23 z24 z34)1/2

×
(
σµ
αδ̇
εβγ z14 z23 − σµ

γδ̇
εαβ z12 z34

)
. (4.8)
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The non-minimal expression with all three possible index terms is given by

〈
ψµ(z1)Sα(z2)Sβ(z3)Sγ(z4)Sδ̇(z5)

〉
=

−1√
2 (z12 z13 z14 z15 z23 z24 z34)1/2

×
(
σµ
γδ̇
εαβ z12 z13 − σµ

βδ̇
εαγ z12 z14 + σµ

αδ̇
εβγ z13 z14

)
. (4.9)

4.3 Six-Point Functions

The simplest six-point functions at tree-level are the ones consisting of only spin fields. In
the case of four left- and two right-handed spin fields one obtains

〈
Sα(z1)Sβ(z2)Sγ(z3)Sδ(z4)Sǫ̇(z5)Sζ̇(z6)

〉

=

(
z12 z14 z23 z34 z56

z13 z24

)1/2(εαβ εγδ εǫ̇ζ̇
z12 z34 z56

−
εαδ εβγ εǫ̇ζ̇
z14 z23 z56

)
. (4.10)

For the six-point function involving six spin fields of the same chirality we find

〈
Sα(z1)Sβ(z2)Sγ(z3)Sδ(z4)Sǫ(z5)Sζ(z6)

〉
= −

(
z12 z14 z16 z23 z25 z34 z36 z45 z56

z13 z15 z24 z26 z35 z46

)1/2

×
(
εαβ εγδ εǫζ
z12 z34 z56

− εαβ εγζ εǫδ
z12 z36 z54

+
εαδ εγζ εǫβ
z14 z36 z52

− εαδ εγβ εǫζ
z14 z32 z56

+
εαζ εγβ εǫδ
z16 z32 z54

− εαζ εγδ εǫβ
z16 z34 z52

)
.

(4.11)

Next, we consider the case of two fermions and two left- and right-handed spin fields each
for which we derive:

〈
ψµ(z1)ψ

ν(z2)Sα(z3)Sβ̇(z4)Sγ(z5)Sδ̇(z6)
〉
=

−1

2 z12 (z13 z14 z15 z16 z23 z24 z25 z26 z35 z46)1/2

×
(
σµ
αδ̇
σν
γβ̇
z14 z15 z23 z26 − σµ

αβ̇
σν
γδ̇
z15 z16 z23 z24

+σµ
γβ̇
σν
αδ̇
z13 z16 z24 z25 − σµ

γδ̇
σν
αβ̇
z13 z14 z25 z26

)
. (4.12)

This correlator is needed to compute the five-point disk amplitude of one gauge field and
four chiral fermions [67]. Actually, in this reference another variant of (4.12) has been
used,

〈
ψµ(z1)ψ

ν(z2)Sα(z3)Sβ̇(z4)Sγ(z5)Sδ̇(z6)
〉
=

−1

(z13 z14 z15 z16 z23 z24 z25 z26 z35 z46)1/2

×
(
1

2
σµ
αβ̇
σν
γδ̇
z15 z24 z36 −

1

2
σµ
αδ̇
σν
γβ̇
z15 z26 z34 −

1

2
σµ
γδ̇
σν
αβ̇
z13 z26 z45

− 1

2
σµ
γβ̇
σν
αδ̇
z13 z24 z56 +

ηµν

z12
εαγ εβ̇δ̇ z13 z15 z24 z26

)
, (4.13)
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where only the index term containing ηµν comes with a pole in z12. This makes the
calculation of the just mentioned string amplitude much simpler. For the correlator with
two gauge fields and four left-handed spin fields we obtain

〈
ψµ(z1)ψ

ν(z2)Sα(z3)Sβ(z4)Sγ(z5)Sδ(z6)
〉

=
1

(z13 z14 z15 z16 z23 z24 z25 z26 z34 z35 z36 z45 z46 z56)1/2

×
[
ηµν

z12
εαβ εγδ z13 z16 z24 z25 z36 z45 −

ηµν

z12
εαδ εβγ z13 z14 z25 z26 z34 z56

+
1

2
(σµ σ̄ν ε)αβ εγδ z15 z25 z34 z36 z46 −

1

2
(σµ σ̄ν ε)αγ εβδ z14 z24 z35 z36 z56

+
1

2
(σµ σ̄ν ε)βγ εαδ z13 z23 z45 z46 z56

]
. (4.14)

This expression is relevant for the scattering amplitude of one gauge field and four chiral
fermions. In a slightly more symmetric representation with respect to the spin fields this
six-point function reads:

〈
ψµ(z1)ψ

ν(z2)Sα(z3)Sβ(z4)Sγ(z5)Sδ(z6)
〉

=
1

(z13 z14 z15 z16 z23 z24 z25 z26 z34 z35 z36 z45 z46 z56)1/2

×
[
ηµν

z12
εαβ εγδ z13 z15 z24 z26 z36 z45 +

ηµν

z12
εαδ εγβ z13 z15 z24 z26 z34 z56

+
1

2
(σµ σ̄ν ε)αβ εγδ z15 z26 z34 z36 z45 −

1

2
(σµ σ̄ν ε)αδ εβγ z15 z24 z34 z36 z56

+
1

2
(σµ σ̄ν ε)γδ εαβ z13 z24 z36 z45 z56 −

1

2
(σµ σ̄ν ε)γβ εαδ z13 z26 z34 z45 z56

]
. (4.15)

Moreover, (4.15) may be cast into a form which is manifestly anti-symmetric under inter-
changing the two NS fermions ψµ(z1) ↔ ψν(z2):

〈
ψµ(z1)ψ

ν(z2)Sα(z3)Sβ(z4)Sγ(z5)Sδ(z6)
〉

=
1

2 (z13 z14 z15 z16 z23 z24 z25 z26 z34 z35 z36 z45 z46 z56)1/2

×
[
ηµν

z12
εαβ εγδ z36 z45 (z13 z16 z24 z25 + z14 z15 z23 z26)

+
ηµν

z12
εαδ εγβ z34 z56 (z13 z14 z25 z26 + z15 z16 z23 z24)

+
1

2
(σµν ε)αβ z34 εγδ z36 z45 (z15 z26 + z16 z25)

+
1

2
(σµν ε)αδ z36 εγβ z34 z56 (z15 z24 + z14 z25)
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+
1

2
(σµν ε)γδ z56 εαβ z36 z45 (z13 z24 + z14 z23)

+
1

2
(σµν ε)γβ z54 εαδ z34 z56 (z13 z26 + z16 z23)

]
. (4.16)

The last non-vanishing correlation function at six-point level contains four fermions and
two left-handed spin fields. Via the factorization method and reducing it to minimal form
we obtain as result

〈
ψµ(z1)ψ

ν(z2)ψ
λ(z3)ψ

ρ(z4)Sα(z5)Sβ(z6)
〉
=

1

z
1/2
56 (z15 z16 z25 z26 z35 z36 z45 z46)1/2

×
[
ηµν ηλρ

z12 z34
εαβ z15 z26 z35 z46 −

ηµλ ηνρ

z13 z24
εαβ z15 z36 z25 z46

+
ηµρ ηνλ

z14 z23
εαβ z15 z46 z25 z36 +

1

4
(σµ σ̄ν σλ σ̄ρ ε)αβ z

2
56

+
1

2

ηµν

z12
(σλ σ̄ρ ε)αβ z15 z26 z56 +

1

2

ηλρ

z34
(σµ σ̄ν ε)αβ z35 z46 z56

− 1

2

ηµλ

z13
(σν σ̄ρ ε)αβ z15 z36 z56 −

1

2

ηνρ

z24
(σµ σ̄λ ε)αβ z25 z46 z56

+
1

2

ηµρ

z14
(σν σ̄λ ε)αβ z15 z46 z56 +

1

2

ηνλ

z23
(σµ σ̄ρ ε)αβ z25 z36 z56

]
. (4.17)

4.4 Seven-Point Functions

The seven-point function built from one fermion and three spin fields of each chirality is
easily evaluated using the factorization technique. We directly get the result in minimal
form:

〈
ψµ(z1)Sα(z2)Sβ(z3)Sγ(z4)Sδ̇(z5)Sǫ̇(z6)Sζ̇(z7)

〉

=
−1√

2 (z12 z13 z14 z15 z16 z17 z23 z24 z34 z56 z57 z67)1/2

×
(
σµ
γζ̇
εαβ εδ̇ǫ̇ z12 z15 z34 z67 − σµ

γδ̇
εαβ εǫ̇ζ̇ z12 z17 z34 z56

+σµ
αδ̇
εβγ εǫ̇ζ̇ z14 z17 z23 z56 − σµ

αζ̇
εβγ εδ̇ǫ̇ z14 z15 z23 z67

)
. (4.18)

The spin fields can also carry different chirality. The same method yields:

〈
ψµ(z1)Sα(z2)Sβ(z3)Sγ(z4)Sδ(z5)Sǫ(z6)Sζ̇(z7)

〉

=
1√

2 (z12 z13 z14 z15 z16 z17 z23 z24 z25 z26 z34 z35 z36 z45 z46 z56)1/2

×
(
σµ
αζ̇
εβγ εδǫ z14 z16 z23 z25 z36 z45 − σµ

αζ̇
εβǫ εγδ z14 z16 z23 z25 z34 z56
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−σµ
γζ̇
εαβ εδǫ z12 z16 z25 z34 z36 z45 + σµ

γζ̇
εαδ εβǫ z12 z16 z23 z34 z45 z56

+σµ
ǫζ̇
εαβ εγδ z12 z14 z25 z34 z36 z56 − σµ

ǫζ̇
εαδ εβγ z12 z14 z23 z36 z45 z56

)
. (4.19)

By eliminating one of the Clebsch–Gordan coefficients this can be brought into minimal
form,

〈
ψµ(z1)Sα(z2)Sβ(z3)Sγ(z4)Sδ(z5)Sǫ(z6)Sζ̇(z7)

〉

=
1√

2 (z12 z13 z14 z15 z16 z17 z23 z24 z25 z26 z34 z35 z36 z45 z46 z56)1/2

×
[
σµ
αζ̇
εβγ εδǫ z16 z23 z45 (z14 z25 z36 + z12 z34 z56)− σµ

αζ̇
εβǫ εγδ z15 z16 z23 z24 z34 z56

+ σµ
ǫζ̇
εαβ εγδ z12 z34 z56 (z14 z25 z36 + z16 z23 z45)− σµ

ǫζ̇
εαδ εβγ z12 z13 z23 z45 z46 z56

−σµ
γζ̇
εαβ εδǫ z12 z16 z26 z34 z35 z45

]
. (4.20)

However, the z dependence is more complicated in non-minimal form. The correlation
function consisting of three fermions, three left-handed and one right-handed spin field is
given by the expression

〈
ψµ(z1)ψ

ν(z2)ψ
λ(z3)Sα(z4)Sβ(z5)Sγ(z6)Sδ̇(z7)

〉

=
1√

2 z23 (z14 z15 z16 z17 z24 z25 z26 z27 z34 z35 z36 z37 z45 z46 z56)1/2

×
[
ηµν

z12
εαβ σ

λ
γδ̇
z13 z14 z25 z26 z27 z34 z56 +

ηµλ

z13
εαβ σ

ν
γδ̇
z12 z14 z24 z35 z36 z37 z56

− ηµν

z12
εβγ σ

λ
αδ̇
z14 z15 z23 z26 z27 z36 z45 +

ηµλ

z13
εβγ σ

ν
αδ̇
z14 z15 z23 z26 z36 z37 z45

− 1

2
(σµ σ̄ν ε)αβ σ

λ
γδ̇
z16 z26 z27 z34 z35 z45 −

1

2
(σµ σ̄λ ε)αβ σ

ν
γδ̇
z16 z24 z25 z36 z37 z45

− 1

2
(σµ σ̄ν ε)βγ σ

λ
αδ̇
z14 z24 z27 z35 z36 z56 −

1

2
(σµ σ̄λ ε)βγ σ

ν
αδ̇
z14 z25 z26 z34 z37 z56

+
1

2
(σµ σ̄ν ε)αγ σ

λ
βδ̇
z15 z25 z27 z34 z36 z46 +

1

2
(σµ σ̄λ ε)αγ σ

ν
βδ̇
z15 z24 z26 z35 z37 z46

]
.

(4.21)

This results may be also cast into a form where most of the z23 poles are absent:

〈
ψµ(z1)ψ

ν(z2)ψ
λ(z3)Sα(z4)Sβ(z5)Sγ(z6)Sδ̇(z7)

〉

=
1√

2 (z14 z15 z16 z17 z24 z25 z26 z27 z34 z35 z36 z37 z45 z46 z56)1/2

×
[
ηµν

z12
σλ
γδ̇
εαβ z14 z16 z25 z27 z34 z56 −

ηµν

z12
σλ
αδ̇
εβγ z14 z16 z25 z27 z36 z45
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− ηµλ

z13
σν
γδ̇
εαβ z14 z16 z24 z35 z37 z56 +

ηµλ

z13
σν
αδ̇
εβγ z14 z16 z26 z35 z37 z45

+
ηνλ

z23
σµ
γδ̇
εαβ z14 z24 z26 z35 z37 z56 −

ηνλ

z23
σµ
αδ̇
εβγ z16 z24 z26 z35 z37 z45

+
1

2
(σµ σ̄ν σλ)γδ̇ εαβ z14 z25 z34 z56 z67 −

1

2
(σµ σ̄ν σλ)αδ̇ εβγ z16 z25 z36 z45 z47

− 1

2
(σµ σ̄ν ε)αβ σ

λ
γδ̇
z16 z23 z45 z47 z56 +

1

2
(σµ σ̄ν ε)γβ σ

λ
αδ̇
z14 z23 z45 z56 z67

+
1

2
(σν σ̄λ ε)αβ σ

µ

γδ̇
z14 z26 z37 z45 z56 −

1

2
(σν σ̄λ ε)γβ σ

µ

αδ̇
z16 z24 z37 z45 z56

]
. (4.22)

The most complicated, non-vanishing seven-point function is given by five fermions and
two spin fields of different chirality. Applying the iterative procedure explained before, one
finds
〈
ψµ(z1)ψ

ν(z2)ψ
λ(z3)ψ

ρ(z4)ψ
τ (z5)Sα(z6)Sβ̇(z7)

〉

=
1√

2 (z16 z17 z26 z27 z36 z37 z46 z47 z56 z57)1/2

×
[
ηνλ ηρτ

z23 z45
σµ
αβ̇
z26 z37 z46 z57 +

ηντ ηλρ

z25 z34
σµ
αβ̇
z26 z57 z36 z47 −

ηνρ ηλτ

z24 z35
σµ
αβ̇
z26 z47 z36 z57

− ηµλ ηρτ

z13 z45
σν
αβ̇
z16 z37 z46 z57 −

ηµτ ηλρ

z15 z34
σν
αβ̇
z16 z57 z36 z47 +

ηµρ ηλτ

z14 z35
σν
αβ̇
z16 z47 z36 z57

+
ηµν ηρτ

z12 z45
σλ
αβ̇
z16 z27 z46 z57 +

ηµτ ηνρ

z15 z24
σλ
αβ̇
z16 z57 z26 z47 −

ηµρ ηντ

z14 z25
σλ
αβ̇
z16 z47 z26 z57

− ηµν ηλτ

z12 z35
σρ
αβ̇
z16 z27 z36 z57 −

ηµτ ηνλ

z15 z23
σρ
αβ̇
z16 z57 z26 z37 +

ηµλ ηντ

z13 z25
σρ
αβ̇
z16 z37 z26 z57

+
ηµν ηλρ

z12 z34
στ
αβ̇
z16 z27 z36 z47 +

ηµρ ηνλ

z14 z23
στ
αβ̇
z16 z47 z26 z37 −

ηµλ ηνρ

z13 z24
στ
αβ̇
z16 z37 z26 z47

+
1

2

ηµν

z12
(σλ σ̄ρ στ )αβ̇ z16 z27 z67 −

1

2

ηµλ

z13
(σν σ̄ρ στ )αβ̇ z16 z37 z67

+
1

2

ηµρ

z14
(σν σ̄λ στ )αβ̇ z16 z47 z67 −

1

2

ηµτ

z15
(σν σ̄λ σρ)αβ̇ z16 z57 z67

+
1

2

ηνλ

z23
(σµ σ̄ρ στ )αβ̇ z26 z37 z67 −

1

2

ηνρ

z24
(σµ σ̄λ στ )αβ̇ z26 z47 z67

+
1

2

ηντ

z25
(σµ σ̄λ σρ)αβ̇ z26 z57 z67 +

1

2

ηλρ

z34
(σµ σ̄ν στ )αβ̇ z36 z47 z67

− 1

2

ηλτ

z35
(σµ σ̄ν σρ)αβ̇ z36 z57 z67 +

1

2

ηρτ

z45
(σµ σ̄ν σλ)αβ̇ z46 z57 z67

+
1

4
(σµ σ̄ν σλ σ̄ρ στ )αβ̇ z

2
67

]
. (4.23)
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4.5 Eight-Point Functions

At the eight-point level all correlation functions, apart from the pure spin field correlators,
have ten or more independent index terms. The expressions become rather lengthy and we
therefore do not proceed to higher-point level. Let us discuss the pure spin field eight-point
functions first. The expression for eight left-handed spin fields reads

〈
Sα(z1)Sβ(z2)Sγ(z3)Sδ(z4)Sǫ(z5)Sζ(z6)Sθ(z7)Sι(z8)

〉

=

(
z12 z14 z16 z18 z23 z25 z27 z34 z36 z38 z45 z47 z56 z58 z67 z78

z13 z15 z17 z24 z26 z28 z35 z37 z46 z48 z57 z68

)1/2

×
(
εαβ εγδ εǫζ εθι
z12 z34 z56 z78

− εαβ εγδ εǫι εθζ
z12 z34 z58 z76

+
εαβ εγζ εǫι εθδ
z12 z36 z58 z74

− εαβ εγζ εǫδ εθι
z12 z36 z54 z78

+
εαβ εγι εǫδ εθζ
z12 z38 z54 z76

− εαβ εγι εǫζ εθδ
z12 z38 z56 z74

− εαδ εγβ εǫζ εθι
z14 z32 z56 z78

+
εαδ εγβ εǫι εθζ
z14 z32 z58 z76

− εαδ εγζ εǫι εθβ
z14 z36 z58 z72

+
εαδ εγζ εǫβ εθι
z14 z36 z52 z78

− εαδ εγι εǫβ εθζ
z14 z38 z52 z76

+
εαδ εγι εǫζ εθβ
z14 z38 z56 z72

+
εαζ εγβ εǫδ εθι
z16 z32 z54 z78

− εαζ εγβ εǫι εθδ
z16 z32 z58 z74

+
εαζ εγδ εǫι εθβ
z16 z34 z58 z72

− εαζ εγδ εǫβ εθι
z16 z34 z52 z78

+
εαζ εγι εǫβ εθδ
z16 z38 z52 z74

− εαζ εγι εǫδ εθβ
z16 z38 z54 z72

− εαι εγβ εǫδ εθζ
z18 z32 z54 z76

+
εαι εγβ εǫζ εθδ
z18 z32 z56 z74

− εαι εγδ εǫζ εθβ
z18 z34 z56 z72

+
εαι εγδ εǫβ εθζ
z18 z34 z52 z76

− εαι εγζ εǫβ εθδ
z18 z36 z52 z74

+
εαι εγζ εǫδ εθβ
z18 z36 z54 z72

)
, (4.24)

while the result for six left-handed and two-right handed spin field is given by the product
of the respective six- and two-point functions:

〈
Sα(z1)Sβ(z2)Sγ(z3)Sδ(z4)Sǫ(z5)Sζ(z6)Sθ̇(z7)Sι̇(z8)

〉

= −
(
z12 z14 z16 z23 z25 z34 z36 z45 z56 z78

z13 z15 z24 z26 z35 z46

)1/2

×
(
εαβ εγδ εǫζ εθ̇ι̇
z12 z34 z56

− εαβ εγζ εǫδ εθ̇ι̇
z12 z36 z54 z78

+
εαδ εγζ εǫβ εθ̇ι̇
z14 z36 z52 z78

− εαδ εγβ εǫζ εθ̇ι̇
z14 z32 z56 z78

+
εαζ εγβ εǫδ εθ̇ι̇
z16 z32 z54 z78

− εαζ εγδ εǫβ εθ̇ι̇
z16 z34 z52 z78

)
. (4.25)

We obtain for the correlator consisting of four spin fields of each chirality

〈
Sα(z1)Sβ(z2)Sγ(z3)Sδ(z4)Sǫ̇(z5)Sζ̇(z6)Sθ̇(z7)Sι̇(z8)

〉
=

(
z12 z14 z23 z34 z56 z58 z67 z78

z13 z24 z57 z68

)1/2

×
(
εαβ εγδ εǫ̇ζ̇ εθ̇ι̇
z12 z34 z56 z78

−
εαβ εγδεǫ̇ι̇ εζ̇θ̇
z12 z34 z58 z67

−
εαδ εγβ εǫ̇ζ̇ εθ̇ι̇
z14 z23 z56 z78

+
εαδ εβγεǫ̇ι̇ εζ̇θ̇
z14 z23 z58 z67

)
, (4.26)



4.5 Eight-Point Functions 69

which is simply the product of the four-point functions involving only spin fields. Now we
concentrate on correlation functions involving also fermions. For the correlator given by
two fermions, four left-handed and two right-handed spin fields we obtain:

〈
ψµ(z1)ψ

ν(z2)Sα(z3)Sβ(z4)Sγ(z5)Sδ(z6)Sǫ̇(z7)Sζ̇(z8)
〉

=
1

(z13 z14 z15 z16 z17 z18 z23 z24 z25 z26 z27 z28 z34 z35 z36 z45 z46 z56 z78)1/2

×
[
ηµν

z12

(
εαβ εγδ z36 z45 + εαδ εγβ z34 z56

)
εǫ̇ζ̇ z13 z15 z17 z24z26 z28

+
1

2
(ε σ̄µ σν)ǫ̇ζ̇

(
εαβ εγδ z36 z45 + εαδ εγβ z34 z56

)
z13 z15 z24 z26 z78

+
1

2

(
σµαǫ̇ σ

ν
βζ̇
z18 z27 − σµ

αζ̇
σνβǫ̇ z17 z28

)
εγδ z15 z26 z34 z36 z45

− 1

2

(
σµγǫ̇ σ

ν
βζ̇
z18 z27 − σµ

γζ̇
σνβǫ̇ z17 z28

)
εαδ z13 z26 z34 z45 z56

− 1

2

(
σµαǫ̇ σ

ν
δζ̇
z18 z27 − σµ

αζ̇
σνδǫ̇ z17 z28

)
εβγ z15 z24 z34 z36 z56

+
1

2

(
σµγǫ̇ σ

ν
δζ̇
z18 z27 − σµ

γζ̇
σνδǫ̇ z17 z28

)
εαβ z13 z24 z36 z45 z56

]
. (4.27)

The spin fields can also be all of the same chirality. In this case the correlator, calculated
via the factorization method, is found to be

〈
ψµ(z1)ψ

ν(z2)Sα(z3)Sβ(z4)Sγ(z5)Sδ(z6)Sǫ(z7)Sζ(z8)
〉
= z

1/2
12

8∏

i<j

z
−1/2
ij

×
[
ηµν

z12
εαβ
[
εγζ εδǫ z56 z78 − εγδ εǫζ z58 z67

]
z14 z16 z18 z23 z25 z27 z36 z38 z45 z47

+
ηµν

z12
εαδ
[
εβγ εǫζ z47 z58 − εβǫ εγζ z45 z78

]
z14 z16 z18 z23 z25 z27 z34 z38 z56 z67

+
ηµν

z12
εαζ
[
εβǫ εγδ z45 z67 − εβγ εδǫ z47 z56

]
z14 z16 z18 z23 z25 z27 z34 z36 z58 z78

+
1

2
(σµ σ̄νε)βα

[
εγζ εδǫ z56 z78 − εγδ εǫζ z58 z67

]
z16 z18 z25 z27 z34 z36 z38 z45 z47

+
1

2
(σµ σ̄νε)βγ

[
εαδ εǫζ z38 z67 − εαζ εδǫ z36 z78

]
z16 z18 z23 z27 z34 z45 z47 z56 z58

+
1

2
(σµ σ̄νε)βǫ

[
εαζ εγδ z36 z58 − εαδ εγζ z38 z56

]
z16 z18 z23 z25 z34 z45 z47 z67 z78

+
1

2
(σµ σ̄νε)δα

[
εβγ εǫζ z47 z58 − εβǫ εγζ z45 z78

]
z14 z18 z25 z27 z34 z36 z38 z56 z67

+
1

2
(σµ σ̄νε)δγ

[
εαζ εβǫ z34 z78 − εαβ εǫζ z38 z47

]
z14 z18 z23 z27 z36 z45 z56 z58 z67

+
1

2
(σµ σ̄νε)δǫ

[
εαβ εγζ z38 z45 − εαζ εβγ z34 z58

]
z14 z18 z23 z25 z36 z47 z56 z67 z78
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+
1

2
(σµ σ̄νε)ζα

[
εβǫ εγδ z45 z67 − εβγ εδǫ z47 z56

]
z14 z16 z25 z27 z34 z36 z38 z58 z78

+
1

2
(σµ σ̄νε)ζγ

[
εαβ εδǫ z36 z47 − εαδ εβǫ z34 z67

]
z14 z16 z23 z27 z38 z45 z56 z58 z78

+
1

2
(σµ σ̄νε)ζǫ

[
εαδ εβγ z34 z56 − εαβ εγδ z36 z45

]
z14 z16 z23 z25 z38 z47 z58 z67 z78

]
.

(4.28)

Next we focus on correlators entering the string scattering amplitude involving two gauge
fields and four gauginos, which is discussed in Chapter 6. The eight-point function con-
sisting of four fermions and two spin fields of each chirality is given by:

〈
ψµ(z1)ψ

ν(z2)ψ
λ(z3)ψ

ρ(z4)Sα(z5)Sβ̇(z6)Sγ(z7)Sδ̇(z8)
〉

=
−1

(z15 z16 z17 z18 z25 z26 z27 z28 z35 z36 z37 z38 z45 z46 z47 z48 z57 z68)1/2

×
[
ηµν ηλρ

z12 z34
εαγ εβ̇δ̇ z15 z16 z27 z28 z35 z36 z47 z48

− ηµλ ηνρ

z13 z24
εαγ εβ̇δ̇ z15 z16 z25 z26 z37 z38 z47 z48

+
ηµρ ηνλ

z14 z23
εαγ εβ̇δ̇ z15 z16 z25 z26 z37 z38 z47 z48

+
1

2

ηµν

z12

[
(ε σ̄λ σρ)β̇δ̇ εαγ z35 z47 z68 + (σλ σ̄ρ ε)αγ εβ̇δ̇ z36 z48 z57

]
z15 z16 z27 z28

− 1

2

ηµν

z12
σλ
αβ̇
σρ
γδ̇
z15 z17 z26 z28 z34 z57 z68

+
1

2

ηλρ

z34

[
(ε σ̄µ σν)β̇δ̇ εαγ z15 z27 z68 + (σµ σ̄ν ε)αγ εβ̇δ̇ z16 z28 z57

]
z35 z36 z47 z48

− 1

2

ηλρ

z34
σµ
αβ̇
σν
γδ̇
z12 z35 z37 z46 z48 z57 z68

− 1

2

ηµλ

z13

[
(ε σ̄ν σρ)β̇δ̇ εαγ z25 z47 z68 + (σν σ̄ρ ε)αγ εβ̇δ̇ z26 z48 z57

]
z15 z16 z37 z38

+
1

2

ηµλ

z13
σν
αβ̇
σρ
γδ̇
z15 z17 z24 z36 z38 z57 z68

− 1

2

ηνρ

z24

[
(ε σ̄µ σλ)β̇δ̇ εαγ z15 z37 z68 + (σµ σ̄λ ε)αγ εβ̇δ̇ z16 z38 z57

]
z25 z26 z47 z48

+
1

2

ηνρ

z24
σµ
αβ̇
σλ
γδ̇
z13 z25 z27 z46 z48 z57 z68

+
1

2

ηµρ

z14

[
(ε σ̄ν σλ)β̇δ̇ εαγ z25 z37 z68 + (σν σ̄λ ε)αγ εβ̇δ̇ z26 z38 z57

]
z15 z16 z47 z48

− 1

2

ηµρ

z14
σν
αβ̇
σλ
γδ̇
z15 z17 z23 z46 z48 z57 z68
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+
1

2

ηνλ

z23

[
(ε σ̄µ σρ)β̇δ̇ εαγ z15 z47 z68 + (σµ σ̄ρ ε)αγ εβ̇δ̇ z16 z48 z57

]
z25 z26 z37 z38

− 1

2

ηνλ

z23
σµ
αβ̇
σρ
γδ̇
z14 z25 z27 z36 z38 z57 z68

+
1

2

[
ηνρ (ε σ̄µ σλ)β̇δ̇ εαγ − ηνλ (ε σ̄µ σρ)β̇δ̇ εαγ + ηµλ σν

αβ̇
σρ
γδ̇

− ηµρ σν
αβ̇
σλ
γδ̇

]

× z15 z23 z48 z57 z67 z68

+
1

4
(ε σ̄µ σν σ̄λ σρ)β̇δ̇ εαγ z

2
68 z15 z27 z35 z47 +

1

4
(σµ σ̄ν σλ σ̄ρ ε)αγ εβ̇δ̇ z

2
57 z16 z28 z36 z48

+
1

4
σµ
αβ̇

(σν σ̄λ σρ)γδ̇
[
z15 z23 z46 z78 − z14 z25 z36 z78 + z16 z25 z37 z48

]
z57 z68

+
1

4
σρ
γδ̇
(σµ σ̄ν σλ)αβ̇

[
z15 z28 z36 z47 − z14 z28 z37 z56

]
z57 z68

− 1

4
σµ
γβ̇

(σν σ̄λ σρ)αδ̇
[
z15 z28 z36 z47 + z15 z23 z46 z78

]
z57 z68

− 1

4
σν
γδ̇
(σλ σ̄ρ σµ)αβ̇ z15 z23 z48 z57 z67 z68 +

1

4
σλ
γβ̇

(σµ σ̄ν σρ)αδ̇ z16 z23 z47 z58 z57 z68

− 1

4
σρ
γβ̇

(σµ σ̄ν σλ)αδ̇ z16 z25 z37 z48 z57 z68

]
. (4.29)

On the other hand, for the case where all spin fields are left-handed we compute:

〈
ψµ(z1)ψ

ν(z2)ψ
λ(z3)ψ

ρ(z4)Sα(z5)Sβ(z6)Sγ(z7)Sδ(z8)
〉

=
1

(z15 z16 z17 z18 z25 z26 z27 z28 z35 z36 z37 z38 z45 z46 z47 z48 z56 z57 z58 z67 z68 z78)1/2

×
[
ηµν ηλρ

z12 z34

(
εαβ εγδ z58 z67 + εαδ εγβ z56 z78

)
z15 z17 z26 z28 z35 z37 z46 z48

− ηµλ ηνρ

z13 z24

(
εαβ εγδ z58 z67 + εαδ εγβ z56 z78

)
z15 z17 z25 z27 z36 z38 z46 z48

+
ηµρ ηνλ

z14 z23

(
εαβ εγδ z58 z67 + εαδ εγβ z56 z78

)
z15 z17 z25 z27 z36 z38 z46 z48

+
1

2

ηµν

z12

[
(σλ σ̄ρ ε)αβ εγδ z37 z48 z56 + (σλ σ̄ρ ε)γδ εαβ z35 z46 z78

]
z15 z17 z26 z28 z58 z67

− 1

2

ηµν

z12

[
(σλ σ̄ρ ε)αδ εβγ z37 z46 z58 + (σλ σ̄ρ ε)γβ εαδ z35 z48 z67

]
z15 z17 z26 z28 z56 z78

+
1

2

ηλρ

z34

[
(σµ σ̄ν ε)αβ εγδ z17 z28 z56 + (σµ σ̄ν ε)γδ εαβ z15 z26 z78

]
z35 z37 z46 z48 z58 z67

− 1

2

ηλρ

z34

[
(σµ σ̄ν ε)αδ εβγ z17 z26 z58 + (σµ σ̄ν ε)γβ εαδ z15 z28 z67

]
z35 z37 z46 z48 z56 z78

− 1

2

ηµλ

z13

[
(σν σ̄ρ ε)αβ εγδ z27 z48 z56 + (σν σ̄ρ ε)γδ εαβ z25 z46 z78

]
z15 z17 z36 z38 z58 z67
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+
1

2

ηµλ

z13

[
(σν σ̄ρ ε)αδ εβγ z27 z46 z58 + (σν σ̄ρ ε)γβ εαδ z25 z48 z67

]
z15 z17 z36 z38 z56 z78

− 1

2

ηνρ

z24

[
(σµ σ̄λ ε)αβ εγδ z17 z38 z56 + (σµ σ̄λ ε)γδ εαβ z15 z36 z78

]
z25 z27 z46 z48 z58 z67

+
1

2

ηνρ

z24

[
(σµ σ̄λ ε)αδ εβγ z17 z36 z58 + (σµ σ̄λ ε)γβ εαδ z15 z38 z67

]
z25 z27 z46 z48 z56 z78

+
1

2

ηµρ

z14

[
(σν σ̄λ ε)αβ εγδ z27 z38 z56 + (σν σ̄λ ε)γδ εαβ z25 z36 z78

]
z15 z17 z46 z48 z58 z67

− 1

2

ηµρ

z14

[
(σν σ̄λ ε)αδ εβγ z27 z36 z58 + (σν σ̄λ ε)γβ εαδ z25 z38 z67

]
z15 z17 z46 z48 z56 z78

+
1

2

ηνλ

z23

[
(σµ σ̄ρ ε)αβ εγδ z17 z48 z56 + (σµ σ̄ρ ε)γδ εαβ z15 z46 z78

]
z25 z27 z36 z38 z58 z67

− 1

2

ηνλ

z23

[
(σµ σ̄ρ ε)αδ εβγ z17 z46 z58 + (σµ σ̄ρ ε)γβ εαδ z15 z48 z67

]
z25 z27 z36 z38 z56 z78

+
1

4
(σµ σ̄ν σλ σ̄ρ ε)αβ εγδ z

2
56 z17 z28 z37 z48 z58 z67

− 1

4
(σµ σ̄ν σλ σ̄ρ ε)αδ εβγ z

2
58 z17 z26 z37 z46 z56 z78

+
1

4
(σµ σ̄ν σλ σ̄ρ ε)γδ εαβ z

2
78 z15 z26 z35 z46 z58 z67

+
1

4
(σµ σ̄ν σλ σ̄ρ ε)γβ εαδ z

2
67 z15 z28 z35 z48 z56 z78

+
1

4
(σµ σ̄ν ε)αβ (σ

λ σ̄ρ ε)γδ
(
z17 z28 z35 z46 − z17 z25 z38 z46

)
z56 z58 z67 z78

− 1

4
(σµ σ̄ν ε)αδ (σ

λ σ̄ρ ε)γβ
(
z17 z26 z35 z48 − z17 z25 z36 z48

)
z56 z58 z67 z78

+
1

4
(σµ σ̄ν ε)γδ (σ

λ σ̄ρ ε)αβ
(
z15 z26 z37 z48 − z15 z27 z36 z48

)
z56 z58 z67 z78

− 1

4
(σµ σ̄ν ε)γβ (σ

λ σ̄ρ ε)αδ
(
z15 z28 z37 z46 − z15 z27 z38 z46

)
z56 z58 z67 z78

+
1

4

[
(σν σ̄λ ε)αβ (σ

µ σ̄ρ ε)γδ z38 z46 − (σν σ̄λ ε)αδ (σ
µ σ̄ρ ε)γβ z36 z48

]

× z15 z27 z56 z58 z67 z78

+
1

4

[
(σν σ̄λ ε)γδ (σ

µ σ̄ρ ε)αβ z36 z48 − (σν σ̄λ ε)γβ (σ
µ σ̄ρ ε)αδ z38 z46

]

× z17 z25 z56 z58 z67 z78

]
. (4.30)



4.6 General Results 73

4.6 General Results

We come now to the class of tree-level correlators in four dimensions consisting of arbitrary
many fermions and two spin fields,

Ωn ≡
〈
ψµ1(z1) . . . ψ

µ2n−1(z2n−1)Sα(zA)S
β̇(zB)

〉
,

ωn ≡
〈
ψµ1(z1) . . . ψ

µ2n−2(z2n−2)Sα(zA)S
β(zB)

〉
, (4.31)

for which some lower-point examples have just been presented. It is possible to derive
results for these correlators for arbitrary n ∈ N. Equation (3.65) implies that these corre-
lators vanish if the numbers of NS fermions are chosen differently than stated above, namely
odd for ωn or even for Ωn, because then no scalar representations exist. The correlation
functions (4.31) enter the calculation of four-dimensional string scattering amplitudes with
an arbitrary number of gluons but only two fermions or scalars. Such amplitudes are uni-
versal to any string compactification. The mathematical reason for this lies in the fact
that only the fermion or scalar vertex operators (2.57) give rise to internal fields Σ or Ψ in
the calculation. The arising two-point function is however completely determined by the
conformal weights of the internal fields and therefore the scattering amplitude does not
depend on the compactification details like geometry and topology. From a phenomeno-
logical point of view only Regge modes but not the KK/winding modes contribute to the
scattering process. The RNS correlators (4.31) hence play an important role for testing
perturbative string theory with a low string scale in collider experiments.

The results for the correlators (4.31) have been stated above for the cases n = 2, 3 in
(4.3a) and (4.17) for ωn and in (4.4) and (4.23) for Ωn. They have striking similarities
in their structure. The prefactor consists in all cases of the terms (ziA ziB)

−1/2 stemming
from the contractions between all fermions ψµi and the two spin fields. Additionally,
every Minkowski metric ηµiµj is accompanied by the coefficient ziA ziB/zAB. In contrast,
each σ-chain σµi σ̄µj implies the factor zAB/2. The sign of the separate terms depend on
the ordering of the Lorentz indices, whether they appear as odd or even permutation of
µ1 . . . µ2n−1 or µ1 . . . µ2n−2 respectively.

These properties lead us to claim the following expression for the correlator Ωn:

Ωn =
1√
2

2n−1∏

i=1

(ziA ziB)
−1/2

n−1∑

l=0

(
zAB
2

)l ∑

ρ∈S2n−1/Pn,l

sgn(ρ)
(
σµρ(1) σ̄µρ(2) . . . σ̄µρ(2l) σµρ(2l+1)

)
αβ̇

×
n−l−1∏

j=1

ηµρ(2l+2j)µρ(2l+2j+1)

zρ(2l+2j),ρ(2l+2j+1)

zρ(2l+2j),A zρ(2l+2j+1),B . (4.32)

We postulate that the other correlator ωn is given by

ωn =
−1

z
1/2
AB

2n−2∏

i=1

(ziA ziB)
−1/2

n−1∑

l=0

(
zAB
2

)l ∑

ρ∈S2n−2/Qn,l

sgn(ρ)
(
σµρ(1) σ̄µρ(2) . . . σµρ(2l−1) σ̄µρ(2l)

)
α
β
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Ωn

Ωn−1

Ψn

Ψn−1

ω̄n

Ψn

Ψn−1

ωn

ωn−1 ω̄n−1

Figure 4.1: The web of limits for the correlators Ωn and ωn. Due to the OPEs in four
dimensions the correlators reduce to lower-point correlation functions in the respective
limits as indicated. Ψn denotes the 2n-point function involving only NS fermions.

×
n−l−1∏

j=1

ηµρ(2l+2j−1)µρ(2l+2j)

zρ(2l+2j−1),ρ(2l+2j)

zρ(2l+2j−1),A zρ(2l+2j),B , (4.33)

while its complex conjugate ω̄ with two right-handed spin fields reads

ω̄n =
1

z
1/2
AB

2n−2∏

i=1

(ziA ziB)
−1/2

n−1∑

l=0

(
zAB
2

)l ∑

ρ∈S2n−2/Qn,l

sgn(ρ)
(
σ̄µρ(1) σµρ(2) . . . σ̄µρ(2l−1) σµρ(2l)

)α̇
β̇

×
n−l−1∏

j=1

ηµρ(2l+2j−1)µρ(2l+2j)

zρ(2l+2j−1)ρ(2l+2j)

zρ(2l+2j−1),A zρ(2l+2j),B . (4.34)

These expressions can be proven using induction. We describe the idea of the proof, for
a detailed account the reader should have a look at Appendix C of [1]. As in the proof
of the pure spin field correlator (3.82) the expressions (4.32)-(4.34) must reduce to lower-
point correlators if any two fields in Ωn and ωn are replaced by their OPE. As an example,
consider the limit z2n−1 → zB in Ωn. Using the OPE (3.9b) it reduces to ωn and hence the
expression (4.32) in this limit has to reduce to (4.33). Examining all other possible limits
gives rise to the web of limits illustrated in Figure 4.1.

The permutation set S2n−1/Pn,l and S2n−2/Qn,l in (4.32)-(4.34) require some explana-
tion. We only consider permutations ρ such that the vector indices attached to η’s or
σ-chains appear in ascending order, i.e. ρ(i) < ρ(j) for ηµρ(i)µρ(j) and σµρ(i) σ̄µρ(j) . Further-
more, products of η’s are not counted several times. Once we get ηµρ(i)µρ(j) ηµρ(k)µρ(l) , the
term ηµρ(k)µρ(l) ηµρ(i)µρ(j) is not allowed to appear. These restrictions of S2n−1 and S2n−2 are
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n l
∣∣S2n−2/Qn,l

∣∣ terms
∣∣S2n−1/Pn,l

∣∣ terms

1 0 0!
0!0!20

= 1 δ 1!
1!0!20

= 1 σµ

2 0 2!
0!1!21

= 1 ηµν 3!
1!1!21

= 3 ηµν σλ

1 2!
2!0!20

= 1 σµ σ̄ν 3!
3!0!20

= 1 σµ σ̄ν σλ

3 0 4!
0!2!22

= 3 ηµν ηλρ 5!
1!2!22

= 15 ηµν ηλρ στ

1 4!
2!1!21

= 6 ηµν σλ σ̄ρ 5!
3!1!21

= 10 ηµν σλ σ̄ρ στ

2 4!
4!0!20

= 1 σµ σ̄ν σλ σ̄ρ 5!
5!0!20

= 1 σµ σ̄ν σλ σ̄ρ στ

Table 4.1: Number of index terms of the correlators Ωn and ωn.

summarized by the quotients Pn,l and Qn,l. Let us give a more formal definition:

S2n−1/Pn,l ≡
{
ρ ∈ S2n−1 : ρ(1) < ρ(2) < . . . < ρ(2l + 1) ,

ρ(2l + 2j) < ρ(2l + 2j + 1) ∀ j = 1, 2, . . . , n− l − 1 ,

ρ(2l + 3) < ρ(2l + 5) < . . . < ρ(2n− 1)
}
, (4.35a)

S2n−2/Qn,l ≡
{
ρ ∈ S2n−2 : ρ(1) < ρ(2) < . . . < ρ(2l) ,

ρ(2l + 2j − 1) < ρ(2l + 2j) ∀ j = 1, 2, . . . , n− l − 1 ,

ρ(2l + 2) < ρ(2l + 4) < . . . < ρ(2n− 2)
}
. (4.35b)

So the groups of permutations which are removed from S2n−1, S2n−2 are as follows:

Pn,l ↔





S2l+1 : permute the (2l + 1) matrices σµi ,

Sn−l−1 : permute the n− l − 1 Minkowski metrics ,

(S2)
n−l−1 : exchange the indices of one of the η’s ,

(4.36a)

Qn,l ↔





S2l : permute the (2l) matrices σµi ,

Sn−l−1 : permute the n− l − 1 Minkowski metrics ,

(S2)
n−l−1 : exchange the indices of one of the η’s .

(4.36b)

Since the permutation group SN has N ! elements, one can conclude from (4.36) how many
terms remain in the sums over ρ in (4.32)-(4.34):

∣∣S2n−1/Pn,l
∣∣ = (2n− 1)!

(2l + 1)! (n− l − 1)! 2n−l−1
, (4.37a)

∣∣S2n−2/Qn,l

∣∣ = (2n− 2)!

(2l)! (n− l − 1)! 2n−l−1
. (4.37b)

Summing up these numbers for all possible values of l yields the number of index terms
that appear in the results for Ωn and ωn. These numbers up to n = 3 which we have
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collected in Table 4.1 coincide precisely with the numbers of Clebsch–Gordan coefficients
in the correlators (4.3a), (4.4), (4.17) and (4.23). However, this does not mean that all
these index terms are independent. In contrast, one of the 26 terms appearing in Ω3 can be
eliminated by σ[µ σ̄ν σλ σ̄ρ στ ] = 0, namely the vanishing of the antisymmetric expression
in more than four vector indices. However, Ω3 in terms of a minimal set of 25 index terms
would have a more complicated z dependence. From this more complicated result it would
be impossible to generalize to Ωn with arbitrary many NS fermions.

The expression for the eight point function ω4 due to (4.33) contains 76 terms, but
a group theoretic analysis determines the number of scalar representations in the tensor
product to be 70, as shown in Table 3.3. This difference is explained by the six independent
reduction identities σ[µ σ̄ν σλσ̄ρ στ σ̄ξ] = 0 and ηµ[ν ελρτξ] = 0. Similarly, for higher point
examples Ω(n≥4) and ω(n≥5), one finds relations of both types.



CHAPTER 5

Ramond–Neveu–Schwarz Correlators at
Loop-Level

In this Chapter we look at correlation functions involving the RNS fields ψµ and Sα, S
β̇

at loop-level in arbitrary even space-time dimensions D = 2m. First, we introduce the
generalized Θ functions which capture the short distance behavior of the RNS fields as well
as their periodicity along the homology cycles of the genus g Riemann surface. Then, the
technique to re-express the RNS fields by m copies of an SO(2) spin system is presented. In
this formulations loop correlators are easy to calculate. We show how to construct Lorentz
covariant expressions from these results and evaluate correlators in D = 4, 6, 8 and D = 10
space-time dimensions up to at least six-point level. In certain cases it is even possible to
derive general formulas for correlators with arbitrary many external fields. The following
work is based on [2].

5.1 Prerequisites

Before we show how to calculate RNS correlation functions at loop-level we have to estab-
lish some essential concepts. We comment on generalized Θ functions that add the right
periodicity properties to the correlators. Additionally, SO(2) spin operators and their
relation to the RNS fields are introduced.

5.1.1 Generalized Θ Functions

Via the doubling trick the RNS fields of the open string can be extended to the full complex
plane. For scattering at g loops these fields have therefore support on a Riemann surface
of genus g. Such a surface has 2g one-cycles, αI and βI , I = 1, . . . , g, which are shown in
Figure 2.6. For loop scattering special attention must be paid to the change of the fields
when they are shifted around these homology cycles. Fermions ψ can either satisfy periodic
or antiperiodic boundary conditions. These properties are encoded in two g-dimensional
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vectors ~a and ~b with entries 0 or 1/2:

ψ(z + αI) = exp(−πi aI)ψ(z) , ψ(z + βI) = exp(πi bI)ψ(z) . (5.1)

Together, ~a and ~b are called the spin structure. Loop-level correlators have to respect these
periodicity requirements. Further details on the periodicity properties of the RNS fields,
can be found in [130] and Appendix C.1.

The unique function which imparts the above behavior to the loop correlation functions
is Riemann’s Θ function [131–133]:

Θ(~x|Ω) ≡
∑

~n∈Zg

exp
[
2πi

(
1
2
~ntΩ~n+ ~nt ~x

)]
. (5.2)

In this holomorphic function ~x ∈ Cg and Ω is a symmetric g × g complex matrix whose
imaginary part is positive definite. The space of these matrices is called the Siegel upper-
half space. The Θ function is quasi-periodic on the lattice Zg + ΩZg, i.e. periodic up to a
multiplicative factor ∀~s,~t ∈ Zg:

Θ(~x+ ~s+ Ω~t|Ω) = exp
[
−2πi

(
1
2
~ttΩ~t + ~tt ~x

)]
Θ(~x|Ω) . (5.3)

The Θ function on Zg can be generalized to Θ functions Θ
[
~a
~b

]
with rational characteristics.

These are simply translations of Θ multiplied with an exponential factor,

Θ
[
~a
~b

]
(~x|Ω) ≡ exp

[
2πi

(
1
2
~at Ω~a+ ~at(~x+~b)

)]
Θ(~x+ Ω~a+~b|Ω)

=
∑

~n∈Zg

exp
[
2πi

(
1
2
(~n+ ~a)tΩ (~n+ ~a) + (~n + ~a)t (~x+~b)

)]
, (5.4)

for all ~a,~b ∈ Cg. The original Θ then is simply Θ
[
0

0

]
. The quasi-periodicity for the

generalized Θ functions becomes

Θ
[
~a
~b

]
(~x+ ~s|Ω) = exp

[
2πi~at ~s

]
Θ
[
~a
~b

]
(~x|Ω) ,

Θ
[
~a
~b

]
(~x+ Ω~t|Ω) = exp

[
−2πi~bt~t

]
exp

[
−2πi

(
1
2
~ttΩ~t + ~tt ~x

)]
Θ
[
~a
~b

]
(~x|Ω) . (5.5)

From these definitions we can now specify Θ functions on the Riemann surface with
genus g. In order to do so we have to lift the complex coordinate of the two-dimensional
Riemann surface z to its Jacobian variety Cg/(Zg + ΩZg). This is done via the canonical
map z 7→

∫ z
p
~ω with some arbitrary reference point p which will drop out in the calcu-

lations below. The integrand ~ω is a g-dimensional complex vector consisting of linearly
independent holomorphic one-forms. These integrals then are natural arguments for the
Θ function (5.4). The matrix Ω in this context becomes the period matrix of the Riemann
surface defined by ∫

αI

ωJ = δIJ ,

∫

βI

ωJ = ΩIJ (5.6)
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for a normalized basis of one forms ωi. In addition we can define the prime form

E(z, w) ≡
Θ
[
~a0
~b0

](∫ z
w
~ω|Ω

)

h
[
~a0
~b0

]
(z) h

[
~a0
~b0

]
(w)

, (5.7)

which is the unique holomorphic differential form with a single zero at z = w. In this
definition ~a0 and ~b0 denote an arbitrary odd spin structure, i.e. 4~a0~b0 is an odd integer.
This ensures that E(z, w) = −E(w, z). The half differentials in the denominator are given
by

h
[
~a0
~b0

]
(z) ≡

√√√√
g∑

i=1

ωi ∂iΘ
[
~a0
~b0

]
(~0|Ω) (5.8)

and assure that the E is independent of the specific choice of ~a0, ~b0. Given the leading
behavior in the arguments z and w,

E(z, w) ∼ (z − w) +O
(
(z − w)3

)
, (5.9)

singularities in correlation functions are caused by appropriate powers of prime forms.

Tremendous simplifications occur for the case g = 1. In this case the Riemann surface
in question is a torus and the period matrix Ω becomes the modular parameter of the torus

τ . The Θ functions Θ
[
~a
~b

]
reduce to Jacobi’s Θ functions

θ1 = Θ
[
1/2

1/2

]
, θ2 = Θ

[
1/2

0

]
, θ3 = Θ

[
0

1/2

]
, θ4 = Θ

[
0

0

]
, (5.10)

and the prime form becomes

E(z, w)
∣∣∣
g=1

=
θ1(z − w|τ)
∂z θ1(0|τ)

. (5.11)

5.1.2 SO(2) Spin Systems

In Chapter 3.2 we have shown how RNS correlations functions at tree-level can be cal-
culated directly from the OPEs of the RNS fields. At loop-level it turns out to be more
effective to decompose the RNS fields into smaller building blocks and calculate correla-
tors of these fields. For this purpose we introduce the simple system consisting of two real
Weyl fermions Ψ± and corresponding spin fields s±. This system has SO(2) symmetry
and is hence called the SO(2) spin system. The spin fields s± create branch cuts for the
associated fermions. Both types of fields are conformal with weight h = 1/2 and h = 1/8
respectively. In addition, we assign Ramond charge ±1 to the fermions Ψ± and ±1/2 to
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s±. The OPEs of these fields then can be calculated by bosonization,

Ψ±(z) Ψ∓(w) ∼ 1

z − w
, (5.12a)

s±(z) s∓(w) ∼ 1

(z − w)1/4
, (5.12b)

Ψ±(z) s∓(w) ∼ s±(w)

(z − w)1/2
. (5.12c)

Fields of alike charge exhibit regular behavior:

Ψ±(z) Ψ±(w) ∼ (z − w) Ψ±(w) ∂Ψ±(w) , (5.13a)

s±(z) s±(w) ∼ (z − w)1/4Ψ±(w) , (5.13b)

Ψ±(z) s±(w) ∼ (z − w)1/2 ŝ±(w) . (5.13c)

Here ŝ± depicts an excited spin field of conformal weight 9/8. From these OPEs we can
construct the short-distance behavior of the RNS fields given in (3.9), (3.10) and (3.11).
The Lorentz group of the RNS fields in D = 2m dimensions is SO(1, D− 1). Therefore ψµ

and Sα, S
β̇ can be built from m independent SO(2) spin systems {Ψ±

i , s
±
i }, i = 1, . . . , m.

We take the convention that the Ψ±
i are the Cartan–Weyl representation of the SO(1, D−1)

vector ψµ,

ψ2i−2(z) ≡ 1√
2

(
Ψ+
i (z) + Ψ−

i (z)
)
, (5.14a)

ψ2i−1(z) ≡ 1√
2 i

(
Ψ+
i (z)−Ψ−

i (z)
)
, (5.14b)

whereas the R spin fields can be written as

SA(z) =
m⊗

i=1

s±i (z) . (5.15)

Since each of the m Ramond charges ±1/2 can be chosen independently, there are 2m =
2D/2 such operators. This coincides with the number of components of a Dirac spinor
in D = 2m dimensions. We take the convention that operators with an even number
of s− operators are left-handed, whereas those with an odd number are right-handed.
Analogously, the combination of the Ψ±’s in (5.14) results in 2m fields, which is the right
number of degrees of freedom of a vector in D = 2m dimensions.

The equations above determine the assignment between the Weyl indices α, β̇ and the
Ramond charge vectors (±1/2, . . . ,±1/2) of the R spin fields. We explain the details in
the distinct scenarios of four and six space-time dimensions which can easily be applied to
eight and ten dimensions as well. For D = 4 we choose

(α = 1) = (+,+) , (α = 2) = (−,−) , (5.16)
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where for simplicity we have neglected all factors of 1/2. Inserting these together with
(5.14) into the OPE (3.9b)

ψµ(z)Sα(w) ∼
1√
2
(z − w)−1/2 γµ

αβ̇
S β̇(w) , (5.17)

keeping in mind the action of Ψ± onto s± from (5.12a) and using the precise representa-
tion of the gamma matrices in four dimensions given in Appendix A.4 we find that the
assignment of the dotted Weyl indices must be

(β̇ = 1) = (+,−) , (β̇ = 2) = (−,+) . (5.18)

The same reasoning determines the ordering of the Ramond charge vectors in D = 8.
In D = 6 dimensions we encounter a different scenario due to the different chirality

structure of the charge conjugation matrix. We start by diagonalizing the off-diagonal
blocks of C which is easily achieved by permuting lines and columns of the matrix. Together
with Sα = Cα

β̇ Sβ̇ this implies that the ordering of the Ramond charge vectors for α and β̇
are not independent from each other, i.e. if (α = 1) = (+,+,+) then (β̇ = 1) = (−,−,−).
Starting with these assignments we can recursively determine all others by using (5.17) as
before. We find from the representation of gamma matrices stated in Appendix A.4, where
we have made a change of basis such that C β̇

α is diagonal,

(α = 1) = (+,+,+) , (β̇ = 1) = (−,−,−) ,

(α = 2) = (−,−,+) , (β̇ = 2) = (+,+,−) ,

(α = 3) = (+,−,−) , (β̇ = 3) = (−,+,+) ,

(α = 4) = (−,+,−) , (β̇ = 4) = (+,−,+) . (5.19)

In exactly the same way one can determine the assignment of Ramond charge vectors to
the Weyl indices for D = 10.

5.2 Loop Correlators

After this introduction to generalized Θ functions and the SO(2) spin system we come
now to the calculation of RNS loop correlators. For this purpose we express the RNS fields
through SO(2) spin system fields as discussed above. The SO(2) spin system has been
completely solved on arbitrary Riemann surfaces with genus g in a series of papers by Atick
and Sen. We review their results and apply them to our RNS correlators.

5.2.1 Correlators of SO(2) Spin Systems

Starting with the OPEs (5.12), (5.13) and demanding the correct periodicity conditions
under shifts of the SO(2) spin operators along the homology cycles of a Riemann surface
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with genus g Atick and Sen have been able to calculate all loop correlators of the SO(2)
spin system [130, 150, 151]. For the case of 2N spin fields they find

〈 N∏

i=1

s+(zi) s
−(wi)

〉~a

~b

=
Θ
[
~a
~b

](
1
2

∑N
i=1 ∫ ziwi

~ω
)

Θ
[
~a
~b

]
(~0)

(∏N
i<j E(zi, zj)E(wi, wj)∏N

i,j=1E(zi, wj)

)1/4

. (5.20)

This correlator is the key ingredient for deriving correlation functions of R spin fields. The
most general form with fermions Ψ± and spin fields s±, which is the starting point for
calculating general RNS loop-correlators, is given by

〈 N1∏

i=1

s+(yi)

N2∏

j=1

s−(zj)

N3∏

k=1

Ψ−(uk)

N4∏

l=1

Ψ+(vl)

〉~a

~b

=

(∏N1

r<sE(yr, ys)
∏N2

r<sE(zr, zs)∏N1

i=1

∏N2

j=1E(zj , yi)

)1/4

×
(∏N3

r<sE(ur, us)
∏N4

r<sE(vr, vs)∏N3

k=1

∏N4

l=1E(vl, uk)

)(∏N2

j=1

∏N3

k=1E(uk, zj)
∏N1

i=1

∏N4

l=1E(vl, yi)∏N1

i=1

∏N3

k=1E(uk, yi)
∏N2

j=1

∏N4

l=1E(vl, zj)

)1/2

×
[
Θ
[
~a
~b

]
(~0)
]−1

Θ
[
~a
~b

](
1
2

N1∑

i=1

yi
∫
p
~ω − 1

2

N2∑

j=1

zj

∫
p
~ω −

N3∑

k=1

uk
∫
p
~ω +

N4∑

l=1

vl
∫
p
~ω

)
. (5.21)

Ramond charge conservation demands that 1
2
(N1−N2)−N3+N4 = 0. Hence, the arbitrary

reference point p entering (5.21) through the canonical map drops out. RNS fields in
D = 2m dimension are expressed through m copies of an SO(2) spin system that do not
interact with each other. Hence, RNS correlation functions at loop-level factorize into m
SO(2) correlators of type (5.20) or (5.21).

In the following we use zi as arguments for the SO(2) spin operators and define the
shorthand notation Eij ≡ E(zi, zj). Additionally, we abbreviate the generalized Θ func-
tions by

Θ
[
~a
~b

](
1
2

[ zi
∫
zl

~ω +
zj

∫
zm

~ω + . . .+
zk
∫
zn

~ω
])

≡ Θ~a
~b

[
i j ... k
l m ... n

]
. (5.22)

Note in particular that the factor 1/2 in the argument of Θ~a
~b
, which is omnipresent for the

spin fields, is always implicit.
Considerable simplifications occur for g = 0, i.e. scattering at tree-level. The spin

structure dependent Θ functions trivialize, Θ~a
~b
→ 1, and the prime form reduces to E(z)−

E(w) → z − w. In this way, by neglecting the generalized Θ functions and replacing the
prime forms Eij by zij one obtains the tree-level correlator from the loop result. The
prime forms in the coefficients of the index terms then mimic the tree-level behavior of the
correlation function.

5.2.2 Results in Lorentz Covariant Form

With the background on spin systems in mind, we can now calculate RNS correlation func-
tions 〈ψµ1 . . . ψµn Sα1 . . . Sαr S

β̇1 . . . S β̇s〉~a~b for specific choices of µi, αi and β̇i by formulating
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the RNS fields in D = 2m dimension in terms of m spin systems via (5.14) and (5.15). The
m spin systems do not interact with each other and hence the resulting correlator factorizes
intom separate correlation function of a single spin system. Then, using the loop correlator
formulas (5.20) and (5.21) for the individual SO(2) correlation functions we find a result
of the RNS correlation function for the specific choice of the Lorentz indices. However,
the final goal is to express the result in covariant form, i.e. in terms of Clebsch–Gordan
coefficients that are built from gamma and charge conjugation matrices. Due to the con-
servation of Ramond charge in (5.21) then index terms can be viewed as SO(1, 2m − 1)
covariant Ramond charge conserving delta functions, schematically Cαβ ∼ δ(α + β) and
(γµC)α

β̇ ∼ δ(µ+ α + β̇) where µ, α, β, β̇ are treated as Ramond charge vectors with m
components such as µ ≡ (0,±1, 0, . . . , 0) and α ≡ (±1/2, . . . ,±1/2).

As a starting point we make an ansatz for the correlation function with a minimal set
of Clebsch–Gordan coefficients. The cardinality of this set is determined by group theory
as described in Chapter 3.3.1. Each of the index terms is accompanied by a z-dependent
coefficient consisting of prime forms and generalized Θ functions. The results obtained for
special choices of µi, αi and β̇i have to be matched with this ansatz. It is most economic
to first look at configurations (µi, αi, β̇i) where only one tensor is non-zero. Then the loop-
level result (5.21) directly yields the coefficient for the respective index term. In some cases,
however, it is not possible to make all Clebsch–Gordan coefficients vanish except for one.
More than one index term then contribute for every choice of µi, αi, β̇i. In this case it can
be helpful to switch to different Lorentz tensors that are (anti-)symmetric in some vector
or spinor indices. Otherwise Fay’s trisecant identity [131] has to be used to determine the
unknown coefficients. Sign issues can be resolved by calculating certain limits zi → zj
at tree-level using the RNS OPEs (3.10) and (3.11) and comparing the expression to the
result of the arising lower-point correlator. Alternatively, the signs can be read off from the
respective tree-level correlation function. As the prime forms Eij reduce to zij the signs in
the loop correlator must be the same as in the tree-level version.

Let us illustrate this procedure with an easy example, the calculation of the correlation
function 〈ψµ ψν ψλ Sα Sβ〉~a~b in D = 6 dimensions. Table 3.3 shows that four independent
Clebsch–Gordan coefficients exist for this correlator. A convenient ansatz is

〈
ψµ(z1)ψ

ν(z2)ψ
λ(z3)Sα(z4)Sβ(z5)

〉~a
~b
= F1(z) (γ

µνλC)αβ

+F2(z) η
µν (γλC)αβ + F3(z) η

µλ (γν C)αβ + F4(z) η
νλ (γµC)αβ . (5.23)

The task is now to determine F1, F2, F3, F4 by making clever choices for µ, ν, λ, α, β. The
coefficient F1 can easily be obtained by setting µ = 0, ν = 2, λ = 4. As the metric η is
diagonal all index terms apart from γµνλ vanish for this configuration. Then, by means of
(5.14), the NS fermions in terms of the SO(2) spin system fields become

ψµ=0(z1) =
1√
2

(
Ψ+

1 (z1) + Ψ−
1 (z1)

)
,

ψν=2(z2) =
1√
2

(
Ψ+

2 (z2) + Ψ−
2 (z2)

)
,
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ψλ=4(z3) =
1√
2

(
Ψ+

3 (z3) + Ψ−
3 (z3)

)
, (5.24)

and we choose for the spin fields

Sα=1(z4) = s+1 (z4) s
+
2 (z4) s

+
3 (z4) , Sβ=1(z5) = s+1 (z5) s

+
2 (z5) s

+
3 (z5) . (5.25)

Hence, we have to calculate

1

2
√
2

〈
(Ψ+

1 +Ψ−
1 )(z1) s

+
1 (z4) s

+
1 (z5)

〉~a
~b

〈
(Ψ+

2 +Ψ−
2 )(z2) s

−
2 (z4) s

−
2 (z5)

〉~a
~b

×
〈
(Ψ+

3 +Ψ−
3 )(z3) s

−
3 (z4) s

−
3 (z5)

〉~a
~b
. (5.26)

Due to Ramond charge conservations in (5.21) Ψ+
1 (z1), Ψ

−
2 (z2) and Ψ−

3 (z3) drop out and
we obtain the coefficient F1 up to a sign:

F1 = ±
Θ~a
~b
[ 1 1
4 5 ] Θ

~a
~b
[ 2 2
4 5 ] Θ

~a
~b
[ 3 3
4 5 ] E

3/4
45

2
√
2
[
Θ~a
~b
(~0)
]3
(E14E15 E24E25 E34E35)1/2

. (5.27)

The coefficient F2 can be determined in a similar way by setting µ = ν = 0, λ = 2 and
α = 1, β = 4. No other tensors than ηµν (γλC)αβ contribute as the metric is diagonal and
γµνλ totally antisymmetric. The NS fermions for this index choice are expressed through

ψµ=0(z1) =
1√
2

(
Ψ+

1 (z1) + Ψ−
1 (z1)

)
,

ψν=0(z2) =
1√
2

(
Ψ+

1 (z2) + Ψ−
1 (z2)

)
,

ψλ=2(z3) =
1√
2

(
Ψ+

2 (z3) + Ψ−
2 (z3)

)
, (5.28)

while the spin fields are given by

Sα=1(z4) = s+1 (z4) s
+
2 (z4) s

+
3 (z4) , Sβ=4(z5) = s−1 (z5) s

+
2 (z5) s

−
3 (z5) . (5.29)

This time the correlator

1

2
√
2

〈
(Ψ+

1 +Ψ−
1 )(z1) (Ψ

+
1 +Ψ−

1 )(z2) s
+
1 (z4) s

−
1 (z5)

〉~a
~b

×
〈
(Ψ+

2 +Ψ−
2 )(z3) s

+
2 (z4) s

+
2 (z5)

〉~a
~b

〈
s+3 (z4) s

−
3 (z5)

〉~a
~b

(5.30)

has to be evaluated. Ψ−
2 in the second correlator drops out because of Ramond charge

conservation, while in the first spin system the two in-equivalent fermion configurations
Ψ+

1 (z1) Ψ
−
1 (z2) and Ψ−

1 (z1) Ψ
+
1 (z2) contribute. Consequently the total result for F2 consists

of two terms:

F2 = ±
Θ~a
~b
[ 3 3
4 5 ] Θ

~a
~b
[ 45 ]
(
E14E25 Θ

~a
~b
[ 1 1 4
2 2 5 ] + E15E24 Θ

~a
~b
[ 1 1 5
2 2 4 ]

)

2
√
2
[
Θ~a
~b
(~0)
]3
E12 (E14 E15E24 E25E34 E35)1/2E

1/4
45

. (5.31)
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The remaining coefficients F3 and F4 follow from F2 by permutation of the vector indices
and the labels (1, 2, 3) in the prime forms and Θ functions. The signs of the individual
coefficients are fixed by requiring that in the limit z1 → z2 the expression

ηµν z−1
12

〈
ψλ(z3)Sα(z4)Sβ(z5)

〉~a
~b

(5.32)

must emerge. Accordingly, the limit z4 → z5 has to give rise to

(γρC)αβ z
−1/4
45

〈
ψµ(z1)ψ

ν(z2)ψ
λ(z3)ψρ(z5)

〉~a
~b
. (5.33)

Next we consider a second and more complicated example, the six-point function
〈ψµ(z1)ψν(z2)Sα(z3)Sβ(z4)Sγ(z5)Sδ(z6)〉~a~b . From Chapter 3.3 it is known that six inde-
pendent index terms exist for this correlator in six dimensions. We choose to work with the
expression (γµC)αβ (γ

ν C)γδ and its five relatives coming from permutations of the spinor
indices. For this correlation function it is not possible to choose the indices for the spin
system correlator in such a way that all but one tensor vanish. By either using the concrete
representation of gamma matrices in Appendix A.4 or understanding the index terms as
Ramond charge conserving delta functions one finds that, e.g., for

ψµ=0(z1) =
1√
2

(
Ψ+

1 (z1) + Ψ−
1 (z1)

)
,

ψν=2(z2) =
1√
2

(
Ψ+

2 (z2) + Ψ−
2 (z2)

)
, (5.34)

and

Sα=1(z3) = s+1 (z3) s
+
2 (z3) s

+
3 (z3) , Sβ=3(z4) = s+1 (z4) s

−
2 (z4) s

−
3 (z4) ,

Sγ=3(z5) = s+1 (z5) s
−
2 (z5) s

−
3 (z5) , Sδ=2(z6) = s−1 (z6) s

−
2 (z6) s

+
3 (z6) (5.35)

the spin system correlator contributes to both z coefficients of (γµC)αβ (γ
ν C)γδ and

(γµC)αγ (γ
ν C)βδ. The result of

1

2
√
2

〈
(Ψ+

1 +Ψ−
1 )(z1) s

+
1 (z3) s

+
1 (z4) s

+
1 (z5) s

−
1 (z6)

〉~a
~b

×
〈
(Ψ+

2 +Ψ−
2 )(z2) s

+
2 (z3) s

−
2 (z4) s

−
2 (z5) s

−
2 (z6)

〉~a
~b

×
〈
s+3 (z3) s

−
3 (z4) s

−
3 (z5) s

+
3 (z6)

〉~a
~b

(5.36)

must thus be split into two parts using Fay’s trisecant identity. Evaluating (5.36) we find

±Θ~a
~b
[ 1 1 6
3 4 5 ] Θ

~a
~b
[ 2 2 3
4 5 6 ] Θ

~a
~b
[ 3 6
4 5 ] E12E16 E23E45 , (5.37)

where we have taken out the pre-factor

1

2
√
2
[
Θ~a
~b
(~0)
]3

(E13E14 E15E16 E23E24 E25E26)
−1/2

E12 (E34 E35E36 E45E46 E56 )1/4
. (5.38)
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Now, using the version (C.8) of Fay’s trisecant identity with

~∆ =
1

2

∫ z2

z1

~ω +
1

2

∫ z3

z6

~ω (5.39)

this becomes

∓Θ~a
~b
[ 1 1 5 6
2 2 3 4 ] Θ

~a
~b
[ 3 5
4 6 ] Θ

~a
~b
[ 3 6
4 5 ] E15E16 E23E24

±Θ~a
~b
[ 1 1 4 6
2 2 3 5 ] Θ

~a
~b
[ 3 4
5 6 ] Θ

~a
~b
[ 3 6
4 5 ] E14E16 E23E25 . (5.40)

At this point we cannot decide which of these terms belongs to the tested index terms but
one has to do further calculations of spin system correlators. Making a different choice for
the indices, e.g. µ = 0, ν = 2, α = δ = 4, β = 3, γ = 2, probes again (γµC)αβ (γ

ν C)γδ
but this times in combination with (γµC)βδ (γ

ν C)αγ . Evaluating this configuration and
splitting the result as before yields

∓Θ~a
~b
[ 1 1 5 6
2 2 3 4 ] Θ

~a
~b
[ 3 5
4 6 ] Θ

~a
~b
[ 3 6
4 5 ] E15E16 E23E24

±Θ~a
~b
[ 1 1 3 5
2 2 4 6 ] Θ

~a
~b
[ 3 4
5 6 ] Θ

~a
~b
[ 3 6
4 5 ] E13E15 E24E26 . (5.41)

From the comparison of (5.40) and (5.41) we can now conclude that the first term must
be the coefficient of (γµC)αβ (γ

ν C)γδ. The second expression in (5.40) is consequently the
coefficient of (γµC)αγ (γ

ν C)βδ, while the Glebsch–Gordan coefficient (γµC)βδ (γ
ν C)αγ has

to come with the second term in (5.41).
Progressing in this way it is possible to evaluate all loop correlators for which one fails to

separate the individual index terms in the spin system calculations by appropriate choices
for the Lorentz indices. In addition, one obtains the relative signs between the different
index terms. The over-all sign can again be determined by looking at certain limits or by
comparing with the tree-level result.

5.3 Results of RNS Loop Correlators

The discussion of the SO(2) spin operators and their correlation function at loop-level has
paved the way for the calculation of RNS correlators in four, six, eight and ten space-
time dimensions. We want to stress that certain methods that were available at tree-level
cannot be carried over to loop-level. Bosonization cannot resolve the spin structure of the
RNS fields at higher genus, but yields only averages [152–154]. Hence, the factorization
of four-dimensional correlators into left- and right-handed pure spin field correlators also
does not hold at loop-level. Furthermore, the uniform treatment of NS fermions and R
spin fields in eight dimensions via SO(8) triality does not carry over to loop correlators.
This is due to the different contributions in the Θ functions of the NS fermions and R spin
fields as can be seen from (5.21). Therefore, all loop-correlators in covariant form have
to be calculated using the method presented above or by replacing NS fermions with two
R spin fields as shown in Chapter 3.4.2 and then calculating pure spin field correlation
functions at loop-level.
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5.3.1 Results for D = 4

The calculation of four-dimensional RNS correlation functions at loop-level has been the
main topic of [155] and thus constitutes the generalization to arbitrary loops of the results
given in Chapter 4. By expressing the RNS fields through two copies of an SO(2) spin
system the author has been able to calculate correlation functions at loop-level up to eight
points as well as the correlators

〈
Sα1 . . . Sα2M

Sβ̇1 Sβ̇2
〉~a
~b
,

〈
Sα1 . . . Sα2M

Sβ̇1 Sβ̇2 Sβ̇3 Sβ̇4
〉~a
~b

(5.42)

with arbitrary many left-handed spin fields. By replacing one left- and one right-handed
spin field with one NS fermions as in (3.70) we can derive from the first correlator the
results for

〈
ψµ Sα1 . . . Sα2M−1

Sβ̇1
〉~a
~b
,

〈
ψµ ψν Sα1 . . . Sα2M−2

〉~a
~b
, (5.43)

while the second correlator can be used to calculate

〈
ψµ Sα1 . . . Sα2M−1

Sβ̇1 Sβ̇2 Sβ̇3
〉~a
~b
,

〈
ψµ ψν Sα1 . . . Sα2M−2

Sβ̇1 Sβ̇2
〉~a
~b
,

〈
ψµ ψν ψλ Sα1 . . . Sα2M−3

Sβ̇1
〉~a
~b
,

〈
ψµ ψν ψλ ψρ Sα1 . . . Sα2M−4

〉~a
~b
. (5.44)

We refrain from quoting any results but refer the reader to [155].

5.3.2 Results for D = 6

In six dimensions three copies of the SO(2) spin system are needed and hence three Θ func-
tions will appear in the numerator and denominator of the following correlations functions.
The simplest ones involve four spin fields:

〈
Sα(z1)Sβ(z2)Sγ(z3)Sδ(z4)

〉~a
~b
=

Θ~a
~b
[ 1 2
3 4 ] Θ

~a
~b
[ 1 3
2 4 ] Θ

~a
~b
[ 1 4
2 3 ]

2
[
Θ~a
~b
(~0)
]3

(γµC)αβ(γµC)γδ
(E12 E13E14 E23E24 E34)1/4

,

(5.45)

〈
Sα(z1)Sβ(z2)S

γ̇(z3)S
δ̇(z4)

〉~a
~b
=

Θ~a
~b
[ 1 2
3 4 ][

Θ~a
~b
(~0)
]3
(
E13 E14E23 E24

E12E34

)1/4

×
[
Cα

γ̇ Cβ
δ̇

E13E24
Θ~a
~b
[ 1 4
2 3 ]

2 − Cα
δ̇ Cβ

γ̇

E14E23
Θ~a
~b
[ 1 3
2 4 ]

2

]
. (5.46)
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The only non-vanishing five-point correlator with four spin fields and one fermion involves
three alike chiralities:

〈
ψµ(z1)Sα(z2)Sβ(z3)Sγ(z4)S

δ̇(z5)
〉~a
~b

=
1√

2
[
Θ~a
~b
(~0)
]3

(E25 E35E45)
1/4

(E12 E13E14 E15)1/2 (E23 E24E34)1/4

×
[
(γµC)αβ

Cγ
δ̇

E45
E14Θ

~a
~b
[ 1 1 4
2 3 5 ] Θ

~a
~b
[ 2 4
3 5 ] Θ

~a
~b
[ 2 5
3 4 ]

− (γµC)αγ
Cβ

δ̇

E35

E13Θ
~a
~b
[ 1 1 3
2 4 5 ] Θ

~a
~b
[ 2 3
4 5 ] Θ

~a
~b
[ 2 5
3 4 ]

+ (γµC)βγ
Cα

δ̇

E25

E12Θ
~a
~b
[ 1 1 2
3 4 5 ] Θ

~a
~b
[ 2 3
4 5 ] Θ

~a
~b
[ 2 4
3 5 ]

]
. (5.47)

At the six-point level there are two correlators involving only spin fields. The first one
consists of five left- and one right-handed spin-field:

〈
Sα(z1)Sβ(z2)Sγ(z3)Sδ(z4)Sǫ(z5)S

ζ̇(z6)
〉~a
~b

=
1

2
[
Θ~a
~b
(~0)
]3
(

E16 E26E36 E46E56

E12 E13E14 E15E23 E24 E25E34 E35E45

)1/4

×
[
(γµC)αβ(γµC)γǫ

Cδ
ζ̇

E46

E45

E56
Θ~a
~b
[ 1 2 6
3 4 5 ] Θ

~a
~b
[ 1 3 6
2 4 5 ] Θ

~a
~b
[ 1 4 5
2 3 6 ]

+ (γµC)αβ(γµC)ǫδ
Cγ

ζ̇

E36

E35

E56
Θ~a
~b
[ 1 2 6
3 4 5 ] Θ

~a
~b
[ 1 3 5
2 4 6 ] Θ

~a
~b
[ 1 4 6
2 3 5 ]

+ (γµC)αǫ(γµC)γδ
Cβ

ζ̇

E26

E25

E56

Θ~a
~b
[ 1 2 5
3 4 6 ] Θ

~a
~b
[ 1 3 6
2 4 5 ] Θ

~a
~b
[ 1 4 6
2 3 5 ]

+ (γµC)ǫβ(γµC)γδ
Cα

ζ̇

E16

E15

E56

Θ~a
~b
[ 1 2 5
3 4 6 ] Θ

~a
~b
[ 1 3 5
2 4 6 ] Θ

~a
~b
[ 1 4 5
2 3 6 ]

]
. (5.48)

In addition, we have the correlator with three left- and right-handed spin fields each:
〈
Sα(z1)Sβ(z2)Sγ(z3)S

δ̇(z4)S
ǫ̇(z5)S

ζ̇(z6)
〉~a
~b

=
1

[
Θ~a
~b
(~0)
]3
(
E14 E15E16 E24 E25E26 E34E35 E36

E12E13 E23E45 E46E56

)1/4

×
[
Cα

δ̇ Cβ
ǫ̇Cγ

ζ̇

E14E25 E36
Θ~a
~b
[ 1 2 6
3 4 5 ] Θ

~a
~b
[ 1 3 5
2 4 6 ] Θ

~a
~b
[ 1 5 6
2 3 4 ]

− Cα
δ̇ Cβ

ζ̇ Cγ
ǫ̇

E14E26 E35
Θ~a
~b
[ 1 2 5
3 4 6 ] Θ

~a
~b
[ 1 3 6
2 4 5 ] Θ

~a
~b
[ 1 5 6
2 3 4 ]

+
Cα

ǫ̇ Cβ
ζ̇ Cγ

δ̇

E15E26 E34
Θ~a
~b
[ 1 2 4
3 5 6 ] Θ

~a
~b
[ 1 3 6
2 4 5 ] Θ

~a
~b
[ 1 4 6
2 3 5 ]
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− Cα
ǫ̇ Cβ

δ̇ Cγ
ζ̇

E15E24 E36
Θ~a
~b
[ 1 2 6
3 4 5 ] Θ

~a
~b
[ 1 3 4
2 5 6 ] Θ

~a
~b
[ 1 4 6
2 3 5 ]

+
Cα

ζ̇ Cβ
δ̇ Cγ

ǫ̇

E16E24 E35

Θ~a
~b
[ 1 2 5
3 4 6 ] Θ

~a
~b
[ 1 3 4
2 5 6 ] Θ

~a
~b
[ 1 4 5
2 3 6 ]

− Cα
ζ̇ Cβ

ǫ̇Cγ
δ̇

E16E25 E34

Θ~a
~b
[ 1 2 4
3 5 6 ] Θ

~a
~b
[ 1 3 5
2 4 6 ] Θ

~a
~b
[ 1 4 5
2 3 6 ]

]
. (5.49)

Furthermore, two NS fermions can be accompanied by four spin fields, either with uniform
chirality,

〈
ψµ(z1)ψ

ν(z2)Sα(z3)Sβ(z4)Sγ(z5)Sδ(z6)
〉~a
~b

= − 1

2
[
Θ~a
~b
(~0)
]3

(E13E14 E15E16 E23E24 E25E26)
−1/2

E12 (E34 E35E36 E45E46 E56 )1/4

×
[
(γµC)αβ(γ

ν C)γδ E15E16 E23E24 Θ
~a
~b
[ 1 1 5 6
2 2 3 4 ] Θ

~a
~b
[ 3 5
4 6 ] Θ

~a
~b
[ 3 6
4 5 ]

+ (γµC)γδ(γ
ν C)αβ E13E14 E25E26 Θ

~a
~b
[ 1 1 3 4
2 2 5 6 ] Θ

~a
~b
[ 3 5
4 6 ] Θ

~a
~b
[ 3 6
4 5 ]

− (γµC)αγ(γ
ν C)βδ E14E16 E23E25 Θ

~a
~b
[ 1 1 4 6
2 2 3 5 ] Θ

~a
~b
[ 3 4
5 6 ] Θ

~a
~b
[ 3 6
4 5 ]

− (γµC)βδ(γ
ν C)αγ E13E15 E24E26 Θ

~a
~b
[ 1 1 3 5
2 2 4 6 ] Θ

~a
~b
[ 3 4
5 6 ] Θ

~a
~b
[ 3 6
4 5 ]

+ (γµC)αδ(γ
ν C)βγ E14E15 E23E26 Θ

~a
~b
[ 1 1 4 5
2 2 3 6 ] Θ

~a
~b
[ 3 4
5 6 ] Θ

~a
~b
[ 3 5
4 6 ]

+ (γµC)βγ(γ
ν C)αδ E13E16 E24E25 Θ

~a
~b
[ 1 1 3 6
2 2 4 5 ] Θ

~a
~b
[ 3 4
5 6 ] Θ

~a
~b
[ 3 5
4 6 ]

]
, (5.50)

or with mixed chiralities:
〈
ψµ(z1)ψ

ν(z2)Sα(z3)Sβ(z4)S
γ̇(z5)S

δ̇(z6)
〉~a
~b

=
1

[
Θ~a
~b
(~0)
]3

(E35E36 E45E46)
1/4 (E34E56)

−1/4

(E13E14 E15E16 E23E24 E25E26)1/2

×
[
ηµν Cα

γ̇ Cβ
δ̇

E12E35E46

E13 E14E25 E26Θ
~a
~b
[ 1 1 3 4
2 2 5 6 ] Θ

~a
~b
[ 3 6
4 5 ]

2

− ηµν Cα
δ̇ Cβ

γ̇

E12E36E45
E13 E14E25 E26Θ

~a
~b
[ 1 1 3 4
2 2 5 6 ] Θ

~a
~b
[ 3 5
4 6 ]

2

+
1

2
(γµC)αβ(γ̄

ν C)γ̇δ̇ E12Θ
~a
~b
[ 1 1 2 2
3 4 5 6 ] Θ

~a
~b
[ 3 5
4 6 ] Θ

~a
~b
[ 3 6
4 5 ]

+
1

2
(γµ γ̄ν C)α

γ̇ Cβ
δ̇

E46
E14E26 Θ

~a
~b
[ 1 1 4
3 5 6 ] Θ

~a
~b
[ 2 2 6
3 4 5 ] Θ

~a
~b
[ 3 6
4 5 ]

− 1

2
(γµ γ̄ν C)α

δ̇ Cβ
γ̇

E45
E14E25 Θ

~a
~b
[ 1 1 4
3 5 6 ] Θ

~a
~b
[ 2 2 5
3 4 6 ] Θ

~a
~b
[ 3 5
4 6 ]

− 1

2
(γµ γ̄ν C)β

γ̇ Cα
δ̇

E36
E13E26 Θ

~a
~b
[ 1 1 3
4 5 6 ] Θ

~a
~b
[ 2 2 6
3 4 5 ] Θ

~a
~b
[ 3 5
4 6 ]
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+
1

2
(γµ γ̄ν C)β

δ̇ Cα
γ̇

E35
E13E25 Θ

~a
~b
[ 1 1 3
4 5 6 ] Θ

~a
~b
[ 2 2 5
3 4 6 ] Θ

~a
~b
[ 3 6
4 5 ]

]
. (5.51)

The seven-point correlator consisting of one NS fermion, four left- and two right-handed
spin fields is found to be

〈
ψµ(z1)Sα(z2)Sβ(z3)Sγ(z4)Sδ(z5)S

ǫ̇(z6)S
ζ̇(z7)

〉~a
~b

=
1√

2
[
Θ~a
~b
(~0)
]3

(E26 E27E36 E37E46 E47 E56E57)
1/4

(E12E13 E14E15 E16 E17)1/2(E23 E24E25 E34E35 E45 E67)1/4

×
[
(γµ C)αβ E14E15 Θ

~a
~b
[ 1 1 4 5
2 3 6 7 ]

(
Cγ

ǫ̇Cδ
ζ̇

E46 E57
Θ~a
~b
[ 2 4 7
3 5 6 ] Θ

~a
~b
[ 2 5 6
3 4 7 ]−

Cδ
ǫ̇Cγ

ζ̇

E47 E56
Θ~a
~b
[ 2 4 6
3 5 7 ] Θ

~a
~b
[ 2 5 7
3 4 6 ]

)

+(γµ C)αγ E13E15 Θ
~a
~b
[ 1 1 3 5
2 4 6 7 ]

(
Cδ

ǫ̇Cβ
ζ̇

E37E56

Θ~a
~b
[ 2 3 6
4 5 7 ] Θ

~a
~b
[ 2 5 7
3 4 6 ]−

Cβ
ǫ̇Cδ

ζ̇

E36E57

Θ~a
~b
[ 2 3 7
4 5 6 ] Θ

~a
~b
[ 2 5 6
3 4 7 ]

)

+(γµ C)αδ E13 E14Θ
~a
~b
[ 1 1 3 4
2 5 6 7 ]

(
Cβ

ǫ̇Cγ
ζ̇

E36E47
Θ~a
~b
[ 2 3 7
4 5 6 ] Θ

~a
~b
[ 2 4 6
3 5 7 ]−

Cγ
ǫ̇Cβ

ζ̇

E37E46
Θ~a
~b
[ 2 3 6
4 5 7 ] Θ

~a
~b
[ 2 4 7
3 5 6 ]

)

+(γµ C)βγ E12E15 Θ
~a
~b
[ 1 1 2 5
3 4 6 7 ]

(
Cα

ǫ̇Cδ
ζ̇

E26E57

Θ~a
~b
[ 2 3 7
4 5 6 ] Θ

~a
~b
[ 2 4 7
3 5 6 ]−

Cδ
ǫ̇Cα

ζ̇

E27 E56

Θ~a
~b
[ 2 3 6
4 5 7 ] Θ

~a
~b
[ 2 4 6
3 5 7 ]

)

+(γµ C)βδ E12 E14Θ
~a
~b
[ 1 1 2 4
3 5 6 7 ]

(
Cγ

ǫ̇Cα
ζ̇

E27E46
Θ~a
~b
[ 2 3 6
4 5 7 ] Θ

~a
~b
[ 2 5 6
3 4 7 ]−

Cα
ǫ̇ Cγ

ζ̇

E26 E47
Θ~a
~b
[ 2 3 7
4 5 6 ] Θ

~a
~b
[ 2 5 7
3 4 6 ]

)

+(γµ C)γδ E12 E13Θ
~a
~b
[ 1 1 2 3
4 5 6 7 ]

(
Cα

ǫ̇Cβ
ζ̇

E26 E37
Θ~a
~b
[ 2 4 7
3 5 6 ] Θ

~a
~b
[ 2 5 7
3 4 6 ]−

Cβ
ǫ̇Cα

ζ̇

E27 E36
Θ~a
~b
[ 2 4 6
4 5 7 ] Θ

~a
~b
[ 2 5 6
3 4 7 ]

)]
. (5.52)

5.3.3 Results for D = 8

Let us start the discussion of loop correlators in eight dimensions with the case of four spin
fields, firstly

〈
Sα(z1)Sβ(z2)S

γ̇(z3)S
δ̇(z4)

〉~a
~b
=

Θ~a
~b
[ 1 3
2 4 ] Θ

~a
~b
[ 1 4
2 3 ]

2
[
Θ~a
~b
(~0)
]4
E12 E34 (E13 E14E23 E24)1/2
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×
[
(γµC)α

γ̇ (γµC)β
δ̇ E14E23 Θ

~a
~b
[ 1 4
2 3 ]

2 + (γµ C)α
δ̇ (γµC)β

γ̇ E13 E24Θ
~a
~b
[ 1 3
2 4 ]

2
]
,

(5.53)

and secondly

〈
Sα(z1)Sβ(z2)Sγ(z3)Sδ(z4)

〉~a
~b
=

1
[
Θ~a
~b
(~0)
]4
[
Cαβ Cγδ
E12 E34

Θ~a
~b
[ 1 3
2 4 ]

2 Θ~a
~b
[ 1 4
2 3 ]

2

−Cαγ Cβδ
E13 E24

Θ~a
~b
[ 1 2
3 4 ]

2 Θ~a
~b
[ 1 4
2 3 ]

2 +
Cαδ Cβγ
E14 E23

Θ~a
~b
[ 1 2
3 4 ]

2 Θ~a
~b
[ 1 3
2 4 ]

2

]
. (5.54)

As one sees, the four required SO(2) spin systems needed to express the SO(1, 7) RNS
fields in eight dimensions give rise to four generalized Θ functions. In the presence of an
additional NS fermion, we find for the correlation functions

〈
ψµ(z1)Sα(z2)Sβ(z3)Sγ(z4)S

δ̇(z5)
〉~a
~b
=

− 1√
2
[
Θ~a
~b
(~0)
]4
(E12 E13E14 E15E25 E35E45)1/2

×
[
Cαβ
E23

(γµ C)γ
δ̇ E13 E25Θ

~a
~b
[ 1 1 3
2 4 5 ] Θ

~a
~b
[ 2 4
3 5 ] Θ

~a
~b
[ 2 5
3 4 ]

2

+
Cγβ
E34

(γµ C)α
δ̇ E13 E45Θ

~a
~b
[ 1 1 3
2 4 5 ] Θ

~a
~b
[ 2 4
3 5 ] Θ

~a
~b
[ 2 3
4 5 ]

2

+ (γλ γ̄µ C)αβ (γλC)γ
δ̇ E14E25

2E24
Θ~a
~b
[ 1 1 4
2 3 5 ] Θ

~a
~b
[ 2 3
4 5 ] Θ

~a
~b
[ 2 5
3 4 ]

2

+ (γλ γ̄µ C)γβ (γλC)α
δ̇ E12E45

2E24
Θ~a
~b
[ 1 1 2
3 4 5 ] Θ

~a
~b
[ 2 5
3 4 ] Θ

~a
~b
[ 2 3
4 5 ]

2

]
. (5.55)

Here we have chosen a different basis of tensors than in (3.100) in order to make antisym-
metry in Sα(z2) ↔ Sγ(z4) manifest. The triality symmetric tree-level correlator with two
fermions and two spin fields of each chirality generalizes as follows to higher genus:

〈
ψµ(z1)ψ

ν(z2)Sα(z3)Sβ(z4)S
γ̇(z5)S

δ̇(z6)
〉~a
~b

=
(E35E36 E45E46)

−1/2

4
[
Θ~a
~b
(~0)
]4
(E13E14 E15E16 E23E24 E25E26)1/2

×
[
ηµν Cαβ C

γ̇δ̇

E12E34 E56

Θ~a
~b
[ 3 5
4 6 ] Θ

~a
~b
[ 3 6
4 5 ]

(
E36E45 Θ

~a
~b
[ 3 6
4 5 ]

(
E13E16 E24E25 Θ

~a
~b
[ 1 1 3 6
2 2 4 5 ] + E14 E15E23 E26Θ

~a
~b
[ 1 1 4 5
2 2 3 6 ]

)

+ E35 E46Θ
~a
~b
[ 3 5
4 6 ]

(
E13 E15E24 E26Θ

~a
~b
[ 1 1 3 5
2 2 4 6 ] + E14 E16 E23E25 Θ

~a
~b
[ 1 1 4 6
2 2 3 5 ]

))

+(γµC)α
γ̇ (γν C)β

δ̇ Θ~a
~b
[ 3 4
5 6 ] Θ

~a
~b
[ 3 6
4 5 ](

E14E25 E36Θ
~a
~b
[ 1 1 4
3 5 6 ] Θ

~a
~b
[ 2 2 5
3 4 6 ]−E16 E23E45 Θ

~a
~b
[ 1 1 6
3 4 5 ] Θ

~a
~b
[ 2 2 3
4 5 6 ]

)
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+(γµC)α
δ̇ (γν C)β

γ̇ Θ~a
~b
[ 3 4
5 6 ] Θ

~a
~b
[ 3 5
4 6 ](

E15E23 E46Θ
~a
~b
[ 1 1 5
3 4 6 ] Θ

~a
~b
[ 2 2 3
4 5 6 ]−E14 E26E35 Θ

~a
~b
[ 1 1 4
3 5 6 ] Θ

~a
~b
[ 2 2 6
3 4 5 ]

)

+(γµC)β
γ̇ (γν C)α

δ̇ Θ~a
~b
[ 3 4
5 6 ] Θ

~a
~b
[ 3 5
4 6 ](

E16E24 E35Θ
~a
~b
[ 1 1 6
3 4 5 ] Θ

~a
~b
[ 2 2 4
3 5 6 ]−E13 E25E46 Θ

~a
~b
[ 1 1 3
4 5 6 ] Θ

~a
~b
[ 2 2 5
3 4 6 ]

)

+(γµC)β
δ̇ (γν C)α

γ̇ Θ~a
~b
[ 3 4
5 6 ] Θ

~a
~b
[ 3 6
4 5 ](

E13E26 E45Θ
~a
~b
[ 1 1 3
4 5 6 ] Θ

~a
~b
[ 2 2 6
3 4 5 ]−E15 E24E36 Θ

~a
~b
[ 1 1 5
3 4 6 ] Θ

~a
~b
[ 2 2 4
3 5 6 ]

)

+
C γ̇δ̇

E56
(γµν C)αβ Θ

~a
~b
[ 3 5
4 6 ] Θ

~a
~b
[ 3 6
4 5 ]

(
E15E25 E36E46 Θ

~a
~b
[ 1 1 5
3 4 6 ] Θ

~a
~b
[ 2 2 5
3 4 6 ]− E16E26 E35E45 Θ

~a
~b
[ 1 1 6
3 4 5 ] Θ

~a
~b
[ 2 2 6
3 4 5 ]

)

+
Cαβ
E34

(γ̄µν C)γ̇δ̇ Θ~a
~b
[ 3 5
4 6 ] Θ

~a
~b
[ 3 6
4 5 ]

(
E13E23 E45E46 Θ

~a
~b
[ 1 1 3
4 5 6 ] Θ

~a
~b
[ 2 2 3
4 5 6 ]− E14E24 E35E36 Θ

~a
~b
[ 1 1 4
3 5 6 ] Θ

~a
~b
[ 2 2 4
3 5 6 ]

)

− ηµν

E12
(γλC)[α

γ̇ (γλC)β]
δ̇ Θ~a

~b
[ 3 4
5 6 ] Θ

~a
~b
[ 3 5
4 6 ] Θ

~a
~b
[ 3 6
4 5 ]

(
E13E14 E25E26 Θ

~a
~b
[ 1 1 3 4
2 2 5 6 ] + E15E16 E23E24 Θ

~a
~b
[ 1 1 5 6
2 2 3 4 ]

)

+(γ[µλC)αβ (γ̄
ν]λC)γ̇δ̇ Θ~a

~b
[ 3 4
5 6 ] Θ

~a
~b
[ 3 6
4 5 ]

(
E14E25 E36Θ

~a
~b
[ 1 1 4
3 5 6 ] Θ

~a
~b
[ 2 2 5
3 4 6 ] + E16E23 E45Θ

~a
~b
[ 1 1 6
3 4 5 ] Θ

~a
~b
[ 2 2 3
4 5 6 ]

)]
.

(5.56)

Using Fay’s trisecant identity, one can alternatively write the last two lines as

1

E12
(γ[µλC)αβ (γ̄

ν]λC)γ̇δ̇ Θ~a
~b
[ 3 4
5 6 ] Θ

~a
~b
[ 3 5
4 6 ] Θ

~a
~b
[ 3 6
4 5 ]

×
(
E13E14 E25E26 Θ

~a
~b
[ 1 1 3 4
2 2 5 6 ]− E15E16 E23E24 Θ

~a
~b
[ 1 1 5 6
2 2 3 4 ]

)
. (5.57)

The second non-vanishing six-point function with four spin fields reads:

〈
ψµ(z1)ψ

ν(z2)Sα(z3)Sβ(z4)Sγ(z5)Sδ(z6)
〉~a
~b

=
1

4
[
Θ~a
~b
(~0)
]4
(E13 E14E15 E16E23 E24 E25E26)1/2

×
[
ηµν Cαβ Cγδ
E12 E34E56

Θ~a
~b
[ 3 5
4 6 ] Θ

~a
~b
[ 3 6
4 5 ]

(
E13E24 E15E26 Θ

~a
~b
[ 3 6
4 5 ] Θ

~a
~b
[ 1 1 3 5
2 2 4 6 ] + E23 E14E25 E16Θ

~a
~b
[ 3 6
4 5 ] Θ

~a
~b
[ 2 2 3 5
1 1 4 6 ]

+ E13 E24E25 E16Θ
~a
~b
[ 3 5
4 6 ] Θ

~a
~b
[ 1 1 3 6
2 2 4 5 ] + E23E14 E15E26 Θ

~a
~b
[ 3 5
4 6 ] Θ

~a
~b
[ 2 2 3 6
1 1 4 5 ]

)
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− 2 ηµν Cαγ Cβδ
E12E35 E46

Θ~a
~b
[ 3 6
4 5 ] Θ

~a
~b
[ 3 4
5 6 ]

2

(
E13E24 E25E16 Θ

~a
~b
[ 1 1 3 6
2 2 4 5 ] + E23E14 E15E26 Θ

~a
~b
[ 2 2 3 6
1 1 4 5 ]

)

+
2 ηµν Cαδ Cβγ
E12E36 E45

Θ~a
~b
[ 3 5
4 6 ] Θ

~a
~b
[ 3 4
5 6 ]

2

(
E13E24 E15E26 Θ

~a
~b
[ 1 1 3 5
2 2 4 6 ] + E23E14 E25E16 Θ

~a
~b
[ 2 2 3 5
1 1 4 6 ]

)

+
Cαβ (γ

µν C)γδ
E34

Θ~a
~b
[ 3 5
4 6 ] Θ

~a
~b
[ 3 6
4 5 ]

(
E13E24 Θ

~a
~b
[ 1 1 3
4 5 6 ] Θ

~a
~b
[ 2 2 4
3 5 6 ] + E14 E23Θ

~a
~b
[ 1 1 4
3 5 6 ] Θ

~a
~b
[ 2 2 3
4 5 6 ]

)

+
Cγδ (γ

µν C)αβ
E56

Θ~a
~b
[ 3 5
4 6 ] Θ

~a
~b
[ 3 6
4 5 ]

(
E15E26 Θ

~a
~b
[ 1 1 5
3 4 6 ] Θ

~a
~b
[ 2 2 6
3 4 5 ] + E16 E25Θ

~a
~b
[ 1 1 6
3 4 5 ] Θ

~a
~b
[ 2 2 5
3 4 6 ]

)

− Cαγ (γ
µν C)βδ
E35

Θ~a
~b
[ 3 4
5 6 ] Θ

~a
~b
[ 3 6
4 5 ]

(
E13E25 Θ

~a
~b
[ 1 1 3
4 5 6 ] Θ

~a
~b
[ 2 2 5
3 4 6 ] + E15 E23Θ

~a
~b
[ 2 2 3
4 5 6 ] Θ

~a
~b
[ 1 1 5
3 4 6 ]

)

− Cβδ (γ
µν C)αγ
E46

Θ~a
~b
[ 3 4
5 6 ] Θ

~a
~b
[ 3 6
4 5 ]

(
E14E26 Θ

~a
~b
[ 1 1 4
3 5 6 ] Θ

~a
~b
[ 2 2 6
3 4 5 ] + E16 E24Θ

~a
~b
[ 2 2 4
3 5 6 ] Θ

~a
~b
[ 1 1 6
3 4 5 ]

)

+
Cαδ (γ

µν C)βγ
E36

Θ~a
~b
[ 3 4
5 6 ] Θ

~a
~b
[ 3 5
4 6 ]

(
E13E26 Θ

~a
~b
[ 1 1 3
4 5 6 ] Θ

~a
~b
[ 2 2 6
3 4 5 ] + E16 E23Θ

~a
~b
[ 2 2 3
4 5 6 ] Θ

~a
~b
[ 1 1 6
3 4 5 ]

)

+
Cβγ (γ

µν C)αδ
E45

Θ~a
~b
[ 3 4
5 6 ] Θ

~a
~b
[ 3 5
4 6 ]

(
E14E25 Θ

~a
~b
[ 1 1 4
3 5 6 ] Θ

~a
~b
[ 2 2 5
3 4 6 ] + E15 E24Θ

~a
~b
[ 2 2 4
3 5 6 ] Θ

~a
~b
[ 1 1 5
3 4 6 ]

)

+ (γλ(µ C)αβ (γ
ν)
λC)γδ E12Θ

~a
~b
[ 1 1 2 2
3 4 5 6 ] Θ

~a
~b
[ 3 4
5 6 ] Θ

~a
~b
[ 3 5
4 6 ] Θ

~a
~b
[ 3 6
4 5 ]

]
. (5.58)

On the level of six spin fields, there is the rather trivial correlator

〈
Sα(z1)Sβ(z2)Sγ(z3)Sδ(z4)Sǫ(z5)Sι(z6)

〉~a
~b
=

1
[
Θ~a
~b
(~0)
]4

×
[
Cαβ Cγδ Cǫι
E12 E34 E56

Θ~a
~b
[ 1 3 5
2 4 6 ] Θ

~a
~b
[ 1 3 6
2 4 5 ] Θ

~a
~b
[ 1 4 6
2 3 5 ] Θ

~a
~b
[ 1 4 5
2 3 6 ]

− Cαβ CγǫCδι
E12 E35 E46

Θ~a
~b
[ 1 3 4
2 5 6 ] Θ

~a
~b
[ 1 3 6
2 5 4 ] Θ

~a
~b
[ 1 5 6
2 3 4 ] Θ

~a
~b
[ 1 5 4
2 3 6 ]
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+
Cαβ Cγι Cδǫ
E12 E36 E45

Θ~a
~b
[ 1 3 4
2 6 5 ] Θ

~a
~b
[ 1 3 5
2 6 4 ] Θ

~a
~b
[ 1 6 5
2 3 4 ] Θ

~a
~b
[ 1 6 4
2 3 5 ]

+ cyclic completion in (2, β), (3, γ), (4, δ), (5, ǫ), (6, ι)

]
. (5.59)

A more complicated case is the correlator where two left-handed spin fields are replaced
by right-handed ones:

〈
Sα(z1)Sβ(z2)Sγ(z3)Sδ(z4)S

ǫ̇(z5)S
ζ̇(z6)

〉~a
~b

=
1

4
[
Θ~a
~b
(~0)
]4
(E15E16 E25E26 E35E36 E45E46)1/2

×
[
Cαδ Cβγ C

ǫ̇ζ̇

E14 E23E56

(
E15 E46E25 E36Θ

~a
~b
[ 1 2 5
3 4 6 ]

2 Θ~a
~b
[ 1 3 5
2 4 6 ] Θ

~a
~b
[ 1 3 6
2 4 5 ]

+ E15E46 E26E35 Θ
~a
~b
[ 1 3 5
2 4 6 ]

2 Θ~a
~b
[ 1 2 5
3 4 6 ] Θ

~a
~b
[ 1 2 6
3 4 5 ]

+ E16E45 E25E36 Θ
~a
~b
[ 1 3 6
2 4 5 ]

2 Θ~a
~b
[ 1 2 5
3 4 6 ] Θ

~a
~b
[ 1 2 6
3 4 5 ]

+ E16E45 E26E35 Θ
~a
~b
[ 1 2 6
3 4 5 ]

2 Θ~a
~b
[ 1 3 5
2 4 6 ] Θ

~a
~b
[ 1 3 6
2 4 5 ]

)

+2

(
Cαβ Cγδ C

ǫ̇ζ̇

E12 E34E56

Θ~a
~b
[ 1 3 5
2 4 6 ] Θ

~a
~b
[ 1 3 6
2 4 5 ]−

Cαγ Cβδ C
ǫ̇ζ̇

E13 E24E56

Θ~a
~b
[ 1 2 5
3 4 6 ] Θ

~a
~b
[ 1 2 6
3 4 5 ]

)

(
E15E26 E36E45 Θ

~a
~b
[ 1 4 5
2 3 6 ]

2 + E16E25 E35 E46Θ
~a
~b
[ 1 4 6
2 3 5 ]

2
)

− Cαβ
E12

(γλC)[γ
ǫ̇ (γλC)δ]

ζ̇ Θ~a
~b
[ 1 5 6
2 3 4 ] Θ

~a
~b
[ 2 5 6
1 3 4 ]

(
E15E26 Θ

~a
~b
[ 1 3 5
2 4 6 ] Θ

~a
~b
[ 1 4 5
2 3 6 ] + E16 E25Θ

~a
~b
[ 1 3 6
2 4 5 ] Θ

~a
~b
[ 1 4 6
2 3 5 ]

)

+
Cαγ
E13

(γλC)[β
ǫ̇ (γλC)δ]

ζ̇ Θ~a
~b
[ 1 5 6
2 3 4 ] Θ

~a
~b
[ 3 5 6
1 2 4 ]

(
E15E36 Θ

~a
~b
[ 1 2 5
3 4 6 ] Θ

~a
~b
[ 1 4 5
2 3 6 ] + E16 E35Θ

~a
~b
[ 1 2 6
3 4 5 ] Θ

~a
~b
[ 1 4 6
2 3 5 ]

)

− Cαδ
E14

(γλC)[β
ǫ̇ (γλC)γ]

ζ̇ Θ~a
~b
[ 1 5 6
2 3 4 ] Θ

~a
~b
[ 4 5 6
1 2 3 ]

(
E15E46 Θ

~a
~b
[ 1 2 5
3 4 6 ] Θ

~a
~b
[ 1 3 5
2 4 6 ] + E16 E45Θ

~a
~b
[ 1 2 6
3 4 5 ] Θ

~a
~b
[ 1 3 6
2 4 5 ]

)

− Cβγ
E23

(γλC)[α
ǫ̇ (γλC)δ]

ζ̇ Θ~a
~b
[ 2 5 6
1 3 4 ] Θ

~a
~b
[ 3 5 6
1 2 4 ]

(
E25E36 Θ

~a
~b
[ 1 2 5
3 4 6 ] Θ

~a
~b
[ 1 3 6
2 4 5 ] + E26 E35Θ

~a
~b
[ 1 2 6
3 4 5 ] Θ

~a
~b
[ 1 3 5
2 4 6 ]

)

+
Cβδ
E24

(γλC)[α
ǫ̇ (γλC)γ]

ζ̇ Θ~a
~b
[ 2 5 6
1 3 4 ] Θ

~a
~b
[ 4 5 6
1 2 3 ]

(
E25E46 Θ

~a
~b
[ 1 2 5
3 4 6 ] Θ

~a
~b
[ 1 4 6
2 3 5 ] + E26 E45Θ

~a
~b
[ 1 2 6
3 4 5 ] Θ

~a
~b
[ 1 4 5
2 3 6 ]

)
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− Cγδ
E34

(γλC)[α
ǫ̇ (γλC)β]

ζ̇ Θ~a
~b
[ 3 5 6
1 2 4 ] Θ

~a
~b
[ 4 5 6
1 2 3 ]

(
E35E46 Θ

~a
~b
[ 1 3 5
2 4 6 ] Θ

~a
~b
[ 1 4 6
2 3 5 ] + E36 E45Θ

~a
~b
[ 1 3 6
2 4 5 ] Θ

~a
~b
[ 1 4 5
2 3 6 ]

)

− (γλC)α
(ǫ̇ (γ|λρ|C)βγ (γρC)δ

ζ̇)E56Θ
~a
~b
[ 1 5 6
2 3 4 ] Θ

~a
~b
[ 2 5 6
1 3 4 ] Θ

~a
~b
[ 3 5 6
1 2 4 ] Θ

~a
~b
[ 4 5 6
1 2 3 ]

]
.

(5.60)

Seven-point correlators require a basis of at least 24 independent Lorentz tensors, so we
refrain from computing higher-point examples without systematics.

5.3.4 Results for D = 10

Ten-dimensional correlators with four spin fields only are given by

〈
Sα(z1)Sβ(z2)Sγ(z3)Sδ(z4)

〉~a
~b
=

1

2 (E12E13E14 E23E24 E34)3/4
Θ~a
~b
[ 1 2
3 4 ] Θ

~a
~b
[ 1 3
2 4 ] Θ

~a
~b
[ 1 4
2 3 ][

Θ~a
~b
(~0)
]5

×
[
(γµC)αβ (γµC)γδ E14E23 Θ

~a
~b
[ 1 4
2 3 ]

2 − (γµC)αδ (γµC)γβ E12E34 Θ
~a
~b
[ 1 2
3 4 ]

2

]
, (5.61)

〈
Sα(z1)Sβ(z2)S

γ̇(z3)S
δ̇(z4)

〉~a
~b
=

(
E12 E34

E13E14 E23E24

)1/4 Θ~a
~b
[ 1 2
3 4 ][

Θ~a
~b
(~0)
]5

×
[
Cα

δ̇ Cβ
γ̇

E14E23
Θ~a
~b
[ 1 2
3 4 ]

2Θ~a
~b
[ 1 3
2 4 ]

2 − Cα
γ̇ Cβ

δ̇

E13E24
Θ~a
~b
[ 1 2
3 4 ]

2Θ~a
~b
[ 1 4
2 3 ]

2

+
1

2

(γµ C)αβ (γ̄µC)
γ̇δ̇

E12 E34
Θ~a
~b
[ 1 3
2 4 ]

2Θ~a
~b
[ 1 4
2 3 ]

2

]
. (5.62)

In the presence of one NS fermion, we find:
〈
ψµ(z1)Sα(z2)Sβ(z3)Sγ(z4)S

δ̇(z5)
〉~a
~b

=
(E23E24 E34)

−3/4

√
2
[
Θ~a
~b
(~0)
]5
(E12 E13E14 E15)1/2 (E25 E35E45)1/4

×
[
Cγ

δ̇

E45
(γµC)αβ E15 E24E34 Θ

~a
~b
[ 2 5
3 4 ]

2 Θ~a
~b
[ 2 4
3 5 ]

2 Θ~a
~b
[ 1 1 5
2 3 4 ]

+
Cα

δ̇

E25

(γµC)βγ E15 E23E24 Θ
~a
~b
[ 2 3
4 5 ]

2 Θ~a
~b
[ 2 4
3 5 ]

2 Θ~a
~b
[ 1 1 5
2 3 4 ]

− Cβ
δ̇

E35

(γµC)αγ E15 E23E34 Θ
~a
~b
[ 1 1 5
2 3 4 ] Θ

~a
~b
[ 2 3
4 5 ]

2 Θ~a
~b
[ 2 5
3 4 ]

2

− 1

2
(γν γ̄µC)γ

δ̇ (γν C)αβ E12E34 Θ
~a
~b
[ 1 1 2
3 4 5 ] Θ

~a
~b
[ 2 3
4 5 ] Θ

~a
~b
[ 2 4
3 5 ] Θ

~a
~b
[ 2 5
3 4 ]

2

+
1

2
(γν γ̄µC)α

δ̇ (γν C)βγ E14E23 Θ
~a
~b
[ 1 1 4
2 3 5 ] Θ

~a
~b
[ 2 4
3 5 ] Θ

~a
~b
[ 2 5
3 4 ] Θ

~a
~b
[ 2 3
4 5 ]

2

]
. (5.63)



96 5. Ramond–Neveu–Schwarz Correlators at Loop-Level

The identity (γν γ̄
µC)(α

δ̇(γν C)βγ) = 0 admits to recast the last two lines into the form

1

2
(γν γ̄µ C)β

δ̇ (γν C)αγ E12E34 Θ
~a
~b
[ 1 1 2
3 4 5 ] Θ

~a
~b
[ 2 3
4 5 ] Θ

~a
~b
[ 2 4
3 5 ] Θ

~a
~b
[ 2 5
3 4 ]

2

+
1

2
(γν γ̄µC)α

δ̇ (γν C)βγ E13E24 Θ
~a
~b
[ 1 1 3
2 4 5 ] Θ

~a
~b
[ 2 4
3 5 ]

2 Θ~a
~b
[ 2 5
3 4 ] Θ

~a
~b
[ 2 3
4 5 ] . (5.64)

The following correlator has been partially computed in [151] for the purpose of four fermion
scattering at 1-loop. Let us give the complete g-loop result here:

〈
ψµ(z1)ψ

ν(z2)Sα(z3)Sβ(z4)Sγ(z5)Sδ(z6)
〉~a
~b

=
(E34E35 E36E45 E46E56)

−3/4

2
[
Θ~a
~b
(~0)
]5
(E13E14 E15 E16E23 E24E25 E26)1/2

×
[
ηµν

E12
(γλC)αβ (γλC)γδ E36E45 Θ

~a
~b
[ 3 4
5 6 ] Θ

~a
~b
[ 3 5
4 6 ] Θ

~a
~b
[ 3 6
4 5 ]

2

(
E13 E16E24 E25Θ

~a
~b
[ 1 1 3 6
2 2 4 5 ] + E14 E15E23 E26Θ

~a
~b
[ 1 1 4 5
2 2 3 6 ]

)

− ηµν

E12
(γλC)αδ (γλC)γβ E34E56 Θ

~a
~b
[ 3 6
5 4 ] Θ

~a
~b
[ 3 5
6 4 ] Θ

~a
~b
[ 3 4
6 5 ]

2

(
E13 E14E25 E26Θ

~a
~b
[ 1 1 3 4
2 2 6 5 ] + E15 E16E23 E24Θ

~a
~b
[ 1 1 6 5
2 2 3 4 ]

)

+
1

2
(γµC)γβ (γ

ν C)αδ E34 E56Θ
~a
~b
[ 3 4
5 6 ]

2 Θ~a
~b
[ 3 5
4 6 ]

(
E13 E25E46 Θ

~a
~b
[ 1 1 3
4 5 6 ] Θ

~a
~b
[ 2 2 5
3 4 6 ]− E16E24 E35Θ

~a
~b
[ 1 1 6
3 4 5 ] Θ

~a
~b
[ 2 2 4
3 5 6 ]

)

+
1

2
(γµC)αδ (γ

ν C)γβ E34 E56Θ
~a
~b
[ 3 4
5 6 ]

2 Θ~a
~b
[ 3 5
4 6 ]

(
E14 E26E35 Θ

~a
~b
[ 1 1 4
3 5 6 ] Θ

~a
~b
[ 2 2 6
3 4 5 ]− E15E23 E46Θ

~a
~b
[ 1 1 5
3 4 6 ] Θ

~a
~b
[ 2 2 3
4 5 6 ]

)

− 1

2
(γµC)αβ (γ

ν C)γδ E36 E45Θ
~a
~b
[ 3 6
4 5 ]

2 Θ~a
~b
[ 3 5
4 6 ]

(
E16 E24E35 Θ

~a
~b
[ 1 1 6
3 4 5 ] Θ

~a
~b
[ 2 2 4
3 5 6 ] + E15 E23E46 Θ

~a
~b
[ 1 1 5
3 4 6 ] Θ

~a
~b
[ 2 2 3
4 5 6 ]

)

+
1

2
(γµC)γδ (γ

ν C)αβ E36 E45Θ
~a
~b
[ 3 6
4 5 ]

2 Θ~a
~b
[ 3 5
4 6 ]

(
E13 E25E46 Θ

~a
~b
[ 1 1 3
4 5 6 ] Θ

~a
~b
[ 2 2 5
3 4 6 ] + E14 E26E35 Θ

~a
~b
[ 1 1 4
3 5 6 ] Θ

~a
~b
[ 2 2 6
3 4 5 ]

)

+
1

4
(γµνλC)αβ (γλC)γδ E34 E36E45 Θ

~a
~b
[ 3 4
5 6 ] Θ

~a
~b
[ 3 6
4 5 ]

2

(
E15 E26Θ

~a
~b
[ 1 1 5
3 4 6 ] Θ

~a
~b
[ 2 2 6
3 4 5 ] + E16E25 Θ

~a
~b
[ 1 1 6
3 4 5 ] Θ

~a
~b
[ 2 2 5
3 4 6 ]

)

+
1

4
(γµνλC)γδ (γλC)αβ E56 E36E45 Θ

~a
~b
[ 3 4
5 6 ] Θ

~a
~b
[ 3 6
4 5 ]

2

(
E13 E24Θ

~a
~b
[ 1 1 3
4 5 6 ] Θ

~a
~b
[ 2 2 4
3 5 6 ] + E14E23 Θ

~a
~b
[ 1 1 4
3 5 6 ] Θ

~a
~b
[ 2 2 3
4 5 6 ]

)
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− 1

4
(γµνλC)αδ (γλC)γβ E36 E34E56 Θ

~a
~b
[ 3 4
5 6 ]

2 Θ~a
~b
[ 3 6
4 5 ]

(
E15 E24Θ

~a
~b
[ 1 1 5
3 4 6 ] Θ

~a
~b
[ 2 2 4
3 5 6 ] + E14E25 Θ

~a
~b
[ 1 1 4
3 5 6 ] Θ

~a
~b
[ 2 2 5
3 4 6 ]

)

− 1

4
(γµνλC)γβ (γλC)αδ E54 E34E56 Θ

~a
~b
[ 3 4
5 6 ]

2 Θ~a
~b
[ 3 6
4 5 ]

(
E13 E26Θ

~a
~b
[ 1 1 3
4 5 6 ] Θ

~a
~b
[ 2 2 6
3 4 5 ] + E16E23 Θ

~a
~b
[ 1 1 6
3 4 5 ] Θ

~a
~b
[ 2 2 3
4 5 6 ]

)

− (γ(µC)αγ (γ
ν) C)βδ E12E34 E36 E45E56 Θ

~a
~b
[ 1 1 2 2
3 4 5 6 ] Θ

~a
~b
[ 3 4
5 6 ]

2 Θ~a
~b
[ 3 6
4 5 ]

2

]
. (5.65)

This representation in terms of antisymmetric products γµνλ rather than γµγ̄νγλ was chosen
in order to make the antisymmetry under the exchange of two spin fields Sαi

(zi), and Sαj
(zj)

up to a prefactor E
1/4
ij manifest. If the four spin fields have mixed chirality, one has

〈
ψµ(z1)ψ

ν(z2)Sα(z3)Sβ(z4)S
γ̇(z5)S

δ̇(z6)
〉~a
~b

=
1

[
Θ~a
~b
(~0)
]5

(E34E56)
−3/4 (E35 E36E45 E46)

−1/4

(E13E14 E15E16 E23E24 E25 E26)1/2

×
[
1

2

ηµν

E12
(γλC)αβ(γ̄λC)

γ̇δ̇ E13E15 E24 E26Θ
~a
~b
[ 1 1 3 5
2 2 4 6 ] Θ

~a
~b
[ 3 4
5 6 ] Θ

~a
~b
[ 3 5
4 6 ] Θ

~a
~b
[ 3 6
4 5 ]

2

+
ηµν Cα

δ̇ Cβ
γ̇

E12E36E45
E13 E14E25 E26 E34E56 Θ

~a
~b
[ 1 1 3 4
2 2 5 6 ] Θ

~a
~b
[ 3 4
5 6 ]

2 Θ~a
~b
[ 3 5
4 6 ]

2

− ηµν Cα
γ̇ Cβ

δ̇

E12E35E46
E13 E14E24 E26 E34E56 Θ

~a
~b
[ 1 1 3 4
2 2 5 6 ] Θ

~a
~b
[ 3 4
5 6 ]

2 Θ~a
~b
[ 3 6
4 5 ]

2

− 1

2
(γµ γ̄ν C)α

γ̇ Cβ
δ̇

E46
E16E24 E34E56 Θ

~a
~b
[ 1 1 6
3 4 5 ] Θ

~a
~b
[ 2 2 4
3 5 6 ] Θ

~a
~b
[ 3 6
4 5 ] Θ

~a
~b
[ 3 4
5 6 ]

2

+
1

2
(γµ γ̄ν C)α

δ̇ Cβ
γ̇

E45

E15E24 E34E56 Θ
~a
~b
[ 1 1 5
3 4 6 ] Θ

~a
~b
[ 2 2 4
3 5 6 ] Θ

~a
~b
[ 3 5
4 6 ] Θ

~a
~b
[ 3 4
5 6 ]

2

+
1

2
(γµ γ̄ν C)β

γ̇ Cα
δ̇

E36
E13E26 E34E56 Θ

~a
~b
[ 1 1 3
4 5 6 ] Θ

~a
~b
[ 2 2 6
3 4 5 ] Θ

~a
~b
[ 3 5
4 6 ] Θ

~a
~b
[ 3 4
5 6 ]

2

− 1

2
(γµ γ̄ν C)β

δ̇ Cα
γ̇

E35
E13E25 E34E56 Θ

~a
~b
[ 1 1 3
4 5 6 ] Θ

~a
~b
[ 2 2 5
3 4 6 ] Θ

~a
~b
[ 3 6
4 6 ] Θ

~a
~b
[ 3 4
4 5 ]

2

− 1

2
(γµC)αβ(γ̄

ν C)γ̇δ̇ E15 E24E36 Θ
~a
~b
[ 1 1 5
3 4 6 ] Θ

~a
~b
[ 2 2 4
3 5 6 ] Θ

~a
~b
[ 3 5
4 6 ] Θ

~a
~b
[ 3 6
4 5 ]

2

+
1

2
(γν C)αβ(γ̄

µC)γ̇δ̇ E13 E25E46 Θ
~a
~b
[ 1 1 3
4 5 6 ] Θ

~a
~b
[ 2 2 5
3 4 6 ] Θ

~a
~b
[ 3 6
4 5 ] Θ

~a
~b
[ 3 5
4 6 ]

2

− 1

4
(γµ γ̄λC)α

γ̇(γν γ̄λC)β
δ̇ E16E25 E34Θ

~a
~b
[ 1 1 6
3 4 5 ] Θ

~a
~b
[ 2 2 5
3 4 6 ] Θ

~a
~b
[ 3 4
5 6 ] Θ

~a
~b
[ 3 5
4 6 ] Θ

~a
~b
[ 3 6
4 5 ]

− 1

4
(γµ γ̄λC)α

δ̇(γν γ̄λC)β
γ̇ E15E26 E34Θ

~a
~b
[ 1 1 5
3 4 6 ] Θ

~a
~b
[ 2 2 6
3 4 5 ] Θ

~a
~b
[ 3 4
5 6 ] Θ

~a
~b
[ 3 5
4 6 ] Θ

~a
~b
[ 3 6
4 5 ]



98 5. Ramond–Neveu–Schwarz Correlators at Loop-Level

+
1

4
(γ̄µ γν γ̄λC)γ̇δ̇(γλC)αβ E13 E24 E56Θ

~a
~b
[ 1 1 3
4 5 6 ] Θ

~a
~b
[ 2 2 4
3 5 6 ] Θ

~a
~b
[ 3 4
5 6 ] Θ

~a
~b
[ 3 5
4 6 ] Θ

~a
~b
[ 3 6
4 5 ]

]
.

(5.66)

The correlator with five left-handed spin fields and one right-handed spin field has ap-
peared in the literature before, namely in [141] at tree-level for the purpose of six fermion
scattering. Let us give its loop generalization here:

〈
Sα (z1)Sβ(z2)Sγ(z3)Sδ(z4)Sǫ(z5)S

ζ̇(z6)
〉~a
~b

=
1

2
[
Θ~a
~b
(~0)
]5

(E12 E13E14 E15E23 E24 E25E34 E35E45)
−3/4

(E16E26 E36E46 E56)1/4

×
[
(γµC)αβ(γµC)γδ

Cǫ
ζ̇

E56

E14 E15E23 E25E35 E46

Θ~a
~b
[ 1 2 5
3 4 6 ] Θ

~a
~b
[ 1 3 5
2 4 6 ] Θ

~a
~b
[ 1 4 5
2 3 6 ] Θ

~a
~b
[ 1 4 6
2 3 5 ]

2

− (γµC)αδ(γµC)βγ
Cǫ

ζ̇

E56

E12 E15E25 E34E35 E46

Θ~a
~b
[ 1 2 6
3 4 5 ] Θ

~a
~b
[ 1 3 5
2 4 6 ] Θ

~a
~b
[ 1 4 6
2 3 5 ] Θ

~a
~b
[ 1 2 5
3 4 6 ]

2

+(γµC)αβ(γµC)γǫ
Cδ

ζ̇

E46
E14E15 E23E24 E34E56

Θ~a
~b
[ 1 2 4
3 5 6 ] Θ

~a
~b
[ 1 3 4
2 5 6 ] Θ

~a
~b
[ 1 4 5
2 3 6 ] Θ

~a
~b
[ 1 5 6
2 3 4 ]

2

− (γµC)αǫ(γµC)βγ
Cδ

ζ̇

E46

E12E14 E24E34 E35E56

Θ~a
~b
[ 1 2 6
3 4 5 ] Θ

~a
~b
[ 1 3 4
2 5 6 ] Θ

~a
~b
[ 1 5 6
2 3 4 ] Θ

~a
~b
[ 1 2 4
3 5 6 ]

2

+(γµC)αβ(γµC)δǫ
Cγ

ζ̇

E36
E13E15 E24E26 E34E35

Θ~a
~b
[ 1 2 6
3 4 5 ] Θ

~a
~b
[ 1 3 4
2 5 6 ] Θ

~a
~b
[ 1 5 6
2 3 4 ] Θ

~a
~b
[ 1 3 5
2 4 6 ]

2

− (γµC)αǫ(γµC)βδ
Cγ

ζ̇

E36

E12E13 E26E34 E35E45

Θ~a
~b
[ 1 2 3
4 5 6 ] Θ

~a
~b
[ 1 3 4
2 5 6 ] Θ

~a
~b
[ 1 3 5
2 4 6 ] Θ

~a
~b
[ 1 2 6
3 4 5 ]

2

+(γµC)αγ(γµC)δǫ
Cβ

ζ̇

E26
E12E15 E24E25 E34E36

Θ~a
~b
[ 1 2 4
3 5 6 ] Θ

~a
~b
[ 1 3 6
2 4 5 ] Θ

~a
~b
[ 1 5 6
2 3 4 ] Θ

~a
~b
[ 1 2 5
3 4 6 ]

2

− (γµC)αǫ(γµC)γδ
Cβ

ζ̇

E26

E12E13 E24E25 E36E45

Θ~a
~b
[ 1 2 3
4 5 6 ] Θ

~a
~b
[ 1 2 4
3 5 6 ] Θ

~a
~b
[ 1 2 5
3 4 6 ] Θ

~a
~b
[ 1 3 6
2 4 5 ]

2

+(γµC)βǫ(γµC)γδ
Cα

ζ̇

E16
E12E14 E15E23 E36E45
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Θ~a
~b
[ 1 2 3
4 5 6 ] Θ

~a
~b
[ 1 2 4
3 5 6 ] Θ

~a
~b
[ 1 2 5
3 4 6 ] Θ

~a
~b
[ 1 4 5
2 3 6 ]

2

− (γµC)βγ(γµC)δǫ
Cα

ζ̇

E16
E12E14 E15E25 E34E36

Θ~a
~b
[ 1 2 4
3 5 6 ] Θ

~a
~b
[ 1 3 4
2 5 6 ] Θ

~a
~b
[ 1 4 5
2 3 6 ] Θ

~a
~b
[ 1 2 5
3 4 6 ]

2

− 1

2
(γµ γ̄ν C)β

ζ̇(γµC)αǫ(γν C)γδ E12E14 E24E35 E35

Θ~a
~b
[ 1 2 6
3 4 5 ] Θ

~a
~b
[ 1 3 5
2 4 6 ] Θ

~a
~b
[ 1 4 6
2 3 5 ] Θ

~a
~b
[ 1 2 4
3 5 6 ]

2

+
1

2
(γµ γ̄ν C)α

ζ̇(γµC)βδ(γν C)γǫE12E15 E25E34 E34

Θ~a
~b
[ 1 2 6
3 4 5 ] Θ

~a
~b
[ 1 3 4
2 5 6 ] Θ

~a
~b
[ 1 5 6
2 3 4 ] Θ

~a
~b
[ 1 2 5
3 4 6 ]

2

+
1

2
(γµ γ̄ν C)ǫ

ζ̇(γµC)αβ(γν C)γδ E14E15 E23E24 E35

Θ~a
~b
[ 1 2 4
3 5 6 ] Θ

~a
~b
[ 1 3 5
2 4 6 ] Θ

~a
~b
[ 1 4 5
2 3 6 ] Θ

~a
~b
[ 1 4 6
2 3 5 ] Θ

~a
~b
[ 1 5 6
2 3 4 ]

+
1

2
(γµ γ̄ν C)δ

ζ̇(γµC)αβ(γν C)γǫE13E15 E24E25 E34

Θ~a
~b
[ 1 2 5
3 4 6 ] Θ

~a
~b
[ 1 3 4
2 5 6 ] Θ

~a
~b
[ 1 3 5
2 4 6 ] Θ

~a
~b
[ 1 3 6
2 4 5 ] Θ

~a
~b
[ 1 5 6
2 3 4 ]

− 1

2
(γµ γ̄ν C)γ

ζ̇(γµC)αδ(γν C)βǫE12E15 E24E34 E35

Θ~a
~b
[ 1 2 4
3 5 6 ] Θ

~a
~b
[ 1 2 5
3 4 6 ] Θ

~a
~b
[ 1 2 6
3 4 5 ] Θ

~a
~b
[ 1 3 5
2 4 6 ] Θ

~a
~b
[ 1 5 6
2 3 4 ]

− 1

2
(γµ γ̄ν C)γ

ζ̇(γµC)αǫ(γν C)βδ E12E14 E25E34 E35

Θ~a
~b
[ 1 2 4
3 5 6 ] Θ

~a
~b
[ 1 2 5
3 4 6 ] Θ

~a
~b
[ 1 2 6
3 4 5 ] Θ

~a
~b
[ 1 3 4
2 5 6 ] Θ

~a
~b
[ 1 4 6
2 3 5 ]

]
. (5.67)

There is also a non-vanishing correlator with three left- and right-handed spin fields each:
〈
Sα(z1)Sβ(z2)Sγ(z3)S

δ̇(z4)S
ǫ̇(z5)S

ζ̇(z6)
〉~a
~b

= − 1
[
Θ~a
~b
(~0)
]5
(

E12E13 E23E45 E46 E56

E14E15 E16E24 E25E26 E34E35 E36

)1/4

×
[
Cα

δ̇ Cβ
ǫ̇ Cγ

ζ̇

E14E25 E36
Θ~a
~b
[ 1 2 3
4 5 6 ]

2 Θ~a
~b
[ 1 5 6
2 3 4 ] Θ

~a
~b
[ 1 3 5
2 4 6 ] Θ

~a
~b
[ 1 2 6
3 4 5 ]

− Cα
δ̇ Cβ

ζ̇ Cγ
ǫ̇

E14E26 E35

Θ~a
~b
[ 1 2 3
4 5 6 ]

2 Θ~a
~b
[ 1 5 6
2 3 4 ] Θ

~a
~b
[ 1 3 6
2 4 5 ] Θ

~a
~b
[ 1 2 5
3 4 6 ]

+
Cα

ǫ̇Cβ
ζ̇ Cγ

δ̇

E15E26 E34
Θ~a
~b
[ 1 2 3
4 5 6 ]

2 Θ~a
~b
[ 1 4 6
2 3 5 ] Θ

~a
~b
[ 1 3 6
2 4 5 ] Θ

~a
~b
[ 1 2 4
3 5 6 ]

− Cα
ǫ̇Cβ

δ̇ Cγ
ζ̇

E15E24 E36
Θ~a
~b
[ 1 2 3
4 5 6 ]

2 Θ~a
~b
[ 1 4 6
2 3 5 ] Θ

~a
~b
[ 1 3 4
2 5 6 ] Θ

~a
~b
[ 1 2 6
3 4 5 ]

+
Cα

ζ̇ Cβ
δ̇ Cγ

ǫ̇

E16E24 E35
Θ~a
~b
[ 1 2 3
4 5 6 ]

2 Θ~a
~b
[ 1 4 5
2 3 6 ] Θ

~a
~b
[ 1 3 4
2 5 6 ] Θ

~a
~b
[ 1 2 5
3 4 6 ]
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− Cα
ζ̇ Cβ

ǫ̇Cγ
δ̇

E16E25 E34
Θ~a
~b
[ 1 2 3
4 5 6 ]

2 Θ~a
~b
[ 1 4 5
2 3 6 ] Θ

~a
~b
[ 1 3 5
2 4 6 ] Θ

~a
~b
[ 1 2 4
3 5 6 ]

− 1

2

(γµC)αβ(γ̄µC)
δ̇ǫ̇Cγ

ζ̇

E12 E36E45

Θ~a
~b
[ 1 2 3
4 5 6 ] Θ

~a
~b
[ 1 3 4
2 5 6 ] Θ

~a
~b
[ 1 3 5
2 4 6 ] Θ

~a
~b
[ 1 4 6
2 3 5 ] Θ

~a
~b
[ 1 5 6
2 3 4 ]

+
1

2

(γµC)αβ(γ̄µC)
δ̇ζ̇ Cγ

ǫ̇

E12 E35E46

Θ~a
~b
[ 1 2 3
4 5 6 ] Θ

~a
~b
[ 1 3 4
2 5 6 ] Θ

~a
~b
[ 1 3 6
2 4 5 ] Θ

~a
~b
[ 1 4 5
2 3 6 ] Θ

~a
~b
[ 1 5 6
2 3 4 ]

− 1

2

(γµC)αβ(γ̄µC)
ǫ̇ζ̇ Cγ

δ̇

E12 E34E56

Θ~a
~b
[ 1 2 3
4 5 6 ] Θ

~a
~b
[ 1 3 5
2 4 6 ] Θ

~a
~b
[ 1 3 6
2 4 5 ] Θ

~a
~b
[ 1 4 5
2 3 6 ] Θ

~a
~b
[ 1 4 6
2 3 5 ]

+
1

2

(γµC)αγ(γ̄µC)
δ̇ǫ̇Cβ

ζ̇

E13 E26E45
Θ~a
~b
[ 1 2 3
4 5 6 ] Θ

~a
~b
[ 1 2 4
3 5 6 ] Θ

~a
~b
[ 1 2 5
3 4 6 ] Θ

~a
~b
[ 1 4 6
2 3 5 ] Θ

~a
~b
[ 1 5 6
2 3 4 ]

− 1

2

(γµC)αγ(γ̄µC)
δ̇ζ̇ Cβ

ǫ̇

E13 E25E46
Θ~a
~b
[ 1 2 3
4 5 6 ] Θ

~a
~b
[ 1 2 4
3 5 6 ] Θ

~a
~b
[ 1 2 6
3 4 5 ] Θ

~a
~b
[ 1 4 5
2 3 6 ] Θ

~a
~b
[ 1 5 6
2 3 4 ]

+
1

2

(γµC)αγ(γ̄µC)
ǫ̇ζ̇ Cβ

δ̇

E13 E24E56
Θ~a
~b
[ 1 2 3
4 5 6 ] Θ

~a
~b
[ 1 2 5
3 4 6 ] Θ

~a
~b
[ 1 2 6
3 4 5 ] Θ

~a
~b
[ 1 4 5
2 3 6 ] Θ

~a
~b
[ 1 4 6
2 3 5 ]

− 1

2

(γµC)βγ(γ̄µC)
δ̇ǫ̇Cα

ζ̇

E16 E23E45
Θ~a
~b
[ 1 2 3
4 5 6 ] Θ

~a
~b
[ 1 2 4
3 5 6 ] Θ

~a
~b
[ 1 2 5
3 4 6 ] Θ

~a
~b
[ 1 3 4
2 5 6 ] Θ

~a
~b
[ 1 3 5
2 4 6 ]

+
1

2

(γµC)βγ(γ̄µC)
δ̇ζ̇ Cα

ǫ̇

E15 E23E46
Θ~a
~b
[ 1 2 3
4 5 6 ] Θ

~a
~b
[ 1 2 4
3 5 6 ] Θ

~a
~b
[ 1 2 6
3 4 5 ] Θ

~a
~b
[ 1 3 4
2 5 6 ] Θ

~a
~b
[ 1 3 6
2 4 5 ]

− 1

2

(γµC)βγ(γ̄µC)
ǫ̇ζ̇ Cα

δ̇

E14 E23E56
Θ~a
~b
[ 1 2 3
4 5 6 ] Θ

~a
~b
[ 1 2 5
3 4 6 ] Θ

~a
~b
[ 1 2 6
3 4 5 ] Θ

~a
~b
[ 1 3 5
2 4 6 ] Θ

~a
~b
[ 1 3 6
2 4 5 ]

+
1

4
(γµγ̄ν C)α

ǫ̇(γµC)βγ(γ̄ν C)
δ̇ζ̇ E36

E13E23 E46E56

Θ~a
~b
[ 1 2 4
3 5 6 ] Θ

~a
~b
[ 1 2 5
3 4 6 ] Θ

~a
~b
[ 1 2 6
3 4 5 ] Θ

~a
~b
[ 1 3 6
2 4 5 ] Θ

~a
~b
[ 1 4 5
2 3 6 ]

− 1

4
(γµγ̄ν C)γ

ǫ̇(γµC)αβ(γ̄ν C)
δ̇ζ̇ E16

E12E13 E46E56

Θ~a
~b
[ 1 2 6
3 4 5 ] Θ

~a
~b
[ 1 3 6
2 4 5 ] Θ

~a
~b
[ 1 4 5
2 3 6 ] Θ

~a
~b
[ 1 4 6
2 3 5 ] Θ

~a
~b
[ 1 5 6
2 3 4 ]

+
1

4
(γµγ̄ν C)α

ζ̇(γµC)βγ(γ̄ν C)
δ̇ǫ̇ E35

E13E23 E45E56

Θ~a
~b
[ 1 2 4
3 5 6 ] Θ

~a
~b
[ 1 2 5
3 4 6 ] Θ

~a
~b
[ 1 2 6
3 4 5 ] Θ

~a
~b
[ 1 3 5
2 4 6 ] Θ

~a
~b
[ 1 4 6
2 3 5 ]

− 1

4
(γµγ̄ν C)γ

ζ̇(γµC)αβ(γ̄ν C)
δ̇ǫ̇ E15

E12E13 E45E56

Θ~a
~b
[ 1 2 5
3 4 6 ] Θ

~a
~b
[ 1 4 5
2 3 6 ] Θ

~a
~b
[ 1 3 5
2 4 6 ] Θ

~a
~b
[ 1 5 6
2 3 4 ] Θ

~a
~b
[ 1 4 6
2 3 5 ]

]
. (5.68)

Note that also this result exhibits manifest antisymmetry when exchanging Sα(z1) ↔
Sγ(z3) and S

ǫ̇(z5) ↔ S ζ̇(z6) up to the powers (E13E56)
1/4.
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5.3.5 Pure Spin Field Correlators

In Chapter 3.4 and 3.5 it has been shown that certain pure spin field correlator in four and
six space-time dimensions can be solved for arbitrary many fields. This is due to the fact
that only index terms built from εαβ and Cα

β̇ are necessary. The tree-level results (3.82)
and (3.90) can also be generalized to loop-level. It has been shown in [155] that for D = 4

〈 2M∏

i=1

Sαi
(zi)

〉~a

~b

= (−1)M

[
Θ~a
~b

(
1
2

∑M
i=1 ∫ z2i−1

z2i
~ω
)]2−M

[
Θ~a
~b
(~0)
]2

(∏M
i≤j E2i−1,2j

∏M
ı̄<̄E2ı̄,2̄−1

∏M
k<lE2k−1,2l−1E2k,2l

)1/2

×
∑

ρ∈SM

sgn(ρ)

M∏

m=1

εα2m−1αρ(2m)

E2m−1,ρ(2m)

Θ~a
~b

(
1
2

M∑

i=1

z2i−1

∫
z2i

~ω −
z2m−1

∫
zρ(2m)

~ω

)
.

(5.69)

The proof of this formula by induction progresses in the same way as (3.83), but now also
the generalized Θ functions have to be taken care of. Details can be found in Appendix B
of [155].

The relative of (5.69) in D = 6 dimensions is given by

〈 M∏

i=1

Sαi
(z2i−1)S

β̇i(z2i)

〉~a

~b

=

[
Θ~a
~b

(
1
2

∑M
i=1 ∫ z2i−1

z2i
~ω
)]3−M

[
Θ~a
~b
(~0)
]3

( ∏M
i,j=1E2i−1,2j

∏M
i<j E2i−1,2j−1E2i,2j

)1/4

×
∑

ρ∈SM

sgn(ρ)
M∏

m=1

Cα2m−1
β̇ρ(2m)

E2m−1,ρ(2m)

Θ~a
~b

(
1
2

M∑

i=1

z2i
∫

z2i−1

~ω −
z2m−1

∫
zρ(2m)

~ω

)
, (5.70)

which is the generalization of the four- and six-point functions (5.46) and (5.49). In order
to check that the eight-point function calculated by SO(2) spin operators is consistent with
(5.70) for M = 4 one has to make heavy use of Fay’s trisecant identity.

5.3.6 General Results

We come now to a second class of RNS correlation functions for which one can derive
general results at loop-level. This are correlators consisting of arbitrary many NS fermions
but only two spin field:

〈
ψµ1(z1) . . . ψ

µn(zn)Sα(zA)S
β̇(zB)

〉~a
~b
,

〈
ψµ1(z1) . . . ψ

µn(zn)Sα(zA)S
β(zB)

〉~a
~b
. (5.71)

In four dimensions at tree-level these have been discussed in Chapter 4.6. We generalize
these results to loop-level and furthermore evaluate the loop correlators also in six, eight
and ten dimensions.
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The different chirality structure of the charge conjugation matrix in D = 4, 8 and
D = 6, 10 dimensions imposes constraints on the number of NS fermions in (5.71). The
possible index terms for the correlators consist of products of η’s, γ-chains and one C. In
four and eight dimensions the charge conjugation matrix has the structure Cαβ. Therefore,
the number of fermions has to be odd for Ω and even for ω, while in six and ten dimensions
with the charge conjugation matrix Cα

β̇ it has to be the other way round. In the following
we thus examine the correlation functions

• D = 0 mod 4:

Ωn,D ≡
〈
ψµ1(z1) . . . ψ

µ2n−1(z2n−1)Sα(zA)S
β̇(zB)

〉~a
~b

∣∣∣
D
,

ωn,D ≡
〈
ψµ1(z1) . . . ψ

µ2n−2(z2n−2)Sα(zA)Sβ(zB)
〉~a
~b

∣∣∣
D
, (5.72)

• D = 2 mod 4:

Ωn,D ≡
〈
ψµ1(z1) . . . ψ

µ2n−2(z2n−2)Sα(zA)S
β̇(zB)

〉~a
~b

∣∣∣
D
,

ωn,D ≡
〈
ψµ1(z1) . . . ψ

µ2n−1(z2n−1)Sα(zA)Sβ(zB)
〉~a
~b

∣∣∣
D
. (5.73)

If the number of fermions is chosen differently no scalar representations exist and the
correlators hence vanish.

The correlation functions (5.72) in four dimensions have been determined in [155]. They
are given as follows:

Ωn,D=4 =

[
Θ~a
~b

(
1
2
∫ zAzB ~ω

)]2−n

√
2
[
Θ~a
~b
(~0)
]2 ∏2n−1

i=1 (EiAEiB)1/2

n−1∑

l=0

(
EAB

2Θ~a
~b

(
1
2
∫ zAzB ~ω

)
)l

×
∑

ρ∈S2n−1/Pn,l

sgn(ρ)
(
σµρ(1) σ̄µρ(2) . . . σ̄µρ(2l) σµρ(2l+1) ε

)
α
β̇

2l+1∏

k=1

Θ~a
~b

(
1
2

zA
∫

zρ(k)

~ω + 1
2

zB
∫

zρ(k)

~ω

)

×
n−l−1∏

j=1

ηµρ(2l+2j)µρ(2l+2j+1)

Eρ(2l+2j),ρ(2l+2j+1)

Eρ(2l+2j),AEρ(2l+2j+1),B Θ~a
~b

( zρ(2l+2j)

∫
zρ(2l+2j+1)

~ω + 1
2

zA
∫
zB

~ω

)
.

(5.74)

Its relative with even number of NS fermions and two alike spin fields reads

ωn,D=4 =
−
[
Θ~a
~b

(
1
2
∫ zAzB ~ω

)]3−n

Θ~a
~b
(~0)Θ~a

~b
(~0)E

1/2
AB

∏2n−2
i=1 (EiAEiB)1/2

n−1∑

l=0

(
EAB

2Θ~a
~b

(
1
2
∫ zAzB ~ω

)
)l

×
∑

ρ∈S2n−2/Qn,l

sgn(ρ)
(
σµρ(1) σ̄µρ(2) . . . σµρ(2l−1) σ̄µρ(2l) ε

)
αβ

2l∏

k=1

Θ~a
~b

(
1
2

zA
∫

zρ(k)

~ω + 1
2

zB
∫

zρ(k)

~ω

)
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×
n−l−1∏

j=1

ηµρ(2l+2j−1)µρ(2l+2j)

Eρ(2l+2j−1),ρ(2l+2j)

Eρ(2l+2j−1),AEρ(2l+2j),B Θ~a
~b

( zρ(2l+2j−1)

∫
zρ(2l+2j)

~ω + 1
2

zA
∫
zB

~ω

)
.

(5.75)

These results are the generalizations of the tree-level outcome (4.32) and (4.33). Here we
make use of the same notation regarding the summation over the permutations ρ as in
Chapter 4.6. The proof of (5.74) and (5.75) by induction proceeds in the same way as
the tree-level findings following the web of limits illustrated in Figure 4.1. However, now
one also has to take into account the generalized Θ functions. Details on the proof can be
found in Appendix B of [155].

The generalization of these results to higher dimensions requires only minor modifica-
tions. As one goes to higher dimensions the number of SO(2) spin systems increases. This
does not play a role for the NS fermions because we still can choose the Lorentz indices
for the calculation such that only the spin systems which were already present in the lower
dimensions, enter the calculation. The additional spin systems contribute nevertheless
through the R spin fields and hence Ω and ω in various dimensions differ by powers of the
minimal spin system correlator:

〈
s+(zA) s

−(zB)
〉~a
~b
=

1

Θ~a
~b
(~0)E

1/4
AB

Θ~a
~b

(
1
2

zA
∫
zB

~ω

)
. (5.76)

Following this argument Ωn and ωn in D = 8 acquire two powers of (5.76) in contrast
to (5.74) and (5.75):

Ωn,D=8 =

[
Θ~a
~b

(
1
2
∫ zAzB ~ω

)]4−n

√
2
[
Θ~a
~b
(~0)
]4
E

1/2
AB

∏2n−1
i=1 (EiAEiB)1/2

n−1∑

l=0

(
EAB

2Θ~a
~b

(
1
2
∫ zAzB ~ω

)
)l

×
∑

ρ∈S2n−1/Pn,l

sgn(ρ)
(
γµρ(1) γ̄µρ(2) . . . γ̄µρ(2l) γµρ(2l+1) C

)
α
β̇

2l+1∏

k=1

Θ~a
~b

(
1
2

zA
∫

zρ(k)

~ω + 1
2

zB
∫

zρ(k)

~ω

)

×
n−l−1∏

j=1

ηµρ(2l+2j)µρ(2l+2j+1)

Eρ(2l+2j),ρ(2l+2j+1)

Eρ(2l+2j),AEρ(2l+2j+1),B Θ~a
~b

(
zρ(2l+2j)

∫
zρ(2l+2j+1)

~ω + 1
2

zA
∫
zB

~ω

)
,

(5.77)

ωn,D=8 =

[
Θ~a
~b

(
1
2
∫ zAzB ~ω

)]5−n

[
Θ~a
~b
(~0)
]4
EAB

∏2n−2
i=1 (EiAEiB)1/2

n−1∑

l=0

(
EAB

2Θ~a
~b

(
1
2
∫ zAzB ~ω

)
)l

×
∑

ρ∈S2n−2/Qn,l

sgn(ρ)
(
γµρ(1) γ̄µρ(2) . . . γµρ(2l−1) γ̄µρ(2l) C

)
αβ

2l∏

k=1

Θ~a
~b

(
1
2

zA
∫

zρ(k)

~ω + 1
2

zB
∫

zρ(k)

~ω

)
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×
n−l−1∏

j=1

ηµρ(2l+2j−1)µρ(2l+2j)

Eρ(2l+2j−1),ρ(2l+2j)

Eρ(2l+2j−1),A Eρ(2l+2j),B Θ~a
~b

( zρ(2l+2j−1)

∫
zρ(2l+2j)

~ω + 1
2

zA
∫
zB

~ω

)
.

(5.78)

We now come to the results of ωn and Ωn in six and ten dimensions. Due to the
different chirality structure of the charge conjugation matrix ωn in six dimensions, is the
direct relative of Ωn in four dimensions, where in addition one power of (5.76) has to be
taken into account:

ωn,D=6 =

[
Θ~a
~b

(
1
2
∫ zAzB ~ω

)]3−n
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Θ~a
~b
(~0)
]3
E
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l=0

(
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(
1
2
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)
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×
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sgn(ρ)
(
γµρ(1) γ̄µρ(2) . . . γ̄µρ(2l) γµρ(2l+1) C

)
αβ
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Θ~a
~b

(
1
2

zA
∫

zρ(k)
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2

zB
∫

zρ(k)

~ω

)

×
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(
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2

zA
∫
zB

~ω

)
.

(5.79)

Similarly, Ωn,D=6 differs from ωn,D=4 by one power of (5.76):

Ωn,D=6 =

[
Θ~a
~b

(
1
2
∫ zAzB ~ω

)]4−n
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~b
(~0)
]3
E
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sgn(ρ)
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)
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~b
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(5.80)

From the six-dimensional calculations it is easy to obtain the results in D = 10 dimen-
sions. They simply differ by two powers of (5.76):

ωn,D=10 =
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)
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(5.81)
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Ωn,D=10 =
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(5.82)

The proof of these results for Ωn and ωn in six, eight and ten dimensions can be carried
over almost literally from the four-dimensional case. The only explicit dependence on the
number of dimensions D lies in the pre-factors

[
Θ~a
~b

(
1
2
∫ zAzB ~ω

)]D/2−n

[
Θ~a
~b
(~0)
]D/2

E
D/8−1/2
AB

and

[
Θ~a
~b

(
1
2
∫ zAzB ~ω

)]D/2+1−n

[
Θ~a
~b
(~0)
]D/2

E
D/8
AB

. (5.83)

These are constructed such to match the leading behavior in the OPEs of the two spin
fields for zA → zB and can be explained from (5.76).
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CHAPTER 6

A Full Amplitude

The previous considerations of RNS correlation functions in various dimensions enable us to
evaluate the tree-level amplitude of two gauge fields and four gauginos. The motivation for
considering this six-point amplitude lies in the fact that it can be related to the amplitude
involving two gauge fields and two RR moduli. We quickly recap the idea of mapping an
amplitude involving only open strings onto an open-closed amplitude [83] and present the
calculation of the open string amplitude. Mathematical details are deferred to Appendix
D. The calculations in the following constitute work in progress and are based on [4].

6.1 Open vs. Open-Closed Amplitudes

A generalization of the KLT relations [82] between open and open-closed amplitudes on
the disk has been achieved in [83]. In contrast to their open string counterparts the vertex
operators of closed strings are not inserted on the boundary of the disk D, but some-
where in the complex plane C. This makes the integration over the closed vertex operator
positions more involved and consequently the calculation of amplitudes involving closed
strings more difficult. These new relations between open and open-closed amplitudes pro-
vide an interesting approach to investigate the latter because pure open string amplitudes
are well-studied [113, 115, 156, 157].

A general amplitude involving No open and Nc closed strings assumes the form1

A =
∑

ρ∈SNo−1

∫

R

No∏

i=1

dxi

∫

H

Nc∏

j=1

d2zj V−1
CKG

〈 No∏

i=1

Vo(xi)
No∏

j=1

Vc(xj , x̄j)
〉
. (6.1)

The vertex operators of the open strings are inserted on the boundary of the disk and
are integrated along the real axis R. The closed strings, however, are inserted at points
inside the upper half plane H. As described in detail by Stieberger the integrals over
the holomorphic and antiholomorphic coordinates z and z̄ in (6.1) can be deformed for a

1The upper half complex plane H can be obtained from C via a Z2 identification z = z̄.
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certain kinematic Ki in such a way that they also run along the real axis. The resulting
amplitude can be interpreted as a pure open string amplitude involving No + 2Nc open
strings. Polynomials in the amplitude of the form (xi − ξj)

a, where ξj are new variables
for the zj, create branch points and one has to include phase factors from the contour
deformations.

In particular, the amplitude A of two gauge fields and two massless NSNS string
modes, as well as the amplitude A involving six gauge fields, has been considered in [83].
The vertex operator of the closed string mode reads in the (−1,−1) ghost picture

VG(z, z̄, ε, q) = gc ǫµν ψ
µ(z) ψ̃ν(z̄) e−φ(z) e−φ̃(z) eiqX(z,z̄) , (6.2)

where the polarization tensor ǫµν fulfills the on-shell constraint ǫµν q
µ = 0. Comparing this

with (2.57) shows that the NSNS vertex operator has twice the field content than that
of a gauge field. Assigning the polarization vectors ξ and momenta ki of two gauge field
vertices in the following way to q and ǫµν in (6.2),

k1 =
1

2
q , k2 =

1

2
q , ξµ ⊗ ξν = ǫµν , (6.3)

one finds that the open-closed and open amplitude satisfy the relation

A(1, 2; 3, 4) = sin
(πs
2

)
sin(πs)A(1, 6, 3, 5, 4, 2)−sin

(πs
2

)
sin(πt)A(1, 3, 5, 4, 2, 6) , (6.4)

where s ≡ 2α′k1k2, t ≡ 2α′k1k3 are the Mandelstam variables. The focus of [4] will be the
extension of this formula to the amplitude involving two gauge fields and two RR moduli.
The vertex operators of the RR field strength Fn+1 is given by [43]

V
(−1/2,−1/2)
Fn+1

(z, z̄, f, q) = gc fµ0...µn
(
P−Γ

[µ0 . . .Γµn]
)αβ

× Sα(z) S̃β(z̄) e
−φ(z)/2 e−φ̃(z̄)/2 eiqX(z,z̄) , (6.5)

where the spin fields S, the ten-dimensional gamma matrices Γ and the chiral projection
operator P− = (1−Γ11)/2 appear. The polarization tensor fµ0...µn is the Fourier transform
of the RR n-form potential cn and satisfies the on-shell condition cµµ2...µn q

µ = 0. On
the open string side we must consider the amplitude involving two gauge fields and four
gauginos as can be seen by comparing the field content in (6.5) with (2.48). The calculation
of the pure open amplitude is presented in the following.

6.2 Prerequisites

In the following we consider compactifications of type I or type II string theory which yield
N = 4 SYM in four space-time dimensions. The vector multiplet in this case consists of
the following massless fields [158]: one gauge field Aµ, four gauginos λI and three complex
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scalars φJ . The vertex operators of these fields have been introduced in Chapter 2.2. For
gauginos λa, λ̄a of negative and positive helicity these have the form

V
(−1/2)

λa,I
(z, u, k) = gλ T

a uα Sα(z) Σ
I(z) e−φ(z)/2 eikX(z) ,

V
(−1/2)

λ̄a,I
(z, u, k) = gλ T

a ūβ̇ S
β̇(z) Σ̄I(z) e−φ(z)/2 eikX(z) . (6.6)

In the following calculation of the tree-level amplitude involving two gluons and four gaug-
inos, we insert the latter in the −1/2 ghost picture. This is already enough to cancel the
superghost background charge of +2 on the disk. The gluons must therefore be inserted
in the 0 ghost picture. This vertex operator can be derived from the canonical vertex via
the BRST operator as shown previously. One finds:

V
(0)
Aa (z, ξ, k) =

gA
(2α′)1/2

T a ξµ
[
i ∂Xµ(z) + 2α′ (k ψ(z)

)
ψµ(z)

]
eikX(z) . (6.7)

In the expressions above ψ and S are the four-dimensional RNS fields, X is the bosonic
space-time coordinate and φ is a scalar bosonizing the superghost system. Furthermore,
T a are the Chan–Paton factors accounting for the gauge degrees of freedom of the two open
string ends. The internal spin fields Σ have an explicit realization as pure exponentials
[159]:

Σ1 = e
i
2
(H1+H2+H3) , Σ2 = e

i
2
(H1−H2−H3) ,

Σ3 = e
i
2
(−H1+H2−H3) , Σ4 = e

i
2
(−H1−H2+H3) . (6.8)

The vertex operators (6.6) and (6.7) are BRST closed and the polarization vectors and
spinors are therefore subject to the on-shell constraints:

tansversality: ξµk
µ = 0 ,

Dirac equation: /ku = /kū = 0 . (6.9)

As we are dealing with massless particles, k2 = 0. The open string vertex couplings are
related by

gA = (2α′)1/2 gYM , gλ = (2α′)1/2 α′1/4 gYM . (6.10)

The four-dimensional gauge coupling gYM can be expressed in terms of the ten-dimensional
coupling g10 and the dilaton field φ10 through the relation gYM = g10 e

φ10/2 [36]. As derived
in [35], we also have to include the factor

CD2 =
1

g2YM α
′2 . (6.11)

It has been described in Chapter 2 that the world-sheet of the tree-level scattering
process is equivalent to the upper half plane. The vertex operators of the respective fields
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are inserted on the real axis. The color-stripped partial amplitude then takes the form

A(Aa1 , Aa2 , λI3, λ̄I4, λI5, λ̄I6) = C−1
D2

∫

z1<...<z6

6∏

k=1

dzk V−1
CKG

×
〈
VAa1 (z1) VAa2 (z2) Vλa3,I3 (z3) Vλ̄a4,I4 (z4) Vλa5,I5 (z5) Vλ̄a6,I6 (z6)

〉
. (6.12)

The positions of the vertex operators are integrated over the real axis, where the cyclic
ordering z1 < . . . < z6 is retained. The CFTs of the different fields appearing in the vertex
operators have been greatly discussed in Chapter 2. Only the four-dimensional RNS fields
interact with each other, all others decouple. Hence, (6.12) splits into separate correlators:

A = 4α′ g4YM

∫

z1<···<z6

6∏

k=1

dzk V−1
CKG ξµ1 ξµ2 u

α
I3
ūI4 β̇ u

α
I5
ūI6 δ̇

×
〈
e−φ(z3)/2 e−φ(z4)/2 e−φ(z5)/2 e−φ(z6)/2

〉〈
ΣI3(z3) Σ̄

I4(z4) Σ
I5(z5) Σ̄

I6(z6)
〉

×
〈 6∏

i=1

eikiρiX
ρi (zi)

[
i∂Xµ1(z1) + 2α′ (k1ψ1)ψ

µ1(z1)
] [
i∂Xµ2(z2) + 2α′ (k2ψ2)ψ

µ2(z2)
]

Sα(z3)S
β̇(z4)Sγ(z5)S

δ̇(z6)
〉
. (6.13)

6.3 The Separate Correlators

Let us consider each correlation function in (6.13) separately. The ghost correlator which
only consists of exponentials is easy to calculate,

〈 N∏

i=1

e qiφ(zi)
〉

=
n∏

i,j=1
i<j

z
−qi qj
ij , (6.14)

where we make again use of the notation zij ≡ zi − zj .
The correlator consisting of the internal spin fields can be calculated from the pure spin

field RNS correlator in six dimensions (3.88):

〈
ΣI3(z3) Σ̄

I4(z4) Σ
I5(z5) Σ̄

I6(z6)
〉

=

(
z34 z36 z45 z56

z35 z46

)1/4

×
[
δI3I4 δI5I6

z34 z56
+
δI3I6 δI4I5

z36 z45

]
. (6.15)

Here we have switched to Euclidean signature and replaced the charge conjugation matrices
Cα

β̇ by Kronecker deltas. The same result can be obtained using bosonization. For this
purpose (6.8) is inserted into (2.16) and the Kroneckers are tediously put in afterwards
by hand. This shows the elegance of our covariant approach to the calculation of RNS
correlators.
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i, j 2 3 4 5 6

1 s1 −s1 − s2 + t1 s2 + s5 − t1 − t2 −s5 − s6 + t2 s6
2 s2 −s2 − s3 + t2 s3 + s6 − t2 − t3 −s1 − s6 + t3
3 s3 −s3 − s4 + t3 s1 + s4 − t1 − t3
4 s4 −s4 − s5 + t1
5 s5

Table 6.1: Kinematic quantities sij expressed through sk and tk as defined in (6.17).

The bosonic string coordinate fields Xµ do not couple to the RNS fields ψµ and Sα, S
β̇.

The last correlator in (6.13) therefore factorizes into an RNS part and a string coordinate
part. The relevant correlators in the latter sector are nicely summarized, e.g., in Appendix
A of [67]:

〈 n∏

i=1

eikiX(zi)
〉

=
n∏

i,j=1
i<j

∣∣zij
∣∣2α′kikj , (6.16a)

〈
∂Xµ(za)

n∏

i=1

eikiX(zi)
〉

=

(
− 2iα′

n∑

r=1

kµr
zar

)〈 n∏

i=1

eikiX(zi)
〉
, (6.16b)

〈
∂Xµ(z1) ∂X

ν(z2)

n∏

i=1

eikiX(zi)
〉

=

(
− 4α′2

n∑

r,s=1

kµr k
ν
s

z1r z2s
− 2α′ η

µν

z122

)〈 n∏

i=1

eikiX(zi)
〉
.

(6.16c)

The powers of the z-coefficients in (6.16a) are given by the Mandelstam variables sij ≡
α′(ki+kj)

2 = 2α′ ki kj . The number of independent kinematic quantities for the scattering
of n massless particles is given by 1/2n (n−3) according to [160]. In accordance with [114]
we choose to work with the following nine terms:

s1 ≡ s12 , s4 ≡ s45 , t1 ≡ α′(k1 + k2 + k3)
2 ,

s2 ≡ s23 , s5 ≡ s56 , t2 ≡ α′(k2 + k3 + k4)
2 ,

s3 ≡ s34 , s6 ≡ s61 , t3 ≡ α′(k3 + k4 + k5)
2 . (6.17)

The expressions for other kinematic quantities sij in terms of these nine are found in Table
6.1. The correlator (6.16a) then reads:

〈 n∏

i=1

eikiX(zi)
〉

=

∣∣∣∣
z12 z36
z13 z26

∣∣∣∣
s1
∣∣∣∣
z14 z23
z13 z24

∣∣∣∣
s2
∣∣∣∣
z25 z34
z24 z35

∣∣∣∣
s3
∣∣∣∣
z36 z45
z35 z46

∣∣∣∣
s4
∣∣∣∣
z14 z56
z15 z46

∣∣∣∣
s5

∣∣∣∣
z16 z25
z15 z26

∣∣∣∣
s6
∣∣∣∣
z13 z46
z14 z36

∣∣∣∣
t1
∣∣∣∣
z15 z24
z14 z25

∣∣∣∣
t2
∣∣∣∣
z26 z35
z25 z36

∣∣∣∣
t3

. (6.18)
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The sums over the momenta in (6.16b) and (6.16c) can be reduced using momentum
conservation. By eliminating k6 = −∑5

i=1 ki we obtain

6∑

r=1

kµr
zar

=
5∑

r=1

kµr
zr6

zar za6
,

6∑

r,s

kµr k
ν
s

z1r z2s
=

5∑

r,s

kµr k
ν
s

zr6 zs6
z1r z16 z2s z26

, (6.19)

where once again the z-crossing relation

zij zkl = zik zjl + zil zkj (6.20)

has been used.
The last and most difficult correlators to calculate are the four-dimensional RNS cor-

relation functions. Out of (6.13) three distinct types arise, namely the pure spin field
correlator 〈

Sα(z3)Sβ̇(z4)Sγ(z5)Sδ̇(z6)
〉
, (6.21)

the two six-point functions consisting of two fermions and four spin fields,

〈
ψρ1(z1)ψ

µ1(z1)Sα(z3)Sβ̇(z4)Sγ(z5)Sδ̇(z6)
〉
, (6.22a)

〈
ψρ2(z2)ψ

µ2(z2)Sα(z3)Sβ̇(z4)Sγ(z5)Sδ̇(z6)
〉
, (6.22b)

as well as the eight-point function

〈
ψρ1(z1)ψ

µ1(z1)ψ
ρ2(z2)ψ

µ2(z2)Sα(z3)Sβ̇(z4)Sγ(z5)Sδ̇(z6)
〉
. (6.23)

This last correlator is the most difficult to obtain and therefore poses the bottle neck of
the calculation of the complete amplitude. Nevertheless results for all these correlation
functions have been derived in Chapter 4. Using (4.5) one finds:

〈
Sα(z3)Sβ̇(z4)Sγ(z5)Sδ̇(z6)

〉
= − 1

(z35 z46)1/2
εα3α5 εβ̇δ̇ . (6.24)

The fermions ψρi and ψµi in (6.22) and (6.23) stem from the same gauge boson vertex
and therefore come with the same world-sheet position zi. This leads to simplifications
as certain coefficients in the result will vanish due to zii = 0. Further cancellations arise
if ηρiµi appears in the index terms. On account of (6.13) this gives rise to the Lorentz
product ki ξi which vanishes as a consequence of transversality.

Keeping this in mind it is possible to evaluate the correlators (6.22a) and (6.22b). At
first, the total expression seems to become singular when adopting the coefficients in (4.12),
i.e. z2 → z1 for (6.22a) and z1 → z2 for (6.22b). However, using the non-minimal form
(4.13) all terms remain finite while only the last term involving ηµiρi becomes singular.
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Transversality causes this term to vanish and one obtains for the relevant non-singular
parts of the correlation functions:

〈
ψρ1(z1)ψ

µ1(z1)Sα(z3)Sβ̇(z4)Sγ(z5)Sδ̇(z6)
〉
=

−1

2 (z13 z14 z15 z16) (z35 z46)1/2

×
(
σρ1
αβ̇
σµ1
γδ̇
z14 z15 z36 − σρ1

αδ̇
σµ1
γβ̇
z15 z16 z34 − σρ1

γδ̇
σµ1
αβ̇
z13 z16 z45 − σρ1

γβ̇
σµ1
αδ̇
z13 z14 z56

)
,

(6.25a)
〈
ψρ2(z2)ψ

µ2(z2)Sα(z3)Sβ̇(z4)Sγ(z5)Sδ̇(z6)
〉
=

−1

2 (z23 z24 z25 z26) (z35 z46)1/2

×
(
σρ2
αβ̇
σµ2
γδ̇
z24 z25 z36 − σρ2

αδ̇
σµ2
γβ̇
z25 z26 z34 − σρ2

γδ̇
σµ2
αβ̇
z23 z26 z45 − σρ2

γβ̇
σµ2
αδ̇
z23 z24 z56

)
.

(6.25b)

Cancellations of the same type occur for the correlator (6.23), however the result remains
rather lengthy:
〈
ψρ1(z1)ψ

µ1(z1)ψ
ρ2(z2)ψ

µ2(z2)Sα(z3)Sβ̇(z4)Sγ(z5)Sβ̇(z6)
〉

=
−1

(z13 z14 z15 z16 z23 z24 z25 z26)(z35 z46)1/2
×
[(
ηρ1µ2 ηµ1ρ2 − ηρ1ρ2 ηµ1µ2

)(z13 z14 z25 z26
z12

)2

− 1

2

[
ηρ1ρ2 (ε σ̄µ1 σµ2)β̇δ̇ + ηµ1µ2 (ε σ̄ρ1 σρ2)β̇δ̇ − ηρ1µ2 (ε σ̄µ1 σρ2)β̇δ̇ − ηµ1ρ2 (ε σ̄ρ1 σµ2)β̇δ̇

]
εαγ

× z213 z
2
25 z14 z26 z46
z12

− 1

2

[
ηρ1ρ2 (σµ1 σ̄µ2 ε)αγ + ηµ1µ2 (σρ1 σ̄ρ2 ε)αγ − ηρ1µ2 (σµ1 σ̄ρ2 ε)αγ − ηµ1ρ2 (σρ1 σ̄µ2 ε)αγ

]
εβ̇δ̇

× z214 z
2
26 z13 z25 z35
z12

+
1

2

[
ηµ1µ2 (ε σ̄ρ1 σρ2)β̇δ̇ εαγ − ηµ1ρ2 (ε σ̄ρ1 σµ2)β̇δ̇ εαγ + ηρ1ρ2 σµ1

αβ̇
σµ2
γδ̇

− ηρ1µ2 σµ1
αβ̇
σρ2
γδ̇

]

× z12 z13 z26 z35 z45 z46

+
1

2

[
ηρ1ρ2 σµ1

αβ̇
σµ2
γδ̇

+ ηµ1µ2 σρ1
αβ̇
σρ2
γδ̇

− ηρ1µ2 σµ1
αβ̇
σρ2
γδ̇

− ηµ1ρ2 σρ1
αβ̇
σµ2
γδ̇

]
z13 z15 z24 z26 z35 z46

+
1

4

[
σρ1
αβ̇

(σµ1 σ̄ρ2 σµ2)γδ̇ − σµ2
γβ̇

(σρ1 σ̄µ1 σρ2)αδ̇

]
z13 z14 z25 z26 z35 z46

+
1

4
(ε σ̄ρ1 σµ1 σ̄ρ2 σµ2)β̇δ̇ εαγ z

2
46 z13 z15 z23 z25 +

1

4
(σρ1 σ̄µ1 σρ2 σ̄µ2 ε)αγ εβ̇δ̇ z

2
35 z14 z16 z24 z26

+
1

4
σµ2
γδ̇

(σρ1 σ̄µ1 σρ2)αβ̇ z14 z16 z23 z25 z35 z46 −
1

4
σµ1
γδ̇

(σρ2 σ̄µ2 σρ1)αβ̇ z12 z13 z26 z35 z45 z46

− 1

4
σρ1
γβ̇

(σµ1 σ̄ρ2 σµ2)αδ̇ z13 z15 z24 z26 z35 z46 +
1

4
σρ2
γβ̇

(σρ1 σ̄µ1 σµ2)αδ̇ z12 z14 z25 z35 z36 z46

]
.

(6.26)
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All z coefficients in the RNS correlators (6.24)-(6.26) appear with integer powers apart
from the factor (z35 z46)

−1/2. Combining this term with the ghost correlator (6.14) and the
expression for the internal spin fields (6.15),

F ≡ 1

z35 z46

(
δI3I4 δI5I6

z34 z56
+
δI3I6 δI4I5

z36 z45

)
, (6.27)

shows that in total only integer powers of z’s enter the amplitude. By careful bookkeeping
we find that in total every zi appears with two negative powers. This coincides with the
requirement that the amplitude must behave as z−2h

i = z−2
i for zi → ±∞, where h = 1 is

the conformal weight of the vertex operators.
This fact is important for gauging the residual SL(2,R)/Z2 symmetry of the amplitude.

The volume factor of the conformal Killing group V−1
CKG is canceled by fixing three positions

zi, zj , zk and inserting the c-ghost correlator

〈
c(zi) c(zj) c(zk)

〉
= zij zik zjk . (6.28)

For the moment we only fix z1 at minus infinity, two further finite points zA, zB will be
specified later. Equation (6.28) adds two positive powers in z1 to the amplitude. This
contains already two negative powers which we denote as (z1m z1n)

−1. The powers simply
cancel in total:

lim
z1→−∞

z1A z1B
z1m z1n

= lim
z1→−∞

(
1− zAm

z1m

) (
1− zBn

z1n

)
= 1 . (6.29)

This proves that under z1 → −∞ the amplitude remains mathematically well defined and
that no further cancellations appear2. One can then strike out all appearing z1 terms in
the numerators and denominators of (6.16b), (6.16c), (6.18), (6.25) and (6.26), but has to
be alert to potential minus signs. We are now ready to construct the full amplitude out of
the separate correlators.

6.4 A First Result

Combining carefully the various correlators calculated in Chapter 6.3 it is then possible to
obtain a first result for the partial amplitude (6.12):

A = 4α′3 g4YM

∫

z2<···<z6

6∏

k=2

dzk δ(zi − zA) δ(zj − zB) zAB F

×
∣∣∣∣
z36
z26

∣∣∣∣
s1
∣∣∣∣
z23
z24

∣∣∣∣
s2
∣∣∣∣
z25 z34
z24 z35

∣∣∣∣
s3
∣∣∣∣
z36 z45
z35 z46

∣∣∣∣
s4
∣∣∣∣
z56
z46

∣∣∣∣
s5
∣∣∣∣
z25
z26

∣∣∣∣
s6
∣∣∣∣
z46
z36

∣∣∣∣
t1
∣∣∣∣
z24
z25

∣∣∣∣
t2
∣∣∣∣
z26 z35
z25 z36

∣∣∣∣
t3

×
[
K1 +

z36
z23

K2 +
z46
z24

K3 +
z56
z25

K4 +
z36
z26

K5 +
z46
z26

K6 +
z56
z26

K7 +
z25 z26
z23 z24

K8

2All cancellations are thus due to transversality and momentum conservation.
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+
z25 z46
z23 z24

K9 +
z26 z35
z23 z24

K10 +
z35 z46
z23 z25

K11 +
z36

z23 z26

(
z46K12 + z56K13

)

+
z46

z24 z26

(
z36K14 + z56K15

)
+

z56
z25 z26

(
z36 K16 + z46 K17

)

+
z34

z23 z24

(
z36K18 + z46K19 + z56 K20

)
+

z235
z23 z25

K21

+
z45

z24 z25

(
z36K22 + z46K23 + z56 K24

)]
. (6.30)

In this result 24 kinematical terms Ki appear. These consist of index terms of the four-
dimensional RNS correlators which are multiplied with momenta, polarization vectors and
spinors, like

K18 = 2 (k3 ξ1) k2µ ξ2ν (u3 σ
µ ū6) (u5 σ

ν ū4) . (6.31)

Their explicit forms are collected in Appendix D.1. The delta function and the term zAB
come into play from the two vertex positions that can still be fixed. It is useful to introduce
the following short-hand notation:

A ≡ 4α′3 g4YM

24∑

i=1

HiKi . (6.32)

The terms Hi include the integrals over the vertex operator positions and the corresponding
z coefficient for each kinematic factor.

6.5 Gauge Invariance

Two gauge bosons enter the amplitude. Therefore A has to be invariant under gauge
transformations acting on these gluon fields, Aµ → Aµ+∂µχ. Consequently the amplitude
must vanish for pure gauge configurations of the gluons, Aµ ∼ ∂µχ, as this cannot yield
any non-zero physical observables.

An on-shell gauge transformation is implemented in the form that the amplitude must
not change under shifting the polarization ξµ → ξµ + kµ. A pure gauge configuration
is then obviously given for ξµ = kµ and hence the amplitude must vanish. Many of the
terms entering the kinematics Ki in this case coincide. If an independent set is chosen the
vanishing of the amplitude must then be due to relations between the integrals. This turns
out to be a powerful tool to check the consistency of the expression (6.30) and furthermore
yields relations between the integral terms which can be used to cast the amplitude into
shorter form.

The detailed calculation of inspecting gauge invariance for the first gluon field is given
in Appendix D.2. One sets ξ1 = k1, evaluates the kinematical terms Ki for this choice and
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deduces relations for the integral terms Hi. The following identities are found:

0 = (1− s1)H1 + (s1 + s2 − t1)H5 − (s2 + s5 − t1 − t2)H6 + (s5 + s6 − t2)H7 ,

0 = − (s2 − t1)H2 + (s1 + s2 − t1)H5 + (s2 + s5 − t1 − t2)H12 − (s5 + s6 − t2)H13 ,

0 = (s1 + s2 + s5 − t1 − t2)H3 − (s2 + s5 − t1 − t2)H6 − (s1 + s2 − t1)H14

− (s5 + s6 − t2)H15 ,

0 = (s1 − s5 − s6 + t2)H4 + (s5 + s6 − t2)H7 − (s1 + s2 − t1)H16

+ (s2 + s5 − t1 − t2)H17 ,

0 = s1(H2 −H3)− (s1 + s2 − t1)H18 + (s2 + s5 − t1 − t2)H19 − (s5 + s6 − t2)H20 ,

0 = s1(H3 −H4)− (s1 + s2 − t1)H22 + (s2 + s5 − t1 − t2)H23 − (s5 + s6 − t2)H24 .
(6.33)

A similar calculation for the second gluon yields the following identities:

0 = (1− s1)H1 + s2H2 − (s2 + s3 − t2)H3 + (s3 + s6 − t2 − t3)H4 ,

0 = s2H2 − (s1 + s2)H5 − (s2 + s3 − t2)H14 + (s3 + s6 − t2 − t3)H16 ,

0 = − (s2 + s3 − t2)H3 − (s1 − s2 − s3 + t2)H6 + s2H12 + (s3 + s6 − t2 − t3)H17 ,

0 = (s3 + s6 − t2 − t3)H4 − (s1 + s3 + s6 − t2 − t3)H7 + s2H13 − (s2 + s3 − t2)H15 .
(6.34)

These equations provide important consistency checks for the calculation. Their correctness
can be checked directly by evaluating the integrals appearing in Hi and expressing the
results in a minimal basis of hypergeometric functions [118]. Apart from these, we obtain
relations of a different type,

0 =H2 −H5 −H14 −H18 , 0 =H14 −H16 −H22 ,

0 =H4 −H7 −H15 +H24 , 0 =H13 −H15 −H20 ,

0 =H11 −H19 −H23 , 0 =H11 −H12 +H17 , (6.35)

where no Mandelstam variables appear. One can check easily that these are correct. We
only have to insert the correct expressions forHi from (6.30) and merge the partial fractions.
The last equation in (6.35) for example holds on account of

z46

(
z35

z23 z25
− z36
z23 z26

+
z56

z25 z26

)
= 0 . (6.36)

The equations in (6.35) simply state that we have not fully reduced the z coefficients in
(6.30), but another six can be eliminated. Nevertheless, they are strong consistency checks
and together with (6.33) and (6.34) can be used to cast A into shorter form.
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6.6 Spinor Products

It is well-known from field theory that compact expressions for (partial) scattering ampli-
tudes can be obtained when the spinor helicity formalism is used. Especially the MHV
amplitude of n gluons in field theory, also known as Parke–Taylor amplitude [119, 161],
assumes a particular simple form in this notation. The spinor helicity formalism has first
been introduced in [162] to describe multiple bremsstrahlung processes in massless gauge
theories. Further details on the topic are found in [163, 164] and in Appendix E.

In the spinor helicity formalism one considers interactions where the massless external
particles are definite left- or right-handed polarization states, i.e. helicity − or + respec-
tively. The key quantities are two-component chiral spinors which we simply denote by
ki α and k̄i α̇ for the i = 1, . . . , n particles. Products of these spinors like

〈i j〉 ≡ ki
α kj α , [i j] ≡ k̄i α̇ k̄j

α̇ (6.37)

appear as the new kinematic variables in the amplitude. In our conventions the spinors
are commuting and due to the antisymmetry of the ε tensor

〈i j〉 = −〈j i〉 , [i j] = −[j i] , 〈i i〉 = [j j] = 0 . (6.38)

Let us now discuss the origin of the spinors. Any four-vector kµ can be contracted with
the matrices σµ = (−1,−σi), σ̄µ = (−1, σi),

kαα̇ ≡ kµ σ
µ
αα̇ , kα̇α ≡ kµ σ̄

µ α̇α , (6.39)

where σi are the standard Pauli matrices. If kµ is the on-shell momentum of a massless
particle and therefore satisfies k2 = 0, it is possible to show that the expressions in (6.39)
factorize as

kαα̇ = kα kα̇ , k̄α̇α = kα̇ kα . (6.40)

The spinors kα, k̄α̇ are therefore called momentum spinors. If the particle with momentum
kµ is a fermion the momentum spinors additionally satisfy the Dirac equation and we can
identify

uα(k) = kα , ūα̇(k) = k̄α̇ . (6.41)

In the spinor helicity formalism the polarization vectors of left- and right-handed gluons
with momentum k are given by

ξµ−(k, r) = − 1√
2

σ̄µ α̇α r̄α̇ kα
[k r]

, ξµ+(k, r) = − 1√
2

σ̄µ α̇α k̄α̇ rα
〈r k〉 , (6.42)

where r is an arbitrary reference momentum. One can derive that ξµ is shifted by an
amount proportional to kµ if the reference momentum is changed. This corresponds to an
on-shell gauge transformation and therefore the choice of r is in fact a gauge choice.

In the following we apply the spinor helicity formalism to the expression (6.30). We
choose the two gluons in (6.12) to have different helicity. Then the amplitude can be related
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via SUSY Ward identities to the six gluon NMHV amplitude [165, 166]. It is convenient
to choose negative helicity for the first gluon and set its reference momentum to k4. The
second gluon then has positive helicity and we take k5 as reference momentum. Many of
the kinematics Ki then vanish due to 〈ii〉 = [jj] = 0 as shown in Appendix D.3. The
remaining ones are

K1 = 2 (1− 1/s1)
〈12〉[12]〈15〉〈35〉[24][46]

[14]〈52〉 ,

K2 = −2
〈35〉[23][46]
[14]〈52〉

(
〈15〉〈23〉[24] + 〈13〉〈56〉[46]

)
,

K3 = −2
〈12〉[35][24]2
[14]〈52〉

(
〈52〉[26] + 〈54〉[46]

)
,

K7 = 2
〈15〉2[12][46]
[14]〈52〉

(
〈31〉[14] + 〈35〉[54]

)
,

K13 = 2
〈15〉〈35〉[23][46]

[14]〈52〉
(
〈31〉[14] + 〈35〉[54]

)
,

K5 = 2
〈13〉[46]
[14]〈52〉

(
〈51〉[14] + 〈53〉[34]

)(
〈51〉[12] + 〈53〉[32]

)
,

K14 = 2
〈13〉[24]
[14]〈52〉

(
〈51〉[14] + 〈53〉[34]

)(
〈52〉[26] + 〈54〉[46]

)
,

K15 = −2
〈15〉[24]
[14]〈52〉

(
〈31〉[14] + 〈35〉[54]

)(
〈52〉[26] + 〈54〉[46]

)
. (6.43)

Together with the integral terms Hi this constitutes the result of the partial amplitude for
a specific helicity choice.

6.7 The Field Theory Limit

In order to discuss the integral terms in more detail it is necessary to fix the two remaining
vertex operator positions in (6.30). For z2 = 0 and z3 = 1 the integration region of the
remaining positions is

I = {z4, z5, z6 ∈ R : 1 < z4 < z5 < z6 <∞} . (6.44)

Performing the change of variables z4 → 1/x, z5 → 1/xy, z6 → 1/xyz, where x, y, z run
from 0 to 1, the integral terms Hi assume the generic form [118]:

F

[
a, b, d, e, g
c, f, h, j

]
≡
∫ 1

0

dx

∫ 1

0

dy

∫ 1

0

dz xa yb zc (1− x)d (1− y)e (1− z)f

(1− xy)g (1− yz)h (1− xyz)j . (6.45)

The function F can be expressed through triple hypergeometric functions [118, 167–169],
where the powers a, . . . , j are some combinations of the nine Mandelstam variables (6.17).
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Expanding F with respect to these powers yields the momentum expansion of the integral
which is given by a Euler-Zagier series [170]. The lowest-order terms correspond to the
field theory limit of the amplitude, whereas higher-order terms, coming with powers of α′k

and (multi-valued) zeta factors of order k, are stringy corrections to the interaction. For
simplicity we state in the following only the field theory limit of the integral terms Hi that
we have calculated for the choice I3 = Ī4 = I5 = Ī6 of the internal spin fields. The term F
in (6.30) then becomes:

F =
1

z34 z36 z45 z56
. (6.46)

Performing the momentum expansion of the integrals corresponding to the kinematics
(6.43) yields at lowest order3:

H1 =
1

s1 s3 s5
+

1

s1 s4 t1
+

1

s1 s5 t1
+

1

s1 s3 t3
+

1

s1 s4 t3
− 1

s1 s1 s3
− 1

s1 s1 s4

− 1

s1 s1 s5
+

s2/s1
s1 s4 t1

+
s2/s1
s1 s5 t1

+
s6/s1
s1 s3 t3

+
s6/s1
s1 s4 t3

+
t2/s1
s1 s3 s5

,

H2 =
1

s1 s3 s5
+

1

s2 s4 s6
+

1

s1 s4 t1
+

1

s2 s4 t1
+

1

s1 s5 t1
+

1

s2 s5 t1
+

1

s2 s5 t2

+
1

s3 s5 t2
+

1

s2 s6 t2
+

1

s3 s6 t2
+

1

s1 s3 t3
+

1

s1 s4 t3
+

1

s3 s6 t3
+

1

s4 s6 t3
,

H3 =
1

s1 s3 s5
+

1

s3 s5 t2
+

1

s3 s6 t2
+

1

s1 s3 t3
+

1

s1 s4 t3
+

1

s3 s6 t3
+

1

s4 s6 t3
,

H5 =
1

s1 s3 s5
+

1

s1 s4 t1
+

1

s1 s5 t1
+

1

s1 s3 t3
+

1

s1 s4 t3
,

H7 =
1

s1 s3 t3
+

1

s1 s4 t3
,

H13 =
1

s2 s4 s6
+

1

s2 s6 t2
+

1

s3 s6 t2
+

1

s3 s6 t3
+

1

s4 s6 t3
,

H14 =
1

s3 s5 t2
+

1

s3 s6 t2
+

1

s3 s6 t3
+

1

s4 s6 t3
,

H15 =
1

s3 s6 t2
+

1

s3 s6 t3
+

1

s4 s6 t3
.

(6.47)

The kinematical quantities si and tj are defined with a power of α′ in (6.17). The prefactor
4α′3 g4YM in (6.32) cancels all powers of α′ in the denominators as required in the field
theory limit.

3Here we have absorbed the term (s1 − 1)/s1 appearing in K1 into H1.
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The results presented in this Chapter are the starting points for further investigations
[4]. Dual-Ward identities [163], Kleiss–Kuijf [171] and BCJ identities [84] between different
partial amplitudes can be checked as well as their generalizations in string theory. Most
important, the exact mapping between (6.32) and the amplitude of two gauge fields and
four RR bulk fields can be studied as proposed by [83].



CHAPTER 7

Conclusion

Scattering amplitudes in string theory enjoy a great range of applications. Compactification
scenarios of string theory with a string scale in the TeV range are natural realizations of
the ADD proposal to address the hierarchy problem of the SM. String amplitudes in such
a model with perturbative string coupling predict signals which can be detected at LHC
and future hadron colliders. From a conceptual point of view scattering amplitudes can
also provide new insights into the “gravity side” of string theory via the KLT relations and
the recently discovered duality between open and open-closed amplitudes [83].

7.1 Summary

There are four main results obtained in this thesis. In the calculation of scattering ampli-
tudes in the RNS formalism correlation functions of NS fermions and R spin fields must
be evaluated, but their interacting nature forms an obstacle. In Chapters 3 and 4 we
focused on the calculation of such correlators at tree-level. We showed how these n-point
functions in four, six, eight and ten space-time dimensions can be evaluated in general by
analyzing their Lorentz structure and singular properties dictated by the underlying CFT.
Another method, which we presented, rests on replacing NS fermions by spin fields and
then evaluating the pure spin field correlator.

In the separate dimensions we could profit from special properties. In four dimensions
one is able to completely solve the RNS CFT at tree-level. Fermions can be replaced by spin
fields and the resulting spin field correlator factorizes into a left- and right-handed part,
for which a general formula could be derived by induction. In this sense (3.77) and (3.82)
are important results of our work. Explicit expressions for all non-vanishing correlators in
four dimensions up to eight-point level were presented as well. Although the factorization
feature does not carry over to higher dimensions, we were able to calculate large classes
of tree-level correlators in six dimensions and find relations between distinct correlation
functions in eight dimensions via SO(8) triality.

Another focus of this work was the evaluation of RNS correlators for arbitrary loop
order. The necessary methods, in particular re-expressing the RNS fields in terms of
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SO(2) spin systems and calculating their loop correlators, were presented in Chapter 5.
We calculated all n-point functions up to at least n = 6. Of particular interest are the
findings for the correlators Ω and ω as given in (5.74)-(5.82). Such correlators in four
dimensions are the essential ingredients for string scattering amplitudes involving arbitrary
many gluons and at most two chiral fermions or gauginos. For string compactifications
with low string scale and weak string coupling these amplitudes give corrections to SM
processes which can be measured at hadron colliders. Most important, these amplitudes
are completely independent of the compactification details.

The index terms consisting of gamma and charge conjugation matrices play a key role
in the calculation of RNS correlators. Apart from carrying all space-time indices and
thus determining the Lorentz structure of the string interaction they can be regarded as
Clebsch–Gordan coefficients associated with a particular scalar representation in the tensor
product of the correlator. From this perspective the number of independent index terms is
simply given by the number of scalar representations. Determining this number via group
theory and then deriving relations between different terms was one of the most important
steps in the calculation of the RNS correlation functions. All identities which we derived
for the evaluations are collected in Appendix B.

While ten-dimensional RNS correlators enter the calculation of scattering amplitudes
in the non-compactified theory, the cases D = 4 and D = 6 apply to phenomenological
purposes, where they describe the interaction of the external and internal RNS fields.
Equipped with the previous result we were able to calculate the partial string amplitude
involving two gauge fields and four gauginos. The result (6.30) is gauge invariant which
yields various relations for the hypergeometric functions after integration over the vertex
operator positions. The kinematical terms in the partial amplitude were expressed through
spinor products for certain helicity choices and the field theory limit was presented.

7.2 Outlook

The findings in the last Chapter of this work are the starting point for further investigations,
especially matching the integrals to those stemming from the amplitude of two gauge fields
and two RR moduli. It will then be possible to explore the relations between open and
open-closed amplitudes as proposed in [83] in more detail and furthermore express the
brane-bulk couplings of the latter amplitude in terms of pure open couplings. This is the
main topic of [4].

A further issue worth exploring are RNS correlators that arise from the scattering of
chiral scalars and fermions. In type II these states stem from strings stretching between
different brane stacks near their intersection. The vertex operators involve internal spin
fields that have an explicit representation in terms of bosonic and fermionic twist operators.
Their conformal weight depends on the intersection angle, which makes their correlation
functions more difficult to evaluate. In particular it would be interesting whether one can
also calculate general classes of correlators as it was possible for the standard fermions and
spin fields in six dimensions.
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Gamma Matrices in D Dimensions

Gamma matrices Γµ play a key role in the interplay of vector- and spinor representations
of the Lorentz group SO(1, D − 1) in D dimensions. First of all, they can be viewed as
operators acting on the space of spinors whose anti-commutation relations are given by the
Clifford algebra. On the other hand, antisymmetric products Γµ1...µp of p gamma matrices,
multiplied by the charge conjugation matrix C, appear as Clebsch–Gordan coefficients in
the decomposition of bi-spinors to p forms. The tensor structure of an RNS correlation
function is expressed in terms of these products (Γµ1...µp C). Many of their properties, which
we present in the following, are needed for the calculation of RNS correlators. For further
information on Clifford algebras and spinors in higher dimensions the reader might refer
to [36, 136–138].

A.1 Notation and conventions

First of all let us fix our notation and conventions. In contrast to [172] we use the sign
convention of Wess & Bagger [21] for the Clifford algebra

{Γµ,Γν} = −2 ηµν . (A.1)

The Minkowski metric contains “mostly plus” entries, ηµν = diag(−1,+1, . . . ,+1). A
concrete representation of the Clifford algebra is not necessary for the following general
discussion. However, we state the gamma matrices which were used in the calculations of
the correlators in Chapters 4 and 5 at the end of this Chapter.

Dirac spinors furnish a representation of the Clifford algebra (A.1) and form a complex
vector space of dimensions 2D/2. In the case of even space-time dimensions D = 2m this
representation is reducible and can be decomposed into two irreducible representations of
dimension 2D/2−1 each. These are referred to as left- and right-handed, their elements are
called Weyl spinors of positive and negative chirality. Generic Dirac spinors Ξ live in the
direct sum of both irreducible subspaces and are written in component notation as
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ΞA =

(
ψα
χα̇

)
, ψα ≡ left-handed , χα̇ ≡ right-handed . (A.2)

The gamma matrices transform left-handed spinors into right-handed ones and vice versa.
Therefore one can write them as

(Γµ)A
B =

(
0 γµ

αβ̇

γ̄µ α̇β 0

)
, (A.3)

where the off-diagonal matrices are known as ‘generalized’ Pauli matrices. The Clifford
algebra (A.1) translates then into

γµ
αβ̇
γ̄ν β̇γ + γν

αβ̇
γ̄µ β̇γ = −2 δγα η

µν , γ̄µα̇β γνβγ̇ + γ̄ν α̇β γµβγ̇ = −2 δα̇γ̇ η
µν . (A.4)

The action of Γ on a Dirac spinor Ξ in index notation reads

(Γµ)A
B ΞB =

(
0 γµ

αβ̇

γ̄µ α̇β 0

) (
ψβ
χβ̇

)
=

(
γµ
αβ̇
χβ̇

γ̄µ α̇β ψβ

)
. (A.5)

Products of an even (odd) number of Γ matrices carry alternating products of γ and γ̄
matrices in their diagonal (off-diagonal) blocks:

(Γµ1 Γµ2 . . .Γµp)A
B =





(
(γµ1 γ̄µ2 . . . γ̄µp)α

β 0

0 (γ̄µ1 γµ2 . . . γµp)α̇β̇

)
: p even ,

(
0 (γµ1 γ̄µ2 . . . γµp)αβ̇

(γ̄µ1 γµ2 . . . γ̄µp)α̇β 0

)
: p odd .

(A.6)

Totally antisymmetric products of Γ matrices are defined in this work as

Γµ1...µp ≡ 1

p!

∑

ρ∈Sp

sgn(ρ) Γµρ(1) . . .Γµρ(p) . (A.7)

The Γ matrices alone obviously have the wrong index structure to serve as Clebsch–Gordan
coefficients for bi-spinors, especially for such constructed from spinors of the same chiral-
ity. Some kind of metric on spinor space is needed. This metric is known as the charge
conjugation matrix C:

(Γµ)A
B CBD ≡ (Γµ C)AD . (A.8)

The chirality structure of C depends on the number of dimensions D due to the representa-
tion theory of the associated Lorentz group SO(1, D−1). In dimensions D = 0 mod 4, only
spinor representations of alike chiralities contain a scalar in their tensor product whereas
for D = 2 mod 4 dimensions opposite chiralities are required to form a singlet. Therefore
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the charge conjugation matrix written with spinor indices becomes

D = 0 mod 4 : CAB =

(
Cαβ 0

0 C α̇β̇

)
, (Γµ C)AB =

(
0 (γµC)α

β̇

(γ̄µC)α̇β 0

)
,

D = 2 mod 4 : CAB =

(
0 Cα

β̇

C α̇
β 0

)
, (Γµ C)AB =

(
(γµC)αβ 0

0 (γ̄µC)α̇β̇

)
. (A.9)

The inverse of the charge conjugation matrix C−1 is then denoted by

D = 0 mod 4 : (C−1)AB =

(
(C−1)αβ 0

0 (C−1)α̇β̇

)
,

(C−1 Γµ)AB =

(
0 (C−1 γµ)αβ̇

(C−1 γ̄µ)α̇
β 0

)
,

D = 2 mod 4 : (C−1)AB =

(
0 (C−1)αβ̇

(C−1)α̇
β 0

)
,

(C−1 Γµ)AB =

(
(C−1 γ̄µ)αβ 0

0 (C−1 γµ)α̇β̇

)
. (A.10)

A.2 Symmetry properties

The transposed gamma matrices Γt also satisfy the Clifford algebra (A.1). Schur’s lemma
guarantees that Γ and Γt must be related by a similarity transformation. This transfor-
mation is given by the charge conjugation matrix and its inverse1

C−1 Γµ C = −(Γµ)t . (A.11)

On the level of chiral blocks this leads to two different scenarios. For D = 0 mod 4 (A.11)
intertwines the two classes of matrices γµ, γ̄µ, while inD = 2 mod 4 dimensions one obtains
a consistency condition:

D = 0 mod 4 : γµβα̇ = −(C−1)α̇γ̇ γ̄
µ γ̇γ Cγβ , γ̄µ β̇α = −(C−1)αγ γµγγ̇ C

γ̇β̇ ,

D = 2 mod 4 : γµβα̇ = −(C−1)α̇
γ γµγγ̇ C

γ̇
β , γ̄µ β̇α = −(C−1)αγ̇ γ̄

µ γ̇γ Cγ
β̇ . (A.12)

We now give a unified way of understanding these conditions: The symmetry property of
(ΓµC) is opposite to that of the charge conjugation matrix,

Ct = ℘D C ⇒ (Γµ C)t = −℘D (Γµ C) , (A.13)

1In even dimensions D = 2m, the signs in (A.11) and (A.13) are a matter of convention due to the
freedom to redefine C → ΓD C, where ΓD is the chirality matrix. The absence of a chirality matrix in
D = 2m− 1 dimensions, leads to a unique choice.
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where ℘D is a dimension-dependent phase which we determine later. Applying this argu-
ment iteratively we can determine the symmetry properties of general gamma products. As
these fulfill (Γµ1 . . .Γµp C)t = ℘D(−1)p (Γµp . . .Γµ1 C) antisymmetric chains of Γ matrices
satisfy

(Γµ1...µp C)t = ℘D (−1)
p
2
(p+1) (Γµ1...µp C) =

{
+℘D (Γµ1...µp C) : p = 0, 3 mod 4 ,

−℘D (Γµ1...µp C) : p = 1, 2 mod 4 .
(A.14)

In order to fix the phase ℘D in (A.13) one has to make use of the fact that in D = 2m
dimensions the set

{
(Γµ1...µpC) : 0 ≤ p ≤ D

}
forms a basis of the 2m × 2m matrices. In

particular, there must be 2m (2m − 1)/2 antisymmetric matrices, and this fixes

℘D = (−1)
m
2
(m+1) ⇒ Ct =

{
+ C : D = 0, 6 mod 8 ,

−C : D = 2, 4 mod 8 .
(A.15)

The equations (A.11) and (A.15) can be used to explicitly construct the charge conjugation
matrix for a given representation of the Clifford algebra.

To avoid over-counting of the independent symmetric matrices, one should be aware of
the self-dualities of D/2-fold products:

(γµ1...µD/2 C)αβ =
eiφD

(D/2)!
εµ1...µD/2ν1...νD/2 (γν1...νD/2

C)αβ ,

(γ̄µ1...µD/2 C)α̇β̇ = − eiφD

(D/2)!
εµ1...µD/2ν1...νD/2 (γ̄ν1...νD/2

C)α̇β̇ . (A.16)

Here φD denotes a phase that depends on the number of dimensions.

A.3 Fierz identities

Antisymmetrized gamma products Γµ1...µp with 0 ≤ p ≤ D form a complete set of all
2D/2 × 2D/2 matrices. Therefore, it is possible to expand any bi-spinor in terms of forms.
The expansion prescriptions are referred to as Fierz identities. Within the chiral blocks
γµ, γ̄µ, it is sufficient to consider forms up to degree D/2 since any p-fold product γµ1...µp ,
p ≤ D, is related to (D−p)-fold products via Hodge duality. Weyl bi-spinors can therefore
be expanded in the following way [136, 146]:
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• D = 0 mod 4:

ψα χβ = 2−D/2
D/2−2∑

p even

1

p!
(γµ1...µp C)βα (ψC

−1 γµp...µ1 χ)

+
2−D/2

2 (D/2)!
(γµ1...µD/2 C)βα (ψ C

−1 γµD/2...µ1 χ) , (A.17)

ψα χ̄
β̇ =− 2−D/2

D/2−1∑

p odd

1

p!
(γ̄µ1...µp C)β̇α (ψC

−1 γµp...µ1 χ̄) , (A.18)

• D = 2 mod 4:

ψα χβ =− 2−D/2
D/2−2∑

p odd

1

p!
(γµ1...µp C)βα (ψC

−1 γ̄µp...µ1 χ)

− 2−D/2

2 (D/2)!
(γµ1...µD/2 C)βα (ψC

−1 γ̄µD/2...µ1 χ) , (A.19)

ψα χ̄
β̇ = 2−D/2

D/2−1∑

p even

1

p!
(γ̄µ1...µp C)β̇α (ψC

−1 γ̄µp...µ1 χ̄) . (A.20)

The proof of this identities relies on the fact that the matrices γµ1...µp are orthonormal with
respect to the trace as inner product, up to the subtlety that in some traces the symbol
εµ1...µD/2

ν1...νD/2
appears. Let us display the Fierz identities in D = 4, 6, 8, 10 dimensions

explicitly:

• D = 4:

ψα χβ =
1

2
Cβα (ψC

−1 χ) +
1

8
(γµν C)βα

(
ψC−1 γνµ χ

)
, (A.21)

ψα χ̄
β̇ = −1

2
(γ̄µ C)β̇α

(
ψ C−1 γµ χ̄

)
, (A.22)

• D = 6:

ψα χβ = −1

4
(γµC)βα (ψ C

−1 γ̄µ χ)−
1

48
(γµνλ C)βα (ψC

−1 γ̄λνµ χ) , (A.23)

ψα χ̄
β̇ =

1

4
C β̇

α (ψC
−1 χ̄) +

1

8
(γ̄µν C)β̇α (ψ C

−1 γ̄νµ χ̄) , (A.24)

• D = 8:

ψα χβ =
1

8
Cβα (ψC

−1 χ) +
1

16
(γµν C)βα (ψC

−1 γνµ χ)

+
1

384
(γµνλρ C)βα (ψC

−1 γρλνµ χ) , (A.25)

ψα χ̄
β̇ =− 1

8
(γ̄µC)β̇α (ψC

−1 γµ χ̄)−
1

48
(γ̄µνλC)β̇α (ψ C

−1 γλνµ χ̄) , (A.26)
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• D = 10:

ψα χβ =− 1

16
(γµ C)βα (ψC

−1 γ̄µ χ)−
1

96
(γµνλC)βα (ψ C

−1 γ̄λνµ χ)

− 1

3840
(γµνλρτ C)βα (ψC

−1 γ̄τρλνµ χ) , (A.27)

ψα χ̄
β̇ =

1

16
C β̇

α (ψ C
−1 χ̄) +

1

32
(γ̄µν C)β̇α (ψ C

−1 γ̄νµ χ̄)

+
1

384
(γ̄µνλρC)β̇α (ψ C

−1 γ̄ρλνµ χ̄) . (A.28)

Fierz identities allow to derive relations between different SO(1, D−1) Clebsch–Gordan
coefficients by making appropriate choices for ψα, χβ and χ̄

β̇ . Two examples of this method
have been shown in Chapter 3.3. This techniques is further used in Appendix B where we
collect all necessary relations for the correlators calculated in this work.

A.4 A Concrete Representation

The results for the RNS correlation functions stated in Chapters 4 and 5 are written down
in Lorentz covariant form and are therefore valid for all representations of the Clifford
algebra. However for some issues in the calculations, e.g. checking relations between dif-
ferent Clebsch–Gordan coefficients and especially for obtaining loop results, an explicit
representation of the gamma matrices is helpful.

It is well-known that the gamma matrices in D = 2m dimensions, ΓµD, and the Pauli
matrices σi can be used to construct ΓµD+2, the Dirac matrices in D + 2 dimensions. It is
easily verified that for k = 0, . . . , D − 1

ΓkD+2 ≡ σ1 ⊗ ΓkD , ΓDD+2 ≡ i σ1 ⊗ ΓDD , ΓD+1
D+2 ≡ i σ2 ⊗ 12m (A.29)

satisfy the Clifford algebra (A.1) in D+ 2 dimensions, if ΓµD satisfy the Clifford algebra in
D space-time dimensions2. The matrix ΓDD is the chirality matrix defined as

ΓDD ≡ (−1)
1
2
(m+1)

D−1∏

i=1

ΓiD . (A.31)

We start in D = 2 dimensions with

Γ0
2 ≡ σ1 =

(
0 1
1 0

)
, Γ1

2 ≡ i σ2 =

(
0 1
−1 0

)
. (A.32)

2The product ⊗ in (A.29) is the Kronecker product which takes an m×n matrix A and a p× q matrix
B to the mp× nq matrix

A⊗B ≡



a11B · · · a1nB
...

. . .
...

am1B · · · amnB


 . (A.30)
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The Dirac matrices for D = 4, 6, 8, 10 can then be constructed by recursively using (A.29).
Our construction is chosen such that we obtain the ΓµD’s in Weyl basis, i.e. ΓDD always has
the form

ΓDD =

(
12m−1 0
0 −12m−1

)
. (A.33)

The charge conjugation matrix CD is determined from the equations (A.11) and (A.15).
This yields

C2 = i σ2 , C4 = 12 ⊗ C2 , C6 = −i σ2 ⊗ C4 ,
C8 = 12 ⊗ C6 , C10 = −i σ2 ⊗ C8 . (A.34)

As 1 is diagonal and σ2 off-diagonal, this results exactly in the diagonal and off-diagonal
structure stated in (A.9).
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APPENDIX B

Relations between Index Terms

In this Appendix we collect relations between different index terms, that enter the cor-
relators calculated in Chapters 4 and 5. The numbers of independent Clebsch–Gordan
coefficients for each correlator are summarized in Table 3.3. As we have explained be-
fore these relations can be derived from Fierz identities given in Appendix A, multiplying
known equations with further γ and C matrices, as well as demanding that a tensor in
D dimensions, which is anti-symmetric in 2D/2−1 + 1 Weyl indices of the same type, has
to vanish. We have checked the validity of the following relations by (anti-)symmetry ar-
guments and furthermore by explicit verification using the representation of the Clifford
algebra given in Appendix A.4.

Before we start listing the relations we recap our conventions. The Clifford algebra
establishes that

γµ
αβ̇
γ̄νβ̇γ + γν

αβ̇
γ̄µβ̇γ = −2 δγα η

µν , γ̄µα̇β γνβγ̇ + γ̄να̇β γµβγ̇ = −2 δα̇γ̇ η
µν . (B.1)

These can be used to interchange Lorentz indices in expressions where chains of γ matrices
appear. Antisymmetric products of γ matrices are defined with a normalization factor 1/p!
in contrast to [21],

γµ1...µp ≡ 1

p!

∑

ρ∈Sp

sgn(ρ)

{
γµρ(1) γ̄µρ(2) . . . γµρ(p) : p odd ,

γµρ(1) γ̄µρ(2) . . . γ̄µρ(p) : p even .
(B.2)

On the right hand side of this equation we can interchange the Lorentz indices with the
help of (B.1). Then the antisymmetric γ-product can be written as an ordered γ-product
and further η terms. Let us illustrate this for the simplest case p = 2:

γµν =
1

2
(γµ γ̄ν − γν γ̄µ) = ηµν + γµ γ̄ν . (B.3)

In deriving the following relations the behavior of tensors under interchanging their spinor
indices is very important. These can be derived by employing the identities from Table
3.4.
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Contractions of γ and C matrices in the following should always be understood as
matrix multiplications. We refrain from explicitly denoting C−1 in index notation. This
matrix differs from C in the positioning of its indices and hence can be distinguished in
the respective contexts.

B.1 Relations for D = 4

In the following we state relations that allow to reduce the number of index terms for a
given correlator in four space-time dimensions. We adopt the widely used notation in four
dimensions and denote the blocks of the Γ matrices and the charge conjugation matrix C
by σµαα̇ and εαβ. The Fierz identity

εαγ εβδ = εαβ εγδ + εαδ εβγ (B.4)

is a good starting point for deriving further relations.

Correlator
〈
ψµ ψν Sα Sβ̇ Sγ Sδ̇

〉

The relevant index terms for this correlation function up to permutations in the spinor
indices are 2 ηµν εαγ εβ̇δ̇, σ

µ

αβ̇
σν
γδ̇
, (σµ σ̄ν ε)αγ εβ̇δ̇ and (ε σ̄µ σν)β̇δ̇ εαγ. The latter two terms

can be eliminated by multiplying (B.4) with εβ̇α̇ σ̄
µ α̇β εδ̇γ̇ σ̄

ν γ̇δ and treating the anti-chiral
version of (B.4) in the same manner:

(σµ σ̄ν ε)αγ εβ̇δ̇ = σµ
αβ̇
σν
γδ̇

− σµ
αδ̇
σν
γβ̇
, (B.5a)

(ε σ̄µ σν)β̇δ̇ εαγ = σµ
αβ̇
σν
γδ̇

− σµ
γβ̇
σν
αδ̇
. (B.5b)

By symmetrizing in the vector indices µ, ν we arrive at:

2 ηµν εαγ εβ̇δ̇ = σµ
αδ̇
σν
γβ̇

+ σµ
γβ̇
σν
αδ̇

− σµ
αβ̇
σν
γδ̇

− σµ
γδ̇
σν
αβ̇
. (B.6)

Correlator
〈
ψµ ψν Sα Sβ Sγ Sδ

〉

This correlator can be expressed in terms of ηµν εαβ εγδ, (σ
µ σ̄ν ε)αβ εγδ and permutations

in the spinor indices of these terms. Forming antisymmetric combinations of the latter,
where one spinor index of the σ-chains is kept fixed, yields three independent relations:

(σµ σ̄ν ε)αδ εβγ = −(σµ σ̄ν ε)αβ εγδ + (σµ σ̄ν ε)αγ εβδ , (B.7a)

(σµ σ̄ν ε)βδ εαγ = −(σµ σ̄ν ε)αβ εγδ + (σµ σ̄ν ε)βγ εαδ − 2 ηµν εαβ εγδ , (B.7b)

(σµ σ̄ν ε)γδ εαβ = −(σµ σ̄ν ε)αγ εβδ + (σµ σ̄ν ε)βγ εαδ − 2 ηµν εαβ εγδ . (B.7c)

The Fierz identity (B.4) can be used to eliminate ηµν εαγ εβδ from the calculations and
hence one arrives at five independent index terms. In order to write the correlator in terms
of antisymmetric σ-products the following equation is of use:

(σµν ε)αβ εγδ − (σµν ε)αδ εγβ + (σµν ε)γδ εαβ − (σµν ε)γβ εαδ = 0 . (B.8)
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Correlator
〈
ψµ ψν ψλ Sα Sβ Sγ Sδ̇

〉

The anti-symmetrization argument can be used also for this correlator to derive relations
between different index terms,

(σµ σ̄ν σλ)βδ̇ εαγ = (σµ σ̄ν σλ)αδ̇ εβγ + (σµ σ̄ν σλ)γδ̇ εαβ , (B.9a)

ηνλ σµ
βδ̇
εαγ = ηνλ σµ

αδ̇
εβγ + ηνλ σµ

γδ̇
εαβ . (B.9b)

In the second equation it is possible to permute the Lorentz indices µ, ν, λ in order to derive
two additional equations. Furthermore, applying (σµ σ̄ν)α

κ ε[κβ σ
λ
γ]δ̇

= 0 yields identities
that mix different σ configurations:

εβγ (σ
µ σ̄ν σλ)αδ̇ = (σµ σ̄ν ε)αγ σ

λ
βδ̇

− (σµ σ̄ν ε)αβ σ
λ
γδ̇
, (B.10a)

εαβ (σ
µ σ̄ν σλ)γδ̇ = (σµ σ̄ν ε)βγ σ

λ
αδ̇

− (σµ σ̄ν ε)αγ σ
λ
βδ̇

− 2 ηµν εαβ σ
λ
γδ̇
. (B.10b)

Hence, the triple products (σµσ̄νσλ) can be completely eliminated. By permuting the
Lorentz indices in (B.10) one obtains four linearly independent relations:

2 ηµλ σν
αδ̇
εβγ − 2 ηµν σλ

αδ̇
εβγ = (σν σ̄λ ε)αβ σ

µ

γδ̇
− (σν σ̄λ ε)αγ σ

µ

βδ̇

−(σµ σ̄ν ε)αβ σ
λ
γδ̇

+ (σµ σ̄ν ε)αγ σ
λ
βδ̇
, (B.11a)

2 ηµλ σν
γδ̇
εαβ − 2 ηνλ σµ

γδ̇
εαβ = (σν σ̄λ ε)αγ σ

µ

βδ̇
− (σν σ̄λ ε)βγ σ

µ

αδ̇

+(σµ σ̄ν ε)βγ σ
λ
αδ̇

− (σµ σ̄ν ε)αγ σ
λ
βδ̇
, (B.11b)

2 ηνλ σµ
αδ̇
εβγ = (σµ σ̄ν ε)αβ σ

λ
γδ̇

− (σµ σ̄ν ε)αγ σ
λ
βδ̇

+(σµ σ̄λ ε)αβ σ
ν
γδ̇

− (σµ σ̄λ ε)αγ σ
ν
βδ̇
, (B.11c)

2 ηµν σλ
γδ̇
εαβ = (σµ σ̄λ ε)βγ σ

ν
αδ̇

− (σµ σ̄λ ε)αγ σ
ν
βδ̇

+(σν σ̄λ ε)βγ σ
µ

αδ̇
− (σν σ̄λ ε)αγ σ

µ

βδ̇
. (B.11d)

Another relation is necessary in order to reduce the number of Clebsch–Gordan coefficients
to ten. This is achieved by multiplying (B.5a) with σ̄λβ̇δ εδβ . After a further permutation
in the spinor indices one finds:

(σµ σ̄ν ε)αβ σ
λ
γδ̇

− (σµ σ̄λ ε)αγ σ
ν
βδ̇

+ (σν σ̄λ ε)βγ σ
µ

αδ̇
= 0 . (B.12)

Correlator
〈
ψµ Sα Sβ Sγ Sδ Sǫ Sζ̇

〉

The starting point for relating different index term for this correlator is

εαβ εγδ εǫζ − εαβ εγζ εǫδ + εαδ εγζ εǫβ − εαδ εγβ εǫζ + εαζ εγβ εǫδ − εαζ εγδ εǫβ = 0 , (B.13)

which stems from δα[β δ
γ
δ δ

ǫ
ζ] = 0. Contracting this equation with εζκ σµ

κζ̇
yields the only

needed relation for putting the correlator into minimal form:

σµ
ǫζ̇
εαβ εγδ + σµ

ǫζ̇
εαδ εβγ + σµ

αζ̇
εβǫ εγδ + σµ

αζ̇
εβγ εδǫ + σµ

γζ̇
εαβ εδǫ − σµ

γζ̇
εαδ εβǫ = 0 . (B.14)
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Correlator
〈
ψµ ψν ψλ ψρ Sα Sβ̇ Sγ Sδ̇

〉

This correlation function can be expressed in terms of permutations in the spinor indices
of ηµν σλ

αβ̇
σρ
γδ̇
, (σµ σ̄νε)αγ (ε σ̄

λ σρ)β̇δ̇, (σµ σ̄ν σλ)αβ̇ σ
ρ

γδ̇
and (σµ σ̄ν σλ σ̄ρε)αγ εβ̇δ̇. The two

expressions containing four σ matrices can be eliminated with the help of (B.5):

(σµ σ̄ν σλ σ̄ρ ε)αγ εβ̇δ̇ = (σµ σ̄ν σλ)αβ̇ σ
ρ

γδ̇
− (σµ σ̄ν σλ)αδ̇ σ

ρ

γβ̇
, (B.15a)

(ε σ̄µ σν σ̄λ σρ)β̇δ̇ εαγ = (σν σ̄λ σρ)γδ̇ σ
µ

αβ̇
− (σν σ̄λ σρ)αδ̇ σ

µ

γβ̇
. (B.15b)

Relations between the Clebsch–Gordan coefficients consisting of three σ matrices are found
by decomposing terms of the type (σ σ̄ ε) (ε σ̄ σ) using (B.5). Applying these relations either
to the first or the second σ-chain results in

(σµ σ̄ν ε)αγ (ε σ̄
λ σρ)β̇δ̇ =

{
(σµ σ̄ν σλ)αβ̇ σ

ρ

γδ̇
− (σµ σ̄ν σρ)αδ̇ σ

λ
γβ̇
,

(σν σ̄λ σρ)γδ̇ σ
µ

αβ̇
− (σµ σ̄λ σρ)αδ̇ σ

ν
γβ̇
.

(B.16)

Now we can write down relations between the terms on the right hand side of (B.16):

(σµ σ̄ν σλ)αβ̇ σ
ρ

γδ̇
= (σν σ̄λ σρ)γδ̇ σ

µ

αβ̇
− (σµ σ̄λ σρ)αδ̇ σ

ν
γβ̇

+ (σµ σ̄ν σρ)αδ̇ σ
λ
γβ̇
, (B.17a)

(σµ σ̄ν σλ)αδ̇ σ
ρ

γβ̇
= (σν σ̄λ σρ)γβ̇ σ

µ

αδ̇
− (σµ σ̄λ σρ)αβ̇ σ

ν
γδ̇

+ (σµ σ̄ν σρ)αβ̇ σ
λ
γδ̇
, (B.17b)

(σµ σ̄ν σλ)γδ̇ σ
ρ

αβ̇
= (σν σ̄λ σρ)αβ̇ σ

µ

γδ̇
− (σµ σ̄λ σρ)γβ̇ σ

ν
αδ̇

+ (σµ σ̄ν σρ)γβ̇ σ
λ
αδ̇
, (B.17c)

(σµ σ̄ν σλ)γβ̇ σ
ρ

αδ̇
= (σν σ̄λ σρ)αδ̇ σ

µ

γβ̇
− (σµ σ̄λ σρ)γδ̇ σ

ν
αβ̇

+ (σµ σ̄ν σρ)γδ̇ σ
λ
αβ̇
. (B.17d)

The last three equations were found by permuting the spinor indices in (B.16). However,
one can also perform permutations in the Lorentz indices. This yields

2 ηµν (σλ
αβ̇
σρ
γδ̇

− σλ
γβ̇
σρ
αδ̇
) = (σν σ̄λ σρ)αδ̇ σ

µ

γβ̇
− (σν σ̄λ σρ)γδ̇ σ

µ

αβ̇

+(σµ σ̄λ σρ)αδ̇ σ
ν
γβ̇

− (σµ σ̄λ σρ)γδ̇ σ
ν
αβ̇
, (B.18a)

2 ηµν (σλ
αδ̇
σρ
γβ̇

− σλ
γδ̇
σρ
αβ̇
) = (σν σ̄λ σρ)αβ̇ σ

µ

γδ̇
− (σν σ̄λ σρ)γβ̇ σ

µ

αδ̇

+(σµ σ̄λ σρ)αβ̇ σ
ν
γδ̇
− (σµ σ̄λ σρ)γβ̇ σ

ν
αδ̇
, (B.18b)

−2 ηλρ (σµ
αβ̇
σν
γδ̇

− σµ
αδ̇
σν
γβ̇
) = (σν σ̄λ σρ)γδ̇ σ

µ

αβ̇
− (σν σ̄λ σρ)γβ̇ σ

µ

αδ̇

+(σµ σ̄λ σρ)αβ̇ σ
ν
γδ̇
− (σµ σ̄λ σρ)αδ̇ σ

ν
γβ̇
, (B.18c)

−2 ηλρ (σµ
γδ̇
σν
αβ̇

− σµ
γβ̇
σν
αδ̇
) = (σν σ̄λ σρ)αβ̇ σ

µ

γδ̇
− (σν σ̄λ σρ)αδ̇ σ

µ

γβ̇

+(σµ σ̄λ σρ)γδ̇ σ
ν
αβ̇

− (σµ σ̄λ σρ)γβ̇ σ
ν
αδ̇
, (B.18d)
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and

2 (ηµλ σν
αβ̇
σρ
γδ̇

− ηµλ σν
γβ̇
σρ
αδ̇

− ηνλ σµ
αβ̇
σρ
γδ̇

+ ηνλ σµ
γβ̇
σρ
αδ̇
)

=− (σν σ̄λ σρ)αδ̇ σ
µ

γβ̇
+ (σν σ̄λ σρ)γδ̇ σ

µ

αβ̇
+ (σµ σ̄ν σρ)αδ̇ σ

λ
γβ̇

− (σµ σ̄ν σρ)γδ̇ σ
λ
αβ̇
, (B.19a)

2 (ηµλ σν
αδ̇
σρ
γβ̇

− ηµλ σν
γδ̇
σρ
αβ̇

− ηνλ σµ
αδ̇
σρ
γβ̇

+ ηνλ σµ
γδ̇
σρ
αβ̇
)

=− (σν σ̄λ σρ)αβ̇ σ
µ

γδ̇
+ (σν σ̄λ σρ)γβ̇ σ

µ

αδ̇
+ (σµ σ̄ν σρ)αβ̇ σ

λ
γδ̇

− (σµ σ̄ν σρ)γβ̇ σ
λ
αδ̇
, (B.19b)

2 (ηνλ σµ
αβ̇
σρ
γδ̇

− ηνλ σµ
αδ̇
σρ
γβ̇
)− ηνρ σµ

αβ̇
σλ
γδ̇

+ ηνρ σµ
αδ̇
σλ
γβ̇
)

=− (σν σ̄λ σρ)γδ̇ σ
µ

αβ̇
+ (σν σ̄λ σρ)γβ̇ σ

µ

αδ̇
+ (σµ σ̄ν σρ)αβ̇ σ

λ
γδ̇

− (σµ σ̄ν σρ)αδ̇ σ
λ
γβ̇
, (B.19c)

2 (ηνλ σµ
γδ̇
σρ
αβ̇

− ηνλ σµ
γβ̇
σρ
αδ̇

− ηνρ σµ
γδ̇
σλ
αβ̇

+ ηνρ σµ
γβ̇
σλ
αδ̇
)

=− (σν σ̄λ σρ)αβ̇ σ
µ

γδ̇
+ (σν σ̄λ σρ)αδ̇ σ

µ

γβ̇
+ (σµ σ̄ν σρ)γδ̇ σ

λ
αβ̇

− (σµ σ̄ν σρ)γβ̇ σ
λ
αδ̇
. (B.19d)

In addition the following relations hold,

2 (ηµρ σν
αβ̇
σλ
γδ̇

− ηµρ σν
γβ̇
σλ
αδ̇

− ηνρ σµ
αβ̇
σλ
γδ̇

+ ηνρ σµ
γβ̇
σλ
αδ̇

− ηλρ σµ
αβ̇
σν
γδ̇

+ ηλρ σµ
γβ̇
σν
αδ̇
)

= −(σν σ̄λ σρ)αβ̇ σ
µ

γδ̇
+ (σν σ̄λ σρ)αδ̇ σ

µ

γβ̇
− (σν σ̄λ σρ)γδ̇ σ

µ

αβ̇
+ (σν σ̄λ σρ)γβ̇ σ

µ

αδ̇

−(σµ σ̄λ σρ)αβ̇ σ
ν
γδ̇

+ (σµ σ̄λ σρ)γβ̇ σ
ν
αδ̇

+ (σµ σ̄ν σρ)αβ̇ σ
λ
γδ̇

− (σµ σ̄ν σρ)γβ̇ σ
λ
αδ̇
, (B.20a)

2 (ηµρ σν
αδ̇
σλ
γβ̇

− ηµρ σν
γδ̇
σλ
αβ̇

− ηνρ σµ
αδ̇
σλ
γβ̇

+ ηνρ σµ
γδ̇
σλ
αβ̇

+ ηλρ σµ
αδ̇
σν
γβ̇

− ηλρ σµ
γδ̇
σν
αβ̇
)

= (σν σ̄λ σρ)αβ̇ σ
µ

γδ̇
− (σν σ̄λ σρ)αδ̇ σ

µ

γβ̇
+ (σν σ̄λ σρ)γδ̇ σ

µ

αβ̇
− (σν σ̄λ σρ)γβ̇ σ

µ

αδ̇

−(σµ σ̄λ σρ)αδ̇ σ
ν
γβ̇

+ (σµ σ̄λ σρ)γδ̇ σ
ν
αβ̇

+ (σµ σ̄ν σρ)αδ̇ σ
λ
γβ̇

− (σµ σ̄ν σρ)γδ̇ σ
λ
αβ̇
, (B.20b)

as well as

2 (ηµν σλ
αβ̇
σρ
γδ̇

− ηµν σλ
γδ̇
σρ
αβ̇

− ηµλ σν
αβ̇
σρ
γδ̇

+ ηµλ σν
αδ̇
σρ
γβ̇

+ ηµρ σν
αβ̇
σλ
γδ̇

− ηµρ σν
αδ̇
σλ
γβ̇
)

= (σν σ̄λ σρ)αδ̇ σ
µ

γβ̇
− (σµ σ̄λ σρ)γβ̇ σ

ν
αδ̇

+ (σµ σ̄ν σρ)αβ̇ σ
λ
γδ̇

− (σµ σ̄ν σλ)αβ̇ σ
ρ

γδ̇
. (B.21)

Using the identities stated above it is possible to arrive at a set of 25 independent index
terms for this correlator.

Correlator
〈
ψµ ψν ψλ ψρ Sα Sβ Sγ Sδ

〉

The index terms ηµν ηλρ εαβ εγδ, η
µν (σλ σ̄ρ ε)αβ εγδ, (σ

µ σ̄ν ε)αβ (σ
λ σ̄ρ ε)γδ and the four σ-

chains (σµ σ̄ν σλ σ̄ρ ε)αβ εγδ arise for this correlator. Additionally, permutations of these
terms in the vector and spinor indices appear. Again, the Fierz identity (B.4) can be
used to eliminate terms of the type η η εαγ εβδ. Further eliminations can be accomplished
by applying (B.7). In particular (B.7b) gives rise to new relations between the terms
η (σ σ̄ ε) ε:

−2 ηµν ηλρ εαβ εγδ =

{
ηµν (σλ σ̄ρ ε)αβ εγδ − ηµν (σλ σ̄ρ ε)βγ εαδ + ηµν (σλ σ̄ρ ε)βδ εαγ ,

ηλρ (σµ σ̄ν ε)αβ εγδ − ηλρ (σµ σ̄ν ε)βγ εαδ + ηλρ (σµ σ̄ν ε)βδ εαγ .

(B.22)
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Tensors consisting of two separate σ-chains satisfy

(σµ σ̄ν ε)γβ (σ
λ σ̄ρ ε)αδ − (σµ σ̄ν ε)αβ (σ

λ σ̄ρ ε)γδ

= εαγ

[
(σµ σ̄ν σλ σ̄ρ ε)βδ + 2 ηµν (σλ σ̄ρ ε)βδ

]
, (B.23a)

(σµ σ̄ν ε)αδ (σ
λ σ̄ρ ε)γβ − (σµ σ̄ν ε)γδ (σ

λ σ̄ρ ε)αβ

= εαγ

[
(σµ σ̄ν σλ σ̄ρ ε)βδ − 4 ηµλ ηνρ εβδ + 4 ηµρ ηνλ εβδ

−2 ηµλ (σν σ̄ρ ε)βδ + 2 ηµρ (σν σ̄λ ε)βδ + 2 ηλρ (σµ σ̄ν ε)βδ

−2 ηνρ (σµ σ̄λ ε)βδ + 2 ηνλ (σµ σ̄ρ ε)βδ

]
, (B.23b)

which stem from (σµ σ̄ν)α
κ ε[κβ (σ

λ σ̄ρ ε)γ]δ = 0. Applying the same technique to the four-σ
terms, namely (σµ σ̄ν σλ σ̄ρ ε)α[β εγδ] = 0, yields the equations

(σµ σ̄ν σλ σ̄ρ ε)αγ εβδ = (σµ σ̄ν σλ σ̄ρ ε)αβ εβδ − (σµ σ̄ν σλ σ̄ρ ε)αδ εγβ , (B.24a)

(σµ σ̄ν σλ σ̄ρ ε)βδ εαγ = (σµ σ̄ν σλ σ̄ρ ε)γδ εαβ − (σµ σ̄ν σλ σ̄ρ ε)γβ εαδ . (B.24b)

From permutations of the spinor indices in the relations above we find

(σµ σ̄ν σλ σ̄ρ ε)αβ εγδ − (σµ σ̄ν σλ σ̄ρ ε)αδ εγβ + (σµ σ̄ν σλ σ̄ρ ε)γβ εαδ − (σµ σ̄ν σλ σ̄ρ ε)γδ εαβ

= −εβδ
[
2 ηµν (σλ σ̄ρ ε)αγ − 2 ηµλ (σν σ̄ρ ε)αγ + 2 ηµρ (σν σ̄λ ε)αγ

+2 ηλρ (σµ σ̄ν ε)αγ − 2 ηνρ (σµ σ̄λ ε)αγ + 2 ηνλ (σµ σ̄ρ ε)αγ

+4 ηµν ηλρ εαγ − 4 ηµλ ηνρ εαγ + 4 ηµρ ηνλ εαγ

]
. (B.25)

Note that the spinor indices attached to the four-σ term can be interchanged by

(σµ σ̄ν σλ σ̄ρ ε)βα = −(σρ σ̄λ σν σ̄µ ε)αβ

= − (σµ σ̄ν σλ σ̄ρ ε)αβ − 2 ηµν (σλ σ̄ρ ε)αβ + 2 ηµλ (σν σ̄ρ ε)αβ − 2 ηµρ (σν σ̄λ ε)αβ

− 2 ηλρ (σµ σ̄ν ε)αβ + 2 ηνρ (σµ σ̄λ ε)αβ − 2 ηνλ (σµ σ̄ρ ε)αβ

− 4 ηµν ηλρ εαβ + 4 ηµλ ηνρ εαβ − 4 ηµρ ηνλ εαβ , (B.26)

where we have successively made use of the Clifford algebra (B.1). Finally, poles in z13 z24
in the result of this eight-point function can be removed by the following identities:

−2 ηνρ (σµ σ̄λ ε)αγ εβδ = (σµ σ̄ν ε)αβ (σ
λ σ̄ρ ε)γδ − (σµ σ̄ν ε)αδ (σ

λ σ̄ρ ε)γβ

+(σµ σ̄ρ ε)αβ (σ
λ σ̄ν ε)γδ − (σµ σ̄ρ ε)αδ (σ

λ σ̄ν ε)γβ , (B.27a)

−2 ηµλ (σν σ̄ρ ε)βδ εαγ = (σµ σ̄ν ε)αβ (σ
λ σ̄ρ ε)γδ − (σµ σ̄ν ε)γβ (σ

λ σ̄ρ ε)αδ

+(σλ σ̄ν ε)αβ (σ
µ σ̄ρ ε)γδ − (σλ σ̄ν ε)γβ (σ

µ σ̄ρ ε)αδ , (B.27b)

4 ηµλ ηνρ εαγ εβδ = (σµ σ̄ν ε)αβ (σ
λ σ̄ρ ε)γδ − (σµ σ̄ν ε)γβ (σ

λ σ̄ρ ε)αδ
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+(σµ σ̄ν ε)γδ (σ
λ σ̄ρ ε)αβ − (σµ σ̄ν ε)αδ (σ

λ σ̄ρ ε)βγ

+(σλ σ̄ν ε)αβ (σ
µ σ̄ρ ε)γδ − (σλ σ̄ν ε)γβ (σ

µ σ̄ρ ε)αδ

+(σλ σ̄ν ε)γδ (σ
µ σ̄ρ ε)αβ − (σλ σ̄ν ε)αδ (σ

µ σ̄ρ ε)γβ . (B.27c)

Correlator
〈
ψµ ψν Sα Sβ Sγ Sδ Sǫ Sζ

〉

The index terms appearing in the calculation of this correlation function have either the
form ηµν εαβ εγδ εǫζ or (σ

µ σ̄ν ε)αβ εγδ εδζ . The former can be reduced to five terms by virtue
of (B.13). For the latter terms we use (B.7a):

(σµ σ̄ν ε)αγ εβδ εǫζ = (σµ σ̄ν ε)αβ εγδ εǫζ − (σµ σ̄ν ε)αδ εγβ εǫζ . (B.28)

Permuting the spinor indices in this identity provides, together with the Fierz identity
(B.4), enough relations to reduce the index terms down to a minimal set of 14.

B.2 Relations for D = 6

In six dimensions, tensors with four spinor indices are severely constrained by Fierz iden-
tities presented in Appendix A. In the following we list the relevant relations between
different index terms which are needed for our calculations of RNS correlators in six di-
mensions.

Correlator
〈
Sα Sβ Sγ Sδ

〉

The most important relation between (γµC)αβ (γµC)γδ and permutations in the spinor
indices of this tensor arises from (A.23) with ψα = (γµC)αγ and χβ = (γµC)βδ. After
some manipulations, one arrives at1

(γµC)αγ (γµC)βδ = (γµC)βα (γµC)γδ . (B.30)

Together with the antisymmetry of (γµC)αβ = (γµC)[αβ], this implies that the contraction
(γµC)αβ (γµC)γδ is totally antisymmetric in the four spinor indices and therefore propor-
tional to the ε tensor in the four-dimensional chiral spinor representations. Normalizing
ε1234 = 1, we get

(γµC)αβ (γµC)γδ = −2 εαβγδ . (B.31)

1Useful tools in the derivation are

Γµ Γν1...νm Γµ = (−1)m−1 (D − 2m) Γν1...νm , (B.29a)

Γµν Γλ1...λm Γµν =
(
D − (D − 2m)2

)
Γλ1...λm . (B.29b)
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Correlator
〈
Sα Sβ S

γ̇ S δ̇
〉

The choices ψα = Cα
γ̇ χβ = Cβ

δ̇ in (A.23) and ψα = (γµC)αγ , χ̄
β̇ = (γ̄µC)

β̇δ̇ in (A.24)
yield the set of equations:

(γµC)αβ (γ̄µC)
γ̇δ̇ = 2

(
Cα

γ̇ Cβ
δ̇ − Cα

δ̇ Cβ
γ̇
)
, (B.32a)

(γµν C)α
γ̇ (γµν C)β

δ̇ = 2Cα
γ̇ Cβ

δ̇ − 8Cα
δ̇ Cβ

γ̇ , (B.32b)

(γµνλ C)αβ (γ̄µνλC)
γ̇δ̇ = 24

(
Cα

δ̇ Cβ
γ̇ + Cα

γ̇ Cβ
δ̇
)
. (B.32c)

Hence, only Cα
δ̇Cβ

γ̇ and Cα
γ̇ Cβ

δ̇ remain as independent Clebsch–Gordan coefficients.

Correlator
〈
ψµ Sα Sβ Sγ S

δ̇
〉

For this correlation function equations of the type

(γµ γ̄ν C)γ
δ̇ (γν C)αβ = 2 (γµC)βγ Cα

δ̇ − 2 (γµC)αγ Cβ
δ̇ (B.33)

prove to be useful which can be derived by multiplying (B.32a) with γµγγ̇.

Correlator
〈
Sα Sβ Sγ Sδ Sǫ S

ι̇
〉

As Weyl spinors in six dimensions only have 26/2−1 = 4 independent components, the
relation

(γµC)[αβ (γµC)γδ Cǫ]
ι̇ = 0 (B.34)

holds for this correlator.

Correlator
〈
ψµ ψν Sα Sβ Sγ Sδ

〉

This correlator can be expressed in terms of ηµν (γλC)αβ (γλC)γδ, (γ
µC)αβ (γ

ν C)γδ and
permutations in α, β, γ, δ thereof. These are related by the equation

ηµν (γλC)αβ (γλC)γδ = −(γµ C)[αβ (γ
ν C)γδ] . (B.35)

Correlator
〈
ψµ ψν Sα Sβ S

γ̇ S δ̇
〉

In this case ten index terms appear. They are of the form ηµν Cα
γ̇ Cβ

δ̇, (γµC)αβ (γ̄
ν C)γ̇δ̇,

(γν C)αβ (γ̄
µC)γ̇δ̇, (γµ γ̄ν C)α

γ̇ Cβ
δ̇, (γµ γ̄ν γλC)αβ (γ̄λC)

γ̇δ̇ and (γ̄µ γν γ̄λC)γ̇δ̇ (γλC)αβ in-
cluding permutations in α, β, γ̇, δ̇. Applying (B.32a) to (γλC)(γλC) in the terms above
yields

(γµ γ̄ν γλC)αβ (γ̄λC)
γ̇δ̇ = 2 (γµ γ̄ν C)α

γ̇ Cβ
δ̇ − 2 (γµ γ̄ν C)α

δ̇ Cβ
γ̇ , (B.36a)

(γ̄µ γν γ̄λC)γ̇δ̇ (γλC)αβ = 2 (γµ γ̄ν C)β
γ̇ Cα

δ̇ − 2 (γµ γ̄ν C)α
γ̇ Cβ

δ̇

+ 4 ηµν Cα
δ̇ Cβ

γ̇ − 4 ηµν Cα
γ̇ Cβ

δ̇ . (B.36b)
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A further relation is obtained by making the previous result antisymmetric in the spinor
indices α, β:

2 ηµν Cα
δ̇ Cβ

γ̇ − 2 ηµν Cα
γ̇ Cβ

δ̇ − (γµC)αβ (γ̄
ν C)γ̇δ̇ + (γν C)αβ (γ̄

µC)γ̇δ̇ =

(γµ γ̄ν C)α
γ̇ Cβ

δ̇ − (γµ γ̄ν C)α
δ̇ Cβ

γ̇ − (γµ γ̄ν C)β
γ̇ Cα

δ̇ + (γµ γ̄ν C)β
δ̇ Cα

γ̇ . (B.37)

Correlator
〈
ψµ Sα Sβ Sγ Sδ S

ǫ̇ S ι̇
〉

The relevant index terms for this correlator are (γ̄µC)ǫ̇ι̇ εαβγδ, (γ
µC)αβCγ

ǫ̇ Cδ
ι̇ and permu-

tations in α, β, γ, δ. By replacing γ̇, δ̇ with ǫ̇, ι̇ in (B.37) and multiplying with (γν C)γδ they
turn out to be related:

2 (γ̄µC)ǫ̇ι̇ εαβγδ = −(γµC)[αβ Cγ
ǫ̇Cδ]

ι̇ . (B.38)

B.3 Relations for D = 8

Certain tensor equations in eight dimensions can be related by SO(8) triality. In addition,
the Fierz identities from Appendix A.3 are very useful to derive new relations. In the
following, we list the identities needed for the calculations of correlation functions with
four or more spin fields.

Correlator
〈
Sα Sβ S

γ̇ S δ̇
〉

Here, the choices ψα = (γµC)α
γ̇ , χβ = (γµC)β

δ̇ and ψα = Cαγ , χ̄
β̇ = C β̇δ̇ in the eight-

dimensional Fierz identities (A.25) and (A.26) yield

Cαβ C
γ̇δ̇ =

1

2

[
(γµC)α

γ̇ (γµC)β
δ̇ + (γµC)α

δ̇ (γµC)β
γ̇
]
, (B.39a)

(γµν C)αβ (γ̄µν C)
γ̇δ̇ = 2

[
(γµ C)α

γ̇ (γµC)β
δ̇ − (γµ C)α

δ̇ (γµC)β
γ̇
]
, (B.39b)

(γµνλC)α
γ̇ (γµνλC)β

δ̇ = 18 (γµC)α
γ̇ (γµC)β

δ̇ + 24 (γµC)α
δ̇ (γµC)β

γ̇ , (B.39c)

such that this correlator can be expressed through (γµC)α
γ̇ (γµC)β

δ̇ and (γµC)α
δ̇ (γµC)β

γ̇ .

Correlator
〈
Sα Sβ Sγ Sδ

〉

The Fierz identities for ψα = Cαγ and χβ = Cβδ lead to

(γµν C)αβ (γµν C)γδ = 8
(
Cαγ Cβδ − Cαδ Cβγ

)
, (B.40a)

(γµνλρC)αβ (γµνλρC)γδ = 192
(
Cαγ Cβδ + Cαδ Cβγ

)
− 48Cαβ Cγδ . (B.40b)
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Correlator
〈
ψµ Sα Sβ Sγ S

δ̇
〉

Multiplying (B.39a) with γµγγ̇ gives

Cαβ (γ
µC)γ

δ̇ = −1

2

[
(γλ γ̄µC)αγ (γλC)β

δ̇ + (γλ γ̄µC)βγ (γλC)α
δ̇ ,
]
. (B.41)

Hence, it is possible to eliminate two out of the six tensors arising from permutations in
the spinor indices of Cαβ(γ

µC)γ
δ̇ and (γλ γ̄µC)αγ (γλC)β

δ̇.

Correlator
〈
ψµ ψν Sα Sβ Sγ Sδ

〉

Possible Clebsch–Gordan coefficients for this correlator are (γµ γ̄λC)αβ(γλ γ̄
ν C)γδ and per-

mutations in α, β, γ, δ of this tensor. However, these are not independent as multiplication
of (B.41) with γν

δδ̇
shows:

(γµ γ̄λC)αβ (γλ γ̄
ν C)γδ = −(γµ γ̄λC)αγ (γλ γ̄

ν C)βδ − 2 (γµ γ̄ν C)αδ Cβγ . (B.42)

Permuting the spinor indices in this identity and making antisymmetry in the vector indices
manifest, one finds the following relation:

(γλ[µC)αβ (γ
ν]
λC)γδ = Cαδ (γ

µν C)γβ − Cαγ (γ
µν C)δβ − Cβδ (γ

µν C)γα + Cγβ (γ
µν C)δα .

(B.43)

Correlator
〈
ψµ ψν Sα Sβ S

γ̇ S δ̇
〉

This is a triality invariant index structure for which the tensor identities are particularly
interesting. The result of this correlator is given in (5.56) in terms of nine index terms.

There we only keep the antisymmetric part in µ, ν of (γµλC)αβ (γ̄
νλC)γ̇δ̇ because the

symmetric piece can be reduced to

(γ(µλC)αβ (γ̄
ν)λC)γ̇δ̇ = ηµν (γλC)[α

γ̇ (γλC)β]
δ̇ − (γµC)α

γ̇ (γν C)β
δ̇ + (γµC)α

δ̇ (γν C)β
γ̇

−(γµC)β
δ̇ (γν C)α

γ̇ + (γµC)β
γ̇ (γν C)α

δ̇ . (B.44)

This can be derived by multiplying (B.41) with γ̄ν γ̇γ . Triple products of γ matrices can
be eliminated as follows:

(γµ γ̄ν γλC)α
γ̇ (γλC)β

δ̇ = −(γ[µλC)αβ (γ̄
ν]λC)γ̇δ̇ − ηµν (γλC)[α

γ̇ (γλC)β]
δ̇ − ηµν Cαβ C

γ̇δ̇

− (γµC)α
γ̇ (γν C)β

δ̇ + (γµC)α
δ̇ (γν C)β

γ̇ + (γµC)β
δ̇ (γν C)α

γ̇

− (γµC)β
γ̇ (γν C)α

δ̇ + (γµν C)αβ C
γ̇δ̇ − Cαβ (γ̄

µν C)γ̇δ̇ . (B.45)

Observe that upon adding the relations where α and β and/or γ̇ and δ̇ are interchanged
one obtains for the antisymmetric γ-products (γµ γ̄ν γλ):

(γµνλC)α
γ̇ (γλC)β

δ̇+(γµνλC)β
γ̇ (γλC)α

δ̇+(γµνλC)α
δ̇ (γλC)β

γ̇+(γµνλC)β
δ̇ (γλC)α

γ̇ = 0 .
(B.46)
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Correlator
〈
Sα Sβ Sγ Sδ S

ǫ̇ S ζ̇
〉

The novel tensors here are of the type (γλC)α
ǫ̇ (γλρC)βγ (γ

ρC)δ
ζ̇ . The antisymmetric piece

in the indices ǫ̇, ζ̇ can be expressed in terms of simpler combinations:

(γλC)α
[ǫ̇ (γλρC)βγ (γ

|ρ|C)δ
ζ̇] = Cαγ (γλC)[β

ǫ̇ (γλC)δ]
ζ̇ + Cδγ (γλC)[β

ǫ̇ (γλC)α]
ζ̇

− Cαβ (γλC)[γ
ǫ̇ (γλC)δ]

ζ̇ − Cδβ (γλC)[γ
ǫ̇ (γλC)α]

ζ̇ − Cαδ (γλC)[β
ǫ̇ (γλC)γ]

ζ̇ .
(B.47)

B.4 Relations for D = 10

Many of the following tensor identities can be traced back to the fundamental relation

(γµC)αβ (γµC)γδ + (γµC)βγ (γµC)αδ + (γµC)γα (γµC)βδ = 0 , (B.48)

due to the fact that (S)⊗s3⊗(S) does not contain any scalars. Here (S)⊗s3 denotes a totally
symmetric threefold tensor product of the left-handed SO(1, 9) spinor representation (S).
In general, correlators in D = 10 dimensions involve more independent Lorentz tensors
which enter more difficult relations compared to their D = 6 relatives. Observe, for
instance, that no direct analogs of the relations (B.31) and (B.32) hold.

Correlator
〈
Sα Sβ Sγ Sδ

〉

The Fierz identity (A.27) with ψα = (γµC)αγ and χβ = (γµC)βδ admits to eliminate

(γµνλC)αβ (γµνλC)γδ = 12
(
(γµC)αδ (γµC)βγ − (γµC)αγ (γµC)βδ

)
, (B.49)

and (γµC)αγ (γµC)βδ is redundant on account of (B.48).

Correlator
〈
Sα Sβ S

γ̇ S δ̇
〉

Setting ψα = Cα
γ̇, χβ = Cβ

δ̇ and ψα = (γµν C)α
γ̇, χβ = (γµν C)β

δ̇ in (A.27) as well as

ψα = Cα
γ̇ , χ̄β̇ = Cδ

β̇ and ψα = (γµC)αγ , χ̄
β̇ = (γ̄µC)

β̇δ̇ in (A.28) gives rise to the following
identities:

(γµν C)α
γ̇ (γµν C)β

δ̇ = −2Cα
γ̇ Cβ

δ̇ − 8Cα
δ̇ Cβ

γ̇ + 4 (γµC)αβ (γ̄µC)
γ̇δ̇ , (B.50a)

(γµνλ C)αβ (γ̄µνλC)
γ̇δ̇ = 48

(
Cα

γ̇ Cβ
δ̇ − Cα

δ̇ Cβ
γ̇
)
, (B.50b)

(γµνλρC)α
γ̇ (γµνλρC)β

δ̇ = −48Cα
γ̇ Cβ

δ̇ + 288Cα
δ̇ Cβ

γ̇ + 48 (γµC)αβ (γ̄µC)
γ̇δ̇ , (B.50c)

(γµνλρτ C)αβ (γ̄µνλρτ C)
γ̇δ̇ = 1920

(
Cα

γ̇ Cβ
δ̇ + Cα

δ̇ Cβ
γ̇
)
− 240 (γµC)αβ (γ̄µC)

γ̇δ̇ . (B.50d)

Hence, the three different tensors appearing on the right hand side of the previous equations
are sufficient to express 〈Sα Sβ S γ̇ S δ̇〉.
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Correlator
〈
ψµ Sα Sβ Sγ S

δ̇
〉

The six tensors Cα
δ̇ (γµC)βγ, (γ

ν γ̄µC)α
δ̇(γν C)βγ and permutations in α, β, γ can be used

to express this correlation function. However, (B.48) multiplied by (γ̄µ)δ̇δ admits to elimi-
nate one of them:

(γν γ̄µC)α
δ̇ (γν C)βγ + (γν γ̄µC)β

δ̇ (γν C)γα + (γν γ̄µ C)γ
δ̇ (γν C)αβ = 0 . (B.51)

Correlator
〈
ψµ ψν Sα Sβ Sγ Sδ

〉

Among the fifteen index terms obtained from ηµν (γλC)αβ (γλC)γδ, (γ
µC)αβ (γ

ν C)γδ and
(γµνλC)αβ (γλC)γδ including permutations in α, β, γ, δ, there are four relations. We choose
to work with antisymmetric γ-products because in this case the tensors involving ηµν

decouple from the others in the following relations. Equation (B.48) directly implies

ηµν (γλC)αβ (γλC)γδ + ηµν (γλC)αγ (γλC)βδ + ηµν (γλC)αδ (γλC)γβ = 0 (B.52)

and from (B.51) we derive:

(γµνλC)αβ (γλC)γδ + (γµνλC)αγ (γλC)δβ + (γµνλC)αδ (γλC)βγ

+ (γµC)γδ (γ
ν C)αβ − (γµC)αβ (γ

ν C)γδ + (γµC)βδ (γ
ν C)αγ

− (γµC)αγ (γ
ν C)βδ + (γµC)βγ (γ

ν C)αδ − (γµC)αδ (γ
ν C)βγ = 0 . (B.53)

Further relations of the last type can be found by permuting the spinor indices in (B.53).
In the result (5.65) for this correlator, we have used only two out of the three independent
permutations to eliminate (γµνλC)αγ (γλC)βδ and (γµνλC)βδ (γλC)αγ . The missing third
identity can be written as

(γµνλC)αβ (γλC)γδ + (γµνλC)αδ (γλC)γβ + (γµνλC)γβ (γλC)αδ

+ (γµνλC)γδ (γλC)αβ − 4 (γ[µC)αγ (γ
ν]C)βδ = 0 . (B.54)

Correlator
〈
ψµ ψν Sα Sβ S

γ̇ S δ̇
〉

This correlator can be expressed in terms of the Clebsch–Gordan coefficients ηµν Cα
γ̇ Cβ

δ̇,
ηµν (γλC)αβ (γ̄λC)

γ̇δ̇, (γµC)αβ (γ̄
ν C)γ̇δ̇, (γν C)αβ (γ̄

µC)γ̇δ̇. In addition we have to consider
(γµ γ̄ν C)α

γ̇ Cβ
δ̇, (γµ γ̄λC)α

γ̇ (γν γ̄λC)β
δ̇, permutations of all these terms in α, β, γ̇, δ̇, as well

as the three-γ-chains (γµ γ̄ν γλC)αβ (γ̄λC)
γ̇δ̇ and (γ̄µ γν γ̄λC)γ̇δ̇ (γλC)αβ. However only

twelve of these fifteen index terms are independent. One relation is found be replacing ν
with λ and µ with ν in (B.51) and multiplying with γ̄µγ̇γ , another by treating the complex
conjugate of (B.51) in the same manner:

(γµ γ̄ν γλC)αβ (γ̄λC)
γ̇δ̇ = − 2 (γµC)αβ (γ̄

ν C)γ̇δ̇ − (γµ γ̄λC)α
γ̇ (γν γ̄λC)β

δ̇

− (γµ γ̄λC)α
δ̇ (γν γ̄λC)β

γ̇ , (B.55a)

(γ̄µ γν γ̄λC)γ̇δ̇ (γλC)αβ = − 2 (γν C)αβ (γ̄
µC)γ̇δ̇ − 2 (γµ γ̄ν C)α

γ̇ Cβ
δ̇

+ 2 (γµ γ̄ν C)α
γ̇ Cβ

γ̇ − 2 (γµ γ̄ν C)β
γ̇ Cα

δ̇ + 2 (γµ γ̄ν C)β
δ̇ Cα

γ̇

− (γµ γ̄λC)α
γ̇ (γν γ̄λC)β

δ̇ − (γµ γ̄λC)β
γ̇ (γν γ̄λC)α

δ̇ . (B.55b)
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A third equation is found by symmetrizing the previous result in the vector indices µ and
ν:

(γµ γ̄λC)β
δ̇ (γν γ̄λC)α

γ̇ =2 ηµν (γλC)αβ (γ̄λC)
γ̇δ̇ − 2 (γµC)αβ (γ̄

ν C)γ̇δ̇

−2 (γν C)αβ (γ̄
µC)γ̇δ̇ − (γµ γ̄λC)α

γ̇ (γν γ̄λC)β
δ̇

−(γµ γ̄λC)α
δ̇ (γν γ̄λC)β

γ̇ − (γµ γ̄λC)β
γ̇ (γν γ̄λC)α

δ̇ . (B.56)

Correlator
〈
Sα Sβ Sγ Sδ Sǫ S

ζ̇
〉

The relevant index terms for this correlation function up to permutations in the spinor
indices are (γµC)αβ (γµC)γδ Cǫ

ζ̇ , (γµC)αβ (γν C)γδ (γ
µ γ̄ν C)ǫ

ζ̇ . Using (B.48) one can elim-
inate six out of the fifteen tensors of the first type. Changing the index δ̇ in (B.51) to ζ̇
and multiplying with (γν C)δǫ gives rise to the relation:

(γµ γ̄ν C)α
ζ̇ (γµC)βγ (γν C)δǫ+ (γµ γ̄ν C)β

ζ̇ (γµC)αγ (γν C)δǫ

+ (γµ γ̄ν C)γ
ζ̇ (γµC)αβ (γν C)δǫ = 0 . (B.57)

By permuting the spinor indices in this equation one obtains eight further independent
relations that can be used to eliminate in total nine tensors of the second type.

Correlator
〈
Sα Sβ Sγ S

δ̇ S ǫ̇ S ζ̇
〉

For this correlations function we have to consider the 24 tensors built from Cα
δ̇ Cβ

ǫ̇Cγ
ζ̇ ,

(γµC)αβ(γ̄µC)
δ̇ǫ̇Cγ

ζ̇ , (γµ γ̄ν C)α
δ̇ (γµC)βγ (γ̄ν C)

ǫ̇ζ̇ and permutations in the spinor indices.
However only 19 of these are independent. By multiplying (B.48) with γ̄ν δ̇δ (γ̄ν C)

δ̇ζ̇ and
proceeding in the same way with the complex conjugate one obtains the equations

(γµ γ̄ν C)α
δ̇ (γµC)βγ (γ̄ν C)

ǫ̇ζ̇ + (γµ γ̄ν C)β
δ̇ (γµC)αγ (γ̄ν C)

ǫ̇ζ̇

+ (γµ γ̄ν C)γ
δ̇ (γµC)αβ (γ̄ν C)

ǫ̇ζ̇ = 0 , (B.58a)

(γµ γ̄ν C)α
δ̇ (γµC)βγ (γ̄ν C)

ǫ̇ζ̇ + (γµ γ̄ν C)α
ǫ̇ (γµC)βγ (γ̄ν C)

δ̇ζ̇

+ (γµ γ̄ν C)α
ζ̇ (γµC)βγ (γ̄ν C)

δ̇ǫ̇ = 0 . (B.58b)

Upon permutation in the spinor indices these identities yield in total five independent
equations which are sufficient to reduce the number of index terms to 19.
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APPENDIX C

Generalized Θ Functions

In this Appendix we demonstrate some techniques and our conventions regarding gener-
alized Θ functions. These enter the calculation of RNS correlators at loop-level. For a
scattering process of open strings with g loops the underlying CFT of the RNS fields has
support on a genus g Riemann surface. The generalized Θ functions then ensure that the
correlation functions satisfy certain periodicity properties under shifting the NS fermions
and R spin fields along the homology cycles of this manifold. We present in the following
the methods necessary to check the periodicity properties as well as a class of very useful
identities going under the name of Fay’s trisecant identity. We follow [155].

C.1 Periodicity Properties

Correlations functions of RNS fields at the g loop-level have to satisfy certain periodicity
conditions if the fields are transported around the 2g homology cycles αI , βI of the genus
g Riemann surface. The sign configuration are encoded in the spin structure ~a, ~b,

〈
ψµ(z1 + αI)φ2(z2) . . . φN(zN )

〉~a
~b
= e−iπaI

〈
ψµ(z1)φ2(z2) . . . φN(zN )

〉~a
~b
, (C.1a)

〈
ψµ(z1 + βI)φ2(z2) . . . φN(zN )

〉~a
~b
= e+iπbI

〈
ψµ(z1)φ2(z2) . . . φN(zN )

〉~a
~b
, (C.1b)

where φi are some other RNS fields. The situation is different for R spin fields. These fields
create branch cuts on the Riemann surface and the NS fermions change sign when going
around these points. If the spin field is translated around a homology cycle, the branch
cut is extend along all the way and therefore the whole spin structure of the correlator
changes:

〈
Sα(z1 + αI)φ2(z2) . . . φN(zN)

〉~a
~b
∼
〈
Sγ(z1)φ2(z2) . . . φN(zN )

〉~a
~b+~eI

(C.2a)

〈
Sα(z1 + βI)φ2(z2) . . . φN(zN)

〉~a
~b
∼
〈
Sγ(z1)φ2(z2) . . . φN(zN )

〉~a+~eI
~b

(C.2b)
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For checking that the presented loop correlators satisfy these properties the Θ function
identity

Θ~a
~b
(~x+ ~s+ Ω~t|Ω) = exp

[
− iπ

(
~ttΩ~t+ ~tt (2 ~x+~b+ 2~s)

)]
Θ~a+2~t
~b+2~s

(~x|Ω) (C.3)

is handy. The prime forms change under z → z + αI or z → z + βI like

E(z + αI , w) = E(z, w) , (C.4a)

E(z + βI , w) = exp
[
− iπΩII − 2πi

z

∫
w
ωI

]
E(z, w) . (C.4b)

C.2 Fay’s Trisecant Identity

We now list some versions of Fay’s trisecant identity. These are relations between general-
ized Θ functions Θ~a

~b
and the prime forms Eij ≡ E(zi, zj) defined in Chapter 5.1.1. From our

perspective they can be understood as the loop generalization of the tree-level z-crossing
identity

z13 z24 = z12 z34 + z14 z23 . (C.5)

The most general form of Fay’s trisecant identity is given in [131]:

Θ~a
~b

( N∑

k=1

xk
∫
yk

~ω − ~e

)[
Θ~a
~b
(~e)
]N−1

∏N
i<j E(xi, xj)E(yi, yj)∏N

i,j=1E(xi, yj)

= (−1)N(N−1)/2 det
i,j

[
E(xi, yj)

−1Θ~a
~b

(
xi
∫
yj

~ω − ~e

)]
. (C.6)

Here xi, yj, i, j = 1, 2, ..., N , denote arbitrary positions on the Riemann surface of genus g

and ~e ∈ Cg with Θ~a
~b
(~e) 6= 0. The particular choice ~e = 1

2

∑N
k=1 ∫xkyk ~ω− ~∆ yields (C.6) in its

most convenient form for the manipulation of loop correlators:

Θ~a
~b

(
1
2

N∑

k=1

xk
∫
yk

~ω + ~∆

)[
Θ~a
~b

(
1
2

N∑

k=1

xk
∫
yk

~ω − ~∆

)]N−1
∏N

i<j E(xi, xj)E(yi, yj)∏N
i,j=1E(xi, yj)

= (−1)N(N−1)/2 det
i,j

[
E(xi, yj)

−1Θ~a
~b

(
− 1

2

N∑

k=1

xk
∫
yk

~ω +
xi
∫
yj

~ω + ~∆

)]
. (C.7)

These identities are of great use when determining and manipulating the coefficients of
the different index terms in a loop correlator. First, they are needed when one changes
the basis of Clebsch–Gordan coefficients and different z coefficients have to be summed
up. Second, they are required in the opposite way for the derivation of loop correlators in
Lorentz covariant form as presented in Chapter 5.2.2, especially when the contributions to
different index terms have to be separated.
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We now present various versions of (C.6) for different N . In the case N = 2 and
(z1, z2, z3, z4) = (x1, y1, x2, y2) we obtain the loop generalization of (C.5):

E13 E24 Θ
~a
~b

(
1
2

z1
∫
z2

~ω + 1
2

z3
∫
z4

~ω + ~∆

)
Θ~a
~b

(
1
2

z1
∫
z2

~ω + 1
2

z3
∫
z4

~ω − ~∆

)

= E12 E34 Θ
~a
~b

(
1
2

z1
∫
z3

~ω + 1
2

z2
∫
z4

~ω + ~∆

)
Θ~a
~b

(
1
2

z1
∫
z3

~ω + 1
2

z2
∫
z4

~ω − ~∆

)

+E14E23 Θ
~a
~b

(
1
2

z1
∫
z2

~ω + 1
2

z4
∫
z3

~ω + ~∆

)
Θ~a
~b

(
1
2

z1
∫
z2

~ω + 1
2

z4
∫
z3

~ω − ~∆

)
. (C.8)

Indeed, this reduces to (C.5) for g = 0 because then Eij → zij and Θ~a
~b
→ 1. The next

order version N = 3 becomes relevant for correlators including at least six fields:

E13 E15E35 E24E26 E46

E12E14 E16 E23E34 E36E25 E45E56

×Θ~a
~b

(
1
2

z1
∫
z2

~ω + 1
2

z3
∫
z4

~ω + 1
2

z5
∫
z6

~ω − ~∆

)[
Θ~a
~b

(
1
2

z1
∫
z2

~ω + 1
2

z3
∫
z4

~ω + 1
2

z5
∫
z6

~ω + ~∆

)]2

=
1

E12E34 E56
Θ~a
~b

(
− 1

2

z1
∫
z2

~ω + 1
2

z3
∫
z4

~ω + 1
2

z5
∫
z6

~ω + ~∆

)

×Θ~a
~b

(
1
2

z1
∫
z2

~ω − 1
2

z3
∫
z4

~ω + 1
2

z5
∫
z6

~ω + ~∆

)
Θ~a
~b

(
1
2

z1
∫
z2

~ω + 1
2

z3
∫
z4

~ω − 1
2

z5
∫
z6

~ω + ~∆

)

− 1

E12E36 E54
Θ~a
~b

(
− 1

2

z1
∫
z2

~ω + 1
2

z3
∫
z6

~ω + 1
2

z5
∫
z4

~ω + ~∆

)

×Θ~a
~b

(
1
2

z1
∫
z2

~ω − 1
2

z3
∫
z6

~ω + 1
2

z5
∫
z4

~ω + ~∆

)
Θ~a
~b

(
1
2

z1
∫
z2

~ω + 1
2

z3
∫
z6

~ω − 1
2

z5
∫
z4

~ω + ~∆

)

+
1

E14E36 E52
Θ~a
~b

(
− 1

2

z1
∫
z4

~ω + 1
2

z3
∫
z6

~ω + 1
2

z5
∫
z2

~ω + ~∆

)

×Θ~a
~b

(
1
2

z1
∫
z4

~ω − 1
2

z3
∫
z6

~ω + 1
2

z5
∫
z2

~ω + ~∆

)
Θ~a
~b

(
1
2

z1
∫
z4

~ω + 1
2

z3
∫
z6

~ω − 1
2

z5
∫
z2

~ω + ~∆

)

− 1

E14E32 E56
Θ~a
~b

(
− 1

2

z1
∫
z4

~ω + 1
2

z3
∫
z2

~ω + 1
2

z5
∫
z6

~ω + ~∆

)

×Θ~a
~b

(
1
2

z1
∫
z4

~ω − 1
2

z3
∫
z2

~ω + 1
2

z5
∫
z6

~ω + ~∆

)
Θ~a
~b

(
1
2

z1
∫
z4

~ω + 1
2

z3
∫
z2

~ω − 1
2

z5
∫
z6

~ω + ~∆

)

+
1

E16E32 E54
Θ~a
~b

(
− 1

2

z1
∫
z6

~ω + 1
2

z3
∫
z2

~ω + 1
2

z5
∫
z4

~ω + ~∆

)

×Θ~a
~b

(
1
2

z1
∫
z6

~ω − 1
2

z3
∫
z2

~ω + 1
2

z5
∫
z4

~ω + ~∆

)
Θ~a
~b

(
1
2

z1
∫
z6

~ω + 1
2

z3
∫
z2

~ω − 1
2

z5
∫
z4

~ω + ~∆

)

− 1

E16E34 E52
Θ~a
~b

(
− 1

2

z1
∫
z6

~ω + 1
2

z3
∫
z4

~ω + 1
2

z5
∫
z2

~ω + ~∆

)
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×Θ~a
~b

(
1
2

z1
∫
z6

~ω − 1
2

z3
∫
z4

~ω + 1
2

z5
∫
z2

~ω + ~∆

)
Θ~a
~b

(
1
2

z1
∫
z6

~ω + 1
2

z3
∫
z4

~ω − 1
2

z5
∫
z2

~ω + ~∆

)
. (C.9)

We do not display the case N = 4 in full beauty as it contains 26 terms with four Θ
functions each. It has the structure

E13 E15E17 E35 E37E57 E24E26 E28E46 E48E68

E12 E14E16 E18E23 E25 E27E34 E36E38 E45E47 E56E58 E67E78

×Θ~a
~b

(
1
2

[ z1
∫
z2

~ω +
z3
∫
z4

~ω +
z5
∫
z6

~ω +
z7
∫
z8

~ω
]
− ~∆

)[
Θ~a
~b

(
1
2

[ z1
∫
z2

~ω +
z3
∫
z4

~ω +
z5
∫
z6

~ω +
z7
∫
z8

~ω
]
+ ~∆

)]3

=
1

E12 E34E56 E78

×Θ~a
~b

(
1
2

[ z1
∫
z2

~ω +
z3
∫
z4

~ω +
z5
∫
z6

~ω −
z7
∫
z8

~ω
]
+ ~∆

)
Θ~a
~b

(
1
2

[ z1
∫
z2

~ω +
z3
∫
z4

~ω −
z5
∫
z6

~ω +
z7
∫
z8

~ω
]
+ ~∆

)

×Θ~a
~b

(
1
2

[ z1
∫
z2

~ω −
z3
∫
z4

~ω +
z5
∫
z6

~ω +
z7
∫
z8

~ω
]
+ ~∆

)
Θ~a
~b

(
1
2

[
−

z1
∫
z2

~ω +
z3
∫
z4

~ω +
z5
∫
z6

~ω +
z7
∫
z8

~ω
]
+ ~∆

)

− 1

E12 E34E58 E76

×Θ~a
~b

(
1
2

[ z1
∫
z2

~ω +
z3
∫
z4

~ω +
z5
∫
z8

~ω −
z7
∫
z6

~ω
]
+ ~∆

)
Θ~a
~b

(
1
2

[ z1
∫
z2

~ω +
z3
∫
z4

~ω −
z5
∫
z8

~ω +
z7
∫
z6

~ω
]
+ ~∆

)

×Θ~a
~b

(
1
2

[ z1
∫
z2

~ω −
z3
∫
z4

~ω +
z5
∫
z8

~ω +
z7
∫
z6

~ω
]
+ ~∆

)
Θ~a
~b

(
1
2

[
−

z1
∫
z2

~ω +
z3
∫
z4

~ω +
z5
∫
z8

~ω +
z7
∫
z6

~ω
]
+ ~∆

)

± 22 further permutations in (z2, z4, z6, z8) . (C.10)

This relation is highly important for calculating the six-dimensional loop correlator consist-
ing of four left- and right-handed spin fields each. Only with this version of Fay’s trisecant
identity we have been able to generalize this correlator to (5.70) with an arbitrary number
of left- and right-handed spin fields.



APPENDIX D

Details of the Amplitude Calculation

In this Appendix we collect details for the calculation of the open string amplitude pre-
sented in Chapter 6. In particular we state the kinematical terms entering the expressions
Ki and show the necessary steps for checking gauge invariance or giving results in spinor
product notation.

D.1 The Kinematical Structure

The index terms appearing in the correlators (6.24)-(6.26) are multiplied in the calculation
with the momenta of the gauge bosons, k1, k2, their polarization vectors ξ1, ξ2 and the
polarization spinors of the gauginos, u3, u5 and ū4, ū6. Taking these expressions together,
the terms entering Ki take the form:

R1 = 4 (k1 k2) (ξ1 ξ2)
〈
35
〉
[46] , R10 = 4 (k4 ξ1) (k1 ξ2)

〈
35
〉
[46] ,

R2 = 4 (k1 ξ2) (k2 ξ1)
〈
35
〉
[46] , R11 = 4 (k4 ξ1) (k3 ξ2)

〈
35
〉
[46] ,

R3 = 4 (k2 ξ1) (k3 ξ2)
〈
35
〉
[46] , R12 = 4 (k4 ξ1) (k4 ξ2)

〈
35
〉
[46] ,

R4 = 4 (k2 ξ1) (k4 ξ2)
〈
35
〉
[46] , R13 = 4 (k4 ξ1) (k5 ξ2)

〈
35
〉
[46] ,

R5 = 4 (k2 ξ1) (k5 ξ2)
〈
35
〉
[46] , R14 = 4 (k5 ξ1) (k1 ξ2)

〈
35
〉
[46] ,

R6 = 4 (k3 ξ1) (k1 ξ2)
〈
35
〉
[46] , R15 = 4 (k5 ξ1) (k3 ξ2)

〈
35
〉
[46] ,

R7 = 4 (k3 ξ1) (k3 ξ2)
〈
35
〉
[46] , R16 = 4 (k5 ξ1) (k4 ξ2)

〈
35
〉
[46] ,

R8 = 4 (k3 ξ1) (k4 ξ2)
〈
35
〉
[46] , R17 = 4 (k5 ξ1) (k5 ξ2)

〈
35
〉
[46] ,

R9 = 4 (k3 ξ1) (k5 ξ2)
〈
35
〉
[46] , (D.1)

S1 = 2 (k1 k2) ξ1µ ξ2ν (ū4 ε σ̄
µ σν ū6)

〈
35
〉
, T 1 = 2 (k1 k2) ξ1µ ξ2ν (u3 σ

µ σ̄ν ε u5) [46] ,

S2 = 2 (ξ1 ξ2) k1µ k2ν (ū4 ε σ̄
µ σν ū6)

〈
35
〉
, T 2 = 2 (ξ1 ξ2) k1µ k2ν (u3 σ

µ σ̄ν ε u5) [46] ,

S3 = 2 (k1 ξ2) ξ1µ k2ν (ū4 ε σ̄
µ σν ū6)

〈
35
〉
, T 3 = 2 (k1 ξ2) ξ1µ k2ν (u3 σ

µ σ̄ν ε u5) [46] ,

S4 = 2 (ξ1 k2) k1µ ξ2ν (ū4 ε σ̄
µ σν ū6)

〈
35
〉
, T 4 = 2 (ξ1 k2) k1µ ξ2ν (u3 σ

µ σ̄ν ε u5) [46] ,
(D.2)
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U1 = 2 (k1 k2) ξ1µ ξ2ν (u3 σ
µ ū4) (u5 σ

ν ū6) , V 1 = 2 (k1 ξ2) k1µ ξ1ν (u3 σ
µ ū6) (u5 σ

ν ū4) ,

U2 = 2 (ξ1 ξ2) k1µ k2ν (u3 σ
µ ū4) (u5 σ

ν ū6) , V 2 = 2 (k3 ξ2) k1µ ξ1ν (u3 σ
µ ū6) (u5 σ

ν ū4) ,

U3 = 2 (k1 ξ2) ξ1µ k2ν (u3 σ
µ ū4) (u5 σ

ν ū6) , V 3 = 2 (k4 ξ2) k1µ ξ1ν (u3 σ
µ ū6) (u5 σ

ν ū4) ,

U4 = 2 (k2 ξ1) k1µ ξ2ν (u3 σ
µ ū4) (u5 σ

ν ū6) , V 4 = 2 (k5 ξ2) k1µ ξ1ν (u3 σ
µ ū6) (u5 σ

ν ū4) ,

U5 = 2 (k1 ξ2) k1µ ξ1ν (u3 σ
µ ū4) (u5 σ

ν ū6) , V 5 = 2 (k2 ξ1) k2µ ξ2ν (u3 σ
µ ū6) (u5 σ

ν ū4) ,

U6 = 2 (k3 ξ2) k1µ ξ1ν (u3 σ
µ ū4) (u5 σ

ν ū6) , V 6 = 2 (k3 ξ1) k2µ ξ2ν (u3 σ
µ ū6) (u5 σ

ν ū4) ,

U7 = 2 (k4 ξ2) k1µ ξ1ν (u3 σ
µ ū4) (u5 σ

ν ū6) , V 7 = 2 (k4 ξ1) k2µ ξ2ν (u3 σ
µ ū6) (u5 σ

ν ū4) ,

U8 = 2 (k5 ξ2) k1µ ξ1ν (u3 σ
µ ū4) (u5 σ

ν ū6) , V 8 = 2 (k5 ξ1) k2µ ξ2ν (u3 σ
µ ū6) (u5 σ

ν ū4) ,

U9 = 2 (k2 ξ1) k2µ ξ2ν (u3 σ
µ ū4) (u5 σ

ν ū6) ,

U10 = 2 (k3 ξ1) k2µ ξ2ν (u3 σ
µ ū4) (u5 σ

ν ū6) ,

U11 = 2 (k4 ξ1) k2µ ξ2ν (u3 σ
µ ū4) (u5 σ

ν ū6) ,

U12 = 2 (k5 ξ1) k2µ ξ2ν (u3 σ
µ ū4) (u5 σ

ν ū6) , (D.3)

W 1 = 2 (k1 ξ2) k1µ ξ1ν (u5 σ
µ ū4) (u3 σ

ν ū6) , X1 = 2 (k1 ξ2) k1µ ξ1ν (u5 σ
µ ū6) (u3 σ

ν ū4) ,

W 2 = 2 (k3 ξ2) k1µ ξ1ν (u5 σ
µ ū4) (u3 σ

ν ū6) , X2 = 2 (k3 ξ2) k1µ ξ1ν (u5 σ
µ ū6) (u3 σ

ν ū4) ,

W 3 = 2 (k4 ξ2) k1µ ξ1ν (u5 σ
µ ū4) (u3 σ

ν ū6) , X3 = 2 (k4 ξ2) k1µ ξ1ν (u5 σ
µ ū6) (u3 σ

ν ū4) ,

W 4 = 2 (k5 ξ2) k1µ ξ1ν (u5 σ
µ ū4) (u3 σ

ν ū6) , X4 = 2 (k5 ξ2) k1µ ξ1ν (u5 σ
µ ū6) (u3 σ

ν ū4) ,

W 5 = 2 (k2 ξ1) k2µ ξ2ν (u5 σ
µ ū4) (u3 σ

ν ū6) , X5 = 2 (k2 ξ1) k2µ ξ2ν (u5 σ
µ ū6) (u3 σ

ν ū4) ,

W 6 = 2 (k3 ξ1) k2µ ξ2ν (u5 σ
µ ū4) (u3 σ

ν ū6) , X6 = 2 (k3 ξ1) k2µ ξ2ν (u5 σ
µ ū6) (u3 σ

ν ū4) ,

W 7 = 2 (k4 ξ1) k2µ ξ2ν (u5 σ
µ ū4) (u3 σ

ν ū6) , X7 = 2 (k4 ξ1) k2µ ξ2ν (u5 σ
µ ū6) (u3 σ

ν ū4) ,

W 8 = 2 (k5 ξ1) k2µ ξ2ν (u5 σ
µ ū4) (u3 σ

ν ū6) , X8 = 2 (k5 ξ1) k2µ ξ2ν (u5 σ
µ ū6) (u3 σ

ν ū4) ,
(D.4)

Y1 = k1µ ξ1ν k2λ ξ2ρ (u3 σ
µ σ̄ν σλ ū4) (u5 σ

ρ ū6) ,

Y2 = k1µ ξ1ν k2λ ξ2ρ (u3 σ
λ σ̄ρ σµ ū4) (u5 σ

ν ū6) ,

Y3 = k1µ ξ1ν k2λ ξ2ρ (u3 σ
ν σ̄λ σρ ū6) (u5 σ

µ ū4) ,

Y4 = k1µ ξ1ν k2λ ξ2ρ (u3 σ
µ σ̄ν σρ ū6) (u5 σ

λ ū4) ,

Y5 = k1µ ξ1ν k2λ ξ2ρ (u5 σ
ν σ̄λ σρ ū6) (u3 σ

µ ū4) ,

Y6 = k1µ ξ1ν k2λ ξ2ρ (u3 σ
µ σ̄ν σλ ū6) (u5 σ

ρ ū4) , (D.5)

Z1 =
〈
35
〉
k1µ ξ1ν k2λ ξ2ρ (ū4 ε σ̄

µ σν σ̄λ σρ ū6) ,

Z2 = [46] k1µ ξ1ν k2λ ξ2ρ (u3 σ
µ σ̄ν σλ σ̄ρ ε u5) . (D.6)
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These terms combine as follows into the kinematical factors Ki:

K1 = R1/s1 −R2 ,

K2 = R3 +R7 − U6 − U9 − U10 + V 2 + V 5 ,

K3 = R4 +R12 + S2 − S4 + U1 − U3 − V 3 − V 5

+X3 +X5 − Y 2 + Y 4 + Y 5 − Y 6 − Z1 ,

K4 = R5 +R17 +W 4 +W 5 +W 8 −X4 −X5 ,

K5 = − R6 − R7 + U5 + U6 + U10 − V 1 − V 2 ,

K6 = − R10 −R12 + V 1 + V 3 −X1 −X3 + Z1 ,

K7 = − R14 −R17 −W 1 −W 4 −W 8 +X1 +X4 ,

K8 = − R1 +R2 ,

K9 = S1 − S3 − U1 + U3 + Y 2 − Y 4 − Y 5 + Y 6 ,

K10 = − T 1 − T 2 + T 3 + T 4 ,

K11 = S2 − S4 − U2 + U4 − Y 2 + Y 3 ,

K12 = R11 − U11 − V 2 +X2 ,

K13 = R15 − U12 +W 2 −X2 ,

K14 = R8 − U7 + V 3 − Y 1 + Y 4 ,

K15 = R16 +W 3 −X3 + Y 1 − Y 4 ,

K16 = R9 − U8 + V 4 +W 6 ,

K17 = R13 − V 4 +W 7 +X4 . (D.7)

For a homogeneous notation in (6.30) we have introduced

K18 = V 6 , K19 = V 7 , K20 = V 8 , K21 = Z2 ,

K22 = X6 , K23 = X7 . K24 = X8 . (D.8)

D.2 Gauge Invariance

Checking gauge invariance of the amplitude is achieved by setting the polarization vector
of one of the gluons equal to its momentum, ξµ = kµ. This corresponds to a pure gauge
configuration and the amplitude must then vanish. In the following we demonstrate the
steps for checking gauge invariance in case of the first gluon, i.e. ξµ1 = kµ1 , while ξ2 is
arbitrary. The kinematical terms (D.1)-(D.6) then become
(
R2, R6, R10, R14

)
= L1

(
s12, s13, s14 s15

)
,
(
U9, U10, U11, U12

)
= P 1

(
s12, s13, s14 s15

)
,

(
R3, R7, R11, R15

)
= L2

(
s12, s13, s14 s15

)
,

(
V 5, V 6, V 7, V 8

)
= P 2

(
s12, s13, s14 s15

)
,

(
R4, R8, R12, R16

)
= L3

(
s12, s13, s14 s15

)
,
(
W 5,W 6,W 7,W 8

)
= P 3

(
s12, s13, s14 s15

)
,

(
R5, R9, R13, R17

)
= L4

(
s12, s13, s14 s15

)
,

(
X5, X6, X7, X8

)
= P 4

(
s12, s13, s14 s15

)
,

(D.9)
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where we have defined

L1 ≡ 2
α′
(k1 ξ2)

〈
35
〉
[46] , P 1 ≡ 1

α′
k2µ ξ2ν (u3 σ

µ ū4) (u5 σ
µ ū6) ,

L2 ≡ 2
α′
(k3 ξ2)

〈
35
〉
[46] , P 2 ≡ 1

α′
k2µ ξ2ν (u3 σ

µ ū6) (u5 σ
µ ū4) ,

L3 ≡ 2
α′
(k4 ξ2)

〈
35
〉
[46] , P 3 ≡ 1

α′
k2µ ξ2ν (u5 σ

µ ū4) (u3 σ
µ ū6) ,

L4 ≡ 2
α′
(k5 ξ2)

〈
35
〉
[46] , P 4 ≡ 1

α′
k2µ ξ2ν (u5 σ

µ ū6) (u3 σ
µ ū4) . (D.10)

Additional simplifications occur as the following terms coincide:

R1 = R2 , T 1 = T 4 , U5 = X1 , V 1 = W 1 ,

S1 = S4 , T 2 = T 3 , U6 = X2 , V 2 = W 2 ,

S2 = S3 , U1 = U4 , U7 = X3 , V 3 = W 3 ,

U2 = U3 , U8 = X4 , V 4 = W 4 . (D.11)

Further concordance is found when we imply the formula (B.6). One obtains:

U5 = X1 = V 1 = W 1 , U9 +X5 = V 5 +W 5 ,

U6 = X2 = V 2 = W 2 , U10 +X6 = V 6 +W 6 ,

U7 = X3 = V 3 = W 3 , U11 +X7 = V 7 +W 7 ,

U8 = X4 = V 4 = W 4 , U12 +X8 = V 8 +W 8 . (D.12)

Let us now discuss the three- and four-σ-chains (D.5) and (D.6). The terms Y 1, Y 4, Y 6, Z1

and Z2 vanish as a result of

kµ kν (σ
µ σ̄νε)αβ̇ = kµ kν

[
(σµνε)αβ̇ − ηµν

]
. (D.13)

The first term disappears because σµν is antisymmetric in the vector indices, but kµ kν is
symmetric. The second term simply vanishes due to k2 = 0. The remaining expressions
Y i are not independent. Upon using the formula (B.16) in the form of

(σλ σ̄ρ ε)αγ (ε σ̄
µ σν)β̇δ̇ = (σλ σ̄ρ σµ)αβ̇ σ

ν
γδ̇

− (σλ σ̄ρ σν)αδ̇ σ
µ

γβ̇
,

(σµ σ̄ν ε)αγ (ε σ̄
λ σρ)β̇δ̇ = (σν σ̄λ σρ)γδ̇ σ

µ

αβ̇
− (σµ σ̄λ σρ)αδ̇ σ

ν
γβ̇

(D.14)

we find for the leftover kinematic terms

Y 2 = Y 3 + U1 − U2 − S1 + S2 , Y 3 = Y 5 . (D.15)
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These results taken together lead to tremendous simplifications for the K’s:

K1 = (1− s12)L
1 , K15 = s15 L

3 ,

K2 = (s12 + s13) (L
2 − P 3 + P 4)− s13 P

2 , K16 = s13 (L
4 + P 3) ,

K3 = (s12 + s14)L
3 − s12 (P

2 − P 4) , K17 = s14 (L
4 + P 3) ,

K4 = (s12 + s15) (L
4 + P 3)− s12 P

4 , K18 = s13 P
2 ,

K5 = −s13 (L1 + L2 − P 2 − P 3 + P 4) , K19 = s14 P
2 ,

K6 = −s14 (L1 + L3) , K20 = s15 P
2 ,

K7 = −s15 (L1 + L4 − P 3) , K22 = s13 P
4 ,

K12 = s14 (L
2 − P 2 − P 3 + P 4) , K23 = s14 P

4 ,

K13 = s15 (L
2 − P 2 − P 3 + P 4) , K24 = s15 P

4 .

K14 = s13 L
3 , (D.16)

In terms of these kinematical structures the amplitude must vanish on account of the pure
gauge configuration of the first gluon. The seven terms above L1, L2, L3, L4 and P 2, P 3, P 4,
are independent. The vanishing of the amplitude must therefore be due to cancellations
between the integral terms Hi. This circumstance yields precisely the equations in (6.33),
while similar calculations for inspecting gauge invariance of the second gluon lead to (6.34)
and (6.35).

D.3 Results ins Spinor Product Notation

The first gluon is chosen to have negative helicity and reference momentum k4. The second
has positive helicity and we take k5 as reference momentum. The polarization vectors
become for this choice:

ξ−µ
1 = − 1√

2

σ̄µ α̇α k1α k̄4 α̇
[14]

, ξ+µ
2 = − 1√

2

σ̄µ α̇α k5α k̄2 α̇
〈52〉 . (D.17)

Multiplication of the polarization vectors with another four-momentum results in

ki µ ξ
−µ
1 = − 1√

2

〈1i〉 [i4]
[14]

, ki µ ξ
+µ
2 = − 1√

2

〈5i〉 [i2]
〈52〉 . (D.18)

Together with kµ σ
µ
αα̇ = kα k̄α̇ the kinematic terms (D.1)-(D.6) can then entirely be written

in terms of spinor products. Due to 〈ii〉 = [jj] = 0 many of these terms vanish. The
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remaining ones are:

(
R2, R3, R4

)
= 2

〈12〉[24]〈35〉[46]
[14]〈52〉

(
〈51〉[12], 〈53〉[32], 〈54〉[42]

)
,

(
R6, R7, R8

)
= 2

〈13〉[34]〈35〉[46]
[14]〈52〉

(
〈51〉[12], 〈53〉[32], 〈54〉[42]

)
,

(
R14, R15, R16

)
= 2

〈15〉[54]〈35〉[46]
[14]〈52〉

(
〈51〉[12], 〈53〉[32], 〈54〉[42]

)
,

(
U5, U6, U7

)
= 2

〈31〉[14]〈15〉[46]
[14]〈52〉

(
〈51〉[12], 〈53〉[32], 〈54〉[42]

)
,

(
X5, X6, X8

)
= 2

〈25〉[24]〈35〉[26]
[14]〈52〉

(
〈12〉[24], 〈13〉[34], 〈15〉[54]

)
,

(
S2, T 2, U2

)
= 2

〈15〉[24]
[14]〈52〉

(
〈12〉[26]〈35〉[41], 〈13〉[12]〈25〉[46], 〈13〉[14]〈52〉[26]

)
.

(D.19)

Additionally, it turns out that the following terms coincide,

R1 = R2 , W 1 = U5 , W 5 = X5 , Y 3 = −Y 4 = Y 5 = U2 ,

S4 = S2 , W 2 = U6 , W 6 = X6 ,

T 3 = T 2 , W 3 = U7 , W 7 = X7 , (D.20)

while all other expressions in (D.1)-(D.6) vanish. With these findings the kinematics Ki

simplify considerably. The results can further be reduced with the help of the relations
found from gauge invariance. Ultimately, only eight factors contribute to the amplitude:

K1 = (1/s1 − 1)R1 , K7 = −R14 − U5 ,

K2 = R3 +R7 − U6 , K13 = R15 + U6 ,

K3 = R4 +X5 , K14 = R8 − U2 − U7 +X6 ,

K5 = −R6 −R7 + U5 + U6 , K15 = R16 + U2 + U7 +X8 . (D.21)

Inserting the respective expressions above yields (6.43).



APPENDIX E

Spinor Helicity Formalism

In this Appendix we present further details regarding the spinor helicity formalism in four
space-time dimensions [162–164]. The following presentation is inspired by [165, 173].

E.1 Clifford Algebra

First, let us present our conventions which follow [21]. The metric in our discussion takes
the form ηµν = diag(−1,+1,+1,+1). Gamma matrices, representations of the Clifford
algebra

{Γµ,Γν} = −2ηµν , (E.1)

are for example given by1

Γµ =

(
0 σµ

σ̄µ 0

)
, Γ5 ≡ −iΓ0 Γ1 Γ2 Γ3 =

(
−1 0
0 1

)
, (E.2)

with σµ = (−1,−σi), σ̄µ = (−1, σi) and σi the standard Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (E.3)

In component form the matrices have the index structure σµ
αβ̇
, σ̄µ α̇β and behave under

complex conjugation as

(σµ
αβ̇
)∗ = σµβα̇ , (σ̄µ α̇β)∗ = σ̄µ β̇α . (E.4)

Spinor indices can be raised and lowered using the diagonal blocks of the charge conjugation
matrix εαβ, ε

α̇β̇. These are antisymmetric 2× 2 matrices, whose inverse is denoted by εαβ

and εα̇β̇ respectively. We use ε12 = ε21 = −1. With the help of these matrices σµ and σ̄µ

are related via
σµαα̇ = εαβ εα̇β̇ σ̄

µ β̇β . (E.5)

1This representation is very convenient to use in the following, but does not coincide with the repre-
sentation constructed in Appendix A.4.
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E.2 Momentum Spinors

Any four-momentum kµ of a particle with mass m can be contracted with σµαα̇,

k ≡ kµ σ
µ =

(
k0 + k3 k1 − ik2

k1 + ik2 k0 − k3

)
. (E.6)

In index notation this reads kαα̇ = kµ σ
µ
αα̇ and kα̇α = kµ σ̄

µ α̇α. Applying the identity
Tr(σµ σ̄ν) = −2 ηµν these relations can be inverted

kµ = −1

2
kαα̇ σ̄

µ α̇α = −1

2
kα̇α σµαα̇ . (E.7)

For real momenta the matrix k is hermitian and can therefore be written as

k =
2∑

i=1

κi vi v
†
i , (E.8)

where vi are the eigenvectors and κi the corresponding eigenvalues [174]. The determinant
of k yields

det k = −kµ kµ = −m2 . (E.9)

In our work we are dealing with massless particles. Therefore the determinant vanishes
and hence k has only one eigenvector v and eigenvalue λ. Following (E.8) the matrix in
component notation can be decomposed as

kαα̇ = kα k̄α̇ , (E.10)

where we have defined kα ≡ √
κvα. The quantities kα, k̄α̇ are obviously related by complex

conjugation, kα = (k̄α̇)
∗. The same decomposition holds for

kα̇α = k̄α̇ kα (E.11)

with kα = (k̄α̇)∗. Due to (E.5) these are related to the previously introduced kα, k̄α̇ by

kα = εαβ k
β , k̄α̇ = εα̇β̇ k̄

β̇ . (E.12)

The commuting quantities kα and k̄α̇ carry spinor indices and are therefore referred to as
momentum spinors. Note that we have not made use of the Dirac equation and hence, the
introduction of momentum spinors is possible for massless bosons and fermions. In the
latter case kα and k̄α̇ are chiral solutions of the Dirac equation, i.e. solutions with definite
helicity ±. This fact lends its name to the formalism.

We prove this by directly constructing chiral, plane-wave solutions of the massless Dirac
equation

/k u(k) =

(
kαα̇ χ̄

α̇

kα̇α λα

)
= 0 , (E.13)



E.2 Momentum Spinors 157

where u(k) = (λα, χ̄
α̇)t and λ, χ are two-component Weyl spinors. Due to the block-

diagonal form of Γ5 in (E.2)

u−(k) =

(
λα
0

)
, u+(k) =

(
0
λ̄α̇

)
(E.14)

satisfy the identities
P± u±(k) = u±(k) , P± u∓(k) = 0 (E.15)

with the projector P± ≡ 1
2
(1 ± Γ5). Hence, for appropriate λα and λ̄α̇ the spinors u±

are solutions to (E.13) with definite helicity ±. We define the Dirac conjugate of u(k) by
ū(k) ≡ −u(k)† Γ0. Then

ū−(k) = (0, λ̄α̇) , ū+(k) = (λα, 0) , (E.16)

where (λα)
∗ = λ̄α̇, (λ

α)∗ = λ̄α̇. Indices can be raised and lowered in the same fashion as
in (E.12). The four-momentum entering (E.13) can be parameterized in polar coordinates
as2

kµ = (E,E sin θ cos φ,E sin θ sinφ,E cosφ). (E.17)

Then (E.6) becomes

kαα̇ = 2E

(
c2 s c e−iφ

s c eiφ s2

)
, kα̇α = 2E

(
s2 −s c e−iφ

−s c eiφ c2

)
(E.18)

with the abbreviations s ≡ sin (θ/2) and c ≡ cos (θ/2). The eigenvalue of kαα̇ is κ = 2E
and the corresponding eigenvector v = (c e−iφ, s)t. As before we set kα =

√
2E vα and find

kα =
√
2E

(
c e−iφ

s

)
, k̄α̇ =

√
2E (c eiφ, s) ,

k̄α̇ =
√
2E

(
s

−c eiφ
)
, kα =

√
2E (s,−c e−iφ) . (E.19)

With the explicit expressions (E.18) and (E.19) one can now check that indeed

kαα̇ = kα k̄α̇ , kα̇α = k̄α̇ kα . (E.20)

Additionally these satisfy

kαα̇ k̄
α̇ = kα̇α kα = 0 , k̄α̇ k

α̇α = kα kαα̇ = 0 . (E.21)

By comparison with (E.13) this proves that u±(k) satisfy the Dirac equation if one identifies
λα ≡ kα and λ̄α̇ ≡ k̄α̇.

2In the following we attach vector and spinor indices to the quantities in order to distinguish them from
each other.
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E.3 Spinor Products

Using σµαα̇ σµββ̇ = −2 εαβ εα̇β̇ and the fact that kα, k̄α̇ are commuting quantities we can
write the Mandelstam variable sij in terms of momentum spinors:

sij ≡ (ki + kj)
2 = 2 ki kj =

1

2
kα̇αi kβ̇βj σµαα̇ σµ ββ̇ = 〈ij〉 [ij] . (E.22)

Here we have introduced the bracket notation for spinor products

〈p q〉 ≡ pα qα , [p q] ≡ p̄α̇ q̄
α̇ (E.23)

as in [108] and the short-hand notation 〈ki kj〉 ≡ 〈i j〉 and [kikj] ≡ [i j]. In the case of
fermions the bras and kets can be associated to the Weyl spinors (E.14) and (E.16):

〈k| = ū+(k) , |k〉 = u−(k) , [k| = ū−(k) , |k] = u+(k) . (E.24)

The antisymmetry of εαβ establishes that the spinor products are also antisymmetric,

〈i j〉 = −〈j i〉 , [i j] = −[j i] ⇒ 〈i i〉 = [i i] = 0 . (E.25)

For real momenta the different brackets are related by complex conjugation, 〈i j〉∗ = −[j i].
In the manipulations of spinor products the following relations are helpful. The Fierz

identity

εαγ εβδ = εαβ εγδ + εαδ εβγ (E.26)

yields upon multiplication with momentum spinors the Schouten identity

〈i j〉 〈k l〉 = 〈i k〉 〈j l〉+ 〈i l〉 〈k j〉 . (E.27)

For n-particle scattering momentum conservation
∑n

i=1 k
µ
i = 0 can be formulated in terms

of momentum spinors. For this purpose we apply (E.6) and (E.10) and multiply with two
further spinors in order to find

n∑

i=1
i 6=j,k

[j i] 〈i k〉 = 0 . (E.28)

E.4 Polarization Vectors

The polarization vectors entering the calculation of amplitudes through the gluon vertex
operators with momentum kµ and reference momentum rµ become in the helicity formalism

ξ+µ(k, r) = − 1√
2

σ̄µ α̇α rα k̄α̇
〈r k〉 , ξ−µ(k, r) = − 1√

2

σ̄µ α̇α kα r̄α̇
[k r]

, (E.29)
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where ξ+ comes with a right-handed, ξ− with a left-handed gluon state. Upon contraction
with σµαα̇ these yield

ξ+αα̇(k, r) =
√
2
rα k̄α̇
〈r k〉 , ξ−αα̇(k, r) =

√
2
kα r̄α̇
[k r]

. (E.30)

It is easy to show that

ξ+µ ξ−µ = 1 , ξ+µ ξ+µ = ξ−µ ξ−µ = 0 (E.31)

if the polarizations have the same momentum and reference vector. Multiplying a polar-
ization vector with the momentum of another particle gives

ki µ ξ
+µ(k, r) =

1√
2

〈r i〉 [k i]
〈r k〉 , ki µ ξ

−µ(k, r) =
1√
2

〈k i〉 [r i]
[k r]

. (E.32)

Then it is clear that these products vanish for ki µ = kµ or ki µ = rµ.
The reference momentum r entering (E.29) can be freely chosen. It shifts under the

change r → s by an amount proportional to the momentum of the gluon,

ξ+µ(k, r)− ξ+µ(k, s) =
1√
2

rα sβ − rβ sα
〈r k〉 〈s k〉 (ε σν σ̄µ)βα kν

=
1√
2

rα sβ
〈r k〉 〈s k〉 (ε σ

ν σ̄µ + ε σµ σ̄ν)βα kν

=
√
2

〈r s〉
〈r k〉 〈s k〉 k

µ . (E.33)

In the last step we have used the Clifford algebra (E.1). In the same way one can show
that

ξ−µ(k, r)− ξ−µ(k, s) = −
√
2

[r s]

[k r] [k s]
kµ . (E.34)

Shifting ξ by an amount proportional to its momentum corresponds to an on-shell gauge
transformation acting on the gluon. The choice of the reference momentum is therefore a
gauge choice.
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[4] D. Härtl, O. Schlotterer and S. Stieberger, Couplings of brane & bulk string states
vs. pure brane couplings, to appear.

[5] S. Glashow, Partial Symmetries of Weak Interactions, Nucl.Phys. 22 (1961)
579–588.

[6] S. Weinberg, A Model of Leptons, Phys.Rev.Lett. 19 (1967) 1264–1266.

[7] A. Salam, Weak and Electromagnetic Interactions, Proceedings Of The Nobel
Symposium (1968) 367–377.

[8] M. E. Peskin and D. V. Schroeder, An Introduction to quantum field theory,
Addison-Wesley (1995).

[9] P. W. Higgs, Broken symmetries, massless particles and gauge fields, Phys.Lett. 12
(1964) 132–133.

[10] F. Englert and R. Brout, Broken Symmetry and the Mass of Gauge Vector Mesons,
Phys.Rev.Lett. 13 (1964) 321–322.

[11] G. Guralnik, C. Hagen and T. Kibble, Global Conservation Laws and Massless
Particles, Phys.Rev.Lett. 13 (1964) 585–587.

[12] P. Langacker, Introduction to the Standard Model and Electroweak Physics,
[arXiv:0901.0241].

[13] S. Weinberg, Implications of Dynamical Symmetry Breaking, Phys.Rev. D13 (1976)
974–996.



162 BIBLIOGRAPHY

[14] E. Gildener, Gauge Symmetry Hierarchies, Phys.Rev. D14 (1976) 1667.

[15] L. Susskind, Dynamics of Spontaneous Symmetry Breaking in the Weinberg-Salam
Theory, Phys.Rev. D20 (1979) 2619–2625.

[16] Particle Data Group Collaboration, K. Nakamura et. al., Review of particle
physics, J.Phys.G G37 (2010) 075021.

[17] J. E. Kim and G. Carosi, Axions and the Strong CP Problem, Rev.Mod.Phys. 82
(2010) 557–602 [arXiv:0807.3125].

[18] WMAP Collaboration Collaboration, E. Komatsu et. al., Seven-Year Wilkinson
Microwave Anisotropy Probe (WMAP) Observations: Cosmological Interpretation,
Astrophys.J.Suppl. 192 (2011) 18 [arXiv:1001.4538].

[19] R. Peccei and H. R. Quinn, CP Conservation in the Presence of Instantons,
Phys.Rev.Lett. 38 (1977) 1440–1443.

[20] R. Peccei and H. R. Quinn, Constraints Imposed by CP Conservation in the
Presence of Instantons, Phys.Rev. D16 (1977) 1791–1797.

[21] J. Wess and J. Bagger, Supersymmetry and supergravity, Princeton University Press
(1992).

[22] R. Haag, J. T. Lopuszanski and M. Sohnius, All Possible Generators of
Supersymmetries of the S Matrix, Nucl.Phys. B88 (1975) 257.

[23] S. R. Coleman and J. Mandula, All Possible Symmetries Of The S Matrix,
Phys.Rev. 159 (1967) 1251–1256.

[24] S. P. Martin, A Supersymmetry primer, [hep-ph/9709356].

[25] H. Georgi and S. Glashow, Unity of All Elementary Particle Forces, Phys.Rev.Lett.
32 (1974) 438–441.

[26] H. Fritzsch and P. Minkowski, Unified Interactions of Leptons and Hadrons, Annals
Phys. 93 (1975) 193–266.

[27] A. Einstein, On the General Theory of Relativity,
Sitzungsber.Preuss.Akad.Wiss.Berlin (Math.Phys.) 1915 (1915) 778–786.

[28] R. M. Wald, General Relativity, The University of Chicago Press (1984).

[29] S. M. Carroll, Spacetime and geometry: An introduction to general relativity,
Addison-Wesley (2004).

[30] S. Weinberg, The Cosmological Constant Problem, Rev.Mod.Phys. 61 (1989) 1–23.



BIBLIOGRAPHY 163

[31] J. D. Bekenstein, Black holes and entropy, Phys.Rev. D7 (1973) 2333–2346.

[32] S. Hawking, Particle Creation by Black Holes, Commun.Math.Phys. 43 (1975)
199–220.

[33] M. B. Green, J. Schwarz and E. Witten, Superstring Theory. Vol. 1: Introduction,
Cambridge University Press (1987).

[34] M. B. Green, J. Schwarz and E. Witten, Superstring Theory. Vol. 2: Loop
Amplitudes, Anomalies and Phenomenology, Cambridge University Press (1987).

[35] J. Polchinski, String theory. Vol. 1: An introduction to the bosonic string,
Cambridge University Press (1998).

[36] J. Polchinski, String theory. Vol. 2: Superstring theory and beyond, Cambridge
University Press (1998).

[37] G. Veneziano, Construction of a crossing - symmetric, Regge behaved amplitude for
linearly rising trajectories, Nuovo Cim. A57 (1968) 190–197.

[38] T. Thiemann, Lectures on loop quantum gravity, Lect.Notes Phys. 631 (2003)
41–135 [gr-qc/0210094].

[39] E. Witten, String theory dynamics in various dimensions, Nucl.Phys. B443 (1995)
85–126 [hep-th/9503124].

[40] D. Tong, String Theory, [arXiv:0908.0333].

[41] F. Gliozzi, J. Scherk and D. I. Olive, Supersymmetry, Supergravity Theories and the
Dual Spinor Model, Nucl.Phys. B122 (1977) 253–290.

[42] M. B. Green and J. H. Schwarz, Anomaly Cancellation in Supersymmetric D=10
Gauge Theory and Superstring Theory, Phys.Lett. B149 (1984) 117–122.

[43] J. Polchinski, Dirichlet branes and Ramond-Ramond charges, Phys.Rev.Lett. 75
(1995) 4724–4727 [hep-th/9510017].
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