
Dissertation zur Erlangung des Doktorgrades 
der Fakultät für Chemie und Pharmazie 

der Ludwig-Maximilians-Universität München 

 

 

 

The role of Integrin-linked kinase 
in vivo and in vitro 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Carsten Grashoff 
aus 

Northeim 
 
 
 

München, 2007 





Erklärung 

3 

Erklärung 

Diese Dissertation wurde im Sinne von §13 Abs.3 bzw. 4 der Promotionsordnung vom 29. 

Januar 1998 von Herrn Prof. Dr. Reinhard Fässler betreut und von Herrn Prof. Dr. Alexander 

Pfeifer vor der Fakultät für Chemie und Pharmazie vertreten. 

 

 

 

Ehrenwörtliche Versicherung 

Diese Dissertation wurde selbständig, ohne unerlaubte Hilfe erarbeitet. 

 

München, am 08.02.2007 

 

 

 

 

 

       (Unterschrift des Autors) 

 

 

 

 

 

 

 

 

 

 

 

 

Dissertation eingereicht am 08.02.2007 

1. Gutachter Herr Prof. Dr. Reinhard Fässler 

2. Gutachter Herr Prof. Dr. Alexander Pfeifer 

Mündliche Prüfung am 28.03.2007





Table of contents 

5 

Erklärung.................................................................................................................................. 3 

Table of contents....................................................................................................................... 5 

Abbreviations............................................................................................................................ 9 

1. Introduction ................................................................................................................ 15 
1.1. The integrin receptor family ............................................................................................. 15 

1.1.1. The regulation of integrin activity ................................................................................................. 16 
1.1.2. Structural insights into the regulation of integrin affinity ............................................................. 17 
1.1.3. Integrin activation by cytoplasmic domain-binding proteins ........................................................ 18 

1.2. Regulation of integrin signalling by cytoplasmic domain binding proteins.................. 19 
1.2.1. Structure and function of focal adhesions (FA)............................................................................. 20 
1.2.2. Mechanisms of integrin-actin interaction ...................................................................................... 22 
1.2.3. Fibrillar adhesions and their role in fibronectin (FN) matrix assembly......................................... 23 
1.2.4. Integrin signal transduction- a second level of actin reorganization ............................................. 24 
1.2.5. Integrin-growth factor receptor crosstalk ...................................................................................... 25 

1.3. Integrin-linked kinase........................................................................................................ 27 
1.3.1. Domain structure of ILK ............................................................................................................... 28 
1.3.2. Catalytic activity of ILK................................................................................................................ 28 
1.3.3. Genetic studies of ILK in invertebrates......................................................................................... 30 
1.3.4. ILK- an adaptor protein at the integrin adhesion site .................................................................... 32 

1.4. Analysis of the peri-implantation development in mice.................................................. 33 
1.4.1. Embryoid bodies (EBs)-a model system to study peri-implantation development........................ 34 
1.4.2. The role of the ECM proteins integrins during peri-implantation development............................ 35 

1.5. Development and analysis of the vertebrate skeleton ..................................................... 36 
1.5.1. Bone formation by endochondral ossification............................................................................... 36 
1.5.2. Regulation of chondrocyte proliferation and differentiation ......................................................... 37 

1.5.2.1. Ihh-PTHrP crosstalk ................................................................................................................. 38 
1.5.2.2. Regulation of endochondral bone formation by growth factor signalling and transcription 

factors ....................................................................................................................................... 39 
1.5.3. The role of the ECM and integrins during endochondral ossification........................................... 40 

1.5.3.1. Deletion of β1 integrin in the cartilage ..................................................................................... 41 
1.6. Epidermal morphogenesis and analysis of the murine skin ........................................... 42 

1.6.1. Epidermal morphogenesis ............................................................................................................. 43 
1.6.2. HF morphogenesis and the hair cycle............................................................................................ 44 
1.6.3. The role of integrins in the epidermis............................................................................................ 46 

1.6.3.1. Deletion of β1 integrins from basal keratinocytes .................................................................... 46 
1.7. Aim of the PhD thesis......................................................................................................... 47 

2. Materials and Methods .............................................................................................. 49 
2.1. Common chemicals ............................................................................................................ 49 
2.2. Animals ............................................................................................................................... 49 

2.2.1. Breeding scheme ........................................................................................................................... 49 
2.3. Histological analysis of ILK knockout mice .................................................................... 49 

2.3.1. Material Histology......................................................................................................................... 49 
2.3.2. Histological methods..................................................................................................................... 50 

2.3.2.1. Preparation of paraffin sections ................................................................................................ 50 
2.3.2.2. Preparation of cryo-sections ..................................................................................................... 51 
2.3.2.3. Skeletal whole mount staining: Alcian Blue/Alizarin Red staining.......................................... 51 
2.3.2.4. LacZ staining ............................................................................................................................ 51 
2.3.2.5. Hematoxylin/Eosin staining...................................................................................................... 52 
2.3.2.6. Hematoxylin/Safranin orange staining ..................................................................................... 53 
2.3.2.7. Safranin-Orange von Kossa staining ........................................................................................ 53 
2.3.2.8. Alkaline phosphatase staining- visualization of osteoblasts ..................................................... 54 
2.3.2.9. Tartrate-resistant acid phosphatase staining- visualization of osteoclasts ................................ 54 



Table of contents 

6 

2.3.3. In situ hybridization on cartilaginous sections .............................................................................. 55 
2.3.3.1. RNA labelling reaction ............................................................................................................. 55 
2.3.3.2. RNA hybridization and immunological detection .................................................................... 56 

2.4. Immunological Methods .................................................................................................... 57 
2.4.1. Materials Immunological Analysis................................................................................................ 57 
2.4.2. BrdU staining of cartilaginous sections......................................................................................... 58 
2.4.3. TUNEL staining on cartilaginous sections .................................................................................... 59 
2.4.4. Immunostaining on cartilaginous sections .................................................................................... 60 
2.4.5. BrdU staining of adherent cells in culture ..................................................................................... 60 
2.4.6. Immunostaining of adherent cells in culture ................................................................................. 61 
2.4.7. Cytoskeletal staining of adherent cells .......................................................................................... 61 
2.4.8. Lipid raft staining of adherent cells............................................................................................... 62 

2.5. Cell culture methods .......................................................................................................... 62 
2.5.1. Material Cell Culture..................................................................................................................... 62 
2.5.2. Isolation and culture of primary chondrocytes .............................................................................. 63 
2.5.3. Cell culture and trypsinization of immortalized mouse fibroblasts ............................................... 64 

2.5.3.1. Cryo-preservation of mouse fibroblasts.................................................................................... 64 
2.5.3.2. Thawing of cryo-preserved cells............................................................................................... 64 

2.5.4. Establishment of clonal cell lines .................................................................................................. 64 
2.5.5. Cell substrate adhesion assay ........................................................................................................ 65 
2.5.6. Cell spreading assay ...................................................................................................................... 65 
2.5.7. Fibronectin fibrillogenesis assay ................................................................................................... 66 
2.5.8. Dorsal ruffle formation assay ........................................................................................................ 66 
2.5.9. Stable isotope labelling by amino acids in cell culture (SILAC)................................................... 67 

2.5.9.1. The SILAC principle ................................................................................................................ 67 
2.5.9.2. Isotope labelling of cells in culture........................................................................................... 68 

2.6. Biochemical methods ......................................................................................................... 68 
2.6.1. Material Biochemistry ................................................................................................................... 68 
2.6.2. Preparation of total protein lysates from adherent cells ................................................................ 68 
2.6.3. Cell fractionation........................................................................................................................... 69 

2.6.3.1. Preparation of soluble and particulate fraction from adherent cells.......................................... 70 
2.6.3.2. Detergent-free plasma membrane fractionation........................................................................ 71 
2.6.3.3. Preparation of the Triton-X insoluble cytoskeletal fraction...................................................... 72 

2.6.4. Determination of the protein concentration................................................................................... 73 
2.6.4.1. BCA protein assay .................................................................................................................... 73 
2.6.4.2. Bradford protein assay.............................................................................................................. 73 

2.6.5. Immunoprecipitation ..................................................................................................................... 74 
2.6.6. Rac1 and Cdc42 pulldown assay................................................................................................... 74 
2.6.7. One-dimensional SDS-polyacrylamid-gelelectrophoresis (SDS-PAGE) ...................................... 75 
2.6.8. Western blotting and Immunodetection ........................................................................................ 76 

2.7. Molecular Biological Methods........................................................................................... 77 
2.7.1. Material Molecular Biology .......................................................................................................... 77 
2.7.2. Phenol/Chloroform extraction of tail DNA ................................................................................... 78 
2.7.3. Bacteriological tools...................................................................................................................... 78 

2.7.3.1. Preparation of competent bacteria ............................................................................................ 79 
2.7.3.2. Transformation of competent bacteria ...................................................................................... 79 
2.7.3.3. Cryo-preservation of bacteria ................................................................................................... 80 
2.7.3.4. Preparation of plasmid DNA from bacterial cultures ............................................................... 80 

2.7.4. Enzymatic manipulation of DNA.................................................................................................. 80 
2.7.4.1. Digestion of DNA with restriction enzymes............................................................................. 80 
2.7.4.2. Dephosphorylation of plasmid DNA ........................................................................................ 81 
2.7.4.3. Phosphorylation of DNA fragments ......................................................................................... 81 
2.7.4.4. Blunting of DNA fragments ..................................................................................................... 81 
2.7.4.5. Ligation of DNA fragments...................................................................................................... 82 

2.7.5. Polymerase chain reaction (PCR).................................................................................................. 82 
2.7.5.1. Oligonucleotides (primer)......................................................................................................... 82 
2.7.5.2. PCR reactions ........................................................................................................................... 86 
2.7.5.3. PCR programs........................................................................................................................... 87 

2.7.6. Agarose gel electrophoresis........................................................................................................... 88 



Table of contents 

7 

2.7.6.1. Extraction of DNA from agarose gels ...................................................................................... 88 
2.7.7. Site-directed mutagenesis.............................................................................................................. 88 

2.7.7.1. Design of mutagenesis primers................................................................................................. 89 
2.7.7.2. Mutagenesis .............................................................................................................................. 89 

2.7.8. Generation of siRNA constructs.................................................................................................... 90 
2.7.8.1. Design of siRNA constructs ..................................................................................................... 91 
2.7.8.2. Cloning of siRNA constructs.................................................................................................... 92 

2.7.9. Generation of retroviral expression constructs .............................................................................. 93 
2.7.9.1. Plasmids and cDNAs ................................................................................................................ 93 
2.7.9.2. Expression vectors .................................................................................................................... 93 
2.7.9.3. Generation of ILK expression constructs ................................................................................. 94 
2.7.9.4. Generation of Rac1 expression constructs................................................................................ 94 
2.7.9.5. Generation of paxillin expression constructs ............................................................................ 95 
2.7.9.6. Generation of ELMO1 expression construct ............................................................................ 95 

2.7.10. Preparation of retrovirus................................................................................................................ 95 
2.7.10.1. Calcium phosphate transfection of HEK293 cells .................................................................... 95 
2.7.10.2. Harvest of retroviral supernatant .............................................................................................. 96 
2.7.10.3. Infection of ILK fibroblasts with VSV-G pseudotyped retroviral vectors................................ 96 

2.7.11. Microscopy.................................................................................................................................... 97 
3. Results.......................................................................................................................... 99 

3.1. Analysis of ILK in vivo/targeted ablation of ILK in mice............................................... 99 
3.1.1. Deletion of ILK leads developmental arrest at peri-implantation stage ........................................ 99 
3.1.2. ILK null EBs fail to form a mature epiblast .................................................................................. 99 

3.2. Analysis of ILK function in vivo/Characterization of cartilage-specific ILK knockout 
mice.................................................................................................................................... 101 

3.2.1. Expression analysis ..................................................................................................................... 101 
3.2.2. Chondrocyte-specific deletion of the ILK gene ........................................................................... 102 
3.2.3. Col2ILK mice display progressive dwarfism.............................................................................. 102 
3.2.4. Col2ILK bones have shortened growth plates............................................................................. 103 
3.2.5. ILK is not required for chondrocyte maturation.......................................................................... 105 
3.2.6. ILK affects the G1-S transition of the chondrocyte cell cycle..................................................... 107 
3.2.7. ILK modulates the actin cytoskeleton of chondrocytes in vivo and in vitro ................................ 108 
3.2.8. ILK is essential for proliferation and adhesion of primary chondrocytes in vitro ....................... 110 
3.2.9. ILK is dispensable for the phosphorylation of PKB/AKT and GSK-3β...................................... 110 

3.3. Analysis of ILK function in vivo/characterization of keratinocyte-specific ILK 
knockout mice................................................................................................................... 112 

3.3.1. Keratinocyte-specific deletion of the ILK gene ........................................................................... 112 
3.3.2. ILK-K5 mice display severe epidermal and HF abnormalities ................................................... 113 
3.3.3. Loss of ILK impairs integrin expression and BM integrity......................................................... 115 
3.3.4. ILK is not required for keratinocyte proliferation ....................................................................... 115 
3.3.5. Accumulation of proliferating cells in the ORS of ILK-deficient HFs........................................ 116 
3.3.6. ILK is essential for directional cell migration ............................................................................. 118 
3.3.7. Loss of ILK is essential for stress fiber formation and establishment of mature FAs in 

keratinocytes................................................................................................................................ 118 
3.4. Analysis of ILK function in vitro/Characterization of ILK knockout fibroblasts...... 120 

3.4.1. Generation of immortalized ILK knockout fibroblasts................................................................ 120 
3.4.2. Consequences of ILK deletion in fibroblasts............................................................................... 120 
3.4.3. Presence of Pinch1 in FA of ILK (-/-) fibroblasts ....................................................................... 121 
3.4.4. The role of ILK during actin dynamics ....................................................................................... 122 
3.4.5. ILK is essential for actin reorganization during cell spreading ................................................... 123 
3.4.6. ILK regulates cell spreading independently of its kinase activity ............................................... 125 
3.4.7. ILK is essential for fibronectin fibrillogenesis ............................................................................ 127 
3.4.8. Dorsal ruffle (DR) formation....................................................................................................... 128 

3.4.8.1. DR formation during cell spreading ....................................................................................... 129 
3.4.8.2. Integrin-dependency of DR formation.................................................................................... 129 

3.4.9. Localization of vinculin, talin and ILK into DR.......................................................................... 130 
3.4.10. DRs originate from the ventral side of the cell............................................................................ 131 
3.4.11. ILK is essential for DR formation ............................................................................................... 134 



Table of contents 

8 

3.4.12. Stabilization of Pinch1 by N-terminal ILK is not sufficient for induction of FN fibrillogenesis in 
ILK (-/-) fibroblasts ..................................................................................................................... 135 

3.4.13. Expression of constitutive active Rac1 rescues the DR formation defect ................................... 136 
3.4.14. Expression of constitutive active Rac1 is not sufficient to overcome the FN assembly defect of 

ILK (-/-) fibroblasts ..................................................................................................................... 138 
3.4.15. Paxillin is dispensable for DR formation .................................................................................... 138 
3.4.16. The interaction between paxillin and ILK is not essential for the organization of the actin 

cytoskeleton................................................................................................................................. 141 
3.4.17. The paxillin-ILK interaction is not important for cell spreading and DR formation................... 142 
3.4.18. FAK is not essential for DR formation........................................................................................ 144 
3.4.19. FAK is important for FN fibrillogenesis ..................................................................................... 146 
3.4.20. Localization of p130Cas, CrkII and ELMO1 in DRs .................................................................. 146 
3.4.21. p130Cas complexes with ILK and is essential for dorsal ruffling............................................... 147 
3.4.22. p130Cas expression is essential for dorsal ruffling ..................................................................... 148 
3.4.23. The GEF Dock180 is indispensable for dorsal ruffling............................................................... 150 
3.4.24. Normal plasma membrane organization in ILK (-/-) fibroblasts ................................................. 152 
3.4.25. Cytoskeletal-associated p130Cas is hyperphosphorylated in ILK (-/-) fibroblasts ..................... 155 
3.4.26. Identification of an ILK-associated protein tyrosine phosphatase by SILAC ............................. 156 

4. Discussion .................................................................................................................. 159 
4.1. The analysis of ILK in vivo .............................................................................................. 159 

4.1.1. General implications about the role of ILK in vivo ..................................................................... 159 
4.1.1.1. A comparison of the β1 and ILK knockout phenotypes ......................................................... 160 
4.1.1.2. The ILK-Pinch-parvin complex-implications from in vivo models ........................................ 161 

4.1.2. Regulation of the ECM by ILK-implications from β1 integrin and ILK knockout mice ............ 162 
4.1.2.1. No differences in the ECM of the cartilage in the absence of ILK......................................... 162 
4.1.2.2. Disruption of the dermal-epidermal BM in the absence of ILK ............................................. 163 

4.1.3. The impact of ILK on cell proliferation ...................................................................................... 163 
4.1.3.1. Reduced cell proliferation of ILK-deficient chondrocytes ..................................................... 163 
4.1.3.2. Increased cell proliferation in ILK-deficient keratinocytes .................................................... 164 

4.1.4. ILK is dispensable for the phosphorylation of PKB/Akt or GSK-3β .......................................... 165 
4.1.5. ILK is essential for the regulation of the f-actin cytoskeleton..................................................... 166 

4.2. The analysis of ILK in vitro ............................................................................................. 167 
4.2.1. ILK is essential for stress fiber formation and cell spreading ..................................................... 167 
4.2.2. ILK is required for FN fibrillogenesis......................................................................................... 169 

4.2.2.1. The involvement of ILK, paxillin and FAK in FN fibrillogenesis.......................................... 169 
4.2.3. ILK mediates integrin-RTK crosstalk during DR formation....................................................... 171 

4.2.3.1. DR formation is integrin-dependent ....................................................................................... 171 
4.2.3.2. DRs originate at the ventral side of the cell ............................................................................ 172 
4.2.3.3. ILK is indispensable for DR formation .................................................................................. 173 
4.2.3.4. Integrin/ILK-dependent DR formation does not require paxillin or FAK .............................. 174 
4.2.3.5. Integrin/ILK-dependent DR formation requires p130Cas and Dock180 ................................ 175 

4.2.4. Hyperphosphorylation of p130Cas in the cytoskeletal fraction of ILK-deficient cells ............... 175 
5. Summary ................................................................................................................... 179 

6. References ................................................................................................................. 181 

7. Publications ............................................................................................................... 199 

8. Acknowledgements ................................................................................................... 201 

9. Curriculum vitae ...................................................................................................... 203 



Abbreviations 

9 

aa amino acid 

A Alanin 

AgNO3 silvernitrate 

ANK ankyrin 

AP alkaline phosphatase / arrector pili 

APS ammonium peroxidisulfate 

AS antisense 

ATP adenosine-triphosphate 

BCA bicinchoninic acid 

BCIP 5-Bromo-4-chloro-3-indolyl phosphate 

BM basement membrane 

BMP bone morphogenetic protein 

bp base pair 

BrdU 5-Bromo-2’-deoxyuridine 

BSA bovine serum albumine 

Cas Crk-associated substrate 

CCD charge coupled device 

Cdc42 cell division cycle 42 homologue 

cDNA complementary DNA 

C.elegans Caenorhabditis elegans 

CIB calcium and integrin binding protein 

CH calponin homology 

Col collagen 

CMV Cytomegalovirus 

CPI-17 protein kinase C dependent phosphatase inhibitor of 17 kDa 

Crib Cdc42/Rac interactive binding motif 

CRM caveolin-rich membrane fraction 

Crk chicken Tumour Virus 10 regulator of kinase 

CYT cytoplasm 

D aspartic acid / dermis 

DAB 3-3’diaminobenzidine 

Dab1 disabled-1 

DAPI 4’, 6-Diamidin-2-phenylindol-dihydrochloride 

DIG digoxigenin 



Abbreviations 

10 

DMEM Dulbecco’s Modified Eagle Medium 

DMSO dimethylsulfoxide 

DNA deoxyribonucleic acid 

dNTP deoxynucleotide-triphosphate 

Dock180 180kDa protein downstream of Crk 

Dok downstream of kinase 

DP dermal papilla 

DTT 1,4-Dithiothreitol 

DR dorsal ruffle 

DRAL down-regulated in rhabdomyosarcoma LIM protein 

E embryonic day /Glutamic acid / Epidermis 

env envelope 

EB embryoid body 

ECM extracellular matrix 

EDTA ethylene-diamine-tetraacetic acid 

EGF epidermal growth factor 

EGFP enhanced green fluorescent protein 

ELISA Enzyme-linked Immunosorbent Assay 

EMT epithelial-to-mesenchymal transition 

EPS8 EGFR-pathway substrate No. 8 

ES cells embryonic stem cells 

F-actin filamentous actin 

FA focal adhesion 

FAK focal adhesion kinase 

FC focal complex 

FCS foetal calf serum 

FERM four-point-one, ezrin, radixin, moesin 

FGFR fibroblast growth factor receptor 

FN fibronectin 

g gram 

G-actin globular actin 

gag group specific antigen 

GEF guanine nucleotide exchange factor 

GSK-3 glycogen synthase kinase 3 



Abbreviations 

11 

GTP guanosine triphosphate 

h hour 

HBSS Hanks’ balanced salt solution 

HCl hydrochloric acid 

H/E Hematoxylin/Eosin 

HeLa cells cell line derived from cervical cancer taken from Henrietta Lacks 

HEPES N-(2-hydroxyethyl)-piperazine-N'-2-ethanesulfonic acid 

HEK cells human embryonic kidney cells 

HF hair follicle 

HGF hepatocyte growth factor 

HIV human immunodeficiency virus 

HPLC high performance liquid chromatography 

HRP horseradish peroxidase 

Ihh Indian hedgehog 

ILK Integrin-linked kinase 

ILKAP ILK-associated phosphatase 

ICAP Integrin-cytoplasmic domain associated protein 

ICM inner cell mass 

IL2 Interleukin 2 

IP immunoprecipitation 

IRS inner root sheath 

JAB jun-activating binding protein 

K lysine 

K5 keratin 5 

K14 keratin 14 

kDa kilo Dalton 

LB lysogeny broth 

LD Leucine-Aspartic acid 

Lef/Tcf lymphoid enhancer factor/transcription factor 

LIM domain Lin-11, Isl-1, Mec-3 domain 

LMW-PTP low molecular weight protein tyrosine phosphatase 

µl micro litre 

M/mM molar/millimolar 

MBP myelin basic protein 



Abbreviations 

12 

MCS multiple cloning site 

mDia mammalian diaphanous 

MEF murine embryonic fibroblast 

MIBP muscle-specific β1 integrin-binding protein 

MIDAS metal ion-dependent adhesion site 

Mg/MgCl2 Magnesium/Magnesiumchloride 

Mn Manganese 

mg milligram 

Mig-2 mitogen-inducible gene 2 

min minutes 

MLC myosin light chain 

MTOC microtubule organizing center 

n number 

NaCl sodium chloride 

NaF sodium fluoride 

Na3VO4 sodium-orthovanadate 

αNAC nascent-polypeptide associated complex and co-activator alpha 

NBT Nitro blue tetrazolium chloride 

NCM non-caveolin rich membrane fraction 

NMR nuclear magnetic resonance 

o/n overnight 

nm nanometer 

OD optical density 

ORS outer root sheath 

p passage 

PAK p21-activated kinase 

PAT paralyzed and arrested at twofold 

PBS phosphate buffered saline / paxillin binding site 

PCR polymerase chain reaction 

PDK 3-phosphoinositide-dependent kinase 

PFA paraformaldehyde 

PI3K phosphoinositide 3- kinase 

PH pleckstrin homology  

PHI-1 phosphatase holoenzyme inhibitor-1 



Abbreviations 

13 

Pinch particularly interesting new cysteine-histidine rich protein 

PIP2 phosphatidylinositol (4,5) bisphosphate 

PIP3 phosphatidylinositol (3,4,5) trisphosphate 

PIPES Piperazine-1, 4-bis (2-ethanesulfonic acid) 

PIPKIγ phosphatidylinositol-4-phosphate 5-kinase type I gamma 

PIX PAK-interacting exchange factor 

PKC protein kinase C 

PKL paxillin kinase linker 

PM plasma membrane 

PNK polynucleotide kinase 

PNS post nuclear supernatant 

POD peroxidase 

pol polymerase 

PPR parathyroid hormone-related peptide receptor 

PS position specific 

PTHRP parathyroid hormone-related peptide 

PTP protein tyrosine phosphatase 

PEST Proline, Glutamic acid, Serine, Threonine 

PVDF polyvinylidene fluoride 

R Arginine 

Rac Ras-related C3 botulinum substrate 

RACK receptor for activated C-kinase 

RGD Arginine-Glycine-Aspartic acid 

RNA ribonucleic acid 

ROCK Rho kinase 

RPM rotations per minute 

RT room temperature 

S serine 

SC stem cells 

siRNA small interfering RNA 

shRNA short hairpin RNA 

SCID severe combined immunodeficiency 

SDS sodium dodecyl sulphate 

SDS-PAGE SDS polyacrylamid gel electrophoresis 



Abbreviations 

14 

Ser  Serine 

SFKs src family kinases 

SH domain src-homology domain 

SHP src-homology protein 

SILAC stable isotope labelling by amino acids in culture 

Sox9 SRY (sex determining region Y)-box 9 

SSC sodium chloride sodium citric acid 

SV simian virus 

T Threonine 

TAP-20 theta-associated protein 20 

Taq Thermophilus aquaticus 

TAE Tris-acetic acid-EDTA buffer 

TBS Tris-buffered saline 

TdT terminal deoxynucleotidyl-transferase 

TE Tris-EDTA buffer 

Thr Threonine 

TPA 12-O-Tetradecanoylphorbol-13-acetate 

TRAP tartrate-resistant acid phosphatase 

Tris Tris (hydroxymethyl) aminomethane 

TEMED N,N,N',N'-Tetramethylethylenediamine 

TSS transformation and storage solution 

TUNEL terminal deoxynucleotidyl-transferase-mediated dUTP nick end labelling 

Tyr Tyrosine 

U Unit 

UV ultra violet 

V Volt 

VCAM vascular cell adhesion molecule 

VEGF vascular endothelial growth factor 

VN vitronectin 

VSV-G vesicular stomatitis viral G protein 

wt wild type 

X-Gal Chloro-3-indolyl-β-D-galactopyranoside 

Y tyrosine 

 



Introduction 

15 

1. Introduction  

1.1. The integrin receptor family 

Integrins are heterodimeric cell surface receptors expressed in all metazoa. They consist of an 

α and a β subunit both of which are transmembrane type I proteins. Man and mouse have 18 α 

and 8 β subunits which can non-covalently assemble into 24 different heterodimeric receptors. 

The interaction between integrins and their ligands is considered to provide the physical 

support for cells in order to maintain adhesion, to permit traction forces and to organize 

signalling complexes which regulate cell proliferation, cell survival or differentiation (Hynes 

and Zhao 2000; Hynes 2002; Liddington and Ginsberg 2002). 

Based on their recognition specificity integrins can be divided into different classes (Fig 1.1). 

One class recognizes the tri-peptide sequence RGD present in extracellular ligands such as 

fibronectin (FN) or vitronectin (VN). A pair of related integrins (α4β1, α9β1) can recognize 

FN and additionally interact with Ig-superfamily counter receptors such as VCAM-1 

(vascular cell adhesion molecule). A second class mediates the interaction with a family of 

ECM molecules called laminins, a third set are the collagen receptors. The leukocyte-specific 

receptors are also capable of interacting with Ig-superfamily counter receptors to mediate cell-

cell adhesions. 

Fig 1.1. The integrin receptor family. Based on their recognition specificity integrin heterodimers can be 

considered in different classes (see text). Integrins are ubiquitously expressed and mediate the interaction of 

cells with the extracellular matrix. (Based on Hynes, 2002). 
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Up to now, knockout mice for all β subunits and all but three α subunits have been generated 

(Table 1.1). The diversity of the phenotypes observed in those mice ranging from peri-

implantation lethality to perinatal lethality, defects in leukocyte function, inflammation, 

hemostasis, bone remodelling, angiogenesis and lack of phenotype suggests that most of the 

integrins have a specific, non-redundant function (Bouvard et al. 2001). Since abnormal 

integrin function is also associated with the progression of diseases such as Glanzmann 

thrombosthenia (caused by mutations in αIIbβ3) or epidermolysis bullosa (α6β4) or cancer, 

integrin structure, function and signal transduction has been and is still extensively studied. 

The following chapter will introduce the mechanisms of integrin activation, integrin signal 

transduction and the role of cytoplasmic integrin-binding proteins. 

Table 1.1. Diversity of integrin knockout phenotypes. For all but three integrin subunits (α11, αD, αX) 

knockout mice have been generated. Almost each of them displays a specific phenotype, demonstrating the non-

redundant functions of integrins (Taken from: Bouvard et al. 2001; Hynes 2002 and modified). 

1.1.1. The regulation of integrin activity 

Integrins are not constitutively active, but are present on the cell surface either in an active or 

an inactive state. The regulation of integrin activity is essential for its function which becomes 

most evident when considering integrins on circulating platelets (Bennett 2005). The integrin 
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αIIbβ3 is highly expressed on platelets and in the absence of activating signals in an inactive 

state. This is essential since constitutive active integrins would lead to platelet aggregation 

and thrombosis. On the other hand loss of αIIbβ3 leads to severe bleeding disorders due to 

defective aggregation upon platelet activation (Table 1.1). Therefore, integrin activity needs 

to be tightly regulated. 

1.1.2. Structural insights into the regulation of integrin affinity 

The elucidation of the integrin αvβ3 crystal structure provided unprecedented insights into the 

mechanism of integrin activation and ligand binding (Xiong et al. 2001). In general, integrins 

are approximately 280Ǻ long and consist of a 150-180kDa large α and approximately 100kDa 

large β subunit. Both proteins are comprised of a large extracellular domain, a transmembrane 

domain and a rather small cytoplasmic tail which usually spans around 50 amino acids (aa). 

An exception is the β4 integrin cytoplasmic domain which consists of more than 1000aa. The 

αvβ3 integrin consists of an ovoid head region produced by the β-propeller from the αv 

subunit and the βA domain from the β3 subunit (forming the ligand binding site) and two 

almost parallel tail regions consisting of two calf and a thigh domain in the α subunit and EGF 

like repeats and a hybrid domain in the β subunit (Fig 1.2). The metal ion-dependent adhesion 

site (MIDAS), which is essential for binding activating bivalent cations (Mg2+ or Mn2+) is 

located in the βA domain adjacent to an inhibitory calcium (Ca2+) binding site (ADMIDAS).  

Interestingly, the crystal structure of αvβ3 did not reveal an extended but instead a severely 

bent conformation (Fig 1.2A). Although the structure was solved almost 4 years ago it is still 

hotly debated whether this bent integrin fold represents the active or the inactive integrin 

conformation (Fig 1.2A, B). On the one hand Arnaout and co-workers could show that the 

bent conformation can bind RGD peptides (Xiong et al. 2002) and fibronectin (Adair et al. 

2005) in a Mn2+-dependent manner and therefore concluded that the bent structure indeed 

represents an active conformation. On the other hand Springer and co-workers could show 

with negative stain electron microscopy that a recombinant extracellular fragment of αvβ3 

drastically changes from a bent to the extended conformation upon Mn2+- or RGD-dependent 

activation. Moreover, they found that the affinity of soluble αvβ3 to its physiological ligands 

is much higher in the extended conformation (Takagi et al. 2002).  

Most probable the extracellular domain of integrins can adopt different conformations which 

all can bind physiological ligands but with varying affinities (Carman and Springer 2003). 

The conformation and hence affinity of the extracellular integrin domain is thought to be 

regulated by the transmembrane as well as the cytoplasmic domains, which in turn are 
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modulated by their interaction with intracellular proteins. The regulation of integrin activity 

by intracellular proteins is called inside-out signalling (see below, 1.1.3). 

Fig 1.2 Schematic representation of the crystal structure of αvβ3. A. Crystal structure of the extracellular 

domain of αvβ3 (Xiong et al., 2001), including the transmembrane and cytoplasmic domains. This structure is 

often considered as the “inactive” (or low affinity) conformation. B. Model of the straightened extracellular 

segment of αvβ3 which is considered the “active” (or high affinity) conformation. The β subunit (right) consists 

of a βA domain, a hybrid domain and EGF repeats, the α subunit (left) comprises an αA domain, a β propeller, a 

thigh domain and two calf domains. β strands are shown in blue, α helices in red. The transmembrane and 

cytoplasmic domains were pasted to the bottom of the extracellular domains. (Taken from Humphries et al. 2003 

and modified). Note, how small the cytoplasmic domains are in comparism to the extracellular domains. 

1.1.3. Integrin activation by cytoplasmic domain-binding proteins 

Although integrins cytoplasmic tails are much smaller than the extracellular domains (Fig 1.2) 

they play a pivotal role during integrin activation (Liu et al. 2000). Overexpression of 

integrins which either lack the cytoplasmic domains of the β subunit (Solowska et al. 1989) or 

which comprise deletions of 5-15aa near the carboxyl end (Hayashi et al. 1990) exert 

dominant-negative effects regarding integrin localization and its ligand binding activity. 

Overexpression of cytoplasmic integrin β tails fused to an irrelevant extracellular domain 

(murine CD4 or IL2R) inhibits integrin ligand binding (Lukashev et al. 1994). Interestingly, 

deletion of conserved sequences in the cytoplasmic domain of the αIIb-subunit (O'Toole et al. 

1994) leads to a constitutive active integrin. All these data suggest that both the α- and the β-
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cytoplasmic tails contribute to the regulation of integrin activity. Recent data, using NMR 

spectroscopy demonstrated that the cytoplasmic tails of αIIb and β3 weakly interact with each 

other in a low affinity state. Separation of the cytoplasmic tails (by unclasping of the weak 

interaction) leads to integrin activation and can be induced by the interaction with 

cytoplasmic plaque proteins such as talin (Vinogradova et al. 2002). These data further 

demonstrated that the regulation of integrin activity can be modulated by cytoplasmic domain 

binding proteins. 

The function of the cytoplasmic tail-binding molecules, however, is not restricted to integrin 

activation. Since integrins lack enzymatic activity, the transmission of signals transduced 

from the extracellular space into the interior of the cell critically depends on the recruitment 

of cytoplasmic tail-binding proteins. This process is called outside-in signalling. 

1.2. Regulation of integrin signalling by cytoplasmic domain binding 

proteins 

More than 20 proteins have been identified to be capable of directly interacting with the 

cytoplasmic tail of integrins including actin-binding proteins (i.e. talin, α-actinin, filamin), 

adaptor proteins (i.e. ILK, Grb2, paxillin), kinases (FAK), guanine nucleotide exchange 

factors (cytohesin-1,-3), transcriptional co-activators (JAB1) and other transmembrane 

proteins (CD98) (Table 1.2; Liu et al. 2000). The diversity within this group of integrin 

interaction partners already points to the complexity of integrin signalling, which is far too 

intricate to be introduced here fully. Instead, the reader is referred to excellent reviews about 

integrin signalling (Giancotti 1997; Schwartz and Ginsberg 2002; Guo and Giancotti 2004). 

One of the most important functions of cytoplasmic integrin binding proteins is the 

interconnection of integrins with the actin cytoskeleton, which occurs in a specialized integrin 

structures called focal adhesions (FAs). Structure and function FAs as well as mechanisms of 

integrin-actin interactions will be described below. 



Introduction 

20 

 
Table 1.2. Cytoplasmic domain-binding proteins. Integrins can interact with a number of cytoplasmic proteins 

which connect integrins with the actin cytoskeleton or with different signalling pathways. (Taken from Liu et al., 

2000 and modified). 

1.2.1. Structure and function of focal adhesions (FA) 

Most of our knowledge about the integrin-actin interaction stems from experiments in cell 

culture, where integrin ligand binding and clustering leads to the assembly of small 

multiprotein adhesion structures called focal complexes (FCs; 100-200 nm in size). The 

maturation of the rather small FCs into larger structures results in the assembly of FAs (1µm 

in size), which mediate the interaction of integrins with thick f-actin bundles called stress 

fibers (Fig 1.3; Zamir and Geiger 2001). Although these structures are hard to detect in vivo, 

the analysis of FAs has emerged as a powerful tool to study the role of integrins and various 

integrin adaptor proteins during processes such as cell adhesion or cell migration. 
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The organization of FAs is highly complex. More than 50 proteins have been found to 

localize into FAs including phosphatases (i.e. SHP-2, PTP1B), tyrosine kinases (i.e. c-src, 

FAK) and Ser/Thr kinases (i.e. PKC, PAK), proteases (calpainII) or GTPase modulators (i.e. 

Pix, Dock180) (Fig 1.4; Zamir and Geiger 2001). Moreover, mRNA and ribosomes could be 

detected at FAs suggesting that integrin signalling directly induces protein translation at the 

adhesion sites (Chicurel et al. 1998). The molecular complexity of FAs might be even higher 

than Fig 1.4 implies since many components are expressed in a cell-type specific manner or 

can be expressed in different splice variants or isoforms (i.e. Pinch1, Pinch2, α-, β-, γ-parvin). 

Furthermore, most of the FA components can adopt different conformations (i.e. upon 

phosphorylation) and most of them contain more than one protein binding site allowing FA 

proteins theoretically to assemble in many alternative ways producing a number of different 

supramolecular structures with different mechanical or biochemical functions. 

Fig 1.3. Assembly of FCs, FAs and stress fibers in cultured cells. Cells seeded on ECM proteins form large 

FAs (arrows), which mature from smaller FCs (arrowhead). Both types of adhesion structures can be visualized 

by vinculin and focal adhesion kinase (FAK) staining. Stress fibers (*) can be visualized by phalloidin staining, 

which specifically decorates f-actin. (Shown here:  ILK (f/f) fibroblasts adherent to FN). 
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Fig 1.4. The molecular complexity of FAs. More and more proteins are identified, which can localize to FAs. In 

addition, ribosomes and mRNA were detected in these integrin adhesion sites. Theoretically, all these proteins 

can assemble into numerous different supramolecular structures. (Based on Zamir and Geiger 2001). 

1.2.2. Mechanisms of integrin-actin interaction 

The establishment of the f-actin cytoskeletal network as seen in Fig 1.3 requires anchorage to 

the integrin adhesions sites and is essential for the development of pulling and traction forces. 

This in turn is indispensable for the modulation of the cell shape during migration, 

differentiation or proliferation. Depending on the cell type the integrin-actin interaction can be 

highly dynamic and regulated by many signalling processes. Although most of these 

processes are still not fully understood on the molecular level, work over the last 20 years 

identified certain basic mechanisms, which seem to be applicable for almost all cell types. 

The most important molecular players involve talin, vinculin, α-actinin, filamin and ILK 

(Brakebusch and Fassler 2003). As an example, the talin-mediated establishment of the 

integrin-actin connection will be briefly introduced. 

Talin can bind directly to integrin β subunits (Table 1.2.). This interaction does not only 

promote integrin activation (as discussed in 1.1.3) but in addition leads to the recruitment and 

activation of phosphatidylinositol-phosphate kinase type I gamma (PIPKγ) which catalyzes 

the production of phosphatidylinositol (4,5) bisphosphate (PIP2) (Fig 1.5A, B). The PIP2-

binding increases on the one hand the interaction of talin with β integrins but on the other 

hand attracts other PIP2 binding proteins like vinculin to the integrin adhesion site. PIP2-

binding leads to a conformational change of vinculin exposing talin binding sites. The 
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interaction of talin and vinculin, in turn, increases the affinity of vinculin for f-actin, which 

finally leads to the recruitment of f-actin into FAs (Fig 1.5C). 

Fig 1.5. Interconnection of integrins with the f-actin cytoskeleton through talin. A. Binding of talin to β 

integrin subunits is essential for integrin activation and ligand binding. B. Binding of talin to β integrin subunits 

induces cytoplasmic tail separation, ligand binding and the recruitment of PIPKγ, which leads to local 

production of PIP2. C. PIP2-binding molecules such as vinculin are attracted to the integrin adhesion site. The 

vinculin-PIP2 interaction induces conformational changes, which lead to a talin-vinculin interaction and the 

recruitment of f-actin. (Picture based on Giancotti and Tarone, 2003). 

1.2.3. Fibrillar adhesions and their role in fibronectin (FN) matrix assembly 

Classical FAs are defined by oval peripheral cellular structures enriched in vinculin, paxillin 

and highly tyrosine-phosphorylated proteins (Fig 1.3). Fibrillar adhesions are more elongated 

centrally located structures, which are enriched in tensin and integrin α5β1 but contain less 

tyrosine-phosphorylated proteins (Zamir et al. 2000). The assembly of fibrillar adhesion 

coincides with a special type of ECM modulation namely FN fibrillogenesis. 

Fibrillar adhesion formation is initiated when integrin α5β1 binds soluble fibronectin in FAs. 

Pulling forces triggered by the actin-binding molecule tensin and generated by myosin II-

based contraction of the f-actin cytoskeleton lead to the translocation of α5β1 centripetally 

into the cell body to form fibrillar adhesions. This is different for all other integrins such as 

αvβ3 for example, which primarily interacts with VN and remains localized in FAs. The 

mechanical tension applied to FN leads to the exposure of cryptic self assembly sites 

promoting self-association of FN (Fig 1.6; Yamada et al. 2003). Little is known about the FA 

proteins involved in the assembly of fibrillar adhesions. 
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Fig 1.6. Model of FN fibrillogenesis. A. FAs usually contain αvβ3 (FN/VN receptor) as well as α5β1 (FN 

receptor). FA proteins like vinculin and the actin binding protein tensin colocalize in FAs. B. In response to 

actin-dependent pulling forces triggered by the actin-binding protein tensin integrin α5β1 moves centripetally 

into the cell body, leading to the exposure of FN domains that promote FN self assembly. αvβ3 integrin remains 

in FAs and can not be found in fibrillar adhesions. (Picture based on Yamada et al. 2003). 

1.2.4. Integrin signal transduction- a second level of actin reorganization 

In addition to their important role in cell adhesion, assembly and organization of the ECM as 

well as the anchorage of the f-actin cytoskeleton, integrins can act as important signalling 

receptors (Schwartz and Ginsberg 2002). The f-actin cytoskeleton for example can be 

additionally modulated in response to the formation of new cell-substrate interactions by the 

induction of actin polymerization. 

Almost all integrins activate focal adhesion kinase (FAK), a cytoplasmic tyrosine kinase 

which is composed of an N-terminal FERM domain, a C-terminal FA targeting domain and a 

central kinase domain (Cary and Guan 1999). Upon ligand binding integrins recruit FAK into 

FCs and FAs (Fig 1.7A, B) where FAK undergoes autophosphorylation and associates 

amongst others with src family kinases and the regulatory subunit of PI3K (Fig 1.7C). 

Activated PI3K provides a local source of PIP3 for the initiation of downstream signalling 

important for cell migration, survival or proliferation, while c-src is capable of 

phosphorylating a number of downstream targets including paxillin, cortactin or p130Cas 

(Cary and Guan 1999). The scaffolding protein paxillin is known to interact with a more than 

20 proteins including the adaptor protein paxillin kinase linker (PKL) and the GTPase 

activating protein PIX/Cool which can affect the actin cytoskeleton (Turner 2000). p130Cas is 

able to recruit CrkII which engages with the adaptor protein ELMO1 and the guanine 

nucleotide exchange factor (GEF) Dock180 to activate the small GTPase Rac1, which 

promotes Arp2/3-dependent actin polymerization (Fig 1.7D; Chodniewicz and Klemke 2004). 
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This example shows that integrins do not only provide a physical linkage to the actin 

cytoskeleton, but also directly initiate signalling pathways that regulate f-actin polymerization 

and reorganization. 

Fig 1.7. Integrins can act as signalling receptors. A. Before integrin activation FAK is localized throughout 

cytoplasm. B. Upon integrin engagement, FAK gets recruited to β integrins cytoplasmic domain (directly or 

indirectly), thereby changing its conformation. The exposure of SH-2 binding sites facilitates c-src binding, 

which can further phosphorylate FAK. C. Activated and phosphorylated FAK interacts with downstream 

proteins such as paxillin, p130Cas or the regulatory subunit of PI3K (p85). D. The activation of PI3K leads to 

the local production of PIP3 by the catalytic subunit (p110). p130Cas gets phosphorylated by FAK and c-src 

and interacts with CrkII which in turn is able to recruit the ELMO1/Dock180 complex. Paxillin is able to recruit 

PIX and Dock180 which activates the small Rho-GTPases Rac1and Cdc42 leading to the induction of Arp2/3 

mediated f-actin polymerization. 

1.2.5. Integrin-growth factor receptor crosstalk 

It is interesting to note that integrins share many common elements in their signalling 

pathways with other cell surface receptors especially with receptor protein tyrosine kinases 

(RTK) which bind to soluble growth factors and/or cytokines. In fact, it has been noted long 

time ago that integrin and RTK signalling pathways are interdependent. Non-transformed 

cells require anchorage to the matrix in order to progress through the G1 phase of the cell 

cycle indicating that integrin engagement can aggravate RTK signalling to promote cell 

proliferation (Assoian and Zhu 1997). A key feature of neoplastic cells on the other hand is 

their anchorage-independent growth, facilitated by the activation of dominant oncogenes or 

inhibition of tumour suppressor leading to the constitutive activation of signalling pathways 

which are normally tightly regulated by integrins and RTKs. 
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The crosstalk between integrins and RTKs is achieved in several ways. First, integrins and 

RTKs can become physically linked by certain adaptor molecules. FAK was co-

immunoprecipitated with β1 integrin but is also known to interact with RTKs upon growth 

factor stimulation. Although it seems unlikely that FAK binds to integrins and RTKs at the 

same time, it could bind with its N-terminal FERM domain to growth factor receptors and 

simultaneously interact with integrin binding proteins such as paxillin or talin (Fig 1.8A). 

Second, integrin engagement can lead to the activation of signalling proteins which directly 

affect RTK phosphorylation (Moro et al. 1998). p130Cas was shown to engage with the EGF-

receptor in a src-dependent manner upon cell adhesion to FN, leading to phosphorylation of 

distinct tyrosine residues at the EGF-receptor (Fig 1.8B; Cabodi et al. 2004). Vice versa, the 

stimulation of the EGF-receptor pathway induces tyrosine phosphorylation of β4 integrin 

through members of the src kinase family such as Fyn and Yes (Fig 1.8C; Mariotti et al. 

2001). Finally, integrins and RTKs can be directly associated in certain plasma membrane 

microdomains, called lipid rafts (Fig 1.8D). In fact, it has been shown recently, that integrin 

engagement regulates plasma membrane order (Gaus et al. 2006). Since RTKs have been co-

immunoprecipitated with integrins (Schneller et al. 1997; Moro et al. 1998) it is entirely 

possible, that a close if not direct interaction of these receptors at the plasma membrane 

accounts for the interconnection of their signalling pathways. For more detailed information 

about the integrin-RTK crosstalk see (Giancotti and Tarone 2003). 

 

Taken together, integrins, which are expressed on almost all cells of the body, are 

indispensable for many cellular processes such as cell adhesion, cell migration, cell 

proliferation or cell differentiation but also important for the assembly of the ECM. Since 

integrins lack actin-binding sites and enzymatic activity, they regulate these processes by the 

recruitment of various intracellular proteins, which directly bind their cytoplasmic tails. One 

of these proteins is Integrin-linked kinase (ILK), which will be introduced in the following 

section. 
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Fig 1.8. Possible mechanisms underlying an integrin-RTK crosstalk. A. Integrins and RTK signalling can be 

physically linked by adaptor proteins. B. Integrin engagement can activate RTK even in the absence of growth 

factors. C. Fyn, which can become phosphorylated by growth factor receptors, is able to phosphorylate α6β4 

integrins. D. Integrins and RTK can be clustered in specialized microdomains at the plasma membrane. (See 

also: Giancotti and Tarone, 2003). 

1.3. Integrin-linked kinase 

Integrin-linked kinase (ILK) was originally identified as a protein capable of interacting with 

the cytoplasmic tail of β1 integrin (Hannigan et al. 1996). In the original paper it was also 

shown that ILK can phosphorylate the integrin β subunits. The ability to bind and 

phosphorylate integrins gave ILK its name. However, the molecular function of ILK at the 

integrin adhesion site is not fully understood. Due to the frequent overexpression in tumours 

and metastases ILK was thought to act as a proto-oncogene downstream of integrin signalling. 

Moreover, ILK was believed to act as a kinase phosphorylating a number of target proteins 

including the survival factor PKB/Akt as well as the Wnt signalling regulator GSK-3β (Persad 

and Dedhar 2003). However, data about the role of ILK in invertebrates has shed new light on 

the molecular function of this protein (Zervas et al. 2001; Mackinnon et al. 2002). In the 

following section, the domain structure of the protein, ILK’s role as a kinase and as an 

adaptor molecule will be introduced. In addition, data from genetic experiments in 

invertebrates will be briefly discussed. 
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1.3.1. Domain structure of ILK 

ILK consists of 452aa and has a molecular weight of 52 kDa, which was originally reported to 

be of 59kDa. It is composed of three structurally distinct domains: three ankyrin repeats at the 

N-terminus (a fourth ankyrin repeat was identified in human ILK but clearly lacks well 

conserved residues) mediating the interaction to Pinch1, Pinch2 and ILKAP (ILK-associated 

phosphatase), a short linker sequence, and a C-terminal domain. The linker domain, together 

with sequences from the C-terminal domain, shares some similarities with pleckstrin 

homology (PH) domains and is believed to bind PIP3. The C-terminal domain which mediates 

the interaction to a number of ILK binding partners like paxillin, the parvins, integrins or 

Mig-2/Kindlin-2 shows significant homology to Ser/Thr protein kinases. If the kinase domain 

is catalytically functional and if the kinase activity has any importance in vivo is still unclear 

and has been a matter of hot debates (Grashoff et al. 2004; Legate et al. 2006). 

Fig 1.9. Domain structure of murine ILK. ILK comprises three distinct domains. Ankyrin repeats, a PH domain 

and a C-terminal domain which shares significant homology with Ser/Thr protein kinase domains. 

1.3.2. Catalytic activity of ILK 

Overexpression of ILK in cells results in anchorage-independent cell cycle progression and 

epithelial to mesenchymal transition (EMT) of non-tumourigenic as well as tumourigenic 

epithelial cells (Radeva et al. 1997; White et al. 2001). Inhibition of ILK kinase activity by 

expression of kinase-dead ILK versions on the other hand, suppresses cell growth in culture 

as well as growth of human colon carcinoma cells in SCID mice (Tan et al. 2001). Several 

lines of experimental evidence suggested that these phenotypes were largely attributed to 

ILK’s kinase activity leading to phosphorylation of GSK-3β and PKB/Akt, two key enzymes 

involved in a diverse array of cell functions including cell proliferation or survival and insulin 

responses (Delcommenne et al. 1998). ILK-dependent phosphorylation of GSK-3β in 

epithelial cells downregulated GSK-3β kinase activity. This in turn was associated with 

reduced E-cadherin expression, enhanced AP1 activity, and increased β-catenin-Lef/Tcf 

activity, which induces the expression of cell cycle-promoting genes such as cyclins and c-

myc (Troussard et al. 1999). The reduced E-cadherin expression was interpreted to be a direct 
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effect of the β-catenin-Lef/Tcf complex on E-cadherin gene expression. It was also shown, 

however, that ILK can reduce E-cadherin levels indirectly by triggering expression of a 

transcriptional repressor called snail, which negatively acts on the E-cadherin gene (Troussard 

et al. 1999). 

Several additional targets of the catalytic activity of ILK have been identified over the last 

years (Table 1.3A). The phosphorylation of myosin light chain or myosin phosphatase target 

subunits by ILK were described in platelets and smooth muscle extracts (Deng et al. 2001; 

Deng et al. 2002; Kiss et al. 2002). The phosphorylation of the transcriptional co-activator α-

NAC has been described in COS-7 cells (Quelo et al. 2004). 

Questions about the importance of the ILK kinase activity emerged with the genetic studies in 

Caenorhabditis elegans (C. elegans) and Drosophila melanogaster (see below; 1.3.3). While 

loss of ILK expression in both organisms led to muscle detachment and early lethality during 

embryogenesis, the expression of kinase-dead mutant ILK could fully rescue the severe 

phenotypes (Zervas et al. 2001; Mackinnon et al. 2002). Doubts about ILK kinase activity 

were reinforced by biochemical studies which suggested that ILK lacks an intrinsic kinase 

activity and is not capable of phosphorylating PKB/Akt (Hill et al. 2002). A detailed protein 

sequence analysis revealed that ILK (although a high homology to other kinases is evident) 

lacks essential catalytic amino acids which are highly conserved in other kinases: the DFG 

sequence which is common to almost all kinases and essential for the alignment of the γ-

phosphate of ATP is missing; a conserved Lysine which neutralizes the charge on the γ-

phosphate and a conserved Asparigine, important for Mg2+-binding are also not present. 

Therefore, it is difficult to envisage how ILK can actively transfers phosphate groups to its 

targets (Legate et al. 2006). 

Table 1.3. Substrates and interaction partners of ILK. A. List of proteins that were shown to be phosphorylated 

by ILK. B. List of proteins that were shown to interact with ILK. (Taken from Grashoff et al. 2004 and modified). 
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1.3.3. Genetic studies of ILK in invertebrates 

In contrast to vertebrates, invertebrates have only a very small set of integrin subunits. 

Because of the low redundancy, model organisms like the nematode C.elegans or the fruit fly 

Drosophila melanogaster have become valuable tools to study integrin function and the role 

of their cytoplasmic plaque proteins (Brown 2000). C. elegans has only one integrin β subunit 

(β-PAT3) and two α subunits (α-PAT-2, α-INA-1), of which α-ina1/βPAT3 binds laminin and 

α-PAT2/βPAT3 to RGD-containing ligands (Fig 1.10A). The set of integrins in Drosphila 

consists of two β subunits (βPS, βv) and five α subunits (αPS1-5). While αPS1/βPS binds 

laminin and αPS2/βPS the RGD motif, the remaining integrin heterodimers cannot be 

classified as orthologues of any known vertebrate integrin pair (Fig 1.10B). 

. 

Fig 1.10. The integrin receptor family of invertebrates. A. The nematode C. elegans expresses only two integrin 

heterodimers which can bind laminin and RGD-containing proteins, respectively. B. Drosophila expresses two β 

subunits and five α subunits. Certain Drosophila integrins (βPS/αPS3-5) are not comparable to any known 

vertebrate integrin pair. βv integrin most likely pairs with αPS3-αPS5 (N. Brown, personal communication). 

 

Null mutations in C. elegans for the β integrin subunit β-PAT3 lead to a phenotype called 

PAT. PAT stands for paralyzed and arrested at twofold and this phenotype is caused by 

impaired muscle contraction resulting in early embryonic lethality (Williams and Waterston 

1994). In Drosophila loss of βPS integrins leads to a similar phenotype characterized by 

detachment of muscles from the ECM and early lethality during larval development (Brown 

1994). Hypomorphic integrin mutations result in viable animals which display blisters in their 

wings demonstrating the crucial function of integrins in cell adhesion. 

Drosophila ILK consisting of 448aa is 60% identical and overall 75% similar to human ILK. 

Like human and mouse ILK, it lacks crucial catalytic amino acids which indicates that the 

divergence of ILK from other kinases was established already before the separation of 

invertebrates and vertebrates. Truncation of the protein as well as complete deletion of the 

ILK gene leads to a collapse of the actin cytoskeleton in the muscle similar (but milder) than 
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the phenotype caused by the loss of βPS expression (Fig 1.11; Brown 1994; Zervas et al. 

2001). In addition, clonal expression of ILK-mutant cells during adulthood leads to severe 

blistering in the wing. These data point toward a crucial role of ILK during integrin-mediated 

cell-ECM adhesion. Interestingly, re-expression of wt-ILK and wt-ILK-GFP but also 

expression of several ILK kinase-dead mutants could completely rescue the lethal phenotype, 

indicating that ILK kinase activity – should it exist - is not essential in Drosophila. Moreover, 

the authors could show that ILK is mainly important for maintaining the integrin-actin 

interaction, while βPS integrin solely establishes and maintains cell-matrix interactions (Fig 

1.11). These data were the first to show, that ILK plays a crucial role as an adaptor protein but 

is dispensable as a kinase in vivo. 

The C. elegans orthologue of ILK is called PAT-4. PAT-4/ILK is 56% identical to human 

ILK and consists of a similar domain structure like human, mouse, and Drosophila ILK. 

Williams and colleagues (Mackinnon et al. 2002) showed that PAT-4-null nematodes failed to 

assemble sarcomere-like structures (called dense bodies and M-lines in worms) paralyzing the 

embryo and resulting in developmental arrest. Yeast-two-hybrid assays revealed that PAT-

4/ILK interacts with the orthologue of Kindlin-2 called Unc-112 in nematodes. Unc-112 is 

important for the proper localization of PAT-4/ILK to integrin adhesion sites. Similar to the 

situation in Drosophila, kinase-dead mutant versions of ILK completely rescued the lethal 

phenotype (Mackinnon et al. 2002).  

Upon publication of these studies, it has been hypothesized that ILK rather acts as an adaptor 

molecule at the integrin adhesion site, essential for the interaction between integrins and the 

actin cytoskeleton, and is - at least under physiological conditions - dispensable as a kinase. 

Fig 1.11. Summary of Drosophila phenotypes in the muscle. A. In the normal situation, integrins (βPS) connect 

the actin cytoskeleton with the ECM. This area is subject to high mechanical stress in the developing muscle. B. 

In the absence of βPS integrin the muscle collapses due to a disruption of the interaction between the ECM and 

the plasma membrane. C. In the absence of ILK, the interaction between ECM and plasma membrane occurs 

normally, while the connection between integrins and the actin cytoskeleton is disrupted. (Figure based on 

Zervas et al. 2001). 
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1.3.4. ILK- an adaptor protein at the integrin adhesion site 

Besides its interaction with β1 and β3 integrins, ILK is able to bind a number of additional 

proteins. Almost all proteins that bind either directly or indirectly to ILK could potentially 

regulate the actin cytoskeleton. Pinch1 was the first interactor to be identified (Tu et al. 1999). 

Pinch2, a Pinch1 homologue, was subsequently identified in mice and humans (Zhang et al. 

2002; Braun et al. 2003). They are both composed of five LIM domains and contain a nuclear 

localisation signal (NLS) at the C-terminus. The first LIM domain binds to the first ankyrin 

repeat of ILK. The fourth LIM domain of Pinch1 was shown to bind with very low affinity to 

the SH2/SH3 adaptor protein Nck2, which in turn is known to interact with growth factor 

receptors and recruits a large number of proteins including actin modulators such as Dock180 

and the p21-activated kinase (PAK) (Tu et al. 1998; Velyvis et al. 2001). 

A search for paxillin-binding proteins showed that the C-terminal domain of ILK contains 

sequences resembling a so-called paxillin binding site (PBS) motif, which firmly binds 

paxillin. The ILK-paxillin interaction is necessary but not sufficient to recruit ILK into FAs, 

where the complex may modulate the function of other paxillin-binding proteins such as 

vinculin, α-actinin, talin or FAK (Nikolopoulos and Turner 2001). 

Several laboratories have simultaneously shown that parvins, a new family of f-actin binding 

proteins, bind the C-terminal domain of ILK (Olski et al. 2001; Tu et al. 2001; Yamaji et al. 

2001). The parvin family consists of three members (α-parvin or actopaxin or CH-ILK 

binding protein; β-parvin or affixin; and γ-parvin) which are composed of two calponin 

homology (CH) domains. While α-parvin is broadly expressed at relatively high levels, β-

parvin displays rather low expression levels but is also ubiquitously expressed. γ-parvin is 

exclusively expressed in haematopoietic cells (Chu et al. 2006). In addition to its ILK binding 

activity, α-parvin was shown to interact simultaneously with paxillin and f-actin 

(Nikolopoulos and Turner 2000). If β-parvin can also interact with paxillin is unclear. 

However, β-parvin was shown to interact with the GEF α-PIX, which might be important for 

the activation of Rac1 and Cdc42 (Rosenberger et al. 2003). Several reports indicate that α-

parvin and β-parvin, although they share rather high homology, have different functions at the 

integrin adhesion site and even counteract each other (Zhang et al. 2004). 

An additional ILK binding partner at the C-terminus was identified in C. elegans and named 

UNC-112. UNC-112 contains a FERM domain that is split by a PH domain and is important 

for the recruitment of the ILK orthologue, PAT-4, to muscle attachment sites (Mackinnon et 

al. 2002). The mammalian orthologue of UNC-112 is Mig2a/Kindlin-2 and was shown to 
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bind the LIM-domain containing adaptor protein migfilin, which in turn binds filamin, an 

actin crosslinking molecule (Tu et al. 2003). 

The different ILK interactions are illustrated in Fig 1.12. It should be kept in mind, that it is 

not clear, if all these interactions occur at the same time at integrin adhesion site (ILK can be 

also found outside of these structures) and in all cells. 

Fig 1.12. ILK as an adaptor protein at the integrin adhesion site. ILK can interact with several proteins, which 

link integrins to the actin cytoskeleton. However, if ILK interacts with all these proteins at the same time is 

questionable. Moreover, not all cell types might express the whole set of proteins as depicted here. (Picture 

taken from Grashoff et al. 2004). 

1.4. Analysis of the peri-implantation development in mice 

The first basement membrane (BM) that assembles during mouse development appears in the 

peri-implantation blastocysts between the visceral endoderm and the inner cell mass (ICM) 

and between the parietal endoderm and the trophectoderm. In the absence of BM assembly 

the epiblast, which is the source of the three germ layers, fails to differentiate and to polarize 

leading to the arrest of embryonic development. β1 integrins are crucial for the establishment 

of this ECM structure. In the following sections, embryoid bodies (EBs) as a model system 

for the analysis of peri-implantation development and the role of β1 integrins during this early 

phase of embryonic development will be introduced. 
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1.4.1. Embryoid bodies (EBs)-a model system to study peri-implantation 

development 

The blastocyst develops 3.5 days after fertilization and consists of the inner cell mass (ICM) 

and the trophectoderm. Subsequently, the primitive endoderm differentiates from the ICM 

and gives rise to the visceral and the pariental endoderm. Those endodermal cell layers secrete 

ECM components such as laminin111 and collagen type IV which assemble into a BM 

between visceral endoderm and ICM and between parietal endoderm and the trophectoderm. 

Following blastocyst implantation at E4.5, the ICM undergoes cavitation forming the 

proamniotic cavity and the epiblast (Fig 1.13; Wang and Dey 2006). 

Fig 1.13. Early events of embryonic development in mice. The ICM gives rise to the endodermal cell layers, 

which secretes BM components such as laminin111 or collagenIV to form the first BM during development. 

Differentiation of ICM cells leads to the formation of the epiblast, cavitation to the formation of the proamniotic 

cavity. (Picture provided by R. Fässler and E. Montanez). 

 

Since these processes are difficult to study in utero an in vitro model system was established 

that recapitulates most of the processes described above (Fig 1.13). Suspension culture of 

embryonic stem (ES) cells leads to the formation of EBs. In a series of well characterized 

events ES cells form compact spherical ES cell aggregates and differentiate into a two germ 

structure that consists of visceral as well as parietal endoderm, a BM, an epiblast and a 

proamniotic-like cavity. Since EB-derived pariental endodermal cells lack the trophectoderm 

to which they would normally attach, these cells tend to form peripheral aggregates (Fig 

1.14). The lack of trophectoderm prevents the analysis of extraembryonic differentiation 

processes or the formation of Reichert’s membrane with the EB system (Li et al. 2003). 
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Fig 1.14. EB development. When cultured in suspension, spherical ES cell aggregates can develop into an EB. 

They trigger primitive endoderm formation, BM assembly, epiblast differentiation/polarization and cavitation. 

(Picture provided by R. Fässler and E. Montanez). 

1.4.2. The role of the ECM proteins integrins during peri-implantation 

development 

The assembly of a BM is a critical step during peri-implantation development. Deletion of 

laminin111 (achieved by targeted ablation of the laminin γ1) led to developmental arrest at 

E5.5 due to defective BM assembly (Smyth et al. 1999). Deletion of β1 integrin caused the 

same phenotype since the laminin α1 subunit is not secreted from the endodermal cells and 

laminin111 can not be assembled (Fassler and Meyer 1995; Aumailley et al. 2000). 

Interestingly, addition of laminin α1 to β1-null EBs partly rescued the BM assembly defect 

(Li et al. 2002). It is therefore thought that β1 integrin expression is critical for the secretion 

of laminin α1 from endodermal cells but not essential for BM assembly per se. The formation 

of a laminin-rich BM between the endoderm and the ICM is critical for polarization of the 

ICM cells, their differentiation into the epiblast and the formation of the proamniotic cavity 

(Li et al. 2002). 
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1.5. Development and analysis of the vertebrate skeleton 

The vertebrate skeleton is a complex tissue composed of more than 200 unique elements 

distributed throughout the body. Its development is a highly regulated process and achieved 

by at least two distinct mechanisms: the intramembranous ossification and the endochondral 

ossification. In the former, bone forms directly from mesenchymal progenitors, whereas in the 

latter bone formation occurs after the generation of a cartilaginous mold. Craniofacial bones 

and part of the clavicle are formed by intramembranous ossification, the axial and 

appendicular skeleton forms by endochondral ossification. Recently, it has been shown that 

β1 integrins a play pivotal role during endochondral ossification (Aszodi et al. 2003). In the 

present study, the role of ILK during this process was analyzed. 

Below, the molecular biology of cartilage and bone development as well as the role of ECM-

integrin interactions during endochondral ossification will be introduced. 

1.5.1. Bone formation by endochondral ossification 

The formation of bone during endochondral ossification is mediated by three different cell 

types: chondrocytes and osteoblast, which are of mesodermal origin, and osteoclasts which 

are derived from the myelomonocytic lineage. While the cartilage is exclusively made up of 

chondrocytes, osteoblasts and osteoclasts are residing in the bone (Erlebacher et al. 1995; 

Karsenty and Wagner 2002). 

Endochondral bone development starts with the condensation of mesenchymal cells and their 

subsequent differentiation into chondrocytes leading to the formation of the cartilaginous 

anlage (Fig 1.15). These chondrocytes start to express molecular markers such as aggrecan or 

collagen II in contrast to the undifferentiated cells in the perichondrium which lines the 

cartilaginous anlage (Fig 1.15A). Once this cartilaginous template is formed, the innermost 

chondrocytes further differentiate into hypertrophic chondrocytes, a population of cells that 

can be further subdivided into collagen II expressing pre-hypertrophic chondrocytes and 

hypertrophic chondrocytes which express only little amounts of collagen II but instead 

strongly express collagen X (Fig 1.15B). Fully differentiated hypertrophic chondrocytes 

become surrounded by a calcified ECM and subsequently die by apoptosis. Expression of 

VEGF (vascular endothelial growth factor) by hypertrophic chondrocytes initiates vascular 

invasion followed by the entry of chondroclasts and osteoblast progenitors leading to the 

formation of the trabecular bones (Fig 1.15B, C). While this process of differentiation, 

apoptosis and bone formation occurs, chondrocytes at each end of the forming bone strongly 

proliferate and acquire a flattened shape which leads to the formation of parallel columnar 



Introduction 

37 

chondrocyte stacks. This process is largely responsible for the longitudinal growth of bones in 

vertebrates and leads to the establishment of a typical structure in the cartilage called growth 

plate (Fig 1.15D, Fig 1.16). The sequential process of proliferation, hypertrophy, apoptosis 

and finally the replacement of chondrocytes by osteoblasts consumes most of the 

cartilaginous templates until the onset of puberty. In the final step of bone formation, cells in 

the distal site of the bone start to loose characteristic molecular markers such as collagen II 

and aggrecan but instead start to express collagen III. The differentiation of these cells leads 

to the formation of the secondary ossification center, vascular invasion and formation of the 

joint cavity. Once the adulthood stage is reached, cartilage is only left on the articular surface 

(Fig 1.15D; Aszodi et al. 2000). 

Fig 1.15. Endochondral ossification. A. Endochondral bone formation starts with the condensation of a 

cartilaginous template. B. Differentiation of chondrocytes into hypertrophic chondrocytes leads to vascular 

invasion and C. the formation of the primary ossification center. D. Strong proliferation and dramatic cell shape 

changes form the growth plate. E. Differentiation of chondrocytes and another vascular invasion at the 

epiphyseal cartilage lead to the formation of the secondary ossification center and the formation of the joint 

cavity. (Figure is based on Aszodi et al. 2000). 

1.5.2. Regulation of chondrocyte proliferation and differentiation 

Although the cartilage is build up of only one cell type, the chondrocyte, different subtypes 

can be clearly distinguished histologically. In the resting zone, chondrocytes are small and 

roundish, mainly express collagen II and proliferate slowly, whereas in the proliferative zone, 

chondrocytes appear flattened and are highly proliferative (Fig 1.15, Fig 1.16). Differentiated 

pre-hypertrophic and hypertrophic chondrocytes increase their size, express collagen X and 

cease proliferation. An obvious question is how all these events, the induction of proliferation 

and differentiation, the synthesis of ECM and the cell shapes changes are regulated. Recent 
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work has identified several regulatory mechanisms: the Indian hedgehog (Ihh)-Parathyroid 

hormone-related peptide (PTHrP) crosstalk, growth factor and transcriptions factor signalling 

pathways. Interestingly, integrins were also shown to play an important role during most of 

these processes. 

Fig 1.16. Organization of epiphyseal cartilage. Hematoxylin/Eosin staining of a cartilage section at E17.5. 

Cells in the resting zone are roundish, while cells in the proliferative zone appear flattened and form columnar 

structures. Pre-hypertrophic and hypertrophic chondrocyte are much larger. The cartilage is surrounded by a 

mesenchymal cell layer called perichondrium. 

1.5.2.1. Ihh-PTHrP crosstalk 

Targeted inactivation of PTHrP in mice leads to premature chondrocyte maturation and 

excessive bone formation at birth (Karaplis et al. 1994). Conversely, transgenic mice 

overexpressing PTHrP (using a Col2-promoter) fail to form bone in all skeletal elements 

which are formed by endochondral ossification (Weir et al. 1996). PTHrP is mainly secreted 

by cells at the periarticular cartilage, while the receptor for PTHrP (PPR) is expressed at 

lower levels in proliferating chondrocytes and is highly expressed in pre-hypertrophic 

chondrocytes. Therefore, it has been proposed that PTHrP diffuses through the bone to bind 

its receptor, which then antagonizes chondrocyte maturation. A somewhat similar but even 

more complex phenotype is caused by deletion of Ihh, which is at least at later time points of 

development, almost exclusively expressed by pre-hypertrophic chondrocytes. Although Ihh-
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null mice initially show a normal chondrocyte condensation, mice at the newborn stage 

display a prominent dwarfism characterized by increased calcification of the long bones and 

shortening of almost all skeletal elements. Due to a strongly reduced rib cage size, Ihh 

knockout mice can not breathe and die shortly after birth. The reduced size of the long bones 

in Ihh knockout mice is caused by impaired proliferation of chondrocytes in the growth plate. 

Interestingly, the expression of PTHrP in periarticular chondrocytes was absent in these 

animals indicating that Ihh is essential for the maintenance of PTHrP expression thereby 

controlling the transition from proliferating to hypertrophic chondrocytes (St-Jacques et al. 

1999). But how can Ihh, expressed on pre-hypertrophic chondrocytes affect the secretion of 

PTHrP in periarticular chondrocytes? 

One possibility could be that Ihh triggers PTHrP expression in a direct manner early during 

endochondral bone formation, when the distance between Ihh and PTHrP expressing cells is 

still small. At later time points is seems more reasonable that the regulation of PTHrP 

secretion by Ihh occurs in an indirect manner. It has been suggested that this indirect 

regulation depends on bone morphogenic proteins (BMPs) and the transforming growth factor 

beta (TGF-β). More detailed information can be found in recent reviews about the Ihh-PTHrP 

feed-back loop (Lai and Mitchell 2005). 

1.5.2.2. Regulation of endochondral bone formation by growth factor signalling and 

transcription factors 

Endochondral bone formation critically depends on growth factor receptor signalling. 

Activating mutations in the fibroblast growth factor receptor-3 (FGFR-3) leads to 

achondroplasia, characterized by a virtual absence of non-hypertrophic chondrocytes. 

Conversely, targeted inactivation of FGFR-3 in mice leads to an increased size of the growth 

plate and a prolonged growth of the axial and appendicular skeleton (Deng et al. 1996). 

Therefore, FGFR-3 is believed to act as a negative regulator of endochondral bone formation. 

Several studies have indicated that the transcription factor STAT1 is a mediator of FGF 

signalling by regulating the expression of cell cycle inhibitors like p21 in the growth plate. 

Indeed, FGFR-3 knockout mice display more proliferating chondrocyte in this area of the 

cartilage. 

Other transcription factors like Sox9, Fos and Cbfa1 have been shown to play essential roles 

during endochondral bone formation. Sox9 is expressed throughout cartilage during 

development. In ES cell-chimeric mice, Sox9 null ES cells cannot contribute to cartilaginous 

tissues indicating that Sox9 is an essential factor for the initial condensation of the 

cartilaginous template (Bi et al. 1999). Since Sox9 can directly interact with enhancers of 
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collagen II, it is easy to envisage that Sox9 is crucial for the onset of collagen II expression in 

chondrocytes. 

The important role of osteoblasts during endochondral bone formation has become evident by 

the generation of Cbfa1 knockout mice. Targeted deletion of this transcription factor, which is 

essential for the differentiation of osteoblasts leads to complete loss of bone formation in mice 

(Komori et al. 1997). 

Fig 1.17. Regulatory signals and circuits during endochondral bone formation. A. The PTHrP-Ihh crosstalk 

regulates chondrocyte proliferation and differentiation. Ihh is expressed on pre-hypertrophic chondrocytes and 

induces the secretion of PTHrP. Activation of the PTHrP receptor (PPR), located at the pre-hypertrophic and 

hypertrophic zone, inhibits differentiation of chondrocytes. B. In chondrocytes, activation of the FGFR-3 

pathway leads to inhibition of cell proliferation by STAT-dependent expression of cell cycle inhibitors. Several 

transcription factors affect endochondral bone formation by the regulation of ECM synthesis (Sox9), cell 

proliferation (Fos) or osteoblast differentiation (Cbfa1). 

1.5.3. The role of the ECM and integrins during endochondral ossification 

The most abundant extracellular matrix proteins in the skeleton are the collagens. Collagen I 

is the prominent ECM protein in the bone, whereas collagen type II is the predominantly 

expressed collagen in the cartilage which interacts with other less abundant collagen types 

like collagen IX or collagen XI to form the collagen fibrils. Collagen X is exclusively 

expressed by pre-hypertrophic and hypertrophic chondrocytes. The interconnection of these 
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various collagens with other ECM proteins like aggrecan or with proteoglycans and its 

binding to hyaluronan leads to the formation of a highly ordered three-dimensional network 

that ensures the mechanical stability of the cartilage. Mutations in the collagen genes are often 

associated with human disorders of the skeleton ranging from osteogenesis imperfecta 

(collagen I), a variety of chondrodysplasias (collagen II) to the Stickler syndrome (collagen 

XI) (Vikkula et al. 1994).  

The interaction of the ECM with chondrocytes is mediated by β1 and αv integrins (Fig 1.1) 

and therefore not surprisingly, deletion of β1 integrin leads to an almost complete loss of the 

chondrocyte-ECM interaction in the cartilage. Targeted deletion of β1 integrin in 

chondrocytes has demonstrated the essential role of β1 during endochondral ossification 

(Aszodi et al. 2003). The phenotype of conditional β1 knockout mice is discussed in the next 

chapter. 

1.5.3.1. Deletion of β1 integrin in the cartilage 

Deletion of β1 integrin exclusively in chondrocytes led to severe chondrodysplasia 

characterized by reduced length of the long bones which were interestingly broader than 

control bones. Most of β1 integrin deficient mice died after birth due to breathing distress; the 

few survivors developed a severe dwarfism being 40% shorter than control littermates. 

Defective collagen assembly: while FN gets assembled normally in β1 deficient cartilage 

(αvβ3 integrin is still present), the assembly of collagen fibrils is impaired, which is especially 

evident in the inter-territorial matrix of the proliferative zone. As expected, isolated 

chondrocytes deficient for β1 integrin display strong adhesion defects to FN, VN or laminin 

and completely fail to attach to collagen substrates. 

Reduced chondrocyte proliferation and apoptosis: mice with a chondrocyte specific deletion 

of β1 in the cartilage display reduced cell numbers which at least in part contributes to the 

reduced size of the skeletal elements. BrdU incorporation assays revealed a reduced 

proliferation rate of chondrocytes in the growth plate whereas a slight increase in apoptosis 

was detectable. The reduced proliferation rate was associated with increased expression of 

FGFR-3 mRNA, nuclear translocation of STAT1 and STAT5 and increased expression of the 

cell cycle inhibitors p16 and p21. 

Impaired differentiation of chondrocytes: loss of β1 integrin in the cartilage leads to a 

broadening of the pre-hypertrophic zone, but has no effect on the size of the hypertrophic 

zone. Although this phenotype is not fully understood, it seems likely that this rather mild 

differentiation defect is a result of the dramatic changes in the organization of the ECM. 
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Defective organization of the actin cytoskeleton: a striking phenotype of isolated β1-deficient 

chondrocytes is their inability to spread and form stress fibers in vitro. Similarly, f-actin 

distribution in chondrocytes of the growth plate is impaired. This data demonstrate the 

important role of integrins in the organization of the f-actin cytoskeleton. 

Defective cytokinesis and chondrocyte rotation: the cartilage of β1-deficient mice contains a 

high number of bi-nucleated cells. Cell cycle analysis revealed that mutant β1 cells 

accumulate in the G2/M phase of the cell cycle. In addition, these chondrocytes fail to rotate 

after cell division in order to form columnar stacks, but instead stay side-by-side which finally 

leads to the formation of a shorter but broader cartilage. 

 

Altogether, these data indicate that integrins play crucial roles during endochondral bone 

formation, by regulating cell proliferation, cell differentiation and ECM assembly. In addition 

β1 integrins are essential for the regulation of the cell shape most likely by modulating the 

organization of f-actin cytoskeleton (Fig 1.18). 

 
Fig 1.18. The role of β1 integrin during endochondral 

bone formation. β1 integrin is essential for collagen 

fibrillogenesis, cytokinesis and rotation of chondrocytes. 

It controls the cell shape by modulation of the f-actin 

cytoskeleton and suppresses the FGFR-3 signalling 

pathways thereby promoting cell proliferation. In 

addition loss of β1 integrin leads to impaired 

differentiation of chondrocytes (Aszodi et al. 2003). 

 

 

 

 

 

 

 

 

1.6. Epidermal morphogenesis and analysis of the murine skin 

The skin is a multilayered tissue which protects the animal from loss of water, bacterial 

infections, radiation, extreme temperatures and mechanical stress. It is composed of more 

than 20 different cell types which build up the stratified epithelium (frequently called the 
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interfollicular epidermis), the hair follicle (HF) and as well as a mesenchymal compartment 

consisting of dermis, subcutis and dermal papillae. The major cell type of the epidermis is the 

keratinocyte. 

Targeted ablation β1 integrins from basal keratinocytes demonstrated the essential of role β1 

integrins for the maintenance of epidermis and HFs (Brakebusch et al. 2000; Raghavan et al. 

2000). In the present study, the role of ILK in the epidermis and its appendages was 

addressed. The following sections will introduce the development of the skin and HFs and 

discuss the role of ECM-integrin interactions in the epidermis. 

1.6.1. Epidermal morphogenesis 

The epidermis of mice derives from the outer ectodermal cell layer of the postgastrulation 

embryo that forms a single sheet of histologically undifferentiated epithelial cells which 

adhere to an underlying BM (Fig 1.19A). Already at E9-E12 these cells regionally stratify to 

form the periderm, a cell layer which later during epidermal development is shed into the 

amniotic fluid (Fig 1.19B). Further stratification leads to the formation of a first intermediate 

cell layer (also called the stratum intermedium) which contains still proliferating cells (Fig 

1.19C). Around this time, the expression of the typical keratinocyte marker such as keratin5 

(K5) or keratin14 (K14) is induced. Further differentiation at E15-E16 gives rise to the non-

proliferating suprabasal cell layers (Fig 1.19D). Terminal differentiation of suprabasal cell 

layers leads to the formation of the outer epidermal layer called stratum corneum and the 

shedding of the periderm (Fig 1.19E). The stratum corneum consists of anucleated and 

flattened cells, which are filled with keratin matrix and surrounded by an impermeable 

cornified envelope that is additionally cross-linked to external lipids. The stratification of the 

epidermis is completed at birth (Fig 1.19F; Blanpain and Fuchs 2006). 

The epidermis constantly renews itself throughout the entire life of the animal and is able to 

re-epithelialize after wound injuries, which implies the existence of epithelial stem cells 

(eSC). Long-term labelling studies revealed that most of those eSCs are located in the hair 

bulge which is located at the base of the permanent part of the HF (Cotsarelis et al. 1990). 

There is also evidence for the existence of eSC in the interfollicular epidermis as well 

(Mackenzie 1997) and it has been speculated that high β1 integrin expression is a hallmark of 

eSC (Jones et al. 1995). However, to which extend β1integrin determines the features of eSC 

awaits further studies. 
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Fig 1.19. Development of the murine epidermis. A. The epidermis derives from an ectodermal cell layer of the 

postgastrulation embryo. B. The first stratification occurs around E9-E12 and forms the periderm, which sheds 

during embryonic development into the amniotic fluid. C. The stratum intermedium is formed between E12-E15 

but is not regarded as a typical suprabasal cell layer, since the intermediate cells express basal markers and still 

proliferate. D. Further differentiation leads to the formation of suprabasal non-proliferating cell layers around 

E15-E16. E. The formation of the granular layer occurs at E16-E17. The periderm is shed into the amniotic 

fluid. F. The stratum corneum forms until birth by terminal differentiation. (Based on Blanpain and Fuchs 

2006). 

1.6.2. HF morphogenesis and the hair cycle 

The HF is an epidermal appendage that starts to form already during embryonic development 

(Fig 1.20). Undifferentiated ectodermal cells are induced by the underlying mesenchymal 

cells to form an epidermal placode (Fig 1.20B), which in turn induces the formation of a 

dermal condensate that develops into the dermal papilla (DP; Fig 1.20C). Signals from the DP 

stimulate the proliferation and differentiation of epidermal cells resulting in the formation of 

the epidermal appendage (also called primary hair germ; Fig 1.20D). Those cells further 

differentiate into the inner root sheath (IRS), which later forms the hair shaft, and the outer 

root sheath (ORS), which is contiguous with the epidermis and surrounded by a BM (Fig 

1.20E). Migration of ORS cells along the BM leads to the down growth of the HF into the 

subcutis until postnatal day 8 (P8) followed by proliferation and differentiation of hair matrix 

cells into six concentric layers of the IRS and the hair shaft. The development of the HF is 

completed around P14. A remarkable feature of the HF is its capacity to constantly renew. At 
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P16 proliferation of the hair matrix cells ceases and the HF degenerates (catagen), rests just 

below the hair bulge (telogen) until signals from the DP at P24 initiate the formation of a 

secondary hair germ and the downward migration of ORS cells to form a new HF. This 

periodic cycling of HFs continues the whole life of the animal (Blanpain and Fuchs 2006). 

Fig 1.20. Morphogenesis of the murine HF. A. The HF is formed after a series of dermal-epidermal cues. B. 

The condensation of mesenchymal cells induces the formation of an epidermal placode. C. The epidermal 

placode induces the formation of a DP in the dermis. D. The DP stimulates cell proliferation and differentiation 

leading to the formation of a hair germ. E. Migration of ORS cells drives the downward growth of the HF, which 

further differentiates into inner root sheath and hair matrix. The DP remains attached to the HF. (Based on 

Blanpain and Fuchs 2006). 
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1.6.3. The role of integrins in the epidermis 

The most abundant integrins expressed in basal keratinocytes are α2β1, α3β1, α9β1 and α6β4 

integrins. The expression of these integrins is under normal conditions restricted to basal 

keratinocytes and the outer root sheath cells. While β1 integrins are expressed around the 

basal keratinocyte, α6β4, a component of hemidesmosomes, is restricted to the basal side 

adjacent to the BM. In humans, mutations in the genes encoding either α6 or β4 integrin cause 

an autosomal recessive disorder called epidermis bullosa which is characterized by severe 

skin blistering. Similarly, α6 or β4 knockout mice die shortly after birth due to epidermal 

disintegration indicating that the hemidesmosomal α6β4 integrins are essential for cell 

attachment of basal keratinocytes to the BM (Dowling et al. 1996; van der Neut et al. 1996). 

Moreover α6β4 has been implicated in skin carcinogenesis and seems to promote cell 

migration through mechanisms that involve integrin-RTK crosstalk (Giancotti and Tarone 

2003). Deletion of the α3 integrin subunit also results in skin blistering, which is however 

much less severe as in α6β4-null mice. Interestingly, ablation of both α3 and α6 integrin 

subunits still allows stratification and HF morphogenesis (DiPersio et al. 2000). 

The role of β1 integrin has been addressed by targeted ablation of the protein specifically in 

basal keratinocytes. The results of these studies will be briefly discussed in the following 

section. 

1.6.3.1. Deletion of β1 integrins from basal keratinocytes 

Two groups simultaneously reported the deletion of β1 integrin in basal keratinocytes 

(Brakebusch et al. 2000; Raghavan et al. 2000). Deletion of β1 integrin leads to skin blistering 

and complete loss of hair. Animals die within several weeks after birth due to impaired food 

uptake and disturbed development (Brakebusch et al. 2000) or shortly after birth due to severe 

skin blistering and dehydration (Raghavan et al. 2000). 

Impaired BM maintenance in β1 knockout mice: deletion of β1 integrins in basal keratinocytes 

resulted in a defective organization of the BM caused by impaired adhesion of basal 

keratinocytes to the BM and aberrant processing and deposition of ECM proteins such as 

laminin332 or collagenVII. Although hemidesmosome can form, their number is reduced. The 

distortion of the dermal-epidermal junction and the reduced adhesion are the reason for the 

severe skin blistering. The BM of HFs was found to be unaffected, which supports the notion, 

that skin blistering is boosted by mechanical stress. 

Reduced proliferation of basal keratinocytes and hair matrix cells: the proliferation rate of 

basal keratinocytes is significantly reduced in the absence of β1 although not completely 



Introduction 

47 

blocked. Also the proliferation of hair matrix cells essential for the downward growth of the 

HF is reduced. The survival of basal keratinocytes or cells of the HF is not changed. 

Delayed terminal differentiation: β1-deficient epidermis is hyperthickened, caused by a delay 

in terminal differentiation. Basal keratinocytes, however, did not initiate premature 

differentiation and maintain their basal properties. This argues against the hypothesis that β1 

integrins are essential negative regulators of terminal differentiation. 

 

Altogether these data indicated that β1 integrins are indispensable for the BM integrity along 

the dermal-epidermal junction. They are essential for the processing and deposition of ECM 

proteins and necessary for cell attachment of basal keratinocytes. Similarly to the situation in 

chondrocytes, β1 integrins promote proliferation of keratinocytes but only slightly impair 

their differentiation. 

1.7. Aim of the PhD thesis 

The role of ILK as an integrin-binding protein is highly controversial. While earlier studies 

indicated a critical role of ILK as a kinase regulating numerous signalling cascades in an 

integrin-dependent manner, more recent reports questioned the importance of ILK’s catalytic 

activity and rather suggested a function of ILK as adaptor protein important for the 

interconnection of integrins with the actin cytoskeleton. Since all studies were using either 

overexpression systems or invertebrate models, the role of ILK under physiological 

conditions in a mammalian system was unclear. The overall goal of this study was therefore 

to investigate the consequences of ILK-deletion in mice. 

 

In order to determine the importance of ILK expression during development the first aim was 

to complete the analysis of constitutive ILK knockout mice. 

To further describe the role of ILK in mesenchymal and in epithelial cells in vivo the second 

aim was to analyze consequences of ILK deletion in the cartilage and epidermis of mice. 

The third aim was to establish an in vitro model system to investigate the role of ILK as a 

kinase and during integrin-dependent f-actin reorganizations in more detail. 
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2. Materials and Methods 

2.1. Common chemicals 

All chemicals used in this study, if not further specified, were purchased from the following 

companies: Carl Roth GmbH (Karlsruhe, Germany), Merck (Darmstadt, Germany), Reidel de 

Haen (Seelze, Germany), Serva (Heidelberg, Germany) and Sigma Aldrich (Munich, 

Germany). 

2.2. Animals 

All mouse strains were maintained and bred in the animal facility of the Max-Planck-Institute 

of Biochemistry (Martinsried, Germany). The mice had free access to standard rodent diets 

and water. The light cycle was set for 12h. For breeding, mice of an age of 8 weeks were 

used. At an age of 3 weeks after birth, mice were separated by sex, marked with ear tags and 

housed in separated cages. 

For genotyping, mice were clipped at the tail, which was used for DNA isolation immediately 

(2.7.2). All experiments were carried out according to the German Animal Protection Law. 

2.2.1. Breeding scheme 

In order to generate ILK knockout mice with a chondrocyte-specific deletion of the ILK gene, 

a mouse strain carrying a LoxP flanked ILK gene (ILK (flox/flox)) (Sakai et al., 2003) was 

intercrossed with transgenic mice expressing the Cre-recombinase under the control of the 

mouse collagen II promoter (Col2Cre) (Sakai et al. 2001) to obtain mice with the genotype 

ILK (flox/wt) Col2Cre+. Male mice of this genotype were again crossed with female ILK 

(flox/flox) mice in order to obtain ILK (flox/flox) Col2Cre+ mice (called Col2ILK hereafter). 

To generate ILK knockout mice with a specific deletion of the protein in keratinocytes, ILK 

(flox/flox) mice were intercrossed with mice expressing the Cre-recombinase under the 

control of a keratin5 (K5) promoter (Ramirez et al. 2004). 

2.3. Histological analysis of ILK knockout mice 

2.3.1. Material Histology 

Equipment 

Light microscope: Leica, MZFLIII 

embedding machine: Shandon, HistoCentre 2 
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microtome: Microm, Cool-Cut, HM355S 

cryostat: Microm, HM 500 OM 

embedding matrices 

cryomatrix: Shandon, 676 900 6 

mounting media 

Entellan mounting medium: Merck, 1.07960 

Aquatex: Merck, 1.08562 

2.3.2. Histological methods 

One of the most important steps in histochemical approaches is the fixation and embedding of 

the tissue, which on the one hand should preserve the tissue and maintain its morphology, but 

on the other hand should not affect the biological activity of the specimen. Therefore, 

different methods are used depending on the tissue or the experiment following the fixation. 

The most widely used fixatives are paraformaldehyde or glutaraldehyde which react with 

basic amino acid residues thereby crosslinking neighbouring proteins. Alcoholic fixatives like 

methanol or ethanol are also used but preserve the tissue to a lesser extent than aldehydes. 

Since alcohols keep the tissue in a relatively undenatured state there are of interest in 

immunofluorescence approaches. 

Paraffin wax is the most widely used embedding medium since it is solid enough to support 

the tissue but yet soft enough to enable rather thin sections to be cut (2.3.2.1). Freezing of 

tissue in order to obtain a solid block that can be cut is another widely used method (2.3.2.2). 

2.3.2.1. Preparation of paraffin sections 

Mice were sacrificed at selected time points and dissected under a light microscope. In order 

to assure fast penetration of the fixative into the cartilage, skin and muscles were carefully 

removed. The isolated skeletal elements were collected in phosphate buffered saline (PBS), 

subsequently transferred to freshly prepared, ice-cold paraformaldehyde (3.7% PFA in PBS) 

and incubated overnight (o/n) at 4°C. Next, tissue samples were dehydrated by subsequent 

washes in ethanol of ascending concentrations (50%, 70%, 80%, 90% and 100%) for 1h each 

incubated 2 times for 1h in Xylol and placed in paraffin solutions 3 times for 3h at 56°C. 

Embedding into paraffin was done using an embedding machine. Paraffin blocks were stored 

until cutting at 4°C. Paraffin blocks were cut in 6µm thick sections using a microtome. 

Quality and orientation of the tissue was frequently checked under a light microscope. Slides 

were dried at 37°C for 1-2h and finally stored at 4°C. 
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10xPBS 

NaCl.......................................................80g 

Na2HPO4.............................................14.4g 

KH2PO4.................................................2.4g 

KCl...........................................................2g 

filled up to 1000ml with H2O and adjusted to pH 7.4 with HCl 

2.3.2.2. Preparation of cryo-sections 

Tissue samples were embedded directly after dissection in cryomatrix on dry ice. Frozen 

blocks were stored on -80°C. Cryo-blocks were cut at -20°C into 6µm thick sections using a 

cryostat. Sections were air dried at RT for 30min and stored at -80°C. 

2.3.2.3. Skeletal whole mount staining: Alcian Blue/Alizarin Red staining 

This technique is most widely used for studying the skeletal morphology of mice. It is based 

on the ability of Alcian Blue to stain mucins that are abundant in cartilage. Alizarin Red S 

forms a chelate complex with calcium salts and therefore stains mineralized tissue like bone. 

The skin of completely eviscerated mice was removed and corpses were fixed in 95% ethanol 

for 5 days at RT, transferred to acetone and incubated for another 2 days at RT. Staining was 

performed by incubation of the specimen in Alcian Blue/Alizarin Red S staining solution for 

3 days at 37°C. Samples were washed in H2O and cleared for 48h in 1% KOH solution 

followed by subsequent incubations in 0.8% KOH + 20% glycerol, 0.5% KOH + 50% 

glycerol and 0.2% KOH + 80% glycerol for 1 week each.  

 

Alcian Blue/Alizarin Red S staining solution 

ethanol ................................................. 90% 

acetic acid.............................................. 5% 

H20 ...................................................... 4.8% 

Alcian Blue ..................................... 0.015% Merck (Cat.No.1.01647) 

Alizarin Red S ................................. 0.005% Merck (Cat.No. 1.06279) 

2.3.2.4. LacZ staining 

The lacZ gene is frequently used to test gene expression in mice. The expression product is β-

galactosidase and can be detected by fluorogenic or chromogenic substrates. 5-Bromo-4-

Chloro-3-indolyl-β-D-galactopyranoside (X-Gal) is a chromogenic substrate that gets 

hydroxylated by β-galactosidase forming intense blue precipitates. It is therefore often used to 

visualize lacZ reporter gene activity. 
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Cryo-sections or embryos were fixed with solution B for 5min, washed 3 times 5 min with 

solution C and incubated o/n with solution D at 37°C. Whole embryos were incubated in 

solution D for even longer times depending on their size. 

Sections were counterstained with Hematoxylin (2.3.2.5) and mounted with Entellan (2.3.1). 

 

10x solution A 

1M K2HPO4 (pH 7.4) 

4x solution A2 

10x solution A ....................................400ml 

1M MgCl2 ..........................................128ml 

EDTA ....................................................7.6g 

1x solution B 

1x solution A2 ....................................250ml 

25% glutaraldehyde...............................2ml 

2x solution C 

4x solution A2 ....................................500ml 

Na-deoxycholate ...................................0.2g 

NP-40................................................. 400µl 

X-Gal solution 

X-Gal .......................................................1g Roth  (Cat.No. 2315.3) 

DMSO ..................................................20ml  (stored at -20°C) 

1x solution D 

2x solution C......................................250ml 

100mM K3Fe(CN)6 ..............................50ml (stored in the dark) 

100mM K4Fe(CN)6 ..............................50ml (stored in the dark) 

X-Gal solution........................................5ml 

H2O ....................................................145ml 

2.3.2.5. Hematoxylin/Eosin staining 

This technique is a widespread histological stain, which can demonstrate a large number of 

different tissue structures. The major oxidization product of Hematoxylin is Hematein which 

is responsible for the colour properties. It stains cell nuclei with good intranuclear detail in 

blue, while Eosin stains the cytoplasm and connective tissue in varying shades and intensities 

with a pink colour. 
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In order to perform a Hematoxylin/Eosin stain, paraffin sections were treated 2 times for 5min 

in Xylol (deparaffinization) followed by incubation in 100%, 95%, 90%, 80% and 70% 

ethanol for 2min each (rehydration). Slides were then treated for 1min with Hematoxylin 

(Mayers hemalaun) and blued in tap water. Subsequently, slides were stained with Eosin for 

1min and again washed in tap water. Sections were dehydrated in 70%, 90%, 95% and 100% 

ethanol for 2min each, washed for 2 times 5min in Xylol and finally mounted in Entellan. 

 

Mayers hemalaun, Merck (Cat.No. 1.09249)  

Eosin G, Merck (Cat.No. 1.09844) 

2.3.2.6. Hematoxylin/Safranin orange staining 

A common counterstaining method to visualize cartilage is staining with safranin orange 

(safranin O), which specifically stains proteoglycans. Paraffin sections were treated as 

described above (2.3.2.5) but instead with Eosin were counterstained with a 0.5% safranin 

orange staining solution for 30sec. Sections were directly washed with 95% ethanol, 

dehydrated in 95% and 100% ethanol for 3min each, incubated 2 times for 5min in Xylol and 

mounted in Entellan. 

 

Safranin O, Merck (Cat.No. 1.15948) 

2.3.2.7. Safranin-Orange von Kossa staining 

The classic von Kossa method is used to demonstrate the deposition of calcium or calcium 

salts. To perform this staining, tissue sections are incubated in silver nitrate solution and 

treated with strong light. The calcium (for example in the bone) gets reduced and is replaced 

by silver deposits, which appear as a black staining on the section. 

Sections were deparaffinized and rehydrated as described above (2.3.2.5). After washing 2 

times 5min in distilled water, sections were incubated in silver nitrate solution under a 100W 

light bulb for 30-60min. Slides were washed once in distilled water and placed again for 

15min under strong light. Slides were washed subsequently with distilled water 3 times for 

5min, before cartilage was counterstained with safranin-orange staining solution (2.3.2.6) for 

30sec. Sections were washed with 95% ethanol, dehydrated in 95% and 100% ethanol for 

3min each, incubated 2 times for 5min in Xylol and mounted in Entellan. 

 

Silver nitrate solution 

AgNO3......................................................5g Merck (Cat.No.101512) 
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H2O ....................................................100ml 

2.3.2.8. Alkaline phosphatase staining- visualization of osteoblasts 

Alkaline phosphatases are a group of enzymes primarily found in the liver and in the bone. 

Osteoblasts express high amounts of alkaline phosphatases and can therefore be identified by 

the use of the NBT/BCIP reporter system. At regions of high phophatase activity NBT (Nitro 

blue tetrazolium chloride) and BCIP (5-Bromo-4-chloro-3-indolyl phosphate) form a complex 

(due to dephosphorylation of BCIP) resulting in blue precipitates. 

Sections were deparaffinized as described above (2.3.2.5) and equilibrated in PBS for 3min at 

RT. Slides were incubated in DIG III solution for 10min at RT and then treated with 

NBT/BCIP solution for 1h at 37°C. Next, slides were washed for 10min in TE-buffer, washed 

2 times in 95% ethanol and dehydrated for 2 times 3min in 100% ethanol. Finally, slides were 

incubated 2 times 5min in Xylol and mounted in Entellan. 

 

DIG III solution 

Tris-HCl...........................................100mM pH 9.5 

NaCl.................................................100mM 

MgCl2.................................................50mM 

NBT/BCIP solution 

NBT/BCIP stock solution................... 200µl 

DIG III solution ...................................10ml 

 

NBT/BCIP stock solution Roche (Cat.No. 11 681 451 001) 

2.3.2.9. Tartrate-resistant acid phosphatase staining- visualization of osteoclasts 

Osteoclasts express tartrate-resistant acid phosphatase (TRAP). Only macrophages and under 

certain conditions dendritic cells also express this enzyme which cannot be inactivated by 

tartrate-treatment. Therefore, osteoclasts are often identified by assaying the enzymatic 

activity of TRAP. 

Sections were deparaffinized and rehydrated as described above (2.3.2.5) followed by 5min 

incubation in H2O. Next, sections were incubated for 1h at 37°C with TRAP staining solution. 

Reaction was stopped by incubation for 5min in H2O. Slides were then mounted in Aquatex. 

 

TRAP staining solution 

naphtol phosphoric acid .................... 500µl 
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Fast Garnet GBC solution................. 500µl 

sodium nitril solution......................... 500µl 

acetate solution......................................2ml 

tartrate solution .....................................1ml 

 

Acid phosphatase, Leukocyte TRAP Kit, Sigma (Cat. No. 386A) 

2.3.3. In situ hybridization on cartilaginous sections 

In situ hybridization is a technique that allows for precise localization of a specific nucleic 

acid in histological sections. The underlying basis of this approach is that nucleic acids, if 

preserved adequately, can be detected through the application of a complementary nucleic 

acid to which a reporter module (fluorescent compounds or enzyme) is coupled or which is 

labelled by radioisotopes. Non-radioactive labels are biotin, which can easily be detected by 

avidin, but displays rather low sensitivity. Digoxigenin (DIG) is another frequently used non-

radioactive label. It can be directly linked to nucleotides and detected by a highly sensitive 

anti-digoxigenin antibody (Kessler et al. 1990). In the present work, in situ hybridization was 

performed by non-radioactive labelling of RNA with DIG-UTP.  

2.3.3.1. RNA labelling reaction 

DIG-UTP labelling of RNA was performed with the DIG RNA Labelling Kit according to the 

instructions of the manufacturer. Plasmid DNA of rat parathyroid hormone-related peptide 

receptor (PPR) or plasmid DNA of mouse Indian hedgehog (Ihh) (Brandau et al. 2001) were 

placed into a RNase-free reaction vial and the following labelling reaction was prepared: 

 

plasmid DNA......................................... 1µg   

NTP labelling mixture ........................... 2µl 

transcription buffer................................ 2µl 

RNase inhibitor...................................... 1µl 

RNA polymerase T7 ............................... 2µl 

filled up to 20µl with H2O and incubated for 2h at 37°C 

 

DIG RNA Labeling Kit, Roche (Cat.No. 11 175 025 910) 

 

Non-incorporated nucleotides were removed by passing the labelled mixture over a Quick 

Spin column for RNA preparations. Purified probes were stored at -20°C.  
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2.3.3.2. RNA hybridization and immunological detection 

Pre-treatment and hybridization: Prior to RNA hybridization paraffin sections of newborn 

mice were dewaxed and rehydrated as described before (2.3.2.5), followed by a refixation in 

3.7% freshly prepared PFA for 20min at RT. The sections were then rinsed three times with 

Tris-buffered saline (TBS) and treated for 20min at 37°C with proteinase K solution. After 

three rinses with TBS, sections were dehydrated by ascending ethanol washes. Air-dried 

sections were finally covered with 50µl of hybridization solution and sealed with coverslips. 

After a 1min of heat treatment at 95°C, sections were hybridized o/n in a humidified chamber 

at 55°C.  

Washes and detection of mRNA: The next morning, coverslips were washed three times for 

20min each at 55°C in 50% formamide in 1× SSC, two times for 15 min at RT in 1× SSC 

followed by 15min incubation in in-situ blocking solution. For detection of DIG-labelled 

transcripts, sections were incubated for 1h with an alkaline phosphatase-coupled DIG 

antibody (1:500) diluted in in-situ blocking solution. After three washes in TBS, sections 

were developed according to the instruction of the manufacturer using a NBT/BCIP colour 

reagent (2.3.2.8). Colour reaction was stopped by several washes in tap water. Finally, slides 

were mounted in Entellan and stored at 4°C. 

 

TBS 

NaCl.................................................150mM 

Tris-HCl.............................................50mM pH 7.5 

proteinase K solution 

proteinase K........................................ 10µg 

TBS.........................................................1ml 

1x SSC 

NaCl.................................................150mM 

Sodium citrate....................................15mM 

Hybridization solution 

dextran sulphate .................................. 10% 

sheared salmon sperm DNA ............. 0.01% 

SDS ................................................... 0.02% diluted in 2x SSC 

 

In situ blocking solution 

sheep serum ......................................... 10% diluted in TBS 
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2.4. Immunological Methods 

2.4.1. Materials Immunological Analysis 

LabTek Chamber Slides, NUNC (Cat.No.177402) 

Antibodies: see below 
 

Name................ manufacturer ......... Cat.No.....................WB...........................IF ............................ IP 

actin .................. Sigma ...................... A2066 ......................1:1000 ......................--- ............................ --- 

aggrecan ........... Dr.Heinegard (Lund University) ............... --- .............................1:400 ....................... --- 

AKT ................. Cell Signaling.......... 9272.........................1:1000 ......................--- ............................ --- 

AKT pThr308... Cell Signaling.......... 9275.........................1:1000 ......................--- ............................ --- 

AKT pS473 ...... Cell Signaling.......... 9271.........................1:1000 ......................--- ............................ --- 

AKT pS473 ...... Cell Signaling.......... 3787......................... --- .............................1:50 ......................... --- 

BrdU-POD........ Roche ...................... 1585860 ................... --- .............................1:30 ......................... --- 

cholera-toxin .... Molecular Probes..... C-22841 ................... --- .............................5µg/ml..................... --- 

Caveolin-1 ........ BD Bioscience......... 610059.....................1:2500 ......................--- ............................ --- 

Cdc42 ............... BD Bioscience......... 610929.....................1:500 ........................--- ............................ --- 

Collagen II........ Dr. Holmdahl (Lund University)............... --- .............................1:800 ....................... ---

Cortactin........... Upstate .................... 05-180......................1:1000 ......................1:150 ....................... --- 

CrkII ................. BD Bioscience......... 610036.....................1:5000 ......................1:200 ....................... 1µg/µl 

Dock180 ........... Santa Cruz ............... Sc-6167....................1:200 ........................1:50 ......................... --- 

FAK.................. Upstate .................... 06-543......................1:1000 ......................1:150 ....................... 1µg/µl 

FAK pY397...... Biosource Int. .......... 44-624G...................1:1000 ......................1:200 ....................... --- 

Flag-tag-HRP ... Sigma ...................... A8592 ......................1:10000 ....................--- ............................ --- 

Gsk3-β .............. BD Bioscience......... 610201.....................1:2500 ......................--- ............................ --- 

Gsk3-β pS 9/21. Cell Signaling.......... 9331.........................1:1000 ......................--- ............................ --- 

integrin α6 ........ BD Bioscience......... 555735..................... --- .............................1:400 ....................... --- 

integrin β1 ........ BD Bioscience......... 610467.....................1:2500 ......................1:400 ....................... --- 

integrin β1 ........ self made ................. MPI (Mayer)............1:5000 ......................1:800 ....................... --- 

integrin β4 ........ BD Bioscience......... 553745..................... --- .............................1:400 ....................... --- 

Hic-5................. BD Bioscience......... 611165.....................1:250 ........................1:50 ......................... --- 

ILK................... BD Bioscience......... 611802.....................1:2500 ......................1:800 ....................... --- 

LMW-PTP........ Abgent ..................... AP8441....................1:500 ........................1:50 ......................... --- 

Matrilin-2 ......... Dr. Paulson (University of Cologne)......... --- .............................1:200 ....................... ---

mouse-HRP ...... Bio-Rad ................... 172-1011..................1:10000 ....................--- ............................ --- 

mouse 647 ........ Invitrogen ................ A21239 .................... --- .............................1:200 ....................... --- 

mouse Cy3........ Jackson .................... 115165146 ...............1:400 ........................--- ............................ --- 

Myc-tag ............ Upstate .................... 05-724......................1:1000 ......................1:100 ....................... --- 

Migfilin ............ self made ................. MPI (Ussar) .............1:1000 ......................1:100 ....................... --- 

Mig-2a.............. self made ................. MPI (Ussar) .............1:1000 ......................--- ............................ --- 

α-parvin............ self made ................. MPI (Chu)................1:5000 ......................1:800 ....................... --- 
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β-parvin ............ self made ................. MPI (Thievessen) ....1:2000 ......................--- ............................ --- 

Paxillin ............. BD Bioscience......... 610051.....................1:10000 ....................1:600 ....................... 1µg/µl 

p130Cas............ BD Bioscience......... 610272.....................1:1000 ......................1:200 ....................... 1µg/µl 

p130Cas pY410 Cell Signaling.......... 4015.........................1:1000 ......................1:100 ....................... --- 

p130Cas pY165 Cell Signaling.......... 4011.........................1:1000 ......................1:50 ......................... --- 

phalloidin 488... Invitrogen ................ A12379 .................... --- .............................1:800 ....................... --- 

Pinch1............... self made ................. MPI (Stanchi) ..........1:10000 ....................1:400 ....................... --- 

rat-HRP ............ Jackson .................... 712 035150 ..............1:10000 ....................--- ............................ --- 

rat-Cy3.............. Jackson .................... --- ............................. --- .............................1:400 ....................... --- 

Rac1 ................. BD Bioscience......... 610651.....................1:2000 ......................--- ............................ --- 

rabbit 647 ......... Invitrogen ................ A21245 .................... --- .............................1:200 ....................... --- 

rabbit Cy3......... Jackson .................... 711165152 ...............1:400 ........................--- ............................ --- 

rabbit-HRP ....... Bio-Rad ................... 172-1019..................1:10000 ....................--- ............................ --- 

Talin ................. Sigma ...................... T3287.......................1:1000 ......................1:400 ....................... --- 

Vinculin............ Sigma ...................... V9131 ......................1:1000 ......................1:400 ....................... --- 

2.4.2. BrdU staining of cartilaginous sections  

During cell proliferation DNA replicates before cell division occurs. The close association 

between DNA synthesis and cell doubling is exploited in BrdU-based cell proliferation 

assays. 5-bromo-2’deoxyuridine (BrdU) is a thymidine homolog and is incorporated into 

newly synthesized DNA when added to cells. The incorporated BrdU can later be detected 

with a BrdU-specific antibody. Therefore, newborn mice (or the pregnant mouse when 

embryonic stages were analyzed) were intraperitoneally injected with a BrdU solution 2h 

before the mice were sacrificed. 

Paraffin sections were dewaxed and rehydrated as described above (2.3.2.5), washed for 5min 

in distilled water and treated for 20min with a 0.1%Trypsin/0.1%CaCl2 solution. To inactivate 

endogenous peroxidase activity sections were washed in distilled water and treated with 

1%H2O2 (in Methanol) for 10min. Sections were blocked 3 times for 5min in blocking 

solution and incubated with BrdU-specific antibody coupled to horseradish peroxidase (BrdU-

POD, 2.4.1) diluted 1:30 in blocking solution for 4h followed by three washes in PBS. The 

signal was developed by a 3-3’diaminobenzidine (DAB) treatment. DAB is a compound 

which is frequently used in immunohistochemical approaches. After reaction with oxidizing 

reagents like peroxidases it produces an intense brownish colour. The colour reaction was 

controlled by microscopic examination. Reaction in DAB developing solution was stopped by 

washing for 10min in distilled water. Sections were counterstained with Mayers hemalaun 

(2.3.2.5) solution for 30sec and subsequently blued for 10min in tap water. Finally sections 
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were dehydrated by ascending ethanol washes, incubated for 2 times 5min in Xylol and 

mounted in Entellan. 

 

BrdU solution for injection into mice 

BrdU ................................................3mg/ml                           Sigma (Cat.No. 858811) 

dissolved in PBS, stored at -20°C. 30µg BrdU/gram bodyweight was injected. 

 

BrdU blocking solution 

BSA ..................................................... 0.5% 

Tween-20 ............................................ 0.1% 

PBS ...................................................... 94% 

Stock solution I 

3-3’-diaminobenzidine........................27mg Sigma (Cat.No. D 8001) 

H2O ........................................................5ml 

Stock solution II 

H2O .................................................... 500µl 

30% H2O2 .......................................... 100µl 

DAB developing solution 

Stock solution I ......................................5ml  

H2O ......................................................45ml 

Tris-HCl..........................................49.88ml pH 7.6 

Stock solution II ................................. 120µl 

2.4.3. TUNEL staining on cartilaginous sections 

The hallmark of apoptosis is DNA degradation. DNA cleavage results in double-stranded or 

single-stranded DNA breaks (called nicks). Both types of DNA breaks can be detected by 

labelling the free 3’-OH termini with modified nucleotides such as fluorescent dUTP. The 

terminal deoxynucleotidyl-transferase (TdT) is catalyzing this labelling reaction and used in 

the method that has been termed TUNEL (TdT-mediated dUTP-nick-end labelling). 

For TUNEL staining paraffin sections were deparaffinized in Xylol and rehydrated by 

descending ethanol washes as described above (2.3.2.5). After treatment with proteinase K 

solution for 20min at 37°C, sections were washed 2 times for 5min in PBS. Apoptotic cells 

were detected by using the In Situ Cell Death Detection Kit. All steps were carried according 

to the protocol of the manufacturer. 

In Situ cell Death Detection Kit, Fluorescein, Roche (Cat.No. 1 684 795) 
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2.4.4. Immunostaining on cartilaginous sections 

Immunostaining of cartilaginous tissue sections was carried out on both paraffin- and cryo-

sections. Paraffin sections were dewaxed and hydrated as described before (2.3.2.5). Cryo-

sections were fixed for 15min at 4°C in acetic acid/ethanol fixative. Sections were then 

washed for 3 times 5 min in PBS.  

To quench endogenous peroxidase activity, sections were treated in peroxidase solution for 

30min at RT, followed by 2 washes in PBS. Next, sections were treated with hyaluronidase 

solution for 30min at RT, subsequently washed 3 times in PBS and blocked in blocking 

solution for 1h at RT. Primary antibody was diluted in blocking solution and incubated on the 

slide for 1h at RT. Sections were washed 3 times 5min in PBS, before the secondary antibody 

at the appropriate dilution was added for 1h at RT. 

 

Cryo-section fixative 

acetic acid.............................................. 5% 

ethanol ................................................. 95% 

Peroxidase solution 

30% H2O2 .............................................. 1% 

methanol .............................................. 99% 

Hyaluronidase solution 

bovine testicular hyaluronidase............2mg                           Sigma (Cat.No. H3506) 

PBS ........................................................1ml pH 7.4 

Blocking solution 

Bovine serum albumine (BSA)..............2mg 

PBS ........................................................1ml pH 7.4 

2.4.5. BrdU staining of adherent cells in culture 

Cell proliferation of adherent cells was determined by using a cell proliferation ELISA Kit. 

2x103 cells were seeded per 96-well and cultured in 100µl DMEM+10%FCS (three 96-wells 

per cell line per time point). 10µg BrdU-labelling solution was added to one 96-well. The 

labelling was stopped at the indicated time points by removal of the culture medium and 

fixation of the cells in 70% ethanol. Next, 100µl BrdU-POD antibody solution was added per 

96-well and incubated with the cells for 2h at RT. After washing, 100µl substrate solution was 

added and the colour reaction was monitored at various time points with an ELISA reader 

(2.5.1) at a wavelength of 370nm and a reference wavelength at 492nm. 
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Cell Proliferation ELISA, BrdU (colorimetric), Roche (Cat.No. 1 647 229) 

2.4.6. Immunostaining of adherent cells in culture 

For immunostaining of cells in culture, 1x104cells were seeded in one well of a FN-coated 

LabTek chamber slides (2.4.1). At the indicated time points, slides were washed once in PBS 

and fixed for 10min in freshly prepared PFA. After three washes in PBS slides were blocked 

in blocking solution for 1h at RT. The indicated primary antibodies were diluted in blocking 

solution and incubated for 1h at RT, following four washes with PBS and incubation with the 

appropriate secondary antibodies for 1h. Finally slides were washed 4 times 5min each in 

PBS and mounted in Elvanol. 

 

Immunostaining fixative for adherent cells 

Paraformaldehyde (PFA) ................... 3.7% 

dissolved in PBS (pH 7.4), boiled for 1min and cooled on ice 

Blocking solution 

bovine serum albumin (BSA) ................. 2% 

Triton-X-100 ....................................... 0.1% 

dissolved in PBS (pH 7.4) 

Elvanol 

Mowiol 4-88...........................................12g Roth (Cat.No.0713) 

H2O ......................................................30ml 

mixed for 10min, incubated 2-3h at RT, then addition of 

0.2M Tris-HCl .....................................60ml pH 8.5 

87% glycerol........................................30ml 

mixed for 10min, and then kept at 4°C overnight, aliquoted and stored at -20°C 

2.4.7. Cytoskeletal staining of adherent cells 

In order to prevent the compression of cells that usually occurs during PFA fixation the 

protocol described in 2.4.6 was modified. 

Cells were carefully rinsed in PBS, then incubated for 1min in fixative I at RT, rinsed in 

cytoskeletal buffer and fixed for additional 10min in fixative II. All subsequent steps were 

carried out in PBS+1%BSA blocking solution. 

Cytoskeletal buffer 

NaCl.................................................137mM 
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MgCl2...................................................2mM 

KCl.......................................................5mM 

EGTA ...................................................2mM 

PIPES...................................................5mM pH 6.1 

Na2HPO4...........................................1.1mM 

Glucose .............................................5.5mM 

KH2PO4.............................................0.4mM 

Cytoskeletal fixative I 

Triton-X-100 ...................................... 200µl 

25% glutaraldehyd ................................2ml 

Cytoskeletal buffer.............................100ml 

Cytoskeletal fixative II 

25% glutaraldeyde.................................4ml 

Cytoskeletal buffer.............................100ml 

2.4.8. Lipid raft staining of adherent cells 

To demonstrate plasma membrane domains such as lipid rafts in adherent cells, the 

immunostaining protocol as described in 2.4.6 was modified. In order to keep the membrane 

structures intact, milder fixation conditions were used (20min in 2% PFA); permeabilization 

with Triton-X-100 was restricted to 5min. All subsequent steps were carried out in blocking 

solution (2.4.6) lacking any detergent such as Triton-X-100. 

Visualization of lipid rafts was done with Alexa-488-labelled cholera-toxin (dilution 5µg/ml). 

Cholera-toxin binds to the ganglioside GM1, which is highly enriched in lipid rafts and 

therefore frequently used as a marker. 

2.5. Cell culture methods 

2.5.1. Material Cell Culture 

ELISA reader: Tecam sunrise absorbance reader, Tecam 300 1055 0 

5ml Pipette: Corning, Costar Stripette, 4487 

15ml Pipette: Corning, Costar Stripette, 4488 

25ml Pipette: Corning, Costar Stripette, 4489 

96-well: Corning, 35 3799 

12-well: Corning, 35 3043 

6-well: Corning, 35 3046 
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15ml tube: Corning, 43 0791 

50 ml tube: Falcon BlueMax, 35 2070 

Cryogenic vial: Corning, 43 0489 

100mm dish: Falcon, 353003 

140mm dish: NUNC, 168381 

DMEM: DMEM, + 4500mg/ml, + Glutamax, + Pyruvat; Gibco, 31966-021 

Foetal bovine serum: Gibco, 10270-106 

Trypsin: Trypsin / EDTA (10x), Gibco, 15400-054 

P/S: Penicillin, Streptomycin (100x), PAA, P11-010 

Fibronectin: bovine plasma fibronectin, Calbiochem, 341631  

2.5.2. Isolation and culture of primary chondrocytes 

Chondrocytes from rib, epiphyseal, and growth plate cartilage were isolated from newborn 

mice. Rib cages and joints were dissected in DMEM supplemented with foetal bovine serum 

and streptomycin/penicillin (dissection medium). Adherent tissues and the perichondrium 

were physically removed under a light microscope after a collagenase type II treatment for 30 

min at 37°C. Chondrocytes were released by an additional collagenase type II treatment for 2-

4 h. 

Primary chondrocytes were maintained in growth medium in a humidified atmosphere 

(5%CO2, 95%H2O). 

 

Dissection medium 

foetal bovine serum (FBS) .....................1ml 

100x Penicillin /Streptomycin (P/S) ......1ml 

DMEM .................................................98ml 

Digestion medium 

collagenase type II................................2mg 125U/mg 

Dissection medium.................................1ml 

collagenase type II, Worthington (LS 004196) 

Growth medium 

FBS ......................................................10ml 

P/S..........................................................1ml 

DMEM ...............................................100ml 



Materials and Methods 

64 

2.5.3. Cell culture and trypsinization of immortalized mouse fibroblasts 

Immortalized mouse fibroblasts were maintained in growth medium (2.5.2) in a humidified 

atmosphere at 37°C and 5%CO2. In order to take cells into suspension cells were washed once 

in prewarmed PBS and detached from the substrate by incubation with trypsinization solution 

for approximately 10min at 37°C. Detached cells were resuspended in growth medium. 

 

Trypsinization solution 

10x Trypsin /EDTA ..............................10ml 

PBS ......................................................90ml pH 7.4 

2.5.3.1. Cryo-preservation of mouse fibroblasts 

In order to store cell lines for a longer period of time cells were trypsinized and resuspended 

in prewarmed growth medium (2.5.2, 2.5.3). The cell suspension was centrifuged for 5min at 

163g. The cell pellet was resuspended in cooled freezing medium equally distributed in 

cryogenic vials and frozen on dry ice. For short time periods cells were stored at -80°C, for 

longer time periods cryo-cultures were stored on liquid nitrogen at -196°C. 

 

Freezing medium 

FBS ......................................................20ml 

DMSO ..................................................10ml 

DMEM .................................................70ml 

2.5.3.2. Thawing of cryo-preserved cells 

Frozen cells were quickly placed in a water bath at 37°C until the freezing medium was 

thawed. Cells were then added to prewarmed growth medium (approximately 10 times the 

volume of the cryo-culture) and centrifuged for 5min at 163g. The cell pellet was resuspended 

in growth medium and seeded in a flask of appropriate size. 

2.5.4. Establishment of clonal cell lines 

In order to isolate single clones from a mixed population, cells were seeded in very low 

densities on 10cm dishes (100, 200, 400 cells per dish) and cultured in growth medium (2.5.2) 

for approximately 1 week until single colonies were visible. Colonies were picked in sterile 

conditions under a microscope by sucking off the colony with a 200µl pipet. Cells were 

transferred into 100µl prewarmed 1x Trypsin/EDTA, incubated for 10min at 37°C and 

resuspended in 1.5ml growth medium. Cells were grown for approximately 1 week in 24-
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wells until confluence was reached. Finally 50% of the cells were frozen down (2.5.3.1) while 

50% were expanded further and then subjected to the appropriate screening assays. 

2.5.5. Cell substrate adhesion assay 

Cell substrate adhesion assays were performed in 96-well plates. Plates were coated o/n at 

4°C with FN (10µg/ml), VN (10µg/ml) or collagen type I (20µg/ml) and washed the next day 

with PBS. To prevent unspecific binding in non-coated areas plates were treated with 

blocking solution for 1h at RT and washed with PBS. 

Cells were trypsinized, washed in culture medium, resuspended in growth factor-reduced 

medium (containing 0.2% FCS) and seeded on the 96-wells (1x105cells per 96-well). Cells 

were allowed to attach for 30min-45min, the supernatant was removed, and plates were 

carefully washed 2 times with PBS. Attached cells were fixed for 10min at RT and stained for 

30min at RT in staining solution. Next, plates were washed three times in PBS and finally 

treated with permeabilization solution. Colorimetric detection was carried out using an ELISA 

reader at a wavelength of 595nm (2.5.1). 

 

Blocking solution 

BSA ..........................................................1g 

PBS ....................................................100ml 

Adhesion assay fixative 

ethanol ................................................. 70% (diluted in H2O) 

Adhesion assay staining solution 

crystal violet ....................................... 0.1% (diluted in H2O) 

Permeabilization solution 

Triton-X-100 ..................................... 0.25% (diluted in H2O) 

2.5.6. Cell spreading assay 

Cells spreading assays were performed on LabTek chamber slides (for immunohistochemical 

approaches), on Glass Bottom Microwell Dishes or 6-wells (for live cell imaging) or on 10cm 

dishes (for biochemical approaches). Surfaces were coated o/n at 4°C and washed the next 

day with PBS. 

Cells were trypsinized, washed and resuspended in prewarmed growth medium (2.5.2) and 

seeded in following dilutions: 

 

LabTek chamber slide: ................................ ......... 1x104 cells / well 
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Glass Bottom Microwell 14mm: .................. .......... 1x105cells / dish  

6-well plate:................................................. ......... 2x105 cells / well 

10cm: ........................................................... .......... 4x106 cells /dish 

 

The experiment was continued depending on the approach and according to the protocols that 

are described elsewhere. 

2.5.7. Fibronectin fibrillogenesis assay 

To analyze the capability of fibroblasts to perform FN matrix assembly, cells were seeded on 

FN-coated LabTek chamber slides in growth medium (2.5.2, 2.5.6). 5-10µg Cy5-labelled FN 

(obtained from Dr. Walter Göhring, MPI) was added to each well and cells were cultured o/n. 

The next day, medium was removed and cells were subjected to immunostaining (2.4.6) with 

the indicated antibodies. 

2.5.8. Dorsal ruffle formation assay 

In order to monitor dorsal ruffle (DR) formation, cells were starved o/n in starvation medium, 

washed in PBS, trypsinized and resuspended in starvation medium. Cells were seeded on 

LabTek chamber slides (for immunostaining) or on Glass Bottom wells or on 6-wells for live 

cell imaging (2.5.6). Depending on the experiment wells were coated with FN (2-10µg/ml) or 

poly-lysine (100µg/ml) o/n at 4°C. Cells were allowed to spread for 2h and subsequently 

stimulated with EGF (20ng/ml). 

For c-src inhibition, cells were incubated 30min before stimulation with 5µM PP1 analog. 

After stimulation the experiment was continued depending on the subsequent readout with 

protocols that are described elsewhere (2.4.6, 2.6.2). 

For SILAC experiments, cells were grown in the presence of isotopically-labelled amino 

acids as described in (2.5.9) and starved in the respective SILAC medium without any FBS 

for 4h. Cells were washed in PBS, trypsinized and resuspended in the respective FBS-

deficient SILAC medium and seeded on FN-coated 140mm dishes. After 2h of cell spreading, 

Arg6-labelled cells were stimulated with EGF (20ng/ml) and lysed after 2min as described in 

2.6.5. Arg10-labelled cells were stimulated and lysed after 6min. Un-labelled cells were not 

stimulated at all and directly lysed. 

The DR formation frequency was quantified using live cell microscopy. Cells were seeded on 

a 6-well plate and pictures were taken every 90sec. Approximately 100 cells were counted in 

one experiment per timepoint. 
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Starvation medium 

FBS .................................................... 200µl 

S/P..........................................................1ml 

DMEM ...............................................100ml 

 

Epidermal growth factor (EGF), Sigma (Cat.No. E6135) 

PP1 analog, Calbiochem (Cat.No.529579) 

2.5.9. Stable isotope labelling by amino acids in cell culture (SILAC) 

2.5.9.1. The SILAC principle 

The labelling of amino acids with stable isotopes leads to an increase in the molecular mass of 

all proteins in a cell. This is exploited in SILAC-based mass spectroscopy, which has emerged 

as a powerful tool in quantitative proteomics (Mann 2006).  

Cells are grown in medium containing normal or heavy amino acids, for example 2H instead 

of H, or 13C instead of 12C, or 15N instead of 14N. Incorporation of these heavy amino acids 

into a peptide leads to a well defined mass shift compared to the unlabelled peptide. In the 

case of Arginine, Arg6 leads to a 6Da and Arg10 to an additional 4Da mass shift of a given 

peptide (as illustrated in Fig 2.1). In this way, the differently labelled cells can be lysed, 

pooled and subjected to a given experiment (in my case a FLAG-IP). The two different 

proteomes can later be distinguished, since all peptides of Arg6 cells are 6Da heavier and 

Arg10 peptides are 10Da heavier than unlabelled control cells (Fig 2.1B). By combining 

different lysates in one experiment unspecific effects and experimental variations are 

eliminated.  
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Fig 2.1. The SILAC principle. A. Cells are labelled using heavy amino acids such as Arg6 or Arg10 during a 1-

2 week culture. In subsequent experiments cells are pooled, which eliminates unspecific effects that always occur 

within two separate experiments. B. All peptides of the differently treated cells can be distinguished later again, 

since all proteins of cells grown in Arg6 or Arg10 display a defined mass increase. (Taken from Blagoev and 

Mann 2006 and modified). 

2.5.9.2. Isotope labelling of cells in culture 

For SILAC experiments, cells were grown in DMEM (deficient in L-Arginine) supplemented 

either with “normal” L-Arginine hydrochloride (Arg0), or with L-arginine-13C6 hydrochloride 

(Arg6) or with L-arginine-13C6, 15N4 hydrochloride (Arg10) in the presence of 10% FBS for 

10days. Cells were split every 2 days and subjected to the DR experiment (2.5.8) using the 

same SILAC media with or without FBS. 

2.6. Biochemical methods 

2.6.1. Material Biochemistry 

Centrifuge: Beckman Coulter, GS-15R 

Ultracentrifuge (small): Beckman Coulter, TL-100 Ultracentrifuge 

Ultracentrifuge rotor: Beckman Coulter, TL-100 

Ultracentrifuge (large): Beckman Coulter, L8-60M 

Ultracentrifuge rotor: Beckman Coulter, SW41 

Protease inhibitor cocktail: complete Mini, EDTA-free, Roche, 12740900  

2.6.2. Preparation of total protein lysates from adherent cells 

Before cell lysis, cells were washed once in ice-cold PBS. The appropriate amount of cell 

lysis buffer was added to the cells, incubated for 10min on ice and then scraped with a cell 
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scraper. Cell lysates were centrifuged at 15000xg for 10min at 4°C and the protein 

concentration of the supernatant was determined using a bicinchoninic acid protein assay kit 

(2.6.4.1). After the protein concentrations were adjusted, lysates were either directly processes 

(2.6.5) or the appropriate amount of 4x SDS sample buffer was added. Those lysates were 

incubated for 5min at 95°C and either frozen on -80°C or directly subjected to SDS-PAGE 

(2.6.7). 

Cell lysis buffer 

Tris-HCl.............................................50mM pH 7.6 

NaCl.................................................150mM 

Triton X-100 .......................................... 1% 

NaF ....................................................10mM 

Na3VO4.................................................1mM 

protease inhibitor cocktail......1 tablet/10ml 

4x SDS sample buffer 

20%SDS...............................................16ml 

1M Tris .................................................8ml pH 6.8 

0.5M EDTA.......................................0.32ml 

87% glycerol........................................16ml 

bromphenol blue ............................. 0.001% 

before use, mercaptoethanol was added to a final concentration of 4% and stored at RT 

 

The following volumes of cell lysis buffer were used: 

6-well plate ................................. 200-400µl 

10cm dish........................................ 0.5-1ml 

140mm dish........................................ 1-2ml 

2.6.3. Cell fractionation 

Cell fractionation is a useful preparative and analytical method for separating cellular 

compartments. The separation of distinct organelles results from their different physical 

properties, like size, shape, buoyant density or surface charge density. The basic principle of 

cell fractionation by centrifugation is represented by the Svedberg-equation, which describe 

mathematically the sedimentation of a spherical particle in solution:  
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x: distance from rotor axis........................... r: radius of particle 

ω: angular velocity ...................................... ρp: density of particle 

ρm: density of medium.................................. η: viscosity of medium t: time 

 

The most commonly used solute for cell fractionation is sucrose, since it can easily be 

prepared in densities that span the range of densities of most organelles. Since sucrose 

solutions are rather viscous at high concentrations, iodinated non-electrolytes like OptiPrep 

are often added, which increase the density of the fractionation medium without significantly 

increasing the viscosity. Another possibility to achieve high density at low viscosity is the 

addition of colloidal silica like Percoll. 

2.6.3.1. Preparation of soluble and particulate fraction from adherent cells 

Cells were washed in ice-cold PBS, then hypotonic lysis buffer was added and cells were 

incubated for 5min on ice. Cells were scraped and homogenized. Depending on the volume of 

the lysates homogenization was carried out either by using a Dounce homogenizer or by 

sucking the cell lysates 10 times through a 26G needle. In order to remove intact cells and cell 

nuclei the homogenized lysate was centrifuged for 3min at 4°C with 700g. The resulting 

postnuclear supernatant was transferred to a new reaction tube and centrifuged for 30min at 

4°C with 30000xg. The supernatant (soluble fraction) was removed and stored on ice. The 

pellet was carefully washed in hypotonic lysis buffer and resuspended in resuspension buffer 

(particulate fraction). The protein concentration was determined by Bradford protein assay 

(2.6.4.2). 

 

Hypotonic lysis buffer  

Tris-HCl.............................................10mM pH 7.6 

KCl.......................................................5mM 

MgCl2................................................1.5mM 

Dithiothreitol (DTT) ............................1mM 

NaF ....................................................10mM 

Na3VO4.................................................1mM 

protease inhibitor cocktail......1 tablet/10ml 

Resuspension buffer 
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Triton-X-100 ..........................................1ml 

Hypotonic lysis buffer........................100ml 

2.6.3.2. Detergent-free plasma membrane fractionation 

In order to fractionate the plasma membrane and to separate the caveolin-rich membrane 

fraction the method established by Anderson and colleagues (Smart et al. 1995) was slightly 

modified. Since the caveolin-rich membrane fraction is very small a large amount of starting 

material is needed. For one experimental condition six 140mm dishes of subconfluent cells 

were used. 

Plasma membrane preparation: Cells were washed two times in buffer A and scraped in 5ml 

buffer A on ice. Cells were collected by centrifugation for 5min at 1000g at 4°C, the pellet 

was resuspended in 1ml buffer A and placed in a 2ml Dounce homogenizer and homogenized 

with 20 strokes. The suspension was transferred into a 1.5ml centrifuge tube and centrifuged 

at 1000xg for 10min at 4°C. The postnuclear supernatant (PNS) was removed and stored on 

ice. The pellet was resuspended in 1ml buffer A, homogenized again, and centrifuged for 

additional 10min at 1000xg. This PNS was combined with the first one and layered on top of 

8ml Percoll solution (30% Percoll in buffer A). Cells were centrifuged in a SW41 

ultracentrifugation rotor at 84000xg for 30min at 4°C. The plasma membrane fraction bands 

in the middle of the tube, the cytoplasmic fraction stays located on top. Both fractions were 

isolated by tube puncture. In order to keep the layering of the gradient it is important not to 

use any brakes for deceleration of the ultracentrifuge. 

Isolation of caveolin-rich membrane fraction: The volume of the plasma membrane fraction 

was adjusted to 2ml with buffer A. Samples were sonicated 6 times for 6sec with 1-2min on 

ice in between times. The sonicated samples were mixed with 1.84ml buffer C and 0.164ml 

buffer A and placed at the bottom of a 12ml ultracentrifuge tube. On top, an 8ml 20%-10% 

Optiprep gradient was poured. The 10% and 20% Optiprep gradients were produced by 

mixing buffer A in buffer C. Samples were then centrifuged at 52000xg for 90min at 4°C. The 

lower 3ml of the gradient represents the non-caveolin-rich membrane fraction. The top 5ml 

were collected and mixed with 4ml buffer C, placed at the bottom of a new ultracentrifuge 

tube and overlaid with 2ml of 5% Optiprep (made by diluting buffer C in buffer A). Samples 

were centrifuged at 52000xg for 90min at 4°C. The caveolin rich membrane fraction appears 

as an opaque band at the 5% Optiprep interface. 

 

Buffer A 

sucrose .............................................250mM 
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tricine.................................................20mM pH 7.8 

EDTA ...................................................1mM 

Buffer B 

sucrose .............................................250mM 

tricine...............................................120mM pH 7.8 

EDTA ...................................................6mM 

Buffer C 

Optiprep............................................... 50% 

sucrose .............................................250mM 

tricine.................................................20mM pH 7.8 

EDTA ...................................................1mM 

Optiprep Density Gradient Medium, Sigma (Cat.No. 1556) 

Percoll, Sigma (Cat.No. P1644) 

2.6.3.3. Preparation of the Triton-X insoluble cytoskeletal fraction  

To isolate the cytoskeletal fraction of adherent cells, a 140mm dish of sub-confluent 

fibroblasts was washed once with ice-cold PBS followed by addition of 1.5ml cytoskeletal 

extraction buffer. Dishes were incubated for 15min on ice, cells were scraped off and the 

lysate was collected in a 2ml centrifugation tube. Lysates were centrifuged at 4°C with 

15000g for 15min. The supernatant representing the soluble fraction was taken off and stored 

on -80°C. The pellet was washed two times with 2ml cytoskeletal extraction buffer and finally 

resuspended in 400µl RIPA buffer. The RIPA lysate was sonicated once for 5-10sec and 

centrifuged at 4°C with 15000g for 5min. The cytoskeletal rich supernatant was taken off and 

either directly processed or frozen down on -80°C. 

 

Cytoskeletal extraction buffer 

NaCl...................................................50mM 

sucrose .............................................150mM 

PIPES.................................................10mM pH 6.8 

Triton-X-100 ....................................... 0.5% 

NaF .................................................... 10µM 

Na3VO4.................................................2mM 

protease inhibitor cocktail......1 tablet/10ml 

RIPA buffer 

NaCl.................................................150mM 
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Tris-HCl.............................................50mM pH 7.6 

EDTA ...................................................1mM 

Na-deoxycholate .................................... 1% 

SDS ..................................................... 0.1% 

Triton-X-100 .......................................... 1% 

NaF ....................................................10mM 

Na3VO4.................................................1mM 

protease inhibitor cocktail......1 tablet/10ml 

2.6.4. Determination of the protein concentration 

Protein concentration was determined by the use of two different assays that are described 

below (2.6.4.1, 2.6.4.2). While the BCA assay was used for all standard procedures (total 

protein lysate), the Bradford assay was used to determine protein concentrations of plasma 

membrane preparations, since the buffers used in fractionation assays contain either DTT or 

sucrose which interfere with the BCA assay. 

2.6.4.1. BCA protein assay 

This method is based on the reduction of Cu2+- to Cu1+-ions by proteins under alkaline 

conditions (Buiret-reaction). The detection of Cu1+-ions is mediated by bicinchoninic acid, 

which is chelated by cuprous cations forming a complex with a strong absorbance at 562nm. 

The assay was performed according to the instructions of the manufacturer. 

 

BCA Protein Assay Kit, Pierce (Cat.No.23225) 

2.6.4.2. Bradford protein assay 

The Bradford assay is based on the coomassie brilliant blue G-250 dye which specifically 

interacts with Arginine, Tryptophan, Tyrosine, Histidine and Phenylalanine residues. While 

the free dye displays an absorbance maximum at 470nm the bound dye has an absorbance 

maximum at 595nm. This assay is very fast and specific but it should be kept in mind that the 

relation between protein concentration and absorbance is not-linear over wide ranges (0.1-

1mg/ml). The assay was performed according to the instructions of the manufacturer. 

 

Bradford Reagent, Sigma (Cat.No.B6916) 
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2.6.5. Immunoprecipitation 

Before cell lysis, cells were washed once in ice-cold PBS. Cell lysis buffer (2.6.2) was added 

and cells were incubated for 10min on ice. Cell lysates were centrifuged at 15000xg for 

10min at 4°C and the protein concentration of the supernatant was determined using a BCA 

protein assay (2.6.4.1). Typically lysates with a concentration of 0.5-1.5 mg/ml were used. 

Standard IP: For immunoprecipitation of endogenous proteins mouse IgG1 antibodies were 

bound to protein G sepharose beads by incubating beads and antibodies for 1.5-2h at 4°C 

(1µg antibody per IP). Polyclonal rabbit antibodies were bound to protein A sepharose. After 

binding, beads were washed 3 times with PBS and once with lysis buffer. Cell lysates were 

incubated for 2.5h with antibody-coupled beads, followed by 5 washes with TBS. Beads were 

resuspended in 40µl 2x SDS sample buffer (2.6.2) and boiled for 5min at 95°C. 

FLAG-IP: For immunoprecipitation of FLAG tagged proteins cell lysates were incubated for 

2h with anti-FLAG M2 sepharose (40µl per IP, equilibrated in TBS) followed by 5 washes 

with TBS. Immunoprecipitated FLAG fusion proteins were eluted by incubation with a 

FLAG-peptide solution (100µl per IP) for 30min at 4°C. Beads were centrifuged, the 

supernatant was added to SDS sample buffer and boiled at 95°C for 5min. 

FLAG-IP for SILAC: For SILAC experiments, cells were labelled with normal (Arg0), light 

(Arg6) and heavy (Arg10) amino acids (2.5.9) and subjected to the DR experiment (2.5.8). 4 

subconfluent 140mm dishes were used per time point. After EGF-stimulation cells were lysed 

in 1ml lysis buffer, scraped and centrifuged for at 4°C with 15000xg for 15min. Supernatants 

were taken off and the protein concentration was measured by a BCA protein assay. The 

concentration of the cell lysates was adjusted to 1mg/ml and the lysates of the differently 

labelled cells were pooled. FLAG-immunoprecipitation and elution of ILK-FLAG was 

performed as described above. 

 

Anti-FLAG M2 affinity gel, Sigma (Cat.No.A2220) 

3xFLAG peptide, Sigma (Cat.No.F4799) 

Protein G sepharose, Fast Flow, Sigma (Cat.No3296) 

Protein A sepharose, Fast Flow, Sigma (Cat.No.9424) 

2.6.6. Rac1 and Cdc42 pulldown assay 

In order to determine the activity of Rho-GTPases cells were washed once in ice-cold PBS 

and lysed in NP-40 lysis buffer containing a biotinylated peptide corresponding to the 

Cdc42/Rac interactive binding motif in PAK1B to which only activated (GTP-loaded) 



Materials and Methods 

75 

GTPases can bind (Crib peptide). Lysates were clarified by centrifugation with 15000xg for 

10 min at 4°C and the protein concentration of the supernatant was determined by BCA 

protein assay (2.6.4.1). Protein concentration of all samples was equally adjusted (0.5-

1.5mg/ml). Samples were incubated for 45min at 4°C followed by sedimentation with 

streptavidin-conjugated agarose beads for additional 30min at 4°C. Beads were washed three 

times in NP-40 lysis buffer, resuspended 2x SDS sample buffer (2.6.2) and boiled for 5min at 

95°C. 

 

NP-40 lysis buffer 

Tris-HCl.............................................50mM pH 7.6 

NaCl.................................................100mM 

Nonidet P-40.......................................... 1% 

glycerol ................................................ 10% 

MgCl2...................................................2mM 

NaF ......................................................1mM 

Na3VO4.................................................1mM 

protease inhibitor cocktail......1 tablet/10ml 

 

Streptavidin-Agarose from Streptomyces avidinii, Sigma (Cat.No.S1638) 

2.6.7. One-dimensional SDS-polyacrylamid-gelelectrophoresis (SDS-PAGE) 

SDS-PAGE under denaturating conditions is the most widely used method for separation of 

proteins, which can be subsequently visualized by silver staining, protein dyes or Western 

blotting. After proteins are solubilized by boiling in the presence of sodium dodecyl sulphate 

(SDS) the individual proteins are separated electrophoretically. 2-Mercaptoethanol or 

dithiothreitol (DTT) is added during solubilization to reduce disulfide bonds. 

To perform discontinuous gel electrophoresis differentially buffered separating and stacking 

gels are poured on top of each other. The proteins that pass first through a stacking gel get 

concentrated at the stacking/separating gel interface. In the separating gel the proteins are 

separated according to molecular size in a denaturing gel (containing SDS), according to 

molecular shape, size, and charge in a nondenaturing gel. 

Proteins were separated in the Minigel format (7.3mm x 8.3mm x 1.5mm) by means of the 

Mini Protean III System (BioRad). After polymerization of the polyacrylamid gel and 

assembly of the electrophoresis module protein samples were mixed with 4x SDS sample 

buffer and boiled for 5min at 95°C. Samples were collected by centrifugation and loaded on 
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the stacking gel. Finally, the electrophoresis module was filled with SDS-PAGE running 

buffer and electrophoresis performed at 100V at RT. 

 

separating gel (10ml) 8%................10% ............... 12% ...............15% 

H2O ........................ 4.6ml.............. 4.0ml ..............3.3ml ............. 2.3ml 

30% ProtoGel ....... 2.7,ml.............. 3.3ml ..............4.0ml ............. 5.9ml 

1.5M Tris-HCl ....... 2.5ml.............. 2.5ml ..............2.5ml ............. 2.5ml............ pH 8.8 

10%SDS................. 0.1ml.............. 0.1ml ..............0.1ml ............. 0.1ml 

10% APS ................ 0.1ml.............. 0.1ml ..............0.1ml ............. 0.1ml 

TEMED.............. 0.006ml.......... 0.006ml ..........0.006ml ......... 0.006ml 

 

 

stacking gel (5ml)...... 5% 

H2O ........................ 3.4ml 

30% ProtoGel ...... 0.83ml 

1M Tris-HCl ........ 0.63ml............ pH 6.8 

10%SDS............... 0.04ml 

10% APS .............. 0.04ml 

TEMED.............. 0.004ml 

 

10x SDS-PAGE running buffer (1l) 

Glycine.................................................144g 

Tris-HCl..............................................30.3g 

SDS ........................................................10g 

 

N,N,N',N'-Tetramethylethylenediamine (TEMED), Serva (Cat.No.35925) 

ProtoGel (Ultra Pure), National Diagnostics (Cat.No.EC-890) 

2.6.8. Western blotting and Immunodetection 

Western blotting is used to identify specific proteins by polyclonal or monoclonal antibodies. 

Proteins are first separated by SDS-PAGE and then electrically transferred onto a PVDF 

membrane. Proteins bound to the surface of this membrane can be visualized by 

immunodetection reagents. 

After separation of proteins by SDS-PAGE (2.6.7) the stacking gel was removed while the 

separating gel was placed in Western blotting transfer buffer. After short equilibration of the 
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polyacrylamid gel and a methanol-activated PVDF membrane in blotting buffer a transfer 

sandwich was assembled. 

Proteins were then electrically transferred o/n with 25V at 4°C or for 1.5h with 100V at 4°C. 

After disassembly of the transfer sandwich, membranes were stained for 30sec with Ponceau 

S solution, rinsed in H2O in order to visualize proteins bands on the membrane and to confirm 

the successful transfer. Membranes were subsequently washed in TBS-T and blocked for 1 h 

at RT in blocking buffer. Next, the primary antibody was incubated on the membrane either 

o/n at 4°C or for 2h at RT (depending on the instructions of the antibody manufacturer), 

membranes were washed 4 times 5min each with TBS-T and the appropriate secondary 

antibody was incubated with the membrane for 1.5h at RT. After 4 washes for 5min in TBS-T 

membranes were subjected to a chemiluminescence-based detection kit.  

 

Western Blotting transfer buffer (1l) 

Tris-HCl...................................................6g 

Glycine................................................28.8g 

Methanol............................................200ml 

10x TBS (1000ml) 

Tris-HCl..............................................24.3g 

NaCl.......................................................80g 

TBS-T (1000ml) 

Tween-20 ...............................................1ml 

10x TBS..............................................100ml in H2O 

Blocking buffer 

skim milk powder ................................... 5% in TBS-T 

 

Ponceau S solution, Sigma (Cat.No. P3504) 

Chemiluminescence Reagent Plus, Western Lightning (Cat.No.NEL104) 

2.7. Molecular Biological Methods 

2.7.1. Material Molecular Biology 

Autoclave: KSG, KSG-112 

Centrifuge: Eppendorf, 5417C 

Centrifuge: Beckman Coulter, Avanti J-25 

Centrifuge rotor: Beckman Coulter J 14 / J 25.50 
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Microwave: Daewoo, KOR 63D7 

Thermocycler: Biometra T3 

Thermomixer: Eppendorf 5350 

2.7.2. Phenol/Chloroform extraction of tail DNA 

For genotyping of mice, a small biopsy of the mouse tail was digested with 500µl DNA lysis 

buffer in an Eppendorf tube o/n. The next day, 500µl Phenol/Chloroform (1:1) was added, the 

DNA solution was mixed and centrifuged for 5min at 15000xg. The uppermost layer was 

taken off and added to 500µl chloroform/isoamylalcohol solution (24:1), mixed and 

centrifuged again for 5min at 15000xg. The upper DNA rich layer was taken off and DNA 

was precipitated by addition of 500µl isopropanol. The white DNA precipitates were pelleted 

by centrifugation for 1min at 15000xg. Pellets were air-dried for 1-2min and subsequently 

resuspended in 50-100µl H2O. 

 

DNA lysis buffer 

NaCl...................................................20mM 

Tris-HCl...........................................100mM pH 7.6 

EDTA ...................................................5mM 

SDS ..................................................... 0.2% 

proteinase K.................................. 100µg/m 

 

Rothi-Phenol, Roth (Cat.No 0038.2) 

2.7.3. Bacteriological tools 

Escherichia coli (E.coli) cultures were cultured in lysogeny broth (LB) rich medium. Media 

were prepared and autoclaved for 20min at 120°C. Antibiotics were added after the solutions 

were cooled below 50°C. LB plates were poured into 100mm Petri dishes and stored at 4°C. 

 

LB medium 

NaCl.......................................................10g 

Trypton...................................................10g 

Yeast extract ............................................5g 

filled up to 1000ml with H2O, autoclaved and stored at 4°C 

LB plates 

LB medium.......................................1000ml 



Materials and Methods 

79 

Agar-Agar..............................................15g 

autoclaved, poured into 100mm Petri dishes, stored at 4°C 

Additives 

Ampicillin....................................... 50µg/ml 

Kanamycin ..................................... 25µg/ml 

Tetracycline ................................ 12.5µg/ml 

 

2.7.3.1. Preparation of competent bacteria 

An E.coli (XL-1 blue) bacterial culture was grown o/n in 10ml LB +Tetracycline (2.7.3) at 

37°C shaking 180rpm. The next morning, 100ml of LB+Tetracycline was inoculated with 2ml 

overnight culture and grown until an optical density at 550nm (OD550) of 0.5 was reached. 

The bacterial culture was placed on ice for 10min and then centrifuged for 15min at 4°C with 

1000xg. The pellet was resuspended in 10ml TSS and 2.9ml glycerol (87%) was added. This 

bacterial suspension was aliquoted in volumes of 200µl and immediately frozen in liquid 

nitrogen. Competent cells were stored at -80°C. 

 

TSS (500ml) 

polyethylenglycol ...................................50g 

Tryptone...................................................5g 

Yeast extract .........................................2.5g 

NaCl......................................................2.5g 

DMSO ..................................................25ml 

1M MgCl2 ............................................25ml 

filtrated and stored at 4°C 

2.7.3.2. Transformation of competent bacteria 

100µl of competent bacteria were thawed on ice, DNA was added and incubated on ice for 

30min. Cells were then placed on 42°C for 90sec (heat shock) and subsequently placed on ice 

for at least 2min. 750µl prewarmed LB medium (w/o antibiotics) was added and cells were 

incubated for 1h at 37°C shaking at 200rpm. Next, bacteria were carefully pelleted by 30sec 

centrifugation at 4000xg, resuspended in 100µl LB medium and spreaded on LB plates. Plates 

were incubated o/n at 37°C. Colonies appeared within 8-12h depending on the transformed 

DNA construct. 
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2.7.3.3. Cryo-preservation of bacteria 

In order to freeze bacterial cultures 250µl glycerol (87%) was added to 750µl bacterial 

overnight culture. Cryo-cultures were stored at -80°C. 

2.7.3.4. Preparation of plasmid DNA from bacterial cultures 

Bacterial colonies were inoculated with 4ml LB medium containing the appropriate 

antibiotics o/n at 37°C. 750µl of this bacterial culture were frozen down as described in 

2.7.3.3, 3ml were used for DNA isolation, which was performed by using the Qiagen Plasmid 

Mini Kit. This method is based on an alkaline bacterial lysis, followed by binding of the DNA 

to an anion-exchange resin under low salt and low pH conditions. Impurities like proteins or 

RNA are removed by medium salt washing steps. DNA is eluted from the resin under neutral 

or alkaline pH conditions.  

Large amounts of DNA were prepared by the same method using larger volumes (Qiagen 

Plasmid Maxi Kit). DNA concentration was determined by photometric measurement at 

260nm. DNA was stored at -20°C. 

 

Qiagen Plasmid Mini Kit, Qiagen (Cat.No. 12125)  

Qiagen Plasmid Maxi Kit, Qiagen (Cat.No. 12162) 

2.7.4. Enzymatic manipulation of DNA 

Restriction enzymes are widely used in molecular biology in order to cleave DNA at specific 

sites. They can be divided into three subgroups. The type I restriction enzymes are complex 

multi-subunit enzymes that cut the DNA random far from their recognition sequence. The 

type II enzymes bind to specific DNA sequences and cut the DNA within or close to this 

binding motif. The type III restriction enzymes are complex and cleave the DNA outside of 

their recognition sequence. Type II restriction enzymes are widely used as a molecular 

biological tool. 

2.7.4.1. Digestion of DNA with restriction enzymes 

All restriction enzymes used in this study were purchased from New England Biolabs (NEB). 

Digestion was performed according to the instructions of the manufacturer. In general, the 

following reaction conditions were used: 

 

DNA digestion 

DNA ................................................... 3-5µg 
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NEB buffer (+/- BSA) ............................ 3µl 

Restriction enzyme..................................5U 

filled up to 30µl with H2O, incubated for 2h at 37°C 

2.7.4.2. Dephosphorylation of plasmid DNA 

Digestion of DNA with restriction enzymes generates a reactive 5’-phosphate group and a 3’-

hydroxyl group. In order to prevent self-ligation of digested plasmids, the 5’-phosphate group 

was removed by the use of shrimp alkaline phosphatase (sAP). Digestion enzymes were heat 

inactivated (according to the instructions of the manufacturer) and subsequently incubated at 

high pH conditions for 2x 30min with sAP.  

 

 

Dephosphorylation of DNA 

DNA ................................................... 3-5µg 

sAP buffer .............................................. 3µl 

sAP..........................................................5U 

filled up to 30µl H2O, incubated for 2 times 30min at 37°C 

2.7.4.3. Phosphorylation of DNA fragments 

T4 polynucleotide kinase (PNK) was used in order to generate reactive 5’-phosphate ends for 

subsequent ligation. PNK catalyzes the transfer of the γ-phosphate from ATP to 5’-hydroxyl-

termini of polynucleotides. DNA was incubated with PNK in the presence of ATP for 30min 

at 25°C. The following conditions were used: 

 

Phosphorylation of DNA 

DNA fragment.................................... 3-5µg 

T4 PNK reaction buffer ......................... 3µl containing 1mM ATP 

T4 PNK .................................................10U  

filled up to 30µl with H2O, incubated for 30min at 25°C 

2.7.4.4. Blunting of DNA fragments 

In order to generate blunt-ends of PCR- or digestion products DNA was treated with the large 

Klenow fragment. The Klenow fragment is a proteolytic product of E.coli DNA polymerase 

type I which retains polymerization and 3’-5’ exonuclease activity but lost 5’-3’ exonuclease 

activity. 
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Blunting of DNA 

DNA fragment.................................... 3-5µg 

NEB buffer 2 .......................................... 3µl 

dNTPs ................................................ 10µM 

Klenow fragment...................... 1U/µg DNA 

filled up to 30µl with H2O, incubated for 20min at 25°C 

 

For heat inactivation of the Klenow fragment, EDTA was added to a final concentration of 

10mM. This reaction mix was subsequently incubated for 20min at 75°C. 

2.7.4.5. Ligation of DNA fragments 

For DNA ligation, the generation of a phosphodiester bond between a 3’-hydroxyl group and 

a 5’-phosphate group, the following protocol was used. 

 

DNA ligation 

DNA backbone (vector) .................. 0.5-1µg dephosphorylated 

DNA insert ............................................ 5µg         PCR product or digested DNA 

ATP (10mM) ....................................... 1.5µl 

Fast link ligase buffer ......................... 1.5µl 

Fast link ligase....................................... 1µl 

filled up to 15µl with H2O, incubated for 45min at RT, then heat-inactivated for 10min at 

70°C. 2-5µl of the ligation products were used for transformation as described before 

(2.7.3.2). 

2.7.5. Polymerase chain reaction (PCR) 

PCR is a widely used method for enzymatic DNA amplification (Saiki et al. 1988). The 

reaction is carried out in the presence of three nucleic acid segments (DNA template, primer1, 

primer2), DNA polymerase (Taq polymerase or high fidelity polymerase) and dNTPs. The 

amplification occurs in three different steps: denaturation (95°C), annealing of the primers to 

the DNA template (58-68°C depending on the primer) and DNA synthesis (72°C).  

2.7.5.1. Oligonucleotides (primer) 

All oligonucleotides were synthesized and purified by Metabion international (Martinsried, 

Germany). Oligonucleotides used for cloning of siRNA constructs were 5’-phosphorylated 

and HPLC purified. 
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Name 5’-3’ sequence application 

ILK-for GTCTTGCAAACCCGTCTCTGCG genotyping 

ILK-rev CAGAGGTGTCAGTGCTGGGATG genotyping 

Cre-for AACATGCTTCATCGTCGG genotyping 

Cre-rev TTCCGATCATCAGCTACACC genotyping 

ILK-Eco-Koz 
AAAGAATTCACCATGGACGACATTTTCACTCAG Cloning 

ILK full length 

ILK-Bam-end 
GCGGATCCCTTGTCCTGCATCTTCTCCAAG Cloning 

ILK full length 

Not-3xFLAG 
ATAGTTTAGCGGCCGCATTCTTATTCACTACTTGTCATC 

GTCATCCTTGTAGTCGATGTCATGATC 

Cloning 

ILK-3 x FLAG 

Ank-del 
AAAGGATCCACCATGGGGACCCTGAACAAACACTCC 

GGTATTG 

Cloning 

ANK-deletion 

Kin-del-rev 
GGGGGATCCATTTCGGGGCCTTGTGCGAGTGGTCCCC 

TTCC 

Cloning 

Kinase-deletion 

R211A-for 
CTTGGAAAGGCGCCTGGCAGGGCAATGATATTG ILK-

Mutagenesis 

R221A-rev 
CAATATCATTGCCCTGCCAGGCGCCTTTCCAAAG ILK-

Mutagenesis 

S343A-for 
GCTGATGTTAAATTTGCTTTCCAGTGCCCTGGG ILK-

Mutagenesis 

S343-rev 
CCCAGGGCACTGGAAAGCAAATTTAACATCAGC ILK-

Mutagenesis 

S343D-for 
GCTGATGTTAAATTTGATTTCCAGTGCCCTGGG ILK-

Mutagenesis 

S343D-for 
CCCAGGGCACTGGAAATCAAATTTAACATCAGC ILK-

Mutagenesis 

386/387-for 
CTTCTGTGGGAACTGGGGGGACGAGAGGTGCCCTTTGC ILK-

Mutagenesis 

386/387-rev 
GCAAAGGGCACCTCTCGTCCCCCCAGTTCCCACAGAAG ILK-

Mutagenesis 

Pax-Mfe-for 
CCCCAATTGACCATGGACGACCTCGACGCCCTGCTGG Cloning 

Pax full length 

Pax-Bcl-rev 
CCCTGATCACTAGCAGAAGAGCTTGAGGAAGCAG Cloning 

Pax full length 

LD1-del-for 
CCCCAATTGACCATGCGGCCTGTGTTCTTGTCG 

GAGG 

Cloning 

LD1-deletion 

SS-siControl 
GATCCCAGCAGTGCATGTATGCTTCTTCAAGAGA 

TCGTCACGTACATACGAAGTTTTTA 

cloning 

siControl 

AS-siControl AGCTTAAAAAGCAATGGAACGAGTATTAATCT cloning 
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Name 5’-3’ sequence application 

CTTGAATCGTCACGTACATACGAAGGGG siControl 

SS1-FAK 
GATCCCCGCAATGGAACGAGTATTAATTCAAGAGA 

TTAATACTCGTTCCATTGCTTTTTA 

cloning 

FAK-siRNA 

AS1-FAK 
AGCTTAAAAAGCAATGGAACGAGTATTAATCT 

CTTGAATTAATACTCGTTCCATTGCGGG 

cloning 

FAK-siRNA 

SS2-FAK 
GATCCCCGTCCAACTATGAAGTATTATTCAAGAGA 

TAATACTTCATAGTTGGACTTTTTA 

cloning 

FAK-siRNA 

AS2-FAK 
AGCTTAAAAAGTCCAACTATGAAGTATTATCT 

CTTGAATAATACTTCATAGTTGGACGGG 

cloning 

FAK-siRNA 

SS3-FAK 
GATCCCCGGTCCAATGACAAGGTATATTCAAGAGA 

TATACCTTGTCATTGGACCTTTTTA 

cloning 

FAK-siRNA 

AS3-FAK 
AGCTTAAAAAGGTCCAATGACAAGGTATATCT 

CTTGAATATACCTTGTCATTGGACCGGG 

cloning 

FAK-siRNA 

SS4-FAK 
GATCCCCGCAATATGCTAATCTCATTTTCAAGAGA 

AATGAGATTAGCATATTGCTTTTTA 

cloning 

FAK-siRNA 

AS4-FAK 
AGCTTAAAAAGCAATATGCTAATCTCATTTCT 

CTTGAAAATGAGATTAGCATATTGCGGG 

cloning 

FAK-siRNA 

SS5-FAK 
GATCCCCGCGAACTATCTGTAGAACTTTCAAGAGA 

AGTTCTACAGATAGTTCGCTTTTTA 

cloning 

FAK-siRNA 

AS5-FAK 
AGCTTAAAAAGCGAACTATCTGTAGAACTTCT 

CTTGAAAGTTCTACAGATAGTTCGCGGG 

cloning 

FAK-siRNA 

SS1-Pax 
GATCCCCCAACTGGAAACCACACATATCT 

CTTGAATATGTGTGGTTTCCAGTTGTTTTTA 

cloning 

Pax-siRNA 

AS1-Pax 
AGCTTAAAAACAACTGGAAACCACACATATCT 

CTTGAATATGTGTGGTTTCCAGTTGGGG 

cloning 

Pax-siRNA 

SS2-Pax 
GATCCCCGAAGCCAAAGCGAAATGGATCT 

CTTGAATCCATTTCGCTTTGGCTTCTTTTTA 

cloning 

Pax-siRNA 

AS2-Pax 
AGCTTAAAAAGAAGCCAAAGCGAAATGGATCT 

CTTGAATCCATTTCGCTTTGGCTTCGGG 

cloning 

Pax-siRNA 

SS3-Pax 
GATCCCCCGTCACTGTCAGATTTCAATCTCT 

TGAATTGAAATCTGACAGTGACGTTTTTA 

cloning 

Pax-siRNA 

AS3-Pax 
AGCTTAAAAACGTCACTGTCAGATTTCAATCTCT 

TGAATTGAAATCTGACAGTGACGGGG 

cloning 

Pax-siRNA 

SS4-Pax 
GATCCCCCGGACCCATCCTGGATAAATCTCT 

TGAATTTATCCAGGATGGGTCCGTTTTTA 

cloning 

Pax-siRNA 

AS4-Pax 
AGCTTAAAAACGGACCCATCCTGGATAAATCTCT 

TGAATTTATCCAGGATGGGTCCGGGG 

cloning 

Pax-siRNA 

SS5-Pax 
GATCCCCGCGTACTGTCGTAAAGATTTCTCT 

TGAAAATCTTTACGACAGTACGCTTTTTA 

cloning 

Pax-siRNA 
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Name 5’-3’ sequence application 

AS5-Pax 
AGCTTAAAAAGCGTACTGTCGTAAAGATTTCTCT 

TGAAAATCTTTACGACAGTACGCGGG 

cloning 

Pax-siRNA 

SS1-Cas 
GATCCCCCTGGTAACCGCCTCAAGATTTCAAGA 

GAATCTTGAGGCGGTTACCAGTTTTTA 

cloning 

Cas-siRNA 

AS1-Cas 
AGCTTAAAAACTGGTAACCGCCTCAAGATTCT 

CTTGAAATCTTGAGGCGGTTACCAGGGG 

cloning 

Cas-siRNA 

SS2-Cas 
GATCCCCCCATCATTCGGTGTATGATTTCAAGA 

GAATCATACACCGAATGATGGTTTTTA 

cloning 

Cas-siRNA 

AS2-Cas 
AGCTTAAAAACCATCATTCGGTGTATGATTCT 

CTTGAAATCATACACCGAATGATGGGGG 

cloning 

Cas-siRNA 

SS3-Cas 
GATCCCCGCTGCGTGAGGAAACCTATTTCAAGA 

GAATAGGTTTCCTCACGCAGCTTTTTA 

cloning 

Cas-siRNA 

AS3-Cas 
AGCTTAAAAAGCTGCGTGAGGAAACCTATTCT 

CTTGAAATAGGTTTCCTCACGCAGCGGG 

cloning 

Cas-siRNA 

SS4-Cas 
GATCCCCGCCGGCAACTACAGAAGATTTCAAGA 

GAATCTTCTGTAGTTGCCGGCTTTTTA 

cloning 

Cas-siRNA 

AS4-Cas 
AGCTTAAAAAGCCGGCAACTACAGAAGATTCT 

CTTGAAATCTTCTGTAGTTGCCGGCGGG 

cloning 

Cas-siRNA 

SS5-Cas 
GATCCCCGGAGGTGTCTCGTCCAATATTCAAGA 

GATATTGGACGAGACACCTCCTTTTTA 

cloning 

Cas-siRNA 

AS5-Cas 
AGCTTAAAAAGGAGGTGTCTCGTCCAATATCT 

CTTGAATATTGGACGAGACACCTCCGGG 

cloning 

Cas-siRNA 

SS1-Dock 
GATCCCCGGCTACACCTTAAGGAAAATTCAAGA 

GATTTTCCTTAAGGTGTAGCCTTTTTA 

cloning 

Dock180-siRNA 

AS1-Dock 
AGCTTAAAAAGGCTACACCTTAAGGAAAATCT 

CTTGAATTTTCCTTAAGGTGTAGCCGGG 

cloning 

Dock180-siRNA 

SS2-Dock 
GATCCCCGTACAAATCGGTGATTTATTTCAAGA 

GAATAAATCACCGATTTGTACTTTTTA 

cloning 

Dock180-siRNA 

AS2-Dock 
AGCTTAAAAAGTACAAATCGGTGATTTATTCT 

CTTGAAATAAATCACCGATTTGTACGGG 

cloning 

Dock180-siRNA 

SS3-Dock 
GATCCCCCTAATCGCGGATAGGAAATTCAAGA 

GAATTTCCTATCCGCGATTAGTTTTTA 

cloning 

Dock180-siRNA 

AS3-Dock 
AGCTTAAAAACTAATCGCGGATAGGAAATCT 

CTTGAAATTTCCTATCCGCGATTAGGGG 

cloning 

Dock180-siRNA 

SS4-Dock 
GATCCCCCTGAGACAGAGCTTCGAAATTCAAGA 

GATTTCGAAGCTCTGTCTCAGTTTTTA 

cloning 

Dock180-siRNA 

AS4-Dock 
AGCTTAAAAACTGAGACAGAGCTTCGAAATCT 

CTTGAATTTCGAAGCTCTGTCTCAGGGG 

cloning 

Dock180-siRNA 

SS5-Dock GATCCCCCAAGGACGATCCAGATAAATTCAAGA cloning 
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Name 5’-3’ sequence application 

GATTTATCTGGATCGTCCTTGTTTTTA Dock180-siRNA 

AS5-Dock 
AGCTTAAAAACAAGGACGATCCAGATAAATCT 

CTTGAATTTATCTGGATCGTCCTTGGGG 

cloning 

Dock180-siRNA 

2.7.5.2. PCR reactions  

Two different PCR reactions were performed. 1) Regular PCR for genotyping using tail DNA 

and self-made recombinant Taq polymerase, 2) a cloning PCR using purified plasmid DNA 

and high fidelity polymerase with an additional proof reading activity. 

 

Genotyping PCR 

isolated tail DNA ................................... 1µl 

primer1 (10pmol)................................... 1µl 

primer 2 (10pmol).................................. 1µl 

dNTP (10mM) ........................................ 1µl 

DMSO ................................................. 2.5µl 

MgCl2.................................................. 1.5µl 

10x PCR buffer ...................................... 3µl 

Taq polymerase...................................... 1µl 

filled up to 30µl with H2O, subjected to PCR (2.7.5.3) 

Cloning PCR (Mix1) 

H2O ................................................. 19.25µl 

10x PCR buffer ...................................... 5µl 

high fidelity polymerase.................... 0.75µl 

Cloning PCR (Mix2) 

plasmid DNA......................................200ng 

primer1 (10 pmol).................................. 1µl 

primer2 (10 pmol).................................. 1µl 

dNTP (10mM) ........................................ 1µl 

filled up to 25µl with H2O 

 

Both mixtures were prepared separately and combined immediately before the start of the 

PCR reaction (2.7.5.3). 

Expand high fidelity polymerase Roche (Cat.No. 3300242001) 
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2.7.5.3. PCR programs 

The following PCR programs were used in this study: 

 

Genotyping Cre-PCR Genotyping-ILK-PCR 

step.....time(sec ) ....temp(°C) step..... time(sec) ....temp(°C) 

1...............300 .............. 95 1................300 .............. 95 

2................30 ............... 95 2.................30 ............... 95 

3................30 ............... 63 3.................30 ............... 66 

4................60 ............... 72 4.................60 ............... 72 

5................30 ............... 95 5.................30 ............... 95 

6................30 ............... 55 6.................30 ............... 58 

7................60 ............... 72 7.................60 ............... 72 

8...............300 .............. 72 8................300 .............. 72 

9................ ∞................. 4 9..................∞................. 4 

 

PCR’s were performed for 35 cycles (step5-7), touch down from 63°C-55°C (Cre) and 66°C-

58°C (ILK) in 9 cycles by sequential reduction of the annealing temperature (-1°C / cycle) 

(step2-4). 

 

Cloning PCR short Cloning PCR long  

step..... time(sec) ....temp(°C) step..... time(sec) ....temp(°C) 

1...............300 .............. 95 1................300 .............. 95 

2................30 ............... 95 2.................30 ............... 95 

3................30 ............... 66 3.................30 ............... 66 

4................45 ............... 72 4................120 .............. 72 

5................30 ............... 95 5.................30 ............... 95 

6................30 ............... 58 6.................30 ............... 58 

7................45 ............... 72 7................120 .............. 72 

8...............300 .............. 72 8................300 .............. 72 

9................ ∞................. 4 9..................∞................. 4 

 

PCR’s were performed for 35 cycles (step5-7), touch down from 66°C-58°C in 9 cycles by 

sequential reduction of the annealing temperature (-1°C / cycle) (step2-4). 
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Mutagenesis PCR 

step..... time(sec) ....temp(°C) 

1................30 ............... 95 

2................30 ............... 95 

3................60 ............... 55 

4...............300 .............. 68 

5................ ∞................. 4 

PCR was performed for 18 cycles. 

2.7.6. Agarose gel electrophoresis 

Agarose gel electrophoresis is a simple method for separating, identifying or purifying DNA 

fragments. For gel preparation, the desired amount (between 1-2%) of agarose was added to 

1xTAE buffer and boiled in the microwave. For 100ml agarose solution 5µl ethidium bromide 

was added. The melted agarose was poured into casting platform, allowed to harden at RT 

and placed into an electrophoresis chamber containing 1xTAE buffer. Next, DNA was mixed 

with 6x loading buffer and loaded on the agarose gel. Electrophoresis was carried out at 80-

120V at RT. DNA bands were visualized under a UV light transilluminator at 366nm. 

 

TAE buffer (50x) 

Tris-base ..............................................242g 

EDTA ..................................................37.2g 

glacial acetic acid.............................57.1ml 

filled up to 1000ml with H2O 

 

Agarose, Invitrogen (Cat.No. 15510-027) 

Ethidiumbromid, Roth (Cat.No. 2218.1) 

2.7.6.1. Extraction of DNA from agarose gels 

Extraction of DNA fragments from agarose gels was done by using QIAEX Gel Extraction 

Kit (Qiagen) according to the instructions of the manufacturer. 

 

QIAEX Gel Extraction Kit, Qiagen (Cat. No. 20021) 

2.7.7. Site-directed mutagenesis 

In vitro site-directed mutagenesis is a valuable tool to study protein function. The insertion of 

point mutations into a given DNA sequence can be used in order to switch, insert or delete 
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amino acids in the protein of interest. In this study, several point mutations were introduced 

into ILK by using a QuickChange Site-Directed Mutagenesis Kit. The principle is based on a 

double stranded DNA vector and two oligonucleotides encoding for the desired mutation. The 

oligonucleotide primers are extended during temperature cycling by PfuTurbo DNA 

polymerase generating a mutant plasmid. The parental plasmid (which does not contain the 

mutation) is digested with an endonuclease that only targets methylated DNA. Since DNA 

from most of the E. coli strains is dam methylated only the parental plasmid but not the newly 

synthesized plasmid is susceptible to this digestion. 

Fig 2.2. Principle of site-directed mutagenesis. A. A double-stranded (ds) parental DNA plasmid serves as a 

template. B. Primers, harbouring the mutant sequence are annealed to the parental DNA. C. PCR-based 

synthesis of two mutant DNA strands. D. Specific digestion of parental (dam-methylated) DNA. (Taken from 

QuickChange Site-Directed Mutagenesis Kit InstructionManual, Stratagene and modified). 

2.7.7.1. Design of mutagenesis primers 

All oligonucleotides used for mutagenesis (2.7.5.1) were HPLC purified and designed 

according to manufacturers instructions (Stratagene, QuickChange Site Directed Mutagenesis 

Kit, Instruction Manual). The desired mutation was inserted approximately in the middle of 

the primer that was flanked by 10-15 bases of correct sequence on both sides. The length of 

the primer was adjusted in a way that the melting temperature (Tm) of the primer was not 

higher than 78°C. Tm was calculated according to the following formula: 

 

Tm= 81.5 + 0.41 (x %GC content) - 675/N - % mismatch 

N: Primer length in bases 

2.7.7.2. Mutagenesis 

Site-directed mutagenesis was performed in two steps: mutagenesis PCR and digestion of the 

parental DNA. 
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Mutagenesis PCR: In order to perform the mutagenesis PCR (PCR program see 2.7.5.3) the 

following reaction was prepared:  

 

parental plasmid DNA.............................100ng 

primer1 ....................................................125ng 

primer2 ....................................................125ng 

dNTPs (10mM) ............................................ 1µl 

reaction buffer ............................................. 5µl 

PfuTurbo Polymerase.................................. 1µl 2.5U/µl 

filled up to 50µl with H2O, subjected to PCR (2.7.5.3). 

 
Digestion of parental DNA: 1µl of Dpn I restriction enzyme (10U/µl) was added to 20µl of 

PCR product and incubated for 1h at 37°C. 2µl of this reaction was used for DNA 

transformation (2.7.3.2).  

2.7.8. Generation of siRNA constructs 

Introduction of double-stranded RNA directs post-transcriptional gene silencing, which is 

highly specific and usually does not interact with genes unrelated in sequence. However, in 

most mammalian cells RNA interference causes cytotoxic effects, which can be circumvented 

by the use of small synthetic interfering RNAs (siRNA). 

Since gene silencing induced by RNAi is not caused by a genetic change these studies are 

often hampered by its transient nature. Therefore, stable expression of siRNAs driven by the 

pSUPER vector system (Brummelkamp et al. 2002) provides a powerful tool to study loss of 

function phenotypes in a persistent manner (pSuper RNAi system, OligoEngine, Seattle 

USA). The pSUPER vectors use a RNA polymerase III H1 gene promoter as it produces RNA 

transcripts that lack a polyadenosine tail. Moreover, start and termination of transcription are 

well defined and the RNA constructs can be designed in a way that the resulting transcript 

will form a pair stem loop structure that is rapidly cleaved within the cell to produce a 

functional siRNA. 
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Fig 2.3. Principle of pSUPER driven siRNA expression. A. Annealed oligonucleotides containing the target 

sequence, the hairpin structure, the termination signal (T5) and BglII and HindIII compatible overhangs. B. The 

secondary structure of the RNA transcript is a pair stem loop structure. C. Processing of the RNA transcript 

within the cell leads to a functional siRNA. (Taken from the pSuper.Retro Instruction Manual, OligoEngine and 

modified. Shown here: knockdown construct #2 for FAK knockdown, which produced a very high knockdown 

efficiency). 

2.7.8.1. Design of siRNA constructs 

The sequence of the siRNA constructs were chosen according to the protocol from (Ui-Tei et 

al. 2004) and (Naito et al. 2004). Full length mRNA sequences of the target gene were 

checked using the online software siDirect for 19mers matching the criteria listed in Fig 2.4. 

Five different constructs per knockdown were designed and subsequently cloned into the 

pSUPER.Retro backbone. 

 

criteria for siRNA constructs 

G/C at the 5’ end of the sense-strand (SS) 

A/T at the 3’ end of SS 

AT-richness at the 3’-terminal 7bp long region of the SS 

no G/C-stretches longer than 9bp 

G/C content: 40%-60% 
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Fig 2.4. Design of a siRNA targeting construct. The 5’- terminus of the sense strand is thermodynamically more 

stable than the A/T-rich 3’- terminus, facilitating the processing of the RNA transcript. (Shown here: knockdown 

construct #2 for FAK knockdown, which produced a very high knockdown efficiency). 

2.7.8.2. Cloning of siRNA constructs 

Introduction of the knockdown constructs into the expression vector pSUPER was performed 

in three steps. 1) Annealing of forward and reverse strands of oligonucleotides 2) linearization 

of pSUPER vector and removal of phosphate groups from its 5’-ends 3) ligation of annealed 

oligonucleotides and linearized pSUPER. 

1) Annealing: Oligonucleotides (5’-phosphorylated and HPLC purified) were mixed, 

denaturated and allowed to slowly cool down. Oligonucleotides were stored on ice until 

ligation was performed. 

 

Annealing buffer 

NaCl.................................................100mM 

HEPES ...............................................50mM pH 7.4 

Annealing reaction 

oligonucleotides (sense) ........................ 1µl c: 3µg/µl 

oligonulceotides (antisense) .................. 1µl c: 3µg/µl 

Annealing buffer .................................. 48µl 

 

step.....time (sec) ....temp(°C) 

1...............240 .............. 90 

2...............600 .............. 70 -1°C/sec 

3...............900 .............. 15 

4................ ∞................ 10 

 

2) Linearization of pSUPER: Since the oligonucleotides were designed with BglII and Hind 

III compatible overhangs (2.7.8), pSUPER was digested using the same enzymes (2.7.4.1) and 

subsequently dephosphorylated (2.7.4.2).  

3) Ligation of annealed oligonucleotides and linearized pSUPER: Ligation was performed as 

described in 2.7.4.5 using the following protocol: 
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annealed oligonucleotides ..................... 2µl 

linearized pSUPER................................ 1µl c=4µg/µl 

Fast link ligation buffer ...................... 1.5µl 

ATP (10mM) ....................................... 1.5µl 

Fast link ligase....................................... 1µl 

H2O ........................................................ 8µl 

 

Successful ligation leads to the destruction of the BglII restriction site. To reduce the amount 

of re-ligated vectors, ligation reactions were additionally treated for 30min with BglII at 

37°C. 2µl were used for transformation 2.7.3.2. 

2.7.9. Generation of retroviral expression constructs 

In order to stably express the protein of interest in ILK fibroblasts, retroviral expression 

constructs were generated which all use the pCL vector system (Naviaux et al. 1996). The 

retroviral backbone used in this study, pCLMFG, was provided by Prof. Dr. Alexander Pfeifer 

(University of Bonn, Germany). All cDNAs were cloned into the multiple cloning site (MCS) 

of this vector. 

 

2.7.9.1. Plasmids and cDNAs 

cDNA backbone provided by Reference 
ELMO1-EGFP .............pEBB...................................Dr. Ravichandran ................(Gumienny et al. 2001) 

ILK-EGFP (human)......pcDNA3.1 ...........................Dr. Obbgerghen-Schilling...(Boulter et al. 2006) 

ILK (mouse) .................pBluescript ..........................Dr. Fässler ...........................(Sakai et al. 2003) 

ILK-EGFP (mouse) ......pCLMFG.............................Dr. Fässler ...........................(Sakai et al. 2003) 

myc-RacN17 ................pRK5...................................Dr. Hall ...............................(Ridley et al. 1992) 

myc-RacL61.................pRK5...................................Dr. Hall ...............................(Ridley et al. 1992) 

paxillin..........................pLZRS….............................Dr. Danen............................(Danen et al. 2005) 

2.7.9.2. Expression vectors 

name approach resistance source 
pBluescript KS .............cloning ................................ampicillin ............................Stratagene (No. 200455) 

p3xFLAG .....................cloning/expression ..............ampicillin/ neomycin...........Sigma (Cat.No. E4901) 

pCLMFG......................expression ...........................ampicillin ............................Dr.Pfeifer (Bonn, Germany) 
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2.7.9.3. Generation of ILK expression constructs 

ILK-3xFLAG: an ILK cDNA with an EcoRI/BamHI restriction site was generated by PCR 

using full length ILK cDNA in pBluescriptKS (pBlueKS) as a template (2.7.5.1, 2.7.5.2, 

2.7.5.3) and inserted into the p3xFLAG expression vector. The ILK-3xFLAG cDNA was 

amplified by PCR generating EcoRI/Not restriction site and inserted into EcoRI/NotI 

linearized and dephosphorylated pCLMFG. Correct insertion was checked by DNA 

sequencing. 

ANK-3xFLAG (amino acids 1-180 of murine ILK): an ILK cDNA with an EcoRI/BamHI 

restriction site was generated by PCR using full length ILK cDNA in pBluescriptKS as a 

template (2.7.5.1, 2.7.5.2, 2.7.5.3) and inserted into the p3xFLAG expression vector. The 

ANK-3xFLAG cDNA was amplified by PCR generating EcoRI/Not restriction site and 

inserted into EcoRI/NotI linearized and dephosphorylated pCLMFG. Correct insertion was 

checked by DNA sequencing. 

human ILK-EGFP: full length cDNA of human-ILK-EGFP (in pcDNA3.1) was released by 

HindIII/SphI digestion. The DNA fragment was blunt-ended by Klenow treatment (2.7.4.4) 

and inserted into EcoRI digested, blunt-ended pCLMFG. Direction of the insert was checked 

by BamHI/HindIII digestion. 

ILK-R211A-EGFP: mutation of ILK was performed essentially as described (2.7.7) using 

ILK in pBlueKS as a template. After sequencing of the construct, a mutant ILK fragment was 

released by EcoRI/StuI digestion (EcoRI cuts in front of the ATG and StuI is a single 

restriction site located at the 3’-end of the ILK cDNA). This mutant ILK cDNA fragment was 

inserted into pCLMFG that was cut with the same enzymes and subsequently 

dephosphorylated. 

ILK-S343A-EGFP: as in ILK-R211A-EGFP (see above) using different mutagenesis primers 

(2.7.5.1) 

ILK-S343D-EGFP: as in ILK-R211A-EGFP (see above) using different mutagenesis primers 

(2.7.5.1) 

ILK-PBS-EGFP: as in ILK-R211A-EGFP (see above) using different mutagenesis primers 

(2.7.5.1) 

2.7.9.4. Generation of Rac1 expression constructs 

myc-RacN17: mutant human Rac1 cDNA (in pRK5) was released by sequential digestion 

with ClaI and HindIII and subcloned into pBlueKS that was cut before with the same 

enzymes and dephosphorylated. Mutant Rac1 cDNA (in pBlueKS) was isolated by double 

digestion with XhoI and NotI and inserted into pCLMFG that was digested before with the 
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same enzyme and dephosphorylated. Correct insertion was checked by digestion with XhoI 

and NotI. 

myc-RacL61: as in myc-RacN17 (see above). 

2.7.9.5. Generation of paxillin expression constructs 

wt-paxillin: paxillin cDNA was amplified by PCR using paxillin in pLZRS as a template 

generating a MfeI restriction site at the 5’-end and a BclI restriction site at the 3’-end. MfeI 

digestions produces EcoRI compatible overhangs while BclI digestion produces compatible 

ends for BamHI. The PCR product was sequentially digested with BclI and MfeI, purified and 

used for ligation into pCLMFG that was cut before with EcoRI/BamHI and dephosphorylated. 

Correct insertion was checked by EcoRI/HindIII digestion. 

LD1∆-paxillin: as for wt-paxillin using different PCR primers (2.7.5.1, see above) 

2.7.9.6. Generation of ELMO1 expression construct 

ELMO1-EGFP: cDNA was released from ELMO1-EGFP in pEBB by digestion with SpeI 

and NotI, blunt ended (2.7.4.4) and inserted into XhoI/NotI digested and blunt-ended 

pCLMFG. Insertion was checked by HindIII digestion. 

2.7.10. Preparation of retrovirus 

All retrovirus preparations were done in collaboration with Prof. Dr. Alexander Pfeifer 

(University of Bonn, Germany). In order to produce VSV-G pseudotyped retroviral vectors, 

human embryonic kidney cells (HEK293T) were transiently transfected with the pCLMFG 

construct (2.7.9), packaging plasmids (encoding HIV gag, pol and rev) and a plasmid 

encoding for the envelope of the vesicular stomatitis virus G by a calcium phosphate method. 

The supernatant containing the VSV-G pseudotyped retrovirus was harvested, enriched by 

centrifugation and directly used for infection of ILK (f/f) or ILK (-/-) fibroblasts. 

2.7.10.1. Calcium phosphate transfection of HEK293 cells 

HEK 293 cells were expanded in growth medium at 37°C and 10%CO2 in a humidified 

atmosphere. Cells were grown on 140mm plates until a confluence of approximately 60% was 

reached. 2.3ml of transfection mixture was added and cells were incubated o/n at 37°C in 

3%CO2. The next day, the medium was changed and cells were further cultured in growth 

medium at 37°C and 10%CO2.  

 

2xBBS 

BES .....................................................4.26g pH 6.95      Sigma (Cat.No. 9879) 
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NaCl....................................................6.54g 

Na2HPO4...........................................0,085g 

filled up to 400ml with H2O 

Transfection mix ( for 1x 140mm dish) 

DNA of pCLMFG............................... 25 µg 

DNA of packaging plasmid................ 25 µg 

DNA of VSV-G env plasmid............. 12.5µg 

filled up to 1.16ml with sterile H2O, then addition of 

CaCl2 (2.5M) ...................................... 112µ 

vortexed, then addition of 

2xBBS................................................1.16ml 

inverted, incubate 10-15min at RT 

2.7.10.2. Harvest of retroviral supernatant 

First harvest: 24h after transfection the supernatant was taken off and filtered through a 

0.45µm filter. 16ml growth medium was added to the cells which were incubated for 

additional 24h at 37°C in 10%CO2. Filtrate was centrifuged at 50000xg for 2h at 17°C and 

pellets were resuspended in 50µl HBSS, vortexed and stored at 4°C. 

Second harvest: 48h after transfection the retroviral supernatant was taken off and treated as 

above (first harvest). 

For concentration of the virus, pellets of the first and second harvest were combined, mixed 

with 2ml of 20% sucrose and centrifuged at 42000xg for 2h. Pellets were resuspended in 50-

100µl HBSS, mixed at RT for 45min and centrifuged down. Supernatant was taken off and 

stored at -80°C. 

 

Hanks’ Balanced Salt Solution (HBSS), Gibco (Cat.No. 14175-046) 

2.7.10.3. Infection of ILK fibroblasts with VSV-G pseudotyped retroviral vectors 

The day before infection, 1.5-2x 106cells were seeded in a 6-well plate and cultured o/n. The 

next day in the afternoon, 800µl growth medium containing 5-10µl of the virus prep was 

added to the cells which were then incubated o/n. Cells were washed once in PBS, 

trypsinized, resuspended in growth medium and seeded again on 6-well plates. 
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2.7.11. Microscopy 

Confocal microscopy: Confocal images were collected by using a confocal microscope (Leica 

DMIRE2) with 100x oil objectives at RT. Leica Confocal Software (version 2.5 Build 1227) 

was used for image acquisition and evaluation. 

Live cell microscopy: Live cells were recorded using a Zeiss Axiovert 300M inverted 

microscope equipped with a CCD camera (Roper Scientific, Duluth, GA) and a stage 

incubator (EMBL Precision Engineering, Heidelberg, Germany). MetaMorph software 

(Molecular Devices, Downingtown, PA) was used for microscope control and image 

acquisition. 
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3. Results 

3.1. Analysis of ILK in vivo/targeted ablation of ILK in mice 

The generation of the ILK targeting construct as well as the generation of ILK knockout ES 

cells was done by Drs. Reinhard Fässler and Takao Sakai. The analysis of the EBs was 

performed in collaboration with Drs. Shaohua Li and Peter Yurchenco (for details see Sakai et 

al. 2003). 

3.1.1. Deletion of ILK leads developmental arrest at peri-implantation stage 

In order to delete the ILK gene in mice, the ILK flox targeting construct was injected into ES 

cells and four targeted clones were isolated, transiently transfected with a Cre-recombinase 

expression plasmid and subjected to selection. Two ES cell clones with a single constitutive 

ILK-null allele were again electroporated with the ILK flox targeting construct and transiently 

transfected with the Cre-recombinase expression construct to obtain ES cells with a 

homozygous deletion of the ILK gene. Western blot analysis of ES cell protein lysates 

revealed the absence of ILK protein expression (Sakai et al. 2003). When mice heterozygous 

for the ILK mutation were intercrossed, no homozygous mutant ILK mice were among the 

progeny, suggesting that deletion of ILK leads to embryonic lethality. To determine the time 

point of lethality, blastocysts from heterozygous intercrosses were isolated at E3.5 and stained 

with an ILK antibody. To analyze later time points deciduas were isolated at E5.5, E8.5 and 

E9.5 and histologically analyzed. While normal numbers of ILK mutant blastocysts at E3.5 

were found (6 out of 33), the implantation chambers of presumptive ILK-deficient embryos at 

E5.5 did not contain cells from the embryo proper anymore. 

3.1.2. ILK null EBs fail to form a mature epiblast 

To describe in more detail the reason for the early embryonic lethality of ILK mutant 

embryos, control and ILK-null ES cells were cultured in suspension for 6-9 days and EBs 

were examined by light microscopy. While control EBs displayed endodermal cell layers, 

epiblasts as well as central cavities, ILK-null EBs failed to assemble well-formed epiblasts 

and to cavitate (Fig 3.1A). Immunostaining of control and ILK-null EBs showed that, in 

contrast to β1 integrin-deficient EBs, a BM can form in the absence of ILK (Sakai et al. 

2003). These experiments also revealed that ILK-null epiblasts were not able to polarize. F-

actin staining is under normal circumstances restricted to the apical side of the epiblast but not 

along the BM between epiblast and endodermal cells. In ILK-null EBs f-actin was frequently 
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localized to both the apical side of the epiblasts facing the cavity but also at the side of the 

epiblast adjacent to the BM (Fig 3.1B, C). The distribution of E-cadherin or β-catenin was, 

however, not dramatically changed (Sakai et al. 2003). These data demonstrate that ILK is 

essential for the polarization of the epiblast and indicate an important role of ILK for f-actin 

reorganization in vivo. 

Fig 3.1. Analysis of ILK-deficient EBs. A. Light microscopical analysis of EBs after 7d of suspension culture. 

Most of the ILK (-/-) EBs failed to cavitate. Scale bars: 50µm. B. Phalloidin immunostaining revealed the 

defective f-actin polarization in ILK (-/-) EBs. In control EBs f-actin staining was strong in cells of the epiblast 

that faced the cavity (*) but not detectable in areas adjacent to the BM (arrows). In ILK (-/-) EBs f-actin was 
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localized in areas facing the cavity but also along the BM. C. Higher magnification of the phalloidin 

immunostaining showing the presence of f-actin staining along the endoderm/epiblast interface in the absence of 

ILK. Scale bars: 20µm. (Experiment was done by Drs. Shaohua Li and Peter Yurchenco; see also Sakai et al., 

2003). 

3.2. Analysis of ILK function in vivo/Characterization of cartilage-specific 

ILK knockout mice 

3.2.1. Expression analysis 

To determine the expression of ILK during development and adulthood, ILK lacZ/+ mice 

(Sakai et al. 2003) were sacrificed at distinct developmental stages to perform LacZ staining. 

Whole mount staining of embryos at E10.5 revealed a strong expression of ILK in the 

developing heart and somites and a lower expression level in almost all other tissues (Fig 

3.2A). At E12.5, LacZ expression was ubiquitous, with high levels in the brain and in the 

condensing mesenchyme of the digits (Fig 3.2B). At E15.5, LacZ expression levels were high 

in chondrocytes from the epiphyseal cartilage and in the growth plates (Fig 3.2C). This high 

level of LacZ activity was maintained in chondrocytes from adult cartilages (Fig 3.2D). 

Fig 3.2. Expression analysis of ILK using ILK LacZ/+ mice. A. Whole mount LacZ staining of an embryo 

heterozygous for the ILK lacZ allele at E10.5. s: somites, h: heart. Scale bar: 500µm. B. Whole mount LacZ 

staining of an embryo at E12.5. b: brain,*: condensing mesenchyme of the digits. Scale bar: 1mm. C. LacZ 

staining of a metatarsal cartilage section at E15.5. gp: growth plate, r: resting zone. Scale bar: 50µm. D. LacZ 

staining of rib cartilage sections from a 4w-old mouse. gp: growth plate, r: resting zone. Scale bar: 50µm. 
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3.2.2. Chondrocyte-specific deletion of the ILK gene 

To analyze the role of ILK specifically in the cartilage a mouse strain carrying a LoxP-flanked 

(floxed) ILK gene was generated (called hereafter: ILK (flox/flox) (Sakai et al. 2003). To 

delete the ILK gene exclusively in chondrocytes, ILK (flox/flox) mice were crossed with mice 

expressing the Cre-recombinase under the control of the mouse collagen II promoter 

(Col2Cre; Sakai et al. 2001) to obtain mice with the genotype ILK (flox/flox) Col2Cre+ 

(called Col2ILK; Fig 3.3A). The genotype of mice was determined by PCR-based genotyping 

(Fig 3.3B). Mice which were either heterozygous for the floxed ILK allele (expressing 

Col2Cre or not) or ILK (flox/flox) mice (which did not express Col2Cre) were used as 

controls (Fig 3.3). The control mice were indistinguishable from each other and did not show 

any obvious abnormalities. 

To test the efficiency of ILK deletion in vivo, chondrocytes from control and mutant newborn 

mice were isolated and ILK levels in protein lysates were determined by western blot 

analysis. In all Col2ILK mice tested ILK expression was absent in chondrocytes (Fig 3.3C). 

This is in agreement with earlier results that showed Col2Cre activity already in condensing 

mesenchyme and cartilage (Sakai et al. 2001). 

Fig 3.3. Efficient deletion of ILK in the cartilage. A. Mating scheme for the generation of cartilage-specific 

ILK knockout mice. B. PCR-based genotyping. C. Western Blot analysis of protein lysates from freshly isolated 

chondrocytes derived from newborn mice. 

3.2.3. Col2ILK mice display progressive dwarfism 

Until E16.5, the external appearance of Col2ILK embryos was indistinguishable from that of 

controls. At E17.5 and at the newborn stage they were approximately 5% shorter than controls 

(Fig 3.4A). Around 70% of the Col2ILK mice had a cleft palate (Fig 3.4B) and died 1-2 h 
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after birth. The remaining Col2ILK mice suffered from lung hypoplasia (Fig 3.4C) and died 

due to breathing distress 1–24 h after birth. 

Whole-mount skeletal staining of newborn mice showed that all bones of the axial, 

appendicular and craniofacial skeleton formed in ILK mutant mice. However, most of the 

bones known to be formed by endochondral ossification were smaller than in controls. In 

addition, the thorax was small and narrow (Fig 3.4D), suggesting that the lung phenotype was 

caused by the reduced rib cage size. The growth of fore limbs and hind limbs was retarded by 

10–15% (Fig 3.4D, E; Fig 3.5D). 

Fig 3.4. Morphological appearance of Col2ILK mice at the newborn stage. A. Col2ILK mice were significantly 

smaller than control littermates at the newborn stage. Approximately 70% of the knockout mice suffered from a 

cleft palate. Scale bar: 4mm. B. Hematoxylin/Eosin staining of frontal sections of the head at newborn stage. 

Scale bar: 50µm. C. Hematoxylin/eosin staining of lung sections at newborn stage. Scale bar: 2mm. D. Whole-

mount Alcian Blue/Alizarin Red skeletal staining of mice at newborn stage. Scale bar: 4mm. E. Skeletal staining 

of fore limbs from newborn mice. Scale bar: 2mm. h: humerus, r: radius, u: ulna. 

3.2.4. Col2ILK bones have shortened growth plates 

At E17.5, long bones from Col2ILK mice were of normal shape, contained periosteal as well 

as trabecular bones (Fig 3.5A) and had a normal epiphyseal cartilage. However, the growth 

plates were significantly shortened (Fig 3.5B). The proliferative zone was less affected than 
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the hypertrophic zone, which was reduced by 30% (Fig 3.5B). At the newborn stage, the 

reduction in size of the growth plates became more pronounced. In addition, the columnar 

arrangement of chondrocytes was disorganized and the usually flattened proliferative 

chondrocytes appeared more roundish (Fig 3.5C). Moreover, the number of chondrocytes in 

the proliferative zone was reduced (Fig 3.5C). 

Fig 3.5. Skeletal analysis of Col2ILK mice. A. Safranin-orange/von-Kossa staining of tibia (ti) and femur (fe) at 

E17.5. Scale bar: 250µm. B. Hematoxylin/Eosin staining of tibial growth plates at E17.5. Scale bar: 100µm. ec: 

epiphyseal cartilage, p: proliferative zone, h: hypertrophic zone. C. Safranin-orange staining of growth plates of 

the proximal humerus from control and mutant newborn mice. Note, that Col2ILK chondrocytes are not as 

flattened as in the control cartilage and fail to form columnar stacks. Also note the reduced number of 

chondrocytes in the cartilage. Scale bar: 75µm. D. Quantification of the size reduction of long bones at newborn 

stage (** indicates p<0.01 versus control, n=4) 

 

The altered shape of chondrocytes in the proliferative zone was confirmed by electron 

microscopy. Fig 3.6 shows the dramatically altered cell shape of chondrocytes in Col2ILK 

mice. 

The organization of the fibrillar collagen network is dramatically affected in the absence of β1 

integrins (Aszodi et al. 2003). In Col2ILK mice the collagen organization in the resting zone 

as well as the proliferative zone in inter-territorial and peritorial matrix was normal (Fig 

3.6B). In contrast to β1-deficient cartilage, no increased bi-nucleation of chondrocytes was 



Results 

105 

observed. These data indicate that ILK is not essential for integrin-mediated assembly of 

collagen fibrils and cytokinesis but indispensable for the regulation of the cell shape in the 

proliferative zone. 

Fig 3.6. Ultrastructural analysis of newborn cartilage from control and Col2ILK mice. A. Electron 

micrographs from the proliferative zone of newborn tibiae. The formation of columnar structures is impaired in 

Col2ILK mice. No increased bi-nucleation was detected. Scale bar: 5µm. B. High magnifications of the inter-

territorial matrix in newborn tibial growth plates. The fibrillar collagen network was found to be normal in 

Col2ILK mice. Scale bar: 400nm. 

3.2.5. ILK is not required for chondrocyte maturation 

To test the role of ILK during chondrocyte differentiation certain differentiation markers were 

visualized by in-situ hybridization. Expression of Ppr and Ihh mRNA was seen in the pre-

hypertrophic zones in both control and Col2ILK mice indicating that differentiation of pre-

hypertrophic chondrocytes could occur normally in the absence of ILK (Fig 3.7A,B). 

Fig 3.7. In situ hybridization analysis of chondrocyte differentiation markers. A. Non-radioactive in situ 

hybridization using an antisense complementary RNA probe against Ppr mRNA. Scale bar: 100µm. B. Non-

radioactive in situ hybridization against Ihh mRNA. Sale bar: 100µm. 

 

In addition immunostaining for several matrix proteins revealed no obvious differences 

between control and mutant mice. Matrilin-2 which is strongly expressed in the 
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perichondrium but only weakly in the cartilage (Mates et al. 2004) was normally distributed 

in mutant cartilage (Fig 3.8A). Aggrecan, a proteoglycan important for the formation of 

hydrated aggregates and therefore an important regulator of mechanical properties of the 

cartilage showed also a normal expression pattern in Col2ILK mice (Fig 3.8B). In agreement 

with the electron microscopy data collagen II deposition was not altered (Fig 3.8C). Collagen 

X showed the expected expression pattern along the pre-hypertrophic and the hypertrophic 

zones in both control and mutant cartilages (Fig 3.8D). 

Fig 3.8. Normal ECM expression in Col2ILK cartilage from newborn mice. A. Matrilin-2 immunostaining 

shows a normal distribution along the perichondrium and more weakly in the cartilage. B. Aggrecan is present 

throughout the cartilage in Col2ILK mice. C. Collagen type II expression is unaltered in Col2ILK mice. D. 

Collagen type X expression is restricted to the pre-hypertrophic and hypertrophic zones in both control and 

mutant mice. Scale bars: 100µm. 

 

Histochemical staining for alkaline phosphatase (AP: a marker for osteoblasts, Fig 3.9A) and 

tartrate-resistant acid-phosphatase (TRAP: a marker for osteoclasts, Fig 3.9B) revealed no 

differences between wild-type and Col2ILK cartilage. 

All these data indicate that ILK is not essential for chondrocyte differentiation and expression 

or deposition of ECM proteins. These data also demonstrate that the dwarfism phenotype is 

not caused by an altered osteoblast or osteoclast activity. 
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Fig 3.9. Normal osteoblast and osteoclast activity in Col2ILK cartilage. A. AP staining of tibial sections from 

control and mutant newborn mice. Osteoblasts (dark blue) are normally distributed along the hypertrophic 

zones and in the perichondrium. B. TRAP staining of tibial sections from control and mutant newborn mice. 

Normal osteoclast activity (red) along the hypertrophic zone-bone interface. Scale bars: 100µm.  

3.2.6. ILK affects the G1-S transition of the chondrocyte cell cycle 

Endochondral bone formation depends on chondrocyte proliferation, hypertrophy and 

subsequent apoptosis of hypertrophic chondrocytes (1.5.1). Since the number of chondrocytes 

in the proliferative zone was reduced (Fig 3.5C), the proliferation rate of chondrocytes in the 

cartilage was investigated. A BrdU incorporation assay, which specifically labels proliferating 

cells in the synthesis (S) phase of the cell cycle, showed a 29% reduction in BrdU-positive 

chondrocytes in Col2ILK growth plates (Fig 3.10A). The D-type cyclins have a crucial 

function in controlling G1 progression and entry into S phase. To test whether the reduced 

number of BrdU-positive cells is due to diminished cyclin expression, bone sections were 

stained with an antibody that detects all cyclin-D isoforms (D1, D2 and D3). As shown in Fig 

3.10B, the number of cyclin-D-positive nuclei was reduced by 40% in Col2ILK growth 

plates, suggesting that loss of ILK affects the G1-S transition by regulating cyclin-D 

expression. Apoptosis, as determined by a TUNEL assay, was not increased in Col2ILK 

cartilage neither in the proliferative zone nor in the hypertrophic area (Fig 3.10C). 

These data indicate that the reduced number of cells in the cartilage is caused by a decreased 

proliferation rate of chondrocytes in the proliferative zone and not by increased cell death. 
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Fig 3.10. Reduced proliferation rates, decreased CyclinD1 expression but no increased apoptosis in Col2ILK 

cartilage at newborn stage. A. BrdU immunostaining of newborn tibial cartilage sections and quantification of 

BrdU positive cells in the growth plate. The proliferation rate especially in the proliferative zone of mutant 

cartilage is reduced. Scale bar: 75µm. B. CyclinD1 immunostaining of newborn tibial cartilage sections and 

quantification of cells with cyclinD1 positive nuclei. Col2ILK chondrocytes display reduced CyclinD1 

expression and a reduced nuclear localization. Scale bar: 50µm. (*** indicates p<0.0001). C. TUNEL staining 

of tibial sections at newborn stage demonstrated no increased apoptosis in Col2ILK cartilage. Scale bar: 

100µm. 

3.2.7. ILK modulates the actin cytoskeleton of chondrocytes in vivo and in vitro 

Similar to β1-deficient chondrocytes, Col2ILK chondrocytes displayed an altered cell shape 

(Fig 3.5C and Fig 3.6A) and showed reduced proliferation rates in vivo (Fig 3.10A). Since 

loss of β1 in the cartilage leads to alterations of the f-actin cytoskeleton which could account 

for differences in the cell shape and also affect cell proliferation, cartilage sections of control 

and Col2ILK mice were stained for f-actin. While control chondrocytes presented a strong 

cortical f-actin network, Col2ILK chondrocytes showed an uneven and punctuated f-actin 

distribution (Fig 3.11A). 
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To test the role of ILK during actin organization in more detail chondrocytes from control and 

mutant mice were isolated and analyzed in culture. 

ILK-deficient primary chondrocytes displayed a strongly altered cell shape and failed to 

spread even after 24h of culture while control chondrocytes adhered and spread within the 

first hours after seeding (Fig 3.11B). F-actin immunostaining revealed a strongly altered 

cytoskeletal organization in Col2ILK chondrocytes. While control chondrocytes formed f-

actin stress fibers that were extending throughout the cell, ILK-deficient chondrocytes did not 

form elongated stress fibers (Fig 3.11C). Immunostaining against FA proteins such as 

paxillin, β1 integrin or FAK showed the formation of FAs in Col2ILK cells. However, in 

ILK-deficient chondrocytes FAs were small and their location was restricted to the cell 

periphery while control cells displayed in general larger FAs that were located also in the cell 

center (Fig 3.11D-F). 

Fig 3.11. Loss of ILK leads to an impaired organization of the f-actin cytoskeleton in chondrocytes  in vivo 

and in vitro. A. Confocal picture of an f-actin immunostaining of tibial sections from newborn cartilage. While 

control chondrocytes exhibit a strong cortical f-actin organization, ILK-deficient chondrocytes display a 

punctuated f-actin staining.  Scale bar: 40µm. B. Phase contrast picture of freshly isolated primary 

chondrocytes after 24h in culture. ILK-deficient chondrocytes have a severe spreading defect. Scale bar: 40µm. 
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C. F-actin immunostaining of primary chondrocytes seeded on FN. D. Paxillin immunostaining of primary 

chondrocytes. E. β1-integrin immunostaining of primary chondrocytes. F. Immunostaining of primary 

chondrocytes against the auto-phosphorylated form of FAK. Scale bars: 20µm.  

3.2.8. ILK is essential for proliferation and adhesion of primary chondrocytes in 

vitro 

To test whether primary chondrocytes would also proliferate less in vitro, a BrdU 

incorporation assay was performed over a time period of 7 days in the presence of growth 

factors. Similar to the situation in vivo, primary Col2ILK chondrocytes proliferated 

significantly less in vitro compared to control chondrocytes (Fig 3.12A). To test, if loss of 

ILK affects the adhesion of primary chondrocytes to ECM proteins, primary chondrocytes 

were seeded on FN, VN and collagen type I and allowed to attach for 45min. The adhesion of 

Col2ILK chondrocytes to FN and collagen type I was reduced by 30% and 32%, respectively, 

compared to controls (Fig 3.12B); adhesion to vitronectin was less but still significantly 

reduced (Fig 3.12B). These data show that ILK is essential for proliferation of chondrocytes 

in vitro and important for the normal adhesion of chondrocyte to ECM proteins. 

Fig 3.12. Reduced proliferation of Col2ILK chondrocytes and impaired adhesion to ECM proteins. A. 

Colorimetric quantification of a BrdU incorporation assay. Strongly reduced proliferation rate of ILK-deficient 

chondrocytes in vitro. (*** indicates p<0.0001). B. Colorimetric quantification of cell-substrate adhesion assay. 

Loss of ILK leads to strongly reduced adhesion of chondrocytes to ECM proteins. (* indicates p<0.01, ** 

indicates p<0.001). 

3.2.9. ILK is dispensable for the phosphorylation of PKB/AKT and GSK-3β 

Since ILK had been implicated in the phosphorylation of PKB/Akt and GSK-3β, sections of 

control and mutant newborn mice were immunostained against the phosphorylated form of 

PKB/Akt (AKT-Ser473). Despite the reduced cell number, altered cell shape, and 

disorganized columnar structures in the proliferative zone of Col2ILK mice, both control and 

mutant chondrocytes displayed a robust phosphorylation level of PKB/Akt throughout the 
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cartilage (Fig 3.13A). Next, protein lysates of freshly isolated chondrocytes were probed for 

the phosphorylated forms of PKB/Akt (Thr308, Ser473) and GSK-3β (Ser9/21). In both cases 

protein lysates from freshly isolated Col2ILK chondrocytes showed similarly high 

phosphorylation levels as controls (Fig 3.13B, C). 

These data demonstrate that in chondrocytes ILK is dispensable as a kinase towards PKB/Akt 

or GSK-3β suggesting that the observed phenotype is most likely caused by an altered 

cytoskeletal f-actin organization and not by modulation of PKB/Akt signalling pathways. 

Fig 3.13. Normal phosphorylation levels of PKB/Akt and GSK-3β in ILK-deficient chondrocytes. A. 

Immunostaining of AKT-Ser473 in the tibial growth plate of control and mutant mice at the newborn stage. 

Robust phosphorylation levels of PKB/Akt in ILK-deficient chondrocytes. Scale bar: 25µm. B. Western blot 

analysis of protein lysates from freshly isolated chondrocytes (including densitometric quantification) showing 

normal phosphorylation of PKB/Akt and GSK-3β in ILK-deficient chondrocyte lysates. 
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3.3. Analysis of ILK function in vivo/characterization of keratinocyte-

specific ILK knockout mice 

3.3.1. Keratinocyte-specific deletion of the ILK gene 

To delete the ILK gene specifically in keratinocytes, ILK flox mice were intercrossed with 

transgenic mice carrying the Cre-recombinase transgene under the control of a K5 promoter to 

obtain mice with the genotype ILK (flox/flox)/K5Cre+ (ILK-K5). Littermates heterozygous 

for the ILK flox allele and expressing the K5-cre transgene were used as controls (ILK Co). 

The deletion of the protein was analyzed by western blot analysis of epidermal protein lysates 

and immunostaining of back skin sections. While ILK protein levels were decreased but still 

detectable in the epidermis of newborn mice, the protein was completely absent from P2 

epidermis and thereafter (Fig 3.14A). Immunostaining of back skin sections from 2w-old 

mice demonstrated the loss of ILK from the epidermis, ORS cells and hair matrix, while it 

was still present in the dermal papilla (Fig 3.14B). 

Fig 3.14. Efficient deletion of ILK in the epidermis. A. Western blot analysis of epidermal protein lysates from 

6d-, 2w-, 4w- and 10w-old mice. B. Immunostaining of back skin sections from 2w-old control and ILK-K5 mice. 

ILK is absent from the epidermis (E) but still detectable in the dermis (D) or the arrector pili muscle (AP). ILK 

expression is lost in outer root sheet (ORS) cells but not in the dermal papilla (DP). C. Control and ILK-K5 mice 
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at an age of 4w. Deletion of ILK leads to progressive hair loss and reticular pigmentation of the skin. 

Immunostaining was done by Michal Grzejszczyk and Katrin Lorenz. Pictures in C. were taken by Dr. Takao 

Sakai. 

 

At birth ILK-K5 mice were indistinguishable from control littermates. After 1-2 weeks when 

control animals developed a dense hair coat, ILK-K5 mice displayed only scattered hair with 

partial alopecia. By 4 weeks of age ILK-K5 mice had lost almost all hair and displayed 

reticular skin pigmentation (Fig 3.14C). However, ILK-K5 mice were of normal size and had 

a normal life span. 

3.3.2. ILK-K5 mice display severe epidermal and HF abnormalities 

The epidermis of ILK-K5 mice was normal until P2 but became progressively hyperplastic 

(Fig 3.15A). While basal keratinocytes were polarized and firmly attached to the BM in 

control mice they appeared flattened in ILK-K5 mice and frequently detached from the 

underlying BM (Fig 3.15B). This skin blistering became more severe with age. 

In addition to these epidermal defects, loss of ILK severely impaired the development of HFs 

(Fig 3.15A, C), which diverged into two subpopulations in ILK-K5 mice. At P14 around 66% 

of the HFs were arrested in their development and showed no hair shaft formation, a 

misshapen hair matrix and DP (Fig 3.15A, C; ■). About 33% of the HFs were able to 

complete HF morphogenesis, but were shorter and characterized by a substantial hyperplasia 

of the ORS (Fig 3.15A, C; ▲). A plausible explanation for the two HF populations is likely 

the combination of asynchronous HF morphogenesis and the perinatal deletion of the ILK 

protein. While fully developed HFs might have lost ILK late during morphogenesis, early 

arrested HFs lost ILK most likely at earlier developmental stages. 

No further hair cycle was induced in ILK-K5 mice as demonstrated by histological analysis of 

back skin section from P28-old mice. By 10w of age all HFs of ILK-K5 mice were resorbed 

and the melanin deposits gave rise to the reticular skin pigmentation. These data show that 

ILK is essential for epidermal integrity and HF morphogenesis. 
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Fig 3.15. Histological analysis of control and ILK-K5 back skin sections. A. Hematoxylin/Eosin staining of 

back skin sections from control and ILK-K5 mice. Loss of ILK leads to skin blistering and the development of 

two HF populations (■ arrested HFs, ▲ developed HFs). At later stages HFs are completely lost in ILK-K5 

mice. D: dermis, E: epidermis, PC: panniculus carnosum. Scale bar: 100µm. B. Hematoxylin/Eosin staining of 

back skin sections from control and ILK-K5 mice at P14. Loss of ILK leads to epidermal detachment (*) from the 

underlying dermis. C. High magnification of HFs from control and ILK-K5 back skin sections at P9. Developed 

HFs (▲) display a multilayered ORS (*). Scale bar: 50µm. Histology and immunostaining was performed by 

Michal Grzejszczyk and Katrin Lorenz. 



Results 

115 

3.3.3. Loss of ILK impairs integrin expression and BM integrity 

The detachment of ILK-K5 epidermis from the underlying dermis (Fig 3.15B) indicated an 

impaired integrin-BM interaction in ILK-deficient keratinocytes. To address this point, back 

skin sections from 2w-old mice were analyzed by immunostaining for β1 and β4 integrins as 

well as the BM marker laminin332. While in control mice β1 and β4 integrins were expressed 

exclusively in basal keratinocytes and enriched along the dermal-epidermal junction, these 

integrin subunits were localized basally but also frequently found on suprabasal keratinocytes 

(Fig 3.16A) in ILK knockout mice. In addition the BM was severely distorted in ILK-K5 

mice. While control skin displayed a linear laminin332 staining along the dermal-epidermal 

junction, ILK-K5 skin showed an irregular laminin332 staining and areas of massive laminin 

diffusion into the dermis (Fig 3.16B). These BM defects were confirmed by ultrastructural 

analyses (in collaboration with Dr. Wilhelm Bloch, University of Cologne) which, however, 

also revealed that hemidesmosomes could form in ILK-K5 epidermis (Fig 3.16C). Double 

immunostaining for the BM marker nidogen and phalloidin revealed that in control epidermis 

f-actin is restricted to the apical and lateral plasma membrane, whereas in ILK-K5 mice f-

actin was also present at the basal side facing the BM (Fig 3.16D). 

Therefore it can be concluded that loss of ILK is essential for the integrity of the epidermal 

BM as well as the polarization of the f-actin cytoskeleton in basal keratinocytes. 

3.3.4. ILK is not required for keratinocyte proliferation 

β1 integrin expression is thought to determine the proliferation potential of keratinocytes 

(Carroll et al. 1995; Jones et al. 1995) and deletion of β1 integrins in basal keratinocytes 

indeed diminishes keratinocyte proliferation in vivo (Brakebusch et al. 2000). To test whether 

ILK is essential for the proliferation of keratinocytes, histological sections were analyzed by 

Ki67 immunostaining. While no significant differences in the proliferation of basal 

keratinocytes were observed, we detected a significant number of proliferating cells in 

suprabasal cell layers (Fig 3.16E). Double immunostaining of integrins and proliferation 

markers revealed that these suprabasal cells were those cells which still expressed β1 and β4 

integrins (Fig 3.16A, B). These data indicate that the ectopic location of basal keratinocytes 

most likely caused by an impaired adhesion to the BM contributes to the epidermal 

thickening. More importantly, these data show that ILK is not required for β1 integrins to 

induce proliferation. 
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Fig 3.16. Suprabasal integrin expression and impaired BM integrity in the absence of ILK. A. Immunostaining 

of back skin sections from 2w-old mice. β1 integrin was frequently localized on suprabasal keratinocytes (*). 

Laminin332 staining was irregular and indicated massive diffusion of laminin into the dermis. B. β4 integrin 

was frequently localized around suprabasal cells. C. Electron micrographs of back skin section from 2w-old 

mice showing the impaired BM structure in ILK-K5 skin. Hemidesmosomes can form in the absence of ILK 

(arrowhead) D. Immunostaining of back skin sections from 2w-old mice immunostained for nidogen and f-actin. 

F-actin was mislocalized to basal sides in ILK-K5 epidermis (see arrowheads). E. Proliferating suprabasal cells 

were frequently detected in the hyperthickened epidermis of ILK-K5 mice (*). Immunostaining for A, B and D 

were done by Michal Grzejszczyk and Katrin Lorenz. Electron microscopy was performed by Dr. Wilhelm Bloch 

(University of Cologne). Scale bar: 25µm. 

3.3.5. Accumulation of proliferating cells in the ORS of ILK-deficient HFs  

Deletion of β1 integrin in the epidermis leads to reduced proliferation of epidermal 

keratinocytes but also hair matrix cells (Brakebusch et al. 2000). To investigate whether 

altered proliferation is the reason for impaired HF morphogenesis, back skin section of 

control and ILK-K5 mice at P7 and P14 were stained for the proliferation marker Ki67 or 



Results 

117 

mice were subjected to BrdU incorporation assays. KI67 immunostaining revealed the 

presence of an increased number of proliferating cells in the ORS of both developed and 

growth arrested mutant HFs (Fig 3.17A). Quantification of BrdU-positive cells in P7 and P14 

HFs confirmed this observation. While at P7 the number of proliferating ORS cells was only 

slightly increased in mutant HFs, this difference became more obvious at P14 (Fig 3.17B). 

Interestingly, at the same time the number of BrdU-positive cells was decreasing in the hair 

matrix (HM) of ILK-K5 HFs (Fig 3.17C) leading to a reduced total number of HM cells (Fig 

3.17D). These data suggested that defective morphogenesis of ILK-K5 HFs is not caused by 

reduced proliferation but rather by an impaired downward migration of ORS cells to the hair 

matrix. 

Fig 3.17. ILK-deficient HFs accumulate proliferating cells in the ORS. A. Ki67 immunostaining of control and 

mutant HFs at P7. Note the accumulation of proliferating cells along the ORS of mutant HFs (*). Scale bar: 

50µm. B. Increased number of BrdU-positive cells in the ORS of ILK-K5 HFs. C. Reduced number of BrdU-

positive cells in the HM of ILK-K5 HFs. D. The total number of cells in the HM is reduced in ILK-K5 HFs. 

Immunostaining was done by Michal Grzejszczyk and Katrin Lorenz. 
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3.3.6. ILK is essential for directional cell migration 

To test the hypothesis that loss of ILK impairs the migration of ORS cells along the BM that 

lines the HF, primary keratinocytes were isolated from control and ILK-K5 mice and 

analyzed in vitro. Time-lapse microscopy revealed that ILK-deficient keratinocytes are not 

able to migrate in a persistent manner. Control cells usually formed broad and stable 

lamellipodia, which allowed single cells to directionally migrate. In contrast, ILK-deficient 

keratinocytes formed highly unstable lamellipodia which were frequently collapsing. New 

lamellipodia formed at different locations simultaneously leading to frequent changes of 

migration direction and hence prohibited a persistent cell migration (Fig 3.18). 

Fig 3.18. ILK is essential for directional migration of keratinocytes. Keratinocytes from control and mutant 

mice were seeded on a FN/ColI matrix and analyzed by time-lapse microscopy. Control cells were able to 

perform directional migration, while ILK-K5 cells frequently changed their direction due to highly instable 

lamellipodia. (Red arrows indicate the retracting area of the cells. Green arrows indicate areas of protrusive 

activity). Scale bars: 10µm. Isolation of keratinocytes was done by Katrin Lorenz. 

3.3.7. Loss of ILK is essential for stress fiber formation and establishment of 

mature FAs in keratinocytes 

To test, if the reduced stability of lamellipodia is caused by impaired FC and FA formation 

which impairs the fixation of this structure to the substrate, primary keratinocytes were 

analyzed by immunostainings. Visualization of the f-actin cytoskeleton by phalloidin staining 

and of FAs by FAK immunostaining revealed that ILK-deficient keratinocytes were not able 

to assemble strong bundles of f-actin (Fig 3.19A). Moreover, the formation of FAs was 

significantly impaired. Biochemical analysis of protein lysates from adherent control and 



Results 

119 

mutant keratinocytes revealed a reduced activation of FAK in the absence of ILK (Fig 3.19B) 

which is in line with the reduced number of FAs in ILK-K5 keratinocytes. To check whether 

reduced activation of Rac1 contributes to the migration defect of ILK-K5 keratinocytes (Fig 

3.18), primary cells were subjected to Rac1 pulldown assays during cell adhesion (Fig 3.19C) 

or after growth factor stimulation (Fig 3.19D). Interestingly, no significant differences in 

Rac1 activation levels could be detected. 

These data indicate that the reduced migration of ILK-deficient keratinocytes is mainly 

caused by impaired cell adhesion due to defective FA formation and maturation as well as a 

disturbed formation of the f-actin cytoskeleton. 

Fig 3.19. Loss of ILK leads to impaired stress fiber formation and FA assembly in keratinocytes. A. 

Immunostaining of control and ILK-K5 primary keratinocytes revealed that loss of ILK impaired FA and stress 

fiber formation. Moreover most of the ILK-K5 keratinocytes were much smaller. Scale bar: 10µm in ILK Co and 

20µm in ILK-K5. B. Biochemical analysis of protein lysates from primary keratinocytes showed reduced 

activation levels of FAK in ILK-K5 keratinocytes. C. Western blot analysis of Rac1 pulldown assays revealed no 

significant differences in Rac1 activation in control and ILK-K5 primary keratinocytes in suspension (0) or 

30min after cell adhesion to a laminin-rich matrix. D. Western blot analysis of a Rac1 pulldown assay showing 

no significant differences after growth factor-induced Rac1 activation in control and ILK-K5 primary 

keratinocytes. Cells were stimulated for 15min and 30min with 8% FCS. Immunostaining in A was done by 

Katrin Lorenz and Dr. Robert Torka. 
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3.4. Analysis of ILK function in vitro/Characterization of ILK knockout 

fibroblasts 

3.4.1. Generation of immortalized ILK knockout fibroblasts 

In order to analyze the importance of ILK during the remodelling of the actin cytoskeleton 

ILK fibroblasts were generated (Sakai et al. 2003). Cells were isolated from the kidney of an 

adult ILK (flox/flox) mouse, immortalized by adenoviral transduction of the SV40 large T 

antigen and several clonal cell lines were established (termed ILK (f/f) hereafter). 

Subsequently, ILK was deleted by transient adenoviral mediated expression of the Cre-

recombinase and clonal knockout cell lines were established, (termed ILK (-/-) hereafter). The 

establishment of these cell lines was done by Drs. Reinhard Fässler and Takao Sakai (for 

details see Sakai et al. 2003). 

3.4.2. Consequences of ILK deletion in fibroblasts 

To confirm loss of ILK protein expression ILK (f/f) and ILK (-/-) cell lines were 

biochemically analyzed. Western blot analyses of fibroblast cell lysates showed that ILK was 

absent in the knockout cells while control cells showed robust expression levels of ILK. 

Known interaction partners of ILK such as Pinch1, α-and β-parvin, paxillin, migfilin and 

Mig2a/Kindlin-2 were highly expressed in control cells. Pinch2 and γ-parvin, also known to 

interact with ILK, were not detectable by western blotting. Interestingly, ILK (-/-) fibroblasts 

showed in addition to the loss of ILK strongly decreased expression levels of Pinch1, α- and 

β-parvin while the levels of other interaction partners such as paxillin, β1 integrin, migfilin or 

Mig2a/Kindlin-2 were unchanged (Fig 3.20A).  

To confirm that the observed loss of Pinch1, as well as α-and β-parvin was a direct result of 

ILK deletion and not an unspecific artefact for example due to cloning, ILK (-/-) cells were 

infected with a retrovirus carrying an ILK-EGFP controlled by a CMV promoter. Single 

clones stably expressing ILK-EGFP were generated and analyzed biochemically. Fig 3.20B 

shows that re-expression of ILK-EGFP in ILK (-/-) fibroblasts fully rescued Pinch1 and 

parvin expression levels, indicating that the stability of Pinch1 and parvin directly depends on 

ILK. 
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Fig 3.20. Biochemical characterization of ILK (f/f) and ILK (-/-) fibroblast cell lines. A. Western blot analysis 

of protein lysates from ILK (f/f) and ILK (-/-) fibroblasts. Loss of ILK is evident in lysates from ILK (-/-) 

fibroblasts. Note the reduced levels of Pinch1, α- and β-parvin. B. Western blot analysis of protein lysates from 

ILK (f/f) (lane1), ILK (-/-) (lane2) and ILK (-/-) ILK-EGFP fibroblasts (lane3). Loss of Pinch1 and parvins could 

be rescued by re-expression of ILK-EGFP. 

 

Similar to ILK-deficient chondrocytes, ILK (-/-) fibroblasts displayed a strong proliferation 

defect (Fig 3.21). Interestingly, this proliferation defect was especially evident in early 

passages (passage p1-p15) while later passages (p>15) demonstrated only slightly reduced 

proliferation rates indicating that ILK (-/-) fibroblasts develop compensatory mechanisms that 

could overcome the proliferation defect. Since the exact processes responsible for this effect 

were not known, only cells with low passage numbers (p<15) were used in this study. 

 
Fig 3.21. Reduced proliferation rate of ILK (-/-) 

fibroblasts. Colorimetric quantification of a BrdU 

incorporation assay over a time period of 16h in growth 

factor containing medium. ILK (-/-) fibroblasts displayed 

strongly reduced proliferation rates that were especially 

evident in early passages (** indicates p<0.01, 

***p<0,0001 versus control). 

 

 

3.4.3. Presence of Pinch1 in FA of ILK (-/-) fibroblasts 

The interdependency of ILK, Pinch1 and α-parvin in respect to protein stability has been 

described before by Wu and colleagues who showed that depletion of Pinch1 from HeLa cells 

strongly reduced levels of ILK and α-parvin, which was partially reversed by inhibition of the 

proteasome (Fukuda et al., 2003). Moreover the same group showed that ILK, Pinch1 and α-
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parvin form a ternary complex in the cytoplasm which is essential for targeting each protein 

to FAs (Zhang et al., 2002). If true, loss of ILK should result in a complete loss of Pinch1 

from FAs. Interestingly, Pinch1 was not fully degraded in ILK (-/-) cells (Fig 3.20B). The 

presence of low Pinch1 levels allowed to test by immunostaining with a polyclonal Pinch1 

antibody whether it could still localize into FAs of ILK (-/-) cells. In control cells, Pinch1 

strongly localized together with other FA markers such as paxillin in FAs (Fig 3.22A). In ILK 

(-/-) fibroblasts, Pinch1 was almost undetectable due to the strongly reduced protein level. In 

overnight cultures a fraction of cells contained clear immunosignal of Pinch1 in FAs (Fig 

3.22B). These data show for the first time that Pinch1 can be recruited into FAs in the absence 

of ILK. This has been confirmed in Pinch1 (-/-) murine embryonic fibroblasts where small 

amounts of ILK were also found in FAs (Stanchi et al., 2006). Nevertheless, the dramatic 

reduction of Pinch1 expression levels and the very inefficient FA targeting of Pinch1 in ILK 

(-/-) fibroblasts corroborate the notion that the assembly of the ILK/Pinch/parvin complex is 

essential for the proper function of the individual proteins. 

Fig 3.22. Pinch1 localization into FAs of ILK (-/-) fibroblasts. A. Confocal image showing the f-actin 

cytoskeletal network and the Pinch1 localization into FAs in ILK (f/f) fibroblasts. FAs are visualized by paxillin 

co-staining. B. Confocal image showing f-actin cytoskeletal network in a large ILK (-/-) fibroblast and the 

Pinch1 localization into FAs (indicated by arrows). Nuclear Pinch1 staining (as indicated by *) was found to be 

largely unspecific, as it is also prominent in Pinch1 (-/-) cells.  Scale bars: 20µm. 

3.4.4. The role of ILK during actin dynamics 

To understand the role of ILK during integrin-dependent actin reorganizations, two 

experiments were established. First, cells were taken into suspension and monitored during 
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cell spreading on ECM proteins (3.4.5). Second, starved cells were seeded on ECM proteins 

and stimulated with growth factors (3.4.8). Both experiments are known to induce rapid actin 

reorganizations. 

3.4.5. ILK is essential for actin reorganization during cell spreading 

In order to analyze the role of ILK during cell spreading ILK (f/f) and ILK (-/-) fibroblasts 

were taken into suspension and subsequently seeded on FN. Cells were fixed 20min, 40min 

and 60min thereafter and the organization of the actin cytoskeleton and FAs were analyzed by 

immunostaining. After 20min of cell spreading control cells showed a cortical organization of 

the actin cytoskeleton. At the cell periphery FAs had formed that were positive for the auto-

phosphorylated form of FAK indicating the maturation of FCs into FAs (Fig 3.23A). ILK-

deficient fibroblasts were smaller and displayed a more diffuse actin cytoskeleton. FAs were 

present at the periphery of the cell but most of the cells did not show significant FAK 

phosphorylation at this time point (Fig 3.23A). 

After 40min of cell spreading most of the control fibroblasts were polygonal, showed strong 

bundles of stress fibers at the edge and thin stress fibers in the center of the cell. Most of these 

actin fibers were anchored to large FAs that were mostly concentrated at the cell borders (Fig 

3.23B). In sharp contrast, most of the ILK (-/-) fibroblasts were still round and presented a 

rather diffuse actin cytoskeleton. FAs were still very small and primarily located at the cell 

periphery. However, most of the FAs were positive for auto-phosphorylated FAK (Fig 

3.23B). 

At 60min of cell spreading control cells had developed a robust stress fibers system that was 

connected to large FAs at the cell edges and smaller FAs in the center of the cell (Fig 3.23C). 

Fully spread ILK (-/-) fibroblasts only showed a poorly developed stress fiber system. Larger 

FAs could form but were almost exclusively located at the cell periphery (Fig 3.23C). This 

phenotype was present on all ECM proteins tested such as FN, VN or a laminin-rich matrix 

and still evident after overnight culture. However, although the f-actin cytoskeleton was 

dramatically different between control and knockout cells, the overall ratio of G-actin to F-

actin was not affected by the loss of ILK (Fig 3.24). 
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Fig 3.23. Spreading defect of ILK (-/-) fibroblasts.  A. Confocal pictures of triple immunostainings of ILK (f/f) 

and ILK (-/-) fibroblasts 20min after cells were seeded on FN-coated LabTek chamber slides. F-actin is shown in 

green, vinculin in red and FAK in blue. Scale bar: 20µm. B. Confocal images of triple immunostainings of ILK 

(f/f) and ILK (-/-) fibroblasts 40min after cells were seeded on FN. Scale bar: 20µm. C. Confocal images of 

triple immunostainings of ILK (f/f) and ILK (-/-) fibroblasts 60min after cells were seeded on FN. Scale bar: 

20µm. 
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Fig 3.24. Spreading statistic. A. ILK (-/-) fibroblasts displayed a reduced cell area during the spreading on FN 

compared to control cells. B. No obvious differences in the G/F-actin ratios of control and ILK (-/-) fibroblasts 

were detected 60min, 120min and 240min after adhesion to FN. 

3.4.6. ILK regulates cell spreading independently of its kinase activity 

To confirm that the observed phenotype was exclusively dependent on ILK, a full length ILK 

that was C-terminally tagged with an EGFP was stably expressed in ILK (-/-) fibroblasts (Fig 

3.20B). Cells expressing an amount of ILK that was comparable to wt-levels showed a 

rescued spreading phenotype, developed a robust stress fiber network and presented large FA 

throughout the cell (Fig 3.25A). Moreover, the proliferation defect was fully rescued by re-

expression of ILK-EGFP (Sakai et al. 2003). ILK that carries a mutation within the kinase 

domain (E359K) completely rescued the spreading defect (Sakai et al., 2003), indicating that 

the kinase activity of ILK is dispensable for the regulation of the actin cytoskeleton. It was, 

however, unclear if the E359K mutation leads to a complete loss of ILK kinase activity. To 

further analyze this, additional mutations in the C-terminal domain of ILK (described as 

kinase-dead mutants) were tested. In addition, a double point mutation in the paxillin binding 

site domain of ILK (ILK-PBS) was analyzed, that was described before to dramatically affect 

ILK function (Nikolopoulos and Turner 2001). 

As shown in Fig 3.25B ILK-PBS was exclusively localized in the cytoplasm and not able to 

translocate into FAs. Moreover, cell shape, the actin cytoskeleton as well as the structure of 

FAs was not rescued by this mutant ILK suggesting that the localization of ILK into FAs is 

essential for its function and that the FA targeting depends on the paxillin-binding motif in 

ILK. To further test, if the kinase activity of ILK is important three additional mutations were 

tested. The R211A mutation was described as a PIP3-binding mutant, S343A was shown to 

affect the activation loop resulting in a complete kinase-dead ILK, whereas mutation S343D 
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was reported to act as a constitutive active ILK (Persad et al. 2001). All these ILK mutants 

were fused to EGFP and stably expressed in ILK (-/-) fibroblasts. Interestingly, all ILK 

mutants were able to rescue the ILK knockout phenotype. The rescued cells were able to 

develop a strong actin network and formed robust FAs throughout the cell (Fig 3.25C-E). 

These data indicate that the kinase activity of ILK is not essential for the organization of the 

actin cytoskeleton. 

Fig 3.25. ILK kinase activity is dispensable for the regulation of the actin cytoskeleton. A. Confocal images of 

immunostained ILK (-/-) fibroblasts stably expressing ILK-EGFP. B. ILK (-/-) fibroblasts stably expressing ILK-
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PBS, a double point mutation in the paxillin binding site of ILK. Note, that this mutation does not rescue the ILK 

knockout phenotype. C. Immunostaining of ILK (-/-) fibroblasts stably expressing the ILK-R211A mutation in the 

potential PIP3 binding site of ILK. D. Immunostaining of ILK (-/-) fibroblasts stably expressing ILK-S343A. This 

mutation was reported to result in a complete kinase-dead ILK. E. Immunostaining of ILK (-/-) fibroblasts stably 

expressing ILK-S343D, a potential constitutive active ILK. EGFP signals are shown in green, paxillin staining 

in red. Scale bars: 20µm. 

3.4.7. ILK is essential for fibronectin fibrillogenesis 

Although ILK (-/-) cells could form FAs in the cell periphery, they displayed a strongly 

impaired formation of centrally located FAs. The formation of these structures often coincides 

with the formation of fibrillar adhesions and is dependent on actin pulling forces, which are 

essential structures for the assembly of an extracellular FN network. To check whether ILK (-

/-) cells could assemble FN fibrils, control and knockout cells were seeded on FN-coated 

chamber slides and cultured for approximately 12h in the presence of a fluorescently labelled 

FN (FN-Cy5). Cells were then fixed, immunostained and analyzed by confocal microscopy. 

While control cells showed a strong incorporation of the exogenously added FN into a dense 

FN network (Fig 3.26A), ILK (-/-) cells were completely unable to assemble FN fibrils (Fig 

3.26B). ILK (-/-) cells stably expressing ILK-EGFP allowed FN-fibrillogenesis again (Fig 

3.26C). These data demonstrate that ILK is essential for FN matrix assembly. 
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Fig 3.26. Defective FN fibrillogenesis in the absence of ILK. A. Merged stack of confocal pictures showing 

immunostained ILK (f/f) fibroblasts, which incorporated FN-Cy5 into a dense FN network. B. Merged stack of 

confocal pictures showing ILK (-/-) fibroblasts which were not able to assemble FN. C. Merged stack of confocal 

pictures showing ILK (-/-) fibroblasts expressing ILK-EGFP. These cells were able to perform FN fibrillogenesis 

again. Scale bar: 40µm. 

3.4.8. Dorsal ruffle (DR) formation 

During the cell spreading analysis of ILK (f/f) fibroblasts I realized that these cells can form 

large but very short lived actin rings. A closer evaluation revealed that those structures were 

DRs, which are known to occur in certain cell types upon treatment with growth factors such 

as the epidermal growth factor (EGF) (Chinkers et al. 1979) or the platelet-derived growth 

factor (PDGF) (Mellstroom et al. 1983) or phorbol esters such as TPA (Schliwa et al. 1984; 

Kitano et al. 1986). Since DRs form during v-src induced transformation these structures are 

thought to contribute to rapid actin reorganizations during the onset of cell migration or cell 

transformation (Boschek et al. 1981). In this study, DR formation was used as a read-out in 

order to analyze the role of ILK for growth factor-induced actin reorganizations. 
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3.4.8.1. DR formation during cell spreading 

When ILK (f/f) fibroblasts were seeded in the presence of growth factors (10% FCS) on FN 

and monitored during the cell spreading, around 8-10% of the cells formed DRs, which 

typically occurred in cells that switched from an isotropic to an anisotropic way of spreading 

(Fig 3.27). Interestingly these ruffles were hardly observed in ILK (-/-) cells. Similarly ILK 

(f/f) cells seeded on poly-lysine were also unable to trigger formation of DRs (Fig 3.27B). 

Fig 3.27. DR formation during cell spreading. A. Images taken from a time lapse video showing a control ILK 

(f/f) fibroblast during spreading on FN in the presence of growth factors (arrows indicate the location of the 

DR). Scale bar: 20µm. B. Quantification of DR formation in ILK (f/f) control cells  during cell spreading on FN 

and poly-lysine based on 6 independent experiments.  

3.4.8.2. Integrin-dependency of DR formation 

That ILK (f/f) fibroblasts formed DRs during integrin-mediated adhesion but not after 

adhesion to poly-lysine indicated that integrin engagement is important for this rapid form of 

growth factor-induced actin reorganization. To further test this, control cells were starved, 

seeded on FN or poly-lysine and allowed to spread for 2h. Subsequently, cells were 

stimulated with EGF. Shortly after EGF stimulation, ILK (f/f) fibroblasts formed DRs that 

were originating from the cell edges moving onto the dorsal cell body (Fig 3.28A). While 

approximately 25-30% of the FN-attached cells formed DRs, cells that were seeded on poly-

lysine were unable to form DRs after EGF stimulation (Fig 3.28B). 

Next, control cells were seeded on different concentrations of FN (2.5-10µg/ml) and 

stimulated with EGF. Cells that were seeded on high concentrations of FN formed 

significantly more DRs than cells that were seeded on dishes coated with less FN. At a FN 

concentration of 2.5µg/ml cells did adhere but almost completely failed to form DRs (Fig 
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3.28C). These data show for the first time that integrin engagement is essential for DR 

formation. 

Fig 3.28.  Integrin engagement promotes dorsal ruffling after EGF stimulation. A. Pictures taken from a 

movie obtained by time lapse video microscopy. Arrows indicate the location of the DR, which usually forms 

within the first 4min after EGF stimulation. B. Quantification of DR formation after EGF stimulation of ILK (f/f) 

fibroblasts seeded on FN or poly-lysine based on 4 independent experiments. C. Quantification of DR formation 

after EGF stimulation of ILK (f/f) fibroblasts seeded on different concentrations of FN based on 6 independent 

experiments. 

3.4.9. Localization of vinculin, talin and ILK into DR 

It is known for more than 20 years that the FA protein vinculin is present in DRs (Schliwa et 

al. 1984). This is surprising since FAs are exclusively located at the basal side of 2D-cultured 

cells. To check whether other integrin-associated proteins also translocate to DRs after EGF 

treatment, starved control cells were stimulated with EGF, fixed after 4min and subjected to 

immunostaining. As expected, vinculin localized in FAs at the basal side and into DRs at the 

dorsal side of the cell (Fig 3.29A). Talin, a β1 integrin-binding molecule, showed a similar 

distribution with a strong staining in the FAs and a weaker but still prominent staining in the 

DR (Fig 3.29B). Other FAs proteins like FAK or paxillin showed only very weak or no DR 

localization (Fig 3.29A, B and data not shown).  
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In order to check if ILK is also present in DRs, ILK (-/-) fibroblasts that stably re-express 

ILK-EGFP (Fig 3.20B) were monitored during DR formation. In addition, ILK (f/f) 

fibroblasts were stained with a monoclonal ILK antibody. Both experiments revealed that ILK 

was mainly localized in FAs but was also capable of translocating into DRs after EGF 

stimulation (Fig 3.29C and data not shown). 

Fig 3.29. Localization of FA proteins into DRs. A. Merged stack of a series of confocal pictures showing f-

actin, vinculin and FAK immunostaining of ILK (f/f) fibroblasts. Scale bar: 20µm. B. Merged stack of a series of 

confocal pictures showing f-actin, talin and FAK immunostaining of ILK (f/f) fibroblasts. Scale bar: 20µm. C. 

Merged stack of a series of confocal pictures showing f-actin and cortactin immunostaining of ILK (-/-) 

fibroblasts stably expressing ILK-EGFP. Note the localization of vinculin, talin and ILK in FAs and in DRs. 

Scale bar: 20µm. 

3.4.10. DRs originate from the ventral side of the cell 

How do FA proteins translocate from FAs at the ventral side of the cell into DRs at the dorsal 

side? One possibility could be that DRs actually form at the basal side and later translocate to 

the dorsal side. To test this hypothesis, control cells were stimulated and fixed at early time 

points during DR formation. Using confocal microscopy, the localization of the DR marker 

cortactin was investigated. One minute after EGF stimulation, cortactin accumulated in 

patches at the basal side of the cell. These patches were at this time point not co-localizing 
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with f-actin and exclusively localized at the basal side of the cell (Fig 3.30A, E) within the 

same confocal plane as FAs (visualized by FAK immunostaining). 2min after EGF 

stimulation, the cortactin patches developed into larger structures that became frequently 

overlapping with f-actin accumulations (Fig 3.30B). However, these structures (resembling 

early DRs) were still mainly localized to the basal side of the cells (Fig 3.30F). At later time 

points the distribution of cortactin and f-actin was not clearly restricted to the basal side 

anymore (Fig 3.30C, G). 6min after EGF stimulation the typical DR was evident in most of 

the cells. These structures were exclusively localized at the dorsal side of the cell (Fig 3.30D, 

H). These data indicate that DRs arise at the basal side of the cell and appear only at later time 

points in dorsal locations. 

 
 

Fig 3.30. DRs form at the basal side of the cell. A. Merged stack of confocal images showing ILK (f/f) 

fibroblasts 1min after EGF stimulation. Small cortactin patches indicate the formation of a DR. B. Merged stack 

of confocal images showing ILK (f/f) fibroblasts 2min after EGF stimulation. Large f-actin structures began to 

form. C. ILK (f/f) fibroblasts 4min after stimulation. D. DRs or “actin flowers” 6min after EGF stimulation. E. 

Images of a basal and a dorsal confocal plane 1min after EGF stimulation taken from (A). Cortactin patches are 

exclusively basal. F. Images of a basal and a dorsal confocal plane 2min after EGF stimulation taken from (B). 

F-actin structures are still basal. G. Images of a basal and a dorsal confocal plane 4min after EGF stimulation 

taken from (C). Certain structures occur at the dorsal side H. Images of a basal and a dorsal confocal plane 

6min after EGF stimulation taken from (D). DRs are exclusively at the dorsal side, presenting “actin flowers“. 

Scale bars: 20µm in (A-C, E-G), 30µm (D, H) 
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3.4.11. ILK is essential for DR formation 

ILK (-/-) fibroblasts failed to form DRs during the cell spreading, whereas ILK (f/f) control 

cells formed numerous DRs on FN (Fig 3.27). To analyze the role of ILK during DR 

formation in more detail, control and knockout fibroblasts were seeded on FN (10µg/ml), 

allowed to attach and stimulated with EGF. While 25-30% of ILK (f/f) cells showed dorsal 

ruffling, adherent ILK (-/-) cells formed significantly less DRs (Fig 3.31A). 

Fig 3.31. ILK is essential for DR formation. A. Quantification of DR formation after EGF stimulation of 

adherent ILK (f/f) and ILK (-/-) fibroblasts based on 8 independent experiments. B. Western blot analysis of 

protein lysates from ILK (f/f) (1), ILK (-/-) (2), ILK-FLAG #1 (3), ILK-FLAG #2 (4), ANK-FLAG #1 (5), ANK-

FLAG #2 (6) fibroblasts. Note, that expression of the N-terminal part of ILK is sufficient to rescue Pinch1 

degradation. C. Quantification of DR formation after EGF stimulation of adherent ILK (f/f), ILK-FLAG and 

ANK-FLAG fibroblasts. Quantification is based on 4 independent experiments. ILK (-/-) fibroblasts 

overexpressing ILK-FLAG formed even more DRs. Rescue of the Pinch1 expression level was not sufficient for 

the induction of dorsal ruffling.D. Images taken from a time lapse video showing extensive DR formation (see 

arrows) after EGF stimulation in ILK-FLAG overexpressing cells. Scale bar: 100µm. 
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Deletion of ILK decreases Pinch1 levels. To exclude that the defective DR formation is due to 

diminished Pinch1 levels rather than loss of ILK, cell lines were generated that stably 

expressed an N-terminal part of ILK (tagged with a FLAG tag) but lacked the C-terminal 

domain (ANK-FLAG) (Fig 3.31B). Stable expression of the truncated ILK stabilized Pinch1 

and localized it to FAs (Fig 3.32A, B). The overall phenotype of these cells, the impaired 

spreading activity and diminished stress fiber formation was, however, unchanged. When 

stimulated with EGF ANK-FLAG cells were still not able to form DRs (Fig 3.31C). 

To further test, if DR formation correlates with ILK expression levels a cell line was 

generated that overexpressed ILK-FLAG (Fig 3.31B). These cells develop a robust stress 

fiber network and display strong FA formation (Fig 3.32A). Interestingly, the mild 

overexpression of ILK led to the formation of significantly more DRs than in control cells, 

demonstrating that ILK expression directly correlates with DR formation (Fig 3.31C, D) 

Fig 3.32. Stabilization of Pinch1 by expression of full length ILK and ILK-ANK. A. Merged stack of confocal 

images showing immunostaining of ILK (-/-) fibroblasts expressing ILK-FLAG. Pinch1 localized in FAs again. 

B. Merged stack of confocal images showing immunostaining of ILK (-/-) fibroblasts expressing an N-terminal 

part of ILK (ILK-ANK). Pinch1 could localize into FAs (arrows). Scale bars: 20µm. 

3.4.12. Stabilization of Pinch1 by N-terminal ILK is not sufficient for induction 

of FN fibrillogenesis in ILK (-/-) fibroblasts 

To check if the rescue of Pinch1 degradation and its localization into FAs is sufficient to 

induce FN fibrillogenesis, ILK (-/-) fibroblasts stably expressing either full length ILK-FLAG 

or ANK-FLAG were incubated with fluorescently labelled FN (FN-Cy5, 3.4.7). As shown in 

Fig 3.33, expression of full length ILK-FLAG rescued the FN fibrillogenesis defect of ILK (-
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/-) fibroblasts, while expression of the N-terminal ankyrin repeats of ILK was not sufficient to 

induce FN assembly despite the fact that Pinch1 expression was restored and Pinch1 was 

targeted to FAs. These data indicate that ILK is a central player for both DR formation and 

FN fibrillogenesis. 

Fig 3.33. Full length ILK is essential for FN-fibrillogenesis. A. Merged stack of confocal images showing 

immunostaining of ILK (-/-) fibroblasts stably expressing ILK-FLAG. FN assembly could occur normally. B. 

Merged stack of confocal images showing immunostaining of ILK (-/-) fibroblasts stably expressing ANK-FLAG. 

Restoration of Pinch1 expression levels and Pinch1 localization into FAs was not sufficient for triggering FN 

matrix assembly. Scale bars: 40µm. 

3.4.13. Expression of constitutive active Rac1 rescues the DR formation defect 

Activation of the small GTPase Rac1 was shown to be crucial for DR formation (Buccione et 

al., 2004). To confirm the important role of Rac1 during dorsal ruffling in ILK fibroblasts, 

cell lines were generated that stably expressed either dominant negative Rac1 (RacN17) or 

constitutive active Rac1 (RacL61). Both constructs contained a myc-tag that allowed for 

detection of the exogenous protein in western blot analyses and immunostaining. Fig 3.34A 

shows that transduced RacN17 was diffusely distributed in the cytoplasm of ILK (f/f) 

fibroblasts. RacL61 which was expressed in ILK (-/-) fibroblasts was found in the cytoplasm 

as well, but was also localized into peripheral ruffles and DRs that could be induced in these 

cells with EGF in the absence of ILK (Fig 3.34B). A biochemical analysis revealed that the 

RacN17 expression level was approximately as high as the endogenous Rac1 level. In 

contrast, very little amounts of RacL61 were expressed in ILK (-/-) cells that were, however, 

sufficient to induce quite dramatic morphological changes and dorsal ruffling (Fig 3.34C). 

Statistical evaluation of DR formation revealed that ILK (-/-) fibroblasts stably expressing 



Results 

137 

RacL61 formed even more DRs than control cells but slightly delayed. Moreover, DR 

formation was still dependent on EGF stimulation. Starved ILK (-/-) fibroblasts expressing 

RacL61 formed almost no DRs indicating that more than just Rac1 activation is necessary for 

DR formation. Interestingly, when ILK (-/-) RacL61 fibroblasts were seeded on poly-lysine 

they were unable to form DR after EGF stimulation underscoring the essential role of integrin 

engagement. 

The fact that the loss of ILK can be compensated by the expression of an active Rac1 

indicates that ILK itself might be essential for the spatio-temporal activation of Rac1 after 

EGF stimulation. 

Fig 3.34. Expression of dominant negative and constitutive active Rac1. A. Immunostaining of ILK (f/f) 

fibroblasts stably expressing RacN17. Note, that the overall appearance of these cells is not dramatically 

changed. Stress fiber and FAs appeared to be rather normal. RacN17 was equally distributed in the cytoplasm. 

Scale bar: 20µm. B. Immunostaining of ILK (-/-) fibroblasts expressing RacL61. These cells changed 

dramatically their morphology. Peripheral ruffles (arrows) and DRs (*) were visible, to which RacL61 itself was 

localizing. Scale bar: 20µm. C. Biochemical analysis. The endogenous levels of Rac1 were not changed upon 

expression of mutant Rac1. Very low levels of RacL61 were sufficient for induction of dorsal ruffling in ILK (-/-) 
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cells. D. Quantification of DR formation in ILK (f/f), ILK (f/f) RacN17 and ILK (-/-) RacL61 fibroblasts. 

Defective DR formation of ILK (-/-) fibroblasts could be rescued by expression of RacL61. 

3.4.14. Expression of constitutive active Rac1 is not sufficient to overcome the FN 

assembly defect of ILK (-/-) fibroblasts 

Since expression of RacL61 can rescue the DR formation defect of ILK (-/-) fibroblasts it was 

tested whether activation of Rac1 could also overcome the FN fibrillogenesis defect of ILK 

knockout cells. Fig 3.35A shows that expression of RacN17 in ILK (f/f) fibroblasts impaired 

FN fibrillogenesis although it did not completely block it. The expression of constitutive 

active Rac1 in ILK (-/-) fibroblasts was not sufficient to allow FN fibrillogenesis to occur (Fig 

3.35B) indicating that the essential role of ILK during FN fibrillogenesis is independent of 

Rac1 activation. 

These data demonstrated that ILK plays a crucial role for different integrin-signal 

transduction pathways, one leading to the Rac1-dependent formation of DR and another 

leading to the assembly of a FN matrix. 

Fig 3.35. Expression of RacL61 is not sufficient to rescue the FN assembly defect of ILK (-/-) fibroblasts. A. 

Merged stack of confocal images showing immunostaining of ILK (f/f) fibroblasts stably expressing RacN17. B. 

Merged stack of confocal images showing ILK (-/-) fibroblasts stably expressing RacL61. Expression of 

constitutive active Rac1 was not sufficient to overcome the fibrillogenesis defect. Scale bars: 40µm.  

3.4.15. Paxillin is dispensable for DR formation 

ILK binds to a number of proteins that could potentially transduce integrin/ILK signalling. As 

shown before the interaction between paxillin and ILK seemed to be essential for many if not 

all ILK functions, since ILK (-/-) cells stably expressing a paxillin-binding site mutant ILK-
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EGFP still showed a highly disorganized actin cytoskeleton and impaired FA formation (Fig 

3.25B). To confirm that paxillin plays a crucial role downstream of ILK, ILK (f/f) fibroblast 

cell lines were generated that stable express short hairpin RNA (shRNA) directed against the 

mRNA of mouse-paxillin. Five different shRNA constructs were stably expressed in ILK (f/f) 

fibroblasts two of which were efficiently reducing the protein levels of paxillin. From these 

cells, clonal cell lines were generated. In this way, a high knockdown efficiency was 

permanently achieved. While control cells expressing an unspecific scrambled shRNA 

sequence displayed unchanged paxillin levels, knockdown cell lines showed an almost 

complete loss of paxillin with an expression that was less than 5% of the paxillin level in 

control cells (Fig 3.36A, B). The expression levels of FA proteins which directly bind paxillin 

such as ILK, α-parvin or FAK were not significantly altered in paxillin knockdown cells. Hic-

5, a member of the paxillin family was only expressed at low levels in ILK fibroblasts and 

slightly reduced in paxillin knockdown cells (Fig 3.36A). Loss of paxillin expression was 

confirmed by immunostaining and revealed a defective localization of FAK into FAs which 

was now instead found in the cytoplasm. Moreover, paxillin knockdown cells displayed a 

disorganized actin cytoskeleton with a strong cortical stress fiber network and altered FAs 

which appeared slightly larger (Fig 3.36C, D). In agreement with the strongly reduced 

localization of FAK into FAs tyrosine phosphorylation of FAK was significantly diminished 

in paxillin knockdown cells (Fig 3.36E). Surprisingly, paxillin knockdown fibroblasts 

displayed a normal DR formation frequency (Fig 3.36F) indicating that paxillin is not acting 

downstream of ILK during EGF-induced DR formation.  

To check if paxillin is essential for FN fibrillogenesis control and knockdown cell lines were 

subjected to the FN assembly assay. As shown in Fig 3.37 paxillin knockdown cells displayed 

an impaired FN fibrillogenesis. This is in line with a previous report showing that FA-

targeting of FAK is crucial for FN fibrillogenesis to occur (Ilic et al. 2004). 
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Fig 3.36. Generation and analysis of paxillin knockdown cell lines. A. Western blot analysis of protein lysates 

from ILK (f/f) siControl and ILK (f/f) siPaxillin cell lines. B. Quantification of paxillin expression in control and 

paxillin knockdown cell lines. C. Merged stack of confocal images showing organization of the f-actin 

cytoskeleton and FA structure in control cells. Scale bar: 20µm. D. Merged stack of confocal images showing 

defective FAK localization in FAs and altered size of FA in paxillin knockdown cells. Scale bar: 20µm. E. 

Western blot analysis of FAK immunoprecipitates from control and knockdown cells. F. Quantification of DR 

formation after EGF stimulation in paxillin knockdown cells based on 5 independent experiments. 
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Fig 3.37. Paxillin is necessary for proper FN fibrillogenesis. A. Merged stack of confocal images showing 

immunostaining of control ILK (f/f) fibroblasts expressing scrambled shRNA. Normal FN fibrillogenesis could 

occur. B. Merged stack of confocal images showing immunostaining of a paxillin knockdown cell line. FN 

assembly was impaired but not completely absent. Scale bar: 40µm. 

3.4.16. The interaction between paxillin and ILK is not essential for the 

organization of the actin cytoskeleton 

The fact that paxillin knockdown cells displayed a rather normal DR formation frequency was 

surprising since earlier reports demonstrated that paxillin is essential for the recruitment of 

ILK as well as α-parvin into FAs (Nikolopoulos and Turner 2000; Nikolopoulos and Turner 

2001; Nikolopoulos and Turner 2002). To investigate if loss of paxillin expression indeed 

impairs recruitment of ILK into FAs (as it was seen with the PBS mutant ILK), cells were 

seeded on FN-coated coverslips, cultured overnight and immunostained for ILK and α-parvin. 

Immunostaining of control cells showed that ILK and α-parvin localized together with 

migfilin or vinculin in FAs (Fig 3.38A, C). Surprisingly, ILK and α-parvin was also present in 

FAs of paxillin knockdown cells (Fig 3.38B, D). These data show for the first time, that ILK 

and α-parvin can be recruited into FAs in a paxillin-independent manner. It seems unlikely 

that the residual paxillin left in the knockdown cells accounted for the recruitment of ILK in 

FAs, since under the same conditions FAK was diffusively present in the cytoplasm. In order 

to further dissect the importance of the ILK-paxillin interaction, full length paxillin as well as 

an ILK-binding mutant paxillin were expressed in the paxillin knockdown background. 
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Fig 3.38. Localization of ILK and α-parvin into FAs can occur independently of paxillin. A. Immunostaining 

of control ILK (f/f) fibroblasts showing the localization of ILK and migfilin in FAs. B. Immunostaining of 

paxillin knockdown cells showing normal localization of ILK into FAs. C. Immunostaining of control ILK (f/f) 

fibroblasts showing the localization of vinculin and α-parvin in FAs. D. Immunostaining of paxillin knockdown 

cells showing the localization of α-parvin in FAs. Scale bars: 20µm. 

3.4.17. The paxillin-ILK interaction is not important for cell spreading and DR 

formation 

Paxillin interacts with ILK via its N-terminally located LD1 domain (1-20aa). Earlier studies 

have shown that deletion of LD1 in paxillin leads to loss of the paxillin-ILK interaction 

(Nikolopoulos and Turner 2001). In order to gain further insights into the role of the paxillin-

ILK interaction in ILK (f/f) fibroblasts, full length human paxillin and a paxillin LD1-deletion 

mutant (LD1∆-paxillin) expression constructs were introduced into paxillin knockdown cells. 
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Since human paxillin is not affected by the siRNA construct (directed against mouse paxillin 

mRNA) both proteins could be stably expressed. Two clonal cell lines were established 

expressing comparable amounts of paxillin and LD1∆-paxillin, respectively. Both constructs 

rescued the altered FA structure of paxillin knockdown cells, the defective f-actin 

organization and the FAK localization defect (Fig 3.39). In general, both cell lines were 

indistinguishable from each other, indicating that the paxillin-ILK interaction alone was not 

essential for the maintenance of the f-actin cytoskeleton or the assembly of FAs. 

Fig 3.39. Expression of an ILK binding mutant paxillin (LD1∆-paxillin) can rescue the morphological defect 

of paxillin knockdown cells. A. Immunostaining of paxillin knockdown cells stably expressing a human full 

length paxillin. Note that FAK localizes in FAs again. B. Immunostaining of paxillin knockdown cells stably 

expressing LD1∆-paxillin. F-actin organization, FA structure and FAK localization in FAs is rescued in these 

cells. Scale bars: 20µm. 

 

FN fibrillogenesis is completely defective in ILK knockout cells, whereas paxillin knockdown 

cells display a strongly reduced but not completely inhibited FN assembly (Fig 3.26, Fig 

3.37). To check if the direct interaction between ILK and paxillin is necessary for FN 

fibrillogenesis paxillin knockdown cells expressing full length paxillin or LD1∆-paxillin were 

subjected to the FN assembly assay. As shown in Fig 3.40 paxillin knockdown cells 

expressing full-length paxillin or LD1∆-paxillin performed FN fibrillogenesis like ILK (f/f) 

control cells. 

Altogether, these data indicate that both ILK and paxillin are important for FN assembly but 

not the direct interaction between ILK and paxillin indicating that these two proteins act 

independently from each other during FN fibrillogenesis. 
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Fig 3.40. The ILK-paxillin interaction is dispensable for FN fibrillogenesis. A. Merged stack of confocal 

images showing immunostaining of paxillin knockdown cells expressing full length human paxillin. B. Merged 

stack of confocal images showing immunostaining of paxillin knockdown cells expressing LD1∆-paxillin 

(human). Note, that both cell lines were able to perform FN fibrillogenesis. Scale bars: 40µm. 

3.4.18. FAK is not essential for DR formation 

The involvement of FAK for integrin-dependent activation of Rac1 is well documented. The 

data from paxillin knockdown fibroblasts suggested that the localization of FAK into FAs as 

well as its tyrosine phosphorylation is not essential for DR formation. To confirm that FAK is 

not necessary for DR formation, FAK knockdown cell lines were generated. Again five 

different knockdown constructs were designed and introduced into a retroviral backbone. 

Viral supernatant was used to infect ILK (f/f) fibroblasts. Two constructs showed a significant 

decrease of FAK expression levels. Cell lines were cloned exhibiting barely detectable FAK 

expression levels, while control cells infected with a scrambled shRNA sequence displayed 

robust FAK expression levels (Fig 3.41A, B). Expression of other FA proteins or FAK 

interaction partners such as ILK, p130Cas, or paxillin were unchanged in FAK knockdown 

cells (Fig 3.41A). Loss of FAK expression was additionally confirmed by immunostaining, 

which also revealed that FAK knockdown cells displayed slightly enlarged FAs (Fig 3.41C,D) 

as described before (Ilic et al. 1995). As expected, FAK knockdown fibroblasts formed DRs 

to a normal extend when stimulated with EGF. DR appeared even earlier than in control cells 

(Fig 3.41E). 
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Fig 3.41. Generation and analysis of FAK knockdown cell lines. A. Western blot analysis of protein lysates 

from ILK (f/f) control and ILK (f/f) siFAK cell lines. B. Quantification of FAK expression in control and FAK 

knockdown cell lines. FAK was almost not detectable anymore. Scale bar: 20µm. C. Merged stack of confocal 

images showing organization of the f-actin cytoskeleton and FA structure in control cells. Scale bar: 20µm. D. 

Merged stack of confocal images showing loss of FAK expression in ILK (f/f) fibroblasts expressing shRNA 

against FAK mRNA. Note the loss of FAK and the increased size of FAs. E. Quantification of DR formation after 

EGF stimulation in FAK knockdown cells based on 6 independent experiments. 
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3.4.19. FAK is important for FN fibrillogenesis 

FAK has been shown to be essential during FN fibrillogenesis (Ilic et al. 2004). To check if 

this also the case in ILK (f/f) fibroblasts FAK knockdown cells were analyzed in a FN 

assembly assay. In line with previous reports FAK knockdown cells displayed an impaired 

FN fibrillogenesis, while control fibroblasts showed a normal FN matrix assembly. 

Fig 3.42. FAK is crucial for FN assembly. A. Merged stack of confocal images showing immunostaining of a 

control ILK (f/f) fibroblasts expressing scrambled shRNA (same picture as in Fig 3.37). Normal FN 

fibrillogenesis could occur. B. Merged stack of confocal images showing immunostaining of a FAK knockdown 

cell line. FN assembly was impaired. Scale bars: 40µm. 

3.4.20. Localization of p130Cas, CrkII and ELMO1 in DRs 

The formation of peripheral ruffles occurs at the onset of cell migration and is dependent on 

the assembly of the p130Cas/CrkII complex which mediates an integrin-dependent activation 

of Rac1 (Klemke et al. 1998). Recent work has identified the ELMO/Dock180 complex 

downstream of p130Cas/CrkII which is responsible for the activation of Rac1 (Gumienny et 

al. 2001). To check if the same signalling complex could be involved in DR formation, the 

localization of these proteins was investigated after EGF stimulation by immunostaining or as 

in the case of ELMO1 by stable expression of the EGFP-tagged protein in ILK (f/f) 

fibroblasts. 

Fig 3.43 shows that p130Cas, CrkII and ELMO1-EGFP localized into DRs after EGF 

stimulation. Similar to other FAs proteins like vinculin, talin or ILK (Fig 3.29) p130Cas 

localized to both FAs and DRs (Fig 3.43A), whereas CrkII was seen mainly cytoplasmic and 

after EGF stimulation in DRs (Fig 3.43B). Expression of ELMO1-EGFP in ILK (f/f) 
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fibroblasts revealed a strong localization of this protein into DRs after EGF stimulation (Fig 

3.43C), whereas the protein was present in the cytoplasm before stimulation. 

These findings suggest that the p130Cas/CrkII complex is involved in DR formation. 

Fig 3.43. Localization of p130Cas, CrkII and ELMO1 into DRs after EGF stimulation. A. Merged stack of 

confocal images showing the localization of p130Cas in DRs in ILK (f/f) fibroblasts. p130Cas is localized in FAs 

(arrows) as well as DRs (*). B. Localization of CrkII in DRs. C. Merged confocal stack of images showing 

immunostaining of ILK (f/f) fibroblasts stably expressing human ELMO1-EGFP. Scale bars: 20µm. 

 

3.4.21. p130Cas complexes with ILK and is essential for dorsal ruffling 

p130Cas is localized as ILK in FAs and in DRs. In order to check if ILK and p130Cas 

associate to trigger dorsal ruffling, ILK (-/-) fibroblasts stably expressing full-length ILK-

FLAG or ANK-FLAG (Fig 3.31C) were used to perform immunoprecipitation studies. 

Interestingly, ILK-FLAG is efficiently co-immunoprecipitated with p130Cas but not the N-

terminal ANK-FLAG (Fig 3.44A). In the reverse experiment, p130Cas can be co-

immunoprecipitated with ILK-FLAG, but not with ANK-FLAG, while both proteins co-

immunoprecipitate Pinch1 (Fig 3.44). 
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Fig 3.44. Association of ILK and p130Cas. A. Western blot analysis of a p130Cas-IP. While full length ILK-

FLAG can be co-immunoprecipitated with p130Cas, the N-terminal fragment of ILK (ANK-FLAG) does not co-

precipitate. B. Western blot analysis of a FLAG-IP. p130Cas can be co-immunoprecipitated with full length 

ILK-FLAG but not with ANK-FLAG. Note, that both proteins are able to co-precipitate similar amounts of 

endogenous Pinch1. 

3.4.22. p130Cas expression is essential for dorsal ruffling 

To check whether p130Cas is important for dorsal ruffling p130Cas knockdown cell lines 

were generated. Out of five shRNA constructs, one construct efficiently reduced p130Cas 

expression levels in ILK (f/f) fibroblasts. While control cells, expressing a scrambled shRNA 

sequence, showed normal p130Cas levels, a clonal p130Cas knockdown cell line was 

established with a knockdown efficiency of approximately 85% (Fig 3.45A, B). The 

expression levels of other proteins directly or indirectly interacting with p130Cas such as 

ILK, CrkII or FAK were unchanged. The expression levels of Dock180 appeared to be, 

however, slightly upregulated (Fig 3.45A). Immunostaining confirmed the loss of p130Cas 

expression from FAs and revealed in agreement with data from primary p130Cas knockout 

fibroblasts (Honda et al. 1998) that the formation of f-actin stress fibers is impaired in the 

absence of p130Cas (Fig 3.45C, D). The frequency of DR formation after EGF stimulation 

was dramatically reduced (Fig 3.45E). In contrast, FN assembly was unchanged in p130Cas 

knockdown cells (Fig 3.46). These data implicate p130Cas as an essential component of a 

signalling complex crucial in EGF-induced DR formation. 
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Fig 3.45: Generation and analysis of p130Cas knockdown cell lines. A. Western blot analysis of protein lysates 

from ILK (f/f) siControl and ILK (f/f) p130Cas knockdown cell lines. B. Quantification of p130Cas expression in 

control and p130Cas knockdown cell lines. C. Merged stack of confocal images showing the formation of f-actin 

stress fibers and FAs in control cells. Scale bars: 20µm.  D. Merged stack of confocal images showing loss of 

p130Cas expression and impaired stress fiber formation. Scale bar: 20µm.  E. Quantification of DR formation 

after EGF stimulation in p130Cas knockdown cells based on 6 independent experiments 
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Fig 3.46. Loss of p130Cas does not affect FN fibrillogenesis. A. Merged stack of confocal images showing 

immunostaining of a control ILK (f/f) fibroblasts expressing scrambled shRNA (same picture as in Fig 3.37). 

Normal FN fibrillogenesis occured. B. Merged stack of confocal images showing immunostaining of a p130Cas 

knockdown cell line. FN assembly was not affected by loss of p130Cas. Scale bars: 40µm. 

3.4.23. The GEF Dock180 is indispensable for dorsal ruffling 

Rac1 can get activated by a number of GEFs. In order to confirm that the 

p130Cas/CrkII/ELMO/Dock180 signalling complex is required for dorsal ruffling, ILK (f/f) 

fibroblasts were depleted of Dock180 by siRNA. Figs. 3.47A, B show the almost complete 

loss of Dock180 expression. Although Dock180 knockdown cells were spreading much 

slower than control cells and formed only few lamellipodia during the culture, these cells still 

formed a normal f-actin cytoskeleton and assembled long stress fibers. Also the formation and 

appearance of FAs appeared to be normal in Dock180 knockdown cells (Fig 3.47C, D). 

Furthermore FN assembly occurred normally in these cells (Fig 3.48A, B). However, 

Dock180 knockdown cells were unable to form DRs after stimulation with EGF, while 

control cells showed the normal frequency of DR formation. In addition, no DR formation 

was observed during cells spreading after stimulation with other growth factors such as PDGF 

or 10% FCS. Similar to fibroblasts expressing dominant negative Rac1 (RacN17) not a single 

DR was observed (Fig 3.47E). These data strongly indicate that indeed DR formation is 

regulated in a Dock180-dependent manner. 
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Fig 3.47. Generation and analysis of Dock180 knockdown cell lines. A. Western blot analysis of protein lysates 

from ILK (f/f) control and ILK (f/f) Dock180 knockdown cell lines. B. Quantification of Dock180 expression in 

control and Dock180 knockdown cell lines. C. Merged stack of confocal images showing the formation of f-actin 

stress fibers and FAs in control cells. Scale bar: 20µm. D. Merged stack of confocal images showing normal 

stress fiber and FA formation. Scale bar: 20µm. E. Quantification of DR formation after EGF stimulation in 

control and Dock180 knockdown cells lines based on 6 independent experiments. 
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Fig 3.48. Loss of Dock180 does not affect FN fibrillogenesis. A. Merged stack of confocal images showing 

immunostaining of a control ILK (f/f) fibroblasts expressing scrambled shRNA (same picture as in Fig 3.37). 

Normal FN fibrillogenesis could occur. B. Merged stack of confocal images showing immunostaining of a 

Dock180 knockdown cell line. FN assembly is not affected by loss Dock180. Scale bars: 40µm. 

3.4.24. Normal plasma membrane organization in ILK (-/-) fibroblasts 

The data so far suggested that ILK affects DR ruffle formation by regulating the 

p130Cas/CrkII activity and consequently the local ELMO1/Dock180-dependent activation of 

Rac1. An interesting question concerned the mechanism underlying this regulation and the 

subcellular compartment in which the regulation occurred. It is possible that integrin/ILK 

signalling facilitates the recruitment of GTPases or GTPase activating molecules into the 

plasma membrane. Earlier studies have shown that small Rho-GTPases like Rac1 and RhoA 

are recruited into special structures within the plasma membrane that are characterized by 

high cholesterol and caveolin-1 levels and hence were named caveolin-rich membrane 

microdomains. Furthermore, integrin engagement is supposed to be essential for the 

establishment of caveolin-rich microdomains (also-called “lipid rafts”) at the plasma 

membrane (del Pozo et al. 2004). 

Due to their biochemical properties, lipid rafts can be isolated biochemically by density 

gradient centrifugation or visualized in culture with fluorescently labelled sphingolipid 

markers such as cholera-toxin. Although they are thought to be rather heterogenous structures, 

sphingolipids (especially the gangliosid GM1) are highly enriched in lipid rafts and therefore 

frequently used as their marker. To check, if p130Cas or Rac1 recruitment could occur in the 

absence of ILK, a plasma membrane isolation and plasma membrane fractionations were 

performed. In addition, control and knockout cells were subjected to immunostainings to 



Results 

153 

visualize cholesterol rich membrane domains during DR formation. As shown in Fig 3.49A, 

p130Cas (including its phosphorylated form) and Rac1 are normally distributed in ILK (-/-) 

cells and were detected both in the soluble (s) cytosolic as well as in the particulate (p) plasma 

membrane fraction. No significant differences before or after EGF stimulation were observed. 

Moreover, fractionation of the plasma membrane into caveolin-rich membrane fraction 

(CRM) and non-caveolin-rich membrane fraction revealed that Rac1 and RhoA normally 

localized into lipid rafts in the absence of ILK indicating that integrins regulate plasma 

membrane order independently of ILK (Fig 3.49B). 

Fig 3.49. Normal localization of p130Cas and Rac1 into the plasma membrane and lipid rafts in ILK (-/-) 

fibroblasts. A. Biochemical analysis of soluble and particulate cell lysates obtained before (0’) or 3min (3’) after 

EGF stimulation. No obvious differences could be detected. B. Biochemical analysis of plasma membrane 

preparations. Rac1 can localize normally into the caveolin-rich membrane fraction. PNS: post nuclear 

supernatant, CYT: cytoplasmic fraction, PM: plasma membrane, NCM: non-caveolin rich membrane fraction, 

CRM: caveolin-rich membrane fraction. In (B), 2µg protein lysates /lane were loaded. 

 

Lipid rafts are often found at the edges of cells which have been stimulated with growth 

factors to form peripheral ruffles (del Pozo et al., 2004). In order to test if DRs are cognate 
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lipid raft structures, ILK (f/f) fibroblasts were stained with cholera-toxin to visualize lipid 

rafts and cortactin to visualize DRs. While cortactin was strongly localized in DRs, 

fluorescently labelled cholera-toxin did not stain them (Fig 3.50A). Surprisingly, a higher 

magnification of the dorsal plasma membrane revealed that cholera-toxin positive areas and 

cortactin staining were mutually exclusive (Fig 3.50B). In contrast, areas with peripherals 

ruffles showed colocalization of cholera-toxin and cortactin (Fig 3.50C). A higher 

magnification further confirmed that at the basal side of the peripheral ruffle, these two 

markers overlap. 

These data demonstrate that DRs are not made from lipid rafts at the plasma membrane. They 

are rather cytoskeletal structures and are therefore fundamentally different from peripheral 

ruffles. 

Fig 3.50. DRs and peripheral ruffles are fundamentally different. A. Merged stack of a series of confocal 

images showing an immunostained ILK (f/f) fibroblasts shortly after EGF stimulation forming a DR. B. 
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Magnification of a confocal picture at the dorsal site of the cell. The localization of GM1 and cortactin seemed 

to be mutually exclusive. Arrows indicate areas of high lipid raft marker intensity that coincides with low 

staining intensity of cortactin staining C. Merged stack of a series of confocal images showing an 

immunostained ILK (f/f) fibroblasts shortly after EGF stimulation forming a peripheral ruffle. D. Magnification 

of a confocal picture at the cell edges at the basal site of the cell. GM1 and cortactin staining overlap (indicated 

by arrows). Scale bars: 20µm (in A, C) and 10µm (in B, D). 

 

3.4.25. Cytoskeletal-associated p130Cas is hyperphosphorylated in ILK (-/-) 

fibroblasts 

The experiments above demonstrated that DRs are characterized by their cytoskeletal 

association. Cytoskeletal structures are typically Triton-X-100 insoluble, which allows to 

separate them from cytosolic and plasma membrane proteins. To gain deeper insights into the 

regulation of p130Cas by ILK during dorsal ruffling, the cytoskeletal fraction of ILK (f/f) and 

ILK (-/-) fibroblasts was prepared before (0min) and after (2min and 6min) EGF stimulation. 

Very surprisingly, p130Cas was much stronger phosphorylated before stimulation in ILK (-/-) 

fibroblasts. Stimulation with EGF, however, led to a fast dephosphorylation of p130Cas, such 

that 6min after stimulation the phosphorylation levels of p130Cas in control and knockout 

cells were approximately the same. Since p130Cas gets phosphorylated at multiple sites in its 

substrate binding domain, another phospho-specific antibody was tested on the same lysate. 

Again, p130Cas was highly phosphorylated in ILK-deficient cells whereas the level of 

p130Cas phosphorylation in control cells was rather moderate (Fig 3.51A). These 

biochemical data showed, that cytoskeletal associated p130Cas is hyperphosphorylated in its 

substrate binding domain when ILK is absent. 

The kinase that is thought to be responsible for p130Cas phosphorylation is c-src, which is 

also known to be essential for growth factor-induced formation of DRs (Boschek et al., 1983, 

Veracini et al. 2006). To check, if the differences of p130Cas phosphorylation in ILK (-/-) 

fibroblasts were due to an increased c-src-activity, cells were treated with a src inhibitor (PP1) 

before the stimulation with EGF. Interestingly, this treatment did not decrease p130Cas 

phosphorylation in ILK knockout cells, but instead resulted in constitutive and high p130Cas 

phosphorylation even after EGF stimulation. These data suggest that the p130Cas 

hyperphosphorylation in ILK (-/-) fibroblasts is not caused by increased c-src kinase activity 

but rather by decreased activity of protein tyrosine phosphatases. Furthermore, since PP1-

treatment inhibited EGF-induced dephosphorylation of p130Cas one would predict that the 

potential phosphatase(s) should be regulated in a c-src-dependent manner (Fig 3.51B). 
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Fig 3.51. Cytoskeletal associated p130Cas is hyperphosphorylated in the absence of ILK. A. Biochemical 

analysis of cytoskeletal cell lysates from ILK (f/f) and ILK (-/-) fibroblasts before (0’) and after (2’, 6’) EGF 

stimulation. B. Biochemical analysis of cytoskeletal cell lysates from ILK (f/f) and ILK (-/-) fibroblasts and from 

ILK (-/-) fibroblasts which were treated with 5µm of the src inhibitor PP1 prior to EGF stimulation. 

 

3.4.26. Identification of an ILK-associated protein tyrosine phosphatase by 

SILAC 

To further dissect the mechanism underlying EGF-mediated dorsal ruffling by ILK, ILK-

FLAG immunoprecipitates were analyzed by SILAC-based mass-spectroscopy (SILAC-MS) 

in collaboration with Dr. Matthias Selbach (MPI of Biochemistry, Germany). Cells were 

cultured in SILAC medium containing isotopically labelled amino acids (Arg0, Arg6 and 

Arg10) and analyzed during DR formation. Unlabelled cells were lysed before EGF 

stimulation, Arg6-labelled cells 2min after EGF stimulation and Arg10-labelled cells 6min 

after EGF stimulation. All cell lysates were pooled and a FLAG-IP was performed. The 

immunoprecipitate was then analyzed by mass spectroscopy. This very sensitive approach 

allows identifying proteins which interact with ILK before and after EGF-treatment. 

Interestingly, out of more than 600 proteins which are co-immunoprecipitated and detected by 

MS only one protein was found to be strongly enriched after EGF stimulation: this protein 

turned out to be a src-dependent protein tyrosine phosphatase called LMW-PTP (low 
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molecular weight - protein tyrosine phosphatase). These findings suggest that EGF 

stimulation may trigger the recruitment of LMW-PTP to ILK, which in turn affects the 

phosphorylation of the p130Cas substrate domain. 

Fig 3.52 Relative abundance of (co)-immunoprecipitated proteins before, 2min and 6min after EGF 

stimulation. A. Control: the ratio of immunoprecipitated ILK was approximately 1:1:1. The red box highlights 

the signal from protein lysates of unlabelled cells (before stimulation), the green box highlights the signal from 

protein lysates of Arg6 labelled cells (2min after EGF), the blue box highlight the signal from protein lysates of 

Arg10 labelled cells (6min after EGF stimulation). B. The direct interaction partner Pinch1 is detected in the 

same ratios as ILK (1:1:1) indicating no dynamic interaction during EGF stimulation. C. α-parvin is detected in 

the same ratios than ILK (A). D. In the same lysate as in (A), (B) and (C), LMW-PTP is much more abundant 

after 2 and 6min as before the stimulation, indicating an increased association of this phosphatase with ILK 

signalling complexes after EGF treatment. 

 

In the future, the role of the ILK-LMW-PTP interaction during DR formation will be 

analyzed in more detail. The analysis will include the generation and characterization of 

LMW-PTP knockdown cell lines as well as p130Cas-LMW-PTP-ILK interaction studies by 

immunoprecipitations. Furthermore, the phosphorylation levels and the phosphatase activity 

of LMW-PTP in control and ILK knockout cells will be tested. 

 





Discussion 

159 

4. Discussion 

This project was started more than 4 years ago, at a time, when ILK was thought to act as an 

integrin-associated kinase that modulates Wnt signalling pathways by GSK-3β 

phosphorylation, cell survival by PKB/Akt phosphorylation and epithelial-mesenchymal 

transitions by the regulation of E-cadherin expression (Novak and Dedhar 1999; Persad and 

Dedhar 2003; Oloumi et al. 2004). Since ILK was also found to be frequently overexpressed 

in tumours and metastasis, it was regarded as a proto-oncogene and almost all of the ILK-

related effects were attributed to its potential kinase activity. The publications about loss-of-

functions studies in Drosophila and C. elegans reporting that ILK’s kinase activity is 

dispensable for invertebrate development were a surprise and raised the first doubts about 

ILK’s molecular function (Zervas et al. 2001; Mackinnon et al. 2002). The present study was 

initiated to analyse the role of ILK in a mammalian system. 

Now, 4 years later, the understanding about the functional properties of ILK has dramatically 

changed. It is widely accepted that ILK acts mainly as a regulator of integrin-triggered actin 

dynamics in vitro and in vivo and is less or not important as a kinase and hence also termed 

pseudokinase (Boudeau et al. 2006). The data presented in this study significantly contributed 

to our current understanding of the function of ILK (Grashoff et al. 2003; Sakai et al. 2003; 

Grashoff et al. 2004). 

4.1. The analysis of ILK in vivo 

4.1.1. General implications about the role of ILK in vivo 

Deletion of ILK in mice causes embryonic lethality at peri-implantation stage (Sakai et al. 

2003). In comparison to other FA proteins this phenotype is exceptionally severe. For 

example, targeted deletion of talin1, vinculin, paxillin or FAK also results in embryonic 

lethality, however, at later stages with much milder phenotypes (Fig 4.1.). Loss of talin1 

expression impairs mesodermal cell migration at gastrulation which arrests development at 

E8.5-9.5 (Monkley et al. 2000). Loss of paxillin results in defective somitogenesis and 

impaired heart development, which closely resembles the phenotype of FN and α5 integrin 

knockout mice suggesting that paxillin is a crucial mediator of FN-α5β1 signalling (Hagel et 

al. 2002). Vinculin knockout mice display midline fusion defects, impaired development of 

the heart and the nervous system and die at E10.5 (Xu et al. 1998). Interestingly, also mice 

lacking Pinch1 as well as α-parvin – although thought to form a complex with ILK (see 

below) - die later than ILK-deficient embryos (Li et al. 2005, unpublished observation). 
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Although several knockout phenotypes could be due to a certain degree of redundancy, loss of 

talin1 may be compensated by talin2 or α-parvin by β-and γ-parvin, these data demonstrate 

the central role of ILK as an integrin-associated protein (Fig 4.1). 

Fig 4.1. Knockout phenotypes of FA proteins. Deletion of ILK results in the most severe phenotype 

demonstrating the essential role of this protein during embryonic development (modified from Bouvard et al., 

2001). 

4.1.1.1. A comparison of the β1 and ILK knockout phenotypes 

Deletion of the ILK and the β1 integrin genes, respectively, leads to embryonic lethality at 

around E5.5 (Fassler and Meyer 1995; Sakai et al. 2003). The analysis of EBs derived from 

β1- or ILK-null ES cells showed that the defects that arrest development differ between the 

two mouse strains (Fig 4.2). 

Deletion of β1 integrin abolishes BM formation due to reduced expression of the laminin α1 

chain and laminin111 assembly (Aumailley et al. 2000). Addition of exogenous laminin111 

rescued the BM assembly defect of β1 integrin-null EBs suggesting that β1 integrins are not 

essential for BM assembly per se. Once the laminin synthesis defect is overcome, β1-null EBs 

can also develop an epiblast and cavitate (Li et al. 2002). 

Deletion of ILK does not impair synthesis of BM components and their assembly. Instead, 

loss of ILK causes an f-actin polarization defect in the epiblast and impairs cavitation which 

arrests development later as loss of β1 integrin expression (Sakai et al. 2003). Since β1-null 

EBs rescued by the addition of laminin111 can form cavities it is possible that ILK regulates 

epiblasts polarization independently of integrins. It seems, however, more likely that ILK also 
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regulates epiblasts polarization downstream of other integrin subunits which compensate for 

the loss of β1 integrin. 

Fig 4.2. No BM assembly in β1-null EBs, abnormal epiblast polarization and cavitation in ILK-null EBs. Loss 

of β1 integrin abrogates BM deposition while loss of ILK affects epiblast polarization and cavitation. 

4.1.1.2. The ILK-Pinch-parvin complex-implications from in vivo models 

Cell culture experiments and biochemical analyses suggested that ILK, Pinch and parvin form 

a ternary complex which precedes the localization of each these proteins into their subcellular 

localization (Zhang et al. 2002; Fukuda et al. 2003). Depletion of Pinch1 from HeLa cells by 

siRNA led to the degradation of ILK and α-parvin and vice versa, reduction of ILK resulted in 

markedly reduced Pinch1 and α-parvin levels, indicating that ILK, Pinch and parvin are 

mutually dependent in maintaining their stability (Fukuda et al. 2003). Therefore, it was 

expected that the deletion of ILK, Pinch or parvin in mice would lead to similar if not 

identical phenotypes. Indeed deletion of ILK or Pinch1 leads in both cases to peri-

implantation lethality which is, however, caused by different defects (Sakai et al. 2003; Li et 

al. 2005). 

The majority of EBs generated from Pinch1-null ES cells can form extended cavities and 

progress much further then ILK-null EBs. Moreover, Pinch1-null EBs display severe cell-cell 

adhesion defects in the endoderm and the epiblast. Cell-cell adhesion defects were never 

observed in ILK-deficient EBs although ILK has been implicated in controlling E-cadherin 

expression either through GSK-3β phosphorylation or snail activation ((Wu et al. 1998; Tan et 

al. 2001; Li et al. 2005). Targeted deletion of α-parvin in mice results in embryonic lethality 

at even later stages (around E8.5-12.5, Motanez and Fässler, unpublished), which could 

however be due to compensation by β-parvin. 



Discussion 

162 

These data suggest that a fraction of the total ILK, Pinch1 and α-parvin proteins may act 

independently from each other. My observation that Pinch1 can localize to FAs of ILK 

knockout fibroblasts is supporting such a notion. In agreement with these observations ILK 

has been detected in FAs of Pinch1 knockout cells (Stanchi et al. 2005). In the future it will be 

necessary to identify and characterize those cellular processes regulated by ILK in a Pinch- 

and parvin-independent manner. 

4.1.2. Regulation of the ECM by ILK-implications from β1 integrin and ILK 

knockout mice 

The analysis of EBs revealed that ILK is not required for the deposition and assembly of the 

first embryonic BM (Sakai et al. 2003). The analysis of Cre/loxP-mediated ILK ablations in 

mice further confirmed that ILK is not crucial for ECM assembly but indicated that ILK is 

indispensable for the maintenance of BMs especially after exposure to mechanical stress. 

4.1.2.1. No differences in the ECM of the cartilage in the absence of ILK 

β1 integrins play an important role for the modulation of the ECM both in cartilage and skin. 

Deletion of α10 or β1 integrins in chondrocytes leads to reduced collagen fibril density and a 

disorganized collagen network in the cartilage (Aszodi et al. 2003; Bengtsson et al. 2005). 

However, the ECM is only mildly affected in newborn mice indicating that the assembly of a 

collagen network can occur in the absence of collagen-binding integrins. The fact that the 

matrix defects in β1-deficient tissues become more pronounced with time could have different 

reasons. The dramatically altered cell-matrix ratio in the mutant cartilage of adult mice 

(caused by reduced proliferation) could indirectly affect the organization of the collagen 

network. Alternatively, integrins could be important during stress-induced remodelling of the 

ECM. Although muscle contractions are thought to generate mechanical strain on the 

cartilage already during embryogenesis, the mechanical load that acts on the cartilage during 

adulthood is disproportional higher (Adams 2006). This may explain, why at the newborn 

stage only very mild ECM defects were observed, while at alter later stages the matrix is 

profoundly distorted in the absence of β1 integrins. Deletion of ILK in chondrocytes does not 

result in any obvious defects of the ECM at newborn stage (Grashoff et al. 2003). Since these 

knockout mice die shortly after birth it is unclear whether ILK is similarly important for ECM 

remodelling in adult cartilages. To address this point, it will be necessary to generate mice 

with a deletion of ILK only in the appendicular skeleton but not in the palatal shelves to 

prevent cleft palate formation and perinatal lethality. The use of transgenic mice in which 

Cre-expression is driven by a Prx-1 promoter should be suitable since Prx-1 (pair-related 
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homeobox gene 1) is almost exclusively expressed in the early limb bud mesenchyme (Logan 

et al. 2002). 

4.1.2.2. Disruption of the dermal-epidermal BM in the absence of ILK 

Deletion of α3 or β1 integrin in keratinocytes impairs the integrity of the BM which is in part 

caused by incomplete processing of BM components such as laminin332 or collagenVII 

(Brakebusch et al. 2000; DiPersio et al. 2000; Raghavan et al. 2000). Interestingly, only the 

BM along the dermal-epidermal junction is affected by the loss of β1 integrins but not the BM 

of HFs (Brakebusch et al. 2000). This could be explained by the continuous exposure of the 

epidermis to mechanical stress which is comparatively lower at the BM of the HF. Deletion of 

ILK in the epidermis leads to similar BM defects characterized by massive diffusion of BM 

components into the dermis which becomes more severe with age. Since these knockout mice 

fail to display obvious defects along the BM of HFs it seems likely that ILK remodels the 

ECM or maintains the BMs in response to mechanical stress but plays no or only a subtle role 

for the assembly of these structures per se. 

This notion is supported by the analyses of mice with a deletion of ILK in podocytes, which 

form the blood filter in the glomerulus of the kidney. The tight interaction of podocytes with 

the glomerular BM is critical to maintain the filtration barrier against the high transcapillary 

pressure gradient. ILK knockout mice are completely normal at birth but die within 19 weeks 

due to terminal renal failure (El-Aouni et al. 2006). Also these data suggest that ILK is not 

required for the assembly but rather the maintenance of BMs. 

4.1.3. The impact of ILK on cell proliferation 

An interesting observation of my study is that loss of ILK profoundly affects cell 

proliferation. While deletion of ILK in the cartilage leads similarly as the deletion of β1 

integrin to reduced cell proliferation (Aszodi et al. 2003; Grashoff et al. 2003) loss of ILK in 

keratinocytes results in increased cell proliferation. 

4.1.3.1. Reduced cell proliferation of ILK-deficient chondrocytes 

The proliferation defect of β1 integrin knockout chondrocytes is caused by at least three 

distinct defects. First, loss of β1 integrin expression results in upregulation of FGFR-3 

stimulating the nuclear translocation of STAT proteins which in turn induces the expression 

of cell cycle inhibitors such as p16 or p21 decelerating cell proliferation (Aszodi et al. 2003). 

Secondly, loss of β1 integrin impairs cytokinesis leading to bi-nucleation of chondrocytes. 
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Finally, the reduced adhesion as well as the pronounced f-actin defects may constrain cell 

cycle progression. 

Also ILK knockout chondrocytes display proliferation defects (Grashoff et al. 2003). In 

contrast to the situation in β1 knockout mice no cytokinesis defect was observed and the 

expression of FGFR-3 was also normal in the absence of ILK (Aszodi et al. 2003; Grashoff et 

al. 2003). Since no obvious changes in GSK-3β phosphorylation were detected which would 

indicate a more direct regulation of the cell cycle by ILK (D'Amico et al. 2000) the reduced 

proliferation rate is most likely caused by the severely impaired organization of the f-actin 

cytoskeleton as well as the reduced adhesion of chondrocytes. It is well established that cell 

adhesion itself promotes cell cycle progression. 3T3 cells which are kept in suspension will 

not proliferate or initiate DNA synthesis until they are allowed to attach (Otsuka and 

Moskowitz 1975). Another important determinant of cell proliferation could be the cell shape 

of ILK knockout chondrocytes. Donald Ingber and colleagues could show that the size of 

cells is sufficient to affect cell proliferation (Huang et al. 1998). Endothelial cells that were 

attached to small adhesive islands stopped proliferation while the same cells attached to large 

adhesive areas progressed through the cell cycle. Since ILK-deficient chondrocytes displayed 

reduced adhesion to the ECM and were in addition significantly smaller than control cells it is 

tempting to speculate that this together with the distorted actin cytoskeleton could have 

caused the reduced proliferation rate. 

4.1.3.2. Increased cell proliferation in ILK-deficient keratinocytes 

In contrast to β4 integrins which primarily fulfil an adhesive function at the dermal-epidermal 

junction (Dowling et al. 1996; van der Neut et al. 1996), β1 integrins are thought to play an 

important role in epidermal cell proliferation. Fiona Watt and colleagues described more then 

10 years ago that a high β1 integrin expression directly correlates with a high proliferation 

potential (Jones and Watt 1993; Jones et al. 1995) whereas β4 integrin expression did not. 

Transgenic mice expressing β1 integrin in suprabasal cell layers showed hyperproliferation in 

both basal and suprabasal keratinocytes (Carroll et al. 1995) and consequently deletion of β1 

integrin in keratinocytes significantly reduced the proliferation rates of basal keratinocytes 

(Brakebusch et al. 2000; Raghavan et al. 2000). 

Surprisingly, ILK-K5 knockout mice did not display reduced proliferation rates in the 

epidermis but instead showed even a slight increase in cell proliferation. Furthermore, loss of 

ILK leads to suprabasally located proliferating cells which express basal marker proteins such 

as keratin 5, β1 and β4 integrin. A possible explanation for to the ectopic location of β1 

integrin positive cells could be the reduced β1 integrin-mediated adhesion followed by the 
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detachment of proliferating basal keratinocytes. Most importantly, these data demonstrate that 

ILK is not required for β1-dependent cell proliferation in keratinocytes. 

 

Altogether our data suggest that ILK does not act as a ubiquitous cell cycle regulator for 

example by phosphorylating GSK-3β but rather modulates cell proliferation in a cell type-

dependent manner most likely through effects on the actin cytoskeleton. 

4.1.4. ILK is dispensable for the phosphorylation of PKB/Akt or GSK-3β  

A number of in vitro experiments suggested that ILK regulates the activity of the signalling 

proteins GSK-3β and PKB/Akt by direct phosphorylation (Delcommenne et al. 1998; Persad 

et al. 2001) and thereby modulates a number of signal transduction pathways such as β-

catenin translocation to the nucleus (Novak et al. 1998), E-cadherin expression (Wu et al. 

1998), the activity of the transcription factor AP-1 (Troussard et al. 1999), the binding of the 

cAMP responsive element to the cyclinD1 promoter (D'Amico et al. 2000), expression of 

MMP-9 (Troussard et al. 2000), the expression of the E-cadherin repressor snail (Tan et al. 

2001), the activity of NF-κB and iNOS expression (Tan et al. 2002) and tau phosphorylation 

(Mills et al. 2003)  

One of the most far reaching findings of my studies is that ILK is not essential as a kinase 

particularly with respect to PKB/Akt or GSK-3β phosphorylation. Loss of ILK expression in 

chondrocytes, fibroblasts and keratinocytes did not cause changes in the phosphorylation 

levels of GSK-3β as well as PKB/Akt (Sakai et al. 2003; Grashoff et al. 2003). Importantly, 

our data do not confute that ILK might be able to phosphorylate GSK-3β or PKB/Akt. They 

only demonstrate that if ILK is indeed a kinase the catalytic activity is certainly not essential 

for the phosphorylation of these and likely other proteins and consequently for the regulation 

of their signalling pathways. The analysis of ILK’s kinase activity in vitro points to the same 

direction; re-expression of wt-ILK or three different kinase-dead ILK mutants (R211A, 

S343A, and E359K) as well as a mutant described to act as a constitutive active ILK (S343D) 

could all equally rescue the severe phenotype of ILK knockout fibroblasts. It should be noted 

that these data are in line with the analysis of ILK in invertebrates (Zervas et al. 2001; 

Mackinnon et al. 2002) which showed that re-expression of kinase-dead ILK versions in ILK-

deficient flies and nematodes fully rescues development . Other studies also revealed that ILK 

is dispensable for PKB/Akt or GSK-3β phosphorylation. Deletion of ILK in the dorsal 

forebrain of mice leads to severe cortical lamination defects. However, cortical extracts from 

ILK knockout mice revealed normal phosphorylation levels of GSK-3β and PKB/Akt 

(Niewmierzycka et al. 2005). Depletion of ILK from endothelial cells by siRNA did also not 



Discussion 

166 

affect the phosphorylation level of PKB/Akt (Vouret-Craviari et al. 2004). Finally, the same 

group which demonstrated the important role of ILK in PKB/Akt phosphorylation recently 

reported that siRNA-depletion of ILK or the inhibition of ILK kinase activity by small 

molecular inhibitors affected phosphorylation of PKB/Akt only in cancer cell lines but not in 

untransformed epithelial and mesenchymal cells (Troussard et al. 2006). 

If ILK has any crucial catalytic activity in vivo remains to be investigated and several 

experiments will be necessary to fully understand the role of ILK as a kinase. First, the 

generation of ILK-kinase-dead mice will allow addressing the importance of ILK’s catalytic 

activity under physiological conditions. Secondly, the role of the ILK kinase activity under 

pathological conditions could be tested with control and kinase-dead ILK mutant mice in a 

tumour model. Finally, the determination of the ILK crystal structure would be certainly 

helpful to understand how ILK could act as a kinase lacking crucial amino acids which are 

essential for the catalytic activity of other kinases (Legate et al. 2006). 

4.1.5. ILK is essential for the regulation of the f-actin cytoskeleton 

The most obvious consequence of ILK deletion in vivo and in vitro is the impaired 

organization of the f-actin cytoskeleton and the associated cell shape changes. ILK-null EBs 

failed to polarize the f-actin cytoskeleton in the epiblasts which coincided with malformations 

of the epiblast cells that were almost indistinguishable from cells of the inner cell mass (Sakai 

et al. 2003). In the cartilage, the usually cortical f-actin staining around growth plate 

chondrocytes appeared discontinuous in ILK knockout mice and the flattened chondrocytes 

which develop typical columnar structures in normal growth plates were largely missing in 

the absence of ILK (Grashoff et al. 2003). In the epidermis, loss of ILK impaired the 

polarization and the cell shape of basal keratinocytes corresponding to f-actin 

mislocalizations. All cell types that were analyzed in vitro, primary chondrocytes, primary 

keratinocytes and immortalized fibroblastic cell lines, displayed dramatic alterations of the 

cell shape that were in all cases associated with abnormal stress fiber and FA formation 

(Grashoff et al. 2003; Sakai et al. 2003). Therefore, our data identify ILK as one of the most 

crucial integrin-associated regulators of the f-actin cytoskeleton (Grashoff et al. 2004; Legate 

et al. 2006). 
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4.2. The analysis of ILK in vitro 

To understand in more detail how ILK regulates the f-actin cytoskeleton, immortalized 

control and ILK knockout fibroblasts were subjected to two different experiments. First, the 

dynamics of f-actin reorganization in response to cell adhesion was analyzed in cell spreading 

assays. Second, the ability of ILK (f/f) fibroblasts to form DRs was exploited to study the role 

of ILK during growth factor induced f-actin reorganizations. 

4.2.1. ILK is essential for stress fiber formation and cell spreading 

In all cell lines tested, deletion of ILK caused a pronounced cell spreading defect associated 

with poor stress fiber and FA formation (Grashoff et al. 2003; Sakai et al. 2003). A detailed 

analysis in fibroblasts revealed that this phenotype is caused by several defects. First, deletion 

of ILK leads to reduced adhesion of fibroblasts to ECM proteins such as FN, VN or collagen 

type I contributing to the delayed onset of cell spreading (Sakai et al. 2003). Since the 

formation of stress fibers and FAs never reaches full maturity the reduced cell spreading 

cannot be caused exclusively by the cell adhesion defect. This notion is supported by the 

observation that endothelial cells which were depleted of ILK by siRNA showed an increase 

in cell adhesion but still displayed a prominent cell spreading defect (Vouret-Craviari et al. 

2004). 

Second, although the formation of talin-, vinculin- and paxillin-containing FCs occurred 

normally in the absence of ILK their maturation into large FAs or fibrillar adhesions was 

significantly impaired and associated with abnormal stress fiber formation. One reason for the 

defective FA maturation and stress fiber formation could be the lack of force generation in 

ILK (-/-) fibroblasts. 

Previous reports demonstrated that the size of FAs correlates with the mechanical force 

applied to the adhesion site (Riveline et al., 2001; Galbraith et al., 2002). On the other hand, 

the formation of stress fibers only occurs when cells are appropriately anchored to the 

substrate. Therefore, both the formation of FAs and stress fibers depends on the generation of 

mechanical forces (Riveline et al. 2001; Hinz and Gabbiani 2003). The mechanical strain is 

usually generated intracellularly by actin-myosin-dependent pulling forces. The activation of 

the small GTPase RhoA activates the Rho-associated kinase (ROCK), which in turn (i) 

phosphorylates and thereby inhibits the myosin light chain (MLC) phosphatase and (ii) 

activates MLC kinase. Both events increase MLC phosphorylation and actin myosin 

contractility. Alternatively, it has been shown that external forces can induce FA assembly in 

a ROCK-independent manner through processes that involve mDia1 activation and most 
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likely actin polymerization (Riveline et al. 2001). However, since we observed neither gross 

differences in the activation levels of RhoA nor in the phosphorylation status of MLC or 

differences in G/F actin levels in ILK (-/-) cells it seems unlikely that the defective FA 

maturation is caused by a loss of actin-myosin contractility. It could instead be that ILK is 

mechanically required for the anchorage of f-actin fibers at FAs, especially when internal or 

external forces are applied to the actin cytoskeleton (Fig 4.3). This would also explain why 

ILK (-/-) cells failed to form fibrillar adhesions whose formation critically depends on the 

generation of actin-myosin pulling forces 

Fig 4.3. Requirement of ILK for the generation of pulling forces in FAs. A. The mechanical forces required 

for the formation of FCs are rather low and FCs develop normally in ILK (-/-) fibroblasts. B. The maturation of 

FAs is accompanied by an increase in actin-myosin-dependent pulling forces. The formation of mature FAs is 

disturbed in the absence of ILK. C. The formation of fibrillar adhesions requires very higher actin-myosin 

pulling forces. Fibrillar adhesions are completely absent in ILK-deficient fibroblasts. 



Discussion 

169 

 

The hypothesis that ILK is essential for the generation and/or transmission of pulling forces 

along the f-actin-integrin connection would provide an explanation for the impaired FA and 

fibrillar adhesion formation in vitro and would be in line with the observation that several in 

vivo phenotypes are triggered by mechanical stress (see also 4.1.2). 

Deletion of ILK in Drosophila causes a disruption of the f-actin network from the plasma 

membrane (Fig 1.11), which is likely induced by embryonic muscle contractions since the 

initial anchorage of f-actin bundles to the plasma membrane is not affected (Zervas et al. 

2001). The identification of ILK as a mechanosensing molecule in cardiac muscle cells of 

zebra fish (Danio rerio) further supports the idea that ILK is a mechanoresponsive protein 

(Bendig et al. 2006).  

In the future, it will be important to directly address the role of ILK in mechanotransduction. 

The microscopical analysis of control and knockout fibroblasts as well as the biochemical 

analysis of ILK-FLAG cells on stretchable substrates might already give insight into the 

molecular role of ILK as a mechanosensitive molecule. 

4.2.2. ILK is required for FN fibrillogenesis 

FN is major constituent of the ECM and already expressed in mouse blastocysts. Since FN is 

ubiquitously expressed in embryonic and adult tissues and frequently altered under 

pathological conditions such as cancer, thrombosis or fibrosis and because integrin-binding to 

FN is critical for FN matrix assembly it is widely believed that FN-integrin interactions play 

important roles in developmental and disease (Miyamoto et al. 1998). How FN matrix 

assembly is regulated and which integrin binding proteins are involved in this regulation is 

largely unclear. First implications about the involvement of ILK in this process came from 

studies in epithelial cells, where overexpression of ILK resulted in markedly increased FN 

matrix assembly (Wu et al. 1998). Conversely, depletion of ILK from endothelial cells led to 

significantly reduced FN fibrillogenesis (Vouret-Craviari et al. 2004). The data of my studies 

emphasize the central role of ILK during FN matrix assembly but also demonstrate that other 

FA proteins such as paxillin or FAK are critical. 

4.2.2.1. The involvement of ILK, paxillin and FAK in FN fibrillogenesis 

The deletion of ILK in fibroblasts caused a complete loss of FN fibrillogenesis and the fact 

that reconstitution of Pinch1 could not rescue this defect suggests that ILK is a central 

molecule in this process. Since depletion of FAK and paxillin from the parental ILK (f/f) cells 

caused a similar reduction in FN fibril assembly one could speculate that ILK regulates 
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fibrillogenesis through its binding to paxillin which in turn could directly interact with FAK. 

The expression of a mutant paxillin lacking the LD1 domain, however, did not affect FN 

matrix assembly. This suffices to suggest that at least the direct interaction between ILK and 

paxillin is not required for FN fibrillogenesis and opens the possibility that ILK and paxillin 

act independently from each other. While ILK might be essential for the generation of actin 

pulling forces, paxillin and FAK could be important for the efficient recruitment of additional 

proteins such as tensin into fibrillar adhesions. Tensin can interact directly with FAK and is 

thought to be central for FN matrix assembly (Davis et al. 1991; Pankov et al. 2000). 

An alternative role for FAK during fibrillogenesis was suggested by Dusko Ilic and 

colleagues. They speculated that the interaction between FAK and p130Cas could be essential 

for FN matrix assembly (Ilic et al. 2004). My data indicate that p130Cas is not critical for 

FAK-dependent FN assembly since fibrillogenesis was not impaired in p130Cas knockdown 

cells. Since the knockdown efficiency in p130Cas knockdown cells is about 85%, it is 

however possible, that the residual p130Cas is sufficient to induce FN-fibrillogenesis. 

It is important to note here that paxillin was earlier described to be abundant in FAs but 

almost completely excluded from fibrillar adhesions (Zamir et al. 2000). This was not the case 

in ILK (f/f) fibroblasts were paxillin was also found in fibrillar adhesions. A recent report 

confirmed our observation showing that in porcine aortic endothelial cells non-

phosphorylated paxillin can localize into fibrillar adhesions where it colocalizes with tensin 

(Zaidel-Bar et al. 2007). 

Taken together, we identified a number of FA proteins which are critical for FN matrix 

assembly including ILK, paxillin and FAK. Surprisingly, the direct ILK-paxillin interaction 

was not required for FN fibrillogenesis. In the future it will be important to analyze the role of 

the ILK-Pinch1-parvin complex during FN matrix assembly in more detail. Especially the 

analysis of α-parvin knockout cells could be interesting, since α-parvin was shown to localize 

into fibrillar adhesions (Olski et al. 2001). Since β-parvin should prevent the degradation of 

ILK and Pinch1 in the α-parvin knockout background these cells could be a suitable model 

system to test the role of parvins in FN matrix assembly. Furthermore, since FN-integrin 

interactions are essential during vasculogenesis (Francis et al. 2002) it would be especially 

interesting to analyze the role of ILK, Pinch1 and parvin during vascular development in vivo. 
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Fig 4.4. The role of FA proteins during FN fibrillogenesis. ILK, paxillin and FAK are all crucial for FN matrix 

assembly. The direct interaction between ILK and paxillin is not required. (Taken from Yamada et al. 2003 and 

modified). 

4.2.3. ILK mediates integrin-RTK crosstalk during DR formation 

It is well established that integrin- and RTK-signalling interact to regulate many cellular 

functions (Giancotti and Tarone 2003). However, most of our knowledge about integrin-RTK 

crosstalk stems from experiments on cell proliferation, whereas the impact of this crosstalk on 

cytoskeletal reorganizations is less well understood. This is in part due to the fact that current 

model systems used to analyze f-actin dynamics such as cell spreading or cell migration 

assays are highly complex and rather difficult to interpret. Cell proliferation can easily be 

evaluated by counting the cell number, while cell migration is assayed with numerous read 

outs including cell migration speed, cell migration persistence, cell polarization, actin 

polymerization, stress fiber formation, microtubular dynamics, MTOC orientation, structure 

and turnover of FAs and FCs at the leading front or retracting edge, etc. In my PhD work I 

used the DR formation assay to study actin dynamics in an integrin and RTK-dependent 

manner. 

4.2.3.1. DR formation is integrin-dependent 

DRs were first described more than 25 years ago as growth factor induced actin structures. 

Treatment of fibroblasts or transformed epithelial cells with EGF, PDGF, and HGF but also 

with phorbol esters such as TPA induced the formation of ring-like structures within minutes. 

Furthermore, forced expression of a constitutive active src also induced the formation of DR 

(Chinkers et al. 1979; Boschek et al. 1981; Mellstroom et al. 1983; Schliwa et al. 1984; 

Kitano et al. 1986). Extensive work over the last 20 years suggest that DR are structures 

which play important roles during cell transformation or cell migration (Buccione et al. 2004). 
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The data presented in this study provide evidence that growth factor induced DR formation 

requires integrin engagement and hence results from an integrin-RTK crosstalk. 

The first indication about the importance of integrin engagement during dorsal ruffling came 

from spreading assays which revealed that control cells formed DR after cell adhesion to FN 

but not when cells were seeded on poly-lysine. Moreover, growth factor induced dorsal 

ruffling was only seen in cells that were seeded on FN but not in cells attached to poly-lysine. 

Finally, the DR formation frequency correlated with the amount of FN presented to control 

cells. The importance of integrin engagement became especially obvious during the analysis 

of cells which express constitutive active Rac1 (RacL61). Although activation of Rac1 is a 

strong stimulus for dorsal ruffling (Wang et al. 2006) cells expressing RacL61 would only 

form DRs when adherent to FN but not on poly-lysine. 

Several reports described the formation of DRs in cells that were either seeded on uncoated 

glass coverslips (Legg et al. 2006) or on poly-lysine (Wang et al. 2006). It should be noted 

that in these experiments the cells were cultured overnight on the coverslips before growth 

factor stimulation. It is therefore almost certain that the cells secreted their own FN matrix to 

which they adhered via integrins (Legg et al. 2006). Other studies cultured the cells overnight 

in the presence 10% FCS, starved them of growth factors and subsequently triggered DR 

formation with growth factors (Wang et al. 2006). Since FCS is rich in ECM proteins also 

these cells adhered most likely to FCS-derived ECM proteins. 

4.2.3.2. DRs originate at the ventral side of the cell 

Shortly after the observation that vinculin is a FA protein (Geiger 1979) Manfred Schliwa and 

colleagues described the localization of vinculin in DRs (Schliwa et al. 1984). Surprisingly, it 

was never checked whether other FA proteins are capable of localizing into these structures. 

The observation that in addition to vinculin also talin, ILK and p130Cas are present in DRs 

indicates that certain integrin-associated proteins are not only functional but also physically 

connected to DRs. This observation prompted us to check where DRs actually form. 

Surprisingly, immediately after growth factor stimulation of starved cells all cortactin patches 

resembling ruffle precursors were exclusively localized along the ventral cell body, whereas 

at later time points the typical dorsal location was observed. In between these time points the 

f-actin ring was in most of the cases neither exclusively ventral nor dorsal but detectable in 

both locations. These data suggest that DRs form at the basal side of the cells and move to the 

dorsal surface at later time points. 

An obvious question is how these structures translocate from the ventral to the dorsal side of 

the cell. Since DRs usually appear at the cell edges where the cell body is rather thin, it is 
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possible that the high actin polymerisation leads to a growth of the actin ring towards the 

dorsal cell surface. The observation that DRs are Triton-X-insoluble actin structures and do 

not colocalize with membrane markers such as GM1 supports the notion that during this 

process DRs are not tightly associated with the plasma membrane. 

Certainly, further experiment will be necessary to clarify the development of DRs and their 

transition from ventral to dorsal locations. It should be possible to follow the formation of a 

DR at the basal side in more detail by total internal reflection microscopy (TIRF) with living 

cells using cortactin-EGFP as a DR reporter construct. Alternatively, cells could be analyzed 

by internal reflection microscopy to monitor processes at the basal side of the cell during DR 

formation. 

Fig 4.5. Model of DR formation in ILK (f/f) fibroblasts. A. Shortly after EGF stimulation cortactin patches 

form at the ventral side of the cell. B. Approximately 2min after stimulation f-actin is found at the cortactin 

patches, most likely due to local f-actin polymerization. C. The high f-actin polymerization drives the growth 

towards the dorsal side of the cell. D. 6min after stimulation the typical actin flowers or waves can be observed 

on the dorsal surface. 

4.2.3.3. ILK is indispensable for DR formation 

Loss of ILK leads to impaired DR formation. ILK (-/-) fibroblasts, adherent to FN or poly-

lysine, formed very few or no DRs after EGF stimulation. Also when cells were analyzed 

during spreading on FN almost no DRs could be detected. However, when ILK-EGFP was re-

expressed in the knockout cells DR formation was rescued. Interestingly, overexpression of 

ILK-FLAG in ILK (-/-) cells caused a marked increase in the DR formation frequency while 

reconstitution of Pinch1 protein levels by expression of an N-terminal ILK fragment (ANK-
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FLAG) did not restore the capacity to form DRs. In addition, expression of constitutive active 

Rac1 in ILK (-/-) cells restored dorsal ruffling, which was, however, still dependent on 

integrin-mediated cell adhesion and growth factor stimulation. 

These data suggest that in addition to its function as an important adaptor protein ILK is able 

to induce signal transduction pathways in response to integrin and growth factor stimulation, 

which lead to dynamic changes of the f-actin cytoskeleton. 

4.2.3.4. Integrin/ILK-dependent DR formation does not require paxillin or FAK  

To get insights into the molecular mechanism that is exploited by integrins and ILK to induce 

DRs, a number of knockdown cell lines were established and tested for their capability to 

form DRs after growth factor stimulation. These experiments revealed that ILK acts 

independently of paxillin and FAK, but seems to induce DRs in a p130Cas/Crk and 

ELMO1/Dock180-dependent manner. 

The observation that paxillin knockdown cells formed DRs to a normal extent was 

unexpected since earlier studies showed that the recruitment of ILK and α-parvin into FAs 

and hence their function was dependent on paxillin binding (Nikolopoulos and Turner 2000; 

Nikolopoulos and Turner 2001). The localization of ILK and α-parvin into FAs could occur in 

paxillin knockdown cells whereas the translocation of FAK into FAs was inhibited. The role 

of the paxillin-ILK interaction was further tested by the expression of a paxillin-deletion 

mutant which lacked the ILK-binding LD1 domain. The expression of the LD1-lacking 

paxillin version rescued the entire phenotype of paxillin knockdown cells including the 

defective FA formation or the impaired FN fibrillogenesis indicating that the direct interaction 

between paxillin and ILK is less important than previously thought (Nikolopoulos and Turner, 

2001. An explanation for the the severe phenotype observed in ILK (-/-) cells which express 

the paxillin-binding-mutant ILK (Nikolopoulos and Turner 2001 and this study) could be that 

the double point mutation in the ILK paxillin-binding-motif might have additional 

consequences than solely the loss of paxillin binding. Such additional abnormalities may 

include aberrant folding of the mutant ILK protein. 

The translocation of FAK from FAs into the cytoplasm as well as the strongly reduced FAK 

phosphorylation levels in paxillin knockdown cells immediately suggested that this protein is 

not critical for DR formation. This was confirmed by the generation and analysis of FAK 

knockdown cells which displayed a normal DR formation frequency. 
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4.2.3.5. Integrin/ILK-dependent DR formation requires p130Cas and Dock180 

p130Cas is, similarly like FAK or cortactin, highly phosphorylated upon integrin-mediated 

cell adhesion (Nojima et al. 1995; Vuori and Ruoslahti 1995). Upon binding to CrkII, 

p130Cas is thought to regulate a number of integrin-dependent processes such as cell 

migration (Klemke et al. 1998), cell invasion or survival (Cho and Klemke 2000). p130Cas 

can bind a variety of proteins, including phosphatases (PTP-PEST, PTP1B) or kinases (FAK, 

c-src) which are thought to tightly regulate the phosphorylation status of the protein. The 

exact mechanisms of p130Cas phosphorylation, however, is unclear although c-src is thought 

to play a central role during in p130Cas phosphorylation (Chodniewicz and Klemke 2004). 

Previous reports demonstrated that p130Cas and CrkII are essential for Rac1-dependent 

formation of peripheral ruffles which, similarly as DRs, form in an integrin-dependent 

manner. Although peripheral ruffles and DRs are thought to be regulated by distinct 

mechanisms (Suetsugu et al. 2003) I tested the involvement of p130Cas in DR formation. The 

analysis of p130Cas knockdown cells demonstrated that p130Cas expression is necessary for 

DR formation in ILK (f/f) fibroblasts. Immunostaining of control cells revealed that p130Cas 

and CrkII can localize to DRs. A biochemical analysis of ILK (-/-) cells stably expressing full 

length ILK-FLAG or the truncated ANK-FLAG indicated that ILK and p130Cas can associate 

in common subcellular fractions. 

The activation of Rac1 by p130Cas is mediated by the ELMO1/Dock180 pathway (Gumienny 

et al. 2001). ELMO1 is capable of binding to CrkII and Dock180, which is a GEF for Rac1. 

Immunostaining revealed that p130Cas, CrkII and also ELMO1 localize into DRs and 

depletion of Dock180 from ILK (f/f) cells completely abolished DR formation after growth 

factor stimulation. These data suggest that the assembly of the p130Cas/CrkII and 

ELMO1/Dock180 complex is a prerequisite for DR formation. 

4.2.4. Hyperphosphorylation of p130Cas in the cytoskeletal fraction of ILK-

deficient cells 

The coupling of p130Cas and CrkII and therefore the initiation of the 

p130Cas/CrkII/ELMO1/Dock180 complex is believed to be regulated by phosphorylation of 

the p130Cas substrate domain (Chodniewicz and Klemke 2004). However, the exact 

mechanism of p130Cas phosphorylation and CrkII-binding is not known. Stimulation of 

p130Cas with low concentrations of EGF (2ng/ml) were shown to induce tyrosine 

phosphorylation of p130Cas, whereas stimulation with high EGF concentrations (80ng/ml) 

caused a rapid dephosphorylation (Ojaniemi and Vuori 1997). Although p130Cas can directly 
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interact with phosphatases such as PTP1B or PTP-PEST it is not known whether these 

phosphatases control p130Cas dephosphorylation after EGF stimulation. 

To check if loss of ILK has any impact on p130Cas phosphorylation levels, protein lysates of 

the plasma membrane, plasma membrane fractions as well as cytoskeletal fractions were 

analyzed. While no differences in the phosphorylation state of p130Cas could be seen in 

plasma membrane preparations, there was a strong increase in the phosphorylation of the 

p130Cas substrate domain in the cytoskeletal fraction of ILK (-/-) cells. The fact the 

inhibition of c-src was unable to decrease but instead increased p130Cas phosphorylation 

levels suggested that the hyperphosphorylation was not caused by an elevated kinase activity 

but rather by a reduced phosphatase activity. These results prompted us to search for ILK 

interaction partners before and after EGF stimulation. By analysing immunoprecipitates of 

ILK-FLAG lysates with SILAC-based mass-spectroscopy we could identify the phosphatase 

LMW-PTP which shows a strongly increased accumulation in ILK-FLAG 

immunoprecipitates after EGF stimulation. 

LMW-PTP is a 18kDa phosphatase that exists in spatially and functionally distinct subcellular 

fractions (Cirri et al. 1998; Raugei et al. 2002). In the cytosol, LMW-PTP is non-

phosphorylated and able to dephosphorylate the PDGF-receptor. The cytoskeletal-associated 

LMW-PTP becomes phosphorylated after growth factor stimulation by c-src and is thought to 

mediate dephosphorylation of p190RhoGAP (Chiarugi et al. 2000a). LMW-PTP associates 

with the cytoskeleton only in cells that are attached to FN but not in cells that are seeded on 

poly-lysine suggesting that integrin engagement modulates the activity of this phosphatase 

(Chiarugi et al. 2000a; Chiarugi et al. 2000b). I could show that LMW-PTP associates with 

ILK-FLAG after EGF stimulation, which is the first implication of LMW-PTP in DR 

formation. It is possible that ILK is needed for activation and/or localization of LMW-PTP 

after growth factor stimulation thereby integrating integrin-mediated cell adhesion into RTK 

signalling pathways (Fig 4.6). 

In the future it will be important to test this model by generating LMW-PTP knockdown cell 

lines and by analyzing LMW-PTP phosphorylation and phosphatase activity at the 

cytoskeletal fraction in control and ILK knockout cells. 
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Fig 4.6. Model of ILK-dependent DR formation. ILK associates with integrins and forms a complex with 

p130Cas. EGF stimulation leads to src-dependent phosphorylation of LMW-PTP which translocates in the 

cytoskeletal fraction and associates with ILK. The subsequent dephosphorylation of p130Cas is essential for the 

formation of the p130as/CrkII/ELMO/Dock180 complex which leads to the activation of Rac1 and f-actin 

polymerization. 
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5. Summary 

Integrins are ubiquitously expressed cell surface receptors which mediate the interaction of 

cells with the extracellular matrix. The interaction between integrins and their ligands is 

considered to provide the physical support for cells in order to maintain adhesion, to permit 

traction forces and to organize signalling complexes which regulate a variety of cellular 

processes including cell differentiation, cell proliferation or cell survival. Furthermore 

integrins connect cell matrix adhesions with the actin cytoskeleton which is essential for the 

regulation of cell migration or the establishment of cell polarity. Since integrins lack actin-

binding sites and do not have any catalytic activity their signal transduction depends on 

intracellular proteins which are recruited to the cytoplasmic tail. One of these integrin-binding 

proteins is Integrin-linked kinase (ILK) which directly interacts with β1 and β3 integrins. 

Overexpression studies revealed that ILK recruits adaptor and signalling proteins to the 

integrin adhesion sites and stimulates downstream signalling cascades through direct 

phosphorylation of numerous target proteins including PKB/Akt and GSK-3β. However, loss 

of function studies in C.elegans and Drosophila indicated that the kinase activity might be far 

less important than previously thought. To describe the physiological role of ILK in a 

mammalian system this study was initiated. The overall goal was to describe the 

consequences of a constitutive ILK deletion and of tissue specific ablations of the protein in 

the cartilage and in the epidermis of mice. Additionally we wanted to establish an in vitro 

model system that allows studying the role of ILK as a kinase and as an adaptor protein in 

more detail. 

The data presented in this study identify ILK as one of the major integrin-associated 

regulators of the f-actin cytoskeleton in vivo and in vitro and demonstrate that ILK modulates 

actin dynamics as an adaptor and as a signalling protein. Moreover, my experiments indicate 

that ILK is not important as a kinase. 

The analysis of constitutive ILK knockout mice and ILK-deficient embryoid bodies revealed 

that loss of ILK leads to peri-implantation lethality caused by incomplete epiblast 

differentiation and cavitation. The impaired epiblast polarization is associated with abnormal 

f-actin accumulations at the endodermal-epiblast basement membrane (Sakai et al 2003).  

Deletion of ILK in the cartilage of mice resulted in chondrodysplasia and perinatal death due 

to respiratory distress. ILK-deficient chondrocytes displayed an abnormal cell shape and 

reduced cell proliferation associated with a disorganized f-actin cytoskeleton in vivo and in 
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vitro. The phosphorylation levels of PKB/Akt or GSK-3β, however, were unaffected 

(Grashoff et al. 2003). 

Deletion of ILK in the epidermis of mice resulted in an integrin-mediated adhesion defect 

leading to epidermal detachment and disintegration of the epidermal-dermal basement 

membrane. Impaired downward migration of outer root sheath cells along the basement 

membrane of hair follicles resulted in an almost complete hair loss of ILK knockout mice. 

The f-actin polarization in the epidermis as well as stress fiber formation in cell culture was 

severely impaired in ILK-deficient keratinocytes (Lorenz, Grashoff, Torka et al. resubmitted 

for publication). 

The analysis of ILK knockout fibroblasts in vitro revealed that ILK is required for the 

formation of focal and fibrillar adhesions and the establishment of a normal f-actin stress fiber 

network. Loss of ILK led to strongly reduced Pinch1 and parvin protein levels, impaired the 

cell shape and the cell spreading and fully inhibited FN matrix assembly. Loss of ILK also 

affected the formation of DRs which develop after integrin and growth factor stimulation. My 

data suggest that ILK induces actin polymerization through local activation of Rac1 in a 

p130Cas- and Dock180-dependent manner (Grashoff et al., manuscript in preparation) 

In summary, ILK regulates the organization of the f-actin cytoskeleton in several ways: on the 

one hand by stabilizing and recruiting actin binding proteins to the integrin adhesion site and 

on the other hand by stimulating actin polymerization in response to integrin and growth 

factor stimulation. 
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