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Abstract

This thesis reports on new experimental techniques for the study of strongly corre-
lated states of ultracold atoms in optical lattices. We used a high numerical aperture
imaging system to probe 87Rb atoms in a two-dimensional lattice with single-site res-
olution. Fluorescence imaging allows to detect single atoms with a large signal to
noise ratio and to reconstruct the atom distribution on the lattice.

We applied this new technique to a two-dimensional Mott insulator and directly
observed number squeezing and the emerging shell structure. A comparison of the
radial density and variance distributions to theory provides a precise in situ temper-
ature and entropy measurement from single images. We find entropies around the
critical value for quantum magnetism.

In a second series of experiments, we demonstrated two-dimensional single-site
spin control in the optical lattice. The differential light shift of a tightly focused laser
beam shifts selected atoms into resonance with a microwave field driving a spin flip.
In this way, we reach sub-diffraction limited spatial resolution well below the lat-
tice spacing. Starting from a Mott insulator with unity filling we were able to create
arbitrary spin patterns. We used this ability to prepare atom distributions to study
one-dimensional single-particle tunneling dynamics in a lattice. By discriminating
the dynamics of the ground state and of the first excited band, we find that our ad-
dressing scheme leaves most atoms in the vibrational ground state.

Moreover, we studied coherent light scattering from the atoms in the optical lattice
and found diffraction maxima in the far-field. We showed that an antiferromagnetic
order leads to additional diffraction peaks which can be used to detect this order also
when single-site resolution is not available.

The new techniques described in this thesis open the path to a wide range of novel
applications from quantum dynamics of spin impurities, entropy transport, imple-
mentation of novel cooling schemes, and engineering of quantum many-body phases
to quantum information processing.
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Zusammenfassung

In dieser Arbeit werden neue experimentelle Techniken für die Untersuchung von
stark korrelierten Zuständen von ultrakalten Atomen in optischen Gittern vorgestellt.
Wir untersuchen 87Rb Atome in einem zwei-dimensionalen Gitter und erreichen da-
bei eine Auflösung der einzelnen Gitterplätze mit Hilfe eines hochauflösenden Abbil-
dungssystems. Fluoreszenzabbildung erlaubt es, einzelne Atome mit großem Signal-
zu-Rausch-Verhältnis zu detektieren und die Verteilung der Atome auf dem Gitter zu
rekonstruieren.

Wir wenden diese neue Technik auf einen zwei-dimensionalen Mott-Isolator an
and beobachten direkt das number squeezing und die Schalenstrukur. Ein Vergleich
der radialen Dichte- und Varianzverteilung mit der Theorie ermöglicht eine präzise
Temperatur- und Entropiemessung an einzelnen Bildern und wir finden Entropien
um den kritischen Wert für Quantenmagnetismus.

In einer zweiten Reihe von Experimenten zeigen wir, dass wir gezielt einzelne ato-
mare Spinzustände im Gitter manipulieren können ohne die benachbarten Atome
zu beeinflussen. Wir benutzen den differentiellen light shift eines stark fokussierten
Laserstrahls, um einzelne Atome in Resonanz mit einem Mikrowellenfeld zu brin-
gen, das den Spin umklappt. Auf diese Weise erreichen wir eine Ortsauflösung un-
ter der Beugungsgrenze. Wir beginnen mit einem Mott-Isolator mit einem Atom pro
Gitterplatz und können darin beliebige Spinmuster erzeugen. Diese neuen Möglich-
keiten zur Präparation atomarer Verteilungen nutzen wir, um die eindimensionale
Einteilchen-Tunneldynamik in einem Gitter zu untersuchen. Wir unterscheiden die
Dynamik von Atomen im Grundzustand und im ersten angeregten Band und zeigen
so, dass unser Adressierschema die meisten Atome im Grundzustand lässt.

Darüber hinaus untersuchen wir kohärente Lichtstreuung an den Atomen im Git-
ter und finden Beugungsmaxima im Fernfeld. Wir zeigen, dass eine antiferromagne-
tische Ordnung der Atome zu zusätzlichen Beugungsmaxima führt, die man auch
ohne unsere hohe Auflösung zum Nachweis dieser Ordnung nutzen könnte.

Die neuen Techniken, die in dieser Arbeit vorgestellt werden, öffnen den Weg für
viele neue Anwendungen von der Quantendynamik von Spin-Defekten, Entropie-
transport, der Umsetzung neuer Kühlschemata sowie der Realisierung von Quanten-
Vielteilchenphasen bis hin zur Quanteninformationsverarbeitung.
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1 Introduction

Ultracold atoms in optical lattices are a versatile tool for the simulation of condensed
matter systems. After the proposal [1] and the subsequent realization [2] of the Bose-
Hubbard model with ultracold atoms, the field has attracted much attention [3, 4].
The paradigm is to use the atoms in the lattice as a quantum simulator for con-
densed matter physics in the spirit of Feynman’s famous proposal [5] to use one
well-controlled quantum system to simulate another quantum system. With ultra-
cold atoms, one can implement simple model Hamiltonians, which contain the rele-
vant physics, but are intractable on a classical computer.

To simulate a solid state system with ultracold atoms, one replaces the electrons by
the ultracold atoms and the potential formed by the periodically spaced ions by an
optical lattice potential. Although these systems are quite different in the absolute en-
ergy and length scales and in the details of the potentials, both can be described by the
same models. The single band Hubbard model, for example, contains only the two
parameters hopping rate and on-site interaction, which comprise all the details of the
interactions and potentials. While the electrons in a solid state crystal are Fermions,
the atoms in an optical lattice can either be bosonic or fermionic, depending on their
spin.

Ultracold atoms in optical lattices have several experimental advantages over solid
state systems. In the first place, they constitute a very clean and simple system with-
out any lattice defects. Also the effective parameters in the model Hamiltonians can
be calculated from first principles. A second advantage of ultracold atoms is their
high degree of controllability not found in solid state crystals. The lattice parameters
can be tuned dynamically and over a wide range. The interactions can be tuned via
Feshbach resonances [6] and the internal states can be controlled to high precision.
Also the time scales are much larger, usually in the range of milliseconds such that
the dynamics becomes easily accessible.

Ultracold atoms currently face one major challenge: due to the much lower density,
the energy scales for the atoms are much smaller than in solid state crystals. While
the Fermi energy in real materials is on the order of a few thousand Kelvin, such
that quantum phenomena can already be observed at room temperature, the typical
energy scales for atoms in optical lattices are on the order of nanokelvin. This has so
far prevented the observation of the interesting phases of antiferromangetic order and
the d-wave superfluid. Novel cooling schemes to reach the required temperatures are
under investigation [7, 8]

Spectacular experimental progress has been made in the last years, diversifying
the field in many different directions. Fermionic atoms have been brought to degen-
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1 Introduction

eracy [9] and were used to produce a fermionic Mott insulator [10, 11]. Now the chal-
lenge is to realize the antiferromagnetic phase. In a reduced dimensionality, quantum
fluctuations play a larger role leading to different physics like the Tonks-Girardeau
gas in 1D [12, 13] and the Berezinskii-Kosterlitz-Thouless cross over in 2D [14]. The
recent production of ultracold ground state molecules [15, 16] has opened the path to
the study of long-range and anisotropic interactions in optical lattices. Disorder can
lead to Anderson localization of a BEC [17] and its effect on the phase diagram of the
Hubbard model is now under investigation [18–21].

Artificial magnetic fields have been produced both via rotation of the gas [22–24]
and using a geometric phase [25]. They allow to simulate orbital magnetism and the
quest is to reach the fractional quantum Hall regime [26, 27]. Superexchange dynam-
ics were already observed in double-well optical potentials [28] and they can be used
to simulate quantum magnetism in ultra cold gases [29]. First observations of classi-
cal magnetism have been made in different geometries [30, 31]. Ultracold atom have
also been proposed to simulate very different kinds of physics like neutron matter in
the outer crust of neutron stars [32] or color superfluidity and Baryon formation of
quarks [33].

While it is state of the art to detect and manipulate single ions in an ion trap [34]
or single atoms in separate dipole traps [35], the application of these techniques to
the strongly-correlated regime of many-body states was so far lacking. The first
experiments imaging or manipulating atoms in a lattice with single-site resolution
used either large lattice spacings [36–39] or thermal atoms [40–42], which made these
systems not suitable for the study of many body physics in the strongly correlated
regime. Other experiments did not reach full single atom sensitivity [43, 44].

Only recently was single-atom resolved imaging in a Mott insulator achieved in
the group of Markus Greiner [45, 46] and in our group [47]. These advances allow to
probe strongly correlated states at the single atom level and to fully access the statis-
tics. E.g., we can measurement density-density correlations, which are complemen-
tary to the first order correlations accessible with previous methods like time-of-flight
imaging.

For the first time, we have shown the manipulation of the spin of single atoms in an
optical lattice in the strongly correlated regime [48]. This new techniques opens the
path to a wide range of novel applications from quantum dynamics of spin impurities
and entropy transport to the implementation of novel cooling schemes.

Besides the quantum simulation aspect, ultracold atoms in optical lattices have also
long been considered a promising candidate for quantum information processing due
to their exceptionally long coherence times and the intrinsic scalability of the system.
Using the clock states as the qubit, coherence times of 58 s have recently been demon-
strated [49]. For the initialization of the quantum register, a Mott insulator state with
exactly one atom per site in the vibrational ground state is an ideal starting point,
which is confirmed by the clouds with extremely low defect density presented in this
work.
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Now the newly accomplished technique of single-site addressing brings the con-
struction of a full universal quantum computer within reach, both in the circuit-based
[50] and the one-way quantum computer architecture [51, 52]. The cluster state re-
quired for the later approach has already been demonstrated using entanglement via
spin dependent lattices [53, 54] and the two-qubit quantum gates required for the
former approach have seen many proposals [53, 55] and successful experimental re-
alization in dipole traps [56, 57].

Outline

The remaining thesis is organized as follows: Chapter 2 gives a short introduction to
the Bose-Hubbard model. A summary of the experimental sequence for the prepara-
tion of two-dimensional degenerate gases is given in Chapter 3. Chapter 4 describes
the high-resolution imaging system and the fluorescence imaging technique which
we apply in Chapter 5 to obtain single-site resolved images of Mott insulators, featur-
ing the number squeezing and the shell structure. Chapter 6 explains our scheme for
addressing the spin of single atoms in the lattice, which we use to study the single-
particle tunneling dynamics in a lattice, described in Chapter 7. In Chapter 8 we in-
vestigate coherent light scattering from an atomic Mott insulator and show that it
could be used to detect antiferromagnetic order even if single-site resolution is not
available. Finally, Chapter 9 concludes the thesis and gives an outlook on experi-
ments that become possible with the new techniques described in this work.
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2 Bose-Hubbard physics with ultracold atoms

This chapter will give a short introduction to the Bose-Hubbard model and its imple-
mentation with ultracold atoms. A more detailed description can be found, e.g., in
Refs. [58–62].

2.1 Bose-Hubbard model

The Hubbard model was originally developed in solid state physics to describe the
behavior of the valence electron gas in the periodic lattice of the atoms [63]. A bosonic
version was studied to describe the superfluid-to-insulator transition in liquid helium
[64]. Finally, it was proposed that this Hamiltonian can be realized with interacting
atoms in periodic potentials [1], which was subsequently realized [2]. Since then,
mimicking condensed matter physics with ultracold atoms in optical lattice has be-
come an active field of research [3, 4].

The Bose-Hubbard Hamiltonian Ĥ is written in terms of the annihilation and cre-
ation operators âi and â†

i for particles localized at a lattice site i as

Ĥ = −J ∑
<i,j>

â†
i âj + ∑

i
(εi − µ)n̂i + ∑

i

U
2

n̂i(n̂i − 1), (2.1)

where n̂i = â†
i âi is the number operator and < i, j > denotes the sum over all next

neighboring lattice sites. The Hamiltonian consists of three terms. The first term de-
scribes the kinetic energy given by the nearest neighbor hopping from site j to site i
with the hopping rate J/h̄. The second term describes an external potential with en-
ergy εi at site i and introduces the chemical potential µ which sets the particle number
in a grand canonical description. The third term describes the on-site interaction en-
ergy with the energy U for each pair of particles at a site.

2.2 Implementation with ultracold atoms

The Hubbard Hamiltonian can be realized with ultracold atoms in optical lattices.
The potential of a cubic optical lattice can be factorized and reduced to a one-dimen-
sional problem. In each dimension, it has the form Vlat(x) = V0 · sin2(klat · x), where
klat = 2π/λlat = π/alat is the wave vector of the lattice light of wavelength λlat and
the depth V0 is usually given in units of the recoil energy Er = (h̄klat)

2/(2m) with the
atomic mass m.
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2 Bose-Hubbard physics with ultracold atoms

The periodic potential leads to a band structure in the energy spectrum and the
eigenfunctions are delocalized Bloch waves with quasimomenta |q| < π/alat · h̄. For
experimentally achieved temperatures, one can restrict the description to the lowest
band, and we do not introduce a band index here. The Bloch waves can be combined
to form the localized Wannier functions w(x− xi) at site i as a new orthonormal basis.

Tight binding approximation

For sufficiently deep lattices, the Wannier functions are tightly localized and they
have a significant overlap only with the Wannier function localized at the nearest
neighboring lattice site. In the tight binding approximation, all overlap integrals but
those between next neighboring sites are neglected.

The tunnel coupling J between next neighbors can then be obtained as the exchange
integral

J =
∫

w∗(x− xi+1)

(
−h̄2

2m
∇2 + Vlat(x)

)
w(x− xi)dx. (2.2)

In this approximation, it is directly related to the energy spectrum, which has a band
width of 4J [58].

Ultracold atoms interact with a point-contact interaction quantified by the scatter-
ing length as. For two atoms localized on the same site with a wave function w(x),
the interactions lead to an energy shift U given by

U = 4πh̄as/m ·
∫
|w(x)|4dx. (2.3)

Both J and U can be tuned by changing the lattice depth. In ultracold atoms, the
ratio U/J can easily be changed over several orders of magnitude. There are also
approximative formulas for U and J as a function of the lattice depth valid for deep
lattices [59].

Limitations of the Bose-Hubbard description

Ultracold atoms in optical lattices are a nearly ideal realization of the Bose-Hubbard
model. The restriction to the lowest band is well justified, because the vibrational
spacing is one order of magnitude larger than the energies relevant for the dynamics.
Only for very low lattice depths (V0 < 5 Er) do tunneling processes to the second and
third neighboring site play a role [58]. The interactions of ultracold atoms are very
short ranged and the purely on-site interactions are an excellent approximation.

The calculation of J and U in Eqs. (2.2) and (2.3) use the single particle wave func-
tion w(x). However, the interaction can induce a change of the wave function, which
changes U and J. The changes in U have recently been precisely measured [65] and
can be described by effective multi-body interactions.
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2.3 Ground state of the Bose-Hubbard model

2.3 Ground state of the Bose-Hubbard model

For the two limiting cases of U � J (infinitely shallow lattices) and U � J (infini-
tively deep lattices) the description of the ground state of the Bose-Hubbard model
is simple. The cases correspond to a superfluid state and a Mott insulating state, re-
spectively. We first discuss the homogeneous case, i.e. without an external potential.

Infinitely shallow lattice

Let N and NL denote the total number of atoms and the total number of available
sites, respectively. In the limit where the tunneling energy is much larger that the
interaction energy, all the atoms are condensed in the Bloch wave with zero quasi-
momentum

|ψ〉 = 1√
N!

(
â†

q=0

)N
|0〉 , with â†

q=0 =
1√
NL

NL

∑
i

â†
i . (2.4)

When the atom number is large, this state becomes indistinguishable from a coherent
state

|ψ〉 = exp
(√

Nâ†
q=0

)
|0〉 = exp

(√
N
NL

NL

∑
i

â†
i

)
|0〉 . (2.5)

Since the operators â†
i commute at different lattice sites, the above state can be factor-

ized into a product of identical local coherent states

|ψ〉 =
NL

∏
i

exp

(√
N
NL

â†
i

)
|0〉i . (2.6)

The on-site number fluctuations of such a state are known to be Poissonian, with a
mean value n̄ = N/NL and a variance σ2 = n̄.

Infinitely deep lattice

We consider here a commensurate filling n = N/NL. Deep in the Mott regime (the so
called atomic limit), the atoms are localized at the node of the lattice and the state of
the system can be expressed as a product of local Fock states

|ψ〉 =
(

NL

∏
i
(â†

i )
n

)
|0〉 . (2.7)

The mean occupation is n̄ = n with a variance σ2 = 0. The reduction of the vari-
ance compared to the Poissonian case is called number squeezing. Perfect number
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2 Bose-Hubbard physics with ultracold atoms

squeezing is only expected for zero temperature and zero tunneling. A finite tunnel-
ing will lead to the coherent admixture of particle hole pairs and the number squeez-
ing continuously changes between the two limiting cases. A finite temperature will
also reduce the amount of number squeezing by inducing thermal excitations (see
Sec. 5.4).

Phase transition

Between the above-mentioned two limits, there is a quantum phase transition from
the superfluid state to the Mott insulating state occurring at a critical ratio (U/J)c.
This continuous quantum phase transition is driven by quantum fluctuations and
also exists at zero temperature, when all thermal fluctuations are frozen out. For
homogeneous conditions and a 2D simple square lattice, the transition is expected to
occur at (U/J)c ' 16.4 (see Ref. [66]), where small shifts of this critical value have
been reported when the system is additionally exposed to an underlying harmonic
trapping potential [67].

Influence of the confining potential

In the homogeneous case, a pure Mott insulating state will only be reached for a
commensurate filling, i.e. an integer number of atoms per lattice cite, because any
additional atoms can freely move on top of the incompressible phase. Fortunately,
the situation is more favorable in real experiments which always have an external
confining potential. In this case, the atoms can distribute over the lattice and change
the local filling factor. The density is then locally pinned to integer values and a shell
structure emerges [68].

One can describe the system in the local density approximation which assigns a
local chemical potential µi = µ − εi to a site i with energy εi. If the external con-
finement varies slowly, the system will locally behave like a homogeneous system,
however with a fixed chemical potential rather than atom number.
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3 Experimental setup

Sixteen years after the first realization of a Bose-Einstein condensate (BEC) with ultra-
cold gases [69, 70] there is now an impressive number of experiments with ultracold
atoms and many descriptions of the apparatuses and techniques can be found (see
e.g. Refs. [60, 62, 71, 72]). This chapter will give a short summary of our experimental
sequence (Sec. 3.1) and detail on a few selected aspects (Sec. 3.2-3.5).

3.1 Experimental sequence

Our experimental setup consists of a steel vacuum chamber with two distinct regions,
called the "MOT chamber" and the "science chamber" (see Fig. 3.1). A differential
pumping stage connects the MOT chamber with a 2D-MOT chamber. In the MOT
chamber, there is a pair of water-cooled gradient coils with the strong axis along the
transversal direction. It is used both for the 3D-MOT and a magnetic quadrupole trap.
Six MOT beams are aligned along the transversal, longitudinal and vertical direction.

In the science chamber, there are optical lattices along the x, y and z directions. The
z lattice beam is reflected from the vacuum window, under which the high-resolution
objective is situated. A single gradient coil is placed above the atoms and an addi-
tional pair of vertical offset coils is used to shift the position of the magnetic field
zero close to the center of the chamber. An optical dipole trap along the longitudinal
directions connects the MOT chamber and the science chamber. It has a wavelength
λ = 1064 nm and waist radius w0 = 40 µm. The focus position can be moved along
the optical axis to transport the atoms.

The experimental sequence is sketched in Fig. 3.2. It has a total duration of 22.5 s
and consists of the following steps (the duration of each step is given in parenthesis).

1. MOT phase (2.3 s)
We load the 3D-MOT from an atomic beam produced in the 2D-MOT (described
in [73]). We end with ∼ 109 atoms.

2. Magnetic trap and microwave evaporation (9.8 s)
We load the atoms into the magnetic quadrupole trap by switching the field
gradient to to 30 G/cm in 300 µs and then ramping it to 120 G/cm in 5 ms. We
trap about 50% of the atoms in the |F = 1, mF = −1〉 state without additional
optical pumping. We apply a microwave evaporation knife (on the transition to
|F = 2, mF = −2〉) from −150 MHz down to −10 MHz, just before the onset of
Majorana losses and end up with ∼ 108 atoms at 20µK.
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3 Experimental setup

Optical dipole trap
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Figure 3.1: Schematics of the experimental setup. Shown is a cut through the vacuum cham-
ber. In the front, one sees the science chamber with the optical lattices along the x, y and
z direction (red) and the imaging system from below. The optical molasses and absorption
imaging beams are superimposed with the lattice beams. Behind the science chamber, one
sees the MOT chamber, which has MOT beams along the vertical, transversal and longitudi-
nal directions (not shown). The 3D-MOT is loaded from an atomic beam (green) produced
in a 2D-MOT in a separate vacuum chamber. An optical dipole trap along the longitudinal
direction (yellow) is used for the transport from the MOT chamber to the science chamber.
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3.1 Experimental sequence
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Figure 3.2: Schematics of the experimental sequence. Two exemplary magnetic field gradients
and optical potentials are schematically shown. The gray shaded areas mark the division of
the sequence as used in the main text.

3. Loading of the optical dipole trap (1.5 s)
We position the optical dipole trap 350 µm below the position of the magnetic
field zero and ramp it to a depth U = kB · 100 µK in 250 ms. We load the dipole
trap by slowly switching off the magnetic gradient within 1.5 s and end with
∼ 107 atoms at ∼ 5 µK in the dipole trap.

4. Optical transport (2.5 s)
We move the focus of the optical dipole trap from the MOT chamber to the
science chamber within 2 s (see Sec. 3.2).

5. Hybrid trap and evaporation (2.3 s)
We switch on a magnetic quadrupole field within 100 ms. The position of the
magnetic zero is shifted ∼ 300 µm below the optical dipole trap and the field
with a vertical gradient of 13 G/cm compresses the atom cloud in the axial di-
rection of the dipole trap laser beam, which allows high collision rates. Af-
ter 500 ms of evaporative cooling in this hybrid trap configuration [74, 75], we
transfer the atoms into the z lattice and populate about 60 antinodes. We then
evaporate again by ramping down the dipole trap intensity and finally switch
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off the dipole trap. Now we have ∼ 105 atoms in the vertical lattice.

6. 2D system preparation (0.5 s)
We prepare a single slice in the vertical lattice using magnetic resonance imag-
ing techniques (see Sec. 3.3).

7. Evaporation in z lattice (1.1 s)
We perform a final evaporation by ramping down the z lattice from Vz = 54 Er to
Vz = 22 Er in 1 s while simultaneously tilting the potential along the horizontal
direction with a magnetic field gradient. Then we move the cloud via the offset
fields to a good overlap with the optical lattice. Depending on the end point of
the evaporation, we are left with a few hundred to few thousand atoms in the
degenerate regime in the |F = 1, mF = −1〉 state.

8. Horizontal lattices (∼ 0.5 s)
We ramp up the x and y lattice depths in an s-shaped ramp of 75 ms to create a
Mott insulator (see Ch. 5) and perform the desired experiment.

9. Fluorescence imaging (2.0 s)
Finally we freeze the distribution by ramping all three lattices to ∼ kB · 300 µK
depth in 2 ms and apply the push out pulse to remove the atoms from doubly
occupied sites. We illuminate with an optical molasses and take a fluorescence
image for 900 ms. Then we drop the atoms and record an image of the back-
ground light (see Ch. 4).

3.2 Optical transport

Most experiments with ultracold atoms in lattices use two separate regions for the
MOT and for the lattices, because both require a large optical access. Often, the trans-
port between the two regions is accomplished by moving the position of the zero of a
magnetic field gradient either using many coil pairs [76, 77] or by translating a single
pair of coils [78]. A different approach is to transport optically, either by moving the
focus [79–81] or shifting the phase of an optical lattice [82, 83]. This has the advantage
of stealing less optical access in the science chamber.

We transport the atoms in a single beam optical dipole trap (1064 nm, beam waist
radius w0 = 40 µm, axial trap frequency 5 Hz at kB 100 µK trap depth). The atoms
are transported within 2 s by a distance of 130 mm by translating the focus position
of the dipole trap using mirrors on a motorized micrometer stage (Newport Motion
Controller XMS160, range 160 mm). We use a rather smooth transport profile, i.e. the
focus position as a function of time, which is a concatenated polynomial continuous
to third order and has a maximum velocity of 300 mm/s and a maximum acceleration
of 2.5 m/s2 [84]. The transport is slightly non-adiabatic with respect to the axial trap-
ping frequency of 5 Hz and in this regime one expects to excite oscillations, whose
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amplitude depend on the precise timing of the transport profile [81]. Although we
see some influence of the parameters of our transport profile, the interpretation is
not clear [84]. After transport we have an oscillation with an amplitude of ∼ 150 µm
which is damped during the subsequent evaporation in the hybrid trap.

In previous experiments the lens which produces the focus of the dipole trap was
placed on the translation stage [79]. We found that the alignment was easier if we
put the lens before the stage and use the stage to change the length of the subsequent
beam path by changing the position of a pair of retroreflecting mirrors. This also
increases the travel range by a factor of two. We want to position the stage far away
from the science chamber to avoid magnetic fluctuations at the position of the atoms.
Therefore we image the focus of the dipole trap into the vacuum chamber with a 1:1
telescope. One of the last mirrors before the chamber is piezo driven and smoothly
changed from one position to another during the optical transport. This allows for an
independent alignment of the transversal dipole trap position at the position of the
MOT and the science chamber.

3.3 Preparation of 2D systems

In an optical lattice it is straight forward to reduce the dimensionality by making one
or two lattice axes deep and thereby freezing the dynamics in these directions [85].
This amounts to working with many copies of the lower-dimensional system. For
the imaging, however, we need a single two-dimensional system, and two different
approaches have been established for its preparation.

One approach is to compress the atom cloud either magnetically [86] or optically
using a light sheet [87, 88] or an evanescent wave surface trap [89, 90]. To allow
the resulting high atomic densities, one can reduce the repulsive interactions via a
Feshbach resonance in this step [91]. The compressed cloud can then optionally be
loaded into a single antinode of an optical lattice with a few µm spacing [14, 90, 91].

Another approach is to first populate several antinodes of an optical lattice and
to subsequently prepare a single slice out of it using magnetic resonance imaging
techniques. For lattice spacings around 400 nm, a resolution of about 2 lattices sites
has been reached for degenerate samples [68, 92] and single atoms [41, 93].

We implement this second approach, because the geometry of our chamber neither
allows a larger lattice spacing (via an angle between the two vertical lattice beams)
nor sufficient access to create a tightly focused light sheet. This preparation has the
advantage that we can in principle create three-dimensional clouds and observe them
tomographically after freezing them. Using a vertical lattice with a small spacing of
532 nm also ensures that the extension of the atomic wave packet in the direction of
the imaging system (<100 nm) is much smaller than the depth of focus of our imaging
system (∆z = 1.7 µm). If this condition was not fulfilled we might have faced a
reduction of the imaging resolution and of the addressing fidelity.
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Figure 3.3: Preparation of 2D systems. (a) We initially populate many antinodes of the vertical
lattice (gray ellipses) with atoms in state |F = 1, mF = −1〉 (blue ellipses). (b) We transfer all
atoms to the state |F = 2, mF = −2〉 (red ellipses) with a global microwave sweep (indicated
by the red arrow). (c) We transfer a single slice back to the state |F = 1, mF = −1〉 making
use of a magnetic field gradient to spectrally address a single slice. (d) We remove all atoms
in the F = 2 manifold with an optical push out pulse on the F = 2 to F′ = 3 transition (green
arrow) and are left with atoms in a single slice. (e) Level scheme of the ground state manifold
of 87Rb. The states that we use for the slicing are indicated. (f) Image of a Mott insulator in a
single slice. (g) Image of a two Mott insulators in two neighboring slices. It is clearly visible
that signal rises to twice the value of a single slice when the two Mott insulators of different
radii overlap.

The slicing procedure is illustrated in Fig. 3.3. We start with all atoms in |F =
1, mF = −1〉, populating 60 antinodes of the vertical lattice with a spacing of alat =
532 nm. We then transfer all atoms to |F = 2, mF = −2〉 and subsequently transfer
a single slice back to |F = 1, mF = −1〉. The selective transfer is possible due to
a magnetic field gradient producing a position dependent frequency shift ∂ν/∂z ∼
5 kHz/µm of the |F = 1, mF = −1〉 ↔ |F = 2, mF = −2〉 transition. The atoms in
|F = 2, mF = −2〉 are then removed with an optical push out pulse.

The first transfer from |F = 1, mF = −1〉 to |F = 2, mF = −2〉 is performed by a
microwave frequency sweep of 20 ms over 10 MHz. We additionally apply an optical
repumping pulse to completely empty the |F = 1〉 manifold. The selective transfer
of the atoms of one slice back to the |F = 1, mF = −1〉 state is done by a resonant
Blackman pulse of 5 ms duration. We remove all atoms remaining in F = 2 from the
trap by a laser pulse resonant with the F = 2 → F′ = 3 transition. A microwave
sweep of 50 ms duration and 75 kHz spectral width is used to bring any remaining
atoms in |F = 1, mF = 0〉 to |F = 2, mF = 0〉 before removing them with a laser pulse.
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3.4 Optical lattices

The magnetic field gradient ∂B/∂z = 24 G/cm is produced by a single coil placed
50 mm above the atoms with its axis coinciding with the z-lattice beam. The vertical
bias field which we usually use to shift the position of the magnetic zero close to the
atoms is completely switched off to avoid noise. The bias field from the single gradi-
ent coil at the position of the atoms is then 32 G. The current supply for the gradient
coil is switched to an external noise free reference during the slicing procedure. We
use a current supply with a relative stability of 10−5 (High Finesse bipolar current
source BCS 5/5). This corresponds to magnetic field fluctuations of 0.3 mG which is
of the same order as typical background magnetic field noise. Before the optical push
out, we ramp the magnetic fields to the configuration for the subsequent evaporation
which yields a smaller field at the position of the atoms.

As we subsequently perform an evaporation in the single 2D system, we are not
sensitive to efficiency of the slicing transfer or to heating. Temperature drifts of the
gradient coil are important and we monitor them and give a feedback on the mi-
crowave frequency for the slicing.

One can estimate the number of populated antinodes of a vertical lattice by ob-
serving the interference pattern of the degenerate atoms after time-of-flight, where
the absence of an interference indicates a single 2D system [14, 90, 91]. In our case, a
second slice is directly visible in the in situ fluorescence images [Fig. 3.3(f),(g)].

We found that we can prepare single slices, but we have large scatter in the verti-
cal position of the sliced cloud and in the final atom number. Recent investigations
suggest that we actually prepared two slices and lost all atoms in the smaller slice
by a strong nonlinearity in the subsequent evaporation. Since then we made some
improvements in the sequence which also involve a water cooled gradient coil and a
larger magnetic gradient, and we can now prepare the same atom number with good
stability. These improvements will be described in the thesis of Manuel Endres.

3.4 Optical lattices

We use a conventional optical lattice setup with three pairs of beams, each interfer-
ing with its own reflection. The vertical lattice is reflected from the vacuum window
located 5 mm below the atoms and has its waist position at the window. The horizon-
tal lattice beams are imaged to the retro-reflecting mirror with a lens of focal length
f = 120 mm, making the lattice position insensitive to tilting vibrations of the mirror.

After studying the Bose-Hubbard physics at a lattice depth of a few Er, we freeze
the distribution for the fluorescence imaging by ramping the lattices to a depth of
about kB · 300 µK = 3000 Er. In order to obtain such a large depth, we chose a rel-
atively small focus size (1/e2 waist radius of 75 µm) and bring a power of 10 W per
axis to the atoms. We apply an intensity stabilization only up to a depth of∼ 50 Er.

The very deep lattices allow a convenient method for the alignment of the lattices
onto the atoms. After switching off the potential, we apply a short pulse of a hori-
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Figure 3.4: Level scheme of 87Rb showing the hyperfine states of the 52S1/2 state and the
52P3/2 state [94]. The transitions that we use for cooling and for repumping are indicated.
Also the cross overs to which we lock our lasers are shown.

zontal lattice beam (the retro-reflection is blocked), where the length corresponds to
one fourth oscillation period of the trapping frequency in the lattice beam (typically
500 µs). In this time an initial transversal displacement between the atom position
and the lattice beam will transform to a velocity which is subsequently probed by an
image after time-of-flight. If the alignment is good, the atom cloud will expand sym-
metrically after this pulse. If the lattice beam is transversally displaced with respect
to the atoms, one can deduce the direction of the displacement from the asymmetric
expansion of the atom cloud. This is a very sensitive single-shot method which is
insensitive to atom number fluctuations.

3.5 Laser setup

The level scheme of 87Rb is sketched in Fig. 3.4 together with the wavelength of the
cooling and repumping transition. It also shows the cross overs to which we lock
some of our lasers (see below).

Low-power lasers

Our low power laser system is sketched in Fig. 3.5. All lasers are grating-stabilized
diode lasers (Toptica DL-PRO). The laser system supplies the 2D-MOT, the 3D-MOT,
the optical molasses at the position of the lattice and the addressing beam. We also
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have absorption imaging beams superimposed with the MOT beams and the lattice
beams. The following letters refer to the subfigures in Fig. 3.5.

(a) The master laser provides the image beam [via a double-pass acousto-optical
modulator (AOM)] and the push beam of the 2D MOT [73]. It is stabilized to the 1-3
cross over using a Pound-Drewer-Hall lock.

(b) The repump laser for the two MOTs and for the absorption imaging is locked
to the 1-2 cross over and shifted into resonance with the F = 1 to F′ = 1 transition
using an AOM. As the beams are not needed simultaneously, we extract the image
repumper from the zeroth order of the first AOM.

(c)-(d) The cooling light for the two MOTs and the molasses is obtained from two
tapered amplifiers which are both offset locked to the master. A half-wave plate can
be placed into the beam path to switch the power between the 3D-MOT and the mo-
lasses at the lattices at the subsequent polarizing beam splitter cube (PBS).

(e) The addressing laser is not frequency stabilized and monitored with a wave
meter. We can send a molasses beam through the same beam path (see Sec. 6.5).

(f) For the offset lock, the cooling light and the master laser are combined on a 50:50
splitter after spatial filtering via an optical fiber. The beam signal is recorded via a fast
photo diode (Hamamatsu MSM Photodetector).

(g) The image beam is distributed over the different imaging ports. Repumping is
done in the vertical direction at the position of the MOT and in longitudinal direction
at the position of the lattice. We use one fast shutter to switch the imaging on and off
(Uniblitz Eletronic). More shutters in front of each fiber coupling serve to select the
desired imaging direction.

(h) The molasses light is distributed over the x,y, and z direction and can also be
sent to the addressing port. The AOMs are controlled by phase-locked waveform
generators such that we can give controlled relative detunings to the molasses beams
(see Sec. 4.5).

High-power lasers

For the horizontal optical lattice laser beams we used two fiber amplifiers (Nufern,
40W) seeded with the same single-frequency solid-state laser (Innolight Mephisto
product line 1064nm, 500mW), whereas the vertical lattice beam was derived from
an independent solid-state laser (Innolight Mephisto MOPA product line 18W). For
the optical dipole trap, we use a broad-band fiber laser (IPG photonics Ytterbium
fiber laser 50 W, 1064 nm, emission bandwidth 5 nm, operated at 7 W). All high power
lasers are send through polarization maintaining photonic crystal fibers (ams Tech-
nologies) between the AOM and the experiment. This avoids thermal drifts of the
beam position from the AOMs. In order to avoid thermal destruction of the fibers,
we use a duty cycle limiter on the AOM that ensures that the optical power reaches
the fiber for not more than 1 s every 20 s.
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Figure 3.5: Schematic of the laser setup. For details see main text.
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4 Single-atom resolved fluorescence imaging

This chapter describes how we image the quantum gases in the optical lattice with
single-site resolution and single-atom sensitivity. We combine fluorescence imag-
ing with a high numerical aperture objective (Sec. 4.2). One drawback of fluores-
cence imaging are the light-assisted collision, which lead to the rapid pair-wise loss
of atoms, such that we detect the parity of the original atom distribution per lattice
site (Sec. 4.3). Because we only have to distinguish between one or zero atom per
lattice site, we can reconstruct the atom distribution even with a resolution above
the Rayleigh criterion. We developed a deconvolution algorithm, which tries dif-
ferent atom configurations and reconstructs the distribution with very high fidelity
(Sec. 4.4). The fidelity is limited by the loss of atoms during the imaging time due to
background collisions and thermal hopping events in the molasses. Optimization of
the molasses parameters can largely suppress this thermal hopping (Sec. 4.5). We dis-
cuss possible extensions of the imaging technique (Sec. 4.6) and conclude in Sec. 4.7.

4.1 State of the art

Fluorescence imaging is the method of choice for reaching single atom sensitivity,
because it yields a large signal-to-noise ratio and atoms can be simultaneously cooled
by an optical molasses. The method was demonstrated for imaging single atoms in
optical dipole traps [35], and in optical lattices [38, 95].

However, it remained a challenge to apply it to systems in the strongly correlated
regime. Strong correlations require sufficiently large tunneling rates between the lat-
tice sites, which can compete with the technical heating rates to allow an adiabatic
ramp up of the lattices. As the tunneling rate is exponentially suppressed with the
lattice spacing, the latter has to be on the order of 0.5 µm, which is challenging to
optically resolve. In the case of rubidium, Mott insulators were so far created with
lattice spacings of ∼ 426 nm [2, 96], 532 nm [97], 680 nm [46], and with a rectangular
lattice with spacings 765 nm and 426 nm [98]. Larger spacings might be possible for
lighter elements, especially lithium [99].

The first experiments with fluorescence imaging worked either in a 3D lattice of
5 µm spacing [38], where tunneling is completely suppressed, or with sparse filling in
a 1D lattice with short spacing [42, 95]. In this 1D lattice, nearest neighbor detection at
a spacing of 433 nm was reached despite the diffraction limited resolution of 1.8 µm
by using an algorithm, which makes use of the discreteness of the spacing and of the
dilute filling [42].
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4 Single-atom resolved fluorescence imaging

An alternative approach demonstrated in the group of Herwig Ott is to apply
scanning electron microscopy to ultracold gases, which allows a resolution down
to 150 nm, well resolving a lattice of 600 nm spacing [43]. As the electron beam is
scanned across the sample, the atoms are ionized by electron impact ionization, ex-
tracted with an electrostatic field and subsequently detected by an ion detector. The
method, however, does not reach full single-atom sensitivity, because impact ioniza-
tion constitutes only about 40% of the scattering events, and averaging over many
images is required so far.

Absorption imaging has been used for in situ imaging of two-dimensional systems
with a resolution of 3-4 µm [91] and 1.2 µm [39]. The former experiment achieved
detection of the shell structure of a Mott insulator and the latter resolved lattice sites
with 2 µm spacing, with a weak tunnel coupling. However, absorption imaging has
not reached single-atom sensitivity so far.

Only recently was the technique of single-atom sensitive fluorescence imaging com-
bined with single-site resolution in a short-period lattice in the group of Markus
Greiner [45].The atoms were placed in a surface trap a few micrometer below a hemi-
spheric lens, and the solid immersion effect lead to an effective numerical aperture of
NA = 0.8 for an objective with NA = 0.55 outside the vacuum chamber. Thus the
lattice spacing of 680 nm could be well resolved at a resolution of 600 nm (FWHM).
The horizontal lattices were generated by projecting a holographic mask through the
imaging system. This allowed to change the lattice wavelength for the imaging and
obtain the required lattice depth with a convenient laser power. However, the prox-
imity to the surface seems to cause problems in the homogeneity of the potentials
[46]. Finally, single-atom-resolved images of Mott insulators were obtained in the
group of Markus Greiner [46] and in our group [47]. This will be described in Ch. 5.

4.2 High-resolution imaging system

Imaging resolution

Due to its finite aperture, an imaging system can only reproduce a limited range of
spatial frequencies of the object. Because the system is linear, the imaging system
can be completely characterized by the response to a point source, the so called point
spread function (PSF). It has the form of an Airy pattern, the width of which is de-
termined by the wavelength and the aperture of the imaging system NA = n sin α.
Here, α is the half opening angle and n is the refractive index between the object and
the imaging system. The intensity distribution of the airy pattern is given by (see e.g.
Ref. [100])

I(ρ) ∝
(

2J1(ρ)

ρ

)2

, (4.1)
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Figure 4.1: Point-spread function of the imaging system. (a) image of a single hole in the
test target. Two of the rings of the Airy pattern can be distinguished. In the test setup, we
used a camera with a pixel size of 8 µm, which corresponds to 62 nm in the object plane.
(b) azimuthal average of the data in (a) together with an Airy pattern as given by Eq. (4.1)
with a resolution of r0 = 700 nm as expected from the numerical aperture NA = 0.68 of the
imaging system (red line). The experimental data points (blue circles) lie somewhat outside
the theoretical curve due to the finite size of the hole (≈ 100 nm). (c) Fluorescence image of
a dilute cloud of atoms. The white dots mark the lattice sites. The individual atoms are well
distinguishable. (d) Azimuthal average of our experimentally obtained point spread function
of a single atom. The data was obtained by averaging over 68 signals of single atoms. The red
line is a fit with the double Gaussian of Eq. (4.2).
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where J1(ρ) is the Bessel function of first order and ρ = r · 3.795/r0 is the radial
distance r scaled by the resolution r0 and a numerical factor. The Rayleigh resolution
is defined as the first zero of I(ρ) and is linked to the numerical aperture via r0 =
1.22 · λ/(2NA). Fig. 4.1(b) shows the PSF of a point source for our numerical aperture
of NA = 0.68 and an imaging wavelength of λ = 780 nm (red line), which yields
r0 = 700 nm.

The Rayleigh criterion states that point sources can be discriminated, if the maxi-
mum of one PSF coincides with the first zero of the other PSF, i.e. if their distance is
r0. By this definition, we do not have single-site resolution for our lattice spacing of
alat = 532 nm. However, the actual resolution can be well below this diffraction limit,
if additional information is given [42, 101], such as the discrete nature of atoms and
the lattice structure.

As the atoms sit on their lattice sites, it is not necessary to determine their position,
but only to determine the occupation of each lattice site. Furthermore, there can be
only zero or one atom per lattice site due to the light-induced collisions (Sec. 4.3).
Therefore it is sufficient to have an imaging resolution that is able to differentiate zero
or one atom per lattice site. It would be much harder to discriminate between more
atom numbers. The requirement for the optical resolution in this context is to resolve
a missing atom within a full shell and for this we should compare the resolution to
twice the lattice spacing. This argument holds only for a large signal to noise, where
the PSF of each atom is well formed on the camera chip. We describe in Sec. 4.4 how
we determine the position of the lattice sites and reconstruct the atom distribution on
the lattice.

The above considerations assume incoherent light, and in fact, imaging with coher-
ent light can reduce the resolution [102]. Here, fluorescence imaging has an advan-
tage over absorption imaging. Both methods rely on the scattering of photons by the
atoms, but in absorption imaging, the usually coherent incident beam with the result-
ing shadow is imaged, while in fluorescence imaging only the scattered photons are
imaged, and they can lose their coherence via inelastic scattering. In Ch. 8 we show
that the coherent power fraction scattered into the objective is just a few percent.

We use the 5S-5P transition at λ = 780 nm for imaging. Using the 5S-6P transition
at the wavelength of λ = 420 nm instead would allow a much better resolution of
370 nm. However, it is not clear if the sub-Doppler molasses (Sec. 4.5) will work on
this transition.

Experimental setup

Our microscope objective was custom made (Leica Microsystems) and is located out-
side the vacuum chamber with a working distance of 13 mm. It is optimized for the
wavelength range of 420 nm to 780 nm and has a numerical aperture of NA = 0.68
for λ = 780 nm and NA = 0.70 for λ = 420 nm. It is diffraction limited with a Strehl
of 97%. The camera (iXonEM+ 897 (back-illuminated), ANDOR Technology) has a
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4.2 High-resolution imaging system

quantum efficiency of 80% and is cooled to −70◦C in order to reduce dark counts.
The beam path is sketch in Fig. 4.2. The objective covers 13% of the solid angle and
the total transmission of the imaging system including the mirrors and filters is 63%.
Including the quantum efficiency of the camera, we thus detect 7% of the scattered
photons at the camera.

The imaging system consists of the objective with effective focal length of 5.19 mm
and an achromatic lens with focal length 675 mm, yielding a magnification of 130.
Thus the camera pixel size of 16 µm corresponds to 123 nm in the object plane, which
is a reasonable value, since it does not limit the resolution and at the same time avoids
distribution of the signal on too many pixels. Interference filters serve for the suppres-
sion of the light from the vertical lattice. An uncoated glass window in the beam path
allows to send beams through the objective in reverse direction, e.g. a molasses beam
(Sec. 4.5) or the addressing beam (Ch. 6).

The objective was tested separately from the main experimental setup using a test
target with small holes, which was illuminated from the back [103]. The holes were
spaced irregularly in order to avoid the Talbot effect with the spatially coherent light
[104, 105]. The measured PSF from the test setup agreed with the specified imaging
resolution, taking into account the finite size of the holes [see Fig. 4.1(a),(b)]. The
objective is placed on a positioner (PIFOC P-726, Physik Instrumente GmbH & Co.
KG, Karlsruhe), which allows to move it along the optical axis over a range of 100 µm
with a precision of 10 nm.

The placement of the objective outside the vacuum chamber poses stringent re-
quirements on the flatness of the vacuum window. Over a region of 15 mm the de-
formations must be smaller than λt/4 (λt = 655 nm is the test wavelength). This
excludes spherical deformations, which can be compensated by refocussing the ob-
jective. We measured the deformations with a Fizeau interferometer (PTI 250 Zy-
goLOT, 50 mm aperture) and found 0.15 λt, which degraded to 0.22 λt after baking of
the vacuum chamber.

Point spread function of a single atom

An essential step for developing a reconstruction algorithm is the precise knowledge
of the point spread function of a single atom. It can be determined from fluorescence
images of a dilute atomic cloud [see Fig. 4.1(c)]. We summed the fluorescence signal of
many individual atoms that were isolated from their neighbors by more that 12 pixels.
The summed image is almost radially symmetric and we computed an azimuthal
average [see Fig. 4.1(d)]. We found that our PSF can be well approximated by a double
Gaussian:

PSF(x, y) = C
[
(1− a) exp

(
−0.5(x2 + y2)/σ2

1

)
+ a exp

(
−0.5(x2 + y2)/σ2

2

)]
(4.2)

with widths σ1, σ2 and a parameter a describing the relative amplitudes. The maxi-
mum fluorescence level C varies from day to day and is in the range of 800-1200 counts.
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Figure 4.2: Imaging beam path and transmission. The imaging system consists of the objec-
tive and an achromatic lens. The glass plate behind the objective allows to insert additional
beams. It causes no astigmatism, because the wavefronts are almost plane behind the objec-
tive. The vacuum window is only coated on the top side, with a high reflectivity of the lattice
wavelength λlat = 1064 nm, but a high transmission of the imaging wavelength λ = 780 nm
and also of λ = 420 nm. A copy of this window as well as two interference filters are placed
in the beam path to further suppress the vertical lattice beam which is reflected at the vacuum
window. The use of in total five silver mirrors is dictated by the geometry of our setup. The
legend lists the losses for the imaging wavelength at the different optical components, which
sum up to an overall transmission of 63%. For the uncoated window we use the average re-
flectivity of the s and p polarization. The fraction of detected photons is given by the solid
angle of the objective of 13% (NA=0.68), the transmission of 63% and the quantum efficiency
of the camera of 80% and amounts to 7%.
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4.3 Light-assisted collisions

Parameter Value Unit
σ1 2.06(5) pixel
σ2 9.6(1.2) pixel
a 0.075(2) -
C 1050(7) counts

Table 4.1: Parameters of the fit of the model function Eq. (4.2) to the atomic PSF.

We expect our PSF to be a convolution of an Airy disk with a Gaussian, taking into
account the width of the atomic wave packet in the potential wells and the pixel size
in the object plane of 125 nm. Due to this convolution, the first minimum of the airy
pattern is not visible in our averaged signal.

Tab. 4.1 lists the parameters of a fit of the model function Eq. (4.2) to the atomic PSF
[Fig. 4.1(d)]. The width σ1 = 2.06(5)pixel = 258(6) nm corresponds to a Rayleigh
resolution of r0 = 740(20) nm and is only slightly above the diffraction limited size
for ideal point sources.

4.3 Light-assisted collisions

During the imaging, atom pairs on a lattice site are immediately lost due to inelastic
light-assisted collisions [35, 46, 47, 106]. The loss is on the time scale of 100 µs for our
parameters which is short compared to the total illumination time of 900 ms, such that
we do not observe a signal from the atoms before they are expelled. We therefore only
detect the particle number modulo two on each lattice site. This essentially amounts
to recording the parity of the atom number. Fig. 4.3(a)-(c) illustrates this effect, which
has important consequences for the detection of the number statistics (see Sec. 5.3).

We observed that the expelled atoms can be recaptured by the molasses and lead to
a large background in the atom distribution, especially along the lattice axes, where
lattice is deep enough to hold the atoms [Fig. 4.3(d)]. To avoid this, we apply a 50 ms
push out pulse from below, which removes the atoms in the doubly occupied sites,
before switching on the molasses. The laser is on the F = 2 to F′ = 3 transition,
which is 6.8 GHz red detuned for the atoms in F = 1, but excites into the molecular
potentials causing light-assisted collisions. Fig. 4.3(e) illustrates that the background
is efficiently removed by the push out pulse.

Parity projection constitutes a loss of information and is in many cases not desir-
able. One way around this is to work at an average filling much smaller than one.
One might also let the atoms expand in the third direction after freezing the distribu-
tion of the 2D system, in order to make it so dilute that doubly occupied sites become
negligible (see Ch. 7). Using blue detuned light, the energy gained by the atoms in the
light-assisted collision can be limited, leading to the loss of only one of the two atoms
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a

b

c
10 µm

d recaptured atoms e with push out pulse

Figure 4.3: Light-assisted collisions and push out. (a) Initial density distribution with dif-
ferent atom numbers per lattice site. (b) Light-assisted collisions due to the optical molasses
lead to rapid pair-wise loss of the atoms. (c) The measured density distribution is the initial
density distribution modulo two. (d) fluorescence image of an n=2 Mott insulator without
push out. The atoms in the doubly occupied sites are expelled from their wells by the light-
assisted collisions, but they are recaptured by the molasses. This leads to a strong background
of atoms, especially along the lattice axes. (e) fluorescence image of a n=2 Mott insulator with
a push out before the imaging, which removes the atoms in doubly occupied sites

in most cases [107]. Combining this idea with grey molasses cooling [108, 109] might
be a route to avoid the losses. In in situ absorption imaging, the light-assisted colli-
sions can be avoided by switching off the lattice just before imaging, thus decreasing
the density [91]. Another possibility is to use an accordion lattice [110], that can be
expanded until the sites are resolvable and then add a separate pinning lattice that
mutually isolates the atoms [111].

4.4 Image evaluation and deconvolution

This section describes how we evaluate our fluorescence images and reconstruct the
atom number distribution using a deconvolution algorithm.

Determination of the lattice angles and spacing

To characterize our imaging system and to determine the lattice structure, we used a
fluorescence image of a dilute thermal could [Fig. 4.1(c)]. The lattice axes are oriented
at approximately ±45◦ with respect to the image coordinates. A precise determina-
tion of these angles and of the lattice spacing is needed so that the deconvolution al-
gorithm works with high fidelity. We first determined the center positions of isolated
atoms from this image by a simple fitting algorithm. The histogram of the mutual
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Figure 4.4: Determination of the lattice angles. (a), (b) Histogram of the distances between
the center positions of individual atoms for different angles θ of the coordinate system. The
red line is a fit to a sum of equidistant Gaussians. The atom positions are taken from Gaussian
fits to isolated atoms in a dilute cloud as in Fig. 4.1(c). (c) The width of the fitted Gaussians
shows a clear minimum versus θ. The red line is a parabolic fit and yields a minimum at a
rotation angle of θ = 45.85(5)◦.

distances between these center positions along the axes of a coordinate system ro-
tated by an angle θ clearly shows the periodicity of the lattice [see Fig. 4.4(a),(b)]. The
visibility of the pattern depends very sensitively on θ, because the periodicity is only
visible if we project the distances along the right direction.

For a quantitative analysis, we fit a sum of equidistant Gaussians to the histogram.
The width of the Gaussians for different values of θ [Fig. 4.4(c)] shows a clear min-
imum at θ = 45.85(5)◦. We obtained a similar graph for the other lattice axis and
found an angle of −45.55(5)◦. The distance of the Gaussians is 4.269(4) pixel which
corresponds to the lattice period of 532 nm. Thus, our magnification factor is 128.4(5)
and one pixel of the CCD camera corresponds to 125 nm in the object plane. The an-
gles and the lattice spacing determined by this method are used as fixed parameters
for our deconvolution algorithm. We also found that the phases of the two lattice
axes slightly drift from shot to shot. They are determined for each image by fitting
the center positions of single atoms in the outer part of the images.
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4 Single-atom resolved fluorescence imaging

Reconstruction of the atom number distribution

We developed a deconvolution algorithm to reconstruct the atom number distribu-
tion from a fluorescence image [Fig. 4.5(a)]. The algorithm tries different model-confi-
gurations for each lattice site and its nearest neighbors in order to minimize the differ-
ence of the original image with the reconstructed one [Fig. 4.5(b)]. This reconstructed
image is obtained by convoluting the atom number distribution with the atomic PSF
[Fig. 4.1(d)]. The algorithm allows for a variance of the fluorescence level of each
atom of ±20% of the mean photon count. These varying fluorescence levels partially
arise from the inhomogeneous intensity of the molasses light.

We additionally found an increased fluorescence level of about 5%-10% in the cen-
ter of very dense n = 1 shells of a Mott insulator, compared to the isolated atoms in
the outer part of the images. This effect might arise from rescattering, which effec-
tively blocks a significant part of the solid angle, redirecting the photons out of the
plane. The cross section for rescattering a photon in a stimulated Rayleigh transition
is of the order of the resonant cross section [112] which is of the same size as the
distance between the atoms.

We have evaluated the fidelity of the reconstruction algorithm by creating simu-
lated images of a known atom distribution using the PSF of our imaging system, the
poissonian and superpoissonian noise contributions of the light hitting the EMCCD
camera (including the amplification process), and the site-to-site fluorescence fluc-
tuations of ±20%. Running the reconstruction algorithm over several hundred of
such randomly generated images of Mott insulators at finite temperatures, we find a
reconstruction fidelity of ∼ 99.5%. In our experiment, the main limitations of the fi-
delity are atom losses during the detection process due to collisions with background
gas atoms (Sec. 4.5). The imaging time of 900 ms is thus a compromise between the
acquired signal and the described atom losses.

A more sophisticated algorithm is presently under development and will be de-
scribed in the thesis of Peter Schauß.

Etaloning of the camera

We correct for an etaloning effect of the CCD camera, which causes a spatially de-
pendent signal strength (see Fig. 4.6). We determined the effect by summing over 90
images with two slices of a large thermal cloud [Fig. 4.6(a) and (b)]. To eliminate the
shape of the cloud, we fitted the data with an 8th order polynomial and divided the
data by this fit, obtaining the etalon data containing the fringes [Fig. 4.6(c)]. The outer
regions with little signal were set to one. All pictures are divided by this etalon data
to correct for the effect.

We correct for stray light by subtracting a second picture without the atoms but
with the same molasses parameters.
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Original picture Reconstructed * PSFReconstructed

a cb

Figure 4.5: Illustration of the deconvolution algorithm. (a) Original picture. The white dots
mark the lattice sites as determined from the position of isolated atoms and the lattice angles
and spacing. The white circles indicate, where the algorithm found an atom. (b) Recon-
structed atom distribution on the lattice. (c) Convolution of the reconstructed image with
the PSF of the imaging system. This data is subtracted from the original picture, and the re-
construction is changed to minimize the residuum. The algorithm also allows for spatially
varying signal levels.

Figure 4.6: Etalonning of the camera chip. (a) Picture of a thermal cloud (two slices). (b) Sum
over 90 such pictures. Fringes originating from interference in the camera chip are clearly
visible. (c) The picture in (b) divided by a polynomial fit of 8th order. In order to correct for
the etalon effect, we divide each picture by this data.
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4 Single-atom resolved fluorescence imaging

4.5 Optical molasses

For imaging the atoms, we freeze the distribution by ramping the lattices to a depth
of ∼ 300 µK per axis and illuminate them with an optical molasses, which simultane-
ously laser cools the atoms. If the parameters are chosen well, the atoms stay in their
lattice site during the imaging time of about 900 ms. With a total scattering rate of
∼ 150 kHz, we detect about 7000 photons per atom which allows to reconstruct the
atom distribution with high fidelity (see Sec. 4.4).

We use five molasses beams oriented along the lattice axes in a σ+ − σ− configu-
ration (see Fig. 4.7). Two horizontal beams are overlapped with the corresponding
lattice beams via a dichroic mirror and are retro-reflected after a separation from the
lattice beams via another dichroic mirror. The beam radii at the position of the atoms
are wx = 940 µm and wy = 790 µm. We use a lens before the retro-reflecting mirror,
which allows to have a smaller radius of the reflected beam and therefore to com-
pensate for unavoidable power losses. We aligned the radiation pressure from the
incoming and retro-reflected beam using a 1D free-space molasses.

A fifth molasses beam is shone in from below, in reverse direction through the
imaging system. It has a focus before the objective, such that it is not focused at the
focal plane of the imaging system, but has its focus further up and has a radius of
wz = 4.2(6) µm in the focal plane. In order to further expand the beam, we scan it
across the cloud with a frequency of 100 Hz (see Fig. 4.7), leading to an effective beam
radius of about weff

z = 30 µm. The significant stray light from this beam, originat-
ing from reflections inside the objective, needs to be taken into account as described
in Sec. 4.4. The scanning of the position of the z molasses beam helps to wash out
fringes in this stray light and interferences between the stray light and the signal. The
z molasses beam is not balanced by a counter-propagating beam; the polarization
gradients from the interference with the horizontal beams are sufficient for cooling in
the z direction.

Thermal hopping

When the atomic distribution is frozen by very deep optical lattices, the quantum
mechanical tunneling rates of the low bands become extremely small. However, the
fluorescing atoms can undergo thermal hopping, i.e. overcome the barrier between
the lattice sites by their thermal energy. This process can be modeled by the Arrhenius
law [38], which is often used to describe chemical reaction rates or diffusion of adsor-
bates [113, 114]. To a good approximation, the activation energy for a hopping event
is given by the lattice depth V0, because the tunneling rate is suppressed for all but the
very last bound states. The hopping rate Γh can then be written as Γh = ΓaP(E > V0),
where Γa is the attempt rate, and P(E > V0) is the probability to find an energy E
larger than the trap depth V0 in the thermal distribution. The laser field acts as a ther-
mal bath for the atoms and the attempt rate Γa, with which the atom probes the tail
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Figure 4.7: Configuration of the molasses beams and the applied modulations.

of its thermal distribution, is related to the laser cooling time. The hopping rate can
be evaluated to

Γh ≈ Γa

(∫ ∞

V0

exp(−E/kBT)dE
)

/(kBT) = Γa
√

πerfc(
√

V0/kBT), (4.3)

where erfc(x) = 2/π
∫ ∞

x exp(−t2)dt is the complementary error function.
We measure the site-hopping rate by taking two consecutive images of the same

cloud for the first 200 ms and the last 200 ms of our 900 ms illumination period. We
compare the reconstructed atom distribution of the two images and extract the num-
ber of lost atoms and of hopped atoms [see Fig. 4.8(a),(b)]. Atoms that appear at a
previously empty site in the second image count as a hopping event. Subtracting this
number from the number of atoms that have disappeared from their sites in the sec-
ond image yields the atom loss. We cannot assign which atom moved to which site
and therefore do not consider the traveled distance, but can only count the number
of events. For thermal hopping, we do not expect that the atoms move site by site
as for quantum mechanical tunneling. They rather move an arbitrary distance before
they are recooled to a different lattice site. Normalizing by the total number of atoms
and the time between the two images, we find the hopping rate and the loss rate,
and record these for different lattice depths [see Fig. 4.8(c)]. A fit to Eq. (4.3) yields a
temperature of T = 26(4) µK and T = 18(2) µK and an attempt rate of Γa = 19(9)Hz
and Γa = 21(9)Hz for the x and the z lattice, respectively.
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Figure 4.8: Thermal hopping and Arrhenius process. (a), (b) Top row: two consecutive im-
ages of the same dilute cloud, containing 69 atoms, taken during the first 200 ms and the last
200 ms of the 900 ms illumination period. Bottom row: reconstructed atom distribution. In
the second picture, 4 atoms have disappeared and 3 atoms appeared (marked red in the re-
spective images), suggesting a hopping rate of Γh = 6(8)Hz and a loss rate of Γl = 2(5)Hz.
(c) Hopping rate Γh versus the lattice depth of the x and the z lattice. For each curve, the other
two lattices are fixed at their maximum depth. The data is fitted to an Arrhenius process as
defined in Eq. (4.3) yielding temperatures of T = 26(4) µK and T = 18(2) µK, respectively.
The displayed error bars show the 1σ statistical uncertainty, given by the Clopper-Pearson
confidence limits.

Optimization of the molasses parameters

For the optimization of the molasses parameters, we monitor the hopping rate, which
is a measure for the molasses temperature. Fig. 4.9(a),(b) shows the hopping rate Γh
and the loss rate Γl for different molasses intensities and detunings. The intensity is
given as the saturation parameter stot of all five molasses beams calculated from a cal-
ibration of the optical power and the beam size. The detuning ∆ = ∆free +∆lat is com-
posed of the free space detuning ∆free and the additional detuning from the optical
lattice ∆lat = −40 MHz (as measured by the shift of the resonance of in situ absorp-
tion imaging). We find a parameter region, in which both the hopping rate and the
loss rate are small. They increase for smaller detunings and larger intensities, but also
begin to increase for too large detunings. We attribute the loss rate to collisions with
background atoms. For very bad molasses parameters, the loss rate also comprises
atoms that are thermally activated to completely leave the lattice and the distinction
between hopping rate and loss rate is difficult. For optimal molasses parameters, the
loss rate has a background value of about 1% over 900 ms, which corresponds to a
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trap lifetime of ∼ 75 s, in agreement with independent lifetime measurements in the
magnetic trap.

Fig. 4.9(c) shows the hopping rate plotted versus the ratio stot/|∆| of the saturation
parameter and the molasses detuning. We find that in this plot the curves for different
detunings coincide. This suggests that the hopping is limited by the T ∝ stot/|∆|
relation of polarization gradient cooling [115–117]. We also observe how this relation
begins to break down at very small values of stot/|∆|. The solid line shows a fit to
an Arrhenius process [Eq. (4.3)], which assums a linear dependence as kBT/V0 =
C · stot/|∆|, yielding a prefactor C = 0.33(5) and an attempt rate of Γa = 24(1)Hz.

We choose a free space detuning of ∆free = −40 MHz and a saturation parameter
of stot ∼ 7 as optimal parameters, which yield a scattering rate of Γsc ∼ 150 kHz and
a hopping rate of Γh ∼ 0.01 Hz. Within the usual imaging time of 900 ms, we collect
about 7000 photons per atoms for these parameters.

For these measurements, we used dilute clouds of 30-70 atoms, which allowed to
reconstruct the distribution with high fidelity even for molasses parameters that yield
a small signal. We checked, however, that at the optimal parameters the hopping rate
is the same for dense clouds with unit occupation. In fact, we do not expect to see the
density dependent heating via rescattering, because in our 2D system the scattered
photons can escape in the direction perpendicular to the lattice. The neighboring
atoms block only a few percent of the solid angle (the scattering cross section for
stimulated Rayleigh scattering of the emitted photons is on the order of the resonant
cross section [112]). If rescattering was a problem, we would expect the temperature
to depend on the scattering rate, because heating can be suppressed by scattering
slower than the trap frequency [112]. In Fig. 4.9(d) we plot the hopping rate versus
the total scattering rate. Low hopping rates are only achieved for scattering rates
around Γsc ≈ 150 kHz, only slightly smaller than our trap frequencies of ∼ 200 kHz.
Therefore, the plot suggests that the scattering rate does not set the temperature lim-
itation.

We checked the calibration of our molasses power which we use to calculate the
saturation parameter stot by comparing the resulting scattering rate

Γsc =
Γ
2

stot

1 + stot + (2∆/Γ)2 (4.4)

to the number of detected photons per atom. From the peak counts per atom Cpeak ≈
1000, we calculated the total counts per atom as Ctot = Cpeak

π
2 (

2σ
B )2, where σ =

2.1 pixel is the 1/
√

e radius of the PSF and B is the pixel binning of the camera (B = 2
in this section). The number of photons needed to obtain the above A/D counts is
given by the camera sensitivity Scam = 300/58.4, including the EM-CCD gain of 300
(camera settings are shift speed=3.3, PreAmp=1, read out rate=0.1 MHz). Dividing
the number of detected photons by the illumination time T and the fraction F of
detected photons (Sec. 4.2), we obtained the total scattering rate Γ̃sc = Ctot/Scam/T/F
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Figure 4.9: Optimization of the molasses parameters. (a) Hopping rate and (b) loss rate as a
function of the saturation parameter stot and the free space detuning ∆free of the molasses. (c)
Hopping rate as a function of stot/|∆|. The curves for different detunings coincide, suggesting
the typical temperature dependence of polarization gradient cooling. The legend states the
free space detuning ∆free/(2π). (d) The same data plotted versus the total scattering rate Γsc.

and found reasonable agreement with the calculation from the saturation parameter
and detuning.

For the measurements of this section, the beam balance was carefully aligned (also
using the intensity of the peaks in the far-field diffraction patterns of Ch. 8). However,
this is not mandatory. At the optimal molasses parameters, the hopping can be very
small, even when the retro-reflections of both horizontal molasses beams are blocked.
The relevant condition is that there are polarization gradients in all directions. The
light pressure imbalance can be absorbed by the tight confinement in the lattice sites.
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Figure 4.10: Hopping rate as a function of applied bias fields in different directions.

Sensitivity to magnetic bias fields

It is well known that an optical molasses is sensitive to a magnetic bias field. A trans-
verse field leads to a Larmor precession, which changes the population of the mag-
netic sublevels, thus competing with the optical pumping process that leads to the
cooling in a polarization gradient. Also the Zeeman-shifts must be smaller than the
AC-stark shifts between different mF states. It was found that the molasses temper-
ature increases considerably, when the Larmor frequency is not a factor of ten below
the scattering rate [118].

In Fig. 4.10 we applied a magnetic bias fields in different directions and monitored
the resulting hopping rate for the optimal molasses parameters. We found that a bias
field of up to a few 10 mG is tolerable if all other molasses parameters are optimized.

One should be aware that the optical lattices can create an effective magnetic field
via a differential light shift if their polarization has a circular component. At the very
large powers required for the imaging this can be relevant even for a wavelength of
λlat = 1064 nm. We measured the effective magnetic field using microwave spec-
troscopy in the deep lattices and found values as large as 100 mG, which we could
reduce to 3 mG by placing additional polarizing cubes close to the atoms.

Washing out of interferences between the molasses beams

In a one-dimensional molasses, both the σ+-σ− as well as the lin-⊥-lin configuration
show a periodic modulation only in the local polarization, but not in the intensity.
This is, because the two counter-propagating beams have orthogonal polarizations
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and can therefore not interfere. With additional beams as in a three-dimensional mo-
lasses, however, there will be an intensity pattern, which causes inhomogeneous il-
lumination of the atoms. Therefore it is common to modulate certain parameters of
the molasses in order to wash out these interferences [45, 47]. The modulation has
to be slow compared to the scattering rate (' 150 kHz) in order to not compromise
the polarization gradient cooling mechanism, but fast compared to the imaging time
(900 ms). The modulations that we apply are indicated in Fig. 4.7: the retro-reflecting
mirrors of the x and y molasses beams are modulated with a frequency of 300 and
400 Hz, respectively, and the z molasses is scanned across the cloud with a frequency
of 100 Hz. Additionally, the y molasses is detuned with respect to the x and z mo-
lasses by 43 Hz.

The scanning of the z molasses is mainly for washing out interferences with the
stray light that originates from this beam. It seems that its scanning has little influ-
ence on the wavefront at the position of the atoms and it is therefore kept on in the
following. When omitting other molasses modulations, the interferences of the mo-
lasses beams can be clearly seen in the image of a Mott insulator [see first row of
Fig. 4.11(a)-(c)]. In Fig. 4.11(a), the modulation of the retro-reflecting mirror of the x
molasses was omitted and interference fringes perpendicular to the non-modulated
molasses are clearly visible. The second and third row show integrated profiles along
the axis as indicated by the dashed white lines in the first row. The period of the
fringes is 7% larger than the molasses wavelength of 780 nm, which is probably due
to a small angle between the two counter-propagating molasses beams. In Fig. 4.11(b),
the modulation of both retro-reflecting mirrors was omitted and in In Fig. 4.11(c), also
the relative detuning of the molasses beams was omitted, such that all five beams in-
terfere.

The spread of the atomic wave function is large enough to map out the intensity
pattern. A Moiré pattern between the molasses’ interference and the lattice spacing
is only seen in the reconstructed images [Fig. 4.11(d)]. When the minimum of the
molasses intensity coincides with a lattice cite, the atom is likely to get lost and we
see indeed a reduced atom number with a period of about 3 lattice sites.

We investigated how fast we can wash out of the interference pattern without com-
promising the molasses by changing the detuning of the y molasses with respect to
the other two molasses. We found that the hopping rate is not changed for a detuning
of up to 10 kHz, while it then grows rapidly. At a total scattering rate of 150 kHz, or
a single beam scattering rate of about 30 kHz, this shows that the cooling is already
efficient, if just a few photons are scattered in a given polarization gradient config-
uration. We also detuned the z molasses instead of the y molasses and found the
same behavior, but the interference between the x and y molasses was still visible as
a horizontal modulation.
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Figure 4.11: Interference pattern of the molasses beams, illustrating the need to wash them
out by modulating the molasses. (a) Omitting the modulation of the x molasses, one clearly
sees the interference with the retroreflected beam. (b) Omitting the modulation of the x and
the y molasses, one sees the interference along both directions. (c) Omitting the detuning
between the x and the y molasses, one sees the stripes arising from their interference with a
period which is larger by a factor of

√
2. (d) Reconstruction of (b). Atoms are more likely to be

missing with a period of three sites, where the minimum of the interference pattern coincides
with a lattice site. The top row shows the fluorescence images. The middle and bottom
row show density profiles integrated along the respective coordinates [in the restricted range
indicated by the dashed lines in the case of (d)].
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4 Single-atom resolved fluorescence imaging

4.6 Possible spin-dependent imaging and single-qubit read-out

In the present scheme, spin dependent imaging relies on removing one spin com-
ponent before detection (see Ch. 6). For experiments with spin mixtures [29, 119] it
would be desirable to image both spin states in the same experimental run. This can
however not be done using a molasses, because it mixes all magnetic sub-states. One
possibility is to apply absorption imaging on one of the components, while shelving
the other spin component. If the scattering is done on a closed transition F = 2 to
F′ = 3 with circular polarized light, one can heat the atom out of the trap before it is
depumped to the F = 1 manifold. Subsequently one can use the molasses to image
the shelved atoms.

For a future one-way quantum computation scheme [51, 52], it is mandatory to
read out qubits during the computation process without affecting the other atoms.
This could be done by using two states in the F = 1 manifold as qubit and transfer
the selected atom to |F = 2, mF = −2〉 for detection. There it can resonantly scatter
a few hundred photons on the closed transition F = 2 to F′ = 3 from a single σ−

polarized beam, such that the atom is heated out of the trap before it is depumped to
the F = 1 manifold. One would first transfer from one of the qubit states in the F = 1
manifold and detect its population and then transfer the other state and also detect
it. As all other atoms remain in the F = 1 manifold, they remain unaffected by the
light on the F = 2 to F′ = 3 transition. The selective transfer to F = 2 can be done by
the combination of a differential light shift from an addressing beam and appropriate
microwave and radio frequency pulses (see Ch. 6). As there is only one atom imaged
at a time, the few hundred scattered photons might be sufficient to detect it, e.g. by
imaging the full signal on a single avalanche photo diode. One open question is if
one can ensure that the atom is heated out of the trap without hopping to different
lattice sites and disturbing the atoms there.

4.7 Conclusion

In this chapter we have shown how we image quantum gases in an optical lattice with
single-site resolution and single-atom sensitivity. We use an imaging system with a
numerical aperture of NA = 0.68 located outside the vacuum chamber, yielding a
diffraction limit of 700 nm, slightly above the lattice spacing of 532 nm. It was tested
in a separate setup and characterized via a test target. We measure the point spread
function of single atoms and compare it to that of the test setup.

Light-assisted collisions in the molasses lead to a rapid pair-wise loss of atoms,
such that we only detect the parity of the atom number per lattice site. As we only
have to discriminate between one or zero atom per site, we can reconstruct the atom
distribution on the lattice despite the resolution above the lattice spacing. For this, we
precisely determined the lattice angles and the lattice spacing from images of a dilute
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cloud. A deconvolution algorithm digitizes the images with a fidelity of ∼ 99.5%.
During the fluorescence imaging, we apply an optical molasses, which simultane-

ously laser cools the atoms to a temperature∼ 20µK in a lattice with 300 µK depth per
axis. We collect about 7000 photons per atoms in 900 ms yielding a large signal over
a small background. By optimizing the molasses parameters, we can make thermal
hopping and losses negligible.
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5 Imaging Mott insulator shells

In this chapter we apply the single-atom resolved imaging technique presented in
the previous chapter to Mott insulators in the atomic limit. We directly observe both
the characteristic shell structure and the number squeezing in the Mott shells. A
comparison of the radial density distribution with theory provides a precise in situ
temperature and entropy measurement from single images.

5.1 State of the art

The superfluid-to-Mott-insulator transition has been studied extensively since its first
realization [2]. When the interactions are increased relative to the kinetic energy, the
atoms are localized to their sites, which leads to a number squeezing and the loss of
phase coherence between the different sites. In an external confinement, the density
distribution changes from the smooth Thomas-Fermi profile of a weakly-interacting
BEC to a characteristic shell structure, in which the number distribution is pinned to
integer values. Also the excitation spectrum changes.

In a BEC, arbitrarily small excitations exist, which correspond to phase offset be-
tween sites, while in a Mott insulator an energy gap opens, and the smallest possible
excitation is one particle in excess which has an energy cost of one interaction energy
U. All these properties have been verified experimentally and were used to detected
the Mott insulated state.

The first observation of the Mott insulator was via the the loss of phase coherence,
which is a direct consequence of the localization of the atoms [2, 120]. The measure-
ment is done by switching off the trap and observing the matter wave interference
after time-of-flight, which shows prominent peaks at a momentum of the reciprocal
lattice vector. The phase coherence is deduced from the visibility of the interference
pattern and the reappearance of this visibility when going back to a shallow lattice
shows that one can reversibly cross the phase transition.

Another feature of the Mott insulator, which was already probed in the first exper-
iments, is the energy gap in the excitation spectrum. It corresponds to a particle-hole
pair as lowest lying excitation, which for U/J � 1 has an energy of U. Excitation
spectra have been recorded by driving the system either by applying a magnetic gra-
dient [2] or by amplitude modulation of the lattice [11, 121]. The heating is measured
by ramping back to the superfluid state and by detecting the increased dephasing
in the broadening of the central momentum peak after time-of-flight. In the Mott
insulator, the spectra show distinct peaks at energies of U and also 2U, where the
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5 Imaging Mott insulator shells

latter comes from excitations at the boundaries between two shells. It has been sub-
sequently argued that the appearance of the peaks in the excitation spectra alone is
not a prove of a Mott insulating state and that an analysis of the strength of the peaks
at different multiples of U would be required.

A method, which tackles the shell structure, is to record the global atom number
statistics, i.e. the occupation numbers averaged over the entire system for different
total atom numbers, and to compare it to theory. For a superfluid one expects to find
all occupations numbers for any filling. For the Mott insulator, however, one expects
an enhancement of certain occupation numbers, depending on what shells exist at
the given total atom number. E.g. the fraction of sites with double occupancy is zero
for a perfect Mott insulator with only an n = 1 shell. For larger total atom numbers,
which lead to the formation of an n = 2 shell, this fraction increases steadily, until
it decreases again with the formation of the n = 3 shell. Different methods have
been used to assess the global atom number statistics, ranging from spin changing
collisions [122] to interaction blockade [123] and multi-body interactions [65].

While these methods only probe the global atom number statistics, other exper-
iments achieved to image the shell structure. They used a state transfer selective to
the filling factor and recording the spatial distribution of lattice sites with different oc-
cupations. The filling-selective state transfer was realized by clock shifts [124] (with
better data quality in [125]) and by spin-changing collisions [68]. The latter involves
tomographic imaging of single 2D slices of a 3D Mott insulator to avoid the integra-
tion in one direction.

The shell structure is also revealed in a direct measurement of the density profile
obtained from absorption imaging of a 2D Mott insulator with a resolution of 3− 4 µm
[91], showing a clear plateau at a density corresponding to unity filling as well as
reduced density fluctuations. Finally, Mott insulator shells were imaged with single-
site resolution and single-atom sensitivity in the group of Markus Greiner [46] and in
our group [47]. Single-site resolved in situ images are of special interest, because they
can directly probe the squeezing of the number statistics, which is the complementary
quantity to the measurement of the phase coherence in the first experiments.

Next to the Bosonic case, the Mott insulator has also been realized for Fermions
[10, 11]. In this case, the incompressibility of the insulating state, which can be de-
duced from the response to an increased external confinement, is a better measure
than in the Bosonic case, because the Pauli principle forbids the formation of shells
with larger fillings.

5.2 Shell structure of Mott insulators

Our experiments start with a BEC in a single antinode of the vertical z lattice with
a depth of Vz = 26(2) Er (The preparation of the BEC is described in Ch. 3). For the
Mott insulators, the lattice depths along the x and y directions were then increased
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Figure 5.1: High resolution fluorescence images of a BEC and Mott insulators. Top row:
Experimentally obtained images of a BEC (a) and Mott insulators for increasing particle num-
bers (b)-(g) in the zero-tunneling limit. Bottom row: Reconstructed atom number distribution.
Each circle indicates a single atom, the points mark the lattice sites. BEC and Mott insulators
were prepared with the same in-plane harmonic confinement.
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5 Imaging Mott insulator shells

in s-shaped ramps within 75 ms up to Vx,y = 23(2) Er. A band structure calculation
(see e.g. [60]) yields an interaction energy U = h · 960 Hz and a tunnel coupling
J = h · 3 Hz for this lattice depth, such that U/J ∼ 300 and we are deeply in the atomic
limit of the Mott insulator. The Gaussian beam profile of our lattice beams (1/e2

waist radius of 75 µm) caused an additional harmonic confinement with trapping
frequencies ωx/(2π) = 72(4)Hz and ωy/(2π) = 83(4)Hz at the lattice depths of
Vx,y = 23(2) Er and Vz = 26(2) Er. For comparison, we also imaged BECs without the
horizontal lattices, but with similar external confinement dominated by the vertical
lattice. To freeze out the atom distribution without crossing the phase transition, we
rapidly ramped up the horizontal lattices within 0.1 ms.

Fig. 5.1 shows the resulting atom distributions of a BEC and Mott insulators in the
zero-tunneling limit for different atom numbers. We directly observe dramatic dif-
ferences in the density profiles and the on-site number fluctuations. For a BEC we
find that the recorded atomic density exhibits large atom number fluctuations from
site to site. In contrast, for a Mott insulator we obtain plateaus of constant integer
density, with almost vanishing fluctuations. The images in Fig. 5.1 show how for in-
creasing particle numbers successive Mott insulator shells are formed, which appear
as alternating rings of one and zero atoms per site due to our parity measurement
(see Sec. 4.3).

In both the raw images and the reconstructed ones, individual defects are directly
visible as holes or additional atoms. Because the higher atom numbers are obtained
by less evaporation, the larger Mott insulators are hotter than the small ones, which
shows in the less sharp transition between the shells. We find that our atom clouds
are very symmetric in comparison to those in Ref. [46], which sets an upper bound on
the disorder in the optical potentials. A small ellipticity of the clouds is caused by the
different harmonic trapping frequencies ωx and ωy.

5.3 Number statistics after parity projection

The on-site number fluctuations are an important indicator for the physical state.
For a BEC, they are Poissonian, while for a Mott insulator, the number statistics is
squeezed, with unity probability for a certain integer filling depending on the shell.

The statistics can be probed via averaging the occupation of each site over many
shots [46] or via averaging over different sites in a single image [47]. The latter has the
advantage that it is insensitive to shot-to-shot fluctuations of the total atom number or
even cloud position, but it is only good, if the potentials are well characterized. Here
we take azimuthal averages and observe the number statistics in the mean value and
the variance of this average.

The light-assisted collisions in the molasses lead to pair-wise loss of the atoms, such
that one only detects the parity of the original atom number per site (see Sec. 4.3). This
projection has some consequences on the detected statistics. Let us first consider some
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5.4 Radial density profiles

general properties that hold independent of the original atom number distribution.
Because one can only find zero or one atom on a site, squaring the single-shot occu-
pation number ndet(r) at a site at radius r has no effect and hence n2

det(r) = ndet(r)
and also n2

det(r) = n̄det(r). The detected variance is therefore

σ2
det(r) ≡ n2

det(r)− n̄2
det(r) = n̄det(r)− n̄2

det(r) = n̄det(r) [1− n̄det(r)] , (5.1)

which is simply a function of the mean density. I.e. independent of the on-site atom
number distribution, the variance contains not more information than the detected
mean density and in turn, the mean density must contain information about the vari-
ance, i.e. the atom number distribution. One can say that the parity projection mixes
the mean density and the variance of the original distribution. In the same way that
0 < n̄det(r) < 1, it holds 0 < σ2

det(r) < 0.25 and the maximal variance σ2
det(r) = 0.25

is found together with the density n̄det(r) = 0.5.
Let us now consider what the parity projection will do to the atom number distri-

bution of a BEC and a Mott insulator. A Mott insulator shell with perfect number
squeezing is projected onto a mean value of one or zero depending on the filling of
the shell and the variance vanishes. A BEC has a Poissonian on-site number distribu-
tion with an original mean value n̄. The probability PPoisson(n, n̄) to find n atoms is
given by

PPoisson(n, n̄) = n̄ne−n̄/n!, (5.2)

where the mean value is reproduced as

n̄ =
∞

∑
n=0

n · PPoisson(n, n̄). (5.3)

When the detected atom number is parity projected we have instead a detected mean
value of

n̄det =
∞

∑
n=0

mod2(n) · PPoisson(n, n̄) = 0.5 [1− exp (−2n̄)] . (5.4)

We find that the detected mean density n̄det < 0.5 and that it approaches this value for
large original mean values n̄, when the probability to find an even or an odd number
are equal. This value of n̄det ∼ 0.5 is already found for n̄ & 1.5 and, indeed, we detect
a mean density of n̄det = 0.5 in the center of our BECs. This reasoning shows that a
detected mean density n̄det > 0.5 already is a proof of number squeezing.

5.4 Radial density profiles

The symmetry of our clouds allowed us to average the data azimuthally, taking into
account the ellipticity, and to obtain radial profiles for the average detected density
n̄det(r) and its variance σ2

det(r) [see Fig. 5.2(d),(e)]. For this, we first determined the

45



5 Imaging Mott insulator shells

0

0.5

1

n d
et

 (a
to

m
s/

si
te

)

0 2 4 6 8

0

0.25

Radial distance r (μm)

d

e

σ
de

t (
at

om
s2 /

si
te

2 )
2

a b c

Figure 5.2: Radial profiles of the mean atom density and its variance. (a)-(c) Reconstruction
of the n = 1 and n = 2 Mott insulator images of Fig. 5.1(d),(e) and of the BEC in Fig. 5.1(a)
for reference. The circles indicate the (elliptical) azimuthal average at a given radius. (d),(e)
Radial profiles of the mean density n̄det(r) and the variance σ2

det(r) of the data in (a)-(c). The
displayed statistical errors are Clopper-Pearson 68% confidence intervals for the binomially
distributed number of excitations. For the Mott insulators the density and variance profiles
were fitted simultaneously with the model functions of Eqs. (5.7) and (5.1).
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center of the cloud as the center of mass of the reconstructed distribution. Then we
binned the lattice sites according to their distance from the center, thereby correcting
for the ellipticity of 10%. The bin sizes were chosen larger near the center to produce
sufficient statistics.

We analyze the radial profiles with a simple model for the atomic limit, i.e. vanish-
ing tunnel coupling. This is a good approximation for our experiments with U/J '
300. Coherent particle-hole fluctuations are suppressed as (J/U)2 and they are neg-
ligible here. So the deviations from the integer filling are all induced by thermal
fluctuations, which are described by a simple thermodynamic calculation. The atom
number distribution at a lattice site at radius r is given by

Pr(n) = eβ[µloc(r)n−En]/Z(r), (5.5)

where Z(r) = ∑n eβ[µloc(r)n−En] is the grand canonical partition function, β = 1/(kBT),
µloc(r) is the local chemical potential and En = Un(n− 1)/2 is the interaction energy.
Using a local density approximation (LDA), we define µloc in terms of the global
chemical potential µ and the external harmonic trapping confinement as

µloc(r) = µ− 1
2

m(ω2
xx2 + ω2

yy2). (5.6)

Taking the light-induced losses into account, we calculate the expected detected den-
sity at different radii as

n̄det(r) =
1

Z(r) ∑
n

mod2(n)eβ[µloc(r)n−En] (5.7)

For the Mott insulators in Fig. 5.2, the density and variance profiles were fitted si-
multaneously with the model functions of Eqs. (5.7) and (5.1) with T/U, µ/U and a

radius r0 =
√

2U/(mωxωy) quantifying the strength of the external confinement as
free parameters [red and orange data and lines in Fig. 5.2(d),(e)]. r0 was not fixed,
because it is not clear at which lattice depth and which according external confine-
ment the distribution is frozen during the ramp into the atomic limit. The fits yielded
temperatures T = 0.090(5)U/kB and T = 0.074(5)U/kB, chemical potentials µ =
0.73(3)U and µ = 1.17(1)U, and radii r0 = 5.7(1) µm and r0 = 5.95(4) µm for the
n = 1 Mott insulator (orange) and the n = 2 Mott insulator (red), respectively. From
the fitted values of T, µ and r0, we determined the original atom numbers of the
system before parity projection to N = 270(20) and N = 529(8).

For both the density profiles and the atom number variances we find excellent
agreement between the experimental data and the theoretical model for all radial
distances. This supports the assumption that our system is in global thermal equilib-
rium, in contrast e.g. to Ref. [126]. The extracted temperatures of T = 0.090(5)U/kB
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5 Imaging Mott insulator shells

and T = 0.074(5)U/kB for the n = 1 and n = 2 data are well below U/kB and ac-
cordingly the shell structure is only slightly washed out by thermal excitations. Our
temperature estimates are conservative since all defects are attributed to thermal ex-
citations in our model. However, defects might also arise due to "collateral damage"
caused by atoms undergoing light-assisted collisions.

For reference, we show the corresponding data obtained by freezing out the atom
distribution of a BEC [Fig. 5.2(c) and grey data in Fig. 5.2(d),(e)]. We observe the ex-
pected density of n̄det = 0.5 in the center of the cloud together with a maximum
variance of σ2

det = 0.25. We note that the thermal shells surrounding a Mott insula-
tor core also exhibit this maximum variance and can be as narrow as 1-2 lattice sites.
As both the superfluid and the thermal state are expected to show a mean density
of 0.5 after parity projection, it is not possible to discriminate between them in these
pictures. Furthermore a fit to a BEC with finite condensate fraction is not feasible. A
prominent feature of the bimodal density distribution of a partially condensed cloud
is the kink between the superfluid core and the thermal wing [71]. However, this
feature is totally lost in the parity projection.

In Fig. 5.3(b),(c) we plot both Mott insulator data sets from Fig. 5.2 versus the local
chemical potential. In a single image, we mapped out an entire line in the phase
diagram as illustrated in Fig. 5.3(a). The slightly different temperatures of the two
Mott insulators are clearly visible in the different widths of the variance curves.

Entropy per particle

Our measurements also confirm that the entropy is concentrated around the Mott
insulating regions, whereas in the center of a Mott insulator, for local chemical poten-
tials of µloc = (n+ 1/2)U with an integer n, number fluctuations are completely sup-
pressed and the entropy density is essentially zero. We use the fitted temperature and
chemical potential to calculate the original atom number distribution Pr(n) without
parity projection. As can be seen in Fig. 5.3(b), the deviation from the perfect integer
filling due to thermal excitations is smallest in the center of the n = 1 Mott shell at a
local chemical potential of µloc = 0.5 U. Therefore we insert the radius correspond-
ing to µloc = 0.5 U into Pr(1) to extract the maximum of the theoretical probability
for unity occupation. For the lowest observed temperature of T = 0.074(5)U/kB
we calculate a 99.7(1)% probability for unity occupation in the center of the n = 1
Mott-insulating plateau.

We can furthermore calculate the local entropy per lattice site as

Sloc(r) = −kB ∑
n

Pr(n)ln[Pr(n)]. (5.8)

Summing the density and entropy density over the lattice sites, we calculate the total
number of particles N = 529(8) and the total entropy S = kB · 180(12) given the fitted
values of T and µ from the n = 2 data of Fig. 5.2. We find a mean entropy per particle
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Figure 5.3: Atom density and variance versus local chemical potential. (a) Schematics of the
Bose-Hubbard phase diagram (T = 0) showing the transition between the characteristic Mott
insulating lobes and the superfluid region. The red line starting at the maximum chemical
potential µ shows the part of the phase diagram existing simultaneously at different radii
in the trap due to the external harmonic confinement. (b),(c) The data from Fig. 5.2 plotted
versus the local chemical potential using the local-density approximation [Eq. (5.6)]. The inset
to (c) is the entropy density calculated for the displayed n = 2 Mott insulator.
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S/N = kB · 0.34(2). This is around the critical entropy for quantum magnetism,
which is estimated to be between (S/N)c = kB · 0.34 [127] and (S/N)c ∼ kB · 0.5
[128].

5.5 In situ thermometry

Thermometry in optical lattices is notoriously difficult [8]. Usually the tempera-
ture is determined by measuring the temperature before loading into the lattice and
again after loading back into a harmonic trap and comparing the entropies calculated
from the temperatures and the trap geometry [129, 130]. Our method constitutes a
single-image in situ thermometer for the atomic limit, from which the entropy can
be straightforwardly calculated [Eq. (5.8)]. It relies on the simple analytic expression
of the density profile for the atomic limit. In the strongly correlated regime, there
are no simple analytic expression and a direct temperature measurement is difficult.
However, the entropy of the system can be estimated from measurements of the tem-
perature in the atomic limit.

Range of the thermometer

A Mott insulator at zero temperature has shells with perfectly sharp edges at posi-
tions where the local chemical potential µloc is an integer multiple of U. Temperature
washes out these edges and the width of the transition from one integer filling to
the next is used to determine the temperature. However, there are also other effects
which wash out the edges and therefore set the lowest detectable temperature. The
most fundamental effect is the graininess of the lattice. The square lattice and the
circular shell structure are incommensurate and therefore a perfectly sharp edge can
only be approximated by occupations on the lattice. We apply a fit to simulated data
of an n = 2 Mott insulator at T = 0 and find a temperature of Tmin = 0.02 U/kB.
This is the lower bound given by the graininess of the lattice. It could be reduced
via a smaller external confinement, i.e. a larger system, in which the graininess of
the lattice is less important. For all practical purposes, however, this should not be a
limitation.

The single-shot temperature measurement also relies on well-characterized poten-
tials, which allow to convert the position to a local chemical potential. We measured
the trap frequencies of the external confinement via excitation of the dipole mode
and the low damping rates indicate a good quality of the harmonic confinement. We
don’t expect to probe the inharmonic part of the potential, because the radius of a
n = 2 Mott insulator is about 7 µm, while the 1/e2 waist radius of the lattice beams is
75 µm. We find a small ellipticity ε of our clouds, given by the two trapping frequen-
cies ωx/(2π) = 72(4)Hz and ωy/(2π) = 83(4)Hz as ε = 1− ωx/ωy = 13(1)%. In
the azimuthal averages, we correct for this ellipticity. We estimate the effect of badly
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Figure 5.4: Calculated mean density and variance as a function of local chemical potential
according to Eq. (5.7) for different temperatures (compare Ref. [131]).

compensated ellipticity, by fitting to simulated data at T = 0 as above, but adding
an ellipticity in the azimuthal averaging. We find that an ellipticity of ε = 5% hardly
changes the lowest detectable temperature Tmin = 0.02 U/kB, while an ellipticity of
ε = 10% increases it to Tmin = 0.04 U/kB. We conclude that we are not limited by our
uncertainty of the ellipticity.

The highest detectable temperature Tmax is given by the melting of the Mott insu-
lator at T . U/kB. Fig. 5.4 shows the atom number distribution as a function of local
chemical potential according to Eq. (5.7) for different temperatures. The shells are just
about visible at Tmax = 0.5 U/kB, and the temperature measurement should work to
this point. Without the parity projection, the shells in the density are already washed
out at a temperature T ' 0.2 U/kB [131].

In conclusion, our method is a good thermometer in the range of Tmin = 0.02 U/kB
to Tmax = 0.5 U/kB, which is more than an order of magnitude and covers just the
relevant range.
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Figure 5.5: Melting of a Mott insulator. (a)-(c) Mott insulators with three different temper-
atures T, and constant total chemical potential µ in the zero-tunneling limit. For higher
temperatures, an increased number of uncorrelated particles or holes appear. In the data
shown the pixel were binned 2x2. (d),(e) Profiles of the mean density and its variance as a
function of chemical potential, determined as described in the caption of Fig. 5.2 and Fig. 5.3.
Yellow, orange and red points correspond to the data sets from (a),(b), and (c), respectively.
Light blue points correspond to the low-temperature n = 2 Mott insulator of Fig. 5.2(b) with
T = 0.074(5)U/kB and µ = 1.17(1)U. The parameters extracted from the simultaneous fits
to the radial density and variance profiles are T = 0.17(1)U/kB, µ = 2.08(4)U/kB, for (a),
T = 0.20(2)U/kB, µ = 2.10(5)U/kB, for (b) and T = 0.25(2)U/kB, µ = 2.06(7)U/kB, for (c).
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5.6 Conclusion

Melting of a Mott insulator

We observe how a Mott insulator melts as the temperature (or entropy) of the quan-
tum gas is increased (see Fig. 5.5). At constant total chemical potential but increasing
temperatures, one observes that the Mott domains gradually vanish. Although there
is no sharp transition to a normal fluid state in this case, Mott plateaus and number
squeezing degrade rapidly, once T & 0.2 U/kB [see Fig. 5.5(d),(e)].

Our method yields the temperature in units of the interaction energy U. This is
the relevant energy scale in the atomic limit and only this ratio will enter into the
calculation of the thermodynamic properties, e.g. the entropy. If we want to use the
atomic limit as a thermometer, we want to extrapolate to other lattice depths with
different interaction energies U. For this, we should compare the entropy, because
this is the quantity, which is conserved in an adiabatic change of the potential. The
temperature in contrast will change with the lattice depth.

We can calculate an absolute temperature using the interaction energy U = h ·
960 Hz at the end point Vx,y = 23(2) Er of the ramp of the lattice depth. Our lowest
measured temperature then corresponds to T = 0.074(5)U/kB = 3.6(3) nK. How-
ever, when ramping deeply into the atomic limit, the tunneling rate and therefore the
equilibration rate get exponentially suppressed. At the final lattice depth, the tunnel
coupling is only J = h · 3 Hz. Hence the thermal excitations will be frozen out at a fi-
nite depth with some finite tunneling and the final atom distribution will correspond
to this depth and interaction energy. Therefore this absolute temperature is only an
upper estimate.

5.6 Conclusion

In this chapter, we have shown single-atom resolved images of Mott insulators in
the atomic limit. When increasing the atom number, we see how successive shells
are formed. Due to the parity projection they show as alternating rings of density one
and zero. The symmetry of our external confinement allows us to obtain a radial den-
sity and variance profile from an azimuthal average over the data of a single image.
We determine the temperature in a single image by fitting the profiles with a simple
grand-canonical model. We find temperatures as low as T = 0.074(5)U/kB. This
corresponds to a 99.7(1)% probability for unity occupation in the center of the n = 1
Mott-insulating plateau.

Our pictures show that the entropy is concentrated in the transition regions be-
tween the Mott insulator shells and that it is essentially zero in the center of the shells.
For our parameters, we calculate a mean entropy per particle of S/N = kB · 0.34(2),
which is around the critical entropy for quantum magnetism. We also show how a
Mott insulator melts as the temperature of the quantum gas is increased. Our method
constitutes an in situ thermometer in the range 0.02 . kBT/U . 0.5.
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5 Imaging Mott insulator shells

We studied the simple case of the atomic limit to set a benchmark and confirm the
reliability of our technique. A natural extension would be to probe the strongly cor-
related state along the quantum phase transition. The same experimental sequence
can be used by simply freezing out the distribution at a different lattice depth. This is
ongoing work as I write.
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6 Single-spin addressing

In this chapter we describe how we manipulate the spin of individual atoms in a Mott
insulator with sub-diffraction-limited resolution using a tightly focussed laser beam
together with a microwave field. We review the state of the art in Sec. 6.1 and describe
our scheme in Sec. 6.2. We show in Sec. 6.3 that we can experimentally prepare arbi-
trary spin patterns and we discuss the fidelity of the addressing scheme in Sec. 6.4.
Some technical details are given in Sec. 6.5 and 6.6 and possible improvements are
discussed in Sec. 6.7.

6.1 State of the art

The quest to address single sites of an optical lattice has a long history, which was
mainly inspired by the potential applications in quantum information processing.
Because typical lattice spacings are on the order of half the lattice wavelength, they
cannot be fully optically resolved by a focused laser beam of a similar wavelength.
Therefore many proposals have been put forward to overcome this diffraction limit.

One idea is to synthesize a localized optical field with zeros on all other sites of
a one-dimensional lattice either using a spatial light modulator [132] or by interfer-
ence of many tilted laser beams [133]. Another idea is to use a position-dependent
atomic population transfer in multi-level systems [134], e.g. exploiting the nonlin-
ear response to the intensity of a control beam in electromagnetically induced trans-
parency [135], in the spirit of stimulated emission depletion microscopy (STED) [136].
A third idea is to use an auxiliary marker atom in a different internal state, which
is moved independently from the qubit atoms and initiates the selective spin flips
[137, 138].

Experimentally, single-site addressing was demonstrated both spatially, i.e. by fo-
cused beams [36, 37, 44], and spectrally, i.e. by selective microwave pulses [41, 93,
139]. Spatial addressing was performed optically in a one-dimensional lattice of
5.3 µm spacing [36] and a two-dimensional microtrap array of 125 µm spacing [37].
In both cases, the lattice sites contained several hundred thermal atoms and tunnel-
ing was completely suppressed at these lattice spacings. Two-dimensional address-
ing of a BEC in a lattice of 600 nm spacing was recently achieved using an electron
beam that can be focused to a much smaller spot than light with optical wavelengths
[44]. However, spin manipulation was not possible so far, but only depopulation of
selected lattice sites.

Spectral addressing was demonstrated with a magnetic field gradient in a sparsely
filled one-dimensional lattice of 433 and 532 nm spacing [41, 93] and with an effective
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6 Single-spin addressing

magnetic field at one site of a double well optical lattice [139]. In both cases, selected
atoms where shifted into resonance with a microwave field and could be coherently
manipulated.

Here we follow a hybrid approach [140, 141], which combines the advantages of
spatial and spectral addressing. The differential light shift from a tightly focussed
laser beam makes the atoms spectrally addressable via microwave radiation. This
method allows to overcome the diffraction limit (Sec. 6.4) and also allows to reach full
two-dimensional addressability (Sec. 6.3). The diffraction limit is overcome, because
the intensity of the laser beam does not need to vanish at the next atom, but only
needs to change as much as to allow to spectrally resolve the change in the differential
light shift. Two-dimensional addressing is in principle also possible with magnetic
field gradients in two directions [142], but in practice this substantially limits the
region of interest.

For the first time, we combine two-dimensional single-atom spin control in strongly
correlated systems with high fidelity single-atom detection.

6.2 Addressing scheme

In order to address the atoms in the lattice, we used an off-resonant laser beam fo-
cused by the high-resolution imaging system onto individual lattice sites (Fig. 6.1).
The laser beam causes a differential light shift of the two relevant hyperfine levels
|0〉 ≡ |F = 1, mF = −1〉 and |1〉 ≡ |F = 2, mF = −2〉 and tunes the addressed atom
into resonance with an external microwave field at ∼ 6.8 GHz [140, 141]. The σ−-
polarized addressing beam had a wavelength of 787.55 nm, between the D1 and D2
lines, in order to obtain a large differential light shift between the two hyperfine lev-
els. For perfect σ−-polarization, this ‘magic’ wavelength generates a light shift only
for state |1〉, and leaves state |0〉 unaffected (see Fig. 6.2). The beam had a diameter
of ∼ 600 nm full-width at half-maximum (FWHM) and could be moved in the object
plane over the entire field of view by changing its angle of incidence into the micro-
scope objective with a two-axis piezo mirror. We were able to position the beam with
an accuracy better than 0.1 alat using an independent calibration measurement of its
position together with a feedback that tracks the slowly varying lattice phases (see
Sec. 6.5).

If the addressing laser beam is perfectly centered onto one lattice site [see Fig. 6.1(b)],
the differential light shift is ∆LS/(2π) ' −70 kHz, whereas a neighboring atom only
experiences 10% of the maximum intensity. The resulting difference in light shifts
can be well resolved spectrally by our microwave pulses. In order to flip the spin, we
performed Landau-Zener sweeps yielding a near flat-top frequency spectrum with a
maximum population transfer efficiency of ∼ 95%. The microwave sweeps are HS1-
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6.2 Addressing scheme

Figure 6.1: Addressing scheme. (a) Atoms in a Mott insulator with unity filling arranged
on a square lattice with period alat = 532 nm were addressed using an off-resonant laser
beam. The beam was focussed onto individual lattice sites by a high-aperture microscope
objective (not shown) and could be moved in the xy plane with an accuracy of better than
0.1 alat. (b) Energy diagram of atoms in the lattice for the two hyperfine states |0〉 and |1〉. The
σ−-polarized addressing beam locally induces a light shift ∆LS of state |1〉, bringing it into
resonance with a microwave field. A Landau-Zener sweep (central frequency ωMW, sweep
width σMW) transfers the addressed atoms from |0〉 to |1〉.
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Figure 6.2: Differential light shift. The figure shows the light shift on state |0〉 (blue) and on
state |1〉 (red) as a function of wavelength for σ− (solid lines) and σ+ (dashed lines) polariza-
tion. At the magic wavelength of λm = 787.55 nm, state |0〉 experiences no light shift in the
case of perfect σ− polarization due to a cancelation of the light shifts arising from the coupling
to the D1 (795 nm) and D2 (780 nm) line. The light shift on the |1〉 state for σ− polarization
does not diverge at the D1 line, because there is no state with mF = −3 in the 5S1/2 manifold
to couple to.

pulses [143] with time-dependent Rabi frequency Ω(t) and detuning δ(t) given by

Ω(t) = Ω0 sech
[

β

(
2t
Tp
− 1
)]

(6.1)

δ(t) =
σMW

2
tanh

[
β

(
2t
Tp
− 1
)]

, (6.2)

where Ω0/(2π) = 3 kHz is the maximum Rabi-frequency, β = 5 is a truncation factor,
Tp = 20 ms is the pulse duration, and σMW/(2π) = 60 kHz is the sweep width. The
detuning δ(t) is measured relative to the center of the sweep at ωMW = ω0 − ∆MW
[see Fig. 6.1(b)]. Here, ω0 is the bare resonance between the two hyperfine states,
including the shift of -570 kHz due to the magnetic bias field along the z direction
and ∆MW/(2π) = −75 kHz denotes the offset of the sweep center.
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6.3 Writing arbitrary spin patterns

6.3 Writing arbitrary spin patterns

As a first experiment, we sequentially flipped the spin of the atoms at selected lattice
sites in our Mott insulator with unity filling and spin state |0〉 (see Fig. 6.3(a) and
Ch. 5). The lattice depths were first changed to Vx = 56 Er, Vy = 90 Er and Vz = 70 Er
in order to completely suppress tunneling even when the addressing beam locally
perturbs the lattice potential. For each lattice site, we then switched on the addressing
laser beam with an s-shaped ramp within 2.5 ms, which is adiabatic with respect to
the on-site oscillation frequency of ∼ 30 kHz. Subsequently, a microwave pulse with
the parameters described above produced spin-flips from |0〉 to |1〉. The addressing
laser was switched off again within 2.5 ms, before its position was changed in 5 ms to
address the next lattice site.

For the image of Fig. 6.3(a), this procedure was repeated 16 times in order to flip the
spins along a line. Finally, a 5 ms ‘push-out’ laser pulse, resonant with the F = 2 to
F′ = 3 transition, removed all addressed atoms in state |1〉. In order to reveal only the
spin-flipped atoms, the spin states of all atoms were flipped by a global microwave
sweep before the push-out laser pulse was applied [Fig. 6.3(c),(d)]. However, due
to the finite transfer efficiency of the global sweep, some atoms remaining in state
|0〉 were clearly visible in addition to the addressed ones. To avoid this problem
when detecting the addressed atoms, we initially transferred the whole sample to
state |1〉 by a microwave sweep and then shone in a repumping laser that completely
depopulated state |0〉. Then, we used our addressing scheme to transfer selected
atoms back to |0〉 and subsequently pushed out the atoms in |1〉, yielding typical
images as shown in Fig. 6.3(b),(e),(f).

By the deterministic creation of arbitrary two-dimensional spin patterns of individ-
ual atoms, we realize a scalable single-atom source [35, 107, 144].

6.4 Spin-flip fidelity

We quantified the success rate of our addressing scheme by producing a series of
spin-flips along the y lattice axis in a Mott insulator with unity filling (see Fig. 6.4).
The experimental procedure was the same as described above for the realization of
Fig. 6.3(a), in which the addressed sites were detected as empty sites. From the recon-
structed atom number distribution [Fig. 6.4(a)], we determined the probability p0(δx)
of finding an empty site as a function of the pointing offset δx between the address-
ing beam and the center of the lattice site [see Fig. 6.4(b)]. We also investigated the
effect of the addressing procedure on next neighboring atoms, which ideally should
remain unaffected. For this purpose, we monitored the probability of finding a hole at
the sites next to the addressed ones [dark blue regions in Fig. 6.4(a),(b) and dark blue
data points in Fig. 6.4(c)]. In order to distinguish accidentally flipped neighboring
atoms from holes that originate from thermal excitations of the initial Mott insulator
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Figure 6.3: Single-site addressing. (a) Experimentally obtained fluorescence image of a Mott
insulator with unity filling in which the spin of selected atoms was flipped from |0〉 to |1〉
using our single-site addressing scheme. Atoms in state |1〉were removed by a resonant laser
pulse before detection. The lower part shows the reconstructed atom number distribution on
the lattice. Each circle indicates a single atom, the points mark the lattice sites. (b)-(f), Same
as (a), but a global microwave sweep exchanged the population in |0〉 and |1〉, such that only
the addressed atoms were observed. The line in (b) shows 14 atoms on neighboring sites,
the images (c)-(f) contain 29, 35, 18 and 23 atoms, respectively. The single isolated atoms in
(b),(e),(f) were placed intentionally to allow for the correct determination of the lattice phase
for the feedback on the addressing beam position.
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6.5 Positioning of the addressing beam

(Ch. 5), we also monitored the probability of finding a hole at the second next neigh-
bors (light blue regions and data points in Fig. 6.4). As both yielded the same hole
probability of 6(2)%, we attribute all holes to thermal excitations and conclude that
the probability of addressing a neighboring atom is indiscernibly small.

We fitted the hole probability p0(δx) of the addressed site with a flat-top model
function, given by

p0(δx) =
A
2

[
erf
(

δx + σa/2
σs

)
+ erf

(
−δx− σa/2

σs

)]
+ B. (6.3)

Here, erf(x) = 2/
√

π
∫ x

0 e−τ2
dτ is the error function, σa denotes the full-width at half-

maximum of the flat-top profile and σs the edge sharpness. The offset B is kept fixed
at the thermal contribution of 6%. We chose this model function since our HS1-pulses
produce a flat-top population transfer profile, the edges of which are dominated by
randomly fluctuating quantities (beam pointing and magnetic fields) following Gaus-
sian statistics. The addressing fidelity is defined as F = A/(1− B) taking into account
that the maximum hole probability pmax

0 = A + B also includes holes from thermal
defects. These yield a hole with probability B at unsuccessfully addressed sites which
occur with probability 1− F, such that pmax

0 = F + (1− F)B. From the fit, we derived
a spin-flip fidelity of 95(2)%, a full-width at half-maximum of σa = 330(10) nm and
an edge sharpness of σs = 50(10) nm [Fig. 6.4(c)]. These values correspond to 60%
and 10% of the addressing beam diameter, demonstrating that our method reaches
sub-diffraction-limited resolution, well below the lattice spacing.

The observed maximum spin-flip fidelity is currently limited by the population
transfer efficiency of our microwave sweep. The edge sharpness σs originates from
the beam pointing error of . 0.1 alat and from variations in the magnetic bias field.
The latter causes frequency fluctuations of ∼ 5 kHz, which translate into an effective
pointing error of 0.05 alat at the maximum slope of the addressing beam profile. The
resolution σa could in principle be further reduced by a narrower microwave sweep,
at the cost of a larger sensitivity to the magnetic field fluctuations. A larger addressing
beam power would reduce this sensitivity, but we observed that this deformed the
lattice potential, due to the imperfect σ−-polarization, allowing neighboring atoms to
tunnel to the addressed sites.

6.5 Positioning of the addressing beam

Calibration of the addressing beam position

To move the addressing laser beam in the object plane, we changed the angle of the
beam entering from the reverse direction into the microscope objective using a two-
axis piezo mirror (S-334 Physik Instrumente GmbH & Co. KG, Karlsruhe). The device
has an angular resolution of 5 µrad, corresponding to a theoretical resolution in the
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Figure 6.4: Addressing fidelity. The spin-flip probability was measured by sequentially ad-
dressing a series of 16 neighboring sites along the y lattice axis [red circles in (a)] in a Mott
insulator with unity filling. The red data points in (c) show the resulting hole probability
p0(δx) as a function of the pointing offset δx, as defined in (b). Each point was obtained
by averaging over 4-7 pictures (total 50-100 addressed lattice sites), taking only those sites
into account which lie well within a Mott shell with unity filling. The displayed error bars
show the 1σ statistical uncertainty, given by the Clopper-Pearson confidence limits. The data
was fitted by a flat-top model function [Eq. (6.3)] and yields a full-width at half-maximum
σa = 330(10) nm, an edge sharpness of σs = 50(10) nm, and a peak fidelity of 95(2)%. The
offset was fixed at the 6(2)% probability of thermally activated holes as deduced from the next
neighboring and second next neighboring sites [blue shaded regions in (a),(b) and blue points
in (c)].
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6.5 Positioning of the addressing beam

object plane of 10 nm' 0.02 alat. In order to position the addressing laser beam onto
the atoms with high precision, we measured calibration functions that translate the
two control voltages of the piezo mirror into image coordinates. This calibration was
performed by replacing the far detuned addressing laser beam by a near resonant
molasses beam that follows the identical beam path. Using in addition the x and
y molasses beams, we took a fluorescence image of a large thermal atom cloud in
the vertical lattice alone and observed a strongly enhanced signal at the position of
the focused beam [see Fig. 6.5(c)]. We determined the position of this fluorescence
maximum with an uncertainty of 0.2 pixels in our images, corresponding to 0.05 alat =
25 nm in the object plane [see Fig. 6.5(d)]. The long term drifts of the addressing beam
position are on the order of 0.1 alat per hour, which we took into account by regular
recalibration of the beam position.

Lattice phase feedback

In order to compensate slow phase drifts of the optical lattice, we applied a feedback
on the position of the addressing beam. We determined the two lattice phases (offsets
of the position of the lattice sites) along the x and y direction after each realization
of the experiment by fitting the position of isolated atoms (see Fig. 6.5(a), the isolated
atom is marked by a circle). Averaging over the positions of typically 1-5 isolated
atoms per image allowed us to determine the lattice phase to better than 0.05 alat.
For the determination of the phase, we used the lattice constant alat and the lattice
angles determined from a fluorescence image with many isolated atoms (Sec. 4.4).
We find that the phases slowly drift over many lattice sites [see Fig. 6.5(b)], showing
an oscillation with an amplitude of 3 alat and a period of about 80 min. The same
period is found in the drift of the temperature above the experimental table. The
amplitude of 3◦C should make a difference in wavelength of ∆λlat/λlat = 3 · 10−6

due to the change in the refractive index of the air. The beam path in air from the
vacuum chamber to the retro-reflecting mirror is about L = 2 · 100 mm = 2 · 105 λlat,
so the change in length is ∆L = (∆λlat/λlat) · L = 3 · 10−6 · 2 · 105λlat = 0.6 λlat =
1.2 alat. The fact that the phases in x and y direction drift along further supports
this interpretation and a better temperature stabilization is certainly necessary. Since
our phase drifts were slower than 0.04 alat between two successive realizations of the
experiment ('25 s cycle time), we used the lattice phase from the previous image to
correct the addressing beam position. The feedback was done by adding appropriate
offsets to the piezo control voltages.

Table 6.1 summarizes the positioning errors. We estimate that we can position the
addressing beam with respect to the lattice with a total error of ∼ 0.1alat = 50 nm,
consistent with the edge sharpness σs = 50(10) nm in our fidelity curve (see Fig.6.4).
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Figure 6.5: Positioning of the addressing beam. (a) The lattice phase is determined from the
position of isolated atoms, which are placed intentionally. The phase is evaluated online and
fed forward to the addressing beam. (b) The lattice phases drift over several sites over the
day. The maximal drift between two successive sequences is however only 0.4 alat. (c) The
position of the addressing beam is determined from the increased fluorescence at its position,
when it is replaced by an additional molasses beam. The increase in signal is so large that
the fluorescence from the rest of the cloud is not visible on this scale. The feature to the left
is stray light from this beam. (d) The drifts of the addressing beam position are smaller than
0.5 alat.

6.6 Calibration of the light shift

Microwave spectra in the addressing beam

We calibrated the differential light shift of the addressing beam via microwave spectra
of atoms loaded into the beam. This makes the measurement independent of the
positioning errors of the addressing beam.
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6.6 Calibration of the light shift

Error source Error
Resolution of mirror 0.02 alat
Determination of lattice phase < 0.05 alat
Drifts of lattice phase (per cycle) < 0.04 alat
Determination of addressing beam position 0.05 alat

Overall ∼ 0.1alat

Table 6.1: Error budget for the positioning of the addressing beam with respect to the lattice
sites.

For perfect σ− polarization, the beam at the magic wavelength should only trap
atoms in state |F = 2, mF = −2〉, while atoms in |F = 1, mF = −1〉 should see no light
shift. Therefore, even when we load it from a cloud prepared in |F = 1, mF = −1〉,
we mostly load |F = 2, mF = −2〉 into the beam, because there are enough atoms in
the wrong spin state. Indeed, an optical push out on the F = 2 to F′ = 3 transition
did remove the atoms from the addressing beam and therefore confirmed that the
trapped atoms were in the |F = 2, mF = −2〉 state. For the spectrum, we applied
an HS1 microwave sweep of 30 ms duration, which transfered the atoms down to the
|F = 1, mF = −1〉 state, where they were lost from the trap. The resonance therefore
shows as a dip in the atom number (see Fig. 6.6).

In order to count the remaining atoms, we loaded them into a 3D lattice of Vx =
Vy = 3.5 Er and Vz = 57 Er depth. When we let them tunnel for 100 ms in this weak
horizontal lattice, they spread over a diameter of ∼ 10 µm. We then ramped up the
lattice to freeze the distribution and took a fluorescence image. At this dilute filling
of the lattice, the probability for two atoms at the same lattice sites is very low and we
can neglect losses due to the parity projection. The method is therefore a very reliable
way to count small numbers of atoms.

Fig. 6.6(a) shows the resulting spectra for different addressing beam powers. We
loaded around 50 atoms into the addressing beam and lost all of them for resonant
transfer. The microwave frequency is given relative to the bare transition in the ab-
sence of magnetic fields. The addressing beam shifts the transition to smaller fre-
quencies. For larger addressing beam powers, the resonance does not fully drop to
zero atoms, because some |F = 1, mF = −1〉 atoms are trapped due to the imperfect
polarization.

In order to measure the bare transition including the bias magnetic field, but not
the light shift from the addressing beam, we took a spectrum inside the lattice. We
loaded the atoms from the addressing beam in order to have only |F = 2, mF = −2〉
atoms and then performed the microwave sweep to the |F = 1, mF = −1〉 state inside
the lattice. Atoms which were not transferred were then removed with an optical
push out on the F = 2 to F′ = 3 transition and the resonance shows as surviving
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Figure 6.6: Microwave spectra in the addressing beam for the calibration of the differential
light shift. (a) Remaining atom number versus the microwave sweep center for different beam
depths and bare transition without addressing beam (green data points). (b) Frequencies of
the center and the slopes of the resonances for different beam powers.

atoms [green data points in Fig. 6.6(a)]. The transition is shifted by −550 kHz from
the bare transition by the applied vertical magnetic field of 260 mG. By repeating
this measurement we found that scatter in the magnetic bias field causes frequency
fluctuations of ∼ 5 kHz. Fig. 6.6(b) shows the center and the slopes of the resonances
in Fig. 6.6(a) as a function of the addressing beam power.

Quality of the polarization

In order to obtain a differential light shift, as used in our addressing scheme, it is
essential to have circular polarized light. This is challenging, because the addressing
beam has to pass many optical elements, which can spoil the polarization. The beam
is overlapped with the imaging path via an uncoated glass window (see Fig. 4.2) and
the reflection coefficient for the s and the p polarization differ by one order of mag-
nitude. Also the use of silver mirrors, which allow to alternatively work with an
addressing beam at 420 nm, spoil the polarization. We therefore used a combination
of a three wave plates (λ/4, λ/2, λ/4) in the beam path to pre-compensate the effect
of these elements, finding the appropriate angles of the wave plates in a separate test
setup.

In order to determine the quality of the polarization in the final setup, we need
to compare the light shift on the atoms in different magnetic sublevels. We did this
by measuring loading curves for the |F = 2, mF = −2〉 and the |F = 1, mF = −1〉
state (see Fig. 6.7, red and light blue data points, respectively). The curves show the
number of trapped atoms versus the addressing beam power for a hold time in the
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Figure 6.7: Loading curve in the addressing beam. Number of atoms in the addressing beam
after 50 ms hold time for the state |1〉 (red points) and |0〉 (light blue points). When the ad-
dressing beam power for the |0〉 state is scaled by 40%, the curves coincide (dark blue points).
Inset: ratio of the light shifts on state |0〉 and |1〉 as a function of the power fraction of the
addressing beam in the σ+ polarization.

addressing beam of 50 ms. We observe a fast initial increase and a slow decay for
large depths. We assume that this results from an interplay of the number of bound
states with a short lifetime at very high densities. The curve for the |F = 1, mF = −1〉
state was recorded by removing the |F = 2, mF = −2〉 atoms with an optical push
out directly after loading into the addressing beam and again after loading into the
3D lattice.

We find that the curves overlap if we scale the power for the |F = 1, mF = −1〉
atoms by 40% (dark blue data points in Fig. 6.7). We assume that the number of
atoms only depends on the potential depth and conclude that the |F = 1, mF = −1〉
state experiences 40% of the light shift on the |F = 2, mF = −2〉 state for the same
addressing beam power. A ratio of 40% in the light shifts corresponds to a fraction
of 33% of the power in the σ+ polarization (see inset to Fig. 6.7 and Fig. 6.2). For the
differential light shift of h̄∆LS = 70 kHz = 35 Er, which we used in the addressing
experiments, the absolute light shifts are then h̄∆1

LS = 1.65 · h̄∆LS = −58 Er on state
|F = 2, mF = −2〉 and h̄∆0

LS = 0.65 · h̄∆LS = −23 Er on state |F = 1, mF = −1〉. These
shifts are comparable to the lattice depth itself at which we performed the addressing
experiments. Indeed, we observed that a further increase of the addressing beam
depth substantially deformed the potential and allowed neighboring atoms to tunnel
to the addressed site.
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6 Single-spin addressing

6.7 Possible improvements

In our present scheme, we need 30 ms for each addressed lattice site, which is limited
by both the small Rabi frequency of the microwave and the slow movement of the ad-
dressing beam. A straight-forward improvement would be to replace the microwave
sweep by an optical two-photon Raman transition, which can reach a much faster
transfer. We can still use the differential light shift from the addressing beam to shift
selected atoms into resonance with the Raman transfer. The Raman laser beams can
be large in this case. An alternative is to focus both Raman laser beams onto a single
site. In this case, the point spread functions need to be squared for the two-photon
process, which would reduce the effect on the neighboring atom to a few percent.
When using the transition at 420 nm the effect on the neighbors would be completely
negligible.

The velocity of the addressing beam is limited to 5 ms per lattice site by the response
time of the piezo mirror. This can be significantly improved to about 2 µs [145], when
using an acousto-optical deflector to control the position of the addressing beam [146–
148]. This in principle also allows to operate several beams at the same time.

So far, we only performed spin flips driven by frequency sweeps. The scheme is,
however, obviously extendable to coherent spin control and would then constitute a
single qubit gate. For driving a Rabi oscillation, the technical requirements are some-
what more challenging than for spin flip. The current fluctuations in the background
magnetic field and the pointing error cause a scatter in the resonance frequency of
the addressed atom of about 5 kHz. In a frequency sweep, one can set the parame-
ters to achieve a transfer despite these fluctuations. In a Rabi oscillation, however,
this would directly reduce the fidelity of the manipulation and an even better control
would be required to implement a single-qubit gate with a high fidelity.

6.8 Conclusion

In summary, we have demonstrated two-dimensional single-site and single-atom
spin control in an optical lattice in the strongly correlated regime. We focus a laser
beam onto single lattice sites and thereby locally shift the atomic frequency into reso-
nance with a microwave driving a spin flip. Starting from a Mott insulator with unity
filling, we create arbitrary two-dimensional spin patterns of individual atoms, thus
realizing a scalable single-atom source. These structures can be used to study ensuing
non-equilibrium quantum dynamics. We achieved a spin-flip fidelity of 95(2)% and
a sub-diffraction-limited spatial resolution of 330(10) nm which leads to a negligible
influence on the neighboring lattice sites. By correcting for slow drifts of the lattice
position, we position the addressing beam with respect to the lattice with an error of
50 nm.
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7 Tunneling dynamics in a lattice

The ability to prepare arbitrary atom distributions opens up new possibilities for ex-
ploring coherent quantum dynamics at the single-atom level. As an example, we
studied the one-dimensional tunneling dynamics in a lattice (Sec. 7.2). This allowed
us to determine how much our addressing scheme affects the vibrational state of the
atoms (Sec. 7.3).

7.1 State of the art

Tunneling processes are among the most intriguing phenomena of quantum mechan-
ics and their direct observation is interesting in itself. Tunneling dynamics on a one-
dimensional lattice can be seen as a continuous-time version of a quantum walk in
position space, the quantum analog of the random walk. Quantum walks have at-
tracted great theoretical interest due to the potential application in quantum informa-
tion science [149–152] and their ability to speed up search algorithms compared to
their classical counterparts [153].

Experimental realization of the quantum walk have been reported in various phys-
ical systems like nuclear magnetic resonance samples [154, 155] or optical systems
[156–158], also for photons in an array of evanescently coupled photonic waveguides
[159, 160]. The discrete quantum walk of material quantum particles was observed
both for trapped ions in phase space [161, 162] and for neutral atoms using a sequence
of spin manipulations and spin-dependent transports in an optical lattice [163]. With-
out single-particle and single-site resolution, a quantum walk in the ground state has
been observed for ultracold fermionic atoms by measuring their ballistic expansion
in a weak lattice [164].

No measurement so far has observed the ground state tunneling dynamics of mas-
sive particles on a lattice with single-site resolution.

7.2 Ground state tunneling dynamics

We started by preparing a single line of up to 18 atoms along the y direction before
we lowered the lattice depth along the x direction to Vx = 5.0(5)Er within 200 µs. At
the same time, the other lattice depths were lowered to Vy = 30 Er and Vz = 23 Er,
which reduced the external confinement along the x direction, but still suppressed
tunneling in the y and z directions. After a varying hold time t, allowing the atoms
to tunnel along x, the atomic distribution was frozen by a rapid 100 µs ramp of the
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Figure 7.1: Ground state tunneling dynamics. (a) Atoms were prepared in a single line along
the y direction before the lattice along the x axis was lowered, allowing the atoms to tunnel in
this direction [(b)-(d)]. The top row shows snapshots of the atomic distribution after different
hold times. White circles indicate the lattice sites at which the atoms were prepared (not all
sites initially contained an atom). The bottom row shows the respective position distribution
obtained from an average over 10− 20 of such pictures, the error bars give the 1σ statistical
uncertainty. A single fit to all distributions recorded at different hold times (red curve) yields
a tunneling coupling of J(0)/h̄ = 940(20)Hz, a trap frequency of ωtrap/(2π) = 103(4)Hz and
a trap offset of xoffs = −6.3(6) alat.

lattice depths along all axes to 70 Er. By averaging the resulting atomic distribution
along the y direction and repeating the experiment several times, we obtained the
probability distribution of finding an atom at the different lattice sites along the x
direction (Fig. 7.1, bottom row).

This probability distribution samples the single-atom wave function after a coher-
ent tunneling evolution. We observed how the wave function expands in the lattice
and how the interference of different paths leads to distinct maxima and minima in
the distribution, leaving for example almost no atoms at the initial position after a
single tunneling time h̄/J(0) [Fig. 7.1(c)]. This behavior differs markedly from the
evolution in free space, where a Gaussian wave packet disperses without changing
its shape, always preserving a maximum probability in the center. For longer hold
times, an asymmetry in the spatial distribution becomes apparent [Fig. 7.1(d)], which
originates from an offset between the bottom of the external harmonic confinement
and the initial position of the atoms.

We describe the observed tunneling dynamics by a simple Hamiltonian including
the tunnel coupling between two neighboring sites and an external harmonic con-
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Figure 7.2: Ground state tunneling dynamics. Different representation of the data from
Fig. 7.1. (a) Experimental position distribution. (b) Probability distribution as calculated for
the fit parameters.

finement. The Hamiltonian on k = 2n + 1 lattice sites reads

Ĥ(0) = −J(0)
n

∑
i =−n

(
â†

i+1 âi + â†
i−1 âi

)
+ Vext

n

∑
i =−n

(i− xoffs/alat)
2 â†

i âi, (7.1)

where J(0) is the tunnel coupling in the lowest band, and â†
i (âi) is the creation (annihi-

lation) operator for a particle at site i. The strength of the external harmonic potential
with trapping frequency ωtrap is given by Vext =

1
2 mω2

trapa2
lat, and xoffs describes a po-

sition offset with respect to the bottom of the harmonic potential. The single particle
wave function and its coherent time evolution are given by

Ψ(0)(t) =
n

∑
i =−n

c(0)i (t)â†
i |0̃〉 = exp

(
−iĤ(0)t/h̄

)
Ψ(0)(0), (7.2)

with the initial condition Ψ(0)(0) = â†
0|0̃〉 and the vacuum state |0̃〉. The resulting

probability of finding the particle at lattice site i after time t is P(0)
i (t) = |c(0)i (t)|2. For

analyzing the data of Fig. 7.1, we calculated the time evolution for k = 17 lattice sites.
A single fit to all probability distributions recorded at different hold times (red

line in Fig. 7.1) yields J(0)/h̄ = 940(20)Hz, ωtrap/(2π) = 103(4)Hz and xoffs =
−6.3(6) alat. This is in agreement with the trap frequency ωtrap/(2π) = 107(2)Hz
obtained from an independent measurement via excitation of the dipole mode with-
out the x lattice, whose contribution to the external confinement is negligible com-
pared to the other two axes. From J(0), we calculated a lattice depth of Vx = 4.6(1) Er,
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7 Tunneling dynamics in a lattice

which agrees with an independent calibration via parametric heating. Fig. 7.2 shows
the same data as Fig. 7.1 in a different representation.

The expansion of the wave packet can also be understood by writing the initial
localized wave function as a superposition of all Bloch waves of quasi-momentum h̄q,
with −π/alat ≤ q ≤ π/alat. To each quasi-momentum h̄q, we can assign a velocity
vq =

1
h̄

∂E
∂q , determined by the dispersion relation E(q) = −2J(0) cos(qalat) of the lowest

band. The edges of the wave packet propagate with the largest occurring velocity
vmax = 2J(0)alat/h̄ = 1.88(4) alat/ms, in agreement with our data.

We also observed how the dynamics is suppressed, when the tunneling from site
to site is shifted out of resonance by the external confinement. In combination with
the offset xoffs = −6.3(6) alat between the bottom of the external confinement and
the prepared initial atom position, the external confinement leads to a potential gra-
dient at the atom position. As the external confinement is caused by the perpen-
dicular lattice depths, we increased it by keeping the perpendicular lattice depths at
Vy = 56 Er and Vz = 70 Er. The trap frequency of the external confinement is then
ωtrap/(2π) = 250 Hz and the energy shift from the initial lattice site to the adjacent
lattice sites is ∆E = mω2

trapxoffsalat = h · 900 Hz. We found that in this case the atoms
stay at the prepared position even after several hundred milliseconds.

7.3 Tunneling in the first excited band

In a second tunneling experiment, we observed the faster dynamics of atoms in the
first excited band (see Fig. 7.3). For this, we deliberately excited the atoms by in-
troducing a pointing offset δx of the addressing beam, which caused a shift of the
potential wells during the switch-on. We repeated the same tunneling experiment as
above with a hold time of t = 1 ms for different pointing offsets δx. For a small point-
ing offset [δx = 0.1 alat in Fig. 7.3(b)] we observed a narrow distribution, compared to
a much broader one for a large offset [δx = −0.4 alat in Fig. 7.3(a)]. We attribute this
to different fractions f of atoms in the first band which is characterized by the higher
tunneling rate J(1).

We fitted the distribution of Fig. 7.3(a) to a two-band model and found J(1)/h̄ =

6.22(6) kHz. This is in excellent agreement with the expected value of J(1)/h̄ =

6.14(6) kHz from a band structure calculation in which we used J(0) as an input pa-
rameter to calculate the lattice depth.

When including tunneling in the first band, we assume an incoherent sum Ptot(t)
of the distributions P(0)(t) of the zeroth band and P(1)(t) of the first band as

Ptot(t) = (1− f )P(0)(t) + f P(1)(t). (7.3)

The Hamiltonian Ĥ(1) in the first band and the coherent dynamics are identical to
the ones of the zeroth band (Eqs. 7.1 and 7.2), except for a different tunnel coupling
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Figure 7.3: Tunneling dynamics of the first excited band. Some atoms were excited to the first
band by a pointing offset δx of the addressing beam. (a) and (b) show the atomic position
distribution after 1 ms tunneling time for δx = −0.4 alat and δx = 0.1 alat, respectively. We
fitted the data with a model that includes atoms in the zeroth band (red line) and a fraction f
in the first band (orange line). The right insets to (a),(b) show corresponding original images.
The left inset to (b) shows f versus δx with a broad minimum of f = 13(2)%, indicating that
most of the atoms are left in the ground state.

J(1). When fitting this model to our data, we kept ωtrap, xoffs and J(0) fixed at the
values obtained from the data displayed in Fig. 7.1. We extracted J(1) from the data of
Fig. 7.3(a) and used this value to fit the results for other pointing offsets.

For the data in Fig. 7.3, the parameters of our microwave sweep were such that also
neighboring atoms were addressed. We took this into account by summing over two
distinct probability distributions with a second starting position in the direction of the
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7 Tunneling dynamics in a lattice

pointing offset. Interaction effects between the two atoms in the 1D system are negli-
gible for our parameters. From the lattice depths we calculate an interaction energy of
Uint = h · 610 Hz using a band structure calculation and the known atom-interaction
parameters. This has to be compared to the kinetic energy of 4ZJ(0) with the number
of next neighbors Z = 2 in a one-dimensional system. For Uint/(8J(0)) = 0.5 and
Uint/(8J(1)) = 0.08 we do not expect to observe interaction effects, e.g. repulsively
bound pairs. The study of interaction effects is left for future investigations.

Our measurement of the fraction of excited atoms f as a function of the point-
ing offset δx [inset to Fig. 7.3(b)] shows that the atoms are strongly heated for large
pointing offsets. By contrast, only a small fraction of the atoms is excited to the first
band for small pointing offsets |δx| ≤ 0.1 alat, yielding a ground state population of
1− f = 87(2)%.

This value was not optimized yet. The heating is more than we would expect from
spontaneous scattering of lattice photons even for the relatively long hold times of
800 ms. It might be due to a small amplitude shaking of the addressing beam po-
sition or intensity noise. Most probably it comes from a sideband transition of the
microwave transfer, which is possible, because the differential light shift of the ad-
dressing beam leads to different trap frequencies for the two hyperfine states, which
lifts the orthogonality of the vibrational levels.

7.4 Conclusion

We used our ability to prepare an arbitrary atom distribution for the study of coher-
ent tunneling dynamics in a one-dimensional lattice. We started with a single line
of atoms and lowered the perpendicular lattice depth for a varying hold time before
we freezed and imaged the distribution. By averaging over the copies of the one-
dimensional system and over several realizations we mapped out the wave function
and its coherent evolution. We observe the distinct minima and maxima in the distri-
bution originating from the interference of different paths.

We fitted the data to a simple model including the next neighbor tunnel coupling
and an external confinement and found a tunneling rate in agreement with the expec-
tation from a band structure calculation.

We excited atoms to higher bands by giving a pointing offset between the address-
ing laser and the lattice during the preparation of the starting position. We observed
that the atoms tunnel much further in this case. We fitted to a model including the
dynamics of the zeroth and the first band and extracted the tunneling rate of the
first band as well as the fraction of atoms in the first band. We found that without
pointing offset, our addressing scheme leaves 87(2)% of the atoms in the vibrational
ground state. The preparation of atoms in the ground state is important for the study
of further non-equilibrium quantum dynamics.

74



7.4 Conclusion

Our measurements constitute the first observation of the ground state tunneling
dynamics of massive particles on a lattice with single-site resolution.
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8 Coherent light scattering from a 2D Mott insulator

In this chapter, we investigate coherent light scattering from an atomic Mott insulator
in a two-dimensional square lattice structure [165]. We imaged the far-field diffrac-
tion pattern while simultaneously laser cooling the atoms with the probe beams and
found distinct diffraction peaks.

The angular position of the diffraction peaks and the scaling of the peak parameters
with the atom number are described by a simple analytic model (Sec. 8.2). A quanti-
tative analysis of the diffraction pattern confirms the coherent nature of the scattering
process (Sec. 8.3). From the power fraction in the peaks we deduce the coherence of
the fluorescence light and discuss the mechanisms that reduce the coherence (Sec. 8.4).

We artificially prepared 1D antiferromagnetic order as a density wave and subse-
quently observed additional diffraction peaks, thus demonstrating the usability of
light scattering for the detection of global spin correlations (Sec. 8.5).

8.1 State of the art

Recent interest in cold atoms research has focused on reaching sufficiently low tem-
peratures and entropies to observe magnetically ordered quantum phases [3]. In this
context, light scattering has been proposed as a new tool to detect these quantum
correlations. Spin correlations could be mapped onto correlations of scattered light
[166–169] or be detected via diffraction peaks from the additional scattering planes for
spin-dependent probe light [170]. Light scattering would allow to measure the tem-
perature of fermions in an optical lattice [171] or the density fluctuations across the
superfluid-to-Mott-insulator transition [172–174]. Since the amount of scattered light
is usually very small, several proposals involve a cavity for the detection [175, 176].

Without cavities, elastic Bragg scattering has been used to demonstrate the long
range periodic order of thermal atoms in an optical lattice despite very low filling
factors [177, 178]. It allowed the measurement of a change of the lattice constant from
the backaction of the atoms [177, 179], their localization dynamics [180, 181] and tem-
perature [179]. Bragg scattering was also studied in a far-detuned one-dimensional
lattice [182].

8.2 Analytic 1D model

We begin by introducing a simple analytic 1D model to illustrate the underlying
physics. Atoms on a 1D lattice (lattice spacing alat = λlat/2, where λlat is the lat-
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8 Coherent light scattering from a 2D Mott insulator

tice wavelength) are driven by a light field (wavelength λprobe) entering from the x
direction [Fig. 8.1(a)] with wave vector ki = k ex, where k = 2π/λprobe and ex is the
unit vector along x. The scattered light is detected at a point r, defined by the angle θ
with the z-axis, such that r = r er = r sin θ ex + r cos θ ez. The position of the l-th atom
is xl = l alat ex and its distance rl to the detection point is in far-field approximation
rl = |r− xl| ≈ r− xl · er. In our model, each atom emits a spherical wave, which at
the detection point can be written as

Fl(rl) = f
eikrl

rl
eiδl ≈ f

eikr

r
e−iK·xl . (8.1)

Here, f denotes the coherently scattered field amplitude, δl = ki · xl is the phase
imprinted by the incoming light field, and K = ko − ki with the wave vector ko =

k er in the observed direction. The differential cross section dσ
dθ (K) ∝ |∑l e−iK·xl |2 is

obtained by summing over the field amplitudes from all Nx atoms. As a result, we
obtain the angular dependence of the scattered light field,

dσ

dθ
(θ) ∝

sin2 [k alat(sin θ − 1)Nx/2]
sin2 [k alat(sin θ − 1)/2]

. (8.2)

with distinct maxima when the field amplitudes of neighboring atoms interfere con-
structively, i.e. when K · (xl − xl+1) = 2π · n, where n is an integer that denotes the
diffraction order. The height of the diffraction peak is proportional to N2

x whereas the
peak width scales as 1/Nx. The angles θn, under which the diffraction maxima can
be observed, are given by

sin θn = 1 + n
λ

alat
. (8.3)

The trivial case n = 0 gives the forward scattered light (θ0 = 90◦), independent
of alat and λ. For our experimental parameters (λprobe = 780 nm, alat = 532 nm),
Eq. (8.3) can be additionally fulfilled only for n = −1, yielding the corresponding
minus first diffraction order at θ−1 = −27.8◦ and 207.8◦. These two out of plane
scattered waves ensure the momentum conservation in the z direction. Fig. 8.1(b)
(blue curve) shows a polar plot of dσ

dθ (θ), displaying the forward scattered light and
the two diffraction peaks, one of which is captured by our imaging system (gray
shaded region). If only every second lattice site is occupied (e.g. after removing one
spin component in an antiferromagnetically ordered sample), the periodicity of the
system is doubled. In this case, there are two possible diffraction orders (in the upper
half plane) at θAFM

−1 = 15.5◦ and θAFM
−2 = θ−1 = −27.8◦ [green curve in Fig. 8.1(b)].

It is straight-forward to extend this simple model to the two-dimensional case, if
one assumes a rectangular instead of elliptical profile of the cloud. In this case, the
two directions separate and one finds only the zeroth diffraction order in the direction
perpendicular to the incoming beam.
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Figure 8.1: Schematics of light scattering from a Mott insulator. (a) Light diffraction from
atoms in a 1D lattice. An incoming plane wave with wave vector ki is diffracted under an
angle θ. (b) Resulting differential scattering cross section dσ

dθ (θ), as given by Eq. (8.2) for our
experimental parameters. Shown are the cases for unity filling of the lattice and atom number
N = 16 (blue curve) and for a z-Néel antiferromagnet along one direction (N = 28), from
which only one spin component is detected (green curve). The grey shaded area indicates the
opening angle of our imaging system. (c) Experimental setup. Atoms in a 2D optical lattice
are illuminated with four in-plane molasses beams. In situ and far-field diffraction images are
recorded with a high-resolution optical imaging system.

8.3 Far-field diffraction pattern

Imaging the far-field

The atoms are detected via fluorescence imaging using a high numerical aperture
objective. The objective can be moved by 100 µm in the z direction within 50 ms using
a piezo scanning device, thus shifting the focal plane by a distance ∆z away from the
atom position. The high numerical aperture corresponds to a half opening angle α =
43◦, which allows to measure a large angular range, when the objective is displaced to
image the far-field. In particular, the diffraction peaks at θ−1 lie well within this range.
However, the method does not rely on the high aperture of our imaging system, as
the diffraction peaks could also be detected in a restricted angular range.
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8 Coherent light scattering from a 2D Mott insulator

Figure 8.2: Light scattering from a 2D Mott insulator. (a) Experimental images from the same
atomic sample for four different distances ∆z of the focal plane with respect to the atom posi-
tion. The bottom image shows the in situ atom number distribution, whereas the upper image
shows the far-field diffraction pattern. (b) Simulated diffraction patterns obtained from a 2D
numerical model (see text for details), using the reconstructed atom distribution (bottom im-
age) from (a). Red arrows indicate the directions of the optical molasses beams.

Our experimentally obtained diffraction images are shown in Fig. 8.2(a) for four
different distances ∆z and an illumination time of 200 ms for each image. All four
images are from the same sample. For ∆z = 0 we observed the in situ atom number
distribution, consisting in this case of 147 atoms in a Mott insulator shell with unit
occupancy and diameter of 6 µm. For larger ∆z, we observe the build up of the far-
field distribution with distinct diffraction peaks.

Simulation of the far-field pattern

We compared the experimental data with a numerical calculation of dσ
dθ (K) using the

actual atom distribution of the image at ∆z = 0 [Fig. 8.2(b)]. For this purpose, we
coherently summed over all spherical waves Fl(rl) emitted by the atoms with phases
δl given by the incident driving fields. Our model assumes that all four horizon-
tal molasses beams are diffracted independently. A spherical wave for the emission
pattern is used, because the different local polarizations in the molasses result in all
possible orientations of the atomic dipole. The average over all orientations of the
dipole patterns, which the atoms emit, reproduces a spherical wave. The calculated
far-field distribution is in good qualitative agreement with the experimental images.
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8.3 Far-field diffraction pattern

The simulation in Fig. 8.2(b) only includes the coherently scattered light, whereas the
experimental data in Fig. 8.2(a) also shows a significant incoherent background.

Evaluation of the diffraction peaks

For a more quantitative analysis, we recorded diffraction patterns of Mott insula-
tors for different atom numbers [Fig. 8.3(a)-(c)]. We evaluated cuts (angular sectors
of width 4 ◦) through the diffraction peaks and through the background signal [see
Fig. 8.3(c)] and applied a coordinate transformation from the position x and y in the
far-field plane to polar coordinates θ and φ. We determined the center of the cloud
from the in situ image and transformed to polar coordinates in the far-field plane with
the radial coordinate r =

√
x2 + y2 and the polar angle φ with the x axis. Then we

transformed from the radius r to the angle θ with the z axis as tan(θ) = r/∆z, where
∆z is the distance between the in situ plane and the far-field plane. The differential
cross section is transformed as

dσ

dθdφ
=

dσ

dxdy
det

∂(x, y)
∂(θ, φ)

=
dσ

dxdy
(∆z +

r2

∆z
)∆z. (8.4)

Fig. 8.3(d) shows the resulting angular distribution dσ
dθ (θ) of the differential scattering

cross section. We fitted the resulting peaks with a Gaussian (height A, 1/
√

e width w,
center position θ−1, and offset fixed at the background value). The peak position, av-
eraged over all experimental runs is |θ−1| = 27.4(6) ◦, in excellent agreement with the
expected value of |θ−1| = 27.8 ◦. The error is dominated by the systematic uncertainty
of±1 µm in the determination of ∆z. The systematic deviation of the diffraction angle
might also be due to a small angle between the molasses beams and the lattice beams.

The peak height scales quadratically with the atom number [Fig. 8.3(e)], illustrating
the coherent nature of the scattering. The peak width scales as w ∝ 1/

√
N [Fig. 8.3(f)],

in agreement with the result from the 1D model [Eq. (8.2)], assuming Nx =
√

N atoms
in one dimension.

In addition to the four diffraction peaks from the horizontal molasses beams, a fifth
weaker peak is clearly visible in the center left part of the far-field images [see white
circle in Fig. 8.3(c)]. This peak results from the diffraction of the fifth molasses beam
which is shone in from the direction of the imaging system. This shows that our
single plane of a few hundred atoms in the optical lattice acts as a “mirror” for the
incoming beam. In contrast to Bragg scattering from a 3D lattice, we expect reflection
for any incidence angle, because there is only a single lattice plane.

Power fraction in the peaks

We used the far-field images to extract the power scattered into the detected diffrac-
tion peaks and the power scattered into the background. We know from Sec. 8.2 that

81
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Figure 8.3: Analysis of the diffraction patterns. (a)-(c) In situ images (N = 126, 199 and
279 atoms) and the corresponding far-field diffraction patterns (∆z = 40 µm) from the same
experimental run, with an illumination time of 500 ms each. The white circle in (c) marks the
diffraction peak from the fifth molasses beam, which is shone in from below. (d) Angular
distribution of the differential scattering cross section obtained from cuts in (c) through the
diffraction peaks (dark blue) and the background signal (light blue). The peak is fitted with a
Gaussian (red line). (e) Peak height A versus atom number N together with a quadratic fit. (f)
Peak width w versus atom number N, with a fit to w ∝ 1/

√
N. (g) Total background signal σb

(light blue) as obtained from the constant background in (d) and total signal in the peaks σp
(dark blue, scaled by a factor of 10 for better visibility) obtained from the fits to the diffraction
peaks (see text).
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8.4 Coherence of the fluorescence light

there are three peaks per beam one of which is detected. We exclude here the for-
ward scattering light and consider the power in the detected peak and its symmetric
counterpart in the other direction.

In the cuts outside the diffraction peaks [see light blue data in Fig. 8.3(d)], we found
a constant background differential cross section (dσ

dθ )b and calculated the total inco-
herent scattering cross section σb = 4π(dσ

dθ )b, assuming an isotropic intensity distri-
bution. In the data, the background actually drops to zero for angles larger than the
half opening angle 43◦ of our imaging system. We also corrected for a global offset,
that was due to imperfect stray light substraction.

The total scattering cross section of one peak is given by an integral over the full
solid angle

σ
(1)
p =

∫ ∫ dσ

dθdφ
(θ, φ) sin(θ)dθdφ, (8.5)

where the differential scattering cross section dσ
dθdφ (θ, φ) is a peaked function, which

we can approximate by a Gaussian with height A, width w in the radial direction and
w cos(θ−1) in the azimuthal direction. The factor cos(θ−1) accounts for the elliptic-
ity of the diffraction peaks due to the effective ellipticity of the atomic cloud, when
viewed under the angle θ−1. We obtain these parameters from a Gaussian fit to a cut
through the peak [see dark blue data and red line in Fig. 8.3(d)].

Because the peak covers only a small range of θ, we can evaluate the factor sin(θ)
at the position of the peak and pull it out of the integral. We then obtain for the total
scattering cross section of one peak

σ
(1)
p ≈ sin(θ−1)2πAw2 cos(θ−1). (8.6)

As there are five molasses beams and a symmetric counterpart in the other direction
for each detected peak, the total scattering cross section in the peaks (excluding the
forward scattered light) is σp = 10 · σ(1)

p .
Fig. 8.3(g) shows σb and σp, which both scale linearly with the number of atoms.

From the slopes, we find a fraction fp = σp/(σb + σp) ≈ 3% of the power scattered
into the detected peaks.

8.4 Coherence of the fluorescence light

In Sec. 8.3 we compared the power in the detected diffraction peaks to that in the
constant background and found a fraction of fp = 3% in the peaks. Here we discuss
the various mechanisms that lead to this reduced interference and to the background
signal outside the diffraction peaks. We find that the localization of the atoms, the
atomic distribution, and the coherence and elasticity of the scattering process play a
role.
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8 Coherent light scattering from a 2D Mott insulator

Forward scattered light

We only detect the peaks of the minus first diffraction order, while the coherently
forward scattered light (zeroth diffraction order) is not detected. Therefore we mea-
sure a reduced coherent fraction. We evaluate the fraction f−1 of the coherent light
that is scattered into the minus first diffraction order by using the calculated far-
field patterns (see Sec. 8.3) and integrating the power over two angular ranges (θ ∈
[−90◦, −45◦] ∪ [45◦, 90◦] for the zeroth order and θ ∈ [−45◦, 45◦] for the minus first
order). The fraction f−1 does depend on the atom number, but has a weak depen-
dence in the relevant range and we can use f−1 = 20%.

Debye-Waller factor

It is well known from x-ray diffraction from crystals, that the degree of localization
of the scatterers changes the strength of the signal (see e.g. [183]). If the atoms are
localized to a size ∆r and the momentum transfer is K, the Debye-Waller factor

β2 = (eiK·r)2 = exp(−K2∆r2) (8.7)

describes the reduction of the height of the diffraction peak compared to point sources
fixed at their lattice site. Because the peak width is independent of the localization,
the power in the peak is reduced by this factor and the missing power goes into an
isotropic background. In our case, the momentum transfer for scattering into the
minus first diffraction order θ−1 is given by

|K| = |ko − ki| = k
√

2λ/alat = 1.713 k. (8.8)

The localization at a temperature of T ≈ 22 µK and a lattice depth of V0 ∼ kB · 200 µK
is ∆r = 1/klat

√
(kBT)/(2V0) ≈ λlat/27 ≈ λprobe/20. The Debye-Waller factor is then

evaluated to be β2 = 0.75. This is a typical value for diffraction from cold atoms,
β2 = 0.2 [177] and β2 = 0.76 [178] have been reported for near-resonant 3D optical
lattices and β2 = 0.64 [182] for a far off-resonant 1D lattice. In these experiments, the
exponential dependence of the Debye-Waller factor on the momentum transfer K has
been used to directly measure the localization of the atoms by the comparison of two
diffraction peaks with different momentum transfer [179].

Density fluctuations

Another mechanism, which reduces the power in the diffraction peaks, is the devi-
ation from unity occupation of the lattice sites caused by density fluctuations in the
system. This is quite intuitive, as the width of the diffraction peaks is given by the
number of irradiated sites, independent of the degree of occupancy, whereas the peak
height scales as the square of the contributing atoms. Distributing the same number

84



8.4 Coherence of the fluorescence light

−15 −10 −5 0 5 10 15
0

0.2

0.4

0.6

0.8

1

Detuning ∆ / Γ

C
oh

er
en

t 
fr

ac
tio

n 
I co

h 
/ 

I to
t

 

 

s0 = 0.1
s0 = 1
s0 = 10

Figure 8.4: Coherent fraction in the fluorescence light of a two level system as given by
Eq. (8.9) for three different saturation parameters.

of atoms over a larger region of the lattice will therefore lead to narrower peaks with
the same peak height, i.e. less power in these peaks. In the case where the other mech-
anisms are weak, the power scattered into the background can be used as a sensitive
tool for measuring the density fluctuations [172].

In order to quantify this mechanism for our system, we compared the calculated
diffraction pattern from the actual atom distribution with that from a perfectly filled
Mott insulator shell of the same atom number. We found that the power in the diffrac-
tion peaks is reduced by 30% due to the deviations from unity filling, which is caused
by the finite temperature of the Mott insulators.

Coherence of the scattering process

During the light scattering, the atoms are continuously driven by a classical field. In
a classical description via the Lorentz model, the atomic dipole oscillates with a fixed
phase relation to the driving field, and emits a dipole pattern. In a quantum mechani-
cal description, the situation changes, because spontaneous emission comes into play.
Mollow calculates the coherently scattered intensity fraction of a continuously driven
two-level system in equilibrium as [184]

Icoh

Itot
=

∆2 + (Γ/2)2

∆2 + (s0 + 1)(Γ/2)2 . (8.9)

Fig. 8.4 shows the coherent fraction for different detunings ∆ (in units of the line
width Γ) and saturation parameters s0. The coherent fraction approaches unity for
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8 Coherent light scattering from a 2D Mott insulator

Effect Reduction factor
Forward scattering not detected 20%
Debye-Waller factor β2 75%
Density fluctuations 70%
Coherence of scattering 99%
Inelasticity (change vibrational level) 98%
Inelasticity (change mF level) 33%
Expected power in detected peaks 3%
Measured power in detected peaks 3%

Table 8.1: Reduction of the power scattered into the detected peaks. The table lists the differ-
ent effects that lead to a reduction of the power in the peaks together with the reduction factor.
The measured reduction agrees well with the expectations, as deduced from multiplying the
reduction factor of all effects. For a discussion of the effects see the main text.

small saturation parameters and for large detunings and is above 99% for our param-
eters (s0 ≈ 3, ∆ ≈ 14 Γ). From this two-level point of view, the scattering should be
almost completely coherent.

Inelastic scattering processes

Another source of incoherence is the inelasticity of the scattering process, which
can change both the vibrational state of the atom and its magnetic sublevel. On
average, each scattered photon leads to the transfer of two times the recoil energy
Eprobe

rec = (h̄kprobe)
2/(2m) = h · 3.9 kHz to the atom. When the atom is confined

in a trap, it cannot absorb this energy, but only multiples of the vibrational energy
hνtrap, where νtrap ≈ 200 kHz is the trapping frequency. The Lamb-Dicke parameter

η =
√

Eprobe
rec /(hνtrap) quantifies the ratio of these two energy scales. In the Lamb-

Dicke regime η � 1, where the trap frequency is much larger than the recoil energy,
the probability for a scattering process to change the vibrational state is given by η2,
which in our case is just η2 = 0.02. Therefore most of the scattering events are elas-
tic with respect to the vibrational state, even though the argument is weakened for
atoms in higher vibrational states.

The scattering can also change the magnetic sublevel of the atom, emitting photons
of different polarization, which do not interfere. Because for most mF states there
are three decay channels, one can assume in a rough estimate that one third of the
scattering events preserves the magnetic sublevel. This dominant mechanism could
be circumvented by using a single circular polarized beam, which drives a closed
transition. However, using a molasses, which simultaneously cools the atoms, will
still yield the overall largest signal.
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8.5 Detecting antiferromagnetic order in the density

Summary of the effects

Tab. 8.1 sums up all the different contributions discussed above. Multiplying the re-
duction factors of all effects, we find that the measured fraction in the detected peaks
agrees well with the expectations. We can only compare the orders of magnitude,
because the expected power in the peaks is the product of six different effects and
can only be considered as an estimate. The dominant contribution to the incoher-
ent background is inelastic scattering, which changes the magnetic sublevels of the
atoms.

We verified our method of extracting the fraction of power scattered into the peaks
[Eq. (8.6)], by running the same analysis as in Sec. 8.3 over simulated data as calcu-
lated in Sec. 8.3. When we include a coherent fraction in the simulation, we find about
the same coherent fraction from the analysis when taking into account the relevant
effects discussed above.

8.5 Detecting antiferromagnetic order in the density

Finally, we demonstrated that light scattering can be used for the detection of spin
correlations. As an example, we created a 1D z-Néel antiferromagnetic order along
the x direction of the lattice using our single-site addressing technique described in
Ch. 6. We sequentially flipped all atomic spins in every second row of the lattice
from F = 1 to F = 2 before we applied a resonant laser that removed all atoms in
F = 2. Figs. 8.5(a) and (b) show the resulting fluorescence image in the focal plane
together with the reconstructed atom number distribution. The corresponding exper-
imental and theoretical diffraction patterns are displayed in Figs. 8.5(c) and (d). The
two predicted diffraction peaks of -1st and -2nd order along x are clearly visible in the
experimental picture, although our atomic sample consisted of only 57 atoms. We ob-
tain the usual peak position of |θy

−1| = 27.7(6)◦ along the y direction, whereas the two
peaks along x are found at |θx

−1| = 14.5(6)◦ and |θx
−2| = 27.4(6)◦ [see Fig. 8.5(e),(f)],

in good agreement with the expected values.

We prepared a 1D antiferromagnetic order, because the additional diffraction peaks
that would arise for a 2D antiferromagnetic order lie outside the opening angle of our
imaging system. However, the position of the diffraction peaks could be varied in a
2D geometry by changing the incidence angle of the molasses beams. For an in-plane
angle between the lattice and the molasses beams of α = 15◦, the additional peaks are
shifted to smaller angles θ (see Fig. 8.6). An alternative is to use shorter wavelength
probe light, e.g. near-resonant with the 5S− 6P transition at 420 nm for 87Rb [178].
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Figure 8.5: Light scattering for a 1D antiferromagnetic order in the density. (a) The atoms
in every second row of the optical lattice were removed. (b) Reconstructed atom number
distribution from (a). (c) Resulting far-field image (∆z = 25µm) with two diffraction orders
in the x direction. (d) Simulated diffraction pattern using the atom number distribution of
(b). (e),(f) Angular distribution of the differential scattering cross section obtained from cuts
along the x and y directions together with Gaussian fits.
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Figure 8.6: Simulation of light scattering for a 2D antiferromagnetic order in the density. The
molasses beams have an in-plane angle of α = 15◦ with respect to the lattice axis, which
changes the diffraction pattern. (a) For a Mott insulator with unity filling, there is a sin-
gle diffraction peak for every molasses beam (b) For a checker-board occupation (2D anti-
ferromagnetic order), there appear additional peaks at a convenient angle.

8.6 Conclusion and outlook

In this chapter, we have demonstrated coherent light scattering from a two-dimen-
sional atomic Mott insulator, which shows distinct peaks in the far-field diffraction
pattern. We quantitatively analyzed these peaks and studied the scaling of the peak
height and width with the atom number. We found that 3% of the power is scattered
into the detected peaks and discuss the different mechanisms, which lead to this re-
duced interference. These include the density fluctuations in the atom distribution,
the finite localization of the atoms in their potential wells, and the inelastic scattering
events which change the magnetic sublevels of the atoms.

Moreover, we prepared a one-dimensional antiferromagnetic order in the density
and observed additional diffraction peaks, thus demonstrating the feasibility of de-
tecting global spin correlations via light scattering.

Our results could be extended to the study of various density [172–174] or spin
[167, 168, 170] correlations in optical lattices. Most proposals suggest weak non-
destructive probing, which restricts the signal to only a few photons per atom. In
our alternative approach, we projected the correlations onto the density before the
detection by means of an optical molasses, which yields a signal of thousands of pho-
tons per atom. This is possible for density correlations, e.g. the number squeezing
in a Mott insulator can be mapped on the mean density by parity projection [46, 47].
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8 Coherent light scattering from a 2D Mott insulator

For spin correlations, we have demonstrated the feasibility of removing one spin state
and observing the additional diffraction peaks from the density structure. This avoids
spin selective coupling of the probe light to the atoms [170], which is incompatible
with simultaneous laser cooling.

In the 3D case, antiferromagnetic order allows scattering from an additional plane,
but it requires careful alignment of the probe beam angle to match the Bragg condi-
tion. In contrast, light scattering from a 2D system yields additional peaks from the
same incident beam, which is also convenient for the extraction of the spin correlation
length from the relative height or width of the diffraction peaks.

Finally, we note that the detection of spin correlations via light scattering does not
rely on the high aperture of our imaging system. The diffraction peaks could also be
detected in a restricted angular range.
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9 Conclusion and outlook

This thesis presents novel experimental methods for the study of ultracold atoms
in optical lattices. While most experiments so far probed the atoms globally, we
have developed single-site resolved imaging and manipulation of single atoms in
the strongly correlated regime.

We used a high numerical aperture imaging system to resolve single lattice sites.
Fluorescence imaging allowed to detect single atoms with a large signal and to recon-
struct the atom distribution on the lattice. With this technique we can study strongly
correlated states at the single particle level. This is complementary to many existing
methods like time-of-flight imaging, because it allows to probe the density correla-
tions instead of the coherences.

We applied the technique to Mott insulators in the atomic limit and directly ob-
served number squeezing and the shell structure. We determined the temperature
in a single image by fitting the radial density profiles with a simple grand-canonical
model. Our pictures show with unprecendented clarity that the entropy is concen-
trated in the transition regions between the Mott insulator shells and that it is essen-
tially zero in the center of the shells. For our parameters, we calculated an entropy
per particle which is around the critical entropy for quantum magnetism.

Moreover, we were able to address single atoms in the lattice and to manipulate
their spin. We used the differential light shift of a tightly focused laser beam to shift
selected atoms into resonance with a microwave driving the spin flip. This allowed
us to reach a high spin-flip fidelity and sub-diffraction-limited resolution. Starting
from a Mott insulator with unity filling, we we able to prepare arbitrary spin patterns
of individual atoms, thus realizing a scalable single-atom source.

This ability to locally manipulate a strongly correlated atomic gas and to prepare
arbitrary atom distributions opens many perspectives in quantum simulation and
computation. As an example, we studied the single particle tunneling dynamics in
a lattice and directly mapped out the wave function after coherent evolution. We
discriminated the dynamics of atoms in the ground state and in the first excited band
and found that our addressing scheme leaves most atoms in the ground state. The
preparation of atoms in the ground state is important for the study of further non-
equilibrium quantum dynamics.

Finally, we investigated coherent light scattering as an alternative method to detect
antiferromagnetic order also when single-site resolution is not available. We imaged
the far-field diffraction pattern while simultaneously laser cooling the atoms with
the probe beams and found distinct peaks. We quantitatively analyzed the diffrac-
tion pattern and found the expected scalings of the peak parameters with the atom
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number. From the power fraction in the peaks we deduced the coherence of the flu-
orescence light and we discuss the mechanisms that reduce the coherence. We arti-
ficially prepared 1D antiferromagnetic order as a density wave and observed addi-
tional diffraction peaks, thus demonstrating the usability of light scattering for the
detection of global spin correlations.

The following paragraphs will give an outlook on some of the possible future ap-
plications of the techniques demonstrated in this thesis.

Even without local manipulation, imaging of single particles in the strongly corre-
lated regime is a major step forward. This is valuable in a system with an external
confinement, where one can have different phases at different positions in the trap,
as in the prominent example of the shell structure of a Mott insulator. The measure-
ment of the number statistics can be extended to the phase transition [46] and also to
one-dimensional systems. A measurement of the density-density correlations [185]
should reveal the coherent particle-hole excitations, when switching on tunneling
coming from the insulating state. While thermal excitations are uncorrelated, these
coherent excitations are expected to have long-range correlations. Furthermore one
could observe the dynamics after a sudden quench from the Mott insulator to the
superfluid regime [186] or from 1D to 2D. Also higher-order correlators that are inac-
cessible in condensed matter experiments can be tackled. For future work it would
be interesting to investigate how entropy propagates in strongly correlated systems,
after injecting it on a local scale into the system.

The entropies of our Mott insulators should be sufficiently low to observe quan-
tum magnetism in a two-component system with unity total density [29, 119]. We
plan to separate two spin states with a magnetic gradient and observe the mixing dy-
namics after switching off the gradient, which is mediated by second order hopping
processes.

We can also investigate one-dimensional systems, which are particularly interest-
ing due to the enhanced role of quantum fluctuations and the accessibility to numer-
ical simulation also of the dynamics. At strong interactions, in the Tonks-Girardeau
regime, the bosonic atoms are fermionized, and it would be interesting to detect the
fermionized density-density correlations or Friedel oscillations [187–189].

The coherent manipulation of single spins in a Mott insulator opens the path for
many new experiments. It will e.g. allow us to create out-of-equilibrium states or lo-
cal perturbations in order to observe the ensuing dynamics of the many-body system,
such as spin-charge separation [190, 191] or spin impurity dynamics beyond the Lut-
tinger liquid theory [192]. Our studies of the tunnelling dynamics at the single-atom
level can be extended to correlated particle tunneling [98, 160, 193], also in higher
dimensions, or to observe transport across local impurities [194] or potential barriers.
Further prospects are the implementation of novel cooling schemes relying on the
local removal of regions with high entropy [7, 195].

Atoms in a Mott insulating state with one atom per lattice site are also very promis-
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ing as a quantum register for scalable quantum computing, especially with the very
low defect density shown in this work. Combining single-qubit manipulation with
local readout and a global entanglement operation in a spin-dependent lattice [53, 54]
would be the basis of a one-way quantum computer [51, 52]. For the circuit model of
a quantum computer, two-qubit operations can be realized by Rydberg gates, which
where already demonstrated in single dipole traps [56, 57]. Implementing them in an
optical lattice will put tens of atoms within the blockade radius, thus allowing gates
between selected atom pairs in the lattice without any atom movement.

A Rydberg laser system is currently being set up and will also be used to study
condensed matter physics. E.g., one can generate long-range interactions between
the atoms by weakly admixing excited Rydberg states with laser light [196]. Our
high-resolution imaging would also allow to directly observe the blockade radius in
the adiabatic formation of Rydberg crystals [197].

Finally, combining the high resolution imaging system with a spatial light modu-
lator [37, 198–200] allows to project arbitrary potential shapes with small structure
size, e.g. box potentials, arbitrary lattice geometries [45, 201] or controlled disorder
[21, 202]. Using a wavelength with a differential light shift, one can also flip the spin
of many selected atoms simultaneously and use this for selective entropy removal [7].
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