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Zusammenfassung

Im Rahmen der THORPEX Pacific Asian Regional Campaign (T-PARC) 2008, wurde ein
beispielloser Datensatz von Flugzeugmessungen im westlichen Nordpazifik gewonnen. Von
mehreren Flugzeugen wurden insgesamt etwa 1500 Dropsonden abgeworfen, die hauptsäch-
lich zur Beobachtung tropischer Wirbelstürme dienten. Zusätzlich wurden mehr als 3900
Wasserdampfprofile von einem flugzeuggetragenen Differentiellen-Absorptions-Lidar
(DIAL) gemessen, das auf dem DLR Forschungsflugzeug Falcon 20 installiert war. Die
vorliegende Arbeit befasst sich mit dem Einfluss dieser gezielten Dropsonden- und DIAL-
Messungen auf die Vorhersagequalität des globalen Wettermodells des Europäischen Zen-
trums für Mittelfristige Wettervorhersage (EZMW).

Verschiedene Vorhersageexperimente wurden durchgeführt, um den Einfluss der Drop-
sonden auf die Zugbahnvorhersage der zwei wichtigsten tropischen Wirbelstürme während
T-PARC, Sinlaku und Jangmi, zu analysieren. Die Verwendung der Dropsonden-Mes-
sungen bewirkt eine 15-prozentige Verringerung des mittleren 12- bis 120-stündigen Zug-
bahnfehlers gemittelt über die gesamte Periode von Sinlaku und Jangmi. Die Dropson-
den werden des Weiteren, in Abhängigkeit ihrer Position relativ zum Sturm, in drei ver-
schiedene Untergruppen aufgeteilt um zu untersuchen in welchem Gebiet zusätzliche Mes-
sungen den größten Nutzen für die Zugbahnvorhersage tropischer Stürme haben. Die größte
Verbesserung der Zugbahnvorhersage bewirken Messungen, die in der näheren Umgebung,
kreisförmig am Außenrand des Sturmes liegen. Im Gegensatz dazu zeigen Messungen in
weiter vom Sturm entfernten Regionen, welche von Berechnungen mit singulären Vek-
toren als sensitiv eingestuft wurden, nur einen kleinen, aber leicht positiven Einfluss auf
die Zugbahnvorhersage. Messungen im Zentrum des Wirbelsturmes führen zu großen
Veränderungen der Analysefelder, aber nur zu sehr kleinen Verbesserungen der Vorher-
sage. In allen Experimenten werden besonders die zu den Zeitpunkten vor dem Eintreffen
des Sturmes an der Küste und der darauffolgenden Umlenkung der Zugbahn gestarteten
Vorhersagen durch die zusätzlichen Dropsonden-Messungen verbessert, während die posi-
tiven Auswirkungen nach der Umlenkung des Sturmes relativ gering sind.

Hochaufgelöste DIAL-Messungen der Wasserdampfkonzentration werden unter Ver-
wendung des operationellen vier-dimensionalen variationellen Datenassimilationssystems
in das Globalmodell des EZMW assimiliert. Das Assimilationssystem nutzt die in den
DIAL-Messungen enthaltene Information und der Analysefehler, der mit unabhängigen
Messungen von Dropsonden verifiziert wird, verringert sich durch die assimilierten DIAL-
Messungen. Die Auswirkungen der Wasserdampfmessungen auf die Vorhersagequalität
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sind in den meisten Fällen gering, wobei in zwei Fällen eine Verbesserung der Vorher-
sagequalität durch die DIAL-Messungen erzielt wird. Des Weiteren werden systematische
Unterschiede zwischen den Wasserdampfmessungen des DIALs und der Dropsonden sowie
dem Wasserdampf im Modell untersucht. Es zeigt sich, dass in der Troposphäre die DIAL-
Messungen im Mittel etwa 7-10% trockener sind als die Modellwerte. Aus dem Vergleich
zwischen den Messungen des DIALs und der Dropsonden lässt sich wiederum schließen,
dass DIAL-Messungen zwar in der unteren Troposphäre zu trocken sind, nicht aber in
höheren Schichten.
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Abstract

In the framework of the THORPEX Pacific Asian Regional Campaign (T-PARC) 2008, an
unprecedented data set of airborne observations was sampled in the western North Pacific
basin. About 1500 dropsondes were deployed by several aircraft, mainly during tropical
cyclone surveillance missions. Additionally, a set of about 3900 water vapour profiles was
measured by an airborne differential absorption lidar (DIAL) installed on-board the DLR
Falcon 20 aircraft. The forecast influence of the adaptive dropsondes and DIAL humidity
observations in the European Centre for Medium-Range Weather Forecasts (ECMWF)
global model is addressed in this thesis.

Observing system experiments were performed to analyse the forecast influence of drop-
sonde observations for the two major T-PARC typhoon systems, Sinlaku and Jangmi. The
assimilated dropsonde observations reduce the mean 12-120 h track forecast error in the
period of Sinlaku and Jangmi by 15%. Further, the dropsonde observations were divided
into three different subsets depending on their location relative to the tropical cyclone
(TC) and sensitivity studies were carried out to investigate which observations are most
beneficial for typhoon track forecasting. The largest TC track forecast improvements are
found for observations in the vicinity of the storm, placed at a circular ring at the outer
boundary of the TC. In contrast, observations in remote regions indicated to be sensitive
by singular vectors seem to have a relatively small influence with a slight positive tendency
on average. Observations in the TC core and centre lead to large analysis differences,
but only very small mean forecast improvements. Forecasts initialised prior to landfall
and recurvature are stronger influenced by additional dropsonde observations, while the
observation impact on the track forecast after recurvature is relatively weak.

High-resolution DIAL humidity observations were assimilated into the ECMWF global
model using the operational four-dimensional variational data assimilation system. The
assimilation system is able to extract the information of DIAL observations and the veri-
fication with independent dropsonde observations shows a reduction of the analysis error
when DIAL water vapour observations are assimilated. The forecast influence of the hu-
midity observations is found to be small in most cases, but the observations are able to
affect the forecast considerably under certain conditions. Systematic errors are investigated
by comparison between humidity model fields, DIAL and dropsonde observations. Overall,
DIAL observations are roughly 7-10% drier than model fields throughout the troposphere.
Comparison with dropsonde observations suggests that the DIAL observations are too dry
in the lower troposphere but not above.
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Chapter 1

Introduction

1.1 Background

The time integration of a numerical weather prediction (NWP) illustrates an initial value

problem (Kalnay, 2003). Bjerknes (1904) already stated more than 100 years ago that, in

addition to having a model with a realistic representation of the atmosphere, one has to

know the atmospheric state at a given time with sufficient accuracy to produce an accurate

weather forecast.

The atmosphere is a nonlinear, chaotic and complex system, and the predictability of

the atmospheric state is limited as both the NWP model and the initial conditions are

sources of errors. In NWP models, errors arise due to our limited knowledge of governing

laws of atmospheric physical processes as well as due to limited computer resources that

make it necessary to use technical assumptions and simplifications. However, even if we

would have a perfect model and unlimited computing resources, we would still face limits

of predictability and would not be able to produce perfect forecasts as there are always

errors that arise from imperfect initial conditions.

The importance of accurate initial conditions was highlighted by Lorenz (1963), who

demonstrated in his famous experiments on predictability that the atmosphere can be

highly sensitive to the choice of initial conditions. Small errors in the initial conditions

may grow significantly during the forecast period, which can finally lead to an erroneous

prediction of the atmospheric state.

In order to determine the initial conditions, observations of the state of the atmosphere

are taken on a regular basis by a large number of different observational platforms and

instruments. Figure 1.1 gives an overview of the current Global Observing System (GOS).

The observation components of the GOS can be separated into six different groups: surface

observations (e.g. synoptic observations), profile observations (e.g. radiosonde soundings),
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marine observations (e.g. buoys), aircraft observations (e.g. Aircraft Meteorological Data

Relay (AMDAR)), satellite observations (e.g. radiances) and other observational platforms

(e.g. Doppler radars). The GOS provides of the order of 108 observations per day to

determine the actual state of the atmosphere. Nevertheless, independent of the number

of observations, gaps both in time and space always exist. Radiosonde observations for

example, which measure the vertical structure of temperature, wind and humidity, are

launched from distinct locations, mostly airports, and are only available a few times per day.

To complete the observed picture of the atmosphere and produce accurate initial conditions,

another source of background information about the atmospheric state is required. In

the task of operational NWP, this background information is provided by a short-term

forecast created by the NWP model. This merging process of observations and background

information is called data assimilation, and aims to find the best possible initial conditions

to initialise a model and generate weather forecasts.

Figure 1.1: Overview of the Global Observing System. Figure taken from Hagedorn (2010).

Deficiencies of the GOS can generate errors in the initial conditions. Poor observational

coverage for example limits the ability to correct the background information adequately

with the information provided by observations. The concept of adaptive observing strate-

gies (also called observation targeting) aims to tackle deficiencies in the observational net-

work by deploying additional observations in areas, where they are most beneficial for the

reduction of forecast errors. Adaptive observing strategies can be further applied to opti-

mise the design of the future observing network in a way that maximises the improvements

of observations for NWP and minimises the costs of instruments.

Adaptive observing strategies have been applied and tested in several field campaigns

under the umbrella of The Observing System Research and Predictability Experiment

(THORPEX). THORPEX is a 10-year programme within the World Weather Research



1.1 Background 3

Programme (WWRP) of the World Meteorological Organization (WMO) and aims “to

accelerate improvements in the accuracy of one-day to two-week high impact weather fore-

casts for the benefit of society, the economy and the environment”1. Therefore, one major

focus of THORPEX are forecasts of tropical and extratropical cyclones, that can have a dis-

astrous impact on society when predicted poorly. Forecast failures of high impact weather

are often due to inaccurate or erroneous initial conditions (Rabier et al., 1996). After the

start of THORPEX in 2002, the research in the field of adaptive observations has increased

rapidly. One of the key issues is to evaluate how adaptive observations can be applied to

achieve the largest benefits for the forecast quality. The research group Predictability

and Dynamics Of Weather Systems in the Atlantic-European Sector (PANDOWAE2) is a

German initiative contributing to THORPEX related research on the improvement of the

forecast quality of high impact weather events. PANDOWAE consists of three different

research areas dealing with upper-level Rossby wave trains, moist processes and diabatic

Rossby waves, and ensembles and adaptivity.

The work of this thesis is part of the PANDOWAE project “Adaptive observing strate-

gies for active airborne remote sensing instruments” that aims to:

- develop targeting strategies for future field campaigns and operational observations

- investigate the potential of new remote sensing instruments

- quantify the impact of airborne wind and water vapour lidar observations on the

forecast skill of NWP models.

Data collected during the summer phase of the multi-national THORPEX Pacific Asian Re-

gional Campaign (T-PARC3), that took place in the western North Pacific basin from Au-

gust to October 2008, are analysed in this thesis to address the above listed PANDOWAE

and THORPEX related research topics.

In T-PARC, a strong effort was made to bundle international research activities for

extensive observations of tropical cyclones. The goals of the campaign were to enhance the

understanding of the short- and medium-range dynamics of tropical cyclones (TCs) and to

increase the forecast skill of high impact weather events related to TCs in the western North

Pacific and their downstream impact in the eastern North Pacific and North America. An

unprecedented set of observational platforms of up to four different research aircraft, in

combination with driftsonde gondolas, research vessels and extra satellite observations was

1http://www.wmo.int/pages/prog/arep/wwrp/new/thorpex−new.html
2http://www.pandowae.de
3http://www.eol.ucar.edu/projects/t-parc/



4 Introduction

operated in the framework of T-PARC and collaborative projects. Systematic observations

targeted around TCs during the full life cycle of a storm from the genesis in tropical waters

throughout its northwestward movement, recurvature and extratropical transition (ET)

were conducted.

1.2 Adaptive observations for tropical cyclones

TCs usually develop over tropical oceans which are data sparse. The limited number

of observations and the rapid development of TCs increases uncertainties of the model

analysis in these regions, which can lead to significant forecast errors (Langland, 2005a).

However, accurate forecasts of these high impact weather events are extremely important

to protect the increasing population in coastal areas worldwide.

The first regular adaptive observations for TC forecasts were conducted by the National

Oceanic and Atmospheric Administration (NOAA) Hurricane Research Division (HDR) in

the North Atlantic basin from 1982 to 1996. Assimilation of those observations of wind

and thermodynamic profiles reduced the mean 12-60 h track forecast error by 16-30%,

which was about the same size as the improvements in the operational forecast model

over the years from 1970 to 1991 (Burpee et al., 1996). Following these promising results,

surveillance programs deploying dropsonde observations in and around TCs have been

operated for the Atlantic from 1997 onwards (Aberson, 2002). Despite the increased use of

satellite data in the analysis of NWP models, the adaptive dropsonde measurements of key

variables such as wind, temperature and humidity in the environment of TCs, still lead to

mean improvements of 10-15% in the Atlantic and eastern North Pacific TC track forecasts

of the National Centers for Environmental Prediction (NCEP) Global Forecasting System

(GFS) within the critical watch and warning period before landfall (Aberson, 2010).

In the western North Pacific basin, a surveillance programme for adaptive TC obser-

vations, called Dropwindsonde Observations for Typhoon Surveillance near the Taiwan

Region (DOTSTAR), started in 2003 (Wu et al., 2005). Similar to the Atlantic, several

studies using the NCEP GFS and the Japan Meteorological Agency (JMA) models showed

that dropsonde observations in the environment of TCs can lead to improvements of TC

track forecasts of the order of 10-20% (Wu et al., 2007b; Yamaguchi et al., 2009).

To deploy additional observations in the most beneficial way, adaptive observing guid-

ance based on the findings of different targeting techniques as singular vector (SV) calcu-

lations (Buizza and Palmer, 1995; Buizza and Montani, 1999; Peng and Reynolds, 2006;

Reynolds et al., 2009), ensemble transform Kalman filter (ETKF) products (Bishop et al.,

2001; Majumdar et al., 2002), ensemble deep-layer mean (DLM) wind variances (Aber-

son, 2003) and adjoint-derived sensitivity steering vector (ADSSV) calculations (Wu et al.,
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2007a) have been used over the last few years. A detailed comparison of the different

targeting techniques is given in Wu et al. (2009) for the western North Pacific basin and

in Majumdar et al. (2006) and Reynolds et al. (2007) for the Atlantic. Sensitivity patterns

captured by the different targeting techniques can be significantly different. Majumdar

et al. (2006) and Wu et al. (2009) found that one targeting technique, for example SVs,

shows similar sensitive regions independent of the model, while the similarity between

adjoint-based methods (SV, ADSSV) and ETKF calculations is less distinct. The struc-

tural differences between the methods can be linked to the mathematical and physical

differences in their calculations (Reynolds et al., 2007). The ETKF, which tends to dis-

tribute sensitivity around the storm centre, predicts the forecast error variance reduction

from adaptive observations using ensemble forecast perturbations (Majumdar et al., 2002).

In contrast, SV-based methods consider optimised perturbation growth and predict regions

where changes in the initial analysis have the largest impact on the forecast (Peng and

Reynolds, 2006). In addition to the storm itself, SVs often locate sensitivity in remote re-

gions, which are associated with dynamical systems, such as for example the jet stream or

an upstream midlatitude trough, that are expected to affect the movement and evolution

of the TC (Peng and Reynolds, 2006; Reynolds et al., 2009; Wu et al., 2009).

Figure 1.2 shows an exemplary targeting guidance by six different techniques calcu-

lated for Typhoon Shanshan in 2006. At the observing time, the midlatitude flow affects

the movement of the storm. The three different SV techniques (Figs. 1.2a-c) show in-

creased sensitivity upstream and at the centre of the approaching midlatitude trough,

while the ADSSV points only to the trough centre (Fig. 1.2e). The two ensemble-based

methods (Figs. 1.2d,f) locate the maximum sensitivity right at the centre of Shanshan,

but increased sensitivity can also be seen north of Shansan downstream of the midlatitude

trough. There is no overall consensus between different targeting methods and consider-

ing limited resources, it is essential to investigate where adaptive observations need to be

deployed to receive the largest forecast impact.

More insight into how adaptive observations based on different targeting techniques in-

fluence the TC forecast is expected from conducting observing system experiments (OSEs)

(Reynolds et al., 2007; Wu et al., 2009). For a single case of DOTSTAR dropsonde ob-

servations, Yamaguchi et al. (2009) demonstrated that the assimilation of dropsondes only

in SV sensitive regions can reproduce most of the forecast improvements gained from the

assimilation of all dropsondes. In an OSE study for Atlantic surveillance flights, promising

forecast improvements were found when using only observations in sensitive regions indi-

cated by different targeting techniques compared to using all available extra observations

(Aberson et al., 2010). However, these studies were restricted to a limited sample size

and considerable differences between various techniques were found. The adaptive obser-
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Figure 1.2: Example case of sensitivity guidance maps of (a) ECMWF4 SV, (b) NOGAPS5

SV, (c) JMA SV, (d) multimodel (ECMWF/NCEP/CMC6) ETKF, (e) MM57 ADSSV and (f)
DLM wind variance valid for Typhoon Shanshan at 00 UTC 16 Sept 2006. The Joint Typhoon
Warning Center (JTWC) best track position of Shansan is displayed by a red typhoon symbol
and the geopotential height at 500 hPa from the NCEP analysis is superimposed. The red box in
(a)-(e) describes the target domain used for the sensitivity calculations. Figure taken from Wu
et al. (2009).

vations sampled during T-PARC provide a promising data set to perform further OSEs to

test the impact of observations in different targeting regions on the forecast of TCs. While

DOTSTAR only could use the resources of one aircraft, adaptive observations for TCs in

the western North Pacific basin were deployed from up to four research aircraft during

T-PARC.

4European Centre for Medium-Range Weather Forecasts
5Navy Operational Global Atmospheric Prediction System
6Canadian Meteorological Center
7fifth–generation Pennsylvania State University / National Center of Atmospheric Research (NCAR)

Mesoscale Model
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1.3 Humidity observations by new observing systems

The knowledge of the global moisture distribution is an important ingredient for NWP,

especially for the forecast of precipitation (Ebert et al., 2003; Keil et al., 2008). In addition,

water vapour affects the atmospheric radiation balance and can also be responsible for the

transport of energy that is stored in evaporated water and released again by condensation

(Pierrehumbert, 2002).

Nevertheless, the current observational network used for the initialisation of NWP

models lacks sufficient accurate, vertically resolved observations of humidity. The major-

ity of atmospheric humidity observations are derived from passive satellite instruments

such as the Atmospheric Infrared Sounder (AIRS), the Advanced Microwave Sounding

Unit (AMSU-A, AMSU-B) sounders, the Infrared Atmospheric Sounding Interferometer

(IASI), the High Resolution Infrared Sounder (HIRS), the Microwave Humidity Sounder

(MHS), the Advanced Microwave Scanning Radiometer (AMSR-E) or the Special Sensor

Microwave/Imager (SSM/I), which provide information on humidity indirectly by observ-

ing radiation emitted from the atmosphere. Global Positioning System (GPS) radio occul-

tation techniques (Healy and Thépaut, 2006), GPS ground-based measurements of slant

total delay (Zus et al., 2008) or zenith total delay (Poli et al., 2007) are another source

of humidity information. High vertical resolution, but poor horizontal and temporal cov-

erage is achieved with radiosonde humidity observations, while ground stations provide

observations only near the surface.

The assimilation of humidity observations in NWP models is an active field of ongoing

research. Bengtsson et al. (2004) found that even without any humidity observations

the European Centre for Medium-Range Weather Forecasts (ECMWF) 40-yr reanalysis

(ERA40) system is able to reproduce the hydrological cycle by the time evolution of wind,

temperature and surface pressure. They further conducted forecast experiments showing

limited impact of humidity observations on the forecast skill of dynamical fields (Bengtsson

and Hodges, 2005). In contrast, Andersson et al. (2007) demonstrated that the analysis

and the forecast of humidity, mass and wind fields of the ECMWF model benefits from

humidity observations. They concluded that the ECMWF four-dimensional variational

(4D-Var) data assimilation system and the improved formulation of the background error

covariance model for humidity (Hólm et al., 2002) contributed to the positive results,

whereas Bengtsson and Hodges (2005) used the less advanced ERA40 3D-Var system.

In recent years, active remote sensing techniques such as differential absorption lidars

(DIALs) were developed and tested during several field experiments. DIAL systems demon-

strated the ability to supply precise humidity observations with high spatial and temporal

resolution (e.g. Browell et al., 1998; Wulfmeyer and Bösenberg, 1998; Ehret et al., 1999;
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Bruneau et al., 2001; Kiemle et al., 2008; Wirth et al., 2009). A detailed evaluation of

different airborne water vapour DIAL systems was performed within the framework of the

International H2O Project (IHOP 2002). The comparison of observations from ground-

based lidar systems and different airborne DIAL systems showed an agreement with inter-

instrumental biases smaller than 10% (Behrendt et al., 2007a, 2007b). DIAL observations

were also used to derive latent heat flux profiles for boundary layer studies by using collo-

cated wind observations (Kiemle et al., 2007). A case study demonstrated improvements of

convective initiation and quantitative precipitation forecasts by assimilating Lidar Atmo-

spheric Sensing Experiment (LASE) observations in a mesoscale model (Wulfmeyer et al.,

2006). For forecasts of tropical cyclones using the Florida State University global spec-

tral model, a beneficial influence was discovered with the assimilation of LASE humidity

observations (Kamineni et al., 2003, 2006; Biswas and Krishnamurti, 2008).

All these previous studies were performed with two-wavelengths DIAL systems. In sup-

port of a mission proposal to the European Space Agency (ESA) for the Water Vapour Lidar

Experiment in Space (WALES) (Gérard et al., 2004), the first airborne four-wavelength

DIAL was recently developed (Wirth et al., 2009) to investigate the feasibility of operating

an active profiling DIAL system in space. The nadir-pointing WALES demonstrator was

deployed during the Convective and Orographically-induced Precipitation Study (COPS)

and the European THORPEX Regional Campaign (E-TReC) in 2007. DIAL humidity

observations from these campaigns were compared to ECMWF model fields of humidity

(Schäfler et al., 2011a) and were used in an intercomparsion study together with other lidar

humidity observations (Bhawar et al., 2011).

During T-PARC, the nadir-pointing WALES demonstrator was installed on-board the

Deutsches Zentrum für Luft- und Raumfahrt (DLR) research aircraft Falcon and observed

more than 3900 water vapour profiles. These high-resolution humidity observations provide

a unique data set to study the potential of this new remote sensing instruments for NWP.

1.4 Goals and outline

This study intends to evaluate the impact of adaptive T-PARC observations on the forecast

performance of the ECMWF model. The thesis consists of three main parts. The first part

evaluates the overall impact of more than 1500 dropsondes released during T-PARC on

TC forecasts and OSEs with the operational ECMWF model are performed. In the second

part, OSEs are conducted for single case studies and different strategies to optimise TC

forecasts improvements with airborne dropsondes observations are compared. Particular

emphasis is given to the question, in which regions relative to the TC additional dropsondes

are most beneficial for the forecast performance to shed further light on the problem where
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to deploy adaptive observations considering limited flight time and operational costs. In

the third part of the thesis, the potential of new remote sensing observations by an airborne

DIAL system for NWP is investigated. Sensitivity studies assimilating DIAL observations

during T-PARC are conducted with the ECMWF 4D-Var data assimilation system to ex-

amine how the information of those observations can be used optimally. Furthermore,

OSEs are performed to explore the influence of the DIAL observations on the analysis and

forecast quality.

To summarise, the scientific questions addressed in this thesis are:

- What is the influence of adaptive T-PARC dropsonde observations on tropical cyclone

forecasts?

- Where do adaptive dropsonde observations show the largest benefit for tropical

cyclone forecasts?

- What is the potential of new types of observations such as water vapour DIAL

observations for NWP?

Chapter 2 describes the methods and data used in this thesis. Basic principles of data

assimilation are explained and the ECMWF analysis and forecasting system is introduced.

Furthermore, the concept of adaptive observations is summarised and the setup of OSEs is

presented. Dropsonde and DIAL observations during T-PARC provide the main data set

of this study and the two observing systems are explained. In Chapter 3 the overall impact

on TC track forecasts of all additional T-PARC dropsonde observations is addressed by

the analysis of OSEs. In addition, the effect of an erroneous dropsonde observation time

is examined. An evaluation of different TC observing strategies is given in Chapter 4.

Dropsonde observations are divided into three different groups depending on their loca-

tion relative to the storm to test the forecast influence of observations in different areas.

Chapter 5 describes the assimilation experiments using DIAL observations and investigates

systematic errors of the model and DIAL observations. The overall analysis and forecast

influence is presented together with a case study where the influence of DIAL observations

is investigated in detail. Finally, the main conclusions of this thesis together with a brief

outlook are summarised in Chapter 6.
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Chapter 2

Methods and data

This chapter presents the methods and data which are applied to answer the proposed

research questions. Section 2.1 gives an introduction to data assimilation. Basic prin-

ciples and the incremental solution method, which are used in the ECMWF variational

data assimilation system, are presented. In section 2.2, the detailed specifications of the

ECMWF analysis and forecasting system and the used model setup, which is generally

similar to the operational one, can be found. The ECMWF model, that uses a modern

4D-Var data assimilation system to assimilate millions of observations, can be considered

as one of the best available global NWP models which is confirmed by the latest forecast

verification statistics that show the continuously increasing high quality of the ECMWF

model forecasts (Fiorino, 2009; Richardson et al., 2009). More informations on the obser-

vation targeting process, its application and known problems are illustrated in section 2.3.

OSEs are a frequently used tool to evaluate the forecast influence of adaptive or targeted

observations (e.g. Irvine et al., 2009) and the general configuration of the performed OSEs

and the applied forecast verification metrics are presented in section 2.4. The analysed

adaptive airborne observations were collected within the framework of T-PARC. The aims

of the campaign, the main observational platforms and an exemplarily observational high-

light are presented in section 2.5. Section 2.6 gives a description of the dropsonde system

followed by an introduction of the DIAL technique and specifications of the Falcon airborne

DIAL system in section 2.7. The observational resources of T-PARC were unprecedented

and a high coverage with dropsonde observations as well as with high-resolution DIAL

humidity observations was achieved in the western North Pacific basin.
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2.1 Data assimilation

Modern data assimilation systems aim to find the best possible initial conditions to initialise

a NWP model. Accurate initial conditions are produced by a combination of observations

and a priori background information. The background information is usually provided by

a short-range forecast initialised from the previous analysis cycle. A schematic of such an

intermittent data assimilation cycle is shown in Fig. 2.1.

Global analysis (statistical 

interpolation) and balancing

Initial conditions

Global forecast model

Observations (+/- 3h)
Background or

first guess

6-h forecast

(Operational forecasts)

Figure 2.1: Sketch of an intermittent data assimilation cycle. Figure adapted from Kalnay
(2003).

Data assimilation methods can be based on simple concepts as e.g. interpolation of ob-

servations, or apply statistical estimation theory to combine observations and background

information in a statistically optimal way. A state-of-the-art assimilation scheme that uses

statistical information is the 4D-Var data assimilation, which is commonly used in NWP

models at various international weather centres (e.g. ECMWF, MeteoFrance, JMA, CMC).

2.1.1 Variational approach

The variational approach, which is based on statistical estimation theory, aims to find the

most likely analysis by combining all observations and background information under con-

sideration of their error variances. The variational approach assumes that the background

and observation errors are Gaussian distributed with known error variances σ2
b and σ2

o ,

respectively, and that both errors are uncorrelated.
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The following example, adapted from Kalnay (2003), describes the principle of the

variational approach to find the best estimate of any scalar x using the observation y and

the background information xb. The probability of observing y, given the true value of x

and the observation error variance σ2
o , is expressed by the Gaussian distribution

pσo (y | x) = 1√
2πσo

e
− (y−x)2

σ2
o = Lσo(x || y)

which is equal to the likelihood L of a true value x given an observation y with an obser-

vation error variance σ2
o . The likelihood L for a true value x, given the background xb and

the background error variance σ2
b , can be derived analogue. Multiplying both distributions

results in the joint probability or joint likelihood

Lσbσo(x || xb, y) = pσb
(xb | x) pσo (y | x) = 1

2πσbσo

e
− (xb−x)2

σ2
b

− (y−x)2

σ2
o . (2.1)

The maximum of the joint probability is the most likely value of x, given the independent

values of the observation y and the background xb and their related error variances. Since

the logarithm is a monotonic function, the value of x that maximises Lσbσo(x || xb, y)

(Eq.2.1) also maximises the logarithm of the joint likelihood

max
x

log Lσbσo(x || xb, y) = max
x

[
const.− (xb − x)2

σ2
b

− (y − x)2

σ2
o

]
.

The value of x which minimises a cost function J , defined as

J(x) =
(xb − x)2

σ2
b

+
(y − x)2

σ2
o

, (2.2)

maximises the joint probability (Eq. 2.1). The minimum of the cost function J is found

by taking the partial derivative with respect to x and setting it equal to zero:

∂J

∂x
= 0 = −2

(xb − x)

σ2
b

− 2
(y − x)

σ2
o

.

This results in

x =
1

1
σ2
b
+ 1

σ2
o

(
xb

σ2
b

+
y

σ2
o

)
,

which is the best estimate of x using information of the background xb, the observation y

and their error variances σ2
b and σ2

o , respectively.

The variational approach can be extended to three-dimensions with the cost function
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J now written as

J(x) =
1

2
(x− xb)

TB−1(x− xb) +
1

2
[y − H (x)]T R−1 [y − H (x)] (2.3)

similar to the one-dimensional (1D) case (Eq. 2.2). The vector x (xb) of length m describes

the 3D model state (model background state), and the vector y of length p includes all

observations. Instead of the 1D error variances σ2
b and σ2

o , the cost function for the 3D

case uses the background error covariance matrix B (m × m) and the observation error

covariance matrixR (p × p). The observation operator H transforms the model variables x

into the observation space. The 3D variational (3D-Var) cost function is represented by two

terms. The first one (x−xb) penalises the difference of the solution to the background and

the second one (y−H (x)) accounts for the misfit between the solution and the observations

(Kalnay, 2003). The 3D-Var solution is a global model state x that minimises the cost

function J using all available observations y simultaneously. This solution is called the

analysis state xa.

The 3D-Var cost function does not consider the time of the observation and it is assumed

that all observations are taken simultaneously. There are many state-of-the-art observing

systems as for examples satellites that perform continuous measurements. 4D-Var data

assimilation also includes time as additional variable and all observations are used at their

correct time. The 4D-Var cost function can be written as (Kalnay, 2003)

J [x (t0)] =
1

2
[x (t0)− xb (t0)]

T B−1 [x (t0)− xb (t0)]

+
1

2

N∑
i=0

[
y (ti)− Hi [x (ti)]

]T
R−1

i

[
y (ti)− Hi [x (ti)]

]
(2.4)

with the observation vector y (ti), the model state vector x (ti), the observation opera-

tor Hi and the observation error covariance matrix Ri as function of the time ti with

i = 0, 1, ..., N . An assimilation window has to be defined in 4D-Var which spans from

time t0 to tN and includes all observations y (ti) within this window. The length of the

assimilation window typically ranges from 6 to 12 hours. The consideration of the time

variable requires to explicitly include the forecast model in the data assimilation:

x (ti) = Mi,0 [x (t0)] .

The model state x (t0) at time t0 is evolved to time ti with the nonlinear forecast model

Mi,0 within the assimilation window. Rather than finding a solution at one time that

minimises the cost function as it is done in 3D-Var, 4D-Var tries to find a model trajectory
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that minimises the cost function within the assimilation window. This so called strong-

constraint 4D-Var also implies that the nonlinear forecast model is assumed to be ‘perfect’,

i.e. that the model has no errors.

A crucial part of the cost function is the appropriate formulation of the background error

covariance matrix B. The role of B is to spread out the information of the observations

and to provide statistically consistent increments (i.e. difference between the analysis and

background model state) at neighboring grid points and levels of the model. Furthermore,

physical properties have to be considered in a way that dynamically balanced and consistent

increments of all variables are produced. For example, geostrophic balance is usually

included as constraint. The true B and the error statistics of the background are unknown

and even in case B would be know exactly, the dimensions (∼ 107 × 107) are by far too

large to work with the matrix directly. Thus, an approximate surrogate of B with known

error statistics has to be modelled, which for example can be done by taking differences

between short-range forecasts verifying at the same time (Parrish and Derber, 1992) or

using an ensemble of analyses (Fisher, 2003).

Additionally, the observation error covariance matrix R, which determines the weight

of the observations, has to be specified considering three different types of errors: the

observing instrument error, the representativeness error of the observation and errors in the

design of the observation operator H . The observation operator H transforms the model

variables from model space to observation space and enables a direct use of observations of

non-model variables such as brightness temperature observed by satellites. This operator

may include simple interpolation steps as well as complicated radiative transfer models for

satellite measurements.

2.1.2 Incremental 4D-Var

The cost function J (Eq. 2.4) of the above discussed strong-constraint 4D-Var problem can

be solved using an incremental approach (Courtier et al., 1994). The forecast model M and

the observation operator H in the cost function can both be nonlinear. The linearisation

of these two operators yields a quadratic cost function J and at the same time the gradient

of the cost function ∇J is linearly dependent to the control variables.

A model state x (t0) at time t0 is linearised about the model background state xb (t0) by

introducing a small increment δx (t0). If the Taylor expansion is applied and terms higher

than second order are neglected, the time evolved model state x (ti) becomes

x (ti) = Mi,0 [x (t0)] = Mi,0 [xb (t0) + δx (t0)] ≈ Mi,0 [xb (t0)] +Mi,0δx (t0)

using the full nonlinear model Mi,0 and a linearised model Mi,0, the so-called tangent-
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linear model. Hence, the approximate cost function J in the incremental 4D-Var data

assimilation as function of the increment at initial time δx (t0) (Courtier et al., 1994) can

be written as

J [δx (t0)] =
1

2
[δx (t0)]

T B−1 [δx (t0)]

+
1

2

N∑
i=0

[d (ti)−HiMi,0δx (t0)]
TR−1

i [d (ti)−HiMi,0δx (t0)] (2.5)

including a linearised observation operator Hi and the innovation vector d (ti) defined as

d (ti) = y (ti)− Hi

[
Mi,0 [xb (t0)]

]
. (2.6)

The innovation vector is calculated from the difference in observation space between the

observation vector and the nonlinear forecast trajectory of the model initialised from the

background model state at initial time xb (t0). The increment δx (t0) that minimises the

cost function J (Eq. 2.5) is derived from the solution of

∇J = B−1δx (t0) +
N∑
i=0

MT
i,0H

T
i R

−1
i [d (ti)−HiMi,0δx (t0)] = 0 . (2.7)

The transpose of the tangent-linear model MT
0,i (called the adjoint model) is required to

minimise the cost function J (Eq. 2.7). The different tasks of the three model versions are

sketched in Fig. 2.2. The full model state x (t0) is evolved forward in time by the nonlinear

model Mi,0 and the innovation vector is calculated from the difference of the nonlinear

model trajectory and the observation vector. For each time step of the minimization the

increment δx (ti) is integrated forward in time from ti to ti+1 applying the tangent-linear

model Mi+1,i and backward in time from ti+1 to ti using the adjoint model MT
i+1,i.

Figure 2.2: Nonlinear, tangent-linear and adjoint model.
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The process of finding an increment δx (t0) that solves Eq. 2.7 is done in an iterative

way using about 10 to 100 iterations. The resulting analysis increment δx (t0) is added to

the model background state xb (t0) to get the associated model analysis state. The solution

is only accurate if the analysis increment is small which means that the analysis state is

not too far away from the background state. The solution in the strong-constraint 4D-Var

data assimilation is an exact model trajectory since it is assumed that the model has no

errors. Hence, all increments in the assimilation window can be obtained by applying the

nonlinear forecast model Mi,0 to the increment δx (t0) at the beginning of the assimilation

window.

2.2 ECMWF analysis and forecasting system

An intermittent, incremental 4D-Var data assimilation system is used operationally in the

ECMWF system since 1997 (Bouttier and Rabier, 1998). The short-term model forecast

acts as background state and about 10 million observations are assimilated every 12 hours

to correct the approximately 80 million values of the model background state. Twice a day

at 00 and 12 UTC, a 10-day model forecast is started from the produced analysis state

which is considered as the best possible representation of the real atmosphere.

The ECMWF 4D-Var data assimilation solves an incremental formulation of the cost

function J (Rabier et al., 2000), which is identical to Eq. 2.5. The increments at initial time

δx (t0) = x (t0)−xb (t0) are formulated with respect to the model background state xb (t0),

which is provided by a short-term model forecast initialised at the previous analysis time.

The 4D-Var system uses half-hour time slots within the 12-hourly assimilation windows

between 21-09 UTC and 09-21 UTC for the nominal analysis times at 00 UTC and 12 UTC,

respectively.

Figure 2.3 displays a schematic of the incremental ECMWF 4D-Var data assimilation

system. The incremental approach allows the use of different horizontal resolutions for the

comparison of the observations with the model background state (Eq. 2.6) and the minimi-

sation of the cost function (Eq. 2.7). At first, the innovation vector is computed comparing

the observations with the high-resolution nonlinear model state. The observation operator

and the forecast model are linearised around the model background state. The minimisa-

tion of the cost function and the calculation of the increment δx is done with a reduced

model resolution using the linearised version of the forecast model (tangent-linear model),

the adjoint model and the linearised observation operator Hi. The high-resolution non-

linear model state is updated with the computed increment (xi+1 = xi + S−1 (δx)), the

analysis is re-linearised and the next minimisation is performed. In the used setup, the

nonlinear model runs at the resolution of TL799L91, i.e. truncation after wave number
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799 (∼25 km horizontal grid scale) and 91 vertical level, and is updated three times by

increments computed at the resolution of TL95L91, TL159L91 and TL255L91, respectively.

Figure 2.3: Schematic of the incremental ECMWF 4D-Var solution algorithm. The first ‘outer
loop’ is initialised by the high-resolution (in this study TL799L91) background model state xb.
The iterative solution of the cost function is done in the ‘inner loop’ at a reduced resolution
applying the tangent-linear model and its adjoint version. The high-resolution nonlinear model
state is updated with the computed increment followed by the next ‘outer loop’. In the current
setup three ‘outer loops’ are carried out to get the final analysis state xa. S denotes the truncation
operator. Figure taken from Isaksen (2010).

Observation processing

Different observation processing steps are carried out before the observations are assim-

ilated. A thinning of the observations is conducted to avoid an oversampling of densely

observed areas and to minimise the occurrence of correlated observation errors. Afterwards

systematically erroneous or questionable data are excluded using a ‘blacklist’. The ‘black-

lists’ are updated on a regular basis several times a year. Data omitted by the thinning

and blacklisting steps are monitored passively during the assimilation procedure.
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A screening of the observations is performed prior to the main analysis. The difference

of the observations compared to the model background state, called background departure

(identical to the innovation vector (Eq. 2.6)), is computed. In the background quality

control check (BgQC) (Järvinen and Undèn, 1997) observations are rejected if the square

of their background departure exceeds its expected variance by more than a predefined

multiple α. For one scalar element d of the innovation vector d (ti), the observation gets

‘flagged’ by the BgQC if

∥d∥ > α
√
σ2
o + σ2

b . (2.8)

Different flags are assigned to different thresholds of α: flag 1 to probably correct ob-

servations, flag 2 to probably incorrect observations and flag 3 to incorrect observations.

Exemplary thresholds of α for humidity observations are α = 3 (flag 1), α = 4 (flag 2) and

α = 5 (flag 3). Only observations with flag 1 or without any flag are assimilated.

During the minimisation process, a variational quality control (VarQC) procedure (An-

dersson and Järvinen, 1999) is applied, where the cost function is modified by reducing

the weight of the observations with large innovations. The VarQC procedure does not ir-

revocably reject observations and the weight of observations can change between different

minimisation steps.

For a more detailed description of the ECMWF assimilation system and observation

processing see Rabier et al. (2000), Mahfouf and Rabier (2000), Klinker et al. (2000), and

Bauer et al. (2010).

Forecasting system

The ECMWF global atmospheric model is a hydrostatic model. Upper-air variables are

formulated spectrally based on spherical harmonics. Model forecasts used in this thesis are

computed at a spectral resolution of TL799. The atmosphere is divided into 91 vertical

levels (L91) from the ground up to 0.01 hPa. The vertical hybrid coordinate follows the

terrain in the lowest parts of the atmosphere where also the highest density of layers is

found and shows a smooth transition to levels identical to isobaric surfaces in the upper

troposphere and above. The general circulation model consists of three major components:

a dynamical part, a physical part and a coupled ocean wave part. Physical processes and

surface variables are considered on a reduced Gaussian grid. A parametrisation package is

included to model radiative transfer, turbulent mixing, subgrid-scale orographic drag, moist

convection, clouds, as well as surface and soil processes. Finally, a wave model is coupled

to the atmospheric model to correctly represent the interaction between atmosphere and

ocean. In the operational setup, a 10-day model forecast is initialised twice a day at

00 UTC and 12 UTC. Prognostic atmospheric model variables are wind, temperature,
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humidity, cloud fraction, cloud water content, cloud ice content, ozone mass mixing ratio,

and pressure at surface grid points. For more details on the ECMWF forecasting system

see Persson and Grazzini (2007).

2.3 Observation targeting

Observation targeting is the process of determining regions in which the assimilation of

additional observations is expected to maximally improve the forecast (Thorpe and Pe-

tersen, 2005). Those regions identified during the observation targeting process are called

target regions or sensitive regions, while the observations in those target regions are named

targeted or adaptive observations. Langland (2005a) stated that target regions should fulfil

three general conditions. First, a high probability for a large or a fast-growing analysis

error has to be present. Second, the analysis error has to be detectable by the additional

targeted observations, and third, the analysis error can be corrected by the assimilation of

targeted observations. After the reduction of the analysis error with targeted observations,

a subsequent reduction of the forecast error is expected.

A schematic sketch of the observations targeting concept is illustrated in Fig. 2.4. To

identify target regions, a forecast lead time and verification region have to be determined

first. By definition, the forecast error within the verification region is expected to be

reduced maximally at the defined forecast lead time by assimilating observations in sensitive

areas.

Several objective procedures based on different mathematical methods are able to iden-

tify target regions. The most widely-used techniques are adjoint or ensemble methods

which both include linear assumptions and assume that linear processes play an important

role for the propagation of the effect of targeted observations (Szunyogh et al., 2002). While

the adjoint-based SVs focus on finding analysis perturbations which represent fastest grow-

ing analysis errors in a tangent-linear framework (e.g. Buizza and Montani, 1999; Peng and

Reynolds, 2006), the ETKF uses a linear combination of ensemble forecasts to evaluate

the expected forecast error reduction resulting from a localised analysis error reduction

due to targeted observations (e.g. Bishop et al., 2001; Majumdar et al., 2002). Further,

adjoint-based calculations are used to compute the sensitivity of forecast errors to initial

conditions (e.g. Rabier et al., 1996; Pu et al., 1997), to identify the most valuable observa-

tions by estimating their impact on the forecast error (e.g. Langland and Baker, 2004) or

to determine the forecast sensitivity to dynamical structures in the initial conditions (Wu

et al., 2007b).

For the case selection of observation targeting, weather events of interest have to be

identified. Typical events are those that are expected to have a high impact on the society
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target area

verification area

time

Figure 2.4: Schematic illustration of the concept of observation targeting. The target area is
the region, where targeted observations (indicated as grey asterisks) are expected to be most
beneficial for the forecast within the verification region after a certain forecast lead time. Solid
lines mark possible streamlines representing the midlatitude flow.

and also exhibit considerable forecast uncertainty (e.g. indicated by increased ensemble

spread). To date, observation targeting has mainly been applied to forecasts of extratrop-

ical and tropical cyclones at lead times of 1-3 days.

Observation targeting in midlatitudes was first discussed publicly at a workshop in

1995 (Snyder, 1996) and has been introduced and tested in a number of field experiments.

The first one was the 1997 Fronts and Atlantic Storm-Track Experiment (FASTEX; Joly

et al., 1999) followed by the NORth-Pacific Experiment (NORPEX; Langland et al., 1999).

These experiments lead to the Winter Storm Reconnaissance (WSR) field programme with

experiments in 1999 and 2000 (Szunyogh et al., 2000, 2002). WSR 1999 and WSR 2000

demonstrated that targeted observations, dropsondes in this case, are a practical way

to improved severe winter storm forecasts over the continental United States (Szunyogh

et al., 2002). Based on these findings the WSR programme was implemented operationally

in 2001. Within the framework of THORPEX, a series of regional campaigns such as the

Atlantic THORPEX Regional Campaign (A-TReC) in 2003 (Langland, 2005b; Petersen

and Thorpe, 2007) and E-TReC in 2007 were performed which addressed various issues of

observation targeting (Rabier et al., 2008).

The potential of adaptive observations for TCs was tested first in 1982, when the NOAA

Hurricane Research Division sent out aircraft to enhance the number of observations in

the environment of a hurricane threatening the United States (Burpee et al., 1984). A

large area around the storm was defined as target region and no specific sensitive area
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calculations were applied. Until 1996, 20 mission were conducted and the deployed addi-

tional observations lead to 16-30% improvements of the official hurricane track forecasts

(Burpee et al., 1996). From 1997, operational surveillance flights were carried out to de-

ploy targeted observations whenever hurricanes were threatening the continental United

States, Puerto Rico, and the Virgin Islands (Aberson and Franklin, 1999). Based on the

significant track forecast improvements (10-15% within the critical watch and warning pe-

riod before landfall) during the first 10 years of the surveillance flights (Aberson, 2010),

the programme is still continuing. Motivated by the positive results found for Atlantic

TCs, a similar operational surveillance programme called DOTSTAR was established for

the western North Pacific in 2003 to collect targeted observations whenever TCs threaten

Taiwan (Wu et al., 2005). The implementation of DOTSTAR led to a 10-20% reduction of

the mean 12-120 hour track forecast error of the NCEP GFS model in the years 2003-2009

(Wu et al., 2007b; Chou et al., 2010). The combination of DOTSTAR and T-PARC in

2008 made it possible to perform a large number of observation targeting flights in the

western North Pacific for TCs as well as for the ET of TCs which can have a major effect

on the forecast error downstream over the United States.

Dropsondes launched from aircraft within target regions have been the classical, most

widely-used type of targeted observations during the last years. However, observation

targeting can also be applied to the operational observing network to optimise the use of

already available observations and select the most valuable data. Studies based on this

concept especially aim at to optimise the use of extensive satellite data sets. To date, a

large quantity of satellite observations are discarded because of computational constraints.

Possible options for the optimal selection of satellite data are to increase the sampling

frequency of satellite observations within target regions (Dando et al., 2007; Bauer et al.,

2011), to adjust the channel selection of satellite instruments (Fourrié and Rabier, 2004) or

to increase the temporal resolution of wind observations derived from atmospheric motion

vectors (AMVs) (Velden et al., 2005; Langland et al., 2009).

In theory, the concept of observation targeting is ideal in a way that forecast errors can

be reduced by collecting a small number of extra observations in specified regions. In prac-

tice however, there are limitations to the observation targeting process and several issues

emerged in recent years (Langland, 2005a). Langland (2005a) pointed out that observation

targeting leads to an average improvement of the forecast quality and single cases where

targeted observations deteriorate the forecast quality can also occur. In an idealised study,

Morss and Emanuel (2002) discussed that a forecast degradation from additional assim-

ilated observations can never be excluded in statistical data assimilation and nonlinear

prediction. In fact, the results of observation targeting are crucially depending on the data

assimilation system (Bergot, 2001). The low frequency of high impact weather events ad-
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dressed by targeted observations limits the number of cases studied which complicates the

significance of general conclusions. Additionally, the evaluation of forecasts of high impact

weather events with traditional grid-point verification scores does not provide complete

information about the forecast quality, especially of small-scale varying variables such as

precipitation or surface wind gusts, and new forecast verification approaches are introduced

to address this problem (Gilleland et al., 2010). The process of defining target regions is

also not faultless. During the calculation of sensitive areas, which is based on imperfect

models, linear assumptions are applied and in many targeting cases no general consensus

can be found between different sensitive area calculations. Operational constraints pose

another hurdle since target regions usually have to be defined in advance to the proposed

deployment of targeted observations and it is often not possible to fully sample spatially

extended sensitive areas with targeted observations deployed by aircraft, which may limit

possible forecast improvements (e.g. Aberson, 2003).

2.4 Observing system experiments

OSEs, also called data denial experiments, are an important tool to evaluate the impact of

existing observations of the GOS (e.g. Bouttier and Kelly, 2001; Kelly et al., 2007), new

types of observations (e.g. Weissmann and Cardinali, 2007) or targeted observations (e.g.

Irvine et al., 2009) on the analysis and forecast performance of NWP models. OSEs are

usually performed retrospectively, but are generally carried out with the operational version

of the NWP model. The interaction between the operational data assimilation scheme and

the available observing network can be investigated in OSEs. Long sample periods from

different seasons are ideal to get statistically significant results. Disadvantages of OSEs

are that the retrospective experiments need considerable computing resources and results

might be obsolete once the model system or operational observing network has changed.

In OSEs, at least two model runs are compared which only differ by the observations

used for the data assimilation. One or more experiments are performed that either remove

observations from the operational observing network to assess the assimilation system and

the value of the removed observations or add observations to evaluate the enhancement

to the operational observing network by the additional observations. These experiments

are either compared to the operational model run, or a reference experiment with all

operational observations (as in this study). The comparison to a reference experiment

avoid differences that arise from small differences in the setup of the operational run and

the retrospective experiments. The experiments on adaptive observations in this study

assimilate the operational observations plus the set of targeted observations (Fig. 2.5).

Initially, experiments use the same background information, data assimilation system and
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forecast model. This guarantees that the difference, also referred to as ‘data signal’ or

‘data impact’, between the analysis (forecast) and the reference analysis (forecast) is only

due to the assimilated additional observations.

operational 

observations

+ additional 

observations

background
data 

assimilation

forecastanalysis

reference 

analysis

reference

forecast

forecast 

model

operational 

observations

next assimilation cycle

Figure 2.5: Schematic diagram of the setup of OSEs. In the cycled mode the background
information for successive assimilation cycles is provided by the short-term forecast including
additional observations. The background information in the uncycled mode is identical for the
different experiments at successive assimilation cycles.

OSEs can be conducted in an uncycled or cycled mode (Fig. 2.5). If they are cycled, the

information of the additional observations modifies a sequence of analyses since the back-

ground information of the following assimilation cycle is provided by the forecast initialised

with the additional observations. By this procedure, information of additional observations

is transported to subsequent analysis times, which is likely to increase the forecast impact

of the additional observations if longer sample periods are evaluated. A cycled experiment

reproduce the impact that additional observations would have in an operational frame-

work. However, it is often impossible to trace the impact of the additional observations

in detail as the ‘data signal’ at a certain time is caused by the extra observations at this

time and the different background information. To evaluate the influence of the additional

observations in detail, OSEs have to be performed uncycled, which means that they use

the same background information which is generally provided by the reference run.

Forecast verification

Different verification metrics are used to evaluate the forecast impact of adaptive observa-

tions in OSEs. For the forecast verification, a best estimate of the truth has to be defined

which can either be derived from observations or model analyses. The advantage of ver-

ifying against observations is that the observations are independent of the NWP model.
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However, observations are often of limited density and are not uniformly distributed. Thus,

the model analysis is often used to verify forecasts since it provides the best estimate of

the full atmospheric state.

Model analyses often show TC position errors larger than 25 km. Hence, all forecasts

of TCs are verified against the JMA best track data. The best track data of TCs in the

western North Pacific and the South China Sea are issued retrospectively by the Regional

Specialized Meteorological Center (RSMC) Tokyo and provide information of the centre

position, the central pressure and the maximum sustained wind speed for every single

TC. These data are assigned based on the analysis of various meteorological observations

such as surface observations from ships and buoys, geostationary meteorological satellite

images, scatterometer surface winds, etc. The ECMWF TC model forecasts are evaluated

in 12-hourly time steps for all times when the TC is classified as tropical storm or stronger

in the JMA best track data and the TC is at least predicted by the model for the next 36

hours. For a statistical interpretation of the results, a Student’s t-test for the difference of

mean track forecast errors between experiments is calculated.

The TC position of the model is computed by searching for the sub-grid minimum of

mean sea level pressure (MSLP) in the western North Pacific domain. The definition of the

TC position as minimum MSLP shows no significant differences compared to the result of

the operational ECMWF TC tracker algorithm (Van der Grijn et al., 2005). In general, the

TC position definition by MSLP is reliable over the ocean, but can lead to errors when the

TC reaches the complex orography of Taiwan with mountains up to 4000 m. In order to

minimise the interference of model fields with the topography of Taiwan, the minimum of

the geopotential height at 700 hPa instead of the MSLP is used to define the TC position

when the model forecasts place the TC over Taiwan. This approach is confirmed by the

visual interpretation of model fields.

Midlatitude forecasts of OSEs assimilating DIAL humidity observations are verified

against ECMWF model analysis and evaluated in terms of total energy. Total energy

is an integrated measure of the forecast error and includes information of wind (u,v),

temperature (T) and specific humidity (q) at multiple levels. The total energy (TE) error

[m2 s−2] of the forecast is defined as

TEF−A =
1

2

[
(uF − uA)

2 + (vF − vA)
2]+ 1

2

cp
Tref

(TF − TA)
2 +

1

2

L2

cpTref

(qF − qA)
2 , (2.9)

similar to the energy norm used in Ehrendorfer et al. (1999) with a reference temperature

(Tref = 300 K), the specific heat at constant pressure (cp = 1004.7 J kg−1 K−1) and the

latent heat of condensation (L = 2.51·106 J kg−1). The subscript F denotes the forecast

and the subscript A the analysis fields. The calculation of TEF−A is done at 850, 500 and
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250 hPa, and the results summed.

2.5 T-PARC observations

The summer phase of T-PARC and the collaborative Tropical Cyclone Structure (TCS08)

field experiment (Elsberry and Harr, 2008) took place in the western North Pacific basin

from August to October 2008. The aims were to increase the understanding of TC forma-

tion, intensification, structure change and extratropical transition, as well as to improve

the forecast skill of TCs. Different research aircraft, the United States Air Force WC-130,

the Naval Research Laboratory (NRL) P-3, and the DLR Falcon 20, were operated within

T-PARC. Those aircraft were supplemented by the Taiwanese Astra Jet operated under the

research programme DOTSTAR, an operational surveillance programme to deploy drop-

sonde observations in the environment of TCs that pose a threat to the Taiwanese island

(Wu et al., 2005, 2007b). Altogether, up to four aircraft with dropsonde systems were

simultaneously available and spent more than 500 flight hours. In addition to the aircraft,

driftsonde gondolas were launched on Hawaii. The gondolas released dropsondes while they

were drifting westwards towards Asia in the lower stratosphere. JMA conducted additional

radiosonde soundings (TEMPs) and in-situ synoptic observations (SYNOPs) from research

vessels and ground stations. Further, extra observations of MTSAT-21 rapid scan AMVs

were produced by JMA’s meteorological satellite centre.

Four typhoon systems were investigated during the campaign (Fig. 2.6). Two storms,

Nuri and Hagupit, traveled straight to the west without making recurvature. They both

passed by the northern end of Luzon, Philippines, before they moved on and made landfall

on the southeastern Chinese coast next to Hong Kong (Nuri) and further west next to

Maoming, China (Hagupit). The two other storms, Sinlaku and Jangmi, developed east

of the Philippines, headed northwestward and made landfall on Taiwan. They recurved

and moved to the northeast. While Jangmi weakened and dissipated to the southwest of

Japan, Sinlaku intensified again after recurvature and passed by south of Japan before

the system underwent ET. Both, Sinlaku and Jangmi, were observed frequently by all

four aircraft. For the first time, systematic observations targeted on TCs during the full

life cycle of a storm from the genesis in tropical waters throughout the northwestward

movement, recurvature and ET were conducted in the western North Pacific basin.

Sensitive area calculations of several targeting techniques were available for evalua-

tion and comparison of targeting strategies. For the planning of targeted observations,

the EURORISK PREVIEW Data Targeting System (DTS2) was applied during the cam-

1Multi-functional transport satellite-2
2http://www.ecmwf.int/research/WMO projects/TPARC/DTS for TPARC.pdf
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00 UTC 18 Aug − 12 UTC 22 Aug: Nuri
00 UTC 09 Sep − 12 UTC 20 Sep: Sinlaku
12 UTC 19 Sep − 12 UTC 24 Sep: Hagupit
12 UTC 24 Sep − 12 UTC 30 Sep: Jangmi

Figure 2.6: JMA best track data of observed typhoons during T-PARC 2008: Nuri (green
rectangles), Sinlaku (red squares), Hagupit (grey downward-pointing triangles) and Jangmi (blue
upward-pointing triangles). The markers indicate the position of the typhoons at 00 UTC and
12 UTC for the period the storms reached at least tropical storm intensity.

paign. DTS is an interactive web-based system that allows specified users to identify

and propose targeting cases and to request sensitive area calculations for selected cases

based on SV calculations of the ECMWF model and ETKF calculations of a multimodel

(NCEP/ECMWF/CMC) and the United KingdomMet Office (UKMO) ensemble. Further,

SV- and ETKF-based sensitive area calculations from several institutions (e.g. JMA, Na-

tional Taiwan University, University of Washington, University of Yonsei) were accessible

via the DTS.

An example of targeting guidance for Typhoon Sinlaku by six different methods valid

for targeted observations at 00 UTC 11 Sept 2008 is shown in Fig. 2.7. ETKF-based

calculations (Figs. 2.7 c,e) placed sensitive areas close to the centre of the storm, while

singular vectors and the ADSSV rather pointed to regions to the north and east of Sinlaku.

In addition, upstream regions over China were indicated to be sensitive by ECMWF and

NOGAPS SVs.

The infrastructure of T-PARC with multiple aircraft available, made it possible to

sample different sensitive areas highlighted by different targeting techniques. Figure 2.8

shows the flight tracks of the joint mission that incorporated the targeting guidance for

Typhoon Sinlaku (Fig. 2.7). All flights were performed within 24 hours between 2000 UTC
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Figure 2.7: Overview of targeting guidance by different methods: (a) ECMWF SV, (b) NO-
GAPS SV, (c) multimodel (NCEP/ECMWF/CMC) ETKF, (d) JMA SV, (e) UKMO ETKF and
(f) MM5 ADSSV.

10 Sept and 1828 UTC 11 Sept 2008. The DOTSTAR flight strategy was to circumnavigate

the TC and provide observations all around the storm with higher dropsonde coverage in

sensitive regions. The DLR Falcon stayed further away from the TC and sampled sensitive
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Figure 2.8: Flight tracks of the four aircraft joint mission for Typhoon Sinlaku: WC-130 (blue;
0728-1828 UTC 11 Sept 2008), NRL P-3 (yellow; 2019 UTC 10 Sept - 0602 UTC 11 Sept 2008),
DOTSTAR astra jet (black; 2043 UTC 10 Sept - 0242 UTC 11 Sept 2008) and DLR Falcon (red;
0320-1220 UTC 11 Sept 2008). Enhanced MTSAT IR imagery valid at 1030 UTC 11 Sept 2008
provided by NCAR/EOL3.

regions to the north and east of the system. While the WC-130 covered the typhoon centre

and penetrated the core and eye wall of Sinlaku, the NRL P-3 observed rainbands to the

east of Sinlaku.

The DLR Falcon 20 aircraft was based in Atsugi, Japan and performed 25 research

flights spending 93 flight hours in the period from 26 Aug 2008 to 01 Oct 2008. The payload

of the Falcon, shown in Fig. 2.9, consists of three observational platforms: a dropsonde

system, a water vapour DIAL system and a Doppler wind lidar. This unique setup provides

the possibility to observe collocated water vapour and wind profiles from in-situ and remote

sensing instruments. In addition to T-PARC observations (dropsondes, extra TEMPs and

3National Center for Atmospheric Research/Earth Observing Laboratory
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SYNOPs) that were provided to the GOS via the Global Telecommunication System (GTS)

in real-time, DIAL humidity observations sampled by the DLR Falcon are analysed in this

thesis. The Doppler wind lidar observations sampled during T-PARC are evaluated in

Weissmann et al. (2011).

Figure 2.9: The DLR Falcon 20 research aircraft and its instrumentation during T-PARC.
Picture provided by Minoru Toyoshima.

2.6 Dropsonde system

The Global Position System (GPS) dropsonde was developed at NCAR (Hock and Franklin,

1999) and is produced by Vaisala. During the summer phase of T-PARC about 1500

dropsondes of the type Vaisala RD-934 were launched from four aircraft.

The NCAR GPS dropsonde consists of a module containing pressure, temperature and

humidity sensors, a GPS receiver module to determine wind from the dropsonde shift and a

400 MHz telemetry transmitter which transfers data from the sonde to a receiving system,

which for example is installed on-board of an aircraft (Hock and Franklin, 1999). Data are

transmitted continuously from the launch of the dropsonde until it hits the ocean surface.

The dropsonde is attached to a small parachute and the overall descent rate is approxi-

mately 11 m s−1. Measurements are performed with 2 Hz temporal resolution, which yields

a vertical resolution of temperature, pressure, humidity and wind profiles ranging from 5

4http://br.vaisala.com/files/RD93 Dropsonde Datasheet in English.pdf
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to 10 m (Wang et al., 2010). Dropsonde data profiles are carefully quality-controlled using

several post-processing methods including an automatic sounding quality-control software

called Atmospheric Sounding Processing Environment (ASPEN5). For example, ASPEN

calculates the height of the dropsonde observations by integrating upwards from the point

where the dropsonde hits the surface.

range resolution accuracy response time

pressure 3 - 1080 hPa 0.1 hPa 0.4 hPa
temperature -90 to +60 ◦C 0.1 ◦C 0.2 ◦C < 2 s
humidity 0 - 100% 1% 2% < 0.5 s at +20 ◦C

< 20 s at -40 ◦C
wind 0 - 200 m s−1 0.1 m s−1 0.5 m s−1 RMS

Table 2.1: Vaisala RD-93 specifications for dropsonde measurement errors. Accuracy refers to
the standard deviation of differences between two successive repeated calibrations. RMS stands
for root mean square. Response time is valid at 6 m s−1 descent rate and 1000 hPa. Numbers
adapted from Vaisala4.

Quality-controlled dropsonde data can be sent out to the GTS directly from the aircraft

to be available as part of the GOS. Dropsondes provide accurate observations of pressure,

temperature, humidity and wind (Tab. 2.1), that are assimilated operationally in NWP

models if available. From the FASTEX campaign in 1997 onwards, GPS dropsondes were

frequently applied during field campaigns and dropsonde observations were used for OSEs

and targeting studies (e.g. Montani et al., 1999; Szunyogh et al., 2002; Petersen and

Thorpe, 2007; Irvine et al., 2009). Additionally, in-situ dropsonde observation profiles

were applied to study the vertical distribution of different atmospheric variables such as

water vapour (e.g. Zhang et al., 2003; Wang, 2005; Wang et al., 2010).

2.7 Differential absorption lidar

2.7.1 Basic principles

The active remote sensing technique of a DIAL can be used to measure the concentration of

various atmospheric trace gases such as water vapour, ozone, carbon dioxide, methane, etc.

(Ehret et al., 1999; Gimmestad, 2005; Bösenberg, 2005). A DIAL system emits spectrally

narrow (∼0.1 GHz) and short (several ns) laser pulses at two distinct wavelengths, an

on-line wavelength which is placed at an absorption line of the trace gas of interest and an

5http://www.eol.ucar.edu/isf/facilities/software/aspen/aspen.html
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off-line wavelength at a nearby non-absorbing wavelength. The concentration of the trace

gas can be derived from the intensity difference of the backscatter signal received at the

two wavelengths.

The basic equation when dealing with lidar systems is the so-called lidar equation

(Wandinger, 2005) which describes the backscattered power P of an emitted laser signal

as a function of the wavelength λ and the distance r to the scattering volume:

P (r, λ) = P0 ·
cτ

2
· A · η · 1

r2
· β (r, λ) · T 2 (r, λ) . (2.10)

P0 is the power of the emitted laser signal, c the speed of light, τ the duration of the laser

pulse, A the area of the telescope, η the overall system efficiency and β the backscatter

coefficient consisting of the Rayleigh backscatter by air molecules and the Mie backscatter

by clouds and aerosols. The atmospheric transmission T has to be calculated for the two

way path from the source of the laser signal to the scattering volume and back. The

Lambert-Beer-Bouguer law gives the relationship between the atmospheric transmission

from the location of the laser to the distance or range r and the atmospheric extinction

coefficient α (Wandinger, 2005):

T (r, λ) = exp
[
−
∫ r

0

α (r′, λ) dr′
]
. (2.11)

The atmospheric extinction coefficient α as function of the wavelength λ and range r is

α (r, λ) = σ
(
p (r) , T (r) , λ

)
· n (r) + αmol (r, λ) + αaer (r, λ) (2.12)

with the molecular number density of the trace gas n [m−3], its molecular absorption

cross section σ, the extinction due to air molecules αmol and due to aerosols and clouds

αaer (Kiemle, 2008). The molecular absorption cross section σ is also dependent on the

temperature (T) and the pressure (p) which both can vary with the range r. If the on-

and off-line wavelength separation is small (∼1 nm), it can be assumed that the difference

∆α of the atmospheric extinction coefficients at the on- and off-line wavelength is only due

to the difference in the absorption cross sections of the trace gas at the two wavelengths

(Gimmestad, 2005). This difference ∆α can be written as

∆α (r) = ∆σ (r) · n (r) = [σ (r, λon)− σ (r, λoff )] · n (r) . (2.13)

The small wavelength separation also allows the assumption of identical backscatter co-

efficients β for the on- and off-line wavelengths so that the molecular number density of

the trace gas n can be calculated from the ratio of the backscattered power (Eq. 2.10)
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P (r, λoff ) /P (r, λon) at the two wavelengths:

n (r) =
1

2∆σ (r)

δ

δr
ln
[P (r, λoff )

P (r, λon)

]
. (2.14)

Equation 2.14 is the DIAL equation (Gimmestad, 2005) written in its differential form.

The differential absorption cross section ∆σ is an important part in the DIAL equation. A

typical molecular absorption line shape with the choice of DIAL on- and off-line wavelength

is shown in Fig. 2.10. Note that the absorption line shape may change with temperature

and pressure.

Figure 2.10: Sketch of the molecular absorption cross section as function of the wavelength.

Given a finite range resolution ∆r of the laser signal, the DIAL equation (Eq. 2.14) can

be converted to

n (r +∆r) =
1

2∆σ (r)

1

∆r
ln
[P (r +∆r, λoff )

P (r, λoff )

P (r, λon)

P (r +∆r, λon)

]
, (2.15)

with the average molecular number density n within the scattering volume between r and

r + ∆r (Gimmestad, 2005). To derive the number density of the measured trace gas n

from the DIAL equation, no system constants of the lidar are required and no calibration

of the measured signals has to be carried out.

A balance between atmospheric extinction and return signal power should be achieved

when the absorption line strength and the on-line wavelength are selected (Kiemle, 2008)

since the extinction of the on-line signal is linearly proportional to the concentration n

of the measured trace gas and its absorption cross section σ (Eq. 2.12). If the extinction

of the on-line wavelength is very large, the signal is attenuated strongly which limits the

measurement range. However, if the absorption is too weak or the finite range interval

∆r too small, the difference between on- and off-line wavelength signal is too small and
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dominated by noise (Eq. 2.15). To achieve a large range and simultaneously measure range-

dependent concentrations of the trace gas of interest accurately, further on-line wavelengths

can be added. Each of the on-line wavelengths is tuned to differently strong absorption

lines which optimises the balance between atmospheric extinction and return signal for

different range intervals and trace gas concentrations.

The DIAL equation is derived under the condition that the system parameters are iden-

tical for the on- and off-line wavelengths, which requires a proper design of the components

of the DIAL system (Kiemle, 2008). The laser has to be stable and spectrally narrow as the

on-line wavelength should be at least one order of magnitude narrower than the absorption

line. Additionally, the on- and off-line wavelengths need to be close enough (less than

1 nm separation) and no other trace gas should have an absorption line at the considered

wavelengths so that the assumption of similar backscatter and extinction properties by air

molecules and aerosols of on- and off-line wavelength is valid.

More details of the DIAL technique can be found in Ismail and Browell (1989),

Bösenberg (1998), Gimmestad (2005), Bösenberg (2005) and Kiemle (2008).

2.7.2 Airborne WALES demonstrator

The WALES demonstrator (Wirth et al., 2009) is an airborne four-wavelength water vapour

DIAL system and was installed on-board of the DLR falcon during T-PARC (Fig. 2.9).

The first observations with the nadir-pointing WALES demonstrator were collected during

COPS and E-TReC in 2007 and were analysed in an intercomparison study of ECMWF

model fields and DIAL humidity observations (Schäfler et al., 2011a).

The WALES demonstrator uses two additional on-line wavelengths to enable a simul-

taneous coverage of measurements over the whole troposphere with high accuracy (Wirth

et al., 2009). The three on-line and one off-line wavelengths are located within 0.6 nm

in the 935 nm water vapour absorption band. There are different systematic and statisti-

cal error sources that can affect the DIAL observations (Poberaj et al., 2002). Statistical

errors that may result from detection noise or low signal-to-noise ratios can be reduced

by averaging the raw signals before applying the DIAL equation. Systematic errors may

originate from uncertainties related to the water vapour absorption line parameters, the

temperature dependency of the absorption cross section, the spectral purity of the laser

and the stability of the on-line wavelength. Uncertainties in the temperature along the

measured water vapour profile may introduce additional systematic errors since the ab-

sorption cross section is also a function of temperature. However, it was shown that the

error of the humidity observations can be expected to be less than 5-7% (Kiemle et al.,

2007; Bhawar et al., 2011).
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The nadir-pointing WALES demonstrator provides observations at a high spatial res-

olution. The horizontal resolution depends on the averaging interval of the profiles and

the speed of the aircraft. For the T-PARC data set the averaging interval was 30 seconds

which leads to a horizontal resolution of 5-7 km. In the vertical, the raw data are processed

with a resolution of 15 m, but for the humidity retrieval the resolution ∆r needs to be

reduced to at least 290 m to fulfil precision requirements for data assimilation and provide

vertically uncorrelated observations. The DIAL instrument is sensitive to clouds and can

not penetrate optically thick clouds or rain, which reduces the observational coverage in

cloudy areas. Simultaneously conducted atmospheric backscatter measurements were used

to determine lidar signals that were contaminated by clouds. Strict threshold were applied

to those signals and all DIAL observations below clouds were generally omitted to provide

accurate observations.
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Chapter 3

The influence of adaptive dropsonde

observations on ECMWF typhoon

track forecasts

3.1 Introduction

The influence of adaptive T-PARC observations on ECMWF typhoon track forecasts dur-

ing the two major typhoon events, Sinlaku and Jangmi, is evaluated in the following chapter

by conducting OSEs. Dropsondes released from the different aircraft or driftsonde gondo-

las, extra TEMPs and SYNOPs from JMA research vessels are considered as additional

T-PARC observations.

Figure 3.1 shows the location of all T-PARC soundings that are used for the OSEs.

During the lifetime of Sinlaku and Jangmi, 481 and 224 extra soundings were deployed,

respectively. Aircraft missions for Typhoon Sinlaku and Jangmi were performed during the

whole life cycle of these storms from early stages in the tropics throughout their recurvature

and ET. Dropsondes released by the WC-130 aircraft in the typhoon core and centre were

also assimilated in the OSEs.

The setup of the performed experiments is described in section 3.2. The results of

influence of T-PARC observations on typhoon track forecasts are presented in section 3.3

and the importance of a correct observation time is highlighted in section 3.4. A discussion

and summary are given in section 3.4.
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Figure 3.1: JMA best track data of (a) Typhoon Sinlaku and (b) Typhoon Jangmi with T-
PARC dropsonde and TEMP locations for the respective storms. Rectangles (triangles) on the
best track show the position of Sinlaku and Jangmi at 00 UTC (12 UTC) starting on 00 UTC
09 Sept 2008 and 12 UTC 24 Sept 2008, respectively. Black symbols indicate typhoon intensity
and grey symbols tropical or severe tropical storm intensity.

3.2 Experimental design

OSEs were performed using the spring 2009 version of the ECMWF modelling system

(cycle 35r2). The horizontal resolution of the experiments was TL799 (∼25 km) and 91

vertical levels were used. Weakened constraints for the BgQC of dropsondes, which are

operationally applied to a region up to 30◦N to avoid very high rejection rates within

and near TCs, were extended up to 40◦N, because of the re-intensification of Sinlaku near

of 30◦N. In practice, the BgQC for dropsondes was inactive in this region. During the

assimilation, the VarQC procedure is applied which modifies the cost function by reducing

the weight of observations with large innovations.

Three different experiments were performed. A control experiment (NoObs) without

T-PARC observations (western North Pacific basin dropsondes, extra ship SYNOPs and

TEMPs) was carried out and serves as reference. The second experiment (DROP) assimi-

lated all adaptive T-PARC observations (Fig. 3.1). DROP was conducted in a cycled mode

and the background information used in the assimilation system was provided by the short-

term forecast of DROP (see also section 2.4). Both NoObs and DROP covered the period

between 09 Sept 2008 and 01 Oct 2008. Additionally, a third experiment DROP UnCy
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was performed for all times without cycling when adaptive observations were available.

The background information in DROP UnCy was provided by of the short-term forecast

of the control experiment NoObs. The clear majority of assimilated adaptive T-PARC ob-

servations in DROP and DROP UnCy consisted of airborne dropsondes (Fig. 3.1). Hence,

the influence of all adaptive observations is abbreviated with ‘dropsonde influence’ even if

some extra TEMP and SYNOP observations are included.

3.3 Results

Typhoon track forecast are verified against the JMA best track data. Track forecasts are

evaluated in 12-hourly time steps for all times when the storm system is classified as trop-

ical storm or stronger in the JMA best track data and the forecast time of the storm in

the model is at least 36 hours long. As Typhoon Sinlaku is classified as tropical storm

until 12 UTC 20 Sept, all forecasts between 00 UTC 09 Sept and 00 UTC 19 Sept 2008

are used. Typhoon Jangmi reached tropical storm intensity between 12 UTC 24 Sept and

21 UTC 30 Sept 2008, and forecasts initialised until 00 UTC 29 Sept are evaluated. A sec-

ondary low in the model forecast affects the position calculation of Jangmi fromMSLP fields

when Typhoon Jangmi was located directly over Taiwan at 12 UTC 28 Sept 2008 (com-

pare Fig. 3.1). Thus, the minimum of the geopotential height at 700 hPa is used instead

of MSLP for the forecasts initialised between 00 UTC 26 Sept and 00 UTC 28 Sept 2008.

For a statistical evaluation of the results, the statistical significance at 90 and 95% confi-

dence level of the mean track forecast error difference between the different experiments is

calculated using a Student’s T test.

Figure 3.2a shows the mean track forecast errors of the Typhoons Sinlaku and Jangmi.

Until forecast lead times of +72 h, the difference between the track errors of DROP and

NoObs is very small and both experiments have a mean track error of about 220 km at

+72 h. The track errors start to differ at longer forecast lead times and DROP shows

continuously smaller mean track errors compared to NoObs between +84 h and +120 h.

The mean track forecast error is reduced from approximately 620 km to 480 km at +120 h

due to the assimilation of adaptive T-PARC observations, which is an improvement of

22.4% (Tab. 3.1). The improvements at longer forecast lead times (≥ +96 h) are statistical

significant at 95% confidence level.

The scatter plot of the track errors (Fig. 3.2b) illustrates that if track forecast errors

are smaller than 200 km, the mean errors are similar for DROP and NoObs as the black

symbols are located close to the diagonal. The single cases show a large variability and

improved and deteriorated cases are identified as symbols are distributed in equal parts

above or below the diagonal. Track errors for long forecast lead times (≥ +72 h) are
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Figure 3.2: (a) Mean track forecast errors for DROP (dashed) and NoObs (solid). Mean
track errors are computed for all forecast times of Typhoon Sinlaku (00 UTC 09 Sept -
00 UTC 19 Sept 2008) and Typhoon Jangmi (12 UTC 24 Sept - 00 UTC 29 Sept 2008) and
are verified against the JMA best track data before 12 UTC 20 Sept and 12 UTC 30 Sept, re-
spectively. Black dots represent the number of cases evaluated at each forecast lead time. Empty
(filled) triangles highlight times when mean track differences are significant at 90% (95%) confi-
dence level. In (b) the track forecast error of DROP is plotted against the error of NoObs for all
analysed 31 cases. Errors at different forecast lead times are displayed by different grey symbols
and mean errors are shown as black filled symbols. Values below the diagonal (solid line) indi-
cate that errors in DROP are smaller than in NoObs. The dashed grey line represents a linear
regression fit.

predominantly larger than 200 km and show an increased spread with a higher percentage

located below the diagonal equivalent to a reduction of the track forecast errors in the

DROP experiment. On average, the track errors are smaller in DROP but there are single

cases with larger track errors. However, errors of those deteriorating cases are closer to the

diagonal than the errors of improving cases.

The mean track forecast errors for Typhoon Sinlaku and Typhoon Jangmi, respectively,

are displayed in Fig. 3.3. The result for Sinlaku (Fig. 3.3a) is comparable to the result

for the whole period including both storms (Fig. 3.2a), but smaller track forecast errors

of DROP are found already at shorter forecast lead times (≥ +48 h). The improvements

of DROP are significant at 95% confidence level from +84 h onwards. A different result

is seen for Typhoon Jangmi (Fig. 3.3b) where mean track forecast errors of DROP and

NoObs are similar and no clear improvement from the additional observations is found.

Between +60 h and +84 h, an increase of the track error of DROP is seen that is significant

at +60 h. Mean track errors of NoObs are smaller for Jangmi compared to Sinlaku which

may be one of the reasons for the low impact of dropsondes. Furthermore, the number of

available Jangmi forecasts decreases after +36 h and only less than five cases are averaged
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after +84 h, which leads to lower significance of the results.
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Figure 3.3: As in Fig. 3.2a, but valid for (a) Typhoon Sinlaku (00 UTC 09 Sept - 00 UTC 19 Sept
2008) and (b) Typhoon Jangmi (12 UTC 24 Sept - 00 UTC 29 Sept 2008).

Table 3.1 summarises the mean track error reduction of DROP compared to NoObs

for Sinlaku and Jangmi. The mean track forecast errors for the entire period with both

typhoon events are reduced for forecast lead times of more than +48 h. The forecast error

reduction due to the assimilation of adaptive T-PARC dropsonde observations is larger

than 20% at +96 h and +120 h. While the overall improvements for the whole period

are strongly influenced by larger improvements during Sinlaku, improved and deteriorated

forecasts alternate for Jangmi at different lead times.

+24 hours +48 hours +72 hours +96 hours +120 hours

Sinlaku & Jangmi 5.9 -5.7 -1.7 -21.7 -22.4
Sinlaku 2.1 -7.1 -9.5 -23.7 -24.5
Jangmi 15.7 -1.8 19.9 -5.9 -9.7

Table 3.1: Mean track forecast error reduction (%) for the Typhoons Sinlaku and Jangmi.
Positive (italic) numbers indicate when a degradation of the mean track forecast error of DROP
compared to NoObs is obtained.

The main improvements of the track forecast errors for Typhoon Sinlaku are achieved

at the early phase of the typhoon before landfall on 14 Sept 2008 (Fig. 3.4a). Shortly

after landfall, Sinlaku reaches its easternmost position and recurves later the same day. In

the period before landfall, track forecast errors are smaller in DROP from +60 h onwards,

statistically significant from +72 h onwards. Errors of DROP and NoObs are similar after
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landfall and recurvature, respectively (Fig. 3.4b). The number of cases with longer forecast

lead times is reduced as track forecasts of Sinlaku are only evaluated until 12 UTC 20 Sept

2008.
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Figure 3.4: As in Fig. 3.2a, but valid for Typhoon Sinlaku (a) before landfall (00 UTC 09 Sept
- 00 UTC 14 Sept 2008) and (b) after landfall (12 UTC 14 Sept - 00 UTC 19 Sept 2008).

Improvements found for the whole period of Sinlaku and Jangmi are considerably influ-

enced by the large improvements found during the early phase of Sinlaku. At this phase,

large uncertainties of track forecasts are related to the landfall on Taiwan and recurvature

scenario of the system as identified from the spread in the operational ECMWF ensemble

prediction system (EPS) (Fig. 3.5a). The increased spread of the EPS suggests that the

track forecasts are sensitive to changes in the initial condition in the TC environment. The

assimilation of additional T-PARC observations affects the track forecast and the landfall

and recurvature scenario is predicted more accurate compared to the reference experiment.

After landfall and recurvature of Sinlaku, the EPS uncertainty in the track forecasts is

reduced (Fig. 3.5b) as all member of the ECMWF EPS predict a similar northeastward

movement of Sinlaku. The lower influence of the additional TC observations during this

stage is likely related to smaller forecast errors and the higher importance of the midlatitude

flow.

In contrast to the cycled experiment DROP, the uncycled experiment DROP UnCy

shows little improvement compared to NoObs (Fig. 3.6). Note that the number of evaluated

cases is reduced since only those times are considered when extra observations are available.

This different sample of cases also leads to slightly different results for DROP and NoObs

(compare Fig. 3.2a). The comparably low improvement of DROP UnCy implies that the

information of the observations transported via the background in DROP provides valuable

information which has a positive influence on the forecasts even on days when no adaptive
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Figure 3.5: Strike probability map of Typhoon Sinlaku produced by the operational ECMWF
EPS valid on (a) 00 UTC 09 Sept 2008 and (b) 00 UTC 15 Sept 2008.1

observations are assimilated.
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Figure 3.6: As in Fig. 3.2a, but the DROP UnCy (grey, dashed) experiment is included and
only times are evaluated when additional observations are available. Empty (filled) triangles show
forecast lead times when the mean track error differences of DROP and NoObs are significant at
90% (95%) confidence level.

3.4 Importance of correct observation times

In the operational ECMWF assimilation system, significant differences were discovered

between the time T-PARC dropsondes were launched from the aircraft and the time they

1Figure available at http://www.ecmwf.int/products/forecasts/d/charts/medium/tropcyclones/
Forecast/strike!2008!19W SINLAKU 04
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were assimilated. These time differences were as large as four hours for single dropsondes

(Fig. 3.7a). The largest values were found for sondes released by the WC-130 and NRL

P-3 aircraft during flights in the centre region of Typhoon Sinlaku. The discovered time

differences, that resulted from wrong time stamps in the header of the dropsonde data, were

corrected retrospectively for all dropsondes used in OSEs for the T-PARC period. Note

that not only T-PARC dropsondes were affected and dropsondes released in the Atlantic

basin had similar time errors. However, the time errors did not occur at other weather

centres due to the use of a different (correct) time stamp and hence, the time stamp used

in the operational procedure at ECMWF was changed in July 2009.
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Figure 3.7: (a) Histogram of the difference between assimilation and launch time of T-PARC
dropsondes in the period 00 UTC 09 Sept - 00 UTC 19 Sept 2008. (b) As in Fig. 3.3a, but
including the mean track forecast errors for Typhoon Sinlaku of TimeErr (grey, dashed). Black
dots represent the number of cases evaluated at each forecast lead time.

Particularly in the vicinity of a TC, strong gradients of wind and moisture and varying

atmospheric conditions within short time scales can be present. Thus, dropsonde ob-

servations with an erroneous time may deteriorate some of the forecasts. An additional

experiment, called TimeErr, is setup which is similar to DROP except that the erroneous

dropsonde times are used. TimeErr is performed for the period between 00 UTC 09 Sept

2008 and 00 UTC 19 Sept 2008 to address the influence of the correct observation time on

the track forecasts of Typhoon Sinlaku. The assignment of a wrong time to the dropsonde

observation limits the forecast influence of the data and the mean track forecast error for

Sinlaku in TimeErr is not reduced as much as in DROP even the same observations are as-

similated in both experiments (Fig. 3.7b). Track improvements in TimeErr, which are not

statistical significant, are achieved not until +84 h. In contrast, improvements of DROP

start at shorter forecast times and are significant from +84 h onwards.
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3.5 Discussion and conclusion

The overall influence of adaptive observations (dropsondes, extra TEMPs and SYNOPs

deployed during T-PARC) on typhoon track forecasts was evaluated. Different OSEs were

performed for the period of Typhoons Sinlaku and Jangmi between 09 Sept 2008 and

01 Oct 2008.

The mean 12-120 hour track forecast error for Sinlaku and Jangmi together is reduced by

15% when adaptive T-PARC observations are assimilated. While no mean improvements

are found for shorter forecast lead times (≤ 72 h), statistical significant improvements are

present at longer forecast lead times (≥ 84 h). The impact of T-PARC dropsondes is differ-

ent between the two storms and between their pre- and post-recurvature stages. Forecast

initialised before the recurvature / landfall of Typhoon Sinlaku, when the uncertainty of

the track forecast is largest, are the most beneficial cases. The magnitude of the identified

improvements is similar to values discovered in previous studies on the impact of adaptive

dropsondes in the western North Pacific (Wu et al., 2007b; Yamaguchi et al., 2009). The

improvements of the track forecasts in the ECMWF model are found to be smaller than

in other NWP models for the T-PARC dropsondes (Weissmann et al., 2011). The already

smaller track forecast errors of the ECMWF model without dropsondes, that are likely due

to the extensive use of satellite data and the 4-D Var data assimilation, appear to reduce

the benefit gained from targeted observations compared to other models using less satellite

data and 3-D Var data assimilation.

Significant differences exist between cycled and uncycled experiments. While the cycled

experiment shows large improvements, the impact in the uncycled experiment is very small.

During a field campaign such as T-PARC, adaptive observations are available at numerous,

but in general not at all analysis times. Due to cycling, the ‘data impact’ of the observations

remains in the model system and changes the background field for successive analysis times.

The model system typically remembers observations for at least 4-5 successive analysis

times which corresponds to 2-3 days. Differences in the background information affect

the assimilation considerably because nearly 85% of the information is provided by the

background and only approximately 15% by the observations (Cardinali et al., 2004). The

cycling procedure leads to an overall amplification of the forecast influence of adaptive

observations, however, the amplification does not necessarily have to be positive (Irvine

et al., 2009; Aberson, 2010). A disadvantage of the cycling procedure is that the influence

of adaptive observations at the current analysis time can not be evaluated clearly since the

differences between the experiments arise from the different set of observations as well as

from the different background information used in the data assimilation.

The correction of a time error of the T-PARC dropsondes leads to a clear improvement
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of TC track forecasts. Hence, an erroneous assigned dropsonde time limits the value of

observation in the operational 4D-Var data assimilation system. Following these results,

the correction of the dropsonde observation time is also applied in the operational ECMWF

setup after the T-PARC campaign and it may be expected that the ECMWF TC track

forecast error will be reduced further compared to the record-setting performance in 2008

(Fiorino, 2009).
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Chapter 4

Strategies for adaptive tropical

cyclone observations

4.1 Introduction

The following chapter investigates the benefit of T-PARC dropsonde observations in differ-

ent locations on the basis of OSEs with the ECMWF global model. In these experiments,

the division of dropsondes into different subsets should yield information about the impor-

tance of observations in certain areas relative to the position of the TC.
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Figure 4.1: JMA best track data of (a) Typhoon Sinlaku from its genesis on 8 Sept 2008 until
its extratropical transition on 20 Sept 2008 and (b) Typhoon Jangmi from 24 Sept 2008 until
30 Sept 2008. Rectangles indicate the position of the typhoon at 00 UTC, circles at 12 UTC and
dots at 06 UTC and 18 UTC, respectively. The shading of the markers indicates the classification
of the TC: “black” typhoon intensity and “grey” tropical or severe tropical storm. Times with
data denial experiments are emphasised by the corresponding case number (see also Table 4.1)
and the central mean sea level pressure.
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Two major typhoon systems during the T-PARC period are investigated in this chapter,

Typhoon Sinlaku and Typhoon Jangmi (Fig. 4.1). Sinlaku developed around 08 September

2008 east of the Philippines. The storm moved slowly northwards to the west of the

subtropical anticyclone and hit Taiwan on 14 September. After recurving between Taiwan

and China, Sinlaku first struggled to speed up, but then moved on towards Japan with

the subtropical anticyclone to the southeast. The storm re-intensified again before passing

south of Japan and then transitioned to an extratropical system. Seven cases in the period

09-16 September were chosen for OSEs (Fig. 4.1a). Typhoon Jangmi developed between

Guam and the Philippines around 23 September, then moved to the northwest and struck

Taiwan on 28 September. Jangmi experienced a strong weakening during landfall, recurved

close to the Chinese coast and afterwards dissolved south of Japan. Five times were selected

for data denial experiments in the period 25-28 September (Fig. 4.1b).

Section 4.2 gives a description of the setup of the OSEs. Results of the track and

intensity forecasts of Sinlaku and Jangmi verified against the JMA best track data and

statistics of the assimilation of dropsondes released in the centre and core of Typhoon

Sinlaku are shown in section 4.3. The discussion and conclusion is presented in section 4.4.

4.2 Experimental design

The OSEs were performed using the ECMWF IFS. A detailed description of the setup is

given in section 4.2. Observations of wind, temperature and specific humidity from drop-

sondes were fed into the ECMWF data assimilation system after correcting dropsonde tim-

ing errors that occurred in the operational ECMWF assimilation. A control run (NoObs)

without any dropsonde observations was performed for the whole period of Typhoon Sin-

laku and Typhoon Jangmi. Additionally, uncycled experiments initialised from the control

run that use certain parts of the observations or all observations were conducted for se-

lected cases. These cases were chosen under the conditions of a strong typhoon and a large

number of dropsonde data in the area of the storm. OSEs were performed to investigate the

sensitivity of the model analysis and forecast to observations taken in three distinct areas

relative to the TC position. Figure 4.2 presents a schematic picture of the partitioning of

the observations. The shading indicates a sensitivity pattern often highlighted by SV cal-

culations during T-PARC with sensitivity maxima 700-1200 km away from the TC centre.

The DLR Falcon mainly sampled these sensitive regions. The observations in the core and

centre primarily consist of WC-130 dropsondes, while the observations in the vicinity of

the typhoon were primarily taken by the DOTSTAR aircraft. In addition, the DOTSTAR

aircraft also covered parts of the sensitive regions on several days. The different subsets of

observations also contain a small number of NRL P-3 dropsondes in some cases. Note here
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that the DOTSTAR aircraft and the DLR Falcon were flying in the upper troposphere,

while the NRL P-3 and the WC-130 were mainly flying in the lower troposphere for the

dropsonde deployment on the days discussed in this study. Experiments are carried out

with observations in remote sensitive regions (ReObs), with observations in the vicinity of

the typhoon (ViObs) and with observations in the centre and core region (CeObs).

H

L

Figure 4.2: Idealised sketch illustrating the separation of the dropsondes into different subsets.
Dropsonde positions are labeled by downward-pointing triangles (core and centre of the TC),
squares (remote sensitive region) and upward-pointing triangles (vicinity of the TC), respectively.
Shading indicates the typical pattern of regions with high (dark grey) and moderate (light grey)
sensitivity during T-PARC period calculated by SVs. Solid lines mark possible streamlines,
representing the midlatitude flow north of the TC and the subtropical anticyclone to the east.
The trajectory of the TC is shown as dotted line.

In practice, this clear separation of observations is not always as unambiguous as shown

in Fig. 4.2 and is partly based on a subjective assessment. An argument for the separa-

tion of the observations evolves from the targeting guidance. Several targeting guidance

products, ranging from SV calculations of different models over ETKF products to ad-

joint calculations, were available during T-PARC. An example of two targeting guidance

products valid at 12 UTC 11 Sept is shown in Fig. 4.3. Sinlaku is located southeast of

Taiwan (see also Fig. 4.1) and the predicted position of landfall on Taiwan and recurvature

is uncertain. Similar sensitivity patterns are frequently identified before recurvature of

Typhoons Sinlaku and Jangmi. SV calculations indicate maximum sensitivity to the north

and northeast of Sinlaku linked to the interface of the storm with the midlatitude flow and

the edge of the subtropical ridge to the east. A second maximum upstream indicates sen-

sitivity to the approaching trough structure over northern China. The sensitivity is lower

close to the TC and a relative minimum is visible next to the TC centre. In contrast, the
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ETKF computation shows a sensitivity maximum at the centre of the TC. The sensitivity

decreases with distance to the storm and is elongated from the southwest to the northeast.

At that targeting time, two aircraft were flying and dropsondes were released north of the

TC (ReObs) and close to the centre and core of the TC (CeObs).
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Figure 4.3: Targeting guidance for Typhoon Sinlaku valid at 12 UTC 11 Sept initialised at
00 UTC 09 Sept with +36 h optimization time. The areas of 1, 2, 4, and 8 · 106 km2 are shaded. (a)
SV based calculation of the ECMWF model and (b) ETKF multimodel (NCEP/ECMWF/CMC)
ensemble output. The verification region (black box) is centred around the expected position of
the TC. Black contour lines show the geopotential height at 500 hPa and black dots the location
of dropsondes.

Figure 4.4 and Table 4.1 show the available dropsonde data for all selected cases. The

number of soundings used for the individual experiments varies from 9 to 37. When

observations were separated into two or three subsets, an additional uncycled experiment

using all observations (AllObs) was performed.
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Figure 4.4: Position of dropsondes used in the OSEs for (a)-(g) Typhoon Sinlaku and (h)-(l)
Typhoon Jangmi (see also Table 4.1); best track of the respective typhoons (solid grey line) and
the actual position of the storm (grey asterisks). Note that the storm position at the nominal
analysis time is displayed, while the dropsondes can be distributed within the 12-hourly assim-
ilation window. Squares, upward-pointing triangles and downward-pointing triangles represent
dropsondes of ReObs, ViObs and CeObs, respectively.
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Case number Initial date Forecast times (h) ReObs ViObs CeObs AllObs

(1) 00 UTC 09 Sept 12-120 18

(2) 00 UTC 10 Sept 12-120 17 20 37

(3) 00 UTC 11 Sept 12-120 37 22 59

(4) 12 UTC 11 Sept 12-120 17 19 36

(5) 12 UTC 12 Sept 12-120 22

(6) 00 UTC 14 Sept 12-120 25

(7) 00 UTC 16 Sept 12-108 23 11 34

(8) 00 UTC 25 Sept 12-120 26

(9) 00 UTC 26 Sept 12-84 19

(10) 00 UTC 27 Sept 12-84 20 20 20 60

(11) 00 UTC 28 Sept 12-60 20 9 29

(12) 12 UTC 28 Sept 12-48 9

Table 4.1: Overview of number of dropsondes in different experiments. Forecast times denote
the interval in which the track forecasts of the Typhoons Sinlaku and Jangmi (2008) are evaluated.
Case numbers refer to the best tracks shown in Fig. 4.1.

4.3 Results

4.3.1 Assimilation statistics of TC centre and core observations

The WC-130 conducted several flights penetrating Sinlaku and Jangmi and released drop-

sondes in the core and eye wall region. OSEs only using these observations (CeObs) were

performed four times during Typhoon Sinlaku and three times during Typhoon Jangmi

(Table 4.1) to investigate the benefit of such observations.

CeObs dropsondes were often released on two straight flight legs crossing the typhoon.

In the example shown in Fig. 4.5a, nearly 50% of the wind observations are detected and

flagged by VarQC, which reduces the weight of observations in the analysis. In practice,

the flagged observations have very low weights and are basically not used. As mentioned

above the BgQC is relaxed for TC sondes and effectively inactive (Table 4.2). Similar

rejection rates are also seen for other analysis times with CeObs observations.

The average wind speed innovation of each single sounding (difference between the

wind speed observations from one sounding and the model background field) is plotted in

Fig. 4.5b. All dropsondes show significantly higher wind speeds compared to the model
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Figure 4.5: Wind observations of dropsondes used for the CeObs subset at 12 UTC 11 Sept.
(a) Position of the dropsondes; white shading indicates that all wind observations of the sounding
are used, blue shading that they are partially used, and red shading that all wind observations
from the sounding are flagged by VarQC. (b) Innovations (difference of observed value and model
background) averaged over every dropsonde between 650 hPa and 1000 hPa for wind speed in
m s−1 and wind direction (grey arrows).

data flagged by
all data no flag BgQC VarQC

wind speed 184 98 0 86
temperature 113 98 0 15
spec. humidity 123 122 0 1

Table 4.2: Number of dropsonde wind, temperature and specific humidity observations included
in CeObs at 12 UTC 11 Sept.

background field and enhance the developed cyclonic wind structure around the TC. The

histogram of the wind speed innovations (Fig. 4.6a) shows a high number of innovations

exceeding 10 m s−1. Most of these large innovations are high wind speeds in the eye wall

region. Innovation values of more than 15 m s−1 appear too extreme for the data assim-

ilation and are rejected by VarQC. The distribution of accepted wind speed innovations

still has a positive mean value of 3.8 m s−1 but is of more Gaussian shape as the positive

extremes are rejected by the VarQC.

The vertical distribution of the wind speed innovations is shown in Fig. 4.6b. During

the crossing of the TC centre, the WC-130 was flying at low levels. Thus, sounding data
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are only available below 700 hPa. Innovations larger than 10 m s−1 can be identified above

the surface layer. After the VarQC procedure, the innovation values are reduced to less

than 5 m s−1, but the used observations still lead to an intensification of the cyclonic wind

speeds at most levels.
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Figure 4.6: Innovations of observed wind speeds for soundings displayed in Fig. 4.5 at
12 UTC 11 Sept. (a) Histogram of wind speed innovations. The vertical line illustrates the
mean value of used data. (b) Vertical profile of standard deviation and mean of all and used (no
flag) innovations.

In contrast to wind speed, humidity and temperature observations show much lower

innovations (not shown) and a larger percentage of the data are used (Table 4.2).

4.3.2 Typhoon track forecasts

Pre-recurvature period

During the pre-recurvature stage of Sinlaku (09-14 September), high forecast uncertainty

is linked to the location of landfall and recurvature and to the predicted movement of the

system after recurvature. This period also shows the largest influence of dropsondes on

the track forecast (Fig. 4.7). In the following, individual cases, representative for the other

times, are discussed.

The first case of Sinlaku (00 UTC 09 Sept, Fig. 4.7a) is at the time of the beginning

intensification. CeObs produces an improvement of the predicted storm track and a 12-

120 hour mean track forecast error reduction of 24% is achieved. The storm is classified

as a tropical storm with a central pressure of 990 hPa (Fig. 4.1a) which causes moderate

innovations of wind speed (< 10 m s −1) and only 3 observations are flagged and rejected

(Fig. 4.8a). Figure 4.8b shows that CeObs increases the low level wind speed around

Sinlaku (located at ∼125.5◦E). Even though the dropsondes in CeObs are located in the
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Figure 4.7: Track forecasts of all experiments for (a)-(g) Typhoon Sinlaku and (h)-(l) Typhoon
Jangmi (see also Table 4.1). TC positions are plotted every 12 hours. Black solid dots display
the best track data. Squares, upward-pointing triangles, downward-pointing triangles and circles
represent forecasts of ReObs, ViObs, CeObs and AllObs, respectively. Cross symbols show the
forecast of NoObs. Corresponding track forecast errors can be found in Table 4.3 and 4.4.
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date exp 12 h 24 h 36 h 48 h 60 h 72 h 84 h 96 h 108 h 120 h Mean

00 UTC CeObs 16 29 29 19 73 59 120 232 353 573 150
09 Sept NoObs 10 26 19 21 68 65 181 312 504 778 198

00 UTC ViObs 57 24 26 61 13 18 51 134 202 219 80
10 Sept CeObs 18 59 47 54 80 141 197 284 467 545 189

AllObs 3 55 46 72 24 64 155 225 370 448 146
NoObs 45 9 7 52 28 34 141 197 338 400 125

00 UTC ReObs 13 44 51 18 91 161 208 257 382 585 181
11 Sept ViObs 4 47 26 25 73 65 150 179 227 269 106

AllObs 10 51 44 19 70 163 195 267 291 430 154
NoObs 10 23 22 27 102 155 246 353 500 722 216

12 UTC ReObs 23 55 19 87 176 214 296 439 634 891 283
11 Sept CeObs 14 40 35 89 146 216 306 474 760 1074 315

AllObs 17 43 48 111 160 282 353 423 637 858 293
NoObs 18 62 45 123 201 284 380 488 693 952 325

12 UTC CeObs 34 42 98 147 202 292 486 709 928 1041 398
12 Sept NoObs 54 30 117 163 250 341 487 747 967 1084 424

00 UTC ReObs 18 51 57 78 99 73 84 144 227 315 115
14 Sept NoObs 24 44 54 73 127 111 55 105 117 172 88

00 UTC ReObs 48 47 55 34 217 358 422 592 566 - 260
16 Sept ViObs 41 47 50 68 209 336 436 623 571 - 265

AllObs 33 43 49 71 232 372 508 611 570 - 277
NoObs 43 63 48 48 196 316 413 611 525 - 252

Table 4.3: Track forecast errors (km) of all cases for Typhoon Sinlaku (2008). Boldface numbers
indicate cases where a reduction of the mean 12 to 120 hour track forecast error compared to
NoObs is achieved.

lower troposphere, the CeObs analysis increments extend into the upper troposphere and

modify the wind and the temperature fields (Fig. 4.8b).

At 00 UTC 10 Sept (Fig. 4.7b), observations located in the vicinity of the storm (ViObs)

lead to a much better track forecast compared to the control run. With these observations,

the storm forecast is shifted further to the west, which is closer to the best track. A 12-

120 hour mean track forecast error reduction of 36% is obtained. In contrast, the track

forecast of CeObs shows an eastward shift of the typhoon track. The track of CeObs is

worse than the one of NoObs and leads to an average 12-120 hour track forecast error

increase of 51%. AllObs is still dominated by the negative effect of the CeObs observations

which results in a mean 12-120 hour track forecast degradation of 17%.

The analysis of CeObs shows a stronger developed typhoon with higher wind speeds at

850 hPa on the southwestern side of the storm compared to NoObs (Figs. 4.9a,d). While

this region of increased wind speed can be identified also in AllObs (Fig. 4.9c), it is not

apparent in ViObs (Fig. 4.9b). The increased cyclonic low level winds in the southwestern

sector of the TC apparently do not have a positive effect on the track forecast. The

deep-layer environmental flow seems to be of higher importance for the steering of the
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date exp 12 h 24 h 36 h 48 h 60 h 72 h 84 h 96 h 108 h 120 h Mean

00 UTC CeObs 15 72 55 43 99 219 237 203 419 823 219
25 Sept NoObs 36 24 30 36 104 201 217 326 502 935 241

00 UTC CeObs 7 83 145 248 224 283 306 - - - 185
26 Sept NoObs 15 64 141 230 114 344 391 - - - 186

00 UTC ReObs 17 39 45 113 118 261 393 - - - 141
27 Sept ViObs 7 19 54 81 83 232 293 - - - 110

CeObs 11 18 62 79 153 369 482 - - - 168
AllObs 13 37 28 35 118 314 367 - - - 130
NoObs 18 27 10 109 159 299 322 - - - 135

00 UTC ReObs 11 10 44 118 150 - - - - - 67
28 Sept ViObs 30 97 66 173 211 - - - - - 116

AllObs 40 66 112 159 226 - - - - - 121
NoObs 28 48 26 69 144 - - - - - 63

12 UTC ReObs 53 41 95 170 - - - - - - 90
28 Sept NoObs 52 37 141 247 - - - - - - 119

Table 4.4: Track forecast errors (km) of all cases for Typhoon Jangmi (2008). Italic number
indicate that the storm was located directly over Taiwan at this time and the storm position was
estimated by the minimum of the geopotential height at 700 hPa instead of the minimum MSLP.
Boldface numbers indicate cases where a reduction of the mean 12 to 120 hour track forecast
error compared to NoObs is achieved.
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Figure 4.8: (a) Histogram of wind speed innovations for soundings displayed in Fig. 4.4a at
00 UTC 09 Sept. (b) Cross-section of the analysis valid at 09 UTC 10 Sept. The cross-section
is located at 16.9◦N which is approximately the centre of the TC in the experiments and ranges
from 115◦E to 135◦E. The wind speed difference (m s−1) of CeObs and NoObs (shaded) are
plotted with positive values indicating higher wind speeds in CeObs. Solid (dashed) lines show
the analysis of the isentropes in K of CeObs (NoObs). Gray shading at the bottom represents
the topography.

typhoon. Figure 4.10 illustrates the analysis of the geopotential height at 500 hPa for

the experiments and NoObs as well as the deep-layer (850-300 hPa) mean wind difference

between the experiments and NoObs. CeObs (Fig. 4.10a) shows a less distinct edge of the

subtropical high east of Sinlaku and a larger eastward flow component southeast of the
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Figure 4.9: Analysis of streamlines and wind speed (shading) at 850 hPa at 00 UTC 10 Sept for
(a) CeObs, (b) ViObs, (c) AllObs and (d) NoObs. The best track position of the TC is indicated
by a black asterisk and the location of the dropsondes by black dots.

storm than NoObs. In ViObs (Fig. 4.10b), the flow southeast of the storm contains a larger

westward component, which seems to shift the track further to the west and produces a

better track forecast. A more northward wind component to the southeast of Sinlaku can

be identified in AllObs (Fig. 4.10c). The ECMWF SV calculation also shows a band of

maximum sensitivity south and east of Sinlaku (Fig. 4.11a), which confirms the sensitivity
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Figure 4.10: Analysis valid at 00 UTC 10 Sept for (a) CeObs, (b) ViObs and (c) AllObs.
The geopotential height at 500 hPa is plotted with coloured contour lines for the corresponding
experiments and with black contour lines for NoObs. Arrows indicate the difference of the deep-
layer (850-300 hPa) mean wind field between the experiments and NoObs. The position of
dropsondes is indicated by black dots.

of the steering flow in the region south and east of Sinlaku.

The +72 h forecasts of the geopotential height at 500 hPa and the deep-layer mean wind

is displayed in Fig. 4.12. The time step corresponds to the time when the track forecasts

of the different experiments start to diverge (compare also Fig. 4.7b). The forecast shows

differences of the edge of the subtropical high to the east of Sinlaku as well as of the position
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Figure 4.11: Targeting guidance based on SV calculation of the ECMWF model for Typhoon
Sinlaku valid at (a) 00 UTC 10 Sept initialised at 00 UTC 08 Sept with +48 h optimization time,
and (b) 00 UTC 16 Sept initialised at 00 UTC 14 Sept with +72 h optimization time. The areas
of 1, 2, 4, and 8 · 106 km2 are shaded. The verification region is shown by a black box. Black
contour lines show the geopotential height at 500 hPa and black dots the location of dropsondes.

of the storm. The subtropical high is developed weakest in CeObs (Fig. 4.12), which allows

Sinlaku to move to the northeast. Highest wind speeds of the deep-layer mean wind are

found east and northeast of Sinlaku in CeObs supporting the northeastward movement.

Comparing AllObs and ViObs (Figs. 4.12b,c), one can identify differences in the structure

of the storm and slightly higher wind speeds in ViObs west of Sinlaku, which seem to be

responsible for the smaller track forecast errors in ViObs.

Observations in the vicinity of the typhoon again lead to an improved track forecast of

Sinlaku initialised at 00 UTC 11 Sept (Fig. 4.7c). The track forecast of the control run is

already very accurate up to +48 h, but the track forecast from 2 days onwards is improved

with the ViObs observations. The landfall scenario of Sinlaku at the northern tip of Taiwan

is predicted correctly and also the representation of the motion during recurvature is more

similar to the best track scenario. ReObs at the same time shifts the track closer to the

best track, but keeps the storm a little further to the east during recurvature (Fig. 4.7c).

Again, the combination of the two subsets does not show the best performance and the

12-120 hour mean track forecast error reduction of AllObs is 28%, while 16% can be

achieved with ReObs and 51% with ViObs. Despite the improvement of the track until

the recurvature of the storm, the model seems to have problems with the propagation of

Sinlaku after recurvature. From +84 h onwards, a timing error of all track forecasts is

observed (Fig. 4.7c). Even if the track forecast error is reduced with extra observations,

the error due to the acceleration of the storm is large and dominates.

Experiments for the pre-recurvature period of Typhoon Jangmi do not show such a
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Figure 4.12: +72 h forecast initialised at 00 UTC 10 Sept for (a) CeObs, (b) ViObs and
(c) AllObs. The geopotential height at 500 hPa is plotted with coloured contour lines for the
corresponding experiments and with black contour lines for NoObs. Coloured arrows indicate the
deep-layer (850-300 hPa) mean wind field of the experiments and black arrows of NoObs.

positive influence as for Sinlaku. The southwestward bias of the track forecast is hardly

corrected in CeObs during the early stages (Figs. 4.7h,i). However, no ViObs observations

are available for these two cases. Results at 00 UTC 27 Sept indicate that the track forecast

of NoObs is very accurate and landfall is predicted at the correct position. After landfall,

all the experiments struggle to accelerate Jangmi. These propagation errors of Sinlaku

and Jangmi after landfall and recurvature are likely linked to model deficiencies of the
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land interaction of the typhoon and the connected structure change on its way over land

rather than errors in the initial conditions. However, a better representation of the TC in

the initial conditions due to extra observations can also lead to a more correct structure

and track modification during the land passage (Wu, 2001). When the landfall point is

represented best in the model, the errors due to land interaction can also be minimised

resulting in smaller timing errors, as in ViObs initialised at 12 UTC 11 Sept.

Post-recurvature period

The influence of the observations after recurvature is generally smaller than before recurva-

ture. In several cases (Figs. 4.7f,g,l), NoObs already shows a very accurate track forecast.

Slight modifications of the track forecast can be achieved with different subsets of observa-

tions, but no striking feature can be identified. During this stage of the TC propagation,

the flow field upstream in the midlatitudes becomes more important for the track forecast

and the influence of dropsondes in the TC environment seems to weaken.

Errors in the predicted upstream flow field appear to dominate the cases in the post-

recurvature period of Sinlaku. The track forecast of ViObs, ReObs, AllObs and NoObs

at 00 UTC 16 Sept is very accurate up to +48 h (Fig. 4.7g) with track errors less than

70 km (Table 4.4). After +48 h, the track errors of all experiments increase significantly,

but there is only little difference between the experiments. Figure 4.13 shows that none

of the experiments predicts the short wave trough and the flow structure over northern

China at +48 h correctly. The differences between the forecasts of the experiments and

NoObs seem negligible compared to the differences between the forecasts and the verifying

analysis. The forecast error related to the trough structure evolves from a region far

upstream over Western Siberia, which is also indicated to be sensitive by ECMWF SV

calculations (Fig. 4.11b). This error is not affected by changes in the initial conditions

close to the storm, which explains the low influence of dropsondes next to Sinlaku in this

case.

The propagation error of Sinlaku after recurvature in the forecast initialised at 12 UTC

11 Sept is to some extent also related to errors in the upstream midlatitude flow (not

shown).

Overall influence

Scatter diagrams summarising the results for all individual cases are displayed in Fig. 4.14.

The ViObs subset leads to the highest reduction of the track forecast errors. Large values

of track error reduction could be achieved in most cases and the linear fit as well as the

averaged values indicate a positive influence especially from 2 days onwards. In CeObs, the
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Figure 4.13: 500 hPa geopotential height field valid at 00 UTC 18 Sept. The +48 h forecast
(solid coloured line) initialised at 00 UTC 16 Sept of (a) ViObs, (b) ReObs and (c) AllObs is
compared against NoObs (dashed black line) and the verifying analysis (solid black line). The
best track position of the TC is indicated by a black asterisk.

points are distributed around the diagonal. Average values as well as the linear fit show

a slight positive influence of these observations overall, but large positive and negative

outliers are apparent. For ReObs, the overall influence is rather neutral with a slight

positive tendency, comparable to the CeObs results. Combining the subsets together does

not automatically improve the track forecast more than when using only one subset. AllObs

also shows a positive influence on average, but not as large as ViObs.



64 Strategies for adaptive tropical cyclone observations

0 200 400 600 800 1000
0

200

400

600

800

1000

NP = 19
Y = 0.59 X + 32.93

forecast error w/o dropsondes (km)

fo
re

ca
st

 e
rr

or
 w

ith
 d

ro
ps

on
de

s 
(k

m
)

 

 
(a) +24 h (5)

+48 h (5)
+72 h (4)
+96 h (3)
+120 h (2)

0 200 400 600 800 1000
0

200

400

600

800

1000

NP = 31
Y = 0.93 X + 12.71

forecast error w/o dropsondes (km)

fo
re

ca
st

 e
rr

or
 w

ith
 d

ro
ps

on
de

s 
(k

m
)

 

 
(b) +24 h (7)

+48 h (7)
+72 h (7)
+96 h (5)
+120 h (5)

0 200 400 600 800 1000
0

200

400

600

800

1000

NP = 26
Y = 0.89 X + 9.68

forecast error w/o dropsondes (km)

fo
re

ca
st

 e
rr

or
 w

ith
 d

ro
ps

on
de

s 
(k

m
)

 

 
(c) +24 h (7)

+48 h (7)
+72 h (5)
+96 h (4)
+120 h (3)

0 200 400 600 800 1000
0

200

400

600

800

1000

NP = 24
Y = 0.82 X + 29.53

forecast error w/o dropsondes (km)

fo
re

ca
st

 e
rr

or
 w

ith
 d

ro
ps

on
de

s 
(k

m
)

 

 
(d) +24 h (6)

+48 h (6)
+72 h (5)
+96 h (4)
+120 h (3)

Figure 4.14: Scatter plots of track forecast errors of experiments against the control run.
The x-axis shows the track errors of NoObs, and the y-axis the track errors of (a) ViObs, (b)
CeObs, (c) ReObs and (d) AllObs. The solid black line represents the diagonal with values below
indicating an error reduction and values above an error increase compared to the control run.
Different markers indicate different forecast times. Filled markers represent mean values for the
respective forecast step. The slope, the zero offset and the used number of points (NP) of the
linear regression line (coloured dashed line) are displayed in the lower right.

4.3.3 Typhoon intensity forecast

The correct intensity forecast of the TC is of high importance. Large errors in the models

are expected as global models with a resolution of 25 km or less can not fully resolve the
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strong pressure gradient of a TC.
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Figure 4.15: Best track data and central MSLP values of the experiment and control forecasts
initialised at (a) 00 UTC 10 Sept and (b) 00 UTC 11 Sept.

Figure 4.15 shows two examples of central MSLP forecasts for Typhoon Sinlaku. Ac-

cording to best track data, Sinlaku reaches its minimum pressure of 935 hPa between

12 UTC 10 Sept and 12 UTC 11 Sept. All central MSLP forecasts show large errors up

to 40 hPa during the most intense period. At 00 UTC 10 Sept (Fig. 4.15a), CeObs de-

creases the central pressure and the pressure error is reduced more than 10 hPa compared

to NoObs. When Sinlaku is closer to land and begins to weaken at +84 h and +60 h,

respectively, it is obvious that the correct track forecast has an essential influence on the

central pressure. Even though CeObs reduces the central MSLP error in the short-range,

the TC does not weaken from 3 days onwards due to the wrongly predicted track. In

contrast, the improved track forecast of ViObs is partly capable of decaying the system

because ViObs predicts Sinlaku closer to its real position near Taiwan (compare Fig. 4.7b).

The experiments starting at 00 UTC 11 Sept (Fig. 4.15b) only have a limited influence

on central MSLP values during the most intense period of Sinlaku. Observations in the

vicinity of the typhoon (ViObs) lead to the largest reduction of the central MSLP error.

When the system begins to weaken after +60 h, larger improvements of the experiments

are visible. These improvements, however, do not arise from a better intensity forecast

in the short-range but rather from a better track forecast as for this case all experiments

produce a track error reduction (see also Fig. 4.7c).
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4.4 Discussion and conclusion

Data denial experiments were conducted with the ECMWF global model to assess the in-

fluence of targeted dropsonde observations on typhoon track forecasts during T-PARC. The

observations were separated into three subsets to investigate the influence of observations

from different locations relative to the TC.

Observations in the vicinity of the TC (ViObs) lead to the largest track error re-

duction. Observations of this subset were mainly collected by the Taiwanese Astra Jet

operated under the DOTSTAR research programme. Previous studies with different mod-

els and different typhoon systems also showed a positive influence of these observations

(Wu et al., 2005; Yamaguchi et al., 2009). One very important part of the flight strategy

in the DOTSTAR programme is to circumnavigate the storm during every flight mission,

besides often sampling parts of sensitive regions. The ViObs subset for all cases, except at

00 UTC 16 Sept, consists of observations that are located in a complete circle around the

outer domain of the storm. Findings from Peng and Reynolds (2006) and Reynolds et al.

(2009) that track forecasts of TCs are sensitive to changes in the initial conditions at an

annulus around the storm center at approximately 500 km are consistent with the positive

influence of the ViObs observations.

Even if a large fraction of the remote dropsondes (ReObs) is located in areas indicated

to be of increased sensitivity by SV computations, results from this experiment do not show

a large improvement of the track forecast. Observations in remote sensitive regions mainly

influence the analysis fields close to the subtropical anticyclone or in the midlatitudes,

whereas the structure of the TC itself is only marginally affected. Changes to the remote

environment of the TC do not have a large influence on the track forecasts of Sinlaku and

Jangmi. The low influence could be related to small analysis errors and a comparably

good representation of the large scale flow around the TC in the ECMWF model due

to the extensive use of satellite observations. Furthermore, the low resolution of the SV

computations (TL95 at ECMWF during T-PARC) might not correctly reflect sensitivity

patterns. There are indications that sensitivity maxima shift closer to the storm itself with

an increased resolution of SV calculations (Lang et al., 2011). Finally, the sub-optimal

sampling of the remote sensitive regions, with only parts of high and moderate sensitive

regions covered, could also be a reason for the small influence of these dropsondes (Aberson,

2003).

The ECMWF data assimilation system seems to be capable of handling extreme ob-

servations in the TC centre (CeObs). The quality control works reliably and a large

fraction of the data are flagged and rejected to minimise unrepresentative structures in

the model. However, in terms of track forecast errors the influence is neutral on average.
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There is a significant case to case variability with these observations and large positive

(e.g. 00 UTC 09 Sept) as well as negative (e.g. 00 UTC 10 Sept) cases can be identified.

Despite the information potentially provided by these data, future data assimilation sys-

tems have to solve several issues to fully exploit these observations. Unrealistic structures

in the model analysis are sometimes introduced by the position offset of dropsondes. Up to

now, dropsonde data are assimilated with one fixed position, but there can be a significant

shift from the launch position during the descend in particular when they are placed in the

eye wall region (Aberson, 2008). Additionally, incomplete sampling of the TC centre with

dropsondes can introduce unrealistic asymmetries in the model resulting in wrong track

forecasts. Track forecast degradations with dropsonde data from the centre region have

been found with the NCEP GFS model and no dropsonde data within a radius of 111.1

km (or 3 times the specified radius of maximum wind, whichever is larger) are used in the

data assimilation system of the GFS as a consequence (Aberson, 2008).

An average positive influence with AllObs is obtained, but not obligatory the most

beneficial results are achieved when combining all available observations.

Large differences in the results of the experiments in the pre- and post-recurvature

period of a recurving TC are detected. During the pre-recurvature period, a larger influence

of the observations can be identified independent of the dropsonde subsets. Model errors

in the structure change of the TC during landfall are expected, but improving the analysis

of the typhoon and better forecasting the landfall point can minimise errors due to land

interaction (Wu, 2001). The influence of dropsondes for typhoon targeting was limited after

recurvature and the representation of the upstream midlatitude flow field becomes more

important for the propagation of the TC. Reynolds et al. (2009) showed that in cases of

recurving TCs, sensitivity can be found to the northwest of the TC and sometimes can be

located as far as 4000 km upstream over the Asian continent. For these cases, a modification

of the initial conditions next and in the environment of the TC through dropsondes can

only have a limited influence on the track forecast. Results may be different for other

observational data types as e.g. the Doppler wind lidar (Weissmann et al., 2005), which

was operated on board the DLR Falcon during T-PARC. Weissmann and Cardinali (2007)

and Weissmann et al. (2011) demonstrated the value of this new type of observations for

ECMWF forecasts in the tropics and the midlatitudes.
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Chapter 5

Adaptive DIAL humidity

observations

5.1 Introduction

This chapter focuses on the assimilation of the high-resolution DIAL water vapour ob-

servations in the ECMWF model using the operational 4D-Var data assimilation system.

The WALES demonstrator measured a unique sample of about 3900 DIAL water vapour

profiles during 25 research flights in the period 26 August to 01 October 2008. The quality

of the DIAL observations is assessed by comparison with independent dropsonde humidity

observations and model output fields. The analysis and forecast influence of the additional

DIAL observations is evaluated.
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Figure 5.1: T-PARC flight tracks of the DLR Falcon (thin black line) used for the study. Thick
red lines indicate the location of observed DIAL profiles.
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Out of all flights during T-PARC, eight cases (Fig. 5.1) that show the highest obser-

vational coverage and are representative for different weather regimes, are selected for the

study (Table 5.1). These cases include flights for typhoon targeting and the investigation of

ET of the two major typhoons during T-PARC, Sinlaku and Jangmi. Additionally, flights

for the purpose of observation targeting to improve midlatitude forecasts or the observa-

tion of tropical water vapour export are considered. From these eight flights, 47,700 DIAL

observations are available which constitute 65% of DIAL observations from all 25 T-PARC

flights.

case date objective DIAL observations

1 00 UTC 02 Sept midlatitude targeting 6861
2 00 UTC 09 Sept tropical water vapour export 3787
3 12 UTC 11 Sept targeting for Typhoon Sinlaku 7190
4 00 UTC 19 Sept ET of Typhoon Sinlaku 8537
5 00 UTC 21 Sept ET of Typhoon Sinlaku 7731
6 00 UTC 28 Sept targeting for Typhoon Jangmi 3545
7 00 UTC 01 Oct ET of Typhoon Jangmi (1) 4737
8 12 UTC 01 Oct ET of Typhoon Jangmi (2) 5312

Table 5.1: Overview of selected cases and number of DIAL observations.

The assimilation setup is described in section 5.2. General results are presented in

section 5.3 followed by a case study in section 5.4. Section 5.5 discusses and summarises

the results.

5.2 Setup of assimilation experiments

The assimilation experiments are performed using the early 2010 operational version of the

ECMWF system (cycle 36r1). In contrast to the operational setup, the experiments are

conducted using a reduced horizontal resolution of TL799 (∼25 km) and 91 vertical levels

(L91).

5.2.1 Precipitable water content

The precipitable water content (PWC) in certain layers is used as input for the assimilation

experiments since an observation operator H is already available (originally developed to

assimilate data from the solar backscattering UV (SBUV) instrument). The DIAL system
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measures the number density of water molecules Nw [m−3], which is converted to absolute

humidity ρw [kg m−3]

ρw = Nw ·
m∗

H2O

NA

(5.1)

with the molecular mass of water m∗
H2O

= 18.015 g mol−1 and the Avogadro constant

NA = 6.022·1023 mol−1. No estimation of other parameters is needed to derive the variable

in contrast to e.g. specific humidity where additional temperature and pressure information

is required (Behrendt et al., 2007a). Absolute humidity ρw is multiplied by the vertical

resolution of the measurements to get vertically resolved profiles of PWC [kg m−2].

PWC(z) = ρw ·∆z (5.2)

The sum of vertically resolved PWC over the whole atmosphere gives the total water

column. PWC is a function of the altitude and depends on the vertical resolution ∆z of

the data. The DIAL data are averaged to a vertical resolution of ∆z = 300 m for the

assimilation experiments. The vertical coordinate is converted from geometric height to

pressure using temperature, pressure, and specific humidity from the operational ECMWF

analysis.

5.2.2 Experiments

A control experiment (CNTL) is performed as reference run that uses all operational but

no DIAL observations. Over the northern West Pacific basin, humidity information is

mainly provided by microwave sounding instruments (AMSU-B, MHS, SSM/I, AMSR-E)

and infrared sounders (GOES, HIRS, AIRS and IASI) (Andersson et al., 2007). Two exper-

iments are conducted assimilating the DIAL observations together with the operational set

of observations: ALL DIAL with the full resolution of DIAL observations, and AV DIAL,

where five DIAL profiles are horizontally averaged. With the given horizontal resolution

of the measurements of 5-7 km, averaging five profiles produces a spatial scale similar

to the ECMWF model (∼ 25 km). In all experiments, dropsonde observations are not

assimilated, first to avoid interaction between dropsonde and collocated DIAL humidity

observations, and second to be used as independent validation of the DIAL observations.

The experiments using DIAL observations are performed in an uncycled mode with the

model background for each assimilation cycle being provided by CNTL, which restricts the

influence of the DIAL observations to one particular assimilation time.
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5.2.3 Error specification

The instrument error of the DIAL can be estimated to be < 5-7% (Poberaj et al., 2002;

Wirth et al., 2009). In ALL DIAL, the observation error standard deviation is set to

40% to account also for the representativeness error which was estimated from comparison

with error statistics of radiosonde humidity observations. The observation error standard

deviation is proportional to 1/
√
Nobs assuming that the observation errors are independent,

which reduces the observation error standard deviation to ∼ 15% at grid box length scale

given the horizontal resolution of 5-7 km of the observations. Hence, the error standard

deviation of 15% is assigned to the observations in AV DIAL, where the observations are

averaged to the model resolution (see Table 5.2). The background error is set to be twice

as large as the observation error for the BgQC to assure that a large percentage of DIAL

observations enters the minimisation process and are not rejected prior to the assimilation.

observation BgQC flag VarQC weight (%) class
Exp number error 0 1 2 3 0-25 25-50 50-75 >75

ALL DIAL 47700 40% 45967 488 320 925 884 803 9989 34779

AV DIAL 9524 15% 8492 318 160 554 1256 653 2884 3917

Table 5.2: Number of DIAL observations marked during the different observation quality control
steps. For the assimilation, only observations are considered that get a VarQC weight larger than
25%: ALL DIAL = 45571, AV DIAL = 7454. Italic fonts indicate that the observations are
regarded as ‘false’.

5.3 Results

5.3.1 Comparison of DIAL and dropsonde observations

During all T-PARC Falcon flights, dropsondes of the type Vaisala RD-93 (Hock and

Franklin, 1999) were deployed in regular intervals. The observations are compared with

DIAL observations, whenever they are available within a circle of 5 km radius from the

dropsonde launch position. The DIAL system measures the number of water molecules per

volume Nw which is converted into absolute humidity ρw using Eq. 5.1. The dropsonde

system measures pressure, temperature (T) and relative humidity (f), and the absolute

humidity is computed using

ρw =
e

Rw · T
=

es (T ) · f
Rw · T
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with the gas constant for water vapour (Rw = 461 J K−1 kg−1) and applying the Clausius-

Clapeyron equation (see e.g. Bohren and Albrecht, 1998) to calculate the saturation water

vapour pressure es(T ). The dropsonde observations are quality controlled using different

post-processing methods including automatic sounding quality-control software and visual

examination of the data (Wang et al., 2010).

DIAL and dropsonde profiles are vertically averaged to the resolution of 25 m, which

is slightly larger than the raw vertical resolution of dropsonde (5-10 m) and DIAL (15 m)

observations, to create homogeneous height bins for the comparison of the two data sets.

However, the presented results are not sensitive to the choice of the used height interval.

Considering all the T-PARC flights of the DLR Falcon, 39,410 data points from 157 collo-

cated profiles are used for the comparison. Figure 5.2a shows a linear relation (correlation

coefficient 0.987) between DIAL and dropsonde absolute humidity observations. Larger

deviations from the linear relation are found for low humidity values (< 0.5 g m −3). The

comparison of individual profiles shows a good agreement among the two observations as

demonstrated in Figs. 5.2b,c.
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Figure 5.2: Comparison of DIAL and dropsonde observations of absolute humidity: (a) scatter
plot of all 39,410 observations between 26 Aug and 01 Oct 2008, and (b), (c) two selected DIAL
(grey) and dropsonde (black) profiles.

The absolute humidity difference is defined in absolute values as

d ρw,abs = ρw,dial − ρw,drop ,

and in relative values as

d ρw,rel =
ρw,dial − ρw,drop

0.5 · (ρw,dial + ρw,drop)
.
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The relative difference takes into account the strong altitude dependence of moisture.

The mean value (bias) of absolute and relative differences is calculated for all height inter-

vals (Figs. 5.3a,b). Negative values indicate that the DIAL observations are drier than the

dropsonde observations. In terms of bias of absolute differences (Fig. 5.3a), observations

from both instruments are in agreement in the upper troposphere, whilst in the lower tro-

posphere, the absolute bias is negative below 5 km (above mean sea level) and increases

up to -1 g m−3 at the ground. The relative bias reaches values between -5% and -10%

below 2 km. In contrast to the absolute bias, the relative bias (mean relative difference) is

close to zero between 2-5 km (Fig. 5.3b). In addition, a median and the lower and upper

quartiles of the relative differences are shown in Fig. 5.3b. The smaller relative bias (than

absolute bias) is presumably due to outliers as the values in several layers are close to the

upper quartile of relative differences between 2-7 km. The 1000 m running average of the

relative median also shows negative values between 2-5 km which is in better agreement

with the absolute bias.
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Figure 5.3: Vertical distribution of (a) the mean absolute and (b) the mean relative differences
between DIAL and dropsonde observations of absolute humidity for the same data set as in
Fig 5.2a. The solid black line represents a 1000 m running average and the asterisk mark the
overall bias of all observations. In (b) the dashed grey line in displays the 1000 m running average
of the median of the relative differences and the grey shading the lower and upper quartiles of
the relative differences.

A mismatch between the location of dropsonde and DIAL observations might produce

a larger standard deviation of the differences between the two observations (Sun et al.,

2010), but should not result in an increased bias. The identified systematic differences

between dropsonde and DIAL observations in the lower part of the troposphere seem to
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be mainly caused by the DIAL observations since dropsonde observations were shown to

be largely unbiased (Wang, 2005). However, a dropsonde bias in the range of several

percent can not be excluded. Larger errors of DIAL observations can occur in the tropical

boundary layer and the lower part of the troposphere (Poberaj et al., 2002). Due to the

high water vapour content in the tropics, a very weak water vapour absorption line located

at 935.449 nm wavelength (see Fig. 1 in Wirth et al., 2009) had to be selected to probe the

lowest part of the atmosphere. The total absorption at this wavelength is affected by the

pressure broadened wings of nearby strong absorption lines. Both pressure broadening by

air molecules and self broadening by water vapour are taken into account during processing,

but the accuracy of the absorption cross sections calculated from the line parameters given

by the HITRAN 2006 spectroscopic database at these extremely high humidity values is

not sufficiently known and may reach values in the range of the observed bias. The bias of

all data is in absolute terms -0.142 g m−3 with a standard deviation of ±0.636 g m−3 and

in relative terms 0.0% with a standard deviation of ±30.7%.

5.3.2 Assimilation statistics of the DIAL experiments

The numbers of observations identified by the different screening steps of the assimilation

system are summarised in Table 5.2. In ALL DIAL more than 97% of the observations

pass the BgQC and enter the assimilation procedure being classified as correct or prob-

ably correct observation (flags 0 and 1) while in AV DIAL the rejection rate is slightly

higher and 92.5% pass the BgQC. These numbers seem reasonable taking into account

the smaller observation error variances assigned in AV DIAL. Similarly, 98% of the obser-

vations in ALL DIAL are considered as ‘correct’ in the VarQC (weight larger than 25%)

compared to 85% of the observations in AV DIAL. The quality control is more active for

AV DIAL compared to ALL DIAL. The observation error standard deviation of 15% in

AV DIAL, that is based on the assumption of independent observation errors, may be too

small. This is also indicated by the diagnosed observations error standard deviations of

28% for ALL DIAL and 21% for AV DIAL calculated a posteriori from the assimilation

statistics following Desroziers et al. (2005). The instrumental error of the DIAL system

is horizontally uncorrelated but the representativeness error seems to be correlated at the

horizontal resolution of 5-7 km of the DIAL observations.

The background and analysis departures are the difference in observation space between

observation and model background and observation and analysis, respectively:

d bg = y − H
[
xb

]
,

d an = y − H [xa] .
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Figure 5.4: Vertical distribution of background departures d bg (black) and analysis departures
d an (grey) for DIAL observations in ALL DIAL: (a) absolute bias, (b) absolute standard devia-
tion, (c) relative bias and (d) relative standard deviation. Only data are considered that passed
the BgQC and get a weight of at least 25% in the VarQC. The number of DIAL observations
considered for each pressure interval are displayed to the right.

The bias and the standard deviation for the background and analysis departures of

absolute humidity for ALL DIAL is shown in Fig. 5.4. Absolute humidity is derived from

PWC dividing by the vertical resolution ∆z = 300 m (Eq. 5.2). A negative bias of back-

ground departures is seen in the lower troposphere with maximum values close to -1 g m−3

(Fig. 5.4a). The bias of the analysis departures is much smaller and close to zero except in

the boundary layer region. The standard deviation of analysis departures is also reduced

compared to the background value, which indicates that the assimilation is using infor-
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mation from DIAL observations and the observations actively contribute to the analysis

(Fig. 5.4b). To include the decrease of water vapour with height, relative background and

analysis departures are defined as the absolute departure value divided by the mean value

of observation and model field. A much more homogeneous distribution in the vertical is

identified for the bias of these relative departures (Fig. 5.4c). The bias of the relative back-

ground departures varies between -5% and -15% over the whole troposphere, while the bias

of the relative analysis departures is less than 5% with negative values below 775 hPa and

positive ones above (Fig. 5.4c). The standard deviation of the relative departures reaches a

maximum in the upper troposphere (Fig. 5.4d) different to the absolute standard deviation

which peaks around 850 hPa. The sample available reduces rapidly at lower levels. The

results for AV DIAL are overall similar, but with smaller biases and standard deviations

(not shown).

Table 5.3 summarises the bias and standard deviation (stddev) for both experiments.

The negative bias between the observations and the model background indicates that the

model is systematically moister than the DIAL observations. The moisture in the model

fields is reduced when the DIAL observations are assimilated as shown by the analysis

departures.

abs bias ± stddev (g m−3) rel bias ± stddev (%)
Exp d bg d an d bg d an

ALL DIAL -0.281 ± 0.888 -0.015 ± 0.543 -11.4 ± 40.2 2.9 ± 23.2
AV DIAL -0.242 ± 0.773 -0.036 ± 0.423 -7.1 ± 30.0 0.7 ± 13.4

Table 5.3: Bias and standard deviation (stddev) of DIAL absolute humidity observation depar-
tures.

5.3.3 Analysis impact

Analysis verification with dropsondes

The DIAL analysis impact is verified using independent dropsonde humidity observations,

which are monitored passively, i.e. do not influence the analysis. These observations are

the best available source of humidity information since other observing systems as for

example satellite humidity observations have poor effective vertical resolution in the tro-

posphere. Model analyses of CNTL, ALL DIAL and AV DIAL are compared to dropsonde

observations in terms of root mean square (RMS) differences. A smaller RMS difference

of ALL DIAL and AV DIAL indicates a more accurate analysis. Regarding the absolute
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humidity analysis, RMS differences are, on average, smaller in ALL DIAL (1.11 g m−3)

and AV DIAL (1.14 g m−3) than in CNTL (1.20 g m−3), which is equivalent to an accuracy

increase with respect to CNTL of 7.5% and 5%, respectively (Fig. 5.5a). In two cases, the

DIAL experiments show slightly larger RMS differences compared to CNTL, whereas in

four cases smaller values are seen. For wind and temperature variables, RMS differences

for the DIAL experiments are also reduced compared to CNTL in the order of 2-3% (not

shown).
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Figure 5.5: (a) Root mean square (RMS) differences of absolute humidity of dropsonde observa-
tions and model analyses of CNTL, ALL DIAL and AV DIAL in g m−3. (b) Vertical distribution
of absolute bias of background departures (d bg) and analysis departures (d an) for dropsonde
absolute humidity compared to ALL DIAL and CNTL. Note that the background departures are
the same for ALL DIAL and CNTL. The number of dropsonde observations considered for each
pressure interval are displayed to the right.

Background and analysis departures of dropsonde observations are also used to anal-

yse systematic errors. The bias of absolute humidity dropsonde observation departures

for ALL DIAL and CNTL is shown in Fig. 5.5b. The bias of dropsonde background de-

partures is negative for all levels above 850 hPa, similar to the background departures of

DIAL observations (compare with Fig. 5.4a). This suggests that the model background is

systematically too moist since dropsonde and DIAL observations match in the upper and

middle troposphere (compare Fig. 5.3b). In the lower troposphere, the bias of dropsonde

background departures is smaller and becomes positive in the boundary layer (Fig. 5.5b).

The different behaviour of dropsonde and DIAL background departures at low levels agrees

with the systematic difference between the two observations at those levels (Fig. 5.3). Us-

ing the bias of the background departures of dropsonde (-0.158 g m −3; Fig. 5.5b) and

DIAL (-0.281 g m −3; Table 5.3) observations, a bias of the difference between DIAL and

dropsonde observations can be calculated (-0.123 g m −3). This values is similar to the
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one computed for all available DIAL and dropsonde observations (-0.142 g m−3), despite

the different vertical resolution and different sample, which implies that the bias between

dropsonde and DIAL observations is not sensitive to the vertical resolution and the used

sample. The fact that the bias of dropsonde analysis departures is positive in ALL DIAL

compared to a negative bias in CNTL, illustrates the drying effect of DIAL observations

(Fig. 5.5b).

Analysis influence

The analysis departures of satellite and radiosonde humidity observations are not affected

considerably by the assimilation of DIAL humidity observations. Additionally, the Degree

of Freedom for Signal (DFS) is calculated for the DIAL experiments, which estimates

the information content provided by the observations during the assimilation (Cardinali

et al., 2004). The DFS depends on the observations’ influence as well as on the number of

observations. Table 5.4 lists the estimated DFS and mean observation influence from all

satellite, radiosonde and DIAL humidity observations. DIAL observations have the largest

influence among all other remote sensing and radiosonde humidity observations, which

confirms the strong influence of the adaptive DIAL observations in the humidity analysis

with respect to the other humidity observations.

DIAL HIRS MTSAT AMSU-B MHS AMSR-E SSM/I MERIS TEMP

mean OI 0.71 0.07 0.16 0.04 0.13 0.01 0.002 0.16 0.16
observation number 46455 89766 29192 90675 16617 85494 74307 640 9775
DFS 32957.0 5935.8 4803.2 3848.5 2114.2 544.0 211.1 102.7 1527.9
DFS in % of total 63.3 11.4 9.2 7.4 4.1 1.0 0.4 0.2 2.9

Table 5.4: Mean observations influence (OI) and Degree of Freedom for Signal (DFS) for DIAL,
satellite and TEMP humidity observations in ALL DIAL over the western North Pacific basin
(15◦N-55◦N, 110◦E-160◦E).

Additionally, the influence of the DIAL observations on the analysis is shown based

on analysis increments of total column water vapour (TCWV). TCWV is an integrative

measure of the water vapour in the atmosphere and is strongly determined by the lowest

part of the troposphere, that contains most of the water vapour. Figure 5.6 shows the

mean TCWV increments averaged over all cases for CNTL and the difference of the mean

increments between ALL DIAL and CNTL at the beginning of the assimilation window

(either 09 UTC or 21 UTC). The increments of CNTL exhibit positive and negative areas,

which indicates that the assimilation system is not systematically adding or removing

water vapour. The difference of the increments between ALL DIAL and CNTL shows

broad regions with negative values leading to more negative TCWV increments when using
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the DIAL observations. The drying effect of the DIAL observations is in agreement with

the previous diagnostic assessment that shows that DIAL observations, on average, are

drier than the model background and close to the model analysis after assimilation. Mean

analysis increments for wind and temperature (not shown) are noisy and not systematic.

The analysis increments of AV DIAL (not shown) are similar to ALL DIAL.
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Figure 5.6: Mean analysis increments of TCWV for the selected eight cases of (a) CNTL and
(b) the difference between the mean increments of ALL DIAL and CNTL in mm.

5.3.4 Forecast impact

The forecast impact of the DIAL observations is addressed in terms of TE. TE is an

integrated measure of the forecast error and includes information about wind (u,v), tem-

perature (T) and specific humidity (q) (see also section 2.4). The analysis fields of CNTL

are used as verification for all calculations. The improvement or reduction of the TE error

is defined as the difference of the TE error of the DIAL experiments against CNTL, with

negative values indicating improvement by assimilating DIAL observations

Figure 5.7 displays the TE error reduction of AV DIAL with respect to CNTL averaged

over a geographical domain covering the western North Pacific basin (15◦N-60◦N, 115◦E-

160◦W) for all eight cases. In six cases, the values are small and range from -1.5 m2 s−2 to

+1.5 m2 s−2, but improvements up to -4 m2 s−2 are identified for the forecasts initialised on

19 Sept and 21 Sept. The relative differences of AV DIAL and CNTL are generally in the

range of ±2%, except for the +48 and +60 h lead time of forecasts initialised on 19 Sept

and 21 Sept which show improvements up to -6%. Results for ALL DIAL (not shown) are

similar to AV DIAL, but with slightly smaller improvements.

Three research flights were conducted during the lifetime of Typhoon Sinlaku (Table 5.1:
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Figure 5.7: (a) Absolute and (b) relative reduction of TE forecast errors for AV DIAL compared
to CNTL over the western North Pacific basin (15◦N-60◦N, 115◦E-160◦W). Grey lines represent
the six cases with small forecast impact. The forecasts are verified with the CNTL analysis.
Negative values indicate reduced errors in AV DIAL.

case 2,3,4) and one during Typhoon Jangmi (Table 5.1: case 6). For these cases, typhoon

track forecasts of the DIAL experiments are verified against the JMA best track data.

The influence of the DIAL observations is small and the mean track forecast errors of

ALL DIAL and AV DIAL are similar to the ones of CNTL (Fig. 5.8). The reason for this

low influence may be that, due to the signal absorption in clouds, the nadir-pointing DIAL

cannot provide information on water vapour in the convectively active environment of the

storm that would likely be more influential on the dynamical evolution of the system.
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5.4 Case study: 19 September 2008

Out of the eight cases, 19 Sept 2008 is selected for a detailed case study due to the large

influence of DIAL observations compared to the other cases. The objectives of the flight

were to examine the ridge building that was triggered by the outflow of Typhoon Sinlaku

and the interaction of the storm with the midlatitude jet (Fig. 5.9a). At analysis time,

Typhoon Sinlaku is located at about 134◦E, 32.5◦N close to the south coast of the main

island of Japan. The flight track starts at the jet entrance region next to the northern

tip of Japan (Fig. 5.9a, labels 1,2), continues eastwards along the jet streak (label 3) and

cuts through the jet maximum on the way back (label 4). The flight track is also partially

located in sensitive regions highlighted by ECMWF SV-based calculations (not shown).

The TCWV field shows a sharp north-south gradient to the east of Japan which is partially

crossed on the last flight leg (Fig. 5.9a). A tongue of moist air (28 mm ≤ TCWV ≤ 34 mm)

extends further to the north and is located downstream of an approaching trough to the

north.

The height-distance transect of DIAL observations is shown in Fig. 5.9b. In the first

third of the flight (labels 1,2), PWC values greater than 1.5 kg m−2 are observed in the lower

troposphere up to 775 hPa. Further to the east, the layer of large PWC values increases its

vertical extension and the upper boundary reaches 600 hPa next to the easternmost point of

the flight track (label 3). This moist layer shows vertical as well as horizontal fluctuations.

The vertical extent of the moist layer is reduced to 700 hPa on the flight leg back to

Japan. During the end of the flight track (label 4), the aircraft enters a region with strong

convective activity and a pronounced vertical transport of moisture from the ground up to

350 hPa is identified. The observational gaps (white regions in the transects) are caused

by the full absorption of the lidar signal in clouds. Figure 5.9c shows the same transect

as Fig. 5.9b, but analysis increments of PWC for AV DIAL. Negative analysis increments

occur in the moist layer close to the ground for most of the transect, which indicates a

drying effect of the DIAL observations on the analysis in this region. However, at the jet

entrance region (label 2) the DIAL observations lead to an increase of moisture at 700 hPa

in a region with a less pronounced vertical moisture gradient. The vertical transport of

moisture at the end of the flight track (label 4) is influenced by DIAL observations and

an increase of moisture is seen in the layer between 775 hPa and 550 hPa followed by a

decrease above 500 hPa.

Analysis differences of absolute humidity at 850 hPa between AV DIAL and CNTL

(Fig 5.10a) are related to the area of moist air extending to the north and to the gradi-

ent of moisture east of Japan, where AV DIAL is drier than CNTL as expected from the

analysis increments (compare Fig. 5.9c). In the region east of Typhoon Sinlaku, AV DIAL
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Figure 5.9: (a) Streamlines at 200 hPa and TCWV for the CNTL analysis at 00 UTC 19 Sept.
The direction of the flight track (grey line) is clockwise. Height-distance transect of (b) the
DIAL PWC observations and (c) PWC analysis increments of AV DIAL for the 00 UTC 19 Sept
assimilation time sampled between 2257 UTC 18 Sept and 0436 UTC 19 Sept. Bold grey numbers
label different sections of the flight track.

also shows areas with higher moisture content at low levels. At +12 h forecast lead time,

the differences between AV DIAL and CNTL are transported downstream to the east

and stretch from Sinlaku to another low pressure system over the central North Pacific

(Fig. 5.10b). In addition, a broad region of negative forecast differences is seen downstream

of the trough centred over the Sea of Okhotsk and the Kamchatka Peninsula, where the

AV DIAL forecast generally is drier than the CNTL forecast. This humidity difference

affects the geopotential height and wind fields at 500 hPa next to the intensifying trough

and a less intense system is forecast in AV DIAL at +24 h (Fig. 5.11a). From +24 h on-
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Figure 5.10: Absolute humidity difference (g m−3) at 850 hPa between AV DIAL and CNTL
(a) for the analysis at 00 UTC 19 Sept, and for (b) +12 h, (c) +24 h and (d) +48 h forecasts
initialised at 00 UTC 19 Sept. Lines (arrows) represent the geopotential height (wind field) at
850 hPa: AV DIAL is shown in black and CNTL in grey. Note the different color scaling in (a).
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Figure 5.11: Forecast difference of geopotential height (m) at 500 hPa between AV DIAL and
CNTL for (a) +24 h and (b) +48 h forecasts initialised at 00 UTC 19 Sept. Lines (arrows)
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wards, humidity differences do not grow much in amplitude, but change their structure and

become inhomogeneous with alternating positive and negative areas (Fig. 5.10c). Higher

values of moisture in AV DIAL are located west of ex-Sinlaku at +48 h (Fig. 5.10d) and

forecast differences also spread to the east and polewards. The development of the pole-

ward trough is modified and a less pronounced system that is shifted further to the south

is seen in the AV DIAL forecast (Fig. 5.11b).
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Figure 5.12: Geographical maps of TE forecast error reduction (m2 s−2) for the AV DIAL
experiment compared to the control run for (a) +12 h, (b) +24 h, (c) +36 h and (d) +48 h
forecasts initialised at 00 UTC 19 Sept. The forecasts are verified with the CNTL analysis. The
analysis of 500 hPa geopotential height of the CNTL experiment is shown as solid line and the
geographical domain used for the averaging of the TE improvement as dashed line.

The TE error of the AV DIAL forecast is reduced compared to CNTL forecast from

+24 h to +60 h (Fig. 5.7). The signal in the TE error is related to the region where the

largest humidity and geopotential differences are found (Fig. 5.12), but also noise starts

to appear further to the south that is not directly linked to the observation influence.

Differences of TE error close to ex-Sinlaku and the trough to the north grow strongest
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and at +48 h a clear TE error reduction of the AV DIAL forecast is seen related to the

poleward trough. The changes of the humidity, geopotential and wind field of the trough,

caused by the initial changes in the moisture distribution of AV DIAL (Fig. 5.10a), are

reducing the TE error of the AV DIAL forecast considerably (Fig. 5.12d). Note that the

evolution on 21 Sept 2008 (Fig. 5.12), the second case with a clear positive forecast impact,

is similar but the modification of the humidity analysis connected with the remnants of

Sinlaku is more important for the forecast improvements.
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Figure 5.13: +12 h forecast of 12-hourly rainfall (colour shading), geopotential height (black
line) and wind field (black arrows) at 850 hPa initialised at 00 UTC 19 Sept for (a) ALL DIAL, (b)
AV DIAL and (c) CNTL. (d) The 12-hourly rainfall derived from the Tropical Rainfall Measuring
Mission (TRMM) data (3B42 V6)1.

Changes in the moisture analysis also affect the precipitation forecast. The accumulated

12-hourly rainfall forecast from ALL DIAL, AV DIAL and CNTL as well as the rainfall

product derived from Tropical Rainfall Measurement Mission (TRMM) data (3B42 V6) are

displayed in Fig. 5.13. The rainfall forecast of the experiments generally looks reasonable
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and agrees with the TRMM observations. Larger differences occur at the eastern side

of Typhoon Sinlaku around 34◦N, 142.5◦E, where the precipitation forecast of AV DIAL

seems to fit the TRMM based data best while no distinct differences between forecasts are

found in other regions.

5.5 Discussion and conclusion

A large data set of about 40,000 high-resolution humidity observations measured by a four-

wavelength DIAL system installed on-board of the DLR Falcon aircraft is assimilated into

the ECMWF global model using a version of the operational 4D-Var assimilation system.

A detailed comparison of the DIAL observations to dropsonde humidity observations is

performed. Single profiles of both observing systems show good agreement. Moist layers

and sharp gradient are represented correctly. In the statistical comparison, a bias between

DIAL and dropsonde observations is found, especially in the lower troposphere, where

DIAL observations are drier than the dropsondes. The overall bias of absolute humidity

is -0.142 g m−3. While the overall relative bias is less than -0.01%, a relative dry bias of

∼ -4.2% is seen from the ground up to 3 km. This value is comparable to results from an

intercomparison study during COPS, when a dry bias of the DLR DIAL system of -2.23%

was found compared to other water vapour lidar observations (Bhawar et al., 2011). Larger

errors of the DIAL system close to the ground may result from the selected weak water

vapour absorption line leading to reduced accuracy.

The assimilation of DIAL observations enables the comparison of model output fields

and observations against each other. Background and analysis departures are directly

calculated in the assimilation system, which minimises interpolation errors as no additional

interpolation steps are needed as in previous studies of Flentje et al. (2007) and Schäfler

et al. (2011a). Using all DIAL observations from eight selected cases, a bias between the

model background (i.e. short-range model forecast) and the observations of -0.281 g m−3

(-11.4%) is found with the model background being moister than the observations. The

relative bias against the model background is consistent at all heights and confirms the

findings of Flentje et al. (2007) and Schäfler et al. (2011a), who discovered a bias in the

range of 0-11% and 17.1%, respectively. These studies considered single flights located

in different regions of the globe while this study uses a larger data set within the same

geographical region. Dropsondes also show a negative bias against the model background

in the middle and upper troposphere, similar to the DIAL observations. This suggests a

1The TRMM data were acquired using the GES-DISC Interactive Online Visualization ANd aNalysis
Infrastructure (Giovanni) as part of the NASA’s Goddard Earth Sciences (GES) Data and Information
Services Center (DISC).
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moist model bias in these layers. In the lower troposphere, dropsondes indicate a dry bias

of DIAL observations.

DIAL observations can only be made in cloud free regions as lidar systems operate in

the visible and near infrared spectra and can not penetrate optically thick clouds or rain.

This inhomogeneous distribution of water vapour observations may also contribute to the

identified bias of the DIAL observations. It was highlighted before that the ECMWF model

in rainy or nonrainy areas can have opposite humidity biases of 5-10% of TCWV (Marécal

et al., 2001, 2002). When satellite humidity data were only used in rain-free conditions,

extrapolation of information into rainy areas often degraded the analysis by increasing the

bias (Andersson et al., 2005).

The DFS of DIAL is the largest compared to that of radiosonde and satellite humidity

observations. On average, DIAL observations reduce the moisture content of the analysis.

The accuracy of the analysis of ALL DIAL, AV DIAL and CNTL is evaluated by using

independent dropsonde humidity observations. On average, the RMS differences between

these dropsonde observations and ALL DIAL and AV DIAL analyses are reduced by 7.5%

and 5%, respectively, compared to CNTL.

In general, a smaller forecast influence of humidity observations compared to pressure,

wind or temperature is expected whenever diabatic processes do not affect the model dy-

namics explicitly and are not important for the forecast. In the experiments performed,

DIAL observations only lead to a clear positive forecast impact in two out of eight cases,

whereas the influence in the other six cases is less than ±2%. The observing system ex-

periments in Bengtsson and Hodges (2005) and Andersson et al. (2007) denied either a

subset of humidity observations or all humidity observations completely. In contrast, the

experiments in this study use the operational observational network with a few million ob-

servations each day plus a limited set of additional DIAL observations (∼3500 to 8500 per

day). Even when using all additional T-PARC dropsonde observations (wind, temperature

and humidity), a limited impact on midlatitude forecasts in the ECMWF was found, in

particular with the uncycled setup (Weissmann et al., 2011). A cycled experiment, that

assimilates all DIAL observations, was also performed within this study. However, no re-

sults of the cycled experiment are shown since the assimilation statistics of DIAL and other

humidity observations are not modified considerably, the forecast influence is comparable

to the uncycled ALL DIAL experiment and the influence of the DIAL observations is easier

to track in the uncycled case.

In some cases, changes to the moisture fields can affect the dynamics considerably as

seen on 19 Sept 2008. DIAL observations modify the humidity analysis at an apparently

sensitive region of a distinct north-south humidity gradient and next to a tongue of moist

air extending polewards to a developing midlatitude low-pressure system. These changes
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of the humidity influence the forecast and lead to a reduction of the TE forecast error up

to -6% from +24 h onwards.

The TC track forecast is not affected significantly by the DIAL observations in con-

trast to previous studies with LASE data (Kamineni et al., 2006; Biswas and Krishna-

murti, 2008). The smaller influence on TC track forecasts is likely related to the fact that

the LASE data studies apply a different assimilation procedure and use the Florida State

University global spectral model, whereas this study uses the operational ECMWF model

system with millions of satellite data assimilated. The influence of additional observations

on TC forecasts strongly depends on the assimilation and forecasting system which is also

documented in other studies (e.g. Chou et al., 2010; Weissmann et al., 2011).

DIAL observations are taken in cloud free regions, whilst convectively active and baro-

clinically unstable regions, where the moisture distribution plays an important role due to

diabatic processes, are often covered by clouds. A high correlation between the location of

clouds and meteorologically sensitive areas calculated using adjoint techniques was found

by McNally (2002), which highlights the importance of observations in cloudy and rainy

regions.

DIAL observations are assimilated with the full horizontal resolution (ALL DIAL) but

also averaged to grid box scale (AV DIAL). Results from both experiments are similar, but

the averaging setup seems to be more suitable as the bias is reduced and the forecast im-

provement is larger. Currently, the ECMWF 4D-Var analysis is computed at the resolution

of TL255 (∼80 km) which limits the influence of observations with finer resolution. Nev-

ertheless, spatial high-resolution DIAL observations are potentially valuable for mesoscale

models which have a horizontal model resolution similar to that of the observations and

can resolve diabatic processes such as convection explicitly. For future assimilation ex-

periments, the introduction of a bias correction of DIAL data may help to optimise the

influence of the DIAL humidity observations since variational assimilation methods assume

unbiased observations.
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Chapter 6

Conclusions and outlook

An unprecedented number of dropsonde soundings and DIAL humidity profiles was sam-

pled in the western North Pacific basin during T-PARC. The impact of these adaptive

airborne observations on the forecast performance of the ECMWF model was analysed by

conducting a series of different OSEs.

High impact weather events such as TCs directly affect the society. In order to minimise

the cost of damage and loss of lives, authorities are crucially dependent on accurate TC

track and intensity forecasts to coordinate successful evacuations and damage mitigations,

especially when a TC approaches land. For example, Taiwan is particularly exposed to TCs

in the western North Pacific and an average number of 4-5 storms (2003-2010) threaten

the island every year and cause fatalities and tremendous costs.

The study demonstrated that the adaptive T-PARC dropsonde observations are benefi-

cial for TC forecasts. In terms of TC track forecast errors, T-PARC dropsonde observations,

on average, reduced the track forecast errors of the two Typhoons Sinlaku and Jangmi in

the analysed period by 15%. The results differed for the two storms and the beneficial

impact of the dropsondes was larger during Sinlaku. The impact was most beneficial in

the pre-recurvature stage of the TCs when a large uncertainty in the track forecast was

present. The differences of a cycled and uncycled experimental setup were significant and

the improvements found in the cycled experiment were diminished in the uncycled one. In

the cycled experiment, the ‘data impact’ of the observations remains in the model system

and successive analyses are influenced by the latest adaptive observations and by changes

to the background field resulting from previous adaptive observations. This result under-

lines that the cycled mode, which also represents the operational setup, is most suitable

to achieve the largest overall impact of adaptive observations.

One of the main goals of this thesis was to examine in which location adaptive dropsonde

observations are most beneficial for the forecast of TCs. Based on a subjective classification,
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the dropsonde observations were separated into three different subsets depending on the

location relative to the TC. Different uncycled experiments were conducted to assess the

analysis and forecast influence of each particular set of adaptive observations.

The first set of dropsondes, launched in the vicinity of the TC, led to the largest TC

track forecast improvements, especially at initial times before landfall. These sondes were

located at an annulus around the TC centre at a distance of approximately 500 km. The

importance of this region was also often highlighted by different targeting guidances. The

second class, dropsondes deployed in SV-based sensitive areas which were not directly tied

to the storm itself (distance ≥ 700 km), only achieved small track forecast improvements.

There are indications that refinements in the calculation of SV sensitive areas relocate

the maximum sensitivity closer to the storm (Lang et al., 2011), but more work would be

required to gain significant results. In addition, SVs (unlike ETKF) do not consider the

actual analysis error of the model system. It may be assumed, that the analysis, produced

by a modern 4-D Var data assimilation system assimilating millions of satellite observations,

already represents the large scale flow patterns accurately compared to regions close to the

storm. This may limit the influence of adaptive observations in those distant sensitive

areas. The third group consisted of dropsondes placed in the TC centre and core. These

observations had a large analysis influence, and improved and deteriorated track forecasts

were found with an overall neutral impact. To date, operational data assimilation schemes

are not able to fully exploit the potential information of the TC centre and core observations

and the risk of a forecast degradation from assimilating these data is increased in the

ECMWF and other global models (Aberson, 2008; Weissmann et al., 2011).

The correct intensity forecast of a TC still remains challenging. Large intensity errors

were found in this study and intensity forecasts were only slightly improved by adaptive

dropsonde observations. Especially dropsondes in the centre and eye wall of the TC may

have potential to improve the TC intensity forecast as they are able to fix the centre of

the storm, modify the TC wind structure and reduce the central pressure of the system in

the analysis.

The positive influence of dropsonde observations on the typhoon track forecasts during

T-PARC is also relevant for THORPEX and contributed to the statement of the Data

Assimilation and Observing Systems Working Group (DAOS WG) that ‘targeted observa-

tions aimed at improving forecasts of tropical cyclone track have provided demonstrable

positive impact’1. However, considering ongoing operational surveillance programmes for

tropical cyclones in the Atlantic and the western North Pacific basin, the effectiveness of

adaptive observations and of sensitive area calculations has to be addressed continuously.

In the future, the discovered beneficial impact of dropsonde observations in the vicinity of

1http://web.sca.uqam.ca/∼wgne/DAOS/DAOS3−meeting/21−DAOSWG−03−−ICSC8.pdf
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the typhoon during T-PARC has to be analysed considering prospective refinements in the

forecast models, the assimilation systems and the sensitive area calculations (Lang et al.,

2011) as well as the influence of different stages of the TC and dynamical features affecting

its movement (Chen et al., 2009; Kim and Jung, 2009; Reynolds et al., 2009). Further, the

importance of deploying dropsondes all around the storm in contrast to only observing one

side of the TC has to be assessed.

In addition, operationally available observations of the GOS such as satellite observa-

tions could be utilised as targeted observations for tropical cyclones, for example by ap-

plying sensitive-area-based satellite data thinning (Bauer et al., 2011). A 10-year research

plan2 was recently proposed within the NOAA Hurricane Forecast Improvement Project

(HFIP). By optimising observing capabilities and providing advanced, high-resolution mod-

elling systems, HFIP intends to further improve track forecasts, extend the operational

forecast lead time out to 7 days, and push forward the accuracy of intensity forecasts that

showed only little progress during the last years (Zhang et al., 2011). Forecasts of TC

intensity and intensity chances are challenging and complex, and in order to fully exploit

the capabilities of high-resolution modelling the knowledge of the TC vortex structure also

needs to be improved (Gopalakrishnan et al., 2010).

Undoubtedly, there is a need for high-quality water vapour observations in operational

weather and climate prediction (e.g. Gérard et al., 2004), as the GOS is lacking accurate

high-resolution humidity observations. Newly developed remote sensing DIAL instruments

are able to provide precise observations with a high vertical and horizontal resolution. For

this reason, the potential of these new type of observations for NWP was analysed and

DIAL humidity observations sampled by an airborne instrument were assimilated into the

operational ECMWF global model for the first time. It was shown that the DIAL observa-

tions added information supplementary to the existing operational observing network and

their assimilation improved the quality of the analysis field. When new types of obser-

vations are assimilated into an NWP model, it is important to check whether systematic

errors between the observations and the model exist, since a bias in the observations can

systematically downgrade the data assimilation system and the quality of the forecast (e.g.

Agust́ı-Panareda et al., 2009). For the DIAL observations, a bias compared to the models

was identified which appears to be caused by the DIAL observations and uncertainties in

the data processing. Hence, a bias correction of the observations might help to optimise

the use of DIAL observations in the data assimilation system for future studies.

The adaptive DIAL humidity observations showed an overall small forecast impact.

However, two cases were discovered where DIAL observations had a considerable beneficial

2http://www.nrc.noaa.gov/plans−docs/HFIP−Plan−073108.pdf
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impact on the forecast. For these cases, the moisture, which was advected into a develop-

ing extratropical cyclone, was modified in the initial conditions. This indicates that the

inflow region of moisture into a cyclone can be particularly sensitive to additional humidity

observations and errors in the moisture field in this regions directly affect the prediction of

the cyclone. These findings emphasise the sensitivity of the cyclone forecast to an accurate

initial humidity analysis in the area where diabatic processes such as latent heating and

surface heat fluxes are present as these processes play a crucial role in the development of

the cyclone.

Diabatic process are also important for the intensification and movement of a TC and an

improved initialisation of the TC related moisture distribution would certainly be beneficial

for the forecast of the storm. Unfortunately, the vicinity of the TC is characterised by a

large amount of convective clouds, which absorb the lidar signal and make it impossible to

observe the humidity distribution close to the storm by lidar instruments.

The assimilation of the DIAL observations showed promising results and the importance

of a correct humidity analysis near a developing extratropical cyclone was highlighted. To

quantify the humidity inflow into extratropical cyclones and to observe latent heat fluxes

in regions relevant for extratropical cyclogenesis are key aspects which are addressed in

ongoing studies (Schäfler et al., 2011b) and will be examined in future field campaigns

with the new High Altitude and Long Range Research Aircraft (HALO). Instead of col-

lecting observations in areas indicated by “classical” targeting guidance, DIAL humidity

observations in the upstream regions of prominent diabatic processes may not only help to

improve the understanding of involved moist processes, but could also provide a valuable

data set for the assimilation into NWP models.
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List of abbreviations

3D-Var three-Dimensional Variational

4D-Var four-Dimensional Variational

ADSSV Adjoint-Derived Sensitivity Steering Vector

AIRS Atmospheric Infrared Sounder

ALL DIAL uncycled OSE assimilating all DIAL observations

AMDAR Aircraft Meteorological Data Relay

AMSR Advanced Microwave Scanning Radiometer

AMSU Advanced Microwave Sounding Unit

AMV Atmospheric Motion Vector

AV DIAL uncycled OSE assimilating horizontally averaged DIAL observations

A-TReC Atlantic THORPEX Regional Campaign

BgQC Background Quality Control

CALJET California Land-falling Jets

CeObs uncycled OSE assimilating dropsonde observations in the TC center

and core region

CMC Canadian Meteorological Center

CNTL control OSE without DIAL observations

COPS Convective and Orographically-Induced Precipitation Study

DAOS WG Data Assimilation and Observing Systems Working Group

DFS Degree of Freedom for Signal

DIAL Differential Absorption Lidar

DLR Deutsches Zentrum für Luft- und Raumfahrt

DOTSTAR Dropwindsonde Observations for Typhoon Surveillance near the Tai-

wan Region

DROP cycled OSE assimilating dropsonde observations

DROP UnCy uncycled OSE assimilating dropsonde observations

DTS Data Targeting System

ECMWF European Centre for Medium-Range Weather Forecasts
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EOL Earth Observing Laboratory

EPS Ensemble Prediction System

ERA40 ECMWF 40-yr Reanalysis

ESA European Space Agency

ET Extratropical Transition

ETKF Ensemble Transform Kalman Filter

EZMW Europäisches Zentrum für Mittelfristige Wettervorhersage

E-TReC European THORPEX Regional Campaign

FASTEX Fronts and Atlantic Storm-Track Experiment

GFS Global Forecasting System

GOS Global Observing System

GPS Global Positioning System

GTS Global Telecommunication System

HIRS High Resolution Infrared Sounder

HFIP Hurricane Forecast Improvement Project

IASI Infrared Atmospheric Sounding Interferometer

IHOP 2002 International H2O Project

HALO High Altitude and Long Range Research Aircraft

JMA Japan Meteorological Agency

JTWC Joint Typhoon Warning Center

L91 vertical model resolution; exemplary: 91 levels

LASE Lidar Atmospheric Sensing Experiment

MHS Microwave Humidity Sounder

MM5 fifth–generation Pennsylvania State University / NCAR Mesoscale

Model

MSL Mean Sea Level

MSLP Mean Sea Level Pressure

MTE Moist Total Energy

MTSAT Multi-functional Transport Satellite

NCAR National Center for Atmospheric Research

NCEP National Centers for Environmental Prediction

NOAA National Oceanic and Atmospheric Administration

NOGAPS Navy Operational Global Atmospheric Prediction System

NoObs control OSE without dropsonde observations

NORPEX North-Pacific Experiment

NRL Naval Research Laboratory

NWP Numerical Weather Prediction
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OI Observations Influence

OSE Observing System Experiment

PANDOWAE Predictability and Dynamics Of Weather Systems in the Atlantic-

European Sector

PWC Precipitable Water Content

ReObs uncycled OSE assimilating dropsonde observations in remote sensitive

regions

RMS Root Mean Square

RSMC Regional Specialized Meteorological Center

SBUV Solar Backscattering Ultraviolet

SSM/I Special Sensor Microwave / Imager

SV Singular Vector

SYNOP in-situ synoptic observation

TC Tropical Cyclone

TCS08 Tropical Cyclone Structure 2008

TCWV Total Column Water Vapour

TE Total Energy

TEMP radiosonde sounding

THORPEX The Observing System Research and Predictability Experiment

TimeErr cycled OSE assimilating dropsonde observations with erroneous ob-

servation times

TRMM Tropical Rainfall Measurement Mission

T-PARC THORPEX Pacific Asian Regional Campaign

TL799 spectral model resolution; exemplary: truncation after wave number

799

UKMO United Kingdom Met Office

UTC Coordinated Universal Time

VarQC Variational Quality Control

ViObs uncycled OSE assimilating dropsonde observations in the vicinity of

the TC

WALES Water Vapour Lidar Experiment in Space

WMO World Meteorological Organization

WSR Winter Storm Reconnaissance

WWRP World Weather Research Programme
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