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1. SUMMARY 

 

The integrity of the genome is constantly threatened by environmental influences and cellular 

metabolism processes. DNA double strand breaks (DSBs) are among the most hazardous of 

all DNA lesions and arise from failures in genome metabolism processes and from exogenous 

sources. In addition they are important programmed intermediates in DNA metabolism. Cells 

have evolved efficient pathways to repair DSBs and here the Mre11-Rad50-Nbs1 (MRN) 

complex is a central key factor. Mre11 and Rad50 are conserved in all domains of life, 

whereas Nbs1 is a eukaryote-specific protein and plays regulatory roles within the complex. 

MRN senses and binds DSBs, recruits other repair factors and also stabilizes DSBs by its 

tethering activity. Furthermore it processes DSB ends for repair and is involved in DNA 

damage signaling by co-activating the checkpoint kinase ATM. 

Null mutations of Mre11-Rad50-Nbs1 coding genes are lethal in higher eukaryotes, whereas 

hypomorphic mutations induce different heredity diseases. Ataxia-telangiectasia like disorder 

(A-TLD) and Nijmegen breakage syndrome (NBS) are linked to mutations in Mre11 and 

Nbs1 respectively. However, also mutations in Mre11 and Rad50 may lead to an NBS-like 

disorder. All diseases share genomic instability and delayed checkpoint activation. 

The aim of this work was to characterize the structural and functional interplay between 

eukaryotic Mre11 and Nbs1 and to analyze how it influences the role of the complex in repair 

and checkpoint activation. For this purpose proteins form the fission yeast 

Schizosaccharomyces pombe were studied and the Mre11 nuclease dimer alone and in 

complex with the interacting region of Nbs1 determined as crystal structures. The Mre11-

Nbs1 structure reveals binding of two Nbs1 molecules as extended peptides to one Mre11 

dimer at the outside of the nuclease domains. One Nbs1 molecule mediates also a second 

interaction with Mre11 by asymmetrically binding across the Mre11 dimer and thereby 

determining its dimeric conformation. The interfaces of Mre11 and Nbs1 were analyzed and 

verified by mutational analysis in vitro using recombinant S. pombe proteins and in vivo in 

Saccharomyces cerevisiae. The structures also allowed studying of the molecular basis for 

several A-TLD and NBS-like disease mutations. As a result, all analyzed A-TLD mutations 

exhibited a weakened but not abolished Nbs1 interaction, which might explain the 

hypomorphic phenotype of A-TLD. Finally a model is proposed, in which a conformational 

switch in the Mre11 dimer and modulated Nbs1 interactions permit subsequent DSB repair 

and signaling. 
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2. INTRODUCTION 

 

2.1 Biological roles of DNA double-strand breaks 

 

The maintenance of genomic stability is a fundamental problem for all living organisms, since 

the integrity of every genome is constantly threatened by different sources of DNA damage. 

DNA double strand breaks (DSBs) are among the most hazardous DNA lesions. They can 

lead to chromosomal rearrangements and induction of cancerogentic diseases, if not repaired 

properly. However, DSBs are also important intermediates in different DNA metabolism 

processes where they are temporary inserted into the genome. The following chapter is giving 

a short overview about the different sources of DSBs and their impact on the genomic 

stability. 

 

2.1.1 DNA double strand breaks in cellular metabolism processes 

 

The majority of accidentally occurring DSBs in proliferating cells arise from aberrations in 

DNA replication: Replication at blocking lesions or single-strand nicks can lead to a 

replication fork collapse, which results in the generation of DSBs. (Costanzo et al. 2001; 

Kuzminov 2001). But also (by)products of normal cellular metabolism processes like e.g. 

reactive oxygen species (ROS) contribute significantly to the introduction of these blocking 

lesions into the DNA (Cadet et al. 1997; Borde and Cobb 2009). Since most often a sister 

chromatid is available as a repair template in S-phase, DSBs arising from collapsed 

replication forks are mainly repaired by the homologous recombination (HR) machinery 

(Errico and Costanzo 2010). 

Importantly, DSBs are not solely harmful, but also play beneficial roles in the cell. During 

various biological processes, DSBs are introduced transitionally into the genome in 

programmed ways: One example is the switching of mating types in the budding yeast 

S. cerevisiae: This process is initiated by a site specific cleavage of the HO endonuclease at 

the MAT gene locus, which generates a DSB. Subsequently, the mating type gene is switched 

by unidirectional gene conversation via recombination with the HML or HMR gene cassette, 

which carry silenced copies of the mating types a and α respectively (Haber 1998; Coic et al. 

2006). 

http://dict.leo.org/ende?lp=ende&p=Ci4HO3kMAA&search=transitionally&trestr=0x8004
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The programmed introduction of DSBs is also a crucial event during the generation of 

immunoglobulins (Ig) and T cell receptors (TCR) by the vertebrate immune system. The 

required diversity of these molecules is achieved by a process called V(D)J recombination. 

Combination of Variable (V), Diversity (D) and Joining (J) encoding gene segments through a 

specific DNA rearrangement mechanism leads to a broad diversity of proteins and allows the 

recognition of many different antigens (Tonegawa 1983; Dudley et al. 2005). The process 

begins with the introduction of DSBs by the RAG1/RAG2 proteins, which recognize 

recombination signal sequences (RSS) at the borders of the V, D and J gene elements. This 

results in two hairpin-sealed coding ends and two blunt signal ends. The following processing 

steps are carried out by proteins of the non-homologous end joining (NHEJ) machinery, 

which mediate the error prone repair of the breaks (Raghavan et al. 2005).  

The specificity and efficiency of immunoglobulins is further increased after activation of the 

humoral immune response by antigens via two different processes: Class switch 

recombination (CSR) leads to the exchange of the Ig constant region of antibodies and allows 

the generation of different antibody classes, whereas somatic hypermutation introduces 

additional mutations into the Ig variable region. The activation-induced cytidine deaminase 

(AID) in both processes initiates the introduction of DSBs which are joined and subsequently 

repaired by NHEJ (Soulas-Sprauel et al. 2007; Dinkelmann et al. 2009; Zha et al. 2011). 

Important roles of the Mre11-Rad50-Nbs1 complex in different NHEJ dependent repair 

processes are discussed below (2.4.4). 

In most sexually reproducing organisms programmed DSBs are also generated during the 

process of meiosis. After the alignment of homologous chromosomes in meiotic prophase I, 

DSBs are introduced at specific hot spot sites on the chromosomes by the type II 

topoisomerase-like enzyme Spo11. The covalently bound Spo11 is then removed from the 

DNA by the Mre11-Rad50-Nbs1 complex and resection of the 5`-strand takes place. Finally, 

the DSBs are repaired by meiotic recombination between homologous chromosomes resulting 

in gene conversion or chromosomal crossing over (Borde 2007; Inagaki et al. 2010). 

 

2.1.2 Environmentally caused DNA double strand breaks 

 

The genome is not only exposed to endogenous mutagens like oxidative byproducts of 

cellular respiration, but also environmental agents like ionizing radiation, UV-light or 

http://en.wikipedia.org/wiki/Antibody
http://en.wikipedia.org/wiki/T_cell_receptor
http://en.wikipedia.org/wiki/Immune_system
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genotoxic chemicals can cause various DNA damages. These include directly or indirectly 

introduced DSBs (Hoeijmakers 2001).  

Ionising radiation (IR) occurs naturally e.g. by radioactive decay of instable atomic nuclei or 

by cosmic radiation. Besides, IR is used in medical procedures like X-ray inspections or 

radiation therapy in cancer treatment (Ciccia and Elledge 2010). IR produces a broad 

spectrum of different DNA damages, which are introduced via the production of reactive 

oxygen species (Mahaney et al. 2009). Most often IR leads to DNA base damages or 

introduction of DNA single-strand breaks (SSBs), which are repaired by base excision repair 

(BER) or single strand repair pathways (Almeida and Sobol 2007; Dianov and Parsons 2007). 

IR-caused DSBs occur when two SSBs are introduced in close proximity on opposite DNA 

strands (Sutherland et al. 2000). Therefore, IR caused DSBs often possess single strand 

overhangs. In addition IR produces DNA breaks with 3' termini carrying phosphate or 

phosphoglycolate groups, which need to be removed before ligation of the breaks (Henner et 

al. 1983). 

UV light on the other hand can indirectly provoke DSB formation by introducing 6-4 

photoproducts and cyclobutane pyrimidine dimers into the DNA. These bulky lesions may 

induce replication-fork collapse and thereby DSBs if not repaired properly by the nucleotide 

excision repair (NER) machinery (Limoli et al. 2002). Similar effects are induced by different 

genotoxic chemicals, which also create replication blocking lesions like e.g. different 

alkylating agents, the intrastrand crosslinking anti-cancer-drug cisplatin or the interstrand 

crosslinking agent mitomycin (Bosco et al. 2004; Al-Minawi et al. 2009).  

In addition, chemicals, which poison the topoisomerase enzymes, can promote DSB 

formation by stabilizing the cleavage complex in which the topoisomerase is covalently 

attached to the cleaved DNA (Degrassi et al. 2004). The Topoisomerase I (TopI) inhibitor 

camptothecin (CPT) triggers the accumulation of TopI-bound SSBs, which may be converted 

to DSBs when a replication fork collides with the cleavage complex (Jacob et al. 2005). 

Topoisomerase II (TopII) enzymes introduce DSBs in the DNA during their catalytic cycle. 

Top II inhibitors like etoposide increase the concentration of cleavage complexes, which can 

be converted to permanent DSBs by collision with polymerases or helicases (Bromberg et al. 

2003). 
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2.2  DNA double-strand repair pathways - A short overview 

 

To protect the genome and thus ensure the integrity of its coded information, cells have 

evolved different sophisticated mechanisms to repair DSBs: The two major pathways here are 

homologous recombination (HR) and non-homologous end joining (NHEJ) (Harper and 

Elledge 2007).  

HR enables the cell to repair DSBs in a relatively error free manner by using a sister- or 

homologous chromatid as a template (Figure 2.1). The repair of DSBs by HR comprises 

several sequential steps. First, 3´ ssDNA tails adjacent to the break have to be generated by 

the combined action of several nucleases and helicases. The Mre11-Rad50-Nbs1 (MRN) 

complex plays here crucial roles in the first steps of HR by sensing and tethering the break but 

also in mediating the initiation of resection (2.4.1) (Huertas 2010). The resected 3´ ssDNA tail 

is first coated by RPA, which is replaced by Rad51 (RecA in bacteria). Rad51 assembles on 

the ssDNA to build a helical nucleoprotein filament, which in concert with proteins of the 

Rad52 epistasis group and other HR proteins screens for a homologous sequence (New et al. 

1998; Symington 2002). The nucleoprotein filament invades into the homologous donor 

sequence and after removal of Rad51 hybridizes with it via normal base pairing, thereby 

building a displacement loop (D-loop) structure (Sung and Klein 2006). After strand 

extension by a DNA polymerase, using the donor strand as a template, the D-loop 

intermediate can be repaired by two different HR mechanisms: (1) the double-strand break 

repair (DSBR) pathway or (2) synthesis-dependent single strand annealing (SDSA). In DSBR 

the second 3´ ssDNA tail, which was not involved in D-loop formation, is captured by 

annealing to the extended D-loop and thereby an intermediate structure with two Holliday 

junctions is formed (Bzymek et al. 2010). Depending on how the Holiday junctions are 

resolved, DSBR results in crossover or non-crossover recombination products (Heyer 2004). 

In the alternative SDSA pathway the invading 3´ ssDNA tail is displaced after its extension 

and reanneals to the single-stranded DNA tail, that was not involved in D-loop formation. 

Repair of DSBs by the SDSA results always in non-crosslinking recombination products (San 

Filippo et al. 2008). 

Sometimes DSBs are closely flanked by repeat sequences. In this case recombination repair 

via single-strand annealing (SSA) may occur. Like in DSBR or SDSA also SSA is initiated by 

end resection, which generates 3´ ssDNA tails, although it does not require a homologous 

chromosome for recombination. Instead, the resected ends anneal via their repeat sequences, 
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followed by nucleolytical removal of nonhomologous flap structures and ligation. SSA results 

in the deletion of the sequence regions between the repeat elements and is therefore 

considered to be potentially mutagenic (Ivanov et al. 1996; Mansour et al. 2008). 

 

 

Figure 2.1: Overview of the major DSB repair pathways. Figure adapted from (Pandita and Richardson 

2009). DSBs can be repaired by either non-homologous end joining (NHEJ) or homologous recombination (HR). 

For details see text. 

 

The more error-prone NHEJ pathway is utilized especially in G1 phase when no sister 

chromatid is available for recombinational repair (Figure 2.1). Depending on the organism, 

however it also occurs in S- and G2 phase cells. NHEJ promotes direct ligation of the two 

ends. The main NHEJ pathway, also called classical NHEJ (c-NHEJ) pathway, is initiated 

through binding of the Ku70/80 heterodimer to the DSB (Weterings and van Gent 2004). 

Next, the Ku heterodimer recruits the catalytic subunit of the DNA-dependent protein kinase 

(DNA-PK). The newly formed Ku/DNA-PK complex then places both DSBs into 
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juxtaposition. DNA-PK gets autophosphorylated upon binding to Ku and the DNA. This is 

required for the further recruitment of other NHEJ proteins to the DSB (Meek et al. 2007). If 

the DSB ends do not require further processing, they are directly ligated by a complex 

consisting of DNA ligase IV, XRCC4 and XLF/Cernunnos (Ahnesorg et al. 2006). Often, the 

DNA ends are not compatible for direct ligation, for example if the ends possess ssDNA 

overhangs or damaged bases. In this case different other NHEJ factors like the Artemis 

nuclease, the Pol TdT (terminal deoxynucleotidyl transferase), pol lambda, pol mu and also 

the Mre11-Rad50-Nbs1 complex process the end to allow ligation by the ligase IV/XRCC4 

complex (Figure 2.1) (Lieber 2010).  

Sometimes NHEJ employs also alternative pathways (a-NHEJ), in which additional factors 

distinct from the c-NHEJ machinery facilitate the repair. One of these a-NHEJ pathways is 

called microhomology-mediated endjoining (MMEJ) in which several bases are 

nucleolytically removed from the DSB. This allows hybridization of single-stranded DNA 

ends at short stretches of sequence homology. Therefore, MMEJ is considered to be highly 

mutagenic (Haber 2008; Fattah et al. 2010). Mre11 was reported to be the major nuclease in 

the resection procedure of MMEJ, which generates DSBs with compatible microhomology 

sequences (Rahal et al. 2010). 

 

2.3 The Mre11-Rad50-Nbs1 complex - biochemistry and structural architecture  

 

The Mre11-Rad50-Nbs1/Xrs2 (MRN(X) complex plays various central roles in most, if not 

all DNA double-strand break repair pathways. It senses and binds to DSBs and functions as a 

recruiting platform for many other DNA repair proteins. Furthermore, it is a scaffold protein, 

which stabilizes DSBs via its tethering activity. MRN is also involved in nucleolytic 

processing of DNA ends and functions in DNA damage signaling by co-activating the 

checkpoint kinase ATM. MRN comprises the Mre11 endo/exonuclease dimer, two Rad50 

ATP-binding cassette proteins and contains in eukaryotic organisms also the third subunit 

Nbs1 (Xrs2 in S. cerevisiae) as a regulatory factor (Assenmacher and Hopfner 2004; Williams 

et al. 2010). The core complex consisting of the catalytic subunits Mre11 and Rad50 is 

conserved from bacteria and archaea to eukaryotes and is even found in some viruses like the 

bacteriophage T4 (Sharples and Leach 1995; Hopfner et al. 2000; Herdendorf et al. 2011). 

Mre11, which stands for Meiotic recombination 11, was first identified in a genetic screen for 

proteins functioning in meiosis in S. cerevisiae (Ajimura et al. 1993). Rad50 was discovered 
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already earlier in genetic yeast studies were its deletion mutant strain was reported to be 

sensitive to ionizing radiation and to produce inviable spores in meiosis (Game and Mortimer 

1974). The human homologue of Nbs1, which is also called Nibrin, was functionally 

identified in 1998, even though the genetic disease Nijmegen breakage syndrome, which is 

linked to mutations in the Nbs1 gene, was known since much longer times (Weemaes et al. 

1981; Varon et al. 1998).  

 

2.3.1 Biochemical in vitro activities of Mre11-Rad50-Nbs1 

  

Biochemical in vitro studies with bacterial, archaeal, yeast and human Mre11 and Rad50 

proteins revealed that Mre11 possesses Mn
2+

 dependent nuclease activities: The dsDNA 5-3´ 

exonuclease activity of Mre11 is dependent on ATP binding by Rad50 in bacteria and 

archaea, while being rather unaffected by ATP binding in eukaryotes. The ssDNA 

endonuclease activity appears to be ATP independent (Furuse et al. 1998; Paull and Gellert 

1998; Trujillo et al. 1998; Connelly et al. 1999; Hopfner et al. 2001). Mre11 exhibits also the 

ability to open and process hairpin DNAs in an ATP dependent manner (Paull and Gellert 

1998; Connelly et al. 1999; Trujillo and Sung 2001). Additionally, its nuclease activity can 

remove covalently bound proteins from DNA ends (Connelly et al. 2003). The importance of 

Mre11`s nuclease activity for its in vivo functions is discussed below (2.4). 

The exact function of the ATPase activity of Rad50 was longtime puzzling. As already 

mentioned, it stimulates the nucleolytic cleavage activity of Mre11 on hairpin structures. 

Further, it was shown to be important for tethering DNA ends, and a Rad50 signature motif 

mutant, which is impaired in ATP binding, lacks the ability to stimulate the checkpoint kinase 

ATM in vitro (Lee and Paull 2005; Dupre et al. 2006). In addition, biochemical studies with 

recombinant human MRN proteins indicated also a stimulatory role of Rad50 ATP binding 

for melting and unwinding of DNA secondary structures (Paull and Gellert 1999). Recent data 

from the Hopfner group revealed that ATP binding by Rad50 induces conformational changes 

within the Mre11-Rad50 complex which promotes binding of DNA ends (Lammens et al. 

2011). 

Nbs1 possesses no own catalytic activity but plays regulatory roles within the eukaryotic 

MRN complex. Human Nbs1 and the homologous Xrs2 protein from S. cerevisiae were 

shown to stimulate DNA binding as well as nucleolytic hairpin processing by Mre11-Rad50 

(Paull and Gellert 1999; Lee et al. 2003). Moreover, Nbs1 is a co-activator of the checkpoint 
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kinase ATM in concert with Mre11-Rad50, which was also observed by in vitro reconstitution 

assays with the recombinant human proteins (Falck et al. 2005; Lee and Paull 2005; You et al. 

2005). 

 

2.3.2 Structural architecture of the Mre11-Rad50-Nbs1 complex 

 

The Mre11-Rad50 (MR) core complex is a heterotetramer consisting of two Mre11 and two 

Rad50 molecules. In eukaryotes it associates furthermore with one or two molecules of Nbs1 

(or the homologous Xrs2 protein in S. cerevisiae) to build the MRN(X) complex (Figure 2.2 

A) (Paull and Gellert 1999; van der Linden et al. 2009). Atomic force microscopy data 

(Figure 2.2 B) showed that MRN consists of a globular head region, which harbors the 

catalytic functions of the complex and contains the Mre11 dimer, the ABC-ATPase domains 

of Rad50 and the Nbs1 molecules. A large helical region, which links the N- and C-terminal 

ATPase domains of Rad50, folds into a long coiled coil tail, which protrudes from the 

catalytic head region (de Jager et al. 2001; Hopfner et al. 2002; Moreno-Herrero et al. 2005).  

 

 

Figure 2.2: Structural organization of the MRN complex and DNA induced mesoscale conformational 

changes: (A) Model of the eukaryotic MRN complex. MRN consists of a globular head which contains the 

Mre11 dimer, two Rad50 ABC ATPases and two Nbs1 molecules. A long flexible coiled-coil region protrudes 

from each Rad50 molecule. A Zinc-hook dimerization domain at the other end of the coiled-coil allows 

interaction between different MRN complexes. The Figure was adapted from (Stracker and Petrini 2011).  

(B) Atomic force microscopy (AFM) images of the human MRN complex in the presence and absence of DNA. 

For each structural arrangement of MRN a schematic model is shown. Left figure: Image of the human MRN 
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complex in the absence of DNA, resolving clearly the globular head and the coiled-coil region. Middle figure: 

Upon binding of the head region to DNA (here 90bp dsDNA), the coiled-coils are oriented in a parallel 

conformation. Left figure: MRN intercomplex interaction, mediated by the apical zinc-hook domain. All figures 

from (B) are adapted from (Moreno-Herrero et al. 2005). 

 

The Rad50 coiled-coil tail harbors an apical zinc-hook dimerization motif that allows the 

interaction with other MRN complexes (Figure 2.2 A) (Hopfner et al. 2002). 

The conserved N-terminus of Mre11 consists of a phosphodiesterase domain and a C-

terminally adjacent DNA capping domain (Figure 2.3). Yeast two hybrid studies with human 

Mre11 and Nbs1 indicated that the phosphodiesterase domain harbors the interaction site for 

Nbs1 (Desai-Mehta et al. 2001). However, the exact locations of Nbs1 interaction regions 

within Mre11 were unknown and could be identified during the work for this thesis. The 

interaction region(s) in Mre11 for Rad50 were first roughly mapped with deletion mutants in 

S. cerevisiae and were recently confirmed by combined structural and biochemical studies 

(Chamankhah and Xiao 1999; Lammens et al. 2011; Lim et al. 2011; Williams et al. 2011). 

Eukaryotic Mre11 possesses two distinct DNA interaction motifs which flank the main 

binding site for Rad50 (Figure 2.3). Whereas the DNA interaction motif adjacent to the 

capping domain was reported to be important and sufficient for mitotic repair in S. cerevisiae, 

the C-terminal motif is crucial for DSB formation and spore viability in meiosis (Furuse et al. 

1998; Usui et al. 1998). 

Rad50 contains a bipartite ATP-binding cassette - ATPase (ABC-ATPase), which is build up 

by an N-terminal and a C-terminal domain, separated in the primary structure by a long 

coiled-coil region (Figure 2.3). The N-terminal domain harbors the Walker A motif and the C-

terminal domain the Walker B and signature motifs. A highly conserved Cys-X-X-Cys 

sequence maps to the center of the coiled-coil region. It folds into the MRN intercomplex 

mediating zinc-hook motif. Rad50`s major binding sites for Mre11 map to the N- and C-

terminal ends of the coiled-coil region (Hopfner et al. 2000; Hopfner et al. 2002; Lammens et 

al. 2011). 

The eukaryotic Nbs1 /Xrs2 protein is the least conserved compound of the MRN(X) complex 

(Figure 2.3). Its N-terminal region consists of a Forkhead domain and two BRCT domains, 

which mediate binding of the MRN to different phosphoproteins in DNA repair (Palmbos et 

al. 2005; Hari et al. 2010). The C-terminal region appears to be mainly unstructured as seen 

by limited proteolysis analysis for the S. pombe protein homologue (Williams et al. 2009). It 
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contains interaction motifs for Mre11 and the checkpoint kinase ATM (Desai-Mehta et al. 

2001; Ueno et al. 2003; Falck et al. 2005; You et al. 2005). 

 

 

Figure 2.3: Domain architecture of Mre11-Rads50-Nbs1: Mre11 consists of a conserved N-terminal 

phosphodiesterase and an adjacent DNA capping domain. The C-terminal region contains a hydrophobic 

interaction motif for Rad50, which is flanked by two DNA binding regions. Rad50 is build up of a bipartite 

ABC-ATPase cassette, which is separated by a long coiled-coil region. An MRN intercomplex interaction 

mediating Zn-hook maps to the central coiled-coil region. Nbs1 contains an N-terminal phosphoprotein binding 

module, which comprises a Forkhead and two BRCT domains. The C-terminus possesses interaction sites for 

both Mre11 and ATM. Domain maps are adapted from (Assenmacher and Hopfner 2004; Stracker and Petrini 

2011). 

 

Mre11 is a dimeric molecule in solution and the Mre11-Mre11 interaction is mediated via the 

phosphodiesterase domains (Hopfner et al. 2001). Importantly, Mre11 dimerization is crucial 

for the functionality of the MR(N) complex. It was e.g. observed in the archaeal Mre11-DNA 

crystal structure from Pyrococcus furiosus that both molecules of the Mre11 dimer bind 

cooperatively to one DNA molecule (Figure 2.4 C). The same authors showed also 

biochemically, that mutations leading to Mre11 dimer disruption in the yeast 

Schizosacchaormyces pombe render cells sensitive to different genotoxic agents (Williams et 

al. 2008). 

Recently, crystal structures of Mre11-Rad50 complexes from bacteria and archaea were 

published by the Hopfner group and others. These structures reveal that the complex exhibits 

an open form with a central Mre11 nuclease dimer and peripherial Rad50 molecules in the 

absence of ATP or DNA (Figure 2.4 A). Binding of ATP leads to the dimerization of Rad50 

molecules (Figure 2.4 B) and also increases - at least in the case of Thermotoga maritima 

Mre11-Rad50 - the DNA affinity of the complex (Lammens et al. 2011; Lim et al. 2011; 

Williams et al. 2011). 
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Figure 2.4: Published crystal structures of Mre11-Rad50 and Nbs1. (A) Structure of the Mre11-Rad50 

complex from the thermophilic bacterium Thermotoga maritima at 3.4 Å resolution (Lammens et al. 2011). (B) 

Structure of Mre11-Rad50 from the archaeal organism Methanococcus jannaschii bound to ATPyS at 3.1 Å 

resolution (Lim et al. 2011). (C) Structure of the Mre11 nuclease dimer from the archaeal organism Pyrococcus 

furiosus in complex with a hairpin DNA at 2.2 Å resolution (Williams et al. 2008). (D) Structure of the N-

terminus of Nbs1 from Schizosaccharomyces pombe at 2.8 Å resolution. The structure contains the Forkhead 

domain and the two BRCT domains, which are all involved in binding of phosphoproteins (Williams et al. 

2009). 

 

For Nbs1/Xrs2, only the N-terminal region is structurally characterized by crystal structures 

of the Forkhead-domain and two BRCT domains from the fission yeast Schizosaccharomyces 

pombe and an NMR-structure of the second BRCT domain from Xenopus laevis (Figure 2.4 

D). The structures from S. pombe Nbs1 show a very compact arrangement of the Forkhead 

and BRCT domains and were proposed to be linked to Mre11-Rad50 via the flexible C-

terminus of Nbs1 (Xu et al. 2008; Lloyd et al. 2009; Williams et al. 2009). However, the 

interaction between Nbs1 and Mre11-Rad50 is not understood on a molecular level yet. 

Therefore, an atomic structure of eukaryotic Nbs1 in complex with Mre11 or Rad50 would be 
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highly valuable to help understanding the regulatory functions of Nbs1 within the MRN 

complex. 

 

2.4 The Mre11-Rad50-Nbs1 complex in double-strand break repair 

 

2.4.1 The Mre11-Rad50-Nbs1 complex in homologous recombination  

 

The Mre11-Rad50-Nbs1/Xrs2 MRN(X) complex is one of the first complexes which localize 

to DSBs and plays various key roles in repair by sensing DSB ends, stabilizing breaks, 

initiation of DNA resection and damage signaling. Several studies suggest antagonistic roles 

for MRN(X) and the Ku complex, which is the second cellular DSB sensor, in the early phase 

of repair events. Both complexes sense and bind to DSBs but whereas the MRN(X) complex 

is the core initiation factor for HR, the Ku complex promotes NHEJ. However, MRN(X) is 

also involved in different NHEJ repair pathways (2.4.4). It has been shown that the Ku 

complex suppresses homologous recombination by inhibiting MRN(X) complex dependent 

DNA end resection in G1 phase, but much less in S and G2 phase. How exactly the choice of 

pathway is regulated in a cell-cycle dependent manner is only poorly understood yet, but it is 

clear that DNA 5´-strand resection by MRN(X) and other nucleases shifts the balance towards 

the HR pathway (Clerici et al. 2008; Zierhut and Diffley 2008; Shim et al. 2010).  

Initiation of HR by resection depends strongly on the MRN(X) complex and the Sae2 protein 

(in S. cerevisiae) or its homologues Ctp1 (in S. pombe) and CtIP (in metazoans), which are 

poorly conserved in sequence (Figure 2.5 A). In addition, the phosphorylation of Sae2 or CtIP 

by cyclin-dependent protein kinases is crucial for this step (Limbo et al. 2007; Huertas et al. 

2008; Huertas and Jackson 2009). The dependence of initial DNA 5´ end resection on the 

nuclease activity of Mre11 differs between organisms. Whereas the nuclease deficient Mre11 

H125N mutant exhibits only a mild phenotype in S. cerevisae, the equivalent mutations in 

S. pombe (H134S) or mouse (H129N) cause severe radiosensitivity and embryonic lethality, 

respectively. One hypothesis which might explain these divergent phenotypes is that the 

presence of Ku is more dominating in S. pombe and mice, thereby raising the barrier to 

initiate resection. (Lewis et al. 2004; Limbo et al. 2007; Buis et al. 2008; Williams et al. 2008; 

Mimitou and Symington 2011). 
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The exact functional role of Sae2/Ctp1/CtIP in the resection procedure remains controversial. 

The S. cerevisiae Sae2 protein was shown to possess an in vitro nuclease activity on its own, 

which together with Mre11 might function in resection (Lengsfeld et al. 2007). However, no 

nuclease activity was reported for S. pombe Ctp1 and human CtIP. For both organisms, the 

proteins were suggested to act as co-factors of MRN and to stimulate the resection activity of 

Mre11 (Limbo et al. 2007; Sartori et al. 2007). Resection by MRN(X) and Sae2/Ctp1/CtIP is 

not processive but rather leads to the generation of a short 3´ ssDNA tail before other 

nuclease/helicase complexes take over for processive long range resection of several 

kilobases. In S. cerevisae, where the mechanistic details of resection are probably best 

understood, the MRX complex stimulates the recruitment of the Sgs1/Top3/Rmi1 

(STR)/Dna2 complex and Exo1 to the break, which are responsible for the majority of long 

range resection (Shim et al. 2010). In addition, the Pso2 nuclease might play a backup role in 

this process, since it promotes a residual resistance to IR in the absence of nuclease active 

Mre11 and Exo1 in S. cerevisiae (Lam et al. 2008). 

 

 

Figure 2.5: Roles of the MRN(X) complex in the resection of mitotic or meiotic DSBs and in telomere 

processing. (A) Mitotic DSBs: MRX and Sae2 sense and bind to free DSBs. Sae2 is phosphorylated by Cdk1 

which promotes resection initiation by MRX and Sae2, leading to the generation of short 3´ ssDNA tails. These 

are then substrates for processive end resection carried out by Dna2/Sgs1 or Exo1. (B) Meiotic DSBs: MRX and 

other proteins stimulate the generation of DSBs by Spo11. MRX and Sae2 then nucleolytically remove the 
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covalently bound Spo11 from the DSBs. Cdk1 dependent phosphorylation of Sae2 is important for this 

processing step. (C) Telomere replication: The G strand is replicated by the lagging strand machinery which 

results in a short 3` ssDNA overhang after removal of the RNA primer. The leading strand machinery instead is 

expected to generate blunt ends by replication of the C strand. To generate the 3´ ssDNA strand overhangs of 

telomeres these blunt ends are resected by MRX and Sae2, similar to the situation in recombination resection. 

Also here resection by MRX and Sae2 depends on Cdk1 phosphorylation of Sae2 and processive resection is 

facilitated by Dna2/Sgs1 or Exo1. Figure from (Longhese et al. 2010). 

Besides mediating DNA end resection, the MRN(X) complex is also important as a scaffold 

factor in HR, which tethers the two DNA ends of a DSB and holds them in close proximity. 

This function is dependent on the Rad50 zinc-hook domain, which mediates MRN(X) 

intercomplex interactions (Hopfner et al. 2002). Atomic force microscopy studies monitored 

this zinc-hook dependent MRN(X) intercomplex formation in the presence of DNA on a 

molecular level (de Jager et al. 2001; Hopfner et al. 2002; Moreno-Herrero et al. 2005). 

 

2.4.2 The Mre11-Rad50-Nbs1 complex in meiotic recombination 

 

The MRN(X) complex had long been implicated to be important for the DNA end resection in 

recombination repair since mutations in the genes encoding the complex cause a complete 

block of 5´ strand removal in meiosis (Ivanov et al. 1992; Keeney and Kleckner 1995; Usui et 

al. 1998). The roles of MRN(X) in meiosis are probably best understood for S. cerevisiae. 

Here, the complex is important for several sequential steps of the process (Figure 2.5 B): (1) 

First, MRX is recruited to meiotic DSB sites before the formation of DSBs, via its C-terminal 

region (Furuse et al. 1998; Usui et al. 1998). It then facilitates the generation of DSBs by 

Spo11, which is probably also mediated by the Mre11 C-terminus and is independent of 

Mre11`s nuclease activity as well as stable complex formation with Rad50 and Xrs2. This was 

shown by studies with the mre11-58 mutation, which is deficient for all of these functions, but 

still functional in meiotic DSB formation (Usui et al. 1998). (2) The MRX complex is crucial 

for the endonucleolytic removal of the covalently bound Spo11 from the 5´ strands of the 

DSB ends. The nuclease activity of Mre11 is likely responsible for this processing step since 

separation of function mutants (Mre11S), which have a defect in Spo11 removal, are nuclease 

deficient in vitro (Furuse et al. 1998; Usui et al. 1998; Moreau et al. 1999). Furthermore, 

nucleolytic removal of Spo11 depends on the Sae2/Com1 protein (McKee and Kleckner 1997; 

Prinz et al. 1997). Remarkably, a specific class of Rad50 separation of function mutants, 

named Rad50S, resembles the same phenotype as ∆sae2 in meiosis (Alani et al. 1990; Keeney 
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et al. 1997). The Rad50S mutations cluster to the outer surface of the ABC-ATPase dimer in 

the homologous archaeal P. furiosus crystal structure, suggesting that they might affect a Sae2 

interaction site, which is important for Spo11 removal. However, a direct in vitro interaction 

of MRX and Sae2 could not be observed (Hopfner et al. 2000; Lengsfeld et al. 2007). After 

removal of Spo11, the MRX complex also stimulates recruitment of other nucleases, which 

function in the processive generation of ssDNA tails for meiotic D-loop formation. Here 

especially the Exo1 nuclease plays an important role, whereas the activity of the SGS1/DNA2 

complex appears to be rather dispensable (Zakharyevich et al. 2010; Keelagher et al. 2011). 

 

2.4.3 The Mre11-Rad50-Nbs1 complex in telomere maintenance 

 

Beside its many functions in DSB repair and signaling, the MRN(X) complex plays also 

crucial roles in telomere maintenance. Telomeres are specialized nucleoprotein structures that 

protect the ends of eukaryotic chromosomes from degradation, fusion, recombination and 

recognition by the DNA-damage repair machinery (Faure et al. 2010). They consist of several 

G-rich sequence repeats and a terminal 3´ ssDNA tail, which is capped by specific protecting 

factors like the CST (Cdc13-Stn1-Ten1) complex in S. cerevisiae. The length of telomeres is 

maintained by the telomerase complex, which uses its RNA template to add G-rich telomeric 

repeats to the terminal 3´ ssDNA tail (Hug and Lingner 2006). Recruitment of the telomerase 

to 3´ ssDNA ends strongly depends on the MRX complex and Tel1 as studies in S. cerevisiae 

showed. MRX recruits Tel1 to short telomeres, where its kinase activity stimulates telomerase 

dependent telomere lengthening (Goudsouzian et al. 2006; Hector et al. 2007; Hirano et al. 

2009). In addition, the MRN(X) complex is also important for the generation of 3´ ssDNA 

overhangs after telomere leading strand replication (Figure 2.5 C). Replication at telomeres is 

thought to result in blunt ends on the leading strand. In S. cerevisiae, the generation of 

3´ ssDNA overhangs on the leading strand blunt end is carried out by the MRX complex and 

Sae2, which initiate the resection of the 5´ strand. The thereby created short 3´ ssDNA 

overhang is then extended by Sgs1/Dna2 or Exo1 and finally capped by the CST complex 

(Bonetti et al. 2009; Mimitou and Symington 2009; Longhese et al. 2010). 
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2.4.4 The Mre11-Rad50-Nbs1 complex in non-homologous end joining pathways 

 

Studies with mammalian cells showed that the MRN complex is involved in both the classical 

NHEJ (c-NHEJ) as well as alternative NHEJ pathways (a-NHEJ). Even though it is no core 

factor of mammalian c-NHEJ, it is crucial for V(D)J recombination, which is strongly 

dependent on c-NHEJ (Deriano et al. 2009; Helmink et al. 2009). In addition, depletion or 

inhibition of Mre11 reduces the end-joining efficiency of I-SceI endonuclease-induced DSBs 

up to 40% in both wild-type and Xrcc4
-/-

 cells, indicating a role of MRN in mitotic repair by 

both c-NHEJ and a-NHEJ (Rass et al. 2009; Xie et al. 2009). However, the repair of I-SceI 

endonuclease-induced DSBs requires the nuclease activity of Mre11 only in deleterious a-

NHEJ but not in c-NHEJ (Zhuang et al. 2009). The exact role of the MRN complex in c-

NHEJ is only poorly understood and needs further studying, but it was proposed that one of 

the major roles for MRN in c-NHEJ is activation of the ATM checkpoint kinase, which is 

required for efficient c-NHEJ dependent repair (Rass et al. 2009). 

In recent years more and more evidence has accumulated for alternative end-joining 

pathways, which can promote end-joining repair even in the absence of different c-NHEJ core 

factors. One important pathway is the so called micro-homology pathway (MMEJ) in which 

DSB ends are joined for ligation via short stretches of microhomology. The MRN complex is 

an essential component of MMEJ and the nuclease activity of Mre11 catalyzes short range 

resection at DSBs which generates ends with compatible microhomology sequences (Figure 

2.6 A and B) (Rahal et al. 2010). 

 

 

Figure 2.6: Functions of the MRN complex in non-homologous end joining pathways (A) Potential 

functions of Mre11 in C-NHEJ and A-NHEJ pathways. Repair of DSBs by NHEJ can be executed via direct (left 

side) and microhomology (MH)-mediated end joining (right side). Whereas blunt DNA ends can be ligated 

directly, DNA ends with overhangs may require fill-in or end resection before ligation. In micro-homology 
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mediated end-joining (MMEJ), the two ends are joined for ligation via short stretches of microhomologous 

sequences. The nuclease function of Mre11 is important for the resection procedure which generates these 

compatible ends. Figure from (Zha et al. 2009) (B) Schematic model for Mre11 dimer-mediated MMEJ: The 

Mre11 homodimer may bind two DNA ends. The 3' ends are degraded by Mre11 3'-5' exonuclease activity in the 

Mre11 active site whereas microhomology pairing of 5` tails takes place outside Mre11´s active site. Figure from 

(Rahal et al. 2010). 

 

In S. cerevisiae where NHEJ plays only a minor role for mitotic DSBR, all components of 

MRX are essential core factors of the end-joining machinery and are e.g. required for the 

efficient rejoining of linear plasmid DNA molecules with cohesive ends (Boulton and Jackson 

1998; Critchlow and Jackson 1998). Since a nuclease deficient H125N Mre11 mutant has no 

end-joining defect in S. cerevisiae, the complex is here assumed to rather play a role as a 

structural scaffolding protein for other NHEJ factors (Moreau et al. 1999; Chen et al. 2001).  

 

2.5 The Mre11-Rad50-Nbs1 complex in DNA damage signaling 

 

The MRN(X) is not only a mediator of DSBR but also a DNA damage signal transducer and 

promotes activation of cell-cycle arrest (and apoptosis in metazoan organisms) in response to 

DSBs by recruiting and activating the checkpoint kinase ATM (Tel1 in yeast). The MRN 

complex acts both upstream and downstream of ATM and there are two populations of the 

complex at DSB sites. One population associates independent of ATM at a very early time 

point to sites of DNA damage and acts upstream as a DNA damage sensor, which helps to 

recruit and activate ATM. Localization of the second population to DSBs is instead dependent 

on the phosporylation activity of ATM (Lavin 2008). Evidence for an upstream function of 

MRN has been reported from various different studies: Cells from NBS and A-TLD patients, 

which possess hypomorphic mutations in either the Nbs1 or Mre11 gene show decreased 

ATM activation after irradiation (Uziel et al. 2003). ATM is also activated by MRN in vitro, 

where it was observed to stimulate the dissociation of inactive ATM dimers into active 

monomers (Lee and Paull 2005). Nbs1 and its S. cerevisiae homologue Xrs2 contain a 

binding site for ATM at the C-terminal end of the protein close to the binding site for Mre11. 

Human cells with a deletion of the C-terminal ATM binding site in Nbs1 exhibit decreased 

phosphorylation of some ATM substrates and intra-S and G2/M checkpoint defects, although 

ATM activation is normal. Similarly a C-terminal Xrs2 deletion mutant is deficient in Tel1 
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dependent phosphorylation of the downstream kinase Rad53 in S. cerevisiae (Nakada et al. 

2003; Falck et al. 2005).  

In addition to monomerization, also ATM autophosphorylation at different sites is a hallmark 

of its activation in vivo. Activated ATM phosphorylates a variety of substrates which 

promotes both DNA damage checkpoint signaling as well as accumulation of repair proteins 

at DSB sites. Importantly, also the MRN complex is a downstream factor of ATM in DSB 

repair. Human Nbs1 is phosphorylated at residues 273 and 343, and once modified, facilitates 

phosphorylation of other ATM targets like e.g. SMC1, which is an important event for 

activation of the intra S-phase checkpoint. (Falck et al. 2002; Yazdi et al. 2002).  

Phosphorylation of the histone variant H2AX by ATM (γH2AX) further facilitates the 

accumulation of MRN at DSBs and repair foci formation (Figure 2.7A). γH2AX is bound by 

the adaptor protein MDC1, which is additionally phosphorylated by the CK2 kinase. MDC1 

then binds to MRN via the N-terminal Forkhead and BRCT domains of Nbs1 (Chapman and 

Jackson 2008; Melander et al. 2008; Spycher et al. 2008). MRN in turn recruits and activates 

more ATM molecules, which leads to an amplification of ATM promoted checkpoint 

signaling via the downstream kinase Chk2 and effector molecules like p53 and p21 (Figure 

2.7B). In addition, MDC1 recruits the ubiquitin ligase RNF8, which in cooperation with 

UBC13 ubiquitinates H2AX, thereby leading to the accumulation of further repair proteins 

and repair foci formation (Deribe et al. 2010). 

DSB induced checkpoint signaling by the ATM homologue Tel1 in S. pombe and S. cerevisae 

plays rather a minor role in addition to the activity of the Mec1 checkpoint kinase (ATR 

homologue in yeast), which is activated by ssDNA/RPA during resection of DSBs. However, 

Tel1 checkpoint signaling becomes important in the absence Mec1. In addition, MRX 

dependent Tel1 activity is crucial for telomere maintenance and a deletion of the Tel1 binding 

region in Xrs2 as well as functional mutations in all MRX proteins result in shortened 

telomeres (Haber 1998; Shima et al. 2005; Tsukamoto et al. 2005). 
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Figure 2.7: Mre11 is a co-activator of the cell-cycle checkpoint kinase ATM and promotes ATM 

dependent foci formation at the site of DSBs (A) A model for MRN dependent recruitment and activation of 

ATM at DSBs. After recruitment and co-activation by MRN the ATM kinase phosphorylates the histone variant 

H2AX in DSB-flanking nucleosomes. The MDC1 adaptor protein binds to γ-H2AX and promotes accumulation 

of more MRN and ATM molecules. By this, the repair machinery is spread at the site of break and the damage 

signaling by ATM is amplified. Figure from (Misteli and Soutoglou 2009) (B) Schematic model for ATM 

mediated checkpoint activation and repair foci formation. Activated ATM phosphorylates the downstream 

checkpoint kinase Chk2 which gets thereby activated and promotes cell-cycle arrest via effector proteins like p53 

and p21. Moreover MDC1, when bound to γ-H2AX, recruits the RNF8-Ubc13 complex which ubiquinitates 

histones via Lys63 linkage. Ubiquitinated histones facilitate acummulation of Rap80, Abraxas and BRCA1, 

which help to promote foci formation of the repair machinery. Figure from (Deribe et al. 2010). 

 

2.6  Diseases linked with mutations in Mre11-Rad50-Nbs1 

 

The functional association between MRN and ATM is shown by the closely related disease 

syndromes linked with mutations in their genes: Ataxia telangiectasia (A-T) is caused by 

disruption of ATM, while A-T like disease (A-TLD), Nijmegen breakage syndrome (NBS) 

and NBS-like disease are caused by hypomorphic mutations in Mre11, Nbs1 and Rad50 

respectively (Carney et al. 1998; Varon et al. 1998; Stewart et al. 1999; Frappart and 

McKinnon 2006; Waltes et al. 2009). These diseases share radiation sensitivity and 

chromosome instability of patient derived cells. In addition they are characterized by distinct 

neuropathologic phenotypes and patients have an inherited cancer predisposition. Although in 
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the case of A-TLD, cancer development was reported so far only for one specific subtype, 

which in addition also causes mental retardation (Uchisaka et al. 2009). The characteristic 

hallmark of AT and A-TLD is neurodegeneration, whereas NBS and NBS-like disease are 

characterized by microcephaly, mental retardation, a bird like face and growth defects. Based 

on in vivo studies with mouse models, this nonconformity of the neuropathology was 

proposed to result from different impacts of the mutations on DNA DSB signaling. Both A-

TLD and NBS cells are partly defective in DSB repair and in the activation of the checkpoint 

kinase ATM. However, the residual ATM activation is lower in A-TLD cells compared to 

NBS cells. Therefore, A-TLD cells fail to efficiently induce ATM dependent apoptosis. As a 

consequence more malfunctional cells may be incorporated into the nervous system where 

they ultimately die and cause the observed neurodegeneration phenotype. NBS cells in 

contrast can activate ATM more efficiently and possess a higher apoptosis rate. Therefore, 

fewer brain cells survive initially, which may explain why NBS results in the development of 

microcephaly. (Shull et al. 2009). 

Recently, a heterozygous Mre11 mutation was reported, which causes an NBS-like disease 

instead of A-TLD. Consistently, cells derived from NBS-like disease patients display a higher 

rate of ATM activation compared to A-TLD cells, indicating that also here differences in the 

apoptosis rate are the reason for the distinct neuropathological phenotypes (Matsumoto et al. 

2011). While the somewhat related disease phenotypes demonstrate the tight functional 

interconnection of the three MRN components in both DNA repair and DSB signaling, the 

molecular basis for similarities and differences of A-T, A-TLD and NBS is poorly understood 

and lacks a structural framework for the interaction of Nbs1 with Mre11. 
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2.7 Objectives 

 

DNA double-strand breaks (DSBs) are one of the most serious threats for the stability of the 

genome. They can occur accidently by failures in genome metabolism and by exogenous 

sources. In addition, they are also important intermediates in many DNA metabolism 

processes. The Mre11-Rad50-Nbs1 complex is a central component of the cellular response, 

which mediates the repair of DSBs. The complex senses, binds and stabilizes broken DSB 

ends. It also initiates DSB repair by recruiting other repair factors and by nucleolytic 

processing of the DNA ends. Importantly, it is also involved in cell-cycle checkpoint 

signaling by activating the kinase ATM. Mre11 and Rad50 exist in all domains of live, 

whereas Nbs1 is found only in eukaryotic organisms. Nbs1 is thought to play different 

regulatory roles in the complex. Most importantly, it is crucial for the signaling of sensed 

DNA damages to the cell cycle checkpoints. This function is mediated by direct binding of 

Nbs1 to the checkpoint kinase ATM and additionally depends on the concerted action of all 

three MRN proteins. Nbs1 also mediates important interactions of the MRN complex with 

other repair factors via its N-terminal phosphoprotein binding modules. Moreover, Nbs1 was 

reported to influence the DNA binding affinity and specificity of Mre11-Rad50 and to 

stimulate the nucleolytic processing activity of Mre11 on DNA hairpin structures.  

Many biochemical roles of the MRN complex have been revealed in the last years and 

structures of the prokaryotic Mre11 and Rad50 proteins have been contributed importantly to 

the understanding of principle functions of the catalytic Mre11-Rad50 core complex. 

However, the structure of the eukaryotic MRN complex was only poorly characterized and 

there were no high resolution structures of any eukaryotic MRN protein available, when the 

work for this thesis was started. Therefore, it was not understood on a structural level how 

Nbs1 interacts with Mre11 and Rad50 and how it can thereby mediate its regulatory 

influences on the Mre11-Rad50 core complex. Thus, it was of high interest to gain insights 

into the eukaryotic MRN complex by atomic high resolution structures. The aim of this thesis 

was therefore to purify and crystallize a stable complex of Mre11-Nbs1 and to determine its 

atomic structure. The crystal structure should then be validated by biochemical studies. Here, 

one focus should also be on the structural characterization of disease causing Mre11 

mutations. Furthermore, it was aimed to study motifs, which from the analysis of the structure 

were suggested to be functionally important, in vivo using S. cerevisiae as a model system. 
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3. MATERIALS AND METHODS 

 

3.1  Materials 

 

All chemicals used in this work were of the highest available grade obtained from Carl Roth, 

Merck, or Sigma-Aldrich, unless otherwise stated. Crystallisation screens and tools were from 

Hampton Research, NeXtal (QIAGEN), and Jena Bioscience. RP-HPLC purified 

oligonucleotides for EMSAs and crystallization were purchased from Thermo Scientific. 

Enzymes for molecular biology were obtained from Fermentas, Finnzymes, or New England 

Biolabs.   

 

3.1.1 Antibodies 

 

Table 3.1: List of used antibodies: 

 

Primary Antibodies 

Antibody Source Dilution Company 

α-c-Myc 

(monoclonal - 9E10) 
Mouse 

1:3000 for western blot 

1:500 for immunofluorescence 
Sigma-Aldrich, Taufkirchen 

α-HA  

(monoclonal 12CA5) 
Mouse 1:1000 for western blot Abcam, Cambridge UK 

α-Rad50 (S. cerevisiae) Rabbit 1:1000 for western blot 
Gift from J. Petrini,  

New York, USA 

α-Xrs2 (S. cerevisiae) Rabbit 1:1000 for western blot 
Gift from J. Petrini, 

New York, USA 

α-Actin  

(monoclonal ab8224) 
Mouse 1:3000 for western blot Abcam, Cambridge UK 

 

 
   

Secondary Antibodies Source Dilution Company 

α-Mouse IgG - HRP Sheep 1:3000 for western blot GE Healthcare, 

α -Mouse IgG (H+L) 

Alexa Fluor 488 
Goat 1:2000 for western blot Invitrogen, Darmstadt 

α -Rabbit IgG  

(H + L)-HRP 
Goat 1:2000 for western blot Biorad, München 
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3.1.2 Oligonucleotides 

 

Table 3.2: Oligonucleotide list - biochemical assays 

Name Label Sequence 

poly (T) 60mer ssDNA 5`-6-FAM TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT

TTTTTTTTTTTTTTTTTTTTTTTT 

13mer blunt end hairpin 

dsDNA 
5`-6-FAM CATCGTGACTTCGTTTTCGAAGTCACGATG 

 

 

Table 3.3: Oligonucleotide list - S. pombe constructs: 

SpNbs1 fwd TTTTTTTGGATCCATGTGGATAATTGAGGCTGAGGGTG  

SpNbs1 rev AATTGCGGCCGCTTAAAAGTGAAACTTGAGATCATTAAATTCATCG 

SpNbs1 E474 fwd TTTTTTTGGATCCGAATCTGAAGATGATAAAGCATTTGAGG 

SpNbs1 K531 SalI rev TTTTTGTCGACTTTTTGTGAAGCTTTCTTTTG 

SpNbs1 K531 NotI rev TTTTTTTGCGGCCGCTCATTATTTTTGTGAAGCTTTCTTTTGAAATTTTTTA

A 

SpNbs1 E474 TEV f AAAAAGTCGACGAAAATCTTTACTTCCAAGGTGAATCTGAAGATGATAA

AGCATTTGAGG 

SpNbs1 K428 fwd AAAAAGGATCCAAGACCAAGGTTGAGTATGTTTCC 

SpNbs1 F524E fwd CGTAAAAATTTTAAAAAAGAGCAAAAGAAAGCTTCACA 

SpNbs1 F524E rev TGTGAAGCTTTCTTTTGCTCTTTTTTAAAATTTTTACG 

SpNbs1 K522E K526E 

fwd 

CAAAATATTATTCGGGCCGTAAAAATTTTGAAAAATTTCAAGAGAAAGCT

TCACAAAAAGCACCTTTACA 

SpNbs1 K522E K526E 

rev 

TGTAAAGGTGCTTTTTGTGAAGCTTTCTCTTGAAATTTTTCAAAATTTTTA

CGGCCCGAATAATATTTTG 

Sp Mre11 fwd TTTTTTGGATCCATGCCAAATGACCCCTCAGATATG 

Sp Mre11 rev TTTTTTTGCGGCCGCTCATTAATCATCTAAAATTTCGTCATCCTCGTTATC 

Sp Mre11 E15 fwd TTTAATGGATCCGAAAATACTATTAGAATCTTAATATCTTCTG 

Sp Mre11 D7 fwd 

Prescission 

TTTTTGGATCCCTGGAGGTTCTGTTTCAAGGGCCCGATATGAATAATGAA

CTTCACAATGAAAATACTATTAG 

SpMre11 E15 fwd 

Linker8 

AAAAAGTCGACGGTTCTGCTGGTTCTGCTGGTTCTGAAAATACTATTAGA

ATCTTAATATCTTCTG 

SpMre11 K413 rev NotI TTTTTTTGCGGCCGCCTATTACTTTTTAAGATAAAATTGGACAACATCTG 

SpMre11 K413 rev SalI TTTTTGTCGACCTTTTTAAGATAAAATTGGACAACATCTG 
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SpMre11 N421 rev NotI  TTTTTTTGCGGCCGCTTAGTTTCTTTTAGACCTAGTGTATTTTTTTTTAAG 

SpMre11 R85A fwd CACTTCGCTCACTCGCATTAAACTGTTTAG 

SpMre11 R85A rev CTAAACAGTTTAATGCGAGTGAGCGAAGTG 

SpMre11 N122S fwd CCGAACATCAGCGTGGCTATAC 

SpMre11 N122S rev GTATAGCCACGCTGATGTTCGG 

SpMre11 W215C fwd CGGGATGAATGCTTCAACTTATTG 

SpMre11 W215C rev CAATAAGTTGAAGCATTCATCCCG 

SpMre11 W248R fwd GACTTCGTGTTAAGGGGACACGAAC 

SpMre11 W248R rev GTTCGTGTCCCCTTAACACGAAGTC 

SpMre11 H134S fwd CAATTCATGGTAATTCCGATGACCCTTCTG 

SpMre11 H134S rev CAGAAGGGTCATCGGAATTACCATGAATTG 

GST for TTTTTTTCATATGTCCCCTATACTAGGTTATTGG 

GST rev AAAAAGGATCCCAGGGGCCC 

 

Table 3.4: Oligonucleotide list - S. cerevisisae constructs: 

HindIII_PAW8_13Myc_4417_f TTTTTTAAGCTTATGCATTTCTTTCCAGACTTG 

NotI_ScMre11_cds53_r TTTTTTTGCGGCCGCTCTAGAACTAGTGG 

P527 BamHI f (ScMre11end) TTTTTGGATCCGTTTTCTTTTCTTAGCAAG 

ScMre11 L72F fwd GTCACTCTACCAAGTATTTAAGACTTTGAGATTATG 

ScMre11 L72F rev CATAATCTCAAAGTCTTAAATACTTGGTAGAGTGAC 

ScMre11 L72R fwd GTCACTCTACCAAGTAAGAAAGACTTTGAGATTATG 

ScMre11 L72R rev CATAATCTCAAAGTCTTTCTTACTTGGTAGAGTGAC 

ScMre11 R76A fwd GTACTGAAGACTTTGGCTTTATGTTGCATGGG 

ScMre11 R76A rev CCCATGCAACATAAAGCCAAAGTCTTCAGTAC 

ScMre11 R76K fwd CTGAAGACTTTGAAATTATGTTGCATGG 

ScMre11 R76K rev CCATGCAACATAATTTCAAAGTCTTCAG 

ScMre11 R76Qfwd GTACTGAAGACTTTGCAATTATGTTGCATGG 

ScMre11 R76Q rev CCATGCAACATAATTGCAAAGTCTTCAGTAC 

ScMre11 R76M fwd CTGAAGACTTTGATGTTATGTTGCATGGG 

ScMre11 R76M rev CCCATGCAACATAACATCAAAGTCTTCAG 
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ScMre11 R76F fwd GTACTGAAGACTTTGTTTTTATGTTGCATGGGTG 

ScMre11 R76F rev CACCCATGCAACATAAAAACAAAGTCTTCAGTAC 

ScMre11 S91A fwd CGAGTTAGAATTATTGGCTGATCCCTCACAAGTT 

ScMre11 S91A rev AACTTGTGAGGGATCAGCCAATAATTCTAACTCG 

ScMre11 S91E fwd TGCGAGTTAGAATTATTGGAAGATCCCTCACAAGTTTTTC 

ScMre11 S91E rev GAAAAACTTGTGAGGGATCTTCCAATAATTCTAACTCGCA 

ScMre11 D109N fwd CCAACGTTAACTATGAGAATCCCAACTTTAATATTTC 

ScMre11 D109N rev GAAATATTAAAGTTGGGATTCTCATAGTTAACGTTGG 

ScMre11 D109L fwd CCAACGTTAACTATGAGTTACCCAACTTTAATATTTC 

ScMre11 D109L rev GAAATATTAAAGTTGGGTAACTCATAGTTAACGTTGG 

ScMre11 D109M fwd CAACGTTAACTATGAGATGCCCAACTTTAATATTTC 

ScMre11 D109M rev GAAATATTAAAGTTGGGCATCTCATAGTTAACGTTG 

ScMre11 D109F fwd CCAACGTTAACTATGAGTTTCCCAACTTTAATATTTC 

ScMre11 D109F rev GAAATATTAAAGTTGGGAAACTCATAGTTAACGTTGG 

ScMre11 N113S fwd GGACCCCAACTTTTCTATTTCTATTCCCG 

ScMre11 N113S rev CGGGAATAGAAATAGAAAAGTTGGGGTCC 

ScMre11 D127A fwd GTAATCATGATGCTGCGTCGGGGGAC 

ScMre11 D1127A rev GTCCCCCGACGCAGCATCATGATTAC 

ScMre11 D127R fwd GGTAATCATGATAGAGCGTCGGGGGAC 

ScMre11 D127R rev GTCCCCCGACGCTCTATCATGATTACC 

ScMre11 D127R D131R fwd GGCATATCAGGTAATCATGATAGAGCGTCGGGGAGATCACTGTTG

TGTCCTATGGA 

ScMre11 D127R  D131R rev TCCATAGGACACAACAGTGATCTCCCCGACGCTCTATCATGATTAC

CTGATATGCC 

ScMre11 I139F fwd GTGTCCTATGGATTTTCTTCATGCGACTGG 

ScMre11 I139F rev CCAGTCGCATGAAGAAAATCCATAGGACAC 

ScMre11 T143I fwd GATATACTTCATGCGATTGGTCTAATAAATCA 

ScMre11 T143I rev TGATTTATTAGACCAATCGCATGAAGTATATC 

ScMre11 P199A fwd GTCACTTTTGAAGTAGCTACTATGCGAGAAGG 

ScMre11 P199A rev CCTTCTCGCATAGTAGCTACTTCAAAAGTGAC 

ScMre11 F229E fwd CATTTTTACCTGAACAGGAGTTGCCAGATTTCCTGG 
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ScMre11 F229E rev CCAGGAAATCTGGCAACTCCTGTTCAGGTAAAAATG 

ScMre11 ∆127-133            

Insert Pf_RTQRG fwd 

CATGATAGAACTCAAAGAGGTTTGTGTCCTATGGATATACTTCATG

C 

ScMre11 ∆127-133            

Insert Pf_RTQRG rev 

ACACAAACCTCTTTGAGTTCTATCATGATTACCTGATATGCCGAAT

AC 

ScMre11 ∆127-134            

Insert_ Pf_RTQRGP fwd 

ATGATAGAACTCAAAGAGGTCCTTGTCCTATGGATATACTTCATGC

GAC 

ScMre11 ∆127-134           

Insert_ Pf_RTQRGP rev 

GGACAAGGACCTCTTTGAGTTCTATCATGATTACCTGATATGCCGA

ATAC 

3HA pYM-N12 BamHI f TTTTTGGATCCAATACCCATACGATGTTCCTGACTATG 

3HA pYM-N12 EcoRI r TTTTTGAATTCACTAAGCGTAATCTGGAACGTCATATGG 

NLS BamHI fwd TATAAGGATCCAATCTCCAAAAAAGAAGAGAAAGGTCGAAATCCC

CGGGTTAATTAACGGTG 

 

3.1.3 Plasmids 

 

Table 3.5: Plasmid list E. coli: 

Construct name Encoded sequences 
Restriction 

site 
Tag 

Plasmid 

name 

Sp Mre11 1-649 His10TEV  Sp Mre11 aa 1-649 Wt BamHI NotI N-10x His 

+ TEV site 

pKP29His10 

TEV 

pET29 SpMre11 1-478 (from Nora 

Assenmacher, AG Hopfner)  

Sp Mre11 aa 1-478 Wt NdeI NotI No Tag pKP29 

pGEX-6P-II SpMre11 1-421 Sp Mre11 aa 1-421 BamHI NotI N-GST pGEX-6P-II 

pGEX-6P-II SpMre11 1-421 R85A Sp Mre11 aa 1-421 R85A BamHI NotI N-GST pGEX-6P-II 

pGEX-6P-II SpMre11 1-421 H134S Sp Mre11 aa 1-421 H134S BamHI NotI N-GST pGEX-6P-II 

pET21-GST SpMre11 15-421 Sp Mre11 aa 15-421 BamHI NotI N-GST pET21-GST 

pET21-GST SpMre11 15-421 H134S Sp Mre11 aa 15-421 H134S BamHI NotI N-GST pET21-GST 

pGEX-6P-II SpMre11 1-413 Sp Mre11 aa 1-413 BamHI NotI N-GST pGEX-6P-II 

pGEX-6P-II SpMre11 1-413 N122S Sp Mre11 aa 1-413 N122S BamHI NotI N-GST pGEX-6P-II 

pGEX-6P-II SpMre11 1-413 W215C Sp Mre11 aa 1-413 W215C BamHI NotI N-GST pGEX-6P-II 

pGEX-6P-II SpMre11 1-413 W248R Sp Mre11 aa 1-413 W248R BamHI NotI N-GST pGEX-6P-II 

pGEX-6P-II SpMre11 1-413 H134S Sp Mre11 aa 1-413 H134S BamHI NotI N-GST pGEX-6P-II 

pGEX-6P-II SpMre11 15-413 Sp Mre11 aa 15-413 BamHI NotI N-GST pGEX-6P-II 
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Construct name Encoded sequences 
Restriction 

site 
Tag 

Plasmid 

name 

pGEX-6P-II SpNbs1 1-613 Sp Nbs1 aa 1-613 BamHI NotI N-GST pGEX-6P-II 

pGEX-6P-II SpNbs1 428-613 Sp Nbs1 aa 428-613 BamHI NotI N-GST pGEX-6P-II 

pGEX-6P-II SpNbs1 428-613 F524E Sp Nbs1 aa 428-613 F524E BamHI NotI N-GST pGEX-6P-II 

pGEX-6P-II SpNbs1 428-613 K522E 

K526E 

Sp Nbs1 aa 428-613 

K522E K526E 

BamHI NotI N-GST pGEX-6P-II 

pGEX-6P-II SpNbs1 474-613 SpNbs1 474-613 BamHI NotI N-GST pGEX-6P-II 

pGEX-6P-II SpNbs1 474-531 SpNbs1 474-531 BamHI NotI N-GST pGEX-6P-II 

pGEX-6P-II SpNbs1 474-531-L8-

SpMre11 15-413 

Sp Nbs1 aa 474-531  

Linker (GSAGSAGS)  

SpMre11 aa 15-413 

BamHI, 

SalI, NotI 

N-GST pGEX-6P-II 

pET21-GST SpMre11 7-413 

-L7TEV-SpNbs1 474-531 

Sp Mre11 aa 7-413 TEV-site 

Sp Nbs1 aa 474-531 

BamHI, 

SalI, NotI 

N-GST pET21-GST 

 

Table 3.6: Plasmid list S. cerevisiae: 

Construct name Encoded sequences 
Restriction 

site 
Tag 

Plasmid 

name 

pRS416 ScMre11 Wt 

(D´Amours and Jackson, 2001) 
Sc Mre11 Wt NotI, HindIII C-13myc pRS416 

pRS416 ScMre11 Wt-NLS ScMre11 Wt-NLS NotI, HindIII C-13myc pRS416 

pRS416 ScMre11 L72F ScMre11 L72F NotI, HindIII C-13myc pRS416 

pRS416 ScMre11 L72R ScMre11 L72R NotI, HindIII C-13myc pRS416 

pRS416 ScMre11 R76A ScMre11 R76A NotI, HindIII C-13myc pRS416 

pRS416 ScMre11 R76A-NLS ScMre11 R76A-NLS NotI, HindIII C-13myc pRS416 

pRS416 ScMre11 R76K ScMre11 R76K NotI, HindIII C-13myc pRS416 

pRS416 ScMre11 R76K-NLS ScMre11 R76K-NLS NotI, HindIII C-13myc pRS416 

pRS416 ScMre11 R76M ScMre11 R76M NotI, HindIII C-13myc pRS416 

pRS416 ScMre11 R76M D109N ScMre11 R76M D109N
 

NotI, HindIII C-13myc pRS416 

pRS416 ScMre11 R76Q D109N ScMre11 R76Q D109N NotI, HindIII C-13myc pRS416 

pRS416 ScMre11 R76F D109M ScMre11 R76F D109M NotI, HindIII C-13myc pRS416 

pRS416 ScMre11 R76M D109L ScMre11 R76M D109L NotI, HindIII C-13myc pRS416 

pRS416 ScMre11 R76M D109M ScMre11 R76M D109M NotI, HindIII C-13myc pRS416 

pRS416 ScMre11 R76M D109F ScMre11 R76M D109F NotI, HindIII C-13myc pRS416 
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Construct name Encoded sequences 
Restriction 

site 
Tag 

Plasmid 

name 

pRS416 ScMre11 S91A ScMre11 S91A NotI, HindIII C-13myc pRS416 

pRS416 ScMre11 S91A-NLS ScMre11 S91A-NLS NotI, HindIII C-13myc pRS416 

pRS416 ScMre11 S91E ScMre11 S91E NotI, HindIII C-13myc pRS416 

pRS416 ScMre11 S91E-NLS ScMre11 S91E-NLS NotI, HindIII C-13myc pRS416 

pRS416 ScMre11 D109N ScMre11 D109N NotI, HindIII C-13myc pRS416 

pRS416 ScMre11 N113S ScMre11 N113S NotI, HindIII C-13myc pRS416 

pRS416 ScMre11 N113S-NLS ScMre11 N113S-NLS NotI, HindIII C-13myc pRS416 

pRS416 ScMre11 D127A ScMre11 D127A NotI, HindIII C-13myc pRS416 

pRS416 ScMre11 D127R ScMre11 D127R NotI, HindIII C-13myc pRS416 

pRS416 ScMre11 D127R D131R ScMre11 D127R D131R NotI, HindIII C-13myc pRS416 

pRS416 ScMre11 ∆127-133     

Insert Pf_RTQRG 

ScMre11 ∆127-133          

Insert Pf_RTQRG 
NotI, HindIII C-13myc pRS416 

pRS416 ScMre11 ∆127-134   

Insert_ Pf_RTQRGP 

ScMre11 ∆127-134         

Insert_ Pf_RTQRGP 
NotI, HindIII C-13myc pRS416 

pRS416 ScMre11 I139F ScMre11 I139F NotI, HindIII C-13myc pRS416 

pRS416 ScMre11 T143I ScMre11 T143I NotI, HindIII C-13myc pRS416 

pRS416 ScMre11 P199A ScMre11 P199A NotI, HindIII C-13myc pRS416 

pRS416 ScMre11 F229E ScMre11 F229E NotI, HindIII C-13myc pRS416 

pRS315 ScMre11 Wt ScMre11 Wt NotI, HindIII 3xHA Tag pRS315 

pRS315 ScMre11 R76A ScMre11 R76A NotI, HindIII 3xHA Tag pRS315 

 

3.1.4 Strains 

 
Table 3.7: Escherichia coli strains 

Strain Genotype Source 

XL1 blue 
recA1 endA1 gyrA96 thi-1 hsdR17 supE44 relA1 lac [F´ proAB 

lacIqZΔM15 Tn10 (Tetr)]  

Stratagene, 

Heidelberg  

Rosetta 

(DE3) 
F– ompT hsdSB(rB– mB-) gal dcm (DE3) pRARE2 (CamR) 

Novagen, 

Madison USA 

B834(DE3) F– ompT hsdSB(rB– mB-) met gal dcm (DE3)  
Novagen, 

Madison USA 
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Table 3.8: Saccharomyces cerevisiae strains 

Strain Genotpye Origin 

W303 
Mata/α; ura3-1, trp1-1, his3-11,15; leu2-3, 112; 

ade2-1; can1-100; GAL+ 

Britta Coordes (lab of Katja Strässer, 

Gene Center) 

W303 - ∆mre11 
mre11delta::KanMX4, Mata/α; ura3-1, trp1-1, 

his3-11,15; leu2-3, 112; ade2-1; can1-100 

Ilaria Guerini (lab of  

Prof. Steve Jackson, Cambridge) 

 

3.2  Media and antibiotics 

 

E. coli strains were cultivated in Luria bertani medium containing the respective antibiotics 

 

Luria bertani (LB) medium (1L)  Antibiotic stock solutions: (used as 1:1000 dilutions) 

Bacto tryptone 10g  ampicillin 100 mg/ml in water 

Yeast extract 5g  kanamycin 50 mg/ml in water 

NaCl 5g  chloramphenicol 34 mg/ml in ethanol 

2M NaOH 1.3 ml  tetracycline 10 mg/ml in ethanol 

+/- agar 15g     

Millipore H2O added to 1L 

 

The S. cerevisiae strain W303 ∆mre11 was cultured in either full medium (YPD), or 

depending on transformed plasmids, in synthetic SDC media (SDC (-Ura) for pRS416 or SDC 

(-Ura, -His) for pRS315 plasmid): 

YPD medium (for 1L)  SDC medium (1L)  

10g  yeast extract  6.75 g  Yeast Nitrogen Base w/o AA 

20g  Bacto-Peptone  20g  Glucose 

20g  Glucose  0.6g  complete synthetic mix (including all essential AA 

except the auxotrophy markers leucine, tryptophane, 

histidine, uracil and adenine Millipore H2O added to 1L  

   10ml Adenine + 20mM NaOH (2mg/ml in H2O) 

   10ml Histidine (2mg/ml in H2O) 

   10ml Leucine (10mg/ml in H2O) (not added for .SDC-Leu) 

   10ml Tryptophan (5mg/ml in H2O) 

   10ml Uracil (2mg/ml in H20) (not added for .SDC-Ura) 

 

 

   Millipore H2O added to 1L 
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3.3 Methods 

 

3.3.1 Molecular biology methods 

 

If not stated differently molecular biology standard procedures were carried out according to 

protocols by Sambrook, J. and Russell (Sambrook and Russell 2001). Commercially available 

kits and enzymes were used following the manufacturer‟s instructions.  

 

3.3.1.1 Molecular cloning  

 

Constructs for the expression of S. pombe Mre11 and Nbs1 were designed with help of the 

secondary structure prediction programs JPRED (Cole et al. 2008), PSIPred (Bryson et al. 

2005), (Jones 1999) and HHPred (Soding et al. 2005) as well as by alignment of sequences 

from different species using the program ClustalW (Larkin et al. 2007). 

PCR primer were designed with a melting temperature (Tm) preferencially above 60 °C. For 

this purpose the program GeneRunner was used (http://www.generunner.net/). The cloning 

primers contained restriction sites for specific endonucleases with an overhang sequence 

between 5 and 7 bases to assure efficient cleavage. 

Full length constructs of Mre11 and Nbs1 were amplified by PCR from cDNA using Phusion 

Flash Master Mix (Finnzymes, Espoo, Finnland). A typical PCR reaction contained 10-100 ng 

template DNA and 50 pmol of each primer in 20µl of 1x PCR Mix. The following PCR 

program was used: 

1) 98 °C → 30 s  

2) 98 °C → 10 s  

3) 50-60 °C → 15 sec 

(depending on melting temperature of used primers)  

4) 72 °C 20 s / 1kb  

repeat 2) – 4) 30 times 72 °C 120s 
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PCR products were separated in agarose gels using a Gel Extraction Kit (Metabion, 

Martinsried, Germany), digested with the corresponding restriction enzymens and ligated into 

the vector of interest. 

 

 

3.3.1.2  Site Directed Mutagenesis by Overlap Extension PCR 

 

All Mre11 or Nbs1/Xrs2 mutants described in this thesis were genererated by site directed 

mutagenesis using Overlap extension PCR as described in Sambrook and Russell (Sambrook 

and Russell 2001). For the PCR reactions Phusion Flash Master Mix was used (Finnzymes, 

Espoo, Finnland). Briefly described, the procedure consists of two PCR steps: In the first PCR 

step, two fragments are generated which contain either the region 5´ or 3´ of the mutation site. 

The primer pair for each reaction consists of a cloning primer hybridizing to either the 5´ or 3´ 

end of the gene and the corresponding mutagenesis primer which hybridizes to the opposite 

strand at the site of mutation. Thereby two fragments with compatible ends around the 

mutation site are generated. This allows hybridization of the fragments and subsequent 

extension in the second PCR step, which yields the full length mutagenesis product. After 5 

PCR cycles, the amount of full length PCR product is further amplified by the addition of the 

cloning primers and additional 30 PCR cycles (see below): 

 

1) 98 °C → 30 s  

2) 98 °C → 10 s  

3) 50-60 °C → 15 sec (depending on melting temperature of used primers)  

4) 72 °C 20 s / 1kb  

repeat 2) – 4) 5 times 

5) Addition of 25 pmol forward and reverse cloning primers 

6) 98 °C → 10 s  

7) 50-60 °C → 15 sec (depending on melting temperature of used primers)  

8) 72 °C 20 s / 1kb  

repeat 6) – 8) 25-30 times followed by a final elongation step at 72 °C for 120-180 sec. 

 

All following following cloning steps were carried out similar to cloning with normal PCR 

products (3.3.1.1).  
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3.3.1.3 Transformation in E. coli 

 

For transformations chemically competent E. coli were used by performing the following standard 

protocol  (E. coli host strains are listed under 3.1.4): 10 μl ligation mixtures or 50-400 ng of 

purified plasmid were added to 70 μl of competent cells and incubated on ice for 15 min. Cells 

were then heat shocked for 1 min at 42 °C, followed by 2 min of incubation on ice, addition of 

800 μl LB medium and subsequent incubation on a thermo shaker at 37 °C for 45 to 60 min to 

establish antibiotic resistance. Afterwards cells were plated on LB agar plates containing the 

respective antibiotics and incubated overnight at 37 °C. 

 

3.3.2 Protein biochemistry methods 

 

3.3.2.1 Protein expression in E. coli 

 

To achieve overexpression of recombinant proteins, the plasmid containing the gene of 

interest was transformed into E. coli Rosetta (DE3) (Novagen, Schwalbach, Germany). The 

transformation was carried out analogous to 3.3.1.3, but with the addition of 34 mg/ml 

Chloramphenicol. For pre-cultures 50 ml LB medium were inoculated with several colonies 

from a fresh transformation plate (not older than 1 week) and grown overnight at 37 °C in a 

shaking incubator. The next day 3L LB medium were inoculated 1:100 with the pre-culture and 

grown at 37 °C to oD600 0.6 - 0.8. The culture was then cooled to 18 °C and further incubated for 

additional 45 minutes in the shaker. Then protein production was induced by addition of 0.2 mM 

IPTG. The culture was further shaken overnight at 18 °C. Cells were harvested the next morning, 

frozen in liquid nitrogen and stored at 20 °C until further use. 

 

3.3.2.2 Recombinant selenomethionine expression in E. coli 

  

Expression of selenomethionine containing Nbs
mir

-Mre11
cd

 fusion protein (3.3.3.1 and 4.2.1) 

was performed in Escherichia coli B834 Rosetta (DE3) in a shaking culture of minimal 

medium containing 50 mg/L selenomethionine with 250 µM IPTG at 18 °C overnight. All 

amino acids were reagent-grade L-enantiomers purchased from Sigma (Deisenhofen, 

Germany). After dissolving the components (Table 3.9) in 2000 ml FPLC grade water, 

solution A was autoclaved, cooled to RT and supplemented with 200 ml filter-sterilized 
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solution B plus 125 mg selenomethionine (Calbiochem, Schwalbach, Germany). Expression 

was carried out analogous to native proteins (3.3.2.1). 

 

Table 3.9: LeMaster’s medium (Hendrickson et al. 1990) 

Compounds for autoclavable solution A (2000 ml) 

Alanine 1.0 g Serine 4.166 g 

Arginine hydrochloride 1.16 g Threonine 0.46 g 

Aspartic acid 0.8 g Tyrosine 0.34 g 

Cystine 0.066 g Valine 0.46 g 

Glutamic acid 1.5 g Adenine 1.0 g 

Glutamine 0.666 g Guanosine 1.34 g 

Glycine 1.08 g Thymine 0.34 g 

Histidine 0.12 g Uracil 1.0 g 

Isoleucine 0.46 g Sodium acetate 3.0 g 

Leucine 0.46 g Succinic acid 3.0 g 

Lysine hydrochloride 0.84 Ammonium chloride 1.5 g 

Phenylalanine 0.266 g Sodium hydroxide 1.7 g 

Proline 0.2 g Dibasic potassium phosphate 21.0 g 

 

Compounds for non-autoclavable solution B (200ml) 

Glucose 20.0 g Concentrated sulfuric acid 16.0 μl 

Magnesium sulphate 0.5 g Thiamine 10.0 mg 

Iron sulphate 8.4 g  

 

 

3.3.2.3 Purification of GST-labelled proteins 

 

Cells from 3-12 L expression culture were resuspended in buffer A (Table 3.10) and lysed by 

sonication followed by centrifugation at 30,000 x g, 4 °C for 45 min. The supernatant was 

loaded onto a Glutathion-Sepharose affinity column (GE Healthcare) and washed with 5-10 

column volumes of buffer A. Afterwards a high salt wash using 5-10 column volumes of 

buffer B was performed and the column then equilibrated again with buffer A. The GST-

fusion proteins was eluted in buffer C containing 20 mM reduced Glutathione. Proteolytic 

cleavage was achieved by addition of Prescission protease (GE Healthcare, to cleave off the 

GST tag) or Tobacco Etch Virus (TEV) protease (in cases where the Nbs1
mir

-Mre11
cd

 fusion 
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protein was cleaved) to the protein solution and overnight incubation at 10 °C. The prepared 

protein was dialysed overnight against 1L of buffer D. The dialysis procedure was repeated 

twice the next day for additional 2x one hour with fresh buffer to remove residual glutathione. 

The cleaved GST was removed by passing the dialyzed solution fractions again through a 

Glutathione-Sepharose column. The flowthrough was collected and further purified by size 

exclusion chromatography on a S200 column (GE Healthcare). The elution fractions were 

analysed by SDS-gel electrophoresis (3.3.2.5) and fractions containing the protein of interest 

were pooled and concentrated (Amicon spin concentrators, Millipore). Proteins used for 

crystallization were prepared with specific size exclusion buffers listed in Table 3.12. Proteins 

which were later used for biochemical assays in various buffers, were purified by size 

exclusion chromatography using buffer D. Proteins, which were not used directly after 

purification were stored flash frozen in small aliquots of 100 µl at -80 °C. All mutant proteins 

were purified in the same way as the native proteins. Also the selenomethionine labelled 

Nbs1
mir

-Mre11
cd

 protein was purified similarly, but with 5 mM ß-Mercaptoethanol in buffers 

A-D. 

 

Table 3.10: Buffers for purification of GST-labelled proteins 

       Buffer A (Lysisbuffer)      Buffer B (High salt buffer)    Buffer C (elution buffer) 

50 mM  Hepes/NaOH pH7.5  20 mM  Hepes/NaOH pH7.5  50 mM  Hepes/NaOH pH7.5  

500 mM NaCl 1 M NaCl 500 mM NaCl 

4 mM EDTA 2 mM EDTA 20 mM Glutathione (reduced) 

2 mM ß-Mercaptoethanol 2 mM ß-Mercaptoethanol 4 mM EDTA 

    2 mM ß-Mercaptoethanol 

 

Buffer D (Dialysis and size  

exclusion chromatography buffer) 

20 mM Hepes/NaOH pH7.5     

500 mM NaCl     

2 mM EDTA     

2 mM ß-Mercaptoethanol     

 

3.3.2.4 Purification of His-tag labeled proteins 

 

Cells were lysed similar to the GST-labelled proteins (3.3.2.3) but with the usage of a Ni-

NTA specific, 20mM imidazol containing buffer A (Table 3.11). The supernatant was loaded 
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onto a Ni-NTA agarose beads (QIAGEN) containing gravity flow column, which had been 

equilibrated with Ni-NTA buffer A. The beads were first washed extensively with Buffer A, 

then with the high salt buffer B, and finally reequilibrated with buffer A. The protein was 

eluted from the column using buffer C. The elution fraction were concentrated with a 

centrifugal filter unit (Amicon spin concentrators, Millipore) and loaded onto a Superdex 

S200 26/60 size exclusion column (GE Healthcare) equilibrated in buffer D. Fractions 

containing the protein of interest were identified by SDS-PAGE (3.3.2.5), pooled and 

concentrated. The protein concentration was determined with the calculated theoretical 

extinction coefficient at 280 nm. Proteins which were not used directly after purification were 

stored flash frozen in small aliquots of 100 µl at -80 °C. 

 

Table 3.11: Buffers for purification of His-tag labelled proteins 

Ni-NTA Buffer A 

(lysis buffer) 

Ni-NTA Buffer B  

(high salt buffer) 

Ni-NTA Buffer C 

(elution buffer) 

20 mM  Hepes/NaOH pH 7.5  20 mM  Hepes/NaOH pH 7.5  20 mM  Hepes/NaOH pH 7.5  

500 mM NaCl 1 M NaCl 300 mM NaCl 

20 mM Imidazol 20 mM Imidazol 300 mM Imidazol  

4 mM EDTA 2 mM EDTA 2 mM EDTA 

2 mM ß-Mercaptoethanol 2 mM ß-Mercaptoethanol 2 mM ß-Mercaptoethanol 

 

Buffer D  

(size exclusion chromatography buffer) 

 

20 mM Hepes/NaOH pH 7.5 

300 mM NaCl 

2 mM EDTA 

2 mM ß-Mercaptoethanol 

 

3.3.2.5 Discontinous Polyacrylamide Gel Electrophoresis (SDS-PAGE) 

 

Protein samples were analysed by discontinuous polyacrylamide gel electrophoresis (SDS-

PAGE) (Laemmli 1970) with a vertical Mini-PROTEAN 3 System (BioRad). Protein samples 

were mixed with Laemmli buffer and denaturated 1-5 min at 95 °C. Depending on the 

molecular weight of the analysed protein, a separating gel with 6 to 15% acrylamide was 

used. Gels were run at 200V in 1x TGS buffer, stained afterwards with Coomassie staining 

solution and destained in water. 
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4x lower buffer: 3 M Tris (pH 8.5), 0.4% (w/v) SDS 

4x upper buffer: 0.5 M Tris (pH 6.8), 0.4% (w/v) SDS 

4x Laemmli buffer: 0.11 M Tris (pH 6.8), 16% (v/v), 4% (w/v) SDS,  

5% (v/v) β-mercaptoethanol, 0.05% (w/v) bromophenol blue  

10x TGS buffer: 0.5 M Tris (pH 8.3), 1.9 M glycin, 1% (w/v) SDS  

Coomassie stain: 50% (v/v) ethanol, 7% (v/v) acetic acid, 0.2% (w/v), 

Coomassie Brilliant Blue R250 

 

3.3.2.6 Western blot analysis 

 

Protein samples were first fractionated by SDS-PAGE according to Laemmli (Laemmli 1970) 

with a Mini Protean III system (Biorad, München) (3.3.2.5). Gels were then blotted to a 

Nitrocellulose membrane (Roth, Karlsruhe, Germany) using  a Mini Trans-Blot Cell system 

with a transfer buffer containing 50 mM TRIS/HCl pH 8.3, 0.19 M glycine, 0.1 (w/v) % SDS 

and 20 % methanol. Three layers of Whatman paper, followed by the nitrocellulose 

membrane, the SDS-PAGE gel and another three layers of Whatman paper, all presoaked in 

blotting buffer, were assembled in the blotting machine. Transfer of proteins to the membrane 

occurred at 100V for 60 min at 8 °C. The nitrocellulose membrane was blocked with 

TBST+M buffer (50 mM Tris/HCl pH 7.5, 150 mM NaCl, 0.1% Tween 20, 4% milk powder) 

for 45 min. The first antibody was diluted in TBST+M buffer and incubated overnight at 8 C. 

Next the membrane was washed with TBST+M buffer for 3x 15 min and incubated with a 

Horseradish Peroxidase (HRP) coupled secondary antibody in TBST+M buffer at RT for 2h. 

Afterwards, the membrane was washed 3x 15 min in TBS-T buffer without milk powder. All 

used antibodies and the respective dilutions are listed under 3.1.1.  

The immunostained proteins were detected by addition of Pierce ECL Western Blotting 

Substrate solution (Thermo Scientific, Bonn) to the blotting membrane and subsequent 

exposure with a light sensitive Hyperfilm™ ECL™ (GE Healthcare). The films were 

developed with a Kodak X-Omat M35 developing machine. 
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3.3.2.7 Analytical size exclusion chromatography 

 

To analyse the complex formation of different Mre11 and Nbs1 protein constructs from 

S. pombe, 10 nmol Mre11 and 7.5 nmol Nbs1 proteins were mixed and dialysed against the 

chromatography running buffer containing 20 mM Hepes pH 7.5, 100 mM KCl, 5% glycerol, 

2mM ß-mercaptoethanol and either 1 mM MnCl2 or 2 mM EDTA. A volume of 350 µl protein 

sample was loaded at a flow rate of 0.5 ml/min onto a Superdex S200 10/300 GL column (GE 

Healthcare), pre-equilibrated with running buffer. Elution fractions were analyzed for Mre11 

and Nbs1 by SDS-PAGE and Coomassie staining (3.3.2.5). 

 

3.3.2.8 Limited Proteolysis 

 

A stock solution of 1mg/ml proteinase K dissolved in H20 was diluted to 1:10, 1:100, 1:1000, 

1:3000, 1.6000 and 1:10000 with 2 mM HCl (pH ≈ 3). For each sample 45 µl of a 1 mg/ml 

protein solution in 20 mM Tris/HCl pH 7.5, 150 mM NaCl, 2 mM ß-Mercaptoethanol was 

mixed with 5 µl of the corresponding dilution of proteinase K. The samples were incubated at 

RT for 1 h and stopped by addition of 1 µl PMSF-saturated isopropanol and 16.6 µl of 4x 

SDS-sample buffer. An appropriate amount of sample was analyzed by SDS-PAGE (3.3.2.5). 

Protein bands of interest were cut out and sent to the Zentrallabor für Proteinanalytik (ZfP - 

Prof. Dr. Axel Imhof, München) for MALDI peptide mass fingerprint analysis. 

 

3.3.2.9 Nuclease activity assay 

 

Mre11 nuclease activity was tested using a 6-FAM- 5` labelled 60mer poly(dT) 

oligonucleotide (Table 3.2). For each reaction, 10 nM DNA was incubated with 5 µM of 

Mre11 (residues 1-413) or Mre11 (residues 1-413) H134S proteins in 10 µl buffer containing 

20 mM Hepes pH 7.5, 100 mM KCl,.5% glycerol, 5 mM MnCl2 and 2 mM Mercaptoethanol 

at 37 °C for 2 h. The reaction was stopped by addition of 3 µl loading buffer (10mM Tris, pH 

8.0 16.6% formamide, 16.6% glycerol, 5mM EDTA) and incubated at 95 °C for 5 min. 

Reaction products were resolved on a denaturating 18% acrylamide gel in 1x TBE buffer 

containing 8M Urea. Gels were imaged with a Typhoon 9400 fluorescence scanner (GE 

Healthcare) using the green-exited (532nm) fluorescence mode.  
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3.3.2.10 EMSA (electrophoretic mobility shift assay) 

 

Binding of different S. pombe Mre11 and Nbs1 constructs to DNA was analyzed by 

electrophoretic mobility shift assays (EMSAs). The binding of proteins to DNA can be 

visualized by a mobility shift in native gel electrophoreses. Protein-DNA complexes posses 

normally a lower charge/mass ratio than free DNA and therefore migrate slower in the gel. 

The DNA is visualized by a covalently coupled fluorescence label. The samples contained the 

DNA substrate at a concentration of 50 nM and the protein in different excess concentrations 

(0/1.5/3/6/12 µM for Mre11 and 0/0.5/5/50 µM for Nbs1 constructs) and in a total volume of 

10 μl. The assay buffer contained 20 mM Hepes/NaOH pH 7.5, 100 mM KCl, 10% Glycerol, 

1 mM MnCl2 and 2 mM ß-Mercaptoethanol. The protein samples had been equilibrated by 

dialysis against the assay buffer before use. After addition of protein to the DNA, the samples 

were mixed and incubated for 30 min at RT. Afterwards they were analyzed with a 0.5% 

(w/v) agarose gel in 1x TB buffer (90 mM Tris, 90 mM boric acid, pH 8 without adjustment). 

The gel was run at 4 V/cm and 8 °C for 2 h and visualized with a Typhoon 9400 fluorescence 

scanner (GE Healthcare). 

 

3.3.3 Structural biology methods 

 

3.3.3.1 Crystallization 

 

All proteins were crystallized at 20 °C using the hanging drop vapour diffusion technique. 

Initial crystals were obtained in commercial 96-well format sitting drop screens using the 

Matrix Hydra II 96-channel microdispenser (Thermo Scientific) for dispensing of reservoir 

solutions and protein drops. The initial screens were set up with a reservoir volume of 50 µl 

and a dropsize of 0.5 µl reservoir + 0.5 µl protein solution. Initial crystals were optimized 

manually in refinement screens by varying the composition of the reservoir solution as well as 

the protein concentration. The refinement screens contained a reservoir volume of 500µl with 

2 μl reservoir + 2 μl protein solution drops. The protein preparation buffers, protein 

concentrations, screen compositions and cryo protectants for all crystallised proteins are listed 

in Table 3.12. Cryocooling for data collection was achieved by soaking the crystals for 30 sec 

in mother liquor solution containing the cryo protectant and flash freezing in liquid nitrogen.  
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Table 3.12: Crystallization conditions for Nbs1
mir

Mre11
cd

 complexes and Mre11
cd

 

 

preparation buffer 

protein 

concen-

tration 

crystallization solution cryo reagent 

Nbs1
mir

Mre11
cd

 

SeMet 

20 mM Hepes pH 7.5 

200 mM NaCl 

1 mM MnCl2 

2 mM ß-Mercaptoethanol 

10 mg/ml 

400 mM ammonium  

citrate pH 6.0 

20% w/v PEG 3350 

15 % D(-) 

-2,3butanediol 

Nbs1
mir

Mre11
cd

 

 

20 mM Hepes pH 7.5 

200 mM NaCl 

1 mM MnCl2 

2 mM ß-Mercaptoethanol 

9 mg/ml 

100 mM Tri-Na-Citrate pH 5.0 

200 mM ammonium sulfate 

13% w/v PEG 4000 

15 % D(-) 

-2,3butanediol 

Nbs1
mir

Mre11
cd

 

(+50 Mn
2+

) 

20 mM Hepes pH 7.5 

200 mM NaCl 

1 mM MnCl2 

2 mM ß-Mercaptoethanol 

8 mg/ml 

400 mM ammonium 

 citrate pH 6.0 

20% w/v PEG 3350 

50 mM MnCl2 

15 % D(-) 

-2,3butanediol 

Non-fused 

Mre11
cd

Nbs1
mir

  

20 mM Hepes pH 8.0 

200 mM NaCl 

1 mM MnCl2 

2 mM ß-Mercaptoethanol 

8 mg/ml 

200 mM ammonium 

 citrate pH 5.5,  

14 % w/v PEG 3350  

50 mM MnCl2 

20% glycerol 

Mre11
cd

 

20 mM Hepes pH 7.5 

300 mM NaCl 

0.1 mM EDTA 

1 mM MnCl2 

2 mM ß-Mercaptoethanol 

22 mg/ml 

100 mM Hepes pH 8.1 

9% w/v PEG 8000  

200 mM NaCl. 

12% D(-) 

-2,3butanediol 

 

3.3.3.2 Data collection, structure solution and model building  

 

Diffraction data were collected at the PXI beamline at the SLS (Villigen, Switzerland) or at 

beamline ID23-1/2 at the ESRF (Grenoble, France) as indicated in Table 4.1. Single-

wavelength anomalous dispersion (SAD) data to 2.8 Å were collected at the selenomethionine 
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peak wavelength at the beamline ID23-2 on selenium-containing crystals. All data were 

integrated and scaled with XDS (Kabsch 1993). The structure of the Nbs1
mir

-Mre11
cd

 fusion 

protein was determined by SAD phasing methods using SHARP and autoSHARP (Global 

Phasing, Cambridge), which located 8 selenomethionine and 2 manganese sites within the 

asymmetric unit. An initial model was built by alternate rounds of automatic model building 

using the programs ARP/warp (Langer et al. 2008) and Buccaneer (Cowtan 2006). The 

resulting model was used for molecular replacement with the program Phaser (McCoy 2007) 

against the native dataset. The model was completed by manually model building in the 

resulting electron density using the program COOT (Emsley and Cowtan 2004) and refined to 

2.4 Å. Phases for the non-fused Mre11
cd

-Nbs1
mir

 complex and apo-Mre11
cd

 were obtained by 

molecular replacement with Phaser using the monomeric Mre11
cd

 model derived from the 

Nbs1
mir

-Mre11
cd

 fusion protein model. Prior to refinement, 5-10 % of the reflections were 

randomly omitted for monitoring the free R-value. All models were refined by iterative cycles 

of bulk solvent correction, overall anisotropic B factor refinement, positional, TLS group 

refinement with Phenix (Zwart et al. 2008) and manual model building with COOT. Initial 

NCS restraints were gradually removed in the final cycles of the refinement, to allow some 

structural variations. Especially for refinement of flexible loop regions within the structures 

the refinement program autoBUSTER (Global Phasing, Cambridge) was used during the last 

steps of the refinement process. Data collection and model statistics are summarized in Table 

4.1. All figures were prepared with PYMOL (DeLano Scientific). 

 

3.3.3.3 Small angle x-ray scattering 

 

Synchrotron radiation small angle X-ray scattering (SAXS) data were collected at the EMBL 

X33 beamline at the DORIS storage ring (DESY, Hamburg, Germany) using a MAR345 two-

dimensional image plate detector. Scattering patterns from solutions of Mre11
cd

 at 

concentrations of 5 mg/ml were measured in the corresponding preparation buffers. Various 

programs of the ATSAS (Konarev et al. 2006) software package were used to process and 

evaluate the SAXS data. PRIMUS was used for initial data analysis. The radius of gyration R 

g was determined by fitting the measured scattering data with the Guinier equation (s×RG < 

1.3) and the program GNOME was used to determine P(r)-functions. CRYSOL was utilized 

to compute theoretical SAXS-curves from crystallographic coordinate files for data 

comparison. 
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3.3.4 Yeast specific methods 

 

3.3.4.1 Yeast transformation 

 

For transformation of Mre11 coding plasmids into the W303 ∆mre11 strain, 50 ml of yeast 

culture were grown to an OD600 of 0.5 to 0.8 in YPD and pelleted by centrifugation at 

3600 rpm (Rotanda 46R centrifuge) and room temperature (RT) for 3 min. After washing with 

10 ml of H2O, the pellet was washed once with 500 µl of solution I (10 mM Tris-HCl, pH 7.5, 

1 mM EDTA, 100 mM Li-acetate) and resuspended in 250 µl solution I. 3 µg DNA and 5 µl 

of single stranded carrier DNA (DNA of salmon of herring testis, 2 mg/ml) were mixed with 

50µl of cells in solution I and incubated with 300 µl solution II (10 mM Tris-HCl, pH 7.5; 

1 mM EDTA; 100 mM Li-acetate; 40% w/v PEG 4000) on a turning wheel at RT for 30 min. 

The samples were heat shocked at 42 °C for 10 min, followed by 3 min of incubation on ice. 

1 ml of H2O was added, the sample centrifuged, the pellet resuspended in 50 µl H2O and 

plated on a selective plate. To transform yeast cells grown on plate, one loop of 

logarithmically grown cells was resuspended in 30 µl of 100 mM Li-acetate and vortexed. 

The rest of the transformation was done according to the protocol described above. 

 

3.3.4.2  Plate survival assays 

 

One loop of freshly growing cells from a plate was resuspended in 1 ml H2O. Five 10 fold 

dilutions were prepared and 6 µl of each dilution spotted onto the corresponding plates: SDC 

(-Ura), SDC (-Ura) + 0.2/1/5 µg/ml Camptothecin (CPT), SDC (-Ura) + 0.005% methyl 

methanesulfonate (MMS), SDC (-Ura) + 50 or 200 mM hydroxyurea (HU), YPD, YPD + 

0.2/1/5 µg/ml CPT, YPD + 0.005 % MMS, YPD + 50 or 200 mM HU. 

The compositions of SDC (-Ura) and YPD media are listed under 3.2. 

 

3.3.4.3  Co-immunoprecipitation 

 

The interaction of different S. cerevisiae Mre11 mutants with Rad50 and Xrs2 was analyzed 

performing a modified co-immunoprecipitation protocol by (Strahl-Bolsinger et al. 1997): 

W303 ∆mre11 cells containing a P527 ScMre11 plasmid, coding for the respective c-myc-

tagged Mre11 mutant protein (Table 3.6), were cultivated in SDC (-Ura) medium. 50 ml of 
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medium were freshly inoculated with an overnight culture to a starting oD600 of 0.2 - 0.3 and 

shaked at 30 °C until an OD600 of 0.7. Cells were pelleted by centrifugation at 3600 rpm  for 

3min (Rotanda 46R), washed twice with TBS (20 mM Tris-HC1 at pH 7.6, 200 mM NaC1), 

and resuspended in 400 µ1 lysis buffer (50mM Hepes pH 7.5, 140mM NaCl, 10% Glycerin, 

0.5% NP-40, 1mM PMSF, 2mM benzamidine hydrochloride, 2 µM Pepstatin, 0.5 µM 

Leupeptin, 3.3 µM Chymostatin). Then, 400 µ1 glass beads were added and the cells lysed by 

vortexing on an Eppendorf 5432 shaker for 40 min. The tubes were then punctured on the 

bottom, and the lysate collected in a 15 ml falcon tube by centrifugation at 1000rpm for 1min. 

The lysate was transferred into an 1.5 ml Eppendorf tube and clarified by centrifugation at 

4 °C and 13000 rpm for 5 min and 15min. The supernatant was transferred into a fresh 

Eppendorf tube, followed by addition of 5µg α-cMyc antibody (3.1.1) and 20 U of DNAse I 

(New England Biolabs). The samples were incubated for 3h at 8 °C on a turning wheel to 

allow formation of Mre11-cMyc-antibody complexes. Then, 50µl of Protein G Dynabeads   

(Invitrogen), preequilibrated with lysis buffer, were added (beads in suspension) and the 

incubation was continued for 1h. Then the beads were washed three times for 5 min with 1.4 

ml lysisbuffer and subsequently resuspended in 60 µl 1.5x Laemmli buffer (3.3.2.5). The Co-

immunoprecipitates were analysed by SDS-PAGE (3.3.2.5) followed by western blot analysis 

(3.3.2.6). For western blot analysis of IP inputs, whole cell extracts were prepared using TCA-

mediated protein precipitation as described before (Janke et al. 2010). 

 

3.3.4.4  Indirect immunofluorescence 

 

An exponentially grown yeast culture (10ml with OD600 of 0.5 – 1.0) was mixed with 1 ml of 

37% HCOH to fix the cells and incubated on a turning wheel at 30 °C for 90 min. The cells 

were pelleted by centrifugation at 3000 rpm and RT for 5 min (Rotanda 46R centrifuge), 

washed twice with spheroblasting premix (1.2 M sorbitol, 0.1 M K-phosphate buffer, pH 7.4, 

0.5 mM MgCl2), resuspended in 1 ml spheroblasting premix and stored at 4 °C up to 18h. 

Afterwards, the cells were pelleted and resuspended in 200µl of spheroblasting premix, 

containing 100 µg of 100T zymolyase and incubated in a 30 °C waterbath for 30 min. 

Following spheroblasting, the cells were pelleted by centrifugation at 2000 rpm and RT (table 

top centrifuge) for 4 min and resuspended in at least 10x the volume of the cells in 

spheroblasting premix. Then, one drop of the suspension was pipetted on a fluorescence 

microscopy slide, which had been precoated with polylysine. After 5 min of incubation the 
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drops were pipetted off and the immobilized cells washed with 1 drop of blocking buffer (1% 

BSA powder in PBS (phosphate buffered saline, 2.7 mM KCl, 7.9 mM Na2HPO4, 1.5 mM 

KH2PO4, 137 mM NaCl). The cells were fixed by incubation of the slide with methanol in a 

staining jar at -80 °C for 6 min followed by 30 sec incubation in -80 °C cold acetone. Next, 

the slides were dried at RT and incubated with 100 µl blocking buffer for 10 min. The 

solution was removed and the cells incubated with 20 µl of the first antibody solution 

(antibody diluted in 1% BSA in PBS) at RT for 2 h. Then the slides were washed to remove 

the antibody for 3x 1 min incubations with 10 µl blocking buffer additionally containing 

0,1 % Triton-X at RT. Afterwards, 20 µl of the second antibody diluted in blocking buffer 

was added to the cells followed by incubation in the dark for 1 h. Finally, the cells were 

washed 3x with blocking buffer plus 0,1 % Triton-X. For staining of cell nuclei the slides 

were put in a jar containing SSC buffer (300 mM NaCl; 30 mM Na-citrate, pH 7.0) and 5µl of 

DAPI (10mg/ml) in the dark for 10 min. Afterwards the slides were washed with a 1:4 

dilution of SSC buffer at RT for 5 min in the dark and dried. Finally the cells were covered 

with 80% glycerol and sealed with the cover slide.  

The stained cells were analyzed using a DMI 6000 B fluorescence microscope (Leica 

Microsystems, Wetzlar). The signal of the Alexa Fluor 488 coupled antibody was detected at 

an emission wavelength of 519 nm and the DAPI signal at an emission wavelength of 461 nm. 

The excitation wavelength was at 495 nm for Alexa Fluor 488 and 358 nm for DAPI. The 

signal intensity was 3 for Alexa Fluor 488 and 2 in the case of DAPI. A gain of 3.5 (Alexa 

Fluor 488) or 3.3 (DAPI) was used for signal detection. Fluorescence signals were analyzed 

with the LAS AF Lite software (Leica Microsystems, Wetzlar) and the pictures arranged 

using ImageJ (NIH, Bethesda, USA). 

 

3.3.5 Bioinformatical methods 

 

3.3.5.1 Structure based sequence alignments 

 

Protein sequences of Mre11 from eukaryotic organisms Schizosaccharomyces pombe 

(SpMre11), Saccharomyces cerevisisae, Danio rerio and Homo sapiens were aligned with 

ClustalW (Larkin et al. 2007). The archaeal Mre11 sequence from Pyrococcus furiosus 

(PfMre11) was added after calculating a pairwise alignment of PfMre11 and SpMre11 with 

the program FATCAT (Ye and Godzik 2004) using the pdb-coordinates of PfMre11 (Protein 
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data base entry 1II7) and SpMre11
cd

 as input files. The PfuMre11/SpMre11 alignment was 

further revised by comparison of the overlaid structures with Pymol (DeLano Scientific).  
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4. RESULTS 

 

4.1  Cloning and expression of Mre11 and Nbs1 from S. pombe 

 

The coding genes for full length Mre11 and Nbs1 from the fission yeast Schizosaccharomyces 

pombe were amplified by PCR using a cDNA library and cloned into E. coli expression 

vectors according to 3.3.1.1. Full length Mre11 (aa 1-649), could be purified but was prone to 

aggregation and degradation over time. Full length Nbs1 (aa 1-613), also expressed in E. coli, 

was mostly unsoluble and could be purified only in minor amounts (data not shown). 

However, an Mre11-Nbs1 mutant complex consisting of Mre11 aa 1-478 and Nbs1 aa 474-

613 could be co-expressed and purified in mg amounts (3.3.2.4 and Table 3.5). Even though 

this complex was extensively tested for crystallization, it did not yield crystals in any 

condition. Furthermore, it was already degraded by proteolysis during the preparation. Thus, 

to identify stable fragments of Mre11 and Nbs1, suitable for crystallization, a limited 

proteolysis analysis was performed. For this purpose, the Mre11 aa 1-478 / Nbs1 aa 474-613 

complex was incubated with different concentrations of Proteinase K. Nevertheless, no stable 

Nbs1 fragment shorter than aa 474-613 could be identified. For Mre11, however, a stable 

fragment of approximately 45 kDa was identified and further analyzed by a MALDI trypsin 

fingerprint (3.3.2.8 and Figure 4.1). Here, peptides in the N-terminal region of Mre11 between 

residues 1-412 were found, which matched also the observed molecular weight of the 

fragment. Based on this observation a new construct of Mre11 was cloned which contained aa 

1-413 (Table 3.5). The Mre11 construct aa 1-413 could be expressed and prepared in high 

purity and with a yield of several mg protein. However, albeit remaining stable after 

purification, it did not crystallize in any tested screen. A secondary structure analysis with 

JPRED (Cole et al. 2008) predicted the first 17 residues of S. pombe Mre11 to be 

unstructured. Therefore, a construct consisting of aa 15-413 was generated from which the 

structure could later be determined (Table 3.5, Figure 4.2). The Mre11 fragment aa 15-413 

contained, based on structure aligments with the archaeal Mre11 homologue from Pyrococcus 

furiosus, both the nuclease and the DNA capping domain. It was therefore further named 

Mre11
cd

 (cd = catalytical domain). 
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Figure 4.1: Limited proteolysis analysis of the S. pombe Mre11 aa 1-478 / Nbs1 aa 474-613 complex. (A) 

SDS-PAGE for limited proteolysis samples of the S. pombe Mre11 aa 1-478 / Nbs1 aa 474-613 complex with 

different concentrations of Proteinase K. 10 or 3.3 µg of protein were loaded from each sample. (B) Sequence of 

S. pombe Mre11 aa 1-478. Peptides, which were identified by a MALDI-TOF Trypsin fingerprint analysis  are 

colored in red (3.3.2.8). 

 

Since full length Nbs1 could not be produced in amounts suitable for crystallization, different 

constructs of the Nbs1 C-terminus, which contains the binding site for Mre11 (Ueno et al. 

2003), were prepared. The largest soluble fragment, including amino acid residues 428-613 

(Table 3.5), did not crystallize alone or in complex with Mre11 aa 15-413. Secondary 

structure predictions of S. pombe Nbs1 with the program JPRED (Cole et al. 2008) indicated 

the C-terminal region between aa 570-613 to be mainly unstructured, which could impair 

crystal growth. Therefore, starting from the size of fragment aa 428-613, smaller deletion 

constructs were generated (Table 3.5). The smallest fragment binding to Mre11, determined 

by size exclusion chromatography, was Nbs1 aa 474-531. It contains two conserved sequence 

motifs which were proposed by Ueno et al. (Ueno et al. 2003)  to present the Mre11 

interaction region and was therefore further named Nbs1
mir

. 
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Figure 4.2: Binding studies of Mre11 and Nbs1, construct design and protein preparations of Mre11/Nbs1 

complexes for crystallization: (A) Analytical size exclusion chromatography with a Superdex S200 10/300GL 

column showed that Mre11 aa 1-413 and Nbs1 474-531 form a stable complex with a 1:1 stoichiometry. (B-C) 

Mre11
cd

 and Nbs1
mir

 fusion proteins used for crystallization. Nbs1
mir

 (aa 474-531) - Mre11
cd 

(aa 15-413) (B) was 

directly crystallized, Mre11
cd

 (aa 7-413) - Nbs1
mir

 (aa 474-531) (C) was crystallized in the non-fused form after 

proteolytic cleavage of the linker peptide with Tobacco etch virus protease at its recognition site in the linker 

region between Mre11
cd

 and Nbs1
mir

. Mre11 is shown with the phosphodiesterase in green and the DNA capping 

domain in grey. The Mre11 interacting region of Nbs1 is depicted magenta. (D) SDS-PAGE of different protein 

preparations  (from left to right): Mre11 aa 15-413, Nbs1 (aa 474-531) - (Mre11 (aa 15-413) fusion protein, non-

fused Mre11 (aa 7-413) - Nbs1 (aa 474-531) complex.  

 

Since none of the generated fragments initially crystallized with Mre11, a fusion protein 

consisting of Nbs1
mir

 (aa 474-531) and Mre11
cd 

(aa 15-413) was generated to facilitate 

crystallization (Figure 4.2 B and Table 3.5). The flexible linker, which covalently links the C-

terminus of Nbs1 with the N-terminus of Mre11 consisted of the amino acid sequence 

GSAGSAGS. The construct could be crystallized and its structure solved (Table 3.12 and 

4.3). To rule out, that the fusion influences the structure, also a reversed plus additionally 
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cleavable fusion protein was generated (Mre11
cd

 aa 7-413 fused to Nbs
mir

 aa 474-531). In this 

construct the C-terminus of Mre11 aa 7-413 was linked via a TEV protease cleavage site to 

the N-terminus of Nbs1 aa 474-531. After proteolytic cleavage of the linker peptide, the non-

fused complex of Mre11
cd

 and Nbs
mir

 could be crystallized and its structure determined (4.2.1 

and Table 3.12).  

 

4.2 Crystallization, structure solution and refinement  

 

4.2.1 Nbs1
mir

-Mre11
cd

 complex 

 

Initial crystallization screenings with the covalently fused Nbs1
mir

-Mre11
cd

 complex yielded 

crystals in several different conditions (3.3.3.1). Larger three dimensional crystals grew in 

conditions containing citrate salts and different PEGs. They could easily be reproduced in 

refinement screenings with native and selenomethionine labeled proteins (Figure 4.3 A-C and 

Table 3.12). Crystals of the selenomethionine labeled, covalently fused Nbs1
mir

-Mre11
cd

 

complex diffracted to a limiting resolution of 2.8 Å at the ESRF ID23-1 beamline and allowed 

phase determination by SAD (3.3.3.2). Crystals of the native, covalently fused Nbs1
mir

-

Mre11
cd

 complex, derived from a refinement screen containing ammoniumsulfate, diffracted 

to a limiting resolution of 2.4 Å at the ESRF ID23-2 beamline (Figure 4.3 D and Table 4.1). 

All measured crystals belonged to space group P212121. An initial model was built by 

alternate rounds of automatic model building into the experimentally derived 2.8 Å electron 

density derived from crystals of the selenomethionine labeled protein. The resulting model 

was used for a molecular replacement against the native 2.4 Å dataset and completed by 

manual model building in the resulting electron density (3.3.3.2). The geometry of all chains 

was well within an acceptable range in the final model. The final R factors were 22.0% for 

Rwork and 24.2% for Rfree. Crystallographic data and refinement statistics are summarized in 

Table 4.1. An example of the refined electron density can be found in Figure 4.3 E.  

As described under 4.6, the structure derived from these crystals contained only one Mn
2+

 ion 

in the active site. An active site loop, responsible for complexing the second Mn
2+

 ion, was 

instead involved in complexing a sulfate molecule. Therefore, additional refinement 

screenings without ammonium sulfate but with high manganese chloride concentrations were 

set up, which yielded crystals diffracting up to 2.5 Å at the SLS PX I beamline (Table 3.12 
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and Table 4.1). From these crystals a structure with two Mn
2+

 ions per active site could be 

solved using molecular replacement (3.3.3.2).  

The non-fused Mre11
cd

 (aa 7-413) / (Nbs
mir

 aa 474-531) complex, which was generated to 

rule out that the protein fusion influences the structure, crystallized under conditions similar 

to the Nbs1
mir

 (aa
 
474-531) / Mre11

cd
 (aa 15-413) fusion protein (Table 3.12 and Figure 4.3 

F). A densitometric analysis with ImageJ (NIH, Bethesda, USA) of Nbs1 and Mre11 bands 

from an SDS-PAGE gel of crystals confirmed, that both proteins were also in the non-fused 

complex present in an exact 1:1 stoichiometry ( Figure 4.3 G). 

 

 

Figure 4.3: Crystallization of covalently fused or non-fused S. pombe Nbs1mir-Mre11cd complexes and 

diffraction data collection: (A) Initial crystals of the native, covalently fused Nbs1
mir

-Mre11
cd

 complex 

(condition: 0.1 M Sodium citrate pH 5.6, 0.2 M ammonium sulfate, 15% w/v PEG 4000). (B) Crystals of the 

native, covalently fused Nbs1
mir

-Mre11
cd

 complex from a refinement screen (condition: 0.5 M ammonium citrate 

pH 5.5 and 20% w/v PEG 3350). (C) Crystals of the selenomethione labeled, covalently fused Nbs1
mir

-Mre11
cd

 

complex from a refinement screen (condition: 0.4 M ammonium citrate, pH 6.0, 20% w/v PEG 3350). (D) 

Diffraction pattern of native crystal of covalently fused Nbs1
mir

-Mre11
cd

 complex. (E) Final 2Fo-Fc electron 

density map at 1.0 σ for the refined model of Nbs1
mir

-Mre11
cd

. Amino acid residues 178 to 184 of Mre11 chain 

A are shown. Residues are presented as stick models with carbon atoms colored in green, nitrogen in blue, and 

oxygen in red. (F) Crystals of the non-fused Mre11
cd

-Nbs1
mir

 complex from a refinement screen containing 

0.2 M Ammonium citrate, 14% w/v PEG 3350 and 50 mM MnCl2 (G) SDS-PAGE gel of non-fused Mre11
cd

-

Nbs1
mir

 complex crystals stained with Coomassie blue. A densitometric analysis of the Nbs1 and Mre11 bands 
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with ImageJ (NIH, Bethesda, USA) showed that both proteins also exhibit an exact 1:1 stoichiometry in crystals of 

the non-fused complex.  

 

Table 4.1 : Crystallographic data collection and model refinement statistics 

 
Nbs1

mir
- 

Mre11
cd

 

SeMet 

Nbs1
mir

- 

Mre11
cd

 

 

Nbs1
mir

- 

Mre11
cd 

+50mM Mn
2+

 

Non-fused 

Mre11
cd

-

Nbs1
mir

 

+50 mM Mn
2+

 

Mre11
cd

 

Data collection      

Beamline ID23-1 ID23-2 SLS PXI ID23-2 ID23-1 

Space group P212121 P212121 P212121 P212121 P212121 

Cell dimensions      

    a, b, c (Å) 58.9, 79.3, 

218.5 

60.3, 78.9, 

222.7 

59.3, 79.1, 

223.0 

59.1, 80.0 

220.9 

76.3, 82.3, 

164.3 

Wavelength 0.97925 0.8726 1.006 0.8726 1.000 

Resolution (Å) 50-2.8 47.9-2.4 50-2.5 47.5-2.2 46-3.0 

Rsym  5.5 (31.3) 5.0 (36.2) 4.1 (28.1) 5.3 (44.5) 6.1 (45.8) 

I / I 18.06 (3.74) 27.41 (4.36) 15.74 (3.15) 24.96 (3.93) 16.02 (2.87) 

Completeness (%) 96.4 (87.6) 96.4 (87.9) 89.4 (77.8) 95.8 (85.9) 92.4 (82.3) 

Redundancy 3.68 7.05 2.11 7.63 3.64 

Refinement      

Resolution (Å)  47.9-2.4 47.4 – 2.5 47.5-2.2 45.6 – 3.0 

No. reflections 43364 36766 53869 20978 

Rwork / Rfree 22.0/24.2 18.5 /21.8 22.2/24.0 22.2/ 28.9 

No. atoms     

    Protein 6720 6536 6491 5895 

    Water 240 162 211 - 

    Ligand/ions 2 Mn 4 Mn 4 Mn 4 Mn 

B-factors (Å ²)     

    Protein 38.1 48.6 52.9 76.3 

R.m.s deviations     

    Bonds (Å) 0.012 0.010 0.014 0.008 

    Angles (°)  1.9 1.2 1.9 1.3 
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4.2.2 Apo-Mre11
cd 

 

Initial crystals of apo-Mre11
cd

 could be observed in a commercial crystallization screen after 

4 weeks of incubation at 20 °C (Figure 4.4 A). However, they were too small to be suitable 

for diffraction data collection. Subsequent refinement screenings yielded larger crystals from 

which diffraction data with a limiting resolution of 3.0 Å was collected at the ESRF ID23-1 

beamline (Figure 4.4 B and C and 3.3.3.2). The crystals belonged to the space group P212121. 

The structure of apo-Mre11
cd

 was solved by molecular replacement methods using the earlier 

solved Nbs1
mir

-Mre11
cd

 structure as a replacement model (3.3.3.2 and 4.2.1). A high 

percentage of structural elements in the apo-Mre11
cd

 structure exhibited a conformation 

similar to Nbs1
mir

-Mre11
cd

.  Nevertheless, especially the regions interacting with Nbs1 

required extensive manual model building, due to large structural differences between the 

Nbs1 bound and unbound states.  After several rounds of manual model building and 

refinement, the final R-factors were 28.9 for Rwork and 22.2 for Rfree (Table 4.1). 

 

Figure 4.4: Crystallization and data collection of S. pombe Mre11
cd

: (A) Initial crystals of apo-Mre11
cd

 

(Condition: 0.2M sodium chloride, 0.1 M Hepes/NaOH pH 7.5, 12% w/v PEG 8000). (B) Crystals of apo-

Mre11
cd

 from a refinement screen (condition: 0.1 M Hepes/NaOH pH 8.1, 0.2 M sodium chloride, 9% w/v PEG 

8000), which were used for data collection (see C). (C) Diffraction pattern of Mre11
cd

 crystals from the 

refinement condition shown in (B). 

 

4.3 Analysis of the apo-Mre11
cd

 structure
 

 

The structure of S. pombe apo-Mre11
cd

 exhibits a dimeric architecture. Two Mre11
cd

 

protomers in the asymmetric unit assemble via a helix bundle interaction between the 

phosphodiesterase domains. Each phosphodiesterase domain is flanked by an adjacent DNA 

capping domain, thereby creating a broad U-shaped particle, which harbors the predicted 
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DNA binding cleft (seen in the archaeal P. furiosus Mre11-DNA structure) at its concave side 

(Figure 4.5 A-B) (Williams et al. 2008).  

Binding of Mn
2+

 to the phosphodiesterase motifs identified two apparently functional 

nuclease sites at the bottom of the broad DNA groove. All Mn
2+

 coordinating residues 

(Asp25, His27, Asp65, His68, Asn133, His134, His222, His 250, His 252) as well as the two 

histidine residues (H68, H134), earlier reported to be crucial for exo- and endonuclease 

activity, were present in an arrangement similar to prokaryotic Mre11 (Figure 4.5 C). 

Furthermore, the crystallized Mre11
cd

 fragment was an active ssDNA endo/exo nuclease, 

confirming that the crystallized Mre11
cd

 fragment contained all catalytic core elements (4.9). 

Even though there is only a relatively low sequence homology between eukaryotic, archaeal 

and eubacterial Mre11, some principal characteristics of the domain architecture are 

conserved among structures from the three different domains of live (Figure 4.5D). Similar to 

S. pombe Mre11, also the phosphodiesterase domains of archaeal Pyrococcus furiosus Mre11 

and eubacterial Thermotoga maritima mediate the dimeric Mre11-Mre11 interaction (Hopfner 

et al. 2001; Lammens et al. 2011). The capping domains are attached peripheral to the 

phosphodisterase domain, resulting also in a U-shaped Mre11 dimer.  

However, SpMre11 possesses also important differences to prokaryotic and archaeal Mre11 

(Figure 4.5 D). Even though the dimer interfaces of Mre11 homologues from all three 

domains of live consists of a four helix bundle, with two helices from each Mre11 protomer, 

the assembly of these helices varies: SpMre11 displays a “parallel” helix arrangement, similar 

to T. maritima (Tm) Mre11, while the helix bundle in P. furiosus (Pf) Mre11 dimers is 

“tilted”. As a result, the observed SpMre11 dimer cannot bind DNA in the same way as 

observed for PfMre11 (Williams et al. 2008). Furthermore, SpMre11 has a notable, large loop 

that extends the dimer interface distal to the DNA binding cleft. It spreads from residue 91 to 

123 and is strongly conserved between eukaryotic organisms while absent in archaea and 

eubacteria (See also alignments below: Figure 4.7 D, Figure 4.8). Interestingly, the 

N122
SpMre11

 residue within the loop is mutated in human A-TLD 3/4 (human: N117S). The 

mutation was reported to impair Nbs1 binding while still permit interaction with Rad50 

(Stewart et al. 1999). Therefore, it was speculated that this eukaryotic sequence insertion 

might be a key interaction site for Nbs1 (Hopfner et al. 2001). Additional differences between 

eu- and prokaryotic Mre11 exist also in the structural composition of the capping domain. It 

contains an extended 40 Å long alpha helix element (helix αF) in S. pombe Mre11, which 

spans from residue 332 to 358 αF, whereas the corresponding P. furiosus and T. maritima 
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helices are much shorter (21 and 19 Å respectively - see also sequence alignment in Figure 

4.8).  

 

 

Figure 4.5: Structure of S. pombe apo-Mre11
cd

 and comparison with homologous Mre11 structures from 

P. furiosus and T. maritima: (A): Mre11
cd

 dimer (phosphodiesterase in green/cyan and DNA capping domains 

in grey), shown as ribbon representation from side and top view. (B) Domain maps of full length S. pombe 

Mre11 and the crystallized Mre11
cd

 construct (CTD stands for Mre11 C-terminal domain). (C) Overlay of Mre11 

active sites from S. pombe Mre11
cd

 (protein model in green, Mn
2+

 ions shown as yellow spheres) and P. furiosus 

Mre11 (PDB entry 1II7 - protein model in orange, Mn
2+

 ions shown as grey spheres). (D) Comparison of the 

eukaryotic S. pombe Mre11
cd

 structure with archaeal P. furiosus Mre11 (PDB entry 1II7) and eubacterial T. 
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maritima Mre11 (PDB entry 2Q8U). The loop insertion in the nuclease domain of S. pombe (residues 91-123, 

here colored in red) is specific for eukaryotic Mre11 and absent in archaea or bacteria. S. pombe Mre11 contains 

furthermore an extended 40 Å long alpha helix element in the capping domain (colored in orange), which spans 

from residue 332 to 358. 

 

4.4 Analysis of the Nbs1
mir

-Mre11
cd

 complex structure
 

 

4.4.1 The structure of Nbs1
mir

-Mre11
cd

 - An overview 

 

The Nbs1
mir

-Mre11
cd

 complex structure reveals that both proteins form a complex with 2:2 

stoichiometry. The two Nbs1
mir

 molecules bind to the Mre11 dimer at two distinct sites 

(Figure 4.6 A-C). Each Nbs1
mir

 wraps around the outside of one Mre11 phosphodiesterase 

domain in a highly extended conformation via an α-helix and a ß-strand (interaction region 1).  

This first interaction region maps to the Nbs1
mir

 residues 477-498. Nbs1
mir

 becomes 

disordered C-terminal from interaction region 1. However, a second stretch of residues from 

one Nbs1 molecule, which contains a strongly conserved “KNFKxFxK motif (residues 518-

526), is ordered again and binds asymmetrically across the Mre11 dimer interface, opposite 

from the active site cleft. This interaction region 2 is mediated by the eukaryote-specific 

insertion loop (residues 91-123, see also 4.3), which is further named “latching” loop.  

To rule out that the protein fusion between Nbs1
mir

 and Mre11
cd

 might influence the protein 

structure, also a reversed plus additionally cleavable fusion protein (Mre11
cd

 7-413 fused to 

Nbs
mir

 474-531) had been generated. The non-fused complex of Mre11
cd

 and Nbs
mir

 had been 

crystallized and its structure determined to 2.2 Å resolution (4.2.1). Consistently, both 

structures are highly similar, arguing against influences of fusion and construct design (Figure 

4.6 D).  

 

http://www.pdb.org/pdb/explore/explore.do?structureId=2Q8U
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Figure 4.6: Structure of Nbs1mir-Mre11cd and domain map of Nbs1 (A) Structure of the two Nbs1
mir

 molecules 

(magenta) bound to the Mre11
cd

 dimer (phosphodiesterase in green/cyan and DNA capping domains in grey), 

shown as ribbon representation with highlighted secondary structures. Nbs1 binds with “interaction region 1” 

around the outside of the phosphodiesterase domain. One of the two Nbs1 additionally binds with “interaction 

region 2” to two latching loops at the Mre11 dimer interface. (B) Molecular surface representation of the Mre11 

dimer with bound Nbs1 molecules highlights the asymmetric bridging of the Mre11 dimer by Nbs1 “interaction 

region 2”. (C) Domains and motifs of S. pombe Nbs1. (D) A superposition of crystal structures of the Nbs1
mir

-

Mre11
cd

 fusion protein complex and the non-fused Mre11
cd

-Nbs1
mir

 complex (crystallized after proteolytic 

cleavage) reveals highly similar structures that rule out structural artefacts of the fusion. 

 

4.4.2 Analysis of protein interaction sites in the structure of Nbs1
mir

-Mre11
cd

 

 

Each of the two Nbs1
mir

 molecules in the structure binds via interaction region 1 to the outside 

of one Mre11 phosphodiesterase domain. The interface residues D477
Nbs1

-R486
Nbs1

 attach as 

an -helix (A) to an Mre11 loop emerging from the metal coordinating active site motif IV 

(Figure 4.7 A). This interaction would place the N-terminal FHA and BRCT module of Nbs1 

(missing in this structure - Nbs1 domain map shown in Figure 4.6 C) near the entry/exit of 

Mre11‟s DNA binding cleft, suitable for recruitment of repair and checkpoint factors to DSBs 
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(Lloyd et al. 2009; Williams et al. 2009). Following A, Nbs1 binds via an “S” shaped loop 

structure (residues L487
Nbs1

-G491
Nbs1

) across the short Mre11 helix element αD, which 

involves a hydrophobic interaction between the highly conserved residues F238
Mre11

 and 

L490
Nbs1

. Subsequent to the “S” loop, Nbs1 is attached as a thirdstrand (1
Nbs1

 S492
Nbs1

-) to a 

two-stranded -sheet of Mre11. All in all, the interaction region 1 is partially polar, but it 

contains a few hydrophobic anchor points. 

The two Nbs1
mir

 molecules become unstructured C-terminal from the interaction region 1. 

Only one of the two chains is ordered again between residues 518-526 and binds as 

interaction region 2 across both Mre11 latching loops. Thereby it breaks the pseudo-twofold 

symmetry of the Mre11:Nbs1 complex (Figure 4.6 A-B). The contacts to Mre11 are mediated 

by the highly conserved “KNFKxFxK” motif of Nbs1 via a hydrogen bonding and -stacking 

network (Figure 4.7 B and sequence alignments Figure 4.7 C-D). In particular, residue 

K519
Nbs1

 binds the backbone of G177
Mre11

, N520
Nbs1

 binds the backbone of C94
Mre11

 and 

stabilizes the conformation of KNFKxFxK, F521
Nbs1

 stacks with E97
Mre11

, while K522
Nbs1

 and 

K526
Nbs1

 bind to backbone carbonyls plus side chain oxygens of both N122
Mre11

 from the two 

Mre11 protomers. Most notably, F524
Nbs1

 inserts in a -stacking interaction between two 

peptide bonds and the two N122
Mre11

 carboxamide groups from each of the two Mre11 

protomers and appears to “probe” the Mre11 dimer conformation. The importance of this 

interaction is indicated by the extremely high conservation of the entire motif among the 

otherwise poorly conserved Nbs1/Xrs2 orthologs (Figure 4.7 D).  
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Figure 4.7: Details of the Mre11-Nbs1 and Mre11 dimer interfaces: (A) Details of interaction region 1. 

Mre11 interaction region 1 of Nbs1 (magenta) binds to the outside of Mre11‟s phosphodiesterase domain (cyan) 

with two secondary structure elements (αA and ß1) in a partially polar, partially hydrophobic interface. Key 

residues from both interaction partners are annotated. (B) Interaction region 2 of Nbs1 (magenta) contains the 

highly conserved NFKxFxK motif and binds asymmetrically across the Mre11 dimer (cyan/green) via a network 

of hydrogen bonds and π-stacking interactions (highlighted). (C) Sequence alignment of the Mre11 interaction 

region of Nbs1 from Schizosaccharomyces pombe (Sp), Saccharomyces cerevisiae (Sc), Drosophila 

melanogaster (Dm) and Homo sapiens (Hs). Conserved (grey) and highly conserved (black) residues are shaded. 

The secondary structure is shown on top. Residues involved in direct interaction with the Mre11 dimer are 

shown as green (one Mre11 protomer), blue (the other protomer) or green/blue (both protomers) spheres 

(3.3.5.1). (D) Structure based sequence alignment of eukaryotic Mre11‟s (see C) with prokaryotic Mre11 from 

Pyrococcus furiosus (Pf) around the eukaryotic Mre11 specific latching loop. Conserved (grey) or highly 

conserved (black) residues are shaded. Secondary structure, nuclease motif III and A-TLD3/4 plus Mre11S 

mutation sites are highlighted. Many highly conserved residues of the eukaryote-specific latching loop are 

involved in Nbs1 (magenta spheres), or Mre11 dimer (blue spheres) contacts (3.3.5.1). (E) Details of the Mre11 

dimer interface in the Nbs1mir-Mre11cd structure. The Mre11 monomers are colored in blue and green, while 

Nbs1
mir

 is colored in pink. The dimer interface can be distinguished into two different regions, the hydrophobic 
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four helix and the latching loop interface. Both motifs are connected with each other via salt bridges between the 

conserved residues R85
Mre11

 and D118
Mre11

 (colored in yellow). 

 

Another remarkable feature of the Nbs1
mir

-Mre11
cd

 structure is the Mre11 dimer interface 

(Figure 4.7 E). It can be divided into two different sub-regions. The first part of the interface 

is build up by the conserved four helix bundle, which is composed of helices αB and αC from 

each monomer. The lower end of the helix bundle exposes some positively charged residues 

(K71
Mre11

, R74
Mre11

) into the predicted concave DNA binding groove, whereas the main dimer 

interactions are mediated by conserved hydrophobic interfaces between αB and αC. Here, 

residues L77
Mre11

, Y78
Mre11

, L81
Mre11

, Y143
Mre11

 and I148
Mre11

 are involved (Mre11 sequence 

alignment - Figure 4.8). The second part of the Mre11 interface is mainly build up by the 

Mre11 latching loops in the presence of Nbs1
mir

 and is absent in the apo-Mre11
cd

 structure 

(4.3). 

The Nbs1
mir

 engaged latching loops are connected to the basal four helix bundle interface via 

two higly conserved salt bridges. Here, arginine residue R85
Mre11

 from helix αB of each 

Mre11 monomer binds to its neighbouring residue D118
Mre11

 from the latching loop of the 

other monomer. The latching loops interact with each other via a “kissing” loop conformation, 

which involves hydrophobic packing of L89 and I121 as well as a network of side chain and 

backbone hydrogen bonds via residues N120
Mre11

, I121
Mre11

 and N122
Mre11

. 
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Figure 4.8 Structure based sequence alignment and functional motifs of Mre11: Sequence alignment of the 

nuclease modules of Mre11 species from Schizosaccharomyces pombe (Sp), Saccharomyces cerevisiae (Sc), 

Danio rerio (Dr), Homo sapiens (Hs) and Pyrococcus furiosus (Pf). Conserved (grey) or highly conserved 

(black) residues are shaded (3.3.5.1). The secondary structure is shown on top of the alignment. 

Phoshopdiesterase motifs are annotated. Spheres represent residues implicated in Nbs1 interaction (magenta), 

Mre11 dimer interaction (blue) and metal coordination (orange). Phosphodiesterase motifs and the DNA binding 

site of S. cerevisiae (Sc) ans S. pombe (Sp) Mre11 are indicated. Mutation sites in ataxia telangiectasia like 

disease (A-TLD, see main text), breast cancer (R202G) (Bartkova et al. 2008), S. cerevisiae Mre11S (Nairz and 

Klein 1997) and Mre11(ts) (Chamankhah et al. 2000) are shown in yellow and are annotated. 
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4.5 Conformational impact of Nbs1
mir

 binding on the Mre11
cd

 dimer configuration 

 

A comparison of the apo-Mre11
cd

 and Nbs1
mir

-Mre11
cd

 structures reveals that Nbs1
mir

 binding 

appears to substantially influence the Mre11
cd

 dimer and latching loop conformations: The 

latching loops are mostly disordered and “swapped” between the two Mre11 protomers in the 

apo-Mre11
cd

 structure. Nbs1
mir

 binding leads to a disorder to order transition and to 

geometrically rearranged latching loops, which form a network of interactions with both, the 

Mre11 phosphodiesterase domain “core” and Nbs1
mir

 (Figure 4.9 A-B). Furthermore, Nbs1 

binding increases the Mre11 dimer interface to a large extent and promotes  a dimeric “kissing 

loop” conformation of the two Mre11 molecules by bridging both N122
Mre11

 residues via π-

stacking interactions.  

Figure 4.9 C shows an overlay of monomers from apo-Mre11
cd

 and Nbs1
mir

-Mre11
cd

 

structures. Here, a more detailed view of the Nbs1 induced conformational rearrangements 

within one Mre11 molecule can be seen: The latching loop, which orients towards the second 

Mre11 molecule in apo-Mre11, is flipped in an almost 180° rotation towards the basal 

phosphodiesterase core in the Nbs1 bound state. Interestingly, it is thereby directly connected 

to the Mre11 dimer helix αC, which rotates by 15° towards a more tilted orientation in respect 

to the Mre11 dimer axis. Also binding of the Mre11 interaction region 1 of Nbs1
mir

 leads to 

conformational changes in Mre11, albeit not as pronounced as the changes seen for the 

latching loops and Mre11 interacting region 2. A small eukaryotic loop insertion element, 

consisting of residues 209-214, moves to cap the beta sheet interaction between ß8 of Mre11 

and b1 of Nbs1
mir

. 

Remodeling of the latching loops and the hydrophobic Mre11 helix bundle also induces a 

global change of the Mre11 dimer configuration: An alignment of Nbs1
mir

-Mre11
cd

 to just one 

apo-Mre11 protomer, reveals a 30° rotation shift in the Mre11 dimer angle of Nbs1
mir

-

Mre11
cd

 towards a more compact conformation with a narrower DNA binding cleft (Figure 

4.9 D). From this can be concluded, that the Mre11 dimer interface possesses an intrinsic 

flexibility, which would allow the adoption of different conformations depending on the 

functional state of Mre11.  
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Figure 4.9: Conformational impact of Nbs1 binding on the Mre11 dimer configuration: (A) A top view of 

apo-Mre11
cd

 along the Mre11 dimer axis shows the latching loops indicated in green (molecule A) and blue 

(molecule B). The latching loops are “swapped” between the molecules A and B. They appear highly flexible 

and lack any secondary structure. (B) A top view of Nbs1
mir

-Mre11
cd

 similar to (A) on the latching loop 

conformation in presence of the bound Mre11 interaction region 2 of Nbs1. Nbs1 binding orders the latching 

loops and promotes a dimeric “kissing loop” interaction between the latching loops by bridging both N122
Mre11

 

via its phenylalanine residue F524
Nbs1

. (C) Nbs1 binding causes several conformational rearrangements in 

Mre11. An overlay of Mre11 monomers from apo-Mre11
cd

 and Nbs1
mir

-Mre11
cd

 structures is shown. The 

latching loop of apo-Mre11
cd

 reaches towards the neighboring Mre11
cd

 molecule. In Nbs1
mir

-Mre11
cd

 it is flipped 

by an almost 180° turn and interacts with both Nbs1 and the basal Mre11 phosphodiesterase core. Direct binding 

of the latching loop induces a 15° rotation of helix αC towards a more tilted orientation in respect to the Mre11 

dimer axis. A small loop element consisting of residues 209-214 gets positioned to bind cooperatively with ß8 to 

the beta-strand b1 of Nbs1
mir

. (D) An overlay of apo-Mre11
cd

 and Nbs1
mir

-Mre11
cd

 by aligning of Nbs1
mir

-

Mre11
cd

 to just one apo-Mre11 protomer reveals a distinct macromolecular change. The dimer angle of Nbs1
mir

-

Mre11
cd

 is rotated by 30°, in comparison to apo-Mre11
cd

, towards a more compact and “closed” conformation. 
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4.6  Comparison of Nbs1
mir

-Mre11
cd

 structures with different metal coordinating 

states 

 

The structure of Nbs1
mir

-Mre11
cd

, derived from crystals grown without additional Mn
2+

 ions 

in the crystallization condition contained only one Mn
2+

 ion in the active site. Therefore, 

additional refinement screenings with high MnCl2
 
concentrations were performed. These 

crystals yielded a structure with an active site containing two Mn
2+

 ions (4.2.1). By 

comparison of both structures an interesting observation regarding a potential regulation 

mechanism of the Mre11 catalytic site could be made. Apparently, each nuclease domain 

contains both a metal binding site of high and low affinity (Figure 4.10). In the initially solved 

Nbs1
mir

-Mre11
cd

 structure, where only one Mn
2+

 ion was present in the active site, the 

phosphodiesterase motif III (residues N133 and H134) and a C-terminally adjacent loop 

element, spanning residues 135-142, were flipped into an inactive conformation. Sodium 

citrate, which is included in the crystallization condition, might titrate out the Mn
2+

 ion with 

the lower affinity. Addition of higher concentrations of Mn
2+

 resulted in binding of Mn
2+

 to 

the lower affinity site. Coordinating of the second Mn
2+

 by N133 rearranges the entire loop, 

yielding a structure with both Mn
2+ 

ions present in a catalytically active arrangement similar 

to the DNA bound P. furiosus Mre11
cd

 structure (Williams et al. 2008). A switchable 

phosphodiesterase motif III loop might play a role in the allosteric communication between 

DNA binding and active site structure, e.g. for the co-processing factor CtIP/Sae2 to stimulate 

the Mre11 nuclease activity (Lengsfeld et al. 2007; Sartori et al. 2007). 

 

 

Figure 4.10: Manganese coordination states of different S. pombe Nbs1
mir

-Mre11
cd

 structures and a 

comparison with the P. furiosus active site: Comparison of the manganese coordination site of S. pombe 

Nbs1
mir

-Mre11
cd

 in the presence of low (< 1 mM) (A) and high (50 mM) Mn
2+

 (B) with the coordination site of 

DNA bound P. furiosus Mre11
cd

 (C) (PDB entry 3DSD) (Williams et al. 2008). Coordinating residues are shown 
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as green and color-coded sticks, the metals are shown as yellow spheres. One high affinity metal binding site (1) 

is coordinated even at low manganese concentrations. Binding of a second manganese ion (2) at high 

concentrations and its coordination by N133 flips a loop (orange) that might bind to the minor groove of a DNA 

hairpin (brown cartoon model). The corresponding position of DNA (not present in the S. pombe structures) is 

indicated as a grey model. These results suggest an allosteric interaction between DNA binding and active site 

formation in eukaryotic Mre11. 

 

4.7 SAXS analysis of Mre11
cd

 and comparison with Nbs1
mir

-Mre11
cd 

 

The crystallized S. pombe Mre11
cd

 protein (4.3) was also analyzed by small angle x-ray 

scattering (SAXS), to verify that the conformation seen in the crystal structure is also present 

in solution. For this purpose, the experimentally derived angle scattering pair distributions 

(Figure 4.11 A) and scattering intensity plots (Figure 4.11 B) of Mre11
cd

 were compared with 

curves theoretically calculated from the crystal structures of apo-Mre11
cd

 and Nbs1
mir

-

Mre11
cd

.  

 

 

Figure 4.11: Small angle X-ray scattering analysis of Mre11cd. Small angle scattering pair distribution (A) and scattering 

intensities (B) as derived by the scattering experiment for S. pombe Mre11cd (SpMre11cd, colored in red) or calculated from 
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various structural models: Crystal structure of SpMre11cd dimer (green); crystal structure of the SpMre11 dimer in the Sp 

Nbs1
mir

-Mre11
cd

 complex (light blue, Nbs1mir coordinates omitted); model of the SpMre11cd dimer with a dimer angle 

corresponding to the DNA bound P. furiosus Mre11cd dimer (PfMre11cd, dark blue).  

 

Furthermore, a theoretical model of the DNA bound S. pombe Mre11
cd

 conformation was 

generated by superposition of Mre11
cd 

protomers on the structure of DNA bound P. furiosus 

Mre11 (3.3.3.3) (Williams et al. 2008). The P(r) function of apo-Mre11
cd

 measured with 

SAXS is quite distinct from the model of the DNA bound state, which contains more short 

vectors due its more compact dimeric shape. The apo-Mre11 P(r) function is rather in a range 

between the crystal structures of apo-Mre11
cd

 and Nbs1
mir

 bound Mre11
cd

. This suggests that 

in solution, the S. pombe Mre11
cd

 dimer might be flexible and flip between the two 

conformations observed in the apo-Mre11
cd

 and Nbs1
mir

-Mre11
cd

 structures. Nbs1 binding 

would then stabilize one of the two conformations. 

 

4.8 Structural and biochemical characterization of the Mre11-Nbs1 interface and 

disease causing Mre11 mutations 

 

4.8.1 Analysis of A-TLD and NBS-like disease mutations 

 

The structures of apo-Mre11
cd

 and Nbs1
mir

-Mre11
cd

 allowed for the first time a structural 

analysis of the molecular basis for several human Ataxia-telangiectasia like disease (A-TLD) 

and Nijmegen breakage syndrome like (NBS-like) disease causing Mre11 mutations (Figure 

4.12 A). Most remarkably, the human equivalent of N122
SpMre11

 - the residue that sandwiches 

the Nbs1 phenylalanine in the Mre11 dimer interface - is mutated in A-TLD 3/4 

(N117S
HsMre11

) (Stewart et al. 1999) (Figure 4.12 B). W210C
HsMre11

 leads to A-TLD 7/8 

(Fernet et al. 2005), and the equivalent S. pombe W215
SpMre11

 residue caps the three stranded 

shared ß-sheet between Mre11 and Nbs1 (Figure 4.12 C). Thus, A-TLD 7/8 likely affects the 

Nbs1 interaction at interaction region 1. The same structural region is mutated in yeast 

mre11(ts), which also exhibits compromised MRX complex formation (Chamankhah et al. 

2000). Most recently, a compound heterozygous mutation consisting of W243R
HsMre11

 

(W248
SpMre11

) and a deletion mutation Del(340-366) have been associated with A-TLD. In 

Del(340-366) a part of the central long capping domain helix is deleted (Uchisaka et al. 2009) 

(Figure 4.12 A). Such a severe truncation likely destabilizes the protein, explaining the 
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decreased Mre11 levels in these patients. The point mutation in the other allele maps to 

W248
SpMre11

, which forms the hydrophobic core of the structural region linking the nuclease 

active site and contact site to A
Nbs1

 (Figure 4.12 D). Consequently, W243
hMre11

->R could 

affect both nuclease activity as well as Nbs1 binding.  

Until recently A-TLD was the only hereditary disease known to be caused by mutations in the 

Mre11 gene. However, a new patient study reported the compound heterozygous mutation 

D113G
HsMre11

 to be linked with a so far unreported NBS-like disease (NBSLD) (Matsumoto et 

al. 2011). In the S. pombe Nbs1
mir

-Mre11
cd

 structure, the homologous D118
SpMre11

 residue is 

involved in Mre11 dimer formation by connecting the latching loop to the basal helical dimer 

interface via a highly conserved salt bridge with R85
SpMre11

 from the neighboring Mre11 

protomer (Figure 4.12 E). R85 furthermore hydrogen bonds to the C-terminal turn of helix αB 

of the opposing Mre11 protomer. Since this bond is not seen in apo-Mre11, R85 is likely a 

key residue in determining the Mre11 dimer angle in the presence of Nbs1.  

Taken together, A-TLD and NBSLD mutations do not cluster to one particular site, but affect 

the Nbs1 binding site at different interaction regions. Since Nbs1 binds as an extended peptide 

at multiple sites, the structural results of this thesis could explain the observation that A-TLD 

mutations in Mre11 retain residual Nbs1 binding activity (Stewart et al. 1999) and are 

hypomorphic to a null mutation. 

 

 

Figure 4.12: Structural basis for A-TLD and NBS-like disease causing mutations (A) A-TLD mutation sites 

(orange sticks) are found throughout the Mre11 dimer (light/dark grey cartoon model). All point mutations are 

located in places that are critical for the interaction with Nbs1 (magenta cartoon model). (B)-(D) Details of A-

TLD mutation sites. A-TLD associated residues (orange sticks) are found either in direct contact with Nbs1 (B) 

or stabilize structural elements that interact with Nbs1 (C, D). (E) Details of NBS-like disease causing mutation 

site D113G (homologous to D118 in S. pombe).  
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4.8.2 Structural and biochemical link between Nbs1 interaction and the nuclease active 

site of Mre11 

 

The structure of Nbs1
mir

-Mre11
cd 

showed that Nbs1 binds to Mre11 as an elongated peptide 

chain via multiple interacting residues. To characterize the impact of mutations in prominent 

Mre11-Nbs1 interface residues and A-TLD causing mutations on the stability of the Mre11-

Nbs1 interaction, binding experiments using analytical size exclusion chromatography were 

carried out (3.3.2.7). For this purpose, several mutants of S .pombe Mre11 aa 1-413 and Nbs1 

aa 428-613 constructs were generated (Figure 4.13 A and Table 3.5). The mutations 

F524E
SpNb1

 and the double mutants K522E
SpNbs1

 / K526E
SpNbs1

 target key interactions in the 

Mre11-Nbs1 interface 2 (Figure 4.7 B). Furthermore, three conserved residues of S. pombe 

Mre11 were mutated to the corresponding human A-TLD causing mutations, namely 

N122S
SpMre11

 (N117S
HsMre11

 / A-TLD 3/4), W215C
SpMre11

 (W210C
HsMre11

 / A-TLD 7/8) and 

W248R
SpMre11

 (W243R
HsMre11

) (Stewart et al. 1999; Fernet et al. 2005; Uchisaka et al. 2009). 

Remarkably, all mutant proteins were still able to form stable Mre11-Nbs1 complexes in size 

exclusion chromatography, but this ability depended strongly on the presence of Mn
2+

 in the 

chromatography buffer. In fact, while Wt Nbs1 (aa 428-613) interacted both in the presence 

and absence of Mn
2+

, KNFKxFxK motif mutants F524E
SpNbs1

 and K522E
SpNbs1

/ K526E
SpNbs1

 

interacted in the presence but not in the absence of Mn
2+

 (Figure 4.13). Similarly, the A-TLD 

like mutations N122S
SpMre11

, W215C
SpMre11

 and W248R
SpMre11

 interacted with Wt Nbs1 (aa 

428-613) in the presence but not absence of Mn
2+

. Since a mutation in the phosphodiesterase 

motif was found to disrupt MRX also in vivo (Bressan et al. 1998), it can be concluded that 

1) Mn
2+

 binding to the active site stabilizes the Nbs1
mir

 interaction, likely by solidifying the 

phosphodiesterase fold and dimer structure due to coordination of phosphodiesterase motifs 

and 2) that A-TLD mutations as well as mutations in the Nbs1 part of the interface reduce but 

not completely abolish the ability of Nbs1
mir

 to interact with Mre11. Taken together, these 

structural and biochemical results suggest that the hypomorphic phenotype of A-TLD stems 

from a functionally perturbed, but not completely abolished interaction of Nbs1
mir

 with the 

phosphodiesterase dimer of Mre11. This is due to the interaction being mediated by an 

extended stretch of multiple, independent interaction sites, rather than by a single, strong 

interaction site.  
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Figure 4.13: Analytical size exclusion experiments with S. pombe mutant proteins. (A) Interaction studies of 

Nbs1 (aa 428-613) with Mre11
cd

 (aa 1-413), analyzed by co-migration on gel filtration. Shown are SDS-PAGE 

bands from gel filtration fractions for both Mre11
cd

 and Nbs1 (aa 428-613). Wild type (Wt) Nbs1 (aa 428-613) 

co-migrates and hence interacts with the Mre11
cd

 dimer in both absence and presence of Mn
2+

. Mutations in 

Nbs1 (KNFKxFxK motif) and Mre11 (A-TLD sites) evidently reduce but not abolish affinity and lead to loss of 

interaction in the absence but not in the presence of Mn
2+

. The data also show that Mn
2+

 strengthens the 

interaction of Mre11
cd

 with Nbs1, presumably by stabilizing the phosphodiesterase fold. (B) Interaction studies 

with the Mre11 R85A mutation that disrupts the salt bridge between R85 and D118 in the Mre11 dimer interface. 

The experimental approach is similar to Figure (A) but here a longer Mre11 construct was used (aa 1-421). Also 

the Mre11 R85 mutant protein shows a reduced but not abolished affinity to Nbs1 with a loss of interaction in 

the absence but not in the presence of Mn
2+

. 
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In addition, the Mre11 mutant protein aa 1-421 R85A
SpMre11

 was tested for binding of Nbs1 aa 

428-613 (Figure 4.13 B). The mutation disrupts the salt-bridge, which connects the latching 

loops with the hydrophobic helix bundle in the dimer interface of the Nbs1
mir

-Mre11
cd

 

complex structure. The mutant protein was also binding to Nbs1 only the presence of Mn
2+

 

ions but not in an EDTA containing buffer, indicating that the disruption of the dimer salt 

bridge weakens the Mre11-Nbs1 interface 2. 

 

4.9 Biochemical analysis of Mre11 and Nbs1 from S. pombe 

 

So far, atomic resolution data regarding the binding mechanism of Mre11 to DNA substrates, 

is only available from two archaeal P. furiosus Mre11-DNA complex structures (Williams et 

al. 2008). Eukaryotic Mre11 mediates more diverse functions and is only partially sequence 

conserved to P. furiosus. Thus, a crystal structure of a eukaryotic Mre11
 
homologue in 

complex with DNA would be of great value for the functional characterization of the 

eukaryotic MRN complex on a molecular level. To find a suitable DNA substrate for 

crystallization, the DNA binding properties of different S. pombe Mre11 and Nbs1 constructs 

were studied by electrophoretic mobility shift assays (EMSAs) (3.3.2.10). Deletion mutant 

studies with the homologous S. cerevisiae protein had early indicated that eukaryotic Mre11 

possesses two distinct DNA binding sites. A region containing the last 50 C-terminal amino 

acids is especially important for meiotic repair but dispensible for mitotic repair functions. In 

contrast, deletion of a basic region between residues aa 410 - 420 of ScMre11
 

(KKRSPVTRSKK) abolishes mitotic as well as meiotic repair in vivo and Mre11 nuclease 

activity in vitro (Furuse et al. 1998; Usui et al. 1998). This region corresponds to the S. pombe 

residues aa 411-421 (LKKKYTRSKRN). The crystallized Mre11 construct aa 15-413, which 

was derived from a limited proteolysis approach, lacks part of this sequence element. The 

Mre11 fragment aa 1-413 is still an active nuclease (Figure 4.14 A, 3.3.2.9) and degrades a 

60mer poly(dT) ssDNA specifically, as seen by comparison with a control reaction where the 

nuclease deficient mutant Mre11 H134S mutant was tested (Williams et al. 2008). However, 

the nuclease deficient mutant construct Mre11 aa 1-413 H134S did not bind significantly to 

any tested dsDNA or ssDNA substrate (Figure 4.14 B, here shown for a 5´-6FAM labeled 

60mer poly(dT) ssDNA). In contrast, the Mre11 construct aa 15-421 H134S, which contains 

the complete DNA binding motif, binds to both dsDNA and ssDNA. It is binding for example 

to the 60mer poly(dT) ssDNA substrate with an affinity comparable to full length Mre11 (aa 
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1-649) for the tested concentrations. Therefore, also S. pombe Mre11 depends on the complete 

basic DNA binding sequence element between residues 411-421 to bind efficiently to DNA in 

vitro. However, neither the Mre11 aa 15-413 nor the aa 15-421 construct did crystallize in 

complex with DNA so far. 

 

 

Figure 4.14: Analysis of Mre11
cd

 nuclease acitivity and DNA binding properties of different S. pombe 

Mre11 constructs. (A) Degradation of a 6-FAM 5`-labelled 60mer poly(dT) single-stranded oligo-nucleotide 

(Table 3.2) in the presence of wild type SpMre11
cd

 (1-413) (Wt), but not in the absence of Mre11 (-) or presence 

of a predicted nuclease deficient variant (His134->S), shows specific nuclease activity of Mre11
cd

. Experiment 

carried out by Carolin Möckel (AG Hopfner) (3.3.2.9). (B) Electrophoretic mobility shift assays (EMSAs) with 

Mre11 aa 1-413 H134S, Mre11 15-421 H134S and Mre11 1-649 reveal that S. pombe Mre11 contains (similar to 

S. cerevisiae) a DNA binding region at the C-terminal end of the cap domain. Residues 414-421 are crucial for 

DNA binding to the tested 6-Fam labeled 60mer poly (T) ssDNA substrate. Mre11 15-421 binds to the DNA at 

the tested concentrations with an affinity similar to the also tested Mre11 aa 1-649 construct. 

 

It was reported before that human Nbs1 has a stimulatory role for nucleotide dependent 

dsDNA binding of Mre11-Rad50 (Lee et al. 2003). In addition, the homologous S. cerevisiae 

protein Xrs2 binds also as a single protein without Mre11-Rad50 to different DNA substrates 

(Trujillo et al. 2003). The Mre11 interaction region of Nbs1, which was crystallized with 

Mre11 (aa 474-531) contains a strongly conserved basic KNFKxFxK motif (4.4.2). In fact the 

region between Nbs1 residues 518-531 includes 6 basic residues, which prompted the 

question if it might be involved in DNA binding. To answer this question different Nbs1
mir

 

constructs were analysed with EMSAs. The Nbs1 aa 474-531 peptide contains the complete 

basic KNFKxFxK motif, whereas this region is lacking in Nbs1 aa 474-517. Indeed, Nbs1 aa 

474-531 was interacting with both a 13mer blunt end dsDNA hairpin and a 60mer poly(dT) 

ssDNA oligo (Table 3.2), whereas Nbs1 aa 474-517 exhibited no significant DNA interaction 
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(Figure 4.15). This raises the possibility that the KNFKxFxK motif, which mediates bridging 

of the Mre11 dimer via interaction region 2 in the Mre11
cd

Nbs1
mir

 structure, might be 

involved in direct binding of DNA during the sensing and processing of DSBs by the MRN 

complex. A model regarding this role of Nbs1 will be discussed later (5.6). 

 

 

Figure 4.15: Analysis of DNA binding properties of different S. pombe Mre11 and Nbs1 constructs by 

electrophoretic mobility shift assays (EMSAs): A DNA binding site within the crystallized Nbs1 construct 

aa 474-531 maps to the region between amino acid residues 518-531, which contains the conserved KNFKxFxK 

motif that bridges the Mre11 dimers via the Mre111 interactions region 2 (4.4). 

 

4.10 Structure guided in vivo analysis of Mre11 from S. cerevisiae 

 

Several functional motifs in Mre11 revealed by the crystal structure of S. pombe Nbs1
mir

-

Mre11
cd

 were studied in vivo, using the budding yeast S. cerevisiae as a model organism. The 

structure of Nbs1
mir

-Mre11
cd

 raised different questions: How stable is the interaction of 

Mre11 and Nbs1 (Xrs2 in S. cerevisiae) and how do point mutations in different regions of the 

Mre11-Nbs1/Xrs2 interface affect the functionality of the complex? How important is the 

dimeric configuration of Mre11 and which roles play the Nbs1/Xrs2 interacting latching loops 

apart from mediating the interaction to Nbs1/Xrs2? In addition, also the active site adjacent 

loop element which might play regulatory roles (4.6) and a potential phosphorylation motif of 

Mre11 were targeted by mutational analysis in S. cerevisiae. For this purpose, Mre11 point 

mutations were introduced into a pRS416 plasmid containing the coding sequence for a myc-
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tagged version of Mre11 (D´Amours and Jackson 2001). The plasmid was then transformed 

into a S. cerevisiae W303 ∆mre11 strain for in vivo studies. 

 

 

Figure 4.16: Overview of S. cerevsiae Mre11 mutations studied in vivo: Mutated residues are highlighted 

(orange) in the homologous S. pombe Nbs1
mir

-Mre11
cd

 structure (Mre11 colored in grey and Nbs1 in pink). The 

studies concentrated on several different functional regions in Mre11: The interaction regions 1 (P199, F229E) 

and 2 (N113), latching loop salt bridge (R85, D109) in the Mre11 dimer interface, the dimer helix bundle (L72, 

I139,T143), an active site adjacent loop element (residues 127-134) and a potential serine-aspartate 

phosphorylation site (S91). 

 

4.10.1 Mutational analysis of functional motifs in S. cerevisiae Mre11 by plate survival 

assays 

 

All generated S. cerevisiae mutations were tested for sensitivity different genotoxic agents by 

plate survival assays (Figure 4.17 and 3.3.4.2). These included the Topoisomerase I poison 

Camptothecin (CPT), the DNA alkylating chemical methyl methanesulfonate (MMS) and the 

DNA replication inhibitor hydroxyurea (HU).  

A sequence alignment of several eukaryotic Mre11 proteins had shown that S. cerevisiae 

Mre11 contains a highly conserved serine-aspartate motif at position S91
ScMre11

 (Figure 

4.7 D). Since the MRN(X) complex is phosphorylated by different kinases during the repair 

of DSBs, it was plausible that this motif might represent a phosphorylation site for e.g. the 

CK2 kinase (Kim 2005; Di Virgilio et al. 2009). However, a S91A
ScMre11

 mutation did not 
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lead to any visible growth defect on CPT or HU plates, although a phosphorylation mimicking 

S91E
ScMre11

 mutation showed a mild sensitivity (Figure 4.17 A). The mutation maps to the 

latching loops and is in close proximity to the Nbs1/Xrs2 interaction site observed in the S. 

pombe structure. Since Nbs1/Xrs2 mediates the nuclear transport of Mre11-Rad50, the 

observed defect might stem from a disrupted Mre11-Xrs2 interaction, which could exclude 

Mre11-Rad50 from the nucleus. Indeed, an SV40 T large antigen nuclear localization 

sequence (NLS) fused to Mre11 was shown to rescue the mitotic repair defect of a ∆xrs2 

mutant, revealing that an Mre11-Rad50 complex is sufficient for mitotic repair when present 

in the nucleus (Tsukamoto et al. 2005). To test the hypothesis, that the growth defect of 

S91E
ScMre11

 is caused by an exclusion from the nucleus, Mre11 constructs were generated, 

which possess a SV40 T large antigen nuclear NLS at the C-terminus of Mre11. Clearly, the 

NLS on S91E
ScMre11

 rescued the growth defect of the mutant strain. Even though it cannot be 

excluded that S91
ScMre11

 is indeed a phosphorylation site, the growth defect observed for the 

S91E
ScMre11

 mutation is rather caused by a weakened Mre11-Xrs2 interaction than by the 

influence of the phosphorylation mimicking. 

Next, a loop element, comprising residues 127-134, which connects the phosphodiesterase 

motif III with the dimer mediating helix αC of Mre11 was studied (Figure 4.17 A). 

Interestingly, this loop possessed two different conformations in the conserved S. pombe 

structure, depending on the metal coordination state of the active site. Therefore, it might 

regulate the nuclease function of Mre11 (4.6). Mutations of the aspartate residue D127
ScMre11

, 

which is strongly conserved among eukaryotic organisms, to either alanine or arginine had 

different outcomes. Whereas the D127A
ScMre11

 mutation exhibited only a very slight defect on 

200 mM HU, the D127R
ScMre11

 mutation displayed a significant growth defect on both CPT 

and HU plates. The defect was even stronger with a D127R
ScMre11

 / D131R
ScMre11

 double 

mutant which also targets a second aspartate residue in this loop. Instead of an aspartate, the 

homologous archaeal P. furiosus (Pf) Mre11 protein contains an arginine residue at the 

position of D127
ScMre11

, which mediates a major contact with the DNA backbone in the 

PfMre11-DNA complex structure (Williams et al. 2008). This indicates that DNA binding of 

eukaryotic Mre11 must be different from archaeal Mre11, at least regarding this motif. 

However, it might also be that the loop is coordinated by Rad50 in a conformation which 

allows DNA binding. Anyway, the sequence integrity of this loop is crucial for the repair 

ability of S. cerevisiae Mre11 and exchanging the whole loop element in S. cerevisiae to the 

sequence of the PfMre11 loop caused a strong growth defect similar to an mre11 deletion 
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(Figure 4.17 A: mre11∆ 127-133 replaced by RTQRG and mre11 ∆ 127-134 replaced by 

RTQRGP). 

A conserved hydrophobic four helix bundle mediates the lower part of the bipartitive Mre11 

dimer interface in the crystal structure of S. pombe Nbs1
mir

-Mre11
cd

. The integrity of the 

corresponding four helix bundle in S. cerevisiae was targeted by mutations which should 

distort the interface (L72F
ScMre11

, I139F
ScMre11

, T143I
ScMre11

) or even disrupt it (L72R
ScMre11

). 

From the first class of mutations only L72F
ScMre11

 exhibited a mild growth defect on HU 

plates, whereas I139F
ScMre11

 and T143I
 ScMre11

 showed a growth phenotype similar to wildtype 

Mre11. This indicates that the introduction of bulky hydrophobic residues does not strongly 

impair the functionality of Mre11 in mitotic repair. Instead, the helix bundle disrupting 

mutation L72R
ScMre11

 showed a growth defect similar to mre11∆, indicating that like S. pombe 

Mre11 also S. cerevisiae Mre11 depends on a stable dimer interface in order to be DNA repair 

proficient (Williams et al. 2008). 

The region, which in S. pombe Mre11 mediates binding to the helix-ß-strand motif of Nbs1
mir

 

via interaction region 1 (4.4), was probed in S. cerevisiae by mutation of two conserved 

Mre11 residues (P199A
ScMre11

 and F229E
ScMre11

). However, both mutations did not cause any 

significant growth defects on CPT or HU plates. This observation fits with studies of Xrs2 

deletion mutants which showed this region in Xrs2 (interaction region 1) to be dispensable for 

resistance to MMS and only crucial for meiotic repair functions or telomere maintenance 

(Tsukamoto et al. 2005). 

The functional characterization of the salt bridge motif consisting of R76
ScMre11

 and 

D109
ScMre11

 (R85 and D109 in SpMre11), which is linked to human NBSLD (Matsumoto et 

al. 2011) was of special interest for this study. The S. pombe Mre11 dimer possesses an 

intrinsic flexibility as seen by the different dimer angels in the apo-Mre11
cd

 and Nbs1
mir

-

Mre11
cd

 structures. Such a flexible interface might be important for all Mre11 dimer 

associated activities such as nuclease activity. The salt bridges between both Mre11 protomers 

could allow dynamic rearrangements of the Mre11 dimer interface necessary for DNA 

binding and signaling. 

One approach to study the role of the R76-D109
ScMre11

 salt bridge was to exchange it to 

hydrophobic residues. Since a hydrophobic interface might not dissociate as easily as a salt 

bridge mediated interface, such mutations might “freeze” the Mre11 dimer interface in the 

conformation seen in the Nbs1
mir

-Mre11
cd

 crystal structure and thereby inactivate the MRX 

complex (Figure 4.17 A). Indeed, all hydrophobic mutations tested in S. cerevisiae rendered 
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the yeast cells highly sensitive to CPT and HU (R76M, R76M D109F, R76M D109L, R76M 

D109M, R76F D109M). However, immunofluorescence studies showed that these mutations 

also lead to a delocalisation of Mre11 from the nucleus, strongly indicating that they affect the 

interaction with Xrs2 (data not shown). Interestingly, an additional D109N
ScMre11

 mutation in 

the R76M
ScMre11

 strain rescued partially the growth defect of R76M
ScMre11

. This indicates that 

the charge of D109
ScMre11

 might have a negative effect on the complex stability if not 

counteracted by a basic residue at position R76
ScMre11

. If both residues are mutated to polar 

instead of hydrophobic residues (R76Q
ScMre11

 / D109N
ScMre11

), Mre11 exhibited no sensitivity 

to HU and CPT, indicating that a polar nature of the Mre11 dimer interface is more important 

than the charge provided by the R76-D109
ScMre11

 salt bridge.  

The impact of an arginine side chain deletion on the functionality of S. cerevisiae Mre11 was 

studied with an R76A
ScMre11

 mutation. In addition, also an R76K
ScMre11

 mutation was 

generated, which preserves the positive charge of the arginine residue. Both the R76A
ScMre11

 

and the R76K
ScMre11

 mutation were characterized in more detail to uncover the importance of 

the conformational integrity of the latching loops for the general functionality of the MRX 

complex. For comparison, the latching loop mutation N113S
ScMre11

, which is homologous to 

the well characterised A-TLD3/4 mutation N117S
HsMre11 

(Stewart et al. 1999), was studied. 

N117S
HsMre11

 was shown to reduce the binding of Mre11 to Nbs1, which can be explained by 

the S. pombe Nbs1
mir

-Mre11
cd

 structure, where this residue mediates a key interaction with 

Nbs1 via interaction region 2. Dilution plate assays with selective minimal medium (SDC -

ura) revealed strong sensitivity to methyl methanesulfonate (MMS) and hydroxyurea (HU) for 

both N113S
ScMre11

 and mre11∆ (Figure 4.17 B) consistent with previous reports (D'Amours 

and Jackson 2001; Lee et al. 2002). In addition, also a strong sensitivity towards the 

Topoisomerase 1 inhibitor camptothecin was found. A comparable growth defect could be 

observed for the R76A
ScMre11

 mutant, indicating that the salt bridge, which connects both 

Mre11 protomers in the Mre11 dimer, is critical for mitotic repair functions. The DNA 

damage sensitivity caused by xrs2 can be rescued by adding a nuclear localization sequence 

to Mre11 (Tsukamoto et al. 2005), and an NLS also rescues the repair defect of the 

S91E
ScMre11

 latching loop mutation (Figure 4.17 A). Therefore, it was tested whether an NLS 

could also rescue the DNA damage sensitivity observed for R76A
ScMre11

 and N113S
ScMre11

 

proteins.  
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Figure 4.17: Mutational analysis of functional motifs in S. cerevisiae Mre11 by plate survival assays with 

camptothecin (CPT), methyl-methanesulfonate (MMS) and hydroxyurea (HU). (A) Plate survival assays 

with YPD agar plates. The following motifs in Mre11 were targeted by mutations: Latching loop (S91A, S91A-

NLS, S91E, S91E-NLS), Mre11 dimer salt bridge (R76M, R76M D109N, D109N, R76F D109M, R76M D109L, 

R76M D109M, R76M D109F), Mre11 dimer interface helix bundle (L72F, I139F, T143I, L72R), Mre11-

Xrs2/Nbs1 interaction region 1 (P199A, F229E), active site loop between phosphodiesterase motif III and Mre11 

dimer interface helix αC (D127A, D127R, D127R D131R, mre11∆127-133 replaced by the P. furiosus RTQRG 

loop sequence and mre11 ∆127-134 replaced by the P. furiosus RTQRGP loop sequence). (B) Plate survival 

assays with SDC (-Ura) agar plates: The R76A and N113S mutations both exhibit growth defects similar to 
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∆mre11, whereas the R76K mutation displays no visible defect. C-terminal tagging of the mutants with the SV40 

large T antigen nuclear localization sequence (NLS) reconstitutes Wt-like resistance of N113S but not of R76A.  

 

Like for S91E
ScMre11

 also here a SV40 T large antigen NLS was fused to the C-terminus of 

Mre11 and the DNA damage resistance monitored with plate dilution assays (Figure 4.17 B). 

The NLS rescued the N113S
ScMre11

 mutation, but not the R76A
ScMre11

 mutation, which still 

exhibited a strong growth defect when treated with different DNA damage causing agents. 

Therefore, a defect in the Xrs2 interaction alone cannot explain the severe phenotype of 

Mre11 R76A
ScMre11

. 

 

4.10.2 Indirect immunofluorescence reveals nuclear localization defects of different 

latching loop targeting mutations 

 

Xrs2/Nbs1 is required for the transport of Mre11-Rad50 to the nucleus (Carney et al. 1998; 

Tsukamoto et al. 2005). In addition, the human A-TLD3/4 causing N117S
HsMre11

 mutation 

was shown to induce a partial exclusion of Mre11 from the nucleus, probably caused by a 

weakened Nbs1 interaction (Stewart et al. 1999). Therefore, the cellular localization of NLS-

tagged and untagged R76A
ScMre11

, R76K
ScMre11

 and N113S
ScMre11

 mutants was monitored by 

indirect immunofluorescence microscopy to control if the mutations cause a nuclear 

delocalization of Mre11 (Figure Figure 4.18) (3.3.4.4).  

 

Figure 4.18: Cellular localization of S. cerevisiae Mre11 mutants by indirect immunofluorescence. Fixed 

yeast cells are immunostained by subsequent incubation with a monoclonal  mouse α-c-Myc antibody and an 
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Alexa Fluor 488 conjugated goat α-mouse antibody. Nuclear localization is strongly decreased in the case of 

R76A
ScMre11

 and N113S
ScMre11

 while partly reduced for R76K
ScMre11

.  NLS-tagged R76K and N113S mutants 

show a nuclear accumulation similar to Wt Mre11, while R76A-NLS accumulates at least in the majority of cells 

comparable to Wt Mre11. 

 

Here, it could be seen that the homologous N113S
ScMre11

 mutation, as well as R76A
ScMre11

, 

resulted in a strongly decreased nuclear accumulation of Mre11, consistent with the severe 

phenotypes of these mutations. On the other hand, the repair competent mutant R76K
ScMre11

 

also displayed a partially decreased nuclear accumulation. Therefore, a decreased nuclear 

accumulation of Mre11 does not necessarily lead to repair defects. The NLS relocated all 

mutant proteins to the nucleus. However, the R76A-NLS
ScMre11

 mutation possesses still a 

severe repair defect (4.10.1). This raised the question to which degree nuclear mislocalisation 

really accounts for the DNA damage sensitivity observed in R76A
ScMre11

 and N113S
ScMre11

 

mutant strains. 

 

4.10.3 Analysis of S. cerevisiae Mre11-Rad50-Xrs2 complex integrity and Mre11 dimer 

interaction for different Mre11 latching loop targeting mutations 

 

To test if the integrity of the MRX complex was affected by the latching loop targeting 

mutations R76A
ScMre11

, R76K
ScMre11

 and N113S
ScMre11

, co-immunoprecipitations (Co-IPs) of 

the myc-tagged Mre11 strains were performed (Figure 4.19) (3.3.4.3). Here, protein levels of 

Mre11, Rad50 and Xrs2 were relatively equal in cell lysates from Wt and mutant proteins, 

ruling out misfolding or degradation as the main cause for the observed phenotype. Like its 

human homologue, the Mre11 N113S
ScMre11

 mutant was still able to form a stable complex 

with Rad50 in Co-IPs (Stewart et al. 1999). Also for Mre11 R76K
ScMre11

 a normal Rad50 

interaction was observed, whereas this interaction was partly reduced but not abolished in Co-

IPs with the Mre11 R76A
ScMre11

 mutant strain.  

In contrast to Wt Mre11, however, Xrs2 was not detectable in immunoprecipitates from 

R76A
ScMre11

, R76K
ScMre11

 and N113S
ScMre11

 mutant strains. This observation is in agreement 

with the observed cellular mislocalisation of Mre11 R76A
ScMre11

 and Mre11 N113S
ScMre11

 

(4.10.2). However, R76K
ScMre11

 displayed no phenotype in plate survival assays with different 

genotoxic agents and showed a reduced but significant nuclear accumulation (4.10.1 and 
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4.10.2). This means that R76K
 ScMre11

 must possess a residing ability to bind Xrs2, which is 

strong enough for a nuclear “piggy back” transport but too weak to be detectable in Co-IPs. 

In conclusion, the phenotype of Mre11 N113S
ScMre11

 can be explained as a mislocalisation 

defect. The mutant is still competent in the Xrs2 independent mitotic repair functions of 

Mre11-Rad50 and can be rescued by addition of a NLS to Mre11 (4.10.1). In contrast, the 

R76A
ScMre11

 mutation clearly impairs also the mitotic repair ability of Mre11-Rad50. Mre11 

R76A
ScMre11 

still binds to Rad50, even though at a partially decreased level. Therefore, the 

dramatic sensitivity to genotoxic agents like HU or CPT can unlikely be explained by a fold 

instability of Mre11 or loss of Rad50 binding, as it was reported for mutations with global 

repair defects like Mre11-58 (Usui et al. 1998).  

 

 

Figure 4.19: Analysis of Mre11-Rad50-Xrs2 complex integrity by co-immunoprecipitation for different S. 

cerevisiae Mre11 mutations. Mre11-Rad50-Xrs2 complex formation defects caused by the R76A, R76K and 

N113S mutations, which target the Mre11 latching loops, were detected by co-immunoprecipitation (3.3.4.3). 

Cell extracts were prepared in buffer containing 150 mM NaCl and immunoprecipitated with an α-c-Myc 

antibody against Mre11. Proteins were visualized by Western blotting with α-myc (Mre11), α-Rad50, and α-

Xrs2 antibodies, respectively. All tested latching loop targeting mutations caused a defect in Xrs2 binding, 

underlining the crucial role of the latching loops for this function. Both R76 mutations showed reduced levels of 

immunoprecipitated Mre11, indicating a reduced dimer stability. The ratio of co-immunoprecipitated Rad50 per 

Mre11 was slightly reduced only in the case of Mre11 R76A.  

 

Since R76
ScMre11

 maps to the dimer interface of Mre11, it was analyzed whether the 

R76A
ScMre11

 mutant has a defect in dimerization, which could explain its severe phenotype. 

Williams et al. showed with mutational studies that the hydrophobic four helix bundle is 

crucial for Mre11`s dimer integrity (Williams et al. 2008). The impact of the latching loop 

mediated Mre11 dimer interaction, which is likely to be affected by the R76A
ScMre11

 mutation, 

however, is still unknown. To answer this question, a second plasmid, coding for a C-
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terminally HA-tagged Mre11, was introduced into the myc-tagged mre11 shuffle strain to 

create “mixed” dimer complexes. The myc-tagged Mre11 was then immunoprecipitated and 

the dimer integrity analyzed using an antibody against HA-tagged Mre11 (Figure 4.20) 

(3.3.4.3 and 3.3.2.6). Indeed, dimer formation was severely reduced in the R76A
ScMre11

 strain 

compared to Wt. This underlines that the Mre11 latching loops not only play a crucial role in 

binding to Nbs1/Xrs2, but also in stabilizing Mre11 dimers in S. cerevisiae. In summary, 

single point mutations in the Mre11-Xrs2 and the Mre11 dimer interface were identified, 

which specifically disrupt these protein-protein interactions, thereby causing distinct 

phenotypes.  

 

 

Figure 4.20: Analysis of Mre11 dimer stability of S. cerevisiae Mre11 Wt and R76A by co-

immunoprecipitation. ScMre11 dimeric assembly is disrupted by the latching loop destabilizing R76A 

mutation. Mixed Mre11 dimers, consisting of two monomers with different affinity tags were created by 

introducing two plasmids, carrying the Mre11 Wt or R76A gene with a C-terminal 3xHA tag or 13xmyc tag, 

respectively, into an S. cerevisiae W303 ∆mre11 strain. Dimer assembly was tested by co-immunoprecipitation 

of myc-tagged Mre11 with a monoclonal α-c-Myc antibody and visualization of dimer assembly by western blot 

analysis using antibodies against myc and HA-tagged Mre11. 
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5. DISCUSSION 

 

All living organisms depend on surveillance mechanisms, which protect the stability of their 

genomes from hazardous DNA damages. They therefore possess various repair pathways 

which sense and repair DNA lesions and thereby maintain the genomic stability of the cell. 

The efficient repair of DNA double strand breaks (DNA DSBs) is of special importance for 

the cell, since unrepaired DSBs are highly cytotoxic and may induce chromosomal aberrations 

and cancerogenic diseases. The Mre11-Rad50-Nbs1 (MRN) complex is a central component 

of the DNA DSB repair machinery. The complex senses and binds as one of the first factors 

to DSBs. It then works as an effector molecule, which recruits other repair proteins to the 

break. MRN also actively processes DNA ends via its nuclease activity to facilitate repair of 

the lesion. Furthermore it is involved in DNA damage signal transduction by recruiting and 

activating the cell cycle checkpoint kinase ATM which then may promote cell cycle arrest or 

apoptosis. The enzymatic core, consisting of the Mre11 nuclease dimer and two adjacent 

Rad50 ABC-ATPases, is found in eukaryotes, archaea, bacteria and viruses. However, only 

the eukaryotic complex contains with Nbs1 a third compound. Nbs1 possesses no enzymatic 

activities. Instead it is a regulatory protein which mediates eukaryote specific functions of the 

complex in DSB repair and signaling via interactions to Mre11 and in the human complex 

also to Rad50 (Assenmacher and Hopfner 2004; Williams et al. 2010; Stracker and Petrini 

2011). Nbs1 is crucial for the activation of ATM by the MRN complex in vivo (Berkovich et 

al. 2007). Furthermore it was shown in vitro to influence the DNA binding specificity of 

Mre11-Rad50 and to stimulate nucleolytic DNA hairpin processing by the complex (Paull and 

Gellert 1999; Lee et al. 2003; Trujillo et al. 2003). However, it is only poorly understood on a 

molecular level how Nbs1 carries out these functions and no atomic structures of eukaryotic 

Mre11 or Rad50 in complex with Nbs1 are reported so far. Therefore, the aim of this work 

was to analyze the structural and functional interplay between Nbs1 and Mre11 in detail. For 

this purpose crystal structures of the catalytic core module of Mre11 alone and in complex 

with the interaction region of Nbs1 were solved and biochemically characterized. 

 

5.1 Preparation and crystallization of S. pombe apo-Mre11
cd

 and Nbs1
mir

-Mre11
cd

 

 

To gain insights into the structure of the eukaryotic Mre11-Rad50-Nbs1 complex, different 

eukaryotic organisms where screened for soluble protein constructs. Here, the main focus was 
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to find constructs of Mre11 and Nbs1 suitable for crystallization. It turned out that especially 

protein fragments from the fission yeast Schizosaccharomyces pombe could be expressed in a 

soluble form in Escherichia coli in mg amounts which allowed extensive crystallization 

screenings (4.1). Mre11 and Nbs1 from S. pombe are relatively compact in size compared to 

their human protein homologs. S. pombe Mre11 has a size of 649 amino acid residues 

compared to 708 residues for human Mre11. Likewise S. pombe Nbs1 comprises only 613 

amino acids whereas its human counterpart is 754 residues long. However, important 

structural elements like the Mre11 nuclease domain or the Mre11 interaction region of Nbs1 

are conserved (see also domain maps in Figure 2.3). Albeit full length S. pombe Mre11 could 

be purified recombinantly from E. coli, it was prone to proteolytic degradation over time and 

did not crystallize. A secondary structure prediction with the program JPRED (Cole et al. 

2008) showed that extensive areas of the C-terminal part of the protein lack secondary 

structure elements, which explains the proteolytic degradation of the protein preparations. 

Furthermore the C-terminus is involved in binding to Rad50 and might therefore be instable 

when this binding partner is absent (Lammens et al. 2011). Since no soluble Rad50 construct 

could be obtained, the aim was to crystallize the catalytic N-terminal part of Mre11. For this 

purpose a limited proteolysis approach in combination with a secondary structure analysis 

was applied. Based on this data a new construct containing residues 15-413 was generated 

(4.1). Alignments with Mre11 from the archaeal organism P. furiosus indicated that it 

included the complete nuclease core, which is composed of a phosphodiesterase domain and 

an adjacent DNA capping domain (Hopfner et al. 2001). Therefore the construct was named 

Mre11
cd

 (cd = catalytic domains). The protein was tested in crystallization screenings and 

yielded crystals diffracting to a limiting resolution of 3.0 Å. The structure of Mre11
cd

 was 

later solved by molecular replacement methods using the Nbs1
mir

-Mre11
cd

 complex structure 

(4.2.2).  

Full length Nbs1 from S. pombe could not be expressed and purified in amounts suitable for 

crystallization. Of special interest for this work was the C-terminal region of Nbs1, which 

contains the binding sites for Mre11 and the checkpoint kinase ATM/Tel1. Indeed, a C-

terminal fragment containing residues 428-613 could be purified in mg amounts (4.1). 

However it did not crystallize alone or in complex with Mre11
cd

 and was prone to proteolytic 

degradation. The N-terminal part of S. pombe Nbs1, which contains the Forkhead and two 

BRCT domains was already crystallized by Williams et al. (Williams et al. 2009). The authors 

also characterized the C-terminal region, comprising residues 330-613, by proteolysis and 

SAXS studies to be mainly unstructured. This likely explains why the construct 428-613 did 
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not crystallize. Therefore, different shorter deletion constructs of Nbs1 were purified and 

tested for binding with Mre11
cd

. By this approach, the core interaction motifs of Nbs1 for 

Mre11 were narrowed down to the region between residues 474-531. This region contains two 

conserved sequence elements which had been proposed before to be important for Mre11 

binding (Ueno et al. 2003). The construct was further named Nbs1
mir

 (mir = Mre11 interaction 

region) (4.1). Since Mre11
cd 

aa 15-413 and Nbs1 aa 474-531 did not crystallize initially, a 

fusion protein was generated, which connected both proteins by an eight residues long linker, 

to facilitate crystallization (Figure 4.2 B). The Nbs1
mir

-Mre11
cd

 fusion protein could be 

crystallized and native crystals diffracted to a limiting resolution of 2.4 Å (4.2.1). The 

structure was solved by SAD using data from crystals of the selenomethionine labeled 

complex, which diffracted to 2.8 Å resolution (4.2.1). 

 

5.2 The eukaryotic Mre11 dimer resembles the principal domain architecture of 

prokaryotic Mre11 but exhibits additional structural characteristics 

 

The structure of Mre11
cd

 revealed a dimeric molecule with the principle domain architecture 

similar to previously reported archaeal Mre11 from P. furiosus and bacterial Mre11 from 

T. maritima (4.3) (Hopfner et al. 2001; Lammens et al. 2011). The dimeric contacts are 

mediated by the two central phosphodiesterase domains via two helices from each protomer, 

which form a hydrophobic four helix bundle. Each phosphodiesterase domain is flanked by a 

DNA capping domain. Thereby also S. pombe Mre11
cd

 builds a U shaped particle with a 

predicted DNA binding region at its concave site. Alignments showed high sequence 

conservation between S. pombe and human Mre11 for the crystallized region with 47.9% 

identical and 33.7% conserved residues. Therefore, the structural architecture of S. pombe 

Mre11
cd

 is presumably also representative for higher eukaryotic organisms. Overlays of the 

S.pombe Mre11
cd

 structure with the P. furiosus and T. maritima Mre11 structures showed that 

all active site residues are identical (4.3). This indicates that the catalytic mechanism of 

Mre11 is conserved between the three domains of live.  

However, there are also important structural differences between the eukaryotic S. pombe 

Mre11
cd

 structure and archaeal or bacterial Mre11 structures. Most prominently, S. pombe 

Mre11 contains a conserved 33 amino acid long insertion loop element between residues 91-

123, which is specific for eukaryotic organisms. It maps to the top of the Mre11 dimer 
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mediating four helix bundle on the opposite site of the predicted DNA binding cleft and is 

highly conserved among eukaryotes (4.3 and 4.4.2). The Nbs1
mir

-Mre11
cd

 structure revealed 

that this loop element, which is further named latching loop, is mediating a key interaction 

with Nbs1 (4.4). 

Also the capping domain of S. pombe Mre11 differs in its architecture from bacteria and 

archaea. In particular, it contains an extended 40 Å long alpha helix (helix αF), between 

residues 332 and 358, which is much shorter in archaea or bacteria (4.3). The function of this 

helix is not understood at the moment. One possibility is that it might be important for the 

interaction with Rad50, since the capping domain was observed to bind to Rad50 in the 

bacterial T. maritima Mre11-Rad50 complex structure (Lammens et al. 2011). Interestingly, 

the S. pombe Mre11
cd

 structure contains a conserved surface exposed tyrosine residue 

Y338
SpMre11

 at one end of the helix near the region of the putative Rad50 binding site. 

Mutation of the corresponding Y328
ScMre11

 residue in S. cerevisiae renders cells strongly 

sensitive to the genotoxic agents MMS, HU and CPT without affecting the protein levels of 

Mre11 (Lammens et al. 2011). This indicates that the extended eukaryotic capping domain 

helix might indeed be involved in binding Rad50. 

 

5.3 Nbs1 binds to the Mre11 dimer via multiple contacts and controls its dimeric 

configuration 

 

The structure of Nbs1
mir

-Mre11
cd

 revealed that Mre11
cd

 and Nbs1
mir

 build a complex with 2:2 

stoichiometry (4.4.1). The possibility of a structural artifact, caused by the fusion protein, was 

ruled out by an additional construct of Mre11
cd

 and Nbs1
mir

 with a cleavable TEV protease 

recognition site linker, which was cleaved during the purification procedure before the size 

exclusion chromatography step. Consistently, the structure of the non-fused Mre11
mir

-Nbs1
cd

 

complex is highly similar to the fusion protein structure in all aspects of stoichiometry and 

conformation (4.4.1).  

A main characteristic of the Nbs1
mir

-Mre11
cd

 structure is that Nbs1 interacts with Mre11 not 

via a compact region but instead as an extended peptide at multiple sites. Each of the two 

Nbs1
mir

 peptides binds to one Mre11
cd

 protomer. This so called interaction region 1 consists 

of a long stretched α-helix and ß-strand motif between residues 477-498 of Nbs1 (4.4.2). C-

terminal to the interaction region 1, both Nbs1
mir

 chains are disordered. However, one of the 

two peptides is ordered again between residues 518-526 to bind the Mre11 dimer at 
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interaction site 2 via a highly conserved KNFKxFxK motif. Interestingly, this interaction is 

asymmetric and it breaks the two fold symmetry of the complex. The KNFKxFxK motif binds 

across the central Mre11 dimer cleft, which is build up by the two latching loops. It thereby 

sterically excludes binding of the second Nbs1 molecule to the latching loops. The 

significance of the observed interaction is underlined by the high sequence conservation on 

both sides of the interface. The KNFKxFxK motif is one of a few sequence elements of the 

poorly conserved Nbs1 C-terminus which is conserved between all eukaryotic organisms 

(4.4.2). The most interesting finding is that the corresponding human residue of N122
SpMre11

 is 

mutated in A-TLD 3/4 (N117S
HsMre11

) (Stewart et al. 1999). The two N122
SpMre11

 residues 

coordinate the central phenylalanine residue F524E
SpNbs1

 from both sides via π-stacking. 

Consistently, the N117S
HsMre11 

and
 
N122

SpMre11 
mutations were reported to reduce the affinity 

of Mre11 to Nbs1 in human and S. pombe cell extracts, respectively (Lee et al. 2003; Porter-

Goff and Rhind 2009). The revealed interface between Mre11 and Nbs1 also corresponds well 

to the interaction region of S. cerevisiae Xrs2 to Mre11 in two-hybrid studies (Desai-Mehta et 

al. 2001). In addition point mutations in F521
Nbs1

, K522
Nbs1

 and/or K526
Nbs1

 lead to 

compromised or abolished Mre11 interaction and resemble xrs2 phenotypes in formation of 

meiotic breaks in S. cerevisiae (Shima et al. 2005). Thus, the identified Mre11-Nbs1 

interaction can be explained and is supported by a broad spectrum of in vitro and in vivo data. 

By bridging both Mre11 molecules Nbs1 appears to “tether” the Mre11 dimer to determine its 

dimeric configuration. A comparison of Nbs1
mir

-Mre11
cd

 with apo-Mre11
cd

 showed 

significant conformational differences between both structures (4.5). Binding of the 

KNFKxFxK motif orders the latching loops, which are unstructured and “swapped” between 

the Mre11 protomers in the apo-Mre11
cd

 structure. Besides, both structures also exhibit global 

conformational differences. Superposition of apo-Mre11
cd

 and Nbs1
mir

-Mre11
cd

 revealed a 

difference in the Mre11 dimer angle of 30° towards a more compact conformation in the 

Nbs1
mir

-Mre11
cd

 structure. Therefore, the S. pombe Mre11 dimer possesses an intrinsic 

flexibility, which allows the adoption of different dimer conformations. Furthermore, the 

binding of Nbs1 coordinates the latching loops and thereby determines a distinct dimeric 

conformation. A model, which links the Nbs1 dependent Mre11 dimer configuration to DNA 

DSB signaling, is discussed in the last chapter of the discussion (5.6). 
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5.4 The extended structure of the Mre11-Nbs1 interface may explain the 

hypomorphic character of A-TLD causing mutations 

 

Several mutations in the human Mre11 gene were reported to cause the genetic disease 

Ataxia-telangiectasia like disorder (A-TLD), which is characterized by genomic instability, 

neurodegeneration and for one subtype also by mental retardation and lung carcinoma 

(Stewart et al. 1999; Fernet et al. 2005; Uchisaka et al. 2009). In addition, a heterozygous 

Mre11 mutation was recently reported to be linked to a Nijmegen-breakage syndrome (NBS) 

like disease (2.6) (Matsumoto et al. 2011).  

The structure of S. pombe Nbs1
mir

-Mre11
cd

 now allows for the first time a structural analysis 

of the mutations causing the diseases (4.8.1). The most prominent finding regards the A-TLD 

subtype 3/4, which is caused by a mutation of an asparagine residue N117S
HsMre11

 (Stewart et 

al. 1999). The corresponding S. pombe residue N122
SpMre11

 is mediating a key interaction with 

Nbs1 residue F524 at interaction region 2. Therefore, a weakened Nbs1 interaction very likely 

contributes to the repair and signaling defects seen in A-TLD 3/4. This is also in agreement to 

Co-IP studies with the human protein, where the interaction was found to be strongly reduced 

in cells derived from patients with ATLD 3/4 (Stewart et al. 1999). The mutation 

W210C
HsMre11

 (W215C
SpMre11

), which leads to A-TLD 7/8 (Fernet et al. 2005), on the other 

hand appears to have an impact on the interaction region 1, since W215C
SpMre11 

caps the three 

stranded shared ß-sheet between S. pombe Mre11
cd

 and Nbs1
mir

. W215
SpMre11

 is not surface 

exposed. Hence, the mutation may also destabilize the overall fold of the protein and thereby 

impair its functionality. This is also the case for the W243R
HsMre11

 and Del(340-366) 

mutations, which very likely destabilize the Mre11 protein fold (Uchisaka et al. 2009).  

The impact of the NBS-like disease causing mutation D113G
HsMre11

 is more difficult to 

evaluate, since it occurs as a heterozygous mutation (Matsumoto et al. 2011) (4.8.1). The 

mutation in the second allele maps to a non-coding region and causes a splicing defect. This 

results in a low level expression of Wt Mre11 from the second allele. However, it also means 

that here a small population of Mre11 is fully functional and might be responsible for the 

relatively high ATM activation levels in NBS-like disease compared to A-TLD. Therefore, it 

cannot be clearly distinguished, to which degree the D113G
HsMre11 

mutation contributes to the 

observed phenotype. The S. pombe Nbs1
mir

-Mre11
cd

 crystal structure revealed that 

D109
SpMre11

, the corresponding residue of D113G
HsMre11

, mediates an important Mre11 dimer 

interface contact (4.4.2). It maps to the latching loop and is positioned by arginine residue 
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R85
SpMre11

, which protrudes from the interface helix F of the neighboring Mre11 protomer. An 

R76A
ScMre11

 mutation of the corresponding arginine residue in S. cerevisiae caused a null 

phenotype of Mre11 (4.10.1). Likewise, also the aspartate to glycine mutation of 

D113G
HsMre11 

likely destabilizes the fold of the latching loops and disturbs the interaction to 

Nbs1. Hence, it is suggested, that the D113G
HsMre11

 mutation renders the protein strongly 

dysfunctional. 

The influence of A-TLD causing mutations on the Mre11-Nbs1 interaction was also further 

studied in vitro by binding assays using analytical size-exclusion chromatography and 

recombinant, purified S. pombe Mre11 aa 1-413 and Nbs1 aa 428-613 (4.8.2). The binding 

experiments showed that all of the tested mutations retain the ability to bind to Mre11. 

However, the mutations weaken the Mre11-Nbs1 interaction. The Wt Mre11 protein fragment 

interacted in the presence of Mn
2+

 as well as in EDTA containing buffer with Nbs1. However, 

EDTA completely disrupted the Mre11-Nbs1 interaction of all A-TLD mutants. Coordination 

of Mn
2+ 

ions by the active site residues likely stabilizes the phosphodiesterase domain fold. 

Since EDTA removes the Mn
2+ 

ions from the active site, it weakens the Mre11 fold stability 

and thereby also the Mre11-Nbs1 interaction. The additive effects of folding destabilization 

by removal of Mn
2+

 from the active site plus the weakening influence of A-TLD causing 

mutations on the Mre11-Nbs1 interface finally result in a disruption of the Mre11-Nbs1 

complex in analytical size exclusion chromatography. The experiment suggests that A-TLD 

causing mutations lead to a partially weakened but not abolished Mre11-Nbs1 interaction. 

This can be explained by the structure of S. pombe Nbs1
mir

-Mre11
cd

, since Nbs1 interacts with 

Mre11 as an extended peptide via multiple independent contacts. The single A-TLD point 

mutations therefore presumably disrupt only a part of the interface. As a result, A-TLD 

mutations render the complex partially dysfunctional, thereby causing the hypomorphic 

disease phenotype.  

 

5.5 The latching loops of S. cerevisiae Mre11 are crucial for the general functionality 

of the Mre11-Rad50-Xrs2 complex 

 

Different motifs found in the S. pombe Nbs1
mir

-Mre11
cd

 structure where studied in vivo, using 

the budding yeast S. cerevisiae as a model organism (4.10). Mre11 proteins from both 

organisms share a high sequence conservation for the crystallized Mre11 nuclease core 
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(51.3% identical + 28.4 % similar residues). Therefore, the S. pombe structure can be used as 

a guiding model for the mutational analysis of conserved functional residues in S. cerevisiae.  

One interesting observation of the S. cerevisiae studies was the MMS and CPT sensitivity, 

caused by mutations in the loop element, which connects the phosphodiesterase motif III of 

the active site with the Mre11 dimer interface helix αC (4.10.1). A recently published 

structure of the archaeal Methanococcus jannaschii Mre11-Rad50 complex bound to ATPγS 

showed the corresponding archaeal loop to interact with Rad50 in the nucleotide bound state 

of the complex (Lim et al. 2011). This could also be the function of the eukaryotic loop. 

Exchange of the S. cerevisiae loop by the sequence from the archaeal organism P. furiosus led 

to severe growth defects on MMS and CPT plates similar to mre11∆. This can likely be 

explained by sequence and charge differences of both loops. It contains two arginine residues 

in P. furiosus, but two aspartate residues in S. cerevisiae and S. pombe (Figure 4.8). One 

theory would be that coordination of the eukaryotic loop by Rad50 in the nucleotide and DNA 

bound state renders the active site accessible for DNA ends. Another indication for this theory 

comes from the observation, that the active site of S. pombe Mre11 contains binding sites of 

high and low Mn
2+ 

affinity. When crystallized with low Mn
2+

 concentrations, only one Mn
2+

 

is bound and the discussed loop element is flipped in a conformation where it could sterically 

block binding of DNA to the active site (4.6). Rad50 could therefore be directly involved in 

the allosteric regulation of the eukaryotic Mre11 nuclease function by ordering the active site 

via coordination of the Mre11 active site loop element. 

The main focus of the S. cerevisiae in vivo studies was on the mutational analysis of the 

Mre11-Nbs1/Xrs2 interface and the functional role of the Mre11 latching loops (4.10.1). Here 

mutations in S. cerevisiae Mre11 residues, which mediate binding to Nbs1 via interaction 

region 1, exhibited no growth defects in the presence of MMS and CPT. This is in agreement 

with the observation that the complete deletion of the corresponding interaction region 1 

region in S. cerevisiae Xrs2 does not impair mitotic repair but it is instead crucial for the 

meiotic function of the complex (Tsukamoto et al. 2005). However, analysis of interaction 

region 1 mutations for spore viability by the group of Steve Jackson showed also no meiosis 

defect (unpublished results - Laboratory of Steve Jackson, Cambridge). This might be 

explained by the extended conformation of Nbs1 in the Nbs1
mir

-Mre11
cd

 structure (4.4). 

Single point mutations are probably not strong enough to disrupt the complete interaction 

region 1 and therefore preserve the meiotic function of MRX. 
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The interaction region 2, observed between the S. pombe Mre11
cd

 latching loops and Nbs1
mir 

(4.4), appears to also be crucial for the interaction of S. cerevisisae Mre11 and Xrs2. The 

mutations S91E
ScMre11

 and N113S
ScMre11

, which both map to the latching loop of S. cerevisiae 

Mre11, render the cells sensitive to genotoxic agents like HU and CPT (4.10.1). A control 

experiment with the corresponding NLS-tagged Mre11 mutants showed a rescue of the 

resistance against HU and CPT. Xrs2 contains the only NLS within the Mre11-Rad50-Xrs2 

complex and is therefore crucial for the nuclear localization of the complex. However, when 

Mre11 is tagged by an NLS, Xrs2 is not needed for the resistance to genotoxic agents 

(Tsukamoto et al. 2005). Hence, the defects of S91E
ScMre11

 and N113S
ScMre11

 can be explained 

by a disturbed Mre11-Xrs2 interaction which leads to a cellular delocalization of Mre11-

Rad50.  

In contrast, the R76A
ScMre11

 mutation targets not only the Xrs2 interface but also the overall 

stability of the latching loops (4.10.1). R76
ScMre11

, which protrudes from the dimer interface 

helix αC, coordinates the latching loops via a salt bridge to the latching loop residue 

D109
ScMre11

 (4.4.2). Remarkably, the corresponding human residue of D109
ScMre11

 is mutated 

in human NBS-like disease (Matsumoto et al. 2011). Co-immunoprecipitation (Co-IP) studies 

and indirect immunofluorescence analysis of the Mre11 R76A
ScMre11

 mutant strain revealed an 

abolished interaction of Mre11 and Xrs2 (4.10.2 and 4.10.3). However, the repair defect, 

monitored by sensitivity to MMS; HU and CPT, could not be rescued by the addition of a 

NLS to Mre11 R76A (4.10.1). The mutation therefore also impairs the function of Mre11 

apart from weakening the interaction to Xrs2. Co-IP analysis of two Mre11 alleles with 

different affinity tags revealed, that the R76A
ScMre11

 mutation is strongly impairing the 

stability of Mre11 dimers (4.10.3). This might explain the severe mitotic repair defect of the 

NLS tagged R76A
ScMre11

 mutant strain, since Mre11 is only functional in vivo as a dimeric 

molecule (Williams et al. 2008). 

In summary, single point mutations in the Mre11-Xrs2 or the Mre11 dimer interfaces were 

identified, which specifically disrupt these protein-protein interactions, thereby causing 

mitotic repair defects. The in vivo analysis of S. cerevisiae Mre11 (4.10) verified the 

interactions between Mre11 and Nbs1 determined by the S. pombe Nbs1
mir

-Mre11
cd

 crystal 

structure (4.4). The latching loops are not only crucial for the interaction to Xrs2 in vivo. They 

also are important for the stability of the Mre11 dimer (4.10.3). In this aspect the eukaryotic 

Mre11 protein architecture strongly differs from bacterial and archaeal Mre11, where the 
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dimer interface is solely composed of the conserved hydrophobic four helix bundle (Hopfner 

et al. 2001; Lammens et al. 2011). 

 

5.6  A model for Mre11 dimer and Nbs1 mediated DSB signaling 

 

The asymmetric interaction of Nbs1 with the Mre11 dimer suggests a functional link between 

Mre11 dimer conformation and DSB signaling. It was already discussed how Nbs1 

structurally orders the Mre11 dimer interface (5.3). Superposition of S. pombe (Sp)Mre11
cd

 

with the SpNbs1
mir

-Mre11
cd

 complex additionally revealed an unexpected flexibility in the 

Mre11 dimer angle by approx. 30° (4.5). Such alterations in the Mre11 dimer angle could 

indeed be linked to DSB recognition as a comparison of both structures with the crystal 

structure of P. furiosus (Pf)Mre11
cd

 bound to DNA shows (Figure 5.1) (Williams et al. 2008) . 

The DNA complex of PfMre11
cd

 revealed that DNA ends are bound across both Mre11 

protomers and therefore need a particular Mre11 dimer orientation (Figure 5.1 A).  

 

 

Figure 5.1: Structural variability in the Mre11 dimer and model for DNA double-strand break signaling. 

(A) Overlay of S. pombe Mre11
cd

 (yellow) with the Nbs1
mir

-Mre11
cd

 complex (green with magenta Nbs1) and 
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DNA bound dimer of P. furiosus Mre11
cd

 (blue with brown DNA) reveals that the Mre11 dimer pivot angle is 

highly variable. All three structures are superimposed via one Mre11 protomer, respectively. DNA binding with 

multiple interaction sites, as observed in the PfMre11-DNA complex, requires a substantial structural change in 

the Mre11-Nbs1 complex that could be the basis of damage sensing and signaling, by modulating the interaction 

of Nbs1 with the Mre11 dimer interface. (B) In apo-SpMre11
cd

 (top panel, shown as cartoon model with omitted 

capping domains), two phosphodiesterase domain closely interact via two helix pairs (green and blue), one from 

each protomer. In the absence of Nbs1, the latching loops are swapped between protomers and partially 

disordered, allowing the dimer interface to be closed. Middle panel: Nbs1 (magenta) orders the latching loops 

into a “kissing” conformation and changes the mre11 dimer pivot angle by slightly opening the interface. This 

brings a DNA binding helix (orange) of one protomer into closer proximity to the DNA bound to the other 

protomer (modeled after the PfMre11:DNA complex). Lower panel: full DNA binding, as seen in the DNA-

PfMre11 complex (protein data bank entry 3DSD), is achieved after further opening the dimer interface, 

allowing the other protomer to assist in binding the minor groove (orange helix).  

 

Superimposing SpNbs1
mir

-Mre11
cd

 with PfMre11
cd

-DNA reveals now another large pivot 

motion of the Mre11 dimer by approx. 30° (Figure 5.1 A, B). In fact, to form the dsDNA 

binding interactions of the PfMre11
cd

:DNA complex, SpMre11
cd

 protomers must rotate by 

approx. 30° from the conformation observed in the Nbs1 complex and even 60° from the 

conformation seen in the absence of Nbs1.  

The revealed conformational flexibility in the Mre11 dimer, its evident coupling to Nbs1 

binding, and expected conformational changes upon DNA binding, suggest an intriguing but 

simple, testable model for DSB signaling (Figure 5.2). Since most DNA binding residues are 

conserved between archaeal and eukaryotic Mre11, it is plausible that DSB recognition will 

induce an Mre11 dimer orientation as seen in the PfMre11
cd

-DNA complex (Figure 5.1 A, B).  

Such a conceivable conformational change will likely affect the latching loops by the 

underlying rigid body movements of the phosphodiesterase domains and hence modulate the 

interaction with the Nbs1 molecules at this region. This is plausible because the observed 

differences between Nbs1 bound and free Mre11 suggest that latching loop structure, Mre11 

dimer angle and Nbs1 interaction are coupled. 

Moreover, the Hopfner group and others showed that bacterial and archaeal Mre11-Rad50 

bind to DNA as an ATP dependent clamp, and DNA binding involves large conformational 

rearrangements in both proteins (Lammens et al. 2011; Lim et al. 2011). Such a DNA and 

ATP induced conformational switch of Mre11-Rad50 could be the driving force for a rotation 

of Mre11 dimers and remodeling of the Mre11-Nbs1 interaction. Interestingly, mutational 

studies showed that the activation of ATM depends on nucleotide binding by Rad50 (Lee and 
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Paull 2005; Dupre et al. 2006). Therefore, ATM could be activated by reading out the ATP 

and DNA bound conformation of MRN via multiple interfaces with MRN. 

 

 

Figure 5.2: Speculative model for DNA double-strand break signaling by a DNA and Rad50 induced 

structural switch in the Mre11 dimer via Mre11 dimer sensing by Nbs1. Such a structural switch could alter 

Nbs1 binding geometry at the Mre11 dimer interface and hence reposition the adjacent ATM binding motifs 

(yellow). Subsequently, the binding motifs could interact with ATM HEAT repeats, resulting in recruitment and 

activation of ATM. 

 

An altered Nbs1 interaction, however, could nicely explain DSB signaling, because the ATM 

binding motif of Nbs1 is adjacent to the KNFKxFxK motif at the Mre11 dimer interface. For 

example, Tel1/ATM has two HEAT repeat regions that interact with the C-terminus of Nbs1 

(You et al. 2005), so it is plausible that a repositioning of both Nbs1 termini in the MRN 

complex by differential interaction with the Mre11 dimer could directly control recruitment 

and activation by binding to a single ATM protein at its two interaction sites. Furthermore, in 

vitro DNA binding studies with the Mre11 interaction region of Nbs1 showed a direct 

interaction of the KNFKxFxK motif to ssDNA and dsDNA substrates (4.9). Therefore, Nbs1 

may also be involved in the recognition and signaling of DSBs by directly binding to DNA 

via the KNFKxFxK motif. This might induce the dissociation of this region from the Mre11 

dimer and could thereby promote Mre11 dimer rotation and an MRN conformation which 

signals the damage to ATM. 

In the future, further studies will be needed to understand how exactly the signal transduction 

of DNA DSBs is coupled to the conformational states of the MRN complex. This will likely 
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require a hybrid techniques approach to combine atomic resolution structures of the 

nucleotide and DNA bound Mre11-Rad50-Nbs1 complex and ATM/Tel1 with biochemical 

and cell biology methods.  
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7. ABBREVATIONS 

 

6-FAM 6-carboxyfluorescein 

Å Angstrom 

aa amino acid (residue) 

ABC ATP binding cassette 

AFM Atomic force microscopy 

APS ammonium persulfate 

A-TLD Ataxia-telangiectasia like disorder 

ATM Ataxia telangiectasia mutated 

ATP adenosine triphosphate 

bp base pair 

BRCT breast cancer C-terminus 

°C degree celsius 

CK2 casein kinase 2 

DAPI 4„,6-diamino-2-phenylindole 

DNA deoxyribonucleic acid 

DNA-PK DNA-dependent protein kinase 

DrMre11 Mre11 from Danio rerio 

 

DSB DNA double-strand break 

DSBR DNA double-strand break repair 

dsDNA double-stranded DNA 

E. coli Escherichia coli 

ECL enhanced chemoluminiscence 

EDTA ethylenediaminetetraacetic acid 

 

EMSA electrophoretic mobility shift assay 

FHA forkhead associated 

h hours 

HEAT Huntingtin, elongation factor 3, the A subunit of protein 

phosphatase 2A, TOR lipid kinase HR homologous recombination 

HsMre11 Mre11 from Homo sapiens 

IPTG Isopropyl-β-D-thiogalactopyranosid 

kDa kilo Dalton 

L litre 

LB Luria-Bertani 

M molar 

min minute 

MMS methyl methanesulfonate 

Mn manganese 

Mre11 meiotic recombination 11 



7. ABBREVATIONS 

 

 

XIII 

 

Mre11
cd

 Mre11 catalytic domain 

MRN Mre11-Rad50-Nbs1 

MRX Mre11-Rad50-Xrs2 (S. cerevisiae complex) 

n nano 

Nbs Nijmegen breakage syndrome 

Nbs1
mir

 Mre11 interaction region of Nbs1 

NHEJ non-homologous end joining 

NLS nuclear localisation sequence 

NMR nuclear magnetic resonance spectroscopy 

nt nucleotide 

OD600 optical density at 600 nm 

PAGE polyacrylamide gelelectrophoresis 

PBS phosphate-buffered saline 

PBS phosphate buffered saline 

PCR polymerase chain reaction  

PDB protein data bank 

PEG polyethylene glycol 

PfMre11 Mre11 from Pyrococcus furiosus 

Pfu Pyrococcus furiosus 

pH potential of hydrogen 

PMSF phenylmethanesulfonylfluoride 

ROS reactive oxygen species 

rpm rotation per minute 

RT room temperature 

S. cerevisiae Saccharomyces cerevisiae 

S. pombe Schizosaccharomyces pombe 

SAD single-wavelength anomalous dispersion 

 

SAXS small angle X-ray scattering 

ScMre11 Mre11 from Saccharomyces cerevisiae 

SDS sodium dodecyl-sulphate 

sec second 

SpMre11 Mre11 from Schizosaccharomyces pombe 

TB Tris/Borate  

 

TBE Tris/Borate/EDTA 

TBS tris-buffered saline 

TBST tris-buffered saline + Tween 20 

TEMED N,N,N′,N′-tetramethylethylenediamine 

TEV Tobacco Etch Virus 
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TmMre11 Mre11 from Thermotoga maritima 

 

Tris tris(hydroxymethyl)aminomethane 

UV ultraviolet 

Wt Wild type 

XRCC1 X-ray repair cross-complementing protein 1 

YPD yeast extract, peptone, glucose containing medium 

μ micro 
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