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Zusammenfassung

Die vorliegende Dissertation befasst sich mit dem Themengebiet der Streuamplituden in The-

orien offener Superstrings. Insbesondere werden zwei unterschiedliche Formalismen zu Hand-

habung von Superstrings eingeführt und zur Berechnung von Baumniveau Amplituden verwen-

det – der Ramond Neveu Schwarz- (RNS-) und der Pure Spinor (PS) Formalismus.

Der RNS Zugang erweist sich als flexibel, um Kompaktifizierungen der anfänglich zehn

flachen Raumzeit Dimensionen nach vier Dimensionen zu beschreiben. Wir lösen die technis-

chen Probleme, die sich aus der wechselwirkenden zugrundeliegenden Weltflächentheorie mit

konformer Symmetrie ergeben. Dies wird genutzt, um phänomenologisch relevante Streuam-

plituden von Gluonen und Quarks sowie Produktions- und Zerfallsraten von massiven Ober-

schwingungen, die schon als virtuelle Austauschteilchen auf masselosem Niveau identifiziert

wurden, auszurechnen. Im Falle einer niedrigen String Massenskala im Bereich einiger TeV

können die stringspezifischen Signaturen bei Partonkollisionen in naher Zukunft am LHC Ex-

periment am CERN beobachtet und als erster experimenteller Nachweis der Stringtheorie

herangeführt werden. Jene Stringeffekte treten universell für eine weite Klasse von String

Grundzuständen bzw. internen Geometrien ein und stellen daher einen eleganten Weg dar, das

sogenannte Landschaftsproblem der Stringtheorie zu umgehen.

Ein zweiter Themenkomplex in dieser Arbeit basiert auf dem PS Formalismus, welcher eine

manifest supersymmetrische Behandlung von Streuamplituden in zehn Raumzeit Dimensionen

mit sechzehn Superladungen erlaubt. Wir führen eine Familie von Superfeldern ein, die in

masselosen Amplituden des offenen Strings auftreten und natürlicherweise mit Diagrammen

aus dreiwertigen Knoten identifiziert werden können. Dadurch erreichen wir nicht nur eine

kompakte Superraumdarstellung der n Punkt Feldtheorieamplitude sondern können auch die

komplette Superstring n Punkt Amplitude als minimale Linearkombination von Partialampli-

tuden der Feldtheorie sowie hypergeometrischen Funktionen schreiben. Letztere tragen die

Stringeffekte und werden von verschiedenen Perspektiven analysiert, vor allem in Hinblick auf

die in der Feldtheorie beobachtete Dualität zwischen gruppentheoretischen und kinematischen

Beiträgen zu Baumniveau Amplituden.
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Gorjup, Christoph Moder and Basti Mühlbauer. And the following local friends made the last

three years particularly enjoyable: Fred Beaujean, Alexander Dobrinevski, Frederike Hartmann,

Katharina Louis, Stephan Merkle, Lukas Rief and Max Schubert.

My colleagues created a great atmosphere at the MPI, I am grateful for sharing a nice time

and having refreshing discussions with Martin Ammon, Ralph Blumenhagen, Federico Bonetti,

Andreas Deser, Johanna Erdmenger, Thomas Grimm, Sebastian Halter, Daniel Härtl, Johannes
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Chapter 1

Introduction

1.1 A brief prehistory of string theory

To begin the introduction to the topic of string theory, let us first of all sketch the developments

in theoretical physics which led to its birth. The holy grail in natural science is a “theory of

everything” (TOE), an all-encompassing set of rules which manages to describe and predict

any process of nature without any additional input. It happened several times in the history

of theoretical physics that serveral seemingly disconnected laws of nature were found to have a

common origin, i.e. could be identified as special cases of a more general theory. Each instance

of such a unification of distinct phenomena pushes the state of the art a little step closer towards

the dream of a TOE. This section illustrates why string theory is among the most promising

candidates from today’s perspective.

1.1.1 History of unification – gravity and electromagnetism

The first two milestones on the road to unification happened before 1900. Two of the most

prominent examples are firstly the gravitational law due to Sir Issac Newton and secondly

Maxwell’s theory of electromagnetism. Both of them managed to explain phenomena in seem-

ingly different contexts of nature within an unexpectedly wider scope.

Newton’s contribution to unification can be loosely referred to as bringing heaven and earth

together. He realized that the motion of freely falling bodies on terrestrial scales like his

(in)famous apple has the same origin as the planetary motion within and outside our solar

system. His epoch making book “Philosophiae Naturalis Principia” published in 1687 casts the

gravitational law underlying both the terrestrial and celestial physics into a mathematically

precise form.

3
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A second historical example of a unifying theory is the work of James Clerk Maxwell. In

1864, he found a set of differential equations which describe the interplay between electricity

and magnetism. They encompass a variety of phenomena such as the magnetism of electric

currents, the magnetic force and the induction of electricity (discovered by Ørsted, Ampère and

Faraday, respectively) which at first appeared rather unrelated.

More recent examples of unifications and the potential of string theory in this context will

be adressed later on. Let us first of all follow the historic thread and introduce the striking

developments in theoretical physics in the early 20th century.

1.1.2 Challenges of unification – general relativity and quantum

field theory

The early 20th century gave birth to two groundbreaking pillars of theoretical physics with deep

impact on our understanding of the universe – general relativity (GR) and quantum mechanics.

Both of them raised philosophical questions concussing the key concepts in our perception of

the world such as time and determinism.

Inspired by the implications of Maxwell’s equations on the speed of light, Einstein formulated

the theory of special relativity in 1905 which first of all abandons the notion of absolute time.

Ten years later, his general theory of relativity [12, 13] arrived at an even more radical insight

on the dynamical nature of spacetime. It identifies both gravitational fields and accelerated

reference frames as a geometric effect, more precisely as a source of curvature in the spacetime

geometry. This discovery deprives spacetime of any absolute meaning since its structure is tied

to its matter content. Apart from its philosophical scope, this theory furnishes a refinement

of Newton’s gravitational law: Among other things, it explains the perihelion precession of

Mercury through a spacetime deformation caused by the sun and the planets.

Another construct of ideas which originates from Einstein’s annus mirabilis 1905 is quantum

mechanics. The energy carried by light was observed to appear in discrete quanta (of minimum

energy) instead of following a continuous distribution. Maxwell’s theory predicting wave-like

propagation of light cannot explain this particle-like behavior. The theory of quantum me-

chanics degrades “particle” and “wave” to classical concepts which fail to fully describe the

behavior of quantum-scale objects like photons, the quanta of light. According to the wave-

particle-dualism – one of the key ideas in quantum mechanics – wave-like and particle-like

properties always coexist. The a priori unexpected wave nature of elementary particles like the

electron implies the uncertainty principle and thereby questions determinism in nature. That
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is why quantum mechanics opened a philosophical debate of comparable impact to that about

the role of spacetime implied by GR.

The marriage of quantum mechanics with the ideas of special relativity leads to the frame-

work of quantum field theory (QFT) [14]. It is the appropriate language to address quantum

systems with a fluctuating particle number and infinitely many classical degrees of freedom.

In particular, it proved to be an extremely successful language to describe all nongravitational

fundamental interactions in nature, see the following subsection on the Standard Model of par-

ticle physics. In the perturbative formulation of QFT, forces between particles are mediated by

another class of particles, so-called gauge bosons. The following figure 1.1 illustrates how elec-

tromagnetic forces are carried by the photon, this viewpoint is referred to as the quantization

of Maxwell’s theory of electromagnetism.

e+

e−

µ+

µ−

γ

Figure 1.1: The electromagnetic action between electrons e− and muons µ− is transmitted

through the exchange of a photon γ. In addition to the process shown, additional contributions

arise from loop diagrams at higher order in the electromagnetic coupling.

In view of the success of QFT in particle physics and the pursuit of unification, it is desirable

to describe all interactions by exchange of messenger bosons, including the gravitational force.

But the canonical attempt to introduce a gauge boson mediating gravity – the so-called graviton

– fails dramatically. Firstly, the computation of observables is plagued by an uncontrollable

set of divergences which cannot be regulated while still keeping the theory predictive. The

theory is said to be non-renormalizable (at least perturbatively). Secondly, a perturbative

QFT approach to gravity requires the specification of a (possibly curved) background spacetime

whose fluctuations are described by the so-called graviton of spin two. The whole framework of

QFT must be reformulated in a background independent fashion in order to take the geometric

nature of gravity into account.

More generally, the conceptual foundations of GR and QFT appear to be mutually incom-

patible: The former is a classical, strictly deterministic theory compatible with a dynamical

spacetime, the latter theory incorporates quantum fields of intrinsically probabilistic nature but
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requires a fixed stage in order to define the fields. These conflicts suggest a more revolutionary

approach to unification.

In the following subsection, we will put the issue of unification aside and give an overview

of the achievements of QFT in the realm of particle physics together with their shortcomings.

Even though its fundamental concepts are intrinsically incompatible with the spirit of GR, QFT

provides an extremely accurate description of physics at short distances, i.e. on atomic and

subatomic scales. The predictions of GR, on the other hand, are most reliable at macroscopic

scales. In fact, gravity has hardly been tested at lengths below 10−6 m because of its comparative

weakness to the other forces, although precision experiments have been recently proposed [15]

to mend this shortcoming. Therefore, most of the physical phenomena clearly fall into the

validity range of either GR or QFT. However, inevitable clashes of the two frameworks occur

in situations with both high energies and strong gravitational fields, such as black holes or the

initial Big Bang singularity. Their understanding holds out for a unified description in terms

of quantum gravity.

1.1.3 The Standard Model of particle physics

Our present understanding of fundamental particles and their interactions is encompassed by

the Standard Model of particle physics (SM) [16,17,18,19]. It is formulated in the language of a

gauged quantum field theory, i.e. the fundamental interactions are introduced through the non-

abelian gauge symmetry SU(3)C × SU(2)L × U(1)Y and mediated through the corresponding

vector bosons. Three generations of two leptons and quarks each constitute its fermionic matter

content, interacting through the strong, weak and electromagnetic force. The quantized theories

of strong and electromagnetic interactions are referred to as quantum chromodynamics (QCD)

and quantum electrodynamics (QED), respectively.

Theoretical predictions of the SM have been accurately matched with experimental obser-

vations down to length scales of 10−16 m (or equivalently up to energy scales of 100 GeV). As

the most famous example for its astonishing precision, let us mention the anomalous magnetic

moment of the muon where measurements agree with precision calculations [20] to more than

10 significant digits. The predicted masses of the W± and Z0 boson as well as the existence of

a third matter generation have been experimentally verified in the late 20th century.

Gauge invariance requires a dynamical mechanism for mass generation, this is accomplished

by the postulated Higgs particle – the only Lorentz scalar of the SM. Being a doublet of

the SU(2)L factor group, the Higgs breaks the SM gauge group down to SU(3)C × U(1)EM
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by acquiring a vacuum expectation value (VEV) at low energies, this mechanism is called

electroweak symmetry breaking [21,22,23]. The Higgs VEV provides dynamical masses to both

the matter fermions through Yukawa interactions and to three gauge bosons W±- and Z0 of

the broken symmetry SU(2)L×U(1)Y (while keeping the photon associated with the preserved

U(1)EM symmetry massless).

Only the Higgs can have an explicit mass MH compatible with the SM gauge group. Its

value is bounded from below by LEP experiments and from above by inconsistencies with elec-

troweak symmetry breaking. Within the window 114 GeV ≤MH ≤ 1.4 TeV, indirect theoretical

predictions favor a mass well below the Tevatron exclusion rangle of 158 GeV to 175 GeV, most

preferably around 120 GeV [24].

The SM Lagrangian contains as many as 26 unrestricted parameters (including neutrino

masses, -mixing and -phase) which must be inferred from experimental observation – a rather

unsatisfactory amount of manual input from the theoretical point of view. The fermion masses

(or equivalently their Yukawa couplings to the Higgs) vary from 1 eV for the electron neutrino

up to 170 GeV for the top quark. This hierarchy over ten orders of magnitude appears rather

unnatural and seems to point out our lack of deeper understanding.

An even more severe hierarchy problem concerns the mass of the Higgs particle [25,26,27]:

The natural scale for quantum corrections to its mass is the cutoff where the SM loses its

validity. According to the previous subsection, this most naturally happens when effects of

quantum gravity kick in, i.e. at the Planck scale Mpl =
√

~c/G ≈ 1.22 · 1019 GeV/c2. (Grand

Unified theories modifying the SM at energies higher thanMGUT ≈ 1016 GeV do not significantly

change this hierarchy.) Accommodating these radiative corrections with the electroweak scale

∼ 100 GeV suggested by experiments requires an unnatural fine tuning in 30 digits of the bare

mass. So the question to ask is why the Higgs mass differs from the Planck mass by 17 orders

of magnitude or why the weak interaction is ironically about 1034 times stronger than gravity.

An even more embarrasing shortcoming of the SM is its misprediction of the cosmological

constants by roughly 120 orders of magnitude [28]. The observed accelerated expansion for the

universe (due to high precision measurements of distant supernovae and the cosmic microwave

background) deviates from a naive QFT computation based on a cutoff at the Plack mass

∼ 1019 GeV by the truly astronomical factor of 10120. This reflects the need to incorporate

quantum gravity effects into the SM.

Explaining the accelerated expansion as well as observed galactic rotational curves within

the framework of GR requires two additional forms of energy – dark matter and dark energy.
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Both of them are not explained by the SM. Cosmological measurements suggest that dark

matter and dark energy make up about 73 % and 23 % of today’s universe, respectively. Being

applicable to less than 5 % of the universe’s energy content relativizes the success of the SM.

To conclude the criticism of the SM, it does not offer any satisfactory explanation for the

general structure of its ingredients. Why is the gauge group SU(3)C × SU(2)W × U(1)Y ?

Why do four interactions and three families of fermions exist? Why are 26 parameters left for

experimental fixing without any theoretical understanding of these values? Finally, why is the

flat background spacetime four dimensional?

1.1.4 Supersymmetry

Some of the aforementioned problems can be addressed by a new kind of symmetry relating

bosons with fermions – supersymmetry (SUSY) [29, 30, 31]. It adds anticommuting generators

to the Poincaré algebra [32] and thereby evades the Coleman Mandula no-go theorem [33] from

1967. Viable extensions to the SM can be built on the basis of SUSY, the simplest of which is

called the minimally supersymmetric Standard Model (MSSM) [34].

Unfortunately, the SM does not contain any bose-fermi pair which can be aligned into one

SUSY multiplet, so SUSY roughly speaking doubles the particle content. The great virtue

of these extra particles is a partial cancellations of bosonic against fermionic contributions

to loop corrections of SM observables, in particular, the aforementioned mismatch about the

cosmological constant is softened from 10120 to 1060.

However, one prediction of unbroken SUSY is a common mass for all members of its multi-

plets. The SUSY partners to the SM particles would have been observed long ago if SUSY was

an exact symmetry at experimentally accessible scales. The non-observation of SUSY partners

implies that SUSY must be broken at some energy scale which has not been probed by any ac-

celerator yet. If this SUSY breaking scale is sufficiently low, say in the TeV range, it tames the

ultraviolet (UV) divergences from loop diagrams and stays compatible with the non-observation

of SUSY. In particular, SUSY offers an appealing solution to the hierarchy problem if broken

at the TeV scale because it stabilizes the Higgs mass against radiative corrections and avoids

its blowup to the Planck scale.

On the other hand, one has to admit that no natural SUSY breaking mechanism far below

the Planck (or GUT-) scale is known. Ad-hoc mechanisms have been considered such as soft

SUSY breaking [35] which generically add relevant operators (whose coefficients have a positive

mass dimension) to the MSSM Lagrangian and decouple the origin of supersymmetry breaking
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from its phenomenological consequences. Unfortunately, this introduces a variety of new unfixed

input parameters in addition to the 26 of the non-supersymmetric SM. The stabilization of the

Higgs mass through SUSY induced cancellations in radiative corrections trades the original

hierarchy problem MH � Mpl for a new problem of low-energy SUSY breaking. Recent data

from the Large Hadron Collider (LHC) at CERN exclude SUSY partners of SM particles up to

masses of ≈ 800 GeV within representative models of soft SUSY breaking.

Another important feature of TOEs is nicely addressed by SUSY – gauge group unification.

The SM has separate coupling constants for each factor of the gauge group SU(3)C×SU(2)L×
U(1)Y . They evolve with the energy scale according to renormalization group equations, and it

turns out that (only) in presence of SUSY, they perfectly meet at some high scale unification

scale MGUT ≈ 1016 GeV. This hints that the SM gauge group in fact originates from a larger

group such as SU(5) [36] or SO(10) [37]. However, the construction of such a grand unified

theory (GUT) suffers from the need to suppress proton decay (which becomes a serious threat

since quarks and leptons end up in the same representation of the GUT gauge group).

If the number N of spinorial super-Poincaré generators is bigger than one, SUSY is said

to be extended. Only the simplest N = 1 SUSY can keep the fermion spectrum chiral as we

observe it in the SM, so extended N > 1 SUSY at low energies is phenomenologically ruled out.

Nevertheless, maximally supersymmetric theories are a fruitful laboratory for formal progress

in QFT as we will explain in the next section on scattering amplitudes.

Also the graviton, the spin two messanger particle of gravity, can be aligned into a SUSY

multiplet, it is then accompanied by N spin 3/2 gravitinos. Gravity is inevitable once SUSY is

promoted to a local symmetry, these theories are called supergravity (SUGRA). The maximally

supersymmetric N = 8 SUGRA still has the potential to be UV finite to all loop orders

[38,39,40] because various divergences suggested by naive power counting have been shown to

cancel.

1.2 Overview of string theory

One of the most promising attempts to address the aforementioned conceptual and practical

problems of the SM is string theory. We have to admit that “string theory” as such is not

fully formulated yet, in particular not in a background independent or non-perturbative man-

ner. Nevertheless, a lot of features are necessarily incorporated, irrespective of what its final

formulation might be. Most prominently, string theory inevitably includes the graviton and

reduces to Einstein’s theory at low energies. Moreover, it naturally encompasses Super Yang
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Mills (SYM) theory (the supersymmetric generalization of SM gauge theories) in its low energy

limit, and even complex chiral representations of fermions can be realized like they are observed

in the matter sector of the SM. Finally, the mathematical consistency of string theories with

fermions requires spacetime supersymmetry. Knowledge of these general properties turns out

to be sufficient to compute scattering amplitudes and to extract their physical implications.

Doing so is the main purpose of this work.

There are many nice textbooks on string theory available on the market. The classics

are [41,42,43,44,45], and modern topics are covered in recent textbooks [46,47,48]. Moreover,

I learned a lot from the brilliant lecture notes [49].

1.2.1 Why string theory?

All the aforementioned features of string theory follow from simple geometrical ideas. The

time evolution of a one dimensional string sweeps out a two dimensional surface in spacetime,

a so-called worldsheet. It can be thought of as the higher dimensional generalization of the

point particle’s worldline. Canonical quantization gives rise to a quantum field theory on the

worldsheet which turns out to be exactly solvable because of the underlying infinite dimensional

(super-)conformal symmetry. The lowest energy excitations of viable string theories have zero

mass and shall ultimately be identified with SM particles, the graviton or their SUSY partners.

In addition, strings can vibrate in an infinite tower of heavy excited modes.

We will make extensive use of the powerful properties of conformal field theory (CFT)

throughout this work. On the basis of CFT methods, it is not difficult to see that string theory

predicts the dimensionality of spacetime it lives in1 – quite in contrast to the god-given four

spacetime dimensions of the SM.

As an additional benefit of string theory compared to the SM, it involves no other input

parameter than the length scale `string of strings2 (in contrast to the 26 parameters of the SM).

A natural first guess for `string would be a value close to the Planck length `pl =
√

~G/c3, but

this is by no means necessary and we will introduce alternative scenarios within this work. At

1There also exist so-called noncritical string theories in a modified number of spacetime dimensons which

require a nontrivial linear profile for the dilaton field, a scalar analogue of the graviton. But they violate Lorentz

invariance and do not appear to be suitable candidates for a quantum theory of gravity
2One might be tempted to argue that the string coupling constant gs governing the perturbative approach

should also be counted as a fundamental input parameter. In subsection 5.1.2 we identify it with the VEV of

a background field, the so-called dilaton. Therefore, gs parametrizes different backgrounds of one fixed theory

rather than a family of string theories.



1.2. OVERVIEW OF STRING THEORY 11

distances far above `string (or at energies well below the string mass scale), the point particle is

still an accurate approximation.

Strings can be either closed or open. The massless excitations in the former topology contain

the graviton whereas the lowest open string vibration modes have the properties of gauge bosons

of SYM theory. Since open strings can always join to form a closed one, gravity is a conditio

sine qua non in string theory. One could also think about higher dimensional generalization of

strings and try to quantize membranes. But it turns out that the string being a one dimensional

object is singled out is two respects: Firstly, only the two dimensional string worldsheet gives

rise to an infinite dimensional symmetry group and thereby to an exactly solvable worldvolume

QFT. Secondly, membrane theories (with ≥ 3 dimensional worldvolumes) are physically not

viable because their quantization yields a continuous spectrum of vibration modes in contrast

to the discrete mass gaps between the string excitations.

To summarize this first pleading in favour of string theory – the distinguished role of one

dimensional strings as fundamental objects lies in the fact that a QFT on their two dimensional

worldvolume is not only exactly solvable but also gives rise to spacetime physics that appears

to be compatible with observation: Gravity due to exchange of massless spin two messengers

and gauge interactions due to gauge bosons of spin one.

1.2.2 History of string theory

String theory was firstly considered in the late 1960s in the context of the strong nuclear force

– the myriad of observed hadrons could be neatly explained as specific oscillator modes of

one dimensional objects, in particular the linear relation M2 ≈ j/α′ between the spin j of

hadrons and mass square M2 naturally follows from a stringy description [43]. The constant

α′ ≈ 1 (GeV)−2 became known as the Regge slope and gave reliable masses up to hadron spins

j = 11/2.

However, string theory was temporarily discarded because it contains a massless spin two

particle. This is clearly unwanted in a theory of hadrons, so string theory was pushed aside by

QCD in the early 1970’s. After several years of hibernation, the spin two excitation was iden-

tified with the graviton, and string theory turned out to be better suited for a more ambitious

challenge, to serve as a theory of quantum gravity. With its goal of unifying QFT and GR,

string theory brought the research communities of these subjects together which had developed

almost independently till the late 1980’s.

In a first superstring revolution in 1984, string theory in ten spacetime dimensions with
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worldsheet SUSY was shown to be free of quantum anomalies by M. Green and J. Schwarz [50].

Purely bosonic string theory was plagued by a tachyonic state in both the open and closed

string sector violating causality and indicating an instability of the vacuum. The virtues of

superstring theories established in the early 1980’s lie in the absence of tachyons (due to the

so-called GSO projection [51]) and their capability to describe fermions which constitute the

majority of observed SM particles. In particular, the elimination of the tachyon makes a well-

defined field theory limit possible, in which open superstring theory turns out to reproduce

SYM theories. Five consistent superstring Theories could be identified in the 1980’s – so-called

heterotic E8 ×E8, heterotic SO(32), type I, type IIA and type IIB. The massless closed string

spectrum of the latter two boil down to the (two possible) N = 1 supergravity theories in

D = 10 dimensions.

A second superstring revolution was triggered in 1995 by the discovery of nonperturbative

dualities due to E. Witten relating the five seemingly different theories. A web of dualities

provides convincing evidence for the uniqueness of an underlying theory called M theory [52].

In addition to the ten dimensions of superstring theories, an extra spatial dimension emerges

in the spacetime of M theory at strong coupling, and its low energy limit corresponds to the

(unique) N = 1 supergravity theory in eleven dimensions. It would be desirable to improve our

currently poor understanding of M theory because it is expected to provide a nonperturbative

perspective on quantum gravity and gauge theory [53].

A string duality of particular importance is the SL(2,Z) self-duality of type IIB superstrings.

In 1996, it was noticed by C. Vafa that this is precisely the modular group of a two dimensional

torus whose modular parameter corresponds to the VEV of a complex field [54]. The elliptic

fibration of this torus over the ten dimensional base spacetime yields a twelve dimensional

variety, and the theory living on this is called F theory. It allows for a technically more accessible

treatment of nonperturbative aspects and was recognized in 2008 as a suitable framework for

GUTs with exceptional gauge groups [55].

1.2.3 Extra dimensions and D branes

The ten spacetime dimensions predicted by the CFT on the superstring worldsheet appear

questionable in view of the four dimensions we experience in our environment, both in macro-

scopic and in microscopic experiments. The idea of “invisible” extra dimensions goes back to

Kaluza and Klein in the 1920s [56, 57]. They derived the four dimensional Maxwell theory of

electromagnetism by compactifying five dimensional GR on a circle.

String theory offers two mechanisms to explain the non-observation of six extra dimensions.
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Firstly, they are guaranteed to evade detection if they are compact with spatial extent below

the experimentally resolvable length scale (i.e. 10−16 m for present days colliders). Secondly,

the endpoints of open strings whose massless modes are supposed to reproduce the full non-

gravitational SM physics can be confined to lower dimensional regions of spacetime. Then

only gravity from the closed string sector can feel the full ten dimensions through a much

stronger suppression of the gravitational force with distance than in four dimensions [58]. Since

gravitational effects are only tested down to coarse scales of about 10−6 m, this scenario imposes

less severe constraints on the size of internal spaces.

A consistent treatment of open strings requires boundary conditions for their endpoints of

either Dirichlet- or Neumann type. Dirichlet conditions with respect to 9 − p of the spatial

dimensions restrict open string endpoints to p + 1 dimensional subsets of spacetime which

are called Dp branes [59]. They are not quantized as fundamental objects but can rather be

thought of nonperturbative excitations with their own dynamics. The simplest explanation

why we experience four spacetime dimensions is because we are confined to live on a D3 brane

embedded in possibly higher dimensional spacetime. The carefully measured low energy physics

from the open string sector feels four dimensional physics while only the gravitational sector

due to closed strings (which has been experimenally probed down to 10−6 m only) can probe the

extra dimensions. Dimensions transverse to the brane are invisible to electromagnetic, weak

and strong interactions.

Interpolating scenarios with Dp branes of dimensionality 3 < p < 9 are more realistic. The

p+1 dimensional brane worldvolume contains the four macroscopic dimensions and additionally

wraps cycles of compact small internal dimensions of size below the experimental limit of

10−16 m. Topological properties of the internal manifold and the Dp brane configuration therein

determine the particle content and the amount of supersymmetry from the four dimensional

point of view. It turns out that the naive compactification on a six-torus preserves N = 4

spacetime supersymmetry in D = 4 dimensions and can be ruled out because the observed chiral

matter spectrum is compatible with N ≤ 1 SUSY only. This phenomenological requirement

favors Calabi Yau manifolds for the internal geometry [60] together with further ingredients

such as orientifolds [61]. String theory establishes a surprising connection between topologically

different Calabi Yau manifolds called mirror symmetry [62]. It is an excellent example for cross

fertilization between phenomenology, string theory and mathematics.

However, generic compactifications introduce numerous massless scalars in four dimensions

leading to non-acceptable phenomenology. A successful mechanism for generating a scalar

potential and thereby rendering them massive is to turn on background fluxes [63]. Because
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of the quantized nature of these fluxes, admissible string vacua are discretized and can in

principle be counted, a commonly quoted estimate of their total number being 10500 [64]. Hence,

phenomenological constraints are far too weak to determine the string vacua. The failure of

string theory to select a unique vacuum which explains the observed SM physics is referred to

as the landscape problem. The majority of results in this work remains valid for a huge class

of such vacua and thereby evades the landscape problem.

At least, the landscape of string vacua contains scalar potentials which solve the cosmological

constant problem: The minimum value of the potential determines the vacuum energy or

cosmological constant. In contrast to the SM and MSSM, string theory can accomplish the

observed small and positive value for the latter [65,66].

1.2.4 The AdS/CFT correspondence

A milestone in the implications of string theory for gauge theories is the AdS/CFT correspon-

dence [67, 68, 69] which provides an example of emergent spacetime through the holographic

principle, see [70, 71] for reviews. According to this correspondence, the maximally supersym-

metric SYM theory is dual to a theory of quantum gravity on Anti-de Sitter space AdS5, a

five dimensional spacetime of constant negative curvature. In this context, the energy scale on

the four dimensional SYM side is related to the size of the radial direction of AdS5, which is

therefore referred to as the “holographic” direction.

To understand this correspondence from a string theory point of view, we have to connect

two different viewpoints on a collection of N coincident D3 branes in type IIB theory. Firstly,

they appear as source terms in the stringy generalization of Einstein’s equations and produce

a spacetime with horizon, comparable to a black hole. In the vicinity of this horizon, the

geometry can be approximated by AdS5×S5. On the other hand, the open strings attached to

N coincident D3 branes in type IIB give rise to N = 4 SYM theory with gauge group SU(N)

due to their massless excitations.

The AdS/CFT duality connects the strong coupling regime of one side with the weak cou-

pling sector of the other side. Understanding the weakly coupled SYM theory in four dimensions

provides insights into the stringy regime of quantum gravity in AdS spacetime. Conversely,

weakly coupled strings in AdS5 × S5 make the strong coupling regime of the gauge theory

accessible [72] which conceals itself from perturbative methods.

Moreover, the AdS/CFT correspondence sheds light on a duality between Wilson loops with

lightlike segments and scattering amplitudes involving massless states [72, 73]. This builds the
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bridge to the main topic of this work – scattering amplitudes in superstring theory.

1.3 Scattering Amplitudes

Scattering amplitudes are perhaps the most basic quantities computed in any QFT, and string

amplitudes are in fact older than string theory itself [74,75]. In 1968, G. Veneziano constructed a

“dual” four point scattering amplitude with particular crossing symmetries in order to describe

hadron scattering. It was motivated by the fact that the high energy behavior of dual models

is much softer than that of any field theory, and hadrons were observed to exhibit such a soft

high energy behavior. Veneziano’s amplitude turned out to emerge from strings, exhibiting the

fingerprints of an infinite tower of vibration modes. The generalization of dual models to higher

number of legs can be found in [76].

In this work with focus on scattering amplitudes, we take a bit more the particle physicist’s

point of view on superstring theory. This rephrases the question about high energy physics

into that of short distance physics, the length scale being set by the fundamental string length

`string.

In the following, we will sketch the structure of superstring scattering amplitudes and give a

taste of the beautiful underlying physical and mathematical structures. The interplay between

string theory and point particle QFT can be best illustrated by maximally supersymmetric

Yang Mills theory, but there is also strong motivation within string theory to get a handle on

its S matrix, as we will explain.

1.3.1 Generalities about superstring amplitudes

Scattering amplitude in perturbative QFT are built from summing Feynman diagrams. The

perturbative expansion of string theory sums over different worldsheet topologies. Remarkably,

there is just one worldsheet contributing to individual orders of perturbation theory in contrast

to plethora of Feynman diagram at higher number of legs or loops, see the following figure 1.2.

Each Feynman diagram evaluated separately is more complicated than the complete ampli-

tude, in particular it obscures various kinds of symmetries (e.g. gauge invariance and cyclicity)

present in the final answer. Hence, a big advantage of string perturbation theory is absence of

these artifacts from the beginning. Moreover, interactions in string theory are uniquely deter-

mined by the free worldsheet theory, without the need to specify Feynman rules by a spacetime

action. Finally, the joining and splitting of the worldsheet in string scattering does not single
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Figure 1.2: At each loop order, a single string worldsheet encompasses several Feynman dia-

grams.

out an interaction point in spacetime. This keeps string amplitudes free of short distance- or

UV divergences.

As we shall see in this work, the leading order of perturbation theory for open string am-

plitudes still poses serious challenges. All the research results shown are limited to tree level

scattering of open strings, the worldsheet of this process having the topology of a disk. We

shall convince ourselves that superstring disk scattering of massless states such as gauge bosons

reduces to gluon amplitudes of YM theory in the low energy limit, obtained from Feynman di-

agrams or more modern methods.

1.3.2 The harmony of scattering amplitudes

During the last years, remarkable progress has been accumulated in our understanding and in

our ability to compute scattering amplitudes, both for theoretical and phenomenological pur-

poses, see [77,78,79] for a recent account. Striking relations have emerged and simple structures

have been discovered leading to a beautiful harmony between seemingly different structures and

aspects of gauge and gravity scattering amplitudes [80] which are invisible in a Lagrangian de-

scription. As an example, we mention the duality between color and kinematics, which exhibits

a new structure in gauge theory [81]. This property allows to rearrange the kinematical factors

in the amplitude such that its final form becomes rather simple. Moreover, recently it has been

shown [82] that the duality between color and kinematics allows to essentially interchange their

roles in the full color decomposition of the amplitude. Many of the nice properties encountered

in gauge theory amplitudes take over to graviton scattering.

The properties of scattering amplitudes in both gauge and gravity theories suggest a deeper
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understanding from string theory, see [39, 40] for a recent review. The color decomposition

of gauge theory amplitudes comes almost as a definition from string theory, it isolates the

contribution of group theoretic factors and cuts the amplitude into smaller gauge invariant

pieces with neat symmetry properties. In fact, many striking field theory relations such as Bern

Carrasco Johansson (BCJ) or Kawai Lewellen Tye (KLT) relations can be easily derived from

and understood in string theory by tracing these identities back to the monodromy properties

of the string worldsheet [83, 84, 85]. We shall demonstrate in this work that the complete

result for n point open superstring disk amplitudes for massless states displays properties and

symmetries inherent in field theory and reveals structures relevant to field theory. Moreover,

we find a beautiful harmony of the string amplitudes with strong interrelations between field

theory and string theory.

One of the most important goals in computing amplitudes is to cast their final result into

compact and short form. This is achieved by grouping the various ingredients like kinematics

and worldsheet integrals into packages. Eventually, it is desirable to express the final result in

terms of a minimal basis of both integrals and kinematics.

The computation of scattering amplitudes is a fascinating research area, both in field theory

and in superstring theory. On the one hand, it is an experimental science in the sense that

facing new classes of unknown amplitudes first of all requires to obtain the result by any means

necessary before one can analyze its structure. On the other hand, experience with amplitudes

teaches that simplifications do not happen by accident. So the second part of the research work

lies in understanding why the result (which was possibly obtained by “brute force”) looks like it

does and in which ways it simplifies. The interplay of these two steps has led to many examples

where the classification of a scattering problem developed from “impossible” to “difficult” to

“trivial” [86].

1.3.3 Superstring theory, N = 4 SYM and QCD

Let us take a closer look at the particular field theory to which maximally supersymmetric open

superstring theory reduces in the low energy limit and upon dimensional reduction from ten

to four dimensions: N = 4 SYM [87]. This field theory was discovered 35 years ago [88] and

identified as the four dimensional QFT of highest supersymmetry whose particle content does

not exceed spin one. As a gauge theory, N = 4 SYM is a relative of QCD – either a brother or

a remote uncle of nth degree, depending on which kind of physicist is asked.

One special feature ofN = 4 SYM in four dimensions is superconformal invariance – its beta

function turns out to vanish to all loop orders [89]. As a consequence, the theory is UV finite in
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perturbation theory [90, 91, 92], in agreement with the properties of the underlying string the-

ory.3 Moreover, the planar limit of N = 4 SYM enjoys a dual superconformal symmetry acting

non-locally on scattering amplitudes which is invisible on the level of the Lagrangian [94]. It

can be understood from the AdS/CFT correspondence [95]. Together with the aforementioned

superconformal invariance, the symmetry ofN = 4 SYM is enhanced to the infinite dimensional

Yangian [96], the closure of the superconformal algebra and its dual under (anti-)commutators.

Because of its rich symmetries, N = 4 SYM appears to be the first solvable QFT, at least in the

planar limit. Since last year, the all loop integrand of scattering amplitudes in planar N = 4

SYM is known [97], so the only task missing to its complete solution is to get a systematic

handle on the integrals over loop momenta.

The simplicity of the recent results in planar N = 4 SYM rests on the fact that they do not

make reference to spacetime and unitarity [98,99]. The traditional Feynman diagram approach

to scattering amplitudes in QFT obscures the simplicity of the answer because it insists on

manifest locality and unitarity. There is nothing wrong in talking about local physics without

using manifest locality, this is analogous to deriving Newton’s deterministic law by minimizing

the action for a point particle in a potential. The virtue of the (not manifestly deterministic)

principle of least action is its much closer affinity to quantum mechanics, i.e. that it easily

emerges as the ~ → 0 limit of the latter. Similarly, presenting the S matrix of local field

theories without manifest locality promises to be helpful for the search of a theory of quantum

gravity where the role of locality is questionable. In particular, string theory encompassing an

inifinite tower of higher derivative interactions in spacetime fields exhibits non-local properties.

These findings and developments manifest the strong interrelation between maximally su-

persymmetric superstring theory and its N = 4 field theory limit, in particular on the level of

amplitudes. Firstly, the field theory’s rich symmetries (on which its solution will heavily rely)

can be understood from the underlying string theory. Secondly, starting from the superstring

computation to all orders in the string length `string, one can learn a lot about more compact and

useful representations of the corresponding field theory amplitudes emerging in the low energy

limit `string → 0. In the near future, loop computations in string theory might provide fruitful

inspiration for the loop integral technology in N = 4 SYM. Thirdly, novel string computations

can be validated by the consistency requirement to reproduce the known SYM amplitude in

the field theory limit. Finally, by the AdS/CFT correspondence, solving N = 4 SYM provides

information on quantum gravity in AdS space.

More realistic QFTs such as QCD certainly involve additional complications compared to

3It turns out that the beta function still vanishes nonperturbatively, but this is harder to prove [93].
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N = 4 SYM, but the systematic study of their S matrix definitely profits from the methods

used for its supersymmetric brother and lessons drawn from the latter, see e.g. [100] for all tree

level amplitudes in massless QCD. Also, most of the string amplitudes discussed in this work

are still valid in absence of supersymmetry. Our n gluon disk amplitudes hold independent on

the compacitification geometry and reduce to gluon scattering in QCD as `string → 0. And we

will argue that also chiral matter can be addressed by superstring theory.

1.3.4 Why superstring amplitudes?

In addition to the aforementioned tight connections between superstring theory and its field

theory limit, there is strong intrinsic motivation to study scattering amplitudes for a deeper

understanding of superstring theory and its implications.

String scattering can be phenomenologically relevant in case of a low string mass scale in the

range of a few TeV/c2 [1, 101]. As we will argue later on, this is possible if spacetime extends

into large extra dimensions [58]. Superstring theory predicts universal resonances in quark-

and gluon collisions as they take place at LHC4. Disk amplitudes involving mostly gluons are

completely insensitive to the compactification model. If the string scale falls into the energy

range accessible at LHC, then the stringy signal in four parton cross sections due to exchange

of higher spin Regge resonances should deviate from the SM background by the peak shown

in figure 1.3 [102]. So far, string resonances have been excluded by the CMS experiment up to

1.67 TeV [103].

Disk amplitudes involving at least four quarks, on the other hand, carry signatures of the low

energy dynamics of various compactification geometries. If the model independent peak shown

in figure 1.3 is indeed observed, then the next step to carry out is a precision measurement of

the internal geometric data on these grounds.

According to [104], multileg processes play a much more dominant role at LHC than at

other accelerators due to the high energies available. Decay cascades of SUSY particles are

quite likely to result in emission of more than three hadron jets. A careful disentanglement of

SUSY- or string signatures from SM backgrounds requires to take scattering amplitudes with

many external states into account, on the level of both field- and string theory. The five point

superstring amplitudes underlying three jet processes are computed in [1], they allow for a

better identification of the spin of the internal states than two jet processes due to their higher

angular resolution.

4The QCD sector of the SM can be realized in superstring theory by an intersecting D brane configuration.
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Figure 1.3: Differential cross sections for dijet events in four parton scattering, plotted versus

the center of mass energy. The peaked curves show the result of a disk amplitudes involving

quarks and gluons in weakly coupled string theory, assuming a string energy scale of 2 TeV.

Apart from their phenomenological motivation, superstring amplitudes allow to test vari-

ous aspects of duality symmetries relating different string vacua [105]. References [106, 107]

for instance address the strong–weak coupling duality between type I and heterotic SO(32)

superstring theory conjectured in [108,109]: Higher genus amplitudes on the heterotic side are

related to F 2n interactions of the gauge field strength F in type I.

There are plenty of additional benefits from mastering superstring amplitudes. For instance,

string theory and its interactions furnish a fruitful laboratory to learn about higher spin gauge

theory [110,111]. We will further elucidate this at various points within the main body of this

work. Also, one can use superstring amplitudes (in particular their higher order corrections in

the string length) as a generating machine for SUSY invariants. Five- and six loop counterterms

for supergravity theories have recently been ruled out on the basis of a low energy expansion

of graviton scattering amplitudes in superstring theory [112]. Instead of perpetuating this list

with further application of superstring amplitudes, let us turn to the content and novelties of

this thesis.

1.4 Achievements in this thesis

The results discussed in this thesis are derived from the broad topic of scattering amplitudes

in superstring theory. More specifically, phenomenological aspects of a low string scale [1, 2],
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the conformal field theory arising in the RNS superstring [3,4,5], higher spin scattering [6] and

scattering amplitudes in the pure spinor formalism [7,8, 9, 10,11] are investigated in detail.

The main result of this thesis is to cast the color ordered n point disk amplitude of the open

superstring into the following striking, simple and compact form

A(1, 2, . . . , n− 1, n;α′) =
∑

σ∈Sn−3

ASYM(1, 2σ, 3σ, . . . , (n− 2)σ, n− 1, n)F σ(α′) (1.4.1)

with iσ ≡ σ(i) and Sn−3 denoting the group of permutations in (2, 3, . . . , n− 2). The building

blocks ASYM represent (n − 3)! color ordered super Yang Mills (SYM) subamplitudes, while

F σ(α′) are generalized Euler integrals encoding the full dependence of the string amplitude on

the Regge slope α′ (i.e. the squares string length or the inverse string tension). Its structure

and implications are thoroughly explained in section 12.3 and in [11]. The way to this result

was paved by previous work [7, 8, 9] on superstring- and field theory amplitudes in the pure

spinor formalism.

Older work [1, 2] focuses on phenomenological aspects of a low string scale. The former

article extends string theory’s universal prediction on four parton scattering at LHC to the five

point level. We compute the full fledged cross sections for five point disk scattering of quarks

and gluons and discuss model independent features of multi-parton processes in chapter 8. The

latter paper which is summarized in chapter 9 identifies the universal four dimensional particle

content of stringy Regge excitations on the first mass level. Excited string states are expected

to be produced at the LHC as soon as the string mass threshold is reached in the center of

mass energies of the colliding partons. This is why we evaluate amplitudes involving one such

massive state and up to three massless ones and express them in a helicity basis. In both cases,

the results are cast into a form suitable for the implementation of stringy partonic cross sections

in the LHC data analysis.

Three of my publications [3, 4, 5] are devoted to the old problem that the RNS superstring

is only superficially based on a free worldsheet theory, since fermion emission involves subtle

ingredients, so-called spin fields. Bosonization techniques make it possible to compute their

correlators, but this breaks Lorentz symmetry and requires a precise translation of the results

obtained in bosonized language into covariant expressions. This is what we accomplished to

do in a variety of cases which appear in fermion amplitudes but have not been systematically

addressed in the literature before, see chapter 6. In particular, these results prove to be an

essential toolkit in computing the aforementioned multi parton scattering processes relevant at

LHC.



22 CHAPTER 1. INTRODUCTION

In another paper [6], I focus on the leading Regge trajectory in open superstring theories, i.e.

on highest spin states at mass level n with spin s = n+1 for bosons and s = n+ 1
2

for fermions.

It extends the computation of their three point vertices which have already been known for

bosonic strings to superstring theory. In addition, four point decay amplitudes of leading Regge

trajectory states into partons are computed, providing a higher spin generalization of [2]. For

these reasons, these results are also included into chapter 9 on scattering of massive states.

Work in progress aims to extract lessons on the field theory of massless higher spin fields [113]

and on generating function techniques which govern their scattering amplitudes.

Finally, I started to work with the pure spinor approach to superstring amplitudes when

the state of the art in computing tree level scattering of the gauge multiplet with pure spinor

methods was at five point level. In [7], we compute the six point disk amplitudes and get a

glimpse of the underlying BRST structures. These patterns are generalized to higher numbers

of legs which determines the n point field theory amplitude on the basis of BRST cohomology

arguments [8]. The n point superstring computation allows for an explicit construction of so-

called BCJ numerators in gauge theories [9] which manifest the duality between kinematic and

color factors. It was an outstanding problem among field theorists to find better representations

for these kinematic building blocks, so string theory serves as a convenient tool here. The end

result of my pure spinor projects is [10] with its compact expression (1.4.1) for the n point open

superstring disk amplitude. The whole discussion on the pure spinor formalism can be found

in chapters 10 to 13.

1.5 Outline

This work is divided into three parts. The first one aims to summarize basic ingredients of

the RNS superstring, in particular the CFT machinery necessary for the computation of the

scattering amplitudes in the subsequent parts. Chapter 2 introduces the decoupling CFT

sectors of worldsheet matter fields Xm, ψm, SA and ghosts b, c, β, γ and sketches the special

features of open strings compared to closed ones. The second chapter explains the general

rules for constructing the supersymmetric open string spectrum and gives a more detailed

account on three examples: massless states, the first mass level and the so-called “leading Regge

trajectory” encompassing the highest spin states of each mass level. In the third chapter, we

adjust the ten dimensional RNS formalism to D = 4 compactifications. After briefly addressing

low string scale extensions to the Standard Model, we look at the SCFT implementation of

compactifications with variable amount of spacetime supersymmetry and the intersecting D
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branes. Particular attention is paid to the adjoint and chiral particle content at mass levels

zero and one.

The second part II is devoted to disk amplitudes in connection with RNS methods. Chapter

5 thoroughly introduces open superstring tree level amplitudes and points out the parallel

structures governing superstring- and field theory amplitudes. The following two chapters 6

and 7 then focus on the two main challenges posed by the prescription for disk amplitudes: The

former covers correlation functions in the interacting CFT involving the NS fermions and spin

fields which constitute a bottleneck for computing scattering amplitudes involving spacetime

fermions. The latter discusses the properties and mathematical background of the worldsheet

integrals arising in tree amplitudes. Explicit results on disk scattering appear in the last

two chapters of the second part: Scattering amplitudes involving massless particles (mainly

members of the SYM vector multiplet and quarks) are the topic of chapter 8, and massive

states are included in chapter 9 – both the first mass level in D = 4 dimensions and the leading

Regge trajectory.

The step to the last part III is a hair pin bend because we switch to a new approach to

the worldsheet degrees of freedom of the superstring – the pure spinor formalism. The basic

prerequisites for computing disk amplitudes of the massless gauge multiplet are provided in

chapter 10. Then, chapter 11 develops methods to determine field theory amplitudes in pure

spinor superspace from BRST cohomology arguments rather than by direct computation of

the superstring result and its low energy limit. The orthogonal strategy is followed in chapter

12 where the complete string computation is carried out for the n point disk amplitude of

the SYM multiplet, resulting in the main result (1.4.1). We will explain the rich structure of

and harmony within this equation in section 12.3. As a byproduct of the n point superstring

computation, we get a prescription to explicitly compute kinematic numerator factors for gauge

theory amplitudes in the low energy limit which satisfy Jacobi identities dual to color factors.

This procedure together with explicit examples up to seven point level can be found in the last

chapter 13.

The main body is followed by several appendices. In the first appendix A, we will explain

our conventions concerning indices and spinor algebra. Appendix B aims to give a lightning

introduction into superconformal field theory. The third appendix C provides the background

on spinor helicity variables. In four dimensional spacetime, they prove useful to simplify kine-

matic factors of amplitudes involving states of spin ≥ 1. Appendix D.1 contains supplementing

material on hypergeometric worldsheet integrals. Our computations in pure spinor superspace

give rise to specific kinematic packages – so-called BRST building blocks and Berends Giele
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currents. Their explicit definition involves lengthy expressions at higher rank, some examples

are gathered in appendix E. Finally, appendix F lists the BCJ numerator for seven point tree

amplitudes in gauge theories.



Part I

Basics of the open RNS superstring
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Chapter 2

The RNS worldsheet CFTs

As explained in the introduction, the speciality of string theory lies in the emergence of D = 10

dimensional spacetime physics from a two dimensional quantum field theory on the worldsheet.

The worldsheet theory is governed by the infinite dimensional superconformal symmetry group

(which can be understood as a residual gauge symmetry) leading to exact solvability. In this

chapter, we want to introduce the degrees of freedom in the superconformal field theory (SCFT)

on the worldsheet describing superstrings propagating in flat Minkowski spacetime. It turns

out to split into several decoupled CFTs which can be roughly classified as a matter- and ghost

sector.

In the RNS approach to superstring theory, the spacetime coordinates Xm describing the

string’s embedding into spacetime are accompanied by Grassmann odd partners ψm under

worldsheet supersymmetry (a subset of superconformal transformations). The (Xm, ψm) are

referred to as the matter degrees of freedom on the worldsheet, they carry a (spacetime) vector

index m = 0, 1, . . . , D − 1.

The major drawback of the RNS approach to superstring theory lies in the lack of manifest

spacetime supersymmetry. The realization of spacetime fermions in the worldsheet SCFT looks

completely different from spacetime bosons at first glance. Even though the CFT technique of

bosonization makes this gap a bit smaller (see section 2.2), it does not achieve manifest N = 1

spacetime supersymmetry. In D = 10 dimensions, this has only been accomplished by the pure

spinor formalism, an alternative approach to the superstring which will be introduced in the

later part III. It is based on different worldsheet variables compared to the RNS formalism.

The appearence of the residual superconformal gauge symmetry signalizes a redundancy in

our description. One way to handle this is a direct elimination of the unphysical degrees of

freedom using the so-called light cone gauge on the expense of full spacetime Lorentz symmetry.

27
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We will follow another route throughout part I and II of this work which is compatible with

Lorentz invariance in all steps of computations: In section 2.3, ghost fields {b, c, β, γ} are

introduced on the worldsheet with a meaning of “negative” degrees of freedom. This will

become more transparent from the definition of a BRST charge (due to Becchi-Rouet-Stora-

Tyutin) whose cohomology selects the physical spectrum.

The first sections are adapted to the closed string where the worldsheet is periodic in its

spatial direction. This effectively doubles all the worldsheet degrees of freedom as we shall

explain. The last section 2.4 introduces open strings, their boundary conditions and the SCFT

description of their worldsheet.

2.1 Matter fields

The string coordinates Xm are viewed as functions on the worldsheet which describe its em-

bedding into spacetime. The spatial extent of the string is parametrized by a coordinate σ1,

and each string segment sweeps out a worldline with proper time τ ≡ σ0. The σ1 coordinate

is periodic σ1 ≡ σ1 + 2π for closed strings and restricted to the interval σ1 ∈ (0, π) for open

strings, see the following figure 2.1.

σ0

σ1
×

0, 2π
×π

σ1

×
0

×
π

Figure 2.1: Worldsheets of closed and open strings

2.1.1 The bosonic worldsheet action

The embedding coordinates Xm describing the string’s propagation in flat Minkowski spacetime

are among the most important actors in the worldsheet SCFT. A first promising attempt to

describe their dynamics is applying the principle of least action to the worldsheet surface – the

natural generalization of the Lagrangian description of the point particle where the worldline
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length is taken as an action. In this approach, the equations of motion for the Xm are extracted

from minimizing the so-called Nambu Goto action1

SNG[X] = −T
∫

d2σ
√
− det γ , γab =

∂Xm

∂σa
∂Xn

∂σb
ηmn . (2.1.1)

It measures the worldsheet area by means of the induced metric γab metric on the worldsheet.

The prefactor T can be interpreted as the string tension which is related to the famous Regge

slope parameter α′ by T = 1
2πα′

.

Unfortunately, the canonical quantization procedure is extremely hard to apply to an action

with square root dependence on the fields. (The only hope to quantize such an action rests on

light cone gauge on the expense of Lorentz symmetry.) This suggests to employ another action

for the Xm equivalent to (2.1.1), the so-called Polyakov action. It introduces a worldsheet

metric hab as an a priori independent field:

S[X, h] = − T
2

∫
d2σ
√
− dethhab ∂aX

m ∂bX
n ηmn (2.1.2)

This action first of all describes D worldsheet scalar fields Xm coupled to the two dimensional

metric hab. Equations of motion for the latter imply that hab is proportional to the induced

metric γab = ∂aX
m∂bXm from (2.1.1),

δS[X, h]

δhab
= 0 ⇒ hab =

2

hcd ∂cXm ∂dXm

∂aX
n ∂bXn =

2 γab
hcd ∂cXm ∂dXm

. (2.1.3)

Remarkably, this proportionality constant 2/(hcd∂cX
m∂dXm) between hab ∼ γab drops out of

the equations of motion for Xm,

δS[X, h]

δXm

= 0 ⇒ ∂a(
√
− dethhab ∂bX

m) = ∂a(
√
− det γ γab ∂bX

m) = 0 (2.1.4)

since
√
− deth scales inversely to hab in two dimensions. This proves that the Polyakov action

(2.1.2) gives rise to the same Xm dynamics as the initial surface action (2.1.1). In the next

subsection, we will examine further features of hab apart from avoiding the square root.

2.1.2 Gauge fixing the action

The Polyakov action (2.1.2) is the more promising starting point to quantize the worldsheet

theory of the string’s embedding coordinates Xm in Minkowski spacetime. An essential role is

played by the action’s symmetries which allow to gauge away the local hab degrees of freedom:

1The conventions for worldsheet- and spacetime indices are gathered in appendix A.1.
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• Two dimensional diffeomorphisms: the action is written in completely reparametrization

invariant manner. Under infinitesimal coordinate changes σa 7→ σ̃a = σa − ηa(σ), the

worldsheet fields hab and Xm transform as2

δηhab = ∇a ηb + ∇b ηa , δηX
m = ηa ∂aX

m . (2.1.6)

• Weyl invariance: in addition to coordinate changes, the Polyakov action is invariant under

local rescaling hab 7→ e2φ(σ)hab of the metric, so-called Weyl transformations. We have

already used Weyl invariance of the Xm equations of motions in (2.1.4). Infinitesimally,

Weyl rescalings affect the worldsheet fields as

δφhab = 2φhab , δφX
m = 0 . (2.1.7)

Note that Weyl transformations should not be thought of as coordinate changes because

the Xm are scalars under δφ.

To summarize the symmetry analysis – using the three worldsheet functions ηa(σ) and φ(σ),

one can locally gauge away all the degrees of freedom in the worldsheet metric hab and fix it to

a Minkowski configuration ηab := diag(−1,+1). This choice is referred to as

conformal gauge: hab(σ) = ηab . (2.1.8)

Worldsheets of nonzero genus give rise to global obstructions against conformal gauge. These

are briefly addressed in the later subsection 5.1.3.

2.1.3 Residual gauge transformations

To identify the residual gauge symmetry which preserves the gauge choice (2.1.8), we should

emphasize again that the gauge parameters are three functions ηa=1,2, φ of both worldsheet

coordinates σ0 and σ1. Functions of only one variable form a subset of measure zero, and it

turns out that one can find a family of such reparametrizations which remain a symmetry after

fixing conformal gauge.

At this moment, it makes sense to trade the Minkowski signature on the worldsheet for an

Euclidean one for the sake of simplicity and elegance. We define Euclidean coordinates (σ1, σ2)

2The covariant derivative ∇a strictly speaking involves the two dimensional Christoffel symbols

∇a ηb = ∂aηb − Γcab ηc = ∂aηb −
1
2
hcd (∂ahbd + ∂bhad − ∂dhab) ηc . (2.1.5)
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and their complex combinations (z, z̄) by

(σ1, σ2) := (σ1, iσ0) , z := σ1 − iσ2 , z̄ := σ1 + iσ2 . (2.1.9)

If the σ1, σ2 are real, then z and z̄ are related by complex conjugation z̄ = z∗ but we shall think

of them as independent coordinates in the following. Since the two dimensional line element

factorizes in these complex coordinates, ds2 = dz dz̄ ≡ ηabdx
a dxb, (anti-)holomorphic functions

of z (or z̄ respectively) rescale the metric by an overall prefactor

z 7→ f(z) ⇒ ηab 7→
df(z)

dz
ηab =: ∂f(z) ηab (2.1.10)

z̄ 7→ ḡ(z̄) ⇒ ηab 7→
dḡ(z̄)

dz̄
ηab =: ∂̄ḡ(z̄) ηab ,

given by the holomorphic or antiholomorphic derivative ∂ := 1
2
(∂1+i∂2), ∂̄ := 1

2
(∂1−i∂2) acting

on f or ḡ, respectively. These kinds of hab transformation can be undone by a compensating

Weyl transformation (say e−2φ = ∂f), so the (anti-)holomorphic maps keep the metric in a

configuration equivalent to hab = ηab. In two dimensions, the residual gauge symmetry z 7→ f(z)

and z̄ 7→ ḡ(z̄) coincides with the infinite dimensional group of conformal transformations.

Given the gauge fixing (2.1.8) and the choice of complex coordinates (2.1.9), the Polyakov

action now takes the form

S[X, hab = ηab] =
T

2

∫
d2z ∂Xm ∂̄Xm (2.1.11)

and describes a conformally invariant field theory. Due to the equations of motion ∂∂̄Xm = 0,

the first derivatives ∂Xm(z)
(
∂̄Xm(z̄)

)
are purely holomorphic (antiholomorphic). As a conse-

quence, the embedding coordinates decompose into a sum of holomorphic and antiholomorphic

parts:

∂∂̄Xm = 0 ⇒ Xm(z, z̄) = Xm
L (z) + Xm

R (z̄) (2.1.12)

In other words, any string excitation decomposes into a left- and right mover XL(z), XR(z̄),

depending on one of σ1 ± σ0 only.

2.1.4 Adding worldsheet supersymmetry

The supersymmetric generalization of the reparametrization invariant Polyakov action (2.1.2)

must involve two different worldsheet fermions – firstly the partner Ψm of the embedding

coordinates Xm and secondly a gravitino χa pairing up with hab and gauging the local super-

symmetry. The corresponding two dimensional Dirac gamma matrices are denoted by γa and

the two dimensional spinors require a Dirac conjugate Ψ̄m := Ψ†mγ
0. The full worldsheet action

S[X,Ψ,h, χ] =
1

8π

∫
d2σ
√
− deth

{
− 2

α′
hab ∂aX

m ∂bXm + 2 Ψ̄m γa∇aΨm
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+ (χ̄a γ
b γa Ψm)

(√
2

α′
∂bXm +

1

4
χb Ψm

)}
(2.1.13)

is invariant under local supersymmetry transformations with parameter ε(σ) which for instance

affects the metric and the gravitino as δεhab ∼ εγ(aχb) and δεχa ∼ ∇aε.

The bosonic gauge fixing described in the previous subsection 2.1.2 has supersymmetric

analogues. One can first of all use diffeomorphisms and local supersymmetry to bring (hab, χc)

into the form (e2φηab, γcζ) and then decouple the conformal factor e2φ and the worldsheet

spinor ζ by means of super-Weyl transformations. The action (2.1.13) is thereby reduced to

the following gauge fixed version, written in complex coordinates (2.1.9)

S[X,ψ, ψ̄] =
1

8π

∫
d2z

{
2

α′
∂Xm ∂̄Xm + ψm ∂̄ψm + ψ̄m ∂ψ̄m

}
. (2.1.14)

Note that we picked the Majorana Weyl basis for the Dirac spinor where its components read

Ψm = (ψm, ψ̄m).

The residual gauge invariance now extends to superconformal transformations. Among the

general diffeomorphisms η(z, z̄) and local supersymmetry transformations ε(z, z̄), one can still

apply the purely holomorphic or antiholomorphic subsets η(z), ε(z) and η̄(z̄), ε̄(z̄) of measure

zero and compensate the metric- and gravtitino variation by means of super-Weyl symmetry.

From the fermionic equations of motion ∂̄ψm = ∂ψ̄m = 0, we see that the Dirac spinor

Ψ has one holomorphic component ψ(z) and an antiholomorphic one ψ̄(z̄). This mimics the

(anti-)holomorphicity of ∂Xm (∂̄Xm) in the bosonic sector.

2.1.5 Path integrals and two point functions

We will now apply path integral methods to the quadratic action (2.1.14) in order to define

correlation functions and compute propagators for the free fields Xm and ψm. The correlator

〈. . .〉S2 of some local operators inserted at . . . is defined by3

〈 . . . 〉S2 :=
1

Z

∫
DX DψDψ̄ e−S[X,ψ,ψ̄] . . . , Z =

∫
DX DψDψ̄ e−S[X,ψ,ψ̄] (2.1.15)

with the standard normalization through the inverse partition function Z. We will use various

SCFT methods in later chapters to compute a large class of correlators. For the moment, we

restrict out attention to the two point functions or propagators 〈φi(z, z̄)φj(w, w̄)〉S2 .

3The closed string tree level worldsheet has the topology of the Riemann sphere S2 ∼= C ∪ {∞}, so we add

an extra S2 subscript whenever a closed string correlation function appears. We will most of the time look at

disk correlators on open string worldsheets, that is why 〈. . .〉 without specification refers to the disk topology

by default.
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The Dyson-Schwinger equation 〈φi(z, z̄) δS/δφj(w, w̄)〉S2 = δji δ
2(z − w, z̄ − w̄) gives rise to

differential equations for the propagators of Xm and ψm, ψ̄m which are solved by the following

expressions4:

〈Xm(z, z̄)Xn(w, w̄) 〉S2 = − α
′

2
ηmn ln |z − w|2 , 〈 i∂Xm(z) i∂Xn(w) 〉S2 =

α′ ηmn

2 (z − w)2

〈ψm(z) ψ̄n(w̄) 〉S2 = 0 , 〈 ψ̄m(z̄)ψn(w) 〉S2 = 0 (2.1.17)

〈ψm(z)ψn(w) 〉S2 =
ηmn

z − w , 〈 ψ̄m(z̄) ψ̄n(w̄) 〉S2 =
ηmn

z̄ − w̄

This can be directly translated into the following leading OPE singularities, see appendix B.2.2

for a detailed account of OPE techniques:

i∂Xm(z) iXn(w, w̄) ∼ α′ ηmn

2 (z − w)
+ . . . , ψm(z)ψn(w) ∼ ηmn

z − w + . . . (2.1.18)

i∂̄Xm(z̄) iXn(w, w̄) ∼ α′ ηmn

2 (z̄ − w̄)
+ . . . , ψ̄m(z̄) ψ̄n(w̄) ∼ ηmn

z̄ − w̄ + . . .

These are the essential SCFT data sufficient for computing any tree level correlation function

among the (Xm, ψm, ψ̄m) fields – see appendix B.4 and chapter 6.

2.1.6 The superconformal algebra

According to the standard methods of quantum field theory (QFT), we can compute the energy

momentum tensor and the supercurrent for the (Xm, ψm, ψ̄m) system by varying the action

(2.1.13) with respect to the metric and the gravitino. As required for a conformal theory, the

energy momentum tensor is traceless on classical level, ηabTab = 0 which translates into Tzz̄ = 0

in the complex basis. Moreover, the conservation law ∂aTab = 0 makes sure that the surviving

two components T := Tzz and T̄ := Tz̄z̄ are holomorphic and antiholomorphic respectively.

Explicitly, we have

T (z) =
1

α′
: i∂Xm(z) i∂Xm(z) : +

1

2
: ∂ψm(z)ψm(z) : . (2.1.19)

If a theory is superconformal (in addition to supersymmetric), then its supercurrent Ga has a

vanishing gamma trace, γaGa = 0 (where the spinor index of Ga is understood to be contracted

with γa). This is the fermionic analogue of tracelessness ηabTab = 0. Hence, only two out of four

Ga components are nonzero which can be separated into a holomorphic and an antiholomorphic

4An important tool in this computation is the Green’s function of the ∂∂̄ operator

∂∂̄ ln |z − w|2 = 4π δ2(z − w, z̄ − w̄) . (2.1.16)
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one Gz =
(
G(z), 0

)
and Gz̄ =

(
0, Ḡ(z̄)

)
in the Majorana Weyl spinor basis. In terms of Xm

and ψm, the holomorphic supercurrent reads

G(z) =
1√
2α′

: i∂Xm(z)ψm(z) : . (2.1.20)

The normal ordering colons : . . . : subtract mutual contractions of the encompassed operators

such that one point functions vanish, 〈T (z)〉 = 0. Their presence is essential for applying

Wick’s theorem to the OPE between composite fields such as (T,G) and the elementary ones

(∂Xm, ψm). For ease of notation, we will omit the colons for the rest of the thesis. They shall

be thought of implicitly present whenever several operators are inserted at the same point.

The OPEs (2.1.18) imply that

T (z) i∂Xm(w) ∼ i∂Xm(w)

(z − w)2
+

i∂2Xm(w)

z − w + . . .

T (z)ψm(w) ∼
1
2
ψm(w)

(z − w)2
+

∂ψm(w)

z − w + . . . (2.1.21)

G(z) i∂Xm(w) ∼
√
α′

2

[ 1
2
ψm(w)

(z − w)2
+

1
2
∂ψm(w)

z − w

]
+ . . .

G(z)ψm(w) ∼
√

2

α′

1
2
i∂Xm(w)

z − w + . . .

Analogous OPEs hold between the antiholomorphic fields ∂̄Xm, ψ̄m, T̄ and Ḡ whereas ∂Xm and

ψm are nonsingular with respect to T̄ and Ḡ.

By comparison with equation (B.2.17), we can identify
(
ψm,

√
2
α′
i∂Xm

)
as a superconformal

primary superfield with conformal weights h = 1
2

for ψm and h = 1 for i∂Xm. It is certainly no

surprise that i∂Xm transforms like a unit weight primary i∂zX
m = ∂w

∂z
i∂wX

m under change of

coordinates z 7→ w(z), but the h = 1
2

property of ψm is less intuitive to see.

Apart from the conformal weights of the primary fields, there is another important number

to characterize a representation of the superconformal algebra, namely the central charge c.

It can be read off from the T (z)T (w)- and G(z)G(w) OPEs. By computing all the possible

contractions of T and G, we exactly reproduce the algebra (B.2.20) with

central charge of the (∂Xm, ψm) CFT: c =
3

2
D (2.1.22)

proportional to the number D of spacetime dimensions.

In superstring theory, the analysis can be taken over literally to the right moving or anti-

holomorphic counterparts ∂̄Xm, ψ̄m, T̄ and Ḡ.5 It yields right moving weights h̄ =
(

1
2
, 1
)

for

(ψ̄m, ∂̄Xm) and central charge c̄ = 3D
2

.

5The situation in different in heterotic string theories [114, 115, 116] where one chiral half of Xm probes 16

additional dimensions.
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In this section, we have seen that the embedding string coordinates Xm can be described

by a worldsheet SCFT with fermionic partners ψm. The superconformal symmetry is a resid-

ual gauge symmetry which ultimately leads to a decoupling of the negative norm states in

its quantum Hilbert space, see chapter 3. The representations of the superconformal alge-

bra are characterized by conformal weights h =
(

1
2
, 1
)

for the primary fields (ψm, ∂Xm) and

central charge c = 3D
2

. The antiholomorphic counterparts ∂̄Xm and ψ̄m furnish a decoupled

antiholomorphic copy.

2.2 Spin fields and bosonization

Worldsheet fermions ψm live on the double cover of the complex plane, i.e. they are defined

up to a sign only. Therefore, their boundary conditions under translation σ1 7→ σ1 + 2π of the

closed string can be either periodic or antiperiodic6. The states associated with antiperiodic

(periodic) boundary conditions are said to fall into the Neveu Schwarz sector (Ramond sector)

– in short, the NS- and R sectors, see appendix B.3.2 for more information from the SCFT

point of view.

This section introduces spin fields [117,118], conformal primaries which interpolate between

the NS- and R sectors. Their basic properties are extracted from the fermions’ mode expansion,

and their interplay with the ψm can be understood by means of the bosonization technique [119].

The whole discussion only takes holomorphic fields into account, the antiholomorphic copy

which is present for closed strings follows exactly the same rules.

2.2.1 NS versus R sector

According to the discussion in appendix B.2.4, the mapping from the cylinder (parametrized by

σ1− iσ2) to the complex plane (with coordinate z = eσ
2+iσ1

) gives rise to the following Laurent

mode expansion:

ψm(z) =
∑
r

ψmr z
−r−1/2 , r ∈

 Z + 1
2

: NS sector

Z : R sector
(2.2.23)

NS sector states are created by acting with half odd integer modes ψm−r with r ∈ N − 1
2

on

the vacuum. The R sector, on the other hand, is built from integer modes ψm−r with r ∈ N0.

Obviously, the periodicity properties of ψm under z 7→ e2πiz on the plane are opposite to their

6Lorentz invariance forces to pick a uniform sign in the boundary conditions for all the ψm with m = 0, 1, ..., 9



36 CHAPTER 2. THE RNS WORLDSHEET CFTS

behaviour under σ1 7→ σ1 + 2π on the cylinder:

ψm(e2πiz) =

 +ψm(z) : NS sector

−ψm(z) : R sector
(2.2.24)

In order to arrive at the algebra (B.2.29) for the energy momentum modes with the correct

central extension, we have to shift the L0 generator of the Ramond sector by D
16

, i.e. one has

Lm =


1

2

∑
r∈Z+

1
2

r ψnm−r ψn,r : NS sector

1

2

∑
r∈Z

r ψnm−r ψn,r +
D

16
δm,0 : R sector

. (2.2.25)

Hence, lowest energy states of the R sector |A〉R (where the label A is made precise in the

next subsection) without any ψm−r≤−1 oscillators already have an L0 eigenvalue of D
16

. This must

be the conformal dimension a primary field SA which generates R ground states from the NS

vacuum via7

|A〉R = lim
z 7→0

SA(z) |0〉NS , R
〈B| = lim

z 7→∞NS
〈0|SB(z) zD/8 , h(SA) =

D

16
. (2.2.26)

This saturates a general bound on the conformal weight h of Ramond ground states |h〉R in

arbitrary SCFTs: Requiring unitarity yields

0 ≤ R〈h|G0G0 |h〉R =
(

2h − c

12

)
R〈h|h〉R ⇒ h ≥ c

24
=

D

16
(2.2.27)

according to the {Gr, Gs} anticommutation relation in (B.2.29).

2.2.2 Spin fields as SO(1, 9) spinors and covariant OPEs

A peculiar feature of the R sector is the existence of zero modes ψm0 . The commutator [L0, ψ
m
r ] =

−rψmr implies that the ψm0 do not change the conformal weight of R states, so they simply

reshuffle the Ramond ground states |A〉R (and likewise the descendant states obtained by ψmr<0

action on |A〉R). In fact, the zero modes furnish a representation of the Clifford algebra,

{
ψm0 , ψn0

}
= ηmn ←→

{
Γm , Γn

}
= − 2 ηmn . (2.2.28)

Therefore, we can identify the ψm0 with the 2D/2× 2D/2 gamma matrices Γm and conclude that

both the ground states |A〉R and their descendants ψm1
−r1 . . . ψ

mk
−rk |A〉R form Dirac spinors of the

Lorentz group in D dimensions.

7The origin of the zD/8 factor in the R〈B| state is explained in appendix B.3.1.
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Given that ψm (SA) fall into vector (spinor) representations of SO(1, D − 1), it must be

possible to express all their OPEs in manifestly covariant form in terms of Clebsch Gordan

coefficients ηmn, (Γm)A
B and CAB of the Lorentz group. Appendix A.1 lists our conventions for

Dirac gamma matrices Γm and the charge conjugation matrix C. Let us construct covariant

OPEs step by step:

• The two point function of spin fields is determined by Poincaré covariance and h(SA) = D
16

:

〈SA(z)SB(w) 〉 =
CAB

(z − w)D/8
(2.2.29)

This reflects a leading singularity CAB(z − w)−D/8 in the SA(z)SB(w) OPE.

• The algebras (2.2.28) imply that the expectation value of ψm0 between asymptotic R

ground states yields the corresponding matrix element of the product ΓmC,

R〈A|ψm0 |B〉R =
1√
2

(Γm C)AB =
1√
2

(Γm)A
D CDB . (2.2.30)

The left hand side can be evaluated as a three point function which is determined by

(B.1.8) in terms of the coefficient Cm
A
B in ψm(z)SA(w) ∼ (z − w)−1/2Cm

A
BSB(w) + ...

R〈A|ψm0 |B〉R = lim
z1→∞

lim
z2→0

NS〈0| zD/81 SA(z1) z
1/2
2 ψm(z2)SB(0) |0〉NS

= lim
z1→∞

lim
z2→0

z
D/8
1 z

1/2
2 Cm

AB

z
D/8−1/2
1 z

1/2
12 z

1/2
2

= Cm
A
D CDB (2.2.31)

Comparison with (2.2.30) identifies the desired OPE coeffieient as Cm
A
B = 1√

2
(Γm)A

B.

• Now that the complete three point function 〈ψm(z1)SA(z2)SB(z3)〉 = (ΓmC)AB/
√

2

z
1/2
12 z

1/2
13 z

D/8−1/2
23

is

available, we can examine its z2 → z3 limit. The z
1/2−D/8
23 factor implies that the OPE

SA(z)SB(w) contains the subleading singularity (z − w)D/8−1/2(ΓmC)ABψm/
√

2.

These findings are summarized as follows:

ψm(z)SA(w) ∼ 1√
2 (z − w)1/2

(Γm)A
B SB(w) + . . . (2.2.32)

SA(z)SB(w) ∼ CAB
(z − w)D/8

+
(Γm C)AB ψm(w)√
2 (z − w)D/8−1/2

+ . . . (2.2.33)

The branch cut singularity in the ψm(z)SA(w) OPE ties in with the role of SA transforming NS

sector into R states and therefore flipping the periodicity of ψm. But the successive singularities

(z−w)−D/8 and (z−w)−D/8+1/2 in (2.2.33) differing by half a z−w power only do not fit into

the general SCFT framework. This problem can be solved by decomposing the Dirac spinors
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SA into left- and right handed irreducibles Sα and Sα̇. Since gamma matrices are block off-

diagonal in their chiral decomposition, ΓmA
B =

(
0 γm

αβ̇

γ̄mα̇β 0

)
, each combination of (Sα(z), Sα̇(z̄))

and (Sβ(w), Sβ̇(w̄)) only keeps one of the terms in (2.2.33). In D = 10 dimensions where

CAB =
(

0 Cαβ̇

Cα̇β 0

)
,

Sα(z)Sβ̇(w) ∼ Cα
β̇

(z − w)5/4
+ . . . (2.2.34)

Sα(z)Sβ(w) ∼ (γmC)αβ ψm(w)√
2 (z − w)3/4

+ . . . (2.2.35)

The overall physical state correlators (encompassing all decoupling CFT sectors) must not

involve any fractional power dependence z
±1/2
ij , z

±1/4
ij on worldsheet coordinates. Since the

leading singularities in (2.2.34) and (2.2.35) differ in their z −w power by 1/2, a projection to

one chiral half of the R ground states is necessary to avoid branch cuts. Details will follow in

section 3.1.7 on GSO projection.

2.2.3 Bosonization of worldsheet fermions

It is possible to map the interacting RNS CFT of the ψm, SA fields to a free CFT of chiral

bosons. Lorentz covariance gets obscured under this bosonization process but one can restore

it later on by expressing correlation functions in terms of SO(1, 9) tensors. These covariantizing

methods are explained in the later chapter 6.

Two fermions ψi=1,2(z) subject to ψi(z)ψj(w) ∼ δij/(z−w) give rise to a CFT, equivalent to

that of a free chiral boson H(z) with singular behaviour H(z)H(w) ∼ − ln(z−w). The complex

combinations ψ±(z) := 1√
2

(
ψ1(z)± iψ2(z)

)
have the same local properties as the exponentials

e±iH(z) due to the following singularity structure8:

eipH(z) eiqH(w) ∼ (z − w)pq ei(p+q)H(w) + . . . (2.2.36)

Hence, their tree level correlation functions are guaranteed to match. The equivalence can

easily be extended to all local operators such as e±inH(z) with n ∈ N. Moreover, the boson’s

derivative can be expressed as a (normal ordered) fermion bilinear, i∂H(z) = ψ+(z)ψ−(z).

Let us now apply this construction to the D = 10 component vector ψm of fermions.

Bosonization requires a grouping into pairs which breaks the SO(1, 9) symmetry to a SU(5)

subgroup. Then one can check equivalence to a CFT of five chiral bosons H0 and H i=1,2,3,4

ψm(z)ψn(w) ∼ ηmn

z − w + . . . ←→ H i(z)Hj(w) ∼ − δij ln(z − w) + . . . (2.2.37)

8A careful derivation of this OPE can be found in appendix B.4
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where exponentials of H are identified with the Cartan Weyl basis elements of the ten ψ’s

ψ±0(z) :=
1√
2

(
±ψ0(z) + ψ1(z)

)
≡ e±iH

0(z) (2.2.38)

ψ±i(z) :=
1√
2

(
ψ2i(z) ± iψ2i+1(z)

)
≡ e±iH

i(z) .

In view of a unified presentation of bosonized ψm and SA, it makes sense to introduce five

component lattice vectors of D5 ≡ SO(1, 9) here. In slight abuse of notation, we will identify

the vector index m with unit vectors (0, . . . , 0,±1, 0, . . . , 0) whose nonzero entry sits at the j’th

position (where j = 0, 1, . . . , 4). Then, the fermions in their Cartan Weyl basis can be written

as follows,

ψ±j ≡ e±i·H
j ⇒ ψm ≡ eim·H . (2.2.39)

We should admit that our discussion neglects Jordan-Wigner cocycle factors [120, 121]. These

are additional algebraic objects accompanying the exponentials to ensure that e±iH
j

and e±iH
k 6=j

associated with different bosons anticommute. We drop cocycle factors to simplify the notation,

it suffices to remember that they are implicitly present and that the bosonized representation

of ψm still obey fermi statistics.

2.2.4 Bosonization of spin fields

Spin fields also fit into a bosonized picture. Since their defining role is the introduction of a

branch cut for ψ±j ≡ e±iH
j
, they must be built as a combination of exponentials e±

i
2
Hj

to

enforce the leading power of (z − w)pq = (z − w)±1/2 in their OPE (2.2.36) with ψ±j.

Spinor components of Dn = SO(1, 2n−1) can be labelled by their eigenvalues ±1
2

under the

n simultaneously diagonalized Lorentz generators Γpq/2 which are most conveniently chosen as

Γ2i,2i+1 with i = 0, . . . , 4 to preserve the SU(5) subgroup of SO(1, 9). This suggests to identify

spinor indices with lattice vectors
(
±1

2
,±1

2
,±1

2
,±1

2
,±1

2

)
from the spinor conjugacy classes of

D5. They have n components with an individual ± sign each, and the chiral irreducibles can

be disentangled by counting the number of minus signs:

S
A=
“
±1

2
,...,±1

2

” ≡

 left handed spinor Sα : A has even number of ’−’ signs

right handed spinor Sα̇ : A has odd number of ’−’ signs
(2.2.40)

Given this dictionary between spinor indices and lattice vectors, we can make the bosonization

of spin fields more precise: The SA are be represented as an exponential of a D5 lattice vector

A from a spinor conjugacy class multiplied with the bosons Hj:

SA(z) = eiA·H(z) , A ≡
(
±1

2
,±1

2
,±1

2
,±1

2
,±1

2

)
(2.2.41)
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This is a close parallel to the representation (2.2.39) of the ψm (where again, cocycle factors

are left implicit).

The Cartan Weyl basis has the remarkable advantage that entries of gamma- and charge

conjugation matrices can be written as delta functions for the Dn lattice vectors associated

with the vector- and the spinor indices. Up to a complex phase (which could in principle be

determined by keeping track of all the cocycles), one has

(Γm)A
B ∼

√
2 δ(m+ A−B)

CAB ∼ δ(A+B)

 ⇒ (Γm C)AB ∼
√

2 δ(m+ A+B) (2.2.42)

which allows a rederivation of the covariant OPEs (2.2.32) and (2.2.33) in bosonized language:

ψm(z)SA(w) ≡ eim·H(z) eiA·H(w) ∼
∑
B

δ(m+ A−B)

(z − w)1/2
ei(m+A)·H(w) + . . .

=
∑
B

(Γm)A
B

√
2 (z − w)1/2

eiB·H(w) + . . . ≡ 1√
2 (z − w)1/2

(Γm)A
B SB(w) + . . . (2.2.43)

The leading singularity (z − w)−1/2 only occurs if the sign of the m entry is opposite to the

corresponding A entry, i.e. if the vector sum m+A does not have a ±3
2

entry and corresponds

to another lattice vector B of the spinor conjugacy class. This justifies the occurrence of the

δ(m+A−B) function. The SA(z)SB(w) OPE (2.2.34) can be derived by means of a similarly

δ function trick.

The computation in (2.2.43) is an example of how Lorentz covariance can be a posteriori

restored in results in the bosonized CFT. In the later chapter 6, this prodecure will be applied

to correlation functions involving ψm and SA. The Hj system is a CFT of free bosons, and its

tree level correlators are shown in appendix B.4 to obey the simple formula〈
n∏
k=1

eiqk·H(zk)

〉
=

n∏
k<`

zqk·q`k` δ

(
n∑
k=1

qk

)
(2.2.44)

in agreement with the singularities (2.2.36). The simplicity of these correlation functions ex-

hibits the power of free field methods, this is the main motivation for the bosonization technique.

2.3 Ghost fields

We have argued in subsection 2.1.3 that conformal transformations are a residual gauge sym-

metry of the Polyakov action (2.1.2). More precisely, gauge freedom should rather be thought

of as a redundancy in describing a system which is urgently needed to decouple negative norm
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states. Hence, it should definitely remain at quantum level. A main obstacle in preserving

conformal symmetry in the quantum theory is the Weyl anomaly

〈Taa 〉 = − ctot

12
R . (2.3.45)

in terms of the worldsheet Ricci scalar R and the total central charge ctot. For nonzero ctot,

the energy momentum trace Ta
a – which should vanish in conformally invariant theories – can

receive a nonzero shift under Weyl transformations hab 7→ e2φhab which modify the worldsheet

Ricci scalar as R 7→ e−2φ(R− 2∇a∇aφ).

In this section, we will carry out a Lorentz covariant gauge fixing along the lines of the

standard Fadeev Popov procedure [122]. This introduces ghost systems which furnish an extra

SCFT with negative central charge cgh = −15 such that the total central charge ctot = c+cgh =

3D
2
− 15 vanishes in D = 10 spacetime dimensions. This is one way of determining the critical

dimension D = 10 in which superstrings can propagate consistently. The BRST quantization

of string theory was first accomplished in [123], a broader overview and a more complete list of

references can be found in [124].

The superghosts associated with supersymmetry fixing on the worldsheet give rise to some

subtleties in selecting the appropriate vacuum of the theory. Again, bosonization will play a

key role in simplifying these problems [125,126,119].

2.3.1 The b, c ghosts

Let us introduce the first ghost system (b, c) on the level of the bosonic string. Before gauge

fixing the worldsheet metric hab, its partition function is given by

Zbos =
1

vol

∫
DX Dh e−S[X,h] , (2.3.46)

in terms of the Polyakov action S[X, h]. The inverse “volume” factor 1
vol

refers to the fact

that only physically distinct hab(z) configurations not related by diffeomorphisms or Weyl

transformations need to be considered in the Dh integral. According to the Fadeev Popov

procedure, the normalized integration 1
vol

∫
Dh can be removed by setting hab to some gauge

fixed value ĥab in the Polyakov action (e.g. ĥab = ηab) and inserting a ĥ dependent (but gauge

invariant) Fadeev Popov determinant ∆FP[ĥ]:

Zbos =

∫
DX ∆FP[ĥ] e−S[X,ĥ] (2.3.47)

The next step is to compute the Fadeev Popov determinant. Its inverse can be expressed as

an integral over the Lie algebra of the diffeomorphisms and Weyl transformations. Given the
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variations δηĥab = ∇aηb +∇bηa and δφĥab = 2φĥab of the gauge fixed metric, we express ∆−1
FP[ĥ]

in terms of a δ functional9

1

∆FP[ĥ]
=

∫
DφDη δ[2φ ĥab + ∇aηb + ∇bηa] . (2.3.48)

Starting from (2.3.48), three more steps are necessary to rewrite ∆FP in terms of a ghost action:

• take the integral representation of the δ functional (with integration variable tab = t(ab))

1

∆FP[ĥ]
=

∫
DφDηDt exp

(
4πi

∫
d2σ

√
|ĥ| tab

[
φ ĥab + ∇aηb

])
(2.3.49)

• integrate out the Weyl parameter φ which enforces t to be traceless tabĥab = 0

1

∆FP[ĥ]
=

∫
DηDt exp

(
4πi

∫
d2σ

√
|ĥ|
[
tab − 1

2
tcc ĥ

ab

]
∇aηb

)
(2.3.50)

• trade the remaining two bosonic integration variables tab, ηa for fermions bab, ca in order

to obtain ∆FP rather than its inverse; also rescale (bab, ca) to simplify prefactors

∆FP[ĥ] =

∫
DcDb exp

(
1

4π

∫
d2σ

√
|ĥ| bab∇acb

)
≡

∫
DcDb e−Sgh[b,c] (2.3.51)

Plugging this back into the partition function,

Zbos =

∫
DX DcDb e−S[X,ĥ]−Sgh[b,c] (2.3.52)

Sgh[b, c] = − 1

4π

∫
d2σ

√
|ĥ| bab∇acb (2.3.53)

we find that the (b, c) ghosts enter the overall action on the same footing as the dynamical

fields Xm. Their role is to cancel the unphysical gauge degrees of freedom without giving up

manifest Lorentz invariance like in the lightcone quantization procedure.

Many simplifications occur in conformal gauge ĥab = e2φηab: The covariant derivatives in

the ghost action (2.3.53) reduce to ordinary ones, the conformal factor e2φ drops out, and the

action factorizes into two free theories of fields (b, c) := (bzz, c
z) and (b̄, c̄) := (bz̄z̄, c

z̄):

Sgh[b, c] =
1

4π

∫
d2z

(
b ∂̄c + b̄ ∂c̄

)
(2.3.54)

This makes use of the tracelessness condition bzz̄ ∼ ba
a = 0. Equations of motion ∂̄b = ∂̄c = 0

and ∂b̄ = ∂c̄ = 0 split the ghost components into holomorphic and antiholomorphic pieces

9This can be view as the infinite dimensional generalization of integrating over an n dimensional δ function∫
dnx δn

(
f(x)

)
= (det(∂ifj))

−1, composed with some map f : Rn → Rn.
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b(z), c(z) and b̄(z̄), c̄(z̄). Their two point functions and the resulting OPEs can be derived in

the spirit of subsection 2.1.5:

b(z) c(w) ∼ 1

z − w + . . . , b(z) b(w) = c(z) c(w) = O(z − w) . (2.3.55)

The energy momentum tensor follows from hab variation of the action (2.3.53) (where trace-

lessness of bab must be implemented by means of Lagrange multipliers)

Tb,c(z) = 2 : ∂c(z) b(z) : + : c(z) ∂b(z) : (2.3.56)

which yields the following CFT data for the (b, c) system:

h(b) = 2 , h(c) = −1 , cb,c = − 26 (2.3.57)

This is an elegant way to derive the critical dimension D = 26 of the bosonic string: The total

central charge receives the contribution D from the matter fields Xm and −26 from the ghosts.

2.3.2 The β, γ superghosts

The anticommuting b, c ghosts discussed in the last subsection remove the bosonic gauge re-

dundancy of the worldsheet action. The supersymmetric completion (2.1.13) of the Polyakov

action (see subsection 2.1.4) additionally enjoys local worldsheet supersymmety and super Weyl

invariance which require fixing of fermionic gauge freedoms. Fixing these unphysical degrees of

freedom therefore introduces a ghost system (β, γ) subject to Bose statistics.

We skip the detailed derivation of the (β, γ) action from a Fadeev Popov procedure. It

follows the key ideas from the previous section to perform a path integral over infinitesimal

variations of the worldsheet gravitino and to replace both the gauge parameter and the gauge

field by a ghost variable of opposite statistics. In superconformal gauge, the fermionic Fadeev

Popov determinant gives rise to the superghost action

Ssgh[β, γ] =
1

4π

∫
d2z

(
β ∂̄γ + β̄ ∂γ̄

)
. (2.3.58)

Equations of motion ∂̄β = ∂̄γ = 0 and ∂β̄ = ∂γ̄ = 0 again provide chiral fields β(z), γ(z) and

antichiral ones β̄(z̄), γ̄(z̄). Let us give list of CFT data analogous to the end of the previous

section:

γ(z) β(w) ∼ 1

z − w + . . . , β(z) β(w) = γ(z) γ(w) = O(1) (2.3.59)

Tβ,γ(z) = − 3

2
: ∂γ(z) β(z) : − 1

2
: γ(z) ∂β(z) : (2.3.60)
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h(β) =
3

2
, h(γ) = − 1

2
, cβ,γ = + 11 (2.3.61)

The total ghost action allows to construct a supercurrent which intertwines the (b, c) system

with its (β, γ) cousin,

Ggh(z) = :
1

2
γ(z) b(z) − c(z) ∂β(z) − 3

2
∂c(z) β(z) : . (2.3.62)

Members of two ghost systems can be combined into superconformal primary superfields B ≡
(β, b) and C ≡ (c, γ) of conformal weights h(B) = 3

2
and h(C) = −1 respectively.

The mode expansions of the h = 3/2 and h = −1/2 superghosts must ensure that the ghost

supercurrent obeys the same boundary conditions as the matter supercurrent:

β(z) =
∑
r

βr z
−r−3/2 , γ(z) =

∑
r

γr z
−r−1/2 , r ∈

 Z + 1
2

: NS sector

Z : R sector
(2.3.63)

This will be important for the vacuum structure of the ghost sector, see subsection 2.3.4.

2.3.3 Ghost background charges

The ghost actions (2.3.54) and (2.3.58) possess classical U(1) symmetries generated by the

ghost currents

jb,c(z) = − b(z) c(z) , jβ,γ(z) = − β(z) γ(z) (2.3.64)

which associate ghost numbers −1 to (b, β) and +1 to (c, γ). However, these currents do not

transform as conformal primary fields but instead suffer from anomalous cubic singularities in

the OPEs with the corresponding energy momentum tensors:

Tb,c(z) jb,c(w) ∼ − 3

(z − w)3
+

jb,c(w)

(z − w)2
+

∂jb,c(w)

z − w + . . . (2.3.65)

Tβ,γ(z) jβ,γ(w) ∼ + 2

(z − w)3
+

jβ,γ(w)

(z − w)2
+

∂jβ,γ(w)

z − w + . . . (2.3.66)

The (z − w)−3 coefficients are interpreted as background charges Qb,c = −3 and Qβ,γ = +2

of the ghost systems which appear directly in the anomalous conservation law ∂̄j = 1
4
Q
√
hR

for the currents. The anomaly is related to the existence of ghost zero modes, whose number

Nc, Nb, Nγ, Nβ is determined by integrating the anomalous conservation law over the worldsheet:

Nc − Nb = +Qb,c (g − 1) = 3 − 3g (2.3.67)

Nγ − Nβ = −Qβ,γ (g − 1) = 2 − 2g (2.3.68)
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The integral over the scalar worldsheet curvature R gives rise to the Euler number χ = 2−2g of

the Riemann surface which we express in terms of the genus g for convenience. More formally,

(2.3.67) and (2.3.68) can be viewed as an application of the Riemann-Roch theorem.

Next, the anomalous OPEs (2.3.65) and (2.3.66) of the energy momentum tensors with their

ghost currents j(z) imply that the zero modes j0 have the unusual hermiticity property10

j†0 = − j0 − Q (2.3.69)

whereas j†n = j−n ∀ n 6= 0. Let |q〉 = Oq(0)|0〉 denote a ghost number q state, i.e. |q〉 is

generated by an operator Oq such that
∮

dz
2πi
j(z)Oq(w) = qOq(w) or j0|q〉 = |q〉. Then its

hermitian conjugate must have ghost number −q −Q by virtue of (2.3.69), i.e.

|q〉† = 〈−q −Q| , 〈−q −Q|q〉 = 1 . (2.3.70)

We will need this to determine the ghost contribution to the NS ground state.

2.3.4 The (b, c) ghost ground state

We have seen in subsection 2.2.1 that the NS ground state |0〉NS is more fundamental than

lowest energy states |A〉R of the R sector in the sense that the latter are created from |0〉NS by

action of h = D
16

spin fields SA. Similar phenomena occur in the independent ghost CFTs: The

following subsections determine the ghost sector ground states |1〉b,c and |q〉β,γ such that

|0〉NS ⊗ |1〉b,c ⊗ |q = −1〉β,γ , |A〉R ⊗ |1〉b,c ⊗
∣∣q = −1

2

〉
β,γ

(2.3.71)

are lowest energy states with respect to the superghost algebra. In other words, they are

annihilated by any “negative frequency” Laurent mode br, cr, βr, γr with r > 0 which would

lower the conformal dimension by r units. The rest of the physical superstring spectrum can

then be obtained by acting with positive frequency ∂Xm- and ψm modes on (2.3.71), details

will be explained in chapter 3.

As a consequence of the (c, γ) ghosts’ negative conformal dimensions, both ground states in

(2.3.71) require some modification of the vacuum state

|0〉 ≡ |0〉NS ⊗ |0〉b,c ⊗ |q = 0〉β,γ ,

 Ln |0〉 = 0 ∀ n ≥ − 1

Gr |0〉 = 0 ∀ r ≥ −1
2

(2.3.72)

using operators from the ghost sectors.

10The construction (B.3.35) of asymptotic out-states relies on φh being a primary field, i.e. the non-primary

nature of the ghost currents is responsible for the deviation from j†n = j−n at n = 0.
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Let us first of all discuss the vacuum structure of the (b, c) system. From the mode expansion

c(z) =
∑

n cnz
−n+1 of the h = −1 field, we can see that regularity of c(0)|0〉b,c requires cn|0〉b,c =

0 for n ≥ 2 only, see subsection B.2.4. There is still one negative frequency mode c1 which

lowers the energy [L0, c1] = −c1 but does not annihilate |0〉b,c, i.e. the latter is not a highest

weight state of the ghost algebra.

Since the mode in question squares to zero, {c1, c1} = 0, we can easily construct a state

|1〉b,c := c(0) |0〉b,c = c1 |0〉b,c (2.3.73)

which satisfies the highest weight condition cn|1〉b,c = 0 ∀ n ≥ 1 and carries conformal dimension

h = −1 with respect to the overall energy momentum tensor T + Tb,c. The same is true for its

degenerate partner ∂c(0)c(0)|0〉b,c = c0c1|0〉b,c but this one can be ruled out in view of BRST

quantization, see subsection 3.1.2.

As a consequence of (2.3.70) at background charge Qb,c = −3, the hermitian conjugate of

the ghost number one state |1〉b,c has ghost number two,

|1〉†b,c =
(
c1 |0〉b,c

)†
= b,c〈0| c−1 c0 ←→ b,c〈0| c−1 c0 c1 |0〉b,c = 1 . (2.3.74)

This property reflects the existence of three c zero modes on genus g = 0 worldsheets which are

in one-to-one correspondence with the three globally defined diffeomorphisms on the Riemann

sphere.

2.3.5 The NS sector superghost ground state

The problem of L0 lowering modes also exists on the (β, γ) side: The h = −1/2 mode expansion

γ(z) =
∑

r∈Z+
1
2
γrz
−r+1/2 of the NS sector implies that |0〉β,γ is annihilated by γr≥1 only, i.e.

γ1/2|0〉β,γ 6= 0. This is quite fatal because γ1/2 as a bosonic mode does not square to zero like

c1, so it seems as if one could generate states with arbitrarily negative L0 eigenvalue in view of

[L0, (γ1/2)n] = −n
2
(γ1/2)n.

The solution to this problem lies in reexpressing β(z) and γ(z) as a product of two fermions

each and then bosonizing one fermion system:

β(z) = e−φ(z) ∂ξ(z) , γ(z) = eφ(z) η(z) (2.3.75)

The fields φ, η and ξ are defined by having a short distance behaviour which reproduces that

of β and γ, see (2.3.59):

φ(z)φ(w) ∼ − ln(z − w) + . . . , epφ(z) eqφ(w) ∼ (z − w)−pq e(p+q)φ(w) + . . . (2.3.76)
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η(z) ξ(w) ∼ 1

z − w + . . . , η(z) η(w) ∼ ξ(z) ξ(w) ∼ O(z − w) + . . . (2.3.77)

The decoupled CFTs of the chiral boson φ and the fermions (η, ξ) are governed by energy

momentum tensors11

Tη,ξ = − η ∂ξ , Tφ = − 1

2
∂φ ∂φ − ∂2φ (2.3.78)

which give rise to conformal weights

h(eqφ) = − q
2

2
− q , h(η) = 1 , h(ξ) = 0 . (2.3.79)

Notice that the zero mode of the ξ fermion does not enter the ghost algebra, this will be quite

important for the discussion of ghost picture changing in the later subsection 3.1.6.

Given this partial bosonization of β(z) and γ(z), we claim that

|q = −1〉β,γ := e−φ(0) |0〉β,γ (2.3.80)

defines a sensible NS superghost ground state. With the OPE (2.3.76), it is easy to check that

|q = −1〉β,γ satisfies the essential property γ1/2|q = −1〉β,γ = 0 necessary for a lower bound in

the L0 spectrum:

γ1/2 |q = −1〉β,γ =

∮
dz

2πi
z−1 γ(z) e−φ(0) |0〉β,γ =

∮
dz

2πi
z−1 η(z) e+φ(z) e−φ(0) |0〉β,γ

=

∮
dz

2πi
z−1 η(z)

(
z + . . .

)
|0〉β,γ =

(
η0 + . . .

)
|0〉β,γ = 0 (2.3.81)

We have used that ηn≥0|0〉β,γ = 0 and the ellipsis in (2.3.83) due to subleading OPE sigularities

contains negative frequency modes ηn≥1 only.

2.3.6 The R sector superghost ground state

The (β, γ) ghosts have a different periodicity in the R sector such that their z dependence can

be expanded in half odd integer powers zn−1/2. Hence, the ghost sector of the R ground states

must be created by an operator which opens a branch cut for the (β, γ) system. Moreover, this

operator must make sure that the positive frequency mode γ1 annihilates the ground state.

Both requirements are met by the h = 3
8

state

∣∣q = −1
2

〉
β,γ

:= e−φ(0)/2 |0〉β,γ . (2.3.82)

11They can be computed from the β, γ energy momentum (2.3.60) by means of the point splitting method [127].
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The OPEs e±φ(z)e−φ(0)/2 ∼ z±1/2e(±1− 1
2

)φ(0) give rise to the desired fractional z±1/2 power, and

the annihilation by γ1 follows from

γ1

∣∣q = −1
2

〉
β,γ

=

∮
dz

2πi
z−1/2 γ(z) e−φ(0)/2 |0〉β,γ =

∮
dz

2πi
z−1/2 η(z) e+φ(z) e−φ(0)/2 |0〉β,γ

=

∮
dz

2πi
z−1/2 η(z)

(
z1/2 eφ(0)/2 + . . .

)
|0〉β,γ = 0 . (2.3.83)

Analogous behaviour can be found for β(z) with βn≥0 modes annihilating
∣∣q = −1

2

〉
β,γ

. One

can interpret e−φ/2 as a superghost spin field.

The presence of the e−φ/2 operator in the R ground state is essential for locality of physical

correlation functions. Mutual OPEs (2.2.34) and (2.2.35) of spin fields involve fractional z−w
powers, independent on their relative chirality. In combination with the superghost spin field

e−φ/2, the left handed R ground states |α〉R ⊗
∣∣q = −1

2

〉
β,γ

give rise to local OPEs among

themselves

Sα(z) e−φ(z)/2 Sβ(w) e−φ(w)/2 ∼ (γmC)αβ
z − w ψm(w) e−φ(w) + . . . (2.3.84)

This follows from the overall conformal weight 10
16

+ 3
8

= 1 of the operator Sαe−φ/2. Right handed

spinors become local with respect to Sαe−φ/2 if their superghost charge gets shifted to Sβ̇e+φ/2

or Sβ̇e−3φ/2. The significance of these states will become clear in chapter 3.

2.4 Open strings versus closed strings

So far, the presentation of the superstring’s worldsheet theory was adapted to the setup of

closed strings which sweep out a periodic worldsheet in σ1 ≡ σ1 + 2π. But this work focuses

on scattering amplitudes involving open string states, that is why this section is devoted to

the characteristic features of open strings and their two endpoints. In our conventions, the

spacelike coordinate σ1 in the parametrization of an open string worldsheet lives in the interval

σ1 ∈ (0, π), see figure 2.1.

We study the CFT description of these endpoints and briefly introduce the notion of D

branes, a new class of dynamical objects which emerge from the necessity of boundary condi-

tions. Finally, Chan Paton degrees of freedom are introduced which carry the color degrees of

freedom of gauge bosons and other open string states.

2.4.1 Boundary conditions and D branes

In deriving the equations of motion ∂∂̄X = ∂ψ̄ = ∂̄ψ = 0 from the gauge fixed worldsheet

action (2.1.14) we have discarded boundary terms when integrating worldsheet derivative by
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parts. This is well justified at the spacelike boundary σ2 = ±∞, but the timelike worldsheet

boundaries furnished by the worldlines of the open string endpoints at σ1 = 0 and σ1 = π

require some extra care. They give rise to potential boundary terms

δS[X,ψ, ψ̄] =
1

8π

∫
d2z

{
− 4

α′
δXm ∂∂̄Xm + 2 δψm ∂̄ψm + 2 δψ̄m ∂ψ̄m

}
+

i

8π

∫
dσ2

{
2

α′
iδXm i∂1Xm + δψm ψm − δψ̄m ψ̄m

} ∣∣∣∣σ1=π

σ1=0

(2.4.85)

which only vanish if appropriate boundary conditions at σ1 = 0, π are imposed. For each

spacetime direction m = 0, 1, . . . , 9 of Xm, there are two consistent choices: δXm = 0 : Dirichlet conditions

∂1X
m = 0 : Neumann conditions

(2.4.86)

In the Dirichlet case, the endpoints of the string are fixed to constants Xm(σ1 = 0) = am and

Xm(σ1 = π) = bm. Neumann boundary conditions ∂1X
m(σ1 = 0, π) = 0 state that there is no

momentum flow through the freely moving endpoints points.

The fermions ψm and ψ̄m can always be redefined by a relative sign such that ψm(σ1 = 0) =

ψ̄m(σ1 = 0) at the first endpoint. Only the sign between ψm(σ1 = π) and ψ̄m(σ1 = π) at the

other endpoint σ1 = π becomes meaningful: ψm(σ1 = π) = + ψ̄m(σ1 = π) : Ramond conditions

ψm(σ1 = π) = − ψ̄m(σ1 = π) : Neveu Schwarz conditions
(2.4.87)

The effect of these boundary conditions can be neatly summarized by the so-called doubling

trick: We define a holomorphic field ψm on the range σ1 ∈ (0, 2π) and eliminate the antiholo-

morphic part via ψ̄m(σ1) = ψm(2π − σ1). According to (2.4.87), the piecewise defined field

ψm(σ1 ∈ (0, 2π)) is periodic under σ1 7→ σ1 + 2π for Ramond conditions and antiperiodic for

Neveu Schwarz conditions.

At first glance, one might think that only Neumann boundary conditions for the Xm are

compatible with Poincaré invariance because Xm(σ1 = 0) = am would single out spacetime

points am. The only way to accomodate Dirichlet boundary conditions with Poincaré invariance

is to think of the spacetime regions where open string endpoints are confined as dynamical

objects, i.e. as higher dimensional generalizations of strings. If Dirichlet conditions Xm(σ1 =

0, π) = const are imposed in the spacelike directions m = 1, 2, . . . , D−p−1, then the endpoints

are confined to a so-called Dp branes. The the D refers to Dirichlet and the specification p

reminds of the brane’s p + 1 dimensional worldvolume. The following figure 2.2 gives the
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X9(0) = X9(π) = a X9(0) = a

X9(σ1 = π) = b

X9

b

a

Figure 2.2: Open strings stretching between D8 branes with one transverse direction X9.

example of a D8 brane with one transverse direction X9 in ten dimensional spacetime. A D9

brane would be spacetime filling.

D branes are a fruitful area of reasearch for themselves. For good reasons, a full textbook

is devoted to this subject [128], and a pedagogical lightning introduction can be found in [129].

Since theories of gravity do not admit rigid objects, D branes necessarily interact with the

closed string sector and thereby become dynamical in shape and position. They were originally

discovered in [59] as solitonic solutions to supergravity.

We will argue in the later subsection 2.4.4 that D branes give rise to gauge symmetries in

spacetime. Section 4.1 shows a way to realize the Standard model gauge group, for instance.

2.4.2 Boundary CFT

The worldsheet of open strings has the topology of an infinite strip with spatial coordinate

σ1 ∈ (0, π). In this parametrization, the endpoints of the open string sit at σ1 = 0 and σ1 = π.

In contrast to the closed string situation, the complex coordinate z = σ1 − iσ2 parametrizes a

strip with 0 ≤ Re {z} ≤ π rather than a cylinder with a periodic direction. Under the conformal

map w = eiz, the strip is mapped to the upper half plane Im {w} ≥ 0, and the worldlines of

the open string endpoints fall onto the real axis Im {w} = 0.

Open strings can be described in the framework of boundary SCFT: In presence of a bound-

ary at Im {0} = 0, the conformal symmetry group is reduced to those holomorphic maps f(w)

which preserve the real axis, f(R) ⊂ R. We will therefore need to introduce new worldsheet

fields Xop, T op on the open string worldsheet, adjusted to the smaller symmetry algebra.

Since T (z) and G(z) generate superconformal transformations which are supposed to respect
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Im {z}

Re {z}

z = σ1 − iσ2

w = eiz

Re {w}

Im {w} w = eσ
2+iσ1

×
1

Figure 2.3: Mapping the open string worldsheet from the infinite strip to the upper half plane.

In particular, the σ1 = 0 (σ1 = π) boundary drawn in red (blue) is mapped to the positive

(negative) real axis.

the boundary, they have to satisfy

T (z) = T̄ (z̄) , G(z) = Ḡ(z̄) ∀ z, z̄ ∈ R . (2.4.88)

In the (σ1, σ2) coordinates, this first condition translates into T12(σ1 = 0, π) = 0 and therefore

forbids energy momentum flow across the boundary.

The properties (2.4.88) are compatible with both Dirichlet- and Neumann boundary condi-

tions for the worldsheet fields Xm, ψm and ψ̄m. On the complex plane12, they read

∂Xm(z) = − ∂̄Xm(z̄) : Dirichlet conditions

∂Xm(z) = + ∂̄Xm(z̄) : Neumann conditions
∀ z, z̄ ∈ R . (2.4.89)

Although the conformal fields ∂Xm(z), ψm(z), T (z) and G(z) are restricted to Im {z} ≥ 0, we

can still define open string extensions φop
h on the full complex plane C:

T op(z) :=

 T (z) : Im {z} ≥ 0

T̄ (z̄) : Im {z} < 0
, ∂Xop

m (z) :=

 ∂Xm(z) : Im {z} ≥ 0

± ∂̄Xm(z̄) : Im {z} < 0

(2.4.90)

The ± sign in the definition of ∂Xop
m at Im {z} < 0 is + for Neumann- and − for Dirichlet

boundary conditions. The fermionic counterparts ψop
m and Gop are defined analogously.

The closed string worldsheet SCFT is governed by two energy momentum components T

and T̄ in the whole plane. In the open string sector, just one copy T op remains in the whole

12Note that the relative sign between ∂ and ∂̄ on the plane is opposite than on the cylinder.
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plane. It contains the same information as both T and T̄ in the upper half plane. The analogous

construction for the Xm, ψm fields ensures that open string theories have fewer states than those

of closed strings – on the cylinder, the operators ∂X and ∂̄X give rise to different states; on

the strip they give rise to the same state. Generally speaking, states in boundary conformal

field theory are in one-to-one correspondence with local operators defined on the boundary. See

appendix B.3 for more information on the state operator map in generic CFTs.

The φop
h are analytic because of the gluing conditions (2.4.88) and (2.4.89) on the real axis.

They can therefore be expanded in Laurent modes such as T op(z) =
∑

n∈Z L
op
n z
−n−2 for the

energy momentum tensor. The integral representation of the modes Lop
n involve a contour

integral with two contributions:

Lop
n =

∮
C

dz

2πi
zn+1 T op(z) =

∫
C+

dz

2πi
zn+1 T (z) −

∫
C−

dz̄

2πi
z̄n+1 T̄ (z̄) (2.4.91)

The circle C around the origin splits into semicircles z ∈ C+ and z̄ ∈ C− in the upper half plane

(where T and T̄ are defined) with ends on the real line R, see figure 2.4:

Im {z}

Re {z}

T op(z)C

=

Im {z}

Re {z}

T (z)C+

−

Im {z̄}

Re {z̄}

T̄ (z̄)C−

Figure 2.4: The contour integral over fields T op(z) of the boundary CFT involves two integrals

of T (z) and T̄ (z̄) over semicircles in the upper half plane.

The same contours contribute to any other charge built from conformal field φop
h . Since this

work focuses on the open string sector, we will drop the op superscripts from now on.

In the formalism of boundary CFT, D branes can be represented as additional Hilbert

space sectors which can be added consistently to a closed string CFT rather than in the target

geometric picture [130]. Moreover, the CFT approach leads to D branes without spacetime

localization [131].

2.4.3 The free boson at the boundary

Open string scattering amplitudes require correlation functions of the free scalar fields Xm

with Neumann boundary conditions on the real axis. As a starting point, let us compute the
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boundary propagator, starting with the ansatz

〈Xm(z, z̄)Xn(w, w̄) 〉 = ηmnG(z, z̄;w, w̄) . (2.4.92)

The Dyson-Schwinger equation together with the Neumann boundary conditions imply that

the worldsheet function G(z, z̄;w, w̄) has to satisfy

∂z∂̄zG(z, z̄;w, w̄) = − 2πα′ δ2(z−w) , (∂z − ∂̄z)G(z, z̄;w, w̄)
∣∣∣
z,z̄,w,w̄∈R

= 0 . (2.4.93)

This kind of boundary value problem already arises in electrodynamics. The most convenient

way so solve (2.4.93) makes use of an “image charge” in the lower half plane:

G(z, z̄;w, w̄) = −α′ ln |z − w| − α′ ln |z − w̄| (2.4.94)

If one argument of the two point function (2.4.92) is real (as it will be the case when open

string states are inserted on the worldsheet boundary), the two terms in (2.4.94) coincide:

〈 iXm(z ∈ R) iXn(w ∈ R) 〉 = 2α′ ηmn ln |z − w| (2.4.95)

The boundary propagator has an extra factor of two compared to the bulk correlator (2.1.17)

at real arguments, this is due to the image charge in (2.4.94). If further derivatives with

respect to the real boundary coordinate are taken, we find 〈i∂Xm(z ∈ R)i∂Xn(w ∈ R)〉 =

2α′ηmn(z − w)−2. Hence, the canonically normalized superconformal primary on the open

string worldsheet is (ψm,
√

2α′i∂Xm). The conformal weights h = 1
2

and h = 1 are computed

with respect to the following energy momentum tensor and supercurrent:

T (z) =
1

4α′
: i∂Xm i∂Xm(z) : (2.4.96)

G(z) =
1

2
√

2α′
: i∂Xm ψm(z) : (2.4.97)

They are obtained from their closed string cousins (2.1.19) and (2.1.20) via α′ 7→ 4α′.

2.4.4 Chan Paton charges

Whenever a QFT has distinguished points, it is natural to have additional degrees of freedom

residing at these special points. In the boundary SCFT on open string worldsheets, it is consis-

tent with both spacetime Poincaré invariance and superconformal symmetry on the worldsheet

to add so-called Chan Paton charges at the endpoints [132]. They do not enter the energy

momentum tensor and therefore have trivial worldsheet dynamics.

Each open string state |Φ;αiαj〉 can have two labels αi, αj = 1, 2, . . . , N in addition to

any other Fock space quantum numbers collectively denoted as Φ. Such a state |Φ;αiαj〉
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αi αj

Figure 2.5: Chan Paton charges αi, αj associated with the endpoints of an open string.

decomposes into a complete set of N ×N matrices (T a)αi
αj via |Φ; a〉 = (T a)αi

αj |Φ;αiαj〉. The

reality condition for open string states13 implies that the T a are hermitian – in other words,

they are generators of the gauge group U(N). Since the endpoints transform in inequivalent

representations (fundamental and antifundamental) of the gauge group, the open strings must

be oriented14. The state |Φ; a〉 transforms in the adjoint representation of the U(N) symmetry of

the Chan Paton degrees of freedom whereas the open string endpoints fall into the fundamental

and antifundamental representation, respectively. One can think of this U(N) as a gauge

symmetry in spacetime.

An unbroken U(N) symmetry appears whenever N D branes coincide in spacetime. Each

endpoint of open strings on this brane stack can be associated with one of N different branes,

so there are N2 possibilities in total. When the branes move apart, the symmetry breaks down

to U(1)N , and vibration modes of open string stretching between different branes acquire a

mass proportional to the separation of the branes. Therefore, D branes naturally provide a

geometric realization of a Higgs mechanism.

13This reality condition follows from the fact that open string states are created by conformal fields living on

the real axis. They are inserted at the origin, the point of infinite past on the worldsheet boundary.
14In type I superstring theories, the worldsheet parity is modded out, i.e. its strings are unoriented. In this

case, the Chan Paton matrices are generators of either SO(N) or USp(N).



Chapter 3

The open superstring spectrum in

D = 10 dimensions

In this chapter, we explain how to build the full superstring spectrum on top of the NS- and

R ground states which were systematically constructed in the previous chapter. First of all,

physical state conditions are formulated and analyzed from the SCFT point of view in section

3.1. Then, we will apply this to mass levels n = 0 and n = 1 as well as to the bosonic and

fermionic highest spin states of higher mass levels n > 1.

All the way through this work, a major task is the organization of the physical states

into representations of the Poincaré group, i.e. to identify the scalars, vectors, p forms and

higher rank tensors. This chapter focuses on the ten dimensional case, whereas the later

chapter 4 discusses dimensional reduction to the Poincaré group in four spacetime dimensions.

The mass square m2 = −k2 is the first Poincaré Casimir for which we establish a one-to-one

correspondence to conformal weights very soon. The spin quantum numbers which further

specify the occurring representations are governed by the stabilizer subgroup which leaves the

spacetime momentum invariant, namely SO(D − 2) for massless states (with k2 = 0) and

SO(D − 1) for massive states in a D dimensional spacetime.

An essential property of superstring theories is their spacetime supersymmetric spectrum.

That is why we will introduce the spacetime SUSY charge in a CFT framework and explicitly

compute its action on massless physical states.

The closed superstring spectrum can be obtained as a double copy of the open string sector.

In other words, the ingredients introduced in this chapter enable to construct closed string

states as a straightforward tensor product. Since we are interested in scattering amplitudes of

open string states only, their closed string relatives won’t be addressed explicitly.

55
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3.1 Physical states

To obtain a mathematically and physically sensible open string spectrum, we need to impose two

selection rules. The former is based on a worldsheet BRST operator and guarantees various

SCFT mechanisms to conspire consistently. The latter is referred to as “GSO projection”

and must be introduced for two reasons: Firstly, it renders RNS correlation functions local

(i.e. it completes fractional zij powers to integers), and secondly, the projection guarantees a

supersymmetric mass spectrum free of tachyons.

3.1.1 Vertex operators

As explained in appendix B.3, Hilbert space states in SCFTs are in one-to-one correspondence

to conformal fields. Those fields which create a physical state from its value at infinite past are

called vertex operators V (z):

|phys〉 = lim
z→0

V (z) |0〉 (3.1.1)

The worldsheet theory of open strings is a boundary SCFT, so the vertex operators for open

string states live on the boundary. We will always work in coordinates where it corresponds

to the real axis z ∈ R. According to subsection 2.4.4, open string states carry Chan Paton

degrees of freedom subject to trivial worldsheet dynamics. They decouple from all dynamical

degrees of freedom in constructing the spectrum and computing scattering amplitudes. That

is why we won’t display Chan Paton charges in vertex operators, they can always be thought

of as implicitly accompanying the V (z) we will introduce in the followings sections.

The action of charges Q =
∮

dz
2πi
j(z) built from conserved currents j(z) on a state |phys〉

follows from the singularities in the j(z)V (w) OPE, see e.g. appendix B.3.1. However, we are

dealing with a boundary SCFT in the open string sector, see subsection 2.4.2. The definition

of currents jop and vertex operators V op on the full complex plane comes from gluing together

a holomorphic and antiholomorphic half j(z), j̄(z̄) and V (z), V̄ (z̄) each of which lives on the

upper half plane. Equation (2.4.90) gives an example of this doubling trick. The contour

integral involved in the evaluation of Q|phys〉 strictly speaking splits into two semicircles C±

illustrated in figure 3.1,

Q |phys〉 =

∮
0

dz

2πi
jop(z)V op(0) |0〉 =

(∫
C+

dz

2πi
j(z)V (0) −

∫
C−

dz̄

2πi
j̄(z̄) V̄ (0)

)
|0〉

(3.1.2)

Whenever we make reference to contour integrals and -deformations in later chapters, we

should be aware of their decomposition (3.1.2) into C± parts with holomorphic and antiholomor-

phic integrand, respectively. But most of the computations can be performed without detailed
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×
V op(w)

jop(z) =

j(z)C+

×
V (w)

−

j̄(z̄)C−

×
V̄ (w̄)

Figure 3.1: The boundary CFT treatment of the contour integral involved in Q|phys〉.

knowledge about this, so we won’t display the op superscripts along with currents j(z) and open

string vertex operators V (z) in the subsequent.

3.1.2 The BRST operator

In contrast to the lightcone quantization approach, the covariant quantization using (b, c, β, γ)

ghosts does not explicitly remove the timelike and longitudinal components of the worldsheet

fields Xm and ψm. It is clear from the lightcone analysis that these components do not con-

tribute to physical states, so we need a mechanism to decouple them and to distinguish between

physical and unphysical states in the covariant approach. This job is done by a nilpotent and

hermitian BRST operator QBRST whose cohomology determines the physical spectrum.

In generic gauge theories quantized by BRST methods, the operator QBRST acts like a

fermionic gauge transformation on the matter fields with its gauge parameter replaced by

an anticommuting ghost variable. In addition, QBRST involves quadratic contributions in the

ghost variables which represent gauge variations of the ghosts and which are needed to achieve

nilpotency Q2
BRST = 0. In superstring theory, requiring nilpotency of the BRST operator is one

way of computing the critical dimension D = 10.

In the RNS approach to the superstring, the construction of QBRST is based on the obser-

vation that the worldsheet action (after gauge fixing the metric and the gravitino)

Stot =
1

8π

∫
d2z

{
2

α′
∂Xm ∂̄Xm + ψm ∂̄ψm + ψ̄m ∂ψ̄m

+ 2
(
b ∂̄c + b̄ ∂c̄ + β ∂̄γ + β̄ ∂γ̄

)}
(3.1.3)

has a symmetry which mixes matter- and ghost degrees of freedom. It is generated by the
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conserved current1

jBRST = c

(
T +

Tb,c + Tβ,γ
2

)
− γ

(
G +

Ggh

2

)
(3.1.4)

where T and G denote the matter contributions to the energy momentum tensor and super-

current whereas Tb,c, Tβ,γ, Ggh exclusively involve the ghosts, see (2.3.56), (2.3.60) and (2.3.62)

for their explicit expressions. In the open string sector, (2.4.96) and (2.4.97) give the correct

normalization for the matter fields T and G, respectively.

In subsection 2.3.5, we have introduced a bosonized representation (2.3.75) for the (β, γ)

system, in particular we have associated superghost charges q to the exponentials eqφ. It is

convenient to split the conserved charge due to the BRST current (3.1.4) into terms Qj of

different superghost charges j = 0, 1 and j = 2:

QBRST =

∮
dz

2πi
jBRST(z) = Q0 + Q1 + Q2 (3.1.5)

Q0 =

∮
dz

2πi

(
c (T + Tβ,γ) + b c ∂c

)
(3.1.6)

Q1 = −
∮

dz

2πi
γ G = −

∮
dz

2πi
eφ η G (3.1.7)

Q2 = − 1

4

∮
dz

2πi
b γ2 = − 1

4

∮
dz

2πi
b e2φ η ∂η (3.1.8)

Physical states |phys〉must lie in the cohomology of the nilpotent and hermitian BRST operator

for two reasons:

• Since QBRST generates gauge transformations, physical states must be BRST closed,

QBRST |phys〉 = 0 , (3.1.9)

to guarantee their gauge invariance.

• BRST exact states QBRST|λ〉 (for arbitrary |λ〉) have zero norm and decouple from BRST

closed states due to hermiticity of QBRST. Hence, physical states cannot be BRST exact,

|phys〉 6= QBRST |λ〉 . (3.1.10)

Given the partition (3.1.5) of QBRST into pieces of different ghost number, physical states |phys〉
of uniform ghost number (like the ground states |q = −1〉β,γ and |q = −1

2
〉β,γ introduced in

subsection 2.3.5 and 2.3.6) are necessarily annihilated by all of Q0, Q1 and Q2 separately.

1One can add total derivatives such as ∂2c to the present form (3.1.4) of jBRST to turn it into a h = 1

conformal primary. These additions do not affect QBRST since total derivatives drop out of contour integrals.
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3.1.3 Conformal weights and integrated vertex operators

Let us take a closer look at the ghost charge zero condition Q0|phys〉 = 0 and derive the resulting

constraint on the associated vertex operator. According to the discussion in subsection 2.3.4,

the ground state of the (b, c) sector is generated by c(0), so we can split the vertex operator as

|phys〉 = c(0)Vh(0)|0〉 with Vh denoting a weight h field built from matter fields i∂Xm, ψm and

(β, γ) superghost operators such as eqφ. It turns out that Q0 closedness of |phys〉 implies that

Vh is a conformal primary field of weight h = 1:

0
!

= Q0 |phys〉 =

∮
dz

2πi

(
c (T + Tβ,γ) + b c ∂c

)
(z) c(0)Vh(0) |0〉

=

∮
dz

2πi

(
c(0) + z ∂c(0) + . . .

) ( c h Vh(0)

z2
+

c ∂Vh(0)

z
+ . . .

)
|0〉

+

∮
dz

2πi

(
c ∂c(0) + z ∂

(
c ∂c
)
(0) + . . .

) ( 1

z
+ . . .

)
Vh(0) |0〉

= (h− 1) ∂c c Vh(0) |0〉 (3.1.11)

If Vh was non-primary, there would be higher singularities in its OPE with T (z), and Q0Vh(0)|0〉
would receive non-cancelling corrections with higher ghost derivatives. We are using the anti-

commuting property c(0)c(0) = 0 here. Moreover, the conformal dimension of the primary Vh

is determined to be h = 1 as a necessary condition for BRST closure of c(0)Vh(0)|0〉.2 In the

subsequent, we will refer to the h = 1 conformal primaries Vh=1 which create physical states

from |1〉b,c as vertex operators (rather than to the composite V (z) = c(z)Vh(z)).

The c ghost has three zero modes at tree level (and less on higher genus Riemann surfaces)

which are saturated in a three point correlation function. Therefore, correlation functions of

more than three states require a representation of any additional state without further c(0)

occurrence. Let us examine the properties of a state Vh(0)|0〉 without c(0) insertion under Q0

action:

Q0 Vh(0) |0〉 =

∮
dz

2πi

(
c (T + Tβ,γ) + b c ∂c

)
(z)Vh(0) |0〉

=

∮
dz

2πi

(
c(0) + z ∂c(0) + . . .

) ( hVh(0)

z2
+

∂Vh(0)

z
+ . . .

)
|0〉

= ∂
(
c Vh

)
(0) |0〉 + (h− 1) ∂c Vh(0) |0〉 . (3.1.12)

At conformal weight h = 1, the state Q0Vh=1(0)|0〉 is a total derivative ∂
(
cVh
)
(0)|0〉. BRST

closedness can be achieved by integrating over insertion points w of Vh(w). Hence, the following

“integrated vertex operators” give rise to a potentially BRST invariant state,

Q0

∫
dw Vh=1(w) |0〉 = 0 . (3.1.13)

2In the operator approach, this fixes the normal ordering ambiguity in L0.
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The two objects
∫

dw Vh(w)|0〉 and c(0)Vh(0)|0〉 can be thought of as two representations of

the same physical state with different (b, c) ghost number. The h = 1 primary Vh is obviously

more fundamental than the combination V = cVh which we can view as the c ghost number

one representative of the state. This justifies to focus on Vh in the following: As mentioned

above, the term “vertex operator” will always refer to Vh rather than V = cVh. We will explore

further BRST restrictions on Vh due to Q1 and Q2 in the later subsection 3.1.5.

3.1.4 The mass shell condition

In this subsection, we show that conformal weight h = 1 of vertex operators Vh determines the

mass square of the physical state |phys〉 = c(0)Vh(0)|0〉. The starting point are the Poincaré

generators Pm for translations and Mmn for Lorentz rotations following from the standard

Noether procedure3:

Pm =
1

2α′

∮
dz

2πi
i∂Xm , Mmn =

∮
dz

2πi

(
1

2α′
iX [m i∂Xn] + ψ[m ψn]

)
(3.1.16)

The spacetime momentum km of a physical state is supposed to be its eigenvalue under the

momentum operator Pm, so we have to find its eigenstates. According to subsection 2.4.3, the

OPEs of the free boson in the open string sector are normalized as

iXm(z) iXn(w) ∼ 2α′ ln |z−w| + . . . , i∂Xm(z) iXn(w) ∼ 2α′

z − w + . . . . (3.1.17)

On these grounds, it is shown in appendix B.4.1 that “plane wave” exponentials eik·X(z) obey

i∂Xm(z) eik·X(w) =
2α′ km

z − w eik·X(w) + . . . (3.1.18)

such that eik·X(0)|0〉 can be identified as an eigenstate of Pm with eigenvalue km. The Xm

contribution to the energy momentum tensor T = 1
4α′
i∂Xmi∂Xm + ... assigns conformal weight

h
(
eik·X

)
= α′ k2 = −α′m2 (3.1.19)

to the plane waves eik·X , where the mass square is introduced through the mass shell condition

k2 = −m2 for a state of spacetime momentum km. Let us separate the eik·X part of the vertex

operator Vh from the contribution vĥ of β, γ ghosts and i∂Xm, ψm oscillators:

Vh(z) = vĥ(z) eik·X(z) , |phys〉 = vĥ(0) eik·X(0) c(0) |0〉 (3.1.20)

3It can be checked by means of the contour integral techniques of B.2.5 that they satisfy the Poincaré algebra[
Pm , Pn

]
= 0 ,

[
Mmn , P p

]
= Pm ηnp − Pn ηmp (3.1.14)[

Mmn , Mpq

]
= δnp M

m
q − δmp Mn

q − δnq M
m
p + δmq Mn

p . (3.1.15)
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Then, m2 is uniquely determined by the conformal weight ĥ of the “remainder” vĥ to ensure

that cVh creates a Q0 closed state:

Q0

(
c(0) vĥ(0) eik·X(0) |0〉

)
= 0 ⇒ m2 =

ĥ − 1

α′
(3.1.21)

Already the QBRST component of ghost number zero turns out to fix the mass of a physical

state |phys〉. It increases with the conformal weight ĥ of the i∂Xm-, ψm and eqφ contribution

vĥ to |phys〉. Further constraints on polarization wave functions follow from Q1|phys〉 = 0, we

will illustrate this with some concrete examples in sections 3.2 and 3.3.

3.1.5 Superconformal primaries

In this subsection, we will explore the implications of physical states |phys〉 being annihilated

by the ghost number one part Q1 of the BRST charge. For this purpose, the contributions of

the (β, γ) system to the remainder field vĥ have to be isolated. This leads to different scenarios

in the NS- and R sectors, see subsections 2.3.5 and 2.3.6 for the superghost structure of their

ground states:

Vh=1(z) =

 ΦNS
h=1/2(z) e−φ(z) : NS sector

ΦR
h=5/8(z) e−φ(z)/2 : R sector

(3.1.22)

In contrast to the vĥ from the previous subsection, the primary fields ΦNS
h and ΦR

h with respect

to the matter CFT encompass the plane wave part eik·X . For simplicity, we are considering the

integrated version of the vertex operator without c ghost insertion. Throughout this work, we

will use the notation V (q) = Φh eqφ for a vertex operator with ghost charge q.

Let us evaluate Q1 closedness on a physical NS sector state:

0
!

=
[
Q1 , ΦNS

h (0) e−φ(0)
]

= −
∮

dz

2πi
G(z) eφ(z) η(z) ΦNS

h (0) e−φ(0)

= −
∮

dz

2πi

(
z η(0) + . . .

)
G(z) ΦNS

h (0) (3.1.23)

The contour integral in the second line vanishes if the OPE G(z)ΦNS
h (0) contains no higher

poles than z−1, i.e. if the leading singularity is of the form,

G(z) ΦNS
h (w) ∼

1
2

ΦNS
h+1/2

z − w + . . . . (3.1.24)

But this is equivalent to the statement that ΦNS
h is the lowest component of a superconformal

primary field (ΦNS
h ,ΦNS

h+1/2) at h = 1
2
, see (B.2.17).

Closedness of R sector states under Q1 requires the (z−w)−3/2, (z−w)−5/2, . . . singularities

in the G(z)ΦR
h (w) OPE to vanish:

0
!

=
[
Q1 , ΦR

h (0) e−φ(0)/2
]

= −
∮

dz

2πi
G(z) eφ(z) η(z) ΦR

h (0) e−φ(0)/2
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= −
∮

dz

2πi

(
z1/2 η(0) e+φ(0)/2 + . . .

)
G(z) ΦR

h (0) (3.1.25)

This is equivalent to saying that the state ΦR
h (0)|0〉 is annihilated by all the non-negative modes

Gr≥0 and constitutes a highest weight state of the super Virasoro algebra.

Once the conformal weight is fixed to h = 1, the constraints Ln>0|phys〉 = 0 due to Q0

automatically follow from Gr>0|phys〉 = 0, so Q1 closedness of a vertex operator Vh=1 implies

[Q0, Vh=1] = 0.

Closedness under Q2 does not impose any restriction on vertex operators Vh=1 = Φhe
qφ of

superghost charge q < +1
2
:[

Q2 , eqφ(w) Φh(w)
]

= − 1

4

∮
dz

2πi
b e2φ η ∂η(z) eqφ(w) Φh(w)

= − 1

4

∮
dz

2πi
b η ∂η(z) (z − w)−2q e(q+2)φ(w) Φh(w) (3.1.26)

In the following subsection we will find a context where ghost numbers q ≥ 1
2

can indeed appear.

3.1.6 Superghost pictures

We have pointed out in subsection 3.1.3 that physical states require a representation with c

ghost numbers 0 and 1 such that we can saturate the (b, c) zero modes in correlation functions.

The same requirement arises for superghosts β and γ whose background charge Qβ,γ = +2

imposes the following charge conservation condition:〈
n∏
k=1

eqkφ(zk)

〉
=

n∏
k<`

z−qkq`k` δ

(
n∑
k=1

qk + 2

)
(3.1.27)

The notion of superghost picture changing makes sure that physical states have a representative

with the appropriate eqφ charge to obtan nonzero correlation functions. Also, it gives a meaning

to the upper superfield component ΦNS
h+1/2 emerging from (3.1.24).

We have emphasized in subsection 2.3.5 that the bosonization of the β ghost involves the

derivative of a h = 0 fermion ξ(z) but not its zero mode ξ0. This allows to construct further

representations V (q+1) of a physical state from ξ0V
(q) = ξ0Φh(z)eqφ(z): Since the zero mode ξ0

lies outside the superghost algebra, the state −2[QBRST, ξΦhe
qφ] is not BRST exact in the strict

sense (even though it might look so):

V (q+1)(w) = − 2
[
QBRST , ξ(w)V (q)(w)

]
(3.1.28)

This state does not decouple from physical states because of its ξ0 admixture. But still, the

property Q2
BRST = 0 makes sure that (3.1.29) gives rise to a BRST closed state which is non-

exact from the point of view of the “small” superghost algebra excluding the ξ0 zero mode. The
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vertex operator V (q+1) is said to create a higher “superghost picture” of its associated physical

state, with charge q + 1 rather than q. By iterating the map (3.1.28), one can generate more

representatives of the same physical state with even higher ghost charges.

It turns out that for the purpose of tree amplitudes, we can restrict our attention to ghost

pictures −1 ≤ q ≤ 1/2. In this range, only the Q1 part (3.1.7) of the BRST charge contributes

to a higher ghost picture4. Let us investigate the Q1 picture changing on the level of matter

fields:

Φh+q+3/2(w) e(q+1)φ(w) := − 2
[
Q1 , ξ(w) Φh(w) eqφ(w)

]
= 2

∮
dz

2πi
G(z) eφ(z) η(z) ξ(w) Φh(w) eqφ(w)

= 2

∮
dz

2πi

(
(z − w)−q−1 + . . .

)
G(z) Φh(w) e(q+1)φ(w) (3.1.29)

The canonical ghost picture for the NS sector has charge q = −1. Only the Q1 part of the

BRST charge contributes to its q = 0 ghost picture

ΦNS
h+1/2(w) e0φ(w) = 2

∮
dz

2πi

(
1 + . . .

)
G(z) ΦNS

h (w) = 2 (G−1/2 ΦNS
h )(w) . (3.1.30)

The right hand side picks out the upper component ΦNS
h+1/2 = 2G−1/2ΦNS

h of a superconformal

primary with lower component ΦNS
h . The conformal fields ΦNS

h and ΦNS
h+1/2 from the q = −1

and q = 0 superghost pictures of a NS state, respectively, form a superconformal primary

(ΦNS
h ,ΦNS

h+1/2).

Repeated picture changing further increases the superghost charge of the exponential eqφ

leading to more and more negative conformal weights h(eqφ) = − q2

2
− q. Supercurrent action

on ΦNS gives rise to descendants Φh+q+3/2 = 2G−q−3/2Φh. To give an overview of the possible

ghost pictures in the NS sector:

|phys,NS〉 ←→



ΦNS
h e−φ |0〉 ∼ e−φ |h,NS〉

ΦNS
h+1/2 e0φ |0〉 ∼ G−1/2 e0φ |h,NS〉
ΦNS
h+2 e+φ |0〉 ∼ G−3/2G−1/2 e1φ |h,NS〉
...

...

ΦNS

h+
1
2

(n+1)2
enφ |0〉 ∼ G−n−1/2 . . . G−3/2G−1/2 enφ |h,NS〉

(3.1.31)

The canonical ghost picture of R sector states has charge q = −1
2
. Their matter contributions

ΦR
h ,Φ

R
h+1, . . . in different ghost pictures also fall into representations of the superconformal

4As demonstrated in (3.1.12), [Q0, ξΦNS
h e−φ] yields a total derivative and the contour integrand of

[Q2, ξΦhe−φ] is regular in z − w
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algebra. Lifting the superghost charge q = −1
2

to q = +1
2

via Q1 gives rise to

ΦR
h+1(w) eφ(w)/2 = 2

∮
dz

2πi

(
(z − w)1/2 + . . .

)
G(z) ΦR

h (w) eφ(w)/2

= 2 (G−1 ΦR
h )(w) eφ(w)/2 (3.1.32)

such that ΦR
h+1 = 2G−1ΦR

h . This iterates to the following pattern:

|phys,R〉 ←→



ΦR
h e−φ/2 |0〉 ∼ e−φ/2 |h,R〉

ΦR
h+1 eφ/2 |0〉 ∼ G−1 eφ/2 |h,R〉

ΦR
h+3 e3φ/2 |0〉 ∼ G−2G−1 e3φ/2 |h,R〉
...

...

ΦR

h+
n
2

(n+1)
e(2n−1)φ/2 |0〉 ∼ G−n . . . G−2G−1 e(2n−1)φ/2 |h,R〉

(3.1.33)

Strictly speaking, also the ghost number two part of QBRST provides a nonzero contribution to

the first non-canonical R sector ghost picture V (1/2) = −2[QBRST, ξV
(−1/2)]:

− 2
[
Q2 , ξ(w) ΦR

h (w) e−φ(w)/2
]

=
1

2

∮
dz

2πi
b(z) e2φ(z) η(z) ∂η(z) ξ(w) ΦR

h (w) e−φ(w)/2

= − 1

2
η(w) b(w) ΦR

h (w) e3φ(w)/2 (3.1.34)

This term cannot affect tree level correlation functions because it has different (b, c)- and (β, γ)

ghost numbers than the Q1 part (3.1.32). It only becomes relevant for checking overall BRST

closedness of V (1/2) since Q2 has a nontrivial action according to (3.1.26). Also, it might

contribute to higher ghost pictures via [Q0, ξηbΦ
R
h e3φ/2].

3.1.7 GSO projection

The requirement of BRST invariance puts strong constraints on the mathematical structure

of the physical spectrum. In particular, it allows to apply the machinery of SCFT, i.e. to

exploit the remarkable properties of superconformal primaries in the computation of correlation

functions.

Still, keeping the full BRST cohomology has two main problems of rather physical nature:

• The simplest possible NS sector state eik·Xe−φ(0)c(0)|0〉 has a negative mass square accord-

ing to (3.1.21) at ĥ = 1
2
. The presence of such a tachyonic state indicates an instability

of the theory, that the perturbative spectrum is based on expanding around the wrong

vacuum state. The R sector does not contain any tachyons because the inevitable SAe−φ/2

fields guarantee ĥ ≥ 1 in the notation of (3.1.21).
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• As explained in section 2.2.2, the OPE of two spin fields can have different leading

singularities (z − w)−5/4 or (z − w)−3/4, depending on their relative chirality. There-

fore, we can only keep one chiral half of the R sector ground states to avoid frac-

tional zij powers in correlation functions. Also, the z23 power in three point functions

〈ψm1 . . . ψmn(z1)SA(z2)SB(z3)〉 is given by n
2
− 5

4
, so the NS-R coupling suffers from branch

cut singularities if the number of ψmj is even.

The solution to both problems lies in a projection to states of odd worldsheet fermion number

F . This procedure was originally invented by Gliozzi, Scherk and Olive [51] and is therefore

referred to as GSO projection. Let |λ〉 denote a state in the QBRST cohomology, then

|λ〉 is physical ⇐⇒ (−1)QGSO |λ〉 = + |λ〉 . (3.1.35)

In the NS sector, the GSO charge QGSO is defined such that it counts the number of ψ−r

oscillators, i.e. QGSO = 1+(ψ oscillator number). Then, the tachyon eik·Xc(0)|0〉 and any state

with even oscillator number is removed.

To achieve the chiral projection in the R sector, we assign even GSO parity to left handed

ground states |α〉 and odd parity to right handed ground states |β̇〉, i.e. (−1)QGSO ∼ Γ11 with

the chirality matrix Γ11 in D = 10 dimensions:

(−1)QGSO |A〉 = (−1)QGSO

 |α〉
|α̇〉

 =

 + |α〉
− |α̇〉

 = Γ11

 |α〉
|α̇〉

 (3.1.36)

Additional ψ−n modes with n ∈ N again flip the fermion number and require a different chirality

in the ground state.

This rather complicated set of rules becomes very compact if we bosonize the worldsheet

fermions and spin fields according to the dictionary in subsections 2.2.3 and 2.2.4. Given the

OPEs ∂φ(z)eqφ(0) ∼ − q
z
eqφ(0) and i∂Hj(z)eip·H(0) ∼ pj

z
eip·H(0), we can identify

QGSO =

∮
dz

2πi

(
4∑
j=0

i∂Hj(z) − ∂φ(z)

)
(3.1.37)

as an appropriate GSO operator with eigenvalue
∑4

j=0 p
j+q on the state eip·Heqφ. The massless

NS state ψmeik·Xe−φ(0)c(0)|0〉 has one nonzero pj = ±1 and q = −1, i.e. even QGSO eigenvalue

0 or −2. Left handed R ground states Sαe−φ/2 have
∑4

j=0 p
j ∈

{
5
2
, 1

2
,−3

2

}
and therefore even

GSO eigenvalues.

This reasoning motivates the physical state projection (3.1.35) with bosonized representation

(3.1.37) for the GSO operatorQGSO. Note that the picture changing operation (3.1.29) preserves
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the GSO parity, i.e. the projection is independent on the ghost picture representation chosen

for |λ〉.

It turns out that the GSO projection gives rise to a supersymmetric spectrum. It is not

difficult to compute the GSO projected one loop partition function for the open superstring.

Then the so-called “aequatio identica satis abstrusa” due to Jacobi [133] between the bosonic

and fermionic contributions implies that any mass level is populated by the same number of

bosons and fermions.

3.2 The massless spectrum

This section is devoted to the massless physical states which pass the GSO projection (3.1.35)

and live in the cohomology of the BRST operator (3.1.5). We will identify the 8 + 8 degrees of

freedom from theN = 1 Super Yang Mills (SYM) multiplet in D = 10 dimensions. For massless

representations of the ten dimensional Poincaré group, the stabilizer subgroup is SO(8), and

the bosons (fermions) transform in its vector (left handed spinor) representation.

3.2.1 NS sector: gluons

Let us recall the splitting V = vĥe
ik·X of vertex operators into a plane wave eik·X (generating

the spacetime mometum km) of conformal weight α′k2 and a remainder conformal field vĥ.

Massless states with k2 = 0 clearly have ĥ = 1. In the canonical q = −1 ghost picture, the e−φ

part covers conformal weight 1/2, so one is free to add a h = 1/2 combination of (i∂Xm, ψm)

oscillators. The most general ansatz

V (−1)(ξ, k, z) = gA ξm ψ
m(z) e−φ(z) eik·X(z) (3.2.38)

for the vertex operators is parametrized by a polarization vector ξm and a lightlike spacetime

momentum km which can be rotated into the form (E,E, 0, . . . , 0) by an appropriate Lorentz

transformation. The normalization gA will be fixed in later chapters when scattering amplitudes

in superstring theory are matched with results from SYM in the α′ → 0 limit.

The BRST condition due to Q1 is satisfied if the polarization vector ξ is transverse to the

spacetime momentum[
Q1 , V

(−1)(ξ, k, z)
]

= 0 =⇒ ξm k
m = 0 . (3.2.39)

This can be traced back to a double pole with residue ∼ ξmk
m in the G(z)V (−1)(ξ, k, w) OPE.

Conditions like (3.2.39) on the polarization wave functions will be referred to as “on-shell”

constraints in the following.
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A transverse ten-vector ξm has nine independent components, but not all of them are phys-

ical: The longitudinal polarization ξm ∼ km can be identified as BRST exact since

[
QBRST , e−2φ ∂ξ eik·X

]
∼ km ψ

m e−φ eik·X (3.2.40)

with no contribution from Q0 and Q2 to the right hand side. The vertex operator V (−1)(ξ =

k, k, z) is zero in the BRST cohomology and does not create a physical states. The resulting

gauge invariance ξm ≡ ξm+km together with the transversality condition ξmk
m = 0 leaves eight

polarization states of positive norm.

The zero ghost picture representative of the vertex operator (3.2.38) can be easily computed

using (3.1.30) with lower component Φh = ξmψ
meik·X of the superconformal primary. The result

for the upper component is Φh+1/2 = 1√
2α′
ξm(i∂Xm − 2α′knψ

mψn)eik·X , i.e.

V (0)(ξ, k, z) =
gA√
2α′

ξm

(
i∂Xm(z) − 2α′ kn ψ

m(z)ψn(z)
)

eik·X(z) . (3.2.41)

Note that the spurious states with ξm ∼ km are automatically absent in (3.2.41): The second

term ∼ k(m kn)ψ
[mψn] vanishes on the level of the vertex operator, and the first term yields a

total derivative kmi∂X
meik·X = ∂eik·X which does not contribute in integrated vertex operators.

It is a generic phenomenon that spurious states are killed under picture raising operations.

The example of the massless NS sector states is representative to illustrate the interplay

between SCFT and physics. Superconformal invariance of the supersymmetric worldsheet ac-

tion leads to the BRST quantization procedure. Negative norm states ∼ ξm = (ξ0, 0, . . . , 0) are

a generic problem in gauge theories in Minkowski spacetime, and the requirement (3.2.39) of

BRST invariance removes them from the superstring spectrum.

3.2.2 R sector: gluinos

The R ground states exhaust the all the massless spacetime fermions. The left handed spin

field Sα can be contracted with a SO(1, 9) spinorial wavefunction uα such that most general

vertex operator is given by

V (−1/2)(u, k, z) = gλ u
α Sα(z) e−φ(z)/2 eik·X(z) . (3.2.42)

Again, there is a normalization constant gλ, and we will relate it to the gluon coupling gA in

subsection 3.5 on spacetime SUSY.

The OPE G(z)V (−1/2)(u, k, w) has a (z − w)−3/2 pole with residue ∼ uαγm
αβ̇
km. According

to the discussion 3.1.5, this is an obstacle to BRST closedness with respect to Q1, so it implies
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the on-shell constraint

[
Q1 , V

(−1/2)(u, k, z)
]

= 0 =⇒ uα γm
αβ̇
km ≡ uα 6kαβ̇ = 0 (3.2.43)

which can be identified as a massless Dirac equation5. In a Lorentz frame where k0 = k1, the

equation uα6kαβ̇ = 0 fixes the first entry of the spinor weight α =
(
±1

2
, . . . ,±1

2

)
to be +1

2
, i.e. 6k

with lightlike km has rank eight and the solution space to (3.2.43) is eight dimensional. Since

the massless R sector is free of spurious states, the number of physical fermionic degrees of

freedom matches the eight bosonic degrees of freedom from the NS sector.

Let us display the state (3.2.42) in two further ghost pictures. Firstly, there exists a “mirror”

R sector at ghost charge q = −3
2

on each mass level which is necessary to form a two point

function of total ghost charge −2. The superghost spin fields e−3φ/2 and e−φ/2 happen to carry

the same conformal weight 3/8 but their GSO parity is different. Therefore, the mirror R vertex

requires a right handed spin field:

V (−3/2)(v̄, k, z) =
gλ√
α′
v̄β̇ S

β̇(z) e−3φ(z)/2 eik·X(z) (3.2.44)

Since the eφ(z)e−3φ(w)/2 OPE is less singular than eφ(z)e−φ(w)/2, invariance under Q1 imposes no

constraints on v̄. Picture changing maps V (−3/2)(v̄, k, z) to V (−1/2)(u, k, z) with uα = v̄β̇ 6 kβ̇α

and therefore annihilates those eight v̄ components which can be written as v̄β̇ = wα 6 kαβ̇ for

some spinor w. These states can be identified as spurious. This is a further example for higher

ghost pictures q = −1
2
> −3

2
carrying less spurious states.

We can further raise the picture of the canonical q = −1
2

vertex:

V (1/2)(u, k, z) =
gλ

2
√
α′
uα
(
i∂Xm +

α′

2
kn ψ

n ψm

)
γm
αβ̇
Sβ̇ eφ/2 eik·X (3.2.45)

This involves the spin 3/2 projection of the operator ψn 6ψαβ̇Sβ̇. It appears as a subleading

singularity in the ψm(z)Sα(w) OPE, see (6.1.2).

3.2.3 Outlook

The eight plus eight physical states we have just identified constitute the massless SUSY mul-

tiplet in open, uncompactified superstring theory. It precisely provides the particle content of

the (unique) ten dimensional N = 1 SYM which has been extensively studied in the litera-

ture [134,135]. We will discuss its superspace formulation in the later section 10.2.

5In operator language, it can be obtained from the supercurrent’s zero mode G0|α〉R ∼ kmψm0 |α〉R
!= 0
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The masses of all the Regge excitations scale with m ∼ α′−1/2, so in the formal limit α′ → 0,

they become infinitely heavy and decouple. The geometric meaning of this limit is to shrink

the strings of length
√
α′ to point particles. String theory then reduces to an effective field

theory for the massless states. It will be an essential consistency check to verify this on the

level of scattering amplitudes, this will be elaborated in more detail in section 5.5 on scattering

amplitudes in gauge theories.

Let us furthermore give a formal outlook on how to embed the NS- and R sector operators

ψme−φ and Sαe−φ/2 in a more abstract, unifying picture. Upon bosonizing the RNS fields, we

can think of both ψme−φ and Sαe−φ/2 as an exponential ei ~w·(iH,φ) with a six component vector

~w taking values (m,−1) and (α,−1/2) in the weight lattice of D5,1 with Lorentzian signature.

Bosonic (fermionic) vertex operators fall into the vacuum (antispinor) conjugacy class.

This is in lines with the other ghost pictures (3.2.41), (3.2.44) and (3.2.45) for the massless

vertex operators. They are all built as linear combinations of exponentials ei ~w·(iH,φ) whose

weight vectors ~w are related to the canonical (m,−1) and (α,−1/2) through a shift by (picture

changing) root vectors (0, . . . ,±1, . . . , 0,±1) of D5,1. This construction is an example of so-

called covariant lattices, they were introduced by [118,136,137,138].

3.3 The first mass level

Let us now proceed to massive states. Their spacetime momentum can be rotated into a

rest frame km = (m, 0, . . . , 0), i.e. the stabilizer group is the SO(9) acting on the nine zero

components. Hence, the massive part of the physical spectrum can be decomposed into SO(9)

representations. In [139], this is done very explicitly. This exhibits a technical advantage

of covariant BRST quantization over light cone quantization: The latter would organize the

spectrum into SO(8) representations after decoupling the timelike and longitudinal Xm, ψm

components. This obscures the SO(9) content, at least one has to find appropriate combinations

of SO(8) multiplets to form a representation of the stabilizer group SO(9).

GSO projection removes states at half odd integer mass levels. For instance, any m2 =

1
2α′

states would have even fermion oscillator number and are therefore projected out under

(−1)QGSO . Hence, the lightest particles in both sectors of the physical spectrum carry mass

m = 1√
α′

. This section reviews the Poincaré representations on the first mass level of the

superstring. Its complete ten dimensional content was firstly constructed by [140].
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3.3.1 NS sector: spin two tensor and three form

The most general ansatz for the first massive NS sector states involves any possible h = 3/2

operator along with the canonical h = 1/2 superghost contribution e−φ and the h = −1 plane

wave eik·X :

V (−1)(B,E,H, k, z) = ĝA

(
Bmn i∂X

m ψn + Emnp ψ
m ψn ψp + Hm ∂ψ

m
)

e−φ eik·X (3.3.46)

The addition of ξmψ
m∂φe−φ is neglected because it can be absorbed into a total derivative.

The BRST constraints arising from Q0 and Q1 are

B[mn] + 3 kpEpmn = 0

2α′ kpBpm + Hm = 0 (3.3.47)

ηmnBmn + kpHp = 0 ,

but not all their solutions are physical: Some of them can be generated by QBRST action on a

two-form Σ[mn], a vector πm and a scalar of SO(9):[
QBRST , e−2φ Σ[mn] ψ

m ψn ∂ξ eik·X
]
∼

(
2 Σ[mn] i∂X

m ψn + Σ[mn kp] ψ
m ψn ψp

)
e−φ eik·X[

QBRST , e−2φ πm i∂X
m ∂ξ eik·X

]
∼

(
πm ∂ψ

m + πm kn i∂X
m ψn

)
e−φ eik·X (3.3.48)[

QBRST , e−2φ ∂2ξ eik·X
]
∼

( [ηmn
2α′

+ 2 km kn

]
i∂Xm ψn + 3 km ∂ψ

m
)

e−φ eik·X

Therefore, we can identify the antisymmetric part B[mn], the trace Bm
m and the full Hm vector

as spurious. The on-shell constraints (3.3.47) then require bothB(mn) and Emnp to be transverse.

To sum it up, the physical NS degrees of freedom at the first mass level are represented

by polarization tensors transverse to km (as required by the stabilizer group SO(9)), namely a

(traceless and symmetric) spin two tensor Bmn and a three form Emnp:

V (−1)(B, k, z) = ĝAB(mn) i∂X
m ψn e−φ eik·X , kmBmn = ηmnBmn = 0 (3.3.49)

V (−1)(E, k, z) = ĝAEmnp ψ
m ψn ψp e−φ eik·X , kmEmnp = 0 (3.3.50)

The number of degrees of freedom is 9·10
2
− 1 = 44 for Bmn and 9·8·7

1·2·3 = 84 for Emnp, i.e. we have

44 + 84 = 128 bosonic states in total.

For completeness, we also give the zero ghost pictures of the massive NS vertex operators6:

V (0)(B, k, z) = ĝA
√

2α′B(mn)

( i∂Xm i∂Xn

2α′
+ ∂ψm ψn + i∂Xm kp ψ

p ψn
)

eik·X (3.3.51)

V (0)(E, k, z) = ĝA
√

2α′Emnp

(
kq ψ

q ψm ψn ψp +
3

2α′
i∂Xm ψn ψp

)
eik·X (3.3.52)

6The former involves a spin two operator ∂ψ(nψp) from the RNS CFT where certain components can be

expressed as e±2iHj

in their bosonized version.
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3.3.2 R sector: massive gravitino

Massive vertex operators in the R sector require a conformal field of h = 13
8

along with the

standard ingredients e−φ/2 and eik·X . We make the following ansatz for this purpose7:

V (−1/2)(v, ρ̄, k, z) = ĝλ

(
vαm i∂X

m + 2α′ ρ̄m
β̇
ψm 6ψβ̇α

)
Sα e−φ/2 eik·X (3.3.53)

The most general vertex operator is parametrized by two vector spinors (vαm, ρ̄
m
β̇

) of opposite

chirality which generically contain SO(1, 9) irreducibles of spin 1/2 and 3/2. The two chiralities

are in lines with the fact that massive fermions are described by Dirac spinors. Their two chiral

halves originate from different conformal fields i∂XmSα and ψm 6ψβ̇αSα.

The BRST conditions involving the R descendant ψm 6ψβ̇αSα are quite difficult to evaluate

covariantly. Bosonization turned out to be helpful in [140] to find the on-shell conditions. In

the end, one can express the right handed wave function ρ̄m
β̇

in terms of the left handed one vαm

and impose an additional constraint on the latter:

ρ̄m
β̇

=
1

36
kn vαn γ

m
αβ̇
− 1

8
vmα 6kαβ̇ (3.3.54)

vαm γ
m
αβ̇

= 2α′ km vαm 6kαβ̇ (3.3.55)

So far, these are nine vector components with 16 Weyl spinor degrees of freedom each. Com-

parison with the 128 bosonic degrees of freedom suggests that we should identify 16 spurious

states within the solutions to (3.3.55). Indeed, one can form the BRST exact state via8

[
QBRST , e−3φ/2 ūα̇ S

α̇ ∂ξ eik·X
]
∼ Sβ e−φ/2 eik·X

×
(
ūα̇ γ̄

α̇β
m i∂Xm + 4α′ ūα̇ 6kα̇β km i∂Xm +

2α′

4
ūα̇ km ψ

m 6ψα̇β − 2α′

24
ūα̇ ( 6k 6ψ 6ψ)α̇β

)
(3.3.57)

which is related to the finding of [140] via aα ∼ ūβ̇ 6kβ̇α. We extract the following wavefunctions

subject to (3.3.54) and (3.3.55):

vβm = ūα̇ γ̄
α̇β
m + 4α′ ūα̇ 6kα̇β km , ρ̄mα̇ =

1

4
ūα̇ k

m − 1

24
ūβ̇ (6kγm)β̇ α̇ (3.3.58)

7The reason why the second ψ must be contracted with a gamma matrix can be better understood in operator

language: The second half of (3.3.53) represents the state ψm−1|β̇〉R = limz→0 z
−1/2 : ψm(z)Sβ̇(0) : |0〉NS and

hence involves the the subleading term of the ψm(z)Sβ̇(0) OPE. According to (6.1.2), this exclusively contains

operators of structure ψm 6ψβ̇αSα.
8In intermediate steps of the computation one obtains a term

− 4α′ ūα̇ 6kα̇β Sβ ∂
(

e−φ/2
)

eik·X = 4α′ ūα̇ 6kα̇β e−φ/2 ∂
(
Sβ eik·X

)
+ total derivative (3.3.56)

which can be further simplified using ∂Sβ = − 1
36 (6ψ 6ψ)βγSγ .
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d.o.f. representation d.o.f. representation d.o.f. representation

156 φ1
(mnp) 126 φ2

[mnpqr] 36 φ3
[mn]

594 φ4
[mn(p]q) 231 φ5

[m(n]p) 9 φ6
m

Table 3.1: Organization of the 1152 bosonic states at second mass level. All the wave functions

are understood to be transverse and traceless. The notation φ4
[mn(p]q) indicates that this rank four

tensor φ4 is antisymmetric in its first three indices, but the total antisymmetrization including the

fourth index vanishes, φ4
[mnpq] = 0. The two representations φ4

[mn(p]q) and φ5
[m(n]p) are associated with

a hooked Young tableau.

The essential role of this spurious state is the elimination of the spin 1/2 component from

the wavefunctions: Since the vector spinors in (3.3.58) have nonzero gamma matrix trace

(uα̇γ̄
α̇β
m + 4α′ūα̇ 6kα̇βkm)γm

ββ̇
6= 0, we can absorb the BRST exact states into the physical ones via

χαm := vαm + λ
(
uα̇γ̄

α̇β
m + 4α′ūα̇ 6kα̇βkm

)
and choose λ ∈ R such that χαmγ

m
αβ̇

= 0. Then, (3.3.54)

and (3.3.55) guarantee that the wavefunctions are transverse and traceless and furthermore

related by a massive Dirac equation:

km χαm = χαmγ
m
αβ̇

= km ρ̄
m
β̇

= ρ̄m
β̇
γβ̇αm = 0 (3.3.59)

ρ̄m
β̇

= − 1

8
χmα 6kαβ̇ , χmα = − 8α′ ρ̄m

β̇
6kβ̇α (3.3.60)

Hence, we have identified a massive spin 3/2 Dirac fermion with 128 independent components:

V (−1/2)(χ, k, z) = ĝλ

(
χαm i∂X

m − α′

4
χβm 6kββ̇ ψm 6ψβ̇α

)
Sα e−φ/2 eik·X (3.3.61)

The full physical particle content of the first mass level with m2 = 1
α′

consists of a spin two

tensor Bmn, a three form Emnp and massive gravitino χαm with 44+84 bosonic and 128 fermionic

degrees of freedom.

3.4 The leading Regge trajectory

At higher mass levels, the number and complexity of the occurring SO(9) representations

increases drastically. For instance, table 3.1 shows the polarization tensors for the 1152 bosons

at the second mass level (with m2 = 2
α′

), see [141]. Even though a recent work [139] managed

to compute the SO(9) content to any mass level, it is still an open problem to construct the

physical vertex operators in full generality.

The only SO(9) representations for which the vertex operators are completely under control

for arbitrary mass level n contain highest spin states with jmax = n+ 1 for bosons and jmax =
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n+ 1
2

for fermions. Since a linear relationship between spins and mass squares was first noticed

by Regge for excited mesons, the maximum spin states in string theory are referred to as the

“leading Regge trajectory”. The massless field theory encompassing all bosonic integer spins

is known as the Vasiliev system [142]. The research areas of string theory and higher spin field

theory strongly support and motivate each other:

First of all, the high energy regime of string theory (i.e. the low tension limit α′ →∞ where

Regge excitations formally become massless) provides a fruitful laboratory to learn about higher

spin gauge theory. Typical no-go theorems on massless higher spin theories are based on subtle

assumptions that may well prove too restrictive, such as finiteness of the spectrum or minimal

couplings. Results from string theory naturally have the required properties to bypass these

no-go theorems.

Secondly, taking all the higher spin modes into account might pave the way beyond the

on-shell first quantized picture of string theory and shed light on its true quantum degrees of

freedom. Moreover, ideas have been around that masses of Regge excitations arise from some

sort of generalized Higgs effect for spontaneous breaking of higher spin gauge symmetries. From

this viewpoint, string theory itself might well prove to be a major motivation to study higher

spin theories.

Therefore, investigating higher-spin dynamics will help to better understand string theory

and, vice versa, a closer look at string theory at high energies in the α′ → ∞ limit can

provide important clues on higher-spin dynamics. After first explicit investigation of higher

spin interactions in [143,144,145,146,147], great progress in finding all order vertices for totally

symmetric tensors was made in [142,148], see [149] for a review beyond cubic level.

3.4.1 NS sector: integer spin

In this subsection, we construct higher spin generalizations of the gluon vertex (3.2.38) and the

spin two tensor (3.3.49) at mass levels n = 0 and n = 1, respectively. It is clear from (3.1.21)

that states of mass m2 = n
α′

are generated by vĥ=n+1eik·X with vn+1 denoting a conformal field

of weight n+ 1. The superghost operator e−φ of the canonical q = −1 picture covers h = 1
2
, so

one is free to distribute the remaining weight of n+ 1
2

among αm−n and ψm−r oscillators.

Spin j wave functions φj are totally symmetric, traceless and transverse rank j tensors, so

the leading trajectory state will involve the maximum number of symmetrized αmi−ni , ψ
mj
−rj modes

with overall weight
∑

i ni +
∑

j rj = n + 1
2
. Because of their anticommuting nature, no more

than one ψm−1/2 can contract a symmetric wave function, so the mutually commuting oscillators
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of minimal conformal weight are αm−1. These arguments lead to the following vertex operator

for NS states of highest spin:

V (−1)(φj=n+1, k, z) = gn φ(m1...mnmn+1) i∂X
m1 . . . i∂Xmn ψmn+1 e−φ eik·X (3.4.62)

kmi φm1...mn+1 = ηmimj φm1...mn+1 = 0 , k2 = − n

α′
(3.4.63)

Let us also give the zero ghost picture analogue which we will need in the later section (9.2.12)

to compute bosonic three point couplings:

V (0)(φj=n+1, k,z) = gn
√

2α′ φ(m1...mn−1np) i∂X
m1 . . . i∂Xmn−1 eik·X

×
(
n ∂ψn ψp + (k · ψ)ψn i∂Xp +

1

2α′
i∂Xn i∂Xp

)
(3.4.64)

3.4.2 R sector: half odd integer spin

Similar arguments apply to highest spin states in the R sector. Spin n+ 1
2

wavefunctions χj=n+ 1
2

are transverse and traceless tensor spinors with n symmetrized vector indices. Moreover, they

are γm
αβ̇

traceless in the spinor index, χαm1...mn
γmi
αβ̇

= 0.

The αm−1 oscillator is the object of lowest weight to saturate the vector indices of a sym-

metric wave function, so the first idea to construct a spin n + 1
2

state would be of schematic

form (α−1)n|α〉R. BRST invariance requires the addition of a second term with n − 1 bosonic

oscillators and one ψm−1 such that the physical vertex is given by

V (−1/2)(χj=n+1/2, k, z) = gn+1/2 χ
α
(m1...mn−1n) i∂X

m1 . . . i∂Xmn−1

×
(
i∂Xn δγα −

α′

4
6kαβ̇ ψn 6ψβ̇γ

)
Sγ e−φ/2 eik·X (3.4.65)

kmi χαm1...mn
= ηmimj χαm1...mn

= χαm1...mn
γmi
αβ̇

= 0 (3.4.66)

where, again, k2 = − n
α′

. The second term completes the Dirac spinor required by non-chiral

nature of massive fermions.

3.5 Spacetime supersymmetry

The RNS approach to superstring theory which we are applying in part I and II of this work

does not provide manifest spacetime supersymmetry. This a drawback compared to the Green

Schwarz framework and the pure spinor formalism. Still, one can construct a spacetime SUSY

charge Qα for the covariantly quantized RNS superstring and explore the action of supersym-

metry on individual states using SCFT methods.



3.5. SPACETIME SUPERSYMMETRY 75

A necessary condition for a supersymmetric spectrum is an equal number of bosons and

fermion on each mass level. We have explicitly seen this for n = 0 and n = 1 in the previous

sections 3.2 and 3.3, and the bose-fermi populations of higher mass levels n ≥ 2 can be checked

to agree from the superstring one loop partition function.

3.5.1 The SUSY algebra

In this subsection, we will introduce the CFT realization of the ten dimensional N = 1 super

Poincaré algebra. All its generators can be represented by a contour integral over conserved

h = 1 currents from the RNS CFT. The fact that they commute with QBRST guarantees that

the classification of physical states is super Poincaré invariant.

The bosonic generators Pm,Mmn of translations and Lorentz rotations, respectively, have

already been introduced in subsection 3.1.4. The momentum operator Pm acts with eigenvalue

km on physical vertex operators, and the rotation generators Mmn transform the wave functions

according to the SO(1, 9) representations they fall into.

Let us now enlarge the Poincaré algebra by the spacetime SUSY charge

Q(−1/2)
α := α′−1/4

∮
dz

2πi
Sα(z) e−φ(z)/2 . (3.5.67)

It is proportional to the gaugino vertex (3.2.42) at zero momentum, so BRST invariance of

Q(−1/2)
α immediately follows from that of V (−1/2)(u, k, z). Similarly, we can borrow its higher

ghost picture representation from (3.2.45) at k = 0:

Q(1/2)
α :=

1

2α′3/4

∮
dz

2πi
i∂Xm(z) γm

αβ̇
Sβ̇(z) e+φ(z)/2 (3.5.68)

The latter is needed to compute the anticommutator in an overall ghost neutral fashion,{
Q(−1/2)
α , Q(1/2)

β

}
=

∮
dz

2πi
i∂Xm γ

m
ββ̇
Cα

β̇ = − (γmC)αβ Pm , (3.5.69)

it reproduces the momentum operator Pm. The fact that Qα transforms as a spinor follows

from the commutation relations[
Mmn , Q(q)

α

]
= − 1

2
(γmn)α

βQ(q)
β (3.5.70)

valid for both values of q = ±1
2
.

This setting does not provide a realization of off-shell SUSY: The anticommutator of SUSY

charges Q(−1/2)
α in their canonical ghost picture yields a picture changed version ∼

∮
ψme−φ of

the momentum operator. But the equivalence between different superghost pictures requires

on-shell states as we will explain in subsection (5.2.3). Hence, the SUSY algebra does not close

off-shell where ∼
∮
ψme−φ is inequivalent to the momentum Pm at zero ghost charge (3.1.16).
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3.5.2 Applications to light states

This subsection recapitulates the SUSY action on the massless open string states along the

lines of [150] and gives an outlook of what happens at the first mass level. For ease of nota-

tion, it makes sense to contract the supercharges Qα with an anticommuting SUSY spacetime

parameter ηα, i.e. to compute the commutators of vertex operators with

Q(q)(η) := ηαQ(q)
α . (3.5.71)

At the massless level, spacetime SUSY transformations rotate the gluon- and gluino vertex

operators into each other:[
Q(1/2)(η) , V (−1)(ξ)

]
= V (−1/2)

(
uβ = 1√

2
ηα(γmn)α

βkmξn

)
(3.5.72)[

Q(−1/2)(η) , V (−1/2)(u)
]

= V (−1)
(
ξm = 1√

2
ηα(γmC)αβu

β
)

(3.5.73)

Since the normalization of ξm and uα is fixed by orthonormality of the different helicity com-

ponents, we can infer a relation between the couplings:

gλ = gA α
′1/4 (3.5.74)

The SUSY variations (3.5.72) and (3.5.73) can be computed in arbitrary ghost pictures, for in-

stance
[
Q(+1/2)(η), V (−1/2)(u)

]
= V (0)

(
ξm = 1√

2
ηα(γmC)αβu

β
)

. The transformations can there-

fore be recast on the level of the polarizations:

δηu
β =

1√
2
ηα (γmn)α

β km ξn , δηξ
m =

1√
2
ηα (γmC)αβ u

β (3.5.75)

The on-shell constraints kmξ
m = 0 and uα 6 kαβ̇ = 0 are obviously preserved under SUSY. We

can check by iterating (3.5.75) that the SUSY algebra closes up to a gauge transformation

ξm → ξm + km in the gluon polarization vector9:[
δη1 , δη2

]
uα = − (η1 6k η2)uα ,

[
δη1 , δη2

]
ξp = − (η1 6k η2) ξp + (η1 6ξ η2) kp (3.5.76)

Computing the SUSY variation of massive states is more involved because it requires subleading

singularities in various OPEs. Let us give just one example[
Q(1/2)(η) , V (−1)(B, k)

]
= V (−1/2)

(
χγm = 1√

2
ηα 6kαβ̇γβ̇γn Bm

n
)
, ĝA α

′1/4 = ĝλ (3.5.77)

and defer the rest of the multiplet to a later publication [151]. Analogous transformation rules

hold for all the bosonic leading Regge trajectory states (3.4.62) and (3.4.65), where gnα
′1/4 =

gn+1/2 and δηχ
γ
m1...mn−1

= 1√
2
ηα 6kαβ̇γβ̇γn φnm1...mn−1

.

9Evaluating the
[
δη1 , δη2

]
action on uα requires the famousD = 10 gamma matrix identity (γmC)(αβ γmγ)δ̇ = 0.



Chapter 4

Towards the four dimensional world

This chapter aims to establish connections between superstring theory and the four dimensional

world we experience in our everyday life. In particular, it aims to pave the way towards

predictions of string theory for LHC experiments.

As we will explain in the following, the string scale Ms = α′−1/2 can be as low as a few

TeV provided that some of the extra dimensions are sufficiently large [58, 101]. In that case,

resonances in lepton, quark- and gluon scattering processes due to exchange of virtual Regge

excitations can potentially be observed at LHC [152, 153, 154, 155]. Once the mass threshold

Ms is crossed in the center-of-mass energies of colliding partons, one would also see the string

resonance states produced directly [2].

Remarkably, many phenomenological aspects of weakly coupled low mass string theory are

universal: Those states of the string spectrum which couple to the gauge bosons of the four

dimensional Standard Model (SM) do not depend on the compactification details. In section

4.5, we will work the universal D = 4 particle content at first mass level. As a consequence,

SM tree level scattering processes involving n gluons and either zero or two chiral fermions are

completely model independent – to all orders in the string length `string =
√
α′. As we will show

in the later section 8.1, they exhibit resonant behavior at the parton center of mass energies

equal to the masses of Regge resonances.

An important requirement for making contact between superstring theory and the SM is

SUSY breaking. Since only N = 0 or N = 1 spacetime SUSY is compatible with the observed

chiral matter spectrum, we will have to explain how to modify the worldsheet SCFT such

that it describes a string vacuum with less that N = 4 SUSY. The underlying philosophy is a

phenomenology of SCFTs, the requirement that some ground state of string theory obeys the

constraints of phenomenology.

77
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For scenarios with N = 0, 1 SUSY, we will construct chiral multiplets from open strings

stretching between intersecting D branes. They live in the twisted sector of the internal world-

sheet SCFT. This includes (s)quarks and (s)leptons into the superstring spectrum and opens

the door to decribing QCD processes as they happen at LHC in a stringy framework.

4.1 Basics of low string scale SM extensions

This section sketches the ideas of Standard Model extensions based on open strings ending on

D-branes. In these settings, gauge bosons are due to open strings attached to stacks of D-branes,

and chiral matter arises from strings stretching between intersecting D-branes. We will first

derive order of magnitude relations between the superstring input data such the string length
√
α′ and the volumes of extra dimensions and the fundamental constants of four dimensional

gravity and gauge interactions. Then, in section 4.1.3 we will introduce the most economic

brane configurations which can be accomodated with the SM gauge group.

4.1.1 The four dimensional strength of gravity & gauge interactions

Scenarios with large extra dimensions are a very appealing solution to the hierarchy problem [58]

because they admit to unify gravitational and gauge interactions at the electroweak scale. The

observed weakness of gravity at lower energies is due to the existence of large extra dimensions.

The fact that gravitons may scatter into all the directions of the internal space – even those

perpendicular to the SM D branes – decreases the gravitational coupling constant to its observed

value.

To get a rough estimate of the relevant scales and physical input quantities, let us consider

a Dp brane whose worldvolume is parallel to the uncompacified Minkowski spacetime R1,3.

Moreover, we assume that the Dp brane wraps a d‖ := p − 3 cycle of volume V‖ within the

compact internal manifold of overall volume V := V‖ · V⊥. The latter introduces a 9 − p

dimensional volume V⊥ transverse to the brane. The situation is depicted in the following

figure 4.1.

The observed four dimensional coupling constants of gravity and the gauge interactions

follow from dimensionally reducing higher dimensional effective actions for massless string ex-

citations. Firstly, the Einstein Hilbert action for the ten dimensional bulk implies that – up to

numerical coefficients O(1) – the four dimensional Planck mass is given by

M2
pl ∼

1

g2
s

M8
s V =

1

g2
s

M8
s V‖ V⊥ (4.1.1)
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V‖ extra longitudinal dimensions

V⊥ extra transverse dimensions

Figure 4.1: The green rectangle represents the extra dimensions parallel to the D brane world

volume which can be probed by open string states. The red surface represents transverse extra

dimensions probed by the closed string sector only.

where the type II string coupling is related to the dilaton field φ10 via gs = eφ10 [156, 101], see

section 5.1 for a brief account on its role in string perturbation theory. Secondly, in type II

superstring theory, the gauge theory on the Dp brane worldvolume has the gauge coupling

1

g2
YM

∼ 1

gs

Mp−3
s V‖ (4.1.2)

where only the internal volume component V‖ parallel to the Dp brane contributes. The per-

pendicular volume V⊥ is inaccessible to open string endpoints. This is the crucial difference to

the volume dependence of Mpl.

4.1.2 Low string scale Ms ∼ TeV & large extra dimensions

To see the connection between large extra dimensions and a low string scale, it makes sense to

consider combinations of Mpl and gYM where the string coupling gs drops out, e.g.

g2
YM Mpl ∼ M7−p

s

√
V⊥
V‖

(4.1.3)

The left hand side is fixed by experimental observation, so increasing the ratio of volumes
√

V⊥
V‖

on the right hand side can be compensated by a lower value of the fundamental string mass
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d⊥ := 9− p 1 2 3 4 5 6

R⊥ = (V⊥)1/d⊥ [m] 1, 6 · 1011 4 · 10−4 5, 4 · 10−9 2 · 10−11 7 · 10−13 7 · 10−14

Table 4.1: Admissible sizes of transverse dimensions for Standard Model Dp branes at various values

of p. The d‖ := p− 3 extra dimensions parallel to the brane worldvolume are taken to be of the size

set by the assumed low string scale (Ms)−1 = (1 TeV)−1 ≈ 10−18 m.

scale Ms. This possibility does not exist in heterotic theories with closed strings only1.

Low energy SUSY at the TeV scale requires Ms to be at intermediate scales ∼ 1011 GeV

and internal volumes of size VM6
s ∼ 1016 [157,158,159]. If the requirement of TeV scale SUSY

is abandoned, on the other hand, then Ms can approach the range of LHC energies ∼ 103 GeV,

and string theory can be tested in the near future. The corresponding internal manifolds are

then as large as VM6
s ∼ 1032.

Strong gravity effect such as black hole production [160, 161] are expected to occur at

energies g2
sMs. Hence, it is the value of the string coupling gs which governs the onset of

gravity effects relative to the mass Ms of the lightest Regge excitations. Weakly coupled string

theory with gs � 1 allows to detect virtual Regge excitations in parton collisions before black

hole production becomes dominant.

Let us next discuss the size of possible extra dimensions. Cavendish type experiments

only admit very coarse tests of Newton’s law, up to a scale of millimeters. Hence, the typical

size R⊥ := (V⊥)1/(9−p) of extra dimensions transverse to the brane are bounded to lie below

the millimeter range. On the other hand, QCD and electroweak scattering experiments give

an upper bound on the small extra dimensions’ radii R‖ := (V‖)
1/(p−3) in the range of the

electroweak scale (MEW)−1 ≈ 10−17 m.

If a value of gs = 1
25

is assumend for the string coupling, then an LHC accessible string

scale Ms = 1 TeV is compatible with the internal geometries given by table 4.1. The case

d⊥ = 1 is obviously ruled out by gravity experiments, so branes of D3, D4, . . ., D7 type pass

the consistency checks due to the order of magnitude analysis of this section.

4.1.3 The SM D brane quiver

In this subsection we will give a brief summary about how the SM is realized by intersecting

D branes. More details can be found, e.g., in reference [61, 101]. The following set-up applies

for type IIA and type IIB orientifolds with intersecting D6- or D7 branes, respectively. The D

1In heterotic superstring theory, the four dimensional Planck scale is given by Mpl = g−1
s Ms.
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branes are spacetime filling, and they are wrapped around certain p dimensional cycles (p = 3, 4)

inside the compact space. This setup is in principal also valid for F theory, which provides

the non-perturbative uplift of the type IIB orientifolds with intersecting D7 branes [54, 55].

Therefore the considered D brane quiver locally describes a large class of four dimensional

string vacua. As it is shown in figure 4.2, the SM particles can be locally realized as massless

open string excitations that live on a local quiver of four different stacks of intersecting D branes.

Gauge bosons (such as gluons g and electroweak bosons W±) stem from open strings with both

endpoints on the same stack, chiral fermions (quarks q and leptons l) are implemented using

open strings stretching between different stacks, see section 4.4 for more details on the latter.

The corresponding quiver SM gauge group is given by

G = Ga × Gb × Gc × Gd = U(3)a × U(2)b × U(1)c × U(1)d . (4.1.4)

l

W±

q

(a) baryonic

U(2)

(d) leptonic

U(1)R

(c) right

(b) left

e

u, d

U(3)

U(1)L

g

Figure 4.2: D brane quiver realizing the Standard Model.

Note that there are four different U(1) gauge group factors. In a specific compactification,

most of them will be anomalous, such that the corresponding gauge bosons become massive

by the Green-Schwarz mechanism. However one has to ensure that the gauge boson of the

linear combination, which determines the weak hypercharge, stays massive. The U(1) gauge

symmetries, which are anomalous or which correspond to massive gauge bosons, nevertheless

remain as global symmetries in all perturbative scattering amplitudes. In particular, the sym-

metry associated to U(1)a is the baryon number conservation. Hence, all perturbative processes
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respect baryon number conservation. Of course, there might be other dangerous processes in

string perturbation theory, such as flavor changing neutral currents, which are in general not

prohibited by the global U(1) symmetries of this D brane quiver. However this is a model

dependent issue, which we do not address here.

Specifically, the SM gauge bosons in the adjoint representations of the gauge group G such

as the gluons, the weak gauge bosons and the hypercharge gauge boson (being associated to

linear combination of the various U(1) factors), correspond to open strings with two endpoints

on the same stack of D branes. On the other hands, the SM matter fields such as quarks

and leptons are open strings located at the various intersection points of the four different D

branes (and their orientifold images), see section 4.4 for their SCFT implementation. They

transform under bifundamental representations of the four gauge group factors, and they can

also be in the antisymmetric representation 3A of SU(3)a, in case the color stack of D branes is

intersected by its orientifold image. As it turns out the four stack D brane quiver reproduces all

quantum numbers of the SM particles in a straightforward and natural way. In fact, no GUT

embedding is necessary to explain the gauge quantum numbers of the SM particles. The family

replication is explained by multiple intersections of the D-branes inside the compact space.

Moreover it is shown in [162] that one can construct consistent type II string compactifications

on the Z′6 orientifold which reproduce the spectrum of the SM with three generations of quarks

and leptons and without chiral exotics.

The four stacks of intersecting D6 branes that give rise to the spectrum of the SM are just

a local model that has to be embedded into specific global Calabi Yau manifolds in order to

obtain a consistent superstring compactification. Working out the universal tree level scattering

amplitudes of SM particles only requires the local information about how the SM is realized

on intersecting branes. Fully consistent global orientifold models with all their tadpole and

stability conditions satisfied are beyond the scope of this work, partly because these consistency

conditions depend on the details of the compactification such as background fluxes. Even model

dependent four fermion couplings are argued in [101] to depend only on the local structure of

the brane intersections, but not on the global Calabi Yau geometry.

4.1.4 Stringy signatures at LHC

As it is well known for a long time [138], string theory contains a huge number of ground states,

a problem which is often referred to as the string landscape problem. This observation raises

the question about the predictive power of string theory or, respectively, if string theory is

testable. In particular one likes to understand if all or at least some four dimensional string
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vacua share some common, model independent features, which are true in large region of the

string landscape.

Several types of string signatures can be possibly expected at the LHC from a low string

scale and from large extra dimensions: Firstly, additional U(1) gauge symmetries from the

diagonal part of U(N) give rise to Z like massive bosons [152, 153, 154, 155]. Secondly, mini

black holes might hint effects of quantum gravity [160, 161]. We will focus on a third type of

signature, namely Regge excitations of SM particles with masses in units of Ms. They give

universal contributions to gluon scattering processes, even in compactification scenarios that

completely break spacetime supersymmetry. On the other hand, there are Kaluza Klein and

winding excitations along the extra dimensions whose masses depends on geometric data of the

internal manifold. Their fingerprint in multi-fermion amplitudes can later on allow a precision

measurement of the internal geometry and of the how the D branes are embedded into the

compact space.

There also exist KK excitations from the closed string sector of the theory with masses as

low as 10−3 eV. But their coupling to SM fields only occurs at loop levels of string perturbation

theory, hence they are suppressed by powers of gs ∼ g2
YM compared to the aforementioned tree

level processes on the brane. We need a low string scale, large extra dimensions and also weak

string coupling in order for our tree level calculations of chapter 8.1 to be reliable and testable

at the LHC.

4.2 Maximal N = 4 supersymmetry

Having given the general framework for SM processes in superstring compactifications, we can

now work out the formal aspects of how to implement these scenarios in superconformal field

theory language. As a first step, we will consider four dimensional compactifications with all

the 16 supercharges preserved. This occurs for D3 branes in D = 10 flat Minkowski spacetime

or compacification on a generalized T 6 torus.

4.2.1 Dimensional reduction of the SCFT

As a first step of dimensionally reducing the RNS SCFT, this subsection explains how the

conformal fields in vector- and spinor representations decompose under SO(1, 9)→ SO(1, 3)×
SO(6). For this purpose, let us briefly recapitulate the main decomposition rules from appendix

A.1:

• vectors decompose into direct sums Xm=0,...9 = Xµ=0,...3 ⊕X i=4,...,9



84 CHAPTER 4. TOWARDS THE FOUR DIMENSIONAL WORLD

• left handed D = 10 spinors become χα=(±,...,±) = (χa=(±,±) ⊗ χI)⊕ (χ̄ȧ=(±,∓) ⊗ χ̄J̄) where

χI(χ̄J̄) is a left handed (right handed) spinor with respect to the internal SO(6) with

index ranges

I ∈
{

(+,+,+), (+,−,−), (−,+,−), (−,−,+)
}

J̄ ∈
{

(−,−,−), (−,+,+), (+,−,+), (+,+,−)
}

• σµ and γi are the Dirac gamma matrices in four and six dimensions, respectively

In particular, the SO(1, 9) covariant conformal fields i∂Xm, ψm, SA decompose as follows:

i∂Xm = (i∂Xµ, i∂Zi) , Sα = Sa ΣI ⊕ S ȧ Σ̄Ī (4.2.5)

ψm = (ψµ, Ψi) , Sα̇ = Sa Σ̄Ī ⊕ S ȧ ΣI

This defines Zi,Ψi,ΣI , Σ̄Ī to be the internal components of the conformal fields from the ten

dimensional theory. The spacetime fields ψµ, Sa, S
ḃ and the internal fields Ψi,ΣI , Σ̄J̄ belong

to different decoupled SCFTs with central charges 6 and 9 respectively. Bosonization of the

former requires two chiral fields H0, H1, the latter can be represented in terms of three fields

H2, H3, H4. We can deduce SO(1, 3)- and SO(6) covariant OPEs from the ten dimensional

ancestors – the most obvious of them are

ψµ(z)ψν(w) ∼ ηµν

z − w + . . . , Ψi(z) Ψj(w) ∼ δij

z − w + . . . (4.2.6)

whereas ψµ(z)Ψi(w) products are regular.

The spacetime spin fields Sa, S
ȧ for conformal weight h = 1

4
are governed by the following

singularity structure:

ψµ(z)Sa(w) ∼ 1√
2 (z − w)1/2

σµ
aḃ
S ḃ(w) + . . .

Sa(z)Sb(w) ∼ εab
(z − w)1/2

+ . . .

S ȧ(z)S ḃ(w) ∼ εȧḃ

(z − w)1/2
+ . . . (4.2.7)

Sa(z)S ḃ(w) ∼ 1√
2

(σµ ε)a
ḃ ψµ(w) + . . .

S ȧ(z)Sb(w) ∼ 1√
2

(σ̄µ ε)
ȧ
b ψ

µ(w) + . . .

Sections 6.2 and 6.3 discuss systematic methods to obtain their correlation functions in SO(1, 3)

covariant manner and display explicit results.

The internal SCFT with h = 3
8

spin fields ΣI , Σ̄Ī , on the other hand, rests on OPEs [163]

Ψk(z) ΣI(w) ∼ 1√
2 (z − w)1/2

γIJ̄k Σ̄J̄(w) + . . .
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ΣI(z) Σ̄J̄(w) ∼ CI
J̄

(z − w)3/4
+ . . .

Σ̄Ī(z) ΣJ(w) ∼ CĪ
J

(z − w)3/4
+ . . . (4.2.8)

ΣI(z) ΣJ(w) ∼ 1√
2 (z − w)1/4

(γk C)IJ Ψk(w) + . . .

Σ̄Ī(z) Σ̄J̄(w) ∼ 1√
2 (z − w)1/4

(γ̄k C)ĪJ̄ Ψk(w) + . . . .

A large class of the resulting SO(6) covariant correlators can be found in sections 6.2 and 6.4.

4.2.2 The N = 4 SUSY algebra in four dimensions

Dimensionally reducing the 16 supercharges Qα yields objects QIa (Qȧ
Ī
) with a spinor index

a (ȧ) of the spacetime Lorentz group SO(1, 3) and another one I (Ī) of the internal SO(6):

Q(−1/2),I
a = α′−1/4

∮
dz

2πi
Sa ΣI e−φ/2 (4.2.9)

Q̄(−1/2),ȧ

Ī
= α′−1/4

∮
dz

2πi
S ȧ Σ̄Ī e−φ/2

The higher ghost picture analogues are given by

Q(+1/2),I
a =

1

2α′3/4

∮
dz

2πi
e+φ/2

[
i∂Xµ σ

µ

aḃ
S ḃ ΣI + i∂Zk Sa γ

IJ̄
k Σ̄J̄

]
(4.2.10)

Q̄(+1/2),ȧ

Ī
=

1

2α′3/4

∮
dz

2πi
e+φ/2

[
i∂Xµ σ̄ȧbµ Sb Σ̄Ī + i∂Zk S

ȧ γkĪJ ΣJ
]
.

Due to the correspondence SO(6) ∼= SU(4), we can think of the internal spinor index I (Ī)

as a fundamental (antifundamental) SU(4) R symmetry index. That is why N = 1 SUSY in

D = 10 dimensions translates into extended N = 4 SUSY from the D = 4 point of view.

The four dimensional reduction of the Poincaré generators P µ and Mµν is straightforward,

the latter give rise to the following commutators with the supercharges

[
Mµν , Q(q),I

a

]
= − 1

2
(σµν)a

bQ(q),I
b ,

[
Mµν , Q̄(q),ȧ

Ī

]
= − 1

2
(σ̄µν)ȧḃ Q̄

(q),ḃ

Ī
(4.2.11)

In the dimensional reduction of the SUSY algebra (3.5.69), we now have to distinguish the left-

and right handed supercharges, this gives rise to the anticommutators

{
Q(−1/2),I
a , Q̄(+1/2),ḃ

J̄

}
= − (σµ ε)a

ḃ PµC
I
J̄ (4.2.12){

Q(−1/2),I
a , Q(+1/2),J

b

}
= εabZIJ (4.2.13){

Q̄(−1/2),ȧ
I , Q̄(+1/2),ḃ

J

}
= εȧḃ Z̄ĪJ̄ (4.2.14)
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which introduce antisymmetric central charges:

ZIJ = − 1

2α′

∮
dz

2πi
i∂Zk (γk C)IJ = −ZJI (4.2.15)

Z̄ĪJ̄ = − 1

2α′

∮
dz

2πi
i∂Zk (γ̄k C)ĪJ̄ = −Z̄J̄ Ī (4.2.16)

They can be identified with the internal components of the momentum operator. It is easy to

check that they commute with any spacetime Poincaré generator and the supercharges.

4.2.3 The massless N = 4 SYM multiplet in four dimensions

This subsection focuses on the massless states in maximally supersymmetric compactifications.

The 8 + 8 states form the particle content of N = 4 SYM theory to which some people lovingly

refer to as the “harmonic oscillator” of quantum field theory or the “simplest” QFT in four

dimensions [164]. Its S matrix can therefore be probed with the tools of superstring theory, we

will say a lot more on that in later chapters.

This work does not discuss states with momenta along the internal directions, i.e. no Kaluza

Klein or winding excitations. For any state introduced in a four dimensional setting, the ten

momentum has spacetime components only:

km = (kµ=0,1,2,3, 0i=4,...,9) , kµ kµ = −m2 (4.2.17)

The four dimensional particle content encompasses one gluon field, four gaugino- and antigaug-

ino species and six scalars. Table 4.2 gives an overview of their relevant quantum numbers.

The D = 10 gluon splits into a four dimensional gauge boson with polarization ξµ in spacetime

directions only and into six scalars φi polarized into internal directions, in short: ξm 7→ (ξµ, φi).

The gauginos follow the usual SO(1, 9)→ SO(1, 3)× SO(6) reduction rules uα 7→ uaI ⊕ ūĪȧ.

particle symbol helicity SU(4) representation SO(6) representation coupling

gluon g ± 1 scalar scalar gA

gaugino λI − 1/2 fundamental left handed spinor gλ

antigaugino λ̄Ī + 1/2 antifundamental right handed spinor gλ

scalar φj 0 antisymmetric vector gφ

Table 4.2: particle content of the massless four dimensional N = 4 SYM multiplet

Let us now introduce the corresponding vertex operators:

• gluon with polarization vector ξµ

V (−1)(ξ, k, z) = gA ξµ ψ
µ(z) e−φ(z) eik·X(z) (4.2.18)
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V (0)(ξ, k, z) =
gA√
2α′

ξµ

(
i∂Xµ(z) − 2α′ kν ψ

µ(z)ψν(z)
)

eik·X(z) (4.2.19)

• (anti-) gauginos with spinor wave functions uaI (ūĪȧ)

V (−1/2)(u, k, z) = gλ u
a
I Sa(z) ΣI(z) e−φ(z)/2 eik·X(z) (4.2.20)

V (−1/2)(ū, k, z) = gλ ū
Ī
ȧ S

ȧ(z) Σ̄Ī(z) e−φ(z)/2 eik·X(z) (4.2.21)

V (+1/2)(u, k, z) =
gλ

2
√
α′
uaI eφ(z)/2 eik·X(z) (4.2.22)

×
( [

i∂Xµ + 2α′ kν ψ
ν ψµ

]
σµ
aḃ
S ḃ ΣI + i∂Zk γIJ̄k Sa Σ̄J̄

)
(z)

V (+1/2)(ū, k, z) =
gλ

2
√
α′
ūĪȧ eφ(z)/2 eik·X(z) (4.2.23)

×
( [

i∂Xµ + 2α′ kν ψ
ν ψµ

]
σ̄ȧbµ Sb Σ̄Ī + i∂Zk γ̄

k
ĪJ S

ȧ ΣJ
)

(z)

• scalars with internal polarization φj

V (−1)(φ, k, z) = gφ φj Ψj(z) e−φ(z) eik·X(z) (4.2.24)

V (0)(φ, k, z) =
gφ√
2α′

φj

(
i∂Zj(z) + 2α′ kµ ψ

µ(z) Ψj(z)
)

eik·X(z) (4.2.25)

The scalars have a natural interpretation as massless transverse fluctuations of the D branes.

More precisely, the diagonal element φi(T a)α`
α` describes the fluctuation of the `’th brane of

the stack where the endpoints of the open string carrying the SYM multiplet are confined.

4.2.4 SUSY transformations within the N = 4 multiplet

In this section, we give the SUSY variations of N = 4 states by acting with the SUSY charges

(4.2.9) and (4.2.10) on the vertex operators. Since Weyl spinors of SO(1, 9) give rise to both

SO(1, 3) chiralities, there are many cases to consider:[
Q(1/2)(η) , V (−1)(ξ)

]
= V (−1/2)

(
ubI = 1√

2
ηaI (σ

µν)a
bkµξν

)
(4.2.26)[

Q̄(1/2)(η̄) , V (−1)(ξ)
]

= V (−1/2)
(
ūĪ
ḃ

= 1√
2
η̄Īȧ(σ̄

µν)ȧḃkµξν

)
(4.2.27)[

Q(−1/2)(η) , V (−1/2)(u)
]

= V (−1)
(
φj = 1√

2
ηaI εabu

b
J(γjC)IJ

)
(4.2.28)[

Q̄(−1/2)(η̄) , V (−1/2)(ū)
]

= V (−1)
(
φj = 1√

2
η̄Īȧε

ȧḃūJ̄
ḃ
(γ̄jC)ĪJ̄

)
(4.2.29)[

Q̄(−1/2)(η̄) , V (−1/2)(u)
]

= V (−1)
(
ξµ = 1√

2
η̄J̄ȧ (σ̄µε)ȧbCJ̄

IubI

)
(4.2.30)[

Q(−1/2)(η) , V (−1/2)(ū)
]

= V (−1)
(
ξµ = 1√

2
ηaI (σ

µε)a
ḃCI

J̄ ū
J̄
ḃ

)
(4.2.31)[

Q(1/2)(η) , V (−1)(φ)
]

= V (−1/2)
(
ūJ̄
ḃ

= 1√
2
ηaI 6kaḃγIJ̄j φj

)
(4.2.32)[

Q̄(1/2)(η̄) , V (−1)(φ)
]

= V (−1/2)
(
ubJ = 1√

2
η̄Īȧ 6kȧbγjĪJφj

)
(4.2.33)
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This relates the normalization constants of the vertex operators via

gA = gφ =
gλ
α′1/4

. (4.2.34)

The agreement of gA with gφ is quite natural since φi are simply the internal polarization states

of the D = 10 gluon.

The SUSY transformation of the wave functions follow by scanning the right hand side for

the relevant particle:

δηξ
µ =

1√
2
ηaI (σµ ε)a

ḃCI
J̄ ū

J̄
ḃ

δη̄ξ
µ =

1√
2
η̄J̄ȧ (σ̄µ ε)ȧbCJ̄

I ubI (4.2.35)

δηu
a
I =

1√
2
ηbI (σµν)b

a kµ ξν δη̄u
a
I =

1√
2
η̄J̄
ḃ
6kḃa γj

J̄I
φj (4.2.36)

δηū
Ī
ȧ =

1√
2
ηbJ 6kbȧ γJĪj φj δη̄ū

Ī
ȧ =

1√
2
η̄Ī
ḃ

(σ̄µν)ḃȧ kµ ξν (4.2.37)

δηφj =
1√
2
ηaI εab u

b
J (γjC)IJ δη̄φj =

1√
2
η̄Īȧ ε

ȧḃ ūJ̄
ḃ

(γ̄jC)ĪJ̄ (4.2.38)

It is easy to check that the algebra (4.2.12) to (4.2.14) closes up to gluon gauge transformations

ξµ → ξµ + kµ on each state.

4.3 SUSY breaking in compactifications

Unfortunately, any extended N > 1 SUSY in four dimensions is incompatible with the particle

content of the SM because it leads to a non-chiral spectrum. In order to get a little closer to

realistic SM like scenarios, we have to break N = 4 supersymmetry in D = 4 down to N = 1

(or even to N = 0). This amounts to projecting out certain internal h = 3
8

fields Σ which

govern the supercharge species (4.2.9).

4.3.1 Spacetime- versus worldsheet supersymmetry

It has been shown [163,165,166] that the number of spacetime supersymmetries allows to infer

a lot of information on the internal c = 9 SCFT, in particular on the amount of worldsheet

supersymmetry. The existence of a single N = 1 spacetime supersymmetry with one Σ, Σ̄

species

Q(−1/2)
a = α′−1/4

∮
dz

2πi
Sa Σ e−φ/2 , Q̄(−1/2),ȧ = α′−1/4

∮
dz

2πi
S ȧ Σ̄ e−φ/2 (4.3.39)

already implies that the internal SCFT contains a U(1) current J (z) (see subsection 9.2.1)

which rotates one supercurrent G ∼ G+ +G− into a second one G′ ∼ G+−G−. This enhances

the worldsheet supersymmetry to N = 2.
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Similar arguments imply that N = 2 spacetime SUSY gives rise to a c = 6 sector in the

internal SCFT with N = 4 worldsheet SUSYs and another c = 3 sector of N = 2 worldsheet

SUSY. The latter part of the internal SCFT can be constructed from two free h = 1
2

superfields,

i.e. the (∂Zk,Ψk) of two internal directions, say k = 8, 9. Moreover, the existence of N = 4

spacetime SUSY implies that the internal SCFT splits into three c = 3 systems with a repre-

sentation in terms of two free h = 1
2

superfields each. From the emergence six free worldsheet

multiplets (∂Zk,Ψk), we can conclude that any string vacuum of maximal N = 4 spacetime

SUSY necessarily corresponds to some generalized toroidal compactification geometry [167].

In other words – the spacetime properties of a set of D = 4 string vacua allow to completely

classify the associated SCFTs and, in case of extended spacetime SUSY, to even recover two

or six internal dimensions.

Conversely, having a N = 2 SCFT of c = 9 for the internal manifold with quantized

charges for the U(1) current is a sufficient condition for N = 1 spacetime SUSY. Hence, we can

describe a large class of N = 1 supersymmetric string vacua by implementing the conditions

in the internal c = 9 SCFT. The following subsection is devoted to the SCFT realization.

4.3.2 SCFT implementation of SUSY breaking

A convenient way to elegantly reduce the number of spin field species Σ, Σ̄ in the internal

SCFT is based on orbifold projections: We identify internal coordinate superfields (∂Zk,Ψk)

with certain rotations thereof and discard any non-invariant degree of freedom in the SCFT.

In the Cartan Weyl basis (2.2.38), this amounts to performing phase rotations of the following

complex variables:

Z±2 :=
1√
2

(Z4 ± iZ5) , Ψ±2 :=
1√
2

(Ψ4 ± iΨ5) ≡ e±iH2

Z±3 :=
1√
2

(Z6 ± iZ7) , Ψ±3 :=
1√
2

(Ψ6 ± iΨ7) ≡ e±iH3 (4.3.40)

Z±4 :=
1√
2

(Z8 ± iZ9) , Ψ±4 :=
1√
2

(Ψ8 ± iΨ9) ≡ e±iH4

The Z+j (Z−j) can be though of as living in the fundamental (antifundamental) representation

of SU(3) subgroup of SO(6).

SUSY breaking can be implemented by means of the following group action on the internal

(∂Z±j,Ψ±j) and the associated bosons H2, H3, H4:

(Z±j,Ψ±j) 7→ e±2πiθj (Z±j,Ψ±j) , Hj 7→ Hj + 2π θj (4.3.41)
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The orbifold transformation rules for the internal spin fields ΣI follow from bosonization

ΣI=(+,+,+) ≡ e
i
2

(+H2+H3+H4) 7→ eiπ(+θ2+θ3+θ4) ΣI=(+,+,+)

ΣI=(+,−,−) ≡ e
i
2

(+H2−H3−H4) 7→ eiπ(+θ2−θ3−θ4) ΣI=(+,−,−) (4.3.42)

ΣI=(−,+,−) ≡ e
i
2

(−H2+H3−H4) 7→ eiπ(−θ2+θ3−θ4) ΣI=(−,+,−)

ΣI=(−,−,+) ≡ e
i
2

(−H2−H3+H4) 7→ eiπ(−θ2−θ3+θ4) ΣI=(−,−,+)

with analogous statements for Σ̄J̄=(−,−,−) ≡ e
i
2

(−H2−H3−H4) as well as Σ̄J̄=(−,+,+), Σ̄J̄=(+,−,+)

and Σ̄J̄=(+,+,−). For generical values of the rotation angles θ2,3,4, none of the Σ, Σ̄ fields will

be invariant and remain in the spectrum of the orbifold theory. In order to achieve N = 1

spacetime SUSY with one rotation invariant Σ species, we have to impose2

θ2 + θ3 + θ4 ∈ Z ⇔ N ≥ 1 spacetime SUSY . (4.3.43)

Unless one if the angles happens to vanish, exactly one out of four spin fields and therefore

supercharges stays invariant
Σ(+,+,+)

Σ(+,−,−)

Σ(−,+,−)

Σ(−,−,+)

 7→


Σ(+,+,+)

e2πiθ2 Σ(+,−,−)

e2πiθ3 Σ(−,+,−)

e2πiθ4 Σ(−,−,+)

 ,


Σ̄(−,−,−)

Σ̄(−,+,+)

Σ̄(+,−,+)

Σ̄(+,+,−)

 7→


Σ̄(−,−,−)

e−2πiθ2 Σ̄(−,+,+)

e−2πiθ3 Σ̄(+,−,+)

e−2πiθ4 Σ̄(+,+,−)

 (4.3.44)

and we can use Σ ≡ Σ(+,+,+) and Σ̄ ≡ Σ̄(−,−,−) to construct the N = 1 supercharges (4.3.39).

The U(1) current of the internal SCFT is then given by J = 1√
3

∑4
j=2 i∂Hj, it assigns charges±1

to the Cartan Weyl fermions Ψ±j and emerges from the subleading singularity of the OPE [165]:

Σ(z) Σ̄(w) ∼ 1

(z − w)3/4
+

√
3

2
(z − w)1/4 J (w) + . . . (4.3.45)

Extended spacetime SUSY can be realized by imposing further constraints on the θj in addition

to (4.3.43). The trivial case θ2,3,4 = 0 would of course preserve the fullN = 4 SUSY, and setting

θ4 = 0 with θ2 = −θ3 6= 0 gives rise to N = 2 spacetime SUSY. The (∂Z8,Ψ8) and (∂Z9,Ψ9)

superfields then furnish the decoupling c = 3 sector of the internal SCFT.

4.3.3 The N = 1 algebra and its massless multiplet

Once the internal spin fields are restricted to Σ ≡ Σ(+,+,+) and Σ̄ ≡ Σ̄(−,−,−), the internal

charge conjugation matrix trivializes C
(+,+,+)
(−,−,−) = 1 and central charges vanish due to their

2Naively, one would expect θ2 + θ3 + θ4 ∈ 2Z from (4.3.42), but the freedom to redefine θj 7→ 1− θj allows

to convert even integer sums into odd ones.
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antisymmetry Z [IJ ] and Z̄[ĪJ̄ ]. The supercharges then satisfy the standard N = 1 algebra{
Q(−1/2)
a , Q̄(+1/2),ḃ

}
= − (σµ ε)a

ḃ Pµ (4.3.46){
Q(−1/2)
a , Q(+1/2)

b

}
=

{
Q̄(−1/2),ȧ , Q̄(+1/2),ḃ

}
= 0 . (4.3.47)

On the level of massless states, the N = 1 projection kills all the scalars φj and three of the

four gaugino species. The vertex operators of the unique (anti-)gaugino are simply obtained

by suppressing the R symmetry index from their N = 4 ancestors,

V (−1/2)(u, k, z) = gλ u
a Sa(z) Σ(z) e−φ(z)/2 eik·X(z) (4.3.48)

V (−1/2)(ū, k, z) = gλ ūȧ S
ȧ(z) Σ̄(z) e−φ(z)/2 eik·X(z) , (4.3.49)

whereas the gluon vertex operators (4.2.18) and (4.2.19) remain unchanged. These 2+2 states

of helicities ±1,±1
2

transform as[
Q(1/2)(η) , V (−1)(ξ)

]
= V (−1/2)

(
ub = 1√

2
ηa(σµν)a

bkµξν

)
(4.3.50)[

Q̄(1/2)(η̄) , V (−1)(ξ)
]

= V (−1/2)
(
ūḃ = 1√

2
η̄ȧ(σ̄

µν)ȧḃkµξν

)
(4.3.51)[

Q̄(−1/2)(η̄) , V (−1/2)(u)
]

= V (−1)
(
ξµ = 1√

2
η̄ȧ(σ̄

µε)ȧbu
b
)

(4.3.52)[
Q(−1/2)(η) , V (−1/2)(ū)

]
= V (−1)

(
ξµ = 1√

2
ηa(σµε)a

ḃūḃ

)
(4.3.53)

under the N = 1 SUSY algebra (4.3.39) with spinor parameters ηa, η̄ḃ. In analogy to (4.2.35)

to (4.2.38), we obtain variations

δηξ
µ =

1√
2
ηa (σµ ε)a

ḃ ūḃ δη̄ξ
µ =

1√
2
η̄ȧ (σ̄µ ε)ȧb u

b (4.3.54)

δηu
a =

1√
2
ηb (σµν)b

a kµ ξν δη̄u
a = 0 (4.3.55)

δηūȧ = 0 δη̄ūȧ =
1√
2
η̄ḃ (σ̄µν)ḃȧ kµ ξν (4.3.56)

for the wavefunctions ξµ, ua, ūḃ.

4.4 Chiral matter at brane intersection

This section is devoted to chiral matter multiplets due to open strings located at D brane

intersections, following the lines of [168, 156]. Quarks and leptons of the SM transform in

bifundamental representations of the gauge group factors SU(3), SU(2) and U(1), hence they

cannot originate from open strings with both endpoints on the same stack of branes whose

excitations fall into the adjoint representation. We will build a bridge between the geometric

picture of a D brane intersection and the massless vertex operators for chiral multiplets which

involve boundary changing operators of the internal SCFT.
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4.4.1 The geometric picture

Before going into the formal SCFT discussion of string excitations at brane intersection, let

us gain some intuition from the geometric picture. We consider two stacks of D branes whose

worldvolume has one dimension in the Z8, Z9 plane, intersecting at an angle πϑ with ϑ ∈ [0, 1],

see the following figure 4.3.

Z8

Z9

πϑ

a

b

σ = π

σ = 0

Figure 4.3: Two D brane stacks a and b intersecting in the (Z8, Z9) plane.

Open strings with one endpoint (σ = 0) on brane stack a and the other one (σ = π) on

stack b satisfy boundary conditions

∂σZ
8
∣∣∣
σ=0

= Z9
∣∣∣
σ=0

= 0

∂σ

(
cos(πϑ)Z8 − sin(πϑ)Z9

) ∣∣∣
σ=π

= 0 (4.4.57)(
cos(πϑ)Z9 + sin(πϑ)Z8

) ∣∣∣
σ=π

= 0 .

The solutions to the wave equation ∂∂̄Zi = 0 on the worldsheet subject to these boundary

conditions have a shifted mode expansion. More precisely, the complex variables Z±4 = 1√
2
(Z8±

iZ9) and Ψ±4 = 1√
2
(Ψ8 ± iΨ9) in the NS sector can be expanded in oscillators

Z±4 ↔ α+4
−ϑ−n, α

−4
ϑ−1−n , Ψ±4 ↔ Ψ+4

−ϑ−1/2−n, Ψ−4
ϑ−1/2−n , n ∈ Z . (4.4.58)

In fact, these strings furnish the twisted sector of the orbifold action (4.3.41) with 2θj = ϑj. The

next subsection will introduce the conformal fields associated with the twisted sector’s ground

state. The projection of D branes into the remaining internal dimensions which we gathered in

complex pairs (4.3.40) can give rise to further intersections: the (Z4, Z5) plane with angle ϑ2,

the (Z6, Z7) plane with angle ϑ3 and finally the (Z8, Z9) plane with angle ϑ4.
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The Chan Patons degrees of freedom associated with these open strings are different from

the standard ones introduced in subsection 2.4.4. The Chan paton matrices do not carry the

standard adjoint index T a but rather bifundamental indices (Tαβ ) with resepect to the gauge

groups Ga and Gb living on the brane stacks of endpoints a and b. Their matrix elements are

given by

(Tα1
β1

)α2

β2 = δα1
α2
δβ2

β1
, (4.4.59)

we will revisit them in subsection 8.3.6 for computing color factors in quark amplitudes.

4.4.2 The SCFT implementation

The shifted mode expansions (4.4.58) for the complex fields ∂Z±j and Ψ±j implies that they

depend on fractional powers of the worldsheet coordinate z. These branchings are generated

by so-called twist fields σ±ϑj and s±ϑj of conformal dimensions h(σ±ϑj) = 1
2
ϑj(1−ϑj) and h(s±ϑj) =

1
2
(1− ϑj)2. Their defining properties are the operator products with ∂Z and Ψ:

∂Z±j(z)σ±ϑj(w) ∼ (z − w)ϑj−1 τ±ϑj(w) + . . . (4.4.60)

∂Z±j(z)σ∓ϑj(w) ∼ (z − w)−ϑj τ̃∓ϑj(w) + . . . (4.4.61)

Ψ±j(z) s±ϑj(w) ∼ (z − w)1−ϑj t̃±ϑj(w) + . . . (4.4.62)

Ψ±j(z) s∓ϑj(w) ∼ (z − w)ϑj−1 t∓ϑj(w) + . . . (4.4.63)

The right hand side involves excited versions τ±ϑj , τ̃
±
ϑj
, t±ϑj , t̃

±
ϑj

of the twist fields with conformal

dimensions h(τ±ϑj) = 1
2
ϑj(3 − ϑj) and h(τ̃±ϑj) = 1

2
(1 − ϑj)(2 + ϑj). The latter OPEs can be

reproduced by a bosonized representation

Ψ±j ≡ e±iHj s±ϑj ≡ e±i(1−ϑj)Hj (4.4.64)

t±ϑj ≡ e∓iϑjHj t̃±ϑj ≡ e±i(2−ϑj)Hj (4.4.65)

with obvious conformal weights h(t±ϑj) = 1
2
ϑ2
j and h(t̃±ϑj) = 1

2
(2− ϑj)2.

Worldsheet supersymmetry only admits those combinations of σ±ϑj and s±ϑ in physical states

which are local relative to the internal supercurrent ∼∑j(∂Z
+jΨ−j + ∂Z−jΨ+j), i.e. only the

products σ±ϑjs
∓
ϑj

can be included into vertex operators. Having a massless ground state in the

twisted NS sector requires a twist field of conformal dimension h = 1
2

in the canonical (−1)

superghost picture. This imposes a condition on the angles ϑj

ϑ2 + ϑ3 + ϑ4 = 2 ⇔ h

(
4∏
j=2

σ±ϑjs
∓
ϑj

)
=

1

2
(4.4.66)
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which we had already found in subsection 4.3.2 as a requirement for spacetime SUSY (recall

that ϑj = 2θj). If the angles ϑj satisfy (4.4.66), then the twisted NS sector contains a (GSO

positive) massless scalar with vertex operator

V (−1)(C, k, ϑj) = gC C
4∏
j=2

σ−ϑj s
+
ϑj

e−φ eik·X (4.4.67)

V (−1)(C̄, k, ϑj) = gC C̄

4∏
j=2

σ+
ϑj
s−ϑj e−φ eik·X . (4.4.68)

The higher ghost picture analogue can be computed by means of the Cartan Weyl representation

∼∑j(∂Z
+jΨ−j + ∂Z−jΨ+j) of the supercurrent and th OPEs (4.4.60) to (4.4.63):

V (0)(C, k, ϑj) =
gC√
2α′

C

(
2α′ kµ ψ

ν

4∏
j=2

σ−ϑj s
+
ϑj

+
4∑
j=2

τ̃−ϑj t
+
ϑj

4∏
`6=j

σ−ϑ` s
+
ϑ`

)
eik·X (4.4.69)

V (0)(C̄, k, ϑj) =
gC√
2α′

C̄

(
2α′ kµ ψ

ν

4∏
j=2

σ+
ϑj
s−ϑj +

4∑
j=2

τ̃+
ϑj
t−ϑj

4∏
`6=j

σ+
ϑ`
s−ϑ`

)
eik·X (4.4.70)

If the angles deviate from the SUSY configuration ϑ2 + ϑ3 + ϑ4 = 2, then this state acquires a

mass m2 = 1
2α′

(2− ϑ2 − ϑ3 − ϑ4).

4.4.3 The chiral N = 1 multiplet

If the intersection angles satisfy the N = 1 SUSY condition ϑ2 + ϑ3 + ϑ4 = 2, then one can

construct massless partner fermions from the NS scalars (4.4.69), (4.4.70):

[
Q̄(−1/2)(η̄) , V (0)(C, k, ϑj)

]
= gC C α

′1/4 η̄ȧ 6kȧb Sb
4∏
j=2

σ−ϑj ei(
1
2
−ϑj)Hj e−φ/2 eik·X (4.4.71)

[
Q(−1/2)(η) , V (0)(C̄, k, ϑj)

]
= gC C̄ α

′1/4 ηa 6kaḃ S ḃ
4∏
j=2

σ+
ϑj

e−i(
1
2
−ϑj)Hj e−φ/2 eik·X (4.4.72)

[
Q(−1/2)(η) , V (0)(C, k, ϑj)

]
=

[
Q̄(−1/2)(η̄) , V (0)(C̄, k, ϑj)

]
= 0 (4.4.73)

Note that only the first part of the zero ghost picture vertex operators contributes to this

variation. It is convenient to collect the twist fields of the right hand side into one boundary

condition changing operator

Ξ :=
4∏
j=2

σ−ϑj ei(
1
2
−ϑj)Hj , Ξ̄ :=

4∏
j=2

σ+
ϑj

e−i(
1
2
−ϑj)Hj (4.4.74)

which has conformal dimension h(Ξ) = 3
8

independent on the angles. The fermions due to the

SUSY transformation (4.4.71) and (4.4.72) remain massless independent on angles ϑj, i.e. even
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if all the spacetime SUSY is broken. Their generic vertex operators are written as

V (−1/2)(u, k, ϑj) = gψ u
a Sa Ξ e−φ/2 eik·X (4.4.75)

V (−1/2)(ū, k, ϑj) = gψ ūȧ S
ȧ Ξ̄ e−φ/2 eik·X (4.4.76)

with normalization gψ = α′−1/4gC . If N = 1 SUSY is preserved then the complex scalar C and

the Weyl fermions u, ū form a chiral multiplet with 2 + 2 on-shell degrees of freedom. Their

variations are given as follows:

δηC = ηa ua δη̄C = η̄ȧ ū
ȧ (4.4.77)

δηu
a = 0 δη̄u

a = η̄ḃ 6kḃaC (4.4.78)

δηūȧ = ηb 6kbȧC δη̄ū
ȧ = 0 (4.4.79)

Note that the vertex operators (4.4.75) and (4.4.76) of the chiral fermions closely resembles the

gaugino vertex (4.3.48) and (4.3.49): Apart from their different normalizations gλ ↔ gψ and

their different Chan Paton degrees of freedom, they reproduce each other under exchange of

the internal h = 3
8

fields Σ↔ Ξ. The latter give rise to the same two point functions,

〈Σ(z) Σ̄(w) 〉 = 〈Ξ(z) Ξ̄(w) 〉 =
1

(z − w)3/4
, (4.4.80)

that is why they have the same tree level coupling to gluons which do not see the internal

SCFT. Details of this argument are given in subsection 8.2.1, and it remains valid for massive

Regge excitations constructed from the spacetime SCFT.

4.5 The first mass level in four dimensions

In this section, we take a look at the first mass level from the four dimensional point of view.

The ten dimensional particle content has been identified in section 3.3, it encompasses a spin

two tensor Bmn, a three form Emnp and chiral gravitino χαm. The fate of these 128+128 states

generically depends on the amount of spacetime SUSY which is preserved in the compactifica-

tion to four dimensions. But still, some states are completely model independent, and we will

argue in later chapters that only the universal part of the spectrum will appear as resonances

in gluon collisions.

4.5.1 Maximal supersymmetry

In maximally supersymmetric compactifications to D = 4 dimensions, all the 128+128 states

from the first mass level remain in the physical spectrum and fall into some representation of
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spin # of species bose d.o.f. spin # of species fermi d.o.f.

2 1 1 · 5 = 5 3/2 8 8 · 4 = 32

1 27 27 · 3 = 81 1/2 48 48 · 2 = 96

0 42 42 · 1 = 42

Table 4.3: particle content of the massive four dimensional N = 4 spin two multiplet

the N = 4 algebra. Massive SUSY multiplets are generically longer than massless ones, they

have 22N components in four dimensions unless some BPS bound is saturated. The first mass

level of the open superstring furnishes precisely one non-BPS multiplet with 28 = 256 states,

see [169] for a general reference on massive spin two multiplets. The four dimensional particle

content is well-known to consist of the Poincaré representations given in table 4.3.

We can identify all these states on the level of vertex operators by dimensionally reducing

their ten dimensional ancestors. A large part of this list is sketched in [170] and will be further

discussed in [151]

• spin two tensor ∼ Bmni∂X
mψne−φeik·X in D = 10 decomposes into:

V (−1)(α, k) = gα αµν i∂X
µ ψν e−φ eik·X (4.5.81)

V (−1)(β, k) = gβ β
k
µ

(
i∂Xµ Ψk + i∂Zk ψ

µ
)

e−φ eik·X (4.5.82)

V (−1)(ζ, k) = gζ ζ
kl i∂Zk Ψl e

−φ eik·X (4.5.83)

V (−1)(ϕ, k) = gϕ ϕ
(

(ηµν + 2α′kµkν) i∂X
µ ψν + 2α′ kµ ∂ψ

µ
)

e−φ eik·X (4.5.84)

The first vertex operator represents a spin two tensor in D = 4 dimensions with transverse

and traceless wave function kµαµν = αµ
µ = 0, and the second one (4.5.82) describes six

vectors k = 4, ..., 9 subject to kµβkµ = 0. The counting of scalar degrees of freedom in the

vertex operators (4.5.83) and (4.5.84) is a bit subtle because the only the D = 10 trace

of the Bmn wavefunction vanishes. Here, we have decomposed it into a symmetric and

SO(6) traceless part (ζkl = ζ(kl) and ζklδkl = 0) with 20 components such that another

scalar ϕ comes from the spacetime trace m,n = 0, 1, 2, 3.

• three form ∼ Emnpψ
mψnψpe−φeik·X in D = 10 decomposes into:

V (−1)(θ, k) = gθ θ 2α′ 1
6
εµνλρ ψ

µ ψν ψλ kρ e−φ eik·X (4.5.85)

V (−1)(ω, k) = gω 2α′ 1
2
ωµk εµνλρ ψ

ν ψλ kρ Ψk e−φ eik·X (4.5.86)

V (−1)(d, k) = gd
√

2α′ dklµ ψ
µ Ψk Ψl e

−φ eik·X (4.5.87)

V (−1)(Ω, k) = gΩ

√
2α′Ωklm Ψk Ψl Ψm e−φ eik·X (4.5.88)



4.5. THE FIRST MASS LEVEL IN FOUR DIMENSIONS 97

spin # of species wavefunctions spin # of species wavefunctions

2 1 αµν 3/2 8 4χaµ,I ⊕ 4 χ̄Īµ,ȧ
1 27 6βkµ ⊕ 6ωkµ ⊕ 15 dklµ 1/2 48 20 rak,I ⊕ 20 r̄Īk,ā ⊕ 4 baI ⊕ 4 b̄Īȧ
0 42 ϕ⊕ θ ⊕ 20 ζkl ⊕ 20 Ωklm

Table 4.4: wavefunctions in the vertex operators for the N = 4 spin two multiplet

In (4.5.85) and (4.5.86) we have exploited that a massive p form in D = 4 dimensions can

be Hodge-dualized to a 3−p form, this introduces one pseudoscalar θ and six pseudovectors

ωµk . With two internal Ψ fields, we obtain another 15 vectors, i.e. the D = 10 state Emnp

gives rise to 21 transversal vectors kµω
µ
k = kµdklµ = 0 altogether. Finally, the internal

SO(6) three form Ωklm contributes 20 scalars.

• gravitino ∼ (χαmi∂X
m + 2α′ρ̄m

β̇
ψm 6ψβ̇α)Sαe−φ/2eik·X in D = 10 decomposes into

V (−1/2)(χ, k) = gχ χ
a
µ,I

(
δba i∂X

µ − α′ ψµ (6k 6ψ)a
b
)
Sb ΣI e−φ/2 eik·X (4.5.89)

V (−1/2)(χ̄, k) = gχ χ̄
Ī
µ,ȧ

(
δȧ
ḃ
i∂Xµ − α′ ψµ (6k 6ψ)ȧḃ

)
S ḃ Σ̄Ī e−φ/2 eik·X (4.5.90)

V (−1/2)(r, k) = gr r
a
k,I

(
i∂Zk Sa ΣI − α′

2
6kaḃ Ψk Ψj γIJ̄j S ḃ Σ̄J̄

)
e−φ/2 eik·X (4.5.91)

V (−1/2)(r̄, k) = gr r̄
Ī
k,ȧ

(
i∂Zk S ȧ Σ̄Ī −

α′

2
6kȧb Ψk Ψj γ̄

j

ĪJ
Sb ΣJ

)
e−φ/2 eik·X (4.5.92)

V (−1/2)(b, k) = gb b
a
I

(
− 1

2
(σµ 6k)a

b i∂Xµ + 1
6

(6ψ 6ψ)a
b
)
Sb ΣI e−φ/2 eik·X (4.5.93)

V (−1/2)(b̄, k) = gb b̄
Ī
ȧ

(
− 1

2
(σ̄µ 6k)ȧḃ i∂X

µ + 1
6

(6ψ 6ψ)ȧḃ

)
S ḃ Σ̄Ī e−φ/2 eik·X (4.5.94)

First of all, the vertex operators (4.5.89) and (4.5.90) create eight massive spin 3/2 parti-

cles (one for each value of the R symmetry indices I, Ī) whose wavefunctions are transverse

and σ traceless, χaµσ
µ

aḃ
= kµχaµ = 0. The next part (4.5.91) and (4.5.92) involving internal

vector spinors rak,I seems to contain 24+24 Weyl spinors ra ⊕ r̄ȧ at first glance. However,

it makes sense to impose the internal irreducibility condition rak,Iγ
kIJ̄ = 0 which kills one

out of six spin 1/2 particles and leaves us with 40 spin 1/2 fermions of “SO(6) spin” 3/2.

Finally, (4.5.93) and (4.5.94) represent another eight spin 1/2 fermions which transform

in the (anti-)fundamental R symmetry representation.

Table 4.4 summarizes these findings.

4.5.2 Universal states

Most of the vertex operators (4.5.81) to (4.5.94) involve conformal fields ∂Zk,Ψk,ΣI , Σ̄Ī from

the internal SCFT. They generically disappear after SUSY breaking and therefore become
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model dependent. This subsection lists the universal states without internal SCFT coupling,

they remain in the spectrum even in N = 0 compactifications.

Among the NS sector states, only the spin two tensor αµν and two scalars ϕ, θ have a vertex

operator without internal contributions. It makes sense to combine the latter into a complex

scalar whose imaginary part is the parity-odd contribution ∼ θεµνλρ:

V (−1)(α, k) = gα αµν i∂X
µ ψν e−φ eik·X (4.5.95)

V (−1)(ϕ±, k) = gϕ ϕ
± e−φ eik·X

×
(

(ηµν + 2α′kµkν) i∂X
µ ψν + 2α′ kµ ∂ψ

µ ± iα′

3
εµνλρ ψ

µ ψν ψλ kρ
)

(4.5.96)

We will see in the three point couplings in subsection 9.2.3 that this complex combination is

essential to obey certain MHV selection rules.

We have argued in subsection 4.4.3 that chiral fermions (4.4.75) with internal twist field Ξ

are present in any N = 0 spectrum. The same is true for their Regge excitation with extra

conformal fields from the spacetime SCFT, in particular the following spin 3/2- and spin 1/2

states at mass level one are universal:

V (−1/2)(χ, k) = g̃χ χ
a
µ

(
δba i∂X

µ − α′ ψµ (6k 6ψ)a
b
)
Sb Ξ e−φ/2 eik·X (4.5.97)

V (−1/2)(χ̄, k) = g̃χ χ̄µ,ȧ

(
δȧ
ḃ
i∂Xµ − α′ ψµ (6k 6ψ)ȧḃ

)
S ḃ Ξ̄ e−φ/2 eik·X (4.5.98)

V (−1/2)(b, k) = g̃b b
a
(
− 1

2
(σµ 6k)a

b i∂Xµ + 1
6

( 6ψ 6ψ)a
b
)
Sb Ξ e−φ/2 eik·X (4.5.99)

V (−1/2)(b̄, k) = g̃b b̄ȧ

(
− 1

2
(σ̄µ 6k)ȧḃ i∂X

µ + 1
6

( 6ψ 6ψ)ȧḃ

)
S ḃ Ξ̄ e−φ/2 eik·X (4.5.100)

Excited quarks certainly deserve another normalization g̃χ compared to massive gauginos

(4.5.89) to (4.5.92), and their Chan Paton degrees of freedom are bifundamentals in the gauge

groups of the corresponding D brane stacks.

There also exist universal mass level one fermions with excited twist fields. They are not

discussed in [2] and this work. They are of lower phenomenological relevance because a nonva-

nishing coupling to SM fields requires two of these states.

4.5.3 Completing N = 1 multiplets

In the previous subsection, we have identified seven bosonic and twelve fermionic states which

universally appear even in N = 0 compactifications. Let us now move on to scenarios with N =

1 SUSY and identify the extra states which are necessary to fill the corresponding multiplets.
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First of all, the N = 1 components Σ ≡ Σ(+,+,+) and Σ̄ ≡ Σ̄(−,−,−) of the internal spin

field each give rise excited gauginos of spin 3/2 and spin 1/2. In contrast to the excited quarks

(4.5.97) to (4.5.100), they are associated with adjoint Chan Paton factors.

V (−1/2)(χ, k) = gχ χ
a
µ

(
δba i∂X

µ − α′ ψµ (6k 6ψ)a
b
)
Sb Σ e−φ/2 eik·X (4.5.101)

V (−1/2)(χ̄, k) = gχ χ̄µ,ȧ

(
δȧ
ḃ
i∂Xµ − α′ ψµ (6k 6ψ)ȧḃ

)
S ḃ Σ̄ e−φ/2 eik·X (4.5.102)

V (−1/2)(b, k) = gb b
a
(
− 1

2
(σµ 6k)a

b i∂Xµ + 1
6

( 6ψ 6ψ)a
b
)
Sb Σ e−φ/2 eik·X (4.5.103)

V (−1/2)(b̄, k) = gb b̄ȧ

(
− 1

2
(σ̄µ 6k)ȧḃ i∂X

µ + 1
6

( 6ψ 6ψ)ȧḃ

)
S ḃ Σ̄ e−φ/2 eik·X (4.5.104)

Massive spin two multiplets of N = 1 SUSY combine the spin two states (4.5.95) with the spin

3/2 gaugino-antigaugino pair (4.5.101), (4.5.102). Degree of freedom counting suggests that

there must exist a missing vector particle to complete the multiplet. Indeed, the following spin

one state is universal to all N = 1 compactifications,

V (−1)(d, k) = gd dµ ψ
µ J e−φ eik·X , (4.5.105)

where J denotes the canonically normalized U(1) current of the internal SCFT which appears

as a subleading term in the Σ(z)Σ̄(w) OPE (4.3.45). It can be regarded as a special combination

of the N = 4 vectors (4.5.87) with transverse polarization vector dklµ 7→ dµ.

Having accomodated the 8+8 degrees of freedom of (αµν , χ
a
µ, χ̄

µ
ȧ , dµ) into spin two multiplet,

we shall next take a look at the remaining states (4.5.103) and (4.5.104) of spin 1/2 and the

complex scalar (4.5.96). SUSY obviously requires two additional bosonic states, and these are

provided by the complex scalar

V (−1)(ω±, k) = gω ω
±O± e−φ eik·X . (4.5.106)

Just like the internal current J , the operator O± ≡ Ψ±2Ψ±3Ψ±4 remains in the SCFT spectrum

of any N = 1 supersymmetric geometry. It arises in the spin fields’ self-OPE:

Σ(z) Σ(w) ∼ (z−w)3/4O+(w) + . . . , Σ̄(z) Σ̄(w) ∼ (z−w)3/4O−(w) + . . . (4.5.107)

The states ω± can be thought of as special components of the internal three form Ωklm 7→ ω±.

Since each Calabi Yau compactification manifold admits a pulely holomorphic and antiholo-

morphic three form, we refer to ω± as the Calabi Yau scalar.

The two real degrees of freedom ω± complete a massive spin 1/2 multiplet (ba, b̄ȧ,Φ
±, ω±).

Table 4.5 summarizes the two universalN = 1 multiplets of highest spin 2 and 1/2, respectively.
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spin wavefunctions d.o.f. spin wavefunctions d.o.f.

2 αµν 5 bose 1/2 ba ⊕ b̄ȧ (2+2) fermi

3/2 χaµ ⊕ χ̄µȧ (4+4) fermi 0 Φ± 2 bose

1 dµ 3 bose 0 ω± 2 bose

Table 4.5: SUSY multiplets which universally occur in N = 1 compactifications
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Scattering amplitudes in the RNS

framework

101





Chapter 5

Basics of open string tree interactions

After the rather introductory part I, we can now proceed to the main topic of this work –

scattering amplitudes of open string states. Although all the full-fledged superstring ampli-

tudes discussed in this thesis are at tree level, we shall start with a general account of string

perturbation theory in the first section 5.1. Then, in section 5.2 we develop the definition and

computational prescription for open string tree amplitudes, guided by conformal symmetry on

the worldsheet. A first look at the role of color- and kinematic degrees of freedom is taken in

the third section 5.3.

The later sections 5.4 and 5.5 explain the interplay between tree amplitudes in full-fledged

superstring theory and their field theory limit. A lot of deep structures which were recently

discovered within field theory amplitudes have a natural explanation from superstring theory.

The superstring framework offers powerful worldsheet methods which make a quick and ele-

gant derivation of very general relations available. This fruitful area of research is just at its

beginning, that is why a lot of relatively new results are presented in these sections 5.4 and 5.5.

Also, they set the stage for the main results of this thesis.

5.1 The perturbative genus expansion

The basic idea in defining transition amplitudes in a quantum theory is to sum over all histories

connecting given initial and final states. In string theory, this amounts to performing the

Polyakov path integral over gauge inequivalent worldsheet metrics, see subsection 2.3.1 for the

disentanglement of gauge inequivalent orbits.

The essential prerequisites for nontrivial scattering amplitudes between physical states are

interactions between strings and their excitations. One might feel tempted to enlarge the free

worldsheet action (2.1.13) by various cubic and higher order interaction terms in the matter

103
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fields. But it turns out that this procedure is incompatible with the residual superconformal

gauge transformations which are essential for unitarity and anomaly cancellation.

Instead, it is completely sufficient to consider freely propagating superstrings at local level.

Their interactions arises from global properties, in particular from the topology of the world-

sheet which could not be captured by extra terms in the action (2.1.13). As shown in figure

5.1, the worldsheet underlying the splitting of one open string into two open ones locally looks

like the free case. In fact, this is intimately related to the absence of a distinguished inter-

action point in spacetime, a feature of point particle QFT which is the source of various UV

divergences.

σ1

σ2

Figure 5.1: One open string splitting into two

5.1.1 The topological worldsheet action

In any field theory with a Lagrangian description, both physical and technical considerations

suggest to consider the most general local action which preserves the symmetries of the theory.

In case of the worldsheet theory of the bosonic string, there is one extra term beyond the

Polyakov action (2.1.2) which respects Weyl- and Poincaré symmetry:

Stop = λχ , χ =
1

4π

∫
d2σ
√
− dethR +

1

2π

∫
ds k (5.1.1)

The subscript ’top’ already indicates that this action is of purely topological nature: In two

dimensions, the Einstein Hilbert integrand (with R denoting the worldsheet Ricci scalar) is a

total derivative. Therefore, adding (5.1.1) to the worldsheet action has no classical effect at all.

For open strings, there is an extra integral of the geodesic curvature k along the worldsheet

boundary which can be regarded as a two dimensional Gibbons Hawking boundary term1. Al-

together, the Einstein Hilbert- and Gibbons Hawking terms give rise to the Euler characteristic

1The geodesic curvature of a Lorentzian worldsheet is explicitly given by k = tanb∇atb with ta a unit vector

tangent to the boundary and na an outward pointing unit normal vector.
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χ and the impact of the action (5.1.1) is a weight factor of e−λχ in the path integral. It controls

the relative weighting of different worldsheet topologies such that eλ can be identified with the

closed string coupling gs. The physical meaning of the parameter λ will be clarified in the

following subsection.

Worldsheets of open strings require some extra care: Their sources are boundary segments

whereas the sources for closed strings are closed boundary loops. The curvature k diverges at

corners connecting two different segments giving a contribution of 1/4 to the Euler number.

Since the addition of an open string source to the worldsheet increases the number of corners

by two, the open string coupling gopen can be identified as

gopen = eλ/2 = (gs)
1/2 . (5.1.2)

This will mean that each open string vertex operator must carry such a factor of eλ/2 in its

normalization.

The Euler number is related to the Riemann surface’s genus by χ = 2−2g. Adding a handle

to the worldsheet increases g by one resulting in weight factor e2λ per “hole”. The following

figure 5.2 shows the genus expansion for worldsheets with a fixed number of open string sources:

+

e−Stop ∼ 1

+

e−Stop ∼ e2λ

+ . . .

e−Stop ∼ e4λ

Figure 5.2: The perturbative genus expansion for the contribution of open string worldsheets

to a path integral

The basic idea of string perturbation theory is to disentangle the contributions of different

worldsheet genera to observables. The path integral over different worldsheets is split according

to the loop order g, and each fixed value of g involves only one worldsheet diagram. This is in

contrast to the plethora of Feynman diagrams arising in field theory processes with nontrivial

multiplicities.

5.1.2 The string coupling from the dilaton field

This subsection is an aside which explains the dynamical origin of the parameter λ in the

topological worldsheet action (5.1.1). The end result of the following discussion is that the
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expectation value φ10 of the massless dilaton field φ10(X) from the closed string sector sets the

value of the string coupling,

λ = φ10 = 〈φ10(X) 〉 ⇒ gopen = eφ10/2 . (5.1.3)

To arrive at (5.1.3), we have to consider strings propagating in a curved background spacetime.

For simplicity, we restrict the discussion to bosonic string theory, the arguments in superstring

theories are straightforward generalizations. To take curved spacetimes into account, we have to

modify the Polyakov action (2.1.2) of Minkowski spacetime such that it incorporates a coherent

background of massless states αm−1ᾱ
n
−1|0〉 from the closed string sector. The generalization of

the Polyakov action with this background follows from adding their vertex operators to (2.1.2)2:

Sσ =
1

4πα′

∫
d2σ
√
− deth

( [
habGmn(X) + iεabBmn(X)

]
∂aX

m ∂bX
n + α′Rφ10(X)

)
(5.1.4)

The first field Gmn denotes the generalized spacetime metric whose traceless part gives rise to

the graviton vertex operator. Secondly, the antisymmetric counterpart Bmn is referred to as the

Kalb Ramond two form field subject to a gauge invariance Bmn ≡ Bmn +∂mζn−∂nζm. Finally,

a mixing of the Gmn trace and φ10 gives rise to a scalar degree of freedom, the so-called dilaton.

The last term ∼ α′R in the action (5.1.4) is required by unitary and conformal invariance or

alternatively from the limiting field theory [171,172,173,174].

The inclusion of background fields Gmn, Bmn, φ10 generically violates Weyl invariance and

spoils the theory’s consistency. The potential symmetry breaking can be most conveniently

parametrized in terms of the energy momentum trace on the worldsheet which necessarily

vanishes in conformal theories:

Ta
a = − 1

2α′
βGmn h

ab ∂aX
m ∂bX

n − i

2α′
βBmn ε

ab ∂aX
m ∂bX

n − 1

2
βφ10 R (5.1.5)

A background is compatible with (super-)conformal symmetry if Ta
a and therefore all the β

coefficients in (5.1.5) vanish. In terms of the spacetime Ricci tensor Rmn and the Kalb Ramond

field strength Hmnp = 3∂[mBnp], these are

0
!

=


βGmn = α′Rmn + 2α′∇m∇nφ10 − α′

4
HmpqHn

pq + O(α′2)

βBmn = − α′

2
∇pHpmn + α′∇pφ10Hpmn + O(α′2)

βφ10 = − α′

2
∇2φ10 + α′∇mφ10∇mφ10 − α′

24
HmnpH

mnp + O(α′2)

(5.1.6)

2The worldsheet action (5.1.4) descibes a nonlinear sigma model which is renormalizable because of the

dimensionality d = 2 of the worldsheet. Higher dimensional worldvolumes would spoil the model’s renormaliz-

ability.
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The first line of (5.1.6) is nothing but the Einstein equation with a φ10- and H dependent

source term, this is a very direct way to see that string theory contains general relativity in the

α′ → 0 regime. But the point of interest in the context of the string coupling is the appearance

of φ10: Since it always occurs differentiated in (5.1.6), an Xm independent shift of φ10 preserves

Weyl invariance. On the level of the action (5.1.4), such a φ10 shift changes the weight of

the worldsheet Einstein Hilbert action and therefore the suppression factor e−λχ of worldsheets

with larger Euler number.

The consistency conditions (5.1.6) are solved for the one parameter family

Gmn(X) = ηmn , Bmn(X) = 0 , φ10(X) = φ10 = λ (5.1.7)

of flat Minkowski backgrounds. Different values of the constant dilaton and therefore of the

string coupling gopen = eλ/2 simply correspond to different backgrounds of one single string

theory. This should not be confused with a family of different string theories. In principle, the

dynamics of string theory determine the background, therefore λ cannot be considered as a free

parameter.

5.1.3 Higher genus

Since loop amplitudes are beyond the scope of this work, we only give a brief outlook on some

features of higher genus worldsheets. Global aspects of the worldsheet were first addressed

by [175,176]. For references on multiloop computations in covariant superstring theory, see [177,

178,179,180,181]. The notion of ellipitic genus was developed in [182,183,184,185,186,187]. The

classics on multiloop computations in the RNS framework are [188,189,190,191,192,193,194].

One main complication is that for g 6= 0, the gauge redundancy does not completely elimi-

nate the path integral over metrics but leaves behind a finite-dimensional integral over so-called

moduli space. The latter is formally defined as the space of metrics for a given topology, modded

out by diffeomorphisms and Weyl transformations.

As the simplest open string example, consider a cylindrical worldsheet of genus g = 1,

parametrized by string coordinate σ1 ∈ (0, π) and periodic time σ0 ∈ (0, 2π). The metric cannot

be brought into Minkowski form ηab by means of diffeomorphisms and Weyl transformations

which respect the σ0 ≡ σ0 + 2π periodicity. The best one can do is to cast it into ds2 =

|dσ1+it dσ0|2 with t ∈ R. Roughly speaking, this corresponds to cylinders of different lengths at

fixed radius – their ratio of length and radius cannot be modified by conformal transformations.

Although one strictly speaking takes the path integral over diffeomorphism- and Weyl in-

equivalent metrics, one can outsource the integral over moduli space of metrics to an integral
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over coordinate ranges. In the g = 1 case of the cylinder, this means: Instead of a 2π period-

icity in time, we identify σ0 ≡ σ0 + 2πit and integrate over t ∈ (0,∞) as a finite dimensional

remnant of
∫
Dh
∣∣
g=1

.

The complications caused by the moduli are taken into account by b ghost insertions into

the path integral. The b ghost couples to the metric worldsheet metric hab, and each metric

modulus gives rise to a
∫

dwi b(wi) insertion in the path integral. Since g = 0 admits to

completely fix hab = ηab, the b ghosts do not contribute to tree amplitudes. Like in field theory,

ghost fields only affect observables through their running in loops.

As we have argued in subsection 3.1.3, BRST invariance requires that for each fixed coor-

dinate zi, the position integral
∫

dz over the associated physical vertex operator is replaced by

a c(zi) insertion. Hence, the zero mode counting Nc − Nb = 3 − 3g is a relation between the

number Nb of moduli and the number Nc of worldsheet positions we can fix at genus g:

Nc =


3 : g = 0

1 : g = 1

0 : g ≥ 2

, Nb =


0 : g = 0

1 : g = 1

3g − 3 : g ≥ 2

(5.1.8)

Superstring theories introduce additional moduli due to the Grassmann odd degrees of freedom

on the worldsheet, they couple to the β, γ superghost system. They are taken into account by

appropriate picture changing, see subsection 3.1.6.

5.2 The string S matrix

In theories which contain gravity and the associated diffeomorphism gauge group, there are

no local off-shell gauge invariant observables. Any correlation function 〈φ(X1)...φ(Xn)〉 for

instance is gauge dependent because diffeomorphisms map the points Xi to other positions.

The only way to keep such a correlator gauge invariant is to send the spacetime positions to

infinity, Xi → ∞. Then, they are unaffected by gauge transformation (which have to die off

asymptotically). Amplitudes with all external legs sent to infinity are referred to as elements

of the S matrix.

In the context of string theory, this implies that the insertion points zi of scattering states

into the worldsheet SCFT (via vertex operators V (zi)) need to be located at infinity. Then, we

can use conformal transformations to bring the zi to finite distances, details follow in the first

subsection 5.2.1. However, Weyl invariance imposes on-shell condition on the V (z) that is why

the machinery described in this work does not directly apply to an off-shell S matrix.
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5.2.1 From asymptotic states to the punctured disk

In this subsection, we shall explain how asymptotic states can be realized on g = 0 open string

worldsheet. A scattering process involving n open string states can be described by a worldsheet

with n long strips representing the external legs which are pulled off to infinity. Each of the

strips can be parametrized by a complex coordinate w, see figure 5.3:

0 ≤ Im(w) ≤ 2π t , Re (w) ∈ (0, π) (5.2.9)

Im (w)
•
2πt

Re (w) ∈ (0, π)

Figure 5.3: Worldsheet with four external open string states, inserted at the end of strips of

length 2πt. A complex coordinate w in the range (5.2.9) is convenient to cover one of the strips.

The limit corresponding to an S matrix element is t→∞ because the lower end Im(w) = 2πt

is the position of the external source whereas the upper end Im(w) = 0 fits onto the rest of the

worldsheet.

The strip has a conformally equivalent description in terms of the following coordinate z:

z = eiw , e−2πt ≤ |z| ≤ 1 , Im(z) ≥ 0 (5.2.10)

Under w 7→ z = eiw, the long strip is mapped into the intersection of the unit disk with the

upper half plane, with a tiny semi circle of radius e−2πt cut out at the origin. In the S matrix

limit t→∞, this defect reduces to a point.

The full worldsheet whose w parametrization for the long strips is depicted in figure 5.3

becomes a disk with small dents in the z coordinate, see the following figure 5.4. In other

words, the worldsheet underlying an open string tree level scattering process is a disk where

the vertex operator positions zi appear as punctures on the boundary.
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wj zjV2(w2 →∞)

V3(w3 →∞)

V1(w1 →∞)

V4(w4 →∞)

zj = eiwj

r = e−2πt

V2(z2)
×

V1(z1)
×

V3(z3)
×

V4(z4)
×

Figure 5.4: Conformally equivalent picture of a worldsheet with four long strips: A disk with

small dents of radius e−2πt

As a last simplifying transformation, let us map the disk boundary to the real axis. This

will prove valuable in chapter 7 when the worldsheet integrals are expressed in terms of hy-

pergeometric functions. The conformal reparametrization z 7→ x(z) which maps the unit circle

|z| = 1 to the real axis x ∈ R is given by

z 7→ x = i
1− z
1 + z

, (1, i,−1) 7→ (0, 1,∞) . (5.2.11)

In particular, the interior of the unit circle in the z patch corresponds to the upper half plane

in the x patch.

× z1 = 1×z3 = −1

×z2 = i

x = i
1− z
1 + z

x ∈ R×
x1 = 0

×
x2 = 1

. . .
x3 =∞

Figure 5.5: Mapping the unit disk |z| = 1 to the real axis x ∈ R via x = i1−z
1+z
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5.2.2 The conformal Killing group

According to the discussion of the previous subsection, the starting point for computing open

string disk amplitudes M(Φ1,Φ2, . . . ,Φn) is inserting the asymptotic states Φ1, ...,Φn on the

worldsheet boundary. The vertex operators enter as punctures on the disk boundary which is

mapped to the real axis for convenience. BRST invariance is guaranteed by integrating over

each position, see (3.1.12) and (3.1.13):

M(Φ1,Φ2, . . . ,Φn) ∼
〈

n∏
j=1

∫
R

dzj Vj(zj)

〉
(5.2.12)

Since all the vertex operators Vj are conformal primaries of unit weight, the integrand only

depends on n− 3 cross ratios rather than the full n variables zi. Three of the n integrations in

(5.2.12) badly overcount the conformally inequivalent zi configurations by an infinite degeneracy

factor, so we must compensate this divergence by an appropriate proportionality constant.

We have mentioned in subsection 5.1.3 that each genus admits to fix certain number of

vertex positions which agrees with the number of c ghost zero modes. They count the number

of so-called conformal Killing vectors, the remnant conformal gauge symmetry on a worldsheet

of genus g. The degree of overcounting in (5.2.12) is usually referred to as the “volume” VCKG

of the conformal Killing group (although it is formally infinite), and this has to be divided out

in the (correctly normalized) amplitude M:

M(Φ1,Φ2, . . . ,Φn) ∼ 1

VCKG

〈
n∏
j=1

∫
R

dzj Vj(zj)

〉
(5.2.13)

In order to give a better meaning to the rather symbolic expression V−1
CKG, we have to take a

closer look at the conformal Killing group of the disk with g = 0. In consists of those globally

defined conformal transformation which respect the disk boundary (i.e. the real axis). This

requirement is met by z 7→ z − η−1, z 7→ z − η0z and z 7→ z − η1z
2 for z ∈ R. These are the

only transformation of the form z 7→ z − ηnzn+1 with no poles on C ∪ {∞}. They generate

translations, dilataions and special conformal transformations, respectively, and are referred to

as the three conformal Killing vectors.

The exponentiated versions of the infinitesimal maps δz = −η−1, δz = −η0z and δz = −η1z
2

have the group structure of SL(2,R)/Z2:

z → az + b

cz + d
,

 a b

c d

 ≡ −

 a b

c d

 ∈ SL(2,R)/Z2 (5.2.14)

An overall rescaling of a, b, c, d does not affect the map (5.2.14), so we can assume the matrix

( a bc d ) to have unit determinant. This reduces the four real parameters to three independent
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ones which ties in with the three infinitesimal parameters η±1 and η0. Also, the conformal

transformation (5.2.14) is invariant under reflections ( a bc d ) 7→ − ( a bc d ), so only the discrete Z2

quotient gives rise to distinct transformations.

The overcounting in the integral of (5.2.13) is cured by fixing three vertex operator posi-

tions and dropping the associated integrals – there always exists an appropriate SL(2,R)/Z2

transformation to map any triplet (z1, z2, z3) ∈ R3 to an arbitrary other one (w1, w2, w3) ∈ R3.

By the BRST arguments of subsection 3.1.3, the position fixing requires the insertion of three

c ghosts, and this gives precisely the correct ghost number to cancel the background charge

Qb,c = −3, see subsection 2.3.3. More formally one could write

V−1
CKG = c(zi) c(zj) c(zk) δ(zi −wi) δ(zj −wj) δ(zk −wk) , w1, w2, w3 arbitrary . (5.2.15)

In other words, the prescription (5.2.15) to divide out the conformal Killing group of the disk

kills two birds with one stone – firstly it avoids the overcounting in the n fold integral of (5.2.13)

and it secondly achieves ghost charge conservation for the (b, c) system. After evaluating three

integrals, the amplitude (5.2.13) becomes

M(Φ1,Φ2, . . . ,Φn) ∼
〈
cV1(z1) cV2(z2) cV3(z3)

n∏
j=4

∫
R

dzj Vj(zj)

〉
(5.2.16)

where the three unintegrated positions z1, z2, z3 can be fixed to arbitrary positions on the

worldsheet boundary. The most convenient choice for the rest of this work is parametrizing the

boundary by the real axis and setting (z1, z2, z3) = (0, 1,∞), see figure 5.5.

The presence of the V−1
CKG factor in (5.2.16) provides a formal reason for the vanishing

of zero-, one- and two point disk amplitudes: The infinite volume of the conformal Killing

group cannot be compensated by the overcounting of gauge equivalent configurations of ≤ 2

worldsheet points.

The c ghosts with weight h = −1 contribute a three point correlator 〈c(zi)c(zj)c(zk)〉 =

zijzikzjk to the amplitude. We can also think of it as a Jacobian det
( 1 1 1
z1 z2 z3
z2
1 z2

2 z2
3

)
from trading the∫

dzi dzj dzk integral for an integration over the η−1, η0, η1 parameters of the conformal Killing

vectors.

Let us conclude this subsection with a few words on higher genus open string worldsheets.

The cylinder at g = 1 is the last open string worldsheet topology with a conformal Killing

vector, namely the translations δz = −η−1. At higher genus g ≥ 2, we can no longer fix any

worldsheet position and have to integrate over all the occurring z’s. Ghost charge conservation

then requires b ghost insertions, see (5.1.8).
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5.2.3 Superghost pictures

So far, we have completely neglected the fermionic degrees of freedom of the superstring. Apart

from the (b, c) ghost system which is inherited from bosonic string theory, we will have to include

the superpartners (β, γ) into our discussion of superstring amplitudes.

According to subsection 2.3.3, the (β, γ) system is plagued by a background charge Qβ,γ =

+2 which parametrizes the anomalous conservation law for the superghost number current.

Hence, the numbers Nγ, Nβ of β, γ zero modes is related to the worldsheet genus by Nγ−Nβ =

2 − 2g. In view of the bosonization prescription (2.3.75), this translates into the following

superghost charge conservation condition at tree level:〈
n∏
j=1

eqjφ(zj)

〉
= δ

(
n∑
j=1

qj + 2

)
n∏
k<l

z−qkqlkl (5.2.17)

This constrains the overall superghost charge
∑

j qj = −2 of vertex operators V
(qi)
i in order to

provide a nonzero g = 0 amplitude:

M(Φ1,Φ2, . . . ,Φn) ∼
〈
cV

(q1)
1 (z1) cV

(q2)
2 (z2) cV

(q3)
3 (z3)

n∏
j=4

∫
R

dzj V
(qj)
j (zj)

∣∣∣∣Pn
j=1 qj=−2

〉
(5.2.18)

The partition of the overall charge −2 is left arbitrary, one can think of various different

ghost charge assignments among the scattering states. This reflects a large redundancy in the

representation of superstring amplitudes with respect to the β, γ system. We justify in lines

of [126] why any partition with
∑

j qj = −2 gives rise to the same amplitude.

It is sufficient to show that exchanging one unit of superghost charge between any two vertex

operators does not affect the correlation function, i.e.

〈 . . . V (qi+1)
i (zi) . . . V

(qj)
j (zj) . . . 〉 !

= 〈 . . . V (qi)
i (zi) . . . V

(qj+1)
j (zj) . . . 〉 . (5.2.19)

Vertices in higher ghost pictures are obtained via (3.1.28), so the statement to prove is〈
. . .

∮
zi

dw

2πi
jBRST(w) ξ(zi)V

(qi)
i (zi)V

(qj)
j (zj) . . .

〉
!

=

〈
. . . V

(qi)
i (zi)

∮
zj

dw

2πi
jBRST(w) ξ(zj)V

(qj)
j (zj) . . .

〉
. (5.2.20)

The h = 0 worldsheet fermion ξ only enters the β, γ system via β = e−φ∂ξ. Physical vertex

operators do not depend in its zero mode, so one can include a zero mode integration into

the path integral defining the correlation function in the amplitude. Formally, this amounts
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to inserting 1 =
∫

dξ0 ξ0. Since ξ(z) is Grassmann odd, its non-zero modes (and therefore all

its z dependence) do not contribute to its path integral such that the position zi of the ξ(z)

insertion does not matter. We can therefore rewrite the V
(qi+1)
i and V

(qj)
j vertices as

〈 . . . V (qi+1)
i (zi)V

(qj)
j (zj) . . . 〉 = −2

〈
. . .

∮
zi

dw

2πi
jBRST(w)V

(qi)
i (zi) ξ(zj)V

(qj)
j (zj) . . .

〉
(5.2.21)

shifting the ξ argument zi 7→ zj to the position of the V
(qj)
j vertex operator.

The second essential manipulation for proving (5.2.19) is a deformation of the w integration

contour according to figure 5.6. A contour around all the vertex operators can be pulled off to

infinity, which gives zero contribution due to the z−2 falloff of correlation functions involving

the h = 1 field jBRST(z). Instead of zi, the
∮

dw integration contour can encircle any other

vertex operator position zk 6= zi.

. . . . . .

jBRST(w)

ξ(zi)×
V

(qi)
i (zi)

×
V

(qj)
j (zj)

×
V

(qk)
k (zk)︸ ︷︷ ︸

V
(qi+1)
i (zi)

= . . . . . .×
V

(qi)
i (zi)

jBRST(w)

×
V

(qj)
j (zj)

ξ(zj) ×
V

(qk)
k (zk)︸ ︷︷ ︸

−V (qj+1)
j (zj)

︸ ︷︷ ︸
0

Figure 5.6: Deformation of the
∮

dw jBRST(w) integration contour based on the absence of a

residue at infinity.

But only ξ(zj)V
(qj)
j (zj) provides a nonzero contribution because the other vertex operator

without ξ insertions are BRST closed,
∮
zk

dw
2πi
jBRST(w)V

(qk)
k (zk) = 0:

− 2

〈
. . .

∮
zi

dw

2πi
jBRST(w)V

(qi)
i (zi) ξ(zj)V

(qj)
j (zj) . . .

〉
= − 2

〈
. . .

∮
{zk 6=zi}

dw

2πi
jBRST(w)V

(qi)
i (zi) ξ(zj)V

(qj)
j (zj) . . .

〉
= − 2

〈
. . .

∮
zj

dw

2πi
jBRST(w)V

(qi)
i (zi) ξ(zj)V

(qj)
j (zj) . . .

〉
=

〈
. . . V

(qi)
i (zi)V

(qj+1)
j (zj) . . .

〉
(5.2.22)

Plugging this into (5.2.21) completes the proof that superstring amplitudes do not depend on

the superghost picture assignment. Since h(ξ) = 0, there exists a single constrant zero mode ξ0

on worldsheets of any genus, so the arguments of this subsection carry over to loop amplitudes

at g ≥ 1.
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5.2.4 SUSY Ward identities

In this subsection we will examine the impact of spacetime SUSY on superstring amplitudes.

We derive relations between disk amplitudes involving different members of a SUSY multiplet,

so-called SUSY Ward identities [150]. They are based on the independence of the underlying

SCFT correlation functions on the spacetime SUSY charge (3.5.67) or (3.5.68), independent on

the superghost picture of Qα and the vertex operators involved. We will demonstrate that at

tree level, SUSY relations from SYM theories [195,196,197,198,199] hold to all orders in α′.

We will adapt the following discussion to D = 10 uncompactified spacetime dimensions,

but it remains valid in compactifications with less supersymmetries. There is always one Ward

identity for each SO(1, D−1) spinor of supercharges. In D = 4 dimensions, for instance, SUSY

transformations can be nicely cast into the spinor helicity language introduced in appendix C.

Since tree amplitudes of D = 4 gluons are completely determined by the spacetime sector

of the underlying SCFT, one can take advantage of SUSY Ward identities even if all the

supersymmetries are broken by the compactification [200]. Disk amplitudes of n gluons can be

considerably simplified by their relation to simpler amplitudes involving n− 4 gluons and four

scalars.

SUSY Ward identities are the result of a contour deformation trick similar to that of figure

5.6 in the previous section. Supercharges are contour integrals over h = 1 spacetime super-

currents j
(q)
SUSY (e.g. j

(−1/2)
SUSY,α = α′−1/4Sαe−φ/2 in the canonical ghost picture), so their vanishing

integral at infinity can be deformed to small circles around vertex operator positions. The j
(q)
SUSY

integrals along these circles evaluate to the encircled state’s SUSY variation. The situation is

depicted in figure 5.7:

. . . . . .

jSUSY
α (w)

×
Vi(zi) ×

Vj(zj) ×
Vk(zk). . . =

. . . . . .
. . .

× × ×

Vi(zi) Vj(zj) Vk(zk)

︸ ︷︷ ︸
[Qα, Vi]

︸ ︷︷ ︸
[Qα, Vj]

︸ ︷︷ ︸
[Qα, Vk]

jSUSY
α (w)

Figure 5.7: Deformation of the
∮

dw jSUSY
α (w) integration contour. The superghost charges are

suppressed for ease of notation.

0 =

〈∮
∞

dw

2πi
jSUSY
α (w)V

(q1)
1 (z1)V

(q2)
2 (z2) . . . V (qn)

n (zn)

〉
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=
n∑
i=1

〈
V

(q1)
1 (z1) . . . V

(qi−1)
i−1 (zi−1)

∮
zi

dw

2πi
jSUSY
α (w)V

(qi)
i (zi)V

(qi+1)
i+1 (zi+1) . . . V (qn)

n (zn)

〉
=

n∑
i=1

〈
V

(q1)
1 (z1) . . . V

(qi−1)
i−1 (zi−1)

[
Q(q)
α , V

(qi)
i (zi)

]
V

(qi+1)
i+1 (zi+1) . . . V (qn)

n (zn)
〉

(5.2.23)

Superghost pictures are understood to add up to the value q +
∑n

i=1 qi = −2 required by the

background charge. In particular, the n vertex operators have to encompass an odd number

of fermionic states in order to get a nontrivial statement from (5.2.23). As mentioned above,

the same identities hold for SUSY charges in compactifications, e.g. the QIa and Q̄ȧ
Ī

in D = 4

at maximal N = 4 SUSY. One is free to contract (5.2.23) with any reference spinor ηa, η̄ȧ –

specific choices give rise to further simplifications in connection with the D = 4 spinor helicity

variables.

On the level of full-fledged scattering amplitudes, including the integral over n − 3 vertex

positions, this implies

n∑
i=1

M
(
Φ1, . . . ,Φi−1, [Qα,Φi],Φi+1, . . . ,Φn) = 0 . (5.2.24)

Examplies for SUSY variations [Qα,Φi] have been given in section 3.5.2, e.g. ηαQα transforms

a gluon of polarization ξm into a gluino of wavefunction uα = (η 6k 6ξ)α/
√

2.

5.3 Structure of open string disk amplitudes

This section takes a first look at the color- and kinematic structure of superstring amplitudes

due to the prescription (5.2.18). Any statement within this section is valid for any number

of non-compact dimensions and independent on the internal geometry perpendicular to flat

Minkowski spacetime.

5.3.1 Color decomposition

So far, the color degrees of freedom have been completely neglected in the context of scattering

amplitudes. Chan Paton charges are conserved under string interactions because they flow

across the worldsheet boundary and do not enter Virasoro generators. They therefore decouple

from the remaining degrees of freedom which are collectively referred to as “kinematics”.

Since Chan Paton degrees of freedom do not evolve between the vertex operators, the

outgoing charge of one state Φi agrees with the ingoing charge of its successor Φi+1. This

amounts to performing matrix multiplication of the generators T ai and T ai+1 associated with
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vertex operators on neighboring positions on the disk boundary. Its S1 topology requires to

take a trace of the overall matrix product (in the fundamental representation of the gauge

group), see figure 5.8.

α1α3

α2

α4

12

3 4

(T a1)α1
α2(T a2)α2

α3

(T a3)α3
α4 (T a4)α4

α1

×1×2

×
4

×
3

(T a1)α1
α2(T a2)α2

α3

(T a3)α3
α4 (T a4)α4

α1

α1α3

α2

α4

Figure 5.8: The flow of Chan Paton degrees of freedom in a four point disk amplitude leads to

the trace Tr{T a1T a2T a3T a4}.

The information on which vertex operators are neighbors lies in the ordering of their world-

sheet position zi ∈ R, at least up to a jump from +∞ to −∞ which is an artifact of the S1 → R

mapping (5.2.11):

Tr
{
T a1 T a2 . . . T an

}
←→ z1 ≤ z2 ≤ . . . ≤ zn (5.3.25)

Hence, the integration region
∏n

j=4

∫
R dzj in an n point amplitude must be decomposed into

domains of different orderings each of which is accompanied by its individual Chan Paton trace

according to (5.3.25).

These arguments lead to the following color decomposition of the color dressed open string

tree amplitude:

M
[
(T a1 ,Φ1), . . . , (T an ,Φn)

]
∼

∑
ρ∈Sn−1

Tr
{
T aρ(1) . . . T aρ(n−1) T an

}
A(Φρ(1), . . . ,Φρ(n−1),Φn)

(5.3.26)

The objectsA(Φρ(1), . . . ,Φρ(n−1),Φn) on the right hand side denote color stripped amplitudes (or

in short “subamplitudes”) which no do not depend on the Chan Paton degrees of freedom. Since

the color traces of inequivalent orderings are independent, the A must vanish for themselves if

one of the states Φ is spurious. This in particular implies gauge invariance for gluon states. A

further nice property of subampltidues is that they necessarily inherit the cyclic invariance of
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Chan Paton traces:

Tr
{
T a1 . . . T an−1 T an

}
= Tr

{
T an T a1 . . . T an−1

}
←→ A(Φ1, . . . ,Φn−1,Φn) = A(Φn,Φ1, . . . ,Φn−1) (5.3.27)

The order of the arguments Φi in A reflect the worldsheet positions’ ordering along the world-

sheet boundary zρ(i) < zρ(i+1),

A(Φρ(1), . . . ,Φρ(n−1),Φn) ∼
〈
cV

(qρ(1))

ρ(1) (zρ(1))
n−2∏
j=2

zρ(n−1)∫
zρ(j−1)

dzρ(j) V
(qρ(j))

ρ(j) (zρ(j))

cV
(qρ(n−1))

ρ(n−1) (zρ(n−1)) cV
(qn)
n (∞)

∣∣∣∣Pn
j=1 qj=−2

〉
. (5.3.28)

We have chosen to fix zρ(1), zρ(n−1) and zn rather than z1, z2, z3. This will prove convenient in

view of the worldsheet integrals accompanying the individual color stripped amplitudes. We

will show in the later subsection 5.4 that only (n − 3)! color ordered amplitudes are linearly

independent, so it suffices to compute A(Φ1,Φσ(2), . . . ,Φσ(n−2),Φn−1,Φn) with σ ∈ Sn−3. The

choice (z1, zn−1, zn) = (0, 1,∞) advertised in earlier subsections is consistent with this (n− 3)!

dimensional basis of subamplitudes.

Throughout the rest of this work, the object of main interest will be the color stripped

subamplitude associated with canonical ordering ρ(j) = j:

A(Φ1, . . . ,Φn−1,Φn) ∼
〈
cV

(q1)
1 (0)

n−2∏
j=2

1∫
zj−1

dzj V
(qj)
j (zj) cV

(qn−1)
n−1 (1) cV (qn)

n (∞)

∣∣∣∣Pn
j=1 qj=−2

〉
(5.3.29)

Evaluation of the Chan Paton traces and performing the color sums required for cross sections

will be discussed in the later section 8.3.

The color decomposition at higher genus additionally involves multiple traces, i.e. the

structure of (5.3.26) is summplemented by terms like Tr{T a1 . . . T ap}Tr{T ap+1 . . . T an} together

with a so-called non-planar color ordered amplitude. This reflects the fact that g 6= 0 open

string worldsheets have multiple boundaries where Chan Paton charges flow independently.

In the associated SYM theory obtained as α′ → 0, non-planar contributions break the dual

superconformal symmetry and are therefore much harder to compute.

5.3.2 Kinematic pole structure

It is demonstrated in appendix B.4 that any Xm correlator appearing in open superstring

amplitudes at tree level is proportional to the universal plane wave factor
∏n

i<j |zij|2α
′ki·kj . As
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a consequence, the worldsheet integral in color ordered amplitudes takes the form

A(Φ1, . . . ,Φn−1,Φn) ∼
n−2∏
j=2

1∫
zj−1

dzj

n∏
i<j

|zij|2α
′ki·kj

∑
I

(zi − zj)n
I
ij KI (5.3.30)

where KI denote a collection of kinematic factors and the associated offsets nIij in the (zij)

exponents follow from the accompanying RNS and (super-)ghost correlators, see chapter 6 for

the former. The GSO projection makes sure that the operator algebra is local such that all the

nIij are integers, nIij ∈ Z. Their model dependent values do not affect the general statements

to be made in the following. The full chapter 7 is devoted to the properties of the integrals

in (5.3.30), and we will give a glimpse of their importance for the pole structure of amplitudes

right now.

Unitarity requires that intermediate states are exchanged in superstring amplitudes. Also

in string theory, Feynman diagrams are very useful to illustrate this. In order to make the

propagation of internal states manifest, one has to identify their poles in kinematic invariants

(such as momentum products ki · kj) corresponding to propagators 1
p2+m2

k
or 1
6p±mk

of internal

states Φk. In case of color ordered amplitudes, propagating momenta p can only encompass a

sequence of r neighboring external momenta, p = (ki+ki+1+...+ki+r). We will use dimensionless

versions of Mandelstam variables

sij = α′ (ki + kj)
2 , si1...ir = α′ (ki1 + ki2 + . . .+ kir)

2 (5.3.31)

in order to simplify the exponents of (5.3.30). Bosonic propagators are then of the form

(si1...ir/α
′ + m2

k)
−1. The sample diagram shown below represents those parts of a n = 7 point

amplitude with poles in (s12/α
′+m2

k), (s123/α
′+m2

l ) and (s567/α
′+m2

n) where mk,ml,mn are

the masses of the virtual particles Φk, Φl and Φn in the internal channels.

2

1

s12

Φk

3

s123

Φl

4

s567 = s1234

Φn

5

6

7

In chapter 7 on hypergeometric functions, we will explain in detail how the integrals in (5.3.30)

give rise to a pole structure associated with these diagrams, see in particular subsection 7.1.3.

Since we are particularly interested in the interplay between superstring- and field theory am-

plitudes, the main focus of this work lies on massless poles s−1
i1...ir

. They arise from the inte-

gration region where the integration variables zi1 , zi2 , . . . , zir approach each other. This gives a
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rough explanation for the aforementioned selection rule: The canonically ordered subamplitude

A(Φ1,Φ2, . . . ,Φn) can only have poles in si,i+1,...,i+r because the ordering z1 ≤ z2 ≤ ... ≤ zn

only admits zi → zi+r if all the intermediate positions zi+1, zi+2, . . . , zi+r−1 collide as well.

5.3.3 The minimal set of Mandelstam invariants

The ki · kj appearing in the color ordered amplitudes (5.3.30) can easily be expressed in terms

of sij and the masses mi:

ki · kj =
1

2α′
(
sij + α′m2

i + α′m2
j

)
(5.3.32)

In three point scattering processes, the phase space becomes trivial due to momentum conser-

vation k1 + k2 + k3 = 0:

k1 · k2 =
1

2

(
+m2

1 + m2
2 − m2

3

)
k1 · k3 =

1

2

(
+m2

1 − m2
2 + m2

3

)
(5.3.33)

k2 · k3 =
1

2

(
−m2

1 + m2
2 + m2

3

)
Four point kinematics is governed by two independent Mandelstam invariants. They will be

referred to as

s := s12 = s34 , u := s14 = s23 , (5.3.34)

and the remaining combinations can be expressed in terms of mi, s and u

t := s13 = s24 , s+ t+ u = −α′ (m2
1 +m2

2 +m2
3 +m2

4) . (5.3.35)

Momentum conservation
∑n

j=1 kj = 0 in an n particle process allows to reduce any ki · kj
to a combination of 1

2
n(n − 3) invariants3. The most convenient choice of basis is inspired

by the color stripped n point amplitude A(Φ1, . . . ,Φn) associated with the canonical ordering

ρ(i) = i: This basis consists of the cyclic orbit of s12 (i.e. {s12, s23, . . . , sn−1,n, sn1}) as well as

3Subtle exceptions occur if the number n of legs exceeds the number of spacetime dimensions by more

than one: Momentum conservation leaves n − 1 potentially independent D component momentum vectors.

If n − 1 > D, however, the inevitable linear dependences among k1, . . . , kn−1 imply the vanishing of Gram

determinants det sij (with 1 ≤ i, j ≤ n − 1) which yields polynomial equations between the Mandelstam

invariants. In D = 4 dimensions, for instance, this effect kicks in at a six point amplitude where det sij = 0 with

1 ≤ i, j ≤ 5 is a fifth order polynomial constraint on the Mandelstam variables. Usually, it is not advisable to

eliminate further invariants on these grounds because the involved polynomial equations drastically increase the

length of the final expression for the amplitude. We will therefore ignore this class of extra relations between

the 1
2n(n− 3) invariants.
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longer chains of adjacent momenta s123, s1234, . . . up to the maximum length s12...[n/2], together

with their cyclic images. In this context, [·] denotes the Gauss bracket [x] = maxn∈Z(n ≤ x),

which picks out the nearest integer smaller than or equal to its argument. If n is even, then

momentum conservation implies the last orbit involving s12...n/2 = s(n/2+1)...n−1,n contains n/2

independent elements rather than n.

A six point amplitude, for instance, is most concisely described by the full cyclic orbit

{s12, s23, s34, s45, s56, s61} together with {s123, s234, s345}. Momentum conservation eliminates

s456 = s123 and s561, s612. Any other sik with non-adjacent labels i 6= k ± 1 can be rewritten in

terms of the nine variables above, e.g.

s13 = α′ (k1 + k3)2 = s123 − s12 − s23 − α′ (m2
1 +m2

2 +m2
3) (5.3.36)

Let us explicitly check that the aforementioned basis of si1...ir in n point amplitudes with

r ≤ n/2 indeed has 1
2
n(n− 3) elements:

• n = 2p−1 is odd: ∃ [n/2]−1 = p−2 orbits with n elements each, which gives n(p−2) =

n
2
(n− 3) basis elements in total

• n even: ∃ n/2− 2 orbits with n elements and one half orbit of si1...in/2 with n/2 elements

giving n
2
(n− 4) + n

2
= n

2
(n− 3) invariants in total

5.3.4 Normalization factors

So far we did not specify the overall normalization of color dressed superstring amplitudes M
or their color stripped ingredients. In principle, the right prefactors could be computed by

evaluating all the regularized functional determinants arising in the path integral of the SCFT

correlators in (5.2.18). But we will follow a more pragmatic approach in this work and obtain

the correct normalization by consistency conditions: Firstly, unitarity requires that n ≥ 4

point amplitudes factorize into lower point amplitudes on the residue of kinematic poles, and

secondly, scattering of massless states has to reduce to the correctly normalized SYM vertices

in the α′ → 0 limit.

The consistency conditions above are sufficient to determine the set of unknowns on the

superstring side. Firstly, we have not specified the normalization of vertex operators in section

3.2, this leaves one unfixed constant for each SUSY multiplet such as gA at the massless level.

Secondly, there is a universal prefactor in all disk amplitudesM coming from the determinants

of differential operators in the worldsheet action, independent on the number and types of

states involved. In [41], it is referred to as CD2 , the D2 subscript referring to the disk topology.
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However, the presence of chiral matter introduced in section 4.4 requires a modified overall

factor C̃D2 . The worldsheet of open strings streching between branes intersecting at angles

introduces a new CFT sector of boundary condition changing fields. Also C̃D2 can be deter-

mined from factorization and matching with quark gluon amplitudes in the field theory limit.

Explicitly, the normalization factors are given by

CD2 =
1

g2
YM α′2

, C̃D2 =
e−φ10

2α′2
(5.3.37)

where gYM is the coupling constant of the associated Yang Mills theory and φ10 denotes the

vacuum expectation value of the ten dimensional dilaton field (see subsection 5.1.2). In fact we

have gYM = gopen = eφ10/2, but we shall keep the notation of the SYM coupling to make contact

with field theory amplitudes later on.

According to the discussions above, the normalized n point color ordered disk amplitude in

superstring theory is given as follows:

A(Φ1, . . . ,Φn−1,Φn) =

〈
cV

(q1)
1 (0)

n−2∏
j=2

1∫
zj−1

dzj V
(qj)
j (zj) cV

(qn−1)
n−1 (1) cV (qn)

n (∞)

∣∣∣∣Pn
j=1 qj=−2

〉

×

 CD2 : only adjoint matter involved

C̃D2 : chiral matter involved
(5.3.38)

5.4 Relating massless color ordered disk amplitudes

Having introduced the color decomposition of open string scattering amplitudes, we should

next think about how many independent computations need to be performed. Not all of the

(n−1)! color stripped amplitudes in (5.3.26) are algebraically independent, and we will explain

the methods of [84,85] to expand any of them in a basis of only (n− 3)! subamplitudes.

As first naive step into this direction is based on worldsheet parity. Both the Chan Paton

matrices and the oscillator contribution of the vertex operator have a well defined eigenvalue

±1 under reflection σ1 7→ −σ1, hence the same is true for the subamplitudes

A(Φ1,Φ2, . . . ,Φn−1,Φn) = ±A(Φn,Φn−1, . . . ,Φ2,Φ1) (5.4.39)

with a sign depending on n and the mass levels of the states Φj involved. This already reduces

the number of potentially independent subamplitudes to 1
2
(n− 1)!.

We will restrict our analysis to massless states – firstly they are our main focus during the

rest of this work, secondly these are the only states which contribute to the low energy limit of
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string theory and therefore admit comparison with SYM. More details will follow in subsection

5.5. It also makes sense to lighten notation for the massless state subamplitudes and to denote

them by

A(1, 2, . . . , n− 1, n) := A(Φ1,Φ2, . . . ,Φn−1,Φn)
∣∣∣
m(Φi)=0

(5.4.40)

from now on.

5.4.1 Worldsheet monodromy relations

In this subsection we apply worldsheet techniques in order to derive algebraic identities between

color stripped tree amplitudes relevant for string theory. For this purpose, let us rewrite the

canonically ordered subamplitude (5.3.30) in symmetric fashion as

A(1, 2, . . . , n− 1, n) ∼ 1

VCKG

n∏
j=1

∫
z1≤z2≤...≤zn

dzj

n∏
i<j

|zij|2α
′ki·kj

∑
I

(zi − zj)n
I
ij KI . (5.4.41)

Recall that the integers nIij specific for a given kinematic factor KI are a result of evaluating

the RNS correlator and extracting spacetime tensor structures. Moreover, the dimensionless

Mandelstam variables take the simple form 2α′ki · kj = sij for massless states.

The modulus along with the |zij|sij factors is the only obstacle that keeps the worldsheet

integrand from being analytic. But we can easily relate it to a holomorphic function in z1 by

taking the phases (−1)sij = eiπsij within certain integration regions into account:

n∏
j=2

z
s1j
j1 =

n∏
j=2

|z1j|s1j ×



1 : −∞ ≤ z1 ≤ z2

eiπs12 : z2 ≤ z1 ≤ z3

eiπ(s12+s13) : z3 ≤ z1 ≤ z4

...
...∏n−1

j=2 eiπs1j : zn−1 ≤ z1 ≤ zn

(5.4.42)

For a holomorphic integrand in z1, we know by Cauchy’s theorem that a closed contour integral

in z1 vanishes. The contour of interest is the real axis, followed by a semicircle of infinite radius

in the upper half plane with zero contribution, see the following figure 5.9:

Let us start with the integrand of (5.4.41) and drop the modulus of z
sij
j1 factors to make it

analytic in z1. Then we integrate z1 along the contour from figure 5.9 rather than over (−∞, z2)

as required for the subamplitude A(1, 2, . . . , n). The semicircle at infinity does not contribute

because the correlation function of conformal h = 1 fields behaves like z−2
1 as |z1| → ∞. In

this setting, the vanishing of a closed contour integral implies the following relation between
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Im {z1}

Re {z1}
×
z2

×
z3

×
zn−1

A(1, 2, . . . , n)

A(2, 1, 3, . . . , n)

A(2, 3, . . . , n− 1, 1, n)

. . .

A(2, 3, 1, 4, . . . , n)

. . .
A(2, 3, . . . , n− 2, 1, n− 1, n)

Figure 5.9: The integration contour leading to monodromy relations between subamplitudes

subamplitudes:

0 =

∫
R

dz1

VCKG

n∏
j=2

∫
z2≤z3≤...≤zn

dzj

n∏
j=2

z
s1j
j1

n∏
k<l
k,l≥2

|zkl|skl
∑
I

z
nI1j
1j z

nIkl
kl KI

=

z2∫
−∞

dz1

VCKG

n∏
j=2

∫
z2≤z3≤...≤zn

dzj

n∏
j=2

|zj1|s1j
n∏
k<l
k,l≥2

|zkl|skl
∑
I

z
nI1j
1j z

nIkl
kl KI

+
n∑
p=3

zp∫
zp−1

dz1

VCKG

n∏
j=2

∫
z2≤z3≤...≤zn

dzj eiπ(s12+...+s1,p−1)

n∏
j=2

|zj1|s1j

×
n∏
k<l
k,l≥2

|zkl|skl
∑
I

z
nI1j
1j z

nIkl
kl KI

=
n∑
p=2

eiπ(s12+...+s1,p−1)A(2, . . . , p− 1, 1, p, . . . , n) (5.4.43)

On the way to the second line, we have split the z1 integration region R into intervals (−∞, z2)

and (zp−1, zp) for p = 3, 4, . . . , n. The analytic z
sij
j1 factors are related to the |zj1|sij which appear

in the amplitudes via (5.4.42) – on the expense of catching phase factors eiπ(s12+...+s1,p−1) for the

individual R subsets. In the third line, subamplitudes with Φ1 at different positions have been

identified after pulling out the phases.
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The arguments above led to a striking relation between color ordered open superstring

amplitudes at tree level

A(1, 2, . . . , n) + eiπs12 A(2, 1, 3, . . . , n) + eiπ(s12+s13)A(2, 3, 1, 4, . . . , n)

+ . . . + eiπ(s12+s13+...+s1,n−1)A(2, 3, . . . , n− 1, 1, n) = 0 , (5.4.44)

its implication on the number of independent subamplitudes will be explained in the next

subsection.

The universality of this result stems from its independence on the integers nIij in (5.3.30).

The latter do not affect the analytic properties of the subamplitudes and hence do not contribute

any phases. Also, the kinematicsKI and their interplay with nIij are independent on the ordering

ρ ∈ Sn−1 since the underlying CFT correlators are evaluated before specifying the partial

amplitude. It is only the integration region which changes for each subamplitude. Moreover,

the proof of the relation (5.4.44) does not rely on the amount of spacetime supersymmetry, the

number of spacetime dimensions or whether the massless states belong to the NS- or R sector.

Hence, (5.4.44) hold in any spacetime dimension D and for any amount of supersymmetry.

5.4.2 The minimal basis of subamplitudes

The monodromy relation (5.4.44) and its relabellings imply that the basis dimension of indepen-

dent subamplitudes must be much smaller than the number (n−1)!/2 suggested by worldsheet

parity and cyclic inequivalence. To get a better handle on the minimal basis, we rewrite the

set of monodromy relations in a slightly different way (with α0 denoting leg 1):

A(1, α1, . . . , αs, n, β1, . . . , βr) = (−1)r
r∏
i<j

eiπsβiβj
∑

σ∈OP{α}∪{βT }

(
s∏
i=0

r∏
j=1

eiπsαiβj

)
A(1, σ, n)

(5.4.45)

This follows from a contour integral analysis similar to subsection 5.4.1. By {α} and {β}, we

denote disjoint ordered subsets of {2, . . . , n − 1} such that {α} ∪ {β} = {2, . . . , n − 1}. The

summation range OP{α} ∪ {βT} encompasses the set of all the permutations of {α}⋃{βT}
that maintain the order of the individual elements of both sets {α} and {βT}. The notation

{βT} represents the set {β} with reversed ordering of its r elements.

The only potentially independent subamplitudes after (5.4.45) have legs 1 and n at neigh-

bouring positions. Their total number is (n − 2)! according to the Sn−2 permutations of the

remaining legs 2, 3, . . . , n− 1. In order to make efficient use of (5.4.44) and (5.4.45), we should

bear in mind that subamplitudes are real, A(1, 2, . . . , n) ∈ R. We can take the real part of
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(5.4.45) to perform a reduction to the (n− 2)! color orderings A(1, σ, n). The imaginary parts

carry additional information and give rise to simpler relations because they involve one terms

less than the real parts, e.g.

sin(πs12)A(2, 1, 3, . . . , n) + sin
(
π(s12 + s13)

)
A(2, 3, 1, 4, . . . , n)

+ . . . + sin
(
π(s12 + s13 + . . .+ s1,n−1)

)
A(2, 3, . . . , n− 1, 1, n) = 0 . (5.4.46)

This equation (and its relabellings) are actually sufficient to express any subamplitude in terms

of an (n − 3)! element basis. This number is identical to the dimension of a minimal basis of

generalized Gaussian hypergeometric functions describing the full n point open string amplitude

[201,202,150], more on that will be said in later chapters.

A sensible basis choice for the (n−3)! independent superstring n point amplitudes (to which

we already alluded in subsection 5.3.1) keeps three legs at fixed positions – say 1, n− 1 and n

– and encompasses all permutations of the remaining legs 2, 3, . . . , n− 2:{
A(1, σ(2), σ(3), . . . , σ(n− 2), n− 1, n) , σ ∈ Sn−3

}
(5.4.47)

All other color ordered amplitudes can be expanded in this basis.

5.4.3 The four- and five point example

Let us demonstrate the power of (5.4.46) relating n − 2 color stripped n point amplitudes by

means of the n = 4 and n = 5 examples. Given the (−1)n worldsheet parity of massless n point

subamplitudes, the naive color decomposition would give three independent color orderings at

four point:

M
[
(T a1 , 1), . . . ,(T a4 , 4)

]
= Tr

{
T a1 T a2 T a3 T a4 + T a4 T a3 T a2 T a1

}
A(1, 2, 3, 4)

+ Tr
{
T a2 T a1 T a3 T a4 + T a4 T a3 T a1 T a2

}
A(2, 1, 3, 4)

+ Tr
{
T a2 T a3 T a1 T a4 + T a4 T a1 T a3 T a2

}
A(2, 3, 1, 4) (5.4.48)

The n = 4 version of (5.4.46) and its 1↔ 2 relabelling then yield4:

sin(πs)A(2, 1, 3, 4) − sin(πu)A(2, 3, 1, 4) = 0 (5.4.49)

sin(πs)A(1, 2, 3, 4) − sin(πt)A(1, 3, 2, 4) = 0 (5.4.50)

All of A(1, 2, 3, 4), A(2, 1, 3, 4) and A(2, 3, 1, 4) are obviously proportional to each other, the

proprotionality constant being a quotient of sin(πsij).

4We are using four point Mandelstam variables s = s12 = s34, u = s14 = s23 and the relation s+ t+ u = 0

valid for the massless case.



5.5. FIELD THEORY VERSUS SUPERSTRING AMPLITUDES 127

At five points, the basis (5.4.47) consists of A(1, 2, 3, 4, 5) and A(1, 3, 2, 4, 5). Among the

twelve subamplitudes after reflection and cyclic symmetry, ten are nontrivial linear combina-

tions of both basis elements such as

A(1, 2, 5, 4, 3) =
sin
(
π(s51 − s34)

)
A(1, 2, 3, 4, 5) + sin

(
π s24

)
A(1, 3, 2, 4, 5)

sin
(
π(s12 − s34 + s51)

) , (5.4.51)

see subsection 4.3.2 of [84] for the complete list including the remaining nine.

5.5 Field theory versus superstring amplitudes

Open superstring theory reduces to SYM field theory in the limit of vanishing string length

α′ → 0. This remains valid after dimensional reduction to four dimensional spacetime, i.e. for

N = 4 SYM in D = 4, but also in compactifications with less supersymmetry. After complete

SUSY breaking to N = 0, gluons and chiral fermions (see subsection 4.4.3 for the latter) being

the universal massless states should give rise to QCD physics.

As a consequence, both SYM- and QCD scattering amplitudes must be reproduced by

isolating the α′ → 0 limit of massless superstring amplitudes involving (using shorthand 1a1 ≡
(T a1 ,Φ) for some massless state Φ):

MSYM
[
1a1 , 2a2 . . . , nan

]
= lim

α′→0
M
[
1a1 , 2a2 . . . , nan ;α′

]
(5.5.52)

We shall review the structure of gauge theory amplitudes in the first subsections and later

on connect them to the string theory technology from the previous section. The following

discussion is again universal to the number of spacetime dimensions and supersymmetries, i.e.

it applies both to the gluon sector of QCD and to N = 1 SYM in ten dimensions. The only

simplifying assumption for the color sector is that all external states transform in the adjoint

representation of a nonabelian gauge group. Bifundamental fields requires straightforward

adjustment in the color factors of their tree amplitudes, see subsection 8.3.6.

Within this section, we use dimensionful Mandelstam invariants

ŝi1i2...ir := (ki1 + ki2 + . . .+ kir)
2 (5.5.53)

instead of the dimensionless kinematic invariants si1i2...ir = α′(ki1 + ki2 + . . . + kir)
2 but drop

the hat for ease of notation. In other words – within this section 5.5, si1i2...ir denotes the mass

dimension two quantity (ki1 + ki2 + . . . + kir)
2, but in the remainder of this work, the si1i2...ir

are dimensionless through the built in α′ in their definition (5.3.31).
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5.5.1 Color decomposition in field theory

Scattering amplitudes of gauge theories depend on color- and kinematic degrees of freedom of

the external states. The standard Feynman rules due to the Lagrangian description lead to

tree amplitudes which we shall parametrize as follows:

MSYM
[
1a1 , 2a2 . . . , nan

]
=

∑
i

ci ni∏
αi
sαi

(5.5.54)

The i sum runs over all n point tree diagrams with cubic vertices (or, equivalently, over kine-

matic pole channels), regardless on the ordering of the external legs. The ci denote color factors

made of n−2 structure constants fabc of the gauge group, and the ni are referred to as the their

dual numerators and carry all the information on kinematics and helicities. In other words –

the ni are functions of momenta and polarization tensors. We will leave them unspecified at

present because they depend on the external states. Each (ni, ci) pair multiplies n− 3 propa-

gators s−1
αi

as required by a cubic n point tree diagram. The contribution of four point vertices

in YM fields to (5.5.54) certainly contains less propagators and must be absorbed into the ni

by multiplying with 1 =
sαi
sαi

for compatibility with the pole structure. Those parts of the ni

where one of the poles in sαi can be cancelled are referred to as contact terms.

To make contact with the Chan Paton traces of the string computation, we shall rewrite

the color structures fabc from the interaction vertices and δab from the propagators in terms of

the generators T a of the gauge group. First of all,

[
T a , T b

]
= ifabc Tc , Tr

{
T a T b

}
=

1

2
δab (5.5.55)

fixes our normalization conventions for the generators T a which might vary between different

references. By combining the two equations (5.5.55) we expres the unique color factor fabc of

a three point amplitude as

i

2
fabc = Tr

{
T a T b T c − T b T a T c

}
. (5.5.56)

The contractions of structure constants which appear at higher order can be reshuffled in a

similar way, e.g. the color factor cs of the s channel in a four point amplitude (see figure below)

contributes to four different color traces:

fabe f ecd = − 2 Tr
{ [

T a , T b
] [
T c , T d

] }
(5.5.57)

By iterating tricks like (5.5.56) and (5.5.57), all the fabc can be replaced by traces of gen-

erators T d. The four point interaction vertex in the gauge field is no obstruction because it
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b

a

fabe

c

d

f ecd

a2

a1

fa1a2e1

a3

f e1a3e2

a4

f e2a4e3

. . .
a3

f en−4an−2en−3

an−1

an

f en−3an−1an

Figure 5.10: The structure constants due to the Feynman rules for three point vertices in the

gauge field. The diagram on the left hand side represents the s channel of a four point amplitude

with color factor fabef ecd. As shown on the right hand side, a specific channel of an n point

amplitude involves n− 2 structure constants.

provides the same color structure as the product of two cubic vertices connected by a prop-

agator. Hence, the mechanism (5.3.26) of color ordering can be literally transferred to field

theory:

MSYM
[
1a1 , 2a2 . . . , nan

]
∼

∑
ρ∈Sn−1

Tr
{
T aρ(1) . . . T aρ(n−1) T an

}
ASYM

(
ρ(1), . . . , ρ(n− 1), n

)
(5.5.58)

Since the Chan Paton traces are independent, it must be true on the level of color stripped

amplitudes that SYM S matrix emerges in the low energy limit (5.5.52) of superstring theory:

ASYM(1, 2, . . . , n− 1, n) = lim
α′→0
A(1, 2, . . . , n− 1, n;α′) (5.5.59)

Moreover, each subamplitude ASYM
(
ρ(1), . . . , ρ(n − 1), n

)
must be gauge invariant for itself –

in constrast to individual Feynman diagrams. The virtue of (5.5.58) lies in the decomposition

of the full amplitude MSYM into smaller gauge invariant pieces with transparent properties.

As a concrete example for the ideas above, let us reconstruct the color dressed four point

amplitude MSYM[1a1 , 2a2 , 3a3 , 4a4 ] from a decomposition (5.5.58). The color stripped ampli-

tudes ASYM(1, 2, 3, 4), ASYM(1, 3, 2, 4) and ASYM(1, 3, 4, 2) subject to reflection symmetry are

parametrized by kinematic numerators ns, nt and nu along with the s-, t- and u channel poles,

respectively. Only two out of three channels are compatible with the individual color orderings,

see figure 5.11:

MSYM[1a1 , 2a2 , 3a3 , 4a4 ] = Tr
{
T a1 T a2 T a3 T a4 + T a4 T a3 T a2 T a1

} (
+
ns
s

+
nu
u

)
+ Tr

{
T a1 T a3 T a2 T a4 + T a4 T a2 T a3 T a1

} (
− nt

t
− nu

u

)
+ Tr

{
T a1 T a3 T a4 T a2 + T a2 T a4 T a3 T a1

} (
− ns

s
+

nt
t

)
= Tr

{ [
T a1 , T a2

] [
T a3 , T a4

] } ns
s

+ Tr
{ [

T a4 , T a1
] [
T a2 , T a3

] } nu
u

+ Tr
{ [

T a1 , T a3
] [
T a4 , T a2

] } nt
t
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=:
ns cs
s

+
nu cu
u

+
nt ct
t

(5.5.60)

From the last equality, we can read off the explicit expressions for the triplet cs, cu, ct of color

factors:

cs = Tr
{ [

T a1 , T a2
] [
T a3 , T a4

] }
= − 1

2
fa1a2e f ea3a4

cu = − 1

2
fa4a1e f ea2a3 , ct = − 1

2
fa1a3e f ea4a2 (5.5.61)

ASYM(1, 2, 3, 4) = +

2

1

s
3

4

+

2

1

u

3

4

= +
ns
s

+
nu
u

ASYM(1, 3, 2, 4) = +

2

1

t

3

4

−

2

1

u

3

4

= − nt
t
− nu

u

ASYM(1, 3, 4, 2) = −
2

1

s
3

4

−

2

1

t

3

4

= − ns
s

+
nt
t

Figure 5.11: The kinematic numerators ns, nt and nu associated with the three channels of the

four point amplitude and their appearence in color ordered amplitudes.

5.5.2 Duality between color and kinematics

The kinematics factors ni in the representation (5.5.54) forMSYM are building blocks for color

stripped amplitudes. It was observed by Bern, Carrasco and Johannson (BCJ) that the ni can

be brought into a parametrization such that they exhibit the same algebraic structures as their

color counterparts – although they appear completely unreated at first glance [81]. This duality

between color- and kinematic degrees of freedom is an excellent example for hidden simplicity

and non-obvious harmony in scattering amplitudes.

More specifically, the duality statement of BCJ concerns the Jacobi identities f b[a1a2fa3]bc =

0 valid for any Lie algebra: Whenever a triplet (ci, cj, ck) of color factors satisfies a Jacobi
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identity, then one can arrange the associated numerators (ni, nj, nk) such that they obey an

analogous relation:

ci + cj − ck = 0 ⇒ ni + nj − nk = 0 (5.5.62)

The Feynman rules of the color sector allow to identify the associated triplet of diagrams, the

general case is depicted in figure 5.12. Moreover, a set of numerators ni compatible with (5.5.62)

flips its sign under permutation of external legs whenever the corresponding color factors ci do.

This is due to the antisymmetry of the three point vertex under exchange of two legs – both

on the color- and the kinematic side.

kinematics

color

ni + nj − nk = 0

ci + cj − ck = 0
. . .

. .
.

si
. .
.

. . .ni
si

ci

+

. . .

. .
.

sj

. .
.

. . .
nj
sj

cj

−

. . .

. .
.

sk

. .
.

. . .
nk
sk

ck

Figure 5.12: A triplet of subdiagrams where the sub over the associated color factors vanishes

due to the Jacobi relation f e[abf c]de = 0. The external subdiagrams attached to the dotted lines

are arbitrary.

The four point color factors (5.5.61) obviously satisfy cs+ct−cu = 0, so the duality predicts

the existence of a numerator parametrization such that ns + nt − nu = 0. In fact, this four

point numerator identity holds independent on the distribution of four gluon contact terms,

this is a feature of the simple structure of MSYM[1a1 , 2a2 , 3a3 , 4a4 ] and its momentum phase

space. Concrete examples of ns, nt and nu will be given in section 8.1.

The five point amplitudeMSYM[1a1 , 2a2 , 3a3 , 4a4 , 5a5 ] can be decomposed into fifteen channels

with (ci, ni), i = 1, 2, . . . , 15. Each color ordered amplitude encompasses five diagrams of the

type shown in figure 5.13:

ASYM(1, 2, 3, 4, 5) =

2

1
s12

3

s45

4

5

+ cyclic(12345)

=
n1

s12s45

+
n2

s23s51

+
n3

s12s34

+
n4

s23s45

+
n5

s34s51

Figure 5.13: The five cubic diagrams entering the color stripped ASYM(1, 2, 3, 4, 5) amplitude.
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The labelling of the remaining ten channels is uniquely fixed by the subamplitudes

ASYM(1, 4, 3, 2, 5) =
n6

s14s25

+
n5

s34s51

+
n7

s23s14

+
n8

s34s25

+
n2

s23s51

ASYM(1, 3, 4, 2, 5) =
n9

s13s25

− n5

s34s51

+
n10

s13s24

− n8

s34s25

+
n11

s51s24

ASYM(1, 2, 4, 3, 5) =
n12

s12s35

+
n11

s24s51

− n3

s12s34

+
n13

s35s24

− n5

s51s34

(5.5.63)

ASYM(1, 4, 2, 3, 5) =
n14

s14s35

− n11

s24s51

− n7

s14s23

− n13

s24s35

− n2

s23s51

ASYM(1, 3, 2, 4, 5) =
n15

s13s45

− n2

s23s51

− n10

s13s24

− n4

s23s45

− n11

s24s51

The pictorial duality dictionary in figure 5.12 implies the following kinematic Jacobi identities

0 = n3 − n5 + n8 = n3 − n1 + n12 = n10 − n11 + n13

0 = n4 − n2 + n7 = n4 − n1 + n15 = n10 − n9 + n15 (5.5.64)

0 = n8 − n6 + n9 = n5 − n2 + n11 = n7 − n6 + n14

which only hold for special assignments of the contact terms. In contrast to the four point

analogue ns + nt − nu = 0, the five point Jacobi identities (5.5.64) generically fail to hold.

5.5.3 The contact term ambiguity

The quartic self-couplings of gluons in the YM action introduces an ambiguity into the decom-

position (5.5.54) of gauge theory amplitudes into diagrams with cubic vertices. The numera-

tors ni are not uniquely specified because there remains the freedom to add zeros of the form

0 =
(
sαi
sαi
− sαj

sαj

)
× (. . .) to the amplitudes which amounts to reabsorbing contact terms into a

different numerators nj 6= ni.

The duality (5.5.62) crucially depends on the choice of kinematic packages ni. A generic

assignment of contact terms at n ≥ 5 points spoils the dual Jacobi identities for the ni,

but the gauge theory setup does not provide any constructive prescription to find such a

duality-compatible parametrization. Contact term ambiguities have always been an obsta-

cle in constructing color-dual BCJ numerators directly from the gauge theory. There exist

Kawai–Lewellen–Tye (KLT) inspired expressions for ni in terms of color ordered gauge theory

amplitudes [203] but they do not exhibit manifest locality.

The kinematic building blocks niQ
αi
sαi

can essentially be though of as a Feynman like diagram

associated with a particular channel. Since individual Feynman diagrams are gauge dependent,

we conclude that the same is true for the numerators ni. The gauge choice can only affect the
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ni by adding terms that cancel one of the sαi poles. That is why the reshuffling of contact

terms is loosely referred to as a generalized gauge transformation.

Remarkably, the pure spinor formalism resolves these ambiguities [11]: The later equation

(12.1.13) expresses the n point superstring tree amplitude in terms of (n−2)! basis kinematics. It

will be shown in chapter 13 that its low energy limit naturally selects a unique representation of

the kinematic numerators ni which satisfies all the dual Jacobi identities. They are constructed

in terms of superfields of D = 10 dimensional N = 1 SYM, but it is straightforward to

dimensionally reduce the superfield components to D = 4, and the bosonic parts describe

gluon scattering independently on the existence of supersymmetries.

5.5.4 Kleiss Kuijf relations

The reflection symmetry A(1, 2, . . . , n − 1, n) = (−1)nA(n, n − 1, . . . , 2, 1) of massless state

amplitudes is equally valid in string theory and the associated α′ → 0 field theory. Only

the way of deriving them is different – the string relation is dictated by worldsheet parity

whereas the FT reflection property follows from studying the sum of Feynman diagrams which

contribute to the subamplitudes in question5. In the following, we will give two more examples

of field theory technology which finds an alternative derivation from string theory via worldsheet

properties.

In field theory, there were two steps of progress in further reducing the number of 1
2
(n− 1)!

color orderings. Firstly, Kleiss and Kuijf found a set of relations which boil the number of

independent subamplitudes down to (n− 2)! [204]:

ASYM(1, α1, . . . , αs, n, β1, . . . , βr) = (−1)r
∑

σ∈OP{α}∪{βT }

ASYM(1, σ, n) (5.5.65)

Just like in (5.4.45), the sum encompasses all permutations of {α}⋃{βT} which preserve the

order of the individual elements of both sets {α} and {βT}. The proof of (5.5.65) is carried

out in [205] and based on group-theoretic properties only such as the Jacobi identity and the

behavior of color traces for a large number of colors.

The information contained in the Kleiss Kuijf (KK) relation (5.5.65) and reflection symmetry

is equivalent to writing color dressed amplitude more compactly in terms of structure constants

and (n− 2)! subamplitudes [206]:

MSYM[1a1 , 2a2 , . . . , nan ] =
in−2

2

∑
σ∈Sn−2

fa1aσ(2)e1 f e1aσ(3)e2 . . . f en−4aσ(n−2)en−3 f en−3aσ(n−1)an

5More precisely, it is a consequence of the fact that the three vertex picks up a sign under reflections and

that an n point tree amplitude has n− 2 three point vertices.
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× ASYM
(
1, σ(2, 3, . . . , n− 1), n

)
(5.5.66)

The Sn−2 family of color ordered amplitudesASYM
(
1, σ(2, 3, . . . , n−1), n

)
(which is also referred

to as the KK basis or the color ladder) turn out to be sufficient to reconstruct the full color

dressed amplitudeMSYM[1a1 , 2a2 , . . . , nan ]. As a consequence, the number of independent color

factors always coincides with the number (n − 2)! of KK subamplitudes. If the dual Jacobi

identities for the numerators hold, then there are also no more than (n− 2)! independent ni.

Note that the reduction of color factors to structure constants is only possible in field theory.

Superstring amplitudes at finite α′ generically involve symmetrized traces as well which cannot

be reduced to products of fabc.

The complex monodromy relation (5.4.44) can be viewed as the string theory upgrade of

field theory relations. Its real part provides an all-orders-in-α′-version of dual Ward identity

[31]

ASYM(1, 2, . . . , n) + ASYM(2, 1, 3, . . . , n) + ASYM(2, 3, 1, 4, . . . , n)

+ . . . + ASYM(2, 3, . . . , n− 1, 1, n) = 0 (5.5.67)

which is the special case of the KK relations with just one element in the set {β}. It is also

known as the photon decoupling identity or the subcyclic property.

5.5.5 Bern Carrasco Johansson relations

The search for a minimal basis of color ordered field theory amplitudes was later on refined

by Bern, Carrasco and Johansson (BCJ) [81]. Their so-called BCJ relations further reduce the

color ladder of (n− 2)! subamplitudes to a minimal basis of (n− 3)! only, we will sketch their

main ideas in the following.

The concept of generalized gauge transformations explained in subsection 5.5.3 can be ex-

tended to non-local transformations. The four point subamplitudes from figure 5.11, for in-

stance, remain unchanged by a transformation (ns, nt, nu) 7→ (ns, nt, nu) + χ(s, t,−u) even if

the generalized gauge parameter χ is non-local. In particular, we can pick the non-local choice

χ = nu
u

and enforce the transformed nu to vanish. The Jacobi identity then just leaves one

independent numerator ns = −nt and yields

ASYM(1, 2, 3, 4) =
t

s
ASYM(1, 3, 2, 4) =

t

u
ASYM(1, 3, 4, 2) (5.5.68)

which is the field theory limit of (5.4.49) and (5.4.50).
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This procedure of deriving relations between color ordered amplitudes can be generalized

to higher points. For this purpose, the kinematic numerators are treated as being unknown

variables subject to the Jacobi equation system (5.5.62). It consists of the following steps:

• express all the numerators in (5.5.54) in terms of (n− 2)! independent ones using Jacobi

identities (5.5.62)

• solve for (n− 3)! basis numerators in terms of a subamplitude to which they contribute

• force the remaining (n− 2)!− (n− 3)! independent numerators to become zero by means

of a non-local generalized gauge transformation

The remaining (n−2)!−(n−3)! KK subamplitudes which did not get involved in the second step

are then naturally expressed in terms of a (n− 3)! basis from their
∑

i
niQ
αi
sαi

parametrization.

The authors of [81] have checked that the method above can be successfully applied up to n = 8

points and conjectured its validity beyond that. An all multiplicity proof in D = 4 dimensions

based on BCFW recursion relations [207,208] followed in [209].

The resulting system of equation can be brought into the form

s12ASYM(2, 1, 3, . . . , n) + (s12 + s13)ASYM(2, 3, 1, 4, . . . , n)

+ . . . + (s12 + s13 + . . .+ s1,n−1)ASYM(2, 3, . . . , n− 1, 1, n) = 0 . (5.5.69)

The complex relation (5.4.44) between between superstring amplitudes already reconstructed

the photon decoupling identity (5.5.67) from the α′ → 0 limit of its real part (such that

cos(πsij) → 1). Its imaginary part, on the other hand, reduces to the from (5.5.69) of the

BCJ relations in the low energy limit sin(πsij)→ πsij. However, it should be stressed the full

string theory amplitudes generically do not fulfill neither dual Ward nor KK- nor BCJ-relations.

Instead, they do fulfill modified relations (5.4.44) or (5.4.45), which boil down to the former in

the field theory limit.

5.5.6 BCJ relations versus Jacobi identities

By taking appropriate permutations of (5.5.69) and decomposing the occurring subamplitudes

in pole channels, one can derive identities between Jacobi triplets (nik , nil , nim) dual to color

factors with cik + cil + cim = 0 of the following form [210,211]∑
i

nik + nil + nim∏n−4
αi

sαi
= 0 . (5.5.70)
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The i sum runs over (n− 1) point channels of total number 2n−3(2n− 7)!!(n− 3)/(n− 2)! and

involves the n− 4 propagators sαi common among the nik , nil and nim channels. This equation

can be viewed as a constraint on the numerators’ failure to satisfy the Jacobi identities. Their

gauge independent content is that Jacobi triplets nik + nil + nim must vanish at the residue of

the n− 4 poles, independent on the assignment of contact terms to the numerators.

The four point version of (5.5.70) encompasses one term only without any propagators and

enforces ns + nt − nu = 0. But any higher multiplicity n ≥ 5 gives rise to a relation like

n4 − n1 + n15

s45

− n10 − n11 + n13

s24

− n3 − n1 + n12

s12

− n5 − n2 + n11

s51

= 0 (5.5.71)

which does not force all the triplets to vanish individually. Satisfying all the Jacobi identities

(5.5.64) is not the only solution to (5.5.71), the triplets can still be proportional to a contact

term, e.g. n4−n1+n15 = s45χ and n10−n11+n13 = s24χ whereas n3−n1+n12 = n5−n2+n11 = 0.

Let us emphasize that deriving (5.5.70) from (5.5.69) is not a circular argument: The BCJ

relations hold independent on the choice of numerators ni. The existence of a generalized gauge

where all the Jacobi triplets are zero was just a tool in the approach of [81] to perform the basis

reduction to (n− 3)! subamplitudes.

5.6 KLT relations

In the context of relating color ordered amplitudes of superstring- and field theory, it makes

sense to give a little outlook on the closed string- or gravity sector. In a famous paper [83]

by Kawai, Lewellen and Tye (KLT), tree level amplitudes of closed string states were found

to factorize into bilinears in open string color stripped amplitudes, the precise formulae are

referred to as KLT relations. They are derived by monodromy arguments on the worldsheet,

similar to the construction in subsection 5.4.1. This reflects the fact that the Hilbert space of

closed string states is simply the tensor product of two open string states.

Let M(1, 2, . . . , n) denote an n point tree level amplitude of closed string states, then the

four- and five point versions decompose as follows into open string subamplitudes of different

color orderings:

M(1, 2, 3, 4) ∼ sin(πs)A(1, 2, 3, 4) ⊗ A(1, 2, 4, 3) (5.6.72)

M(1, 2, 3, 4, 5) ∼ sin(πs12) sin(πs34)A(1, 2, 3, 4, 5) ⊗ A(2, 1, 4, 3, 5)

+ sin(πs13) sin(πs24)A(1, 3, 2, 4, 5) ⊗ A(3, 1, 4, 2, 5) (5.6.73)
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We are not keeping track of the individual coupling constants, they are hidden in the pro-

portionality sign of (5.6.72). The ⊗ indicate that the closed string polarization tensors are

just tensor products of their open string wavefunctions, e.g. the graviton polarization decom-

poses via ζmn = ξ(m ⊗ ξn) into gluon polarizations. Higher order KLT relations can be found

in [212,203].

These relations are of course inherited by the associated field theories [213] – N = 8 super-

gravity in case of maximally supersymmetric closed string theory and N = 4 SYM on the open

string side [87]:

MSUGRA(1, 2, 3, 4) ∼ sASYM(1, 2, 3, 4) ⊗ ASYM(1, 2, 4, 3) (5.6.74)

The five point amplitude MSUGRA(1, 2, 3, 4, 5) can be obtained from (5.6.73) by replacing

sin(πsij) 7→ πsij, and higher order KLT relations in field theory are given in appendix A

of [214] for any number of legs. About 25 years after the discovery of string theory KLT rela-

tions based on worldsheet monodromies, a field theory derivation of KLT relations was obtained

in [215,216].

A natural generalization of mapping pure closed string amplitudes to open string con-

stituents is to consider mixed amplitudes of both open and closed string states. It was shown

in [84] that also the mixed cases can be mapped to open string subamplitudes where the closed

string degrees of freedom are represented by two open string state insertions.

Since we have found that tree amplitudes of open superstring theories decompose into SYM

amplitudes via (1.4.1), it is natural to expect that the n point gravity amplitude is somehow

related its field theory limit MSUGRA(1, 2, . . . , n), its most compact representation is under

current research [217].
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Chapter 6

Correlation functions of RNS primaries

The computation of superstring amplitudes (5.3.38) requires SCFT correlation functions of

vertex operators which create the scattering states. Vertex operators in superstring theory not

only contain free fields such as Xm or eqφ but also interacting fields ψm, SA of the RNS CFT,

see chapters 3 and 4. This chapter summarizes the results of [3, 4, 5] in solving the technical

challenges of the interacting SCFT, i.e. in computing higher point correlation functions with ψm

and SA fields involved. The applicability of these SCFT results ranges from superstring theories

to the heterotic string theories allowing for a CFT description. Working on the aforementioned

publications has filled about a third of my research capacity as a PhD student, in collaboration

with Daniel Härtl and Stephan Stieberger.

Even though the bosonization methods of subsections 2.2.3 and 2.2.4 admit to reduce ψm and

SA to exponentials of free fields, it is a nontrivial problem to cast the result into SO(1, D − 1)

covariant form. Bosonization breaks Lorentz symmetry down to U(D/2) and only admits

to compute individual components of correlators, i.e. one must pick choices for the Lorentz

indices m and A before bosonization becomes applicable. The progress of [3, 4, 5] compared

to [218,219,220] lies in the systematic covariantization of the answers obtained from bosonized

computations.

A part of the discussion can be carried out in arbitrary even spacetime dimensions D = 2n:

We will firstly introduce two algorithms for computing RNS correlation functions and secondly

give expressions for the class of correlators 〈ψm1 ...ψmnSASB〉 with no more than two spin fields.

These provide the most difficult CFT input for scattering amplitudes of two massless spacetime

fermions and any number of bosons. Although the dimension is kept general, we will use the

D = 10 indices m for vectors and A (α, α̇) for Dirac (Weyl) spinors.

As soon as four or more spin fields get involved, representation theoretic technicalities

139
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force us to specify the number of spacetime dimensions. Roughly speaking, this is due to the

structure of Fierz identities between tensors with four or more spinor indices which varies a lot

with D = 2n. We will therefore discuss the cases D = 4, 6, 8 and D = 10 separately at the level

of ≥ 4 spin fields.

Although this thesis is devoted to tree level amplitudes, we will compute most of the cor-

relators on Riemann surfaces of arbitrary genus. The extra effort of computing spin structure

dependent factors at g ≥ 1 is usually quite manageable once the g = 0 result is known. There

are just a few exceptions where the algorithms do not provide an extension to loops with

reasonable effort.

The shortcoming of this chapter is the lack of a systematic study of composite operators

such as ψm 6ψABSB or ∂ψmψn. They can carry spins larger than one, i.e. contain exponentials

like e±isHj with Ramond charge s > 1 in their bosonized representation. Some lower point

correlation functions of the former operators are listed in section 6.5.2, they have been worked

out in [2, 6] to compute amplitudes with massive states (see chapter 9).

6.1 The strategy in D = 2n dimensions

This section explains the preliminaries and techniques involved in the computation of RNS

correlators in arbitrary even dimensions D = 2n. Correlation functions 〈ψm1(z1) . . . ψmn(zn)〉
without spin field insertions are determined by (B.4.60) using Wick contractions [221], so we

are interested in the nontrivial cases where two or more spin fields appear.

6.1.1 Recapitulating the singularity structures

We have already given the leading OPE singularities of the ψm, SA fields in section 2.2, see

in particular (2.2.32) and (2.2.33). As explained in subsection 2.2.4 and explicitly shown in

(2.2.43), bosonization provides a neat way to determine OPE coefficients. In any number of

dimensions, ψm, Sα, S
β̇ and the identity operator are the only four primary fields with respect to

the SO(1, D−1) Kac-Moody algebra at level one generated by the currents ψmψn [222,118,126,

119]. Leading singularities of those primary fields already determine all tree level correlation

functions. This will be exploited in the recursive algorithm to be introduced in the following

subsection 6.1.3.

Nevertheless, it is useful to also know some subleading singularities of the OPEs, e.g. to

obtain higher ghost picture or SUSY variations of vertex operators. In our case of interest,
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these are the following:1

ψm(z)ψn(w) ∼ ηmn

z − w + ψm ψn(w) + (z − w) ∂ψm ψn(w) + . . . (6.1.1)

ψm(z)SA(w) ∼ 1√
2 (z − w)1/2

(Γm)A
B SB(w)

+
2 (z − w)1/2

√
2 (D − 2)

[
ψm ψn (Γn)A

B + 1
2(D−1)

(Γm)A
C ψn ψp (Γnp)C

B
]
SB + . . . (6.1.2)

SA(z)SB(w) ∼ CAB
(z − w)D/8

+
(Γm C)AB ψm(w)√
2 (z − w)D/8−1/2

− (Γmn C)AB ψm ψn(w)

4 (z − w)D/8−1

+
1√

2 (z − w)D/8−3/2

[
1
2

(Γm C)AB ∂ψm(w) − 1
12

(Γmnp C)AB ψm ψn ψp
]

+ . . . (6.1.3)

The structure of the subleading terms can be derived from bosonization2:

eiq1H(z) eiq2H(w) = (z − w)q1q2
[

ei(q1+q2)H(z) + q1 (z − w) i∂H ei(q1+q2)H(z)

+ 1
2

(z − w)2
[
q1 i∂

2H + q2
1 (i∂H)2

]
ei(q1+q2)H(z) + O

(
(w − z)3

) ]
(6.1.5)

The coefficients (in particular the signs) of (6.1.2) and (6.1.3) are most conveniently checked by

Taylor expanding some of the correlation functions given in the next sections. Note that this is

no circular argument because g = 0 correlators with any ψm, SA field insertion are completely

specified by the leading singularities and by their properties under the SO(1, D − 1) current

algebra.

For conformal primaries such as ψm, SA, correlation functions up to three points are fully

determined by conformal invariance, see (B.1.8). The non-vanishing three point function of

this type is

〈ψm(z1)SA(z2)SB(z3) 〉 =
(ΓmC)AB√

2 z
1/2
12 z

1/2
13 z

D/8−1/2
23

. (6.1.6)

Any higher point correlator in general depends on SL(2,C) invariant cross ratios such as
zijzkl
zikzjl

,

so the task of solving the CFT amounts to determining the functional dependence on the cross

ratios.

1This work uses the conventions of [5] where SASB ∼ +CAB(z − w)−D/8. In older work [1, 3, 4], there was

a relative sign SaSb ∼ −εab(z − w)−1/2 in D = 4 spin field bilinears. Any result on four dimension spin fields

displayed within this chapter is adjusted to the SaSb ∼ +εab(z − w)−1/2 convention.
2The analogous OPE for the superghost bosonization reads

eq1φ(z) eq2φ(w) = (z − w)−q1q2
[

e(q1+q2)φ(z) + q1 (z − w) ∂φ e(q1+q2)φ(z)

+ 1
2 (z − w)2

[
q1 ∂

2φ + q21 (∂φ)2
]

e(q1+q2)φ(z) + O
(
(w − z)3

) ]
(6.1.4)
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6.1.2 Representation theoretic background

We are interested in SO(1, D−1) covariant expressions for RNS correlation functions, i.e. they

need to be expressed in terms of the invariant tensors ηmn,ΓmA
B, and CAB. Regardless of which

algorithm we use for computing correlators, it is essential to know the number of independent

such tensors with a given set of indices, e.g. the Dirac algebra (ΓmΓn + ΓnΓm)A
B = −2ηmnδBA

is necessary to compute 〈ψm(z1)ψn(z2)SA(z3)SB(z4)〉.

Starting point for a representation theoretic analysis is the identification of irreducible

SO(1, D−1) representations, so we decompose the spinorial expressions into their chiral halves,

e.g.

SA =

 Sα

Sα̇

 , (Γm)A
B =

 0 γm
αβ̇

γ̄mα̇β 0

 . (6.1.7)

The chiral structure of the charge conjugation matrix C depends on the number of dimensions:

CAB =



 Cαβ 0

0 C α̇β̇

 : D = 4 mod 4

 0 Cα
β̇

C α̇
β 0

 : D = 2 mod 4

(6.1.8)

Any correlation function 〈ψm1 ...ψmnSα1 ...SαpS
β̇1 ...Sβ̇q〉 (in a notation that distinguishes the

chiral irreducibles) can be expressed in terms of Clebsch Gordan coefficients taking the tensor

product of n vectors, p left handed spinors and q right handed spinors into scalar representations

of SO(1, D−1). The number of linearly independent such tensors Tm1...mn
α1...αp

β̇1...β̇q is equal to

the number of scalar representations in the corresponding tensor product. Table 6.1 summarizes

the dimensions of Clebsch Gordan bases for a large class of correlators which we will compute

in the following.

6.1.3 The recursive algorithm

A first algorithm to compute the nontrivial correlation functions with more than three points

has a recursive nature. It exploits the leading singularities when two SO(1, D − 1) primary

fields ψm, Sα or Sβ̇ approach each other, given by the first term of the OPEs (6.1.1) to (6.1.3).

Given the general structure of the OPEs φi(z)φj(w) ∼ Cij
k(z − w)−hi−hj+hkφk(w) + . . ., the

identity

〈 . . . φi(z)φj(w) . . . 〉 =
Cij

k

(z − w)hi+hj−hk
〈 . . . φk(w) . . . 〉 + O

(
(z −w)−hi−hj+hk+1

)
(6.1.9)
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⊗ D = 4 D = 8 ⊗ D = 6 D = 10

〈SαSβ〉 1 1 〈SαSβ̇〉 1 1

〈ψµSαSβ̇〉 1 1 〈ψµSαSβ〉 1 1

〈ψµψνSαSβ〉 2 2 〈ψµψνSαSβ̇〉 2 2

〈ψµψνψλSαSβ̇〉 4 4 〈ψµψνψλSαSβ〉 4 4

〈ψµψνψλψρSαSβ〉 10 10 〈ψµψνψλψρSαSβ̇〉 10 10

〈ψµψνψλψρψτSαSβ̇〉 25 26 〈ψµψνψλψρψτSαSβ〉 26 26

〈ψµψνψλψρψτψξSαSβ〉 70 76 〈ψµψνψλψρψτψξSαSβ̇〉 76 76

〈SαSβSγ̇S δ̇〉 1 2 〈SαSβSγSδ〉 1 2

〈SαSβSγSδ〉 2 3 〈SαSβSγ̇S δ̇〉 2 3

〈ψµSαSβSγS δ̇〉 2 4 〈ψµSαSβSγS δ̇〉 3 5

〈ψµψνSαSβSγ̇S δ̇〉 4 9 〈ψµψνSαSβSγSδ〉 6 11

〈ψµψνSαSβSγSδ〉 5 10 〈ψµψνSαSβSγ̇S δ̇〉 7 12

〈ψµψνψλSαSβSγS δ̇〉 10 24 〈ψµψνψλSαSβSγS δ̇〉 17 31

〈ψµψνψλψρSαSβSγ̇S δ̇〉 25 68 〈ψµψνψλψρSαSβSγSδ〉 45 88

〈ψµψνψλψρSαSβSγSδ〉 28 71 〈ψµψνψλψρSαSβSγ̇S δ̇〉 48 91

〈SαSβSγSδS ε̇S ι̇〉 2 10 〈SαSβSγSδSεS ι̇〉 4 16

〈SαSβSγSδSεSι〉 5 15 〈SαSβSγS δ̇S ε̇S ι̇〉 6 19

〈ψµSαSβSγS δ̇S ε̇S ι̇〉 4 24 〈ψµSαSβSγSδSεSι〉 9 40

〈ψµSαSβSγSδSεS ι̇〉 5 26 〈ψµSαSβSγSδS ε̇S ι̇〉 12 45

〈ψµψνSαSβSγSδS ε̇S ι̇〉 10 68 〈ψµψνSαSβSγSδSεS ι̇〉 29 125

〈ψµψνSαSβSγSδSεSι〉 14 76 〈ψµψνSαSβSγS δ̇S ε̇S ι̇〉 32 130

〈SαSβSγSδS ε̇S ι̇Sκ̇Sλ̇〉 4 71 〈SαSβSγSδSεSιSκSλ〉 14 175

〈SαSβSγSδSεSιSκ̇Sλ̇〉 5 76 〈SαSβSγSδSεSιSκ̇Sλ̇〉 19 196

〈SαSβSγSδSεSιSκSλ〉 14 106 〈SαSβSγSδS ε̇S ι̇Sκ̇Sλ̇〉 24 210

Table 6.1: Number of linearly independent Clebsch Gordan coefficients in various tensor products.

Since the chiral structure differs for D = 4, 8 and D = 6, 10, these two cases are separated into different

sets of columns
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allows to reduce the singular behaviour of an n point function to smaller n− 1 point functions.

The reason why the knowledge of leading zij singularities suffices to determine the full

correlator is the following: Suppose we subtract all the singular pieces (i.e. the right hand side

of (6.1.9)) from an unknown correlator (the left hand side of (6.1.9)), then the difference has no

chance to diverge at finite values of z and w. On the other hand, correlation functions decay at

infinite separations, limz−w→∞〈. . . φi(z)φj(w) . . .〉 = 0, such that the aforementioned difference

between 〈. . . φi(z)φj(w) . . .〉 and its leading singularities is also bounded at infinity.

Now we can apply Liouville’s theorem from complex analysis: A holomorphic function which

is bounded on the whole of C must be a constant. The difference between any ψm, Sα, S
β̇

correlator and its leading singularities was just argued to be bounded both at finite points

zi → zj and at infinity zi →∞, so this difference must be constant. Considering the behaviour

at infinity determine this constant to be zero3.

As an easy application of this algorithm, let us consider a four point function:

〈ψm(z1)ψn(z2)SA(z3)SB(z4) 〉 →



ηmn

z12

〈SA(z3)SB(z4) 〉 : z1 → z2

ΓmA
C

√
2 z

1/2
13

〈ψn(z2)SC(z3)SB(z4) 〉 : z1 → z3

ΓmB
C

√
2 z

1/2
14

〈ψn(z2)SA(z3)SC(z4) 〉 : z1 → z4

(6.1.10)

The two- and three point correlators on the right hand are completely fixed by conformal

invariance, e.g. 〈SA(z3)SB(z4)〉 = CAB
z
D/8
34

and 〈ψn(z2)SC(z3)SB(z4)〉 = (ΓnC)CB√
2(z23z24)1/2z

D/8−1/2
34

. Hence,

(6.1.10) contains the complete information on z1 singularities.

In order to match the three different regimes, we shall fix a basis for the tensor structures.

A convenient ansatz is

〈ψm(z1)ψn(z2)SA(z3)SB(z4) 〉 = ηmn CAB f(zi) +
1

2
(Γm Γn C)AB g(zi) , (6.1.11)

where ηmnCAB ((Γm Γn C)AB) are directly generated as z1 → z2 (z1 → z3). The last limit

z1 → z4, on the other hand, introduces a third tensor whose basis decomposition (ΓmΓnC)BA =

−(ΓnΓmC)AB = (ΓmΓnC)AB+2ηmnCAB follows from the Dirac algebra. Hence, we have gathered

3There is a small loophole in this argument: In D = 10 dimensions, the subleading term in the OPE

Sα(z)Sβ̇(w) ∼ (z − w)−5/4Cα
β̇ − 1

4 (z − w)−1/4(γmnC)αβ̇ψmψn + ... is still singular. At first glance, it seems

to be necessary to subtract as well. In all explicit computations performed, however, we did not run into any

ambiguity upon neglecting the subleading singularity. So one could say that the leading term ∼ (z−w)−5/4Cα
β̇

was experimentally checked to suffice.
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the following information on the functions f, g of the ansatz (6.1.11):

f(zi) →


z−1

12 z
−D/8
34 : z1 → z2

regular : z1 → z3

(z14 z23 z24)−1/2 z
1/2−D/8
34 : z1 → z4

(6.1.12)

g(zi) →


regular : z1 → z2

(z13 z23 z24)−1/2 z
1/2−D/8
34 : z1 → z3

(z14 z23 z24)−1/2 z
1/2−D/8
34 : z1 → z4

(6.1.13)

This is enough to uniquely determine

f(zi) =
z13 z24

z12 (z13 z14 z23 z24)1/2 z
D/8
34

, g(zi) =
1

(z13 z14 z23 z24)1/2 z
D/8−1
34

(6.1.14)

which leads to the final result

〈ψm(z1)ψn(z2)SA(z3)SB(z4) 〉 =
z

1−D/8
34

(z13 z14 z23 z24)1/2

(
z13 z24

z12 z34

ηmn CAB + 1
2

(Γm Γn C)AB
)
.

(6.1.15)

Knowledge of this four point correlator allows to proceed to higher multiplicity and to compute

various new limiting regimes of the five point function 〈ψm(z1)ψn(z2)ψp(z3)SA(z4)SB(z5)〉. This

show the recursive nature of this OPE based algorithm – computation of an n point function

requires a set of n− 1 (or n− 2) point functions.

In general situations, one makes an ansatz

〈ψm1(z1) ... ψmn(zn)Sα1(x1) ... Sαp(xp)S
β̇1(y1) ... Sβ̇q(yq) 〉

=

s(n,p,q)∑
j=1

fj(zi, xi, yi)T
m1...mn
j α1...αp

β̇1...β̇q (6.1.16)

where s(n, p, q) is the number of scalar representations in the tensor product of n vectors, p left

handed spinors and q right handed spinors and Tm1...mn
j α1...αp

β̇1...β̇q is a basis of Clebsch Gordan

coefficients. To determine the associated worldsheet functions fj(zi, xi, yi) it is sufficient to pick

one position, say z1, and consider all the limits z1 → zj 6=1, xj, yj like we did in the four point

example above.

6.1.4 Theta functions and prime forms

The algorithm introduced in the previous subsection is most efficient to determine tree level

correlation functions. Since this chapter also gathers g loop results – usually obtained with

small extra effort – we shall introduce the relevant classes of worldsheet functions here which can
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take the periodicities of a genus g Riemann surface into account – generalized (modular) theta

functions. Equipped with these periodic functions, we can develop an alternative algorithm

which is equally well-suited to compute tree level- and loop correlators.

Generalized theta functions [223, 224, 225] are the natural objects to express correlation

functions at nonzero genus. They assure the required periodicity along the homology cycles of

the g loop string worldsheet. They can be derived from

Θ(~x |Ω) :=
∑
~n∈Zg

exp
[
2πi

(
1
2
~nΩ~n + ~n~x

)]
(6.1.17)

by shifting the first argument according to some spin structure (~a,~b):

Θ~a
~b
(~x |Ω) := exp

[
2πi

(
1
8
~aΩ~a + 1

2
~a ~x + 1

4
~a~b
)]

Θ
(
~x +

~b
2

+ Ω~a
2
|Ω
)

=
∑
~n∈Zg

exp
[
πi
(
~n + ~a

2

)
Ω
(
~n + ~a

2

)
+ 2πi

(
~n + ~a

2

) (
~x +

~b
2

)]
(6.1.18)

In our situations, the g dimensional vectors ~a,~b with entries zero or one characterize the peri-

odicity of the fermion fields along the 2g homology cycles of the Riemann surface. The second

argument of Θ is the g × g period matrix Ω which contains the Nb moduli at genus g, see

subsection 5.1.3.

We parametrize the two-dimensional string world-sheet by a complex coordinate z. The Abel

map z 7→ ∫ zp ~ω lifts z to the Jacobian variety of the world-sheet Cg/(Zg + ΩZg). These vectors

of integrals are then natural arguments for the theta function. The periodicity properties of

the theta function under transport of z around a homology cycle are summarized in appendix

A of [4].

An important expression constructed out of the generalized theta functions is the prime

form E,

E(z, w) :=
Θ ~a0

~b0

(∫ z
w
~ω |Ω

)
h~a0

~b0
(z)h~a0

~b0
(w)

, (6.1.19)

where (~a0, ~b0) is an arbitrary odd spin structure (i.e. ~a0·~b0 is odd) such that E(z, w) = −E(w, z).

The half differentials h~a0

~b0
in the denominator are defined by

h~a0

~b0
(z) :=

√√√√ g∑
j=1

ωj(z) ∂jΘ
~a0

~b0

(
~0 |Ω

)
. (6.1.20)

They assure that E is independent of the choice of (~a0,~b0) as long as it is odd. Given the

leading behaviour E(z, w) ∼ z − w + O
(
(z − w)3

)
, singularities in correlation functions are
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caused by appropriate powers of prime forms. It turns out that, starting from a tree level

correlator of ψm and SA fields, all the zij have to be replaced by Eij := E(zi, zj) to capture the

singular behaviour of the corresponding genus g correlation function. Only the spin structure

dependent parts Θ~a
~b

are then left to be determined.

Considerable simplifications occur at g = 1, i.e. on the torus or the cylinder. The period

matrix Ω then reduces to the modular parameter τ of the torus (or τ = it with t ∈ R in case

of the cylinder), and the theta functions become the standard ones:

θ1 ≡ Θ1
1 , θ2 ≡ Θ1

0 , θ3 ≡ Θ0
0 , θ4 ≡ Θ0

1 (6.1.21)

In particular, the prime form is proportional to the unique odd theta function

Eij

∣∣∣
g=1

=
θ1(zij)

θ′1(0)
. (6.1.22)

We should point out one technicality about the interplay of the prime forms Eij and theta

functions Θ~a
~b
: As a generalization of the crossing identity zijzkl = zikzjl + zilzkj at tree level,

the so-called Fay trisecant identities hold at higher genus. Their most general form is

Θ~a
~b

(
N∑
k=1

xk
∫
yk

~ω − ~e

) [
Θ~a
~b
(~e)
]N−1

∏N
i<j E(xi, xj)E(yi, yj)∏N

i,j=1E(xi, yj)

= (−1)N(N−1)/2 det
i,j

{
E(xi, yj)

−1 Θ~a
~b

(
xi
∫
yj

~ω − ~e

)}
(6.1.23)

with some arbitrary vector ~e ∈ Cg. We will mostly need the N = 2 case in the specialization

~e = 1
2

∑2
k=1 ∫xkyk ~ω − ~∆:

E13E24 Θ~a
~b

(
1
2

z1
∫
z2

~ω + 1
2

z3
∫
z4

~ω + ~∆

)
Θ~a
~b

(
1
2

z1
∫
z2

~ω + 1
2

z3
∫
z4

~ω − ~∆

)
= E12E34 Θ~a

~b

(
1
2

z1
∫
z3

~ω + 1
2

z2
∫
z4

~ω + ~∆

)
Θ~a
~b

(
1
2

z1
∫
z3

~ω + 1
2

z2
∫
z4

~ω − ~∆

)
+ E14E23 Θ~a

~b

(
1
2

z1
∫
z2

~ω + 1
2

z4
∫
z3

~ω + ~∆

)
Θ~a
~b

(
1
2

z1
∫
z2

~ω + 1
2

z4
∫
z3

~ω − ~∆

)
(6.1.24)

This identity is essential to combine several additive contributions to the functions fj(zi) mul-

tiplying the basis tensors Tm1...mn
j α1...αp

β̇1...β̇q in (6.1.16).

6.1.5 Computing correlators in components

Bosonization becomes more subtle beyond tree level [226,227,228]: The sectors of different spin

structures within the partition function of fermions are obtained from projecting the associated

bosonic partition function onto sectors of certain soliton- or winding numbers. Only the sum
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over all the fermionic spin structures can establish equivalence to a bosonic theory with any

winding numbers (~m,~n) ∈ Zg × Zg around the 2g cycles of the maximal torus allowed.

For the purpose of loop computations, we will identify the covariant RNS fields in D = 2n

dimensions with n copies of an SO(2) spin system (ψ±j , s
±
j ) according to

ψ±0 =
1√
2

(
±ψ0 + ψ1

)
, ψ±j>0 =

1√
2

(
ψ2j ± iψ2j+1

)
(6.1.25)

SA=(± 1
2
,± 1

2
,...,± 1

2) = s±0 s
±
1 ... s

±
n−1 (6.1.26)

without making reference to the exponentials e±iH and e±iH/2. The most general genus g

correlation function of such a spin system has been given in [219]〈
N1∏
i=1

s+(yi)

N2∏
j=1

s−(zj)

N3∏
k=1

ψ−(uk)

N4∏
l=1

ψ+(vl)

〉~a
~b

=

(∏N1

r<sE(yr, ys)
∏N2

r<sE(zr, zs)∏N1

i=1

∏N2

j=1 E(zj, yi)

)1/4

×
(∏N3

r<sE(ur, us)
∏N4

r<sE(vr, vs)∏N3

k=1

∏N4

l=1E(vl, uk)

) (∏N2

j=1

∏N3

k=1E(uk, zj)
∏N1

i=1

∏N4

l=1E(vl, yi)∏N1

i=1

∏N3

k=1E(uk, yi)
∏N2

j=1

∏N4

l=1E(vl, zj)

)1/2

× Θ~a
~b

(
1
2

N1∑
i=1

yi

∫
p
~ω − 1

2

N2∑
j=1

zj

∫
p
~ω −

N3∑
k=1

uk
∫
p
~ω +

N4∑
l=1

vl
∫
p
~ω

)
δ
(

1
2
(N1 −N2)−N3 +N4

)
Θ~a
~b
(~0)

. (6.1.27)

Due to Ramond charge conservation 1
2
(N1−N2)−N3 +N4 = 0, the arbitrary reference point p

appearing in the Abel map drops out. In the following, we make use of the following shorthands

for the spin structure dependent part:

Θ~a
~b

(
1

2

[
zi
∫
zl

~ω +
zj

∫
zm

~ω + · · ·+
zk
∫
zn

~ω

])
=: Θ~a

~b

[
i j ... k
l m ... n

]
(6.1.28)

Note in particular that the factor 1
2

in the argument of Θ~a
~b

– which is ubiquitous in presence of

spin fields – will always be implicit. Its origin lies in the fact that spin fields are responsible

for changing the fermions’ spin structure by opening or closing branch cuts. The fermion fields

flip their sign when transported around these branch points, this can for instance be seen from

the OPE (6.1.2). Translating a spin field once around a cycle extends the branch cut all the

way across and thus changes the fermion spin structure (~a,~b). The identity

Θ~a
~b
(~x + ~t + Ω~s) = exp

[
− iπ

(
~sΩ~s + ~s (2 ~x + ~b + 2~t)

)]
Θ~a+2~s
~b+2~t

(~x) (6.1.29)

guarantees that the factor of 1
2

in (6.1.28) leads to the required pseudoperiodicity property of

spin fields.

6.1.6 The explicit algorithm

Equipped with the prerequisites on generalized theta functions from the previous subsections,

we can now present a second algorithm which admits to compute higher loop correlators of ψm
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and SA in D = 2n explicitly rather than recursively. It has already been used in [219, 220] for

a limited number of examples.

The idea is to calculate the correlation function 〈ψm1 ...ψmnSα1 ...SαpS
β̇1 ...Sβ̇q〉~a~b for specific

choices of mi, αi and β̇i by organizing the RNS fields into their spin system content via (6.1.25)

and (6.1.26). Evaluating the n individual SO(2) correlators is simply a matter of (6.1.27). The

final goal is to express the results in a covariant form, i.e. in terms of Clebsch Gordan coefficients

built from gamma matrices and the charge conjugation matrix. As we have explained in section

2.2, they can be viewed as SO(1, 2n− 1) covariant Ramond charge conserving delta functions,

schematically CAB ∼ δ(A + B) and (ΓmC)AB ∼ δ(m + A + B) where m,A,B are treated as n

component Ramond charge vectors such as m ≡ (0,±1, 0, . . . , 0) and A ≡ (±1
2
, . . . ,±1

2
).

Once again, we start from the ansatz (6.1.16) for the correlation function with a minimal

set of Clebsch Gordan coefficients Tm1...mn
j α1...αp

β̇1...β̇q . Each of these tensors is accompanied by

a z dependent coefficient fj consisting of prime forms E and theta functions Θ~a
~b
. The results

obtained for special choices of mi, αi and β̇i have to be matched with this ansatz. It is most

economic to first look at configurations (mi, αi, β̇i) where only one tensor is non-zero. Then the

loop-level result (6.1.27) directly yields the coefficient fj for the respective Tj.

In some cases, however, it is not possible to isolate one Clebsch Gordan coefficient and to

make the others vanish. If sums of more than one fj are computed from (6.1.27) for every choice

of (mi, αi, β̇i), it can be helpful to switch to different Lorenz tensors which are (anti-)symmetric

in some vector- or spinor indices, see appendix B of [5]. In other cases, Fay’s trisecant identities

(6.1.23) and (6.1.24) have to be used to determine the unknown coefficients [4]. Sign issues

can be resolved by matching certain limits zi → zj at tree-level with the RNS OPEs (6.1.1) to

(6.1.3).

Let us illustrate this procedure with an easy example, the five point correlation function

〈ψmψnψpSαSβ〉~a~b in D = 6 dimensions. A convenient ansatz in terms of four Clebsch Gordan

coefficients is

〈ψm(z1)ψn(z2)ψp(z3)Sα(z4)Sβ(z5) 〉~a~b = F1(z) (γmnpC)αβ

+ F2(z) ηmn (γpC)αβ + F3(z) ηmp (γnC)αβ + F4(z) ηnp (γmC)αβ . (6.1.30)

The task is now to determine F1, F2, F3 and F4 by making several choices for m,n, p, α, β.

The coefficient F1 immediately follows from m = 0, n = 2, p = 4 because the metric η is

diagonal and therefore all tensors except for γmnp vanish in this configuration. By means of

(6.1.25) and (6.1.26), the NS fermions become (ψm, ψn, ψp) = 1√
2

(ψ+
0 −ψ−0 , ψ+

1 +ψ−1 , ψ
+
2 +ψ−2 ),
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and we choose Sα = Sβ = (s+
0 , s

−
1 , s

−
2 ) for the spin fields. The left hand side of (6.1.30) becomes

a product of three independent spin system correlators:

1
√

2
3 〈 (ψ+

0 −ψ−0 )(z1) s+
0 (z4) s+

0 (z5) 〉 〈 (ψ+
1 +ψ−1 )(z2) s−1 (z4) s−1 (z5) 〉 〈 (ψ+

2 +ψ−2 )(z3) s−2 (z4) s−2 (z5) 〉
(6.1.31)

Ramond charge conservation in the individual spin systems makes ψ+
0 (z1), ψ−1 (z2) and ψ−2 (z3)

drop out and (6.1.27) yields the coefficient F1 up to a sign

F1 = ±
Θ~a
~b

[ 1 1
4 5 ] Θ~a

~b
[ 2 2

4 5 ] Θ~a
~b

[ 3 3
4 5 ] E

3/4
45

2
√

2
[
Θ~a
~b
(~0)
]3

(E14E15E24E25E34E35)1/2
. (6.1.32)

The coefficient F2 can be determined in a similar way by setting m = n = 0, p = 2 and

Sα = (s+
0 , s

+
1 , s

+
2 ), Sβ = (s−0 , s

+
1 , s

−
2 ). No other tensor than ηmn(γpC)αβ contributes as η02 = 0

and γmnp is totally antisymmetric. One finds that the results consists of two terms due to

the two inequivalent fermion configurations ψ+
0 (z1)ψ−0 (z2) and ψ−0 (z1)ψ+

0 (z2) in the first spin

system:

F2 = ±
Θ~a
~b

[ 3 3
4 5 ] Θ~a

~b
[ 4

5 ]
(
E14E25 Θ~a

~b
[ 1 1 4

2 2 5 ] + E15E24 Θ~a
~b

[ 1 1 5
2 2 4 ]

)
2
√

2
[
Θ~a
~b
(~0)
]3
E12 (E14E15E24E25E34E35)1/2E

1/4
45

(6.1.33)

The remaining zi functions F3 and F4 follow from F2 by permutation in the vector indices and

the (1, 2, 3) labels.

The signs of the individual coefficients are easily fixed by requiring ηmn

z12
〈ψp(z3)Sα(z4)Sβ(z5)〉~a~b

to emerge in the z1 → z2 limit or
(γqC)αβ

z
1/4
45

〈ψm(z1)ψn(z2)ψp(z3)ψq(z5)〉~a~b in the z4 → z5 limit for

instance.

6.1.7 Comparing the two algorithms

Both of the two algorithms presented in subsections 6.1.3 and 6.1.6 have their individual ad-

vantages and drawbacks. The explicit method is of course quicker to obtain a specific higher

point correlator without systematic study of its lower order relatives. Another strength of this

algorithm is an easy determination of the spin structure dependent parts Θ~a
~b
(...) – these are

quite awkward to find in the recursive approach.

However, it is a notorious trouble spot about RNS correlators to fix the relative signs of the

individual terms. The explicit approach can say little about these signs because the formula

(6.1.27) for the individual spin system contributions can only be trusted up to a complex

phase. It is therefore advisable to fix signs by means of the recursive method: The limits

z1 → z2 and zn−1 → zn for neighbouring fields 〈φ1φ2 . . .〉 (〈. . . φn−1φn〉) on the left (right) end
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of the correlator give reliable absolute signs, and further relative signs can be fixed by any

other zi → zj limit. The reason to single out z1 → z2 and zn−1 → zn lies in the uncontrolable

complex phases which emerge from moving ψm- and SA fields across each other.

In practical computations of [3, 4, 5], we have often started with the recursive algorithm to

obtain a tree level correlator taking good care of all its signs. Then, the explicit method became

particularly helpful to determine the missing Θ~a
~b

functions at g ≥ 1. The Eij factors arising

from (6.1.27) provide consistency checks for to the previously computed tree level limit.

One challenge is common to both algorithms: They both require a basis of Clebsch Gordan

coefficients for the tensor structure of interest. Finding a convenient basis is a representation

theoretic task which can become quite cumbersome for a large number of indices. It is hard to

say in advance which choice of basis is better suited to simplify the computation.

6.2 Correlators with two spin fields in D = 2n dimensions

This section lists the results for correlators 〈∏k
j=1 ψ

mjSASB〉 with two spin fields and any

number k of fermions. They were obtained in [3,4,5] by means of the algorithms of the previous

section. They are of phenomenological relevance because g loop scattering of n gluons with

a quark-antiquark pair or two gauginos requires correlators 〈ψ2g+2n−1SASB〉~a~b in the spacetime

SCFT. Still, their group structure admits to write them down universally for any even number

of spacetime dimensions.

6.2.1 Examples with finite number of fields

Let us first of all display some lower order correlators 〈∏k
j=1 ψ

mjSASB〉 with two up to k = 4

fermions in order to get a feeling of the structure of this correlator class. The loop completion

of the two- and three point tree level correlation functions reads as follows:

〈SA(z1)SB(z2) 〉~a~b =
Θ~a
~b

[ 1
2 ]D/2(

Θ~a
~b
(~0)
)D/2

E
D/8
12

(6.2.34)

〈ψm(z1)SA(z2)SB(z3) 〉~a~b =
Θ~a
~b

[ 2
3 ]D/2−1 (Γm C)AB Θ~a

~b
[ 2 3

1 1 ]
√

2
(
Θ~a
~b
(~0)
)D/2

(E12E13)1/2E
D/8−1/2
23

(6.2.35)

The four point function is given in (6.1.15) at tree level. At higher genus, it generalizes to

〈ψm(z1)ψn(z2)SA(z2)SB(z3) 〉~a~b =
Θ~a
~b

[ 3
4 ]D/2−1(

Θ~a
~b
(~0)
)D/2

(E13E14E23E24)1/2E
D/8
34
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×
{
E13E24

E12

ηmn CAB Θ~a
~b

[ 1 1 3
2 2 4 ] +

E34

2 Θ~a
~b

[ 3
4 ]

(Γm Γn C)AB Θ~a
~b

[ 3 4
1 1 ] Θ~a

~b
[ 3 4

2 2 ]

}
. (6.2.36)

Applying the gamma matrix identity Γmnp = ΓmΓnΓp+ Γmηnp−Γnηmp+ Γpηmn to the example

in subsection 6.1.6 gives the more compact result

〈ψm(z1)ψn(z2)ψp(z3)SA(z4)SB(z5) 〉~a~b =
Θ~a
~b

[ 4
5 ]D/2−2 (Θ~a

~b
(~0)
)−D/2

√
2 (E14E15E24E25E34E35)1/2E

D/8−1/2
45

×
{
E14E25

E12

ηmn (Γp C)AB Θ~a
~b

[ 1 1 4
2 2 5 ] Θ~a

~b
[ 4 5

3 3 ] − E14E35

E13

ηmp (Γn C)AB Θ~a
~b

[ 1 1 4
3 3 5 ] Θ~a

~b
[ 4 5

2 2 ]

+
E24E35

E23

ηnp (Γm C)AB Θ~a
~b

[ 2 2 4
3 3 5 ] Θ~a

~b
[ 4 5

1 1 ] +
E45 (Γm Γn Γp C)AB

2 Θ~a
~b

[ 4
5 ]

Θ~a
~b

[ 4 5
1 1 ] Θ~a

~b
[ 4 5

2 2 ] Θ~a
~b

[ 4 5
3 3 ]

}
.

(6.2.37)

As a final example, we state the six point function:

〈ψm(z1)ψn(z2)ψp(z3)ψq(z4)SA(z5)SB(z6) 〉~a~b =
Θ~a
~b

[ 5
6 ]D/2−2 (Θ~a

~b
(~0)
)−D/2

(E15E16E25E26E35E36E45E46)1/2E
D/8
56

×
{
E15E26E35E46

E12E34

ηmn ηpq CAB Θ~a
~b

[ 1 1 5
2 2 6 ] Θ~a

~b
[ 3 3 5

4 4 6 ]

− E15E36E25E46

E13E24

ηmp ηnq CAB Θ~a
~b

[ 1 1 5
3 3 6 ] Θ~a

~b
[ 2 2 5

4 4 6 ]

+
E15E46E25E36

E14E23

ηmq ηnp CAB Θ~a
~b

[ 1 1 5
4 4 6 ] Θ~a

~b
[ 2 2 5

3 3 6 ]

+
E56

2 Θ~a
~b

[ 5
6 ]

[ E15E26

E12

ηmn(Γp Γq C)AB Θ~a
~b

[ 1 1 5
2 2 6 ] Θ~a

~b
[ 5 6

3 3 ] Θ~a
~b

[ 5 6
4 4 ]

+
E35E46

E34

ηpq(Γm Γn C)AB Θ~a
~b

[ 3 3 5
4 4 6 ] Θ~a

~b
[ 5 6

1 1 ] Θ~a
~b

[ 5 6
2 2 ]

− E15E36

E13

ηmp(Γn Γq C)AB Θ~a
~b

[ 1 1 5
3 3 6 ] Θ~a

~b
[ 5 6

2 2 ] Θ~a
~b

[ 5 6
4 4 ]

− E25E46

E24

ηnq(Γm Γp C)AB Θ~a
~b

[ 2 2 5
4 4 6 ] Θ~a

~b
[ 5 6

1 1 ] Θ~a
~b

[ 5 6
3 3 ]

+
E15E46

E14

ηmq(Γn Γp C)AB Θ~a
~b

[ 1 1 5
4 4 6 ] Θ~a

~b
[ 5 6

2 2 ] Θ~a
~b

[ 5 6
3 3 ]

+
E25E36

E23

ηnp(Γm Γq C)AB Θ~a
~b

[ 2 2 5
3 3 6 ] Θ~a

~b
[ 5 6

1 1 ] Θ~a
~b

[ 5 6
4 4 ]

]
+

(
E56

2 Θ~a
~b

[ 5
6 ]

)2

(Γm Γn Γp Γq C)AB Θ~a
~b

[ 5 6
1 1 ] Θ~a

~b
[ 5 6

2 2 ] Θ~a
~b

[ 5 6
3 3 ] Θ~a

~b
[ 5 6

4 4 ]

}
(6.2.38)

The corresponding seven point function can be found in [4] for D = 4.



6.2. CORRELATORS WITH TWO SPIN FIELDS IN D = 2N DIMENSIONS 153

6.2.2 The n point formula

The cleanest way to present the generalization of the lower point results (6.2.34) to (6.2.38) to

arbitrary numbers of ψm insertions distinguishes between even and odd fermion numbers:

Ω
m1...m2n−1

(n,D) KL(zi) := 〈ψm1(z1)ψm2(z2) ... ψm2n−1(z2n−1)SK(zA)SL(zB) 〉~a~b

=

[
Θ~a
~b

(
1
2
∫ zAzB ~ω

)]D/2−n
√

2
[

Θ~a
~b
(~0)
]D/2

E
D/8−1/2
AB

∏2n−1
i=1 (EiAEiB)1/2

n−1∑
`=0

(
EAB

2 Θ~a
~b

(
1
2
∫ zAzB ~ω

))`

×
∑

ρ∈S2n−1/Pn,`

sgn(ρ)
(
Γmρ(1) Γmρ(2) ...Γmρ(2`) Γmρ(2`+1) C

)
KL

2`+1∏
k=1

Θ~a
~b

(
1
2

zA
∫

zρ(k)

~ω + 1
2

zB
∫

zρ(k)

~ω

)

×
n−`−1∏
j=1

ηmρ(2`+2j)mρ(2`+2j+1)

Eρ(2`+2j),ρ(2`+2j+1)

Eρ(2`+2j),AEρ(2`+2j+1),B Θ~a
~b

(
zρ(2`+2j)

∫
zρ(2`+2j+1)

~ω + 1
2

zA
∫
zB

~ω

)
, (6.2.39)

ω
m1...m2n−2

(n,D) KL(zi) := 〈ψm1(z1)ψm2(z2) ... ψm2n−2(z2n−2)SK(zA)SL(zB) 〉~a~b

=

[
Θ~a
~b

(
1
2
∫ zAzB ~ω

)]D/2+1−n

[
Θ~a
~b
(~0)
]D/2

E
D/8
AB

∏2n−2
i=1 (EiAEiB)1/2

n−1∑
`=0

(
EAB

2 Θ~a
~b

(
1
2
∫ zAzB ~ω

))`

×
∑

ρ∈S2n−2/Qn,`

sgn(ρ)
(
Γmρ(1) Γmρ(2) ...Γmρ(2`) C

)
KL

2∏̀
k=1

Θ~a
~b

(
1
2

zA
∫

zρ(k)

~ω + 1
2

zB
∫

zρ(k)

~ω

)

×
n−`−1∏
j=1

ηmρ(2`+2j−1)mρ(2`+2j)

Eρ(2`+2j−1),ρ(2`+2j)

Eρ(2`+2j−1),AEρ(2`+2j),B Θ~a
~b

(
zρ(2`+2j−1)

∫
zρ(2`+2j)

~ω + 1
2

zA
∫
zB

~ω

)
(6.2.40)

The summation ranges ρ ∈ S2n−1/Pn,` and ρ ∈ S2n−2/Qn,` certainly require some explana-

tion. The conventions are taken from [3] where a more exhaustive presentation can be found.

Formally, we define

S2n−1/Pn,` ≡
{
ρ ∈ S2n−1 : ρ(1) < ρ(2) < ... < ρ(2`+ 1) ,

ρ(2`+ 2j) < ρ(2`+ 2j + 1) ∀ j = 1, 2, ..., n− `− 1 ,

ρ(2`+ 3) < ρ(2`+ 5) < ... < ρ(2n− 1)
}
, (6.2.41)

S2n−2/Qn,` ≡
{
ρ ∈ S2n−2 : ρ(1) < ρ(2) < ... < ρ(2`) ,

ρ(2`+ 2j − 1) < ρ(2`+ 2j) ∀ j = 1, 2, ..., n− `− 1 ,

ρ(2`+ 2) < ρ(2`+ 4) < ... < ρ(2n− 2)
}
. (6.2.42)

In other words, the sums over S2n−1/Pn,`- and S2n−2/Qn,` in (6.2.39) and (6.2.40) run over those

permutations ρ of (1, 2, ..., 2n− 1) or (1, 2, ..., 2n− 2) which satisfy the following constraints:

• Only ordered Γ products are summed over: The indices mρ(i) attached to a chain of Γ
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matrices are increasingly ordered, e.g. whenever the product Γmρ(i)Γmρ(j)Γmρ(k) appears,

the sub-indices satisfy ρ(i) < ρ(j) < ρ(k).

• On each metric ηmρ(i)mρ(j) the first index is the “lower” one, i.e. ρ(i) < ρ(j).

• Products of several η’s are not double counted. So once we get ηmρ(i)mρ(j)ηmρ(k)mρ(l) , the

term ηmρ(k)mρ(l)ηmρ(i)mρ(j) does not appear.

These restrictions on the occurring S2n−1 (or S2n−2) elements are abbreviated by a quotient

Pn,` and Qn,`. The subgroups removed from S2n−1 (S2n−2) are S2`+1 × Sn−`−1 × (S2)n−`−1 and

S2`× Sn−`−1× (S2)n−`−1 respectively, therefore the number of terms in (6.2.39) and (6.2.40) at

fixed (n, `) is given by ∣∣S2n−1/Pn,`
∣∣ =

(2n − 1)!

(2` + 1)! (n − ` − 1)! 2n−`−1
, (6.2.43)∣∣S2n−2/Qn,`

∣∣ =
(2n − 2)!

(2`)! (n − ` − 1)! 2n−`−1
. (6.2.44)

To have some easy examples, let us explicitly evaluate the sums over S2n−1/Pn,` and S2n−2/Qn,`
occurring in the five- and six-point functions 〈ψmψnψpSASB〉 and 〈ψmψnψpψqSASB〉. The

formula (6.2.39), applied to n = 2, schematically tell us that (up to a zi dependent pre-factor)

〈ψm1 ψm2 ψm3 SA SB〉 ∼
1∑
`=0

∑
ρ∈S3/P2,`

sgn(ρ)
(
Γmρ(1) ...Γmρ(2`+1) C

)
AB

fρ` (zi)

∼ (Γm3 C)AB ηm1m2 f
(312)
`=0 − (Γm2 C)AB ηm1m3 f

(213)
`=0 + (Γm1 C)AB ηm2m3 f

(123)
`=0︸ ︷︷ ︸

ρ∈S3/P2,0

+ (Γm1 Γm2 Γm3 C)AB f (123)
`=1︸ ︷︷ ︸

ρ∈S3/P2,1

, (6.2.45)

with zij dependencies

f
(312)
`=0 =

E14E25

E12

Θ~a
~b

[ 4 5
3 3 ] Θ~a

~b
[ 1 1 4

2 2 5 ] , f
(213)
`=0 =

E14E35

E13

Θ~a
~b

[ 4 5
2 2 ] Θ~a

~b
[ 1 1 4

3 3 5 ] (6.2.46)

f
(123)
`=0 =

E24E35

E23

Θ~a
~b

[ 4 5
1 1 ] Θ~a

~b
[ 2 2 4

3 3 5 ] , f
(123)
`=1 =

E45 Θ~a
~b

[ 4 5
1 1 ] Θ~a

~b
[ 4 5

2 2 ] Θ~a
~b

[ 4 5
3 3 ]

2 Θ~a
~b

[ 4
5 ]

.

Equation (6.2.40) for n = 3 is expanded as

〈ψm1 ψm2 ψm3 ψm4 SA SB〉 ∼
2∑
`=0

∑
ρ∈S4/Q3,`

sgn(ρ)
(
Γmρ(1) Γmρ(2) ...Γmρ(2`) C

)
AB

gρ`

∼ CAB ηm1m2 ηm3m4 g
(1234)
`=0 − CAB ηm1m3 ηm2m4 g

(1324)
`=0 + CAB ηm2m3 ηm1m4 g

(2314)
`=0

+ (Γm1 Γm2 C)AB ηm3m4 g
(1234)
`=1 − (Γm1 Γm3 C)AB ηm2m4 g

(1324)
`=1 + (Γm1 Γm4 C)AB ηm2m3 g

(1423)
`=1
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+ (Γm2 Γm3 C)AB ηm1m4 g
(2314)
`=1 − (Γm2 Γm4 C)AB ηm1m3 g

(2413)
`=1 + (Γm3 Γm4 C)AB ηm1m2 g

(3412)
`=1

+ (Γm1 Γm2 Γm3 Γm4 C)AB g(1234)
`=2 . (6.2.47)

The associated world-sheet functions gρ` can be found looked up in (6.2.38).

The proof of (6.2.39) and (6.2.40) in D dimensions can be carried over almost literally from

the four-dimensional case in [4]. The only explicit D dependence lies in the prefactors

Ω(n,D) ∼

[
Θ~a
~b

(
1
2
∫ zAzB ~ω

)]D/2−n
[

Θ~a
~b
(~0)
]D/2

E
D/8−1/2
AB

, ω(n,D) ∼

[
Θ~a
~b

(
1
2
∫ zAzB ~ω

)]D/2+1−n

[
Θ~a
~b
(~0)
]D/2

E
D/8
AB

(6.2.48)

which are designed to match the leading zA → zB behavior in the OPE (6.1.3) of SK(zA)SL(zB).

6.3 Correlators in four dimensions

As mentioned at the beginning of this chapter, RNS correlators can only be given for general

dimensions D = 2n if the number of spin fields does not exceed two. In the following, we will

discuss more general cases with ≥ 4 spin fields for which each dimensionality must be treated

separately. This section is devoted to four dimensions which are firstly of phenomenological

relevance and secondly of exceptional simplicity as we will explain below. The tree level strategy

is taken from [3], and parts of the computational tricks can still be carried out on higher

genus [4].

6.3.1 Decomposing tree level correlators

In this subsection, we will demonstrate that the most general RNS tree level correlator in

D = 4 dimensions with any number of ψµ, Sa and S ḃ field insertions can be boilt down to

correlators 〈Sa1(x1)...Sa2n(x2n)〉 with spin fields of uniform chirality. The first ingredient for

this decomposition is a factorization of NS fermions into spin fields: Among the four dimensional

RNS OPEs (4.2.7) we have one case with leading z − w power zero,

Sa(z)S ḃ(w) =
1√
2

(σµ ε)a
ḃ (z − w)0 ψµ(w) + O(z − w) . (6.3.49)

By setting z = w and using σµ
aḃ
σ̄ḃaν = −2δµν , we can invert this relation and express the fermion

ψµ as a bilinear of D = 4 spin fields:

ψµ(z) = − 1√
2
Sa(z) (ε σµ)aḃ S

ḃ(z) (6.3.50)
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Hence, it is possible to replace all NS fermions in the following correlator:

〈ψµ1(z1) . . . ψµn(zn)Sa1(x1) . . . Sar(xr)S
ḃ1(y1) . . . S ḃs(ys) 〉 =

n∏
i=1

(
− (ε σµi)ci ḋi√

2

)
× 〈Sc1(z1) . . . Scn(zn)Sa1(x1) . . . Sar(xr)S

ḋ1(z1) . . . S ḋn(zn)S ḃ1(y1) . . . S ḃs(ys) 〉 . (6.3.51)

Any correlation function can be written as a spin field correlator contracted by some σ matrices.

The next major simplification exploits the fact that spin field tree correlators in four di-

mensions factorize into a left handed and a right handed part. The easiest example for this

statement is the following four point function:

〈Sa(z1)S ḃ(z2)Sc(z3)S ḋ(z4) 〉 =
εac ε

ḃḋ

(z13 z24)1/2
= 〈Sa(z1)Sc(z3) 〉 〈S ḃ(z2)S ḋ(z4) 〉 (6.3.52)

In order to see that this factorization property holds for an arbitrary number of spin fields, it

is most convenient to work with their bosonized representation [119],

S
a=
“
±1

2
,±1

2

”(z) ∼ e±
i
2

[H1(z)+H2(z)] =: eia·H(z) ,

S
ḃ=
“
±1

2
,∓1

2

”
(z) ∼ e±

i
2

[H1(z)−H2(z)] =: eiḃ·H(z) , (6.3.53)

with a two component boson vector H(z) =
(
H0(z), H1(z)

)
and spinor weight vectors a =(

±1
2
,±1

2

)
, ḃ =

(
±1

2
,∓1

2

)
. In D = 4, exceptional simplificiations occur because weight vectors

of distinct chiralities are orthogonal, a · ḃ = 0. Hence, the correlation function of r left handed

and s right handed spin fields becomes

〈Sa1(z1) . . . Sar(zr)S
ḃ1(w1) . . . S ḃs(ws) 〉 =

〈 r∏
k=1

eiak·H(zk)

s∏
l=1

eiḃl·H(wl)
〉

= δ

(
r∑

k=1

ak +
s∑
l=1

ḃl

)
r∏

i,j=1
i<j

z
ai·aj
ij

s∏
ı̄,̄=1
ı̄<̄

w
ḃı̄·ḃ̄
ı̄̄

r∏
m=1

s∏
n=1

(zm − wn)am·ḃn︸ ︷︷ ︸
= 1 since am·ḃn=0

= δ

(
r∑

k=1

ak

)
r∏

i,j=1
i<j

z
ai·aj
ij δ

(
s∑
l=1

ḃl

)
s∏

ı̄,̄=1
ı̄<̄

w
ḃı̄·ḃ̄
ı̄̄

=
〈 r∏
k=1

eiak·H(zk)
〉 〈 s∏

l=1

eiḃl·H(wl)
〉

= 〈Sa1(z1) . . . Sar(zr) 〉 〈S ḃ1(w1) . . . S ḃs(ws) 〉 . (6.3.54)

From the second to the third line we have used that am · ḃn = 0, and the δ-function has been

split into the linearly independent a- and ḃ contributions. This proves that a general spin field
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correlation function in four dimensions splits into separate correlators involving left- and right

handed spin fields only.

We should stress that this result does not generalize to arbitrary dimensions. In D = 2n

with n > 2, the crucial property α · β̇ = 0 for weight vectors α, β̇ of opposite chirality does not

hold any longer. Therefore, the zm − wn factors which dropped out of (6.3.54) will generically

be present in higher dimensions, and left handed spin fields couple non-trivially to the right

handed ones.

Using the factorization property (6.3.54), our previous result (6.3.51) for D = 4 tree level

correlators can be further reduced to

〈ψµ1(z1) . . . ψµn(zn)Sa1(x1) . . . Sar(xr)S
ḃ1(y1) . . . S ḃs(ys) 〉 =

n∏
i=1

(
− (ε σµi)ci ḋi√

2

)
× 〈Sc1(z1) . . . Scn(zn)Sa1(x1) . . . Sar(xr) 〉 〈S ḋ1(z1) . . . S ḋn(zn)S ḃ1(y1) . . . S ḃs(ys) 〉 . (6.3.55)

This formula shows how correlation functions involving NS fermions factorize into a prod-

uct of correlators with only left- or right handed spin fields. Hence, if the latter are known

for an arbitrary number of spin fields, it is possible to calculate in principle any correlator

〈ψµ1 . . . ψµn Sa1 . . . Sar S
ḃ1 . . . S ḃs〉.

6.3.2 The building block: 2n alike spin fields

This section contains an expression for 2n point correlators 〈Sa1 . . . Sa2n〉 which have just been

identified as the basic building block of any tree level correlation functions of the D = 4 RNS

CFT. As a motivation for the 2n point formula, let us first of all give some lower order examples

at n = 2, 3.

In the four point function, we eliminate one out of three possible tensor structures using

the Fierz identity εacεbd = εabεcd − εadεcb,

〈Sa(z1)Sb(z2)Sc(z3)Sd(z4) 〉 =
1

(z12 z13 z14 z23 z24 z34)1/2

(
εab εcd z14 z23 − εad εcb z12 z43

)
=

(
z12 z14 z23 z34

z13 z24

)1/2 (
εab εcd
z12 z34

− εad εcb
z14 z32

)
(6.3.56)

For the six point correlator, one can think of 5!! = 15 combinations εaiajεakalεaman five of which

are linearly independent. However, the result assumes a more symmetric form if we use six

tensors, namely:

〈Sa(z1)Sb(z2)Sc(z3)Sd(z4)Se(z5)Sf (z6) 〉 =

(
z12 z14 z16 z23 z25 z34 z36 z45 z56

z13 z15 z24 z26 z35 z46

)1/2
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×
(
εab εcd εef
z12 z34 z56

− εab εcf εed
z12 z36 z54

+
εad εcf εeb
z14 z36 z52

− εad εcb εef
z14 z32 z56

+
εaf εcb εed
z16 z32 z54

− εaf εcd εeb
z16 z34 z52

)
(6.3.57)

In both cases, the prefactor schematically consists of all possible terms (zodd even zeven odd)1/2 in

the numerator and (zodd odd zeven even)1/2 in the denominator. Furthermore, the first index at

every ε-tensor belongs to a spin field with argument zodd whereas the second index stems from

a spin field with argument zeven, e.g. odd↔ a, c, e and even↔ b, d, f in (6.3.57). Finally, every

ε-tensor comes with the corresponding factor (zodd − zeven)−1, e.g. εad ↔ z−1
14 . The relative

signs between the individual (ε/zij)
n terms can be understood as the sign of the respective

permutation of the even spinor indices.

These observations about (6.3.56) and (6.3.57) suggest the following expression for the 2n

point function of left-handed spin fields:

〈Sa1(z1)Sa2(z2) . . . Sa2n−1(z2n−1)Sa2n(z2n) 〉 =

( n∏
i≤j

z2i−1,2j

n∏
ı̄<̄

z2ı̄,2̄−1

)1/2

×
(

n∏
k<l

z2k−1,2l−1 z2k,2l

)−1/2 ∑
ρ∈Sn

sgn(ρ)
n∏

m=1

εa2m−1aρ(2m)

z2m−1,ρ(2m)

(6.3.58)

We prove this claim by induction. The basic cases n = 2, 3 reproduce (6.3.56) and (6.3.57). The

inductive step makes use of the fact that the 2n− 2 correlator should appear as a limiting case

of the 2n correlator when two spin fields are contracted via OPE Sai(zi)Saj(zj) ∼ εaiajz
−1/2
ij .

As every spin field can be permuted to the very right in the correlator, it is sufficient to study

the case z2n−1 → z2n:

〈Sa1(z1) . . . Sa2n−2(z2n−2)Sa2n−1(z2n−1)Sa2n(z2n) 〉
∣∣∣
z2n−1→z2n

=
εa2n−1a2n

z
1/2
2n−1,2n

〈Sa1(z1) . . . Sa2n−2(z2n−2) 〉 + O(z
1/2
2n−1,2n)

=
εa2n−1a2n

z2n−1,2n

z
1/2
2n−1,2n

(
n−1∏
i≤j

z2i−1,2j

n−1∏
ı̄<̄

z2ı̄,2̄−1

)1/2 (n−1∏
k<l

z2k−1,2l−1 z2k,2l

)−1/2

×
(∏n−1

p=1 z2p−1,2n z2p,2n−1∏n−1
q=1 z2q−1,2n−1 z2q,2n

)1/2

︸ ︷︷ ︸
= 1 +O(z2n−1,2n)

∑
ρ∈Sn−1

sgn(ρ)
n−1∏
m=1

εa2m−1aρ(2m)

z2m−1,ρ(2m)

+ O(z
1/2
2n−1,2n)

=

(
n∏
i≤j

z2i−1,2j

n∏
ı̄<̄

z2ı̄,2̄−1

)1/2 ( n∏
k<l

z2k−1,2l−1 z2k,2l

)−1/2

×
∑
ρ∈Sn

sgn(ρ)
n∏

m=1

δρ(2n),2n

εα2m−1αρ(2m)

z2m−1,ρ(2m)

+ O(z
1/2
2n−1,2n) (6.3.59)
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The most singular piece of (6.3.58) in z2n−1,2n is contained in the subset of Sn permutations

ρ with fixed point ρ(2n) = 2n. This is precisely what we have found in (6.3.59) by applying

the OPE of Sa2n−1(z2n−1)Sa2n(z2n) and evaluating the remainder 〈Sa1(z1) . . . Sa2n−2(z2n−2)〉 via

(6.3.58) at n 7→ n− 1. This completes the proof by induction.

By plugging (6.3.58) and its right handed analogue

〈S ḃ1(z1)S ḃ2(z2) . . . S ḃ2n−1(z2n−1)S ḃ2n(z2n) 〉 =

( n∏
i≤j

z2i−1,2j

n∏
ı̄<̄

z2ı̄,2̄−1

)1/2

×
(

n∏
k<l

z2k−1,2l−1 z2k,2l

)−1/2 ∑
ρ∈Sn

sgn(ρ)
n∏

m=1

εḃ2m−1ḃρ(2m)

z2m−1,ρ(2m)

. (6.3.60)

into (6.3.55), we are now able to calculate any tree level correlator involving fermions ψµ and

spin fields Sa, S
ḃ.

6.3.3 The loop generalization

The natural question is whether the tree level strategies can still be applied to loop correlators

in four dimensions. The first step trading ψµ for a SaS
ḃ product is based on OPEs, i.e. local

properties of the conformal fields. Therefore, the factorization prescription (6.3.50) remains

valid at g ≥ 1.

However, the separation of D = 4 spin field correlators into left- and right handed halves

does not occur beyond tree level. The arguments in subsection 6.3.2 rest on bosonization which

becomes more subtle at higher genus, see subsection 6.1.5. The boson’s winding numbers

have to be projected according to the fermion’s spin structure, therefore one has to expect

obstacles against factorizing 〈Sa1 ...SapS
ḃ1 ...S ḃq〉~a~b into 〈Sa1 ...Sap〉~a~b and 〈S ḃ1 ...S ḃq〉~a~b within the

spin structure dependent Θ~a
~b

function. This is confirmed by the loop generalization of the toy

example (6.3.52):

〈Sa(z1)S ḃ(z2)Sc(z3)S ḋ(z4) 〉~a~b = εac ε
ḃḋ

Θ~a
~b

(
1
2
∫ z1z3 ~ω + 1

2
∫ z2z4 ~ω

)
Θ~a
~b

(
1
2
∫ z1z3 ~ω − 1

2
∫ z2z4 ~ω

)[
Θ~a
~b
(~0)
]2

(E13E24)1/2

6= 〈Sa(z1)Sc(z3) 〉~a~b 〈S
ḃ(z2)S ḋ(z4) 〉~a~b (6.3.61)

Hence, determining the Θ~a
~b

arguments within 〈Sa1 ...SapS
ḃ1 ...S ḃq〉~a~b is the bottleneck in the com-

putation of D = 4 loop correlators. The problem could not be solved in full generality, i.e. not

for arbitrary values of p, q, but let us give the partial results of [4]:

Correlation functions of alike spin fields are relatively straightforward generalizations of
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their tree level limit (6.3.58):

〈Sa1(z1)Sa2(z2) ... Sa2n−1(z2n−1)Sa2n(z2n) 〉~a~b =
1[

Θ~a
~b
(~0)
]2
[

Θ~a
~b

(
1

2

n∑
i=1

z2i−1

∫
z2i

~ω

)]2−n

×
( n∏

i≤j

E2i−1,2j

n∏
ı̄<̄

E2ı̄,2̄−1

)1/2
(

n∏
k<l

E2k−1,2l−1E2k,2l

)−1/2

×
∑
ρ∈Sn

sgn(ρ)
n∏

m=1

εa2m−1aρ(2m)

E2m−1,ρ(2m)

Θ~a
~b

(
1

2

n∑
i=1

z2i−1

∫
z2i

~ω −
z2m−1

∫
zρ(2m)

~ω

)
(6.3.62)

The negative power of Θ~a
~b

(
1
2

∑n
i=1 ∫ z2i−1

z2i
~ω
)

functions at n ≥ 3 can be viewed as a pun-

ishment for expressing the correlator in terms of a nonminimal set of n! Lorentz tensors4∏n
m=1 εa2m−1aρ(2m)

, ρ ∈ Sn.

We also managed to find explicit results for 2n left handed and either two or four right

handed spin fields:

〈Sa1(z1)Sa2(z2) ... Sa2n−1(z2n−1)Sa2n(z2n)S ċ(zC)S ḋ(zD) 〉~a~b

=
1[

Θ~a
~b
(~0)
]2
[

Θ~a
~b

(
1

2

n∑
i=1

z2i−1

∫
z2i

~ω ± 1

2

zC
∫
zD

~ω

)]2−n
εċḋ

E
1/2
CD

×
( n∏

i≤j

E2i−1,2j

n∏
ı̄<̄

E2ı̄,2̄−1

)1/2
(

n∏
k<l

E2k−1,2l−1E2k,2l

)−1/2

×
∑
ρ∈Sn

sgn(ρ)
n∏

m=1

εa2m−1aρ(2m)

E2m−1,ρ(2m)

Θ~a
~b

(
1

2

n∑
i=1

z2i−1

∫
z2i

~ω −
z2m−1

∫
zρ(2m)

~ω ± 1

2

zC
∫
zD

~ω

)
(6.3.63)

〈Sa1(z1)Sa2(z2) ... Sa2n(z2n)S ċ(zC)S ḋ(zD)S ė(zE)S ḟ (zF ) 〉~a~b =
1[

Θ~a
~b
(~0)
]2

×
(
ECD ECF EDE EEF

ECE EDF

)1/2
(

n∏
i≤j

E2i−1,2j

n∏
ı̄<̄

E2ı̄,2̄−1

)1/2 ( n∏
k<l

E2k−1,2l−1E2k,2l

)−1/2

×
{

εċḋ εėḟ

ECD EEF

[
Θ~a
~b

(
1

2

n∑
i=1

z2i−1

∫
z2i

~ω ± 1

2

zC
∫
zD

~ω ∓ 1

2

zE
∫
zF

~ω

)]2−n ∑
ρ∈Sn

sgn(ρ)

n∏
m=1

εa2m−1aρ(2m)

E2m−1,ρ(2m)

Θ~a
~b

(
1

2

n∑
i=1

z2i−1

∫
z2i

~ω −
z2m−1

∫
zρ(2m)

~ω ± 1

2

zC
∫
zD

~ω ∓ 1

2

zE
∫
zF

~ω

)

− εċḟ εėḋ

ECF EED

[
Θ~a
~b

(
1

2

n∑
i=1

z2i−1

∫
z2i

~ω ± 1

2

zC
∫
zF

~ω ∓ 1

2

zE
∫
zD

~ω

)]2−n ∑
ρ∈Sn

sgn(ρ)

n∏
m=1

εa2m−1aρ(2m)

E2m−1,ρ(2m)

Θ~a
~b

(
1

2

n∑
i=1

z2i−1

∫
z2i

~ω −
z2m−1

∫
zρ(2m)

~ω ± 1

2

zC
∫
zF

~ω ∓ 1

2

zE
∫
zD

~ω

)}
(6.3.64)

4Finding the number of scalars in the 2n fold tensor product of left handed SO(1, 3) spinors is equivalent to a

random walk problem on the positive real axis [229]. It is given by the n’th Catalan number C(n) = (2n)!
n!(n+1)! ≤ n!.
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The sign ambiguity in coupling the right handed fields’ positions to the left handed ones vanishes

at n ≤ 2. The cases with n ≥ 3 offer an increasing number of possibilities to add zeros in

the form 0 =
∑

ρ∈Sm sgn(ρ)
∏m

k=1 εa2k−1aρ(2k)
for any 3 ≤ m ≤ n which then allow to check

equivalence of both sign choices.

The proof for the loop generalizations (6.3.62), (6.3.63) and (6.3.64) is based on similar

mechanisms as in (6.3.59) and can be found in appendix B.1 of [4].

With these correlation functions at hand, it is in principle possible to derive a cornucopia

of correlators with NS fields included via ψµ factorization (6.3.50):

• starting from 〈Sa1 ... Sa2M
S ċ S ḋ〉~a~b

⇒ 〈ψµ Sa1 ... Sa2M−1
S ċ 〉~a~b , 〈ψ

µ ψν Sa1 ... Sa2M−2
〉~a~b

• starting from 〈Sa1 ... Sa2M
S ċ S ḋ S ė S ḟ〉~a~b

⇒

 〈ψµ Sa1 ... Sa2M−1
S ċ S ḋ S ė〉~a~b , 〈ψ

µ ψν Sa1 ... Sa2M−2
S ċ S ḋ〉~a~b

〈ψµ ψν ψλ Sa1 ... Sa2M−3
S ċ〉~a~b , 〈ψ

µ ψν ψλ ψρ Sa1 ... Sa2M−4
〉~a~b

6.3.4 Examples with four spin fields

After this rather general discussion of RNS correlators in four dimensions, we shall give some

explicit examples with four spin fields here which are for instance required for one loop ampli-

tudes with four massless fermions.

Firstly, we shall explicitly display the four point function of left handed spin fields

〈Sa(z1)Sb(z2)Sc(z3)Sd(z4) 〉~a~b =
(E12E14E23E34)1/2[
Θ~a
~b
(~0)
]2

(E13E24)1/2

×
{ εab εcd
E12E34

Θ~a
~b

[ 1 4
2 3 ]2 − εad εcb

E14E32

Θ~a
~b

[ 1 2
3 4 ]2

}
(6.3.65)

which is the n = 2 case of (6.3.62). The nonvanishing five point function with four spin fields

reads

〈ψµ(z1)Sa(z2)Sb(z3)Sc(z4)S ḋ(z5) 〉~a~b =
1√

2
[
Θ~a
~b
(~0)
]2

(E12E13E14E15E23E24E34)1/2

×
{

(σµ ε)c
ḋ εabE12E34 Θ~a

~b
[ 1 1 2

3 4 5 ] Θ~a
~b

[ 2 5
4 3 ] + (σµ ε)a

ḋ εcbE14E23 Θ~a
~b

[ 1 1 4
2 3 5 ] Θ~a

~b
[ 4 5

2 3 ]
}
.

(6.3.66)

Among the six point functions 〈ψ2S4〉, there are two non-vanishing chirality configurations –

either the spin fields are all left handed,

〈ψµ(z1)ψν(z2)Sa(z3)Sb(z4)S ċ(z5)S ḋ(z6) 〉~a~b



162 CHAPTER 6. CORRELATION FUNCTIONS OF RNS PRIMARIES

=
1

2
[
Θ~a
~b
(~0)
]2
E12 (E13E14E15E16E23E24E25E26E34E56)1/2

×
{

(σµ ε)b
ḋ (σν ε)a

ċE13E15E24E26 Θ~a
~b

[ 1 1 3 5
2 2 4 6 ] Θ~a

~b
[ 3 6

4 5 ]

+ (σµ ε)a
ċ (σν ε)b

ḋE14E16E23E25 Θ~a
~b

[ 1 1 4 6
2 2 3 5 ] Θ~a

~b
[ 3 6

4 5 ]

− (σµ ε)a
ḋ (σν ε)b

ċE14E15E23E26 Θ~a
~b

[ 1 1 4 5
2 2 3 6 ] Θ~a

~b
[ 3 5

4 6 ]

− (σµ ε)b
ċ (σν ε)a

ḋE13E16E24E25 Θ~a
~b

[ 1 1 3 6
2 2 4 5 ] Θ~a

~b
[ 3 5

4 6 ]
}
, (6.3.67)

or they are of mixed chirality:

〈ψµ(z1)ψν(z2)Sa(z3)Sb(z4)Sc(z5)Sd(z6) 〉~a~b =
1[

Θ~a
~b
(~0)
]2

× 1

(E13E14E15E16E23E24E25E26E34E35E36E45E46E56)1/2

×
{
ηµν

E12

εab εcdE36E45 Θ~a
~b

[ 3 6
4 5 ]

(
E13E24E25E16 Θ~a

~b
[ 1 1 3 6

2 2 4 5 ] + E23E14E15E26 Θ~a
~b

[ 1 1 4 5
2 2 3 6 ]

)
+

ηµν

E12

εad εcbE34E56 Θ~a
~b

[ 3 4
5 6 ]

(
E13E14E25E26 Θ~a

~b
[ 1 1 3 4

2 2 5 6 ] + E23E24E15E16 Θ~a
~b

[ 1 1 5 6
2 2 3 4 ]

)
+

[
(σµν ε)cd

E56

2

]
εab

E36E45E13E24

Θ~a
~b

[ 3 5
4 6 ]

Θ~a
~b

[ 3 6
4 5 ] Θ~a

~b
[ 1 1 3

4 5 6 ] Θ~a
~b

[ 2 2 4
3 5 6 ]

+

[
(σµν ε)cb

E54

2

]
εad

E34E56E13E26

Θ~a
~b

[ 3 5
4 6 ]

Θ~a
~b

[ 3 4
5 6 ] Θ~a

~b
[ 1 1 3

4 5 6 ] Θ~a
~b

[ 2 2 6
3 4 5 ]

+

[
(σµν ε)ab

E34

2

]
εcd

E36E45E15E26

Θ~a
~b

[ 3 5
4 6 ]

Θ~a
~b

[ 3 6
4 5 ] Θ~a

~b
[ 1 1 5

3 4 6 ] Θ~a
~b

[ 2 2 6
3 4 5 ]

+

[
(σµν ε)ad

E36

2

]
εcb

E34E56E15E24

Θ~a
~b

[ 3 5
4 6 ]

Θ~a
~b

[ 3 4
5 6 ] Θ~a

~b
[ 1 1 5

3 4 6 ] Θ~a
~b

[ 2 2 4
3 5 6 ]

}
(6.3.68)

The Θ~a
~b

function in the denominator is due to the redundancy of the tensors used in (6.3.68),

(σµν ε)ab εcd − (σµν ε)ad εcb + (σµν ε)cd εab − (σµν ε)cb εad = 0 , (6.3.69)

see the remarks below (6.3.62).

6.4 Correlators in six dimensions

The internal SCFT of four dimensional superstring compactifications with maximal spacetime

supersymmetry can be described SO(6) covariantly by six free worldsheet fermions Ψk and

their associated spin fields ΣI and Σ̄Ī . This motivates the study of RNS correlation functions

in D = 6 dimensions. Apart from some lower point results, we will give a general formula for

correlators with n insertions of Σ and Σ̄ each.
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6.4.1 Lower point results

The simplest correlators in six dimensions involving four spin fields only are

〈ΣI(z1) ΣJ(z2) ΣK(z3) ΣL(z4) 〉~a~b =
Θ~a
~b

[ 1 2
3 4 ] Θ~a

~b
[ 1 3

2 4 ] Θ~a
~b

[ 1 4
2 3 ]

2
[
Θ~a
~b
(~0)
]3 (γk C)IJ(γk C)KL

(E12E13E14E23E24E34)1/4
,

(6.4.70)

〈ΣI(z1) ΣJ(z2) Σ̄K̄(z3) Σ̄L̄(z4) 〉~a~b =
Θ~a
~b

[ 1 2
3 4 ][

Θ~a
~b
(~0)
]3 (E13E14E23E24

E12E34

)1/4

×
{
CI

K̄ C
J
L̄

E13E24

Θ~a
~b

[ 1 4
2 3 ]2 − CI

L̄C
J
K̄

E14E23

Θ~a
~b

[ 1 3
2 4 ]2

}
(6.4.71)

where γk are the gamma matrices and CI
J̄ is the charge conjugation matrix of SO(6).

The only non-vanishing five-point correlator with four spin fields and one fermion involves

three alike chiralities:

〈Ψk(z1) ΣI(z2) ΣJ(z3) ΣK(z4) Σ̄L̄(z5) 〉~a~b =
1√

2
[
Θ~a
~b
(~0)
]3 (E25E35E45)1/4

(E12E13E14E15)1/2 (E23E24E34)1/4

×
{

(γk C)IJ
CK

L̄

E45

E14 Θ~a
~b

[ 1 1 4
2 3 5 ] Θ~a

~b
[ 2 4

3 5 ] Θ~a
~b

[ 2 5
3 4 ]

− (γk C)IK
CJ

L̄

E35

E13 Θ~a
~b

[ 1 1 3
2 4 5 ] Θ~a

~b
[ 2 3

4 5 ] Θ~a
~b

[ 2 5
3 4 ]

+ (γk C)JK
CI

L̄

E25

E12 Θ~a
~b

[ 1 1 2
3 4 5 ] Θ~a

~b
[ 2 3

4 5 ] Θ~a
~b

[ 2 4
3 5 ]

}
(6.4.72)

There are two six-point correlators involving only spin fields. The first one consists of five left-

and one right-handed spin-field:

〈ΣI(z1) ΣJ(z2) ΣK(z3) ΣL(z4) ΣM(z5) Σ̄N̄(z6) 〉~a~b =
(E16E26E36E46E56)1/4

(E12E13E14E15E23E24E25E34E35E45)1/4

× 1

2
[
Θ~a
~b
(~0)
]3 { (γk C)IJ (γk C)KM

CL
N̄

E46

E45

E56

Θ~a
~b

[ 1 2 6
3 4 5 ] Θ~a

~b
[ 1 3 6

2 4 5 ] Θ~a
~b

[ 1 4 5
2 3 6 ]

+ (γk C)IJ (γk C)ML C
K
N̄

E36

E35

E56

Θ~a
~b

[ 1 2 6
3 4 5 ] Θ~a

~b
[ 1 3 5

2 4 6 ] Θ~a
~b

[ 1 4 6
2 3 5 ]

+ (γk C)IM (γk C)KL
CJ

N̄

E26

E25

E56

Θ~a
~b

[ 1 2 5
3 4 6 ] Θ~a

~b
[ 1 3 6

2 4 5 ] Θ~a
~b

[ 1 4 6
2 3 5 ]

+ (γk C)MJ (γk C)KL
CI

N̄

E16

E15

E56

Θ~a
~b

[ 1 2 5
3 4 6 ] Θ~a

~b
[ 1 3 5

2 4 6 ] Θ~a
~b

[ 1 4 5
2 3 6 ]

}
(6.4.73)

In addition we have the correlator with three left- and right-handed spin fields each,

〈ΣI(z1) ΣJ(z2) ΣK(z3) Σ̄L̄(z4) Σ̄M̄(z5) Σ̄N̄(z6) 〉~a~b =
(E14E15E16E24E25E26E34E35E36)1/4[

Θ~a
~b
(~0)
]3

(E12E13E23E45E46E56)1/4

×
{
CI

L̄C
J
M̄ CK

N̄

E14E25E36

Θ~a
~b

[ 1 2 6
3 4 5 ] Θ~a

~b
[ 1 3 5

2 4 6 ] Θ~a
~b

[ 1 5 6
2 3 4 ]
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− CI
L̄C

J
N̄ C

K
M̄

E14E26E35

Θ~a
~b

[ 1 2 5
3 4 6 ] Θ~a

~b
[ 1 3 6

2 4 5 ] Θ~a
~b

[ 1 5 6
2 3 4 ]

+
CI

M̄ CJ
N̄ C

K
L̄

E15E26E34

Θ~a
~b

[ 1 2 4
3 5 6 ] Θ~a

~b
[ 1 3 6

2 4 5 ] Θ~a
~b

[ 1 4 6
2 3 5 ]

− CI
M̄ CJ

L̄C
K
N̄

E15E24E36

Θ~a
~b

[ 1 2 6
3 4 5 ] Θ~a

~b
[ 1 3 4

2 5 6 ] Θ~a
~b

[ 1 4 6
2 3 5 ]

+
CI

N̄ C
J
L̄C

K
M̄

E16E24E35

Θ~a
~b

[ 1 2 5
3 4 6 ] Θ~a

~b
[ 1 3 4

2 5 6 ] Θ~a
~b

[ 1 4 5
2 3 6 ]

− CI
N̄ C

J
M̄ CK

L̄

E16E25E34

Θ~a
~b

[ 1 2 4
3 5 6 ] Θ~a

~b
[ 1 3 5

2 4 6 ] Θ~a
~b

[ 1 4 5
2 3 6 ]

}
. (6.4.74)

Furthermore, two NS fermions can be accompanied by four spin fields, either with uniform

chirality

〈Ψk(z1) Ψl(z2) ΣI(z3) ΣJ(z4) ΣK(z5) ΣL(z6) 〉~a~b =
− (E13E14E15E16E23E24E25E26)−1/2

2
[
Θ~a
~b
(~0)
]3
E12 (E34E35E36E45E46E56 )1/4{

(γk C)IJ (γl C)KLE15E16E23E24 Θ~a
~b

[ 1 1 5 6
2 2 3 4 ] Θ~a

~b
[ 3 5

4 6 ] Θ~a
~b

[ 3 6
4 5 ]

+ (γk C)KL (γl C)IJ E13E14E25E26 Θ~a
~b

[ 1 1 3 4
2 2 5 6 ] Θ~a

~b
[ 3 5

4 6 ] Θ~a
~b

[ 3 6
4 5 ]

− (γk C)IK (γl C)JLE14E16E23E25 Θ~a
~b

[ 1 1 4 6
2 2 3 5 ] Θ~a

~b
[ 3 4

5 6 ] Θ~a
~b

[ 3 6
4 5 ]

− (γk C)JL (γl C)IK E13E15E24E26 Θ~a
~b

[ 1 1 3 5
2 2 4 6 ] Θ~a

~b
[ 3 4

5 6 ] Θ~a
~b

[ 3 6
4 5 ]

+ (γk C)IL (γl C)JK E14E15E23E26 Θ~a
~b

[ 1 1 4 5
2 2 3 6 ] Θ~a

~b
[ 3 4

5 6 ] Θ~a
~b

[ 3 5
4 6 ]

+ (γk C)JK (γl C)ILE13E16E24E25 Θ~a
~b

[ 1 1 3 6
2 2 4 5 ] Θ~a

~b
[ 3 4

5 6 ] Θ~a
~b

[ 3 5
4 6 ]

}
, (6.4.75)

or with mixed chiralities:

〈Ψk(z1) Ψl(z2) ΣI(z3) ΣJ(z4) Σ̄K̄(z5) Σ̄L̄(z6) 〉~a~b =
(E35E36E45E46)1/4 (E34E56)−1/4[

Θ~a
~b
(~0)
]3

(E13E14E15E16E23E24E25E26)1/2{
δkl C

I
K̄ C

J
L̄

E12E35E46

E13E14E25E26 Θ~a
~b

[ 1 1 3 4
2 2 5 6 ] Θ~a

~b
[ 3 6

4 5 ]2

− δkl C
I
L̄C

J
K̄

E12E36E45

E13E14E25E26 Θ~a
~b

[ 1 1 3 4
2 2 5 6 ] Θ~a

~b
[ 3 5

4 6 ]2

+
1

2
(γk C)IJ(γ̄l C)K̄L̄E12 Θ~a

~b
[ 1 1 2 2

3 4 5 6 ] Θ~a
~b

[ 3 5
4 6 ] Θ~a

~b
[ 3 6

4 5 ]

+
1

2
(γk γ̄l C)I K̄

CJ
L̄

E46

E14E26 Θ~a
~b

[ 1 1 4
3 5 6 ] Θ~a

~b
[ 2 2 6

3 4 5 ] Θ~a
~b

[ 3 6
4 5 ]

− 1

2
(γk γ̄l C)I L̄

CJ
K̄

E45

E14E25 Θ~a
~b

[ 1 1 4
3 5 6 ] Θ~a

~b
[ 2 2 5

3 4 6 ] Θ~a
~b

[ 3 5
4 6 ]

− 1

2
(γk γ̄l C)J K̄

CI
L̄

E36

E13E26 Θ~a
~b

[ 1 1 3
4 5 6 ] Θ~a

~b
[ 2 2 6

3 4 5 ] Θ~a
~b

[ 3 5
4 6 ]

+
1

2
(γk γ̄l C)J L̄

CI
K̄

E35

E13E25 Θ~a
~b

[ 1 1 3
4 5 6 ] Θ~a

~b
[ 2 2 5

3 4 6 ] Θ~a
~b

[ 3 6
4 5 ]

}
(6.4.76)

A seven point function 〈ΨkΣ
IΣJΣKΣLΣ̄M̄ Σ̄N̄〉~a~b can be found in [5].
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6.4.2 Generalizations to higher point

In six space-time dimensions, the structure of Fierz identities is still sufficiently simple that the

2n-point correlation function with n left- and right handed spin fields each can be expressed in

terms of charge conjugation matrices CKi
L̄j only. Inspired by the lower order results (6.4.71)

and (6.4.74), we claim the following generalization:〈 n∏
i=1

ΣKi(z2i−1) Σ̄L̄i(z2i)

〉~a
~b

=

[
Θ~a
~b
(
∑n

i=1
1
2

∫ z2i
z2i−1

~ω)
]3−n[

Θ~a
~b
(~0)
]3 ( ∏n

i,j=1E2i−1,2j∏n
i<j E2i−1,2j−1E2i,2j

)1/4

×
∑
ρ∈Sn

sgn(ρ)
n∏

m=1

CK2m−1
L̄ρ(2m)

E2m−1,ρ(2m)

Θ~a
~b

( n∑
i=1

1

2

∫ z2i

z2i−1

~ω −
∫ 2m−1

zρ(2m)

~ω

)
(6.4.77)

For higher n, Fay’s trisecant identities might be needed to make specific Ki, L̄j choices compat-

ible with the result above. Due to the chirality structure of the charge conjugation matrix in

D = 6 the correlator above is the direct relative of 〈Sa1(z1) . . . Sa2n(z2n)〉 in D = 4. Therefore

the proof of (6.4.77) proceeds in the same way as in [4].

Having the explicit formula (6.4.77) for this class of correlators is a great benefit in view of

the factorization prescription for NS fermions. In D = 6 dimensions, one can combine two spin

fields of alike chirality to a NS fermion via

Ψk(w) = − 1

2
√

2
lim
z→w

(z − w)1/4 (C−1 γ̄k)JI ΣI(z) ΣJ(w) (6.4.78)

and thereby derive the following further classes of correlation functions:

〈Ψk1(z1) . . .Ψkp+q(zp+q) ΣI1(x1) . . .ΣIn−2p(xn−2p) Σ̄J̄1
(y1) . . . Σ̄J̄n−2q

(yn−2q) 〉~a~b (6.4.79)

For example the last two correlators calculated in the previous subsection can be derived from

the n = 4 version of (6.4.77).

6.5 Correlators in higher dimensions

The general results (6.3.62) to (6.3.64) and (6.4.77) for D = 4, 6 loop correlators of arbitrary

size are not at all transferable to higher dimensions. This is due to the group structure of

SO(1, 7) and SO(1, 9), in particular due to the more involved nature of the corresponding

Fierz identities. This is why we can only give a limited number of higher genus examples in

D = 8 and D = 10 with finite number of field insertions.

In this section, we will collect some selected results in D = 8 and D = 10 dimensions which

were presented in more detail in [5]. We give an outlook on how SO(8) triality becomes useful
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to get a better handle on the RNS CFT in D = 8 dimensions in subsection 6.5.1. Then, a

second subsection 6.5.2 explicitly displays a few D = 10 correlators which have been recognized

as useful in the literature.

6.5.1 Tree level triality in D = 8

The S3 permutation symmetry of the Mercedes star–shaped SO(8) Dynkin diagram in figure

6.1 – also referred to as triality – plays an important role for the eight dimensional RNS CFT.

2-form

β̇α

µ

Figure 6.1: Dynkin diagram for SO(8). We will use vector indices µ, ν, λ, . . . and spinor indices

α, β, α̇, β, . . . in this subsection on D = 8.

In D = 8, NS fermions and spin fields have equal conformal dimension h = D
16

= 1
2
.

Therefore, the OPEs (6.1.1) to (6.1.3) become particularly symmetric and we can make use of

SO(8) triality to rewrite them in unified fashion:

P i(z)P j(w) ∼ gij

z − w + . . . , (6.5.80)

P i(z)Qj(w) ∼ Gijk

(z − w)1/2
gklR

l(w) + . . . (6.5.81)

These OPEs involves two new elements of notation: generalized h = 1
2

fields P i, Qj, Rk

(P i, Qj, Rk) =
(
ρ(ψµ), ρ(Sα), ρ(Sβ̇)

)
, ρ ∈ S3 , (6.5.82)

and triality covariant Clebsch Gordan coefficients with generalized indices i, j, k ∈ {µ, α, β̇}:

gij :=


ηµν : (i, j) = (µ, ν)

Cαβ : (i, j) = (α, β)

C α̇β̇ : (i, j) = (α̇, β̇)

0 : otherwise

, gij :=


ηµν : (i, j) = (µ, ν)

Cαβ : (i, j) = (α, β)

Cα̇β̇ : (i, j) = (α̇, β̇)

0 : otherwise

, (6.5.83)

Gijk :=

 1√
2

(γµC)α
β̇ : (i, j, k) =

(
ρ(µ), ρ(α), ρ(β̇)

)
for some ρ ∈ S3

0 : otherwise
(6.5.84)
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In this notation, both the Dirac algebra ηµνCαβ = −(γ(µγ̄ν)C)αβ and the D = 8 Fierz identity

CαβC
γ̇δ̇ = 1

2
(γµC)α

γ̇(γµC)β
δ̇ + 1

2
(γµC)β

γ̇(γµC)α
δ̇ are special cases of the triality covariant

tensor equation

gi1i2 gj1j2 = Gi1j1k1 Gi2j2k2 gk1k2 + Gi1j2k1 Gi2j1k2 gk1k2 . (6.5.85)

The OPEs (6.5.80) and (6.5.81) provide all the input necessary to derive the tree-level corre-

lation function 〈P i1(x1)...P ip(xp)Q
j1(y1)...Qjq(yq)R

k1(z1)...Rkr(zr)〉 in triality covariant form –

every assignment ρ ∈ S3 for (P i, Qj, Rk) =
(
ρ(ψµ), ρ(Sα), ρ(Sβ̇)

)
is possible.

This circumstance can be used as a strong tool to derive new correlators: Suppose we

know 〈ψµ1 ...ψµ`Sα1 ...SαmS
β̇1 ...Sβ̇n〉 for some `,m, n ∈ N0, then one can rewrite this result

in a covariant way as 〈P i1 ...P i`Qj1 ...QjmRk1 ...Rkn〉 via (ψµ, Sα, S
β̇) ≡ (P i, Qj, Rk) as well as

ηµν , Cαβ, C
α̇β̇ 7→ gij and (γµC)α

β̇ 7→
√

2Gijk. One is then free to pick a different assignment,

e.g. (P i, Qj, Rk) ≡ (Sα, S
β̇, ψµ) which yields the correlator 〈ψµ1 ...ψµnSα1 ...Sα`S

β̇1 ...Sβ̇m〉 with

(`,m, n) traded for (n, `,m).

The most interesting application of this procedure is to relate the 2n- and (2n + 1)-point

correlation functions from section 6.2 to so far unknown correlators with a large number of spin

field insertions:

〈ψ2` S2 〉 ↔ 〈ψ2 S2` 〉 , 〈ψ2` S2 〉 ↔ 〈S2` Ṡ2 〉 , 〈ψ2`−1 S Ṡ 〉 ↔ 〈ψ S2`−1 Ṡ 〉

This requires rewriting the D = 8 tree level correlators (6.2.39) and (6.2.40) in SO(8) triality

covariant fashion5:

Ω
i1...i2n−1jk
(n,D=8) (zi) := 〈P i1(z1)P i2(z2) ... P i2n−1(z2n−1)Qj(zA)Rk(zB) 〉

=
1

z
1/2
AB

∏2n−1
i=1 (ziA ziB)1/2

n−1∑
`=0

(
− zAB

)` ∑
ρ∈S2n−1/Pn,`

Giρ(1)jr1 Giρ(2)q1
r1 G

iρ(3)
q1
r2 Giρ(4)q2

r2 ... G
iρ(2`+1)

q`
k

× sgn(ρ)
n−`−1∏
j=1

giρ(2`+2j)iρ(2`+2j+1)

zρ(2`+2j),ρ(2`+2j+1)

zρ(2`+2j),A zρ(2`+2j+1),B , (6.5.86)

ω
i1...i2n−2j1j2
(n,D=8) (zi) := 〈P i1(z1)P i2(z2) ... P i2n−2(z2n−2)Qj1(zA)Qj2(zB) 〉

=
1

zAB
∏2n−2

i=1 (ziA ziB)1/2

n−1∑
`=0

(
− zAB

)` ∑
ρ∈S2n−2/Qn,`

Giρ(1)j1r1 Giρ(2)q1
r1 G

iρ(3)
q1
r2 ... Giρ(2`)j2

r`

× sgn(ρ)
n−`−1∏
j=1

giρ(2`+2j−1)iρ(2`+2j)

zρ(2`+2j−1),ρ(2`+2j)

zρ(2`+2j−1),A zρ(2`+2j),B (6.5.87)

5The (zAB/2)` factors from (6.2.39) and (6.2.40) are converted to (−zAB)` by means of (γµC)αβ̇ ≡
√

2Gijk

as well as (γ̄µC)β̇α ≡ −
√

2Gijk.
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They give rise to new tree level results under (P i` , Qj, Rk) ≡ (Sα` , ψ
µ, Sβ̇), (P i` , Qj1 , Qj2) ≡

(Sα` , ψ
µ, ψν) or (P i` , Qj1 , Qj2) ≡ (Sα` , S

β̇, S γ̇). However, not all correlation functions can be

derived from (6.2.39) and (6.2.40) via triality. Already the six-point function 〈ψµψνSαSβS γ̇S δ̇〉,
for instance, must be derived by the standard algorithms from section 6.1.

6.5.2 Correlators in ten dimensions

The ten dimensional RNS CFT does not seem to admit any shortcuts towards tree level- or

loop correlators. We could neither find closed expressions for correlators with a large number

of spin fields nor any representation theoretic trick comparable to SO(8) triality. All we can

do in this subsection is collecting some lower point examples of loop correlators which were

computed by applying the standard algorithms.

Ten dimensional correlators with four spin fields only are given by

〈Sα(z1)Sβ(z2)Sγ(z3)Sδ(z4) 〉~a~b =
1

2 (E12E13E14E23E24E34)3/4

Θ~a
~b

[ 1 2
3 4 ] Θ~a

~b
[ 1 3

2 4 ] Θ~a
~b

[ 1 4
2 3 ][

Θ~a
~b
(~0)
]5

×
{

(γmC)αβ (γmC)γδ E14E23 Θ~a
~b

[ 1 4
2 3 ]2 − (γmC)αδ (γmC)γβ E12E34 Θ~a

~b
[ 1 2

3 4 ]2
}
,

〈Sα(z1)Sβ(z2)S γ̇(z3)S δ̇(z4) 〉~a~b =

(
E12E34

E13E14E23E24

)1/4 Θ~a
~b

[ 1 2
3 4 ][

Θ~a
~b
(~0)
]5

×
{
Cα

δ̇ Cβ
γ̇

E14E23

Θ~a
~b

[ 1 2
3 4 ]2 Θ~a

~b
[ 1 3

2 4 ]2 − Cα
γ̇ Cβ

δ̇

E13E24

Θ~a
~b

[ 1 2
3 4 ]2 Θ~a

~b
[ 1 4

2 3 ]2

+
1

2

(γmC)αβ (γ̄mC)γ̇δ̇

E12E34

Θ~a
~b

[ 1 3
2 4 ]2 Θ~a

~b
[ 1 4

2 3 ]2
}
. (6.5.88)

In presence of one NS fermion, we find

〈ψm(z1)Sα(z2)Sβ(z3)Sγ(z4)S δ̇(z5) 〉~a~b =
(E23E24E34)−3/4

√
2
[
Θ~a
~b
(~0)
]5

(E12E13E14E15)1/2 (E25E35E45)1/4

×
{
Cγ

δ̇

E45

(γmC)αβ E15E24E34 Θ~a
~b

[ 2 5
3 4 ]2 Θ~a

~b
[ 2 4

3 5 ]2 Θ~a
~b

[ 1 1 5
2 3 4 ]

+
Cα

δ̇

E25

(γmC)βγ E15E23E24 Θ~a
~b

[ 2 3
4 5 ]2 Θ~a

~b
[ 2 4

3 5 ]2 Θ~a
~b

[ 1 1 5
2 3 4 ]

− Cβ
δ̇

E35

(γmC)αγ E15E23E34 Θ~a
~b

[ 1 1 5
2 3 4 ] Θ~a

~b
[ 2 3

4 5 ]2 Θ~a
~b

[ 2 5
3 4 ]2

− 1

2
(γn γ̄mC)γ

δ̇ (γnC)αβ E12E34 Θ~a
~b

[ 1 1 2
3 4 5 ] Θ~a

~b
[ 2 3

4 5 ] Θ~a
~b

[ 2 4
3 5 ] Θ~a

~b
[ 2 5

3 4 ]2

+
1

2
(γn γ̄mC)α

δ̇ (γnC)βγ E14E23 Θ~a
~b

[ 1 1 4
2 3 5 ] Θ~a

~b
[ 2 4

3 5 ] Θ~a
~b

[ 2 5
3 4 ] Θ~a

~b
[ 2 3

4 5 ]2
}
. (6.5.89)
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The following correlator has been partially computed in [220] for the purpose of four fermion

scattering at g = 1 loop. Let us give the complete g loop result here:

〈ψm(z1)ψn(z2)Sα(z3)Sβ(z4)Sγ(z5)Sδ(z6) 〉~a~b =
(E34E35E36E45E46E56)−3/4

2
[
Θ~a
~b
(~0)
]5

(E13E14E15E16E23E24E25E26)1/2{
ηmn

E12

(γpC)αβ (γpC)γδ E36E45 Θ~a
~b

[ 3 4
5 6 ] Θ~a

~b
[ 3 5

4 6 ] Θ~a
~b

[ 3 6
4 5 ]2(

E13E16E24E25 Θ~a
~b

[ 1 1 3 6
2 2 4 5 ] + E14E15E23E26 Θ~a

~b
[ 1 1 4 5

2 2 3 6 ]
)

− ηmn

E12

(γpC)αδ (γpC)γβ E34E56 Θ~a
~b

[ 3 6
5 4 ] Θ~a

~b
[ 3 5

6 4 ] Θ~a
~b

[ 3 4
6 5 ]2(

E13E14E25E26 Θ~a
~b

[ 1 1 3 4
2 2 6 5 ] + E15E16E23E24 Θ~a

~b
[ 1 1 6 5

2 2 3 4 ]
)

+
1

2
(γmC)γβ (γnC)αδ E34E56 Θ~a

~b
[ 3 4

5 6 ]2 Θ~a
~b

[ 3 5
4 6 ](

E13E25E46 Θ~a
~b

[ 1 1 3
4 5 6 ] Θ~a

~b
[ 2 2 5

3 4 6 ] − E16E24E35 Θ~a
~b

[ 1 1 6
3 4 5 ] Θ~a

~b
[ 2 2 4

3 5 6 ]
)

+
1

2
(γmC)αδ (γnC)γβ E34E56 Θ~a

~b
[ 3 4

5 6 ]2 Θ~a
~b

[ 3 5
4 6 ](

E14E26E35 Θ~a
~b

[ 1 1 4
3 5 6 ] Θ~a

~b
[ 2 2 6

3 4 5 ] − E15E23E46 Θ~a
~b

[ 1 1 5
3 4 6 ] Θ~a

~b
[ 2 2 3

4 5 6 ]
)

− 1

2
(γmC)αβ (γnC)γδ E36E45 Θ~a

~b
[ 3 6

4 5 ]2 Θ~a
~b

[ 3 5
4 6 ](

E16E24E35 Θ~a
~b

[ 1 1 6
3 4 5 ] Θ~a

~b
[ 2 2 4

3 5 6 ] + E15E23E46 Θ~a
~b

[ 1 1 5
3 4 6 ] Θ~a

~b
[ 2 2 3

4 5 6 ]
)

+
1

2
(γmC)γδ (γnC)αβ E36E45 Θ~a

~b
[ 3 6

4 5 ]2 Θ~a
~b

[ 3 5
4 6 ](

E13E25E46 Θ~a
~b

[ 1 1 3
4 5 6 ] Θ~a

~b
[ 2 2 5

3 4 6 ] + E14E26E35 Θ~a
~b

[ 1 1 4
3 5 6 ] Θ~a

~b
[ 2 2 6

3 4 5 ]
)

+
1

4
(γmnpC)αβ (γpC)γδ E34E36E45 Θ~a

~b
[ 3 4

5 6 ] Θ~a
~b

[ 3 6
4 5 ]2(

E15E26 Θ~a
~b

[ 1 1 5
3 4 6 ] Θ~a

~b
[ 2 2 6

3 4 5 ] + E16E25 Θ~a
~b

[ 1 1 6
3 4 5 ] Θ~a

~b
[ 2 2 5

3 4 6 ]
)

+
1

4
(γmnpC)γδ (γpC)αβ E36E45E56 Θ~a

~b
[ 3 4

5 6 ] Θ~a
~b

[ 3 6
4 5 ]2(

E13E24 Θ~a
~b

[ 1 1 3
4 5 6 ] Θ~a

~b
[ 2 2 4

3 5 6 ] + E14E23 Θ~a
~b

[ 1 1 4
3 5 6 ] Θ~a

~b
[ 2 2 3

4 5 6 ]
)

− 1

4
(γmnpC)αδ (γpC)γβ E34E36E56 Θ~a

~b
[ 3 4

5 6 ]2 Θ~a
~b

[ 3 6
4 5 ](

E15E24 Θ~a
~b

[ 1 1 5
3 4 6 ] Θ~a

~b
[ 2 2 4

3 5 6 ] + E14E25 Θ~a
~b

[ 1 1 4
3 5 6 ] Θ~a

~b
[ 2 2 5

3 4 6 ]
)

+
1

4
(γmnpC)γβ (γpC)αδ E34E45E56 Θ~a

~b
[ 3 4

5 6 ]2 Θ~a
~b

[ 3 6
4 5 ](

E13E26 Θ~a
~b

[ 1 1 3
4 5 6 ] Θ~a

~b
[ 2 2 6

3 4 5 ] + E16E23 Θ~a
~b

[ 1 1 6
3 4 5 ] Θ~a

~b
[ 2 2 3

4 5 6 ]
)

− (γ(mC)αγ (γn)C)βδ E12E34E36E45E56 Θ~a
~b

[ 1 1 2 2
3 4 5 6 ] Θ~a

~b
[ 3 4

5 6 ]2 Θ~a
~b

[ 3 6
4 5 ]2

}
(6.5.90)

This representation in terms of antisymmetric products γmnp rather than γmγ̄nγp was chosen

in order to make antisymmetry under the exchange of ψm(z1)↔ ψn(z2) and Sαi(zi)↔ Sαj(zj)
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manifest (up to a prefactor E
1/4
ij in the latter case).

The correlator with five left handed spin fields and one righthanded spin field has appeared

in the literature before, namely in [230] at tree level for the purpose of six fermion scattering.

Let us give its loop generalization here:

〈Sα (z1)Sβ(z2)Sγ(z3)Sδ(z4)Sε(z5)S ι̇(z6) 〉~a~b =
(E12E13E14E15E23E24E25E34E35E45)−3/4

2
[
Θ~a
~b
(~0)
]5

(E16E26E36E46E56)1/4

×
{

(γmC)αβ(γmC)γδ
Cε

ι̇

E56

E14E15E23E25E35E46 Θ~a
~b

[ 1 2 5
3 4 6 ] Θ~a

~b
[ 1 3 5

2 4 6 ] Θ~a
~b

[ 1 4 5
2 3 6 ] Θ~a

~b
[ 1 4 6

2 3 5 ]2

− (γmC)αδ(γmC)βγ
Cε

ι̇

E56

E12E15E25E34E35E46 Θ~a
~b

[ 1 2 6
3 4 5 ] Θ~a

~b
[ 1 3 5

2 4 6 ] Θ~a
~b

[ 1 4 6
2 3 5 ] Θ~a

~b
[ 1 2 5

3 4 6 ]2

+ (γmC)αβ(γmC)γε
Cδ

ι̇

E46

E14E15E23E24E34E56 Θ~a
~b

[ 1 2 4
3 5 6 ] Θ~a

~b
[ 1 3 4

2 5 6 ] Θ~a
~b

[ 1 4 5
2 3 6 ] Θ~a

~b
[ 1 5 6

2 3 4 ]2

− (γmC)αε(γmC)βγ
Cδ

ι̇

E46

E12E14E24E34E35E56 Θ~a
~b

[ 1 2 6
3 4 5 ] Θ~a

~b
[ 1 3 4

2 5 6 ] Θ~a
~b

[ 1 5 6
2 3 4 ] Θ~a

~b
[ 1 2 4

3 5 6 ]2

+ (γmC)αβ(γmC)δε
Cγ

ι̇

E36

E13E15E24E26E34E35 Θ~a
~b

[ 1 2 6
3 4 5 ] Θ~a

~b
[ 1 3 4

2 5 6 ] Θ~a
~b

[ 1 5 6
2 3 4 ] Θ~a

~b
[ 1 3 5

2 4 6 ]2

− (γmC)αε(γmC)βδ
Cγ

ι̇

E36

E12E13E26E34E35E45 Θ~a
~b

[ 1 2 3
4 5 6 ] Θ~a

~b
[ 1 3 4

2 5 6 ] Θ~a
~b

[ 1 3 5
2 4 6 ] Θ~a

~b
[ 1 2 6

3 4 5 ]2

+ (γmC)αγ(γmC)δε
Cβ

ι̇

E26

E12E15E24E25E34E36 Θ~a
~b

[ 1 2 4
3 5 6 ] Θ~a

~b
[ 1 3 6

2 4 5 ] Θ~a
~b

[ 1 5 6
2 3 4 ] Θ~a

~b
[ 1 2 5

3 4 6 ]2

− (γmC)αε(γmC)γδ
Cβ

ι̇

E26

E12E13E24E25E36E45 Θ~a
~b

[ 1 2 3
4 5 6 ] Θ~a

~b
[ 1 2 4

3 5 6 ] Θ~a
~b

[ 1 2 5
3 4 6 ] Θ~a

~b
[ 1 3 6

2 4 5 ]2

+ (γmC)βε(γmC)γδ
Cα

ι̇

E16

E12E14E15E23E36E45 Θ~a
~b

[ 1 2 3
4 5 6 ] Θ~a

~b
[ 1 2 4

3 5 6 ] Θ~a
~b

[ 1 2 5
3 4 6 ] Θ~a

~b
[ 1 4 5

2 3 6 ]2

− (γmC)βγ(γmC)δε
Cα

ι̇

E16

E12E14E15E25E34E36 Θ~a
~b

[ 1 2 4
3 5 6 ] Θ~a

~b
[ 1 3 4

2 5 6 ] Θ~a
~b

[ 1 4 5
2 3 6 ] Θ~a

~b
[ 1 2 5

3 4 6 ]2

− 1

2
(γm γ̄nC)β

ι̇(γmC)αε(γnC)γδ E12E14E24E35E35

×Θ~a
~b

[ 1 2 6
3 4 5 ] Θ~a

~b
[ 1 3 5

2 4 6 ] Θ~a
~b

[ 1 4 6
2 3 5 ] Θ~a

~b
[ 1 2 4

3 5 6 ]2

+
1

2
(γm γ̄nC)α

ι̇(γmC)βδ(γnC)γεE12E15E25E34E34

×Θ~a
~b

[ 1 2 6
3 4 5 ] Θ~a

~b
[ 1 3 4

2 5 6 ] Θ~a
~b

[ 1 5 6
2 3 4 ] Θ~a

~b
[ 1 2 5

3 4 6 ]2

+
1

2
(γm γ̄nC)ε

ι̇(γmC)αβ(γnC)γδ E14E15E23E24E35

×Θ~a
~b

[ 1 2 4
3 5 6 ] Θ~a

~b
[ 1 3 5

2 4 6 ] Θ~a
~b

[ 1 4 5
2 3 6 ] Θ~a

~b
[ 1 4 6

2 3 5 ] Θ~a
~b

[ 1 5 6
2 3 4 ]

+
1

2
(γm γ̄nC)δ

ι̇(γmC)αβ(γnC)γεE13E15E24E25E34

×Θ~a
~b

[ 1 2 5
3 4 6 ] Θ~a

~b
[ 1 3 4

2 5 6 ] Θ~a
~b

[ 1 3 5
2 4 6 ] Θ~a

~b
[ 1 3 6

2 4 5 ] Θ~a
~b

[ 1 5 6
2 3 4 ]

− 1

2
(γm γ̄nC)γ

ι̇(γmC)αδ(γnC)βεE12E15E24E34E35

×Θ~a
~b

[ 1 2 4
3 5 6 ] Θ~a

~b
[ 1 2 5

3 4 6 ] Θ~a
~b

[ 1 2 6
3 4 5 ] Θ~a

~b
[ 1 3 5

2 4 6 ] Θ~a
~b

[ 1 5 6
2 3 4 ]
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− 1

2
(γm γ̄nC)γ

ι̇(γmC)αε(γnC)βδ E12E14E25E34E35

×Θ~a
~b

[ 1 2 4
3 5 6 ] Θ~a

~b
[ 1 2 5

3 4 6 ] Θ~a
~b

[ 1 2 6
3 4 5 ] Θ~a

~b
[ 1 3 4

2 5 6 ] Θ~a
~b

[ 1 4 6
2 3 5 ]

}
(6.5.91)

6.6 Correlators with higher spin operators

In this section, we list a choice of correlation functions containing spin fields Sα and the com-

posite operators

K α̇
µ := ψµ ψ

ν γ̄α̇βν Sβ (6.6.92)

of conformal dimension h = 1 + D
16

which appear in the massive fermion vertex (3.3.53) in its

canonical ghost picture or in the massless fermion vertex (3.2.45) in its +1/2 picture. Cor-

relations of two spinorial fields will be given for general spacetime dimension D (although

dimensions D = 2 mod 4 strictly speaking require a different relative chirality of the spinors

than D = 4 mod 4), see appendix A.1.

Correlation functions with K α̇
µ are very involved in general. But in the context of leading

Regge trajectory fermions, they are contracted by a γ traceless wavefunction ρ̄µα̇ such that

only their spin 3/2 irreducible contributes. This spin 3/2 projection simplifies the correlators

enormously, so we will always give their ρ̄ contractions in the following.

The spin 3/2 component of K α̇
µ is governed by the following OPEs:

ρ̄µ
β̇
Sα(z)K β̇

µ (w) ∼ (D − 2)Cα
β̇

√
2 (z − w)1/2+D/8

ρ̄µ
β̇
ψµ(w) + . . . (6.6.93)

ρ̄να̇ ψ
µ(z)K α̇

ν (w) ∼ (D − 2)√
2 (z − w)3/2

ρ̄µα̇ S
α̇(w) + . . . (6.6.94)

ρ̄µα̇ ρ̄
ν
β̇
K α̇
µ (z)K β̇

ν (w) ∼ (D − 2)2

2
√

2 (z − w)3/2+D/8
ρ̄µα̇ (γ̄λC)α̇β̇ ρ̄µβ̇ ψ

λ(w) + . . . (6.6.95)

Given these prerequisites, one can verify the correct singular behaviour of the three point

functions

ρ̄ν
β̇
〈ψµ(z1)Sα(z2)K β̇

ν (z3) 〉 =
(D − 2) z

1/2
12√

2 z
3/2
13 z

D/8+1/2
23

ρ̄µ
β̇
Cα

β̇ (6.6.96)

ρ̄ν2α̇ ρ̄
λ
3β̇
〈ψµ(z1)K α̇

ν (z2)K β̇
λ (z3) 〉 =

(D − 2)2

2
√

2 (z12 z13)1/2 z
D/8+3/2
23

ρ̄ν2α̇ (γ̄µC)α̇β̇ ρ̄3νβ̇ (6.6.97)

as well as the (no longer D universal) four point function

ρ̄µ
δ̇
〈Sα(z1)Sβ(z2)Sγ(z3)K δ̇

µ(z4) 〉
∣∣∣
D=10

=
4 (z12 z13 z14 z23 z24 z34)1/4 ρ̄µ

δ̇

z14 z24 z34
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×
{

(γµC)αβ Cγ
δ̇

z12 z34

− (γµC)αγ Cβ
δ̇

z13 z24

+
(γµC)βγ Cα

δ̇

z14 z23

}
. (6.6.98)

Also, we need the following five point correlator for the scattering of two gluons with a massless

and a massive fermion:

ρ̄τ
β̇
〈ψµ(z1)ψν(z2)ψλ(z2)Sα(z3)K β̇

τ (z4) 〉 =
(D − 2) ρ̄τ

β̇√
2 (z13 z14)1/2 z23 z24 z

3/4
34{

(ηµν δλτ − ηµλ δντ )Cα
β̇

z12 z34

z23 z13 +
δµτ (γνλC)α

β̇

2 z14

z13

+
δλτ (γµ γ̄ν C)α

β̇ − δντ (γµ γ̄λC)α
β̇

2 z24

z23

}
(6.6.99)

In all scattering amplitudes given in this work, the ρ̄ wavefunctions were eliminated by means

of the massive Dirac equation (D − 2)ρ̄α̇ = −vα 6kαα̇ (suppressing any free vector index).

The four dimensional first mass level also contains massive spin 1/2 fermions (4.5.93) and

(4.5.94) whose vertex operators are built from the σ trace of K ȧ
µ. The latter can be identified

with the derivative of the standard spin fields in any spacetime dimension D,

∂SA = − 1

4 (D − 1)
(6ψ 6ψ)A

B SB , (6.6.100)

so computing its correlations is straightforward with the results from the previous sections at

hand.



Chapter 7

Worldsheet integrals

In section 5.4, we could extract a lot of information on the structure of open string amplitudes

from the analyticity properties of the worldsheet integrand, without actually touching the

associated integrals. This chapter aims to go one step further and to discuss formal and

physical properties of these integrals. As we have already mentioned, they are responsible for

the pole structure of color ordered open string amplitudes.

Scattering amplitudes of n ≥ 5 states were only considered at the massless level so far. That

is why we will limit our discussion of the associated integrals to the massless situation where

2α′ki · kj = sij and
∑

j 6=i sij = 0.

7.1 First look at hypergeometric integrals

This section takes a look at the structure of the worldsheet integrals occurring in open string

tree level scattering. The integration regions are mapped to the unit cube, and appropriate

manipulations of the integrands allow to relate the integrals in a multileg amplitude to multiple

Gaussian hypergeometric series, more precisely to generalized Kampé de Fériet functions [201,

231]. A brief outlook is given on the organization principles which ultimately allow to express

any integral in an n point amplitude in terms of an (n − 3)! dimensional basis. Also, the

structure of the momentum- or α′ expansion of the integrals is sketched.

7.1.1 Mapping integration simplices to unit cubes

Our prescription (5.3.30) towards color ordered n point amplitudes with SL(2,R) fixing

(z1, zn−1, zn) = (0, 1,∞) (7.1.1)

173
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requires to integrate the remaining worldsheet positions zj, j = 2, 3, . . . , n−2 over a generalized

simplex: Only the first integration variable probes the full unit interval z2 ∈ (0, 1) whereas

all the others are restricted as z3 ∈ (z2, 1), z4 ∈ (z3, 1), . . . to preserve the ordering of the

subamplitude in question.

The appropriate coordinate transformation to map the n − 3 dimensional simplex to the

more managable unit cube expresses each zj, j = 2, 3, . . . , n − 2 as a product of variables

xi, i = 1, 2, . . . , n− 3 which are integrated over the full (0, 1) interval:

zn−2 = xn−3 , zn−3 = xn−4 xn−3 ,

. . . , z2 = x1 x2 . . . xn−3

 ⇒ zj =
n−3∏
i=j−1

xi (7.1.2)

This change of variables introduces a Jacobian

n−2∏
j=2

∫ 1

zj−1

dzj =
n−3∏
i=1

∫ 1

0

dxi

∣∣∣∣ det

(
∂zj
∂xi

) ∣∣∣∣ , det

(
∂zj
∂xi

)
=

n−3∏
k=1

(xk)
k−1 (7.1.3)

which reflects the order of integration variables.

To see what happens on the level of the integrand, let us first of all consider the lower

order cases n = 4, 5 and n = 6. The CFT correlator gives rise to zi dependences of structure∏
i<j |zij|sijz

ñij
ij . The exponents contain Mandelstam invariants sij, sijk (which are reduced to

the basis introduced in subsection 5.3.2 using momentum conservation) and additionally some

integers ñij which control the physical poles of the amplitudes:∫ 1

0

dz2

∏
i<j

|zij|sij zñijij =

∫ 1

0

dx1 x
s12+ñ12
1 (1− x1)s23+ñ23 (7.1.4)

∫ 1

zj−1

dz2 dz3

∏
i<j

|zij|sij zñijij =

∫ 1

0

dx1 dx2 x
s12+ñ12
1 x1+s45+ñ12+ñ13+ñ23

2

× (1− x1)s23+ñ23 (1− x2)s34+ñ34 (1− x1x2)s51−s23−s34+ñ24 (7.1.5)∫ 1

zj−1

dz2 dz3 dz4

∏
i<j

|zij|sij zñijij =

∫ 1

0

dx1 dx2 dx3 x
s12+ñ12
1 x1+s123+ñ12+ñ13+ñ23

2

× x2+s56+ñ12+ñ13+ñ14+ñ23+ñ24+ñ34
3 (1− x1)s23+ñ23 (1− x2)s34+ñ34

× (1− x3)s45+ñ45 (1− x1x2)s234−s23−s34+ñ24 (1− x2x3)s345−s34−s45+ñ35

× (1− x1x2x3)s34+s61−s234−s345+ñ25 (7.1.6)

The integrals in n ≥ 4 point amplitudes involve 1
2
n(n − 3) Laurent polynomials in the n − 3

new integrations variables – either the xi themselves or
(

1−∏b
j=a xj

)
. Let us emphasize that

in the latter case, only products of successive xj’s occur, i.e. the n = 6 integrand contains

(1− x1x2) and (1− x2x3) but not (1− x1x3).
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7.1.2 Relation to hypergeometric functions

Now that the (n−3) fold integral ocurring in an n = 4, 5 and n = 6 point amplitude is mapped

to the unit cube (0, 1)n−3, we can identify it with some multiple Gaussian hypergeometric series.

For this purpose, the binomial series and the definition of the Pochhammer symbol (·,m) are

quite useful:

(1− x)p =
∞∑
m=0

(−p,m)

m!
xm , (−p,m) =

Γ(m− p)
Γ(−p) (7.1.7)

With their help, one can identify hypergeometric functions pFq in the worldsheet integrals at

n = 4, 5, 6, they are defined by

pFq

 a1, . . . , ap

b1, . . . , bq
; 1

 =
∞∑
s=0

1

s!

(a1, s) . . . (ap, s)

(b1, s) . . . (bq, s)
. (7.1.8)

At n = 4, the integral (7.1.4) has two arguments a := s12 + n12 and b := s23 + n23. We obtain

the Euler Beta function in a and b which coincides with the hypergeometric 2F1 function:∫ 1

0

dx xa (1− x)b =
Γ(1 + a) Γ(1 + b)

Γ(2 + a+ b)
=

1

1 + a
2F1

 1 + a, −b
2 + a

; 1

 (7.1.9)

Also the n = 5 point amplitude can be expressed in terms of a hypergeometric pFp−1 function,

this time in five arguments:∫ 1

0

dx

∫ 1

0

dy xa yb (1− x)c (1− y)d (1− xy)e

=
Γ(1 + a) Γ(1 + b) Γ(1 + c) Γ(1 + d)

Γ(2 + a+ c) Γ(2 + b+ d)
3F2

 1 + a, 1 + b, −e
2 + a+ c, 2 + b+ d

; 1

 (7.1.10)

From n = 6 on, however, a single pFq function is no longer sufficient to capture the n − 3

fold worldsheet integral. Six point integrals require either an infinite series of hypergeometric

functions 4F3,∫ 1

0

dx

∫ 1

0

dy

∫ 1

0

dz xa yb zc (1− x)d (1− y)e (1− z)f (1− xy)g (1− yz)h (1− xyz)j

= Γ(1 + d) Γ(1 + e) Γ(1 + f)
∞∑

m,n=0

Γ(m− g) Γ(n− h)

Γ(−g) Γ(−h)m!n!

Γ(1 +m+ a) Γ(1 +m+ n+ b) Γ(1 + n+ c)

Γ(2 +m+ a+ d) Γ(2 +m+ n+ b+ e) Γ(2 + n+ c+ f)

4F3

 1 +m+ n+ b, 1 +m+ a, 1 + n+ c, −j
2 +m+ n+ b+ e, 2 +m+ a+ d, 2 + n+ c+ f

; 1

 , (7.1.11)

or a triple hypergeometric function F (3) [202,231].
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7.1.3 The n point integrand

The starting point for finding the n point generalization of the xi integrands (7.1.4) to (7.1.6)

is the following form of the n point integrand

Bn [ñij] =
n−2∏
j=2

∫ 1

zj−1

dzj
∏

1≤i<j≤n−1

|zij|sij zñijij , (7.1.12)

with some integers ñij ∈ Z. We think of (7.1.12) as the result of evaluating the vertex operator

correlation function 〈∏n
j=1 V

(qj)
hj=1(zj)〉 without taking the c ghost correlator 〈c(z1)c(zn−1)c(zn)〉 =

z1,n−1z1,nzn−1,n into account. Since these zij originate from a correlation function of hj = 1

primary fields, the integers ñij must fulfill the conditions:

n∑
i<j

ñij +
n∑
i>j

ñji = − 2 , j = 1, . . . , n (7.1.13)

After fixing three of the vertex positions as (z1, zn−1, zn) = (0, 1,∞) and parameterizing the

integration region z2 < . . . < zn−2 as zk =
∏n−3

l=k−1 xl, k = 2, . . . , n − 2 with 0 < xi < 1, the

integrand in (7.1.14) takes the generic form:

Bn [ni, nij] =

(
n−3∏
i=1

∫ 1

0

dxi

)
n−3∏
j=1

x
s12...j+1+nj
j

n−3∏
l=j

(
1 −

l∏
k=j

xk

)sj+1,l+2+njl

, (7.1.14)

with the set of 1
2
n(n− 3) integers nj, njl ∈ Z and si,j ≡ sij:

njl = ñj+1,l+2 , j ≤ l (7.1.15)

nj = j − 1 +

j+1∑
i<j

ñil , 1 ≤ j ≤ n− 3

The integrals represent generalized Euler integrals and integrate to multiple Gaussian hyper-

geometric functions [201], see the previous subsection 7.1.2 for n = 4, 5 and n = 6 examples.

Factoring out the sij dependent part of the integrand in (7.1.14) leaves us with a rational

function

R(xi) :=
n−3∏
j=1

x
nj
j

n−3∏
l=j

(
1 −

l∏
k=j

xk

)njl

(7.1.16)

in the n − 3 variables xi. With the conditions (7.1.13), it is in one-to-one correspondence to

another rational function R̃ in the original integration variables,

R̃(zij) :=
∏

1≤i<j≤n−1

z
ñij
ij (7.1.17)

depending on the n− 1 variables zi and multiplying the integrand of (7.1.12). In the following

we write this correspondence as

R(xi) ' R̃(zij) . (7.1.18)
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7.1.4 Finding a basis

There are many relations among integrals (7.1.12) with different sets ñ of integers as a result

of partial fraction decomposition

1

zij zjk
+

1

zik zkj
=

1

zij zik
(7.1.19)

and partial integration with respect to worldsheet variables

0 =

∫
dz2 . . .

∫
dzn−2

∂

∂zk

∏
i<j

|zij|sij zñijij

=

∫
dz2 . . .

∫
dzn−2

∏
i<j

|zij|sij zñijij

(
k−1∑
m=1

skm + ñkm
zmk

+
n∑

m=k+1

skm + ñkm
zkm

)
. (7.1.20)

Note, that this way any integral (7.1.12) with powers ñij < −1 can always be expressed by a

chain of integrals with ñij ≥ −1. Hence, in the following it is sufficient to concentrate on the

cases ñij ≥ −1.

A quantitative handiness on finding a minimal set of functions can be obtained by performing

• (i) a classification of the integrals (7.1.12) according to their pole structure in the kine-

matic invariants sij

• (ii) a Gröbner basis analysis for those integrals (7.1.12) without poles.

Any partial fraction decomposition of an Euler integral with poles can be arranged according

to its pole structure (modulo finite or subleading pieces), and the classification (i) yields a basis

for them. This is achieved by performing a partial fraction expansion of the leading singularity

in the kinematic invariants sij. On the other hand, the Gröbner basis analysis (ii) (see section

7.4) provides an independent set of rational functions or monomials in the Euler integrals and

any integral (7.1.12) without poles can be expanded in terms of this set. Combining (i) and (ii)

yields an independent set of integrals (7.1.12), and any partial fraction decomposition can be

expressed in terms of the basis obtained this way. In the later sections 7.2 and 7.4 we explicitly

construct this “partial fraction basis” for the cases n = 4, 5 and n = 6 and verify its dimension

(n− 2)!.

7.1.5 The structure of α′ expansions

The first classification (i) of the integrals (7.1.12) is done with respect to their pole structure

in the kinematic invariants sij. The maximum number of possible simultaneous poles of an n
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point amplitude is n− 3. Integrals of this type play an important role1, since they capture the

field theory limit of the full amplitude. They assume the following low energy- or power series

expansion in α′:

Bn[ñ] = α′3−n p3−n[ñ] + α′5−n
∞∑
m=0

α′m
′∑

sr∈N,s1>1
s1+...+sd=m+2

ps5−n+m[ñ] ζ(s1, . . . , sd)

= α′3−n p3−n[ñ] + α′5−n p5−n[ñ] ζ(2) + α′6−N p6−n[ñ] ζ(3) + . . . (7.1.21)

Above the rational functions or monomials ps5−n+m[ñ] are of degree 5− n+m in the kinematic

invariants (ki + ki+1 + . . . + kj)
2 and depend on the integer set ñ. Furthermore, we have

introduced the multi zeta values (MZVs)

ζ(s1, . . . sd) =
d∏
j=1

(−1)sj−1

Γ(sj)

∫ 1

0

dxj (xj)
d−j (lnx)sj−1

(
1 −

j∏
i=1

xi

)−1

=
∑

n1>n2>...>nd>0

d∏
j=1

n
−sj
j =

∞∑
n1,...,nd=1

d∏
j=1

(
d∑
i=j

ni

)−sj
(7.1.22)

of transcendentality degree
∑d

r=1 sr = m + 2 and depth d (where sj ∈ N and s1 > 1). The

prime at the sum (7.1.21) means that the latter runs only over a basis of independent MZVs of

weight m+2. In (7.1.21) at each order 5−n+m in α′, a set of MZV of a fixed transcendentality

degree m + 2 appears. We call such a power series expansion transcendental, cf. section 7.3

for a detailed disscussion. In the following section 7.2 we present a method of how to extract

the first term of (7.1.21) from integrals (7.1.12) with n − 3 simultaneous poles. In fact, this

method additionally allows to extract any lowest order poles from integrals (7.1.21) with fewer

simultaneous poles. However, as we shall demonstrate, this type of integrals generically does not

assume the transcendental power series expansion (7.1.21). At any rate, the method proposed

in section 7.2 allows to determine the lowest order poles of the integral (7.1.12).

The second classification (ii) of the integrals (7.1.12) is appropriate if the latter have no

poles, i.e. their power series expansion in α′ starts with some zeta constants. In section 7.4 we

introduce a Gröbner basis analysis, which allows to find an independent set of finite integrals

(7.1.12), which serves as basis. Any other finite integral (7.1.12) is a R linear combination of

this basis.

Note that the individual integrals entering the functions (12.3.45) and (12.3.48) are of both

types – some of them have n− 3 simultaneous poles and their α′ expansion assumes the form

(7.1.21), others have no poles and start with some zeta constants. In either case our methods

(i) or (ii) can be applied to further reduce them.

1In fact, many individual integrals entering the functions Fσ in (1.4.1) are of this type.
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7.2 Structure of multiple resonance exchanges

Generically, an n point scattering process has multiple resonance exchanges. As a result, the

power series expansion in α′ of the integrals (7.1.14) may have multiple poles in the Mandelstam

variables. These poles come from regions of the integrand for which xi → 0 or xi → 1 for some

of the variables xi. To obtain information on the pole structure of the integrals (7.1.14), it is

useful to transform the integrand to a different form, in which the poles can be easily extracted.

7.2.1 The general setup of multiparticle dual models

For an n point scattering process there are 1
2
n(n− 3) planar channels (i, j) ∈ P represented by

delimiters in the set

P := { (1, j) | 2 ≤ j ≤ n− 2 } ∪ { (p, q) | 2 ≤ p < q ≤ n− 1 } (7.2.23)

for the color ordering (1, 2, . . . , n). We shall use the following notation for the associated

Mandelstam variable:

Si,j := α′ (ki + ki+1 + . . .+ kj)
2 (7.2.24)

The channels (i, j) with states from i, . . . , j and (j+1, i−1) with states from j+1, . . . , n, 1, . . . , i−
1 are identical because of momentum conservation. The set of n−3 kinematical invariants which

can simultaneously appear in the denominator of the α′ expansion of the n point amplitude

describe the allowed (planar) channels of the underlying field theory diagram involving cu-

bic vertices. Not all combinations of channels are allowed. For instance, adjacent channels

as (i, i + 1) and (i + 1, i + 2) cannot appear simultaneously in denominators, they are called

dual or incompatible channels. On the other hand, for non-dual channels coincident poles are

possible. A geometric way to find all compatible channels is to draw a convex n polygon of n

sides representing momentum conservation. The number of ways of cutting this polygon into

n − 2 triangles with n − 3 non-intersecting straight lines gives the number of distinct sets of

allowed channels. According to Eulers polygon division problem this number is given by the

Catalan number Cn−2 = 2n−2 (2n−5)!!
(n−1)!

(more generally, Ck = 1
k+1

(
2k
k

)
). The n − 3 diagonals of

this polygon represent the momenta of possible intermediate states. To each of the 1
2
n(n− 3)

channels (i, j) a variable ui,j ∈ (0, 1) may be ascribed, with ui,j ≡ uj+1,i−1. For an account and

references on the multiparticle dual model see [232].

For a given channel (i, j) with ui,j = 0 all incompatible channels (p, q) are required to have

up,q = 1. This property is described by the 1
2
n(n− 3) duality constraint equations

ui,j = 1 −
∏

1≤p<i
i≤q<j

up,q
∏
i<r≤j

j<s≤n−1

ur,s , 1 ≤ i < j ≤ n , (7.2.25)



180 CHAPTER 7. WORLDSHEET INTEGRALS

1

2

3 4 5 6

7

8

u1,2 u1,3 u1,4 u1,5 u1,6

1

2 3

4

58

67

u1,2

u1,3

u1,4

u1,5u1,6

k1

k2

k3

k4

k5

k6

k7

k8

Figure 7.1: Multiperipheral configuration and corresponding dual diagram for n = 8.

which are sufficient for excluding simultaneous poles in incompatible channels. We define

ui,i = 0, u1,n−1 = 1 and have uk,n = u1,k−1, k ≥ 3. Only 1
2
(n − 2)(n − 3) of these equations

(7.2.25) are independent leaving n− 3 variables ui,j out of the set of 1
2
n(n− 3) variables free.

The set of n − 3 independent variables ui,j can be associated to the inner lines of one of the

Cn−2 sliced n polygon. In particular, as a canonical choice we may define

u1,j+1 = xj , j = 1, . . . , n− 3 (7.2.26)

as a set of n− 3 independent variables corresponding to figure 7.1. Hence, each of the internal

lines of the polygon corresponds to an independent variable xj in the integral (7.1.14). Choosing

the inner lines of another sliced n polygon results in a different integral representation (7.1.14).

As a consequence of (7.2.25) and (7.2.26) we have:

1 − xj =
∏

0<r≤j
j<s≤n−2

ur+1,s+1 , j = 1, . . . , n− 3 (7.2.27)

1 −
j∏
k=i

xk =
∏

1≤p≤i
j+1≤q≤n−2

up+1,q+1 , 1 ≤ i ≤ j ≤ n− 3 (7.2.28)

With (7.2.27) and the Jacobian
∏

2≤i<j≤n−1

uj−i−1
i,j , the integral (7.1.14) translates into an integral

over all 1
2
n(n− 3) variables uP related to the partitions P given in (7.2.23):

Bn[ni,j] =
∏

(i,j)∈P

∫ 1

0

dui,j u
Si,j+ni,j
i,j

∏
P ′ /∈(1,j)

δ

uP ′ − 1 +
∏
P̃

uP̃

 (7.2.29)

The integers ni,j are determined by the variables ni and nij from (7.1.15). The dictionary is

given in the later subsections on examples up to n = 8 point integrals.

In (7.2.29) the integration is constrained by the duality conditions (7.2.25) resulting in a
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product of 1
2
(n − 2)(n − 3) independent δ functions2 . In this Bn[ni,j] form (7.2.29) many

properties of the integrals (7.1.14) like the pole structure or cyclicity become manifest. This

will be elucidated at the following examples.

We can introduce a fundamental set of Cn−2 integrals Bn⋃
(il,jl)∈P

 ∏
(i,j)∈P

∫ 1

0

dui,j u
Si,j
i,j

(
n−3∏
l=1

uil,jl

)−1 ∏
P ′ /∈(1,j)

δ

uP ′ − 1 +
∏
P̃

uP̃

 , (7.2.31)

with (il, jl) running over all Cn−2 allowed channels3. The α′ expansion of each of the elements

(7.2.31) assumes the form (7.1.21) with
∏n−3

l=1 S
−1
il,jl

as its lowest order term. Any other integral

(7.1.14) with n − 3 simultaneous poles can be expressed as R linear combination of the basis

(7.2.31) modulo less singular terms. In case of a sum of n−3 simultaneous poles this is achieved

by partial fraction decomposition of the polynomials according to their leading singular term

and associating the latter with the basis (7.2.31).

A special role is played by the integral

Bn[ni,j = −1] =
∏

(i,j)∈P

∫ 1

0

dui,j u
Si,j−1
i,j

∏
P ′ /∈(1,j)

δ

uP ′ − 1 +
∏
P̃

uP̃

 (7.2.32)

By construction, it is manifestly invariant under cyclic transformations Si,j → Si+1,j+1, with

cyclic identification i ≡ i + n, j ≡ j + n. Furthermore, it furnishes all Cn−2 sets of allowed

channels at the lowest order, i.e.

Bn[ni,j = −1] =
∑

(il,jl)∈P

n−3∏
l=1

S−1
il,jl

+ . . . , (7.2.33)

with the sum running over all Cn−2 allowed channels. In terms of (7.1.14), equation (7.2.32)

takes the form:

Bn

[
ni = −1

nii = −1

]
=

(
n−3∏
i=1

∫ 1

0

dxi

)
n−3∏
j=1

x
s12...j+1−1
j (1− xj)sj+1,j+2−1

n−3∏
l=j+1

(
1 −

l∏
k=j

xk

)sj+1,l+2

(7.2.34)

2 The solution to the duality constraint (7.2.25) may be found as (p = 2, 3, . . . , n− 2; q = 3, 4, . . . , n− 1 and

p < q):

up,q =



(
1 − ∏q−1

m=p u1,m

) (
1 − ∏q

n=p−1 u1,n

)
(

1 − ∏q−1
r=p−1 u1,r

) (
1 − ∏q

s=p u1,s

) : q 6= n− 1(
1 − ∏q−1

m=p u1,m

)
(

1 − ∏q−1
r=p−1 u1,r

) : q = n− 1

(7.2.30)

3As pointed out before, these integrals appear as constituents of some of the functions Fσ discussed in section

12.3. The poles in these Bn combinations are cancelled by corresponding sij factors in the numerator of the

Fσ such that they end up being local.
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7.2.2 n = 4 point integrals

In the case of n = 4, we have the two planar channels (1, 2) and (2, 3) ≡ (1, 4) related to the

two variables u1,2 and u2,3, respectively. After choosing the independent variable u1,2 = x1 := x

and following the steps (7.2.27), the integral (7.1.14)

B4[ni, nij] =

∫ 1

0

dx xs12+n1 (1− x)s23+n11 (7.2.35)

takes the form (7.2.29)

B4[ni,j] =

∫ 1

0

du1,2

∫ 1

0

du2,3 u
s12+n1,2

1,2 u
s23+n2,3

2,3 δ(u1,2 + u2,3 − 1) , (7.2.36)

with n1,2 = n1 and n2,3 = n11. The cyclically invariant integral (7.2.32) is given by

B4

[
n1 = −1

n11 = −1

]
=

∫ 1

0

dx xs12−1 (1−x)s23−1 = B(s12, s23) =
1

s12

+
1

s23

+ . . . . (7.2.37)

For later purposes, it is convenient to define a regular function capturing the string effects in

four point disk amplitudes. This is accomplished by

Vt :=
s12 s23

s12 + s23

B(s12, s23) =
Γ(1 + s12) Γ(1 + s23)

Γ(1 + s12 + s23)
= 1 − π2

6
s12 s23 + . . . (7.2.38)

which can be regarded as a stringy formfactor. It is ubiquitous in four point scattering of both

massless and massive states, numerous examples follow in chapter 8 and 9. Moreover, we will

shed light on its far-reaching physical significance in section 8.1.

7.2.3 n = 5 point integrals

At n = 5 extermal legs we have five planar channels (1, 2), (2, 3), (3, 4), (1, 3) ≡ (4, 5) and

(2, 4) ≡ (1, 5) related to the five variables u1,2, u2,3, u3,4, u4,5 = u1,3 and u5,1 = u2,4, respectively.

The five point integral (7.1.14) becomes

B5[ni, nij] =

∫ 1

0

dx1

∫ 1

0

dx2 x
s1+n1
1 xs4+n2

2 (1− x1)s2+n11 (1− x2)s3+n22 (1− x1x2)s24+n12 ,

(7.2.39)

with si = α′(ki + ki+1)2, i = 1, . . . , 5 subject to the cyclic identification i+ 5 ≡ i. To transform

(7.2.39) into the form (7.2.29) according to (7.2.26) we choose the two independent variables

u1,2 = x1 and u1,3 = u4,5 = x2. Then, with (7.2.27) the integral (7.2.39) takes the form

B5[ni,j] =

∫ 1

0

du1,2

∫ 1

0

du2,3

∫ 1

0

du3,4

∫ 1

0

du4,5

∫ 1

0

du1,5 u
s1+n1,2

1,2 u
s2+n2,3

2,3 u
s3+n3,4

3,4 u
s4+n4,5

4,5

× us5+n1,5

1,5 δ(u2,3 + u1,2u3,4 − 1) δ(u2,4 + u1,2u4,5 − 1) δ(u3,4 + u2,3u4,5 − 1) , (7.2.40)
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with

n1,2 = n1 , n2,3 = n11 , n3,4 = n22 , n4,5 = n2 , n1,5 = 1+n11+n22+n12 .

(7.2.41)

In what follows it is convenient to introduce

I5(x, y) := xs4 ys1 (1− x)s3 (1− y)s2 (1− xy)s24 (7.2.42)

arising from (7.2.39) with the identifications x1 := y and x2 := x. Furthermore, we stick to the

following shorter notation for the dual variables ui,j

Xi := ui,i+1 , i = 1, . . . , 5 , i+ 5 ≡ i (7.2.43)

and define

J5(X) :=

(
5∏
i=1

Xsi
i

)
δ(X2 +X1X3 − 1) δ(X3 +X2X4 − 1) δ(X5 +X1X4 − 1) . (7.2.44)

Let us now discuss a few examples. The pole structure of the integral∫ 1

0

dx

∫ 1

0

dy
I5(x, y)

(1− y) (1− xy)
(7.2.45)

can be easily deduced after transforming it into the form (7.2.40)(
5∏
i=1

∫ 1

0

dXi

)
J5(X)

1

X2X5

=
1

s2 s5

+ . . . . (7.2.46)

Hence, the only simultaneous pole is at X2, X5 → 0 with the product of δ functions yielding

the constraints for the three variables X1, X3, X4 → 1. Subsequently, we list a few nontrivial

examples:

rational function rational function rational function lowest or-

in equation (7.1.12) in equation (7.2.39) in equation (7.2.40) der poles

z15

z12z13z14z25z35z45

1
x y

X5

X1X4

1
s1s4

1
z12z13z24z35z45

1
x y (1−xy)

1
X1X4

1
s1s4

1
z13z14z23z25z45

1
x (1−y)

1
X2X4

1
s2s4

1
z14z15z23z25z34

1
(1−x) (1−y)

1
X2X3X5

1
s2s5

+ 1
s3s5

1
z12z15z24z34z35

1
(1−x) y (1−xy)

1
X1X3X5

1
s1s3

+ 1
s3s5

(7.2.47)

Let us point out once again that the rational functions of zij in the first column do not yet

encompass the c ghost correlator 〈c(z1)c(zn−1)c(zn)〉 = z1,n−1z1,nzn−1,n.

The fundamental integrands are J5(X), multiplied by one of the five rational functions

1

X1X3

,
1

X2X4

,
1

X3X5

,
1

X1X4

,
1

X2X5

, (7.2.48)
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which furnish the C3 = 5 poles

1

s1 s3

,
1

s2 s4

,
1

s3 s5

,
1

s1 s4

,
1

s2 s5

. (7.2.49)

In the basis (7.2.39) the rational functions become

1

(1− x)y
,

1

x(1− y)
,

1

(1− x)(1− xy)
,

1

xy(1− xy)
,

1

(1− y)(1− xy)
, (7.2.50)

respectively. The cyclically invariant integral (7.2.32) is given by

B5

[
ni = −1

nii = −1

]
=

∫ 1

0

dx

∫ 1

0

dy
I5(x, y)

x (1− x) y (1− y)

=
1

s1 s3

+
1

s2 s4

+
1

s3 s5

+
1

s1 s4

+
1

s2 s5

+ . . . (7.2.51)

and exhibits all five poles (7.2.49) in its power series expansion.

Finally, as we shall see in the next section 7.4, there is one rational function without poles

and its series expansion starts at ζ(2):

rational function rational function rational function lowest

in equation (7.1.12) in equation (7.2.39) in equation (7.2.40) order

1
z13z14z24z25z35

1
(1−xy)

1 ζ(2)

(7.2.52)

The function (7.2.52) may be added to (7.2.48) to give rise to another fundamental set

X2

X1X3

,
X3

X2X4

,
X4

X3X5

,
X5

X1X4

,
X1

X2X5

, (7.2.53)

subject to the constraints (7.2.44) and with the same poles (7.2.49), respectivley. In the basis

(7.1.14) the latter rational functions correspond to

1− y
(1− x)y(1− xy)

,
1− x

x(1− y)(1− xy)
,

x

(1− x)(1− xy)
,

1

xy
,

y

(1− y)(1− xy)
, (7.2.54)

respectively. Since we have

X3

X1X4

' 1

xy

1− x
(1− xy)2

' z25z34

z12z13z2
24z

2
35z45

X2

X1X4

' 1

xy

1− y
(1− xy)2

' z14z23

z12z2
13z

2
24z35z45

(7.2.55)

X3X5

X1X4

' 1

xy

1− x
(1− xy)

' z15z34

z12z13z14z24z2
35z45

X2X5

X1X4

' 1

xy

1− y
(1− xy)

' z15z23

z12z2
13z24z25z35z45

,

the two rational functions 1
X1X4

and X5

X1X4
are the only possibilities to realize the poles 1

s1s4

without double poles in the denominator of (7.1.12). Cyclicity makes sure that these arguments
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take over to the other four poles (7.2.49) and their rational functions (7.2.48) and (7.2.53).

Generally, rational functions other than the latter give rise to double powers in the denominator

of (7.1.12), e.g.:

1

X1

' 1

y(1− xy)
' 1

z12z14z24z2
35

(7.2.56)

X1

X2

' y

1− y ' z12

z13z2
14z23z2

25

We will explain in the following section 7.3 why the presence of double poles obscure the

transcendentality properties of the full physical amplitude.

7.2.4 n = 6 point integrals

Six particle kinematics give rise to nine planar channels (1, 2), (1, 3), (1, 4) ≡ (5, 6), (2, 3), (2, 4),

(2, 5) ≡ (1, 6), (3, 4), (3, 5) and (4, 5) related to the nine variables u1,2, u1,3, u1,4, u2,3, u2,4,

u2,5, u3,4, u3,5 and u4,5, respectively. The six point integral (7.1.14) becomes

B6[ni, nij] =

∫ 1

0

dx1

∫ 1

0

dx2

∫ 1

0

dx3 x
s1+n1
1 xt1+n2

2 xs5+n3
3 (1− x1)s2+n11 (1− x2)s3+n22

× (1− x3)s4+n33 (1− x1x2)s24+n12 (1− x2x3)s35+n23 (1− x1x2x3)s25+n13 , (7.2.57)

with si = α′(ki + ki+1)2, i = 1, . . . , 6 subject to the cyclic identification i + 6 ≡ i and tj =

α′(kj + kj+1 + kj+2)2, j = 1, . . . , 3.

To bring (7.2.57) into the Bn[ni,j] form (7.2.29) we choose the three independent variables

u1,2 = x1, u1,3 = x2 and u1,4 = x3. Then, with (7.2.27) the integral (7.2.57) takes the form

B6[ni,j] =

∫ 1

0

du1,2

∫ 1

0

du1,3

∫ 1

0

du1,4

∫ 1

0

du2,3

∫ 1

0

du2,4

∫ 1

0

du2,5

∫ 1

0

du3,4

∫ 1

0

du3,5

∫ 1

0

du4,5

× u
s1+n1,2

1,2 u
s2+n2,3

2,3 u
s3+n3,4

3,4 u
s4+n4,5

4,5 u
s5+n1,4

1,4 u
s6+n2,5

2,5 u
t1+n1,3

1,3 u
t2+n2,4

2,4 u
t3+n3,5

3,5

× δ(u2,3 + u1,2u3,4u3,5 − 1) δ(u2,4 + u1,2u1,3u3,5u4,5 − 1) δ(u2,5 + u1,2u1,3u1,4 − 1)

× δ(u3,4 + u1,3u2,3u4,5 − 1) δ(u3,5 + u1,3u1,4u2,3u2,4 − 1) δ(u4,5 + u1,4u2,4u3,4 − 1) (7.2.58)

with:

n1,2 = n1 , n1,3 = n2 , n1,4 = n3

n2,3 = n11 , n3,4 = n22 , n4,5 = n33 (7.2.59)

n2,4 = 1 + n11 + n22 + n12 , n3,5 = 1 + n22 + n33 + n23

n2,5 = 2 + n11 + n22 + n33 + n12 + n13 + n23
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In what follows it is convenient to introduce

I6(x, y, z) := xs5 yt1 zs1 (1−x)s4 (1−y)s3 (1−z)s2 (1−xy)s35 (1−yz)s24 (1−xyz)s25 (7.2.60)

arising from (7.2.57) with the identifications x1 := z, x2 := y and x3 := x. Furthermore, we

stick to the following shorter notation for the dual variables ui,j

Xi := ui,i+1 , i = 1, . . . , 6 , i+ 6 ≡ i , Yj := uj,j+2 , j = 1, 2, 3 (7.2.61)

and define

J6(X, Y ) :=

(
6∏
i=1

Xsi
i

) (
3∏
j=1

Y
tj
j

)
δ(X2 +X1X3Y3 − 1) δ(Y2 +X1X4Y1Y3 − 1)

× δ(X6 +X1X5Y1 − 1) δ(X3 +X2X4Y1 − 1) δ(Y3 +X2X5Y1Y2 − 1) δ(X4 +X3X5Y2 − 1) .

(7.2.62)

Let us now discuss a few examples. The pole structure of the integral∫ 1

0

dx

∫ 1

0

dy

∫ 1

0

dz
I6(x, y, z)

(1− x) (1− xy) (1− xyz)
(7.2.63)

can be easily deduced after transforming it into the B6[ni,j] form (7.2.58)(
6∏
i=1

∫ 1

0

dXi

) (
3∏
j=1

∫ 1

0

dYj

)
J6(X, Y )

Y2

X4X6Y3

=
1

s4s6t3
+ . . . . (7.2.64)

Hence, the only simultaneous pole is at X4, X6, Y3 → 0 with the product of δ functions yielding

the constraints for the six variables X1, X2, X3, X5, Y1, Y2 → 1. Note that by construction a

set of three poles in (7.2.58) does not necessarily yield a compatible set of channels, e.g. the

integral

∫ 1

0

dx

∫ 1

0

dy

∫ 1

0

dz
I6(x, y, z)

(1− x) (1− y)
=

(
6∏
i=1

∫ 1

0

dXi

) (
3∏
j=1

∫ 1

0

dYj

)
J6(X, Y )

X3X4Y3

=
1

s3t3
+

1

s4t3
+

1

s3

+
1

s4

− s1

s3t3
− s1

s4t3
− s6

s3t3
− s6

s4t3
+ . . . (7.2.65)

does not yield any triple pole as {(3, 4), (4, 5), (3, 5)} are incompatible channels. Similarly, for

∫ 1

0

dx

∫ 1

0

dy

∫ 1

0

dz
I6(x, y, z)

z(1− z)(1− xy)(1− xyz)
=

(
6∏
i=1

∫ 1

0

dXi

) (
3∏
j=1

∫ 1

0

dYj

)
J6(X, Y )

X1X2X6

=
1

s2s6

+
1

s2

+
1

s6

− s4

s2s6

− t2
s2s6

+
ζ(2)

s1

+ . . . (7.2.66)
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the channels (1, 2), (2, 3) and (6, 1) are not compatible. In the sequel we list a few non-trivial

examples:

rational function rational function rational function lowest or-

in equation (7.1.12) in equation (7.2.39) in equation (7.2.40) der poles
z2
16

z12z13z14z15z26z36z46z56

1
x y z

X2
6Y2Y3

X1X5Y1

1
s1s5t1

z16

z12z13z15z26z36z45z46

1
(1−x) y z

X6Y3

X1X4Y1
− 1
s1s4t1

1
z13z15z23z26z45z46

1
(1−x) y (1−z)

1
X2X4Y1

1
s2s4t1

1
z12z14z25z34z36z56

1
x (1−y) z (1−xyz)

1
X1X3X5

1
s1s3s5

z13z45

z12z2
14z25z34z35z36z56

y (1−x)
x (1−y) z (1−xy) (1−xyz)

X4Y1

X1X3X5

1
s1s3s5

1
z14z15z23z26z34z56

1
x(1−y)(1−z)

1
X2X3X5Y2

1
s2s5t2

+ 1
s3s5t2

1
z12z15z26z34z36z45

1
z (1−x) (1−y)

1
X1X3X4Y3

1
s1s3t3

+ 1
s1s4t3

1
z15z16z24z26z34z35

y
(1−y) (1−xy) (1−yz)

Y1

X3X6Y2Y3

1
s3s6t2

+ 1
s3s6t3

1
z15z16z23z26z34z45

1
(1−x) (1−y) (1−z)

1
X2X3X4X6Y2Y3

− 1
s2s4s6

− 1
s2s6t2

− 1
s3s6t2

− 1
s3s6t3

− 1
s4s6t3

(7.2.67)

The fundamental objects correspond to the 14 rational functions

1

X1X3X5

,
1

X2X4X6

,
1

X1X4Y1

,
1

X2X5Y2

,
1

X3X6Y3

,
1

X2X5Y1

,
1

X3X6Y2

,
1

X1X4Y3

,

1

X2X4Y1

,
1

X3X5Y2

,
1

X4X6Y3

,
1

X1X5Y1

,
1

X2X6Y2

,
1

X1X3Y3

, (7.2.68)

which furnish the C4 = 14 poles

1

s1s3s5

,
1

s2s4s6

,
1

s1s4t1
,

1

s2s5t2
,

1

s3s6t3
,

1

s2s5t1
,

1

s3s6t2
,

1

s1s4t3
,

1

s2s4t1
,

1

s3s5t2
,

1

s4s6t3
,

1

s1s5t1
,

1

s2s6t2
,

1

s1s3t3
, (7.2.69)

as single poles in the denominator of (7.1.12), respectively. The cyclically invariant integral

(7.2.32) is given by

B6

[
ni = −1

nii = −1

]
=

∫ 1

0

dx

∫ 1

0

dy

∫ 1

0

dz
I6(x, y, z)

x (1− x) y (1− y) z (1− z)

=
1

s1s3s5

+
1

s2s4s6

+
1

s1s4t1
+

1

s2s5t2
+

1

s3s6t3
+

1

s2s5t1
+

1

s3s6t2
+

1

s1s4t3

+
1

s2s4t1
+

1

s3s5t2
+

1

s4s6t3
+

1

s1s5t1
+

1

s2s6t2
+

1

s1s3t3
+ . . . , (7.2.70)

and exhibits all fourteen poles (7.2.69) in its power series expansion. After triple poles, for an

n = 6 integral the next leading order to start with are single poles. They always come with a

ζ(2). In analogy with (7.2.68), for the latter we may introduce a fundamental set of rational
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functions4 furnishing the six single poles ζ(2)/si, i = 1, 2, . . . , 6:

rational function rational function rational function lowest or-

in equation (7.1.12) in equation (7.2.39) in equation (7.2.40) der poles

1
z12z15z24z35z36z46

1
(1−xy) z (1−yz)

1
X1

ζ(2)
s1

1
z14z15z23z26z35z46

1
(1−z) (1−xy)

1
X2

ζ(2)
s2

1
z13z15z25z26z34z46

1
(1−y) (1−xyz)

1
X3

ζ(2)
s3

1
z13z15z24z26z36z45

1
(1−x) (1−yz)

1
X4

ζ(2)
s4

1
z13z14z24z26z35z56

1
x (1−xy) (1−yz)

1
X5

ζ(2)
s5

1
z13z16z24z25z35z46

1
(1−xy) (1−yz) (1−xyz)

1
X6

ζ(2)
s6

(7.2.71)

All (transcendental) integrals with single poles can be decomposed with respect to the basis

(7.2.71) modulo finite pieces to be discussed in a moment. Subject to (7.2.25), we have e.g.:

1

z (1− xy)
' X6Y2

X1

=
1

X1

− Y1

y

(1− y) (1− xyz)
' Y1

X3

=
1

X3

− X6Y2Y3 (7.2.72)

x

(1− x) (1− xyz)
' X5Y2

X4

=
1

X4

− Y3

1

x (1− yz)
' X6Y3

X5

=
1

X5

− Y1

After single poles, for an n = 6 integral the next leading order to start with are constants.

They always come with a ζ(2) or ζ(3), e.g.:

rational function rational function rational function lowest

in equation (7.1.12) in equation (7.2.39) in equation (7.2.40) order

1
z14z15z24z26z35z36

y
(1−xy) (1−yz) Y1 2 ζ(3)

1
z13z14z25z26z35z46

1
(1−xy) (1−xyz) Y2 2 ζ(3)

1
z13z15z24z25z36z46

1
(1−yz) (1−xyz) Y3 2 ζ(3)

z16

z13z14z15z25z26z36z46

1
1−xyz X6Y2Y3 ζ(3)

z56

z14z15z25z26z35z36z46

xy
(1−xy) (1−xyz) X5Y1Y2 ζ(3)

(7.2.73)

Again, we may add the functions (7.2.73) to (7.2.68) to obtain other fundamental sets subject

to the constraints in (7.2.62) and with the same poles as (7.2.69), see section 7.4 for details.

7.2.5 n = 7 point integrals

In this case we have the 14 planar channels (1, 2), (1, 3), (1, 4) ≡ (5, 7), (1, 5) ≡ (6, 7), (2, 3), (2, 4),

(2, 5), (2, 6) ≡ (1, 7), (3, 4), (3, 5), (3, 6), (4, 5), (4, 6) and (5, 6) related to the 14 variables u1,2, u1,3,

4Note that the rational functions 1/Yi giving rise to single poles in ti have double poles in their zij repre-

sentation, i.e. ñij = −2 for some i, j.



7.2. STRUCTURE OF MULTIPLE RESONANCE EXCHANGES 189

u1,4, u1,5, u2,3, u2,4 u2,5, u2,6, u3,4, u3,5, u3,6, u4,5, u4,6 and u5,6, respectively. The seven point inte-

gral (7.1.14) becomes

B7[ni, nij] =

∫ 1

0

dx1

∫ 1

0

dx2

∫ 1

0

dx3

∫ 1

0

dx4 x
s1+n1
1 xt1+n2

2 xt5+n3
3 xs6+n4

4 (1− x1)s2+n11

× (1− x2)s3+n22 (1− x3)s4+n33 (1− x4)s5+n44 (1− x1x2)s24+n12 (1− x2x3)s35+n23

× (1− x1x2x3)s25+n13 (1− x3x4)s46+n34 (1− x2x3x4)s36+n24 (1− x1x2x3x4)s26+n14 (7.2.74)

with si = α′(ki + ki+1)2, tj = α′(kj + kj+1 + kj+2)2, i, j = 1, . . . , 7 subject to the cyclic

identifications i+ 7 ≡ i and j + 7 ≡ j, respectively.

To bring (7.2.74) into the Bn[ni,j] form (7.2.29) we choose the four independent variables

u1,2 = x1, u1,3 = x2, u1,4 = x3 and u1,5 = x4. Then, with (7.2.27) the integral (7.2.74) assumes

the form (7.2.29)

B7[ni,j] =

∫ 1

0

dui,j u
s1+n1,2

1,2 u
s2+n2,3

2,3 u
s3+n3,4

3,4 u
s4+n4,5

4,5 u
s5+n5,6

5,6 u
s6+n1,5

1,5 u
s7+n2,6

2,6 u
t1+n1,3

1,3

× u
t2+n2,4

2,4 u
t3+n3,5

3,5 u
t4+n4,6

4,6 u
t5+n1,4

1,4 u
t6+n2,5

2,5 u
t7+n3,6

3,6

× δ(u2,3 + u1,2u3,4u3,5u3,6 − 1) δ(u2,4 + u1,2u1,3u3,5u3,6u4,5u4,6 − 1)

× δ(u2,5 + u1,2u1,3u1,4u3,6u4,6u5,6 − 1) δ(u2,6 + u1,2u1,3u1,4u1,5 − 1)

× δ(u3,4 + u1,3u2,3u4,5u4,6 − 1) δ(u3,5 + u1,3u1,4u2,3u2,4u4,6u5,6 − 1)

× δ(u3,6 + u1,3u1,4u1,5u2,3u2,4u2,5 − 1) δ(u4,5 + u1,4u2,4u3,4u5,6 − 1)

× δ(u4,6 + u1,4u1,5u2,4u2,5u3,4u3,5 − 1) δ(u5,6 + u1,5u2,5u3,5u4,5 − 1) , (7.2.75)

with

n1,2 = n1 , n1,3 = n2 , n1,4 = n3 , n1,5 = n4

n2,3 = n11 , n3,4 = n22 , n4,5 = n33 , n5,6 = n44

n2,4 = 1 +
2∑

1≤i≤j

nij , n2,5 = 2 +
3∑

1≤i≤j

nij , n2,6 = 3 +
4∑

1≤i≤j

nij

n3,5 = 1 +
3∑

2≤i≤j

nij , n3,6 = 2 +
4∑

2≤i≤j

nij , n4,6 = 1 +
4∑

3≤i≤j

nij . (7.2.76)

In what follows it is convenient to introduce

I7(x, y, z, w) := xs6 yt5 zt1 ws1 (1− x)s5 (1− y)s4 (1− z)s3 (1− w)s2 (1− xy)s46

× (1− wz)s24 (1− yz)s35 (1− xyz)s36 (1− yzw)s25 (1− xyzw)s26 , (7.2.77)

arising from (7.2.74) with the identifications x1 := w, x2 := z, x3 := y and x4 := x. Further-

more, we stick to the following shorter notation for the dual variables ui,j

Xi := ui,i+1 , Yj := uj,j+2 , i, j = 1, . . . , 7 , i+ 7 ≡ i (7.2.78)



190 CHAPTER 7. WORLDSHEET INTEGRALS

and define

J7(X, Y ) :=

(
7∏
i=1

Xsi
i

) (
7∏
j=1

Y
tj
j

)
δ(X2 +X1X3Y3Y7 − 1) δ(Y2 +X1X4Y1Y3Y4Y7 − 1)

× δ(Y6 +X1X5Y1Y4Y5Y7 − 1) δ(X7 +X1X6Y1Y5 − 1) δ(X3 +X2X4Y1Y4 − 1)

× δ(X4 +X3X5Y2Y5 − 1) δ(Y4 +X3X6Y2Y3Y5Y6 − 1) δ(X5 +X4X6Y3Y6 − 1)

× δ(Y3 +X2X5Y1Y2Y4Y5 − 1) δ(Y7 +X2X6Y1Y2Y5Y6 − 1) . (7.2.79)

Let us now discuss a few examples. The pole structure of the integral∫ 1

0

dx

∫ 1

0

dy

∫ 1

0

dz

∫ 1

0

dw
I7(x, y, z, w)

x (1− y) (1− wz) (1− yz)
(7.2.80)

can be easily deduced after transforming it into the form (7.2.58)(
7∏
i=1

∫ 1

0

dXi

) (
7∏
j=1

∫ 1

0

dYj

)
J7(X, Y )

X4X6Y3Y6

=
1

s4s6t3t6
+ . . . . (7.2.81)

Hence, the only simultaneous pole is at X4, X6, Y3, Y6 → 0 with the product of δ functions

yielding the constraints for the ten variables X1, X2, X3, X5, X7, Y1, Y2, Y4, Y5, Y7 → 1. Note

that by construction a set of four poles in (7.2.75) does not necessarily yield a compatible set

of channels, e.g. the integral∫ 1

0

dx

∫ 1

0

dy

∫ 1

0

dz

∫ 1

0

dw
I7(x, y, z, w)

w (1− x) (1− z) (1− wyz) (1− wxyz)

=

(
7∏
i=1

∫ 1

0

dXi

) (
7∏
j=1

∫ 1

0

dYj

)
J7(X, Y )

X1X3X5X7

=
1

s1s3s5

+ . . . (7.2.82)

does not give rise to a quadruple pole because (1, 2), (3, 4), (5, 6) and (7, 1) are not compatible

channels. Subsequently, we list a few nontrivial examples:

rational function rational function rational function lowest or-

in eq. (7.1.12) in eq. (7.2.39) in eq. (7.2.40) der poles
z3
17

z12z13z14z15z16z27z37z47z57z67

1
x y z w

X3
7Y2Y3Y4Y 2

6 Y
2
7

X1X6Y1Y5

1
s1s6t1t5

z2
17

z12z14z15z16z27z34z37z57z67

1
x y (1−z) w

X2
7Y4Y6Y7

X1X3X6Y5

1
s1s3s6t5

z2
17

z12z13z14z16z27z37z47z56z57

1
(1−x) y z w

X2
7Y2Y3Y 2

6 Y7

X1X5Y1Y5

1
s1s5t1t5

z17z67

z12z13z16z27z37z46z47z56z57

x
w z (1−x) (1−xy)

X6X7Y2Y3Y 2
6

X1X5Y1Y4

1
s1s5t1t4

z17

z12z14z16z27z34z37z56z57

1
y w (1−x) (1−z)

X7Y6

X1X3X5Y5

1
s1s3s5t5

z17

z12z13z16z27z37z45z47z56

1
z w (1−x) (1−y)

X7Y3Y6

X1X4X5Y1Y4

1
s1s4t1t4

+ 1
s1s5t1t4

z17

z14z15z16z23z27z34z57z67

1
x y (1−z) (1−w)

X7Y4Y7

X2X3X6Y2Y5

1
s2s6t2t5

+ 1
s3s6t2t5

z67

z12z16z27z36z37z45z47z56

x y
w(1−x)(1−y)(1−xyz)

X6Y2Y5Y6

X1X4X5Y4Y7

1
s1s4t4t7

+ 1
s1s5t4t7

1
z12z16z27z34z37z45z56

1
w(1−x)(1−y)(1−z)

1
X1X3X4X5Y3Y4Y7

1
s1s3s5t7

+ 1
s1s3t3t7

+ 1
s1s4t3t7

+ 1
s1s4t4t7

+ 1
s1s5t4t7

(7.2.83)
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After quadruple poles, for an n = 7 integral the next leading order to start with are double

poles. They always come with a ζ(2), e.g.:

rational function rational function rational function lowest or-

in eq. (7.1.12) in eq. (7.2.39) in eq. (7.2.40) der poles

1
z12z15z24z35z37z46z67

1
wx(1−xy)(1−wz)(1−yz)

1
X1X6

ζ(2)
s1s6

z14

z12z13z16z24z35z46z47z57

1
w(1−xy)z(1−wz)(1−yz)

1
X1Y1

ζ(2)
s1t1

1
z15z16z26z27z34z37z45

yz
(1−y)(1−z)(1−wxyz)

Y1Y5

X3X4Y3

ζ(2)
s3t3

+ ζ(2)
s4t3

(7.2.84)

After double poles, for an n = 7 integral the next leading order to start with are single poles.

They are always accompanied by ζ(2) or ζ(3) factors:

rational function rational function rational function lowest or-

in eq. (7.1.12) in eq. (7.2.39) in eq. (7.2.40) der poles

1
z12z16z24z35z37z46z57

1
w(1−xy)(1−wz)(1−yz)

1
X1

2ζ(2)
s1

z15

z12z14z16z25z35z37z46z57

1
w(1−xy)(1−yz)(1−wyz)

Y2

X1

2ζ(2)
s1

1
z12z16z24z35z36z47z57

1
w(1−wz)(1−yz)(1−xyz)

Y4

X1

2ζ(3)
s1

1
z12z15z16z24z35z37z46z47

y
w(1−xy)(1−wz)(1−yz)

Y5

X1

2ζ(3)
s1

z15z23

z12z13z16z24z25z35z37z46z57

1−w
w(1−xy)(1−wz)(1−yz)(1−wyz)

X2Y2

X1

2ζ(2)
s1

(7.2.85)

After single poles, for an n = 7 integral the next leading order to start with are the zeta

constants ζ(2), ζ(3) or ζ(4). First, we display examples without poles and their series expansion

starts at ζ(2) or ζ(3):

rational function rational function rational function lowest or-

in eq. (7.1.12) in eq. (7.2.39) in eq. (7.2.40) der poles

z47

z14z16z24z27z35z37z46z57

z
(1−xy) (1−yz) (1−wz) Y1 2 ζ(2) + 2 ζ(3)

z14z37

z13z15z16z24z27z35z36z2
47

y
(1−yz) (1−wz) (1−xyz) Y4Y5

3
2
ζ(2) + 3

2
ζ(3)

z15z37

z13z14z16z25z27z35z36z47z57

1
(1−yz) (1−xyz) (1−wyz) Y2Y4

5
2
ζ(4) + 4 ζ(3)− 2 ζ(3)

1
z13z14z25z27z36z46z57

1
(1−xy) (1−wyz) (1−xyz) Y2Y3Y6 3 ζ(3)

(7.2.86)

Finally, we give examples without poles and their series expansion starts at ζ(4):

rational function rational function rational function lowest or-

in eq. (7.1.12) in eq. (7.2.39) in eq. (7.2.40) der poles

1
z13z16z24z27z35z46z57

1
(1−xy) (1−yz) (1−wz) 1 27

4
ζ(4)

1
z14z16z24z27z35z36z57

z
(1−yz) (1−wz) (1−xyz) Y1Y4

17
4
ζ(4)

z37

z13z14z26z27z35z36z47z57

1
(1−yz) (1−xyz) (1−wxyz) Y2Y4Y6 3 ζ(4)

1
z13z14z25z26z37z46z57

1
(1−xy) (1−wyz) (1−wxyz) Y2Y3Y6Y7

5
2
ζ(4)

z16

z13z14z15z26z27z36z46z57

1
(1−xy) (1−xyz) (1−wxyz) Y 2

6 Y2Y3 3 ζ(4)

(7.2.87)
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Again, we may add the functions (7.2.87) to the 42 fundamental quadruple poles to obtain

other fundamental sets subject to the constraints in (7.2.79), cf. section 7.4 for more details.

7.2.6 n = 8 point integrals

In this case we have the 20 planar channels (1, 2), (1, 3) ≡ (4, 8), (1, 4) ≡ (5, 8), (1, 5) ≡
(6, 8), (1, 6) ≡ (7, 8), (2, 3), (2, 4), (2, 5), (2, 6), (2, 7) ≡ (1, 8), (3, 4), (3, 5), (3, 6), (3, 7), (4, 5),

(4, 6), (4, 7), (5, 6), (5, 7) and (6, 7) related to the 20 variables u1,2, u2,3, u3,4, u4,5, u5,6, u6,7,

u1,6 = u7,8, u2,7, u1,3, u2,4, u3,5, u4,6, u5,7, u6,8, u2,6, u3,7, u1,4, u2,5, u3,6, u4,8. The eight point inte-

gral (7.1.14) becomes

B8[ni, nij] =

∫ 1

0

dx1

∫ 1

0

dx2

∫ 1

0

dx3

∫ 1

0

dx4

∫ 1

0

dx5 x
s1+n1
1 xt1+n2

2 xu1+n3
3 xt6+n4

4 xs7+n5
5

× (1− x1)s2+n11 (1− x2)s3+n22 (1− x3)s4+n33 (1− x4)s5+n44 (1− x5)s6+n55

× (1− x1x2)s24+n12 (1− x2x3)s35+n23 (1− x3x4)s46+n34 (1− x4x5)s57+n45

× (1− x1x2x3)s25+n13 (1− x2x3x4)s36+n24 (1− x3x4x5)s47+n35

× (1− x1x2x3x4)s26+n14 (1− x2x3x4x5)s37+n25 (1− x1x2x3x4x5)s27+n15 , (7.2.88)

with si = α′(ki + ki+1)2, tj = α′(kj + kj+1 + kj+2)2, i, j = 1, . . . , 8 subject to the cyclic

identifications i+8 ≡ i, j+8 ≡ j, respectively, and ul = α′(kl+kl+1 +kl+2 +kl+3)2, l = 1, . . . , 4.

To bring (7.2.88) into the form (7.2.29) according to (7.2.26) we choose the five independent

variables u1,2 = x1, u1,3 = x2, u1,4 = x3, u1,5 = x4 and u1,6 = x5. Then, with (7.2.27) the integral

(7.2.88) assumes the form (7.2.29)

B8[ni,j] =

∫ 1

0

dui,j u
s1+n1,2

1,2 u
s2+n2,3

2,3 u
s3+n3,4

3,4 u
s4+n4,5

4,5 u
s5+n5,6

5,6 u
s6+n6,7

6,7 u
s7+n1,6

1,6 u
s8+n2,7

2,7

× u
t1+n1,3

1,3 u
t2+n2,4

2,4 u
t3+n3,5

3,5 u
t4+n4,6

4,6 u
t5+n5,7

5,7 u
t6+n1,5

1,5 u
t7+n2,6

2,6 u
t8+n3,7

3,7

× u
u1+n1,4

1,4 u
u2+n2,5

2,5 u
u3+n3,6

3,6 u
u4+n4,7

4,7

× δ(u2,3 + u1,2u3,4u3,5u3,6u3,7 − 1) δ(u2,4 + u1,2u1,3u3,5u3,6u3,7u4,5u4,6u4,7 − 1)

× δ(u2,5 + u1,2u1,3u1,4u3,6u3,7u4,6u4,7u5,6u5,7 − 1) δ(u2,7 + u1,2u1,3u1,4u1,5u1,6 − 1)

× δ(u2,6 + u1,2u1,3u1,4u1,5u3,7u4,7u5,7u6,7 − 1) δ(u3,4 + u1,3u2,3u4,5u4,6u4,7 − 1)

× δ(u3,5 + u1,3u1,4u2,3u2,4u4,6u4,7u5,6u5,7 − 1) δ(u6,7 + u1,6u2,6u3,6u4,6u5,6 − 1)

× δ(u3,7 + u1,3u1,4u1,5u1,6u2,3u2,4u2,5u2,6 − 1) δ(u4,5 + u1,4u2,4u3,4u5,6u5,7 − 1)

× δ(u4,6 + u1,4u1,5u2,4u2,5u3,4u3,5u5,7u6,7 − 1) δ(u5,6 + u1,5u2,5u3,5u4,5u6,7 − 1)

× δ(u4,7 + u1,4u1,5u1,6u2,4u2,5u2,6u3,4u3,5u3,6 − 1)

× δ(u5,7 + u1,5u1,6u2,5u2,6u3,5u3,6u4,5u4,6 − 1)
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× δ(u3,6 + u1,3u1,4u1,5u2,3u2,4u2,5u4,7u5,7u6,7 − 1) (7.2.89)

with

n1,2 = n1 , n1,3 = n2 , n1,4 = n3 , n1,5 = n4

n1,6 = n5 , n2,3 = n11 , n3,4 = n22 , n4,5 = n33

n5,6 = n44n6,7 = n55 , n2,4 = 1 +
2∑

1≤i≤j

nij

n2,5 = 2 +
3∑

1≤i≤j

nij , n2,6 = 3 +
4∑

1≤i≤j

nij , n2,7 = 4 +
5∑

1≤i≤j

nij

n3,5 = 1 +
3∑

2≤i≤j

nij , n3,6 = 2 +
4∑

2≤i≤j

nij , n3,7 = 3 +
5∑

2≤i≤j

nij

n4,6 = 1 +
4∑

3≤i≤j

nij , n4,7 = 2 +
5∑

3≤i≤j

nij , n5,7 = 1 +
5∑

4≤i≤j

nij . (7.2.90)

In what follows it is convenient to introduce

I8(x, y, z, w, v) := xs7 yt6 zu1 wt1 vs1 (1− x)s6 (1− y)s5 (1− z)s4 (1− w)s3 (1− v)s2

× (1− xy)s57 (1− yz)s46 (1− wz)s35 (1− vw)s24 (1− xyz)s47 (1− wyz)s36

× (1− vwz)s25 (1− wxyz)s37 (1− vwyz)s26 (1− vwxyz)s27 (7.2.91)

arising from (7.2.88) with the identifications x1 := v, x2 := w, x3 := z, x4 = y and x5 := x.

Furthermore, we stick to the following shorter notation for the dual variables ui,j

Xi := ui,i+1 , Yj = uj,j+2 , i, j = 1, . . . , 8 , i+ 8 ≡ i

Zk := uk,k+3 , k = 1, . . . , 4 (7.2.92)

and define

J8(X, Y, Z) :=

(
8∏
i=1

Xsi
i

) (
8∏
j=1

Y
tj
j

) (
4∏

k=1

Zuk
k

)
δ(X2 +X1X3Y3Y8Z3 − 1)

× δ(Y2 +X1X4Y1Y3Y4Y8Z3Z4 − 1) δ(Z2 +X1X5Y1Y4Y5Y8Z1Z3Z4 − 1)

× δ(Y7 +X1X6Y1Y5Y6Y8Z1Z4 − 1) δ(X8 +X1X7Y1Y6Z1 − 1)

× δ(X3 +X2X4Y1Y4Z4 − 1) δ(Y3 +X2X5Y1Y2Y4Y5Z1Z4 − 1)

× δ(Z3 +X2X6Y1Y2Y5Y6Z1Z2Z4 − 1) δ(Y8 +X2X7Y1Y2Y6Y7Z1Z2 − 1)

× δ(X4 +X3X5Y2Y5Z1 − 1) δ(Y4 +X3X6Y2Y3Y5Y6Z1Z2 − 1)

× δ(Z4 +X3X7Y2Y3Y6Y7Z1Z2Z3 − 1) δ(X5 +X4X6Y3Y6Z2 − 1)
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× δ(Y5 +X4X7Y3Y4Y6Y7Z2Z3 − 1) δ(X6 +X5X7Y4Y7Z3 − 1) . (7.2.93)

Let us now discuss a few examples. The pole structure of the integral∫ 1

0

dx

∫ 1

0

dy

∫ 1

0

dz

∫ 1

0

dw

∫ 1

0

dv
I8(x, y, z, w, v)

w (1− v) (1− z) (1− xy) (1− yz)
(7.2.94)

can be easily deduced after transforming it into the form (7.2.89)(
8∏
i=1

∫ 1

0

dXi

) (
8∏
j=1

∫ 1

0

dYj

) (
4∏

k=1

∫ 1

0

dZk

)
J8(X, Y, Z)

X2X4Y1Y4Z4

=
1

s2s4t1t4u4

+ . . . . (7.2.95)

Hence, the only simultaneous pole is at X2, X4, Y1, Y4, Z4 → 0. At these values, the product

of δ functions yield the constraints for the 15 variables X1, X3, X5, X6, X7, X8, Y2, Y3, Y5, Y6,

Y7, Y8, Z1, Z2, Z3 → 1. Subsequently, we list a few non–trivial examples:

rational function rational function . . .

in eq. (7.1.12) in eq. (7.2.39) . . .
z4
18

z12z13z14z15z16z17z28z38z48z58z68z78

1
x y z w v

. . .
z3
18

z12z13z14z16z17z28z38z45z58z68z78

1
x y (1−z) w v

. . .

1
z17z18z23z24z35z46z57z68

1
(1−v) (1−xy) (1−wz) (1−yz) (1−vw)

. . .

1
z12z17z28z34z36z47z56z58

y
v (1−y) (1−w) (1−xyz) (1−wyz) . . .

1
z17z18z24z26z35z37z45z68

w z
(1−z) (1−vw) (1−wz) (1−vwyz) (1−wxyz) . . .

z2
18

z12z15z16z17z28z34z38z45z68z78

1
x y v (1−z) (1−w)

. . .

1
z12z17z24z34z38z56z57z68

1
v z (1−y) (1−w) (1−xy) (1−vw)

. . .

1
z13z17z23z25z45z46z68z78

1
x y w (1−z) (1−v) (1−yz) (1−vwz) . . .

. . . rational function lowest or-

. . . in eq. (7.2.40) der poles

. . .
X4

8Y2Y3Y4Y5Y 3
7 Y

3
8 Z

2
2Z

2
3Z

2
4

X1X7Y1Y6Z1

1
s1s7t1t6u1

. . .
X3

8Y2Y5Y 2
7 Y

2
8 Z2Z2

3Z4

X1X4X7Y1Y6

1
s1s4s7t1t6

. . . 1
X2X8Y2Y7Z2

1
s2s8t2t7u2

. . . Y6Z2

X1X3X5Y8Z3

1
s1s3s5t8u3

. . . Y1Y5Z1Z4

X4X8Y3Y7Z2

1
s4s8t3t7u2

. . .
X2

8Y5Y7Y8Z4

X1X3X4X7Y3Y6

1
s1s3s7t3t6

+ 1
s1s4s7t3t6

. . . 1
X1X3X5Y2Y5Z1

1
s1s3s5t5u1

+ 1
s3s5t2t5u1

. . . Y5Y8

X3X4X7Y1Y4Y6Y7Z2

1
s2s4s7

(
1
t1t4

+ 1
t1t6

+ 1
t4t7

+ 1
t6u2

+ 1
7u2

)

(7.2.96)

7.3 Degree of transcendentality in the α′ expansion

The α′ dependence enters through the kinematic invariants si1...ik into the integrals (7.1.12)

or (7.1.14). Hence, in their (integer) power series expansions in α′, which (up to overall nor-
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malization factors) may start at least at the order α′3−n, each power α′m is accompanied by

some rational function or polynomial of degree m in the kinematic invariants si1...ik . The latter

have rational coefficients multiplied by MZVs (7.1.22) of certain weights
∑k

i=1 si. The maximal

weight thereof appearing at a given order α′m is related to the power m.

7.3.1 Basic definitions and examples

One important question is, whether the set of MZVs showing up at a given order m in α′ is of

a fixed weight. In this case we call the power series expansion transcendental (we may also call

the integral transcendental). E.g. for n = 6 we may have the following integral and its power

series expansion in α′:∫ 1

0

dx

∫ 1

0

dy

∫ 1

0

dz
I6(x, y, z)

xyz
=

1

s1s5t1
− ζ(2)

(
s3

s1s5

+
s4

s1t1
+

s2

s5t1

)
+ ζ(3)

(
s3 + s4 − t3

s1

+
s2 + s3 − t2

s5

+
s2

3 + s3t1
s1s5

+
s2

4 + s4s5

s1t1
+

s2
2 + s1s2

s5t1

)
+ O(α′)

(7.3.97)

In (7.3.97) to each α′m power a Riemann zeta constant of fixed weight m+ 3 appears. Hence,

(7.3.97) represents a transcendental power series expansion. On the other hand, the following

two integrals∫ 1

0

dx

∫ 1

0

dy

∫ 1

0

dz
I6(x, y, z)

(1− xyz)2
= ζ(2) + ζ(2) (s3 + s6 − t2 − t3)

− ζ(3) (s1 + s2 + 2s3 + s4 + s5 + 2s6 + t1 − t2 − t3) + O(α2) (7.3.98)∫ 1

0

dx

∫ 1

0

dy

∫ 1

0

dz
I6(x, y, z)

(1− xy)(1− yz)
= 2 ζ(2) +

[
2 ζ(2) − 4 ζ(3)

]
(t1 + t2 + t3)

−
[
2 ζ(2) − ζ(3)

]
(s1 + s2 + s3 + s4 + s5 + s6) + O(α2) (7.3.99)

yield examples of non-transcendental power series.

It would be useful to have a criterion at hand, which allows to infer the transcendentality

properties of an integral by inspecting its integrand before power series expanding the whole

integral. In this section we present a criterion, which allows to deduce from the structure of the

integrand, whether we should expect a transcendental power series expansion in α′. Although

this is a mathematical question, it will turn out that superstring theory provides a satisfying

answer to this.

Transforming the integrals from the representation (7.1.14) into the form (7.1.12) subject

to (7.1.13) will prove to be useful in the following. Integrals (7.1.12), whose integrands are

rational functions involving double or higher powers of zij in their denominators, always give
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rise to non–transcendental power series. This can be seen by performing a partial integration

within the integrals, e.g. for a double power we have∫
dzi z

sij−2
ij r(zkl) =

1

sij − 1

∫
dzi r(zkl) ∂ziz

sij−1
ij

= − 1

sij − 1

∫
dzi z

sij−1
ij ∂zir(zkl) . (7.3.100)

Regardless of the transcendentality structure of the integral
∫
z
sij−1
ij ∂zir(zkl) the geometric

series expansion of the prefactor 1
sij−1

= 1+sij +s2
ij + . . . always destroys any transcendentality.

This explains, why the integral (7.3.98) with the corresponding rational functions (see e.g.

(7.1.18))
1

(1− xyz)2
' 1

z13z14z2
25z36z46

(7.3.101)

yields a non-transcendental power series expansion. On the other hand, the non-transcendentality

of the integral (7.1.14) with the rational function [(1 − x)(1 − y)(1 − z)(1 − xyz)]−1 can only

be seen after transforming it into the representation (7.1.12), in which a rational function with

a double power in the denominator appears, i.e.

1

(1− x)(1− y)(1− z)(1− xyz)
' 1

z2
16z23z25z34z45

. (7.3.102)

Let us now discuss the integrals (7.3.97) and (7.3.99). With respect to the two representations

(7.1.14) and (7.1.12) we have the following correspondences:

1

xyz
' z2

16

z12z13z14z15z26z36z46z56

→ 1

z12z13z14

1

(1− xy)(1− yz)
' 1

z13z15z24z26z35z46

→ 1

z13z24z35

(7.3.103)

The last correspondence follows from the choice (7.1.1), setting z6 =∞ and taking into account

the c ghost factor 〈c(z1)c(z5)c(z6 = z∞)〉 = z15z
2
∞. These operations are denoted by the →

arrow in (7.3.103). We may regard the rational functions (7.3.103) as originating from a CFT

computation of a six gluon amplitude. This fact will be exploited in the following to anticipate

the transcendentality properties on an integral from the zij representation of the integrand.

7.3.2 A transcendentaliy criterion from computing gluon amplitudes

Gluon disk amplitudes in superstring theory have been checked to involve transcendental α′

functions only up to seven point level. By imposing transcendentality of the end result, we can

derive transcendentality criteria for the individual constituents as a necessary condition. Recall

that, given the gluon vertex operators (4.2.18) and (4.2.19) in the (−1) and (0) ghost picture,
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respectively, the color stripped n gluon amplitude is computed via

A(g1, . . . , gn) ∼ 〈 c(z1) c(zn−1) c(zn) 〉
(

n−2∏
j=2

∫ 1

zj−1

dzj

) 〈
ξiµi ψ

µi(zi) e−φ(zi) ξjµj ψ
µj(zj) e−φ(zj)

×
(∏
l 6=i,j

ξlµl
(
i∂Xµl(zl) + 2α′ (kl · ψ)ψµl(zl)

)) n∏
m=1

eikm·X(zm)

〉
(7.3.104)

The assignment of superghost charges is left unspecified here. Among the zero ghost picture

vertices, the interplay between the ∂Xµ and the (k · ψ)ψµ contribution plays an essential role

in the following5.

In a six gluon amplitude, the integral (7.3.97) describes the kinematic contraction (ξ1ξ6)

(ξ2k1)(ξ3k1)(ξ4k1)(ξ5k1), while the integral (7.3.99) characterizes the contraction (ξ2ξ6)(ξ1k3)

(ξ3k5)(ξ4k2)(ξ5k1). The crucial difference between the two encountered contractions is, that in

RNS superstring theory the first contraction can only be realized by contracting

ξµ1

1 ξµ2

2 ξµ3

3 ξµ4

4 ξµ5

5 ξµ6

6 kλ1k
σ
1k

ρ
1k

τ
1 〈ψµ1

1 ψµ6

6 〉〈∂Xµ2

2 Xλ
1 〉〈∂Xµ3

3 Xσ
1 〉〈∂Xµ4

4 Xρ
1 〉〈∂Xµ5

5 Xτ
1 〉 ,

with the first and sixth gluon vertex operator in the (−1) ghost picture. Therefore, the integral

(7.3.97) gives rise to a nonvanishing piece in the full amplitude. Since the full amplitude is

only comprised by transcendental functions multiplying kinematical factors the contribution

(7.3.97) must be a transcendental function. On the other hand, the second contraction can be

obtained from

ξµ1

1 ξµ2

2 ξµ3

3 ξµ4

4 ξµ5

5 ξµ6

6 kλ1
1 k

λ2
2 k

λ3
3 k

λ5
5 〈ψµ2

2 ψµ6

6 〉〈∂Xµ1

1 Xλ3
3 〉〈∂Xµ3

3 Xλ5
5 〉〈∂Xµ4

4 Xλ2
2 〉〈∂Xµ5

5 Xλ1
1 〉

with the second and sixth gluon vertex operator in the (−1) ghost picture. Furthermore, we

may also obtain the second contraction from the pure fermionic contraction:

ξµ1

1 ξµ2

2 ξµ3

3 ξµ4

4 ξµ5

5 ξµ6

6 kλ1
1 k

λ2
2 k

λ3
3 k

λ5
5 〈ψµ2

2 ψµ6

6 〉〈ψµ1

1 ψλ3
3 〉〈ψµ3

3 ψλ5
5 〉〈∂Xµ4

4 Xλ2
2 〉〈ψµ5

5 ψλ1
1 〉

In fact, after taking into account the anticommuting nature of fermions the two contractions

sum up to zero in the full amplitude. We may symbolically write

〈∂X1X3〉〈∂X3X5〉〈∂X5X1〉 − 〈ψ1ψ3〉〈ψ3ψ5〉〈ψ5ψ1〉 = 0 .

Otherwise, the latter would give rise to non–transcendent contributions to the full amplitude.

To summarize: in order to investigate the transcendentality properties of an Euler inte-

gral (7.1.14) we transform it into the form (7.1.12). This is uniquely possible because of the

5The number of spacetime dimensions does not play any role here, see the next chapter 8. The choice of

four dimensional vector indices µ, ν, λ, . . . is completely arbitrary and irrelevant.
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CFT condition (7.1.13). If the rational function R̃ of this integrand involves powers higher

than one in the denominator the corresponding integral yields a non–transcendental power

series. Otherwise, the rational function (more precisely its limit zn → ∞ with taking into

account the c ghost factor with the choice (7.1.1)) is mapped to a gluon contraction of the form

(ξrξn)(ξikj) . . . (ξlkm) (with no more than one (ξξ) product) arising from an n gluon superstring

computation with the r th and n th gluon vertex operator in the (−1) ghost picture. If the con-

traction under consideration can only be realized by the correlator 〈ψrψn〉〈∂XiXj〉 . . . 〈∂XlXm〉
the corresponding integral is transcendental. If on the other hand, the contraction under consid-

eration can also be realized by correlators involving more fermionic contractions, the underlying

integral is non-transcendental and the two contributions must conspire in some way, e.g. add

up to zero. Hence, in the n gluon amplitude computation non-transcendental contributions

referring to a given kinematics (ξrξn)(ξikj) . . . (ξlkm) are always accompanied by contributions

involving a circle of fermionic contractions such that all contributions add up to zero. Stated

differently, integrals describing a kinematics6 (ξrξn)(ξikj) . . . (ξlkm), which can be realized by

several field contractions, describe non-transcendental functions.

In fact, this criterion rules out the double poles (7.3.100) to join into a transcendental

integral. The latter can be realized by both bosonic and fermionic contractions. E.g. the power

1/z2
ij describes the kinematical factor (ξikj)(ξjki), which may stem from either ξµii ξ

µj
j k

λi
i k

λj
j

〈∂Xµi
i X

λj
j 〉〈∂X

µj
j X

λi
i 〉 or from ξµii ξ

µj
j k

λi
i k

λj
j 〈ψµii ψ

λj
j 〉〈ψ

µj
j ψ

λi
i 〉, which add up to zero:

〈∂XiXj〉〈∂XjXi〉 − 〈ψiψj〉〈ψjψi〉 = 0

Note that kinematics like (ξiξj) are realized by both ξµii ξ
µj
j 〈∂Xµi

i ∂X
µj
j 〉 and ξµii ξ

µj
j 〈ψµii ψ

µj
j 〉 ×

kλii k
λj
j 〈ψλii ψ

λj
j 〉 giving rise to (1 − 2α′kikj)(ξiξj)z

−2
ij in the end. The non-transcendentality of

the double pole integral according to (7.3.100) is then compensated by the 1− sij factor in the

numerator.

Therefore, kinematics involving more than two pairs of (ξiξj) scalar products always involve

double powers in the denominator. This is why kinematics with more than two pairs of (ξiξj)

scalar products cannot provide information on the transcendentality property of the underlying

integral. On the other hand, when mapping an integral to the kinematics (ξrξn)(ξikj) . . . (ξlkm)

we put the r’th and n’th gluon vertex operator in the (−1) ghost picture such that the double

pole from the contraction (ξrξn) drops.

Let us mention that the two integrals (7.2.65) and (7.2.66) have non-transcendental power

series. Indeed our criterion confirms this: In the representation (7.1.12) the integral (7.2.65)

6Note, that this statement assumes the r’th and n’th gluon vertex operator in the (−1)–ghost picture to get

rid of the double pole from the correlator 〈e−φ(zr)e−φ(zn)〉〈ψrψn〉.
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gives rise to the rational function 1
z13z15z2

26z34z45
involving a double pole. As a consequence of

the latter the α′-expansion in (7.2.65) is not transcendental. On the other hand, the integral

(7.2.66) leads to the rational function

z13z26

z12z14z16z23z25z35z36z46

→ z13z15

z12z14z23z25z35

=
z15

z12z14z25z35

+
z15

z14z23z25z35

.

According to the previous statements, the last two fractions correspond to the six gluon kine-

matics (ξ1ξ6)(ξ2k1)(ξ3k5)(ξ4k1)(ξ5k2) and (ξ1ξ6)(ξ4k1)(ξ2k3)(ξ3k5)(ξ5k2), respectively. The un-

derlined part of the last kinematics may also be realized by contracting fermions along a circle.

Hence the power series in (7.2.66) is non-transcendental.

7.3.3 Seven point examples for the transcendentality criterion

Let us now apply our criterion for some n = 7 integral examples. The following integrals

can be associated to only one kinematical factor. Therefore, they represent integrals with

transcendental power series expansions.

rational function rational function kinematics transcend.

in eq. (7.1.14) in eq. (7.1.12) power series

1
(1−xy)(1−wz)(1−yz)

1
z13z24z35z46

(ξ1ξ7)(ξ2k4)(ξ3k1)(ξ4k6)(ξ5k3)(ξ6k1) yes

z
(1−wz)(1−yz)(1−xyz)

1
z14z24z35z36

(ξ1ξ7)(ξ2k4)(ξ3k6)(ξ4k1)(ξ5k3)(ξ6k1) yes

y
(1−xy)(1−yz)(1−wyz)

1
z13z25z35z46

(ξ1ξ7)(ξ2k5)(ξ3k1)(ξ4k6)(ξ5k3)(ξ6k1) yes

1
(1−yz)(1−xyz)(1−wxyz)

z16

z13z14z26z35z36
(ξ1ξ7)(ξ2k6)(ξ3k1)(ξ4k1)(ξ5k3)(ξ6k3) yes

z
(1−wz)(1−wyz)(1−xyz)

1
z14z24z25z36

(ξ1ξ7)(ξ2k4)(ξ3k6)(ξ4k1)(ξ5k2)(ξ6k1) yes

yz
(1−yz)(1−wxyz)

1
z14z15z26z35

(ξ1ξ7)(ξ2k6)(ξ3k5)(ξ4k1)(ξ5k1)(ξ6k1) yes

yz
(1−wyz)(1−xyz)

1
z14z15z25z36

(ξ1ξ7)(ξ2k5)(ξ3k6)(ξ4k1)(ξ5k1)(ξ6k1) yes

(7.3.105)

The rational zij functions in the second column contain the c ghost factor 〈c(z1)c(z6)c(z7)〉 =

z16z17z67.

Sometimes a partial fraction decomposition may be useful before analyzing the integrands.

For instance, according to (7.1.18) we have (using partial fraction at the last step):

1

(1− xy)(1− xyz)(1− wz)(1− wxyz)
' z16

z13z14z15z26z27z36z46z57

→ z2
16

z13z14z15z26z36z46

=
z16

z13z14z15z26z46

+
z16

z14z15z26z36z46

(7.3.106)

The two rational functions on the right hand side correspond to the two kinematical factors

(ξ1ξ7)(ξ2k6)(ξ3k1)(ξ4k1)(ξ5k1)(ξ6k4) and (ξ1ξ7)(ξ2k6)(ξ3k6)(ξ4k1)(ξ5k1)(ξ6k4), respectively. Both
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of them do not allow for additional fermionic contractions. Hence, the integral under consider-

ation yields a transcendental series.

Furthermore, let us discuss some integrals with non-transcendental power series expansions.

The rational functions of the following integrals describe kinematics, which can be realized in

two ways. The second possibility involves contractions of several pairs of fermions. The latter

are contracted along a circle and give rise to the underlined subset of the kinematics.

rational function rational function kinematics transcend.

in eq. (7.1.14) in eq. (7.1.12) power series

z
(1−xy)(1−wz)(1−yz)

1
z14z24z35z46

(ξ5ξ7)(ξ1k6)(ξ4k1)(ξ6k4) (ξ2k4)(ξ3k5) no

1
(1−xy)(1−wz)(1−wxyz)

z16

z13z15z24z26z46
(ξ1ξ7)(ξ2k6)(ξ6k4)(ξ4k2) (ξ3k1)(ξ5k1) no

xyz
(1−xy)(1−wyz)(1−xyz)

1
z14z25z36z46

(ξ2ξ7)(ξ1k6)(ξ6k4)(ξ4k1) (ξ3k6)(ξ5k2) no

(7.3.107)

Sometimes, before analyzing the integrands a partial fraction decomposition may be useful.

E.g. according to (7.1.18) we have

z(1− xyz)

(1− xy)(1− wz)(1− wyz)(1− xyz)
' z26z47

z14z16z24z25z27z36z37z46z57

→ z26

z14z24z25z36z46

=
1

z14z24z25z36

+
1

z14z25z36z46

. (7.3.108)

The second term on the right hand side corresponds to one of the rational functions discussed

in (7.3.107). Hence, the integral under consideration does not give rise to a transcendental

series. Another example is:

1

(1− yz)(1− wyz)(1− xyz)
' z15z37

z13z14z16z25z27z35z36z47z57

→ z15

z13z14z25z35z36

=
1

z13z14z25z36

+
1

z14z25z35z36

(7.3.109)

The two rational functions on the right hand side correspond to the two kinematical factors

(ξ2ξ7)(ξ1k6)(ξ3k1)(ξ6k3)(ξ4k1)(ξ5k2) and (ξ2ξ7)(ξ1k6)(ξ3k5)(ξ4k1)(ξ5k2)(ξ6k3), respectively. The

first kinematics can also be realized by a fermionic contraction along a circle, which is under-

lined. Hence, the integral under consideration does not give rise to a transcendental series.

Finally, the third integral with the integrand

y

(1− wz)(1− yz)(1− xyz)
' z14z37

z13z15z16z24z27z35z36z2
47

yields a non-transcendental power series due to the double pole.

The results (7.3.107) can be anticipated by explicitly computing the integrals:∫ 1

0

dx

∫ 1

0

dy

∫ 1

0

dz

∫ 1

0

dw
z I7(x, y, z, w)

(1− xy)(1− wz)(1− yz)
= 2 ζ(2) + 2 ζ(3) + . . .
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0

dx

∫ 1

0

dy

∫ 1

0

dz

∫ 1

0

dw
I7(x, y, z, w)

(1− xy)(1− wz)(1− wxyz)
= 3 ζ(3)

+

(
19

4
ζ(4) − 3 ζ(3)

)
s7 +

4

5
ζ(2)2 (s1 + s6 + t1 + t5) + . . . (7.3.110)∫ 1

0

dx

∫ 1

0

dy

∫ 1

0

dz

∫ 1

0

dw
xyz I7(x, y, z, w)

(1− xy)(1− wyz)(1− xyz)
= − 2 ζ(2) + 4 ζ(3) + . . .∫ 1

0

dx

∫ 1

0

dy

∫ 1

0

dz

∫ 1

0

dw
I7(x, y, z, w)

(1− yz)(1− wyz)(1− xyz)
=

5

2
ζ(4) + 4 ζ(3) − 2 ζ(2) + . . .∫ 1

0

dx

∫ 1

0

dy

∫ 1

0

dz

∫ 1

0

dw
y I7(x, y, z, w)

(1− wz)(1− yz)(1− xyz)
=

3

2
ζ(2) +

3

2
ζ(3) + . . .

7.4 Polynomial relations and Gröbner basis reduction

For ni,j ≥ 0, the representation (7.2.29) in the dual variables ui,j gives rise to a polynomial ring

R[uP ] describing polynomials in ui,j, (i, j) ∈ P with coefficients in R. This ring is suited to

perform a Gröbner basis analysis to find a minimal basis for the polynomials in the integrand.

Due to the constraints (7.2.25), which give rise to the δ functions in (7.2.29), many polynomials

in the variables ui,j referring to different choices of the integers ni,j yield to the same integral

Bn. The constraints (7.2.25) define a monomial ideal I in the polynomial ring R[uP ]. Hence,

we consider the quotient space R[uP ]/I and the Gröbner basis method is well appropriate to

choose a basis in the ideal I and generate independent sets of polynomials in the quotient

ring R[uP ]/I. We are interested in simple representatives of equivalence classes for congruence

modulo I. The properties of an ideal are reflected in the form of the elements of the Gröbner

basis [233,234].

7.4.1 Definition of a Gröbner basis

Given a monomial ordering7 in the ring a Gröbner basis G = {g1, . . . , gd} comprises a finite

subset of the ideal I such that the leading term8 of any element of the ideal I is divisible by a

7As monomial ordering we may choose lexicographic order or graded lexicographic order. Then, a monomial

ordering of two polynomials f =
∑
α aαx

α and g =
∑
β bαx

β can be defined as follows:

(i) lexicographic order: α >lex β, if in the vector difference α− β ∈ Zn the leftmost nonzero entry is positive

(xα >lex xβ if α >lex β).

(ii) graded lexicographic order: α >grlex β, if |α| =
n∑
i=1

αi > |β| and α >lex β (xα >grlex xβ , if α >grlex β).
8The leading term LT (f) of a polynomial f is defined as follows [233]: For f =

∑
α aαx

α a nonzero polynomial

in R[x1, . . . , xn] and > a specific monomial order

(i) the multidegree of f is multideg(f) := Max{α ∈ Zn≥0 | aα 6= 0 },
(ii) the leading coefficient of f is: LC(f) := amultideg(f) ∈ R,

(iii) the leading monomial of f is LM(f) = xmultideg(f), with coefficient 1, and
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leading term LT (gi) of an element of the subset. Alternatively, a finite subset G of an ideal I

in a polynomial ring represents a Gröbner basis, if 〈LT (g1), . . . , LT (gd)〉 = 〈LT (I)〉 [233, 234].

Buchberger’s algorithm generates the unique reduced Gröbner basis G, in which no monomial

in a polynomial p ∈ G of this basis is divisible by a leading term of the other polynomials in

the basis and LC(p) = 1.

The main idea is, that after dividing a polynomial p ∈ R[x1, . . . , xn] by a Gröbner basis for

the ideal I ⊂ R[x1, . . . , xn] the remainder p̄G is uniquely fixed by the polynomial p, cf. Chapter

5, §3 of [233]. More precisely according to the Proposition 1 therein we have: For a given

monomial ordering on R[x1, . . . , xn] and an ideal I ⊂ R[x1, . . . , xn],

• (i) Every f ∈ R[x1, . . . , xn] is congruent modulo I to a unique polynomial r, which is a

R–linear combination of the monomials in the complement of 〈LT (I)〉.

• (ii) The elements {xα | xα /∈ 〈LT (I)〉} are linearly independent modulo I, i.e. if∑
α cαx

α = 0 mod I, where the xα are all in the complement of 〈LT (I)〉, then cα = 0

for all α. As a consequence, for any given f ∈ R[x1, . . . , xn] the remainder f̄G is

a R–linear combination of the monomials contained in the complement of LT (I), i.e.

f̄G ∈ Span (xα | xα /∈ 〈LT (I)〉).

In the following we want to apply the Gröbner basis method to construct a basis for those

polynomials which are independent on the constraints (7.2.25). This basis is determined by the

complement of 〈LT (I)〉 w.r.t. a Gröbner basis G. Note that the representation of this basis

(and also of 〈LT (I)〉 and the remainders) may depend on the chosen monomial ordering. At

any rate, there is always the same number of monomials in the complement of 〈LT (I)〉. In

addition, we impose a condition on the degree of the basis monomials to ensure that in the

denominator of the integrand of (7.1.12) the zij only appear with powers of at most one. We

illustrate the method by the following examples.

7.4.2 Gröbner basis at n = 4

We work with the two coordinates X1 = u1,2 and X2 = u2,3 and consider the polynomial ring

R[X1, X2]. From (7.2.36) we can read off the constraints (7.2.25) giving rise to the monomial

(iv) the leading term of f is

LT (f) = LC(f) LM(f) .

As an example we consider f = xyz + 2xy2z2 + 3z3 − 7x5y + 3x2z2 with > the lexicographic order. Then we

have: multideg(f) = (5, 1, 0), LC(f) = −7, LM(f) = x5y and LT (f) = −7x5y.
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ideal

I = 〈 X1 +X2 − 1 〉 ⊂ R[X1, X2] . (7.4.111)

With respect to lexicographic order we find for the Gröbner basis of (7.4.111):

G = {g1} = { X1 +X2 − 1 } (7.4.112)

Hence, with respect to lexicographic order the leading term of this monomial gives rise to

LT (I) = X1 . (7.4.113)

Therefore, the set of possible remainders modulo I is the set of all R linear combinations of the

following monomials:

{ 1, X2, X
2
2 , X

3
2 , . . . } (7.4.114)

For some examples let us determine their remainders on dividing them by the Gröbner basis

(7.4.112):

X1 = g1 + 1 −X2 ' 1 − X2

X2 = 0 g1 + X2 ' X2

X1X2 = X2 g1 + X2 − X2
2 ' X2 − X2

2 (7.4.115)

X2
1 = (1 +X1 −X2) g1 + 1 − 2X2 + X2

2 ' 1 − 2X2 + X2
2

X2
1 X2 = X2 (1 +X1 −X2) g1 + X2 − 2X2

2 + X3
2 ' X2 − 2X2

2 + X3
2

Indeed, the remainders (displayed after the ' sign) are generated by the basis (7.4.114).

In (7.2.36) the monomials Xn11
2 , n11 = 0, 1, . . . of (7.4.114) give rise to the following integrals

(7.2.35):

B4[n11] =

∫ 1

0

dx xs12 (1− x)s23+n11 (7.4.116)

The integrals (7.2.35) without poles in their field theory expansions are given by the integers

n1, n11 ∈ N0. According to our construction, all these integrals (7.2.35) can be generated from

(7.4.116) by linear combinations. However according to (7.1.18) we have

(1− x)n11 ' zn11
14 zn11

23

z2+n11
13 z2+n11

24

, (7.4.117)

i.e. all finite integrals (7.4.116) in (7.1.12) imply some powers ñij with ñij < −1. As a

consequence the set of integrals (7.4.116) cannot serve as a basis and u−1
1,2, u

−1
2,3 are the only

elements of the partial fraction basis. Note, that this basis is two–dimensional, i.e. (n−2)! = 2

for n = 4.
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7.4.3 Gröbner basis at n = 5

We work with the five coordinates (7.2.43) and consider the polynomial ring R[X1, . . . , X5].

From (7.2.44) we can read off the constraints (7.2.25) giving rise to the monomial ideal:

I = 〈X2 +X1X3 − 1, X3 +X2X4 − 1, X5 +X1X4 − 1 〉 ⊂ R[X1, . . . , X5] (7.4.118)

With respect to the lexicographic order we find for the (reduced) Gröbner basis of (7.4.118)

the three elements:

G = {g1, g2, g3} = { X1 + X2X5 − 1, X3 + X2X4 − 1, X4 + X3X5 − 1 } (7.4.119)

Hence with respect to lexicographic order the leading terms of these monomials give rise to

LT (I) = { X1, X2X4, X3X5 } . (7.4.120)

The set of possible remainders modulo I is thus the set of all R linear combinations of the

following monomials:

∞⋃
m,n=0

{ Xm
2 Xn

3 , X
m
2 Xn

5 , X
m
3 Xn

4 , X
m
4 Xn

5 } (7.4.121)

For some examples let us determine their remainders on dividing them by the Gröbner basis

(7.4.119):

X1 = g3 + 1 − X2X5 ' 1 − X2X5

X1X4 = g1 − X5 g2 + X4 g3 + 1 − X5 ' 1 − X5

X3X5 = g1 + 1 − X4 ' 1 − X4 (7.4.122)

X3X
2
5 = X5 g1 + X5 − X4X5 ' X5 − X4X5

X1X2 = X2 g3 + X2 − X2
2 X5 ' X2 − X2

2 X5

X2X3X5 = X2 g1 − g2 − 1 + X2 + X3 ' −1 + X2 + X3

Indeed, the remainders (displayed after the ' sign) are generated by the basis (7.4.121).
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We have the following dictionary

monomial in rational function rational function

in equation (7.2.40) in equation (7.2.39) in equation (7.1.12)

1 1
1−xy

1
z13z14z24z25z35

X2
1−y

(1−xy)2
z23

z2
13z

2
24z25z35

X3
1−x

(1−xy)2
z34

z13z14z2
24z

2
35

X4
x

(1−xy)
z45

z2
14z24z25z2

35

X5 1 z15

z13z2
14z

2
25z35

X2X3
(1−x)(1−y)

(1−xy)3
z23z34

z2
13z

3
24z

2
35

X2X5
1−y

1−xy
z15z23

z2
13z14z24z2

25z35

X3X4
x(1−x)
(1−xy)2

z34z45

z2
14z

2
24z

3
35

X4X5 x z15z45

z3
14z

2
25z

2
35

(7.4.123)

between monomials in the integral (7.2.40), the polynomial in (7.2.39), and the representation

(7.1.12). According to the list (7.4.123), only the element 1 among the generators (7.4.121) of

the complement 〈LT (I)〉 does not give rise to higher powers of zij in the denominator of the

integrand (7.1.12). Therefore, we dismiss all other basis elements and the integral∫ 1

0

dx

∫ 1

0

dy
I5(x, y)

1− xy = ζ(2) + . . . (7.4.124)

is left as the only basis element without poles. The integral (7.4.124) yields a transcendental

power series in α′. Together with the fundamental set (7.2.48) we obtain a six dimensional

partial fraction basis, i.e. (n− 2)! = 6 for n = 5.

7.4.4 Gröbner basis at n = 6

Using the coordinates (7.2.61) we consider the polynomial ring R[X1, . . . , X6, Y1, . . . , Y3]. From

(7.2.62) we can read off the constraints (7.2.25) giving rise to the monomial ideal:

I = 〈 X2 +X1X3Y3 − 1 , X3 +X2X4Y1 − 1 , X4 +X3X5Y2 − 1

X6 +X1X5Y1 − 1 , Y2 +X1X4Y1Y3 − 1 , Y3 +X2X5Y1Y2 − 1 〉 (7.4.125)

With respect to lexicographic order we find for the (reduced) Gröbner basis of (7.4.125) the

thirteen elements:

G = { 1− Y1 +X6Y1 −X6Y2 −X6Y3 +X2
6Y2Y3, −1 +X5Y1 +X6Y3, −1 +X1 +X2X6Y2

1−X5 −X6 +X5X6Y2, −1 +X4Y3 +X5Y2, −1 +X4Y1 +X3Y2,
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X4 −X6 −X4Y1 +X4X6Y1 +X6Y2 −X4X6Y2, −1 +X2Y1 +X3Y3,

X3 −X4 +X6 −X3Y1 +X4Y1 −X6Y1 +X3X6Y1 −X3X6Y3 −X6Y2 +X4X6Y2,

−X3 +X3X5 −X6 +X3X6 +X4X6, 1−X2 −X3Y3 −X6Y3 +X2X6Y3 +X3X6Y3,

− 1 +X2 +X5 −X2Y3 +X3Y3 −X5Y3 +X2X5Y3 +X6Y3 −X3X6Y3 −X2X5Y2,

−X2 +X3 +X2X4 −X5 +X2X5 +X6 −X3X6 −X4X6 } (7.4.126)

Hence, with respect to lexicographic order the leading terms of these 13 monomials give rise to

LT (I) = { X2
6Y2Y3, X5Y1, X5X6Y2, X4Y3, X4X6Y1, X3Y2, X3X6Y1,

X3X5, X2Y1, X2X6Y3, X2X5Y3, X2X4, X1 } . (7.4.127)

We would like to mention that the Gröbner basis consists of 18 elements in the case of degree

lexicographic order.

From the set (7.4.127) the monomials generating the complement 〈LT (I)〉 can be deter-

mined. Most of these monomials yield to higher powers of zij in the denominator of the

integrand (7.1.12), i.e. ñij = −2 for some zij. In fact, only the following five monomials give

rise to single powers in their denominators, i.e. ñij ≥ −1:

monomial in rational function rational function

in equation (7.2.40) in equation (7.2.39) in equation (7.1.12)

1 1
(1−xy) (1−yz)

1
z13z15z24z26z35z46

Y1
y

(1−xy) (1−yz)
1

z14z15z24z26z35z36

Y2
1

(1−xy) (1−xyz)
1

z13z14z25z26z35z46

Y3
1

(1−yz) (1−xyz)
1

z13z15z24z25z36z46

X6 Y2 Y3
1

(1−xyz)
z16

z13z14z15z25z26z36z46

(7.4.128)

Therefore, we dismiss all other basis elements of 〈LT (I)〉. All (finite) integrals (7.1.12) with

only single powers of zij in their denominators, i.e. ñij ≥ −1, are spanned by the following five

integrals:

G0 =

∫ 1

0

dx

∫ 1

0

dy

∫ 1

0

dz
I6(x, y, z)

(1− xy) (1− yz)
= 2 ζ(2) + . . .

G1 =

∫ 1

0

dx

∫ 1

0

dy

∫ 1

0

dz
y I6(x, y, z)

(1− xy) (1− yz)
= 2 ζ(3) + . . .

G2 =

∫ 1

0

dx

∫ 1

0

dy

∫ 1

0

dz
I6(x, y, z)

(1− xy) (1− xyz)
= 2 ζ(3) + . . .

G3 =

∫ 1

0

dx

∫ 1

0

dy

∫ 1

0

dz
I6(x, y, z)

(1− yz) (1− xyz)
= 2 ζ(3) + . . .
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G4 =

∫ 1

0

dx

∫ 1

0

dy

∫ 1

0

dz
I6(x, y, z)

1− xyz = ζ(3) + . . . (7.4.129)

E.g. we have ∫ 1

0

dx

∫ 1

0

dy

∫ 1

0

dz
yz I6(x, y, z)

(1− yz) (1− xyz)
= G3 − G4∫ 1

0

dx

∫ 1

0

dy

∫ 1

0

dz
y (1− z) I6(x, y, z)

(1− xy) (1− yz) (1− xyz)
= G1 − G3 + G4∫ 1

0

dx

∫ 1

0

dy

∫ 1

0

dz
(1− y) I6(x, y, z)

(1− xy) (1− yz) (1− xyz)
= −G1 + G2 + G3 − G4∫ 1

0

dx

∫ 1

0

dy

∫ 1

0

dz
(1− x) y I6(x, y, z)

(1− xy) (1− yz) (1− xyz)
= G1 − G2 + G4∫ 1

0

dx

∫ 1

0

dy

∫ 1

0

dz
xy I6(x, y, z)

(1− xy) (1− xyz)
= G2 − G4 (7.4.130)

as results from the identities between their corresponding monomials on dividing them by the

Gröbner basis (7.4.126):

X1 Y1 Y3 = Y3 − X6 Y2 Y3

X2 Y1 Y2 = Y1 − Y3 + X6 Y2 Y3

X3 Y2 Y3 = −Y1 + Y2 + Y3 − X6 Y2 Y3

X4 Y1 Y3 = Y1 − Y2 + X6 Y2 Y3

X5 Y1 Y2 = Y2 − X6 Y2 Y3 (7.4.131)

Except for the first integral G0, the other four integrals (7.4.129) yield a transcendental power

series in α′, cf. section 7.3. Any partial fraction decomposition, which involves G0 must refer to

a non–transcendental integral (7.1.12) and only partial fraction expansions involving the basis

G1, . . . , G4 comprise into a transcendental integral. In the previous section we have found a set

of six transcendental integrals (??) with single poles. Together with the fundamental set (7.2.68)

we obtain a partial fraction basis (of transcendental integrals (7.1.12)) with 4 + 6 + 14 = 24

elements, i.e. (n− 2)! = 24 for n = 6.

7.4.5 Gröbner basis at n = 7

Using the coordinates (7.2.78) we consider the polynomial ring R[X1, . . . , X7, Y1, . . . , Y7]. From

(7.2.79) we can read off the constraints (7.2.25) giving rise to the monomial ideal:

I = 〈 X2 +X1X3Y3Y7 − 1, X3 +X2X4Y1Y4 − 1, X4 +X3X5Y2Y5 − 1, X5 +X4X6Y3Y6 − 1,

Y4 +X3X6Y3Y2Y5Y6 − 1, Y6 +X1X5Y1Y4Y5Y7 − 1, Y7 +X2X6Y1Y2Y5Y6 − 1,
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X7 +X1X6Y1Y5 − 1, Y2 +X1X4Y1Y3Y4Y7 − 1, Y3 +X2X5Y1Y2Y4Y5 − 1 〉 (7.4.132)

With respect to lexicographic order we find 84 elements in the (reduced) Gröbner basis of

(7.4.132). On the other hand, with respect to degree lexicographic order we have 184 basis

elements. In the following, we determine the monomials generating the complement 〈LT (I)〉
with respect to degree lexicographic order as this ordering directly yields a cyclic invariant

basis. Most of the monomials in the complement 〈LT (I)〉 yield higher powers of zij in the

denominator of the integrand (7.1.12), i.e. ñij = −2 for some zij. After disregarding those only

the following six monomials and their cyclic transformations give rise to single powers in their

denominators, i.e. ñij ≥ −1:

monomial in rational function rational function

in equation (7.2.40) in equation (7.2.39) in equation (7.1.12)

1 1
(1−xy) (1−yz) (1−wz)

1
z13z16z24z27z35z46z57

Y1 Y4
z

(1−yz) (1−wz) (1−xyz)
1

z14z16z24z27z35z36z57

Y1 Y3 Y6
z

(1−xy) (1−wz) (1−xyz)
z47

z14z15z24z27z36z37z46z57

Y1 Y2 Y5
yz

(1−xy) (1−yz) (1−wyz)
1

z14z16z25z27z35z37z46

Y2 Y4
1

(1−yz) (1−wyz) (1−xyz)
z15z37

z13z14z16z25z27z35z36z47z57

Y1
z

(1−xy) (1−wz) (1−yz)
z47

z14z16z24z27z35z37z46z57

(7.4.133)

Therefore, in total we have a basis of 36 elements and all (finite) integrals (7.1.12) with only

single powers in their denominators zij, i.e. ñij ≥ −1, are spanned by the following six integrals

G0 =

∫ 1

0

dx

∫ 1

0

dy

∫ 1

0

dz

∫ 1

0

dw
I7(x, y, z, w)

(1− xy) (1− yz) (1− wz)
=

27

4
ζ(4) + . . .

G1a =

∫ 1

0

dx

∫ 1

0

dy

∫ 1

0

dz

∫ 1

0

dw
z I7(x, y, z, w)

(1− yz) (1− wz) (1− xyz)
=

17

4
ζ(4) + . . .

G2b =

∫ 1

0

dx

∫ 1

0

dy

∫ 1

0

dz

∫ 1

0

dw
z I7(x, y, z, w)

(1− xy) (1− wz) (1− xyz)
= 3 ζ(4) + . . .

G3a =

∫ 1

0

dx

∫ 1

0

dy

∫ 1

0

dz

∫ 1

0

dw
yz I7(x, y, z, w)

(1− xy) (1− yz) (1− wyz)
= 3 ζ(3) + . . .

G5a =

∫ 1

0

dx

∫ 1

0

dy

∫ 1

0

dz

∫ 1

0

dw
z I7(x, y, z, w)

(1− xy) (1− wz) (1− yz)
= 2 ζ(3) + 2 ζ(2) + . . .

G4b =

∫ 1

0

dx

∫ 1

0

dy

∫ 1

0

dz

∫ 1

0

dw
I7(x, y, z, w)

(1− yz) (1− wyz) (1− xyz)
=

5

2
ζ(4) + 4 ζ(3)

− 2 ζ(2) + . . . , (7.4.134)

and their cyclic transformations. For instance, we have∫ 1

0

dx

∫ 1

0

dy

∫ 1

0

dz

∫ 1

0

dw
I7(x, y, z, w)

(1− xy) (1− wz)
= G0 −G1b
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0

dx

∫ 1

0

dy

∫ 1

0

dz

∫ 1

0

dw
yz2 I7(x, y, z, w)

(1− yz) (1− wz) (1− xyz)
= −G0 +G1a +G1b +G1d −G2b∫ 1

0

dx

∫ 1

0

dy

∫ 1

0

dz

∫ 1

0

dw
yz I7(x, y, z, w)

(1− yz) (1− wyz) (1− xyz)
= G5b −G3c −G3f +G4b∫ 1

0

dx

∫ 1

0

dy

∫ 1

0

dz

∫ 1

0

dw
z I7(x, y, z, w)

(1− wz) (1− xyz)
= G0 −G1b −G1d +G2b∫ 1

0

dx

∫ 1

0

dy

∫ 1

0

dz

∫ 1

0

dw
y I7(x, y, z, w)

(1− xy) (1− wyz)
= G0 −G1b −G1f +G2f∫ 1

0

dx

∫ 1

0

dy

∫ 1

0

dz

∫ 1

0

dw
yz I7(x, y, z, w)

(1− yz) (1− wxyz)
= −G1b +G1g −G3d −G3e

− 2G3g +G4d +G4g +G5f∫ 1

0

dx

∫ 1

0

dy

∫ 1

0

dz

∫ 1

0

dw
yz I7(x, y, z, w)

(1− wyz) (1− xyz)
= 2G0 − 2G1b −G1d −G1f +G2a

+G2b −G4c −G5c −G5d +G2f +G3a+G3b +G3c +G3f −G4a (7.4.135)

as results from the identities between their corresponding monomials on dividing them by the

Gröbner basis of (7.4.132):

X7Y3Y6Y7 = 1 − Y1Y5

Y 2
1 Y4Y5 = − 1 + Y1Y4 + Y1Y5 + Y3Y6 − Y1Y3Y6

Y1Y2Y4Y5 = Y3 + Y2Y4 − Y2Y3Y6 − Y3Y4Y7

X7Y1Y3Y4Y6Y7 = 1 − Y1Y5 − Y3Y6 + Y1Y3Y6

X7Y2Y3Y5Y6Y7 = 1 − Y1Y5 − Y3Y7 + Y3Y5Y7

X7Y1Y2Y4Y5Y6Y7 = −Y1Y5 + Y6 + Y1Y6 − Y2Y5Y6 + Y7

− Y1Y4Y7 + Y5Y7 − 2Y3Y6Y7

X7Y1Y2Y3Y4Y5Y6Y7 = 2 − Y1Y3 − Y2 − Y4 − 2Y1Y5 − Y3Y5 + Y1Y3Y5 + Y1Y2Y5

+ Y1Y4Y5 − Y3Y6 + Y1Y3Y6 + Y2Y3Y6 − Y3Y7 + Y3Y4Y7 + Y3Y5Y7 (7.4.136)

The set of integrals G0, G1, G2 of four integrals (7.4.134) yields a transcendental power series

in α′, cf. section 7.3.

To conclude: Any finite integral (7.1.12) with ñij ≥ −1 can be expressed as R linear com-

bination of the basis (7.4.134) as a result of partial fraction decomposition of their integrands.
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Chapter 8

Tree level scattering of massless states

This chapter contains the explicit results on tree amplitudes of massless states with RNS meth-

ods – both in uncompactified D = 10 dimensions and in superstring compactifications to four

spacetime dimensions. Both adjoint states (i.e. gluons and gluinos) and chiral fermions are ad-

dressed. In this sense, we work out stringy predictions for parton scattering processes at LHC.

As we will highlight, a lot of these disk amplitudes are in fact independent on the spacetime

dimensionality and the compactification geometry.

Multileg scattering of the massless gauge multiplet has been extensively studied in the

framework of supersymmetric QFTs. Modern tools such as string inspired color ordering, the

resulting relations between subamplitudes (see section 5.5), four dimensional helicity methods

and elements of twistor theory [235] have revealed a striking simplicity in the S matrix of field

theories. In four dimensional spinor helicity variables, tree amplitudes of n gluons and super-

partners in MHV (maximally helicity violating) helicity configurations assume an extremely

compact form. This is the famous Parke Taylor formula [236], proven later on by Berends and

Giele [237]. By now, any other helicity amplitudes at tree level have been worked out [100],

and tremendous progress is taking place on the loop front [97,238].

We present the superstring completion of the aforementioned tree level results in field theory

with corrections to all orders in the Regge slope α′. Firstly, the α′ corrections can be analyzed

in view of the low energy effective action. For instance, the α′2 correction to four point gluon

scattering admit to identify a quartic interaction in the gluon field strength, and an infinite

tower of higher order vertices ∼ D2mFn can in principle be identified and related to a non-

abelian DBI action [239]. Secondly, the pole structure of string amplitudes reflects the exchange

of massive Regge excitations and sheds light on their factorization properties.

The aforementioned features of gluon interactions in superstring theory are valid in any
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compactification, regardless on the amount of supersymmetry preserved. We will argue that

the same universality holds for disk amplitudes involving one quark antiquark pair and any

number of gluons. That is why they are of (model independent) phenomenological relevance:

The resonant behaviour of parton amplitudes at the string mass scale α′−1/2 (i.e. at the mass

scale of lightest Regge excitations) could become measurable at LHC provided that the string

scale is sufficiently low. We have explained in section 4.1 that low string scale scenarios become

plausible in the context of large extra dimensions.

We compute full fledged cross sections including color sums and cast the results into a form

suitable for the implementation of stringy partonic cross sections in the LHC data analysis. The

possibility to detect indirect signals of heavy string vibration modes also motivates to study

direct production rates of massive states as carried out in chapter 9.

8.0.1 Conventions in presenting RNS amplitudes

It is essential to have a clean notation to compactly present scattering amplitudes. The starting

points for any computation in this chapter are equation (5.3.38) for the (correctly normalized)

color ordered n point disk amplitude A(Φ1, . . . ,Φn) and equation (5.3.26) for its color dressed

version M
[
(T a1 ,Φ1), . . . , (T an ,Φn)

]
. The color degrees of freedom T a of the scattering states

(T a,Φ) are clearly separated from the kinematic degrees of freedom to which we collectively

refer as Φ. The latter contains the information on spacetime momentum and polarization

tensors, e.g.

Φ ∈

 g ≡ (ξm, km) : gluon with polarization vector ξm and momentum km

λ ≡ (uα, km) : gluino with wave function uα and momentum km
(8.0.1)

In four dimensional compactifications, the vector index range for momenta and polarization

tensors have to be adjusted like km 7→ kµ .

The notation A(1, 2, . . . , n) from section 5.4 and 5.5 refers to disk amplitudes of unspecified

members of the massless SUSY multiplet. Giving explicit RNS results requires to specify the

SUSY components, i.e. Φ ∈ {g, λ} in D = 10 dimensions or Φ ∈ {g, λ, λ̄, φ} in D = 4 dimen-

sions. Only the pure spinor formalism gives rise to manifestly supersymmetric field theory-

and superstring amplitudes in D = 10 dimensions, see part III. Whenever four dimensional

spinor helicity methods are applied (like in section 8.2 for instance), the helicity appears as a

superscript at the state’s label, e.g. g± for gluons with polarization vector ξ±µ , see (C.1.7).

For massive states, we will represent the kinematical degrees of freedom Φ with the same let-

ter as the polarization wavefunction. At the first mass level, these are Φ ∈ {B ≡ (Bmn, km), E ≡
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(Emnp, km), χ ≡ (χαm, km)} in D = 10 dimensions and a zoo of different states in four dimensions

which is presented in section 4.5. For N = 1 SUSY in D = 4, for instance, we have identified

a spin two multiplet Φ ∈ {α ≡ (αµν , kµ), χ ≡ (χaµ, kµ), χ̄ ≡ (χ̄µȧ , kµ), d ≡ (dµ, kµ)} and a spin

1/2 multiplet Φ ∈ {ϕ± ≡ (ϕ±, kµ), b ≡ (ba, kµ), b̄ ≡ (b̄ȧ, kµ), ω± ≡ (ω±, kµ)}. The even bigger

list of states for maximal N = 4 SUSY can be found in subsection 4.5.1.

8.1 Tree amplitudes in ten dimensions

A ten dimensional spacetime is the natural starting point to compute superstring amplitudes.

The associated low energy SYM theory encompasses no other states than the eight physical

gluon- and gluino polarizations each. Fortunately, the results on multigluon scattering remain

fully valid in any lower dimension, the detailed CFT argument will be given in the next section

8.2. The same is true for amplitudes with two gauginos and any number of bosons, independent

on the compactifications and on the number of spacetime supersymmetry preserved.

Multigluon amplitudes in ten dimensions have been studied in [240, 201, 202, 241, 242, 243].

Covariant computation of fermion amplitudes in the RNS model has been advanced at tree

level in D = 10 to the four point level [115, 116, 126, 118, 244] while fermionic amplitudes in

D = 10 up to six point level are pioneered in [230,119].

The vertex operators for the ten dimensional gauge multiplet are given in subsection 3.2.

Recall that the kinematic degrees of freedom are labelled by g ≡ (ξµ, kµ) and λ ≡ (uα, kµ).

8.1.1 Three point amplitudes and normalization

The worldsheet positions in color stripped three point amplitudes drop out because the c ghost

correlator 〈c(z1)c(z2)c(z3)〉 = z12z13z23 cancels the z dependence of the (ψ,X, S, φ) fields:

A(g1, g2, g3) = CD2

√
2α′ g3

A

{
(ξ1 ξ2) (ξ3 k1) + (ξ2 ξ3) (ξ1 k2) + (ξ1 ξ3) (ξ2 k3)

}
(8.1.2)

A(g1, λ2, λ3) =
1√
2
CD2 gA g

2
λ (u2 6ξ u3) (8.1.3)

Notice the manifest cyclic symmetry of the former. The two amplitudes are consistent with the

SUSY Ward identity for 〈V (−1)(ξ1, k1)V (0)(ξ2, k2)V (−1/2)(u3, k3)〉, see subsection 5.2.4.

The color dressed amplitudes at massless three point level are obtained by combining the

cyclically inequivalent orderings (1, 2, 3) and (3, 2, 1). Taking the negative worldsheet parity

of massless states into account, one has to subtract the associated Chan Paton traces to get
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Tr
{
T a1T a2T a3 − T a2T a1T a3

}
= i

2
fa1a2a3 with vanishing abelian limit:

M
[
(T a1 ,Φ1), (T a2 ,Φ2), (T a3 ,Φ3)

]
=

i

2
fa1a2a3 A(Φ1,Φ2,Φ3) (8.1.4)

The three gluon amplitude matches the cubic vertex ∼ ifa1a2a3gYM of SYM if the normalization

gA of the gluon vertex operator and the universal disk factor CD2 satisfy

CD2

√
2α′ g3

A

i

2
fa1a2a3 = 2i fa1a2a3 gYM . (8.1.5)

This is one out of two steps towards reliable normalization of superstring amplitudes. A second

independent equation like (8.1.5) can be found from four point amplitudes of the gauge multiplet

by requiring it to reproduce the field theory result as α′ → 0. Since we have already stated

the final answer CD2 = (g2
YMα

′2)−1 in subsection 5.3.4, let us take the input from four point

ahead (which will be rigorously computed in the following subsection). The right normalization

constants gA and gλ for gluon- and gluino vertex operators, respectively, are given by

gA =
√

2α′ gYM , gλ = α′1/4 gA =
√

2α′3/4 gYM . (8.1.6)

Hence, the final form of the superstring amplitudes is the following:

M
[
(T a1 , g1), (T a2 , g2), (T a3 , g3)

]
= 2i fa1a2a3 gYM

×
{

(ξ1 ξ2) (ξ3 k1) + (ξ2 ξ3) (ξ1 k2) + (ξ1 ξ3) (ξ2 k3)
}

(8.1.7)

M
[
(T a1 , g1), (T a2 , λ2), (T a3 , λ3)

]
= i fa1a2a3 gYM (u2 6ξ u3) (8.1.8)

As shown in subsection 4.2.4, the scalars in the four dimensional N = 4 SYM multiplets have

the coupling as the gluons gφ = gA.

8.1.2 Four point amplitudes

Four point open superstring amplitudes involve a single worldsheet integral over the unfixed ver-

tex operator position which can be identified with the Euler Beta function of the dimensionless

Mandelstam variables s = 2α′k1 · k2 and u = 2α′k1 · k4:

1∫
0

dx xs+n1 (1− x)u+n2 = B(s+ n1 + 1, u+ n2 + 1) (8.1.9)

In subsection 7.2.2 we have mentioned that its most convenient representation in the color

ordering 1, 2, 3, 4 is the Vt formfactor

Vt =
Γ(s+ 1) Γ(u+ 1)

Γ(s+ u+ 1)
=

s u

s+ u
B(s, u) (8.1.10)
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related to the Euler Beta function B(·, ·). It is symmetric in s and u, reduces to 1 in the

α′ → 0 limit and has well-understood α′ expansion (8.1.22). We will say more on its physical

interpretation in the later subsections 8.1.3 and 8.1.4.

Given the definition (8.1.10) of Vt, the four point subamplitudes of the D = 10 gauge

multiplet take the form

A(g1, g2, g3, g4) = −CD2 g
4
A 2α′ Vt

{
1

2α′
(ξ1 ξ3) (ξ2 ξ4)

+
1

s

[ t

2α′
(ξ1 ξ2) (ξ3 ξ4) + (ξ1 ξ2) (ξ3 k4) (ξ4 k1) − (ξ1 ξ2) (ξ3 k1) (ξ4 k3)

+ (ξ3 ξ4) (ξ1 k4) (ξ2 k1) − (ξ3 ξ4) (ξ1 k2) (ξ2 k4) + (ξ1 ξ3) (ξ2 k1) (ξ4 k3)

+ (ξ2 ξ4) (ξ1 k2) (ξ3 k4) − (ξ1 ξ4) (ξ2 k1) (ξ3 k4) − (ξ2 ξ3) (ξ1 k2) (ξ4 k3)
]

+
1

u

[ t

2α′
(ξ1 ξ4) (ξ2 ξ3) + (ξ1 ξ4) (ξ2 k1) (ξ3 k2) − (ξ1 ξ4) (ξ2 k3) (ξ3 k1)

+ (ξ2 ξ3) (ξ1 k2) (ξ4 k1) − (ξ2 ξ3) (ξ1 k4) (ξ4 k2) + (ξ1 ξ3) (ξ2 k3) (ξ4 k1)

+ (ξ2 ξ4) (ξ1 k4) (ξ3 k2) − (ξ1 ξ2) (ξ3 k2) (ξ4 k1) − (ξ3 ξ4) (ξ1 k4) (ξ2 k3)
]}

= CD2 g
4
A Vt

4α′2

su
tm1m2n1n2p1p2q1q2
8 k1

m1
ξ1
m2
k2
n1
ξ2
n2
k3
p1
ξ3
p2
k4
q1
ξ4
q2

(8.1.11)

A(g1, g2, λ3, λ4) = CD2 g
2
A g

2
λ

√
2α′

2
Vt

{
1

u

[ 1

2
(u3 6ξ2 6k1 6ξ1 u4) − (ξ1 k4) (u3 6ξ2 u4)

]
+

1

s

[
(ξ1 ξ2) (u3 6k1 u4) − (ξ2 k1) (u3 6ξ1 u4) + (ξ1 k2) (u3 6ξ2 u4)

]}
(8.1.12)

A(λ1, λ2, λ3, λ4) =
1

2
CD2 g

4
λ Vt

{
1

u
(u1γ

mu4) (u2γmu3) − 1

s
(u1γ

mu2) (u3γmu4)

}
.

(8.1.13)

The four gluon amplitude is usually written in terms of the famous t8 tensor whose full expansion

in terms of η symbols encompasses 60 terms. Its contraction with the antisymmetric field

strength F i
mn = 2ki[mξ

i
n] simplifies to

t8(k1, ξ1, k2, ξ2, k3, ξ3, k4, ξ4) = tm1m2n1n2p1p2q1q2
8 k1

m1
ξ1
m2
k2
n1
ξ2
n2
k3
p1
ξ3
p2
k4
q1
ξ4
q2

=
1

8

[
4F 1

m
n F 2

n
p F 3

p
q F 4

q
m + 4F 1

m
n F 3

n
p F 2

p
q F 4

q
m + 4F 1

m
n F 3

n
p F 4

p
q F 2

q
m (8.1.14)

− F 1
m
n F 2

n
m F 3

p
q F 4

q
p − F 1

m
n F 3

n
m F 2

p
q F 4

q
p − F 1

m
n F 4

n
m F 2

p
q F 3

q
p
]

The color ordered four point amplitudes (8.1.11), (8.1.12) and (8.1.13) provide explicit examples

of kinematic numerators ni introduced in section 5.5. The identification can be made on the

basis of the parametrization A(1, 2, 3, 4) = ns
s

+ nu
u

. The four gluon amplitude (8.1.11) obviously

contains a contact term ∼ (ξ1ξ3)(ξ2ξ4) which can be distributed in any way between ns and nu,
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the freedom of assignment can be parametrized by a real number λ ∈ R:

ns = (k1 k3) (ξ1 ξ2) (ξ3 ξ4) + (ξ1 ξ2) (ξ3 k4) (ξ4 k1) − (ξ1 ξ2) (ξ3 k1) (ξ4 k3)

+ (ξ3 ξ4) (ξ1 k4) (ξ2 k1) − (ξ3 ξ4) (ξ1 k2) (ξ2 k4) + (ξ1 ξ3) (ξ2 k1) (ξ4 k3)

+ (ξ2 ξ4) (ξ1 k2) (ξ3 k4) − (ξ1 ξ4) (ξ2 k1) (ξ3 k4) − (ξ2 ξ3) (ξ1 k2) (ξ4 k3)

+ λ (k1 k2) (ξ1 ξ3) (ξ2 ξ4) (8.1.15)

nu = (k1 k3) (ξ1 ξ4) (ξ2 ξ3) + (ξ1 ξ4) (ξ2 k1) (ξ3 k2) − (ξ1 ξ4) (ξ2 k3) (ξ3 k1)

+ (ξ2 ξ3) (ξ1 k2) (ξ4 k1) − (ξ2 ξ3) (ξ1 k4) (ξ4 k2) + (ξ1 ξ3) (ξ2 k3) (ξ4 k1)

+ (ξ2 ξ4) (ξ1 k4) (ξ3 k2) − (ξ1 ξ2) (ξ3 k2) (ξ4 k1) − (ξ3 ξ4) (ξ1 k4) (ξ2 k3)

+ (1− λ) (k1 k4) (ξ1 ξ3) (ξ2 ξ4)

The other disk orderings A(g1, g3, g2, g4) and A(g1, g2, g4, g3) involve different contact terms

∼ (ξ1ξ2)(ξ3ξ4) or (ξ1ξ4)(ξ3ξ2) and a slightly different represetation of the kinematic numerators.

A particularly symmetric choice of ns, nu is inspired by the pure spinor formalism, see section

13.2.

To compactly present color dressed amplitudes, let us introduce the shorthand

ca1a2a3a4
+ := Tr

{
T a1 T a2 T a3 T a4 + T a4 T a3 T a2 T a1

}
(8.1.16)

for the color factors which emerges from the even worldsheet parity of massless four point

amplitudes. Generalities about color factors will be discussed in section 8.3.

M
[
(T a1 , g1), (T a2 , g2), (T a3 , g3),(T a4 , g4)

]
= 16α′2 g2

YM t8(k1, ξ1, k2, ξ2, k3, ξ3, k4, ξ4)(
Vt
su

ca1a2a3a4
+ +

Vs
tu

ca1a3a2a4
+ +

Vu
st

ca1a2a4a3
+

)
(8.1.17)

M
[
(T a1 , g1), (T a2 , g2), (T a3 , λ3),(T a4 , λ4)

]
= 4α′ g2

YM

{
s

2
(u3 6ξ2 6k1 6ξ1 u4)

− s (ξ1 k4) (u3 6ξ2 u4) + u
[

(ξ1 ξ2) (u3 6k1 u4) − (ξ2 k1) (u3 6ξ1 u4) + (ξ1 k2) (u3 6ξ2 u4)
]}

(
Vt
su

ca1a2a3a4
+ +

Vs
tu

ca1a3a2a4
+ +

Vu
st

ca1a2a4a3
+

)
(8.1.18)

M
[
(T a1 , λ1), (T a2 , λ2), (T a3 , λ3),(T a4 , λ4)

]
= 2α′ g2

YM{
s (u1γ

mu4) (u2γmu3) − u (u1γ
mu2) (u3γmu4)

}
(
Vt
su

ca1a2a3a4
+ +

Vs
tu

ca1a3a2a4
+ +

Vu
st

ca1a2a4a3
+

)
(8.1.19)

To see that α′ drops out in the field theory limit α′ → 0, recall that our Mandelstam variables

are defined to be dimensionless sij = α′(ki + kj)
2, hence each 1

s
-, 1

u
- or 1

t
pole contains a hidden

inverse power α′−1.
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8.1.3 Momentum expansion and low energy effective action

The signatures of string specific physics in these four point amplitudes (8.1.17) to (8.1.19) are

exclusively captured by the hypergeometric function Vt, Vs and Vu. They contain all the α′

dependence and become unity in the low energy limit α′ → 0 leaving the associated field theory

amplitude behind. In this subsection, we want to learn from the stringy formfactor Vt how the

four point amplitude probes α′ corrections in the low energy effective action.

The Vt is an analytic function of α′, so it can be written as a power series. Since α′ always

appears in dimensionless combinations s = 2α′k1 · k2 and u = 2α′k1 · k4 this amounts to

performing a momentum expansion1:

Vt = exp

(
∞∑
k=2

ζ(k)

k
(−1)k

(
sk + uk − (s+ u)k

)

= 1 − ζ(2) su + ζ(3) su (s+ u) −
(
ζ(2)

)2

10
su (4s2 + su+ 4u2) + O(α′5) (8.1.22)

We find the nice correspondence ζ(n)↔ α′n between zeta values and momentum powers which

was discussed in section 7.3.

All the α′ corrections in (8.1.22) have a factor of su in common, so the combination Vt
su

appearing in the amplitudes (8.1.17), (8.1.18) and (8.1.19) does not give rise to any kinematic

poles. Consequently, the stringy contributions to the low energy effective action are pure contact

terms. This is consistent with the fact that the three point amplitudes (8.1.7) and (8.1.8) into

which A(1, 2, 3, 4) factorizes on the residue of its poles do not receive any α′ correction.

The α′ corrections can be translated into a string correction to the low energy effective

action: An effective Lagrangian is defined by the requirement of reproducing the amplitude

(8.1.17) up to some order α′k by means of Feynman rules [202, 245, 246, 247, 83, 248]. The

simplest example is the α′2 correction to the four gluon amplitude, reproduced by a Lagrangian

Leff

∣∣∣
F4

= Tr
{
FmnFmn + ζ(2)α′2 (FmnFpq FnmF qp + 2FmnFnmFpq F qp

− 4FmnFnpFpq Fqm − 8FmnFnq FpmFqp ) + O(α′3)
}

(8.1.23)

1This identity is based on the expansion

ln Γ(1 + z) = − γ z +
∞∑
k=2

ζ(k)
k

(−1)k zk , z ∈ (−1,+1) (8.1.20)

of the Gamma function where γ denotes the Euler Mascheroni constant

γ = lim
n→∞

(
n∑
k=1

1
k
− ln(n)

)
≈ 0.577 . (8.1.21)
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in terms of the gluon field strength Fmn (in position space). Higher order α′ corrections give

rise to covariant derivatives, i.e. to contributions of schematic form D2mF4.

The general effective action for higher point gluon interactions can be written as a formal

power series

Leff ∼
∞∑
n=2

∞∑
m=0

α′m+n−2 Tr
{
D2mFn

}
. (8.1.24)

The way of writing the Lagrangian is not at all unique – there are several sources of ambiguities

such as [Dm,Dn]Fpq ∼ [Fmn,Fpq], field redefinitions, Bianchi identity and integration by parts.

If the sum in (8.1.24) is restricted to independent terms, then each contribution accounts for

a gluon contact interaction represented by an irreducible Feynman diagram of the underlying

(higher derivative) gauge theory. Moreover, spacetime supersymmetry of the superstring admits

to read off supersymmetric invariants on these grounds. This reasoning was recently applied

to the gravity sector for the purpose of classifying five- and six loop counterterms [112].

The lowest order α′ correction (8.1.23) is consistent with the nonabelian DBI action of [239].

But it already departs from the results of computing scattering amplitudes at α′3 level where

D2F4 and F5 interaction occur. The latter can only be probed from five gluon amplitudes [242].

8.1.4 Pole expansion of four point amplitudes

This subsection opens a second viewpoint on the physical interpretation of the four point

formfactor Vt. Instead of a power series expansion in α′, we can perform a pole expansion:

Vt = s
∞∑
n=0

Γ(n− u)

n! Γ(−u) (s+ n)
=: s

∞∑
n=0

γ(u, n)

(s+ n)
(8.1.25)

It is obtained from the binomial series (1− x)u =
∑∞

n=0 γ(u, n)xn for the worldsheet integrand

in (8.1.9). The four point amplitude exhibits poles whenever the center of mass energy of the

incoming states (k1 + k2)2 = s/α′ hits the mass of a Regge excitation:

poles at s = −n ←→ n’th mass level m2
n =

n

α′
of Regge excitations (8.1.26)

The residue γ(u, n) =
∏n−1

J=0(−u+J)/n! at the s = −n pole is a degree n polynomial in the dual

Mandelstam variable u, this is an indirect method to identify the maximum spin jmax = n+ 1

at mass level n. The representation (8.1.26) of Vt tells us that heavy states |n; j〉 with masses

m2
n = n/α′ and spin j up to n+ 1 propagate in the internal channels of four gluon amplitude,

see the following figure 8.1. The residue γ(u, n) determines the three point coupling of the

intermediate string to the external massless states. The spin content of the any mass level can

be predicted on these grounds [249,250].
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k3

k4
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Vt =
∞∑
n=0

k2

k1

n+1∑
j=0

|n; j〉

s+ n

k3

k4

Figure 8.1: Exchange of massive Regge resonances in massless four point amplitudes.

Unitarity implies that on the residue s = −n, the four point amplitude factorizes into a

product of three point amplitudes with external one mass level n state. This can be used to

determine the normalization of massive vertex operators, see the later subsection 9.2.2.

Since Vt is symmetric in s and u, the same type of expansion can be done in the dual channel

with poles at u = −n and residues ∼ sn. The possibility to write the string amplitude as a sum

over only s channel poles or as a sum over only u channel poles is in a sharp contrast to the

field theory situation. The latter generically requires a sum over both s- and u channel poles.

8.1.5 Higher point amplitudes

The length of the four gluon amplitude (8.1.11) when expanded in terms of polarization vectors

and momenta is rather discouraging. Presenting the complete color ordered five point amplitude

in terms of (ξi ξj)(ξk ξl)(ξm kp) and (ξi ξj)(ξk kp)(ξl kq)(ξm kr) kinematics requires around 900

terms (rather than the 19 terms of A(g1, g2, g3, g4)), so we won’t display it here. In some sense,

we can regard this as the punishment of the formalism for our attempt to write amplitudes

in terms of gauge dependent variables ξm. The gauge redundancy in each gluon’s polarization

artificially blows up the complexity of the result.

There are two ways around this mess of polarization vectors and momenta. The first one is

the use of the N = 1 superfield formulation of D = 10 SYM as suggested by the pure spinor

formalism. Chapters 11 and 12 show the remarkable compactness of higher point field theory-

and superstring amplitudes in terms of appropriate superfield building blocks motivated by the

BRST cohomology. A second one is applicable in four dimensions only and based on spinor

helicity variables introduced in appendix C. The simplicity and compactness of spinor helicity

results heavily depends on the configurations of helicities involved. Details will be explained in

subsections 8.3.1 and 8.3.2.

As a first taste of higher point amplitudes, let us review the result of first full-fledged

computation of a five gluon superstring amplitude [251]: It is organized into the field theory
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amplitude ASYM(g1, . . . , g5) and another kinematic package AF4(g1, . . . , g5) generated by the

interaction term (8.1.23):

A(g1, g2, g3, g4, g5) =
[
s23 s51 f1 + (s23 s34 + s45 s51) f2

]
ASYM(g1, g2, g3, g4, g5)

+ f2AF4(g1, g2, g3, g4, g5) (8.1.27)

The five point disk amplitude can be expressed in terms of two independent hypergeometric

integrals f1, f2 carrying the α′ dependence

f1 =

1∫
0

dx

1∫
0

dy xs23−1 ys51−1 (1− x)s34 (1− y)s45 (1− xy)s35 (8.1.28)

f2 =

1∫
0

dx

1∫
0

dy xs23 ys51 (1− x)s34 (1− y)s45 (1− xy)s35−1 (8.1.29)

and therefore taking the role of Vt. We give an interpretation in terms of Regge exchange in the

following subsection. The Mandelstam variables are the usual dimensionless sij = 2α′ki · kj.

In section 12.3, we present and discuss the general decomposition of the n point amplitude

of massless states in terms of ASYM building blocks. It is the result of a computation in the

pure spinor formalism which can be found in section 12.2. The AF4(g1, . . . , g5) in (8.1.27) can

a posteriori be idenfitied with a linear combination of field theory amplitudes of two different

color orderings ASYM(g1, g2, g3, g4, g5) and ASYM(g1, g3, g2, g4, g5).

8.1.6 Pole expansion of five point amplitudes

Also the hypergeometric functions (8.1.28) and (8.1.29) appearing in five point amplitudes may

be understood as an infinite sum over poles with intermediate string states. The expansion

(1−xy)s35 =
∑∞

n=0 γ(s35, n)(xy)n of the integrand allows to reduce the f1,2 to an infinite sum of

Euler beta functions which were found to capture the α′ dependence of four point amplitudes:

f1 =
∞∑
n=0

γ(s35, n)B(s23 + n, s34 + 1)B(s45 + 1, s51 + n) (8.1.30)

f2 =
∞∑
n=1

γ(s35 − 1, n− 1)B(s23 + n, s34 + 1)B(s45 + 1, s51 + n) (8.1.31)

The coefficients γ(s35, n) =
∏n−1

J=0(−s35 +J)/n! take the same form as the residues γ(u, n) of the

pole expansion (8.1.25) of Vt, they can be interpreted as three point couplings. In the following,

we present two rewritings of the functions f1,2 both of which manifest the exchange of string

Regge excitations.
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Firstly, (8.1.30) and (8.1.31) may be cast into in infinite double sum over s23- and s51 channel

poles with intermediate string states |n, j〉 and |n′, j〉 exchanged:

f1 =
∞∑
n=0

∞∑
n′=0

min(n,n′)∑
j=0

γ(s35, j)
γ(s34, n− j)
s23 + n

γ(s45, n
′ − j)

s51 + n′
(8.1.32)

f2 =
∞∑
n=1

∞∑
n′=1

min(n,n′)∑
j=1

γ(s35 − 1, j − 1)
γ(s34, n− j)
s23 + n

γ(s45, n
′ − j)

s51 + n′
(8.1.33)

This translates into the diagram of figure 8.2:

k3

k2

|n; j〉
s23 + n

k4

|n′; j〉

s51 + n′

k5

k1

Figure 8.2: Exchange of massive Regge resonances in massless five point amplitudes.

Secondly, the functions f1,2 may be written as one infinite sum over s23 channel poles with

the intermediate string state |n, j〉 exchanged. More precisely, (8.1.30) and (8.1.31) can be

expressed as

f1 =
∞∑
n=0

γ(s35, n)
γ(s34, n− j)
s23 + n

B(s45 + 1, s51 + n) (8.1.34)

f2 =
∞∑
n=1

γ(s35 − 1, n− 1)
γ(s34, n− j)
s23 + n

B(s45 + 1, s51 + n) , (8.1.35)

see the following figure 8.3.

k3

k2

|n; j〉
s23 + n

k4

k5

k1

Figure 8.3: Exchange of massive Regge resonances in massless five point amplitudes.

Both viewpoints originate from the same functions f1, f2 and must therefore be equivalent.

The power series expansion of f1,2 yields an F5 contact interaction at order ζ(3)α′3.



222 CHAPTER 8. TREE LEVEL SCATTERING OF MASSLESS STATES

8.2 Universality in lower dimensions

This section builds the bridge between ten and four spacetime dimensions. We will first of all

argue that the results of the previous two sections can be almost literally taken over to D = 4

dimensional compactifications. Moreover, we show that on the level of two fermions, quarks

and leptons from the chiral multiplet give rise to the same disk coupling to gluons as the adjoint

gauginos.

8.2.1 Universal two fermion amplitudes in lower dimensions

Although we have adapted our whole setup to full-fledged ten dimensional superstring theory

with spacetime filling D9 branes, it turns out that all the results presented in the previous sec-

tions except for A(λ1, λ2, λ3, λ4) can be taken over to lower dimensional Dp brane worldvolumes

and compactification geometries.

Dimensional reduction of the spacetime gluon vertex operator simply replaces SO(1, 9) vec-

tors ξm, kn, ψ
p, Xq by SO(1, 3) vectors ξµ, kν , ψ

λ, Xρ (since we neglect Kaluza Klein excitations

with internal momenta). Correlation functions involving exclusively the spacetime fields ψµ

and Xν do not depend on the range of their indices, see appendix B.4. The massless vertex

operators do not involve any Kronecker deltas which could imprint a dependence on the number

D of uncompactified spacetime dimensions via δµµ = D. Hence, the n gluon amplitude cannot

depend on D.

Dimensional reduction of spinorial fields is a bit more subtle. But we will still argue in the

following why scattering amplitudes with two fermions and n− 2 bosons do not depend on the

number D of noncompact Minkowski spacetime dimensions.

In chapter 4, we have seen examples of how ten dimensional spin fields Sα of the RNS CFT

factorize as Sa ⊗ siint or S ḃ ⊗ s̄jint into internal parts siint, s̄
j
int and spinors Sa, S

ḃ of SO(1, D− 1)

under dimensional reduction: Four dimensional gauginos involve the SO(6) covariant spin fields

(siint, s̄
j
int) ≡ (ΣI , Σ̄J̄) introduced in (4.2.5), and chiral matter located at D brane intersections

require boundary changing operators (siint, s̄
j
int) ≡ (Ξ, Ξ̄), see (4.4.74) for their definition and

(4.4.75), (4.4.76) for the vertex operators of quarks.

More generally, internal spin fields in a maximally supersymmetric compactification can be

represented by exponentials of m = 10−D
2

free bosons s
(±,...,±)
int = e

i
2

(±H1,...,±Hm), multiplied by

an m component weight vector of SO(10−D). If some supersymmetries are broken, certain ±
choices and therefore gaugino species are projected out. To describe chiral matter in orbifolds

or intersecting brane models, on the other hand, the siint can be attributed to the twisted CFT



8.2. UNIVERSALITY IN LOWER DIMENSIONS 223

sector and carry details of the compactification geometry such as brane intersection angles.

In this case, an appropriate generalization cij of an internal charge conjugation matrix enters

the two point functions (8.2.36). The conformal dimension 5
8

of Sα splits into h1 = D
16

for the

spacetime part Sa and h2 = 10−D
16

for the internal spin fields sint. Two point functions in both

sectors are completely determined by their conformal weights,

〈 siint(z) s̄jint(w) 〉 =
cij

(z − w)(10−D)/8
, cij ∈ {0, 1} . (8.2.36)

In massless tree amplitudes A(g1, . . . , gn−2, λn−1, λ̄n) and A(g1, . . . , gn−2, qn−1, q̄n) involving two

fermions and any number of gluons, (8.2.36) is the only signature of the internal dimensions’

CFT. (Internal components of the ψm which might interact with siint do not occur in the gluon

vertex.) At nonzero cij, the two point correlator 〈siint(z)s̄jint(w)〉 cannot distinguish between

adjoint fermions from the untwisted sector, say gauginos λ, λ̄, and chiral matter with a boundary

changing vertex operator (e.g. quarks q, q̄ and leptons). The fractional zij powers combine to

integers thanks to the correlations of superghosts and spacetime fields ψµ and Sa, the latter are

made up of the D dimensional gamma matrices γµab as we have seen in chapter 6.

To give an easy and still illuminating example of how two fermion amplitudes might become

independent on D, let us consider the three point function of the SO(1, D − 1) spin fields

〈ψµ(z1)Sa(z2)Sb(z3) 〉 =
γµab√

2 (z12 z13)1/2 z
D/8−1/2
23

. (8.2.37)

The complementary factor of z
D/8
23 within (8.2.36) makes sure that the overall D dependence

drops out of ten dimensional spin field correlation

〈ψm=µ(z1)Sα(z2)Sβ(z3) 〉
∣∣∣
D<10

= 〈ψµ(z1)Sa s
i
int(z2)Sb s

j
int(z3) 〉

=
γµab c

ij

√
2 (z12 z13)1/2 z

3/4
23

. (8.2.38)

The same mechanism applies to CFT correlators Ω(n,D) and ω(n,D) with more ψm=µ insertions

and two spin fields Sa(zA) and one of Sb(zB), S ḃ(zB), see (6.2.39) and (6.2.40) for their most

general form in D dimensions. The only D dependence at tree level enters through the overall

zAB powers z
1/2−D/8
AB and z

−D/8
AB , respectively, which are compensated by the internal contribu-

tion (8.2.36). For any D, the product Ω(n,D)(zi) × 〈siint(z)s̄jint(w)〉 does no longer depend on

the spacetime dimensionality D after compactification, regardless on whether the sint originate

from adjoint gauginos or chiral quarks.

One comment on the SO(1, D − 1) chirality of Sa spin fields is in order: Because of the

different chirality structure in the charge conjugation matrix for dimensions (2 mod 4) and
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(4 mod 4), the correlator (8.2.37) vanishes for alike (Sa, Sb) chiralities if D = 4 mod 4 and for

opposite chiralities in D = 2 mod 4 dimensional compactifications. The relative D dimensional

chirality of two fermions must therefore be alike if D = 2 mod 4 and opposite if D = 4 mod 4

for nonvanishing scattering with gluons.

Hence, two gaugino amplitude (8.1.18) presented in the previous section turns out to be

independent on D up to the two fermions’ relative chirality:

A(g1, . . . , gn−2, λn−1, λn)
∣∣∣
D=10

= A(g1, . . . , gn−2, λn−1, λ̄n)
∣∣∣
D=4,8

(8.2.39)

8.2.2 Non-universal four fermion amplitudes

Four fermion amplitudes require four point functions such as 〈siint(z1)sjint(z2)skint(z3)slint(z4)〉
and 〈siint(z1)s̄jint(z2)skint(z3)s̄lint(z4)〉 as an internal CFT input which cannot be discussed in a

model independent fashion. They can have highly non-trivial dependence on cross ratios of the

worldsheet positions, parametrized by data of the compactification geometry.

Scattering amplitudes involving four quarks are determined by the four point function of

boundary changing operators Ξ carrying the internal geometric data like intersection angles θj

of the brane configuration:

〈Ξa∩b(z1) Ξ̄b∩d(z2) Ξd∩c(z3) Ξ̄c∩a(z4) 〉 =

(
z13 z24

z12 z14 z23 z34

)3/4

Iρ({zi}; θj) (8.2.40)

This internal part of the chiral fermion vertex operators gives rise to nontrivial mapping from

the disk worldsheet into the internal target space. As a result, the four point correlator (8.2.40)

of these fields receives a correction factor Iρ({zi}; θj) = I1({zi}; θj) I2ρ({zi}; θj) describing disk

instantons and the quantum correlator of these fields. The quantum four point correlator

I1({zi}; θj) has been already computed in [252, 253, 254, 255, 256], while the effect I2ρ({zi}; θj)
of world–sheet disk instantons has been derived in [257, 258, 259] for intersecting D6 branes.

Note that the additional gluon insertion has no effect on the instanton part, since the gluon

vertex operator has vanishing OPE with the internal field Ξ. The factor Iρ encoding these

effects depends on the specific D–brane setup under consideration and is thoroughly discussed

in [101].

But even if we stick to the simplest realization of fermions, for instance with only the

two internal spin fields s±int = e±
i
2

(H1,...,Hm) ≡ Σ, Σ̄ available for the unique gaugino species in

N = 1 supersymmetry, one cannot write down D independent expressions for quartic fermion

couplings for representation theoretic reasons: The structure of Fierz identities and therefore

the appropriate bases of Lorentz tensors vary a lot with D. In D = 4 and D = 6, there exist
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three linearly independent tensors with four free spinor indices whereas D = 8 and D = 10

admit five independent such tensors2.

Four gaugino amplitudes in D = 4 dimensions are given by

A(λ1, λ̄2, λ3, λ̄4) = CD2 g
4
λ Vt (uI1 u

K
3 ) (ū2

J̄ ū
4
L̄)

{
1

s
CI

J̄ C
K
L̄ +

1

u
CI

J̄ C
K
L̄

}
(8.2.42)

and

M
[
(T a1 , λ1), (T a2 , λ̄2), (T a3 , λ3), (T a4 , λ̄4)

]
= 4α′ g2

YM (uI1 u
K
3 ) (ū2

J̄ ū
4
L̄){

uCI
J̄ C

K
L̄ + sCI

J̄ C
K
L̄

}( Vt
su

ca1a2a3a4
+ +

Vs
tu

ca1a3a2a4
+ +

Vu
st

ca1a2a4a3
+

)
(8.2.43)

instead of (8.1.13).

8.2.3 Universal properties of parton amplitudes

Scattering amplitudes of quarks and gluons – to which we will collectively refer as partons – are

important for collider phenomenology since multijet production is dominated by tree level QCD

scattering. Therefore those parton amplitudes that are generic to any string compactification

are especially important, as they may give rise to universal string signals independent on any

compactification details. According to our reasoning from the previous subsection, amplitudes

involving an arbitrary number of gluons g or gauginos λ but only two quarks q squarks C are

of this kind. In section 4.4, we have given vertex operators (4.4.67) and (4.4.68) for the latter.

More precisely, the following n point amplitudes A(g1, g2, g3, . . . , gn)

A(λ1, λ̄2, g3, . . . , gn)
,

 A(q1, q̄2, g3, . . . , gn)

A(C1, C̄2, g3, . . . , gn)
(8.2.44)

are completely universal to any string compactification. We are using labels q ≡ (ua, kµ),

q̄ ≡ (ūȧ, kµ) and C ≡ (C, kµ), C̄ ≡ (C̄, kµ) for the chiral multiplet. By virtue of spacetime

supersymmetry, we may also replace gluons g by gauginos λ. Figure 8.4 gives a diagrammatic

way of understanding the universality of the above amplitudes.

2Explicitly, these are:

Cαβ Cγδ , Cαδ Cγβ , Cαβ C
γ̇δ̇ : D = 4

1
2 (γµ C)αβ (γµ C)γδ = εαβδγ , Cα

γ̇ Cβ
δ̇ , Cα

δ̇ Cβ
γ̇ : D = 6

Cαβ Cγδ , Cαδ Cγβ , Cαγ Cβδ , (γµ C)αγ̇ (γµ C)βδ̇ , (γµ C)αδ̇ (γµ C)βγ̇ : D = 8

(γµ C)αβ (γµ C)γδ , (γµ C)αδ (γµ C)γβ , (γµ C)αβ (γ̄µ C)γ̇δ̇ , Cα
γ̇ Cβ

δ̇ , Cα
δ̇ Cβ

γ̇ : D = 10

(8.2.41)

Any higher order γ matrix contraction can be reduced to the shown tensors by means of Fierz identities.
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Figure 8.4: Exchange of gluons and Kaluza Klein states in n parton amplitudes.

A possible model dependence would originate from an exchange of a Kaluza Klein- or

winding state between the two quarks or squarks and the remaining n−2 gluons (or gauginos).

However, in contrast to gluons or gauginos, the Kaluza Klein- or winding state carries an

internal charge. Such an exchange would violate charge conservation, unless there is at least

one quark antiquark pair on the right hand side of the diagram. Hence, amplitudes involving

four and more quarks are model dependent due to possible Kaluza Klein- or winding exchange,

but the amplitudes (8.2.44) involving no more than one quark antiquark pair share universal

properties insensitive to the compactification.

The two amplitudes in the first column of (8.2.44) are related through supersymmetric Ward

identities [150]. Similarly, the last two amplitudes of the second column of (2.16) are related

through supersymmetry. Since the first set of amplitudes involves only members of a vector

multiplet, while the second set also involves chiral multiplets one does not a priori expect a

relation between those two sets.

The amplitudes involving more than one quark antiquark pair can be also expressed in

terms of (n − 3)! functions, but these functions are sensitive to the spectrum of Kaluza Klein

excitations, thus to the geometry of extra dimensions, see subsection 5.5 of [101] and sections

6 and 7 of [1].

The fact that both purely gluonic A(g1, g2, . . . , gn) and two quark- n gluon amplitudes

A(q1, q̄2, g3, . . . , gn), contain the same string formfactors can be explained in the following way.

At the disk level, the scattering of gluons and gluinos takes place on a single D–brane stack,

say a. On the other hand, quarks are localized on the intersection of stack a with another

one, say b, with stack b intersecting stack a at a certain angle ϑ, see section 4.4. One can

consider the formal limit ϑ → 0 which puts stack b on top of stack a, with quarks appearing

now as gauginos of the enhanced group associated to the generators T a⊕ T b. In this limit, the

amplitudes involving quarks and gluons fall into the universal class of gluino–gluon amplitudes.
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Taking the limit ϑ → 0 requires some care, however, it becomes particularly simple if only

one quark-antiquark pair is present because the corresponding amplitudes are ϑ-independent.

This essentially follows from the trivial form 〈Ξ(z1)Ξ̄(z2)〉 = z
−3/4
12 of the two point correlation

function of the boundary changing operators.

ThusA(q1, q̄2, g3, . . . , gn) amplitudes are related to the universalA(g1, g2, . . . , gn) amplitudes

by a combination of the trivial ϑ → 0 limit with spacetime supersymmetry. The precise

mapping betweeen color stripped amplitudes A(λ1, λ̄2, g3, . . . , gn) and A(q1, q̄2, g3, . . . , gn) is a

mere adjustment of prefactors CD2g
2
λ 7→ C̃D2g

2
ψ = CD2g

2
λ/2, i.e. an extra normalization factor

1/2 in the two quark subamplitude relative to its gaugino relative. The universal two quark

amplitudes at three- and four point level therefore read

A(g1, q2, q̄3) = gYM (u2 6ξ ū3) (8.2.45)

A(g1, g2, q3, q̄4) = 2α′ g2
YM Vt

{
s

2
(u3 6ξ2 6k1 6ξ1 u4) − s (ξ1 k4) (u3 6ξ2 u4)

+ u
[

(ξ1 ξ2) (u3 6k1 u4) − (ξ2 k1) (u3 6ξ1 u4) + (ξ1 k2) (u3 6ξ2 u4)
]}

. (8.2.46)

Moreover, also amplitudes involving more than two chiral fermions boil down to universal gauge

amplitudes in the limit ϑ → 0. In that case, the amplitudes do depend on the intersection

angle and the limit ϑ→ 0 has to be taken with some care. At the more technical level, before

undertaking this limit some Poisson resummations have to be performed on the instanton part

such that the amplitudes are rendered finite in the limit ϑ→ 0. E.g. for quarks from the same

intersecting stack the four quark amplitude becomes the four gaugino amplitude in the limit

ϑ→ 0

A(q1, q̄2, q3, q̄4)
ϑ→0−→ A(λ1, λ̄2, λ3, λ̄4) . (8.2.47)

The model dependent four quark amplitude A(q1, q̄2, q3, q̄4) can be found in [101], and the five

parton amplitudes A(g1, q2, q̄3, q4, q̄5) and A(g1, g2, g3, q4, q̄5) have been computed in [1].

8.3 From amplitudes to cross sections

In this section, we present the techniques to obtain squared moduli of disk amplitudes of

massless states, summed over helicities and colors of the scattering states. The aim is to cast

the result of parton scattering in superstring theory into a form which can be compared with

experimental data at LHC, i.e. we will work out full-fledged cross sections.

The sum over polarizations is most conveniently performed using spinor helicity methods

(introduced in appendix C). In subsections 8.3.1 and 8.3.2, we give examples of how these D = 4
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specific variables simplify scattering amplitudes. Particular emphasis is put on the so-called

MHV helicity configurations which make the kinematic factors involved collapse into one term.

The color structure of string amplitudes turns out to be richer than in their field theory

limit because the Chan Paton traces generically do not reduce to structure constants only, see

subsection 8.3.3 or [260] for a discussion of individual α′k corrections. That is why squaring the

five gluon amplitude already requires several novel computations in the color sector which we

performed in [1] and present in subsection 8.3.5. Chiral matter transforming in bifundamental

representations of the gauge group requires a slightly modified color technology, see subsection

8.3.6.

The U(N) gauge groups on stacks of N D branes give rise to N2 − 1 generators of SU(N)

and one additional U(1) generator T a ≡ Q1. We will negelect these extra gauge bosons in this

thesis, their color factors and cross sections are discussed in [101,1].

8.3.1 Spinor helicity amplitudes

Four dimensions allow to decompose lightlike momenta of massless particles into spinor helicity

variables, see appendix C. The main virtue of their bispinor representation is the trivialization

of the mass-shell condition k2
i = 0 which has to be kept as an extra constraint in vector notation.

That is why we can expect a lot of simplification by applying the spinor helicity formalism.

For scattering amplitudes involving gluons, the efficiency of the spinor helicity method

depends on a clever choice of reference momenta [261, 262]. The assignment should be made

such that as many terms as possible vanish in the amplitude. The key identities for this purpose

follow directly from (C.1.7)

qµ ξ±µ (k, q) = 0

ξ±(k1, q) · ξ±(k2, q) = 0 (8.3.48)

ξ±(k1, k2) · ξ∓(k2, q) = 0 ,

they suggest to use the same reference momentum to all gluon polarizations with the same

helicity and that this reference momentum should be the momentum of a gluon with opposite

helicity. It is easy to show on grounds of (8.3.48) that n gluon amplitudes of uniform helicity

and also those with n− 1 coinciding helicities vanish:

A(g±1 , g
±
2 , . . . , g

±
n ) = A(g∓1 , g

±
2 , . . . , g

±
n ) = 0 (8.3.49)
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The first nonvanishing class of helicity componentsA(g∓1 , g
∓
2 , g

±
3 , . . . , g

±
n ) is called maximally he-

licity violating (MHV)3. One usually reserves the term MHV for amplitudesA(g−1 , g
−
2 , g

+
3 , . . . , g

+
n )

of “mostly +” gluons, whereas their complex conjugates A(g+
1 , g

+
2 , g

−
3 , . . . , g

−
n ) with “mostly −”

gluons are called MHV.

At four point level, the only nonzero helicity amplitude A(g−1 , g
−
2 , g

+
3 , g

+
4 ) can be most

efficiently obtained from (8.1.11) by choosing reference momenta (3, 3, 2, 2). Then, the only

nonzero (ξi·ξj) product is (ξ1·ξ4). Moreover, qµξ±µ (k, q) = 0 makes sure that (ξ2·k3) = (ξ3·k2) = 0

such that only the (ξ1 · ξ4)(ξ2 · k1)(ξ3 · k4) kinematics contributes and the remaining 18 vanish.

The end result is

A(g−1 , g
−
2 , g

+
3 , g

+
4 ) =

4 g2
YM Vt 〈1 2〉4

〈1 2〉 〈2 3〉 〈3 4〉 〈4 1〉 . (8.3.50)

A closed formula for the n gluon MHV amplitude in field theory was written down by Parke

and Taylor in 1986 [236] and proven by Berends and Giele in 1988 [237],

ASYM(g−1 , g
−
2 , g

+
3 , . . . , g

+
n−1, g

+
n ) =

√
2
n
gn−2

YM 〈1 2〉4
〈1 2〉 〈2 3〉 . . . 〈n− 1n〉 〈n 1〉 , (8.3.51)

in agreement with the low energy limit Vt → 0 of (8.3.50). Similar expressions exist for two

fermion amplitudes with n− 2 gluons,

ASYM(g−1 , g
+
2 , . . . , g

+
n−2, λn−1, λ̄n) =

√
2
n
gn−2

YM 〈1n− 1〉3 〈1n〉
〈1 2〉 〈2 3〉 . . . 〈n− 1n〉 〈n 1〉 (8.3.52)

they follow for instance from SUSY Ward identities. As explained in the above section 8.2,

the corresponding quark subamplitude (both in full superstring theory and in its α′ → 0 field

theory limit) follows from multiplication with 1
2

=
C̃D2

g2
ψ

CD2
g2
λ
:

ASYM(g−1 , g
+
2 , . . . , g

+
n−2, qn−1, q̄n) =

(
√

2 gYM)n−2 〈1n− 1〉3 〈1n〉
〈1 2〉 〈2 3〉 . . . 〈n− 1n〉 〈n 1〉 (8.3.53)

The corresponding MHV amplitudes are obtained via 〈ij〉 7→ [ij].

Momentum spinors ka and kȧ carry charges ±1 under the stabilizer group SO(2) ∼= U(1) of

lightlike momenta in four dimensions. The wavefunctions of helicity h accordingly have charge

2h. The MHV amplitudes (8.3.51), (8.3.52) and (8.3.53) manifest their charges 2hi in the ki

spinor – the cyclic chain 〈12〉〈23〉 . . . 〈n1〉 in the denominator contributes +2 to each charge,

and the numerator factors 〈1n− 1〉3〈1n〉 and 〈12〉4 account for the helicities +1,+1
2

and −1
2

of

g−, λ and λ̄, respectively.

3This name can be understood by viewing [n/2] particles in an n point amplitude as outgoing rather than

ingoing which reverses the momentum direction and helicity. Helicity conserving amplitudes then contain equal

number of g+ and g− gluons. The maximal deviation from this helicity conserving configuration (which does

not make the amplitude vanish due to (8.3.49)) can be found in A(g∓1 , g
∓
2 , g

±
3 , . . . , g

±
n ).
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The five gluon superstring amplitude (8.1.27) is built from two kinematic factors which

evaluate as follows in the helicity basis [201,1]:

ASYM(g−1 , g
−
2 ,g

+
3 , g

+
4 , g

+
5 ) =

√
2

5
g3

YM 〈1 2〉4
〈1 2〉 〈2 3〉 〈3 4〉 〈4 5〉 〈5 1〉 (8.3.54)

AF4(g−1 , g
−
2 ,g

+
3 , g

+
4 , g

+
5 ) =

√
2

5
g3

YM 〈1 2〉4
〈1 2〉 〈2 3〉 〈3 4〉 〈4 5〉 〈5 1〉

×
(
−1

2

(
s12s23 + cyclic(12345)

)
− 2i α2 εµνλρ k

µ
1 k

ν
2 k

λ
3 k

ρ
4

)
(8.3.55)

One can factor out the field theory MHV amplitude. Equivalently, one can obtain the su-

perstring amplitude from (1.4.1) using the two MHV amplitudes ASYM(g−1 , g
−
2 , g

+
3 g

+
4 , g

+
5 ) and

ASYM(g−1 , g
+
3 , g

−
2 , g

+
4 , g

+
5 ). More generally, each superstring MHV amplitude can be expressed

in terms of SYM MHV amplitudes using the central result (1.4.1).

8.3.2 MHV versus NMHV amplitudes

The only nonvanishing five point helicity amplitudes arise in either MHV- or MHV configura-

tions. This is very convenient for the computation of cross sections, i.e. for the helicity sum over

squared amplitudes. The first instance of nonzero helicity amplitudes beyond MHV and MHV

occurs at six point, it falls into the class of so-called next-to-MHV (NMHV) amplitudes [207]:

ASYM(g−1 , g
−
2 , g

−
3 , g

+
4 , g

+
5 , g

+
6 ) =

8 g3
YM

[2| 3 + 4 |5〉

{
[4| 5 + 6 |1〉3

[23] [34] 〈56〉 〈61〉 s234

+
[6| 1 + 2 |3〉3

[61] [12] 〈34〉 〈45〉 s345

}
= 8 g3

YM

{ 〈23〉3 [56]3

〈34〉 [61] [1| 2 + 3 |4〉 [5| 6 + 1 |2〉 s234

+
〈12〉3 [45]3

〈61〉 [34] [3| 4 + 5 |6〉 [5| 6 + 1 |2〉 s345

+
s2

123

[12] [23] 〈45〉 〈56〉 [1| 2 + 3 |4〉 [3| 4 + 5 |6〉

}
(8.3.56)

These are two equivalent representations of the six gluon NMHV amplitudes, computed by

BCFW recursion relations [263, 208]. The two sides contain different poles of type [i|j + k|l〉,
and their equivalence implies that these poles must be spurious. This is essential in view of

locality because [i|j + k|l〉−1 cannot be reproduced by means of Feynman diagrams due to a

local Yang Mills action. An account on the role of locality in scattering amplitudes of N = 4

SYM can be found in [99].

Note that there are two inequivalent helicity orderings ASYM(g−1 , g
−
2 , g

+
3 , g

−
4 , g

+
5 , g

+
6 ) and

ASYM(g−1 , g
+
2 , g

−
3 , g

+
4 , g

−
5 , g

+
6 ) which cannot be obtained from (8.3.56) by relabelling or complex

conjugation. The first full-fledged six gluon cross section in SYM theories was computed in [262],

squaring all nonzero MHV and NMHV contributions.
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The complete six gluon amplitude in superstring theory including all NMHV configurations

was firstly computed in [200] using SUSY Ward identites. Our recent result (1.4.1) suggests to

reduce it to the field theory NMHV building blocks.

8.3.3 Organizing color traces

According to the discussion in subsection 5.3.1, any dependence of disk amplitudes on color

degrees of freedom originates from Chan Paton traces Tr{T a1T a2 . . . T an}. These traces are not

at all optimized for computing the color sum over squared amplitudes for the purpose of cross

sections. They have to be rewritten in terms of the structure constants fa1a2a3 of the gauge

group and symmetrized traces

da1...ap =
1

(p− 1)!

∑
ρ∈Sp−1

Tr
{
T aρ(1) T aρ(2) ... T aρ(n−1) T an

}
. (8.3.57)

Our normalization conventions are fixed by4

Tr
{
T a T b

}
=

δab

2
,

[
T a , T b

]
= i fabc T c , (8.3.58)

and the two equations (8.3.57) and (8.3.58) in fact comprise all the input needed to decompose

any Tr{T a1T a2 . . . T an} into fabc and db1...bk (with various k ≤ n). At three- and four point

level, for instance, this strategy leads to the rewriting

Tr
{
T a1 T a2 T a3

}
= da1a2a3 +

i

4
fabc (8.3.59)

Tr
{
T a1 T a2 T a3 T a4

}
= da1a2a3a4 +

i

2

(
fa2a3n da1a4n − fa1a4n da2a3n

)
+

1

12

(
fa2a3n fa1a4n − fa1a2n fa3a4n

)
. (8.3.60)

The presentation of the four trace is ambiguous due to Jacobi identities

0 = dabe f cde + dbce fade + dcae f bde (8.3.61)

0 = fabe f cde + f bce fade + f cae f bde . (8.3.62)

The reflection symmetry of subamplitudes makes sure that color factor always combine in pairs

ca1a2...an
± := Tr

{
T a1 T a2 ... T an ± T an T an−1 ... T a1

}
(8.3.63)

4Another common convention in the literature is [T a, T b] = δab which effectively rescales each generator by
√

2. We needed to take this conversion into account when comparing the results of [1] with the field theory

limits in the literature [264].
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where the relative sign depends on the number n of legs and the mass levels involved. Both

cases project onto certain classes of fabc and da1...ak , e.g.

ca1a2a3a4
+ = 2 da1a2a3a4 +

1

6

(
fa2a3n fa1a4n − fa1a2n fa3a4n

)
(8.3.64)

ca1a2a3a4
− = i

(
fa2a3n da1a4n − fa1a4n da2a3n

)
. (8.3.65)

We will focus on massless subamplitudes with (−1)n parity, i.e. even (odd) multiplicities n

give rise to ca1...an
+ (ca1...an

− ). This was already used in the three- and four point amplitudes of

subsections 8.1.1 and 8.1.2.

8.3.4 The group theoretic background

To obtain the color summed modulus square of an n point amplitude, we will meet various

invariants due to contractions of ca1a2...an
± . These factors depend on data from the gauge group

G, and we will give them as general as possible in the lines of [265,266].

The normalization (8.3.58) fixes the value of the second index of the fundamental repre-

sentation TrF

{
T aT b

}
= I2(F)δab to the value I2(F) = 1

2
. Further group theoretic quantities of

interest are the dimension NA of the adjoint representation and the Casimir operators CF (CA)

of the fundamental (adjoint) representation:

δaa = NA , (T a T a)α1

α2 = CF δ
α1
α2
, fa1bc fa2bc = CA δ

a1a2 (8.3.66)

It makes sense to decompose the da1a2...an into a traceless part da1a2a3a4
⊥ δa1a2 = 0 and a trace

δ(a1a2δa3a4) as follows:

da1a2a3a4 = da1a2a3a4
⊥ +

3 I2(F)

NA + 2

(
CF − CA

6

)
δ(a1a2δa3a4) (8.3.67)

In any representation R of the gauge group G, a symmetrized four-trace splits into a linear

combination of the tensors da1a2a3a4
⊥ and δ(a1a2δa3a4). The coefficients are called the forth indices

I4, I2,2 of the corresponding representation,

STrR

{
T a1 T a2 T a3 T a4

}
= I4(R) da1a2a3a4

⊥ + I2,2(R) δ(a1a2δa3a4) . (8.3.68)

Comparing (8.3.68) with the fundamental trace (8.3.57) and its decomposition (8.3.67) reveals

our normalization convention I4(F) = 1 for the da1a2a3a4 . Setting an index In(F) to another

value simply rescales da1a2...an . Also, one can read off I2,2(F) = 3 I2(F)
NA+2

(
CF − CA

6

)
from (8.3.67).

Four point cross sections require identities like

fa1bc fa2cd fa3db =
CA

2
fa1a2a3 (8.3.69)
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dabcd dabcd = dabcd⊥ dabcd⊥ +
3NA

4 (NA + 2)

(
CF − CA

6

)2
, (8.3.70)

where dabcd⊥ dabcd⊥ vanishes for exceptional groups. They imply

ca1a2a3a4
+ ca1a2a3a4

+ = 4 dabcd⊥ dabcd⊥ +
3NA

NA + 2

(
CF − CA

6

)2
+

C2
A NA

12
(8.3.71)

ca1a2a3a4
+ ca1a2a3a4

+ = 4 dabcd⊥ dabcd⊥ +
3NA

NA + 2

(
CF − CA

6

)2 − C2
A NA

24
, (8.3.72)

their special cases for gauge group G = SU(N) can be found in [101]:

ca1a2a3a4
+ ca1a2a3a4

+

∣∣∣
SU(N)

=
(N2 − 1) (N4 − 2N2 + 6)

8N2
(8.3.73)

ca1a2a3a4
+ ca1a2a4a3

+

∣∣∣
SU(N)

=
(N2 − 1) (3−N2)

4N2
(8.3.74)

Note that the leading N behaviour of the crossterm (8.3.74) is suppressed by a factor of N−2

compared to the diagonal product (8.3.73). The suppression of crossterms is a general property

of Chan Paton traces, known as color coherence.

8.3.5 Five gluon color factors

As emphasized at the beginning of this section, the color factors for a (massless) five point cross

section for adjoint states in superstring theory was computed in [1] for the first time. That is

why we present the computation in detail here.

As a starting point, we decompose the relevant Chan Paton traces as

ca1a2a3a4a5
− = Tr

{
T a1 T a2 T a3 T a4 T a5 − T a5 T a4 T a3 T a2 T a1

}
= i fa1a2n

(
da3a4a5n − 1

12
fa3a4m fa5nm

)
+ i fa1a3n

(
da2a4a5n − 1

12
fa2a4m fa5nm

)
+ i fa2a3n

(
da1a4a5n − 1

12
fa1a5m fa4nm

)
+ i fa4a5n

(
da1a2a3n +

1

12
fa2a3m fa1nm

)
.

(8.3.75)

Mutual contractions of ca1a2a3a4a5
− c

aρ(1)aρ(2)aρ(3)aρ(4)aρ(5)

− (with ρ ∈ S5) receive three different types

of contributions each of which requires a specific set of identities:

• f 3 × f 3:

(fa1a2b fa1a2c) · (fa3a4d fa3a4e) · (f gbd f gce) = C3
ANA (8.3.76)

(fa1a2b fa1a2c) · (fa3de fa4eg f bgd) · fa3a4c =
1

2
C3

ANA (8.3.77)

(fa1bc fa2cd fa3db) · (fa1eg fa2eh fa3hg) =
1

4
C3

ANA (8.3.78)
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(fa1a2a3 f b1b2b3 f c1c2c3) · (fa1b1c1 fa2b2c2 fa3b3c3) = 0 (8.3.79)

The second and third one are due to fa1bcfa2cdfa3db = CA

2
fa1a2a3 .

• fd× fd:

fa1bc fa2bc da1def da2def = CA d
abcd dabcd (8.3.80)

fa1a2b fa3a4b da1a3cd da2a4cd =
CA

3
dabcd dabcd , (8.3.81)

see (8.3.70) for the dabcddabcd ↔ dabcd⊥ dabcd⊥ conversion.

• fd×f 3: Since the structure constants fabc are nothing but the matrix elements of T a in the

adjoint representaton, we identify an f 4 chain as a four trace in the adjoint representation

of the gauge group fa1bcfa2cdfa3defa4eb = TrA

{
T a1T a2T a3T a4

}
. Further contraction with

a totally symmetric tensor then leads to

fa1bc fa2cd fa3de fa4eb da1a2a3a4 = da1a2a3a4
A da1a2a3a4 . (8.3.82)

To reduce this to the fundamental trace contractions dabcddabcd from (8.3.80), (8.3.81), we

need the fourth adjoint indices I4(A) and I2,2(A) defined by the specialization dabcdA =

I4(A)dabcd⊥ + I2,2(A)δ(abδcd) of (8.3.68) to R ≡ A. The value I2,2(A) =
5C2

A

2(NA+2)
immediately

follows from contraction with δcd, whereas I4(A) is tabulated below.

da1a2a3a4
A da1a2a3a4 = I4(A) dabcd⊥ dabcd⊥ +

5NA C
2
A

4 (NA + 2)

(
CF − CA

6

)
(8.3.83)

Taking a closer look at the 24 cyclically inequivalent five point subamplitudes (or rather the 12

pairs of opposite ordering), one can identify four distinct invariants in the squaring process,

D := ca1a2a3a4a5
− ca1a2a3a4a5

− =
10CA

3
dabcd dabcd − 1

3
dabcdA dabcd +

5NA C
3
A

144
(8.3.84)

X := ca1a2a3a4a5
− ca1a2a4a3a5

− =
4CA

3
dabcd dabcd − 1

3
dabcdA dabcd − NA C

3
A

144
(8.3.85)

Y := ca1a2a3a4a5
− ca1a3a4a2a5

− =
2CA

3
dabcd dabcd +

1

3
dabcdA dabcd − NAC

3
A

72
(8.3.86)

Z := ca1a2a3a4a5
− ca1a3a5a2a4

− = 0 , (8.3.87)

all the other crossterms can be shown to reduce to these. They take a nice form in terms of

the traceless tensors dabcd⊥ , see (8.3.67):

D =
10CA − I4(A)

3
dabcd⊥ dabcd⊥ +

5NACA

4 (NA + 2)

(
2C2

F − CFCA +
(6 +NA)C2

A

36

)
(8.3.88)
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X =
4CA − I4(A)

3
dabcd⊥ dabcd⊥ +

NA CA

4 (NA + 2)

(
4C2

F − 3CF CA +
(12−NA)C2

A

36

)
(8.3.89)

Y =
2CA + I4(A)

3
dabcd⊥ dabcd⊥ +

NA CA

4 (NA + 2)

(
2C2

F + CFCA −
(6 +NA)C2

A

18

)
(8.3.90)

In the following table 8.1, we list the input data CA, CF, NA, d
abcd
⊥ dabcd⊥ and I4(A) as well as the

resulting color sums D,X and Y for classical gauge groups G ∈ {SU(N), SO(N), Sp(N)} at

I2(F) = 1
2
:

G CA CF NA dijkl⊥ dijkl⊥ I4(A) D/NA X/NA Y/NA

SU(N) N N2−1
2N

N2 − 1 NA(NA−3)(NA−8)
96 (NA+2)

2N N4−4N2+10
16N

2−N2

8N
1

8N

SO(N) N−2
2

N−1
4

N(N−1)
2

NA(NA−1)(NA−3)
192 (NA+2)

N − 8 (N−2)(N2−2N+2)
128

(N−2)2

128
N−2

64

Sp(N) N+2
2

N+1
4

N(N+1)
2

NA(NA−1)(NA−3)
192 (NA+2)

N + 8 (N+2)(N2+2N+2)
128

− (N+2)2

128
N+2

64

Table 8.1: Group theoretical factors in the five gluon cross section, evaluated for semi simple gauge

groups generated by stacks of D branes

A hierarchy D � X � Y emerges in the large N limit. With G = SO(N), Sp(N), their

relation is Y SO(N),Sp(N) ∼ 1
N
XSO(N),Sp(N) ∼ 1

N2D
SO(N),Sp(N) as N → ∞ whereas SU(N) even

introduces relative factors of 1
N2 , namely Y SU(N) ∼ 1

N2X
SU(N) ∼ 1

N4D
SU(N).

8.3.6 Color factors involving chiral matter

We have already pointed out in subsection 4.4.1 that open string states located at brane inter-

sections carry different Chan Patons degrees of freedom. The Chan Paton matrices for chial

matter carry bifundamental indices (Tαβ ) rather than the standard adjoint ones T a, and their

entries are given by (Tα1
β1

)α2
β2 = δα1

α2
δβ2

β1
. The α and β indices label the fundamental color degrees

of freedom associated with the gauge groups living the two intersecting stacks a and b of D

branes.

As a consequence, the color factors of universal amplitudes A(q1, q̄2, g3, . . . , gn) involving

two chiral fermions are sensitive on the distribution of the gluons over the individual stacks a

and b, respectively

Tr
{
T a1 . . . T ak Tα1

β1
T b1 . . . T bl T β2

α2

}
= (T a1 . . . T ak)α2

α1 (T b1 . . . T bl)β1

β2 . (8.3.91)



236 CHAPTER 8. TREE LEVEL SCATTERING OF MASSLESS STATES

Not all Chan Paton matrix products give rise to a compatible color index structure: Products

of the type . . . T aTαβ T
b . . . yield sensible results like (8.3.91) whereas color traces involving

. . . T bTαβ . . . or . . . Tαβ T
a . . . identically vanish. In other words – the boundary changing matrix

Tαβ can only be multiplied by T a or T γα factors from the left (and by T b or T βγ from the right).

Although the worldsheet integrals in their associated color stripped amplitudes are well defined

and nonvanishing, they are suppressed by a zero Chan Paton trace. That is why the ordering

(1, 3, 2) does not contribute to the following color dressed three point amplitude:

M
[
(T a1 , g1), (Tα2

β2
, q2), (T β3

α3
, q̄3)

]
= (T a1)α3

α2 δβ3

β2
A(g1, q2, q̄3) (8.3.92)

Four point amplitudes involving two gluons and two quarks can have two different color struc-

tures: If both gluons are living on the same a stack of D branes, then two subamplitudes

contribute to the color dressed amplitude:

M
[
(T a1 , g1), (T a2 , g2), (Tα3

β3
, q3), (T β4

α4
, q̄4)

]
= (T a1 T a2)α4

α3 δβ4

β3
A(g1, g2, q3, q̄4)

+ (T a2 T a1)α4

α3 δβ4

β3
A(g1, g2, q3, q̄4) (8.3.93)

If the two gluons originate from different stacks, then there is just one color ordering with

nonzero Chan Paton trace:

M
[
(T a, g1), (T b, g2), (Tα3

β3
, q3), (T β4

α4
, q̄4)

]
= (T a)α4

α3 (T b)β3

β4 A(g1, q3, g2, q̄4) (8.3.94)

The following figure 8.5 illustrates the flow of Chan Paton degrees of freedom along the open

strings streching between intersecting branes:

a

b

β̃

β

α α̃

(T a)α
α̃

(Tα3
β3

)α̃
β

(T b)β
β̃

(T β4
α4

)β̃
α

Figure 8.5: Flow of Chan Paton charges in a two quark- two gluon amplitude (with one gluon

located at stack a and b each) resulting in (T a)α
α̃(Tα3

β3
)α̃
β(T b)β

β̃(T β4
α4

)β̃
α = (T a)α4

α3(T b)β3
β4

The simplest color sums are evaluated as

(T a1)α3

α2 δβ3

β2

[
(T a1)α3

α2 δβ3

β2

]∗
=

[
N CF

]
a

[N ]b
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(T a1 T a2)α4

α3 δβ4

β3

[
(T a1 T a2)α4

α3 δβ4

β3

]∗
=

[
N C2

F

]
a

[N ]b (8.3.95)

(T a1 T a2)α4

α3 δβ4

β3

[
(T a2 T a1)α4

α3 δβ4

β3

]∗
=

[
N CF

(
CF − 1

2
CA

)]
a

[N ]b

(T a)α4

α3 (T b)β3

β4
[
(T a)α4

α3 (T b)β3

β4
]∗

=
[
N CF

]
a

[
N CF

]
b

in terms of the Casimirs [CA, CF]j and the number of colors [N ]j of the gauge group on stack

j = a, b. The group constants can be read out from table 8.1, the SU(N) results are given by

(T a1)α3

α2 δβ3

β2

[
(T a1)α3

α2 δβ3

β2

]∗ ∣∣∣
SU(N)

=
1

2
(N2

a − 1)Nb

(T a1 T a2)α4

α3 δβ4

β3

[
(T a1 T a2)α4

α3 δβ4

β3

]∗ ∣∣∣
SU(N)

=
1

4Na

(N2
a − 1)2Nb (8.3.96)

(T a1 T a2)α4

α3 δβ4

β3

[
(T a2 T a1)α4

α3 δβ4

β3

]∗ ∣∣∣
SU(N)

= − 1

4Na

(N2
a − 1)Nb

(T a)α4

α3 (T b)β3

β4
[
(T a)α4

α3 (T b)β3

β4
]∗ ∣∣∣

SU(N)
=

1

4
(N2

a − 1) (N2
b − 1) .

The model independent five parton amplitudeA(g1, g2, g3, q4, q̄5) is accompanied by Chan Paton

traces (T aρ(1)T aρ(2)T aρ(3))α5
α4δβ5

β4
with ρ ∈ S3 or (T aρ(1)T aρ(2))α5

α4(T b)β4
β5 with ρ ∈ S2. Its cross

section being among the universal stringy predictions for LHC observables motivates to compute

the following color sums:

Dq := (T a1 T a2 T a3)α5

α4
[
(T a1 T a2 T a3)α5

α4
]∗

=
[
N C3

F

]
a

Xq := (T a1 T a2 T a3)α5

α4
[
(T a1 T a3 T a2)α5

α4
]∗

=
[
N C2

F

(
CF − 1

2
CA

)]
a

(8.3.97)

Yq := (T a1 T a2 T a3)α5

α4
[
(T a2 T a3 T a1)α5

α4
]∗

=
[
N CF

(
CF − 1

2
CA

)2
]
a

Zq := (T a1 T a2 T a3)α5

α4
[
(T a3 T a2 T a1)α5

α4
]∗

=
[
N CF

(
CF − 1

2
CA

)
(CF − CA)

]
a

A second class of color factors is due to gauge bosons on different stacks of D branes:

(T a1 T a2)α5

α4(T b)β4

β5
[
(T a1 T a2)α5

α4(T b)β4

β5
]∗

=
[
N C2

F

]
a

[
N CF

]
b

(8.3.98)

(T a1 T a2)α5

α4(T b)β4

β5
[
(T a2 T a1)α5

α4(T b)β4

β5
]∗

=
[
N CF

(
CF − 1

2
CA

)]
a

[
N CF

]
b

8.4 Four- and five parton cross sections

In this section, we list cross sections for the model independent four- and five parton pro-

cesses A(g1, g2, g3, g4), A(g1, g2, q3, q̄4), A(g1, g2, g3, g4, g5) and A(g1, g2, g3, q4, q̄5), summed over

helicities hi and colors ai of the external particles. We will use the notation

∣∣M[Φ1,Φ2, . . . ,Φn]
∣∣2 :=

∑
ai,hi

∣∣M[(T a1 ,Φ1), (T a2 ,Φ2), . . . , (T an ,Φn)
] ∣∣2 . (8.4.99)



238 CHAPTER 8. TREE LEVEL SCATTERING OF MASSLESS STATES

As mentioned above, the U(1) gauge bosons from the U(N) gauge groups on stacks of N

coinciding branes are neglected, i.e. we assume Gj ≡ SU(Nj) for j = a, b. The gauge bosons

scattering with a quark antiquark pair can be associated to two different stacks of D branes

with gauge groups Ga and Gb.

8.4.1 Four parton cross sections

As the basic ingredients for four parton cross sections, we need the squares of the following

helicity amplitudes:

M
[
(T a1 , g−1 ), (T a2 , g−2 ), (T a3 , g+

3 ), (T a4 , g+
4 )
]

= 4 g2
YM 〈1 2〉4{

Vt c
a1a2a3a4
+

〈1 2〉 〈2 3〉 〈3 4〉 〈4 1〉 +
Vs c

a1a3a2a4
+

〈1 3〉 〈3 2〉 〈2 4〉 〈4 1〉 +
Vu c

a1a3a4a2
+

〈1 3〉 〈3 4〉 〈4 2〉 〈2 1〉

}
(8.4.100)

M
[
(T a1 , g−1 ), (T a2 , g+

2 ), (Tα3
β3
, q3), (T β4

α4
, q̄4)

]
= 2 g2

YM 〈1 3〉3 〈1 4〉{
Vt (T a1 T a2)α4

α3 δβ4

β3

〈1 2〉 〈2 3〉 〈3 4〉 〈4 1〉 +
Vu (T a2 T a1)α4

α3 δβ4

β3

〈1 3〉 〈3 4〉 〈4 2〉 〈2 1〉

}
(8.4.101)

M
[
(T a, g−1 ), (T b, g+

2 ), (Tα3
β3
, q3), (T β4

α4
, q̄4)

]
= 2 gaYM gbYM 〈1 3〉3 〈1 4〉 Vs (T a)α4

α3 (T b)β3
β4

〈1 3〉 〈3 2〉 〈2 4〉 〈4 1〉
(8.4.102)

The remaining helicity configurations follow from performing crossing operations with the pref-

actors 〈1 2〉4 or 〈1 3〉3 〈1 4〉, e.g. M[g−1 , g
+
2 , g

−
3 , g

+
4 ] = 〈13〉4

〈12〉4M[g−1 , g
−
2 , g

+
3 , g

+
4 ].

The color identities (8.3.73) and (8.3.74) together with
∣∣〈ij〉∣∣2 = 2ki · kj = sij/α

′ yield a

four gluon cross section

∣∣M[g1, g2, g3, g4]
∣∣2 = 8 (N2 − 1) g4

YM

(
1

s2
+

1

t2
+

1

u2

)
×
[
N2 (s2 V 2

s + t2 V 2
t + u2 V 2

u ) +

(
6

N2
− 2

)
(s Vs + t Vt + uVu)

2

]
. (8.4.103)

When squaring the amplitudes for two gluons and a quark antiquark pair, we only sum over

the gluon helicities. As a result of the color factors (8.3.96), we get the following cross section

for the process with two gluons on stack a (with gauge coupling gaYM):

∣∣M[ga1 , g
a
2 , q3, q̄4]

∣∣2 =
(gaYM)4Nb (N2

a − 1)

Na

t2 + u2

s2

×
[
N2
a − 1

ut
(t Vt + uVu)

2 − 2N2
a (N2

a − 1)Vt Vu

]
(8.4.104)

The entire process takes place on the stack a while stack b is a mere spectator providing the

overall factor Nb. The sum over quark helicities (which is not carried out in (8.4.104)) requires
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some attention because left- and right-handed quarks originate from different stacks. This can

be handled by adding contributions from both stacks, with the net result of doubling the chiral

amplitude (8.4.104) and replacing Nb by the number of quark flavors.

The cross section for two gluons live on different stacks a and b is given by∣∣M[ga1 , g
b
2, q3, q̄4]

∣∣2 = (gaYM)2 (gbYM)2 (N2
a − 1) (N2

b − 1)V 2
s

t2 + u2

tu
. (8.4.105)

8.4.2 Five gluon cross sections

We have argued in subsection 8.3.1 that the five gluon MHV amplitude in superstring theory

can be written as its field theory limit (8.3.54), multiplied by a five point formfactor carrying

the α′ dependence. It comprises two hypergeometric functions f1, f2 which were defined in

subsection 8.1.5:

A(g−1 , g
−
2 , g

+
3 , g

+
4 , g

+
5 ) =

(
s23 s51 f1 + α′2 [1 2] 〈2 3〉 [3 5] 〈5 1〉 f2

)
ASYM(g−1 , g

−
2 , g

+
3 , g

+
4 , g

+
5 )

(8.4.106)

The result (8.4.106) has a nice factorized form, with the string effects succinctly extracted

in a single factor multiplying the SYM amplitude. In order to discuss other orderings, it is

convenient to introduce the kinematic function

C(k1, k2, k3, k4, k5) :=
s23 s51 f1 + α′2 [1 2] 〈2 3〉 [3 5] 〈5 1〉 f2

〈1 2〉 〈2 3〉 〈3 4〉 〈4 5〉 〈5 1〉 (8.4.107)

such that

A(g−1 , g
−
2 , g

+
3 , g

+
4 , g

+
5 ) = 4

√
2 g3

YM 〈1 2〉4 C(k1, k2, k3, k4, k5) . (8.4.108)

Note that the function C is even under cyclic permutations of the momenta and odd under

mirror reflections (1, 2, 3, 4, 5) → (5, 4, 3, 2, 1). The amplitudes associated to other orderings

(for the same helicity configuration) can be obtained from (8.4.108) by permuting momenta

inside the C-function, (k1, k2, k3, k4, k5) → (k1ρ , k2ρ , k3ρ , k4ρ , k5ρ), where ρ ∈ S5 and iρ ≡ ρ(i).

Note that the “helicity factor” 〈12〉4 remains intact. Due to antisymmetry of C-functions under

mirror reflections, the color dressed amplitude can be written as a sum over twelve terms

M
[
(T a1 , g−1 ), (T a2 , g−2 ), (T a3 , g+

3 ), (T a4 , g+
4 ), (T a5 , g+

5 )
]

= 4
√

2 g3
YM 〈1 2〉4

∑
ρ∈Π5

C(k1ρ , k2ρ , k3ρ , k4ρ , k5ρ) c
a1ρa2ρa3ρa4ρa5ρ

− , (8.4.109)

where ca1a2a3a4a5
− is defined by (8.3.75) and Π5 ≡ S5/Z2:

Π5 ≡
{

(1, 2, 3, 4, 5), (1, 2, 4, 3, 5), (1, 3, 4, 2, 5), (1, 3, 2, 4, 5), (1, 4, 2, 3, 5), (1, 4, 3, 2, 5),
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(2, 1, 3, 4, 5), (2, 1, 4, 3, 5), (2, 3, 1, 4, 5), (2, 4, 1, 3, 5), (3, 1, 2, 4, 5), (3, 2, 1, 4, 5)
}

(8.4.110)

All other “mostly plus” amplitudes, with the two negative helicity gluons labeled by arbitrary i

and j instead of 1 and 2, can be obtained from (8.4.109) by simply replacing the helicity factor

〈12〉4 → 〈i+j+〉4. “Mostly minus” amplitudes are obtained by complex conjugation.

Let us now take the modulus squared of (8.4.109), sum over all helicity configurations and

color (adjoint) indices of five gluons:

∣∣M[g1, g2, g3, g4, g5]
∣∣2 = 64 g6

YM α′−4

(∑
i<j

s4
ij

) ∑
λ,λ′∈Π5

Cλ Sλλ′ C∗λ′ (8.4.111)

We have introduced shorthands for the twelve-vector of C permutations

Cλ ≡ C(k1λ , k2λ , k3λ , k4λ , k5λ) (8.4.112)

and the color matrix

Sλλ′ =
∑

a1,...,a5

c
a1λ

a2λ
a3λ

a4λ
a5λ

−
(
c
a1λ′

a2λ′
a3λ′

a4λ′
a5λ′

−
)∗
. (8.4.113)

The matrix elements can be evaluated by using the methods of subsections 8.3.5.

The squared amplitude (8.4.111) can be further simplified by expressing all C-functions in

terms of a two element basis. They satisfy the same monodromy relations as the full amplitude,

see (5.4.46) and [84].

8.4.3 Three gluon- two quark cross sections

Also the three gluon two quark MHV amplitude has a simple relation to its field theory limit,

A(g−1 , g
+
2 , g

+
3 , q4, q̄5) =

(
s23 s51 f1 + α′2 [1 2] 〈2 3〉 [3 5] 〈5 1〉 f2

)
ASYM(g−1 , g

+
2 , g

+
3 , q4, q̄5) ,

(8.4.114)

and the prefactor is given by exactly the same function as it appears in the five-gluon amplitude

(8.4.106). By using the C-functions defined in equation (8.4.107), the amplitude (8.4.114) can

be written as

A(g−1 , g
+
2 , g

+
3 , q4, q̄5) = 2

√
2 g3

YM 〈1 4〉3 〈1 5〉 C(k1, k2, k3, k4, k5) . (8.4.115)

In order to obtain the full amplitude describing a given helicity configuration, we need the am-

plitudes associated to all other Chan-Paton factors, with the orderings ρ = (1ρ, 2ρ, 3ρ, 4ρ, 5ρ),

where ρ are the relevant permutations of (1, 2, 3, 4, 5) and iρ := ρ(i). For all three gluons asso-

ciated to a single D-brane, these permutations are (1,3,2,4,5), (2,1,3,4,5), (2,3,1,4,5), (3,1,2,4,5)



8.4. FOUR- AND FIVE PARTON CROSS SECTIONS 241

(1234) (1243) (1342) (1324) (1423) (1432) (2134) (2143) (2314) (2413) (3124) (3214)

(1234) D +X +Y +X +Y −X +X −Y +Y 0 +Y −X
(1243) +X D −X +Y +X +Y −Y +X 0 +Y +X −Y
(1342) +Y −X D +X +Y +X +X −Y −Y −X −Y 0

(1324) +X +Y +X D −X +Y +Y 0 −X +Y +X +Y

(1423) +Y +X +Y −X D +X 0 +Y +Y −X −Y −X
(1432) −X +Y +X +Y +X D −Y +X −X −Y 0 +Y

(2134) +X −Y +X +Y 0 −Y D +X +X +Y −X +Y

(2143) −Y +X −Y 0 +Y +X +X D +Y +X −Y +X

(2314) +Y 0 −Y −X +Y −X +X +Y D −X +Y +X

(2413) 0 +Y −X +Y −X −Y +Y +X −X D −X −Y
(3124) +Y +X −Y +X −Y 0 −X −Y +Y −X D +X

(3214) −X −Y 0 +Y −X +Y +Y +X +X −Y +X D

Table 8.2: Matrix elements Sλλ′ . Since the elements of the permutation set Π5 defined by

(8.4.110) have the common last number equal 5, the rows and columns are labeled by first four

numbers. The entries D, X and Y depend on the gauge group and are listed in table 8.1. Note

that the matrix is symmetric.

and (3,2,1,4,5). By explicitly evaluating the amplitudes associated with various orderings of the

vertex operators, we find a striking result that they can be obtained from the original amplitude

(8.4.115) by simply permuting the arguments of the function C, with the same permutation

applied inside the Chan-Paton factor. Hence the full amplitude, obtained by summing all

orderings, is given by

M
[
(T a1 , g−1 ), (T a2 , g+

2 ),(T a3 , g+
3 ), (Tα4

β4
, q4), (T β5

α5
, q̄5)

]
= 2

√
2 g3

YM 〈1 4〉3 〈1 5〉
∑
ρ∈Πq

C(k1ρ , k2ρ , k3ρ , k4ρ , k5ρ) (T a1ρ T a2ρ T a3ρ )α5

α4 δβ4

β5 (8.4.116)

where

Πq ≡
{

(1, 2, 3, 4, 5), (1, 3, 2, 4, 5), (2, 1, 3, 4, 5), (2, 3, 1, 4, 5), (3, 1, 2, 4, 5), (3, 2, 1, 4, 5)
}
.

(8.4.117)

If one of gauge bosons originates from a different stack, say the boson numbered by ’3’ is

from stack b, then the Chan-Paton factor becomes (T a1T a2)α5
α4(T b)β4

β5 and the corresponding

amplitude reads

M
[
(T a1 , g−1 ), (T a2 , g+

2 ), (T b, g+
3 ), (Tα4

β4
, q4), (T β5

α5
, q̄5)

]
= 2

√
2 (gaYM)2 gbYM 〈1 4〉3 〈1 5〉
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C(k1, k2, k4, k3, k5) (T a1T a2)α5

α4 (T b)β4

β5 + C(k2, k1, k4, k3, k5) (T a2T a1)α5

α4 (T b)β4

β5

}
.

(8.4.118)

As in the case of five gluon amplitudes, the dependence of the full amplitudes (8.4.116) and

(8.4.118) on the helicity configuration is limited to the 〈14〉3〈15〉 factor. All other “mostly plus”

amplitudes, with the single negative helicity gluon labeled by arbitrary i instead of 1, can be

obtained from (8.4.116) by simply replacing the helicity factor 〈14〉3〈15〉 → 〈i4〉3〈i5〉. “Mostly

minus” amplitudes are obtained by complex conjugation.

Let us now take the modulus squared of (8.4.116) and (8.4.118), summing over all helicity

configurations and over color indices of quarks and gluons. If all the three gluons originate from

the a stack, then∣∣M[ga1 , g
a
2 , g

a
3 , q4, q̄5]

∣∣2 = 16 g6
YM α′−4

∑
i=1,2,3

(
s3
i4 si5 + si4 s

3
i5

) ∑
λ,λ′∈Πq

CλPλλ′ C∗λ′ , (8.4.119)

where the entries of the color matrix P can be extracted from table 8.3.

(123) (132) (213) (231) (312) (321)

(123) Dq Xq Xq Yq Yq Zq

(132) Xq Dq Yq Zq Xq Yq

(213) Xq Yq Dq Xq Zq Yq

(231) Yq Zq Xq Dq Yq Xq

(312) Yq Xq Zq Yq Dq Xq

(321) Zq Yq Yq Xq Xq Dq

Table 8.3: Matrix elements Pλλ′ . Since the elements of the permutation set Πq, see (8.4.117),

have common last two numbers (4,5), the rows and columns are labeled by first three numbers.

The entries Dq, Xq, Yq and Zq depend on the gauge group and are given in equation (8.3.97).

Note that the matrix is symmetric.

Finally, we consider two gluons from stack a and one from stack b, with the amplitude given

by equation (8.4.118). After taking its modulus squared, summing over all helicity configura-

tions and over color indices of quarks and gluons, we obtain∣∣M[ga1 , g
a
2 , g

b
3, q4, q̄5]

∣∣2 = 16 (gaYM)4 (gbYM)2 [N CF ]b [N CF ]a α
′−4

∑
i=1,2,3

(
s3
i4 si5 + si4 s

3
i5

)
×
{

[CF ]a

(∣∣C(1243)

∣∣2 +
∣∣C(2143)

∣∣2) +

[
CF −

CA
2

]
a

(
C(1243)C∗(2143) + C∗(1243)C(2143)

)}
.

(8.4.120)
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8.4.4 Concluding remarks

We have given the universal part of the tree level cross sections for external SM particles at

the four- and five parton level, the four fermi completion is addressed in [101, 1]. References

[102,267,268] discuss possible signatures of these string corrected cross sections in di- and trijet

events. One obtains model independent tree level answers irrespective of the details of the type

II landscape. This makes universal, stringy predictions possible, and the problem of the string

landscape is nullified at the LHC. On the other hand, amplitudes with two quark antiquark

pairs do depend on the details of the internal geometry, for instance through the masses of

Kaluza Klein- and winding modes exchanged. Measuring their effects at the LHC would allow

investigating some properties of the internal compact space.
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Chapter 9

Tree level scattering of massive states

In this chapter, we will discuss scattering amplitudes involving massive Regge excitations.

Firstly, we will take a closer look at the first mass level in four dimensions and its universal

N = 1 SUSY multiplets. For these massive states, any three- and four point production- or

decay process involving massless partons otherwise is computed in the following, motivated by

its phenomenological relevance at LHC in case of a low string scale: Once the mass threshold

α′−1/2 is crossed in the center of mass energies of the colliding partons, one would see free Regge

states produced directly, in association with jets, photons and other particles.

Secondly, we investigate the leading Regge trajectory. We compute scattering amplitudes

of highest spin states at mass level n with spin s = n + 1 for bosons and s = n + 1/2 for

fermions, see section 3.4 for their particularly simple vertex operators in D = 10 dimensions.

The cubic couplings of bosons and fermions on the leading Regge trajectory are worked out for

any triplet of mass levels ni. The same can be achieved for higher point amplitudes, and we

focus on four point level with one heavy maximum spin state and three massless states in any

bose-fermi combination, putting particular emphasis on manifest cyclic symmetry. This gives

the higher spin generalization of individual results from section 9.2 on the first mass level.

Except for the four fermion coupling, all our results remain valid in any D < 10 dimensional

compactification scenario, so they might become relevant at LHC in case of an experimentally

accessible low string scale. But even if not directly observable, superstring amplitudes involving

massive states provide important clues on higher spin dynamics and their consistent interactions

in field theory.

The material on the first mass level was developed last year in the context of [2]. The

ten dimensional particle content had been well-known for quite some time already [140], and

four point amplitudes with one such massive states were computed in [269]. Reference [2],

245
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however, performs the first direct construction of massive vertex operators and their scattering

amplitudes in four dimensions. Some information had already been obtained indirectly from

factorizing massless amplitudes [249,250].

The results on the leading Regge trajectory are taken from my recent article [6]. Its purpose

was to extend the analysis of [110,111] on higher spin interactions in bosonic string theory to the

open superstring. The authors of the latter references investigated cubic and quartic couplings

of highest spin states at mass m2 = n
α′

on the bosonic string. They extracted their massless

limits and explained implications on higher spin gauge symmetry. Investigating the massless

limit of the leading Regge trajectory in superstring theory is beyond the scope of [6] and this

thesis and left for future work [113]. More detailed physical motivation for studying these

highest spin states is given at the beginning of section 9.3.

9.1 General properties of massive amplitudes

Before delving into explicit results, let us first of all explain some general properties of three-

and four point disk amplitudes involving massive states Φi. Their color- and pole structure

turns out to differ from the massless case. We shall keep the mass levels ni of the external

states general in this first section.

9.1.1 Color structure of massive amplitudes

Color stripped three point amplitudes of mass level n1, n2, n3 states have worldsheet parity

(−1)1+n1+n2+n3 , this becomes the relative factor of the two Chan Paton traces associated with

the cyclically inequivalent orderings (1, 2, 3) and (1, 3, 2). They yield either the structure con-

stants fa1a2a3 of the gauge group (defined by commutators
[
T a, T b

]
= ifabcTc) or the sym-

metrized three trace da1a2a3 := Tr
{
T (a1 T a2 T a3)

}
as the resulting color factor:

M
[
(T a1 ,Φ1), (T a2 ,Φ2), (T a3 ,Φ3)

]
=

 i
2
fa1a2a3 A(Φ1,Φ2,Φ3) : n1 + n2 + n3 even

2 da1a2a3 A(Φ1,Φ2,Φ3) : n1 + n2 + n3 odd

(9.1.1)

At four point level, the six cyclically inequivalent orderings of total mass level N =
∑

i ni states

can be grouped into three Z2 orbits of worldsheet parity

A(Φ1,Φ2,Φ3,Φ4) = (−1)N A(Φ4,Φ3,Φ2,Φ1) =: εN A(Φ4,Φ3,Φ2,Φ1) . (9.1.2)
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After placing the (−1)N = εN sign into the Chan Paton traces, we can organize the full

amplitude into three contribution with

At(Φi) := A(Φ1,Φ2,Φ3,Φ4)

As(Φi) := A(Φ2,Φ3,Φ1,Φ4) (9.1.3)

Au(Φi) := A(Φ3,Φ1,Φ2,Φ4)

which single out one of the s, t or u-channel each:

M
[
(T a1 ,Φ1), . . . , (T a4 ,Φ4)

]
= ca1a2a3a4

εN
At(Φi) + ca2a3a1a4

εN
As(Φi) + ca3a1a2a4

εN
Au(Φi)

(9.1.4)

The color factors ca1a2a3a4
± := Tr{T a1T a2T a3T a4 ± T a4T a3T a2T a1} are defined and further sim-

plified in subsection 8.3.3.

The three color stripped amplitudes in (9.1.4) are still not independent, the worldsheet

monodromy analysis of section 5.4 yields relations

sin(πs)Au = sin(πu)As , sin(πu)At = sin(πt)Au , sin(πt)As = sin(πs)At
(9.1.5)

between the three subamplitudes At,As and Au. Effectively, there is only one color ordered

amplitude left to determine from the scratch.

9.1.2 Kinematic structure of massive four point amplitudes

Momentum conservation s+t+u ≡ −α′∑im
2
i = −N admits to rewrite the t channel formfactor

as Vt = Γ(s+1)Γ(u+1)
Γ(1−t−N)

, then relations (9.1.5) together with the Euler reflection formula Γ(1 −
z)Γ(z) = π

sin(πz)
implies that subamplitudes can be factorized into a channel dependent piece

and a universal one A0 which is common to all of At,As and Au:

At =
Vt∏N−1

k=1 (t+ k)
A0 , As =

Vs∏N−1
k=1 (s+ k)

A0 , Au =
Vu∏N−1

k=1 (u+ k)
A0 (9.1.6)

The massless case N = 0 is somehow exceptional with

At
∣∣∣
N=0

=
Vt
su
A0

∣∣∣
N=0

, As
∣∣∣
N=0

=
Vs
tu
A0

∣∣∣
N=0

, Au
∣∣∣
N=0

=
Vu
st
A0

∣∣∣
N=0

. (9.1.7)

in lines of the findings of subsection 8.1.2. In case of identical external states Φi = Φj, the

universal part A0 must certainly be either symmetric or antisymmetric under exchange of labels

i ↔ j (symmetric for bosons at even overall mass level N and for fermions at odd N). As a

guiding principle in presenting massive four point amplitudes we will make this symmetry

manifest.
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The structure (9.1.6) and (9.1.7) of four point subamplitudes has a surprising implication

on their massless poles 1
s
, 1
t

and 1
u
. Only in the massless case are they correlated with the color

ordering (such as A(1, 3, 2, 4) ∼ 1
tu

) in agreement with the Feynman rules of the associated

SYM theory. Massive amplitudes also receive contributions from exchange of massless states,

but this obviously does not come from the channel dependent prefactors like Vt
∏N−1

k=1 (t+ k)−1.

Hence, the massless poles must orginiate from the universal kinematic factor A0 which is totally

(anti-)symmetric under exchange of labels. Generically, any color ordered four point amplitude

A(Φ1,Φ2,Φ3,Φ4) with at least one massive state is expected to exhibit all the three massless

pole channels 1
s
, 1
t

and 1
u
. This is in sharp contrast to the organization of massless amplitudes

A(1, 2, 3, 4) = ns
s

+ nu
u

into color ordered cubic diagrams, see section 5.5.

The bottom line of these arguments is the following simple formula for color dressed four

point amplitudes

M
[
(T a1 ,Φ1), (T a2 ,Φ2), (T a3 ,Φ3), (T a4 ,Φ4)

]
= A0(Φ1,Φ2,Φ3,Φ4){

ca1a2a3a4
εN

Vt

N−1∏
k=1

1

t+ k
+ ca3a1a2a4

εN
Vu

N−1∏
k=1

1

u+ k
+ ca2a3a1a4

εN
Vs

N−1∏
k=1

1

s+ k

}
(9.1.8)

where the kinematic factor A0(Φ1,Φ2,Φ3,Φ4) treats all color orderings on equal footing and

generically contains all massless poles 1
s
, 1
t

and 1
u

unless N = 0.

9.2 Amplitudes for N = 1 multiplets at first mass level

We have shown in subsections 4.5.2 and 4.5.3 that the first mass level contains two universal

N = 1 multiplets which appear in the spectrum of any compactification with nonzero super-

symmetry. In this section, their three- and four point couplings to partons and gauginos are

computed.

9.2.1 CFT preliminaries

As argued in subsection 4.3.1, the existence of N = 1 spacetime SUSY charges in D = 4 implies

that the internal SCFT enjoys an enhanced N = 2 worldsheet supersymmetry. This argument

is based on the U(1) current J which is generated in the OPE of the h = 3/8 internal spin

fields Σ and Σ̄:

Σ(z) Σ̄(w) ∼ 1

(z − w)3/4
+

√
3

2
(z − w)1/4 J (w) + . . . (9.2.9)
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Intersecting branes additionally give rise to h = 3/8 boundary condition changing operators Ξ

and Ξ̄. The latter depend on brane intersection angles ϑj=2,3,4 which add up to ϑ2+ϑ3+ϑ4 ∈ 2Z

if N = 1 supersymmetry is preserved, see section 4.4.

Apart from universal states built from the spacetime SCFT, we have identified additional

bosonic states at the first mass level in subsection 4.5.3 whose vertex operators contain confor-

mal fields from the internal SCFT: The massive vector (4.5.105) is created by the h = 1 current

J , and the vertex operator (4.5.106) of the Calabi Yau scalar involves a h = 3/2 internal three

form O±:

Σ(z) Σ(w) ∼ (z−w)3/4O+(w) + . . . , Σ̄(z) Σ̄(w) ∼ (z−w)3/4O−(w) + . . . (9.2.10)

We can check through their bosonized representations that all operators give rise to a canoni-

cally normalized two point function1:

Σ = e+ i
2

(H2+H3+H4) , Ξ =
4∏
j=2

σ−ϑj ei(
1
2
−ϑj)Hj

Σ̄ = e−
i
2

(H2+H3+H4) , Ξ̄ =
4∏
j=2

σ+
ϑj

e−i(
1
2
−ϑj)Hj (9.2.11)

J =
1√
3

4∑
j=2

i∂Hj , O± = e±i(H
2+H3+H4)

In absence of twist fields, one can use a more economic bosonization scheme,

Σ = e+ i
√

3
2
H , J = i∂H (9.2.12)

Σ̄ = e−
i
√

3
2
H , O± = e±i

√
3H . (9.2.13)

The following three point functions are needed to derive the amplitudes of interest:

〈 J (z1) Σ(z2) Σ̄(z3) 〉 = 〈 J (z1) Ξ(z2) Ξ̄(z3) 〉 =

√
3 z

1/4
23

2 z12 z13

〈O−(z1) Σ(z2) Σ(z3) 〉 = 〈O+(z1) Σ̄(z2) Σ̄(z3) 〉 =
z

3/4
23

(z12 z13)3/2
(9.2.14)

〈O+(z1) Σ(z2) Σ(z3) 〉 = 〈O−(z1) Σ̄(z2) Σ̄(z3) 〉 = 0

Remarkably, the brane intersection angles drop out of 〈J (z1)Ξa∩b(z2)Ξ̄a∩b(z3)〉 because of the

SUSY condition
∑4

j=2 ϑj ∈ 2Z, and we arrive at the same result as for 〈J (z1)Σ(z2)Σ̄(z3)〉. As

a consequence, the massive vector couples universally to quarks and gauginos, see (9.2.21).

1This work follows a more natural normalization for the ingredients of the massive vector compared to [2]:

In the reference, the U(1) current J is defined with an additional factor of
√

3 and the polarization vector dµ

is twice as large as required for dµ(h1)dµ(h2) = −δh1+h2 in the helicity basis (see appendix C.2.2). As a result,

our normalization gd has an extra factor of
√

12 = 2
√

3 compared to [2].
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9.2.2 Three point amplitudes in vector notation

Let us start with the three point couplings of massive states to partons and gauginos. The

nonvanishing results for three bosons are

A(g1, g2, α3) = −CD2 g
2
A gα
√

2α′
3
F 1
µλ α

µν F 2λ
ν (9.2.15)

A(g1, g2, ϕ
±
3 ) = −CD2 g

2
A gϕ
√

2α′
3
F 1
µν F

µν
2± . (9.2.16)

The cubic vertex involving the complex spacetime scalar ϕ± involves the imaginary (anti-) self

dual gluon field strength F µν
i = kµi ξ

ν
i − ξµi kνi :

F µν
i± :=

1

2

(
F µν
i ± iF̃ µν

i

)
, F̃ µν

i =
1

2
εµνλρ F i

λρ (9.2.17)

The d- and ω± states do not couple to spacetime gluons at disk level because the gluon vertex

operator does not involve any internal SCFT operator:

A(g1, g2, d3) = A(g1, g2, ω
±
3 ) = 0 (9.2.18)

This is in lines with the universality of four gluon amplitudes (8.1.11): Gluons cannot exchange

any state at disk level whose existence is tied to spacetime supersymmetry.

Let us next explore the interactions between massive bosons and massless fermions. The

universal vector d and the complex Calabi Yau scalar ω± require the internal correlators (9.2.14):

A
(
α1,
{
λ2,λ̄3
q2,q̄3

)
=
√

2α′ gα k
µ
2 αµν (u2σ

ν ū3)
{
CD2

g2
λ

C̃D2
g2
ψ

(9.2.19)

A
(
ϕ±1 ,

{
λ2,λ̄3
q2,q̄3

)
= 0 (9.2.20)

A
(
d1,
{
λ2,λ̄3
q2,q̄3

)
=

√
3

2
√

2
gd (u2 6d ū3)

{
CD2

g2
λ

C̃D2
g2
ψ

(9.2.21)

A
({

ω−1 ,λ2,λ3

ω+
1 ,λ̄2,λ̄3

)
= CD2 gω g

2
λ

{
(u2 u3)
(ū2 ū3) (9.2.22)

A
({

ω+
1 ,λ2,λ3

ω−1 ,λ̄2,λ̄3

)
= A

(
ω±1 , { q2,q3q̄2,q̄3

)
= 0 (9.2.23)

In most cases, gauginos and quarks give rise to the same color stripped disk amplitudes (up

to the normalization CD2g
2
λ = 2C̃D2g

2
ψ = 2/

√
α′). This remains true for their interaction with

the massive vector d. Only the Calabi Yau scalar ω± feels a difference – it only couples to

gauginos of uniform helicity (λ, λ) and (λ̄, λ̄) but not to quarks at non-degenerate values for

their intersection angles. This is compatible with the model independent agreement of the

two fermion-, two boson amplitudes A(g1, g2, λ3, λ̄4) and A(g1, g2, q3, q̄4): There is no s channel

exchange of massive states d and ω± which rely on N = 1 SUSY because they do not couple

to gluons. They only affect four gaugino amplitudes A(λ1, λ̄2, λ3, λ̄4) which were argued in
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section 8.2 to differ heavily from four quark amplitudes A(q1, q̄2, q3, q̄4) due to Kaluza Klein

mode exchange in the latter.

Among the three point amplitudes involving massive fermions, we only consider excited

quarks rather than excited gauginos. The latter can easily be restored via C̃D2gψg̃χ,b 7→
CD2gλgχ,b:

A(g1, q2, χ̄3) = C̃D2

√
2α′ gA gψ g̃χ F

1
µν (u2 σ

µχ̄ν3) (9.2.24)

A(g1, q2, b̄3) = C̃D2

√
2α′ gA gψ g̃b k

µ
3 F

1
µν (u2σ

ν b̄3) (9.2.25)

The vertex operators of massive fermions contains composite fields ψµ 6ψȧbSb from their space-

time CFT. A few of their correlation functions are given in section 6.6.

The color dressed amplitude of three adjoint states (Φ1,Φ2,Φ3) with odd overall mass level

involves the symmetrized trace Tr
{
T a1T a2T a3 + T a2T a1T a3

}
= 2da1a2a3 :

M
[
(T a1 ,Φ1), (T a2 ,Φ2), (T a3 ,Φ3)

] ∣∣∣
N=1

= 2 da1a2a3 A(Φ1,Φ2,Φ3) (9.2.26)

With two chiral matter states, on the other hand, the color factor is independent on the mass

levels:

M
[
(T a1 ,Φ1), (Tα2

β2
,Φ2), (T β3

α3
,Φ3)

]
= (T a1)α2

α3
δβ3

β2
A(Φ1,Φ2,Φ3) (9.2.27)

Given these three point vertices, we can determine the normalization factors of the massive

vertex operators (displayed in subsections 4.5.2 and 4.5.3) by factorizing four point amplitudes2

M[1a1 , 2a2 , 3a3 , 4a4 ] of massless states on the residue of the first massive pole Vt ≈ u
s+1

:

gα = gYM , gϕ =
gYM

2
, gd = gω =

√
2α′ gYM (9.2.29)

gχ = α′1/4 gYM , gb =
α′3/4√

2
gYM (9.2.30)

The couplings g̃χ, g̃b of excited quarks can be obtained from those of excited gauginos (gχ, gb)

by replacing gYM 7→ eφ10/2.

9.2.3 Three point helicity amplitudes

In this subsection we evaluate the three point amplitudes computed above in the helicity basis.

The polarization tensors of massless states are the usual ones ua(k) ≡ ka and ξ+
µ (k, r) ≡

2The contribution of color degrees of freedom to the factorization is as follows:∑
e

Tr
{
T a T b T e

}
Tr
{
T e T c T d

}
=

1
2

Tr
{
T a T b T c T d

}
(9.2.28)
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r̄ȧσ̄
ȧb
µ kb/(

√
2〈kr〉) with reference spinor r for gluons, cf. section 8.2. For massive states, on the

other hand, timelike momenta require two bispinors pap̄ȧ and qaq̄ȧ for a lightlike decomposition

kµ = pµ + qµ, more details about this method can be found in appendix C.2. Wavefunctions

of spin j have 2j + 1 physical polarization states with spin component jz = −j, . . . ,+j in the

direction of the reference vector pµ. We will quote the jz eigenvalue in helicity basis amplitudes

along with the wavefunction, e.g. α(jz = +2), α(jz = +1), . . . , α(jz = −2) for the spin two

state.

We will insert the normalizations (9.2.29) and (9.2.30) for the vertex operator into the

results of the previous subsection and isolate constant prefactors before sending the kinematic

factor (denoted by K[. . .] in the following) into the helicity basis. The sum of the moduli squares∑
jz
|K[. . . ,Φ(jz)]|2 over all polarizations of the massive state Φ cannot depend on the individual

reference vectors pµ and qµ, i.e. the choice of quantization axis pµ drops out of unpolarized

cross sections. This is an important consistency check on the subsequent results. Moreover, we

will also find selection rules on the helicities of the massless states, i.e. some gluon- and quark

helicity configurations make the massive amplitude vanish for all polarizations of the heavy

state. This ties in with the factorization properties of massless four point amplitudes on the

pole Vt ≈ u
s+1

.

The decay of the spin two particle α into two gluons is described by the amplitude

A(g1, g2, α3) = 2gYM

√
2α′ F 1

µλ α
µν F 2λ

ν =: 2gYM

√
2α′

3K[g1, g2, α3] (9.2.31)

By substituting the helicity wave functions, we find the selection rule that α only couples to

gluons of opposite helicity (independent on its polarization state):

K[g±1 , g
±
2 , α3] = 0 (9.2.32)

The nonzero components of this kinematic factor are

K
[
g+

1 , g
−
2 , α3(+2)

]
= − 1

4
〈p 2〉2 [q 1]2

K
[
g+

1 , g
−
2 , α3(+1)

]
= − 1

2
〈p 2〉2 [q 1] [p 1]

K
[
g+

1 , g
−
2 , α3(0)

]
= −

√
6

4
〈p 2〉2 [p 1]2 (9.2.33)

K
[
g+

1 , g
−
2 , α3(−1)

]
= +

1

2
〈p 2〉 〈q 2〉 [p 1]2

K
[
g+

1 , g
−
2 , α3(−2)

]
= − 1

4
〈q 2〉2 [p 1]2 .

The appearance of F̃ µν in the three point interaction A(g1, g2, ϕ
±
3 ) is essential in view of the

helicity basis: The vertex being proportional to F 1
µν F

µν
2± implies the selection rule

A(g±1 , g
∓
2 , ϕ

±
3 ) = A(g±1 , g

∓
2 , ϕ

∓
3 ) = A(g±1 , g

±
2 , ϕ

∓
3 ) = 0 (9.2.34)
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such that the only nonzero configurations are

A(g+
1 , g

+
2 , ϕ

+
3 ) = 2gYM

√
2α′ [1 2]2 , A(g−1 , g

−
2 , ϕ

−
3 ) = 2gYM

√
2α′ 〈1 2〉2 . (9.2.35)

Such couplings arise naturally from N = 1 supersymmetric F-terms ∼
∫

d2θΦW aWa in the

effective action where Φ denotes the chiral superfield including the complex scalar ϕ± and W a

is the gluon’s gauge field strength superfield.

If ϕ+ coupled to both (g+, g+) and (g−, g−), one would find a nonvanishing factorization

channel in the A(g+
1 , g

+
2 , g

+
3 , g

+
4 ) amplitude on its Vt ≈ u

s+1
pole. Clearly, this is forbidden by

MHV selection rules, see subsection 8.3.1. Since we are dealing with a complex scalar which

propagates off-diagonally ϕ± ↔ ϕ∓, the coupling (9.2.35) can only contribute to an MHV four

gluon amplitude A(g+
1 , g

+
2 , g

−
3 , g

−
4 ), see the following figure 9.1.

g+
2

g+
1

s+ 1

g−3

g−4

ϕ+ ϕ−

A(g+
1 , g

+
2 , ϕ

+) A(g−3 , g
−
4 , ϕ

−)

Figure 9.1: Factorization of a four gluon amplitude on the first Regge pole Vt ≈ u
s+1

in the

channel of identical helicities. The off-diagonal propagation ϕ± ↔ ϕ∓ of the complex scalar

avoids a contribution to A(g+
1 , g

+
2 , g

+
3 , g

+
4 ).

In contrast to the complex scalars, the spin two- and spin one states can decay into both

quarks and gauginos. We will focus on quarks:

A (α1, q2, q̄3) = gYM

√
2α′ kµ2 αµν (u2σ

ν ū3) =: gYM

√
2α′

3K [α1, q2, q̄3] (9.2.36)

In the helicity basis, the kinematic factors become

K
[
α1(+2), q2, q̄3

]
=

1

2
〈p 2〉 〈p 3〉 [q 2]2

K
[
α1(+1), q2, q̄3

]
=

1

4
〈p 3〉 [q 2]

(
〈q 2〉 [2 q] − 3 〈p 2〉 [2 p]

)
K
[
α1(0), q2, q̄3

]
=

√
6

4
〈p 3〉 [p 2]

(
〈q 2〉 [2 q] − 〈p 2〉 [2 p]

)
(9.2.37)

K
[
α1(−1), q2, q̄3

]
=

1

4
〈q 3〉 [p 2]

(
〈p 2〉 [2 p] − 3 〈q 2〉 [2 q]

)
K
[
α1(−2), q2, q̄3

]
=

1

2
〈q 2〉 〈q 3〉 [p 2]2 .

The massive vectors couples as follows

A (d1, q2, q̄3) =

√
3

2
gYM (u2 6d ū3) =:

√
3α′

2
gYMK [d1, q2, q̄3] (9.2.38)
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with helicity basis components

K
[
d1(+1), q2, q̄3

]
= 〈p 3〉 [q 2]

K
[
d1(0), q2, q̄3

]
=
√

2 〈p 3〉 [p 2] (9.2.39)

K
[
d1(−1), q2, q̄3

]
= 〈q 3〉 [p 2] .

Finally, the Calabi Yau scalar only couples to gauginos of uniform helicity (but not to quarks):

A(ω−1 , λ2, λ3) = 2
√

2 gYM [2 3] (9.2.40)

Both spin components among the massive fermions have nonvanishing three point interactions

with one massless fermion and one gluon:

A(g1, q2, χ̄3) = gYM

√
2α′ F 1

µν (u2 σ
µχ̄ν3) =

√
2α′ gYMK[g1, q2, χ̄3] (9.2.41)

A(g1, q2, b̄3) = gYM α′ kµ3 F
1
µν (u2σ

ν b̄3) =
√

2α′ gYMK[g1, q2, b̄3] (9.2.42)

The selection rule is such that each helicity state of the gluon only couples to one of the states

χ̄ (b̄) of spin 3/2 and spin 1/2, respectively,

A(g+
1 , q2, χ̄3) = A(g−1 , q2, b̄3) = 0 . (9.2.43)

The nonvanishing helicity amplitudes are governed by the following kinematic factors:

K
[
g−1 , q2, χ̄3(+3

2
)
]

= 〈p 1〉2 [2 q]

K
[
g−1 , q2, χ̄3(+1

2
)
]

=
√

3 〈p 1〉 〈q 1〉 [q 2] , K
[
g+

1 , q2, b̄3(+1
2
)
]

= 〈p 2〉 [12]2 (9.2.44)

K
[
g−1 , q2, χ̄3(−1

2
)
]

=
√

3 〈p 1〉 〈q 1〉 [p 2] , K
[
g+

1 , q2, b̄3(−1
2
)
]

= 〈q 2〉 [12]2

K
[
g−1 , q2, χ̄3(−3

2
)
]

= 〈q 1〉2 [2 p]

9.2.4 Four point amplitudes in vector notation

Four point amplitudes with massive states will be presented in the same steps as their three

point cousins: This subsection lists the results in vector notation, and the next one trans-

lates them into the helicity basis. According to section 9.1, four point subamplitudes with

three massless states and one state at mass level one can be written as A(Φ1,Φ2,Φ3,Φ4) =

VtA0(Φ1,Φ2,Φ3,Φ4) where A0 is a universal kinematic factor common to all color orderings

which we will organize according to its massless poles.

Only the SUSY independent massive bosons α and ϕ± can decay into three gluons:

A(g1,g2, g3, α4) = CD2 4α′2 g3
A gα Vt
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1

s

[
(ξ2 ξ3) (ξ1 k2) (kµ3 αµν k

ν
3) − (ξ1 ξ3) (ξ2 k1) (kµ3 αµν k

ν
3) + (ξ1 ξ2) (ξ3 k2) (kµ1 αµν k

ν
3)

− (ξ1 ξ2) (ξ3 k1) (kµ2 αµν k
ν
3) + (ξ1 k3) (ξ2 k1) (kµ3 αµν ξ

ν
3 ) − (ξ2 k3) (ξ1 k2) (kµ3 αµν ξ

ν
3 )

+ (ξ2 k1) (ξ3 k4) (kµ3 αµν ξ
ν
1 ) − (ξ1 k2) (ξ3 k4) (kµ3 αµν ξ

ν
2 ) +

1

2α′
(ξ1 k2) (ξµ2 αµν ξ

ν
3 )

− 1

2α′
(ξ2 k1) (ξµ1 αµν ξ

ν
3 ) +

t

2α′
(ξ1 ξ2) (kµ2 αµν ξ

ν
3 ) − u

2α′
(ξ1 ξ2) (kµ1 αµν ξ

ν
3 )
]

+
1

u

[
(ξ1 ξ3) (ξ2 k3) (kµ1 αµν k

ν
1) − (ξ1 ξ2) (ξ3 k2) (kµ1 αµν k

ν
1) + (ξ2 ξ3) (ξ1 k3) (kµ1 αµν k

ν
2)

− (ξ2 ξ3) (ξ1 k2) (kµ1 αµν k
ν
3) + (ξ2 k1) (ξ3 k2) (kµ1 αµν ξ

ν
1 ) − (ξ3 k1) (ξ2 k3) (kµ1 αµν ξ

ν
1 )

+ (ξ3 k2) (ξ1 k4) (kµ1 αµν ξ
ν
2 ) − (ξ2 k3) (ξ1 k4) (kµ1 αµν ξ

ν
3 ) +

1

2α′
(ξ2 k3) (ξµ1 αµν ξ

ν
3 )

− 1

2α′
(ξ3 k2) (ξµ1 αµν ξ

ν
2 ) +

s

2α′
(ξ2 ξ3) (kµ3 αµν ξ

ν
1 ) − t

2α′
(ξ2 ξ3) (kµ2 αµν ξ

ν
1 )
]

+
1

t

[
(ξ1 ξ2) (ξ3 k1) (kµ2 αµν k

ν
2) − (ξ2 ξ3) (ξ1 k3) (kµ2 αµν k

ν
2) + (ξ1 ξ3) (ξ2 k1) (kµ2 αµν k

ν
3)

− (ξ1 ξ3) (ξ2 k3) (kµ1 αµν k
ν
2) + (ξ3 k2) (ξ1 k3) (kµ2 αµν ξ

ν
2 ) − (ξ1 k2) (ξ3 k1) (kµ2 αµν ξ

ν
2 )

+ (ξ1 k3) (ξ2 k4) (kµ2 αµν ξ
ν
3 ) − (ξ3 k1) (ξ2 k4) (kµ2 αµν ξ

ν
1 ) +

1

2α′
(ξ3 k1) (ξµ1 αµν ξ

ν
2 )

− 1

2α′
(ξ1 k3) (ξµ2 αµν ξ

ν
3 ) +

u

2α′
(ξ1 ξ3) (kµ1 αµν ξ

ν
2 ) − s

2α′
(ξ1 ξ3) (kµ3 αµν ξ

ν
2 )
]

+
1

2α′

[
(ξ1 ξ2) ξµ3 αµν (kν2 − kν1) + (ξ2 ξ3) ξµ1 αµν (kν3 − kν2) + (ξ1 ξ3) ξµ2 αµν (kν1 − kν3)

]}
(9.2.45)

Up to Vt, the result is antisymmetric under exchange of gluon labels (1, 2, 3). Since the associ-

ated color factors have the same property, this is in lines with the gluons’ bose statistics. The

same phenomenon occurs for ϕ±:

A(g1, g2, g3,ϕ±) = CD2 8α′2 g3
A gϕ Vt

×
{

1

s

[
(ξ2 k1)F µν

3± ξ1µ k4ν − (ξ1 k2)F µν
3± ξ2µ k4ν + (ξ1 ξ2)F µν

3± k1µ k2ν

]
+

1

t

[
(ξ1 k3)F µν

2± ξ3µ k4ν − (ξ3 k1)F µν
2± ξ1µ k4ν + (ξ1 ξ3) F µν

2± k3µ k1ν

]
+

1

u

[
(ξ3 k2)F µν

1± ξ2µ k4ν − (ξ2 k3)F µν
1± ξ3µ k4ν + (ξ2 ξ3)F µν

1± k2µ k3ν

]
+

1

2α′

[
F µν

3± ξ1µ ξ2ν + F µν
2± ξ3µ ξ1ν + F µν

1± ξ2µ ξ3ν

]}
(9.2.46)

The N = 1 specific states d and ω± do not couple to gluons,

A(d1, g2, g3, g4) = A(ω±1 , g2, g3, g4) = 0 . (9.2.47)

All the bosons α, ϕ±, d and ω± at the first mass level have a four point decay channel into a
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gluon and two quarks or gauginos:

A(α1, g2,q3, q̄4) = C̃D2 2α′3/2 gA gα g
2
ψ Vt

×
{

1

s

[
kµ2 αµν ξ

ν (u3 6k2 ū4) − kµ2 αµν k
ν
2 (u3 6ξ ū4)

+ kµ2 αµν (u3 σ
ν ū4) (ξ k1) − 1

2α′
ξµ αµν (u3 σ

ν ū4)
]

+
1

t

[
kµ3 αµν u3 σ

ν ū4 (ξ k4) +
1

2
kµ3 αµν (u3 σ

ν 6ξ 6k2 ū4)
]

+
1

u

[
kµ4 αµν u3 σ

µ ū4 (ξ k3) +
1

2
kµ4 αµν (u3 6k2 6ξ σν ū4)

]}
(9.2.48)

The complex scalar ϕ± couples to two fermions and a gluon through the combination ϕ± iΓ5θ

of its real- and imaginary part (where Γ5 denotes the four dimensional chirality matrix and ϕ

(θ) are the real (imaginary) part of ϕ±): A(ϕ+
1 , g2, q3, q̄4) A

(
ϕ+

1 , g2, q̄3, q4

)
A(ϕ−1 , g2, q3, q̄4) A

(
ϕ−1 , g2, q̄3, q4

)
 = C̃D2 4α′3/2 gA gϕ g

2
ψ Vt

1

s
F µν

2 k1ν

×

 0 (ū3 σ̄µ u4)

− (u3 σµ ū4) 0

 (9.2.49)

The absence of massless t- and u channel poles is explained by factorization into A(ϕ±1 , q2, q̄3) =

0. Similarly, four point amplitudes involving d and ω± do not exhibit a massless s channel pole

because of their vanishing three point coupling to gluons:

A(d1,g2, q3, q̄4) =
3 C̃D2

2

√
α′ gd gA g

2
ψ Vt

×
{

1

t

[
(ξ k4) (u3 6d ū4) +

1

2
(u3 6d 6ξ 6k2 ū4)

]
− 1

u

[
(ξ k3) (u3 6d ū4) +

1

2
(u3 6k2 6ξ 6d ū4)

]}
(9.2.50)

A(ω−1 ,g2, λ3, λ4) = CD2

√
2α′ gω gA g

2
λ Vt

×
{

1

t

[
(u3 u4) (ξ k4) +

1

2
(u3 6ξ2 6k2 u4)

]
− 1

u

[
(u3 u4) (ξ k3) +

1

2
(u3 6k2 6ξ2 u4)

]}
(9.2.51)

A(ω+
1 ,g2, λ3, λ4) = 0 (9.2.52)

Massive fermions χ and b of spin 3/2 and spin 1/2, respectively, give rise to the following four

point scattering:

A(g1,g2, q3, χ̄4) = C̃D2 2α′3/2 g2
A gψ g̃χ Vt

×
{

1

t

[
(ξ1 k3) (u 6ξ2 χ̄µ) kµ2 + (ξ1 k3) (u 6k4 χ̄µ) ξµ2 +

1

2
(u 6k1 6ξ1 6k4 χ̄µ) ξµ2 +

1

2
(u 6k1 6ξ1 6ξ2 χ̄µ) kµ2

]
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− 1

u

[
(ξ2 k3) (u 6ξ1 χ̄µ) kµ1 + (ξ2 k3) (u 6k4 χ̄µ) ξµ1 +

1

2
(u 6k2 6ξ2 6k4 χ̄µ) ξµ1 +

1

2
(u 6k2 6ξ2 6ξ1 χ̄µ) kµ1

]
+

1

s

[
(ξ1 k2) (u 6ξ2 χ̄µ) kµ3 − (ξ2 k1) (u 6ξ1 χ̄µ) kµ3 + (ξ1 ξ2) (u 6k2 χ̄µ) kµ1

+ (ξ2 k1) (u 6k4 χ̄µ) ξµ1 − (ξ1 k2) (u 6k4 χ̄µ) ξµ2 − (ξ1 ξ2) (u 6k1 χ̄µ) kµ2

]}
(9.2.53)

Note that χ̄µ and 6k4χ̄µ form a Dirac spinor as required for a massive fermion, the same is true

for b̄ and 6k4b̄:

A(g1, g2,q3, b̄4) = C̃D2 2α′3/2 g2
A gψ g̃b Vt ×

{
1

4α′
(u 6ξ2 6ξ1 6k4 b̄)

+
1

s

[
(ξ1 k3) (ξ2 k1)

(
u 6k4 b̄

)
− t

2α′
(ξ1 ξ2) (u 6k4 b̄) +

1

2α′
(ξ1 k2) (u 6ξ2 b̄)

− (ξ1 k2) (ξ2 k3)
(
u 6k4 b̄

)
+

1

2α′
(ξ1 ξ2) (u 6k1 b̄) −

1

2α′
(ξ2 k1) (u 6ξ1 b̄)

]
− 1

u

[ 1

4α′
(u 6ξ1 6k2 6ξ2 b̄) +

1

2
(ξ1 k4) (u 6k1 6ξ2 6k2 b̄)

− 1

2α′
(ξ2 k3) (u 6ξ1 b̄) + (ξ1 k4) (ξ2 k3) (u 6k1 b̄)

]
+

1

t

[ 1

4α′
(u 6ξ2 6k1 6ξ1 b̄) +

1

2
(ξ2 k4) (u 6k2 6ξ1 6k1 b̄)

− 1

2α′
(ξ1 k3) (u 6ξ2 b̄) + (ξ1 k3) (ξ2 k4) (u 6k2 b̄)

]}
(9.2.54)

Just like in the massless case, four fermion amplitudes with an excited fermion look completely

different whether they involve massive gauginos or quarks. Let us focus on the simpler gaugino

case here, the quarks are discussed in [2]:

A(λ1, λ̄2, λ3, χ̄4) = CD2 2α′ g3
λ gχ Vt

{
1

t
(u1Iu3K) (ūJ̄2 χ̄

L̄
µ) kµ2

(
CI

J̄ C
K
L̄ − CI

L̄C
K
J̄

)
+
CI

J̄ C
K
L̄

s

[
1
4

(u1I 6k4 χ̄
L̄
µ) (u3Kσ

µūJ̄2 ) + 1
4

(u3K 6k4 χ̄
L̄
µ) (u1Iσ

µūJ̄2 ) − (u1Iu3K) (ūJ̄2 χ̄
L̄
µ) kµ3

]
+
CI

L̄C
K
J̄

u

[
1
4

(u1I 6k4 χ̄
L̄
µ) (u3Kσ

µūJ̄2 ) + 1
4

(u3K 6k4 χ̄
L̄
µ) (u1Iσ

µūJ̄2 ) + (u1Iu3K) (ūJ̄2 χ̄
L̄
µ) kµ1

]}
(9.2.55)

A(λ1, λ̄2, λ3, b̄4) = CD2 2α′ g3
λ gb Vt ×

{
(u1Iu3L) (ūJ̄2 ā

L̄)
(
CI

J̄ C
K
L̄ − CI

L̄C
K
J̄

)
− CI

J̄ C
K
L̄

2 s
(u1Iu3K) (ūJ̄2 6k1 6k3 b̄

L̄) +
CI

L̄C
K
J̄

2u
(u1Iu3K) (ūJ̄2 6k3 6k1 b̄

L̄)

}
(9.2.56)

The notation is adapted to maximal N = 4 SUSY with four gaugino species labelled by the

R symmetry index I = 1, 2, 3, 4. In order to extract the amplitudes for N = 1 SUSY, all the

internal charge conjugation matrices CI
J̄ must be set to unity. In this case, the t channel pole

drops out of (9.2.55).
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The color structure for scattering four adjoint states can be found in (9.1.4) at εN=1 = 1,

i.e. the parity odd traces ca1a2a3a4
− = Tr{T a1T a2T a3T a4 − T a4T a3T a2T a1} appear. Color factors

in presence of chiral matter are exactly the same as in the massless case, see subsection 8.3.6.

9.2.5 Four point helicity amplitudes

The four point amplitudes presented above are now evaluated in the helicity basis. Like in the

three point case, we find various selection rules for the helicities of massless states coupling to

first mass level excitations.

The four boson amplitudes are written as

A(g1, g2, g3, α4) = 8 g2
YM

√
2α′ VtK[g1, g2, g3, α4] (9.2.57)

A(g1, g2, g3, ϕ
+
4 ) = 4 g2

YM

√
α′ VtK[g1, g2, g3, ϕ

+
4 ] . (9.2.58)

Helicity selection rules forbid coupling of the spin two state α to gluons of uniform helicity, and

ϕ+ preferably couples to gluons of + helicity:

A(g±1 , g
±
2 , g

±
3 , α) = A(g−1 , g

−
2 , g

−
3 , ϕ

+) = A(g+
1 , g

−
2 , g

−
3 , ϕ

+) = 0 (9.2.59)

The nonvanishing entries are

K[g+
1 , g

+
2 , g

−
3 , α4(+2)] =

〈p 3〉4
2
√

2 〈1 2〉 〈2 3〉 〈3 1〉

K[g+
1 , g

+
2 , g

−
3 , α4(+1)] =

〈p 3〉3 〈3 q〉√
2 〈1 2〉 〈2 3〉 〈3 1〉

K[g+
1 , g

+
2 , g

−
3 , α4(0)] =

√
3 〈p 3〉2 〈3 q〉2

2 〈1 2〉 〈2 3〉 〈3 1〉 (9.2.60)

K[g+
1 , g

+
2 , g

−
3 , α4(−1)] =

〈q 3〉3 〈3 p〉√
2 〈1 2〉 〈2 3〉 〈3 1〉

K[g+
1 , g

+
2 , g

−
3 , α4(−2)] =

〈q 3〉4
2
√

2 〈1 2〉 〈2 3〉 〈3 1〉

as well as

K[g+
1 , g

+
2 , g

+
3 , ϕ

+] =
α′−2

〈1 2〉 〈2 3〉 〈3 1〉 , K[g+
1 , g

+
2 , g

−
3 , ϕ

+] =
[1 2]4

[1 2] [2 3] [3 1]
, (9.2.61)

the rest can be obtained by complex conjugation.

If two gluons are replaced by a quark antiquark pair, then

A(α1, g2, q3, q̄4) = 2 g2
YM

√
2α′ VtK[α1, g2, q3, q̄4] (9.2.62)
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with kinematic factor

K[α1(+2), g+
2 , q3, q̄4] =

〈p 3〉 〈p 4〉3√
2 〈2 3〉 〈3 4〉 〈4 2〉

K[α1(+1), g+
2 , q3, q̄4] =

〈p 4〉2
2
√

2 〈2 3〉 〈3 4〉 〈4 2〉
(
〈q 3〉 〈p 4〉 + 3 〈p 3〉 〈q 4〉

)
K[α1(0), g+

2 , q3, q̄4] =

√
3 〈p 4〉 〈q 4〉

2 〈2 3〉 〈3 4〉 〈4 2〉
(
〈q 3〉 〈p 4〉 + 〈p 3〉 〈q 4〉

)
(9.2.63)

K[α1(−1), g+
2 , q3, q̄4] =

〈q 4〉2
2
√

2 〈2 3〉 〈3 4〉 〈4 2〉
(
〈p 3〉 〈q 4〉 + 3 〈q 3〉 〈p 4〉

)
K[α1(−2), g+

2 , q3, q̄4] =
〈q 3〉 〈q 4〉3√

2 〈2 3〉 〈3 4〉 〈4 2〉
.

The spin two decay A(α1, g2, q3, q̄4) into a gluon and two fermions does not impose any selection

rule. The process with a gluon of negative helicity follows from

K[α1, g
−
2 , q3, q̄4] =

(
K[α1, g

+
2 , q3, q̄4]

)∗ ∣∣∣
(p↔q),(3↔4)

. (9.2.64)

For the complex scalar ϕ+, we have

A(ϕ+
1 , g

+
2 , q3, q̄4) = 2 g2

YM

√
α′ Vt

[1 3]2

[1 2]
(9.2.65)

A(ϕ+
1 , g

−
2 , q3, q̄4) = 0 .

Let us next display the four point helicity amplitudes of N = 1 states d and ω±:

A(d1, g2, q3, q̄4) =
√

3 g2
YMK[d1, g2, q3, q̄4] (9.2.66)

A(ω−1 , g2, λ3, λ4) = 4 g2
YMK[ω−1 , g2, λ3, λ4] (9.2.67)

These processes do not obey any selection rules:

K
[
d1(+1), g+

2 , q3, q̄4

]
= +

〈p 4〉2
〈2 3〉 〈2 4〉 , K[ω−1 , g

+
2 , λ3, λ4] =

1

α′ 〈2 3〉 〈2 4〉

K
[
d1(0), g+

2 , q3, q̄4

]
=

√
2 〈p 4〉 〈q 4〉
〈2 3〉 〈2 4〉 (9.2.68)

K
[
d1(−1), g+

2 , q3, q̄4

]
= − 〈q 4〉2

〈2 3〉 〈2 4〉 , K[ω−1 , g
−
2 , λ3, λ4] =

[3 4]2

[2 3] [2 4]

The relevant crossing operations to obtain the remaining entries are

K[d1, g
−
2 , q3, q̄4] =

(
K[d1, g

+
2 , q3, q̄4]

)∗ ∣∣∣
(p↔q),(3↔4)

(9.2.69)

K[ω+
1 , g

±
2 , λ̄3, λ̄4] = −

(
K[ω−1 , g

∓
2 , λ̄3, λ̄4]

)∗
.

Decay amplitudes of massive fermions into a light fermion and two bosons are written as

A(g1, g2, q3, χ̄4) = 2 g2
YM VtK[g1, g2, q3, χ̄4] (9.2.70)
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A(g1, g2, q3, b̄4) = g2
YM α′−1 VtK[g1, g2, q3, b̄4] . (9.2.71)

The selection rules for spin 3/2 (χ̄) and spin 1/2 (b̄) exclude either (+,+) or (−,−) gluons,

K[g+
1 , g

+
2 , q3, χ̄4] = K[g−1 , g

−
2 , q3, b̄4] = 0 . (9.2.72)

Spin 3/2 gives rise to the following nontrivial kinematic factors:

K
[
g−1 , g

−
2 , q3, χ̄4(+3

2
)
]

=
[3 q]3

[1 2] [2 3] [3 1]
, K

[
g+

1 , g
−
2 , q3, χ̄4(+3

2
)
]

=

√
α′ 〈p 2〉3
〈1 2〉 〈1 3〉

K
[
g−1 , g

−
2 , q3, χ̄4(+1

2
)
]

=

√
3 [3 q]2 [p 3]

[1 2] [2 3] [3 1]
, K

[
g+

1 , g
−
2 , q3, χ̄4(+1

2
)
]

=

√
3α′ 〈p 2〉2 〈q 2〉
〈1 2〉 〈1 3〉

(9.2.73)

K
[
g−1 , g

−
2 , q3, χ̄4(−1

2
)
]

=

√
3 [q 3] [3 p]2

[1 2] [2 3] [3 1]
, K

[
g+

1 , g
−
2 , q3, χ̄4(−1

2
)
]

= −
√

3α′ 〈p 2〉 〈q 2〉2
〈1 2〉 〈1 3〉

K
[
g−1 , g

−
2 , q3, χ̄4(−3

2
)
]

=
[3 p]3

[1 2] [2 3] [3 1]
, K

[
g+

1 , g
−
2 , q3, χ̄4(−3

2
)
]

= −
√
α′ 〈q 2〉3
〈1 2〉 〈1 3〉

The spin 1/2 analogue is:

K
[
g+

1 , g
+
2 , q3, b̄4(+1

2
)
]

=
〈p 3〉

〈1 2〉 〈2 3〉 〈3 1〉 , K
[
g+

1 , g
−
2 , q3, b̄4(+1

2
)
]

= +

√
α′

3
[q 1] [1 3]2

[1 2] [2 3]

(9.2.74)

K
[
g+

1 , g
+
2 , q3, b̄4(−1

2
)
]

=
〈q 3〉

〈1 2〉 〈2 3〉 〈3 1〉 , K
[
g+

1 , g
−
2 , q3, b̄4(−1

2
)
]

= −
√
α′

3
[p 1] [1 3]2

[1 2] [2 3]

Similar expressions with (1↔ 2) hold for gluons of flipped helicity.

Four fermion amplitudes with excited gauginos are given by

A(λ1, λ̄2, λ3, χ̄4) = 2 g2
YM

√
α′K[λ1, λ̄2, λ3, χ̄4] (9.2.75)

A(λ1, λ̄2, λ3, b̄4) = 2 g2
YM

√
α′K[λ1, λ̄2, λ3, b̄4] . (9.2.76)

In N = 1 SUSY with one gaugino species, helicity components read

K
[
λ1, λ̄2, λ3, χ̄4(+3

2
)
]

=
〈2 p〉3
〈1 2〉 〈2 3〉

K
[
λ1, λ̄2, λ3, χ̄4(+1

2
)
]

=

√
3 〈2 p〉2 〈2 q〉
〈1 2〉 〈2 3〉 , K

[
λ1, λ̄2, λ3, b̄4(+1

2
)
]

=
[2 q] [1 3]2

[1 2] [2 3]
(9.2.77)

K
[
λ1, λ̄2, λ3, χ̄4(−1

2
)
]

=

√
3 〈p 2〉 〈2 q〉2
〈1 2〉 〈2 3〉 , K

[
λ1, λ̄2, λ3, b̄4(−1

2
)
]

=
[2 p] [1 3]2

[1 2] [2 3]

K
[
λ1, λ̄2, λ3, χ̄4(−3

2
)
]

=
〈q 2〉3
〈1 2〉 〈2 3〉 .

Cross sections for jet associated Regge production are tabulated in section VI of [2], listed in

order of the initial two particle channels gg, gq and qq̄.
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9.3 The leading Regge trajectory

This section is devoted to scattering amplitudes of higher spin states on the leading Regge

trajectory of the superstring. It extends the analysis of [110,111] on higher spin interactions in

bosonic string theory to the open superstring. Recently, similar calculations have been carried

out in heterotic string theories [141] where stable higher spin BPS states were shown to exist

and a large class of three- and four point scattering amplitudes was computed for states with

higher spin content on the bosonic side of the heterotic string. Further interesting results on

scattering of exotic massless higher spin states from a decoupled sector of superstring theory

can be found in recent work [270,271].

A first motivation for studying higher spin interactions in string theory is to extract lessons

on higher spin gauge theory. Consistent four point interactions in massless higher spin field

theories are still not fully understood [149], and the high energy limit α′ →∞ of string theory

can be an important tool for their investigation.

Secondly, knowledge of highest spin three- and four-point interactions can prove valuable

for factorization properties of massless multileg superstring disk amplitudes. As we have dis-

cussed in chapter 7, the complexity of formfactors in multi gluon scattering grows enormously

with increasing number of external legs, see (8.1.25) and subsection 8.1.6 for the explicit four-

and five-point results. The expansion (8.1.32) and (8.1.33) of the hypergeometric five point

integrals f1, f2 encourages to disentangle the contributions of individual spins. More precisely,

we conjecture that the summation variable j in these equations can be identified with the spin

of the massive state in the internal propagator. The simplifications on the basis of this spin

separation might in the end pave the way for new recursion relations.

Thirdly, scattering amplitudes of higher spin states may be relevant for phenomenology. As

pointed out in section 4.1, the string scale can be as low as a few TeV provided that some of the

extra dimensions are sufficiently large. In that case, the signature of massive string vibrations

should become visible at LHC due to the resonant enhancement of parton amplitudes. As

explained in the previous section 9.2, Regge excitations can be produced directly, and the

amplitudes at higher mass level presented in this section can be regarded as a generalization

of the mass level one discussion. In fact, gluon fusion and quark antiquark annihilation can

produce any leading trajectory boson if the mass threshold is reached in the center of mass

energies of the colliding partons, and similarly, higher spin fermions appear in quark gluon

scattering at sufficiently high energy. But one has to admit that also the states from subleading

Regge trajectories contribute to these effects and should be included into the analysis on the long
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hand. Handling the technical challenges posed by the subleading trajectories is an outstanding

problem left for future work.

The label used for subamplitudes of highest spin states are φj=n+1 ≡ (φµ1...µj , kµ) for bosons

and χj=n+1/2 ≡ (χαµ1...µn
, kµ) for fermions.

9.3.1 Universality in spacetime dimensions

Dimensional reduction of bosonic states and their couplings is straightforward: Suppose φm1...ms

with mi = 0, ..., 9 is the initially SO(1, 9) covariant wave function of the spin s = n+ 1 state on

the leading trajectory, then compactification of 10 − D spacetime dimensions breaks Lorentz

symmetry to SO(1, D − 1) and hence requires to specify for each index mi whether it belongs

to the D uncompactified dimensions or to the internal ones. Let us denote the SO(1, D − 1)

spacetime indices by µi, then only the φµ1...µs components of the ten dimensional polarization

tensor describes a maximum spin state from the D dimensional point of view. As usual, we

neglect Kaluza Klein excitations and truncate spacetime momenta to km = (kµ, 0). The only

modification of the spin s = n + 1 vertex operators (3.4.62) and (3.4.64) upon compactifying

10−D dimensions is the replacement of SO(1, 9) indices mi by SO(1, D − 1) indices µi:

V (−1)(φj=n+1, k, z) = gn φ(µ1...µnµn+1) i∂X
µ1 . . . i∂Xµn ψµn+1 e−φ eik·X (9.3.78)

V (0)(φj=n+1, k, z) = gn
√

2α′ φ(µ1...µn−1νλ) i∂X
µ1 . . . i∂Xµn−1 eik·X

×
(
n ∂ψν ψλ + (k · ψ)ψν i∂Xλ +

1

2α′
i∂Xν i∂Xλ

)
(9.3.79)

kµi φµ1...µn+1 = ηµiµj φµ1...µn+1 = 0 , k2 = − n

α′
(9.3.80)

Note that the spin two operator ∂ψ(νψλ) drops out at the massless level n = 0.

Similar to the argument in subsection 8.2.1, the free CFT of the ψµ- and Xν fields does not

introduce any D dependence into correlation functions of highest spin states, so their scattering

amplitudes take a universal form in any number of spacetime dimensions. The normalizations

are set to gn =
√

2α′
−n

and gn+1/2 =
√

2α′
−n

in the following.

Highest spin fermions in lower dimensions D < 10 have an h = (10 − D)/16 internal spin

field sint in their vertex operators which is a standard R spin field for excited gauginos or a

boundary condition changing operator Ξ for excited quarks (see subsection 8.2.1 for a more

detailed definition and discussion of the sint):

V (−1/2)(χj=n+1/2, k, z) = gn+1/2 χ
a
(µ1...µn−1ν) i∂X

µ1 . . . i∂Xµn−1

×
(
i∂Xν δca −

2α′

D − 2
6kaḃ ψν 6ψḃc

)
Sc sint e−φ/2 eik·X (9.3.81)
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V (−1/2)(χ̄j=n+1/2, k, z) = gn+1/2 χ̄
(µ1...µn−1ν)
ȧ i∂Xµ1 . . . i∂Xµn−1

×
(
i∂Xν δ

ȧ
ċ −

2α′

D − 2
6kȧb ψν 6ψbċ

)
S ċ s̄int e−φ/2 eik·X (9.3.82)

kµi χαµ1...µn
= ηµiµj χαµ1...µn

= χαµ1...µn
γµi
αβ̇

= 0 (9.3.83)

The spin 3/2 component of the spacetime SCFT operator ψν 6ψḃcSc/(D − 2) has similar uni-

versality properties as the ordinary spin fields Sa: Any correlation function involving no more

than two insertions ∈ {Sasint, ψ
ν 6ψḃcScsint/(D − 2)} is independent on D, see section 6.6 for

examples. The CFT mechanisms cancelling the D dependence in 〈siint(z1)s̄jint(z2)〉 = cijz
(D−10)/8
12

against that from the spacetime part are the same ones explained in subsection 8.2.1. Hence,

scattering amplitudes involving two highest spin fermions and otherwise bosons take the same

form in any number of spacetime dimensions and do not distinguish between Regge excitations

of adjoint gauginos and chiral matter.

Again, the arguments for universality fail at the level of four fermions: Firstly, internal

correlators 〈siint(z1)sjint(z2)skint(z3)slint(z4)〉 cannot be treated in a model independent fashion,

and secondly, the group structure in four point correlators of Sa and ψν 6ψḃcSc becomes more

involved.

All the three- and four point amplitudes of highest spin states which we will give in the

following subsections 9.3.2 to 9.3.6 are of universal type. Both the lessons on consistent higher

spin interactions and the phenomenological implications for LHC experiments remain valid in

all lower dimensional superstring compactifications which allow for a CFT description. We will

adapt the indices and chiralities to the four dimensional situation which is the most relevant

in view of the aforementioned motivations. The only exception occurs for the four fermion

amplitude in subsection 9.3.7 which is given in D = 10 dimensions and has a different form

after dimensional reduction to D = 4.

9.3.2 The three boson vertex

Cyclic symmetry of the three boson couplings in superstring theory is initially obscured by the

asymmetric assignment of superghost charges. But the three terms in the zero ghost picture

vertex (3.4.64) of higher spin bosons conspire such that the labels 1, 2, 3 enter on the same

footing in the end. By virtue of the correlator (B.4.62) with many i∂X field insertions, one

ends up with

A(φs11 , φ
s2
2 , φ

s3
3 ) =

√
2α′

s1+s2+s3
n1!n2!n3!

∑
i,j,k∈Ib

(2α′)−i−j−k (is3 + js2 + ks1 − ij − ik − jk)

i! j! k! (s1 − i− j)! (s2 − i− k)! (s3 − j − k)!
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× φ1
µ1...µj

ν1...νi
ρ1...ρs1−i−j

kρ1

2 ... k
ρs1−i−j
2 φ2

ν1...νi
λ1...λk

τ1...τs2−i−k
kτ13 ... k

τs2−i−k
3

× φ3
λ1...λk

µ1...µj
σ1...σs3−j−k

kσ1
1 ... k

σs3−j−k
1 (9.3.84)

where si = ni + 1 and the summation range Ib is defined exactly like in [110,111]:

Ib :=
{
i, j, k ∈ N0 : s1 − i− j ≥ 0 , s2 − i− k ≥ 0 , s3 − j − k ≥ 0

}
(9.3.85)

Let us introduce some shorthands to lighten the notation. A k fold contraction of tensors φi and

φj is denoted by φiφjδkij = φiµ1...µk
φj µ1...µk , and the momenta which are dotted into the remaining

indices of the φ’s are written with their power as a collective index, e.g. φ1·kp2 := φ1
ρ1...ρp

kρ1

2 ...k
ρp
2 .

This convention admits to rewrite the three point function (9.3.84) more compactly as

A(φs11 , φ
s2
2 , φ

s3
3 ) =

√
2α′

s1+s2+s3
n1!n2!n3!

∑
i,j,k∈Ib

(2α′)−i−j−k (is3 + js2 + ks1 − ij − ik − jk)

i! j! k! (s1 − i− j)! (s2 − i− k)! (s3 − j − k)!

× (φ1 · ks1−i−j2 ) (φ2 · ks2−i−k3 ) (φ3 · ks3−j−k1 ) δi12 δ
j
13 δ

k
23 . (9.3.86)

The essential difference to the analogous formula of bosonic string theory (equation (4.1) of

[111]) lies in the factor is3 + js2 + ks1 − ij − ik − jk (where the bosonic string has the

universal factor s1s2s3 instead). As a result, the i = j = k = 0 term with highest α′ power is

absent in superstring theory. For three gauge bosons si = 1, for instance, the summation range

Ib encompasses (i, j, k) = (0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), and suppression of the first term

ensures the absence of F3 interactions occurring on the bosonic string.

One of the most interesting three point vertices is the electromagnetic coupling of spins s2

and s3, i.e. the special case n1 = 0 where the first state is set to massless spin s1 = 1 with

polarization vector φ1
µ ≡ ξµ. For identical spins s2 = s3 ≡ s at level n = s− 1 we find

A(g1, φ
s
2, φ

s
3) = (2α′)s+

1
2 (n!)2

s∑
k=0

(2α′)−k δk23

k!
[

(s− k)!
]2 { k (ξ · k2) (φ2 · ks−k3 ) (φ3 · ks−k1 )

+
s (s− k)

2α′
(ξµ kν1 − ξν kµ1 ) (φ2

µ · ks−k−1
3 ) (φ3

ν · ks−k−1
1 )

}
, (9.3.87)

and different spins s2, s3 give rise to

A(g1,φ
s2
2 , φ

s3
3 ) =

√
2α′

1+s2+s3
n2!n3!

min(s2,s3)∑
k=0

(2α′)−k δk23

k! (s2 − k)! (s3 − k)!

×
{
k (ξ · k2) (φ2 · ks2−k3 ) (φ3 · ks3−k1 ) +

s3 (s2 − k)

2α′
ξµ (φ2

µ · ks2−k−1
3 ) (φ3 · ks3−k1 )

+
s2 (s3 − k)

2α′
(φ2 · ks2−k3 ) ξµ (φ3

µ · ks3−k−1
1 )

}
. (9.3.88)
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As a further specialization, the coupling of two massless gauge bosons with polarization vectors

ξ2, ξ3 to massive higher spin states φ is found to be

A(φs1, g2, g3) =
√

2α′
n+1

{
n

2α′
ξµ2 ξ

ν
3 (φµν · kn−1

2 ) + (ξ3 k1) ξµ2 (φµ · kn2 )

+ (ξ2 k3) ξµ3 (φµ · kn2 ) + (ξ2 ξ3) (φ · kn+1
2 )

}
. (9.3.89)

Note that in contrast to heterotic string theories, higher spin fields always decay into lower

spin fields. In the heterotic case at least the BPS higher spin fields are protected from that

decay [141].

9.3.3 Two fermion, one boson coupling

A second class of nonvanishing three point couplings among leading Regge trajectory states

involves two fermions and one boson. This time, all the vertex operators can appear in their

canonical ghost picture. After substituting the ψµ6ψaḃS ḃ correlators from section 6.6 and appro-

priately labelling summation indices i, j, k, we find

A(φs11 , χ
n2+1/2
2 , χ̄

n3+1/2
3 ) =

√
2α′

n1+n2+n3

√
2

∑
i,j,k∈If

n1! (n2 − 1)! (n3 − 1)! (2α′)−i−j−k δi12 δ
j
13 δ

k
23

i! j! k! (s1 − i− j)! (n2 − i− k)! (n3 − j − k)!

×
{
n2 n3 (s1 − i− j) (φµ · kn1−i−j

2 ) (kn2−i−k
3 · χa2) (σµ ε)a

ḃ (χ̄3ḃ · kn3−j−k
1 )

+ j n2 2α′ (φ · kn1+1−i−j
2 ) (kn2−i−k

3 · χa2)(6k3)a
ḃ (χ̄3ḃ · kn3−j−k

1 )

− i n3 2α′ (φ · kn1+1−i−j
2 ) (kn2−i−k

3 · χa2)(6k2)a
ḃ (χ̄3ḃ · kn3−j−k

1 )

− α′ k (s1 − i− j) (φµ · kn1−i−j
2 ) (kn2−i−k

3 · χa2) (6k2 σ̄
µ 6k3)a

ḃ (χ̄3ḃ · kn3−j−k
1 )

}
(9.3.90)

with shorthand (6ki)aḃ ≡ kµi (σµε)a
ḃ and summation range

If :=
{
i, j, k ∈ N0 : s1 − i− j ≥ 0 , n2 − i− k ≥ 0 , n3 − j − k ≥ 0

}
. (9.3.91)

Let us explicitly display the electromagnetic coupling with ξµ ≡ φµ to higher spin fermions,

firstly at coinciding mass level n2 = n3 ≡ n:

A(g1, χ
n+1/2
2 , χ̄

n+1/2
3 ) =

(2α′)n√
2

[
(n− 1)!

]2 n∑
k=0

(2α′)−k δk23

k!
[

(n− k)!
]2

×
{
n2 (kn−k3 · χa2) 6ξaḃ (χ̄3ḃ · kn−k1 ) − α′ k (kn−k3 · χa2) (6k2 6ξ 6k3)a

ḃ (χ̄3ḃ · kn−k1 )

+ n (n− k) ξµ
[

(kn−k3 · χa2) (6k3)a
ḃ (χ̄3ḃ · kn−k−1

1 ) − (kn−k−1
3 · χa2µ) (6k2)a

ḃ (χ̄3ḃ · kn−k1 )
]}

(9.3.92)
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For different fermion spins s2 < s3, on the other hand,

A(g1, χ
n2+1/2
2 , χ̄

n3+1/2
3 ) =

√
2α′

n2+n3

√
2

(n2 − 1)! (n3 − 1)!

n2∑
k=0

(2α′)−k δk23

k! (n2 − k)! (n3 − k)!

×
{
n2 n3 (kn2−k

3 · χa2) 6ξaḃ (χ̄3ḃ · kn3−k
1 ) − α′ k (kn2−k

3 · χa2)(6k2 6ξ 6k3)a
ḃ (χ̄3ḃ · kn3−k

1 )

+ n2 (n3 − k) (kn2−k
3 · χa2) 6k3a

ḃ (χ̄3µḃ · kn3−k−1
1 ) ξµ

− n3 (n2 − k) ξµ (kn2−k−1
3 · χa2µ) 6k2a

ḃ (χ̄3ḃ · kn3−k
1 )

}
. (9.3.93)

Another interesting special case is one massless Weyl fermion of spin s2 = 1
2

whose wave function

ua satisfies the massless Dirac equation ua 6kaḃ = 0 with respect to its momentum:

A(φs11 , λ, χ̄
n3+1/2
3 ) =

√
2α′

n1+n3

√
2

n1! (n3 − 1)!

min(n1+1,n3)∑
j=0

(2α′)−j δj13

j! (s1 − j)! (n3 − j)!

×
{
n3 (s1 − j) (φµ · kn1−j

2 )ua (σµ ε)a
ḃ (χ̄3ḃ · kn3−j

1 ) + j 2α′ (φ · kn1+1−j
2 )ua 6k3a

ḃ (χ̄3ḃ · kn3−j
1 )

}
(9.3.94)

As explained in subsection 9.3.2, two fermion amplitudes involving leading Regge trajectory

states are independent on the superstring compactification and the number of spacetime di-

mensions, just like parton amplitudes involving two quarks.

9.3.4 Three massless bosons, one higher spin boson

The four boson amplitude with one higher spin state from the leading Regge trajectory requires

an equally simple input from the RNS CFT of the ψµ fields, regardsless on the spin. The

nontrivial contributions come from the i∂Xµ correlators (B.4.66), the result for n ≥ 1 is

A(g1, g2, g3, φ
n+1
4 ) =

√
2α′

n+2
(−1)n−1{

n (n− 1)

4α′2
ξ1
µ ξ

2
ν ξ

3
λ

n−2∑
p=0

(
n−2
p

) [
φµνλ · kp1 (−k3)n−2−p]B(s+ 1 + p, u+ n− 1− p)

+
1− t
2α′

(ξ1 ξ3) ξµ2

n∑
p=0

( np )
[
φµνλ · kp1 (−k3)n−p

]
B(s+ 1 + p, u+ n+ 1− p)

+
[

(ξ1 k2) (ξ3 k1) ξ2
µ k

2
ν − (ξ1 ξ2) (ξ3 k1) k2

µ k
2
ν + (ξ3 ξ2) (ξ1 k3) k2

µ k
2
ν − (ξ3 k2) (ξ1 k3) ξ2

µ k
2
ν

+ (ξ2 k4) (ξ3 k1) ξ1
µ k

2
ν − (ξ2 k4) (ξ1 k3) ξ3

µ k
2
ν + (ξ1 ξ3) (ξ2 k3) k1

µ k
2
ν − (ξ1 ξ3) (ξ2 k1) k3

µ k
2
ν

+
t

2α′
(ξ2 ξ3) ξ1

µ k
2
ν −

t

2α′
(ξ1 ξ2) ξ3

µ k
2
ν +

n

2α′
(ξ1 k3) ξ2

µ ξ
3
ν −

n

2α′
(ξ3 k1) ξ1

µ ξ
2
ν

]
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×
n−1∑
p=0

(
n−1
p

) [
φµν · kp1 (−k3)n−1−p]B(s+ 1 + p, u+ n− p)

+
[

(ξ1 k3) (ξ2 k1) ξ3
µ k

3
ν − (ξ1 ξ3) (ξ2 k1) k3

µ k
3
ν + (ξ2 ξ3) (ξ1 k2) k3

µ k
3
ν − (ξ2 k3) (ξ1 k2) ξ3

µ k
3
ν

+ (ξ3 k4) (ξ2 k1) ξ1
µ k

3
ν − (ξ3 k4) (ξ1 k2) ξ2

µ k
3
ν + (ξ1 ξ2) (ξ3 k2) k1

µ k
3
ν − (ξ1 ξ2) (ξ3 k1) k2

µ k
3
ν

+
n

2α′
(ξ1 k2) ξ2

µ ξ
3
ν −

n

2α′
(ξ2 k1) ξ1

µ ξ
3
ν +

n

2α′
(ξ1 ξ2) ξ3

µ k
1
ν −

t

2α′
(ξ1 ξ2) ξ3

µ k
3
ν

]
×

n−1∑
p=0

(
n−1
p

) [
φµν · kp2 kn−1−p

1

]
B(s, u+ 1 + p)

+
[

(ξ2 k1) (ξ3 k2) ξ1
µ k

1
ν − (ξ1 ξ2) (ξ3 k2) k1

µ k
1
ν + (ξ1 ξ3) (ξ2 k3) k1

µ k
1
ν − (ξ3 k1) (ξ2 k3) ξ1

µ k
1
ν

+ (ξ1 k4) (ξ3 k2) ξ2
µ k

1
ν − (ξ1 k4) (ξ2 k3) ξ3

µ k
1
ν + (ξ2 ξ3) (ξ1 k3) k1

µ k
2
ν − (ξ2 ξ3) (ξ1 k2) k1

µ k
3
ν

+
n

2α′
(ξ2 k3) ξ1

µ ξ
3
ν −

n

2α′
(ξ3 k2) ξ1

µ ξ
2
ν −

n

2α′
(ξ2 ξ3) ξ1

µ k
3
ν +

t

2α′
(ξ2 ξ3) ξ1

µ k
1
ν

]
×

n−1∑
p=0

(
n−1
p

) [
φµν · (−k3)p (−k2)n−1−p]B(s+ n− p, u)

}
. (9.3.95)

This pattern of Beta functions has already been observed in [272] in the context of tachyon

scattering with one massive leading trajectory state on the bosonic string. The organization

scheme is guided by the n = 1 result (9.2.45).

Any beta function B(s + p, u + q) with integers p, q ∈ Z can be reduced to Vt by factoring

out quotients of gamma functions

γ(x, n) :=
Γ(n− x)

n! Γ(−x)
=

1

n!

n−1∏
j=0

(−x+ j) (9.3.96)

which already appeared as residue of Vt at massive poles in (8.1.25). In agreement with (9.1.6),

the four point amplitude at total mass level n contains a prefactor Vt
∏n−1

k=1(t + k)−1 which is

specific to the ordering (1, 2, 3, 4) of the external legs and a totally antisymmetric kinematic

factor A0 under rearrangement (1, 2, 3) 7→ (2, 3, 1) of the three gluons (although this symmetry

is not immediately obvious in the term ∼ ξ1
µ ξ

2
ν ξ

3
λ φ

µνλ). Moreover, exchange of two massless

states ξi ↔ ξj yields the n dependent sign (−)n in this color stripped amplitude to compensate

for the (−)n in the color factor Tr{T a1T a2T a3T a4 + (−1)nT a4T a3T a2T a1} and preserve the

bosonic statistics of gluons.

A(g1, g2, g3, φ
n+1
4 ) =

√
2α′

n+2
(n− 1)!Vt∏n−1

k=1(t+ k){
n

4α′2

n−2∑
p=0

γ(−s− 1, p) γ(−u− 1, n− 2− p) ξ1
µ ξ

2
ν ξ

3
λ

[
φµνλ · kp1 (−k3)n−2−p]
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− n

2α′ s

n∑
p=0

γ(−u− 1, p) γ(−t− 1, n− p) (ξ1 ξ2) ξ3
µ

[
φµ · kp2 (−k1)n−p

]
− n

2α′ t

n∑
p=0

γ(−s− 1, p) γ(−u− 1, n− p) (ξ1 ξ3) ξ2
µ

[
φµ · kp1 (−k3)n−p

]
− n

2α′ u

n∑
p=0

γ(−t− 1, p) γ(−s− 1, n− p) (ξ2 ξ3) ξ1
µ

[
φµ · kp3 (−k2)n−p

]
+

1

s

n−1∑
p=0

γ(−u− 1, p) γ(−t− 1, n− 1− p)
[
φµν · kp2 (−k1)n−1−p] [ n

2α′
(ξ1 k2) ξ2

µ ξ
3
ν

− n

2α′
(ξ2 k1) ξ1

µ ξ
3
ν + (ξ1 k3) (ξ2 k1) ξ3

µ k
3
ν − (ξ1 ξ3) (ξ2 k1) k3

µ k
3
ν

+ (ξ2 ξ3) (ξ1 k2) k3
µ k

3
ν − (ξ2 k3) (ξ1 k2) ξ3

µ k
3
ν + (ξ3 k4) (ξ2 k1) ξ1

µ k
3
ν

− (ξ3 k4) (ξ1 k2) ξ2
µ k

3
ν + (ξ1 ξ2) (ξ3 k2) k1

µ k
3
ν − (ξ1 ξ2) (ξ3 k1) k2

µ k
3
ν

]
+

1

t

n−1∑
p=0

γ(−s− 1, p) γ(−u− 1, n− 1− p)
[
φµν · kp1 (−k3)n−1−p] [ n

2α′
(ξ3 k1) ξ1

µ ξ
2
ν

− n

2α′
(ξ1 k3) ξ2

µ ξ
3
ν + (ξ3 k2) (ξ1 k3) ξ2

µ k
2
ν − (ξ3 ξ2) (ξ1 k3) k2

µ k
2
ν

+ (ξ1 ξ2) (ξ3 k1) k2
µ k

2
ν − (ξ1 k2) (ξ3 k1) ξ2

µ k
2
ν + (ξ2 k4) (ξ1 k3) ξ3

µ k
2
ν

− (ξ2 k4) (ξ3 k1) ξ1
µ k

2
ν + (ξ1 ξ3) (ξ2 k1) k3

µ k
2
ν − (ξ1 ξ3) (ξ2 k3) k1

µ k
2
ν

]
+

1

u

n−1∑
p=0

γ(−t− 1, p) γ(−s− 1, n− 1− p)
[
φµν · kp3 (−k2)n−1−p] [ n

2α′
(ξ2 k3) ξ1

µ ξ
3
ν

− n

2α′
(ξ3 k2) ξ1

µ ξ
2
ν + (ξ2 k1) (ξ3 k2) ξ1

µ k
1
ν − (ξ1 ξ2) (ξ3 k2) k1

µ k
1
ν

+ (ξ1 ξ3) (ξ2 k3) k1
µ k

1
ν − (ξ3 k1) (ξ2 k3) ξ1

µ k
1
ν + (ξ1 k4) (ξ3 k2) ξ2

µ k
1
ν

− (ξ1 k4) (ξ2 k3) ξ3
µ k

1
ν + (ξ2 ξ3) (ξ1 k3) k1

µ k
2
ν − (ξ2 ξ3) (ξ1 k2) k1

µ k
3
ν

]}
(9.3.97)

Note that at n = 1, this reproduces (9.2.45) for decay of spin two into three gluons.

9.3.5 Two massless bosons, one massless and one higher spin fermion

The next four point amplitude of interest involves two fermions of spin 1/2 and n + 1/2,

respectively. Its evaluation requires the correlation function (6.6.99) of the ψµ 6ψaḃS ḃ operator

in the massive fermion’s vertex operator (9.3.82):

A(g1, g2, λ3, χ̄
n+1/2
4 ) =

√
2α′

n+1

√
2

(−1)n−1
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{
n− 1

2α′
ξµ1 ξ

ν
2 (u 6k4)ȧ

n−2∑
p=0

(
n−2
p

) [
χ̄µνȧ · kp1 kn−2−p

2

]
B(s+ 1, u+ n− p− 1)

+
[

(ξ2 k1) (u 6ξ1)ȧ kµ3 − (ξ1 k2) (u 6ξ2)ȧ kµ3 + (ξ1 k2) (u 6k4)ȧ ξµ2 − (ξ2 k1) (u 6k4)ȧ ξµ1

+ (ξ1 ξ2) (u 6k1)ȧ kµ2 − (ξ1 ξ2) (u 6k2)ȧ kµ1

] n−1∑
p=0

(
n−1
p

) [
χ̄µȧ · kp1 kn−1−p

2

]
B(s, u+ n− p)

+
[ 1

2
(u 6k2 6ξ2 6ξ1)ȧ kµ1 −

1

2
(u 6k2 6ξ2 6k1)ȧ ξµ1 + (ξ2 k3) (u 6ξ1)ȧ kµ1 − (ξ2 k3) (u 6k1)ȧ ξµ1

− u

2α′
(u 6ξ2)ȧ ξµ1

] n−1∑
p=0

(
n−1
p

) [
χ̄µȧ · (−k3)p (−k2)n−1−p]B(s+ n− p, u)

+
[ 1

2
(u 6k1 6ξ1 6ξ2)ȧ kµ2 −

1

2
(u 6k1 6ξ1 6k2)ȧ ξµ2 + (ξ1 k3) (u 6ξ2)ȧ kµ2 − (ξ1 k3) (u 6k2)ȧ ξµ2

− t

2α′
(u 6ξ1)ȧ ξµ2

] n−1∑
p=0

(
n−1
p

) [
χ̄µȧ · kp1 (−k3)n−1−p]B(s+ 1 + p, u+ n− p)

}
(9.3.98)

Expressing the Beta functions in terms of Vt admits to extract the universal part of this sub-

amplitude:

A(g1, g2, λ3, χ̄
n+1/2
4 ) =

√
2α′

n+1
(n− 1)!Vt√

2
∏n−1

k=1(t+ k){
1

2α′

n−2∑
p=0

γ(−t− 1, p) γ(−u− 1, n− 2− p) ξµ1 ξν2 (u 6k4)ȧ
[
χ̄µνȧ · (−k1)p kn−2−p

2

]
+

1

u

n−1∑
p=0

γ(−s− 1, p) γ(−t− 1, n− 1− p)
[
χ̄µȧ · (−k2)p kn−1−p

3

] [
− u

2α′
(u 6ξ2)ȧ ξµ1

+ (ξ2 k3) (u 6ξ1)ȧ kµ1 − (ξ2 k3) (u 6k1)ȧ ξµ1 +
1

2
(u 6k2 6ξ2 6ξ1)ȧ kµ1 −

1

2
(u 6k2 6ξ2 6k1)ȧ ξµ1

]
− 1

t

n−1∑
p=0

γ(−s− 1, p) γ(−u− 1, n− 1− p)
[
χ̄µȧ · kp1 (−k3)n−1−p] [− t

2α′
(u 6ξ1)ȧ ξµ2

+ (ξ1 k3) (u 6ξ2)ȧ kµ2 − (ξ1 k3) (u 6k2)ȧ ξµ2 +
1

2
(u 6k1 6ξ1 6ξ2)ȧ kµ2 −

1

2
(u 6k1 6ξ1 6k2)ȧ ξµ2

]
+

1

s

n−1∑
p=0

γ(−t− 1, p) γ(−u− 1, n− 1− p)
[
χ̄µȧ · (−k1)p kn−1−p

2

]
[

(ξ2 k1) (u 6ξ1)ȧ kµ3 − (ξ1 k2) (u 6ξ2)ȧ kµ3 + (ξ1 k2) (u 6k4)ȧ ξµ2

− (ξ2 k1) (u 6k4)ȧ ξµ1 + (ξ1 ξ2) (u 6k1)ȧ kµ2 − (ξ1 ξ2) (u 6k2)ȧ kµ1

]}
(9.3.99)

For n = 1, this reduces to the spin s = 3
2

coupling (9.2.53) to a massless fermion and two gluons.

This amplitude shares the (−)n eigenvalue under exchange of the massless bosons ξ1 ↔ ξ2 with

the previous example.



270 CHAPTER 9. TREE LEVEL SCATTERING OF MASSIVE STATES

9.3.6 One massless and one higher spin boson, two massless fermions

This subsection presents another two fermion, two boson amplitude, this time we include a

mass level n boson and keep both fermions massless. The correlators are straightforward, and

some σ matrix algebra helps to reduce the number of distinct kinematics to the following:

A(λ1, g2, λ̄3, φ
n+1
4 ) =

√
2α′

n+1

√
2

(−1)n−1{[ n

2α′
(u1 σ

µ ū3) ξν − (u1 σ
µ ū3) kν2 (ξ k4) + (kµ2 ξ

λ − kλ2 ξ
µ) (u1 σλ ū3) kν2

]
n−1∑
p=0

(
n−1
p

) [
φµν · kp1 (−k3)n−1−p]B(s+ 1 + p, u+ n− p)

+
[

(u1 σ
µ ū3) kν1 (ξ k3) +

1

2
(u1 σ

µ 6ξ 6k2 ū3) kν1

] n−1∑
p=0

(
n−1
p

) [
φµν · (−k2)p (−k3)n−1−p]B(s+ 1 + p, u)

+
[

(u1 σ
µ ū3) kν3 (ξ k1) +

1

2
(u1 6k2 6ξ σµ ū3) kν3

] n−1∑
p=0

(
n−1
p

) [
φµν · kp2 kn−1−p

1

]
B(s, u+ 1 + p)

}
(9.3.100)

The usual rearrangement of the Beta function leads to

A(λ1, g2, λ̄3, φ
n+1
4 ) =

√
2α′

n+1
(n− 1)!Vt√

2
∏n−1

k=1{
1

t

n−1∑
p=0

γ(−s− 1, p) γ(−u− 1, n− p− 1)
[
φµν · kp1 (−k3)n−1−p]

[
+ (u1 σ

µ ū3) kν2 (ξ k4) − n

2α′
(u1 σ

µ ū3) ξν + (kλ2 ξ
µ − kµ2 ξ

λ) (u1 σλ ū3) kν2

]
+

1

u

n−1∑
p=0

γ(−t− 1, p) γ(−s− 1, n− 1− p)
[
φµν · kp3 (−k2)n−1−p]

[
(u1 σ

µ ū3) kν1 (ξ k3) +
1

2
(u1 σ

µ 6ξ 6k2 ū3) kν1

]
+

1

s

n−1∑
p=0

γ(−t− 1, p) γ(−u− 1, n− 1− p)
[
φµν · kn−1−p

2 (−k1)p
]

[
(u1 σ

µ ū3) kν3 (ξ k1) +
1

2
(u1 6k2 6ξ σµ ū3) kν3

]}
(9.3.101)

representing the higher spin extension of (9.2.48).

9.3.7 Three massless fermions, one higher spin fermion in D = 10

The last four point coupling of interest involves four fermions one of which is massive with

spin s = n + 1
2

on the leading Regge trajectory. As explained in subsection 9.3.1, four fermi
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amplitudes require specification of the spacetime dimension and the type of fermion, so let us

discuss the D = 10 dimensional case with four adjoint gauginos here:

A(λ1, λ2,λ3, χ
n+1/2
4 )D=10 =

1

2

√
2α′

n
(−1)n−1{

−
[

(u1 γ
r u2) (u3 γr)α k

m
3 − (u1 γ

m u2) (u3 6k4)α

]
n−1∑
p=0

(
n−1
p

) [
χαm · kp1 kn−1−p

2

]
B(s, u+ n− p)

−
[

(u3 γ
r u2) (u1γr)α k

m
1 − (u3 γ

m u2) (u1 6k4)α

]
n−1∑
p=0

(
n−1
p

) [
χαm · (−k3)p (−k2)n−1−p]B(s+ n− p, u)

+
[

(u1 γ
r u3) (u2 γr)α k

m
2 − (u1 γ

m u3) (u2 6k4)α

]
n−1∑
p=0

(
n−1
p

) [
χαm · kp1 (−k3)n−1−p]B(s+ 1 + p, u+ n− p)

}
(9.3.102)

Like in the previous examples, we reduce the beta functions to Vt and find manifest cyclic

symmetry in the labels (1, 2, 3) of the massless Weyl fermions and (−)n−1 parity under exchange

of 1↔ 2:

A(λ1, λ2, λ3, χ
n+1/2
4 )D=10 =

√
2α′

n
(n− 1)!Vt

2
∏n−1

k=1(t+ k)

×
{

1

s

n−1∑
p=0

γ(−u− 1, p) γ(−t− 1, n− 1− p)

[
(u1 γ

m u2) (u3 6k4)α − (u1 γ
r u2) (u3 γr)α k

m
3

] [
χαm · kp2 (−k1)n−p−1

]
+

1

t

n−1∑
p=0

γ(−s− 1, p) γ(−u− 1, n− 1− p)

[
(u1 γ

m u3) (u2 6k4)α − (u1 γ
ru3) (u2 γr)α k

m
2

] [
χαm · kp1 (−k3)n−p−1

]
+

1

u

n−1∑
p=0

γ(−t− 1, p) γ(−s− 1, n− 1− p)

[
(u3 γ

m u2) (u1 6k4)α − (u3 γ
r u2) (u1γr)α k

m
1

] [
χαm · kp3 (−k2)n−p−1

]}
(9.3.103)

Let us display the spin 3/2 case explicitly because subsection 9.2.4 only gives the D = 4 result:

A(λ1, λ2, λ3, χ
3/2
4 )D=10 =

√
α′

2
Vt

{
1

s
(u1 γ

m u2)
[

(u3 6k4 χm) − (u3 γm χ
p) k3

p

]
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+
1

t
(u3 γ

m u1)
[

(u2 6k4 χm) − (u2 γm χ
p) k2

p

]
+

1

u
(u2 γ

m u3)
[

(u1 6k4 χm) − (u1 γm χ
p) k1

p

]}
(9.3.104)

Four point amplitudes with several massive states are under current research [113].
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Chapter 10

Basics of the Pure Spinor formalism

In this chapter, we will introduce the pure spinor approach to superstring theory, an alternative

organization scheme of the worldsheet degrees of freedom. In the 90’s of the last century,

two different prescriptions for the computation of scattering amplitudes have been available,

encompassed in the RNS and the Green Schwarz [273, 274, 275] formalisms. Beyond these

traditional approaches, the so-called pure spinor formalism has been invented at the beginning

of the new millennium [276], see [277, 278] for reviews. It was inspired by a U(5) covariant

quantization of the superstring which is related to the RNS formalism by field redefinitions and

manifestly preserves six out of sixteen spacetime supercharges [279].

As a big advantage over its RNS- and GS relatives, the pure spinor formalism gives rise

to manifestly Lorentz covariant and supersymmetric scattering amplitudes. Also, it allows to

compute superstring amplitudes in string theories with non-trivial background e.g. warped

setups or Ramond-Ramond fluxes like in AdS5 × S5 [280,281].

Many superstring amplitudes computed so far in the pure spinor formalism [282] turned out

to be easier to obtain than with RNS method. A sounding example of this are the massless four-

point amplitudes at two-loops: compare the RNS computation in [188,189,190,191,192,193,194]

versus the ten-pages-long computation using pure spinors [283,284]. Results were shown to be

equivalent for any loop amplitude computed so far, see e.g. [285,286,287] and most notably [288]

for the five point one loop amplitude. The general tree level proof can be found in [289].

Scattering of the massless gauge multiplet is described in the language of ten dimensional

super Yang Mills theory [134, 135], see section 10.2. When I started to apply pure spinor

methods to the massless SYM multiplet, tree and one-loop amplitudes had been computed to

five leg order [288,290]. About one third of my research activity was devoted to extending the

tree level results to a higher number of external legs and to a better understanding in terms

275
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of field theory diagrams (as pioneered in [291]). The results of my publications [7, 8, 9, 11] on

these topics will be presented in the following chapters 11, 12 and 13.

Massive Regge excitations and their couplings have hardly been explored in the pure spinor

framework [292,293,294], a lot of work has to be done to construct higher spin multiplets and

to obtain massive state amplitudes in superfield language. So far, the equivalence to the RNS

formalism was shown for massless states only, and it would be very interesting to compare pure

spinor results on massive scattering with RNS computations such as [2, 269]. These issues are

beyond the scope of this work.

In its present formulation, the pure spinor formalism is applicable in ten spacetime dimen-

sions with N = 1 spacetime supersymmetry only. Of course, the final result for scattering

amplitudes can be translated into those for N = 4 SYM in D = 4 by dimensional reduction.

Therefore the main results presented in this work can still be recycled for compactifications of

any dimension, as explained in chapter 8.

Four dimensional superstring theories which preserve at leastN = 1 spacetime supersymme-

try can be approached in a manifestly super Poincaré invariant way by means of the so-called

hybrid formalism [295, 296, 297]. The latter is based on some non-trivial field redefinitions,

which replace the interacting RNS fields ψµ, Sa, S
ḃ by a new set of free worldsheet fields which

closely resemble the pure spinor worldsheet degrees of freedom. It is related to the twistor-like

GS description by gauge-fixing six of the eight fermionic worldsheet invariances.

The present chapter gives a very brief introduction to the basic concepts of the pure spinor

formalism. It does not aim to provide an equally detailed account as the first chapters 2

and 3 on the RNS framework. We just work out the prerequisites necessary to perform tree

level computations for scattering of massless states. More extensive explanations can be found

in [277,282].

Note that a modified set of conventions is used in the following chapters, see appendix A.2.

10.1 Worldsheet CFT of the pure spinor formalism

In this section, we introduce the worldsheet degrees of freedom for the pure spinor formalism.

We will argue that the matter- and ghost sectors give rise to the same central charge and to

the same level of the Lorentz current algebra as we had it in the RNS CFT.
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10.1.1 Matter fields of the pure spinor CFT

The worldsheet variables of the pure spinor formalism are very close to the GS approach: The

embedding coordinates Xm are accompanied by a SO(1, 9) spacetime spinor variable θα rather

than a worldsheet spinor ψm. More precisely, θα is a right handed Majorana Weyl spinor with

16 real components. As proposed by Warren Siegel [298], the conjugate momenta pα for θα are

treated as additional free variables. This idea was invented to cure the problems in quantizing

the GS superstring. The matter degrees of freedom in the pure spinor formalism are described

by Siegel’s modification to the GS action:

S[X, p, θ] =
1

4π

∫
d2z

{
1

2
∂Xm ∂̄Xm + pα ∂̄θ

α + p̄β̂ ∂θ̄
β̂

}
(10.1.1)

Depending on the SO(1, 9) chirality of the right moving spinors (p̄β̂, θ̄
β̂) ∈

{
(p̄β, θ̄

β), (p̄β, θ̄β)
}

,

(10.1.1) gives rise to type IIA or type IIB closed superstring theory. Since we are interested in

open string scattering in this work, we won’t follow this issue any further and ignore the right

movers from now on.

The action (10.1.1) is invariant under spacetime supersymmetry transformations

δηX
m =

1

2
(η γm θ) , δηθ

α = ηα (10.1.2)

δηpα = − 1

2
∂Xm (η γm)α +

1

8
(η γm θ) (∂θ γm)α (10.1.3)

genenerated by the charge

Qα =

∮
dz

2πi

{
pα +

1

2
γmαβ θ

β ∂Xm +
1

24
(γm θ)α (θ γm ∂θ)

}
. (10.1.4)

contracted with a spinorial parameter ηα. Hence it makes sense to introduce supersymmetric

versions Πm and dα of the original variables ∂Xm and pα:

Πm := ∂Xm +
1

2
(θ γm ∂θ) (10.1.5)

dα := pα −
1

2

(
∂Xm +

1

4
(θ γm ∂θ)

)
(γm θ)α (10.1.6)

The latter also appears in the Green Schwarz formalism as a fermionic constraint dα = 0.

The action (10.1.1) defines a CFT governed by the energy momentum tensor

T = − 1

2
Πm Πm − dα ∂θ

α . (10.1.7)

It identifies ∂Xm,Πm, pα and dα as h = 1 primary fields subject to the following OPEs:

Πm(z) Πn(w) ∼ − ηmn
(z − w)2

+ . . . , Πm(z) ek·X(w) ∼ − km
z − w ek·X(w) + . . .



278 CHAPTER 10. BASICS OF THE PURE SPINOR FORMALISM

dα(z) θβ(w) ∼ δβα
z − w + . . . , dα(z) ∂θβ(w) ∼ δβα

(z − w)2
+ . . . (10.1.8)

dα(z) dβ(w) ∼ −
γmαβ Πm

z − w + . . . , dα(z) Πm(w) ∼ (γm ∂θ)α
z − w + . . .

These OPEs determine the central charge of each Πm component and pα, θ
α pair to be c(Π) = 1

and c(p, θ) = −2, respectively. In ten spacetime dimensions, the overall central charge of the

matter sector is then found to be

cmat = 10 · c(Π) + 16 · c(p, θ) = 10 − 32 = − 22 . (10.1.9)

One can construct SO(1, 9) Lorentz currents by means of the standard Noether procedure,

Σmn
p,θ :=

1

2
(p γmn θ) , (10.1.10)

but the OPEs (10.1.8) imply that the level of the associated current algebra is kp,θ = 4 rather

than the RNS value kRNS = 1 following from the currents Σmn
RNS := ψmψn:

Σmn
p,θ (z) Σrs

p,θ(w) ∼
2 ηr[n Σ

m]s
p,θ (w) − 2 ηs[n Σ

m]r
p,θ (w)

z − w + 4
ηms ηnr − ηmr ηns

(z − w)2
+ . . .

(10.1.11)

Σmn
RNS(z) Σrs

RNS(w) ∼ 2 ηr[n Σ
m]s
RNS(w) − 2 ηs[n Σ

m]r
RNS(w)

z − w +
ηms ηnr − ηmr ηns

(z − w)2
+ . . .

(10.1.12)

A necessary requirement for equivalent scattering amplitudes in the RNS- and pure spinor

formalisms is having identical singularity structures among the symmetry generators. On these

grounds, we expect additional contributions to the level of the pure spinor current algebra

which compensate for the mismatch kRNS 6= kp,θ.

10.1.2 Ghost fields of the pure spinor CFT

One of the essential ingredients of the pure spinor formalism is its BRST charge

Q :=

∮
dz

2πi
λα(z) dα(z) (10.1.13)

with λα denoting a bosonic SO(1, 9) Weyl spinor. It must be a ghost variable because it obeys

the wrong statistics for a spinor. So far, the BRST operator (10.1.13) could not be derived

by gauge fixing a more symmetric theory, see [299] for recent work. One can regard Q as an

additional input to the formalism.



10.1. WORLDSHEET CFT OF THE PURE SPINOR FORMALISM 279

According to the dα(z)dβ(w) OPE (10.1.8), nilpotency of Q imposes an algebraic constraint

on the spinor variable λα:

Q2 = 0 ⇒ λα γmαβ λ
β = 0 (10.1.14)

This equation is responsible for the name “pure spinor” formalism: A pure spinor in D dimen-

sions is defined to be a Weyl spinor λα which satisfies (10.1.14) for m = 0, 1, . . . , D − 1.

The most convenient way of counting the number of independent pure spinor solutions

breaks the SO(1, 9) Lorentz symmetry down to its SU(5) subgroup [282]. It turns out that

(10.1.14) contains D/2 = 5 independent constraints rather than D = 10 as suggestes by naive

component counting m = 0, 1, . . . , 9. Hence, the bosonic ghost λα has eleven degrees of freedom

which respect the pure spinor constraint.

In contrast to its RNS counterpart, the pure spinor formalism introduces ghost fields in

nontrivial representations of SO(1, 9). Hence, they also give rise to a Lorentz current Nmn

characterized by the following OPEs:

Nmn(z)λα(w) ∼ (γmn)αβ λ
β(w)

2 (z − w)
+ . . . (10.1.15)

Nmn(z)N rs(w) ∼ 2 ηr[nNm]s(w) − 2 ηs[nNm]r(w)

z − w − 3
ηms ηnr − ηmr ηns

(z − w)2
+ . . .

(10.1.16)

The level kgh = −3 of the ghost current algebra cannot be computed in SO(1, 9) covariant

fashion. The maximally covariant way makes use of SU(5) variables. The double pole in the

ghost current OPE combines with that of the matter current to give overall level

ktot = kgh + kp,θ = − 3 + 4 = + 1 (10.1.17)

to the total Lorentz currents Σmn
p,θ + Nmn. This ties in with the level kRNS = 1 of the RNS

currents ψmψn.

The construction of the ghost currents and the derivation of their algebra is only possible

in the SU(5) decomposition of the λα degrees of freedom. The same is true for the energy

momentum tensor. A careful U(5) analysis shows that each ghost degree of freedom contributes

c(λ) = +2 to the central charge of the ghost sector such that we are left with a vanishing total

central charge:

cgh = 11 · c(λ) = + 22 = − cmat ⇒ ctot = cmat + cgh = 0 (10.1.18)

The full pure spinor CFT with both matter- and ghost degrees of freedom has therefore passed

two important consistency tests: The level of the overall SO(1, 9) current algebra adds up to
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the RNS value ktot = kRNS = 1, and the central charges of the matter- and ghost sectors are

just opposite such that the conformal anomaly vanishes.

10.2 Superfield formulation of N = 1 SYM in D = 10

The aim of this section is the introduction of a supersymmetric vertex operator for the massless

open string states, i.e. the N = 1 SYM multiplet in ten spacetime dimensions. The gluon-

and gluino degrees of freedom will be packaged into superfields A(X, θ), functions living on the

superspace which is spanned by the ten spacetime coordinates Xm and associated Grassmann-

odd spinor variables θα. The latter transform as a right handed Majorana Weyl spinor of

SO(1, 9). A more general introduction to superspace methods can be found in [300, 301, 302,

303,304].

The original references for ten dimensional SYM are [134, 135]. It was discovered in later

work [305] that pure spinors are useful for implementing the on-shell constraints.

10.2.1 The superfield content

The usual starting point in defining a gauge theory is the introduction of covariant derivatives.

Since the gauge theory in question is supposed to be defined on superspace, there exist derivative

both in the spacetime directions (i.e. with respect to Xm) and in the direction of the Grassmann

odd coordinates θα. The canonical differential operator for the latter is slightly modified to

ensure the right superalgebra

Dα :=
∂

∂θα
+

1

2
(γm θ)α ∂m ⇒

{
Dα , Dβ

}
= γmαβ ∂m . (10.2.19)

The covariant derivatives in Xm and θα directions then involve gauge (super-)fields (Am, Aα):

∇m := ∂m + Am(X, θ) , ∇α := Dα + Aα(X, θ) (10.2.20)

Any physical observable of N = 1 SYM has to be invariant under the gauge transformation

Am ≡ Am + ∂mΩ , Aα ≡ Aα + DαΩ (10.2.21)

with some superfield parameter Ω(X, θ).

The linearized equations of motion for free gauge fields are derived by the requirement that

the supercovariant derivatives ∇m,∇α satisfy the same superalgebra as ∂m, Dα derivatives,{
∇α , ∇β

} !
= γmαβ∇m ⇒ DαAβ + DβAα = γmαβ Am , (10.2.22)
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discarding the nonlinear piece {Aα, Aβ} since we are interested in the free theory and introduce

the interactions by perturbative computations. In D = 10, a symmetric bispinor D(αAβ) has a

one-form- and a five-form component, and (10.2.22) can be rephrased as the vanishing of the

five form γαβmnpqrDαAβ = 0. If this construction was carried out in lower dimensions D < 10,

it would not eliminate any p form component from D(αAβ), i.e. it would not put the fields on

shell.

The on-shell constraint admits to express the vector superfield Am in terms of its spinorial

relative Aα and to thereby identify it as an auxiliary superfield:

Am =
1

5
γαβm DαAβ (10.2.23)

More formally, the unwanted degrees of freedom due to Am are eliminated by a set of gauge

invariant constraints on the superspace curvature.

The simplest gauge invariant quantities one can construct in this setting are field strengths,

i.e. generalized curls in superspace. By antisymmetrizing either two spacetime components or

one spacetime- and one Grassmann odd component of the (Am, Aα) Jacobi matrix, we obtain

Wα :=
1

10
γαβm (DβA

m − ∂mAβ) (10.2.24)

Fmn := ∂mAn − ∂nAm . (10.2.25)

Bianchi identities for the ∇m and ∇α operators yield expressions for the fermionic derivatives

of all the superfields:

DαAm = (γmW )α + ∂mAα (10.2.26)

DαW
β =

1

4
(γmn)α

β Fmn (10.2.27)

DαFmn = 2 k[m (γn] W )α (10.2.28)

They will be important on-shell constraints for the construction of vertex operators in the

BRST cohomology.

In order to reproduce the equations of motions for the gluon- and gluino components of the

superfields, let us act on (10.2.27) with Dγ and symmetrize in the (α, γ) indices. Taking the δγβ

trace then yields a massless Dirac equation for the Wα field strength,

γmαβ ∂mW
β = 0 . (10.2.29)

The equations of motion for the vector superfield Am follow from γαγn Dγ action on (10.2.29)

together with (10.2.27),

∂mFmn = 0 . (10.2.30)
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This already suggests to identify the gluon and gluino with the lowest theta components of Am

and Wα, respectively.

10.2.2 Theta expansions

The Grassmann odd nature of the spinorial superspace coordinates θα makes any power series

expansion in the latter terminate at the finite order O(θ16). The expansion coefficient at each

order O(θk) is a spacetime function Φk(X).

For the purpose of θ expanding the N = 1 SYM superfields (Aα, Am,W
α,Fmn), the equa-

tions of motion (10.2.22) and (10.2.27) give recursion relations between the coefficient Φk(X)

at neighboring θ orders. They become particularly simple if we enforce θαAα(X, θ) = 0 by an

appropriate choice of the gauge parameter Ω in (10.2.21). This gauge can be viewed as the

supersymmetric analogue of choosing normal coordinates.

The solutions to the equations of motion can be parametrized by the gluon polarization

vector ξm and a gluino wave function uα. Once the X dependence is organized into plane

waves with momentum km, the first terms of the superfields’ θ expansion are determined as

follows [306,307]:

Aα(X, θ) = ek·X
{
ξm

2
(γm θ)α −

1

3
(u γm θ) (γm θ)α −

1

16
(γp θ)α (θ γmnp θ) k[m ξn]

+
1

60
(γm θ)α kn (u γp θ) (θ γmnp θ) +

1

576
(γm θ)α k

r (θ γmrs θ) (θ γspq θ) k[p ξq] + O(θ6)

}
Am(X, θ) = ek·X

{
ξm − (u γm θ) −

1

4
kp (θ γm

pq θ) ξq +
1

12
kp (θ γm

pq θ) (u γq θ)

+
1

96
kn (θ γm

np θ) kq (θ γp
qr θ) ξr −

1

480
kn (θ γm

np θ) kq (θ γp
qr θ) (θ γr u) + O(θ6)

}
Wα(X, θ) = ek·X

{
uα − 1

2
k[m ξn] (γmn θ)α +

1

4
km (γmn θ)α (u γn θ) (10.2.31)

+
1

24
km (γmn θ)α (θ γn

pq θ) k[p ξq] −
1

96
(γmn θ)α km (θ γn

pq θ) kp (u γq θ)

− 1

768
(γmn θ)α km (θ γn

pq θ) kp (θ γq
rs θ) kr ξs + O(θ6)

}
Fmn(X, θ) = ek·X

{
2 k[m ξn] − 2 k[m (u γn] θ) −

1

2
k[p ξq] k[m (θ γn]

pq θ)

+
1

6
k[m (θ γn]

pq θ) kp (u γq θ) +
1

48
k[m (θ γn]

tp θ) kt kq (θ γp
qr θ) ξr

− 1

240
k[m (θ γn]

tp θ) kt (θ γp
qr θ) kq (θ γr u) + O(θ6)

}
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We will argue in the later subsection 10.3.3 that expanding up to order O(θ5) is sufficient

for extracting superfield components from supersymmetric tree amplitudes. More compact

expressions for (10.2.31) can be found in [308] in terms of formal power series1, e.g.

Am = ek·X
{(

cosh
√
O
)
m
q ξq +

(
sinh
√
O√
O

)
m

q (θ γq u)
}

(10.2.32)

Omq = − 1

2
kn (θ γm

np θ) . (10.2.33)

Note that the θ expansions (10.2.31) have an alternating structure with respect to the gluon and

the gluino: The Grassmann odd superfields Aα and Wα involve the gluon polarization along

with odd powers of θ and the gluino wave functions with even θ powers. Bosonic superfields

Am,Fmn follow the opposite pattern.

10.2.3 Vertex operators for the SYM multiplet

We have introduced superfields describing the degrees of freedom of the massless gauge mul-

tiplet. This paves the way to writing down supersymmetric vertex operators. Just like in the

RNS framework, each physical state must have a representative of conformal weight h = 0 and

one of h = 1 in the worldsheet CFT of the pure spinor formalism.

In the following, we will think of the SYM superfields (10.2.31) as worldsheet functions,

depending on z through the superspace variables, e.g. Aα(z) ≡ Aα
(
Xm(z), θ(z)

)
. From the

OPEs dα(z)θβ(w) ∼ δβα(z − w)−1 and Πm(z)ek·X(w) ∼ −kmek·X(w)(z − w)−1, we can infer the

action of Πm and dα on a generic superfield V ∈ {Aα, Am,Wα,Fmn}:

Πm(z)V(w) ∼ − km
z − w V(w) , dα(z)V(w) ∼ 1

z − w DαV(w) (10.2.34)

We have argued in subsection 3.1.3 that the h = 1 RNS open string vertex operators at (b, c)

ghost number zero must be integrated over the worldsheet boundary and can be mapped to

their position fixed h = 0 analogue by adjoining a c ghost of conformal weight −1. This suggests

to construct the massless pure spinor vertex operator from the λα ghost and to combine it with

an h = 0 superfield such that the overall vertex lies in the cohomology of the BRST operator

Q =
∮

dz
2πi
λαdα. The only possible choice involves the spinorial SYM superfield Aα:

V = λαAα(X, θ) (10.2.35)

Recall that all of λα, Xm and θα depend on the worldsheet position z. By combining the SYM

equation of motion (10.2.22) with the dα action (10.2.34) on superfields, we can check that the

1Functions of an operator O should be understood in terms of their Taylor expansion, i.e. cosh
√
O =

1 +O/2 +O2/24 + . . . and sinh
√
O/
√
O = 1 +O/6 +O2/120 + . . .
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vertex operator λαAα is BRST closed:

QV (w) =

∮
dz

2πi
λ(α λβ) DαAβ(w)

z − w =
1

2
λα γmαβ λ

β Am = 0 (10.2.36)

The last step makes use of the pure spinor constraint (λγmλ) = 0 for the λα ghost.

A bit more work is required to obtain the integrated h = 1 version U of this vertex operator.

The pure spinor CFT offers four conformal primaries ∂θα,Πm, dα, N
mn of unit weight which

might enter the integrated vertex U . Determining the superfield admixtures is guided by the

requirement that QU = ∂V such that the integral over U(z) is in the BRST cohomology. An

analogous relation QBRSTV = ∂(cV ) holds in the RNS formalism, see (3.1.12). The unique

solution to these requirements is

U = ∂θαAα + ΠmAm + dαW
α +

1

2
NmnFmn . (10.2.37)

Checking QU = ∂V first of all involves various OPEs,

Q (∂θαAα) = ∂λαAα − ∂θα λβDβAα

Q (ΠmAm) = (λ γm ∂θ)Am + Πm λαDαAm (10.2.38)

Q (dαW
α) = − (λ γmW ) Πm − dβ λ

αDαW
β

Q (NmnFmn) =
1

2
(γmn λ)α dαFmn + Nmn λαDαFmn ,

then the SYM equations of motion Dα{Aβ, Am,W β,Fmn} complete the proof:

QU = ∂λαAα + λα
(
∂θβDβAα + Πm ∂mAα

)
= ∂(λαAα) (10.2.39)

10.3 Tree level amplitudes in the pure spinor formalism

The prescription to compute tree amplitudes in the pure spinor formalism corresponds to the

RNS formula (5.3.29) – with the additional simplification that we don’t have to take superghosts

into account now. The pure spinor part of this work focuses on massless states, so the vertex

operators V and U can already be specified to (10.2.35) and (10.2.37) creating states of the

N = 1 SYM multiplet:

A(1, 2, . . . , n) ∼
〈
V1(0)

n−2∏
j=2

1∫
zj−1

dzj Uj(zj)Vn−1(1)Vn(∞)

〉
(10.3.40)

As explained in subsection 5.2.2, the disk topology of a tree level open string worldsheet gives

rise to the conformal Killing group SL(2,R). Therefore, we can fix three vertex positions
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(z1, zn−1, zn) = (0, 1,∞) on the real axis and insert unintegrated vertices Vi at these points.

The remaining positions z2, . . . , zn−2 are integrated over segments of the real axis such that the

ordering z1 ≤ z2 ≤ . . . ≤ zn−2 ≤ zn−1 of the color stripped amplitude in question is preserved.

In this section, we will explain the general methods for evaluating the CFT correlator in

(10.3.40), paying particular attention to the zero modes. Later subsections 10.3.4 and 10.3.5

provide consistency checks for our setup: We prove that the amplitude prescription (10.3.40)

is independent on the assignment of Vi and Uj vertices and that its superfield components

reproduce the RNS results.

10.3.1 Integrating out nonzero modes

The conformal h = 1 primaries ∂θα,Πm, dα, N
mn occurring in the correlator (10.3.40) have

no zero modes at tree level. This enormously simplifies the computation of their tree level

correlation functions. We can apply Wick’s theorem just like in appendix B.4 and replace

each primary by the sum over its singularities with the other fields present in the correlation

function. A first example for this is the Πm(z) field with −km
z−w action on a plane wave ek·X(w)

and hence any superfield V ∈ {Aα, Am,Wα,Fmn}:〈
Πm(z)

n∏
j=1

Vj(wj)
〉

= −
n∑
`=1

km`
z − w`

〈
n∏
j=1

Vj(wj)
〉

(10.3.41)

Similarly, we have found dα to act as a covariant derivative in (10.2.34):〈
dα(z)

n∏
j=1

Vj(wj)
〉

=
n∑
`=1

1

z − w`

〈
DαV`(w`)

n∏
j=1
j 6=`

Vj(wj)
〉

(10.3.42)

The ghost current Nmn gives rise to a single pole when approaching λα, so it has a nontrivial

action on the (anticommuting) unintegrated vertex〈
Npq(z)

n∏
j=1

λαj Ajαj(wj)

〉
=

1

2

n∑
`=1

1

z − w`

〈
(λ γpq)α` A`α`(w`)

n∏
j=1
j 6=`

(−1)j λαj Ajαj(wj)

〉
.

(10.3.43)

If multiple h = 1 fields are present in correlators, then these mutual singularities have to be

summed analogously to (10.3.41) and (10.3.42). According to the OPEs (10.1.8), the Πm and

dα become singular when they approach the Πm, dα and ∂θα primaries. The ∂θα term of the

integrated vertex (10.2.37) is nonsingular with respect to h = 0 superfields V , but it can feel

the presence of other dα. Finally, the Nmn produce the singularities of the ghost current OPE

(10.1.16) when approaching the 1
2
NpqFpq part of another integrated vertex.
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These situations require at least two integrated vertices, so they do not occur in the com-

putation of tree level amplitudes with n < 5 legs. In fact, we will argue in the later section 12.1

that even at n ≥ 5, one can circumvent the explicit computation of Ui(zi)Uj(zj) singularities.

The simplicity of the correlation functions (10.3.41) to (10.3.43) needs to be contrasted with

RNS computations. The worldsheet interactions of NS fermions ψm with their spin fields Sα

pose a nontrivial challenge to compute their correlation functions, see chapter 6.

As a sample calculation, let us simplify the correlation function 〈V1U2V3V4〉 entering the

four point amplitude A(1, 2, 3, 4) due to (10.3.40). The basic building block in evaluating this

correlator is the single pole in the V1(z1)U2(z2) OPE:

V1(z1) ΠmA2
m(z2) ∼ 1

z21

(− km1 )λαA1
αA

2
m(z1) = − 1

z21

(k1 · A2)V1(z1)

V1(z1) dαW
α
2 (z2) ∼ − 1

z21

λαDβA
1
αW

β
2 (z1) = − 1

z21

λα (−DαA
1
β + γmαβ A

1
m )W β

2 (z1)

=
1

z21

[
(QA1

α)Wα
2 − A1

m (λ γmW2)
]

(10.3.44)

V1(z1)
Nmn

2
F2
mn(z2) ∼ − 1

4 z21

λα γmnα
β A1

β F2
mn(z1) = − 1

z21

A1
α (QWα

2 )(z1)

The terms proportional to (QA1
α)Wα

2 and −A1
α(QWα

2 ) add up to a BRST exact combination:

V1(z1)U2(z2) ∼ 1

z21

[
− (k1 · A2)V1 − A1

m (λ γmW2) + Q (A1W2)
]
(z1) + . . . (10.3.45)

Hence, the four point correlator in question is given by

〈V1(0)U2(z2)V3(1)V4(∞) 〉

= − 1

z2

〈 [
− (k1 · A2)V1 − A1

m (λ γmW2) + Q (A1W2)
]
(0)V3(1)V4(∞)

〉
+

1

1− z2

〈
V1(0)

[
− (k3 · A2)V3 − A3

m (λ γmW2) + Q (A3W2)
]
(1)V4(∞)

〉
. (10.3.46)

Note that the contribution ∼ z24 vanishes because the last position z4 is fixed to infinity. The

next subsection is devoted to the evaluation of the zero mode correlators in (10.3.46).

10.3.2 Zero mode integration

The conformal weight zero variables λα and θα contain zero modes at tree level which require

particular care in evaluating their correlation functions. Since SL(2,R) invariance on the disk

requires three unintegrated vertex insertions Vi = λαAiα into tree level correlators, the ghost

number is fixed to be three.
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Integrating out the conformal fields ∂θα,Πm, dα and Npq leaves us with a power series

fαβγ(θ, zj) in θ, contracted with the λα ghosts:〈
V1

n−2∏
j=2

∫
dzj Uj(zj)Vn−1 Vn

〉
=

n−2∏
j=2

∫
dzj 〈λα λβ λγ fαβγ(θ; zj) 〉 (10.3.47)

The specific form of fαβγ in terms of SYM superfield follows from the OPE contractions dis-

cussed above. Since the amplitude is made of BRST closed ingredients V and
∫

dz U , also the

final answer must be BRST closed. This constrains fαβγ to satisfy

n−2∏
j=2

∫
dzj λ

α λβ λγ λδDδfαβγ(θ; zi) = 0 . (10.3.48)

It turns out that among all the occurring θk powers k = 0, 1, . . . , 16, only θ5 yields a consistent

nonzero correlation function:

〈λα λβ λγ fαβγ(θ) 〉 =
〈
λα λβ λγ fαβγ(θ)

∣∣∣
θ5

〉
(10.3.49)

More precisely, the 〈 . . . 〉 brackets have to be evaluated via

〈 (λ γm θ) (λ γn θ) (λ γp θ) (θ γmnp θ) 〉 = 1 . (10.3.50)

This is justified by the fact that the unique element in the BRST cohomology at ghost number

three is proportional to θ5. Let us prove that the expression within the 〈 . . . 〉 bracket indeed

belongs to the BRST cohomology:

• BRST closedness follows from the pure spinor constraint (λγmλ) = 0 and its particular

form (λγm)α(λγm)β = 0.

• Expressions of the form λ3 θ5 cannot be BRST exact ∼ Q(λ2 θ6) because one cannot build

a Lorentz scalar from two λα and six θβ: The bispinor λαλβ = 1
3840

(λγmnpqrλ)γαβmnpqr only

has a five-form component and it can be checked using the LiE program [309] that its

tensor product with an antisymmetric six-spinor θ[α1 . . . θα6] does not contain any Lorentz

scalar2.

• Uniqueness follows from the fact that the tensor product of three λα and five θβ contains

one scalar.

2It is essential that the five form is the only SO(1, 9) irreducible in a pure bispinor: The vector (λγmλ)γαβm is

absent due to the pure spinor constraint, and the three form vanishes because of the antisymmetry γmnpαβ = γmnp[αβ] .
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The second remarkable virtue of (10.3.50) is its compatibility with spacetime SUSY. Since λα

is invariant and θα transforms as δηθ
α = ηα (see (10.1.2) and (10.1.3)), the SUSY variation of

a pure spinor amplitude can only receive a contribution like

AS6USY =
n−2∏
j=2

∫
dzj 〈 (λ γm θ) (λ γn θ) (λ γp θ) (θ γmnp θ) θ

α Φα(zi) 〉

⇒ δηAS 6USY =
n−2∏
j=2

∫
dzj η

α Φα(zi) (10.3.51)

for some θ independent spinor Φα. However, BRST closure (10.3.48) for the choice fαβγ =

(γmθ)α(γnθ)β(γpθ)γ(θγmnpθ)θ
δΦδ implies

n−2∏
j=2

∫
dzj λ

α λβ λγ λδ Φδ . (10.3.52)

This forces Φα to be a total worldsheet derivative which makes the SUSY variation (10.3.51)

vanish. Consequently, the zero mode prescription (10.3.50) firstly belongs to the BRST coho-

mology and secondly preserves spacetime supersymmetry.

Generically, the correlation function 〈V1

∏n−2
j=2 UjVn−1Vn〉 gives rise to tensor structures

〈λαλβλγθδ1 . . . θδ5 Fαβγ;δ1...δ5〉 which differ from (λγmθ)(λγnθ)(λγpθ)(θγmnpθ). But any contrac-

tion of λ3 θ5 is necessarily proportional to (10.3.47) because there is no more than one scalar in

the tensor product of three pure spinors λα and five unconstrained θα. So the task in practical

computations is to determine the proportionality constant relating λαλβλγθδ1 . . . θδ5 Fαβγ;δ1...δ5

to the normalized cohomology element (λγmθ)(λγnθ)(λγpθ)(θγmnpθ).
3 If the vector indices of

the six gamma matrices are free, for example, then the normalization (10.3.47) implies that

〈 (λ γm θ) (λ γn θ) (λ γp θ) (θ γrst θ) 〉 =
1

120
δ[m
r δns δ

p]
t . (10.3.54)

Luckily, the evaluation of a generic zero mode correlator 〈λαλβλγθδ1 . . . θδ5 Fαβγ;δ1...δ5〉 has been

fully automatized [310] based on FORM [311, 312]. The computer program presented in this

reference can extract any superfield component from the superamplitudes which we will compute

in the following chapters. Some technical complications might happen in amplitudes with four

or more fermions – the involved nature of ten dimensional Fierz identities leads to ambiguities

in presenting the final results in terms of the spinor wave functions. For bosonic pure spinor

amplitudes, the program has been checked to reliably reproduce gluon amplitudes known from

RNS computations.

3A symbolic notation for this algorithm is

〈λα λβ λγ fαβγ(θ) 〉 ∼
(
γm

∂

∂θ

)α (
γn

∂

∂θ

)β (
γp

∂

∂θ

)γ (
∂

∂θ
γmnp

∂

∂θ

)
fαβγ(θ) , (10.3.53)

but one would never evaluate these θ derivatives in practice.
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10.3.3 Sample calculation: The three point amplitude in compo-

nents

This subsection shows a sample calculation of zero mode integration with a two–fold purpose.

Firstly, we can see the zero mode integration prescription in action, and secondly, it gives an

example of how a supersymmetric amplitude in pure spinor superspace reproduces component

amplitudes computed in the RNS formalism.

The general formula (10.3.40) for pure spinor tree amplitudes contains no integrated vertices

at n = 3 points:

A(1, 2, 3) = 〈λαA1
α(z1)λβ A2

β(z2)λγ A3
γ(z3) 〉

=

〈
λα λβ λγ

3∏
j=1

ekj ·X(zj)

{
− ξ

1
m

2
(γm θ)α

ξ2
n

2
(γn θ)β

k3
[q ξ

3
p]

16
(γr θ)γ (θ γpqr θ)

+
ξ1
m

2
(γm θ)α

(u2 γn θ)

3
(γn θ)β

(u3 γp θ)

3
(γp θ)γ + permutations

}〉
(10.3.55)

=
1

64
ξ1
m ξ

2
n k

3
[p ξ

3
q] 〈 (λ γm θ) (λ γn θ) (λ γr θ) (θ γpqr θ) 〉

+
1

18
ξ1
m u

α
2 u

β
3 〈 (λ γm θ) (λ γn θ) (λ γp θ) (γn θ)α (γp θ)β 〉

+ permutations in (1, 2, 3) (10.3.56)

At this point, we have to compare the zero mode correlators with (10.3.50) and find the missing

proportionality constants:

〈 (λ γm θ) (λ γn θ) (λ γr θ) (θ γpqr θ) 〉 =
1

90
(ηmp ηnq − ηmq ηnp) (10.3.57)

〈 (λ γm θ) (λ γn θ) (λ γp θ) (γn θ)α (γp θ)β 〉 =
1

160
γmαβ

These zero mode correlators generate the tensor contractions in the component amplitudes:

A(1, 2, 3) =
1

2880

{
(ξ1 · ξ3) (ξ2 · k1) + (ξ1 · ξ2) (ξ3 · k2) + (ξ2 · ξ3) (ξ1 · k3)

}
+

1

2880

{
ξ1
m (u2 γ

m u3) + ξ2
m (u3 γ

m u1) + ξ3
m (u1 γ

m u2)
}

∼ 1

2880

{
A(g1, g2, g3) + A(g1, λ2, λ3) + A(λ1, g2, λ3) + A(λ1, λ2, g3)

}
(10.3.58)

Apart from RNS normalization factors discussed in subsection 5.3.4, we get the sum over

various SUSY multiplet components like the three gluon coupling A(g1, g2, g3) as well as all

permutations of the gaugino gluon vertex A(g1, λ2, λ3).
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Performing the above steps becomes an extremely tedious task with increasing number of

legs. Also at four point level, the component expressions for the pure spinor superamplitude

A(1, 2, 3, 4) have been computed by hand in the heroic work of [308]. Fortunately, given its

systematic nature, this procedure is suitable for an automated handling with the computer

program of [310]. The following chapters will therefore no longer pursue the issue of zero mode

integration. The main task for the rest of this work is the computation and simplification of

supersymmetric pure spinor amplitudes.

10.3.4 Independence of A on the (Vi, Uj) assignment

The purpose of this subsection is to prove along the lines of [289] that the pure spinor tree

amplitude computed via (10.3.40) does not depend on the choice of which states are represented

by an SL(2,R) fixed vertex Vi(zi) rather than
∫

dzj Uj(zj). This independence is necessary for

cyclic invariance of a color stripped amplitude.

We will make use of the so-called “cancelled propagator” argument due to [Polchinski 1]

which states that terms with colliding vertex operators Vi(z)Vj(z) or Vi(z)Uj(z) identically

vanish. Keeping this in mind, we will now show that〈
V1(0)

1∫
0

dz2 U2(z2)
n−2∏
j=3

1∫
zj−1

dzj Uj(zj)Vn−1(1)Vn(∞)

〉

=

〈 0∫
−∞

dy U1(y)V2(0)
n−2∏
j=3

1∫
zj−1

dzj Uj(zj)Vn−1(1)Vn(∞)

〉
(10.3.59)

i.e. that the representation Vi,
∫

dzi+1 Ui+1 of neighboring states can always be swapped to∫
dzi Ui, Vi+1. Since QUj(w) =

∮
dz
2πi
λαdα(z)Uj(w) = ∂Vj(w), we can rewrite the left hand side

V1(0)Vn(∞) =

0∫
−∞

dy ∂V1(y)Vn(∞) =

0∫
−∞

dy Q
(
U1(y)

)
Vn(∞) (10.3.60)

using that V1(∞)Vn(∞) = 0 on the compactified real axis. As a next step, we deform the

integration contour of the BRST current λαdα such that it encircles all the vertex operators

apart from U1:〈
V1(0)

1∫
0

dz2 U2(z2)
n∏
j=3

1∫
zj−1

dzj Uj(zj)Vn−1(1)Vn(∞)

〉

= −
〈 0∫
−∞

dy U1(y)

1∫
0

dz2 Q

[
U2(z2)

n∏
j=3

1∫
zj−1

dzj Uj(zj)Vn−1(1)Vn(∞)

]〉
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= −
〈 0∫
−∞

dy U1(y)

1∫
0

dz2 ∂V2(z2)
n∏
j=3

1∫
zj−1

dzj Uj(zj)Vn−1(1)Vn(∞)

〉

= +

〈 0∫
−∞

dy U1(y)V2(0)
n∏
j=3

1∫
zj−1

dzj Uj(zj)Vn−1(1)Vn(∞)

〉
(10.3.61)

On the way to the third line, terms where Q acts on the Uj vertices with 3 ≤ j ≤ n − 2

were discarded due to cancelling propagator argument: It forces both boundary terms of the∫ 1

zj−1
dzj ∂Vj(zj) integrals to vanish,

. . . Uj−1(zj−1)
(
Vj(1) − Vj(zj−1)

)
. . . Vn−1(1) . . . = 0 . (10.3.62)

QU2 = ∂V2, on the other hand, yields a nonzero contribution in the last line of (10.3.61): The

upper integration limit z2 = 1 cancels due to V2(1) . . . Vn−1(1) = 0 whereas the lower one z2 = 0

generically does not coincide with the position y of U1, i.e. U1(y)V2(0) 6= 0.

10.3.5 Equivalence to RNS computations

Before making use of the supersymmetric setup of the pure spinor formalism, we should make

sure that the superfield components of its results agrees with RNS computations. At tree level,

this is addressed in [289]. Let us sketch the arguments of this reference why massless RNS

amplitudes with any number of bosons and up to four fermions are reproduced by the pure

spinor precription (10.3.40).

In order to make statements about components, it makes sense to extract the bosonic and

fermionic part of the supersymmetric vertex operators V and U . In the gauge θαAα = 0, they

are determined by the θ expansion (10.2.31) and given by

VB =
1

2
ξm (λ γm θ) ek·X + O(θ3) , UB = ξm (∂Xm − iknM

mn) ek·X + O(θ2)

VF =
1

3
uα (λ γm θ) (γm θ)α ek·X + O(θ4) , UF = −uα pα ek·X + O(θ) (10.3.63)

in obvious notation B ≡ boson and F ≡ fermion. The h = 1 primary Mmn = Σmn
p,θ + Nmn

encompasses the matter- and ghost contributions to the pure spinor Lorentz current with overall

level ktot = 1. At tree level, higher powers of θ which are not displayed in (10.3.63) only

contribute in presence of at least six fermions.

Now consider the n point pure spinor tree amplitude and truncate the superfields to gauginos

at positions 1, 2, n− 1 and n and to gluons otherwise. This component is computed via

APS
(
λ1,λ2,λn−1,λn
g3,...,gn−2

)
=

〈
V 1

F (z1)

∫
dz2 U

2
F(z2)

(
n−2∏
j=3

∫
dzj U

j
B(zj)

)
V n−1

F (zn−1)V n
F (zn)

〉
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= − 1

27

〈
uα1 fα(z1)uβn−1 fβ(zn−1)uγn fγ(zn)

∫
dz2 u

δ
2 pδ(z2)(

n−2∏
j=3

∫
dzj ξ

j
mj

(∂Xmj − ikjnj M
mjnj)(zj)

)
n∏
l=1

ekl·X(zl)

〉
(10.3.64)

with shorthand fα := (λγmθ)(γ
mθ)α for the h = 0 field in the unintegrated fermion vertex. The

analogous RNS compuation involves four fermion vertices in the canonical −1/2 superghost

picture (3.2.42) and any gluon vertex in its zero picture (3.2.41). In the RNS conventions from

earlier parts of this work:

ARNS
(
λ1,λ2,λn−1,λn
g3,...,gn−2

)
∼

〈
uα1 c Sα e−φ/2(z1)uβn−1 c Sβ e−φ/2(zn−1)uγn c Sγ e−φ/2(zn)

∫
dz2 u

δ
2 Sδ e−φ/2(z2)

(
n−2∏
j=3

∫
dzj ξ

j
mj

(i∂Xmj − kjnj ψ
mjψnj)(zj)

)
n∏
l=1

eikl·X(zl)

〉
(10.3.65)

Integrating out the h = 1 fields from the gluons gives rise to exactly the same OPE singularity

structure in both formalisms. This is firstly due to the coinciding levels of the Lorentz current

algebra of Mmn and ψmψn and secondly to the equivalence of pure spinor transformation

Mmn(z) fα(w) ∼ (γmn)α
β fβ(w)

2 (z − w)
+ . . . , Mmn(z) pα(w) ∼ (γmn)α

β pβ(w)

2 (z − w)
+ . . .

(10.3.66)

to their RNS counterpart ψmψn(z)Sα(w) ∼ (γmn)α
βSβ(w)/(2(z − w)). The dependence of

both amplitudes (10.3.64) and (10.3.65) on the integrated positions z3, . . . , zn−2 of bosons is

completely determined by these OPEs. So what is left to check is that the correlation functions

of fermion fields agree. On the RNS side, we have

〈 c Sα e−
φ
2 (z1) c Sβ e−

φ
2 (zn−1) c Sγ e−

φ
2 (zn)Sδ e−

φ
2 (z2) 〉 =

γµαβ γµγδ

2 zn,2
+

γµαγ γµβδ

2 zn−1,2

+
γµαδ γµγβ

2 z12

,

(10.3.67)

and the analogoues PS correlator 〈fα(z1)fβ(zn−1)fγ(zn)pδ(z2)〉 is found to be proportional to

(10.3.67) by summing the pδ singularities and performing the zero mode integration. Since also

the z2 residues agree in the two formalisms, we have established

APS
(
λ1,λ2,λn−1,λn
g3,...,gn−2

)
= ARNS

(
λ1,λ2,λn−1,λn
g3,...,gn−2

)
(10.3.68)

on the level of four fermions.

The proof of equivalence for amplitudes involving two fermions is based on similar reasoning.

The pure spinor- and RNS prescriptions lead to the following expressions:

APS
(

λ1,λn
g2,...,gn−1

)
=

1

18

〈
uα1 fα(z1)uβn fβ(zn) ξp (λ γp θ)(zn−1)
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n−2∏
j=2

∫
dzj ξ

j
mj

(∂Xmj − ikjnj M
mjnj)(zj)

)
n∏
l=1

ekl·X(zl)

〉
(10.3.69)

ARNS
(

λ1,λn
g2,...,gn−1

)
∼

〈
uα1 c Sα e−φ/2(z1)uβn c Sβ e−φ/2(zn) ξp c ψ

p e−φ(zn−1)(
n−2∏
j=2

∫
dzj ξ

j
mj

(i∂Xmj − kjnj ψ
mjψnj)(zj)

)
n∏
l=1

eikl·X(zl)

〉
(10.3.70)

Integrating out the gluons at z2, . . . , zn−2 gives rise to the same OPE structure in both for-

malisms4, i.e. all the worldsheet integrals are guaranteed to match. Finally, the remaining

three point functions are proportional to each other:

〈 c Sα e−
φ
2 (z1) c Sβ e−

φ
2 (zn) c ψp e−φ(zn−1) 〉 =

γpαβ√
2
∼ 〈 fα(z1) fβ(zn) (λ γp θ)(zn−1) 〉

(10.3.72)

The equivalence of purely bosonic amplitudes follows from SUSY Ward identities relating the

boson amplitudes in questions to two fermion amplitudes (10.3.69) and (10.3.70) which were

shown to agree. The RNS realization of those Ward identities has been worked out in subsection

5.2.4, and the pure spinor generator of spacetime SUSY is given by (10.3.73).

Qα =

∮
dz

2πi

{
pα +

1

2
γmαβ θ

β ∂Xm +
1

24
(γm θ)α (θ γm ∂θ)

}
. (10.3.73)

4For the gluon at zn−1, we need the additional information that the PS Lorentz current Mmn reproduces

the OPE of ψmψn(z) and ψp(w):

Mmn(z) (λ γp θ)(w) ∼ 2 ηp[n (λ γm] θ)
z − w (10.3.71)
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Chapter 11

SYM amplitudes in pure spinor

superspace

Equipped with the pure spinor prerequisites from the previous chapter, we will now construct

superfields which capture the kinematics in SYM field theory amplitudes. This chapter gathers

the results of [291] and three of my pubilcations [7, 8, 11].

As emphasized several times before, the S matrix of maximally supersymmetric SYM theory

(N = 1 in D = 10 dimensions which is equivalent to N = 4 in D = 4 dimensions) emerges as

the α′ → 0 limit of superstring amplitudes involving the massless gauge multiplet. That is why

the pure spinor approach to the superstring provides a setting to describe SYM amplitudes

ASYM in a manifestly supersymmetric fashion.

As explained in section 5.5, every color ordered tree level amplitude in SYM theories can

be arranged into a sum over cubic diagrams of appropriate color order,

ASYM(1, 2, . . ., n) =
∑
i

ni∏
αi
sαi

. (11.0.1)

The sum over i encompasses 1
n−1

(
2n−4
n−2

)
cubic graphs, sαi denote their n− 3 propagators, and

ni are the associated kinematic BCJ numerators [81]. The latter can be viewed to be dual to

color factors according to subsection 5.5.2, and we will construct them explicitly by pure spinor

methods in the later chapter 13.

On the basis of this representation for the n-point SYM amplitude, it was suggested in

[291] that the BRST cohomology of the pure spinor formalism together with the kinematic

pole structure might be enough to fix the ten-dimensional SYM amplitudes. This approach

bypasses the need to compute the corresponding open superstring amplitude from the general

prescription (10.3.40) and to take its α′ → 0 limit. In order for the empirical cohomology

295
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method to work, one needs to have explicit mappings between cubic diagrams and pure spinor

superspace expressions, the so-called BRST building blocks. This will be accomplished in

section 11.1.

As a next hierarchy level of superfield constituents, the BRST building blocks will be com-

bined to SYM amplitudes with one off-shell leg in section 11.2. These objects were firstly

considered in [237] under the name “currents” in order to derive recursion relations for gluon

scattering at tree level. The pure spinor implementation of these Berende-Giele currents led

to a general recursive method to construct n-point SYM amplitudes in the cohomology of the

BRST operator [8]. We will present the compact result shown in figure 11.1 for the n point

SYM tree level amplitude in the third section 11.3.

ASYM(1, 2, . . . , n) =
n−2∑
j=1

〈M12...jMj+1...n−1 Vn 〉 =
n−2∑
j=1

j

1

2

M j

Vn

j + 1

j + 2

n− 1

Mn−j−1

Figure 11.1: Decomposition of the color ordered n point SYM amplitude into Berends-Giele

M12...j (to be introduced in section 11.2)

So far, the pure spinor formalism as introduced in the the last chapter is applicable in

D = 10 dimensions only. That is why the superamplitudes presented in this chapter describe

ten dimensional N = 1 SYM. But still, the superfield components of the end result (i.e. after

performing the zero mode integration (10.3.50)) can be dimensionally reduced to D = 4 or any

other dimension lower than ten by straightforward methods.

11.1 BRST building blocks

As a good motivating example, let us finish the computation of the four point superstring

amplitude A(1, 2, 3, 4). The CFT correlator was already obtained in (10.3.46) by summing over

the OPE residues of V1,3(z1,3)U2(z2). That is why it makes sense to introduce the following

shorthand for the residues:

V1(z1)U2(z2) ∼ L21(z1)

z21

+ . . . , L21 := − (k1 ·A2)V1 − A1
m (λ γmW2) + Q (A1W2)

(11.1.2)
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The z2 integrals over |z2|−s−1 |1 − z2|−u and |z2|−s |1 − z2|−u−1 yield Vt
s

and Vt
u

, respectively,

where Vt denotes the Veneziano formfactor from four point superstring scattering, see section

XXX. Hence, the color ordered four point amplitude is given by

A(1, 2, 3, 4) = Vt

{
1

s
〈L21 V3 V4 〉 −

1

u
〈V1 L23 V4 〉

}
. (11.1.3)

This result clearly disentangles the superfield kinematics associated with the two color ordered

Feynman diagrams – the s channel and the u channel.

A(1, 2, 3, 4) =

2

1

s
3

4

Vt
s
〈L21V3V4〉

+

2

1

u

3

4

− Vt
u
〈V1L23V4〉

Moreover, it has two important messages in view of the BRST cohomology:

• BRST exact parts decouple: The usual contour deformation argument for Q =
∮

dz
2πi
λαdα

implies that we can integrate Q by parts within correlation functions. This can be used

to show that the last piece Q(A1W2) of L21 does not contribute to the amplitude:

〈Q (A1W2)V3 V4 〉 = − 〈 (A1W2)Q (V3 V4) 〉 = 0 (11.1.4)

• We can verify by direct computation that the action of the BRST charge Q decomposes

the composite superfield L21 into two unintegrated vertex operators

QL21 = s12 V1 V2 . (11.1.5)

This is very helpful for checking BRST closedness of the amplitude (11.1.3) – the poles

in s = s12 and u = s23 are cancelled by 〈Q(LjiVkVl)〉 = sij〈ViVjVkVl〉, so the two terms in

(11.1.3) give opposite contributions to the amplitude’s BRST variation. Hence, knowledge

of the BRST action (11.1.5) trivializes the proof of QA(1, 2, 3, 4) = 0.

Both of these observations are taken seriously in the remainder of this chapter. The former

guides the construction of the so-called BRST building blocks encompassing several superfields,

the latter leads to severe constraints on how these building blocks can be combined to form a

BRST closed SYM amplitude.
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11.1.1 OPE residues

This subsection introduces composite superfields which naturally arise in the CFT computation

of the superstring amplitude. These OPE residues are the first step towards the so-called BRST

building blocks with diagrammatic interpretation.

As a generalization of Vi(zi)Uj(zj) ∼ Lji(zi)/zji used above, we recursively define

L21(z1)U3(z3) ∼ L2131(z1)

z31

, L2131...(p−1)1(z1)Up(zp) ∼
L2131...(p−1)1p1(z1)

zp1
. (11.1.6)

The following OPE identity is very helpful fo the explicit computation of the L2131...p1:

(λ γmWi)(zi)Uj(zj) ∼
1

zji

[
Fmni (λ γnWj) − (ki · Aj) (λ γmWi) + Q (Wi γ

mWj)
]
(zi)

(11.1.7)

By performing BRST integration by parts in the last term, one can arrive at the following

expressions at p = 2, 3 and p = 4:

L21 = − (k1 · A2)V1 − A1
m (λ γmW2) (11.1.8)

L2131 =
[

(k1 · A2)V1 + A1
m (λ γmW2)

] [
(k1 + k2) · A3

]
+ (λ γmW3)

{
F2
mnA

n
1 + (k1 · A2)A1

m − (W1 γmW2)
}

(11.1.9)

L213141 =
{ [
−A1

m (λ γmW2) − V1(k1 · A2)
] [

(k1 + k2) · A3

]
− F2

mnA
n
1 (λ γmW3)

− A1
m (λ γmW3) (k1 · A2) + (W1 γ

mW2) (λ γmW3)
} [

(k1 + k2 + k3) · A4

]
+ (λ γmW4)

{
(A1 · k2)A2

m

[
(k1 + k2) · A3

]
− (A1 · A2) k2

m

[
(k1 + k2) · A3

]
− (A1 · k2) (W2 γmW3) + (A1 · k2) (A2 · A3) k3

m − (A1 · A2) (k2 · A3) k3
m

+ (A1 · A2) (k2 · k3)A3
m − (A1 · k2)(A2 · k3)A3

m + F3
mn (W1 γ

nW2)

+ (A1 · k3) (k1 · A2)A3
m − (A1 · A3) (k1 · A2) k3

m + (W1 γmW3) (k1 · A2)

+ (W1 γmW2)
[

(k1 + k2) · A3

]
− A1

m (A2 · k1)
[

(k1 + k2) · A3

]
+

1

4
(W2 γpq γmW3)Fpq1 − 1

4
(W1 γpq γmW3)Fpq2

}
(11.1.10)

The next residue L21314151 is displayed in appendix E.1.3.

We have discarded the BRST exact term Q(A1W2) which appeared in the definition (11.1.2)

of L21. Similarly, the naive computation of L2131 and L213141 involves several BRST exact pieces

which are no longer displayed in (11.1.8) to (11.1.10) – they were explicitly checked to decouple

from any amplitude up to six points, and the subsequent arguments strongly suggest that this

pattern has to persist at higher points.
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More generally, any L2131...p1 can be brought into the form

L2131...p1 = −
[

(k1 + k2 + . . .+ kp−1) · Ap
]
L2131...(p−1)1 + (λ γmWp)R

12...(p−1)
m (11.1.11)

where the first examples of remainder vector superfield R
12...(p−1)
m multiplying (λγmWp) are

given by R1
m = −A1

m for p = 2 and R12
m = F2

mnA
n
1 + (k1 · A2)A1

m − (W1γmW2) for p = 3.

An important property of the OPE residues L2131...p1 is their BRST covariance, e.g.:

QL21 = s12 V1 V2 (11.1.12)

QL2131 = (s13 + s23)L21 V3 + s12 (L31 V2 + V1 L32) (11.1.13)

QL213141 = (s14 + s24 + s34)L2131 V4 + (s13 + s23) (L21 L43 + L2141 V3)

+ s12 (L3141 V2 + L31 L42 + L41 L32 + V1 L3242) (11.1.14)

There is no need to explicitly compute the BRST variation of the SYM superfields on the right

hand side of (11.1.8), (11.1.9) and (11.1.10). Instead, one can obtain QL2131...p1 by directly

applying Q to L2131...(p−1)1Up before performing OPE contractions (11.1.6). Among the three

terms in QUp = ∂Vp = (∂λα)Apα+ΠmkpmVp+∂θαDαVp, only the (Π ·kp) part has a singular OPE

with L2131...(p−1)1, the residue of the single pole being proportional to (s1p + s2p + . . .+ sp+1,p).

This reasoning leads to a recursive method of determining QL2131...p1 from QL2131...(p−1)1:

QL2131...p1 = lim
zp→z1

zp1

{
(QL2131...(p−1)1)(z1)Up(zp) − L2131...(p−1)1(z1) (Π · kp)Vp(zp)

}
= lim

zp→z1
zp1 (QL2131...(p−1)1)(z1)Up(zp) +

p−1∑
j=1

sjp L2131...(p−1)1 Vp(z1) (11.1.15)

The first terms evaluates as follows for p = 3:

lim
z3→z1

z31 (QL21)(z1)U3(z3) = s12 lim
z3→z1

z31 (V1 V2)(z1)U3(z3)

= s12 (L31 V2 + V1 L32)(z1) (11.1.16)

When passing to the second line, U3 can contract either V1 or V2 which gives rise to L31 and L32,

respectively. By iterating this procedure, one can quickly obtain the BRST variation of large

building blocks L2131...p1 beyond (11.1.14), the number of terms in QL2131...p1 being 2p−1 − 1.

The L2131...p1 themselves, however, must still be computed in the “pedestrian” way by successive

application of (11.1.6) if we insist on performing zero mode integration.

11.1.2 The BRST building blocks T12 and T123

Succesive OPE contraction of one unintegrated vertex V1 with several integrated ones Uj defines

a tower of composite superfields L2131...p1 with arbitrary number p of external legs. However, it
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is not clear at this point whether they have any definite symmetry properties under exchange of

labels as required for making contact with cubic diagrams. This subsection focuses on the first

two composites L21 and L2131 and shows a unique way to redefine them to objects T12 = L21+. . .

and T123 = L2131 + . . . with well-defined symmetries in permuting the labels.

Although the simplest OPE residue L21 = −(k1 · A2)V1 − A1
m(λγmW2) has no obvious

properties under 1↔ 2 exchange, we can still identify its symmetric part as a Q variation:

Q (A1 · A2) = −L21 − L12 (11.1.17)

We have mentioned below (11.1.10) that building blocks can be reduced to their BRST cohomo-

logical parts. BRST exact contributions were checked to decouple from superstring amplitudes

up to six points. Following this philosophy, we subtract the BRST trivial symmetric part from

L21 and define the first BRST building block T12 by

T12 := L[21] , Q T12 = s12 V1 V2 . (11.1.18)

Shifting L21 by Q exact terms does not change its BRST variation. The four point amplitude

(11.1.3) can be written in terms of Tij rather than Lkl because BRST exact terms were explicitly

shown to decouple from A(1, 2, 3, 4), see (11.1.4):

A(1, 2, 3, 4) =

2

1

s
3

4

Vt
s
〈T12V3V4〉

+

2

1

u

3

4

Vt
u
〈V1T23V4〉

Their clear association with individual diagrams and their antisymmetry in 1 ↔ 2, suggest to

identify the T12/s12 with the tailend of a cubic graph. Action of Q removes the propagator and

leaves two isolated external lines

2

1

s12 . . . =
T12

s12

,

2

1

= Q
T12

s12

= V1V2

Before performing similar redefinitions of L2131, we have to make sure that its Q variation

reproduces the lower order BRST building blocks Tij rather than the Lkl appearing in (11.1.13).
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For this purpose, we rewrite Lkl = Tlk − Q
2

(Ak · Al) on the right hand side and define a new

building block

T̃123 = L2131 +
1

2

{
s12

[
(A1 ·A3)V2 − (A2 ·A3)V1

]
+ (s13 + s23) (A1 ·A2)V3

}
(11.1.19)

which satisfies (11.1.13) with Lkl replaced by Tij on the right hand side:

Q T̃123 = (s13 + s23)T12 V3 + s12 (T13 V2 + V1 T23) (11.1.20)

The redefinition of any higher order residue L2131...p1 also involves some combinations of (Ai ·Aj)
products, that is why we better introduce a shorthand here:

Dij := Ai · Aj (11.1.21)

In contrast to the superfield Ljiki from the OPE contraction of Lji with Uk, the new object T̃ijk

can be combined to the follwing two BRST exact quantities:

T̃123 + T̃213 = Q
(
D12

[
(k1 + k2) · A3

] )
(11.1.22)

T̃123 + T̃312 + T̃231 = Q
(
D12 (k2 · A3) + D13 (k1 · A2) + D23 (k3 · A1)

)
(11.1.23)

Hence, subtracting these BRST trivial components yields a new BRST building block

T123 =
1

3
(T̃123 − T̃213) +

1

6
(T̃321 − T̃312 + T̃132 − T̃231) (11.1.24)

with symmetry properties that reduce the number of independent Tijk from six down to two:

T123 = T[12]3 , T123 + T231 + T312 = 0 (11.1.25)

The diagrammatic interpretation of T123 is guided by the Mandelstam variables s12 and s123

which appear in its BRST variation. This is necessary for BRST closedness of the overall

amplitude in the end – each term in QA(1, . . . , n) is supposed to exhibit one pole less than

A(1, . . . , n) itself such that different cubic graphs can conspire to yield QA(1, . . . , n) = 0 in the

end.

QT123 = s123 T12 V3

− s12 (T12 V3 + T23 V1 + T31 V2)

2

1

s12

3

s123 . . . =
T123

s12 s123

The two step redefinition L2131 → T̃123 → T123 is generic for building blocks of higher rank.

The simplicity of the p = 2 case where L21 = T̃12 is exceptional. The next subsection explains

the generic pattern for L21...p1 → T̃12...p → T12...p.
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11.1.3 Higher rank BRST building blocks

The tower of L2131...p1 was shown in (11.1.15) to be covariant under the BRST charge – the

action of Q splits the OPE residues into a sum of two smaller pieces Li2i1...iqi1 and Liq+2iq+1...ipiq+1 ,

multiplied with some Mandelstam invariant sl1...lr . The construction of BRST closed SYM

amplitudes made of cubic diagrams, on the other hand, requires a redefined tower of composite

superfields T12...p = L2131...p1 + . . . with definite symmetry properties which is also covariant

under Q action in the sense that QTi1...ip ∼ sl1...lrTi1...iqTiq+1...ip , e.g.

QT1234 = (s1234 − s123)T123 V4 + (s123 − s12) (T12 T34 + T124 V3)

+ s12 (T134 V2 + T13 T24 + T14 T23 + V1 T234) = Q T̃1234 . (11.1.26)

QT12345 = (s12345 − s1234)T1234 V5 + (s1234 − s123) (T1235 V4 + T123 T45)

+ (s123 − s12) (T1245 V3 + T124 T35 + T125 T34 + T12 T345)

+ s12 (T1345 V2 + V1 T2345 + T134 T25 + T135 T24 + T145 T23

+ T13 T245 + T14 T235 + T15 T234) (11.1.27)

Hence, the first step in redefining the OPE residue L2131...p1 is to reexpress all the Li1...iq within

QL2131...p1 in terms of lower order BRST building blocks Ti1...iq .

Suppose the redefinition of building blocks T123...p = L2131...p1 + . . . is know up to order

q = p− 1. Then we can replace Li2i1i3i1...iqi1 = Ti1i2...iq + . . . on the right hand side of QT2131...p1,

and the corrections turn out to add up to a BRST variation:

QL2131...p1 ∼
∑
J

s
(J)
l1...lr

L
(J)
i2i1...iqi1

L
(J)
iq+2iq+1...ipiq+1

∼
∑
j

s
(J)
l1...lr

T
(J)
i1...iq

T
(J)
iq+1...ip

+ QP123...p (11.1.28)

In this schematic notation, the J sum runs over the 2p−1 − 1 terms of QL2131...p1. The ghost

number zero superfield P123...p appearing on the right hand side must be subtracted from L21...p1

to bring its BRST variation into the desired form:

T̃123...p := L2131...p1 − P123...p ⇒ Q T̃123...p =
∑
j

s
(J)
l1...lr

T
(J)
i1...iq

T
(J)
iq+1...ip

(11.1.29)

Hence, the difference T̃123...p − L2131...p1 depends on all the lower order redefinitions T123...q =

L2131...q1 + . . . with q = 1, 2, . . . , p− 1.

The symmetry properties of the lower order T
(J)
i1...iq

on the right hand side of (11.1.29) allow

to identify p − 1 BRST closed T̃123...p combinations. The fact that composite superfields are

off-shell in the sense that (k1 +k2 + . . .+kp)
2 6= 0 implies that the Q cohomology at rank p ≥ 2
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is empty and each Q closed expression is automatically exact. These BRST trivial components

must be subtracted from T̃123...p, i.e. the final BRST building blocks which constitute SYM-

and superstring amplitudes are obtained by

T123...p = T̃123...p − QS
(p−2)
123...p (11.1.30)

where QS
(p−2)
123...p collectively refers to all the BRST exact pieces. The notation with the (p−2)

superscript will become clearer in appendix E.1.2. The superfields S
(0)
12 and S

(1)
123 of the p = 2, 3

examples

T12 = T̃12 − QS
(0)
12 , T123 = T̃123 − QS

(1)
123 (11.1.31)

have already been given in the previous subsection:

S
(0)
12 = − 1

2
(A1 · A2) = − D12

2
(11.1.32)

S
(1)
123 =

D12

3

[
(2k2 + k1) · A3

]
+

D13

6

[
(k1 − k3) · A2

]
+

D23

6

[
(k3 − k2) · A1

]
(11.1.33)

Of course, the subtraction (11.1.30) of BRST trivial terms does not affect the BRST variation

of T̃12...p. At general rank p, the Q action on building blocks is given by

QT12...p =
n∑
j=2

∑
α∈P (βj)

(s12...j − s12...j−1)T12...j−1,{α} Tj,{βj\α} (11.1.34)

where Vi ≡ Ti. The set βj = {j + 1, j + 2, . . ., n} encompasses the n− j labels to the right of j,

and P (βj) denotes its power set. This explicit formula follows from the recursion (11.1.15) for

QL2131...p1 upon replacing Lj1ij2i...jpi 7→ Tij1j2...jp .

To summarize the chain of redefinitions above: Two steps are required to obtain proper

BRST building blocks T12...p with the necessary symmetry properties to represent cubic dia-

grams,

L21...p1 −→ T̃12...p = L21...p1 − P12...p −→ T12...p = T̃12...p − QS
(p−2)
12...p . (11.1.35)

The first part L21...p1 → T̃12...p makes sure that the BRST variation exclusively involves BRST

building blocks of lower order. The second redefinition T̃12...p → T12...p removes BRST exact

components from the intermediate superfields T̃12...p.

The explicit form of the T1234 and T12345, in particular the associated P12...p and S
(p−2)
12...p

corrections, can be found in appendix E.1.
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11.1.4 Diagrammatic interpretation

We had already given a diagrammatic interpretation for the simplest BRST building blocks

T12 and T123 in subsection 11.1.2. This will now be generalized to higher rank T12...p: This

subsection provides a dictionary between cubic tree level diagrams with arbitrary branchings

and combinations of BRST building blocks T12...p.

The idea of the general dictionary between cubic diagrams and BRST building blocks T12...p

is to form combinations of building blocks whose Q variation contains the desired propagators

of the graph. We have argued before that the association of a diagram to T123 is guided by

the Mandelstam variables s123 and s12 appearing in its BRST variation. If the propagators

associated with T12...p are given by the sl1...lr appearing in QT12...p, then the amplitude has a

chance to be BRST closed since each term of QASYM(1, . . . , n) has to vanish at the residue of

the (n− 3) fold poles.

According to (11.1.34), the BRST variation of T123...p involves p − 1 Mandelstam variables

encompassing an increasing number of momenta,

QT123...p ↔
{
s12, s123, s1234, . . . , s12...p

}
. (11.1.36)

This suggests the following dictionary given in figure 11.2:

2

1

s12

3

s123

4

. . .

n

s12...n

. . . ←→ T123...n...

s12 s123 . . . s12...n

Figure 11.2: Endpoint of a cubic diagram associated with the BRST building block T123...n...

But this does not cover diagrams with branches like those shown in figure 11.3:

The search for appropriate BRST building blocks to describe diagrams with branches is again

guided by the si1i2...in in their Q variation. BRST action on antisymmetric Ti1i2i3...ip combina-

tions such as T12[34] involves a different set of Mandelstam invariants. Some of the variables

{si1i2 , si1i2i3 , . . ., si1...in} in QTi1i2...in are then replaced by other sl1...lk . As shown in figure 11.4,

Q(T1234 − T1243) contains variables s1234, s12 and s34 rather than s123 or s124:

We shall list a few more examples of how antisymmetrizing1 the Ti1i2...ip modifies the Man-

1The notation [i[jk]] means consecutive antisymmetrization of pairs of labels starting from the outmost label,

e.g. T[i[jk]] = 1
2 (Ti[jk] − T[jk]i) = 1

4 (Tijk − Tikj − Tjki + Tkji).



11.1. BRST BUILDING BLOCKS 305

...

...

j1

sj1j2...jn

j2

sj2j3...jn

. . .

jn−2

sjn−1jn

jn−1

jn

Figure 11.3: Example of a diagram with branches: Both . . . lines should be followed by subdi-

agrams with at least one further cubic vertex.

Q (T1234 − T1243) = (s1234 − s12 − s34)T12 T34

+ s12 (T342 V1 − T341 V2) + s34 (T123 V4 − T124 V3)

2

1

3

4
...

s12 s34

s1234

Figure 11.4: The simplest diagram with a branch

delstam variables in its BRST variation:

QTi1...ip[jk]r1...rq ←→ sjk instead of si1i2...ipj

QTi1...ip[j[kl]]r1...rq ←→ skl, sjkl instead of si1...ipj, si1...ipjk (11.1.37)

QTi1...ip[j[k[lm]]]r1...rq ←→ slm, sklm, sjklm instead of si1...ipj, si1...ipjk, si1...ipjkl

The diagrammatic interpretation of these findings and generalizations thereof are presented in

figure 11.5.

. . . . . .

i1 i2

2T...[i1i2]...

. . . . . .

i1 i2

i3

4T...[[i1i2]i3]...

. . . . . .

i1 i2

i3

i4

8T...[[[i1i2]i3]i4]...

. . . . . .

i1 i2

i3
...

in

2n−1 T...[[...[[i1i2]i3]...]in]...

Figure 11.5: The branches of cubic diagrams and their associated building blocks
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11.1.5 Diagrams and symmetry properties

After the first step of the redefinition chain L2131...p1 → T̃123...p → T123...p from subsection 11.1.3,

it is not difficult to use the BRST variation of T̃123...p to find BRST-closed combinations for small

p by trial and error. Their off-shellness forces them to be in fact BRST exact. As explained

in subsection 11.1.3, the removal of the BRST exact parts of T̃123...p gives rise to the definition

of the BRST building block T123...p. Each BRST closed sum of T̃ ’s translates into a symmetry

of the associated T12...p, see equations (11.1.22), (11.1.23) and (11.1.25) for p = 3. Therefore it

is imperative to find the general BRST-closed combinations of T̃ ’s, or equivalently, the general

symmetries of T ’s.

In this subsection we use the diagrammatic interpretation of building blocks to predict the

symmetry properties of T12...p. As a first example, let us consider the diagram in figure 11.6:

2

1

3

. . . =

 T123

T321 − T312

Figure 11.6: Two different ways to interpret the same diagram give rise to an identity for Tijk.

In its first building block representation T123, the diagram is interpreted as a tailend like

the one depicted in figure 11.2. However, in the second expression the diagram is treated as

a branch like the first of figure 11.5 where one of the . . . legs now contains the label 3 and is

therefore associated with 2T3[21] = T321 − T312. The fact that both viewpoints have to agree

implies the symmetry identity T123 + T231 + T312.

The relative sign between the two viewpoints is fixed by the fact that diagram associated

with T12...p catch a (−1)p−1 sign under inversion (1, 2, 3, . . ., (p − 1), p) ↔ (p, (p − 1), . . ., 1).

Hence, we have to make sure that the the sign of T123...p relative to Tp,p−1,...,21 is (−1)p. In the

p = 3 case, T123 + (−1)3T321 + . . . = 0 using T321 = −T231.

This same idea can be used to obtain the BRST symmetries for higher-order building blocks.

In particular, the diagrams which give rise to the symmetries of T123...p for p = 4, 5, 6, 7 and 8

are depicted in the figures 11.7 and 11.8 below, resulting in the following identities:

0 = 2T12[34] + 2T43[21]

0 = 2T123[45] − 4T54[3[21]]
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. . .

1

4

2

3

=

 2T12[34]

− 2T43[21]

. . .

1

5

2

3

4

=

 2T123[45]

4T54[3[21]]

. . .

1

6

2

3

5

4

=

 4T123[4[56]]

− 4T654[3[21]]

Figure 11.7: Diagrammatic derivation of the BRST symmetries of higher order building blocks.

The top (botton) line corresponds to the building block association which follow from reading

the diagram in a counter-clockwise (clockwise) direction.

0 = 4T123[4[56]] + 4T654[3[21]] (11.1.38)

0 = 4T1234[5[67]] − 8T765[4[3[21]]]

0 = 8T1234[5[6[78]]] + 8T8765[4[3[21]]]

Using the BRST variations (11.1.34), we checked up to T12345678 that these relations are indeed

BRST-closed. Appendix E.1 identifies the corresponding combinations of T̃1234 and T̃12345 as

BRST-exact, in accord with the discussion of subsection 11.1.3.

To write down the generalization of (11.1.38) to higher p > 8, let us distinguish between

odd and even ranks for ease of notation:

p = 2n+ 1 : T12...n+1[n+2[...[2n−1[2n,2n+1]]...]] − 2T2n+1...n+2[n+1[...[3[21]]...]] = 0

p = 2n : T12...n[n+1[...[2n−2[2n−1,2n]]...]] + T2n...n+1[n[...[3[21]]...]] = 0 (11.1.39)

The relation for odd p = 2n + 1 obviously involves 3 · 2n−1 terms whereas the even one for

p = 2n has 2n terms.

We should emphasize again that the lower rank identities for T12...q carry over to larger

building blocks T12...p with p > q. The last labels q + 1, . . . , p are then simply left untouched,

e.g. 0 = T(12)345 = T[123]45 = T12[34]5 + T43[21]5 at rank p = 5. By applying the p− 1 symmetries

available at rank p, one can successively move a particular label to the first position, i.e.

express Ti1i2...ip as a combination of T1j1j2...jp−1 . According to the number of (j1, j2, . . . , jp−1)

permutations, we have (p− 1)! independent rank p building blocks Ti1i2...ip .
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. . .
4 3

1

2

5

7

6

=

 4T1234[5[67]]

8T765[4[3[21]]]

. . .
4 3

1

2

5 6

8

7

=

 8T1234[5[6[78]]]

− 8T8765[4[3[21]]]

Figure 11.8: The symmetries of rank 7 and 8 building blocks obtained from diagrams.

11.2 From building blocks to Berends-Giele currents

In subsection 11.1.4, we have given a superfield representation in terms of BRST building blocks

Ti1...ip for each color ordered cubic diagram with p on-shell external leg and one off-shell leg. In

this section, we combine these diagrams to p+1 point field theory amplitudes with one off-shell

leg. Such objects were first considered in [237] in order to derive recursion relations for QCD

tree amplitudes with a large number of gluons and were referred to as “currents”.

Supersymmetric analogues M12...p of p point Berends–Giele currents allow for a compact

representation of the ten-dimensional n point SYM amplitude ASYM(1, . . . , n) which nicely ex-

hibits its factorization channels. The recursive nature of the Berends–Giele currents is inherited

by the amplitudes and leads to the recursive method to compute higher point SYM amplitudes

presented in the following section 11.3.

11.2.1 Berends Giele currents in gauge theories

In 1987, Berends and Giele have found a recursive method to compute tree level QCD ampli-

tudes with a large number of gluons. They recursively constructed color ordered p + 1 gluon

amplitudes Jµ(1, 2, . . . , p) with one off shell leg p+ 1

Jµ(1, 2, . . . , p) =
1

(k1 + k2 + . . . kp)2

{ p−1∑
m=1

[
J(1, 2, . . . ,m) , J(m+ 1, . . . , p)

]
µ

+

p−2∑
m=1

p−1∑
k=m+1

{
J(1, 2, . . . ,m) , J(m+ 1, . . . , k) , J(k + 1, . . . , p)

}
µ

}
(11.2.40)
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starting from the polarization vector as the one point current Jµ(1) = ξ1
µ. The notation [·, ·]

and {·, ·, ·} reflects the contributions of the three- and four gluon vertices in the Yang Mills

action:

[
J(1) , J(2)

]
µ

= 2
(
k2 · J(1)

)
Jµ(2) − 2

(
k1 · J(2)

)
Jµ(1) + (k1 − k2)µ

(
J(1) · J(2)

)
{
J(1) , J(2) , J(3)

}
µ

= J(1) ·
(
J(3) Jµ(2) − J(2) Jµ(3)

)
(11.2.41)

− J(3) ·
(
J(2) Jµ(1) − J(1) Jµ(2)

)
The two contribution to (11.2.40) can be depicted as

Jµ(1, 2, . . . , p) =
1

(k1 + k2 + . . . kp)2

p−1∑
m=1

J(m+ 1, . . . , p)

J(1, 2, . . . ,m)

. . . µ

J(k + 1, . . . , p)

+
1

(k1 + k2 + . . . kp)2

p−2∑
m=1

p−1∑
k=m+1

J(m+ 1, . . . , k)

J(1, 2, . . . ,m)

. . . µ

The recursive definiton directly implies three properties: Reflection symmetry, current con-

servation with respect to the total momentum and finally the vanishing of its cyclic sum, similar

to the identity (5.5.67) for on-shell amplitudes

Jµ(1, 2, . . . , p) + (−1)p Jµ(p, p− 1, . . . , 1) = 0 (11.2.42)

Jµ(1, 2, . . . , p) + cyclic(12 . . . p) = 0 (11.2.43)
p∑
i=1

kµi Jµ(1, 2, . . . , p) = 0 (11.2.44)

The color ordered n gluon amplitude can be written very compactly in terms of an n− 1 point

current:

Agluon(1, 2, . . . , n) ∼ Jµ(1, 2, . . . , n− 1) Jµ(n) (k1 + . . .+ kn−1)2
∣∣∣Pn

i=1 ki=0
(11.2.45)

The factor of (k1 + . . . + kn−1)2 removes the overall propagator of the rank n − 1 current

which would diverge under momentum conservation
∑n

i=1 ki = 0. This approach to multigluon

scattering has two kinds of advantages:
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• It is efficient in the sense that it makes use of lower order results and automatically

captures all Feynman diagrams.

• It can be used to proof certain properties of the amplitude, such as gauge invariance,

cyclicity, photon decoupling and factorization for soft and collinear gluons.

The supersymmetric generalization M12...p which will by introduced in the following subsection

share these properties and enjoy the additional benefit that the trilinear terms in the recursion

(11.2.40) do not appear. This suggests that they ultimately come from a superspace action

with only cubic vertices.

11.2.2 The pure spinor realization of Berends Giele currents

Each of the 1
p

(
2p−2
p−1

)
diagrams entering a rank p current has p − 2 internal poles in Mandel-

stam invariants si1...iq with q < p and one external propagator 1/s12...p which would diverge if

the additional leg is put on-shell. Let us give the simplest examples M12,M123 and M1234 of

supersymmetric Berends-Giele currents in figure 11.9 and 11.10, they are associated with color

ordered three-, four and five point amplitudes, respectively. Higher rank currents M12345 and

M123456 are explicitly expanded in appendix E.2.

M12 =

2

1

s12 . . . =
T12

s12

, M123 =

2

1

s12

3

s123. . . + =
1

s123

(T123

s12

+
T321

s23

)3

2

s23

1

s123
. . .

Figure 11.9: Diagrammatic construction of Berends–Giele currents M12, and M123

The BRST variation of the M12...p follows from the expression (11.1.34) for QT12...p. The

remarkable effect of combining the (2p− 2)!/(p!(p− 1)!) cubic graphs is firstly the cancellation

of the overall propagator 1/s12...p and secondly the conspiration of all the lower order Ti1...iq

to full-fledged currents Mi1...iq . In order to simplify the notation in the formulae below, let us

identify M1 with the unintegrated vertex; Vi ≡Mi. Then, Q acts as follows on our examples,

QM12 = V1 V2 = M1M2

QM123 =
V1 T23

s23

+
T12 V3

s12

= M1M23 + M12M3 (11.2.46)
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M1234 =

2

1

s12

3

s123

4

s1234

. . .

3

2

+
s23

1

s123

4

s1234

. . .

4

3

+
s34

2

s234

1

s1234

. . .

3

2

+
s23

4

s234

1

s1234. . .

2

1

+

3

4

...

s12 s34

s1234

=
1

s1234

( T1234

s12s123

+
T3214

s23s123

+
T3421

s34s234

+
T3241

s23s234

+
2T12[34]

s12s34

)

Figure 11.10: Diagrammatic construction of the rank four Berends–Giele current M1234

QM1234 =
V1

s234

(T234

s23

+
T432

s34

)
+

T12 T34

s12 s34

+
(T123

s12

+
T321

s23

) V4

s123

= M1M234 + M12M34 + M123M4

Generally speaking, the BRST charge decomposes p point currents into ghost number two

objects E12...p which consist of products of two smaller currents

QM12...p =

p−1∑
j=1

M12...jMj+1...p =: E12...p . (11.2.47)

The action of Q cuts M12...p in each way compatible with the color ordering, see figure 11.11.

Q . . . =

p−1∑
j=1

2

p− 1

13

p

Mp

1
2

j

M j . . . ×

E12...p

. . .

p

j + 1
j + 2

Mp−j

Figure 11.11: Decomposition of M12...p into its factorization channels under Q

Equation (11.2.47) is the supersymmetric pure spinor analogue of the recursive construction

(11.2.40) of gluon currents which schematically reads Jp ∼ (J2
q<p + J3

q<p)/s12...p. Its cubic term

representing the four gluon vertex in the QCD action does not enter into our supersymmetric

version (11.2.47). The gluon recursion in its form s12...pJp ∼ J2
q<p + J3

q<p parallels (11.2.47) if

we symbolically identify s12...p ≡ Q. This is plausible since the action of Q cancels the overall

propagator M12...p ∼ s−1
12...p.
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11.2.3 Symmetry properties of Berends Giele currents

As a further motivation for identifying M12...p with supersymmetric Berends–Giele currents, this

subsection is devoted to the symmetry properties shared by M12...p and the gluonic specialization

Jµ(1, 2, . . . , p). First of all, M12 trivially satisfies M12 +M21 = 0 because the building block Tij

is antisymmetric. Similar identities hold for M123, cf. (11.1.25),

M123 + M231 + M312 = 0 , M123 − M321 = 0 , (11.2.48)

as one can easily check by plugging the expression for Mijk given in figure 11.9 and using

T[123] = 0. At higher n ≥ 4, this generalizes as follows

M12...p = (−1)p−1Mp...21 ,
∑

σ∈cyclic

Mσ(1,2,...,p) = 0 (11.2.49)

which reproduces properties (11.2.42) and (11.2.43) of gluon currents. The proof of these

identities is most conveniently carried out on the level of the corresponding E12...p = QM12...p =∑p−1
j=1 M12...jMj+1...n. Since all the BRST closed components of the M12...n have been removed

by construction of its T12...n constituents, the BRST variation E12...n contains all information

on the symmetry properties of its M12...n ancestor. The reflection identity can be easily checked

by induction, and the vanishing cyclic sum follows from

∑
σ∈cyclic

Eσ(1,2,...,n) =
∑

σ∈cyclic

n−1∑
p=1

Mσ(1,2,...,p) Mσ(p+1,...,n)

=
∑

σ∈cyclic

n−1∑
p=1

1

2

(
Mσ(1,2,...,p) Mσ(p+1,...,n) + Mσ(p+1,...,n) Mσ(1,2,...,p)

)
= 0 (11.2.50)

where the last step exploits the overall cyclic sum to shift all labels of the second term by p

and that the M12...p anticommute.

The properties (11.2.49) can be naturally explained by the construction of currents M123...n

as n+ 1 point amplitudes with one off-shell leg. Inspired by this analogy, we explicitly checked

up to n = 7 that M12...n also satisfy a relation which is obtained by removing the (n+ 1)-th leg

from the n+ 1 point Kleiss-Kuijf identity (5.5.65):

M{β},1,{α} = (−1)nβ
∑

σ∈OP({α},{βT })

M1,{σ} (11.2.51)

The summation range OP({α}, {βT}) denotes the set of all the permutations of {α}⋃{βT}
that maintain the order of the individual elements of both ordered subsets {α} and {βT}
of {2, 3, . . . , n}. The notation {βT} represents the set {β} with reversed ordering of its nβ
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elements. The Kleiss-Kuijf identity is well known to reduce the number of independent color

ordered n+ 1 point amplitudes2 down to (n− 1)!.

The specialization of (11.2.51) to sets {β} with one element only, say {β} = {n} implies the

vanishing of
∑

σcyclic Mσ(1,...,n). However, this so-called dual Ward identity or photon decoupling

identity by itself is not sufficient for a reduction to (n − 1)! independent Mi1i2...in at n ≥ 6.

Since there are only (n−1)! independent building blocks Ti1i2...in which constitute the Mi1i2...in ,

also the latter must have a basis of no more than (n − 1)! elements. This counting argument

suggests the Kleiss-Kuijf identity (11.2.51) to hold beyond our checks to n ≤ 7 although we

could not find an explicit proof for general n.

The reflection- and Kleiss-Kuijf identity for the M12...n are inherited from their associated

n + 1 point amplitudes with one leg off-shell. The off-shellness of one leg is no obstruction

for the aforementioned identities to hold because they do not involve any kinematic factors.

However, the field theory version (5.5.69) of the monodromy relations (5.4.46) rely on having

on-shell momenta, so the M12...n do not satisfy any analogous identity and cannot be reduced

to (n− 2)! independent permutations.

11.3 From Berends-Giele currents to SYM amplitudes

The expressions found for QM12...p = E12...p might look familiar from lower order field theory

amplitudes such as

ASYM(1, 2, 3) = 〈V1 V2 V3 〉 = 〈E12 V3 〉 (11.3.52)

ASYM(1, 2, 3, 4) =

〈(
V1 T23

s23

+
T12 V3

s12

)
V4

〉
= 〈E123 V4 〉 , (11.3.53)

the latter follows from the α′ → 0 limit of (11.1.3) where Vt → 1.

From QV = 0, one might naively expect that the three-point amplitude would be BRST-

exact, ASYM(1, 2, 3)
?
= 〈Q(T12V3/s12)〉, and thus doomed to vanish. However, all the Mandel-

stam invariants sij are zero in the momentum phase space of three massless particles – therefore

writing V1V2 = Q(T12/s12) is not allowed, and BRST triviality of the amplitude is avoided.

11.3.1 The field theory amplitude

More generally, the prefactor M12...p ∼ 1/s12...p in the p point current is incompatible with

putting the external state with kp+1 = −∑p
i=1 ki on-shell k2

p+1 = 0. Therefore, n particle

2After using cyclicity and reflection symmetry, there are n!/2 so far unrelated n+ 1 point subamplitudes in

the first place, see section 5.5.
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kinematics
∑n

i=1 ki = 0 forbids the existence of M12...n−1 and the corresponding E12...n−1 is not

BRST exact. This leads to the following expression for n point field theory amplitude which is

truly in the BRST cohomology [8]:

ASYM(1, 2, . . . , n) = 〈E12...n−1 Vn 〉 =
n−2∑
j=1

〈M12...jMj+1...n−1 Vn 〉 (11.3.54)

Let us denote the number of kinematic pole configurations in Mi1...ip or Ei1...ip by ℘p+1, then

(11.2.47) implies the recursion relation

℘n =
n−1∑
i=2

℘i ℘n−i+1 , ℘2 = ℘3 ≡ 1 . (11.3.55)

Its explicit solution ℘n = 2n−2 (2n−5)!!
(n−1)!

shows that the right hand side of (11.3.54) has the correct

number of cubic diagrams to describe a color ordered n–point SYM amplitude.

The diagrammatic representation of
∑p−1

j=1 M12...jMj+1...p in figure 11.11 can be uplifted to

the on-shell n = p + 1 point amplitude ASYM(1, 2, . . . , n) where an additional cubic vertex

connects the n’th leg with the two currents of rank j and n − 1 − j, respectively, see the

following figure 11.12.

ASYM(1, 2, . . . , n) =
n−2∑
j=1

j

1

2

M j

Vn

j + 1

j + 2

n− 1

Mn−j−1

Figure 11.12: Berends-Giele decomposition of the color ordered SYM amplitude

The n point formula (11.3.54) is analogous to the Berends–Giele formula (11.2.45) for the

color ordered n gluon amplitude of [237], which is written as a product of a rank n− 1 current

Jn−1 and another J1 for the n’th leg, multiplied by the Mandelstam factor s12...n−1 to cancel

the divergent propagator. In our case, the somewhat artificial object s12...n−1Jn−1 is replaced

by E12...n−1, which could be written as QM12...n−1 in a larger momentum phase space. This

parallel also suggests the schematic identification s12...n−1 ≡ Q mentioned after (11.2.47).

11.3.2 The recursion

The families {M12...p, E12...p} of superfields have a manifestly recursive structure – the knowledge

of all M ’s up to M123...p suffices to obtain the E123...p+1 at the next level p 7→ p + 1 using the
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definition (11.2.47). Formally, this seems to give access to M123...p+1 by inverse Q action on

E123...p+1, but unfortunately there is no constructive prescription for Q−1 at hand.

The formula (11.3.54) for the n point field theory amplitude in terms of E12...n−1 closes

precisely this gap of the recursion. Having E123...p+1 due to {M123...q, q ≤ p} yields the p + 2

point amplitude ASYM(1, . . . , p+ 2) with all its (2p)!/(p!(p+ 1)!) color ordered diagrams made

of cubic vertices. These diagrams, on the other hand, constitute the main input necessary for

the construction of the higher point current M12...p+1 from BRST building blocks T12...p+1, see

subsection 11.1.4 for the dictionary between T12...p+1 and cubic diagrams.

The following figure summarizes the aforementioned steps necessary for setting up a recur-

sion for tree level amplitudes in pure spinor superspace.

current M12...p E12...p+1 =

p∑
j=1

M1...jMj+1...p+1

ASYM(1, . . . , p+ 2) = 〈E12...p+1Vp+2〉
(2p)!

p!(p+ 1)!
diagrams

p 7→ p+ 1

Figure 11.13: The recursive prescription for ASYM

One has to admit that computing components of the supersymmetric ASYM amplitudes

requires explicit expression for their BRST building blocks T12...p. Constructing the tower of

T12...p has been identified as a separate recursive problem in the earlier sections. We have

explicitly given them up to T12345 (see appendix E.1), and there are no obstructions to getting

the higher order T12...p by straightforward application of the algorithm in section 11.1.

In the later subsection 12.1.4 we will give a string-inspired formula which allows for direct

computation of M12...p without the need for drawing the cubic diagrams of the p+1 point SYM

amplitude.

11.3.3 BRST integration by parts and cyclic symmetry

The strength of our presentation (11.3.54) of the n point field theory amplitude is the mani-

festation of its factorization properties. But singling out a particular leg Vn obscures the cyclic

symmetry required for color stripped amplitudes. The essential tool to restore manifest cyclicity

is BRST integration by parts.
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The maximum rank of Mi1...ip appearing in the n point amplitude (11.3.54) is p = n − 2.

By construction of E12...n−1, these terms are of the form

〈Mi1...in−2 Vin−1 Vn 〉 = 〈Mi1...in−2 QMin−1n 〉 = 〈Ei1...in−2 Min−1n 〉 . (11.3.56)

After BRST integration by parts in the last step, the maximum rank of Berends–Giele currents

becomes n − 3 due to Mj1...jn−3 within Ei1...in−2 . More generally, the cohomology formula

(11.3.54) allows enough BRST integration by parts

〈Mi1...ip Ej1...jq 〉 = 〈Ei1...ipMj1...jq 〉 (11.3.57)

as to reduce the maximum rank of the currents to p = [n/2] (where [·] denotes the Gauss

bracket [x] = maxn∈Z(n ≤ x), which picks out the nearest integer smaller than or equal to its

argument).

The benefit of performing the [(n−3)/2] integrations by part in ASYM is twofold: Firstly, the

complexity of superfield ingredients decreases with the rank of the Mi1...ip and Ti1...ip involved,

cf. the length of the explicit formulae (11.1.8), (11.1.9) and (11.1.10) for Lji, Ljiki and Ljikili.

Secondly, this procedure allows the n’th leg to get involved in larger building blocks M...n−1,n,1...

and to enter the amplitude on the same footing as the remaining legs, leading to manifestly

cyclic-symmetric amplitudes such as

ASYM(1, 2, . . . , 5) = 〈M12 V3M45 〉 + cyclic(12345)

ASYM(1, 2, . . . , 6) =
1

3
〈M12M34M56 〉 +

1

2
〈M123E456 〉 + cyclic(123456) (11.3.58)

ASYM(1, 2, . . . , 7) = 〈M123M45M67 〉 + 〈V1M234M567 〉 + cyclic(1234567)

ASYM(1, 2, . . . , 8) = 〈M123M456M78 〉 +
1

2
〈M1234E5678 〉 + cyclic(12345678)

The fractional prefactors 1
2

or 1
3

compensate for the fact that cyclic orbits for particularly sym-

metric superfield kinematics are shorter than the number n of legs. At n = 6, for instance,

M12M34M56 has just one distinct cyclic image M23M45M61, hence the full cyclic(123456) over-

counts the occurring diagrams by a factor of three.

11.3.4 Factorization in cyclically symmetric form

In this subsection, we introduce a cyclically symmetric presentation of SYM amplitudes where

their factorization into two Berends-Giele currents remains obvious. This means that all

the kinematics are arranged into the form 〈Mi1...ipQMj1...jq〉 which can be interpreted as two

Berends-Giele currents of rank p and q, connected by a propagator line:
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〈Mi1...ip QMj1...jq 〉 =

i1
i2

ip

QMp

jq

j1
j2

M q

Figure 11.14: Factorization of a p+ q point amplitude into two Berends-Giele currents.

The role of the Q operator can be interpreted as compensating one of the two coinciding

internal propagators s−1
i1...ip

= s−1
j1...jq

.

One can check by evaluating the BRST variations that the amplitudes in (11.3.58) can be

equivalently written as

ASYM(1, 2, 3, 4) =
1

2
〈M12QM34 〉 + cyclic(1234)

ASYM(1, . . . , 5) =
1

4

(
〈M12QM345 〉 + 〈M123QM45 〉

)
+ cyclic(12345)

ASYM(1, . . . , 6) =
1

6

(
〈M12QM3456 〉 + 〈M123QM456 〉 + 〈M1234QM56 〉

)
+ cyclic(123456) (11.3.59)

ASYM(1, . . . , 7) =
1

8

(
〈M12QM34567 〉 + 〈M123QM4567 〉

+ 〈M1234QM567 〉 + 〈M12345QM67 〉
)

+ cyclic(1234567)

ASYM(1, . . . , 8) =
1

10

(
〈M12QM345678 〉 + 〈M123QM45678 〉 + 〈M1234QM5678 〉

+ 〈M12345QM678 〉 + 〈M123456QM78 〉
)

+ cyclic(12345678)

Note that some terms are overcounted by a factor of 2 because the cyclic orbits of 〈M12...jQMj+1...n〉
and 〈M12...n−jQMn−j+1...n〉 are the same. The purpose of including both of them is to obtain

a uniform overall coefficient in (11.3.59) and to simplify the transition to the general n point

formula (11.3.60).

The factorization channels of ASYM(1, 2, 3, 4), ASYM(1, . . . , 5) and ASYM(1, . . . , 6) can be

pictorially represented as shown in the following figure:

ASYM(1, 2, 3, 4) =
〈M12QM34 〉

2
+ cyclic(1234) + cyclic(1234)=

1

2

2

1

QM12

4

3

M34
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ASYM(1, 2, 3, 4, 5) =
1

2
〈M12QM345 〉 + cyclic(12345)

+ cyclic(12345)=
1

2

2

1

QM12

5

4

3

M345

ASYM(1, 2, . . . , 6) =
1

6

(
1

2
〈M123QM456 〉 + 〈M12QM3456 〉

)
+ cyclic(123456)

=
1

6

3

2

1

QM123

6

5

4

M456 +
1

3
+ cyclic(123456)

2

1

QM12

5

4

6

3

M3456

For n points, the expressions (11.3.59) generalize to

ASYM(1, 2, . . . , n) =
1

2 (n− 3)

n−2∑
j=2

〈M12...j QMj+1...n 〉 + cyclic(12 . . . n) (11.3.60)

which can be graphically represented as

ASYM(1, 2, . . . , n) =
1

2 (n− 3)

n−2∑
j=2

+ cyclic(12 . . . n)

1
2

j

QM j

n

j + 1
j + 2

Mn−j

We have explicitly checked up to n = 10 points that the formula (11.3.60) exactly repro-

duces the expression ASYM(1, . . . , n) = 〈E12...n−1Vn〉 with the right prefactors. It can also be

interpreted as coming from the factorization channels of ASYM(1, . . . , n) into two amplitudes

with one leg off-shell each with the form 〈E12...jVx〉 and 〈VxEj+1...n〉 that are connected by a pure

spinor propagator which effectively replaces Vx Vx → 1
Q

, resulting in the symbolic expression

ASYM(1, 2, . . ., n) ≡ 1

2 (n− 3)

n−2∑
j=2

〈E12...j
1

Q
Ej+1...n 〉 + cyclic(1. . .n) . (11.3.61)



Chapter 12

Superstring amplitudes in the pure

spinor formalism

This chapter is devoted to the constructive computation of superstring tree level amplitudes of

the massless SYM multiplet in the pure spinor approach. Its main purpose is to prove the main

result (1.4.1) and to analyze its structure. In other words, we show that tree level amplitudes

of massless states in open superstring theory are linear combinations of SYM subamplitudes

associated with various color orderings. This has interesting implications in view of the duality

between color and kinematics in field theory amplitudes. As a byproduct, it provides a rigorous

a posteriori justification for the field theory amplitudes (11.3.54) of the last chapter which were

derived by rather indirect cohomology arguments.

The five- and six point amplitudes have already been cast into BRST building block lan-

guage. The former is discussed in [290, 291], whereas the six point amplitude is computed

in [7]. The main advances in these works is a better understanding of the CFT correlators, in

particular of the emergence of BRST building blocks and the role of double poles. This is the

topic of the first section.

We then generalize to n external legs in section 12.2 and identify the color ordered field

theory amplitudes among the superfield kinematics. The discovery of the BRST structure

in section 11.1 and their organization in terms of Berends-Giele currents in section 11.2 are

essential for seeing the emergence of various ASYM(1, 2σ, . . . , (n− 2)σ, n− 1, n) subamplitudes

(parametrized by σ ∈ Sn−3) within the string computation at fixed color ordering (1, 2, . . . , n−
2, n− 1, n).

319
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12.1 The n point CFT correlator

This section explains the CFT mechanisms responsible for the appearence of BRST building

block and a basis of no more than (n − 2)! kinematic factors in an n point tree amplitude.

According to the tree level prescription (10.3.40), the first task in computing superstring am-

plitudes is to evaluate the CFT correlator

〈V 1(0)V (n−1)(1)V n(∞)U2(z2)U3(z3) . . . U (n−2)(z(n−2)) 〉 (12.1.1)

using the techniques of subsection 10.3.1 to integrate out the h = 1 primaries [∂θα,Πm, dα, N
mn].

Performing the worldsheet integral over z1 = 0 ≤ z2 ≤ . . . ≤ zn−2 ≤ zn−1 = 1 then provides the

momentum dependence of superstring amplitudes.

12.1.1 Five- and six point correlators

The five- and six point results are important data points which guided the way to higher point

generalizations. They are the first instances where multiple integrated vertices Uj that have to

be sequentially integrated out enter the correlator. The order in which the conformal h = 1

fields are removed using (10.3.41) to (10.3.42) is an artifact of the algorithm at work and should

not be visible in the final answer, this shall be our guiding principle in the following.

The five point amplitude requires a correlator involving U2, U3. If we decide to first integrate

out the conformal primaries at z2, then the correlator takes the form

〈V 1(0)V 4(1)V 5(∞)U2(z2)U3(z3) 〉 =
∏
i<j

|zij|−sij
〈
L2131 V4 V5

z21 z31

+
L2331 V4 V5

z23 z31

+
L2431 V5

z24 z31

+
L2134 V5

z21 z34

+
V1 L2334 V5

z23 z34

+
V1 L2434 V5

z24 z34

+
V1 L2323 V4 V5

z2
23

〉
. (12.1.2)

The OPE residues L2131 and L2434 where two integrated vertex operators Ui approach an un-

integrated one Vj were discussed in subsection 11.1.1. The crossterms where U2 → V1 and

U3 → V4 or vice versa are easily factorized as L2134 = L21L34 and L2431 = L24L31 because the

OPEs are taken between separate pairs of fields. In addition, we have the single- and double

poles in the OPE of U2(z2)U3(z3) with residues L2331, L2334 and L2323 in the notation of (12.1.2).

Of course, the contribution from Vn(zn =∞) is suppressed by 1/z2n, 1/z3n → 0.

The order of integrating out the h = 1 fields at z2 and z3 is arbitrary and should not affect

the final result. Matching (12.1.2) with its relabelling in 2↔ 3 yields

L2331 = L3121 − L2131 , L2334 = L3424 − L2434 (12.1.3)
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where we made use of the antisymmetry of L2331, L2334 in z2 ↔ z3. This allows to rewrite

(12.1.2) in manifestly symmetric fashion and in terms of Ljiki only:

〈V 1(0)V 4(1)V 5(∞)U2(z2)U3(z3) 〉 =
∏
i<j

|zij|−sij
〈
L2131 V4 V5

z12 z23

+
L3121 V4 V5

z13 z32

+
V1 L2434 V5

z42 z23

+
V1 L3424 V5

z43 z32

+
L21 L34 V5

z12 z43

+
L31 L24 V5

z42 z13

+
V1 L2323 V4 V5

z2
23

〉
(12.1.4)

This is the final result for the five point correlator before worldsheet integrations are taken into

account.

Similar manipulations are necessary to simplify the six point amplitude. Let us display six

out of the 34 terms which arise from the standard procedure to integrate out U2, U3 and then

U4:

〈V 1(0)V 5(1)V 6(∞)U2(z2)U3(z3)U4(z4) 〉 =
∏
i<j

|zij|−sij
〈
L213141 V5 V6

z21 z31 z41

+
L233141 V5 V6

z23 z31 z41

+
L213441 V5 V6

z21 z34 z41

+
L233441 V5 V6

z23 z34 z41

+
L233145 V6

z23 z31 z45

+
L213445 V6

z21 z34 z45

+ . . .

〉
(12.1.5)

The singe pole OPE residues of two integrated vertex operators UjUk must be reduced to the

standard superfields Lji, Ljiki and Ljikili. Independence of the CFT correlator on the order of

integrating out U2, U3 and U4 (together with antisymmetry of the UiUj single pole residue in

i, j) implies

L233141 = L312141 − L213141 , L213441 = L214131 − L213141

L233441 = L413121 − L412131 + L213141 − L312141 (12.1.6)

L233145 = (L3121 − L2131)L45 , L213445 = L21 (L4535 − L3545)

for the residues Lijklmn of (zijzklzmn)−1. Identities for L233545, L233445 or L244331 follow by rela-

bellings of (12.1.6).

The world sheet integrand of the six point amplitude then assumes the form

〈V 1(0)V 5(1)V 6(∞)U2(z2)U3(z3)U4(z4) 〉 =
∏
i<j

|zij|−sij
〈
L213141 V5 V6

z12 z23 z34

+
L2131 L45 V6

z12 z23 z54

+
L21 L3545 V6

z12 z53 z34

+
V1 L253545 V6

z52 z23 z34

+ double poles + P(2, 3, 4)

〉
(12.1.7)

where . . .+ P(2, 3, 4) denotes a symmetric sum over all S3 permutations of 2, 3, 4.

12.1.2 The single pole structure at higher points

Any single pole OPE residue in the five- and six point correlation functions can be reduced to

the superfields L2131...p1 from subsection 11.1.1. This finding is based on two mechanisms which

we now explain in the more general context of the n point correlator (12.1.1):
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• The single pole contribution of the Uj(zj)Uk(zk) . . . Ul(zl) OPEs between integrated vertex

operators can be ultimately written in terms of Ljiki...li where i ∈ {1, n − 1} labels an

unintegrated vertex operator. The required manipulations are based on the independence

of correlation functions on the order of integrating out the h = 1 fields. If the arguments

of V1(z1)U2(z2)U3(z3) . . . Up(zp) approach each other in the order z2 → z3 → . . .→ zp−1 →
zp → z1, then the correlator (12.1.1) receives a contribution1

L2334...p−1,p,p1

z23 z34 . . . zp−1,p zp1
=

2p−2L[p1,[(p−1)1,[...,[41,[31,21]]...]]]

z23 z34 . . . zp−1,p zp1
. (12.1.8)

which for instance reads L23344551 = L51413121 + L51213141 + L31214151 + L41213151 − (2→ 3)

at seven points.

• The two OPE cascades which terminate on the integrated vertices V1 and Vn−1 are

taken independently such that the residue factorizes into (sums over) Lj11j21...jp1 and

Lk1,n−1,k2,n−1...kq ,n−1 with p+ q = n− 3.

On these grounds it was explicitly checked up to eight points that the correlation function

(12.1.1) contains (n − 2)! single pole integrands (with n − 3 distinct z−1
ij factors each) whose

residues fall into the symmetric pattern

〈V 1(0)V (n−1)(1)V n(∞)U2(z2)U3(z3) . . . U (n−2)(z(n−2)) 〉 =
∏
i<j

|zij|−sij

×
〈

n−2∑
p=1

L2131...p1 Ln−2,n−1,n−3,n−1,...,p+1,n−1 Vn
(z12 z23 . . . zp−1,p) (zn−1,n−2 zn−2,n−3 . . . zp+2,p+1)

〉
+ double poles + P(2, 3, ..., n− 2) . (12.1.9)

The next subsection explains the interplay between the double poles (which were left unspecified

so far) and the Ljiki...li superfields.

12.1.3 Taming the double poles

The double pole integral
∫

dz2 dz3

∏
i<j |zij|−sij/z2

23 due to the five point correlator (12.1.4)

is proportional to a tachyon pole (1 + s23)−1. It is cancelled by the superfield L2323 in the

numerator:

L2323 = (1 + s23)
[
Aα2 W

3
α + Aα3 W

2
α − (A2 · A3)

]
(12.1.10)

1We again make use of nested antisymmetrization brackets to streamline the notation. The results (12.1.3)

and (12.1.6) for instance can be written more compactly as L2331 = 2L[31,21] = L3121 − L2131 and L233441 =

4L[41,[31,21]] = L413121 − L412131 − L312141 + L213141.
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Its Q variation can be recognized as the BRST exact part of L23 + L32, see (11.1.2). This can

be absorbed into the other six integrals – the Lji and Ljiki then receive the corrections (11.1.18)

and (11.1.19) necessary for an upgrade to the corresponing BRST building blocks Tij and T̃ijk.

The five point amplitude then simplifies to

A(1, 2, . . . , 5) =

∫ 1

0

dz2

∫ 1

z2

dz3

∏
i<j

|zij|−sij 〈V 1(0)V 4(1)V 5(∞)U2(z2)U3(z3) 〉

=

∫ 1

0

dz2

∫ 1

z2

dz3

∏
i<j

|zij|−sij
〈
T123 V4 V5

z12 z23

+
T132 V4 V5

z13 z32

+
V1 T423 V5

z42 z23

+
V1 T432 V5

z43 z32

+
T12 T34 V5

z12 z34

+
T13 T24 V5

z13 z24

〉
(12.1.11)

without any double poles. The tilde of T̃ijk = Tijk + QS
(1)
123 can be dropped because it only

appears in combination with the BRST exact V4V5 = QT45/s45 superfields.

The six point amplitude involves ten double pole integrals which need to be absorbed into

the remaining 24 integrals displayed in (12.1.7). They also carry spurious tachyon poles which

cancel after some tedious manipulations based on worldsheet integration by parts, see appendix

B of [7]. The corrections to the Lji, Ljiki and Ljikili from double pole integrals are precisely of

the form (11.1.17), (11.1.22) and (11.1.23) which converts them into the BRST building blocks

Tij, Tijk and T̃ijkl. Moreover, BRST exactness of VmVn implies 〈T̃ijklVmVn〉 = 〈TijklVmVn〉.

When the dust settles, the six point amplitude is found to be

A(1, . . . , 6) =

∫ 1

0

dz2

∫ 1

z2

dz3

∫ 1

z3

dz4

∏
i<j

|zij|−sij 〈V 1(0)V 5(1)V 6(∞)U2(z2)U3(z3)U4(z4) 〉

=

∫ 1

0

dz2

∫ 1

z2

dz3

∫ 1

z3

dz4

∏
i<j

|zij|−sij
〈
T1234 V5 V6

z12 z23 z34

+
T123 T54 V6

z12 z23 z54

+
T12 T543 V6

z12 z54 z43

+
V1 T5432 V6

z54 z43 z32

+ P(2, 3, 4)

〉
. (12.1.12)

We can draw the following general lesson from the double poles at five- and six points: The

BRST trivial pieces from the Ljiki...li superfields in (12.1.9) are cancelled by the double pole

residues from Uj(zj)Uk(zk) contractions. Their conspiration requires some worldsheet integra-

tions by parts which reshuffles Mandelstam invariants in such a way that all spurious tachyon

poles cancel.

This ties two loose ends together – on the one hand, we have to understand how the integral

over the correlator (12.1.9) yields a BRST closed amplitude, on the other hand, double pole

integrals introduce unphysical tachyon poles. Tachyon poles always cancel due to 1 + si1...ik

factors in the U(zi)U(zj) double pole residues. Their kinematic factors attribute corrections
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of type Ljiki...li → Tijk...l to the single pole part of the amplitude whose BRST variation then

vanishes due to the symmetry properties of the BRST building blocks in QA(1, 2, . . . , n). This

pattern was rigorously checked up to the six point superstring amplitude, and consistency

requires that it holds to any higher multiplicity.

The n point superstring amplitude with all double pole corrections taken into account reads:

A(1, 2, . . . , n) =
n−2∏
j=2

∫
dzj

∏
i<j

|zij|−sij

n−2∑
p=1

〈
T12...p Tn−1,n−2,...,p+1 Vn

(z12 z23 . . . zp−1,p) (zn−1,n−2 zn−2,n−3 . . . zp+2,p+1)
+ P(2, 3, . . . , n− 2) + . . .

〉
(12.1.13)

The zij polynomials associated with a specific BRST building block Tij1j2...jp follow an intriguing

pattern:

Tij1j2...jp ↔
1

zij1 zj1j2 zj2j3 . . . zjp−1,jp

(12.1.14)

The first label belongs to an unintegrated vertex i = 1 or i = n− 1 and the remaining ones to

the integrated vertices jk = 2, 3, . . . n− 2.

The representation (12.1.13) for the superstring amplitude can in principle be recast in terms

of smaller building blocks via BRST integration by parts. But it turns out that the present

form is most suitable for all our further purposes: Firstly, it provides an explicit formula

for the supersymmetric Berende-Giele currents introduced in section 11.2. Secondly, it is the

most appropriate starting point for decomposing the superstring amplitude into its field theory

constituents. And as a third benefit, (12.1.13) is an excellent tool to generate explicit BCJ

numerators ni, see section 5.5, this construction is explained in detail in the last chapter 13.

12.1.4 A string inspired formula for Berends-Giele currents

In this subsection, we will show that the result (12.1.13) for the CFT correlator in superstring

theory allows to extract a direct formula for the Berends–Giele current M12...p. The p sum

in (12.1.13) runs over partitions of the legs 2, 3, . . . n − 2 into two groups – one of them gets

attached to the building block T1... of integrated vertex 1, the other one enters Tn−1.... The

same structure is present the field theory amplitude ASYM =
∑n−2

p=1〈M12...pMp+1...n−1Vn〉.

Let us now make use of the requirement on superstring amplitudes to reproduce their field

theory counterparts in the limit α′ → 0 of vanishing string length. This has to hold term by

term in the p sums of (12.1.13) because the superfield kinematics at different p values are linearly
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independent. Let us pick out the p = n− 2 term and impose A(1, . . . , n)→ ASYM(1, . . . , n) in

the field theory limit. This is one of the few instances within the pure spinor part of this work

where we deviate from the 2α′ = 1 convention:

A(1, 2, . . . , n) = (2α′)n−3

n−2∏
j=2

∫
dzj

∏
i<j

|zij|−2α′sij

×
〈

T12...n−2 Vn−1 Vn
z12 z23 . . . zn−3,n−2

+ P(2, 3, . . . , n− 2) + . . .

〉
(12.1.15)

!→ 〈M12...n−2 Vn−1 Vn 〉 + . . .

The ellipsis . . . represents the 1 ≤ p ≤ n − 3 terms of the p sums with linearly independent

kinematic factors. Those parts of n point amplitudes displayed in (12.1.15) can be viewed as a

closed-formula solution for the rank p = n− 2 current M12...p,

M12...p = lim
α′→0

(2α′)p−1

p∏
j=2

∫ 1

zj−1

dzj

p+1∏
i<j

|zij|−2α′sij

(
T12...p

z12 z23 . . . zp−1,p

+ P(2, 3, ..., p)

)
,

(12.1.16)

where z1 = 0 and zp+1 = 1 as customary for a (p + 2)−point amplitude. For example, using

the momentum expansion of the five point superstring integrals 7.2 and the BRST symmetry

T123 + T213 = T123 + T231 + T312 = 0, the following M123 is generated

M123 = lim
α′→0

(2α′)2

∫ 1

0

dz2

∫ 1

z2

dz3

4∏
i<j

|zij|−2α′sij

(
T123

z12 z23

+
T132

z13 z32

)
=

T123

s12 s123

+
T123

s23 s123

− T132

s23 s123

=
T123

s12 s123

+
T321

s23 s123

(12.1.17)

in agreement with the diagrams above. Similarly, we checked that this formula remains

consistent with the diagramatic construction of the currents and with their BRST variation

QM12...p =
∑p−1

j=1 M12...jMj+1...p up to p = 7.

12.2 The structure of the n point superstring amplitude

The achievement of the representation (12.1.13) for the n point superstring amplitude is its

reduction to (n − 2)! hypergeometric integrals and the same number of superfield kinematics

〈T12σ ...pσTn−1,(n−2)σ ,...,(p+1)σVn〉 where p = 1, 2, . . . , n − 2 and σ ∈ Sn−3. In this section, this

expression will be reduced to a minimal basis of (n−3)! elements, both on the side of worldsheet

integrals and on the side of kinematics. The rather technical steps in this reduction process are

organized into three subsections.



326CHAPTER 12. SUPERSTRING AMPLITUDES IN THE PURE SPINOR FORMALISM

12.2.1 Trading T12...p for M12...p

The first step in simplifying the superstring amplitude in its non-minimal representation (12.1.13)

relies on eliminating the BRST building blocks T12...p in favor of the Berends–Giele currents

M12...p. This is possible because of the particular pattern (12.1.14) of zij dependences.

The lowest order example of T ↔ M conversion is a triviality T12

z12
= s12

z12
M12, but already

the simplest generalization is the result of both partial fraction relations and the symmetry

properties of Tijk:

T123

z12 z23

+ P(2, 3) =
s12

z12

(
s13

z13

+
s23

z23

)
M123 + P(2, 3) (12.2.18)

Similar identities have been checked at p = 4 and p = 5 level:

T1234

z12 z23 z34

+ P(2, 3, 4) =
s12

z12

(
s13

z13

+
s23

z23

) (
s14

z14

+
s24

z24

+
s34

z34

)
M1234 + P(2, 3, 4)

T12345

z12 z23 z34 z45

+ P(2, 3, 4, 5) =
s12

z12

(
s13

z13

+
s23

z23

) (
s14

z14

+
s24

z24

+
s34

z34

)
(12.2.19)

×
(
s15

z15

+
s25

z25

+
s35

z35

+
s45

z45

)
M12345 + P(2, 3, 4, 5)

These identities heavily rely on the interplay of different terms in the permutation sum and on

the symmetry properties (11.1.25) and (11.1.38) of the BRST building blocks which leave no

more than (p− 1)! independent permutations Ti1...ip at rank p.

The natural n point generalization of (12.2.18) and (12.2.19) reads as follows:

T12...p

z12 z23 . . . zp−1,p

+ P(2, . . . , p) =

p∏
k=2

k−1∑
m=1

smk
zmk

M12...p + P(2, . . . , p) (12.2.20)

Tn−1,n−2,...p+1

zn−1,n−2 . . . zp+2,p+1

+ P(2, . . . , p) =
n−2∏
k=p+1

n−1∑
n=k+1

snk
znk

Mn−1,n−2,...,p+1 + P(2, . . . , p)

=
n−2∏
k=p+1

n−1∑
n=k+1

skn
zkn

Mp+1,p+2,...,n−1 + P(2, . . . , p) (12.2.21)

In the last step, the rank n− 1− p current is reflected via Mn−1,...,p+1 = (−1)n−p−2Mp+1,...,n−1.

12.2.2 Worldsheet integration by parts

This subsection focuses on the integrals rather than the kinematic factors in the superstring

amplitude. The chain of smk/zmk sums which appears as a result of the general T12...p →M12...p

conversion (12.2.20) and (12.2.21) is particularly suitable to perform integration by parts with

respect to zj variables.
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The key idea is the vanishing of boundary terms in the worldsheet integrals:∫
dz2 . . .

∫
dzn−2

∂

∂zk

∏
i<j |zij|−sij

zi1j1 . . . zin−4jn−4

= 0 (12.2.22)

This identity provides relations between the integrals in an n point superstring amplitudes with

n−3 powers of some zij in the denominator. They become particularly easy if the differentiation

variable zk does not appear in the denominator (i.e. if k /∈ {il, jl}) because ∂
∂zk

only hits the∏
m6=k |zmk|−smk in that case:∫

dz2 . . .

∫
dzn−2

∏
i<j |zij|−sij

zi1j1 . . . zin−4jn−4

n−1∑
m=1
m 6=k

smk
zmk

= 0 (12.2.23)

This can be directly applied to the integrands on the right hand side of (12.2.18) to (12.2.21):

3∏
j=2

∫
dzj

∏
i<j

|zij|−sij
s12

z12

(
s13

z13

+
s23

z23

)
=

3∏
j=2

∫
dzj

∏
i<j

|zij|−sij
s12

z12

s34

z34

(12.2.24)

4∏
j=2

∫
dzj

∏
i<j

|zij|−sij
s12

z12

(
s13

z13

+
s23

z23

) (
s14

z14

+
s24

z24

+
s34

z34

)

=
4∏
j=2

∫
dzj

∏
i<j

|zij|−sij
s12

z12

s45

z45


(
s13

z13

+
s23

z23

)
(
s34

z34

+
s35

z35

) (12.2.25)

5∏
j=2

∫
dzj

∏
i<j

|zij|−sij
s12

z12

(
s13

z13

+
s23

z23

) (
s14

z14

+
s24

z24

+
s34

z34

) (
s15

z15

+
s25

z25

+
s35

z35

+
s45

z45

)

=
5∏
j=2

∫
dzj

∏
i<j

|zij|−sij
s12

z12

s56

z56

(
s13

z13

+
s23

z23

) (
s45

z45

+
s46

z46

)
(12.2.26)

In the general n point case with n− 3 integrals, it is most economic to leave the first [n/2]− 1

factors of
∑k−1

m=1 smk/zmk as they are and to integrate the remaining [(n− 3)/2] such factors by

parts:

n−2∏
j=2

∫
dzj

∏
i<j

|zij|−sij
s12

z12

(
s13

z13

+
s23

z23

)
. . .

(
s1,n−2

z1,n−2

+ . . . +
sn−1,n−2

zn−1,n−2

)

=
n−2∏
j=2

∫
dzj

∏
i<j

|zij|−sij
s12

z12

(
s13

z13

+
s23

z23

)
. . .

(
s1,[n/2]

z1,[n/2]

+ . . . +
s[n/2]−1,[n/2]

z[n/2]−1,[n/2]

)
(
s[n/2]+1,[n/2]+2

z[n/2]+1,[n/2]+2

+ . . . +
s[n/2]+1,n−1

z[n/2]+1,n−1

)
. . .

(
sn−3,n−2

zn−3,n−2

+
sn−3,n−1

zn−3,n−1

)
sn−2,n−1

zn−2,n−1

=
n−2∏
j=2

∫
dzj

∏
i<j

|zij|−sij
[n/2]∏

k=2

k−1∑
m=1

smk
zmk

  N−2∏
k=[n/2]+1

n−1∑
n=k+1

skn
zkn

 (12.2.27)

In contrast to the T12...p →M12...p reshuffling identities from the previous subsection, (12.2.24)

to (12.2.26) and (12.2.27) are valid before summing over permutations of (2, 3, . . . , n− 2).
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12.2.3 Superstring amplitudes up to seven points

This subsection completes the derivation of the striking result (1.4.1) for the color ordered

superstring n point amplitude An := A(1, 2, . . . , n) by combining the results of the previous

subsections. Let us first look at the five- and six point examples to get a better feeling of the

mechanisms at work.

The opening line (12.1.11) in computing the five point amplitude contains six different

integrands and kinematic terms. After applying (12.2.18), the Tij and Tijk conspire to give Mij

and Mijk with modified integrals, then we use integration by parts according to (12.2.24) on

the way to the fourth line. Remarkably, many of the initially (n − 2)! = 6 distinct integrals

now coincide: The three kinematic terms M123V4V5, M12M34V5 and V1M234V5 are multiplied

by the same worldsheet functions after partial integration, the same is true for the (2 ↔ 3)

permutation. That is why we can identify complete field theory amplitudes in the last line:

A5 =

∫
dz2 dz3

∏
i<j

|zij|−sij
〈
T123 V4 V5

z12 z23

+
T12 T43 V5

z12 z43

+
V1 T432 V5

z43 z32

+ (2↔ 3)

〉
=

∫
dz2 dz3

∏
i<j

|zij|−sij
〈
s12

z12

(
s13

z13

+
s23

z23

)
M123 V4 V5 +

s12 s34

z12 z34

M12M34 V5

+
s43

z43

(
s42

z42

+
s32

z32

)
V1M432 V5 + (2↔ 3)

〉
=

∫
dz2 dz3

∏
i<j

|zij|−sij
{
s12 s34

z12 z34

〈 (M123 V4 + M12M34 + V1M234)V5 〉 + (2↔ 3)

}
=

∫
dz2 dz3

∏
i<j

|zij|−sij
{
s12 s34

z12 z34

ASYM(1, 2, 3, 4, 5) +
s13 s24

z13 z24

ASYM(1, 3, 2, 4, 5)

}
(12.2.28)

Simplifying the six point amplitudes A6 follows similar steps. In this case, (12.2.19) takes care

of the conversion of Tijkl into Mijkl, then integration by parts makes the four integrals within

a given (2, 3, 4) permutation coincide:

A6 =
4∏
j=2

∫
dzj

∏
i<j

|zij|−sij
〈
T1234 V5 V6

z12 z23 z34

+
T123 T54 V6

z12 z23 z54

+
T12 T543 V6

z12 z54 z43

+
V1 T5432 V6

z54 z43 z32

+ P(2, 3, 4)

〉
=

4∏
j=2

∫
dzj

∏
i<j

|zij|−sij
〈
s12

z12

(
s13

z13

+
s23

z23

) (
s14

z14

+
s24

z24

+
s34

z34

)
M1234 V5 V6

+
s12

z12

(
s13

z13

+
s23

z23

)
s45

z45

M123M45 V6 +
s12

z12

s45

z45

(
s34

z34

+
s35

z35

)
M12M543 V6

+
s45

z45

(
s34

z34

+
s35

z35

) (
s52

z52

+
s42

z42

+
s32

z32

)
V1M5432 V6 + P(2, 3, 4)

〉



12.2. THE STRUCTURE OF THE N POINT SUPERSTRING AMPLITUDE 329

=
4∏
j=2

∫
dzj

∏
i<j

|zij|−sij
{
s12 s45

z12 z45

(
s13

z13

+
s23

z23

)
〈M1234 V5 V6 + M123M45 V6

+ M12M345 V6 + V1M2345 V6 〉 + P(2, 3, 4)

}
=

4∏
j=2

∫
dzj

∏
i<j

|zij|−sij{
s12 s45

z12 z45

(
s13

z13

+
s23

z23

)
ASYM(1, 2, 3, 4, 5, 6) + P(2, 3, 4)

}
(12.2.29)

The identities (12.2.19) and (12.2.26) are sufficient to also reduce A7 to its field theory con-

stituents:

A7 =
5∏
j=2

∫
dzj

∏
i<j

|zij|−sij
〈

T12345 V6 V7

z12 z23 z34 z45

+
T1234 T65 V7

z12 z23 z34 z65

+
T123 T654 V7

z12 z23 z65 z54

+
T12 T6543 V7

z12 z65 z54 z43

+
V1 T65432 V7

z65 z54 z43 z32

+ P(2, 3, 4, 5)

〉
=

5∏
j=2

∫
dzj

∏
i<j

|zij|−sij{
s12 s56

z12 z56

(
s13

z13

+
s23

z23

) (
s45

z45

+
s46

z46

)
ASYM(1, 2, 3, 4, 5, 6, 7) + P(2, 3, 4, 5)

}
(12.2.30)

12.2.4 The n point result

The n point generalization is based on introducing currents Mi1i2...ip via (12.2.20) and (12.2.21)

followed by integration by parts using (12.2.27). The latter makes the worldsheet integrand

independent on p such that the zij can be placed outside the p sum and SYM amplitudes emerge

from the kinematics.

An =
n−2∏
j=2

∫
dzj

∏
i<j

|zij|−sij
〈 n−2∑

p=1

T12...p Tn−1,n−2,...,p+1 Vn
(z12 z23 . . . zp−1,p) (zn−1,n−2 . . . zp+2,p+1)

+ P(2, 3, ..., n− 2)

〉
=

n−2∏
j=2

∫
dzj

∏
i<j

|zij|−sij
〈 n−2∑

p=1

(
p∏

k=2

k−1∑
m=1

smk
zmk

M12...p

)
(

n−2∏
k=p+1

n−1∑
m=k+1

skm
zkm

Mp+1,...,n−2,n−1

)
Vn + P(2, 3, ..., n− 2)

〉

=
n−2∏
j=2

∫
dzj

∏
i<j

|zij|−sij
{  [n/2]∏

k=2

k−1∑
m=1

smk
zmk

  n−2∏
k=[n/2]+1

n−1∑
m=k+1

skm
zkm
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n−2∑
p=1

〈M12...pMp+1...n−2,n−1 Vn 〉 + P(2, 3, ..., n− 2)

}

=
n−2∏
j=2

∫
dzj

∏
i<j

|zij|−sij
{  [n/2]∏

k=2

k−1∑
m=1

smk
zmk

  n−2∏
k=[n/2]+1

n−1∑
m=k+1

skm
zkm


ASYM(1, 2, 3, . . . , n− 1, n) + P(2, 3, ..., n− 2)

}
(12.2.31)

Hence, the color ordered n-point superstring amplitude becomes

A(1σ, 2σ, . . . , nσ) =
n−2∏
j=2

∫
Iσ

dzj
∏
i<j

|zij|−sij
{  [n/2]∏

k=2

k−1∑
m=1

smk
zmk

  n−2∏
k=[n/2]+1

n−1∑
m=k+1

skm
zkm


ASYM(1, 2, 3, . . . , n− 1, n) + P(2, 3, ..., n− 2)

}
(12.2.32)

where only the integration region Iσ reflects the particular color ordering in question. Therefore,

the end result of all these pure spinor superspace manipulations is that the n-point superstring

disk amplitude is written in terms of an explicit sum over the (n − 3)! basis of field-theory

amplitudes ASYM multiplied by an equal number of hypergeometric integrals.

12.3 The color ordered n point amplitude

This section investigates the structure and properties of the main result (12.2.32) of my research

activities in Munich. The pure spinor computation of the previous section casts the complete

superstring n point disk color ordered amplitude into the following form:

A(1, 2, . . . , n) =
∑

σ∈Sn−3

ASYM(1, 2σ, . . . , (n− 2)σ, n− 1, n)F σ
(1,...,n)(α

′) (12.3.33)

In (1.4.1), we have made the identification F σ ≡ F σ
(1,...,n) for the (n− 3)! functions. The latter

will be explicitly given in subsection 12.3.4. The result (12.3.33) is valid for members of the

massless vector multiplet in any spacetime dimension D, for any compactification and any

amount of supersymmetry. Furthermore, it does not make any reference to kinematical or

helicity choices. In the following we explore the result (12.3.33) to illuminate the role of color

and kinematics.

12.3.1 Basis representations: kinematics versus color

We have explained in subsection 5.5.5 that there are in total (n−3)! independent subamplitudes

ASYM in field theory and given a string theory derivation of this result in section 5.4. Hence,
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in field theory any partial subamplitude ASYM(1Π, . . . , nΠ), with Π ∈ Sn, can be expressed as

ASYM(1Π, . . . , nΠ) =
∑

σ∈Sn−3

KΠ
σASYM

σ , (12.3.34)

with iΠ = Π(i), some universal and state independent kinematic coefficients KΠ
σ generically

depending on the kinematic invariants, cf. (12.3.39) for a straightforward derivation. Besides,

we introduced the abbreviation:

ASYM
σ := ASYM(1, 2σ, . . . , (n− 2)σ, n− 1, n) (12.3.35)

One crucial property of (12.3.33) is the fact, that the full n point amplitude may be decomposed

in terms of SYM color ordered amplitudes ASYM
σ , i.e. the whole superstring amplitude can be

decomposed with respect to the kinematics described by the set of ASYM
σ , σ ∈ Sn−3. Hence, it

is evident that in (12.3.33) only (n−3)! basis functions are necessary, because there are only as

much independent kinematical packages. If in (12.3.33) there were more than (n−3)! terms we

simply would express all kinematical factors in terms of the minimal basis (12.3.35) at the cost

of redefining the functions F σ. Hence, by these results it is obvious, that in the sum of (12.3.33)

only (n− 3)! terms and as many different multiple hypergeometric functions can appear since

any additional kinematical term could be eliminated by redefining the functions F σ thanks to

the amplitude relations (12.3.34).

Moreover, the string subamplitudes (12.3.33) and its color ordered permutations solve the

system of string monodromy relations

A(1, 2, . . . , n) + eiπs12 A(2, 1, 3, . . . , n) + eiπ(s12+s13)A(2, 3, 1, 4, . . . , n)

+ . . . + eiπ(s12+s13+...+s1,n−1)A(2, 3, . . . , n− 1, 1, n) = 0 , (12.3.36)

and permutations thereof. Furthermore, since there exists a basis of (n − 3)! SYM building

blocks allowing for the decomposition (12.3.34), we may express any string subamplitude by

one specific set of SYM amplitudes ASYM
σ referring e.g. to the string amplitude (12.3.33):

A(1Π, . . . , nΠ) =
∑

σ∈Sn−3

ASYM
σ F σ

Π(α′) , Π ∈ Sn (12.3.37)

Inserting the set (12.3.37) into the monodromy relations yields a set of relations for the functions

F σ
Π for each given σ ∈ Sn−3:

F σ
(1,2,...,n) + eiπs12 F σ

(2,1,3,...,n) + eiπ(s12+s13) F σ
(2,3,1,4,...,n)

+ . . . + eiπ(s12+s13+...+s1,n−1) F σ
(2,3,...,n−1,1,n) = 0 (12.3.38)
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Hence, for a given σ ∈ Sn−3 corresponding to the given SYM amplitude ASYM
σ , the set of

functions F σ
Π at fixed σ and Π ∈ Sn enjoys the monodromy relations. As a consequence for

each permutation σ ∈ Sn−3 or YM basis amplitude ASYM
σ there are (n− 3)! different functions

F σ
Π all related through the equations (12.3.38) and permutations thereof.

As a remarkable byproduct, (12.3.37) allows for an explicit expression of the kinematic

coefficients KΠ
σ introduced in (12.3.34) in the low energy limit α′ → 0,

KΠ
σ = F σ

Π(α′)
∣∣∣
α′=0

. (12.3.39)

This relation enables to compute the matrix elements KΠ
σ directly by means of extracting the

field theory limit of the string worldsheet integrals F σ
Π(α′) (by the method described in section

7.2) rather than by solving the monodromy relations (12.3.36).

12.3.2 Duality between color and kinematics

Further insights can be gained when looking at different representations for the same amplitude

(12.3.33):

A(1, 2, . . . , n) =
∑

π∈Sn−3

ASYM
π F π

(1,...,n)(α
′) , (12.3.40)

In contrast to the ASYM
σ in (12.3.35), the set ASYM

π represents a more general basis of (n− 3)!

independent subamplitudes where three legs i, j, k (possibly other than 1, n−1 and n) are fixed

and the remaining ones are permuted by π ∈ Sn−3. By applying the decomposition (12.3.34)

and comparing the two expressions (12.3.40) and (12.3.33) we find the relation between the set

of (n− 3)! new and old independent basis functions F π
(1,...,n) and F σ

(1,...,n):

F σ
(1,...,N) =

∑
π∈SN−3

(K−1)π
σ F π

(1,...,N) , σ ∈ SN−3 (12.3.41)

In this case, the matrix (K−1)π
σ becomes a quadratic (n− 3)!× (n− 3)! matrix, see subsection

12.3.5 for explicit examples. Hence, for a given fixed color ordering (1, . . . , n), any function F σ

may be expressed in terms of a basis of (n−3)! functions F π referring to the same color ordering.

Equation (12.3.41) is the starting point for generating sets of equation systems involving the

kinematics functions F π (of the same color ordering). According to (12.3.39) the field theory

limits of the functions F σ
π are enough to determine the coefficients of these equations.

The relation (12.3.41) should be compared with (12.3.34): While in the first identity one

specific color ordered amplitude is decomposed with respect to a set of (n−3)! independent color

ordered amplitudes all referring to the same kinematics, in the second identity one functions

referring to one specific kinematics is decomposed to with respect to a set of (n−3)! independent
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kinematics functions all referring to the same color ordering. Moreover, as we shall show in

subsection 12.3.5, for a fixed color ordering (1, . . . , n) an explicit set of (n − 2)! functions

FΠ
(1...n), Π ∈ Sn−2 can be given, which fulfills (12.3.41) – just as a set of (n−2)! SYM amplitudes

ASYM
Π fulfills (12.3.34) for a fixed kinematics. Since the latter fact is a result of the (imaginary

part) field theory monodromy relations, also the relations (12.3.41) should follow from a system

of equations for the (n− 2)! functions.

Relations between functions FΠ
(1...n) of same color ordering are obtained by either partial

fraction decomposition of their integrands or applying partial integration techniques within their

n− 3 integrals. The partial fraction expansion yields linear equations with integer coefficients

for the functions FΠ – just like the real part of field theory monodromy relations yields linear

identities (e.g. subcyclic identities) for the color ordered subamplitudes ASYM. On the other

hand, the partial integration techniques applied to the (n− 2)! functions FΠ provides a system

of equations of rank (n − 3)!, whose solution is given by (12.3.41). Hence, we have found a

complete analogy between the monodromy relations equating subamplitudes ASYM
Π of different

color orderings Π ∈ Sn−2 at the same kinematics and a system of equations relating functions

FΠ referring to different kinematics Π ∈ Sn−2 at the same color ordering.

To conclude, behind the expression (12.3.33) there are two sets of equations: one set,

derived from the monodromy relations (12.3.36) and equating all subamplitudes of different

color orderings and another set, derived from the partial fraction decomposition and partial

integration relations equating all kinematics functions F π. Both systems are of rank (n − 3)!

and allow to express all colored ordered subamplitudes in terms of a minimal basis or to express

all kinematic functions in terms of a minimal basis.

The color decomposition of the full n point open superstring amplitudeM[1a1 , 2a2 , . . . , nan ]

can be expressed by (n−3)!× (n−3)! different functions F σ
Π with (n−3)! SYM building blocks

ASYM
σ . After introducing the string generalization of (12.3.34)

A(1Π, . . . , nΠ) =
∑

π∈Sn−3

KΠ
π(α′)A(1, 2π, . . . , (n− 2)π, n− 1, n) , (12.3.42)

with Π ∈ SN and limα′→0KΠ
π(α′) = KΠ

π, we get

M
[
1a1 , 2a2 , . . . , nan

]
=

∑
Π∈Sn−1

Tr
{
T a1 T a2Π . . . T anΠ )

∑
σ,π∈Sn−3

ASYM
σ KΠ

π F σ
π (12.3.43)

with F σ
π := F σ

(1,π(2),...,π(n−2),n−1,n)(α
′). In the sum (12.3.43) the same set of basis elements ASYM

σ

is used for all color orderings Π. This enables to reorganize the color decomposition sum and
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to interchange the two sums over color and kinematics:

M
[
1a1 , 2a2 , . . . , nan

]
=

∑
σ∈Sn−3

ASYM
σ

∑
Π∈Sn−1

Tr
{
T a1 T a2Π . . . T anΠ

} ∑
π∈Sn−3

KΠ
π F σ

π (12.3.44)

12.3.3 Yang–Mills building blocks ASYM

In D = 10, compact expressions for ASYM(1, 2σ, . . . , (n − 2)σ, n − 1, n) are derived in section

11.3 [8]. They can be used to describe the SYM building blocks in (12.3.33). On the other hand,

for D = 4 compact forms for the SYM building blocks ASYM(1, 2σ, . . . , (n− 2)σ, n− 1, n) in the

spinor helicity basis can be looked up in the literature: In the maximal helicity violating (MHV)

case the building blocks reduce to the famous Parke Taylor or Berends Giele formula [236,237].

For the general NMHV case the complete expressions for ASYM(1, 2σ, . . . , (n−2)σ, n−1, n) can

be found in [100].

Since in the sum (12.3.33) the kinematical factors ASYM and the functions F σ encoding

the string effects are multiplied together, supersymmetric Ward identities established in field

theory [195, 196, 197, 198, 199] hold also for the full superstring amplitude, cf. also subsection

5.2.4 based on [150]. At any rate, by extracting SUSY components from the pure spinor result,

we can obtain the n point amplitude involving any member of the SYM vector multiplet.

12.3.4 Minimal basis of multiple hypergeometric functions F σ

The system of (n− 3)! multiple hypergeometric functions F σ appearing in (12.3.33) are given

as generalized Euler integrals

F (23...n−2)(sij) =
n−2∏
j=2

1∫
zj−1

dzj

(∏
i<j

|zij|−sij
) {

n−2∏
k=2

k−1∑
m=1

smk
zmk

}
, (12.3.45)

with permutations σ ∈ Sn−3 acting on all indices within the curly brace (but not on the

integration region). Integration by parts admits to simplify the integrand in (12.3.45). As a

result the length of the sum over m becomes shorter for k > [n/2]:

F (23...n−2)(sij) =
n−2∏
j=2

1∫
zj−1

dzj

(∏
i<j

|zij|−sij
)

×

 [n/2]∏
k=2

k−1∑
m=1

smk
zmk

  n−2∏
k=[n/2]+1

n−1∑
p=k+1

skp
zkp

 . (12.3.46)

Above, [. . .] denotes the Gauss bracket [x] = maxn∈Z,n≤x n, which picks out the nearest integer

smaller than or equal to its argument.
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The result (12.3.33) inherits its gauge invariance from its kinematic building blocks ASYM.

Hence, gauge invariance does not impose further restrictions on the (n− 3)! functions F σ
(1,...,n),

which would impose additional relations for them and further reduce the basis. The set (12.3.45)

of (n−3)! functions represents a minimal basis for the set of multiple Gaussian hypergeometric

functions or Euler integrals appearing at n point and referring to the same color ordering

(1, . . . n) or integration region z1 < . . . < zn. Any function of this ordering can be expressed in

terms of this basis.

The lowest terms of the α′ expansion of the functions F σ assume the form (see subsection

7.1.5):

F σ =

 1 + α′2 pσ2 ζ(2) + α′3 pσ3 ζ(3) + . . . : σ = (23 . . . n− 2)

α′2 pσ2 ζ(2) + α′3 pσ3 ζ(3) + . . . : σ 6= (23 . . . n− 2)
(12.3.47)

with some polynomials pσn of degree n in the kinematic invariants. Only the first term of

(12.3.33) contributes to the field theory limit of the full n point superstring amplitude, in lines

with the derivation (12.3.39) of the basis expansion coefficients in ASYM
σ . Note that starting at

n ≥ 7 subsets of F σ start at even higher order in α′, i.e. pσ2 , . . . , p
σ
ν = 0 for some ν ≥ 2, see

appendix D.2 for further details.

The power series expansions (12.3.47) in α′ is such that to each power α′n, a transcendental

function of degree n shows up. More precisely, a set of multizeta values (MZVs) of fixed

weight n appears, see section 7.3 for an account on transcendentality properties. The latter are

multiplied by a polynomial pσn of degree n in the kinematic invariants with rational coefficients.

From (12.3.47) we conclude that the whole pole structure of the amplitude (12.3.33) is encoded

in the SYM subamplitudes ASYM
σ , while the functions F σ are finite, i.e. do not have poles in

the kinematic invariants. A detailed account on multiple Gaussian hypergeometric functions

can be found in [231].

12.3.5 Extended set of multiple hypergeometric functions FΠ

A system of (n− 2)! functions FΠ subject to (12.3.41) with Π ∈ Sn−2 can be given as follows

F (23...n−1)(sij) =
n−2∏
j=2

1∫
zj−1

dzj

(∏
i<j

|zij|−sij
) {

1

zn−1 − z1

n−2∏
k=2

k−1∑
m=1

smk
zmk

}
, (12.3.48)

with permutations Π ∈ Sn−2 acting on all indices within the curly brace. The set of (n − 2)!

functions (12.3.48) can be expressed in terms of the basis (12.3.45) as a consequence of the

relations (12.3.41). This allows to express (n− 2)!− (n− 3)! = (n− 3)× (n− 3)! functions of

(12.3.48) in terms of (12.3.45). This will be demonstrated at some examples.
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• n = 4 functions

F (2) =

∫ 1

0

dz2

(∏
i<j

|zij|−sij
)

s12

z12

=
Γ(1− s12) Γ(1− s23)

Γ(1− s12 − s23)

= 1 − ζ(2) s12 s23 + ζ(3) s12 s23 s13 + . . . . (12.3.49)

The extended set of two functions consists of (12.3.49) (with F (2) ≡ F (23)) and the

additional function (12.3.48):

F (32) =

∫ 1

0

dz2

(∏
i<j

|zij|−sij
)

1

z21

s13

z13

=
s13

s12

Γ(1− s12) Γ(1− s23)

Γ(1− s12 − s23)

=
s13

s12

− ζ(2) s13 s23 + ζ(3) s2
13 s23 + . . . . (12.3.50)

With this extended set of two functions we may explicitly verify the relation (12.3.41).

For the new basis π = {(1, 3, 2, 4)} in (12.3.34) we have

K(1,3,2,4)
(2) =

s12

s13

(12.3.51)

with respect to the reference ordering (1, 2, 3, 4) as a consequence of the field theory

relation ASYM(1, 3, 2, 4) = s12

s13
ASYM(1, 2, 3, 4). According to (12.3.41), we can conclude

F (32) = (K−1)(1,3,2,4)
(2) F (23) =

s13

s12

F (23) (12.3.52)

on the level of the functions.

• n = 5 functions

The set of two basis functions appearing in (12.3.33) and following from (12.3.45) is:

F (23) =

∫ 1

0

dz2

∫ 1

z2

dz3

(∏
i<j

|zij|−sij
)

s12

z12

(
s13

z13

+
s23

z23

)

=

∫ 1

0

dz2

∫ 1

z2

dz3

(∏
i<j

|zij|−sij
)

s12 s34

z12 z34

= 1 + ζ(2) (s12 s34 − s34 s45 − s12 s51) + ζ(3) (s2
12 s34 + 2 s12 s23 s34

+ s12 s
2
34 − s2

34 s45 − s34 s
2
45 − s2

12 s51 − s12 s
2
51) + . . . (12.3.53)

F (32) =

∫ 1

0

dz2

∫ 1

z2

dz3

(∏
i<j

|zij|−sij
)

s13

z13

(
s12

z12

+
s32

z32

)

=

∫ 1

0

dz2

∫ 1

z2

dz3

(∏
i<j

|zij|−sij
)

s13 s24

z13 z24

= ζ(2) s13 s24 + ζ(3) s13 s24 (s12 + s23 + s34 + s45 + s51) + . . .
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The extended set of six functions consists of (12.3.53), with

F (234) := F (23) , F (324) := F (32) , (12.3.54)

and the additional four functions (12.3.48):

F (423) =

∫ 1

0

dz2

∫ 1

z2

dz3

(∏
i<j

|zij|−sij
)

1

z31

s14

z14

s23

z23

F (243) =

∫ 1

0

dz2

∫ 1

z2

dz3

(∏
i<j

|zij|−sij
)

1

z31

s12

z12

s34

z43

(12.3.55)

F (432) =

∫ 1

0

dz2

∫ 1

z2

dz3

(∏
i<j

|zij|−sij
)

1

z21

s14

z14

s23

z32

F (342) =

∫ 1

0

dz2

∫ 1

z2

dz3

(∏
i<j

|zij|−sij
)

1

z21

s13

z13

s24

z42

With this extended set of six functions we may explicitly verify the relation (12.3.41).

For the new basis π = {(1, 4, 2, 3, 5), (1, 2, 4, 3, 5)} in (12.3.34) we have

Kπ
σ =

1

s14 s35

 s12 s34 − s13 (s34 + s45)

s14 (s12 − s45) − s14 s13

 (12.3.56)

w.r.t. the reference basis σ = {(1, 2, 3, 4, 5), (1, 3, 2, 4, 5)}. According to (12.3.41) the

following identity indeed holds:(
F (423)

F (243)

)T
=

(
F (234)

F (324)

)T
K−1 (12.3.57)

On the other hand, for the new basis π = {(1, 4, 3, 2, 5), (1, 3, 4, 2, 5)} we have

Kπ
σ =

1

s14 s35

 s12 (s14 + s34) s13 s24

− s12 s14 − s14 (s12 + s23) ,

 (12.3.58)

and the following relation can be checked:(
F (432)

F (342)

)T
=

(
F (234)

F (324)

)T
K−1 (12.3.59)

Hence, the relations (12.3.64) and (D.1.5) allow to express the additional set of functions

(12.3.55) in terms of the minimal basis (12.3.53).

• n = 6 functions

The set of six basis functions appearing in (12.3.33) and following from (12.3.45) is

F (234) =
4∏
j=2

∫ 1

zj−1

dzj

(∏
i<j

|zij|−sij
)

s12

z12

s45

z45

(
s13

z13

+
s23

z23

)
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= 1 − ζ(2) (s4 s5 + s1 s6 − s4 t1 − s1 t3 + t1 t3) − ζ(3) (2s1s2s4

+ 2s1s3s4 + s2
4s5 + s4s

2
5 + s2

1s6 + s1s
2
6 − 2s3s4t1 − s2

4t1

− s4t
2
1 − 2s1s4t2 − s2

1t3 − 2s1s2t3 + t21t3 − s1t
2
3 + t1t

2
3) + . . .

F (324) =
4∏
j=2

∫ 1

zj−1

dzj

(∏
i<j

|zij|−sij
)

s13

z13

s45

z45

(
s12

z12

+
s32

z32

)
= ζ(2) s13 (s6 − s2 − t3) − ζ(3) s13 (s1s2 + s2

2 − 2s2s4 − 2s3s4

− s1s6 − s2
6 + s2t1 − s6t1 + 2s4t2 + s1t3 + 2s2t3 + t1t3 + t23) + . . .

F (432) =
4∏
j=2

∫ 1

zj−1

dzj

(∏
i<j

|zij|−sij
)

s14

z14

s25

z25

(
s13

z13

+
s43

z43

)
(12.3.60)

= − ζ(2) s14 s25 + ζ(3) s14 s25 (s2 + s3 − s5 − s6 − t1 − t2 − t3) + . . .

F (342) =
4∏
j=2

∫ 1

zj−1

dzj

(∏
i<j

|zij|−sij
)

s13

z13

s25

z25

(
s14

z14

+
s34

z34

)
= ζ(2) s13 s25 + ζ(3) s13 s25 (s1 − s2 − 2s3 + s6 + t1 + 2t2 + t3) + . . .

F (423) =
4∏
j=2

∫ 1

zj−1

dzj

(∏
i<j

|zij|−sij
)

s14

z14

s35

z35

(
s12

z12

+
s42

z42

)
= ζ(2) s14 s35 − ζ(3) s14 s35 (2s2 + s3 − s4 − s5 − t1 − 2t2 − t3) + . . .

F (243) =
4∏
j=2

∫ 1

zj−1

dzj

(∏
i<j

|zij|−sij
)

s12

z12

s35

z35

(
s14

z14

+
s24

z24

)
= ζ(2) (s5 − s3 − t1) s35 + ζ(3) s35 (2s1s2 + 2s1s3 − s2

3 − s3s4

+ s4s5 + s2
5 − 2s3t1 − s4t1 − t21 − 2s1t2 − s3t3 + s5t3 − t1t3) + . . .

where we use Mandelstam variables si ≡ si,i+1 and ti ≡ si,i+1,i+2 subject to cyclic identi-

fication ki+n ≡ ki of the external momenta.

The extended set of 24 functions consists of (12.3.60) with

F (2345) := F (234) , F (3245) := F (324) , F (4325) := F (432) (12.3.61)

F (3425) := F (342) , F (4235) := F (423) , F (2435) := F (243) ,

and additional 18 functions of type (12.3.48), which are listed in appendix D.1.

Switching from the reference basis {(1, σ(2), σ(3), σ(4), 5, 6), σ ∈ S3} to the new one π ∈
{(1, 2, 3, 5, 4, 6), (1, 3, 2, 5, 4, 6), (1, 5, 3, 2, 4, 6), (1, 3, 5, 2, 4, 6), (1, 5, 2, 3, 4, 6), (1, 2, 5, 3, 4, 6)}
involves the transformation matrix

Kπ
σ = s−1

46
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s5 − t1 0 0 0 s14 −d1

0 s5 − t1 s14 s3 + s14 0 0

s1s4d0

s15s246

s4s13(s25−s46)
s15s246

−s13s14s25

s15s246

−s13s25(s3+s14)
s15s246

s14d0(s46−s1)
s15s246

s1(s3+s4)d0

s15s246

−s1s4
s246

−s4(s1+s2)
s246

s14d4

s246

(s14+s3)d4

s246

s14(s1−s46)
s246

−s1(s3+s4)
s246

s1s4(s35−s46)
s15s125

s4s13d3

s15s125

(s46−s13)d3s14

s15s125

(s4+s24)s13d3

s15s125

−s1s14s35

s15s125

s1s35d1

s15s125

s4(s1−t1)
s125

−s4s13

s125

s14(s13−s46)
s125

−s13(s4+s24)
s125

−s14d2

s125

d1d2

s125


(12.3.62)

with shorthands

d1 = s3 − s5 + t1 , d2 = s1 − s4 − s5

d3 = s3 − s5 − t3 , d4 = s4 + s5 − s13 (12.3.63)

d0 = s15 + s35 .

According to (12.3.41), the functions F σ
Π at fixed Π transform with the inverse matrix



F (2354)

F (3254)

F (5324)

F (3524)

F (5234)

F (2534)



T

=



F (2345)

F (3245)

F (4325)

F (3425)

F (4235)

F (2435)



T

K−1 . (12.3.64)

The other two sets of basis π ∈ {(1, σ(2), σ(4), σ(5), 3, 6)} and π ∈ {(1, σ(3), σ(4), σ(5), 2, 6)}
(with σ ∈ S3) as well as their relations (12.3.41) to the reference basis {(1, σ(2), σ(3), σ(4), 5, 6)}
are displayed in appendix D.1.

12.4 Properties of the full amplitude

The factorization properties of tree level amplitudes are well studied in field theory [264]. These

properties represent an important test of our result. An explicit check of cyclic invariance is

still under research and will be written in [11]. The extended set of functions introduced in

subsection 12.3.5 is believed to play a key role.
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12.4.1 Soft limit

According to the SUSY argument in subsection 12.3.3, it is sufficient to focus on the n gluon

amplitude. We consider the limit kn−2 → 0. In this limit, the amplitude (12.3.33) behaves as2:

A(1, 2, . . . , n) →
(
ξ kn−2

kn−2 k
− ξ kn−3

kn−3 k

)
A(1, 2, . . . , n− 1) (12.4.65)

This can be proven by considering the limits of the individual summands of (12.3.33):

(i) σ ∈ Sn−4 with (n− 3)σ = n− 3 :

ASYM(1, 2σ, . . . , (n− 3)σ, n− 2, n− 1, n) F σ(α′)

→
(
ξkn−2

kn−2k
− ξkn−3

kn−3k

)
ASYM(1, 2σ, . . . , (n− 3)σ, n− 2, n− 1) F̃ σ(α′) ,

(ii) σ ∈ Sn−4 with (n− 3)σ 6= n− 3 :

ASYM(1, 2σ, . . . , (n− 3)σ, n− 2, n− 1, n) F σ(α′)

→
(
ξkn−2

kn−2k
− ξk(n−3)σ

k(n−3)σk

)
ASYM(1, 2σ, . . . , (n− 3)σ, n− 2, n− 1) F̃ σ(α′)

(iii) σ ∈ Sn−4 with n− 3 ∈ {2σ, . . . , iσ} and i = 2, . . . , n− 4, i.e. (n− 3)σ 6= n− 3 :

ASYM(1, 2σ, . . . , iσ, n− 2, (i+ 1)σ, . . . , (n− 3)σ, n− 1, n) F σ(α′)

→
(
ξk(i+1)σ

k(i+1)σk
− ξkiσ

kiσk

)
ASYM(1, 2σ, . . . , (n− 3)σ, n− 2, n− 1) F̃ σ(α′)

(iv) σ ∈ Sn−4 : ASYM(1, n− 2, 2σ, . . . , (n− 3)σ, n− 1, n) F σ(α′) → 0

(v) σ ∈ Sn−4 with n− 3 ∈ {(i+ 1)σ, . . . , (n− 3)σ} and i = 2, . . . , n− 4 :

ASYM(1, 2σ, . . . , iσ, n− 2, (i+ 1)σ, . . . , (n− 3)σ, n− 1, n) F σ(α′) → 0 . (12.4.66)

Above the functions F̃ σ refer to the n − 1 point amplitude. While the (n − 5)! summands of

case (i) already have the right form (12.4.65) and give rise to (n− 5)! terms of the n− 1 point

amplitude (12.3.33), the remaining nonvanishing limits (ii) and (iii) for a given σ ∈ Sn−4 with

(n− 3)σ 6= n− 3 conspire to comprise the remaining (n− 5)(n− 5)! terms of (12.3.33) thanks

to the relation:(
ξkn−2

kn−2k
− ξk(n−3)σ

k(n−3)σk

)
+

n−4∑
i=2

n−3∈{2σ,...,iσ}

(
ξk(i+1)σ

k(i+1)σk
− ξkiσ

kiσk

)
=

(
ξkn−2

kn−2k
− ξkn−3

kn−3k

)
.

(12.4.67)

The remaining 1
2
(n− 3)! terms of the cases (iv) and (v) do not contribute in the soft limit.

2The vectors ξ and k refer to the transverse polarization and momentum of the soft–gluon, resepctively. One

could also express the kinematic dependent soft- or eikonal factor in the D = 4 spinor helicity basis [264,261]
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12.4.2 Collinear limit

Again, according to subsection 12.3.3 it is sufficient to focus on the n–gluon amplitude. The

collinear limit is defined as two adjacent external momenta ki and ki+1, with i + 1 mod n,

becoming parallel. Due to cyclic symmetry, these can be chosen as kn−3 and kn−2, with kn−3

carrying the fraction x of the combined momentum kn−3 + kn−2 → kn−3. Formally,

kn−3 → x kn−3 , kn−2 → (1− x) kn−3 , (12.4.68)

where the momenta appearing in the limits describe the scattering amplitude of n− 1 gluons.

In this limit the amplitude (12.3.33) behaves as3

A(1, 2, . . . , n) → V i

kn−3kn−2

∂

∂ξin−3

A(1, 2, . . . , n− 1) , (12.4.69)

with the three gluon vertex V i = (ξn−3ξn−2)(kin−2− kin−3) + 2(ξn−2kn−3)ξin−3− 2(ξn−3kn−2)ξin−2.

This can be proven by considering the limits of the individual summands of (12.3.33). First, if

the two states n− 3 and n− 2 are not neighbors, we have:

(i) σ ∈ Sn−4 with 2σ 6= n− 3 : ASYM(1, n− 2, 2σ, . . . , (n− 3)σ, n− 1, n) → 0

(ii) σ ∈ Sn−4 with iσ, (i+ 1)σ 6= n− 3 and i = 2, . . . , n− 4 :

ASYM(1, 2σ, . . . , iσ, n− 2, (i+ 1)σ, . . . , (n− 3)σ, n− 1, n) → 0 (12.4.70)

On the other hand, the remaining 2(n−4)! terms of (12.3.33) pair up into (n−4)! tuples (σ, σ̃)

each giving rise to one of the (n− 4)! terms of the n− 1 point amplitude (12.3.33):

σ, σ̃ ∈ Sn−4 with iσ = (i+ 1)σ̃ = n− 3 and i = 2, . . . , n− 4 :

ASYM(1, 2σ, . . . , iσ, n− 2, (i+ 1)σ, . . . , (n− 3)σ, n− 1, n) F σ(α′)

+ ASYM(1, 2σ̃, . . . , iσ̃, n− 2, (i+ 1)σ̃, . . . , (n− 3)σ̃, n− 1, n) F σ̃(α′)

→ V i

kn−3kn−2

∂

∂ξin−3

ASYM(1, 2σ, . . . , (n− 3)σ, n− 2, n− 1) F σ(α′) (12.4.71)

Note, that in the above combination the x–dependent parts of the two functions F σ and F σ̃,

which stems from the limit (12.4.68), add up to zero.

12.4.3 Cyclic invariance

While the canonically ordered SYM constituent ASYM(1, 2, . . . , n) within (12.3.33) is invariant

under cyclic transformations of its labels i → i + 1 mod n, all others transform nontrivially.

3One could also express the kinematic dependent factor as splitting amplitude written e.g. in the D = 4

spinor helicity basis [264,261].
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More precisely, the set
{
ASYM(1, 2σ, . . . , (n − 2)σ, n − 1, n), σ ∈ Sn−3

}
is mapped to the

set
{
ASYM(1, 2, 3σ, . . . , (n − 2)σ, (n − 1)σ, n), σ ∈ Sn−3

}
by virtue of the cyclic properties

of the ASYM. The latter set belongs to the extended Sn−2 family from subsection 12.3.5,{
ASYM(1, 2Π, 3Π, . . . , (n− 2)Π, (n− 1)Π, n), Π ∈ Sn−2

}
which can be expanded in terms of the

original basis of ASYM(1, 2σ, . . . , (n− 2)σ, n− 1, n) according to (12.3.34).

The cyclic transformation properties of the minimal basis functions F σ are such that the

change of ASYM
σ into ASYM

Π(σ) =
∑

π∈Sn−3
KΠ(σ)

πASYM
π is compensated:

F σ
∣∣∣
ki→ki+1

= FΠ(σ) =
∑

ρ∈Sn−3

(K−1)ρ
Π(σ) F ρ (12.4.72)

The map Π(σ) is defined by (2Π(σ), . . . , (n− 1)Π(σ)) = (2, 2σ + 1, . . . , (N − 2)σ + 1).



Chapter 13

Explicit BCJ numerators from pure

spinors

In this chapter, we will extract lessons on scattering amplitudes in gauge theories from the pure

spinor approach to the superstring. This is another example for the tight connections between

superstring theory and field theories emerging in the low energy limit, in particular for the

fruitful interplay on the level of the S matrix.

In section 5.5, we have introduced a parametrization of gauge theory tree amplitudes

MSYM
[
1a1 , 2a2 . . . , nan

]
=

∑
i

ci ni∏
αi
sαi

(13.0.1)

where color- and kinematic degrees of freedom enter on the same footing. In particular, the

kinematic numerators ni can be brought into a form such that they satisfy a dual Jacobi

identity ni + nj − nk = 0 whenever ci + cj − ck = 0 on the color side. However, the kinematic

identity depends on the management of contact terms – the four point interactions of gauge

fields introduce an ambiguity in defining the ni, and generic choices cause the Jacobi identity

ni + nj − nk = 0 to fail.

The pure spinor formalism resolves these contact term ambiguities: Given the presentation

(12.1.13) of the superstring tree amplitude in terms of (n − 2)! superfield expressions like

〈T12...pTn−1,n−2...p+1Vn〉, the low energy limit naturally expresses each ni as a linear combination

of (n − 2)! basis kinematics 〈T12...pTn−1,n−2...p+1Vn〉. We will show that they are guaranteed to

satisfy all the dual Jacobi relations (5.5.62). It is straightforward to dimensionally reduce the

superfield components to D = 4, and the bosonic parts describe gluon scattering independently

on the existence of supersymmetries.

There is strong motivation in field theory for having explicit expressions for kinematic

numerators ni subject to ni + nj − nk = 0. Firstly, they can be recycled from tree level to

343
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loop amplitudes by means of the unitarity method [313, 314, 78]. Jacobi identities then relate

non-planar loop diagrams to the much better-understood planar sector. Secondly, the duality

between color and kinematics suggests a natural reorganization of gravity tree amplitudes. As

explained in section 5.6, they are built as double copies of gauge theory subamplitues [213] using

KLT relations. If the Jacobi identities hold within one of the gauge theory sectors, then the

numerator of each kinematic pole in the gravity amplitude is given by a square |ni|2. Ultimately,

the ci ↔ ni duality is helpful for studying the ultraviolet properties of gravity theories at higher

loops.

13.1 Constructing supersymmetric BCJ numerators

The low energy limit of the pure spinor string amplitude (12.1.13) bypasses the contact term

ambiguity because its BRST cohomology organization in terms of 〈T12...pTn−1,n−2...p+1Vn〉 natu-

rally absorbs these contact terms. According to our discussion in subsection 12.1.3, they arise

from the double poles in the OPE of two integrated vertices and complete the single pole OPE

residues L2131...p1 to BRST building blocks T123...p.

The purpose of this section is to explain the construction of the individual BCJ numerators

ni out of the BRST ingredients 〈T12...pTn−1,n−2...p+1Vn〉 and to rigorously justify why they satisfy

the dual Jacobi relations.

13.1.1 The minimal basis of BCJ numerators

As a starting point of the construction of kinematic numerators, let us give a refined version of

the pure spinor superstring amplitude (12.1.13) where the α′ dependence is explicitly displayed:

A(1, 2σ, . . . , (n− 1)σ, n;α′) = (2α′)n−3

n−2∏
i=2

∫
Iσ

dzi
∏
j<k

|zjk|−2α′sjk

〈
n−2∑
j=1

T12...j Tn−1,n−2...j+1 Vn
(z12 z23 . . . zp−1,p) (zn−1,n−2 zn−2,n−3 . . . zj+2,j+1)

+ P(2, 3, . . . , n− 2)

〉
(13.1.2)

The ordering σ ∈ Sn−2 of the external legs is reflected in the integration region Iσ for the

worldsheet positions z2, z3, . . . , zn−2, the remaining ones are fixed as (z1, zn−1, zn) = (0, 1,∞)

by SL(2,R) invariance of the disk worldsheet. More precisely, Iσ is defined such that only

those zi which respect the ordering

0 = z1 ≤ z2σ ≤ z3σ ≤ . . . ≤ z(n−2)σ ≤ z(n−1)σ ≤ ∞ (13.1.3)
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are integrated over. The α′ → 0 limit of (13.1.2) extracts propagators of cubic field theory

diagrams from the n − 3 fold worldsheet integrals. Adjusting the integration region Iσ to the

color ordering makes sure that the integrals in A(1, 2σ, . . . , (n− 1)σ, n;α′) only generate those

pole channels which appear in the corresponding field theory amplitude ASYM(1, 2σ, . . . , (n −
1)σ, n). A method to efficiently extract the field theory limit of a general n point integral was

explained in section 7.2.

The set of (n− 2)! color ordered amplitudes ASYM(1, 2σ, . . . , (n− 1)σ, n) with σ ∈ Sn−2 and

legs n and 1 fixed is sufficient to involve all of the (2n−5)!! cubic field theory diagrams at least

once. In subsection 5.5.4, we have introduced this Sn−2 family as the KK basis because the

Kleiss-Kuijf relations (5.5.65) express all the other SYM subamplitudes as sums over several

ASYM(1, 2σ, . . . , (n− 1)σ, n) with coefficients ±1.

The remarkable property of (13.1.2) in view of the BCJ organization is the number of

independent superfield kinematics 〈T12...jTn−1,n−2,...,j+1Vn〉. Each of the n−2 terms in the j sum

of (13.1.2) involves (n− 3)! permutations of 〈T12...jTn−1,n−2,...,j+1Vn〉 in the legs (2, 3, . . . , n− 2)

such that we have (n− 2)! kinematic packages in total. The worldsheet integrand remains the

same for any color ordering, only the integration region Iσ changes between the subamplitudes.

Hence, the (n − 2)! basis kinematics 〈T12...jTn−1,n−2,...,j+1Vn〉 combine to the kinematic fac-

tors ni for any color stripped superstring amplitude, and in particular, they generate BCJ

numerators for all the (2n − 5)!! pole channels of the color dressed field theory amplitude.

Their coefficients are determined by the pole structure of the integrals in the corresponding

integration region Iσ which is specified by the color ordering of A(1, 2σ, 3σ, . . . , (n− 1)σ, n;α′).

As we have argued in section 5.5, having a set of no more than (n − 2)! independent

numerators is necessary for imposing the Jacobi-like identities (dual to color factors) on the

(2n− 5)!! numerators of the pole channels in various subamplitudes. In the next paragraph we

explain why the number (n− 2)! of kinematics in (13.1.2) is also sufficient to satisfy the Jacobi

relations, i.e. to make the appropriate triplets (ni, nj, nk) vanish.

13.1.2 The vanishing of numerator triplets

The fact that only (n− 2)! BCJ numerators can be linearly independent implies the existence

of as many linear homogeneous relations between the ni as there are Jacobi identities. Since

the field theory limits of the integrals in (13.1.2) involve no other coefficients than 0 and ±1

for the propagators, these relations must be of the form

ni1 ± ni2 ∓ ni3 ± . . . ∓ nip−1 ± nip = 0, (13.1.4)
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with a so far unspecified number p of terms. In order to show that they can always be arranged

into vanishing statements for triplets ni1±ni2∓ni3 = 0 one has to make use of the BCJ relations

(5.5.69) between field theory subamplitudes which allow to reduce the KK subamplitudes to

a basis of (n − 3)! independent ones. We have explained in subsection 5.5.6 that they can

be recast in the form
∑

i

nik+nil+nimQn−4
αi

sαi
= 0 involving 2n−3(2n − 7)!!(n − 3)/(n − 2)! numerator

triplets (nik , nil , nim) that vanish individually if the dual Jacobi relations hold. The important

implication is the vanishing of nik +nil +nim at the residue of the n−4 poles sαi common to the

nik , nil and nim channels, independent on the assignment of contact terms to the numerators.

Suppose the linear dependences (13.1.4) failed to make Jacobi triplets of BCJ numerators

vanish, i.e. p > 3, then the BCJ relations would involve terms

ni1 + ni2 + ni3∏n−4
αi

sαi
= −

∑p
j=4 nij∏n−4
αi

sαi
(13.1.5)

where each noncancelling nij>3
is multiplied with at least one propagator outside its channels.

This is clearly incompatible with the BCJ relations because there will remain contributions

with a specific set of n− 4 poles from each term like that1.

The conclusion is that the (2n− 5)!!− (n− 2)! independent relations (13.1.4) can always be

brought into a form that reproduces all the dual Jacobi identities for the kinematic numerators

ni. If this was not the case, inconsistencies would arise in the BCJ relations (5.5.69) or (5.5.70)

between color ordered field theory amplitudes. Hence, the number (n − 2)! of kinematics in

(13.1.2) guarantees that all the ni constructed from the α′ → 0 limit of the integrals over Iσ
satisfy the Jacobi-like relations nik + nil + nim = 0.

13.1.3 The propagator matrix

The worldsheet integrand of (13.1.2) suggests to label the (n−2)! basis kinematics in an n-point

amplitude by an Sn−3 permutation σ and an integer l = 1, . . . , n− 2:

Klσ := 〈T12σ3σ ...lσ Tn−1,(n−2)σ ...(l+1)σ Vn 〉 , l = 1, . . . , n− 2 , σ ∈ Sn−3 (13.1.6)

This makes sure that the residual Sn−3 relabelling symmetry stays visible in the KK basis

of the field theory limit. As we have mentioned before, knowing all the KK subamplitudes

ASYM(1, 2ρ, . . . , (n− 1)ρ, n) with ρ ∈ Sn−2 is sufficient to address each channel and to thereby

identify all the (2n− 5)!! numerators ni. The superstring amplitude (13.1.2) provides a general

1The claimed incompatibility rests on the linear independence of the (n− 2)! factorial basis numerators. We

wish to thank Henrik Johansson for pointing out that a loophole would arise otherwise.
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prescription to construct these KK subamplitudes in terms of the basis kinematics Klσ defined

by (13.1.6):

ASYM(1, 2ρ, . . . , (n− 1)ρ, n) =
n−2∑
l=1

∑
σ∈Sn−3

Pρ
(l,σ)Klσ (13.1.7)

This introduces a (n−2)!×(n−2)! matrix Pρ
(l,σ) of kinematic poles whose entries are determined

by the integral of the worldsheet polynomial associated with (l, σ) over the region Iρ:

Pρ
(l,σ) = lim

α′→0
(2α′)n−3

n−2∏
i=2

∫
Iρ

dzi

∏
j<k |zjk|−2α′sjk

(z12σ z2σ3σ . . . z(l−1)σlσ) (zn−1,(n−2)σ . . . z(l+2)σ ,(l+1)σ)

(13.1.8)

These α′ → 0 limits can be straightforwardly evaluated using the methods of section 7.2.

The idea of introducing an (n − 2)! vector of KK amplitudes and relating it to (n − 2)!

independent numerators by a square matrix already appeared in [315]. In our situation, the

basis (13.1.6) of numerators is set by the superstring computation, and our Pρ
(l,σ) matrix is a

specialization of the propagator matrix M in this reference to the pure spinor basis {Klσ, l =

1, 2, . . . , n−2, σ ∈ Sn−3} of kinematics. The BCJ relations (5.5.69) between KK subamplitudes

imply that the (n−2)!×(n−2)! propagator matrices M or Pρ
(l,σ) have nonmaximal rank (n−3)!.

Not all the entries of the pole matrix Pρ
(l,σ) have to be computed separately. The following

trick relates many of them by relabelling and thereby reduces the computational effort on the

way towards explicit BCJ numerators: Exclude the leg n− 1 from the ρ ∈ Sn−2 permutations

specifying the KK subamplitudes. They then fall into n−2 classes ASYM(1, 2σ, . . . , jσ, n−1, (j+

1)σ, . . . , (n−2)σ, n) with j−1 legs between 1 and n−1 and another n−2−j legs between n−1

and n (where j = 1, 2, . . . , n − 2). It is sufficient to compute one representative of the n − 2

classes of KK amplitudes, the others then follow as Sn−3 permutations in 2, 3, . . . , n− 2. More

precisely, once the first n − 2 columns of (13.1.8) with ρ = (2, 3, . . . , j, n − 1, j + 1, . . . , n − 2)

and j = 1, 2, . . . , n− 2 are known, then the others follow from

Pρ=(2σ ,3σ ,...,jσ ,n−1,(j+1)σ ,...,(n−2)σ)
(l,τ) = Pρ=(2,3,...,j,n−1,j+1,...,n−2)

(l,σ−1◦τ)
∣∣∣
ki 7→kσ(i)

(13.1.9)

where the composition of σ−1, τ ∈ Sn−3 is to be understood as (σ−1 ◦ τ)(i) = σ−1(τ(i)). The

proof of (13.1.9) is a simple matter of renaming worldsheet integration variables in (13.1.8).

This relabelling strategy reduces the number of independent evaluations of (13.1.8) from

(n− 2)!× (n− 2)! down to (n− 2)× (n− 2)!, i.e. the work at this step is reduced by a factor of

(n− 3)!. But the success of these Sn−3 relabellings does not extend to the leg n− 1. The Pρ
(l,σ)

entries for the n−2 classes of KK subamplitudesASYM(1, 2σ, . . . , jσ, n−1, (j+1)σ, . . . , (n−2)σ, n)

with j = 1, 2, . . . , n − 2 have a different number and structure of terms as j varies. This will
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become more obvious from the examples in the next section 13.2. As a consequence, the ni

appearing in these subamplitudes involve more basic kinematics Klσ and do not follow from

other BCJ numerators by relabelling.

13.1.4 Jacobi friendly notation

At higher points it is not convenient to denote the BCJ numerators sequentially by ni for

i = 1, 2, . . . (2n− 5)!!. Already the presentation of the fifteen numerators in the five point KK

basis (5.5.63) suffers from the arbitrary assignment of numbers 1 to 15 to the cubic diagrams.

It is not at all obvious from their labels which of them combine to form the Jacobi triplets

(5.5.64).

Instead, we will use a notation introduced by [315] which reflects the structure of the diagram

and allows the associated propagators to be reconstructed. More importantly, it makes the dual

structure constant contraction available from which one can infer the symmetry properties

fabc = −f bac and the Jacobi identities f b[a1a2fa3]bc = 0. Let us clarify these properties by

explicit examples:

The four point amplitude MSYM[1a1 , 2a2 , 3a3 , 4a4 ] encompasses three diagrams of the form

2

1

3

4

∼ 1

s12

fa1a2b f ba3a4 n[12, 34] =
cs ns
s

where n[12, 34] has the same symmetries as the structure constants involved:

n[ij, kl] = −n[ji, kl] = −n[ij, lk] = n[ji, lk] , n[ij, kl] = n[kl, ij] (13.1.10)

If we assign nt = n[13, 42] and nu = n[23, 41], then the Jacobi identity ns + nt − nu = 0 can be

written more compactly as

n[1{2, 34}] := n[12, 34] + n[13, 42] + n[14, 23] = 0 . (13.1.11)

At five points, the first out of fifteen pole channels contributes

2

1

3
4

5

∼ 1

s12 s45

fa1a2b f ba3c f ca4a5 n[12, 3, 45] =
c1 n1

s12 s45

toMSYM[1a1 , 2a2 , 3a3 , 4a4 , 5a5 ] where the kinematic numerators inherit their antisymmetry under

flipping a cubic vertex from the structure constants:

n[ij, k, lm] = −n[ji, k, lm] = −n[ij, k,ml] = n[ji, k,ml] (13.1.12)

n[ij, k, lm] = −n[lm, k, ij] (13.1.13)
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All the Jacobi identities (5.5.64) can be diagrammatically found by attaching a cubic vertex

with two external legs to one of the dotted lines of figure 5.12. They can be cast into unified

form

n[ij, {k, lm}] = 0 . (13.1.14)

Six point amplitudes introduce two topologies of cubic diagrams

2

1

3 4
5

6

∼ fa1a2b f ba3c f ca4d fda5a6 n[12, 3, 4, 56]

s12 s123 s56

2

1

3 4
5

6
∼ fa1a2b fa3a4c fa5a6d f bcd n[12, 34, 56]

s12 s34 s56

which imprint the following symmetries on the BCJ numerators:

n[ij, k, l,mp] = −n[ji, k, l,mp] , n[ij, k, l,mp] = n[mp, l, k, ij] (13.1.15)

n[ij, kl,mp] = −n[ji, kl,mp] , n[ij, kl,mp] = −n[kl, ij,mp] (13.1.16)

Also the Jacobi identities exhibit different topologies here, one can either attach three point

vertices to two different dotted external lines of figure 5.12 or one color ordered four point

diagram to one external line:

n[ij, k, {l,mp}] = 0 , n[ij, kl,mp] = n[ij, k, l,mp] − n[ij, l, k,mp] (13.1.17)

The latter expresses any diagram of snowflake shape in terms of the other topology.

Cubic diagrams in seven point amplitudes again fall into two different topologies

2

1

3 4 5
6

7

∼ fa1a2b f ba3c f ca4d fda5e f ea6a7 n[12, 3, 4, 5, 67]

s12 s123 s567 s67

2

1

3
4
5

6
7

∼ fa1a2b f ba3c f cde fda4a5 f ea6a7 n [12, 3, 45, 67]

s12 s123 s45 s67

The associated numerators enjoy symmetry properties

n[ij, k, l,m, pq] = −n[ji, k, l,m, pq] , n[ij, k, l,m, pq] = −n[pq,m, l, k, ij] (13.1.18)

n [ij, k, lm, pq] = −n [ji, k, lm, pq] = −n [ij, k,ml, pq] = −n [ij, k, pq, lm] (13.1.19)

and Jacobi identities which eliminate the second topology:

n[ij, k, l, {m, pq}] = 0 , n [ij, k, lm, pq] = n[ij, k, l,m, pq] − n[ij, k,m, l, pq] (13.1.20)
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The four different topologies at eight points can still be captured by the suggestive notations

n[ij, k, l,m, p, qr], n[ij, k, lm, p, qr], n [ij, k, l,mp, qr] and n [kl, ij,mp, qr]. Jacobi identities re-

late diagrams of different topology such that all of them can be represented in terms of the

simplest numerators class n[ij, k, l,m, p, qr].

13.1.5 Reading off the BCJ numerators

In order to finish the string inspired construction of BCJ numerators, we have to compare the

field theory limits (13.1.7) with the defining equations of the numerators. The notation from

the previous subsection admits to write the latter in a symmetric way once the diagramatic

expansion of the color ordered n point is known.

Let us give the KK amplitudes ASYM(1, 2ρ, . . . , (n− 1)ρ, n) for n = 4, 5, 6 and n = 7 here:

ASYM(1, 2ρ, 3ρ, 4) =

2ρ

1

3ρ

4

+

2ρ 3ρ

1 4

=
n[12ρ, 3ρ4]

s12ρ

+
n[2ρ3ρ, 41]

s2ρ3ρ

ASYM(1, 2ρ, 3ρ, 4ρ, 5) =

2ρ

1

3ρ
4ρ

5

+ cyclic(12ρ3ρ4ρ5)

=
n[12ρ, 3ρ, 4ρ5]

s12ρ s4ρ5

+ cyclic(12ρ3ρ4ρ5)

Figure 13.1: The four- and five point KK subamplitudes in the notation of subsection 13.1.4

for their kinematic numerators.

ASYM(1, 2ρ, 3ρ, 4ρ, 5ρ, 6) =
n[12ρ, 3ρ4ρ, 5ρ6]

s12ρ s3ρ4ρ s5ρ6

+
n[2ρ3ρ, 4ρ5ρ, 61]

s2ρ3ρ s4ρ5ρ s61

− n[12ρ, 3ρ, 6, 4ρ5ρ]

s12ρ s12ρ3ρ s4ρ5ρ

− n[2ρ3ρ, 4ρ, 1, 5ρ6]

s2ρ3ρ s2ρ3ρ4ρ s5ρ6

− n[3ρ4ρ, 5ρ, 2ρ, 61]

s3ρ4ρ s3ρ4ρ5ρ s61

− n[12ρ, 6, 3ρ, 4ρ5ρ]

s12ρ s3ρ4ρ5ρ s4ρ5ρ

− n[2ρ3ρ, 1, 4ρ, 5ρ6]

s2ρ3ρ s12ρ3ρ s5ρ6

− n[3ρ4ρ, 2ρ, 5ρ, 61]

s3ρ4ρ s2ρ3ρ4ρ s61

+

(
n[12ρ, 3ρ, 4ρ, 5ρ6]

s12ρ s12ρ3ρ s5ρ6

+ cyclic(12ρ3ρ4ρ5ρ6)

)
(13.1.21)

ASYM(1, 2ρ, 3ρ, 4ρ, 5ρ, 6ρ, 7) =
n [12ρ, 3ρ, 4ρ5ρ, 6ρ7]

s12ρ s12ρ3ρ s4ρ5ρ s6ρ7

− n [2ρ3ρ, 1, 4ρ5ρ, 6ρ7]

s2ρ3ρ s12ρ3ρ s4ρ5ρ s6ρ7

+
n[12ρ, 3ρ, 4ρ, 5ρ, 6ρ7]

s12ρ s12ρ3ρ s5ρ6ρ7 s6ρ7

− n[2ρ3ρ, 1, 4ρ, 5ρ, 6ρ7]

s2ρ3ρ s12ρ3ρ s5ρ6ρ7 s6ρ7

− n[12ρ, 3ρ, 4ρ, 7, 5ρ6ρ]

s12ρ s12ρ3ρ s5ρ6ρ7 s5ρ6ρ

+
n[2ρ3ρ, 1, 4ρ, 7, 5ρ6ρ]

s2ρ3ρ s12ρ3ρ s5ρ6ρ7 s5ρ6ρ

+ cyclic(12ρ3ρ4ρ5ρ6ρ7) (13.1.22)
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13.2 Explicit examples

In order to make the very general prescription for obtaining ni more tractable, we shall now

analyze explicit examples up to seven-point in detail. As a warm up example, let us construct

the field theory limits of the four point pure spinor amplitude from its propagator matrix P(2,3)
1 P(2,3)

2

P(3,2)
1 P(3,2)

2

 =

 1
u

1
s

− 1
u
− 1

t
1
t

 . (13.2.23)

According to ASYM(1, 2ρ, 3ρ, 4) =
∑2

l=1 Pρ
lKl (with the trivial Sn−3 = S1 permutation σ sup-

pressed), the two KK subamplitudes A4(1, 2, 3, 4) = ns
s

+ nu
u

and A4(1, 3, 2, 4) = −nt
t
− nu

u
have

numerators

ns = K2 = 〈T12 V3 V4 〉 , nu = K1 = 〈V1 T23 V4 〉

nt = K1 − K2 = 〈V1 T23 V4 〉 − 〈T12 V3 V4 〉 (13.2.24)

that manifestly satisfy the Jacobi relation ns + nt − nu = 0.

They are evaluated in superfield components in appendix C.

13.2.1 Five point numerators

The color ordered five-point superstring amplitude (12.1.11) encompasses six basis kinematics

K3
σ(23) = 〈T12σ3σ V4 V5 〉 , K2

σ(23) = 〈T12σ T43σ V5 〉 , K1
σ(23) = 〈V1 T43σ2σ V5 〉

(13.2.25)

We have explained in subsection 12.1.3 that the double pole z−2
23 appearing in the five point

integrand of other references [290,210] was absorbed into the single-pole terms such that BRST

building blocks Tij and Tijk could be formed. Absence of double poles is crucial for satisfying

all the dual Jacobi relations because the counting argument of (n−2)! independent numerators

fails otherwise.

Performing the field theory limit of the integrals in (12.1.11) gives rise to the following six

KK subamplitudes (where the permutation σ of 2 and 3 can be kept general because of (13.1.9))

ASYM(1, 2σ, 3σ, 4, 5) =
K3
σ(23)

s45 s12σ

+
K1
σ(23) − K1

σ(32)

s51 s2σ3σ

−
K2
σ(23)

s12σ s3σ4

+
K3
σ(23) − K3

σ(32)

s2σ3σ s45

+
K1
σ(23)

s3σ4 s51

ASYM(1, 2σ, 4, 3σ, 5) =
K3
σ(23) + K2

σ(23)

s12σ s3σ5

−
K1
σ(32)

s2σ4 s51

+
K2
σ(23)

s3σ4 s12

(13.2.26)
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−
K2
σ(32) + K1

σ(32)

s3σ5 s2σ4

−
K1
σ(23)

s51 s3σ4

ASYM(1, 4, 2σ, 3σ, 5) =
K3
σ(23) + K2

σ(23) + K2
σ(32) + K1

σ(32)

s14 s3σ5

+
K1
σ(32)

s2σ4 s51

+
K1
σ(32) − K1

σ(23)

s51 s2σ3σ

+
K3
σ(23) − K3

σ(32) − K1
σ(23) + K1

σ(32)

s2σ3σ s14

+
K1
σ(32) − K2

σ(32)

s3σ5 s2σ4

The last pair of color orderings ASYM(1, 4, 2σ, 3σ, 5) has more complicated numerators because

of the coefficient P(4,2σ ,3σ)
(1,3σ ,2σ) = 1

s14s3σ5
+ cyclic(142σ3σ5) in the propagator matrix that

addresses all the five different pole channels.

By comparing (13.2.26) with ASYM(1, 2ρ, 3ρ, 4ρ, 5) = n[12ρ,3ρ,4ρ5]

s12ρs4ρ5
+ cyclic(12ρ3ρ4ρ5), we can

quickly read off the kinematic numerators:

n[12σ, 3σ, 45] = K3
σ(23) , n[3σ4, 5, 2σ1] = K2

σ(23) , n[51, 2σ, 3σ4] = K1
σ(23)

n[2σ3σ, 4, 51] = K1
σ(23) − K1

σ(32) , n[2σ3σ, 1, 45] = K3
σ(32) − K3

σ(23)

n[3σ4, 1, 2σ5] = K1
σ(23) + K2

σ(23) , n[12σ, 4, 3σ5] = K3
σ(23) + K2

σ(23) (13.2.27)

n[14, 3σ, 2σ5] = K3
σ(32) + K2

σ(23) + K2
σ(32) + K1

σ(23)

n[2σ3σ, 5, 14] = K3
σ(23) − K3

σ(32) + K1
σ(32) − K1

σ(23)

It is sufficient to display nine of them, the rest follows from S2 relabelling 2 ↔ 3. The

n1, n2, . . . , n15 from the parametrization (5.5.63) translate into

n1 = n[12, 3, 45] n6 = n[14, 3, 25] n11 = n[24, 3, 51]

n2 = n[23, 4, 51] n7 = n[32, 5, 14] n12 = n[12, 4, 35]

n3 = n[34, 5, 12] n8 = n[25, 1, 43] n13 = n[35, 1, 24]

n4 = n[45, 1, 23] n9 = n[13, 4, 25] n14 = n[14, 2, 35]

n5 = n[51, 2, 34] n10 = n[42, 5, 13] n15 = n[13, 2, 45]

(13.2.28)

The way in which the n[ij, k, lm] are built out of Kjσ(2,3) trivializes the Jacobi identities (5.5.64)

or n[ij, {k, lm}] = 0. However, the expressions (13.2.27) for n[ij, k, lm] do not exhibit crossing

symmetry including labels 1, 4 and 5.

In many instances, the symmetry properties T(ij) = T(ij)k = T[ijk] = 0 of the BRST building

blocks within Klσ allow to rewrite sums over several basic kinematics occurring in some ni as a

single superfield, e.g.

n2 = K1
(23) − K1

(32) = 〈 (T123 − T132)V4 V5 〉 = 〈T321 V4 V5 〉 (13.2.29)

However, the right hand side is outside the five point basis of kinematics, so the Jacobi relations

between numerators are rather obscured by this building block manipulations. At any number
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of legs, the basis of Klσ is designed such that all the symmetries of the building blocks are

already exploited, so we refrain from performing manipulations like T123−T132 = T321 in higher

order examples.

13.2.2 Six point numerators

In six-point amplitudes, the propagator matrix (13.1.8) can be completely constructed from

the field theory limit of the four superstring subamplitudes associated with color orderings

{1, 2, 3, 4, 5, 6}, {1, 2, 3, 5, 4, 6}, {1, 2, 5, 3, 4, 6}, {1, 5, 2, 3, 4, 6}. The S3 relabelling covariance

in 2, 3, 4 connects them to the remaining 20 elements of the KK basis. Let us give some

representative sample entries of Pρ
(l,σ) here,

P(2345)
1,(423) =

1

s61 s23 s234

, P(2345)
4,(432) =

1

s56 s234

(
1

s23

+
1

s34

)
P(2345)

4,(234) =
1

s56

(
1

s12 s34

+
1

s12 s123

+
1

s23 s123

+
1

s23 s234

+
1

s34 s234

)
P(2354)

3,(234) =
1

s123

(
1

s12

+
1

s23

) (
1

s45

+
1

s46

)
(13.2.30)

P(5234)
1,(432) =

1

s61 s25 s34

+
1

s15 s23 s46

+
1

s15 s125 s34

+
1

s125 s25 s34

+
1

s15 s125 s46

+
1

s46 s25 s125

+
1

s15 s23 s234

+
1

s61 s23 s234

+
1

s15 s234 s34

+
1

s61s234s34

+
1

s61 s23 s235

+
1

s61 s25 s235

+
1

s46 s23 s235

+
1

s46 s25 s235

and refer the reader to appendix F.1 for the complete result.

Comparing the KK subamplitudes with (13.1.21) allows to read off the 105 BCJ numerators.

It is sufficient to display 25 of them in S3-covariant form:

n[12σ, 3σ, 4σ, 56] = K4
σ(234) , n[61, 2σ, 3σ, 54σ] = K1

σ(234)

n[12σ, 3σ, 6, 4σ5] = K3
σ(234) , n[12σ, 6, 3σ, 54σ] = K2

σ(234)

n[12σ, 3σ4σ, 56] = K4
σ(234) − K4

σ(243) , n[2σ3σ, 4σ5, 61] = K1
σ(324) − K1

σ(234)

n[12σ, 3σ5, 64σ] = K3
σ(243) + K2

σ(243) , n[3σ4σ, 5, 6, 12σ] = K2
σ(234) − K2

σ(243)

n[4σ5, 6, 1, 2σ3σ] = K3
σ(324) − K3

σ(234) , n[3σ4σ, 5, 2σ, 61] = K1
σ(234) − K1

σ(243)

n[2σ3σ, 1, 4σ, 56] = K4
σ(324) − K4

σ(234) , n[12σ, 3σ, 5, 4σ6] = K4
σ(234) + K3

σ(234)

n[4σ6, 1, 2σ, 3σ5] = K2
σ(423) + K1

σ(423)

n[2σ3σ, 4σ, 5, 61] = K1
σ(324) − K1

σ(234) + K1
σ(423) − K1

σ(432)

n[56, 1, 2σ, 3σ4σ] = K4
σ(234) − K4

σ(243) − K4
σ(342) + K4

σ(432)

n[2σ3σ, 5, 1, 4σ6] = K2
σ(432) − K2

σ(423) − K1
σ(423) + K1

σ(432)
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n[2σ3σ, 1, 5, 4σ6] = K4
σ(234) − K4

σ(324) + K3
σ(234) − K3

σ(324)

n[12σ, 5, 3σ, 4σ6] = K4
σ(234) + K3

σ(234) + K3
σ(243) + K2

σ(243) (13.2.31)

n[3σ4σ, 6, 1, 2σ5] = K3
σ(432) − K3

σ(342) + K1
σ(342) − K1

σ(432)

n[12σ, 5, 6, 3σ4σ] = K4
σ(243) − K4

σ(234) + K2
σ(234) − K2

σ(243)

n[2σ5, 1, 3σ, 4σ6] = K3
σ(342) + K2

σ(342) + K2
σ(432) + K1

σ(432)

n[15, 2σ, 3σ, 4σ6] = K4
σ(234) + K3

σ(234) + K3
σ(243) + K3

σ(342)

+ K2
σ(243) + K2

σ(342) + K2
σ(432) + K1

σ(432)

n[2σ3σ, 4σ, 6, 15] = K4
σ(234) − K4

σ(324) − K4
σ(423) + K4

σ(432)

+ K1
σ(234) − K1

σ(324) − K1
σ(423) + K1

σ(432)

n[15, 2σ, 6, 3σ4σ] = K4
σ(243) − K4

σ(234) − K3
σ(342) + K3

σ(432)

+ K2
σ(234) − K2

σ(243) + K1
σ(342) − K1

σ(432)

n[15, 2σ3σ, 4σ6] = K4
σ(234) − K4

σ(324) + K3
σ(234) − K3

σ(324)

− K2
σ(423) + K2

σ(432) − K1
σ(423) + K1

σ(432)

They have been explicitly checked to satisfy all the 105 Jacobi relations n[ij, k, {l,mp}] = 0

and n[ij, kl,mp] = n[ij, k, l,mp] − n[ij, l, k,mp] (81 of which are linearly independent). It is

interesting to note that the number of K l
σ forming the individual BCJ numerators is always a

power of two, i.e. 1, 2, 4 or 8 in this case.

13.2.3 Seven point numerators

Since the number of channels grows like (2n− 5)!! in an n-point amplitude, a complete list of

all BCJ numerators becomes very lengthy beyond six points. Appendix F.2 gives all the 69

seven-point numerators which are not related by 2, 3, 4, 5 relabelling, they allow to obtain all

the 945 numerators by going through the σ ∈ S4 permutations of (2, 3, 4, 5). We also checked

that all the 825 independent numerators equations (out of 1260 in total) are satisfied.

13.2.4 General observations on higher point numerators

Instead of continuing the numerator list to higher points, we conclude this section with some

general remarks and observation on the structure of the string inspired expressions for the BCJ

numerators.

Firstly, entries of the n point propagator matrix always factorize into sums of m propagators
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with C(m) = (2m)!
m!(m+1)!

terms,

Pρ
(l,σ) ∼

∏C(m)∑
j=1

1

s(α1)j s(α2)j . . . s(αm)j

 (13.2.32)

where C(m) is the m’th Catalan number and counts the number of channels appearing in a

m+ 2 point color ordered amplitude. At n = 5, we have seen three different pole structures in

(13.2.26),

Pρ
(l,σ)
∣∣∣
n=5

∼
{

1

sαsβ
,

1

sα

(
1

sβ1

+
1

sβ2

)
,

5∑
i=1

1

sαisβi

}
(13.2.33)

and the six point analogue contains the five types of products displayed in (13.2.30):

Pρ
(l,σ)
∣∣∣
n=6

∼
{

1

sαsβsγ
,

1

sαsβ

(
1

sγ1

+
1

sγ2

)
,

1

sα

(
1

sβ1

+
1

sβ2

)(
1

sγ1

+
1

sγ2

)
,

1

sα

5∑
i=1

1

sβisγi
,

14∑
j=1

1

sαjsβjsγj

}
(13.2.34)

The pattern was observed to persist up to eight-point. However, not all possible partitions

of the overall n − 3 propagators into products of type (13.2.32) are realized. For instance,

there are no terms like
(

1
sα1

+ 1
sα2

)(
1
sβ1

+ 1
sβ2

)
at five points,

(
1
sα1

+ 1
sα2

)(∑5
i=1

1
sβisγi

)
at six

points and
(

1
sα1

+ 1
sα2

)(
1
sβ1

+ 1
sβ2

)(
1
sγ1

+ 1
sγ2

)
1
sδ

at seven points because they would involve

incompatible pole channels.

Secondly, the number of Klσ kinematics entering the individual n point BCJ numerators up

to n = 8 is always a power of two, i.e. 1, 2, 4, . . . , 2n−3. This can be largely explained from the

flipping antisymmetry of n[ij, k, . . .] in pairs of labels i, j sharing a terminal three point vertex.

If they are both from the range iσ, jσ ∈ {2, 3, . . . , n − 2}, then the Klσ are required to pair up

with their iσ ↔ jσ images. Moreover, if several other 2, 3, . . . , n− 2 labels kσ, lσ follow, then a

nested antisymmetrization emerges, e.g. n[iσjσ, kσ, lσ, . . .]↔ Klσ([[[iσjσ ]kσ ]lσ ]...).

Another source of doubling the terms is a terminal vertex with legs 1 and n− 1: Swapping

1 ↔ n − 1 maps Klσ to Kn−1−l
σ̄ where σ̄ denotes the permutation of reverse order, σ̄(23 . . . p −

1, p) = σ(p, p− 1, . . . 32). That is why n[1(n− 1), . . .] can only contain pairs like Klσ + Kn−1−l
σ̄

which might be further antisymmetrized in some legs from {2, 3, . . . , n − 2} due to another

terminal vertex.

The following table 13.1 shows the distribution of the (2n − 5)!! numerators into packages

of 2j basis elements. We suspect that the grading of kinematic numerators according to their

Klσ content is connected with the factorization pattern (13.2.32) of Pρ
(l,σ) entries.
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# terms 4pts 5pts 6pts 7pts 8pts

1 2 6 24 120 720

2 1 6 36 240 1800

4 3 30 270 2520

8 15 210 2520

16 105 1890

32 945

Table 13.1: The number of BCJ numerators in n point amplitudes containing 2j basis kinematics Klσ
for j = 0, 1, . . . , n− 3.



Chapter 14

Epilogue

We have presented scattering amplitudes in superstring theory from various perspectives.

Thanks to the exact solvability of the worldsheet SCFT in both the RNS- and the PS for-

malism, we could derive manifold results on tree level scattering which are relevant for string

phenomenology, gauge theories and formal properties of the S matrix in superstring theory. Let

us review the main results presented in this work and point out promising directions for future

research.

14.1 Main results

As already sketched in section 1.4, the research achievements gathered in this thesis originate

from diverse branches of the rich topic of superstring amplitudes.

14.1.1 Phenomenological results

In [1,2,6], we followed the lines of [101] and worked out some universal statements of superstring

theories on hadron scattering at LHC. These are presented in chapters 8 and 9. Remarkably,

the tree level physics of quark gluon scattering was recognized to be largely independent on

the superstring compactification into which a SM like scenario with intersecting D branes is

embedded. Apart from four chiral fermion channels, the heavy states exchanged in multiparton

disk scattering are insensitive to the geometry of the internal space. The virtual particles are

Regge resonances at discrete mass squares m2 = n/α′, set by the string scale. The latter can

potentially be as low as a few TeV in scenarios with large extra dimensions [58, 103]. Kaluza

Klein- or winding modes can only propagate in four quark scattering, these model dependences

are fortunately suppressed by color- and luminosity effects.
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More specifically, chapter 8 introduces the universality classes of model independent parton

disk amplitudes – namely A(g1, g2, g3, . . . , gn) and A(λ1, λ̄2, g3, . . . , gn) with any number of glu-

ons g and up to two (anti-)gauginos λ (λ̄) from the vector multiplets and A(q1, q̄2, g3, . . . , gn)

as well as A(C1, C̄2, g3, . . . , gn) with quark- (q, q̄) or squark- (C, C̄) admixtures from the chi-

ral multiplet. The striking agreement of color stripped amplitudes A(λ1, λ̄2, g3, . . . , gn) and

A(q1, q̄2, g3, . . . , gn) from different multiplets clearly goes beyond SUSY. Based on spinor helic-

ity methods [316,317,318] and color factor technology [265,266], we compute full fledged cross

sections for parton collisions in superstring theory up to the five point level and cast the result

into a form suitable for LHC data analysis.

Production and decay of massive states is addressed in chapter 9, based on the four dimen-

sional spectrum at mass level one which we derived in 4. Many three- and four point processes

with one m2 = α′−1 state are universal to any N = 1 supersymmetric string compactification.

These are evaluated in the spinor helicity basis (see [319,320,321] for helicity methods adjusted

to massive states). Four point amplitudes with one higher spin state from the leading Regge

trajectory are computed for completely general mass level n ∈ N, with symmetries in the labels

made manifest. All these processes occur at accelerators once the center of mass energies of

the colliding partons exceed the mass threshold ∼ α′−1/2, so their observability at LHC is again

tied to a low string scale. Four point cross sections for mass level one states can be found in [2].

14.1.2 Results on spin field correlation functions

Selected results of [3,4,5] on correlation functions of the interacting RNS CFT are gathered in

chapter 6. They address the old problem of the covariant superstring [118] that the interacting

nature of spin fields makes the computation of worldsheet correlation functions inaccessible to

free field methods (unless covariance is given up in favor of bosonization techniques [119] or

radical field redefinitions such as [295] are applied).

The first publication [3] is specialized on tree level correlators of SO(1, 3) covariant NS

fermions and spin fields, motivated by applications to four dimensional compactifications. The

wide classes of results which could be obtained in systematic manner motivated to extend the

analysis to higher genus [4] and to higher numbers of spacetime dimensions [5]. A variety of

correlation functions with large numbers of fields can be found in 6, the highlight being the

closed formulae (6.2.39) and (6.2.40) for the correlator 〈ψ . . . ψSS〉 with two spin field and any

number of fermions in arbitrary even spacetime dimensions on Riemann surfaces of any genus.

This is an essential CFT input for scattering amplitudes involving two massless fermions and

any number of (not necessarily massless) bosons. Cases with four and more spin fields must be
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considered separately in D = 4, 6, 8 and D = 10 for technical reasons.

14.1.3 Explicit results in pure spinor superspace

Within the manifestly supersymmetric pure spinor formalism, we have pushed the frontier of

knowledge on disk scattering of massless states from five point level [290, 291] to any number

n of legs [7, 8, 9, 10, 11]. The essence of these publications is presented in part III of this work.

The key advance for this achievement is a systematic construction of BRST building blocks in

chapter 11 – composite superfields encompassing the kinematic degrees of freedom of several

external legs. They transform covariantly under the BRST charge and allow to derive powerful

constraints on superstring- and in particular field theory amplitudes based on cohomology

arguments. Furthermore, a natural dictionary between tree diagrams made of cubic vertices

and trilinear expressions in building blocks is proposed.

BRST building blocks can be combined into so-called Berends Giele currents, tree ampli-

tudes with n on-shell legs and one additional off-shell leg. This objects were firstly used in [237]

in the context of gluon scattering in four dimensional gauge theories and led to a recursion which

proved the Parke Taylor formula for MHV amplitudes [236]. Our research in pure spinor su-

perspace results in supersymmetric generalization of Berends Giele currents to N = 1 SYM in

D = 10 dimensions. We arrive at the recursive formula (11.3.54) for SYM n point amplitudes

comparable with [237]. The extra virtue of our result is its manifest supersymmetry and its

compactness being independent of the helicity configurations involved. Since N = 1 SYM in

D = 10 is straightforward to dimensionally reduce, one can carry the SUSY components of our

superamplitudes over to maximally supersymmetric gauge theories in lower dimensions.

The superstring computation in the pure spinor framework makes another result for gauge

theories accessible – an explicit construction of kinematic BCJ numerators, carried out in

chapter 13. A striking duality between color factors ci and kinematic factors ni in gauge theory

amplitudes has been observed [81] which led to tremendous simplification within the gauge

sector but also in perturbative gravity [39, 40]. One of the main bottlenecks in exploiting this

duality is the lack of constructive prescriptions towards the dual numerators ni. This is where

the pure spinor approach to the superstring turns out to be a convenient tool: By extracting

the field theory limits of the hypergeometric integrals in color ordered superstring amplitudes,

one can explicitly compute the kinematic numerator for each pole channel. The key identities

for this purpose are (13.1.7) and (13.1.8), and the methods for taking the integrals’ low energy

limit can be found in chapter 7.
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14.1.4 The complete n point superstring disk amplitude

The pure spinor computations within this work culminate in a strikingly short and compact

expression for the n point superstring amplitude involving any external massless open string

state from the SYM vector multiplet. The final expression is given in (12.3.33) and reflects

a beautiful harmony of the string amplitudes. Both the kinematic building blocks and the

hypergeometric integrals carrying the α′ dependence of a subamplitude are reduced to a minimal

basis of (n−3)! elements each. Relations among the integrals and among string- or field theory

subamplitudes are found to be in one-to-one correspondence, hinting a duality between color

and kinematics at the level of the full fledged superstring amplitude.

We have elucidated the implications of the central result (12.3.33) both from and to field

theory in section 12.3. Our result demonstrates how to efficiently compute tree level superstring

amplitudes with an arbitrary number of external states. The pure spinor techniques proved

to be crucial to derive (12.3.33). The methods presented in this work should be applicable to

tackle any tree level disk amplitude computation involving massless states in any dimensions.

Eventually, these findings may generalize to disk amplitudes with arbitrary, massive states in

perturbative string theory.

The color dressed amplitude assumes a form where the role of color and kinematics can be

swapped, see (12.3.43) and (12.3.44). This is a considerable step towards a stringy general-

ization of dual amplitudes Adual
n in which all kinematical factors are replaced by color traces

with the same symmetry properties under exchange of labels [82]. However, further research

is necessary to understand the kinematic dual of the original color traces Tr{T a1T a2 . . . T an}
(which are referred to as τ(12 . . . n) in the reference).

14.2 Future outlook

The research results open many doors for further studies. Numerous interesting and challenging

subsequent projects are motivated and wait to be mastered, we shall just mention a few which

are directly connected with the topics in this work:

14.2.1 Higher spin CFT operators

The huge collection of RNS correlation functions from chapter 6 almost exclusively involves the

primary fields ψm, Sα and Sβ̇ with respect to the SO(1, D− 1) current algebra. In addition, an

infinite set of Virasoro primaries in higher representations of the Lorentz group emerges from
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the operator algebra. They have been hardly considered in the literature, in particular the

excited spin fields appearing in vertex operators of massive fermions have evaded a systematic

study so far. Already leading Regge trajectory states require a handle on spin 3/2 operators in

the CFT [6,113].

Interactions of massive states are probably quicker to investigate using RNS methods, in

spite of the interacting worldsheet CFT. Since the present knowledge of massive superfield

formulations for higher mass levels is quite limited [292, 293], the technical requirements to

apply the PS formalism are not met yet.

14.2.2 Loop amplitudes in pure spinor superspace

The remarkable success of pure spinor methods with disk amplitudes suggests to try a similar

setup at loop level. So far, one loop amplitudes of the massless gauge multiplet have been com-

puted up to five points [288]. It is desirable to identify BRST building blocks or comparable

structures on higher genus such that higher leg generalizations become tractable. In particular,

the superspace representation of the one loop SYM amplitude appears to be essential for un-

derstanding the structure of its string theory upgrade. Unfortunately, the tree level technology

is hard to take over to loops because of the non-minimal pure spinor variables [286].

14.2.3 The structure of open- and closed string n point amplitudes

The availability of the full fledged expression (12.3.33) for the superstring n point amplitude

allows a detailed study of possible recursion relations allowing to construct the amplitude with n

external states from lower order amplitudes and some guiding principle. Due to the factorized

form of (12.3.33), which separates the SYM part from the string part, the basic question is

how to combine the field theory recursions established in the SYM sector [263, 207, 208] (see

also [8]) to recursions working in the module of hypergeometric functions Bn. For the latter

the following recurrence relations may be useful [322]

Bn =
∑

Bn1 Bn2 · . . . ·Bnk ,
k∑
l=1

nl = n + 3 (k − 1) , (14.2.1)

with some partition {n1, . . . , nk} into k smaller amplitudes Bnl . This equation allows to write

Bn in terms of products of (n− 3) functions B4, cf. figure 14.1.

Higher point gluon amplitudes (12.3.33) give rise to higher order corrections in α′ to the

SYM action. According to the specific form of (12.3.33) these higher order α′ corrections are

organized according to the field theory amplitudes ASYM. Hence, the latter serve as building
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Figure 14.1: Partition of Bn into products of four point amplitudes B4.

blocks to construct the higher order terms in the effective action with the expansion coefficients

encoded in the functions F σ. Moreover, the YM amplitudes ASYM may be arranged such that

only cubic vertices contribute [81], i.e. the full superstring amplitude ultimately boils down to

the three vertex in field theory. As a consequence, it should be possible to describe the higher

order α′ corrections in the effective action entirely in terms of the fundamental SYM three

vertices dressed by the contributions from F σ.

Together with the KLT relations [83] the open string n point amplitudes (12.3.33) can be

used to obtain compact expressions for the n point closed string amplitudes [217]. The latter

give rise to n graviton scattering amplitudes. Their α′ expansions have been analyzed up to

n ≤ 6 through the order α′8 in [212]. These findings proved to be crucial in constraining possible

counterterms in N = 8 supergravity in D = 4 up to seven loops [112]. Counterterms invariant

under N = 8 supergravity have a unique kinematic structure and the tree level closed string

amplitudes provide candidates for them, which are compatible with SUSY Ward identities and

locality. The absence or restriction on higher order gravitational terms at the order α′l together

with their symmetries constrain the appearance of possible counter terms available at l–loop.

With the present results it may now be possible to bolster up the results [212] and to extend

the research performed in [323,324,325,112].



Appendix A

Conventions

A.1 Conventions in the RNS chapters

There will be various types of indices in this work, so it is essential to keep the notation as

clear and unambiguous as possible. Here is a list of occurring index types together with the

preferably used alphabets and letters:

• Vector indices on the worldsheet are taken from the beginning of the latin alphabet

a, b, c, ... e.g. hab denotes the worldsheet metric.

• Spacetime vector indices of flat ten dimensional spacetime are taken from the middle of

the latin alphabet m,n, p, ...

• Dirac spinor indices of SO(1, 9) are capital letters from the beginning of the latin alphabet

A,B,C, .... Indices of left handed Weyl spinors are taken from the beginning of the Greek

alphabet α, β, γ, ..., and the right handed counterparts have an additional dot α̇, β̇, γ̇, ....

• SO(6) vector indices for particularly symmetric internal manifolds are i, j, k, . . .

• Left handed (right handed) spinors of SO(6) have upper case indices I, J,K (lower case

indices Ī , J̄ , K̄).

• Vectors of four dimensional Minkowski spacetime have indices from the middle of the

Greek alphabet µ, ν, λ, ρ, ....

• SO(1, 3) spinor indices are lower case Latin letters a, b, c, ... for left handed Weyl spinors

and upper case ȧ, ḃ, ċ for right handed Weyl spinors. They will never appear in the same

context as worldsheet vector indices, so there is little chance for confusion.
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• Adjoint color indices of Chan Paton generators associated with D brane stack a (b) are

denoted by a1, a2, . . . (b1, b2, . . .).

• Fundamental (antifundamental) color indices associated with D brane stacks a (b) are

denoted by upper case α1, α2, . . . (lower case β1, β2, . . .)

The signature of the Dirac algebra is negative in lines with the conventions of [30], i.e.

(Γm)A
B (Γn)B

C + (Γn)A
B (Γm)B

C = − 2 ηmn δCA , (A.1.1)

where Γm are the Dirac matrices of SO(1, 9) with 16× 16 chiral blocks γm and γ̄m:

SO(1, 9) : (Γm)A
B =

 0 γm
αβ̇

γ̄mα̇β 0

 (A.1.2)

The lower dimensional analogues are denoted by

SO(6) :

 0 γIJ̄i

γ̄iĪJ 0

 , SO(1, 3) :

 0 σµ
αβ̇

σ̄µα̇β 0

 , (A.1.3)

they also satisfy Dirac algebras of negative signature, e.g.

σµ
αβ̇
σ̄νβ̇γ + σν

αβ̇
σ̄µβ̇γ = − 2 ηµν δγα , γIJ̄i γ̄kJ̄K + γIJ̄k γ̄iJ̄K = − 2 δik δ

I
K . (A.1.4)

The charge conjugation matrices are CAB =
(

0 Cαβ̇

Cα̇β 0

)
for SO(1, 9),

(
0 CI J̄

CĪ
J 0

)
for SO(6) and(

εαβ 0

0 εα̇β̇

)
for SO(1, 3).

SO(1, 9) : CAB =

 0 Cα
β̇

C α̇
β 0

 (A.1.5)

SO(6) :

 0 CI
J̄

CĪ
J 0

 , SO(1, 3) :

 εαβ 0

0 εα̇β̇

 (A.1.6)

Useful material on spinors in various spacetime dimensions can be found in [42,326,327,328].

A.2 Conventions in the pure spinor chapters

In order to follow closely the literature on pure spinor amplitudes, we have decided to change

conventions in part III of this work with respect to the RNS sections. This mostly concerns

SO(1, 9) gamma matrices and spinor indices. This somewhat schizophrenic approach provides

the best guarantee to avoid errors, since most of the research papers on the pure spinor for-

malism deviate from the RNS conventions A.1 used in earlier chapters. It is essential for the

analysis of multileg scattering amplitudes to get all the relative signs are correct.
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• Left handed spinors of SO(1, 9) have a downstairs index from the beginning of the Greek

alphabet, e.g. ψα, whereas right handed spinors have an undotted Greek index as a

superscript, e.g. χβ.

• The charge conjugation matrix is taken to be the Kronecker delta δαβ . This amounts to

redefining C 7→ Γ11C in the Dirac notation of the previous chapters with Γ11 denoting

the D = 10 chirality matrix. This changes the symmetry properties of the even gamma

matrix products C, (ΓmnC) and (ΓmnpqC).

• Chiral gamma matrices γmαβ, γ
mn

α
β, γmnpαβ , . . . tacitly include the (redefined) charge con-

jugation matrix, e.g. (γmC)αβ 7→ γmαβ can contract two right handed spinors whereas

(γmnC)α
β 7→ γmnα

β requires spinors of opposite chirality:

(ψ1 γ
m ψ2) = ψα1 γ

m
αβ ψ

β
2 , (ψ γmn χ) = ψα γmnα

β χβ (A.2.7)

The same notation applies to the right handed counterparts, e.g. (γ̄mC)α̇β̇ 7→ γαβm without

carrying the bar over the γ symbol along. Keeping the redefined charge conjugation matrix

in mind, we can regard γmn as antisymmetric in the sense that (γmn)α
β = −(γmn)βα.

• The Dirac algebra has a plus sign rather than the minus sign from the Wess & Bagger

notation:

γmαβ γ
nβγ + γnαβ γ

mγδ = + 2 ηmn δγα (A.2.8)

• In order to avoid proliferation of i factors, spacetime momenta are redefined according to

kPS = ikRNS such that eik·X are replaced by ek·X .

• The Regge slope is suppressed using open string conventions 2α′ = 1 and can be restored

by dimensional analysis .
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Appendix B

Elements of superconformal field

theory

The purpose of this appendix is to provide some general background on conformal field theory

(CFT) necessary at various places of this work. Many of the definitions and techniques required

for worldsheet computations in superstring theory are introduced in this appendix. This shall

lighten the flow of reading in the main body of this work. Particular emphasis is put on the

supersymmetric generalizations of CFTs, so-called superconformal field theories (SCFTs).

The basic reference on two dimensional conformal field theory is the work [329]. The N = 1

superconformal algebra was firstly considered in [330, 331]. The most complete and detailed

textbook on the subject of CFT is certainly [332], lovingly referred to as the “yellow pages”.

More streamlined introductions can be found in [333, 334, 335], and the first detailed accounts

on the SCFT were given in [336, 337]. For readers with applications to string theory in mind,

the preface of [41,42] enumerates selected chapters which give a self contained course on CFT.

B.1 SCFT basics

This section explains the general setup and gives the basic definitions within conformal field

theories.

B.1.1 What is a SCFT?

A field theory is said to be conformal if it is left invariant by angle preserving transformations.

As a necessary requirement for conformal symmetry, there must not exist a preferred length

scale or any other dimensionful quantity such as a mass parameter.

367
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In d dimensional flat Minkowski space Rp,q of signature (p, q) with p + q = d, conformal

transformations xa 7→ ya(x) satisfy1

ηcd
∂yc

∂xa
∂yd

∂xb
= Λ ηab (B.1.1)

i.e. they reproduce the Minkowski metric ηab up to a (possibly x dependent) scale function Λ.

By working out the algebra of infinitesimal transformations ya = xa− ηa(x) subject to (B.1.1),

we find that the conformal algebra in d ≥ 3 dimensions is isomorphic to so(p+ 1, q+ 1), i.e. of

dimension 1
2
(d+ 1)(d+ 2).

We will be interested in the d = 2 dimensional case for the purpose of the worldsheet SCFTs

in superstring theory. In complex worldsheet coordinates z = σ1 + iσ2 and z̄ = σ1 − iσ2, the

line element factorizes ds2 = dz dz̄ and, by virtue of (B.1.1), the conformal group encompasses

the holomorphic and antiholomorphic functions z 7→ f(z) and z̄ 7→ ḡ(z̄). Their infinitesimal

version z 7→ z−η(z) can be expanded in a Laurent series such that the conformal algebra turns

out to be infinite dimensional:

d = 2 conformal algebra:

(
z 7→ z −

∑
n∈Z

ηn z
n+1

)
⊕
(
z̄ 7→ z̄ −

∑
n∈Z

η̄n z̄
n+1

)
(B.1.2)

The existence of an infinite set of Noether charges imposes rich constraints on the correlation

functions of a d = 2 CFT such that it can even be defined without making reference to an

action. This rather abstract approach in terms of operator algebras and representation theory

is referred to as the “boot-strap approach”.

There exist supersymmetric generalizations of CFTs which can for instance be defined in

the associated superspace to d = 2 spacetime dimensions. They are naturally known as su-

perconformal field theories (SCFTs). The superconformal algebra contains an infinite set of

fermionic generators εn in addition to the bosonic set (B.1.2). Similar to the supersymmetric

extension of the Poincaré group, the εn anticommute to bosonic generators ηm.

In this work, we will encounter several SCFTs on the worldsheet, most of which have a

Lagrangian description. Although the action can be helpful in certain computations, see e.g.

subsection B.4.2, it is not at all necessary to properly define or solve the SCFT. The Ramond

spin fields firstly discussed in section 2.2 provide an excellent example of such a non-Lagrangian

but still exactly solvable theory.

1Having the application to two dimensional worldsheets in mind, we will use letters a, b, . . . for the spacetime

vector indices in this appendix.
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B.1.2 The Noether charges in SCFTs

Let us go into more detail here about the infinite set of bosonic and fermionic Noether charges

in SCFTs. There are two essential objects to describe a field theory’s response to conformal and

supersymmetry transformations – the energy momentum tensor Tab and the supercurrent Ga.

Superconformal symmetry forces many of their components to vanish. It is true in any number

of dimensions d that the energy momentum tensor of a SCFT is traceless and the supercurrent

has a vanishing γ-matrix trace:

superconformal symmetry in d dimensions ⇒ Ta
a = 0 ⊕ γaGa = 0 (B.1.3)

In the case of interest with d = 2 dimensions, both Tab andGa have two independent components

which can most conveniently be distilled in complex coordinates z = σ1 + iσ2 and z̄ = σ1− iσ2:

Tzz(z) =: T (z) holomorphic , Tz̄z̄(z̄) =: T̄ (z̄) antiholomorphic (B.1.4)

Gz(z) =:
(
G(z), 0

)
holomorphic , Gz̄(z̄) =:

(
0, Ḡ(z̄)

)
antiholomorphic

The off diagonal part of T vanishes because of Tzz̄ = Tz̄z ∼ Ta
a = 0, and the supercurrent being

a d = 2 Dirac spinor has two components (·, ·) for each value of a = z, z̄.

The Noether current associated with holomorphic diffeomorphisms η(z) and supersymmetry

transformations ε(z) are given by products with T (z) and G(z) respectively. Like in any other

quantum field theory (QFT), the associated Noether charges are obtained by integrating these

currents over a constant time slice:

Qη =

∮
dz

2πi
η(z)T (z) (B.1.5)

Qε =

∮
dz

2πi
ε(z)G(z) (B.1.6)

Here we are taking a result of subsection B.2.1 ahead, surfaces of constant time are mapped to

circles around the origin on the complex plane, a more detailed explanation will follow later.

B.1.3 Conformal primary fields

The centrals actors in SCFTs are conformal primary fields. We define φh,h̄(z, z̄) to be a confor-

mal primary field of conformal weights (h, h̄) if a change of coordinate z 7→ f(z) and z̄ 7→ ḡ(z̄)

transforms φ according to

φh,h̄(z, z̄) 7→ φ′h,h̄(z, z̄) =

(
∂f

∂z

)h (
∂̄ḡ

∂̄z̄

)h̄
φh,h̄

(
f(z), ḡ(z̄)

)
. (B.1.7)
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The description of open superstrings mostly involves conformal fields φh(z) with holomorphic

dependence on z only, they are called chiral. The antiholomorphic weight h̄ = 0 will be

suppressed in these cases. In a unitary CFT, there are no operators with h, h̄ < 0.

The objects of main interest in QFTs are correlation functions 〈φh1(z1)φh2(z2) . . . φhn(zn)〉.
They can be defined through a path integral weighted by some action or, in CFTs, by more

axiomatic approaches. Correlation functions of conformal primary fields φhi have to be covariant

under the transformation property (B.1.7) which imposes severe constraints on two- and three

point functions: Up to coefficients dij and Cijk, they are determined to be

〈φhi(z)φhj(w) 〉 =
dij δhi,hj

(z − w)2hi
(B.1.8)

〈φh1(z1)φh2(z2)φh3(z3) 〉 =
C123

zh1+h2−h3
12 zh1−h2+h3

13 zh2+h3−h1
23

,

hence, one can regard the normalizations dij and three point couplings Cijk as the defining

data of a CFT. For higher point correlation functions, however, conformal invariance does not

provide direct formulae like (B.1.8) because they can depend on so-called cross ratios such as
zijzkl
zikzjl

. Finding the functional dependence is quite cumbersome in general. Still, the asymptotic

falloff of correlation functions is independent on cross ratios and determined by the conformal

dimension of the field in question:

lim
|zi|→∞

〈φ1(z1)φ2(z2) . . . φn(zn) 〉 ∼ z−2hi
i (B.1.9)

The statements (B.1.8) also hold in higher dimensional CFTs with d > 2. Also, they remain

true in d = 2 if (B.1.7) is relaxed to hold for SL(2,C)/Z2 transformations only, the globally

defined holomorphic maps

f(z) =
az + b

cz + d
,

 a b

c d

 ∈ SL(2,C) ,

 a b

c d

 ≡ −

 a b

c d

 (B.1.10)

on the Riemann sphere S2 ∼= C ∪ {∞}. In this case, the field φh,h̄ is called a quasi-primary of

weight h.

The generalization of finite coordinate transformations to SCFT requires superspace which

we won’t introduce in this work. Instead, we will define superconformal primaries on the level

of infinitesimal transformations such as z 7→ z − η(z). Let η and ε denote the parameters of a

bosonic conformal transformations and fermionic supersymmetry transformation respectively.

Two fields φ0, φ1 of opposite statistics are said to define a superconformal primary superfield

of weight h if they exhibit the following transformation properties:

δηφ0 =
(
h ∂η + η∂

)
φ0
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δηφ1 =
(

(h+ 1
2
) ∂η + η∂

)
φ1 (B.1.11)

δεφ0 =
1

2
ε φ1

δεφ1 =
1

2
ε ∂φ0 + h ∂ε φ0

From the non-supersymmetric point of view, φ1 is simply a conformal primary of weight h+ 1
2
.

That is why we will often use the notation (φ0, φ1) ≡ (φh, φh+1/2).

B.2 Techniques in SCFTs

In this section, we want to exploit the rich mathematical tools offered by complex analysis.

SCFTs are governed by holomorphic transformations, we can use powerful theorems such as

Cauchy’s formula ∮
0

dz

2πi
zn = δn,−1 (B.2.12)

to better exploit their symmetries. In the following, the subscript
∮
w

along with an integral

indicates that the contour encircles the point w once in counterclockwise direction.

B.2.1 Radial quantization

The most natural coordinates to parametrize a closed string’s worldsheet are proper time σ0

and a periodic position coordinate σ1 ∈ (0, 2π). If we collect Euclidean time σ2 and σ1 in the

complex coordinate z := σ1 − iσ2, then z lives on a cylinder of infinite length with periodicity

z ≡ z + 2π in the direction of the real axis. Infinite past and future (with respect to Euclidean

time) are found at infinite imaginary parts Im(z)→ ±∞.

In order to employ the power of complex analysis and to define asymptotic states (see section

B.3), it is convenient to map the cylinder to the plane via change of coordinates

w := eiz , w̄ := e−iz̄ . (B.2.13)

Time translations on the cylinder Im(z) 7→ Im(z)+δσ2 correspond to dilatations on the plane

|w| 7→ eδσ
2|w|. Therefore, surfaces of constant time are circles around the origin |w| = const,

and these are the integration contours necessary to build the superconformal Noether charges

(B.1.5) and (B.1.6). Note that infinite past is the origin |w| → 0 of the complex plane, and

infinite future |w| → ∞ can also be represented on the w coordinate patch provided we extend

the plane to its on the Riemann sphere S2 ∼= C∪ {∞} – the conformal compactification of R2.

Open strings have a nonperiodic worldsheet coordinate σ1 ∈ (0, π). Their worldsheet is an

infinite strip in the z coordinate patch and the upper half plane {w ∈ C : Im {w} ≥ 0} in the
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σ2

σ1

z

w = eiz

Im{w}

Re{w}

w

Figure B.1: Conformal mapping of the cylinder to the Riemann sphere C ∪ {∞}: Surfaces of

constant (Euclidean) time σ2 = const in the z coordinate patch become circles |w| = const in

the w coordinate.

w coordinate. We will say more in subsection 2.4.2 how we can still describe open strings by

conformal fields defined on the full complex plane.

B.2.2 Contour integrals and operator product expansions

We have identified the Noether charges (B.1.5) and (B.1.6) associated with superconformal

transformations as contour integrals involving the energy momentum tensor T (z) and the su-

percurrent G(z). As in any QFT, the transformation laws (B.1.11) obeyed by superconformal

primaries should emerge from the commutator [Qη, φ] or [Qε, φ].

To make sense of a difference between
∮

dz
2πi
η(z)T (z)φ(w) and φ(w)

∮
dz
2πi
η(z)T (z), we need

the notion of radial ordering. Correlation functions in QFTs are necessarily time-ordered, and

after mapping the cylindrical worldsheet to the complex plane with time coordinate ln |w|, this

amounts to radial ordering of the operators. In the first contribution
∮

dz
2πi
η(z)T (z)φ(w), the

integration variable is understood to satisfy |z| > |w| whereas the second one φ(w)
∮

dz
2πi
η(z)T (z)

is subject to |z| < |w|. This is depicted in the following figure B.2.2:

The difference gives rise to an effective contour
∮
w

dz centered about w:

[
Qη , φ(w)

]
=

∮
|z|>|w|

dz

2πi
η(z)T (z)φ(w) −

∮
|z|<|w|

dz

2πi
η(z)T (z)φ(w)

=

∮
w

dz

2πi
η(z)T (z)φ(w) (B.2.14)

By virtue of Cauchy’s formula (B.2.12), this is compatible with the bosonic transformation laws
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Re{z}

Im{z}

↑z −

w

Re{z}

Im{z}

↑z =

w

Re{z}

Im{z}

w z

Figure B.2: The commutator of Qη =
∮

dz
2πi
η(z)T (z) with some operator φ(w) gets contributions

of opposite sign from closed integration contours with |z| > |w| and |z| < |w|, respectively. The

effective contour in z after the subtraction becomes a small circle centered about the point w.

in (B.1.11) if T (z) and φ(w) give rise to the following singularity structure as z → w:

T (z)φ(w) ∼ hφ(w)

(z − w)2
+

∂φ(w)

z − w + . . . (B.2.15)

The . . . denote regular terms in z − w which do not contribute to the contour integral on the

right hand side of (B.2.14). Using a similar argument, we can express a commutator with the

SUSY charge as [
Qε , φ(w)

]
=

∮
w

dz

2πi
ε(z)G(z)φ(w) , (B.2.16)

and the list (B.1.11) of transformation laws for primary superfield components (φ0, φ1) trans-

lates into the following operator product expansions (with . . . denoting regular powers (z −
w)k≥0):

T (z)φ0(w) ∼ hφ0(w)

(z − w)2
+

∂φ0(w)

z − w + . . .

T (z)φ1(w) ∼ (h+ 1
2
)φ1(w)

(z − w)2
+

∂φ1(w)

z − w + . . . (B.2.17)

G(z)φ0(w) ∼
1
2
φ1(w)

z − w + . . .

G(z)φ1(w) ∼ hφ0(w)

(z − w)2
+

1
2
∂φ0(w)

z − w + . . .

The idea behind these operator product expansions (OPE) is that two operators at nearby

positions can be approximated by one operator insertion at one of these points. They are only

valid inside correlation functions because the argument in (B.2.14) made use of radial ordering.

But then, they are exact statements whose radius of convergence extends to the next-nearest

insertion of the correlator.
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More generally, any two conformal primary fields φi, φj obey OPE relations

φi(z)φj(w)
∑
k

(z − w)hk−hi−hj Cij
k φk(w) + O

(
(z − w)hk−hi−hj+1

)
(B.2.18)

where Cij
ldlk coincides with the coefficient Cijk of the three point function in (B.1.8). The

higher order terms O
(
(z − w)hk−hi−hj+1

)
contain descendant fields of φk (to be defined in the

later subsection B.3.3).

B.2.3 The superconformal algebra

A conformal field φh is called a quasi-primary of weight h if it transform as φh(z) 7→ φ′h(z, z̄) =

(∂f)h φ
(
f(z)

)
only under the globally defined holomorphic maps z 7→ f(z) = az+b

cz+d
on the

Riemann sphere S2 ∼= C ∪ {∞} with ( a bc d ) ∈ SL(2,C)/Z2. Since the infinitesimal version of

these SL(2,C)/Z2 maps is z 7→ z−η(z) with η(z) = α+βz+γz2, we can translate the defining

property of quasi-primaries into the OPE

T (z)φh(w) ∼
∑
n≥4

O2+h−n

(z − w)n
+

hφh(w)

(z − w)2
+

∂φh(w)

z − w + . . .

∼ . . . +
hφh(w)

(z − w)2
+

∂φh(w)

z − w + . . . (B.2.19)

The can deviate from the OPEs of primary fields by higher order singularities in z −w, with a

gap of at least one power compared to the hφh(w)
(z−w)2 singularity. In any SCFT, the most prominent

example of a quasi-primary (but not primary) field is the energy momentum tensor T (z) (with

weight h = 2 according to the (z−w)−2 power in (B.2.17)): Its self OPE T (z)T (w) contains the

terms 2T (w)
(z−w)2 and ∂T (w)

z−w . But in addition, any operator Oh=4−n(w)

(z−w)n
could appear on dimensional

grounds.

There are two important constraints on these candidates Oh: Firstly, unitarity restricts

h ≥ 0 such that only n ≤ 4 are allowed. In particular, the only h = 0 operator is the identity

such that the maximal singularity (z−w)−4 is multiplied by a constant (which is defined as c/2

for convenience): Since the next singularity (z − w)−3 is incompatible with z ↔ w invariance

of the OPE, the only possible extra singularity is (z − w)−4. We will call its coefficient c/2 for

the moment.

Using similar arguments, the supercurrent self OPE G(z)G(w) should not have singularities

higher than (z − w)−3, but antisymmetry in z ↔ w forbids a (z − w)−2 pole. Jacobi identities

between the Laurent modes of T (z) and G(z) (to be explained in the following subsection B.2.4)

furthermore fix the constant (z − w)−3 coefficient to be c/6.
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Putting all these arguments together, the most general form of the OPE algebra generated

by T and G is the following:

T (z)T (w) =
c/2

(z − w)4
+

2T (w)

(z − w)2
+

∂T (w)

z − w + . . .

T (z)G(w) =
3
2
G(w)

(z − w)2
+

∂G(w)

z − w + . . . (B.2.20)

G(z)G(w) =
c/6

(z − w)3
+

1
2
T (w)

z − w + . . .

The T (z)G(w) OPE identifies the supercurrent as a h = 3
2

primary of the conformal algebra.

The constant showing up in the T (z)T (w) and G(z)G(w) OPEs is know as the central charge

and constitutes one of the defining quantities of a SCFT, one of several physical interpretations

will be given in the following subsection.

B.2.4 Mode expansions

Conformal fields φh,h̄ living on the cylinder have a discrete Fourier expansion with respect to

the periodic coordinate σ1 ≡ σ1 + 2π,

φh,h̄(z, z̄) =
∑
n∈Z

φ̂n(σ2) einσ
1

. (B.2.21)

As we shall demonstrate, this translates into a Laurent expansion in w = eiz on the Riemann

sphere for conformal primaries φh,h̄. For ease of notation, let us consider chiral fields with h̄ = 0

and holomorphic dependence on the z = σ1− iσ2 coordinate. The Fourier coefficients can then

be written as φ̂n(σ2) = ihe−nσ
2
φn with constant φn (and a factor of ih for convenience).

According to the transformation law φ′h(w) =
(

dz
dw

)h
φh(z) for conformal primaries, the

Fourier series (B.2.21) with φ̂n(σ2) = ihe−nσ
2
φn is mapped as follows to the Riemann sphere

under w = e−iz:

φ′h(w) =

(
dw

dz

)−h
φh
(
z(w)

)
= (iw)−h

∑
n∈Z

ih φn ein(σ1+iσ2)

=
∑
n∈Z

φnw
−h−n (B.2.22)

Note that the offset of −h in the w powers is a remnant of the mapping from the cylinder to the

complex plane. In the following, we will always work on Riemann sphere and drop the prime

of the transformed conformal fields φ′h.

The energy momentum tensor T (z) is a quasi-primary field and does not transform homo-

geneously under z 7→ f(z). Instead, the T (z)T (w) OPE from (B.2.20) implies

δηT =
(

2 ∂η + η∂
)
T +

c

12
∂3η (B.2.23)
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when inserted into the general action (B.2.14) of infinitesimal reparametrizations z 7→ z−η(z).

Its exponentiation to finite coordinate transformations implies that the mapping w = eiz from

the cylinder to the plane causes a shift in the zero mode by c
24

. Let us denote the energy

momentum Laurent modes on the plane by Ln, then we have

T (w) =
∑
n∈Z

Lnw
−n−2 , L0 = L0

∣∣∣
cylinder

+
c

24
(B.2.24)

Since the L0 operator on the Riemann sphere takes the role of the Hamiltonian, the central

charge can be interpreted as a vacuum- or Casimir energy.

B.2.5 OPEs versus commutation relations

In this subsection, we will extract commutation relations for Laurent modes from OPE methods.

This demonstrates the strength of OPEs to encompass an infinite set of equations among

the modes. In applications to string theory, the operator methods can be useful to obtain

the physical spectrum (at least in light cone gauge) whereas interactions are most efficiently

described in the path integral approach.

Let us first of all consider charges Qk with a contour integral representation in terms of the

associated currents jk,

Qk =

∮
0

dz

2πi
jk(z) , (B.2.25)

the 0 superscript indicating that the z integration countour encircles the origin once in coun-

terclockwise direction. Their commutator can be reduced to OPEs of the currents jk, jl by

repeating the argument of subsection B.2.2: The formal difference of two contours
∮
|z|>|w| dz −∮

|z|<|w| dz due to radial ordering is a small circle
∮
w

dz around the point w, see figure B.2.2:[
Qk , Ql

]
=

∮
0

dz

2πi

∮
0

dw

2πi

[
jk(z) , jl(w)

]
=

∮
0

dw

2πi

(∮
|z|>|w|

dz

2πi
jk(z) jl(w) −

∮
|z|<|w|

dz

2πi
jk(z) jl(w)

)
=

∮
0

dw

2πi

∮
w

dz

2πi
jk(z) jl(w) (B.2.26)

Any Laurent mode φn of a conformal field φh can be brought into such an integral representation

like (B.2.25) via

φh(z) =
∑
n∈Z

φn z
−n−h ⇒ φn =

∮
0

dz

2πi
zn+h−1 φh(z) . (B.2.27)

In particular, the energy momentum- and supercurrent modes Lm, Gr on the Riemann sphere

are given by

Lm =

∮
0

dz

2πi
zm+1 T (z) , Gr =

∮
0

dz

2πi
zr+1/2G(z) (B.2.28)
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The OPE formulation (B.2.20) of the superconformal algebra therefore encodes any (anti-)

commutation relation2 for the modes Lm and Gr:[
Lm , Ln

]
= (m− n)Lm+n +

c

12
(m3 −m) δm+n,0[

Lm , Gr

]
=

m− 2r

2
Gm+r (B.2.29){

Gr , Gs

}
= 2Lr+s +

c

12
(4r2 − 1) δr+s,0

This is valid for moding r ∈ Z or r ∈ Z + 1
2

of the supercurrent, see subsection B.3.2. The

relation G2
−1/2 = L−1 can be viewed as the global worldsheet supersymmetry algebra on the

plane.

B.3 Fields and states

The space of states in a SCFT decomposes into irreducible representations of the super Virasoro

algebra (B.2.29). This section will explain the one-to-one correspondence between conformal

fields and states.

B.3.1 Primary fields and highest weight states

Each super Virasoro irreducible can be generated from a highest weight states |h〉 by action

of Ln<0 and Gr<0 modes. The commutation relations [L0, Ln] = −nLn and [L0, Gr] = −rGr

identify the Ln<0 and Gr<0 as raising operators for L0 eigenvalues. The defining properties of

highest weight states |h〉 are

Ln>0 |h〉 = Gr≥0 |h〉 = 0 , L0 |h〉 = h |h〉 . (B.3.30)

Recall that infinite past in Euclidean time σ2 → −∞ is located at the origin z = 0 of the

Riemann sphere. As we will show, the highest weight properties (B.3.30) admit to identify

|h〉 with an asymptotic state created by the lower component of a superconformal primary

(φh, φh+1/2) at z → 0:

|h〉 = lim
z→0

φh(0) |0〉 (B.3.31)

In view of the mode expansion φh(z) =
∑

n φnz
−n−h, this state is only well defined if φn|0〉 = 0

for any n > −h. Regularity of T (z) and G(z) at the origin requires that the following super

2Half odd integer conformal weights like G(z) give rise to anticommutation relations among themselves, this

can for instance be seen from their antisymmetric two point function 〈φh(z)φh(w)〉 ∼ (z−w)−2h = −(w−z)−2h

for h ∈ Z + 1
2 .
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Virasoro modes annihilate the vacuum state |0〉:

Ln |0〉 = 0 , n ≥ − 1 , Gr |0〉 = 0 , r ≥ − 1
2

(B.3.32)

The proof that the state |h〉 defined by (B.3.31) enjoys the highest weight properties (B.3.30)

is based on the OPEs (B.2.17) valid for any primary field:

Ln |h〉 =

∮
0

dz

2πi
zn+1 T (z)φh(0) |0〉 =

∮
0

dz

2πi
zn+1

(
hφh(0)

z2
+

∂φh(0)

z
+ . . .

)
|0〉

=

 hφh(0) |0〉 : n = 0

0 : n > 0
(B.3.33)

Gr |h〉 =

∮
0

dz

2πi
zr+1/2G(z)φh(0) |0〉 =

∮
0

dz

2πi
zr+1/2

(
φh+1/2(0)

2 z
+ . . .

)
|0〉

=

 1
2
φh+1/2(0) |0〉 : r = −1/2

0 : r ≥ 0
(B.3.34)

Hence, the upper component φh+1/2 of the superconformal primary (φh, φh+1/2) gives rise to

the asymptotic state φh+1/2(0)|0〉 = 2G−1/2|0〉. Apart from L−1|h〉 = ∂φh(0)|0〉, the action of

raising operators Ln<0 and Gr<0 on |h〉 is unspecified by the singular part of the OPEs.

Let us take a look at T (0)|0〉 = L−2|0〉 as a counterexample of a highest weight state.

According to its infinitesimal transformation (B.2.23), the energy momentum is not a primary

field. The failure of its state correspondent T (0)|0〉 to be of highest weight type can be seen

from the non-vanishing of L2L−2|0〉 = [L2, L−2]|0〉 = c
2
|0〉.

In analogy to the asymptotic in-state |h〉 = φh(0)|0〉 inserted at infinite past z → 0, an

asymptotic out-state 〈h| created by φh(|z| → ∞) at infinite future is defined by orthonor-

mality 〈hi|hj〉 = δi,j
3. The two point function 〈φh(z1)φh(z2)〉 = z−2h

12 implies that we need a

compensating power of z2h:

〈h| = lim
|z|→∞

z2h 〈0|φh(z) ⇒ φ†n = φ−n (B.3.35)

This definition is quite useful in section (2.2) to derive the covariant OPE of NS fermions

approaching a spin field.

B.3.2 Neveu Schwarz and Ramond sector

Conformal fields of half-odd integer conformal dimension are anticommuting (or Grassmann-

odd or fermionic) variables, this follows from the two point function 〈φh(z1)φh(z2)〉 = z−2h
12 being

3There might exist several primary fields φi, φj of the same conformal weight hi = hj . In that case, the

highest weight states φi(0)|0〉 and φj(0)|0〉 are understood to be orthogonal.
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antisymmetric in z1 ↔ z2 if h ∈ Z + 1
2
. Since observables are commuting (or bosonic) objects,

fermionic variables can only enter them in bilinears. That is why the φh∈Z+1/2 of non-integer

weight are defined up to a sign. Consequently they can be either single- or double valued in

periodic directions φh(e
2πiz) = ±φh(z).

On the complex plane, periodic fields of conformal dimension h ∈ Z + 1
2

are said to live

in the Neveu Schwarz (NS) sector, φNS
h (e2πiz) = +φNS

h (z) whereas the antiperiodic counterpart

is referred to as the Ramond (R) sector φR
h (e2πiz) = −φR

h (z). The situation on the cylinder

is reversed because of the relative Jacobian factor (iz)−h. The NS Laurent expansion on the

plane must have half odd integer moding r ∈ Z + 1
2

to ensure integer z powers whereas the R

Laurent expansion encompasses r ∈ Z for fractional z exponents:

φh∈Z+1/2(z) =
∑
r

φr z
−r−h , r ∈

 Z + 1
2

: NS sector

Z : R sector
(B.3.36)

In particular, this applies to the supercurrent modes Gr subject to the algebra (B.2.29).

Free fermions are single valued, so the state φh∈Z+ 1
2
(0)|0〉 belongs to the NS sector and we

have φh ≡ φNS
h by default. The state content of the R sector is constrained by the unitarity

bound h ≥ c
24

set by the r = 0 case of

0 ≤ 〈h|GrG−r |h〉 =
(

2h +
c

3

[
r2 − 1

4

])
〈h|h〉 (B.3.37)

Since the bosonic Virasoro algebra [Lm, Ln] = (m−n)Lm+n+ c
12

(m3−m)δm+n,0 is a subalgebra

of the Ramond super Virasoro algebra, the highest weight states of the Ramond sector must

be created from the vacuum by ordinary conformal fields of h ≥ c
24

. They are referred to as

spin fields S, their role is to create branch cuts in the OPE algebra of fermionic fields such as

G(z)S(0) ∼ z−3/2S̃(0) (with S̃ denoting another spin field of the same conformal dimension).

The main body of this work contains detailed discussions of spin fields, starting in section 2.2,

that is why we will be very brief in this appendix.

By definition, spin fields S(0) inserted at the origin of the plane transform the NS ground

state into R ground states and therefore interpolate between the two sectors. More generally,

their action on the space of states is off-diagonal |NS〉′

|R〉′

 =

 0 S

S 0

  |NS〉
|R〉

 (B.3.38)

in contrast to the action of the superfields (φh, φh+1/2): |NS〉′

|R〉′

 =

 φ 0

0 φ

  |NS〉
|R〉

 (B.3.39)
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Presence of a spin field changes periodicity properties to φNS(e2πiz)S(0) = −φNS(z)S(0), hence

we can identify φR ≡ φNSS with integer Laurent modes

φR(z) = φNS(z)S(0) =
∑
r∈Z

φR
r z
−r−h S(0) (B.3.40)

The R sector modes can be extracted from φNS
h via

φR
r S(0) =

∮
dz

2πi
zr+h−1 φNS(z)S(0) . (B.3.41)

The half odd integer z powers in the φNS(z)S(0) OPE compensate for r + h ∈ Z + 1
2
. One

should not think of φR
r∈Z and φNS

r∈Z+1/2 as belonging to separate superfields. Instead, both

types of Laurent modes are associated with a single superfield whose fermionic component gets

modified in presence of a spin field.

B.3.3 Descendant fields

We have seen that highest weight states |h〉 of the super Virasoro algebra are in one-to-one

correspondence with the lower component of primary superfields (φh, φh+1/2). The purpose of

this subsection is to relate so-called descendant states L−n|h〉 and G−r|h〉 to conformal fields.

The integral representation (B.2.28) of the modes allows to rewrite descendants as a field

insertion at the origin:

L−n |h〉 =

∮
dz

2πi
z1−n T (z)φh(0) |0〉 =: (L−n φh)(0) |0〉 (B.3.42)

G−r |h〉 =

∮
dz

2πi
z1/2−rG(z)φh(0) |0〉 =: (G−r φh)(0) |0〉 (B.3.43)

One can read off the corresponding descendant fields which can be defined anywhere on the

complex plane:

(L−n φh)(w) =

∮
dz

2πi
z1−n T (z)φh(w) (B.3.44)

(G−r φh)(w) =

∮
dz

2πi
z1/2−rG(z)φh(w) (B.3.45)

The simplest descendant fields follow from the singular parts of the OPEs (B.2.17),

(L−1 φh) = ∂φh , (G−1/2 φh) = 1
2
φh+1/2 , (B.3.46)

the general cases involve regular terms from the OPEs of T (z) and G(z) with φh(w). The

procedure (B.3.44) and (B.3.45) of taking descendant fields can of course be iterated, e.g.

(L−1)nφh = ∂nφh and

L−n1 L−n2 φh(w) = L−n1

∮
dz2

2πi
z1−n2

2 T (z2)φh(w)
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=

∮
dz1

2πi

∮
dz2

2πi
z1−n1

1 z1−n2
2 T (z1)T (z2)φh(w) . (B.3.47)

Descendants with respect to the supercurrent naturally appear in the context of superghost

picture changing, see section 3.1.6.

Once a correlation function among primary fields is known, then it is straightforward to

get a handle on the associated descendant correlator. Superconformal Ward identities allow

to derive differential operators which act on primary correlators if some fields are replaced by

descendants φh 7→ (L−nφh). That is why we restrict our attention to correlation functions of

primary fields, see the following section (B.4) for free bosons and chapter 6 for the interacting

CFT of the RNS superstring.

B.4 Correlation functions for free bosons

The CFT of string coordinates Xm plays a key role for the structure of superstring amplitudes.

The spacetime momentum km of a physical state is generated by a plane wave eik·X factor

in the vertex operator which determine the kinematic poles of and relations between color

ordered amplitudes, see section 5.3. Exponentials of free bosons also occur in the bosonized

representation of the worldsheet fermions ψm and spin fields SA of the RNS CFT in terms of

chiral bosons Hj(z).

B.4.1 Identifying plane waves as primary fields

It might seem a bit puzzling at first glance that the worldsheet field Xm which does not fit into a

representation of the conformal group exponentiates to a conformal primary eik·X . The purpose

of this subsection is to prove that eik·X transforms as a primary of weight h(eik·X) = α′k2 like

claimed in subsection 3.1.4.

The first step is to derive the OPE (3.1.18) on the basis of i∂Xm(z)iXn(w) ∼ 2α′ηmn

z−w +. . .. It

rests on expanding the exponential and recognizing the number n of single contractions between

i∂Xm and (ik ·X)n:

i∂Xm(z) eik·X(w) =
∞∑
n=0

1

n!
i∂Xm(z)

(
ik ·X(w)

)n
∼

∞∑
n=0

1

n!

n 2α′ km

z − w
(
ik ·X(w)

)n−1
+ . . .

=
2α′ km

z − w eik·X(w) + . . . (B.4.48)
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The conformal dimension follows from the OPE with the energy momentum tensor T (z) =

1
4α′
i∂Xmi∂Xm(z) + . . .:

T (z) eik·X(w) =
1

4α′

∞∑
n=0

1

n!
i∂Xm(z) i∂Xm(z)

(
ik ·X(w)

)n
=

1

4α′

∞∑
n=0

1

n!

(
2n 2α′ km i∂X

m(z)

z − w
(
ik ·X(w)

)n−1

+
n (n− 1) (2α′)2 km k

m

(z − w)2

(
ik ·X(w)

)n−2
)

+ . . .

=
∂
(
eik·X(w)

)
z − w +

α′ k2 eik·X(w)

(z − w)2
+ . . . (B.4.49)

The term in the second line follows from the 2n single contractions i∂Xm ↔ (ik ·X)n whereas

the third line is a result of the n(n− 1) double contractions i∂Xmi∂Xm ↔ (ik ·X)n. The α′ k2

prefactor of the double pole eik·X(w)

(z−w)2 is identified as the conformal weight of eik·X(w).

B.4.2 Plane wave correlators

Having identified the plane waves eik·X as conformal primary fields, we shall next derive their

correlation functions starting from the worldsheet action S[X] given by (2.1.11). The worldsheet

in the closed string sector can be represented by the Riemann sphere4 S2. The starting point

for computing the plane wave correlator on S2 is the path integral〈
n∏
j=1

eikj ·X(zj ,z̄j)

〉
S2

=

∫
DX

n∏
j=1

eikj ·X(zj ,z̄j) e−S[X]

=

∫
DX exp

(
− 1

4πα′

∫
d2z ∂Xm ∂̄X

m + i

n∑
j=1

kmj Xm(zj)

)

=:

∫
DX exp

(∫
d2z

{
1

4πα′
Xm ∂∂̄X

m + iJmXm

})
(B.4.50)

where the source term in the second line is defined by Jm(z, z̄) :=
∑

j=1 k
m
j δ

2(z − zj, z̄ − z̄j).
The integral over Xm configurations is of Gaussian type, so one can solve it by an infinite

dimensional generalization of the standard formula
∫

dnx exp
(

1
2
xAx+ iJx

)
∼ exp

(
1
2
JA−1J

)
(using the Green’s function 1

4π
ln |z − w|2 to “invert” the ∂∂̄ operator):〈

n∏
j=1

eikj ·X(zj ,z̄j)

〉
S2

∼ exp

(
πα′

∫
d2z

∫
d2w Jm(z, z̄)

1

4π
ln |z − w|2 Jm(w, w̄)

)
4This is the one of the few instances of this work where we give a correlation function on a closed string

worldsheet, that is why we attach a subscript 〈. . .〉S2 here. Correlators without such a specification are computed

on the disk by default.
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=
n∏
i 6=j

exp

(
α′

4
(ki · kj) ln |zi − zj|2

)
=

n∏
i<j

|zij|αki·kj (B.4.51)

We have omitted the zero modes xm0 of the Xm(z, z̄) in the
∫
DX path integral. They contribute

a momentum conserving delta function∫
dDx0 exp

(
i

n∑
j=1

kj · x0

)
=

1

(2π)D
δD

(
n∑
j=1

kj

)
, (B.4.52)

but we will drop it for ease of notation in the following work – momentum conservation will

always be implicit. So far, no care has been taken about the overall prefactor of scattering

amplitudes. Normalization issues are addressed in subsection 5.3.4.

Computing the S matrix for open string states requires correlation functions of plane waves

on the disk 〈. . .〉 rather than on the sphere 〈. . .〉S2 . We can rewrite (B.4.51) more generally as〈
n∏
j=1

eikj ·X(zj ,z̄j)

〉
S2

= exp

(
n∑
i<j

kpii k
pj
j 〈 iXpi(zi, z̄i) iXqj(zj, z̄j) 〉S2

)
(B.4.53)

According to subsection 2.4.3, the boundary propagator of Xm has an extra factor of two due

to the image charge outside the open string worldsheet,

〈 iXpi(zi) iXqj(zj) 〉 = 2α′ ln |z − w| = 2 〈 iXpi(zi, z̄i) iXqj(zj, z̄j) 〉S2

∣∣∣
zi,zj∈R

, (B.4.54)

this effectively doubles the exponents of the |zij| in (B.4.51):〈
n∏
j=1

eikj ·X(zj∈R)

〉
= exp

(
n∑
i<j

kpii k
pj
j 〈 iXpi(zi) iXqj(zj) 〉

)
=

n∏
i<j

|zij|2α
′ki·kj (B.4.55)

The OPE of two exponentials can be easily inferred from the limiting behavious zi → zj:

eiki·X(zi) eikj ·X(zj) ∼ (z − w)2α′ki·kl ei(ki+kj)·X(zj) + . . . (B.4.56)

Setting 2α′ = 1 reproduces the results (2.2.36) and (2.2.44) on the chiral bosons Hj subject to

H(z)H(w) ∼ − ln |z − w|, see subsection 2.2.3 and 2.2.4.

B.4.3 Correlators with extra ∂Xm insertions

Since physical vertex operators generically contain ∂Xm fields and higher derivatives thereof,

we should next discuss more general correlators involving both plane waves eikj ·X and ∂Xm.

Their rigorous derivation is based on the rewriting i∂Xmeik·X = ∂
∂ζm

eik·X+iζ·∂X
∣∣
ζ=0

:〈
p∏
l=1

i∂Xml(zl)
n∏
j=1

eikj ·X(zj)

〉
=

p∏
l=1

〈
∂

∂ζ lml
eiζ

l·∂X(zl)

n∏
j=1

eikj ·X(zj)

〉 ∣∣∣∣
ζl=0
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=

p∏
l=1

∂

∂ζ lml
exp

(
n∑
i<j

krii k
sj
j 〈 iXri(zi) iXsj(zj) 〉 +

p∑
i=1

n∑
j 6=i

ζ iri k
sj
j 〈 i∂Xri(zi) iXsj(zj) 〉

+

p∑
i<j

ζ iri ζ
j
sj
〈 i∂Xri(zi) i∂X

sj(zj) 〉
) ∣∣∣∣

ζl=0

=

p∏
l=1

∂

∂ζ lml
exp

(
2α′

[
n∑
i<j

(ki · kj) ln |zij| +

p∑
i=1

n∑
j 6=i

ζ i · kj
zij

+

p∑
i<j

ζ i · ζj
z2
ij

]) ∣∣∣∣
ζl=0

(B.4.57)

Extracting the multilinear piece in the auxiliary variables ζ l from the exponential is a com-

binatoric exercise. The result is in lines with the Wick theorem [221] for free field theories:

The h = 1 primary ∂Xm can be removed from the correlation function if we replace it by all

the singularities it can produce via open string OPEs. Therefore, the i∂Xm(z)eik·X(w) OPE

(B.4.48) suffices to determine the correlation function with one ∂Xm,〈
i∂Xm(w)

n∏
j=1

eikj ·X(zj∈R)

〉
=

n∑
l=1

2α′ kml
w − zl

〈
n∏
j=1

eikj ·X(zj∈R)

〉
. (B.4.58)

The general correlator with several ∂Xm insertions additionally involves i∂Xm(z)i∂Xn(w) ∼
2α′ηmn/(z −w)2 + . . . in the reduction process due to the Wick rule. More precisely, summing

over all OPE singularities of the ∂Xm1(w1) field gives rise to the following recursive prescription:〈
p∏
l=1

i∂Xml(wl)
n∏
j=1

eikj ·X(zj∈R)

〉
=

p∑
i=2

2α′ ηm1mi

(w1 − wi)2

〈
p∏
l=2
l 6=i

i∂Xml(wl)
n∏
j=1

eikj ·X(zj∈R)

〉

+
n∑
i=1

2α′ km1
i

w1 − zi

〈
p∏
l=2

i∂Xml(wl)
n∏
j=1

eikj ·X(zj∈R)

〉
(B.4.59)

Iterating this prescription boils the correlation function on the left hand side down to a combi-

nation of momenta and Minkowski metrics (equivalent to the result of (B.4.57)) and an overall

plane wave correlator 〈∏n
j=1 eikj ·X〉 =

∏n
i<j |zij|2α

′ki·kj .

The Wick contraction rule for the fermions ψm(z)ψn(w) ∼ ηmn

z−w + . . . is even more compact,〈
n∏
l=1

ψml(zl)

〉
=

n∑
i=2

(−1)i
ηm1mi

z1i

〈
n∏
l=2
l6=i

ψml(zl)

〉
(B.4.60)

such that e.g.

〈ψm(z1)ψn(z2)ψp(z3)ψq(z4) 〉 =
ηmn ηpq

z12 z34

− ηmp ηnq

z13 z24

+
ηmq ηnp

z14 z23

. (B.4.61)

The nontrivial correlation functions of the RNS CFT involve spin fields SA, they are presented

in chapter 6.
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B.4.4 Higher spin correlators

Scattering higher spin states requires correlators with a large number of i∂X insertions. In

particular, since we discuss all mass levels n on equal footing in section 9.3 we shall keep the

i∂X number general. Luckily, lots of simplifications occur on the leading Regge trajectory

because the i∂Xµ are always contracted with the totally symmetric, transverse and traceless

wave functions φ, this is why we only give a closed formula for such a contraction. Let ni

denote the mass levels in the sense that k2
i = −ni

α′
and si the number of i∂X(zi)’s (which does

not necessarily coincide with the spin ni + 1 of the state for the purpose of this appendix). Of

course, the tensors φµ1...µs of interest might have further free indices which will be omitted in

the following result:

φ1
µ1...µs1

φ2
ν1...νs2

φ3
λ1...λs3

〈
s1∏

p1=1

i∂Xµp1 (z1)

s2∏
p2=1

i∂Xνp2 (z2)

s3∏
p3=1

i∂Xλp3 (z3)
3∏
j=1

eikjX(zj) 〉

=

(
z12 z13

z23

)n1−s1 (z12 z23

z13

)n2−s2 (z13 z23

z12

)n3−s3
s1! s2! s3!

∑
i,j,k∈I

(2α′)s1+s2+s3−i−j−k

× (φ1 · ks1−i−j2 ) (φ2 · ks2−i−k3 ) (φ3 · ks3−j−k1 ) δi12 δ
j
13 δ

k
23

i! j! k! (s1 − i− j)! (s2 − i− k)! (s3 − j − k)!
(B.4.62)

Shorthands such as (φ1 · ks1−i−j2 ) (φ2 · ks2−i−k3 ) δi12 are introduced in subsection 9.3.2. The

summation range I for the number i, j, k of contractions among the φ’s is defined as

I :=
{
i, j, k ∈ N0 : s1 − i− j ≥ 0 , s2 − i− k ≥ 0 , s3 − j − k ≥ 0

}
. (B.4.63)

We will also need the four particle generalization:

φ1
µi
φ2
νi
φ3
λi
φ4
ρi
〈

s1∏
p1=1

i∂Xµp1 (z1)

s2∏
p2=1

i∂Xνp2 (z2)

s3∏
p3=1

i∂Xλp3 (z3)

s4∏
p4=1

i∂Xρp4 (z4)
4∏
j=1

eikjX(zj) 〉

= |z12|s+n1+n2 |z13|t+n1+n3 |z14|u+n1+n4 |z23|u+n2+n3 |z24|t+n2+n4 |z34|s+n3+n4 s1! s2! s3! s4!

×
∑

i,j,k,l,m,n∈J

(2α′)
P4
p=1 sp−i−j−k−l−m−n (δ12/z

2
12)i (δ13/z

2
13)j (δ23/z

2
23)k (δ14/z

2
14)l (δ24/z

2
24)m (δ34/z

2
34)n

i! j! k! l!m!n! (s1 − i− j − l)! (s2 − i− k −m)! (s3 − j − k − n)! (s4 − l −m− n)!

×
[
φ1 ·

(
k2

z12

+
k3

z13

+
k4

z14

)s1−i−j−l ] [
φ2 ·

(
k1

z21

+
k3

z23

+
k4

z24

)s2−i−k−m ]

×
[
φ3 ·

(
k1

z31

+
k2

z32

+
k4

z34

)s3−j−k−n ] [
φ4 ·

(
k1

z41

+
k2

z42

+
k3

z43

)s4−l−m−n ]
(B.4.64)

In this case, summation variables i, j, k, l,m, n are delimited as follows:

J :=
{
i, j, k, l,m, n ∈ N0 : s1 − i− j − l ≥ 0 , s2 − i− k −m ≥ 0 ,

s3 − j − k − n ≥ 0 , s4 − l −m− n ≥ 0
}

(B.4.65)
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The four point amplitudes given in subsections 9.3.4 to 9.3.7 with one higher spin state of mass

level n at z4 and massless states at z1,2,3 require

φµ1...µs 〈 i∂Xµ1 ... i∂Xµs(z4)
4∏
j=1

eikjX(zj) 〉 = |z12|s |z13|t |z23|u |z14|u+n |z24|t+n |z34|s+n

×
[
φ4 ·

(
k1

z41

+
k2

z42

+
k3

z43

)s ]
(B.4.66)

and generalizations with a finite number of extra i∂X insertions for the gluons.



Appendix C

The spinor helicity formalism

This appendix introduces the spinor helicity formalism, a unifying organization scheme for po-

larization wave functions of bosons and fermions in D = 4 spacetime dimensions. Remarkably,

three different groups developed these methods independently [316,317,318]. They give rise to

severe vanishing theorems on gluon amplitudes of certain helicity configurations and extremely

compact formulae for the first non-vanishing class of n gluon tree amplitudes, the so-called

MHV amplitudes. Also, the formalism increases the efficiency of SUSY Ward identities: They

can be solved much more explicitly for tree amplitudes involving n boson and m fermions in

terms of the corresponding n± 2 boson, m∓ 2 fermion amplitude of the same multiplet.

The key ingredient of the spinor helicity formalism is the one-to-one correspondence between

vectors and bispinors of opposite helicities in D = 4 spacetime dimensions. This is reflected in

the relations

σµ
aḃ
σµcḋ = − 2 εac εḃḋ , σµ

aḃ
σ̄ḃaν = − 2 δµν (C.0.1)

for the four dimensional sigma matrices. Higher dimensional Lorentz groups involve higher rank

p forms in the tensor product decomposition of bispionors. That is why the development of a

higher dimensional spinor helicity formalism poses a difficult challenge. Recent work generalizes

spinor helicity methods to D = 6 [338] and to D = 10 dimensions [339].

C.1 Massless polarization tensors

The basic building block for massless wave functions of any spin is the Weyl spinor polarization

ua of a spin 1/2 fermion. The massless Dirac equation ua 6 kaḃ = 0 implies that it depends on

the momentum, so we will use the suggestive notation

ua(k) = ka , ūȧ(k) = k̄ȧ (C.1.2)

387
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in the following. The massless Dirac equation for fermions implies that only one chiral half is

nonzero. Therefore, the two polarization states of spin 1/2 fermions read as follows in Dirac

spinor notation:

U+(k) =

 ka

0

 , U−(k) =

 0

k̄ȧ

 (C.1.3)

The 2× 2 matrix (kµσµ)aḃ has a determinant proportional to the norm kµkµ which vanishes for

the lighlike momentum of a massless state. According to basic linear algebra, any 2× 2 matrix

with vanishing determinant can be factorized as follows:

det(kµ σµ) ∼ k2 = 0

det(kµ σ̄µ) ∼ k2 = 0

 ⇒

 (kµ σµ)aḃ = − ka k̄ḃ
(kµ σ̄µ)ȧb = − k̄ȧ kb

(C.1.4)

These relations can be easily inverted by means of (C.0.1):

kµ =
1

2
ka k̄ȧ σ̄

ȧa
µ =

1

2
k̄ȧ ka σµaȧ (C.1.5)

Let us introduce the following bracket notation as a shorthand for spinor products:

〈p q〉 = p̄ȧ q̄
ȧ = −〈q p〉

[p q] = pa qa = − [q p]

 ⇒ 〈p q〉 [q p] = − 2 pµ qµ (C.1.6)

The antisymmetric nature of the four dimensional charge conjugation matrix εab = ε[ab] and

εȧḃ = ε[ȧḃ] implies that, for commuting spinors p, q, also the brackets are antisymmetric in

their two arguments. In particular, we have 〈p p〉 = [p p] = 0 which allows for a quick check

that the massless Dirac equation for spin 1/2 fermions (C.1.3) is consistent with the bispinor

representation (C.1.4) of kµσ
µ.

C.1.1 Massless spin one

The polarization of massless spin one particles can be described by a transverse vector ξµ subject

to a gauge freedom ξµ ≡ ξµ + kµΛ with scalar gauge parameter Λ. It has only two physically

meaningful components corresponding to the +1 and −1 helicity states. A more natural basis

for the two physical states ξ+
µ and ξ−µ involves the spinors ka, k̄ȧ which form the momentum

vector kµ via (C.1.5):

ξ+
µ (k, r) =

r̄ȧ σ̄
ȧb
µ kb√

2 〈k r〉
, ξ−µ (k, r) =

k̄ȧ σ̄
ȧb
µ rb√

2 [r k]
(C.1.7)

The gauge freedom is represented by a reference spinor ra which can be arbitrarily chosen as

long as raka 6= 0. In order to see that r carries no physical information, one can compute the

difference

ξ±µ (k, r1) − ξ±µ (k, r2) = kµ Λ(r1, r2) (C.1.8)
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which corresponds to a gauge transformation with gauge parameter Λ depending on r1,2. There-

fore, physical amplitudes cannot depend on the choice of the reference spinor ra and we can

pick the choice which leads to the maximal simplification.

C.1.2 Massless spin 3/2

Massless spin 3/2 fermions are described by a vector spinorial wavefunction χaµ or χ̄µȧ subject

to transversality, σ tracelessness χaµσ
µ

aḃ
, massless Dirac equation and gauge freedom χaµ ≡ χaµ +

kµΛa. These constraints leave two physical degrees of freedom with helicities ±3
2
. In Dirac

spinor notation:

U+
µ (k, r) =

r̄ḃ σ̄
ḃc
µ kc√

2 〈k r〉

 ka

0

 , U−µ (k, r) =
k̄ḃ σ̄

ḃc
µ rc√

2 [r k]

 0

k̄ȧ

 (C.1.9)

Again, a change of reference momentum r1 7→ r2 amonts to performing a gauge transformation

U±µ (k, r1) − U±µ (k, r2) = kµ Λ(r1, r2) (C.1.10)

with some r1,2 dependent Dirac spinor Λ.

C.1.3 Massless spin two

For completeless, we shall also give the helicity wave functions for massless spin two particles

here. They are described by symmetric, transverse and traceless rank two tensors αµν with

gauge freedom αµν ≡ αµν+kµΛν+kνΛµ as rich as the infinitesimal diffeomorphisms. Therefore,

two physical states remain

α+
µν(k, r) =

σ̄ȧbµ σ̄ċdν r̄ȧ kb r̄ċ kd

2 〈k r〉 〈k r〉 , α−µν(k, r) =
σ̄ȧbµ σ̄ċdν k̄ȧ rb k̄ċ rd

2 [k r] [k r]
(C.1.11)

which again involve a gauge spinor r:

α±µν(k, r1) − α±µν(k, r2) = kµ Λν(r1, r2) + kν Λµ(r1, r2) (C.1.12)

They can be identified as the “square” of two spin one eigenstates (C.1.7):

α±µν(k, r) = ξ±(µ(k, r) ⊗ ξ±ν)(k, r) (C.1.13)

Note that tracelessness automatically follows from 0 = 〈p p〉 = [p p].
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C.2 Massive polarization tensors

Although the spinor helicity formalism is most efficient for the description of massless particles,

we can still apply it to massive states and achieve a higher compactness for their scattering

amplitudes [319, 320, 321]. As explained in chapter 9, helicity selection rules also exist for

amplitudes which involve massive states.

Massive spin j particle in four dimensions gives rise to 2j + 1 physical degrees of freedom

according to the stabilizer subgroup SO(3) of the rest frame momentum kµ = (M, 0, 0, 0).

In contrast to the massless situation where the lightlike momentum necessarily singles out a

spatial direction, the rest frame momentum of massive particles does not suggest a preferred

quantization axis. To handle this freedom, we decompose the timelike momentum kµ into two

lighlike ones pµ, qµ:

kµ = pµ + qµ , p2 = q2 = 0 , k2 = −m2 = 2 pµ qµ (C.2.14)

The spatial components of pµ carry the information about which spatial angular momentum

component is diagonalized. Now, kµσ
µ can still be written as a sum over bispinors although

det(kµσ
µ) 6= 0 for massive states:

(kµ σ
µ)aḃ = − pa p̄ḃ − qa q̄ḃ (C.2.15)

Of course, the choice of (pµ, qµ) decomposition should not affect physical observables such as

unpolarized cross sections: Once the modulus squared amplitudes with all the 2j+1 polarization

are summed over, all the pa, qa, p̄ċ, q̄ḋ dependence should drop out in favor of the full massive

momentum kµ. This is an important consistency check on the scattering amplitudes of section

9.2.

C.2.1 Massive spin 1/2

Dirac spinors for massive fermions must have two nonvanishing chiral halves because of the

massive Dirac equation (6k +m)U = 0. Using 〈q p〉[p q] = m2, one can verify that

U
(
k,+1

2

)
=

 1
m
〈q p〉 qa
p̄ȧ

 , U
(
k,−1

2

)
=

 pa
1
m

[q p] q̄ȧ

 (C.2.16)

indeed provides solutions to (6k + m)U = 0. The second argument ±1
2

of the wave function U

indicates whether the spin polarization is parallel or antiparallel to the pµ direction.
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C.2.2 Massive spin one

Spin one particles obtain a new longitudinal degree of freedom once they have a nonzero mass.

The three physical polarization can be obtained as follows

ξµ(k,+1) =
1√
2m

p̄ȧ σ̄
ȧb
µ qb

ξµ(k, 0) =
1

2m
σ̄ȧbµ (p̄ȧ pa − q̄ȧ qa) (C.2.17)

ξµ(k,−1) =
1√
2m

q̄ȧ σ̄
ȧb
µ pb

They are transverse and orthonormal in the sense that ξµ(k, h1)ξµ(k, h2) = −δh1+h2,0.

C.2.3 Massive spin 3/2

Massive spin 3/2 particles have four polarization states subject to a massive Dirac equation

and transversality:

Uµ
(
k,+3

2

)
=

1√
2m

 1
m
〈q p〉 qa
p̄ȧ

 p̄ḃ σ̄
ḃc
µ qc

Uµ
(
k,+1

2

)
=

σ̄ḃcµ√
6m

 1
m
〈q p〉 qa
p̄ȧ

 (p̄ḃ pc − q̄ḃ qc) +

 1
m
〈q p〉 pa
− q̄ȧ

 p̄ḃ qc

 (C.2.18)

Uµ
(
k,−1

2

)
=

σ̄ḃcµ√
6m

 pa
1
m

[q p] q̄ȧ

 (p̄ḃ pc − q̄ḃ qc) +

 − qa
1
m

[q p] p̄ȧ

 q̄ḃ pc


Uµ
(
k,−3

2

)
=

1√
2m

 pa
1
m

[q p] q̄ȧ

 q̄ḃ σ̄
ḃc
µ pc

C.2.4 Massive spin two

Let us finally give the five physical components of a massive spin two tensor, described by a

transverse and traceless wavefunction:

αµν(k,+2) =
1

2m2
σ̄ȧbµ σ̄ċdν p̄ȧ qb p̄ċ qd

αµν(k,+1) =
1

4m2
σ̄ȧbµ σ̄ċdν

(
(p̄ȧ pb − q̄ȧ qb) p̄ċ qd + p̄ȧ qb (p̄ċ pd − q̄ċ qd)

)
(C.2.19)

αµν(k, 0) =
σ̄ȧbµ σ̄ċdν

2
√

6m2

(
(p̄ȧ pb − q̄ȧ qb) (p̄ċ pd − q̄ċ qd) − p̄ȧ qb q̄ċ pd − q̄ȧ pb p̄ċ qd

)
αµν(k,−1) =

1

4m2
σ̄ȧbµ σ̄ċdν

(
(q̄ȧ qb − p̄ȧ pb) q̄ċ pd + q̄ȧ pb (q̄ċ qd − p̄ċ pd)

)
αµν(k,−2) =

1

2m2
σ̄ȧbµ σ̄ċdν q̄ȧ pb q̄ċ pd
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Appendix D

Supplementing material on

hypergeometric functions

D.1 Extended set of multiple hypergeometric functions

for n = 6

In subsection 12.3.5, we have introduced an extended set of (n− 2)! hypergeometric functions

which appear in n point amplitudes of massless open string states. They are useful for finding

new representations of the superstring amplitude with alternative ASYM
σ bases. Moreover, they

will play an essential role in demonstrating its cyclic invariance [11].

The n = 6 point superstring disk amplitude can be expressed in terms of six hypergeometric

functions, but changing the basis of kinematic building blocks ASYM
σ involves an extended set

with additional 18 functions (12.3.48). The purpose of this appendix is to list these extra

functions and to give their relations (12.3.41) to the basis (12.3.45).

The six basis functions F (2σ3σ4σ) := F (2σ3σ4σ5) with σ ∈ S3 can be extended by the following

integrals:

F (2354) =
4∏
j=2

∫ 1

zj−1

dzj

(∏
i<l

|zil|−sil
)

1

z41

s12

z12

s45

z54

(
s13

z13

+
s23

z23

)

F (3254) =
4∏
j=2

∫ 1

zj−1

dzj

(∏
i<l

|zil|−sil
)

1

z41

s13

z13

s45

z54

(
s12

z12

+
s23

z32

)

F (5324) =
4∏
j=2

∫ 1

zj−1

dzj

(∏
i<l

|zil|−sil
)

1

z41

s15

z15

s24

z24

(
s13

z13

+
s35

z53

)
(D.1.1)

F (3524) =
4∏
j=2

∫ 1

zj−1

dzj

(∏
i<l

|zil|−sil
)

1

z41

s13

z13

s24

z24

(
s15

z15

+
s35

z35

)

393



394APPENDIX D. SUPPLEMENTING MATERIAL ON HYPERGEOMETRIC FUNCTIONS

F (5234) =
4∏
j=2

∫ 1

zj−1

dzj

(∏
i<l

|zil|−sil
)

1

z41

s15

z15

s34

z34

(
s12

z12

+
s25

z52

)

F (2534) =
4∏
j=2

∫ 1

zj−1

dzj

(∏
i<l

|zil|−sil
)

1

z41

s12

z12

s34

z34

(
s15

z15

+
s25

z25

)

F (2453) =
4∏
j=2

∫ 1

zj−1

dzj

(∏
i<l

|zil|−sil
)

1

z31

s12

z12

s35

z53

(
s14

z14

+
s24

z24

)

F (4253) =
4∏
j=2

∫ 1

zj−1

dzj

(∏
i<l

|zil|−sil
)

1

z31

s14

z14

s35

z53

(
s12

z12

+
s24

z42

)

F (5423) =
4∏
j=2

∫ 1

zj−1

dzj

(∏
i<l

|zil|−sil
)

1

z31

s15

z15

s23

z23

(
s14

z14

+
s45

z54

)
(D.1.2)

F (4523) =
4∏
j=2

∫ 1

zj−1

dzj

(∏
i<l

|zil|−sil
)

1

z31

s14

z14

s23

z23

(
s15

z15

+
s45

z45

)

F (5243) =
4∏
j=2

∫ 1

zj−1

dzj

(∏
i<l

|zil|−sil
)

1

z31

s15

z15

s34

z43

(
s12

z12

+
s25

z52

)

F (2543) =
4∏
j=2

∫ 1

zj−1

dzj

(∏
i<l

|zil|−sil
)

1

z31

s12

z12

s34

z43

(
s15

z15

+
s25

z25

)

F (3452) =
4∏
j=2

∫ 1

zj−1

dzj

(∏
i<l

|zil|−sil
)

1

z21

s13

z13

s25

z52

(
s14

z14

+
s34

z34

)

F (4352) =
4∏
j=2

∫ 1

zj−1

dzj

(∏
i<l

|zil|−sil
)

1

z21

s14

z14

s25

z52

(
s13

z13

+
s34

z43

)

F (5432) =
4∏
j=2

∫ 1

zj−1

dzj

(∏
i<l

|zil|−sil
)

1

z21

s15

z15

s23

z32

(
s14

z14

+
s45

z54

)
(D.1.3)

F (4532) =
4∏
j=2

∫ 1

zj−1

dzj

(∏
i<l

|zil|−sil
)

1

z21

s14

z14

s23

z32

(
s15

z15

+
s45

z45

)

F (5342) =
4∏
j=2

∫ 1

zj−1

dzj

(∏
i<l

|zil|−sil
)

1

z21

s15

z15

s24

z42

(
s13

z13

+
s35

z53

)

F (3542) =
4∏
j=2

∫ 1

zj−1

dzj

(∏
i<l

|zil|−sil
)

1

z21

s13

z13

s24

z42

(
s15

z15

+
s35

z35

)

In (12.3.64) we have displayed the relation (12.3.41) for one particular basis π. Here, we

want to present the relations (12.3.41) for two other choices of basis. For the new basis π ∈
{(1, 2, 4, 5, 3, 6), (1, 4, 2, 5, 3, 6), (1, 5, 4, 2, 3, 6), (1, 4, 5, 2, 3, 6), (1, 5, 2, 4, 3, 6), (1, 2, 5, 4, 3, 6)}



D.1. EXTENDED SET OF MULTIPLE HYPERGEOMETRIC FUNCTIONS FOR N = 6395

we have

Kπ
σ = s−1

36

t1 − s1 s13 0 0 0 t1 − s1 + s3

0 0 s3 + s13 s13 t1 − s1 + s3 0
s1(t3−s4)(s15+s45)

t145s15

(s36−s1)s13(s15+s45)
t145s15

−(s3+s13)s14s25

t145s15

−s13s14s25

s145s15

d8s14s35

t145s15

s1s35(s15+s45)
t145s15

s1(s4−t3)
t145

(s1−s36)s13

t145

(s3+s13)d5

s145

s13d5

t145

−(s1+s24)s35

t145

−s1s35

t145

s1s4(s1−t1)
t125s15

−s1s4s13

s125s15

s14(s2+s35)d3

t125s15

s13d3d7

t125s15

s14s35d3

t125s15

s1(s4−s36)s35

s125s15

(t1−s1)d6

t125

s13d6

t125

−s14(s2+s35)
t125

−d7s13

t125

−s14s35

t125

d1s35

t125


(D.1.4)

and the following relation can be checked:

F (2453)

F (4253)

F (5423)

F (4523)

F (5243)

F (2543)



T

=



F (2345)

F (3245)

F (4325)

F (3425)

F (4235)

F (2435)



T

K−1 (D.1.5)

On the other hand, for the third basis π ∈ {(1, 3, 4, 5, 2, 6), (1, 4, 3, 5, 2, 6), (1, 5, 4, 3, 2, 6),

(1, 4, 5, 3, 2, 6), (1, 5, 3, 4, 2, 6), (1, 3, 5, 4, 2, 6)} we have

Kπ
σ = s−1

26

s1 s1 + s2 0 s1 − s3 + t2 0 0

0 0 s1 − s3 + t2 0 s1 + s24 s1

s1(s26−s13)(s15+s4)
s145s15

−d9s13(s15+s4)
s145s15

d10s14s25

s145s15

s13s25(s15+s4)
s145s15

−s14(s1+s24)s35

s145s15

−s1s14s35

s145s15

s1(s13−s26)
s145

d9s13

s145

−(s3+s13)s25

s145

−s13s25

s145

−d12(s1+s24)
s145

−s1d12

s145

−s1s4s13

s246s15

−(s1+s2)s4s13

s246s15

s14s25d0

s246s15

s13s25(s4−s26)
s246s15

s14(s2+s25)d0

s246s15

s1(s26−s14)d0

s246s15

s1d11

s246

d11(s1+s2)
s246

−s14s25

s246

−(s3+s14)s25

s246

−s14(s2+s25)
s246

s1(s14−s26)
s246


(D.1.6)

and the following relation can be checked:

F (3452)

F (4352)

F (5432)

F (4532)

F (5342)

F (3542)



T

=



F (2345)

F (3245)

F (4325)

F (3425)

F (4235)

F (2435)



T

K−1 (D.1.7)
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Hence, the relations (12.3.64), (D.1.5) and (D.1.7) allow to express the additional set of 18

functions (D.1.1), (D.1.2) and (D.1.3) in terms of the minimal basis (12.3.60).

In the above matrices (D.1.4) and (D.1.6) we have introduced shorthands

d1 = s3 − s5 + t1 , d2 = s1 − s4 − s5

d3 = s3 − s5 − t3 , d4 = s4 + s5 − s13 (D.1.8)

d0 = s15 + s35

like in subsection 12.3.5 as well as

d5 = s1 + s24 − s36 , d6 = − s1 + s5 + s35

d7 = s1 − s5 + s24 − s35 , d8 = s6 − s4 + s13 − s24 (D.1.9)

d9 = s2 − s6 + t3 , d10 = s1 − s3 − s4 + s6

d11 = s3 + s14 − s26 , d12 = s26 − s3 − s13

D.2 Power series expansion in α′ for n = 7 point integrals

In this appendix we give the α′ expansions of the 24 functions F σ∈S4 appearing in the seven

point amplitude (12.3.33). While for n = 4, 5, 6 the latter can be found in subsection 12.3.5,

here the case n = 7 is dealt. The strategy how to compute the power series expansion in α′

for any generalized Euler integral is described in [202, 201]. Generically, this task amounts

to evaluate generalized Euler–Zagier sums involving many integer sums, which becomes quite

tedious for n ≥ 6. A complementary approach to determine the α′ expansion for the basis

(12.3.45) can be set up by imposing the factorization properties discussed in section 12.4.

F (2345) = 1 − ζ(2) (s5s6 + s1s7 − t1t4 − s5t5 + t4t5 − s1t7 + t1t7)

+ ζ(3) (−2s1s3s5 + s2
5s6 + s5s

2
6 + s2

1s7 + s1s
2
7 + 2s3s5t1 + 2s4s5t1 + 2s1s5t2

+ 2s1s5t3 − 2s5t1t3 + 2s1s2t4 + 2s1s3t4 − 2s3t1t4 − t21t4 − 2s1t2t4 − t1t24 − 2s4s5t5

− s2
5t5 + t24t5 − s5t

2
5 + t4t

2
5 − 2s1s5t6 − s2

1t7 − 2s1s2t7 + t21t7 − s1t
2
7 + t1t

2
7) + . . .

F (2354) = − ζ(2) s46 (s4 − s6 + t5) + ζ(3) s46 (2s1s3 + s2
4 + s4s5 − s5s6 − s2

6 − 2s3t1 − 2s4t1

− 2s1t2 − 2s1t3 + 2t1t3 + s4t4 − s6t4 + 2s4t5 + s5t5 + t4t5 + t25 + 2s1t6) + . . .

F (2435) = ζ(2) (s3 + t1 − t5) (s3 + t4 − t7)

+ ζ(3) (2s1s2s3 + 2s1s
2
3 − s3

3 + 2s2
3s5 + 2s3s4s5 − 2s2

3t1 + 2s3s5t1 + 2s4s5t1 − s3t
2
1

− 2s1s3t2 − 2s3s5t3 − 2s5t1t3 + 2s1s2t4 + 2s1s3t4 − 2s2
3t4 − 3s3t1t4 − t21t4 − 2s1t2t4
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− s3t
2
4 − t1t24 − 2s3s5t5 − 2s4s5t5 + 2s5t3t5 + s3t4t5 + t24t5 + s3t

2
5 + t4t

2
5 − 2s1s2t7

− 2s1s3t7 + s3t1t7 + t21t7 + 2s1t2t7 + s3t5t7 − t25t7 + s3t
2
7 + t1t

2
7 − t5t27) + . . .

F (2453) = − ζ(2) s36 (s3 + t1 − t5)

+ ζ(3) s36 (−2s1s2 − 2s1s3 − s2
3 − 2s3s4 − 2s4t1 + t21 + 2s1t2 + 2s3t3 + 2t1t3 + s3t4

+ t1t4 + 2s3t5 + 2s4t5 − 2t3t5 − t4t5 − t25 + s3t7 + t1t7 − t5t7) + . . .

F (2534) = ζ(2) s46 (s3 + s6 − t3 − t5) + ζ(3) s46 (2s1s3 + 2s2
3 + s3s4 − s3s5 + s3s6 + s4s6

− s5s6 − s2
6 − 2s1t2 − 2s1t3 − 4s3t3 − s4t3 + s5t3 − s6t3 + 2t23 − s3t4 − s6t4 + t3t4

− 3s3t5 − s4t5 + s5t5 + 3t3t5 + t4t5 + t25 + 2s1t6) + . . .

F (2543) = − ζ(2) s36 (s3 + s6 − t3 − t5) + ζ(3) s36 (−2s1s3 − s2
3 − s3s4 − s4s6 + s2

6

+ 2s1t2 + 2s1t3 + 2s3t3 + s4t3 − t23 + s3t4 + s6t4 − t3t4 + 2s3t5 + s4t5 − 2t3t5

− t4t5 − t25 − 2s1t6 + s3t7 + s6t7 − t3t7 − t5t7) + . . .

F (3245) = − ζ(2) s13 (s2 − s7 + t7) + ζ(3) s13 (s1s2 + s2
2 + 2s3s5 − s1s7 − s2

7 + s2t1 − s7t1

− 2s5t2 − 2s5t3 − 2s2t4 − 2s3t4 + 2t2t4 + 2s5t6 + s1t7 + 2s2t7 + t1t7 + t27) + . . .

F (3254) = − 2 ζ(3) s13 s25 s46 + . . .

F (3425) = ζ(2) s13 (s3 + s7 − t2 − t7) + ζ(3) s13 (−s1s3 + s2s3 + 2s2
3 + 2s3s5 − s1s7

+ s2s7 + s3s7 − s2
7 − s3t1 − s7t1 + s1t2 − s2t2 − 4s3t2 − 2s5t2 − s7t2 + t1t2 + 2t22

− 2s5t3 + 2s5t6 + s1t7 − s2t7 − 3s3t7 + t1t7 + 3t2t7 + t27) + . . .

F (3452) = ζ(2) s13 s26 + ζ(3) s13 s26 (−s1 + s2 − s7 − t1 + 2t3 − 2t6 − t7) + . . .

F (3524) =
1

4
ζ(4) s13 s46 (10 s15s24 + 3 s15s26 + 27 s24s35 + 10 s26s35) + . . .

F (3542) =
1

4
ζ(4) s13 s26 (−7 s15s24 − 17 s24s35 + 3 s15s46 + 10 s35s46) + . . .

F (4235) = − ζ(2) s14 (s3 + t4 − t7)

+ ζ(3) s14 (−2s2s3 − s2
3 − 2s3s5 − 2s4s5 + s3t1 + 2s3t2 + 2s5t3 − 2s2t4 + t1t4

+ 2t2t4 + t24 + s3t5 + t4t5 + 2s2t7 + 2s3t7 − t1t7 − 2t2t7 − t5t7 − t27) + . . .

F (4253) = ζ(2) s14 s36

+ ζ(3) s14 s36 (2s2 + 3s3 + 2s4 − t1 − 2t2 − 2t3 − t4 − t5 − t7) + . . .

F (4325) = − ζ(2) s14 (s3 + s7 − t2 − t7) + ζ(3) s14 (−s2s3 − s2
3 − 2s3s5 − s2s7 + s2

7 + s3t1

+ s7t1 + s2t2 + 2s3t2 + 2s5t2 − t1t2 − t22 + 2s5t3 + s3t5 + s7t5 − t2t5 − 2s5t6

+ s2t7 + 2s3t7 − t1t7 − 2t2t7 − t5t7 − t27) + . . .

F (4352) = − ζ(2) s14 s26

+ ζ(3) s14 s26 (−s2 + s3 + s7 + t1 − t2 − 2t3 + t5 + 2t6 + t7) + . . .
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F (4523) = ζ(2) s14 s36

+ ζ(3) s14 s36 (2s2 + 2s4 − t1 + t2 + t3 − t4 − t5 − 3t6 − t7) + . . .

F (4532) = − ζ(2) s14 s26

+ ζ(3) s14 s26 (−s2 − s4 + s7 + t1 − t2 − t3 + t5 + 2t6 + t7) + . . .

F (5234) = ζ(2) s15 s46

+ ζ(3) s15 s46 (s4 − s5 − s6 + 2t2 − t4 − t5 − 2t6) + . . .

F (5243) = − ζ(2) s15 s36

+ ζ(3) s15 s36 (s3 − s4 + s6 − 2t2 − t3 + t4 + t5 + 2t6 + t7) + . . .

F (5324) =
1

4
ζ(4) s15s46 (10 s13s24 + 3 s13s26 − 17 s24s35 − 7 s26s35) + . . .

F (5342) =
1

4
ζ(4) s15s26 (−7 s13s24 + 3 s13s46 + 10 s24s35 − 7 s35s46) + . . .

F (5423) = − ζ(2) s15 s36

+ ζ(3) s15 s36 (−s2 − s4 + s6 − t2 − t3 + t4 + t5 + 2t6 + t7) + . . .

F (5432) = ζ(2) s15 s26 + ζ(3) s15 s26 (−s6 − s7 + t2 + t3 − t5 − t6 − t7) + . . .

There is one function F (3254) starting only at ζ(3)α′3 and a set of four functions starting not

until at ζ(4)α′4.



Appendix E

Further material for pure spinor

computations

This appendix gathers additional material which is relevant for higher point scattering ampli-

tudes computed in the pure spinor formalism. It contains some lengthy expressions which we

decided to outsource from chapters 10, 11 and 12 in order to improve the flow of reading.

E.1 The BRST building blocks T1234 and T12345

The evaluation of pure spinor superspace expressions in SUSY components requires knowledge

of the theta expansion of the superfields involved. Hence, the BRST building blocks must

be explicitly expressed in terms of the SYM superfield [Aα, Am,W
α,Fmn] with θ expansions

(10.2.31) in order to make checks against RNS results possible. The rank three building block’s

superfield content can be gathered by combining equations (11.1.9), (11.1.19) and (11.1.24).

Since higher rank analogues become quite lengthy, we decided to defer their presentation to

this appendix.

We will give the superfield expressions for Tijkl and Tijklm in the following which allows to

obtain the SUSY components of any superstring (and field-theory) amplitude up to n = 11 legs

in terms of momenta and polarization vectors or -spinors1.

E.1.1 Redefinition L213141 7→ T̃1234

The definition of T1234 is explained in subsection 11.1.3. The first step from L213141 to T̃1234

uses the information from the lower-order redefinitions of L21 and L2131. First one rewrites Lji

1The use of a FORM [311,312] program like [310] is useful for these kind of calculations.

399
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and Ljiki in terms of Tij and Tijk in the RHS of the identity for QL213141 given in (11.1.14):

L21 = T12 −
1

2
QD12

L2131 = T̃123 −
s13 + s23

2
D12 V3 +

s12

2
(D23 V1 − D13 V2) + QS

(1)
123 (E.1.1)

Recall the shorthandDij = Ai·Aj. After some algebra one finds the appropriate first redefinition

T̃1234 = L213141 −
1

4

(
(s13 + s23)D12QD34 + s12 (D13QD24 + D14QD23)

)
+

1

2

(
(s13 + s23) (D12 T34 − D34 T12) + s12 (D13 T24 + D14 T23 − D23 T14 − D24 T13)

)
− (s14 + s24 + s34)S

(1)
123 V4 − (s13 + s23)S

(1)
124 V3 + s12 (S

(1)
234 V1 − S

(1)
134V2) (E.1.2)

with the required property of

Q T̃1234 = s12 (T134 V2 + T13 T24 + T14 T23 + V1 T234)

+ (s13 + s23) (T12 T34 + T124 V3) + (s14 + s24 + s34)T123 V4 (E.1.3)

E.1.2 Redefinition T̃1234 7→ T1234

It is easy to check that the BRST closed combinations T̃(ij)k and T̃[ijk] are inherited by the first

three labels of T̃1234, i.e.

Q (T̃1234 + T̃2134) = Q (T̃1234 + T̃3124 + T̃2314) = 0 , (E.1.4)

and that there is one additional BRST identity involving the fourth label,

Q (T̃1234 − T̃1243 + T̃3412 − T̃3421) = 0 . (E.1.5)

Using the SYM equations of motion in a long sequence of calculations identifies these combi-

nations as BRST-exact

T̃1234 + T̃2134 = QR
(1)
1234

T̃1234 + T̃3124 + T̃2314 = QR
(2)
1234 (E.1.6)

T̃1234 − T̃1243 + T̃3412 − T̃3421 = QR
(3)
1234

where

R
(1)
1234 = −R(1)

123 (k123 · A4) − s12

4
(D13D24 + D14D23) (E.1.7)

R
(2)
1234 = −R(2)

123 (k123 · A4) − 1

4

(
s12D23D14 + s23D24D13 + s13D34D12

)
(E.1.8)

R
(3)
1234 = (k1 · A2)

(
D14 (k4 · A3) − D13 (k3 · A4)

)
− (k2 · A1)

(
D24 (k4 · A3) − D23 (k3 · A4)

)
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+ D12

(
(k4 · A3) (k2 · A4) − (k3 · A4) (k2 · A3)

)
+D34

(
(k2 · A1) (k4 · A2) − (k1 · A2) (k4 · A1)

)
+

1

4
D12D34 (s14 + s23 − s13 − s24) + (W 1 γmW 2) (W 3 γmW

4) . (E.1.9)

Removing these BRST-exact parts is accomplished by the second redefinition T̃1234 −→ T1234,

leading to the rank-four BRST building block

T1234 = T̃1234 − QS
(2)
1234 , (E.1.10)

where S
(2)
1234 is defined recursively by

S
(2)
1234 =

3

4
S

(1)
1234 +

1

4
(S

(1)
1243 − S

(1)
3412 + S

(1)
3421) +

1

4
R

(3)
1234 (E.1.11)

S
(1)
1234 =

1

2
R

(1)
1234 +

1

3
R

(2)
[12]34 . (E.1.12)

This a posteriori justifies the notation S
(p−2)
12...p in (11.1.30). To see that (E.1.10), (E.1.11) and

(E.1.12) imply T(12)34 = T[123]4 = 0 and T1234−T1243 +T3412−T3421 = 0, it suffices to check that

the following identities hold:

S
(2)
1234 + S

(2)
2134 = R

(1)
1234

S
(2)
1234 + S

(2)
3124 + S

(2)
2314 = R

(2)
1234 (E.1.13)

S
(2)
1234 − S

(2)
1243 + S

(2)
3412 − S

(2)
3421 = R

(3)
1234

E.1.3 The OPE residue L21314151

Obtaining L21314151 from the expression (11.1.10) for L213141 is based on the OPE identity

(11.1.7). The most economic way of writing the result packages many of its terms into smaller

OPE residues Lji, Ljiki and Ljikili. Moreover, we will use the shorthand kij...l = ki+kj+ . . .+kl.

L21314151 = −L213141 (k1234 · A5) −
(
L213151 + L2131 (k123 · A5)

)
(k123 · A4)

−
(
L214151 + L2141 (k124 · A5) +

(
L2151 + L21 (k12 · A5)

)
(k12 · A4)

)
(k12 · A3)

−
{

(λ γmW 5)
( 1

4
(W 1 γpq γnW 3)F2

pq F4
mn +

1

16
(W 4 γm γ

pq γrsW 1)F2
rsF3

pq

)
+ (k1 · A2)

[ (
L4151 + L41 (k14 · A5) +

(
L51 + V 1 (k1 · A5)

)
(k1 · A4)

)
(k1 · A3)

+ L314151 + L3141 (k134 · A5) +
(
L3151 + L31 (k13 · A5)

)
(k13 · A4)

]
− (1↔ 2)

}
+ (λ γmW 5)

(
(W 1γnW 2)

(
F4
mpF3p

n − (W 3 γmW
4) k3

n −
1

2
(W 4 γm γn γ

pW 3) (k1
p + k2

p)
)

− 1

2
(W 3 γpq γmW

4)F1
pr F2r

q + (A1 · A2)
(
F3q
p F4

mp k
2
q + (W 3 γmW

4) (k2 · k3)
) )

(E.1.14)
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E.1.4 Redefinition L21314151 7→ T̃12345

In order to find the appropriate redefinition of L21314151 leading to T̃12345 one simply uses the

known redefinitions of [L21, L2131, L213141] 7→ [T12, T123, T1234] in the right-hand side of

QL21314151 = (s12345 − s1234)L213141 V5 + (s1234 − s123) (L213151 V4 + L2131 L54)

+ (s123 − s12) (L214151 V3 + L2141 L53 + L2151 L43 + L21 L4353)

+ s12 (L314151 V2 + V1 L324252 + L3141 L52 + L3151 L42 + L4151 L32

+ L31 L4252 + L41 L3252 + L51 L3242) . (E.1.15)

Even though it is not obvious, all correction terms from these lower-order redefinitions group

together into a BRST-exact combination which can be moved to the left-hand side of (E.1.15),

see (11.1.28) and (11.1.29). This procedure leads to the following definition of T̃12345,

T̃12345 = L21314151

− 1

4
(s13 + s23)

[
D12D34 V5 (s35 + s45) + D12D35 V4 s34 − D12D45 V3 s34

]
− 1

4
s12

[
D13D24 V5 (s25 + s45) + D14D23 V5 (s25 + s35) + D15D23 V4 (s24 + s34)

+ s24 (D13D25 V4 − D13D45 V2) + s13 (D34D25 V1 + D35D24 V1)

+ s23 (D14D25 V3 − D14D35 V2 + D15D24 V3 − D15D34 V2) + s14D45D23 V1

]
− (s15 + s25 + s35 + s45)S

(2)
1234 V5 − (s14 + s24 + s34) (S

(1)
123 L54 + S

(2)
1235 V4)

− (s13 + s23) (S
(1)
124 L53 + S

(1)
125 L43 − S

(1)
345 L21 + S

(2)
1245 V3)

− s12

[
S

(1)
134L52 + S

(1)
135L42 + S

(1)
145L32 + S

(2)
1345V2 − (1↔ 2)

]
− 1

2

[
T123D45 (s14 + s24 + s34) + (T125D34 − T345D12 + T124D35) (s13 + s23)

+ s12

(
T134D25 + T135D24 + T145D23 − (1↔ 2)

)]
(E.1.16)

which, by construction, has the same BRST variation (11.1.27) as T12345.

E.1.5 Redefinition T̃12345 7→ T12345

Four independent combinations of T̃12345 are BRST exact,

T̃12345 + T̃21345 = QR
(1)
12345

T̃12345 + T̃23145 + T̃31245 = QR
(2)
12345 (E.1.17)

T̃12345 − T̃12435 + T̃34125 − T̃34215 = QR
(3)
12345

T̃12345 − T̃12354 + T̃45123 − T̃45213 − T̃45312 + T̃45321 = QR
(4)
12345
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where the ghost number zero superfields R
(i)
12345 on the right hand side are given by

R
(1)
12345 = D12 (k12 · A3) (k123 · A4) (k1234 · A5) +

1

6
(s13 + s23)D12

[
D45

(
(k4 · A3) − (k5 · A3)

)
+ D35

(
(k5 · A4) − (k3 · A4)

)
− 2D34

(
(k3 · A5) + 2(k4 · A5)

) ]
(E.1.18)

R
(2)
12345 = D12 (k2 · A3) (k123 · A4) (k1234 · A5) +

1

6

[
s12D13

(
D45

(
(k4 · A2) − (k5 · A2)

)
+ D25

(
(k5 · A4) − (k2 · A4)

)
− 2D24

(
(k2 · A5) + 2(k4 · A5)

) )
+ cyclic(123)

]
(E.1.19)

R
(3)
12345 = − (W 1 γmW 2) (W 3 γmW 4) (k1234 · A5)

+
[
D12 (k3 · A4) (k2 · A3) (k1234 · A5) +

1

3
(s24 − 2s23)D34D12 (k4 · A5) − (3↔ 4)

]
+

1

6
(s14 + s24)

[
D25D34

(
(k2 · A1) − (k5 · A1)

)
+ D15D34

(
(k5 · A2) − (k1 · A2)

) ]
+

1

6
(s23 + s24)

[
D45D12

(
(k4 · A3) − (k5 · A3)

)
+ D35D12

(
(k5 · A4) − (k3 · A4)

) ]
+
[ (
D13 (k1 · A2) (k3 · A4) + D24 (k2 · A1) (k4 · A3) + D34 (k1 · A2) (k4 · A1)

)
(k1234 · A5)

+
1

3
(s24 − 2s14)D34D12 (k2 · A5) − (1↔ 2)

]
(E.1.20)

R
(4)
12345 = (W 1 γmW 2)

[
(W 4 γnW 5)F3

mn − (W 4 γmW 5) (k12 · A3)
]

+
[

(W 1 γmW 2) (W 3 γmW 5) (k5 · A4) +
1

4
(W 1 γmW 2) (W 5 γnp γmW 3)F4

np

+ D12 (k2 · A3) (k23 · A4) (k4 · A5) + D12 (k1 · A3) (k2 · A4) (k4 · A5)

+
1

6
D12D35 (k3 · A4) s23 +

5

6
D12D35 (k5 · A4) s23 +

1

3
D12D45 (k4 · A3) s23

+ D14 (k1 · A2) (k12 · A3) (k4 · A5) + D25 (k2 · A1) (k12 · A3) (k5 · A4)

+ D34 (k2 · A1) (k3 · A2) (k4 · A5) + D35 (k3 · A1) (k1 · A2) (k5 · A4) − (4↔ 5)
]

+
[

(W 2 γmW 3) (W 4 γmW 5) (k2 · A1) +
1

4
(W 4 γmW 5) (W 1 γnp γmW 3)F2

np

+ D13 (k1 · A2) (k3 · A4) (k4 · A5) − D13 (k5 · A4) (k1 · A2) (k3 · A5)

+ D45 (k2 · A1) (k3 · A2) (k5 · A3) + D45 (k5 · A1) (k1 · A2) (k12 · A3)

+
1

3
D12D45 (k2 · A3) (−2s15 + s25 + s35) +

1

6
D13D45 (k3 · A2) (s15 + s25 + s35)

− 1

6
D13D45 (k1 · A2) (s15 + s25 − 5s35) − (1↔ 2)

]
(E.1.21)

Removing these BRST-exact parts is accomplished by the second redefinition T̃12345 −→ T12345,

leading to the rank-five BRST building block

T12345 = T̃12345 − QS
(3)
12345 . (E.1.22)

The expression for S
(3)
12345 can be written recursively as

S
(3)
12345 =

4

5
S

(2)
12345 +

1

5

(
S

(2)
12354 − S

(2)
45123 + S

(2)
45213 + S

(2)
45312 − S

(2)
45321

)
+

1

5
R

(4)
12345
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S
(2)
12345 =

3

4
S

(1)
12345 +

1

4
(S

(1)
12435 − S

(1)
34125 + S

(1)
34215) +

1

4
R

(3)
12345 (E.1.23)

S
(1)
12345 =

1

2
R

(1)
12345 +

1

3
R

(2)
[12]345

To see that (E.1.22) and (E.1.23) imply all the BRST-symmetries of T12345

0 = T12345 + T21345 = T12345 + T31245 + T23145 = T12345 − T12435 + T34125 − T34215

= T12345 − T12354 + T45123 − T45213 − T45312 + T45321 (E.1.24)

it suffices to check that the following identities hold,

S
(3)
12345 + S

(3)
21345 = R

(1)
12345

S
(3)
12345 + S

(3)
31245 + S

(3)
23145 = R

(2)
12345 (E.1.25)

S
(3)
12345 − S

(3)
12435 + S

(3)
34125 − S

(3)
34215 = R

(3)
12345

S
(3)
12345 − S

(3)
12354 + S

(3)
45123 − S

(3)
45213 − S

(3)
45312 + S

(3)
45321 = R

(4)
12345 .

Having the explicit superfield expressions for the building blocks up to T12345 allows all compo-

nent amplitudes up to n = 11 to be evaluated.

E.2 Higher rank Berends Giele currents

In subsection 11.2.2, we have given explicit expressions for the supersymmetric Berends-Giele

currents M12...p up to p = 4. Higher rank currents encompass (2p−2)!
(p−1)!p!

diagrams, that is why

defer these lengthy expressions to this appendix. We display the fourteen diagrams entering

M12345 and the expansion of M123456 in terms of Ti1i2i3i4i5i6 . The 42 diagrams within M123456 as

well as the formula for M1234567 can be found in an appendix of [11].

E.2.1 Diagrammatic representation of M12345

The rank five Berends-Giele current contains the fourteen color ordered diagrams of a six point

amplitude with one off-shell leg:



E.2. HIGHER RANK BERENDS GIELE CURRENTS 405

s12

s123

s1234

s12345
. . .

2

1

3 4 5

=
T12345/s12345

s12 s123 s1234 s23

s234

s2345

s12345
. . .

3

2

4 5

1

=
T32451/s12345

s23 s234 s2345

s23

s234

s1234

s12345
. . .
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. . .
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T34521/s12345
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s12345
. . .

3

2 1
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. . .
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. . .
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. . .
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=
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=
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=
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=
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=
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E.2.2 The formula for M123456

The rank six current receives 42 contributions from BRST building blocks Ti1i2i3i4i5i6 , according

to the cubic diagrams in a color ordered seven point SYM amplitude:

M123456 =
1

s123456

[ 4T12[34][56]

s12s34s56s1234

+
4T34[56][21]

s12s34s56s3456

+
4T123[[45]6]

s12s45s123s456

+
4T123[4[56]]

s12s56s123s456

+
4T231[[54]6]

s23s45s123s456

+
4T231[4[65]]

s23s56s123s456

+
2T345[21]6

s12s34s345s12345

+
2T3456[21]

s12s34s345s3456

+
2T12[34]56

s12s34s1234s12345

+
2T123[45]6

s12s45s123s12345

+
2T543[21]6

s12s45s345s12345

+
2T5436[21]

s12s45s345s3456

+
2T4563[12]

s12s45s456s3456

+
2T1234[56]

s12s56s123s1234

+
2T5643[21]

s12s56s456s3456

+
2T231[54]6

s23s45s123s12345

+
2T456[23]1

s23s45s456s23456

+
2T34[56]21

s34s56s23456s3456

+
2T23[54]16

s23s45s12345s2345

+
2T23[54]61

s23s45s2345s23456

+
2T2314[65]

s23s56s123s1234

+
2T2341[65]

s23s56s234s1234

+
2T234[65]1

s23s56s234s23456

+
2T564[32]1

s23s56s456s23456

+
2T3421[56]

s34s56s234s1234

+
2T342[56]1

s34s56s234s23456

+
T321456

s23s123s1234s12345

+
T324156

s23s234s1234s12345

+
T324516

s23s234s12345s2345

+
T324561

s23s234s2345s23456

+
T342156

s34s234s1234s12345

+
T342516

s34s234s12345s2345

+
T342561

s34s234s2345s23456

+
T345216

s34s345s12345s2345

+
T345261

s34s345s2345s23456

+
T345621

s34s345s23456s3456

+
T543216

s45s345s12345s2345

+
T543261

s45s345s2345s23456

+
T123456

s12s123s1234s12345

+
T543621

s45s345s23456s3456

+
T546321

s45s456s23456s3456

+
T564321

s56s456s23456s3456

]
(E.2.26)



Appendix F

Supplementing material on BCJ

numerators

This appendix contains some lengthy material for the explicit construction of BCJ numerators in

chapter 13: the field theory limit of the six point integrals and the seven point BCJ numerators.

F.1 Field theory limits of six point integrals

The list (13.2.31) of 25 six point numerators are constructed by comparing the expansion

(13.1.21) of ASYM(1, 2ρ, 3ρ, 4ρ, 5ρ, 6) in terms of fourteen cubic diagrams with the field theory

limit of the superstring amplitude (12.1.12) integrated over the appropriate worldsheet regions

Iρ. The latter assumes the following form once the α′ → 0 limit of the worldsheet integrals is

taken:

A(1,2σ, 3σ, 4σ, 5, 6) =

(
1

s2σ3σ

+
1

s3σ4σ

) K4
σ(432)

s56s2σ3σ4σ

−
(

1

s12σ3σ

+
1

s2σ3σ4σ

) K4
σ(324)

s2σ3σs56

−
(

1

s12σ

+
1

s2σ3σ4σ

) K4
σ(243)

s3σ4σs56

−
K4
σ(423)

s2σ3σs56s2σ3σ4σ

−
K4
σ(342)

s3σ4σs56s2σ3σ4σ

+

(
1

s12σs3σ4σ

+
1

s12σs12σ3σ

+
1

s2σ3σs12σ3σ

+
1

s2σ3σs2σ3σ4σ

+
1

s3σ4σs2σ3σ4σ

) K4
σ(234)

s56

+
K3
σ(324)

s2σ3σs4σ5s12σ3σ

−
(

1

s12σ

+
1

s2σ3σ

) K3
σ(234)

s4σ5s12σ3σ

+

(
1

s3σ4σ

+
1

s4σ5

) K2
σ(234)

s12σs3σ4σ5

−
K2
σ(243)

s12σs3σ4σs3σ4σ5

−
(

1

s2σ3σ

+
1

s3σ4σ

) K1
σ(432)

s61s2σ3σ4σ

+

(
1

s4σ5

+
1

s2σ3σ4σ

) K1
σ(324)

s61s2σ3σ

+

(
1

s2σ3σ4σ

+
1

s3σ4σ5

) K1
σ(243)

s61s3σ4σ

+
K1
σ(423)

s61s2σ3σs2σ3σ4σ

+
K1
σ(342)

s61s3σ4σs2σ3σ4σ

−
(

1

s2σ3σs4σ5

+
1

s2σ3σs2σ3σ4σ

+
1

s3σ4σs2σ3σ4σ

+
1

s3σ4σs3σ4σ5

+
1

s4σ5s3σ4σ5

) K1
σ(234)

s61

(F.1.1)

407
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A(1,2σ, 3σ, 5, 4σ, 6) = −
K4
σ(324)

s12σ3σs2σ3σs4σ6

+

(
1

s12σ

+
1

s2σ3σ

) K4
σ(234)

s4σ6s12σ3σ

−
K3
σ(243)

s12σs3σ5s4σ6

−
(

1

s4σ5

+
1

s4σ6

) K3
σ(324)

s2σ3σs12σ3σ

+

(
1

s12σ

+
1

s2σ3σ

) (
1

s4σ5

+
1

s4σ6

) K3
σ(234)

s12σ3σ

−
K2
σ(432)

s2σ3σs4σ6 s2σ3σ5

−
(

1

s4σ6

+
1

s3σ4σ5

) K2
σ(243)

s12σs3σ5

+

(
1

s2σ3σ

+
1

s3σ5

) K2
σ(423)

s4σ6s2σ3σ5

−
K2
σ(234)

s12σs4σ5s3σ4σ5

−
(

1

s61

+
1

s4σ6

) K1
σ(432)

s2σ3σs2σ3σ5

−
K1
σ(324)

s61s2σ3σs4σ5

+
K1
σ(243)

s61s3σ5s3σ4σ5

+

(
1

s61

+
1

s4σ6

) (
1

s2σ3σ

+
1

s3σ5

) K1
σ(423)

s2σ3σ5

+

(
1

s2σ3σ

+
1

s3σ4σ5

) K1
σ(234)

s61s4σ5

(F.1.2)

A(1,2σ, 5, 3σ, 4σ, 6) = −
K4
σ(243)

s12σs3σ4σs12σ5

+

(
1

s3σ4σ

+
1

s4σ6

) K4
σ(234)

s12σs12σ5

+
K3
σ(432)

s2σ5s3σ4σs12σ5

+

(
1

s3σ5

+
1

s12σ5

) K3
σ(243)

s12σs4σ6

−
(

1

s3σ4σ

+
1

s4σ6

) K3
σ(342)

s2σ5s12σ5

+
K3
σ(234)

s12σs4σ6s12σ5

+

(
1

s3σ5s4σ6

+
1

s3σ4σs12σ5

+
1

s4σ6s12σ5

+
1

s3σ4σs3σ4σ5

+
1

s3σ5s3σ4σ5

) K2
σ(243)

s12σ

−
(

1

s12σ5

+
1

s2σ3σ5

) K2
σ(432)

s2σ5s4σ6

−
K2
σ(423)

s3σ5s4σ6s2σ3σ5

−
(

1

s12σ5

+
1

s3σ4σ5

) K2
σ(234)

s12σs3σ4σ

−
K2
σ(342)

s2σ5s4σ6s12σ5

−
(

1

s3σ4σ

+
1

s3σ5

) K1
σ(243)

s61s3σ4σ5

−
(

1

s61

+
1

s4σ6

) K1
σ(423)

s3σ5s2σ3σ5

−
(

1

s61s3σ4σ

+
1

s3σ4σs12σ5

+
1

s4σ6s12σ5

+
1

s61s2σ3σ5

+
1

s4σ6s2σ3σ5

) K1
σ(432)

s2σ5

+

(
1

s61

+
1

s12σ5

) K1
σ(342)

s2σ5s3σ4σ

+
K1
σ(234)

s61s3σ4σs3σ4σ5

(F.1.3)

A(1,5, 2σ, 3σ, 4σ, 6) =

(
1

s2σ3σ

+
1

s3σ4σ

) K4
σ(432)

s15s2σ3σ4σ

−
(

1

s12σ5

+
1

s2σ3σ4σ

) K4
σ(243)

s15s3σ4σ

+

(
1

s2σ3σs4σ6

+
1

s3σ4σs12σ5

+
1

s4σ6s12σ5

+
1

s2σ3σs2σ3σ4σ

+
1

s3σ4σs2σ3σ4σ

) K4
σ(234)

s15

−
K4
σ(423)

s15s2σ3σs2σ3σ4σ

−
K4
σ(342)

s15s3σ4σs2σ3σ4σ

−
(

1

s4σ6

+
1

s2σ3σ4σ

) K4
σ(324)

s15s2σ3σ

−
K3
σ(324)

s15s2σ3σs4σ6

−
(

1

s15

+
1

s2σ5

) K3
σ(432)

s3σ4σs12σ5

+
K3
σ(243)

s15s4σ6s12σ5

+

(
1

s2σ3σ

+
1

s12σ5

) K3
σ(234)

s15s4σ6

+

(
1

s15

+
1

s2σ5

) (
1

s3σ4σ

+
1

s4σ6

) K3
σ(342)

s12σ5

+

(
1

s3σ4σ

+
1

s4σ6

) K2
σ(243)

s15s12σ5

+

(
1

s15s2σ3σ

+
1

s15s12σ5

+
1

s2σ5s12σ5

+
1

s2σ3σs2σ3σ5

+
1

s2σ5s2σ3σ5

) K2
σ(432)

s4σ6

−
(

1

s15

+
1

s2σ3σ5

) K2
σ(423)

s2σ3σs4σ6

+

(
1

s15

+
1

s2σ5

) K2
σ(342)

s4σ6s12σ5

−
K2
σ(234)

s15s3σ4σs12σ5

+

(
1

s61s2σ5s3σ4σ

+
1

s15s2σ3σs4σ6

+
1

s15s12σ5s3σ4σ

+
1

s12σ5s2σ5s3σ4σ

+
1

s15s12σ5s4σ6



F.2. SEVEN POINT BCJ NUMERATORS 409

+
1

s4σ6s2σ5s12σ5

+
1

s15s2σ3σs2σ3σ4σ

+
1

s61s2σ3σs2σ3σ4σ

+
1

s15s2σ3σ4σs3σ4σ

+
1

s61s2σ3σ4σs3σ4σ

+
1

s61s2σ3σs2σ3σ5

+
1

s61s2σ5s2σ3σ5

+
1

s4σ6s2σ3σs2σ3σ5

+
1

s4σ6s2σ5s2σ3σ5

)
K1
σ(432)

−
(

1

s15

+
1

s16

) K1
σ(324)

s2σ3σs2σ3σ4σ

−
(

1

s15

+
1

s16

) K1
σ(243)

s3σ4σs2σ3σ4σ

−
(

1

s15s4σ6

+
1

s15s2σ3σ4σ

+
1

s16s2σ3σ4σ

+
1

s16s2σ3σ5

+
1

s4σ6s2σ3σ5

) K1
σ(423)

s2σ3σ

−
(

1

s16s2σ5

+
1

s15s12σ5

+
1

s2σ5s12σ5

+
1

s15s2σ3σ4σ

+
1

s16s2σ3σ4σ

) K1
σ(342)

s3σ4σ

+

(
1

s15

+
1

s16

) (
1

s2σ3σ

+
1

s3σ4σ

) K1
σ(234)

s2σ3σ4σ

(F.1.4)

F.2 Seven point BCJ numerators

Seven point tree amplitudes in gauge theories involve 945 pole channels in total. It is sufficient

to display the following 69 associated numerator, the rest can be obtained from S4 permutations

σ of the labels 2, 3, 4, 5:

n[12σ, 3σ, 4σ, 5σ, 67] = K5
σ(2345) , n[5σ6, 4σ, 7, 3σ, 12σ] = K3

σ(2345)

n[71, 2σ, 3σ, 4σ, 5σ6] = K1
σ(2345) , n[12σ, 3σ, 4σ, 7, 5σ6] = K4

σ(2345)

n[12σ, 7, 3σ, 4σ, 5σ6] = K2
σ(2345) ,

n[12σ, 3σ, 4σ5σ, 67] = K5
σ(2345) − K5

σ(2354) , n[4σ6, 3σ, 5σ7, 2σ1] = K2
σ(2534) + K3

σ(2534)

n[12σ, 7, 3σ, 6, 4σ5σ] = K2
σ(2354) − K2

σ(2345) , n[2σ3σ, 1, 4σ, 7, 5σ6] = K4
σ(3245) − K4

σ(2345)

n[5σ6, 7, 12σ, 3σ4σ] = K4
σ(2435) − K4

σ(2345) , n[71, 2σ, 3σ4σ, 5σ6] = K1
σ(2345) − K1

σ(2435)

n[12σ, 3σ, 4σ6, 75σ] = K3
σ(2354) + K4

σ(2354) , n[12σ, 3σ, 4σ, 6, 5σ7] = K4
σ(2345) + K5

σ(2345)

n[12σ, 7, 3σ4σ, 5σ6] = K2
σ(2345) − K2

σ(2435) , n[2σ3σ, 1, 4σ, 5σ, 67] = K5
σ(3245) − K5

σ(2345)

n[4σ5σ, 6, 7, 3σ, 12σ] = K3
σ(2354) − K3

σ(2345) , n[5σ6, 4σ, 71, 2σ3σ] = K1
σ(3245) − K1

σ(2345)

n[5σ6, 4σ, 7, 1, 2σ3σ] = K3
σ(3245) − K3

σ(2345) , n[5σ7, 1, 2σ, 3σ, 64σ] = K1
σ(5234) + K2

σ(5234)

n[67, 5σ, 12σ, 3σ4σ] = K5
σ(2435) − K5

σ(2345) , n[71, 2σ, 3σ, 6, 4σ5σ] = K1
σ(2354) − K1

σ(2345)

n[4σ5σ, 6, 71, 2σ3σ] = K1
σ(2345) − K1

σ(2354) − K1
σ(3245) + K1

σ(3254)

n[4σ5σ, 6, 7, 1, 2σ3σ] = K3
σ(2345) − K3

σ(2354) − K3
σ(3245) + K3

σ(3254)

n[2σ3σ, 1, 4σ5σ, 67] = K5
σ(2354) − K5

σ(2345) + K5
σ(3245) − K5

σ(3254)

n[2σ3σ, 4σ, 5σ6, 71] = K1
σ(2345) − K1

σ(3245) − K1
σ(4235) + K1

σ(4325)

n[3σ4σ, 5σ, 6, 7, 12σ] = K2
σ(2435) − K2

σ(2345) + K2
σ(2534) − K2

σ(2543)

n[3σ4σ, 5σ, 67, 12σ] = K5
σ(2345) − K5

σ(2435) − K5
σ(2534) + K5

σ(2543)
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n[3σ4σ, 6, 5σ7, 12σ] = K2
σ(2534) − K2

σ(2543) + K3
σ(2534) − K3

σ(2543)

n[4σ5σ, 7, 1, 2σ, 3σ6] = K1
σ(5423) − K1

σ(4523) + K3
σ(4523) − K3

σ(5423)

n[4σ5σ, 7, 12σ, 3σ6] = K2
σ(2453) − K2

σ(2543) − K4
σ(2453) + K4

σ(2543)

n[5σ6, 7, 1, 2σ, 3σ4σ] = K4
σ(2435) − K4

σ(2345) + K4
σ(3425) − K4

σ(4325)

n[5σ7, 1, 2σ3σ, 4σ6] = K1
σ(5324) − K1

σ(5234) − K2
σ(5234) + K2

σ(5324)

n[12σ, 3σ, 6, 4σ, 5σ7] = K3
σ(2354) + K4

σ(2345) + K4
σ(2354) + K5

σ(2345)

n[12σ, 3σ, 6, 7, 4σ5σ] = K3
σ(2345) − K3

σ(2354) − K5
σ(2345) + K5

σ(2354)

n[2σ3σ, 1, 4σ6, 5σ7] = K3
σ(2354) − K3

σ(3254) + K4
σ(2354) − K4

σ(3254)

n[2σ3σ, 1, 4σ, 6, 5σ7] = K4
σ(3245) − K4

σ(2345) − K5
σ(2345) + K5

σ(3245)

n[3σ4σ, 5σ, 6, 2σ, 71] = K1
σ(2435) − K1

σ(2345) + K1
σ(2534) − K1

σ(2543)

n[5σ7, 1, 2σ, 6, 3σ4σ] = K1
σ(5234) − K1

σ(5243) + K2
σ(5234) − K2

σ(5243)

n[5σ7, 6, 12σ, 3σ4σ] = K4
σ(2435) − K4

σ(2345) − K5
σ(2345) + K5

σ(2435)

n[67, 5σ, 1, 2σ, 3σ4σ] = K5
σ(2435) − K5

σ(2345) + K5
σ(3425) − K5

σ(4325)

n[5σ7, 4σ, 1, 2σ, 63σ] = K1
σ(5423) + K2

σ(4523) + K2
σ(5423) + K3

σ(4523)

n[5σ7, 4σ, 12σ, 3σ6] = K2
σ(2543) + K3

σ(2453) + K3
σ(2543) + K4

σ(2453)

n[2σ3σ, 1, 6, 7, 4σ5σ] = − K3
σ(2345) + K3

σ(2354) + K3
σ(3245) − K3

σ(3254)

+ K5
σ(2345) − K5

σ(2354) − K5
σ(3245) + K5

σ(3254)

n[67, 1, 2σ3σ, 4σ5σ] = + K5
σ(2345) − K5

σ(2354) − K5
σ(3245) + K5

σ(3254)

− K5
σ(4523) + K5

σ(4532) + K5
σ(5423) − K5

σ(5432)

n[12σ, 6, 3σ4σ, 5σ7] = − K2
σ(2534) + K2

σ(2543) − K3
σ(2534) + K3

σ(2543)

+ K4
σ(2345) − K4

σ(2435) + K5
σ(2345) − K5

σ(2435)

n[2σ3σ, 4σ, 5σ, 6, 71] = + K1
σ(2345) − K1

σ(3245) − K1
σ(4235) + K1

σ(4325)

− K1
σ(5234) + K1

σ(5324) + K1
σ(5423) − K1

σ(5432)

n[2σ6, 1, 3σ, 7, 4σ5σ] = + K1
σ(4532) − K1

σ(5432) + K2
σ(3452) − K2

σ(3542)

− K3
σ(4532) + K3

σ(5432) − K4
σ(3452) + K4

σ(3542)

n[3σ4σ, 5σ, 7, 1, 2σ6] = − K1
σ(3452) + K1

σ(4352) + K1
σ(5342) − K1

σ(5432)

− K4
σ(3452) + K4

σ(4352) + K4
σ(5342) − K4

σ(5432)

n[4σ5σ, 7, 1, 6, 2σ3σ] = + K1
σ(4523) − K1

σ(4532) − K1
σ(5423) + K1

σ(5432)

− K3
σ(4523) + K3

σ(4532) + K3
σ(5423) − K3

σ(5432)
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n[5σ7, 4σ, 1, 6, 2σ3σ] = + K1
σ(5423) − K1

σ(5432) + K2
σ(4523) − K2

σ(4532)

+ K2
σ(5423) − K2

σ(5432) + K3
σ(4523) − K3

σ(4532)

n[67, 1, 2σ, 3σ, 4σ5σ] = + K5
σ(2345) − K5

σ(2354) − K5
σ(2453) + K5

σ(2543)

− K5
σ(3452) + K5

σ(3542) + K5
σ(4532) − K5

σ(5432)

n[71, 6, 2σ3σ, 4σ5σ] = − K1
σ(2345) + K1

σ(2354) + K1
σ(3245) − K1

σ(3254)

+ K1
σ(4523) − K1

σ(4532) − K1
σ(5423) + K1

σ(5432)

n[12σ, 6, 3σ, 4σ, 5σ7] = + K2
σ(2543) + K3

σ(2354) + K3
σ(2453) + K3

σ(2543)

+ K4
σ(2345) + K4

σ(2354) + K4
σ(2453) + K5

σ(2345)

n[12σ, 6, 3σ, 7, 4σ5σ] = + K2
σ(2453) − K2

σ(2543) + K3
σ(2345) − K3

σ(2354)

− K4
σ(2453) + K4

σ(2543) − K5
σ(2345) + K5

σ(2354)

n[2σ3σ, 1, 6, 4σ, 5σ7] = − K3
σ(2354) + K3

σ(3254) − K4
σ(2345) − K4

σ(2354)

+ K4
σ(3245) + K4

σ(3254) − K5
σ(2345) + K5

σ(3245)

n[2σ3σ, 4σ, 6, 1, 5σ7] = + K1
σ(5234) − K1

σ(5324) − K1
σ(5423) + K1

σ(5432)

+ K2
σ(5234) − K2

σ(5324) − K2
σ(5423) + K2

σ(5432)

n[2σ6, 1, 3σ4σ, 5σ7] = − K1
σ(5342) + K1

σ(5432) − K2
σ(5342) + K2

σ(5432)

+ K3
σ(3452) − K3

σ(4352) + K4
σ(3452) − K4

σ(4352)

n[3σ4σ, 5σ, 7, 6, 12σ] = − K2
σ(2345) + K2

σ(2435) + K2
σ(2534) − K2

σ(2543)

− K5
σ(2345) + K5

σ(2435) + K5
σ(2534) − K5

σ(2543)

n[5σ7, 6, 1, 2σ, 3σ4σ] = − K4
σ(2345) + K4

σ(2435) + K4
σ(3425) − K4

σ(4325)

−K5
σ(2345) + K5

σ(2435) + K5
σ(3425) − K5

σ(4325)

n[2σ6, 1, 3σ, 4σ, 5σ7] = + K1
σ(5432) + K2

σ(3542) + K2
σ(4532) + K2

σ(5432)

+ K3
σ(3452) + K3

σ(3542) + K3
σ(4532) + K4

σ(3452)

n[4σ5σ, 7, 16, 2σ3σ] = + K1
σ(4523) − K1

σ(4532) − K1
σ(5423) + K1

σ(5432) − K5
σ(3245) + K5

σ(3254)

− K3
σ(2345) + K3

σ(2354) + K3
σ(3245) − K3

σ(3254) − K3
σ(4523)

+ K3
σ(4532) + K3

σ(5423) − K3
σ(5432) + K5

σ(2345) − K5
σ(2354)

n[16, 2σ, 3σ4σ, 5σ7] = − K1
σ(5342) + K1

σ(5432) − K2
σ(2534) + K2

σ(2543) + K5
σ(2345) − K5

σ(2435)

− K2
σ(5342) + K2

σ(5432) − K3
σ(2534) + K3

σ(2543) + K3
σ(3452)

− K3
σ(4352) + K4

σ(2345) − K4
σ(2435) + K4

σ(3452) − K4
σ(4352)

n[16, 7, 2σ3σ, 4σ5σ] = + K1
σ(2345) − K1

σ(2354) − K1
σ(3245) + K1

σ(3254) − K5
σ(5423) + K5

σ(5432)

− K1
σ(4523) + K1

σ(4532) + K1
σ(5423) − K1

σ(5432) − K5
σ(2345)
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+ K5
σ(2354) + K5

σ(3245) − K5
σ(3254) + K5

σ(4523) − K5
σ(4532)

n[2σ3σ, 4σ, 5σ, 7, 16] = − K1
σ(2345) + K1

σ(3245) + K1
σ(4235) − K1

σ(4325) + K5
σ(5423) − K5

σ(5432)

+ K1
σ(5234) − K1

σ(5324) − K1
σ(5423) + K1

σ(5432) + K5
σ(2345)

− K5
σ(3245) − K5

σ(4235) + K5
σ(4325) − K5

σ(5234) + K5
σ(5324)

n[2σ3σ, 4σ, 5σ7, 16] = + K1
σ(5234) − K1

σ(5324) − K1
σ(5423) + K1

σ(5432) − K5
σ(4235) + K5

σ(4325)

+ K2
σ(5234) − K2

σ(5324) − K2
σ(5423) + K2

σ(5432) + K4
σ(2345)

− K4
σ(3245) − K4

σ(4235) + K4
σ(4325) + K5

σ(2345) − K5
σ(3245)

n[16, 2σ, 3σ, 4σ, 5σ7] = + K1
σ(5432) + K2

σ(2543) + K2
σ(3542) + K2

σ(4532) + K4
σ(3452) + K5

σ(2345)

+ K2
σ(5432) + K3

σ(2354) + K3
σ(2453) + K3

σ(2543) + K3
σ(3452)

+ K3
σ(3542) + K3

σ(4532) + K4
σ(2345) + K4

σ(2354) + K4
σ(2453)

n[16, 2σ, 3σ, 7, 4σ5σ] = + K1
σ(4532) − K1

σ(5432) + K2
σ(2453) − K2

σ(2543) − K5
σ(2345) + K5

σ(2354)

+ K2
σ(3452) − K2

σ(3542) + K3
σ(2345) − K3

σ(2354) − K3
σ(4532)

+ K3
σ(5432) − K4

σ(2453) + K4
σ(2543) − K4

σ(3452) + K4
σ(3542)

n[3σ4σ, 5σ, 7, 2σ, 16] = − K1
σ(3452) + K1

σ(4352) + K1
σ(5342) − K1

σ(5432) + K5
σ(2534) − K5

σ(2543)

− K2
σ(2345) + K2

σ(2435) + K2
σ(2534) − K2

σ(2543) − K4
σ(3452)

+ K4
σ(4352) + K4

σ(5342) − K4
σ(5432) − K5

σ(2345) + K5
σ(2435)

n[5σ7, 4σ, 16, 2σ3σ] = + K1
σ(5423) − K1

σ(5432) + K2
σ(4523) − K2

σ(4532) − K5
σ(2345) + K5

σ(3245)

+ K2
σ(5423) − K2

σ(5432) − K3
σ(2354) + K3

σ(3254) + K3
σ(4523)

− K3
σ(4532) − K4

σ(2345) − K4
σ(2354) + K4

σ(3245) + K4
σ(3254)
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[137] W. Lerche and D. Lüst, “Covariant heterotic strings and odd selfdual lattices,”

Phys.Lett. B187 (1987) 45.
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[268] L. A. Anchordoqui, H. Goldberg, D. Lüst, S. Stieberger, and T. R. Taylor, “String

Phenomenology at the LHC,” Mod.Phys.Lett. A24 (2009) 2481–2490, 0909.2216.

[269] F. Liu, “Massive amplitudes of the open superstring,” Phys.Rev. D38 (1988) 1334.

[270] D. Polyakov, “Interactions of Massless Higher Spin Fields From String Theory,”

Phys.Rev. D82 (2010) 066005, 0910.5338.

[271] D. Polyakov, “Higher Spins and Open Strings: Quartic Interactions,” Phys.Rev. D83

(2011) 046005, 1011.0353.

[272] C.-T. Chan, P.-M. Ho, and J.-C. Lee, “Ward identities and high-energy scattering

amplitudes in string theory,” Nucl.Phys. B708 (2005) 99–114, hep-th/0410194.

[273] M. B. Green and J. H. Schwarz, “Supersymmetrical String Theories,” Phys.Lett. B109

(1982) 444–448.

[274] M. B. Green and J. H. Schwarz, “Covariant Description of Superstrings,” Phys.Lett.

B136 (1984) 367–370.

[275] M. B. Green and J. H. Schwarz, “Properties of the Covariant Formulation of

Superstring Theories,” Nucl.Phys. B243 (1984) 285.

[276] N. Berkovits, “Super Poincare covariant quantization of the superstring,” JHEP 0004

(2000) 018, hep-th/0001035.

[277] N. Berkovits, “ICTP lectures on covariant quantization of the superstring,”

hep-th/0209059.

[278] O. A. Bedoya and N. Berkovits, “GGI Lectures on the Pure Spinor Formalism of the

Superstring,” 0910.2254.

http://xxx.lanl.gov/abs/hep-ph/9802376
http://xxx.lanl.gov/abs/hep-ph/9701390
http://xxx.lanl.gov/abs/0904.3547
http://xxx.lanl.gov/abs/0909.2216
http://xxx.lanl.gov/abs/0910.5338
http://xxx.lanl.gov/abs/1011.0353
http://xxx.lanl.gov/abs/hep-th/0410194
http://xxx.lanl.gov/abs/hep-th/0001035
http://xxx.lanl.gov/abs/hep-th/0209059
http://xxx.lanl.gov/abs/0910.2254


BIBLIOGRAPHY 433

[279] N. Berkovits, “Quantization of the superstring with manifest U(5) superPoincare

invariance,” Phys.Lett. B457 (1999) 94–100, hep-th/9902099.

[280] N. Berkovits, “Quantum consistency of the superstring in AdS(5) x S**5 background,”

JHEP 0503 (2005) 041, hep-th/0411170.

[281] L. Mazzucato, “Superstrings in AdS,” 1104.2604.

[282] C. R. Mafra, “Superstring Scattering Amplitudes with the Pure Spinor Formalism,”

0902.1552.

[283] N. Berkovits, “Super-Poincare covariant two-loop superstring amplitudes,” JHEP 0601

(2006) 005, hep-th/0503197.

[284] N. Berkovits and C. R. Mafra, “Equivalence of two-loop superstring amplitudes in the

pure spinor and RNS formalisms,” Phys.Rev.Lett. 96 (2006) 011602, hep-th/0509234.

[285] C. R. Mafra, “Four-point one-loop amplitude computation in the pure spinor

formalism,” JHEP 0601 (2006) 075, hep-th/0512052.

[286] N. Berkovits and C. R. Mafra, “Some Superstring Amplitude Computations with the

Non-Minimal Pure Spinor Formalism,” JHEP 0611 (2006) 079, hep-th/0607187.

[287] C. R. Mafra, “Pure Spinor Superspace Identities for Massless Four-point Kinematic

Factors,” JHEP 0804 (2008) 093, 0801.0580.

[288] C. R. Mafra and C. Stahn, “The One-loop Open Superstring Massless Five-point

Amplitude with the Non-Minimal Pure Spinor Formalism,” JHEP 0903 (2009) 126,

0902.1539.

[289] N. Berkovits and B. C. Vallilo, “Consistency of superPoincare covariant superstring tree

amplitudes,” JHEP 0007 (2000) 015, hep-th/0004171.

[290] C. R. Mafra, “Simplifying the Tree-level Superstring Massless Five-point Amplitude,”

JHEP 1001 (2010) 007, 0909.5206.

[291] C. R. Mafra, “Towards Field Theory Amplitudes From the Cohomology of Pure Spinor

Superspace,” JHEP 1011 (2010) 096, 1007.3639.

[292] N. Berkovits and M. M. Leite, “First massive state of the superstring in superspace,”

Phys.Lett. B415 (1997) 144–148, hep-th/9709148.

http://xxx.lanl.gov/abs/hep-th/9902099
http://xxx.lanl.gov/abs/hep-th/0411170
http://xxx.lanl.gov/abs/1104.2604
http://xxx.lanl.gov/abs/0902.1552
http://xxx.lanl.gov/abs/hep-th/0503197
http://xxx.lanl.gov/abs/hep-th/0509234
http://xxx.lanl.gov/abs/hep-th/0512052
http://xxx.lanl.gov/abs/hep-th/0607187
http://xxx.lanl.gov/abs/0801.0580
http://xxx.lanl.gov/abs/0902.1539
http://xxx.lanl.gov/abs/hep-th/0004171
http://xxx.lanl.gov/abs/0909.5206
http://xxx.lanl.gov/abs/1007.3639
http://xxx.lanl.gov/abs/hep-th/9709148


434 BIBLIOGRAPHY

[293] N. Berkovits and O. Chandia, “Massive superstring vertex operator in D = 10

superspace,” JHEP 0208 (2002) 040, hep-th/0204121.

[294] I. Park, “Scattering of massive open strings in pure spinor,” 1101.1204.

[295] N. Berkovits, “A New description of the superstring,” hep-th/9604123.

[296] N. Berkovits and B. C. Vallilo, “One loop N point superstring amplitudes with manifest

d = 4 supersymmetry,” Nucl.Phys. B624 (2002) 45–62, hep-th/0110168.

[297] S. Gerigk and I. Kirsch, “On the Relation between Hybrid and Pure Spinor String

Theory,” JHEP 1003 (2010) 106, 0912.2347.

[298] W. Siegel, “Classical Superstring Mechanics,” Nucl.Phys. B263 (1986) 93.

[299] N. Berkovits, “Pure spinors, twistors, and emergent supersymmetry,” 1105.1147.

[300] S. Gates, M. T. Grisaru, M. Rocek, and W. Siegel, “Superspace Or One Thousand and

One Lessons in Supersymmetry,” Front.Phys. 58 (1983) 1–548, hep-th/0108200.

[301] V. Gates, E. Kangaroo, M. Roachcock, and W. Gall, “Stuperspace,” Physica 15D

(1985) 289–293.

[302] B. S. DeWitt, “Supermanifolds,” Cambridge University Press (1992).

[303] A. Galperin, E. Ivanov, V. Ogievetsky, and E. Sokatchev, “Harmonic superspace,”.

[304] A. Rogers, “Supermanifolds: Theory and applications,” World Scientific (2007).

[305] P. S. Howe, “Pure spinors lines in superspace and ten-dimensional supersymmetric

theories,” Phys.Lett. B258 (1991) 141–144.

[306] J. P. Harnad and S. Shnider, “Constraints and field equations for ten dimensional super

Yang-Mills theory,” Commun.Math.Phys. 106 (1986) 183.

[307] H. Ooguri, J. Rahmfeld, H. Robins, and J. Tannenhauser, “Holography in superspace,”

JHEP 0007 (2000) 045, hep-th/0007104.

[308] G. Policastro and D. Tsimpis, “R**4, purified,” Class.Quant.Grav. 23 (2006)

4753–4780, hep-th/0603165.

[309] A. M. Cohen, M. van Leeuwen, and B. Lisser, “LiE v.2.2.2,”.

http://xxx.lanl.gov/abs/hep-th/0204121
http://xxx.lanl.gov/abs/1101.1204
http://xxx.lanl.gov/abs/hep-th/9604123
http://xxx.lanl.gov/abs/hep-th/0110168
http://xxx.lanl.gov/abs/0912.2347
http://xxx.lanl.gov/abs/1105.1147
http://xxx.lanl.gov/abs/hep-th/0108200
http://xxx.lanl.gov/abs/hep-th/0007104
http://xxx.lanl.gov/abs/hep-th/0603165


BIBLIOGRAPHY 435

[310] C. R. Mafra, “PSS: A FORM Program to Evaluate Pure Spinor Superspace

Expressions,” 1007.4999.

[311] J. Vermaseren, “New features of FORM,” math-ph/0010025.

[312] M. Tentyukov and J. Vermaseren, “The Multithreaded version of FORM,”

Comput.Phys.Commun. 181 (2010) 1419–1427, hep-ph/0702279.

[313] Z. Bern, L. J. Dixon, D. C. Dunbar, and D. A. Kosower, “One loop n point gauge

theory amplitudes, unitarity and collinear limits,” Nucl.Phys. B425 (1994) 217–260,

hep-ph/9403226.

[314] Z. Bern, L. J. Dixon, D. C. Dunbar, and D. A. Kosower, “Fusing gauge theory tree

amplitudes into loop amplitudes,” Nucl.Phys. B435 (1995) 59–101, hep-ph/9409265.

[315] D. Vaman and Y.-P. Yao, “Constraints and Generalized Gauge Transformations on

Tree-Level Gluon and Graviton Amplitudes,” JHEP 1011 (2010) 028, 1007.3475.

[316] J. Gunion and Z. Kunszt, “Improved Analytic Techniques for Tree Graph Calculations

and the G g q anti-q Lepton anti-Lepton Subprocess,” Phys.Lett. B161 (1985) 333.

[317] R. Kleiss and W. Stirling, “Spinor Techniques for Calculating pp→ W±/Z0 + jets,”

Nucl.Phys. B262 (1985) 235–262.

[318] Z. Xu, D.-H. Zhang, and L. Chang, “Helicity Amplitudes for Multiple Bremsstrahlung

in Massless Nonabelian Gauge Theories,” Nucl.Phys. B291 (1987) 392.

[319] D. Spehler and S. Novaes, “Helicity wave functions for massless and massive spin-2

particles,” Phys.Rev. D44 (1991) 3990–3993.

[320] S. Novaes and D. Spehler, “Weyl-Van Der Waerden spinor technic for spin 3/2

fermions,” Nucl.Phys. B371 (1992) 618–636.

[321] S. Dittmaier, “Weyl-van der Waerden formalism for helicity amplitudes of massive

particles,” Phys.Rev. D59 (1999) 016007, hep-ph/9805445.

[322] J. Hopkinson and E. Plahte, “Infinite series representation of the n-point function in the

generalized veneziano model,” Phys.Lett. B28 (1969) 489–492.
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