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SUMMARY 

Legumes can cover their nitrogen demand from air by harboring nitrogen-fixing 

bacteria (rhizobia) in specialized organs, the root nodules. With the use of forward 

genetics and model legumes, including Lotus japonicus, the general molecular 

network governing rhizobial infection and nodule organogenesis has been unrav-

eled. Network components involved in the activation of the central regulatory 

calcium and calmodulin-dependent kinase (CCaMK) also control the intracellular 

accommodation of arbuscular mycorrhiza (AM) fungi during their passage to the root 

cortex and thus constitute the so-called common SYM pathway. Yet, no genes 

specifically required for AM – one of the most widespread symbiosis on earth – have 

been known at the beginning of this work. 

Integral to the present study, a microscopy screen for Lotus japonicus mutants 

defective in AM was performed and mutants affected at different stages of AM 

development were isolated from more than 5600 individuals inspected. In order to 

identify the causative mutations by map-based cloning, a genotyping setup was 

established. By this, mutations in already known symbiotic genes were rapidly 

discerned. A mutant defective in hyphal root colonization (patchy) carried a mutation 

in the common SYM gene POLLUX, encoding an ion channel. Calcium spiking, 

normally induced by rhizobial Nod factor (NF), was not observed in patchy, although 

its nodulation phenotype indicated residual activity of the mutant protein. 

By detailed co-segregation analysis of a mutant with a dimorphic arbuscule pheno-

type, the position of the red locus was determined at the short arm of chromosome 

VI. Furthermore, induction of the mycorrhizal phosphate transporter PT4 was 

abolished in the red mutant line. 

In nena, fungal infection is aborted in the rhizodermis. NENA encodes a WD40 

repeat protein related to the nucleoporins Sec13 and Seh1. Localization of NENA to 

the nuclear rim and yeast two-hybrid experiments indicated a role for NENA in a 

conserved subcomplex of the nuclear pore scaffold. Although nena mutants were 

able to form pink nodules in symbiosis with Mesorhizobium loti, root hair infection 

was not observed. Moreover, NF induction of the symbiotic genes NIN, SbtM4 and 

SbtS, as well as calcium spiking were impaired. Detailed phenotypic analyses of 

nena mutants revealed a rhizobial infection mode that overcame the lack of 

rhizodermal responsiveness and carried the hallmarks of crack entry, including a 

requirement for ethylene. CCaMK-dependent processes were only abolished in the 

rhizodermis but not in the cortex of nena mutants. These data support the concept 

of tissue-specific components for the activation of CCaMK. 
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INTRODUCTION 

Social and Environmental Context 

The invention of the Haber-Bosch process for the synthesis of ammonia laid the 

foundation for the ‘green revolution’ in industrial agriculture during mid 20th century. 

Accompanied by new elite cultivars, pesticides and modern irrigation, the use of 

synthetic fertilizers increased average global yield of cereals from 1.2 t/ha in 1961 to 

3.1 t/ha in 2007 (FAOSTAT, 2010). During the same period, the consumption of N 

fertilizers has increased from roughly 10 Mt/y to almost 80 Mt/y and more than half 

of the N in the global cycle currently is of anthropogenic origin (Smil, 1999; Galloway 

et al., 2008). Similarly, P from inorganic fertilizers is increasingly entering the global 

cycle of matter, reaching approx. 15 Mt/y recently (Smil, 2003). Pi fertilizers are 

mainly produced from mined rock, a nonrenewable resource with economically 

relevant global reserves for min. 80 y in 2003 (FAO, 2004). P rock from sedimentary 

deposits often contains elevated concentrations of heavy metals, especially Cd, 

which enters the food chain with Pi fertilizer application and the removal of which 

increases energy costs of the production process, reaching min. rates required for 

the synthesis of ammonia (32–33 MJ/kg N) (Smil, 2003). Further limitations to the 

applicability of N and Pi fertilizers arise from the fact that large amounts of the 

annual nutrient input in agriculture are not taken up by the crops. N is lost due to the 

leaching of highly soluble nitrate, as well as microbial denitrification and nitrification 

that leads to the emission of N2O/NO greenhouse gases and N2 to the atmosphere 

(Barbier and Viovy, 2003). Conversely, Pi is quickly immobilized by oxides and 

oxihydrates from clay particles or precipitation with Al and Fe ions released by soil 

acidification and thus becomes hardly available to roots by diffusion or mass flow, 

whereas leaching of surplus Pi is the main cause of freshwater eutrophication (Smil, 

2003). Rather than increasing the levels of nutrient supply to arable land, future food 

security for developing countries will therefore depend on sustainable practices in 

agriculture that provide high yield and efficient use of the available resources. 

Understanding the genetics of plant nutrition through microbial symbioses is one 

contribution that basic research can make in this context. 

Most Plants Form Mycorrhiza 

Plants form symbioses with various microorganisms to improve the uptake of 

essential nutrients. Among the most widespread are mycorrhizal associations 

between fungi and roots. Symbioses that take place on the surface of the outer root 
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cell layers are classified as ectomycorrhizal. They constitute the predominant boreal 

form established between coniferous, as well as deciduous trees and other woody 

plants and fungi from diverse lineages (Brundrett, 2004). Endomycorrhizal associa-

tions are characterized by symbiotic structures inside the cells of the root cortex. 

This type includes the ecologically specialized ericoid and orchid mycorrhiza and 

the ubiquitous arbuscular mycorrhiza (AM), formed by at least 80% of all land plant 

species, including horn- and liverworts, ferns, gymno- and angiosperms (Brundrett, 

2009). The model plant Arabidopsis thaliana (Arabidopsis) does not form AM. 

Molecular phylogenetics revealed that AM fungi all belong to the monophyletic 

Glomeromycota (Schüßler et al., 2001). Depending on dataset and calibration of the 

molecular clock, it was 400 to more than 1000 My ago that the Glomeromycota had 

split from the ancestral linage of the Basidiomycota and Ascomycota (Simon et al., 

1993; Berbee and Taylor, 2001; Heckman et al., 2001). Fossil records of AM symbi-

otic structures in primitive land plants without proper roots from the early Devonian 

Rhynie chert (Remy et al., 1994) and fungal hyphae and spores, resembling modern 

Glomales, from a 455 – 460 My old geological formation (Redecker et al., 2000) 

fostered speculations that AM enabled land colonization by plants.  

Arbuscular Mycorrhiza Is an Endosymbiosis between Plants and 
Glomeromycota Fungi 

AM fungal spores, containing hundreds of nuclei (Croll et al., 2008a), can outlast 

inhospitable periods. During spore germination, fungal carbohydrates are mobilized 

and asymbiotic hyphal growth is supported for up to two weeks, before cytoplasm 

is retracted and the fungus enters dormancy again (Bago et al., 2000). Formation of 

coenocytic mycelia and reproduction through newly formed spores during the 

natural lifecycle depends on the presence of a feeding host (Figures 1 and 2A). 

Under artificial monoxenic conditions, the generation of infectious spores with 

Paenibacillus validus was reported (Hildebrandt et al., 2006). Compatible isolates 

can exchange nuclei by anastomosis between hyphae, leading to intermixture of 

different genotypes and phenotypic changes in subsequent subcultures (Croll et al., 

2008a). Nevertheless, clear evidence for meiotic recombination is lacking. AM fungi 

exhibit considerable variation within individual species (ranging from 7% to more 

than 23% in rDNA; Stockinger et al., 2009) and it remains paradoxical how their 

genomes are maintained at evolutionary timescale (Rosendahl, 2008). 
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The ubiquity of AM provides evidence for the advantage on the symbiotic partners 

and their ecosystem of exchanging plant-derived carbohydrates for mineral nutri-

ents provided by the fungus. The large surface area of the ramified AM fungal 

mycelium facilitates root interception of mineral nutrients beyond the zone depleted 

of slow diffusible nutrients, such as Pi, that surrounds the root for a distance of a 

few mm (Li et al., 1991). Improving plant growth through phosphate provided by the 

AM fungal partner is amply documented (Smith et al., 2004). Further beneficial 

effects include increased tolerance of metal toxicity and resistance to drought, as 

well as pathogens (Newsham et al., 1995; Finlay, 2008; Smith and Read, 2008). 

Carbohydrates taken up by AM fungi account for 4 – 20 % of the host’s photoas-

similate and hence form a substantial portion of the global carbon cycle (Bago et al., 

2000). Fueling the rhizosphere with carbohydrates, as well as mobilizing nutrients 

from mineral and organic stores, the impact of AM on the ecosystem becomes 

increasingly apparent (Hodge and Fitter, 2010). Microcosm and field trials gave 

proof of the positive correlations between AM fungal diversity, plant biodiversity and 

productivity (van der Heijden et al., 1998). Host-specificity is generally low in AM 

fungi, since under laboratory conditions generalist fungal species, such as Glomus 

intraradices, can colonize any AM-forming plant species. A single plant root can be 

simultaneously colonized by various AM fungal species and different plants can be 

interconnected by AM mycelia (Giovannetti et al., 2004). Yet, differing plant growth 

responses and preferential associations with certain AM fungal species or intra-

specific genotype variants have been observed (Croll et al., 2008b; Helgason and 

Fitter, 2009). The occupation of distinct ecological niches by the different AM fungi 

probably leads to ‘ecological’ host specificity and succession in AM fungal commu-

nities (Maherali and Klironomos, 2007; Santos-Gonzalez et al., 2007). 

Roots Secrete Strigolactone to Promote Contact with AM Fungi 

Development of the intimate alliance between roots and AM fungi is subject to 

concerted genetic interplay. The exchange of diffusible signals preludes the symbi-

otic phase (Figure 1). Recently, the identity of the plant’s signal, strigolactone, which 

induces AM fungal metabolic activity leading to spore germination and hyphal 

branching in sensation of the host’s proximity, has been identified (Akiyama et al., 

2005; Besserer et al., 2006). Strigolactones are sesquiterpene compounds that are 

easy hydrolyzed and therefore able to create a concentration gradient towards the 

root (Parniske, 2005). The same compound has been identified and termed strigol 

approx. 50 years ago, being a germination stimulant of the parasitic witchweed 
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(Striga sp.) (Cook et al., 1966). Moreover, strigolactone acts as a plant hormone 

suppressing shoot branching (Gomez-Roldan et al., 2008; Umehara et al., 2008). 

Strigolactone content and secretion are increased in plants grown under phosphate 

deficiency (López-Ráez et al., 2008). It is therefore conceivable that the hormone 

sensing of the parasitic weeds evolved to perceive root secreted strigolactone of 

host plants, thus exploiting an ancient signal towards AM fungi (Parniske, 2008). 

Entry Checkpoint: Reprogramming Root Cells for Fungal 
Accommodation 

The early symbiotic phase, starting with physical contact of the hypha and the 

rhizodermis (Figure 1), is marked by pivotal cellular responses for the proceeding of 

AM development. Several transcriptome analyses showed a transient induction of 

genes related to pathogen defense during this stage (Liu et al., 2003; Guimil et al., 

2005; Hohnjec et al., 2005; Liu et al., 2007). The cell wall of AM fungi, as of patho-

genic fungi, is build from chitin, a MAMP that is recognized by a least two kinds of 

plasma membrane integral receptors that contain extracellular LysM-domains (Kaku 

et al., 2006; Miya et al., 2007). Chitin-induced downstream signaling through the 

MAPK cascade triggers defense responses (Petutschnig et al., 2010). Yet, it is 

unclear, whether MAPK cascades are involved in signaling at different stages of 

mycorrhizal development and how AM fungi manage to evade MAMP-triggered 

rejection by the plant (Pozo and Azcon-Aguilar, 2007). 

At the site of anticipated infection, the hyphal tip forms a flattened structure, called 

hyphopodium or appressorium. Although the term appressorium suggests that the 

fungus uses pressure to penetrate the root, it became clear that the plant genetically 

controls intracellular hyphal accommodation in the rhizodermis and the subjacent 

cell layer (Duc et al., 1989; Marsh and Schultze, 2001). The passage of the hyphae 

through the outer cell layers to the cortex of the root is preceded by the PPA, a 

tubular rearrangement of the cytoskeleton and the endoplasmic reticulum (ER) that 

determines the route of intracellular infection through rhizodermal and cortical cells 

(Genre et al., 2005; Genre et al., 2008). Positioning of the nucleus underneath the 

hyphopodium heralds PPA establishment. The subsequent nuclear movement 

towards the subjacent cell guides the formation of the cytoplasmic bridge through 

the vacuole. Vapyrin, an AM-induced gene required for successful intracellular 

accommodation, encodes a protein with a N-terminal VAP/MSP homology domain 

and C-terminal ankyrin repeats (Pumplin et al., 2010). Although the requirement of 
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Vapyrin for PPA formation is not shown, there might be a functional link. VAMP-

associated proteins (VAPs) are integral ER membrane proteins involved in protein-

protein interaction and thereby in cellular processes, including vesicle trafficking and 

microtubule organization. Ankyrin repeats also mediate protein-protein interaction 

and represent a common motif, encountered in more than 100 proteins predicted 

from the Arabidopsis genome. Subcellular localization of Vapyrin translationally 

fused to GFP was seen in cytoplasmic dots similar to endosomes (Pumplin et al., 

2010). 

 

Figure 1. Development of AM.  
During the pre-symbiotic stage, root exudated strigolactone induces AM fungal spore 
germination and hyphal branching. In turn, AM fungi secrete the putative Myc factor, which 
induces rhizodermal Ca2+ spiking. After contact, a fungal hyphopodium is formed and the 
plant nucleus migrates to the contact site. Subsequent nuclear movement precedes PPA-
formation and intracellular hyphal growth towards the cortex. After the intracellular passage, 
the hypha spreads in the cortical apoplast. Intracellular arbuscule formation in the inner 
cortex also involves PPA-like structures. The AM fungal life cycle is completed by the 
formation of new spores. Figure modified, with permission, from (Parniske, 2008). 

The intracellular passage through the outer cortex (Figures 1 and 2B) represents an 

important control mechanism of hyphal colonization and - in growing roots - cannot 

be circumvented by intercellular penetration (Demchenko et al., 2004; Genre et al., 

2008). Subsequently, AM fungal hyphae enter the apoplastic space, where they 

spread along the root cortex (Figures 1 and 2C). Branches of apoplastic hyphae 

enter into cells of the inner root cortex, where the so-called arbuscules are formed. 

The structure of the arbuscules varies depending on the species combination 

engaging in symbiosis, the degrees of intracellular ramification ranging from tree-like 

structures (Arum type; Figure 2B) to hyphal coils (Paris type) (Dickson, 2004). 

Arbuscule formation involves significant structural reprogramming of cortex cells, 
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leading to invagination of the plasma membrane and the tonoplast (Cox and 

Sanders, 1974). Structural changes of the cytoskeleton and the ER, as well as 

cytoplasmic aggregations partially resemble the PPA arrangements in the outer root 

cell layers (Genre and Bonfante, 1998; Blancaflor et al., 2001; Genre et al., 2008). 

Arbuscule development is moreover accompanied by morphological and metabolic 

changes of plastids and mitochondria (Fester et al., 2001). Activation of plastidic 

enzymes leads to the synthesis and accumulation of fatty acids and apocarotenoids 

(Lohse et al., 2005). The latter are carotenoid cleavage products of the meth-

ylerythritol phosphate (MEP) pathway and include the metabolites mycorradicin 

(Klingner et al., 1995), which causes the yellow color of cereal AM, as weel as 

strigolactone (Walter et al., 2007). The parallels between extraradical hyphal 

branching and arbuscule ramification in the context of apocarotenoid signaling are 

intriguing. So far, impairment of arbuscule development and reduced induction of 

AM genes was shown by RNAi-mediated knock down of the Medicago truncatula 1-

deoxy-d-xylulose 5-phosphate synthase 2 (DXS2), encoding a key enzyme of the 

MEP pathway (Floss et al., 2008). Noteworthy, hyphal colonization levels were not 

significantly reduced. This contrasts to reduced AM colonization of ccd8 pea 

mutants impaired in strigolactone synthesis (Gomez-Roldan et al., 2008), but might 

be due to activity of the 2nd DXS1 isoform. 

Controlling the Market: Plant Genes Involved in Arbuscule Development 

Two M. truncatula genes, STR and STR2, encoding half-ABC transporters that are 

required for arbuscule development have recently been reported (Zhang et al., 

2010). STR represents the first AM-specific gene described, which was identified 

through forward genetics; STR2 was subsequently identified by homology search-

ing. Both genes are expressed exclusively in roots and up regulated during AM. str 

mutants and STR2 RNAi knock down lines were impaired in arbuscule development 

and hyphal colonization, but not during earlier stages of AM development, e.g. 

rhizodermal infection. The interaction of STR and STR2 was observed only around 

the arbuscules. Based on their phylogenetic relation to subfamily members from 

other plant species and mammals, being involved in the transport of various me-

tabolites, including sterols and other lipids, a transport function for AM-specific 

apocarotenoids was predicted. 

The periarbuscular membrane (PAM), which surrounds the fungal cell wall and the 

periarbuscular space, is in continuation of the plant plasma membrane and creates 
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a large surface area for nutrient exchange (Harrison, 2005). The PAM has a distinc-

tive protein content, as evidenced by in-vivo localization of the AM-specific phos-

phate transporter MtPT4 (Pumplin and Harrison, 2009). Pi transporters that are only 

expressed during AM belong to one subfamily of the Pht1 family and have been 

described from different monocot and dicot species, including PT11 from rice 

(Paszkowski et al., 2002), PT4 from M. truncatula (Harrison et al., 2002), tomato and 

potato, as well as PT5 from potato (Nagy et al., 2005). Symbiotic Pi acquisition can 

contribute for the most part to the plant’s P content (Smith et al., 2004). StPT3 

(Rausch et al., 2001), LjPT3 (Maeda et al., 2006) and OsPT13 (Paszkowski et al., 

2002) are up regulated in AM, but basally expressed under non-AM conditions, 

whereas several other rhizodermal Pi transporters were shown to be down regulated 

during AM. Functional overlap is implied by the multitude of constitutively, AM-

induced or AM-suppressed Pht1 transporters present in each species (Nagy et al., 

2005; Javot et al., 2007a). Analysis of StPT3 promoter-GUS expression, in-situ 

localization of LjPT3 transcripts and immunolocalization of MtPT4 have shown 

specific expression in arbuscule-containing cells and subcellular targeting to the 

membrane surrounding the arbuscule branches (Rausch et al., 2001; Harrison et al., 

2002; Maeda et al., 2006). Similar expression and localization patterns have previ-

ously been observed for P-type H+-ATPases from M. truncatula and tobacco 

(Gianinazzi-Pearson et al., 2000; Krajinski et al., 2002). It is likely that these are 

involved in phosphate transport across the PAM, since Pht1 family members are 

Pi:H
+ symporters that use proton gradients across the plasmamembrane to translo-

cate their substrate (Karandashov and Bucher, 2005). The phenotype of loss-of-

function mtpt4 mutants showed that phosphate transport via the arbuscule is 

indispensable for full arbuscule development and maintenance of AM (Javot et al., 

2007b). Arbuscules are transient structures with a life expectancy of 7 to 10 d until 

hyphal collapse and degeneration in the cortical cells (Pumplin and Harrison, 2009). 

Detailed time laps observation of the arbuscule development in mtpt4 and wild type 

M. truncatula roots revealed that the majority of the arbuscules formed in both 

genetic backgrounds were of medium size at 3 days after inoculation (DAI) with pre-

germinated spores of G. versiforme. Three d later the size distribution of arbuscules 

formed in mtpt4 mutants was shifted towards smaller values, in contrast to an 

increase of larger arbuscules in the wild type (Javot et al., 2007b). Since full AM 

establishment is not supported in mtpt4, it is conceivable that the host can discon-

tinue its association with the AM fungus in unprofitable situations. From an 
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ecological point of view, this would imply a factor of competition among different 

AM fungi (Javot et al., 2007b; Parniske, 2008). 

Defective arbuscule development and reduced hyphal colonization resembling the 

phenotype of mtpt4 mutants was recently shown by using M. truncatula RNAi lines 

that exhibited reduced transcript levels of Sucrose Synthase 1 (SucS1). SucS1 is 

normally up regulated during fungal and bacterial root symbioses (Baier et al., 2010). 

Since the RNAi lines showed various pleiotropic defects, it remained unclear, 

whether the mycorrhizal phenotype was a secondary effect of impaired root meta-

bolic activity and/or carbohydrate source-sink balance, or AM development was 

incomplete because of the reduced sugar merit for the fungus.  

Arbuscules are most likely also the interface for N delivery from AM fungi to plants. It 

has recently been proposed that the AM fungal contribution to the global N cycle is 

of considerable amount (Hodge and Fitter, 2010). An amino-acid permease and an 

ammonium transporter that are probably involved in AM fungal uptake of N from the 

soil have been identified (Lopez-Pedrosa et al., 2006; Cappellazzo et al., 2008). 

Lately, non-orthologous ammonium transporters from Lotus japonicus (Lotus) and 

soybean that are transcriptionally activated in arbuscule containing cells have been 

described (Guether et al., 2009; Kobae et al., 2010). Being part of gene families with 

several members, they all belong to the AMT2 subfamily of plant ammonium trans-

porters. For GmAMT4.1, in-vivo localization specifically to the branched region of 

the PAM has been shown (Kobae et al., 2010). 

 

Figure 2. AM, as Seen by Stereo- and Confocal Microscopy. 
(A) Stereomicroscopy image of Glomus sp. spores and hyphae connected to carrot root 
organ culture. 
(B) and (C) CLSM z-projections of an AM fungal infection site leading to cortical colonization 
and arbuscule formation (B) and a colonization front formed by apoplastic hyphae in the root 
cortex (C). Fungal structures (green) were stained with WGA-Alexa Fluor 488 and root cells 
(red) were counterstained with propidium iodide. Scale bars: (A) 500 µm, (B) and (C) 50 µm. 
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Moreover, 4 AM-induced subtilisin-like serine proteases (subtilases), which are 

localized to the apoplastic space surrounding the intraradical hyphae and to the 

PAS, are involved in AM development. Knock down of SbtM1 and SbtM3 in Lotus 

led to reduced hyphal and arbuscular colonization. The substrates of these subti-

lases are still unknown, but functions comparable to proteases involved in fungal 

pathogen defense or for weakening of cell-connections were predicted (Takeda et 

al., 2009). 

Most Plants Cannot Engage in Root Nodule Symbiosis 

In contrast to the wide spread AM, root nodule symbiosis (RNS) with nitrogen-fixing 

bacteria occurs only in 4 orders constituting a monophyletic clade within the eudi-

cots, namely the Fabales, Fagales, Cucurbitales and Rosales (FaFaCuRo). RNS 

therefore must have evolved much later than AM, in a common ancestor of the 

FaFaCuRo from the late Cretaceous (Soltis et al., 1995; Kistner and Parniske, 2002). 

One of the two main types of RNS is Actinorrhiza, formed between Frankia spp. 

bacteria and members of the Fagales, Cucurbitales and Rosales. The 2nd type is the 

symbiosis between Legumes and a diverse group of gram-negative bacteria collec-

tively called rhizobia (Markmann and Parniske, 2009). Symbiotic nitrogen fixation is 

of great agricultural importance: crop legumes include pea, peanut, beans and, last 

not least, soybean, which in 2007 ranked at 4th position after wheat, maize and rice 

in terms of world area harvested (90 Mha; FAOSTAT, 2009). Moreover, legumes 

such as clover or vetch are used as green manure in crop rotation (Palm et al., 

2010). RNS involves – as the name implies – the development of a symbiosis 

specific organ, which provides the oxygen-restricted microenvironment for the 

reduction of atmospheric nitrogen to ammonia by the bacterial nitrogenase (Seefeldt 

et al., 2009). Nevertheless, AM and RNS share striking similarities in the mecha-

nisms leading to the accommodation of the respective endosymbionts. 

‘One Ping Only’ – Sending the Right Signal to The Rhizodermis 

Pre-symbiotic crosstalk between rhizobia and legumes leads to rhizobial production 

of Nod factor (NF) molecules. NFs are amphiphilic molecules generally consisting of 

4 or 5 β-1,4-linked N-acetylglucosamine residues and a N-linked fatty acid moiety at 

the nonreducing end of the chitin backbone. Length and saturation of the fatty acid, 

as well as further modifications of the terminal glucosamine residues define the host 

specificity of the rhizobial strain (Denarié et al., 1996). Usually the rhizobial host rage 

is narrow, but broad range strains, e.g. Rhizobium sp. NGR234, can infect dozens of 
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legume genera (Pueppke and Broughton, 1999). On the host side, recognition 

specificity is provided by the extracellular LysM-domains of transmembrane 

receptor-like kinases (RLKs) (Radutoiu et al., 2007). In Lotus, LysM-RLKs belong to a 

gene family with 17 members (Lohmann et al., 2010), two of which have been 

identified as NF receptors (NFR1 and NFR5) by forward genetics (Madsen et al., 

2003; Radutoiu et al., 2003). Loss-of-function mutants of NFR1, as well as NFR5 

and its ortholog from M. truncatula, NFP, lack any of the physiological and morpho-

logical responses to NF observed in the wild type (Amor et al., 2003; Radutoiu et al., 

2003). 

Ca2+ influx into the root hair cytoplasm is the fastest NF response measured in 

legumes, followed by Cl- efflux and concomitant membrane depolarization, as well 

as alkalinization of the extracellular space (Ehrhardt et al., 1992; Felle et al., 1998). 

These transient responses are triggered by nanomolar concentrations of NF within 

1 min and persist for several minutes. Moreover, investigation of cytoplasmic [Ca2+] 

by microinjection of a reporter dye into root hairs of alfalfa seedlings revealed 

persistent and regular oscillations of perinuclear Ca2+ levels (Ca2+ spiking) (Ehrhardt 

et al., 1996). This Ca2+ signature represents a hallmark of NF signaling and has 

meanwhile been investigated in 5 different legumes with microscopical, genetic and 

pharmacological approaches (Oldroyd and Downie, 2008). Although a correlation 

between Ca2+ spiking and expression of the early nodulation gene ENOD11 was 

established (Miwa et al., 2006a), the function of Ca2+ spiking in RNS is not resolved 

so far. Ca2+ spiking starts about 5 – 10 min after application of picomolar NF con-

centrations and takes place in up to 90% of the growing root hairs, but also in 

mature root hairs, atrichoblasts and sub-rhizodermal cells (Miwa et al., 2006a; 

Sieberer et al., 2009). Applied at nanomolar concentrations, NFs induce a transient 

increase in cytoplasmic [Ca2+] that originates at the root tip (Ca2+ flux) and precedes 

Ca2+ spiking (Shaw and Long, 2003). Chitintetramers, chitinpentamers and NFs with 

modified decorations were shown to induce repeated Ca2+ spikes, although these 

responses were less sensitive and varied between different legume species. Ca2+ 

flux however was not observed after application of chitinoligomers and mutated NFs 

(Walker et al., 2000; Oldroyd et al., 2001b; Shaw and Long, 2003). Further supported 

by genetic data, it therefore seems that Ca2+ flux and Ca2+ spiking are independent 

responses (Shaw and Long, 2003; Miwa et al., 2006b) downstream of NFR1 and 

NFR5/NFP-mediated signaling (Amor et al., 2003; Radutoiu et al., 2003). 
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Pre-symbiotic AM Fungal Signaling 

The eye-catching analogies in AM and RNS suggest that fungal signaling molecules, 

corresponding to the NF, might be involved in the initiation of AM (Gianinazzi-

Pearson and Denarié, 1997). The existence of diffusible AM fungal signals became 

apparent when M. truncatula roots carrying a GUS marker fused to the promoter of 

ENOD11 stained blue, after the plants were co-cultivated with different AM fungi 

and physical contact had been prevented by a cellophane membrane (Kosuta et al., 

2003). GUS expression was not observed upon cultivation with pathogenic fungi, 

confirming symbiosis specificity of ENOD11. Intriguingly, ENOD11 promoter-GUS 

induction was also observed in the genetic background of symbiosis deficient 

mutants lacking Ca2+ spiking (dmi1 and dmi2). Assessed by a similar experimental 

setup, induction of lateral root formation was observed in wild type plants, but not in 

dmi1 and dmi2 mutants (Olah et al., 2005). Rice mutants of the DMI1 ortholog, in 

turn, were not affected in AM-induced lateral root formation (Gutjahr et al., 2009a). 

Additional evidence for an AM diffusible signal was provided by starch accumulation 

in Lotus roots upon membrane-separated cultivation with an AM fungus (Gutjahr et 

al., 2009b). The observations raise the impression that different AM fungal factors 

and signaling pathways are involved in the respective host responses. Recently, 

DMI1 and DMI2-dependent [Ca2+] oscillations were demonstrated in M. truncatula 

root hairs located in the vicinity of branched AM fungal hyphae (Kosuta et al., 2008). 

The Ca2+ signatures spatially resembled NF-induced Ca2+ spiking but differed in their 

periodicity and duration of individual spikes. In analogy to RNS, LysM-RLKs were 

suggested as candidates for the recognition of a NF-related hypothetical ‘Myc 

factor’ (Parniske, 2008). nfr1, nfr5 and nfp mutants are able to form AM, but there 

are 12 more LysM-RLKs in Lotus that are expressed in the root (Lohmann et al., 

2010). 

Transcriptome analysis of roots at the developmental stage of hyphopodia formation 

revealed a gene that is transiently up regulated during AM fungal infection and is 

predicted to encode a membrane steroid-binding protein (MSBP1) (Kuhn et al., 

2010). Using time-lapse imaging of M. truncatula root organ cultures, which were 

transformed with GFP-GUS fused to the promoter of MSBP1, it was shown that 

MSBP1 is induced in rhizodermal and root cortical cells in the proximity of the AM 

fungus before hyphal contact. The up regulation of MSBP1 expression was DMI2 

dependent and RNAi-mediated knock down of MSBP1 led to impaired arbuscule 

formation. The results indicate that MSBP1 is not directly involved in the perception 
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of the diffusible AM fungal signal, but rather in metabolic changes, which precede 

AM fungal infection and may be attending PPA formation. 

Intracellular Accommodation of Rhizobia and AM Fungi Is Controlled by 
the Common SYM Network 

The discovery that pea and field bean mutants defective in RNS are also impaired in 

AM provided the first genetic evidence for a shared developmental program (Duc et 

al., 1989). Genetic dissection of RNS using model legumes, including Lotus and M. 

truncatula, revealed host genes that were equally important in AM and therefore 

termed common SYM genes. Since AM symbiosis is evolutionary older, this led to 

the idea that the genetic program for intracellular accommodation has been adopted 

from AM during the evolution of RNS (La Rue and Weeden, 1994; Kistner and 

Parniske, 2002). Recognition of NFs by NFR1 and NFR5/NFP elicits signal transduc-

tion via SYMRK/DMI2/NORK (Endre et al., 2002; Stracke et al., 2002), a receptor 

kinase with extracellular leucine-rich repeats and the convergence point with AM-

induced signal transduction (Figure 3). Unknown downstream events depend on 3 

nuclear pore proteins (nucleoporins), NUP133, NUP85 and NENA (Kanamori et al., 

2006; Saito et al., 2007; Groth et al., 2010), and presumably lead to membrane 

potential alterations at the nuclear envelope involving the ion channels CASTOR and 

POLLUX/DMI1 (Ané et al., 2004; Imaizumi-Anraku et al., 2005; Charpentier et al., 

2008) required for Ca2+ spiking. The Ca2+ and calmodulin-dependent kinase 

CCaMK/DMI3 (Lévy et al., 2004; Mitra et al., 2004) in cooperation with the nuclear 

protein CYCLOPS/IPD3 (Messinese et al., 2007; Yano et al., 2008) may act as 

decoder of Ca2+ spiking. The CCaMK-CYCLOPS complex regulates rhizobial 

infection thread (IT) development, which requires downstream activation of RNS-

specific GRAS (NSP1 and 2) (Kaló et al., 2005; Smit et al., 2005; Heckmann et al., 

2006; Murakami et al., 2006) and AP2-ERF (ERN1 to 3) transcription factors 

(Andriankaja et al., 2007; Middleton et al., 2007). These can bind to cis-regulatory 

elements of early nodulins, including ENOD11 and NIN, and thereby regulate target 

gene expression in response to NF (Andriankaja et al., 2007; Hirsch et al., 2009). NIN 

itself contains domains related to transcription factors, as well as predicted trans-

membrane domains. Like NSP1 and 2, NIN is essential for rhizobial infection 

(Schauser et al., 1999). 

After rhizobia attach to the root hair of a compatible host, redirected growth of the 

root hair tip is induced by local NF. This leads to root hair curling (RHC) and the 
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formation of a discrete cavity where a rhizobial microcolony develops. Maybe 

triggered by the local increase in NF concentration, an IT initiates from the micro-

colony through local cell wall decomposition and invagination of the plasma mem-

brane, which guides the proliferating rhizobia towards the subepidermal cell layer 

(Oldroyd and Downie, 2008). Further cortical infection is preceded by the formation 

of cytoplasmic bridges termed pre-ITs (van Brussel et al., 1992). Nodule organo-

genesis is tightly coordinated with the progression of infection and endocytosis of 

rhizobia into nodule cortical cells, where they mature into nitrogen-fixing bacteroids 

inside organella-like symbiosomes (Van de Velde et al., 2010). 

 

Figure 3. The Common SYM Signaling Network. 
Intracellular accommodation of rhizobia and AM fungi in the rhizodermis requires at least 8 
common SYM genes, as well as specific transmembrane LysM receptor kinases that 
recognize Nod factors (NFs). Similar recognition of Myc factor (MFs) is believed to occur. 
Integration of NF and MF signaling by SYMRK probably leads to ion fluxes through CASTOR 
and POLLUX at the nuclear envelope and nuclear Ca2+ spiking. Components of the nuclear 
pore complex are also required for Ca2+ spiking. CCaMK and CYCLOPS are interacting 
nuclear downstream components. Modified, with permission, from (Parniske, 2008). 
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The epistatic nature of genes required for early NF signaling potentially masks 

tissue-specific processes. Gain-of-function mutations in CCaMK (Gleason et al., 

2006; Tirichine et al., 2006a) and the cytokinin receptor LHK1 (Murray et al., 2007; 

Tirichine et al., 2007) lead to nodulation in the absence of rhizobia, thereby uncou-

pling infection from nodule formation. NIN and the NSP1 and 2 transcription factors 

are proposed candidates for coordinating infection with nodule formation, since they 

are required during NF signaling and for nodulation in autoactive CCaMK mutants 

(Gleason et al., 2006; Marsh et al., 2007). Natural variation of RNS also provides 

insights into different prerequisites for infection initiation and nodule development. 

Aquatic and semi-aquatic legumes from tropical and sub-tropical regions have an 

intercellular infection mode that does not require intracellular entry through RHC, but 

utilizes rhizodermal cracks at sites of lateral root emergence (Ndoye et al., 1994). 

Subsequently, rhizobia proliferate in subepidermal infection pockets that are caused 

by local apoptosis promoted by reactive oxygen species and ethylene (D'Haeze et 

al., 2003). From there on, infection proceeds inter- and intracellularly and concludes 

in the release of bacteroids into cortical cells of the nodule. Some legumes, e.g. 

Sesbania rostrata, can switch between intracellular infection during aerated condi-

tions and crack entry during root submergence (Goormachtig et al., 2004). 

Disruption of common SYM genes typically results in the abortion of fungal infection 

in the epidermal root layer (Kistner et al., 2005). In addition, dissection of AM devel-

opment by forward genetic screens in tomato, maize or petunia discerned two 

additional stages - before fungal infection and during root colonization - that are 

controlled by the plant (Barker et al., 1998; David-Schwartz et al., 2001; Paszkowski 

et al., 2006; Reddy et al., 2007). Information about the respective genes is pending. 

Aim of this Study 

With the genetic resources at hand, i.e. high-resolution linkage maps (Wang et al., 

2008), genome sequence covering more than 90 % of the predicted gene content 

(Sato et al., 2008) and a suitable mutagenized population of the model legume L. 

japonicus (Perry et al., 2009), this study targeted at the identification of genes 

required for the development of AM. For this purpose, a screen for AM mutants was 

initiated. Function of the identified genes and interconnection with RNS should be 

elucidated. The results of this work should be conducive to understanding of the 

plant’s genetics governing the development of intracellular root-microbe symbioses. 
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RESULTS 

A Capillary Sequencer-Based Setup for Microsatellite Genotyping of 
Lotus 

Background 

Forward genetics combined with map-based cloning nowadays constitute a 

straightforward strategy for the identification of new symbiosis genes (Jander et al., 

2002). The availability of advanced genetic resources greatly facilitates map-based 

cloning in L. japonicus. Map-based cloning is typically applied in context with 

mutagenesis induced by chemicals, e.g. the guanine alkylating agent EMS, which 

produces hundreds of non-tagged point mutations that are randomly distributed 

across the genome (Greene et al., 2003). In order to identify the mutation responsi-

ble for a specific phenotype, co-segregation of the phenotype with defined DNA loci 

(markers) has to be assessed. Recent technological advances in sequencing made it 

possible to pinpoint DNA polymorphisms including the causal mutation within a 200 

kb interval by deep sequencing with 11x coverage of pooled DNA from 500 mutant 

siblings of a segregating population (Lister et al., 2009; Schneeberger et al., 2009). 

Although the potential of this innovative strategy for identification of new gene 

functions is beyond dispute, deep sequencing is unnecessary and too elaborate for 

the determination of allelic groups, which usually precedes gene mapping in forward 

genetic studies. 

Map-based cloning requires a genetic map generated by recombination analysis of 

genetic markers within a mapping (F2) population (Peters et al., 2003). Since recom-

bination frequency is proportional to the distance between two loci (Sturtevant et al., 

1919; Ohmido et al., 2010), the degree of linkage between a genetic marker and the 

mutant phenotype indicates the genetic location of the causal mutation. In practice, 

map based-cloning proceeds in two phases: During rough mapping, the chromo-

somal location of the causal mutation is delineated by collecting mutants from a 

population of 100-200 F2 individuals and subsequent genotyping of the mutants, in 

order to identify those markers showing a co-segregation of alleles from the mutant 

(Gifu) background. Thereby, mutants affected in already known symbiosis genes are 

identified through sequencing of linked candidate genes. By this, tedious determi-

nation of complementation groups through crossing becomes obsolete (e.g. consid-

ering the amount of crosses required to test for allelism with the common sym 

mutants). During the 2nd phase of map-based cloning, the co-segregating target 
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region is narrowed down to a contiguous sequence interval containing a limited 

number of candidate genes to be tested by sequencing or transgenic complemen-

tation. This is achieved by screening for individuals, which carry recombination 

events between markers flanking the target region and lying apart in the range of 

1 cM. The size of the population to be screened increases dramatically with de-

creasing recombination intervals anticipated beyond 50 kb, as simulated for Arabi-

dopsis, given a recombination frequency of 250 kb/cM (Jander et al., 2002). To this 

end, genotyping or phenotyping of 3000-4000 F2 individuals is recommended. 

L. japonicus ecotype B-129 (Gifu), which has been used for mutagenesis in order to 

generate TILLING populations (Perry et al., 2009), exhibits approximately 5 % overall 

nucleotide sequence polymorphism to ecotype MG-20 (Miyakojima) based on AFLP 

analysis (Hayashi et al., 2001). High-resolution linkage maps were derived from Gifu 

x MG-20 populations and the segregation of different chromosomal regions has 

been described in detail (Hayashi et al., 2001; Sandal et al., 2005; Wang et al., 

2008). Crosses between wild type MG-20 and Gifu mutants have been successfully 

used in previous map-based cloning projects, which led to the identification of 

SYMRK and numerous symbiotic genes thereafter (Kawaguchi et al., 2001; Stracke 

et al., 2002; Sandal et al., 2005). MG-20 is subject of the Lotus genome-sequencing 

project and most parts of the genome covering more than 90 % of the predicted 

gene content have been sequenced (Sato et al., 2008). As a result, genetic posi-

tions, allele sizes and sequence information of 782 genetic markers for the MG-20 x 

Gifu cross are currently available via the miyakogusa.jp website 

(http://www.kazusa.or.jp/lotus/). Moreover, most markers are located in large 

sequence assemblies (contigs), which greatly facilitate the forthwith delineation of 

the physical target region containing the causative mutation and the assignation of 

candidate genes. 

Using Capillary Instead of Agarose Gel Electrophoresis 

The use of capillary electrophoresis for microsatellite marker genotyping has been 

documented (Mansfield et al., 1996). Genotyping by capillary array electrophoresis 

has been implemented for many species, including soybean (Oliveira et al., 2010), 

and commercial kits are available, e.g. for horse, cattle and dog (StockMarks, 

Applied Biosystems). In collaboration with the in house sequencing facility, we have 

established a high throughput Lotus genotyping setup, named ‘power mapping’, 

capable of processing 512 PCR samples per hour. Using two standard sets of 24 
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simple sequence repeat (SSR) markers that are evenly distributed over the 6 linkage 

groups (LGs) of the Lotus genome (Figure 4 and Supplemental Table 4) comprising 

approx. 480 cM in total (Sandal et al., 2005), determination of a rough mapping 

position for a novel mutant locus was accomplished within 7 workdays. Prerequisite 

was the isolation of genomic DNA from at least 16 monogenic recessive F2 mutants 

that had been identified from an established mapping population. 

 

 
Figure 4. Genetic Positions of ‘Power Mapping’ Markers and Symbiosis Genes. 
LGs are indicated by roman numerals. The scale to the left indicates cM. 1st and 2nd rough 
mapping set are indicated in red and blue, respectively. References: ALB1 (Yano et al., 
2006), ASTRAY (Nishimura et al., 2002a), CASTOR&POLLUX (Imaizumi-Anraku et al., 2005), 
CCaMK (Tirichine et al., 2006b), CERBERUS (Yano et al., 2009), CYCLOPS (Yano et al., 
2008), KLAVIER (Oka-Kira et al., 2005), LHK1 (Murray et al., 2007; Tirichine et al., 2007), 
NENA (Groth et al., 2010), NFR1 (Radutoiu et al., 2003), NFR5 (Madsen et al., 2003), NIN 
(Schauser et al., 1999), NUP133 (Kanamori et al., 2006), NUP85 (Saito et al., 2007), SYMRK 
(Stracke et al., 2002), SYM70 (Murakami et al., 2002), TML (Magori et al., 2009). 

Power mapping takes advantage of automated detection and analysis of SSR 

polymorphisms by the ABI3730 (Applied Biosystems) 48 capillary sequencer in 

conjunction with the GeneMapper software (version 3.7). With this technique, 

fluorescent-labeled DNA fragments are electrophoretically injected and size-
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separated through polymer-coated capillaries (Barbier and Viovy, 2003). Size-

dependent migration of the DNA fragments is recorded by the defined excitation 

and detection of fluorescence labels (Mansfield et al., 1996). 

In order to fluorescently label PCR products for automatic detection, we have 

adopted a single-PCR approach that uses one universal fluorescence-labeled 

primer with 17 or 18 nucleotides (A-primer) and two marker-specific primers (AF- 

and R-primer), of which the AF-primer has an additional 5’ tail that is sequence-

identical to the universal primer (Schuelke, 2000). Two PCR conditions had been 

empirically determined to be decisive for the quality of the fluorescent amplification 

product: Firstly, the amount of A-primer should be 4x the amount of AF-primer, 

while the amount of A-primer and AF-primer together should equal the amount of R-

primer. Secondly, the melting temperatures of the marker specific primer sequences 

should be at least 3°C higher than the melting temperature of the A-primer. To-

gether, these factors ensured that SSR markers were specifically amplified during 

the first 28 PCR cycles and labeled during the subsequent 8 cycles of amplification 

that were performed with 3 °C lower annealing temperature. The advantage of using 

universal fluorescent primers is primarily cost saving, due to the higher turnover of 

universal primers compared to marker specific primers (especially those that are 

merely used for a specific mapping purpose). Fluorescent labels compatible with the 

in house sequencing utility comprise the Dye Set G5 (6-FAM, PET, NED, VIC and LIZ 

for the size standard; DS-33 Matrix, Applied Biosystems) and Dye Set F (5-FAM, 

JOE, NED and ROX for the size standard; DS-32 Matrix, Applied Biosystems). For 

power mapping, we have designed 4 different universal primers, each of which was 

labeled with a different dye of the Dye Set G5. Thereby, multiplex amplification of 4 

markers is theoretically possible. In practice, PCR amplification of two SSR markers 

was accomplished for the purpose of recombination screening (Table 1). 

Table 1. Multiplex PCR for Marker Combination G69/70 

Positivea 2114 

Negativea 37 

Success Rateb 98.3% 

False Positivesc 5.3% 
aNumber of PCRs leading to successful (positive) or 

 unsuccessful (negative) allele calling. 
bPercentage of positive/total number of PCRs. 
cPercentage of allele calls/PCRs without template (n=152). 
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The automated determination of alleles (allele calling) from MG-20 or Gifu by defined 

fragment sizes and fluorescence labels of individual SSR markers in the GeneMap-

per software greatly speeds up genotyping analyses. The digitalized readout is 

transferable to spreadsheet programs for further evaluation of co-segregation. All 

markers were tested for reliability of allele calling and replaced if necessary (Sup-

plemental Table 4). Three factors turned out to be critical for correct allele calling 

and, consequently, the expenditure of time for manual readjustment: In the 1st place, 

large differences in fluorescence intensity of Gifu and MG-20 alleles from heterozy-

gous individuals led to allele calling failures. The differences were due to discrimina-

tion of the shorter allele in heterozygous samples and behaved roughly proportional 

to the size difference between the alleles (Figure 5A). In order to reduce allele-

specific discrimination, the reaction conditions were optimized by increasing salt 

concentrations to 1.5 X PCR buffer and reducing the elongation temperature to 70 

°C (Henegariu et al., 1997). Secondly, ‘plus A’ artifacts generated by the Taq DNA 

polymerase-catalyzed addition of a single adenosine to the 3’ end of PCR products 

(Clark, 1988) sometimes led to false allele calling. The addition of 3’ adenosine is 

sequence dependent and can be modified by the complementary strand through the 

5’ nucleotide sequence of the reverse primer (Brownstein et al., 1996). For unknown 

reasons, the ratio of plus A fragments varied between samples or reactions at equal 

cycling conditions. Consequently, plus A artifacts were problematic if they led to 

double peaks of approximately the same height, which were both detected by the 

allele calling algorithm (Figure 5B) (Smith et al., 1995). In order to avoid double allele 

calls, extension of the final elongation step at 72 °C to 30 min was sufficient for the 

addition of 3’ adenosine to the majority of PCR products of most markers. The 3rd 

source of allele calling mistakes was background noise created by unspecific or 

additional PCR products within the size range of the marker alleles. The level of 

background noise depended on marker-specific amplification efficiency, which in 

turn was sensitive to template quality and concentration. Markers with bad amplifi-

cation efficiency had to be replaced. 

Currently, the power mapping setup comprises 170 SSR markers (further informa-

tion is available at the Genomics Service Unit, Biocenter LMU Munich), which have 

been established in the course of different mapping projects (Maekawa-Yoshikawa 

et al., 2009; Perry et al., 2009; Groth et al., 2010). 



 
34 

 

Figure 5. Pitfalls for Automated Allele Calling. 
(A) The ratio of relative fluorescence units (RFU) detected from PCR product corresponding 
to the shorter allele divided by the RFU level of the longer allele (peak ratio) from heterozy-
gous samples roughly correlates negatively with the size difference between the alleles. 
Small peak ratios can lead to false allele calling. 
(B) Electropherograms of two heterozygous and two homozygous samples and the corre-
sponding allele calling results (Gifu and/or MG20). Height variation of the plus-A peak (grey 
bars) can lead to erroneous double allele calls. Numbers indicate fragment sizes. 
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Genetic Dissection of AM Development by Screening for AM Mutants in 
Lotus 

The BULK population used for screening for AM mutants consisted of 2131 M3 

families (SL lines) (Figure 6). TILLING data acquired from the GENPOP indicated a 

1/10 ratio of homozygous vs. heterozygous EMS-induced mutations in the M2 

generation (Perry et al., 2009). Meiotic recombination consequently would lead to an 

average distribution of one homozygous vs. 1.4 heterozygous mutations in the M3 

generation, if no homozygous mutants were lost due to deleterious effects (Supple-

mental Figure 14). Moreover, bulked propagation of M2 siblings that belonged to the 

same SL line diminished the probability of losing mutations due to meiotic recombi-

nation in the M3 BULK population. In order to minimize the risk of missing mono-

genic recessive alleles below 2%, while maintaining a feasible number of individuals 

to be screened, 8 plants per M3 family were analyzed during the 1st AM screen 

(Figure 6). For that purpose, individual root samples were inspected under a stereo-

microscope for differences in the abundance and shape of AM structures compared 

to the wild type by the following criteria: (1) hyphae growing outside or on the 

surface of the root, (2) hyphopodia, (3) infection, (4) hyphae inside the root, (5) 

arbuscules and (6) vesicles. The AM screen has been performed in succession by 

Sonja Kosuta, Martin Groth (author) and Kristina Haage. For the sake of complete-

ness, the joint results are summarized herein after and the authors’ contributions are 

specified. Using an AM staining protocol that has been adapted to 96-well format 

(Marquez and Stougaard, 2005) it was possible to screen up to 192 root samples 

per day and person. In total, 617 M3 families (approx. 5000 root samples) were 

analyzed by the author (Supplemental Table 1); the rest of the BULK population was 

screened in equal parts by Sonja Kosuta and Kristina Haage. During the 1st round of 

the AM screen 229 SL lines containing individuals with aberrant AM structures were 

identified as putative mutants, of which 76 have been identified by the author 

(Supplemental Tables 1 and 2). In order to confirm the mutant phenotypes in the 

next generation, self-progeny of 150 putative mutants were grown, while the remain-

ing M3 mutants did not produce offspring due to pleiotropic defects and/or prema-

ture death. A subset of the putative mutant lines without offspring was AM pheno-

typed by re-screening remaining M3 seed. Eight siblings from each of the 140 M4 

lines from individual M3 putative mutants were AM phenotyped by stereomicroscopy 

during a 2nd round of screening. Finally, 14 mutant lines were confirmed and as-

signed to the AMPOP (Figure 6, Supplemental Figure 13 and Supplemental Table 2), 
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whereas the remaining putative mutant lines did not show aberrant AM structures or 

did not reproduce the original phenotype. The high level of non-confirmations 

(>90% of putative mutant lines) might have been caused by inhomogeneity of the 

fungal inoculum that led to weak AM colonization of AM wild type SL lines during 

the 1st AM screen (false positives), in addition to non-heredity of the putative mutant 

phenotype for unknown reasons. 

 

Figure 6. Relationship of Identified AM Mutants (AMPOP) to the Lotus TILLING 
Populations (GENPOP and NODPOP) (Perry et al., 2009). 
The population used for AM mutant screening (M3 BULK) consists of 2131 families. Each 
family originates from bulked M2 siblings from individual M2 families that did not show 
nodulation defects during the nodulation screen (Perry et al., 2003). During the AM screens, 
8 siblings per family were analyzed. 

Based on the confirmed mutants we could distinguish 3 phenotypic classes (Figure 

7): (I) The 1st class comprised 4 mutant lines, which had abundant AM fungal hyphae 

growing on the root surface but almost no hyphae colonizing the root interior. This 

was due to impaired AM fungal penetration of the outer cell layers leading to bal-

loon-like hyphal swelling and concomitant abortion of infection. (II) 4 lines containing 

mutants with impaired hyphal colonization were accounted to the 2nd class. Mutants 

from 3 lines showed successful AM fungal infection but strongly reduced coloniza-

tion of the root cortex, compared to the wild type. Conversely, mutants belonging to 

SL0989-N were excessively colonized by hyphae and arbuscules. Arbuscule forma-

tion was unaffected in the first two mutant classes. (III) The 3rd mutant class com-

prised 6 lines that were impaired in arbuscule formation, while being unapparent 

regarding AM fungal infection of the rhizodermis. 
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Figure 7. Genetic Dissection of AM Development by the Lotus AM Mutant Screen. 
(A) Three developmental stages were discerned by the AM mutant phenotypes: (I) Intracel-
lular infection of the outer root layers, (II) colonization of the root cortex and (III) arbuscule 
formation. 
(B) to (H) BF light micrographs of ink-stained AM fungal structures in wild type (B to E) and 
mutant (F to H) root samples. In the WT, a hyphopodium (black arrowhead) was formed on 
the root surface (B), from where the hypha penetrated (white arrowhead) the outer root 
layers. From the infection site (black arrowhead) hyphae colonized the root cortex, where 
arbuscules (black arrows) and vesicles (white arrow) were formed (D). Mature arbuscules 
with highly branched hyphae originating at the arbuscule trunk (black arrow) filled the cortical 
cells. Mutants impaired during intracellular infection showed aborted infection events (red 
arrowhead) accompanied by balloon-like hyphal swelling (F, SL1856-N mutant shown). 
Defective colonization was manifested by attenuated hyphal spreading in the root cortex (G, 
SL1816-N mutant shown). No mature arbuscules were observed in mutants with defective 
arbuscule formation (red arrow, H, SL1439-N mutant shown). Scale bars: 100µm. 
(I) Segregation analysis of the mapping populations from the respective mutant lines and 
identified mutant loci are indicated. [1] Modified from (Parniske, 2004), [2] (Groth et al., 2010), 
[3] (Perry et al., 2009), [4] (Kanamori et al., 2006), [5] (Schauser et al., 1998), [6] (Yano et al., 
2008), [7] (Imaizumi-Anraku et al., 2005). a Analyzed by K. Haage. 
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- 
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- 
- 
- 
- 

- 
- 
- 
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SSR17 (II, 60.9) 
TM0191 (II, 72.5) 
- 
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unknown 
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unknown 
unknown 

unknown 
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pollux-7 [7] 

cyclops-5  [3,6] 

nena-1 [2] 
nup133-21a [3,4,5] 
pollux-20a [3] 
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In order to delineate the genetic positions of the causative mutations of the AMPOP 

lines, a map-based cloning strategy has been adopted. Causative mutations in 

previously described symbiotic loci were identified relatively quickly by power 

mapping and sequencing of candidate genes. The AM mutant phenotypes of 

SL0989-N, SL1013-N, SL1439-N, SL1755-N and SL1864-N mutants were poorly 

pronounced or not observed by stereomicroscopy of ink-stained root samples in F2 

mapping populations, impeding co-segregation analyses in these lines (Figure 7). 



 
39 

Genetics of the Dimorphic Arbuscular Mycorrhiza Phenotype 
Encountered in the Arbuscule Formation Mutant Line SL0181-N 

Background 

Three lines from the Lotus TILLING BULK population, SL0154-N, SL0181-N and 

SL0289-N, with individuals impaired in arbuscule development have been identified 

by S. Kosuta in the course of the AM mutant screen. Complementation crosses 

indicated that different loci were affected in all 3 mutant lines (Table 2, Kosuta 

unpublished). The AM phenotypes displayed were heritable in self-progeny and no 

pleiotropic defects were observed during further examinations, including a prelimi-

nary nodulation test by inoculation with M. loti. A detailed analysis of the AM phe-

notype, involving light microscopy of ink-stained roots, as well as scanning and 

transmission electron microscopy of root segments and histological sections 

containing AM structures, was performed (Kosuta unpublished). 

Table 2. Complementation analysis between three mutants impaired in arbuscule formationa 

Mutant (SL line)  red (SL0181) small (SL0289) dis (SL0154) 

red (SL0181) - N/A WT (6/2) 

small (SL0289)  WT (7/2) - WT (1/1) 

dis (SL0154)  WT (7/2) WT (4/1) - 
a Arbuscule phenotype of F1 plants, WT = wild type, and, in parentheses, the number of F1 
individuals tested / the number of crosses. (Kosuta, unpublished) 

 

Light microscopy revealed clear differences in AM fungal colonization patterns of 

wild type and SL0181-N mutant roots (Figure 8A). In wild type roots cultivated in 

chive nurse pots with G. intraradices, the inner cortex was densely colonized with 

hyphae and arbuscules that seemed square, as they filled nearly the entire space 

within individual cells. In SL0181-N mutants, internal hyphae and vesicles were 

abundant, but no mature arbuscules were detected. Arbuscule-like structures 

resembled trees with lopped-off branches (Figure 8A). Similar phenotypes were 

observed in plants inoculated with the AM fungus Gigaspora rosea. Electron micro-

graphs indicated that the arbuscule formation defect resulted from premature 

collapse of the hyphal structures, resembling arbuscule senescence in wild type 

roots (Figure 8C to F), rather than stunted arbuscules due to a suppression of further 

hyphal branching and intracellular colonization. Consequently, hyphae inside cortical 
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cells of SL0181-N mutants occupied only a limited space and were less ramified, 

compared to the wild type (Figure 8G to I). Quantification of AM structures 10 d after 

cultivation with G. intraradices showed a general reduction at different stages of AM 

development, including hyphopodia formation, infection, arbuscule and vesicle 

formation. Yet, most prominent in comparison to wild type levels was the reduction 

in arbuscule numbers (Figure 8B). The phenotype of SL0181-N mutants was desig-

nated red, for reduced and degenerate arbuscules. 

With regards to the other two lines, SL0154-N and SL0289-N, degeneration of the 

arbuscules was strongest in red mutants. SL0154-N mutants formed arbuscules that 

consisted of irregular shaped coils instead of the regularly branched hyphae ob-

served in the wild type, and the phenotype was designated dis, for disorganized 

arbuscules. The arbuscules formed in SL0289-N mutants retained a tree-like struc-

ture but were smaller than wild type arbuscules, due to an attenuated ramification. 

The phenotype of SL0289-N mutants was designated small. Further investigation 

and identification of the causative mutations in dis and small was taken charge by 

Sonja Kosuta, whereas map-based cloning of the hypothetical red locus became 

matter of the present PhD work. Analysis of red was furthermore integral part of the 

laboratory internship of Syndi Vieweg and the diploma thesis of Sebastian Wilhelm, 

which were performed under the supervision of Martin Parniske and the author. 

Through detailed segregation analysis of the AM phenotype in different mapping 

populations we obtained data suggesting that the parental red mutant was a dihy-

brid. Genotyping of the respective F2 and F3 individuals indicated that one of the 

mutations causing defective arbuscule formation is located on the short arm of 

chromosome VI. The target region furthermore showed a distortion of segregation, 

which was not observed previously in wild type F2 populations derived from the 

intraspecific cross between L. japonicus Gifu and MG-20 (Hayashi et al., 2001). 

 

Legend continuation, Figure 8 (G) to (I) Scanning electron micrographs of G. intraradices-
infected wild type and red mutant roots. In wild type (G), turgid young arbuscule branches 
were distributed throughout the host cell (arrowheads). In red (H and I), intracellular hyphae 
crossed host cells from several directions (H) and arbuscule branches (arrowheads) were 
spatially restricted (I).  
Scale bars: (A) 100 µm and 10 µm (arbuscule close ups), (C) to (F) 2 µm, (G) to (I) 10 µm. 



 
41 

 

Figure 8. AM Phenotype of red (Kosuta, unpublished). 
(A) BF light micrographs of ink stained AM fungal structures in roots from wild type plants 
and red mutants co-cultivated with Glomus intraradices or Gigaspora rosea for 5 w. 
(B) Numbers of AM events observed on wild type and red roots at 10 d after cultivation in 
chive pots with G. intraradices. Mean and standard errors (SE) of 6 to 12 replicate plants. 
(C) to (F) Transmission electron micrographs of G. intraradices-infected roots. In the wild 
type, young arbuscule branches filled the available space in the host cell (C) and granular 
electron-dense material (arrow) was observed between adjacent branches of collapsed 
arbuscule (D). In red, only spatially restricted arbuscular branches were observed (E), 
resembling collapsed wild type arbuscule, except that electron dense material was absent in 
red mutant roots (F). (Figure legend continues on left page.) 
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Phenotypic Analysis of red F2 Individuals Reveals Two Different Arbuscule 
Traits 

Two mutant M3 individuals, J849 and J850 (lab internal nomenclature), were origi-

nally identified in the line SL0181-N during the AM screen. In order to determine the 

segregation and genetic position of red, J849 was crossed with a wild type individ-

ual of L. japonicus MG-20, giving rise to the F1 siblings J5149 and J5150. All self-

progeny used for mapping of red originated from these two F1 individuals. AM 

phenotypes of F2 individuals were assessed 3 w after cultivation in chive nurse pots 

with ‘G. intraradices-like’ BEG195 (Stockinger et al., 2009). The segregation of the 

arbuscule phenotype varied considerably between sub-populations originating from 

different seed bags (Table 3). In order to distinguish the segregation patterns, the 

results from different sub-populations were grouped according to their F1 parent. 

Thereby it became apparent that the ratios of wild type vs. arbuscule mutant indi-

viduals were mostly close to or exactly 3/1 (corresponding to a monogenic recessive 

mutation) in sub-populations originating from J5150. In contrast, 4 out of 6 sub-

populations originating from J5149 showed segregation ratios that differed signifi-

cantly from the Mendelian 3/1 segregation, indicating that the arbuscule phenotype 

observed is not a monogenic recessive trait. 

The contrasting segregation ratios might imply that J5149 contained a 2nd mutation, 

which caused the surplus of mutants in its F2 progeny, compared to the F2 progeny 

of J5150. According to the χ2 test, the segregation of wild type vs. arbuscule mutant 

individuals in 5 out of 6 sub-populations, as well as in the sum of all sub-populations 

originating from J5149 conforms to a 9/7 distribution (Table 3). This would be 

expected if J5149 was dihybrid and each of the two unlinked recessive mutant loci 

would have caused an arbuscule defect. Although differences in the arbuscule 

defects displayed by F2 mutants were noticed during screening of the 1st 3 sub-

populations, individual frequencies of the two distinguishable traits (Figure 9) were 

not thoroughly recorded, since dihybrid segregation was unexpected and discrimi-

nation of the different phenotypes was doubtful. Individuals accounted to the weak 

class did not contain fully developed wild type-like arbuscules but displayed a 

reduced level of hyphal ramification in root cortex cells (Figure 9B, D and G), similar 

to the arbuscule defects observed in M4 progeny of the SL0181-N mutant J850 

(Figure 9A). Mutants with a severe phenotype contained cortical runner hyphae but 

were apparently void of arbuscular structures, when inspected with the 
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stereomicroscope at < 50x magnification (Figure 9E). At higher magnification, 

arbuscule trunk-like hyphae were visible (Figure 9H). Both mutant phenotypes were 

furthermore characterized by the presence of septa in the root internal hyphae 

(Figure 9G and H). Septation of the coenocytic AM fungal mycelium occurs during 

retraction of the cytoplasm and is therefore an indication of dead hyphal sectors and 

non-functional mycorrhizal associations (Gerdemann, 1968; Javot et al., 2007b). 

 

 

Figure 9. Weak and Severe Arbuscule Defects in Mapping Populations of SL0181-N. 
(A) and (B) The arbuscule phenotype of M4 mutants originating from J850 (A) resembled the 
weak arbuscule mutant trait (B) segregating in F2 and F3 populations originating from J849, 
as visualized by ink staining of AM fungal structures and BF microscopy. Scale bars: 20 µm. 
(C) to (H) Wild type (C and F), weak (D and G) and severe (E and H) arbuscule mutant traits 
segregating in different F2 and F3 sub-populations originating from J849. Fungal structures 
(green) were stained with WGA-Alexa Fluor 488 and visualized by epifluorescence micros-
copy (C to E) or CLSM (F to H). Arrowheads indicate hyphal septae. Plants were cultivated in 
the green house for 4 w in chive pots with BEG195. Scale bars: 20 µm. 
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These observations prompted us to assume that the M3 mutant J849 contained two 

recessive mutations, one at the RED locus and one at an additional locus, WEAK 

RED (WRD). Due to the different segregation patterns in the progeny of J5149 and 

J5150, we further deduced that one of the loci would have been homozygous for the 

mutant allele, while the other would have been heterozygous in the mutant parent 

J849 (i.e. RED red/wrd wrd or red red/WRD wrd). Additional sub-populations 

originating from each F1 parent were phenotyped and subsequently genotyped by S. 

Wilhelm, in order to test the hypotheses that J5149 was dihybrid, RED red/WRD 

wrd, whereas J5150 was monohybrid, RED RED/WRD wrd or RED red/WRD WRD. 

50 seeds from each seed bag were sown per chive nurse pot containing BEG195, 

and ink-stained roots were phenotyped after 3 weeks. Unfortunately, at that time 

70% or more of the seed from 3 seed bags did not produce seedlings for unknown 

reason (Table 3). The segregation ratios observed in these sub-populations might 

therefore be biased. Nevertheless, phenotypic segregation in F2 progeny of J5149 

conformed to the dihybrid hypothesis, whereas in the sub-populations originating 

from J5150 dihybrid segregation, but not monohybrid segregation, was rejected by 

the χ2 test (Table 3). The segregation ratios of J5149 progeny moreover suggested 

that the severe arbuscule mutant trait corresponds to the double recessive class red 

red/wrd wrd, while equal weak defects correspond to the single recessive classes 

RED –/wrd wrd and red red/WRD –. A single mutant with a severe arbuscule phe-

notype was also recorded in the progeny of J5150. Since the double recessive class 

should not occur in the progeny of J5150, this observation was contradictory to the 

monohybrid assumption. 

In order to check, whether subsequent genotyping and co-segregation analysis 

might have been disturbed due to phenotyping mistakes, e.g. wild type individuals 

scored as mutants, self-progeny from single individuals with conflicting phenotypes 

and genotypes were reassessed. The results (Table 4) led to 3 conclusions: (I) 

Simple monohybrid segregation in sub-populations originating from J5150 is not 

supported, because mutants from the putative double recessive class (severe 

arbuscule defect) were identified in the F3 generation. (II) The existence of a 2nd 

locus, WRD, in addition to RED is underpinned by the confirmation of the mutant 

arbuscule traits in F3, as well as F4 individuals originating from J5149. (III) In some 

cases, the phenotypic distribution in F3 and F4 progeny of individual plants does not 

fit to unlinked dihybrid segregation, particularly regarding the large numbers of 

severe arbuscule mutants. The strong variation between the individual segregation 
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patterns and the proportions of unclear phenotypes furthermore indicate that an 

unambiguous determination of the phenotype by stereomicroscopy was not possi-

ble. This accounts primarily for the distinction between the wild type and the weak 

arbuscule mutant trait, as well as between the weak and the strong arbuscule 

mutant trait. 

Table 4. Segregation of Arbuscule Traits in red F3 and F4 Sub-populations 

F1 Parent Fa Genotypeb Phenotypec WT Weak Severe 

J5149 J9317 F2 Gifu/Gifu Mutant 0 24 1 (+3) 

J5149 J9291 F2 Het/Het Mutant 0 (21) 0 

J5149 J9288 F2 MG20/MG20 Mutant (+2) 8 (+10) 0 

J5149 J9293 F2 MG20/MG20 Mutant 9 (+6) 13 (+6) 0 

J5149 K8421 F3 Gifu/Gifu severe 0 4 7 

J5149 K8424 F3 Gifu/Gifu severe 0 3 4 

J5149 K8423 F3 Gifu/Gifu weak 0 12 0 

J5150 J9325 F2   -  /Het WT 10 (+7) 2 (+2) 0 

J5150 K0154 F2 Gifu/Gifu WT 0 4 0 

J5150 J9559 F2 Gifu/Het WT 40 (+2) 19 (+8) 14 

J5149 K8427 F3 Gifu/Het WT 7 1 6 

J5149 J9304 F2 Het/Het WT 15 14 2 (+3) 

J5150 J9548 F2 Het/Het WT 3 (+4) 1 (+7) 0 

J5150 J9554 F2 Het/Het WT 2 (+4) 7 (+9) 16 

J5150 J9556 F2 Het/Het WT 5 0 0 

J5150 J9561 F2 Het/Het WT 19 (+3) 9 (+1) 12 (+3) 

J5150 J9564 F2 Het/Het WT 3 19 7 
a Parental generation. 
b Parental genotype at markers TM0082/TM1597 (top of LG VI). 
c Parental phenotype. Conflicting phenotypes between parent and self-progeny and irregular 

segregation patterns are underlined. 
Numbers of unclear phenotypes are given in brackets. 

 

Co-segregation Analysis Indicates red Target Region at the Short Arm of 
Chromosome VI 

In order to identify red and/or wrd by map-based cloning, co-segregation of the 

arbuscule formation defects and the mutagenized genetic background, Gifu, in the 

different F2 sub-populations described above was assessed by power mapping. 

Since wild type individuals and arbuscule mutants segregated at approx. 3/1 ratios 

in sub-populations originating from the F1 parent J5150, these were genotyped in 1st 

place. The DNA of 43 F2 mutants was isolated and 47 SSR markers covering the 6 
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LGs of the Lotus genome (Hayashi et al., 2001) were PCR amplified from individual 

DNA samples. Genotype analysis revealed significant excess off individuals, which 

were homozygous Gifu at markers located at the north end of LG VI (Figure 10 and 

Supplemental Figure 1A). Besides, significant deviations from the expected 1/2/1 

distribution of homozygous Gifu/heterozygous/homozygous MG-20 genotypes at 

TM0127 on the south end of LG III and TM0100, TM0283 and TM0046 on LG IV 

were detected (Figure 10 and Supplemental Figure 1A). Primarily the latter two 

markers showed a deficit in homozygous Gifu genotypes, which might be due to 

linkage with a deleterious mutation, whereas heterozygous genotypes were over-

represented at the other markers. Inspection of the genotype patterns moreover 

revealed a repulsion of homozygous Gifu genotypes between LG VI and the region 

flanked by TM0800 (45.0 cM) and TM0356 (51.4 cM) on LG I. The majority of mu-

tants that were not homozygous Gifu on LG VI had homozygous Gifu genotypes at 

the marker TM0356. Assuming that the double recessive class red red/wrd wrd was 

detrimental, this would be the only marker that indicated a possible linkage to the 

2nd locus. The assumption however does not fit to the monohybrid segregation of 

the arbuscule defect in F2 plants originating from J5150. 

Co-segregation of Gifu alleles at the north end of LG VI was confirmed in F2 mutants 

originating from J5149 (Figure 11A and Supplemental Figure 1B). Accordingly, most 

of the wild type F2 individuals were genotyped heterozygous or homozygous MG-20 

in this region (Figure 11B) and only two wild type individuals were homozygous Gifu 

for all markers analyzed on LG VI between 0 and 14 cM (Supplemental Figure 2). 

The wild type attribution of one of these two individuals was falsified by phenotypic 

analysis of its self-progeny, which entirely showed the weak arbuscule phenotype 

(Table 4 and Supplemental Figure 2). Self-progeny of the 2nd wild type F2 plant were 

not checked. 

Although 7 SSR markers with a maximum spacing of 7.6 cM covered the co-segre-

gating region corresponding to the short arm of chromosome VI (Pedrosa et al., 

2002), the fraction of MG-20 alleles at the tested markers did not go below 0.21 and 

0.32 in F2 mutants originating from J5150 (Figure 10) and J5149 (Figure 11A), 

respectively. This was due to 32% and 47% F2 mutants originating from J5150 and 

J5149, respectively, that were not homozygous Gifu for any of the markers tested 

between BM1714 and TM1514 (Supplemental Figure 1). 
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Figure 10. Co-segregation Analysis of 43 F2 Mutants Origi-nating From J5150. 

.
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Phenotypic confirmation of self-progeny from 3 F2 mutants indicated that weak 

arbuscule defects might have been caused by a 2nd mutation outside the identified 

region of co-segregation (Table 4). Moreover, segregation of wild type and mutant 

offspring was recorded for one of the F2 mutants, which were not homozygous Gifu 

in the co-segregating region, suggesting that some of the F2 individuals scored as 

weak mutants might have been wild type plants (Table 4). 

 

Figure 11. Allele Distributions in the red Target Region. 
(A) Ratios of MG-20 alleles vs. total alleles from mutants originating from J5149 are shown. 
Asterisks indicate deviations from the expected 1/2/1 distribution of (MG-20 MG-20)/(MG-20 
Gifu)/(Gifu Gifu) genotypes at 0.01 (**) and 0.001 (***) significance levels of the χ2 test. Data 
corresponds to Suppl. Fig. 3B. 
(B) Ratios indicate (MG-20 MG-20)/(MG-20 Gifu)/(Gifu Gifu) genotypes of wild type F2 
individuals originating from J5149 and J5150. Probabilities of the χ2 test for 1/2/1 distribution 
are given in parentheses. 
(C) Frequencies of recombination (RF) between adjacent markers in mutant (green), wild type 
(yellow) and all (black) F2 individuals genotyped indicate lack of recombination between 
TM1597 and TM0302. 

The genotypic analysis of F2 individuals revealed a reduction of recombination in the 

co-segregating region on chromosome VI (Figure 11C). The region of suppressed 

recombination was flanked by the markers TM0082 (1.3 cM) and TM1514 (21.6 cM) 

and affected wild type, as well as mutant plants. Most notably, not a single recom-

bination was observed in 279 F2 individuals between the markers TM1597 (7.7 cM) 

and TM0302 (14.0 cM). Since 35 recombinant alleles in 279 F2 individuals are 

expected according to the genetic distance derived from the wild type Gifu x MG-20 

mapping population (Hayashi et al., 2001), the observed lack of recombination in 

SL0181-N F2 populations might be caused by a large deletion or inversion that had 

occurred in M1 or M2 spontaneously or as an indirect effect of the EMS mutagene-

sis (Greene et al., 2003). Moreover, the chromosomal mutation might include the 
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RED or WRD locus and thus might be causing one of the observed arbuscule 

defects. 

Since the compilation of genotyping data were obtained from phenotypically pre-

selected population, we performed an unbiased genotype analysis of 48 F2 individu-

als originating from J5149 and J5150, respectively, in order to test two hypotheses 

that were based on the previous data: (A) The contrasting segregation patterns 

observed in F2 populations from J5149 and J5150 are due to a recessive lethal allele 

(let) on LG I, which is carried by J5150, but not by J5149. (B) There is a repulsion of 

homozygous Gifu genotypes between LG VI and the south region of LG I (46.2 – 

56.6 cM). The results fully supported hypothesis A, whereas hypothesis B was not 

supported (Figure 12). Only one out of 45 F2 individuals originating from J5150 was 

homozygous Gifu at TM1325, in contrast to 16/45 homozygous Gifu individuals in 

the J5149 F2 population. The allele distribution in the J5150 F2 population indicated 

that let is located in the Gifu background between TM1325 (29.7 cM) and TM0316 

(46.2 cM) on LG I. The originally observed repulsion was not confirmed and might 

have been caused by the depletion of Gifu alleles on LG I in the J5150 F2 population. 

Noteworthy, a suppression of recombination was confirmed on LG VI. 

Due to the complex segregation of arbuscule defects in SL0181-N F2 populations, F3 

progeny of selected F2 individuals were genotyped at the short arm of chromosome 

VI (Supplemental Figure 3). Co-segregation analysis of 336 F3 plants in total con-

firmed the results obtained from the F2 generation: None out of 89 wild type F3 

plants from 9 F2 parents that had been heterozygous in the target region were 

homozygous Gifu for all of the markers tested between TM1613 (1.3 cM) and 

TM0302 (14.0 cM) and only one out of 40 arbuscule mutants accounted to the 

severe phenotype was not homozygous Gifu in this region. 60 out of 103 weak 

arbuscule mutants were not homozygous Gifu in the target region. 

In the F2 generation, we had identified 11 arbuscule mutants and 2 wild type plants 

with recombination events between the markers BM1714 (0.0 cM) and TM1514 

(21.6 cM), thereby confining the target region by the flanking markers TM0082 (1.3 

cM) and TM1597 (7.7 cM) (Figure 13). By genotyping the self-progeny of one re-

combinant wild type F2 individual, J9559, the southern border of the target region 

was set by the marker TM0722 (4.1 cM). Since the corresponding weak mutant 

phenotype might be due to the 2nd locus wrd, a conservative localization of the 
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Figure 12. Genotype Patterns of Total Sub-populations. 
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southern flanking marker at TM1514 (21.6 cM) is given by a wild type recombinant 

individual. An additional wild type F3 recombinant was identified setting TM0553 (1.7 

cM) as the northern marker flanking the target region. 

 

Figure 13. Recombinations Confining the RED Target Region. 
Phenotypes and available genotypes of recombinant individuals are shown. Filled (conserva-
tive) and open triangles indicate the confining recombinations. Respective markers and 
genetic positions are indicated in the heading line. G/green: (Gifu Gifu), H/yellow: (Gifu MG-
20), M/magenta: (MG-20 MG-20). 

PT4 is Not Induced in red Mutants During AM 

Arbuscules are believed to be the main site of symbiotic phosphate uptake by the 

plant (Javot et al., 2007a). AM-induced phosphate transporters, including StPT3, 

LjPT3 and MtPT4, are specifically expressed in arbuscule containing cells and 

localization to the periarbuscular membrane was demonstrated for MtPT4 (Harrison 

et al., 2002; Karandashov et al., 2004; Maeda et al., 2006). Moreover, the arbuscule 

phenotypes of SL0181-N mutants are reminiscent of the loss-of-function EMS 

mutant mtpt4-1 (Javot et al., 2007b). In collaboration with the Kazusa DNA Research 

Institute we obtained the Lotus genomic sequences of 4 PT4-related genes along 

with positional information for 3 of them. LjSGA_014433.2, encoding a partial 

protein predicted from the draft sequence of clone LjB14J02, showed 97 % amino 

acid (AA) sequence identity to MtPT4 and was subsequently annotated as PT4 from 

L. japonicus. The expression of PT4 was analyzed by quantitative RT-PCR and a 

strong induction in the wild type was assessed at 6 w after cultivation in chive pots 
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containing BEG195 (Figure 14A). This is in accordance with the AM-specific expres-

sion of orthologous MtPT4 and OsPT11 (Harrison et al., 2002; Paszkowski et al., 

2002). At the same time, transcript levels in roots from red M4 plants originating from 

J850 were not significantly different from non-mycorrhized control roots (Figure 

14A). AM colonization levels were assessed in parallel to the expression analysis 

(Figure 14B). Hyphal colonization of red roots was in the range of wild type coloni-

zation levels, whereas arbuscular colonization was strongly attenuated in red. The 

results corroborate the decrease of arbuscular colonization in red mutants after 10 d 

of cultivation (Figure 8), and furthermore suggest that this decrease is larger after 

longer periods of cultivation with AM fungi. Interestingly, vesicles were more abun-

dant in red than in wild type plants. 

 

 

Figure 14. AM Colonization and Relative Expression of PT4 in Wild Type and red Roots. 
(A) Quantitative RT-PCR analysis of PT4 expression in WT and red roots at 6 w after cultiva-
tion in chive pots with BEG195 (+) or in substrate only (-). Expression is relative to (-) samples 
from wild type roots and normalized to EF-1α and Ub transcript levels. Mean and standard 
deviation (SD) were derived from two biological replicates. Asterisk indicates significant 
(p<0.05) difference in gene expression between (+) and (-) samples. 
(B) Hyphal, arbuscular and vesicular colonization levels in roots from WT and red plants 
grown together with the plants for expression analysis. Duplicate bars indicate parallel 
experiments with different chive pots. Mean and SD are derived from 4 plants per genetic 
background. Different letters above bars indicate significant differences according to t-test 
statistics.

The correlation of suppressed arbuscule formation and PT4 induction in red mutants 

raises the question, which of the two observations is cause or effect. An arbuscule 

cell specific expression of PT4, as in other AM hosts, would imply that arbuscule 

formation is epistatic to PT4 expression. Conversely, a functional impairment of PT4 
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might inhibit full arbuscule development in red mutants, correspondingly to mtpt4-1 

(Javot et al., 2007b). Therefore the available part of the predicted PT4 gene was 

sequenced from two M4 individuals originating from J850, in order to check for 

EMS-induced mutations that might be causing the red phenotype (Table 5). The only 

sequence variation identified represents a silent polymorphism between Gifu and 

MG-20 close to the 5’ end of the CDS. Moreover, a microsatellite with 9 and 13 AT 

repeats in MG-20 and Gifu, respectively, located in the 1st intron and starting at 

nucleotide position 628 relative to the start of the predicted CDS was identified. The 

genotypes derived from the generated SSR marker, MS014433, in the F2 subpopu-

lation 55591 were completely linked to the marker TM0078 (Supplemental Figure 4) 

and hence PT4 was mapped to 0 cM on chromosome I of MG-20, corresponding to 

the chromosomal translocation breakpoint between Gifu and MG-20 (Hayashi et al., 

2001). The genetic positions of the remaining 3 predicted genes encoding proteins 

that are sequence related to MtPT4 are located at the tip of the short arm of chro-

mosome VI (chr6.CM1613.70 and chr6.CM1613.60) and distally on the long arm of 

chromosome I (chr1.CM0295.60). Due to their proximity to the co-segregating 

region of red F2 mutants on chromosome VI and the putative target region on chro-

mosome I, the CDS of all 3 genes was sequenced, but no DNA polymorphisms were 

identified in the M4 mutants originating from J850 (Table 5). Annotation from Kazusa 

and GenBank indicate that gene predictions named as chr6.CM1613.70 and 

chr6.CM1613.60 are related to MtPT5, whereas chr1.CM0295.60 corresponds to 

MtPT2. 

Table 5. Sequencing of RED-candidate genes 

Gene IDa LjSGA_014433.2 CM0295.60 CM1613.70 CM1613.60 

GenBank Accession AP010874 AB257216 N/A N/A 

Aliasb 
LjB14J02, 
BM2121_c18 

TM1643.6 BM1714.2 BM1714.7 

Annotation LjPT4 LjPT2 
Homolog of 
MtPT5 

Homolog of 
MtPT5 

Chromosome 1 1 6 6 

Position (cM) 0 61 0 0 

% CDS Sequenced 
(bp) 

88.9 (1581) 100 (1617) 100 (1768) 100 (1608) 

Result C96T (D32D)c 
No 
polymorphism 

No 
polymorphism 

No 
polymorphism 

aAccording to Kazusa (www.kazusa.or.jp). bClone names, gene predictions. cIntraspecific 
polymorphism between Gifu and MG-20.  
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M4 Mutants Originating from J850 are Impaired in Infection Thread Formation  

Assessment of the nodulation phenotype of M4 mutants originating from J850 

revealed a severe impairment in IT formation (Diploma thesis of S. Wilhelm). Im-

paired IT formation led to the arrest of nodule formation at the primordial stage. I 

have confirmed these defects in M4 mutants originating from J850 at 2 and 3 weeks 

after inoculation (WAI) with M. loti expressing DsRed (Figure 15). Nevertheless, I did 

not observe a single F2 plant with impaired IT formation and abolished nodulation in 

56 individuals originating from J5150 and 92 individuals originating from J5149. This 

is in accordance with wild type nodulation of red mutants initially assessed by S. 

Kosuta. It is unknown, which mutant individuals were initially analyzed, but the 

contrasting nodulation phenotypes of red mutants suggest that J849 was able to 

nodulate. The mutation, which causes the nodulation defect in J850 progeny, was 

apparently not inherited to the mapping populations. Therefore, the nodulation 

defect in J850 self-progeny is independent of the arbuscule defects observed in the 

mapping populations.

 

Figure 15. M4 Mutants Originating from J850 Are Impaired in Rhizobial Infection. 
(A) Stereomicroscopy images of a nodulated root from the WT and a root with uninfected 
nodule primordia from the J850-originating M4 genetic background. Fluorescence detected 
with the DsRed filter indicates rhizobial DsRed expression. Scale bars: 1mm. 
(B) Mean of infected nodules and uninfected nodule primordia observed on WT (n=8) and M4 
mutants originating from J850 (n=12) at 14 DAI with M. loti expressing DsRed. Error bars 
show SD. Asterisks indicate significant differences (p<0.001, t-test). 
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Mutants of the AMPOP Impaired in Known Common SYM Genes 

SL1345-N and SL1856-N Symbiotic Mutants Correspond to cyclops-5 and 
nup133-21 

By the use of power mapping, 4 of the confirmed AM mutant lines turned out to 

harbor the causal mutation in a previously identified common SYM locus (Figure 7). 

Mutants from 3 of these lines, SL1345-N, SL1856-N and SL2042-N, were impaired 

during rhizodermal infection. Balloon-like hyphal swellings at aborted infection sites 

(Figure 7 and Supplemental Figure 13) were reminiscent of the AM phenotypes 

displayed by common sym mutants (Kistner et al., 2005). Inoculation of M4 and/or F2 

individuals from SL1345-N, SL1856-N and SL2042-N with M. loti revealed that AM 

mutants from all 3 lines were also nodulation defective (data not shown). M3 mutants 

K1583 from SL1345-N and K1364 from SL1856-N were crossed with wild type MG-

20 individuals and F2 populations were generated from each cross. Segregation of 

the AM phenotype in the F2 populations did not deviate from monogenic recessive 

ratios (Figure 7). Co-segregation analyses indicated CYCLOPS as candidate gene 

affected in SL1345-N and NUP133 in SL1856-N mutants (Figure 16). 

 

 
Figure 16. Co-segregation Analysis of SL1856-N and SL1345-N F2 Mutants. 
(A) and (B) Co-segregating regions in mutants from SL1856-N (A) and SL1345-N (B). Ratios 
indicate MG-20 alleles vs. total alleles at the corresponding markers, which are shown 
together with linked SYM loci to the left of the bars. Bars represent the Lotus LG II. Scales 
indicate genetic distances (cM). Co-segregation analyses were performed by K. Haage (A) 
and S. Wilhelm (B).  
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Sequencing of CYCLOPS in SL1345-N mutants revealed a frameshift mutation 

caused by a deleted G nucleotide at position 1281 of the CDS, identical to the 

cyclops-5 allele (Yano et al., 2008; Perry et al., 2009). (Detailed description of the 

mutant is provided in the report of the lab internship from Oct.-Dec. 2006 by S. 

Wilhelm.) In SL1856-N mutants a G to A transition was identified by K. Haage at the 

predicted 5’ splice site of intron 5, corresponding to nucleotide position 4496, 

relative to the A of the start codon, of the genomic NUP133 sequence. The mutant 

allele was designated nup133-21 (Perry et al., 2009). 

F1 plants originating from the cross between SL2042-N M3 mutants and MG-20 wild 

type plants failed to produce self-progeny. Known common SYM genes were 

sequenced in SL2042-N mutants in order to check for mutations. In POLLUX, a 

nonsense mutation corresponding to pollux-20, caused by a G to A transition at 

nucleotide position 1953 of the POLLUX CDS, was identified (Figure 7). 

A Glycine to Glutamic Acid Substitution in the RCK Domain of POLLUX 
Attenuates AM Colonization and Nodulation in patchy 

In contrast to the AM mutants that were blocked during rhizodermal infection and 

therefore showed a typical common sym phenotype, mutants from SL1816-N were 

commonly infected by BEG195, but the root cortex was not thoroughly colonized 

(Figure 17). After 21 d of cultivation in chive pots, hyphal colonization was signifi-

cantly reduced in comparison with wild type plants, in which approx. 80% of the 

root system was colonized (Figure 17G). Successful infections were significantly less 

abundant on patchy than on wild type roots, whereas aborted infections were 

increased in patchy. Although some aborted infections were accompanied by 

balloon-like hyphal structures, successful infections appeared wild type-like (Figure 

17C to E). Reduced hyphal colonization might have been a consequence of im-

paired AM infection of the outer root cell layers. In addition, investigation of ink-

stained roots by light microscopy indicated that the growth of cortical runner hyphae 

might have been suppressed, resulting in sharp hyphal fronts at the transition from 

colonized to uncolonized root sectors (Figure 17B). Arbuscule formation appeared 

not to be affected in patchy mutants, because arbuscule shape did not differ from 

the wild type and the frequency of arbuscules within colonized sectors was not 

significantly different (Figure 17B, C, F and G). 
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Figure 17. AM Phenotype of patchy. 
(A) to (F) BF light micrographs of ink-stained AM fungal structures from patchy root samples 
at 3 w after greenhouse cultivation in chive pots with BEG195. AM colonized root patches 
were confined by hyphal fronts (white arrowheads in A and B) and contained fully developed 
arbuscules (black arrows in B, C and F). Root infections proceeded from hyphopodia (black 
arrowheads in C and D) into the cortex, accompanied by slight hyphal swellings (red arrows 
in C and E). Occasionally, balloon-like infection sites were observed (red arrowhead in A). 
Scale bars: 50 µm.  
 (G) Successful and aborted infection sites per root, as well as mean hyphal colonization and 
arbuscular colonization within colonized root patches (Rel. Arbuscule colonization) from WT 
and nena plants (n≥8) after 3 w of greenhouse cultivation. Error bars show standard devia-
tions (SD). Asterisks above bars indicate significant differences (*p≤0.05, ** p≤0.01, t-test) 
between pairwise comparisons. 

The M3 mutant J7244 was crossed with wild type MG-20 and the segregation of the 

AM phenotype was assessed in the F2 generation. The ratio of wild type versus 

mutant F2 plants accords to a monogenic recessive mutation (Figure 7) and the 

respective allele was named patchy, relating to the mutants’ AM colonization 
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pattern. 24 mutant F2 individuals were genotyped by power mapping using the 1st 

set of 24 SSR markers (Figure 4) distributed over the Lotus genome. A significant 

surplus of alleles from the mutant Gifu background was observed at makers located 

on the long arm of chromosome VI and additional 72 F2 mutants were genotyped in 

the co-segregating region, indicating that the causal mutation is located in the 

telomeric region south of TM0508 or TM0885 (Figure 18A). Since the frequency of 

recombinant alleles in the F2 mutants at TM0508 (6.25%) exceeds the genetic 

distance to the south tip of LG VI, according to the map published on the Kazusa 

website (http://www.kazusa.or.jp/lotus/index.html), it is likely that at least a subset 

of these F2 individuals were falsely assigned as mutants. Nevertheless, the mutant 

co-segregation analysis was confirmed by the lack of homozygous Gifu genotypes 

in the target region of 29 analyzed wild type F2 plants (Figure 18B). 

 

 

Figure 18. Co-segregation Analysis of patchy. 
(A) Ratios indicate MG-20 alleles vs. total alleles in F2 mutant individuals from SL1816-N at the 
corresponding markers.  
(B) Ratios indicate (MG-20 MG-20)/(MG-20 Gifu)/(Gifu Gifu) genotypes of wild type F2 individuals 
from SL1816-N at the corresponding markers. 
Positions of markers and linked SYM loci are shown above the bars. Bars represent the Lotus LG 
VI. The scale indicates genetic distances (cM). 
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The proximity to POLLUX of the co-segregating markers TM0508 and TM0885 

prompted sequencing of this candidate gene. In the SL1816-N M4 mutant (K2011, 

self-progeny of J7244), a G to A transition was identified at nucleotide position 1592 

of the CDS (Figure 19A). This leads to a predicted glycine (Gly) to glutamic acid (Glu) 

substitution at AA position 530 of the encoded POLLUX protein (Figure 19B). The 

mutation is located in a domain, which is highly conserved between the homologs of 

different plant species, spanning approx. 250 amino acids C-terminal of the pre-

dicted transmembrane region. Searching the NCBI conserved domains database 

moreover indicated that this domain is related to TrkA, an intracellular NAD+-binding 

component of the prokaryotic K+ transport complex Trk (Schlosser et al., 1993). 

TrkA-related domains are also present in various ligand-gated K+ channels, including 

prokaryotic KcsA, Ca2+-gated MthK from Methanobacterium thermoautotrophicum 

and the eukaryotic high-conductance Ca2+-activated channels (BK channels) (Jiang 

et al., 2001; Jiang et al., 2002; Wu et al., 2010). Structural, electrophysiological and 

molecular genetic data suggest that the free energy released by Ca2+ binding to the 

domains regulating the conductivity of K+ (RCK domains) induces structural rear-

rangements of the gating ring composed of multiple pairs of RCK domains and 

thereby opens the pore formed by the inner transmembrane helices (Jiang et al., 

2002; Wu et al., 2010). The Gly530 to Glu mutation in patchy, which is identical to 

the pollux-7 mutant allele (Imaizumi-Anraku et al., 2005), is located in a predicted α-

helix corresponding to αF of the human BK channel, where it forms a helix-

crossover domain with αG (Figure 19C) (Wu et al., 2010). This αF-turn-αG intercon-

nects two tandem RCK domains within one BK monomer and, noteworthy, two 

hydrophobic residues within αF that interface with αG appear conserved in 

POLLUX. It is therefore possible that a similar helix-turn-helix conformation is 

adopted in the RCK domain of POLLUX and the acidic substitution in patchy/pollux-

7 in the 1st helix might disrupt proper pairing of the RCK domains, required for 

assembly of the gating ring.  

A cross between pollux-2 and patchy has been made in order to test for comple-

mentation. F1 plants that were grown for 28 d in chive pots containing BEG195 were 

less colonized than wild type plants and contained balloon-like hyphae indicative of 

impaired rhizodermal infection (Figure 20). The lack of complementation proved that 

the identified mutation in POLLUX caused the AM defect observed in the patchy 

mutant. This was further confirmed by restoration of 
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Figure 19. Predicted G to E Substitution in the RCK Domain of POLLUX in patchy. 
(A) The protein structure of POLLUX contains a N-terminal transient peptide (TP), 4 trans-
membrane domains (TM) and a conserved sequence related to the K conductivity regulating 
(RCK) domain. Mutations in pollux-2 and patchy/pollux-7 are indicated. 
(B) Multiple sequence alignment of the conserved AAs surrounding the predicted helix-
crossover motif in the RCK domain. The arrowhead marks the mutated AA in patchy/pollux-
7. Bars above the sequence indicate predicted helices. Identical and similar AAs with more 
than 60% conservation are highlighted by inverted colors or grey background, respectively. 
Species acronyms, GenBank accession numbers and 1st AA positions are shown to the left. 
(C) 3D homology model of the POLLUX RCK domain. The helices of the predicted αF-turn-
αG motif and the Gly to Glu substitution in patchy/pollux-7 are highlighted. The model is 
based on the crystal structure of the human BK channel (Wu et al., 2010). 
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AM fungal infection and colonization of hairy roots from patchy mutants that were 

transformed with a binary vector containing the wild type POLLUX CDS 

(pK7WG2D,1-POLLUXcDNA12xHis, kindly provided by M. Charpentier) (data not 

shown; see Diploma thesis of S. Wilhelm). 

 
Figure 20. Crossing patchy with pollux-2 Did Not Restore AM. 
(A) to (D) BF light micrographs of ink-stained AM fungal structures in root samples from WT 
(A) and patchy x pollux-2 F1 individuals (B to D). Plants were cultivated for 4 w in chive pots 
with BEG195 under greenhouse conditions. Segments marked by dashed boxes (B) are 
shown at higher magnification (C and D). 

Since POLLUX is required for Ca2+ spiking (Imaizumi-Anraku et al., 2005), we tested 

whether NF-induced Ca2+ spiking is affected in patchy mutants. None of the 20 root 

hairs from 12 different seedlings that were analyzed by microinjection of Ca2+ 

reporter dye Oregon Green 488 BAPTA-1 showed Ca2+ spiking, whereas 12 from 13 

wild type seedlings responded positively (Figure 21). The lack of Ca2+ spiking 

contrasts with the nodulation capability of patchy mutants that was assessed in the 

course of the AM mutant screen. In order to reassess the nodulation phenotype of 

patchy, the development of RNS was analyzed at different stages by light micros-

copy and quantitative RT-PCR amplification of the symbiotic marker genes NIN and 

SbtM4. Expression of both genes is induced by NF and during nodule development 

(Schauser et al., 1999; Takeda et al., 2009). Accordingly, expression of NIN and 

SbtM4 was upregulated in wild type roots at 7 DAI with M. loti, relative to pre-

inoculation levels (Figure 22). In accordance with previous analyses (Mitra et al., 

2004; Kistner et al., 2005), no changes in transcript abundance were found in roots 

from loss-of-function pollux-2 mutants. In contrast to pollux-2, relative expression of 
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NIN and SbtM4 was significantly upregulated in roots from patchy mutants, albeit 

NIN induction was weaker than in the wild type. 

 

Figure 21. patchy Mutants Are Impaired in NF-induced Ca2+ Spiking. 
(A) Fluorescence ratios between ratiometric Ca2+ indicator Oregon Green 488 BAPTA-1 and 
reference dye Texas Red after application of 10-8 M NF at 0 min to roots of young WT and 
patchy seedlings. Images were taken with an epifluorescence microscope at 5 sec intervals 
over 30 min. 
(B) Ratios indicate positive spiking/total analyses of root hair from WT or patchy seedling. 
Representative traces for positive Ca2+ spiking in the WT and Ca2+ spiking measurements in 
patchy are shown in (A). 

 

 

Figure 22. NIN and SbtM4 Expression Is Induced in patchy Roots at 7 DAI with M. loti. 
Expression levels were analyzed by quantitative RT-PCR and are relative to expression levels 
in roots samples before inoculation. Expression was normalized to EF-1α and Ub transcript 
levels. Mean and standard deviation (SD) were derived from 3 biological replicates. Asterisks 
indicate significant (p<0.05) difference in gene expression before and after inoculation. 
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Symbiotic mutants carrying loss-of-function pollux/dmi1 alleles show morphological 

root hair responses to NF, including tip swelling and branching, but are unable to 

form RHC structures nor ITs (Catoira et al., 2000; Imaizumi-Anraku et al., 2005). 

Using a M. loti strain constitutively expressing the fluorescent protein DsRed 

(Markmann et al., 2008), we have tested whether patchy mutants are invaded via 

RHC and IT formation. At 10 DAI, ITs were abundant on wild type roots, whereas 

only single ITs were observed on patchy mutants that were grown in closed jars at 

24 or 18 °C (Figure 23A to C and G). Still, nodule primordia had frequently formed 

coinciding with rhizobial foci that appeared to have proliferated at the base of 

deformed root hairs (Figure 23D to F). At 3 WAI with M. loti, mature nodules had 

developed on patchy mutants. The nodules contained bacteroids, as indicated by 

DAPI staining of 80-µm histological sections, and where indistinguishable from the 

wild type (Figure 24A to D). The frequency of nodule primordia and mature nodules 

at 3 WAI was similar in wild type and patchy plants, but significantly more mature 

nodules had developed on wild type plants 12 WAI (Figure 24E). We furthermore 

tested, whether growth temperature had an effect on the nodulation frequency, as it 

is the case with Lotus nucleoporin mutants (Kanamori et al., 2006; Saito et al., 

2007). While there were no differences between patchy and wild type plants at 18 

°C, wild type plants contained significantly more nodule primordia and mature 

nodules at 24 °C than patchy mutants (Figure 24F). This indicates that nodulation 

conditions were better at 24 °C than at 18 °C but the maximum number of nodules 

formed by patchy mutants had been reached at 18 °C. Consequently, differences in 

nodule numbers became apparent only at 24 °C. Our observation suggest that the 

nodules might be infected via rare IT formation, which then leads to thorough 

rhizobial colonization of the nodule cortex. Since POLLUX function is required for 

rhizodermal infection, the patchy/pollux-7 seems to be a weak allele that has resid-

ual signaling activity leading to the activation of symbiotic gene expression. 
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Figure 23. Rhizobial Entrapment at Root Hairs and Rare Infection Thread Formation in 
patchy. 
(A) to (F) Light micrographs of patchy root sites, where rhizobial entry via an IT (A to C) or 
rhizobial proliferation at the root surface (D to F) had occurred. At both sites the formation of 
a nodule primordium was initiated. BF (A and D) and epifluorescence using RFP N3-filter (B 
and E) images were taken 10 DAI with M. loti expressing DsRed. Overlays are shown in (C) 
and (F). Scale bars: 50 µm. 
(G) Frequencies and amounts of ITs observed on WT and patchy. 
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Figure 24. Mature Nodule Are Formed at Reduced Frequency in patchy. 
(A) to (D) Light micrographs of 80-µm sections from mature WT (A and B) and patchy (C and 
D) nodules. Nodules were harvested 3 WAI with M. loti. Rhizobial colonization was visualized 
by DAPI staining and epifluorescence microscopy using a DAPI A4-filter. Scale bars: 100 µm. 
(E) to (F) Mean (n≥5 in E and n≥14 in F) mature nodules and nodule primordia formed on WT 
and patchy roots at 3 and 12 WAI with M. loti and cultivation in the glasshouse (E) or 3 WAI 
with M. loti and cultivation at 18°C or 24°C constant (F). Error bars indicate SD and different 
letters above bars indicate significant differences (p≥0.05, t-test). 
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NENA, a Lotus japonicus Homolog of Sec13 Is Required for Rhizodermal 
Infection by Arbuscular Mycorrhiza Fungi and Rhizobia but Dispensable 
for Cortical Endosymbiotic Development 

Identification of the AM Mutant nena 

Among the mutants isolated that exhibited heritable AM defects, we obtained one 

family (SL1841-N) containing individuals with a severe and early defect during AM 

development. In the course of this work the causative mutation has been identified 

(see below) and the corresponding mutant allele was named nena-1. When culti-

vated together with ‘G. intraradices-like’ BEG195 (Stockinger et al., 2009) nena-1 

mutants displayed balloon-shaped swollen hyphal structures that had formed at 

sites of attempted fungal penetration of the root surface (Figure 25B). These struc-

tures were not observed on wild type plants (Figure 25A). Confocal laser scanning 

microscopy (CLSM) revealed that AM fungal infection of nena-1 mutants was 

aborted after invasion between rhizodermal cells at the stage of intracellular pas-

sage through the outer root layers (Inset in Figure 25B; Supplemental Figure 8B). 

This stage is essential for the succeeding colonization in the wild type (inset in 

Figure 25A; Supplemental Figure 8A). Consequently, roots of nena-1 mutants that 

were co-cultivated with BEG195 at 24 °C were nearly void of internal hyphae (Figure 

25E). Successful infection of nena-1 was observed at low frequency. In these cases, 

hyphae traversed the rhizodermal layer despite obvious obstructions (Supplemental 

Figure 8C) and led to cortical colonization and formation of arbuscules that were 

indistinguishable from the wild type (Figure 25C and D). 

nena Mutants Have Temperature Dependent Defects in AM and RNS 

The AM phenotype of nena mutants was assessed at different growth temperatures. 

The initial AM phenotypic analyses were performed at 24°C and the observations 

(Figure 25E) differed strongly to the AM phenotype obtained at 18°C growth tem-

perature (Figure 26A and B). The frequency of successful infections (1.36 ± 0.14 per 

cm root tissue) in nena-2 cultivated at 18°C approached wild type levels (2.24 ± 

0.62), although balloon-like hyphal structures were still present. Consequently, 

average hyphal and arbuscule colonization of nena-2 did not differ significantly from 

the wild type. 
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Figure 25. nena Is Impaired in AM Fungal Infection.  
(A) to (D) Confocal micrographs of WGA-Alexa Fluor 488 stained AM fungal structures 
(green in (A) and (B)) associated with WT and nena plants. In WT (A) the AM fungus pene-
trated the outer cell layers (arrows), colonized the root cortex and formed arbuscules. In 
nena-1 (B) hyphae grew on the root surface and balloon-shaped hyphal structures (arrow-
heads) occurred at aborted infection sites. Insets show infection sites at higher magnifica-
tion. Root cell walls were stained with propidium iodide and are shown in magenta. Arbus-
cules formed in nena-2 (D) did not differ from WT (C). AM phenotypes of nena-1 and nena-2 
did not differ. Images represent observations from ≥ 8 plants per line co-cultivated with 
BEG195 for 3 w. (A) and (B) Z-projections of GFP/RFP overlays; (C) and (D) GFP channel. 
Scale bars: (A) and (B) 100 µm (C), (D) and insets 20 µm. 
(E) Mean hyphal colonization (Hyphae, %), arbuscular colonization (Arbuscules, %) per root 
and successful infection sites per cm per root (Infections) from WT and nena plants (n≥4) 
after 3 w of cultivation at 24 °C. Small values are shown by numbers above bars. Error bars 
show standard deviations (SD). Different letters above bars indicate significant differences 
(p≤0.05, t-test) between pairwise comparisons. 
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Figure 26. AM and Nodulation Defects of nena Are Temperature Dependent.  
(A) Confocal z-projection of AM structures (green) in nena-1 co-cultivated with BEG195 for 3 
w at 18°C. Arrows and arrowheads indicate successful and aborted infection events, 
respectively. Inset shows an infection site at higher magnification. Scale bars: 100 µm, inset 
20 µm. 
(B) Mean hyphal colonization (Hyphae, %), arbuscular colonization (Arbuscules, %) per root 
and mean successful infection sites per cm per root (Infections) from WT and nena-2 plants 
(n≥4) after 3 w of cultivation at 18°C. Error bars show SD. Different letters above bars 
indicate significant differences (p≤0.05, t-test) between pair wise comparisons. 
(C) Average nodule numbers at 18°C vs. 24°C growth temperature on WT and nena individu-
als (n≥10). nena formed less nodules at 24°C than at 18 °C and, except for nena-3 at 18°C, 
nodulation was reduced in nena compared to WT. Error bars show SD. Different letters 
above bars indicate significant differences (p≤0.05, t-test) between pair wise comparisons. 

Aborted AM fungal infection displayed by nena was similar to AM phenotypes of 

common sym mutants (Kistner et al., 2005). Therefore, nena mutants were inocu-

lated with Mesorhizobium loti strains that are compatible with wild type L. japonicus. 

The nodulation assays at different temperatures revealed that nena-1, nena-2 and 

nena-3 formed fewer nodules than wild type plants and that this reduction was also 

stronger at 24°C compared to 18°C (Figure 26C). Temperature dependent defects in 

nodulation, AM colonization and arbuscule formation have previously been de-

scribed for nup133 and nup85 Lotus mutants (Kanamori et al., 2006; Saito et al., 

2007). 

Map-based Cloning of NENA 

In order to assess the phenotypic segregation and identify the causative mutation by 

map-based cloning, a mutant M3 individual from SL1841-N was crossed to the 



 
70 

polymorphic mapping parent L. japonicus ecotype MG-20 (Miyakojima) (Kawaguchi 

et al., 2001) and F2 mapping populations were generated from self-progeny. From 

these, 75 out of 276 phenotyped F2 individuals were scored as AM defective, 

matching the segregation of a monogenic recessive trait (χ2 probability = 0.40).  

AM phenotypes of 276 F2 self-progeny from MG-20 x nena-1 (SL1841-N, M3 mutant 

J8690) were determined (see AM mutant screen), genomic DNA was isolated and 

scanned for co-segregation with SSR markers. Primer sequences and marker 

information were retrieved from the miyakogusa.jp website (http://www.kazusa.or.jp/ 

lotus/). Within the scored F2 individuals, the allelic distribution of 30 SSR markers 

evenly covering the 6 chromosomes of L. japonicus displayed co-segregation of 

Gifu alleles with the mutant phenotype at the south end of LG II, between SSR 

markers TM0550 and TM0329 (Figure 27, top). After delimiting the location of NENA 

to a 0.4 cM interval on the south end of LG II, co-segregating markers were posi-

tioned on a physical contig of transformation-competent artificial chromosomes 

clones that were completely sequenced in the context of the Lotus genome project 

(Figure 27, bottom). Additional markers were derived from the contig sequence and 

used for identification of recombination events between markers flanking the target 

region. 2093 F2 individuals were genotyped by power mapping using SSR markers 

TM0304 and TM0018 flanking the nena locus. AM phenotypes of 7 recombinant 

individuals, which carried only one MG-20 allele at one of the two marker positions, 

were determined in the F2 generation and the F3 self-progeny. Further co-segrega-

tion analysis was performed with the SSR markers TM0060, TM0635 and SSR17, 

which was predicted from the CM0060 contig sequence by SSRIT (Temnykh et al., 

2001). After reducing the nena locus to less than 150 kb by map-based cloning 

(Figure 27), bioinformatic analysis of the sequence within the target region anno-

tated 32 NENA candidate genes. Due to the interaction of yeast proteins Sc Seh1 

and Sc Nup85 (Brohawn et al., 2008; Debler et al., 2008) and the previous identifica-

tion of the symbiosis gene NUP85 in Lotus (Saito et al., 2007), a SEH1-like anno-

tated gene was picked out as a candidate. The candidate gene was sequenced and 

a C-T transition leading to a premature stop codon at AA 87 of the putative 326 AA 

(35.5 kD) protein was identified in the nena-1 mutant (Supplemental Figure 6 and 

Table 6). 
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Figure 27. Map-based Cloning of NENA. 
Genetic map of chromosome II (top) and physical map of contigs CM0304 and CM0018 
encompassing CM0060 incl. the NENA locus (bottom). Positions and names of co-segrega-
ting SSR markers and the NENA gene are indicated. Ratios are numbers of recombi-
nant/non-recombinant alleles of respective markers in nena-1 x MG20 F2 sub-populations. 
Marker names (except SSR17) and distances accord to the Lotus genome project. 

The predicted NENA gene has an open reading frame (ORF) of 2023 nucleotides 

that is composed of 7 exons (Figure 28A). The gene structure has been verified by 

sequencing cDNA clones obtained from the Lotus Resource Center (Asamizu et al., 

2000). The cDNA sequences carried 5’ and 3’ untranslated regions of 57 and 429 

bp, respectively. The co-segregating marker SSR17 is located directly 5’ of the start 

codon of NENA.  

BLAST analysis of the L. japonicus genome revealed a partial duplication of the 

NENA gene, ψNENA, which aligns to the first 409 nucleotides of the NENA ORF with 

94% sequence identity. ψNENA has an ORF of 488 bp and has not been physically 

mapped yet. Interrogation of public EST and protein databases gave no indication 

for the expression of ψNENA. In addition, RT-PCR analyses on samples from 

different Lotus tissues did not show any corresponding transcripts (data not shown). 

Therefore, ψNENA most likely represents a pseudogene. 

We confirmed the obtained in silico data by genomic DNA gel blot analysis with two 

probes corresponding to 1.1 kb 5’ sequence (I) and 0.5 kb from the centre (II) of 

NENA (Figure 28B). Probe I showed two hybridization bands per genomic digest 

and the patterns were as predicted by the genomic sequences surrounding NENA 

and ψNENA. Probe II yielded one band per digest corresponding to the predicted 

NENA fragments. 
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Figure 28. NENA Is a Single Copy Gene That Is Expressed in Various Tissues and 
Upregulated in Nodulated Roots. 
(A) Gene structure of NENA. Filled boxes, white boxes and triangles represent coding exons, 
untranslated regions and introns, respectively. Positions of start and stop codons of the 
NENA ORF, mutations in different nena alleles and restriction sites of selected endonucle-
ases are indicated. Braces span the restriction fragments used as probes in DNA gel blot 
analyses, as referred to in (B). 
(B) DNA gel blot radiographs of L. japonicus genomic DNA digested with BglII, EcoRI, NdeI 
or NsiI hybridized with Probe I or Probe II. Arrowheads mark bands that do not correspond 
to the genomic context of NENA but are due to partial gene duplication.  
(C) Expression of NENA in leaves, flowers and roots (2 biological replicates) analyzed by RT-
PCR. NENA and the reference gene EF-1α were amplified with (+RT) or without (-RT) 
preceding reverse transcription. 
(D) Quantitative PCR analysis of NENA expression in WT and nena-1 roots 24 h after NF 
treatment or 3 w after M. loti inoculation (+). Expression is relative to mock (-) treated WT 
controls (c) and normalized to EF-1α levels. Mean values and standard errors (SE) were 
derived from 3 biological replicates. Asterisks indicate significant (p<0.05) differences to c 
levels.
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Using the Lotus TILLING resource (Perry et al., 2003) we obtained an allelic series 

for NENA that includes one additional nonsense allele (nena-2, W257Stop) and 

various alleles with missense mutations (nena-3 to 5; Supplemental Figure 6 and 

Table 6). nena-6 was identified by forward genetics using a C6+ ion beam irradiated 

MG-20 population (M. Kawaguchi, unpublished). The AM and RNS phenotypes of 

nena-2 were the same as of nena-1 (Figure 25E), confirming the involvement of 

NENA in root symbiosis. The nodulation phenotype of nena-3 was comparatively 

weaker but nodulation was still significantly reduced at 24 °C compared to wild type 

(Figure 26C). No symbiotic defects have been observed in nena-4 and nena-5 (Table 

6). 

Table 6. nena Alleles and Symbiotic Phenotypes 

Allele Line Mutation Nodulation AMa 

nena-1 SL1839-1, SL1841-N Q97Stop -, t.s. +/-, t.s. 

nena-2 SL0181-1 W257Stop -, t.s. +/-, t.s. 

nena-3 SL1546-1 G117E +/-, t.s. n.d. 

nena-4 SL0703-1 P270S + n.d. 

nena-5 SL1747-1 G11S + n.d. 

nena-6 C1978 Del./Inversion* -** -** 
a, hyphal colonization; -, significantly reduced at 24°C and 18°C; +/-, significantly reduced 
at 24 °C only; +, wild type-like; t.s., temperature sensitive, significantly lower symbiotic 
performance at 24 °C vs. 18 °C; *, NENA disruption by chromosomal rearrangements 
from C6+ irradiation of MG-20; **, determined at 22 °C only; n.d., not determined. 

 

NENA Is Expressed in Shoots and Roots and Up-regulated during Nodulation 

Expression of NENA was determined by RT-PCR analysis. Transcripts were de-

tected in all analyzed tissues including roots, flowers and leafs, without major 

variation in expression levels relative to the reference gene EF-1 α (Figure 28C). 

Expression of NENA in wild type roots was unaltered after NF treatment, but in-

creased 3 WAI with M. loti relative to mock-treated roots. Strong down regulation 

relative to wild type levels indicated a post-transcriptional degradation of nena-1 

mRNA possibly due to nonsense-mediated decay (Figure 28D). Therefore, nena-1 

most likely is a null allele. 
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The NENA Gene Complements nena-1 Mutants 

We have introduced the NENA gene including 2 kb of putative promoter region 

lacking further predicted genes into a binary vector containing an RFP marker for C-

terminal translational fusions (NENA:RFP). Transgenic (hairy) roots were generated 

by Agrobacterium rhizogenes mediated transformation with the T-DNA construct 

and complementation of the symbiotic phenotype was assayed. AM was fully 

restored in the nena-1 mutant background, confirming that the identified mutation is 

causative for the nena phenotype (Figure 29D). Introduction of NENA:RFP also 

restored nena-1 nodulation deficiency upon M. loti inoculation (Figure 29A to C and 

Table 7). As negative control, transformation with the same binary vector containing 

only the 2 kb 5’ regulatory NENA sequence (NENApro:RFP) did not complement 

nena-1 (Figure 29E to H and Table 7). Nodule colonization was visualized by rhizo-

bial DsRed expression (Figure 29B). The binary vector contains an ER-targeted 

enhanced green fluorescent protein (ER-GFP) marker (Karimi et al., 2002), which 

was used to monitor successful transformation (Figure 29A and E). Furthermore, 

expression of NENA:RFP and NENApro:RFP was confirmed by CLSM (Figure X B, C 

and G).  

Complementation of nena-1 mutants was also achieved by A. rhizogenes mediated 

transformation with C-terminal NENA fusion to GFP controlled by the constitutive 

CaMV 35S promoter (35Spro:NENA:GFP) and by the predicted NENA ortholog from 

Arabidopsis (At1g64350) under control of the 5’ regulatory NENA sequence from L. 

japonicus (Table 7). 

Table 7. Complementation Analysis of nena-1 by A. rhizogenes-Mediated Transformation 

Line Construct Nodulation Ratioa Nodules (SD)b 

nena-1 NENApro:RFP 4/30 0.3 (0.7) 

nena-1 NENA:RFP 35/37 7.4 (5.5) 

nena-1 NENApro:AtSeh1 34/45 5.3 (5.2) 

nena-1 35Spro:NENA:GFP 8/9 7.3 (6.9) 

WT NENApro:RFP 5/5 6.6 (3.1) 

WT NENA:RFP 5/5 10.6 (5.4) 

WT NENApro:AtSeh1 12/12 11.6 (7.4) 
a Ratios indicate numbers of successfully transformed plants that formed nodules vs. all 
plants of the indicated line that were successfully transformed with the indicated construct 
b Mean nodule number per successfully transformed plant 
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NENA Belongs to the Sec13/Seh1 Protein Family 

BLAST analysis of the NENA protein revealed 25% AA identity to Sec13 homolog 1 

(Seh1) from yeast or humans. Moreover, there is 25% and 24% identity to the Sec13 

protein of humans and yeast, respectively. Sec13 and Seh1 both are nucleoporins 

belonging to the yeast Nup84/ human Nup107-160 subcomplex (herein after re-

ferred to as the Nup84 subcomplex) (Siniossoglou et al., 1996; Belgareh et al., 

2001). In addition, Sec13 together with Sec31 forms the framework of COPII vesicle 

coats (Fath et al., 2007). We have reconstructed the phylogenetic relationships of 

Seh1, Sec13 and NENA related sequences from yeast, humans and different plant 

species (Figure 30). The trees obtained comprise two clearly separated clusters: the 

1st cluster contains proteins that are closely related to Sec13. The 2nd cluster con-

tains one member per plant species and includes NENA. Seh1 from yeast and 

humans form a 3rd branch. Based on the calculated phylogenetic distances, mem-

bers of the 2nd cluster, including NENA, are more closely related to Seh1 than to 

Figure 29. Transgenic Comple-
mentation of nena-1. 
(A) to (D) A. rhizogenes-mediated 
transformation of nena-1 mutants 
with genomic NENA including 2 kb 
of 5’ regulatory sequence fused to 
RFP (NENA:RFP) led to restoration 
of RNS (A to C) and AM 
establishment (D). 
(E) to (H) A. rhizogenes-mediated 
transformation of nena-1 with the 
2 kb 5’ regulatory sequence fused 
to RFP (NENApro:RFP) did not 
restore RNS (E to G) and AM (H). 
Epifluorescence microscopy 
images show GFP expression in 
transgenic roots (A and E) and 
DsRed expression by M. loti in 
root nodules (B and F) using a 
GFP and a RFP filter, respectively. 
Corresponding white light 
illumination images are shown in 
(C) and (G). Root segments 
containing AM fungal structures 
(green) stained with WGA-Alexa 
Fluor 488 were visualized by 
DIC/epifluorescence microscopy 
using a GFP filter (D and H). Scale 
bars: (A) to (C) and (E) to (G) 2 mm, 
(D) and (H) 40 µm. 
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Sec13. The L. japonicus genome contains in addition at least two genes, SEC13-like 

1 and SEC13-like 2, which are more closely related to Sec13 than the NENA gene. 

 

Figure 30. Phylogenetic Relationships of Sec13/Seh1-like Proteins. 
The phylogenetic tree includes AA sequences from yeast, humans and representative 
species of bryophytes (Physcomitrella patens), gymnosperms (Picea spp.), monocots (Oryza 
sativa and Zea mays) and dicots (A. thaliana, L. japonicus, Populus trichocarpa and Vitis 
vinifera). Three statistically supported clusters are highlighted: Sec13 related sequences on 
the left, yeast/human Seh1 in the middle and plant Seh1 related sequences including NENA 
on the right. Distances correspond to the best fitting Maximum-Likelihood (ML) tree. Branch 
labels indicate bootstrap values (n=1000) of ML/NJ/maximum-parsimony consensus trees. 
Thick, medium and thin branches indicate bootstrap values ≥90, ≥80 and <80 in at least two 
consensus trees, respectively. Labels at the branch tips include GenBank accession num-
bers or gene names (accession numbers in METHODS). Isoforms from splice variants were 
excluded from the analysis. 

NENA and NUP85 of L. japonicus Interact in Yeast 

Sc Seh1 and Sc Nup85 are bona fide constituents of nuclear pores and interact in 

yeast (Siniossoglou et al., 1996). In vitro reconstitution of recombinant Sc Seh1, Sc 

Nup85 and remaining components of the Nup84 subcomplex, including Sc Nup133, 

revealed their relative positions in a Y-shaped complex (Figure 31B) (Lutzmann et 

al., 2002). Therefore, we tested for interaction between NENA, NUP85 and NUP133 

by yeast two-hybrid analysis. The results fully support homologous functions in 

Lotus: co-transformation of NENA fused to the Gal4 activating domain (AD) and 

NUP85 fused to the Gal4 binding domain (BD) allowed yeast growth on selection 

media, whereas no growth was observed when AD:NENA was combined with BD: 

NUP133, BD:NENA or the empty BD vector (Figure 31A). This was confirmed by 

switching AD and BD (Supplemental Figure 31B). Furthermore, SEC13-like 1 and 
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SEC13-like 2 did not show interaction with NUP85, but interacted with the corre-

sponding partner from yeast, Sc Nup145 (Supplemental Figure 31A). 

 

 

Figure 31. NENA Interacts with NUP85 from L. japonicus and Adopts a β-propeller 
Structure According to Homology Modeling. 
(A) Gal4-based yeast two-hybrid assay for interaction between NENA as prey (AD) and 
NUP85, NUP133 or NENA as bait (BD). The empty bait vector (-) was used as negative 
control, AD:Sc NUP120 and BD:Sc NUP145 as positive control. Co-transformed yeast was 
grown in 3 dilutions on synthetic dropout medium lacking leucine and tryptophan (-LW) or 
adenine, histidine, leucine and tryptophan (-AHLW). 
(B) Schematic representation of the yeast Nup84 subcomplex and the arrangement of its 
components (Lutzmann et al., 2002). Putative homologs known to be required for root 
symbioses in L. japonicus are underlined. Color scheme refers to (A) and (C). 
(C) Ribbon representation of a conceptual β-propeller formed by NENA (blue β strands, 
model comprises residues 11-317) and the N-terminus of NUP85 (red, res. 36-94). The 
model is based on crystal structures of Sc Seh1•Sc Nup85. Individual blades are delimited 
by dashed lines and numbered. Letters correspond to successive β strands in each blade. 
Lack of β strands in blades 6 and 7 is due to missing template data and incomplete se-
quence alignment. Positions of mutations in alleles nena-1, -2 and -3 are indicated. 
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NENA Is a WD40 Repeat Protein 

Structural prediction of the NENA protein indicated that the distribution of identified 

WD40 repeats matches well to the architecture of Sc Seh1 (Supplemental Figure 6) 

and places NENA into the large family of β-transducin-like/WD40 repeat proteins 

(Neer et al., 1994). Members of this family exhibit a highly conserved 3-dimensional 

‘β-propeller’ structure, typically composed of 7 circularly arranged blades. Each 

blade is formed by 4 anti-parallel β strands, of which the last and the first 3 β 

strands of two adjacent blades correspond to one WD40 unit (Smith et al., 1999). 

Based on crystal structures of the Sc Seh1•Sc Nup85 pair (Brohawn et al., 2008; 

Debler et al., 2008) and the alignment of Sc Seh1 and NENA (Supplemental Figure 6) 

we created a 3D model of the NENA protein (Figure 31C). The arrangement of 

predicted secondary structures is largely consistent with the 6 bladed β-propeller 

fold of Seh1, except for a helix between strands 3D and 4A and the C-terminal loop, 

which are not supported due to alignment gaps and the lack of template data in 

disordered regions. The Seh1•Nup85 β-propeller is completed and stabilized by the 

domain invasion motif (DIM) of Sc Nup85 (Brohawn et al., 2008; Debler et al., 2008). 

Therefore we created a homology model of NUP85 comprising residues 36 to 94 

and fitted it to the DIM of yeast Nup85. Although complete modeling of the seventh 

blade including the strands required for the Velcro closures (Smith et al., 1999) 

between Sc Seh1 and Sc Nup85 was not possible due to sequence divergence at 

the beginning of the aligned sequences, β strands 7B and C matched well to the 

template structure. 

NENA and NUP85 Are Located at the Nuclear Rim 

In order to determine the sub-cellular localization of the NENA protein in Lotus roots, 

the NENA:RFP fusion construct, which complemented the symbiotic defects of 

nena-1 (Figure 29A to D and Table 7), was introduced into nena mutants by A. 

rhizogenes-mediated transformation. RFP signal detected by CLSM of transgenic 

roots was located at the nuclear rim, as shown in optical sections from rhizodermal 

cells (Figure 32B and C). The identity of the sub-cellular compartment was verified 

by perinuclear ER-GFP expression of the transformation marker and by comparison 

with brightfield micrographs (Figure 32E and F). In contrast, hairy roots that were 

transformed with NENApro:RFP showed red fluorescence in the cytoplasm and inside 

the nucleus (Figure 32G to J), as expected for freely diffusible RFP. Moreover, 
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35Spro:NUP85:GFP that has been introduced into wild type roots by A. rhizogenes-

mediated transformation was also localized at the nuclear rim (Figure 32A). 

 

 

Figure 32. Perinuclear in vivo Localization of NUP85 and NENA Fusion Proteins. 
(A) Overlay of fluorescence and brightfield confocal micrographs showing perinuclear green 
fluorescence in root tip cells expressing 35Spro:NUP85:GFP. 
(B) Overlay of fluorescence and brightfield confocal micrographs showing perinuclear red 
fluorescence in root tip cells expressing NENA:RFP and the ER-GFP marker (not shown). 
(C) to (F) Confocal micrographs of a rhizodermal cell expressing NENA:RFP (C and F) and 
the ER-GFP marker (D). 
(G) to (J) Confocal micrographs of a rhizodermal cell expressing cytonucleoplasmic 
NENApro:RFP (G and J) and the ER-GFP marker (H). 
Images are from WT (A) and nena-1 (B to J) A. rhizogenes-transformed roots and were 
acquired in sequential mode at Excitationλ=561nm/Detectionλ=570–630nm (RFP), 
Excitationλ=488nm/Detectionλ=495–555nm (GFP) or brightfield (BF). Scale bars: (A) and (B) 
40 µm, (C) to (J) 5 µm. 
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NENA Is Required for Rhizodermal Nod Factor Response  

NUP133 and NUP85 are both required for NF-induced Ca2+ spiking (Kanamori et al., 

2006; Saito et al., 2007). Therefore, we measured intracellular Ca2+ concentrations 

by microinjection of a reporter dye into root hairs of young seedlings. 75 % of wild 

type root hairs showed Ca2+ spiking after NF application. In contrast, there was only 

one positively scored response in 90 analyzed nena-1 root hairs (Figure 33). This 

single Ca2+ spiking response was weaker and observed in a young root hair, where 

the nucleus was located at the base of the trichoblast. Usually, older root hairs, with 

more apical nuclei, are used for Ca2+ spiking measurements by microinjection 

(Supplemental Figure 33B) (Miwa et al., 2006). 

 

 

 

Analysis of Nod Factor-Induced Calcium Spiking 
by Microinjection of Oregon Green 488 BAPTA-1 
dextran MW10,000 

 Temp.a Root Hairsb Plantsb 

18 °C 53/72 32/40 WT 

24 °C 22/28 12/13 

18 °C 0/48 0/30 
nena-1 

24 °C 1/42 1/21 
a Ambient temperature at which seedlings where 
grown and measurements where performed 
b Ratios indicate positive vs. total measurements 

Figure 1. Calcium Spiking in Root Hairs of Wild Type and nena-1. 
(A) Fluorescence ratios between ratiometric Ca2+ indicator Oregon Green 488 BAPTA-1 (OG) and 
reference dye Texas Red (TR) after NF application to roots are indicated over time. The upper 
trace is representative of positive spiking in L. japonicus Gifu wild type. The lower trace 
represents an exceptional positive spiking in nena-1. 
(B) Images of one Ca2+ spike before (15 sec time point), during (30 sec) and after (45 sec) a 
perinuclear Ca2+ burst in a WT root hair and a nena-1 trichoblast. False colors represent 
fluorescence ratios between OG and TR. 
(C) Representative traces for positive Ca2+ spiking are shown in (A). 

C 
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Since residual nodulation in nena might be connected to rare Ca2+ spiking events, 

we further investigated the expression of genes that are induced by NF or rhizobia. 

Among these, NIN expression provides temporal and spatial information, because it 

is rapidly induced in rhizodermal cells, including root hairs, of the susceptible zone 

(Radutoiu et al., 2003) and later on in cortical cells of developing nodules (Schauser 

et al., 1999). Using the GUS reporter gene fused to the NIN promoter region, NIN 

induction was shown to be absent in nfr1 mutants (Radutoiu et al., 2003). Hence, we 

used this reporter construct to analyze NIN expression patterns in nena-1. In con-

trast to the wild type, none of the transformed root systems showed GUS activity in 

rhizodermal cells of the susceptible zone in response to NF or M. loti up to 3 DAI. At 

7 and 16 DAI, however, transformed nena-1 mutants showed strong GUS activity in 

the cortex and single cells of the outer layers of developing nodules (Table 3, Figure 

34A and Supplemental Figure 9). 

 

Figure 34. Rhizodermal Nod Factor Response Is Impaired Whereas Induction of 
Symbiosis Genes at Nodule Primordia Is Not Affected in nena. 
(A) Brightfield images of X-Gluc incubated roots transformed with NINpro:GUS after NF 
treatment or inoculation with M. loti. No blue rhizodermal staining was observed in nena-1 
roots after NF treatment. Images correspond to Table 3. Boxed regions are shown at higher 
magnification. Scale bars: 0.2 mm. 
(B) and (C) Quantitative PCR analysis of symbiosis gene expression in WT and nena-1 roots 
24 h after NF treatment (B) or 3 w after M. loti inoculation (C). Expression is relative to mock 
treated samples and normalized to EF-1α levels. Mean and SE were derived from 3 biologi-
cal replicates. Asterisks indicate significant (p<0.05) differences in gene expression between 
NF or M. loti and mock treatments. 
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The absence of early NF responsiveness was further corroborated by quantitative 

RT-PCR analysis of NIN and additional early-induced symbiosis genes (Figure 34B). 

SbtM4 and SbtS encode subtilisin-like serine proteases that are specifically ex-

pressed during AM and RNS. Rhizodermis-specific expression of SbtS is induced 

by NF and ceases after approx. two w of nodule development, whereas SbtM4 

remains up regulated in nodules (Kistner et al., 2005; Takeda et al., 2009). While 

none of these genes was up regulated in nena-1 roots treated with NF, NIN, SbtM4 

and the early nodulin ENOD40-1, which is strongly expressed in nodules (Takeda et 

al., 2005), were significantly induced in nodulated nena-1 and wild type roots at 3 

WAI with M. loti. SbtS was not induced in nena-1 but upregulated in the wild type 

after NF treatment and 3 w after M. loti inoculation (Figure 34C). 

Table 8. NINpro:GUS Expression Analysis in Transgenic Roots of Wild Type and nena-1 
Genetic Background 

Treatment Line  Blue staininga 

WT 8/10 
24 h Nod factor 

nena-1 0/12 
WT 5/6 

1 day M. loti 
nena-1 0/8 

WT 8/10 
3 days M. loti 

nena-1 0/11 
WT 8/11 

7 days M. loti 
nena-1 1/12 

WT 11/11 
16 days M. loti 

nena-1 10/11 
a Ratios indicate numbers of plants that showed GUS expression in rhizodermal or nodule 
cortical cells divided by the total number of analyzed root systems per indicated treatment. 

 

Rhizobial Infection of nena Resembles Crack Entry 

The lack of early responses to rhizobia displayed by nena-1 conflicted with our prior 

observation of infected nodules on nena mutants, as visualized by inoculation with 

DsRed expressing M. loti. Therefore, we quantified the ITs that lead to rhizobial 

invasion of nodules via RHC, in order to check for rare infection events. However, no 

root hair ITs were observed by fluorescence microscopy of nena-1 mutants at 7 DAI 

(n=19) and 12 DAI (n=21) (Figure 8A). In parallel, plants were inoculated with M. loti 

strain R7A expressing the lacZ reporter and microscopically analyzed after 7 d of 

growth at 18 °C. Wild type plants showed normal symbiotic development, including 
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RHC, rhizobial microcolonies and root hair ITs (Figure 36A). In contrast, nena-1 

mutants exhibited abnormal deformation of root hairs in responsive parts of the root. 

Occasionally, rhizobial microcolonies were observed at the base of deformed root 

hairs (Fig. 36B). RHC or root hair ITs were not observed in any of the inspected 

nena-1 mutants. 

In order to test for delayed nodule formation and rhizobial infection in nena, plants 

were analyzed at additional time points after inoculation with M. loti expressing 

DsRed. In the wild type, the number of nodules increased throughout the time 

course. All nodules were infected and colonized (Figure 36C), except at 51 DAI, 

where in two cases a small, uninfected nodule was observed (Figure 35B and D). In 

contrast, initiation of nodulation was delayed in nena-1, followed by a moderate 

increase in nodulation until 21 DAI. More than 90% of these nodules were unin-

fected. At 51 DAI, the average number of infected nodules increased to 1.11, while 

uninfected nodules decreased to 1.00, suggesting a proportional infection of initially 

uninfected nodules between 21 DAI and 51 DAI (Figure 35B). Nodulation in nena-1 

was strongly reduced compared to the wild type and no root hair ITs were observed 

in nena-1 throughout the time course. However, we observed small patches of 

rhizobia on the root surface that coincided with uninfected nodules. Sectioning and 

CLSM of such empty nodules confirmed that rhizobia were confined to the surface 

and did not enter the cortex (Figure 36D). By contrast, analysis of nena-1 nodules 

that showed rhizobial colonization at 21 DAI revealed intercellular intrusions of 

rhizobia spanning several cell layers from the apex into the nodule cortex. Hence 

this route was the most probable entry site for further nodule colonization (Supple-

mental Figure 10). 

The infection structures observed in nena-1 were reminiscent of crack entry. Some 

legumes, e.g. S. rostrata, can switch between intracellular infection during aerated 

conditions and crack entry during root submergence (Goormachtig et al., 2004). 

Therefore, we tested whether the water regime had an effect on RNS in wild type 

Gifu and nena-1 plants. Indeed, the proportion of infected nodules per nena-1 plant 

was significantly increased under waterlogging conditions compared to aerated 

conditions (Figure 35C and D). Since ethylene accumulation in the water saturated 

root environment is the chief cause for intercellular infection, we further tested if 

inhibition of endogenous ethylene production by AVG treatment can suppress 

infection during waterlogged conditions. The proportion of infected nodules was 
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significantly reduced by the addition of 5 µM AVG prior to rhizobial inoculation 

(Figure 35C and D). The data confirm that nodule infection under waterlogging 

conditions depended on ethylene and thus provides strong evidence for intercellular 

infection of nena-1 nodules. Infection rates did not significantly change in wild type 

plants, although the average nodulation rate was reduced under waterlogging 

conditions with or without AVG (Figure 35C and D).  

 

Figure 35. Rhizobial Infection of nena Does Not Occur via Root Hairs and Is Promoted 
by Ethylene. 
(A) Quantification of root hair ITs 7 and 12 DAI with M. loti expressing DsRed and growth 
under aerated conditions; no ITs were observed in nena-1. Mean and SD were calculated 
from ≥19 (nena-1) and ≥14 (WT) root systems per time point. 
(B) Nodulation time course during aerated growth conditions after inoculation with M. loti 
expressing DsRed. Mean and SD were calculated from 13 to 21 nena-1 (triangles) and 12 to 
18 WT (squares) root systems per time point. Open/gray and closed/black symbols repre-
sent total and infected nodules, respectively. If all nodules were infected, only infected 
nodules are indicated. If all nodules were uninfected, only total nodules are indicated. 
(C) and (D) Quantification of nodules from WT and nena-1 plants cultivated under different 
conditions 21 DAI with M. loti expressing DsRed. (C) Bars indicate mean percentages of 
uninfected (gray) and infected (black) nodules per nodulated individual. Error bars indicate 
SE. Different letters above bars indicate significant differences (p≤0.05, t-test) between 
pairwise comparisons. (D) Mean per plant, SD and number of nodulated plants vs. total 
number of plants per line and treatment (nodulation ratio) are indicated. 

Further evidence for an intercellular infection mode was obtained by brightfield 

microscopy of 4 µm sections from young nena-1 nodules that contained subepi-

dermal infection foci (Figure 36F). In addition, ITs were observed in the root cortex 

(Figure 36G). No subepidermal infection foci were observed in any of the sections 

from young wild type nodules (Figure 36E). Despite the apparent defects during the 

early infection process, sections of mature nodules did not indicate any structural 
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alterations in cortical infection and nodule development in nena-1 compared to the 

wild type (Figure 36H to K). 

 

Figure 36. Rhizobial Microcolonies at the Root Surface of nena-1 Lead to Nodule 
Formation and Intercellular Entry. 
(A) and (B) BF DIC images from roots hairs 7 DAI with lacZ-expressing M. loti and 18 °C 
growth temperature. WT plants show root hair curling (arrows) and ITs, whereas nena-1 
mutants display abnormal root hair deformation and occasional colony formation by rhizobia 
(arrowhead). Images represent observations from ≥ 8 plants per line. 
(C) and (D) Confocal z-projections of 80-µm longitudinal sections of a young infected WT (C) 
and an uninfected nena-1 (D) nodule. (C) DsRed expressing rhizobia (red) have colonized the 
nodule via an intracellular root hair IT (arrow). (D) An uninfected nodule developed coinciding 
with accumulation of rhizobia at the root surface (arrowhead). Images represent samples 
from 16 DAI/aerated (C) and 21 DAI/waterlogged + 5 µM AVG (D) treatments. 
(E) to (K) Thin sections of nodule tissue stained with toluidine blue. (E) Young WT nodule 
with intracellular IT (arrowhead) spanning from the infection site (arrow) into the cortex. (F) 
and (G) Young nena-1 nodule with a subepidermal infection pocket (arrow) and cortical ITs 
(arrowhead). Insets in (E) and (G) show respective sections at lower magnification; dashed 
boxes indicate magnified areas. Longitudinal sections of mature nodules from WT (H) or 
nena-1 (J) and corresponding magnifications (I) and (K) showing colonized host cells. Plants 
were grown under waterlogging conditions and sampled 3 WAI with M. loti R7A.  
Scale bars: 50 µm, except (G) 20 µm. 

Wild type nena 
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DISCUSSION 

Symbiotic Infection of Rhizodermal Cells Is Blocked in nena 

We found that the nena-1 mutation impairs symbiotic responses of the rhizodermis. 

AM development at non-permissive temperature was mostly blocked in the outer 

root cell layers. The balloon-like hyphal structures at the infection sites resembled 

the phenotypes of other Lotus common sym mutants lacking Ca2+ spiking (Kistner et 

al., 2005). Ultrastructural analyses of AM infection sites of castor-2 (sym4-2) mutants 

indicate that abortion of infection is accompanied by the death of cells containing 

balloon-like hyphal swellings (Bonfante et al., 2000). Corresponding to the loss of 

PPA formation in M. truncatula dmi2 and dmi3 roots (Genre et al., 2005), PPA 

formation might also be deficient or absent in nena. 

Likewise, the establishment of RNS in nena-1 was blocked at the rhizodermis. 

Despite scrutinizing more than 98 root systems and using two different and sensitive 

methods that both detected ITs in the wild type, we could not detect a single 

infection thread in root hairs of nena-1 mutants grown at 24 °C, indicating that 

NENA is required at this stage of the symbiosis. Expression analysis of marker 

genes corroborated the specific lack of symbiotic responses in the rhizodermis. It 

has previously been shown that the expression of SbtS in response to M. loti is 

confined to the rhizodermis (Takeda et al., 2009). While we observed a consistent 

induction of SbtS in wild type roots, SbtS was not up regulated in nena-1 after 24 h 

NF treatment or 3 w after rhizobial inoculation. Moreover, the rhizodermal 

NINpro:GUS induction observed in the wild type was absent in nena-1. The lack of 

rhizodermal responsiveness in the nena-1 mutant was further manifested in defec-

tive NF-induced Ca2+ spiking. Residual Ca2+ spiking was detected in a single nena-1 

root hair, however, this low frequency occurrence of spiking cells does not support 

detectable infection thread formation or symbiotic gene activation in the rhizoder-

mis. In accordance to these data, nup133 and nup85 mutants were previously 

shown to be impaired in NF-induced rhizodermal responses, including Ca2+ spiking, 

RHC and IT formation at non-permissive temperatures (Kanamori et al., 2006; Saito 

et al., 2007). Residual nodulation was observed in various nup133 mutants and in 

nup85-2, raising the possibility that these mutants are infected via a mechanism 

similar to the one described here for nena mutants. 
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Symbiotic Development of Cortical Cells Does Not Require NENA 

In striking contrast to the non-responsiveness of the rhizodermal cell layer, nodules 

developed regularly on nena roots, albeit at reduced frequency. The appearance of 

the infected cortical region in nena-1 nodules was indistinguishable by light micros-

copy from wild type nodules indicating that rhizobial accommodation in the cortex 

was largely unaffected. Consistent with an intact symbiotic response of nena-1 

cortical cells was the observed NINpro:GUS expression in nodule primordia and the 

induction of ENOD40-1 and SbtM4, which are also expressed in the nodule cortex 

(Takeda et al., 2005; Takeda et al., 2009). The somewhat lower transcript abundance 

of these genes in nena-1 compared to wild type roots is likely due to the lower 

nodule number on nena roots. 

It is unclear at present why the cortical programs for nodule organogenesis and 

infection do not require NENA. It is unlikely that nodulation is caused by residual 

functional capability provided by the mutant allele, because nena-1 seems to be a 

null allele. The formation of empty nodules on nena-1 roots coincided with the 

presence of superficial rhizobial microcolonies. Spot inoculation of Lotus roots with 

NF is sufficient to induce nodule primordia (Niwa et al., 2001). We therefore think 

that microcolonies on the surface of nena roots, which have not been described in 

other common sym mutants, produce local NF concentrations sufficiently high to 

trigger the formation of nodule primordia. NF molecules are bound and immobilized 

by cell wall material and probably do not penetrate into the root cortex (Goedhart et 

al., 2000). This would imply NENA-independent signaling through the rhizodermal 

cell layer for NF-induced activation of cortical cell division. 

The apparent dispensability of NENA for cortical CCaMK activation reveals tissue 

specific differences of common SYM signaling. Accumulating evidence suggests 

that the sole function of common SYM genes upstream of Ca2+ spiking is the 

efficient and context-dependent activation of CCaMK for AM fungal or rhizobial 

infection and nodule organogenesis. Gain-of-function versions of CCaMK intro-

duced into the genetic background of common sym mutants, which lack NF-

induced Ca2+ spiking, not only activated nodule organogenesis in the absence of 

rhizobia, but also restored rhizobial infection via RHC and IT formation, as well as 

AM fungal infection (Madsen et al., 2010; Hayashi et al., 2010). These mutants also 

supported rhizobial colonization of the nodule inner tissue by transcellular ITs and 

release of bacteria from ITs into nodule cortical cells. NFR1 and NFR5, in contrast, 
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were indispensable for infection via root hair ITs, but not required for NF-dependent 

IT formation inside nodules induced by autoactive CCaMK, suggesting alternative 

NF receptors operate in the cortex (Madsen et al., 2010). The present data suggest 

that not only NF recognition, but also downstream signaling via components of the 

common SYM network required for Ca2+ spiking and CCaMK activation differs 

between rhizodermal and nodule cortical tissue. 

In contrast to rhizobial infection of Lotus, AM fungi have a propensity to overcome a 

genetic block for rhizodermal infection (Wegel et al., 1998). This revealed that 

mutants defective in SYMRK, NENA, NUP85, NUP133, CASTOR and POLLUX all 

support arbuscule development in the cortex. In the case of symrk it has been 

shown that AM fungal hyphae enter the root via an extracellular route, which is 

consistent with the mutant’s inability to provide intracellular access to rhizodermal 

and subjacent cell layers (Demchenko et al., 2004). Successful hyphal penetration of 

the outer root layer in nena mutants, leading to arbuscule formation, was clearly 

different from the wild type and might occur similarly to symrk mutants. Only 

mutants defective in the common SYM genes CCaMK and CYCLOPS, which are 

positioned downstream of Ca2+ spiking, are blocked in arbuscule development 

(Demchenko et al., 2004; Kistner et al., 2005). These observations together with the 

intact rhizobial infection of nena cortical cells suggests that not only in AM but also 

during nodule development the common SYM genes upstream of Ca2+ spiking are 

more stringently required in the rhizodermal cell layer than in the cortex. This opens 

the possibility that common SYM-mediated Ca2+ spiking may be dispensable for 

cortical responses in RNS and, in turn, implies that an alternative regulation of 

CCaMK may exist in the cortex. 

nena Reveals an Intercellular Rhizobial Entry Mode in Lotus japonicus 

By employing an intercellular infection mode, which carries the hallmarks of crack 

entry, nena overcomes the requirement for symbiotic responsiveness of the 

rhizodermis. Ethylene is a potent inhibitor of rhizodermal Ca2+ spiking (Oldroyd et al., 

2001) and its negative regulatory role in RNS has been confirmed genetically 

(Penmetsa and Cook, 1997; Penmetsa et al., 2003). Water tolerant legumes evade 

the inhibitory effect of ethylene and even take advantage of increased ethylene 

concentrations during root submergence (Goormachtig et al., 2004). The subepi-

dermal infection pockets observed in nena-1 resemble those seen during typical 

crack entry (Ndoye et al., 1994). As in S. rostrata aerated roots, the root hair is the 
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primary route for nodule infection during aerated conditions in Lotus, but this is 

blocked in nena and hence leads to the formation of mostly uninfected nodules. 

During waterlogging, nodule infection is significantly promoted in nena-1. Impor-

tantly, as in S. rostrata, rhizobial infection of nena-1 nodules during waterlogging is 

suppressed by the ethylene biosynthesis inhibitor AVG, providing compelling 

evidence that infection occurs via crack entry. Because of the promoting effect of 

ethylene on nena-1 infection, residual Ca2+ spiking in rhizodermal cells is unlikely to 

play a role in initiating infection in nena-1. At the permissive temperature, single 

infection events via root hair ITs were found in nup133-1 and nup133-4 mutants 

(Kanamori et al., 2006). Although it is possible that rare root hair infection also 

occurs in nena mutants grown at permissive temperatures, the lack of Ca2+ spiking 

in seedlings grown and examined at 18 °C indicates that, independent of the 

temperature, crack entry is the predominant infection route on nena mutants under 

waterlogging conditions. 

Based on surveys of infection strategies in different legume lineages, it has been 

proposed that root hair infection is a more recent trait than the ancestral intercellular 

infection involving cortical ITs (Sprent, 2007). Crack entry might have been main-

tained in legumes that are challenged to engage in RNS under submerged condi-

tions. The observation of crack entry in nena provides genetic support for an ancient 

nature of this trait in legumes and might be a relic of the common ancestor of Lotus 

spp. and Sesbania spp., which both belong to the same subclade within the Robin-

ioids (Wojciechowski et al., 2004). Intercellular infection occurring in L. uliginosus, a 

temperate legume adapted to wetland conditions, further substantiates the conser-

vation of crack entry by other members of this genus (James and Sprent, 1999). 

Rhizobial infection structures indicating intercellular infection of nodule primordia 

were also observed in the Lotus root hairless 1 (rhl1) mutant, but further evidence for 

crack entry as defined by its dependence on ethylene was not provided (Karas et al., 

2005). In addition to rare rhizobial entry between rhizodermal cells, intracellular 

infection of NF-induced cortical root hairs was shown and this was proposed as the 

main route to sustain RNS in the absence of epidermal root hairs. It is of note that 

the symbiotic signaling program was most likely not perturbed by rhl1. The recent 

demonstration of rare rhizobial infection of synthetic mutants carrying the gain-of-

function CCaMK allele snf1 together with nfr1 and/or nfr5 loss-of-function alleles is 

in accordance with crack entry of rhizobia overcoming a genetic block of rhizoder-
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mal infection (Madsen et al., 2010). This supports the idea that crack entry is evolu-

tionary older and in part genetically independent of rhizobial root hair infection. 

NENA Is a Scaffold Nucleoporin Required for Calcium Spiking 

Together with NUP133 and NUP85, NENA represents the 3rd common SYM protein 

that shows sequence similarity to a nucleoporin from the Nup84 subcomplex of the 

nuclear pore. For all 3 proteins, conservation compared to their counterparts in 

yeast or humans does not exceed 25 % identity. Irrespective of high sequence 

divergence among homologous nucleoporins from various organisms, nuclear pore 

components are structurally conserved and certain protein domains therein, e.g. 

WD40 repeats, are found across kingdoms (Bapteste et al., 2005). Based on our 

yeast two-hybrid data, in silico structural and phylogenetic analyses and in vivo 

protein localization, we conclude that NENA represents the Lotus version of nucleo-

porin Seh1. The present data further suggest that NENA and NUP85 function 

together as scaffold proteins within the NPC. 

The specific involvement of NENA in symbiotic signaling is curious. The Nup84 

subcomplex is part of the nuclear pore complex (NPC), a macromolecular assembly 

of approx. 30 different proteins in multiple copies (Alber et al., 2007). Disruption of 

the Nup84 subcomplex by deletion of individual components typically leads to 

severe developmental defects in yeast and mammalian cells due to impaired NPC 

assembly (Siniossoglou et al., 1996; Harel et al., 2003; Walther et al., 2003). The 

absence of obvious pleiotropic defects in the different nena mutant backgrounds 

may be due to partial and temperature dependent redundancy with other structurally 

related nucleoporins. Different degrees of redundancy among the components of 

the Lotus Nup84-like subcomplex might further account for the phenotypic differ-

ences between nup133, nup85 and nena mutants, e.g. the extent of residual nodu-

lation (Kanamori et al., 2006; Saito et al., 2007). 

Yeast nucleoporin mutants also show temperature dependent defects. Seh1 is 

exceptional, as yeast seh1 null mutants are not affected in mRNA export and can 

grow at temperatures above 30 °C (Siniossoglou et al., 1996). Nevertheless, seh1- 

and nup84- are synthetic lethal, as this is the case for any other pair wise combina-

tion of knock out alleles of Nup84 subcomplex members (Heath et al., 1995; 

Goldstein et al., 1996; Siniossoglou et al., 1996). Yeast Nup85•Seh1 and 

Sec13•Nup145C complexes have similar architectures and interaction of co-ex-
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pressed Nup85 and Sec13 has been shown (Hsia et al., 2007; Debler et al., 2008). 

Therefore, structurally homologous SEC13-like 1 or SEC13-like 2, which might 

assemble with NUP85 during NPC formation in the nena mutant background, 

probably could partially complement a loss of NENA function. Moreover, the stability 

of the SEC13-like 1•NUP85 or SEC13-like 2•NUP85 complex might be temperature 

dependent, causing temperature sensitive symbiotic phenotypes in nena mutants. 

We have tested these hypotheses by yeast two-hybrid analysis performed at 18 °C 

and 24 °C growth temperature. The results, however, did not support interaction of 

SEC13 homologs and NUP85 (Supplemental Figure 11A). 

Detailed microscopic analysis using nuclear-targeted cameleon for Förster reso-

nance energy transfer (FRET)-mediated Ca2+ measurements indicated that Ca2+ 

spiking originates at the nuclear periphery and spreads to the center of the nucleus 

(Sieberer et al., 2009). By analogy to animal cells, the lumen of the nuclear envelope 

is a likely Ca2+ source (Gerasimenko et al., 1995). In this context, we propose two 

models for the symbiotic function of the NPC (Figure 37). Firstly, scaffold nucleo-

porins, including NENA, might be involved in the selective nuclear import of proteins 

required for NF-induced Ca2+ spiking. The import of protein in general does not 

seem to be affected, as no difference in GFP:CYCLOPS localization was detected 

between transgenic roots from the wild type and the nena-1 background (Supple-

mental Figure 12). In Arabidopsis, for example, a screen for suppressors of the 

constitutively active TIR-NB-LRR type R gene, snc1, resulted in the identification of 

3 mutants that are functionally linked to nucleocytoplasmic transport (nup96/mos3, 

importin α/mos6 and nup88/mos7) (Zhang and Li, 2005; Palma et al., 2005; Cheng 

et al., 2009). Interestingly, MOS7 turned out to be specifically required for the 

nuclear import of SNC1 and other defense-related proteins, while nuclear and 

cytoplasmic pools of control proteins remained unaffected in the mos7 mutant 

(Cheng et al., 2009). 

Secondly, the NPC might be involved in symbiotic Ca2+ signaling by regulating 

nuclear pools of second messengers. It is currently believed that Ca2+ spiking 

involves a synchronized flux of second messengers or effector enzymes from the 

cytoplasm into the nucleus after NF triggering and throughout the period of Ca2+ 

oscillations (Oldroyd and Downie, 2008). A reduced permeability of the nuclear 

envelope (NE), caused by a structural defect or a general reduction in abundance of 
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nuclear pores might be detrimental, therefore, for NF-induced Ca2+ spiking in root 

hairs, while not affecting vital nucleocytoplasmic transport processes. 

 

 

Figure 37. Two Models for NENA Function in RNS. 
Components of the Nup84-like subcomplex of the NPC, including NENA, NUP85 and 
NUP133, might be required for (A) targeting integral membrane proteins to the inner face of 
the NE or for (B) import of 2nd messengers. Both processes are essential for eliciting Ca2+ 
spiking. 

 

patchy Is Leaky for Rhizodermal Infection by Rhizobia 

Map-based cloning of patchy revealed that a mutation of the POLLUX gene is 

responsible for the AM phenotype. The mutation leads to a predicted Gly to Glu 

substitution in the RCK domain, identical to the previously identified pollux-7 allele 

(Imaizumi-Anraku et al., 2005). Nodule formation was not impaired in patchy 

mutants. In contrast, previously described castor and pollux mutants, as well as the 

homologous dmi1 and sym8 mutants from M. truncatula and pea, respectively, were 

nodulation deficiency (Schauser et al., 1998; Szczyglowski et al., 1998; Catoira et 

al., 2000). This difference is of particular importance, since patchy mutants were 

lacking NF-induced Ca2+ spiking, confirming the requirement of POLLUX/DMI1 for 

Ca2+ spiking (Imaizumi-Anraku et al., 2005; Miwa et al., 2006b). The nodulation rate 

of patchy mutants was decreased compared to the wild type. Nevertheless, the 
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nodules of patchy mutants were morphologically inconspicuous and fully colonized, 

as demonstrated by light microscopy of histological sections. In this respect, patchy 

resembled the nodulation phenotype of nena-1. It is thus possible that the impaired 

rhizodermal NF responsiveness of patchy mutants, as observed by the lack of Ca2+ 

spiking, was bypassed by crack entry. The observation of rare ITs yet indicated that 

nodulation of patchy mutants might have been (partially) caused by rhizobial root 

hair infection. This in turn implies that the patchy allele confers residual NF-signaling 

in the rhizodermis, which was not recorded in our Ca2+ spiking analysis. Residual 

function of the patchy allele was further indicated by the induction of NIN and 

SbtM4 at 7 DAI w. M. loti, whereas induction was blocked in pollux-2 loss-of-

function mutant. Taken together, the results indicate that patchy is a weak allele that 

confers residual rhizodermal infection by rhizobia and AM fungi. The cortical de-

velopment of RNS seems unaffected in patchy mutants. 

patchy Affects Intraradical AM Hyphal Spreading 

The apparent leakiness of the patchy phenotype bears the potential to provide 

insights into the function of POLLUX and CASTOR that might be concealed in 

complete loss-of-function mutants. In principle, patchy mutants displayed AM 

defects during rhizodermal infection and subsequent hyphal colonization. Viewed in 

more detail, parts of the root system completely void of root cortical hyphae were 

flanked by sectors with fully developed AM, including wild type-like infection sites, 

abundant cortical hyphae, vesicles and mature arbuscules. The transitions between 

colonized and uncolonized sectors were marked by hyphal fronts, supporting the 

notion that apoplastic growth of the cortical hyphae was restricted. The patchy 

phenotype therefore provided an indication that, in addition to rhizodermal infection, 

hyphal spreading in the root cortex is controlled by the plant. This is in accordance 

with a previous interpretation of the phenotype displayed by the taci1 mutant, which 

was isolated from an AM mutant screen of a transposon mutagenized maize popu-

lation (Paszkowski et al., 2006). The patchy phenotype indeed matches well to the 

phenotypic description of taci1, but it was argued that the wild type-like AM sectors 

might be due to somatic reversions of the transposon mutation. 

Further genetic support for the control of hyphal colonization by the host is given by 

legume mutants, which are impaired in autoregulation (AUT). The term AUT was 

coined after the observation that initial nodulation suppresses subsequent nodule 

formation on younger root tissue (Pierce and Bauer, 1983), a principle that was also 
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described for mycorrhizal colonization (Vierheilig, 2004). AUT moreover appears to 

act simultaneously on AM and RNS, as suggested by the inhibitory effect of NF 

treatment, nodulation or mycorrhization on subsequent nodule formation or AM 

fungal colonization in alfalfa split root experiments (Catford et al., 2003). Assessment 

of AM development in hypernodulating mutants indicated that impaired AUT led to 

slight, yet significant increases in mycorrhization levels (Morandi et al., 2000; 

Solaiman et al., 2000; Meixner et al., 2005). Grafting experiments with hypernodu-

lating mutants revealed that AUT of nodulation is regulated by a systemic feedback 

loop that involves signaling through the shoot (Delves et al., 1986). Map-based 

cloning of the respective mutant loci in Lotus, soybean and M. truncatula led to the 

identification of HAR1/NARK/SUNN encoding CLAVATA1 (CLV1)-related LRR-RLKs 

(Krusell et al., 2002; Nishimura et al., 2002b; Searle et al., 2003). Similar to the 

function of CLV1 controlling floral meristem differentiation by the recognition of 

CLV3-encoded peptides (Ogawa et al., 2008), HAR1 might be the receptor of two 

root derived CLE peptides encoded by LjCLE-RS1 and LjCLE-RS2. These and two 

other CLE genes from M. truncatula were shown to be required for HAR1/SUNN-

dependet negative regulation of nodulation and expressed in a CASTOR, CCaMK 

and NF-dependent manner within few hours after rhizobial inoculation (Okamoto et 

al., 2009; Mortier et al., 2010).  

HAR1/NARK/SUNN-mediated shoot-to-root signaling leads to changes in hormone 

balance in the shoot, as well as in the root, including decreased auxin loading of the 

root (van Noorden et al., 2006). Increased local auxin concentration coincide with 

meristematic activity of cortical cells during the formation of nodule primordia 

(Pacios-Bras et al., 2003; Wasson et al., 2006). Deregulated auxin loading was also 

observed in the ethylene insensitive hyperinfection mutant sickle (skl), suggesting 

that auxin homeostasis might also be involved in the coordination of nodule organo-

genesis and infection (Prayitno et al., 2006). Yet, it is unclear whether these hormo-

nal changes are direct effects of AUT signaling, or indirectly caused by the AUT of 

root symbiosis. Additional hypernodulation mutants indicate the existence of a 

further local component (TML) of the HAR1 pathway (Magori et al., 2009), as well as 

other systemic regulatory networks (Nishimura et al., 2002a; Oka-Kira et al., 2005). 

The lack of rhizodermal ENOD11pro-GUS expression in MtCLE12 and MtCLE13 over 

expressing roots gives another hint that AUT might act at an early stage during RNS 

(Mortier et al., 2010). Ethylene, JA and ABA interfere with NF-signaling upstream of 
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or directly at the Ca2+ spiking response (Oldroyd et al., 2001a; Sun et al., 2006; Ding 

et al., 2008). Moreover, shoot applied methyl-JA has been shown to inhibit rhizobial 

infection (Nakagawa and Kawaguchi, 2006). Together, the compilation of data 

provides circumstantial evidence for AUT controlling components of the common 

SYM network, including POLLUX. Attenuated signaling by a weak pollux allele might 

consequently lead to stronger AUT effects in terms of nodulation rates or mycorrhi-

zation levels, as reflected by the patchy phenotype. 

The Mutation in patchy Might Affect Gating of POLLUX 

The leaky phenotype of patchy implies that the identified missense mutation does 

not lead to premature degradation or complete destabilization of the complex 

formed by the mutant’s POLLUX protein. A homology model of the POLLUX TrkA-

related domain based on the crystal structure of the human BK channel suggests 

that the Gly 530 to Glu substitution is located in a conserved helix-crossover domain 

that interlocks the two RCK domains of one subunit. The gating ring of the BK 

channel is composed of 4 subunits, which interact at the interface between the 1st 

and the 2nd RCK domain of two neighboring subunits (Wu et al., 2010). The acidic 

substitution at the helix-crossover domain might interfere with proper assembly of 

the gating ring or with the structural changes that are required for proper gating 

upon ligand binding. Moreover, the mutation might directly interfere with binding of 

the ligand, which might be a divalent cation. Voltage-dependent gating of the BK 

channel is activated by Ca2+ binding to different motifs within the RCK domain (Wu 

et al., 2010). The activating ligand of POLLUX is yet unknown, but voltage-

dependent closing of CASTOR in the presence of Mg2+ was observed during elec-

trophysiological measurements (Charpentier et al., 2008). In summary, it is tempting 

to hypothesize that the patchy phenotype is caused by desensitized gating function 

of the mutated POLLUX RCK domain, which might lead to an ‘hyper AUT’ effect, but 

further experimental evidence is required to support this speculations. 
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red Is Located on the Short Arm of Chromosome VI 

Three mutants with heritable defects during arbuscule formation caused by inde-

pendent mutations in at least 3 different loci (dis, small and red) were identified from 

the TILLING BULK population. A map-based cloning approach was adopted in 

order to investigate the genetic basis of the AM phenotype displayed be the mutant 

denominated as red. Analysis of the data compiled from genotypic and phenotypic 

assessment of more than 900 individuals from different F2, F3 and F4 sub-popula-

tions indicated that impaired arbuscule formation co-segregates with the mutant 

genetic background on the short arm of chromosome VI. The target interval is most 

likely flanked the SSR markers TM0553 (1.7 cM) and TM0722 (4.1 cM), as indicated 

by the segregation patterns of recombinant F3 and F4 individuals. The target interval 

is located within a region of reduced recombination, which might be caused by a 

large deletion mapping south of the target interval between TM1597 (7.7 cM) and 

TM0302 (14.0 cM). Thus, the large deletion would not comprise the RED locus. 

A Comprehensive Model for the Genetics Underlying the red Phenotype 

Mapping of red was largely hampered by uncertainties in the phenotype discrimina-

tion during screening of the mapping population. Staining of the fungal structures 

with fluorescent WGA-Alexa Fluor dyes helped to visualize the fine structures of the 

arbuscules and hyphal septae, indicative of defective AM by epifluorescence 

microscopy. Further standardization of the AM fungal inoculum and growth condi-

tions might improve the reliability of the phenotyping. By now, there is only one 

published case of successful map-based cloning of a gene affecting arbuscule 

development (Zhang et al., 2010), whereas the first published AM-specific gene, 

MtPT4, was identified by reverse genetics (Javot et al., 2007b). Phenotypic plasticity 

and overlaps in size and structure of wild type and mutant arbuscules, as described 

for wild type M. truncatula and mtpt4 plants (Javot et al., 2007b), could have been a 

source of phenotyping mistakes, which might partially account for different segre-

gation patterns observed between different F2 sub-populations of the red mutant. 

Moreover, two different arbuscule defects were discerned during the phenotypic 

analysis of F2 individuals. Segregation of the arbuscule traits in the F2 generation 

suggested a dihybrid pattern, in which the double recessive class confers the severe 

arbuscule defect, whereas the two single recessive classes have indistinguishable 

weak arbuscule defects. The monohybrid segregation pattern observed in F2 prog-

eny of J5150 clashed with the occurrence of weak and severe arbuscule defects in 
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subsequent generations. An alternative explanation for the different segregation 

patterns between the offspring from J5150 and J5149 is given by the evidence for a 

deleterious mutation, which was present in F2 individuals originating from J5150, but 

absent in J5149 F2 plants. This led to the following scenario, in which the original 

mutant, J849, was homozygous for two unlinked loci, red and wrd, affecting arbus-

cule development. In addition, J849 would have carried the recessive lethal allele let, 

which would have been located on chromosome I (between 29.7 cM and 46.2 cM) 

and linked to wrd (Figure 38). This would imply that a recombination event between 

let and wrd had occurred in the M2 generation, which led to the combination of the 

recombinant LET wrd with the parental let wrd haplotype in J849. Depending on the 

distance between the two chromosome I loci, the chances of picking up a recombi-

nant individual with this genotype during the AM screen of the M3 families might 

have been substantial, because the corresponding phenotype would have displayed 

a severe arbuscule defect and 50% of the siblings with parental haplotypes would 

have been let/let and therefore extinct. Further recombination between let and wrd 

in the F2 might explain the segregation of weak and severe arbuscule defects in F3 

sub-populations originating from J5150. 

RED Might Be Involved in PT4 Regulation 

With this a working hypothesis for the final positional cloning of red and wrd is 

provided. The lack of PT4 expression in red mutants might give a clue about the 

functional implications of further candidate genes. In Medicago and Lotus, PT4 

transcript levels correlate with arbuscule abundance (Floss et al., 2008; Takeda et 

al., 2009; Baier et al., 2010; Pumplin et al., 2010; Zhang et al., 2010). Interestingly, 

we did not observe PT4 induction although red mutants do form arbuscule trunks 

and hyphal branching at a reduced level, similar to the arbuscules formed in str 

mutants. In contrast to red, PT4 was significantly induced in str mutants, albeit at 

reduced levels compared to the wild type (Zhang et al., 2010). Sequencing of 4 

different PT4 homologs in red did not reveal a mutation. This might indicate that 

RED and/or WRD are involved in transcriptional control or signaling upstream of PT4 

induction. 
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Figure 1. Segregation Model for red and wrd. 
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METHODS 

Plant Growth and AM Assay 

Seeds of L. japonicus ecotypes Miyakojima MG-20, Gifu B-129 wild type and EMS 

mutants were scarified and surface sterilized with 1 % NaClO. Imbibed seeds were 

germinated on 1 % Bacto Agar (Difco) at 18 °C or 24 °C for 5-6 days. Seedlings 

were cultivated in chive (Allium schoenoprasum) nurse pots containing ‘G. 

intraradices-like’ BEG195 (Stockinger et al., 2009) as described (Kistner et al., 2005), 

except that sand/vermiculite (1/1 vol.) was used as substrate. After 3 w of growth in 

Sunbags (Sigma-Aldrich) at 18 °C or 24 °C constant, 16 h light/ 8 h dark cycles, 

roots were harvested and cleared with 10 % KOH at 90 °C for 15 min. AM fungal 

structures were stained with 5 µg/ml WGA-Alexa Fluor 488 conjugate (Molecular 

Probes) and quantified under the epi-fluorescence microscope using the magnified 

intersections method (McGonigle et al., 1990). Data were obtained by two inde-

pendent experiments with at least 4 plants per line and temperature. Roots were 

counterstained with 1 µg/ml propidium iodide. For detailed AM phenotype analysis, 

stacked micrographs were acquired by CLSM. 

AM Mutant Screen 

M3 individuals of the ‘bulked’ TILLING population (Perry et al., 2003) were green-

house cultivated in chive nurse pots for 4 weeks. AM fungal structures were stained 

with ink and vinegar (Vierheilig et al., 1998), individual root samples were mounted 

on slides and colonization patterns were scored using a stereomicroscope at 30x – 

200x magnification. M4 self-progeny of scored mutants were re-screened for confir-

mation. AM mutants were checked for nodulation capacity by examining roots 1 

month after inoculation with M. loti strain R7A applied at an optical density of 0.01 at 

600 nm (OD600). Plants were grown in white peat/bark humus soil (Fruhstorfer Typ P, 

Hawita) under greenhouse conditions. 

Generation of Mapping Populations 

AM mutants were crossed with wild type MG-20 individuals as described (Jiang and 

Gresshoff, 1997). In detail, all petals and stamina were removed with fine, ethanol 

sterilized forceps from young flowers of MG-20 individuals, without disturbing the 

pistil and bending the pedicel. Crossing success mostly depended on the age of the 

flower. Closed wing petals and the shape of the style, which had to be straight in the 

lower two-thirds and bend at the tip, indicated the right age for cross-pollination. 



 
102 

Flowers with open anthers were discarded. Pollen from AM mutants was ‘squeezed 

out’ of mature flowers and manually transferred onto the stigma. In order to protect 

the flower, the stalk beneath the flower was wrapped with moistened cotton wad 

and a 50 ml Falcon tube was put over the flower and fixed with a rod. Mature pods 

were harvested and seeds were germinated as describe above. Putative F1 seed-

lings were transferred to Typ P soil and individually grown at greenhouse conditions. 

DNA samples of putative F1 individuals were prepared from young leaves and 

genotyped, using markers TM0302 and TM0635. Seeds were harvested from 

confirmed F1 individuals. 

Recombination Screen 

Well bottoms of 2.2 ml 96-well plates (ABgene) were perforated (2 mm hole diame-

ter) and plates were filled with Typ P soil/perlite (4/1 vol.). F2 seedlings were grown in 

individual wells at greenhouse conditions for 3 weeks. Apical leaves were harvested 

and transferred to collection microtubes (Qiagen), 300 µl DNA extraction buffer (200 

mM TrisCl pH 7.5, 250 mM NaCl, 25 mM EDTA, 0.5% SDS, 2% PVP) was added 

and samples were homogenized with a TissueLyser (Qiagen). After 30 min of incu-

bation at 65°C, 140 µl KOAc solution (60% 5 M K+ acetate, 11.5% glacial acetic 

acid, 28.5% H2O) was added and samples were incubated on ice for 15 min before 

centrifugation at 8000x rcf (g) and 4 °C for 15 min. 320 µl of the supernatant were 

transferred to 0.8 ml 96-well plates (ABgene) and 0.8 vol. isopropanol was added. 

Samples were incubated at -20 °C for 2 h and subsequently centrifuged at 8000x rcf 

and 4 °C for 30 min. DNA was washed with 70 % ethanol, dried and resuspended in 

50 µl TE buffer (10 mM TrisCl pH 8.0, 1 mM EDTA). Samples were genotyped by 

power mapping with multiplex-PCR amplification of markers TM0304 and TM0018 

flanking the target region. AM phenotypes of individuals showing recombination 

between the flanking markers were assessed as described above. Candidate genes 

within the target region between TM0060 and TM0635 were annotated with 

GENSCAN (http://genes.mit.edu/GENSCAN.html), BLAST and Artemis (Rutherford 

et al., 2000). 

Power Mapping 

Template DNA concentrations were adjusted to approx. 50 ng/µl. PCR master mixes 

contained 1.5x PCR buffer (50 mM KCl, 2.25 mM MgCl2), 1 mM dNTP mix, 0.20 µM 

A-primer, 0.05 µM AF-primer, 0.25 µM R-primer and 0.5 units/µl of Taq polymerase 

(NEB). For individual PCRs, 1 µl DNA template was mixed with 9 µl of master mix 
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and incubated in a thermocycler under following conditions: 2min 30sec at 94°C, 4x 

(30 sec at 94°C, 30 sec at 54°C +0.5°C/cycle, 30 sec at 70°C), 22x (20 sec at 94°C, 

20 sec at 56°C, 30 sec at 70°C), 5x (20 sec at 94°C, 20 sec at 55.5°C -0.5°C/cycle, 

30 sec at 70°C), 8x (20 sec at 94°C, 20 sec at 53°C, 45 sec at 70°C), 30 min at 72°C. 

PCR products were diluted according to the empiric primer efficiencies and prod-

ucts that had different fluorescence labels and originated from identical samples 

were pooled (Supplemental Table 3). 1 µl of pooled PCR products was added to 

9.85 µl Hi-Di formamide (Applied Biosystems) and 0.15 µl GeneScan 500 LIZ size 

standard (Applied Biosystems). Prior to loading of the ABI3730 sequencer, samples 

were denatured at 95°C for 3 min. Electrophoretic injection parameters were 12 sec 

and 2.2 kV. 

TILLING 

1.2 kb 5’ and adjacent 1.4 kb 3’ fragments of NENA genomic sequence, amplified 

by the respective primer pairs N-166/167 and N-156/157, were used to perform 

TILLING of L. japonicus as described in (Perry et al., 2003). 

Infection Thread and Nodulation Assays 

Germinated seedlings (see above) were inoculated as described with M. loti strains 

R7A carrying pXLGD4 for lacZ expression (Stracke et al., 2002) or MAFF303099 

expressing DsRed (Markmann et al., 2008), with following modifications: bacterial 

cultures were diluted to OD600 0.005 in 80 ml half-strength B&D medium (Broughton 

and Dilworth, 1971) and added to 300 ml autoclaved growth substrate. 

For waterlogging experiments, seedlings were grown in closed Weck jars containing 

expanded clay granules (Seramis, Mars GmbH). Aminoethoxyvinylglycine (AVG) 

solution at 5 µM final concentration was added immediately before transfer of the 

seedlings to Weck jars. For aerated growth conditions, seedlings were transferred to 

polypropylene plant pots containing sand/vermiculite (1/1 vol.) and watered to field 

capacity at 3 d intervals. All plants were cultivated under 16/8 h light/dark cycle at a 

constant 24 °C temperature, unless stated otherwise. 

ITs and nodules that contained rhizobia were visualized by DsRed fluorescence or 

stained for β-galactosidase activity (Lombardo et al., 2006) and scored by fluores-

cence and brightfield microscopy. 
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80 µm tissue sections for CLSM analysis were prepared with a ‘Vibratome’ micro-

tome (Leica VT1000S) after embedding nodules in 6 % low melting agarose. 80 µm 

sections from M. loti R7A-inoculated roots were stained with 2 µg/ml 4′,6-diamidine-

2-phenylindole (DAPI) in 1x PBS (pH 7). For brightfield microscopy of nodule coloni-

zation, root sections were fixed in 1.5 % glutaraldehyde (Sigma-Aldrich), dehydrated 

and embedded in Technovit 7100 (Kulzer). 4 µm histological sections were prepared 

with a microtome (Leica RM2125RT) and stained with 0.1 % toluidine blue in benzo-

ate buffer (pH 4.4). 

Calcium Spiking Analysis 

Ca2+ imaging was performed by microinjection of the fluorescent ratiometric Ca2+ 

indicator Oregon Green 488 BAPTA-1 dextran MW10,000 (Invitrogen) and reference 

dye Texas Red dextran MW10,000 (Invitrogen) as described previously (Charpentier 

et al., 2008). Measurements were performed at 18 °C or 24 °C ambient tempera-

tures on growing root hairs of L. japonicus Gifu B-129 and nena-1 seedlings that 

were grown for 2 d in the dark. 

Transgenic Complementation and Sub-cellular Localization 

The NENA sequence from 1911 bp upstream of the start codon to the last bp before 

the stop codon was amplified by nested PCR with primer pairs N-172/157 & N-

171/168 (Supplemental Table 5) from genomic Gifu wild type DNA and cloned into 

pENTR/D-TOPO (Invitrogen), giving rise to pENTR-NENA. From that construct just 

the putative promoter region, NENApro, was PCR-amplified with primers N-171/173 

and cloned into pENTR/D-TOPO. To test complementation of nena by the Arabi-

dopsis ortholog of NENA, At SEH1 genomic CDS was amplified by nested PCR with 

primers S-176/175 and 5’-phosphorylated primers S-177/178, and ligated with 

PCR-amplified pENTR-NENA fragment lacking the NENA CDS using primer pair N-

173/179. All 3 entry clones were recombined during Gateway LR reactions (Invitro-

gen) with a modified destination vector pK7RWG2 (Karimi et al., 2002) containing 

ER-GFP and lacking the 35S promoter (kindly provided by Dr. M. Antolin-Llovera, 

Biocenter LMU Munich). To confirm sub-cellular localization, NENA genomic CDS, 

amplified with primers N-158/168, was cloned into pENTR/D-TOPO (Invitrogen) and 

subsequently Gateway-transferred into pK7FWG2 (Karimi et al., 2002). For subcel-

lular localization of NUP85 in hairy roots, the CDS without the stop codon was PCR 

amplified from the cDNA clone MFB015g09 using primers 85-162/183 and cloned 

into pENTR/D-TOPO. The resulting entry clone was Gateway-transferred into 
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pK7FWG2. The fidelity of all entry clones was confirmed by sequencing. A T-DNA 

construct with GFP fused to the N-terminus of CYCLOPS (Yano et al., 2008) was 

also used for subcellular localization in WT and nena-1. T-DNA constructs were 

transformed into Gifu wild type and nena-1 via A. rhizogenes strain AR1193 as 

described (Charpentier et al., 2008). Sub-cellular localization of translational fusion 

proteins in young hairy roots was assessed by CLSM. Nodulation and AM coloniza-

tion was assayed as described above. 

DNA Gel Blotting 

Probes I (1148 bp) and II (546 bp) were labeled with [α32P]dCTP using the NEBlot Kit 

(New England Biolabs) after excision of the respective restriction fragments of 

pENTR-NENA triple-digested with EcoRI, NdeI and NsiI. 20 µg of MG-20 genomic 

DNA were digested with BglII, EcoRI, NdeI or NsiI, size separated by agarose gel 

electrophoresis and blotted on Hybond-N+ (GE Healthcare). Nylon membranes were 

hybridized with Probe I or II in roller bottles at 67 °C overnight, washed with in-

creasing stringency (final wash: 0.1 x SSPE, 0.1 % SDS, 63 °C, 1h) and visualized 

on a Typhoon scanner (GE Healthcare) after exposure to a phosphor screen. 

Expression Analysis 

Total RNA was extracted with CTAB buffer and acidic phenol as described (Kistner 

et al., 2005). RNA samples were TURBO DNase (Ambion) treated, and RNA integrity 

(RIN ≥ 7) was verified with a 2100 Bioanalyzer (Agilent). Absence of genomic DNA 

was confirmed by PCR. Approx. 200 ng of total RNA were used for 1st-strand cDNA 

synthesis using the SuperScript VILO Kit (Invitrogen) according to the manual. For 

subsequent PCRs, 2 µl of cDNA template were used per 20 µl total volume. 

For tissue-specific analysis, samples were taken from different organs of two 

flowering Gifu wild type plants. NENA and EF-1 α transcript levels were visualized 

by ethidium bromide staining following agarose gel electrophoresis of PCR products 

after 28, 31 and 34 cycles with primer pairs N-174/167 or EF1-U23/L19. 

Samples for analysis of nodulation gene expression were generated from whole 

roots of 7-8 pooled seedlings that were grown for 14 d on plates (half-strength B&D 

medium, 0.75 % GELRITE (Roth), 2 mM MgSO4) and treated with 1 µM purified NF 

or transferred from plates to Weck jars, inoculated with MAFF303099 and grown for 
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additional 7 d or 21 d at 24°C and long day light cycle. Mock controls were inocu-

lated with half-strength B&D solution only. 

Samples for PT4 expression analysis were generated from whole roots pooled from 

4 plants that were cultivated in chive pots with BEG195 for 6 w at 24°C as described 

(Kistner et al., 2005). Mock controls were grown in autoclaved sand/vermiculite (1/1) 

under the same conditions, but without chive plants and BEG195. 

Quantitative expression analysis was performed by real-time PCR using Fast SYBR 

Green Master Mix (Applied Biosystems) and a CFX96 detection system (Bio-Rad). 

Target transcripts were PCR amplified using primer pairs N-174/167, 40-203/204, 

NIN-201/202, M4-199/200, SbtS-007/008, PT4-216/217, Ub-218/219 and EF1-

U23/L19 and the following cycles: 20 sec at 95 °C, 40x (3 sec at 95 °C, 20 sec at 57 

°C, 20 sec at 72 °C, plate read), 10 sec at 95 °C, melt curve 65 °C to 95 °C with 0.5 

°C/ 5 sec increments. Amplification efficiencies and Ct values were calculated with 

LinRegPCR (Ruijter et al., 2009). Subsequently, relative expression normalized to the 

reference gene EF-1 α, standard error and statistical significance based on 3 

biological replicates was calculated using REST 2009 software (Pfaffl et al., 2002). 

Promoter GUS Analysis 

A T-DNA construct with the GUS-reporter gene expressed by the NIN promoter 

(Radutoiu et al., 2003) was transformed into Gifu wild type and nena-1 via A. 

rhizogenes strain AR1193. Plants with hairy roots were transferred onto plates or 

into Weck jars and 4-7 d later treated with NF or MAFF303099, respectively (see 

above). Growth temperature was 24 °C. Treated roots were cut off and incubated in 

staining solution (0.5 mg ml-1 X-Gluc, 100 mM sodium phosphate pH 7.0, 5 mM 

EDTA pH 7.0, 1 mM potassium ferricyanide, 1 mM potassium ferrocyanide, 0.1 % 

Triton X-100) for 12 h at 37 °C in the dark. A stereomicroscope was used for inspec-

tion and documentation. 

Yeast Two-Hybrid Analysis 

cDNA clones covering the full-length coding regions of NENA (MWM052c09), 

NUP85 (MFB015g09) and NUP133 (MFBL049d04) were kindly obtained from the 

Lotus Resource Centre (Asamizu et al., 2000) and PCR-amplified with primer pairs 

N-158/159, 85-162/163 and 133-160/161. CDS of SEC13-like 1 and SEC13-like 2 

were amplified by nested PCR from Gifu wild type cDNA using primer pairs 13-1-
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195/196&191/194 and 13-2-197/198&192/193. ScNup120 and ScNup145 were 

amplified from genomic DNA of S. cerevisiae S288c using primer 120-5’/3’ and 145-

5’/3’, respectively. PCR products were cloned into pENTR/D-TOPO (Invitrogen) and 

subsequently inserted by LR Clonase II (Invitrogen) into Gateway-compatible bait or 

prey destination vectors derived from pBD-Gal4 Cam (Stratagene) or pGAG424 

(Clontech), as described (Yano et al., 2008). The fidelity of all entry clones was 

confirmed by sequencing. Y2H analysis was carried out with the yeast strain AH109 

(Clontech) following standard procedures (Stratagene Product Manual #235702; 

Yeast Protocols Handbook PT3024-1, Clontech). 

Microscopy 

The following microscopes and conditions were used for this work: a fluorescence 

stereomicroscope (Leica MZ16 FA) with 1x and 2x objectives; inverted microscope 

(Leica DMI6000 B) with 10x/0.25, 20x/0.5, 40x/0.75 dry objectives, GFP and N3 filter 

cubes; confocal laser scanning microscope (Leica SP5) with 20x/0.5 dry, 63x/1.2 

water immersion objectives, argon and DPSS lasers were used. RFP was excited at 

λ = 561 nm/ detected at λ = 570 – 630 nm and GFP was excited at λ = 488 nm/ 

detected at λ = 495 – 555 nm. Images were acquired and processed with LAS AF 

software. 

Phylogenetic Analysis 

Protein sequences similar to NENA from different plant species with annotated 

genomes were retrieved by WU-blastp from the Uniprot database. Multiple hits 

corresponding to one gene, including splice variants, were discarded. Multiple 

sequence alignment was performed with MAFFT online and edited manually. The 

final alignment used for phylogenetic analysis is shown in Supplemental Figure 13. 

Neighbour-joining (NJ) and parsimony analyses were performed online 

(http://mobyle.pasteur.fr/cgi-bin/portal.py) using PHYLIP (version 3.5c, distributed 

by J. Felsenstein, Department of Genome Sciences, University of Washington, 

Seattle), and Quartet Puzzling Maximum-Likelihood (QPML) analysis using TREE-

PUZZLE (Schmidt et al., 2002). QPML tree was reconstructed from 1000 puzzling 

steps, exact parameter estimation using Quartet sampling + NJ, amino acid fre-

quency and rate heterogeneity estimations from the data set and the JTT model of 

substitution. Distances for NJ were obtained from 1000 bootstrap replicates using 

the JTT model with coefficient of variation = 0.743089312 and fraction of invariant 
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positions = 0.000117. Consensus NJ and parsimony trees were constructed from 

1000-fold bootstrapped analyses. 

Homology Modeling 

SMART (Schultz et al., 1998) search algorithm was used to define the domain 

composition of the NENA protein. A 3D-model of NENA was generated using 

DeepView and SWISS-MODEL (Guex and Peitsch, 1997; Arnold et al., 2006). For 

this, NENA and the N-terminus of Nup85 were aligned to the PDB templates 3eweC, 

as shown in Supplemental Figure 6, and 3eweD, respectively. 3D modeling of the 

TrkA-related domain was based on a structural PSI-BLAST of the POLLUX amino 

acids 385 to 859 (Supplemental Figure 5), which was generated by the FUGUE 

program (Shi et al., 2001). The model based on the PDB file 3mt5A, corresponding 

to the crystal structure of the human BK channel, was selected for illustration and 

edited with DeepView. 

Accession Numbers 

Sequence data from this work can be found in the Arabidopsis Genome Initiative or 

GenBank/EMBL/DDBJ databases under the following accession numbers: 

LjT34D07/TM1188/CM0060 (AP007861), NENA (AB506696), SEC13-like 1 

(AB506697), SEC13-like 2 (AB506698), LjPT4 (AP010874), LjPT2 (AB257216), yeast 

Seh1 (P53011), human Seh1-like (A8K5B1), yeast Sec13 (Q04491), human Sec13-

like 1 (P55735), Arabidopsis Seh1-like (At1g64350), POLLUX (BAD89022). 
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Supplemental Figure 1. Genotype Patterns of red F2 Mutants. 
(A) Genotypes of F2 mutants originating from J5150. 
(B) Genotypes of F2 mutants originating from J5149. 
G/green: (Gifu Gifu), H/yellow: (Gifu MG-20), M/magenta: (MG-20 MG-20). Markers and their 
genetic positions (LG, cM) are indicated in the heading line. 

(Figure continuation) 
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Supplemental Figure 2. Genotype Patterns of SL0181-N F2 Individuals with Conflicting 
Genotypes. 
G/green: (Gifu Gifu), H/yellow: (Gifu MG-20), M/magenta: (MG-20 MG-20). Markers and their 
genetic positions (LG, cM) are indicated in the heading line. 

 

 

 

 

 

 

 

 

 
(Next page:) 
Supplemental Figure 3. AM Phenotypes and Genotypes of SL0181-N Self-progeny from 
Selected F2 Individuals. 
(A) G/green: (Gifu Gifu), H/yellow: (Gifu MG-20), M/magenta: (MG-20 MG-20). Markers and 
their genetic positions (LG, cM) are indicated in the heading line. 
(B) Phenotypic segregation, corresponding to data in (A). 
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Supplemental Figure 4. PT4 Maps to the Translocation Region at the North Tip of LG I. 
Genotype pattern of the SSR marker MS014433 linked to PT4 matches to the pattern of 
TM0078 in a SL0181-N F2 sub-population. G/green: (Gifu Gifu), H/yellow: (Gifu MG-20), 
M/magenta: (MG-20 MG-20). Markers and their genetic positions (LG, cM) are indicated in 
the heading line. 
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Supplemental Figure 5. FUGUE Structure-based Alignment of RCK Domains from 
POLLUX and the Human BK Channel. 
Boxes indicate predicted αF and αG helices in POLLUX. AA positions of the human BK 
channel are given in parentheses. 
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Supplemental Figure 6. Alignment of Seh1 and Sec13 Related Protein Sequences from 
L. japonicus, A. thaliana, H. sapiens and S. cerevisiae. 
Residues that are identical or similar to the consensus sequence (≥ 50 % similarities) are 
inverted or highlighted in gray background, respectively. The secondary structure 
corresponding to the 3D model of NENA (Figure 5C) is indicated as arrows (β strands, labels 
refer to blade number and strand order) or dotted line (helix) above the alignment. WD40 
repeats that were predicted from the NENA sequence are marked as black lines above the 
alignment. Boxes under the alignment represent β-propeller blades of yeast Seh1 (Brohawn 
et al., 2008). Mutated residues of respective alleles are indicated above the alignment. 
Protein accessions are given in Supplemental Figure 7. 



 
133 

 

 

 

 

 

Supplemental Figure 7. Multi-Species Alignment of Seh1 and Sec13 Related Proteins. 
Residues that are identical or similar to the consensus sequence (≥ 30 % similarities) are 
inverted or highlighted in gray background, respectively. Blocks containing gaps or poorly 
conserved sequences have been masked. The presented alignment was used to generate 
the phylogenetic tree in Figure 4. GenBank/UniProt accessions and species acronyms are 
indicated left to the sequences. 
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Supplemental Figure 1. 3D Projection of Typical AM 
Infection Sites in Wild Type and nena-1.  
 

(A) to (C) Fungal (green) and 
plant cell wall (red) structures 
were stained with WGA-Alexa 
Fluor 488 and propidium 
iodide, respectively. Struc-
tures were imaged by CLSM 
and are illustrated from 
different relative angles, as 
indicated. In WT (A), a tubular 
hypha branches perpen-
dicular from a surface ‘runner’ 
hypha and trans-versally 
penetrates a rhizo-dermal cell 
before diverging inside the 
root. In nena-1 (B), a ‘runner’ 
hypha penetrates the root 
surface between rhizo-dermal 
cells and forms excessive 
swellings; infection is aborted 
at the subepidermal layer. (C) 
Successful pene-tration of the 
rhizodermis in nena-1 is 
accompanied by hyphal de-
formations. 
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Supplemental Figure 2. The 
NIN Promoter Is Not Indu-
ced During Early Rhizoder-
mal Response to M. loti but 
Active During Nodule For-
mation in nena-1. 
Brightfield images of X-Gluc 
incubated roots transformed 
with GUS-reporter fused to 
the promoter of NIN. No blue 
rhizodermal staining was ob-
served in nena-1 roots at 1 
and 3 DAI. Images represent 
observations given in Table 8. 
Scale bars: 0.5 mm. 
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Supplemental Figure 10. Intercellular Infection of Outer Nodule Cell Layers in nena-1. 
(A) to (C) Confocal z-projections of 80-µm longitudinal tissue sections showing intercellular 
infection (arrows) and cortical cell colonization by DsRed expressing M. loti (red). (C) Shows the 
infection site in (B) at higher magnification in brightfield (BF) channel only. (A) and (B) are overlays 
of RFP and BF channels. Images represent samples from 21 DAI/waterlogged+5 µM AVG 
treatments. Scale bars: 100 µm. 

 

 

Supplemental Figure 11. In Contrast to NENA, SEC13-like 1 and SEC13-like 2 Do Not 
Interact with NUP85 in the Gal4-Based Yeast Two-Hybrid Assay. 
(A) and (B) Prey (AD) and bait (BD) constructs were co-transformed and yeast was grown in 3 (A) 
or 5 (B) dilutions on synthetic dropout medium lacking leucine and tryptophan (-LW) or histidine, 
leucine and tryptophan (-HLW) supplemented with 15 mM 3-amino-1,2,4-triazole (*). (A) In order 
to test for temperature dependent interaction, the assay has been carried out at 30 °C and 18 °C. 
(B) NENA and NUP85 interact in both prey and bait combinations (see Figure 5A). (-) Bait vector 
containing the Gateway reading frame cassette including ccdB and CmR. 
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Supplemental Figure 12. GFP-Cyclops Localizes to the Nucleus in nena-1. 
Confocal micrographs of A. rhizogenes transformed root cells in GFP, BF and overlaid channels. 
No difference in localization of the GFP signal was detected between transgenic roots in WT and 
nena-1 backgrounds. Scale bars: 5 µm. 
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(Figure continues on next page.) 
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Supplemental Figure 13. Stereomicroscopy Images of Putative and/or Confirmed Mutants. 
Ink-stained AM Fungal Structures. Line numbers are indicated. Scale bars: 400 µm. 

(Figure continuation) 
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Supplemental Figure 14. Theoretical Inheritance of Mutation Load in the General TILLING 
Population of Lotus. 
A 1/10 distribution of homozygous (Hom) vs. heterozygous (Het) loci among the 940 EMS-
induced mutation per M2 plant on average have been calculated (Perry et al., 2009). Based on 
this, the mutational load and distribution in subsequent selfing or F1 generations was calculated 
according to Mendelian segregation, as follows: Hom(Mx+1) = Hom(Mx) + Het(Mx)/4, Het(Mx+1) = 
Het(Mx)/2, Total(Mx+1) = Hom(Mx+1) + Het(Mx+1), Het(F1) = Hom(MP) + Het(MP)/2.  
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Supplemental Tables
 

Supplemental Table 1. Results of the AM Screen Performed by the Author. 
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SL1816-
34965 

01 4 4 4 1 5 2 2 12 4442 patchy/pollux-7 

SL1841-
34988 

01 4 4 4 1 5 2 2 12 4442 nena-1 

SL1345-
34643 

02 3 4 4 1 5 2 2 11 3442 cyclops-6 

SL0902-
34343 

12 4 4 2 1 0 0 2 10 4422 inconsistent phenotype 

SL1266R
- 61063 

12 4 3 3 0 2 2 2 10 4332 dwarf, nod-? 

SL1439-
34708 

2 4 3 3 1 3 2 2 10 4332 unclear phenotype in F2 

SL1478-
61064 

2 4 3 3 1 0 0 2 10 4332 dwarf 

SL1098-
34508 

012 2 4 3 1 0 0 2 9 2432 inconsistent phenotype 

SL0912R
-35632 

02 3 2 3 0 3 2 2 8 3232 unclear phenotype in F2 

SL1013-
34436 

1 4 0 4 1 3 2 2 8 4042 rough mapping inconclusive 

SL1856-
34999 

01 4 4 0 0 5 2 2 8 4402 nup133-7 

SL0989-
34413 

3 4 0 3 1 3 2 2 7 4032 
dwarf, s/w nod, rough mapping 
inconclusive 

SL1034-
34453 

12 4 0 3 1 0 0 2 7 4032 segregating M4 

SL1109-
34518 

12 4 3 0 1 0 0 1 7 4301 
blue cloudy material in roots 
(hyphal degradation?) 

SL1193-
34586 

12 4 3 0 1 0 0 0 7 4300 
tiny nodules line in NODPOP, 
dominant? 

SL1281-
34612 

012 3 4 0 1 2 2 1 7 3401 root phenotype 

SL1597-
34805 

2 4 3 0 1 0 0 1 7 4301  

SL1800-
34949 

12 4 3 0 1 0 0 1 7 4301  

SL1864-
35005 

2 3 4 0 1 3 2 1 7 3401 rough mapping inconclusive 

                                                

1 0=aborted infection, 1=weak colonization, 2=impaired arbuscule formation, 3=hyper-  

  colonization 
2 0=n/a, 1=WT, 2=weak, 3=medium, 4=strong 
3 0=Nod-, 1=Nod+, 10= small white, 2=n/d 
4 0=not crossed, 2=F2 seed, 3=rough mapping, 5=mapped 
5 0=not crossed, 1=backcross, 2=MG20 
6 0=repeat M3, 1=M3 done/ M4 pending, 2=ready 
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SL0929-
34363 

12 3 0 3 1 0 0 1 6 3031 weak phenotype 

SL1100-
34510 

12 3 3 0 1 0 0 1 6 3301 small roots 

SL1123-
34530 

0 4 2 0 1 0 0 1 6 4201  

SL1192-
34585 

01 3 3 0 0 0 0 1 6 3301 nod- in NODPOP? 

SL1282-
34613 

12 4 2 0 1 0 0 1 6 4201 s/w nodules line 

SL1284-
34615 

2 4 2 0 1 0 0 1 6 4201  

SL1337-
34638 

12 2 4 0 1 0 0 0 6 2400 M3 dead 

SL1354-
34648 

2 3 3 0 1 0 0 1 6 3301  

SL1546-
34776 

2 4 2 0 1 0 0 1 6 4201  

SL1570-
34786 

2 4 2 0 1 0 0 1 6 4201  

SL1598-
34806 

2 4 2 0 10 0 0 1 6 4201  

SL1827-
34976 

12 4 2 0 2 0 0 0 6 4200 M3 dead 

SL1844-
34991 

12 4 2 0 0 0 0 1 6 4201  

SL1862-
35003 

12 3 3 0 0 0 0 1 6 3301  

SL0898-
34339 

12 3 0 2 1 0 0 2 5 3022 
root phenotype, segregating 
M4 

SL0900-
34341 

1 3 2 0 1 0 0 1 5 3201  

SL0907R
-35629 

12 3 2 0 1 0 0 1 5 3201  

SL0925R
-35635 

12 3 2 0 1 0 0 1 5 3201  

SL0981-
34408 

1 3 2 0 1 0 0 0 5 3200  

SL1150-
34551 

2 2 3 0 1 0 0 1 5 2301  

SL1314-
34628 

2 2 3 0 1 0 0 1 5 2301  

SL1359-
34651 

1 2 3 0 1 0 0 1 5 2301 patchy-like 

SL1549-
34777 

2 4 1 0 1 0 0 1 5 4101  

SL1569-
34785 

2 4 1 0 10 0 0 1 5 4101  

SL1583-
34798 

2 4 1 0 0 0 0 1 5 4101  

SL1804-
34953 

12 2 1 2 2 0 0 2 5 2122  

SL1813-
34962 

12 2 0 3 1 0 0 2 5 2032 dwarf, infertile 

SL1848-
34995 

12 4 1 0 0 0 0 0 5 4100  

SL1863-
35004 

12 2 3 0 1 0 0 1 5 2301  

SL1880-
35019 

012 4 1 0 0 0 0 0 5 4100 
1st: screen all mutants died! 
2nd screen: 8 WT 

SL0922-
34356 

2 2 2 0 1 0 0 1 4 2201  

SL0927-
34361 

1 2 0 2 1 0 0 2 4 2022 dwarfs, infertile 
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SL0931-
34365 

1 2 0 2 10 0 0 2 4 2022 weak phenotype 

SL0932-
34366 

12 2 0 2 0 0 0 0 4 2020 weak phenotype 

SL0933-
34367 

12 2 0 2 1 0 0 2 4 2022 weak phenotype 

SL0942-
34375 

12 2 0 2 1 0 0 2 4 2022 weak phenotype 

SL0951R
-35636 

12 2 0 2 1 0 0 2 4 2022 weak phenotype 

SL0962-
34392 

1 2 0 2 1 0 0 0 4 2020 segregating M4 

SL0964-
34394 

12 2 0 2 1 0 0 2 4 2022 weak phenotype 

SL1014-
34437 

2 2 0 2 2 0 0 2 4 2022 root phenotype 

SL1064-
34481 

12 2 2 0 1 0 0 1 4 2201  

SL1076-
35609 

0 4 0 0 1 0 0 0 4 4000 Nod- in NODPOP 

SL1092-
34502 

2 2 2 0 1 0 0 1 4 2201  

SL1134-
35616 

12 2 2 0 1 0 0 1 4 2201  

SL1136-
34541 

12 2 2 0 1 0 0 1 4 2201  

SL1145-
34547 

12 2 2 0 1 0 0 1 4 2201 patchy-like 

SL1151-
34552 

12 4 0 0 0 0 0 0 4 4000 all M3 mutants dead 

SL1157-
34558 

12 2 2 0 1 0 0 1 4 2201  

SL1159-
34560 

2 2 2 0 1 0 0 1 4 2201  

SL1164-
34564 

12 2 2 0 1 0 0 1 4 2201  

SL1169-
34569 

2 2 2 0 1 0 0 0 4 2200  

SL1202-
34593 

2 2 2 0 1 0 0 0 4 2200  

SL1312-
34626 

2 2 2 0 1 0 0 1 4 2201  

SL1329-
34633 

12 2 2 0 1 0 0 1 4 2201  

SL1565-
34781 

2 4 0 0 1 0 0 1 4 4001 dwarf 

SL1802-
34951 

2 2 2 0 1 0 0 1 4 2201 infertile 

SL1810-
34959 

12 2 2 0 1 0 0 1 4 2201  

SL1888-
35026 

2 3 1 0 1 0 0 2 4 3102  

SL0934-
34368 

12 2 0 1 1 0 0 2 3 2012  

SL0936-
34370 

2 2 0 1 1 0 0 2 3 2012  

SL0938-
34372 

2 2 1 0 1 0 0 2 3 2102  

SL0943-
34376 

2 2 1 0 1 0 0 2 3 2102  

SL0961-
34391 

12 2 0 1 2 0 0 2 3 2012  

SL0978-
34405 

12 2 0 1 1 0 0 2 3 2012  
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SL1017-
34440 

12 3 0 0 1 0 0 0 3 3000  

SL1029- 
11028 

12 2 0 1 1 0 0 2 3 2012  

SL1072-
34486 

2 2 0 1 1 0 0 2 3 2012  

SL1084-
34497 

2 2 0 1 2 0 0 2 3 2012 SYMRK TILLING line 

SL1118-
34526 

1 2 1 0 2 0 0 2 3 2102  

SL1124-
34531 

1 3 0 0 1 0 0 1 3 3001 few nodules line  in NODPOP 

SL1130-
34536 

2 3 0 0 1 0 0 1 3 3001 sus1, many nodules 

SL1130-
35615 

2 3 0 0 2 0 0 1 3 3001  

SL1130-
35615 

2 3 0 0 1 0 0 1 3 3001 sus1 

SL1148-
34549 

2 2 1 0 2 0 0 2 3 2102  

SL1162-
34562 

2 2 1 0 1 0 0 2 3 2102  

SL1167-
34567 

12 2 1 0 2 0 0 2 3 2102  

SL1178-
34576 

2 2 1 0 2 0 0 2 3 2102  

SL1196-
34588 

2 3 0 0 1 0 0 1 3 3001  

SL1203-
34594 

2 2 1 0 2 0 0 2 3 2102  

SL1225-
34599 

12 3 0 0 1 0 0 1 3 3001  

SL1227-
34600 

2 3 0 0 1 0 0 1 3 3001 nod- in NODPOP 

SL1232-
34602 

12 2 1 0 2 0 0 2 3 2102  

SL1263-
34611 

2 2 1 0 2 0 0 2 3 2102  

SL1283-
34614 

12 3 0 0 1 0 0 1 3 3001  

SL1286-
34616 

2 3 0 0 1 0 0 1 3 3001  

SL1287-
34617 

2 3 0 0 1 0 0 1 3 3001  

SL1290R
- 11289 

1 3 0 0 1 0 0 0 3 3000 all dead 

SL1291-
34619 

12 3 0 0 1 0 0 0 3 3000  

SL1298R
- 11297 

12 3 0 0 2 0 0 0 3 3000  

SL1300-
34620 

12 3 0 0 1 0 0 0 3 3000 dwarf 

SL1336-
34637 

12 2 1 0 1 0 0 2 3 2102  

SL1342-
34641 

0 3 0 0 1 0 0 1 3 3001 nod- in NODPOP? 

SL1344-
34642 

12 3 0 0 0 0 0 1 3 3001 nod- in NODPOP? 

SL1349- 
? 

1 3 0 0 1 0 0 0 3 3000  

SL1368-
34658 

02 3 0 0 0 0 0 0 3 3000  

SL1382-
34670 

2 3 0 0 1 0 0 1 3 3001  
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SL1441-
34709 

012 3 0 0 1 0 0 0 3 3000  

SL1450-
34712 

12 3 0 0 2 0 0 0 3 3000 
small white nodules in 
NODPOP 

SL1469-
34725 

12 3 0 0 1 0 0 1 3 3001 small nodules 

SL1471-
34726 

12 3 0 0 1 0 0 1 3 3001  

SL1501-
34750 

2 3 0 0 1 0 0 1 3 3001  

SL1515-
34758 

1 3 0 0 1 0 0 1 3 3001 patchy-like 

SL1539R 
-? 

2 3 0 0 10 0 0 1 3 3001  

SL1540-
34773 

2 3 0 0 1 0 0 1 3 3001  

SL1548-
35666 

2 3 0 0 1 0 0 0 3 3000 small root, M3 dead 

SL1588-
34799 

2 3 0 0 2 0 0 1 3 3001  

SL1803-
34952 

12 2 1 0 2 0 0 2 3 2102  

SL1822-
34971 

12 2 1 0 2 0 0 2 3 2102  

SL1823-
34972 

12 2 1 0 2 0 0 2 3 2102  

SL1824-
34973 

12 2 1 0 2 0 0 2 3 2102  

SL1826-
34975 

01 2 1 0 2 0 0 1 3 2101  

SL1828-
34977 

01 2 1 0 2 0 0 1 3 2101  

SL1832-
34981 

12 3 0 0 0 2 2 1 3 3001 
nod- in NODPOP, unclear AM 
segregation in F2 

SL1842-
34989 

1 2 1 0 1 0 0 2 3 2102  

SL1846-
34993 

12 2 1 0 2 0 0 2 3 2102  

SL1847-
34994 

12 2 1 0 2 0 0 2 3 2102  

SL1851-
34997 

1 2 1 0 2 0 0 2 3 2102  

SL1866-
35007 

12 2 1 0 2 0 0 2 3 2102  

SL1883-
35022 

12 2 1 0 2 0 0 2 3 2102  

SL1886-
35024 

12 2 1 0 1 0 0 2 3 2102  

SL1887-
35025 

01 2 1 0 2 0 0 0 3 2100  

SL0924-
34358 

12 2 0 0 1 0 0 0 2 2000 dwarf, discarded 

SL0935-
34369 

12 2 0 0 1 0 0 0 2 2000 small plant and root 

SL0940-
34373 

12 2 0 0 1 0 0 1 2 2001  

SL0945-
34378 

2 2 0 0 1 0 0 1 2 2001 small root 

SL0946-
34379 

0 2 0 0 1 0 0 1 2 2001 very short lateral roots 

SL0947-
34380 

1 2 0 0 2 0 0 0 2 2000  

SL0973-
34403 

01 2 0 0 1 0 0 1 2 2001  
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SL0982-
34409 

2 2 0 0 1 0 0 1 2 2001  

SL0994-
34417 

2 2 0 0 1 0 0 0 2 2000  

SL0995-
34418 

2 2 0 0 1 0 0 0 2 2000  

SL0996-
34419 

0 2 0 0 1 0 0 0 2 2000  

SL1009-
34432 

12 2 0 0 1 0 0 1 2 2001  

SL1024-
34445 

12 2 0 0 1 0 0 1 2 2001  

SL1038-
34457 

1 2 0 0 1 0 0 1 2 2001  

SL1040- 
? 

12 2 0 0 1 0 0 0 2 2000  

SL1041-
34459 

1 2 0 0 2 0 0 0 2 2000  

SL1042-
34460 

12 2 0 0 1 0 0 1 2 2001  

SL1052-
34469 

12 2 0 0 1 0 0 0 2 2000  

SL1055-
34472 

12 2 0 0 2 0 0 0 2 2000 
dwarf, no flowers after 10 
months, discarded 

SL1077-
34490 

0 2 0 0 1 0 0 1 2 2001  

SL1078-
34491 

12 2 0 0 1 0 0 0 2 2000  

SL1093-
34503 

2 2 0 0 2 0 0 0 2 2000  

SL1094-
34504 

2 2 0 0 2 0 0 0 2 2000 J7749 dwarf infertile, discarded 

SL1095-
34505 

12 2 0 0 2 0 0 1 2 2001  

SL1097-
34507 

2 2 0 0 1 0 0 1 2 2001  

SL1113-
34522 

12 2 0 0 2 0 0 0 2 2000  

SL1115-
34524 

1 2 0 0 2 0 0 1 2 2001  

SL1117-
34525 

12 2 0 0 2 0 0 0 2 2000  

SL1125-
34532 

1 2 0 0 1 0 0 0 2 2000  

SL1129-
34535 

0 2 0 0 1 0 0 0 2 2000  

SL1132-
34537 

12 2 0 0 1 0 0 1 2 2001  

SL1134-
34539 

3 2 0 0 1 0 0 1 2 2001  

SL1134-
35616 

2 2 0 0 2 0 0 1 2 2001  

SL1152-
34553 

2 2 0 0 1 0 0 1 2 2001  

SL1155-
34556 

12 2 0 0 2 0 0 1 2 2001  

SL1168-
34568 

12 2 0 0 1 0 0 0 2 2000  

SL1176-
34574 

12 2 0 0 2 0 0 0 2 2000 dwarf 

SL1177-
34575 

1 2 0 0 2 0 0 1 2 2001 sus1 

SL1180-
34578 

12 2 0 0 2 0 0 1 2 2001 dwarf 
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SL1181-
34579 

2 2 0 0 2 0 0 1 2 2001 infertile 

SL1189-
34583 

12 2 0 0 2 0 0 1 2 2001  

SL1199-
34591 

2 2 0 0 1 0 0 0 2 2000  

SL1200-
34592 

2 2 0 0 1 0 0 0 2 2000  

SL1224-
34598 

2 2 0 0 1 0 0 0 2 2000  

SL1233-
34603 

12 2 0 0 2 0 0 1 2 2001 small root 

SL1240-
34606 

12 2 0 0 2 0 0 1 2 2001  

SL1248-
34607 

12 2 0 0 2 0 0 1 2 2001  

SL1271R
- 11270 

2 2 0 0 2 0 0 0 2 2000  

SL1275R
- 11274 

0 2 0 0 2 0 0 0 2 2000  

SL1305-
34623 

12 2 0 0 1 0 0 1 2 2001  

SL1331-
34634 

12 2 0 0 1 0 0 1 2 2001  

SL1347-
34645 

12 2 0 0 2 0 0 0 2 2000 
small white nodules in 
NODPOP 

SL1363-
34653 

0 2 0 0 2 0 0 1 2 2001  

SL1365-
34655 

1 2 0 0 1 0 0 0 2 2000 small root 

SL1366-
34656 

1 2 0 0 1 0 0 0 2 2000 small root 

SL1378-
34667 

12 2 0 0 1 0 0 1 2 2001  

SL1384-
34672 

2 2 0 0 1 0 0 1 2 2001  

SL1389-
34675 

2 2 0 0 2 0 0 1 2 2001 few nodules line  in NODPOP 

SL1391-
34677 

2 2 0 0 1 0 0 0 2 2000  

SL1393- 
? 

12 2 0 0 1 0 0 1 2 2001 small root 

SL1402-
34685 

1 2 0 0 1 0 0 0 2 2000  

SL1403-
34686 

12 2 0 0 2 0 0 0 2 2000 small 

SL1411-
34692 

2 2 0 0 1 0 0 1 2 2001 small root 

SL1416-
34697 

2 2 0 0 1 0 0 1 2 2001  

SL1422-
34702 

12 2 0 0 1 0 0 1 2 2001  

SL1428R
- 11427 

12 2 0 0 1 0 0 1 2 2001 small root 

SL1434R
- 11433 

12 2 0 0 1 0 0 1 2 2001 small root 

SL1437-
34707 

12 2 0 0 2 0 0 0 2 2000  

SL1442-
35656 

12 2 0 0 1 0 0 1 2 2001  

SL1443-
34710 

01 2 0 0 1 0 0 1 2 2001  

SL1454-
34714 

2 2 0 0 1 0 0 1 2 2001  
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SL1457-
34717 

12 2 0 0 2 0 0 1 2 2001 dwarf 

SL1459-
34718 

12 2 0 0 1 0 0 1 2 2001  

SL1474-
34728 

12 2 0 0 0 0 0 0 2 2000  

SL1477-
34731 

12 2 0 0 2 0 0 0 2 2000 nod- in NODPOP 

SL1480-
34733 

12 2 0 0 1 0 0 0 2 2000  

SL1485-
34738 

12 2 0 0 1 0 0 0 2 2000 small root 

SL1486-
34739 

2 2 0 0 1 0 0 1 2 2001  

SL1490-
34743 

2 2 0 0 1 0 0 1 2 2001 small plant 

SL1496-
34747 

1 2 0 0 2 0 0 0 2 2000 sus1 

SL1499-
34749 

2 2 0 0 1 0 0 1 2 2001  

SL1521-
34762 

12 2 0 0 1 0 0 1 2 2001 dwarf 

SL1522-
34763 

01 2 0 0 1 0 0 0 2 2000 dead M3 

SL1531-
35663 

12 2 0 0 1 0 0 0 2 2000 dead M3 

SL1541-
34774 

12 2 0 0 1 0 0 1 2 2001 small root 

SL1543- 
? 

2 2 0 0 2 0 0 1 2 2001  

SL1554-
35668 

2 2 0 0 2 0 0 0 2 2000 sus2 

SL1573-
34788 

12 2 0 0 2 0 0 1 2 2001 small root 

SL1574-
34789 

2 2 0 0 0 0 0 1 2 2001  

SL1581-
34796 

2 2 0 0 2 0 0 1 2 2001 root phenotype 

SL1595-
35672 

12 2 0 0 2 0 0 1 2 2001  

SL1812-
34961 

1 2 0 0 2 0 0 0 2 2000  

SL1814-
34963 

12 2 0 0 2 0 0 0 2 2000  

SL1817-
34966 

1 2 0 0 2 0 0 0 2 2000 dead M3 

SL1829-
34978 

2 2 0 0 0 0 0 1 2 2001  

SL0897-
34338 

0 1 0 0 2 0 0 2  1002  

SL0899-
34340 

0 0 0 0 2 0 0 0  0000  

SL0901-
34342 

0 1 0 0 2 0 0 2  1002  

SL0904R
-35628 

0 1 0 0 2 0 0 2  1002  

SL0906-
34344 

0 1 0 0 2 0 0 2  1002  

SL0908-
34345 

0 1 0 0 2 0 0 2  1002  

SL0908R
-35630 

0 1 0 0 2 0 0 2  1002  

SL0909R
-35631 

0 1 0 0 2 0 0 2  1002  
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SL0910-
34346 

2 2 0 0 1 0 0 1  2001  

SL0911-
34347 

3 2 0 0 1 0 0 1  2001  

SL0913-
34348 

0 1 0 0 2 0 0 2  1002  

SL0913R
-35633 

0 1 0 0 2 0 0 2  1002  

SL0914R
-35634 

0 1 0 0 2 0 0 2  1002  

SL0915-
34349 

0 1 0 0 2 0 0 2  1002  

SL0916-
34350 

0 1 0 0 2 0 0 2  1002  

SL0917-
34351 

0 1 0 0 2 0 0 2  1002 small root system 

SL0918-
34352 

0 1 0 0 2 0 0 2  1002  

SL0919-
34353 

0 1 0 0 2 0 0 2  1002  

SL0920-
34354 

0 1 0 0 2 0 0 2  1002  

SL0921-
34355 

0 1 0 0 2 0 0 2  1002  

SL0923-
34357 

0 1 0 0 2 0 0 2  1002  

SL0926-
34360 

0 1 0 0 2 0 0 2  1002  

SL0928-
34362 

0 1 0 0 2 0 0 2  1002  

SL0930-
34364 

0 1 0 0 2 0 0 2  1002  

SL0937-
34371 

0 1 0 0 2 0 0 2  1002  

SL0941-
34374 

0 1 0 0 2 0 0 2  1002  

SL0944-
34377 

0 1 0 0 2 0 0 2  1002  

SL0948-
34381 

0 1 0 0 2 0 0 2  1002  

SL0949-
34382 

0 1 0 0 2 0 0 2  1002  

SL0950-
34383 

0 1 0 0 2 0 0 2  1002  

SL0953-
34384 

0 1 0 0 2 0 0 2  1002  

SL0954-
34385 

0 1 0 0 2 0 0 2  1002  

SL0955-
34386 

0 1 0 0 2 0 0 2  1002  

SL0956-
34387 

0 1 0 0 2 0 0 2  1002  

SL0957-
34388 

0 1 0 0 2 0 0 2  1002  

SL0958-
34389 

0 1 0 0 2 0 0 2  1002  

SL0959- 
? 

0 1 0 1 1 0 0 2  1012  

SL0960-
34390 

0 1 0 0 2 0 0 2  1002  

SL0963-
34393 

0 1 0 0 2 0 0 2  1002  

SL0965-
34395 

0 1 0 0 2 0 0 2  1002  
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SL0966-
34396 

0 1 0 0 2 0 0 2  1002  

SL0967-
34397 

0 1 0 0 2 0 0 2  1002  

SL0968-
34398 

0 1 0 0 2 0 0 2  1002  

SL0969-
34399 

0 1 0 0 2 0 0 2  1002  

SL0970-
34400 

0 1 0 0 2 0 0 2  1002  

SL0971-
34401 

0 1 0 0 2 0 0 2  1002  

SL0972-
34402 

0 1 0 0 2 0 0 2  1002  

SL0976R
-35637 

0 1 0 0 2 0 0 2  1002  

SL0977-
34404 

0 1 0 0 2 0 0 2  1002  

SL0979-
34406 

0 1 0 0 2 0 0 2  1002  

SL0980-
34407 

0 1 0 0 2 0 0 2  1002  

SL0983-
34410 

0 1 0 0 2 0 0 2  1002  

SL0984-
34411 

0 1 0 0 2 0 0 2  1002  

SL0985-
? 

0 1 0 0 2 0 0 2  1002  

SL0986-
? 

0 1 0 0 2 0 0 2  1002  

SL0987-
? 

0 1 0 0 2 0 0 2  1002  

SL0988-
34412 

0 1 0 0 2 0 0 2  1002  

SL0990-
34414 

0 1 0 0 2 0 0 2  1002  

SL0991-
34415 

0 1 0 0 2 0 0 2  1002  

SL0993-
34416 

0 1 0 0 2 0 0 2  1002  

SL0997-
34420 

0 1 0 0 2 0 0 2  1002  

SL0998-
34421 

0 1 0 0 2 0 0 2  1002  

SL0999-
34422 

0 1 0 0 2 0 0 2  1002  

SL1000-
34423 

0 1 0 0 2 0 0 2  1002  

SL1001-
34424 

0 1 0 0 2 0 0 2  1002  

SL1002-
34425 

0 1 0 0 2 0 0 2  1002  

SL1003-
34426 

0 1 0 0 2 0 0 2  1002  

SL1004-
34427 

0 1 0 0 2 0 0 2  1002  

SL1005-
34428 

0 1 0 0 2 0 0 2  1002  

SL1006-
34429 

0 1 0 0 2 0 0 2  1002  

SL1007-
34430 

0 1 0 0 2 0 0 2  1002  

SL1008-
34431 

0 1 0 0 2 0 0 2  1002  
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SL1010-
34433 

0 1 0 0 2 0 0 2  1002  

SL1011-
34434 

0 1 0 0 2 0 0 2  1002  

SL1012-
34435 

0 1 0 0 2 0 0 2  1002  

SL1015-
34438 

0 1 0 0 2 0 0 2  1002  

SL1016-
34439 

0 1 0 0 2 0 0 2  1002  

SL1019-
34441 

0 1 0 0 2 0 0 2  1002  

SL1021-
34442 

0 1 0 0 2 0 0 2  1002  

SL1022-
34443 

0 1 0 0 2 0 0 2  1002  

SL1023-
34444 

0 1 0 0 2 0 0 2  1002  

SL1025-
34446 

0 1 0 0 2 0 0 2  1002  

SL1026-
34447 

0 1 0 0 2 0 0 2  1002  

SL1027-
34448 

0 1 0 0 2 0 0 2  1002  

SL1028-
34449 

0 1 0 0 2 0 0 2  1002  

SL1031-
34450 

0 1 0 0 2 0 0 2  1002  

SL1032-
34451 

0 0 0 0 2 0 0 0  0000  

SL1033-
34452 

0 1 0 0 2 0 0 2  1002  

SL1035-
34454 

0 1 0 0 2 0 0 2  1002  

SL1036-
34455 

0 1 0 0 2 0 0 2  1002  

SL1037-
34456 

0 1 0 0 2 0 0 2  1002  

SL1039-
34458 

0 1 0 0 2 0 0 2  1002  

SL1043-
34461 

0 1 0 0 2 0 0 2  1002  

SL1044-
34462 

0 1 0 0 2 0 0 2  1002  

SL1044-
34463 

0 1 0 0 2 0 0 2  1002  

SL1045-
34464 

0 1 0 0 2 0 0 2  1002  

SL1046-
34465 

0 1 0 0 2 0 0 2  1002  

SL1048-
34466 

0 1 0 0 2 0 0 2  1002  

SL1049-
35603 

0 1 0 0 2 0 0 2  1002  

SL1050-
34467 

0 1 0 0 2 0 0 2  1002  

SL1051-
34468 

0 1 0 0 2 0 0 2  1002  

SL1052-
35604 

0 1 0 0 2 0 0 2  1002  

SL1053-
34470 

0 1 0 0 2 0 0 2  1002  

SL1054-
34471 

0 1 0 0 2 0 0 2  1002  
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SL1056-
34473 

0 1 0 0 2 0 0 2  1002  

SL1057-
34474 

0 1 0 0 2 0 0 2  1002  

SL1058-
34475 

0 1 0 0 2 0 0 2  1002  

SL1059-
34476 

0 1 0 0 2 0 0 2  1002  

SL1060-
34477 

0 1 0 0 2 0 0 2  1002  

SL1061-
34478 

0 1 0 0 2 0 0 2  1002  

SL1062-
34479 

0 1 0 0 2 0 0 2  1002  

SL1063-
34480 

0 1 0 0 2 0 0 2  1002  

SL1065-
34482 

0 1 0 0 2 0 0 2  1002  

SL1066-
35605 

0 1 0 0 2 0 0 2  1002  

SL1066-
35606 

0 1 0 0 2 0 0 2  1002  

SL1067-
34483 

0 1 0 0 2 0 0 2  1002  

SL1068-
35607 

0 1 0 0 2 0 0 2  1002  

SL1068-
35608 

0 1 0 0 2 0 0 2  1002  

SL1069-
34484 

0 1 0 0 2 0 0 2  1002  

SL1070-
34485 

0 1 0 0 2 0 0 2  1002  

SL1073-
34487 

0 1 0 0 2 0 0 2  1002  

SL1074-
34488 

0 1 0 0 2 0 0 2  1002  

SL1075-
34489 

0 1 0 0 2 0 0 2  1002  

SL1077-
35610 

0 1 0 0 2 0 0 2  1002  

SL1079-
34492 

0 1 0 0 2 0 0 2  1002  

SL1080-
34493 

0 0 0 0 2 0 0 0  0000  

SL1081-
34494 

0 1 0 0 2 0 0 2  1002  

SL1082-
34495 

0 1 0 0 2 0 0 2  1002  

SL1082-
35611 

0 1 0 0 2 0 0 2  1002  

SL1083-
34496 

0 1 0 0 2 0 0 2  1002  

SL1084-
35612 

0 1 0 0 2 0 0 2  1002  

SL1086-
34498 

0 1 0 0 2 0 0 2  1002  

SL1087-
34499 

0 1 0 0 2 0 0 2  1002  

SL1087-
35613 

0 1 0 0 2 0 0 2  1002  

SL1088-
35614 

0 1 0 0 2 0 0 2  1002  

SL1089-
34500 

0 1 0 0 2 0 0 2  1002  
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SL1091-
34501 

0 1 0 0 2 0 0 2  1002  

SL1096-
34506 

0 1 0 0 2 0 0 2  1002  

SL1099-
34509 

0 1 0 0 2 0 0 2  1002  

SL1101-
34511 

0 1 0 0 2 0 0 2  1002  

SL1102-
34512 

0 1 0 0 2 0 0 2  1002  

SL1104-
34513 

0 1 0 0 2 0 0 2  1002  

SL1105-
34514 

0 0 0 0 2 0 0 0  0000  

SL1106-
34515 

0 1 0 0 2 0 0 2  1002  

SL1107-
34516 

0 1 0 0 2 0 0 2  1002  

SL1108-
34517 

12 0 0 0 2 0 0 0  0000  

SL1110-
34519 

0 0 0 0 2 0 0 0  0000  

SL1111-
34520 

0 1 0 0 2 0 0 2  1002  

SL1112-
34521 

0 1 0 0 2 0 0 2  1002  

SL1114-
34523 

0 1 0 0 2 0 0 2  1002  

SL1120-
34527 

0 1 0 0 2 0 0 2  1002  

SL1121-
34528 

0 0 0 0 2 0 0 0  0000  

SL1122-
34529 

0 1 0 0 2 0 0 2  1002  

SL1126-
34533 

0 1 0 0 2 0 0 2  1002  

SL1127-
34534 

0 1 0 0 2 0 0 2  1002  

SL1133-
34538 

0 1 0 0 2 0 0 2  1002  

SL1135-
34540 

0 1 0 0 2 0 0 2  1002  

SL1139-
34542 

0 1 0 0 2 0 0 2  1002  

SL1140-
34543 

0 0 0 0 2 0 0 0  0000  

SL1142-
34544 

0 1 0 0 2 0 0 2  1002 strong colonization 

SL1143-
34545 

0 1 0 0 2 0 0 2  1002  

SL1144-
34546 

0 1 0 0 2 0 0 2  1002  

SL1147-
34548 

0 1 0 0 2 0 0 2  1002  

SL1149-
34550 

0 1 0 0 2 0 0 2  1002  

SL1153-
34554 

0 0 0 0 1 0 0 0  0000  

SL1154-
34555 

0 1 0 0 2 0 0 2  1002  

SL1156-
34557 

0 1 0 0 2 0 0 2  1002  

SL1158-
34559 

0 1 0 0 2 0 0 2  1002  
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SL1161-
34561 

0 1 0 0 2 0 0 2  1002  

SL1163-
34563 

0 1 0 0 2 0 0 2  1002  

SL1165-
34565 

0 1 0 0 2 0 0 2  1002  

SL1166-
34566 

0 1 0 0 2 0 0 2  1002  

SL1170-
34570 

0 1 0 0 2 0 0 2  1002  

SL1172-
34571 

0 1 0 0 2 0 0 2  1002  

SL1174-
34572 

0 1 0 0 2 0 0 2  1002  

SL1175-
34573 

0 1 0 0 2 0 0 2  1002  

SL1175-
35617 

0 1 0 0 2 0 0 2  1002  

SL1179-
34577 

0 1 0 0 2 0 0 2  1002  

SL1182-
34580 

0 1 0 0 2 0 0 2  1002  

SL1183-
35618 

0 1 0 0 2 0 0 2  1002  

SL1184-
35619 

0 1 0 0 2 0 0 2  1002  

SL1185-
34581 

0 1 0 0 2 0 0 2  1002  

SL1185-
35620 

0 0 0 0 2 0 0 0  0000  

SL1186-
34582 

0 1 0 0 2 0 0 2  1002  

SL1190-
34584 

0 1 0 0 2 0 0 2  1002  

SL1194-
35621 

0 1 0 0 2 0 0 2  1002  

SL1195-
34587 

0 1 0 0 2 0 0 2  1002  

SL1197-
34589 

0 1 0 0 2 0 0 2  1002  

SL1198-
34590 

0 1 0 0 2 0 0 2  1002  

SL1207-
34595 

0 1 0 0 2 0 0 2  1002  

SL1217-
34596 

0 1 0 0 2 0 0 2  1002  

SL1218-
34597 

0 1 0 0 2 0 0 2  1002  

SL1228-
34601 

0 1 0 0 2 0 0 2  1002  

SL1237-
34604 

0 1 0 0 2 0 0 2  1002  

SL1239-
34605 

0 1 0 0 2 0 0 2  1002  

SL1254-
34608 

0 1 0 0 2 0 0 2  1002  

SL1256-
34609 

0 1 0 0 2 0 0 2  1002  

SL1258-
34610 

0 0 0 0 2 0 0 0  0000  

SL1276R
- 11275 

0 1 0 0 2 0 0 2  1002  

SL1288-
34618 

0 1 0 0 2 0 0 2  1002  
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SL1301-
34621 

0 1 0 0 2 0 0 2  1002  

SL1303-
34622 

0 1 0 0 2 0 0 2  1002  

SL1307-
34624 

0 1 0 0 2 0 0 2  1002  

SL1311-
34625 

0 0 0 0 2 0 0 0  0000  

SL1313-
34627 

0 1 0 0 2 0 0 2  1002  

SL1317-
34629 

0 1 0 0 2 0 0 2  1002  

SL1318-
34630 

0 1 0 0 2 0 0 2  1002  

SL1318-
34631 

0 1 0 0 2 0 0 2  1002  

SL1324-
34632 

0 1 0 0 2 0 0 2  1002  

SL1332-
34635 

0 1 0 0 2 0 0 2  1002  

SL1334-
34636 

0 1 0 0 2 0 0 2  1002  

SL1339-
34639 

0 1 0 0 2 0 0 2  1002  

SL1341-
34640 

0 1 0 0 2 0 0 2  1002  

SL1346-
34644 

0 1 0 0 2 0 0 2  1002  

SL1348-
34646 

0 0 0 0 2 0 0 0  0000  

SL1353-
34647 

0 1 0 0 2 0 0 2  1002  

SL1356-
34649 

0 1 0 0 2 0 0 2  1002  

SL1358-
34650 

0 0 0 0 2 0 0 0  0000  

SL1362-
34652 

0 1 0 0 2 0 0 2  1002  

SL1364-
34654 

0 1 0 0 2 0 0 2  1002  

SL1367-
34657 

0 1 0 0 2 0 0 2  1002  

SL1369-
34659 

0 1 0 0 2 0 0 2  1002  

SL1370-
34660 

0 1 0 0 2 0 0 2  1002  

SL1371-
34661 

0 1 0 0 2 0 0 2  1002  

SL1372-
34662 

0 1 0 0 2 0 0 2  1002  

SL1374-
34663 

0 1 0 0 2 0 0 2  1002 nod- in NODPOP 

SL1375-
34664 

0 1 0 0 2 0 0 2  1002  

SL1376-
34665 

0 1 0 0 2 0 0 2  1002  

SL1377-
34666 

0 1 0 0 2 0 0 2  1002  

SL1379-
34668 

0 1 0 0 2 0 0 2  1002  

SL1381-
34669 

0 1 0 0 2 0 0 2  1002  

SL1383-
34671 

0 1 0 0 2 0 0 2  1002  
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SL1386-
34673 

0 1 0 0 2 0 0 2  1002  

SL1387-
34674 

0 1 0 0 2 0 0 2  1002  

SL1390-
34676 

0 1 0 0 2 0 0 2  1002  

SL1392-
34678 

0 1 0 0 2 0 0 2  1002  

SL1395-
34679 

0 1 0 0 2 0 0 2  1002  

SL1396-
34680 

0 1 0 0 2 0 0 2  1002  

SL1397-
34681 

0 1 0 0 2 0 0 2  1002  

SL1399-
34682 

0 1 0 0 2 0 0 2  1002  

SL1400-
34683 

0 1 0 0 2 0 0 2  1002  

SL1401-
34684 

0 1 0 0 2 0 0 2  1002  

SL1404-
34687 

0 1 0 0 2 0 0 2  1002  

SL1405-
34688 

0 1 0 0 2 0 0 2  1002  

SL1407-
34689 

0 1 0 0 2 0 0 2  1002  

SL1408-
34690 

0 1 0 0 2 0 0 2  1002  

SL1409-
34691 

0 1 0 0 2 0 0 2  1002  

SL1412-
34693 

0 1 0 0 2 0 0 2  1002  

SL1413-
34694 

0 1 0 0 2 0 0 2  1002  

SL1414-
34695 

0 1 0 0 2 0 0 2  1002  

SL1415-
34696 

0 1 0 0 2 0 0 2  1002 nod-line 

SL1418-
34698 

0 1 0 0 2 0 0 2  1002  

SL1419-
34699 

0 1 0 0 2 0 0 2  1002  

SL1420-
34700 

0 1 0 0 2 0 0 2  1002  

SL1421-
34701 

0 1 0 0 2 0 0 2  1002  

SL1423-
34703 

0 1 0 0 2 0 0 2  1002  

SL1425-
34704 

0 1 0 0 2 0 0 2  1002  

SL1431-
34705 

0 1 0 0 2 0 0 2  1002  

SL1436-
34706 

0 1 0 0 2 0 0 2  1002  

SL1447-
34711 

0 1 0 0 2 0 0 2  1002  

SL1449-
35657 

0 0 0 0 2 0 0 0  0000  

SL1453-
34713 

0 1 0 0 2 0 0 2  1002  

SL1455-
34715 

0 1 0 0 2 0 0 2  1002  

SL1456-
34716 

0 1 0 0 2 0 0 2  1002  
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SL1461-
34719 

0 1 0 0 2 0 0 2  1002 nod-line 

SL1462-
34720 

0 1 0 0 2 0 0 2  1002  

SL1464-
34721 

0 1 0 0 2 0 0 2  1002  

SL1465-
34722 

0 1 0 0 2 0 0 2  1002  

SL1466-
34723 

0 1 0 0 2 0 0 2  1002  

SL1467-
34724 

0 1 0 0 2 0 0 2  1002 sus2 

SL1470-
? 

0 1 0 0 2 0 0 2  1002  

SL1472-
34727 

0 1 0 0 2 0 0 2  1002  

SL1475-
34729 

0 1 0 0 2 0 0 2  1002  

SL1476-
34730 

0 1 0 0 2 0 0 2  1002  

SL1479-
34732 

0 1 0 0 2 0 0 2  1002  

SL1481-
34734 

0 1 0 0 2 0 0 2  1002  

SL1482-
34735 

0 1 0 0 2 0 0 2  1002  

SL1483-
34736 

0 1 0 0 2 0 0 2  1002  

SL1484-
34737 

0 1 0 0 2 0 0 2  1002  

SL1487-
34740 

0 1 0 0 2 0 0 2  1002  

SL1488-
34741 

0 1 0 0 2 0 0 2  1002  

SL1489-
34742 

0 1 0 0 2 0 0 2  1002  

SL1491-
34744 

0 1 0 0 2 0 0 2  1002  

SL1492-
34745 

0 1 0 0 2 0 0 2  1002  

SL1493-
34746 

0 1 0 0 2 0 0 2  1002  

SL1498-
34748 

0 1 0 0 1 0 0 2  1002  

SL1503-
35659 

0 0 0 0 2 0 0 0  0000  

SL1504-
35660 

0 0 0 0 2 0 0 0  0000  

SL1505-
34751 

0 1 0 0 2 0 0 2  1002  

SL1506-
34752 

0 0 0 0 2 0 0 0  0000  

SL1508-
34753 

0 1 0 0 2 0 0 2  1002  

SL1509-
34754 

0 1 0 0 2 0 0 2  1002  

SL1510-
34755 

0 1 0 0 2 0 0 2  1002  

SL1511-
34756 

0 1 0 0 2 0 0 2  1002  

SL1512-
35661 

0 1 0 0 2 0 0 2  1002  

SL1514-
34757 

0 1 0 0 2 0 0 2  1002  



 
158 

SL1516-
34759 

0 1 0 0 2 0 0 2  1002  

SL1517-
34760 

0 1 0 0 2 0 0 2  1002  

SL1518-
34761 

0 1 0 0 2 0 0 2  1002  

SL1523-
34764 

0 0 0 0 2 0 0 0  0000  

SL1524-
34765 

0 1 0 0 2 0 0 2  1002  

SL1525-
34766 

0 0 0 0 2 0 0 0  0000  

SL1526-
35662 

0 1 0 0 2 0 0 2  1002  

SL1528-
34767 

0 1 0 0 2 0 0 2  1002  

SL1532-
34768 

0 0 0 0 2 0 0 0  0000  

SL1533-
34769 

0 1 0 0 2 0 0 2  1002  

SL1535-
34770 

0 0 0 0 2 0 0 0  0000  

SL1536-
34771 

0 1 0 0 2 0 0 2  1002  

SL1538-
34772 

0 1 0 0 2 0 0 2  1002  

SL1542-
34775 

0 0 0 0 2 0 0 0  0000  

SL1550-
35667 

0 0 0 0 2 0 0 0  0000  

SL1555-
35669 

0 0 0 0 2 0 0 0  0000  

SL1558-
34778 

0 1 0 0 2 0 0 2  1002  

SL1559-
34779 

0 1 0 0 2 0 0 2  1002  

SL1562-
34780 

0 1 0 0 2 0 0 2  1002  

SL1566-
34782 

0 1 0 0 2 0 0 2  1002  

SL1567-
34783 

0 1 0 0 2 0 0 2  1002 sus1 

SL1568-
34784 

0 0 0 0 2 0 0 0  0000  

SL1571-
34787 

0 1 0 0 2 0 0 2  1002  

SL1575-
34790 

0 0 0 0 2 0 0 0  0000 nod- in NODPOP 

SL1576-
34791 

0 1 0 0 2 0 0 2  1002  

SL1577-
34792 

0 1 0 0 2 0 0 2  1002  

SL1578-
34793 

0 1 0 0 2 0 0 2  1002  

SL1579-
34794 

0 1 0 0 2 0 0 2  1002  

SL1580-
34795 

0 1 0 0 2 0 0 2  1002  

SL1582-
34797 

0 0 0 0 2 0 0 0  0000  

SL1584-
35670 

0 1 0 0 2 0 0 2  1002 nod- in NODPOP 

SL1590-
34800 

0 1 0 0 2 0 0 2  1002  
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SL1591R
- 11590 

0 0 0 0 2 0 0 0  0000  

SL1592-
34801 

0 1 0 0 2 0 0 2  1002  

SL1593-
34802 

0 0 0 0 2 0 0 0  0000  

SL1594-
34803 

0 1 0 0 2 0 0 2  1002  

SL1596-
34804 

0 0 0 0 2 0 0 0  0000  

SL1599-
34807 

0 1 0 0 2 0 0 2  1002  

SL1600-
34808 

0 1 0 0 2 0 0 2  1002  

SL1601-
34809 

0 1 0 0 2 0 0 2  1002  

SL1602-
34810 

0 1 0 0 2 0 0 2  1002  

SL1603-
34811 

0 1 0 0 2 0 0 2  1002  

SL1801-
34950 

0 1 0 0 2 0 0 1  1001  

SL1805-
34954 

0 1 0 0 2 0 0 2  1002  

SL1806-
34955 

0 1 0 0 2 0 0 2  1002  

SL1807-
34956 

0 0 0 0 2 0 0 0  0000  

SL1808-
34957 

0 0 0 0 2 0 0 0  0000  

SL1809-
34958 

0 0 0 0 1 0 0 0  0000  

SL1811-
34960 

0 0 0 0 2 0 0 0  0000  

SL1815-
34964 

0 1 0 0 2 0 0 2  1002  

SL1818-
34967 

0 1 0 0 2 0 0 2  1002  

SL1819-
34968 

0 0 0 0 2 0 0 0  0000  

SL1820-
34969 

0 0 0 0 2 0 0 0  0000  

SL1821-
34970 

0 1 0 0 2 0 0 2  1002  

SL1825-
34974 

0 1 0 0 2 0 0 2  1002  

SL1830-
34979 

0 0 0 0 2 0 0 0  0000  

SL1831-
34980 

0 1 0 0 2 0 0 2  1002  

SL1833-
34982 

0 1 0 0 2 0 0 2  1002  

SL1834-
34983 

0 0 0 0 2 0 0 0  0000  

SL1836-
34984 

0 1 0 0 2 0 0 2  1002  

SL1837-
34985 

0 1 0 0 2 0 0 2  1002  

SL1839-
34986 

0 1 0 0 2 0 0 2  1002  

SL1840-
34987 

0 1 0 0 2 0 0 2  1002  

SL1843-
34990 

0 1 0 0 2 0 0 2  1002  
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SL1845-
34992 

0 1 0 0 2 0 0 2  1002  

SL1850-
34996 

0 1 0 0 2 0 0 2  1002  

SL1855-
34998 

0 1 0 0 2 0 0 2  1002  

SL1857-
35000 

0 1 0 0 2 0 0 2  1002  

SL1860-
35001 

0 1 0 0 2 0 0 2  1002  

SL1861-
35002 

0 1 0 0 2 0 0 2  1002  

SL1865-
35006 

0 1 0 0 2 0 0 2  1002  

SL1867-
35008 

0 1 0 0 2 0 0 2  1002  

SL1868-
35009 

0 1 0 0 2 0 0 2  1002  

SL1869-
35010 

0 1 0 0 2 0 0 2  1002  

SL1870-
35011 

0 1 0 0 2 0 0 2  1002  

SL1871-
35012 

0 1 0 0 2 0 0 2  1002  

SL1872-
35013 

0 1 0 0 2 0 0 2  1002  

SL1873-
35014 

0 1 0 0 2 0 0 2  1002  

SL1875-
35015 

0 1 0 0 2 0 0 2  1002  

SL1876-
35016 

0 1 0 0 2 0 0 2  1002  

SL1877-
35017 

0 0 0 0 2 0 0 0  0000  

SL1879-
35018 

0 1 0 0 2 0 0 2  1002  

SL1881-
35020 

0 1 0 0 2 0 0 2  1002  

SL1882-
35021 

0 0 0 0 2 0 0 0  0000  

SL1884-
35023 

0 1 0 0 2 0 0 2  1002  

SL1889-
35027 

0 1 0 0 2 0 0 2  1002  
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Supplemental Table 2. Number of Families Analyzed 
by the Author During the AM Screen. 

AM Phenotype 
1st M3 

Screen 
2nd M3 
Screen 

M4 
Screen 

Strong/Clear 30a 9b 4b 

Intermediate 46a 15 9 

Weak/Unclear 161 28 12 

Wild Type 339 32 8 

a Putative Mutants 
b Mutants accounted to the AMPOP (screened in the 2nd M3 

screen and/or the M4 screen) 
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Supplemental Table 3. Power Mapping Marker Information. 

 

(Table continues on next page.) 
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(Table continuation) 
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Supplemental Table 4. Primers Used in this Work 

Primer Name Use/Target Direction Sequence 

N-166 

N-167 
Forward 

Reverse 
5’-AAGTTAGAATTTATAAGGGCATCATT-3’ 
5’-GGATTCCTGGCTTCCACCATTTTGTG-3’ 

N-156 

N-157 

TILLING/NENA 

Forward 

Reverse 
5’-CCAGCTTGCTTTTACCTATTGGTCAT-3’ 
5’-GCGCCAGCTTACTACTTACAAGTTA-3’ 

N-172 

N-157 
Forward 

Reverse 
5’-CAGCAAATCCACCACCACTAGTTAC-3’ 
5’-GCGCCAGCTTACTACTTACAAGTTA-3’ 

N-171 

N-168 
Forward 

Reverse 
5’-CACCGGAAAATTACACAAAAGATGGT-3’ 
5’-AGAAGTGGGTTCAAATGCAGCCT-3’ 

N-171 

N-173 
Forward 

Reverse 
5’-CACCGGAAAATTACACAAAAGATGGT-3’ 
5’-CTCTCGTGAAACCTAAAATCTTG-3’ 

N-158 

N-168 

Transgenic complementation 
and sub-cellular localization/ 

NENA 

 

Forward 

Reverse 
5’-CACCATGGCGAAGGAGGTGTTGAC-3’ 
5’-AGAAGTGGGTTCAAATGCAGCCT-3’ 

S-176 

S-175 
Forward 

Reverse 
5’-ATATTTTGGCCCAAGTCTTGATAAT-3’ 
5’-ACTGTCAAATAGTGTGTGGGAAATG-3’ 

S-177 

S-178 

Transgenic complementation/ 

AtSeh1L 

 
Forward 

Reverse 
5’-ATGGCGAAATCAATGGCGACG-3’ 
5’-TTAGGAGGGAACTGGTTCAAG-3’ 

N-179 Transg. compl./NENA Reverse 5’-AAGGGTGGGCGCGCCGAC-3’ 

N-158 

N-159 
Y2H analysis/NENA Forward 

Reverse 
5’-CACCATGGCGAAGGAGGTGTTGAC-3’ 
5’-CTAAGAAGTGGGTTCAAATGCAG-3’ 

85-162 

85-163 

85-183 

Y2H analysis and sub-cellular 
localization/NUP85 

Forward 

Reverse 

Reverse 

5’-CACCATGCCCTCCGACACAGTC-3’ 
5’-CTATTCATCAAGTATAGCACGACC-3’ 
5’-TTCATCAAGTATAGCACGACCA-3’ 

133-160 

133-161 
Y2H analysis/NUP133 Forward 

Reverse 
5’-CACCATGTTTTCGTGTGGAACGAAGAAG-3’ 
5’-CTATTCCATGGGAGAAGGCCCT-3’ 

13-1-191 

13-1-194 
Forward 

Reverse 
5’-CACCATGCCTGCTCAGAAGGTTGAAACG-3’ 
5’-CTACGGATCCACTGTTGTCACCTGTTGCCAT-3’ 

13-1-195 

13-1-196 

Y2H analysis/SEC13-1 

Forward 

Reverse 
5’-CGTTTACACTCACCGGCGACT-3’ 
5’-TGCATTGTGAAGCACAGGTAA-3’ 

13-1-192 

13-1-193 
Forward 

Reverse 
5’-CACCATGCCTGGTCAAAAGGTTGAAACA-3’ 
5’-CTACGGTTCCACAGTCGTCACCTGTTGCCAG-3’ 

13-1-197 

13-1-198 

Y2H analysis/SEC13-2 

Forward 

Reverse 
5’-CCTCACACGGTTGACACCACA-3’ 
5’-CTCGTAAGCACAGAATGTTCAGT-3’ 

120-5’ 

120-3’ 
Y2H analysis/ScNup120 Forward 

Reverse 
5’-CACCATGGCATGCCTCTCAAGAATTGATG-3' 
5’-CTATAGACCTCGTAACTCATCTCT-3' 

145-5’ 

145-3’ 
Y2H analysis/ScNup145 Forward 

Reverse 
5’-CACCATGTTTAATAAAAGTGTAAATAGTG-3' 
5’-TTATATCTTATATGTACACTTCATTA-3' 

N-174 

N-167 
Expression analysis/NENA 

 
Forward 

Reverse 
5’-AACTGGCAACTTCAGGCTGAGTTTC-3’ 
5’-GGATTCCTGGCTTCCACCATTTTGTG-3’ 



 
165 

Primer Name Use/Target Direction Sequence 

EF1-U23 

EF1-L19 
Expression analysis/EF-1 α 

 
Forward 

Reverse 
5’-GCAGGTCTTTGTGTCAAGTCTT-3’ 
5’-CGATCCAGAACCCAGTTCT-3’ 

NIN-201 

NIN-202 
Expression analysis/NIN Forward 

Reverse 
5’-TGGATCAGCTAGCATGGAAT-3’ 
5’-TCTGCTTCTGCTGTTGTCAC-3’ 

M4-199 

M4-200 
Expression analysis/SbtM4 Forward 

Reverse 
5’-TCTCATAGTTGCGGCACCAC-3’ 
5’-TGTCTTATTACCCAACCCTGTGC-3’ 

SbtS-007 

SbtS-008 
Expression analysis/SbtS Forward 

Reverse 
5’-ATTGATCACAATGCCAGAGATG-3’ 
5’-TGTTGGGAAGATTGTAGCAGTG-3’ 

40-203 

40-204 
Expression analysis/ENOD40-1 Forward 

Reverse 
5’-CCTCTGAACCAATCCATCAAATCCA-3’ 
5’-AGGAGTGTGAGAGGTGACAGCA-3’ 

PT4-216 

PT4-217 
Expression analysis/PT4 Forward 

Reverse 
5’-GCTTCTTCAGGTTCTGGCTGGGC-3’ 
5’-CAGCGATGAAAGCACCTCGTGTTC-3’ 

Ub-218 

Ub-219 
Expression analysis/Ub Forward 

Reverse 
5’-ATGCAGATCTTCGTCAAGACCTTG-3’ 
5’-ACCTCCCCTCAGACGAAG-3’ 

BM1714.2F 

BM1714.2R 
PCR and sequencing/ 
BM1714.2 

Forward 

Reverse 
5’-TGTACTTGTGCAGGAAACTTCTAATAGG-3’ 
5’-CCCTTATCATATAGCTGAAACACAACT-3’ 

BM1714.7F 

BM1714.7R 
PCR and sequencing/ 
BM1714.7 

Forward 

Reverse 
5’-TGTATTTGTGCAGAAAACTTGTAATCTC-3’ 
5’-CCCTTATCATATATAGCTGAAACACAAC-3’ 

TM1643.6F 

TM1643.6R 
PCR/LjPT2 Forward 

Reverse 
5’-TTTCACTTTTGCAGGGAATTCA-3’ 
5’-GCTTTTCCCTTGAGGTAGTGCTT-3’ 

TM1643.6_S1F Sequencing/LjPT2 Forward 5’-CAGGGTTTTGGAATTCTTGGAG-3’ 
TM1643.6_S2F  Forward 5’-CATAGACAGGATTGGAAGATTTGC-3’ 
TM1643.6_S3R  Reverse 5’-AGAGCCACTGTAAACCAGTAGCC-3’ 
TM1643.6_S4R  Reverse 5’-GCAAAGACCGCAGCGATGAAG-3’ 
MG014433F 

MG014433R 

PCR/LjPT4 Forward 

Reverse 
5’-TGGAGCAGACACTTAAACCAATCC-3’ 
5’-ACGTGTCATAACTAACCTGGGAAG-3’ 

MG014433_S1F Sequencing/LjPT4 Forward 5’-TGTACGGTGTCACGCTTATCCTC-3’ 
MG014433_S2F  Forward 5’-GATGAAGGGTGAAGGGTTCCAG-3’ 
MG014433_S3R  Reverse 5’-AGATAGTGGGTAGTCGCCTCCA-3’ 
MG014433_S4R  Reverse 5’-CCATCACAGACTTGGCTGAGGC-3’ 
Pollux_a1fo 

Pollux_a1re 

PCR and sequencing/ POLLUX Forward 

Reverse 
5’-AGCATTGTAGATCCCTTCACTGTCC-3’ 
5’-GGCCAAAACATATTCCCCATATCA-3’ 

Pollux_s1fo1 Sequencing/ POLLUX Forward 5’-TTGCAGGATCACAAACTTCACC-3’ 
TM0329 Map-based cloning Forward 

Reverse 
5’-TGGGTGAGAATCTCAGAGGG-3’ 
5’-ATCCAATCCATTCCTTTCTG-3’ 

TM0302  Forward 

Reverse 
5’-CTCTGTTCCGAAGCTATTCC-3’ 
5’-AAACGACAGATTTGGTGATG-3’ 

TM0635  Forward 

Reverse 
5’-TTAATCCACCACCCTGACCG-3’ 
5’-ATAACCCTCCTCAAACATCG-3’ 
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