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Vorwort

Die Astrophysik beinhaltet und verknupft verschiedeneciRde der Physik, wobei interessante Prob-
lemstellungen und fundamentale Sachverhalte (wie z.BDdiele Energie) bis heute nicht eindeutig
geklart sind. Durch numerische Methoden gelingt es jedoelle Prozesse, wie die kosmische Struk-
turbildung, detailliert zu studieren. Da es in diesen Bdren sehr viele interssante Fragestellungen
gibt, habe ich mich in der vorliegenden Arbeit mit zwei Theneengehend beschattigt.

Die numerische Beschreibung von Stromungen und den dalfteet@nden Instabilitaten bildet die
Grundlage fur verschiedene hydrodynamische ProzesserirAstrophysik. Um eine moglichst
genaue Darstellung der Entwicklung dieser Systeme zuwchenij ist es wichtig an einem Testbeispiel
die Genauigkeit der numerischen Algorithmen zu untersucBer erste Teil meiner Dissertation be-
fasst sich daher eingehend mit der Kelvin-Helmholtz Inétabund deren numerische Umsetzung.
Ein weiterer wichtiger Bereich der Astrophysik behandé#t Dunkle Energie, deren Eigenschaften
und Ursprung. Da mich dieses Thema schon seit Beginn metodgu8is fasziniert, widme ich mich
im zweiten Teil meiner Arbeit der Quantifizierung der DunklEnergie mit Hilfe der kosmischen
Hintergrundstrahlung.

Beide Themenbereiche sind nicht direkt miteinander vapkin Aus diesem Grund besteht diese Dis-
sertation aus zwei getrennten Abschnitten.
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Zusammenfassung

Der erste Teil dieser Arbeit behandelt die numerische Be#iming von Scherstromungen
(grundlegend fur astrophysikalische Prozesse auf viedehsten Grossenskalen) und der dabei
auftretenden Kelvin-Helmholtz Instabilitat (KHI). Begmehmend auf die theoretische Herleitung
von Chandrasekhar (1961), welche das lineare Wachstum HéreKasst, wird diese unter Mit-
beriicksichtigung der physikalischen Viskositat neutebknet und bildet die Grundlage flur spatere
Anwendungen und Vergleiche mit numerischen Simulationdder numerische Teil stutzt sich
auf zwei weitverbreitete Methoden in der Astrophysik, "Sieparticle hydrodynamics” (SPH)
und Gitter-Verfahren. SPH beschreibt eine FlussigkeickluBetrachtung von Teilchen, dessen
Eigenschaften aus Nachbarteilchen innerhalb eines fegegebenen Radiuses (der sogenannten
Glattungs oder Smoothing Lange) bestimmt werden. Dieié@sat Arbeit benutzten numerischen
SPH-Algorithmen sind der VINE code (Wetzstahal., 2009; Nelsoret al,, 2009) und der von Price
(2008) (P08) beschriebene Code. Die intrinsische VistbsitVINE wird mit Hilfe der analytischen
Anwachsrate bestimmt, wobei der Effekt der sogenanntarstkithen Viskositat (wichtig in allen
SPH-Anwendungen um Schock-Phanomene zu simulierenysaedlwird. FUr die Ublich angesetzen
Parameter ist die Entwicklung der KHI in VINE erheblich ged}jft, was aber durch Verwendung
der sogannten Balsara-Viskositat korrigiert werden kanm Fall unterschiedlicher Dichte der
Stromungsschichten wird die KHI komplett unterdriicktieges Problem, von numerischer Natur
und daher in vielen SPH-methoden gegenwartig, ist Mitiekd aktueller Forschung. Der von
P08 entwickelte Code besitzt eine Losung implementierEanm einer kinstlichen thermischen
Konduktivitat. Diese sorgt dafur, dass die thermischerfie, dessen Erhaltung ein Mischen der
Teilchen verhindert, beinJbergang vom dichten ins diinne Medium ausgeschmiert wigtl aine
Mischung erméglicht. Das gut&bereinstimmen des Vergleichs mit der analytischen Enmart
unterstutzt diese Methode.

Die Gitterverfahren unterteilen eine Flissigkeit in 2all wobei die entsprechenden Gitterpunkte
die gwichteten physikalischen Grossen beinhalten. Barsieauf den Gitter-codes FLASH (Fryxell
et al, 2000), PROTEUS (e.g. Heitsaht al,, 2006), PLUTO (Mignoneet al,, 2007) und RAMSES
(Teyssier, 2002) wird die Entwicklung der KHI im nicht-viséen wie im viskosen Fall betrachtet.
Im nicht-viskosen Fall gleicher Dichten stimmen FLASH undUA O gut mit der analytischen
Erwartung Uberein. PROTEUS jedoch weicht stark ab undrscié@tzt das Wachstum um einen
Faktor von~ 4. Um eine moglicheUberlagerung von KHI-Eigenfunktionen beim Aufsetzten
der Storung auszuschliessen, wurden diese analytisdchmbeisund die Anfangsbedingungen fur
PROTEUS entsprechend angepasst. Die Abweichung vertisggr nur minimal, das Problem
bleibt weiterhin bestehen und ist vermutlich auf die irdiihe Viskositat innerhalb PROTEUS
zuriickzufuihren. Dies zeigt sich auch im viskosen FallRROTEUS ebenfalls eine stark gedampfte
Entwicklung aufweist. Die viskose Entwicklung mit FLASH is guter Ubereinstimmung mit der



analytischen Erwartung. Fur unterschiedliche Dichteiit @mem Dichtekontrast voibC = 10)
folgen FLASH, PLUTO und RAMSES der analytischen Vorherssgfer gut. Im viskosen Fall zeigt
FLASH ein leicht erhdhtes Wachstum (um ein Fakt00.12).

Der zweite Teil befasst sich mit der Thematik der Dunklen rgiee (DE) und die Unterschei-
dung verschiedener Modelle mit Hilfe der kosmischen Higgendstrahlung (CMB = "cosmic
microwave background”). Basierend auf den zwei weitvetbseen Konzepten zur Charakter-
isierung der DE, die kosmologische Konstafige = —1) und die Quintessence (ein sich langsam
veranderliches skalares Feld mibe # konst) wird das theroretische CMB L-RS Bispektrum
berechnet. Es stellt eine Kreuz-Korrelation aus dem Reesyta (RS) und dem Weak-lensing (L)
Effekt dar. Die gravitative Ablenkung der CMB Photonen whieschrieben durch den L-Effekt. Der
RS-Effekt umfasst die spate Abnahme der Potential-Fatidnen (Sachs & Wolfe, 1967) und das
nichtlineare Wachstum kosmischer Strukturen (Rees & Szjdr®68). Da das Wachstum beeinflusst
wird von der DE geht hier direkt die Abhangigkeit vom en&sgrenden DE-Modell ein. Besonderes
von Interesse ist ein moglicher Beitrag zu friihen Zeiteeschrieben durch die sogenannte "Early
Dark Energy” (EDE). Um Vergleiche zu ziehen, werden zug#izzu EDE noch zwei weitere
Quintessence-Modelle herangezogen, die Parameterigieron Linder (2003a,b) (LINDO3) und
Komatsuet al. (2009) (KOMATOQ9), sowie Beispiele mitpg = konst.

Weiterhin beinhaltet der RS-Effekt das lineare- wie dasttimeare Wachstum von Dichtefluktu-
ationen der sich bildenden Strukturen. Daher wird ein eatdgendes Modell zur Beschreibung
des nichtlinearen Regimes benotigt. Auf Grundlage demkdsgischen Storungstheorie dritter
Ordnung (PT) wird das von Bernardea&t al. (2002) vorgestellte Konstrukt benutzt. Um eine
mogliche Abhangigkeit der Resultate von diesen Modellguantifizieren werden (im Falle der
kosmologischen Konstanten) die Beschreibungen voneMal. (1999) (MA99) und Smithet al.
(2003) (HALOFIT) untersucht. PT und HALOFIT fuihren zu eirénlichen Entwicklung der L-RS
Bispectrum-Amplitude. Detlbergang vom linearen in das nichtlineare Regime, deutlinich den
Vorzeichenwechsel der Amplitude, erreignet sich fur MAAS grosseren Skalen im Gegensatz zu
PT und HALOFIT. Dies lasst sich zurtckfuhren auf demlgtgen nichtlinearen Beitrag von MA99
bei hohren Rotverschiebungen. Die Berechnung der BispakBmplitude fur die verschiedenen
Quintessence-Modelle beruht auf PT. Hierbei wird eine @igigkeit des Vorzeichenwechsels von
dem Beitrag der DE deutlich. Je grosser die Dichte der DEodstarker wird das lineare Wachstum
der Fluktuationen gedampft, was ein spateres Erreickenidhtlinearen Entwicklung zur Folge hat.
Daher verschiebt sich détbergang vom linearen in das nichtlinear Regime zu klein&ikalen. Es
ergeben sich deutliche Unterschiede der einzelnen Magellas sich auch in der Entwicklung des
Signal-to-Noise VerhaltnisseS/(N) wiederspiegelt. Das starkste Signal folgt dem EDE-Mbihed
dem grossten DE-Beitrag. Durch Vergleich &N Entwicklung folgt, dass PLANCK die notige
Auflosung besitzt um zwischen den unterschiedlichen Mededu unterscheiden.



Summary

Given the importance of shear flows for astrophysical gasaahycs, we study the evolution of
the Kelvin-Helmholtz instability (KHI) analytically and umerically. We derive the dispersion
relation for the two-dimensional KHI including viscous sigation. The resulting expression for the
growth rate is then used to estimate the intrinsic viscasitjour numerical schemes depending on
code-specific as well as on physical parameters. Our seteéncal schemes includes the Tree-SPH
code VINE, an alternative SPH formulation developed by é>(@008), and the finite-volume grid
codes FLASH, PROTEUS, PLUTO and RAMSES. In the first part, waieitly demonstrate the
effect of dissipation-inhibiting mechanisms such as thés&a viscosity on the evolution of the
KHI. With VINE, increasing density contrasts lead to a coatiusly increasing suppression of the
KHI (with complete suppression from a contrast of 6:1 or leigh The alternative SPH formulation
including an artificial thermal conductivity reproduces tnalytically expected growth rates up to a
density contrast of 10:1. The second part addresses the fihwwaevolution with FLASH, PLUTO
and RAMSES. All codes result in a consistent non-viscousugiom (in the equal as well as in the
different density case) in agreement with the analyticaldmtion. The viscous evolution studied
with FLASH shows minor deviations from the analytical pictin.

Given the importance of forthcoming CMB measurements arglr thorresponding implica-
tions for cosmology, we re-investigate the theoretical GhBss correlation bispectrum (between
the Rees-Sciama and weak lensing effect) and the corresgpistgnal-to-noise ratio assuming
dark energy models with a time varying equation of state -ghimtessence. Our main focus is
on a special form of quintessence, the early dark energy. thderetical predicted signals give
insight if future experiments, such as PLANCK are able toimigiish between quintessence and the
standard cosmological constant. Depending on the amoutdr&fenergy density we indeed find a
difference within the bispectrum evolution and thus, thgnal-to-noise ratio. Furthermore, to test
the dependency of our results on the model of the nonlineaepepectrum we apply (in addition to
cosmological perturbation theory) two widely used appheac(MA99 and HALOFIT), both based
on analytical functions. HALOFIT has a similar behavior wiespect to perturbation theory, while
MAQ99 differs considerably.
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Chapter 1

Motivation

In this thesis, we study the implications of structure fotiorain an astrophysical context from two
different perspectives. We start in the first part with therogynamical evolution, where we play
special attention to the occurring instabilities, in partar, the Kelvin-Helmholtz instability (KHI)
and its implementation within numerical algorithms. In gecond part, we analyze the effects of
dark energy on forming cosmological structures (like g@ls) which leave a trace within the cosmic
microwave background. 1.1 and 1.2, shortly motivate anddhice our further proceedings.

1.1 Partl: Modelling Shear Flows with SPH and Grid Based Metlods

The physics of hydrodynamics are a central part in order tierstand the evolution of astrophysical
systems which involve any forms of gas. Therefore, striectarmation at different scales can only
be described sufficiently if the corresponding gas compisnare treated correctly. Very important
in this context is the interstellar medium (ISM), which ceots hydrodynamical processes on stellar-
(small) and galactic-(large) scales. The ISM consists-&9% gas (mostly hydrogen and helium),
and~ 1% dust made out of heavier elements (such as metals). Qar Stedles, its dynamical evo-
lution includes the turbulence of molecular clouds, whieh be identified with the densest spots of
the ISM. They provide the birthplaces for stars, which imtéwel their surrounding with jets and
outflows. On galactic scales, galaxy formation, where ssdthalos (known as satellite galaxies)
fall within the hot gaseous halo of its parent galaxy leadsntanteraction between the satellites cold
gas component and the ISM. Gas is stripped from the subhalawmi pressure strippih@nd driven
towards the center of the host galaxy, where the galactecfdisnation takes place.

All these scenarious display a system known as shear flonerentvo gas-layers move in the oppo-
site direction. They play a crucial part in structure forimat(see Fig. 1.2) and are fundamental to
understand how the universe evolved into its form today. Vdr@us complex procedures are mod-
eled by numerical methods, where smooth particle hydraayes(SPH) and grid based schemes are
the most commonly used. Given the importance of shear flodsrencorresponding instabilities for
the evolution of cosmic structures, it is essential to ydnidw accurate numerical algorithms describe
those systems, and to determine their limitations with teeample.

The KHI (see Fig. 1.1), arising from an oscillation of theeiriice between two fluid layers as a result
of their velocity difference is important for several agingsical processes where shear flows emerge.

1 In general, ram pressure arises when a body is moving thradigiid or gas. It experiences a strong drag force.



2 CHAPTER 1. MOTIVATION

Kelvin-Helmholtz Clnstaﬁifiti_

Photo by Brooks Martner, Source: external linlc NOAA/ Forecast Systemns Lal

Photo by photography national geographic com/staticfile, KHI in earth atmosphere

- L)
Phisto by Svrwiica smiz.ca/pens 3 dimages/fieredspot.if, KHI in Jupiters atmoshpete

Figure 1.1: KHI in nature: KHI forming in clouds (upper lefapel), in earth’s atmosphere (upper
right panel), and in Jupiters atmosphere (bottom panel).

It has given rise to serious discussion in the literaturerwemerically modeled. For example, its
evolution is completely suppressed in presence of densityrasts when simulated with SPH (e.g.
Agertz et al, 2007; Price, 2008). In contrast to this, grid codes seenotaal suffer from such a
problem. But yet, it is not clear how exact they describe tlwdution of this instability. We therefore
focus on the incompressible KHI applying SPH and grid basetks in order to verify their depen-
dency on numerical parameters and to test limitations apticapions.

The outline is as follows:

e Chapter 2 introduces the theoretical framework necessaighiipter 3. The basic principles of
hydrodynamics are discussed in section 2.1. A short inttiaiu concerning the main features
of SPH and grid codes is given in section 2.2.

e We start with an introduction in chapter 3. The analyticaltment of the KHI in terms of
linear perturbation theory is given in section 3.2. Sec8dhoutlines the numerical setup and
the analysis method. Section 3.4 describes the KHI evalwtith SPH, where special attention
is given on the role of artificial viscosity. A serious prablés discussed when simulating
shear flows with a density gradient using the SPH code VINEogsible solution in form of an
artificial thermal conductivity is tested. Section 3.5 fees on the non-viscous and viscous KHI
evolution applying the GRID-codes FLASH, PROTEUS PLUTO BAMSES. The instability
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of the CMB
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Superclusters

\J
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Figure 1.2: Cosmological timeline starting from the big ¢pamtil the formation of our solar sys-
tem, see also Mukhanov (2005), Schneider (2006) or wwwikip&dia.org/wiki/Timeline-of-the-
Big-Bang).

growth is compared to the analytical expectation, where FHAPLUTO and RAMSES are in
very good agreement. The summary of the results is presensegtion 3.6.

1.2 Partll: The Trace of Dark Energy captured within the CMB

The surprising realization that our universe undergoescaalarated expansion as accounted for by
Supernova observations type la (SNla) (Krauss & Turnerpl@triker & Steinhardt, 1995; Riess
et al, 1998; Perlmutteet al, 1999; Netterfielcet al., 2002) is currently thought to originate from an
unknown energy density that fills up almost our complete ensie today £ 70%). The origin and
nature of this dark energy (DE) is one of the most challengjagstions of astrophysics. Combined
observations of SNla, large scale structure (LSS) (Cqll&899; Abazajiaret al, 2003) and the
cosmic microwave background (CMB) (Spergtlal, 2003; Komatstet al,, 2009) point toward an
equation of statefor DE which is close tavpe ~ —1. The standard picture invokes a cosmological
constant(A) with the energy density of the vacuum. Yet, there exist ab®ropossibilities like

2 The ratio of pressure to densiybe = Ppe/ODE-
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models with a time varyingvpe. A very common branch of these approaches is based on particl
physics, which describe DE via a slowly changing scalar fialted the quintessence. Its behavior at
late times adapts that éf with wpg = —1, but differs from this in the past. Several attempts haembe
discussed, where certain parameterizationsggf encompass a range of models. The only possibility
to distinguish between different approaches and to candinether parameters of DE is provided by
observations, where among SNla- and LSS measurements tBeplalyls an important role.

The CMB, a relict from the big bang results from the decouplaf matter and radiation at the epoch
of recombination (see Fig. 1.2). It presents the most ateung@asured black body radiation (Penzias
& Wilson, 1965) with a temperature today abdut 2.728 K. In particular, the imprinted anisotropies
(see Fig. 1.3), induced through interactions of CMB photaitls their surrounding environment allow
to gain insight into the physics at early times and to coisitasmological parameters. The primary
anisotropies arise before the CMB photons have decouplddesve a Gaussian signature within
their temperature distribution. However, for our study $keondary anisotropies are of more interest.
These are caused as the photons travel through the univiéesed@coupling and interact with the
forming structures. Since DE influences the growth of dgrflictuations, the CMB photons carry
information about DE and its equation of staige. This is described by the Rees-Sciama (RS) effect
(see also Fig. 1.3). It leaves, along with gravitationaletgfbn (weak lensing) a non-Gaussian signal
within the CMB.

The CMB bispectrum, a tool to analyze non-Gaussianity iecfioee useful to constrain properties of
DE. The focus of the second part of this work is thus on thescecosrelation bispectrum between the
weak lensing- and RS-effect (L-RS bispectrum). We caleutae theoretical L-RS bispectrum and
the corresponding signal to noise ratio using different et®df DE. They aim is to obtain the limits
of future CMB-observations to distinguish betwetrand quintessence. The outline is as follows:

e In Chapter 4 we concentrate on the calculation of the L-RBdaitum and the signal-to-noise
ratio (S/N). We start with an introduction followed by a short recap agdroological basics in
section 4.2, fundamental for this work. In section 4.3 weinaté the DE-models with constant
wpe and the quintessence models following Wetterich (2004) TW®&), Linder (2003a,b)
(LINDO3) and Komatstet al. (2009) (KOMATQ09), respectively. Section 4.4 introduces th
description of the nonlinear power spectrum using Berraude al. (2002) (PT), the model
of Ma et al. (1999) (MA99) and Smittet al. (2003) (HALOFIT), respectively. The basics of
CMB correlation-functions are given in section 4.5. The §-Bispectrum is discussed in detail
in section 4.6, using PT, MA99 and HALOFIT, as well as the DBdels with constamivpg,
WETTO04, LINDO3 and KOMATO09. TheS/N evolution follows in section 4.7. We conclude
with section 4.8

A short summary with outlook for part | and Il is given in Chap5.
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description of the gravitational redshift of photons
as they pass through density perturbations at
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time delay.

(ii) Acoustic-Oscillations: Photons and baryons
are coupled and perturbations in this photon-
plasma fluid propagate as acoustic waves.

(iii) Peculiar velocities: CMB photons experience
an additional doppler shift due to peculiar
velocities of electrons at last scattering.

(iv) Silk-Damping: The mean free path of photons
on small scales leads to a diffusion which results in
a smoothing of temperature fluctuations.

Effects have Gaussian signature

Secondary Anisotropies

(i) Integrated Sachs-Wolfe (ISW) effect: Similar to the—
SW-effect, but considering the fact that the growth of
perturbations is altered by dark energy at low redshifts.

The SW-effect must therefore be integrated over all
redshifts back to recombination.
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(iii) Reionization: The universe becomes

reionized through the first generation of stars and
correspondingly, CMB photons are subject to Thompson
scattering, which reduces their temperature

(iv) Weak lensing: Forming structures lead to an
gravitational deflection of the CMB photons during their
travel to earth. A photon at recombination has a physical
distance to earth which differs from that what an observer
obtains due to the changes of direction induced by lensing.

(v) Sunyaev-Zeldovich (SZ) effect: (a) The thermal SZ.
effect, where CMB photons are deflected as they pass
through the hot gas of galaxy clusters, which induces changes
in their temperature.

(b) The kinematical SZ effect that appears due to peculiar
motions of hot gas clouds causing Thomson scattering of
photons.

Effects have Non-Gaussian signature

Analysis via correlation functions

2 point correlation function - Power spectrum 3 point correlation function - Bispectrum

Figure 1.3: Introduction of the CMB and its most importannhfeerature anisotropies, divided into
primary- (before the decoupling of photons and baryonsetakt scattering surface) and secondary
anisotropies (after decoupling).



Chapter 2

Theoretical Basics

In this chapter we present the theoretical background redum chapter 3. First, the hydrodynamical
principles and the linear perturbation theory are intr@dlicThis provides the framework to derive
the analytical growth rate of the Kelvin-Helmholtz instélicarried out in section 3.2. Afterwards,
the characteristic properties of our numerical algoritar@mooth Particle Hydrodynamics (SPH) and
grid based codes - are briefly discussed.

2.1 Basics of Hydrodynamics and Instabilities

This short overview mostly uses the convention given in lzangl Lifschitz (1991), where a complete
introduction to hydrodynamics can be found.

2.1.1 Equation of Motion for the Fluid

The state of a fluid is determined by five quantities: the thdecity components), the density §)
and the pressurg. It experiences additional transfer of momentum due teril friction forces,
resulting in a relative motion between the different fluagidrs. This is expressed by the momentum
flux density tensor/{), written in its components,

IMix = PViVk — Oik, (2.1)

wherep is the density of the fluid and, v the corresponding velocity components. The quardity
represents the stress tensor,

Ok = — Pk + Oy, (2.2)

with p being the pressuréj the kronecker-symbol (that equals 1 i k, and 0 otherwise), and;,
the viscous stress tensor, which is a linear function of tts¢ $patial velocity derivatives (Landau &
Lifschitz, 1991).

The motion for this kind of fluid is fully described by tidavier-Stokes equation

o [%ﬂv-mv] = ~Op—pOp+n Av+(§+1) 0@y, (2.3)
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with the gravitational potentiap, and the constant viscous coefficientand&. For an incompress-
ible fluid, which implies no sources]( v = 0), the last term in eq. (2.3) vanishes and the equation
simplifies to,

p~[%+(vﬂ)v] =—Up—pUe+pvAv. (2.4)
Here we introduced the kinematical viscosity

v= % (2.5)
The mass conservation is expressed by the continuity eati

2 p+0(pv) =0 (2.6)
If the fluid does not have inherent viscosity £ 0), we obtain the familiar Euler-Jeans-equation,

p-[%%—(v-ﬂ)v] =—0Op—pUe. (2.7)
To fully determine the fluid properties, we also need the gguaf state,

p=p(p,S), (2.8)

whereS expresses the entropy. The equation of state is the linkdegtwithermodynamics and hydro-

dynamics. For example, the equation of state for a isothledeal gas is given by,
nRT
=— 2.9
p="y (2.9)

whereR denotes the gas constim = N/p the particle density andl the temperature.

2.1.2 Hydrodynamical Instabilities in the Linear Regime

To mathematically describe the perturbations leading stalnility effects we apply the first order
perturbation theory. The perturbed values of the fluid avergby,

vV — V+4Ov, (2.10)
p — p+op, (2.12)
p — p+op. (2.12)

Ov expresses the perturbation in the veloadg,andd p in the density and pressure, respectively. For
the linearized Navier-Stokes- and continuity equatiotofes,

p(G v+ (v-0)ov+ (ov-O)v) + dp(dv+ (v-O)v) =

—0(0p)+pv Adv+dpv Av+pO(de) + dpUe, (2.13)

00p+ (v-0)op+ (dv-0)p =0, (2.14)
where we use the abbreviatioh dt := g;. Eq. (2.13), and eq. (2.14) are crucial to derive the growth
rate of the Kelvin-Helmholtz instability, which is disceskin detail in Chapter 3, section 3.2. They

also provide the fundament of treating linear cosmologieaturbations in the Newtonian limit dis-
cussed in Chapter 4, section 4.2.6.

1 R=8.314472Jmol 1K1
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2.2 Numerical Methods

Numerical algorithms are an important tool in modern agtysjs. Their ability to follow linear
as well as nonlinear dynamics provides a detailed insighbt édomplex physical processes. To treat
hydrodynamical systems, two basic approaches are widely. &PH and Grid-based codes.

The equations of fluid dynamics (eq. (2.4), and eq. (2.7)ghhg form

dv 7}

i [E—F(V-D)}V— f(v,0-v,r), (2.15)
where the convectional derivative is defined by

d 17}

Fri [E +(v- D)] . (2.16)

Eg. (2.15) can be interpreted as

dA _ f(AOAT), (2.17)

dt
whereA characterizes any physical quantity. To determine thes reitehange of physical quantities
requires their spatial derivatives. In numerical simalasi, any algorithm approximates these deriva-
tives using information from a finite number of points. In &dodes, the points are identified with
the vertices of a mesh (see 2.2.2). For SPH, the interpglatiints are the particles moving with the
flow, and the interpolation of any quantity is based on a Hezgimation (see 2.2.1). In the following
both approaches are introduced.

2.2.1 Basic Principles of SPH-codes

We outline shortly the basic assumptions and equations bi 8Rletailed introduction to SPH can
be found in Monaghan (1992, 2005), Benz (1990) and refesctih@zein. The original idea dates back
to Gingold & Monaghan (1977) and Lucy (1977).

e Interpolation and SPH equations:

SPH follows the equations of fluid dynamics using a set ofiglag. It presents a ker-
nel estimation technique, where the value of a general ifumei(r) at some specific point
(particle) is estimated by 'smoothing’ over the values @ flanction at neighboring particles.
The integral interpolation/j,;) of any functionA(r) is defined as

Ane(r) = /A(r’)W(r —r' hydr, (2.18)

whereh is the smoothing length that determines the region for dmrting neighbors andr’
a differential volume elemen¥ characterizes an interpolation kernel, which must satisty
properties:
/W(r —r' h)dr’ =1, (2.19)
rI]imOW(r —r’ h):=9(r—r’). (2.20)



2.2. NUMERICAL METHODS 9

The functionA is reproduced exactly if the kernel is a delta function, wltiie normalization
to 1 guarantees that also constants are interpolated yxbcthost numerical applications the
kernel has a Gaussian forM/(r —rp,h) ~ exp[—(r —rp)2/h?]. This produces a symmetric
central force between pairs of particles, thereby consgrimnear and angular momenta.

A more convenient choice to ensure a finite range kernel (fixgdber of neighbors) is based
on a cubic spline (Monaghan & Lattanzio, 1985),

1-3?+ 302 0<q<1,
W(r’h)—i.f(i) {

= 5 i2-09?  1<qg<2 (2.21)

0 q=>2

with g=r/h, andt = [2/3;10/(7m);1/m] for thek = 1,2,3 spatial dimensions.
For numerical studies, eqg. (2.18) can be approximated bynarstion interpolant,

_ Aoy _
Asun(r) = ZmopbW(r rp, h), (2.22)

where the sum goes over all particles (indicated by summatidex b), with the physical
guantities beingp,, my, vy, 'y, Ay. For example, the density is defined as,

p(N) = 3 MIN(r =1, (2.23)
Provided that the kernel is differentiable it follows,

s m e owr -
OAsun(r) = %mopb OW(r —ryp,h). (2.24)

However, the derivative does not vanishAfis constant. To ensure this, we have to write
(Monaghan, 2005),

OA= % (O(A) —AT®), (2.25)
where® is a differentiable function. This results in,

OAsum= ! P OaW. 2.26

sum—aazmoa(Ab_Aa) aVVab, (2.26)

where[d,Wyy is the gradient oW (r, — rp, h) with respect to particla. Eq. (2.26) vanishes &
is constant.

Various forms of® exist, resulting in different versions of derivatives. Fxample, using
® = p we can write the continuity equation (eq (2)ither as

dpa My

-/ —Vab - HaWap, 2.27

dt pa% 0o ab* “aVVab ( )
or

d

% = %movab' UaWap, (2.28)

2 Note, that we rewrite the continuity equation using the eational derivative, eq (2.16) obtaininp /dt = —p0O-v.
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wherevg, = Va4 — Vp, respectively. Comparing eq. (2.27) with eq. (2.28), wetbaethe former
involves p explicitly, while the latter does not. This can be cruciakystems with different
(fluid) densities are involved. If this is the case, then 8R7Y) is more accurate. Near an inter-
face the summation for, e.@l- v involves contributions of both fluids. Using the summatién o
eg. (2.27), the ratio of mass to density will be constantl@mdremains unchanged (Colagrossi,
2004). However, using that of eq. (2.28) the mass elemeutsgehand the estimate [0f v will

be different, even if the fluids have the same velocity andiggarpositions and differ only in
the density. Monaghan (2005) states that for density cststra2 both descriptions are valid,
but for larger contrasts eq. (2.27) is preferred. We retarthis important point in chapter 3
under section 3.4.

For the pressure gradient follows,

Op <p> p
<o L) +E0p, 2.29
P o) T p2tP (2.29)

and the momentum equatibbecomes,

dva R P

Eqg. (2.30) can be derived from a discrete form of the actiamcyple of an adiabatic fluid, it is
symmetric and conserves linear and angular momentum, seadiian (1992).
The thermal energy per unit mass (s determined by the first law of thermodynamics

du:TdSqMV:TdS+§ﬂm (2.31)

with Sbeing the entropy. For the derivative wfollows

du_ pdp_ p
G Y (2.32)

where we use the continuity equation of the fodm/dt = —p (O Vv). Applying the different
SPH descriptions (eq. (2.27), and eq. (2.28)), this exmmedsansforms either into,

du P

a
or
du Poemy
— =25 vy OaWap, 2.34
dt Pa% oo ab " UaVVab ( )

respectively. It can be useful to treat the energy in SPHrmgeof the thermokinetic energy
per unit mass,

e= %vz +u, (2.35)

3 The Euler equation (eq. (2.7)), where gravity has been negleand eq. (2.16) is used such thetdt = —Op/p.
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which evolves according to,

de \Y v
ac :——D (p-v) %m)<pa b Po a> O Wop, (2.36)

dt

and is symmetric like eq. (2.30). The description of therigkinetic energy is often used in
shock phenomena modeled with grid schemes, since it gemsttie conservation of energy.

e Atrtificial viscosity in SPH:

Artificial viscosity (AV) is not a real physical viscosity. t is implemented in order to
permit the treatment of shock phenomena. Eq. (2.30) doealliogt for dissipation of kinetic
energy into heat, and therefore cannot describe shockrésatun nature, the always present
intrinsic viscosity of the fluid regulates this dissipatioln SPH this is done by adding an
completely artificial viscosity term and modifying the etioas of momentum and energy
conservation correspondingly. Monaghan & Gingold (1988spnt an example for AV based
on simple arguments referring to its form and relation togssosity. A viscous terml,,* is
added to the SPH-evolution equation for the velocity (ed3(}®,

dva Po  Pa
— = =+ My | OaWe 2.37
at %mo<pb+pa+ ab | UaVVap, (2.37)
where,
Vab-lab
Mp=—-V| =5 ). 2.38
ab=—V <r§b+ sh§b> (2.38)

The quantitye ~ 0.01 prevents a singularity i, — 0, while for v follows,

 0hapCap

, 2.39
Pab ( )

hap = (ha+ hp) /2 andcy, = (Ca+ Cp)/2, € denotes the sound speddyy is Galilean invariant
and leads to a repulsive force when two particles approach ether, where it acts as an
attractive force if they are receding. An improved form whjarevents the so called particle
streaming (i.e. particles belonging to different areasasting between each other) leads to
(Monaghan, 1992),

Hab — HabVab ‘Tab >
v==(daCap— o2, 2.40
< ab B rgb—l-shgb ( )

Cab = Ca — Cp is the difference of the sound speeds. The first terimy,/pap0 Cap can be in-
terpreted as a kind of shear and bulk viscosity, whe@ntrols its strength. The second term
~ hab/PabB [NavVab - Tan/ (I3, + €h2,) | resembles the von Neumann-Richtmyer viscosity, con-
trolled by 3. It becomes important if compression arises. The form of24.0) has evolved
further, see Lattanziet al. (1985). Best results are achieved with the AV-parametetsl and

B = 2, but see for a more detailed study of their effects chaptse&ion 3.4.

4 This should not be confused with the momentum flux densitgdereq. (2.1).



12 CHAPTER 2. THEORETICAL BASICS
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Figure 2.1: The grid discretizes the fluid in time and spabevs here by the x-direction).

Due to the AV term, energy is transformed from kinetic to that energy. Therefore, its con-
tribution must also be added to the thermal energy equagiqn(R.33)) correspondingly. The
final result is given by (Monaghan & Gingold, 1983; Monagh#e97)

du

a0 PZ %movab UaWap + 5 5 Z ma% My TapVan - LaWap. (2.41)
For the thermokinetic energy (eq. (2.36)) an dissipativentef the form

Kvsig(a,b) (e — € f
Yoo = — sig(a,b) (6 — &) 7 (2.42)
Pab

has to be added, where

s 1. o

& =5 (Va )’ + g, (2.43)
andf =rap/|rap|. Vsig is the signal velocity an# is a constant. Eq. (2.36) generalizes to,

d 1 \Y \Y

d_iﬁ:__m p-v) %mb<pa b, P a+\gb> O \Wap. (2.44)

2.2.2 Basic Principles of GRID-codes

Another very promising and widely used approach to solvéngfirodynamical equations is presented
by the Grid-codes. In this framework, various methods tuestihe differential equations in terms of
grid points have been proposed.

All grid-methods divide the fluid into separate cells called mesh. An example is shown in Fig. 2.1.
A common scenario to solve partial differential equatiangarticular the fluid equations (eq. 2.15)
is known as discretization, while a further improvement risviled by the Riemann-Solvers. We
motivate both approaches below:

e DISCRETIZATION METHODS A very simple method is to transform the regarded equations
into an discretized form. For example, consider the onesdsional scalar equation
JA | O0A

S tha =0, (2.45)
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whereb is a positive constant. We seek the solutidm,t), with the following initial conditions,
A(x,0) = W(x). (2.46)

Assuming that the mesh spacidg, and the time ste@t are constant, the solutioh(x,t) can
be expressed by the analogous discretized solution at teb oedl | and time leveln asA?,
which is located at the center of the cell in physical spaee é8so Fig. 2.1). By replacing the
derivatives of eq. (2.45) with one-sided finite differenp@@ximations the equation becomes,

A A A-ALs
At +O(At) + bT +0(Ax) = Oforb>0 (2.47)
1

AT+ —A? AT+1—AT B

At + O(At) + bT +0(Ax) = Ofor b<O. (2.48)

This scenario applies the one-sided forward differencingme. Depending on whethéris
positive or negative, the left side of the grid pojnis called upwind side fob > 0 (downwind
side forb < 0), while the right is called downwind side for> 0, (upwind side foib < 0). If
the error terms are dropped, the discrete evolution equmioA? follows as,

bAt
1
AL = A?+H (A?_; —A) for b>0, (2.49)
bAt
1
AT = A?JrH (A"—AD, ;) for b<O, (2.50)

where the term% determines the stability of the scheme, and is called CFLu(&d,
Friedrichs, and Lewy) number. The scheme is stable, if

bAt
AX

<1 (2.51)

There exist various simple finite difference schemes, eagvnevind differencing or centered
differencing.

e RIEMANN SOLVERS. These schemes are used to solve Riemann problems (RP)asubbk
hydrodynamical fluid equations. The RP’s are fundamentaitudy the interaction between
waves, and allow to analyze the micro-wave structure of tbed] Properties like shocks
and rare-fraction waves appear as characteristics in foé@o RP’s consist of conservation
laws together with piecewise constant data including alsidgcontinuity. Thus, they appear
naturally in grid codes, which solve conservation laws atidite grids.

For example, a simple, one dimensional RP has the initite sifa

[ AL forx<O,
AX0) = { Ag forx>0, (2.52)

which is constant fox < 0 andx > 0, but differs between left and right. Such a system can
be identified with a one dimensional hydrodynamic problemere initially gas with a certain
temperature and density is confined at the left side of a rabsle\barrier, and another gas of
different temperature and density at the right side. Theidyais removed at = 0 and the
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system begins to evolve
For the Euler equations (eq. (2.7)), the RP is defined as:

p,v,Pz{ pL,VL,RL forx <O, (2.53)

Pr,VR,Pr  for x>0,

It is much more complex due to the nonlinear nature of eq.).(2nalytical solutions can be
obtained only for special cases. The majority of RP’s areegbhumerically.

The first exact numerical solver was introduced by Godun®59). It is an extension to the
discretization method (as discussed above) for solvindimear-systems of hyperbolic conser-
vation laws. Consider Fig. 2.1 with the numerical solutiom,ayiven by A", which is located
at the cell-centek;. The interface between two cells residexat; ,. At each time step the
state within each cell is constant (piecewise constant), atehe interfaces the state variables
describe a jump. This construct resembles the definitionR#®? ghere within two adjacent cells.
The solution at each interface characterizes the subgalyt@nevolution of the hydrodynamic
system.

Based orGodunovs-TheoreifGodunov, 1954), which states that linear numerical scisethna
are used to solve partial differential equations are firdeoaccurate, various methods of ap-
proximate solvers have been proposed, e.g. Roe solver {R8&), HLLC solver (Harteet al.,
1983), HLLE solver (Hartert al., 1983; Einfeld, 1988), and Rotated-hybrid Riemann solvers
(Nishikawa & Kitamura, 2008).

5 These so called shock tube tests are very common to test¢heaayg of numerical hydrodynamical schemes (e.g. Sod,
1978)



Chapter 3

Modelling Shear Flows with SPH and
Grid Based Methods

3.1 Introduction

3.1.1 Definitions:

In general, shear flows express two fluid- or gas-layers, lwhie moving in the opposite direction.
They are an integral part of many astrophysical processes jets, the formation of cold streams,
to outflows of protostars (Dekelt al., 2009; Agertzet al,, 2009; Diemancet al, 2008; Walchet al,,
2010), and cold gas clouds falling through the diffuse hatigadark matter halos (Bland-Hawthorn
et al, 2007; Burkertet al., 2008). Jets and outflows of young stars can entrain ambiakérral,
leading to mixing and possibly the generation of turbuleimce.g. molecular clouds (Burkert, 2006;
Banerjeeet al,, 2007; Gritschnedest al., 2009b; Carrolkt al., 2009), while the dynamical interaction
of cold gas clouds with the background galactic halo mediamlead to gas stripping of e.g. dwarf
spheroidals (e.g. Greeviatt al, 2010), and the disruption of high-velocity clouds (Qudisvioore,
2001; Heitsch & Putman, 2009). The KHI, arising from an datidn of the interface between two
fluid layers as a result of their velocity difference is bedid to significantly influence the gas dynam-
ics in all of these different scenarios.

Moreover, viscous flows play a crucial role in e.g. gas acmmainto galactic discs (Das & Chattopad-
hyay, 2008; Park, 2009; Heinzellet al, 2009), as well as in dissipative processes like the turibule
cascade. Typically, the gas viscosity seems to be rathemldie interstellar medium, with typical
flow Reynolds numbers of 20

To describe these complex processes in detail, numeribahses are applied to follow the hydro-
dynamical evolution. Numerous simulations use smoottatigle hydrodynamics (SPH), (Gingold
& Monaghan, 1977; Lucy, 1977; Benz, 1990; Monaghan, 19925p0because its Lagrangian ap-
proach allows us to follow the evolution to high densitiesl @mall spatial scales. In combination
with N-body codes, it is a perfect tool for cosmological slations (e.g. Hernquist & Katz, 1989;
Couchmaret al,, 1995; Springel & Hernquist, 2002; Marri & White, 2003; Saet al., 2003) and
galaxy formation and evolution (Ka&t al,, 1992; Evrarcet al,, 1994; Navarreet al., 1995; Steinmetz
& Navarro, 1999; Thacker & Couchman, 2000; Steinmetz & Newa2002; Naalet al., 2006). SPH
describes the physical properties of a fluid by smoothing avepresentative set of particles. How-
ever, this can lead to several problems. It can fail to cdlsrenodel sharp density gradients such as
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contact discontinuities, or velocity gradients occurringe.g. shear flows (see Agertt al., 2007),
thus suppressing shear instabilities such as the KHI.

3.1.2 Earlier Studies:

An interesting problem to test the limitations of SPH as vesligrid codes is the passage of a cold
dense gas cloud moving through a hot and less dense ambidiimmé@Murray et al, 1993; Vietri

et al, 1997; Agertzet al,, 2007). Such a configuration would be typical for gas clowsimg onto
galactic protodisks, for High-Velocity Clouds in the Milky/ay and for cold HI clouds in the Galactic
disk. Murrayet al. (1993) demonstrated using a grid code that in the absendewwhal instabilities
and/or gravity clouds moving through a diffuse gas shouldibeipted by hydrodynamical shear flow
instabilities within the time they need to travel througleithown mass. Agertz et al. (2007) have
shown that the KHI, and therefore the disintegration of stlohds is suppressed in SPH simulations.
This problem, in particular the suppression of the KHI, hasrbsubject to recent discussion in the
literature. Several solutions have been proposed, e.ge P2008) discusses a mechanism, which
involves a special diffusion term (see also Waddegl., 2008).

Furthermore, Reaét al. (2010) identify two effects occurring in the SPH formaliseach one sepa-
rately contributing to the instability suppression. Thstfisroblem is related to the leading order error
in the momentum equation, which should decrease with isarganeighbor number. However, nu-
merical instabilities prevent its decline. By introducisgpropriate kernels, Reatlal. (2010) showed
that this problem can be cured. The second problem arisetodbe entropy conservation. Entropy
conservation inhibits particle mixing and leads to a pressliscontinuity. This can be avoided by
using a temperature weighted density following Ritchie &ofrtas (2001). Recently, Abel (2010) has
shown to reduce the leading error problem by using a noveletigation of the pressure equation,
which smoothes the force on the kernel scale and improvestahdity.

Another characteristic of SPH is the implementation of difieal viscosity (AV) term (Monaghan

& Gingold, 1983), which is necessary in order to treat shdcknmmena and to prevent particle in-
terpenetration. AV can produce an artificial viscous desgm in a flow corresponding to a decrease
of the Reynolds-number and therefore a suppression of thie(lidBnaghan, 2005). To confine this
effect, a reduction of viscous dissipation was proposeddigdda (1995) and improved by Colagrossi
(2004). Thackeet al. (2000) studied different AvV-implementations in SPH andnped out that the
actual choice of the Av-implementation is the primary fadtodetermining code performance. An
extension of SPH which includes physical fluid viscositieswliscussed by e.g. Takeelzal. (1994),
Flebbeet al. (1994), Espaiol & Revenga (2003), Sijacki & Springel (2086d Lanzafamest al.
(2006).

An alternative to conventional numerical schemes may &ige a new class of hybrid schemes based
on unstructured grids and combining the strengths of SPHyaddcodes (Springel, 2010). Some of
the problems listed above might be solved with this type gil@mentation.

3.1.3 Outline:

In this chapter we determine how accurate shear flows andthesponding incompressible KHI are
described in common numerical schemes. Therefore, inose8i?, we analytically derive the growth
rates of the KHI including viscosity. In section 3.3 we biyeflescribe the numerical schemes and
outline how the simulations have been analyzed. We themsksour results. At first, we concentrate
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Fluid-layers
z = _— =— P
Interface layer
X gl /7% % at z=z ¢

Figure 3.1: Sketch of the initial conditions considered:oTiuid layers with constant densitigg and
P2 flowing in opposite directions with uniform velocitiés andU,.

on the standard SPH implementation, which does not confglitysical viscosity but instead uses AV.
However, as mentioned above, AV does influence the evoluatitime flow. In section 3.4, we discuss
the ability of two numerical SPH-schemes to model the ina@sgible KHI, namely the Tree-SPH
method VINE (Wetzsteirt al., 2009; Nelsoret al,, 2009), and the SPH code of Price (2008).

By comparing to the derived analytical solution, we assesetfiects of AV in VINE and estimate
the intrinsic physical viscosity caused by AV (3.4.1). Weritstudy the development of the KHI for
different density contrasts (3.4.2). We show that the libta is suppressed for density contrasts
equal to or larger than 6 : 1. We also discuss the remedy sigghleg Price (2008), hereafter P08.

In section 3.5 we then study the same problem with the griccsoBLASH (Fryxellet al., 2000),
PROTEUS (e.g. Heitscét al., 2006), PLUTO (Mignonet al., 2007) and RAMSES (Teyssier, 2002).
We study the non-viscous as well as the viscous evolutiomefktHI for equal (3.5.1) as well as
non-equal (3.5.2) density layers. We summarize our findimgection 3.6.

3.2 KHI — analytical description

The Kelvin Helmholtz instability is a very common phenometiamight be found either for fluid-
layers with a sufficient difference in the velocity acrossitlinterfaces, or in a continuous fluid, if a
form of velocity shear is present. Considering two incorspitde fluid layers (Fig. 3.1) with constant
densities 1, p2), and flow velocities;, U2) an external perturbation results in an oscillation of the
interface, where the amplitude grows due to a pressureelifte between concavities and convexities
of the oscillation. This leads to a rolling up of the boundeyer. An example is the flow of air over
water, responsible for the buildup of waves.

To derive the growth rate of the KHI including viscosity, waléw the analysis of Chandrasekhar
(1961) (see also Funada & Joseph (2001) and Kaisak (2005)). The fluid system is assumed to be
viscous and incompressible. We use Cartesian coordinates/j andz with two fluids at densities
P1, P2, and velocitiedJ;, U, moving antiparallel along the-axis, separated by an interface layer at
Z =z see Fig. 3.1. We neglect the effect of self-gravity. Therbglginamical equations for such a
system are then given by the continuity equation (eq. 2.6)raomentum equation (eq. 2.7) with the
flow densityp, velocity v, the thermal pressungand the kinematic viscosity.
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3.2.1 Linear Perturbations

This analysis is an extension of the work done by Chandrasgk!961), where we rederive the linear
KHI growth including a constant viscosity. The linearizedwier-Stokes- (eq. (2.3)) and continuity-
equation (eq. (2.6)) are determined by eq. (2.13) and etd) 2T he perturbed quantities are given by,

vV — V+ 5V, (3-1)
p — p+0op, (3.2)
p — p+ 5p, (33)

wherev = (U (z) 4+ u,v,w) with u,v,w expressing the perturbation in the velocity add, dp in
the density and pressure, respectively. The goal of thmutlon is the dispersion-relation, which
contains the time evolution of the modes and allows to camsthe linear KHI growth rate.

Inserting these perturbed values into eq. (2.13) and ety)Rields the system of linearized equations
as

pau+pUdu+pwil = —3,0p+V(p+03p)dU + pv(d7 + 97+ d7)u, (3.4)
pav+pUdy = —ddp+pv(d7+ 0]+ 07V, (3.5)
PAW+pUdW = —0,5p+pv(dZ+ 0]+ 97w+

ZTS (07 +07)02z) - 5(z— &), (3.6)
Adp+Uddp = —wdp, (3.7)
30zs+Us0x02s = —W(Zs), (3.8)
ou+ov+ow = 0. (3.9)

Egs. (3.4), (3.5) and (3.6) represent the linearized N&viekes equation, where in eq. (3.6) the effect
of surface tension has been incorporated, and the densjtehamge discontinuously at the interface
positions denoted bys. The derivativesd /d; xy,, are abbreviated by, xy,. Ts is introduced as an
advanced parameter who describes the surface tension sti¢he layer. It does not play a role for
our analysis, yet to be complete we include it in the caltmtatEq. (3.7) is the linearized continuity
equation. In eq. (3.8) the subscriptistinguishes the value of the quantityzat z; (the interface
layer). The last equation, eg. (3.9) expresses the incasiity of the fluid. With perturbations of
the form

u,v,w,5p,0p, 8zs ~ expli(kx+ kyy + nt)], (3.10)

whereD = d/dzandk? = kZ +kZ, we arrive at

ip(n+kU)u+p(DU)w = —ikedp—pvkiu+v(p+3p)(D?U)+ pv(D?), (3.11)
ip(n+kU)v = —ikydp—pvk?v+ pv(D?V), (3.12)
ip(n+kl)w = —(D3p) —K* Y Tedz- 6(z—2z) — pvkiw + pv(Dw), (3.13)

S
in+kU)dp = —w(Dp), (3.14)
in+kU)dzs = w(z), (3.15)

i(ku+kyv) = —(Dw), (3.16)
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Note that the linear growth of the KHI with time is determinieg n, which is the quantity we are
solving for. To do so, we need first the dispersion relatiohictv quantifies the time evolution of the
different modes. Combining these equations and assumatgtte flow is aligned with the perturba-
tion vector, i.e k = ky, we obtain the dispersion-relation as,

D {p(n+kU)(Dw) — ko(DU )w} — pk(n+kU)w = iD { pvk(Dw)} -
iD {pv(D%w)} — D {kv(p + &p)(D?U)} +ipvk?(D?w) — ipvkiw —

k4<ZTs- 5(z—zs)> <n+WkU> . (3.17)
The term,jpvk?(D?w) in eq. (3.17) can be replaced with
ipvk?(D?w) = ik?D(pv(Dw)) — ik?(Dw)(D(pV)). (3.18)

Eqg. (3.17) describes the interrelation of the modes. Mopbtmant for the KHI is their evolution at the
interfacez = z;. Let us consider the boundary conditionzgtwhich is determined by an integration
over an infinitesimal element{— € to z;+ €), for the limit ¢ — 0. Please note, that with eq. (3.14) it
follows for dp,

op=i

W
i) ©e) (3.19)

After integration the boundary condition becomes,

AS{P(n+kU)(DW)—Pk(DU)W}=—k4TS< w >+

n+kuU
ik?As{vp(Dw)} —iAs{vp(D3w)} — kAs{vp(D?U)} +ik?As{vp(Dw)} —
ikAs{vﬁ(Dp)(Dzu)} ~iKlim Z:ie(DW)D(vp)dz (3.20)

wherels is specifying the jump of any continuous quantftat z = z,

Ag(f) = f(z:zs+0) - f(z:zS—O)- (3.21)

(For v = 0 we retrieve the corresponding expression as given by Chsekhar (1961).) Using
eg. (3.20) we seek the solution forwhich characterizes the linear KHI evolution with time.ig'ts
the main issue in the following subsection.

3.2.2 Special case: constant velocities and densities

To simplify the derivation of the growth ratefurther, we consider the case of two fluid layers with
constant densitiep; and p,, respectively, and constant flow velocitidg andU, = —U;. In each
region of constanp; » andUs », eq. (3.17) reduces to,
[(n+kUy2)p12 — 2ivk?] (D?w) +iv(D*w) — k? [(n+ kU 2) —ivk*]w =0 (3.22)

The layers are separatedzat z; = 0, and w/(n+ kU) must be continuous at the interface. Also, w
must be finite foiz — oo, so that the solution of eq. (3.22) has the following form,

w = A(n+kUp)e™ (z<0) (3.23)

w = A(n+kUye ™ (z>0). (3.24)
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Inserting this in the eq. (3.20) the characteristic equayields,

ik? T.
n2+2 k(a2U2+a1U1)——(azv2+alv1) n+k2(C¥2U22—|—C¥1U12)—k3p +Sp —
1 2

2
ik3(apvUp + agvaUy) = 0. (3.25)

The parameteragy, a» are defined by,
T

= , O = . 3.26
Yt ? p1+p2 (3.26)
Solving for n, we get the expression for the mode of the liédlr:
ik?
n=— |k(aoUz+ aiUq) — ?(02V2 +a1vy)| +
_ T, K 1z
{kzalaz (Ik[Vl — Vz] — (Ul — Uz)) . (Ul — Uz) + m — Z(CXzVQ + alvl)z} (3.27)

We assume that; = v, = v (which is the case if we consider a medium consisting of thmesa
material), andJ, = —U; = U. This leads to

ivk? k3T k4y2
n= [kKU%(a,—a L] + 1 | —4k2a U2 s . 3.28
{ (a2 —a1)+ > 102 +(Pl+P2) 2 (3.28)
The mode is exponentially growing/decaying with time, & $quare root af becomes imaginary,
k2 k3T v2k4
n=[kU?(a,—a [ 24 aeuzaga, — SENETRAA 3.29
[ (ap—a1)] + 3 12— 5 +— (3.29)

The first term describes oscillations (which is not of ing¢rfor the growth), the second term the
growth/decay, with a damping due to the viscosity. Droppirgfirst term, eq. (3.29) results in

K2 k3T, 2
"7 + \/ MU 2ay000 — ——> + V—] . (3.30)

n=i

prtp2 4

We use eq. (3.30) for the comparison with our numerical studn the case of different density
shearing layers. The surface tension té&ffy/(p; + p2) is counteracting the instability. As mentioned
before, we do not considdt and skip it from now on. For equal density shearing laysrs p> = p,
eg. (3.30) leads to

2 214
%i\/kZUZJr% . (3.31)

In section 3.4 and section 3.5 we use the velocity in directibthe perturbation, which in the above
analysis refers to thedirection and therefore, to the-velocity component (w). Our simulation setup
(see section 3.3) only uses two dimensianar{dy), where the perturbation will be in thedirection.
Hence, we have to identify thgwvelocity component with w. The exponential term in eq. (3.1
~ exp(int) describes the time evolution of the KHI. In the following, weerefore compare livy)
with the analytical expectation (W) ~ int.

3.2.2 presents a short discussion on the dependengenbfwith viscosity (/) and density contrast

(DC = p2/p1).

n=i
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Figure 3.2: Left side: Evolution of the linear analytical Kgrowth (eq. (3.31)) withv, for equal
density layers. Right side: The same, but vidi@ (eq. (3.30)) assuming = 0.

| physical parameter§ dimensionlesg in cgs units|

Box size 2 2cm
Mass 4 2780.81¢g

velocity 0.387 0.40 km/s
time 1 9.8-10°%s

Table 3.1: Initial conditions in dimensionless units (ficslumn) and in cgs units (second column).
In the text we always refer to dimensionless units.

Analytical growth of the KHI

We briefly analyze the dependence of the linear KHI-growttitenvarious parameters such as the
viscosity () and the density contradDC). The parameters are in code units, for conversion to phys-
ical units refer to table 3.

Fig. 3.2 shows the behavior @f n] with v (left panel) andDC (right panel), important for the com-
parison with simulations. The flow-velocity has been sdfi te- 0.387,k = 217 (see also 3.3.3). The
left panel of Fig. 3.2 assumes equal density layers with tHédtowth determined by eq. (3.31). The
right panel shows the variation withC, where the growth is described through eq. (3.30). In this
case we use; = 1, v = 0, the other parameters are as before. As can be seen inEign@easing

v andDC suppresses the linear growth and dampens the KHI evoluti@return to this issue in the
sections 3.4 and 3.5, when simulating the KHI using differeues ofDC andv.

3.3 KHI - numerical description

In the previous section we have derived an analytical fraonkvior the evolution of the KHI. The

predictions can now be directly compared to numerical sitimhs of the formation and evolution
of a KHI in two dimensional shear flows. For this we use two peledent numerical approaches -
particle based and grid based - to follow the hydrodynamidbe system. All physical parameters
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are given in code units, see table 3.1 for conversion to physnits.

3.3.1 SPH models - VINE & P08

The parallel Tree-SPH code VINE (Wetzsteihal,, 2009; Nelsoret al,, 2009) has been successfully
applied to a number of astrophysical problems on variouges¢iaatet al,, 2006; Jessedt al.,, 2007,
Gritschnedeet al,, 2009a; Walclet al, 2010; Kotarbaet al., 2009). In VINE the implementation of
AV is based on the description by Monaghan & Gingold (1988} #éincludes the modifications by
Lattanzioet al. (1986). AV is not a real physical viscosity, but implementedllow the treatment of
shock phenomena. A viscous terf,

V-r

is added to the SPH momentum equations. The quaatity0.01 prevents a singularity if — O,
while h present the mean smoothing length between two particlesv Fadlows,

h _ hv-r
V= _<ac Bm> , (3.33)
p, andc are the mean density and the mean sound speed, respectilelaV-parameterr controls
the shear and the bulk viscosity, whereas ffhearameter regulates the shock-capturing mechanism
(see also section 2.2.1). In the following we get 0.1, andf = 0.2 if not otherwise specified. AV
reduces the Reynolds-number of the flow, resulting in thepdiagnof the KHI (Monaghan, 2005).
Balsara (1995) proposed a corrective term

0-v]

|O-v|+|0Ox V|’

improving the behavior of the AV in shear flows. Further imgments are discussed in Monaghan
(2005) and references therein. VINE can be run with and witkfwe 'Balsara-viscosity’.
To prevent the so-called "artificial pairing’ in SPH (e.g.hBessler & Schmitt, 1981), we implement
a correction developed by Thomas & Couchman (1992). Thificaéat clumping occurs due to an
inappropriate choice of the smoothing function. The gdradisadvantage of using any Gaussian type
kernels is the vanishing gradient at decreasing partigdars¢ion which leads to a decreasing pressure
gradient - at small distances SPH particles tend to stickttey. To overcome this problem a cusp-
like kernel with a finite gradient has to be used or an addifidorce must be added to account for a
monotonic gradient of the smoothing function.
Thomas & Couchman (1992) introduced the following formwathis additional force:

(3.34)

4 u< g,
dW(u) 3u(4-3u) 2<u<l
s _ 3<uU=
du 32-u? 1<x<2” (3.35)
0 otherwise

with u=r/h, wherer is the particle separation ardthe smoothing length. We incorporate this
formula in our SPH-algorithm.

The SPH code presented in P08 uses a different implememtt® as explained in Morris (1997) to
prevent the side effects of artificial dissipation. Additdly, a diffusion term called 'artificial thermal
conductivity’ is implemented (se£3.4.2), which has been shown to prevent the KHI suppression i
shear flows with large density contrasts (Price, 2008).
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Figure 3.3: The SPH-patrticles are divided in the corresjmandins of a superimposed grid with fixed
cell-sizes.

3.3.2 Grid-based models - FLASH, PROTEUS, PLUTO & RAMSES

We choose the publicly available, MPI-parallel FLASH codersion 2.5 (Fryxellet al, 2000).
FLASH is based on the block-structured AMR technique im@etad in the PARAMESH library
(MacNeiceet al, 2000). However, we do not make use of the AMR refinement igalen but use
uniform grids throughout this paper. In FLASH’s hydrodynammodule the Navier-Stokes equations
are solved using the piecewise parabolic method (Colella @dWard, 1984), which incorporates
a Riemann solver to compute fluxes between individual c®lls.use a Riemann tolerance value of
10~7 and a CFL of (6. Due to FLASH's hydrodynamic scheme, the intrinsic nugeriscosity is
reduced to a minimum. This allows us to study the influencemfysical viscosity on the growth of
the KHI. We therefore modify the hydrodynamical equatioasdsl on the FLASH module ‘diffuse’ to
explicitly include a viscous term, which scales with a giv@mematic viscosity (see 3.5.1 and 3.5.2).
As an additional test, we apply the Godunov-type high rdgmishock capturing scheme PROTEUS
(e.g. Heitschet al,, 2006), PLUTO (Mignoneet al,, 2007) and RAMSES (Teyssier, 2002). All are
multiphysics, multialgorithm modular codes, especiakgidned for the treatment of discontinuities.
For the simulations described in this paper, we employ wffe Riemann-solvers such as the Lax-
Friedrichs scheme together with a second order Runge-Isottger, a two-shock Riemann solver
with linear reconstruction embedded in a second order Réuga scheme, and a two-shock Rie-
mann solver, but with parabolic reconstruction embeddealtimrd order Runge-Kutta scheme on a
uniform, static grid.

3.3.3 Initial conditions and analysis method

Our numerical ICs are identical to the ones used for the dtoiv of the analytical growth rates (see
section 3.2, Fig. 3.1 and table 3.1). To excite the instgbilve apply a velocity perturbation iy
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direction:

2
vy = Vgsin(k-x) - exp [— <alo> ] , (3.36)
wherek is the wavenumber andy\vs the perturbation amplitude of thevelocity triggering the
instability. The parametery controls how quickly the perturbation decreases wi{see discussion
appendix A.3). Itis set t@y = 0.1 if not otherwise specified. Initial pressure and densitysat to
po =1 andpo = 1, resulting in a sound speed@fy = /5/3 with an adiabatic exponent gf=5/3.
Since the analysis of section 3.2 is only valid for an incoespible fluid, the flow spedd must be
subsonic. We chodé = 0.3 x csg =~ 0.387, and the initial perturbation igv= 0.1 x U. We tested the
assumption of incompressibility by calculating v, which vanishes for incompressible flows. This
is satisfied in the linear regime, the primary focus of ourkvdrhe wavenumbek is equal to 4t/L,
whereL is the box length. The simulated box ranges frpai, 1] in both directions. We use peri-
odic boundary conditions. If not otherwise specified the Avgmeters are setto= 0.1 andB =0.2.

To analyze the two dimensional SPH and grid simulations istergly, we bin the SPH parti-
cles on a 64 grid, using the cloud-in-cell method (Hockney & Eastwoo@®88), see Fig. 3.3.
Additional details are given in appendix A.1. For the gridies, the same initial conditions are used.
A resolution of 512 is adopted during the calculation, but we rebin to & §4d for the analysis.
We measure the fastest-growing mode, which isktke4rr/L mode of the velocity perturbation i
direction (i.e. the mode at which the initial perturbati@sides) via a Fourier analysis. The relevant
modes are selected in Fourier space, and then are transfdrac into real space. For more details
see appendix A.2.

Our SPH-simulations (see section 3.4) always use equal pasiles if not otherwise speci-
fied. As an additional test (see 3.4.2) we apply for a densibfrast of 10 : 1 different mass particles
to analyze the effect on the KHI-growth.

3.4 SPH-Simulations of the KHI

In the following, we model the evolution of the KHI in systeméh p; = po (3.4.1) andp; # P
(3.4.2). We apply VINE, if not otherwise specified and useahalytical growth rates (egs. (3.30),
(3.31)) derived in section 3.2.1 to determine the effect\éf A

3.4.1 Fluid layers with equal densities:

In the case op; = p2 we vary the following parameters: the resolution, which lbareither enhanced
by using more patrticles, or decreasing the smoothing lehgdmd the AV-parameters and3. We
vary one parameter at a time, while the other ones are seetbdiicial values (see 3.3.1). In the
context of AV we discuss the importance of the Balsara-\@igo In appendix A.3 we also discuss
the influence of differentrp, which determines the strength of the initigtperturbation (eq. (3.36)).

e DEPENDENCE ON RESOLUTION
According to the smoothing procedure in the SPH scheme, gaatticle requires a certain num-
ber of neighboring particles for the calculation of its plegs quantities. In VINE, these range
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Figure 3.4: Time evolution of thevamplitude using VINE for different numbers of mean neigtsho
Mneigh (Ieft panel), for different particle number (right panedjd for different yo (bottom panel).

from Nneighmin 10 Nneighmax. The corresponding mean value of neighbokgigh, determines the
smoothing lengtth. For a constant particle number, increasimggn leads to a larger smooth-
ing length, while at the same time the effective resolut®deacreased.

In Fig. 3.4 we show the time evolution of thg-amplitude, which describes the growth of the
KHI. Fort < 0.2 the amplitudes decrease since the SPH particles losédckametrgy by moving
along they-direction into the area of the opposite stream (see appénd). Therefore we only
considert > 0.2 when fitting the growth rates of the KHI. The left panel of F3g4 shows the
amplitude growth fonpeigh = 20, 30, and 40, respectively. (The commonly used value in two
dimensions iseigh = 30). All three cases appear to be similar. Thus, differgagn do not
have a substantial impact on the KHI-amplitude growth.

The right panel of Fig. 3.4 shows the dependence on partigieber, for the fiducial case of
512 (dotted line) and for an increased resolution of 1@blid line). The difference for the

fitted viscosity is small{ 1%).

DEPENDENCE OF THEKHI ON vyq:
The bottom panel in Fig. 3.4 shows the time evolution of theldékhplitudes with increasing
initial perturbation yo ranging from 01 to 1. (Note, that in this case we do not normalize the
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Figure 3.5: Time evolution of the KHI using VINE for increagi AV parameten (top to bottom) and
constant3 = 2 The panels show the central region of each simulation tamging from[—0.5,0.5|.
The upper layer (green area) is moving to the left, the loasgeil (black area) to the right. Noticeable
damping occurs foa > 0.125 (see left panel of Fig. 3.7).

vy-amplitude and let it evolve towards larger times.) Fgg ¥ 1 the subsonic- passes over to
the supersonic-regime and the instability grows and stsifaster. At later timeg & 3) all
examples converge. Our analysis (section 3.2) is only Watigmall perturbations (i.e. in the
subsonic regime) and assumes incompressibility. Thexefoe have to restrict our initial g,
for which we set (L to satisfy both conditions.

e DEPENDENCE OFKHI OoN a, f3:
In Fig. 3.5, Fig. 3.6 and Fig. 3.7 we show the KHI-evolutionm tbfferent values ofar and
B without the Balsara-viscosity. Increasing the AV-paranet or (3 results in a successive
suppression of the KHI. Values of > 2 andf3 > 1 lead to a decay of the initial perturbation.
However,3 does not affect the growth as muchas Therefore, we first concentrate onas
the operating term on the KHI.
Can we assign an equivalent physical viscosipy to the SPH scheme, i.e. can we determine
how "viscous” the fluid described by SPH is intrinsically? uantify its value, the analytical
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Figure 3.6: Like Fig. 3.5 but for increasing values of the pstametei3 (o = 0.1). A noticeable
damping occurs for o8 > 1 (see right panel of Fig. 3.7).

slope (eq. (3.31)), with the viscosity being the free partamés fitted to the simulated growing
amplitudes. We show the best fits for= 0.125 anda = 2 in the left panel of Fig. 3.7 (thick
dashed dotted lines), for which we find the intrinsic visgosif vspy = 0.07 andvspy = 0.1.
Here we assumed the time range[@®, 1], for which we determine the fits, to be well in the
linear regime.

In the upper panel of Fig. 3.9 we present the derived valueggf as a function ofa. In
summaryvspy increases linearly with increasirg, and the corresponding slope i©989. We
also derive an offset of.065, which is the remaining intrinsic viscosity far= 0. For each
simulation, we also show the effective Re number of the flaye (sottom panel of Fig. 3.9),
which was computed froRe= | -U /vspy. The parametelr describes the characteristic scale
of the perturbation, in our case the wavelength &ni$ the velocity of the flow. Clearly, the
Reynolds-numbers we reach with our models are well belovednemonly expected numbers
for turbulent flows Re> 10°). If we interpretvspy as a real physical viscosity, then VINE is
not able to describe viscous turbulence.

The effective viscosity of the flow is also influenced by difiet values of3. Changingf3 by

a factor of two (e.g. fron3 = 0.5 to B = 1) results in an increase in effective viscosity by a
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Figure 3.7: Upper panel: Time evolution of the VINE-amplitude for different values of the Av-
parametera, where3 has been fixed t@ = 2. The thick dashed-dotted lines correspond to the
analytical fit, shown foir = 0.125 anda = 2 (which corresponds tospy = 0.07 andvspy = 0.1).
Bottom panel: Like before, but for different values of the-gsramete|3, wherea has been fixed to
a=0.1.
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Figure 3.8: Time evolution of the VINEyvamplitude for different values of the Av-parametersind
B, where the Balsara-viscosity has been used. The dampihg aftplitudes is completely prohibited
by the Balsara switch.

factor of Q01 (see bottom panel of Fig. 3.7).

e DEPENDENCE ON THEBALSARA-VISCOSITY:.
We showed that AV leads to artificial viscous dissipatiosuteng in the damping of the KHI.
To prevent this, we use the Balsara-viscosity, see alstoge8it3.1. In Fig. 3.8 we show the
corresponding amplitudes for three examples of AVs=<0.1, 3 =0.2), (a =1, =2) and
(a =2, B = 2). Clearly, the Balsara viscosity reduces the damping®&H|, renderingvspy
almost independently af andf (see also Fig. 3.9).

3.4.2 Fluid layers with variable densities:

While the previously addressed case of equal densitiegtielp to understand the detailed evolution
of the KHI as modeled with SPH, the astrophysically morerggng case are shear flows with
different densities. The resolution of the diffuse registoiwer by a factor of/DC, whereDC is the
ratio of the densities in dense and diffuse medium (BQ.= 10 corresponds to a density contrast of
10:1). We return to our standard set of parameters, in whislee@ = 0.1 andf3 = 0.2. For these
low AV parameters we do not need the Balsara-viscosity (s¢4)3 Nonetheless, we did run test
simulations with the Balsara switch, which we found to confaur former finding, since the growth
of the KHI was not affected (see also bottom panel of Fig. 8.k0the following, we (i) analyze the
growth of the KHI for different values of DC (with equal masaicles) and address the problem of
KHI suppression, while in (ii) we test the influence of equals® or spatial resolution.

(i) KHI GROWTH AS A FUNCTION OFDC:
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Figure 3.9: Upper panel: Derived physical viscositiegp(y) corresponding to different AV parame-
tersa with (open red points) and without (filled black points) Baks-viscosity. Bottom panel: the
effective Reynolds-number with respectdo Since eactr corresponds to anspy, We can compute
the appropriatd&ke
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Figure 3.10: KHI with VINE forDC = 10. Top panel: Case of equal particle masses. Middle panel:
Case of equal particle masses using the Balsara switclhoB@é&nel: Case of unequal particle masses
and therefore equal particle numbers in both layers. TheiKBlppressed in all cases.

We show the KHI evolution for increasinBC in Fig. 3.11 and the corresponding amplitudes in
Fig 3.12. The analytical prediction (eq. (3.30)) using (see 3.4.1) is indicated by the thick dashed
dotted lines forDC = 1.5 andDC = 2 (left panel) and agrees with the simulated growth. However
for DC > 6 the KHI does not develop anymore (therefore we do not coenpavith the analytical
expectation). This SPH problem of KHI suppression has bé&gtiesl in great detail (e.g. Agertz
et al,, 2007; Price, 2008; Wadslet al., 2008; Reackt al, 2010; Abel, 2010). SPH particles located
at the interface have neighbors at both sides of the bour(dary from the dense- and less dense
region). Therefore, the density at the boundary is smoothethg the evolution. However, the
corresponding entropy (or, depending on the specific ctdethiermal energy) is artificially fixed in
these (isothermal) setups which results in an artificiatrioumion to the SPH pressure force term,
due to which the two layers are driven apart. One possibletieal is to either adjust the density
(Ritchie & Thomas, 2001; Reaat al,, 2010), or to smooth the entropy (thermal energy) (Pric820
Wadsleyet al., 2008; Abel, 2010).

A remedy has been discussed by Price (2008), who proposaettita diffusion term, which is called
artificial thermal conductivity (ATC), to adjust the therlrenergy. Price (2008) states that these
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Figure 3.11: Like Fig. 3.10 top panel, but for different dégnsontrasts. From top to bottom we show
DC =2, 3, 6. ForDC > 6 the KHI does not develop anymore.
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Figure 3.12: Time evolution of the VINEamplitude using different values &8IC. Left panel: the
KHI does develop up until tdC = 3. Right panel: The KHI is suppressed in all casesd@r> 6.

The thick dashed-dotted lines on the left panel correspottidet analytical growth (using;) shown
for DC = 1.5 andDC = 3. For further details the discussion in the text.
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Figure 3.13: Time evolution of the KHI modeled with PO8 foethC = 10. The dashed-dotted line
corresponds to the analytical prediction, eq. (3.68), tvisdn good agreement with the simulation.

discontinuities correspond to missing surface integratheé SPH equation, which are a direct result
due to the assumption of differentiability of the SPH eviolntequations. By demonstrating the
difference between the integral and differential densityl@ion, Price (2008) shows that in the latter
case the surface integral terms vanish. As long as bourmsdamgenot involved, the two interpretations
are equivalent. This changes once the fluid has boundariisamtinuities — such as in shear flows.
Many SPH implementations chose the differential form of ¢lelution equations, and thus fail to
account for the surface terms. Price (2008) proposes toiadighdtion terms to recover these missing
discontinuities. For example, the integral form of the gauity equation can be written as,
dp, !/ I\, /
/[WJrD-(pv)]W(r—r,h):O, (3.37)

which results in

17}

" / PWdV — / oV - OWdV + / - [p'VW] dV = 0. (3.38)
See also chapter 2, section 2.2.1 for the basic equationsig USW = —[OW and the convective
derivative (eq. (2.16)) together with the Stokéseorem, we can recast the last part into a surface

integral,

% / PWdV — / p'(V—V)-DWadV + / [o'VW] -dS =0, (3.39)

1 (yO-FdV=[F-dS
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Converting the integral into a sum we get,
% MpWap = %(va —Vp) - OWgp — / [p'V'W] -dS. (3.40)

This equation contains an additional term involving thefaee-integral. In most cases it vanishes
except at boundaries or flow discontinuities. This meara,tteating SPH equations either using the
integral form or the differential form has important consexces. Differential SPH equations like the
velocity evolution, eq. (2.30) assume that the surfacegiratl term vanishes, which is not the case if
boundaries are present. Therefore, contributions of daiterm to the sum are not accounted for.

Price (2008) proposes to add dissipation terms to the SPhtiegs in order to recover the missing

discontinuities. These dissipation parts diffuse theatiiouities on the smoothing scale. A general
form for thediscontinuity capturing term@vionaghan, 1997) is given by,

dA aAVSig ~
D) =y m A9 AR - OWG 3.41
( dt >diss Z J Pij ( iy ! ( )

for a scalar paramete, with aa describing its amount of diffusion of order unity angg\being the
estimation for the signal velocity between particle palitsr example, if the SPH code conserves the
energy a diffusion term can be added to the thermal energgtiequ

du de dv
= _=_y== 42
at _dt_ 'adt (3.42)
which is the ATC as mentioned before. This results in,
du my [1 o N2 u o
-_— = — = by 1 N H - N * D W . 3.43
< at > e % Pt ZaVS|g (Vap-fan)”+ duVsig (Ua — Up) | - Fap - OaWap ( )

Vg4 is the signal velocity for the energy. With this method, thilshould develop according to the
test cases of P08.

In Fig. 3.13 we test whether the P08 approach is indeed ireagegat with our analytical prediction.
Note that PO8 has a method implemented to account for thiciativiscous dissipation caused
by AV (similar to the Balsara-viscosity). Thus, the viscoeffects of AV are strongly reduced.
For DC = 10 and using 512particles in the dense layer we indeed find good agreemewebat
measured and analytical growth rates. If the standard SRehse is used, a correction term like
ATC has to be included to obtain a KHI in shear flows with difietr densities, which is consistent
with the analytical prediction.

(i) KHI GROWTH USING EQUAL AND DIFFERENT PARTICLE MASSES

First, we investigate the development of the KHI for the deaad SPH case of equal mass resolution
throughout the computational domain, and therefore fevagiigtes in the low density fluid layer (see
top panel of Fig. 3.10 foPC = 10, where the dense medium is resolved with%garticles). This
results in a varying spatial resolution, due to the fact 8aH derives the hydrodynamic quantities
within a smoothing length set by a fixed number of nearest neighbors. This construchasbeen
discussed in detail earlier in e.g. Agegtal. (2007) — specifically lowers the Reynolds-number of
the shear flow across density discontinuities, thus affgdtie evolution of the KHI. As can be seen
in the top panel of Fig. 3.10, the KHI is completely supprédsse
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Second, we test the case of equal spatial resolution in hathlflyers, and therefore unequal particle
masses within the computational domain (Fig. 3.10, lowerefa Again, we find the KHI to grow
too slowly with respect to the analytical estimate. Howetee suppression is less effective in the
latter case.

3.5 GRID-Simulations of the KHI

For comparison to the SPH treatment of Kelvin-Helmholtzabsities, we study an identical setup
of fluid layers with the grid-based codes FLASH, PROTEUS, POLAnd RAMSES (see 3.3.2). We
reuse the previously specified initial conditions with adgrsolution of 512 cells in the standard
case. For FLASH and PROTEUS, we additionally include platsitscosity of various strength in
some of the simulations (see 3.3.2). Note, that for the fiollg examples we usep = 1 if not
otherwise specified, which does not affect the growth of thglaudes in the linear regime (for
further information see discussion in the appendix A.3).

3.5.1 Fluid layers with equal densities
Non-viscous evolution

The upper panel of Fig. 3.14 shows the non-viscous KHI-aimiuusing FLASH (solid line), PLUTO
(dotted line), and for comparison VINE (dashed line). InYHBIE example, the AV has been set to
zero (@ = B = 0). The expected analytical growth (eq. (3.31)) reducel wi Oton~ k-U =2.43
(indicated by the thick dashed dotted line). The FLASH an®JPPO amplitudes develop in a simi-
lar pattern and are almost undistinguishable. Their fittedes within the linear regime (which lies
roughly between = 0.3 — 0.6) results inn;; = 2.49. FLASH and PLUTO show a consistent growth
in agreement with the analytical prediction. VINE on theasthand exhibits a slightly slower growth.
This deviation is due to the intrinsic viscosity;{ = 0.065) that was estimated in 3.4.1.

The upper panel of Fig. 3.15 shows the non-viscous KHI-diaiuwvith PROTEUS (solid line) com-
pared to its high resolution amplitude (dashed line) usb@/ particles. Note that for these examples
we setop = 0.1, but this does not influence the KHI growth (see also appefd).

The PROTEUS amplitude is damped by a factoro1.3 as compared to the analytical prediction
(indicated by the thick dashed dotted line). Using a higlesiolution does not change the ampli-
tude growth. Thus, the resolution is not a contributingdatt solve the disagreement. PROTEUS
underpredicts the linear KHI growth, see also the viscowdugon discussed in the following.

Viscous evolution

The bottom panel of Fig. 3.14 shows the viscous KHI-ampégidsing FLASH. The corresponding
analytical predictions (eq. (3.31)) are shown by the thiakheed-dotted lines for the examples with
v = 0.00003 andv = 0.03. To quantify the growth of the KHI in the FLASH simulationge again
fit the slopes of the KHI-amplitude in the linear regime (bedént = 0.3 — 0.6). The result (diamond
symbols) along with the corresponding error is plotted o Bi16. For small viscositiey (< 0.003),
we find the growth rates of the KHI in FLASH to be in good agreetweth the analytical prediction.
In this viscosity range, the dominant term in the analytmadiction (eq. (3.31)) is- kU. Therefore,
any influence ob is marginal, and the amplitudes do not change considerBhiSH treats the fluid
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Figure 3.14: Evolution of KHI amplitudes for equal densiyérs. Upper panel: Non-viscous evolu-
tion for FLASH (solid line), and PLUTO (dotted line). Addimally, we show the example with VINE
(dashed line), where the AV has been set to zere-(8 = 0). Bottom panel: Viscous KHI evolution
using FLASH. The thick dashed-dotted lines correspondeaitialytical prediction, eqg. (3.31).
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Figure 3.15: Evolution of KHI amplitudes using PROTEUS fgual density layers. Upper panel:
Non-viscous evolution (solid line) compared to the higketation amplitude (dashed line). Bottom
panel: Viscous KHI evolution. The thick dashed-dotted siterrespond to the analytical prediction,
eg. (3.31). Note, that these examples oge- 0.1.



38 CHAPTER 3. MODELLING SHEAR FLOWS WITH SPH AND GRID BASED MEHODS

asifv~0.

However, with increasing viscosity, the amplitudes shdwddlamped. This behavior is in fact visible
at the bottom panel of Fig. 3.14 (as well as in Fig. 3.16). Tiwewh rates of the KHI agree very well
with the analytical prediction.

The bottom panel of Fig. 3.15 presents the viscous KHI eimiuising PROTEUS. The correspond-
ing analytical predictions (eq. (3.31)) are shown by theklidashed-dotted lines again for the exam-
ples withv = 0.00003 and’ = 0.03. The fitted slopes underpredict the analytical expextatbughly
by a factor of~ 4 (see also the red diamond symbols in Fig. 3.16). Increasilegds to a decrease
of the amplitudes as expected. However, already at a vigocolsy > 0.003 the KHI becomes com-
pletely suppressed.

Why does PROTEUS differ so dramatically? A possible exglanacould be that we deal with a
mixture of Eigenfunctions, when initiating the initial perbation in PROTEUS. This might lead to
a domination of decreasing modes over the increasing mod¢hais, to a damped KHI evolution.
To verify this possibility, we derive analytically the Eigienctions of the KHI and adjust our ini-
tial conditions correspondingly to egs. (3.60)-(3.67)e(below). The Eigenfunctions excite only the
growing mode of the KHI, the linear growth should therefogeeg with the analytical expectation if
the problem of PROTEUS is caused by decreasing modes.

PROTEUS with the KHI-Eigenmodes

We derive the Eigenmodes of the KHI for the case of equal flajetis, i.e. wherg; = p, = p,

Ui = —U, U, =U. The focus is on the direction of the perturbation (i.e. wesider the velocities u
(x-direction) and w (z-direction), see also 3.2.2). In itase the perturbed equations (see section 3.2)
reduce to,

ip(n+kU)u+p(DU)w = —ikdp—pvkiu+vp(D?U), (3.44)
ip(n+kU)w = —(Ddp)— pvkiw+ pv(D?w), (3.45)
i(n+kU)op = —w(Dp), (3.46)
i(n+kU)dzs = w(z), (3.47)

i(kuy = —(Dw). (3.48)

Sincep = const, we haveDp = 0, and therefordp = 0. The Eigenfunctions are obtained referring
to the following recipe:

e Chose one of the perturbed variables (upas, dp, op)

e Recast the residual variables after the chosen quantitgx@ample, by chosing w we have to
rewriteu = u(w), 0zs = dzs(w), 6p = dp(w)

e Replace the frequenaywith the solution of the dispersion-relation for the grogiimodes

We chose the perturbedvelocity (w) as the depending quantity, which has the feilg form (in-
cluding the time as well as the spatial dependence),
we = A-(n+kUpetkeemtkd (z <) (3.49)
Wo = A.(n4kUye * Mk (75 0). (3.50)
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Figure 3.16: Comparison of the analytical expectation d&edmodels for DC=1 (diamond shaped
symbols, black for FLASH and red for PROTEUS) dp@ = 10 (square symbols, only FLASH). The
slopes derived for FLASH and PROTEUS correspond to the @oalyfits. The lines represent the
analytic prediction, foDC = 1 (solid line, see eqg. (3.31)) amC = 10 (dashed line, see eqg. (3.30)).

At the interface £ = z; = 0) the termm—"‘l’(w must be continuous, which means

W-,
(n—kU)

)

(n+kU)

w. ‘:

usingU; = —U,, U, =U. Inserting w. . it follows from eq. (3.47),

0z = —iAgm+k) (3.51)
0zs. = —iA. gk (3.52)

while eq. (3.48) results in,

U. = IA-(n+kU)e? M (3.53)
U. = —iAs(n—kU)e kedn+kd, (3.54)
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Figure 3.17: PROTEUS: Fitted viscosity,(,m) against physical viscosity] without using the KHI-
Eigenfunctions (left side) and with the Eigenfunctionglftiside). Note, that the y-axis is logarith-
mic. The solid line in the right plot denotegym = V.

And for dp- - using eq. (3.45) we have,

Sp. = —'—kA<p(n+kU)2ekZé<m+kx), (3.55)

Sp. — lkA>p(n—kU)2e—kZé<”t+kX>. (3.56)

The solution of the dispersion-relation for the growing reeis determined by eq. (3.31),

2 214

where we introduced the abbreviatioh
It follows att = 0, w.(t = 0) = A_(in’ + kU) = wp. Furthermore, the amplitude can be split into a
real-part and a imaginary-pai. -~ = RgA. - ) +i-Im(A. +)),

Wo kU ) Wo

Ac = Z+1u?) " (21 keuz)
wokU . Wo

AL = — — . 3.59

> mZ2rkeuz) " (2 rkeu?) (3.59)

(3.58)
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The absolute value of w- is given bylw. - | = /Regw. - )2+Im(w. - )?, the square-root of the
real and imaginary part of w... Calculating the absolute values for our quantities,

w.~| = wp-exp(—k-2z)-exp(—n'-t), (3.60)
wo| = wp-exp(k-z)-exp(—n'-t), (3.61)
Us| = wp-exp(—k-2z)-exp(—n'-t), :
k / (3.62)
u-| = wo-exp(k-2)-exp(—n'-t), :
k / (3.63)
W
10zs>| = \/ﬁ -exp(—n' ), (3.64)
W
10zs<| = \/ﬁ -exp(—n'-t), (3.65)
p-| = —vne4+kUwpexp(—k-z)-exp(—n -t), 3.66
5 i1/ 2 1202 K / (3.66)
|op-| = %\/ 2 4+ k2U2wgexp(k- z) - exp(—n' -t), (3.67)

gives us the Eigenfunctions of the KHI.
For our simulations, w corresponds tg-welocity component with w= vy, respectively. The
perturbed velocity-component iadirection, u corresponds tg v U + u.

Applying the Eigenfunction improves the situation slightlsee Fig. 3.17 which presents the
fitted viscosities (denoted here ag,m) against the physical viscositiey)( (left side without-,
right side with Eigenfunctions). Note, that tixeand y-axes are logarithmic. Despite this small
enhancement, the fitted slopes are still too low. A mixtur&igienfunctions is not the source of the
problem.

Another possible scenario could be that the artificial msiG viscosity ¢in;) dominates. This effect
appears in any numerical algorithm describing fluid dynaménd is related to numerical noisgy
should be very small in most applications, but if not, it @bdbminate over the physical viscosity.
If this is the case, then any viscous evolution using PROTEBESto be regarded with caution. We
therefore do not use PROTEUS for our further studies.

3.5.2 Fluid layers with different densities
Non-viscous evolution

Finally, we investigate a density contrast of 10 : 1, simitathe example studied with VINE (see
3.4.2). Fig. 3.18 shows the non-viscous evolution of the Katllthe DC = 10 case (upper line for
FLASH, bottom line for PLUTO). It can be seen that for bothesthe interface layer starts to roll-up
and the instability is developed. This is in disagreemett thie previously discussed case using SPH,
where the KHI is completely suppressed R > 6 (see 3.4.2).

The upper panel of Fig. 3.19 presents the correspondingitaieig for FLASH (solid line), PLUTO
(dotted line) and RAMSES (three dotted dashed line) contptzehe analytical prediction (thick
dashed-dotted line), which in this case reduces to

n= +iv/4k2U2a; a,. (3.68)

For FLASH we show two different resolutions ($1and 1024). The amplitudes resulting in the
case of low and high resolution are effectively indistirgiable. This is an important result, as it



42 CHAPTER 3. MODELLING SHEAR FLOWS WITH SPH AND GRID BASED MEHODS

7 o - » ,

£=025 T ¢=05 T e=075 ' Te=

— — - —_— _— ——

t=0.25 t=0.50 7 t=0.75 Yi=1.00 0

Figure 3.18: Time evolution of the KHI density in a simulatiwith v = 0 andDC = 10 for FLASH
(top row) and PLUTO (bottom row). The plotted box size is frésil, 1) in both directions, the
resolution is 512. The KHI develops, which is in contrast to the example sitadavith VINE.

demonstrates that small scale perturbations, which atise@numerical noise and which could vi-
olate the linear analysis (as we then might follow the growithigher order modes rather than the
initial perturbation) are not important. Therefore, we éahown that our simulations are converged
as we would otherwise expect the growth of the KHI to be sligtiependent on the grid resolution
(see 3.5.3 and the recent findings of Robertsbal. (2009), who had to smooth the density gradient
between the two fluid layers in order to achieve convergenderms of grid resolution). Moreover,
both FLASH and PLUTO evolve similarly. RAMSES begins to grawit later (at ~ 0.2), which is
due to the use of an diffusive solver (see also the discussitire following paragraph). For all four
examples the slope of the amplitude evolution can be apmabed to 14, which is in good agreement
with the analytical expectation. Note that we do not showdbmparison with the VINE amplitude
since the KHI does not evolve f@C = 10 (see 3.4.2).

Many grid codes offer a variety of hydrodynamical solverse therefore tested the influence of dif-
ferent numerical schemes on the growth of the KHI using PLUY3&® bottom panel of Fig. 3.19).
We show three different examples; 'sim000’ is a Lax-Frielksi scheme together with a second order
Runge-Kutta solver (tvdlif); 'sim001’ implements a two-skdriemann solver with linear reconstruc-
tion embedded in a second order Runge-Kutta scheme; 'sinal€2 implements a two-shock Rie-
mann solver, but with parabolic reconstruction, and emeddd a third order Runge-Kutta scheme.
Both, 'sim001’ and 'sim002’ show a similar growth of the KHil agreement with the analytical pre-
diction (see Fig. 3.19, top right panel). The more diffusfelieme used in 'sim000’ causes a small
delay in the growth of the KHI, but results in a similar slopihin the linear regime (up to= 0.6).
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Figure 3.19: The same as in Fig. 3.14 but fob@ = 10. Upper panel: Non-viscous evolution
for FLASH (solid line), PLUTO (dotted line), RAMSES (threetted dashed line), and the high-
resolution (1022) amplitude for FLASH (dashed line). Bottom panel: Non-aiss evolution using
PLUTO, with different solvers, see text for more details.
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Figure 3.20: Viscous time evolution of KHI amplitudes usigASH. The thick dashed-dotted lines
correspond to the analytical prediction, eq. (3.30).

Viscous evolution

Fig. 3.20 shows the viscous KHI-amplitudes using FLASH,chtare increasingly suppressed with
increasingv. The corresponding analytical prediction (eq. (3.30))lisven for v = 0.0003, and

v = 0.03 (thick dashed-dotted lines). For< 0.03 the simulated growth rate is slightly enhanced by
a factor of~ 0.12 as compared to the analytical prediction (see also Fl§)3However, for higher
viscosities ¢ > 0.03) we find good agreement between simulation and analyirealiction.

3.5.3 FLASH with Smoothing

Robertsoret al. (2009) introduced a ramp-function to suppress artificiadlsstale perturbations (see
Fig. 3.18) in order to achieve convergence in grid simufegioro test this approach and its influence
on the KHI-evolution, we implement a similar function whifdr our initial conditions takes the form

1
 Trexpi2y/ay)

Ay describes the smoothing over the cells in yhdirection, and the new density distribution follows
as (Robertsomet al., 2009)

R(y) (3.69)

p(Y) =p1+R(Y)[p2—p1]. (3.70)

The flow-velocityU is given by

U(y) =U1+R(y)- (Uz2—Uy), (3.71)
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Figure 3.21: Top left panel: Initial density configuratioarying withy, using different smoothing
parametersAy = 0 (no smoothing) Ay = 0.05 (value used by Robertsat al. (2009)), Ay = 0.1,
0.2, and 03, respectively. Top right panel: The same but for the flovesiey U. Bottom panel:
Corresponding ramp-functions (eq. (3.69)) varying with

with U, = —U;. Fig. 3.21 shows the initial conditions using eq. (3.69)pempleft panel the initial
density (eq. (3.70)), upper right panel the initial flow-agty (eq. (3.71)), and at the bottom panel
the corresponding ramp-function (eq. (3.69)) for the siniogt parametergl, = 0 (no smoothing),
Ay = 0.05 (value used by Robertsat al, 2009),A, = 0.1, andAy = 0.2.

Taking these initial settings we performed simulation®ig$tLASH ©C = 10 andv = 0). Fig. 3.22
presents the KHI-evolution fak, = 0.05, 0.1, and 02 (the boxsize is from-0.5,0.5]). ForA, = 0.05,

as proposed by Robertsenal. (2009) the artificial perturbations completely vanish. Theespond-
ing amplitude growth is shown in Fig. 3.23. Increasifigincreases the diffusion at the interface and
shifts the growth to later times. However, the slopes do hange (see Fig. 3.23). Using the ramp

function to suppress artificial small scale perturbatioaesdnot alter the KHI-evolution, but delays
the onset of the growth.



46 CHAPTER 3. MODELLING SHEAR FLOWS WITH SPH AND GRID BASED MEIODS

A, =005 ¢=0.25 t=0.50 t=0.75 t=1.00

=1 t=10.25 t=0.50 t=0.75 t=1.00

Ay=02 =025 t=0.50 t = 0.75 ¢t = 1.00

Figure 3.22: Time evolution of the KHI using FLASH, for inasingAy, (top to bottom) withDC = 10
andv = 0. The plotted box size is from-0.5,0.5] in both directions.

3.6 Conclusions

We have studied the Kelvin-Helmholtz instability applyidifferent numerical schemes. We use two
methods for our SPH models, namely the Tree-SPH code VINEz8/énet al, 2009; Nelsoret al,,
2009), and the code developed by Price (2008). The grid tssadations of the KHI rely on FLASH
(Fryxell et al,, 2000), while as a test for the non-viscous evolution we afgady PLUTO (Mignone

et al, 2007).

We first extended the analytical prescription of the KHI bya@tirasekhar (1961) to include a constant
viscosity. With this improvement we were able to measurdrttiasic viscosity of our subsequently
performed numerical simulations. We test both SPH as wejtidscodes with this method.

We then concentrated on the KHI-evolution with SPH. We pented a resolution study to measure
the dependence of the KHI growth on the mean number of SPHhbbeig (isp) and the total num-
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Figure 3.23: The same as Fig. 3.19 (upper panel) using FLASHidbp differentAy’s. From top to
bottom increasing a8y = 0, 0.025 0.05, 0.1, 0.2, and 03, respectively.

ber of particles, respectively. We found that our simuladievere well resolved and that a different
number ofngpy did not significantly influence the KHI growth rate.

In case of equal density shearing layers we then measurattinsic viscosity in VINE by evaluating
our simulations against the analytical prediction in timedir regime. Without using the Balsara vis-
cosity the AV parameterg and effectively lead to a damping of the KHI. The commonly suggés
and used settings af = 1, andf = 2 result in a strong suppression of the KHI. More quantita-
tively, we derive values of 065 < vspy < 0.1 for 0< a < 1. Different values of3 do not have a
strong impact orvspn. By introducing the Balsara-viscosity the dissipativeeet§ of the AV can be
reduced significantly, effectively rendering the resuttde independent ai and 3. However, the
constant floor viscosity ofspy = 0.065 prevails. Furthermore for a given we estimated the effec-
tive Reynolds-numberR@ of the flow. For the minimum SPH viscosity opy = 0.065 we derive a
maximum Reynolds number of 12. This is very small compardgizal Reynolds numbers of real
turbulent flows Re> 10°). For different density shearing layers we confirmed theltesliscussed
in Agertzet al. (2007), i.e. the KHI is completely suppressed for shear fiaitls different densities
(in the case of VINE foDC > 6). Here, using the Balsara switch does not solve the prablems
indicates that other changes to the SPH formalism are wdjirirorder to correctly model shearing
layers of different densities. To demonstrate this we &pplhe solution of Price (2008) to our ini-
tial conditions for DC=10. In this case the KHI was supprdsiseVINE. However, we found good
agreement between the analytically predicted amplitudéugen and the simulation of Price (2008)
for DC = 10.

The second part of this chapter addresses the non-viscadsviscous KHI evolution using grid
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codes. In the case of equal density shearing layers, we ftendon-viscous growth rates for shear
flows with FLASH, PLUTO and RAMSES to be in good agreement \thithanalytical prediction. In
the viscous case, the FLASH-amplitudes show only a minoei@gncy on the viscosity if < 0.03.
Increasing the viscosity leads to a damped evolution, vhithsimulated growth coinciding with the
analytical prediction. However, PROTEUS disagrees aneéprddicts the analytical growth by fac-
tor of ~ 1.3 in the non-viscous case, as well as in the viscous case veheomplete suppression
occurs atv > 0.003. Using the KHI-eigenfunctions as initial setup to préve possible dominance
of decreasing modes does not solve the problem.

For non-viscous shear flows (with a density contradd@f= 10) the KHI does develop for FLASH,
PLUTO and RAMSES in agreement with the analytical predictim the viscous case FLASH (also
analyzed wittDC = 10) slightly overpredicts the corresponding growth ratevf< 0.03, it coincides
with the analytical prediction when the slopes are mukiglby a constant factor ef 0.12. Finally,
we use the ramp-function to smooth the contrast as propog&bbertsoret al. (2009) and test its
influence on the non-viscous growth, which we find to be unadte

The comparison between VINE, FLASH and PLUTO in the equakitertase, wherdV = 0 and

v = 0, demonstrated that VINE does have an intrinsic viscosityi¢gh we estimated toj,; ~ 0.065).
For simulations in three dimensions, we expect a similablero for SPH when modelling the KHI
with density contrasts, as already discussed by Aggrtd. (2007). This problem, due to the fixed
entropy (or thermal energy) in the SPH formalism arisespedéently on the dimension, but is pre-
vented using ATC .



Chapter 4

The Trace of Dark Energy captured
within the CMB

4.1 Introduction

4.1.1 Definitions:

One of the most puzzling mysteries in cosmology is the régeletected accelerated expansion of the
universe (Krauss & Turner, 1995; Ostriker & Steinhardt, 3;9Riesset al,, 1998; Perlmutteet al.,
1999; Netterfielcet al, 2002). It remains an unresolved question what mechanisisesahis special
behavior. Several different solutions have been propdkednost popular one is the concept of dark
energy (DE) which contributes abost70% to the total energy density of the universe today,

Q= Q% + 20 (4.1)

where the subscripts denote the values of total-, (dark angbhic) matter- and DE- contributions at
the present, indicated by the index O (see also Fig. 4.1) elViaccepted DE models are the cosmo-
logical constantA) and quintessence.

The cosmological constant, first introduced by Einsteirl{)90 obtain a static non-evolving universe
is identified with the vacuum energy that fills the empty sp@we exhibits a negative pressure result-
ing in an acceleration of the expansion. A detailed summagiven in e.g. Padmanabhan (2003),
see also in Peebles (1984) the constraint of inflation on otzgyital models including\. However,
this concept gives rise to a serious problem known astthemological-Constant-Probleifwein-
berg, 1989; Carroll, 2001; Padmanabhan, 2003). The otemagnitude of\ is of order~ 10123
smaller than the predicted value obtained from quanturd-fredory. This results in a very fine-tuned
value forA, the so-called fine-tuning problem. Another unresolvedstjae refers to the point where
it started to dominate over matter, known as the coincidgmoblem. If this would have happened
early in the universe, the repulsive nature\ofvould have prohibited any formation of structures. On
the other hand, if this event occurs at later epochs, no ee@éorA would have been observed yet.
Why this event happens exactly at the right moment’ (abedshift~ 0.7) is not understood.

The second proposed form for DE, the quintessence has its igarticle physics and alleviates
some of the problems involved with. The idea to identify DE with an evolving dynamical scalar
field including a non constant equation of state (i.e. thie k&tpressure to density expressed through
wpe) was first introduced and discussed in detail by Wetteri@88), Peebles & Ratra (1988), Ratra
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(intergalactic gas, stars etc.)

Dark Energy

Dark Matter

Figure 4.1: Contribution of energy densities in our unieeiceday.

& Peebles (1988), and Caldwelt al. (1998). The Quintessence allows a form of DE which behaves
like A at late times, but starts from a different value at earlimes. This soothes somewhat the fine-
tuning problem (Liddle & Scherrer, 1999; Steinhaedial, 1999). The application of quintessence is
wide, ranging from particle physics (e.g. Masi@taal., 2000) to cosmology (e.g. Cobét al,, 1997;
Ferreira & Joyce, 1998).

4.1.2 Earlier Studies:

The question, which form of DE our universe possesses cagrberdnswered by astrophysical obser-
vations. DE, and thus, the acceleration is parameterizeddghwpg, whose determination (the exact
value or functional form) is the central point in order totoliguish between different models. Beside
the important measurements of supernovae type la (SNI@u@sr& Turner, 1995; Ostriker & Stein-
hardt, 1995; Rieset al, 1998; Perlmutteet al,, 1999; Netterfielcet al., 2002) and large scale struc-
tures (LSS) (e.g. Dodelsaat al,, 2002) is the cosmic microwave background (CMB), deteateitie
1960th by Penzias & Wilson (1965) measured to high accurggeteral still ongoing experiments,
e.g. balloon based like BOOMERanG (de Bernastigl., 2000), MAXIMA (Hananyet al., 2000;
Balbi et al, 2000, 2001), Archeops (Bendatal.,, 2003a,b), or satellite based experiments, like COBE
(Bennettet al., 1996), WMAP (Spergeét al, 2003, 2007; Komatsat al., 2009) and PLANCK. The
interaction of CMB photons with their surrounding enviragmh results in anisotropies, which are
imprinted as fluctuations in their temperature (see alsoER). The primordial anisotropies contain
information about the universe before the photons havelgeed from the baryons and leave a Gaus-
sian signal within the CMB temperature. The secondary amipis arise after the decoupling, as the
photons travel freely through the universe and interadt Yatming structures. Since DE influences
the growth of cosmic structures, they contain informatitwwt DE in form of non-Gaussian con-
tributions. In particular, th&kees-SciaméRS)-effect, a combination of thietegrated-Sachs-Wolfe
(Isw)-effect (the late time decay of the potential fluctaa) and the nonlinear growth of density
fluctuations (Rees & Sciama, 1968) induces, in addition &witational deflection of photons these

1 see http://iwww.sciops.esa.int
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secondary anisotropies in the CMB (e.g. Goldberg & Speffg99; Zaldarriaga, 2000). Therefore,
comparisons of measured and theoretical calculated angjstaibutions of temperature fluctuations
(in terms of correlation functions, i.e. power- and bispatt) allow to set important constraints on
cosmological parameters.

The three-point-correlation function (bispectrum), msshsitive to non-Gaussian contributions is
very useful to trace the imprint of nonlinear growth in orderset limits onwpe. This has been the
main issue of previous studies (e.g. Spergel & Goldberg9;18®ldberg & Spergel, 1999; Komatsu,
2002; Verde & Spergel, 2002; Cooray & Hu, 2001; Serra & Cop2808; Hansoret al, 2009).
Including the lensing contribution, we analyze the thdoabtcross correlation bispectrum between
the primordial-, lensing-, and RS-effect (L-RS bispectyus similar analysis considering a cosmo-
logical constant has been done by Verde & Spergel (2002).fuktirer studies see also Giost al.
(2003), and Giovet al. (2005). We extend this study in allowing a time-varying dopraof state for
the DE-component. Our main focus is early quintessenc@Netterich, 2004), a special form of DE,
which does exhibit non-negligible contributions at earépochs (unlike the cosmological constant,
that becomes dominant at late times). Several studies srctitext have been done e.g. Caldwell
et al. (2003), Barreircet al. (2003), Caldwell & Doran (2004), Wang & Tegmark (2004), Bartann

et al. (2006) and Grossi & Springel (2009).

4.1.3 Outline:

In this chapter we calculate the theoretical L-RS bispectand the corresponding signal-to-noise
(S/N) ratio for different quintessence models. TI8N) ratio is used to approximate how accurate
future experiments, like PLANCK can distinguish betweessthmodels.

We start by giving a short introduction of the cosmologicakios necessary for our study in sec-
tion 4.2. In section 4.3, we introduce in detail the quintese models following Wetterich (2004)
(WETTO04), Linder (2003a,b) (LIND03) and Komatstial. (2009) (KOMAT09), where we also dis-
cuss DE models with constant equation of states. Since thefle& depends on the linear as well as
on the nonlinear evolution of density fluctuations, we neelgscription for the linear- and the non-
linear regime. In section 4.4 we therefore introduce thifim of the nonlinear power spectrum. To
test the dependency of our results on the used model, we certipae different approaches, cosmo-
logical perturbation theory based on Bernardetal. (2002) (PT) and the fitting formulae following
Ma et al. (1999) (MA99), and Smitlet al. (2003) (HALOFIT), respectively. For a related study of
power spectra in this context see Mangilli & Verde (2009)eHmalysis of the L-RS bispectrum and
the (S/N) ratio is carried out in section 4.6 and section 4.7. Finallg summarize our results in the
section 4.8.

4.2 Cosmological Basics

This section outlines the basic principles of cosmologyicWiare fundamental to study the evolution
of the universe and its dependence on the various kinds ofjgiensity, in particular dark energy.
Important quantities, which are needed in the followingises are defined.

We begin in 4.2.1 with reviewing Einsteins gravitationa¢ahy, the most crucial fundament for cos-
mology. The cosmological principles, explained in 4.2.2the basic assumptions to describe the
kinematical and the dynamical evolution of our universe.e Hubble-law, the cosmological red-
shift and the conformal distance are introduced in 4.2.3leathe Robertson-Walker metric (which
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b y Transformation with Gravitation
Minkowski-metric General-metric
3 3
ds® = Z I Lo > ds® = Z G dePda”
=0 =0
Partial derivatives . > Covariant derivatives
also known .as “‘comma-goes- v
aﬂ to-semicolon rule v# = (9# + F,u)\

Recipe ! From Newtonian laws to general relativity

- Take physical law in flat spacetime (i.e. in local frame
where special relativity holds)

- Rewrite equation in a covariant form (i.e. coordinate
transformation)

- Verify the validity of law in curved spacetime

The general metric tensor (gur) contains the gravitation, where gravity is not
seen as an external force but as manifestation of the spacetime curvature!

Figure 4.2: Recipe: From Newtonian to general relativiphigsics.

expresses the basic assumptions of isotropy and homogersedefined in 4.2.4. The Friedmann-
equations, given in 4.2.5 quantify the evolution of the sfaadtor and the corresponding energy densi-
ties. The growth factor, motivated in 4.2.6 characterihedinear growth of structures. 4.2.7 describes
the special case of a universe containing dark matter arkoeaergy, which is our frame of reference.
Finally, we outline the statistical description of pertation theory in 4.2.8.

A more detailed introduction can be found in e.g. Padmanalfh893), Padmanabhan (2003), Do-
delson (2003), Mukhanov (2005) and Schneider (2006).

4.2.1 General Relativity

General relativity (GR) is a complete and consistent thedrgravity describing relativistic matter
with a general equation of state valid on all scales. Gratssif is not identified as an external force
but as a consequence of the spacetime curvature. GR is basled s0-called equivalence principle:

e The inertial- and gravitational mass are indistinguisbafgbeak equivalence principle). Let
us consider an observer confined in a capsule without anyection to the outside world.
He cannot distinguish by experiment (like studying the wmotof test objects) if he is in an
accelerating frame (rocket) or sitting on earth surfacésigiavitational field.

¢ In small enough regions of spacetime (local inertial sysjethe theory of special relativity
(SRT) without gravitation is valid (strong equivalencengiple).
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The weak equivalence principle emphasizes the univeysafigravity, which couples to all masses
in the same way. The strong equivalence principle statddritanall regions the spacetime metric
reduces locally to the Euclidean metric

ds’ = nuudxdx’, (4.2)

whereny,y is given by

10 0 0
0 -1 0 0

=10 0 -1 o0 (43)
00 0 -1

and the indicegu, v run over Q1,2, 3 using Einsteins summing convention (the units are setato th
c=1). Starting from these principles, it is possible to obtaiativistic relations including gravity by
transforming physical laws from a locally flat spacetime(ehe rocket) into a covariant form with
the general spacetime metric

ds’ = g,y dxdx’, (4.4)

whereg,,y is the metric tensor whose components describe gravitétemalso Fig. 4.2). The metric
tensor determines the properties of the space, in pantjétdaurvature. The form af,,, depends on
the choice of coordinates.

The field equations, which describe the reaction of the m&tvards energy and momentum are the
well known Einstein-equations, which we motivate below.

The Einstein equations follow from the variation of the HitbEinstein action, (see e.g. Padmanab-
han, 2003)

1 — —
S— 16HG/R,/—gol x+/LM(cp,aq)),/—gd X, (4.5)

wherelLy characterizes the matter-Lagrangian, which depends @omple on the dynamical variable
@ with g being the determinant af,, andR the Ricci-scalarcharacterizing the trace of theicci-
tensor R,y
B arg B ol
V™ oxa oxv

The Christoffel-symbol€ ;, are defined as

1 odus 09 a9
a _ —~ad U ov uv
Fuv =39 ( F T TR ) ' (47

+ A TR — T . (4.6)

Variation of Swith respect to the metric tensgy;, results in,

1 8 1 1 1 6(v/=0lm)
/=9 5gIJV T 161G (RIJV - EgIJVR> - /—_g 5gIJV =0 (48)
Identifying
Tyy = —2—+_ 2/ —0Lw) (4.9)

V=g ogtv
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with the energy-momentum tensor that accounts for the mettetribution and acts as source we
obtain the Einstein equations,

1

A characteristic feature arises from the fact that the soisdhe entire energy-momentum tensor.
Unlike in non-gravitational physics, where only changegiergy from one state to another can be
measured and the normalization of the energy is arbitrargravitational physics the actual value of
energy matters. A constant shift in the energy (equal tofaréifit normalization) allows an additional
contribution to the action (eq. (4.5)). Let us consider atardtagrangian with an additional constant
term, i.e.

A
m=Lm— <%> : (4.11)

(/A = const). The equations of motion for mattedl(y /d¢ = 0) do not change, but the action can be
interpreted differently (see e.g. Padmanabhan, 2003) m@cisely by

= /R\/_d4x+/<LM——> /=g (4.12)

or
S= ﬁ /(R— 2/\)\/—_gd4x+/LM\/—_gd4x. (4.13)

In the first case, eq. (4.12) characterizesas a shift inLy;, which is equal to a shift in the matter
Hamiltonian and therefore, a shift in the null point energlye dynamic of matter remains unchanged,
yet Gravitation gets an additional contribution,

A
Ryv guvR 87IG<TW+8nGg ) (4.14)

This additional term can be identified Ag (87G)guy = PvacYuv, With pvac the vacuum energy density
which we discuss in detail in 4.3.1.

In the second case, eq. (4.13) describes Gravitation throng constants, Newtons gravitational
constaniG andA. The Einstein equations can be written as

1

The space-time is curved even in absence of mafjgr< 0). This is an unusual situation, for more
details see Padmanabhan (2003).

A mixture between both effects is also possible. Interactiith matter is determined b{R— 2A),
which implies an intrinsic cosmological constahf, can have constant shifts if the energy densities
change during the dynamical evolution. Let us assume théerraagrangian of a classical scalar
field ¢ with the potentiaV (@),

1
Lm = —Eg“VDvaqu—V(rp), (4.16)
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and the energy momentum tensor,

1
T;Sq\g) =Upelye— EguvngDp(PDa(P_gqu((P)a (4.17)
where we introduced the covariant derivative
Oy :du+ru"A. (4.18)

If the field configuration is constant, e.g. at the minimumta potentiaV (@) the energy impulse
tensor takes the form of a cosmological constant,

N
T = [V(Cpmin) + %] Juv (4.19)
with,

If @nin andV (@nin) change during the dynamical evolution, so ddgg. Any field configuration
that varies slowly with time will result in a slowly varyinges. This scalar field description - the
quintessence - is important since it allows to characteiegnative forms for DE, which are discussed
in4.3.2.

4.2.2 Cosmological Principles

Our standard cosmology is based on two basic assumptions:

e The distribution of matter in the universe is homogeneous iaatropic at sufficiently large
scales & 100 Mpc).

e Gravitational interaction determines the large scalectine, which is described by GR. The
geometry follows from the Einstein-equations with the ten,, acting as source.

The first principle sets the kinematical evolution of thevense as a time ordered number of three
dimensional hypersurfaces of constant time (each one hengagis and isotropic). The universe is
expanding (see 4.2.3) and thus, to conserve isotropy anddemeity the curvature scale has to be
time dependent. Furthermore, this gives rise to a specitiansee 4.2.4.

The second principle sets the dynamical evolution of thearse with GR as fundament. The grav-
itational interaction with matter follows from the soluti@f eq. (4.10) with the correspondirig,.
First order perturbation theory allows to study the lineasletion of density fluctuations, which we
discuss in the Newtonian limit in 4.2.6. In the following wefthe the most fundamental quantities in
cosmology.

2 The unit parsec [pc] is an astrophysical measure of distandelefined as the distance an astronomical unit (1 AU: mean
distance between earth and sun) would appear under an digiemsecond (1= 1/3600). 1 Parsec = B85680251%F
meters.
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4.2.3 Hubble-Law, Cosmological Redshift and Conformal Dignce

An important discovery was the expansion of the universst dibserved by Edwin Hubble in 1929
and therefore known as the Hubble law,

Vo =H(t)-x or, Xo =H(t)x. (4.21)

Eq. (4.21) connects the relative velocity of two observers having the relative distancén an
expanding, homogeneous and isotropic universe. The date®the derivative with respect to time
(x =dx/dt). The parametet (t) is the time dependeitubble-constant(In this context, the meaning
of "constant” refers to its independence on spatial co@tgis.) Integrating eq. (4.21) leads to,

x=a(t)r, (4.22)

with the scalefactoa(t),

a(t) = exp( / H(t)dt>, (4.23)

andr the conformal or comoving distance between the two observidre scalefactor is normalized
to its value today at = tp, such that(tg) = 1. It then describes the distance as a function of time.
The Hubble-constant can be rewritten as,
a(t)
H(lt)=—= 4.24

0= 20 (4.24)
defining the expansion rate of the universe. Todays valuéés denoted byH (t =tp) = Ho, and a
common convention is:

Ho=h-100kms*Mpc1, (4.25)

where we usé = 0.702 obtained from Komatset al. (2009) (see also table 4for the other cosmo-
logical values).
The absolute value of the comoving distance can then be gsguighrough the scalefactt),

r(a) = /ali (4.26)

a/2H(a/)‘

Another very important parameter is the cosmological rédsharacterized by. Because of the
continuous creation of space, objects like galaxies afgérdyiaway form us. The wavelength of an
emitted photomemi;, Which reaches us at the present time with a waveleigih has been stretched
by the factor the Universe has expanded,

Aobs— Aemi
7— obs emlt. (4'27)
Aemit
In terms of the scalefactarit follows,

1

1+z= .
a(temit)

(4.28)
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To describe the time-dependence of cosmological quagititiean be helpful to either use the cosmo-
logical redshiftz or the scalefactoa, connected via eq. (4.28). The explicit time-dependentiews
from a(t) determined by the solution of the Friedmann equations (@gs6), (4.57)). For example,
the comoving distance (eg. (4.26)) expressed thraugisults in (see also eq. (4.41))

1 z dz 1

- _1)2
= [~ e 0 (- an a2z alZ) (4.29

0

4.2.4 Roberston-Walker Metric

The underlying metric satisfying the fundamental prinegpbf isotropy and homogeneity is known as
the Robertson-Walker-metrigRWM),

(2
1—kr?

ds? = c2dt? — a(t) [ +r2. sz] = guudxtdy’, (4.30)
with dQ? = (dO? + sir® @d¢?) and the coordinates given by = x(t,r,@, @). The curvature of the
spatial part of the metric is characterized throlkghnd becomes Euclideanki= 0. The correspond-
ing density is callectritical density

2
e(t) = 3|8_|n((3t)

If the universe has a density higher thasit), p(t) > pc(t) thenk = +1 (closed universe), whereas
a lower valuep(t) < pc(t) results ink = —1 (open universe), and f@(t) = pc(t) follows k = 0 (flat
universe). A very often used definition is tidensity parameteri.e. the ratio between density to
critical density:

pt) _ smGp()
QU= 5~ B

The time dependence of the scalefacagr) ensures that the universe remains homogeneous and
isotropic, while the components of the metric tenggy define the gravitational field. The RWM

is an important ingredient, when inserted into the Einsegjnations (eq. 4.10) it results in the time
evolution equations for the scalefactor and the energyiyemghich we discuss in the following.

(4.31)

(4.32)

4.2.5 The Friedmann Equations

The Friedmann equations quantify the time evolution of tteefactor and the density, and are ob-
tained by inserting the underlying Robertson-Walker-i€feq. (4.30)) into the Einstein equations
(eq (4.10)). This results in

b = —3HH[p) +p)]. (4.33)
) =~ [p(t) + 3p(t)] (). (4.34)

Eq. (4.33) expresses the energy conservation, while e2d)(determines the time evolution aft).
The energy-density,

P(t) = Prad(t) + pm(t) + Poe(t), (4.35)
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or equivalently, the density parameter (eq. (4.32))
Q(t) = Qrad(t) + Qu(t) + Qoe(t) (4.36)

contains contributions of radiation (Rad), dark- and baiyanatter (M), and dark energy (DE), re-
spectively. The pressunglt) is given through the equation of state) for all contributions,

p(t) =w(t) - p(t) = Wrad(t) - Prad(t) +wWm () - pm (t) +wWpe(t) - ppe(t). (4.37)

Note that in case of matter the pressure vanishespje= 0.
By multiplying eq. (4.34) witha'and using eqg. (4.33) we obtain after integration

k
? p(t)— (4.38)

a(t)

With egs. (4.33)-(4.38) the overall time evolution@(ft) anda(t) are defined.

For some problems it is more convenient to express ed. (4h38yms of the redshift. To do so we
use eq. (4.32) to write

H3(t) =

H?(2) + k(1+2)* = QoH§¥, (4.39)
0

considering the fact that(t = ty) = 1, andQ(t =tg) = Qo, p(t =tg) = pp denoting the values today.
Note that forp (eq. (4.35)) we also takeinstead oft to parameterize the time evolution. ldentifying

k= (1— Qo) H3, (4.40)
it follows for H(2)
1/2
H(2) = Ho ((1— Qo) (1422 + QO¥> . (4.41)
0

The cosmological parameters that we are going to use are givable 41 and follow from WMAP
(Komatsuet al, 2009).

4.2.6 Structure Formation in the Universe

One of the most important issues of cosmology is how the Usément from its initial homogeneous
state into the complex form seen today. Initial small dgn8iictuations, attributed to zero point
quantum fluctuations that arise during the epoch of inflateme responsible for the formation of
structures like the observed galaxies and galaxy clusiérs.growth of density fluctuations is often
described using the density contrast,

P(t,X) — Pog(t)
Pog(t)

where pyg(t) refers to the homogeneous background density @idk) describes the local density
enhancement,

P(t,X) = Prg(t) + 5P (¢, X). (4.43)

5(t,x) = (4.42)
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The linear regime is characterized by« 1, for which the universe can be treated as an ideal fluid
described in the Newtonian limit by the Euler-Jeans equodiq. (2.7)). This has to be linearized in
addition to the continuity equation (eg. (2.6)), and thesBoi equation

Ad(t,x) = 4nGp(t,x), (4.44)

which determines the peculiar gravitational field of thesigrfluctuations. The potentiab(t,x) can
be decomposed into

®(t,x) = Py(t) + dP(t,x), (4.45)

with @p(t) being the background potential add(t,x) the contribution from the fluctuations. The
velocity v(t,x) consists of the Hubble velocityy(t) (eg. 4.21) and corresponding to the peculiar
gravitational field, the peculiar velocity(t, x),

v(t,x) =H(t)-r(t) +u(t,x) = vo(t) + u(t,x), (4.46)
whereu(t, x) can be identified with the perturbed velocdy(t,x) and
V(t,X) = vo(t) + Ov(t,X). (4.47)

To incorporate the expansion of the universe, it is helpfuinake use of the comoving coordinate
r (eq. (4.26)), and the corresponding derivativel these coordinates the linearized equations for
eg. (2.6), eq. (2.7) and eq. (4.44) transform with the helppf(4.33), and eq. (4.34) into,

5\ 1
< 5t>+ bov = 0, (4.48)
gov\ a 1
(W) D5+< )5\/ = —_0s0, (4.49)
AS®D = ANG&pyg0, (4.50)

where the entropy perturbations have been neglected andedkethe fact that the pressure vanishes
for matter. After some conversions it follows,

. oas & _
§+2-6—=A5—4nGps = 0. (4.51)

The parametets is the sound speed connected with the linearized pressurey(p) via dp = c25p.
Eq. (4.51) describes the growth of structures in the unéversscales smaller than the horizon-stale
Applying a Fourier transformation

25k cos(r - k), (4.52)

with the comoving wave vectdc and & the amplitude, the spatial pasf/a’Ad can be separated
where each modé(t) develops independently. The evolution of the density @sttis determined

3 For the corresponding derivatives follo s%) = (i) —(vo-Ux) andOy = 5%lIZI,. The subscript is omitted in the
X r

ot
further equations.
4 The horizon-scale (or -length) describes the range foriphyteraction, i.e. the range a photon can travel at argive
time. Its comoving length is calculated &gyi,on= J adn, with dn = dt/a denoting the conformal time.
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by & = D(t) - Snorm, NOrmalized at = torm and & (t = thorm) = Shorm (We drop in the following the
subscriptk). D(t) represents thinear growth factor
0]

5norm7

while thelinear growth suppression factor( is defined as the growth relative to that in a flat, matter
only dominated universe (i.&€(t) = Qu(t), andD(t) ~ a(t)),

D(t) (4.53)

g(t) = —- (4.54)

g(t) characterizes the reduced growth due to the presence ofigioadl energy density to the matter
component. Assuming a universe containing matter and deeigg with negligible pressure fluctua-
tions, an integral form aof(t) can be derived and is given in e.g. Heath (1977), Eisensteih(1999),
and Hamilton (2001). However, for our purposes the difféatfiorm of g(t) is needed, which is de-
rived in the Newtonian limit in the following subsection, arfe we also introduce the cosmological
framework for our study.

4.2.7 Special Case: Universe containing Dark Matter and Dd« Energy

For our studies, we concentrate on contributions of darkenand dark energy assuming a flat uni-
verse, thup(t) = pm(t) + ppe(t) or Q(t) = Qu(t) + Qpe(t), andk = 0. The density is determined
through

_ dd
p(a) = QY- (a) 54 Q3 exp{—s/ (1—|-WDE(8./))?}, (4.55)
Q,& = Qu(t =tp) and Q8¢ = Qpe(t =to) correspond to their values today (see also tablg. 4he

equation of state for DE ippe = Wpe - Ppe, While for matter it vanishes. The Friedmann-equations
have the form

: 2
(%) = ?(pM(t)""pDE(t))a (4.56)
at) = 7 [pu(t) + poelt) (1-+ woe(t))] alt). (4.57)

The first order perturbation of the Jeans equations apphedexpanding background (eq. (4.51)) can
be recast for the dark matter component into

& + Zgéiw — 4nGpy Ay = 0. (4.58)

We concentrate on the growth of dark matter perturbatiohg amere a smooth dark energy compo-
nent is assumed and fluctuations in DE are neglected. Thisngs®on is valid as long as the scales
are not too small. DE reduces the growth rate of perturbstiorthe linear regime (large scales). To
express eg. (4.58) in terms of the growth-suppressionifadth a(t) as the evolution variable we set
eg. (4.63) into (4.54), and rewrite

O(t) =a(t) - Shorm- 9(t), (4.59)
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Spectral Indexyg 0.962
Hubble Constani 70.2kms*/Mpc 1!
Matter Density/Critical Density2y 0.277
Dark Energy Density/Critical Densit@2, 0.723
Fluctuation amplitude at 8fMpc g 0.817
Age of the Universéy 13.69 Gyr

Table 4.1: Cosmological parameters following WMAP (Konoegs al., 2009): Qu and Q, are the
density parameters (eq. (4.32)) of matter and Bigis the hubble constant today (eq. (4.25)), which
givesh=0.702. The spectral indax expresses the exponential behavior of the linear powetrsjpec
andag its normalization, see 4.2.8.

whose time-derivatives are plugged into eq. (4.58). With Fniedmann equations, eq. (4.56) and
eg. (4.57) the evolution equation for the growth supprestactor follows as,

d’g 1

dinaz 7 2

1
6— (14 3wpe(a)Qpe(a)) - <1— % : a—k2> ] d?%ﬁ'

-1
[_% <1_%'a_kz> +(4-3Qoe(a) - (1-wpe(a)) +2| g=0, (4.60)

implying a dark matter dominated universe with a dark enargy matter contribution apg(a) and
QM (a)
For the most interesting case of a flat univellse-(0 andQy (a) + Qpe(a) = 1) we obtain

d?g
dlna?

see also Wang & Steinhardt (1998), Linder & Jenkins (200&8)nRanabhan (2003) and Cooetyal.
(2004). For constant values wbg, the solution is given by a combination of hypergeometriectu
tions. For a non constamipe(t) = wpge(a(t)), this equation can be solved numerically, which is our
approach. We obtain solutions fgfa), which also determined(a) respectivelyD(z) via,

+ [5— 3pe(a) Qpe(8)] -+ 3[1— Wor(@)] Qoe(@)g = O, (4.61)

2
dina

D@ = 9(z)-a, or (4.62)
_ 9@
D(z) = 112 (4.63)

Some details about the numerical procedure are discusgd.in

4.2.8 Statistical description of cosmological perturbatns

To statistically characterize the structure of the matistribution of the universe, we define the so
calledtwo-point-correlation-functioné. This function describes the correlation of matter (e.daxga
ies) at different positions. It is given by,

¢ = (0(x)4(y))- (4.64)
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The homogeneity and the isotropy of the universe implies §hanly depends on the absolute value
of the distancex —y|, thusé — &(r).
An alternative description is provided by tip@wer spectrumP(k), the Fourier-Transform of the
correlation-function.P(k) describes the amplitude distribution &ft,x) = 5 & (t)cos(x-k) atk =
lk|. (Note thak is the comoving wave vector, see 4.2.6.) The connectiondeii®(k) andé emerges
from,

>sin(kr)

P(K) = 27T/r e (mdr, (4.65)

or vice versa,
sin(kr) dk

E(r) = 27‘[/ kZS'”k(rkr) P(K)dk— 4n3/A(k) AL (4.66)
where the dimensionless power spectriik) has been introduced,
K3
Ak) = Pl P(k). (4.67)

Both, P(k) and &, depend on the cosmological time or rather the redshift. dfassume that linear
perturbation theory holds, i.&(t) = D(t) - & (normalized to its value todatsorm = to and omitting
again the subscrifi), we can write,

&(t,r) =D(t) - & (to,r) = DA(t) - &o(r), (4.68)
and
P(t,k) = D2(t) - P(tg, k) = D?(t) - Py(K). (4.69)

In the case that the power spectr&gis known, the power spectrum for all time follows via eq. @).6
However, the evolution of fluctuations depends on the padicepoch (matter or radiation), as well
as on the scale of the perturbations with respect to thedmitength. This leads to the introduction of
an correction term, characterized by the so catladsfer functionT (k). The transfer function can be
calculated for several cosmological models if the mattetext is specified, see for example Bardeen
et al. (1986), explained in more detail in the appendix B.2. Thedinpower spectrum follows as

P(t,k) = D2(t)-A-k™.T?(k), (4.70)

and transforms fong = 1 into the well known Harrison-Zeldovich spectrum. The e is a nor-
malization constant that has to be deduced from obsengtidmimportant parameterization for this
normalization is given by the parametegg, which is simply correlated to the so callédear bias
factor b
The linear bias factor characterizes the relation betweek matter and galaxies (which are expected
to follow the distribution of dark matter), and is defined via

5ng—_n:b-A—p:b-5. (4.71)

n Pog

nis the mean density of the considered galaxy-populationdand n— nthe corresponding derivation
of the local number-density from the meanAp/png = (P — Pog)/ Pug (€0. (4.42)) expresses the dark
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matter overdensity. From eq. (4.71) we see thigtthe ratio of the relative overdensity of galaxies to
the dark matter.

Observations of optical selected galaxies indicate thatates of about 8h~* Mpc their fluctuation-
amplitude is close to 1, i.e.

2
Ogq = <(%> > ~ 1, (4.72)

with the corresponding dispersion of dark matter being
0 = (8%)4. (4.73)
Using eq. (4.71) yields

— 4.74

b b (4.74)
Due to the simplicity of eq. (4.74) the parametgrgenerally serves as normalization constant, usually
for Py. A more detailed description can be found in Schneider (202 Mukhanov (2005).
A description to model the nonlinear power spectrum (remglin section 4.5) is discussed in detail in
section 4.4. In the following we introduce the differentrfee of DE.

0g =

4.3 Approaches to describe dark energy

After defining the most crucial quantities in cosmology, va@ aow delve into the mysterious nature
of DE and its influence on structure formation. This is impottin the following sections, as these
effects lead to a non-Gaussian signal in the temperatunebdison of CMB photons. About 70%

of today’s energy density is attributed to this dark compar(see Fig. 4.1), which still lacks any
scientific explanation. Observations of SNla (Krauss & Buyri995; Ostriker & Steinhardt, 1995;
Riesset al,, 1998; Perimutteet al., 1999; Netterfielcet al, 2002), LSS measurements like 2dFGRS
(e.g. Colless, 1999) or SD8%e.g. Abazajiaret al, 2003) in combination with CMB measurements
(e.g. Spergett al, 2003; Komatset al., 2009) indicate that its equation of state today is veryectos
Wpe ~ —1. The standard scenario, in good agreement with thesewaltieeral findings points toward
a cosmological constant\| which is identified with the vacuum energy density.(), see 4.3.1. This
model with the concordance set of cosmological paramesees table 4) is known as the\CDM-
model, where cold dark matter (CDM) has considerable sgdoegproducing observational results
on cluster scales. However, a constantises two serious questions: (i) the fine-tuning problem and
(ii) the coincidence problem. The first expresses the larggepancy ofv 123 orders of magnitude
between the small observed valugof. ~ (10-3GeV)* in contrast to the prediction of quantum field
theory pyac ~ 10'GeV*. This very fine tunegy, results inpyac ~ pw today and invokes the second
problem, which refers to the point in time when DE begins tonai@mte over matter. If this would
happen already at early times, then the acceleration ofxb@nsion would prohibit any gravitational
collapse, and thus prevent the formation of structuresdikegalaxy. On the other hand, if it starts to

5 The Anglo Australian Telescope two degree field Galaxy RédsiSurvey - 2dFGRS, see also
http://www.mso.anu.edu.au/2dFGRS/.
6 Sloan Digital Sky Survey, see also http://iwww.sdss.orglipations/.
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Figure 4.3: Upper panel: Evolution of the density paranse@se (eq. (4.79)) (thick lines) an®@y
(eq. (4.78)) (thin lines) with redshift, usingwpg = —0.6 (blue lines)wpe = —1 (black lines) and
wWpe = —1.4 (red lines). Bottom panel: Evolution of the correspondingwth factorD(z) (eq. (4.63)).

dominate at late times we would not have found any eviden&oyet.

These problems, combined into the cosmological constantitigam open the room for other models
regarding DE such as the quintessence, see 4.3.2. Thesgént®, a slowly rolling scalar field with
a time varying equation of state alleviates the coincidgmmblem that comes with\. It allows
forms of DE that result iwpe = —1 today, but which start from a different value at earliergsn
This somewhat circumvents the question why DE begins to dataiat the 'right time’. Various
models have been proposed, see e.g. Linder (2008) for amevievery simple parameterization
in form of a taylor expansion fonpg, which can be interpreted as a generalization of the behavio
of physically motivated sets of models has been introduge@Htevallier & Polarski (2001); Linder
(2003a,b) (LINDO3) and revised by Komatstial. (2009) (KOMATO09). In addition, Wetterich (2004)
(WETTO04) defined a new form called early quintessence, whaha non-negligible contribution at
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early times and is based on a bending form usmﬁg (the matter content today) amgh = —1. This
model is very attractive, since observations set physicald on the amount of this early dark energy
(EDE) (Xia & Viel, 2009).

In the following we introduce these different forms, in peutar, EDE which are used to calculate
the theoretical L-RS bispectrum signal and the correspnedignal to noise ratio (see sections 4.6
and 4.7). We start with the familiar idea of a cosmologicatstant (4.3.1) before concentrating on
models with a variable equation of state - the quintesseh&e2).

4.3.1 Cosmological constant A

The concept of a cosmological constant was first introdugeibstein (1917) in order to describe a
static, finite and non-evolving universe. However, afterdiscovery of the expansion of the universe
by Edwin Hubble it was not considered for a long time. Veneraty, it has been reestablished in order
to encompass the until then unknown acceleration of therestpia within the Einstein-equations. The
cosmological constant is often denoted’aand the corresponding energy density is identified as the
vacuum energy density

N

e (4.75)

Pvac =
The evolution of this density is parameterized by the sedena of eq. (4.55) with an equation of
state given byppe = WpEe - poe, Wherewpg = const The accepted standard valuemfs = —1 implies
a negative pressutewhich results in an accelerated expansion. The matterdaridenergy-density
contributions are given by (cf. eq. (4.55) with the redshiftstead of the scalefacteras evolution
parameter),

om(@ = pY-(1+2)°3 (4.76)
Poe(z) = pOg- (1+2)33Hwee), (4.77)

along with the corresponding density parameters,

QO
Qu(2 = M , 4.78
M2 = ool (o (4.78)
Q8 (1+ z)3woe
Qpe(2) DE( ) (4.79)

o + Qb (152

Observations indicate thaipg is very close to—1. For comparison, we use two additional values
(Wpe = —0.6, andwpe = —1.4) to discuss the implications.

The upper panel of Fig. 4.3 shows the evolutiortyc (thick lines) andQy (thin lines) withz, using
wpe = —0.6 (blue curves)wpe = —1.0 (black curves) anevpe = —1.4 (red curves). The passing
from the matter to the dark energy dominated epoch happems atppe, where

|:'QI8I ]1/(3WDE)

Lm 1, (4.80)
Qe

Zeq

7 This can be understood by thermodynamical arguments: Genah increasing volumé that contains vacuum with an
inner energy ofJ ~ V. The first principle of hydrodynamics for increasing volwrimpliesdU = —pdV > 0, therefore
the pressure must be negative to satdifly> 0.
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which results inzeq = 0.7, 0.4, 0.2 for the examples above. Decreasing the valuagd shifts zeq
towards smaller redshifts, i.e. the crossing from mattedaik energy domination is delayed. The
acceleration of the universe is reduced and the dampingteffeDE on forming structures less sig-
nificant. This is also indicated by the increasing growthtdexD(z) (with decreasingvpg) at the
bottom panel of Fig. 4.3. The growth factors follow from ed3l whereg(z) is obtained integrating
eqg. (4.61). Note that we always normalig@) to 1 atz= 100, for which the normalization fdp(z)
follows to be 001. The corresponding comoving distances (eq. (4.29))iaesn gn appendix B.3.
However, as discussed above the standard pictureypf= —1 implies the cosmological constant
problem, which gives rise to study quintessence models aitime dependent equation of state,
which will be the focus in the following.

4.3.2 Quintessence

As mentioned before, quintessence is based on the idea ala $ield ¢ with a variable equation
of state. It interacts only gravitational with a self-irdetion described by the scalar field potential
V (@), see also e.g. Padmanabhan (2003), and Linder (2008). frpdesapproach of a canonical
Lagrangian (eq. (4.16)), leads to the equation of motiomKikin-Gordon-equation

dv
Ceo— Wp =0, (4.81)
with
O =0M0, = g*v0,0,. (4.82)

The energy density and pressure are identified by compdréngrtergy-momentum tensor (eq. (4.17))
with that of a perfect fluig, for what follows,

Oue
u, = o 4.83
Y V/Dele (489
Y,
pp = @ (4.84)

V1= 00y’
Pp = —V(Q)V1-0'elve. (4.85)
Note that the covariant derivatives reduce to partial @xes when acting on a scalar. It follows for
P andpy,

pp= 50 +V(@) + 5 (09 (4.86)
po = 562 ~V(@) ~ ¢ (09" @87)

The spatial derivations in eq. (4.86) and eq. (4.87) areeautgdl since the field is expected to be
smooth within the Hubble scale and to zeroth order. The @nuaf state Wpg) is given by,

by 1-(V/P)
M = e~ 11 (V/¢) 558

8 The energy-momentum tensor in case of a perfect fluie % = (p + p) uu’ —g"¥ p.
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Using eq. (4.86), and eq. (4.87) it follows,

Vo) = pp o8 (4.89)
@ = p(l+wpg). (4.90)

Furthermore, multiplying eq. (4.81) wiifaleads to,

d o o] .
aHHSH H = —V(p), (4.91)
Po—V(®)+3H(pp+py) = —V(9), (4.92)
d
% —3pp(1+WpE), (4.93)

which allows to change between the field description and Hagtription (Linder, 2008). Since many
different forms for the potentia¥ (@) exist, it is convenient to introduce a certain parametédna
for wpg to cover a range of models. We concentrate on the approaistes below, where we start
with the parameterization of Chevallier & Polarski (2004nd Linder (2003a,b), which describes the
dynamics in form of a taylor expansion. This model is usefuba-redshifts, since it parameterizes
the present value ofipe(z) and the first derivative. However, using CMB data it can béaift

to extrapolate to high redshifts, becawsg:(z) expresses the leading order term of the expansion
which can become unreasonably small or large. An reviseslareof this model has therefore been
proposed by Komatset al. (2009), which is discussed afterwards. Finally, we turnaitention to the
EDE model from Wetterich (2004), which covers the physicskida the last scattering surface (i.e.
where the CMB photons decouple from the baryons arasnd100). The CMB anisotropies are very
sensitive to contributions of EDE at last scattering (Dagtal., 2001a), while also structure formation
depends on the mean fraction of EDE (Ferreira & Joyce, 19@Batet al, 2001b). Observations
are able to set constrains on these contributions (Xia &, \2@09). This makes it an very interesting
model to study.

e PARAMETERIZATION OF LINDO3:
A very simple form forwpe has been proposed by Chevallier & Polarski (2001), and linde
(2003a,b). It identifies the equation of state for DE as atagkpansion ira,

WpE(a) = Wo +Wa- (1—a), (4.94)
orinz
WoE(2) = Wo -+ Wa- | —— (4.95)
DE = Wo a 1+Z ) .

with wyp = —1, and the fit parametev, (Linder, 2003a)

Wa = [—wW/a] 2w (z=1), (4.96)

z=1 =
that describes the time variationwf = dwpg/dz This parameterization is widely used in the
literature. Linder (2003a,b) state that this model givesadgapproximation to the exact field

equations for different scalar field potentials. It behareamsonable at low redshifts, and the
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Figure 4.4: Upper panel: Evolution @fpe (eg. (4.95)) with redshift using the LINDO3 parameteri-
zation forw, = —0.5 (black line),w, = 0.5 (blue line) andv, = 1 (red line), respectively. Bottom
panel: Evolution ofQpg (eq. (4.98)) (thick lines) an®@y (eq. (4.78)) (thin lines). The black dotted
line expresses the standard case wigg = —1.

parametersvg andw, are not strongly affected if the form @fpe is extended. Supergravity
(SUGRA) indicatesw, ~ 0.58 (Linder, 2003a). To test the implications w§, we use two
additional values.

The upper panel of Fig. 4.4 shows the evolutionngk (eq. (4.95)) withz, usingw, = —0.5
(black line),w,; = 0.5 (blue line) andw, = 1 (red line). The standard case witlpg = —1
is indicated by the black dotted line. All examples approaglh = —1 at small redshifts as
expected. Increasing, from —0.5 (wherewpg drops below the standard value) tdb@nd 1
increases the amount of DE. The corresponding energy giositsecond term of eq. (4.55))

9 Supergravity is a field theory connecting GR and supersymymet
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Figure 4.5: Evolution of the growth fact@(z) (eq. (4.63)) with redshift using the LINDO3 param-
eterization forwy = —0.5 (black line),w, = 0.5 (blue line) andwv; = 1 (red line), respectively. The
black dotted line expresses the standard casewgth= —1.

follows as,

z

po(z) = @B (1+ 2% - expf —ama (2 . o

(for pv see eq. (4.76)), while the density parameter of DE is given by

_ O8c(1+2%e exp{—3wa (5;) }
QY+ QS (1+z)3Motwal . exp{ —3wa (%) }

QDE(Z) (498)
Qv is determined through eq. (4.78). The evolution @y andQy with zis presented at the
bottom panel of Fig. 4.4Qpg increases accordingly to an increaswmg which shiftszeq (om =
Ppe) toward higher redshifts and thus to earlier times. Theegfihe linear growth of structures,
expressed byD(z) (eq. 4.63) decreases, see Fig. 4.5. The comoving distarqe€.6) are
given in the appendix B.3. The redshufi results in an implicit equation, therefore we do not
show it here.

e PARAMETERIZATION OF KOMATO09:
Another example for a parameterized equation of state isepted in Komatset al. (2009),
which assume at low redshifts an equation of state definedsim#éar manner as in Linder
(2003a,b), but with a different behavior at high redshifikis is distinguished through a fixed
transition redshift, denoted ag,ns FOrz< zransthe equation of statepg(z) follows eq. (4.95).
For redshiftsz > zans it approacheswpe(z) ~ —1. This prevents thatvpge(z) can become
unreasonable small or large when extrapolated to hidihe equation of state is given by,

W(2) 1
1+ (14 2)/(1+ Zrans) S 1+ (14 zrany /(1+2)°

Woe(2) = (4.99)
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Figure 4.6: Upper panel: Evolution oipe erf (€9. (4.99)) with redshift using the KOMATO09 parame-
terization forzyans= 11597 (black line),zrans= 6.39 (blue line) andyans= 2.60 (red line). Bottom
panel: Evolution ofQpe (eq. (4.107)) (thick lines) an@y (eq. (4.78)) (thin lines) with redshift. The
black dotted line denotes the standard case wigh= —1.

with
W(z) = Wo + <—z> Wa. (4.100)
The evolution of the effective equation of state (Komadtsal., 2009),

1
In(1+2)
14 Wo + (2+ Zrang Wa ' (1+2) + (14 Zrans)

In(1+2) (14 2)(1+ zrans)

z-In(142
Ty et

, (4.101)

In(1+2)~*
WDE eff /0 din (1+ Z’)WDE(Z’) =-1
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Figure 4.7: Evolution of the growth fact@r(z) (eq. (4.63)) with redshift using the KOMAT09 param-
eterization forzyans= 11597 (black line) zyans= 6.39 (blue line) andyans= 2.60 (red line).

is shown at the upper panel of Fig. 4.6 wihusingz;ans= 11597 (black line), 639 (blue line)
and 260 (red line). We took these values in order to include cai#ls on early quintessence
(see also table.2). The standard caseife = —1) is indicated again by the black dotted line.
The present day valuep and the first derivativev = dw/dZ,_o are used as free parameters,
for which Komatstet al. (2009) obtainedvy = —1.1, andw = 1. They are not sensitive to the
choice of the transition redshift. Their relationwg andwy follows as,
1+Wo
1+wy = , 4.102
0 (2+ Zrans) /(1 + Zrans) ( )
Wa 1+ Wo
_ _ , 4.103
(24 Zrans) /(L + Zrans)  (2+ Ztrans)2 ( )

with the inverse relations being,

~ (2+ Zrans)
1+ W 1+w 4,104
0 - ( 0), ( )
~ (2+ Zrans) W 1+wo
= + . 4,105
é (1 + Zrans) 1+ Zyans ( )

WpE eff decreases for decreasingns Which reduces the amount of DE. The corresponding DE
density contribution (cf. second term of eq. (4.55)) foltoas,

PoE(2) = Q- (142)% 1 ven. (4.106)
(for pm see eq. (4.76)), with the DE density parameter

Oe(1+ 7ee

; 4.107
QY + Q8- (1 + z)3woeet ( )

Qpg =
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‘ Best fit to data ‘ QepE atZss ‘ Zirans ‘ Zeq H QepE at Zs ‘ Zirans ‘ Zeq ‘
WMAP5+BAO+SN 0.0064 6.39 | 0.28 0.0672 | 229 0.26
WMAP5+BAO+SN+GRB+Lyx 1.77-10°% | 11597 | 0.31 0.0529 | 2.60 | 0.26
WMAP5+BAO+SN+GRB+GFLyr | 1.71-10° | 126404 | 0.31 0.0543 | 255 | 0.26

Table 4.2: Early dark energy constrains form observatises,Xia & Viel (2009). The first row states
the observations, WMAP in combination with baryonic acmusscillations (BAC), supernovae (SN),
gamma ray bursts (GRB) and Lyman alpha dlymeasurmentszans marks the redshift where an
constantvpe turns to a different behavior arady gives the redshift whergpe = pv. The constraints
on EDE are denoted b2epe at zss respectivelyzs.

and the corresponding matter compon&gt (eq. (4.78)). The evolution apg (thick lines)
andQy (thin lines) is presented at the bottom panel of Fig. 4.6. fdssing from matter to DE
dominance is shifted towar smalle(i.e. later times). It results in an implicit equation and is
therefore not shown here. Decreasighsfrom 11597 to 639 and 260 decrease€pg, which
implies increasing growth factoi3(z) (eq. (4.63), as indicated in Fig. 4.7. The corresponding
comoving distances (eq. 4.26) are shown in the appendix B.3.

e EARLY DARK ENERGY - PARAMETERIZATION OF WETTO04:
This model includes early quintessence, where a non-viagisttalar field component with
a non-negligible energy density near the redshift of lasttedng (denoted agss ~ 1100)
and structure formation (identified witly) is assumed. The last scattering surface marks the
time when photons decouple from the baryons soon after reication. The era of structure
formation encompasses the growth of matter fluctuatiores &tso Fig. 1.2). The general idea
is to parameteriz€pg(z) based on two parameters,

Qn = 1-QF, (4.108)
wo = -1, (4.109)

(Q% = Qu(z=0), andQY: = Qpe(z= 0)). Using the relation betwee@pg andwpg, which
is valid if the energy density next to DE is only dark matter,

dQ
d;E = 3—QDE (1— QDE) WDE, (4.110)
and
y=In(14+2 =—Ina (4.111)
Wetterich (2004) proposes to parameterize the function
QDE(Z) >
Ry =In{ ———— ], 4.112
) =in (222 (4.112)
which obeys (in absence of radiation)
JOR
ORY) _ 3wpe(y) (4.113)

ay
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Figure 4.8: Upper panel: Evolution @fpe e With redshift using the WETT04 parameterization, for
Qepe contributions atzgs (solid lines) andzs (dashed triple dotted lines), see also tablz Bottom
panel: Evolution of the density parametélse (eq. (4.121)) (thick lines) an@y (eq. (4.78)) (thin
lines).

through

R(y) =Ro+3 13:\_' Ogy. (4.114)
Ry is determined via,

Ro—In (1 ;ghoﬂ > (4.115)

andb=1/Yians= 1/In (14 zrans characterizes the bending parameter, where an constaast equ
tion of state turns into a different behavior (i.e. for z4n9). A positiveb implies the presence
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Figure 4.9: Evolution of the corresponding growth factdsg) (eq. (4.63)) using WETTO04.

of EDE,

Qepe = Qoe(y — ) — exp(Ro+ 3wo/b)

~ 1+exp(Ro+3wo/b)’ (4.116)

which equalsQpg at zss and §DE at zis (Wetterich, 2004) and enters therefore the CMB
anisotropies or structure formation, which we want to amalwith the bispectrum. Using
eq. (4.116) it follows fob

_ 3Wo

- 1-0 -0\’
I (*geee) +1n (57)

Xia & Viel (2009) discuss observational constraints @apg for contributions atzss and z

using WMAP, acoustic baryonic oscillations (BAC), supef® (SN), gamma ray bursts (GRB)

and Lyman alpha (Ly) measurements. Table2dshows their best fit parameters fQgpg,
which we apply. The equation of state is given by (Wetter304),

b (4.117)

Wo

Woel?) = i g (4.118)
with the effective equation of state being,
z dZ Wo
Woeei(2) = 3./0 Woe(Z) 77 = b1 2 (4.119)

The upper panel of Fig. 4.8 shows the evolutiomgt e with z (solid lines forQgpg- contri-
butions atzss, and dashed triple dotted lines for contributiongsgt Decreasing the amount of
Qepe atzgss from 0.0064 (black line), to 777-10° (blue line) and 171- 109 (red line) reduces
WpEefi. 1he same happens f@gpg- contributions atss, decreasing from.0672 (black line)
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to 0.0543 (blue line) and 0529 (red line). The case of a standard cosmological constéth
wpe = —1 is indicated by the black dotted line. It lies below the dssed EDE examples for
redshifts larger tham > 0.01.

The energy density results in (cf. second term of eq. (4,55))

poe(2) = Q%+ (1+2)*(Foser), (4.120)
(for pm see eq. (4.76)). The evolution of the DE density parameter,

QO (1 + Z) 3WDE eff
Qpe(2) = DE 4.121
DE( ) lel +QBE(1—|—Z)3\NDEreﬁ’ ( )

and the corresponding matter compon&yt (eq. (4.78)) is presented at the bottom panel of
Fig. 4.8 (thick lines forQpg, thin lines for Qy, the same line-styles and colors as before).
Again, the standard case whe = —1 is shown by the black dotted line. The passing from the
matter- to the DE- dominated epogh\ = ppe) happens at

~1, (4.122)

o) pron()]

fa = (QBE

see also table.2. Decreasing the amount Ofgpe (at zss Or Zsf) shifts zq to later times, since
the influence of DE at early times is weaker and the acceteraif the expansion reduced.
The growth of structures is stronger, see evolution of tteevgr factor (eq. 4.63) in Fig. 4.9,
which increases for decreasif2:pe but is always less than that of the standard cosmological
constant (black dotted line). The corresponding comovistadces (eg. 4.26) are shown in the
appendix B.3.

Further approaches for parameterizationsvpg exist. We restrict our study to the examples intro-
duced above, where a comparison of the diffe2(x) is given in the appendix B.4.

These models of DE and their corresponding growth factasmaportant for the calculation of the
bispectrum (see section 4.5), which depends on the powetrgpeof matter fluctuations (eq. (4.70))
and thus, orD(z). However, the analysis in 4.2.8 is restricted only to thedinregime, yet the bis-
pectrum also receives contributions from nonlinear scalégrefore, we address in the next section
the challenging part to model the nonlinear power spectrum.

4.4 The Nonlinear Power Spectrum of Matter Fluctuations

After introducing the DE models, we focus in this section lo& monlinear evolution of cosmic struc-
tures in the terms of the matter power spectrum.

CMB photons experience gravitational interactions witinfing objects (e.g. galaxies) as they pass
through the universe after decoupling. This results in@ropies (see section 4.5), which depend on
the linear as well as on the nonlinear evolution of fluctusithat directly enter into the CMB bispec-
trum (see section 4.6). Those fluctuations are statisfic@écribed by the power spectrum. Different
methods to model the nonlinear regime have been proposedgil& Verde (2009) discuss two
models in combination with the bispectrum and point out Hrabtccurate description is required to
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obtain unbiased estimates on DE- and other cosmologicahpeters such &y andag. Our calcula-
tions are based on the non-linear cosmological pertunb#tieory (PT). PT provides an exact solution
for the nonlinear matter power spectrum as long as the jpative expansion is valid. It has been
shown by Jeong & Komatsu (2006) that it agrees with powertspebtained from numerical simula-
tions. To test the dependency of our results on the exactIinedeise two additional approaches (in
the case of a standard cosmological constant wigh = —1). Very common and established models
are provided by Maet al. (1999) (MA99) and Smittet al. (2003) (HALOFIT), which are based on
analytical functions. We start with a short overview in 4,4and discuss the comparison in 4.4.2.

4.4.1 Descriptions of Nonlinear Power Spectra

The evolution ford = 1 takes place in the nonlinear regime. In order to study tlopgnties of
fluctuations the use of approximations or numerical schamesjuired, since the evolution includes
higher order perturbations and cannot be expressed dgfiimiteerms of analytic functions. Various
attempts to model the nonlinear power spectrum have be@oged and discussed, see appendix B.5
or e.g. Smithet al. (2003) for a detailed review. We motivate our approachesvinel

e NONLINEAR COSMOLOGICAL PERTURBATION THEORY- PT:
This method concentrates on the so-called 'weakly noratimegime’, where perturbation the-
ory suffices to quantify the evolution of fluctuations. Itludes the next-to-leading order cor-
rection to the linear power spectrum by using third-ordetysbation theory (Vishniac, 1983;
Fry, 1984; Goroffet al, 1986; Suto & Sasaki, 1991; Makired al., 1992; Jain & Bertschinger,
1994; Scoccimarro & Frieman, 1996). A self-contained mnevig given in Bernardeaet al.
(2002). We motivate the idea below.
In the Newtonian limit, the basic equations that charaztethe universe as an ideal fluid
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are given by egs.(2.6), (2.7), and (4.44). In comoving cioates (using the conformal time,
dn =dt/aand eq. (4.42)) they transform into

&'(r,n)+0-[(A+6(r,m)v(r.n)] = 0, (4.123)
V/(ran)'*‘(v(ra’?)'D)V(ﬂn) = _%V(rvn)_m(p(r?n)v (4124)
A®(r,n) = A4nGapygd(r,n), (4.125)

wherev(r,n) = dr/dn and derivatives with respect tp are characterized by a dash (e.g.
a =da/dn). Assuming a curl free velocity field we s€tr,n) = 0-v(r,n) and linearize the
egs. (4.123), (4.124) with the help of eq. (4.125),

o'(r,m)+06(r.n) = 0 (4.126)

V()42 = ~0o(.n). (4.127)

The velocity fieldv(r,n) is completely described by its divergen®ér,n) and vorticity O x
v(r,n), whose evolution equations follow from eq. (4.127),

9 / /N 2

@;;’n)+%@(r,n)+gQM (%) 5(r,n) = 0, (4.128)
0 a
%(va(r,n))jLE(va(r,n)) = 0 (4.129)

The vorticity evolution, determined by eq. (4.129) is prdjomal toJ a—L. In the linear regime
its evolution is suppressed due to the expansion of the tggvand thus, not of interest for our
purposes.

The main idea of PT is to expand the density and velocity fialtzut the linear solutions of
eqg. (4.126) and eq. (4.128), which correspond to time degr@rstalings of the initial density

field,
5(r,n)= 3% &"(r,n), (4.130)
n=1
o(r,n) = ;@”(r,n), (4.131)

whered andO® are linear in the initial density fieldy?, @@ quadratic, etc. Applying a
Fourier-Transformation,
Ak,n) = /ﬁex (—ik-1)A(r,N) (4.132)
7” - ) (27_[)3 p 7’7 9 '
to eq. (4.130) and eq. (4.131) results in

o(k,n) =% a'(n)d(k), (4.133)

ok,n) = - a"(n)én(k), (4.134)
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which present the perturbative expansion in Fourier spbadeng the divergence of eq. (4.124)
and using the Fourier transformation for eq. (4.126) and428) leads to the linear evolution
equations in Fourier space,

X/ ~ d3k k -k
&(n)+6n) = _/(271)1 /d3k25D(k1+kz k)k—%l.
3,(M)8 (), (4.135)
~ /. 12 .
B+ 28+ g auma) = — [ S [Ptk k),
(ks ko) =
W%(n)%(n)- (4.136)

We further assume that the universe is matter domingigdn) = 1 anda(n) = n?, which
brings eq. (4.135) and eq. (4.136) into a homogeneous form, irespectivelya(n). This
assumption is not entirely fulfilled, since at low redshid& begins to dominate. Yet, the
next-to-leading order correction B(K) is insensitive of the background cosmology if the cor-
responding growth factor fody is used (Bernardeaet al, 2002). The system can now be
solved with eq. (4.133) and eq. (4.133). Expandﬁggq) and@( ) in powers of the linear
solution withd; (k) as basis leads to,

S(k,n) _ i /d3Q1 ' dQn 1 /d3Qn5D <Zq'_k>
Fn(

d1,92, -- ,qn)51(q1) 61(qn) (4.137)
~ 3
Skn) = ~ s admain) [ G Tt | d3qnaD(zlq.—k>
Gn(qlaQZa~~aQn)5l(CI1)~-51(CIn)= (4.138)

where &p is the three-dimensional Dirac delta distribution, and filmectionsF, and G, are
determined by (Jain & Bertschinger, 1994),

- nt Gm(CIlw-yCIm)
Fa(d1,-.,Gn) = n;m- (4.139)

K-kiq k% (kq-k2)

(14 2n)——=Fr-m(Am+1,--,0n) + —575— Gn-m(Am+1,---,0n) | ;
ke ksks

G ) )
Gn(d1,92,--,0n) = ZH (4.140)

m=1

k-k ke (kq-k
3 len m(Amt1, -, 0n) + 7( 212 Z)Gn—m(Qerla---aQn) )
ks k$ks

(k1=dq1+...+0dm kK2 =Ami1+ ... +dn, K = k1 +kp andF; = Gy = 1). Using eq. (4.139)
and eq. (4.140) with their corresponding recursion refetithe power spectrum at any order in
perturbation can be calculated.
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The linear density field; is a Gaussian random field for which the ensemble averagedf od
powers ind; vanishes. For the next order= 2 the kerneld- andG; are given by

_ 5 lag (e %) 2 (49

Fa(01,02) = 7+2q1q2 <q2+q1>+7 L (4.141)
03 loiGe /g, R\, 4 (d1-02)?

Gz(Q1,Q2) - ? E 0102 ($+a>+? 7(]%(:]% . (4.142)

Jain & Bertschinger (1994) obtained the next-to-leadindeorcorrection tdP(k,z) (see also
Jeong & Komatsu, 2006) as,

P(k,2) = D(2)?P11(K) + D(2)*[2P13(K) + Poa(K)] (4.143)

whereD(z)?- P11(K) expresses the linear power spectrum (eq. (4.69)) Pasi#t) andP;3(k) are
determined through

d3 2
Poa(k) = 2 / L Pia(q)Pua(lk — ) [Fz(s)(q,k—q)] , (4.144)
(s) 5 2 (k1 ko)?  Kki-kz < 1 1>
Foi(kika) = 5+5 + S+ (4.145)
2 277 K2 2 \RTi2

2 3
2P13(k) = %Pll(k)/o (dz q)l Pll(Q)

o§ K a3 5 23,2 k+q
100 158+ 125 42} + 5 (¢ K’ + 7 In (o )| - (4.148)

Fz(s) denotes the symmetrized kernel obtained by summing overoaBible permutations of
the variables. The growth fact@(z) contains the cosmological framework. It increases with
decreasing redshifts (see also section 4.3), thus, théneanlpart scaled with the forth power
in D(z) gets stronger. Fig. 4.10 displays the several contribstada= 0: The complete power
spectrum is presented by the black curve, which coincidesvevenumbers below < 0.1
Mpc 1 with the linear part (i.eD?(z)P11(K)), indicated by the green curve. The nonlinear part
of eq. (4.143) is given by*(z)[2Py3(K) + Paa(K)], wherePi3(k) is shown by the blue curve,
while P,(K) is presented by the red curve. They begin to influgP@e atk > 0.1 Mpc ™!

We use eq. (4.143) - eq.(4.146) to calculBté, z).

e NONLINEAR POWER SPECTRUM OMA et al. (1999) - MA99:

This model presents a simple analytic approximation forithesar and nonlinear mass power
spectrum, assuming spatially flat cold dark matter (CDM)walegies and a time varying dark
energy component - the quintessence. It has been widelyingbd literature and is easy to
implement. Its description is an extension of the work by #898), where the functional form
of the power spectrum is based on analytic solutions anddbgicients are determined by fits
to numerical simulated power spectra. The basic idea to mafirtear to the nonlinear regime
was introduced by Hamiltoet al. (1991). The functiom,(kni,z) = f [A(k,2)] relates the
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linear to the nonlinear power spectrum, witlik, z) = k3/(21) - P(k, z). Note thatA, and4,
are calculated at different wave numbers, connected via

B Kni
k = (15 An) 2 (4.147)
The resulting power spectrum has the form,
A (k,z
Ani(Kni,2) = G( I3(/5l ﬁ)>'4|(|<|,z), (4.148)
9 s
using the abbreviation
Ak, z
_ 13(/2 /3)’ (4.149)
9 Os
the functionG(x) is given by
B 1+0.02* 4-¢1x8/g®
G(x) = [1+In(1+0.5x)]- 17 o , (4.150)
where
Qo = |WDE|1.3\WDE‘*0.76.g(Z:0)7 (4151)
_ _o._9
og = 0g(z=0) g(Z:O)(lJrz), (4.152)

with the parameters; = 1.08- 1074, ¢, = 2.10-10°°, B = 0.83 andog the rms linear mass
fluctuation on a B~*Mpc scale.g is the growth suppression factor (eq. (4.54)) for whichtsxis
in the case of quintessence an approximation (Ma, 1998)

g = (—wpe) O, (4.153)
t = —(0.255+ 0.30wpg + 0.0027/Wpg) [1— Qu(2)] —
(0.3664 0.266npg — 0.07/WpEe) In Qu (2). (4.154)

(gnr denotes the growth suppression factor for a universe wighstiandard cosmological
constantwpg = —1.) However, we use the exact solution gprdetermined by eq. (4.61).

The functional form ofG(x) resembles the appropriate asymptotic behavior in the finea
(An — 4, x <« 1) and the stable clustering regimé\,( [ A|3/2,x > 1). The factor
[14+In(1+0.5x)] accounts for the non-vanishing positive slope &fi/4; in the mildly
nonlinear regime-{1 < A, < 1). This arises due to the fact that) and4, are evaluated at the
wave numberg, andk;, wherek; is always smaller thak,. ThereforeA (ki,z) is smaller and

the fractionAn (kni,2) /4 (ki, ) larger than unity.



4.4. THE NONLINEAR POWER SPECTRUM OF MATTER FLUCTUATIONS 81

e HALO MODEL - HALOFIT:
In this approach the density field is identified as a distrdmutof matter clumps described
through their individual density profiles. The original &@éates back to Neyman & Scott
(1952) and was adapted by Scherrer & Bertschinger (19919.colrelation between different
halos is responsible for the large scale clustering of nvalsige for small scales they arise form
the clustering of dark matter particles within the same t{®eebles, 1974b; McClelland &
Silk, 1977; Sheth & Jain, 1997). Further developments weadarby Seljak (2000) and Smith
et al. (2003), respectively. For a more detailed review refer tat®et al. (2003), and Cooray
& Sheth (2002).
The halo model consists of two contributions (rememberA{atz) = k3/(2) - P(k, 2))

P(k) = Po(k) + P4 (k), or A(K) = Ag(k) + A (K), (4.155)

wherePq (k) characterizes the quasi-linear term that presents therpyeverated by the large
scale placement of halos, aRd (k) the halo term that determines the power resulting from their
self correlation. Smitket al. (2003) proposed an empirical approach, where

Bn
8o = &K {%}em[—f(m, (4.156)

with y = k/Kg, f(y) = y/4+y?/8 and4, (k) being the linear power spectruik, expresses the
nonlinear scalef(y) the decay rate and,, 3, are spectral dependent coefficients. The halo
term is given by (Peacock & Smith, 2000; Ma & Fry, 2000; SeljaB00; Scoccimarret al,

2001)
A4 (k)
Ay = H 4.157
T tny 1+ vay =2’ ( )
with A/, (k) being,
f1(Q)
Al (K) 2ny® (4.158)

T 14 by [ fa(Q)yF

an, bn, cn, Vh, U, Vi are again dimensionless parameters that depend on theuspecthe
nonlinear scalé, arises from the condition that

ok;t2 =1, (4.159)
whereo (R, z) expresses the variance of the linear density field,

,dInk

k (4.160)

0*(R2)= [ H(kIW(R)
with the filter functiorW and the effective filter radiu’. Assuming an Gaussian filter it follows,

02(Rs,2) = / A(k.2) exp(—k2RZ)dInk. (4.161)
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Figure 4.11: Comparison of the power spectra using PT (diaek, MA99 (blue line) and HALOFIT
(red line). Upper left panel: Ax= 0. Upper right panel: Az= 5. Bottom panel: Az = 10. The
linear power spectrum is indicated by the black dotted line.

To model curved spectra Smight al. (2003) define the effective index

d?Ino?(R,2)

with the spectral curvature being,
_ d?’Ind?(R2)
C = —W‘gzl. (4163)
The coefficients they obtained by fitting the parameters itaukitions are given in the ap-
pendix B.6

4.4.2 Evolution of Power Spectra for PT, MA99 & HALOFIT

Fig. 4.11 and Fig. 4.12 show the evolutionRik, z) and the ratio of linear- to nonlinear power spec-
trum R(k) with wave numbek, using PT (black line), MA99 (blue line) and HALOFIT (red éhat
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Figure 4.12: The same as Fig. 4.11 but for the ratios of nealito linear power spectra.

z=0 (upper left panelsk =5 (upper right panels) ard= 10 (bottom panels). The black dotted line
in Fig. 4.11 expresses the linear power spectrum. We takeEasi@del the standard cosmological
constant\Wpe = —1).

At small wave numbers (large scales) the fluctuations gnoealily, hence all power spectra are in the
linear regime and do not differ. TH(K) are constant and equal to one. Going to lalgésmaller
scales) nonlinear effects arise. 2& 0 (see upper left panel of Fig. 4.11), PT exhibits the strehge
nonlinear contribution fok > 0.1 Mpc~t, HALOFIT follows closely while MA99 is slightly lower
but coincides with HALOFIT at- 100 Mpc ! before it begins to drop around 1000 Mpc L. This
behavior is also reflected in the evolutionR{k) (see upper left panel of Fig. 4.12). The PT-ratio be-
gins to rise ak > 0.1 Mpc™?, indicating the dominating nonlinear power at small scalése MA99-
and HALOFITR(K) lie slightly below, where MA99 decreases rapidly-ai 000 Mpc 2.

At z=5 (upper right panels of Fig. 4.11 and Fig. 4.12), all examphlve similar fok < 4 Mpc.

In the rangek ~ [4 — 1000 Mpc ™, HALOFIT and MA99 have stronger nonlinear contributions in
contrast to PT, which result in a strondgefk). The MA99- and HALOFIT-ratios rise above PT and
evolve similar at~ 100 Mpc t. However, soon afterwards MA99 begins to decrease, whilbegjins

to dominate around- 1000 Mpc 2.

For increasing redshifts the nonlinear effects becomedessinant and therefore, the power spectra
should comply with the linear spectrum. This is indeed theegaee the bottom panels of Fig. 4.11
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Figure 4.13: The WMAP sky map obtained from www.map.gsfgangov.

and Fig. 4.12). HALOFIT does not exhibit any nonlinear cimition, yet PT and MA99 have a
slightly increased nonlinear power at largeMA99 lies above PT, but decreasekat 600 Mpc .

In general, PT dominates at very large scales- 1000 Mpct) and small redshifts, while MA99
and HALOFIT possess more nonlinear powerker [4— 1000 Mpc ™! at intermediate redshifts. We
return to this issue when discussing the amplitude of thpeloisum, see section 4.6. Note that in
the literature MA99 is very often used, but assuming an iaifptiependence ok, e.g. Gioviet al.
(2003),

Dni(kni,2) = G <%) A (k,2), (4.164)

9o Og

but see the discussion in the appendix B.7.

4.5 Correlation Functions of the CMB

Now we come to an very important part of this chapter, theatation functions of the CMB, in par-
ticular its bispectrum.

CMB photons carry information about the primordial statetlmé universe in form of primary
anisotropies, while gravitational interaction after dgaing induces secondary anisotropies, see also
4.5.1. Since DE influences forming objects that interadh WiliB photons during the epoch of struc-
ture formation, these temperature fluctuations encompéissriation about DE and its equation of
state. The CMB power- and bispectrum are thus useful toototstrain DE and other cosmolog-
ical parameters. In 4.5.2 and 4.5.3 we introduce the baaindwork of CMB statistics in form of
these correlation functions. The CMB two- and three-pomtelation-function along with their cor-
responding power- and bispectrum are described. They théltbackground to study anisotropies in
the CMB. For more details see also e.g. Luo (1994), Spergelo&liézrg (1999), and Goldberg &
Spergel (1999). The definitions are used to calculate th&EbRpectrum in 4.6, and the correspond-
ing signal-to-noise ratio in section 4.7.
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4.5.1 CMB-Anisotropies

Measuring the temperature of CMB photons at a spot in the rglky fifferent incoming directions
reflects the inhomogeneities (e.g. Koguital., 1993; Miller et al,, 2000; Spergeét al., 2003, 2007,
Komatsuet al,, 2009) and results in sky maps, see Fig. 4.13. As mentionkxiedyedf most interest
are the imprinted fluctuations divided into primary and selary anisotropies (see also Fig. 1.3). We
shortly introduce them below. For more details see e.gettl. (1997), Hu & Dodelson (2002), or
Schneider (2006).

Primary Anisotropies

The primary (or primordial) anisotropies arise in the veayle stages of the Universe when it still
was dominated by radiation and the baryons and photons edupa Thomson-scattering, called
baryon-photon-plasma (see also Fig. 1.2). Density inh@neigies, induced by quantum fluctuations
during the epoch of inflation are responsible for the gr&eiteal redshift of the photons. Photons
located in higher density regions experience a gravitatioedshift due to the larger potential which
results in the loss of energy (temperature). Yet, the efbégravitational induced time-dilation is
counteracting. The relativistic description of both pss®Es by Sachs & Wolfe (1967) is known as
the Sachs-Wolfe-EffeciAnother contribution follows from peculiar velocitieseés4.2.6). During the
last interaction between photons and electrons (beforeuidiag) this additional velocity leads to a
further Doppler-shift of the photons. Furthermore, regiarnth higher baryonic density have a higher
baryon-photon pressure, the baryons are adiabaticallypressed and begin to oscillate. This rises
the temperature of both components, adding to the anisegopinally, theSilk-Dampingdescribes
the smoothing of temperature fluctuations on small scalesrasult of photon diffusion.

The primordial anisotropies can be analyzed by the twotpminrelation function (power spectrum)
due to their Gaussian nature, see 4.5.2. By comparing theadrenodels to the measured angular
distribution of the CMB it is possible to obtain constrains warious cosmological parameters, see
e.g. Schneider (2006) for a summary.

Secondary Anisotropies

The secondary anisotropies are caused during the propag#tthe CMB photons through the Uni-
verse after decoupling. Reionization (see also Fig. 1e5ulting from the first generation of stars
leads to Thomson-Scattering of photons with free elecirdesreasing the photon temperature. Ad-
ditionally, ongoing structure formation implies a timeryiag gravitational potential where the late
time decay of the potential, known as the Integrated-S&ébiée effect, and the nonlinear growth of
structures (Rees & Sciama, 1968) are combined into the Relasna effect. Gravitational deflec-
tion (weak lensing) of photons as they pass through intémgelarge scale structure is yet another
source. Thé&unyaev-Zeldovicts2)-effect describes temperature variations due toesadt of pho-
tons while traveling through the hot gas within galaxy-tdus. Since the measured intensity is lower
for lower frequencies and larger for higher frequenciess ¢ffect can be detected in the CMB-data
and corrected for.

The secondary anisotropies arise from nonlinear effeatsraroduce non-Gaussianity, which can be
analyzed using higher order correlation functions e.g,thiree-point-correlation function (bispec-
trum), see 4.5.3. The dependence of the RS- and weak leaefgrg-on structure formation and thus,
on DE allows to study theoretically calculated cross catieh bispectra using different DE-models.
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This can be used to estimate how forthcoming CMB observati@am constrain DE (see sections 4.6
and 4.7).

4.5.2 2-Point Correlation Function - Power spectrum of the G/1B

Inflation predicts the spectrum of the fluctuations to be Giaus therefore, only even order corre-
lation functions are nonzero. They are all expressed thirdbg two-point correlation function (or
temperature autocorrelation function),

Cce) = <AT—T(I1)AT—T(|2)>, (4.165)

averaged over all unit vectors) (n the direction 1, 2, witH; - I, = cos(©), and® being the fixed
angular separation. Furthermoﬁ%(l) = %;T" whereTy is the mean Temperature of the CMB.
To analyze the continuous spectrum of temperature fluctosA T /T is expanded in terms of spher-
ical harmonics,

(2420 —|m) Y2 me | (=)™ m>0,

Yim(l) = [ a ()] Am(cos®)é 1 =0 (4.166)
where 0< O <1, 0< @ <27, | = [0,..,], —| <m< | andRAn(cosO) is an associated Legendre
function,

—1)m dl+m

Am() = I (12 S0 ) (4.167)
with x = co9. The expansion results in

AT

()= ZnamYlm(l), (4.168)

and can be interpreted as a kind of generalized Fourierstwemation, since for the surface of a
sphere the orthonormal functions are the spherical haaotising the orthogonality condition for
Ylm1

[ N9 = &1 G, (4.169)

it follows for the coefficientayn,

an = [ SO0, (4.170)

The distribution of theyy,'s is determined through the quantum fluctuations laid dounng) inflation.
Each of the(2l + 1) coefficients taam gives an independent estimate of the amplitude of tempreratu
fluctuations related to the multipole For example, fot = 2 we have five independent contributions,
while for | = 1000 we get 2001. From this arises an important aspect, ige kscales (smalls) we
have only a few independent estimates. Thus, the precisiaich the amplitudes can be measured
is limited. This effect is calledosmic variance

A 2
(ﬁ) _ ]2 (4.171)
G/ cosmic variance V¥ 2 +1
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and presents a fundamental barrier that cannot be improyeshiitancing the accuracy of the mea-
surements.

The mean value oy, vanishes, i.e{a,m) = 0, while the variance provides an estimate of the power
atl,

* 1 *
C = (@mainy) = (Jaml’) = 51 2 Amdin: (4.172)
m

C, denotes the power spectrum. Using eq. (4.168) and

S Yio12¥in(l) = ZETJ:H(COS@, (4.173)

we can rewrite the two-point correlation function (eq. b)),

C(O) = %TZ (2 + 1)C/A(cosO). (4.174)

4.5.3 3-Point Correlation Function - Bispectrum of the CMB

An indicator of non Gaussianity in the CMB temperature flatians is presented by the three-point
function or analogous thieispectrum since it vanishes in the Gaussian limit. The three pointezor
lation function measures and correlates the temperatuteedfackground radiation at three different
positions (1, I2, I2) in the sky. It is given as,

B(l1,l2,13) = <5T—T(I1)5T—T(Iz)~5T—T(I3).> (4.175)

For the corresponding angular bispectrum follows,

BMTeMS — (o A @iams) (4.176)

l1l2l3
where thea, are determined by eq. (4.170). The multipole moments gatisftriangle condition and
the parity invariancem, +my+mg =0, I3+ 12+ 13 = even, andl; — || <l <l +1;. The universe is
assumed to be rotationally invariant, which requires tepdxtrum to be independent from orientation
and the triangle-configuration. Tlaagular averaged bispectruia defined as,

I1 I2 |3 mmpmg
Bilh= ( BT, (4.177)
112,13 & m M M 11213

It contains thewigner3 j symbo] which transforms thers under rotation and preserves the triangle
configuration. The Wigner-3 j symbol describes the bispmetazimuthal angle dependence, and
satisfying the orthogonality properties,

2
z(r'ﬁl r'ﬁz r'é) = 1, (4.178)

T PR i 1 LY M
%(rﬂl m, n13> <m1 n, M/> o 2L+1 (4.179)
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Using the rotational invariance and the symmetry prope(ee. (4.178), and eq. (4.179)) it follows,
Bl = i Bl (4.180)

where{"™ is the so calledsaunt integral
G = [ @ ¥ (¥ () ¥ (1)

_ \/(2|1+1)(2|2+1)(2|3+1)_(g |S I8>'<Il o |3>7 (4.181)

AT m M Mg

which includes the angle dependence and the triangle eamistia the Wigner-3 j symbolby,,,
denotes theeduced bispectrurthat comprises all physical information (Komatsu & Sper@el).
Eq. (4.180) is valid as long as the universe is isotropics thy, only depends on the spatial separa-
tion between the points. As the reduced bispectrum doesaloide the Wigner-3 symbol, it is easier
to be calculated and furthermore, it quantifies the physioaperties 0BT}/ 2"™.

In terms ofby,,1,, together with

z (|1 I |3> erﬂlzrlrspme _ \/(2|1+1)(2|2+1)(2|3+1) ] <|(]). IS IS) : (4.182)

G\ My Mg am
the angle-averaged-bispectrum is given by,
20+D) 2+ (23+2) /17 1 |
B|11|21|3 = \/( ! )( 47_[ )( ) <01 8 8) b|1|2|3- (4183)

The bispectrum consists of several sources (primary- asagedecondary sources). In section 4.6,
the primordial-lensing-RS bispectrum will be discussedétnil.

4.6 Cross-Correlation Bispectrum

The Lensing-Rees-Sciama (L-RS) bispectrum (Verde & She§92), describes the coupling be-

tween the Rees-Sciama and weak lensing effect. The RS-effethbines the late-time decay of grav-
itational potential fluctuations in a non-Einstein-de &ittniverse - the ISW-effect (Sachs & Wolfe,

1967), and the non-linear growth of density fluctuationsglthe photon path (Rees & Sciama, 1968).
The CMB temperature at any positioh) i the sky can be expanded as,

AT()  AT(+06)
T T
_ATP) | ATP() ATNS(1)  ATSZ()
I e (e e (4.184)

The first termATP /T indicates the primordial contribution, the second the igasional lensing effect,
the third term the RS-contribution and the last the Sunyasldovich effect (Zeldovich & Sunyaev,
1969). The SZ-effect will be neglected, since it can be sidglut of the CMB signal due to its fre-
quency dependence (see also 4.5.1). Other effects, lik®shéker-Vishniac (OV) effect (Ostriker
& Vishniac, 1986), which arises due to additional velocigrtprbations during reionization are ne-
glected. The OV effect appears at very small angular scakes largel) and does not affect our
analysis. The considered terms are listed below.
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e PRIMORDIAL-CONTRIBUTION:
As discussed in section 4.5, the primordial anisotropiéieaethe state of the universe at the
last scattering surface. On large scales the SW-effechéSad\Volfe, 1967) takes place, which
increases the temperature of the CMB photons as they pasggthidensity fluctuations and
entails additional gravitational redshifts. However, doehe gravitative time delay (which
is counteracting), the photons are scattered towardsedries where the temperature was
higher. The net effect leads, in the Newtonian limit to antdbation of AT?/T ~ 1/3A®.
Furthermore, hydrodynamical effects at intermediateescimhply variations in the photon tem-
perature and result in acoustic oscillations. Verde & Sglefg002) express these primordial
effects through,

ATP()
T(l)

d3k , ~
= /Wexp(l K-1r,)@(k)g(k), (4.185)
whereg denotes the radiation transfer function@ljs the Fourier transform of the gravitational
potential perturbatior®1, andr, is the comoving distance to the last scattering surface. For
the exact calculation see also e.g. Spergel & Goldberg (1899 Goldberg & Spergel (1999).

e LENSING-CONTRIBUTION:

In general, gravitational lensing elongates and stretthesmages of background galaxies,
which lie behind a source (e.g. another galaxy known as sayataxy). It can be interpreted as
a lens that distorts the light. Lensing directly probes tis¢rithution of the source mass, and is
therefore very important for many astrophysical measurgsnesravitational lensing of CMB
photons causes secondary anisotropies as they travegthtbe universe after decoupling. The
forming structures deflect the photons, thus they contdammation about the potential and the
cosmological framework. The lensing potente(l),

r.—r
I,

I
o(l) = —2/ ar Lo, (4.186)
0
is the projection of the gravitational potential along theelof sight. For more details see
Bartelmann & Schneider (2001) and Komatsu & Spergel (200he lensing effect leads to
an additional change of the temperature distribution of QdiBtons which is of non-Gaussian
nature and can be traced with the bispectrum.

e RS-CONTRIBUTION:
The RS-effect is a unique probe of time variation of the dgedidnal potential. It encompasses
the ISW-effect (which is similar to the SW-effect) and tak&® account the nonlinear growth
of density fluctuations. CMB photons experience an graeital redshift as they pass through
perturbations. However, at low redshifts DE dominates afldiences the growth. To take
this into account the SW-effect must be integrated back comdination which explains the
denotation as integrated SW-effect. The temperature ehisdescribed by,

ATV
T

P
2/dr%¢(n,l-r), (4.187)

109 is identified as the fluctuation in the metric, see also Hu & W1997), Hu (2000).
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where again® is the Newtonian potential of the perturbation,the comoving distance
(eq. (4.26)) and?/dn the partial derivative with respect to the conformal timeg. E.187)
includes the linear as well as the nonlinear evolution ofsdgrfluctuations. In the case of a
matter only dominated universe the poten@@lremains constant in the linear regime and its
derivative vanishes. However, if DE is taken into accoumtohavior changes depending on
the particular scale, i.e.

— Linear Regime:® decays with time an@®/dn > 0.
— Nonlinear Regime® grows with time and®/dn < 0.

This results in a sign change when crossing from the lin@athé nonlinear scales, which is
reflected correspondingly in the bispectrum.

All three effects are coupled via the potent#® and are thus correlated. The L- and RS-effect lead to
a non Gaussian contribution to the CMB anisotropies whichbeaanalyzed with the cross correlation
bispectrum, which will be calculated in the following.

Setting eq. (4.184) into eq. (4.170) it follows for thg,, (Verde & Spergel, 2002)

ATP(1)
T()

am:qﬁn+/dzlm 00(1) -5, (1) + &l (4.188)

Applying the following expansions,

o) = Z@ImYlm(I)a (4.189)
ATP() |
T %am\ﬁm(l), (4.190)
eg. (4.188) results in,
m = ah,+ i@y | A2 (D DYy (D DYy (1) + &L 4.191
An =8+ Y 5 am@rnr [ &Y (D Ve ()8 (4.191)
Using the relation, (Hu, 2000)
/d2|Y|:fn(|)|:|Y|/m(|)|:|Y|//m/(|) = % [|/(|,+1)+|N(|N+1)—|(| —1—1)] .
[ SN ¥ (¥ 1), (4.192)

with the Gaunt-integral (eq. (4.181)) aNg, () = (—1)™_m(l), we arrive at,
l ! !
_ P - _ 1\ (men' ) Z —mndm’”
am am + ZI;I’Z’( 1) mt:
(7 +2)+1"(1"+1) = 1(1 +1)] & Oy + A (4.193)
From this follows the bispectrum,

B — Zlmlmz"ta . } l1(l1+1) —=l2(la+1) +13(I3+1)] -

l1l2l3 1lol3 2

Ch (O mealym,) +5pErM (4.194)
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Figure 4.14: Evolution of the the primordial CMB temperatiand polarization with multipole-
momentl, obtained from CMBFAST. Upper left paneC' (1), which corresponds to eq. (4.196).
Upper right panel: Polarizatiod"&(1). Bottom panel: PolarizatioGFE(l).

with the reduced bispectrum being

H

b1t = 5 1011+ 1) ~la(lz+ 1) +1s(ls + 1)) - G (Ol 2y, ) + 5 perm (4.195)

The primordial power spectru@® (eq. (4.172)) is obtained using CMBFAST (Seljak & Zaldagea
1996), see also Fig. 4.14. Additionally, we include the digtenoise

G =cP+cl, (4.196)
whereCN is given by (Knox, 1995)
cN = exp(l?g?)S, (4.197)

with Sbeing the instrument sensitivity amg ~ Orwhm/2.3, assuming that the experimental beam is
Gaussian. We take PLANCK limited parameters (the case forARNImited parameters is discussed
in the appendix B.10).
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Figure 4.15: Evolution 00Py(k,z)/0z (eq. (4.200) the derivative &¥»(k,z) with z, which is most
sensitive to the onset of the nonlinear regime. We use PtKlilze), MA99 (blue line) and HALOFIT
(red line) keeping the wave number constant. Upper panel0.04 Mpc*. Bottom panelk = 0.4

MpcL.

The bispectrum amplitude is determined throu@t) = (& all-) and was derived by Verde &

Spergel (2002),

?),

—4</dlldlzdr

zZr(z.)—r(z) 0

r(z.)r(z)°® oz

r

~-Po (K, 2) k=1 /r (702

M —1r ‘9(1’(’77'20 * *
Lo [an 22 ) ),

(4.198)
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Figure 4.16: The same as Fig. 4.15 using PT (black line) an®@®hlue line) for constant multipole-
momentsl. Upper left panel:l = 100. Upper right panell = 500. Bottom left panell = 1000.
Bottom right paneli = 10000.

z, is the redshift of the last scattering surface 8adhe power spectrum of the gravitational potential
fluctuations

Po(k.2) = <§QO>2 <%>4P(k,z)(l+z)2, (4.199)

evaluated ak = | /r(z) and then derived afterwards with respect.t®(k, z) and correspondingly its
derivative reflect the behavior of the potenti) which changes sign when the fluctuations leave the
linear regime and enter the nonlinear evolution. This ckamgrks the crossing point and appears,
according to eq.(4.198) also in the behav@(t). Py (k,z) depends on the power spectrum of matter
fluctuations(P(k,z)). We use PT-theory to characterize the nonlinear regime(det43)), see also
section 4.4. As comparison, we use MA99 (eq. (4.148)) and GALT for a standard cosmological
constant withwpg = —1. The derivative 0Py follows as

0 1 oPkz 1

d—zpcp(k,Z):Pq;(k,Z)' P(k,Z) 9z +(1—|—Z) s

(4.200)
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Figure 4.17: Evolution of the bispectrum amplitudg(l)| (eq. (4.198)) with the multipole-moment
| for PT (black line), MA99 (blue line) and HALOFIT (red linesingwpe = —1. The sign change
denotes the onset of nonlinear effects: left side lineahtiside nonlinear regime.

and results for PT in

ok 2) P";(:’ ) _ 2?(z)c(k) - { <gg/((zz))> P (k) +D%(2) [gg/((zz)) + '[D)/((ZZ” P”°”"”(k)}. (4.201)

P'in (k) denotes the linear part, i.B;1(k) andP"""(k) the nonlinear contributior{2Py3(k) + Pax(K)].

c(k) is the pre-factorc(k) = (1.5- Qg)? (Ho/K)*. (The derivatives characterized by a dash are with
respect to redshift, e.@(z) = dg/dz not to be confused with the conformal derivative). See appe
dices B.8 for further derivatives using MA99.

In the following we are going to discuss the evolutiord®, /dz (eq. (4.200)) an®(l) (eq. (4.198))

for PT, MA99 and HALOFIT (see 4.6.1) and the DE models usigg = const, LINDO3, KOMATO09
and WETTO4 (see 4.6.2), respectively.

4.6.1 Bispectrum Evolution for PT, MA99 & HALOFIT
Behavior of 0Py (k,2)/0z

Fig. 4.15 and Fig. 4.16 show the evolutiond®y (k,z)/0z (eq. (4.200)) with redshift, most sensitive
to the onset of nonlinearity for the constant wave numbets0.04 Mpc ! andk = 0.4 Mpc?, and
constant multipole-moments= 100, = 500,| = 1000 and = 10000, respectively.

In Fig. 4.15 we present PT (black line), MA99 (blue line) anAlEDFIT (red line). Atk = 0.04
Mpc~! (upper panel) every contributing fluctuation evolves Imeat high redshifts the universe is
matter dominated, where the potentigt) of the density perturbations along with the corresponding
power spectrum Py (K.z)) remains constant andPy/0dz = 0. Approaching smaller redshifts DE
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Figure 4.18: Evolution 0fPy /dz with redshift fork = 0.04 Mpc . Upper left panel: Constant equa-
tion of states usingvpg = —0.6 (black line),—1 (blue line) and-1.4 (red line). Upper right panel:

LINDO3 for wy = —0.5 (black line), 05 (blue line) and 1 (red line). Bottom left panel: KOMAT09
with zyans= 11597 (black line), 639 (blue line) and &9 (red line). Bottom right panel: WETTO04
for Qepe contributions atss (solid lines) andz; (dashed triple dotted lines), see also tabe 4

begins to dominate entailing an reduced growth of strustuhecordingly,® andPy (K, z) decrease
with decreasingz, while dPg(k,z)/0z begins to rise. For PT the dominating term in eq. (4.201)
corresponds te- (¢'(2)/9(z)) P™ (k). It evolves similar to HALOFIT, while MA99 is slightly lower
Fork = 0.4 Mpc ™! (right panel) we enter the nonlinear regime, where the fhtidns have decoupled
from the Hubble flow. This is indicated by the drop@®y(k,z)/dz aroundz ~ 1. Like before, the
derivative ofPy (K, z) vanishes at higla. At small redshifts® andPy (K, z) increase as the fluctuations
begin to collapse. This results in an decreas@Raf(k, z) /dzuntil it reaches equilibrium and saturates.
The dominating term for PT corresponds nowt®?(2) [ (2)/9(2) + D’(z)/D(z)] P"°"i"(k). PT and
HALOFIT are again both quite similar. However, MA99 dropsuahatically at lowz which seems
to be unphysical compared to the other descriptions andates that all fluctuations are already in
the nonlinear regime. This strange behavior of MA99 is atstected in Fig. 4.16 (here we show
only PT and MA99 as HALOFIT resembles PT). Hee 100 (upper left panel) the contributing wave
numbergk =1/r(z)) are small and the regime is linear, whéMe, (k, z) /dz > 0 for both models. PT
is slightly stronger than MA99. However, when increasindl $6500 (upper right panel), MA99 has
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Figure 4.19: The same as in Fig. 4.18 but for the constant wakeerk = 0.4 Mpc L.

already become nonlinear for whidt®y (k,z) /dz < 0 in contrast to PT. As mentioned in 4.4.2, MA99
exhibits more nonlinear power at intermedi&tendz. Therefore, for increasing(i.e. k) the crossing
from the linear to the nonlinear scales happens before RITH&LOFIT). Forl = 1000 (bottom left
panel) and = 10000 (bottom right panel) the correspondkigare large and PT and MA99 are both
in the nonlinear domain.

Behavior of Q(1):

The largest contribution to the bispectrum amplitude (édL98)) comes from intermediate redshifts.
As already discussed, at larggqwhere the universe is matter dominateths (k,z)/dz vanishes,
while for smaller redshifts it decreases or increases d#ipgnon the scale (determined through
k=1/r(z). The integand ofQ(l) follows the behavior ofdPy(k,z)/dz and changes sign when
crossing from the linear to the nonlinear scale. This is cédlé in the bispectrum evolution shown
by Fig. 4.17, for which we also include HALOFIT (red line). &lsign change for MA99 appears
betweenl ~ [200— 300 (which corresponds to smalldfs, i.e. larger scales), while for PT and
HALOFIT the crossing happens arouhd- [700— 900 (smaller scales). Since PT has in the mean
more nonlinear power with respect to HALOFIT (see Fig. 4,1f8) signh change is slightly shifted
towards smallet.
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Figure 4.20: The same as Fig. 4.18 but for the constant nolgtimoment = 100.

To conclude, it is important to note that different apprachof nonlinear power spectra result
in different scales on which nonlinear effects become damtinhence altering any comparison with

observed bispectra. Jeong & Komatsu (2006) showed that 8Midass a significantly better fit to
numerical simulations than the conventional approachdgA®9 and HALOFIT. Thus from now

on, we use PT (eq. (4.143)). Its direct dependence on thetlgfastor makes it easy to incorporate

different DE models. Attempts to describe the linear- araribnlinear evolution of the bispectrum
analytically have been done by e.g. Boubeketal. (2009) and Pitrowet al. (2010).

4.6.2 Bispectrum Evolution usingwpg = const, LINDO3, KOMAT09 & WETTO04
Behavior of 0Py (k,2)/0z

The Figures 4.18, 4.19, 4.20, 4.21, and 4.22 show the ewolwf 0Py (k,z)/0z with redshift for
the constant wave numbeks= 0.04 Mpc ! andk = 0.4 Mpc ™%, and constant multipole-moments
| =100, | = 1000 andl = 10000, respectively. We skip the example wite- 500, since most

of the quintessence models do not reach the nonlinear sefgeelh ~ 1000 and the evolution of

0Po(k,2z)/0zfor | < 1000 is similar td = 100. (See also appendix B.9 f8Py(k,z)/dz with k = 4
Mpc~1.) The upper left panels correspond to constant equatiomtEfswithwpe = —0.6 (black line),
—1 (blue line) and-1.4 (red line). The upper right panels show LINDO3 using= —0.5 (black line),
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Figure 4.21: The same as in Fig 4.18 but for the constant paléimoment = 1000.

0.5 (blue line) and 1 (red line), while the bottom left panele@iKOMATO09 for z;ans= 11597 (black
line), 6.39 (blue line) and &0 (red line). The bottom right panels display WETT04 §xpe contri-
butions atzss (solid lines) andzs (dashed triple dotted lines), see also tab 4

For k = 0.04 Mpc? the regime is linear and the dominating term in eq. (4.201jesponds to
~ (d(2)/9(2)) P'"(k), wheredPy(k,z)/dz > 0 at low redshifts (see 4.6.1). In the case of constant
Wpe (upper left panel of Fig. 4.18Q9Py(k,z)/0dz increases with increasingpg. The strongest evo-
lution follows for wpg = —0.6, which has also the highest contribution®@fg. The same holds for
WETTO04 (bottom right panel of Fig. 4.18), whet» (k, z) /dz exhibits the strongest evolution for
contributions ofQgpg = 0.0064 atzss and Qepe = 0.0627 atzst. In the case of LINDO3 (upper right
panel of Fig. 4.18) and KOMATO09 (bottom left panel of Fig. & 1his is the case using, = 1 and
Zrans= 11597, respectively.

At k = 0.4 Mpc!, presented in Fig. 4.19 we enter the nonlinear stage andilmatitns from

~ D%(2)[¢'(2)/9(2) + D’'(2)/D(2)] P"°""(k) lead to the drop o®PPy(k,2)/dz aroundz = 0.6 (see
4.6.1). The behavior 0§Py(k,z)/0z remains the same, usingpe (upper left panel),Qepe (up-
per right panel)w, (bottom left panel) andyans (bottom right panel).

In general,dPy(k,2z)/dz increases with increasin@pe. As discussed in section 4.3, the linear
growth of structures (characterized througte)) is suppressed if2pg increases. Sincg(z) ~ D(2)
(eq. (4.54)), the terméy’(2)/9(2)) (atk = 0.04 Mpc ) and (¢'(2)/9(2) +D’'(2)/D(2)) (atk = 0.4
Mpc 1) increase withQpg. This results in the enhancementa®s (k, z)/dz, as seen in Fig. 4.18 and
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Figure 4.22: The same as in Fig 4.18 but for the constant paldétimoment = 10000.

Fig. 4.19.

For the multipold = 100, shown in Fig. 4.20 the contributirkis are small and the regime is linear,
wheredPy/0z > 0. As before, the examples with the larg€xie exhibit the stronges#Py /dz. In-
creasing td = 1000, presented in Fig. 4.21 implié®y/dz < 0 for wpe < —1 (upper left panel),
Qepe < 1.77-107° (upper right panel)w, < 0.5 (bottom left panel) andyans < 2.60 (bottom right
panel). These examples have crossed from the linear to tiimear evolution, indicated by the small
drops around = 2 (see also Fig. 4.23 for the A= 10000, shown in Fig. 4.22 all examples are well
within the nonlinear domain, for whic#Py /dz < 0. The main contribution to the integral (eq. 4.198)
follows from intermediate redshiftg,~ [1— 20].

Behavior of Q(I):

The strength ofQpg is strongly correlated to the onset of nonlinearity. Foréasing values the
growth of structures is more damped and the crossing frorfiribar to the nonlinear stage becomes
delayed. The scales where the fluctuations reaeh 1 are therefore much smaller, see Fig. 4.23
which shows the evolution of the corresponding bispectromlaude |Q(1)| (eq. (4.198)). Increasing
wpe from —1.4 to —0.6 (upper left panel) shifts the onset of the nonlinear regioveards larget
(smaller scales). The same happens for LINDO3 (upper righep, and KOMATO09 (bottom left
panel), respectively. Increasing, = —0.5 to 1, andzans from 2.60 to 11597 dampens the growth
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Figure 4.23: The same as Fig. 4.17. Upper left panel: Const@umation of states usingpg = —0.6
(blue line),—1 (black line) and-1.4 (red line). Upper right panel: LINDO3 using; = —0.5 (black
line), 0.5 (blue line) and 1 (red line). Bottom left panel: KOMATO09 gz, ans= 11597 (black line),
6.39 (blue line) and &0 (red line). Bottom right panel: WETTO04 usin@epe contributions atzss
(solid lines) andzs (dashed triple dotted lines). see also tabz 4

of fluctuations (see also 4.3.2) delaying the nonlinearwiai. This is also the case for WETT04
(bottom right panel), where for increasing values@fpe from 1.71- 10 ° to 0.00672 atzss, and
0.0529 to 00672 atzs, the sign-change is shifted towards larger

A direct comparison ofQ(l)| using the standard cosmological constant wigg = —1 (black line),
WETTO04 usingQgpe = 0.0064 (blue line), LINDO3 withw,; = 0.5 (red line) and KOMATO09 for
Zrans = 6.39 (green line) is shown in Fig. 4.24 (upper panel). WETTO04 th& strongest amount of
DE, thus the sign change appears at latgee. | ~ [2000— 3004 in contrast to the other examples.
The weakest contribution of DE is presented by the constas#,avith the change being in the range
| ~ [600—700. In between are the LINDO3- and the KOMATO09- example withns@hanges at

| ~ [900— 1000 andl ~ [1000— 2004, respectively. The corresponding bispectra are showneat th
bottom panel of Fig. 4.24. (Note that in this plot we show anlyitipole-moment$ < 1500, therefore
the sign-change for the WETT04 examples does not appear.)

To summarize, the onset of the nonlinear regime is very em$o the model of DE (i.e. the amount
of DE given byQpg) and the corresponding parameters. If the resolution ¢iénrCMB observations
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Figure 4.24: Upper panel: The same as Fig. 4.17 but for thetanhequation of state withpg = —1
(black solid line), WETTO04 usin@epe = 0.0064 (blue line), LINDO3 withw, = 0.5 (red line), and
KOMATO9 using zrans = 6.39 (green line). Bottom panel: Evolution of the correspagdangle
averaged bispectrum (eq. 4.177), where the multipole-nmésrere evenl{ = |, = |3)

are strong enough, as expected with PLANCK (see also netibsgthe theoretically calculated
bispectra can be used for comparison with observed CMB tlisp constrain parameter ranges for
DE and to distinguish between different DE models.
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Figure 4.25: Evolution 08/N (eq. (4.202)) withmax for a cosmic variance limited (thin lines) and
PLANCK limited (thick lines) experiment. Upper left pan€onstant equation of states usinge =
—0.6 (blue line),—1 (black line) and—1.4 (red line). Upper right panel: WETTO04 usin@epe
contributions atzss (solid lines) andz; (dashed triple dotted lines). see also taht2 Bottom left
panel: LINDO3 usingwvy = —0.5 (black line), 05 (blue line) and 1 (red line). Bottom right panel:
KOMATO09 usingzans= 11597 (black line), 639 (blue line) and B0 (red line).

4.7 Signal-to-Noise Ratio

The signal-to-noise rati@S/N) can be identified as the ratio of the mean signal to its standievia-
tion due to noise. In general, it is defined through (Sperg&@ddberg, 1999)

2 2
B
2<11<I2<I3<Imax a|1|2|3

wherea? expresses the cosmic varianceBpf,, (Luo, 1994; Spergel & Goldberg, 1999; Gangui &
Martin, 2000),

* * * 2
0% = (@ym mAmeym Aomame) = (Bligs) — (Blalala)
N-C,C,Cia, (4.203)

Q
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Figure 4.26: The same as Fig. 4.25 but for the constant enuafistate withvpg = —1 (black solid
line), WETTO04 usingQepe = 0.0064 (blue line), LINDO3 withw, = 0.5 (red line), and KOMATQ9
usingzrans= 6.39 (green line).

with N =1 ifall I's are differentN = 2 if two I's are equal (isosceles configuration) éhe- 6 if all I's

are equal (equilateral configuration). T@gs denote the power spectrum of temperature fluctuations
eg. (4.196), for which the noise contribution is includedading to Knox (1995).

Fig. 4.25 shows the evolution @¢B/N) with Imax (thin lines for a cosmic variance limited-, thick
lines for a PLANCK limited experiment, see also appendix(®Bdr the WMAP limited case), where

1 <y <l3 <lnhax (For the comparison using PT and MA99 see also appendix.B.W re-
strict our analysis to multipoles witly,ax < 1500, since for larger values other secondary effects like
the OV-effect (Ostriker & Vishniac, 1986) and SZ-effect [@avich & Sunyaev, 1969) become non-
negligible. The upper left panel corresponds to constanataon of states, the upper right panel to
LINDO3, the bottom left panel to KOMATO09 and the bottom rigignel to WETTO04, respectively.

In all cases, théS/N) increases whehyax reaches above a few hundred similar to the findings of
Mangilli & Verde (2009) (but which restrict their analysislg to wpg = —1). The PLANCK limited
case is almost identical to the comsic variance limited dirt@egins to differ slightly forl jax > 1400.
Following Fig. 4.25, we see a clear dependence on the strariglpe as discussed already in sec-
tion 4.6. For constamipe the strongest signal corresponds to the example with tgedacontribution

of Qpg, i.e.wpg = —0.6. The same is for WETTO04 usin@epe = 0.0064 atzss andQgpe = 0.0672 at

Zs. The signal is stronger for contributions of EDEzat the era of structure formation. For LINDO3
the larges{S/N) follows for w, = 1, while for KOMATO9 this is the case f@ans= 11597.

Fig. 4.26 compares all DE-models using the same parametarskig. 4.24. The stronge$s/N)
follows for the EDE model withQgpe = 0.0064, the lowest is displayed by the standard DE-model
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with wpe = —1. Both, LINDO3 and KOMATO09 lie in between. They evolve siarjlwhich reflects
the fact that they are based on a similar parameterizatibe.strong(S/N) for the EDE model sug-
gests that it should be possible to be distinguished fronstiedard case. We therefore expect, that
PLANCK will be able to answer the question if we live in a unise with EDE, or with the standard
cosmological constant.

4.8 Conclusions

We analyzed the L-RS bispectrum (Verde & Spergel, 2002)ifterént parameterizations of DE with
focus on early dark energy. The models incorporate constgudtion of states, WETT04 (Wetterich,
2004), LINDO3 (Linder, 2003a,b) and KOMATQ09 (Komatstial., 2009), respectively. To test the
dependency of the results on the model of the nonlinear pewectrum, we apply in addition to
PT (Bernardeaet al., 2002) the often used descriptions by MA99 (klzal, 1999), and HALOFIT
(Smithet al,, 2003).

We find that the sign-change of the L-RS bispectrum ampljtwdeich determines the crossing
from the linear- to the nonlinear regime depends stronglyhendescription of the nonlinear power
spectrum. Using the standard case witpe = —1, the sign-change appears for MA99 already
at multipole-moments in the rande~ [200— 300, while for PT and HALOFIT it lies between

| ~ [1000—200Q0. Smallerl correspond to larger scales. MA99 enters the nonlineaestdgen
the fluctuations evolve on larger scales, which is due todlethat it exhibits a stronger nonlinear
power in contrast to PT and HALOFIT (which are quite similafgt, PT has slightly more nonlinear
power than HALOFIT, resulting in the sign-change shortlyobe HALOFIT. As already discussed
in Mangilli & Verde (2009) an accurate description of the l@ar evolution is fundamental to ob-
tain unbiased estimates on cosmological parameters. MAR9gistrongly from PT and HALOFIT.
Since PT is based on analytical calculations and agreesnwitterical simulated spectra (e.g. Jeong
& Komatsu, 2006), we use it for our further analysis.

Applying different DE-models, the crossing from the lingarthe nonlinear stage shows a strong
dependency o2pe. A large Qpg implies a stronger acceleration of the expansion, thusliriear
growth of structures is damped and the nonlinear evolutelayged. The sign-change shifts there-
fore with increasingQpe to largerl (smaller scales). For constvpe the sign-changes lie between
| ~ [300— 2004, where the first one correspondsvige = —0.6 (which has the large®pg), fol-
lowed bywpe = —1.0 andwpg = —1.4, respectively. The same is for WETTO04, which has the
sign-changes for decreasif2:pe contributions atzss between ~ [700— 300, and forzsy between

| ~ [5000— 700(Q. The first one corresponds fags to the example usin@epe = 0.0064 followed by
Qepe=1.77-10 8 and Qepe = 1.71- 10-°. For zg they proceed a@gpe = 0.0672, Qepe = 0.0543
and Qepe = 0.0529. TheQgepe contributions is stronger for thee; examples, thus their sign-changes
lie at largerl. In the case of LINDO3, the first sign-change appears for xaengle usingv, = —0.5,
followed byw, = 0.5 andw, = 1.0, respectively. For KOMATQ9 this is the case uskighs= 11597,
Zrans = 6.39 andz;ans = 2.60. Comparing the DE-models, we see that the strongestiloaiidin of
Qpg arises for early quintessence, the lowest from the starmiesel withawpe = —1. This behavior is
also reflected in the evolution of ti8#N ratio with|, which corresponds to a resolution achieved with
PLANCK. The strongest signal comes from the examples wighldihgestQepg, and complies with
the early quintessence. The comparison shows, that thesi@xample follows from the standard
case. Thus, PLANCK should be able to distinguish betweetenodels and allows to answer the
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question if we live in a universe with a constamg or if we are ruled bywvpg(z).



Chapter 5

Summary and Outlook

The first part of this thesis was focused on modelling sheassfln particular the KHI with analytical-
and numerical methods. The second part enters the verg#titey topic of dark energy and its trace
within the CMB. This chapter shortly summarizes the mainultssand gives an outlook for future
perspectives.

5.1 Partl: Modelling Shear Flows with SPH and Grid Based Metlods

The numerical study of the KHI uses the SPH models VINE (Weizst al, 2009; Nelsoret al.,
2009), and the code developed by Price (2008) P08, while ridebgsed methods rely on FLASH
(Fryxell et al, 2000), PROTEUS (e.g. Heitsdt al, 2006), PLUTO (Mignoneet al., 2007) and
RAMSES (Teyssier, 2002), respectively. The analytic stoidyne KHI is based on the original work
of Chandrasekhar (1961), with the extension of a constastogity. We summarize our findings
below:

i) SPH-RESULTS, EQUAL DENSITY SHEARING LAYERS
The viscosity in VINE has been measured via the analyticatuiation of the KHI growth.
The effect of AV has been identified, where the usual settfgdV-parameters taa = 1,
and = 2 lead to a strong suppression of the KHI. A correspondingogsy in the range of
VspH ~ [0.06— 0.1] for o ~ [0— 1] can be assigned. For the samgegime ReynoldsRe
values only up to 12 are reached. The Balsara viscosity esdaitificial dissipation due to AV.

i) SPH-RESULTS, DIFFERENT DENSITY SHEARING LAYERS
The results discussed in Agedral. (2007), where the KHI is completely suppressed for shear
flows with different densities (in the case of VINE fDC > 6) has been confirmed. As an ad-
ditional test, different mass particles were usedd@ = 10, yet the KHI remains suppressed.
The solution in form of ATC proposed by Price (2008) allowdHsfarticles to mix and there-
fore, the instability to develop. We tested this method g€d@€ = 10, and indeed, the KHI
evolves and the amplitude growth agrees with the analypicadiction.

iii) GRID CODE-RESULTS, EQUAL DENSITY SHEARING LAYERS
The non-viscous growth using FLASH, PLUTO and RAMSES is im@j@greement with
the analytical prediction as well as the viscous evolutiath WLASH. However, PROTEUS
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Figure 5.1: Snapshots of the KHI a&= 1 (upper panel) antd= 2 (bottom panel) using the moving
mesh code by Springel (2010) fBXC = 2 compared to a fixed mesh code.

disagrees and underpredicts the KHI growth dramaticallye Tomparison with VINE using
AV = 0 demonstrated that VINE has an intrinsic viscosity (= 0.065).

ivV) GRID CODE-RESULTS, DIFFERENT DENSITY SHEARING LAYERS
Again, FLASH, PLUTO and RAMSES show an consistent non-wiscevolution forDC = 10
when compared to the analytical prediction. In the viscasecstudied with FLASH we find
a slight overprediction. The ramp-function as proposed blgdRtsonet al. (2009) to suppress
artificial small scale perturbations does not alter the Kgktwth.

5.1.1 Outlook

Further developments by various groups have been achi€ecently, Valckest al. (2010) discuss

in detalil the solutions for the KHI suppression proposed bgdet al. (2010). Furthermore, the new

developed hybrid code by Springel (2010), that combinesstiengths of SPH and GRID codes in
form of a moving mesh shows promising results (see Fig. ®ustesy of Volker Springel).

The next important step is to test those solutions on an kastraphysical system, e.g. the movement
of an infalling cold cloud into a hot gaseous halo, most sttiije the KHI. Another very important
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issue occurs at galactic disk formation and is known as tlgeilan momentum problem (Navarro
& Steinmetz, 2000). Simulated disks using N-body hydrodyical codes (SPH) appear to be too
small compared to observations. It seems that the angulareminim of the gas is not conserved and
instead transformed to the dark matter particles duringi@gtéonal collapse. Yet, another reason for
this problem could be related to the incorrect developméimydrodynamical instabilities, such as
the KHI. The KHI is artificially suppressed in SPH for sheamfoof different densities, if not any
further meachnisms like the ATC are invoked. This can beiatualtiring galaxy evolution, where the
gas from infalling satellites is stripped via ram pressund hydro-instabilities and begins to settle
in the disk. If the KHI is suppressed - which is the case inddath SPH formalisms - the clouds
are not dispersed and the gas remains within its correspgradibhalo and violates the galactic disk
formation. This scenario provides therefore an intergsist example for improved SPH-algorithms.

5.2 Partll: The Trace of Dark Energy captured within the CMB

We analyzed the L-RS bispectrum amplitude and the correlpgi®/N ratio for different descrip-
tions of the nonlinear power spectrum, in particular PT (Bedeaet al., 2002), MA99 (Maet al.,
1999) and HALOFIT (Smithet al, 2003), and for different DE-models with the focus on early
quintessence. The Quintessence models correspond to WIHWelterich, 2004), LINDO3 (Linder,
2003a,b) and KOMATO09 (Komatset al, 2009), respectively. In addition, we also study DE-models
with constant equation of statéspg = const). We summarize our findings below:

i) L-RS bispectrum using PT, MA99 & HALOFIT:
MA99 exhibits more nonlinear power at larger scales anddrigedshifts compared to PT and
HALOFIT. It thus enters the nonlinear stage first, as indiddty the sign-change of the L-RS
bispectrum amplitude appearing betwéen[200— 300. In contrast to this, PT and HALOFIT
have the crossing in the range- [1000— 2000. PT and HALOFIT show a similar behavior,
yet PT has a slightly enhanced nonlinear power.

i) L-RS bispectrum using Quintessence:
We find a strong dependency on the crossing from the linedngambnlinear stage with in-
creasingQpe. For larger values of2pe the linear growth becomes damped and the nonlinear
evolution delayed. The sign-change shifts towards smatlates. The strongest contributions
correspond to early quintessence examples.

iif) Signal-to-Noise Ratio:
Again, we find the same behavior as with the L-RS bispectrurplitude. TheS/N evolution
increases with increasinGpg, with the strongest signal coming from early quintessene.
use cosmic variance limited and PLANCK limited settings aadclude, that with PLANCK it
should be possible to distinguish between different DE-efmd

5.2.1 Outlook: Polarization-Bispectrum of the CMB

Another very promising source within the CMB is provided lylgrization. It contains important
information about the statistical properties of the inianditions and non-Gaussian contributions
(e.g. Zaldarriaga, 1997; Hu, 2000; Babich & Zaldarriag&)2@Coorayet al., 2004).
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The polarization on the sky is described with the so calledeffree symmetric Stokes matrix, see
e.g. Hu (2000),

Pl = X(H(my@my)+_X(H(m_®@m_), (5.1)
with
£X(1)=Q()=iU (1), (5.2)

being the complex Stokes parameter. Furthermokejs a spin-2 object and can be expanded using
the spin-speherical harmonics (Newman & Penrose, 196GJi&ajet al., 1967),

+X(1) = ZiXImYIm(I)- (5.3)

For further definitions see also appendix B.11. The poladadield is divided into the gradient part
(E) and curl part B) due to the parity eigenstates,

X(1) = Emn £iBjm. (5.4)

Eim obeys to thé—1)' parity (electric parity), while, corresponds to the-1)'+1 parity (magnetic
parity). The density fluctuations in the linear analysisy@timulate thee component of polarization.
Therefore, it is coupled to the potential and a cross-catitgi betweerk-polarization, lensing-, and
RS-effect results in a non-Gaussian signal. The corrspgndioss-correlation bispectrum can be
used, like in the case of the L-RS bispectrum to constrain Dis will be the focus of our future
work. Below we show the calculation to obtain the bispeatrhich are required to obtain tHg/N-
ratios.

For the derivation of the polarization bispectrum we useralar approach as discussed in section 4.6.
The polarization multipoles are given by,

X() = «X(1+00) (5.5)
LX)+ 000(X(1). (5.6)

Q

Expanding the.X(l) using the spin weighted spherical harmonics eq. (B.31), btaio

Xonll) =5 X+ [ €1 (12¥i) DO(ND (X)) (5.7)
With the help of eq. (4.189) and eq. (5.3) it follows,

X)) =2 Xim+ Y S @i (X / A2 (L2¥) Dy O (2o ), (5.8)
'm’ 17" my’

and applying (Hu, 2000)
02 Yim = [=1(1 4+ 1) + 4] +2Yim (5.9)

we get the expression for the integral,
1

/d2| (42¥i) MmO sVorme) = 5 107+ ) +1"07+ 1)~ 11+ )]

| €1 i) Yo (2o (5.10)
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Using
I I I
/d2| (SlYIjml) (2 Yizmp) (55 Yiams) = (—1)"‘1+sl\/(2 1+1)(2 ZZ 1)(2s+1) .
(Il 2 ) ( b |3>, (5.11)
S8 - —S3/\-Mm M mg
we finally get,

+Xm(l) = £Xm+ %%IZ, (—2)~(mEmmE2 77 1) 1717 1) — 11+ 1)] -

\/(2| +1)(2I’447rT (@ +1) (iIZ Ic; J'_:2> (_Im In,1 rlr;’>

(X7 _r) O (5.12)
Cross-correlating the X, with the ajm, eq. (4.193) produces the cross-correlation-polarinatis-

pectra. We concentrate on tRepolarization (X, = Em), since only these are stimulated by the

linear density perturbations

e ETT-Bispectrum:B1%"™ = (Ej,m&,m,a1;m)

BT _Iz 3 Ialla+2)— 1o (Ip+1) +lg(lg + 1) T,
1my [2my

X (2141) 2|2-I—1 23+1
CLE (Ol 42— 1)+ L 5 5 /2 21D,

|2mz|3ms
i 1o I3 [T P
lo(l2+1) —11(I1 4+ 1) +13(I3+ 1)] <12 0 iZ) <m1 g ms>
CLE (Game@lam,) + (12— 13). (5.13)
For the corresponding upper bound @iN) follows, see also Hu (2000)

2
s\2 o (e

(N> g ; 6CEECTTCIT (5.14)

l1l2ls 11

TheCT, CTE andCFE denote the power spectra shown in Fig. 4.14.

e EET-Bispectrum:B1'2"™ = (Ey,m, El,m,a1;ms)
1 2+ 1) (2 +1)(23+1
Blr?llzrlr;znts — §[|1(|1+1)—|2(|2+1)+|3(|3+1)]'\/( 1 )( 27-[ )( 3 )

o 1y I3 li 2 13\ ~EE/q% ML
<iz 0 i2> (ml M, ms>C'1 (Gl (l2 —h). -~ (519

And the upper bound on signal-to noise is (Hu, 2000),

2 M My M3 2

S <B|1|2|3 )

N) 7 2, &CFECERCTT 519
11213
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e EEE-Bispectrum: Th& EE spectrum vanishes, since there are not enough correlaiors.

Our next aim will be to calculate the correspond®dN ratios in order to determine how well different
DE-models can be distinguished using the information ema®®ed within polarization.



112 CHAPTER 5. SUMMARY AND OUTLOOK




Bibliography

Abazajian, K., Adelman-McCarthy, J. K., Agleros, M. A.l&h, S. S., Anderson, S. F., Annis, J.,
Bahcall, N. A., Baldry, I. K., Bastian, S., Berlind, A., Bamli, M., et al. 2003:The First Data
Release of the Sloan Digital Sky Survay, 126, 2081

Abel, T. 2010:rpSPH: a much improved Smoothed Particle Hydrodynamiceritign, ArXiv e-prints

Agertz, O., Moore, B., Stadel, J., Potter, D., Miniati, Fedd, J., Mayer, L., Gawryszczak, A.,
Kravtsov, A., NordlundA., Pearce, F., et al. 200Fundamental differences between SPH and grid
methodsMNRAS, 380, 963

Agertz, O., Teyssier, R., & Moore, B. 200Disc formation and the origin of clumpy galaxies at high
redshift MNRAS, 397, L64

Babich, D. & Zaldarriaga, M. 200£rimordial bispectrum information from CMB polarizatioRhys.
Rev. D, 70, 083005

Balbi, A., Ade, P., Bock, J., Borrill, J., Boscaleri, A., DeBardis, P., Ferreira, P. G., Hanany, S.,
Hristov, V., Jaffe, A. H., Lee, A. T., et al. 200@Constraints on Cosmological Parameters from
MAXIMA-1, ApJ, 545, L1

Balbi, A., Ade, P., Bock, J., Borrill, J., Boscaleri, A., Deeiardis, P., Ferreira, P. G., Hanany, S.,
Hristov, V., Jaffe, A. H., Lee, A. T., et al. 200Erratum: Constraints on Cosmological Parameters
from MAXIMA-1, ApJ, 558, L145

Balsara, D. S. 1995von Neumann stability analysis of smooth particle hydragyics—suggestions
for optimal algorithmsJ. Comp. Phys., 121, 357

Banerjee, R., Klessen, R. S., & Fendt, C. 20Qan Protostellar Jets Drive Supersonic Turbulence in
Molecular Clouds?ApJ, 668, 1028

Bardeen, J. M., Bond, J. R., Kaiser, N., & Szalay, A. S. 1986e statistics of peaks of Gaussian
random fieldsApJ, 304, 15

Barreiro, T., Bento, M. C., Santos, N. M., & Sen, A. A. 200&MAP constraints on quintessence
Phys. Rev. D, 68, 043515

Bartelmann, M., Doran, M., & Wetterich, C. 2008lon-linear structure formation in cosmologies
with early dark energyA&A, 454, 27

Bartelmann, M. & Schneider, P. 200@¥eak gravitational lensing?hys. Rep., 340, 291



114 BIBLIOGRAPHY

Bennett, C. L., Banday, A. J., Gorski, K. M., Hinshaw, G., kkam, P., Keegstra, P., Kogut, A.,
Smoot, G. F., Wilkinson, D. T., & Wright, E. L. 199&0our-Year COBE DMR Cosmic Microwave
Background Observations: Maps and Basic Resés], 464, L1+

Benoit, A., Ade, P., Amblard, A., Ansari, R., Aubour@,, Bargot, S., Bartlett, J. G., Bernard, J.-P.,
Bhatia, R. S., Blanchard, A., Bock, J. J., et al. 200Bae cosmic microwave background anisotropy
power spectrum measured by Archeoh&A, 399, L19

Benoit, A., Ade, P., Amblard, A., Ansari, R., AubourE,, Bargot, S., Bartlett, J. G., Bernard, J.-P.,
Bhatia, R. S., Blanchard, A., Bock, J. J., et al. 2008msmological constraints from Archegps
A&A, 399, L25

Benz, W. 1990:Smooth Particle Hydrodynamics - a Revjaw Numerical Modelling of Nonlinear
Stellar Pulsations Problems and Prospects, ed. J. R. Bugble—+

Bernardeau, F., Colombi, S., Gaztafiaga, E., & Scoccim&r@002: Large-scale structure of the
Universe and cosmological perturbation thepBhysics Reports, 367, 1

Bland-Hawthorn, J., Sutherland, R., Agertz, O., & Moore2B07: The Source of lonization along
the Magellanic StreagmApJ, 670, L109

Boubekeur, L., Creminelli, P., D’Amico, G., Norefla, J., &Mizzi, F. 2009:Sachs-Wolfe at second
order: the CMB bispectrum on large angular scal8s29

Burkert, A. 2006:The turbulent interstellar mediun€omptes Rendus Physique, 7, 433

Burkert, A., Naab, T., Johansson, P. H., & Jesseit, R. 2BA8URON’s Challenge for the Major
Merger Scenario of Elliptical Galaxy Formatipi\pJ, 685, 897

Caldwell, R. R., Dave, R., & Steinhardt, P. J. 1998smological Imprint of an Energy Component
with General Equation of Stat@hysical Review Letters, 80, 1582

Caldwell, R. R. & Doran, M. 2004Cosmic microwave background and supernova constraints on
quintessence: Concordance regions and target mo@dlgs. Rev. D, 69, 103517

Caldwell, R. R., Doran, M., Miller, C. M., Schafer, G., & Wrich, C. 2003Early Quintessence in
Light of the Wilkinson Microwave Anisotropy Prok¥pJ, 591, L75

Carroll, J. J., Frank, A., Blackman, E. G., Cunningham, A&Xuillen, A. C. 2009:Outflow-Driven
Turbulence in Molecular Cloud#\pJ, 695, 1376

Carroll, S. M. 2001:The Cosmological Constaritiving Reviews in Relativity, 4, 1
Chandrasekhar, S. 1961, Hydrodynamic and HydromagnedhlBg (Dover Publications)

Chevallier, M. & Polarski, D. 2001Accelerating Universes with Scaling Dark Matténternational
Journal of Modern Physics D, 10, 213

Coble, K., Dodelson, S., & Frieman, J. A. 1999ynamical/A models of structure formatioriPhys.
Rev. D, 55, 1851



BIBLIOGRAPHY 115

Colagrossi, A. 2004, Dottorato di Ricerca in Meccanica eoed Applicata XVI CICLO, A meshless
Lagrangian method for free-surface and interface flows fxétgmentation, Phd Thesis (Universita
di Roma, La Sapienza)

Colella, P. & Woodward, P. R. 1984the Piecewise Parabolic Method (PPM) for Gas-Dynamical
Simulations Journal of Computational Physics, 54, 174

Colless, M. 1999First results from the 2dF Galaxy Redshift Surviepyal Society of London Philo-
sophical Transactions Series A, 357, 105

Cooray, A. & Hu, W. 2001Weak Gravitational Lensing BispectrypJ, 548, 7

Cooray, A., Huterer, D., & Baumann, D. 200&rowth rate of large-scale structure as a powerful
probe of dark energyPhys. Rev. D, 69, 027301

Cooray, A. & Sheth, R. 200Zalo models of large scale structyrehys. Rep., 372, 1

Couchman, H. M. P., Thomas, P. A., & Pearce, F. R. 1939fra: an Adaptive-Mesh Implementation
of P 3M-SPH ApJ, 452, 797

Das, S. & Chattopadhyay, |I. 2008omputation of mass loss from viscous accretion disc ingmes
of cooling New Astronomy, 13, 549

Davis, M. & Peebles, P. J. E. 197@n the integration of the BBGKY equations for the developmen
of strongly nonlinear clustering in an expanding univerdeJs, 34, 425

de Bernardis, P., Ade, P. A. R., Bock, J. J., Bond, J. R., Bairj Boscaleri, A., Coble, K., Crill, B. P.,
De Gasperis, G., Farese, P. C., Ferreira, P. G., et al. 2008t Universe from high-resolution maps
of the cosmic microwave background radiatidvat, 404, 955

Dekel, A., Birnboim, Y., Engel, G., Freundlich, J., Goertit, Mumcuoglu, M., Neistein, E., Pichon,
C., Teyssier, R., & Zinger, E. 200€old streams in early massive hot haloes as the main mode of
galaxy formation Nat, 457, 451

Diemand, J., Kuhlen, M., Madau, P., Zemp, M., Moore, B., &o., & Stadel, J. 2008lumps and
streams in the local dark matter distributioNat, 454, 735

Dodelson, S. 2003, Modern cosmology, ed. S. Dodelson

Dodelson, S., Narayanan, V. K., Tegmark, M., Scranton, Rda®ari, T., Connolly, A., Csabai, I.,
Eisenstein, D., Frieman, J. A., Gunn, J. E., Hui, L., et aD20The Three-dimensional Power
Spectrum from Angular Clustering of Galaxies in Early Sl@gital Sky Survey DataApJ, 572,
140

Doran, M., Lilley, M., Schwindt, J., & Wetterich, C. 2001&uintessence and the Separation of
Cosmic Microwave Background PealkgJ, 559, 501

Doran, M., Schwindt, J.-M., & Wetterich, C. 20018tructure formation and the time dependence of
quintessencePhys. Rev. D, 64, 123520



116 BIBLIOGRAPHY

Efstathiou, G., Frenk, C. S., White, S. D. M., & Davis, M. 19&avitational clustering from scale-
free initial conditions MNRAS, 235, 715

Einfeld, B. 1988:0n Godunov-type methods for gas dynam8i&\M Journal on Numerical Analysis,
25,294

Einstein, A. 1917: Kosmologische Betrachtungen zur allgemeinen Relatstheorie Sitzungs-
berichte der Koniglich PreuBischen Akademie der Wisdeaifsen (Berlin), Seite 142-152., 142

Eisenstein, D. J., Hu, W., & Tegmark, M. 199@osmic Complementarity: Joint Parameter Estima-
tion from Cosmic Microwave Background Experiments and RédSurveysApJ, 518, 2

Espafiol, P. & Revenga, M. 2008Smoothed dissipative particle dynamiBys. Rev. E, 67, 026705

Evrard, A. E., Summers, F. J., & Davis, M. 199%wo-fluid simulations of galaxy formatip@pJ,
422,11

Fehlberg, E. 1974 Classical seventh-, sixth,- and fith-order Runge-Kuttgthdem formulas with
stepsize control for general second-order differentialaipns NASA TR R-432

Ferreira, P. G. & Joyce, M. 199&€osmology with a primordial scaling fiel@hys. Rev. D, 58, 023503

Flebbe, O., Muenzel, S., Herold, H., Riffert, H., & Ruder,1994: Smoothed Particle Hydrodynam-
ics: Physical viscosity and the simulation of accretiorkdig\pJ, 431, 754

Fry, J. N. 1984.The Galaxy correlation hierarchy in perturbation thepApJ, 279, 499

Fryxell, B., Olson, K., Ricker, P., Timmes, F. X., Zingale,,Nlamb, D. Q., MacNeice, P., Rosner,
R., Truran, J. W., & Tufo, H. 2000FLASH: An Adaptive Mesh Hydrodynamics Code for Modeling
Astrophysical Thermonuclear FlashésJsS, 131, 273

Funada, T. & Joseph, D. D. 200¥iscous potential flow analysis of Kelvin Helmholtz indigbin a
channe] Journal of Fluid Mechanics, 445, 263

Gangui, A. & Martin, J. 2000Best unbiased estimators for the three-point correlatdrée cosmic
microwave background radiatioi*hys. Rev. D, 62, 103004

Gingold, R. A. & Monaghan, J. J. 1978moothed particle hydrodynamics - Theory and application
to non-spherical starsVINRAS, 181, 375

Giovi, F., Baccigalupi, C., & Perrotta, F. 200 onstraining the dark energy dynamics with the
cosmic microwave background bispectrupys. Rev. D, 68, 123002

Giovi, F., Baccigalupi, C., & Perrotta, F. 200&0smic microwave background constraints on dark
energy dynamics: Analysis beyond the power spectRings. Rev. D, 71, 103009

Godunov, S. K. 1954Ph.D. Dissertation: Different Methods for Shock Waves, ddosState Univer-
sity

Godunov, S. K. 1959A difference scheme for numerical computation of discootiis solution of
hyperbolic equationSbornik: Mathematics, 47, 271



BIBLIOGRAPHY 117

Goldberg, D. M. & Spergel, D. N. 199licrowave background bispectrum. Il. A probe of the low
redshift universePhys. Rev. D, 59, 103002

Goldberg, J. N., Macfarlane, A. J., Newman, E. T., Rohrlieh & Sudarshan, E. C. G. 1963pin-s
Spherical Harmonics and ???3ournal of Mathematical Physics, 8, 2155

Goroff, M. H., Grinstein, B., Rey, S.-J., & Wise, M. B. 198&oupling of modes of cosmological
mass density fluctuation8pJ, 311, 6

Grcevich, J., Heitsch, F., & Putman, M. 2018imulations of Dwarf Galaxy Gas Loss in a Milky
Way-like Halo Mediumin Bulletin of the American Astronomical Society, Vol. Bulletin of the
American Astronomical Society, 480—+

Gritschneder, M., Naab, T., Burkert, A., Walch, S., Heitseh & Wetzstein, M. 2009aiVINE -
lonization in the parallel TREE/SPH code VINE: first resudts the observed age-spread around
O-stars MNRAS, 393, 21

Gritschneder, M., Naab, T., Walch, S., Burkert, A., & Helits€&. 2009b: Driving Turbulence and
Triggering Star Formation by lonizing RadiatipApJ, 694, L26

Grossi, M. & Springel, V. 2009The impact of early dark energy on non-linear structure fatian,
MNRAS, 394, 1559

Hamilton, A. J. S. 2001Formulae for growth factors in expanding universes contgjmrmatter and
a cosmological constanMNRAS, 322, 419

Hamilton, A. J. S., Kumar, P., Lu, E., & Matthews, A. 19Reconstructing the primordial spectrum
of fluctuations of the universe from the observed nonlingéastering of galaxiesApJ, 374, L1

Hanany, S., Ade, P., Balbi, A., Bock, J., Borrill, J., Bosrgl A., de Bernardis, P., Ferreira, P. G.,
Hristov, V. V., Jaffe, A. H., Lange, A. E., et al. 200MAXIMA-1: A Measurement of the Cosmic
Microwave Background Anisotropy on Angular Scaled®f- 5deg, ApJ, 545, L5

Hanson, D., Smith, K. M., Challinor, A., & Liguori, M. 2009CMB lensing and primordial non-
Gaussianity Phys. Rev. D, 80, 083004

Harten, A., Lax, P., & Van Leer, B. 198®n Upstream Differencing and Godunov-Type Schemes for
Hyperbolic Conservation LawSIAM Review, 25, 35

Heath, D. J. 1977The growth of density perturbations in zero pressure FriadmLemaitre uni-
versesMNRAS, 179, 351

Heinzeller, D., Duschl, W. J., & Mineshige, S. 200Burbulent viscosity by convection in accretion
discs - a self-consistent approgdiNRAS, 397, 890

Heitsch, F. & Putman, M. E. 2009:he Fate of High-Velocity Clouds: Warm or Cold Cosmic Rain?
ApJ, 698, 1485

Heitsch, F., Slyz, A. D., Devriendt, J. E. G., Hartmann, L., \&.Burkert, A. 2006: The Birth of
Molecular Clouds: Formation of Atomic Precursors in Coifig Flows ApJ, 648, 1052



118 BIBLIOGRAPHY

Hernquist, L. & Katz, N. 1989 TREESPH - A unification of SPH with the hierarchical tree rodth
ApJS, 70, 419

Hockney, R. W. & Eastwood, J. W. 1988, Computer simulatiangiparticles, ed. Hockney, R. W. &
Eastwood, J. W.

Hu, W. 2000:Weak Lensing of the CMB: A Harmonic Approaéthys. Rev. D, 62, 043007
Hu, W. & Dodelson, S. 2002Cosmic Microwave Background AnisotropidRA&A, 40, 171

Hu, W., Sugiyama, N., & Silk, J. 1997 .he physics of microwave background anisotropidst, 386,
37

Hu, W. & White, M. 1997:CMB anisotropies: Total angular momentum methBtys. Rev. D, 56,
596

Jain, B. & Bertschinger, E. 1994Second-order power spectrum and nonlinear evolution ah hig
redshift ApJ, 431, 495

Jain, B., Mo, H. J., & White, S. D. M. 1995 he evolution of correlation functions and power spectra
in gravitational clustering MNRAS, 276, L25

Jeong, D. & Komatsu, E. 200@erturbation Theory Reloaded: Analytical Calculation afriinear-
ity in Baryonic Oscillations in the Real-Space Matter PowggectrumApJ, 651, 619

Jesseit, R., Naab, T., Peletier, R. F., & Burkert, A. 20@D kinematics of simulated disc merger
remnants MNRAS, 376, 997

Kaiser, C. R., Pavlovski, G., Pope, E. C. D., & Fangohr, H.220(he stability of buoyant bubbles in
the atmospheres of galaxy clusteMNRAS, 359, 493

Katz, N., Hernquist, L., & Weinberg, D. H. 199%alaxies and gas in a cold dark matter universe
ApJ, 399, L109

Knox, L. 1995: Determination of inflationary observables by cosmic miaes background
anisotropy experiment®hys. Rev. D, 52, 4307

Kogut, A., Lineweaver, C., Smoot, G. F., Bennett, C. L., Band., Boggess, N. W,, Cheng, E. S., de
Amici, G., Fixsen, D. J., Hinshaw, G., Jackson, P. D., et 883t Dipole Anisotropy in the COBE
Differential Microwave Radiometers First-Year Sky MafspJ, 419, 1

Komatsu, E. 2002The Pursuit of Non-Gaussian Fluctuations in the Cosmic Mi@ave Background
ArXiv Astrophysics e-prints

Komatsu, E., Dunkley, J., Nolta, M. R., Bennett, C. L., Gdkd, Hinshaw, G., Jarosik, N., Larson,
D., Limon, M., Page, L., Spergel, D. N., et al. 2009ve-Year Wilkinson Microwave Anisotropy
Probe Observations: Cosmological InterpretatigkpJS, 180, 330

Komatsu, E. & Spergel, D. N. 200&coustic signatures in the primary microwave backgroursd bi
pectrum Phys. Rev. D, 63, 063002



BIBLIOGRAPHY 119

Kotarba, H., Lesch, H., Dolag, K., Naab, T., Johansson, P&Stasyszyn, F. A. 2009Magnetic
field structure due to the global velocity field in spiral galss MNRAS, 397, 733

Krauss, L. M. & Turner, M. S. 1995The cosmological constant is badeneral Relativity and
Gravitation, 27, 1137

Landau, L. D. & Lifschitz, E. M. 1991, Hydrodynamik (Deuts(Harri))

Lanzafame, G., Belvedere, G., & Molteni, D. 2006w compressibility accretion disc formation in
close binaries: the role of physical viscosi%&A, 453, 1027

Lattanzio, J., Monaghan, J., Pongracic, H., & Schwartz, BB6L Controlling Penetration SIAM
Journal on Scientific and Statistical Computing, 7, 591

Lattanzio, J. C., Monaghan, J. J., Pongracic, H., & Schwdr®. 1985:Interstellar Cloud Collisions
MNRAS, 215, 125

Liddle, A. R. & Scherrer, R. J. 199€lassification of scalar field potentials with cosmologisealing
solutions Phys. Rev. D, 59, 023509

Linder, E. 2003a: Probing dark energy with SNAPin Identification of Dark Matter, ed.
N. J. C. Spooner & V. Kudryavtsev, 52-57

Linder, E. V. 2003b:Exploring the Expansion History of the Univergghysical Review Letters, 90,
091301

Linder, E. V. 2008:The dynamics of quintessence, the quintessence of dyndbeinsral Relativity
and Gravitation, 40, 329

Linder, E. V. & Jenkins, A. 2003Cosmic structure growth and dark enerdNRAS, 346, 573
Lucy, L. B. 1977:A numerical approach to the testing of the fission hypothésls82, 1013
Luo, X. 1994:The angular bispectrum of the cosmic microwave backgrogpd, 427, L71

Ma, C. 1998:Analytical Approximation to the Nonlinear Power Spectruiscavitational Clustering
ApJ, 508, L5

Ma, C., Caldwell, R. R., Bode, P., & Wang, L. 199%he Mass Power Spectrum in Quintessence
Cosmological ModelsApJ, 521, L1

Ma, C. & Fry, J. N. 2000:Deriving the Nonlinear Cosmological Power Spectrum andp8csrum
from Analytic Dark Matter Halo Profiles and Mass FunctioigJ, 543, 503

MacNeice, P., Olson, K. M., Mobarry, C., de Fainchtein, R.P&cker, C. 2000PARAMESH: A
parallel adaptive mesh refinement community toplkibmputer Physics Communications, 126,
330

Makino, N., Sasaki, M., & Suto, Y. 199Analytic approach to the perturbative expansion of nonlin-
ear gravitational fluctuations in cosmological density amaocity fields Phys. Rev. D, 46, 585



120 BIBLIOGRAPHY

Mangilli, A. & Verde, L. 2009: Non-Gaussianity and the CMB bispectrum: Confusion betveien
mordial and lensing-Rees-Sciama contributiopRPys. Rev. D, 80, 123007

Marri, S. & White, S. D. M. 2003:Smoothed patrticle hydrodynamics for galaxy-formationusim
lations: improved treatments of multiphase gas, of stamfation and of supernovae feedback
MNRAS, 345, 561

Masiero, A., Pietroni, M., & Rosati, F. 200BUSY QCD and quintessené&hys. Rev. D, 61, 023504

McClelland, J. & Silk, J. 1977The correlation function for density perturbations in arparding
universe. | - Linear theoryApJ, 216, 665

Mignone, A., Bodo, G., Massaglia, S., Matsakos, T., Teriled., Zanni, C., & Ferrari, A. 2007:
PLUTO: A Numerical Code for Computational AstrophysispJS, 170, 228

Miller, A. D., Caldwell, R., Devlin, M. J., Dorwart, W. B., Hbig, T., Nolta, M. R., Page, L. A,
Puchalla, J., Torbet, E., & Tran, H. T. 2008:Measurement of the Angular Power Spectrum of the
CMB from | = 100 to 400in Bulletin of the American Astronomical Society, Vol. Rulletin of
the American Astronomical Society, 1458—+

Monaghan, J. J. 1998moothed particle hydrodynamje&sRA&A, 30, 543
Monaghan, J. J. 199BPH and Riemann Solvers Comp. Phys., 136, 298
Monaghan, J. J. 2005moothed particle hydrodynamjdReports of Progress in Physics, 68, 1703

Monaghan, J. J. & Gingold, R. A. 1983hock Simulation by the Particle Method SRH Comp.
Phys., 52, 374

Monaghan, J. J. & Lattanzio, J. C. 1985refined particle method for astrophysical problerA&A,
149, 135

Morris, J. 1997:A Switch to Reduce SPH Viscosily Comp. Phys., 136, 41

Mukhanov, V. 2005, Physical foundations of cosmology (Rtalsfoundations of cosmology, by
V. Mukhanov. Cambridge, UK: Cambridge University Pres€)20

Murray, S. D., White, S. D. M., Blondin, J. M., & Lin, D. N. C. 3: Dynamical instabilities in
two-phase media and the minimum masses of stellar sysfgis407, 588

Naab, T., Jesseit, R., & Burkert, A. 2006he influence of gas on the structure of merger remnants
MNRAS, 372, 839

Navarro, J. F., Frenk, C. S., & White, S. D. M. 199bhe assembly of galaxies in a hierarchically
clustering universeMNRAS, 275, 56

Navarro, J. F. & Steinmetz, M. 200@ark Halo and Disk Galaxy Scaling Laws in Hierarchical
Universesapj, 538, 477

Nelson, A. F., Wetzstein, M., & Naab, T. 2009tne A Numerical Code for Simulating Astrophysical
Systems Using Particles. Il. Implementation and Perforcea@haracteristicsApJS, 184, 326



BIBLIOGRAPHY 121

Netterfield, C. B., Ade, P. A. R., Bock, J. J., Bond, J. R., BloiI., Boscaleri, A., Coble, K., Contaldi,
C. R., Crill, B. P., de Bernardis, P., Farese, P., et al. 200R1easurement by BOOMERANG of
Multiple Peaks in the Angular Power Spectrum of the Cosmicrdiave BackgroundApJ, 571,
604

Newman, E. T. & Penrose, R. 1968pte on the Bondi-Metzner-Sachs Grpudpurnal of Mathemati-
cal Physics, 7, 863

Neyman, J. & Scott, E. L. 1952 Theory of the Spatial Distribution of GalaxiegpJ, 116, 144

Nishikawa, H. & Kitamura, K. 2008Very simple, carbuncle-free, boundary-layer-resolvirggated-
hybrid Riemann solversl. Comp. Phys., 227, 2560

Ostriker, J. P. & Steinhardt, P. J. 199bhe Observational Case for a Low Density Universe with a
Non-Zero Cosmological Constariat, 377, 600

Ostriker, J. P. & Vishniac, E. T. 198&eneration of microwave background fluctuations from monli
ear perturbations at the ERA of galaxy formatj@pJ, 306, L51

Padmanabhan, T. 1993, Structure Formation in the Univ&tsadture Formation in the Universe, by
T. Padmanabhan, pp. 499. ISBN 0521424860. Cambridge, Uib@idge University Press, June
1993.)

Padmanabhan, T. 20080smological constant-the weight of the vacuithys. Rep., 380, 235
Park, M. 2009:Mass Accretion Rate of Rotating Viscous Accretion Flapd, 706, 637

Peacock, J. A. & Dodds, S. J. 19%econstructing the Linear Power Spectrum of Cosmologicdsv
Fluctuations MNRAS, 267, 1020

Peacock, J. A. & Dodds, S. J. 1998pn-linear evolution of cosmological power specthdNRAS,
280, L19

Peacock, J. A. & Smith, R. E. 2006talo occupation numbers and galaxy hiddNRAS, 318, 1144

Peebles, P. J. E. 1974&he Gravitational-Instability Picture and the Nature oftiDistribution of
Galaxies ApJ, 189, L51+

Peebles, P. J. E. 1974bhe Nature of the Distribution of GalaxieA&A, 32, 197

Peebles, P. J. E. 1980, The large-scale structure of thermseifResearch supported by the National
Science Foundation. Princeton, N.J., Princeton UniweRiess, 1980. 435 p.)

Peebles, P. J. E. 198%ests of cosmological models constrained by inflatigm], 284, 439

Peebles, P. J. E. & Ratra, B. 1988osmology with a time-variable cosmological 'constarpJ,
325, L17

Penzias, A. A. & Wilson, R. W. 1965A Measurement of Excess Antenna Temperature at 4080,Mc/s.
ApJ, 142, 419



122 BIBLIOGRAPHY

Perlmutter, S., Aldering, G., Goldhaber, G., Knop, R. A.,g¥nt, P., Castro, P. G., Deustua, S.,
Fabbro, S., Goobar, A., Groom, D. E., Hook, I. M., et al. 1998easurements of Omega and
Lambda from 42 High-Redshift Supernoyva@J, 517, 565

Pitrou, C., Uzan, J., & Bernardeau, F. 20Te cosmic microwave background bispectrum from the
non-linear evolution of the cosmological perturbatipis 3

Price, D. J. 2008:Modelling discontinuities and Kelvin Helmholtz instatds in SPH J. Comp.
Phys., 227, 10040

Quilis, V. & Moore, B. 2001:Where Are the High-Velocity Clouds®pJ, 555, L95

Ratra, B. & Peebles, P. J. E. 1988osmological consequences of a rolling homogeneous sfialdr
Phys. Rev. D, 37, 3406

Read, J. |., Hayfield, T., & Agertz, O. 201®Resolving mixing in smoothed particle hydrodynamics
MNRAS, 767

Rees, M. J. & Sciama, D. W. 1968arger scale Density Inhomogeneities in the Univeisat, 217,
511

Riess, A. G., Filippenko, A. V., Challis, P., Clocchiatti,,Miercks, A., Garnavich, P. M., Gilliland,
R. L., Hogan, C. J., Jha, S., Kirshner, R. P., LeibundguteBal. 1998:0bservational Evidence
from Supernovae for an Accelerating Universe and a Cosnmdb@onstant AJ, 116, 1009

Ritchie, B. W. & Thomas, P. A. 200IMultiphase smoothed-particle hydrodynamitiNRAS, 323,
743

Robertson, B. E., Kravtsov, A. V., Gnedin, N. Y., Abel, T., &éd, D. H. 2009: Computational
Eulerian hydrodynamics and Galilean invarian®ddNRAS, 1774

Roe, P. L. 1981Approximate Riemann Solvers, Parameter Vectors, andrBifée Schemesd. Comp.
Phys., 43, 357

Sachs, R. K. & Wolfe, A. M. 1967Perturbations of a Cosmological Model and Angular Variago
of the Microwave Background\pJ, 147, 73

Scherrer, R. J. & Bertschinger, E. 199tatistics of primordial density perturbations from diste
seed masse#pJ, 381, 349

Schneider, P. 2006, Einfuhrung in die extragalaktische#o®mie und Kosmologie (Einfuhrung in
die extragalaktische Astronomie und Kosmologie / Peten8idler. Berlin: Springer, ISBN 3-540-
25832-9, ISBN 978-3-540-25832-2, 2006, XV+452 pp.)

Schuessler, I. & Schmitt, D. 198Comments on smoothed particle hydrodynama&A, 97, 373

Scoccimarro, R. & Frieman, J. A. 1996@oop Corrections in Nonlinear Cosmological Perturbation
Theory. 1. Two-Point Statistics and Self-SimilayifypJ, 473, 620

Scoccimarro, R., Sheth, R. K., Hui, L., & Jain, B. 200How Many Galaxies Fit in a Halo? Con-
straints on Galaxy Formation Efficiency from Spatial Clustg, ApJ, 546, 20



BIBLIOGRAPHY 123

Seljak, U. 2000Analytic model for galaxy and dark matter clusteriMdNRAS, 318, 203

Seljak, U. & Zaldarriaga, M. 1996A Line-of-Sight Integration Approach to Cosmic Microwa\azk
ground AnisotropiesApJ, 469, 437

Serna, A., Dominguez-Tenreiro, R., & Saiz, A. 20@3nservation Laws in Smooth Particle Hydro-
dynamics: The DEVA Codé&pJ, 597, 878

Serra, P. & Cooray, A. 2008impact of secondary non-Gaussianities on the search fongudlial
non-Gaussianity with CMB mapBhys. Rev. D, 77, 107305

Sheth, R. K. & Jain, B. 1997The non-linear correlation function and density profilesvofalized
haloes MNRAS, 285, 231

Sijacki, D. & Springel, V. 2006:Physical viscosity in smoothed particle hydrodynamicsutations
of galaxy clustersMNRAS, 371, 1025

Smith, R. E., Peacock, J. A., Jenkins, A., White, S. D. M.nkre€. S., Pearce, F. R., Thomas, P. A.,
Efstathiou, G., & Couchman, H. M. P. 200&table clustering, the halo model and non-linear
cosmological power spectrMNRAS, 341, 1311

Sod, G. A. 1978:A survey of several finite difference methods for systemsrdinear hyperbolic
conservation lawsJournal of Computational Physics, 27, 1

Spergel, D. N., Bean, R., Dorg, O., Nolta, M. R., BennettLCDunkley, J., Hinshaw, G., Jarosik,
N., Komatsu, E., Page, L., Peiris, H. V., et al. 200hree-Year Wilkinson Microwave Anisotropy
Probe (WMAP) Observations: Implications for CosmologpJS, 170, 377

Spergel, D. N. & Goldberg, D. M. 1999Microwave background bispectrum. I. Basic formaljsm
Phys. Rev. D, 59, 103001

Spergel, D. N., Verde, L., Peiris, H. V., Komatsu, E., Nok&, R., Bennett, C. L., Halpern, M.,
Hinshaw, G., Jarosik, N., Kogut, A., Limon, M., et al. 200Birst-Year Wilkinson Microwave
Anisotropy Probe (WMAP) Observations: Determination os@ological ParametersApJS, 148,
175

Springel, V. 2010E pur si muove: Galilean-invariant cosmological hydrodgrieal simulations on
a moving meshMNRAS, 401, 791

Springel, V. & Hernquist, L. 2002Cosmological smoothed particle hydrodynamics simulatidhe
entropy equationMNRAS, 333, 649

Steinhardt, P. J., Wang, L., & Zlatev, I. 199@0smological tracking solutiong?hys. Rev. D, 59,
123504

Steinmetz, M. & Navarro, J. F. 1999frhe Cosmological Origin of the Tully-Fisher RelatjopJ,
513, 555

Steinmetz, M. & Navarro, J. F. 200Z:he hierarchical origin of galaxy morphologieklew Astron-
omy, 7, 155



124 BIBLIOGRAPHY

Suto, Y. & Sasaki, M. 1991Quasinonlinear theory of cosmological self-gravitatingt&msPhysical
Review Letters, 66, 264

Takeda, H., Miyama, S. M., & Sekiya, M. 199Kumerical Simulation of Viscous Flow by Smoothed
Particle HydrodynamicsProgress of Theoretical Physics, 92, 939

Teyssier, R. 2002Cosmological hydrodynamics with adaptive mesh refinendamew high resolution
code called RAMSE®&A, 385, 337

Thacker, R. J. & Couchman, H. M. P. 200thplementing Feedback in Simulations of Galaxy Forma-
tion: A Survey of Method#\pJ, 545, 728

Thacker, R. J., Tittley, E. R., Pearce, F. R., Couchman, HPM& Thomas, P. A. 2000Smoothed
Particle Hydrodynamics in cosmology: a comparative stuflyngplementationsMNRAS, 319,
619

Thomas, P. A. & Couchman, H. M. P. 1993imulating the formation of a cluster of galaxidgdN-
RAS, 257, 11

Valcke, S., De Rijcke, S., Roediger, E., & Dejonghe, H. 20K&lvin-Helmholtz instabilities in
Smoothed Particle Hydrodynamjo&rXiv e-prints

Verde, L. & Spergel, D. N. 2002Dark energy and cosmic microwave background bispectirinys.
Rev. D, 65, 043007

Vietri, M., Ferrara, A., & Miniati, F. 1997:The Survival of Interstellar Clouds against Kelvin-
Helmholtz InstabilitiesApJ, 483, 262

Vishniac, E. T. 1983Why weakly non-linear effects are small in a zero-pressagenology MNRAS,
203, 345

Wadsley, J. W., Veeravalli, G., & Couchman, H. M. P. 20@h the treatment of entropy mixing in
numerical cosmologyMNRAS, 387, 427

Walch, S., Naab, T., Whitworth, A., Burkert, A., & Gritschaer, M. 2010:Protostellar discs formed
from turbulent coresMNRAS, 402, 2253

Wang, L. & Steinhardt, P. J. 199&luster Abundance Constraints for Cosmological Model$ it
Time-varying, Spatially Inhomogeneous Energy ComponghtNegative PressureApJ, 508, 483

Wang, Y. & Tegmark, M. 2004New Dark Energy Constraints from Supernovae, MicrowavekBac
ground, and Galaxy ClusterindPhysical Review Letters, 92, 241302

Weinberg, S. 1989The cosmological constant probleReviews of Modern Physics, 61, 1
Wetterich, C. 1988Cosmology and the fate of dilatation symmetNuclear Physics B, 302, 668
Wetterich, C. 2004Phenomenological parameterization of quintesseRtg/sics Letters B, 594, 17

Wetzstein, M., Nelson, A. F., Naab, T., & Burkert, A. 2008ne A Numerical Code for Simulating
Astrophysical Systems Using Particles. I. Descriptionhef Physics and the Numerical Methods
ApJS, 184, 298



BIBLIOGRAPHY 125

Xia, J. & Viel, M. 2009: Early dark energy at high redshifts: status and perspestideurnal of
Cosmology and Astro-Particle Physics, 4, 2

Zaldarriaga, M. 1997Polarization of the microwave background in reionized mgdehys. Rev. D,
55, 1822

Zaldarriaga, M. 2000t.ensing of the CMB: Non-Gaussian aspe@hys. Rev. D, 62, 063510

Zeldovich, Y. B. & Sunyaev, R. A. 1969The Interaction of Matter and Radiation in a Hot-Model
Universe Ap&SS, 4, 301



126 BIBLIOGRAPHY




Appendix A

Modelling Shear Flows with SPH and
Grid Based Methods

A.1 Analysis methods - cloud in cell

In order to make a detailed comparison of SPH data with data @RID simulations, it is fundamen-
tal to have a similiar scheme applied to the SPH output. Toezea grid has to be superimposed over
the SPH-particles (left side of Fig. 3.3), and the correslyan physical quantities have to be derived
by weighing the SPH-patrticles to the grid-points (rightesaf Fig. 3.3). For example, the weight,
velocity and mass for the grid-pointsi(yi), (%, Yi+1), Xi+1, ¥i) and 1, yi+1) deduced from the
neighboring SPH-particles, (those SPH-particles whiehfithin the bordering cells) is as follows,

Wy (ispH) = — (%) s Wy, (ispr) = —W (ispr) +1 (A1)
Wy (ispH) = — <y.s%;y.> ; Wy, (isph) = —Wy, (isph) + 1, (A.2)

Ax andAy are the corresponding sizes of the cell. Xweelocity components of the grid-points are
determined by,

Yot ) W (ispH) Wy (ispH) Vx(ispr)M(isph)

W= i - : A3
e e ) Wy (isprH) W, (ispr) (A.3)
ii L T wy (ispr)Wy, (ispr)Vx (ispH)M(ispr)
(I,i+1):vw = — _ . ’ A
Zisszlwxi (ISPH)WYi+1(ISPH)
i i) - _ ir]SSPpl:‘:lWXiJrl(iSPH)Wyi(iSPH)VX(iSpH)m(iSF,H)
(I +1 I) W = NspH ; : ’ (A.5)
ZiSPH:]-WXH—l(ISPH)Wyi (isph)
nSPHi Wy | Whx | V. | m |
(+Li41) v — et >qn;1P£ sPH)Wy;.., (ispH) W (ispH) (SPH)’ o

ot Wy (IsPH)Wy, , (IsPH)



128 APPENDIX A. MODELLING SHEAR FLOWS WITH SPH AND GRID BASEMETHODS

2

y . Y
vy = vy osin2wkz - exp |:— <—) :|

o9

T T
initial t=0

Figure A.1: Measure of the KHI-amplitudes: Thgvelocity of the particles within the shaded re-
gion are subject to the Fourier-Transformation. The maxrinuf the Back-Transformation gives the
maximal amplitude.

where they-velocity components are obtained replacigspn) with vy (ispn) andm(ispn) denotes
the mass of the SPH-particle. The same scheme gives thempntdpasses,

o1 W (ispH)Wy, (ispH)M(ispr)

(0)m = ISPHZ?ssﬁHHzlwm(iSPH)Wyi(iSPH) (A1)

(hisD):m — ZsmeaWlsmy,Gsprmlison) (A8)
Vi1 Wy (ispH)Wy, (isph)

(1Li):m — ?SS;HH:nls"D’:ml(iSPH_)Wyi(iSPﬂ)m(iSPH) (A9)
a1 W1 (isPH)Wy; (ispH)

(4Litd):m — 3 ol 1 Wy, (ispH)Wy. (ispH)M(ispr) (A.10)

ZinSSPPHLl Wy, (IspH)Wy,, (isph)

This procedure is called 'cloud in cell method’ (Hockney &sB@ood, 1988) and allows to transform
the SPH patrticle distribution into an ordered grid disttida with its corresponding physical quanti-
ties. We use this approach to compare our SPH- and GRID sesdftcourse, other methods for the
weighing (e.g. cubic weighing) exist, but for our purpodes linear scheme as discussed above is
sufficient.

A.2 Measuring the KHI-amplitudes

To measure the amplitude growth of the KHI, we apply a Foufr@ansformation (FT) to they-
velocity component of the grid points. The FT allows to setee desired modes reducing the numer-
ical noise.

The region of our focuss = [—0.5,0.5] andy = [-0.5,0.5] containts one mode of thg-perturbation
(eq. (3.36)) triggering the instability, see Fig. A.1. Theded regions comprise the particles sub-
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0.0 0.2 0.4 0.6 0.8 1.0

Figure A.2: Variation of KHI-amplitude in the case of equangity layers using VINE (upper left
panel) and FLASH (upper right panel) for different valuesopf For the different density case with
DC = 10 we show RAMSES (bottom panel).

ject to the FT. The maximum of the FT gives the dominant ma@ad its corresponding velocity
amplitude, which we compare wit the analytical model.

A.3 Dependence of KHI-amplitudes onogg

DEPENDENCE OFKHI ON 0p:

This parameter determines the strength of the intjgderturbation (eq. (3.36)). In Fig. 3.4 we show
the time evolution of the vy-amplitude, which describes ghewth of the KHI. Fort < 0.2 the am-
plitudes decrease since the SPH patrticles lose kinetiggfgrmoving along the y-direction into the
area of the opposite stream. If the magnitude of the initatysbation is low (i.e. smalti), then
the decrease in the amplitude is stronger than for @,g= 1, where the initial perturbation is large
and the decrease less prominent. But independently of the @d oy the subsequent growth of the
instability is similar, and we obtain comparable resultgleeting the decreasing initial part. Fig. A.2
shows the dependency of the KHI-amplitudes using diffevahies ofoy, for VINE (upper left panel)
and FLASH (upper right panel). For both examples we use edpradity layers, where for FLASH
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a viscosity ofv = 0.3 has been taken. The bottom panel of Fig. A.2 shows the €iffatensity case
using RAMSES withDC = 10. Clearly visible is the initial drop caused by a low valdegg. This is
the case for all codes, and arises due to the transformatienesgy to build up the KHI. The fitted
slopes do not vary much wittly. To extract the slopes, we concentrate on the time evolatfien this
initial drop.



Appendix B

The trace of dark energy captured within
the CMB

B.1 Numerical Calculation of the Growth Suppression Factor
To solve eq. (4.61), we have to deal with an differential ¢igmeof the form,

y=fxyy). (B.1)

The numerical approach to solve this kind of differential&iipn is called th&unge-Kutta-Nystroem-
method(RKN-method). It is described in detail in Fehlberg (19M)e will give a short motiviation.
The initial conditions for the valuesy,y are given byxg, Yo, Yo, and it follows,

fo = f(x0,Y0,%),

. 1 .
fi = f<xO+orlh,yo+yoorlh+zfoafhz,yoJrfoorlh>,

. 1 .
fo = f<Xo+0fzh>yo+yoazh+Efoazzh2+m(f1—fo)h2>yo+foazh+[321(f1—fo)h>

. 1 .
f3 = f <Xo + azh,yo + Yoash+ > foah® + yso(f2 — fo)h?, Yo + foarsh+ Bao(f2 — fo)h>

k=1 K—1
fu = f <X0+01Kh,yo+S/oC¥Kh+h2' > Y- faYo+h- S Ba- f)\) ;
o i=o

whereh denotes the integration stepsize, and thg [B’s and y’s are the Runge-Kutta-Nystroem
coefficients which need to be calculated. depends on the desired order of the integration, e.g.
k =123, ...,13 for the seventh order. We use the 5th-order RKN-formutaesvaluations lead to,

yX+h) = Yyo+Yoh+(cofo+cifi+cofo+cafs+

Caf4+Csf5+ Csf+ 7 f7)h?, (B.2)
yXo+h) = Yo+ (Cofo+Cifi+Cafa+Cafz+

Cafa+ Csfs+ Cofe+ &7 fr)h. (B.3)
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Figure B.1: On the left side the numerical solution of thdeddntial equatiory =y = 0 is shown,
with the analytical solution beingx) ~ expx. On the right side the numerical solution fp#y = 0
is presented. The analytical solutioryis- sinx.

The corresponding weight factors, and cx need to be computed following the derivation in
Fehlberg (1974), where a complete table of all coefficientgven.

Fig. B.1 presents the solutions of two simple test cases. firketest case, the differential
equationy=y = 0 has the analytical solutiop(x) ~ exp(x). As can be seen from Fig. B.1, the
numerical solution reproduces this functional behaviohe Bame holds for the second case, the
differential equatiory +y = 0 with the analytical solution being(x) ~ sinx. The numerical result
reproduces the analytical solution very well.

B.2 Transfer Function

The behavior of the transfer function depends on the dcaiéthe fluctuation and the moment it
enters the horizon, characterized throughe(L). If this happens at the era of radiation (i.e. before
Pm = Praddenoted byrry_eq) the expansion of the universe is too strong and any grovyiteigented.

It starts only when matter begins to dominate, afterzyr_eq. This leads to a special scale, where

ZRM—eq — ZentedLo), (B.4)

with Lo being the comoving distance (eq. (4.26)) to matter radiagiguality. Therefore, fluctuations
with L > Lo will enter the horizon at matter domination and hence grovthé case of < Lg radiation
dominates and the growth is suppressed untilzry—eq. A quantitative description of those effects
allows to determine the transfer function (e.g. Schnei@@06). For example, the transfer function of
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Figure B.2: Comparison ob(z) (eq. 4.63) for all DE parameterizations: Cosmological tamis
(black line) usingwpe = —1, WETTO04 parameterization wittgpg = 0.0064 (blue line), LINDO3
parameterization using,; = 0.5 (red line) and KOMATO09 parameterization witfns= 6.39 (green
line).

Bardeeret al. (1986) is determined through

In(1+2.3 —1/4
T(q = (Tqu) [1+3.899+ (16.10)% + (5.49)° + (6.719)*] / (B.5)
k
q = 7 (B.6)
g is given by,
k _ -
Ak = ot @ (k) O, (B.7)
with
a = a; /% g (W/W° (B.8)

and @2%7 ~ 1. Qq is the total matter content of the universe today &hd~ 0.046 the amount of
baryons.a; anda, are determined by,

a; = (46.9Qph?)%®7%[1 4 (32.1Qph?) 9537, (B.9)
ap = (12.0Qh?)%4241 4 (45.0Qph%) 983 (B.10)

B.3 Comoving Distances for different DE Models

Fig. B.3 presents the comoving distances (eq. (4.26)) fostamt equation of states (upper left panel),
LINDOS (upper right panel), KOMATO09 (bottom left panel) aldETTO04 (bottom right panel).
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Figure B.3: Evolution of the comoving distances (eq. (426§ wpe = const (upper left panel),
LINDO3 (upper right panel), KOMATQ9 (bottom left panel) aldETTO04 (bottom right panel), re-
spectively.

B.4 Comparison of Growth Factors for different DE Models

Fig. B.2 shows the various growth factdd$z) (eq. 4.63) withz for the case of the standard cosmo-
logical constant usingipe = —1 (black line), WETTO04 usind2gpe = 0.0064 (blue line), LINDO3
with w, = 0.5 (red line) and KOMATO09 wittz,ans = 6.39 (green line). The strongest growthdfz)

is for wpg = —1, since the DE density is the lowest in this case. WETTO4gi¢he most reduced
D(z), because DE plays a role already at early times and dampemgdtvth of structures most ef-
fectively. LINDO3 withw,; = 0.5 (close to the value proposed by SUGRA, see 4.3.2) and KOMATO
with z;ans= 6.39 are also lower compared to the standard case.

B.5 Summary of Models for the Nonlinear Power Spectrum

e HKLM FORMALISM:
This method is based on the stable clustering hypotheseb(®& 1974a, 1980; Davis & Pee-
bles, 1977), which claims that clustering in a very nondineegime leads to virialized regions
with fixed proper density, thereby retaining some memorysoinitial configurations. Assum-
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ing the stable clustering hypothesis on small scales, Hanek al. (1991) (HKLM) introduced

a scaling Ansatz, which interpolates between the lineamegn large scales and the non-linear
regime on small scales in terms of a fitting function to N-bsthgulations. Further corrections
were made by Peacock & Dodds (1994) and Peacock & Dodds (1P886), respectively. An
accuracy test was provided by Jainal. (1995).

e SCALE-FREE MODELS
This description is independent on any characteristic ipay$ength scales, and requires two
conditions (Efstathioet al., 1988),

i) Initial power spectrum resembles a power I&¢k) = A-k" for1 <n< —3,

i) The scalefactor evolution follows a power law tcat) O t9. A nonlinear wavenumber
kno needs to be identified, constrained by the presumed cosinalogodel. The statistics
of gravitational clustering are expressed by a similaritiyson, see Smitlet al. (2003),

P(k,a) = P(k/knL)- (B.11)

(Davis & Peebles, 1977; Peebles, 1980)

B.6 HALOFIT-Coefficients

Smithet al. (2003) obtained the following coefficients,

logypan = 1.4861+ 1.836% -+ 1.6762 +0.79400° + 0.1670* — 0.6206C, (B.12)
logobn = 0.9463+ 0.94661+ 0.30842 — 0.940(C, (B.13)
log;oCn = —0.2807+0.666+ 0.32147% — 0.079%, (B.14)
Vo = 0.8649+0.298%N+0.1631C, (B.15)
ap = 1.3884+0.3700—0.14522, (B.16)
B, = 0.8291+0.985h+ 0.3401?, (B.17)
logiotln = —3.5442+0.1908, (B.18)
logyoVn = 0.9589+ 1.2857, (B.19)

where theQ dependent functions fa2 = Qy < 1 are

fia(Q) = Q7097 (B.20)
fa(Q) = Q%1% (B.21)
faa(Q) = Q0072 (B.22)

while for Q = Qy + Qpe = 1 it follows

fin(Q) = Q097 (B.23)
fn(Q) = Q0% (B.24)
fap(Q) = Q00743 (B.25)

Q 0
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Figure B.4: The ratio of nonlinear to linear power spectradissussed in Giovet al. (2003), for
different dark energy models.

B.7 Ratio of Power Spectra

Giovi et al. (2003) uses the MA99 approach but assuming an implicit digece onk,, see
eq. (4.164). Their result for the ratio of nonlinear to linpawer spectra for different dark energy
models is shown in Fig. B.4. Interestingly, they get a vergdacontribution of nonlinear effects at
high redshifts, as seen by the- 10 example. This is unexpected, since for larger redsHi&sonlin-
ear effects should be less dominant (see e.g. bottom paké.of.12). We too tested their approach,
and did not find such an behavior.

B.8 Derivative of the MA99 Power Spectrum

This section shortly discusses the derivative of thed¥al. (1999) power spectrum, which is needed
for the calculation ofQ(l)| (eq. (4.198)), and the corresponding comparison with PTH&RIOFIT.
The derivative of eq. (4.148) results in,

94ni(kn,2)  941(k,2) . [A(k,2) 9G
0z - 0z G < 98/205 ) +4i(k,2) 0z’ (B.20)
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where for the various components (eq. (4.149), eq. (4.15@)eq. (4.150)) it follows:

9 o (k, 3 1/30 9
d_)z( = X{A|(|<|,Z)_17|g: Z)—<§gé/3%+%£>}, (B.27)
008 _ f109% 1dnm 1
RS s =it 520
G ' 05 9x
oz~ S {(1+0.5x)~[1+|n(1+0.5x)] az}Jr
G 0.02439x/dz+ 8c1x’ /g*dx/dz— 3c1x8/g*dg/ 0z
- { (1+0.02¢ + cp8/ ) } -
C27.5x850x/0z
G(x)- {W} . (B.29)

The derivative ofgy vanishes, sincevype = —1 is constant. We use these equations to calculate
eg. (4.200). Note: Using the approach by Gietial. (2003), the only thing that changes is the
dependence db onk, instead ol;.

B.9 Evolution of 0Py (z)/dzfor different DE Models

Fig. B.5 showsl P, /dzwith redshift fork = 4 Mpc?, where the regime is completely nonlinear. The
upper left panel shows the examples for constant equatietatds usingvpe = —0.6 (black lines),
—1 (blue lines) and-1.4 (red lines). The upper right panel shows the WETTO04 exasnioleQepe
contributions atzss (solid lines) andz; (dashed triple dotted lines), see also tah2 4The bottom
right panel presents LINDO3 fav, = —0.5 (black lines), & (blue lines) and 1 (red lines), while the
bottom right panel shows KOMATO09 f&ans= 11597 (black lines), 89 (blue lines) and .B0 (red
lines).

B.10 Signal to Noise

Fig. B.6 shows the&s/N evolution withlax for a cosmic variance limited experiment using PT and
MA99. Both approaches are similar.

Fig. B.7 and Fig. B.8 present tt8N evolution withl,« for a WMAP limited experiment. Compared
to Fig. 4.25 and Fig. 4.26 the signal is much lower. Futuresueaments as PLANCK will provide
more insight into the nature of DE.

B.11 Spin Weighted Spherical Harmonics

The so called spin weighted spherical harmonics introdligelewman & Penrose (1966) present a
generalization from the usual spherical harmonics and aiteew as,sY,™, wheres denotes the spin
weight and, mcorrespond to their normal description. TJv&" are obtained by using spin raising and
lowering operators, where the standard form for the spalkhiarmonics refers to the weighit= 0,

oYM = Y™, (B.30)
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Figure B.5: The same as in Fig. 4.18 but koe 4 Mpc .

The spin weighted harmonics can be recursively calculayeapplying the raising or lowering oper-
ators and it follows from Goldbergt al. (1967),

(I +m)i(l—m) (2 +1)
(+9i(l—9)! 4n

Zi(l: I 45

sYim(©,9) = [ ]%(sin@/Z)Z"

> <r e m> (_1)Ifrfseim(p (COt@/Z)ZH'S_m, (B.31)
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Figure B.8: The same as Fig. 4.25 but for the constant equafistate withwpg = —1 (black solid
line), WETTO04 usingQepe = 0.0064 (blue line), LINDO3 withw, = 0.5 (red line), and KOMATQ9
usingzrans= 6.39 (green line).
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