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1. Einleitung 

1.1 Einleitung 

 
Im weltweiten Vergleich ist das Lungenkarzinom die am häufigsten diagnostizierte 

Krebserkrankung (2) und steht darüber hinaus in den USA an erster Stelle der 

Krebstodesursachen sowohl bei Männern als auch bei Frauen (36). Grundlegender 

Bestandteil der multimodalen Lungenkarzinomtherapie ist die Chemotherapie. Trotz 

Fortschritten in der Effizienz der Tumortherapie kann zwar die Lebensqualität verbessert 

werden; dies gilt jedoch nicht in relevantem Ausmaß für das Langzeitüberleben (1;21;53). 

Die First-Line-Chemotherapie führt häufig zu hohen Remissionsraten, allerdings kommt es 

im weiteren Behandlungsverlauf, insbesondere im Stadium der Second-Line-Therapie, zu 

einer Verschlechterung der Ergebnisse infolge einer Resistenzentwicklung auf die 

Chemotherapie. Die in großen Tumorzentren durchgeführten Chemotherapieprotokolle 

basieren sowohl bei kleinzelligen (SCLC) als auch bei nicht-kleinzelligen Lungenkarzinomen 

(NSCLC) in der Regel auf platinsalzhaltigen Kombinationstherapien (1;42;43;51). Die 

Wirkung von Cisplatin beruht nach allgemeiner Ansicht auf der intra- und inter-Strang DNA 

Basenpaarvernetzung (26;79). Dennoch zeigen mehrere Studienergebnisse keine 

Korrelation zwischen DNA- Adduktbildung und Cisplatin-Zytotoxizität (13;62;75). Mandic et 

al. gehen sogar weit über diese Ergebnisse hinaus und beschreiben einen Cisplatin 

induzierten Apoptoseweg ohne DNA-Schädigung in kernlosen Zytoblasten mit dem 

endoplasmatischen Retikulum (ER) als nicht-nuklearem Angriffspunkt (52). Hieraus wird 

ersichtlich, dass die momentane Datenlage nicht ausreichend ist, um den genauen, durch 

Cisplatin induzierten, Apoptosemechanismus aufzudecken. Da die Cisplatin-

Resistenzentwicklung häufig den lebenslimitierenden Faktor der Patienten darstellt, wurden 

zahlreiche Studien zur Erforschung der Problematik durchgeführt. Über 100 beteiligte 

Proteine und unterschiedlichste Mechanismen, wie zum Beispiel abnehmende 

Tumorblutzufuhr, extrazelluläre Bedingungen, verminderte Cisplatin-Aufnahme, vermehrter 

Efflux, intrazelluläre Detoxifikation durch Glutathion, verminderte Cisplatin-Bindung, DNA 

Reparatur, verminderter Mismatch-Repair, defekte Apoptose, antiapoptotische Faktoren, 

veränderte Signaltransduktion oder die Anwesenheit von ruhenden non-cycling Zellen 

wurden analysiert und beschrieben (3;11;71). Trotz aller gewonnenen Fortschritte konnten 

bisher noch keine klinisch relevanten Proteine oder Mechanismen der 

Cisplatinresistenzentwicklung in Tumorzellen identifiziert werden. Daher stellt sich nach wie 

vor die Problematik der Cisplatin-Resistenzentwicklung in Lungenkarzinomzellen.  

Das im Zentrum dieser Arbeit stehende Calcium ist ein ubiquitär vorkommender 

Signaltransducer, der nahezu alle Aspekte des zellulären Lebens beeinflusst, darunter auch 
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die Regulierung grundlegender Prozesse wie Gentranskription, Stoffwechsel, 

Zellproliferation, Zelldifferenzierung und Apoptose (7;8;19;56). Die Universalität des 

Calciums als intrazellulärer Second-Messenger beruht auf seiner enormen Vielseitigkeit. 

Diese wiederum basiert auf einem Calcium-Signaling-Toolkit mit zahlreichen Komponenten, 

die einander unterschiedlich angepasst werden können (9). Die in dieser Arbeit untersuchte 

intrazelluläre Calcium-Homöostase hat im Wesentlichen folgende Grundlagen: 

Die zytosolische Calciumkonzentration [Ca2+]cyt beträgt ca. 0,1µM (41). Der größte Anteil 

intrazellulären Calciums befindet sich in den Calciumspeichern Mitochondrien, Golgi-Apparat 

und dem wichtigsten und größten Speicher dem endoplasmatischem Retikulum (ER). Das 

ER ist die Hauptquelle an intrazellulär freigesetztem Calcium und hat deutlich höhere 

Calciumkonzentrationen von [Ca2+]ER = 1,0µM – 5mM (41). Calcium wird mittels der 

Sarco/Endoplasmatischen Retikulum Ca2+ ATPase (SERCA) ATP abhängig in das ER 

gepumpt. SERCA Proteine werden durch drei Gene kodiert, sodass die Hauptisoformen 

SERCA 1, SERCA 2a, SERCA 2b und SERCA 3 daraus hervorgehen (9;41), durch 

alternatives Splicing entstehen mehr als zehn verschiedene den Hauptgruppen 

untergeordnete Isoformen (61). Die Freisetzung von Calcium aus dem ER erfolgt über einen 

basalen Leckstrom über die Membran des ER, eine allerdings physiologisch relevantere 

Calcium-Freisetzung erfolgt über die Aktivierung der Calcium-Kanäle Inositoltriphosphat-

Rezeptoren (IP3R 1/2/3) als auch Ryanodine-Rezeptoren (RYR 1/2/3). Beide Kanalproteine 

werden durch jeweils drei Gene kodiert, welche jeweils eine spezifische Isoform erzeugen 

(9;41). Die Aktivierung der IP3R 1/2/3 erfolgt über die Bindung von IP3, hergestellt durch eine 

G-Protein-gekoppelte rezeptorregulierte Phospholipase C ß, die IP3 aus Phosphatidylinositol 

4,5-bisphosphat erzeugt. Das dadurch ausströmende Ca2+ führt zu einem Calcium-

induziertem Calcium Ausstrom über die RYR-Rezeptoren. Calcium ist innerhalb des ER an 

die Calcium-Bindeproteine Calsequestrin als auch Calretikulin gebunden, da das freie 

divalente Kation zu einer Inhibition der SERCA-Pumpe führen würde (41). In Abbildung 1.1 

werden die oben beschriebenen intrazellulären Calcium-Prozesse schematisch dargestellt. 

 

Abbildung 1.1: Die intrazelluläre Ca
2+

- Homöostase 
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Die grundlegende Bedeutung des Ca2+- Haushaltes zeigt sich zum Einen bei der 

Apoptoseinduktion, zum anderen auch bei der Initiierung der Zellproliferation. Der Vorgang 

der Apoptoseinduktion soll anhand Abbildung 1.2 erklärt werden. 

 

Abbildung 1.2: Calcium als Signal-Molekül bei Apoptoseinduktion und Zellproliferation (54) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Die Zellproliferation ist assoziiert mit einem Anstieg des zytosolischen Calciums aufgrund 

einer 1.) erhöhten Erregbarkeit von IP3R 1/2/3 nach IP3 Bindung; 2.) erhöhter Aktivität von 

speicherabhängigen Ca2+ -Kanälen sowie spannungsabhängigen Ca2+ -Kanälen; 3.) einer 

verminderten Entfernung des zytosolischen Ca2+ durch Inhibition der SERCA-Pumpe bzw. 

der Inhibition der Plasmamembran- Ca2+-ATPase, welche Calcium aus dem Zytosol in den 

Extrazellulärraum pumpt. Der Calciumanstieg aktiviert den Transkriptionsfaktor NFAT 

(Nuklear Factor of Activated T lymphocytes) – dies führt sowohl zu einem hypertrophen 

Wachstum, als auch zu einer Progression des Zellzyklus und vermittelt somit die Proliferation 

(46;47). 

Bisher haben nur wenige Studien die Rolle der intrazellulären Ca2+- Homöostase in der 

Cisplatin-Resistenzentwicklung untersucht. Liang et al. untersuchten die freie intrazelluläre 

Ca2+- Konzentration in Zusammenhang mit der Cisplatin-Resistenz in humanen bronchialen 

Adenokarzinomzellen A549 (45). Die Autoren kamen zu dem Ergebnis, dass die freie 

intrazelluläre Ca2+- Konzentration in der resistenten Zelllinie im Vergleich mit der naiven, 

sensitiven Zelllinie um das dreifache vermindert war. Diese verminderte Konzentration 

wiederum stimuliert über weitere Signalprozesse die Aktivität des P-Glykoproteins welches 

Cisplatin aus den Zellen pumpt.  

Abbildung 1.2. Entnommen aus Mattson et.al, 2003(54). 
Initial wird die Zelle einem Apoptosestimulus ausgesetzt. 
In dieser Abbildung sind zwei Apoptosestimuli 
dargestellt: einerseits Calciumeinstrom durch die 
Plasmamembrankanäle, anderseits durch die Aktivierung 
von auf der Zelloberfläche befindlichen Todesrezeptoren. 
Der Todesstimulus induziert die Öffnung einer sog. 
Permeability-Transition-Pore in der Membran  eines 
angrenzenden Mitochondrions, woraus die Freisetzung 
von Cytochrom c resultiert. (a) Cytochrom c diffundiert 

zum  angrenzenden ER und bindet an die IP3-
Rezeptoren (b). Es kommt zu einer Ca

2+
- Freisetzung 

aus dem ER (c) was zu einem globalen Anstieg des 
[Ca

2+
]cyt führt (d). Daraus resultiert eine mitochondriale 

Ca
2+

- Aufnahme in der gesamten Zelle mit einer 
simultanen Freisetzung von Cytochrom c aus allen 
Mitochondrien der Zelle (e). Cytochrom c in der Zelle 

aktiviert die Formation eines Apoptosomes in welchem 
Caspasen aktiviert werden (f). Caspasen und Nukleasen 

vervollständigen den Zelltod durch Spaltung von 
Proteinen und DNA (24;54;56). Die Freisetzung von 
Calcium kann einerseits ein Signal für die Durchführung 
der Apoptose sein, andererseits können auch für das 
Zellüberleben wichtige Proteine wie der 
Transkriptionsfaktor NF-κB aktiviert werden. 
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Ferrari et al. beschreiben, dass Zellen für eine Apoptoseinduktion durch Ceramide 

sensibilisiert werden können (27), was durch aus dem endoplasmatischen Retikulum 

entlassenes Ca2+ erfolgt. Des weiteren konnte die Involvierung von IP3R in der ER Membran 

in diesem Sensibilisierungsprozess nachgewiesen werden, da IP3R1 defiziente Lymphozyten 

eine Resistenz auf ein großes Spektrum an apoptoseinduzierenden Agenzien zeigten. 

Tsunoda et al. untersuchten die Cisplatinresistenz von Blasenkarzinomzellen (74). Die 

Autoren postulierten einen Zusammenhang zwischen der Resistenzentwicklung und einer 

reduzierten IP3R1 Expression. Darüber hinaus gelang es ihnen zu zeigen, dass es in naiven 

Zellen nach einmaliger Cisplatinexposition ebenfalls zu einer verminderten IP3R1 Expression 

kam. Im Jahr 2007 veröffentlichte Splettstoesser die These, dass Cisplatin 

konzentrationsabhängig die intrazelluläre Ca2+- Konzentration in HeLa-S3 Zellen, nicht aber 

in humanen Osteosarkom-Zellen, U2-Os, ansteigen lässt (69). Der [Ca2+]cyt- Anstieg war in 

HeLa –S3 Zellen abhängig von der extrazellulären Ca2+- Konzentration, getriggert durch 

einen Einstrom über die an der Plasmamembran befindlichen IP3-Rezeptoren. Dieser Effekt 

konnte für U2-Os Zellen nicht gezeigt werden. Betrachtet man die Studienergebnisse in ihrer 

Gesamtheit, zeigen sich Anhaltspunkte dafür, dass die intrazelluläre Ca2+- Homöostase an 

der Resistenzentwicklung beteiligt ist. Dennoch sind die gewonnenen Daten widersprüchlich, 

weshalb bislang kein Konsens hinsichtlich der zugrundeliegenden Mechanismen erreicht 

werden konnte. 

1.2 Zielsetzung und Fragestellung 

 

Zielsetzung dieser Arbeit war die Untersuchung der intrazellulären Ca2+-Homöostase bei der 

Cisplatin-Resistenzentwicklung in kleinzelligen (SCLC) als auch nicht-kleinzelligen (NSCLC) 

Lungenkarzinomzellen. Anhand eines Zellkultur Models mit kleinzelligen und nicht-

kleinzelligen Lungenkarzinomzellen sollte zunächst die Cisplatin-Resistenzentwicklung in 

vitro nachvollzogen und anschließend die Calcium-Homöostase zwischen naiven und 

teilresistenten Zellklonen verglichen werden. 

Hieraus ergab sich folgende Fragestellung: 

Gibt es Unterschiede in der intrazellulären Calcium-Homöostase in naiven bzw. 

teilresistenten Zellklonen beider untersuchter Zelllinien und bejahendenfalls, welche 

molekularen Prozesse sind dafür verantwortlich? Ist die Resistenz darüber hinaus künstlich 

induzierbar oder reversibel? 
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2. Material und Methoden 

2.1 Material 

2.1.1 Tumorzelllinien 

 

EPLC 32M1 
Zur Verfügung gestellt von Dr. G. Jaques, Philipps-Universität, 
Marburg 

H1339 
Deutsche Sammlung von Mikroorganismen und Zellkulturen 
DSMZ GmbH, Braunschweig, Deutschland 

 

2.1.2 Zellkultur 

 
VLE RPMI 1640 Medium (1x) 
w 2.0 g/l NaHCO 
w/o L-Glutamine 

Biochrom AG, Berlin, Deutschland 

Newborn Calf Serum  
Heat inactivated 

PAA Laboratories GmbH, Pasching, Österreich 

GIBCO 
Foetal Bovine Serum 

Invitrogen Ltd, Paisley, UK 

L-Glutamine 200mM (100x) PAA Laboratories GmbH, Pasching, Österreich 

GIBCO 
Fungizone 
Amphotericin B 250 UG/ML 

Invitrogen Ltd, Paisley, UK 

Trypsin-EDTA (1x) 
0,05%/0,02% in D-PBS 

PAA Laboratories GmbH, Pasching, Österreich 

50 ml Falcon Tubes Becton Dickinson Labware Franklin Lakes, NJ, USA 

BD Falcon 
Tissue Culture Flask, 250ml 
Cauted Neck and 0,2 µm 
Vented Blue Plug Set 

Becton Dickinson Labware Franklin Lakes, NJ, USA 

Hettich Zentrifugen Universal 16A Andreas Hettich GmbH & Co.KG, Tuttlingen, Deutschland 

Hettich Zentrifugen EBA 12R Andreas Hettich GmbH & Co.KG, Tuttlingen, Deutschland 

Brutschrank Heraeus Lamin Air Fa. Schultheiss, München, Deutschland 

Herasafe steril Flow Thermo Electron Corporation, Langenselbold, Deutschland 

 

2.1.3 Relative Resistenzentwicklung auf Cisplatin 

 
Cis-Platin Apotheke Großhardern, München, Deutschland 

BABTA-AM  Sigma-Aldrich, Missouri, USA 

 

2.1.4 Ca2+-Imaging 

 

flou-4 AM cell permeant Molecular Probes, Eugene, OR, USA 

Pluronic F-127 Calbiochem, La Jolla, CA 

DMSO , Dimethysulfoxid Calbiochem, La Jolla, CA 

Hank´s Balanced Salts Modified 9,7g/L Sigma-Aldrich 

GIBCO 
HEPES 1M  

Invitrogen Ltd, Paisley, UK 

Sodium hydroxide Sigma-Aldrich, Missouri, USA 

Adenosine 5´-Triphophate Disodium Salt (ATP) Sigma-Aldrich, Missouri, USA 

EDTA 0,02% Solution 
Prepared in DPBS without Ca

2+
 and Mg

2+
  

Sigma-Aldrich, Missouri, USA 

Cyclopiazonic acid from Penicillium cyclopium Sigma-Aldrich, Missouri, USA 

Tissue culture dish 
35x10mm 

Becton Dickinson Labware Franklin Lakes, NJ, USA 

Fluoreszenzmikroskop  Axiovert 200M, Carl Zeiss, Jena, Deutschland 

digitale CCD Kamera AxioCam MRm, Carl Zeiss Vision, München, Deutschland 

Scion-Image Scion Corporation, Frederick, USA 
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2.1.5 Western Blot 

 
Dulbecos PBS 
without Ca

2+
 and Mg

2+
 

PAA Laboratories GmbH, Pasching, Österreich 

EDTA 0,02% Solution 
Prepared in DPBS without Ca

2+
 and Mg

2
 

Sigma-Aldrich, Missouri, USA 

Proteo Extract® Native Membrane Protein Extraction Kit  Merck Biosciences, Darmstadt, Deutschland 

Q proteome
TM

 
Mammalian Protein Prep Kit  

Qiagen GmbH, Hilden, Deutschland 

Non-interfering Protein Assay Kit Merck Biosciences, Darmstadt, Deutschland 

Laemmli Sample Buffer Bio-rad Laboratories, Hercules, USA 

NuPAGE® 4-12% Bis-Tris-Gel 1,5mm Invitrogen Ltd, Paisley, UK 

NuPAGE® Tris-Acetate Gel 1,5mm Invitrogen Ltd, Paisley, UK 

SeeBlue®Plus2 Pre-Stained Standard Invitrogen Ltd, Paisley, UK 

HiMark
TM

 Pre-Stained High Molecular Weight Protein 
Standard 

Invitrogen Ltd, Paisley, UK 

NuPAGE® MOPS SDS Running Buffer Invitrogen Ltd, Paisley, UK 

Novex® Tris-Acetate SDS Running Buffer Invitrogen Ltd, Paisley, UK 

NuPAGE® Antioxidant Invitrogen Ltd, Paisley, UK 

NuPAGE® Transfer Buffer (20x) Invitrogen Ltd, Paisley, UK 

10x Tris-Buffered Saline 
(10x TBS) 

Bio-rad Laboratories, Hercules, USA 

10% Tween 20 Solution Bio-rad Laboratories, Hercules, USA 

Fluka BioChemika 
Skim Milk Powder 

Sigma-Aldrich, Missouri, USA 

Calregulin (T-19) 
Goat polyclonal Antibody 

Santa Cruz Biotechnology Inc., Santa Cruz, USA 

SERCA 1/2/3 (H-300) 
Rabbit polyclonal antibody 

Santa Cruz Biotechnology Inc., Santa Cruz, USA 

IP3R I/II/III (H-300) 
Rabbit polyclonal antibody 

Santa Cruz Biotechnology Inc., Santa Cruz, USA 

ß-Actin Antibody (HRP) 
mouse monoclonal to beta Actin 

Abcam plc, Cambridge, UK 

Donkey anti-goat IgG –HRP 
sc – 2020 

Santa Cruz Biotechnology Inc., Santa Cruz, USA 

ECL 
Anti-rabbit IgG, peroxidise-linked species-specific whole 
antibody (from donkey) 

Amersham Biosciences, GE Healthcare, Freiburg, 
Deutschland 

Immun-Star
TM

  
Goat Anti-Rabbit (GAR)-HRP conjugate 

Bio-rad Laboratories, Hercules, USA 

Amersham 
ECL Plus Western Blotting Detection System 

GE Healthcare UK Limited, Buckinghamshire, UK 

Amersham Biosciences 
Hypercassette (Filmkassette) 

GE Healthcare UK Limited, Buckinghamshire, UK 

Amersham Hyperfilm
TM

 ECL 
High performance chemiluminescence film 

GE Healthcare UK Limited, Buckinghamshire, UK 

AGFA 
Rapid Fixer 
For medical x-ray processing 

AGFA-Gevaert AG, Mortsel, Belgien 

AGFA 
Developer 
For curix x-ray film processing 

AGFA-Gevaert AG, Mortsel, Belgien 

XCell SureLock
TM

 Mini-Cell 
For leak-free electrophoresis of mini-gels 

Invitrogen Ltd, Paisley, UK 

XCell II
TM 

Blot Module Kit Invitrogen Ltd, Paisley, UK 

Criterion Blotting Sandwiches 
0,45µm Nitrocellulose with Filter paper 

Bio-rad Laboratories, Hercules, USA 

Hettich Zentrifugen Universal 16A 
Andreas Hettich GmbH & Co.KG, Tuttlingen, 
Deutschland 

Safe-Lock Tubes 2,0ml Original Eppendorf 

Hettich Zentrifugen EBA 12R 
Andreas Hettich GmbH & Co.KG, Tuttlingen, 
Deutschland 

Schüttler 
Heidolph InstrumentsGmbH & Co.KG, Schwabach, 
Deutschland 

Image J Public domain / Freie Software 
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2.1.6 Indirekte Immunfluoreszenzfärbung 

 

Thermo Scientific Objektträger 
Menzel-Gläser, Menzel GmbH &CoKG, Braunschweig, 
Deutschland 

Tissue Culture Dish  
100x20mm Style 

Becton Dickinson Labware Franklin Lakes, NJ, USA 

Aceton Merck KG aA, Darmstadt, Deutschland 

IP3R I/II/III (H-300) 
Rabbit polyclonal antibody 

Santa Cruz Biotechnology Inc., Santa Cruz, USA 

SERCA 1/2/3 (H-300) 
Rabbit polyclonal antibody 

Santa Cruz Biotechnology Inc., Santa Cruz, USA 

Goat anti-rabbit IgG-FITC 
sc – 2012 

Santa Cruz Biotechnology Inc., Santa Cruz, USA 

 

2.1.7 Small interfering (si) RNA Transfektion 

 
D-001810-01-05  
5mmol On Target plus siControl  
Non targeting siRNA HI 

Dharmacon Inc., Chicago, IL, USA 

T-2002-01  
0,2ml Dharma-FECT2 Transfection Reagent 

Dharmacon Inc., Chicago, IL, USA 

L-006113-00 
5nmol siRNA ATP2A1 

Dharmacon Inc., Chicago, IL, USA  

L-004082-00  
5nmol siRNA ATP2A2 

Dharmacon Inc., Chicago, IL, USA 

L-006114-00  
5nmol siRNA ATP2A3 

Dharmacon Inc., Chicago, IL, USA 

L-006207-00 
5nmol siRNA ITPR1 

Dharmacon Inc., Chicago, IL, USA 

L-006208-00 
5nmol siRNA ITPR2 

Dharmacon Inc., Chicago, IL, USA 

L-006209-00 
5nmol siRNA ITPR3 

Dharmacon Inc., Chicago, IL, USA 

BD Falcon Kulturflaschen 25cm Becton Dickinson Labware Franklin Lakes, NJ, USA 

 

2.1.8 Statistik 

 
Sigma Stat Jandel Scientific, Chicago, IL, USA 

 

 

2.2 Methoden 

2.2.1 Zellkultur 

2.2.1.1 Verwendete Tumorzelllinien 

 

Tumorzelllinie EPLC - 32 M1 (Epidermoid Lung Cancer): 

 

Die Tumorzelllinie EPLC – 32 M1 wurde von einem Patienten mit mittelmäßig differenziertem 

Plattenepithelkarzinom der Lunge, der zuvor nicht chemotherapeutisch behandelt wurde, 

gewonnen und von Dr. G. Jaques, Philipps-Universität, Marburg, zur Verfügung gestellt. Die 

epitheloidförmigen Zellen zeigen ein adhärentes Wachstum. Morphologisch sind die Zellen 

gekennzeichnet durch einen Kern, welcher ein regelmäßiges Chromatinmuster aufweist, 

sowie eine perinukleäre Granulation mit zwei oder mehr Nukleoli. Die Generationszeit der 
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Zelllinie liegt zwischen 16 und 20 Stunden und die Kolonieformationseffizienz bei 5,12%. Die 

Zellen exprimieren das c-myc Onkogen sowie die biochemischen Marker NSE, hCG und 

EGFR. Die Tumorzellen produzieren pro-Cathepsin L, den Prekuror der lysosomalen 

Cystein-Protease and Cathepsin B. Immunhistochemisch wurden Glukokorikoid-Rezeptoren 

nachgewiesen. Die Zelllinie wurde mit GFP (Green Fluorescence Protein) transfiziert. (Die 

oben genannten zellspezifischen Informationen wurden von Dr. G. Jaques, Philipps-

Universität, Marburg zur Verfügung gestellt.). GFP ist ein aus der Qualle Aequorea Victoria 

stammendes Protein, dass durch Anregung mit blauem oder ultraviolettem Licht grün 

fluoresziert (73). 

 

Tumorzelllinie H1339 (Small Cell Lung Cancer): 

 

Die Tumorzelllinie H1339 wurde von der Deutschen Sammlung von Mikroorganismen und 

Zellkulturen DSMZ GmbH bezogen. Die Zelllinie wurde aus dem Pleuraerguss einer 49-

jährigen Patientin 1986 vor der Behandlung des metastasierten kleinzelligen 

Lungenkarzinoms gewonnen. Die Patientin reagierte im weiteren Verlauf nur sehr beschränkt 

auf die chemotherapeutische Behandlung. Die epitheloidförmigen Zellen wachsen adhärent 

in Monolayern. Die Generationszeit der Zelllinie liegt bei 50 bis 90 Stunden. 

Immunhistochemisch ist die Zelllinie negativ auf Cytokeratin, Cytokreratin-7, Cytokeratin-8, 

Cytokeratin-17, Cytokeratin-18, Desmin, Endothel, GFAF und Neurofilament. Die Zelllinie ist 

Vimentin positiv. Die Zelllinie ist nicht GFP transfiziert. (Herstellerinformationen DSMZ) 

 

2.2.2 Kulturbedingungen 

2.2.2.1 Herstellung der Grundmedien 

 
Die Herstellung der Kulturmedien erfolgte steril unter einem Arbeitsplatzabzug. Das 

Kulturmedium der Tumorzelllinie EPLC 32M1 setzte sich zusammen aus 90% RPMI 1640, 

10% NCS, 1% L-Glutamine, 0,48% Fungizone, 0,24% Penicillin/Streptomycin. Das 

Kulturmedium der Tumorzelllinie H1339 basierte auf 80% RPMI 1640 supplementiert mit 

20% FBS, 1% L-Glutamine, 0,48% Fungizone, 0,24% Penicillin/Streptomycin. 

 

2.2.2.2 Kultivierung der Tumorzelllinien 

 
Die bei -200°C gefrorenen Tumorzellen wurden unter sterilem Arbeitsplatzabzug aufgetaut 

und mit jeweils 10 ml NCS versetzt und sorgfältig durchmischt. Im Anschluss erfolgte eine 

achtminütige Zentrifugation (800U) der Zellsuspension bei Raumtemperatur. Nach Entfernen 

des Überstandes wurden die Zellpellets mit 16ml Kulturmedium resuspendiert. Anschließend 
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wurden die Zellsuspensionen unter sterilen Arbeitsbedingungen in 75cm² Kulturflaschen 

gefüllt. Es folgte eine Kultivierung der Tumorzellen im Brutschrank bei 37°C und 5% CO2. 

Nach ca. 24h konnte eine Adhärenz an die Kulturflaschen bei beiden Tumorzelllinien 

beobachtet werden. Um eine adäquate Nährstoffversorgung der Zellen zu gewährleisten, 

erfolgten regelmäßige, alle 2 Tage stattfindende, Nährmedienwechsel. Sobald der Zellrasen 

ca. 2/3 der Kulturflaschenfläche bedeckte, wurden die Zellen gesplittet. Nach Abnahme des 

alten Nährmediums wurde die Kulturflasche mit 3ml Trypsin-EDTA Lösung (0,05% /0,02% in 

D-PBS) versetzt und zur Reaktionsbeschleunigung für 10 min im Brutschrank inkubiert. Die 

Reaktion wurde durch Zugabe von 10ml NCS gestoppt. Das NCS/Zellgemisch wurde in 50ml 

Falcon Tubes gefüllt und ca. 8 Minuten bei 1200 U zentrifugiert. Das gewonnene Zellpellet 

wurde mit 10ml des zellspezifischen Kulturmediums gelöst.  

Zur Zellzahlbestimmung wurde die Neubauerzählkammer verwendet. Die Zählkammer wurde 

mit 10µl Zellsuspension befüllt. Anschließend erfolgte unter dem Lichtmikroskop die 

Auszählung der äußeren Quadranten 4x16 Felder. Die Zellzahl/ml wurde mit folgender 

Formel bestimmt: 

 

Zellzahl der äußeren Quadranten / 4 x 10000 = Zellzahl /ml 

Zur Weiterkultivierung wurden ca. 500000 Zellen pro Kulturflasche neu ausgesät.  

 

2.2.3 Relative Resistenzentwicklung auf Cisplatin 

2.2.3.1 Relative Resistenzentwicklung durch wiederholte Cisplatin-Inkubation 

 
Dieser Versuch wurde für die Zelllinien EPLC 32M1 und H1339 analog durchgeführt. 

Zur Simulation einer Chemotherapie mit fünf Zyklen Cisplatin erfolgte anschließender 

Versuchsaufbau. 

 

1. Zyklus: 

Am Tag (–1) wurden pro Zelllinie 16 Kulturflaschen (75cm²) mit jeweils 300000 Tumorzellen 

angelegt. Die Zellen wurden anschließend 24h im Brutschrank inkubiert. Am Tag (0) wurden 

vier Gruppen aus jeweils vier Kulturflaschen gebildet:  

 

1. Gruppe:  0-Kontrolle 

2. Gruppe:  0,5µg/ml Cisplatin 

3. Gruppe:  1,0µg/ml Cisplatin 

4. Gruppe:  2,0µg/ml Cisplatin 
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Nach Abnahme des alten Nährmediums wurden die Zellen entsprechend ihrer Gruppen, d.h. 

Gruppe 1 als 0-Kontrolle mit 10ml reinem Nährmedium behandelt, Gruppe 2 mit 10ml einer 

0,5µg/ml cisplatinhaltigen Nährmediumslösung, Gruppe 3 mit 10ml einer 1,0µg/ml 

cisplatinhaltigen Nährmediumslösung und Gruppe 4 mit 10ml einer 2,0µg/ml cisplatin-

haltigen Nährmediumslösung für 3h bei 37°C im Brutschrank inkubiert. Die gewählten 

Konzentrationen, ebenso wie die Inkubationsdauer und Temperatur erfolgten analog der 

humanen in vivo Pharmakokinetik (23). Bei Patienten wurden nach Cisplatin-Chemotherapie 

Cisplatin-Plasmakonzentrationen von hauptsächlich 0,5 – 2,0µg/ml Cisplatin über ca. 3h 

nach Chemotherapie beschrieben. Nach Ablauf der Inkubationsdauer wurden von allen 

Gruppen die Nährmedien abgenommen und pro Kulturflasche 16ml neues Nährmedium 

aufgetragen.  

Nach 24-stündiger Bebrütung erfolgte am Tag 1 nach Cisplatin-Exposition die Bestimmung 

der absoluten Zellzahl aus jeweils einer Kulturflasche der Gruppen 1-4 (die 

Zellzahlbestimmung wurde wie oben beschrieben durchgeführt). Nach weiterer 24-stündiger 

Bebrütung wurde dieser Vorgang an Tag 2 nach Cisplatin-Exposition wiederholt. Ebenso an 

Tag 3 und 4. 

 

2.Zyklus 

Nach einer Zellerholungszeit von 7 Tagen wurden im erneuten Zyklus am Tag (–1) pro 

Zelllinie 16 Kulturflaschen (75cm²) mit jeweils 300000 Tumorzellen angelegt. Bei den Zellen 

der Gruppe 1 handelt es sich um naive nicht vorbehandelte Tumorzellen, bei den Zellen der 

Gruppe 2-4 um Zellen aus dem vorangegangenen Zyklus, die bereits einmalig mit 0,5µg/ml 

Cisplatin vorbehandelt waren. Alle Zellen wurden anschließend 24h im Brutschrank inkubiert. 

Am Tag (0) wurden 4 Gruppen aus jeweils 4 Kulturflaschen gebildet:  

 

1. Gruppe: 0-Kontrolle 

2. Gruppe: 0,5µg/ml + 0,5µg/ml Cisplatin 

3. Gruppe: 0,5µg/ml + 1,0µg/ml Cisplatin 

4. Gruppe: 0,5µg/ml + 2,0µg/ml Cisplatin 

 

Nach Abnahme des alten Nährmediums wurden die Zellen entsprechend ihrer Gruppe, d.h. 

Gruppe 1 als 0-Kontrolle mit 10ml reinem Nährmedium behandelt, Gruppe 2 mit 10ml einer 

0,5µg/ml cisplatinhaltigen Nährmediumslösung, Gruppe 3 mit 10ml einer 1,0µg/ml 

cisplatinhaltigen Nährmediumslösung und Gruppe 4 mit 10ml einer 2,0µg/ml cisplatinhaltigen 

Nährmediumslösung für 3h bei 37°C im Brutschrank inkubiert. Nach Ablauf der 

Inkubationsdauer wurden von allen Gruppen die Nährmedien abgenommen und pro 

Kulturflasche 16ml neues Nährmedium aufgetragen.  
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Der weitere Verlauf erfolgt wie in Zyklus 1. 

 

3. Zyklus: 

Nach einer Zellerholungszeit von 7 Tagen wurden im erneuten Zyklus am Tag (–1) pro 

Zelllinie 16 Kulturflaschen (75cm²) mit jeweils 300000 Tumorzellen angelegt. Bei den Zellen 

der Gruppe 1 handelte es sich um naive nicht vorbehandelte Tumorzellen, bei den Zellen der 

Gruppe 2-4 um Zellen aus dem vorangegangenen Zyklus, die bereits zweimalig mit 0,5µg/ml 

Cisplatin vorbehandelt waren. 

Der weitere Verlauf erfolgte analog zu dem 2. Zyklus. 

 

4.Zyklus: 

Nach einer Zellerholungszeit von 7 Tagen wurden im erneuten Zyklus am Tag (–1) pro 

Zelllinie 16 Kulturflaschen (75cm²) mit jeweils 300000 Tumorzellen angelegt. Bei den Zellen 

der Gruppe 1 handelt es sich um naive nicht vorbehandelte Tumorzellen, bei den Zellen der 

Gruppe 2-4 um Zellen aus dem vorangegangenen Zyklus, die bereits dreimalig mit 0,5µg/ml 

Cisplatin vorbehandelt waren. 

Der weitere Verlauf erfolgte analog zu dem 3. Zyklus. 

 

5. Zyklus: 

Nach einer Zellerholungszeit von 7 Tagen wurden im erneuten Zyklus am Tag (–1) pro 

Zelllinie 16 Kulturflaschen (75cm²) mit jeweils 300000 Tumorzellen angelegt. Bei den Zellen 

der Gruppe 1 handelte es sich um naive unvorbehandelte Tumorzellen, bei den Zellen der 

Gruppe 2-4 um Zellen aus dem vorangegangenen Zyklus, die bereits viermalig mit 0,5µg/ml 

Cisplatin vorbehandelt waren. 

Der weitere Verlauf erfolgte analog zu dem 4. Zyklus. 

 

2.2.3.2 Relative Resistenzentwicklung durch Inkubation mit BAPTA-AM 

 

Dieser Versuch wurde für die Zelllinien EPLC 32M1 und H1339 analog durchgeführt. Zur 

Vorbereitung der Versuchsdurchführung wurden am Tag (–1) von jeder Zelllinie jeweils 20 

Kulturflaschen (75cm²) mit je 300000 Tumorzellen in 16ml Nährmedium befüllt. Nach 24- 

stündiger Inkubation im Brutschrank wurden am Tag 0 jeweils 5 Gruppen à 4 Kulturflaschen 

gebildet: 

1. Gruppe:  0-Kontrolle 

2. Gruppe:  0,5µg/ml Cisplatin  

3. Gruppe:  1,0µg/ml Cisplatin 

4. Gruppe:  2,0µg/ml Cisplatin 
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5. Gruppe:  BAPTA-AM Kontrolle 

 

Das alte Nährmedium wurde verworfen und die Gruppen wie folgt behandelt: Gruppe 1 

wurde als 0-Kontrolle 10ml Dulbecos PBS zugegeben, den Gruppen 2-5 wurden 10 ml 50µM 

BAPTA-AM Lösung (gelöst in calciumfreiem Dulbecos PBS) zugegeben. Bei BAPTA-AM 

handelt es sich um einen intrazellulären Calcium-Chelator. Anschließend wurden alle 

Kulturflaschen für 60 min bei 37°C und 5% CO2 im Brutschrank inkubiert. Daraufhin wurden 

die Lösungen verworfen, den Kulturflaschen jeweils 10ml Nährmedium hinzugefügt, und es 

folgte eine 30 minütige Deesterifizierung des BAPTA-AM in Nährmedium bei 37°C. Nach 

dieser Vorbehandlung der einzelnen Gruppen erfolgte eine einmalige Cisplatinbehandlung, 

d.h. Gruppe 1 als 0-Kontrolle wurde mit 10ml reinem Nährmedium behandelt, Gruppe 2 

wurde mit 10ml einer 0,5µg/ml cisplatinhaltigen Nährmediumslösung, Gruppe 3 wurde mit 

10ml einer 1,0µg/ml cisplatinhaltigen Nährmediumslösung und Gruppe 4 wurde mit 10ml 

einer 2,0µg/ml cisplatinhaltigen Nährmediumslösung für 3h bei 37°C im Brutschrank inkubiert 

und Gruppe 5 wurde mit 10ml reinem Nährmedium behandelt. Die Bestimmung der 

Überlebenszahlen in den darauf folgenden Tagen erfolgte wie unter Punkt 2.2.3.1 

beschrieben. 

 

2.2.4 Ca2+ Imaging 

2.2.4.1 Fluoreszenzfärbung mit Fluo-4 AM 

 

Die Färbetechnik erfolgte bei den Tumorzelllinien EPLC 32M1 und H1339 analog. 

 

Zur Versuchsvorbereitung wurden am Vortag jeweils 50000 Tumorzellen in Petrischalen 

(35x10mm) gesplittet und über Nacht im Brutschrank inkubiert. 

Zur Herstellung der Färbelösung wurden 100 µg des zytoplasmatischen Calciumindikators 

fluo-4 AM in 9,2 ml supplemented Hanks Balanced Salt Solution (sHBSS) mit 0,2% Pluronic 

und 0,8% DMSO gelöst. sHBSS wurde unter sterilen Bedingungen hergestellt aus Hanks 

Balanced Salts Modified 9,7g/L und 25ml 1M HEPES Lösung gelöst in 975ml Reinstwasser – 

pH Einstellung mit NaOH (Natriumhydroxid) auf 7,4. Durch Versetzen der sHBSS Lösung mit 

Pluronic konnte die Löslichkeit des lipophilen Farbstoffes verbessert, sowie das Eindringen 

des Farbstoffes in Zellkompartimente reduziert werden. 

Anschließend wurde in die mit Tumorzellen besiedelten Petrischalen, jeweils 1ml 

Färbelösung pipettiert. Zum Farbstoffloading der Zellen folgte eine Inkubation im Dunkeln für 

30min bei Raumtemperatur (RT). Bei höheren Temperaturen zeigte sich ein unerwünschter 

verstärkter Übertritt des Calciumindikators in die Zellorganellen (siehe auch 

Herstellerhinweise). Nach dem Farbstoffloading der Zellen wurde eine weitere 30min 
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dauernde Inkubation (RT, Dunkelheit) der Zellen in 990µl sHBSS zur vollständigen 

Deesterifizierung des Fluoreszenzfarbstoffes durchgeführt, um einen Farbstoffaustritt aus 

den Zellen zu verhindern. 

 

2.2.4.2 ATP induziertes Ca2+ Signaling mit/ohne extrazellulärem Ca2+ 

 

Zur Quantifikation von Veränderungen der intrazellulären Calciumkonzentration [Ca2+]i 

wurden die Tumorzellen der Linien EPLC 32M1 als auch H1339 mit dem 

Fluoreszenzfarbstoff Fluo-4 AM wie zuvor beschrieben gefärbt. Anschließend wurden die 

Zellen mit Hilfe eines Fluoreszenzmikroskopes unter 488nm Exitationswellenlänge und 520-

534nm Emissionswellenlänge untersucht. Es wurden von jeder untersuchten Petrischale 120 

Bildaufnahmen (1 Aufnahme/Sekunde) mit Hilfe einer digitalen CCD Kamera aufgenommen.  

Zur Versuchsdurchführung des ATP induzierten Calcium-Signalings mit extrazellulärem 

Calcium (enthalten in sHBSS) wurden die naiven sowie die teilresistenten Tumorzellen 

beider Linien zehn Sekunden nach Aufnahmebeginn, mit 100µl 10mM ATP-Lösung (ATP 

gelöst in sHBSS) stimuliert. Somit kam es zu einer effektiven Stimulation der Zellen mit 1mM 

ATP-Lösung.  

Zur Versuchsdurchführung des ATP induzierten Calcium-Signalings ohne extrazelluläres 

Calcium bei naiven Tumorzellen beider Linien, wurde die sHBSS Lösung von den 

Petrischalen abgenommen und durch mehrfache Spülung mit calciumfreier 0,02% 

EDTA/PBS Lösung Reste extrazellulären Calciums entfernt. Die Petrischalen wurden 

anschließend mit 990µl 0,02% EDTA/PBS Lösung befüllt und mit 100 µl 10mM ATP Lösung 

(ATP gelöst in 0,02% EDTA/PBS) stimuliert, mit einer effektiven ATP 

Stimulationskonzentration von 1mM ATP. 

Für jedes aufgenommene Bild wurden bei der Auswertung sog. Regions of Interests (ROIs) 

in einzelnen Zellen definiert und die Fluoreszenz über ausgewählte Bereiche integriert. Die 

Fluoreszenz-Endwerte wurden als Fluoreszenzverhältnis (F/F0), genormt auf die 

Ausgangsfluoreszenz F0, dargestellt und somit die relative Fluoreszenzänderung bestimmt. 

Die Auswertung wurde mit Hilfe eigens geschriebener Macros und der Bild-Analyse Software 

„Scion-Image“ durchgeführt. 

 

2.2.4.2 SERCA 1/2/3 Inhibition mit Cyclopiazonic Acid 

 
Ziel dieser Versuchsreihe war die Inhibition der SERCA 1/2/3 durch die Substanz 

Cyclopiazonic acid. Bei der Substanz CPA handelt es sich um ein Mykotoxin einiger 

Penicillium cyclopium und Aspergillus flavus Arten (34). Die maximale Inhibition wurde bei 

CPA Konzentrationen zwischen 10-30µM beobachtet (22). 
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Zur Quantifikation von Veränderungen der intrazellulären Calciumkonzentration [Ca2+]i 

wurden die Tumorzellen der Linien EPLC 32M1 als auch H1339 mit dem 

Fluoreszenzfarbstoff Fluo-4 AM wie unter 2.3.1 beschrieben gefärbt.  

Durch Waschen der Petrischalen mit 0,02% EDTA/PBS Lösung wurde das extrazelluläre 

Calcium entfernt und die Schalen mit 990 µl 0,02% EDTA/PBS Lösung befüllt. Anschließend 

wurden eine Cyclopiazonic Acid Stimulationslösung hergestellt: 300µM CPA Lösung in 

0,02%/EDTA/PBS mit 1% DMSO. Mit einer Stimulationsmenge von 100µl führte dies zu 

einer effektiven Konzentration von 30 µM CPA. Durch Inhibition der SERCA 1/2/3 kam es zu 

einem Fluoreszenzanstieg, dieser wurde wie unter 2.2.4.1 beschrieben, aufgezeichnet und 

ausgewertet. 

 

2.2.5 Western Blot 

 

Die auf 75 cm² Kulturflaschen gewachsenen EPLC 32 M1 als auch die H1339 Zellen wurden 

nach Abnahme des Nährmediums zweifach mit eiskaltem Dulbecos PBS gewaschen und 

anschließend mit 10ml 0,02% EDTA Lösung in DPBS pro Kulturflasche bei 4°C für 25min 

inkubiert. Die Zellen wurden anschließend mit dem Zellschaber abgeschabt, in vorgekühlte 

50ml Blue Caps (BD Flacon Tubes) gefüllt und bei 800U für 8min zentrifugiert. Der 

Überstand wurde verworfen, und es erfolgte eine Resuspension in 1,5ml eiskaltem PBS. 

Nach Zentrifugation in einem 2ml Eppendorf Tube (10min, 450 RCF) wurde das gewonnene 

Zellpellet entsprechend des Herstellerprotokolls zur Gewinnung von 

Membranproteinextrakten mit Proteo Extract® Native Membrane Protein Extraction Kit, bzw. 

zur Gewinnung von Gesamtprotein mit Mammalian Protein Preparation Kit für intrazelluläre 

Proteine behandelt. Die gewonnenen Proteinextrakte wurden aliquotiert und bei –20°C bis 

zum Gebrauch für die Western Blot Versuche gelagert. Die Proteinextraktkonzentrationen 

wurden mit Hilfe des non-interfering Protein Assay Kit entsprechend des Herstellerprotokolls 

untersucht. Zum Erhalt von äquivalenten Proteinkonzentrationen erfolgte eine Verdünnung 

mit Hilfe von Extraktionspuffern des jeweiligen Extraktionskits. Zur Denaturierung wurden die 

äquimolaren Proteinextrakte mit Laemmli-Sample-Buffer bei einer Endkonzentration von 

32,5mM Tris, 2,5% ß-Mercaptoethanol, 1% SDS und 12,5% Glycerol bei 85°C für 10min 

behandelt. 

Der Western Blot wurde mit Hilfe des XCell SureLockTM Mini-Cell  und dem XCell IITM Blot 

Module Kit System durchgeführt. Abhängig von der Größe des Zielproteins erfolgte die 

Auftrennung der Proteinextrakte mit Hilfe SDS-PAGE auf 4-12% Bis-Tris mini-Gel für 

Calretikulin und SERCA 1/2/3 und auf Tris-Acetat mini-Gel für IP3R 1/2/3 und RyR. Als 

Marker für die niedermolekularen Proteine wurde SeeBlue®Plus2 Pre-Stained Standard und 

für die hochmolekularen Proteine HiMarkTM Pre-Stained High Molecular Weight Protein 
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Standard verwendet. Für das 4-12% Bis-Tris mini-Gel wurde NuPAGE® MOPS SDS 

Running Buffer und für das Tris-Acetat mini-Gel Novex® Tris-Acetate SDS Running Buffer 

nach Herstellerangaben verdünnt und mit Antioxidans (1:1000) versetzt. Nach der 

Gelelektrophorese wurde das Gel mit Hilfe des XCell IITM Blot Module Kit System auf eine 

Membran geblottet. Der Transferpuffer wurde aus NuPAGE® Transfer Buffer (20x), 15% 

Methanol, 1% Antioxidans und destilliertem Wasser hergestellt. Anschließend wurde die 

Membran 60min bei RT auf dem Schüttler mit Blocking-Lösung (0,1% Tween-20 zur 

Hintergrundreduktion, 10% TBS, 5% Milchpulver, dest. Wasser) inkubiert. Nach Abnahme 

der Blocking-Lösung erfolgte die Inkubation der Membran mit dem primären Antikörper 

(verdünnt in Blocking-Lösung) über Nacht bei 4°C. Am darauffolgenden Tag wurde die 

primäre Antikörperlösung entfernt und die Membran 3x in TBS-T Lösung gewaschen (0,1% 

Tween-20, 10% TBS, destilliertes Wasser). Nach 60min Inkubation bei RT auf dem Schüttler 

mit sekundärer Antikörperlösung (verdünnt in Blocking-Lösung) wurde die Membran 

abermals dreimal mit TBS-T Lösung gewaschen. Bei niedrigmolekularen Proteinen konnte 

anschließend die Membran in ß-Actin Antikörperlösung (1:5000 verdünnt in Blocking-

Lösung) zur Durchführung der Loading-Control für 60min bei RT inkubiert werden. Bei 

hochmolekularen Proteinen war dies nicht direkt möglich, da ß-Actin mit einem 

Molekulargewicht von 42kDa bei der Elektrophorese des Tris-Acetat-Geles nur noch im 

Sammelgel zu finden ist. Hier wurde die Loading-Control mittels eines separaten Western 

Blots auf 4-12% Bis-Tris-Gel durchgeführt. Nach Inkubation mit ß-Actin-Antikörperlösung 

wurde die Membran wiederum dreimal in TBS-T gewaschen. Anschließend wurde die TBS-

T-Lösung entfernt und die Chemiluminiszenzlösung nach Herstellerprotokoll angefertigt. Es 

folgte eine fünfminütige Inkubation der Membran bei RT mit Chemiluminiszenzlösung zur 

Darstellung der Antikörperkomplexe. Daraufhin wurde das Reagenz abgenommen und die 

Membran in die Filmkassette gelegt. Es folgte die Filmentwicklung in der Dunkelkammer. Die 

Filmauswertung erfolgte mit der Bildanalysesoftware „Image J“ (National Institutes of Health) 
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Tabelle 1: Übersicht über die für EPLC 32M1 und H1339 spezifischen Angaben zu Elekrophorese, Blotting 
und Antikörperverdünnung 

 

 Elektrophorese 
Spannung/ 
Gellaufzeit/ 
Temperatur 

Blotting 
Spannung/ 
Blottingdauer/ 
Temperatur 

Prim. AK 
 

Sek. AK 

EPLC 32M1     

Calretikulin 

150V/90min/RT 30V/80min/RT 

1: 1000 
goat anti-CRT, 
Santa Cruz Bio-
technology 

1:10000 
donkey anti-goat, 
Santa Cruz Bio-
technology 

SERCA1/2/3 

150V/90min/RT 30V/80min/RT 

1:50 
rabbit anti-
SERCA1/2/3, 
Santa Cruz Bio- 
technology 

1 :10000 
donkey anti-rabbit, 
Amersham Bioscienes 

IP3R 1/2/3 
150V/120min/ 
RT 

22V/180min/ 
4°C 

1:250 
rabbit anti- IP3R 
1/2/3, Santa Cruz 
Bio- technology 

1 :10000 
goat anti-rabbit, 
Biorad 

ß-Actin 

150V/90min/RT 30V/80min/RT 

1:5000 
mouse anti-ß-
actin (HRP), 
Abcam 

         ______ 

H1339      

Calretikulin 

150V/90min/RT 30V/80min/RT 

1: 1000 
goat anti-CRT, 
Santa Cruz Bio-
technology 

1:10000 
donkey anti-goat, 
Santa Cruz Bio-
technology 

SERCA1/2/3 

150V/90min/RT 30V/80min/RT 

1:50 
rabbit anti-
SERCA1/2/3, 
Santa Cruz Bio- 
technology 

1:10000 
goat anti-rabbit, 
Biorad 

IP3R 1/2/3 
150V/120min/ 

RT 
22V/180min/ 
4°C 

1:250 
rabbit anti- IP3R 
1/2/3, Santa Cruz 
Bio- technology 

1 :5000 
goat anti-rabbit, 
Biorad 

ß-Actin 

150V/90min/RT 30V/80min/RT 

1:5000 
mouse anti-ß-
actin (HRP), 
Abcam 

         ______ 

2.2.6 Indirekte Immunfluoreszenzfärbung 

 

Zur Immunfluoreszenzfärbung wurden Petrischalen mit Nährmedium befüllt und in diese 

Glasobjektträger eingebracht. Anschließend wurden EPLC 32M1 und H1339 

Zellsuspensionen auf die Objektträger pipettiert. Nach ca. 24 stündiger Inkubation im 

Brutschrank bei 37°C und 5% CO2 zeigten die Zellen ein adhärentes Wachstum auf den 

Objektträgern. Nach ca. 48 Stunden wurden die, mit Zellrasen bewachsenen, Objektträger 

aus den Petrischalen genommen, für fünf Minuten in 100% Aceton fixiert und anschließend 

in 10% NCS-haltiger sHBSS-Lösung gewaschen. Die Antikörper wurden 1:100 in 10% NCS 

in sHBSS Lösung verdünnt. Anschließend wurden die Zellen für eine Stunde bei 

Raumtemperatur mit den monoklonalen Antikörpern (EPLC 32M1: rabbit anti- IP3R 1/2/3, 
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Santa Cruz; H1339: rabbit anti-SERCA1/2/3, Santa Cruz) inkubiert. Daraufhin wurden die 

Zellen in 10% NCS-haltiger sHBSS-Lösung gewaschen und mit einem FITC-konjugiertem 

sekundärem anti-rabbit Antikörper inkubiert. Die Objektträger wurden mit dem 

Fluoreszenzmikroskop betrachtet. Mit Hilfe der digitalen CCD Kamera wurden sodann 

Aufnahmen des Fluoreszenzbildes gemacht. Zur Analyse der Fluoreszenzintensität wurden 

einzelne ganze Zellen – um Fluoreszenzüberlagerungen dicht beieinander liegender Zellen 

zu vermeiden – als ROI definiert und mit Hilfe der Bildanalyse Software „Scion“ ausgewertet. 

 

2.2.7 Small interfering (si) RNA Transfektion 

 

Zur Unterdrückung der Proteinexpression von IP3Rezeptoren I/II/III in resistenten EPLC 

32M1 Zellen und von SERCA 1/2/3 in naiven H1339 wurden die Zellen in modifizierter 

Anwendung des Herstellerprotokolls der Firma Dharmacon mit siRNA behandelt.  

Zur Versuchsvorbereitung wurden sowohl die naiven als auch die resistenten Tumorzellen 

entsprechend der in Tabelle 2 dargestellten Gruppen, in 25cm² Kulturflaschen zu je 200 000 

Zellen gesplittet – pro Gruppe wurden zwei Kulturflaschen angelegt. 

 

Tabelle 2: Versuchsgruppen der siRNA Transfektion 

 

EPLC 32M1 H1339 

naive resistent 

resistent naive 

resistent + siRNA IP3R I/II/III naive + siRNA SERCA 1/2/3 

resistent + ntRNA naive + ntRNA 

 

Es folgte eine Inkubation der Zellen für 24h bei 37°C und 5% CO2. 

 

EPLC 32M1: 

 

Zur Transfektionsvorbereitung wurden zunächst eine 20µM ntRNA-Stammlösung aus 5nmol 

ntRNA und 250µl sHBSS, eine 20µM siRNA IP3R I -Stammlösung aus 5nmol siRNA IP3R I 

und 250µl sHBSS, eine 20µM siRNA IP3R II -Stammlösung aus 5nmol siRNA IP3R II und 

250µl sHBSS, sowie eine 20µM siRNA IP3R III -Stammlösung aus 5nmol siRNA IP3R III und 

250µl sHBSS hergestellt.  

Zur Herstellung der ntRNA-Transfektionslösung, wurden 100 µl ntRNA-Stammlösung in 1ml 

Serum – und Antibiotikafreiem RPMI gelöst (2µM ntRNA-Lösung) und 5min bei RT inkubiert. 

Des weiteren wurden 40µl DharmaFECT 2 (Lipidreagenz zur Zellmembranpassage der 

ntRNA) in 1ml RPMI gelöst und 5min bei RT inkubiert. Anschließend wurden die ntRNA-

Lösung und die DharmaFECT 2-Lösung miteinander vermischt und 20min bei RT inkubiert. 
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Daraufhin wurde die entstandene Lösung mit RPMI-Nährmedium (mit Serum und Antibiotika) 

auf eine ntRNA Endkonzentration von 100nM verdünnt.  

Zur Herstellung der siRNA-Transfektionslösungen wurden aus den Stammlösungen der 

siRNA- IP3R I, siRNA- IP3R II, siRNA- IP3R III, wie oben bei ntRNA beschrieben, eine am 

Schluss zu je 100nM siRNA- IP3R I, 100nM siRNA- IP3R II sowie 100nM siRNA- IP3R III 

enthaltene Endlösung hergestellt.  

Nach Empfehlungen des Herstellers Dharmacon wurde eine Konzentration von 100nM 

ntRNA bzw. siRNA verwendet.  

Anschließend wurde von den, am Vortag vorbereiteten Gruppen, das Nährmedium 

abgenommen und die naive sowie die resistente Gruppe pro Kulturflasche mit 3,5ml reinem 

Nährmedium behandelt; die Gruppe resistent + siRNA IP3R I/II/III wurde pro Kulturflasche mit 

3,5ml der siRNA-Lösung behandelt, die Gruppe resistent + ntRNA mit jeweils 3,5ml ntRNA-

Lösung pro Kulturflasche.  

 

H1339: 

 

Die Konzentrationen der siRNA-SERCA1/2/3 sowie der ntRNA Lösungen mussten bei dieser 

Tumorzelllinie zur Sicherstellung der Lebens- und Wachstumsfähigkeit der Tumorzellen von 

100nM auf 5nM reduziert werden. Zur Konzentrationsanpassung erfolgte ein Monitoring der 

Zellüberlebensfähigkeit mittels Zellzahlbestimmung- abgestorbene Zellen verloren ihre 

Adhärenz und wurden bei Abnahme des alten Nährmediums entfernt, sodass bei einer 

Zellzahlbestimmung wie unter 2.2.2.1 dargestellt, eine Bestimmung der überlebenden Zellen 

erfolgte. 

Zur Transfektionsvorbereitung wurden auch hier entsprechend der Zelllinie EPLC 32M1 

zunächst ntRNA als auch siRNA-SERCA1, siRNA-SERCA2, siRNA-SERCA3 

Stammlösungen hergestellt. Die erhaltenen Stammlösungen wurden, wie für die EPLC 32M1 

beschrieben, in RPMI gelöst und mit DharmaFECT2 gemischt. Die Endkonzentration der 

ntRNA-Stammlösung wurde jedoch auf eine 5nM ntRNA-Nährmedium Lösung verdünnt. Die 

siRNA-Transfektionslösung wurde auf eine Endkonzentration von je 5nM siRNA-SERCA1, 

siRNA-SERCA2 und siRNA-SERCA3 verdünnt.  

Daraufhin wurde von den am Vortag vorbereiteten Gruppen das Nährmedium abgenommen 

und die naive, ebenso wie die resistente Gruppe  pro Kulturflasche mit 3,5ml reinem 

Nährmedium behandelt; die Gruppe naive + siRNA SERCA1/2/3 wurde pro Kulturflasche mit 

3,5ml der siRNA-Lösung behandelt, die Gruppe naive + ntRNA mit jeweils 3,5ml ntRNA-

Lösung pro Kulturflasche.  
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Anschließend wurden die Gruppen beider Zelllinien 48h bei 37°C und 5% CO2 inkubiert. 

Nach Herstellerangaben konnte nach 48h von einer maximalen Suppression der 

Genexpression ausgegangen werden, so dass zu diesem Zeitpunkt zur Überprüfung der 

Transfektion ein Western Blot (EPLC 32M1: IP3R I/II/III ; H1339: SERCA 1/2/3) durchgeführt 

wurde. Vier Tage nach der Transfektion wurde abermals ein Western Blot durchgeführt, um 

die Stabilität der Transfektion über vier Tage zu zeigen. 

 

2.2.7.1 Einfluss der siRNA Transfektion auf die Behandlung mit Cisplatin 

 

Nachdem eine stabile Transfektion über vier Tage bei beiden Zelllinien möglich war, wurden 

abermals die in Tabelle 2 dargestellten Gruppen in 25 cm² Kulturflaschen zu je 200 000 

Zellen angelegt; pro Gruppe wurden fünf Kulturflaschen angelegt. 

Es folgte eine Transfektion der beiden Zelllinien wie zuvor beschrieben. 48h nach 

Transfektion wurde das Transfektionsmedium bzw. das Nährmedium von den Zellkulturen 

entfernt. Es folgte eine dreistündige Inkubation in 0,5µg/ml Cisplatinhaltigem Nährmedium 

bei 37°C und 5% CO2. In den darauffolgenden 4 Tagen wurden, wie unter Absatz 2.2.3.1 

dargestellt, die Überlebenskurven der Zellen erstellt. 

 

2.2.8 Statistik 

 

Der one-way oder two-way ANOVA oder „ANOVA repeated measurements“ (kombiniert mit 

mehrfach paarweisen Vergleichen) wurden mit Hilfe des Softwareprogrammes „Sigma Stat“ 

ausgeführt. Bei der durchgeführten Varianzanalyse wurde ein P Wert kleiner als 0,05 als 

statistisch signifikant festgelegt.  
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3. Ergebnisse 

3.1 Relative Resistenzentwicklung auf Cisplatin 

3.1.1 Relative Resistenzentwicklung durch wiederholte Cisplatin-Inkubation 

 
In den Abbildungen 3.1 und 3.2 sind die Erstexposition der Zellen mit Cisplatin sowie die 

Ergebnisse der relativen Resistenzentwicklung graphisch dargestellt. 

 

Abbildung 3.1: 
Erstexposition der Zelllinien EPLC 32M1 und H1339 mit 0,5µg/ml , 1,0µg/ml und 2,0µg/ml Cisplatin  

 

 

Abbildung 3.1 zeigt die Ergebnisse der Erstexposition der Zelllinien EPLC 32M1 und H1339 

mit den Cisplatin-Konzentrationen 0,5µg/ml, 1,0µg/ml und 2,0µg/ml. Auf der x-Achse ist die 

Zeit nach Cisplatin-Exposition in Tagen (d) aufgetragen. Auf der y-Achse ist die 

Überlebensfraktion der Zellen in Prozent der 0-Kontrolle aufgetragen. Bei beiden Zelllinien ist 

eine konzentrationsabhängige Abnahme der Überlebensraten zu beobachten.  
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Abbildung 3.2:  
Darstellung des Vergleichs der Überlebensfraktionen der vorbehandelten Zellen im Vergleich zu den 
naiven Zellen der Zelllinien EPLC 32M1 und H1339 nach Behandlung mit 0,5µg/ml, 1,0µg/ml und 2,0µg/ml 
Cisplatin 
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Abbildung 3.2 zeigt die Ergebnisse des Vergleichs der Überlebensfraktionen der naiven, 

erstmalig mit Cisplatin behandelten Zellen der Zelllinien EPLC 32M1 und H1339, mit bereits 

vierfach mit 0,5µg/ml Cisplatin vorbehandelten Zellen beider Zelllinien. Auf der x-Achse ist 

die Zeit nach Cisplatin-Exposition in Tagen (d) aufgetragen. Auf der y-Achse ist die 

Überlebensfraktion der Zellen in Prozent der 0-Kontrolle aufgetragen. In den Abbildungen 

3.2A und 3.2B ist der Kurvenvergleich der Überlebensfraktionen der naiven mit den 

vorbehandelten Zellen nach Inkubation mit 0,5µg/ml Cisplatin dargestellt. In den Abbildungen 

3.2C und 3.2D ist der Kurvenvergleich der Überlebensfraktionen der naiven mit den 

vorbehandelten Zellen nach Inkubation mit 1,0µg/ml Cisplatin dargstellt. In den Abbildungen 

3.2E und 3.2F ist der Kurvenvergleich der Überlebensfraktionen der naiven mit den 

vorbehandelten Zellen nach Inkubation mit 2,0µg/ml Cisplatin dargestellt.  

Sowohl die Plattenepithelkarzinomzelllinie EPLC 32 M1 als auch die kleinzellige 

Lungenkarzinomzelllinie H1339 weist bei allen Cisplatinkonzentrationen eine signifikant (*P < 

0,01, two-way ANOVA) größere Überlebensfraktion der vorbehandelten Zellen im Vergleich 

mit den naiven Zellen auf. 

Diese Ergebnisse lassen auf eine Resistenzentwicklung der vierfach mit Cisplatin-

vorbehandelten Zellen schließen. Daher werden die vorbehandelten Zellen im weiteren 

Verlauf als teilresistente Zellklone bezeichnet.  

Die Cisplatin-Sensitivität wurde über fünf Passagen hinweg beurteilt. Dabei konnte keine 

Veränderung der Cisplatin-Resistenz in den teilresistenten Zellklonen beobachtet werden. 

 

3.1.2 Relative Resistenzentwicklung durch Inkubation mit BAPTA-AM 

 
In Abbildung 3.3 werden die Ergebnisse der Überlebenskurven der mit BAPTA-AM, einem 

intrazellulärem Calcium-Chelator, vorbehandelten Zellen mit den, unter Absatz 3.1.1 in 

Abbildung 3.1 dargestellten, Überlebenskurven der Erstexposition der naiven Zellen beider 

Zelllinien verglichen. 
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Abbildung 3.3: 
Vergleich der Überlebenskurven der naiven Zellen mit den BAPTA-AM vorbehandelten Zellen der 
Zelllinien EPLC 32M1 und H1339 nach Inkubation mit Cisplatin der Konzentration 0,5µg/ml, 1,0µg/ml und 
2,0µg/ml 
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Abbildung 3.3 präsentiert den Vergleich der Überlebenskurven der naiven Zellen bei 

Erstexposition mit 0,5µg/ml, 1,0µg/ml und 2,0µg/ml Cisplatin mit den Überlebenskurven der 

mit 50µM BAPTA-AM vorbehandelten Zellen nach Exposition mit 0,5µg/ml, 1,0µg/ml und 

2,0µg/ml Cisplatin. Auf der y-Achse ist die Überlebensfraktion der Zellen in Prozent der 0-

Kontrolle, auf der x-Achse ist die Zeitdauer in Tagen (d) nach Cisplatinbehandlung 

aufgetragen. In Abbildung 3.3A und 3.3B sind die Überlebensraten nach Exposition mit 

0,5µg/ml Cisplatin dargestellt. Abbildung 3.3C und 3.3D zeigt die Ergebnisse der Exposition 

mit 1,0µg/ml Cisplatin. Abbildung 3.3E und 3.3F zeigt die Resultate bei Inkubation mit 

2,0mg/ml Cisplatin.  

Sowohl die Plattenepithelkarzinomzelllinie EPLC 32 M1 als auch die kleinzellige 

Lungenkarzinomzelllinie H1339 weisen bei allen Cisplatinkonzentrationen eine signifikant (*P 

< 0,01, two-way ANOVA) größere Überlebensfraktion der mit 50µM BAPTA-AM 

vorbehandelten Zellen im Vergleich zu den naiven Zellen auf. 

Zusammenfassend zeigen diese Ergebnisse eine relative Resistenzentwicklung durch 

Pufferung des intrazellulären Calciums bei beiden untersuchten Zelllinien. 

 

3.2 Ca2+ Imaging 

3.2.1 ATP induziertes Ca2+ Signaling mit/ ohne extrazellulärem Ca2+ 

3.2.1.1 Ca2+ Signaling bei Stimulation mit 1mM ATP 

 

Das Gleichgewicht der intrazellulären Calcium-Homöostase wird aufrecht erhalten durch 

sarcoplasmatische/endoplasmatische Ca2+-ATPasen, welche Calcium in das ER pumpen, 

sowie Inositol-1,4,5-phosphat (IP3R) und Ryanodine (RyR) Rezeptoren, welche Calcium aus 

dem ER freisetzen. Innerhalb des ER ist Calcium an die Calciumpuffer Calretikulin und 

Calsequestrin gebunden. (vgl. Abbildung 3.4). 

Abbildung 3.4: 
Die intrazelluläre Ca

2+
-Homöostase 
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Die Stimulation der Zellen mit 1mM ATP führt zur Aktivierung des ATP-Rezeptors. Über eine 

G-Protein gekoppelte Kaskade kommt es zur Bildung von Inositoltriphosphat. Dieses bindet 

an den IP3-Rezeptor und führt zur Ca2+-Freisetzung aus dem ER. Das ausströmende Ca2+ 

führt zu einem Calcium induziertem Calciumausstrom aus dem ER über die RyR.  

Zur graphischen Veranschaulichung des zu beobachtenden Ca2+ Signalings bei Stimulation 

der mit Fluo-4 AM vorgefärbten, naiven Zellen des bronchialen Plattenepithelkarzinoms 

sowie des kleinzelligen Lungenkarzinoms mit 1mM ATP und vorhandenem extrazellulärem 

Calcium, dient beispielhaft Abbildung 3.5. 

 
Abbildung 3.5: 
Ca

2+
 Signaling bei Stimulation mit 1mM ATP und extrazellulärem Ca

2+ 

 

In Abbildung 3.5 ist auf der x-Achse die Zeit in Sekunden (sec) aufgetragen. Die digitale 

Kamera zeichnete 1 Bild/sec auf. Auf der y-Achse ist der Fluoreszenzanstieg als Quotient 

der aktuellen Fluoreszenz F zur Ausgangsfluoreszenz F0 dargestellt. In Abbildung 3.5A als 

auch 3.5B ist innerhalb der ersten 10 sec ein Basisfluoreszenzwert um 1,0 mit geringen 

Oszillationen zu beobachten. Nach 10 sec ist ein geringer Einbruch des Fluoreszenzwertes 

bei Zugabe von 1mM ATP (Pfeil) zu sehen. Dies ist auf die Verdunkelung durch die 

Pipettenspitze zurückzuführen. Hiernach kommt es bei beiden Zelllinien zu einem raschen 

Fluoreszenzanstieg und im weiteren Verlauf zu einem Abfall der Fluoreszenz auf den 

Ausgangsfluoreszenzwert.  

 

3.2.1.2 ATP induziertem Ca2+ Signaling mit/ ohne extrazellulärem Ca2+ 

 
In nachstehender Abbildung 3.6 sind die Ergebnisse des ATP induziertem Ca2+ Signalings 

mit und ohne extrazellulärem Ca2+ dargestellt. 
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Abbildung 3.6: 
Fluoreszenzanstieg bei Stimulation der naiven sowie teilresistenten Zellklone der Zelllinien EPLC 32M1 
und H1339 mit 1mM ATP mit bzw. ohne extrazellulärem Ca

2+ 

Die x-Achse in Abbildung 3.6A und 3.6B zeigt zwei Balken, die jeweils die 

Fluoreszenzergebnisse der naiven sowie der teilresistenten Zellklone der jeweiligen Zelllinie 

bei Stimulation mit 1mM ATP darstellen. Die x-Achse in Abbildung 3.6C und 3.6D 

repräsentiert jeweils die Balken naiver Zellen der beiden Zelllinien – der linke Balken zeigt 

die Ergebnisse naiver Zellen mit extrazellulärem Ca2+ bei Stimulation mit 1mM ATP, der 

rechte Balken veranschaulicht die Ergebnisse der naiven Zellen ohne extrazellulärem Ca2+ 

bei Stimulation mit 1mM ATP. Auf der y-Achse der Abbildungen 3.6A und 3.6B ist der 

Fluoreszenzanstieg (d.h. der intrazelluläre Ca2+- Anstieg) in Prozent der naiven Zellen 

angegeben und zusätzlich der Standardfehler auf 100% der naiven Zellen aufgetragen. Die 

y-Achse der Abbildungen 3.6C und 3.6D zeigt den Fluoreszenzanstieg in Prozent der naiven 

Zellen mit extrazellulärem Ca2+. Ferner ist der Standardfehler auf 100% der naiven Zellen mit 

extrazellulärem Ca2+ aufgetragen. 

Der Vergleich des Fluoreszenzanstieges der naiven sowie der teilresistenten Zellklone der 

Zelllinie EPLC 32M1 auf Stimulation mit 1mM ATP und extrazellulärem Calcium ergibt einen 

signifikant (n=32-38, *P < 0,001 , t-Test) erhöhten Fluoreszenzanstieg der naiven Zellen. 

Betrachtet man die Stimulationsresultate der naiven EPLC 32M1 Zellen mit 1mM ATP mit 

bzw. ohne extrazellulärem Ca2+, so zeigen sich keine signifikanten (n= 121-158, *P >0,05 , t-
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Test) Unterschiede. Bei gegensätzlicher Beurteilung der Ergebnisse der H1339 Zellen zeigt 

sich bei Stimulation mit 1mM ATP und extrazellulärem Calcium ein signifikant (n=55-57, *P < 

0,001 , t-Test) erhöhter Fluoreszenzanstieg der naiven Zellen im Vergleich zu den 

teilresistenten Zellklonen. Die Stimulationsresultate der naiven Zellen mit 1mM ATP mit bzw. 

ohne extrazellulärem Calcium zeigen keine signifikanten (n=121-158, *P > 0,05 , t-Test) 

Unterschiede.  

 

3.2.2 SERCA 1/2/3 Inhibition mit Cyclopiazonic Acid 

 

Zur weiteren Untersuchung des [Ca2+]ER – Gehaltes erfolgte die Inhibition der SERCA 1/2/3 

Pumpen mittels Cyclopiazonic Acid. Dies führte zu einer Freisetzung von Calcium aus dem 

endoplasmatischem Retikulum durch einen Ca2+-leak. Der bei diesen Versuchen gemessene 

Fluoreszenzanstieg stellt somit ein indirektes Maß des [Ca2+]ER – Gehaltes dar (vgl. 

Abbildung 7). 

 

Abbildung 3.7: 
Ca

2+
 Signaling in EPLC 32M1 und H13399 nach Stimulation mit 30µM CPA 

 

Auf der x-Achse der Grafiken A und B sind jeweils im linken Balken die Ergebnisse der 

naiven Zellen, im rechten Balken die Ergebnisse der teilresistenten Zellklone der jeweiligen 

Zelllinien dargestellt. Auf der y-Achse ist der Fluoreszenzanstieg in Prozent der naiven Zellen 

sowie der Standardfehler auf 100% der naiven Zellen aufgetragen. 

Zusammenfassend kann man im Rahmen der EPLC 32M1 und der H1339 Resultate 

feststellen, dass die teilresistenten Zellklone im Vergleich zu den naiven Zellen einen 

signifikant (EPLC: n=4-54, *P< 0,001, t-Test; H1339: n=88-106, *P< 0,001, t-Test) 

verminderten Fluoreszenzanstieg, d.h. einen verminderten [Ca2+]ER –Gehalt, aufweisen. 
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3.3 Western Blot 

 
Zur Untersuchung der Expression der maßgeblich an der Regulation der intrazellulären Ca2+-

Homöostase beteiligten Proteine erfolgte eine Western Blot Analyse folgender Proteine: 

Intraretikuläre Calciumpuffer Calretikulin und Calsequestrin 1/2, sowie der 

Calciumkanalproteine Inositoltriphosphat-Rezeptor 1/2/3, SERCA 1/2/3 als auch der 

Ryanodine-Rezeptor 1/2/3. Analysiert werden konnten die Proteine Calretikulin, IP3R 1/2/3 

und SERCA 1/2/3. Die Proteine Calsequstrin 1/2 und Ryanodine-Rezeptor 1/2/3 lagen 

unterhalb der Nachweisgrenze mittels Western Blot und konnten deshalb nicht dargestellt 

werden. Als Loading-Control diente ß-Actin bei allen durchgeführten Versuchen. 

In nachfolgender Abbildung 3.8 sind zunächst die untersuchten Proteinbanden beispielhaft 

dargestellt. 

 

Abbildung 3.8: 
Versuchsergebnisse Western Blot 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Die Auswertung der Western Blot Analysen ist in nachfolgender Abbildung 3.9 dargstellt. 
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Abbildung 3.9: 
Graphische Darstellung der Western Blot Ergebnisse 

 

 

Auf der x-Achse in Abbildung 3.9 repräsentieren die schwarzen Balken die Ergebnisse der 

naiven Zellen, die weißen Balken die der teilresistenten Zellen der jeweiligen Zelllinie. Auf 

der y-Achse ist die Dichteintensität der Schwärzung des Western Blot Films als Maß für die 

Proteinexpression in Prozent der naiven Zellen angegeben und zusätzlich der Standardfehler 

in Prozent der naiven Zellen angetragen. 

Zusammenfassend kann festgehalten werden, dass im Rahmen der Resultate der EPLC 

32M1 Zellen keine signifikanten (nCRT=3, nSERCA1/2/3=6, *P > 0,05 ; paired t-Test) Unterschiede 

in der Expression von Calretikulin (CRT) und SERCA 1/2/3 zwischen naiven und 
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teilresistenten Zellklonen bestehen. Allerdings kann eine signifikant (n=5, *P < 0,05, paired t-

Test) höhere Proteinexpression von IP3R 1/2/3 in teilresistenten, im Vergleich zu naiven 

Zellklonen nachgewiesen werden. Betrachtet man die Ergebnisse der H1339 Zellen, so 

zeigen sich keine signifikanten (nCRT=3, nIP3R=3, *P > 0,05, paired t-Test) Unterschiede 

zwischen naiven und teilresistenten Zellklonen bei der Proteinexpression von CRT und IP3R 

1/2/3. Die Proteinexpression von SERCA 1/2/3 ist in naiven Zellklonen (H1339) signifikant 

(n= 4, *P < 0,05, paired t-Test) höher als in teilresistenten Zellklonen. 

 

3.4 Indirekte Immunfluoreszenzfärbung 

 
Um die mittels Western Blot gewonnenen Ergebnisse zu verifizieren, wurden die IP3R 1/2/3 

der EPLC 32M1 sowie die SERCA 1/2/3 der H1339 Zellen mit Hilfe indirekter 

Immunfluoreszenzfärbung dargestellt. Die Ergebnisse der indirekten 

Immunfluoreszenzfärbung der naiven und teilresistenten Zellen der Zelllinien EPLC 32M1 

und H1339 sind in Abbildung 3.10 graphisch ebenso wie beispielhaft bildlich dargestellt. 

 
Abbildung 3.10: 
Übersicht über die Versuchsergebnisse der indirekten Immunfluoreszenzfärbung 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
In Abbildung 3.10A sind zunächst die Ergebnisse der Immunfluoreszenzfärbung der IP3R 

1/2/3 sowohl in naiven als auch in teilresistenten Zellklonen bildlich gezeigt; der Querbalken 

hat das Maß von 10µM. Die deutlich zu sehenden hellen Strukturen veranschaulichen gut die 

Anordnung der IP3R 1/2/3 entlang des ER. Abbildung 3.10B zeigt die Ergebnisse der 

Immunfluoreszenzfärbung der SERCA 1/2/3 in naiven sowie teilresistenten H1339-Zellen; 

der Querbalken hat das Maß von 2µM. Auch hier zeigt sich anhand des gewundenen 

Fluoreszenzmusters die Anordnung der SERCA 1/2/3 entlang des ER. Die dazugehörigen 

Grafiken zeigen auf der x-Achse die Ergebnisse sowohl der naiven als auch der 
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teilresistenten Zellklone. Auf der y-Achse ist die Leuchtintensität der Immunfluoreszenz in 

Prozent der naiven Zellen angegeben und zusätzlich der Standardfehler auf 100% der 

naiven Zellen angegeben. 

Insgesamt lässt sich im Bereich der EPLC 32M1 Zellen eine signifikant (n=36 Zellen, 

*P<0,001, t-Test) höhere Fluoreszenzintensität, d.h. IP3R 1/2/3 Expression, der 

teilresistenten Zellklone im Vergleich zu den naiven Zellen feststellen. Betrachtet man die 

Zelllinie H1339, so zeigt sich eine signifikant (n=16 Zellen,*P<0,001, t-Test) verminderte 

SERCA 1/2/3 Expression in teilresistenten Zellen verglichen mit naiven Zellen.  

 

3.5 Small interfering (si) RNA Transfektion 

 

Mit Hilfe einer small interfering (si) RNA Transfektion erfolgte eine Unterdrückung der 

Expression von IP3R 1/2/3 in resistenten EPLC 32M1 Zellen mit der Fragestellung, ob die 

Resistenz reversibel ist. Die Suppression der SERCA 1/2/3 Pumpen in naiven H1339 Zellen 

sollte klären, ob eine Resistenz induzierbar ist. 

Zunächst wurde der Erfolg der durchgeführten Transfektionen nach 48 Stunden bei 

Abschluss der Transfektion, sowie nach sechs Tagen zur Sicherstellung der Stabilität der 

Transfektion mittels Western Blot Analyse überprüft. 

In nachfolgender Abbildung 3.11 ist das Ergebnis des Western Blots nach 48h sowie die 

Überlebenskurven der transfizierten Zellen nach Inkubation mit 0,5µg/ml Cisplatin dargestellt. 

Als loading-control der Western Blots diente ß-Actin. 
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Abbildung 3.11: 
Überlebenskurven der mit siRNA vorbehandelten Zellen nach Inkubation mit 0,5µg/ml Cisplatin 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Abbildung 3.11A und 3.11B zeigen zunächst die erfolgreiche siRNA Transfektion: die IP3R 

1/2/3 Expression in teilresistenten EPLC Zellklonen, die mit siRNA behandelt wurden, konnte 

auf ca. 64% der teilresistenten und mit ntRNA behandelten Zellklone reduziert werden. Die 

SERCA 1/2/3 Expression in naiven, mit siRNA behandelten, H1339 Zellen konnte auf 75% 

der naiven, mit ntRNA behandelten, Zellen reduziert werden.  

Betrachtet man die Überlebenskurven nach Inkubation mit 0,5µg/ml Cisplatin in Abbildung 

3.11A und 3.11B, so ist zunächst festzuhalten, dass auf der x-Achse die Zeit nach Cisplatin-

Exposition in Tagen (d) und auf der y-Achse die Überlebensfraktion der Zellen in Prozent der 

0-Kontrolle, d.h. der nicht mit Cisplatin vorbehandelten Zellen, aufgetragen ist.  

Abbildung 3.11A zeigt, dass die Reduktion der IP3R 1/2/3 in teilresistenten EPLC 32M1 

Zellen zu einer Verminderung der Überlebensrate verglichen mit den teilresistenten, ntRNA 

behandelten Zellen führt und sich der Überlebenskurve der naiven EPLC 32M1 Zellen 

angleicht. Die Überlebensraten der teilresistenten siRNA Zellen ist signifikant verringert im 

Vergleich zu den teilresistenten ntRNA EPLC 32M1 Zellen (*P<0,01, two way ANOVA). 

Abbildung 3.11B zeigt, dass die Reduktion der SERCA 1/2/3 ATPasen in naiven H1339 

Zellen zu einer erhöhten Überlebensfraktion nach Cisplatinexposition führt, verglichen mit 

den naiven Zellen, welche mit ntRNA behandelt wurden. Darüber hinaus nähert sich die 

Überlebensfraktion der naiven siRNA H1339 Zellen den Überlebenskurven der teilresistenten 

H1339 Zellklone an. Die Überlebensraten der naiven, SERCA 1/2/3 supprimierten H1339 
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Zellen ist signifikant höher als die Überlebensraten der naiven ntRNA H1339 Zellen 

(*P<0,01, two way ANOVA). 

 

4. Diskussion  

4.1  Relative Resistenzentwicklung auf Cisplatin 

 

In der histologischen Klassifikation der malignen epithelialen Lungentumore sind vor allem 

zwei große Gruppen zu unterscheiden: das nicht-kleinzellige Lungenkarzinom (NSCLC) 

sowie das kleinzellige Lungenkarzinom (SCLC). Ungefähr 85% aller Lungentumore sind der 

NSCLC-Klassifikation zuzuordnen, wovon wiederum 25-30% den Plattenepithelkarzinom-

Tumoren, 40% den Adenokarzinomen und ca. 10-15% den großzelligen Tumoren 

zugeordnet werden können. 15% aller Lungentumore sind kleinzellige Lungenkarzinome 

(American Cancer Society). In dieser Arbeit wurden mit der Auswahl der EPLC 32M1 Zellen, 

als einer der häufigsten Subtypen des nicht-kleinzelligen Lungenkarzinoms, sowie mit der 

Auswahl der kleinzelligen H1339 Zelllinie jeweils ein Vertreter der großen histologischen 

Gruppen gewählt.  

Cisplatin ist in der medikamentösen Therapie sowohl kleinzelliger als auch nicht-kleinzelliger 

Lungenkarzinome eines der effektivsten und eines der am häufigsten verwendeten 

Chemotherapeutika. In den im Rahmen dieser Arbeit durchgeführten Untersuchungen zur 

Darstellung der Resistenzentwicklung der Lungenkarzinomzellen, war es das Ziel die „in 

vivo“ Situation bestmöglich nachzuahmen. Hierzu wurden die Cisplatin-Konzentrationen von 

0,5µg/ml, 1,0µg/ml und 2,0µg/ml, als auch die Inkubationsdauer von 3h analog einer von de 

Jongh et al.(23) durchgeführten Studie gewählt. In dieser Studie wurde die in vivo Cisplatin-

Pharmakokinetik von 268 erwachsenen Patienten analysiert. De Jongh et al. kamen zu dem 

Ergebnis, dass die Plasmakonzentration des freien ungebundenen Cisplatin seinen 

Spitzenwert ca. 3h nach intravenöser Applikation mit ungefähr 1µg/ml erreicht und 

anschließend ein schneller Abfall der Plasmaspiegel folgt. Da in den Studienergebnissen 

jedoch eine gewisse Streubreite der Cisplatin-Plasmakonzentrationen von ca. 0,5µg/ml bis 

zu 2,0µg/ml zu beobachten war, wurde im Rahmen dieser Arbeit auch die 

Resistenzentwicklung auf diese Cisplatin-Plasmakonzentrationen getestet. Darüber hinaus 

werden im klinischen Alltag in der Regel vier Zyklen Chemotherapie verabreicht, mit der 

Option weiterer zwei Zyklen. Aus diesem Grund wurden die Lungenkarzinomzellen dieser 

Arbeit vierfach mit Cisplatin der oben genannten Konzentrationen behandelt.  

Im Rahmen der Cisplatin-Resistenzversuche konnte eine signifikante relative 

Resistenzentwicklung der vierfach mit Cisplatin vorbehandelten Zellen gezeigt sowie 

teilresistente Zellklone beider Linien gewonnen werden. Um einen Verlust der gewonnenen 
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Cisplatin-Resistenz zu verhindern und eine konstante Resistenz für alle weiteren Versuche 

sicherzustellen, wurden die teilresistenten Zellklone für maximal vier Passagen kultiviert und 

anschließend verworfen. 

Calcium ist ein an nahezu allen intrazellulären Prozessen, darunter an Proliferation, 

Apoptose und somit möglicherweise bei der Resistenzentwicklung, beteiligtes Ion (8;9;15). 

Nachdem es gelungen ist die Resistenzentwicklung in vitro nachzuahmen, schloss sich die 

Frage an, ob Calcium an dieser Resistenzentwicklung beteiligt ist. Durch Pufferung des 

intrazellulären Calciums mit Hilfe des Calcium-Chelators BAPTA-AM konnte ebenfalls eine 

relative Resistenzentwicklung nachgeahmt werden. Dies ließ die Schlussfolgerung zu, dass 

Calcium an der Resistenzentwicklung sowohl kleinzelliger als auch nicht-kleinzelliger 

Lungenkarzinomzellen beteiligt ist. Auch andere Arbeitsgruppen wie z.B. Tsunoda et al. 

konnten den Zusammenhang einer verminderten intrazellulären Calcium-Konzentration und 

einer Cisplatinresistenzentwicklung aufzeigen: in Blasenkarzinomzelllinien konnte nach 

Inkubation mit BAPTA-AM ebenfalls eine verminderte Cisplatin-Sensitivität nachgewiesen 

werden (74). Ferner berichteten Liang et al. über eine um zwei Drittel verminderte 

intrazelluläre freie Calcium-Konzentration in cisplatinresistenten humanen 

Adonokarzinomzellen A549 der Lunge im Vergleich zu den naiven Zellklonen (45). 

 

4.2 Ca2+ Imaging 

 

Im Rahmen der eigens durchgeführten Untersuchungen, in denen eine relative 

Resistenzentwicklung durch Pufferung des intrazellulären Calciums gezeigt werden konnte, 

konnte ein Zusammenhang zwischen Calcium und Resistenzentwicklung aufgezeigt werden. 

Doch daraus ergab sich auch die Fragestellung durch welche Regulationsmechanismen 

Calcium, als so vielseitiges eingesetztes Signalmolekül, gesteuert werden kann. Ein sehr 

komplexes Ca2+-Signaling Toolkit ermöglicht innerhalb einer Zelle ein sehr unterschiedliches 

räumlich - zeitliches Ca2+-Muster bzw. eine unterschiedliche Ca2+-Dynamik (8;9). Beispielhaft 

hierfür zu nennen sind anhaltende oder lang andauernde Ca2+-Oszillationen, welche die 

Proliferation über den Calcineurin/NFAT Signalweg anregen (46;48) oder im Kontrast dazu, 

kurze, hohe [Ca2+]c-Anstiege, welche zu einer mitochondrialen Calciumüberladung und damit 

einhergehenden Apoptoseinduktion führen (25;54;56). Dieses Gleichgewicht muss sensiblen 

Regulationsmechanismen unterliegen um unkontrollierter Proliferation oder reduzierter 

Apoptose Einhalt zu gebieten.  

Im Rahmen der weiteren Untersuchungen zur Calcium-Homöostase in NSCLC und SCLC 

Zellen wurden Calcium-Signaling Versuche durchgeführt. Die Zellen wurden hierzu mit dem 

Calcium-Indikator Fluo-4 AM gefärbt. Hierbei handelt es sich um eine Weiterentwicklung des 

weit verbreiteten Calcium-Indikators Fluo-3 AM. Fluo-4 AM ist ein 
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Einzelwellenlängenfarbstoff, der einfach mit einem Argonlaser (488nm) für konfokale 

Mikroskopie angeregt werden kann. Seine relativ niedrige Ca2+-Affinität (Kd ~ 345nM) führt zu 

geringen Problemen bezüglich der Pufferung ruhender intrazellulärer Calcium Level. In Ruhe 

und der Ca2+-freien Form ist die Fluo-4-Eigenfluoreszenz minimal, nach Ca2+-Bindung steigt 

die Fluoreszenz um das 100-fache. Fluo-4 ist also ein geeigneter Fluoreszenzfarbstoff, um 

dynamische photometrische Messungen durchzuführen (30;59). 

Bei diesen Versuchen konnte zunächst gezeigt werden, dass durch Stimulation der mit Fluo-

4 gefärbten Zellen mit 1mM ATP eine Entleerung des ER, welches als intrazellulärer 

Calciumspeicher fungiert, erfolgt. Leider ist eine verlässliche, direkte Messung des [Ca2+]ER 

durch Fluoreszenzindikatoren nicht praktikabel. Daher wurde der durch ATP-Stimulation 

resultierende Fluoreszenzanstieg als semiquantitative Abschätzung des ER-Calcium 

Gehaltes gewertet. [Ca2+]c-Anstiege entstehen entweder durch Entleerung intrazellulärer 

Ca2+-Speicher oder durch Ca2+-Einstrom aus dem Extrazellulärraum. Zur grundlegenden 

Unterscheidung, ob bei der Stimulation mit 1mM ATP der extrazelluläre Calcium-Gehalt und 

somit auch der Einstrom von Calcium aus dem Extrazellulärraum, eine bedeutende Rolle 

spielt, wurden bei naiven Zellen beider Linien Stimulationsversuche mit bzw. ohne 

extrazellulärem Calcium durchgeführt (vgl. Abb. 3.6). Hierbei konnten keine signifikanten 

Unterschiede in der Stimulation gezeigt werden, woraus geschlossen werden konnte, dass 

der Einstrom von extrazellulärem Calcium bei der Aufrechterhaltung der intrazellulären 

Calcium-Homöostase in H1339 als auch EPLC 32M1 Zellen nur eine untergeordnete Rolle 

spielt. Somit konnte im weiteren Verlauf der weiteren Untersuchungen der Fokus auf die 

intrazelluläre Calcium-Homöostase gelegt werden. Die Stimulation naiver als auch 

teilresistenter Zellklone mit 1mM ATP zeigte bei beiden Zelllinien einen signifikant 

verminderten Fluoreszenzanstieg der teilresistenten Zellklone im Vergleich zu den naiven 

Zellen. Der [Ca2+]ER –Gehalt ist somit in teilresistenten Zellklonen im Vergleich zu naiven 

Zellklonen signifikant vermindert. Zur weiteren Verifizierung des gewonnenen Ergebnisses 

wurden Inhibitionsversuche der SERCA 1/2/3 Pumpen mittels Cyclopiazonic Acid 

durchgeführt. Cyclopiazonic Acid ist ein Mycotoxin, das durch einige Penicillin Cyclopium 

und Aspergillus Flavus Stämme produziert wird (34). Cyclopiazonic Acid vermindert die 

SERCA Affinität für ATP und führt somit zur Inhibition (41). Alle SERCA Isoformen haben die 

gleiche Sensitivität für Cyclopiazonic Acid, womit eine gleiche Inhibition gewährleistet war 

(41). Die Inhibition der SERCA 1/2/3 Pumpen führt zu einem sukzessiven Verlust von Ca2+ 

über die Membran des ER. Hierbei konnte bei den EPLC 32M1 als auch H1339 Zellen ein 

signifikant verminderter Fluoreszenzanstieg in teilresistenten Zellklonen im Vergleich zu 

naiven Zellklonen festgestellt werden. Das zunächst gewonnene Ergebnis konnte somit 

bestätigt werden.  
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Untersuchungen der eigenen Arbeitsgruppe zeigten einen verminderten [Ca2+]ER-Gehalt 

sowohl in naiven Lungenkarzinomzellen der kleinzelligen Zelllinie H1339, als auch in 

Adenokarzinomzellen der Zelllinie HCC, im Vergleich zu dem [Ca2+]ER-Gehalt in normalen 

humanen Bronchialepithelzellen (NHBE). Dieser Unterschied konnte allerdings nicht für die 

Zelllinie EPLC 32M1 bzw. für die großzellige Lungenkarzinomzelllinie (LCLC) dargestellt 

werden (6). Die in den Untersuchungen dieser Arbeit gewonnenen Ergebnisse eines 

verminderten [Ca2+]ER-Gehaltes in teilresistenten Karzinomzellen im Vergleich zu naiven 

Karzinomzellen stellt also eine Weiterentwicklung der Apoptoseresistenz im Vergleich zum 

normalen humanen Bronchialepithel dar. Padar et al. konnten anhand der humanen 

Adenokarzinomzelllinie A549 der Lunge einen verminderten [Ca2+]ER-Gehalt in Taxol-

resistenten Klonen sowie einen verminderten Ca2+-Einstrom über speicherabhängige 

Calciumkanäle (store-operated calcium channels) in Taxol-resistenten Zellen nachweisen. 

Auch Vanoverberghe et al. konnten einen reduzierten [Ca2+]ER-Gehalt mit Apoptoseresistenz 

assoziieren. Hierbei handelte es sich um apoptoseresistente, neuroendokrine 

Prostatakarzinomzellen, die einen verminderten [Ca2+]ER-Gehalt durch verminderte 

Expression von SERCA 2b und Calretikulin sowie durch reduzierten speicherabhängigen 

Calcium Einstrom aufwiesen (76). Chen et al. beschreiben einen reduzierten [Ca2+]ER-Gehalt 

in Doxorubicin-resistenten Mammakarzinomzellen (16). Die Autoren stellen die Hypothese 

auf, dass durch zytotoxische Agenzien wie zum Beispiel Doxorubicin reaktive freie 

Sauerstoffradikale entstehen, welche die in ER, Mitochondrien und Plasmamembran 

enthaltenen Sauerstofftransportmechanismen beschädigen. Diese Schädigung führt zu einer 

Störung der intrazellulären Calcium-Homöostase mit einem einhergehenden Anstieg des 

intrazellulären Calcium-Spiegels und einer daraus resultierenden Apoptoseinduktion. 

Allerdings werden in dieser Studie die dem verändertem [Ca2+]ER-Gehalt zugrunde liegenden 

Mechanismen nicht untersucht. Fasst man die gewonnenen eigenen 

Untersuchungsergebnisse sowie die aktuelle Fachliteratur zusammen, so scheint ein 

verminderter [Ca2+]ER-Gehalt mit einer Resistenz auf Chemotherapeutika korreliert zu sein. 

 

4.3 Western Blot und Immunfluoreszenzfärbung 

 

Zur Analyse der molekularen Grundlagen, die den reduzierten ER-Calcium-Gehalt in 

teilresistenten Zellklonen der Zelllinien EPLC 32M1 und H1339 bestimmt, erfolgte mittels 

Western Blot die semiquantitative Bestimmung der wichtigsten, an der intrazellulären 

Calcium-Homöostase beteiligten Proteine, nämlich SERCA 1/2/3 , IP3R 1/2/3, RYR 1/2/3, 

Calsequestrin 1/2 und Calretikulin. Die Proteine Calsequestrin 1/2 als auch RYR1/2/3 lagen 

in beiden Zelllinien unterhalb der Nachweisgrenze. Daraus kann geschlossen werden, dass 

Calsequestrin 1/2 und RYR1/2/3 in H1339 oder EPLC 32M1 Zellen nur in geringem Ausmaß 
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exprimiert sind und mittels Western Blot Analyse nicht detektiert werden können. Hieraus 

kann abgeleitet werden, dass Calsequestrin 1/2 und RYR1/2/3 in der intrazellulären Calcium-

Homöostase der Lungenkarzinomzellen lediglich eine untergeordnete Rolle spielen. 

Betrachtet man die Ergebnisse der Western Blot Analyse von naiven sowie teilresistenten 

EPLC 32M1 Zellen, so zeigt sich, dass CRT und SERCA 1/2/3 keine signifikanten 

Unterschiede in der Proteinexpression aufweisen; allerdings sind IP3R 1/2/3 in teilresistenten 

Zellklonen signifikant stärker exprimiert als in naiven Zellklonen. In H1339 Zellen zeigten sich 

keine signifikanten Unterschiede in der Expression von IP3R 1/2/3 und CRT. Jedoch sind in 

teilresistenten Zellklonen die SERCA 1/2/3 Pumpen signifikant vermindert exprimiert.  

Die in der Western Blot Analyse ermittelten Ergebnisse wurden mit Hilfe der 

Immunfluoreszenzfärbung von IP3R 1/2/3 in naiven und teilresistenten EPLC 32M1 

Zellklonen und SERCA 1/2/3 in naiven und teilresistenten H1339 Zellklonen überprüft. Die 

Immunfluoreszenzfärbung ermöglicht neben einer Quantifizierung der Proteinmenge den 

Überblick über die Verteilung der markierten Proteine innerhalb der Zelle sowie deren 

genaue subzelluläre Lokalisation.  

In teilresistenten EPLC 32M1 Zellen konnte im Vergleich zu naiven Zellklonen eine 

signifikant vermehrte IP3R 1/2/3 - Expression nachgewiesen werden. Außerdem konnte in 

naiven ebenso wie in teilresistenten Zellklonen eine intrazelluläre Lokalisation der IP3R 1/2/3 

gezeigt werden; betrachtet man zusätzlich das Verteilungsmuster der Rezeptoren (vgl. Abb. 

3.10) so zeigt sich ein streifiges Muster, welches ein typisches Merkmal des ER bildet. Daher 

kann man davon ausgehen, dass die IP3R 1/2/3 an der äußeren Membran des ER lokalisiert 

sind. In naiven H1339 Zellen zeigte sich eine signifikant erhöhte Expression von SERCA 

1/2/3 verglichen mit den teilresistenten Zellklonen. Ferner konnte hier eine intrazelluläre, 

streifenförmige Distribution der SERCA 1/2/3 Pumpen gezeigt werden. Somit kann davon 

ausgegangen werden, dass die SERCA 1/2/3 Pumpen an der Membran des ER lokalisiert 

sind. 

Fasst man die Ergebnisse der Western Blot Analyse und der Immunfluoreszenzfärbung 

zusammen, so lassen sich folgende zwei Zwischenhypothesen als Grundlage für die 

verminderte Calcium-Homöostase in teilresistenten Zellklonen beider Zelllinien formulieren: 

 

1) In teilresistenten EPLC 32M1 Zellen führt eine signifikant erhöhte Expression von 

IP3R 1/2/3 an der Membran des ER zu einem Leckstrom über die Membran des ER. 

Dies bedingt den signifikant verminderten intraretikulären Calcium-Speicher. 

2) Teilresistente H1339 Zellen zeigen eine signifikant verminderte SERCA 1/2/3 

Expression an der Membran des ER, was zu einem verminderten Ca2+-Transport in 

das ER und somit zu einem verminderten ER- Ca2+-Gehalt führt. 
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Die IP3-Rezeptor Isoformen haben außerhalb des Zentralen Nervensystems ein sehr 

unterschiedliches und teilweise überlappendes Expressionsmuster. In ein und der selben 

Zelle können somit unterschiedliche Isoformen parallel auftreten und darüber hinaus kann 

sich das Expressionsmuster auch im Rahmen der Differenzierung einer Zelle verändern (29). 

Basierend auf diesen Grundlagen wurden im Rahmen der vorliegenden Arbeit die IP3R 1/2/3 

als Gesamtheit untersucht. Im Wesentlichen geht man davon aus, dass die IP3-Rezeptoren 

1/2/3 intrazellulär an der Membran des ER lokalisiert sind (28;29;57;64). Der IP3-Rezeptor ist 

ein Calcium-Kanal der sich aus einem Tetramer aus vier Untereinheiten zusammensetzt und 

durch Bindung von IP3 geöffnet wird (29). Im Gegensatz hierzu stehen die Ergebnisse von 

Splettstoesser et al., die einen Cisplatin induzierten Apoptosemechanismus in HeLa-S3 

Zellen durch Ca2+-Einstrom über an der Plasmamembran gelegene IP3 Rezeptoren in 

Abhängigkeit von der extrazellulären schreiben Ca2+- Konzentration beschreiben (69). 

Dennoch konnte in den vorliegenden Untersuchungen mit Hilfe der 

Immunfluoreszenzfärbung eine intrazelluläre, in der ER-Membran gelegene, Lokalisation der 

IP3-Rezeptoren in EPLC 32M1 Zellen gezeigt werden. Sakakura et al. konnten eine 

Überexpression von IP3R Typ 3 in einer bereits in das Peritoneum metastasierten 

Magenkarzinomzelllinie zeigen. IP3R Typ 3 war in dem ursprünglichen, nicht metastasierten 

Tumor, sowie in den gesunden Magenepithelzellen nur schwach exprimiert. Die Autoren 

schlussfolgerten, dass die IP3R Typ 3 Expression mit dem Übergang in einen 

metastasierenden Phenotyp des Magenkarzinoms korreliert (65). Diese Ergebnisse zeigen 

Parallelen zu der Resistenzentwicklung in EPLC 32M1 Lungenkarzinomzellen auf, die mit 

einer erhöhten IP3R 1/2/3 Expression auch in ein aggressiveres Stadium übergeht. Darüber 

hinaus gibt es zunehmend Hinweise darauf, dass IP3R abhängige Signalwege eine zentrale 

Rolle in der Apoptose spielen, da die exzessive Ca2+-Freisetzung aus dem ER über die IP3R 

1/2/3, wie bereits einleitend beschrieben, für die mitochondriale Ca2+-Überladung und 

folgende Apoptoseinduktion verantwortlich ist (25;32;37). Ferner gibt es Untersuchungen, die 

zeigen, dass Caspase-3 den IP3R spaltet, wobei ein 95kD „channel-only“ Fragment entsteht 

(37). Man nimmt an, dass das IP3R Fragment einen konstitutiven undichten Ca2+-Kanal 

bildet, der wiederum für einen anhaltenden Anstieg der [Ca2+]c verantwortlich ist (37), wobei 

diese Hypothese noch nicht endgültig nachgewiesen ist (37;72). Des weiteren führt, wie 

einleitend beschrieben, die durch Apoptosestimuli bedingte Freisetzung von Cytochrom c zu 

einer Bindung an IP3- Rezeptoren, was zu einem Ca2+-Ausstrom aus dem ER führt. Das 

ausströmende Ca2+ wird von den Mitochondrien aufgenommen und induziert die Freisetzung 

von großen Mengen Cytochrom c mit nachfolgender Apoptoseinduktion im Sinne eines sich 

selbst verstärkenden Prozesses(10;54). Chen et al. stellten in ihren Untersuchungen fest, 

dass das anti-apoptotisch wirkende Bcl-2 mit IP3- Rezeptoren Komplexe bildet, welche zu 

einem verminderten Ca2+-Ausstrom aus dem ER führen. Dies führt also zu einer 
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Abschwächung der durch IP3- Rezeptoren verursachten Zellsignale (17). In anfänglichen 

Studien zur Untersuchung der Interaktion zwischen IP3- Rezeptoren und Apoptose zeigte 

sich, dass IP3R Typ 3 in apoptotischen T-Lymphozyten hochreguliert war. Unterdrückung der 

IP3R Typ 3 Expression durch siRNA schützte umgekehrt vor Apoptose (39). In späteren 

Analysen der Fas-abhängigen Apoptoseinduktion in Jurkat T-Lymphozyten konnte 

dargestellt werden, dass eine Inhibition der Calcium-Freisetzung über IP3R zu einer 

verminderten Apoptoseinduktion führte (70). Tsunoda et al. kamen zu dem Ergebnis, dass 

IP3R Typ 1 in Blasenkarzinomzellen nach Cisplatin-Exposition sowie in Cisplatin-resistenten 

Zellen herunterreguliert ist (74). SiRNA IP3R Typ 1 Transfektion in parentale 

Blasenkarzinomzellen führte umgekehrt zu einer Resistenzinduktion (74). Fasst man die 

gegenwärtigen Studienergebnisse zusammen, so geht daraus hervor, dass eine gesteigerte 

IP3- Rezeptor Expression mit einer gesteigerten Apoptoseinduktion und eine verminderte IP3- 

Rezeptor Expression mit einer verminderten Apoptoseinduktion korrelieren. Diese Resultate 

stehen im großen Gegensatz zu den in dieser Arbeit vorgestellten Daten, in denen eine 

signifikant gesteigerte IP3- Rezeptor Expression mit einer Resistenzentwicklung in EPLC 

32M1 Zellen korreliert. In dieser Arbeit korreliert eine Überexpression von IP3R 1/2/3 mit 

einer Resistenzentwicklung und schützt somit vor Apoptose. In Übereinstimmung zu den in 

dieser Arbeit vorliegenden IP3R 1/2/3 Expressionsmustern, stehen in vivo Daten aus 

NSCLC-Patienten (33). Heighway et al. fanden in der DNA –Analyse des resezierten 

Tumormaterials im Vergleich zu dem umliegenden gesunden Gewebe eine verstärkte 

Genamplifikation des IP3R Typ 2. Diese ist coamplifiziert mit KRAS2, einem Gen das bei 

Läsionen an 12p11.1 – p12.1 sehr stark in die Entwicklung von humanen Neoplasien 

involviert ist (33). Dies konnte insbesondere im Hinblick auf das Adenokarzinom der Lunge 

gezeigt werden (33). In Übereinstimmung zu den hier vorliegenden Daten steht die Arbeit 

von Bergner et al., der anhand in vitro Daten feststellte, dass sowohl in kleinzelligen 

Lungenkarzinomzellen H1339, als auch in nicht-kleinzelligen Adenokarzinomzellen HCC 

IP3R 1/2/3 im Vergleicht zu normalen, gesunden Bronchialepithelzellen NHBE signifikant 

erhöht sind (6). Die vermehrte Expression von IP3R 1/2/3 korrelierte mit einer reduzierten 

Ca2+-Homöostase des ER in diesen Zellen. Insgesamt bleibt die zentrale Frage zu 

beantworten, inwiefern die Überexpression von IP3R die ER Ca2+-Homöostase reduziert und 

somit vor Apoptose zu schützen vermag. Die Ca2+-Homöostase des ER wird im 

Wesentlichen aufrechterhalten durch die ATP-abhängige Ca2+-Aufnahme über die SERCA-

Pumpe und die Ca2+-Freisetzung aus dem ER über IP3R und RYR. Funktionsfähige IP3R 

Ca2+-Freisetzungskanäle bestehen aus vier heterotetrameren Komponenten. Jede 

Untereinheit der IP3R kann in drei verschiedene Untereinheiten unterteilt werden: die N-

terminale IP3-Bindungsdomäne, die C-terminale Domäne bestehend aus einer Kanal-

formenden Sequenz mit einem kurzem C-terminalen Ausläufer sowie eine dazwischen 
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liegende Verbindungsdomäne mit Rezeptoren für unterschiedliche Modulatoren (60). Szlufcik 

et al. stellten die Hypothese auf, dass der IP3R neben seiner regulären IP3-induzierten 

Öffnung auch einen Calcium-leak-Channel darstellt (72). In der zu Grunde liegenden Arbeit 

wird beschrieben, dass Kanaldomänen des IP3R in unmittelbarer Nähe der großen 

zytoplasmatischen, regulatorischen Region liegt. Durch physikalische oder funktionelle 

Trennung der zytoplasmatischen, regulatorischen Region von der Kanaldomäne kann die 

Formation einer „leaky“ oder schlecht funktionierenden Kanaldomäne resultieren. Beispiele 

für eine Modifikation der zytoplasmatischen Region sind zum Beispiel Proteolyse oder 

Mutation(72). Eine vermehrte Expression von IP3R auf der ER-Membran teilresistenter EPLC 

32M1 Zellen führt also zu einem vermehrten Leckstrom von Ca2+ aus dem ER und bedingt 

den reduzierten [Ca2+]ER und damit einhergehend den Schutz vor Apoptose. Es ist 

anzunehmen, dass zur Aufrechterhaltung der [Ca2+]c das ausströmende Ca2+ durch 

Plasmamembran- Ca2+- ATPasen in den Extrazellulärraum gepumpt wird. Basierend auf der 

im Zuge dieser Arbeit durchgeführten Literaturrecherche, ist dies die erste Berichterstattung 

über eine Apoptoseprotektion durch vermehrte IP3R 1/2/3 Expression. Darüber hinaus 

konnte erstmalig gezeigt werden, dass die IP3R 1/2/3 Expression in die Cisplatin-

Resistenzentwicklung von NSCLC Zellen involviert ist. 

Die Ca2+-Akkumulation in intrazelluläre Ca2+-Speicher und der damit entstehende Ca2+-

Gradient zwischen ER und Zytoplasma erfolgt durch die Ca2+-Transport ATPasen der 

SERCA Familie (77). SERCA-Pumpen werden durch drei verschiedene Gene kodiert, so 

dass die Hauptisoformen SERCA 1/2/3 entstehen. Durch alternatives Splicing erweitert sich 

das Spektrum auf mehr als zehn Unterisoformen (61). SERCA 1 ist hauptsächlich in schnell-

kontrahierender Skelettmuskulatur exprimiert, SERCA 2 in kardialer Muskulatur und 

langsam-kontrahierenden Skelettmuskelfasern, allerdings auch in allen anderen nicht-

muskulären Geweben. SERCA 3 ist vor allem in nicht-muskulären Geweben exprimiert 

insbesondere in hämatopoetischen Zelllinien, Thrombozyten, Epithelzellen, Fibroblasten und 

Endothelzellen (61). Die SERCA-Expression ist allerdings nicht nur gewebespezifisch, 

sondern unterliegt zum Beispiel in heranreifenden Muskelzellen, einer 

entwicklungsbedingten Regulation eines Isoformenswitchings (61), so dass im Rahmen 

dieser Arbeit ein relativ unspezifischer SERCA 1/2/3 - Antikörper verwendet wurde, der in der 

Lage war, alle Isoformen zu detektieren, um in entdifferenzierten Tumorzellen alle 

möglicherweise vorhandenen SERCA Isoformen zu erfassen. Eine verminderte SERCA 

Expression führt in dieser Arbeit in teilresistenten SCLC Zellklonen zu einer verminderten 

[Ca2+]ER Konzentration durch einen geringeren Rückpumpmechanismus von [Ca2+]Cyt in das 

ER. Auch in anderen Untersuchungen konnte ein Zusammenhang zwischen der SERCA-

Expression und dem [Ca2+]ER –Gehalt aufgezeigt werden. Bei der Herzinsuffizienz konnten 

Yano et al. in kardialen Myozyten eine signifikant verminderte [Ca2+]ER -Konzentration zeigen, 
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welche mit einer verminderten Expression von SERCA Pumpen assoziiert war (78). Darüber 

hinaus konnten klinische Studien der Phase I-III mit dem intravenösen SERCA 2A Stimulator 

Istaroxime einen neuen Therapieansatz für die Herzinsuffizienz mittels SERCA-Stimulation 

aufzeigen. Durch Stimulation der SERCA 2A Pumpe und der gleichzeitigen Steigerung der 

[Ca2+]ER -Konzentration konnte ein positiver inotroper Effekt bei Patienten mit 

Herzinsuffizienz erzielt werden (31). In Arbeiten der eigenen Arbeitsgruppe korrelierte eine 

bronchiale Hyperreagibilität im Tiermodell des Asthma bronchiale mit einer erhöhten [Ca2+]ER 

–Konzentration (5). In einem Interleukin stimuliertem Asthma bronchiale Modell wurde der 

erhöhte [Ca2+]ER –Gehalt durch eine vermehrte SERCA Expression bedingt (38). 

Die SERCA Expression wurde in früheren Studien bereits in Bezug auf Hypertrophie, 

Proliferation, Karzinogenese und Metastasierung untersucht, dennoch ist dies die erste 

Analyse in Bezug auf die Involvierung von SERCA Pumpen in die Resistenzentwicklung auf 

Chemotherapeutika der Krebstherapie.  

Die Rolle der SERCA Pumpen in der Karzinogenese wurde von Prasad et al. untersucht 

(63). Den Autoren gelang es zu zeigen, dass haploinsuffiziente ATP2A2 knock-out Mäuse 

(ATP2A2 Gene kodieren für SERCA 2) für die Entstehung von Plattenepithelkarzinomen im 

Vormagen prädisponiert sind. In einer Arbeit von Bergner et al. konnte veranschaulicht 

werden, dass die SERCA2 Expression in H1339 Zellen im Vergleich zu normalen gesunden 

Bronchialepithelzellen signifikant vermindert ist (6). Darüber hinaus untersuchten Spira et al. 

die Effekte des Zigarettenrauches auf das humane Bronchialepitheltranskriptom (4;68). Die 

Autoren verglichen Raucher und Nichtraucher und kamen zu dem Ergebnis, dass in 

Rauchern die SERCA Expression signifikant erhöht ist. Ferner ist tendenziell die Expression 

von IP3-Rezeptoren und RYR hochreguliert. Dies könnte ein Hinweis darauf sein, dass 

Veränderungen des intrazellulären Ca2+-Signalings und im speziellen die daran beteiligten 

Regulaturproteine der intrazellulären Ca2+-Speicher an der frühen 

Lungenkrebskarzinogenese beteiligt sind.  

Hinsichtlich des aktuellen Forschungsstandes gibt es mehrere Studien, die die SERCA 

Expression in normalem und Tumorgewebe vergleichend untersucht haben. Lipskaia et al. 

stellten in Gewebeproben von Patienten sowie in Laborzelllinien oraler 

Plattenepithelkarzinomzellen eine verminderte SERCA2 Expression fest (46;55). Auch in 

Schilddrüsenkarzinomzellen konnte eine signifikant verminderte SERCA 2b mRNA 

Expression im Vergleich zum Normalgewebe bestimmt werden (58). Darüber hinaus konnte 

in Colonkarzinomzellen eine Abnahme der SERCA 3 Expression in Korrelation mit einer 

Abnahme der Zelldifferenzierung dargestellt werden (12). Sowohl in Colon- und 

Lungenkarzinomzellen somatischen, als auch Keimbahnurspungs konnte des weiteren 

gezeigt werden, dass eine Mutation des SERCA 2 Genes zu einer malignen Entartung 

prädisponiert (40). Chung et al. beschreiben neben einer signifikant erhöhten SERCA 
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Expression in Kolonkarzinomzellen, eine signifikant verminderte Überlebensrate in Patienten 

mit hoher SERCA 2 Expression, da dies auch mit einer Serosainfiltration und 

Lymphknotenmetastasierung korrelierte (18). Diese Erkenntnisse liefern Anhaltspunkte 

dafür, dass eine Veränderung des intrazellulären Ca2+-Signalings nicht nur in die frühen 

Phasen der Karzinogenese, sondern möglicherweise auch in die Transformation in einen 

aggressiveren Phänotyp involviert ist. 

Aus Untersuchungen bezüglich des Zusammenhangs zwischen SERCA Expression, ER 

Ca2+-Gehalt und Proliferation ging hervor, dass in Prostatakarzinomzellen eine erhöhte 

Wachstumsrate mit einem höherem [Ca2+]ER und einer erhöhten SERCA 2b Expression 

korrelierte (44). Desweiteren zeigten die Autoren auf, dass eine verminderte Wachstumsrate 

mit einem verminderten [Ca2+]ER und einer reduzierten SERCA 2b Expression in Verbindung 

stand. Eine künstliche Reduktion des [Ca2+]ER durch den SERCA-Inhibitor Thapsigargin 

führte ebenso zu einer verringerten Wachstumsrate (44). Die gleiche Arbeitsgruppe 

analysierte wenige Jahre später den Einfluss von Insulin-Growth-Factor (IGF) und Tumor-

necrosis-Factor alpha (TNFalpha) auf das Wachstumsverhalten von Prostatakarzinomen 

(35). IGF als Wachstumsfaktor führte zu einem Anstieg von [Ca2+]ER über eine vermehrte 

Expression von SERCA 2b und TNFalpha als Proliferationshemmer bzw. Apoptoseinduktor 

führte zu einem Abfall von [Ca2+]ER über eine verringerte SERCA 2b Expression. Weiterhin 

stellten die Autoren fest, dass eine Stimulation mit dem SERCA-Inhibitor Thapsigargin in 

hohen Konzentrationen zu einem starkem [Ca2+]CYT Anstieg mit einer einhergehenden 

Apoptoseinduktion führte. Eine längere Inkubation mit geringen Thapsigarginkonzentrationen 

führten hingegen zu einer Proliferationsinduktion durch einen moderaten [Ca2+]CYT Anstieg 

(35). Diese Ergebnisse veranschaulichen nochmals die Multifunktionalität des intrazellulären 

Ca2+-Signalings im Gleichgewicht zwischen Proliferation und Apoptose. Eine neuroendokrine 

Differenzierung von Prostatakarzinomzellen bedeutet häufig den Übergang in ein 

aggressiveres Tumorwachstum. Vanoverberghe et al. beschreiben eine, mit der 

neuroendokrinen Differenzierung einhergehende, Steigerung der Apoptoseresistenz auf 

Thapsigargin und Tumornekrosefaktor Alpha aufgrund einer Verminderung des [Ca2+]ER. Der 

verminderte [Ca2+]ER-Gehalt wurde durch eine verminderte SERCA 2b und Calretikulin 

Expression verursacht (76). Prolaktin ist in vielen Geweben in Differenzierungs- und 

Wachstumsprozesse involviert, unter anderem in die des Prostatadrüsengewebes. Aus den 

Untersuchungen von Crepin et al. ging hervor, dass Prolaktin in immortalisierten 

Prostatazellen die Zellproliferation durch eine Steigerung des [Ca2+]ER-Gehalt über eine 

SERCA 2b Überexpression stimuliert (20). In einem sehr aktuellen Review Artikel beschreibt 

Lipskaia, dass Wachstum und Proliferation in nahezu allen Zellen durch die Aktivierung des 

Nukleären Transkriptionsfaktors NFAT (nuclear factor of activated T-lymphocytes) reguliert 

wird, welcher durch einen lang anhaltenden Anstieg des zytosolischen Calciums stimuliert 
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wird (14;49). Bisher ist bekannt, dass in pathologischen Situationen oder unter dem Einfluss 

von verschiedenen Wachstumsstimuli, eine Verminderung der SERCA Expression bzw. 

Aktivität zu einer Aktivierung von einem lagerabhängigen Calciumeinstrom über store-

operated Calciumkanäle in die Zellen führt (46). Der resultierende [Ca2+]Cyt Anstieg führt 

anschließend zu einer Zellproliferation. 

Betrachtet man die aktuelle Datenlage, so wird ersichtlich, dass die Rollen der SERCA 

Pumpen und des [Ca2+]ER Gehaltes in der Karzinogenese nicht klar zu definieren sind. 

Einerseits ist eine vermehrte Expression von SERCA-Pumpen über einen erhöhten [Ca2+]ER– 

Gehalt mit einer Proliferation in Prostatakarzinomzellen und einer 

Lymphknotenmetastasierung in Kolonkarzinomzellen assoziiert, andererseits korreliert eine 

verminderte SERCA-Expression durch einen verminderten [Ca2+]ER –Gehalt und einer 

reduzierten Apoptose mit der Entstehung von oralen Plattenepithelkarzinomen sowie der 

malignen Entartung von Lungen – und Kolonzellen.  

In der vorliegenden Arbeit konnte gezeigt werden, dass die verminderte SERCA 1/2/3 

Expression in teilresistenten H1339 Zellen durch verminderten Ca2+-Rückpumpmechanismus 

mit einem verminderten [Ca2+]ER einhergeht. Ein unterschiedliches Proliferationsverhalten 

zwischen naiven und teilresistenten H1339 Zellen konnte nicht beobachtet werden. Der 

reduzierte [Ca2+]ER –Gehalt korrelierte mit einer verminderten Apoptose in teilresistenten 

kleinzelligen Lungenkarzinomzellen. In dieser Arbeit konnte somit erstmalig gezeigt werden, 

dass die Resistenzentwicklung von kleinzelligen Lungenkarzinomzellen auf die 

chemotherapeutische Behandlung mit Cisplatin mit einer verminderten SERCA 1/2/3 

Expression korreliert.  

 

4.4 siRNA Transfektion 

 

In EPLC 32M1 Zellen korreliert die Resistenzentwicklung mit einer vermehrten IP3R 1/2/3 

Expression in teilresistenten Zellklonen, in H1339 Zellen mit einer verminderten SERCA 

1/2/3 Expression in teilresistenten Zellklonen. Um den Zusammenhang der veränderten 

Proteinexpression mit der Resistenzentwicklung im Umkehrschluss zu beweisen, wurden 

siRNA Transfektionsversuche durchgeführt. Die siRNA Transfektion ermöglicht es, die 

Aktivität spezifischer Gene auszuschalten bzw. zu verringern, indem sich sogenannte 

silencing-RNA als anti-sense RNA an die Ziel-RNA anlagert. Somit wird die Translation des 

Zielproteins verhindert und das Ziel-Protein gar nicht, oder nur noch reduziert exprimiert. Die 

Methode war somit in der vorliegenden Arbeit ein sehr geeignetes Mittel die Reversibilität der 

Resistenz in EPLC 32M1 Zellen zu prüfen, bzw. eine Resistenzentwicklung in H1339 

nachzuahmen. In teilresistenten EPLC 32M1 Zellklonen erfolgte eine Supprimierung der IP3R 

1/2/3 um eine Reversibilität der Resistenzentwicklung zu überprüfen. In H1339 wurde die 
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SERCA 1/2/3 Expression in naiven Zellklonen unterdrückt, um künstlich eine Resistenz zu 

induzieren. Bei nachfolgender Behandlung mit Cisplatin und der Erstellung von 

Überlebenskurven konnte in EPLC 32 M1 Zellen gezeigt werden, dass die Resistenz durch 

IP3R 1/2/3 Supprimierung reversibel ist. In H1339 Zellen zeigte sich die Möglichkeit einer 

Resistenzinduktion durch SERCA 1/2/3 Supprimierung in naiven Zellen. Es konnte somit im 

Umkehrschluss bewiesen werden, dass der durch veränderte Proteinexpression verminderte 

[Ca2+]ER Gehalt in kleinzelligen ebenso wie nicht-kleinzelligen Lungenkarzinomzellen mit der 

Cisplatinresistenzentwicklung korreliert. 

 

4.5 Zusammenhang zwischen der verminderten intrazellulären Ca2+-Homöostase 

und der Apoptoseresistenz und die klinische Relevanz der Ergebnisse 

 

Apoptose kann durch unterschiedlichste Stimuli getriggert werden, zum Beispiel durch 

oxidativen Stress, Aktivierung von Todesrezeptoren durch Zytokine wie zum Beispiel 

Tumornekrosefaktor oder Fas-Ligand, aber auch durch Toxine wie Chemotherapeutika. In 

früheren Forschungsprojekten zur Apoptose stand vor allem der Zellkern im Mittelpunkt. 

Neuere Untersuchungen von Scorrano et al. zeigen, dass in den meisten Fällen in den 

frühen Phasen der Apoptoseinduktion, vor allem die Interaktion zwischen Mitochondrien, ER 

und die Freisetzung von Cytochrom c entscheidend ist (66). Boehning et al. identifizierten 

Calcium als einen Messenger, der den Interaktionsprozess zwischen Mitochondrien und ER 

in der Apoptose antreibt (10). Erreicht ein Apoptosestimulus die Zelle, wie zum Beispiel die in 

dieser Arbeit durchgeführte Exposition zu Cisplatin, führt dies zur Induktion einer 

permeability-transition-Pore in einem benachbarten Mitochondrium und zu einer Freisetzung 

von geringen Mengen Cytochrom c. Das freigesetzte Cytochrom c diffundiert zu dem nahe 

gelegenen ER und bindet an das Carboxyende der IP3-Rezeptoren. Dies führt zu einer 

massiven Ca2+-Freisetzung aus dem ER. Anschließend folgt ein globaler Anstieg der 

zytoplasmatischen freien Ca2+-Konzentration. Dieses Ca2+ wird wiederum von den 

Mitochondrien aufgenommen und es resultiert eine mitochondriale Ca2+-Überladung. Diese 

triggert eine massive Freisetzung von Cytochrom c aus den Mitochondrien, welches die 

Formation einer Apoptosoms induziert.  

In dieser Arbeit kann folgende Hypothese aufgestellt werden: Neben der klassischen 

Cisplatin-Apoptoseinduktion über DNA-Basenpaarvernetzung führt die Cisplatinexposition zu 

oben beschriebenen Apoptosemechanismus. In den hier untersuchten kleinzelligen und 

nicht-kleinzelligen Lungenkarzinomzellen schützen sich Cisplatin-resistente Zellklone durch 

einen verminderten [Ca2+]ER–Gehalt vor der Apoptose. Bei Apoptoseinduktion und der 

folgenden Cytochrom c Bindung an IP3-Rezeptoren kommt es zu einer verminderten Ca2+-

Freisetzung, dies schützt vor einer mitochondrialen Ca2+-Überladung mit der daraus 
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folgenden massiven Cytochrom c Freisetzung, so dass ein Schutz vor einer Apoptose 

besteht. 

Die gewonnenen Ergebnisse könnten die Grundlage für neue Therapieoptionen in der 

medikamentösen Therapie des Lungenkarzinoms liefern. Die aktuellen 

Chemotherapieschemata beruhen, wie bereits einleitend beschrieben, in der Regel auf 

platinhaltigen Kombinationstherapien. Eine Verhinderung oder zumindest signifikante 

Reduzierung der Cisplatin-Resistenzentwicklung könnte für die Patienten eine merkbare 

Verbesserung der medianen Überlebenszeit bedeuten. Einen Ansatzpunkt hierfür würde also 

die Beeinflussung des [Ca2+]ER –Gehaltes bieten. In den letzten zwanzig Jahren wurden 

zahlreiche Pharmaka entdeckt, die die Ca2+-Homöostase beeinflussen. Beispielsweise zu 

nennen sind die SERCA Inhibitoren Cyclopiazonic Acid oder Thapsigargin oder die 

Xestospongine bzw. 2-Aminoethoxy-Dipenylborate als Inhibitoren der 

Inositoltriphosphatrezeptor-getriggerten Ca2+-Freisetzung aus dem ER (41). Bisher ist die 

Verwendung dieser Agenzien im experimentellen, denn im klinischen Bereich, anzusiedeln.  

Dennoch gibt es neue Medikamente die bereits Eingang in die klinische Medizin gefunden 

haben. Ein verminderter [Ca2+]ER –Gehalt stellt einen der Pathomechanismen der 

Herzinsuffizienz dar (78). Istaroxime ist ein Inhibitor der Na+/K+ ATPase mit der Eigenschaft, 

die SERCA 2a Aktivität zu erhöhen und somit den [Ca2+]ER –Gehaltes anzuheben. In 

klinischen Phase I-II Studien zur Verbesserung der Herzinsuffizienz durch Istaroxime konnte 

gezeigt werden, dass die Herzfunktion signifikant verbessert wurde und darüber hinaus nur 

wenige Nebenwirkungen in Form von Übelkeit und Schmerzen an der Injektionsstelle 

auftraten (31;67). Auch eine Gentherapie kann die intrazelluläre Ca2+-Homöostase in 

kardialen Myozyten verändern. Hierzu werden aktuell eine Überexpression von SERCA 

Pumpen sowie eine Inhibition des hemmenden Effektes von Phospholamban auf die SERCA 

Aktivität für die potentielle Nutzung beim Menschen zur Behandlung der Herzinsuffizienz 

getestet (50). In der Krebstherapie könnten diese SERCA aktivierenden Medikamente die 

Sensitivität für die Chemotherapie erhöhen und somit die aktuell eingesetzten 

konventionellen Therapieverfahren verbessern. In teilresistenten H1339 Zellen mit einer 

verminderten SERCA Expression könnte eine Erhöhung der SERCA Aktivität den [Ca2+]ER –

Gehaltes steigern. Aber auch in teilresistenten, durch einen vermehrten Ca2+-Leckstrom, 

[Ca2+]ER defizienten EPLC 32M1 Zellen, könnte eine Aktivierung der SERCA Pumpen zu 

einer Steigerung des [Ca2+]ER –Gehaltes führen. Der Markt an Medikamenten, die die 

intrazelluläre Ca2+-Homöostase beeinflussen, hat in den letzten Jahren deutlich 

zugenommmen, sodass nicht nur für Herzinsuffiziente Patienten neue Therapien entstehen, 

sondern auch neue, hoffnungsvolle Therapieoptionen für Tumorpatienten eröffnet werden 

können. 
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5. Zusammenfassung 

 

Die medikamentöse Therapie der Lungenkarzinome beruht in der Regel auf platinhaltigen 

Kombinationstherapien. Die Chemotherapie bei Lungenkarzinomen führt häufig zu einer viel 

versprechenden Tumorreduktion. Allerdings wird die Lebenserwartung der Patienten durch 

die Resistenzentwicklung auf die Chemotherapie limitiert. Ziel dieser Arbeit war es, zu 

untersuchen, ob die Chemotherapie mit Cisplatin die intrazelluläre Ca2+-Homöostase von 

Lungenkarzinomzellen verändert, und ob dies mit der Resistenzentwicklung korreliert.  

Die Plattenepithelkarzinomzelllinie EPLC 32M1 sowie die kleinzellige 

Lungenkarzinomzelllinie H1339 wurden mit vier „Zyklen“ Chemotherapie behandelt. Die 

Cisplatinkonzentrationen wurden analog der humanen in vivo Pharmakokinetik gewählt. Zur 

Analyse des intrazellulären Ca2+-Gehaltes wurden die Zellen mit dem zytoplasmatischen 

Ca2+-Indikator Fluo-4 AM gefärbt. Durch externe Stimulation der Zellen erfolgte eine Ca2+-

Freisetzung aus dem endoplasmatischen Retikulum (ER), dem größten intrazellulärem Ca2+-

Speicher. Die Veränderungen der zytoplasmatischen Ca2+-Konzentration wurden mittels 

Fluoreszenzmikroskopie aufgezeichnet und somit eine semiquantitative Abschätzung des 

[Ca2+]ER –Gehaltes gewonnen. Die Proteinexpression der wichtigsten, an der intrazellulären 

Ca2+ –Homöostase beteiligten, Proteine wurde mit Hilfe der Immunfluoreszenzfärbung sowie 

mit Western Blot Technik quantifiziert. Veränderungen der Genexpression wurden anhand 

von small-interfering (si) RNA Techniken untersucht.  

Fasst man die gewonnenen Ergebnisse zusammen, so führten vier „Zyklen“ Cisplatin zu 

einer Resistenzentwicklung in EPLC als auch in H1339 Zellen. In teilresistenten Zellklonen 

beider Zelllinien war der Ca2+-Gehalt des endoplasmatischen Retikulums (ER) vermindert. In 

teilresistenten EPLC Zellen korrelierte dies mit einer erhöhten Expression von Inositol-1,4,5-

triphosphatrezeptoren (IP3R 1/2/3). Eine Inhibition der vermehrten IP3R Expression mittels 

siRNA konnte die Resistenzentwicklung aufheben. In teilresistenten H1339 Zellen korrelierte 

der verminderte [Ca2+]ER –Gehalt mit einer verminderten Expression von 

sarco/endoplasmatischer Ca2+-ATPase (SERCA 1/2/3). Eine Verminderung der SERCA 

Expression in naiven H1339 Zellen resultierte in einer Resistenzentwicklung der naiven 

Zellen. 

Aus den Ergebnissen konnte geschlussfolgert werden, dass die Chemotherapie mit Cisplatin 

zu einem verminderten [Ca2+]ER –Gehalt in teilresistenten Zellklonen führt. Dies wird in EPLC 

32M1 Zellen durch eine Hochregulation der IP3R und in H339 Zellen durch eine verminderte 

SERCA Expression verursacht. Cisplatin führt bei der Behandlung von 

Lungenkarzinomzellen nicht nur über den klassischen Weg der DNA-Basenpaarvernetzung 

zur Apoptoseinduktion. Die Cisplatinexposition führt zu einer Freisetzung von geringen 

Mengen Cytochrom c aus den Mitochondrien. Dieses wiederum bindet an die IP3-Rezeptoren 

des endoplasmatischen Retikulums. Die Bindung an die IP3-Rezeptoren führt zu einer Ca2+-
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Freisetzung aus dem ER. Das ausströmende Ca2+ wird von den Mitochondrien 

aufgenommen und es resultiert eine mitochondriale Ca2+-Überladung, welche zu einer 

Freisetzung von großen Mengen Cytochrom c führt und die Apoptose final induziert. 

Teilresistente kleinzellige und nicht-kleinzellige Lungenkarzinomzellen schützen sich durch 

einen verminderten [Ca2+]ER –Gehalt vor der Apoptose. In Zukunft könnten neue 

Medikamente, wie zum Beispiel der SERCA 2a Aktivator Istaroxime, durch eine Erhöhung 

des intrazellulären [Ca2+]ER –Gehaltes dazu beitragen, die Resistenzentwicklung auf die 

Chemotherapie mit Cisplatin zu reduzieren. Für Lungenkarzinompatienten könnte dies ein 

neuer Hoffnungsträger sein. 
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