
   

 
 

 

 

 

 

 

 

 

Analysis of Lipid Droplet Proteins and their 
Contribution to Phospholipid Homeostasis 

during Lipid Droplet Expansion 

 
 

 

 

Dissertation der Fakultät für Biologie der 
 Ludwig-Maximilian-Universität München 

 
 
 
 
 
 

vorgelegt von 
Natalie Krahmer 

Juni 2011 
  



   

Ehrenwörtliche Erklärung 
 
Hiermit erkläre ich, dass ich die vorliegende Dissertation selbstständig und ohne 
unerlaubte Hilfe angefertigt habe. Ich habe weder anderweitig versucht, eine 
Dissertation einzureichen oder eine Doktorprüfung durchzuführen, noch habe ich 
diese Dissertation oder Teile derselben einer anderen Prüfungskommission 
vorgelegt 
 
München, den 22. Juni 2011  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Promotionsgesuch eingereicht am: 22.Juni 2011 

Datum der mündlichen Prüfung: 26.Juli 2011 

Erster Gutachter: Prof. Dr. Stefan Jentsch 

Zweiter Gutachter:  Prof. Dr. Charles David 

 

 



   

Diese Dissertation wurde von Prof. Dr. Stefan Jentsch betreut. 

Die vorliegende Arbeit wurde zwischen März 2008 und Juni 2011 am Max-Planck-

Institut für Biochemie in Martinsried in der Arbeitsgruppe von Prof. Dr. Tobias 

Walther durchgeführt. 

 

 

Wesentliche Teile dieser Arbeit sind in den folgenden Publikationen 

veröffentlicht: 

 

Natalie Krahmer, Yi Guo, Florian Wilfling, Maximiliane Hilger, Susanne Lingrell, Klaus 

Heger, Heather W. Newman, Marc Schmid-Supprian, Dennis E. Vance, Matthias 

Mann, Robert V. Farese, Jr. and Tobias C. Walther. Localized Activation of 

CTP:phosphocholine cytidylyltransferase (CCT) is required for 

Phosphatidylcholine Synthesis during Lipid Droplet Expansion (Cell 

Metabolism, in press, 2011). 

 

Natalie Krahmer, Yi Guo, Robert V. Farese, Jr. and Tobias C. Walther (2009). 

SnapShot: Lipid Droplets. Cell 139, 1024-1024 e1021. 

 

 

  



   

 

TABLE OF CONTENTS 

 

1 SUMMARY ...................................................................................................... 1 

2 INTRODUCTION ............................................................................................. 3 

2.1 Cellular functions of  LDs ................................................................................. 3 

2.2 LD formation and breakdown ........................................................................... 5 

2.2.1 LD formation ........................................................................................... 5 

2.2.2 LD breakdown ......................................................................................... 7 

2.3 Protein targeting to LDs ................................................................................. 10 

2.4 Lipid synthesis for LD formation and growth .................................................. 13 

2.4.1 LD growth and neutral lipid synthesis ................................................... 13 

2.4.2 Phospholipid synthesis for LDs ............................................................. 15 

3 AIMS OF THE THESIS .................................................................................. 20 

4 RESULTS ...................................................................................................... 22 

4.1 High confident LD proteome by protein correlation profiling ........................... 22 

4.1.1 Quantitative analysis of a PCP for LD proteins by SILAC labeling ........ 22 

4.1.2 Identification of proteins specifically localizing to LDs by hierarchical 
clustering .............................................................................................. 25 

4.1.3 Correlation of protein correlation profiling with fluorescence microscopy .. 
  .............................................................................................................. 28 

4.1.4 Comparison of proteomic data with genome-wide RNAi screens ......... 32 

4.2 CCT binding to LDs activates synthesis of PC for their expansion ................ 35 

4.2.1 CCT is a principal enzyme regulating phospholipid homeostasis during 
LD formation ......................................................................................... 35 

4.2.2 PC serves as surfactant stabilizing LDs and preventing LD coalescence . 
  .............................................................................................................. 41 

4.2.3 Among PC synthesis enzymes, only CCT localizes to LDs .................. 42 

4.2.4 CCT directly binds to LDs by an amphipathic alpha helix ..................... 45 

4.2.5 CCT is targeted to LDs when the PC to TG ratio decreases ................. 47 

4.2.6 CCT1 is highly mobile and shuttles between nucleus and cytosol before 
oleate loading........................................................................................ 52 

4.2.7 CCT binds stably to LDs during their expansion ................................... 55 

4.2.8 CCT is activated by LD targeting .......................................................... 58 

4.2.9 LD binding is essential for CCT1 function in LD biogenesis .................. 61 

4.2.10 CCT regulates LD size in vivo ............................................................... 62 

4.2.11 CCT targeting and function in LD stabilization is conserved in 
mammalian cells ................................................................................... 63 



   

5 DISCUSSION ................................................................................................. 68 

5.1 Protein correlation profiling identifies LD proteins with high confidence ......... 68 

5.2 Identification of key players for LD phospholipid homeostasis by comparing 
proteomic data with genome-wide screens .................................................... 70 

5.3 PC is a crucial surfactant stabilizing LDs and preventing their coalescence .. 71 

5.4 CCT adjusts PC synthesis during LD expansion by a homeostatic feedback 
loop ................................................................................................................ 74 

5.5 CCT surveys PC levels on the LD surface and binds to PC deficient LDs ..... 77 

5.6 PC must be transported from its site of de novo synthesis in the ER to the LD 
surface ........................................................................................................... 79 

5.7 Regulating PC synthesis by CCT relocalization might be a general mechanism 
to maintain cellular PC levels ......................................................................... 80 

5.8 The regulation of PC synthesis by CCT relocalization during LD formation may 
be conserved in mammalian cells .................................................................. 81 

6 EXPERIMENTAL PROCEDURES ................................................................. 83 

6.1 Cell culture ..................................................................................................... 83 

6.2 Transgenic flies .............................................................................................. 86 

6.3 Microscopy ..................................................................................................... 86 

6.4 Lipid biochemical methods ............................................................................. 86 

6.5 Protein biochemical methods ......................................................................... 87 

6.6 Mass spectrometry–based proteomics........................................................... 90 

7 REFERENCES .............................................................................................. 93 

8 SUPPLEMENTAL TABLES ........................................................................ 103 

9 ABBREVIATIONS ....................................................................................... 110 

10 ACKNOWLEDGEMENT .............................................................................. 115 

11 CURRICULUM VITAE ................................................................................. 116 

file:///C:/Users/flaka7/Desktop/thesis-printing2.docx%23_Toc295764618


| 1 

 

1 SUMMARY 
 

Lipid droplets (LDs) are storage organelles for neutral lipids. Recently, these 

organelles have been more and more recognized as dynamic structures with a 

complex and interesting biology. They store energy for later use and protect cells 

from lipotocixity caused by excess free fatty acids and cholesterol. Dysregulation of 

fat storage and mobilization, as well as excessive accumulation of LDs in tissues are 

key factors in pathogenesis of common diseases including obesity, insulin resistance, 

or hepatic steatosis. LDs have a unique physical structure. They are consisted of a 

neutral lipid core composed mainly of triglycerides (TG) and sterol esters (SE) that is 

surrounded by a phospholipid monolayer. Many proteins act on the LD surface to 

regulate LD functions. Despite considerable effort in determining the protein set of 

LDs, a reliable inventory of the LD proteome was so far missing. This thesis contains 

a first high confident LD proteome of Drosophila S2 cells that allows distinguishing 

between bona fide LD proteins and contaminants from other cellular organelles. 

Using a method called protein correlation profiling, I identified 106 proteins as 

candidates for LD proteins. Localization of a subset of these proteins by fluorescent 

microscopy confirmed LD targeting for more than 90% of the candidates. A 

comparison of proteomics data with genome-wide RNAi screens for genes whose 

knockdown alters LD morphology in S2 cells, revealed several LD proteins crucial for 

LD biology. One of them is CTP:phosphocholine cytidylyltransferase (CCT), the rate-

limiting enzyme for phosphatidylcholine (PC) synthesis. Studying CCT targeting and 

function on the LD surface led me to the discovery of an elegant paradigm for the 

activation of PC synthesis by enzyme relocalization to maintain organelle 

phospholipid homeostasis. During conditions that promote lipid storage, LDs rapidly 

increase their core volume and surface area, and yet it was unknown how the need 

for surface phospholipids is sensed and balanced during this process. Here, I show 

that LDs require sufficient amount of PC, which acts as surfactant to prevent 
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coalescence during their growth. PC synthesis for LD expansion is regulated by the 

activation of CCT, which binds to the surface of growing LDs. Activation of CCT by 

LD targeting is reversible and correlates with the need for PC at LDs, and thus may 

be part of a homeostatic feedback loop regulating PC synthesis. The localization and 

requirements for CCT were similar in Drosophila and murine cell lines, indicating 

evolutionary conservation.  

  



| 3 

 

2 INTRODUCTION 

2.1 Cellular functions of  LDs 

 

The cytoplasm of eukaryotic cells is compartmentalized into distinct organelles 

providing functionally specialized spaces for different biochemical reactions (Rafelski 

and Marshall, 2008).  Most organelles are surrounded by a lipid bilayer that is 

impermeable to most hydrophilic molecules. Consequently, import and export of 

specific metabolites can be controlled by specialized membrane transporters.  

Important exceptions of this biological principle are LDs. LDs store lipids for 

metabolic energy and membrane precursors. They have a unique structure, as they 

are surrounded by a single phospholipid monolayer that shields the hydrophobic core 

consisting of neutral lipids, mainly TG and SE, from the aqueous environment in the 

cell (Bartz et al., 2007; Tauchi-Sato et al., 2002). 

For a long time LDs were considered as inert fat particles serving no other function 

than a storage depot. This made them the most understudied cellular organelle and 

consequently to date little is known about LD cell biology. However, recently LDs are 

more and more recognized as highly dynamic organelles that play crucial roles in 

energy homeostasis and lipid metabolism. Recent functional analyses show that LDs 

are involved in cellular lipid and protein trafficking (Murphy et al., 2009). Moreover, 

they maintain tight interactions with several other organelles (Beller et al., 2010). 

Another interesting feature of LDs is that their size and abundance are highly 

regulated according to cellular needs. In response to changes in cellular conditions 

LD number and size can increase by several orders of magnitude within minutes 

(Walther and Farese, 2009). Excessive accumulation of TG droplets is observed in 

obesity that is further associated with increasing prevalence of pathologies, such as 

steatosis or type 2 diabetes, whereas storage of SEs in macrophages leads to 

intimae thickening and is involved in the development of atherosclerosis (Brown et 

al., 1979). 

 

http://www.ncbi.nlm.nih.gov/books/n/mboc4/A4754/def-item/A5400/
http://www.ncbi.nlm.nih.gov/books/n/mboc4/A4754/def-item/A5305/
http://www.ncbi.nlm.nih.gov/books/n/mboc4/A4754/def-item/A5486/
http://www.ncbi.nlm.nih.gov/books/n/mboc4/A4754/def-item/A5444/
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LDs are found in all eukaryotic cells from yeast to humans and also in some 

prokaryotes (Figure 1) (Alvarez et al., 1996). They vary strongly in size (1-200 µm) 

depending on cellular conditions and cell types. Adipocytes, the most specialized 

cells for lipid storage form one large LD that can occupy up to 90% of the total cell 

volume (Fruhbeck et al., 2001).  

 

 

 

 

 

Figure 1. Examples of LDs in cells.  
LDs stained with BODIPY (yellow or green) in (A) Rhodococcus opacus (picture from 
Waltermann et al., 2005). (B) Saccharomyces cerevisiae, (C) Drosophila S2 cells, (D) murine 
adipocytes. 
 

LDs may provide an important evolutionary advantage, as they help the cell to 

tolerate environmental fluctuations between surplus of energy and starvation. In 

times of excessive energy availability, the cell can store energy and precursors for 

membranes or hormones in form of lipids in LDs, at the same time sequestering free 

fatty acids and cholesterol in an inert form. The accumulation of free fatty acids and 

cholesterol would otherwise be toxic for cells and can even lead to cell death. 

However, the molecular mechanisms underlying lipotoxocity still remain poorly 

understood (Listenberger et al., 2003). At times of increased energy needs, the cell 

mobilizes stored lipids and uses them to produce energy (Brasaemle, 2007; 

Ducharme and Bickel, 2008; Zechner et al., 2005).  

In addition to their crucial role for cellular energy homeostasis, LDs were found to be 

important for other cellular functions. For example, studies found large amounts of 

histones localizing to LDs in Drosophila embryos, implicating LDs to be a protein 

storage depot during embryogenesis (Cermelli et al., 2006). Moreover, α-synuclein 

was found on LDs, suggesting that unfolded toxic proteins may be sequestered there 
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until they are degraded (Cole and Murphy, 2002). However, the mechanisms behind 

histone and α-synuclein targeting to LDs, as well as the regulation of their release or 

degradation are not known.  

Besides their functions in lipid metabolism and protein storage, LDs also have an 

important function for the reproduction of certain pathogens. Recently, it was 

discovered that in hepatocytes the hepatitis C virus core protein binds to LDs and 

that this is an important step during the viral life cycle (Miyanari et al., 2007). The 

specific role of LDs in the viral replication stills needs to be fully understood but these 

findings suggest that therapy impairing LD formation and/or function could restrict 

hepatitis C virus reproduction.  

 

2.2  LD formation and breakdown 

2.2.1 LD formation 

The current model of LD formation suggests that LDs are derived from the 

endoplasmic reticulum (ER) in eukaryotes. This hypothesis is supported by evidence 

that in some organisms, for example yeast, LDs are observed exclusively in close 

proximity to ER membranes (Szymanski et al., 2007). Moreover, all enzymes 

involved in the synthesis of TG or cholesterol ester (CE), the main components of the 

LD core, are localized to the ER membrane. Thus, it is thought that neutral lipids 

accumulate between the two leaflets of the ER membrane, forming a lipid lens that 

buds off the ER. In this model, the phospholipid monolayer delimiting LDs is derived 

exclusively from the outer leaflet of the ER membrane (Figure 2) (Fujimoto et al., 

2008). Besides, alternative models, such as excision of LDs from both leaflets of the 

ER membrane, were also discussed. However, this model may be inconsistent with 

ER integrity (Figure 2) (Ploegh, 2007). 
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Furthermore, it is still unknown which proteins are involved in the budding process 

and the regulation of LD formation. So far, several proteins were found to be 

important for LD formation, such as seipin, a protein involved in congenital 

generalized lipodystrophy type 2 (Boutet et al., 2009) or the PAT-protein TIP47 (47-

kDa tail interacting protein) (Bulankina et al., 2009). The PAT-proteins (originally 

named for perilipin, ADRP and TIP47) were among the first discovered LD proteins. 

However, genome-wide screens in Drosophila or yeast could not identify a single 

protein whose knockdown is sufficient to completely abolish LD formation (Guo et al., 

2008; Szymanski et al., 2007).  

 

 

 

 

 

 

 
Figure 2. Models of LD biogenesis.  
Model 1. LD biogenesis by ER monolayer budding. Neutral lipids (orange) are synthesized by 
enzymes located in the ER and accumulate between the two leaflets. A lipid lens bulges from 
the outer leaflet of the ER membrane (orange). Proteins localizing on the surface of the 
nascent droplet (dark blue) may facilitate the budding process. Model 2: Bilayer excision. In 
comparison to model 1 the entire lipid lens is excised from the ER, leaving a transient hole in 
the membrane. In this model, ER integrity cannot be maintained and ER contents (yellow) 

might leak into the cytosol (adapted from Walther and Farese, 2009). 

 

Another point of current debate is whether LD biogenesis occurs all over the ER or is 

restricted to certain ER domains in which neutral lipid synthesis enzymes and other 

proteins for LD formation accumulate. For example, diacylglycerol acyltransferase 

(DGAT) enzymes catalyzing the last step of TG synthesis do not distribute evenly in 

the ER membrane but show a punctuate pattern (Shockey et al., 2006). Their 

distribution might reflect specialized regions in the ER for LD formation. 

http://en.wikipedia.org/wiki/Congenital_generalized_lipodystrophy
http://en.wikipedia.org/wiki/Congenital_generalized_lipodystrophy
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Another open point concerning LD formation is that it is not clear whether LDs 

completely detach from the ER after their formation or if the membranes of both 

organelles remain associated. Freeze-fracture electron micrographs revealed that 

many LDs remain surrounded with ER membranes, with the LD being held in an egg-

cup (Robenek et al., 2006). Those sites of close apposition between LDs and the ER 

could correspond to specialized membrane contact sites, as they were previously 

described between the ER and mitochondria. Those contact sites could facilitate lipid 

and protein transfer between the ER and LDs (Holthuis and Levine, 2005).  

 

2.2.2 LD breakdown 

In contrast to LD biogenesis, processes involved in the breakdown of LDs to 

mobilize the stored lipids are better understood. Under conditions of elevated energy 

or metabolite needs for membrane synthesis lipolysis is induced. In adipocytes, this 

highly regulated process is mainly initiated by the release of catecholamines that bind 

to G-protein coupled receptors on the cell surface. Receptor binding subsequently 

induces activation of proteinkinase A (PKA) by increasing cyclic adenosine 

monophosphate (cAMP) levels caused by enhanced adenylat cyclase activity 

(Steinberger D. and Huttunen, 1972). PKA activation is an important step for the 

regulation of several proteins involved in lipolysis by phosphorylation. One important 

target for PKA phosphorylation is perilipin, one of the best studied PAT-proteins and 

an important regulator of basal and induced lipolysis. Under basal conditions, 

perilipin localizes to the LD surface and shields the surface from lipases. However, 

after the induction of lipolysis, perilipin helps to assemble the required machinery on 

LDs in a phosphorylation dependant manner (Brasaemle, 2007; Tansey et al., 2001). 

In the basal state, perilipin binds comparative gene identification-58 (CGI-58), a 

coactivator of adipose triglyceride lipase (ATGL) on the LD surface. Upon 

phosphorylation, perilipin triggers the release of CGI-58, which then forms a complex 

with ATGL. Consequently, ATGL is activated and catalyzes cleavage of the first fatty 
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acyl chain from TG, thereby initiating TG hydrolysis on the LD surface (Lass et al., 

2006; Zimmermann et al., 2009). 

Another important target for PKA phosphorylation is hormone sensitive lipase (HSL) 

that removes the second fatty acyl chain from the glycerol backbone. HSL is targeted 

to LDs upon phosphorylation and interacts there with phosphorylated perilipin 

(Sztalryd et al., 2003). The last acyl chain is finally removed by monoacylglycerol 

lipase and glycerol released in the cell (Figure 3) can further be used for TG 

reesterification or be exported to the liver where it is further metabolized (Fredrikson 

et al., 1986).  

To generate energy, the released fatty acyl chains are used as substrate for β 

oxidation to generate adenosine-5'-triphosphate (ATP) in mitochondria or 

peroxisomes. LDs are often found in close apposition to organelles involved in β 

oxidation. Regions of direct membrane contact between LDs and those organelles 

were suggested to facilitate the transfer of fatty acyl chains into mitochondria and 

peroxisomes (Murphy et al., 2009). 

 

 

Figure 3.  Model for the molecular 
mechanisms regulating lipolysis. 
In the basal state, HSL is not bound to LDs. 
CGI-58 is bound to perilipin, thereby 
preventing ATGL activation by CGI-58. 
Consequently, lipase activity of HSL and ATGL 
on LDs is low. In the activated state 
phosphorylated perilipin releases CGI-58 
resulting in ATGL activation. Phosphorylation 
of HSL leads to LD recruitment mediated by 
perilipin. ATGL cleaves one acyl chain from TG 
degrading it to DG, the substrate for HSL. HSL 
hydrolyses the second acyl chain, resulting in 
monoacylglycerol that is finally converted to 
free glycerol and free fatty acids by 
monoacylglycerol hydrolyse (adapted from 
Zimmermann et al., 2009).  
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Lipases catalyzing the breakdown of CEs have not been fully characterized yet. 

Several candidates were discussed to contribute to CE hydrolysis in different cell 

types, among them HSL or cholesterol ester hydrolase (CEH). However, none of the 

hydrolases identified so far provides total cellular CE hydrolase activity, suggesting 

that other unknown enzymes might be involved (Ghosh et al., 2010).  

How the catalytic sites of different lipases access the substrate in the LD core is 

unknown. One possibility involves the help of other protein complexes, either to get 

access to neutral lipids in the core or by bringing the substrate to the lipase‘s catalytic 

site (Farese and Walther, 2009). Another hypothesis is that, depending on the LD 

phospholipid surface composition, a small portion of neutral lipids might be 

continuously exposed on the LD surface, thus being accessed easily by LD bound 

lipases. 

Lipase access to LDs might also be facilitated by breakdown of larger droplets into 

smaller ones during lipolysis, thereby providing a larger surface area and offering 

more contact sites. However, LD fragmentation was only observed after addition of β 

receptor agonists to cells and it is still not clear whether this process also occurs 

under physiological conditions and how it is regulated (Brasaemle et al., 2004).  

A completely new way to degrade LDs was discovered recently (Singh et al., 2009). 

It was found that in hepatocytes, under starvation conditions, LDs are degraded by 

macroautophagy. LDs are either completely taken up or get partially sequestered by 

autophagosomes, with their components being subsequently hydrolyzed in 

lysosomes. So far, it remains unclear how extensively macroautophagy contributes to 

lipid homeostasis under physiological conditions and if this mechanism is conserved 

between different cell types. 
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2.3 Protein targeting to LDs 

To fulfil all the different biological functions that have been associated with 

LDs, many proteins were implicated to function on the LD surface (Guo et al., 2009). 

As LDs are the only organelle in the cell that is surrounded by a phospholipid 

monolayer instead of a bilayer, LD binding proteins must contain special structural 

features in comparison to other membrane proteins. Polytopic membrane proteins 

are suggested not to bind to the LD monolayer because it would be energetically 

unfavourable if the hydrophilic loops connecting the transmembrane would be 

located in the hydrophobic LD core rather than in an aqueous environment (Thiele 

and Spandl, 2008). Nevertheless, proteins with multiple transmembrane domains 

were found in different LD proteomes (Brasaemle et al., 2004; Beller et al., 2006)  

and it is still not clear whether these proteins localize to closely surrounding 

membranes rather than directly to LDs (Farese and Walther, 2009). Due to technical 

limitations, for example, diffraction limit in fluorescent microscopy or artefacts using 

immunogold labeling electron microscopy, it is impossible to distinguish between 

direct LD localization and targeting to surrounding membranes (Robenek et al., 

2005). The development of new technologies such as super high resolution 

microscopy might enable scientists to answer those questions in the future (Toomre 

and Bewersdorf, 2010). 

In contrast, there are several other hydrophobic structural features that might 

mediate direct targeting to the LD monolayer. For example, proteins with lipid 

anchors, such as Rab18 (Ras-related in brain 18) found on LDs, in addition to 

membranes (Figure 4) (Martin et al., 2005). Proteins also localize to LDs by binding 

of hydrophobic domains to the LD surface. These domains can be localized 

anywhere within the protein. For example, DGAT2 and caveolin were both shown to 

integrate into the LD monolayer by one long central hydrophobic hairpin structure 

with both N- and C-termini being exposed on the cytosolic side (Figure 4) (Robenek 

et al., 2004; Stone et al., 2009).  
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Many other proteins bind to LDs by amphipathic helices (Thiele and Spandl, 2008). 

One example for this is TIP47, which is structurally very similar to apolipoprotein E. 

Both proteins consist of four amphipathic α helices. In the unbound state the four 

helices form a closed bundle burying the hydrophobic parts in the core. When 

opening the bundle, the hydrophobic regions are exposed and the proteins can bind 

to LDs or lipoproteins, respectively. Thereby, the hydrophobic side of the helix 

embeds in the LD monolayer and the hydrophilic site remains exposed to the 

aqueous environment (Hickenbottom et al., 2004; Ohsaki et al., 2006).  

Amphipathic helices are a common structural feature for membrane binding. 

However, most proteins with amphipathic helices exclusively bind to bilayers and not 

to LDs, whereas other amphipathic helices specifically mediate LD targeting. Several 

proteins can bind both, membranes and LDs and their localization is regulated in 

response to different cellular conditions (Ohsaki et al., 2006).  How proteins can 

distinguish between bilayers and monolayers and which structural features target 

them either to membranes or LDs is not known. One possibility could be that neutral 

lipids from the LD core are partially exposed on the LD surface and thus induce the 

binding of certain amphipathic helices or other LD targeting domains. 

Moreover, for proteins targeted to LDs from different cellular localization in response 

to different stimuli, it is not known what induces their LD targeting. Several 

mechanisms, including post-translational modifications or a special lipid composition 

on the LD surface, are possible (Walther and Farese, 2009).  

 

Figure 4. Different possibilities for LD 
protein topology.  
Proteins, such as Rab18, can bind to LDs 
by a hydrophobic fatty acid anchor. CCT 
or PAT proteins bind by amphipathic 
alpha helices that embed into the LD 
monolayer. DGAT2 is targeted to LDs by a 

hydrophobic hairpin domain.  
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Despite those known structural features that mediate LD targeting, the general 

targeting process to the LD surface and its regulation are less understood than those 

for other organelles, such as mitochondria or the ER, for which specific targeting 

signal sequences were identified.  

Besides the diversity in targeting sequences, targeting mechanisms for LD proteins 

also seem to differ. Some of the proteins localize exclusively to LDs, whereas others 

are targeted from different cellular locations, such as the ER, cytosol or caveolae, to 

the LD surface. Therefore, it is suggested that a couple of different targeting 

mechanisms might exist, depending on the structure and localization of the protein 

before LD targeting (Thiele and Spandl, 2008). 

Several trans acting factors might be involved in some of those targeting pathways. 

One of those factors might be the Arf1/COPI (ADP ribosylation factor1/coat proteinI) 

machinery, as LD targeting of some proteins is dependent on Arf1/COPI. Knockdown 

of Arf1 or COPI components results in a very strong phenotype with larger and more 

dispersed LDs in Drosophila and also in mammalian cells (Beller et al., 2008; Guo et 

al., 2008). In Arf1 or COPI depleted cells, ATGL association with LDs decreases and 

ATGL accumulates in specialized ER exit sites (ERES) and ER-Golgi intermediate 

compartments (ERGIC), resulting in a reduction in lipolytic activity on LDs (Soni et 

al., 2009). The mechanism of Arf1/COPI dependent LD protein targeting is still not 

known. Vesicular transport to LDs is possible but presents a topological problem, as 

it would require vesicle bilayer fusion with the LD monolayer. As a solution of this 

problem, protein transfer by a ―kiss-and-run‖ mechanism including a hemi-fusion 

event between the vesicle and the LDs was suggested (Walther and Farese, 2009). 

Another hypothesis describes a recruitment mechanism for proteins to the LD 

surface by LD localized Arf1/COPI components. However, experimental proof for any 

of those models is still missing (Walther and Farese, 2009).  
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2.4 Lipid synthesis for LD formation and growth 

2.4.1 LD growth and neutral lipid synthesis 

Many organelles regulate their abundance and size according to need under 

different cellular conditions. An especially dramatic example for that are LDs. When 

cells are confronted to an excess of fatty acids from de novo lipogenesis or 

extracellular sources, LDs can increase their volume and number by several orders 

of magnitude to protect cells from lipotoxicity (Listenberger et al., 2003). In other 

mammalian cell types, such as macrophages, large amounts of SE must be stored to 

prevent excessive amounts of sterols in membranes (Prieur et al., 2010).  Thus, in a 

relatively short time LDs can deposit massive amounts of neutral lipids in their core.  

Especially cell types specialized for lipid storage, such as mammalian adipose tissue 

or fly fat body react with rapid and dynamic changes in LD size and abundance to 

changes in nutrient intake and energy balance. Conditions of saturated lipid storage 

capacity in adipose tissue lead to accumulation of large amounts of TG in tissues that 

normally contain only a few small LDs, which is associated with obesity, type II 

diabetes and tissue steatosis (Savage et al., 2007). Thus, regulating LD size and 

abundance and preventing an excess of LD accumulation at the cellular level may 

play an important role in those complex metabolic diseases. 

Mechanisms of LD expansion are mostly unknown. LD growth reflects deposition of 

large amounts of TG and SE in the LD core. CE synthesis is catalyzed by acyl 

coenzyme A:cholesterol acyltransferase (ACAT)  (Buhman et al., 2000). TG synthesis 

mainly occurs from the glycerol phosphate pathway that is at least in part regulated 

by substrate availability and flux through the enzymatic reactions. In this pathway 

fatty acid moieties are sequentially added to the glycerol backbone. In the last step 

diacylglycerol (DG) and fatty acyl CoA are converted to TG in a reaction catalyzed by 

DGAT enzymes. Most of the enzymes involved in TG and in CE synthesis were 

found to localize to the ER or mitochondria and have several isoforms (Yen et al., 

2008). How the newly synthesized neutral lipids are delivered to the cores of growing 
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LDs is not known. It is unclear how such highly hydrophobic neutral lipids could 

translocate from the ER to growing LDs, especially since components for a potential 

transfer mechanism have not been discovered yet. However, recent studies showed 

that DGAT2, catalyzing the final step of TG synthesis, localizes to LDs, thereby 

suggesting that neutral lipids might be locally synthesized on LDs (Kuerschner et al., 

2008; Stone et al., 2009). Nevertheless, it still not known how TG is transferred to the 

LD core and whether only the reaction catalyzed by DGAT2, or maybe more steps of 

the TG synthesis pathway, occur directly on the LD surface or on the surrounding 

specialized membrane domains. 

 

 

 
 
 
Figure 5. Neutral lipid synthesis.  
The final step of TG synthesis, the transfer of a fatty acid from fatty acyl CoA to DG, is 
catalyzed by DGATs. DG the precursor of TG, is synthesized either by phosphatidic acid 
phosphatase 1 (PAP1) from phosphatidic acid (PA) or by monoacylglycerol acyltransferases 
(MGATs) from monoacylglycerol. PA is made from glycerol-3-phosphate by reactions 
catalyzed by glycerol-3-phosphate-acyltransferase (GPAT) and acylglycerol-3-phosphate- 
acyltransferase (AGPAT). Similarly, SEs are synthesized by ACATs, which transfer fatty acyl 
chains to free cholesterol. All those enzymes were found to localize to the ER. Newly 
synthesized TG and SE are thought to accumulate between the two leaflets of the ER 
membrane and form an oil lens that buds off the ER. How neutral lipids get on the LDs for LD 
growth after the budding is unknown. Specific isoforms of the enzymes involved in neutral 
lipid synthesis might localize to LDs or surrounding specialized membrane domains for 
localized neutral lipid synthesis on LDs. 
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LD may also grow by homotypic fusion of smaller droplets into larger ones. SNARE 

proteins were suggested to mediate those fusion events (Bostrom et al., 2007). 

Nevertheless, the mechanism of LD fusion remains unclear, as conclusive data is still 

missing. Moreover, in most cell types LD fusion is a rare event that can hardly be 

detected. Only in adipocytes LD fusion can widely be observed when small droplets 

form the characteristic unilocular large LD. In adipocytes, LD fusion is dependent on 

Fat-specific protein of 27 kDa (FSP27), a member of the Cell Death-Inducing DFF45-

Like Effector (CIDE) family  that localizes to LDs and enhances neutral lipid storage 

(Nishino et al., 2008).  The three CIDE proteins, CIDEa, CIDEb and FSP27, 

containing an N-terminal CIDE-N domain that shares sequence similarity with the N-

terminal of DNA fragmentation factor Dffa/Dff45/ICAD and a unique C-terminal CIDE-

C domain, were discovered to localize to LDs and to be involved in many metabolic 

disorders (Gong et al., 2009). However, CIDE proteins are not found in all tissues. 

FSP27 expression is largely restricted to white adipose tissue and thus cannot 

provide a general mechanism for LD growth. Furthermore, any mechanistic 

understanding of protein catalyzed LD fusion is still missing (Nishino et al., 2008). 

 
 

2.4.2 Phospholipid synthesis for LDs 

Under conditions of energy excess, large amounts of neutral lipids are deposited 

in the hydrophobic LD core and the neutral lipid content can increase by several 

orders of magnitude within a relatively short time. This volume increase of the neutral 

lipid core has to be coordinated with the expansion of the surface monolayer. The LD 

monolayer contains mainly phospholipids and smaller amounts of free cholesterol. 

The phospholipid composition is very similar to that of the ER membrane, with minor 

differences, such as slightly increased lyso-PC content and small variations in the 

fatty acid composition (Tauchi-Sato et al., 2002). PC and phosphatidylethanolamine 

(PE) are the most abundant phospholipids, constituting more than 90% of total LD 

phospholipids. Besides PC and PE, small amounts of phosphatidylserine (PS), 
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phosphatidic acid (PA) and phosphatidylinositol (PI) can be found (Kuerschner et al., 

2008). 

PC and PE are mostly made through analogous pathways starting from choline or 

ethanolamine, respectively. These pathways were discovered by Eugene Kennedy in 

the 1950s and are thus called Kennedy pathways (Figure 6) (Kennedy, 1959). 

Alternatively PE can be made by decarboxylation of PS by PS decarboxylase (PSD) 

(Zborowski et al., 1983).  The contribution of this pathway for total PE synthesis is 

cell type dependent (Vance and Vance, 2008). Also for PC synthesis an alternative 

pathway exists. PE can be converted to PC by sequential methylation by PE 

methyltransferase (PEMT). PEMT is mainly expressed in hepatocytes in which 30-

40% of the total cellular PC is made from this pathway (Sundler and Akesson, 1975).  

 

 

 

 

 

 

 

 

 

 

Figure 6. Overview of phospholipid synthesis pathways in mammalian cells. 
PA serves as precursor for the synthesis of either DG by phosphatidic acid phosphatase (PAP) 
or CDP-DG by CDP-diacylglycerol synthetase (CDS). CDP-DG is used for the generation of PI, 
phosphatidylglycerol (PG) or cardiolipin (CL), whereas DG is necessary for the formation of 
PC and PE by analogous pathways [choline kinase (CK), CTP:phosphocholine 
cytidylyltransferase (CCT), choline phosphotransferase (CPT) ethanolamine kinase (EK), 
ethanolamine cytidylyltransferase (ECT), ethanolamine phosphotransferase (EPT)]. PE can be 
converted to PC by PEMT. PS is synthesized by head group exchange to serine by 
phosphatidylserine synthase (PSS). PE can be synthesized from PS by phosphatidylserine 
dercarboxylase (PSD).  
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Little is known about how synthesis and addition of phospholipids to the LD 

monolayer are regulated during LD growth. A previous genome-wide RNAi screen 

showed that knockdown of enzymes involved in phospholipid biosynthesis increased 

LD size and promoted their fusion (Guo et al., 2008). Here, fatty acid synthase (FAS) 

and sterol regulatory element-binding protein (SREBP) that regulates fatty acid 

synthesis in Drosophila were among the strongest phenotypes. Moreover, giant LDs 

resulted from the knockdown of choline kinase (CK) that catalyzes the 

phosphorylation of choline in the first step of the Kennedy pathway for PC synthesis. 

The same phenotype was observed for the knockdown of both isoforms of CCT 

catalyzing the formation of CDP-choline, the second step of this pathway (Choy and 

Vance, 1976). Thus, phospholipids of the LD-delimiting monolayer may play an 

important role in regulating LD size, and the candidates identified in the screen that 

resulted in the formation in larger LDs might play an important role in adjusting 

cellular PC levels according to need.  

 

 

 

 

Figure 7. The Kennedy pathway for PC 
synthesis. 
In most cell types PC is made from 
choline by the Kennedy pathway. First, 
choline is phosphorylated by CK. Then, 
CCT catalyzes the formation of CDP-
choline from phosphocholine and CTP, 
in the rate-liming step of this pathway. 
Finally, CPT catalyzes the formation of 
PC from one molecule of CDP-choline 
and one molecule of DG. PE is 
synthesized by an analogous pathway. 
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CK activity can only be regulated at transcriptional levels (Kent, 2005), whereas CCT 

is highly regulated by a combination of different posttranslational mechanisms. In 

mammals and in Drosophila two CCT genes exist, encoding CCTα and CCTβ or 

CCT1 and CCT2, respectively (Helmink and Friesen, 2004). Whereas CCTβ and 

CCT2 are localized in the cytosol, CCTα and CCT1 contain an N-terminal nuclear 

localization sequence (NLS) and are mainly found in the nucleus (Tilley et al., 2008). 

It was suggested that the nuclear pool might provide a sequestered inactive pool 

(Northwood et al., 1999). However, the function of nuclear localization remains still 

unclear. 

CCT activity is highly regulated by reversible membrane binding. The enzyme was 

shown to convert between an inactive soluble form and an active membrane-bound 

form. Membrane binding is mediated by a helical domain that changes its structure 

from a random coil in the unbound form to an amphipathic alpha helix in the 

membrane bound state (Feldman et al., 1985; Vance and Pelech, 1984). In the 

unbound confirmation, the helical domain exerts an autoinhibitory function on the 

catalytical domain that is relieved when the enzyme binds to membranes and thus 

CCT activity can increase up to 80-fold (Friesen et al., 1999). It was shown that 

changes in the lipid composition induce membrane targeting. The accumulation of 

different lipid types, such as PE, DG, anionic lipids or free fatty acids, were reported 

to increase CCT membrane localization. Moreover, an inverse correlation between 

PC levels in the membrane and membrane targeted CCT was observed, indicating a 

feedback inhibition of PC synthesis by PC (Mallampalli et al., 1993). 

Furthermore, all CCT forms have a C-terminal phosphorylation domain containing 

multiple serine residues. It was shown that dephosphorylated CCT has higher 

membrane affinity and thus is easier to be activated than the phosphorylated form of 

the enzyme (Kent, 1997). So, it seems that phosphorylation is an additional 

mechanism to fine tune CCT activity and to provide a regulatory switch to modulate 

enzymatic activity.  
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Although cellular regulation of phospholipid synthesis, especially of PC, has been 

well characterized, nothing is so far known how phospholipid synthesis is coordinated 

with LD formation and growth. When LDs are formed and growing, large amounts of 

phospholipids are needed to cover the surface and to shield the neutral lipids in the 

core from the aqueous environment. A further characterization of genes involved in 

phospholipid biosynthesis showing a strong phenotype might provide a possibility to 

get more insight in these processes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Domain structure of CCT1. 
(A) CCT1 contains an N-terminal NLS, followed by a highly conserved catalytic core. A helical 
domain that mediates lipid binding and a C-terminal phosphorylation domain. 
(B) Structure of the membrane-binding amphipathic α helix from CCTα, based on the atomic 
coordinates of two overlapping peptides. Side chains of the polar face are red; side chains of 
the nonpolar face are yellow. The carbon (green), nitrogen (blue), and oxygen atoms (red) of 
the interfacial side chains are in ball-and-stick representation (Cornell and Northwood, 
2000). 
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3 AIMS OF THE THESIS 

Many molecular mechanisms underlying the regulation of cellular fat storage 

are still poorly understood. Recently, LD proteins such as the PAT proteins and the 

CIDE family have been found to be key players in the regulation of LD abundance, 

morphology and function (Brasaemle, 2007; Gong et al., 2009). However, many of 

the proteins functioning on the LD surface and regulating important processes in 

cellular lipid homeostasis have not been identified yet and a reliable and quantitative 

characterization of the LD proteome is still missing.  This is mainly due to technical 

and methodical limitations of existing proteomic studies (Bartzt et al., 2007; Beller et 

al., 2006; Brasaemle et al., 2005; Cermelli et al., 2006). LDs are closely associated 

with other organelles, what makes it impossible to purify them to homogeneity. 

Previously used methods do not allow distinguishing between bona fide LD proteins 

and potential contaminants. Thus, the generated data sets are not reliable and 

contain contaminating proteins from other organelles. 

Therefore, the first aim of this study was to generate a high confidence LD proteome 

of Drosophila S2 cells that allows a reliable characterization of LD localized proteins 

and excludes contaminants from other organelles. To this end, I used a strategy 

called ―protein correlation profiling‖ that is based on a quantitative analysis of proteins 

in all fractions during organelle purification and allows the identification of specifically 

enriched proteins in the purified fraction. I compared the results of this proteomic 

study to data derived from genome-wide screens in Drosophila S2 cells (Guo et al., 

2008; Beller at al., 2008) to identify proteins important for LD function localizing to the 

LD surface. One interesting candidate strongly enriched in the LD fraction and whose 

knockdown resulted in one of the strongest phenotypes detected in the screen was 

CCT, the rate-limiting step for PC synthesis. Also other proteins involved in the 

synthesis of phospholipids gave strong LD phenotypes, indicating that phospholipid 

biosynthesis pathways might play an important role during LD formation and for LD 

function.  

http://dict.leo.org/ende?lp=ende&p=Ci4HO3kMAA&search=methodical&trestr=0x8004
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Thus, in the second part of this study I focus on how phospholipid homeostasis is 

maintained during LD formation and growth, when large amounts of phospholipids 

are required to shield large amounts of neutral lipids added to the LD core. The aim 

of this part of the study was to elucidate the importance of different phospholipids for 

LD stability and to identify phospholipid biosynthetic enzymes that are crucial for LD 

phospholipid homeostasis.  Among different phospholipid species, I identified PC as 

the most important detergent for LD stability and CCT, rate-limiting enzyme for PC 

synthesis, as key player in LD PC homeostasis in Drosophila S2 cells.  As CCT 

localizes to the LD surface after the induction of LD formation (Guo et al., 2008), the 

next aim for me was to characterize the LD targeting signal and the targeting 

mechanism for CCT in S2 cells. The goal was to test what induces relocalization of 

the enzyme from the nucleus or cytosol to the LD surface and whether enzymatic 

activity is changed by LD targeting. Elucidating the CCT targeting mechanism led me 

discover that PC synthesis for LD formation is regulated by a homeostatic feedback 

loop that is controlled by CCT relocalization. Finally, I tested whether CCT function is 

also relevant in vivo and whether the mechanism of maintaining PC homeostasis 

during LD formation is conserved in different mammalian cell types.  

 

 

 

  



| 22 

 

4 RESULTS 
 

4.1 High confident LD proteome by protein correlation profiling 

4.1.1 Quantitative analysis of a PCP for LD proteins by SILAC labeling 

 The combination of subcellular fractionation and mass spectrometric analysis, 

referred to as organellar proteomics, is a powerful method that facilitates 

comprehensive characterization of subcellular structures (Andersen and Mann, 

2006). However, due to increasing sensitivity of mass spectrometers and difficulties 

in purifying organelles to homogeneity, it is challenging to distinguish bona fide 

organellar proteins from those that are contaminants. This problem is particularly 

relevant for LDs. Purifying LDs to homogeneity is impossible, since LDs maintain 

close contacts to organelles, such as mitochondria or peroxisomes and have been 

shown to be tightly enwrapped by ER membranes.  

To overcome these problems, I adapted a strategy called protein correlation profiling 

to generate a LD proteome from Drosophila S2 cells. Protein correlation profiling is 

based on the different behavior of proteins originated from different organelles during 

a purification process. The abundance of a protein is followed over all fractions of an 

organelle purification, which allows generating a purification profile for each protein. 

Proteins derived from the same organelle are expected to have very similar profiles. 

Thus, protein correlation profiling enables to determine the subcellular localization of 

proteins by comparing a protein‘s profile to profiles of known organellar markers 

(Andersen et al., 2003; Foster et al., 2006).  
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Figure 9. Experimental scheme of quantitative analysis of a LD proteome by protein 
correlation profiling.  
LDs were purified from two populations of Drosophila S2 cells, one unlabeled and one 
labelled with heavy amino acids Arg10 and Lys8. After three steps of differential 
centrifugation, cell lysates were loaded on a sucrose step gradient. For quantitative analysis, 
light LD fraction was mixed in a 1:1 ratio with six fractions of the heavy sucrose gradient and 
three pellets from the centrifugation steps. Mixed fractions were delipidated and proteins 

precipitated. After in solution digest, samples were analyzed by high-resolution liquid 
chromatography–MS/MS (LC MS/MS). 
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Previously, LDs were purified by overlaying cell lysates with a sucrose layer and 

floating them on top (Brasaemle and Wolins, 2006). To get higher LD purity; I 

improved the protocol for several steps. Specifically, I included several differential 

centrifugation steps prior to loading S2 cell lysate to the sucrose gradient in order to 

remove stepwise unbroken cells, nuclei, mitochondria and membranes. 

Subsequently, I loaded the lysate on the bottom of a sucrose step gradient. I 

analyzed the three centrifugation pellets and six sucrose gradient fractions by LC 

MS/MS. For relative protein quantification, I applied stable isotope labeling with amino 

acids in cell culture (SILAC) and used a light LD fraction as internal standard that 

was spiked in a 1:1 ratio in each fraction of a purification from heavy labeled cells 

(Figure 9). Then, I delipidated and digested in solution the resulting protein mixtures 

(Olsen et al., 2006). Each fraction was analyzed by reverse-phase chromatography 

coupled to high-resolution, quantitative mass spectrometric analysis using a LTQ 

Orbitrap. In total, I identified 2,855 proteins at least once in triplicate analysis. 1,361 

of them were detected in fraction1, containing LD heavy mixed with LD light. The 

average peptide ratio heavy/light in fraction1 was 1.36, indicating a high 

reproducibility of the experiment.  Fraction 1 contains a 1:1 mixture of LD light and 

LD heavy fraction and thus, the average ratio heavy/light should be close to one if the 

fractions of the two biological replicates show strong overlap.  

To confirm that proteins of different organelles can be distinguished by this method 

and diverge in their protein correlation profiles, I calculated averaged normalized 

peptide intensities of five characterized marker proteins of different organelles (Table 

S1) and compared their profiles (Figure 10). As expected LD proteins (red line) had 

their main abundance mainly in fraction1, the top fraction of the sucrose gradient and 

showed very low abundance in all other fractions. Nuclear and mitochondrial proteins 

(yellow and green line, respectively) had different PCPs with main peaks in fractions 

8-9, representing the pellet fractions of differential centrifugation. In general, cytosolic 

proteins (purple line) showed a broad distribution between fractions 3-6, the bottom 
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fractions of the sucrose gradient. ER proteins (blue line) were detected with high 

abundance in the LD fraction but still had their main peak in microsomal fractions 7-9. 

Thus, proteins of different organelles diverge greatly in their behavior among the 

fractions of the gradient. The comparison of the PCPs shows that in general PCP 

allows distinguishing bona fide LD proteins from contaminants that might be detected 

in the LD fraction.  

 

 

 

 

 

 

 

 

 

 

 

Figure 10. Averaged fractionation profiles for different organellar marker proteins. 
The average normalized peptide intensities for marker proteins of the indicated cellular 
organelles, as determined by quantitative LC-MS/MS, are shown for fractions of a LD 
purification. Values are mean ± SD of five proteins. 
 
 

4.1.2 Identification of proteins specifically localizing to LDs by 
hierarchical clustering 

To identify the proteins specifically enriched in the LD fraction among the 

1,361 proteins detected in fraction1, I performed a hierarchical cluster analysis. 

Clustering revealed, consistent with the average protein correlation profiles (PCPs) 

(Figure 10) that proteins of same organelles show very similar behaviour during the 

purification process, as proteins of same organelles were strongly enriched in 

specific clusters (Figure 11A). One cluster contained proteins that were enriched only 
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in fraction 1 with no peaks in other fractions (Figure 11A, B yellow box). In total, this 

LD cluster 1 contained 45 proteins (Table S2). This set of proteins was considered to 

include proteins with the highest probability to localize to LDs, as they have their 

main abundance exclusively in the LD fraction, in contrast to potential contaminants 

that should also have strong additional peaks in other fractions. Three other clusters, 

named LD cluster 2, 3 and 4 also showed strong enrichment in fraction1, but had 

additional peaks in other fractions (Figure 11B, C, white boxes). These proteins might 

also contain LD proteins, however, with less confidence.  Proteins from those 

clusters might be proteins with dual subcellular localization that are targeted to LDs 

but that also have a pool on some other organelle or otherwise be contaminants from 

other organelles in the LD fraction. LD cluster 2 contained 14 proteins, LD cluster 3 

38 proteins and LD cluster 4 10 proteins (Table S3, S4, S5). Table 1 shows a 

selection of interesting candidates from certain biosynthetic pathways or special 

functions found in the LD proteome. In addition to the already characterized lipases 

brummer (homolog of ATGL) with its co-factor CGI-58 and HSL, I identified two so far 

uncharacterized lipases CG9186 and CG17292 on the LDs. CG9186 is highly 

evolutionary conserved from yeast to mammals, suggesting an important function for 

this protein in LD function. Moreover, several lipid transfer proteins, homologues of 

SEC14 and oxysterol binding proteins were strongly enriched in the LD fraction. In 

addition, I found some proteins involved in TG and phospholipid synthesis in the LD 

proteome.  
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Figure 11. Hierarchical clustering of proteins identified in fraction1. 

(A) Hierarchical clustering of 1,361 proteins identified in fraction 1 of LC MS/MS 
analysis of all fractions of a LD purification. The colour code represents the peptide 
ratio heavy/light normalized by the maximum value among the fractions. Grey 
indicates that the protein was not identified in that fraction. Cellular organelles 
whose proteins are enriched in a certain cluster are indicated on the right. Cluster 
with proteins having a single peak in fraction1 is marked in yellow. Cluster with 
proteins having their main peak in fraction 1 but also showing peaks in other 
fractions are indicated in white. (B), (C) and (D) Zoom of LD clusters 1+2, 3 and 4 from 
(A), respectively. 
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Table1. Examples for proteins identified as LD proteins by hierarchical clustering.  
 
 

4.1.3 Correlation of protein correlation profiling with fluorescence 
microscopy 

 To independently confirm the localization of candidate LD proteins identified 

by protein correlation profiling and to test the reliability of the generated data set, I 

fluorescently tagged 20 proteins detected in the LD proteome and determined their 

subcellular localization in oleate loaded and BODIPY stained S2 cells by 

fluorescence microscopy. Among the 20 tagged proteins, 18 showed clear LD 

localization. This indicates that the confidence rate of the by protein correlation 

profiling identified LD proteins is very high, as the LD localization of about 90% of the 

tagged proteins was true.  Several of the tagged proteins localized exclusively to LDs 

(Figure 12A). Those proteins were all found in the LD cluster 1 consistent with their 

PCPs that all showed a single strong peak in the LD fraction (Figure 13A).  Among 

the proteins localizing to LDs, different interesting patterns were observed. For 

example, brummer (ATGL) was specifically enriched around smaller LDs or CG9186, 

the uncharacterized lipase1, was in some cells specifically targeted to very few LDs 

in the cell (Figure 12A).  
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Many of the tagged proteins showed dual subcellular localization to LDs and some 

other compartment. Those proteins were found in all four LD clusters. Many proteins 

were found to target to LD and ER membranes (Figure 12B). The PCPs for most of 

those proteins already indicated this dual cellular localization, because most proteins 

of this group had a strong peak in the microsomal fractions 7-9 in addition to the LD 

peak (Figure 13B). However, not all of the proteins classified by fluorescence 

microscopy as LD and ER proteins showed this second peak in their PCP. This 

potentially indicates that, in contrast to endogenous levels, overexpression of some 

of these tagged proteins saturates LD binding, resulting in an accumulation in other 

cellular compartments. Many of the dual localized LD-ER proteins, such as CG3887 

(SELT) or CG9904 (seipin) specifically accumulated around larger LDs. Other 

proteins, such as CG8735 (lunapark) partially formed half rings around LDs and did 

not surround the complete LDs, what might indicate that those proteins do not 

localize directly to LDs but might be enriched in specialized membrane domains that 

enwrap LDs. An alternative that would explain this localization pattern would be an 

organization of specialized membrane domains on the LDs surface itself. Some other 

proteins localized to LDs and different other cellular compartments, such as the 

plasma membrane (CG17292, uncharacterized lipase2) or the cytosol (CG4775, 

Tango14) (Figure 12C). For most of those proteins, the dual subcellular localization 

was also reflected in their PCPs (Figure 13C).  

Only for two of the tagged proteins, CG33113 (reticulon) and CG5014 (VAP-33-1), no 

characteristic rings around BODIPY stained LDs were detectable and they showed 

an ER like pattern (Figure 12D). PCPs for both proteins showed their main 

abundance in the LD fraction but they also had peaks in the microsomal fractions 

(Figure 13D).  Thus, those proteins might either be contaminants in the LDs fraction 

or the endogenous proteins might localize to LDs and tagging interferes with protein 

function or the LD targeting mechanism. 
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Figure 12. Localization of proteins found in LD proteome as determined by fluorescent 
microscopy. 
The indicated fluorescent mCherry–tagged enzymes were transiently expressed in S2 cells 
(left panels, red), loaded with 1 mM oleate for 12 h. LDs were stained with BODIPY (middle 
panels, green). The overlays of the two channels and zooms of a representative LD section 
are shown (right two panels). Bar = 5 μm (overview) or 1 µm (inlay). (A) Proteins localizing 
exclusively to LDs. (B) Proteins localizing to LDs and ER. (C) Proteins localizing to LDs and 

other cellular compartments. (D) Proteins localizing to ER and not to LDs. 
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Figure 13. PCPs of proteins whose subcellular localization was determined by fluorescence 
microscopy. 
(A) PCPs of proteins localizing exclusively to LDs, (B) PCPs of proteins localizing to LDs and ER. 
(C) PCPs of proteins localizing to LDs and other cellular compartments. (D) PCPs of proteins 
localizing to ER and not to LDs. 
 
 
 

4.1.4 Comparison of proteomic data with genome-wide RNAi screens 

 To identify proteins that localize to LDs and additionally play an important role 

for LD function, I compared proteomic data to two genome-wide RNAi screens for 

genes important for LD function in Drosophila S2 cells (Beller et al. 2008; Guo et al., 

2008). In the RNAi screen Guo et al. 227, genes were found by visual screening 

whose knockdown results in a phenotype with dramatically or moderately altered LD 

size, representing about 1,5 % of the complete Drosophila proteome. 

Genes with the most striking alterations in LD morphology were categorized into five 

distinct phenotypic classes. Class I genes showed reduced numbers of LDs, Class II 

genes gave smaller, more dispersed LDs, Class III genes showed more dispersed 
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LDs of slightly larger size, Class IV genes yielded highly condensed clusters of LDs 

and Class V genes contained one or a few very large LDs. A comparison of the 

proteomic data with hits of the screen revealed surprisingly little overlap (Figure 14). 

From 106 proteins identified to be specifically enriched in the LD purification by 

hierarchical clustering, only knockdown of four of those proteins gave a phenotype in 

the screen. Thus, knockdown of about 4% of the proteins found in the proteome 

gives a LD phenotype, what represents only a small enrichment compared to 1,5% of 

the complete genome giving a phenotype. A comparison of the LD proteome with the 

data set from the screen (Beller et al., 2008) revealed another four candidates whose 

knockdown results in a LD phenotype. 

 

 

 

 

 

 

 

 

 

Figure 14. Venn diagram showing overlap between LD proteome and genomic RNAi 
screens. Four of the 106 proteins identified in the LD proteome were also detected in the 
RNAi screen Guo et al. to give a LD phenotype. Another four LD proteins overlapped with the 
screen Beller et al.. 
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Among the proteins identified in both, the proteome and the screens, was brummer, 

the Drosophila ATGL homolog, whose knockdown resulted in an increase in LD 

number. Moreover, CG8732 (Table 2), a long-chain fatty acyl CoA ligase (ACSL), 

was found in the LD proteome. CG8732 knockdown resulted in fewer and smaller 

LDs. ACSL catalyzes the activation of fatty acids by conjugating them with CoA, a 

reaction required for fatty acids to be incorporated into various lipids, such as TG, CE 

and phospholipids. It was previously suggested that different ACSLs, localizing to 

different organelles in the cell, help channeling fatty acids toward a particular 

metabolic fate. Specifically, the mammalian homolog of CG8732 (ACSL3) is required 

for neutral lipid synthesis during LD formation (Fujimoto et al., 2007). Another protein 

from the LD proteome that gave a phenotype with fewer and smaller LD was 

CG3887, SEL T, a selenocysteine containing protein with unknown function. 

Moreover, both isoforms of CCT were found enriched in the LD fraction and gave one 

of the strongest phenotypes in the screen Guo et al. with fewer and much larger LDs. 

Most of those class V genes from this screen were linked directly or indirectly to 

phospholipid biosynthesis. Also in the Beller et al. screen knockdown of CG4825, 

encoding a phosphatidylserine synthase detected in the LD proteome, resulted in an 

overstorage phenotype. Thus, I hypothesized that phospholipid synthesis regulates 

LD size and abundance. 

 

 

 

 

 

 
 
 
 
 
Table 2. Proteins identified in the LD proteome with LD phenotype. 
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4.2 CCT binding to LDs activates synthesis of PC for their 
expansion 

 

4.2.1 CCT is a principal enzyme regulating phospholipid homeostasis 
during LD formation 

One important question in the field of LD biology is how phospholipid synthesis 

is regulated for LD formation and growth. As the knockdown of several genes 

involved in phospholipid synthesis, especially for PC synthesis gave strong 

phenotypes in the genome-wide screens (Beller et al., 2008; Guo et al., 2008), 

changes in LD phospholipid levels are suggested to be an important factor 

determining LD morphology and function. PE and PC are the most abundant 

phospholipids on the LD surface constituting more than 90% of total LD surface 

phospholipids (Bartz et al., 2007; Tauchi-Sato et al., 2002). 

To determine which of the enzymes for PC and PE synthesis play a role in regulating 

LD size, I knocked down each Kennedy pathway enzyme for PC and PE synthesis in 

S2 cells (Figures 15A and 16A). The knockdown efficiency was always higher than 

80%, as verified by quantitative PCR (Figure 15B, 16B). Due to the lack of antibodies 

against Drosophila CK, CPT and PE synthesis enzymes, I could verify knockdown 

efficiency for those enzymes only on mRNA and not on protein levels. Only for CCT1, 

I could show that protein levels were completely depleted by Western blot with 

antibodies against murine CCTα that also recognize Drosophila CCT1 (McCoy et al., 

2006) (Figure 15C).  

Although PE is the most abundant phospholipid in Drosophila and constitutes the 

main LD phospholipid in Drosophila S2 cells (Figure 17), knockdown of PE synthesis 

enzymes of both pathways for PE synthesis, the Kennedy pathway and the 

phosphatidylserine decarboxylase pathway, produced no phenotypes in LD 

morphology (Figure 16). In contrast, knockdown of several PC synthesis enzymes 

resulted in the formation of fewer and much larger LDs in the cells (Figures 15).  
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Figure 15. CCT is a major phospholipid synthesis enzyme required during LD expansion. 
(A) Knockdown of several PC synthetic mRNAs results in giant LDs. The indicated enzymes 
were depleted by RNAi in Drosophila S2 cells. Cells were loaded with 1 mM oleate for 12 h, 
and LDs were stained with BODIPY. Representative confocal midsections from single cells are 
shown in the upper panels. 3-D reconstructions from image stacks are shown in the lower 
panels. Bar = 5 μm.  
(B) Enzymes of PC synthesis were efficiently knocked down. Expression levels were 
measured by quantitative RT-PCR. Total RNA was prepared with the Preparase Kit (USB); 3 
µg was used for first-stand cDNA synthesis with a kit (Fermentas). Real-time quantitative PCR 
was performed with the MyiQTM Single-Color Real-Time PCR Detection System (BioRad) and 

Mesa green (Eurogentec). Primers used are listed in Table S7. Values are mean ± SD of three 
experiments. 
(C) CCT1 protein was completely depleted by RNAi treatment. Western blot shows complete 
depletion of CCT1 in total lysate of S2 cells treated with dsRNA directed against CCT1, 
whereas no effect on CCT1 levels was observed in control treated S2 cells. GAPDH was used 
as loading control. 
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Figure 16. Depletion of PE synthetic enzymes does not affect LD morphology. 
(A) Knockdown of Kennedy pathway enzymes for PE synthesis does not alter LD morphology. 
Enzymes were depleted by RNAi and cells were analyzed as in (15A). Bar = 5 μm. 
(B) Enzymes of PE synthesis were efficiently knocked down. Expression levels were 

measured and analyzed as described in (15B). 
(C) Knockdown PSD1 or PSD2 does not affect LD morphology. Enzymes were depleted by 
RNAi and cells were analyzed as in (15A). Bar = 5 μm. 
 

Among PC synthesis enzymes, knockdown of CCT1 gave the strongest phenotype—

with only few, giant LDs per cell (Figures 15A). This finding is supported by the fact 

that CCT1 knockdown also results in the largest decrease in PC levels among PC 

synthesis enzymes, as shown by thin layer chromatography (TLC) (Figure 17). 

Consistently, CCT1 catalyzes the rate-limiting step of PC synthesis and thus changes 

in enzyme level are expected to give the highest impact on PC levels in the cell. 
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Although CCT2 mRNA levels were efficiently reduced (Figure 16B), CCT2 

knockdown showed smaller effects on LD morphology than CCT1 depletion. This 

suggests that CCT1 is the main isoform in S2 cells, especially since CCT1 

expression levels are much higher than for CCT2 (Celniker et al., 2009). Hence, 

CCT1 provides the majority of cytidylyltransferase activity for LD-directed PC 

synthesis.  

CK depletion also reduced PC levels in LDs and induced formation of large droplets 

(Figure 15A, Figure 17). In contrast, depletion of CPT, the enzyme catalyzing the 

final step of PC synthesis had no effect on LD size and caused only minor reduction 

of PC levels (Figure 15A, Figure 17). Evidently, reduction of CPT mRNA levels by 

~80% was not sufficient to reduce enzyme levels below the threshold required for PC 

synthesis during LD formation.  

 

 

 
Figure 17. CCT1 Depletion causes the strongest 
reduction of LD PC levels among PC synthesis 
enzymes.  
Knockdown of PC synthetic enzymes reduces PC levels 
in LDs. LDs from cells as in (15A) were purified, and 

extracted lipids were analyzed by TLC. 

 

 

 

 

 

 

To further test whether the CCT phenotype is caused by PC deficiency on LDs or any 

other side effect of RNAi treatment against CCT, I added liposomes of different lipid 

compositions to CCT1 knockdown cells. In comparison to liposomes containing 

mostly PE, addition of PC liposomes fully rescued the phenotype (Figure 18). Thus, 

the formation of giant LDs resulted from PC deficiency.  
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Figure 18. CCT1 phenotype is rescued by the addition of PC liposomes.  

CCT1 knockdown can be rescued by addition of PC liposomes but not by liposomes 
consisting mainly of PE. Drosophila S2 cells treated with RNAi against CCT1 were incubated 
with 5 mM liposomes of the indicated lipid mixtures before LD morphology was analyzed 12 
h after oleate treatment. LDs were stained with BODIPY. Representative confocal 
midsections from single cells are shown in the upper panels. 3-D reconstructions from image 
stacks are shown in the lower panels. Bar = 5 μm. 
 

Furthermore, treating S2 cells with miltefosine (hexadecylphosphocholine), caused a 

similar phenotype than that was seen during oleate loading of CCT1 RNAi treated S2 

cells (Figure 19A). This inhibitor of CCT has been shown to decrease cellular PC 

levels (Geilen et al., 1992). Moreover, reducing flux through the Kennedy pathway by 

growing cells in choline deficient medium led to the formation of giant LDs resembling 

those after CCT1 depletion (Figure 19B). 

 

Figure 19. The formation of giant LDs is caused by 
PC deficiency.  
(A) The CCT inhibitor miltefosine induces the 

formation of giant LDs. Drosophila S2 cells were 
treated with 25 µM miltefosine for 48 h and oleate 
for 12 h. LDs were stained with BODIPY. 
Representative confocal midsections from single cells 
are shown in the upper panels. 3-D reconstructions 
from image stacks are shown in the lower panels. Bar 
= 5 μm. 
 (B) Choline deficiency leads to giant LDs. S2 cells 
were grown in normal or choline-deficient medium, 
oleate loaded, and analyzed as in (A). Representative 
images of BODIPY-stained confocal midsections from 

a single cell are shown. Bar = 5 μm. 
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Previous studies suggest that N-ethylmaleimide-sensitive-factor attachment receptor 

(SNARE) proteins might be involved in the fusion process of LDs (Bostrom et al., 

2007). To test whether the formation of giant LDs upon reduction of PC levels on the 

LD surface was mediated by SNARE protein dependent fusion pathways, I co-

depleted N-ethylmaleimide-sensitive-factor (NSF), α soluble NSF attachment protein 

(SNAP), or a series of SNAREs (SNAP23, syntaxin5)  together with CCT1. However, 

knockdown of none of the mentioned proteins had an effect on CCT1‘s LD 

phenotype, implicating that LD coalescence under those conditions is not mediated 

by a SNARE protein dependent pathway (Figure 20). 

 

 

 

 

 

 

Figure 20. PC depletion promoted coalescence is independent of SNARE protein mediated 
pathways. Depletion of proteins involved in SNARE dependent membrane fusion does not 
rescue the CCT1 phenotype. The indicated enzymes were depleted by RNAi in Drosophila S2 
cells. Cells were loaded with 1 mM oleate for 12 h, and LDs were stained with BODIPY. 
Representative confocal midsections from single cells are shown in the upper panels. 3-D 

reconstructions from image stacks are shown in the lower panels. Bar = 5 μm 
 

Together these results show that CCT1 has a main function in maintaining LD 

phospholipid levels during LD formation and growth. Depleting CCT1 has the 

strongest impact on LD morphology among all enzymes for PC and PE synthesis and 

results in the fusion of small LDs into fewer but giant ones due to PC deficiency 

arising on LDs. 
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4.2.2 PC serves as surfactant stabilizing LDs and preventing LD 
coalescence 

 As different phospholipid species have different surfactant characteristics 

(Kabalnov et al., 1996), I decided to test their capacities to act as stabilizers on the 

LD surface. As only knockdown of PC synthesis enzymes results in LD phenotypes, I 

hypothesized that PC plays a more important role in shielding neutral lipid emulsion 

in an aqueous environment and preventing LD coalescence than other 

phospholipids. To test the shielding effect of different phospholipids on the LD 

surface, I analyzed the stability of in vitro generated artificial droplets with different 

phospholipid compositions in an aqueous environment.  

The stability of in vitro formed artificial droplets correlated with the characteristics of 

changes in the LD composition observed in S2 cells. Artificial droplets whose TG 

core is shielded by either PC or a PC/PE mixture, thereby resembling the 

composition of LDs in S2 cells (PC:PE 1:2.7), remained stable for at least 3 h. In 

contrast, LDs formed with TG alone or with TG and a PE monolayer rapidly 

coalesced, forming a continuous lipid phase (Figures 21A and 21B). Also other 

phospholipids that are normally found in smaller amounts on the LD surface, such as 

PI or PS, showed a weaker stabilizing effect compared to PC, even when added 

individually and in large excess (Figure 21B). Moreover, also PI and PS did not 

prevent artificial TG droplet coalescence when added together with PE in molar ratios 

similar to those in LDs (PE:PI:PS on artificial droplets: 9:1.3:1, corresponding to LD 

phospholipid ratio quantified by TLC (Figure 17), which yielded data similar to 

previous studies (Jones et al. 1992)). In contrast, addition of PC to this complex 

phospholipid mixture abolished droplet coalescence (PC:PE:PI:PS on artificial 

droplets: 1:2.7:0.4:0.3; Figure 21B). These findings, together with previous data on 

the stability of lipid-water emulsions (Saito et al., 1999), indicate that PC, but not PE, 

is necessary as a surfactant stabilizing LDs and preventing them from coalescence.  
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Figure 21. PC is a stronger stabilizer of artificial LDs than other phospholipids.  
Stability and size of artificial droplets consisting of the indicated lipid mixtures were 
determined by fluorescence microscopy (A) and light scattering (B). The molar ratios of the 
phospholipids were calculated according to quantifications of  TLC analyses of LD fractions 
(PC:PE 2.7:1; PE:PI 6.75:1; PE:PS  9:1;  PE:PI:PS, 9:1.3:1; PC:PE:PI:PS:PC, 1:2.7:0.4:0.3). Values 
are mean ± SD of three experiments. 
 

 

4.2.3 Among PC synthesis enzymes, only CCT localizes to LDs 

Overexpressed fluorescently tagged CCT1 and CCT2 localize to LDs (Guo et al., 

2008). Moreover, protein correlation profiling suggests a strong enrichment of 

endogenous CCT enzymes in the LD fraction compared to other cellular fractions. In 

addition, I confirmed LD targeting of the endogenous protein by Western blot with 

antibodies against CCT. I compared CCT distribution over the gradient of a LD 

purification to the behavior of other well characterized organelle marker proteins, as 

well as a TG profile generated by TLC as indicator for the LD purification (Figure 

22A).  

CCT1 was highly enriched in the LD fraction with only minor amounts being found in 

fractions 8 and 9, representing protein either still localizing to the nucleus or to 

membranes. CCT abundance mirrored the distribution of TG over the gradient, 

indicating LD localization. In contrast, other organelle markers, such as the cytosolic 

GAPDH or the ER/Golgi marker KDEL-receptor, showed complete different profiles 
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over the gradient and were not detected in the LD fraction (Figure 22A). The amount 

of total cellular CCT1 localizing to the LD surface was at least 50% as quantified by 

comparison of its presence in the total and the LD fraction. In contrast, the cytosolic 

control protein GAPDH was excluded from the LD fraction (Figure 22B). This 

suggests that a major pool of the total endogenous cellular CCT1 is recruited to 

growing LDs. 

 

 
 
 
 
 
 
 
 
 

 
 
Figure 22. Endogenous CCT localizes to LDs.  
(A) Western blots for CCT1, KDEL-receptor and GAPDH and a TLC for TG are shown for all 
fractions of a LD purification. Same amount of protein of each fraction was used. 
(B) At least 50% of total cellular CCT1 localizes to LDs after oleate loading. The same 
percentage of total protein of total and LD fraction was blotted for CCT1 and GAPDH as a 
control. 

 

My first hypothesis for the function of CCT targeting to the LD surface was that 

relocalization of CCT and eventually other Kennedy pathway enzymes might facilitate 

localized PC synthesis on the LD surface. Under those conditions of extensive LD 

growth, large amounts of PC are required to stabilize the hydrophobic neutral lipid 

core. Thus, PC might be synthesized at the LD surface, the site in the cell where the 

additional PC would be required.  

However, for localized PC synthesis also other Kennedy pathway enzymes, at least 

CPT, would have to localize to LDs. CPT was reported to localize under normal 

conditions to ER membranes (Coleman and Bell, 1978; Wilgram and Kennedy, 
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1963). It catalyzes the final step of PC synthesis by converting CDP-choline and DG 

into PC. Unlike all other precursor substrates of PC synthesis before this step, the 

substrate DG and the product PC of the CPT catalyzed reaction are not water-

soluble and cannot diffuse freely in the cell to its site of use. Thus, CPT localization 

defines the site of PC production from the Kennedy pathway.  

To test whether also CPT and CK are targeted to LDs under conditions of LD grow 

and thus, to the site of de novo PC synthesis, I analyzed subcellular distributions of 

fluorescently tagged Kennedy pathway enzymes during oleate loading of S2 cells. 

However, in contrast to CCT1 and CCT2, CK and CPT showed no LD localization 

(Figure 23). Also during oleate treatment, CPT was still found in the ER (Figure 23), 

whereas CK showed a diffuse cytoplasmic signal, consistent with its soluble 

characteristics. Thus, I only found CCT but no other Kennedy pathway enzymes for 

PC synthesis on the LD surface. This indicates that also under conditions of LD 

expansion de novo PC synthesis takes place in the ER, the site of CPT localization 

and not on the LD surface. This implicates that CCT is not targeted to LDs to 

participate in localized PC synthesis. 

 

 

 

Figure 23. CCT1 and CCT2, but not CK 

and CPT, localize to LDs. 
 The indicated fluorescent mCherry–
tagged enzymes were transiently 
expressed in S2 cells (left panels, red), 
loaded with 1 mM oleate for 12 h. LDs 
were stained with BODIPY (middle panels, 
green). The overlays of the two channels 
and zooms of a representative LD section 
are shown (right two panels). Bar = 5 μm 
(overview) or 1 µm (inlay). 
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4.2.4 CCT directly binds to LDs by an amphipathic alpha helix 

As reported earlier, CCT directly binds to membranes and liposomes via an 

amphipathic alpha helix (Attard et al., 2000; Friesen et al., 1999; Taneva et al., 

2003). However, it is not clear yet, whether the interaction with the LD phospholipid 

monolayer is direct or mediated by another protein. To approach this question, I 

affinity-purified CCT2 (Figure 24A) and incubated it with artificial droplets with a 

PC:PE ratio as found in vivo in S2 cells. Then, I purified the artificial droplets by 

floating them on a sucrose cushion and tested CCT binding by comparing the 

artificial droplet bound fraction with an adequate control fraction of the sucrose 

cushion. In contrast to a GFP control protein, a significant amount of CCT2 was 

floated with the artificial droplet fraction, indicating that CCT interacts directly with 

monolayer-bound droplets and no other proteins are required to mediate CCT LD 

targeting (Figure 24B). 

 

 
Figure 24. CCT directly binds to LDs 
(A) CCT2-His6 was affinity purified to high purity. 
Purity of affinity purified CCT2-His6 was checked 
by SDS gel electrophoresis.  
(B) CCT2 directly binds to artificial droplets. 
Purified CCT2 and purified GFP were mixed in a 1:1 
ratio and incubated with artificial droplets with a 
phospholipid composition PE:PC 3:1, adjusted to 
0.75 M sucrose and floated by centrifugation. The 

top fraction and a control fraction under the LDs 
were analyzed by Western blot and compared to a 
control sample without lipids.  

 

 

Membrane binding of CCT was shown to be mediated by an amphipathic alpha helix. 

However, a C-terminal phosphorylation domain containing multiple serine residues 

was also implicated in modulating CCT regulation and localization (Arnold et al., 

1997; Houweling et al., 1994; Wang et al., 1993a; Wieprecht et al., 1996). To 
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address which protein domains are responsible for LD targeting, I generated several 

CCT1 mutants and tested their ability to bind to the LD surface (Figure 25). A mutant 

lacking the C-terminal phsophorylation domain (ΔP) still targeted to the LD surface, 

whereas deletion of both the phosphorylation and the helical domain (ΔHP) abolished 

LD phospholipid monolayer localization. LD targeting was also completely abolished 

by introducing a single point mutation, W397E, into the amphipathic alpha helix which 

is predicted to disrupt the amphipathic structure of the helix. To test whether the 

amphipathic helix alone is already sufficient for LD localization, I expressed the 

helical domain alone (H) fused to mCherry in S2 cells. Strikingly, these 65 amino 

acids were sufficient for efficient LD targeting. These results show that the helical 

domain of CCT1 is both necessary and sufficient for LD targeting. 

 

 

 

 

 

 

 

 

 
Figure 25. CCT1 binds to LDs through its helical region.  
S2 cells expressing fluorescent mCherry–tagged mutants of CCT1 were oleate loaded for 12 
h, and their localization was determined (left panels). LDs were stained with BODIPY (second 
left panels). Second right panels show overlays (merge) of the two channels. Far right panels 
show a zoom of a representative LD section. Bar = 5 μm (overview) or 1 µm (inlay). Design of 

the constructs is visualized on right side (N is N-terminal region containing NLS, C is catalytic 
core, H is helical domain, P is phosphorylation domain). 
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4.2.5 CCT is targeted to LDs when the PC to TG ratio decreases 

An alternative model to CCT targeting for localized PC synthesis on the LD 

surface would be that CCT relocalization serves a regulatory function. This 

hypothesis would be consistent with previous studies showing increased CCT activity 

upon binding to membranes such as liposomes and large unilamellar vesicles 

(Cornell and Vance, 1987). Especially membranes with low PC content were shown 

to promote CCT binding (Weinhold et al., 1994). 

A similar regulatory mechanism might exist during LD expansion. Under conditions of 

LD growth the surface increases dramatically and large amounts of phospholipids are 

required to shield neutral lipids within the core and to stabilize the phase interface 

with the cytosol (Farese and Walther, 2009). CCT, the rate-limiting enzyme for PC 

synthesis that regulates the flux through the pathway, could sense increasing PC 

deficiency on the expanding LD surface, bind there and thus being activated, thereby 

providing more substrate for PC synthesis. This hypothesis would include that CCT 

senses the lipid composition on the LD surface and localizes there when PC 

deficiency arises. 

To test this, I analyzed CCT1 localization during a 24 h time course of oleate loading. 

Over time, the average and maximum size of LDs increased continuously (Figures 

26A and 26B). Already 1 h after oleate loading numerous small LDs appeared in 

cells. However, in most of the cells, CCT fluorescent signal was detected in the 

nucleus and CCT was found to localize to LDs only in ~15% of cells (Figures 26A, C, 

D). Between 1h and 3h of oleate loading, I observed a strong increase in cells with 

LD targeted CCT. After 3 h almost 90% of cells showed CCT on the LD surface and 

after 5 h of oleate treatment, CCT was in almost all cells on the LD surface (Figures 

26A, C).  

If CCT serves a regulatory function by sensing PC deficiency on LD surfaces and 

consequently inducing its relocalization and activation, one would assume that the 

targeting process might be part of a homeostatic feedback loop. For a homeostatic 
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feedback loop, CCT LD targeting would be expected to be reversible. Specifically, 

under conditions when LD growth is stopped and the cellular conditions require less 

CCT activity, the enzyme would fall off LDs and either relocate back to the nucleus or 

be specifically degraded. To test this hypothesis, I induced LD formation by treating 

cells for 24 h with oleate so that in all cells CCT was found on the LD surface. Then, I 

replaced oleate containing medium by lipid-free medium (Figures 26A, C, D). 20h 

after this shift, I observed no further LD accumulation or growth and in more than 

50% of the cells I detected no CCT1 on LDs any more but in the nucleus, similar to 

its location before oleate loading (Figures 26A, C). 
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Figure 26. CCT1 is targeted to LDs after an initial delay and relocalizes to the nucleus when 
oleate is removed. 
(A) CCT1 localizes to LDs after 3 h of oleate loading and relocalizes to the nucleus when cells 
are shifted to lipid-free medium. mCherry-CCT1 was expressed in S2 cells (left panels). LD 

targeting was followed by fluorescence microscopy after 1 mM oleate was added to the 
medium. LDs were stained with BODIPY (second left panels) and representative confocal 

midsections of each time point are shown. Second right panels show overlays of the two 
channels. Right panels show a zoom of a representative LD section. Bar = 5 μm (overview) or 
1 µm (inlay). 
(B) Number of cells with targeting of CCT1 to LDs increases strongly between 1 and 3 h of 
oleate loading and decreases after oleate removal. The number of cells in which CCT1 is 
targeted to LDs at indicated time points was quantified. Values are mean ± SD of three 
independent experiments. 
(C) The amount CCT1 on LDs increases in the first 12 h of oleate loading and decreases after 
oleate removal. Quantification of the fluorescence intensity of mCherry-CCT1 outside the 

nucleus. Values are mean ± SD of three independent experiments. 
(D) LDs grow during oleate loading. Box plots representing the median, the upper and lower 
quartiles, and 1.5-fold inter-quartile range (IQR) of LD diameters at different time points of 
oleate loading are shown (n>100 for each time point). 
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In comparison to CCT1, CCT2 is localized in the cytosol in unloaded cells, as I 

observed in the same time course experiment. When LD formation is induced by 

incubation with oleate, small droplets already appear after 1h. However, only after 3 

h, I detected CCT2 on LDs in most of the cells (Figure 27), thus CCT2 shows the 

same delay in LD targeting as CCT1. 

 

 

Figure 27: CCT2 is targeted to LDs with an 
initial delay 
3 h after oleate loading, CCT2 localizes to 
LDs. mCherry-CCT2 was expressed in S2 
cells (left panels). LD targeting was 
followed after the addition of 1 mM oleate 
to the medium. LDs were stained with 
BODIPY (second left panels). Second right 
panels show overlays of the two channels. 
Right panel shows a zoom of a 
representative LD section. Bars = 5 μm 

(overview) or 1 µm (inlay).  

 

 

 

To address what induces LD targeting after the initial delay, I analyzed the changes 

in lipid composition in growing LDs. I isolated LDs at different times during oleate 

loading and measured their TG and PC content by enzymatic assays (Figure 28A). In 

the initial phase of oleate loading the PC:TG ratio strongly decreased, only after 5h, 

when all CCT1 was targeted to LDs, the PC:TG ratio stabilized at a new, lower level 

and remained constant during the remaining 24 h of oleate loading. During the time 

course the total cellular TG levels continuously increased until they reached a 

plateau after 12h (Figure 28B). Also the total cellular PC content increased during 24 

h of oleate loading more than two-fold. In contrast to TG levels that start to increase 

immediately after oleate loading, PC levels increased after an initial lag-phase of 3-5 
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h. Thus the increase of cellular PC levels starts at those time points when CCT is 

relocalized to LDs (Figure 28C). 

 

 

 

 

Figure 28. CCT is targeted to LD when the PC/TG ratio decreases 
(A) PC/TG ratio of LDs decreases for up to 5 h of oleate loading but stabilizes afterwards. LDs 
were isolated at indicated time points after oleate loading, and PC and TG in LD fractions 
were measured by enzymatic assays. Values are mean ± SD of three independent 
experiments. 

(B) Cellular TG levels increase steadily over time in oleate-loaded cells. TG content of total 
cell lysate was measured enzymatically at indicated time points after oleate loading and 
normalized to protein levels. Values are mean ± SD of three independent experiments. 
(C) After an initial delay, cellular PC levels increase linearly over time in oleate-loaded cells. 
PC content of total cell lysate was measured enzymatically at indicated time points after 
oleate loading and normalized to protein levels. Values are mean ± SD of three independent 
experiments. 
 

CCT targeting to LDs may be part of a homeostatic feedback response: when LD 

increase their size, PC deficiency on LDs increases so that more CCT activity is 

required in order to produce PC. CCT then senses the PC deficiency and is targeted 

to LDs thereby being activated. When LD growth reaches an equilibrium and PC 

levels stabilize, CCT1 no longer binds to LDs and is localized mostly in the nucleus. 
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4.2.6 CCT1 is highly mobile and shuttles between nucleus and cytosol 
before oleate loading 

The previous data indicate that CCT binds to the LD surface when PC 

deficiency arises. But how can CCT monitor PC levels on LDs and react to changes, 

if the enzyme resides in the nucleus under basal conditions? One possibility is that 

CCT1 shuttles between the nucleus and cytosol, thereby having continuous access 

to the LD surface and being able to survey PC levels. 

I examined the mobility of CCT1 in oleate untreated cells by fluorescence-loss-in-

photobleaching (FLiP) experiments, when most of the CCT1 is in the nucleus. I 

approached the question whether CCT1 shuttles between the nucleus and the 

cytosol by repeatedly bleaching mCherry-CCT1 at one spot in the cytosol, while 

monitoring the loss in nuclear fluorescence (Figure 29A). The results indicate a rapid 

loss of fluorescence within ~30 s in the nucleus of bleached cells (Figure 29B), 

whereas the signal of mCherry-CCT1 in nuclei of other cells at a similar distance 

from the bleached spot was not decreased. This shows that cytoplasmic continuity is 

required for CCT1 to be bleached over time. This strongly suggests that CCT1 

shuttles rapidly between the nucleus and the cytosol under basal conditions, since 

almost all nuclear CCT1 at steady state migrated through the cytoplasmic bleaching 

spot within 30 s. 

 

 
Figure 29. CCT1 shuttles between 
nucleus and cytosol before oleate 
loading  
(A) CCT1 shuttles between nucleus and 
cytosol. Representative time course 
images of a FLiP experiment in which a 
spot in the cytosol of a cell expressing 
mCherry-CCT1 was bleached repeatedly. 
Bar = 5 μm. 
(B) Normalized fluorescence intensity of 

mCherry-CCT1 in the nucleus of both 
bleached and nonbleached cells in the 
same experiment. Values are mean ± SD 
of three independent experiments. 
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Moreover, at steady-state CCT1 is extremely mobile within the nucleus and does not 

bind to any nuclear structure. This finding is in contrast to previous studies that found 

CCT binding to the nuclear envelope (Lagace and Ridgway, 2005). FLiP experiments 

show that repeated bleaching of a small nuclear spot led to a loss of nuclear mCherry 

fluorescence within seconds (Figure 30). 

 
 

Figure 30. CCT1 freely diffuses in the 

nucleus 
(A) CCT1 freely diffuses in the nucleus. 
The mobility of mCherry-CCT1 in the 
nucleus was assayed by repeatedly 
bleaching the indicated spot (FLiP). 
Selected time frames from one 
experiment are shown. Bar = 5 μm. 
(B) Quantification of FLiP experiments 
shown in (A). Normalized fluorescence 
intensity of mCherry-CCT1 in the nucleus 
of both bleached and nonbleached cells of 

the same experiment. Values are mean ± 
SD of three independent experiments.  
 
 

 

Earlier studies suggested that the phosphorylation domain or the helical domain of 

CCT might be required to mediate nuclear export of the protein (Gehring et al., 

2009). Thus, I analyzed the mobility of the mutant CCT1 proteins (ΔP, ΔHP, and 

W397E) using the same FLiP experiments as for full-length CCT1. The behavior of 

all of tested mutants was the same as for full-length CCT1 and all mutants were still 

able to shuttle between the nucleus and the cytosol (Figure 31). This indicates that 

neither the phosphorylation domain, nor the helical domain is necessary for nuclear 

export. Thus, under steady-state conditions, CCT1 rapidly shuttles between a major 

nuclear and a minor cytosolic pool, thereby having access to LD surfaces and other 

membranes and being able to survey PC levels on those sites. 
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Figure 31. CCT1 mutants shuttle 
between the nucleus and the cytosol 

(A) CCT ΔP shuttles between nucleus 
and cytosol. Representative time 
course images of a FLIP experiment in 
which a spot in the cytosol of a cell 
expressing mCherry-CCT1 ΔP was 

bleached repeatedly. Bar = 5 μm. (B) 
Normalized fluorescence intensity of 
mCherry-CCT1 in the nucleus of both 
bleached and nonbleached cells of the 
same experiment. Values are mean ± 
SD of three independent experiments. 
(C) and (D) Experiments as described 
in (A) and (B) for CCT1 ΔMP. (E) and 
(F) Experiments as described in (A) 
and (B) for CCT1 W397E. 
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4.2.7 CCT binds stably to LDs during their expansion 

CCT1 is highly mobile in untreated cells, as it freely diffuses within the nucleus 

and shuttles between the nucleus and the cytosol. Thus, I wanted to test whether 

CCT is stable once bound to the LD surface. If CCT targeting to the LD surface 

would be part of a regulatory feedback loop and serves to activate the enzyme, CCT 

binding to LDs should be stable until adequate PC concentrations are reached.  

To test this, mCherry-CCT1 was bleached on one LD in oleate treated cells and the 

fluorescence recovery was subsequently monitored over more than 20 min. For this 

fluorescence-recovery-after-photobleaching (FRAP) experiment I specifically chose 

cells showing complete CCT1 targeting to the LD surface in order to exclude any 

complications due to continuous retargeting from the nuclear pool. After initial 

bleaching the mCherry-CCT1 signal was completely depleted from the selected LD 

and no recovery was observed during the following 24 min (Figure 32A, B). This 

shows that CCT1 is stable once bound to the LD surface. The same FRAP 

experiment for CCT2 revealed that also CCT2 binds stably to the LD surface 

because its signal on a LD also did not recover after bleaching (Figure 32A, B).  

To confirm these findings, I measured the release rate of CCT1 from LDs by 

using inverse FRAP (iFRAP). To do so, I bleached the mCherry-CCT1 signal of a 

whole cell except for one LD in the beginning of the experiment (Figure 32C). Then, I 

measured the loss of fluorescence on the unbleached LD over 20 min. I used the 

signal of a LD in an unbleached cell in the same image to correct for bleaching due to 

imaging. Over 20 min the mCherry signal on the unbleached LD remained stable 

(Figure 32D). This confirms that CCT1 is stably bound to LDs during this time period. 

I observed the same finding for CCT2 (Figures 33C, D), as there was no loss in 

signal intensity on an unbleached LD, following 20 min after bleaching the rest of the 

cell. Thus, during LD growth, CCT enzymes are stably bound to LDs and do not 

exchange with CCT bound to other LDs or in other circulating pools. 
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Figure 32. CCT1 stably binds to LDs 
(A) CCT1 fluorescence of a bleached LD does not recover. CCT1 was tagged with mCherry 
(upper panels), LDs were stained with BODIPY (middle panels). Lower panels show overlays 
of the two channels. The box indicates the LD that was photobleached (FRAP). Insets show 
the indicated part of the image at higher magnification. Prebleach (left), immediately after 
bleach (middle), and postbleach (right) images of the FRAP experiment are shown. Bar = 5 
μm.  
(B) Normalized fluorescence intensity of mCherry-CCT1 on a bleached LD as in (A) over time 

in black. In grey, fluorescence of mCherry-CCT1 of a LD in an unbleached control cell during 
the same experiment. Values are mean ± SD of three independent experiments. 
 (C) CCT1 fluorescence remains stable on LD in a bleached cell (iFRAP). CCT1 was tagged with 
mCherry (upper panels), and LDs were stained with BODIPY (middle panels). The lower 
panels show overlays of the two channels. At time 0 min, all signal except on the LD in the 
box was photobleached. Insets show the indicated part of the image at higher magnification. 
Pre-bleach (left), immediately after bleach (middle), and postbleach (right) images of the 
FRAP experiment are shown. Bar = 5 μm. (D) Fluorescence intensity of mCherry-CCT1 of 
experiments as in (C) over time normalized for photobleaching caused by imaging. Values 
are mean ± SD of three independent experiments. 
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Figure 33. CCT2 binds stably to LDs 
(A) CCT2 fluorescence does not recover on a bleached LD. FLIP of mCherry-CCT2 treated with 
oleate for 12 h. CCT2 was tagged with mCherry (upper panel), LDs were stained with BODIPY 
(middle panels). The lower panels show overlays of the two channels. The box indicates the 
LD that was photobleached in the cell. Insets show the indicated part of the image at higher 
magnification. Prebleach (left), immediately after bleach (middle panels), and postbleach 
(right) images of the FRAP experiment are shown. Bar = 5 μm.  
(B) Fluorescence intensity of mCherry-CCT2 on the LD shown in (A) at the beginning of the 
experiment was set to 100%. An LD in an unbleached cell was used as control to monitor 

photobleaching during the experiment (grey). Values are mean ± SD of three independent 
experiments. 
(C) CCT2 fluorescence remains stable on a single LD in a bleached cell. FLIP of mCherry-CCT2 
in cells treated with oleate for 12 h. CCT2 was tagged with mCherry (upper panels), LDs were 
stained with BODIPY (middle panels). The lower panels show overlays of the two channels. 
Box indicates the LD that was not photobleached in the cell. Insets show the indicated part 
of the image at higher magnification. Prebleach (left), immediately after bleach (middle), and 
postbleach (right) images of the FRAP experiment. Bar = 5 μm. The fluorescence of the non-
bleached LD was subsequently monitored. 
(D) Normalized fluorescence intensity of mCherry-CCT2 of experiments as in (C) over time. 
Values are mean ± SD of three independent experiments. 
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4.2.8 CCT is activated by LD targeting 

Among enzymes localizing to LDs some are active on the LD surface, 

whereas others are sequestered there in an inactive state (Leber et al., 1998). The 

hypothesis that CCT localization has a regulatory function in upregulating PC 

synthesis according to the increased need during LD growth suggests that CCT 

activity increases by LD binding. Since it was shown before that CCT activity 

increases upon membrane binding, its enzymatic activity was tested after recruitment 

to LDs. To exclude that CCT is sequestered on LDs in an inactive state, I measured 

its activity before and after oleate loading and normalized it to its abundance 

determined by Western blot.  

After oleate loading of S2 cells, I observed a strong increase in specific activity for 

the endogenous protein, as well as for mCherry-CCT1 (Figures 34A, B). Endogenous 

CCT activity and mCherry-CCT1 activity increased more than fourfold and more than 

threefold, respectively. Moreover, when I replaced oleate containing medium by lipid 

free medium what stops LD growth and CCT1 is released from the LD surface 

(Figure 26A), its activity returned to near basal levels (Figure 34A).  

 

Figure 34. CCT is activated by LD binding. 

(A) Endogenous CCT activity increases when cells are 
loaded with oleate and decreases again when cells 
are shifted to lipid free medium. CCT activity of total 

cell lysate was measured before oleate loading, after 

12 h of oleate loading, and after removal of oleate for 
20 h after 24 h of oleate loading. CCT activity was 
normalized to the amount of CCT1 measured by 
Western blot analysis. Lower panel shows a 
representative Western blot of CCT1 expression levels 
in samples used for activity assays (equal amounts 
loaded onto blot and activity assay). Values are mean 
± SD of three experiments. 
(B) mCherry-CCT1 activity increases when cells are 
loaded with oleate. mCherry-CCT1 activity was 

measured and normalized as described in (A). 
Endogenous CCT activity was measured and 
subtracted before and after oleate loading. Values are 
mean ± SD of three independent experiments. 
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To test whether CCT induction was due to targeting of the enzyme to LDs or any 

other cellular fraction, I measured CCT activity in soluble, membrane, and LD 

fraction. In the soluble and the membrane fraction, I detected only low levels of 

specific CCT activity and there was no increase in those fractions during oleate 

loading. However, in the LD fraction, I measured a strong increase in CCT-specific 

activity after the induction of LD formation (Figure 35). Strikingly, CCT activity started 

to increase with a 3-5 h delay after oleate induction, which resembles the time when 

CCT targeting to the LD surface starts (Figure 26 and 35). Thus, CCT activity 

increases concurrently with more and more CCT recruitment to LDs. 

 

 

 

Figure 35. CCT is active on LDs.  
Lysates of S2 cells loaded with oleate for 
the indicated times were fractionated 
into cytosol, membrane, and LDs, and 

specific CCT activity was measured. 
Values are mean ± SD of three 
experiments. 

 

 

Previously obtained results suggest that CCT1 relocalization to LDs is induced by PC 

deficiency on the LD surface, as the targeting of the enzyme coincides with a 

dramatic decrease of the PC:TG ratio (Figure 28A). To directly address whether PC-

deficient LDs recruit and activate CCT, I mixed S2 cell extracts with artificial droplets 

of different compositions. Droplets stabilized by PC alone did not induce CCT activity 

compared to basal activity levels without the addition of artificial droplets or TG alone 

(Figure 36A). However, CCT activation was inversely correlated with the molar 

PC:PE ratio. Additionally, artificial droplets shielded by other phospholipid species 

(e.g., PS or PI) strongly activated CCT (Figure 36A). To confirm that CCT activation 

was in fact caused by specific binding to the phospholipid monolayer by its 
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amphipathic alpha helix, I used the LD binding impaired CCT1 mutant (W397E) as a 

control (Figure 25). As shown before, this mutant cannot bind to droplets anymore 

and thus could not be activated by the addition of artificial droplets that activated WT 

CCT (Figure 36B). Thus, CCT is activated by PC deficiency on LDs in vivo and in 

vitro. This further supports the model in which CCT binds to PC and is activated by 

PC deficiency during LD formation in cells. 

 

 

 

 

 

 

 

 

 

Figure 36. CCT is activated by PC deficient artificial droplets 

(A) CCT activity inversely correlates with PC content of in vitro generated artificial droplets. 

Artificial droplets of the indicated phospholipid compositions were generated, added to total 
lysate of wild type cells, and CCT activity was determined. Values are mean ± SD of three 
experiments. 
(B) mCherry-CCT1, but not mCherry-CCT1W397E, is activated by artificial droplets with low 
PC. Artificial droplets containing PC and PE in a 1:6 ratio were generated and added to total 
mCherry-CCT1 and mCherry-CCT1W397E cell lysate and the CCT activity was determined. 
Values are mean ± SD of three independent experiments. 
 

 



| 61 

 

4.2.9 LD binding is essential for CCT1 function in LD biogenesis 

The hypothesis that PC synthesis during LD biogenesis is regulated by CCT 

subcellular relocalization predicts that LD binding is crucial for the enzyme‘s function. 

To further test this prediction, I determined the requirement of CCT1 for normal LD 

formation. As expected, depleting the endogenous CCT1 by RNAi against the 3UTR 

of its mRNA led to the formation of giant LDs after oleate loading. Moreover, I 

expressed different RNAi-resistant mCherry-CCT1 constructs to determine whether 

they can rescue the depletion phenotype of the endogenous protein. Expressing full-

length mCherry-CCT1 or mCherry-CCT1ΔP completely rescued the phenotype 

(Figure 37), whereas mutants that are unable to bind to LDs, such as the constructs 

lacking the amphipathic helix (ΔHP) or the point mutant (W397E) had no effect on the 

formation of giant LDs (Figure 37). As shown before by FLIP experiments (Figure32), 

both ΔHP and W397E CCT1 shuttled normally between nuclear and cytoplasmic 

compartments and had access to cytoplasmic LDs (Figure 31). These results indicate 

that LD binding is necessary for normal function of CCT in LD biogenesis 

 

 

 

 

Figure 37. LD binding is essential for 
CCT1 function and biogenesis. 

 mCherry-CCT1, mCherry-CCT1ΔP, 
mCherry-CCT1ΔMP, and mCherry-
CCT1W397E were expressed in cells 
with endogenous CCT1 knocked 
known by RNAi against its 3’-UTR, and 
the ability of the mutants to rescue 
the LD phenotype was tested in oleate 
loaded cells. 
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To analyze the function of CCT1 nucleocytoplasmic shuttling during LD expansion, I 

overexpressed CCT2, which is normally only present in low amounts, in CCT1 

depleted S2 cells. CCT2 is highly homologous to CCT1 but in contrast contains no N-

terminal nuclear localization signal (NLS) and is thus cytosolic under steady state 

conditions. Overexpression of cytosolic CCT2 fully rescued the phenotype of CCT1 

depletion resulting in normally sized LDs (Figure 38). This suggests that continuous 

shuttling of CCT1 between the nucleus and the cytoplasm is necessary for CCT1 to 

survey LD PC levels and react to changes on the LD surface. However, this 

continuous shuttling is important only for enzyme localization and not its inherent 

function in PC synthesis during LD expansion. 

 

 

 

 

 

 

Figure 38. Nucleocytoplasmic shuttling is not necessary for CCT1 function during LD 
expansion.  
mCherry-CCT2 (lower panels) was transiently expressed in cells with endogenous CCT1 

knocked known by RNAi against its 3’-UTR and the ability of the CCT2 to rescue the LD 
phenotype was tested in oleate loaded cells. Untransfected control cell of the same sample 
is shown in the upper panel 
 

4.2.10 CCT regulates LD size in vivo 

To test whether regulation of PC synthesis by CCT1 activity also plays an 

important role during LD formation in vivo, I analyzed LD morphology in Drosophila 

expressing CCT1-directed shRNA in larval fat body. CCT1 depletion resulted in a 

similar phenotype as observed in S2 cells. Larvae expressing the CCT1-directed 

shRNA had significantly larger LDs as larvae expressing red fluorescent mCherry 
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protein alone. Fluorescent mCherry protein under the same driver was used as a 

control for demonstrating expression of the short hairpin RNA (shRNA) in the fat 

body (Figure 39). This shows that CCT1 function for the regulation of LD morphology 

is conserved in whole flies. 

 

 

 

 

 
 
Figure 39. CCT is important for LD homeostasis in vivo.  
CCT1 knockout flies have giant LDs in larval fat body. Fat body of Cg-Gal4 UAS-mCherry and 
Cg-Gal4 UAS-mCherry/UAS-CCT1 RNAi flies were stained for LDs with BODIPY (middle). 

Expression of the UAS-Gal driver was monitored by mCherry levels (left). Right panels show 
overlay of the two channels. Bar = 10 μm. 

 

4.2.11 CCT targeting and function in LD stabilization is conserved in 
mammalian cells 

To address whether CCT function in LD biology and its regulation by 

relocalization is evolutionarily conserved in mammals, I expressed murine CCTα in 

S2 cells. As the Drosophila protein, murine CCTα localized to LDs after oleate 

treatment (Figure 40). 

 

 

 

 

Figure 40. CCTα localizes to LDs in S2 cells.  
Murine mCherry–CCTα was transiently expressed in S2 cells (left panels, red), which were 

loaded with 1 mM oleate for 12 h. LDs were stained with BODIPY (middle panels, green). The 
overlays of the two channels and zooms of a representative LD section are shown (right two 
panels). Bar = 5 μm (overview) or 1 µm (inlay). 
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Also in an oleate treated murine macrophage cell line (Raw267.4) CCTα formed rings 

around LDs (Figure 41A). However, in contrast to Drosophila S2 cells, Raw267.4 

cells formed less LDs and CCT localization to reticular structures, likely ER 

membranes was observed besides LD localization (Figures 41A). This relocalization 

in response to oleate loading was reflected in the localization of endogenous CCTα in 

different cellular fractions of primary bone marrow–derived macrophages (BMDMs) 

(Figure 41B). Under basal conditions CCTα was mostly detected in the soluble 

fraction and shifted after oleate loading to the LD and microsomal fractions.  

 

 

 

Figure 41. CCT function is conserved in mammalian cells. 
(A) CCTα targets to LDs and membranes in oleate-loaded Raw 267.4 macrophages. CCTα-GFP 
was expressed in Raw 267.4 cells (left) loaded with oleate for 12 h. LDs were stained with 
Nile Red (middle). Second right panel shows overlays of the two channels. Right panels show 
a zoom of representative LD sections. Bar = 5 μm (overview) or 1 µm (inlay). 
(B) Oleate loading causes CCTα to move from the soluble fraction to membranes and LDs in 
BMDM. The indicated cellular fractions were probed for CCTα, and the marker proteins 
ADRP, calnexin, and GAPDH. 

 



| 65 

 

To test whether CCTα relocalization to LDs and membranes is coupled to CCTα 

activation, similar to what was observed in S2 cells; I compared CCT activity to 

normalized enzyme levels before and after oleate loading. In BMDMs and Raw267.4 

cells CCT activity increased more than nine- and three–fold, respectively (Figures 

42A, B). These results indicate that also in mammalian cells CCTα is activated after 

oleate treatment and is mediated by enzyme relocalization. 

 

 

 

 

 

 

 

 

 

Figure 42. CCTα is activated by oleate loading in BMDMs and Raw 267.4 macrophages.  
 (A) and (B) CCT activity in total cell lysates was measured before and after 12 h of oleate 
loading and normalized to CCT levels measured by Western blot. Lower panels show a 
representative Western blot of CCTα expression in samples used for activity assays (equal 
amounts were loaded onto the blot and in the activity assay). Values are mean ± SD of three 
experiments. 
 

I observed the mechanism of CCTα activation by relocalization not only in 

macrophages, since neuronal N2a cells showed an even more pronounced 

recruitment and activation of CCT(Figures 43A, B, C). In untreated N2a cells CCTα 

was found in the membrane and soluble fraction as detected by Western blot. After 

oleate loading, CCTα redistributed from the soluble to the LD fraction (Figure 43A). 

Moreover, total CCT activity increased ~two- fold (Figure 43B) and specific CCT 

activity was highest in the LD fraction compared to other cellular fractions (Figure 

28C). Also in vitro assays using N2a cell lysate showed similar results as observed 

for Drosophila CCT (Figure 37). CCT was strongly activated by artificial droplets 

consisting of PS and PI or with low amounts of PC, whereas almost no induction of 

CCT was detected with artificial droplets containing high PC levels (Figure 43E). 
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Figure 43. CCTα relocalizes to LDs and 
membranes in N2a cells and is activated by 
oleate loading and PC deficient artificial 
droplets. 
(A) Same protein amount of the indicated 
cellular fractions was blotted against CCTα, 
and the marker proteins ADRP, calnexin and 
GAPDH. 
(B) Oleate loading increases CCTα activity in 

N2a cells. CCT activity was measured in total 
cell lysate before and after 12h of oleate 
loading and normalized to enzyme levels 
measured by Western blot. Lower panels 
show a representative blot of CCTα 
expression in samples used for activity assays 
(equal amounts were loaded onto the blot 
and in activity assay). Values are mean ± SD of 
three independent experiments. 
(C) In oleate loaded cells CCTα activity is 
highest in the LD fraction. The specific CCT 

activity was measured for the indicated 
fractions purified from N2a cells after oleate 
loading. Values are mean ± SD of three 
independent experiments. 
(D) Mammalian CCT activity inversely 
correlates with the PC content of in vitro 
generated artificial droplets. Artificial 
droplets of the indicated phospholipid 
compositions were generated and added to 
total N2a cell lysate, and CCT activity was 
determined. Values are mean ± SD of three 

experiments. 
 
 

 

To determine whether a loss of CCT function during LD biogenesis has the same 

effect in mammalian cells as in Drosophila, I analyzed LD morphology in CCTα 

depleted BMDMs. I treated BMDMs from mice homozygous for a conditional Cctα 

allele (CctαF/F) or control mice (R26R-eYFP) with a fusion protein consisting of a His-

tag-Tat peptide from human immunodeficiency virus, a nuclear localization sequence 
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and a membrane-permeable Cre recombinase (HTNC). This fusion protein catalyzes 

the site-specific recombination of DNA between loxP sites and thus deletes the CCTα 

gene after its entry into the nucleus (Peitz et al., 2007). As determined by FACS 

sorting of the R26R-eYFP BMDMs, recombination efficiency by HTNC treatment was 

>90%. In BMDMs from conditional CctαF/F mice treated with HTNC, CCTα mRNA 

levels were 89% lower than in untreated control cells and 86% lower than in treated 

control cells (Figure 44B), which led to complete depletion of the protein, as tested by 

Western blot (Figure 44C). Upon CCTα depletion, I observed a similar phenotype as 

in the Drosophila S2 cell. Of the BMDMs deleted in CCTα, 66% had highly enlarged 

LDs in response to oleate loading (Figure 44A). Thus, CCT function is important for 

the regulation of LD formation and size also in mammalian cells, pointing to an 

evolutionarily conserved function for CCT in LD biology. 

 

Figure 44. CCTα knockout in BMDMs results 
in giant LDs. 
(A) LD morphology was analyzed in HTCN-
treated BMDM from CctαF/F mice. 
Untreated BMDM of CctαF/F mice and of 
HTNC-treated R26R-EYFP mice were used as 
controls. Representative midsections of 
BODIPY-stained cells are shown. Bar = 5 μm. 
(B) and (C) CCTα protein was completely 

depleted in HTNC-treated BMDMs from 
CctαF/F mice. CCTα mRNA levels were 89% 
lower than in untreated control cells and 
86% lower than in treated control cells 
Western blot shows complete depletion of 
CCTα in total cell lysate from HTNC-treated 
BMDMs from CctαF/F mice. GAPDH was 
used as a loading control. 
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5 DISCUSSION 

5.1 Protein correlation profiling identifies LD proteins with high 
confidence 

 This thesis contains a first high confident LD proteome that allows 

distinguishing between bona fide LD proteins and contaminants from other cellular 

organelles. A number of LD proteomes from different cell types and organisms are 

published (Bartzt et al., 2007; Beller et al., 2006; Brasaemle et al., 2005; Cermelli et 

al., 2006) but the reliability of those studies is limited. In these studies, the number of 

identified proteins was mainly dependent on the sensitivities of the mass 

spectrometers used for analysis. However, the abundance of a protein in the LD 

fractions does not provide enough information to determine whether a protein is 

indeed a LD-specific protein or whether it merely is a contaminant. Intracellularly 

highly abundant proteins, such as ribosomal proteins, might be found in larger 

amounts in the LD fraction than very low abundant LD proteins. This might explain 

the identification of large numbers of ribosomal and mitochondrial proteins in 

previous proteomes (Bartzt et al., 2007; Beller et al., 2006; Brasaemle et al., 2005; 

Cermelli et al., 2006). Moreover, all existing proteomic studies show very little 

overlap. For example, in two previous Drosophila LD proteomes roughly three 

hundred proteins were identified in total. However, less than 10% of proteins were 

found in both proteomes (Beller et al., 2006; Cermelli et al., 2006).  

1,361 proteins were detected in the LD fraction in this study. This number of 

identified proteins is much higher than in the proteomes published before. However, 

as expected, the main part of those identified proteins are contaminants from other 

organelles and only protein correlation profiling allowed me to identify 106 proteins 

that are specifically enriched in the LD fraction. Indeed, these numbers highlight the 

importance of incorporating an unbiased method, such as protein correlation 

profiling, to reduce false positives. 
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By fluorescence microscopy I confirmed the LD localization of 20 proteins found to be 

highly enriched in the LD fraction by protein correlation profiling. More than 90% of 

the tagged proteins localized to LDs confirming the high confidence of the mass 

spectrometry-based identification of LD proteins (Figure 12). For most of the tested 

proteins, PCPs highly correlated with their cellular localization determined by 

fluorescent microscopy. Protein correlation profiling potentially advantageous over 

ectopic expression of fluorescently tagged proteins, since addition of a tag and higher 

protein levels might alter protein localization, whereas protein correlation profiling is 

applied to endogenous proteins.  

The results from this study open up a new perspective on protein targeting to LDs, as 

PCPs of the identified proteins contain more information than their mere localization. 

The determination of certain groups of LD proteins that share common PCPs might 

allow identification of proteins that are targeted to LDs from the same cellular 

compartments and thus might achieve this by similar mechanism. This may lead to a 

more general approach to study protein LD targeting. Another intriguing question that 

arises from the proteomic and microscopy data is, whether LD proteins with several 

predicted transmembrane domains localize directly to the LD monolayer or if they are 

enriched in specialized membrane domains that wrap around LDs. Novel techniques 

such as super high resolution light microscopy will provide new possibilities to 

address such questions in the future (Toomre and Bewersdorf, 2010).  

In addition several previously characterized LD proteins, many new and so far 

unknown LD proteins were identified in the proteome, which might lead to new 

discoveries in the field of LD biology. For example, a current subject of research is 

how neutral lipids enter LDs during their growth. It was recently discovered that 

DGAT2, which catalyzes the final step of TG synthesis, localizes to LDs (Stone et al., 

2009), suggesting that TG is generated directly on the LD surface. The LD proteome 

reveals that also certain homologues of enzymes catalyzing the preceding steps of 

the TG synthesis pathway (Figure 5) localize to LDs. Thus, it would be interesting to 
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test, whether the complete TG synthesis pathway is organized on the LD surface or 

closely opposed membranes. Another interesting discovery originating from the LD 

proteome is that several proteins involved in the formation of tubular ER, such as 

reticulons and atlastin (Park and Blackstone, 2010), are highly enriched in the LD 

fraction. Colocalization of tubular ER markers with LDs may indicate that LDs are 

associated preferentially with tubular ER. The identification of these proteins enriched 

in the LD fraction raises the question whether LDs are associated with specialized 

ER regions and might point to new aspects regarding the mechanism of LD budding 

from the ER. Moreover, the generated data set provides a basis for further analysis 

of changes in the LD proteome under varying cellular conditions, such as different 

time points after the induction of LD formation or starvation. The generated data set 

can also be used to compare effects of the knockdown of specific proteins on the LD 

proteome and thus allow studying certain LD targeting pathways.  

 

5.2 Identification of key players for LD phospholipid homeostasis 
by comparing proteomic data with genome-wide screens 

Integration of data from the PCP-derived LD proteome with results from global, 

genome-wide screens (Beller et al., 2008; Guo et al., 2008) revealed several proteins 

that localize to LDs and whose knockdown results in an alteration of LD morphology. 

However, the overall overlap of the data sets was unexpectedly low. Proteins with LD 

phenotypes were only slightly enriched in the LD proteome compared to the 

complete cellular proteome (Figure 14). This does not mean that proteins enriched in 

the LD fraction play no functional role on the LD surface; in fact other reasons might 

be responsible for lacking phenotypes of LD proteins in the genome-wide screens. 

One reason could be redundancy of proteins that have important cellular functions. 

An example is TG synthesis, where several homologous enzymes exist for every 

step in the pathway. When knocking down one protein, the enzymatic activity of the 

remaining homologues might be sufficient to maintain proper LD morphology (Yen et 
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al., 2008). Another reason for the low overlap between the LD proteome and the 

genome-wide screens is that in the latter some phenotypes could have been missed, 

since RNAi conditions were not optimized for each individual protein. Low knockdown 

efficiency for certain candidates or long protein half-life limit the detection of some of 

those phenotypes. Moreover, some proteins might only give phenotypes under 

specific conditions other than those used in the screen. 

Among the LD proteins showing a strong LD phenotype, CCT could be identified as 

key player in phospholipid homeostasis during LD expansion. This led me to study 

further the mechanism of PC levels adjustment according to need during LD growth. 

 

5.3 PC is a crucial surfactant stabilizing LDs and preventing their 
coalescence 

 The RNAi screen data implies that phospholipid levels and composition of the 

LD surface are important for normal LD morphology and function. However, nothing 

has been known so far about the role different phospholipids play in LD size 

determination and fusion, as well as how their synthesis is regulated during 

expansion. 

Cells that are exposed to large amounts of free fatty acids start to extensively 

synthesize TG. At the same time, this process leads to an accumulation of LDs, as 

well as a dramatic increase in LD diameter up to ten-fold (Figure 28). In most cells 

types, including Drosophila S2 cells, LDs are always in close association and form 

grape-like clusters. Despite such close contacts between single LDs, fusion events 

are rarely, if ever, observed (Guo et al., 2008). This state persists as long as growth 

of the neutral lipid core of LDs is coordinated with the addition of stabilizing 

phospholipids to their surface. Only in cells with impaired phospholipid synthesis, 

conditions under which insufficient amounts of stabilizing phospholipids are present 

on the LD surface, LDs tend to coalesce resulting in few giant LDs per cell (Guo et 

al., 2008).  
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This phenomenon can be explained by the biophysical characteristics of a liquid-

liquid biphasic system, such as a TG emulsion in an aqueous environment. For such 

a biphasic system it is thermodynamically most favorable to coalesce into a single oil 

layer separated from the aqueous phase, as this minimizes interface contacts 

between the phases and reduces surface tension (Kabalnov and Wennerstrom, 

1996). Indeed, TG droplets generated in vitro coalesced rapidly (Figure 21). To 

prevent phase coalescence between a hydrophobic and a hydrophilic phase, 

sufficient amounts of amphipathic molecules are required that are able to separate 

the two phases and thus act as surfactants. This explains why sufficient amounts of 

phospholipids are required on the LD surface to shield the neutral lipid core from the 

aqueous environment and to prevent coalescence of smaller LDs into larger ones. 

Phospholipid species differ in their ability to shield and stabilize LDs (Kabalnov et al., 

1996). PC in particular is crucial for stabilizing growing LDs and is required to limit 

their size during expansion. Inhibition of PC synthesis in cells with expanding LDs 

leads to coalescence and formation of one or a few giant LDs per cell (Figure 15B) 

(Guo et al., 2008).  

Sufficient amounts of PC prevented coalescence of artificial TG droplets in vitro. 

Consistently, addition of PC liposomes rescued the phenotype of a CCT knockdown 

in S2 cells (Figure 18). The surfactant property responsible for this stabilizing effect is 

specific to PC, since PE or physiological levels of other phospholipids (e.g. PS and 

PI) did not prevent coalescence of TG droplets (Figure 21). Also knockdown of 

enzymes for PE synthesis did not result in a LD phenotype, although PE is the most 

abundant phospholipid of LDs in Drosophila S2 cells (Figure 16, 17). 

Described differences in stabilizing lipid emulsions are likely explained by the 

biophysical properties of these phospholipids. In contrast to PC, which has a large 

head group and thus a cylindrical shape, PE has a smaller head group and is conical 

(Vance and Vance, 2008). It was found that the stability of macroemulsions, such as 

LDs is strongly correlated to the surfactant lipid shape (Kabalnov et al., 1996; 
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Kabalnov and Wennerstrom, 1996; Saito et al., 1999), a fact that can be explained by 

the different behavior of surface lipids in the transition state during monolayer 

coalescence. During this transition state strong bending of the monolayer occurs at 

the interface of the coalescing droplets. For monolayers containing the conical, 

curvature inducing PE, it is much easier to enter this transition state than for 

monolayers containing cylindrical PC. The higher energy of the transition state for 

monolayers with PC increases the required activation energy and prevents 

coalescence (Kabalnov and Wennerstrom, 1996). 

Another factor contributing to differential behaviors of phospholipid species is that 

phospholipids differ in their ability to shield TG. For example, in emulsion droplets 

consisting of PE and triolein, 28% of the interphase surface is exposed TG, whereas 

in PC and triolein mixtures, only 3% of the surface is TG (Saito et al., 1999). Since 

higher amounts of exposed highly hydrophobic TG increase the propensity for droplet 

coalescence in emulsions, it might explain why PC shielded TG droplets are much 

more stable and show a lower tendency to coalesce into larger droplets in cells.  

However in vivo, additional factors, such as proteins on the LD surface, likely 

influence LD stability and size. Good candidates for a stabilizing function are PAT 

proteins in animals and the oleosins in plants. They are suggested to bind to exposed 

TG patches on the LDs with their amphipathic helices. Thus, they potentially help to 

shield such hydrophobic patches and increase LD stability (Siloto et al., 2006; Wolins 

et al., 2006). However, this study shows that proteins by themselves are not sufficient 

to prevent LD coalescence under PC deficient conditions in Drosophila cells, larval 

fat body, or murine macrophages. 

 

 



| 74 

 

5.4 CCT adjusts PC synthesis during LD expansion by a 
homeostatic feedback loop 

Studying the targeting of CCT to LDs revealed an elegant homeostatic feedback 

mechanism to adjust PC synthesis according to elevated needs during LD growth. 

Relocalization of CCT to LDs, the site of relative PC depletion under conditions of LD 

growth, activates CCT and upregulates the Kennedy pathway. Thus, the cellular PC 

pool available to coat growing LDs increases and their coalescence is prevented. 

This mechanism of PC homeostasis is apparently evolutionarily conserved, as similar 

findings in Drosophila and mammalian cells were observed. 

During lipid loading, average LD diameters increased from 300 nm to more than 900 

nm, representing a more than nine-fold surface expansion (Figure 26). Thus cells are 

confronted with a huge demand for PC at the LD surface in a relatively short period 

of time. Indeed, during a time period of 24 hours of lipid loading, total cellular PC 

levels increase almost three-fold (Figure 26). Thus the questions arise how the 

required PC amounts can be provided and how PC synthesis is adjusted according 

to need? Data from this study suggest a model in which regulation of PC synthesis 

via the Kennedy pathway is achieved by activating its rate-limiting enzyme CCT, 

which relocalizes to PC deficient membranes on the LD surface. LD targeting 

activates CCT and thereby increases PC synthesis (Figure 45). At steady-state, 

before oleate loading, CCT is in its inactive soluble state. CCT1, the most abundant 

isoform in Drosophila S2 cells, shuttles between the nucleus and the cytoplasm, 

without being associated to any cellular membranes (Figure 29, 30). Circulation 

between the two compartments allows CCT1‘s access to cytosolic LDs and thereby 

enables the enzyme to survey PC levels on the LD surface. Under conditions when 

LDs expand, an increasing PC deficiency on the expanding LDs generates stable 

binding sites for CCT. As more and more CCT accumulates on the LDs instead of 

shuttling back to the nucleus, the equilibrium is shifted from the main nuclear pool 

towards the LD surface, slowly depleting the nuclear CCT1 pool (and the cytoplasmic 

CCT2 pool) is. 
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Previous studies showed that membrane association greatly induces CCT activity 

(Feldman et al., 1985; Vance and Pelech, 1984) and I found consistently that CCT is 

activated by binding to LD monolayers. Since CCT catalyzes the rate-limiting step of 

PC synthesis, its activation increases flux through the Kennedy pathway, and thus 

increases its de novo synthesis on the ER (Johnson et al., 2003). PC is then 

potentially trafficked to LD surfaces and prevents their coalescence into larger 

droplets. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
Figure 45. Model of CCT Regulation during LD Expansion. 

See discussion for details. 
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Several lines of evidence support the hypothesis that CCT regulation by 

relocalization is part of a homeostatic control of PC synthesis. First, CCT is targeted 

to LDs after an initial delay and not immediately upon their formation. This is 

expected for a homeostatic control mechanism, as after budding of stable LDs from 

the ER the system is initially in equilibrium and sufficient amounts of PC are present 

on the LD surface. Only when LDs start to expand and more and more TG 

accumulates in the LD core, PC deficiency arises on the LD surface. Under those 

conditions the PC/TG ratio strongly decreases and CCT binds to the LD surface 

(Figure 28A). Second, once CCT has been recruited to the LD surface, the PC/TG 

ratio of LDs begins to stabilize and is then maintained at a constant level, even 

though LDs further expand and TG continues to accumulate. Interestingly, the 

amount of CCT1 targeted to LDs during the first 12 h of oleate loading increases 

roughly in proportion to the square of the diameter, similar to the changes in LD 

surface area (Figure 26). A third point supporting a homeostatic feedback loop is that 

CCT1 targeting is reversible. After removal of lipids from cells, LD expansion stops. 

There is no more need to increase cellular PC levels and after some time the system 

returns to equilibrium. Under those conditions in the cell, CCT1 no longer binds the 

LD surface and its activity returns to almost basal levels (Figure 34). At this point the 

main CCT pool relocalizes to the nucleus. This redistribution of CCT1 might either be 

caused by reimport into the nucleus after release from the LD surface or alternatively 

by specific degradation of LD-associated CCT1 and replacement of the nuclear pool 

by new protein synthesis.  
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5.5 CCT surveys PC levels on the LD surface and binds to PC 
deficient LDs  

What induces CCT LD binding and how does CCT sense PC deficiency on 

expanding LD surfaces? Previous studies found that CCT binding to membranes and 

its activation is dependent on their lipid composition. It was found that CCT 

preferentially binds to membranes and liposomes containing DG, oleate, and PE. 

Moreover CCT targeting to membranes is inversely correlated with increasing PC 

content in S2 cells and in vitro (Arnold et al., 1997; Sleight and Kent, 1983; Utal et al., 

1991; Weinhold et al., 1994; Yao et al., 1990). 

Similar to these results, CCT was activated by PC-deficient LDs. Initially, when there 

are still sufficient amounts of PC on the LD surface, CCT remained in the nucleus. 

CCT is only targeted to LDs when the PC/TG ratio on its surface strongly decreases 

and is then activated there (Figure 26, 28). This could also be recapitulated in vitro as 

artificial droplets shielded by PC alone did not increase CCT activity. In contrast 

artificial droplets having high levels of other phospholipids like PE, PS or PI strongly 

activated CCT. Moreover, CCT activation is inversely correlated with decreasing PC 

levels in PC:PE consisting artificial droplets (Figure 36).  

But how does PC deficiency induce CCT LD targeting? Previously it was suggested 

that some properties of membranes could promote CCT membrane targeting. 

Interfacial packing defects as might occur when lipids with small head groups such 

as PE are in the membrane or curvature strain that occurs when membranes are 

enriched in hexagonal phase-preferring lipids such as PE and DG. Synthesis of PC 

would reverse these properties of membranes resulting in a more stable bilayer 

(Vance and Vance, 2008). Another hypothesis is that exposed TG on the LD surface 

might favor the interaction between CCT and LDs. Exposure of TG might be closely 

correlated with the PC content of the LD monolayer, as deficiency of PC on 

expanding LDs would likely increase the area of exposed TG because of insufficient 

amounts of detergent available to shield the neutral lipid core. Thus, highly 

hydrophobic patches could form on the LD surface, likely providing stable binding 
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sites for the CCT helical domain. Such a mechanism would be similar to what has 

been described for apolipoproteins, which bind to oil/water interphases with their 

amphipathic alpha helices (Small et al., 2009). Binding of amphipathic alpha helices 

to exposed TG patches on the LD surface might even be a more general mechanism 

for targeting of different proteins to LDs, a process that is in general still poorly 

understood. 

The model of CCT surveying PC levels on LDs to be activated when PC deficiency 

arises implies that the enzyme has access to the cytoplasm and the surface of LDs. 

Consistent with this model, in the basal state before oleate loading, CCT1 is soluble, 

diffusing rapidly in the nucleus, and continuously shuttling between the nucleus and 

cytoplasm (Figure 29, 30). So far, the mechanism for nuclear export remains 

unknown. It was previously suggested that in mammalian cells the amphipathic helix 

mediates CCTα nuclear export (Gehrig et al., 2009). However, a Drosophila CCT1 

mutant lacking the amphipathic helix still shuttled between the nucleus and 

cytoplasm (Figure 31). Therefore it seems unlikely that the alpha helical sequence of 

CCT1 contains the nuclear export signal; rather it might mediate CCT1 retention in 

the cytoplasm when a stable binding site, such as a PC-deficient LD surface, is 

present and thus might be necessary to shift the equilibrium toward nuclear export. 

Nuclear import of Drosophila CCT1 and mammalian CCTα is mediated by a putative 

N-terminal nuclear localization signal present only in CCT1 and CCTα, but not in 

CCT2 and CCTβ (Wang et al., 1993b). In Saccharomyces cerevisae the α importin 

Kap60 and the β importin Kap95 were reported to bind the CCT homolog Pct1 and to 

escort it into the nucleus (MacKinnon et al., 2009). 
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5.6 PC must be transported from its site of de novo synthesis in 
the ER to the LD surface 

However, the mechanism of phospholipid transport to the LD surface has not 

been studied yet and is so far unclear. One possibility is that phospholipid transport 

from membranes, such as the ER, to the LD surface is mediated by phospholipid 

binding proteins. In the LD proteome several lipid transfer proteins were found to be 

specifically enriched in the LD fraction and for some of them LD localization could be 

confirmed by microscopy (Figure 12). Also the Drosophila homolog of the 

mammalian PC transfer protein (PCTP) containing a steroidogenic acute regulatory 

(START) domain for PC binding, was found to localize to LD surfaces by fluorescent 

microscopy (unpublished data) and thus might be a candidate for PC transport to 

LDs. Thus, PC could be trafficked from the ER, the site of de novo PC synthesis to 

LDs, which would be similar to the transport mechanism of ceramides from the ER to 

Golgi membranes by CERT, another START domain protein. Since lipid transfer 

proteins can only transport a single molecule at a time, to ensure sufficient efficiency, 

the transport might occur at sites of close contact between the ER and LDs to 

minimize the transport distance (Holthuis and Levine, 2005). However, experimental 

evidence for a transport mechanism by lipid binding proteins is still lacking. 

 Another possibility could be a mechanism similar to the transport of PC to 

mitochondrial membranes in plant cells (Testet et al., 1996). It was found that one 

way to provide the mitochondrial outer membrane with PC is acylation of lyso-PC to 

PC. Lyso-PC is less hydrophobic than PC and can partially diffuse between closely 

apposed membranes, such as mitochondrial associated membranes. Thus the Lyso-

PC that is derived from degradation of PC in the ER by phospholipase A2 can diffuse 

to mitochondria where it is then converted into PC again by lyso-PC acyltransferases. 

Two lyso-PC acyltransferases were also found in the LD proteome and suggest a 

similar mechanism to transport PC to the LD surface via lyso-PC diffusion. 
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5.7 Regulating PC synthesis by CCT relocalization might be a 
general mechanism to maintain cellular PC levels 

 Since PC is one of the main phospholipids in all cellular membranes, not only 

on the LD monolayer, PC homeostasis is also important during other cellular 

processes when organelle membranes expand and higher PC levels are required. 

Also in those processes, CCT activation by relocalization to such membranes might 

provide a way to adjust PC levels according to requirements by a feedback 

mechanism.  

 One intriguing example for such a situation might be the cell cycle when expansion 

of the ER requires synthesis of new phospholipids. Indeed, CCT was reported to 

localize to ER membranes for PC synthesis during the cell cycle (Northwood et al., 

1999). However, this finding was not confirmed by other reports, which found no link 

between the cell cycle and CCT localization (DeLong et al., 2000). As previously 

suggested, CCT may sense PC deficiency arising in membranes during this process 

(Attard et al., 2000; Jamil et al., 1990; Johnson et al., 2003), similar to its 

relocalization during LD formation. This suggests that regulation of CCT activity by 

targeting to PC deficient membranes might have a broad cellular function in 

membrane homeostasis. However, the mechanisms of CCT targeting to other cellular 

membranes under different conditions are still poorly understood. CCT enzymes 

could have sufficient basal activity to provide PC for most normal cellular processes 

and its activation by targeted relocalization may occur only under conditions of 

extreme expansion of an organelle, such as LD expansion. 

The regulation of PC synthesis during LD formation is not only important in isolated 

cell culture models, but also in whole organisms, since depletion of CCT1 in 

Drosophila larval fat body resulted in giant LDs similar to what was observed in S2 

cells. In mammals the importance of PC levels for lipid metabolism was discovered 

decades ago. Already in 1932, it was shown that dietary supplementation with 

choline can reduce symptoms of hepatic steatosis, an accumulation of large amounts 

of TG droplets in the liver, induced by a high-fat diet in rats (Best et al., 1932). 
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Moreover, choline-deficient diet is thought to reduce PC synthesis via the Kennedy 

pathway and thus is commonly used to induce fatty liver in animal models. Similarly, 

a tissue-specific knockout of CCTα in liver, where it is responsible for roughly 70% of 

PC synthesis (Sundler and Akesson, 1975), leads to hepatic accumulation of TG, 

reminiscent of the CCT1 knockdown phenotype in S2 cells (Guo et al., 2008; Jacobs 

et al., 2004). Those findings suggest that the adjustment of PC levels according to 

need is important for TG storage in organisms and that changes in PC levels might 

have an impact on the lipid metabolism of the whole body. 

 

5.8 The regulation of PC synthesis by CCT relocalization during LD 

formation may be conserved in mammalian cells 

 The general mechanism of regulating PC synthesis during LD formation by 

CCT relocalization is probably conserved in mammalian cells. Depletion of CCTα in 

primary BMDMs results in giant LDs as in Drosophila. Although it was shown that 

loss of CCTα is partially compensated by upregulation of CCTα (Zhang et al., 2000), 

knockdown of CCTα induces a strong phenotype. 

Moreover, CCTα is at least partially recruited to growing LDs. However, in 

comparison to Drosophila S2 cells, where I detected no CCT targeting to 

membranes, in mammalian cells I observed a combination of LD and ER targeting. 

The proportion of CCT localizing to either ER membranes or LDs was varying among 

different cell types. This might be dependent on the different phospholipid 

compositions of the tested cell types, since a larger portion of total CCT was targeted 

to LDs for example in neuronal N2a cells, which have higher PE:PC ratios and thus 

less PC available for LD biogenesis (Hicks et al., 2006). The variation in targeting 

supports the hypothesis that organelle binding of CCT is determined by phospholipid 

composition of the delimiting membrane. In Drosophila cells membranes have a 

higher PE content than most mammalian membranes resulting in a lower PC:PE ratio 
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(Jones et al., 1992; van Meer et al., 2008), which could explain why CCT targeting to 

LDs is more prominent in Drosophila than in mammalian cells. 

The mechanism of how PC levels are regulated by CCT relocalization during LD 

formation might even have clinical relevance. A hallmark in the formation of 

atherosclerotic lesions is the formation of foam cells, when macrophages accumulate 

large amounts of LDs and change their morphology into a foamy like cell. It was 

shown before that under those conditions CCT is activated and it was suggested that 

upregulation of PC synthesis helps to protect macrophages from apoptosis caused 

by elevated levels of unesterified cholesterol during this process (Zhang et al., 2000). 

Previous studies imply that dephosphorylation of CCT might partly be responsible for 

this increase in activity (Wang and Kent, 1995). However, CCT activation could also 

occur in coordination with targeted activation of the enzyme. 

In summary, LD expansion is a fascinating and likely evolutionarily conserved 

paradigm for studying mechanisms of organelle homeostasis. By studying the 

phospholipid requirements for LD expansion, a novel regulatory mechanism was 

discovered. The described mechanism elucidates how the conditional subcellular 

relocalization of a rate-limiting enzyme controls enzymatic activity and thus the 

production of organellar components. Thereby, the activity of a biochemical pathway 

can be coupled directly to the organelle‘s expansion. 
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6 EXPERIMENTAL PROCEDURES 
 

6.1 Cell culture 

 

Drosophila S2 cells 

Drosophila S2 cells were cultured in Schneider‘s Drosophila medium 

(Invitrogen) supplemented with 10% fetal bovine serum and antibiotics (100 unit/ml 

penicillin and 100 μg/ml streptomycin) at 27°C as described (Guo et al., 2008). 

 RNAi treatment of S2 cells was performed as previously described (Guo et al., 

2008). In short PCR products with a length of 300-600 base pairs, containing the T7 

promotor were generated from genomic DNA isolated from S2 cells (Quiagen, 

genomic DNA isolation kit). Ds RNAs were synthesized from purified PCR products 

(Quiagen, PCR purification kit) by in vitro transcription using T7 polymerase 

(Fermentas) in a reaction containing 40 mM Tris/HCl (pH 8.0), 6 mM MgCl
2
, 15 mM 

DTT, 2 mM spermidine, 0.5 mM of each NTP. DNA was removed by incubation with 

DNAse (Fermentas) for 15 min at 37°C and dsRNAs were annealed by heating for 5 

min to 90°C and slowly cooling down over 2-3 h. Cells were incubated with dsRNA in 

serum free media. After 50 min incubation time the same volume of medium 

containing 20% fetal bovine serum was added. After three days cells were incubated 

for 12h with 1 mM oleate prepared as described (Guo et al., 2008). A segment of 

pBluescript backbone was used as template for control RNAi (referred as control 

RNAi thereafter). A list of primers to generate dsRNAs for RNAi experiments is given 

in Table S7. Knockdown efficiency was tested by Real-time quantitative PCR. Total 

RNA from a dsRNA treated 6-well was prepared with the Preparase Kit (USB); 3 µg 

was used for first-stand cDNA synthesis with a kit (Fermentas). Real-time quantitative 

PCR was performed with the MyiQTM Single-Color Real-Time PCR Detection 

System (BioRad) and Mesa green (Eurogentec). Pimers used are listed in Table S8. 

For protein localization in S2 cells vesicle interacting protein VAP-33-1-mCherry 

(CG5014), reticulon-mCherry (CG33113), torsin-mCherry (CG3204), mCherry-seipin 
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(CG9904), selenoprotein SELT-mCherry (CG3887), membrane bound O-acyl 

transferase MBOAT-mCherry (CG5926), lunapark-mCherry (CG8735), mCherry-

steroid binding protein (CG9066), mCherry-SEC14 homolog (CG13848), Lyso-PA 

acyltransferase (CG32699), mCherry-short chain dehydrogenase (2064), 

uncharacterized lipase1-mCherry (CG17292), mCherry-phospholipase D (CG7718), 

oxysterol binding protein-mCherry (CG1513), tango 14-mCherry (CG4775), mCherry-

FAS associated factor 2 (CG10372), fatty acid transferase-mCherry (CG7400), CGI-

58-mCherry (CG1882), mCherry-HSL (CG11055), mCherry-uncharacterized lipase 2 

(CG9186); mCherry-CK (CG2201), mCherry–CCT1(CG1049), mCherry–CCT1∆P 

(amino acids 1–433), mCherry–CCT1∆MP (amino acids 1–365), mCherry–CCT1 M 

(amino acids 365–429), mCherry–CCT2 (CG18330) and mCherry–CPT (CG7149) 

expression vectors (actin promoter) were cloned using the Gateway system 

(Invitrogen). mCherry-CCT1W397E was generated by QuickChange II mutagenesis 

(Stratagene).  

Transfection of S2 cells was performed using Effectene (Qiagen) reagent according 

to manufacturer‘s instructions. 

For choline deficiency and SILAC labeling, S2 cells were grown in custom Schneider 

medium (Bonaldi et al., 2008), with or without 1 mM choline, or 0.4 g/l 13C6
15N4 L-

arginine and 1.65 g/l 13C6
15N2 L-lysine (Sigma Isotec), respectively. 

 

Raw 264.7 cells 

Raw 264.7 cells (American Type Culture Collection) were cultured in RPMI 

(Biochrom) with 10% fetal bovine serum and 100 unit/ml penicillin/ streptomycin in 

uncoated dishes at 37°C. For protein localization Raw 264.7 cells were transfected 

with Lipofectamine 2000 (Invitrogen) according to manufacturer‘s instructions. CCTα-

GFP was provided by Dr. Neale Ridgway (Gehrig et al., 2008). 
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N2a cells 

N2a cells (American Type Culture Collection) were cultured in DMEM (Invitrogen) 

supplemented with 10% fetal bovine serum and 100 unit/ml penicillin/streptomycin. 

When cells where 50% confluent differentiation was induced by changing the 

medium to 1% fetal bovine serum and 1 mM dibutyryl cAMP for 48h as described 

(Tremblay et al., 2010). 

 

Bone marrow derived macrophages (BMDMs)  

CCTα-deficient BMDMs from CctαF/F mice (Jackson Laboratory) and R26R-

EYFP mice (Srinivas et al., 2001) were generated as described (Granucci et al., 

2001). In brief, tibia and femur were isolated from the indicated mice and sterilized in 

70% ethanol. Bones were cut on both sides with sterile scissors and bone marrow 

was flushed with a syringe in RPMI supplemented with 10% fetal bovine serum and 

100 unit/ml penicillin/ streptomycin. Cells were washed two times in medium and 

filtered to remove pieces of bone. 3x106 cells were plated per 10 cm dish in medium 

containing 10% macrophage colony stimulating factor (MCSF) in uncoated dishes for 

3-5 days. 

For Tat-Cre (HTNC) treatment, 5  106 cells were plated in 10-cm untreated 

cell culture plates, washed three times with phosphate-buffered saline (PBS), and 

incubated for 1 h at 37°C in 5 ml of serum-free medium (Hyclone) containing 1 µM 

recombinant HTNC [expressed and purified as described (Peitz et al., 2007)], 200 µM 

chloroquin (Sigma), 50 µg/ml polymyxin (Calbiochem), 2 µM leupeptin (Sigma). Five 

days later, cells were incubated with 1 mM oleate for 24 h and imaged. To quantify 

BMDM purity and HTNC recombination efficiency, cells were stained with PE-labeled 

anti-CD11b antibody (eBioscience) and analyzed for EYFP expression by flow 

cytometry (FACSCalibur, BD). CCTα knockdown efficiency was tested by real-time 

quantitative PCR and by Western blot. Primers used for real-time quantitative PCR 

are listed in table S8. 
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6.2 Transgenic flies  

Fly stocks were raised on standard cornmeal-agar medium at room 

temperature. The UAS-mCherry line was from Dr. Thomas B. Kornberg (UCSF). 

Male UAS-RNAi CCT1 transgenic flies (transformant ID 18628) from the Vienna 

Drosophila RNAi center were crossed with CgGal4 (Asha et al., 2003) UAS-mCherry 

reporter strain virgins. Third instar larvae of the progeny were dissected in PBS, 

stained with BODIPY 493/503, and imaged with a confocal microscope (LSM 510, 

Carl Zeiss MicroImaging). 

 

6.3 Microscopy 

Cells were then mounted on glass bottom dishes coated with concanavalin A, 

stained with 1 µg/ml BODIPY493/503 (Invitrogen) or 1 µg/ml Nile Red (Invitrogen) for 

10 min and washed two times with cell culture medium. Cells were imaged with a 

spinning-disk confocal microscope (TiLL iMIC CSU22, Andor) using a back-

illuminated EM charge-coupled device camera (iXonEM 897; Andor) and a 100 1.4 

NA oil immersion objective (Olympus); 16-bit images were collected with Image iQ 

(version 1.9; Andor), deconvoluted (Huygens, SVI), and cropped (ImageJ 

http://rsbweb.nih.gov/ij/). 

 

6.4 Lipid biochemical methods 

TLC and lipid measurements 

Lipids were extracted as described (Folch et al., 1957). 0.8 volume parts of 

aqueous sample were mixed with 2 parts of a chloroform/methanol 1:2 (v/v) and 

incubated for 1h at room temperature. 3 volumes chloroform and 0.7 volume parts of 

0.2 M KCl were added for phase separation. After mixing the sample was centrifuged 

at high speed for 15 min and the lower chloroform phase containing the lipids was 

isolated. 

http://rsbweb.nih.gov/ij/
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Lipids were separated on silica TLC plates (Merck) with 

chloroform/methanol/ammonia solution (25%) (50:25:6; per vol.) for phospholipids or 

petroleum ether/diethyl ether/acetic acid (70:30:2; per vol.) for neutral lipids and 

detected by cerium molybdate staining. Bands were identified by comparison with 

standards. PC and TG levels were quantified from extracted lipids as described 

(Nanjee and Miller, 1996). 

Emulsion and liposome preparation 

 To prepare lipid emulsions and liposomes, lipids were mixed in 

chloroform/methanol (2:1), dried under a stream of N2, resuspended in buffer (150 

mM NaCl, 50 mM Tris/HCl, pH 7.5, 1 mM EDTA, 1 mM DTT, 50 mM PMSF), and 

sonicated. For emulsions, the molar ratio of TG to total phospholipids was 2:5. 

Contaminating vesicles were removed and LDs were concentrated by 

ultracentrifugation at 100,000 g for 15 min. For light scattering, lipid concentration 

was 25 mM phospholipids and 10 mM TG before centrifugation.  

 

6.5 Protein biochemical methods 

LD purification 

Drosophila S2 cells were harvested, washed with ice-cold PBS, resuspended 

in 2 ml of buffer (200 mM Tris/HCL, pH 7.5, 2 mM MgAc, and Complete Protease 

Inhibitor (Roche)), lysed with a tissue homogenizer and fractionated by three 

centrifugation steps at 3,000, 20,000, and 100,000 g. The supernatant was adjusted 

to 1 M sucrose, layered under a sucrose step-gradient with 2 ml steps (0.75, 0.5, 

0.25, 0.125, 0 M) and centrifuged for 12 h at 200,000 g. Six fractions of the gradient 

and the three pellet fractions of the differential centrifugation steps were analyzed by 

MS-based proteomics and Western blot with the following antibodies antibodies 

CCTα (McCoy et al., 2006), GAPDH (LSBio), KDEL-receptor (Abcam), Calnexin 

(Abcam). . 
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Cellular fractionation 

 Cells were harvested, washed with ice-cold PBS, resuspended in 2 ml of 

buffer (150 mM NaCl, 50 mM Tris/HCl, pH 7.5, 1 mM EDTA, 1 mM DTT, 50 mM 

PMSF). Cells were lysed by sonication. Unbroken cells were removed by 

centrifugation at 800 g for 3 min. The supernatant was fractionated into floating LDs 

and soluble and membrane fractions by centrifugation 100,000 g for 1 h. The LD 

fraction was washed in buffer to remove cytosolic contamination. The resulting 

fractions were used for CCT activity assay or analyzed by Western blot with the 

following antibodies CCTα (McCoy et al., 2006), ADRP (Novus Biologicals), GAPDH 

(Calbiochem), Calnexin (Abcam). 

 

Protein binding to artificial droplets 

CCT2-His6 was expressed using pFASTBACHTb-CCT2 (provided from J. 

Friesen) as a donor plasmid for baculovirus expression as described (Helmink and 

Friesen, 2004).  

For affinity purification the cell pellet was resuspended in lysis buffer [20 mM Tris and 

100 mM NaCl (pH 7.5)] and lysed by sonication. After centrifugation at 27,000g for 30 

min at 4 °C, the pellet was discarded and the supernatant, containing soluble cellular 

components, was incubated with Ni Sepharose™ 6 Fast Flow (GE Healthcare) for 3 

h. Proteins that did not bind to the column were collected as flow-through. The 

column was washed successively with 5 column volumes of lysis buffer, lysis buffer 

containing 500 mM NaCl, 1 mM imidazole, 1% NP-40 and 1% glycerol and lysis 

buffer containing 10 mM imidazole. Elution of CCT2 from the metal affinity column 

was accomplished using lysis buffer containing 200 mM imidazole. Protein was 

quantified by the method of Bradford using a Bio-Rad protein assay kit and bovine 

serum albumin as standard. 
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Purified CCT2-His6 (100 µM) was incubated with artificial droplets (2.5 mM 

phospholipids and 1 mM TG) in a 1 ml reaction for 1 h on ice in buffer (150 mM NaCl, 

50 mM Tris/HCl, pH 7.5, 1 mM EDTA). The reaction mix was adjusted to 0.75 M 

sucrose, overlaid with 10 ml of buffer and artificial droplets were floated for 1 h at 

100,000 g. The top fraction was collected with a tube slicer and an adjacent control 

fraction was taken below the floating lipid fraction. An input fraction, the control 

fraction and the droplet fraction were analyzed by Western blot. 

 

CCT activity assay 

CCT activity in total cell lysate or cellular fractions was determined in the 

absence or presence of artificial droplets by monitoring the conversion of phospho-

[3H]choline to CDP-[3H]choline as described (Pelech et al., 1981). Briefly, the 

substrate phospho-[3H]choline was prepared by incubation of [3H] -choline chloride 

with CK for 1h at 37°C in a reaction containing 10mM ATP, 100 mM Tris/HCl pH 8.0, 

10 mM MgCl2. The reaction product was purified by TLC with methanol /0.6% NaCl/ 

NH4OH (10:10:0.9). The band for phospho-[3H]choline was detected by scintillation 

counting. Phospho-[3H] choline was scraped form the plate and eluted in 15 mM 

unlabeled phosphocholine to a specific activity of 10 µCi/µmol. To measure CCT 

activity, 25-50 µg protein was incubated in 60 mM Tris/HCl pH7.5, 40 mM NaCl, 1.8 

mM EDTA, 9 mM MgAc, 3 mM CPT, 1.5 mM phospho-[3H]choline for 15 min at 37°C. 

The reaction was stopped by heating for 2 min at 80°C. Substrate and products of 

the reaction were separated on a TLC with methanol /0.6% NaCl/ NH4OH 

(10:10:0.9). The band for the reaction product CDP-choline was identified by co-

migration of a cold CDP-choline standard that was visualized under UV-light after 

fluorescein staining. Specific CCT activity was finally determined by measuring 

radioactivity from the scraped CDP-choline band and compared to radioactive 

substrate with defined molarity to determine the amount (nmol) of converted 
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substrate per reaction. Specific activity was calculated by dividing the amount of 

converted substrate by reaction time and amount of protein input. Specific CCT 

activity was normalized to the amount of CCT as determined by Western blot.  

 

6.6 Mass spectrometry–based proteomics 

Protein digestion 

100 µg of each heavy SILAC sucrose gradient fraction was mixed with equal 

amount of the light SILAC LD standard. Combined samples were acetone 

precipitated with four volumes of ice cold acetone. Precipitated proteins were 

collected by centrifugation, dissolved in 6 M urea, 2 M thiourea and 10 mM Tris and 

subjected to in-solution digestion. Protein sample were then reduced with 1 mM DTT 

for 45 min at RT, alkylated with 5.5 mM iodoacetamide for 30 minutes and digested 

with 1/50 endopeptidase Lys-C (Waco) per protein for 3 h. The resulting peptide 

mixtures were diluted with four volumes of 50 mM ammonium bicarbonate and 

digested with 1/50 sequencing grade modified trypsin (Promega) per protein over 

night at RT. Trypsin was inactivated by acidification with trifluoroacetic acid pH<3 and 

subsequently 5 µg peptides was concentrated and desalted on reversed phase C18 

STAGE tips (Rappsilber et al., 2003; Rappsilber et al., 2007).  

 

LC-MS/MS analysis 

Peptides were eluted from STAGE tips by 30 µL buffer B (80% acetonitril in 

0.5% acetic acid) solution into a 96 sample well plate (Abgene), concentrated in a 

speed-vac until removal of the organic solvent and reconstituted with a one-to-one 

mix of buffer A (0.5% acetic acid) and buffer A* (2% acetonitril in 0.1 % trifluoroacetic 

acid). Eluted peptides were analyzed by a nanoflow HPLC system (Agilent 

Technologies or Proxeon Biosystems) coupled on-line via a nanoelectrospray ion 

source (Proxeon Biosystems) to a LTQ-Orbitrap mass spectrometer (Thermo 
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Scientific). Peptide samples were loaded onto a C18-reversed phase column (15 cm 

long and 75 μm inner diameter, packed in-house with ReproSil-Pur C18-AQ 3-μm 

resin) in buffer A (0.5 % acetic acid) with a flow rate of 500 nl/min and eluted with a 

linear gradient from 2% to 40% buffer B (80% acetonitril and 0.5% acetic acid 

solution) at a flow rate of 250 nl/min over 2 h.  

Mass spectra were acquired in the positive ion mode applying a data-dependent 

automatic switch between the acquisition of one Orbitrap survey scan (mass range of 

m/z 300-1700) and tandem mass spectra (MS/MS) of the ten most intense ions in the 

LTQ (‗top 10‘ method).  

The target value in the LTQ-Orbitrap was 1,000,000 for the survey scan at a 

resolution of 60,000 at m/z 400 using lock masses. Fragmentation in the LTQ was 

performed by collision-induced dissociation with a target value of 5,000 ions. Ion 

selection threshold was 1000 counts. Selected sequenced ions were dynamically 

excluded for 90 seconds.  

 

Data analysis 

Raw mass spectrometric data were analyzed with MaxQuant (version 

1.0.14.6) (Cox and Mann, 2008). Precursor and fragment ions were searched with a 

maximal initial mass deviation of up to 7 ppm and 0.5 Da, respectively. In the mascot 

search trypsin allowing for cleavage N-terminal to proline was used as enzyme 

specificity. Cysteine carbamidomethylation was selected as a fixed modification, 

while protein N-terminal acetylation and methionine oxidation were chosen as 

variable modifications. Depending on a priori knowledge about the number of Arg 

and Lys in the precursor ion determined by MaxQuant before the search, Arg10 and 

Lys8 were used as additional fixed or variable modifications. Maximally two missed 

cleavages and three labeled amino acids were allowed.  
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MaxQuant automatically quantified and normalized peptides and proteins based on 

the light SILAC LD standard. A false discovery rate (FDR) of 0.01 was required for 

proteins and peptides with a minimum length of 6 amino acids.  

For cluster analysis Perseus software (version 1.1.1.34) was used. Data was filtered 

for contaminants, reverse identifications and one unique peptide. Proteins were 

removed that were not identified in fraction 1 or that were identified in less than three 

fractions. For cluster analysis the peptide ratio heavy/light was divided by the 

maximal value among all nine fractions. For fraction 1 the normalized ratio was used. 

The ratios were analyzed by hierarchical clustering with Euclidian row distance and 

average row linkage. To ensure reproducibility only proteins were considered as LD 

proteins that had a normalized heavy/light ratio between 0.25-4 in fraction1. 
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Gene Gene ID Forward Reverse 

CCT1 CG1049 ACA TCT ATG CTC CTC TCA AGG C CTC TGC AGA CTC TGG TAA CTG C 

CCT1-3’UTR CG1049 ATG ACA TAC CCT ATG GAG CTG G ATATTGGTTGGTGTTCTGGTTGCG 

CCT2 CG18830 ATG ACA TAC CCT ATG GAG CTG G TGT TTT CGA CTA AGG GAT ACG C 

CK CG2201 TGG ACA CTA CGA ATG ACT CAG C ACA TTA ATT ACG GAC CAA AGG C 

CPT CG7149 GTT CTC TTC ATC TTT TGG GG C AAT GAG CCT CCG ACA AGT AGC 

EK CG3525 CTC GAA AGG TGG AGT TTT TGT C AAG TAC ATA CCT TCG CTT TAT TAT GAC 

ECT CG5547 GTC TTG TTT AGT ATG TCG TCC CC TTG GAA TTC GCA ATA TTT TTG G 

EPT CG6016 GAT GGA GTA TCT GGA CTG GTC G GAC TGC AAC AGT TCT GTC TCC C 

pBluescipt 
 

AATTCGATATCAAGCTTATCGAT TAAATTGTAAGCGTTAATATTTTG 

 
Supplemental Table S7: Sequences of Primers Used for RNAi Experiments. 

 
 
 

Gene Gene ID                        Forward                      Reverse 

CCT1 CG1049 GGA AGC GGA CCT ACG AGA TA GTG CCC TGA TCC TGA ACT T 

CCT2 CG18830 GAT GAG ATC GTT CCG AAT GC CAC AAA CAT TCC CTT CGC TT 

CK CG2201 CGG GAG TCA ATC AGT AGC CT CGT GAT TTG TGT GTC TCC GT 

CPT CG7149 AAA TAT TGC ATG CCG ACT GA TCT GAG TCG AAG ACC TGC TG 

EK CG3525 CCG GAG GAT AAA TCC AGA AA ACC TTC AAC AGT TCC TTG GC 

ECT CG5547 GTG GGT CAC CTG GAC TTT CT GTA GGA GTT CAC CAC GGG AT 

EPT CG6016 ATC CCA ACT GGC TGT TCT TC CGA AAC CAA ATG AAT GGC TA 

GAPDH CG83393 ATG AAG GTG GTC TCC AAC GC TCA TCA GAC CCT CGA CGA 

CCTα Pcyt1a, NM_001163160 TTG TGC AGA AGG TGG AAG AG CAT GTG CTT CAG TGC TCC TT 

beta actin Actb, NM_007393 GGT CAT CAC TAT TGG CAA CG TCC ATA CCC AAG GAA GG 

 

Supplemental Table S8: Sequences of Primers Used for Quantitative Reverse 

Transcription PCR Experiments. 

 

 

  



 

9 ABBREVIATIONS 
 

ACAT    Acyl coenzyme A:cholesterol acyltransferase 

ADRP    Adipose differentiation-related protein 

AGPAT   Acylglycerol-3-phosphate-O-acyltransferase 

Arg    Arginine 

ARF1    ADP-ribosylation factor 1 

ATGL    adipose triglyceride lipase 

ATP    Adenosintriphosphat 

BMDM    Bone marrow derived macrophages 

BODIPY   4,4-Difluoro-4-bora-3a,4a-diaza-s-indacene 

 cAMP   cyclic adenosine monophosphate 

°C    Celsius 

CCT    Choline cytidylyltransferase 

CD11b   Cluster of differentiation11b 

CDP    Cytidine diphosphate 

CDS   CDP-diacylglycerol synthetase 

CE     Cholesterol ester 

CEH    Cholesterol ester hydrolase 

CERT   Ceramide transfer protein 

CIDE    Cell death-inducing DFF45-like effector 

CGI-58   Comparative Gene Identification-58 

CK    Coline kinase 

CoA    Coenzyme A 

COP    Coat protein complex 

CPT    Choline phosphotransferase 

CTP    Cytidine triphosphate 

Cre    Causes recombination, recombinase from phage PI 

Da    Dalton 



 

Dff   DNA fragmentation factor 

DG   Diacylglycerol 

DGAT   Diacylglyceriol acyltransferase 

Ds RNA  Double strand ribonucleic acid 

DMEM  Dulbecco's Modified Eagle's Medium 

DNA   Deoxyribonucleic acid 

DTT   dithiothreitol 

ECT   ethanolamine cytidylytransferase 

EDTA   Ethylenediaminetetraacetic acid 

EK   Ethanolamine kinase 

EPT   Ethnaolamine phosphotransferase 

ER     Endoplasmic reticulum 

ERGIC  ER-Golgi intermediate compartments 

ERES   Er exit sites 

EYFP    Enhanced yellow fluorescent protein 

FACS   Fluorescence activated cell sorting 

FAS    Fatty acid synthase 

FDR    False discovery rate 

FLiP   fluorescence-loss-in-photobleaching 

FRAP   Fluorescence-recovery-after-photobleaching 

FSP27   Fat-specific protein of 27 kDa 

GAL4   Gene, encoding the yeast transcription activator protein Gal4 

GAPDH   Glycerinaldehyd-3-phosphat-Dehydrogenase 

GFP    Green fluorescent protein 

GPAT   Glycerol-3-phosphate acyltransferase 

h   Hours 

HCl   Hydrogen chloride 

HSL    Hormon sensitive lipase 

http://en.wikipedia.org/wiki/Saccharomyces_cerevisiae
http://en.wikipedia.org/wiki/Transcription_activator
http://en.wikipedia.org/wiki/Protein


 

HTNC    His-Tat-NLS-Cre 

ICAD Inhibitor of caspase activated deoxyribonuclease 

IQR   Inter-quartile range 

KCl    Potassium chloride 

KDEL    Lys-Asp-Glu-Leu 

LC   liquid-chromatography 

LD    lipid droplet 

LTQ   Linear trap quadrupole 

Lys    Lysine 

M   Molar 

MBOAT  Membrane bound O-acyl transferase 

MCSF   Macrophage colony-stimulating factor 

MgAc   Magnesium acetate 

MgCl2   Magnesium cholide 

Min    Minute 

mM   Millimolar 

MS/MS  Tandem mass spectrometry 

m/z   Mass-to-charge ratio 

N2   Nitrogen 

NA   Numerical aperture 

NaCl   Sodium chloride 

Nl   Nanoliter 

NLS   Nuclear localization sequence 

NP-40   tergitol 

 nM   Nanomolar 

NSF   N-ethylmaleimide-sensitive-factor 

NTP   Nucleoside triphosphate 

PA   Phosphatidic acid 



 

PAP   Phosphatidic acid phosphatase 

PAT   Perilipin, ADRP, and TIP47 

PBS   Phosphate buffered saline 

PC    Phosphatidylcholine 

PCP   Protein correlation profile 

PCR   Polymerase chain reaction 

PCTP   Phosphatidylcholine transfer protein 

PE   Phosphatidylethanolamine 

PEMT   Phosphatidylethanolamine methyltransferase 

PI    Phosphatidylinositol 

PMSF   phenylmethylsulfonylfluorid 

PKA    Proteinkinase A 

ppm   Parts per million 

PS    Phosphatidylserine 

PSD   Phosphatidylserine decarboxylase 

PSS   Phosphatidylserine synthase 

Rab   Ras-related in brain 

RNA   Ribonucleic acid 

RNAi   RNA interference 

RPMI   Roswell Park Memorial Institute 

RT    Room temperature 

SD   Standard deviation 

SE    Sterol ester 

sh RNA  short hairpin RNA 

SILAC   Stable isotope labeling with amino acids in cell culture 

SNAP   Soluble NSF attachment protein 

SNARE  N-ethylmaleimide-sensitive-factor attachment receptor 

SREBP  Sterol regulatory element-binding protein 



 

START  Steroidogenic acute regulatory 

Tat     Peptide, derived from human immunodeficiency virus 

 

TG    Triglyceride 

TIP47   Tail-interacting protein of 47 kDa 

TLC    Thin-layer chromatography 

Tris    Trishydroxymethylaminomethane 

UAS    Upstream activation sequence 

UV   Ultraviolet 

VAP    Vesicle-associated membrane protein 

(v/v)   Volume per volume 

µCi   Microcurie 

µg   Microgram 

µM   Micromolar 

  

http://en.wikipedia.org/wiki/Upstream_Activation_Sequence
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