
Doctoral Thesis

Exponential Lower Bounds for Solving Infinitary
Payoff Games and Linear Programs

Oliver Friedmann

Chair of Theoretical Computer Science
Department of Computer Science

Ludwig-Maximilians-University Munich

First advisor: Prof. Dr. Martin Hofmann, University of Munich

Second advisor: Prof. Dr. Martin Lange, University of Kassel

External examiner: Prof. Dr. Erich Grädel, RWTH Aachen

Submitted: April 4th, 2011
Defended: July 15th, 2011

i

Abstract

Parity games form an intriguing family of infinitary payoff games whose solution

is equivalent to the solution of important problems in automatic verification and

automata theory. They also form a very natural subclass of mean and discounted

payoff games, which in turn are very natural subclasses of turn-based stochastic

payoff games. From a theoretical point of view, solving these games is one of the few

problems that belong to the complexity class NP∩ coNP, and even more interestingly,

solving has been shown to belong to UP ∩ coUP, and also to PLS. It is a major open

problem whether these game families can be solved in deterministic polynomial

time.

Policy iteration is one of the most important algorithmic schemes for solving

infinitary payoff games. It is parameterized by an improvement rule that determines

how to proceed in the iteration from one policy to the next. It is a major open problem

whether there is an improvement rule that results in a polynomial time algorithm for

solving one of the considered game classes.

Linear programming is one of the most important computational problems studied

by researchers in computer science, mathematics and operations research. Perhaps

more articles and books are written about linear programming than on all other

computational problems combined.

The simplex and the dual-simplex algorithms are among the most widely used

algorithms for solving linear programs in practice. Simplex algorithms for solving

linear programs are closely related to policy iteration algorithms. Like policy itera-

tion, the simplex algorithm is parameterized by a pivoting rule that describes how

to proceed from one basic feasible solution in the linear program to the next. It is

a major open problem whether there is a pivoting rule that results in a (strongly)

polynomial time algorithm for solving linear programs.

We contribute to both the policy iteration and the simplex algorithm by proving

exponential lower bounds for several improvement resp. pivoting rules. For every

considered improvement rule, we start by building 2-player parity games on which

the respective policy iteration algorithm performs an exponential number of iterations.

We then transform these 2-player games into 1-player Markov decision processes

ii

which correspond almost immediately to concrete linear programs on which the

respective simplex algorithm requires the same number of iterations. Additionally,

we show how to transfer the lower bound results to more expressive game classes

like payoff and turn-based stochastic games.

Particularly, we prove exponential lower bounds for the deterministic switch

all and switch best improvement rules for solving games, for which no non-trivial

lower bounds have been known since the introduction of Howard’s policy iteration

algorithm in 1960. Moreover, we prove exponential lower bounds for the two most

natural and most studied randomized pivoting rules suggested to date, namely the ran-

dom facet and random edge rules for solving games and linear programs, for which

no non-trivial lower bounds have been known for several decades. Furthermore, we

prove an exponential lower bound for the switch half randomized improvement rule

for solving games, which is considered to be the most important multi-switching

randomized rule. Finally, we prove an exponential lower bound for the most natural

and famous history-based pivoting rule due to Zadeh for solving games and linear

programs, which has been an open problem for thirty years.

Last but not least, we prove exponential lower bounds for two other classes of

algorithms that solve parity games, namely for the model checking algorithm due to

Stevens and Stirling and for the recursive algorithm by Zielonka.

iii

Synopsis

This thesis provides an overview of our results, presenting new lower bounds for

algorithms that solve infinitary payoff games as well as new lower bounds for the

simplex algorithm for solving linear programs. In particular, it summarizes the main

results of the following papers:

(1) O. Friedmann. Recursive Algorithm for Parity Games requires Exponential

Time. In Theoretical Informatics and Applications, Cambridge Journals, 2011.

(2) O. Friedmann. An Exponential Lower Bound for the latest Deterministic Strategy

Iteration Algorithms. In Logical Methods in Computer Science, Selected Papers

of the Conference LICS 2009.

(3) O. Friedmann, T. Hansen and U. Zwick. Subexponential Lower Bounds for

Randomized Pivoting Rules for Solving Linear Programs. In Proceedings of the

43rd ACM Symposium on Theory of Computing, STOC’11, San Jose, CA, USA,

2011. Winner of the Best Paper Award.

(4) O. Friedmann. A Subexponential Lower Bound for Zadeh’s Pivoting Rule for

Solving Linear Programs and Games. In Proceedings of the 15th Conference on

Integer Programming and Combinatorial Optimization, IPCO’11, New York,

NY, USA, 2011. Awarded with Zadeh’s Prize.

(5) O. Friedmann, T. Hansen and U. Zwick. A Subexponential Lower Bound for the

Random Facet Algorithm for Parity Games. In Proceedings of the Symposium

on Discrete Algorithms, SODA’11, San Francisco, CA, USA, 2011.

(6) O. Friedmann. The Stevens-Stirling-Algorithm for Solving Parity Games Lo-

cally Requires Exponential Time. In International Journal of Foundations of

Computer Science, Volume 21, Issue 3, 2010.

(7) O. Friedmann. An Exponential Lower Bound for the Parity Game Strategy

Improvement Algorithm as we know it. In Proceedings of the 24th Annual IEEE

Symposium on Logic in Computer Science, LICS’09, Los Angeles, CA, USA,

2009. Winner of the Kleene Award 2009.

iv

v

Acknowledgments

First of all, I want to thank my parents who have always supported me in every

way. Without their help, I would not have had the chance to study for a doctoral

degree. Equally, I wish to thank my non-academic friends for taking my numerous

monologues on the subject of my thesis with great patience.

Also, I want to thank many colleagues who discussed various topics of this

thesis with me and supplied me with very helpful suggestions: Martin Lange, Martin

Hofmann, Uri Zwick, Thomas Dueholm Hansen, Markus Latte, Sven Schewe, Colin

Stirling, Bernd Gärtner, Emo Welzl, Kousha Etessami, David Avis, Günter Ziegler,

anyone I may have forgotten, and the anonymous referees of the publications listed

above.

Further thanks go to Max Jakob, our system administrator at the Chair of Theo-

retical Computer Science in Munich, who always helped me to solve my technical

needs with great kindness and who never complained about all the servers that I have

crashed by running my compilations on them.

Finally, I want to thank Martin Hofmann and Martin Lange again for agreeing

to act as my supervisors, as well as for their outstanding support and guidance

during the last years. They always helped me to solve my numerous problems with

extraordinary dedication and replied to all my countless email questions straight

away providing me with all the help one could hope for.

vi

vii

Declaration

I hereby declare that this thesis was composed by myself, that the work contained

herein is my own except where explicitly stated otherwise, and that this work has

not been submitted for any other degree or professional qualification.

My own contribution to the co-authored papers listed above can roughly be

specified as 40% of (3) and 30% of (5). Three single papers, (3), (4) and (7), have

been awarded with prizes.

viii

Contents

1 A brief history of time 1

2 Preliminaries 11

2.1 Complexity Theory . 14

2.2 Linear Programming . 20

3 Game Theory 37

3.1 Infinitary Payoff Games . 38

3.2 Parity Games . 44

3.3 Related Games . 59

3.4 Relations and Reductions . 67

4 Lower Bounds for Strategy Iteration 73

4.1 General Framework . 74

4.2 Improvement Rules . 91

4.3 Lower Bound Proof Plan . 98

4.4 Sink Game Relations . 106

4.5 Simplex Algorithm Relations . 110

4.6 Deterministic Rules . 115

4.6.1 Switch All Rule . 116

4.6.2 Switch Best Rule . 139

4.7 Probabilistic Rules . 149

4.7.1 Random Facet Rule . 150

4.7.2 Random Edge Rule . 168

4.7.3 Switch Half and all that . 187

4.8 Memorizing Rules . 189

4.8.1 Zadeh’s Pivoting Rule . 189

ix

x CONTENTS

5 Lower Bounds for Other Methods 209

5.1 Recursive Algorithm . 209

5.2 Model Checking Algorithm . 217

6 All is well that ends well 229

A Proofs of Chapter 4 233

A.1 Proofs of Chapter 4.4 . 233

A.2 Proofs of Chapter 4.6 . 236

A.3 Proofs of Chapter 4.7 . 242

A.4 Proofs of Chapter 4.8 . 265

B Proofs of Chapter 5 273

B.1 Proofs of Chapter 5.2 . 273

Bibliography 279

Index 291

1
A brief history of time

The field of theoretical computer sciences touches the disciplines of mathematical

logic, automata theory and formal languages, graph theory, complexity theory, game

theory, optimization theory, analysis of algorithms, and many more.

In this thesis, we consider infinitary payoff games, which are important subjects

of algorithmic game theory on the one hand, and have some of its applications in

the domain of modal logic and automata theory on the other hand. Additionally, we

consider linear programming, which is probably one of the most important fields in

convex optimization.

We mainly investigate the most important algorithm that solves infinitary payoff

games, namely the policy iteration method under a complexity theoretical point

of view, analyzing its worst-case runtime. Similarly, we investigate the worst-case

runtime of the simplex method for linear programs.

Infinitary Payoff Games

We consider a variety of closely related classes of games in this thesis, which we

like to call infinitary payoff games. These are zero-sum, perfect information games

played by one or two players, and sometimes by an additional randomized player

controlled by nature. The board is a directed, total graph, and each vertex of the

graph belongs to one of the players.

The game is played by putting a single token on one of the vertices (for instance,

on a designated starting node), and moving it along an outgoing edge to a successor

node. The player, to which the current node belongs to, decides, which outgoing edge

1

2 CHAPTER 1. A BRIEF HISTORY OF TIME

to take. If the current node is owned by the randomized player, then one outgoing

edge is picked arbitrarily at random. This process continues ad infinitum, yielding

an infinite sequence of nodes. It now depends on the specific class of games to

determine, which payoff the players receive or who wins the infinite play.

It is the objective of each player to maximize his or her payoff, or to win against

the other player. A player’s strategy in a game is a plan of action for whatever

situation might arise when playing against any opponent. A strategy specifies for

each node owned by the player, which respective successor node is to take, and in

general, this can depend on the whole history of the play up to that stage. If a strategy

does not depend on the history, we say that the strategy is positional.

All games that we consider here are positionally determined, meaning that

positional strategies suffice to answer the decision problems associated with the

games. This is convenient for many reasons, for instance as the number of positional

strategies is finite if the game has finite size.

Parity games are infinitary payoff two-player games played on directed graphs

with integer priorities assigned to their vertices. The two players, called even and

odd, construct an infinite path in the game graph. Even wins, if the largest priority

that appears an infinite number of times on the path is even. Odd wins otherwise. A

parity game might look as follows (circle nodes are owned by the even player):

4 0 3

1 2

6 8 5

The problem of solving a parity game, i.e., determining which of the two players

has a winning strategy, is known to be equivalent to the problem of µ-calculus model

3

checking [EJ91, EJS93, Sti95, GTW02]. It is also at the core of various problems

in computer-aided verification, namely validity checking for branching-time logics

[FL10b, FLL10] and controller synthesis [VAW03].

Parity games form a very special subclass of mean payoff games [Pur95, EM79,

GKK88, ZP96], which itself form a subclass of discounted payoff games, which in

turn form a very special subclass of turn-based stochastic games [Con92, AM09],

which we will also consider in this thesis. More general stochastic games were

previously considered by Shapley [Sha53].

Another extremely important class of infinitary payoff “games” are Markov

decision processes, named after Andrey Markov, providing a mathematical model

for sequential decision making under uncertainty. The study of Markov decision

processes started with the seminal work of Bellman [Bel57]. It can be seen as a

special subclass of turn-based stochastic games in which only one player is really

used. Markov decision processes have many applications in practice, for instance

in robotics, automated control, economics, operations research and artificial intelli-

gence.

Parity and related, more expressive game classes like payoff and stochastic games,

are a very interesting subject on their own from a complexity theoretical point of

view. While it is known that the decision problems corresponding to these games

belong to NP ∩ coNP [EJS93, Pur95], and even to UP ∩ coUP [Jur98, ZP96], as well

as to PLS [BM08], it is a major open problem whether any of these game families

can be solved in polynomial time. Markov decision processes, on the other hand,

can be solved in polynomial time by special techniques obtained from the domain of

linear programming.

A variety of algorithms for solving parity games has been invented so far. The

most prominent deterministic ones are the recursive algorithm by Zielonka [Zie98],

the local µ-calculus model checker by Stevens and Stirling [SS98], Jurdziński’s small

progress measures algorithm [Jur00], the subexponential algorithm by Jurdziński,

Paterson and Zwick [JPZ06] with a so-called big-step variant by Schewe [Sch07], as

well as several variations of the policy iteration technique (see below), which is the

only method that also applies to the other game classes.

4 CHAPTER 1. A BRIEF HISTORY OF TIME

This variety is owed to the theoretical challenge of answering the question

whether parity (or any of these) games can be solved in polynomial time, rather than

practical motivations. The currently best known upper bound on the deterministic

solution of parity games is O(e · n 1
3
p) due to Schewe’s big-step algorithm [Sch07],

where e is the number of edges, n is the number of nodes and p is the number of

different priorities in the game.

Policy Iteration

The strategy improvement, strategy iteration or policy iteration technique is the most

general approach that can be applied as a solving procedure for infinitary payoff

games and related problems. It was introduced by Howard [How60] in 1960 for

solving problems on Markov decision processes, and has been adapted by Hoffman

and Karp in 1966 for solving nonterminating stochastic games [HK66]. Later,

Condon adapted the algorithm for solving turn-based stochastic games [Con92], and

Puri, Zwick and Paterson used the method to solve discounted and mean payoff

games [Pur95, ZP96]. Finally, Jurdziński and Vöge formulated a discrete variant of

the policy iteration algorithm for solving parity games [VJ00].

The beauty of the policy iteration technique lies in its simplicity. It is based on

a (fixpoint-)iteration over a special finite subclass of strategies of the first player.

In each iteration, the current strategy is mapped to a valuation. The valuation of a

strategy allows us to decide whether the strategy is optimal for the first player, and if

not, how we can improve the strategy to obtain a better one. An appealing feature

is that we can compute valuations efficiently. In order to find an optimal strategy,

which allows us to derive a solution for the game, we apply the following scheme,

starting with an arbitrary strategy σ:

Algorithm 1 Policy Iteration
1: while σ is not optimal do
2: σ ← Improve(σ)
3: end while

Policy iteration in fact describes a whole class of algorithms, as in general, there

is more than one candidate strategy to proceed with in each iteration. The method

5

of choosing successor policies is called improvement rule. Under the assumption

that we only consider efficient improvement rules, it follows that the computational

complexity of policy iteration essentially only depends on the number of iterations,

since a single iteration is carried out in deterministic polynomial time.

This leaves us with the question whether every improvement rule leads to a small

number of iterations. Not very surprisingly, this is not the case. An example has

been known for some time for which a sufficiently poor choice of a deterministic

improvement rule causes an exponential number of iterations [BV07]. Then, we

could ask whether it is even theoretically possible to obtain an improvement rule that

results in a small number of iterations. Here, the answer is yes, and the easy proof is

folklore. However, the proof does not reveal any insights on how to formulate such

an improvement rule. Or putting it differently, the improvement rule that we could

get from the proof is not efficiently computable itself.

A variety of improvement rules has been invented so far, which is probably

owed to the theoretical challenge of finding an efficient policy iteration algorithm.

Generally, there are deterministic, randomized and memorizing improvement rules.

The most important ones, that are mentioned in the literature, are the deterministic

SWITCH-ALL [VJ00] and SWITCH-BEST [Sch08], the randomized SWITCH-HALF

[MS99], RANDOM-FACET [Kal92, Kal97, MSW96] and RANDOM-EDGE (folk-

lore), and the memorizing LEAST-ENTERED [Zad80] rules. No non-trivial lower

bounds on the worst-case complexity of all of these rules have been known until

now.

As we will see, policy iteration is moreover closely related to an algorithm called

simplex method for solving linear programs.

Linear Programming

Linear programming is one of the most important fields of optimization theory, and

is very actively researched. Many economical and practical tasks can be expressed as

a linear programming instance, and several subgoals of other optimization problems

in computer science require linear programs to be solved.

6 CHAPTER 1. A BRIEF HISTORY OF TIME

The linear programming problem is to maximize (or minimize) a given linear

objective function while satisfying some additional linear equalities and inequalities.

Formally, a linear programming problem is to maximize an objective function

c1x1 + . . .+ cnxn

subject to a number of linear (in)equalities, called constraints,

a1,1x1 + . . .+ a1,nxn = b1

a2,1x1 + . . .+ a2,nxn = b2

...

am,1x1 + . . .+ am,nxn = bm

where all coefficients ci, all bi, as well as all coefficients ai,j are real numbers.

We will see that Markov decision processes can be formulated as linear programs,

which, in fact, is also the reason why we can solve this class of games in polynomial

time.

There are, essentially, three kinds of algorithms that solve linear programs. First,

there is the simplex algorithm, which has been proposed by Dantzig [Dan63] in

1963. The exact complexity of this algorithm is unknown, and it is a major open

problem to answer this question adequately. The other two algorithms for solving

linear programs, namely the ellipsoid method by Khachiyan [Kha79] and the interior-

point method by N. Karmarkar [Kar84], handle linear programs in polynomial time,

however not in strongly polynomial time.

The difference between strongly and “normal” or weakly polynomial time is

subtle, and it depends on the method that we apply for measuring the size of a given

linear program. Clearly, the number of variables and the number of constraints

should contribute linearly to the size. But how do we measure the coefficients?

Classically, their magnitude and precession would also contribute to the size, as we

would need to find an encoding of the involved coefficients. If the runtime of an

algorithm can be polynomially bounded in terms of this measure, we would speak

7

of a weakly polynomial-time algorithm. On the other hand, if the runtime can be

polynomially bounded by a measure that only depends on the number of variables

and constraints, we would speak of strongly polynomial-time algorithm.

Although it is not even clear, whether (a variant of) the simplex method is a

polynomial-time algorithm, it has the potential to be even a strongly polynomial-time

algorithm, which is the reason why many people still consider this method.

Simplex Algorithm

The simplex algorithm is based on the observation that the space of points satisfying

all constraints essentially is a convex polytope (disregarding some special cases),

and the objective function has an optimal value on one of its vertices. Hence, the

idea is to start with an arbitrary vertex, to check whether the objective function is

optimal on that vertex, and if not, to improve to some adjacent vertex.

Similar to the policy iteration algorithm, the simplex method is parameterized

by a pivoting rule that selects one of the eligible neighboring vertices. Again,

the complexity of the simplex algorithm essentially only depends on the number

of pivoting steps, i.e. on the number of visited vertices, since all other necessary

operations can be performed in (strongly) polynomial time.

The question whether every pivoting rule results in a small number of pivoting

steps has been refuted by Klee and Minty [KM72], shortly after Dantzig presented

the simplex algorithm. But unlike policy iteration, it is a major open problem,

whether it is even theoretically possible to have a small number of pivoting steps.

This is known as the Hirsch conjecture (see e.g. [Dan63], pp. 160,168).

Many of the improvement rules for policy iteration can be phrased as pivoting

rules for the simplex algorithm (and vice versa), as most of them are formulated

abstractly enough. As for policy iteration, no non-trivial lower bounds on the worst-

case complexity of many of these rules in the context of the simplex algorithm have

been known until now.

This leaves us with the question whether there is a deeper connection between the

policy iteration algorithm for infinitary payoff games and the simplex algorithm for

linear programs. Indeed, we will see that Markov decision processes are the “missing

link” that relates policy iteration and the simplex method in some meaningful way.

8 CHAPTER 1. A BRIEF HISTORY OF TIME

Our Contribution

We present exponential (i.e. of the form 2Ω(n)) and subexponential (i.e. of the form

2Ω(nc) for some 0<c<1) lower bounds for essentially all policy iteration improvement

rules and all simplex method pivoting rules with unresolved complexity status.

First, we consider parity game policy iteration, and construct explicit families

of parity games on which the different improvement rules require exponential resp.

subexponential time. It was hoped until now, that any of those would solve parity

games in polynomial time.

Second, we show that all lower bound results obtained for parity game policy

iteration can be transferred to more expressive game classes like mean and discounted

payoff games, as well as turn-based stochastic games.

Third, we describe how our parity game constructions can be reshaped as Markov

decision processes with the same implications for the policy iteration algorithm.

This is not known to be possible in general, but we are able to at least translate our

constructions.

Fourth, we formalize the relation between policy iteration for Markov decision

processes and the simplex algorithm for induced linear programs, which allows us

to transfer all applicable lower bound results to the domain of linear programming,

solving problems that have been open for several decades. Note, however, that these

results do not have any implications on the Hirsch conjecture.

Fifth, we show exponential lower bounds for the model checking algorithm due

to Stevens and Stirling and for the recursive algorithm by Zielonka for solving parity

games.

Outline

The thesis is organized as follows. In Chapter 2, we introduce the fundamentals of

complexity theory and linear programming to fix our notation, and to provide the

reader with the necessary background knowledge to follow our presentation.

In Chapter 3, we describe infinitary payoff games, their decision problems,

important relations and reductions between the different game classes, and some

notable observations.

9

In Chapter 4, we consider the policy iteration method for solving infinitary payoff

games, and present our lower bound constructions. We also describe the relation to

the simplex algorithm for linear programming.

For the sake of completeness, we describe the model checking algorithm and the

recursive algorithm for solving parity games in Chapter 5, and prove exponential

lower bounds.

We end in Chapter 6 with some concluding remarks and open problems. Some

of the tedious proofs of Chapter 4 and Chapter 5 have been put into the appendix.

10 CHAPTER 1. A BRIEF HISTORY OF TIME

2
Preliminaries

We present the necessary mathematical foundations in this chapter that are required

to follow the thesis.

First of all, we introduce the relevant part of complexity theory, one of the

major fields of theoretical computer science, that tries to quantify the amount of

computational resources – like time or space – that are required to execute a specific

algorithm or to solve a specific task without explicitly stating how the task is to be

solved. For instance, the well-known bubble sort algorithm is a procedure to sort a

stack of cards, the general problem of sorting cards itself is a specific task that can

be analyzed by complexity theory.

Then, we introduce the field of linear programming, which is a very important

part of convex optimization. It subsumes all problems that can be expressed by

maximization (or minimization) of a given linear objective function subject to linear

constraints in the form of linear equalities and linear inequalities. In this thesis, we

consider linear programs for two reasons. First, some of the policy iteration methods

are based on the solution of related linear programs, and second, we will show that

our lower bounds for infinitary payoff games can be transferred to lower bounds

for one of the most important algorithms for solving linear programs, the simplex

algorithm.

Some notation that we use in this thesis might not be common sense, therefore

we explain all non-standard terms in the following once and for all.

Notation

For a binary relation R ⊆ A× B we write xRy as an abbreviation for (x, y) ∈ R,

xR for {y | xRy} and Ry for {x | xRy}.

11

12 CHAPTER 2. PRELIMINARIES

Let f : A → B be a function. We call dom(f) = {x ∈ A | ∃y ∈ B.f(x) = y}
the domain of f and ran(f) = {y ∈ B | ∃x ∈ A.f(x) = y} the range of f . By the

image of C ⊆ A under f , f [C], we refer to the set {y ∈ B | ∃x ∈ C.f(x) = y},
and by the inverse image of C ⊆ B under f , f−1[C], we refer to the set {x ∈ A |
∃y ∈ C.f(x) = y}.

Given a subset C ⊆ A, we denote the restriction of f to C by f |C , being defined

as follows:

f |C : C → B, x ∈ C 7→ f(x)

Given a binary relation R ⊆ A× B s.t. for every xRy and xRz it follows that

y = z, we define the f -update to R, f [R], by

f [R] : A→ B, x 7→

f(x) if xR = ∅

y if xR = {y}

Note that the f -update to R and the image of C under f use the same notation.

However, it will always be clear from the respective context to which operation we

refer to. For a finite number of pairs (x1, y1), . . ., (xn, yn) with pairwise distinct xi,

we also apply the following notation for the f -update.

f [x1 7→ y1, . . . , xn 7→ yn] : x 7→

yi if x = xi

f(x) otherwise

Let k > 0 be a natural number. We abbreviate that two natural numbers a and b

are equal modulo k by the following equivalence relation.

a ≡k b ⇐⇒ (a mod k) = (b mod k)

Landau Symbols

The Landau symbols are a well-established way of specifying bounds on the asymp-

totic behavior of real-valued functions. The main motivation to use this notation in

the analysis of algorithms or algorithmic problems is to capture the essential resource

13

consumption – in terms of time or space – of an algorithm without drawing too much

attention to specific implementation details and their effects on the overall resource

consumption.

This simplification is particularly useful as it directly corresponds to the idea

of abstracting away from a specific machine. Instead of considering a concrete

machine that executes some computational primitives with well-known resource

consumptions, one applies a more general computational model that subsumes all

specific machines that differ in their primitive resource consumptions by a constant

factor.

Let now f, g : R→ R be two functions. We say that f is in O(g), in terms f ∈
O(g) or f = O(g), iff there is some x0 ∈ R and some c > 0 s.t. |f(x)| ≤ c · |g(x)|
for all x > x0. Intuitively, f ∈ O(g) means that f is asymptotically bounded above

by g (up to a constant factor). Disregarding c, we consider g to be an upper bound

on f . For instance, 2 · x3 + 5 · x2 + 7 ∈ O(x3) as limx→∞
2·x3+5·x2+7

x3
= 2 and

10 · x2 ∈ O(x3) as limx→∞
10·x2
x3

= 0, but x4 6∈ O(x3) as limx→∞
x4

x3
=∞

The corresponding lower bound is denoted as follows: We say that f is in

Ω(g), in terms f ∈ Ω(g) or f = Ω(g), iff there is some x0 ∈ R and some c > 0 s.t.

|f(x)| ≥ c·|g(x)| for all x > x0. Intuitively, f ∈ Ω(g) means that f is asymptotically

bounded below by g (up to a constant factor). It is not hard to see that f ∈ O(g) iff

g ∈ Ω(f).

Binary Counting

Almost all lower bounds constructions of this thesis are ultimately based on binary

counting. We introduce notation to succinctly describe binary numbers. It will be

convenient for us to consider counter configurations with an infinite tape, where

unused bits are zero. The set of n-bit configurations is formally defined as Bn =

{b ∈ {0, 1}∞ | ∀i > n : bi = 0}.

We start with index one, i.e. b ∈ Bn is essentially a tuple (bn, . . . , b1), with

b1 being the least and bn being the most significant bit. By 0, we denote the

configuration in which all bits are zero, and by 1n, we denote the configuration in

which the first n bits are one. We write B =
⋃
n>0 Bn to denote the set of all counter

configurations.

14 CHAPTER 2. PRELIMINARIES

The integer value of a b ∈ B is defined as usual, i.e. |b| :=
∑

i>0 bi · 2i−1 <∞.

For two configurations b, b′ ∈ B, we induce the lexicographic linear ordering b < b′

by |b| < |b′|. It is well-known that b ∈ B 7→ |b| ∈ N is a bijection. For b ∈ B and

k ∈ N let b + k denote the unique b′ s.t. |b′| = |b|+ k. If k ≤ |b|, let b− k denote

the unique b′ s.t. |b′|+ k = |b|.

Given a configuration b, we access the i-next set bit by νni (b) = min({n+ 1} ∪
{j ≥ i | bj = 1}), and the i-next unset bit by µi(b) = min{j ≥ i | bj = 0}.

2.1 Complexity Theory

Complexity theory is the field of theoretical computer science that tries to classify

algorithmic problems according to their computational needs. It formalizes the idea

of abstract machines that execute algorithms, and defines reasonable technicalities to

specify the intrinsic computational requirements of an abstract machine that solves

an algorithmic problem. These needs are phrased in terms of the asymptotic usage

of memory space or the asymptotic number of steps that are required to solve the

problem.

Both logic and complexity theory deal with algorithmic problems. A typical

question in logic is whether a given problem is decidable, i.e. whether there is an

algorithm that solves the problem. Although the decidability question plays a role in

complexity theory as well, the major concern of complexity theory is to answer the

question how fast a decidable problem can be solved. We only consider decidable

problems here.

An algorithmic problem is the formal description of the relation between some

input data describing the problem instances and some output data describing a

solution to the given instance. For example, “sorting a list of natural numbers” could

be seen as an algorithmic problem in which the set of problem instances is the set

of lists of natural numbers and the corresponding solution of a given list of natural

numbers would be the respective ordered version. The description of an algorithmic

problem is purely theoretical and does neither favor nor specify a concrete algorithm

that solves the problem.

2.1. COMPLEXITY THEORY 15

One of the most important tasks of complexity theory is to assign different

algorithmic problems that share common computational properties to so-called

complexity classes. A complexity class usually specifies a computational model, a

computational paradigm, and some resource bounds.

The computational model describes the abstract machine on which algorithms,

based on a finite set of fundamental operations, can be executed by having access

to some kind of memory. There are several reasonable computational models that

can be applied when studying algorithmic problems from a theoretical point of view.

The most commonly used model is, probably, the class of Turing machines (TM),

named after its inventor Alan Turing. A Turing machine is a theoretical automaton

that fulfills state transitions ranging over a finite number of states with the additional

ability to have read and write access to a constant number of potentially unbounded

tapes.

The computational paradigm explains how the execution of an algorithm is to be

performed. We consider the following two paradigms:

• deterministic paradigm: the current computational state has at most one

successive state, and

• non-deterministic paradigm: the current computational state can have more

than one successive state.

Applying an algorithm (i.e. a Turing machine) to an input instance, results in a run,

which is the complete trace of atomic steps that the abstract machine performed on

the input instance to generate an output instance. Note that a deterministic algorithm

has exactly one run on a given input instance, whereas a non-deterministic algorithm

can have more than one run on a given input instance.

Along with the output instance, the Turing machine has to specify whether the

run is accepting or rejecting. This is particularly important when applying a non-

deterministic Turing machine to an input instance, because here it is possible that

some runs are accepting and others are not. The output instance is only considered to

be valid, if the corresponding run is accepting. Note that many problems are phrased

as decision problems in which we do not expect any output instances.

16 CHAPTER 2. PRELIMINARIES

Complexity theory considers the asymptotic resource consumption that is nec-

essary to solve algorithmic problems. The most interesting resources are time and

space. We only consider time in this thesis. Given a run r of a TM T , we let

timeT (r) denote the length of r. It is here that Landau symbols are particularly

useful. Instead of presenting detailed resource-bounding functions f along with an

algorithm that solves the respective problem, we usually apply the O(∗)-notation to

specify asymptotic resource-bounds.

The analysis of some resource complexity is ultimately based on relating the

size of an input instance to the resource consumption of an associated run. When

considering concrete algorithmic problems like sorting cards or solving the traveling

salesman problem, one usually leaves the details of the encoding of the problem

implicit. This is reasonable most of the time, however, one needs to be careful in

some occasions. Natural numbers, for instance, can be encoded as unary numbers,

i.e. the encoding size of a number directly coincides with the number itself, or they

can be encoded as binary numbers, i.e. the encoding size of a number is logarithmic

in the number itself. Obviously, these two encodings result in quite different sizes of

input instances. Hence, whenever implicit encodings raise such ambiguities, one has

to be more specific about the respective encoding details.

Complexity theory investigates two kinds of questions. First, given a concrete

algorithm that solves a concrete algorithmic problem, what are upper and lower

bounds on the algorithmic complexity of the algorithm? Such bounds are usually

expressed in terms of Landau symbols. The typical strategy to give a lower bound

proof is to exhibit a family of input instances of increasing size that results in runs

that can be bounded by the desired lower bound function. Upper bound proofs

usually rely on some combinatorial analysis.

Second, given a concrete algorithmic problem, what are upper and lower bounds

on the complexity of the algorithmic problem? Upper bounds are usually given by

the construction of a concrete algorithm along with an upper bound on it. Lower

bounds on an algorithmic problem again rely on combinatorial analysis most of the

time.

2.1. COMPLEXITY THEORY 17

Complexity Classes

Complexity theory is mainly concerned with the collection of algorithmic problems

with common resource bounds, forming a complexity class. We assume some

familiarity with the relationships between the important complexity classes NP and P,

and briefly recap their informal definitions in the following:

• P: the class of all decision problems that can be solved by a polynomial-time

bounded deterministic Turing machine,

• NP: the class of all decision problems that can be solved by a polynomial-time

bounded non-deterministic Turing machine, that accepts an input iff it has an

accepting run on it,

• coNP: the class of all decision problems that can be solved by a polynomial-

time bounded non-deterministic Turing machine, that accepts an input, iff it

has no rejecting run on it,

• UP: the class of all decision problems that can be solved by a polynomial-time

bounded non-deterministic Turing machine, that accepts an input iff it has an

accepting run on it, and that has no more than one accepting run on every input

instance, and

• coUP: the class of all decision problems that can be solved by a polynomial-

time bounded non-deterministic Turing machine, that accepts an input, iff it

has no rejecting run on it, and that has no more than one rejecting run on every

input instance.

Deterministic polynomial-time bounded algorithms are generally considered as

being efficient. However, it is debatable whether an algorithm that runs in time

Ω(n100) is really efficient in practice.

An alternative definition of NP-problems is known as the “guess and check”

characterization: a problem is in NP iff given an input instance x and a potential

solution y, it is easy (that is, in deterministic polynomial time) to verify whether the

solution is actually correct.

18 CHAPTER 2. PRELIMINARIES

It is a major open problem whether NP = P. The predominant opinion of the

scientific community is that P (NP. In fact, many theorems of nowadays complexity

theory are based on the assumption that NP 6= P. Assuming this common hypothesis,

it can be shown that there are problems in NP that are neither NP-complete nor

contained in P [Lad75]. However, there are no known natural NP-problems that can

be shown to reside between NP-complete and P problems, assuming that NP 6= P.

The main problems of this thesis – deciding the winner of certain infinitary payoff

games (excluding Markov decision processes) – are some of the very rare natural

combinatorial problems that are known to be in NP, coNP, UP and coUP, but that

are not yet known to be in P. Due to the fact that these problems are contained in

the formerly mentioned complexity classes, it is generally considered to be quite

unlikely that they are complete for any of those. In fact, most scientists believe that

these problems are actually contained in P. However, this question is still open.

Arithmetic Model

A very important computational model is the arithmetic model which allows to

perform basic arithmetic operations like addition or multiplication in unit time,

regardless of the size of the operands. This relates quite naturally to computers of

our real life, since arithmetic operations are performed in essentially unit time by

our CPUs.

We say that an algorithm runs in strongly polynomial time iff the time complexity

is polynomially bounded by the number of integers of the input instance. Such

algorithms can be easily converted into “normal” polynomial-time algorithms by

replacing the unit time arithmetic operations by polynomial-time implementations.

An algorithm runs in weakly polynomial time on the other hand, iff it runs in

polynomial time, but not in strongly polynomial time. Therefore, the runtime of the

algorithm really depends on the integers rather than only on the number of integers.

In the field of combinatorial optimization, like linear programming and infinitary

payoff game theory, strongly polynomial-time algorithms are generally desirable,

as they only depend on the combinatorial structure of the problem rather than on

complex arithmetic phenomena.

2.1. COMPLEXITY THEORY 19

The Search Class PLS

Some algorithmic problems can be phrased as search problems, in which the algo-

rithm starts with some initial solution to the given input instance, proceeds to some

neighboring solution, until an optimal solution has been found. In general, this is

a locally optimal solution. Papadimitriou, Yannakakis and Johnson [JPY88, PY88]

were the first to define a rigorous complexity class that captures these kinds of

problems.

Again, the complexity class of local search problems is defined w.r.t. input

instances as words over a finite alphabet, so that we can easily measure the size of a

given input instance. We leave the alphabets and lengths of words implicit here and

just assume that we can assign a size to an input instance in a reasonable way.

More formally, a polynomial local search problem (PLS problem) is a tuple

(D,S, F,N, c), where

• D is the set of instances,

• S is the set of solutions,

• F : D → 2S is a function that assigns every instance a non-empty, finite set of

solutions,

• N : D×S → 2S is a function that assigns every instance x and every solution

s ∈ F (x) a neighborhood N(x, s) ⊆ F (x), and

• c : D × S → R is a function that assigns every instance x and every solution

s ∈ F (x) some cost c(x, s)

such that there are deterministic polynomial-time (in the size of the instance) algo-

rithms for the following tasks, given an instance x ∈ D:

• the selection of an initial s ∈ F (x),

• the computation of c(x, s) for s ∈ F (x),

• the decision, whether there is some s′ ∈ N(x, s) with c(x, s′) > c(x, s) for

s ∈ F (x), and the computation of such an s′ in case it exists.

20 CHAPTER 2. PRELIMINARIES

The goal is to compute, given an instance x, a solution s ∈ F (x) with locally

maximal cost, i.e. there is no s′ ∈ N(x, s) with c(x, s′) > c(x, s). The standard

method for computing such a solution can be realized by Algorithm 2.

Algorithm 2 Polynomial Local Search
1: s← some element of F (x)
2: while there is some s′ ∈ N(x, s) with c(x, s′) > c(x, s) do
3: s← s′, where s′ ∈ N(x, s) with c(x, s′) > c(x, s)
4: end while
5: return s

An appealing feature of polynomial local search problems is that they can be

approximated to any factor in polynomial time (polynomial in the instance size and

the approximation factor) [OPS04].

2.2 Linear Programming

Linear programming (LP) is one of the most important computational problems

studied by researchers in computer science, mathematics and operations research.

Though our understanding of linear programming improved vastly in the last 60

years, there are still many extremely intriguing and important open problems. Dozens

of books and thousands of articles were written on linear programming.

The theorems that we present in this chapter are considered to be common

knowledge, and cannot be attributed to a single author or a single publication. They

can be found in any standard literature on linear programming, see, e.g., Chvátal

[Chv83], Schrijver [Sch86], Matoušek and Gärtner [MG07], and Srinivasan [Sri08],

and the references there in.

The linear programming problem is to maximize (or minimize) a given linear

objective function subject to linear constraints in the form of linear equalities and

linear inequalities.

More formally, the standard form is to maximize a linear objective function

f : Rn
+ → R, (x1, . . . , xn) 7→ c1x1 + . . .+ cnxn

2.2. LINEAR PROGRAMMING 21

subject to a number of linear (in)equalities, called constraints,

a1,1x1 + . . .+ a1,nxn = b1

a2,1x1 + . . .+ a2,nxn = b2

...

am,1x1 + . . .+ am,nxn = bm

where all ci ∈ R, bi ∈ R, as well as all ai,j ∈ R.

The most commonly used notation, however, expresses the problem in terms of

matrix multiplications, i.e. an LP problem is to maximize cTx subject to Ax = b

where x ∈ Rn
+, c ∈ Rn, A ∈ Rm×n and b ∈ Rm. We write LPmax(c, A, b) to refer to

the problem.

Given a linear program L = LPmax(c, A, b) in standard form, we say that an

x ∈ Rn
+ is a feasible solution iff Ax = b. The feasible region of L is the set

PL = {x ∈ Rn
+ | Ax = b} of feasible solutions. We say that an LP L is feasible iff

PL 6= ∅, otherwise it is infeasible. A feasible solution x∗ ∈ PL is optimal iff for all

x ∈ PL we have: cTx∗ ≥ cTx. We say that an LP is unbounded iff for every λ ∈ R,

we have a feasible x ∈ PL s.t. cTx ≥ λ, otherwise it is bounded.

The following is sometimes known as the weak fundamental theorem of linear

programming.

Theorem 2.1. A linear programming problem is either unbounded, infeasible or

feasible and bounded.

It is easy to see that an optimal solution only exists, if the linear programming

problem is feasible and bounded. Solving a linear programming problem means to

decide whether it is unbounded, infeasible, or feasible and bounded, and to compute

an optimal solution in the latter case.

Note that when computing an optimal solution, we assume that all real values are

rationals. In fact, we can even assume that all values are integers, as the LP problem

is equivalent to the problem in which every value has been multiplied by the lowest

22 CHAPTER 2. PRELIMINARIES

common denominator of all values. The result for the modified problem can then be

back-transformed to the original one by dividing by the lowest common denominator

again.

There are several equivalent forms of linear programming problems that can be

reduced to the original problem.

1. Minimization objectives min cTx can be expressed as maximization objectives

max−cTx.

2. Equality constraints – as in the standard form – can be expressed by two

inequalities.

3. Inequality constraints aTi x ≤ bi can be expressed by introducing so-called

slack variables si ∈ R+ and replacing the inequality by the equation aTi x+si =

bi.

4. Non-positivity constrained variables xi ≤ 0 can be replaced by the term −x′i
and the new variable x′i ≥ 0.

5. Unrestricted variables xi can be replaced by the term xi = x+
i − x−i and two

additional variables x+
i , x

−
i ≥ 0.

Geometry

The geometric interpretation of the linear constraints, i.e. the feasible region, is

the space described by a convex polytope. Every linear objective function is both

concave and convex, hence every local minimum resp. maximum is also a global one.

Therefore, the solution of every LP problem either is the uniquely determined global

maximum of the linear objective function in the feasible region or not existing, i.e.

either unbounded or the whole polytope is infeasible.

Consider, for instance, the following LP problem.

Maximize 6x1 + 5x2 subject to

x1 + x2 ≤ 5

3x1 + 2x2 ≤ 12

2.2. LINEAR PROGRAMMING 23

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7

x1

x2

x1 + x2 = 5

3x1 + 2x2 = 12

Figure 2.1: Geometry of the example

The optimal solution is (x1, x2) = (2, 3) with value 27. See Figure 2.1 for the

geometry of the LP problem. The encircled points mark the vertices of the polytope.

Formally, we say that x ∈ PL is a vertex of the polytope PL iff for every vector

y 6= 0, we have: x+ y 6∈ PL or x− y 6∈ PL. In other words, a vertex is a point of the

polytope s.t. there is no proper line with x as the center that is completely included

in the polytope.

Theorem 2.2. Let L = LPmax(c, A, b) be a bounded linear programming problem,

and let x ∈ PL. There is a vertex x∗ ∈ PL s.t. cTx∗ ≥ cTx.

Theorem 2.2 has the important consequence that there is always an optimal

solution that corresponds to a vertex of the polytope. Note, however, that there may

be optimal solutions that do not correspond to a vertex.

Corollary 2.3. Every bounded and feasible linear programming problem has a

vertex that is an optimal feasible solution.

24 CHAPTER 2. PRELIMINARIES

It is also not hard to see that we can always find a vertex in a linear program by

minimizing a canonic linear objective function that is monotone in every variable of

the program.

Corollary 2.4. Every feasible linear program has a vertex.

We need to introduce some notation to refer to submatrices. Let A ∈ Rm×n be a

matrix and B = {b1, . . . , bk} be a subset of column-indices 1 ≤ b1 < . . . < bk ≤ n.

By A|B ∈ Rm×k, we denote the submatrix of A that is restricted to the columns with

indices in B, i.e. (A|B)i,j = Ai,bj . For vectors x ∈ Rn, we apply the same notation,

i.e. x|B ∈ Rk with (x|B)j = xbj .

Our next theorem describes the whole set of vertices in terms of the constraint

matrix A. For a given vector x ∈ Rn, let B(x) = {j | xj > 0}.

Theorem 2.5. Let L = LPmax(c, A, b) be a linear programming problem and x ∈ PL.

Then x is a vertex iff rank(A|B(x)) = |B(x)|, in other words iff A|B(x) has linearly

independent columns.

Bases

By Theorem 2.2, we know that the geometric characterizations of extreme points

are, essentially, vertices. Here, we describe the algebraic characterization, using

Theorem 2.5.

Given a linear programming problem L = LPmax(c, A, b), we assume for the sake

of the next paragraphs that rank(A) = m, i.e. the constraint matrix has full rank.

Otherwise, there is either a redundant constraint in the system Ax = b (which can be

removed) or it has no solution at all. This particularly implies that m ≤ n.

We say that B ⊆ {1, . . . , n} with |B| = m is a basis of L iff A|B ∈ Rm×m is

non-singular. By B̄ = {1 ≤ j ≤ n | j 6∈ B}, we denote the set of indices not

included in B.

Let now x ∈ PL be a vertex. We say that a basis B is a basic feasible solution

(w.r.t. x) iff B(x) ⊆ B. In this case, we call indices j ∈ B basic (w.r.t. x) and

indices j 6∈ B non-basic.

2.2. LINEAR PROGRAMMING 25

As a consequence of Theorem 2.5, it is easy to see that every vertex x ∈ PL has

a basic feasible solution. If |B(x)| = m, we are done. Otherwise, we can augment

B(x) with additional linearly independent columns (since rank(A) = m).

Lemma 2.6. Every vertex has a basic feasible solution corresponding to it.

It is possible that a vertex x has more than one basis. In this case, we call x

degenerate and observe that |B(x)| < m. Note that a trivial upper bound on the

number of bases for x is
(

m
|B(x)|

)
.

Given a basis B, it is easy to compute a corresponding vector x ∈ Rn, namely

by setting x|B̄ = 0 and x|B = A|−1
B b. However, x is not necessarily feasible, i.e. it

might well be the case that xi < 0 for some index i.

We summarize the results in a main theorem, which is sometimes attributed as

the strong fundamental theorem of linear programming.

Theorem 2.7. Let L be a linear programming problem.

1. If L has no optimal solution, then L is either unbounded or infeasible.

2. If L has a feasible solution, then L has a basic feasible solution corresponding

to a vertex.

3. If L is bounded and feasible, then L has a optimal basic feasible solution

corresponding to a vertex.

Duality

The notion of duality is an extremely important topic in linear programming. It is

motivated by three related questions, namely finding upper bounds on the optimal

solution of an LP problem, knowing when an optimal solution has been reached, and

finding a measure for the distance to the optimal solution. The first will be captured

by the weak duality theorem, the second by the strong duality theorem, and the last

by the complementary slackness theorem.

First, we define the dual of a given linear programming problem. Let therefore

LPmax(c, A, b) be an LP problem in standard form, i.e. of the following form.

26 CHAPTER 2. PRELIMINARIES

(P) max cTx s.t. Ax = b, x ≥ 0

This problem is called the primal problem.

Suppose that we want to find an upper bound on the cost function cTx. For every

constraint, let yi ∈ R denote a number. Now we multiply every constraint with the

respective yi, and sum up the result, ending up with yTAx = bTy. Suppose further

that every coefficient of xi in yTAx is greater or equal to cj . Then, it must be the

case that yTAx ≥ cTx, i.e. bTy is an upper bound on the cost function. In order to

find the best upper bound, we therefore want to minimize bTy s.t. ATy ≥ c.

This is a linear programming problem again. More precisely, we want to solve

the following linear programming problem, called the dual problem, formally given

by:

(D) min bTy s.t. ATy ≥ c

Note that if the primal has n variables and m constraints, then the dual has m

variables and n constraints.

Recall our running example again.

Maximize 6x1 + 5x2 subject to

x1 + x2 ≤ 5

3x1 + 2x2 ≤ 12

Multiply the first constraint by 1 and the second by 2, for instance. Then, we end up

with 7x1 + 5x2 ≤ 29; since 6x1 + 5x2 ≤ 7x1 + 5x2, it is immediate to see that 29

is an upper bound on the optimal solution of the cost function. The dual problem

would look as follows.

Minimize 5y1 + 12y2 subject to

y1 + 3y2 ≥ 6

y1 + 2y2 ≥ 5

The upper bound observation is formalized by the easy weak duality theorem.

Theorem 2.8. Let x be a feasible solution to the primal maximization problem and

let y be a feasible solution to the dual minimization problem. Then cTx ≤ bTy.

2.2. LINEAR PROGRAMMING 27

The weak duality theorem has important consequences. First, it is easy to see that

coinciding feasible solutions imply the respective optimality. Second, the general

structure of the primal problem is reflected in the dual and vice versa.

Lemma 2.9. Let (P) be a primal LP problem and (D) be the dual.

1. Let x be a feasible solution to (P) and y be a feasible solution to (D). If

cTx ≥ bTy, then x is optimal to (P) and y is optimal to (D).

2. If (P) (resp. (D)) is unbounded, then (D) (resp. (P)) is infeasible.

3. If (P) (resp. (D)) is feasible and bounded, then (D) (resp. (P)) is feasible

and bounded.

Note it might well be the case, that both the primal and the dual are infeasible.

For the strong duality theorem, we need an important theorem of the alternative

of linear equation systems, known as Farkas Lemma. It essentially states that if a

system has no solution, then there is a witnessing vector that shows that there is no

solution.

Lemma 2.10 (Farkas Lemma). Let A be a real matrix and b be a vector. Exactly

one of the following systems has a solution.

1. Ax = b, x ≥ 0

2. yTA ≥ 0, yT b < 0

An extremely important consequence is the strong duality theorem that tells us

that optimal solutions of the primal and the dual always coincide. In other words, it

suffices to solve the dual in order to obtain an optimal solution to the primal.

Theorem 2.11. Let the primal and the dual problem be feasible, and let x∗ resp. y∗

be an optimal solution to the primal resp. the dual. Then cTx∗ = bTy∗.

Let now (P) be a primal maximization problem and (D) be a dual minimization

problem. Let x be a feasible solution (P) and y be a feasible solution to (D). We

28 CHAPTER 2. PRELIMINARIES

know by weak duality that cTx ≤ bTy, and call the difference bTy − cTx the duality

gap. Some algorithms for solving linear programs operate on both the primal and

the dual, and use the duality gap to measure their progress towards the optimal

solution(s).

Given the primal in standard form, we have the following formulation for both

the primal and the dual

(P) max cTx s.t. Ax = b, x ≥ 0

(D) min bTy s.t. ATy ≥ c

In order to replace the inequalities in the dual by equalities again, we need to

introduce so-called slack variables si for every dual constraint. In other words, we

introduce a slack vector s ∈ Rn
+ and formulate the dual as follows.

(D) min bTy s.t. ATy − s = c, s ≥ 0

The duality gap can then be written as xT s = bTy − cTx.

The complementary slackness theorem summarizes the correspondence between

optimal solutions for both the primal and the dual, and the slack variables.

Theorem 2.12. Let x∗ be feasible for the primal and (y∗, s∗) be feasible for the dual

(with slack vector s∗). Then x∗ is optimal to (P) and (y∗, s∗) is optimal to (D) iff

(x∗)T s∗ = 0.

Simplex Algorithm

The first algorithm that solves LP problems was developed by G. Dantzig [Dan63] in

1947, and is now well-known as the simplex algorithm. It is still among the most

widely used algorithms for solving linear programs and performs extremely well in

practice. It is an iterative algorithm that starts with an (arbitrary) feasible solution on

one of the vertices of the polytope and then walks along the edges in such a way that

the value of the objective function is non-decreasing until an optimum is found. See

Figure 2.2 for a graphical depiction of the simplex algorithm.

2.2. LINEAR PROGRAMMING 29

Figure 2.2: Simplex algorithm walking along the edges of an LP-polytope

The simplex algorithm essentially consists of three components: (1) finding an

initial basic feasible solution, (2) identifying adjacent basic feasible solutions, and

(3) identifying an optimal solution as optimal.

There is no particularly clever way of finding the initial basic feasible solution.

A canonic way, for instance, is to add an unique additional helper variable to each

constraint. A basic feasible solution can then be obtained by putting all additional

helper variables in the basis.

Now assume that we are at a basic feasible solution with basisB. For any solution

x ∈ PL, we haveAx = b, i.e.A|Bx|B+A|B̄x|B̄ = b, i.e. x|B = A|−1
B b−A|−1

B A|B̄x|B̄
(recall that A|B is non-singular because B is a basis). Observe that the associated

value of the linear objective function can be rephrased as follows:

30 CHAPTER 2. PRELIMINARIES

cTx = c|Bx|B + c|B̄x|B̄

= c|B(A|−1
B b− A|−1

B A|B̄x|B̄) + c|B̄x|B̄

= c|BA|−1
B b+ (c|B̄ − A|−1

B A|B̄)x|B̄

Note that the value of the objective function only depends on the values of the

non-basic variables. Let now j ∈ B̄. If (c|B̄ − A|−1
B A|B̄)j is a positive coefficient,

it follows that increasing the non-basic variable xj results in an improved value of

the objective function. Obviously x|B depends on x|B̄, and increasing xj is only

possible as long as all basic variables remain positive.

A single improvement step of the simplex algorithm therefore identifies a non-

basic variable xj with positive coefficient (c|B̄−A|−1
B A|B̄)j , and increases it as much

as possible while keeping x|B ≥ 0. This corresponds to setting one of the original

basic variables xk to zero. Then, the algorithm moves xj to the basis and xk to the

non-basic variables, ending up with a new basic feasible solution with improved

linear objective value.

An optimal solution can be easily identified by observing that there are no

adjacent vertices with improved cost. However, it might be possible to end in a

degenerate optimal solution (see below).

One of the most important characteristics of a simplex algorithm is the pivoting

rule it employs. It determines which non-basic variable is to enter the basis at each

iteration of the algorithm.

Recall that the algorithm may obtain degenerate basic feasible solutions. In this

case, it is possible that we cannot increase a non-basic variable. We can still manage

to replace a basic zero variable by a non-basic zero variable. However, it may happen

that the algorithm cycles along non-improving edges without terminating. There

are pivoting rules for which it is known that they avoid cycles, and hence obtain a

solution to the LP problem after a finite number of iterations.

Essentially all deterministic pivoting rules are known to lead to an exponential

number of pivoting steps on some LPs. This was first established by Klee and

2.2. LINEAR PROGRAMMING 31

Minty [KM72] for Dantzig’s original pivoting rule. Similar results for many other

rules were obtained by [Jer73], [AC78] and [GS79]. For a unified view of these

constructions, see Amenta and Ziegler [AZ96].

There are two very important randomized pivoting rules for which the ques-

tion, whether one of them admits a polynomial-time algorithm, has been open for

decades, namely RANDOM-FACET [Kal92, Kal97, MSW96] and RANDOM-EDGE

[GK07, BDF+95, GHZ98, GTW+03, BP07]. Another very interesting deterministic

memorizing pivoting rule is Zadeh’s LEAST-ENTERED rule [Zad80], for which no

subexponential lower bound has been known. We will discuss all these pivoting rules

in detail in Chapter 4 and provide concrete subexponential lower bound constructions

for them.

From a combinatorial perspective, the simplex algorithm is based on walking

along the edge-vertex graph of the LP polytope. It is not known whether there exists

a pivoting rule that requires a polynomial number of pivoting steps on any linear

program. This is, perhaps, the most important open problem in the field of linear

programming. The existence of such a polynomial pivoting rule would imply, of

course, that the diameter of the edge-vertex graph of any polytope is polynomial in

the number of facets defining it.

An important conjecture in this context is the strong Hirsch conjecture which

has recently been refuted by Santos [San10].

Conjecture 2.13 (Strong Hirsch Conjecture (see e.g. [Dan63], pp. 160,168)). The

diameter of the graph defined by an n-facet d-dimensional polytope is at most n− d.

A weaker form is the so-called polynomial Hirsch conjecture, which is now the

focus of the polymath3 project.

Conjecture 2.14 (Polynomial Hirsch Conjecture). The diameter of the graph defined

by an n-facet d-dimensional polytope is polynomial in n and d.

The best upper bound known on the diameter is a quasi-polynomial bound (i.e.,

of the form nO(logn)) obtained by Kalai and Kleitman [KK92].

32 CHAPTER 2. PRELIMINARIES

Linear Programming as PLS problem

We note here that linear programs can be phrased as a PLS problem. The set of input

instances obviously are the linear programs, the set of solutions w.r.t. a given linear

program are all vertices of the corresponding polytope, the neighborhood of a vertex

contains all adjacent vertices, and the cost function simply is the cost function of the

linear program applied to the given vertex.

The simplex algorithm essentially is the standard algorithm for solving polyno-

mial local search problems, providing us with the inclusion in PLS. However, as we

will see, there are algorithms that solve linear programs even in (weakly) polynomial

time.

Dual Simplex Algorithm

Next, we describe how a dual simplex algorithm operates by considering bases of

constraints instead. Let (D) be a linear programming problem with n variables and

m constraints.

(D) min cTx s.t. ATx ≥ b

Let H be the set of linear constraints, i.e. |H| = m and FH =
⋂
h∈H{x |

x satisfies h} be the feasible region. Obviously, we have PD = FH . Let vH =

minx∈FH c
Tx, and define vH =∞ if H = ∅ and vH = −∞ if FH does not contain a

minimal x w.r.t. cTx.

We say that a constraint h is violated by H iff vH∪{h} > vH . A subset of

constraints B ⊆ H is an H-basis iff vH = vB and for every B′ (B we have

vB′ < vB.

We then have the following lemma. For details see, e.g., Chvátal [Chv83] and

Schrijver [Sch86].

Lemma 2.15. If vH <∞, then any H-basis B ⊆ H contains exactly n constraints.

Let B be an H-basis and h 6∈ H . Then BASIS(B ∪ {h}) computes a basis of

B ∪ {h}. It is easy to see that this can be done in polynomial time.

2.2. LINEAR PROGRAMMING 33

This gives rise to an algorithm operating on the dual that removes constraints,

recursively computes the optimum, and reinserts constraints that are violated. The

algorithm known as RANDOM-FACET of Kalai [Kal92, Kal97] and of Matoušek

et al. [MSW96] is a randomized implementation of this general approach. For

pseudo-code, see Algorithm 3.

Algorithm 3 The RANDOM-FACET algorithm for linear programming
1: procedure RANDOM-FACET(H ,B)
2: if H = B then
3: return B
4: else
5: Choose h ∈ H \B uniformly at random
6: B′ ← RANDOM-FACET(H \ {h}, B)
7: if h is violated by B′ then
8: B′′ ← BASIS(B′ ∪ {h})
9: return RANDOM-FACET(H,B′′)

10: else
11: return B′
12: end if
13: end if
14: end procedure

Given a set of constraints H and a subset B ⊆ H with |B| = n and vB > −∞,

RANDOM-FACET(H,B) computes a basis for H by recursion. Hence, given the full

set H and an initial B, we have the following theorem:

Theorem 2.16 ([Kal92, Kal97, MSW96]). Let (D) be a feasible and bounded linear

programming problem, H be the set of constraints, B ⊆ H with |B| = n and

vB > −∞. Then RANDOM-FACET(H,B) terminates and returns an H-basis.

LP-type problems

The dual simplex algorithm has been abstracted to a more general setting by Sharir

and Welzl in 1992 [SW92], which is now generally known as LP-type problem. The

abstraction covers linear programming problems (corresponding to the dual simplex

method) as well as finding optimal strategies in infinitary payoff games [Hal07]

(corresponding to some policy iteration methods as we will see). Upper bounds on

34 CHAPTER 2. PRELIMINARIES

the solution of LP-type problems therefore apply to some variants of policy iteration

for concrete infinitary payoff games as well as to the dual simplex algorithms for

concrete linear programs [Gär95].

We follow the notation of Amenta [Ame94] here. An LP-type problem is a

pair (H,ω), where H is the set of constraints and ω : 2H → R ∪ {±∞} is the

objective function, that maps every subset of constraints G ⊆ H to an element

ω(G) ∈ R ∪ {±∞}. We require (H,ω) to satisfy the following two properties for

all F ⊆ G ⊆ H:

• Monotonicity: ω(F) ≤ ω(G).

• Locality: Let h ∈ H and ω(F) = ω(G) 6= −∞. Then ω(F ∪ {h}) > ω(F)

iff ω(G ∪ {h}) > ω(G).

A setG ⊆ H is called infeasible if ω(G) =∞ and feasible otherwise, unbounded

if ω(G) = −∞ and bounded otherwise. A subset of constraints B ⊆ G ⊆ H is

called G-basis iff ω(B) = ω(G) and ω(B′) < ω(B) for every B′ (B. Again, we

say that h ∈ H is violated byB ⊆ H iff ω(B∪{h}) > ω(B). An LP-type algorithm

now computes a basis for a given set of constraintsH . Clearly, the RANDOM-FACET

rule of Algorithm 3 becomes applicable again to compute an H-basis for LP-type

problems.

In the context of linear programming, H is the set of linear constraints and

ω(G) = vG is the cost of the minimal vertex in the feasible region of G ⊆ H .

Polynomial-time Algorithms

Although no polynomial versions of the simplex algorithm are known, linear pro-

grams can be solved in polynomial time using either the ellipsoid algorithm of

Khachiyan [Kha79], or the interior-point algorithm of Karmarkar [Kar84].

The ellipsoid method has been presented by L. Khachiyan [Kha79] in 1979. It is

an iterative algorithm that starts with an ellipsoid enclosing the optimal solution and

then selects new ellipsoids with decreased volume containing the optimal solution

2.2. LINEAR PROGRAMMING 35

in every step. Although the ellipsoid method performs pretty badly in practice

when compared to the simplex algorithm, Khachiyan was able to show as a major

breakthrough result, that the algorithm converges in a polynomial number of steps,

establishing the first polynomial-time algorithm that solves linear programming

problems. For more on the ellipsoid algorithms and its combinatorial consequences,

see Grötschel et al. [GLS88].

The interior-point method (and related barrier methods) was invented by N.

Karmarkar [Kar84] in 1984. It also solves LP problems in polynomial time and

generally has a much better performance in practice when compared to the ellipsoid

method. Again, the algorithm is iterative and starts with an essentially arbitrary

feasible point in the polytope and moves through the interior of the polytope towards

the optimal solution, as opposed to the simplex algorithm that just follows the

boundary of the feasible region. For more on interior-point algorithms, see Nesterov

and Nemirovskii [NN94] and Ye [Ye97].

The ellipsoid and interior-point algorithms are polynomial, but not strongly poly-

nomial, i.e., their running times depend on the numerical values of the coefficients

appearing in the program, even in the unit-cost model in which each arithmetical

operation is assumed to take constant time. Furthermore, the ellipsoid and the

interior-point algorithms have a strong numerical flavor, as opposed to the more

combinatorial flavor of simplex algorithms. It is another major open problem whether

there exists a strongly polynomial-time algorithm for solving linear programs. A

polynomial pivoting rule for the simplex algorithm would also provide a positive

answer to this open problem.

36 CHAPTER 2. PRELIMINARIES

3
Game Theory

We introduce infinitary payoff game theory, which are zero-sum perfect informa-

tion graph games played by one or two players, and sometimes by an additional

randomized player controlled by nature.

We mainly consider parity games in this thesis. They are played on a directed

graph that is partitioned into two node sets associated with two players; the nodes

are labeled with natural numbers, called priorities. A play in a parity game is an

infinite sequence of connected nodes whose winner is determined by the parity of

the highest priority that occurs infinitely often, giving parity games their name.

The reason why parity games seem to be the most appropriate class of games,

when trying to construct lower bound families, is that the effect of each node in a

parity game is immediate: a higher priority dominates all lower priorities (in a play),

no matter how many there are.

We also consider other infinitary payoff games, particularly mean payoff games,

discounted payoff games, turn-based stochastic games and Markov decision pro-

cesses. Markov decision processes provide a mathematical model for sequential

decision making under uncertainty.

It is a major open problem whether any of the mentioned game classes – disre-

garding Markov decision processes – can be solved in polynomial time. Although

Markov decision processes (MDPs) can be solved in polynomial time, we are still

interested in obtaining lower bounds for the policy iteration algorithm for solving

MDPs, as they directly relate to linear programming problems, enabling us to transfer

the lower bounds to the simplex algorithm.

37

38 CHAPTER 3. GAME THEORY

3.1 Infinitary Payoff Games

We introduce infinitary payoff zero-sum perfect information graph games in this

chapter. All these game classes are played on a directed, total graph between one or

two players, and sometimes even a randomization player, by moving a single token

along the edges ad infinitum. We provide the common definitions for all infinitary

payoff game classes here.

Graph Theory

Graph theory is an important field of discrete mathematics and should not be confused

with graphs of functions and the like. It models pairwise relations between objects

of a given universe.

A directed graph is a tuple G = (V,E) where V is an arbitrary set and E ⊆
V × V is an arbitrary binary relation over V . Elements in V are called nodes and

elements in E are called edges. See Figure 3.1 for an example of a directed graph.

Nodes are depicted as circles and edges are drawn as arrows, pointing from one node

to a successor node.

Figure 3.1: A directed graph

For a subset U ⊆ V , we write G|U to denote the graph restricted to U , i.e.

G|U = (U,E ∩ (U × U)). We write G \ U to denote the graph minus U , i.e.

G \ U = G|V \U .

We also use infix notation vEw instead of (v, w) ∈ E and define the set of all

successors of v as vE := {w | vEw}, as well as the set of all predecessors of w

3.1. INFINITARY PAYOFF GAMES 39

as Ew := {v | vEw}. The out-degree resp. in-degree of a node v is the cardinality

of its successor resp. predecessor set. A node v is called source resp. sink iff its

predecessor resp. successor set is empty. A graph is called total iff it has no sinks.

From a complexity theoretic point of view, there are different approaches to

measure the size of a graph. For general graphs, it is reasonable to count all nodes

and edges, i.e. |G| := |V | + |E|, but for total graphs, it suffices to only count

the edges, i.e. |G| := |E|, since by totally, we have that |V | ≤ |E| and hence

|V |+ |E| ∈ O(|E|).

A finite path is a sequence of nodes π = v0, . . . , vk−1 s.t. viEvi+1 for all i < k−1,

and its length is denoted by |π| := k. We often write πi to refer to vi. Similarly, an

infinite path is a sequence π = v0, v1, . . . s.t. viEvi+1 for all i; we denote its length

by |π| :=∞. Particularly, π(|π| − 1) denotes the last node of a finite path π.

We call a (finite or infinite) path π positional iff reoccurring nodes are followed

by the same successors every time, i.e. π(i) = π(j) implies π(i + 1) = π(j + 1)

for every i, j < |π| − 1. A finite path π is called tight iff π is injective, i.e. no

node occurs twice. A cycle is a tight path π s.t. π(|π| − 1)Eπ(0). Note that every

infinite positional path π can be partitioned into a finite tight path τ and a cycle

% s.t. π = τ%ω (where %ω denotes the infinite repetition of %). More concretely, a

positional path can be written as follows:

π = v1 . . . vk(w1 . . . wl)
ω

where vi 6= vj for all i 6= j and wi 6= wj for all i 6= j. See Figure 3.2 for an example

of a positional path.

Note that in general, this decomposition is not unique, since we allow the prefix

part of the positional path to repeat some nodes of the cycle. We call τ the path

component and % the cycle component of any such decomposition.

Let E0 := {(v, v) ∈ V }, E1 := E and Ei+1 := {(v, w) | ∃u ∈ V :

(vEiu and uEw)}. We refer to the reflexive, transitive closure of E by E∗ :=⋃
i≥0E

i, and to the transitive closure of E by E+ :=
⋃
i>0E

i.

The complexity of almost all graph-based algorithms rises with the cyclicity of

graphs. We say that a non-empty subset of nodes C ⊆ V is a strongly connected

40 CHAPTER 3. GAME THEORY

v1 v2 . . . vk w1

w2

. . .

wl

Figure 3.2: A positional path

component (SCC) iff uE∗v for every u, v ∈ C, i.e. if every node in C can reach

every node in C. We say that an SCC C is maximal iff there is no superset D) C

s.t. D is an SCC. An SCC C is called proper iff |C| > 1 or C = {v} for some v ∈ V
with vEv.

Every finite graph G = (V,E) admits a unique partitioning C1, . . . , Cn into

maximal strongly connected components. Tarjan’s algorithm [Tar72], for instance,

computes the decomposition into maximal SCCs in linear time.

Theorem 3.1 ([Tar72]). Every graphG = (V,E) can, in timeO(|E|), be partitioned

into maximal SCCs C1, . . . , Cn with V =
⋃
i≤nCi and Ci ∩ Cj = ∅ for all i 6= j.

Let G = (V,E) be a graph and C1, . . . , Cn be a decomposition into maximal

strongly connected components. There is a topological ordering→ on these SCCs

which is defined as Ci → Cj iff i 6= j and there are u ∈ Ci, v ∈ Cj with uEv. In

other words, Ci → Cj if there is a connecting edge from Ci to Cj between distinct

SCCs Ci and Cj . An SCC C is called final if there is no SCC C ′ s.t. C → C ′. Note

that every finite graph must have at least one final SCC.

Graph Games

We consider zero-sum perfect information graph games in this thesis. All these game

classes are played on a directed, total graph, called the game graph or the arena. A

single pebble is placed on one of the nodes – sometimes a designated starting node –

and moved along an outgoing edge to a successor node. This process continues ad

infinitum, yielding an infinite path π, called play in the context of graph games.

3.1. INFINITARY PAYOFF GAMES 41

The main difference between all game classes that we consider in this thesis

is the number and kinds of players that can participate in moving the pebble in an

instance of a game. We consider one- and two-player game classes, as well as their

probabilistic extensions in which we also have a randomization player, controlled

by nature. We therefore have either one or two “normal” players and sometimes a

probabilistic player. Such games are often referred to as 1-player, 1.5-player, 2-player

and 2.5-player games, where the “.5” refers to the existence of a probabilistic player.

Nevertheless, the number of player entities in a 2.5-player game is three.

Let G = (V,E) be the underlying graph of the game. The set of nodes V ,

depending on the game class, is partitioned into node sets for the respective player

entities. There are several different names for the players, and we fix the following

ones for the rest of the thesis. The first normal player is usually called player 0

or the maximizer, the second normal player is similarly called player 1 or the

minimizer. The player that is controlled by nature is usually called the randomizer,

randomization player, probabilistic player or simply the average player.

More concretely, the set of nodes is partitioned into V0, V1 and VR in a 2.5-player

game, to denote the set of nodes controlled by player 0, player 1 and the randomizer

respectively. Given a node v ∈ V , we say that v is controlled or owned by some

player if it is contained in the respective set. This player is called the controller,

owner or chooser of the node. See Figure 3.3 for a graphical depiction of nodes of

all three player entities: nodes owned by player 0 are drawn as circles, nodes owned

by player 1 are drawn as rectangles, and nodes controlled by the average player are

shown as diamonds. Given a two-player game G, we say that G is a one-play game,

iff there is a player i s.t. for every v ∈ Vi, we have |vE| = 1.

Note that in other contexts, the normal players switch roles, i.e. the first player is

the minimizer while the second player is the maximizer. The first player is sometimes

called player 1 and the second player is then called player 2.

We write Ei = E ∩ (Vi × V) to denote the set of player i controlled edges, and

likewise ER = E ∩ (VR×V) to denote the set of edges controlled by randomization.

In probabilistic games, we have an edge labeling function p : ER → [0, 1]

that assigns to each outgoing edge e of the randomizer a probability p(e) s.t.

42 CHAPTER 3. GAME THEORY

Player 0 Player 1 Randomizer

Figure 3.3: Players in infinitary payoff games

∑
u∈vE p(v, u) = 1 for every v ∈ VR. See Figure 3.4 for a graphical depiction

of the edge labeling of a randomization node.

1
8

1
2 3

8

Figure 3.4: Average node with edge probabilities

We now describe how a game is played between the different players. Starting in

a node v0 ∈ V , they construct a path through the graph as follows. If the construction

so far has yielded a finite sequence v0 . . . vn and vn ∈ Vi (with i ∈ {0, 1}) then

player i selects a w ∈ vnE, and the play continues with the sequence v0 . . . vnw. If

vn ∈ VR, a successor w ∈ vnE is chosen arbitrarily with probability p(vn, w), and

the play continues with v0 . . . vnw as well.

Strategies

A player’s strategy in a game is an exhaustive plan of action for whatever situation

might arise when playing against any opponent. It determines the action the player

will take at any stage of the game, possibly depending on the finite history of play

up to that stage.

3.1. INFINITARY PAYOFF GAMES 43

In the context of Markov decision processes, the common term for a strategy is

policy; we will use both terms synonymously.

Formally, a (general) strategy for player i is a function σ : V ∗Vi → V , s.t. for

all sequences v0 . . . vn with vj+1 ∈ vjE for all j = 0, . . . , n− 1, and all vn ∈ Vi, we

have: σ(v0 . . . vn) ∈ vnE. That is, a strategy for player i assigns to every finite path

through G that ends in Vi a successor of the ending node.

A play v0v1 . . . conforms to a strategy σ for player i if for all j ∈ N we have:

if vj ∈ Vi then vj+1 = σ(v0 . . . vj). Intuitively, conforming to a strategy means to

always make those choices that are prescribed by the strategy.

Given a strategy σ and a partial strategy τ , we write σ[τ] to denote the τ -update

of σ, being defined by σ[τ](v) = τ(v) if v ∈ dom(τ) and σ[τ](v) = σ(v) otherwise.

A strategy σ for player i is called positional, memory-less or history-free if

for all v0 . . . vn ∈ V ∗Vi and all w0 . . . wm ∈ V ∗Vi we have: if vn = wm then

σ(v0 . . . vn) = σ(w0 . . . wm). That is, the value of the strategy on a finite path only

depends on the last node on that path.

Positional strategies are much simpler objects than general strategies, and prefer-

able when solving related decision problems. We will see that all infinitary payoff

games are positionally determined, meaning that we can restrict ourselves to posi-

tional strategies.

We identify positional strategies therefore with functions σ : Vi → V . Similarly,

a play v0v1 . . . conforms to a positional strategy σ for player i if for all j ∈ N we

have: if vj ∈ Vi then vj+1 = σ(vj). We denote the set of positional strategies of

player i by Si(G).

Let σ be a positional strategy for player 0 and let v ∈ V be a node. In the context

of one-player games, there is exactly one positional path that starts in v and conforms

to σ. Formally, we denote the induced play by πσ,v. Similarly, in the context of a

two-player game, let τ additionally be a positional strategy for player 1. Again, there

is exactly one positional path that starts in v and conforms to both σ and τ . It will

also be denoted by πσ,τ,v.

A positional strategy σ for player i induces a strategy subgame G|σ := (V,E|σ)

where E|σ := {(u, v) ∈ E | u ∈ Vi ⇒ σ(u) = v}. A strategy subgame G|σ is

44 CHAPTER 3. GAME THEORY

basically the same game as G with the restriction that whenever σ provides a strategy

decision for a node u ∈ Vi, all transitions from u but σ(u) are no longer accessible.

3.2 Parity Games

Parity games (see e.g. [EJS93]) are infinite-duration perfect information two-player

games played on directed total graphs with natural numbers, called priorities, as-

signed to their vertices. The two players, called player 0 or even, and player 1 or odd,

construct an infinite path in the game graph. Even wins if the largest priority that

appears an infinite number of times on the path is even. Odd wins otherwise.

Parity games are an interesting object of study in computer science, and the

theory of formal languages and automata in particular, for (at least) the following

reasons:

• They are closely related to other games of infinite duration like payoff games

and turn-based stochastic games [Jur98, Pur95, Sti95], see the following sub-

chapters.

• They are at the core of other important problems in computer science, for

instance, solving a parity game, i.e., determining which of the two players

has a winning strategy, is known to be polynomial-time equivalent to model

checking for the modal µ-calculus [EJS93, Sti95].

• They arise in complementation problems for tree automata [GTW02, EJ91]

and in emptiness as well as word problems for various kinds of (alternating)

automata [EJ91].

• Controller synthesis problems can be reduced to satisfiability problems for

branching-time logics [VAW03] which in turn require the solving of parity

games, because of determinizations of Büchi word automata into parity au-

tomata [Pit06, KW08].

• Solving a parity game is one of the rare problems that belong to the complexity

classes PLS [BM08], NP ∩ coNP, and even to UP ∩ coUP [Jur98]. It is a

3.2. PARITY GAMES 45

tantalizing open problem whether parity games can be solved in polynomial

time.

• There are many, structurally different algorithms that solve parity games. This

variety is owed to the theoretical challenge of answering the question whether

parity games can be solved in polynomial time.

Technicalities

Formally, a parity game is a tuple G = (V, V0, V1, E,Ω) where (V,E) forms a

directed, total graph, partitioned into the sets of the two players V0 and V1; Ω : V →
N is the priority function that assigns to each node a natural number, called the

priority of the node. We write |Ω| for the index ind(G) of the parity game, i.e. the

number of different priorities assigned to its nodes. See Figure 3.5 for a graphical

depiction of a parity game: every node is labeled with its priority.

4 0 3

1 2

6 8 5

Figure 3.5: A parity game

We will restrict ourselves to finite parity games. The name parity game is due to

the fact that the winner of a play is determined according to the parities (even or odd)

of the priorities occurring in that play. It has a unique winner given by the parity of

the largest priority that occurs infinitely often. Player 0 wins if this priority is even,

and player 1 wins if it is odd.

46 CHAPTER 3. GAME THEORY

More formally, every infinite play has a unique winner given by the parity of

the greatest priority that occurs infinitely often. The winner of the play v0v1v2 . . . is

player i iff max{p | ∀j ∈ N ∃k ≥ j : Ω(vk) = p} ≡2 i (recall that i ≡2 j holds iff

|i− j| mod 2 = 0). That is, player 0 tries to make an even priority occur infinitely

often without any greater odd priorities occurring infinitely often, player 1 attempts

the converse.

Consider for instance the parity game of Figure 3.5, and assume that both player 0

and player 1 play by positional strategies σ and τ that are described by “select the

successor with the highest priority”. Starting in the node labeled with 4, we end up

in the following positional play.

πσ,τ,4 = 4, 1, 6, (8, 5)ω

Obviously, the largest priority that occurs infinitely often is 8, hence player 0 wins

this play.

Technically, we are considering so-called max-parity games. There is also the

min-parity variant, in which the winner is determined by the parity of the least

priority occurring infinitely often. On finite graphs, these two variants are equivalent

in the sense that a max-parity game G = (V, V0, V1, E,Ω) can be converted into a

min-parity game G′ = (V, V0, V1, E,Ω
′) whilst preserving important notions like

winning regions, strategies, etc.; simply let p be an even upper bound on all the

priorities Ω(v) for every v ∈ V . Then define Ω′(v) := p− Ω(v). This construction

also works the other way round, i.e. in order to transform a min-parity into a max-

parity game.

Now that we know the objective of the two players, we can express the fact that

a player can win every play starting from a certain node by the notion of winning

strategies. A strategy σ for player i is a winning strategy in node v if player i wins

every play that begins in v and conforms to σ. Given a set of nodes U , we say that σ

is a winning strategy on U iff σ is a winning strategy in every node v ∈ U . We say

that player i wins the game G starting in v iff player i has a winning strategy for G

starting in v.

3.2. PARITY GAMES 47

Let U be a set of nodes. If we a have positional winning strategy σv for player i

for every node v ∈ U , then we have one single positional winning strategy for player

i on U .

Lemma 3.2. Let G be a parity game, U ⊆ V and i ∈ {0, 1}. Let σv be a positional

winning strategy for player i starting in v for every v ∈ U . There is a single

positional winning strategy for player i on U .

Proof. A single positional winning strategy σ on U can be constructed as follows.

Let U = {v1, . . . , vn}. Let Ui be the set of nodes v ∈ U s.t. σvi is a positional

winning strategy for player i starting in v. Clearly, vi ∈ Ui.

Let now σ(v) = σvi(v) where i = min{j | v ∈ Uj}. Obviously, σ is a positional

strategy on U . We need to show that σ is a winning strategy for player i.

Let v ∈ U and let π be a play starting in v conforming to σ. Let i1, i2, . . . be the

indices corresponding to the choices of σ. It is easy to see that i1 ≥ i2 ≥ . . ., hence

we end up in a single reoccurring positional winning strategy σvi .

With G we associate two sets W0,W1 ⊆ V , called the winning sets, such that Wi

is the set of all nodes v s.t. player i wins the game G starting in v.

Clearly, we must have W0 ∩W1 = ∅ for otherwise assume that there is a node

v such that both players have winning strategies σ and τ for G starting in v. Then

there is a unique play π that starts in v and conforms to both σ and τ . However by

definition, π is won by both players, and therefore the maximal priority occurring

infinitely often would have to be both even and odd.

On the other hand, it is not obvious that every node should belong to either of

W0 or W1. However, this is indeed the case and known as determinacy: a player has

a winning strategy for a node iff the opponent does not have a winning strategy for

that node. But before we can prove that, we need some additional definitions.

Consider the parity game of Figure 3.5 once again. It is easy to see that W0 =

{4, 1, 6} with positional winning strategy σ(4) = 1 and σ(6) = 1, and that W1 =

{0, 8, 3, 2, 5} with positional winning strategy τ(0) = 3, τ(2) = 0, and τ(8) = 2.

48 CHAPTER 3. GAME THEORY

Attractors and Dominions

A set U ⊆ V is said to be i-closed iff player i can force any play starting in U to stay

within U . This means that player 1−i must not be able to leave U , but player i must

always have the choice to remain inside U :

∀v ∈ U :
(
v ∈ V1−i ⇒ vE ⊆ U

)
and

(
v ∈ Vi ⇒ vE ∩ U 6= ∅

)
Note that W0 is 0-closed and W1 is 1-closed.

A set U ⊆ V is called an i-dominion iff U is i-closed and the induced subgame

is won by player i. In other words, an i-closed set U is an i-dominion iff player i

wins G|U . Particularly, we have that U ⊆ Wi. Clearly, W0 is a 0-dominion and W1

is a 1-dominion. That is, an i-dominion U covers the idea of a region in the game

graph that is won by player i by forcing player 1−i to stay in U .

Let U ⊆ V , i ∈ {0, 1}. The i-attractor of U is the least set W s.t. U ⊆ W and

whenever v ∈ Vi and vE ∩W 6= ∅, or v ∈ V1−i and vE ⊆ W then v ∈ W . Hence,

the i-attractor of U contains all nodes from which player i can move “towards” U and

player 1−i must move “towards” U . Let Attr i(G,U) = W denote the i-attractor of

U .

Attractors will play an important role in the recursive solving procedure by

Zielonka [Zie98] described in Chapter 5.1, because they can efficiently be computed

using breadth-first search on the inverse graph underlying the game. At the same

time, it is possible to construct an attractor strategy which is a positional strategy in

a reachability game. Following this strategy guarantees player i to reach a node in U

eventually, regardless of the opponent’s choices.

Define, for all k ∈ N:

Attr i(G,U)0 := U

Attr i(G,U)k+1 := Attr i(G,U)k ∪ {v ∈ Vi | ∃w ∈ Attr i(G,U)k s.t. vEw}

∪ {v ∈ V1−i | ∀w : vEw ⇒ w ∈ Attr i(G,U)k}

Attr i(G,U) :=
⋃
k∈N

Attr i(G,U)k

3.2. PARITY GAMES 49

Note that any attractor on a finite game is necessarily finite, and the approximation

defined above thus terminates after at most |V | many steps. It is also not difficult to

see that the attractor can be computed in time O(|W ∪
⋃
v∈W Ev|). The correspond-

ing attractor strategy – which is a partial strategy defined on W \ U – is defined as

τAttr(v) = w if there is k > 0 s.t. v ∈ (Vi ∩ Attr i(G,U)k) \ Attr i(G,U)k−1 and

w ∈ Attr i(G,U)k−1 ∩ vE. Note that the choice of w is not unique, but any w with

the prescribed property will suffice. We will write Attr i(G,U) = (W, τ), where τ is

a corresponding attractor strategy, whenever we want to refer to an attractor strategy.

An important property that has been noted before [Zie98, Sti95] is that removing

the i-attractor of any set of nodes from a game will still result in a total game graph.

Lemma 3.3 ([Zie98, Sti95]). Let G = (V, V0, V1, E,Ω) be a parity game and U ⊆
V . Let V ′ := V \Attr i(G,U). ThenG|V ′ is again a parity game (with its underlying

graph being total).

In other words V \Attr i(G,U) is (1−i)-closed; if additionallyU is an i-dominion

then Attr i(G,U) also is an i-dominion. This yields a general procedure for solving

parity games: find a dominion in the game graph that is won by one of the two

players, build its attractor, and investigate the complement subgame.

Lemma 3.4. Let G be a parity game, U be an i-dominion and W = Attr i(G,U).

Then W is an i-dominion as well. If additionally σ as a winning strategy on U , and

τ is an attractor strategy on W , then σ[τ] is a winning strategy on W .

Proof. Let U be an i-dominion and W = Attr i(G,U). It is easy to see that W is

i-closed. We need to show that W ⊆ Wi. Let v ∈ W . If v ∈ U , we are done by

assumption. If v ∈ W \ U , we can force every play starting in v to end up in a node

u ∈ U by following the attractor strategy. Since u is won by player i, so is v.

Positional Determinacy

Parity games enjoy positional determinacy meaning that for every node v in the

game either v ∈ W0 or v ∈ W1 [EJ91]. Additionally, if player i wins v ∈ Wi with a

strategy σv, then there is also a positional winning strategy σ′v for player i; hence,

50 CHAPTER 3. GAME THEORY

we restrict ourselves to positional strategies for the rest of the thesis. By Lemma 3.2,

we have that player i has a single positional winning strategy on Wi.

Parity games lie in the third level of the Borel hierarchy, and are as such de-

termined [Mar75]. However, it can also be shown directly that parity games are

positionally determined by induction using attractors.

Theorem 3.5 ([Mar75, GH82, EJ91]). Let G = (V, V0, V1, E,Ω) be a parity game.

Then W0 ∩W1 = ∅ and W0 ∪W1 = V . Additionally, for v ∈ Wi, player i has a

positional winning strategy starting in v.

Proof. We prove this theorem by induction on |G|. If V = ∅, we are done. Let

V 6= ∅. Let U0 be the set of all nodes v ∈ V s.t. player 0 has a positional winning

strategy starting in v. It is easy to see that Attr i(G,U0) = U0 and U0 ⊆ W0.

If U0 6= ∅, let G′ = G \ U0. By induction hypothesis, we have that W ′
0 ∪W ′

1 =

V \ U0 with positional winning strategies for all nodes in V \ U0. It is easy to see

that W ′
0 = ∅, W0 = U0 and W1 = W ′

1.

If U0 = ∅, we show that W1 = V . Let p be the largest priority occuring in G, and

let P = {v ∈ V | Ω(v) = p}. Let i = p mod 2, A = Attr i(G,P) and G′ = G \A.

By induction hypothesis, we have that W ′
0 ∪W ′

1 = V \ A with positional winning

strategies for all nodes in V \ A. It is easy to see that W ′
0 = ∅ and W ′

1 = V \ A.

If i = 1, is is not hard to see that player 1 wins on W ′
1∪A by using the positional

winning strategy of the induction hypothesis on W ′
1, an arbitrary positional strategy

on P and an attractor strategy on A. Then we have that every play that visits

P infinitely often is won by player 1, because the greatest occurring priority is

p. Otherwise, the play eventually stays in W ′
1, and is therefore won by induction

hypothesis.

If i = 0, we need to show that player 1 wins on W ′
1 ∪ A. It is not hard to see

that player 1 wins on W ′
1 by using the positional winning strategy of the induction

hypothesis on W ′
1. Let A′ = Attr 1(G,W ′

1). It is easy to see that player 1 wins on

A′ using an attractor strategy. Note that A′ 6= ∅, since otherwise player 0 would

have a positional winning strategy on A, being impossible since U0 = ∅. Let now

G′′ = V \ A′. By induction hypothesis, we have that W ′′
0 ∪W ′′

1 = V \ A′ with

3.2. PARITY GAMES 51

positional winning strategies for all nodes in V \ A′. It is easy to see that W ′′
0 = ∅

and W ′′
1 = V \ A′. Note that player 1 wins in G on W ′′

1 by using the induction

hypothesis strategy.

Decision Problems

The problem of solving a parity game is to compute W0 and W1, as well as corre-

sponding winning strategies σ0 and σ1 for the players on their respective winning

regions. This is generally known as solving a parity game globally.

The problem of solving a parity game locally is to decide, for a given node v,

whether or not v belongs to W0. Note that it may not be necessary to visit all nodes

of a game in order to answer this question. Consider the following trivial example.

The node under consideration belongs to player 0, has even priority and an edge to

itself. Hence, this edge represents a winning strategy for player 0 in this node. A

depth-first search can find this loop whilst leaving the rest of the game unexplored.

Clearly, the local and global problem are interreducible, the global one solves

the local one for free, and the global one is solved by calling the local one |V | many

times. But neither of these indirect methods is particularly clever. Thus, there are

algorithms for the global, and other algorithms for the local problem (see below).

Note that if we only have one player in the game, it is not too hard to solve parity

games in polynomial time. See Algorithm 4 for a pseudo-code specification.

Lemma 3.6. Let G be a one-player parity game. W0 and W1 can be computed in

polynomial time.

Proof. It is easy to see that Algorithm 4 terminates after polynomial time. Let i∗ be

the player with real choices. We show the correctness by induction on |G|. The basis

is trivial.

Let therefore p, i, U , A, W ′
0 and W ′

1 as specified in the algorithm. If i = i∗, it

follows that A = V , and player i∗ can win the whole game by using an attractor

strategy and an arbitrary strategy on U . Hence, we have W ′
1−i = ∅ and return

Wi = V .

52 CHAPTER 3. GAME THEORY

Algorithm 4 Algorithm for solving single player games
1: procedure SOLVE(G)
2: if VG = ∅ then
3: (W0,W1)← (∅, ∅)
4: return (W0,W1)
5: else
6: p← max{ΩG(v) | v ∈ VG}
7: i← p mod 2
8: U ← {v ∈ VG | ΩG(v) = p}
9: A← Attr i(G,U)

10: (W ′
0,W

′
1)← SOLVE(G \ A)

11: if W ′
1−i = ∅ then

12: (Wi,W1−i)← (Vi, ∅)
13: return (W0,W1)
14: else
15: B ← Attr 1−i(G,W

′
1−i)

16: (Wi,W1−i) = (VG \B,B)
17: return (W0,W1)
18: end if
19: end if
20: end procedure

If i 6= i∗, let B ← Attr 1−i(G,W
′
1−i). It is easy to see that W ′

1−i is won by player

i∗, and hence so is B. It remains to show that Wi ⊇ V \B. By contradiction assume

that there is a node v ∈ V \ B s.t. v ∈ Wi∗ . Let σ be a corresponding positional

winning strategy.

First observe that any play starting in v conforming to σ cannot reach B since B

is an i∗-attractor. If this play visits A infinitely often, it must visit U infinitely often

as well and hence is won by player i. If it visits A only finitely often, we have that

the play eventually stays in W ′
i . But we know by induction hypothesis, that such a

play must be won by i.

It is a major open problem whether full two-player parity games can be solved in

polynomial time.

Theorem 3.7 ([EJS93]). Solving parity games is in NP ∩ coNP.

Proof. It suffices to show that solving parity games locally is in NP ∩ coNP. Let

therefore v ∈ V . We need to decide whether v ∈ W0. First, we show the inclusion

3.2. PARITY GAMES 53

in NP by a guess-and-check argument. Guess a positional strategy σ for player 0.

Check that σ is a winning strategy for player 0 starting in v. By Lemma 3.6, we

know that this can be done in polynomial time.

For the inclusion in coNP, we check for player 1 that every positional strategy is

not a winning strategy. By Theorem 3.5, we know that this implies v ∈ W0.

It has also been shown that solving parity games belongs to UP ∩ coUP [Jur98].

This is not as surprising as it looks. We will see in Chapter 4 that policy iteration

enables us to equip strategies with a linear ordering that allows us to check in

polynomial time whether a given strategy is optimal; additionally, we have that

optimal strategies coincide with a winning strategy, if one exists. Therefore, the

inclusion in UP ∩ coUP is easy to see.

Theorem 3.8 ([Jur98]). Solving parity games is in UP ∩ coUP.

Furthermore it has been shown that solving parity games belongs to PLS. Again,

we will see in Chapter 4 that policy iteration can be modeled as a PLS algorithm.

Theorem 3.9 ([BM08]). Solving parity games is in PLS.

Algorithms

There are many algorithms that solve parity games. This variety is owed to the

theoretical challenge of answering the question whether parity games can be solved

in polynomial time. There are four structurally different classes of solving algorithms.

Let n denote the number of nodes, e the number of edges and p the number of

different priorities in a game.

1. First, there is the recursive algorithm due to Zielonka [Zie98], that is based

on a decomposition into subgames with recursion on the number of nodes

and priorities. It admits an almost trivial upper bound O(np). We show an

explicit exponential lower bound given by the Fibonacci series in Chapter 5.1.

It should be noted, however, that the recursive algorithm is one of the best

performing methods in practice [FL09].

54 CHAPTER 3. GAME THEORY

There is a variation on the recursive algorithm given by Jurdziński, Paterson

and Zwick [JPZ06] that improves the trivial upper bound to n
√
n, which is

based on an exhaustive search for small dominions, interrelated with the

original algorithm.

2. Second, there is the small progress measures algorithm due to Jurdziński

[Jur00], which is based on an iterative increase of lexicographically ordered

tuples of priority occurrences until a fixpoint is reached. Jurdziński already

proves an exponential upper bound of O(p · e ·
(
n
p

)b0.5·pc
) and an exponential

lower bound of Ω(
⌈
n
p

⌉d0.5·pe
) in his paper.

There is a variation by Schewe [Sch07], his so-called big-step algorithm. Like

the variation by Jurdziński, Paterson and Zwick [JPZ06], it searches for small

dominions with subsequent decomposition via the original recursive algorithm.

However, the search for small dominions is performed by small progress

measures iteration here. It admits the currently best known upper bound on

the deterministic solution of parity games, namely O(e · n 1
3
p).

We only mention the small progress measures algorithm for completeness here,

since lower and upper bounds are already known quite precisely.

3. Third, there is an algorithm for solving parity games locally by Stevens and

Stirling [SS98], to which we will refer to as the model checking algorithm.

In fact, it is directly defined as a model checking problem in [SS98]; since µ-

calculus model-checking and solving parity games are interreducible problems,

we will study the model checking algorithm directly as a local parity game

solving algorithm here.

It is based on exploring the given game depth-first, detecting cycles and

backtracking subsequently. It has a trivial upper bound of O(nn). We show an

explicit exponential lower bound of Ω(1.5n) in Chapter 5.2 for this algorithm.

4. The strategy improvement, strategy iteration or policy iteration technique is

the most general approach that can be applied as a solving procedure for parity

games and related game classes. It was introduced by Howard [How60] for

solving problems on Markov decision processes and has been adapted by

3.2. PARITY GAMES 55

several other authors for solving nonterminating stochastic games [HK66],

turn-based stochastic games [Con92], discounted and mean payoff games

[Pur95, ZP96], as well as parity games [VJ00, Sch08].

Strategy iteration is an algorithmic scheme that is parameterized by an im-

provement rule which defines how to select a successor strategy in the iteration

process. The exact runtime complexity highly depends on the applied im-

provement rule. The main focus of this thesis is to show exponential and

subexponential lower bounds for all major improvement rules. See Chapter 4

for a rigorous treatment of the rules and the corresponding lower bounds.

Remarks

We end this chapter with some remarks on seemingly simpler computational prob-

lems than computing the winning sets along with positional winning strategies. The

motivation for all this is to allow solving algorithms to restrict the class of considered

parity games without compromising the generality.

First, an algorithm can make some of the following assumptions whenever it is

convenient:

1. We can assume that the given parity game is a single strongly connected

component. It is easy to see that a general parity game can be solved in a

bottom-up fashion, starting with the terminal strongly connected components,

then computing the attractors of the winning sets of the solved terminal SCCs,

and finally removing the attractors from the game. Then, continue with the

rest. See [FL09] for a detailed treatment.

2. We can assume that every priority in a parity game occurs only once, or we can

assume that between two different even (resp. odd) priorities, there must be an

occurrence of an odd (resp. even) priority. Again, see [FL09] for a detailed

treatment.

3. We can assume that a parity game is alternating, meaning that every player

i node is only connected to nodes of player 1−i. Every parity game can be

56 CHAPTER 3. GAME THEORY

transformed into an alternating parity game by adding additional nodes that

have only one outgoing edge and negligible priorities. Winning strategies and

winning sets essentially coincide.

4. We can assume that the out-degree of all nodes is bounded by two. Again,

this can be achieved by replacing two out-going edges of a player i controlled

node, that has more than two edges, by one edge going to an additional node

with negligible priority, that has the two original out-going edges.

Second, it suffices to compute the winning sets, without giving positional winning

strategies. Assume that we have an algorithm PARTITION that partitions a given

parity game into the winning sets for both players. We can then show the following:

Theorem 3.10. If PARTITION runs in polynomial time, then there is an algorithm

that computes positional winning strategies in polynomial time.

Proof. Given a parity game G = (V, V0, V1, E,Ω) and the winning sets W0 and W1,

define the set of ambiguous choices as follows.

F (G) = {(v, w) ∈ E | |vE| > 1 and (v ∈ V0 ∩W0 or v ∈ V1 ∩W1)}

The algorithm that computes the positional winning strategies can be described as

follows.

If F (G) = ∅, it follows that there is exactly one positional strategy for player 0

and one positional strategy for player 1 on the respective winning sets. Obviously,

these must be winning strategies as well.

If F (G) 6= ∅, let W0 and W1 be the winning sets for G. Let e ∈ F (G) be an

arbitrary edge; consider G′ = G \ {e} and compute the winning sets W ′
0 and W ′

1 for

G′. If W0 = W ′
0 (and W1 = W ′

1), it must be the case that there are winning strategies

contained in G that do not use e. We continue with G′.

If otherwise W0 6= W ′
0 (and W1 6= W ′

1), it follows that e belongs to a winning

strategy. Let e = (v, w) and consider G′′ = G \ (vE \ {e}). Obviously, the winning

sets of G′′ and G coincide. Continue with G′′.

3.2. PARITY GAMES 57

The converse holds, in some sense, as well. Given an arbitrary positional strategy

σ for player i, we can easily determine the largest dominion in a game on which σ is

a winning strategy by applying Lemma 3.6.

Third, we show that winning sets as such do not give a lot of insight into what

happens in a game. More formally, we show that, given an arbitrary game G, we

can transform it into a game G′ s.t. either W ′
0 = VG′ or W ′

1 = VG′ . Given a winning

strategy for G′, we can easily find a dominion in G.

Theorem 3.11. Let STRATEGY be a polynomial-time algorithm for computing win-

ning strategies on parity games that are won completely by one of the two players.

Then, there is a polynomial-time algorithm for solving general parity games.

Proof. Let G = (V, V0, V1, E,Ω) be a parity game. W.l.o.g. assume that G is

alternating. Let p be the largest priority occurring in G. Let v∗ be an unused

node name, i.e. v∗ 6∈ V . Let i = p mod 2. Consider the following game G′ =

(V ′, V ′0 , V
′

1 , E
′,Ω′) where

• V ′ = V ∪ {v∗},

• V ′i = Vi ∪ {v∗},

• V ′1−i = V1−i,

• E ′ = E ∪ (Vi × {v∗}) ∪ ({v∗} × V), and

• Ω′ = Ω[v∗ 7→ p+ 1].

First, we show that G′ is completely won by one of the two players. Let W0 and

W1 be the winning sets of G.

If Wi 6= ∅, let σ be a positional winning strategy on Wi. We now define a

positional winning strategy σ′ on V ′i . Let w ∈ Wi be arbitrary. Then σ′ = σ[v∗ 7→
w][Vi \Wi 7→ v∗]. In other words, every node outside of Wi controlled by player i

moves to v∗, and v∗ moves into the Wi. Hence, G′ is completely won by player i.

If Wi = ∅, we know that G is completely won by player 1−i. Assume that G′ is

not completely won by player 1−i, i.e. there is an i-dominion D. It must be the case

58 CHAPTER 3. GAME THEORY

that v∗ ∈ D, and every i-winning strategy has to go through v∗ infinitely often. But

then the largest priority is p+ 1 which is won by player 1−i. Contradiction.

Second, we show that there is a polynomial-time algorithm for solving general

parity games. By Lemma 3.6, it suffices to show that we can find a dominion in G.

We apply STRATEGY on G′ and get a positional winning strategy for one of the

two players.

If we get a winning strategy for player i, it is easy to see that the winning set

W ′
i contains an i-dominion D that is an i-dominion on G as well. We can find

the dominion be the following algorithm. Fix the i-winning strategy σ on G′, i.e.

consider G′′ = G′|σ. Now decompose G′′ into strongly connected components (see

Theorem 3.1). Take a terminal SCC D. It is easy to see that v∗ 6∈ D, since otherwise

player 1−i could win a play in D. Hence, D is an i-dominion even in G.

If we get a winning strategy for player 1−i, it must be the case that this is also a

winning strategy on G.

We can even be more restrictive and assume that we already know which player

wins the whole game.

Corollary 3.12. Let EVENSTRATEGY be a polynomial-time algorithm for comput-

ing winning strategies for player 0 on parity games that are won completely by

player 0. Then, there is a polynomial-time algorithm for solving general parity

games.

Proof. Let EVENSTRATEGY be a polynomial-time algorithm for computing winning

strategies for player 0 on parity games that are won completely by player 0.

First, it is easy to see that we can transform EVENSTRATEGY to a polynomial-

time algorithm ODDSTRATEGY that assumes the given parity game to be completely

won by player 1.

Let now DECIDEEVEN resp. DECIDEODD be the algorithm of Theorem 3.11

parameterized with EVENSTRATEGY resp. ODDSTRATEGY.

Let p be a polynomial upper bound on EVENSTRATEGY and ODDSTRATEGY,

hence there is a polynomial upper bound q on DECIDEEVEN and DECIDEODD by

Theorem 3.11.

3.3. RELATED GAMES 59

We now execute both DECIDEEVEN and DECIDEODD for at most time q. Since

the given parity game must be won by one of the two players, one of the two routines

has to terminate in time and to return the correct answer. We can easily check which

answer is correct, if we get two, by Lemma 3.6.

3.3 Related Games

We describe payoff games [EM79, GKK88, ZP96] with different kinds of outcome

criteria here, particularly the limiting average and the discounted reward criterion.

Then, we define Markov decision processes [Bel57] and present turn-based stochastic

games [Sha53].

Payoff Games

Formally, a payoff game [EM79, GKK88, ZP96] is a tuple G = (V, V0, V1, E, r)

where (V,E) forms a directed, total graph, partitioned into the sets of the two players

V0 and V1; r : E → R is the reward function that assigns to each edge an immediate

reward. See Figure 3.6 for a graphical depiction of a payoff game: every edge is

labeled with its immediate reward.

5 3 24

2

-1

7

-4

-2

3

6

8

Figure 3.6: A payoff game

The two players in a payoff game have opposing roles again, but this time, they

try to maximize (player 0) resp. minimize (player 1) the outcome of a play. The

60 CHAPTER 3. GAME THEORY

outcome of a play is, essentially, a function R that maps a play π to some value in R;

there are different reasonable ways to define the outcome of a given play π.

Consider, for instance, the payoff game of Figure 3.6, and assume that both

player 0 and player 1 play by positional strategies that yield the following immediate

rewards:

π = 6, 5, (2,−1)ω

First, there is the limiting average criterion that sums up all immediate rewards

and builds the average. Formally, let π be a play. The limiting average of π, R̃(π), is

defined as follows:

R̃(π) = lim inf
n→∞

1

n

n−1∑
i=0

r(π(i), π(i+ 1))

In our example, the limiting average would be 0.5. A payoff game with the limiting

average criterion is often called (deterministic) mean payoff game (MPG).

Second, there is the discounted reward criterion that is based on a discount factor

0 < λ < 1. Formally, let π be a play. The discounted reward of π (w.r.t. λ), Rλ(π),

is defined as follows:

Rλ(π) = (1− λ)
∞∑
i=0

λi · r(π(i), π(i+ 1))

In our example, the discounted reward would be, depending on λ, as follows:

(1− λ)(6 + 5λ) +
2λ2 − λ3

1 + λ

A payoff game with discounted reward criterion is often called discounted payoff

game (DPG). We sometimes write Gλ for a payoff game G, to denote that we apply

the discounted reward criterion to G with discount factor λ.

Discount factors have interesting economical interpretations. When λ→ 1, the

value of the discounted game tends to the value of the mean payoff game.

Depending on the definition of the outcome R, we define the value of a game,

as a function V that maps every state of the game to some value in R. Let σ be a

3.3. RELATED GAMES 61

player 0 strategy and τ be a player 1 strategy. First, we define the value associated

with the pair of strategies.

V [R]τσ(v) = R(πσ,τ,v)

In other words, the reward of a pair of strategies maps every node to the outcome of

the unique play associated with v, σ and τ .

Second, we define the maximizer value resp. minimizer value of a node v as the

largest resp. smallest outcome that maximizer resp. minimizer can secure using a

certain strategy, no matter what the other player is doing.

V [R]σ(v) = inf
τ
V [R]τσ(v)

V [R]τ (v) = sup
σ
V [R]τσ(v)

Third, we define the value of the game V [R] by the following equation whenever

it exists.

V [R](v) = sup
σ
V [R]σ(v) = inf

τ
V [R]τ (v)

Additionally we say that the value of the game can be secured by optimal positional

strategies iff there is a positional strategy σ∗ ∈ S0(G) and a positional strategy

τ ∗ ∈ S1(G) s.t. we have

V [R](v) = V [R]σ∗(v) = V [R]τ
∗
(v)

Such strategies are said to be optimal strategies.

The following very important theorem for payoff games tells us that the value

always exists and that it can always be secured by optimal positional strategies.

Theorem 3.13 ([EM79]). Let G be a payoff game. The following holds:

1. V [R̃] exists and can be secured by optimal positional strategies.

2. Let 0<λ<1. V [Rλ] exists and can be secured by optimal positional strategies.

62 CHAPTER 3. GAME THEORY

The decision problem here is, given some vector x ∈ Rn, to decide whether

the value of the game is greater (resp. less) or equal to x. The problem of solving

a payoff game is to compute the values of the game along with optimal positional

strategies. Note that, given the values of the game, one can induce corresponding

optimal positional strategies by choosing locally consistent edges.

Given a one-player payoff game G, we can again solve the game in polynomial

time via solving a related linear program.

Theorem 3.14 ([KL93, Kar78]). Let G be a one-player payoff game. The values

can be computed in polynomial time.

Like for parity games, it is a tantalizing open problem whether payoff games can

be solved in polynomial time.

Theorem 3.15 ([ZP96, Pur95]). Solving payoff games is in NP ∩ coNP.

Again, we can also show that solving payoff games belongs to UP ∩ coUP. We

will see in Chapter 4 that policy iteration enables us to equip strategies with a linear

ordering that allows us to check in polynomial time whether a given strategy is

optimal. Therefore, the inclusion in UP ∩ coUP is easy to see.

Theorem 3.16 ([Jur98, ZP96]). Solving payoff games is in UP ∩ coUP.

As for parity games, we will see in Chapter 4 that policy iteration for payoff

games can be modeled as a PLS algorithm.

Theorem 3.17. Solving payoff games is in PLS.

One-player payoff games can be solved, as we will see, by linear programming,

i.e. particularly in polynomial time. General payoff games are usually solved by

policy iteration (see Chapter 4). Another algorithm for solving general payoff games

is the so-called value iteration, see for instance [CH08].

3.3. RELATED GAMES 63

Markov Decision Processes

Markov decision processes (MDP) provide a mathematical model for sequential

decision making under uncertainty. They are widely used to model stochastic

optimization problems in various areas, ranging from operations research, to machine

learning, artificial intelligence, economics and game theory. The study of MDPs

started with the seminal work of Bellman [Bel57]. More general stochastic games

were previously considered by Shapley [Sha53]. For a thorough treatment of MDPs,

see the books of Howard [How60], Derman [Der70], Puterman [Put94] and Bertsekas

[Ber01].

An MDP is composed of a finite set of states. Each state has a set of actions

associated with it. Each action has an immediate reward and a probability distribution

according to which the next state of the process is determined if this action is taken.

In each time unit, the controller of the MDP has to choose an action associated

with the current state of the process. The goal of the controller is to maximize the

long-term outcome again.

We consider Markov decision processes as 1.5-player games in our framework of

infinitary payoff games. Hence, states are nodes owned by player 0, actions are edges

controlled by player 0, leading to nodes of the average player, having a probability

distribution on the edges.

Formally, a Markov decision process is a tuple G = (V, V0, VR, E, r, p) where

(V,E) forms a directed, total graph, partitioned into the sets of the 0-player V0 and

the average player VR; r : E → R is the reward function that assigns to each edge

an immediate reward, and p : ER → [0, 1] is a probability distribution that assigns

to each outgoing edge e of the randomizer a probability p(e) s.t.
∑

u∈vE p(v, u) = 1

for every v ∈ VR. See Figure 3.7 for a graphical depiction of a Markov decision

process. Note that in this figure, edges of the randomized player have no cost at all.

The different criteria that work for payoff games can be applied here as well.

However, we have to deal with the probabilistic player now. Given a node v and

a strategy σ for player 0, let Ωv,σ denote the set of plays π that start in v and are

consistent with σ. A probability space and a probability measure over these plays can

be induced by using cylinder sets of finite paths. Given a finite path π, the associated

64 CHAPTER 3. GAME THEORY

1
2

1
2 1 1

1
1
2

1
4 1

4
1
3

2
3

7

3

−4

2

5

−10

Figure 3.7: A Markov Decision process

cylinder set C(π) contains all infinite completions of π. We define the probability of

a cylinder set C(π) by the probability of choosing the common finite prefix:

P(C(π)) =
∏

0<i<|π|,π(i−1)∈VR

p(π(i− 1), π(i))

The induced σ-algebra on the class of cylinder sets C(π) s.t. π(0) = v and

π conforms to σ, yields that there is a unique extension to a probability measure

Pv,σ on the σ-algebra [ADD00]. Given an (measurable) outcome function R that

assigns a number in R to a play π, we can define the expected outcome Ev,σ[R] as

the expectation of R on the σ-algebra in the Ωv,σ universe.

We can define the value of a game again, this time using the expected outcome

instead. Let σ be a player 0 strategy. We define the maximizer value of a node v as

the expected outcome conforming to the strategy.

V [R]σ(v) = Ev,σ[R]

Then, we define the value of the game V [R] again by the following equation,

whenever it exists:

V [R](v) = sup
σ
V [R]σ(v)

3.3. RELATED GAMES 65

Additionally, we say that the value of the game can be secured by an optimal

positional strategy iff there is a positional strategy σ∗ ∈ S0(G) s.t.

V [R](v) = V [R]σ∗(v)

Again, we have the important theorem that tells us that the value always exists

and that it can always be secured by an optimal positional strategy.

Theorem 3.18 ([Put94]). Let G be a Markov decision process. The following holds:

1. V [R̃] exists and can be secured by an optimal positional strategy.

2. Let 0<λ<1. V [Rλ] exists and can be secured by an optimal positional strategy.

The decision problem and the notion of solving are exactly defined as before.

It is well-known that Markov decision processes can be solved in polynomial time

via general linear programs. Ye [Ye05] has even presented a strongly polynomial

time algorithm for solving discounted MDPs using interior point methods when the

discount factor is fixed.

Theorem 3.19 ([Put94, Ye05]). Solving Markov decision processes is in P.

Markov decision processes are usually solved by policy iteration (see Chapter 4)

and value iteration, see for instance [Put94]. Again, we will see in Chapter 4 that

policy iteration for MDPs can be modeled as a PLS algorithm.

Theorem 3.20. Solving Markov decision processes is in PLS.

Turn-based Stochastic Games

Turn-based stochastic payoff games form an even more general family of games that

can be seen as a combination of Markov decision processes and payoff games. A turn-

based stochastic payoff game [Sha53, AM09] is a tuple G = (V, V0, V1, VR, E, r, p),

where V0 and V1 are the sets of vertices controlled by players 0 and 1, VR is the set of

randomization vertices, controlled by nature, p is a function that assigns a probability

66 CHAPTER 3. GAME THEORY

to each out-going edge of the randomizer, and r : E → R is a function that assigns

an immediate reward to each edge of the graph.

The two players again construct an infinite path in the game graph. When the

last vertex reached is in Vi, where i ∈ {0, 1}, player i chooses the next edge. When

the last vertex reached is in VR, the next edge is chosen according to the probabilities

specified by p. The two players try to maximize, respectively minimize, the long

term expected outcome average reward per turn.

As with Markov decision processes, we define the expected outcome Ev,σ,τ [R],

here with respect to a pair of strategies σ and τ :

V [R]τσ(v) = Ev,σ,τ [R] V [R]σ(v) = inf
τ
V [R]τσ(v) V [R]τ (v) = sup

σ
V [R]τσ(v)

V [R](v) = sup
σ
V [R]σ(v) = inf

τ
V [R]τ (v)

Again we say that the value of the game can be secured by optimal positional

strategies iff there is a positional strategy σ∗ ∈ S0(G) and a positional strategy

τ ∗ ∈ S1(G) s.t. we have

V [R](v) = V [R]σ∗(v) = V [R]τ
∗
(v)

Theorem 3.21 ([Sha53]). Let G be a turn-based stochastic payoff game. The follow-

ing holds:

1. V [R̃] exists and can be secured by optimal positional strategies.

2. Let 0<λ<1. V [Rλ] exists and can be secured by optimal positional strategies.

As with payoff games, we have that solving turn-based stochastic payoff games

in polynomial time is still an open problem.

Theorem 3.22 ([Con92]). Solving payoff games is in NP ∩ coNP and in UP ∩ coUP.

Turn-based stochastic payoff games are usually solved by policy iteration, see

Chapter 4. Moreover, policy iteration shows that solving turn-based stochastic payoff

games can be modeled as a PLS algorithm.

3.4. RELATIONS AND REDUCTIONS 67

Theorem 3.23. Solving turn-based stochastic payoff games is in PLS.

We note there are also so-called simple stochastic games (see e.g. [ZP96, Con92]),

another class of 2.5-player games. It deviates from the class of our infinitary payoff

games in having no cost associated with the edges and two sink nodes 0 and 1. The

objective of the maximizer is to reach the 1-sink, while the objective of the minimizer

is to reach the 0-sink. We assume simple stochastic games to be halting, i.e. starting

in a node v and playing according to any pair of strategies almost surely ends in one

of the two sinks. The value of a node here is the probability of reaching the 1-sink

when player 0 and player 1 play optimal. Again, the values of a game exist and there

are optimal positional strategies [Con92]. We note without going into details that

there is a direct correspondence between simple stochastic games and turn-based

stochastic games that can be used to transfer our lower bounds to simple stochastic

games [ZP96, Con92] as well.

3.4 Relations and Reductions

We describe here how the different infinitary payoff game classes are related by

giving well-known, explicit procedures on how to reduce a game of one class into

a corresponding game of another class, if possible. By reduce, we mean that the

translation can be performed by a deterministic polynomial-time algorithm, and that

the solution to the translated game can be back-transformed to a solution of the

original game (again in deterministic polynomial time). Particularly, we consider the

following reductions:

1. Parity games can be reduced to mean payoff games [Pur95],

2. Mean payoff games can be reduced to discounted payoff games [ZP96],

3. Every payoff game can be reduced to turn-based stochastic games (trivially),

4. Markov decision processes can be reduced to turn-based stochastic games

(trivially),

68 CHAPTER 3. GAME THEORY

5. Deterministic MDPs can be reduced to mean payoff games (trivially),

6. Markov decision processes can be reduced to linear programming problems;

we will consider this correspondence in detail in Chapter 4.5, and

7. all infinitary payoff games can be cast as an LP-type problem; we will see this

in Chapter 4.1.

See Figure 3.8 for a summary of the most important relations. It is easy to see

that having two players in a game raises the difficulty in obtaining polynomial-time

decision procedures quite a lot.

From Parity Games to Mean Payoff Games

Parity games can be easily reduced to mean payoff games, following the construction

of Puri [Pur95]. Let G = (V, V0, V1, E,Ω) be a parity game. The induced mean

payoff game H = (V, V0, V1, E, r) operates on the same graph and induces the

reward function r as follows:

r : (v, w) 7→ (−|V |)Ω(v)

The essential idea is that even priorities are mapped to exponentially large positive

numbers while odd priorities are mapped to exponentially large negative numbers.

By this, one can ensure that the occurrence of an edge associated with a certain

priority has essentially the same effect on the play as the original priority.

Player 0 has a winning strategy from vertex v in G if and only if player 0 has a

strategy that guarantees a positive outcome starting from v in G′. The correctness

of the reduction follows from the fact that a cycle in the game graph has a positive

mean value if and only if the largest priority on one of its vertices is even.

Theorem 3.24 ([Pur95]). Let G be a parity game, H be the induced mean payoff

game, and let σ and τ be optimal positional strategies in H . The following holds:

1. W0 = {v ∈ V | V [R̃](v) ≥ 0},

3.4. RELATIONS AND REDUCTIONS 69

2. W1 = {v ∈ V | V [R̃](v) < 0},

3. σ is a winning strategy for player 0 on W0 in G, and

4. τ is a winning strategy for player 1 on W1 in G.

Parity games thus form a very well-behaved subfamily of mean payoff games.

From Mean Payoff Games to Discounted Payoff Games

Mean payoff games can be reduced to discounted payoff games by specifying a

discount factor that is sufficiently close to 1. Given a mean payoff game G =

(V, V0, V1, E, r), we say that a discount factor λ is large enough iff

λ ≥ 1− 1

4 · |V |3 ·max{|r(v)| | v ∈ V }

Let v be a node in a mean payoff game G and let λ be large enough. Zwick

and Paterson [ZP96] show that the value V [R̃](v) can be essentially bounded by

V [Rλ](v), i.e. more precisely:

|V [Rλ](v)− V [R̃](v)| ≤ 1− λ
2|V |2(1− λ)

It follows that V [R̃](v) can be obtained from V [Rλ](v) by rounding to the nearest

rational with a denominator less than |V |.

Theorem 3.25 ([ZP96]). Let G be a mean payoff game, let λ be a large enough

discount factor and let σ and τ be optimal positional strategies w.r.t. V [Rλ]. Then σ

and τ are also optimal positional strategies w.r.t. V [R̃].

70 CHAPTER 3. GAME THEORY

T
u

rn
-b

as
ed

S
to

ch
as

ti
c

G
am

es
(T

S
G

)

2
1 2

p
la

ye
rs

D
is

co
u

n
te

d
P

ay
off

G
am

es
(D

P
G

)

2
p

la
y
er

s

M
ea

n
P

ay
off

G
am

es
(M

P
G

)

2
p

la
y
er

s

P
ar

it
y

G
am

es
(P

G
)

2
p

la
y
er

s

D
et

er
m

in
is

ti
c

M
ar

k
ov

D
ec

is
io

n
P

ro
ce

ss
es

(D
M

D
P

)

1
p

la
ye

r

M
ar

ko
v

D
ec

is
io

n
P

ro
ce

ss
es

(M
D
P

)

1
1 2

p
la

ye
rs

L
in

ea
r

P
ro

g
ra

m
m

in
g

(L
P

)

L
P

-t
y
p

e
p

ro
b

le
m

s
(L

P
ty

p
e
)

∈
N
P
∩
co
N
P

∈
P

Figure 3.8: Reductions and Complexity

3.4. RELATIONS AND REDUCTIONS 71

72 CHAPTER 3. GAME THEORY

4
Lower Bounds for Strategy Iteration

The strategy improvement, strategy iteration or policy iteration technique is the

most general approach that can be applied as a solving procedure for infinitary

payoff games and related problems, such as interval inequality systems [GS07],

static analysis [CGG+05] and many others. It was introduced by Howard [How60]

for solving problems on Markov decision processes and has been adapted by several

other authors for solving nonterminating stochastic games [HK66], simple stochastic

games [Con92], discounted and mean payoff games [Pur95, ZP96] as well as parity

games [VJ00].

Strategy iteration is an algorithmic scheme that is parameterized by an improve-

ment rule, which defines how to select a successor strategy in the iteration process.

The runtime of strategy iteration is known to depend crucially on the applied im-

provement rule. An example has been known for some time for which a sufficiently

poor choice of a single-switch rule causes an exponential number of iterations of the

strategy improvement algorithm [BV07]. It is a major open problem, whether there

is a polynomial-time computable improvement rule, that results in a polynomial

number of iterations in the worst case.

However, our contribution to this field is to show that all major improvement

rules of the literature have instances on which they require subexponential or expo-

nential time. Particularly, we show that SWITCH-ALL (which appears all over the

literature), SWITCH-BEST [Sch08], RANDOM-FACET [Kal92, Kal97, MSW96],

RANDOM-EDGE (which appears all over the literature), SWITCH-HALF [MS99],

and LEAST-ENTERED [Zad80] require subexponential or exponential time on parity

games and on all other classes of infinitary payoff games (whenever the respective

rule is applicable).

73

74 CHAPTER 4. LOWER BOUNDS FOR STRATEGY ITERATION

Some of the mentioned rules can be cast as pivoting rules for the simplex algo-

rithm, in fact, the RANDOM-FACET, RANDOM-EDGE and LEAST-ENTERED rules

have been formulated originally as parameterizations of the simplex method. We

show that the simplex algorithm for solving linear programs, when parameterized

with one of the applicable rules, requires subexponential or exponential time as well.

The rest of this chapter is organized as follows. We start with an introduction

to policy iteration, and define and explain all terms that we require to reason about

the lower bound constructions. Then, we describe all major improvement rules

appearing in the literature, present the known results and relate it to our contributions.

We explain our general strategy of constructing and proving lower bounds, and

show how to transfer results from one class, say parity games, to other infinitary

payoff games via the notion of sink parity games, or to linear programming, via

Markov decision process and their relation to LPs. We conclude the chapter with the

constructions of our lower bounds.

4.1 General Framework

We introduce the fundamentals of strategy iteration in this chapter. Although the

strategy iteration algorithm shares many similarities with the linear programming

simplex method, we refrain from describing strategy iteration in a framework that is

general enough to subsume the simplex algorithm as well, for reasons of clarity and

comprehensibility. We will discuss the similarities and differences at the end of this

chapter.

Let now G be an infinitary payoff game played on the graph (V,E). The strategy

improvement algorithms are based on iterating over strategies of one player, usually

player 0, until a final optimal strategy has been found. In order to reduce unnecessary

formalisms, we will leave the game G implicit in the following definitions, whenever

the context is clear.

Valuations

In general, we have a totally ordered set (U ,�) of node valuations and a map

Ξσ : V → U that assigns, given a positional player 0 strategy σ, to a node v a node

4.1. GENERAL FRAMEWORK 75

valuation. The whole map Ξσ is called game valuation. We extend the ordering on

node valuations to an ordering on nodes w.r.t. a given strategy as follows:

v �σ u :⇐⇒ Ξσ(v) � Ξσ(u)

We will see that the game valuations of the infinitary payoff games of this thesis

can be computed in polynomial time. We assume that as an axiom for the rest of this

chapter.

(SI1) The game valuation of a strategy is polynomial-time computable.

Based on node valuations, we define the pre-ordered set of game valuations

(V ,E) by setting V = {Ξ : V → U}; the pre-order E is induced by applying the

total order on the node valuations component-wise.

ΞE Ξ′ :⇐⇒ Ξ(v) � Ξ′(v) for all v ∈ V

Obviously, ΞCΞ′ iff ΞE Ξ′ and Ξ 6= Ξ′. We extend the pre-order on game valuations

to a pre-order on strategies by setting σ E σ′ iff Ξσ E Ξσ′ . In general, the valuation

vectors Ξσ and Ξσ′ may be incomparable.

We say that a strategy σ is optimal iff for every strategy σ′ we have σ′ E σ. A

crucial property of game valuations is that optimal strategies exist.

(SI2) There is an E-optimal strategy σ.

Game valuations should be thought of as a tight description of the performance

of the respective player 0 strategy. A key idea of strategy iteration is to use the game

valuation of a given strategy σ to guide the search for an improved strategy σ′, that

is closer to the optimal strategy.

Let e ∈ E0 be a player 0 edge. We say that e is an improving edge or improving

switch w.r.t. a strategy σ iff σ C σ[e]. An appealing feature of policy iteration

algorithms is, that determining whether e constitutes an improving switch with

respect to σ can be done without evaluating σ[e], as we will see.

76 CHAPTER 4. LOWER BOUNDS FOR STRATEGY ITERATION

Next, we define the set of improving switches as the set of edges that are improv-

ing w.r.t. a strategy σ:

Iσ = {e ∈ E0 | σ C σ[e]}

The set of improving switches has very important properties that describe how the

given strategy can be modified, to result in an improved strategy. Particularly, if the

set of improving switches is empty, we have found the optimal strategy.

(SI3) If Iσ = ∅ then σ is optimal.

We say that a strategy σ is improvable iff Iσ 6= ∅.

We can use improving switches to find an improved strategy as well. Particularly,

as we have σ C σ[e] with e ∈ Iσ by definition; but even better, strategy iteration

allows to apply so-called multi-switches.

We say that a subset I ⊆ Iσ is applicable iff (v, u), (v, w) ∈ I implies u = w.

In other words, an applicable subset of improving switches does not contain two

different edges originating from the same node. Such a combination of switches is

called multi-switch. Policy iteration satisfies the following condition:

(SI4) Let I ⊆ Iσ be a non-empty applicable set. Then σ C σ[I].

Strategy Iteration

The algorithm starts with some initial strategy σ0 and generates an improving se-

quence σ0, σ1, . . . , σl of strategies, ending with an optimal strategy σl. Every strategy

in this sequence is obtained by switching an applicable subset of the respective set

of improving switches.

The initial strategy σ0, often denoted by ι, can usually be an arbitrary strategy,

but some variants of the strategy iteration require ι to fulfill some special properties,

see, for instance, [Sch08].

There is no particularly clever way to select the initial strategy. We therefore

see policy iteration as an algorithm that receives the game and the initial strategy as

4.1. GENERAL FRAMEWORK 77

Algorithm 5 Policy iteration
1: σ ← ι
2: while σ is improvable do
3: I ← non-empty applicable subset of Iσ
4: σ ← σ[I]
5: end while
6: return σ

input instance, and computes the optimal strategy starting with the given input, see

Algorithm 5.

An execution trace of the strategy iteration is called run, and defined to be the

sequence of strategies that occurred in the iteration. Formally, r = σ0, σ1, . . . , σl is

called a run on G starting with σ0.

Lemma 4.1. Let G be game. Strategy iteration on G terminates and returns an

optimal strategy.

Improvement Rules and Diameter

We now formalize the notion of an improvement rule or pivoting rule, that selects

a non-empty applicable subset, and applies it to the given strategy. Formally, an

improvement rule is a map IMPR-RULE : S0(G)→ S0(G) s.t. for every improvable

strategy σ, there is an non-empty applicable set I ⊆ Iσ s.t. IMPR-RULE(σ) = σ[I].

Then, policy iteration can be realized by Algorithm 6.

Algorithm 6 Policy iteration with improvement rule
1: σ ← ι
2: while σ is improvable do
3: σ ← IMPR-RULE(σ)
4: end while
5: return σ

Since we assume that the single operations of policy iteration can be performed

in polynomial time, it immediately follows that the runtime complexity directly

depends on the number of iterations. There is no improvement rule known for which

we have a polynomial upper bound. In fact, we will show for all major improvement

rules that they have subexponential or exponential lower bounds.

78 CHAPTER 4. LOWER BOUNDS FOR STRATEGY ITERATION

Nevertheless, one could ask the question whether it is theoretically possible to

have a polynomial-time admitting improvement rule? For that reason, we define the

diameter of an infinitary payoff game. Let R(G, σ) denote the set of policy iteration

runs on G starting with σ. The diameter of G is then defined as follows:

diam(G) = max
σ∈S0(G)

min
r∈R(G,σ)

|r|

We now show that the diameter of infinitary payoff games is linear in the

worst case. This is a very important fact about policy iteration, particularly when

comparing it to the simplex algorithm for solving linear programs. There, we have

the (polynomial) Hirsch conjecture, saying that the diameter of any linear program is

polynomial in the worst case. But there is probably no easy way to show this, and it

might even be the case that the diameter of some linear programs is superpolynomial.

We formulate the proof of linear diameter by specifying an improvement rule

that enforces linearly many iterations in the worst case.

Lemma 4.2. Let G be an infinitary payoff game. There is an improvement rule

SWITCH-LIN s.t. policy iteration requires at most |V | many iterations.

Proof. Let G = (V,E) be the underlying graph of an infinitary payoff game and

let σ∗ be an E-optimal strategy. We define the improvement rule SWITCH-LIN as

follows:

SWITCH-LIN(σ)(v) :=

σ∗(v) if (v, σ∗(v)) ∈ Iσ

σ(v) otherwise

We show that SWITCH-LIN is indeed an improvement rule and that the strategy

iteration parameterized with SWITCH-LIN requires at most |V0| iterations on G in

one go by verifying that

M(σ) (V0 =⇒ M(σ) (M(SWITCH-LIN(σ))

for all σ where M(σ) = {v ∈ V0 | σ(v) = σ∗(v)}.

Let σ be a strategy s.t. M(σ) (V0. Since M(σ) ⊆M(SWITCH-LIN(σ)) holds

by definition, we simply need to show that there is at least one node v ∈ V0 with

σ(v) 6= σ∗(v) and (v, σ∗(v)) ∈ Iσ. Consider the game G′ = (V, F) where

4.1. GENERAL FRAMEWORK 79

F = {(v, w) ∈ E | v 6∈ V0 or σ(v) = w or σ∗(v) = w}

It is easy to see that σ∗ is an E-optimal strategy w.r.t. G′. As σ is not optimal,

there must be at least one proper improvement edge (v, w) ∈ IG′σ . By definition of

G′, it follows that σ(v) 6= w and σ∗(v) = w.

Corollary 4.3. The diameter of an infinitary payoff game is linear in the number of

nodes in the worst case.

Counter Strategies

If we have a two- or 2.5-player game, there is another interpretation of the game

valuation associated with a given strategy σ. Here, we start with a profile valuation

that takes a player 0 strategy σ and a player 1 strategy τ and computes an associated

profile valuation Ξσ,τ ∈ V . Recall that it is the goal of player 0 to maximize the

valuation of his or her strategies, and player 1 tries to accomplish the converse.

Hence, we define the game valuation in this context as the worst profile valuation

conforming to σ:

Ξσ(v) = min
≺
{Ξσ,τ (v) | τ ∈ S1(G)}

Let σ be a player 0 strategy and τ be a player 1 strategy. We say that τ is

an optimal counterstrategy against σ iff τ(v) �σ u for every (v, u) ∈ E1. An

important property of policy iteration for two- and 2.5-player games is, that optimal

counterstrategies exist.

(SI5) Let σ be a player 0 strategy. There is an optimal counterstrategy τ s.t. Ξσ(v) =

Ξσ,τ (v) for every node v.

This particularly implies that, given a game valuation, we can find an associated

optimal counterstrategy, and we will see that the converse also holds in the concrete

settings. Given a player 0 strategy σ, let τσ denote an (arbitrary but fixed) optimal

counterstrategy against σ.

80 CHAPTER 4. LOWER BOUNDS FOR STRATEGY ITERATION

Discrete Strategy Iteration

In this paragraph, we introduce a concrete policy iteration algorithm for parity

games, known as discrete strategy iteration due to Jurdziński and Vöge [VJ00]. It

can be seen as a refined version of Puri’s strategy iteration for discounted payoff

games [Pur95] (see below), that can also be used to solve parity games by reduction

[ZP96, VJ00]. The advantage of the discrete strategy iteration over the Puri’s on

parity games is, that discrete policy iteration omits the use of high-precision rational

numbers and is therefore much more efficient in practice.

Discrete strategy iteration requires a total ordering <, called relevance ordering,

on all nodes that is consistent with priorities, i.e. Ω(v) < Ω(w) implies v < w. This

is equivalent to assuming that all nodes have different priorities. Recall that every

transformation of priorities, that preserves the original ordering of different priorities,

has the same winning sets and winning strategies as the original game. For clarity of

presentation, we assume therefore that the priority assignment function is injective.

The algorithm is based on profile valuations as defined in the previous paragraph.

Let σ be a player 0 strategy, τ be player 1 strategy, and v be a node. Recall that there

is exactly one positional play that starts in v and conforms to σ and τ . Such a play

can be uniquely written as follows:

πσ,τ,v = v1 . . . vk(w1 . . . wl)
ω

with v1 = v, vi 6= w1 for all 1 ≤ i ≤ k and Ω(w1) > Ω(wj) for all 1 < j ≤ l. Note

that the uniqueness follows from the fact that all nodes on the cycle have different

priorities and we choose w1 to be the node with highest priority.

Discrete strategy iteration relies on a more abstract description of such a play

πσ,τ,v. In fact, we only consider the dominating cycle node w1, the set of more

relevant nodes – i.e. all vi with Ω(vi) > Ω(w1) – on the path to the cycle node,

and the length k of the path leading to the cycle node. More formally, the profile

valuation is defined as follows:

Ξσ,τ (v) := (w1, {vi | Ω(vi) > Ω(w1)}, k)

4.1. GENERAL FRAMEWORK 81

We refer to w1 as the cycle component, to the second as the path component, and

to k as the length component of the node valuation. In other words, a node valuation

here, is a triple describing the most important parts of a positional play.

In order to compare node valuations with each other, we introduce a total (lexico-

graphic) ordering on the set of node valuations. For that reason, we need to define

a total ordering ≺ on the second component of node valuations – i.e. on subsets

of V – first. To compare two different sets M and N of nodes, we order all nodes

lexicographically according to their priority.

To determine which set of nodes is better w.r.t. ≺, one considers the node v with

the highest priority that occurs in only one of the two sets. The set containing v is

greater than the other if and only if v has even priority.

More formally, we say that a node v is the most significant difference between M

and N iff v ∈ M4N and for all other w ∈ M4N we have Ω(v) > Ω(w), where

M4N denotes the symmetric difference of both sets.

Let now M and N be different sets and v be the most significant difference. Then

define:

M ≺ N iff v ∈ N and v even, or v ∈M and v odd

We are now able to extend the total ordering on sets of nodes to node valuations

by a lexicographic ordering.

(u,M, e) ≺ (v,N, f) :⇐⇒



(−1)Ω(u)Ω(u) < (−1)Ω(v)Ω(v), or

u = v and M ≺ N, or

u = v and M = N and e < f and u odd, or

u = v and M = N and e > f and u even.

The motivation behind this ordering is a lexicographic measurement of the

profitability of a positional play: the most important part of a positional play is the

cycle in which the play eventually ends in, and here, it is the priority of the dominating

cycle node that defines the profitability for player 0. The term (−1)Ω(u)Ω(u) is known

82 CHAPTER 4. LOWER BOUNDS FOR STRATEGY ITERATION

as the reward of a node u, and essentially results in the following ordering on the

priorities:

. . . < 7 < 5 < 3 < 1 < 0 < 2 < 4 < 6 < . . .

The second important part is the loopless path that leads to the dominating cycle

node. Here, we measure the profitability of a loopless path by a lexicographic

ordering on the relevancy of the nodes on path, applying the reward ordering on each

component in the lexicographic ordering. Finally, we consider the length, and the

intuition behind the definition is that, assuming we have an even-priority dominating

cycle node, it is better to reach the cycle fast whereas it is better to stay as long as

possible out of the cycle otherwise.

Game valuations, improving switches and counterstrategies are exactly defined

as before. Particularly, one can think of game valuations here as follows: for a fixed

strategy σ of player 0 and a node v, the associated valuation essentially states which

is the worst cycle that can be reached from v conforming to σ as well as the worst

loopless path leading to that cycle (also conforming to σ).

Theorem 4.4 ([VJ00, Vög00]). Assume parity game context.

(SI1) The game valuation of a strategy is polynomial-time computable.

(SI2) There is an E-optimal strategy σ.

(SI3) If Iσ = ∅ then σ is optimal.

(SI4) Let I ⊆ Iσ be a non-empty applicable set. Then σ C σ[I].

(SI5) Let σ be a player 0 strategy. There is an optimal counterstrategy τ s.t. Ξσ(v) =

Ξσ,τ (v) for every node v.

The set of improving switches can now be determined without evaluating σ[e]

for every switch e. In fact, we have the following theorem:

Theorem 4.5 ([VJ00, Vög00]). Let σ be a strategy. Then:

Iσ = {(v, w) ∈ E0 | σ(v) ≺σ w}

4.1. GENERAL FRAMEWORK 83

It remains to show how an optimal strategy coincides with winning sets Wi and

winning strategies for both players in the parity game. First, we define winning sets

w.r.t. a given strategy σ as follows:

Wi(σ) = {v | Ξσ(v) = (w, _, _) and Ω(w) ≡2 i}

We have the following theorem that allows us to derive a lower bound on the

winning set of player 0, given an arbitrary strategy σ:

Theorem 4.6 ([VJ00, Vög00]). Let G be a parity game and σ be a player 0 strategy.

Then W0(σ) ⊆ W0 and σ is a winning strategy on W0(σ).

A similar theorem holds true for player 1 if we have found an optimal strategy

for player 0.

Theorem 4.7 ([VJ00, Vög00]). LetG be a parity game and σ be an optimal player 0

strategy. Then W1(σ) ⊆ W1 and τσ is a winning strategy on W1(σ).

Corollary 4.8. LetG be a parity game and σ be an optimal player 0 strategy. Then σ

is a winning strategy on W0 = W0(σ), and τσ is a winning strategy on W1 = W1(σ).

We note that there are discrete strategy iteration variants that handle nodes

with the same priority differently. Instead of introducing an arbitrary ordering on

such nodes, it is also possible to value them equally and use multisets for the path

component along with a similar lexicographic ordering. See, for instance, [Sch08].

We conclude this paragraph with the question whether we can solve single-player

parity games in a polynomial number of iterations. To answer that question, we

define the most natural multi-switch rule, called SWITCH-ALL here (and discuss it

in detail later).

SWITCH-ALL: Apply the best local improvement in every node

simultaneously.

More formally, it holds for every strategy σ, every player 0 node v and every

w ∈ vE that w �σ SWITCH-ALL(σ)(v).

We have the following theorem that tells us that one-player parity games can be

solved efficiently by strategy iteration:

84 CHAPTER 4. LOWER BOUNDS FOR STRATEGY ITERATION

Theorem 4.9 ([Vög00]). Let G be an one-player parity game. Policy iteration with

the SWITCH-ALL rule requires polynomially many iterations in the worst case.

Example of Discrete Strategy Iteration

Discrete strategy iteration is understood best with a concrete example. Consider

therefore the parity game of Figure 4.1.

Policy iteration starts with an initial strategy σ0. Let that be σ0(4) = 0 and

σ0(6) = 8. The reader can check that the best cycle for player 1 is (3, 2, 0)ω with

dominating cycle node 3, since the only higher odd priority is 5, which is not

dominating on any cycle. We see that player 1 can even force every play to end up

in the cycle dominated by 3, hence, the cycle component of every node will be 3.

Particularly, the counterstrategy τ0 is τ0(1) = 4, τ0(0) = 3, τ0(2) = 0, and τ0(8) = 2.

See Figure 4.1 for a graphical depiction of that setting; bold edges indicate the

strategies.

4 0 3

1 2

6 8 5

Figure 4.1: Discrete Iteration Example, Strategy 0

The positional paths and valuations of nodes 1 and 0 are, for instance, as follows:

πσ0,τ0,1 = 1, 4, 0, (3, 2, 0)ω Ξσ0(1) = (3, {4}, 3)

πσ0,τ0,0 = 0, (3, 2, 0)ω Ξσ0(8) = (3, ∅, 1)

4.1. GENERAL FRAMEWORK 85

There is a single improving edge here, namely (4, 1). By Theorem 4.5, we know

that it suffices to compare the valuation of 0 with the valuation of 1 to determine

whether (4, 1) is an improving switch. As both valuations have the same cycle

component, we compare the two path components. The most significant difference is

4, which is an even priority, and hence, the path component containing the 4 is better.

Therefore, we switch to σ1 = σ0[(4, 1)]. The reader can check that the cycle

components remain the same in the new counterstrategy τ1, however, player 1 is

forced to alter the choice τ0(1) = 4 to τ1(1) = 6, i.e. we have τ1 = τ0[(1, 6)]. See

Figure 4.2 for a graphical depiction of that setting.

4 0 3

1 2

6 8 5

Figure 4.2: Discrete Iteration Example, Strategy 1

The positional paths and valuations of nodes 1 and 8 are, for instance, as follows:

πσ0,τ0,1 = 1, 6, 8, 2, 0, (3, 2, 0)ω Ξσ0(1) = (3, {8, 6}, 5)

πσ0,τ0,8 = 8, 2, 0, (3, 2, 0)ω Ξσ0(8) = (3, {8}, 3)

There is a single improving edge here, namely (6, 1), as the valuation of 1 is

better than the valuation of 8, because on the path to the dominating cycle node 3,

we have priority 6 additionally on the path starting with 1.

Therefore, we switch to σ2 = σ1[(6, 1)]. The reader can check that player 1 now

has lost the ability to reach 3 from 4, 1 and 6, see Figure 4.3.

86 CHAPTER 4. LOWER BOUNDS FOR STRATEGY ITERATION

4 0 3

1 2

6 8 5

Figure 4.3: Discrete Iteration Example, Strategy 2

Particularly, there are only even-priority dominated cycles on the left side of the

game. It is not hard to see that there are no improving switches anymore, hence, σ2

is optimal, hence, a winning strategy on the left part of the game and τ2 is a winning

strategy for player 1 on the right part of the game.

Strategy Iteration on Payoff Games

Let Gλ be a discounted payoff game (including stochastic ones and therefore includ-

ing Markov decision processes). Policy iteration algorithms in this context were

first developed by Howard [How60] who used them to solve infinite-horizon MDPs.

They were adapted for the solution of two-player games by many researchers, see,

e.g., [HK66],[Con92],[Pur95].

Again, we need to explain how to obtain a game valuation, given a player 0

strategy σ. We use the value function V [Rλ]σ to define game valuations, i.e. we use

Ξσ := V [Rλ]σ, and the set of node valuations is (R, <).

Theorem 4.10 ([How60, Pur95, Con92]). Assume (stochastic) discounted payoff

game context.

(SI1) The game valuation of a strategy is polynomial-time computable.

(SI2) There is an E-optimal strategy σ.

4.1. GENERAL FRAMEWORK 87

(SI3) If Iσ = ∅ then σ is optimal.

(SI4) Let I ⊆ Iσ be a non-empty applicable set. Then σ C σ[I].

(SI5) Let σ be a player 0 strategy. There is an optimal counterstrategy τ s.t. Ξσ(v) =

Ξσ,τ (v) for every node v.

Particularly note that optimality in the context of policy iteration means that an

optimal strategy σ and a corresponding optimal counterstrategy secure the value of

the game in the sense of Chapter 3.3.

Also note that game valuations can be computed in polynomial time by Theo-

rem 3.19. We note that they can even be computed in strongly polynomial time by

applying the algorithm of Madani, Thorup and Zwick [MTZ10].

An appealing feature of policy iteration algorithms is again that determining

whether e constitutes an improving switch with respect to σ can be done without

evaluating σ[e]. An edge e = (v, u) is an improving switch if and only if (1 −
λ)r(v, u) + λΞσ(u) > Ξσ(v).

We next move from discounted reward payoff games to mean payoff games, i.e.

payoff with the limiting average reward criterion. We can define game valuations as

before by simply using the associated value. Unfortunately, in the non-discounted

case, it does not hold in general that if σ is not optimal then there exist at least one

switch that strictly improves the value. To remedy the situation, we need to define

potentials as follows:

For concreteness, assume first that the payoff game is deterministic. Let σ and τ

be strategies of players 0 and 1. Let v0v1 . . . be the infinite path that conforms to σ

and τ . We define the value VALσ,τ (v0) of this play to be limn→∞
1
n

∑n−1
j=0 r(vj, vj+1).

The infinite path v0v1 . . . is composed of finite path P leading to a cycle C =

u0u1 . . . uk, where uk = u0, which is repeated an infinite number of times, and

VALσ,τ (v0) is simply the average reward 1
k

∑k−1
j=0 r(uj, uj+1) of the cycle C.

Let u = u(C) be a fixed vertex on the cycle C, e.g., the vertex with the smallest

index. Let v0v1 . . . v` = u be the finite prefix of the infinite path v0v1 . . . that ends

with the first visit to u. We define the potential POTσ,τ (v0) to be
∑`−1

j=0(r(vj, vj+1)−

88 CHAPTER 4. LOWER BOUNDS FOR STRATEGY ITERATION

VALσ,τ (v0)), i.e., the total reward on the path leading to u, when VALσ,τ (v0) is

subtracted from the reward of each edge. Finally, we define the valuation Ξσ,τ (v0)

to be the pair (VALσ,τ (v0), POTσ,τ (v0)). We compare valuations lexicographically,

i.e., Ξσ,τ (v0) ≺ Ξσ′,τ ′(v0) if and only if VALσ,τ (v0) < VALσ′,τ ′(v0), or VALσ,τ (v0) =

VALσ′,τ ′(v0) and POTσ,τ (v0) < POTσ′,τ ′(v0).

With these slightly more complicated valuations, Theorem 4.10 becomes valid

again, and policy iteration algorithms can therefore be used to solve deterministic

mean payoff games.

Note the definition of values and potentials can be generalized to the stochastic

setting. For instance, in the context of general Markov decision processes, the values

VALσ(u) and potentials POTσ(u) of the vertices under σ are defined as the unique

solutions of the following set of linear equations:

VALσ(u) =

VALσ(v) if u ∈ V0 and σ(u) = v∑
v:(u,v)∈ER p(u, v) VALσ(v) if u ∈ VR

POTσ(u) =

r(u, v)− VALσ(v) + POTσ(v) if u ∈ V0 and σ(u) = v∑
v:(u,v)∈ER p(u, v) POTσ(v) if u ∈ VR

together with the condition that POTσ(u) sum up to 0 on each irreducible recurrent

class of the Markov chain defined by σ.

Complexity Status

It is not hard to see that the policy iteration technique allows to show that solving

infinitary payoff games is in PLS. The instances are the game instances, the sets

of associated solutions are the positional strategies of player 0, the neighborhood

of a positional strategy is the set of strategies that is obtained by switching an

applicable non-empty subset of switches, and the cost function assigns a real-valued

representation of the valuation to a strategy.

For discounted reward infinitary payoff games, a real-valued representation of the

valuation can be obtained by
∑

v∈V Ξσ(v). We already know that all other infinitary

4.1. GENERAL FRAMEWORK 89

payoff games can be reduced to discounted reward infinitary payoff games, hence,

there is a real-valued representation for all other kinds of game classes as well.

For the inclusion in PLS, it remains to check that an initial strategy can be selected

in polynomial time (trivial), that a valuation can be computed in polynomial time

(axiom (SI1)), that we can decide whether Iσ = ∅ in polynomial time, and that we

can compute an improved strategy otherwise in polynomial time (easy, as we can

determine the set of improving switches efficiently).

Theorem 4.11. Solving infinitary payoff games is in PLS.

For the inclusion in UP and coUP, we need to see that the pre-order on strategies

can be (artificially) extended to a partial ordering on strategies, because then, there is

exactly one optimal strategy. Recall that we have a total ordering on node valuations,

and that we extended it to a pre-order on nodes by:

v �σ u :⇐⇒ Ξσ(v) � Ξσ(u)

But we can also extend this to a total ordering on nodes by breaking ties between

two nodes arbitrarily, for instance by comparing their indices. In fact, some authors

define strategy iteration this way right from the start [VJ00].

Theorem 4.12. Solving infinitary payoff games is in UP ∩ coUP.

Abstractions

The policy iteration technique allows to cast the problem of solving infinitary payoff

games as LP-type problem [Hal07]. Recall that an LP-type problem is a pair (H,ω),

where H is the set of constraints and ω : 2H → R ∪ {±∞} is the objective function,

that maps every subset of constraints A ⊆ H to an element ω(A) ∈ R ∪ {±∞}.

Given an infinitary payoff game G, we define H = E0 to be the set of player 0

controlled edges. Next, we need to define the objective function ω for every A ⊆ E0

as follows: We say that A is proper iff for every v ∈ V0 there is some w ∈ vE s.t.

(v, w) ∈ A. For every proper A, let σA denote a player 0 strategy that is optimal

90 CHAPTER 4. LOWER BOUNDS FOR STRATEGY ITERATION

in the game G|A, i.e. in the subgame in which player 0 can only use edges from A.

We define the objective function, using a real-valued representation of the valuation

again, by

ω(A) :=


∑

v∈V ΞσA(v) if A is proper

−∞ otherwise

It is easy to see that the monotonicity and locality conditions are satisfied by this

definition.

There is another abstraction of policy iteration called acyclic unique sink orienta-

tions (AUSOs), that corresponds to infinitary payoff games with out-degree limited

by two. For information on AUSOs, see [SW01, Gär02, GS06]. The problem of

finding the optimal strategy in an infinitary payoff game with n nodes is modeled

by a directed graph in which vertices correspond to strategies and edges correspond

to an (applicable) multi-switch. There is also a generalization of AUSOs for the

non-binary case, called grid unique sink orientations (GridUSOs), see [GMR08].

Comparison to the Simplex Algorithm

The simplex algorithm for solving linear programs and the policy iteration method for

solving infinitary payoff games share several properties. Both are fixpoint iteration

algorithms, their complexity depends crucially on the number of iterations, there are

improvement resp. pivoting rules that determine in every iteration how to proceed,

and they can be abstracted to LP-type problems or polynomial local search.

But there are also important differences. In infinitary payoff game policy iteration,

we have the comparability of switches, meaning that we are allowed to apply any

edge change to a strategy and obtain a comparable strategy, i.e. σ E σ[e] or σ[e]E σ

for every strategy σ and every player 0 controlled edge e. Switching an improving

edge (v, w) is realized by replacing (v, σ(v)) in the strategy by (v, w).

In linear programming, this corresponds to letting an improving non-basic vari-

able enter the basis while a basic variable, that has been reduced to zero, leaves the

basis. However, variables cannot be partitioned in a non-trivial way such that the

pair of entering and leaving variable is always contained in one set of the partition.

4.2. IMPROVEMENT RULES 91

In policy iteration, such a partition is trivially given by grouping together edges with

the same source node.

This difference has important consequences. First, we cannot prove directly that

the diameter of a linear program is small, while that is an easy proof for infinitary

payoff games. This is a major open problem and known as the Hirsch conjecture.

Second, if we have more than one improving variable in a linear program, it is not

true in general that applying multiple variables at once results in a basic feasible

solution with improved cost.

Nevertheless, many improvement rules for infinitary payoff game policy iteration

can be cast as pivoting rules for the simplex algorithm and vice versa. The notion of

a single improving switch then corresponds to an improving edge in the domain of

policy iteration and to an improving variable in the domain of the simplex algorithm.

4.2 Improvement Rules

We give a brief introduction into all important improvement rules and their differ-

ences. We outline known upper and lower bound results, and include our contribution

to the latter matter.

Improvement rules can be generally classified according to four properties. Some

of these properties have immediate consequences for the applicability of the respec-

tive improvement rule, i.e. in which policy iteration contexts the rule is eligible to be

applied.

1. First, there is the switching property, specifying whether the improvement

rule is allowed to apply more than one improving switch at at time. Rules

that apply exactly one improving switch are called single-switching rules, and

otherwise multi-switching rules.

Note that multi-switching rules only apply to infinitary payoff games, but not

to the simplex algorithm for linear programming. Recall that we are only

allowed to let one variable enter the basis, which corresponds to performing a

single switch.

92 CHAPTER 4. LOWER BOUNDS FOR STRATEGY ITERATION

2. Second, there is the method of obtaining the improving switches that are

to be applied. We say that an improvement rule is combinatorial if it only

considers the set of improving switches and potentially the ordering of the

current valuation of the single nodes. Otherwise, we call the rule structurally

involved.

Note that combinatorial improvement rules are favorable, because they apply

almost immediately to all considered settings (infinitary payoff games, linear

programming), or even to policy iteration settings that have not been discovered

yet. Structurally involved rules, on the other hand, usually rely heavily on the

specific structure of the problem class they are tied for.

3. Third, there is the computational model of selecting improving switches,

namely deterministic or probabilistic rules. We will see that it makes a huge

difference in obtaining lower bounds when dealing with probabilistic instead

of deterministic rules.

4. Fourth, there is the memory property, specifying whether the improvement rule

manages additional data structures that are used to store information about the

history of the policy iteration run. An improvement rule that requires addi-

tional persistent memory is called memorizing or history-based, and otherwise

oblivious improvement rule.

The complexity of the simplex algorithm and the policy iteration algorithm is

directly related to the number of iterations it requires to find the optimum. Hence,

the complexity relies greatly on the applied improvement rule.

Upper bounds for an improvement rule are usually obtained by combinatorial

arguments, and preferably in the most abstract setting possible, that is, formulated in

the AUSO or LP-type world. By proving an upper bound in the most abstract setting

possible, the bound immediately transfers to all subsumed concrete settings. For

instance, an upper bound in the LP-type problem world directly transfers to infinitary

payoff games and linear programming problems. Note that we do not contribute

upper bounds in this thesis.

Lower bounds, are usually obtained by explicit constructions, and preferably in

the least abstract setting possible, that is, formulated in the parity game or Markov

4.2. IMPROVEMENT RULES 93

decision process world. By proving a lower bound in the least abstract setting

possible, it (more or less) immediately transfers to all other settings by which it is

subsumed. For instance, a lower bound in the parity game world transfers to the

payoff game world under some circumstances (as we will see).

On the other hand, a lower bound in the AUSO world does not relate to any con-

crete setting, i.e. if we have an exponential lower bound for a particular improvement

rule in the abstract setting of the AUSO world, we cannot transfer this result to, for

instance, parity games. In other words, it is still possible that a certain improvement

rule solves parity games in polynomial time that requires exponential time in a more

abstract setting.

Note that no subexponential or exponential lower bounds in concrete settings for

any of the considered improvement rules have been known before this work. The

only known lower bounds have been formulated in abstract settings.

In the following, we describe the important improvement rules of the literature,

the known results and our contributions. We start with deterministic rules, followed

by probabilistic rules, and conclude the overview with history-based rules.

Deterministic Rules

An example has been known for some time for which a sufficiently poor choice of a

deterministic single-switch rule causes an exponential number of iterations of the

strategy improvement algorithm [BV07]. However, there is no particularly clever

way to define a deterministic oblivious single-switching rule, which is why they are

not considered to be a good candidate for a polynomial-time admitting improvement

rule. A similar observation holds true for the simplex algorithm [KM72].

The SWITCH-ALL or locally optimizing rule (see Table 4.1) is generally consid-

ered to be the most natural choice for an improvement rule. Consider the case in

which all player 0 nodes have at most out-degree two. This implies that a node either

has no improving edge or exactly one improving edge, namely the one which is not

chosen by the current strategy.

This improvement rule is obviously a multi-switching rule and therefore not

applicable for linear programs.

94 CHAPTER 4. LOWER BOUNDS FOR STRATEGY ITERATION

SWITCH-ALL

Authors appears all over the literature

Description Apply every improving edge simultaneously.

Properties multi-switching, combinatorial, deterministic,
oblivious

Applicability all infinitary payoff games

Upper Bound 2n/n (Mansour & Singh [MS99])

Abs. Lower Bound 2n/2 (Schurr & Szabó [SS05])

Con. Lower Bound 2Ω(n) (Friedmann)

Table 4.1: Summary of the Switch All improvement rule

SWITCH-BEST

Authors Schewe [Sch08]

Description Apply the best possible combination of switches.

Properties multi-switching, structurally involved, determin-
istic, oblivious

Applicability all deterministic infinitary payoff games

Upper Bound 1.72n (Schurr & Szabó [SS05])

Abs. Lower Bound 2n/2 (Schurr & Szabó [SS05])

Con. Lower Bound 2Ω(n) (Friedmann)

Table 4.2: Summary of the Switch Best improvement rule

The SWITCH-BEST or globally optimizing rule [Sch08] (see Table 4.2) computes

a globally optimal successor strategy in the sense that the associated valuation is

the best under all allowed successor strategies. The main difference between the

locally optimizing policy and the globally optimizing policy is that the latter takes

4.2. IMPROVEMENT RULES 95

cross-effects of improving switches into account. It is aware of the impact of any

combination of profitable edges, in contrast to the locally optimizing policy that only

sees the local valuations, but not the effects.

However, this rule relies on the explicit structure of the problem and is formulated

for parity games and deterministic payoff games.

We present an explicit construction of parity games on which SWITCH-ALL and

SWITCH-BEST policy iteration require exponential time, and relate the results to

the other classes of infinitary payoff games.

Probabilistic Rules

Kalai [Kal92, Kal97] and Matoušek, Sharir and Welzl [MSW96] devised randomized

pivoting rules (see Table 4.3) that never require more than an expected subexponential

number of pivoting steps to solve any linear program. Their algorithms can, in fact,

be used to solve a more general class of problems, particularly infinitary payoff

games.

RANDOM-FACET

Authors Kalai [Kal92, Kal97]; Matoušek, Sharir & Welzl
[MSW96]

Description Compute optimal strategy by recursive exclusion
of unused single edges.

Properties single-switching, combinatorial, probabilistic,
oblivious, recursive

Applicability all infinitary payoff games, linear programming

Upper Bound 2O(
√
n) (Kalai [Kal92])

Abs. Lower Bound 2Ω(
√
n) (Matoušek [Mat94])

Con. Lower Bound 2Ω(
√
n/ log(n)) (Friedmann, Hansen, Zwick)

Table 4.3: Summary of the Random Facet improvement rule

96 CHAPTER 4. LOWER BOUNDS FOR STRATEGY ITERATION

The improvement rule is formulated as an recursive optimization algorithm

without any additional memory. It is well-known that recursion can be simulated by

iteration with memory – here, of course, by policy fixpoint iteration. In other words,

if we are strict, we could say that this improvement rule is memorizing, however, in

the recursive formulation, it is oblivious.

Perhaps the most natural randomized pivoting rule is RANDOM-EDGE (see

Table 4.4), which among all improving switches chooses one uniformly at random.

The upper bounds currently known for RANDOM-EDGE are still exponential (see

Gärtner and Kaibel [GK07], for additional results regarding RANDOM-EDGE, see

[BDF+95, GHZ98, GTW+03, BP07]). RANDOM-EDGE is also applicable in a

much wider abstract setting. Matoušek and Szabó [MS06] showed that it can be

subexponential on AUSOs.

RANDOM-EDGE

Authors appears all over the literature

Description Apply a single improving switch arbitrarily at
random.

Properties single-switching, combinatorial, probabilistic,
oblivious

Applicability all infinitary payoff games, linear programming

Upper Bound –

Abs. Lower Bound 2Ω(3√n) (Matoušek & Szabó [MS06])

Con. Lower Bound 2Ω(4√n) (Friedmann, Hansen, Zwick)

Table 4.4: Summary of the Random Edge improvement rule

We give an explicit constructions of (different) parity games and Markov decision

processes on which RANDOM-FACET and RANDOM-EDGE policy iteration require

subexponential time, and relate the results to the other classes of infinitary payoff

games and to linear programming.

4.2. IMPROVEMENT RULES 97

Another important randomized improvement rule is SWITCH-HALF [MS99]

(see Table 4.5), which applies every improving switch with probability 1/2, assuming

the binary case, i.e. in which every node has out-degree limited by two.

SWITCH-HALF

Authors Mansour, Singh [MS99]

Description Apply every improving switch with probability
1/2.

Properties multi-switching, combinatorial, probabilistic,
oblivious

Applicability all infinitary payoff games

Upper Bound 1.72n (Mansour & Singh [MS99])

Abs. Lower Bound –

Con. Lower Bound 2Ω(4√n) (Friedmann, Hansen, Zwick)

Table 4.5: Summary of the Switch Half improvement rule

We explain how the lower bound construction for RANDOM-EDGE transfer to

all (non-recursive) oblivious randomized multi-switch improvement rules.

Memorizing Rules

There is one famous memorizing improvement rule that has entered the folklore

of convex optimization. Also known as the LEAST-ENTERED rule (see Table 4.6),

Zadeh’s pivoting method [Zad80] belongs to the family of memorizing improvement

rules, which among all improving switches chooses one which has been switched

least often.

We give an explicit construction of parity games and Markov decision processes

on which LEAST-ENTERED policy iteration requires subexponential time, and relate

the results to the other classes of infinitary payoff games and to linear programming.

98 CHAPTER 4. LOWER BOUNDS FOR STRATEGY ITERATION

LEAST-ENTERED

Authors Zadeh [Zad80]

Description Apply a switch that has been switched least of-
ten.

Properties single-switching, combinatorial, deterministic,
memorizing

Applicability all infinitary payoff games, linear programming

Upper Bound –

Abs. Lower Bound –

Con. Lower Bound 2Ω(
√
n) (Friedmann)

Table 4.6: Summary of the Least Entered improvement rule

4.3 Lower Bound Proof Plan

We give the reader a complete outline of our proof technique for lower bounds in this

chapter, and go through all major steps from a high-level point of view. All lower

bound constructions are based on the following steps:

1. We construct a family of parity games that provides a lower bound for the

respective improvement rule. We restrict ourselves in the construction to a

very special form of parity games, called sink parity games, which has no

disadvantages (as we will see) when trying to construct (sub)exponential lower

bounds. Also, we try to use player 1 as rarely as possible.

We think of parity game strategy iteration as a deterministic (due to the de-

terministic nature of both players) computational model in which we can

implement different functional structures. All lower bound constructions are

based on the implementation of a variant of a binary counter.

Proving the constructions correct is then equal to showing that the sequence of

strategies simulates the binary counter, or at least counts “good enough” with

high probability when applying randomized pivoting rules.

4.3. LOWER BOUND PROOF PLAN 99

2. We transfer the lower bound result for parity games to more expressive game

classes like mean payoff games, discounted payoff games, turn-based stochas-

tic games and the like.

We show in general that policy iteration on sink parity games behaves exactly

like policy iteration on the more expressive game classes, when the sink parity

game is reduced to them by the standard reductions of Chapter 3.4. We prove

this correspondence independently of the applied improvement rule.

3. We transfer the lower bound results to Markov decision processes. Unfortu-

nately, there is no standard reduction from parity games to MDPs.

In order to obtain MDPs from our parity games, we need to get rid of

player 1. However, we know already that player 1 is essential for obtain-

ing (sub)exponential lower bounds, see Lemma 4.9.

Can we use the randomization player of MDPs to simulate the behavior of

player 1? This does not seem to be possible in general. However, as we will

see, we use player 1 only in a very special role, and therefore can replace

player 1 by the randomization player.

We failed to prove that this translation works in general, i.e. independently

of the applied improvement rule. Therefore, we show that the translation

from parity games to Markov decision processes operates as desired for every

construction once again.

4. We transfer our lower bounds to the simplex algorithm for solving linear

programs. Here, we show in general that the the simplex algorithm on linear

programs, that are induced by our lower bound Markov decision processes,

behaves exactly the same as policy iteration on the original games.

We would like to stress that most of our intuition about the lower bound construc-

tions was obtained by thinking in terms of parity games. Thinking in terms of MDPs

seems harder, and we doubt whether we could have obtained our results by thinking

directly in terms of linear programs.

100 CHAPTER 4. LOWER BOUNDS FOR STRATEGY ITERATION

Parity Game Strategy Iteration

The reason why parity games seem to be the most appropriate class of games, when

trying to construct a worst-case family for any class of infinitary payoff games, is,

that the effect of each node in a parity game is immediate: a higher priority dominates

all lower priorities (in a play), no matter how many there are.

A similar observation holds true for discrete strategy iteration as well, with

its seemingly artificial structure of node valuations, that splits the positional play

associated with the current strategy σ and the best response counterstrategy τσ into

three components of decreasing importance: the dominating cycle node, the (more

relevant nodes on the) path leading to the cycle, and the length of the path.

Consider the node valuations from a complexity theorist’s point of view. There

are only linearly many different values for the first and third component, while there

are exponentially many for the second. Suppose that we have a run of the strategy

iteration algorithm of exponential length. This particularly implies that we need to

have a partial run of exponential length in which the cycle component never changes

(this observation is similar to the pigeonhole principle).

It follows from a designer’s point of view that there is no real benefit in actually

using different cycle nodes. Hence, our basic layout of a game exploiting exponential

behavior consists of a complex structure leading to one single loop – the only cycle

node that will occur in valuations. In this setting, the strategy iteration algorithm is

just improving the paths leading to the cycle node. In other words, we can forget

about the first component of valuations.

Now consider the third component, the length of the path leading to the dom-

inating cycle node. It essentially measures the number of nodes on the path that

are less relevant than the dominating cycle node. The fewer less relevant nodes

than the single dominating cycle node we have, the more nodes can be included in

the path component, which seems to be better for the design of games that enforce

exponentially many iterations. In fact, we will assign the least priority in the game

to the dominating cycle node, implying that there are no nodes that are less relevant.

This particularly implies that the length component equals the cardinality of the

path components all the time, and hence, we can forget about the length component

4.3. LOWER BOUND PROOF PLAN 101

as well. In other words, we design games in which we only care about the path

component, which contains all nodes on the path to the single dominating cycle node.

The priority of the single loop that is used in the games will be 1. We will call these

games sink parity games.

There is another reason why sink parity games are particularly favorable: we can

show in this context that policy iteration for more expressive infinitary payoff games,

like payoff games, behaves exactly the same as policy iteration for sink parity games,

when we reduce them to payoff games. This allows us to transfer lower bounds for

sink parity game policy iteration immediately to policy iteration for more expressive

infinitary payoff games.

We can now ask ourselves how a subexponential lower bound construction has

to look like. By Theorem 4.9, we know already that we need two players, at least

for some improvement rules. Consider why one-player parity games can be solved

in polynomially many iterations. In fact, they can be solved in a linear number of

iterations in the setting of sink parity games. All the algorithm performs here is

acyclic path optimization. There can be other cycles in the game besides the single

loop that we end up in, but they will not be used (by assumption that we have a sink

parity game), which means that there will be no improving edge to close another

cycle.

Main Gadget

Although strategy iteration on sink parity games seems to be acyclic path optimiza-

tion, this is not entirely correct. Consider a strategy σ, an improved strategy σ′,

and the corresponding optimal counterstrategies τ and τ ′. Obviously, G|σ,τ and

G|σ′,τ ′ have the same single cycle, since G is a sink parity game. However, if we

consider G|σ′,τ , i.e. the game conforming to the improved strategy σ′ and the old

counterstrategy τ , it might be the case that we encounter intermediate cycles.

Such intermediate cycles need to have dominating cycle nodes that give a better

reward to player 0, as player 1 denies staying in these cycles with τ ′ leading to the

original dominating cycle node again.

102 CHAPTER 4. LOWER BOUNDS FOR STRATEGY ITERATION

The main gadget that is used to enforce exponentially many iterations in every

lower bound construction, exploits intermediate cycles, and is called the simple cycle

gadget, see Figure 4.4.

d1 : 3 e1 : 4 h1

Figure 4.4: Simple Cycle

First, note that the cycle is dominated by player 0, as the highest priority on the

cycle is 4. If player 0 decides to use the edge (d1, e1), i.e. to move into the cycle,

then player 1 will use as counterstrategy the escape edge (e1, h1) in order to avoid

staying in the player 0 dominated cycle with priority 4. However, if player 0 decides

to use an edge going out of the cycle, it might be the case that player 1 decides to

use the edge (e1, d1) in the counterstrategy.

We can use this structure to hide the effect of the outgoing player 1 edge (e1, h1).

As long as player 0 is pointing out of the cycle, strategy iteration is not able to “see”

the valuation associated with the node h1 by looking at e1 (when player 1 is using

the edge (e1, d1)).

Let M be the path component of the valuation of d1 pointing out of the cycle and

let N be the path component of the valuation of e1, assuming that e1 is pointing to d1.

Then N = {e1}∪M , i.e. (d1, e1) is an improving edge, but the local improvement is

very small, namely only e1 ∈ N4M . However, by moving to e1, the new valuation

of e1 actually will be {e1} ∪Q where Q is the path component of h1 (as player 1 is

forced to leave the cycle).

Assume now that we use the standard improvement rule SWITCH-ALL that

applies the best local improvement in every node simultaneously. Consider the

example of Figure 4.5; bold edges indicate the current strategy of player 0 and the

associated counterstrategy. Assume further that d, e, and the single sink parity game

loop have the lowest priorities in the whole game.

4.3. LOWER BOUND PROOF PLAN 103

d : 3 e : 4

c

a

b

Figure 4.5: Simple Cycle Example, Strategy 0

We assume that a ≺σ b, and that b ≺≺ c, i.e. c has a much butter valuation than

b. Obviously, a ≺σ e, but only because of the very low priority 4. The effect of c

cannot be observed by player 0 at the moment by considering the valuations of the

neighboring nodes. Hence, we have e ≺σ b, and apply the improving switch (d, b)

by the SWITCH-ALL rule, resulting in Figure 4.6.

d : 3 e : 4

c

a

b

Figure 4.6: Simple Cycle Example, Strategy 1

It might be the case that now b ≺σ a, which would lead strategy iteration to

end up in Figure 4.5 again. In other words, we can postpone the update of player 0

to move into the cycle for as long as we can provide external nodes like a and b

with (slightly) improved valuations in each iteration. The profitability of c can be

arbitrarily high.

104 CHAPTER 4. LOWER BOUNDS FOR STRATEGY ITERATION

Finally assume that (d, e) is the only remaining improving edge. Then, we would

end up in Figure 4.7, forcing player 1 to finally leave the cycle.

d : 3 e : 4

c

a

b

Figure 4.7: Simple Cycle Example, Strategy 2

Now node d gets the valuation associated with c. Note that we will be able to

reuse such cycles again by valuating a node like a or b better than c for a single

iterations. Such cycles will be the only structure in which we really use player 1

controlled nodes. There are some variations of the simple cycles (as we will see),

but the essential structure, that hides one single escape edge that might be extremely

profitable to player 0, remains the same.

Relation to Markov Decision Processes

The only structure that we need to translate, when moving from parity games to

Markov decision processes, are player 1 controlled nodes. In our lower bound games,

the only role that player 1 has, is to hide the effect of some escape node. In other

words, the valuation of a player 1 node e1 should be essentially equal to the valuation

of the player 0 node d1, as long as player 0 moves out of the cycle, and if player 0

moves into the cycle, the valuation of e1 should be essentially equal to the valuation

of the escape node h1.

This effect can be simulated by a randomization node that moves to the escape

node with extremely (that is, inversely exponentially) low probability ε. See Fig-

4.3. LOWER BOUND PROOF PLAN 105

ure 4.8 for a more complicated cycle setting and the correspondence between player 1

controlled cycles in parity games and randomization controlled cycles in MDPs.

A

b

b′

A

b

b′

⇔

1−ε
2

1−ε
2

ε

Figure 4.8: Conversion of a vertex controlled by player 1 to a randomization vertex

First, assume that both cycles attached to the node A are closed, i.e. player 0

moves to A from b and b′. Although the randomized node circles through the cycles

with very high probability (without accumulating any rewards), it eventually moves

out to the escape node, resulting in the same valuation as the valuation of the escape

node itself, reflecting exactly the behavior of the cycle structure in parity games.

Second, assume that a cycle is open, i.e. one of the V0-controlled nodes of the

cycle decides to move out of the cycle to some reset node. Now, the randomized node

moves into the cycle with very large probability and therefore leaves the cycle to the

reset node with high probability as well. The resulting valuation of the randomized

node essentially matches the valuation of the reset node, again reflecting the behavior

of the cycle structure in parity games.

Relation to Linear Programming

The conditions for optimal values (and potentials) in a Markov decision process

can be formulated as a linear program in which variables correspond to values and

constraints to edges, and vice versa by duality.

In order to transfer the lower bounds for Markov decision processes to the

simplex algorithm for solving linear programs, we simply need to show that (1)

basic feasible solutions in the induced linear program correspond to strategies in

the original game, and that (2) adjacent basic feasible solutions with improved cost

correspond to strategies that have been improved by a single improving switch. This

106 CHAPTER 4. LOWER BOUNDS FOR STRATEGY ITERATION

allows us to transfer lower bounds for Markov decision processes immediately to the

simplex algorithm, assuming that the respective improvement rule can be formulated

accordingly as a pivoting rule.

A similar observation holds true for pivoting algorithms that operate on the dual

linear program (e.g. RANDOM-FACET).

4.4 Sink Game Relations

We define sink parity games in this chapter. Sink parity games have a very special

structure that consists of a game graph that leads to a single node looping to itself.

We allow the game to contain other cycles. However, they should never occur in

a run of the policy iteration algorithm, meaning that in the subgraph related to a

player 0 strategy and an optimal counterstrategy, it holds that every play ends in the

single loop.

This seemingly simple structure is expressive enough to construct lower bound

games for parity game strategy iteration. As a bonus, we show that lower bounds

based on sink parity games can be directly transferred to payoff games.

All technically tedious proofs have been put into Appendix A.1.

Sink Parity Games

Every approach trying to construct a parity game family of polynomial size that

requires (sub)exponentially many iterations to be solved by strategy iteration (no

matter which rule the algorithm is parameterized with), needs to focus on the second

component of game valuations: there are only linearly many different values for the

first and third component while there are exponentially many for the second.

Particularly, as there are at most linearly many different cycle nodes that can

occur in valuations during a run, there is no real benefit in actually using different

cycle nodes. Hence our basic layout of a game exploiting exponential behavior

consists of a complex structure leading to one single loop – the only cycle node

4.4. SINK GAME RELATIONS 107

that will occur in valuations. In this setting, the strategy iteration algorithm is just

improving the paths leading to the cycle node.

More formally: we call a parity game G (in combination with an initial strategy

ι) a sink parity game iff the following two properties hold:

1. Sink Existence: there is a node v∗ (called the sink of G) with v∗Ev∗ and

Ω(v∗) = 1 reachable from all nodes; also, there is no other node w with

Ω(w) ≤ Ω(v∗).

2. Sink Seeking: for each player 0 strategy σ with ιE σ and each node w, it holds

that the cycle component of Ξσ(w) equals v∗.

Obviously, a sink game is won by player 1. Note that comparing node valuations

in a sink game can be reduced to comparing the path components of the respective

node valuations, for two reasons. First, the cycle component remains v∗. Second,

the path-length component equals the cardinality of the path component, because

all nodes except the sink node are more relevant than the cycle node itself. In the

case of a sink parity game, we will therefore identify node valuations with their path

component.

In order to prove that a parity game is a sink parity game, one simply has to

check that the sink existence property holds by looking at the graph, that the game is

completely won by player 1, and that the sink is the cycle component of all nodes of

the initial strategy.

Lemma 4.13. Let G be a parity game fulfilling the sink existence property w.r.t. v∗.

G is a sink parity game iff G is completely won by player 1 (i.e. W1 = V) and for

each node w it holds that the cycle component of Ξι(w) equals v∗.

Proof. The “only-if”-part is trivial. For the “if”-part, we need to show that the sink

seeking-property holds. Let σ be a player 0 strategy with ιEσ, w be an arbitrary node

and u be the cycle component of Ξσ(w). Due to the fact that G is completely won by

player 1, u has to be of odd priority. Also, since ιE σ, it holds that Ω(u) ≤ Ω(v∗)

implying u = v∗ by the sink existence-property.

108 CHAPTER 4. LOWER BOUNDS FOR STRATEGY ITERATION

In the context of a sink parity game G and a strategy σ, we will sometimes say

that a node v reaches a node w to denote the fact that w lies on the path πv,σ,τσ .

We note that sink parity games are related to escape payoff games as defined in

Schewe’s paper [Sch08]. Escape games essentially allow the players to stop the play

at a certain point by moving to a corresponding escape sink node. See Schewe’s

paper for all the details.

From Sink Parity to Discounted Payoff Games

We now show that the strategy iteration for discounted payoff games behaves exactly

the same as the strategy iteration for sink parity games.

Vöge proves in his thesis [Vög00] the following theorem that relates parity game

strategy iteration to Puri’s algorithm for solving the induced discounted payoff game

(in the sense of Chapter 3.4 via an intermediate mean payoff game).

Theorem 4.14 ([Vög00]). Let G be a parity game, Hλ be the induced discounted

payoff game and λ be a large enough discount factor. Let σ be a player 0 strategy.

For every two nodes v and u the following holds:

v ≺Gσ u ⇒ v ≺Hλσ u

In other words, every improving switch in the original parity game is also an

improving switch in the induced discounted payoff game. The reason why this holds

true is that by the reduction from parity games to mean payoff games, the priorities

are mapped to such extremely large rewards that the largest reward that occurs on a

path dominates all lower ones, the largest reward on a cycle dominates all other ones

and that the cycle itself dominates all finite paths leading into it.

Theorem 4.14 is almost what we need to show that strategy iteration for dis-

counted payoff games behaves exactly the same on the induced discounted payoff

game as the discrete strategy iteration algorithm on the original sink game. Essen-

tially, we need to show the converse which is equivalent to showing

ΞG
σ (v) = ΞG

σ (u) ⇒ ΞHλ
σ (v) = ΞHλ

σ (u)

4.4. SINK GAME RELATIONS 109

However, this statement is not true for every parity game. The reason why a run

of the strategy improvement algorithm on general parity games may differ from a

run on the induced discounted payoff game is, that the parity game strategy iteration

does not care about the priority of all nodes on its path to the dominating cycle node

that are less relevant. In the case of sink parity games, the only occurring dominating

cycle node has the least priority in the game, and therefore all priorities occurring

in paths influence the valuations. Also, the strategy iteration on arbitrary parity

games does not consider the priorities of all the nodes on a cycle appearing in a node

valuation.

First, we show that optimal player 1 counter strategies in the induced discounted

payoff game also eventually reach the sink.

Lemma 4.15. Let G be a sink parity game with v∗ being the sink, Hλ be the induced

discounted payoff game, λ be a large enough discount factor and σ be a player

0 strategy s.t. ι EG σ. Let v0 6= v∗ be an arbitrary node. Then π
v0,σ,τ

Hλ
σ

is of the

following form:

π
v0,σ,τ

Hλ
σ

= v0v1 . . . vl−1(v∗)ω

Second, we show that the value ordering between two different paths leading to

the sink again depends solely on the most relevant node in the symmetric difference

of the paths.

Lemma 4.16. Let G be a sink parity game with v∗ being the sink, Hλ be the

induced discounted payoff game, λ be a large enough discount factor. Let π and

ξ be two paths of the form π = u0u1 . . . ul−1(v∗)ω and ξ = w0w1 . . . wk−1(v∗)ω

and let U = {u0, . . . , ul−1} and W = {w0, . . . , wk−1}. Then U ≺ W implies

Rλ(π) < Rλ(ξ).

Third, we derive that the strategy iteration for discounted payoff games behaves

exactly the same as the strategy iteration for sink parity games.

Corollary 4.17. Let G be a sink parity game, Hλ be the induced mean payoff game,

λ be a large enough discount factor, and σ be a player 0 strategy s.t. ι EG σ. For

every two nodes v and u the following holds:

v ≺Gσ u ⇐⇒ v ≺Hλσ u

110 CHAPTER 4. LOWER BOUNDS FOR STRATEGY ITERATION

Corollary 4.18. Discrete strategy iteration on sink parity games behaves exactly the

same as policy iteration on induced discounted payoff games.

Limiting Average Criterion

We apply a slightly different reduction from parity games to payoff games with

limiting average criterion. The only difference to the standard reduction is that we

assign zero cost to the edge looping at the sink node. By this construction, it follows

that the value of every node equals zero, as all paths eventually end in the sink. The

potential of the nodes equals the sum over the priority-rewards of the paths, hence,

we can show a similar statement as in Lemma 4.16.

Theorem 4.19. Discrete strategy iteration on sink parity games behaves exactly the

same as policy iteration on induced MPGs, DPGs, as well as on the turn-based

stochastic extensions.

4.5 Simplex Algorithm Relations

The most widely used algorithm for solving MDPs is Howard’s [How60] policy

iteration algorithm. The policy iteration algorithm is closely related to the simplex

algorithm. It can, however, exploit the special structure of the LPs that correspond to

MDPs and perform many pivoting steps simultaneously.

Policy iteration algorithms that perform a single switch at each iteration are, in

fact, simplex algorithms. In this chapter, we will formulate the problem of solving

Markov decision processes as linear programs and show how the operation of the

simplex algorithm on them corresponds to policy iteration on the original MDPs.

Turning Markov decision processes into linear programs and their correspondences

are well-known, see for instance Puterman [Put94] or Ye [Ye10].

Note that we only know how to cast Markov decision processes as linear pro-

grams. Natural attempts for translating classes of infinitary payoff games like

turn-based stochastic games into linear programs fail, see, for instance the line of

research done by Condon [Con93]. Similarly, the formulation of two and 2.5-player

4.5. SIMPLEX ALGORITHM RELATIONS 111

infinitary payoff games as interior-point problems seems to be very difficult due to

singularities and non-smoothness properties of the cost function, see, for instance

Petersson and Vorobyov [PV01a].

Fix a Markov decision process G = (V, V0, VR, E, r, p) with the discounted

reward criterion and discount factor λ. We will explain in the end how to modify the

formulations for the limiting average objective. For reasons of simplicity, assume

that G is bipartite, i.e. every player 0 node is only connected to randomization nodes

and vice versa; additionally assume that every edge controlled by randomization has

zero cost.

We consider only Markov decision processes here that satisfy the (weak) unichain

condition, as this allows a much more succinct formulation of corresponding linear

programs, and we will see that our constructions satisfy these conditions.

The (weak) unichain condition relates to the notion of sink parity games. We

say that a Markov decision process G satisfies the unichain condition (see [Put94])

iff the Markov chain obtained from each policy σ has a single irreducible recurrent

class.

In other words, a Markov decision process satisfies the unichain condition if

there is a single node v∗ s.t. for every strategy σ and every node u, we have that v∗

can be reached from u conforming to σ with positive probability.

The weak unichain condition only demands that the optimal policy has a single

irreducible recurrent class. It follows that the optimal policy can be found by the

same LPs when being started with an initial basic feasible solution corresponding to

a policy with the same single irreducible recurrent class as the optimal policy. Then,

by monotonicity, we know that all considered basic feasible solutions will have the

same irreducible recurrent class.

Markov Decision Processes as Dual Problems

We start with the dual formulation of a Markov decision process, as the interpretation

of the resulting linear program is more intuitive than the primal. Obviously, we could

switch terms and call the following linear program the primal, however, for historical

reasons, we stick with literature that usually labels the following LP to be the dual.

112 CHAPTER 4. LOWER BOUNDS FOR STRATEGY ITERATION

The dual linear program for (weak) unichain MDPs with discounted reward

criterion is given by:

(D)
min

∑
u∈V0 y(u)

s.t. y(u) ≥ r(u, v) + λ ·
∑

w:(v,w)∈ER p(v, w)y(w) , (u, v) ∈ E0

For a given MDP with player 0 controlled edges E0, called actions, let H be the

set of constraints defining the linear program. Note that there is a bijective mapping

between actions e ∈ E0 and constraints h ∈ H . More precisely, for e = (u, v), e

corresponds to the constraint y(u) ≥ r(u, v) + λ ·
∑

w:(v,w)∈ER p(v, w)y(w). Thus,

we will identify actions with constraints and use the notation interchangingly.

If y∗ is an optimal solution of (D), then y∗(u), for every u ∈ V0, is the value

of u under an optimal policy. An optimal policy σ∗ can be obtained by letting

σ∗(u) = (u, v), where (u, v) ∈ E0 is an edge for which the inequality constraint in

(D) is tight, i.e., y(u)− λ ·
∑

w:(v,w)∈ER p(v, w)y(w) = r(u, v). Such a tight edge is

guaranteed to exist.

Theorem 4.20 ([Put94]). A solution to the dual linear program corresponds to an

optimal policy and vice versa. Particularly, the dual is feasible and bounded.

By Theorem 2.16 and Theorem 4.20, we have the following corollary, stating

that an optimal policy corresponds to a basis and vice versa:

Corollary 4.21. Let H be the set of constraints corresponding to the MDP. B is an

H-basis iff the actions corresponding to B form an optimal policy.

The following important fact about bases for the linear program and policies for

the corresponding Markov decision process is not hard to see.

Lemma 4.22. Let σ be a policy and B ⊆ H be the set of constraints corresponding

to σ. Let e ∈ E0 \σ and h ∈ H \B be the corresponding constraint. Then ΞσEΞσ[e]

iff h is violated by B, in which case BASIS(B ∪ {h}) corresponds to σ[e].

Proof. Restrict the Markov decision process to subset of actions σ ∪ {e′}. Let

B′ = BASIS(B ∪ {h}) and σ′ = σ[e].

4.5. SIMPLEX ALGORITHM RELATIONS 113

If h is violated by B, we have that vB′ > vB. By Theorem 4.20 we have that

Ξσ E Ξσ′ , as only two policies exist in the MDP.

For the converse, assume that ΞσEΞσ′ . Hence, B cannot be a basis for the whole

set of constraints. Hence, h must be violated by B.

In Chapter 4.7, we will give a formulation of the RANDOM-FACET algorithm as

a policy iteration pivoting rule for infinitary payoff games, and use Lemma 4.22 to

see that any lower bound construction for a Markov decision process immediately

transfers to the RANDOM-FACET algorithm for linear programs.

Markov Decision Processes as Primal Problems

Optimal policies for MDPs that satisfy the unichain condition can be found by

solving the following primal linear program:

(P)

max
∑

(u,v)∈E0
r(u, v)x(u, v)

s.t.
∑

v∈uE x(u, v) = λ ·
∑

w∈ERu,v∈E0w
p(w, u)x(v, w) , u ∈ V0∑

(u,v)∈E0
x(u, v) = 1

x(u, v) ≥ 0 , (u, v) ∈ E0

The variable x(u, v), for (u, v) ∈ E0, stands for the probability (frequency) of using

the edge (action) (u, v). The constraints of the linear program are conservation

constraints that state that the probability of entering a vertex u is equal to the

probability of exiting u.

Lemma 4.23. The basic feasible solutions of (P) correspond directly to policies of

the MDP.

Proof. For each policy σ we can define a feasible setting of primal variables x(u, v),

for (u, v) ∈ E0, such that x(u, v) > 0 only if σ(u) = v.

Conversely, for every bfs x(u, v) we can define a corresponding policy σ. Obvi-

ously, every bfs contains |V0| basic variables. It is easy to see that we cannot have

zero variables corresponding to a node w ∈ V0 in the bsf, hence we must have exactly

one variable corresponding to a node in the bsf.

114 CHAPTER 4. LOWER BOUNDS FOR STRATEGY ITERATION

Theorem 4.24 ([Put94]). A policy corresponding to an optimal bfs of (P) is an

optimal policy of the MDP.

It follows that the improving switches of a given policy coincide exactly with the

edges leading to adjacent improved vertices in the primal.

Corollary 4.25. Let σ be a policy and B a corresponding bsf. Let e ∈ E0 \ σ be

an edge corresponding to x(u, v), i.e. e = (u, v). Then Ξσ E Ξσ[e] iff there is an

improved cost adjacent vertex to B with x(u, v) as basic variable.

Hence, we conclude the single-switching policy iteration on Markov decision

processes is exactly the same as running the simplex on the primal linear program.

Remarks

We end this chapter with the linear programming formulation of the (weakly)

unichain Markov decision processes with the limiting average criterion.

This condition implies, in particular, that all vertices have the same value. It

is not difficult to check that VALσ(u) is indeed the expected reward per turn, when

the process starts at u and policy σ is used. The potentials POTσ(u) represent

biases. Loosely speaking, the expected reward after N steps, when starting at u and

following σ, and when N is sufficiently large, is about N · VALσ(u) + POTσ(u).

The dual linear program for (weak) unichain MDPs with limiting average crite-

rion is given by:

(D)
min z

s.t. y(u) ≥ r(u, v)− z +
∑

w:(v,w)∈ER p(v, w)y(w) , (u, v) ∈ E0

If (y∗, z∗) is an optimal solution of (D), then z∗ is the common value of all

vertices, and y∗(u), for every u ∈ V0, is the potential of u under an optimal policy.

The linear programs corresponding to the limiting average criterion MDPs con-

structed in this paragraph are linear programs s.t. all pivoting steps performed on

these linear programs are degenerate. Progress is still being made in each iteration,

as some potentials, i.e. dual variables, strictly increase.

4.6. DETERMINISTIC RULES 115

Optimal policies for MDPs with the limiting average criterion that satisfy the

unichain condition can be found by solving the following primal linear program:

(P)

max
∑

(u,v)∈E0
r(u, v)x(u, v)

s.t.
∑

v:(u,v)∈E x(u, v) =
∑

v,w:(v,w)∈E0,(w,u)∈ER p(w, u)x(v, w) , u ∈ V0∑
(u,v)∈E0

x(u, v) = 1

x(u, v) ≥ 0 , (u, v) ∈ E0

Due to possible degeneracies, the policy, i.e., basis, corresponding to a given

bfs is not necessarily unique. If for some u ∈ V0 we have x(u, v) = 0 for every

(u, v) ∈ E0, then the choice of σ(u) is arbitrary.

4.6 Deterministic Rules

There are two major deterministic improvement rules that we handle in this chapter.

First, we consider the SWITCH-ALL improvement rule, which was introduced by

Howard [How60] for solving problems on Markov decision processes and has been

adapted by several other authors for solving nonterminating stochastic games [HK66],

simple stochastic games [Con92], discounted and mean payoff games [Pur95, ZP96]

as well as parity games [VJ00].

Second, we consider the SWITCH-BEST improvement rule by Schewe [Sch08],

which among all possible successor strategies selects one with the best possible

improvement.

Both improvement rules are multi-switching methods, and are therefore not

applicable for solving linear programming problems. Hence, we only have infinitary

payoff games in mind here. Our contribution is to give the first explicit constructions

of exponential lower bounds for SWITCH-ALL and SWITCH-BEST on infinitary

payoff games.

All technically tedious proofs have been put into Appendix A.2.

116 CHAPTER 4. LOWER BOUNDS FOR STRATEGY ITERATION

4.6.1 Switch All Rule

The SWITCH-ALL or locally optimizing rule is generally seen to be the most natural

choice for an improvement rule. Consider the case in which all player 0 nodes have

at most out-degree two. This implies that a node either has no improving edge or

exactly one improving edge, namely the one which is not chosen by the current

strategy. In this setting, the SWITCH-ALL improvement rule can be described very

concisely:

SWITCH-ALL: Apply every improving edge simultaneously.

The generalization of this rule in the non-binary case is to apply an improving

switch to every improvable node that has the highest valuation of a successor. This

does not completely specify a deterministic choice, as it may happen that two

successors have the same valuation. Although the name might be a bit confusing in

the non-binary setting, we will still call this improvement rule by its common name.

SWITCH-ALL: Apply the best local improvement in every node

simultaneously.

More formally, it holds for every strategy σ, every player 0 node v and every

w ∈ vE that w �σ SWITCH-ALL(σ)(v).

The SWITCH-ALL improvement rule is very general, and applies to all strategy

iteration variants for arbitrary infinitary payoff games. It does not apply to linear

programming, being a multi-switch improvement rule.

Jurdziński and Vöge [VJ00] were the first to adapt strategy iteration to parity

game solving, and proposed the SWITCH-ALL improvement rule as canonical choice.

It is very easy to see that the rule can be computed efficiently.

Lemma 4.26 ([VJ00]). The SWITCH-ALL rule can be computed in polynomial

time.

The lower bound construction for SWITCH-ALL is a family of sink parity games

that implement a binary counter. In order to reduce the overall complexity of the

4.6. DETERMINISTIC RULES 117

games, our construction relies on unbounded edge out-degree, yielding a quadratic

number of edges in total. We will discuss in the end how the number of edges can be

reduced to a linear number and even how to get binary out-degree.

The implementation of the binary counter is based on a structure called simple

cycles that allows us to encode a single bit state in a given strategy σ. By having

n such simple cycles, we can represent every state of an n-bit binary counter. In

order to allow strategy improvement the transitions of the binary counter, we need

to embed the simple cycles in a more complicated structure called cycle gadget,

connect the cycle gadgets of the different bits with each other, and with an additional

structure called deceleration lane.

This chapter is organized as follows. First, we consider the three gadgets that

will be used in our lower bound construction, namely simple cycles, the deceleration

lane and cycle gates. Then, we present the full construction of our lower bound

family and give a high-level description of strategy iteration on these games. Finally,

we prove that strategy improvement on the games indeed follows the high-level

description.

For the presentation of the gadgets, we assume the context of a sink parity game.

The labellings and priorities of the gadgets will match the final priorities of the lower

bound family.

Gadgets consist of three kinds of nodes: input nodes, output nodes and internal

nodes. Input nodes are nodes that will have incoming edges from outside of the

gadget, output nodes will have outgoing edges to the outside of the gadget and

internal nodes will not be directly connected to the outside of the gadget.

Simple Cycles

The binary counter will contain a representation of n bits that are realized by n

instances of a gadget called a cycle gate. The most important part of a cycle gate is

the simple cycle that we will introduce first. We fix some index i for the simple cycle

gadget for the sake of this paragraph in order to have consistent node labellings.

A simple cycle consists of one player 0 controlled internal node di that is con-

nected to a set of external nodes Di in the rest of the graph, and one player 1

118 CHAPTER 4. LOWER BOUNDS FOR STRATEGY ITERATION

controlled input node ei. The node ei itself is connected to di (therefore the name

simple cycle) and to one output node hi 6∈ Di. We note that all ei nodes are the only

player 1 controlled nodes with real choices in the complete lower bound construction.

All priorities of the simple cycle are based on some odd priority pi. Intuitively,

the pi is considered to be a very small priority compared to the priorities of the other

nodes in the external graph that the simple cycle is connected to.

See Figure 4.9 for a simple cycle of index 1 with p1 = 3. The players, priorities

and edges are described in Table 4.7.

d1 : 3 e1 : 4 h1

Figure 4.9: Simple Cycle

Node Player Priority Successors

di 0 pi {ei} ∪Di

ei 1 pi + 1 {di, hi}
hi ? > pi + 1 ?

w ∈ Di ? > pi + 1 ?

Table 4.7: Description of the Simple Cycle

Given a strategy σ, we say that the cycle is closed iff σ(di) = ei and open

otherwise. A closed cycle corresponds to a bit which is set while an open cycle

corresponds to an unset bit.

The main idea now is to assign priorities to the simple cycle in such a way that

the simple cycle is won by player 0, i.e. the most relevant node on the cycle needs

to have an even priority. This has important consequences for the behavior of the

player 1 controlled node.

First, assume that σ(di) = ei. The optimal counter-strategy here is τσ(ei) = hi,

since otherwise player 0 would win the cycle which is impossible with G being a

4.6. DETERMINISTIC RULES 119

sink game. Player 0 is therefore able to force player 1 to move out of the cycle; in

other words, setting a bit corresponds to forcing player 1 out of the cycle. In a set bit,

the valuation of di is essentially the valuation of hi, i.e. Ξσ(di) = Ξσ(hi) ∪ {di, ei}.

Second, assume that σ(di) = w for some w ∈ Di, and that w ≺σ hi. It

follows that di ≺σ hi, hence τσ(ei) = di. The interesting part is now that Ξσ(ei) =

Ξσ(w)∪{di, ei}, i.e. ei is an improving node for di (since Ξσ(w)4Ξσ(ei) = {di, ei}),
but updating to ei would yield a much greater reward than just Ξσ(ei) (namely

Ξσ(hi) ∪ {ei} by forcing player 1 to leave the cycle).

Assume now that w′ ∈ Di with w ≺σ w′ but w′ ≺σ hi. Obviously, w′ and ei are

improving nodes for di, but ei ≺σ w′, hence by SWITCH-ALL, player 0 switches to

w′, although ei might give a much better valuation. In other words, by moving to

di, the player 1 node hides the fact that there is a highly profitable node on the other

side.

Lemma 4.27. Let σ be a strategy. The following holds:

1. If cycle i is closed, we have τσ(ei) = hi.

2. If cycle i is open and hi ≺σ σ(di), we have τσ(ei) = hi.

3. If cycle i is open and σ(di) ≺σ hi, we have τσ(ei) = di.

Lemma 4.28. Let σ be a strategy and w = max≺σ Di. Let σ′ = SWITCH-ALL(σ).

The following holds:

1. If cycle i is closed and w ≺σ hi, we have cycle i σ′-closed (“closed cycle

remains closed”).

2. If cycle i is open, σ(di) 6= w or hi ≺σ w, we have σ′(di) = w (“open cycle

remains open”).

3. If cycle i is open, σ(di) = w and w ≺σ hi, then cycle i is σ′-closed (“open

cycle closes”).

4. If cycle i is closed and hi ≺σ w, we have σ′(di) = w (“closed cycle opens”).

120 CHAPTER 4. LOWER BOUNDS FOR STRATEGY ITERATION

Open simple cycles have the important property that we can postpone closing

them by supplying new nodes w ∈ Di in each iteration s.t. σ(di) ≺σ w. We will

use this property in the construction of our binary counter. Since we do not want

to set all bits at the same time, rather one by one, we need to make sure that unset

bits, which are not supposed to be set, remain unset for some time (more precisely,

until the respective bit represents the least unset bit), and this will be realized by this

property. The device that supplies us with new best-valued external nodes in each

iteration is called deceleration lane and will be described next.

Deceleration Lane

A deceleration lane has several, say m, input nodes and some output nodes, called

roots. The lower bound construction will only require a deceleration lane with two

roots s and r, however, it would be easy to generalize the construction of deceleration

lanes to an arbitrary number of roots.

More formally, a deceleration lane consists of m (in our case, m will be 2 · n)

internal nodes t1, . . ., tm, one additional internal node c, m input nodes a1, . . ., am
and two output nodes s and r, called roots of the deceleration lane.

All priorities of the deceleration lane are based on some odd priority p. We

assume that all root nodes have a priority greater than p+ 2m+ 1. See Figure 4.10

for a deceleration lane with m = 6 and p = 15. The players, priorities and edges are

described in Table 4.8.

Node Player Priority Successors

t1 0 p {s, r, c}
ti>1 0 p+ 2i− 2 {s, r, ti−1}
c 0 p+ 2m+ 1 {s, r}
ai 1 p+ 2i− 1 {ti}
s ? > p+ 2m+ 1 ?
r ? > p+ 2m+ 1 ?

Table 4.8: Description of the Deceleration Lane

4.6. DETERMINISTIC RULES 121

s r

c : 28

a1 : 16

s r

t1 : 15

a2 : 18

s r

t2 : 17

a3 : 20

s r

t3 : 19

a4 : 22

s r

t4 : 21

a5 : 24

s r

t5 : 23

a6 : 26

s r

t6 : 25

Figure 4.10: A Deceleration Lane (with m = 6 and p = 15)

A deceleration lane serves the following purpose. Assume that one of the output

nodes, say r, has the better valuation compared to the other root node, and assume

further that this setting sustains for some iterations.

The input nodes, say a1, . . . , am, now serve as entry points, and all reach the best

valued root – r – by some internal nodes. The valuation ordering of all input nodes

depends on the iteration: at first, a1 has a better valuation than all other input nodes.

Then, a2 has a better valuation than all other input nodes and so on.

This process continues until the other output node, say s, has a better valuation

than r. Within the next iteration, the internal nodes perform a resetting step s.t. all

input nodes eventually reach the new root node. One iteration after that, a1 has the

best valuation compared to all other input nodes again.

In other words, by giving one of the roots, say s, a better valuation than another

root, say r, it is possible to reset and therefore reuse the lane again. In fact, the lower

bound construction will use a deceleration lane with two roots s and r, and will

employ s only for resetting, i.e. after some iterations with r �σ s, there will be one

iteration with s �σ r and right after that again r �σ s.

From an abstract point of view, we describe the state of a deceleration lane by

which of the two roots is chosen and by how many ti nodes are already moving down

to c. Formally, we say that σ is in deceleration state (x, j) (where x ∈ {s, r} and

0 < j ≤ m+ 1 a natural number) iff

122 CHAPTER 4. LOWER BOUNDS FOR STRATEGY ITERATION

1. σ(c) = x,

2. σ(t1) = c if j > 1,

3. σ(ti) = ti−1 for all 1 < i < j, and

4. σ(ti) = x for all j ≤ i.

We say that the deceleration lane is rooted in x if σ is in state (x, ∗), and that the

index is i if σ is in state (∗, i). Whenever a strategy σ is in state (x, i), we define

root(σ) = x and ind(σ) = i. In this case, we say that the strategy is well-behaved.

The valuation ordering of the deceleration lane can described as follows: (1) if

the ordering of the root nodes changes, all input nodes have a worse valuation than

the better root, and (2) otherwise the best valued input node is ai−1.

Lemma 4.29. Let σ be a strategy in deceleration state (x, i). Let x̄ denote the other

root. Then

1. x ≺σ x̄ implies aj ≺σ x̄ for all j (“resetting results in unprofitable lane”).

2. x̄ ≺σ x implies x ≺σ ai ≺σ . . . ≺σ am ≺σ c ≺σ a1 ≺σ . . . ≺σ ai−1 (“new

best-valued node in each iteration”).

The switching behavior of the player 0 controlled nodes can be described as

follows: (1) if the ordering of the root node changes, than the whole lane resets, and

(2) otherwise the lane assembles further, providing a new best-valued input node.

Lemma 4.30. Let σ be a strategy that is in deceleration state (x, i). Let x̄ denote

the other root. Let σ′ = SWITCH-ALL(σ). Then

1. x ≺σ x̄ implies that σ′ is in state (x̄, 1) (“lane resets”).

2. x̄ ≺σ x implies that σ′ is in state (x,min(i,m) + 1) (“lane assembles one step

at a time”).

3. σ′ is well-behaved (“always ending up with well-behaved strategies”).

4.6. DETERMINISTIC RULES 123

The main purpose of a deceleration lane is to absorb the update activity of other

nodes in such a way that wise (i.e. edges that will result in much better valuations

after switching and reevaluating) strategy updates are postponed. Consider a node,

for instance, that has more than one improving switch; SWITCH-ALL will select the

edge with the best valuation to be switched. In order to prevent that one particular

improving switch is applied for some iterations, one can connect the node to the

input nodes of the deceleration lane.

The particular scenario in which we will use the deceleration lane are simple

cycles as described in the previous paragraph. We will connect the simple cycles

encoding the bits of our counter to the deceleration lane in such a way, that lower

cycles have less edges entering the deceleration lane. This construction ensures that

lower open cycles (representing unset bits) will close (i.e. set the corresponding bit)

before higher open cycles (representing higher unset bits) have their turn to close.

Cycle Gate

The simple cycles will appear in a more complicated gadget, called cycle gate. We

will have n different cycle gates, and fix some index i for the cycle gate gadget for

the sake of this paragraph.

Formally, a cycle gate consists of two internal nodes ei and hi, two input nodes

fi and gi, and two output nodes di and ki. The output node di will be connected to a

set of other nodes Di in the game graph, and ki to some other set Ki as well. The

two nodes di and ei form a simple cycle as described earlier.

All priorities of the cycle gate are based on two odd priorities pi and p′i. See

Figure 4.11 for a cycle gate of index 1 with p′1 = 3 and p1 = 33. The players,

priorities and edges are described in Table 4.9.

The main idea behind a cycle gate is to have a pass-through structure controlled

by the simple cycle that is either very profitable or quite unprofitable. The pass-

through structure of the cycle gate has one major input node, named gi, and one

major output node, named ki. The input node is controlled by player 0 and connected

via two paths with the output node; there is a direct edge and a longer path leading

through the interior of the cycle gate.

124 CHAPTER 4. LOWER BOUNDS FOR STRATEGY ITERATION

Node Player Priority Successors

di 0 p′i {ei} ∪Di

ei 1 p′i + 1 {di, hi}
gi 0 p′i + 3 {fi, ki}
ki 0 pi Ki

fi 1 pi + 2 {ei}
hi 1 pi + 3 {ki}

Table 4.9: Description of the Cycle Gate

d1 : 3 e1 : 4 h1 : 36 k1 : 33

f1 : 35 g1 : 6

Figure 4.11: A Cycle Gate (index 1 with p′1 = 3 and p1 = 33)

However, the longer path only leads to the output node if the simple cycle,

consisting of one player 0 node di and one player 1 node ei, is closed. In this case, it

is possible and profitable to reach the output node via the internal path; otherwise,

this path is not accessible, and hence, the input node has to select the unprofitable

direct way to reach the output node.

We will have one additional input node, named fi, that can only access the path

leading through the interior of the cycle gate, for the following purpose. Assume that

the simple cycle has just been closed and now the path leading through the interior

becomes highly profitable. Hence, the next switching event to happen will be node

gi switching from the direct path to the path through the interior. However, it will be

useful to be able to reach the highly profitable path from some parts of the outside

4.6. DETERMINISTIC RULES 125

graph one iteration before it is accessible via gi. For this reason, we include an

additional input node fi that immediately accesses the interior path.

We say that a cycle gate is closed resp. open iff the interior simple cycle is closed

resp. open. Similarly, we say that a cycle gate is accessed resp. skipped iff the access

control node gi moves through the interior (σ(gi) = fi) resp. directly to ki.

From an abstract point of view, we describe the state of a cycle gate by a pair

(βi(σ), αi(σ)) ∈ {0, 1}2. The first component describes the state of the simple cycle,

and the second component gives the state of the access control node. We write:

1. βi(σ) = 1 iff the i-th cycle gate is closed, and

2. αi(σ) = 1 iff the i-th cycle gate is accessed.

Lemma 4.31. Let σ be a strategy.

1. If gate i is open, we have fi ≺σ σ(di).

2. If gate i is closed, we have σ(ki) ≺σ fi.

3. If gate i is closed and skipped, we have gi ≺σ fi.

4. If gate i is accessed, we have fi ≺σ gi.

5. If gate i is skipped, we have σ(ki) ≺σ gi.

Lemma 4.32. Let σ be a strategy and σ′ = SWITCH-ALL(σ).

1. If gate i is σ-closed, then gate i is σ′-accessed (“closed gates will be ac-

cessed”).

2. If gate i is σ-open and σ(di) ≺σ hi, then gate i is σ′-skipped (“open gates

with unprofitable exit nodes will be skipped”).

3. If gate i is σ-open and hi ≺σ σ(di), then gate i is σ′-accessed (“open gates

with profitable exit nodes will be accessed”).

126 CHAPTER 4. LOWER BOUNDS FOR STRATEGY ITERATION

The last two items of Lemma 4.32 are based on the uniqueness of priorities in

the game, implying that there are no priorities between fi and hi.

We will use cycle gates to represent the bit states of a binary counter: unset bits

will correspond to cycle gates with the state (0, 0), set bits to the state (1, 1). Setting

and resetting bits therefore traverses more than one phase, more precisely, from (0, 0)

over (1, 0) to (1, 1), and from the latter again over (0, 1) to (0, 0).

Particularly, it can be observed that the second component of the cycle gate states

switches one iteration after the first component in both cases.

Full Construction

In this paragraph, we provide the complete construction of the lower bound family.

It essentially consists of a sink x, a deceleration lane of length 2n that is connected

to the two roots s and r, and n cycle gates. The simple cycles of the cycle gates are

connected to the roots and to the deceleration lane such that lower cycle gates have

less edges to the deceleration lane. This construction ensures that lower open cycle

gates will close before higher open cycle gates.

The output node of a cycle gate is connected to the sink and to the g∗-input nodes

of all higher cycle gates. The s root node is connected to all f∗-input nodes, the r

root node is connected to all g∗-input nodes.

The games are denoted by Gn = (Vn, Vn,0, Vn,1, En,Ωn) and the sets of nodes

are Vn := {x, s, c, r}∪{ti, ai | 1 ≤ i ≤ 2n}∪{di, ei, gi, ki, fi, hi | 1 ≤ i ≤ n}. The

players, priorities and edges are described in Table 4.10. The game G3 is depicted in

Figure 4.12.

Fact 4.33. The game Gn has 10 · n + 4 nodes, 1.5 · n2 + 20.5 · n + 5 edges and

12 · n+ 8 as highest priority. In particular, |Gn| = O(n2).

As an initial strategy we select the following ι. It will correspond to the global

counter state in which no bit has been set.

ι(t1) = c ι(gi) = ki ι(ti>1, c, di) = r ι(ki, s, r) = x

4.6. DETERMINISTIC RULES 127

s
:

3
0

r
:

3
2

x
:

1

sr

c
:

2
8

a
1

:
1
6

sr

t 1
:

1
5

a
2

:
1
8

sr

t 2
:

1
7

a
3

:
2
0

sr

t 3
:

1
9

a
4

:
2
2

sr

t 4
:

2
1

a
5

:
2
4

sr

t 5
:

2
3

a
6

:
2
6

sr

t 6
:

2
5

d
1

:
3

e 1
:

4
h
1

:
3
6

k
1

:
3
3

f 1
:

3
5

g 1
:

6

r
s

d
2

:
7

e 2
:

8
h
2

:
4
0

k
2

:
3
7

f 2
:

3
9

g 2
:

1
0

r
s

d
3

:
1
1

e 3
:

1
2

h
3

:
4
4

k
3

:
4
1

f 3
:

4
3

g 3
:

1
4

r
s

Figure 4.12: SWITCH-ALL Lower Bound Game G3

128 CHAPTER 4. LOWER BOUNDS FOR STRATEGY ITERATION

Node Player Priority Successors

t1 0 4n+ 3 {s, r, c}
ti>1 0 4n+ 2i+ 1 {s, r, ti−1}
ai 1 4n+ 2i+ 2 {ti}
c 0 8n+ 4 {s, r}
di 0 4i+ 1 {s, ei, r} ∪ {aj | j < 2i+ 1}
ei 1 4i+ 2 {di, hi}
gi 0 4i+ 4 {fi, ki}
ki 0 8n+ 4i+ 7 {x} ∪ {gj | i < j ≤ n}
fi 1 8n+ 4i+ 9 {ei}
hi 1 8n+ 4i+ 10 {ki}
s 0 8n+ 6 {fj | j ≤ n} ∪ {x}
r 0 8n+ 8 {gj | j ≤ n} ∪ {x}
x 1 1 {x}

Table 4.10: Lower Bound Construction for the Locally Optimizing Policy

Note that ι particularly is well-behaved. Hence, by Lemma 4.30(3) we know that

all strategies that will occur in a run of the strategy improvement algorithm will be

well-behaved.

We will see later, how the family Gn can be refined in such a way that it only

comprises a linear number of edges. We present the games with a quadratic number

of edges first as the refined family looks even more confusing and obfuscates the

general principle.

Lemma 4.34. Let n > 0.

1. The game Gn is completely won by player 1.

2. x is the sink of Gn and the cycle component of Ξι(w) equals x for all w.

Proof. Let n > 0.

1. Note that the only nodes owned by player 1 with an out-degree greater than

1 are e1,. . .,en. Consider the player 1 strategy τ which selects to move to hi

4.6. DETERMINISTIC RULES 129

from ei for all i. Now it is the case that Gn|τ contains exactly one cycle that is

eventually reached no matter what player 0 does, namely the self-cycle at x

which is won by player 1.

2. The self-cycle at x obviously is the sink as it can be reached from all other

nodes and has the smallest priority 1. Since xEx is the only cycle won by

player 1 in Gn|ι, x must be the cycle component of each ι-node valuation.

By Lemma 4.13 it follows that Gn is a sink game, hence it is safe to identify the

valuation of a node with its path component from now on.

Lower Bound Description

Here, we describe how the binary counter performs the task of counting by strategy

improvement. Our games implement a full binary counter in which every bit is

represented by a simple cycle encapsulated in a cycle gate. An unset bit i corresponds

to an open simple cycle in cycle gate i, a set bit i corresponds to a closed simple

cycle in cycle gate i.

Recall that we represent the bit state of the counter by elements from Bn = {b ∈
{0, 1}∞ | ∀i > n : bi = 0}. For b = (bn, . . . , b1) ∈ Bn, let bi denote the i-th

component in b for every i ≤ n, where bn denotes the most and b1 denotes the least

significant bit. By b + 1, we denote the increment of the number represented by b by

1. The least resp. greatest bit states are denoted by 0 resp. 1n. Given a configuration

b, we access the i-next set bit by νni (b) = min({n+ 1} ∪ {j ≥ i | bj = 1}), and the

i-next unset bit by µi(b) = min{j ≥ i | bj = 0}.

From the most abstract point of view, our lower bound construction performs

binary counting on Bn. However, the increment of a global bit state requires more

than one strategy iteration, more precisely four different phases that will be described

next (with one phase of dynamic length).

Every phase is defined w.r.t. a given global counter state b ∈ Bn. Let b ∈ Bn be

a global bit state different from 1n.

130 CHAPTER 4. LOWER BOUNDS FOR STRATEGY ITERATION

An abstract counter performs the increment from b to b + 1 by computing

b[µn1 (b) 7→ 1][j<µn1 (b) 7→ 0], i.e. by setting bit µn1 (b) and by resetting all lower bits

j<µn1 (b). In the context of the games, we start in phase 1 corresponding to b, and

then proceed to phase 2 and phase 3 corresponding to b[µn1 (b) 7→ 1], from phase 3

to phase 4 corresponding to b[µn1 (b) 7→ 1][j < µn1 (b) 7→ 0], and finally from phase 4

to phase 1 again. The transition from phase 2 to phase 3 and from phase 4 to phase 1

handles the correction of the internal structure connecting the cycles with each other.

We now proceed to a more detailed yet informal description of all phases. Given

a strategy σ, we denote the associated simple cycle state (βn(σ), . . . , β1(σ)) by bσ,

and the associated access state (αn(σ), . . . , α1(σ)) by aσ.

The first phase, called the waiting phase, corresponds to a stable strategy σ

in which open cycles are busy waiting to be closed while the deceleration lane is

assembling. Cycle gates that correspond to set bits are closed and accessed, while

cycle gates of unset bits are open and skipped, i.e. b = bσ = aσ. The selector nodes

ki move to the next higher cycle gate corresponding to a set bit, and both roots are

connected to the least set bit νn1 (b).

The only improving switches in the first phase are edges of open simple cycles

and edges of the deceleration lane. The first phase ends, when a simple cycle

corresponding to an unset bit has no more edges leading to the deceleration lane that

keeps it busy waiting, and closes. Since lower bits have less edges going to the lane,

it is clear that this will be the least unset bit µn1 (b).

The second phase, called the set phase, corresponds to a strategy σ in which

the least unset bit has just been set, i.e. to the global state b[µn1 (b) 7→ 1] = bσ. The

selector nodes and roots are as in phase 1 and also the access states, i.e. b = aσ.

The deceleration lane is still assembling, and the improving switches again

include edges of open simple cycles and edges of the deceleration lane. Additionally,

it is improving for the cycle gate µn1 (b) to be accessed and for the root s to update to

cycle gate µn1 (b). By performing all these switches, we enter phase three.

The third phase, called the access phase, is defined by a renewed correspondence

of the cycle gate structure again, i.e. b[µn1 (b) 7→ 1] = bσ = aσ. The s root is

connected to µn1 (b) while r is still connected to νn1 (b). This implies that s now has a

much better valuation than r.

4.6. DETERMINISTIC RULES 131

The cycle gate with the best valuation is now µn1 (b), hence, there are many

improving switches, that eventually lead to cycle gate µn1 (b). First, there are all

nodes of the deceleration lane that have improving switches to s. Second, r has an

improving switch to µn1 (b). Third, lower closed cycles (all lower cycles are closed!)

have an improving switch to µn1 (b) (opening them again). Fourth, all lower selector

nodes have an improving switch to µn1 (b). By performing all these switches, we

enter phase 4.

The fourth and last phase, called the reset phase, corresponds to a strategy σ

that performed the full increment, i.e. bσ = b + 1. However, the access states are

not reset, i.e. aσ = b[µn1 (b) 7→ 1] and the deceleration lane is moving to root s. By

switching the lane back to the initial configuration and the access states to match the

simple cycles states, we end up in phase 1 again that corresponds to the incremented

global counter state.

Technicalities

In this paragraph, we formalize the phases and prove the claimed transitions correct.

For the sake of this paragraph, let σ be a strategy and b ∈ Bn be a global counter

state. All phases will be defined w.r.t. σ and b ∈ Bn. Let σ′ = SWITCH-ALL(σ).

To keep everything as simple as possible and to be able to prove all the lemmata

without considering special cases, we will assume that b is different from 0 and that

the two highest bits in b are zero and remain zero, i.e. we will only use the first n− 2

bits for counting. Note however, that every bit works as intended in the counter.

Recall that every strategy σ occurring will be well-behaved. In addition to the

deceleration lane and the cycle gates, we have two more structures that are controlled

by a strategy σ, namely the two roots r and s, and the cycle gate output nodes ki.

We write σ(r) = i to denote that σ(r) = gi, and σ(r) = n + 1 if σ(r) = x; we

write σ(s) = i to denote that σ(s) = fi, and σ(s) = n + 1 if σ(s) = x; we write

σ(ki) = j to denote that σ(ki) = gj , and σ(ki) = n + 1 if σ(ki) = x. We also use

a more compact notation for the strategy decision of di-nodes of open cycles. We

write σ(di) = j if σ(di) = aj .

Recall that we say that a strategy σ is rooted in s or r, if every path in the

deceleration lane conforming to σ eventually exits to s resp. r. Likewise, we say

132 CHAPTER 4. LOWER BOUNDS FOR STRATEGY ITERATION

that σ has index i if all nodes of the deceleration lane with smaller index j < i are

moving down the lane by σ, and that i is the first index which is directly exiting

through the root.

We now proceed to the formal definition of all phases. We say that σ is a b-phase

1 strategy iff all the following conditions hold:

1. b = bσ = aσ, i.e. set bits correspond to closed and accessed cycle gates, while

unset bits correspond to open and skipped cycle gates,

2. root(σ) = r, i.e. the strategy is rooted in r,

3. σ(s) = σ(r) = νn1 (b), i.e. both roots are connected to the least set bit,

4. σ(ki) = νni+1(b), i.e. the selector nodes move to the next set bit,

5. ind(σ) ≤ 2µn1 (b) + 2, i.e. the deceleration lane has not passed the least unset

bit, and

6. σ(dj) 6= ind(σ) − 1 for all j with bj = 0, i.e. every open cycle node is not

connected to the best-valued node of the lane.

Lemma 4.35. Let σ be a b-phase 1 strategy with ind(σ) < 2µn1 (b) + 2. Then

σ′ is a b-phase 1 strategy with ind(σ′) = ind(σ) + 1, and if ind(σ) > 1, then

σ′(dµn1 (b)) = ind(σ)− 1.

We say that σ is a b-phase 2 strategy iff all the following conditions hold:

1. b[µn1 (b) 7→ 1] = bσ and b = aσ, i.e. set bits correspond to closed and accessed

(for all set bits except for µn1 (b)) cycle gates, while unset bits correspond to

open and skipped cycle gates,

2. root(σ) = r, i.e. the strategy is rooted in r,

3. σ(s) = σ(r) = νn1 (b), i.e. both roots are connected to the former least set bit,

4. σ(ki) = νni+1(b), i.e. the selector nodes move to the next set bit,

4.6. DETERMINISTIC RULES 133

5. ind(σ) ≤ 2µn1 (b) + 3, i.e. the deceleration lane has not passed the next bit,

and

6. σ(dj) 6= ind(σ) − 1 for all j > µn1 (b) with bj = 0, i.e. every higher open

cycle node is not connected to the best-valued node of the lane.

Lemma 4.36. Let σ be a b-phase 1 strategy with ind(σ) = 2µn1 (b) + 2 and

σ(dµn1 (b)) = ind(σ). Then σ′ is a b-phase 2 strategy.

We say that σ is a b-phase 3 strategy iff all the following conditions hold:

1. b[µn1 (b) 7→ 1] = bσ = aσ, i.e. set bits correspond to closed and accessed cycle

gates, while unset bits correspond to open and skipped cycle gates,

2. root(σ) = r, i.e. the strategy is rooted in r,

3. σ(s) = µn1 (b) and σ(r) = νn1 (b), i.e. one root is connected to the new set bit

and the other one is still connected to the former least set bit,

4. σ(ki) = νni+1(b), i.e. the selectors move to the former next set bit,

5. σ(dj) 6= s for all j > µn1 (b) with bj = 0, i.e. every higher open cycle node is

not connected to the best-valued root node.

Lemma 4.37. Let σ be a b-phase 2 strategy. Then σ′ is a b-phase 3 strategy.

We say that σ is a b-phase 4 strategy iff all the following conditions hold:

1. b + 1 = bσ and b[µn1 (b) 7→ 1] = aσ, i.e. set bits correspond to closed

and accessed cycle gates, while unset bits correspond to open and skipped

(> µn1 (b)) resp. accessed (< µn1 (b)) cycles gates,

2. root(σ) = s, i.e. the strategy is rooted in s,

3. σ(s) = σ(r) = µn1 (b), i.e. both roots are connected to the new set bit,

4. σ(ki) = νni+1(b + 1), i.e. the selectors move to the new next set bit,

5. ind(σ) = 0, i.e. the deceleration lane has reset, and

134 CHAPTER 4. LOWER BOUNDS FOR STRATEGY ITERATION

6. σ(dj) = s for all j with (b + 1)j = 0, i.e. every open cycle node is connected

to the s root.

Lemma 4.38. Let σ be a b-phase 3 strategy. Then σ′ is a b-phase 4 strategy.

Lemma 4.39. Let σ be a b-phase 4 strategy and b+1 6= 1n. Then σ′ is a b+1-phase

1 strategy with ind(σ′) = 1.

Finally, we are ready to prove that our family of games really implements a

binary counter. From Lemmata 4.35, 4.36, 4.37, 4.38 and 4.39, we immediately

derive the following.

Lemma 4.40. Let σ be a phase 1 strategy and bσ 6= 1n. There is some k ≥ 4 s.t.

σ′ = SWITCH-ALLk(σ) is a phase 1 strategy and bσ′ = bσ + 1.

Results

Particularly, we conclude that strategy improvement with the SWITCH-ALL rule

requires exponentially many iterations on Gn.

Theorem 4.41. Let n > 0. Parity game strategy iteration with SWITCH-ALL-rule

requires at least 2n improvement steps on Gn.

Since Gn is a family of sink parity games, it follows directly by Theorem 4.19

that we have an exponential lower bound for payoff games.

Corollary 4.42. Payoff game strategy iteration with SWITCH-ALL-rule requires

exponential time.

Fearnley [Fea10] was the first to notice that the family of parity games Gn can

be translated to Markov decision processes, hence we have the same lower bound

here as well.

Theorem 4.43 ([Fea10]). Markov decision process strategy iteration parameterized

with the SWITCH-ALL-rule requires exponential time.

4.6. DETERMINISTIC RULES 135

One could conjecture that sink parity games form a “degenerate” class of parity

games as they are always won by player 1. Remember that the problem of solving

parity games is to determine the complete winning sets for both players.

In other words: Is there a family of games on which the strategy improvement

algorithm requires exponentially many iterations to find a player 0 strategy that wins

at least one node in the game?

The answer to this question is positive. Simply take our lower bound games Gn

and remove the edge from en to hn. Remember that the first time player 1 wants

to use this edge by best response is, when the binary counter is about to flip bit n,

i.e. after it processed 2n−1 many counting steps. Eventually, the player 0 strategy is

updated s.t. σ(dn) = en, forcing player 1 by best response to move to hn. Removing

this edge leaves player 1 no choice but to stay in the cycle which is dominated by

player 0.

Theorem 4.44. Parity game strategy iteration with SWITCH-ALL-rule requires

exponential time to decide the winner of a node.

Improvement: Linear Number of Edges

Consider the lower bound construction again. It consists of a deceleration lane,

cycle gates, two roots and connectives between these structures. All three kinds

of structures only have linearly many edges when considered on their own. The

quadratic number of edges is solely due to the d∗-nodes of the simple cycles of the

cycle gates that are connected to the deceleration lane and due to the k∗-nodes of the

cycle gates that are connected to all higher cycle gates.

We focus on the edges connecting the d∗-nodes with the deceleration lane first.

Their purpose is twofold: lower cycle gates have less edges to the deceleration lane

(so they close first), and as long as an open cycle gate should be prevented from

closing, there must be a directly accessible lane input node in every iteration with a

better valuation than the currently chosen lane input node.

Instead of connecting di to all aj with j < 2i + 1 nodes, it would suffice to

connect di to two intermediate nodes, say yi and zi, that are controlled by player 0

136 CHAPTER 4. LOWER BOUNDS FOR STRATEGY ITERATION

c : 28

a1 : 16t1 : 15

a2 : 18t2 : 17

a3 : 20t3 : 19

a4 : 22t4 : 21

a5 : 24t5 : 23

a6 : 26t6 : 25

d1 : 3

d2 : 7

d3 : 11

c : 40

a1 : 28t1 : 27

a2 : 30t2 : 29

a3 : 32t3 : 31

a4 : 34t4 : 33

a5 : 36t5 : 35

a6 : 38t6 : 37

d1 : 15

y1 : 4

z1 : 2

c

c

d2 : 19

y2 : 8

z2 : 6

c

c

d3 : 23

y3 : 12

z3 : 10

c

c

Figure 4.13: Intermediate Layer

with negligible priorities. We connect zi to all aj with even j < 2i + 1 and yi to

all aj with odd j < 2i+ 1. By this construction, we shift the “busy updating”-part

alternately to yi and zi, and di remains updating as well by switching from yi to zi
and vice versa in every iteration.

Next, we observe that the edges connecting yi (resp. zi) to the lane are a proper

subset of the edges connecting yi+1 (resp. zi+1) to the lane, and hence we adapt our

construction in the following way. Instead of connecting yi+1 (and similarly zi+1)

to all aj with even j < 2i + 3, we simply connect yi+1 to a2i+1 and to yi. In order

to ensure proper resetting of the two intermediate lanes constituted by y∗ and z∗
in concordance with the original deceleration, we need to connect every additional

node to c. See Figure 4.13 for the construction (note that by introducing new nodes

with “negligible priorities”, we simply shift all other priorities in the game).

Second, we consider the edges connecting lower cycle gates with higher cycle

gates. As the set of edges connecting ki+1 with higher gj is a proper subset of ki,

we can apply a similar construction by attaching an additional lane to cycle gate

connections that subsumes shared edges.

4.6. DETERMINISTIC RULES 137

Improvement: Binary Out-degree

Every parity game can be linear-time-reduced to an equivalent (in the sense that

winning sets and strategies can be easily related to winning sets and strategies in the

original game) parity game with an edge out-degree bounded by two. See Figure 4.14

for an example of such a transformation.

v v v′ v′′

Figure 4.14: Binary Out-degree Transformation

However, not every such transformation that can be applied to our construction

(for clarity of presentation, we start with our original construction again) yields

games on which strategy iteration still requires an exponential number of iterations.

We discuss the necessary transformations for every player 0 controlled node in the

following, although we omit the exact priorities of additional helper nodes. It suffices

to assign arbitrary even priorities to the additional nodes that lie below the priorities

of all other nodes of the original game (except for the sink).

First, we consider the two root nodes s and r, that are connected to the sink x

and to f1,. . ., fn resp. g1,. . .,gn. As r copies the decision (see the transition from

the access to the reset phase) of s, it suffices to describe how the out-degree-two

transformation is to be applied to s. We introduce n additional helper nodes s′1,. . .,s′n,

replace the outgoing edges of s by x and s′n, connect s′i+1 with fi+1 and s′i, and

finally s′1 simply with f1.

It is still possible to show that s reaches the best valued fi after one iteration.

Assume that s currently reaches some cycle gate i via the ladder that is given by

the helper nodes. Let j be the next best-valued cycle gate that just has been set. If

j > i, it follows that s currently reaches s′j that moves to s′j−1, but updates within

one iteration to fj . If j < i, it must be the case that j = 1 (i is the least bit which was

138 CHAPTER 4. LOWER BOUNDS FOR STRATEGY ITERATION

set; j is the least bit which was unset). Moreover, s currently reaches s′i that moves

to fi. All lower s′k+1 with k + 1 < i move to s′k since lower unset cycle gates are

more profitable than higher unset cycle gates (unset cycle gates eventually reach one

of the roots via the unprofitable f∗ nodes). Hence, s′i updates within one iteration to

s′i−1.

Second, there are the output nodes of cycle gates k1,. . ., kn. We apply a very

similar ladder-style construction here. For every ki, we introduce n− i additional

helper nodes k′i,j with i < j ≤ n, replace the outgoing edges of ki by x and k′i,i+1,

connect k′i,j with gj and k′i,j+1 (if j < n). The argument why this construction

suffices runs similarly as for the root nodes.

Third, there are the nodes t1,. . .,t2n of the deceleration lane that are connected

to three nodes. Again, we introduce an additional helper node t′i for every ti, and

replace the two edges to r and ti−1 resp. c by an edge to t′i that is connected to r and

ti−1 resp. c instead. It is not hard to see that this slightly modified deceleration lane

still provides the same functionality.

Finally, there are the player 0 controlled nodes d1,. . .,dn of the simple cycles of

the cycle gates. Essentially, two transformations are possible here. Both replace di
by as many helper nodes d′i,x as there are edges from di to any other node x but ei.

Then, every d′i,x is connected to the target node x.

The first possible transformation connects every d′i,x with ei and vice versa,

yielding a multicycle with ei as the center of each cycle. The second possible

transformation connects ei with the first d′i,x1 , d′i,x1 with d′i,x2 etc. and the last d′i,xl
again with ei, yielding one large cycle. Both replacements behave exactly as the

original simple cycle.

The transformation described here results in a quadratic number of nodes since

we started with a game with a quadratic number of edges. We note, however, that a

similar transformation can be applied to the version of the game with linearly many

edges, resulting in a game with binary out-degree of linear size.

4.6. DETERMINISTIC RULES 139

4.6.2 Switch Best Rule

The SWITCH-BEST or globally optimizing rule computes a globally optimal succes-

sor strategy in the sense that the associated valuation is the best under all allowed

successor strategies.

SWITCH-BEST: Apply the best possible combination of switches.

More formally, given an escape (see [Sch08]) payoff game G, an improvable

strategy σ and the improved strategy σ∗ = SWITCH-BEST(σ), it holds for every

non-empty applicable subset of improving switches I that Ξσ[I] E Ξσ∗ .

The rule can be interpreted as providing strategy improvement with a one-step

lookahead; it computes the optimal strategy under all possible strategies that can be

reached by a single improvement step.

The interested reader is pointed to Schewe’s paper [Sch08] for all the details on

how to effectively compute the optimal strategy update. This computation is only

defined for escape payoff games, which correspond to sink parity games in the parity

game world.

Theorem 4.45 ([Sch08]). The SWITCH-BEST rule can be computed in polynomial

time for deterministic escape payoff games.

One may be misled to combine the existence of an (artificial) improvement rule

SWITCH-LIN, that enforces linearly many iterations in the worst case, with the

existence of the improvement rule SWITCH-BEST, that selects the optimal successor

strategy in each iteration, in order to propose that SWITCH-BEST should also enforce

linearly many iterations in the worst case.

The reason why this proposition is incorrect lies in the intransitivity of optimal-

ity of strategy updates. Although SWITCH-LIN(σ)E SWITCH-BEST(σ) for every

strategy σ, this is not necessarily the case for iterated applications, i.e.

SWITCH-LIN(SWITCH-LIN(σ))E SWITCH-BEST(SWITCH-BEST(σ))

140 CHAPTER 4. LOWER BOUNDS FOR STRATEGY ITERATION

does not necessarily hold for all strategies σ.

The lower bound construction for the globally optimizing rule again is a family of

sink parity games that implement a binary counter by a combination of a (modified)

deceleration lane and a chain of (modified) cycle gates.

This chapter is organized as follows. First, we discuss the modifications of the

deceleration lane and the cycle gates and why they are required to obtain a lower

bound for the globally optimizing rule. Then, we present the full construction along

with some remarks to the correctness.

The main difference between the locally optimizing rule and the globally opti-

mizing rule is that the latter takes cross-effects of improving switches into account.

It is aware of the impact of any combination of profitable edges, in contrast to the

locally optimizing rule that only sees the local valuations, but not the effects.

One example that separates both rules are the simple cycles of the previous

chapter: the SWITCH-ALL rule sees that closing a cycle is an improvement, but not

that the actual profitability of closing a cycle is much higher than updating to another

node of the deceleration lane.

The globally optimizing rule, on the other hand, is well aware of the profitability

of closing the cycle in one step. In some sense, the rule has the ability of a one-step

lookahead. However, our lower bound for the globally optimizing rule is not so

different from the original construction – the trick is to hide very profitable choices

by structures that cannot be solved by a single strategy iteration. In other words, we

simply need to replace the gadgets that can be solved with a one-step lookahead by

slightly more complicated variations that cannot be solved within one iteration and

that maintain this property for as long as it is necessary.

Modified Deceleration Lane

The modified deceleration lane looks almost the same as the original deceleration

lane. It has again several, say m, input nodes a1, . . . , am along with some special

input node c. We have two output roots, r and s, this time with a slightly different

connotation. We call r the default root and s the reset root.

4.6. DETERMINISTIC RULES 141

More formally, a modified deceleration lane consists of m (in our case, m will be

6 · n− 2) internal nodes t1, . . ., tm, m input nodes a1, . . ., am, one additional input

node c, the default root output node r and the reset root output node s.

All priorities of the modified deceleration lane are based on some odd priority p.

We assume that all root nodes have a priority greater than p+ 2m+ 1. The structural

difference between the modified deceleration lane and the original one is that the

lane base c only has one outgoing edge leading to the default root r. The players,

priorities and edges are described in Table 4.11.

Node Player Priority Successors

t1 0 p {s, r, c}
ti>1 0 p+ 2i− 2 {s, r, ti−1}
c 1 p+ 2m+ 1 {r}
ai 1 p+ 2i− 1 {ti}
s ? > p+ 2m+ 1 ?
r ? > p+ 2m+ 1 ?

Table 4.11: Description of the Modified Deceleration Lane

The intuition behind the two roots is the same as before. The default root r serves

as an entry point to the cycle gate structure and the reset root s is only used for a

short time to reset the whole deceleration lane structure.

We describe the state of a modified deceleration lane again by a tuple specifying

which root has been chosen and by how many ti nodes are already moving down

to c. Formally, we say that σ is in deceleration state (x, j) (where x ∈ {s, r} and

0 < j ≤ m+ 1 a natural number) iff

1. σ(t1) = c if j > 1,

2. σ(ti) = ti−1 for all 1 < i < j, and

3. σ(ti) = x for all j ≤ i.

The modified deceleration lane treats the two roots differently. If the currently

best-valued root is the reset root, it is the optimal choice for all t∗- nodes to directly

142 CHAPTER 4. LOWER BOUNDS FOR STRATEGY ITERATION

move to the reset root. In other words, no matter what state the deceleration lane

is currently in, if the reset root provides the best valuation, it requires exactly one

improvement step to reach the optimal setting.

If the currently best-valued root is the default root, however, it is profitable to

reach the root via the lane base c. The globally optimizing rule behaves in this case

just like the locally optimizing rule, because the deceleration lane has exactly one

improving switch at a time which is also globally profitable.

The following lemma formalizes the intuitive description of the deceleration

lane’s behavior: a change in the ordering of the root valuations leads to a reset of the

deceleration lane, otherwise the lane continues to align its edges to eventually reach

the best-valued root node via c.

It is notable that resetting the lane by an external event (i.e. by giving s a better

valuation than r) is a bit more difficult than in the case of the locally optimizing

rule. Let σ be a strategy and σ′ = SWITCH-BEST(σ). Assume that the current state

of the deceleration lane is (r, i) and now we have that s has a better valuation than

r, i.e. s �σ r. Assume further – which for instance applies to our original lower

bound construction – that the next strategy σ′ assigns a better valuation to r again,

i.e. r �σ′ s. Therefore, it would not be the globally optimal choice to reset the

deceleration lane to s, but instead just to keep the original root r.

In other words, the globally optimizing rule uses its one-step lookahead property

to refrain from resetting the lane if the resetting event persists for only one iteration.

The solution to fool the one-step lookahead, however, is not too difficult: we just

alter our construction in such a way that the resetting root will have a better valuation

than the default root for two iterations.

Lemma 4.46. Let σ be a strategy that is in deceleration state (x, i). Let x̄ denote

the other root. Let σ′ = SWITCH-BEST(σ).

1. r �σ s, x = r implies that σ′ is in state (r,min(m, i) + 1).

2. x̄ �σ x and x̄ �σ′ x implies that σ′ is in state (x̄, 1).

The purpose of the modified deceleration lane is exactly the same as before: we

absorb the update activity of cyclic structures that represent the counting bits of the

lower bound construction.

4.6. DETERMINISTIC RULES 143

Stubborn Cycles

With the locally optimizing rule, we employed simple cycles and hid the fact that the

improving edge leading into the simple cycle results in a much better valuation than

updating to the next best-valued node of the deceleration lane.

However, simple cycles do not suffice to fool the globally optimizing rule. If it is

possible to close the cycle within one iteration, the rule uses its one-step lookahead

feature to see that closing the cycle is much more profitable than updating to the

deceleration lane.

The solution to this problem is to replace the simple cycle structure by a cycle

consisting of more than one player 0 node s.t. it is impossible to close the cycle

within one iteration. More precisely, we use a structure consisting again of one

player 1 node e and three player 0 nodes d1, d2 and d3, called stubborn cycle. We

connect all four nodes with each other in such a way that they form a cycle, and

connect all player 0 nodes with the deceleration lane. See Figure 4.15 for an example

of such a situation.

d01 : 3

d11 : 5

d21 : 7

e1 : 8

Figure 4.15: A Stubborn Cycle

More precisely, we connect the player 0 nodes in a round robin manner to the

deceleration lane, for instance d1 to a3, a6, . . ., d2 to a2, a5, . . ., and d3 to a1, a4,

We assume that it is more profitable for player 1 to move into the cyclic structure as

long as it is not closed.

Now let σ be a strategy s.t. σ is in state (r, 6) and σ(d1) = a3, σ(d2) = d3 and

σ(d3) = a4. There are exactly two improving switches here: d2 to a5 (which is the

best-valued deceleration node) and d1 to d2 (because d2 currently reaches a4 via d3

144 CHAPTER 4. LOWER BOUNDS FOR STRATEGY ITERATION

which has a better valuation than a3). In fact, the combination of both switches is the

optimal choice.

A close observation reveals that the improved strategy has essentially the same

structure as the original strategy σ: two nodes leave the stubborn cycle to the

deceleration lane and one node moves into the stubborn cycle. By this construction,

we can ensure that cycles are not closed within one iteration. In other words, the

global rule makes no progress towards closing the cycle (it switches one edge towards

the cycle, and one edge away from the cycle, leaving it in the exact same position).

Modified Cycle Gate

We again use a slightly modified version of the cycle gates as a pass-through struc-

ture that is either very profitable or quite unprofitable. Essentially, we apply two

modifications. First, we replace the simple cycle by a stubborn cycle, for the reasons

outlined in the previous paragraph. Second, we put an additional player 0 controlled

internal node yi between the input node gi and the internal node fi. It will delay the

update of gi to move to the stubborn cycle after closing the cycle by one iteration.

By this, we ensure that the modified deceleration lane will have enough time to reset

itself.

Formally, a modified cycle gate consists of three internal nodes ei, hi and yi, two

input nodes fi and gi, and four output nodes d1
i , d

2
i , d

3
i and ki. The output node d1

i

(resp. d2
i and d3

i) will be connected to a set of other nodes D1
i (resp. D2

i and D3
i) in

the game graph, and ki to some set Ki.

All priorities of the cycle gate are based on two odd priorities pi and p′i. See

Figure 4.16 for a cycle gate of index 1 with p′1 = 3 and p1 = 65. The players,

priorities and edges are described in Table 4.12.

From an abstract point of view, we describe the state of a modified cycle gate

again by a pair (βi(σ), αi(σ)) ∈ {0, 1, 2, 3} × {0, 1, 2}. The first component de-

scribes the state of the stubborn cycle, counting the number of edges pointing into

4.6. DETERMINISTIC RULES 145

d01 : 3

d11 : 5

d21 : 7

e1 : 8 h1 : 68 k1 : 65

f1 : 67 g1 : 10y1 : 9

Figure 4.16: A Modified Cycle Gate (index 1 with p′1 = 3 and p1 = 65)

Node Player Priority Successors

d1
i 0 p′i {d2

i } ∪D1
i

d2
i 0 p′i + 2 {d3

i } ∪D2
i

d3
i 0 p′i + 4 {ei} ∪D3

i

ei 1 p′i + 5 {d1
i , hi}

yi 0 p′i + 6 {fi, ki}
gi 0 p′i + 7 {yi, ki}
ki 0 pi Ki

fi 1 pi + 2 {ei}
hi 1 pi + 3 {ki}

Table 4.12: Description of the Modified Cycle Gate

the cycle, and the second component gives the state of the two access control nodes.

Formally, we have the following:

βi(σ) = |{dji | σ(dji) 6∈ D
j
i }| αi(σ) =


2 if σ(gi) = yi

0 if σ(gi) = σ(yi) = ki

1 otherwise

The behavior is formalized in terms of modified cycle gate states as follows.

Intuitively, it functions as the original cycle gates: if the cycle is σ-closed and

remains closed (one-step lookahead), it is profitable to go through the cycle gate.

If the cycle opens by some external event and remains open (one-step lookahead

again), it is more profitable to directly move to the output node instead.

146 CHAPTER 4. LOWER BOUNDS FOR STRATEGY ITERATION

Lemma 4.47. Let σ be a strategy and σ′ = SWITCH-BEST(σ).

1. If βi(σ) = βi(σ
′) = 3, we have αi(σ′) = min(αi(σ) + 1, 2) (“closed gates

will be successively accessed”).

2. If βi(σ) < 3, βi(σ′) < 3 and σ(ki) �σ′ fi, we have αi(σ′) = 0 (“open gates

with unprofitable exit nodes will be skipped”).

We use modified cycle gates again to represent the bit states of a binary counter:

unset bits will correspond to modified cycle gates with the state (1, 0), set bits to the

state (3, 2). Setting and resetting bits therefore traverses more than one phase, more

precisely, from (1, 0) over (2, 0), (3, 0) and (3, 1) to (3, 2), and from the latter again

over (1, 2) to (1, 0).

Modified Construction

In this paragraph, we provide the complete construction of the lower bound family

for SWITCH-BEST. It again consists of a sink x, a modified deceleration lane of

length 6n− 3 that is connected to the two roots s and r, and n modified cycle gates.

The stubborn cycles of the cycle gates are connected to the r root, the lane base c and

to the deceleration lane. The modified cycle gates are connected to each other in the

same manner as in the original lower bound structure for the locally optimizing rule.

The way the stubborn cycles are connected to the deceleration lane is more

involved than in the previous lower bound construction. Remember that for all open

stubborn cycles, we need to maintain the setting in which two edges point to the

deceleration lane while the other points into the cycle. We achieve this task by

assigning the three nodes of the respective stubborn cycle to the input nodes of the

deceleration lane in a round-robin fashion.

The games are denoted by Hn = (Vn, Vn,0, Vn,1, En,Ωn) and the sets of nodes

are as follows:

Vn :={x, s, c, r} ∪ {ai, ti | 0 < i ≤ 6n− 2}∪

{d1
i , d

2
i , d

3
i , ei, fi, hi, gi, yi, ki | 0 < i ≤ n}

4.6. DETERMINISTIC RULES 147

The players, priorities and edges are described in Table 4.13. The game H3 is

depicted in Figure 4.17. The edges connecting the cycle gates with the deceleration

lane are not included in the figure.

Node Player Priority Successors

t1 0 8n+ 3 {s, r, c}
ti>1 0 8n+ 2i+ 1 {s, r, ti−1}
ai 1 8n+ 2i+ 2 {ti}
c 1 20n {r}
d1
i 0 8i+ 1 {s, c, d2

i } ∪ {a3j+3 | j ≤ 2i− 2}
d2
i 0 8i+ 3 {d3

i } ∪ {a3j+2 | j ≤ 2i− 2}
d3
i 0 8i+ 5 {ei} ∪ {a3j+1 | j ≤ 2i− 1}
ei 1 8i+ 6 {d1

i , hi}
yi 0 8i+ 7 {fi, ki}
gi 0 8i+ 8 {yi, ki}
ki 0 20n+ 4i+ 3 {x} ∪ {gj | i < j ≤ n}
fi 1 20n+ 4i+ 5 {ei}
hi 1 20n+ 4i+ 6 {ki}
s 0 20n+ 2 {fj | j ≤ n} ∪ {x}
r 0 20n+ 4 {gj | j ≤ n} ∪ {x}
x 1 1 {x}

Table 4.13: Lower Bound Construction for SWITCH-BEST

Fact 4.48. The game Hn has 21 ·n nodes, 3.5 ·n2 + 40.5 ·n− 4 edges and 24 ·n+ 6

as highest priority. In particular, |Hn| = O(n2).

As an initial strategy we select the following strategy ι. Again, it corresponds to

a global counter setting in which no bit has been set.

ι(t1) = c ι(t1<i≤3) = ti−1 ι(ti>3) = r ι(c) = r

ι(d1
i) = d2

i ι(d2
i) = a2 ι(d3

i) = a1 ι(gi) = ki

ι(yi) = ki ι(ki) = x ι(s) = x ι(r) = x

148 CHAPTER 4. LOWER BOUNDS FOR STRATEGY ITERATION

s
:

30

r
:

3
2

x
:

1

r
c

:
6
0

a
1

:
2
8

sr

t 1
:

2
7

a
2

:
3
0

sr

t 2
:

2
9

a
3

:
3
2

sr

t 3
:

3
1

a
4

:
3
4

sr

t 4
:

3
3

a
5

:
3
6

sr

t 5
:

3
5

d
0 1

:
3

d
1 1

:
5

d
2 1

:
7

e 1
:

8
h
1

:
6
8

k
1

:
6
5

f 1
:

6
7

y 1
:

9
g 1

:
1
0

c
s

d
0 2

:
11

d
1 2

:
1
3

d
2 2

:
15

e 2
:

1
6

h
2

:
7
2

k
2

:
6
9

f 2
:

7
1

y 2
:

1
7

g 2
:

1
8

c
s

d
0 3

:
19

d
1 3

:
2
1

d
2 3

:
23

e 3
:

2
4

h
3

:
7
6

k
3

:
7
3

f 3
:

7
5

y 3
:

2
5

g 3
:

2
6

c
s

Figure 4.17: SWITCH-BEST Lower Bound Game H3

4.7. PROBABILISTIC RULES 149

It is easy to see that the Hn family again is a family of sink games.

Lemma 4.49. Let n > 0.

1. The game Hn is completely won by player 1.

2. x is the sink of Hn and the cycle component of Ξι(w) equals x for all w.

Again, we note that it is possible to refine the family Hn in such a way that it

only comprises a linear number of edges and only out-degree two.

Results

The way to prove the construction corrects runs almost exactly the same as for the

locally optimizing rule. Every global counting step is separated into some counting

iterations of the deceleration lane with busy updating of the open stubborn cycles of

the cycle gates until the least significant open cycle closes. Then, resetting of the

lane, reopening of lower cycles and alignment of connecting edges is carried out.

Theorem 4.50. Let n > 0. Parity game strategy iteration with SWITCH-BEST-rule

requires at least 2n improvement steps on Hn.

Since Hn is a family of sink parity games, it follows directly by Theorem 4.19

that we have an exponential lower bound for deterministic payoff games.

Corollary 4.51. Payoff game strategy iteration with SWITCH-BEST-rule requires

exponential time.

4.7 Probabilistic Rules

We consider the randomized pivoting rule RANDOM-EDGE, which among all improv-

ing switches chooses one uniformly at random. We also consider RANDOM-FACET,

a more complicated randomized pivoting rule suggested by Matoušek, Sharir and

Welzl [MSW96]. Our lower bound for the RANDOM-FACET pivoting rule essen-

tially matches the subexponential upper bound of Matoušek et al. [MSW96]. Lower

150 CHAPTER 4. LOWER BOUNDS FOR STRATEGY ITERATION

bounds for RANDOM-EDGE and RANDOM-FACET were known before only in ab-

stract settings, and not for concrete linear programs or infinitary payoff games.

We show that both RANDOM-EDGE and RANDOM-FACET may lead to an ex-

pected subexponential number of iterations on actual linear programs. More specif-

ically, we construct concrete linear programs on which the expected number of

iterations performed by RANDOM-EDGE is 2Ω(n1/4), where n is the number of vari-

ables, and (different) linear programs on which the expected number of iterations

performed by RANDOM-FACET is 2Ω(
√
n/ logc n), for some fixed c > 0.

The linear programs on which RANDOM-EDGE and RANDOM-FACET perform

an expected subexponential number of iterations are obtained using the close relation

between simplex-type algorithms for solving linear programs and policy iteration for

solving infinitary payoff games.

Our lower bound for the RANDOM-EDGE policy iteration for parity games and

related two-player games can be extended to arbitrary randomized multi-switch im-

provement rules which select in each iteration step a subset with a certain cardinality

of the improving switches arbitrarily at random. RANDOM-EDGE, for instance,

always selects subsets with cardinality one, and the deterministic SWITCH-ALL rule

always selects the subset with maximal cardinality. Another important randomized

multi-switch improvement rule is SWITCH-HALF [MS99], which applies every im-

proving switch with probability 1/2. The lower bound transfers to all randomized

multi-switch improvement rules in that sense.

All technically tedious proofs have been put into Appendix A.3.

4.7.1 Random Facet Rule

The RANDOM-FACET algorithm of Matoušek, Sharir and Welzl [MSW96] is a very

simple randomized algorithm for solving LP-type problems. Since parity games

and the other classes of games considered here, are LP-type problems [Hal07],

the algorithm can be used to solve these games, as was done by Ludwig [Lud95],

Petersson and Vorobyov [PV01b], and Björklund et al. [BSV03, BV05, BV07].

The algorithm is a recursive algorithm, operating on the dual of the linear

programs induced by Markov decision processes. In the context of infinitary payoff

4.7. PROBABILISTIC RULES 151

games, the algorithm can be formulated as follows: The recursion operates on a

set of player 0 controlled edges F and on a given initial strategy σ that uses edges

included in F . The task of RANDOM-FACET is to compute the optimal strategy w.r.t.

the edge set F starting with strategy σ. Obviously, when started with the full edge

set and an arbitrary strategy σ, this procedure should return the optimal strategy for

the whole game.

RANDOM-FACET: Compute optimal strategy by recursive exclusion

of unused single edges

For concreteness, we describe the operation of the RANDOM-FACET algorithm

on parity games. Let G = (V0, V1, E,Ω) be a parity game. Recall that we write

E0 = E ∩ (V0 × V) to denote the set of player 0 controlled edges, and likewise

E1 = E ∩ (V1 × V) to denote the set of player 1 controlled edges. Let F ⊆ E0

be a subset of player 0 controlled edges s.t. for every v ∈ V0 we have a w ∈ V s.t.

(v, w) ∈ F . The game GF is defined as the subgame of G in which player 0 only

has the choices included in F , i.e. GF = G|E1∪F .

Let σ be an initial strategy for player 0. If σ = E0, then σ is the only possible

strategy for player 0, and is thus also an optimal strategy. Otherwise, the algorithm

chooses, uniformly at random, an edge e ∈ E0 \ σ and applies the algorithm

recursively on the subgame G \ {e} = (V0, V1, E \ {e},Ω), the game obtained by

removing e fromG, with the initial strategy σ. The recursive call returns a strategy σ′

which is an optimal strategy for player 0 in G \ {e}. If e is not an improving switch

for σ′, then σ′ is also an optimal strategy in G. Otherwise, the algorithm performs

the switch σ′[e], and recursively calls the algorithm on G, with initial strategy σ′[e].

For pseudo-code, see Algorithm 7. By Corollary 4.21 and Lemma 4.22, it is easy

to see that this formulation coincides with Algorithm 3 on page 33 for solving linear

programs.

It follows from the analysis of [MSW96] that the expected number of switches

performed by the RANDOM-FACET algorithm on any parity game is 2O(
√
n logn),

where n = |V0| is the number of vertices controlled by player 0 in G.

We also consider a variant RANDOM-FACET∗ of the RANDOM-FACET algorithm,

see Algorithm 8. This variant receives, as a third argument, an index function

152 CHAPTER 4. LOWER BOUNDS FOR STRATEGY ITERATION

Algorithm 7 The RANDOM-FACET algorithm
1: procedure RANDOM-FACET(G,σ)
2: if E0 = σ then
3: return σ
4: else
5: Choose e ∈ E0 \ σ uniformly at random
6: σ′ ← RANDOM-FACET(G \ {e}, σ)
7: if Ξσ′ C Ξσ′[e] then
8: σ′′ ← σ′[e]
9: return RANDOM-FACET(G, σ′′)

10: else
11: return σ′
12: end if
13: end if
14: end procedure

ind : E0 → N that assigns each edge of E0 a distinct natural number. Let I(G) be

the set of all index functions w.r.t. G with range {1, 2, . . . , |E0|}. Instead of choosing

a random edge e from E0 \ σ, the algorithm now chooses the edge of E0 \ σ with

the smallest index. We show below that the expected running time of this modified

algorithm, when ind is taken to be a random permutation of E0, is exactly equal to

the expected running time of the original algorithm. We find it more convenient to

work with the modified algorithm. The fact that the ordering of the edges is selected

in advance simplifies the analysis. All our results apply, of course, also to the original

version.

Let G be a game and let F ⊆ E0. Recall that GF is the subgame of G in which

only the edges of F are available for player 0. Let σ ⊆ F be a strategy of player 0

in GF . We let E(GF , σ) be the expected number of iterations performed by the

call RANDOM-FACET(GF , σ). Also, we let E∗(GF , σ) be the expected number of

iterations performed by the call RANDOM-FACET∗(GF , σ, ind) when ind is taken

to be a random permutation of E0.

We now have the following lemma by the linearity of the expectation; the random

choices made by the two recursive calls made by RANDOM-FACET are allowed to

be dependent.

4.7. PROBABILISTIC RULES 153

Algorithm 8 Variant of the RANDOM-FACET algorithm
1: procedure RANDOM-FACET∗(G,σ,ind)
2: if E0 = σ then
3: return σ
4: else
5: e← argmine′∈E0\σ ind(e′)
6: σ′ ← RANDOM-FACET∗(G \ {e}, σ, ind)
7: if Ξσ′ C Ξσ′[e] then
8: σ′′ ← σ′[e]
9: return RANDOM-FACET∗(G, σ′′, ind)

10: else
11: return σ′
12: end if
13: end if
14: end procedure

Lemma 4.52. Let G be a game, F ⊆ E0 and σ ⊆ F be a player 0 strategy. Then

E(GF , σ) = E∗(GF , σ).

We construct explicit parity games such that the expected running time of

the RANDOM-FACET algorithm on an n-vertex game is 2Ω̃(
√
n), where Ω̃(f) =

Ω(f/ logc n), for some constant c. This matches, up to a polylogarithmic factor in

the exponent, the upper bound given in [MSW96]. Our games also provide the first

explicit construction of LP-type problems on which the RANDOM-FACET algorithm

is not polynomial.

Then, we show how to transfer our construction to Markov decision processes

and finally to concrete linear programs. The improving switches performed by the

(abstract) RANDOM-FACET algorithm applied to an MDP correspond directly to

the steps performed by the RANDOM-FACET pivoting rule on the corresponding

linear program (assuming, of course, that the same random choices are made by

both algorithms). The linear programs corresponding to our MDPs supply, therefore,

concrete linear programs on which following the RANDOM-FACET pivoting rule

leads to an expected subexponential number of iterations.

154 CHAPTER 4. LOWER BOUNDS FOR STRATEGY ITERATION

Randomized Counting

The parity games that we construct, on which the RANDOM-FACET algorithm per-

forms an expected subexponential number of iterations, simulate a randomized

counter. Such a counter is composed of n bits, all initially set to 0. We say that the

i’th bit is set if b(i) = 1 and resetting if b(i) = 0.

The randomized counter works in a recursive manner, focusing each time on a

subset N ⊆ [n] := {1, . . . , n} of the bits, such that for all j ∈ N , b(j) = 0. Initially

N = [n]. If N = ∅, then nothing is done. Otherwise, the counter chooses a random

index i ∈ N and recursively performs a randomized count on N \ {i}. When this

recursive call is done, we have b(j) = 1, for every j ∈ N \ {i}, while b(i) = 0.

Next, all bits j ∈ N ∩ [i− 1] are reset and the i’th bit is set.

Although it is more natural to increment the counter and then reset, resetting first

corresponds to the behavior of the lower bound construction. Finally, a recursive

randomized count is performed on N ∩ [i − 1]. A function RANDCOUNT that

implements a randomized counter is given in Algorithm 9.

Algorithm 9 Counting with a randomized bit-counter
1: procedure RANDCOUNT(N)
2: if N 6= ∅ then
3: Choose i ∈ N uniformly at random
4: RANDCOUNT(N \ {i})
5: for j ∈ N ∩ [i− 1] do
6: b(j)← 0
7: end for
8: b(i)← 1
9: RANDCOUNT(N ∩ [i− 1])

10: end if
11: end procedure

Let g(n) be the expected number of steps (recursive calls) performed by an n-bit

randomized counter. It is easy to see that g(0) = 1 and that

g(n) = 1 + g(n− 1) +
1

n

n−1∑
i=0

g(i) , for n > 0.

4.7. PROBABILISTIC RULES 155

The asymptotic behavior of g(n) is known quite precisely:

Lemma 4.53 ([FS09], p. 596-597). It holds that:

g(n) −→ e2·
√
n− 1

2

√
π · n 1

4

for n→∞.

Note that g(n) is, thus, just of the right subexponential form. The challenge, of

course, is to construct parity games on which the behavior of the RANDOM-FACET

algorithm mimics the behavior of RANDCOUNT. In order to explain the idea for

doing so, we examine a simplified version of our construction.

Consider the parity game shown in Figure 4.18, but ignore the shaded rectangle

in the background and the fact that some arrows are bold.

Any strategy σ for player 0 encodes a counter state in the following way: b(i) = 1

iff (bi, Bi), (ai, Ai) ∈ σ. Note that player 1 can always reach T by staying in the left

side, and that T has odd priority. Thus, if b(i) = 1 player 1, who plays a best reply

to σ, will use the edge (Bi, ci), and ci has a large even priority. Similarly, if b(i) = 1,

player 1 uses the edge (Ai, Di).

The importance of player 1’s choice at Ai is that it determines whether lower

set bits have access to ci, which has the large even priority. If (bi, Bi) ∈ σ and

(ai, Ai) 6∈ σ, we say that the i’th bit is resetting, since it allows the RANDOM-FACET

algorithm to remove (ai, Ai), so that player 1 can block the access to ci for lower set

bits, which initiates the resetting behavior of the counter.

Now, suppose the RANDOM-FACET algorithm removes the edge (bi, Bi) and

solves the game recursively (by counting with the remaining bits). During the recur-

sion we say that the i’th bit is disabled. The resulting strategy σ′ by player 0

will correspond to the state of the counter where b(j) = 1, for j 6= i, and

(bi, Bi), (ai, Ai) 6∈ σ. Using (bi, Bi) will be an improving switch for player 0, so

we get a new strategy σ′′ = σ′[(bi, Bi)] for which the i’th bit is resetting.

Next, suppose that (ai, Ai) is removed and the game solved recursively. Note that

this is only possible because the i’th bit is resetting and (ai, Ai) 6∈ σ. In particular,

a corresponding edge could not be picked for a set bit. Since player 1 controls the

156 CHAPTER 4. LOWER BOUNDS FOR STRATEGY ITERATION

d1 : 5

`

a1 : 4

r

a1 : 2

c1 : 6 b1 : 4

`r

b1 : 2

d2 : 5

`

a2 : 4

r

a2 : 2

c2 : 8 b2 : 4

`r

b2 : 2

d3 : 5

`

a3 : 4

r

a3 : 2

c3 : 10 b3 : 4

`r

b3 : 2

t : 1

Figure 4.18: Lower bound construction for the RANDOM-FACET algorithm

left half of the graph, and player 0 is unable to use the edge (ai, Ai), player 1 can

avoid the large even priority at ci by staying to the left until moving from Ai to ai.

Thus, player 0 can only reach ci from vertices aj, bj , with j < i, by staying within

the right half of the graph. It follows that all counter bits with index j < i are reset.

Using the edge (ai, Ai) will now be an improving switch for player 0, so the strategy

is updated such that b(i) = 1, and we are ready for a second round of counting with

the lower bits. During this recursive call the higher set bits are said to be inactive.

4.7. PROBABILISTIC RULES 157

bi

gh

bi,j ui+1 bi

bi,gh

bi,2

bi,1

ui+1

...

≡

Figure 4.19: Duplication of a subgraph

Note that in order to ensure the correct behavior it was crucial that (bi, Bi) was

picked by the RANDOM-FACET algorithm before (ai, Ai). It was also crucial that

other edges from bi and ai, i.e. (bi, bi+1) and (ai, bi+1), were not removed. To

increase the probability of that happening we make use of duplication. A shaded

rectangle with ` or r in the bottom-left corner indicates that the corresponding

subgraph is copied ` or r times, respectively; see Figure 4.19. Also, a bold edge

indicates that the corresponding edge is copied r times. We show that it suffices for

` and r to be logarithmic in n to get a good bound on the probability.

As was the case with RANDOM-FACET, we can obtain a modified version of

RANDCOUNT in which all random decisions are made in advance. In the case of

RANDCOUNT, this corresponds to choosing a random permutation on [n]. Let S(n)

be the set of permutations on [n]. A function RANDCOUNT∗ that implements a

modified, randomized counter is given in Algorithm 10; ϕ ∈ S(n) is a permutation.

We end this section with a lemma showing that the expected number of steps

performed by the original counter, RANDCOUNT, is equal to the expected number

of steps performed by the modified counter, RANDCOUNT∗, when given a random

permutation. More precisely, let fn(N,ϕ) be the number of steps performed by a call

RANDCOUNT∗(N,ϕ), for some permutation ϕ ∈ S(n). Let fn(N) be the expected

value of fn(N,ϕ) when ϕ ∈ S(n) is picked uniformly at random.

Lemma 4.54. Let n ∈ N. Then fn([n]) = g(n).

158 CHAPTER 4. LOWER BOUNDS FOR STRATEGY ITERATION

Algorithm 10 Counting with an augmented randomized bit-counter
1: procedure RANDCOUNT∗(N , ϕ)
2: if N 6= ∅ then
3: i← argminj∈N ϕ(j)
4: RANDCOUNT∗(N \ {i}, ϕ)
5: for j ∈ N ∩ [i− 1] do
6: b(j)← 0
7: end for
8: b(i)← 1
9: RANDCOUNT∗(N ∩ [i− 1], ϕ)

10: end if
11: end procedure

Full Construction

In this section we define a family of lower bound games Gn,`,r = (V0, V1, E,Ω) that

the RANDOM-FACET algorithm requires many iterations to solve. n denotes the

number of bits in the simulated randomized bit-counter, and ` ≥ 1 and r ≥ 1 are

parameters for the later analysis. We use multi edges for convenience.

A similar graph without multi edges can easily be defined by introducing addi-

tional vertices. Gn,`,r is defined as follows:

V0 := {ai,j,k}[n]×[`]×[r] ∪ {bi,j}[n]×[`r] ∪ {ci}[n]

V1 := {Ai,j}[n]×[`] ∪ {Bi}[n] ∪ {Di}[n] ∪ {T}

where {ai,j,k}[n]×[`]×[r] is a shorthand for {ai,j,k | i ∈ [n], j ∈ [`], k ∈ [r]}, etc.

Table 4.14 defines the edge set E and the priority assignment Ω, where bi,∗ is a

shorthand for {bi,j | j ∈ [`r]}, and (T)r indicates that the edge has multiplicity r.

An example of a lower bound game with three bits, i.e., n = 3, is shown

in Figure 4.18. A shaded rectangle with label ` indicates that the corresponding

subgraph has been copied ` times. Bold arrows are multi edges with multiplicity r.

Note that bold incoming edges for bi, in fact, only go to the vertex bi,1.

The initial strategy σ given as input to the RANDOM-FACET algorithm is de-

scribed by σ(bi,j) 6= Bi for all i ∈ [n] and all j ∈ [`r] as well as σ(ai,j,k) 6= Ai,j for

all i ∈ [n], all j ∈ [`] and all k ∈ [r]. The choice at vertex ci is arbitrary.

4.7. PROBABILISTIC RULES 159

Node Successors Priority

ai,j,k Ai,j, (bi+1,1)r 2

an,j,k An,j, (T)r 2

bi,j Bi, (bi+1,1)r 2

bn,j Bn, (T)r 2

T T 1

Node Successors Priority

ci (Ai+1,∗)r 2i+ 4

cn T 2n+ 4

Ai,j Di, ai,j,∗ 4

Bi ci, bi,∗ 4

Di Bi 5

Table 4.14: Edges and Priorities of Gn,`,r

Optimal Strategies

The RANDOM-FACET algorithm operates with a subset of the edges controlled by

player 0, F ⊆ E0, such that the corresponding subgame GF is a parity game. We

next introduce notation to concisely describe F . We say that F is complete if it

contains at least one instance of every multi edge. We define the set of multi edges

without multiplicities as:

M = {(ai,j,k, bi+1,1) | i ∈ [n− 1], j ∈ [`], k ∈ [r]} ∪

{(an,j,k, T) | j ∈ [`], k ∈ [r]} ∪ {(bi,j, bi+1,1) | i ∈ [n− 1], j ∈ [`r]} ∪

{(bn,j, T) | j ∈ [`r]} ∪ {(ci, Ai+1,j) | i ∈ [n− 1], j ∈ [`]}

Furthermore, for F ⊆ E0 define:

bi(F) =

1 if ∀j ∈ [`r] : (bi,j, Bi) ∈ F

0 otherwise

ai,j(F) =

1 if ∀k ∈ [r] : (ai,j,k, Ai,j) ∈ F

0 otherwise

ai(F) =

1 if ∃j ∈ [`] : ai,j(F) = 1

0 otherwise

That is, bi(F) = 1 if and only if F contains every edge leading to Bi, and

ai,j(F) = 1 if and only if F contains every edge leading to Ai,j .

160 CHAPTER 4. LOWER BOUNDS FOR STRATEGY ITERATION

Finally, we define reset(F) = max ({0} ∪ {i ∈ [n] | bi(F)=1∧ai(F)=0}) to

be the maximum index i for which bi(F) = 1 and ai(F) = 0. Intuitively, all bits

with index lower than i will be reset when computing the optimal strategy in the

subgame GF .

Let F ⊆ E0 be a complete set. We say that a strategy σ ⊆ F is well-behaved

if for every i ∈ [n], all copies ai,j,k, for j ∈ [`] and k ∈ [r], and all copies bi,j , for

j ∈ [`r], adopt corresponding choices, whenever possible. More formally, for every

i, j1, j2, k1, k2: if (ai,j1,k1 , Ai,j1), (ai,j2,k2 , Ai,j2) ∈ F , then σ(ai,j1,k1) = Ai,j1 if and

only if σ(ai,j2,k2) = Ai,j2 . Similarly, for every i, j1, j2: if (bi,j1 , Bi), (bi,j2 , Bi) ∈ F ,

then σ(bi,j1) = Bi if and only if σ(bi,j2) = Bi. We show below that for every complete

set F ⊆ E0, the optimal strategy of player 0 in GF is well-behaved.

The essential behavior of a well-behaved policy σ is characterized by two boolean

vectors α(σ) = (α1, . . . , αn) and β(σ) = (β1, . . . , βn) that are defined as follows:

αi(σ) =


1 if ∀j ∈ [`] ∀k ∈ [r] :

(ai,j,k, Ai,j) ∈ F ⇒ σ(ai,j,k) = Ai,j

0 if ∀j ∈ [`] ∀k ∈ [r] : σ(ai,j,k) 6= Ai,j

βi(σ) =


1 if ∀j ∈ [`r] :

(bi,j, Bi) ∈ F ⇒ σ(bi,j) = Bi

0 if ∀j ∈ [`r] : σ(bi,j) 6= Bi

Similarly, given two boolean vectors α = (α1, . . . , αn) and β = (β1, . . . , βn) we

let σ = σ(α, β) be a well-behaved strategy such that α(σ) = α and β(σ) = β. Note

that σ(α, β) is not uniquely determined, as when αi = 0 or βi = 0 we do not specify

which copy of a multi-edge is chosen. This choice, however, is irrelevant.

The i’th bit of the randomized bit-counter is interpreted as being set, for some

complete set F and a well-behaved strategy σ, if ai(F) = bi(F) = 1 and αi(σ) =

βi(σ) = 1.

Let σ∗F and τ ∗F be optimal strategies for player 0 and 1, respectively, in the

subgame GF = (V0, V1, F ∪ E1,Ω) defined by edges of F . We show below that

4.7. PROBABILISTIC RULES 161

σ∗F is always well-behaved, and we let α∗(F) = α(σ∗F) and β∗(F) = β(σ∗F). The

following lemma then describes the key parts of optimal strategies in the construction.

Lemma 4.55. Let F ⊆ E0 be complete. Then σ∗F is well-behaved and β∗i (F) = 1 if

and only if i ≥ reset(F), and α∗i (F) = 1 if and only if bi(F) = 1 and i ≥ reset(F).

Lower Bound Proof

In this paragraph we consider the expected number of iterations performed by the

modified RANDOM-FACET algorithm when applied to our family of lower bound

games. We show that for appropriate parameters ` and r the number of iterations is,

with high probability, at least as large as the expected number of steps performed by

the corresponding modified randomized bit-counter.

For brevity, we say that the RANDOM-FACET algorithm takes a set F ⊆ E0

as argument rather than the game GF . Let F ⊆ E0, σ and ind be arguments to

the RANDOM-FACET algorithm, and let e = argmine′∈F\σ ind(e′). We distinguish

between three types of iterations; count-iterations, reset-iterations and irrelevant

iterations. We say that an iteration is a count-iteration if it satisfies the following:

reset(F) = 0 and

∃i ∈ [n] : bi(F) = 1 ∧ bi(F \ {e}) = 0

Similarly, we say that an iteration is a reset-iteration if it satisfies:

reset(F) = 0 and reset(F \ {e}) > 0

An iteration that is neither a count-iteration nor a reset-iteration is said to be irrelevant.

In order to correctly simulate a modified randomized bit-counter it must be the

case that between any two count-iterations there is a reset-iteration. Furthermore,

F must be complete in every count-iteration, as well as in every reset-iteration. To

handle these requirements we introduce the notion of a good index function. Recall

that M is the set of multi edges without multiplicities. We write et to refer to the t’th

copy of some edge e ∈M . We say that an index function ind is good if it satisfies

the following two requirements:

162 CHAPTER 4. LOWER BOUNDS FOR STRATEGY ITERATION

1. ∀i ∈ [n] ∃j ∈ [`] ∃t ∈ [`r] ∀k ∈ [r] : ind(bi,t, Bi) < ind(ai,j,k, Ai,j)

2. ∀e ∈M ∀i ∈ [n] ∀j ∈ [`] ∃k ∈ [r] ∃t ∈ [r] : ind(ai,j,k, Ai,j) < ind(et)

The first requirement says that for every i, the first edge, according to ind, going to

Bi is before the first edge going to Ai,j , for some j. The second requirement says that

for all i and j, the first edge going to Ai,j is before some copy of every edge from M .

Note that when both requirements are combined we also get that for all i, the first

edge going to Bi is before some copy of every edge from M .

For F ⊆ E0 and a well-behaved strategy σ ⊆ F , define for 1 ≤ i ≤ n where

bi(F) = 1 and ai(F) = 1:

bF,σ(i) =


1 if αi(σ) = βi(σ) = 1,

0 if αi(σ) = βi(σ) = 0,

⊥ otherwise.

The state bF,σ(i) = ⊥ is an intermediate state in which the bit is switching from set

to unset, or vice versa.

We say that the i’th bit is disabled if bi(F) = 0. Furthermore, we say that the i’th

bit is inactive if bF,σ(i) = 1, and for all i < j ≤ n, the j’th bit is either disabled or

inactive. We also say that the i’th bit is resetting if bi(F) = 1, ai(F) = 1, βi(σ) = 1

but αi(σ) = 0. We define the set of active bits NF,σ ⊆ [n] such that i ∈ NF,σ if

and only if the i’th bit is not disabled, inactive or resetting. Finally, we define the

permutation φind of [n] such that for all i, j ∈ [n]:

φind(i) < φind(j) ⇐⇒ ∃k ∈ [`r] ∀t ∈ [`r] : ind(bi,k, Bi) < ind(bj,t, Bj)

Note that these concepts correspond exactly to the concepts utilized in a randomized

bit-counter.

Let find(F, σ) be the number of iterations (recursive calls) performed by the call

RANDOM-FACET∗(GF , σ, ind). We denote the expected value of find(F, σ), when

ind is a random good index function picked from the set of permutations of E0, by

E∗Gn,`,r(F, σ|ind is good).

4.7. PROBABILISTIC RULES 163

Lemma 4.56. Let Gn,`,r be a lower bound game with initial strategy σ for player 0,

then

E∗Gn,`,r(E0, σ|ind is good) ≥ g(n).

Lemma 4.57. Let Gn,`,r be a lower bound game, and let ind be chosen uniformly at

random from the set of permutations of E0. Then ind is good with probability pn,`,r,

where:

pn,`,r ≥ 1− n (`!)2

(2`)!
− n`(n(2`r + `)− `) (r!)2

(2r)!

Results

We conclude that policy iteration with the RANDOM-FACET rule requires an expo-

nential number of iterations on the parity games of this chapter.

Theorem 4.58. The worst-case expected running time of the RANDOM-FACET al-

gorithm for n-state parity games is at least 2Ω(
√
n/ logn).

Proof. Let Gn,`,r be a lower bound game, and let σ be the initial strategy. Note that

unlike the statement of the lemma n refers to the number of bits in the corresponding

randomized bit-counter. From Lemma 4.52, Lemma 4.56 and Lemma 4.53 we have:

EGn,`,r(E0, σ) = E∗Gn,`,r(E0, σ)

≥ pn,`,r · E∗Gn,`,r(E0, σ|ind is good)

≥ pn,`,r · g(n)

= pn,`,r · 2Ω(
√
n)

All that remains is, thus, to pick the parameters ` and r such that pn,`,r is constant.

In the following we show that for ` = r = 3 log n and n sufficiently large, we get

pn,`,r ≥ 1
2
.

It is easy to prove, by induction, that

(k!)2

(2k)!
≤ 1

2k
.

164 CHAPTER 4. LOWER BOUNDS FOR STRATEGY ITERATION

For ` = r = 3 log n we then get from Lemma 4.57 that:

pn,`,r ≥ 1− n (`!)2

(2`)!
− n`(n(2`r + `)− `) (r!)2

(2r)!

≥ 1− n 1

2`
− n`(n(2`r + `)− `) 1

2r

= 1− 1

n2
− `(n(2`r + `)− `)

n2

≥ 1− 1

n2
− 81 log n

n
≥ 1

2

for n sufficiently large.

Since, for ` = r = 3 log n and n sufficiently large, the number of vertices of

Gn,`,r is |V | = n(2`r + ` + 3) + 1 ≤ 27n log2 n, the number of bits expressed in

terms of the number of vertices is n = Ω(|V |/ log2 |V |), and we get:

EGn,`,r(E0, σ) = 2Ω(
√
|V |/ log |V |).

This concludes the proof.

It follows directly by Theorem 4.19 that we have a subexponential lower bound

for payoff games.

Corollary 4.59. Payoff game strategy iteration with RANDOM-FACET-rule requires

expected subexponential time.

Markov Decision Processes

We show in this paragraph how the presented parity games can be turned into Markov

decision processes to obtain a lower bound in their domain as well. For concreteness,

we consider the limiting average criterion here. We show that the RANDOM-FACET

algorithm may also require subexponentially many steps to solve MDPs. Due to the

connection between MDPs and LPs the same bound then follows for LPs.

The main observation required for the conversion is that, in the parity games of

this chapter, the role of the second player, referred to as player 1, is very limited. A

4.7. PROBABILISTIC RULES 165

simplified transformation of a vertexA controlled by player 1 is shown in Figure 4.20.

Suppose player 1 does not move left unless player 0 moves from both b and b′ to A.

This behavior of player 1 can be simulated by a randomization vertex that moves left

with very low, but positive probability.

A

b

b′

A

b

b′

⇔

1−ε
2

1−ε
2

ε

Figure 4.20: Conversion of a vertex controlled by player 1 to a randomization vertex

For integers n, g, h ≥ 1, we define a family of lower bound MDPs with underly-

ing graphs Gn,g,h = (V0, VR, E, r, p) that the RANDOM-FACET algorithm requires

many iterations to solve. n denotes the number of bits in the simulated randomized

bit-counter, and g and h are parameters later to be specified in the analysis. We again

use multi edges for convenience.

A graphical description of Gn,g,h is given in Figure 4.21. Round vertices are

controlled by player 0 and at diamond-shaped vertices the choice is made at random

according to the probabilities on the outgoing edges. All rewards are described in

terms of priorities, and only vertices xi, yi and di have priorities. Thus, most edges

have reward zero.

Formally, Gn,g,h is defined as follows.

V0 := {ai,j,k | i ∈ [n], j ∈ [g], k ∈ [h]} ∪ {bi,j | i ∈ [n], j ∈ [gh]} ∪

{di, xi, yi | i ∈ [n]} ∪ {ui, wi | i ∈ [n+ 1]} ∪ {t}

VR := {Ai,j | i ∈ [n], j ∈ [g]} ∪ {Bi | i ∈ [n]}

With Gn,g,h, we associate a large number N ∈ N and a small number 0 < ε.

We require N to be at least as large as the number of nodes with priorities, i.e.

N ≥ 3n + 1 and ε−1 to be significantly larger than the largest occurring priority

166 CHAPTER 4. LOWER BOUNDS FOR STRATEGY ITERATION

wn+1 t un+1

...

yi+1

4i+ 4

bi+1

gh

bi+1,j

di+1

4i+ 3
ui+1

wi+1

g

ai+1

h

ai+1,j
xi+1

4i+ 1

ε

1−ε
gh

ε

1−ε
h

yi
4i

bi

gh

bi,j

di
4i− 1

ui

wi

g

ai

h

ai,j
xi

4i− 3

ε

1−ε
gh

ε

1−ε
h

...

y1
4

b1

gh

b1,j

d1
3

u1

w1

g

a1

h

a1,j
x1
1

ε

1−ε
gh

ε

1−ε
h

Figure 4.21: Lower bound MDP for the RANDOM-FACET algorithm

4.7. PROBABILISTIC RULES 167

induced reward, i.e. ε ≤ N−(4n+8). Node v having priority Ω(v) means that the cost

associated with every outgoing edge of v is 〈v〉 = (−N)Ω(v).

Table 4.15 defines the edge set E, the priority assignment function Ω, multiplic-

ities of edges, and the probability assignment function p : ER → [0, 1]. bi,∗ is a

shorthand for the set {bi,j | j ∈ [gh]}.

Node V0 Successors in E0 Priority Ω Multiplicity

ai,j,k Ai,j - 1
xi h

bi,j Bi - 1
ui+1 h

di Bi 4i− 1 1
ui di - h

ui+1 h

un+1 t - 1
wi Ai,∗ - h

wi+1 h

wn+1 t - 1
xi ui 4i− 3 1
yi wi+1 4i 1
t t - 1

Node VR Successors in ER Priority Ω Probability p

Ai,j di - ε

ai,j,∗
1−ε
h

Bi yi - ε

bi,∗
1−ε
gh

Table 4.15: Priorities, edges, multiplicities, and transition probabilities of Gn,g,h

Note that Gn,g,h is a unichain. More specifically, we have the following lemma.

Lemma 4.60. For every strategy σ, the MDP with underlying graph Gn,g,h ends in

the sink t with probability 1.

Again, we have the following lemma describing optimal strategies corresponding

to complete edge sets.

168 CHAPTER 4. LOWER BOUNDS FOR STRATEGY ITERATION

Lemma 4.61. Let F ⊆ E0 be complete. Then σ∗F is well-behaved and β∗i (F) = 1 if

and only if i ≥ reset(F), and α∗i (F) = 1 if and only if bi(F) = 1 and i ≥ reset(F).

The result relies on Lemma 4.57, hence we transfer our main theorem to the

MDP and LP world.

Theorem 4.62. The worst-case expected running time of the RANDOM-FACET algo-

rithm for n-state MDPs is at least 2Ω(
√
n/ logn), even when at most O(log n) actions

are associated with each state.

Corollary 4.63. The worst-case expected running time of RANDOM-FACET for LPs

of dimension n with O(n log n) constraints is at least 2Ω(
√
n/ logn).

4.7.2 Random Edge Rule

Perhaps the most natural randomized improvement rule is RANDOM-EDGE, which

among all improving switches chooses one uniformly at random. The upper bounds

currently known for RANDOM-EDGE are still exponential (see Gärtner and Kaibel

[GK07]). For additional results regarding RANDOM-EDGE, see [BDF+95, GHZ98,

GTW+03, BP07].

RANDOM-EDGE: Apply a single improving switch arbitrarily at

random.

We show that RANDOM-EDGE might lead to an expected subexponential num-

ber of iterations on actual linear programs. More specifically, we construct con-

crete linear programs on which the expected number of iterations performed by

RANDOM-EDGE is 2Ω(n1/4), where n is the number of variables.

The lower bound for linear programming again has been obtained by constructing

explicit parity games and related MDPs on which we have the same expected number

of iterations when solved by policy iteration. For the presentation, we start with

Markov decision processes here, and show later, how they can be translated to parity

games. For concreteness, we consider the limiting average criterion.

4.7. PROBABILISTIC RULES 169

High-level Description

We start with a high-level description of the MDPs on which RANDOM-EDGE

performs an expected subexponential number of iterations. The exact details are

fairly intricate. In high level terms, our MDPs, and the linear programs corresponding

to them, are constructions of ‘fault tolerant’ randomized counters. The challenge

in designing such counters is making sure that they count ‘correctly’ under most

sequences of random choices made by the RANDOM-EDGE pivoting rule.

A schematic description of the lower bound MDPs is given in Figure 4.22. The

shaded octagons enclosing some of the vertices stand for cycle gadgets shown in

Figure 4.23. It is useful to assume, at first, that these octagons stand for standard

vertices (when we adopt this point of view, we refer to ai,j simply as ai, and similarly

for bi,j and ci,j). We shall explain later why they need to be replaced by the cycle

gadgets.

The MDP of Figure 4.22 emulates an n-bit counter. It is composed of n identical

levels, each corresponding to a single bit of the counter. The 1-st, i-th and (i+1)-

th levels are shown explicitly in the figure. Levels are separated by dashed lines;

n, `i, h, g, for 1 ≤ i ≤ n, are integer parameters for the construction. The MDP

includes two sources r and s, and one sink t. The i-th level contains 7 vertices of V0,

namely, ai, bi, ci, di, ui, wi, xi, and two randomization vertices Ai and Bi (when the

cycle gadgets are used, ai, bi and ci are replaced by collections of vertices ai,j , bi,j
and ci,j). We refer to the vertices ai, bi and ci (and ai,j, bi,j and ci,j) as cycle vertices,

and refer to the corresponding cycles as the Ai-, Bi- and Ci-cycles, respectively. The

vertices ui form the right lane, while the vertices wi form the left lane. We use U

and W to refer collectively to the vertices of the right and left lanes, respectively.

In each of ai,j, bi,j, ci,j, ui, wi, player 0, the controller, has two outgoing edges to

choose from. Vertices di, xi and yi have only one outgoing edge, so no decision is

made at them (the role of di, xi and yi will become clear later).

Most edges in Figure 4.22 have an immediate reward of 0 associated with them

(such 0 rewards are not shown explicitly in the figure). The only edges that have

non-zero rewards associated with them are the edges ai,j → xi, bi,j → s and ci,j → r

that have reward jε, where ε is a sufficiently small number to be chosen later.

170 CHAPTER 4. LOWER BOUNDS FOR STRATEGY ITERATION

wn+1 t un+1

...

yi+1

4i+ 10

g

ci+1,j bi+1

`i+1

bi+1,j

di+1

4i+ 9
ui+1

wi+1 ai+1

h

ai+1,j
xi+1

4i+ 7

ε

1−ε
2

1−ε
2

ε

1− ε

jε

jε

jε

yi
4i+ 6

g

ci,j bi

`i

bi,j

di
4i+ 5

ui

wi ai

h

ai,j
xi

4i+ 3

ε

1−ε
2

1−ε
2

ε

1− ε

jε

jε

jε

...

y1
10

g

c1,j b1

`1

b1,j

d1
9

u1

w1 a1

h

a1,j
x1
7

ε

1−ε
2

1−ε
2

ε

1− ε

jε

jε

jε

r
6

s

Figure 4.22: Random Edge MDP Construction. The interpretation of the shaded
octagons is shown in Figure 4.23

4.7. PROBABILISTIC RULES 171

bi

`i

bi,j s1−ε
2

jε
bi

bi,`i

bi,2

bi,1

s

...

≡
1−ε
2

`iε

2ε

ε

Figure 4.23: A cycle gadget used by the lower bound MDPs for RANDOM-EDGE

In addition to the rewards assigned to some of the edges, some of the vertices

are assigned integer priorities. If a vertex v has priority Ω(v) assigned to it, then

a reward of 〈v〉 = (−N)Ω(v) is added to all edges emanating from v, where N is a

sufficiently large integer. We useN = 3n+1 and ε = N−(4n+8). Priorities, if present,

are listed next to the vertex name (in particular, Ω(di) = 4i + 5, Ω(xi) = 4i + 3,

Ω(yi) = 4i + 6, for 1 ≤ i ≤ n, and Ω(r) = 6; all other vertices have no priorities

assigned to them). Rewards and priorities are chosen such that priorities are always

of higher importance. Note that it is desirable to move through vertices of even

priority and to avoid vertices of odd priority, and that vertices of higher numerical

priority dominate vertices of lower priority (the idea of using priorities is inspired,

of course, by the reduction from parity games to mean payoff games).

Each level has only two randomization vertices. From Ai, the edge Ai → ai

(or more specifically Ai → ai,`i), is chosen with probability 1 − ε, while the edge

Ai → di is chosen with probability ε. Thus, if the Ai-cycle is closed, the MDP is

guaranteed to eventually move to di. From Bi, each of the two edges Bi → bi and

Bi → ci are chosen with probability 1−ε
2

, while the edge Bi → yi is chosen with

probability ε. Again, if both Bi- and Ci-cycles are closed, an eventual transition to yi
is made.

To each state b ∈ Bn of an n-bit binary counter, we define a corresponding

policy σb of the MDP. If bi = 1, then all three cycles in the i-th level are closed, and ui
and wi point into the level, while if bi = 0, then the three cycles are open, and ui and

172 CHAPTER 4. LOWER BOUNDS FOR STRATEGY ITERATION

wi point to the next level. Our ultimate goal is to show that a run of RANDOM-EDGE,

that starts with σ0...00, visits all 2n policies σ0...00, σ0...01, σ0...10, . . . , σ1...11, with high

probability.

Our proof is conceptually divided into two parts. First we investigate the im-

proving switches that can be performed from well-behaved policies of the MDP.

This allows us to prove that there exists a sequence of improving switches that does

indeed generate the sequence σ0...00, σ0...01, σ0...10, . . . , σ1...11. This is true even if the

cycle gadgets of Figure 4.23 are not used. A transition from σb to σb+1 involves

many improving switches. We partition the path leading from σb to σb+1 into seven

sub-paths which we refer to as phases. In the following we first give an informal

description of the phases, and then describe how the cycle gadgets of Figure 4.23

increase the transition probabilities. Note that some of the mentioned improving

switches exist during several phases. We present here the sequences of updates

enforced by the gadgets with high probability. A more formal description of the

phases is given later.

Let b be a state of the bit-counter, and recall that the least significant unset bit is

denoted by µ1(b) := min({i ≤ n | bi = 0} ∪ {n+1}). The phases are as follows:

1. At the beginning of the first phase the policy corresponds to σb, except that

some of the Ci-cycles of unset bits are closed. It is improving, however, to

open these cycles, since opening the cycle leads through r, which has priority

6, to the lowest set bit. If a Ci-cycle is closed it instead moves via the Bi-cycle

to s to the lowest set bit. Hence, all Ci-cycles open during this phase.

2. The initial strategy for the second phase is exactly σb. It is desirable for all

open Bi-cycles to close, because this implies moving via the Ci-cycles to r.

The gadgets indicated by the octagons ensure that only the B-cycle of the least

0-bit µ1(b) gets closed.

3. Since the Bµ1(b)-cycle is now closed, the Cµ1(b)-cycle at level µ1(b) also closes

as this gives access to yµ1(b), which has a large even priority.

4. Since the Aµ1(b)-cycle has not yet closed there is (essentially) no access from

Aµ1(b) to dµ1(b). This implies that lower set bits are unable to reach the domi-

4.7. PROBABILISTIC RULES 173

nating even priority at yµ1(b). In particular, the ui vertices for i ≤ µ1(b) are

updated to provide access from the source s to yµ1(b).

5. Next, all Ai- and Bi-cycles at levels i < µ1(b) open to reach yµ1(b), and in

particular to reach yµ1(b) through a vertex xi with as low a priority as possible.

Note that it is also desirable for Bi-cycles of unset bits at higher levels to

open (although they are currently already open). This property is critical for

resetting the gadgets.

6. The Aµ1(b)-cycle now closes since it is then able to avoid the odd priority at

xµ1(b).

7. Finally, since there is now access from Aµ1(b) to dµ1(b) the wi vertices for

i ≤ µ1(b) are updated accordingly, and after the phase is over it is again

desirable to close lower Bi-cycles. Note also that lower Ci-cycles remained

open.

Proving that a long sequence of switches exists is of course not enough. We need

to prove that such a long sequence occurs with a sufficiently high probability. To do

that we introduce the cycle gadgets of Figure 4.23.

The idea is to make the Ai-, Bi- and Ci-cycles longer such that they are difficult

to close. The purpose of the small rewards on the edges is to make sure that only one

edge at a time is an improving switch when closing a cycle. Hence, closing a cycle

requires a very specific sequence of improving switches. Furthermore, we can use

Chernoff bounds to bound the probability of a longer cycle closing before a shorter

cycle. By increasing the length of the Bi-cycles for increasing i, we make sure that

in phase 2 the Bi-cycle of the lowest unset bit closes first.

On the other hand, when opening a cycle all outgoing edges are simultaneously

improving switches. This allows lower bits to reset very fast during phase 5 before

the Ai cycle closes in phase 6.

Full Construction

In this paragraph, we formally describe the full construction of our MDPs. For

a tuple ζ = (n, (`i)0≤i≤n, h, g), with n, `i, h, g > 0, define an underlying graph

174 CHAPTER 4. LOWER BOUNDS FOR STRATEGY ITERATION

Gζ = (V0, VR, E, r, p) of an MDP as shown schematically in Figure 4.22. More

formally:

V0 := {ai,j | i ∈ [n], j ∈ [h]} ∪ {bi,j | i ∈ [n], j ∈ [`i]} ∪

{ci,j | i ∈ [n], j ∈ [g]} ∪ {di, yi, xi | i ∈ [n]} ∪

{wi, ui | i ∈ [n+ 1]} ∪ {t, r, s}

VR := {Ai, Bi | i ∈ [n]}

With Gζ , we associate a large number N ∈ N and a small number 0 < ε. We

requireN to be at least as large as the number of nodes with priorities, i.e.N ≥ 3n+1

and ε−1 to be significantly larger than the largest occurring priority induced reward,

i.e. ε ≤ N−(4n+8). Remember that node v having priority Ω(v) means that the cost

associated with every outgoing edge of v is 〈v〉 = (−N)Ω(v).

Table 4.16 defines the edge sets, the probabilities, the priorities and the immediate

rewards of Gζ .

Lemma 4.64. For every strategy σ, the MDP described by Gζ ends in the sink t with

probability 1.

It is not too hard to see that the absolute potentials of all nodes corresponding to

strategies belonging to the phases are bounded by ε−1. More formally we have:

Lemma 4.65. Let P = {r, yi, xi, di | i ≤ n} be the set of nodes with priorities. For

a subset S ⊆ P , let
∑

(S) =
∑

v=S 〈v〉. For non-empty subsets S ⊆ P , let vS ∈ S
be the node with the largest priority in S.

1. |
∑

(S)| < N4n+8 and ε · |
∑

(S)| < 1 for every subset S ⊆ P , and

2. |vS| < |vS′ | implies |
∑

(S)| < |
∑

(S ′)| for non-empty subsets S, S ′ ⊆ P .

Lemma 4.66. Let σ be a strategy belonging to one of the phases specified in Ta-

ble 4.17. Then |POTσ(v)| < N4n+8 and ε · |POTσ(v)| < 1 for every node v.

4.7. PROBABILISTIC RULES 175

Node Successors Probability

Ai di ε

ai,h 1− ε
Bi yi ε

bi,`i
1
2
· (1− ε)

ci,g
1
2
· (1− ε)

Node Successors Priority

r w1 6

xi s 4i+ 3

di Bi 4i+ 5

yi wi+1 4i+ 6

wn+1 t -
un+1 t -
wi wi+1, Ai -
ui ui+1, di -

Node Successors Cost

ai,1 Ai 0

xi 1ε

ai,j+1 ai,j 0

xi (j+1)ε

bi,1 Bi 0

s 1ε

bi,j+1 bi,j 0

s (j+1)ε

ci,1 Bi 0

r 1ε

ci,j+1 ci,j 0

r (j+1)ε

t t -
s u1 -

Table 4.16: Random Edge MDP Construction

Next, we will specify and prove an auxiliary lemma that describes the exact

behavior of all the cycles appearing in the construction.

The idea behind the cycles is to have a gate that controls the access of other nodes

of the graph to the escape node of the cycle (di resp. yi) to which the randomized

node moves with very low probability.

First, assume that a cycle (or both cycles if there are two) is closed. Although

the randomized node circles through the cycles with very high probability (without

accumulating any costs), it eventually moves out to the escape node, resulting in the

same potential as the potential of the escape node itself.

Second, assume that a cycle is open, i.e. one of the V0-controlled nodes of the

cycle decides to move out of the cycle to some reset node. Now, the randomized

node selects to move into the cycle with very large probability and therefore leaves

the cycle to the reset node with high probability as well. The resulting potential of

the randomized node essentially matches the potential of the reset node.

The critical property of cycles is that closing a cycle is a very slow process while

opening proceeds at a rapid pace. Closing a cycle takes place when the potential

176 CHAPTER 4. LOWER BOUNDS FOR STRATEGY ITERATION

of the escape node is better than the potential of the reset node. However, in every

policy iteration step, there is only one improving edge associated with the cycle,

namely the first edge pointing into the cycle which is not included in the current

policy. Therefore, closing a cycle can only be performed one edge at a time. Opening

a cycle happens in the reverse situation in which the potential of the reset node

is better than the potential of the escape node. Here, every node that is currently

moving into the cycle has an improving edge to move out of the cycle.

The following lemma formalizes the intuition of the behavior of the cycles. If

the escape node has better valuation than the reset nodes, it should be profitable to

close the cycle, and otherwise, it should be profitable to open the cycle again. This

idea generalizes to the setting in which two cycles are attached to the randomization

node. Since both reset nodes necessarily have different potentials, it is always the

case that it is profitable to close one of the two cycles (the one with the worse reset

node) and while it is closing, the other one is opening. If one of the two cycles is

completely closed, the problem is essentially reduced to the case in which only one

cycle is attached to the randomization node.

Lemma 4.67. Let σ be a strategy belonging to one of the phases specified in Ta-

ble 4.17.

1. POTσ(di) < POTσ(xi)⇒ Ai opening,

2. POTσ(di) > POTσ(xi), Ai consecutive, not closed⇒ Ai closing,

3. POTσ(s) < POTσ(r), Bi consecutive, not closed⇒ Bi closing, Ci opening,

4. POTσ(s) < POTσ(r) < POTσ(yi), Bi closed, Ci consecutive, not closed⇒ Ci

closing, and

5. POTσ(r) < POTσ(yi) < POTσ(s), Ci consecutive, not closed⇒ Ci closing, Bi

opening.

Counting Phases

In this paragraph, we formally describe the different phases that a strategy can be

in, as well as the improving switches in each phase. The increment of the binary

4.7. PROBABILISTIC RULES 177

counter by one is realized by transitioning through all the phases. We first introduce

notation to succinctly describe strategies.

Note that all vertices of V0 have at most binary out-degree. It will be convenient

to describe the decision of a strategy in terms of {0, 1}-values for all vertices of V0

with binary out-degree. Let σ be a policy and u ∈ {ui, wi, ai,∗, bi,∗, ci,∗ | i ∈ [n]}.
We write:

σ(u) =

1 if σ(u) = (u, v), such that v 6∈ {r, s} ∪ {ui+1, wi+1, xi | i ∈ [n]}

0 otherwise

In other words, σ(u) = 1 iff the node u moves into the corresponding level of the

construction. We, furthermore, define the total number of edges of σ going into the

respective cycles as:

αi(σ) =
∑
j∈[h]

σ(ai,j) βi(σ) =
∑
j∈[`i]

σ(bi,j) γi(σ) =
∑
j∈[g]

σ(ci,j)

We say that a cycle is:

1. Closed, if αi(σ) = h, βi(σ) = `i or γi(σ) = g, respectively.

2. Open, if it is not closed.

3. Completely open, if αi(σ) = 0, βi(σ) = 0 or γi(σ) = 0, respectively.

4. Consecutive, if the frontmost k vertices move into the cycle, for some k, and

all remaining vertices move out of the cycle.

To describe the set of improving edges, we say that a cycle is:

1. Opening, if every unused edge moving out of the cycle is an improving switch.

2. Closing, if either the cycle is closed and there are no improving switches, or

the cycle is consecutive and the only improving switch is (ai,αi(σ)+1, ai,αi(σ)),

(bi,βi(σ)+1, bi,βi(σ)) or (ci,γi(σ)+1, ci,γi(σ)), respectively.

For every i ∈ [n], we use a succinct notation tuple to provide all necessary

information describing the i’th level: b c a u w , where b describes the B-cycle, c

178 CHAPTER 4. LOWER BOUNDS FOR STRATEGY ITERATION

describes the C-cycle, a describes the A-cycle, u describes the right lane, and w

describes the left lane.

The first three components, describing the cycles, take one of the following

values:

1 cycle is closed and closing

0 cycle is completely open and opening

↑ cycle is open, consecutive and closing

↓ cycle is opening

The last two components describe the setting and improving switches of wi and

ui. For concreteness we give the definitions for wi, the definitions for ui are similar.

1 σ(wi) = 1 and switching is no improvement

0 σ(wi) = 0 and switching is no improvement

↘ σ(wi) = 1 and switching is an improvement

↗ σ(wi) = 0 and switching is an improvement

We write ∗ if we neither care about the current setting nor about any improving

switches.

To describe the progress of reassembling the right and left lanes in phases 4 and

7, respectively, we define the index of the lowest level with an incorrect setting as

follows:

δ(σ, k) = max{i≤k | i<k ⇐⇒ σ(ui)=1}

η(σ, k) = max{i≤k | i<k ⇐⇒ σ(wi)=1}

We are now ready to formulate the conditions for strategies that fulfill one of

the seven phases along with the improving edges. See Table 4.17 for a complete

description (with respect to a given strategy σ and global counter state b).

Finally, we prove that the improving switches are indeed exactly as specified.

The simple but tedious proof uses Lemma 4.66 and Lemma 4.67 to compute the

potentials of all important nodes in the game to determine whether a successor of

V0-controlled node is improving or not.

4.7. PROBABILISTIC RULES 179

Lemma 4.68. The improving switches from strategies that belong to the phases are

exactly those specified in Table 4.17.

Phase i > µ1(b) i = µ1(b) 0 < i < µ1(b)

bi = 1 bi = 0

1 1 1 1 1 1 ↑ ↓ 0 0 0 ↑ ↓ 0 0 0 1 1 1 1 1

2 1 1 1 1 1 ↑ 0 0 0 0 ↑ 0 0 0 0 1 1 1 1 1

3 1 1 1 1 1 ↑ 0 0 0 0 1 ↑ 0 0 0 1 1 1 1 1

4 1 1 1 1 1 ↑ 0 0 0 0 1 1 ↑ u10 1 1 1 u21

5 1 1 1 1 1 ↓ ↑ 0 0 0 1 1 ↑ 1 ∗ ↓ 1 ↓ 0 ∗
6 1 1 1 1 1 0 ↑ 0 0 0 1 1 ↑ 1 ∗ 0 1 0 0 ∗
7 1 1 1 1 1 0 ↑ 0 0 0 1 1 1 1w1 b 1 0 0w2

Side Conditions

u1 =

{
1 if µ1(b) 6= δ(σ, µ1(b))

↗ otherwise
w1 =

{
1 if µ1(b) 6= η(σ, µ1(b))

↗ otherwise

b =

{
↑ if i ≥ η(σ, µ1(b))

0 otherwise

u2 =


↘ if i = δ(σ, µ1(b))

1 if δ(σ, µ1(b)) > i

0 otherwise
w2 =


↘ if i = η(σ, µ1(b))

0 if i > η(σ, µ1(b))

∗ otherwise

Table 4.17: Strategies and improving switches of the seven phases

Transition Probabilities

Let Σb,p be the set of policies that belong to phase p, where p ∈ [7], with respect

to a given setting b of the counter. The sets Σb,p are defined by Table 4.17, where

the improving switches from each such policy are also specified. Our goal in this

paragraph is to show that if RANDOM-EDGE is run on a policy from Σb,p, then with

an extremely high probability a policy from Σb,p+1, or from Σb+1,1, if p = 7, is

encountered after polynomially many steps. We show that the probability that this

does not hold is O(e−n). The probability that one of the 7 · 2n phases fails is thus

O((2/e)n), i.e., exponentially small.

180 CHAPTER 4. LOWER BOUNDS FOR STRATEGY ITERATION

The vertices of the MDP are partitioned into 3n cycles, which we refer to as the

Ai-cycle, Bi-cycle and Ci-cycle, for i ∈ [n], and the two lanes W and U. We use Z

as a generic name for each one of these cycles or lanes. Table 4.17 specifies the

behavior of each cycle or lane Z during a phase. A cycle Z is in one of the four states

1, 0, ↑, ↓, as explained above. Recall that ↑ means that the cycle is closing, and that ↓
means that the cycle is opening. A lane Z is either fixed during a stage, or is being

realigned.

A phase ends when a specified component Z completely opens, completely

closes, or is completely realigned. By looking at Table 4.17 we see, for example,

that phase 1 ends when all Ci-cycles, with bi = 0, which are opening during the

phase, open completely. Note that the Bi-cycles, with bi = 0, are closing during the

phase, and none of them is allowed to close completely before all the Ci-cycles open

completely. Phase 1 fails only if one of the Bi-cycles closes completely before all

required Ci-cycles open completely.

Similarly, in phase 2, all Bi-cycles with bi = 0 are opening. The phase ends

successfully if the first such cycle to close completely is the Bµ1(b)-cycle. The phase

thus fails only if some Bi-cycle, with i > µ1(b) and bi = 0 closes completely before

the Bµ1(b)-cycle.

As a final example, note that phase 4 ends when the right lane U realigns, and

that this should happen before the Aµ1(b)-cycle and the Bi-cycles, with i > µ1(b) and

bi = 0, close completely.

We can thus view each phase as being composed of several simultaneous compe-

titions between various components, some of which are trying to open while others

are trying to close. In each phase, we either like all cycles that are trying to open, to

open completely before any other cycle closes completely, as it is the case in phase 1.

In other cases, we would like some specified cycle, like the Bµ1(b)-cycle in phase 2,

or the right lane U in phase 4, to completely close, or realign itself, before any other

cycle closes completely.

The competitions carried out during each phase are shown in Table 4.18. We let

⇑(Z,Z) denote a competition in which we want Z to completely close before any

other component Z′ ∈ Z closes completely. We let ⇓(Z) denote the competition in

4.7. PROBABILISTIC RULES 181

Trans. Competition

1→ 2 ⇓({B(i) | bi=0})
2→ 3 ⇑(B(µ1(b)), {B(i) | i>µ1(b), bi=0})
3→ 4 ⇑(C(µ1(b)), {B(i) | i>µ1(b), bi=0})
4→ 5 ⇑(U, {A(µ1(b))}∪{B(i) | i>µ1(b), bi=0})
5→ 6 ⇓({A(µ1(b))}∪{C(i) | i>µ1(b), bi=0})
6→ 7 ⇑(A(µ1(b)), {C(i) | i>µ1(b), bi=0})
7→ 1 ⇑(W, {C(i) | i>µ1(b), bi=0}∪{B(i) | i<µ1(b)})
Trans. Noise Bounds

ξB ξC ξA

1→ 2 ν(n) + ρ 0 0
2→ 3 ν(n) + ρ+ ν(`µ1(b)) 0 0
3→ 4 ν(n)+ρ+ν(`µ1(b))+ν(g) 0 0
4→ 5 2ν(n)+ρ+ν(`µ1(b))+ν(g) 0 ν(n)

5→ 6 0 ρ ν(n)+ρ

6→ 7 0 ρ+ ν(h) 0
7→ 1 ν(n) ρ+ν(h)+ν(n) 0

Table 4.18: Noise bounds and phase transition competitions

which we want all cycles that are currently opening to open completely before any

cycle Z ∈ Z closes completely. (Note that in ⇓(Z) we do not specify which cycles

are opening.)

Competitions between closing cycles and opening cycles are heavily biased

towards the opening cycles. This is because a closing cycle has only one improving

edge associated with it, while an opening cycle has, in general, many improving

switches associated with it. As an improving switch is chosen uniformly at random,

an improving switch that belongs to the opening cycle is much more likely to be

selected.

In competitions between closing cycles, shorter cycles, or more precisely cycles

with less ‘missing’ edges, clearly have an advantage (both cycles close at the same

‘speed’). To make it much more likely that the Bi-cycles that belong to less significant

bits close before those corresponding to more significant bits, we use longer Bi-cycles

182 CHAPTER 4. LOWER BOUNDS FOR STRATEGY ITERATION

for the more significant bit positions (the Ai-cycles and Ci-cycles, in contrast, are all

of the same length).

We rely on the following two simple probabilistic lemmata.

Lemma 4.69. Let a be the total length of all the cycles that are currently opening.

Then, the probability that a closing cycle acquires at least b new edges before all

opening cycles open completely is at most a
2b

.

Lemma 4.70. The probability that a closing cycle acquires b new edges before a

different closing cycle of length a closes completely is at most e−
1
2

(b−a)2/(b+a).

Let ν(a) be the value of b for which the probability e−
1
2

(b−a)2/(b+a) of Lemma 4.70

is at most e−n. It is not difficult to check that ν(a) = a+n+
√
n2 + 4an. In particular,

we have ν(n) = (2 +
√

5)n < 5n, and ν(a) ≤ a + 3
√
an, for a ≥ 2n. We also let

ρ = 2n.

If Z is a cycle that is closing at a certain phase, but is not supposed to win the

competition of the phase, we refer to the number of edges currently pointing into Z as

the noise level of Z. To prove that competitions are won by the intended candidates,

we prove that the probability that the noise level of any of the other cycles exceeds

the noise bound specified on the right of Table 4.18, at any time during the phase,

is exponentially small. Three different noise bounds ξB, ξC , ξA are specified for

Bi-cycles, Ai-cycles and Ci-cycles, respectively. A phase ends successfully if the

noise level of each cycle never reaches the length of that cycle.

It is not difficult to prove by induction that the probability that the noise level

of a cycle exceeds the noise bound given in Table 4.18 is exponentially small. Let

us look, for example, at the noise levels of the Bi-cycles. In phase 5, no Bi-cycle is

closing, so ξB = 0 is a (vacuous) upper bound on the noise level of closing Bi-cycles.

The same holds for phase 6. Some Bi-cycles are closing in phase 7. All these cycles,

however, are completely open at the beginning of phase 7. The competition in

phase 7 is with the left lane W. The realignment of a lane may be viewed as the

closing of a cycle of length at most n (both lanes and cycles close one edge at a time).

Thus, by Lemma 4.70, the probability that the noise level of any of the Bi-counters

exceeds ν(n) is at most e−n. As mentioned ν(n) < 5n. Phase 1 is a cycle opening

4.7. PROBABILISTIC RULES 183

competition. By Lemma 4.69, the probability that the noise level of a given Bi-cycle

increases by more than ρ = 2n is O(n4/22n) = o(e−n). The other noise bound can

be verified in a similar manner.

We are now in a position to choose the length of the various cycles. The length h

of all the Ai-cycles should satisfy h > ν(n)+ρ. This is satisfied by choosing h = 8n.

The length g of the Ci-cycles should satisfy g > ρ + ν(8n) + ν(n). As ρ = 2n,

ν(8n) < 15n and ν(n) < 5n, we can choose g = 22n. Finally, the length `k+1 of

the Bk+1-cycle should satisfy `k+1 > 2ν(n)+ρ+ν(`k)+ν(22n). As ν(22n) < 33n

and ν(`k) ≤ `k + 3
√
`kn, it is enough to require that `k+1 > `k + 3

√
`kn+ 45n. It

is easy to check that this is satisfied by the choice `k = 25k2n.

Results

We conclude that policy iteration with the RANDOM-EDGE rule requires an expo-

nential number of iterations on the MDPs of this chapter.

Theorem 4.71. The expected number of improving switches performed by the

RANDOM-EDGE-rule on the MDPs constructed in this section, which containO(n4)

vertices and edges, is Ω(2n).

Obviously, we can transfer the result to MDPs with the discounted reward

criterion (for large enough discount factors).

Corollary 4.72. The number of improving steps performed by RANDOM-EDGE

policy iteration with the discounted reward criterion on the MDPs constructed in

this section is Ω(2n).

Since Markov decision process policy iteration corresponds immediately to the

simplex algorithm for solving related linear programs, we have the following result:

Theorem 4.73. The number of improving steps performed by RANDOM-EDGE sim-

plex algorithm on the linear programs induced by the MDPs constructed in this

section is Ω(2n).

184 CHAPTER 4. LOWER BOUNDS FOR STRATEGY ITERATION

Parity Games

We show how the lower bound graphs can be turned into a parity game to provide a

lower bound for random edge here as well.

Essentially, the graph is the same. Randomization nodes are replaced by player 1

controlled nodes s.t. the cycles are won by player 0. We assign low unimportant

priorities to all nodes that have currently no priority, while giving the nodes on the

cycle odd priorities to make sure that moving into the cycle is only profitable by

switching one edge at a time.

For a tuple ζ = (n, (`i)0≤i≤n, h, g), with n, `i, h, g > 0, we define the underlying

graph Gζ = (V0, V1, E,Ω) of a parity game as shown schematically in Figure 4.24.

More formally:

V0 := {ai,j | i ∈ [n], j ∈ [h]} ∪ {bi,j | i ∈ [n], j ∈ [`i]} ∪

{ci,j | i ∈ [n], j ∈ [g]} ∪ {di, yi, xi | i ∈ [n]} ∪

{wi, ui | i ∈ [n+ 1]} ∪ {t, r, s}

V1 := {Ai, Bi | i ∈ [n]}

Table 4.19 defines the edge sets and the priorities of Gζ .

Node V Successors in E Priority Ω

t t 1

wn+1 t 2

un+1 t 2

wi wi+1, Ai 2

ui ui+1, di 2

Ai di, ai,h 4

ai,1 Ai, xi 3

ai,j+1 ai,j, xi 3

xi s 4i+ 3

Node V Successors in E Priority Ω

r w1 6

s u1 2

di Bi 4i+ 5

yi wi+1 4i+ 6

Bi yi, bi,`i , ci,g 4

bi,1 Bi, s 3

bi,j+1 bi,j, s 3

ci,1 Bi, r 3

ci,j+1 ci,j, r 3

Table 4.19: Edges and Priorities of Gζ

4.7. PROBABILISTIC RULES 185

wn+1

2
t
1

un+1

2

...

yi+1

4i+ 10

g

ci+1,j

3

bi+1

4

`i+1

bi+1,j

3

di+1

4i+ 9

ui+1

2

wi+1

2

ai+1

4

h

ai+1,j

3

xi+1

4i+ 7

yi
4i+ 6

g

ci,j
3

bi
4

`i

bi,j
3

di
4i+ 5

ui
2

wi
2

ai
4

h

ai,j
3

xi
4i+ 3

...

y1
10

g

c1,j
3

b1

4

`1

b1,j
3

d1
9

u1
2

w1

2

a1

4

h

a1,j
3

x1
7

r
6

s
2

Figure 4.24: Lower bound parity game for RANDOM-EDGE

186 CHAPTER 4. LOWER BOUNDS FOR STRATEGY ITERATION

The first important observation to make is that the parity game is a sink game,

which helps us to transfer our result to payoff games. The following lemma corre-

sponds to Lemma 4.64 in the MDP world.

Lemma 4.74. Starting with an initial strategy σ s.t. σ(w∗) = σ(s∗) = 0, we have

that Gζ is a sink parity game.

All other definitions are exactly as before. Particularly, Table 4.17 becomes ap-

plicable again. The following lemma has the exact same formulation as Lemma 4.68

in the MDP world.

Lemma 4.75. The improving switches from strategies in the parity game that belong

to the phases are exactly those specified in Table 4.17.

The reason why this lemma holds is, that the valuations of the parity game nodes

are essentially the same as the potentials in the MDP by dropping unimportant O(1)

terms.

All other proofs rely on Table 4.17 and Lemma 4.68, hence we transfer our main

theorem to the parity game world.

Theorem 4.76. Parity game strategy iteration with RANDOM-EDGE-rule requires

at least 2n expected improvement steps on Gn.

Since Gn is a family of sink parity games, it follows directly by Theorem 4.19

that we have a subexponential lower bound for payoff games.

Corollary 4.77. Payoff game strategy iteration with RANDOM-EDGE-rule requires

expected subexponential time.

We mention without proof that the construction gives another subexponential

lower bound for Schewe’s SWITCH-BEST improvement rule [Sch08].

Remarks

The analysis of the counter as well as the game construction for RANDOM-EDGE

can be improved greatly. First, the probabilistic analysis is based on the desire,

4.7. PROBABILISTIC RULES 187

that the binary counter operates without any faults, meaning that we really want

to perform 2n increment steps. However, counting “good enough”, i.e. skipping a

small number of increment steps from time to time, would still yield an exponential

number of increment steps. Hence, our probabilistic analysis could be relaxed in

such a way that the length of the cycles could be reduced. Additional details will

appear in subsequent publications.

Second, using a more complicated construction for parity games, we can decrease

the lengths of the cycles to be linear in n, resulting in a 2Ω(
√
n) lower bound. The

main idea is to have downgoing edges from a node bi,j to nodes bi′,j with i′ < i;

which of these downgoing edges is chosen will be controlled by player 1. The

difference in the behavior of RANDOM-EDGE on the improved construction is that

when all Bi-cycles are competing with each other, higher Bi-cycles actually open all

their nodes again that are already subsumed by the least open Bi-cycle. Hence, it

is sufficient to have the same length for all Bi-cycles. The improved result is likely

to transfer to MDPs and linear programs as well. Additional details will appear in

subsequent publications.

4.7.3 Switch Half and all that

Our lower bound for the RANDOM-EDGE policy iteration for parity games and

related two-player games can be extended to arbitrary randomized multi-switch

improvement rules which select in each iteration step an applicable subset with a

certain cardinality of the improving switches arbitrarily at random. RANDOM-EDGE,

for instance, always selects subsets with cardinality one, and the deterministic

SWITCH-ALL rule always selects the subset with maximal cardinality. Another

important randomized multi-switch improvement rule is SWITCH-HALF [MS99],

which applies every improving switch with probability 1/2, assuming the binary case.

SWITCH-HALF: Apply every improvement with probability 1/2.

The lower bound transfers to all randomized multi-switch improvement rules due

to the fact that the two kinds of competitions that we have in the analysis are won

188 CHAPTER 4. LOWER BOUNDS FOR STRATEGY ITERATION

with even higher probability, when the cardinality of the number of switches that are

to be made at the same time is greater than one.

More generally, we consider a family of improvement rules here that capture the

space of randomized (meaning that choosing two arbitrary improving switches is

equally likely) and oblivious (meaning that the improvement rule is not allowed to

manage any additional data structure) procedures to select the set of switches to be

performed. For simplicity, we assume binary out-degree here.

Let P = (pn : {0, . . . , n} → [0, 1])n>0 be a family of discrete probability mass

functions, i.e. for every n > 0 we have
∑n

i=0 pn(i) = 1. If additionally pn(0) < 1

for every n > 0, then we call P probabilistic positive integer selector.

Every such P = (pn)n>0 induces an oblivious randomized improvement rule

ImproveP as follows. Let G be a game, σ be a strategy, Iσ be the set of improving

switches, n = |Iσ| > 0 and I ⊆ Iσ be a non-empty subset of improving switches.

Let i = |I| > 0. Then ImproveP (G, σ) = σ[I] with probability

1(
n
i

) · pn(i)

1− pn(0)

See Algorithm 11 for an algorithmic presentation of this rule.

Algorithm 11 Oblivious Randomized Improvement Rule
1: i← 0
2: while i = 0 do
3: Choose i ≤ |Iσ| at random according to p|Iσ |
4: end while
5: Choose I ⊆ Iσ with |I| = i uniformly at random
6: return σ[I]

The oblivious randomized improvement rule captures many interesting rules

from the literature, it particularly incorporates the following ones:

1. RANDOM-EDGE by pn(1) = 1 for all n > 0.

2. SWITCH-HALF by pn(k) =
(
n
k

)
· 2−n for all n > 0.

4.8. MEMORIZING RULES 189

3. SWITCH-ALL by pn(n) = 1 for all n > 0.

4. SWITCH 0 < q ≤ 1 by pn(k) =
(
n
k

)
· qk · (1− q)n−k for all n > 0.

Theorem 4.78. Policy iteration with oblivious randomized improvement rules for

infinitary payoff games requires expected subexponential time. Particularly, the

SWITCH-HALF-rule requires expected subexponential time.

4.8 Memorizing Rules

There is one famous history-based improvement rule that we consider in this chapter.

Known as the LEAST-ENTERED rule, Zadeh’s pivoting method [Zad80] belongs

to the family of memorizing improvement rules, which among all improving switches

chooses one which has been applied least often.

Zadeh’s pivoting rule is formulated for linear programming solving, and has

entered the folklore of convex optimization. The pivoting rule was proposed around

1980 [Zad80], and Zadeh offered a little prize of $1000 to anyone who can show that

the rule admits polynomially many iterations or to prove that there is a family of

linear programs on which the pivoting rule requires subexponentially many iterations

to find the optimum. Zadeh formulated his offer in a letter to Victor Klee, see

Figure 4.25 (from [Zie04]).

Our contribution is to give the first explicit construction of a subexponential lower

bound for LEAST-ENTERED in the context of limiting average Markov decision

processes. We transfer the result to discounted reward criterion MDPs, the simplex

algorithm for solving linear programs, to parity game strategy iteration, and to policy

iteration for the other classes of infinitary payoff games.

All technically tedious proofs have been put into Appendix A.4.

4.8.1 Zadeh’s Pivoting Rule

Zadeh’s LEAST-ENTERED pivoting rule is a deterministic, memorizing improvement

rule which among all improving pivoting steps from the current basic feasible

190 CHAPTER 4. LOWER BOUNDS FOR STRATEGY ITERATION

Figure 4.25: Zadeh’s Rule

solution (or vertex) chooses one which has been entered least often. It was originally

described in terms of solving linear programs [Zad80]. When applied to the primal

linear program of an MDP, it is equivalent to the variant of the policy iteration

algorithm, in which the improving switch is chosen among all improving switches

to be one, which has been chosen least often. This is the foundation of our lower

bound for the LEAST-ENTERED rule.

LEAST-ENTERED: Apply a switch that has been switched least of-

ten.

We describe Zadeh’s pivoting rule now formally in the context of MDPs. As

a memorization structure, we introduce an occurrence record, which is a map

φ : E0 → N that specifies for every player 0 edge of the given MDP how often it has

been used. Among all improving switches in the set Iσ for a given policy σ, we need

to choose an edge e ∈ Iσ that has been selected least often. We denote the set of

least occurred improving switches by Iφσ = {e ∈ Iσ | φ(e) ≤ φ(e′) for all e′ ∈ Iσ}.

4.8. MEMORIZING RULES 191

See Algorithm 12 for a pseudo-code specification of the LEAST-ENTERED piv-

oting rule for solving MDPs.

Algorithm 12 Zadeh’s Improvement Algorithm
1: procedure LEAST-ENTERED(G,σ)
2: φ(e)← 0 for every e ∈ E0

3: while Iσ 6= ∅ do
4: e← select edge from Iφσ
5: φ(e)← φ(e) + 1
6: σ ← σ[e]
7: end while
8: end procedure

In the original specification of Zadeh’s algorithm [Zad80], there is no clear

objective how to break ties whenever |Iφσ | > 1. In fact, we know that the asymptotic

behavior of Zadeh’s improvement rule highly depends on the method that is used

to break ties, at least in the world of MDPs, PGs and policy iteration for games in

general. We have the following corollary which is easy to verify (the idea is that

there is at least one improving switch towards the optimal policy in each step) by

Lemma 4.2.

Corollary 4.79. Let G be an MDP with n nodes and σ0 be a policy. There is a

sequence policies σ0, σ1, . . . , σN and a sequence of different switches e1, e2, . . . , eN

with N ≤ n s.t. σN−1 is optimal, σi+1 = σi[ei+1] and ei+1 is an σi-improving switch.

Since all switches are different in the sequence, it follows immediately that there

is always a way to break ties that results in a linear number of pivoting steps to

solve an MDP with Zadeh’s improvement rule. However, there is no obvious method

of breaking ties. The question whether Zadeh’s pivoting rule solves MDPs (and

LPs) in polynomial time should therefore be phrased independently of the heuristic

of breaking ties. In other words, we as “lower bound designers” are the ones that

choose a particular tie breaking rule.

Formally, we write (σ, φ) (σ′, φ′) iff there is an edge e ∈ Iφσ s.t. σ′ =

σ[e] and φ′ = φ[e 7→ φ(e) + 1]. Let + denote the transitive closure of .

The question, whether Zadeh’s improvement rule admits a polynomial number of

192 CHAPTER 4. LOWER BOUNDS FOR STRATEGY ITERATION

iterations independently of the method of breaking ties is therefore equivalent to the

question, whether the length of every sequence (σ0, φ0) + . . . + (σN , φN) can

be polynomially bounded in the size of the game.

We will not specify the tie-breaking rule used for our lower bound explicitly, due

to the fact that the rule itself is not a natural one. Instead, our proof just relies on the

 -relation, witnessing in every improvement step that we only select an improving

switch that has been applied least often.

Fair Counting

In high level terms, our PGs, MDPs, and the linear programs corresponding to them,

are constructions of ‘pairwise alternating’ binary counters. Consider a normal binary

counter: less significant bits are switched more often than higher bits, when counting

from 0 to 2n − 1. Zadeh’s rule would not go through all steps from 0 to 2n − 1 on

such a counter, because higher bits will be switched before they are supposed to be

switched, as the switching times that are associated with higher bits will catch up

with the switching times associated with lower bits. Zadeh’s rule, in a sense, requires

a “fair” counter that operates correctly when all bits are switched equally often.

Our solution to this problem is to represent each bit i in the original counter by

two bits i′ and i′′ s.t. only one of those two is actively working as representative

for i. After switching the representative for i – say i′ – from 0 to 1 and back to 0,

we change the roles of i′ and i′′ s.t. i′′ becomes the active representative for i. The

inactive i′ can now, while i′′ switches from 0 to 1 and back to 0, catch up with the rest

of the counter in terms of switching fairness: while i′ is inactive, we switch i′ from

0 to 1 back and forth (without effecting the rest of the counter as i′ is the inactive

representative) until the number of switching times catches up with the number of

switching times of the rest of the counter again.

Another viable approach could be to implement more sophisticated binary coun-

ters like Gray codes (see e.g. [BS96]). However, the construction of an MDP or PG

that models the behavior of a Gray code-based counter seems to be a very difficult

task.

4.8. MEMORIZING RULES 193

High-level Description

We start with a high-level description of the MDPs on which LEAST-ENTERED

performs an expected subexponential number of iterations. A schematic description

of the lower bound MDPs is given in Figure 4.26.

The MDP of Figure 4.26 emulates an n-bit counter. It is composed of n identical

levels, each corresponding to a single bit of the counter. The i-th level (i = 1 . . . n)

is shown explicitly in the figure. Levels are separated by dashed lines. The MDP

includes one source s and one sink t.

All edges in Figure 4.26 have an immediate reward of 0 associated with them

(such 0 rewards are not shown explicitly in the figure) unless stated otherwise as

follows: Some of the vertices are assigned integer priorities. If a vertex v has

priority Ω(v) assigned to it, then a reward of 〈v〉 = (−N)Ω(v) is added to all edges

emanating from v, where N is a sufficiently large integer. We use N ≥ 7n+ 1 and

ε ≤ N−(2n+11). Priorities, if present, are listed next to the vertex name. Note that

it is profitable for the controller, to move through vertices of even priority and to

avoid vertices of odd priority, and that vertices of higher numerical priority dominate

vertices of lower priority (the idea of using priorities is inspired, of course, by the

reduction from parity games to mean payoff games).

Each level i contains two (i.e. j = 0, 1) instances of a gadget that consists of

a randomization vertex Aj
i and two (i.e. l = 0, 1) attached cycles with player 0

controlled nodes bji,l. Therefore, we will call these gadgets from now on bicycle

gadgets, and refer to the instance with j=0 resp. j=1 as to bicycle 0 resp. bicycle 1.

From Aj
i (with j = 0, 1), the edge Aj

i → bji,l (with l = 0, 1), is chosen with

probability 1−ε
2

, while the edge Aj
i → dji is chosen with probability ε. Thus, if both

σ(bji,0) = Aj
i and σ(bji,1) = Aj

i , the MDP is guaranteed to eventually move from Aj
i

to dji (this is similar to the use of randomization nodes by Fearnley [Fea10]). We say

that a bicycle gadget is

• closed iff both σ(bji,0) = Aj
i and σ(bji,1) = Aj

i ,

• open iff σ(bji,0) 6= Aj
i or σ(bji,1) 6= Aj

i , and

194 CHAPTER 4. LOWER BOUNDS FOR STRATEGY ITERATION

s

t k[1;n]

b0i,1

ki
2i+7

t k[1;n]
c0i
7

c1i
7

b1i,1

k[1;n]

t

A0
i A1

i

t

k[1;n]b0i,0

d0i
6

d1i
6

b1i,0

t
h0i

2i+8

s s

h1i
2i+8

k[i+2;n] ki+1

ε ε1−ε
2

1−ε
2

1−ε
2

1−ε
2

kn+1

2n+9
t

Figure 4.26: Least Entered MDP Construction

4.8. MEMORIZING RULES 195

• completely open iff σ(bji,0) 6= Aj
i and σ(bji,1) 6= Aj

i .

Recall our notation to succinctly describe binary counters. It will be convenient

for us to consider counter configurations with an infinite tape, where unused bits are

zero. The set of n-bit configurations is formally defined as Bn = {b ∈ {0, 1}∞ |
∀i > n : bi = 0}.

We start with index one, i.e. b ∈ Bn is essentially a tuple (bn, . . . , b1), with

b1 being the least and bn being the most significant bit. By 0, we denote the

configuration in which all bits are zero, and by 1n, we denote the configuration in

which the first n bits are one. We write B =
⋃
n>0 Bn to denote the set of all counter

configurations.

Given a configuration b, we access the i-next set bit by νni (b) = min({n+ 1} ∪
{j ≥ i | bj = 1}), and the i-next unset bit by µi(b) = min{j ≥ i | bj = 0}.

The i-th level of the MDP corresponds to the i-th bit. A set bit is represented by

a closed bicycle gadget. Every level has two bicycle gadgets, but only one of them is

actively representing the i-th bit.

Whether bicycle 0 or bicycle 1 is active in level i depends on the setting of the

i+1-th bit. If it is set, i.e. bi+1 = 1, then bicycle 1 is active in the i-th level; otherwise,

if bi+1 = 0, we have that bicycle 0 is active in the i-th level.

Our proof is conceptually divided into two parts. First we investigate the improv-

ing switches that can be performed from certain policies of the MDP. This allows

us to prove the existence of a sequence of improving switches that indeed generates

the sequence of policies σ0...00, σ0...01, σ0...10, . . . , σ1...11. A transition from σb to σb+1

involves many intermediate improvement steps. We partition the path leading from

σb to σb+1 into six sub-paths which we refer to as phases. In the following, we first

give an informal description of the phases. The second part of our proof will be to

show that the way we want to apply the improving switches is compliant with the

associated occurrence records.

Before starting to describe what happens in the different phases, we describe the

“ideal” configuration of a policy, which belongs to phase 1: (1) all active bicycles

corresponding to set bits are closed, (2) all other bicycles are completely open,

196 CHAPTER 4. LOWER BOUNDS FOR STRATEGY ITERATION

moving to the least set bit, (3) all entry points ki move to the active bicycle if bit i

is set and to the least set bit otherwise, (4) the source s moves to the least set bit,

(5) all upper selection nodes h0
i move to the next accessible set bit (i.e. to the next

set bit with index ≥ i+2), and (6) the selection nodes dji move higher up iff the

immediately accessed bit is the next set bit (i.e. d0
i moves higher up iff bi+1 = 0 and

d1
i moves higher up iff bi+1 = 1).

Note that the two upper selection nodes h0
i and h1

i cannot select the same entry

points. The left node, h0
i , can select from the entry points ki+2 up to kn, while the

right node, h1
i , can only move to ki+1. The intuition behind this is that bit i+1 is set

every second time bit i is flipped, resulting in the alternating activation of the two bit

representatives for i.

Now, we are ready to informally describe all phases.

1. At the beginning of the first phase, we only have open bicycles that are

competing with each other to close. Inactive bicycles may have to catch up

with active bicycles, and hence, are allowed to switch both player 0 edges

inward, and therefore close the gadget. All active open bicycles move exactly

one edge inward in this phase.

So far, no active open bicycles have been closed. The last switch that is

performed in this phase is to move the remaining edge of the active bicycle

associated with the least unset bit inward, and therefore close the gadget.

2. In this phase, we need to make the recently set bit i accessible by the rest of

the MDP, which will be via the ki node. We switch here from ki to cji , where j

denotes the active representative in this level.

Note that ki now has the highest potential among all other k∗. Note that

generally, kl has a higher potential than kz for a set bit l and an unset bit z, and

that kl has a higher potential than kz for two set bits l and z iff l < z.

3. In the third phase, we perform the major part of the resetting process. By

resetting, we mean to unset lower bits again, which corresponds to reopening

the respective bicycles.

4.8. MEMORIZING RULES 197

Also, we want to update all other inactive or active but not set bicycles again to

move to the entry point ki. In other words, we need to update the lower entry

points kz with z < i to move to ki, and the bicycle nodes bjz,l to move to ki.

We apply these switches by first switching the entry node kz for some z < i,

and then the respective bicycle nodes bjz,l.

4. In the fourth phase, we update the upper selection nodes h0
z for all z < i− 1

of the bits that have been reset. All nodes h0
z should move to ki.

5. In the fifth phase, we update the source node to finally move to the entry point

corresponding to the recently set bit i.

6. In the last phase, we only have to update the selection nodes djz for all z < i of

the bits that have been reset. We finally end up in a phase 1 policy again with

the counter increased by one.

Full Construction

In this paragraph, we formally describe the full construction of our MDPs. We define

an underlying graph Gn = (V0, VR, E, r, p) of an MDP as shown schematically in

Figure 4.26 (we use the notation k[i;j] to indicate that player 0 in fact has edges to

every node kl with i ≤ l ≤ j) as follows:

V0 := {b0
i,0, b

1
i,0, b

0
i,1, b

1
i,1, d

0
i , d

1
i , h

0
i , h

1
i , c

0
i , c

1
i | i ∈ [n]} ∪

{ki | i ∈ [n+ 1]} ∪ {t, s}

VR := {A0
i ,A

1
i | i ∈ [n]}

With Gn, we associate a large number N ∈ N and a small number 0 < ε. We

requireN to be at least as large as the number of nodes with priorities, i.e.N ≥ 7n+1

and ε−1 to be significantly larger than the largest occurring priority induced reward,

i.e. ε ≤ N−(2n+11). Remember that node v having priority Ω(v) means that the cost

associated with every outgoing edge of v is 〈v〉 = (−N)Ω(v).

198 CHAPTER 4. LOWER BOUNDS FOR STRATEGY ITERATION

Table 4.20 defines the edge sets, the probabilities, the priorities and the immediate

rewards of Gn (note that h0
i has the successors t, ki+2, . . . kn; particularly, h0

n has

only t as successor).

Node Successors Probability

Aj
i dji ε

bji,0
1
2
· (1− ε)

bji,1
1
2
· (1− ε)

Node Successors Priority

t t -
s t, k[1;n] -

Node Successors Priority

kn+1 t 2n+9

ki c0
i , c

1
i , t, k[1;n] 2i+7

h0
i t, k[i+2;n] 2i+8

h1
i ki+1 2i+8

cji Aj
i 7

dji hji , s 6

bji,∗ t,Aj
i , k[1;n] -

Table 4.20: Least Entered MDP Construction

As designated initial policy σ∗, we use σ∗(dji) = hji , and σ∗(_) = t for all other

player 0 nodes with non-singular out-degree. It is not hard to see that, starting with

this initial policy, the MDP satisfies the weak unichain condition.

Lemma 4.80. The Markov chains obtained by the initial and the optimal policy

reach the sink t almost surely (i.e. the sink t is the single irreducible recurrent class).

It is not too hard to see that the absolute potentials of all nodes corresponding to

policies belonging to the phases are bounded by ε−1. More formally we have:

Lemma 4.81. Let P = {k∗, h∗∗, c∗∗, d∗∗} be the set of nodes with priorities. For a

subset S ⊆ P , let
∑

(S) =
∑

v∈S 〈v〉. For non-empty subsets S ⊆ P , let vS ∈ S be

the node with the largest priority in S.

1. |
∑

(S)| < N2n+11 and ε · |
∑

(S)| < 1 for every subset S ⊆ P , and

2. |vS| < |vS′ | implies |
∑

(S)| < |
∑

(S ′)| for non-empty subsets S, S ′ ⊆ P .

Lower Bound Proof

In this paragraph, we formally describe the different phases that a policy can be in,

as well as the improving switches in each phase. The increment of the binary counter

4.8. MEMORIZING RULES 199

by one is realized by transitioning through all the phases. Finally, we describe the

corresponding occurrence records that appear in a run of the policy iteration on the

MDPs.

We first introduce notation to succinctly describe policies. It will be convenient

to describe the decision of a policy σ in terms of integers rather than concrete target

vertices. Let σ be a policy. We define a function σ(v) as follows.

σ(v) t ki h∗∗ s A∗∗ cji

σ(v) n+ 1 i 1 0 0 −j

Additionally, we write σ(Aj
i) = 1 if σ(bji,0) = Aj

i and σ(bji,1) = Aj
i , and σ(Aj

i) = 0

otherwise.

We are now ready to formulate the conditions for policies that fulfill one of the

six phases along with the improving edges. See Table 4.21 for a complete description

(with respect to a bit configuration b). We say that a strategy σ is a phase p strategy

with configuration b iff every node is mapped by σ to a choice included in the

respective cell of the table. Cells that contain more than one choice indicate that

strategies of the respective phase are allowed to match any of the choices.

Table 4.22 specifies the sets of improving switches by providing for each phase p

a subset Lpσ and a superset Up
σ s.t. Lpσ ⊆ Iσ ⊆ Up

σ . The intuition behind this method

of giving the improving switches is that we will only use switches from Lpσ while

making sure that no other switches from Up
σ are applied.

The following lemma tells us that all occurring potentials in the policy iteration

are small compared to N2n+11. Particularly, ε-times potentials are almost negligible.

Lemma 4.82. Let σ be a policy belonging to one of the phases specified in Table 4.21.

Then |POTσ(v)| < N2n+11 and ε · |POTσ(v)| < 1 for every node v.

We finally arrive at the following main lemma describing the improving switches.

Lemma 4.83. The improving switches from policies that belong to the phases in

Table 4.21 are bounded by those specified in Table 4.22, i.e. Lpσ ⊆ Iσ ⊆ Up
σ for a

phase p policy σ.

200 CHAPTER 4. LOWER BOUNDS FOR STRATEGY ITERATION

Phase 1 2 3

σ(s) r r r

σ(d0
i) 1−bi+1 1−bi+1 1−bi+1

σ(d1
i) bi+1 bi+1 bi+1

σ(h0
i) νni+2(b) νni+2(b) νni+2(b)

σ(b∗∗,∗) 0, r 0, r 0, r, r′

σ(Abi+1

i) bi ∗ ∗
σ(A

b′i+1

i) ∗ b′i b′i

Phase 4 5 6

σ(s) r r r′

σ(d0
i) 1−bi+1 1−bi+1 1−bi+1, 1−b′i+1

σ(d1
i) bi+1 bi+1 bi+1, b′i+1

σ(h0
i) νni+2(b), νni+2(b′) νni+2(b′) νni+2(b′)

σ(b∗∗,∗) 0, νn1 (b) 0, νn1 (b) 0, νn1 (b)

σ(Abi+1

i) ∗ ∗ ∗
σ(A

b′i+1

i) b′i b′i b′i

Phase 1–2 4–6

σ(ki)

{
r if bi = 0

−bi+1 if bi = 1

{
r′ if b′i = 0

−b′i+1 if b′i = 1

Phase 3

σ(ki)


r, r′ if b′i = 0 and bi = 0

−bi+1, r
′ if b′i = 0 and bi = 1

−b′i+1 if b′i = 1

Phase 3 Side Conditions: for every i and every j we have

(a)
(
b′i = 0 and (∃j, l.σ(bji,l) = r′)

)
implies σ(ki) = r′

(b)
(
b′i = 0, b′j = 0, σ(ki) = r′ and σ(kj) 6= r′

)
implies i > j

Table 4.21: Policy Phases (where b′ = b + 1, r = νn1 (b) and r′ = νn1 (b′))

4.8. MEMORIZING RULES 201

Phase p Improving Switches Subset Lpσ
1 {(bji,l,A

j
i) | σ(bji,l) 6= Aj

i}
2 {(kr′ , c

b′
r′+1

r′)}
3 {(ki, kr′) | σ(ki) 6= r′ ∧ b′i = 0}∪

{(bji,l, kr′) | σ(bji,l) 6= r′ ∧ b′i = 0}∪
{(bji,l, kr′) | σ(bji,l) 6= r′ ∧ b′i+1 6= j}

4 {(h0
i , kνni+2(b′)) | σ(h0

i) 6= νni+2(b′)}
5 {(s, kr′)}
6 {(d0

i , x) | σ(d0
i) 6= x ∧ σ(d0

i) 6= b′i+1}∪
{(d1

i , x) | σ(d1
i) 6= x ∧ σ(d1

i) = b′i+1}

Phase p Improving Switches Superset Up
σ

1 L1
σ

2 L1
σ ∪ L2

σ

3 U4
σ∪{(ki, kz) | σ(ki)6∈{z, r′}, z≤r′ ∧ b′i=0}∪
{(bji,l, kz) | σ(bji,l)6∈{z, r′}, z≤r′ ∧ b′i=0}∪
{(bji,l, kz) | σ(bji,l)6∈{z, r′}, z≤r′ ∧ b′i+1 6=j′}

4 U5
σ∪{(h0

i , kl) | l ≤ νni+2(b′)}
5 U6

σ∪{(s, ki) | σ(s)6=i ∧ i<r′}∪
{(dji , x) | σ(dji)6=x ∧ i<r′}

6 L1
σ∪L6

σ

Table 4.22: Improving Switches (where b′ = b + 1 and r′ = νn1 (b′))

Note that phase 1 policies do not say anything about the particular configura-

tion of inactive or open bicycles. To specify that all bicycles are either closed or

completely opened, we say that a phase 1 policy σ is an initial phase 1 policy if

σ(bji,l) = 0 iff bi = 1 and bi+1 = j.

Next, we specify the occurrence records w.r.t. b ∈ Bn that we want to have for an

initial phase 1 policy σ . As described earlier, the entries of the occurrence records

essentially depend on the number of bit flips of a certain index that have happened

while counting up to b.

More precisely, we need to be able to count the number of occurred bit settings

that match a certain scheme, which is a description of how a certain bit configuration

202 CHAPTER 4. LOWER BOUNDS FOR STRATEGY ITERATION

should look like. Formally, a scheme is a set S ⊆ (N \ {0}) × {0, 1}. Let b ∈ B.

We write S |= b iff bi = q for all (i, q) ∈ S. We can now define the set of bit

configurations leading to b that match the scheme. Formally, we define the match set

as M(b, S) = {b′ ≤ b | S |= b′}.

We are most interested in schemes that correspond to flipping the i-th bit to one,

i.e. schemes that demand for every bit j < i to be zero. We define the flip set w.r.t.

an index i and an additional scheme S by F (b, i, S) = M(b, S ∪ {(i, 1)} ∪ {(j, 0) |
0 < j < i}). We drop the parameter S if S = ∅.

We use the flip set to specify two numbers. First, we define the number of bit flips

as the cardinality of the flip set by f(b, i, S) = |F (b, i, S)|. Second, we compute the

maximal flip number representation in the flip set by g(b, i, S) = max({0} ∪ {|b′| |
b′ ∈ F (b, i, S)}).

Table 4.23 specifies the occurrence record of an initial phase 1 policy. The

technical conditions for the cycle components essentially say that (1) both cycle

edges attached to Aji differ at most by one, that (2) the addition of both edges

belonging to an active unset cycle equal |b|, that (3) the addition of both edges

belonging to an active set cycle equal the maximal flip number when the respective

bit was set, and that (4) recently opened inactive cycles are in the process of catching

up with |b| again.

We are now ready to specify our main lemma describing the transitioning from

an initial phase 1 policy corresponding to b to a successor initial phase 1 policy

corresponding to b′, complying with the respective occurrence records.

Lemma 4.84. Let σ be an initial phase 1 policy with configuration b < 1n. There is

an initial phase 1 policy σ′ with configuration b′ = b + 1 s.t. (σ, φb) + (σ′, φb′).

It follows immediately that the MDPs provided here indeed simulate a binary

counter.

Results

We conclude that policy iteration with the LEAST-ENTERED rule requires exponen-

tially many iterations on Gn.

4.8. MEMORIZING RULES 203

Edge e (∗, t) (s, kr) (h0
∗, kr)

φb(e) 0 f(b, r) f(b, r)

Edge e (bji,∗, kr)

φb(e) f(b, r, {(i, 0)})+f(b, r, {(i, 1), (i+1, 1−j)})
Edge e (ki, kr) (ki, c

j
i)

φb(e) f(b, r, {(i, 0)}) f(b, i, {(i+1, j)})
Edge e (dji , s) (dji , h

j
i)

φb(e) f(b, i+1)−j · bi+1 f(b, i+1)−(1−j) · bi+1

Complicated Conditions

|φb(bji,0,A
j
i)−φb(bji,1,A

j
i)| ≤ 1

φb(bji,0,A
j
i)+φ

b(bji,1,A
j
i) =


g∗ + 1 if bi = 1 and bi+1 = j

g∗ + 1 + 2 · z if bi+1 6= j

|b| otherwise
,

where g∗ = g(b, i, {(i+1, j)})
and z := |b| − g∗ − 2i−1 < 1

2
(|b| − 1− g∗)

Table 4.23: Occurrence Records

Theorem 4.85. The number of improving steps performed by LEAST-ENTERED

policy iteration with limiting average criterion on the MDPs constructed in this

section, which contain O(n2) vertices and edges, is Ω(2n).

Obviously, we can transfer the result to MDPs with the discounted reward

criterion (for large enough discount factors).

Corollary 4.86. The number of improving steps performed by LEAST-ENTERED

policy iteration with the discounted reward criterion on the MDPs constructed in

this section is Ω(2n).

Since Markov decision process policy iteration corresponds immediately to the

simplex algorithm for solving related linear programs, we have the following result.

Theorem 4.87. The number of improving steps performed by LEAST-ENTERED

simplex algorithm on the linear programs induced by the MDPs constructed in this

section is Ω(2n).

204 CHAPTER 4. LOWER BOUNDS FOR STRATEGY ITERATION

Parity Games

We show how the lower bound graphs can be turned into a parity game to provide a

lower bound for other classes of infinitary payoff games as well.

Essentially, the graph is exactly the same. Randomization nodes are replaced

by player 1 controlled nodes s.t. the cycles are won by player 0. We assign low

unimportant priorities to all nodes that have currently no priority.

We define the underlying graph Gn = (V0, V1, E,Ω) of a parity game as shown

schematically in Figure 4.27. More formally:

V0 := {b0
i,0, b

1
i,0, b

0
i,1, b

1
i,1, d

0
i , d

1
i , h

0
i , h

1
i , c

0
i , c

1
i | i ∈ [n]} ∪

{ki | i ∈ [n+ 1]} ∪ {t, s}

V1 := {A0
i ,A

1
i | i ∈ [n]}

Table 4.24 defines the edge sets and the priorities of Gn.

Node Successors Priority

dji hji , s 6

Aj
i dji , b

j
i,0, b

j
i,1 4

bji,∗ t,Aj
i , k[1;n] 3

t t 3

s t, k[1;n] 3

Node Successors Priority

kn+1 t 2n+9

ki c0
i , c

1
i , t, k[1;n] 2i+7

h0
i t, k[i+2;n] 2i+8

h1
i ki+1 2i+8

cji Aj
i 7

Table 4.24: Least Entered PG Construction

The first important observation to make is that the parity game is a sink game,

which helps us to transfer our result to payoff games. The following lemma corre-

sponds to Lemma 4.80 in the MDP world.

Lemma 4.88. Starting with the designated initial policy, we have that Gn is a sink

parity game.

All other definitions are exactly as before. Particularly, Table 4.21 and Table 4.22

become applicable again. The following lemma has the exact same formulation as

Lemma 4.83 in the MDP world.

4.8. MEMORIZING RULES 205

s
3

t k[1;n]

b0i,1
3

ki
2i+7

t k[1;n]
c0i
7

c1i
7

b1i,1
3

k[1;n]

t

A0
i

4
A1
i

4

t

k[1;n]
b0i,0
3

d0i
6

d1i
6

b1i,0
3

t
h0i

2i+8

s s

h1i
2i+8

k[i+2;n] ki+1

kn+1

2n+9
t
1

Figure 4.27: Least Entered Parity Game Construction

206 CHAPTER 4. LOWER BOUNDS FOR STRATEGY ITERATION

Lemma 4.89. The improving switches from policies that belong to the phases in

Table 4.21 are bounded by those specified in Table 4.22, i.e. Lpσ ⊆ Iσ ⊆ Up
σ for a

phase p policy σ.

The reason why this lemma holds is that the valuations of the parity game nodes

are essentially the same as the potentials in the MDP by dropping unimportant O(1)

terms.

All other proofs rely on Table 4.21, Table 4.22 and Lemma 4.83, hence we

transfer our main theorem to the parity game world.

Theorem 4.90. Parity game strategy iteration with LEAST-ENTERED-rule requires

at least 2n improvement steps on Gn.

Since Gn is a family of sink parity games, it follows directly by Theorem 4.19

that we have a subexponential lower bound for payoff games.

Corollary 4.91. Payoff game strategy iteration with LEAST-ENTERED-rule requires

exponential time.

The tie-breaking rule that we employed to prove the lower bound was non-explicit

and definitely not a natural one. It would be interesting to see, whether it is easily

possible to transform the MDPs presented here, in order to obtain an exponential

lower bound for Zadeh’s rule with a natural tie-breaking rule.

4.8. MEMORIZING RULES 207

208 CHAPTER 4. LOWER BOUNDS FOR STRATEGY ITERATION

5
Lower Bounds for Other Methods

We present a rigorous treatment of the remaining two other methods for solving

parity games, for which no lower bounds have been known, namely the recursive

algorithm and the model checking algorithm.

Our Contribution

We show that the recursive algorithm due to Zielonka [Zie98] and the model checking

algorithm by Stevens and Stirling [SS98] for solving parity games require exponential

time in the worst case by giving (different) explicit constructions of parity games on

which they perform badly.

5.1 Recursive Algorithm

The most natural approach to solve parity games is a recursive decomposition.

Indeed, there is the so-called recursive algorithm that is induced by the constructive

proof of memoryless determinacy by Zielonka [Zie98].

It decomposes the game at hand to smaller ones recursively by simultaneous

induction on the number of priorities and the number of nodes in the game. In the

base case, if the game is empty, the empty winning sets can be directly obtained. In

the other cases winning sets and winning strategies can be assembled out of winning

sets and strategies for smaller subgames and an attractor strategy for one of the

players reaching the set of nodes with maximal priority in the game.

209

210 CHAPTER 5. LOWER BOUNDS FOR OTHER METHODS

The Algorithm

Recall that the i-attractor of a set U ⊆ V is the least set W s.t. U ⊆ W and whenever

v ∈ Vi and vE ∩W 6= ∅, or v ∈ V1−i and vE ⊆ W , then v ∈ W . Hence, the

i-attractor of U contains all nodes from which player i can move “towards” U and

player 1−i must move “towards” U . The i-attractor of U is denoted by Attr i(G,U).

Given an arbitrary attractor setA, we define the gameG\A as the game restricted

to the nodes V \ A, formally:

G \ A := (V \ A, V0 \ A, V1 \ A,E \ (A× V ∪ V × A),Ω |V \A)

Note again that A being an attractor ensures the required totality of G \ A.

The algorithm is based on the observation that higher priorities in a parity game

dominate all lower priorities, no matter how many there are. Let p be the highest

priority occurring in the game G, let U be a non-empty set of nodes with priority p

and let i be the parity of p. Now remove the i-attractor A of U and consider the so

obtained subgame G′.

If player i wins the whole gameG′, then i also wins the whole gameG: whenever

player 1−i decides to visit A, player i’s winning strategy would be to reach U . Then

every play that visitsA infinitely often has p as the highest priority occurring infinitely

often, or otherwise it stays eventually in G′ and hence is won by i.

Otherwise, if player i does not win G′ completely, i.e. player 1−i wins a non-

empty subset W ′
1−i, we know player 1−i also wins on W ′

1−i w.r.t. G, because player

i cannot force player 1−i to leave W ′
1−i. Hence, we compute the 1−i-attractor

B of W ′
1−i w.r.t. G, remove it as safe winning region for 1−i from the game and

recursively solve the subgame G \B.

The algorithm therefore can be specified as follows. In the original version of the

algorithm, the non-empty subset U of nodes with priority p is the whole set of nodes

with priority p. The freedom of choosing U can be seen as a rule for the recursive

algorithm. Nevertheless, there is no indication of any benefits for practical solving

as well as for the analysis of the lower bound by choosing a proper subset here. See

Algorithm 13 for a pseudo-code specification.

5.1. RECURSIVE ALGORITHM 211

Algorithm 13 Recursive Algorithm
1: procedure SOLVE(G)
2: if VG = ∅ then
3: (W0, σ0)← (∅,⊥)
4: (W1, σ1)← (∅,⊥)
5: return (W0, σ0), (W1, σ1)
6: else
7: p← max{ΩG(v) | v ∈ VG}
8: i← p mod 2
9: U ← non-empty subset of {v ∈ VG | ΩG(v) = p}

10: τ ← arbitrary strategy for player i on U
11: (A, τ ′)← Attr i(G,U)
12: (W ′

0, σ
′
0), (W ′

1, σ
′
1)← SOLVE(G \ A)

13: if W ′
1−i = ∅ then

14: (Wi, σi)← (Vi, σ
′
i ∪ τ ∪ τ ′)

15: (W1−i, σ1−i)← (∅,⊥)
16: return (W0, σ0), (W1, σ1)
17: else
18: (B, %)← Attr 1−i(G,W

′
1−i)

19: (W ′′
0 , σ

′′
0), (W ′′

1 , σ
′′
1)← SOLVE(G \B)

20: (Wi, σi)← (W ′′
i , σ

′′
i)

21: (W1−i, σ1−i)← (W ′′
1−i ∪B, σ′′1−i ∪ % ∪ σ′1−i)

22: return (W0, σ0), (W1, σ1)
23: end if
24: end if
25: end procedure

It is not hard to see that this algorithm is sound. Note that the correctness also

implies that there are always positional winning strategies for parity games.

Theorem 5.1 ([Zie98]). Let G be a parity game. SOLVE(G) terminates and returns

the winning sets with positional winning strategies for both players.

Proof. Let G = (V, V0, V1, E,Ω). We prove the claim by an induction on the

number of nodes |V |. If G is empty, the algorithm obviously terminates and returns

the correct winning sets and strategies.

For the the induction step, let |V | > 0. Let p = max{Ω(v) | v ∈ V }, i = p

mod 2, U be a non-empty subset of {v ∈ V | Ω(v) = p}, τ be an arbitrary strategy

for player i on U and (A, τ ′) = Attr i(G,U).

212 CHAPTER 5. LOWER BOUNDS FOR OTHER METHODS

Consider the gameG′ = G\A. Obviously, |VG′ | < |V |. By induction hypothesis,

it follows that SOLVE(G′) terminates and that it returns winning sets W ′
0, W ′

1 as well

as positional winning strategies σ′0, σ′1 for G′.

If now W ′
1−i = ∅, let σi = σ′i ∪ τ ∪ τ ′. We claim that player i indeed wins on Vi

following strategy σi. Let π be a σi-conforming play in G; we distinguish whether π

eventually stays in W ′
i . If that is the case, it is obviously won by player i, because σ′i

is a winning strategy for i on W ′
i by assumption. Otherwise, if π visits A infinitely

often, then player i enforces infinitely many visits to U as well by the attractor

strategy τ ′. Hence, the highest priority occurring infinitely often is p. Therefore,

SOLVE(G) terminates and returns the winning sets with positional winning strategies

for both players.

Otherwise, if W ′
1−i 6= ∅, let (B, %) = Attr 1−i(G,W

′
1−i). Consider the game

G′′ = G \ B. Obviously, |VG′′ | < |V |. By induction hypothesis, it follows that

SOLVE(G′′) terminates and that it returns winning sets W ′′
0 , W ′′

1 as well as positional

winning strategies σ′′0 , σ′′1 for G′′.

First, we argue that σ′′i is still a winning strategy on W ′′
i in the game G for player

i. Let π be a σ′′i -conforming play in G starting from a node in W ′′
i . It is impossible

for player 1−i to escape from W ′′
i , as escaping directly to W ′′

1−i is a contradiction to

W ′′
i being the i-winning set in G′′ and escaping directly to B is impossible with B

being an 1−i-attractor.

Second, we argue that σ1−i = σ′′1−i ∪ %∪ σ′1−i is a winning strategy on W ′′
1−i ∪B

for player 1−i. Let π be a σ1−i-conforming play in G; we distinguish whether π

eventually stays in W ′′
1−i. If that is the case, it is obviously won by player 1−i,

because σ′′1−i is a winning strategy for 1−i on W ′′
1−i by assumption. Otherwise, if π

visits B infinitely often, player 1−i enforces infinitely many visits to W ′
1−i as well

by the attractor strategy τ ′; π even stays in W ′
1−i, because W ′

1−i is the 1−i-winning

set w.r.t. G′ and player i cannot enforce a visit to A with A being an i-attractor in G.

Hence, W ′
1−i is won by player 1−i by assumption. Therefore, SOLVE(G) terminates

and returns the winning sets with positional winning strategies for both players.

5.1. RECURSIVE ALGORITHM 213

Exponential Upper Bound

For the analysis of the runtime complexity, let Rec(G) denote the total number of

SOLVE-calls that are executed in order to solve a given parity game G. We fix the

U -selection rule now that chooses the whole set of nodes with priority p.

A non-trivial upper bound can be easily derived: due to the fact that the number

of different priorities is strictly reduced in the first recursive call and the number of

nodes is strictly reduced in both recursive calls, the following recurrence f(n, p),

where n is an upper bound on the number of nodes and p is an upper bound on the

number of different priorities, obviously describes an upper bound on the number of

iterations that are required to solve a game with at most p different priorities and at

most n nodes.

f(0, 0) = 1

f(n+ 1, p+ 1) ≤ f(n, p) + f(n, p+ 1)

Since f(n, p) = np satisfies the recurrence, this yields the upper bound np.

Similarly, it would be possible to derive that for arbitrary selection policies 2n would

be an upper bound on the number of iterations.

Theorem 5.2. Let G be a parity game. Then Rec(G) ∈ O(|VG|ind(G)) w.r.t. the

whole-set rule and Rec(G) ∈ O(2|VG|) for arbitrary policies.

Exponential Lower Bound

We provide a concrete exponential lower bound on the number of iterations required

by the recursive algorithm to solve parity games. The construction will yield the

lower bound independently of the actual rule, because every “important” node in our

family of games will have a different priority.

The games will be denoted by Gn = (Vn, Vn,0, Vn,1, En,Ωn) and are of linear

size. The sets of nodes are

Vn := {a1, . . . , an, b1, . . . , bn, c0, . . . , cn−1, d0, . . . , dn−1, e0, . . . , en−1}

214 CHAPTER 5. LOWER BOUNDS FOR OTHER METHODS

The players, priorities and edges are described in Table 5.1. The game G3 is depicted

in Figure 5.1; recall that nodes owned by player 0 are drawn as circles and nodes

owned by player 1 are drawn as rectangles.

Node Player Priority Successors

ai 1− (i mod 2) 1− (i mod 2) {bi, di−1}
bi i mod 2 1− (i mod 2) {ai} ∪ ({ci} ∩ Vn)

ci 1− (i mod 2) 3i+ 5 {bi+1, di}
di i mod 2 3i+ 4 {ei} ∪ ({di−1, di+1} ∩ Vn)

ei 1− (i mod 2) 3i+ 3 {bi+1, di}

Table 5.1: The Recursive Lower Bound Game Gn

Fact 5.3. The game Gn has 5 · n nodes, 11 · n− 3 edges and 3 · n+ 2 as the highest

priority. In particular, |Gn| = O(n).

Basically, solving the game Gn, requires Gn−1 to be solved within the first recur-

sive descent and Gn−2 to be solved within the second recursive descent. Therefore,

the number of recursion steps can be described by the Fibonacci sequence.

The Fibonacci sequence is a function fib : N→ N which is recursively defined

as follows:

fib(0) = 0

fib(1) = 1

fib(n+ 2) = fib(n+ 1) + fib(n) for all n

It is a well-known fact that fib ∈ Ω
((

1+
√

5
2

)n)
, and since 1+

√
5

2
> 1, this

particularly implies that the Fibonacci sequence has exponential asymptotic behavior.

Lemma 5.4. The game Gn is completely won by player 1− (n mod 2).

Proof. By induction on n. It is easy to see that G1 is won by player 0 and G2 is

won by player 1. Let now n > 2 and i = 1− (n mod 2). We know by induction

hypothesis that Gn−2 is won by i.

5.1. RECURSIVE ALGORITHM 215

a1 : 0

b1 : 0

c0 : 5

d0 : 4

e0 : 3

a2 : 1

b2 : 1

c1 : 8

d1 : 7

e1 : 6

a3 : 0

b3 : 0

c2 : 11

d2 : 10

e2 : 9

Figure 5.1: The Recursive Lower Bound Game G3

Now attach the following strategy to the winning strategy for i onGn−2: σ(an) =

bn, σ(bn−1) = cn−1, σ(dn−1) = en−1 and σ(cn−2) = σ(en−2) = bn−1.

It is easy to see that an and bn are won by player i. Hence, bn−1, cn−1, dn−1, en−1,

cn−2 and en−2 are won by player i.

Therefore Gn−2 ⊆ Gn is still won by player i, as moving to cn−2 from nodes in

Gn−2 results in a win of player i. Hence, also an−1 and dn−2 are won by player i.

We will now show that solving Gn requires at least fib(n) many iterations, which

directly implies that the recursive algorithm requires exponentially many iterations

on the family (Gi)i>0.

Theorem 5.5. For all n > 0, it holds that Rec(Gn) ≥ fib(n).

Proof. By induction on n. For n = 1, 2 this is certainly true. For n > 2, we have to

show that the solving computation w.r.t. Gn finally requires Gn−1 and Gn−2 to be

solved in independent subcomputations:

216 CHAPTER 5. LOWER BOUNDS FOR OTHER METHODS

The highest priority in Gn is p = 3n+2, solely due to U = {cn−1}, and its parity

is i := n mod 2. The i-attractor of U is A = U , because the only node leading into

cn−1 — namely bn−1 — is owned by 1−i and has more than one edge.

Let G′n = Gn \ A. We will now show that sub-solving G′n requires Gn−1 to be

solved.

• The highest priority in G′n is p′ = 3n + 1, solely due to U ′ = {dn−1}, and

its parity is i′ = 1 − (n mod 2). The i′-attractor of U ′ clearly is A′ =

{an, bn, dn−1, en−1}, because the only node leading into A′ — namely dn−2 —

is owned by 1− i′ and has an edge not leading into A′.

Now note that G′n \ A′ = Gn−1 which is to be computed next within this

subcomputation.

Due to Lemma 5.4, Gn−1 is completely won by player i, and A′ is obviously won

by player 1−i; due to the fact that the only edge connecting Gn−1 and A′ in the

game Gn is the edge from dn−2 to dn−1, it is safe to conclude that solving G′n indeed

returns a partition into winning sets W ′
i = Gn−1 and W ′

1−i = A′.

Since W ′
1−i is not empty, one has to compute the 1−i-attractor of W ′

1−i w.r.t.

Gn, which is B = A′ ∪ {bn−1, cn−1, cn−2, en−2}, because all nodes leading into B —

namely an−1, bn−2 and dn−2 — are owned by player i and have edges not leading

into B.

Let G′′n = Gn \B. We will finally show that sub-solving G′′n requires Gn−2 to be

solved.

• The highest priority in G′′n is p′′ = 3n − 2, solely due to U ′′ = {dn−2}, and

its parity is i′′ = n mod 2. The i′′-attractor of U ′′ is A′′ = {an−1, dn−2},
because the only other node leading into A′′ — namely dn−3 — is owned by

1− i′′ and has an edge not leading into A′′.

Now note that G′′n \ A′′ = Gn−2 which is to be computed next within this

subcomputation.

5.2. MODEL CHECKING ALGORITHM 217

Remarks

Although our construction establishes an exponential lower bound on the runtime

complexity of the recursive algorithm, the practicability of this algorithm is generally

underestimated. In fact, it is one of the best in practice [FL09]. It seems to be very

difficult to adapt Zielonka’s algorithm to other game classes like mean payoff games.

The algorithm relies on the strong property that a higher priority dominates all lower

ones, no matter how many there are, and this property is obviously wrong in general

when transferred to real payoff games.

One of the best – in terms of a known upper bound on the worst-case runtime

– deterministic parity game algorithms is the so-called dominion decomposition

algorithm by Jurdziński, Paterson and Zwick [JPZ06]. It is based on the observation

that the recursive algorithm performs particularly bad when there are small dominions

in the given game. The dominion decomposition algorithm therefore tries to find

dominions up to some size l by exhaustive search and if it finds one, it removes it,

along with its attractor, from the game. Otherwise, the original recursive algorithm

is invoked while performing the dominion decomposition scheme in the Recursive

Calls.

The parameter l is specified in terms of the size of the given game G s.t. the

resulting upper bound is as low as possible: for arbitrary parity games the authors

prove (with l = d
√
|VG|e) that the upper bound is |VG|O(

√
|VG|). Currently, this

algorithm is one of the two deterministic procedures that solve parity games in

subexponential time. The other one is Schewe’s so-called big step algorithm [Sch07],

which is based on a similar idea.

5.2 Model Checking Algorithm

Solving parity games can be divided into global and local solving: while global

solvers determine for each position in the game which player can win starting from

there, local solvers are additionally given one single position in the game for which

it should be determined who wins starting from there.

218 CHAPTER 5. LOWER BOUNDS FOR OTHER METHODS

Clearly, the local and global problem are interreducible, the global one solves

the local one for free, and the global one is solved by calling the local one linearly

many times. But neither of these indirect methods is particularly clever. Thus, there

are algorithms for the global, and other algorithms for the local problem. Solving

parity games locally particularly applies to the model checking problem of the modal

µ-calculus, as one is only interested in determining who wins the position that

corresponds to the initial model checking tuple, containing the root formula and the

initial state of the transition system.

There are many algorithms that solve parity games globally, but surprisingly

there is only one algorithm – at least to our knowledge – that is a genuine local

solver, namely the one by Stevens and Stirling [SS98], to which we will refer to as

the model checking algorithm. In fact, it is directly defined as a model checking

problem in [SS98]; since µ-calculus model-checking and solving parity games are

interreducible, we will study the model checking algorithm directly as a local parity

game solving algorithm here.

It basically explores a game depth-first and whenever it reaches a cycle, it

stops, storing the node starting the cycle along with a cycle progress measure as an

assumption for the cycle-winning player. Then, the exploration is backtracked in the

sense that if the losing player could have made other moves, they are again explored

depth-first. If this leads to a cycle-win for the other player, the whole process starts

again, now with respect to the other player. Whenever the backtracking finally leads

to the starting node of a cycle, the node is registered as a decision for the player

which basically can be seen as being a preliminary winning node for the respective

player. Additionally, if there are assumptions of the other player for the respective

node, these assumptions are dropped, and all depending assumptions and decisions

are invalidated.

The Algorithm

The model checking algorithm by Stevens and Stirling essentially explores the

game, starting in the initial node, depth-first until it encounters a repeat. It relies

on interrelated data structures, called decisions and assumptions, that have to be

5.2. MODEL CHECKING ALGORITHM 219

organized in a dependency ordering. Instead of managing a whole dependency graph,

the authors pursue a simplified approach relying on time-stamping.

As a drawback, this simplified approach may lead to a removal of more decisions

than necessary in a run of the algorithm; on the other hand, it seems to be faster in

practice [SS98] and remains sound and complete. We note that our lower bound

construction does not rely on the mechanism of dependency since it never happens

that decisions have to be invalidated.

In order to compare the profitability of certain plays in the explored game, the

algorithm introduces a structure called index. Essentially, the index of a play π

denotes for every occurring priority p how often it occurs in π without seeing any

greater priorities afterwards.

Let G be a parity game. A G-index is a map i : ran(ΩG)→ N; let π be a finite

play. The π-associated index iπ is defined by

iπ : p 7→ |{j < |π| | Ω(π(j)) = p and Ω(π(k)) ≤ p for every k > j}|

Let 0 denote the index that maps every priority to 0. The index of a play can be

calculated inductively by applying the following priority addition function i ⊕ p,

which takes an index i and a priority p and is defined as follows

(i⊕ p)(q) :=


i(q) if q > p

i(q) + 1 if q = p

0 otherwise

It is easy to see that iπ = (. . . (0⊕ Ω(π(0)))⊕ . . .)⊕ Ω(π(|π| − 1)).

Next, we define a total ordering w.r.t. a given player u ∈ {0, 1} on indices that

intuitively measures the usefulness of indices w.r.t. player u. For two indices i and j

let i >u j hold iff there is some p ∈ ran(ΩG) s.t.

• i(p) 6= j(p),

• i(h) = j(h) for all h > p and

220 CHAPTER 5. LOWER BOUNDS FOR OTHER METHODS

• i(p) > j(p) iff p ≡2 u

This p will be called the most significant difference between i and j. In other words,

i >u j is a lexicographic ordering on indices based on the u-reward ordering on the

components of the indices. In order to denote that i >u j holds with p being the

most significant difference, we also write i >p
u j.

By considering the lexicographic ordering on indices induced by the relevance

ordering on components, it is not too hard to see that the following holds:

Corollary 5.6. Let G be a parity game, π and π′ be plays in G with |π| < |π′| and

π(k) = π′(k) for all k < |π|. Then iπ 6= iπ′ , hence either iπ >0 iπ′ or iπ >1 iπ′ .

Again, it is easy to see that the most significant differences between i and j, and

j and k can be used to obtain the most significant difference between i and k.

Corollary 5.7. Let G be a parity game, i, j and k be G-indices, p ∈ {0, 1} be a

player and w and q be priorities.

1. If i <w
p j, i <

q
p k and q < w it follows that k <w

p j.

2. If j <w
p i, k <

q
p i and q < w it follows that j <w

p k.

3. If i <w
p j and j <q

p k it follows that i <max(w,q)
p k.

The intuition behind an index is similar to the idea of the discrete valuations in the

strategy iteration: giving an abstract description of an associated play disregarding

the ordering. While valuations in strategy iteration essentially include all relevant

nodes in the play without regarding the ordering, an index in contrast is a window to

the immediate past of a play, in the sense that smaller priorities are hidden before the

last occurrence of a higher priority.

Exploring the game, the algorithm maintains a playlist storing for each node in

the play the index associated with the node, which edges originating from the node

remained unvisited, the time at which it was added to the playlist and if it was used

as an assumption for one or both of the two players.

5.2. MODEL CHECKING ALGORITHM 221

Formally, a playlist entry is a tuple (v, i, t, b, a) with v ∈ VG, i a G-index,

t ⊆ vEG, b ∈ N and a ⊆ {0, 1}. A playlist is a map l with a domain {0, . . . , k − 1}
for some k ∈ N that maps each i < k to a playlist entry. The length of a playlist l is

denoted by |l| := k and the empty playlist is denoted by []. To access the i-th entry

of the playlist, we write li.

Let l be a playlist and e be a playlist entry. Adding e to the top of l is denoted

by e :: l and formally defined as follows: e :: l is the playlist with the domain

{0, . . . , |l|} that maps every i < |l| to li and i = |l| to e.

When comparing two playlists l and l′, we are often not interested in whether

they are differing in the assumption component of one playlist entry. Hence, we

define l ≡ l′ to hold iff |l| = |l′| and for every k < |l|, we have that lk = (v, i, t, b, _)

implies l′k = (v, i, t, b, _) (an occurrence of _ in a tuple is to be seen as an unbound

existentially quantified variable).

A decision for a player p at a node v is a triple (i, t, u) where i is a G-index,

t ∈ N is a time-stamp and u ∈ VG ∪ {⊥} s.t. u = ⊥ if v 6∈ Vp and u ∈ vEG if

v ∈ Vp. Intuitively, the decision (i, t, u) at v for p tells us that if a play reaches v with

an index j that is not p-worse than i, it can be won by p if all assumptions before t

actually hold true. Additionally, if v is a p-choice point, u denotes the corresponding

strategy decision that should be played.

During a run of the algorithm, it happens that decisions are removed, depending

on their time-stamp. For instance, if a node v was used as an assumption for p at

a time t and it turns out later on that v will now be used as a decision for 1−p, all

decisions for p that have been made after t are to be removed. Hence, the algorithm

maintains a set of decisions for each player and each node.

Formally, a decision map for player p is a map d with domain Vp that maps each

node v ∈ Vp to a set of decisions for p at v. The decision map assigning to each node

the empty set is denoted by e. A decision map d for player p induces a p-strategy σd
which is defined on each node v with d(v) 6= ∅ as follows: σd(v) = u iff there is a

time t s.t. (_, t, u) ∈ d(v) and for all (_, s, _) ∈ d(v) it holds that s ≤ t.

Whenever the algorithm hits a repeat while exploring the game, the player p

winning the cycle is determined, and the starting node of the cycle in the playlist is

222 CHAPTER 5. LOWER BOUNDS FOR OTHER METHODS

marked to be used as an assumption for p. Then, the playlist is backtracked in order

to determine whether player 1−p could have made better choices. Additionally, if

exploring the game reaches a node at which a decision d for either one of the players

p is applicable, meaning that the current index is p-greater than the decision index,

the backtracking process is also invoked. EXPLORE accepts six parameters: the game

G, the current node v, the current index i, the current playlist l, the time-counter c and

the tuple of decision stacks d for both players. See Algorithm 14 for a pseudo-code

specification. Note that the statement i >p j used in the algorithm holds for either

one of the two players due to Corollary 5.6.

Algorithm 14 model checking algorithm: Explore Routine
1: procedure EXPLORE(G, v, i, l, c, d)
2: if (∃p ∈ {0, 1}.∃(j, _, _) ∈ dp(v) : i ≥p j) then
3: return BACKTRACK(G, v, p, l, c+ 1, d)
4: else if (∃i < |l| : li = (v, j, t, b, a)) then
5: p← {0, 1} s.t. i >p j
6: return BACKTRACK(G, v, p, l[i 7→ (v, j, t, b, a ∪ {p})], c+ 1, d)
7: else
8: w ← SELECT(G, v, vE)
9: return EXPLORE(G, w, i⊕ Ω(w), (v, i, vE \ {w}, c, ∅) :: l, c+ 1, d)

10: end if
11: end procedure

The algorithm leaves the choice of selecting the next successor, that is to be

visited, open: for a game G, the function SELECT chooses for every node v and for

every non-empty successor subset ∅ 6= t ⊆ vEG, a node SELECT(G,w, t) ∈ t.

Backtracking passes through the playlist in reverse order until it finds a choice

point of the other player that still contains unexplored edges. While backtracking,

all nodes that are removed from the top of the playlist are added to the decision set

of the player for whom the playlist is backtracked. Whenever adding a decision for a

player p at v, the algorithm checks whether v was used as an assumption for 1−p
and if so, all depending 1−p decisions are removed.

If the backtracking processes finally encounters a choice point of the other player

with unexplored choices, the exploration process continues at that node. Otherwise,

the algorithm finishes. BACKTRACK accepts six parameters: the game G, the current

5.2. MODEL CHECKING ALGORITHM 223

node v, the player p for which backtracking is to be performed, the playlist l, the

time-counter c and the tuple of decision stacks d for both players. See Algorithm 15

for a pseudo-code specification.

Algorithm 15 model checking algorithm: Backtrack Routine
1: procedure BACKTRACK(G, v, p, l, c, (d0, d1))
2: if (l = []) then
3: return (p, σdp)
4: else
5: (w, i, t, b, a) :: m← l
6: if (w ∈ Vp) or (t = ∅) then

7: u←

{
⊥ if t = ∅
v otherwise

8: d′p ← dp[w 7→ dp(w) ∪ {(i, c, u)}]

9: d′1−p ←

{
y 7→ {(j, s, z) ∈ d1−p(y) | j < b} if (1− p) ∈ a
d1−p otherwise

10: return BACKTRACK(G, w, p, m, c, (d′0, d
′
1))

11: else
12: u← SELECT(G, w, t)
13: l′ ← (w, i, t \ {u}, b, a) :: m
14: return EXPLORE(G, u, i⊕ Ω(u), l′, c, (d0, d1))
15: end if
16: end if
17: end procedure

The model checking algorithm is then realized by the DECIDE routine that takes

a game G and node v for which the winner is to be decided along with a winning

strategy. It just invokes the EXPLORE-routine by initializing all required parameters

with the default values. See Algorithm 16 for a pseudo-code specification.

Algorithm 16 model checking algorithm: Decide Routine
1: procedure DECIDE(G, v)
2: return EXPLORE(G, v, 0⊕ Ω(v), [], 1, (e, e))
3: end procedure

It is easy to see that the model checking algorithm always terminates. Correctness

essentially follows from the observation that the algorithm eventually explores a

224 CHAPTER 5. LOWER BOUNDS FOR OTHER METHODS

winning strategy for one of the two players and every backtracking operation results

in indices that are won by the respective player.

Theorem 5.8 ([SS98]). Let G be a parity game and v be a node in G. Calling

DECIDE(G, v) terminates and returns a tuple (p, σ) s.t. v ∈ Wp and σ is a p-winning

strategy starting in v.

Exponential Upper Bound

For the analysis of the runtime complexity, let MC(G, v) denote the total number of

EXPLORE-calls that are executed in order to solve a given parity game G and initial

node v.

A trivial upper bound can be easily derived: due to the fact the algorithm explores

every path ending in a cycle at most once, it follows that the depth of the search tree

is bounded by the number of nodes and the out-degree of every point in the search

tree is bounded by the out-degree of respective node in the game. Hence, a trivial

upper bound on the runtime complexity is O(nn) assuming that n is the number of

nodes in the game.

Theorem 5.9. Let G be a parity game and v ∈ G. Then MC(G, v) ∈ 2O(n·logn).

Exponential Lower Bound

We present a concrete family of parity games on which the (expected) runtime of

the model checking algorithm is exponential. Obviously, the analysis of the lower

bound depends to some extent on the selection policy SELECT. We follow the most

natural selection policy here that selects a successor node uniformly at random.

SELECTR(G, v,R) ≡ u ∈ R with probability
1

|R|

Employing this selection policy, we prove that the (expected) number of steps is

at least exponential on a certain family of games. Nevertheless, for other reasonable

policies, it is possible to show that a lower bound on the expected number of steps is

also exponential in a similar way.

5.2. MODEL CHECKING ALGORITHM 225

The games will be denoted by Gn = (Vn, Vn,0, Vn,1, En,Ωn) and are of linear

size. All nodes are owned by player 1.

Vn := {a0, . . . , an, b1, . . . , bn, c1, . . . , cn}

The priorities and edges are described in Table 5.2. The game G2 is depicted in

Figure 5.2.

a0 : 0 b1 : 0

c1 : 1

a1 : 2 b2 : 0

c2 : 3

a2 : 4

Figure 5.2: The Model Checking Lower Bound Game G3

Node Priority Successors

a0 0 {an}
ai>0 2 · i {bi}
bi 0 {ci, ai−1}
ci 2 · i− 1 {ai−1}

Table 5.2: The Model Checking Lower Bound Game Gn

Fact 5.10. The game Gn has 3 · n + 1 nodes, 4 · n + 1 edges and 2 · n as highest

priority. In particular, |Gn| = O(n).

Obviously, Gn is completely won by player 0, because every cycle eventually

goes through an, which has the highest priority in the game and is even. The

exponential behavior on these games is enforced as follows: assume for the time

being that the selection policy always select ai−1 first and then ci.

226 CHAPTER 5. LOWER BOUNDS FOR OTHER METHODS

Exploring the game starting in an, assume that the process is currently at bi
choosing to advance to ai−1. Eventually, an will be reached again and the play will

be backtracked w.r.t. player 0. The backtracking process finally moves back to bi,

advancing to the unexplored ci subsequently.

Now note that ci has an odd priority that is greater than all other priorities

occurring afterwards, i.e. Ω(ci) > Ω(qj) with j < i and qj ∈ {aj, bj, cj}. Hence,

there is no applicable decision that has been added during the backtracking process.

Therefore, advancing from ci again to ai−1 recursively, starts the whole process

again.

Otherwise, if the selection policy chooses ci first instead of ai−1, there will be an

applicable decision afterwards, avoiding the second recursive descent.

Again, we analyze the runtime complexity of the model checking algorithm in

terms of MC(G, v), i.e. the time-counter that is maintained by the EXPLORE-routine.

The following function fn will be shown to capture the progression of it accurately.

Let n ∈ N and i < n.

fn : i 7→


1 if i = 0

fn(i− 1) + 4 if i > 0 and SELECT(Gn, bi, biE) = ci

2 · fn(i− 1) + 4 otherwise

Lemma 5.11. Let n ∈ N. Then MC(Gn, an) = fn(n) + 1.

See Chapter B.1 for the proof of Lemma 5.11.

Theorem 5.12. Deciding (Gn, an) via DECIDE(Gn, an) with SELECTR requires an

expected number of 9 · 1.5n − 7 EXPLORE-steps. Particularly, a lower bound on the

expected worst-case runtime of the parity game model checking algorithm is 1.5Ω(n).

Proof. By Lemma 5.11, it requires fn(n) + 1 EXPLORE-steps to decide an. Since

SELECTR uniformly selects edges, the expected number of steps f̄n can be written

as follows (with f̄n(0) = 1):

f̄n(i+ 1) =
1

2
· (1 · f̄n(i) + 4) +

1

2
· (2 · f̄n(i) + 4) =

3

2
· f̄n(i) + 4

5.2. MODEL CHECKING ALGORITHM 227

By induction on i < n, it directly follows that f̄n(i) = 9 · 1.5i− 8, hence particularly

f̄n(n) + 1 = 9 · 1.5n − 7.

Remarks

Although our construction establishes an exponential lower bound on the runtime

complexity of the model checking algorithm, it has been the only truly local algorithm

for solving parity games for a long time. Its performance in practice is a bit mixed:

for problem instances with small dominions like model checking or satisfiability

checking, the algorithm generally works quite well. However, its performance is

pretty poor in comparison to the other algorithms when solving parity games globally

[FL09].

We have recently shown that parity games can also be solved by a local variant

of strategy improvement [FL10a].

228 CHAPTER 5. LOWER BOUNDS FOR OTHER METHODS

6
All is well that ends well

We considered the policy iteration technique for solving infinitary payoff games and

the simplex algorithm for solving linear programs in this thesis. We have shown that

the correspondences between the different classes of games and linear programming

can be used to transfer lower bound constructions from one domain to the other.

Particularly, we have shown that essentially all natural pivoting and improvement

rules, for which until now no non-trivial bounds have been known in a concrete

setting, are actually exponential or at least subexponential in the worst case, for both

the simplex algorithm and the policy iteration method.

We gave exponential lower bounds for the deterministic SWITCH-ALL and

SWITCH-BEST rules for solving infinitary payoff games, subexponential lower

bounds for the randomized RANDOM-EDGE and RANDOM-FACET rules for solving

games and linear programs, a subexponential lower bound for the randomized

SWITCH-HALF rule for solving games, and finally a subexponential lower bound

for Zadeh’s LEAST-ENTERED rule for solving games and linear programs. All these

problems have been open for several decades.

For the sake of completeness, we have shown lower bounds for two other impor-

tant algorithms for solving parity games. We have proven that the recursive algorithm

as well as the model checking algorithm require exponential time in the worst case.

Future Work

The most important question that obviously remains is whether parity games (or

any of the other infinitary payoff two-player games) are solvable in polynomial

229

230 CHAPTER 6. ALL IS WELL THAT ENDS WELL

time. Policy iteration still seems to be the most promising candidate for giving

rise to a polynomial-time procedure. However, it might be necessary to investigate

non-standard improvement rules that go far beyond of what we use today.

Since parity games are the simplest class in this hierarchy of games, we think

that this class should be the easiest to find a polynomial-time algorithm for. In fact,

it is not too hard to show that many pivoting rules, including SWITCH-ALL, solve

parity games in polynomial time, if player 1 does not appear in structures similar

to the player 0 dominated cycles that we use in this thesis. We think that a rigorous

analysis of these structures could help to design a pivoting rule that solves parity

games efficiently.

As for the computational complexity of infinitary two-player games, it would

be interesting to see whether there are deeper connections between solving the

games and other NP-problems, that are neither known to be in P, nor known to be

NP-complete, like the graph isomorphism problem or the factorization problem of

natural numbers.

In the domain of linear programming, the most important open problems are,

perhaps, whether linear programs can be solved in strongly polynomial time, whether

any of the many variants of the polynomial Hirsch conjecture holds, and whether

there is a polynomial-time admitting pivoting rule.

We think that it would be promising to analyze whether it is possible to extend

Markov decision processes slightly in such a way that we can still reduce them to

linear programming, but without being able to show that their diameter is small. This

would allow us to construct a counter example to the Hirsch conjecture in the domain

of games, which has been proven to be a very helpful abstraction when constructing

concrete linear programs.

231

232 CHAPTER 6. ALL IS WELL THAT ENDS WELL

A
Proofs of Chapter 4

A.1 Proofs of Chapter 4.4

Lemma 4.15. Let G be a sink parity game with v∗ being the sink, Hλ be the induced

discounted payoff game, λ be a large enough discount factor and σ be a player

0 strategy s.t. ι EG σ. Let v0 6= v∗ be an arbitrary node. Then π
v0,σ,τ

Hλ
σ

is of the

following form:

π
v0,σ,τ

Hλ
σ

= v0v1 . . . vl−1(v∗)ω

Proof. Consider the games G′ := G|σ and H ′ := H|σ and note that τGσ = τG
′

σ as

well as τHλσ = τ
H′λ
σ . Note that G′ is won by player 1 following τG′σ since G is a sink

parity game.

By Theorems 3.24 and 3.25 it follows that τH
′
λ

σ must also be a player 1 winning

strategy for the whole game G′. Therefore, it follows that every play π
v0,σ,τ

H′
λ

σ

eventually ends in a cycle with a dominating cycle node w∗ of odd priority, hence

Ω(w∗) ≥ Ω(v∗).

If Ω(w∗) > Ω(v∗), it follows that there is a w∗-dominated cycle reachable in

G′ starting from v0. But since Ξσ(v0)G = (v∗, _, _), this cannot be the case. Hence

Ω(w∗) = Ω(v∗), implying that w∗ = v∗.

Lemma 4.16. Let G be a sink parity game with v∗ being the sink, Hλ be the

induced discounted payoff game, λ be a large enough discount factor. Let π and

ξ be two paths of the form π = u0u1 . . . ul−1(v∗)ω and ξ = w0w1 . . . wk−1(v∗)ω

and let U = {u0, . . . , ul−1} and W = {w0, . . . , wk−1}. Then U ≺ W implies

Rλ(π) < Rλ(ξ).

233

234 APPENDIX A. PROOFS OF CHAPTER 4

Proof. W.l.o.g. assume that the priority assignment function is injective. Let V =

{v0, . . . , vn−1} s.t. pn−1 > pn−2 > . . . > p0 with pi = Ω(vi) and v0 = v∗, and let λ

be the discount factor of H . W.l.o.g. assume that n > 2 since otherwise both paths

are necessarily the same. Let a : {1, . . . , n− 1} → {0, . . . , n− 2,⊥} be a map s.t.

a(i) =

j if uj = vi

⊥ if there is no j s.t. uj = vi

and let b : {1, . . . , n− 1} → {0, . . . , n− 2,⊥} be defined accordingly for wj . Set

λ⊥ := 0. Note that the following holds:

Rλ(π) =
n−1∑
i=1

λa(i) · (−n)pi +
n · λl

λ− 1
Rλ(ξ) =

n−1∑
i=1

λb(i) · (−n)pi +
n · λk

λ− 1

Let m = max{i | (a(i) = ⊥ and b(j) 6= ⊥) or (a(i) 6= ⊥ and b(j) = ⊥)} and

note that m indeed is well-defined. Set

δ := Rλ(ξ)−Rλ(π) = δ1 + δ2 + δ3 + δ4

where

δ1 :=
n−1∑

i=m+1

(λb(i) − λa(i)) · (−n)pi δ2 := (λb(m) − λa(m)) · (−n)pm

δ3 :=
m−1∑
i=1

(λb(i) − λa(i)) · (−n)pi δ4 :=
n · (λk − λl)

λ− 1

Regarding δ1, let m < i < n and consider that |λb(i) − λa(i)| ≤ |1− λn−2|. The

following holds:

|λb(i) − λa(i)| · npi ≤ |1− λn−2| · npi = (
n−3∑
j=0

λj) · (1− λ) · npi

≤ n · (1− λ) · npi =
npi+1

4 · n3 · npn−1
≤ n−2

A.1. PROOFS OF CHAPTER 4.4 235

We conclude that |δ1| ≤ n−1−m
n2 ≤ 1.

Regarding δ2, note that b(m) 6= ⊥ implies that pm is even and b(m) = ⊥ implies

that pm is odd. Let c = b(m) iff b(m) 6= ⊥ and c = a(m) otherwise. Hence the

following holds:

δ2 = λc · npm ≥ λn−1 · npm = (λn−1 − 1) · npm + npm

= (
n−2∑
j=0

λj) · (λ− 1) · npm + npm ≥ (1− n) · (1− λ) · npm + npm

=
1− n

4 · npn−1+3
· npm + npm ≥ 3

4
· npm

Regarding δ3, let 0 < i < m and consider that |λb(i) − λa(i)| ≤ 1. The following

holds:

|δ3| ≤
m−1∑
i=1

|λb(i) − λa(i)| · npi ≤
m−1∑
i=1

npi

Now we need to distinguish on whether pm = 2. If so, note that m = 1,

b(m) 6= ⊥ and k = l + 1. Hence, regarding δ4, the following holds:

|δ4| =
n · |λl+1 − λl|
|λ− 1|

= n · λ ≤ n

Therefore we conclude (remember that n > 2)

δ ≥ δ2 − |δ1| − |δ3| − |δ4| ≥
3

4
· n2 − 1− 0− n > 0

Otherwise, if pm > 2, it holds that |λk − λl| ≤ |1 − λn−1| ≤ (n − 1) · (1 − λ)

and hence |δ4| ≤ n2 − n. Additionally, consider δ3 again.

|δ3| ≤
m−1∑
i=1

npi ≤
pm−1∑
i=2

ni =

pm−1∑
i=0

ni − 1− n =
npm − 1

n− 1
− 1− n

236 APPENDIX A. PROOFS OF CHAPTER 4

We conclude the following (remember again that n > 2):

δ ≥ δ2 − |δ1| − |δ3| − |δ4|

≥ 3

4
· npm − 1− npm − 1

n− 1
+ 1 + n− n2 + n

=
3

4
· npm − npm − 1

n− 1
− (n− 1)2 + 1

≥ 3

4
· npm − npm

2
− (n− 1)2 + 1

=
1

4
· npm − (n− 1)2 + 1 > 0

A.2 Proofs of Chapter 4.6

Lemma 4.35. Let σ be a b-phase 1 strategy with ind(σ) < 2µn1 (b) + 2. Then

σ′ is a b-phase 1 strategy with ind(σ′) = ind(σ) + 1, and if ind(σ) > 1, then

σ′(dµn1 (b)) = ind(σ)− 1.

Proof. Let σ be a b-phase 1 strategy, Ξ := Ξσ and ind(σ) < 2µn1 (b) + 2.

We first compute the valuations for all those nodes directly that do not involve any

complicated strategy decision of player 1. Obviously, Ξ(x) = ∅. By Lemma 4.27(1)

we know that for all set bits i (i.e. bi = 1) we have the following.

Ξ(ei) = {ei} ∪ Ξ(hi) Ξ(di) = {ei, di} ∪ Ξ(hi) Ξ(fi) = {ei, fi} ∪ Ξ(hi)

Using these equations, we are able to compute many other valuations that do not

involve any complicated strategy decision of player 1. Let Uj = {gj, fj, ej, hj, kj}.
The following holds (by CFp(A) we denote the characteristic function that returns A

if p holds and ∅ otherwise):

Ξ(ki) = {ki} ∪
⋃
{Uj | j>i, bj=1} Ξ(hi) = {hi, ki} ∪

⋃
{Uj | j>i, bj=1}

Ξ(gi) = {gi, ki} ∪
⋃
{Uj | j ≥ i, bj = 1} Ξ(r) = {r} ∪

⋃
{Uj | bj = 1}

A.2. PROOFS OF CHAPTER 4.6 237

Ξ(s) = {s} ∪ CFb 6=0n(
⋃
{Uj | bj = 1} \ {gνn1 (b)})

Ξ(c) = {c, r} ∪
⋃
{Uj | bj = 1}

Ξ(ti) = {ti} ∪ Ξ(r) ∪ CFi<ind(σ)({tj | j < i} ∪ {c})

Ξ(ai) = {ai} ∪ Ξ(ti)

It is easy to see that we have the following orderings on the nodes specified above:

s ≺σ r ≺σ a∗ ≺σ h∗ (a)

By Lemma 4.27(2), it follows from (a) that τσ(ei) = di for all unset bits i (i.e.

bi = 0), hence we are able to compute the valuations of the remaining nodes.

Ξ(ei) = {ei} ∪ Ξ(di) Ξ(fi) = {ei, fi} ∪ Ξ(di)

It is easy to see that for every i with bi = 0 and every j with bj = 1 s.t. there is no

i < i′ < j with bi′ = 1, the following holds:

fi ≺σ fj gi ≺σ gj (b)

Also, for i > j with bi = 1 and bj = 1 we have

fi ≺σ fj gi ≺σ gj (c)

By (a) and Lemma 4.29(2) we obtain that the following holds:

aind(σ) ≺σ . . . ≺σ a2n ≺σ a1 ≺σ . . . ≺σ aind(σ)−1 (d)

We are now ready to prove that σ′ is of the desired form.

(1) By Lemma 4.28(1) and (a) we derive that closed cycles remain closed. By

Lemma 4.32(1) we derive that closed cycles remain accessed. By (a) and

Lemma 4.32(2) we derive that open cycles remain skipped.

238 APPENDIX A. PROOFS OF CHAPTER 4

By phase 1 condition (5), phase 1 condition (6), (d), it follows that for every

j with bj = 0, there is an improving node a∗ for dj . By Lemma 4.28(2), we

conclude that open cycles remain open.

(2) By (a) and Lemma 4.30(2).

(3) By (b) and (c).

(4) By (b) and (c).

(5) By Lemma 4.30(2).

(6) By Lemma 4.30(2) and Lemma 4.29(2).

By Lemma 4.30(2) it follows that ind(σ′) = ind(σ) + 1.

If ind(σ) > 1, then we have by (a) and (d) that σ′(dµn1 (b)) = ind(σ)− 1).

Lemma 4.36. Let σ be a b-phase 1 strategy with ind(σ) = 2µn1 (b) + 2 and

σ(dµn1 (b)) = ind(σ). Then σ′ is a b-phase 2 strategy.

Proof. This can be shown essentially the same way as Lemma 4.35. The only

difference now is that dµn1 (b) has no more improving switches to the deceleration lane

and hence, by Lemma 4.28(3), we learn that the µn1 (b)-cycle has to close.

Lemma 4.37. Let σ be a b-phase 2 strategy. Then σ′ is a b-phase 3 strategy.

Proof. Again, this can be shown essentially as the previous Lemmata 4.35 and

4.36. The main difference is that now fi ≺σ fµn1 (b) for all i 6= µn1 (b) which is

why σ′(s) = µn1 (b), and that by Lemma 4.32(1) we have that the µn1 (b)-th gate is

σ′-accessed.

Lemma 4.38. Let σ be a b-phase 3 strategy. Then σ′ is a b-phase 4 strategy.

Proof. Let σ be a b-phase 3 strategy, Ξ := Ξσ and b′ := b[µn1 (b) 7→ 1].

A.2. PROOFS OF CHAPTER 4.6 239

We first compute the valuations for all those nodes directly that do not involve any

complicated strategy decision of player 1. Obviously, Ξ(x) = ∅. By Lemma 4.27(1)

we know that for all set bits i (i.e. b′i = 1) we have the following.

Ξ(ei) = {ei} ∪ Ξ(hi) Ξ(di) = {ei, di} ∪ Ξ(hi) Ξ(fi) = {ei, fi} ∪ Ξ(hi)

Using these equations, we are able to compute many other valuations that do not

involve any complicated strategy decision of player 1. Let Uj = {gj, fj, ej, hj, kj}.

Ξ(ki) = {ki} ∪
⋃
{Uj | j>i, bj=1}

Ξ(hi) = {hi, ki} ∪
⋃
{Uj | j>i, bj=1}

Ξ(gi) = {gi, ki} ∪
⋃
{Uj | j ≥ i, bj=1} ∪ CFi=µn1 (b)Ui

Ξ(r) = {r} ∪
⋃
{Uj | bj=1}

Ξ(s) = {s} ∪
⋃
{Uj | j≥µn1 (b), b′j=1} \ {gµn1 (b)}

Ξ(c) = {c, r} ∪
⋃
{Uj | bj = 1}

Ξ(ti) = {ti} ∪ Ξ(r) ∪ CFi<ind(σ)({tj | j < i} ∪ {c})

Ξ(ai) = {ai} ∪ Ξ(ti)

We have the following orderings on the nodes specified above:

r ≺σ a∗ ≺σ h∗<µn1 (b) ≺σ s ≺σ h∗≥µn1 (b) (a)

Note that the last inequality s ≺σ hi≥µn1 (b) holds for the following reason: If i

corresponds to a set bit, then the path from s eventually reaches the node hi, but

the highest priority on the way to hi is fi, which is odd. If i on the other hand

corresponds to an unset bit, then path from s to the sink shares the common postfix

with hi, which starts with the node σ(ki). Comparing the two differing prefixes

shows that the most significant difference is hi itself, which is even.

240 APPENDIX A. PROOFS OF CHAPTER 4

By Lemma 4.27(3), it follows from (a) that τσ(ei) = di for all unset bits i (i.e.

b′i = 0), hence we are able to compute the valuations of the remaining nodes.

Ξ(ei) = {ei} ∪ Ξ(di) Ξ(fi) = {ei, fi} ∪ Ξ(di)

It is easy to see that for every i with (b + 1)i = 0 and every j with (b + 1)j = 1 s.t.

there is no i < i′ < j with (b + 1)i′ = 1, the following holds:

fi ≺σ fj gi ≺σ gj (b)

Also, for i > j with (b + 1)i = 1 and (b + 1)j = 1 we have

fi ≺σ fj gi ≺σ gj (c)

We are now ready to prove that σ′ is of the desired form.

(1) By Lemma 4.28(1) and (a) we derive that closed cycles with index i ≥ µn1 (b)

remain closed. By Lemma 4.28(4) and (a) we derive that closed cycles with

index i < µn1 (b) open. By Lemma 4.32(1) we derive that closed cycles remain

accessed. By (a) and Lemma 4.32(2) we derive that open cycles remain

skipped.

By phase 3 condition (5) and (a), it follows that for every j with bj = 0, there

is the improving node s for dj . By Lemma 4.28(2), we conclude that open

cycles remain open.

(2) By (a) and Lemma 4.30(1).

(3) By (b) and (c).

(4) By (b) and (c).

(5) By Lemma 4.30(1).

(6) By (a) and Lemma 4.28(2).

A.2. PROOFS OF CHAPTER 4.6 241

Lemma 4.39. Let σ be a b-phase 4 strategy and b+1 6= 1n. Then σ′ is a b+1-phase

1 strategy with ind(σ′) = 0.

Proof. Let σ be a b-phase 4 strategy, Ξ := Ξσ and b′ = b + 1.

We first compute the valuations for all those nodes directly that do not involve any

complicated strategy decision of player 1. Obviously, Ξ(x) = ∅. By Lemma 4.27(1)

we know that for all set bits i (i.e. b′i = 1) we have the following.

Ξ(ei) = {ei} ∪ Ξ(hi) Ξ(di) = {ei, di} ∪ Ξ(hi) Ξ(fi) = {ei, fi} ∪ Ξ(hi)

Using these equations, we are able to compute many other valuations that do not

involve any complicated strategy decision of player 1. Let Uj = {gj, fj, ej, hj, kj}.
The following holds:

Ξ(ki) = {ki} ∪
⋃
{Uj | j>i, b′j=1} Ξ(hi) = {hi, ki} ∪

⋃
{Uj | j>i, b′j=1}

Ξ(r) = {r} ∪
⋃
{Uj | b′j = 1} Ξ(s) = {s} ∪ (

⋃
{Uj | b′j = 1} \ {gµn1 (b)})

Ξ(c) = {c, s} ∪
⋃
{Uj | b′j = 1} Ξ(ti) = {ti} ∪ Ξ(s)

Ξ(ai) = {ai, ti} ∪ Ξ(s)

Additionally for all i ≥ µn1 (b), we have:

Ξ(gi) = {gi, ki} ∪
⋃
{Uj | j ≥ i, b′j = 1}

It is easy to see that we have the following orderings on the nodes specified above.

s ≺σ a∗ ≺σ r ≺σ h∗ (a)

By Lemma 4.27(2), it follows from (a) that τσ(ei) = di for all unset bits i (i.e.

b′i = 0), hence we are able to compute the valuations of the remaining nodes.

Ξ(di) = {di} ∪ Ξ(s) Ξ(ei) = {ei, di} ∪ Ξ(s) Ξ(fi) = {fi, ei, di} ∪ Ξ(s)

242 APPENDIX A. PROOFS OF CHAPTER 4

Additionally for all i < µn1 (b), we have:

Ξ(gi) = {gi, fi, ei, di} ∪ Ξ(s)

This completes the valuation of Ξ for all nodes.

It is easy to see that for every i with b′i = 0 and every j with b′j = 1 s.t. there is

no i < i′ < j with b′i′ = 1, the following holds:

fi ≺σ fj gi ≺σ gj (b)

Similarly, for i > j with b′i = 1 and b′j = 1 we have

fi ≺σ fj gi ≺σ gj (c)

We are now ready to prove that σ′ is of the desired form.

(1) By Lemma 4.28(1) and (a) we derive that closed cycles remain closed. By

Lemma 4.32(1) we derive that closed cycles remain accessed. By (a) and

Lemma 4.32(2) we derive that open cycles remain or will be skipped.

By Lemma 4.28(2) and (a), we conclude that open cycles remain open.

(2) By (a) and Lemma 4.30(2).

(3) By (b) and (c).

(4) By (b) and (c).

(5) By Lemma 4.30(1) it follows that ind(σ′) = 1.

(6) By (a) it follows that σ′(di) = r for every i with b′i = 0.

A.3 Proofs of Chapter 4.7

Lemma 4.52. Let G be a game, F ⊆ E0 and σ ⊆ F be a player 0 strategy. Then

E(GF , σ) = E∗(GF , σ).

A.3. PROOFS OF CHAPTER 4.7 243

Proof. By lexicographic induction on (|F |,Ξσ). Let H = GF . For |F | = |σ|, we

clearly have E(H, σ) = E∗(H, σ) = 1. For the induction step, let |F | > |σ|. It is

easy to see that

E(H, σ) =
1

|F \ σ|
∑
e∈F\σ

E(H, e, σ)

E(H, e, σ) = E(H \ {e}, σ) + 11e∈σH · E(H, σH\{e}[e])

where 11pred ∈ {0, 1} denotes the indicator function, i.e., 11pred = 1 iff pred holds.

For an index function i, let ei = argmine′∈F\σ i(e
′) andHi = H \{ei}. Similarly

we have the following:

E∗(H, σ) =
1

|I(H)|
∑
i∈I(H)

E∗(H, σ, i)

E∗(H, σ, i) = E∗(Hi, σ, i) + 11ei∈σH · E∗(H, σHi [ei], i)

Finally the following holds:

E∗(H, σ) =
1

|I(H)|
∑
i∈I(H)

E∗(Hi, σ, i) +
1

|I(H)|
∑
i∈I(H)

11ei∈σH · E∗(H, σHi [ei], i)

=
∑
e∈F\σ

1

|F \ σ|
∑

i∈I(H\{e})

E∗(H \ {e}, σ, i)
|I(H \ {e})|

+

∑
e∈F\σ

11e∈σH
|F \ σ|

∑
i∈I(H)

E∗(H, σH\{e}[e], i)
|I(H)|

IH
=
∑
e∈F\σ

1

|F \ σ|
E(H \ {e}, σ) +

∑
e∈F\σ

11e∈σH
|F \ σ|

E(H, σH\{e}[e])

=E(H, σ)

Lemma 4.54. Let n ∈ N. Then fn([n]) = g(n).

244 APPENDIX A. PROOFS OF CHAPTER 4

Proof. It is not hard to see that fn(∅, ϕ) = 1 and fn(N,ϕ) = 1 + fn(N \ {i}, ϕ) +

fn(N ∩ [i], ϕ) for N 6= ∅ and i = argminj∈N ϕ(j). We also have

fn(N) =
1

|S(n)|
∑

ϕ∈S(n)

fn(N,ϕ)

We are now ready to show fn([n]) = g(n) by induction on n. The claim

obviously holds true for n = 0. Let now n > 0 and i = ϕ−1(1). Then:

fn([n]) =
1

|S(n)|
∑

ϕ∈S(n)

1 + fn([n] \ {i}, ϕ) + fn([i], ϕ)

=1 +
1

|S(n− 1)|
∑

ϕ∈S(n−1)

fn−1([n− 1], ϕ)+

1

|S(n)|
∑

ϕ∈S(n)

fi([i], ϕ|ϕ([i]))

=1 + g(n− 1) +
1

n

n−1∑
i=0

1

|S(i)|
∑
ϕ∈S(i)

fi([i], ϕ)

=1 + g(n− 1) +
1

n

n−1∑
i=0

g(i) = g(n)

Lemma A.1. Let AkF (v) = {v ∈ Ξσ∗F
(v) | Ω(v) ≥ k}. Let F ⊆ E0 be complete,

then:

β∗i (F) =

1 if A5
F (ci) � A5

F (bi+1,1)

0 if A5
F (ci) ≺ A5

F (bi+1,1)

A5
F (Bi) =

A5
F (ci) if β∗i (F) = 0 or bi(F) = 1

A5
F (bi+1,1) otherwise

A5
F (bi,j) =

A5
F (ci) if β∗i (F) = 1 and bi(F) = 1

A5
F (bi+1,1) otherwise

A.3. PROOFS OF CHAPTER 4.7 245

and similarly:

α∗i (F) =

1 if A5
F (Di) � A5

F (bi+1,1)

0 if A5
F (Di) ≺ A5

F (bi+1,1)

A5
F (Ai,j) =

A5
F (Di) if α∗i (F) = 0 or ai,j(F) = 1

A5
F (bi+1,1) otherwise

A5
F (ai,j,k) =

A5
F (Di) if α∗i (F)=1 and ai,j(F)=1

A5
F (bi+1,1) otherwise

Proof. We only provide the proof for the first three relations. The proof of the other

three relations is analogous.

We consider three cases. In each case we present the optimal choices and verify

that they are, indeed, optimal. First, if A5
F (ci) � A5

F (bi+1,1) and bi(F) = 1, then

τ ∗F (Bi) = ci and β∗i (F) = 1. To verify this we observe that:

AF (Bi) = {Bi} ∪ AF (ci)

AF (bi,j) = {bi,j, Bi} ∪ AF (ci) for all j ∈ [`r]

Hence, AF (ci) ≺ AF (bi,j) for all j ∈ [`r], and A5
F (bi+1,1) ≺ A5

F (Bi). It follows that

no player can gain by changing strategy.

Next, consider the case where A5
F (ci) � A5

F (bi+1,1) and β∗i (F) = 0. There exists

a j ∈ [`r] such that (bi,j, Bi) 6∈ F . Then τ ∗F (Bi) = bi,j , and β∗i (F) = 1. To verify

this we observe that:

AF (Bi) = {Bi, bi,j} ∪ AF (bi+1,1)

AF (bi,j) =

{bi,j} ∪ AF (Bi) if (bi,j, Bi) ∈ F

{bi,j} ∪ AF (bi+1,1) otherwise

It again follows that no player can gain by changing strategy.

246 APPENDIX A. PROOFS OF CHAPTER 4

If A5
F (ci) ≺ A5

F (bi+1,1), then τ ∗F (Bi) = ci and β∗i (F) = 0. It follows that:

A5
F (Bi) = A5

F (ci)

A5
F (bi,j) = A5

F (bi+1,1) for all j ∈ [`r]

Hence, no player can gain by changing strategy.

We prove Lemma 4.55 by constructing σ∗F and τ ∗F by backwards induction from

T. The former lemma allows us to handle cycles while doing so.

Lemma 4.55. Let F ⊆ E0 be complete. Then σ∗F is well-behaved and β∗i (F) = 1 if

and only if i ≥ reset(F), and α∗i (F) = 1 if and only if bi(F) = 1 and i ≥ reset(F).

Proof. We first consider the case where i ≥ reset(F). To prove the lemma we

simply go through the vertices using induction, observing at each vertex the optimal

choice and the obtained valuation. More precisely, we use backward induction on i,

with induction hypothesis A4
F (Ai+1,j) � A4

F (bi+1,1), for all j ∈ [`], with equality for

some j. For the base case, T takes the role as both bn+1 and An+1,j , for all j ∈ [`],

and the statement is clearly correct. We then observe the following:

1. Induction hypothesis:

∀j ∈ [`] : A5
F (Ai+1,j) � A5

F (bi+1)

∃j′ ∈ [`] : A5
F (Ai+1,j′) = A5

F (bi+1)

2. ci moves to Ai+1,j′ , where j′ is defined in 1:

σ∗F (ci) = Ai+1,j′

A6
F (ci) = {ci} ∪ A6

F (bi+1,1)

3. β∗i (F) = 1, by Lemma A.1.

A.3. PROOFS OF CHAPTER 4.7 247

4. If bi(F) = 1, then:

(a) By 2 and Lemma A.1:

A6
F (Bi) = {ci} ∪ A6

F (bi+1,1)

A6
F (bi,1) = {ci} ∪ A6

F (bi+1,1)

(b) A6
F (Di) = {ci} ∪ A6

F (bi+1,1).

(c) α∗i (F) = 1, by Lemma A.1.

(d) If ai(F) = 1, then by 4a, 4b and Lemma A.1:

∀j ∈ [`] : A6
F (Ai,j) � A6

F (bi,1)

∃j′ ∈ [`] : A6
F (Ai+1,j′) = A6

F (bi,1)

(e) If ai(F) = 0, then by Lemma A.1:

∀j ∈ [`] : A6
F (Ai,j) = A6

F (bi+1,1)

5. If bi(F) = 0, then:

(a) By Lemma A.1:

A5
F (Bi) = A5

F (bi+1,1)

A5
F (bi,1) = A5

F (bi+1,1)

(b) A5
F (Di) = {Di} ∪ A5

F (bi+1,1).

(c) α∗i (F) = 0, by Lemma A.1.

(d) ∀j ∈ [`] : A6
F (Ai,j) = A6

F (bi+1,1).

Note that the statement of the lemma follows from 3, 4c and 5c. For i > reset(F),

the induction step follows from 4d and 5d.

For i = reset(F) we have A6
F (Ai,j) = A6

F (bi+1,1) and A6
F (bi,1) = {ci} ∪

A6
F (bi+1,1), from 4e and 4a, respectively. We use this as the basis for continuing using

248 APPENDIX A. PROOFS OF CHAPTER 4

backward induction on i, for i < reset(F). In the following let k = 2 · reset(F) + 4.

We use the induction hypothesis AkF (bi+1,1) = {creset(F)}∪AkF (Ai+1,j), for all j. We

observe:

1. Induction hypothesis:

∀j ∈ [`] : AkF (bi+1,1) = {creset(F)} ∪ AkF (Ai+1,j)

2. AkF (ci) = AkF (Ai+1,j′), for some j′.

3. By Lemma A.1:

β∗i (F) = 0

AkF (Bi) = AkF (Ai+1,j′)

AkF (bi,1) = {creset(F)} ∪ AkF (Ai+1,j′)

4. AkF (Di) = AkF (Ai+1,j′).

5. By Lemma A.1:

α∗i (F) = 0

∀j ∈ [`] : AkF (Ai,j) = AkF (Ai+1,j′)

Note that the statement of the lemma, as well as the induction step, follows from

3 and 5.

Lemma 4.56. Let Gn,`,r be a lower bound game with initial strategy σ for player 0,

then

E∗Gn,`,r(E0, σ|ind is good) ≥ g(n).

Proof. Using forward induction, we first show that NF,σ and bF,σ(i), for 1 ≤ i ≤ n,

are updated in the same way as in a modified randomized bit-counter with n bits,

A.3. PROOFS OF CHAPTER 4.7 249

and we provide bounds for find(F, σ). We later use backward induction to combine

these observations and complete the proof.

Forward induction: For the first step we use the following induction hypothesis:

• If the call RANDOM-FACET∗(GF , σ, ind) performs either a count-iteration or

a reset-iteration then F is complete.

• If there is no resetting bit then, for all i ∈ NF,σ, bF,σ(i) = 0.

• If the i’th bit is resetting then it is the only resetting bit, and for all i ∈ NF,σ,

bF,σ(i) = 1.

This is clearly true for the first iteration, since E0 is complete and for the initial input

we have NE0,σ = [n], and for all 1 ≤ i ≤ n, bE0,σ(i) = 0.

Let F and σ be given, and let e = argmine′∈F\σ ind(e′). Any iteration is either a

count-iteration, a reset-iteration or irrelevant. We consider the three cases separately.

Case 1: Assume that the iteration is a count-iteration. Then e = (bi,j, Bi) for

some i and j, and in particular i ∈ NF,σ, since e 6∈ σ. By the same argument

bF,σ(i) = 0, and, hence, there can be no resetting bit.

Since i ∈ NF,σ, we have i = argminj∈NF,σ φind(j). During the first recursive

call the i’th bit is disabled, and we get:

NF\{e},σ = NF,σ \ {i}.

Let σ′ = σ∗F\{e}. Since F \{e} is still complete, we can apply Lemma 4.55 to F \{e}
as well as F , and it follows that σ′ is not optimal for F . Since reset(F \ {e}) = 0

and bi(F \ {e}) = 0 we get for σ′′ = σ′[e]:

∀j ∈ NF,σ : σ′′(bj) = 1

∀j ∈ NF,σ \ {i} : σ′′(aj) = 1

σ′′(ai) = 0

250 APPENDIX A. PROOFS OF CHAPTER 4

Hence, for the second recursive call the i’th bit is resetting, andNF,σ′′ = NF,σ∩[i−1],

and the induction step is complete.

Also, note that:

find(F, σ) = 1 + find(F \ {e}, σ) + find(F, σ
′′).

Case 2: Assume that the iteration is a reset-iteration. Then e = (ai,j,k, Ai,j)

for some i, j and k, and the i’th bit can neither be disabled nor inactive. If there

is a resetting bit then i 6∈ NF,σ, since e 6∈ σ and bF,σ(i′) = 1 for all i′ ∈ NF,σ.

Hence, if there is a resetting bit then i must be resetting. On the other hand, if

there is no resetting bit, then i 6∈ NF,σ since the index function ind is good, and

the first requirement for a good index function would imply that we instead have

e = (bi,j′ , Bi), for some j′. Thus, the i’th bit must be resetting, and we have

reset(F \ {e}) = i.

Let σ′ = σ∗F\{e}. F \{e} remains complete, and we apply Lemma 4.55 to F \{e}
as well as F , and see that σ′ is not optimal for F . For σ′′ = σ′[e] we then get:

∀j ∈ NF,σ : bF,σ′′(j) = 0

bF,σ′′(i) = 1

Thus, NF,σ′′ = NF,σ for the second recursive call, there is no resetting bit, and the

induction step follows.

By ignoring contributions to the number of iterations from the first recursive

call, as well as from the reset-iteration itself, we get find(F, σ) ≥ find(F, σ
′′). Also

note that we do not need to argue that the induction hypothesis holds during the

first recursive call, since in the end we are only interested in the resulting optimal

strategy.

Case 3: Assume that the iteration is irrelevant. Then NF\{e},σ = NF,σ, bF\{e},σ(i)

= bF,σ(i), for all i, and reset(F) = reset(F \ {e}). Note also that either F \ {e} is

complete, or there are no following count-iterations or reset-iterations. This follows

from the assumption that ind is a good index function, and the second requirement

A.3. PROOFS OF CHAPTER 4.7 251

for a good index function. If F \ {e} is not complete, then NF,σ = ∅ since the choice

of e would otherwise be different. For the first recursive call σ remains the same,

and the induction step follows.

We ignore contributions to the number of iterations from the second recursive

call, and since we know the optimal strategy σ∗F from Lemma 4.55, we do not need

to argue that the invariants are satisfied during the second recursive call. Thus,

find(F, σ) ≥ find(F \ {e}, σ).

Backward induction: Let N ⊆ [n], and let φ be a permutation of [n]. Recall that

the function fn is defined as fn(∅, φ) = 1, and for N 6= ∅:

fn(N, φ) = fn(N \ {i}, φ) + fn(N ∩ [i− 1], φ),

where i = argminj∈N φ(j). Furthermore, fn(N) is the expected value of fn(N, φ)

when φ is picked uniformly at random, and from Lemma 4.54 we have fn([n]) =

g(n).

Let F ⊆ E0, σ and ind be arguments for the RANDOM-FACET algorithm for

some iteration, and let e = argmine′∈F\σ ind(e′) and i = argminj∈NF,σ φind(j). We

next show that:

find(F, σ) ≥ fn(NF,σ, φind),

if the iteration does not appear during the first recursive call of a reset-iteration or

the second recursive call of an irrelevant iteration, i.e., if the previous induction

hypothesis and case analysis is valid. The inequality is proved by backward induction.

For the basis consider the case where F = σ. Since there is no resetting edge we

have NF,σ = ∅, and we get find(F, σ) = fn(NF,σ, φind) = 1. For the induction step

we observe that:

252 APPENDIX A. PROOFS OF CHAPTER 4

• If the iteration is a count-iteration, then:

find(F, σ) =

1 + find(F \ {e}, σ) + find(F, σ
′′) ≥

1 + fn(NF\{e},σ, φind) + fn(NF,σ′′ , φind) =

1+fn(NF,σ \ {i}, φind)+fn(NF,σ ∩ [i− 1], φind) =

fn(NF,σ, φind).

• If the iteration is a reset-iteration, then:

find(F, σ) ≥ find(F, σ
′′) ≥ fn(NF,σ′′ , φind) = fn(NF,σ, φind).

• If the iteration is irrelevant, then:

find(F, σ) ≥ find(F \ {e}, σ) ≥ fn(NF\{e},σ, φind) = fn(NF,σ, φind).

Conclusion: Note that φind is a random permutation of [n] when ind is picked

uniformly at random from the set of good index functions that are permutations of

E0. Thus, since find(F, σ) ≥ fn(NF,σ, φind) we get:

E∗Gn,`,r(F, σ|ind is good) ≥ fn(NF,σ)

and in particular, for the initial input:

E∗Gn,`,r(E0, σ|ind is good) ≥ fn(NE0,σ) = fn([n]) = g(n),

which concludes the proof.

A.3. PROOFS OF CHAPTER 4.7 253

Lemma 4.57. Let Gn,`,r be a lower bound game, and let ind be chosen uniformly at

random from the set of permutations of E0. Then ind is good with probability pn,`,r,

where:

pn,`,r ≥ 1− n (`!)2

(2`)!
− n`(n(2`r + `)− `) (r!)2

(2r)!

Proof. The main idea of the proof is to use the following observation. Let S =

{b1, . . . , b`, a1, . . . , a`} and φ be a uniformly random permutation of S. Then:

Pr
[
∀i ∈ [`] ∀j ∈ [`] : φ(bi) > φ(aj)

]
=

(`!)2

(2`)!

Recall that the first requirement for a good index function ind was:

1. ∀i ∈ [n] ∃j ∈ [`] ∃t ∈ [`r] ∀k ∈ [r] :

ind(bi,t, Bi) < ind(ai,j,k, Ai,j)

We first consider the probability that a random index function ind does not satisfy

the first requirement for being good.

Let 1 ≤ i ≤ n be fixed. We identify each element of Si = {bi1, . . . , bi`, ai1, . . . , ai`}
with a set of r edges, such that for all j ∈ [`]:

bij := {(bi,r(j−1)+k, Bi) | k ∈ [r]}

aij := {(ai,j,k, Ai,j) | k ∈ [r]}

Furthermore, we define the permutation φiind of Si such that for two distinct elements

x, y ∈ Si:

φiind(x) < φiind(y) ⇐⇒ ∃e ∈ x ∀e′ ∈ y : ind(e) < ind(e′)

Note that when ind is a random permutation ofE0, then φiind is a random permutation

of Si. Now ind satisfies the first requirement for being good if and only if:

∀i ∈ [n] ∃j ∈ [`] ∃t ∈ [`] : φiind(b
i
t) < φiind(a

i
j)

254 APPENDIX A. PROOFS OF CHAPTER 4

It follows that the probability that the first requirement is not satisfied is at most

n (`!)2

(2`)!
.

Next, we consider the probability of ind not satisfying the second requirement.

Recall that the second requirement was:

2. ∀e ∈M ∀i ∈ [n] ∀j ∈ [`] ∃k ∈ [r] ∃t ∈ [r] :

ind(ai,j,k, Ai,j) < ind(et)

In fact, this case is simpler than the first. Define:

Se,i,j = {e1, . . . , er, (ai,j,1, Ai,j), . . . , (ai,j,r, Ai,j)}

and define φe,i,jind such that for two distinct elements x, y ∈ Se,i,j:

φe,i,jind (x) < φe,i,jind (y) ⇐⇒ ind(x) < ind(y)

Again we see that when ind is a random permutation of E0, then φe,i,jind is a random

permutation of Se,i,j . Since |M | = n(2`r + `) − `, it follows that the probability

that the second requirement is not satisfied is at most n`(n(2`r + `)− `) (r!)2

(2r)!
, and

the statement of the lemma follows.

Lemma 4.60. For every strategy σ, the MDP with underlying graph Gn,g,h ends in

the sink t with probability 1.

Proof. Let σ be a strategy. We write v v′ to denote that the MDP conforming with

σ starting in v reaches v′ with positive probability. Note that v v′ and v′ v′′

implies v v′′.

We need to show that v t for every node v. Obviously, t, wn+1, un+1 t.

First, it is easy to see by backwards induction on i ≤ n that Ai di Bi

yi wi+1 t, and hence also that xi ui t. We then also have wi, ai, bi t.

Since all vertices reach t with positive probability, and t is an absorbing state,

the statement of the lemma follows.

A.3. PROOFS OF CHAPTER 4.7 255

Lemma 4.61. Let F ⊆ E0 be complete. Then σ∗F is well-behaved and β∗i (F) = 1 if

and only if i ≥ reset(F), and α∗i (F) = 1 if and only if bi(F) = 1 and i ≥ reset(F).

Proof. First, recall that from Lemma 4.60 we know that all vertices have the same

value, namely VALσF (v) = VALσF (t) = 0, for all v ∈ V . Hence, we will focus only

on potentials.

Note that except for cycling among vertices in the sets {Bi, bi,j | j ∈ [gh]} and

{Ai,j, ai,j,k | k ∈ [h]}, it is not possible to visit a vertex other than t twice. The idea

of the proof is to describe σ∗F using induction starting from t. To handle cycling we

make use of the following two simple observations.

1. β∗i (F) = 1 if and only if POTσ∗F (yi) > POTσ∗F (ui+1).

2. α∗i (F) = 1 if and only if POTσ∗F (di) > POTσ∗F (xi).

To verify the two observations note that edges involved in cycling have cost zero,

and, hence, it is irrelevant how many times for instance Bi is visited. Furthermore,

it is optimal to increase the chance of ending at yi if and only if POTσ∗F (yi) >

POTσ∗F (ui+1).

We split the proof into four cases:

(i) i > reset(F) and bi(F) = 1.

(ii) i > reset(F) and bi(F) = 0.

(iii) i = reset(F).

(iv) i < reset(F)

Cases (i), (ii) and (iii) are shown jointly by backward induction on i. For the

induction hypothesis we assume that POTσ∗F (wi+1) = POTσ∗F (ui+1). This clearly

holds true for i = n. It follows that

POTσ∗F (yi) = 〈yi〉+ POTσ∗F (wi+1) > POTσ∗F (ui+1),

256 APPENDIX A. PROOFS OF CHAPTER 4

and, hence, by observation 1., β∗i (F) = 1.

Case (i). Assume that i > reset(F) and bi(F) = 1. Then

POTσ∗F (di) = 〈di〉+ POTσ∗F (Bi)

= 〈di〉+ POTσ∗F (yi)

= 〈di〉+ 〈yi〉+ POTσ∗F (wi+1)

> POTσ∗F (ui+1)

Hence, the optimal choice at ui is σ∗F (ui) = di, and furthermore

POTσ∗F (xi) = 〈xi〉+ POTσ∗F (ui) = 〈xi〉+ POTσ∗F (di) < POTσ∗F (di).

By observation 2., it then follows that α∗i (F) = 1.

Since i > reset(F) we have ai(F) = 1, and we get that there exists a j ∈ [g]

such that:

POTσ∗F (Ai,j) = POTσ∗F (di) = 〈di〉+ 〈yi〉+ POTσ∗F (wi+1) > POTσ∗F (wi+1).

Hence, the optimal choice at wi is σ∗F (wi) = Ai,j , and furthermore:

POTσ∗F (wi) = POTσ∗F (di) = POTσ∗F (ui)

which completes the induction step.

Case (ii). Assume that i > reset(F) and bi(F) = 0. Then

POTσ∗F (di) = 〈di〉+ POTσ∗F (Bi) = 〈di〉+ POTσ∗F (ui+1) +O(1) < POTσ∗F (ui+1)

Hence, the optimal choice at ui is σ∗F (ui) = ui+1, and

POTσ∗F (xi) = 〈xi〉+ POTσ∗F (ui) = 〈xi〉+ POTσ∗F (ui+1) > POTσ∗F (di).

A.3. PROOFS OF CHAPTER 4.7 257

By observation 2., it then follows that α∗i (F) = 0, and, furthermore, for all j ∈ [g]

POTσ∗F (Ai,j) < POTσ∗F (xi) < POTσ∗F (ui+1) = POTσ∗F (wi+1).

Hence, the optimal choice at wi is σ∗F (wi) = wi+1, and POTσ∗F (wi) = POTσ∗F (wi+1),

which completes the induction step.

Case (iii). Assume that i = reset(F). Then bi(F) = 1 and ai(F) = 0. The choices

and potentials at vertices yi, Bi, bi,j , di, ui, and xi are exactly the same as in case (i),

and in particular α∗i (F) = 1. Since ai(F) = 0 we, however, get that for all j ∈ [g]:

POTσ∗F (Ai,j) = POTσ∗F (xi) +O(1)

= 〈xi〉+ 〈di〉+ 〈yi〉+ POTσ∗F (wi+1) +O(1)

> POTσ∗F (wi+1)

So, the optimal choice at wi is σ∗F (wi) = Ai,j , where j =argmaxj′∈[g] POTσ∗F (Ai,j′),

and it follows that:

POTσ∗F (wi) = 〈xi〉+ POTσ∗F (ui) +O(1). (A.1)

Case (iv). Assume that i < reset(F). Assume, furthermore, by induction that:

POTσ∗F (wi+1) = 〈xi+1〉+ POTσ∗F (ui+1) +O(1).

The base case follows from equation (A.1) of case (iii).

We then have

POTσ∗F (yi) = 〈yi〉+ POTσ∗F (wi+1) < POTσ∗F (ui+1),

and, hence, by observation 1., β∗i (F) = 0. Furthermore,

POTσ∗F (di) = 〈di〉+ POTσ∗F (Bi) = 〈di〉+ POTσ∗F (ui+1) +O(1) < POTσ∗F (ui+1)

258 APPENDIX A. PROOFS OF CHAPTER 4

Thus, the optimal choice at ui is σ∗F (ui) = ui+1, and

POTσ∗F (xi) = 〈xi〉+ POTσ∗F (ui) = 〈xi〉+ POTσ∗F (ui+1) > POTσ∗F (di).

By observation 2., it then follows that α∗i (F) = 0, and, furthermore, for all j ∈ [g]:

POTσ∗F (Ai,j) = POTσ∗F (xi) +O(1) = 〈xi〉+ POTσ∗F (ui) +O(1) =

〈xi〉+ POTσ∗F (ui+1) +O(1) > POTσ∗F (wi+1).

Finally, we then get that the optimal choice at wi is σ∗F (wi) = Ai,j , for some arbitrary

j ∈ [g], and it follows that:

POTσ∗F (wi) = 〈xi〉+ POTσ∗F (ui) +O(1).

This completes the induction step and concludes the proof.

Lemma 4.64. For every strategy σ, the MDP described by Gζ ends in the sink t with

probability 1.

Proof. Let σ be a strategy. We write v v′ to denote that the MDP conforming with

σ starting in v reaches v′ with positive probability. Note that v v′ and v′ v′′

implies v v′′.

We need to show that v t for every node v. Obviously, t, wn+1, un+1 t.

First, it is easy to see by backwards induction on i ≤ n that Ai di Bi

yi wi+1 t, and hence also that wi, ui t.

Second, it follows immediately that r, s t, and hence also xi t. Finally,

ai, bi, ci t.

Since all vertices reach t with positive probability, and t is an absorbing state,

the statement of the lemma follows.

Lemma 4.66. Let σ be a strategy belonging to one of the phases specified in Ta-

ble 4.17. Then |POTσ(v)| < N4n+8 and ε · |POTσ(v)| < 1 for every node v.

A.3. PROOFS OF CHAPTER 4.7 259

Proof. Let b be a global bit state, k = µ1(b) and σ be a strategy belonging to one

of the phases with global bit state b. Let b′ = b + 1. Let δ = δ(σ, k), η = η(σ, k),

Si =
∑

j≥i, bj=1 (〈dj〉+〈yj〉), and Ti =
∑

j≥i, b′j=1 (〈dj〉+〈yj〉).

It suffices to show that |POTσ(v)| < N4n+8 for every node v. Obviously,

POTσ(t) = 0.

It is not too hard to see that the following holds:

POTσ(s) ∈ [S1;T1] POTσ(r) ∈ [S1;T1] + 〈r〉

POTσ(wi) ∈ [Si;Ti] POTσ(ui) ∈ [Si;Ti]

POTσ(xi) ∈ [Si;Ti] + 〈xi〉 POTσ(yi) ∈ [Si+1;Ti+1] + 〈yi〉

We derive for all the other nodes that the following holds:

POTσ(Bi) ∈ [S1;Ti+1 + 〈yi〉]

POTσ(di) ∈ [S1;Ti+1 + 〈yi〉] + 〈di〉

POTσ(bi,∗) ∈ [S1;Ti+1 + 〈yi〉]

POTσ(ci,∗) ∈ [S1;Ti+1 + 〈yi〉]

POTσ(Ai) ∈ [S1 + 〈xi〉;Ti+1 + 〈yi〉+ 〈di〉]

POTσ(ai,∗) ∈ [S1 + 〈xi〉;Ti+1 + 〈yi〉+ 〈di〉]

By Lemma 4.65, we have |POTσ(v)| < N4n+8 for every node v.

Lemma 4.67. Let σ be a strategy belonging to one of the phases specified in Ta-

ble 4.17.

1. POTσ(di) < POTσ(xi)⇒ Ai opening,

2. POTσ(di) > POTσ(xi), Ai consecutive, not closed⇒ Ai closing,

3. POTσ(s) < POTσ(r), Bi consecutive, not closed⇒ Bi closing, Ci opening,

4. POTσ(s) < POTσ(r) < POTσ(yi), Bi closed, Ci consecutive, not closed⇒ Ci

closing, and

260 APPENDIX A. PROOFS OF CHAPTER 4

5. POTσ(r) < POTσ(yi) < POTσ(s), Ci consecutive, not closed⇒ Ci closing, Bi

opening.

Proof. Let σ be a strategy belonging to one of the phases specified in Table 4.17.

1. Let POTσ(di) < POTσ(xi). We need to show that Ai is opening. We consider

two cases.

If Ai is closed, let ai,j be an arbitrary node on the cycle. It is easy to see that

POTσ(()Ai) = POTσ(di) and POTσ(()ai,j) = POTσ(di). It follows that (ai,j, xi)

is an improving edge for every j.

IfAi is not closed, let ai,j be an arbitrary node on the cycle. Again, we consider

two cases here.

If j > γi(σ) + 1 it follows that ai,j cannot reach the node Ai via the current

strategy or via switching itself. Let l < j be the largest l s.t. σ(ai,l) = 0. It

follows that POTσ(ai,j−1) = POTσ(xi) + εl. Computing the difference of both

choices xi and ai,j−1 shows that switching out of the cycle is profitable.

POTσ(xi) + εj − POTσ(ai,j−1) = ε(j − l) > 0

If j ≤ γi(σ) + 1 it follows that ai,j can reach the node Ai via the current

strategy or via switching itself. Assume w.l.o.g. that j > 1 (case j = 1

almost the same). Let l be the largest l s.t. σ(ai,l) = 0. It follows that

POTσ(ai,j−1) = (1−ε)·(POTσ(xi)+εl)+εPOTσ(di). Computing the difference

of both choices xi and ai,j−1 shows that switching out of the cycle is profitable.

POTσ(xi) + εj − POTσ(ai,j−1) = ε(j − (1− ε)l+ POTσ(xi)− POTσ(di)) > 0

since POTσ(xi)− POTσ(di) > h.

2. Let POTσ(di) > POTσ(xi), Ai consecutive, not closed. We need to show that

Ai is closing.

Let l = γi(σ). It is not hard to see that the following holds for all j ≤ l:

POTσ(ai,j) = (1− ε) · (POTσ(xi) + εh) + εPOTσ(di)

A.3. PROOFS OF CHAPTER 4.7 261

First, we compute the difference of both choices of ai,j for j ≤ l + 1 to show

that switching into the cycle is profitable. Assume w.l.o.g. that j > 1 (case

j = 1 almost the same).

POTσ(xi) + εj− POTσ(ai,j−1) = ε(j− (1− ε)h+ POTσ(xi)− POTσ(di)) < 0

since POTσ(xi)− POTσ(di) < h.

Second, let j > l + 1. As before, it is easy to see that moving out of the cycle

is profitable for node ai,j .

The other statements can be shown the same way.

Lemma 4.68. The improving switches from strategies that belong to the phases are

exactly those specified in Table 4.17.

Proof. Let b be a global bit state, k = µ1(b) and σ be a strategy belonging to

one of the phases with global bit state b. Let b′ = b + 1. Let δ = δ(σ, k),

η = η(σ, k), Si =
∑

j≥i, bj=1 (〈dj〉+〈yj〉), Sli =
∑

l≥j≥i, bj=1 (〈dj〉+〈yj〉), Ti =∑
j≥i, b′j=1 (〈dj〉+〈yj〉), and T li =

∑
l≥j≥i, b′j=1 (〈dj〉+〈yj〉).

First, we apply Lemma 4.65 and compute the potentials of all important nodes,

see Table A.1 for all the potentials. Second, we compute the differences between

the potentials of two successors of a node to determine which edges are improving

switches, see Table A.2 for all the potential differences. Third, we derive from

Table A.2 that the improving switches w.r.t. wi and ui are exactly those specified in

Table 4.17. Fourth, we apply Lemma 4.67 to derive from Table A.2 that the improving

switches w.r.t. bi,j , ci,j , and ai,j are exactly those specified in Table 4.17.

262 APPENDIX A. PROOFS OF CHAPTER 4

Ph
as

e
1–

4
5–

7
P

O
T
σ
(s

)
S

1
T

1

Ph
as

e
1–

4
5–

7
P

O
T
σ
(r

)
S

1
+
〈r
〉

[S
1
;T

1
+
〈x

1
〉]+
〈r
〉+
O

(1
)

Ph
as

e
1–

4
5–

7
P

O
T
σ
(x

i)
S

1
+
〈x

i〉
T

1
+
〈x

i〉
Ph

as
e

1–
3

4
5–

7
i
≤
δ

i
>
δ

P
O

T
σ
(u

i)
S
i

T
i

Ph
as

e
1–

4
5–

6
7

i
>
k

i
>
η

P
O

T
σ
(w

i)
S
i

T
i

Ph
as

e
1–

4
5–

6
i
≥
k

i
<
k

P
O

T
σ
(y
i)

S
i+

1
+
〈y
i〉

[S
i+

1
;T

1
+
〈x

i+
1
〉]+
〈y
i〉+
O

(1
)

Ph
as

e
7

i
≥
η

i+
1

=
η

=
k

i+
1

=
η
<
k

i+
1
<
η

P
O

T
σ
(y
i)

T
i+

1
+
〈y
i〉

S
i+

1
+
〈y
i〉+
O

(1
)

T
1
+
〈x

i+
1
〉+
〈y
i〉+
O

(1
)

T
1
+

[〈x
η
〉;
〈x

i+
1
〉]+
〈y
i〉+
O

(1
)

Ph
as

e
1–

4
5-

6
7

b
i=

0
b
i=

1
i>
k
,b

i=
1

i>
k
,b

i=
0

i<
k
∨
i>
k
,b

i=
0

i=
k
∨
i>
k
,b

i=
1

P
O

T
σ
(A

i)
S

1
+
〈x

i〉+
O

(1
)

S
i

T
i

T
1
+
〈x

i〉+
O

(1
)

T
i

Ph
as

e
1–

2
b
i=

0
b
i=

1
P

O
T
σ
(d
i)

S
1
+
〈d
i〉+

1 2
〈r
〉+
O

(1
)

S
i

Ph
as

e
3

b
i=

1
i=
k

i>
k
,b

i=
0

P
O

T
σ
(d
i)

S
i

S
1
+
〈d
i〉+
〈r
〉+
O

(1
)

S
1
+
〈d
i〉+

1 2
〈r
〉+
O

(1
)

Ph
as

e
4

b
i=

1
i=
k

i>
k
,b

i=
0

P
O

T
σ
(d
i)

S
i

T
k

S
1
+

1 2
〈r
〉+
〈d
i〉+
O

(1
)

Ph
as

e
5–

7
i=
k
∨
i>
k
,b

i=
1

i>
k
,b

i=
0

i<
k

P
O

T
σ
(d
i)

T
i

T
1
+

1 2
〈r
〉+
〈d
i〉+

[S
k 1
−
〈y
k
〉−
〈d
k
〉;
〈x

1
〉]+
O

(1
)

T
1
+
〈d
i〉+
O

(1
)

Ta
bl

e
A

.1
:P

ot
en

tia
ls

A.3. PROOFS OF CHAPTER 4.7 263

Ph
as

e
1–

4
5–

7
P

O
T
σ
(r

)−
P

O
T
σ
(s

)
〈r
〉>

0
[S
k 1
−
〈y
k
〉−
〈d
k
〉;
〈x

1
〉]+
〈r
〉+
O

(1
)
<

0

Ph
as

e
1–

4
P

O
T
σ
(y
i)
−

P
O

T
σ
(r

)
〈y
i〉
−
〈r
〉−
S
i 1
>

0

Ph
as

e
1–

4
5–

6
i
≥
k

i
<
k

P
O

T
σ
(y
i)
−

P
O

T
σ
(s

)
〈y
i〉
−
S
i 1
>

0
〈y
i〉
−
T
i 1
>

0
[S
k i+

1
−
〈y
k
〉−
〈d
k
〉;
〈x
i+

1
〉]+
〈y
i〉

+
O

(1
)
<

0

Ph
as

e
7

i
≥
η

i+
1

=
η

=
k

i+
1

=
η
<
k

i+
1
<
η

P
O

T
σ
(y
i)
−

P
O

T
σ
(s

)
〈y
i〉
−
T
i 1
>

0
〈y
i〉
−
〈y
k
〉−
〈d
k
〉+
O

(1
)
<

0
〈x
i+

1
〉+
〈y
i〉

+
O

(1
)
<

0
[〈x

η
〉;
〈x
i+

1
〉]+
〈y
i〉

+
O

(1
)
<

0

Ph
as

e
1–

4
5–

7
7

b
i=

0
b
i=

1
i>
k
,b
i=

1
i>
k
,b
i=

0
k
≥
i+

1
>
η

i=
k

P
O

T
σ
(A

i)
−

P
O

T
σ
(w

i+
1
)

S
i 1
+
〈x
i〉

+
O

(1
)
<

0
〈y
i〉

+
〈d
i〉
>

0
T
i 1
+
〈x
i〉

+
O

(1
)
<

0
〈y
k
〉+
〈d
k
〉>

0

Ph
as

e
1–

2
3

b
i=

0
b
i=

1
b
i=

1
i=
k

i>
k
,b
i=

0

P
O

T
σ
(d
i)
−

P
O

T
σ
(x
i)
〈d
i〉
−
〈x
i〉

+
1 2
〈r
〉+
O

(1
)
<

0
−
S
i−

1
1
−
〈x
i〉
>

0
〈d
i〉
−
〈x
i〉

+
〈r
〉+
O

(1
)
<

0
〈d
i〉
−
〈x
i〉

+
1 2
〈r
〉+
O

(1
)
<

0

Ph
as

e
4

b
i=

1
i=
k

i>
k
,b
i=

0

P
O

T
σ
(d
i)
−

P
O

T
σ
(x
i)
−
S
i−

1
1
−
〈x
i〉
>

0
〈y
k
〉+
〈d
k
〉−
〈x
k
〉>

0
〈d
i〉
−
〈x
i〉

+
1 2
〈r
〉+
O

(1
)
<

0

Ph
as

e
5–

7
i=
k
∨
i>
k
,b
i=

1
i>
k
,b
i=

0
i<
k

P
O

T
σ
(d
i)
−

P
O

T
σ
(x
i)
−
T
i−

1
1
−
〈x
i〉
>

0
1 2
〈r
〉+
〈d
i〉
−
〈x
i〉

+
[S
k 1
−
〈y
k
〉−
〈d
k
〉;
〈x

1
〉]+
O

(1
)
<

0
〈d
i〉
−
〈x
i〉

+
O

(1
)
<

0

Ph
as

e
1–

2
3

b
i=

0
b
i=

1
b
i=

1
i=
k

i>
k
,b
i=

0

P
O

T
σ
(d
i)
−

P
O

T
σ
(u
i+

1
)

S
i 1
+
〈d
i〉

+
1 2
〈r
〉+
O

(1
)
<

0
〈y
i〉

+
〈d
i〉
>

0
S
i 1
+
〈d
i〉

+
〈r
〉+
O

(1
)
<

0
S
i 1
+
〈d
i〉

+
1 2
〈r
〉+
O

(1
)
<

0

Ph
as

e
4

i=
k
∨
i
<
δ
∨
i>
k
,b
i=

1
i>
k
,b
i=

0
k
>
i≥
δ

P
O

T
σ
(d
i)
−

P
O

T
σ
(u
i+

1
)

〈y
i〉

+
〈d
i〉
>

0
S
i 1
+
〈d
i〉

+
1 2
〈r
〉+
O

(1
)
<

0
S
k i
−
〈y
k
〉−
〈d
k
〉<

0

Ph
as

e
5–

7
i=
k
∨
i>
k
,b
i=

1
i>
k
,b
i=

0
i<
k

P
O

T
σ
(d
i)
−

P
O

T
σ
(u
i+

1
)

〈y
i〉

+
〈d
i〉
>

0
T
i 1
+

1 2
〈r
〉+
〈d
i〉

+
[S
k 1
−
〈y
k
〉−
〈d
k
〉;
〈x

1
〉]+
O

(1
)
<

0
T
i 1
+
〈d
i〉

+
O

(1
)
<

0

Ta
bl

e
A

.2
:P

ot
en

tia
lD

iff
er

en
ce

s

264 APPENDIX A. PROOFS OF CHAPTER 4

Lemma 4.69. Let a be the total length of all the cycles that are currently opening.

Then, the probability that a closing cycle acquires at least b new edges before all

opening cycles open completely is at most a
2b

.

Proof. Let p(a, b) be the probability that the closing cycles acquire b new edges

before the opening cycles, which currently have a edges pointing into them, open

completely. We can ignore switches that do not belong to the opening cycles or the

closing cycle. Thus, the probability that the next relevant edge chosen belongs to

the opening cycles is a
a+1

, while the probability that it belongs to the closing cycle is
1

a+1
. We thus get the following recurrence relation:

p(a, 0) = 1

p(0, b) = 0

p(a, b) =
a

a+ 1
p(a− 1, b) +

1

a+ 1
p(a, b− 1)

We can now easily prove by induction that p(a, b) ≤ a
2b

. For a = 0 or b = 0 the

inequality clearly holds. Otherwise we have:

p(a, b) =
a

a+ 1
p(a− 1, b) +

1

a+ 1
p(a, b− 1)

≤ a

a+ 1

a− 1

2b
+

1

a+ 1

a

2b−1

=
a(a− 1) + 2a

(a+ 1)2b

=
a

2b

Lemma 4.70. The probability that a closing cycle acquires b new edges before a

different closing cycle of length a closes completely is at most e−
1
2

(b−a)2/(b+a).

Proof. As the probability of each of the two competing cycles to acquire a new edge

is the same, we are essentially looking at the following ‘experiment’. A fair coin is

A.4. PROOFS OF CHAPTER 4.8 265

repeatedly tossed until either b heads or a tails are observed, for some a < b. We

would like to bound the probability that b heads are observed before a heads.

The probability of getting b heads before a tails is exactly the probability of

getting less than a tails in the first a+ b− 1 tosses, which is at most the probability

of getting at most a heads in the first a + b tosses. The above probability can be

easily bounded using the Chernoff bound. Let X be the number of heads observed in

the first a+ b tosses. Then µ = E[X] = a+b
2

. The Chernoff bound, in the case of a

fair coin (see Corollary 4.10 on page 71 of [MU05]), states that for every 0 < δ < 1

we have

Pr[X ≤ (1− δ)µ] ≤ e−µδ
2

.

Let δ = b−a
b+a

. Then,

(1− δ)µ = a , µδ2 =
(b− a)2

2(b+ a)
,

and the claim of the lemma follows.

A.4 Proofs of Chapter 4.8

Lemma 4.82. Let σ be a policy belonging to one of the phases specified in Table 4.21.

Then |POTσ(v)| < N2n+11 and ε · |POTσ(v)| < 1 for every node v.

Proof. Let σ be a policy belonging to one of the phases with configuration b. Let

b′ = b + 1. Let Si =
∑

j≥i, bj=1

(
〈kj〉+〈c0

j〉+〈d0
j〉+〈h0

j〉
)

and similarly Ti =∑
j≥i, b′j=1

(
〈kj〉+〈c0

j〉+〈d0
j〉+〈h0

j〉
)
.

It suffices to show that |POTσ(v)| < N2n+11 for every node v. Obviously,

POTσ(t) = 0.

It is not too hard to see that the following holds:

POTσ(s) ∈ [S1;T1] POTσ(ki) ∈ [〈ki〉+S1;Ti]

266 APPENDIX A. PROOFS OF CHAPTER 4

We derive for all the other nodes that the following holds:

POTσ(hji) ∈ [〈hji 〉+〈ki+1〉+S1; 〈hji 〉+Ti+1]

POTσ(dji) ∈ [〈dji 〉+S1; 〈dji 〉+〈h
j
i 〉+Ti+1]

POTσ(Aj
i) ∈ [S1; 〈dji 〉+〈h

j
i 〉+Ti+1]

POTσ(bji,l) ∈ [S1; 〈dji 〉+〈h
j
i 〉+Ti+1]

POTσ(cji) ∈ [〈cji 〉+S1; 〈cji 〉+〈d
j
i 〉+〈h

j
i 〉+Ti+1]

By Lemma 4.81, we have |POTσ(v)| < N2n+11 for every node v.

Next, we will specify and prove an auxiliary lemma that describes the exact

behavior of all the bicycles appearing in the construction.

The idea behind the bicycles is to have a gate that controls the access of other

nodes of the graph to the escape node of the bicycle (dji) to which the randomized

node moves with very low probability.

First, assume that both cycles attached to a node Aj
i are moving inward. Although

the randomized node circles through the cycles with very high probability (without

accumulating any costs), it eventually moves out to the escape node, resulting in the

same potential as the potential of the escape node itself.

Second, assume that the bicycle is open, i.e. one of the V0-controlled nodes of the

bicycle decides to move out of the gadget to some reset node. Now, the randomized

node selects to move into the cycle with very large probability and therefore leaves

the cycle to the reset node with high probability as well. The resulting potential of

the randomized node essentially matches the potential of the reset node.

The following lemma formalizes the intuition of the behavior of the bicycles. If

the escape node has better valuation than the reset nodes, it should be profitable to

close the bicycle, and otherwise, it should be profitable to open the bicycle again.

Lemma A.2. Let σ be a policy belonging to one of the phases specified in Table 4.21.

Let U = {t, k∗} and u ∈ U .

A.4. PROOFS OF CHAPTER 4.8 267

1. σ(bji,l) = 0 and σ(bji,1−l) = 0⇒ POTσ(u) > POTσ(dji) iff (bji,l, u) ∈ Iσ,

2. σ(bji,l) 6= 0, σ(bji,1−l) 6= 0 and σ(bji,l) 6= σ(bji,1−l) ⇒ POTσ(σ(bji,1−l)) >

POTσ(σ(bji,l)) iff (bji,l,A
j
i) ∈ Iσ,

3. σ(bji,l) 6= 0 and σ(bji,1−l) = σ(bji,l)⇒ POTσ(dji) > POTσ(σ(bji,l)) iff (bji,l,A
j
i) ∈

Iσ,

4. σ(bji,l) 6= 0 and σ(bji,1−l) = 0⇒ POTσ(dji) > POTσ(σ(bji,l)) iff (bji,l,A
j
i) ∈ Iσ,

5. σ(bji,l) = 0, σ(bji,1−l) 6= 0 and POTσ(dji) > POTσ(σ(bji,1−l)) ⇒ POTσ(u) >

POTσ(σ(bji,1−l)) iff (bji,l, u) ∈ Iσ, and

6. σ(bji,l) = 0, σ(bji,1−l) 6= 0 and POTσ(dji) < POTσ(σ(bji,1−l)) ⇒ POTσ(u) ≥
POTσ(σ(bji,1−l)) iff (bji,l, u) ∈ Iσ.

Proof. Let σ be a policy belonging to one of the phases specified in Table 4.21.

1. It follows that POTσ(Aj
i) = POTσ(dji).

2. It follows that POTσ(Aj
i) = 1

2
POTσ(σ(bji,l)) + 1

2
POTσ(σ(bji,1−l)) +O(1).

3. It follows that POTσ(Aj
i) = (1− ε)POTσ(σ(bji,l)) + εPOTσ(dji).

4. It follows that POTσ(Aj
i) = 1−ε

1+ε
POTσ(σ(bji,l)) + 2ε

1+ε
POTσ(dji).

5. This can be shown the same way.

6. This can be shown the same way.

Finally, we prove that the improving switches are indeed exactly as specified.

The simple but tedious proof uses Lemma 4.82 and Lemma A.2 to compute the

potentials of all important nodes in the game to determine whether a successor of

V0-controlled node is improving or not.

Lemma 4.83. The improving switches from policies that belong to the phases in

Table 4.21 are bounded by those specified in Table 4.22, i.e. Lpσ ⊆ Iσ ⊆ Up
σ for a

phase p policy σ.

268 APPENDIX A. PROOFS OF CHAPTER 4

Proof. Let σ be a policy belonging to one of the phases with configuration b. We

assume that σ is a phase 1 policy. The improving switches for the other phases can

be shown the same way.

Let Sli =
∑

l≥j≥i, bj=1

(
〈kj〉+〈c0

j〉+〈d0
j〉+〈h0

j〉
)

and Si = Sni .

First, we apply Lemma 4.81 and compute the potentials of all nodes.

Node t s cji

Potential 0 S1 〈cji 〉+POTσ(Aj
i)

Node h0
i h1

i

Potential 〈h0
i 〉+Si+2 〈h1

i 〉+POTσ(ki+1)

Node ki dji

bi=1 bi=0 bi+1=j bi+1 6=j
Potential Si 〈ki〉+S1 〈dji 〉+POTσ(hji) 〈dji 〉+S1

Node Aj
i bji,l

σ(Aj
i)=1 σ(Aj

i) 6=1 σ(Aj
i)=1 σ(Aj

i)6=1

Potential POTσ(dji) S1+O(1) POTσ(dji) S1+O(1)

Second, we observe the following ordering on the potentials of all “entry points”

in the game graph.

1. bi = 1 implies POTσ(ki) > POTσ(t),

2. bi = 1 and bj = 0 implies POTσ(ki) > POTσ(kj),

3. bi = 1, bj = 1 and i < j implies POTσ(ki) > POTσ(kj).

Third, we derive that there are no improving switches for s and h0
i . Fourth, we

compute the differences between the potentials of the successors of dji to see that

there are no improving switches for these nodes.

Diff. POTσ(h0
i)−POTσ(s) POTσ(h1

i)−POTσ(s)

bi+1=1 bi+1=0 bi+1=1 bi+1=0

Value 〈h0
i 〉 − Si+1

1 < 0 〈h0
i 〉 − Si1 > 0 〈h1

i 〉 − Si1 > 0 〈h1
i 〉+ 〈ki+1〉 < 0

A.4. PROOFS OF CHAPTER 4.8 269

Fifth, we show that there are no improving switches for the entry points ki by

computing the potential differences between S1 and cji if bi = 0 and additionally

between cji and c1−j
i if bi = 1.

Difference POTσ(cji)−POTσ(c1−j
i)

bi = 1, bi+1 = j

σ(A1−j
i)=1 σ(A1−j

i)=0

Value 〈h0
i 〉−Si1>0 〈h0

i 〉+〈d
j
i 〉−Si1+O(1)>0

Difference POTσ(cji)−S1

bi = 1, bi+1 = j bi = 0

σ(Aj
i)=1 σ(Aj

i)=0

Value 〈hji 〉+〈d
j
i 〉−Si1>0 〈cji 〉+〈d

j
i 〉<0 〈cji 〉+O(1)<0

Finally, we consider all bji,l nodes and show that the set of improving switches is

indeed {(bji,l,A
j
i) | σ(bji,l) 6= Aj

i}. Therefore, we compute the potential difference

between dji and S1, and apply Lemma A.2.

Difference POTσ(dji)−S1

bi+1 = j bi+1 6= j

Value 〈dji 〉+〈h
j
i 〉−Si1>0 〈dji 〉>0

Lemma 4.84. Let σ be an initial phase 1 policy with configuration b < 1n. There is

an initial phase 1 policy σ′ with configuration b′ = b + 1 s.t. (σ, φb) + (σ′, φb′).

Proof. Let σ1 be an initial phase 1 policy with configuration b < 1n. Let b′ = b + 1

and r = µ1(b). Let φ1 = φb.

The idea of this lemma is to undergo all six phases of Table 4.17 while performing

improving switches towards the desired subsequent occurrence record.

More formally: we construct additional (σ2, φ2), . . . , (σ7, φ7) s.t.

• (σp, φp) + (σp+1, φp+1),

270 APPENDIX A. PROOFS OF CHAPTER 4

• σp is in phase p with configuration b if p < 7, and

• φ7 = φb′ and σ7 is an initial phase 1 policy with configuration b′

The construction is now as follows. We implicitly apply Lemma 4.83 when

referring to the improving switches of a phase.

1. The only improving switches in this phase are from bji,l to Aj
i . This will be the

only phase in which we will be making any switches of this kind.

The first observation to make is that g(b, i, {(i+1, j)}) = g(b′, i, {(i+1, j)})
if i 6= r.

First, there are bicycles s.t. bi = 1 and bi+1 = j, hence they are already closed,

hence we cannot increase their respective occurrence records. In other words,

we need to show that φ1(bji,l,A
j
i) = φ7(bji,l,A

j
i).

If b′i = 1, i.e. i > r, it follows by g(b, i, {(i+1, j)}) = g(b′, i, {(i+1, j)})
that φ1(bji,l,A

j
i) = φ7(bji,l,A

j
i).

Otherwise, if b′i = 0, i.e. i < r, it follows that we have φ7(bji,l,A
j
i) =

g(b′, i, {(i+1, j)}) + 1 + 2 · (|b′|−g(b′, i, {(i+1, j)})−2i−1). In other words,

we need to show that |b′| − g(b′, i, {(i+1, j)}) = 2i−1. And this is true,

because it required 2i−1 counting steps to count with all the lower bits.

Second, there are bicycles s.t. bi+1 6= j and φ1(bji,0,A
j
i) + φ1(bji,1,A

j
i) <

|b|. We will see that, i 6= r. Hence, we know that g(b, i, {(i+1, j)}) =

g(b′, i, {(i+1, j)}). In this case, we have φ1(bji,l,A
j
i)+2 = φ7(bji,l,A

j
i). Hence,

by flipping both edges of these bicycles, we can make sure that we comply to

the objective occurrence record.

Third, there are bicycles s.t. bi = 0 or bi+1 6= j that have φ1(bji,0,A
j
i) +

φ1(bji,1,A
j
i) = |b|. Obviously, r belongs to this class of bicycles. It is easy

to see that φ1(bji,l,A
j
i) + 1 = φ7(bji,l,A

j
i) for i 6= r and φ1(bji,l,A

j
i) + 2 =

φ7(bji,l,A
j
i) for i = r. Hence, by switching one edge for all i 6= r and both

edges for i = r, we can make sure that we comply to the objective occurrence

record.

A.4. PROOFS OF CHAPTER 4.8 271

The order in which all switches are to be performed is therefore as follows.

We close both edges of all second class bicycles and one edge of every third

class bicycle. Finally, we close the second edge of bicycle r.

We now have, for all open bicycles, that φ2(bji,0,A
j
i) + φ2(bji,1,A

j
i) = |b′|.

2. The only improving switches in this phase are still from bji,l to Aj
i , and from

kr to c
b′r+1
r .

Is easy to see that 2f(b′, r, {(r+1, b′r+1)}) ≤ |b′|, hence we can ensure to

make that switch without closing any additional bicycles.

Also note that φ2(kr, c
b′r+1
r)+1 = φ7(kr, c

b′r+1
r), and for all other edges (i, j) 6=

(r, b′r+1) of this kind we have φ2(ki, c
j
i) = φ7(ki, c

j
i).

3. In this phase, there are many improving switches. In order to fulfill all side

conditions for phase 3, we need to perform all switches from higher indices to

smaller indices, and ki to kr before bji,l with b′i+1 6= j or b′i = 0 to kr.

The reader can easily check from that we can perform the switches in the

desired ordering.

4.-6. These can be shown similarly.

272 APPENDIX A. PROOFS OF CHAPTER 4

B
Proofs of Chapter 5

B.1 Proofs of Chapter 5.2

We define three predicates Ψn(j, i, l, d), Φn(j, i, d) and ∆n(j, i, d) that will be used

as pre- and postconditions in the induction. Let j ≤ n, i be an Gn-index, l be a

Gn-playlist and d = (d0, d1) be Gn-decisions.

• Ψn(j, i, l, d) is defined to hold iff all of the following conditions hold:

(a) lk = (q, _, _, _, _) implies that there is an h > j s.t. (q ∈ {ah, bh, ch})
for every k < |l|

(b) If j < n: l0 = (an,0⊕ Ω(an), 0, ∅, _)

(c) i(Ω(an)) = 1

(d) d1(q) = ∅ for all q ∈ Vn

• Φn(j, i, d) is defined to hold iff the following condition holds:

(a) (k, _, _) ∈ d0(q) implies that there is a w s.t. i <w
0 k with Ω(w) > 2j for

all q ∈ Vn and all Gn-indices k

• ∆n(j, i, d) is defined to hold iff all of the following conditions hold:

(a) (k, _, _) ∈ d0(q) with i >0 k implies that there is a w s.t. i >w
0 k with

Ω(w) < 2j for all q ∈ Vn and all Gn-indices k

(b) (i, _, _) ∈ d0(aj)

273

274 APPENDIX B. PROOFS OF CHAPTER 5

We analyze the runtime complexity of the model checking algorithm in terms of

MC(G, v), i.e. the time-counter that is maintained by the EXPLORE-routine.

Recall that we want to prove that the following function fn captures the progres-

sion of it accurately. Let n ∈ N and i < n.

fn : i 7→


1 if i = 0

fn(i− 1) + 4 if i > 0 and SELECT(Gn, bi, biE) = ci

2 · fn(i− 1) + 4 otherwise

Lemma B.1. Let j ≤ n, i be an Gn-index, l be a Gn-playlist, d = (d0, d1) be

Gn-decisions and c ∈ N s.t. Ψn(j, i, l, d) and Φn(j, i, d) hold. Then, calling

EXPLORE(Gn, aj, i, l, c, d) leads to BACKTRACK(Gn, aj, 0, l
′, c′, d′), where c′ =

c+ fn(j) + 1 and l ≡ l′ s.t. Ψn(j, i, l′, d′) and ∆n(j, i, d′) hold.

Proof. By induction on j.

For j = 0, let Ψn(0, i, l, d) and Φn(0, i, d) hold; EXPLORE(Gn, a0, i, l, c, d)

directly invokes EXPLORE(Gn, an, i1, l1, c + 1, d) where i1 = i ⊕ Ω(an) and l1 =

(a0, i, ∅, c, ∅) :: l, since there is neither an applicable decision (Ψn (d) and Φn (a))

nor a repeat in the playlist (Ψn (a)).

Running EXPLORE(Gn, an, i1, l1, c + 1, d) encounters a repeat, as (an,0 ⊕
Ω(an), 1, ∅, _) is in l1 by Ψn (b). Due to the fact that i(Ω(an)) = 1 by Ψn (c)

and i1(Ω(an)) = 2, it directly follows that the repeat is profitable for player 0.

Hence, BACKTRACK(Gn, an, 0, l2, c+ 2, d) is called, where l2 ≡ l1. Since l2 is

not empty and the top entry has no other edges to visit, BACKTRACK(Gn, a0, 0, l
′, c+

1, d′) is invoked, where l′ ≡ l, d′1 = d1 and d′0 = d0[a0 7→ d0(a0)∪{(i, c,⊥)}]. Note

that Ψn(j, i, l′, d′) as well as ∆n(j, i, d′) hold.

For j j+ 1, let Ψn(j+ 1, i, l, d) and Φn(j+ 1, i, d) hold; EXPLORE(Gn, aj+1,

i, l, c, d) directly invokes EXPLORE(Gn, bj+1, i1, l1, c+ 1, d) where i1 = i⊕Ω(bj+1)

and l1 = (aj+1, i, ∅, c, ∅) :: l, since there is neither an applicable decision (Ψn (d)

and Φn (a)) nor a repeat in the playlist (Ψn (a)).

Let w =SELECT(Gn, bj+1, bj+1E). We will now distinguish on whether w =

cj+1 or w = aj .

B.1. PROOFS OF CHAPTER 5.2 275

• Case w = aj: Calling EXPLORE(Gn, bj+1, i1, l1, c + 1, d) directly invokes

EXPLORE(Gn,aj ,i2,l2,c+2,d) where i2 = i1⊕Ω(aj) and l2 =(bj+1, i1, {cj+1},
c+ 1, ∅):: l1, since there is neither an applicable decision (Ψn (d) and Φn (a)

by Corollary 5.7) nor a repeat in the playlist (Ψn (a)).

Now note that Ψn(j, i2, l2, d) as well as Φn(j, i2, d) hold: Ψn(j, . . .) (a) holds

by construction of l2 and Ψn(j + 1, . . .) (a); if j + 1 < n, Ψn(j, . . .) (b) holds

due to Ψn(j + 1, . . .) (b), otherwise by construction of l2; Ψn(j, . . .) (c) and

(d) obviously hold by construction and Ψn(j + 1, . . .) (c) and (d). Lastly,

Φn(j, i2, d) holds due to Φn(j + 1, i, d) and Corollary 5.7.

By induction hypothesis, eventually BACKTRACK(Gn, aj, 0, l3, c + fn(j) +

3, di) gets called, where l3 ≡ l2 and Ψn(j, i2, l3, d
i) and ∆n(j, i2, d

i) hold.

Since cj+1 remained unexplored, EXPLORE(Gn, cj+1, i4, l4, c+ fn(j) + 3, di)

is invoked, where i4 = i1 ⊕ Ω(cj+1) and l4 ≡ (bj+1, i1, ∅, c+ 1, ∅) :: l1.

Consider that Φn(j + 1, i4, d
i) holds: let (k, _, _) ∈ di0(q) for an arbitrary q.

By construction, i4 <
cj+1

0 i2. Hence, if i2 ≤0 k, it follows by Corollary 5.7 that

Φn(j + 1, i4, d
i) holds. Otherwise, we apply ∆n(j, i2, d

i) and conclude that

i2 >
w
0 k with Ω(w) < 2j, thus by Corollary 5.7 it follows that Φn(j+ 1, i4, d

i)

holds.

Subsequently, EXPLORE(Gn, aj, i5, l5, c + fn(j) + 4, di) gets called, where

i5 = i4⊕Ω(aj) and l5 ≡ (cj+1, i4, ∅, c+ fn(j) + 1, di) :: l4, as there is neither

an applicable decision (Ψn (d) and Φn(j + 1, i4, d
i) (a)) nor a repeat in the

playlist (Ψn (a)).

Note that Ψn(j, i5, l5, d
i) as well as Φn(j, i5, d

i) hold: Ψn(j, . . .) (a) holds by

construction of l5 and Ψn(j + 1, . . .) (a); if j + 1 < n, Ψn(j, . . .) (b) holds

due to Ψn(j + 1, . . .) (b), otherwise by construction of l5; Ψn(j, . . .) (c) and

(d) obviously hold by construction and Ψn(j + 1, . . .) (c) and (d). Lastly,

Φn(j, i5, d
i) holds due to Φn(j + 1, i4, d

i) and Corollary 5.7.

By induction hypothesis, eventually BACKTRACK(Gn, aj, 0, l6, c
′, dii) gets

called, where l6 ≡ l5, c′ = c+2fn(j)+5 = c+fn(j+1)+1 and Ψn(j, i5, l6, d
ii)

and ∆n(j, i5, d
ii) hold. Since l6 is not empty and the top entry has no other

276 APPENDIX B. PROOFS OF CHAPTER 5

transitions to visit, BACKTRACK(Gn, cj+1, 0, l7, c
′, diii) is invoked, where l7 ≡

l4 and diii = dii[cj+1 7→ dii(cj+1) ∪ {(i4, c+ fn(j) + 1,⊥)}].

Again since l7 is not empty and the top entry has no other transitions to

visit, BACKTRACK(Gn, bj+1, 0, l8, c
′, div) is invoked, where l8 ≡ l1 and div =

diii[bj+1 7→ diii(bj+1) ∪ {(i1, c+ 1,⊥)}].

Lastly, BACKTRACK(Gn, aj+1, 0, l9, c
′, dv) is called for the same reasons,

where l9 ≡ l and dv = div[aj+1 7→ div(aj+1) ∪ {(i, c,⊥)}].

It remains to show that Ψn(j + 1, i, l9, d
v) and ∆n(j + 1, i, dv) hold: Since

dv2 = d2 and l9 ≡ l, it directly follows that Ψn(j + 1, i, l9, d
v) by assuming

Ψn(j+1, i, l, d). ∆n(j+1, i, dv) (b) obviously holds as {(i, c,⊥)} ∈ dv(aj+1);

for ∆n(j+1, i, dv) (a) let q ∈ Vn be arbitrary s.t. there is (k, _, _) ∈ dv0(q) with

i >0 k. If (k, _, _) ∈ dii0 (q) it follows by induction hypothesis that i5 >w
0 k

with Ω(w) < 2j; since i >cj+1

0 i5 and Ω(cj+1) = 2(j + 1)− 1, Corollary 5.7

implies that i >cj+1

0 k with Ω(cj+1) < 2(j+1). Otherwise, if (k, _, _) 6∈ dii0 (q),

then k ∈ {i, i1, i4}; only i4 <0 i, again with cj+1: i4 <
cj+1

0 i.

• Case w = cj+1: Calling EXPLORE(Gn, bj+1, i1, l1, c + 1, d) invokes EX-

PLORE(Gn,cj ,i2,l2,c+2,d) where i2 = i1⊕Ω(cj+1) and l2 = (bj+1, i1, {aj}, c+
1, ∅) :: l1, since there is neither an applicable decision (Ψn (d) and Φn (a) by

Corollary 5.7) nor a repeat in the playlist (Ψn (a)).

Subsequently, EXPLORE(Gn, aj, i3, l3, c+ 3, di) gets called, where i3 = i2 ⊕
Ω(aj) and l3 ≡ (cj+1, i2, ∅, c + 2, d) :: l2, as there is neither an applicable

decision (Ψn (d) and Φn (a) by Corollary 5.7) nor a repeat in the playlist (Ψn

(a)).

Now note that Ψn(j, i3, l3, d) as well as Φn(j, i3, d) hold: Ψn(j, . . .) (a) holds

by construction of l3 and Ψn(j + 1, . . .) (a); if j + 1 < n, Ψn(j, . . .) (b) holds

due to Ψn(j + 1, . . .) (b), otherwise by construction of l3; Ψn(j, . . .) (c) and

(d) obviously hold by construction and Ψn(j + 1, . . .) (c) and (d). Lastly,

Φn(j, i3, d) holds due to Φn(j + 1, i, d) and Corollary 5.7.

By induction hypothesis, eventually BACKTRACK(Gn, aj, 0, l4, c + fn(j) +

4, di) gets called, where l4 ≡ l3 and Ψn(j, i3, l4, d
i) and ∆n(j, i3, d

i) hold.

B.1. PROOFS OF CHAPTER 5.2 277

Since l4 is not empty and the top entry has no other transitions to visit,

BACKTRACK(Gn,cj+1,0,l5,c + fn(j) + 4,dii) is invoked, where l5 ≡ l2 and

dii = di[cj+1 7→ di(cj+1) ∪ {(i2, c+ 2,⊥)}].

Since bj+1Eaj remained unexplored, EXPLORE(Gn, aj, i6, l6, c+fn(j)+4, dii)

is invoked, where i6 = i1 ⊕ Ω(aj) and l6 ≡ (bj+1, i1, ∅, c + 1, ∅) :: l1. As

∆n(j, i3, d
i) (b) holds by induction hypothesis, (i3, _, _) ∈ dii0 (aj) and i6 >0 i3,

a decision is applicable, hence BACKTRACK(Gn, aj, 0, l6, c
′, dii) is invoked

where c′ = c+ fn(j) + 5 = c+ fn(j + 1) + 1.

Because l6 is not empty and the top entry has no other transitions to visit,

BACKTRACK(Gn, bj+1, 0, l7, c+ fn(j) + 5, diii) is invoked, where l7 ≡ l1 and

diii = dii[bj+1 7→ dii(bj+1) ∪ {(i1, c+ 1,⊥)}].

Lastly, BACKTRACK(Gn, aj+1, 0, l8, c
′, div) is called for the same reasons,

where l8 ≡ l and div = diii[aj+1 7→ diii(aj+1) ∪ {(i, c,⊥)}].

It remains to show that Ψn(j + 1, i, l8, d
iv) and ∆n(j + 1, i, div) hold: Since

div2 = d2 and l8 ≡ l, it directly follows that Ψn(j + 1, i, l8, d
iv) by assum-

ing Ψn(j + 1, i, l, d). ∆n(j + 1, i, div) (b) obviously holds as {(i, c,⊥)} ∈
div(aj+1); for ∆n(j+1, i, div) (a) let q ∈ Vn be arbitrary s.t. there is (k, _, _) ∈
div0 (q) with i >0 k. If (k, _, _) ∈ di0(q) it follows by induction hypothesis

that i3 >w
0 k with Ω(w) < 2j; since i >cj+1

0 i3 and Ω(cj+1) = 2(j + 1) − 1,

Corollary 5.7 implies that i >cj+1

0 k with Ω(cj+1) < 2(j + 1). Otherwise, if

(k, _, _) 6∈ di0(q), then k ∈ {i, i1}; none of them is <0-less than i.

Lemma 5.11. Let n ∈ N. Then MC(Gn, an) = fn(n) + 1.

Proof. Calling DECIDE(Gn, an) directly invokes EXPLORE(Gn, an, 0 ⊕ Ω(an),

[], 0, (e, e)). Note that the given arguments trivially satisfy Ψn as well as Φn,

hence Lemma B.1 implies that eventually BACKTRACK(Gn, an, 0, [], fn(n) + 1, d′)

with some decisions d′ is called. By definition of BACKTRACK, it follows that

the algorithm directly terminates, hence it requires fn(n) + 1 EXPLORE-steps in

total.

278 APPENDIX B. PROOFS OF CHAPTER 5

Bibliography

[AC78] D. Avis and V. Chvátal. Notes on Bland’s pivoting rule. In Polyhedral

Combinatorics, volume 8 of Mathematical Programming Studies, pages

24–34. Springer, 1978.

[ADD00] R. B. Ash and C. A. Doléans-Dade. Probability and Measure Theory.

Academic Press, 2000.

[AM09] D. Andersson and P. B. Miltersen. The complexity of solving stochastic

games on graphs. In ISAAC ’09: Proceedings of the 20th International

Symposium on Algorithms and Computation, pages 112–121, Berlin,

Heidelberg, 2009. Springer.

[Ame94] N. Amenta. Helly-type theorems and generalized linear programming.

Discrete & Computational Geometry, 12:241–261, 1994.

[AZ96] N. Amenta and G. M. Ziegler. Deformed products and maximal shadows

of polytopes. In Advances in Discrete and Computational Geometry,

pages 57–90, Providence, 1996. American Mathematical Society. Con-

temporary Mathematics 223.

[BDF+95] A.Z. Broder, M.E. Dyer, A.M. Frieze, P. Raghavan, and E. Upfal. The

worst-case running time of the random simplex algorithm is exponential

in the height. Information Processing Letters, 56(2):79–81, 1995.

[Bel57] R. E. Bellman. Dynamic programming. Princeton University Press,

1957.

[Ber01] D. P. Bertsekas. Dynamic programming and optimal control. Athena

Scientific, second edition, 2001.

[BM08] A. Beckmann and F. Moller. On the complexity of parity games. In

Proceedings of the BCS Conference Visions of Computer Science, 2008.

279

280 BIBLIOGRAPHY

[BP07] J. Balogh and R. Pemantle. The Klee-Minty random edge chain moves

with linear speed. Random Structures & Algorithms, 30(4):464–483,

2007.

[BS96] G. S. Bhat and C. D. Savage. Balanced gray codes. Electronic Journal

of Combinatorics, 3:2–5, 1996.

[BSV03] H. Björklund, S. Sandberg, and S. Vorobyov. A discrete subexponential

algorithm for parity games. In Proceedings of the 20th Annual Sympo-

sium on Theoretical Aspects of Computer Science, STACS’03, volume

2607 of LNCS, pages 663–674. Springer, 2003.

[BV05] H. Björklund and S. Vorobyov. Combinatorial structure and randomized

subexponential algorithms for infinite games. Theoretical Computer

Science, 349(3):347–360, 2005.

[BV07] H. Björklund and S. Vorobyov. A combinatorial strongly subexponen-

tial strategy improvement algorithm for mean payoff games. Discrete

Applied Mathematics, 155(2):210–229, 2007.

[CGG+05] A. Costan, S. Gaubert, E. Goubault, M. Martel, and S. Putot. A pol-

icy iteration algorithm for computing fixed points in static analysis of

programs. In CAV, pages 462–475, 2005.

[CH08] K. Chatterjee and T. A. Henzinger. Value iteration. In O. Grumberg and

H. Veith, editors, 25 Years of Model Checking, pages 107–138. Springer,

Berlin, Heidelberg, 2008.

[Chv83] V. Chvátal. Linear programming. A Series of Books in the Mathematical

Sciences. W. H. Freeman and Company, New York, 1983.

[Con92] A. Condon. The complexity of stochastic games. Information and

Computation, 96:203–224, 1992.

[Con93] A. Condon. On algorithms for simple stochastic games. In Advances

in Computational Complexity Theory, volume 13 of DIMACS Series in

BIBLIOGRAPHY 281

Discrete Mathematics and Theoretical Computer Science, pages 51–73.

American Mathematical Society, 1993.

[Dan63] G. B. Dantzig. Linear Programming and Extensions. Princeton Univer-

sity Press, 1963.

[Der70] C. Derman. Finite State Markovian Decision Processes. Academic

Press, Inc., Orlando, FL, USA, 1970.

[EJ91] E. Emerson and C. Jutla. Tree automata, µ-calculus and determinacy.

In Proceedings of the 32nd Symposium on Foundations of Computer

Science, pages 368–377, San Juan, 1991. IEEE.

[EJS93] E. Emerson, C. Jutla, and A. Sistla. On model-checking for fragments

of µ-calculus. In Proceedings of the 5th Conference on CAV, CAV’93,

volume 697 of LNCS, pages 385–396. Springer, 1993.

[EM79] A. Ehrenfeucht and J. Mycielski. Positional strategies for mean payoff

games. International Journal of Game Theory, 8:109–113, 1979.

[Fea10] J. Fearnley. Exponential lower bounds for policy iteration. CoRR,

abs/1003.3418, 2010.

[FL09] O. Friedmann and M. Lange. Solving parity games in practice. In Proc.

7th Int. Symp. on Automated Technology for Verification and Analysis,

ATVA’09, volume 5799 of LNCS, pages 182–196, 2009.

[FL10a] O. Friedmann and M. Lange. Local strategy improvement for parity

game solving. In First International Symposium on Games, Automata,

Logics and Formal Verification, GandALF’10, volume 25 of EPTCS,

pages 118–131, 2010.

[FL10b] O. Friedmann and M. Lange. A solver for modal fixpoint logics. Elec-

tronic Notes Theoretical Computer Science, 262:99–111, May 2010.

[FLL10] O. Friedmann, M. Latte, and M. Lange. A decision procedure for CTL*

based on tableaux and automata. In IJCAR, pages 331–345, 2010.

282 BIBLIOGRAPHY

[FS09] P. Flajolet and R. Sedgewick. Analytic Combinatorics. Cambridge

University Press, 2009.

[Gär95] B. Gärtner. A subexponential algorithm for abstract optimization prob-

lems. SIAM Journal on Computing, 24:1018–1035, 1995.

[Gär02] B. Gärtner. The random-facet simplex algorithm on combinatorial cubes.

Random Structures & Algorithms, 20(3):353–381, 2002.

[GH82] Y. Gurevich and L. Harrington. Trees, automata, and games. In Pro-

ceedings of the 14th Annual ACM Symposium on Theory of Computing,

STOC’82, pages 60–65. ACM, ACM Press, 1982.

[GHZ98] B. Gärtner, M. Henk, and G. Ziegler. Randomized simplex algorithms

on Klee-Minty cubes. Combinatorica, 18(3):349–372, 1998.

[GK07] B. Gärtner and V. Kaibel. Two new bounds for the random-edge simplex-

algorithm. Discrete Mathematics, 21(1):178–190, 2007.

[GKK88] V. A. Gurvich, A. V. Karzanov, and L. G. Khachiyan. Cyclic games

and an algorithm to find minimax cycle means in directed graphs.

USSR Computational Mathematics and Mathematical Physics, 28:85–

91, 1988.

[GLS88] M. Grötschel, L. Lovász, and A. Schrijver. Geometric Algorithms and

Combinatorial Optimization. Springer, 1988.

[GMR08] B. Gärtner, W. D. Morris, and L. Rüst. Unique sink orientations of grids.

Algorithmica, 51:200–235, April 2008.

[GS79] D. Goldfarb and W.Y. Sit. Worst case behavior of the steepest edge

simplex method. Discrete Applied Mathematics, 1(4):277 – 285, 1979.

[GS06] B. Gärtner and I. Schurr. Linear programming and unique sink orien-

tations. In Proceedings of the 17th Annual ACM-SIAM Symposium on

Discrete Algorithms (SODA), pages 749–757, 2006.

BIBLIOGRAPHY 283

[GS07] T. Gawlitza and H. Seidl. Precise relational invariants through strategy

iteration. In CSL, pages 23–40, 2007.

[GTW02] E. Grädel, W. Thomas, and T. Wilke, editors. Automata, Logics, and

Infinite Games, LNCS. Springer, 2002.

[GTW+03] B. Gärtner, F. Tschirschnitz, E. Welzl, J. Solymosi, and P. Valtr. One

line and n points. Random Structures & Algorithms, 23(4):453–471,

2003.

[Hal07] N. Halman. Simple stochastic games, parity games, mean payoff games

and discounted payoff games are all LP-type problems. Algorithmica,

49(1):37–50, 2007.

[HK66] A. J. Hofmann and R. M. Karp. On nonterminating stochastic games.

Management Science, 12(5):359–370, 1966.

[How60] R. Howard. Dynamic Programming and Markov Processes. The M.I.T.

Press, 1960.

[Jer73] R. G. Jeroslow. The simplex algorithm with the pivot rule of maximizing

criterion improvement. Discrete Mathematics, 4(4):367–377, 1973.

[JPY88] D. Johnson, C. Papadimitriou, and M. Yannakakis. How easy is local

search? Journal of Computer and System Sciences, 37(1):79–100, 1988.

[JPZ06] M. Jurdziński, M. Paterson, and U. Zwick. A deterministic subexpo-

nential algorithm for solving parity games. In Proceedings of the 17th

Annual ACM-SIAM Symposium on Discrete Algorithm, SODA’06, pages

117–123. ACM, 2006.

[Jur98] M. Jurdziński. Deciding the winner in parity games is in UP ∩ coUP.

Information Processing Letters, 68(3):119–124, 1998.

[Jur00] M. Jurdziński. Small progress measures for solving parity games. In

H. Reichel and S. Tison, editors, Proceedings of the 17th Annual Sympo-

sium on Theoretical Aspects of Computer Science, STACS’00, volume

1770 of LNCS, pages 290–301. Springer, 2000.

284 BIBLIOGRAPHY

[Kal92] G. Kalai. A subexponential randomized simplex algorithm (extended

abstract). In Proceedings of the 24th STOC, pages 475–482, 1992.

[Kal97] G. Kalai. Linear programming, the simplex algorithm and simple

polytopes. Mathematical Programming, 79:217–233, 1997.

[Kar78] R. M. Karp. A characterization of the minimum cycle mean in a digraph.

Discrete Mathematics, 23:309–311, 1978.

[Kar84] N. Karmarkar. A new polynomial-time algorithm for linear program-

ming. In STOC ’84: Proceedings of the sixteenth annual ACM sympo-

sium on Theory of computing, pages 302–311, New York, NY, USA,

1984. ACM.

[Kha79] L. Khachiyan. A polynomial algorithm in linear programming. Soviet

Mathematics Doklady, 20:191–194, 1979.

[KK92] G. Kalai and D. Kleitman. Quasi-polynomial bounds for the diameter of

graphs and polyhedra. Bulletin of the American Mathematical Society,

26:315–316, 1992.

[KL93] A. V. Karzanov and V. N. Lebedev. Cyclical games with prohibitions.

Mathematical Programming, 60:277–293, 1993.

[KM72] V. Klee and G. L. Minty. How good is the simplex algorithm? Inequali-

ties, III:159–179, 1972.

[KW08] D. Kähler and T. Wilke. Complementation, disambiguation, and de-

terminization of Büchi automata unified. In Proceedings of the 35th

International Colloquium on Automata, Languages and Programming,

ICALP’08, volume 5125 of LNCS, pages 724–735. Springer, 2008.

[Lad75] R. E. Ladner. On the structure of polynomial time reducibility. J. ACM,

22(1):155–171, 1975.

[Lud95] W. Ludwig. A subexponential randomized algorithm for the simple

stochastic game problem. Information and Computation, 117(1):151–

155, 1995.

BIBLIOGRAPHY 285

[Mar75] D. A. Martin. Borel determinacy. Annals of Mathematics, 102:363–371,

1975.

[Mat94] J. Matoušek. Lower bounds for a subexponential optimization algorithm.

Random Structures and Algorithms, 5(4):591–608, 1994.

[MG07] J. Matoušek and B. Gärtner. Understanding and using linear program-

ming. Springer, 2007.

[MS99] Y. Mansour and S. P. Singh. On the complexity of policy iteration. In

Proceedings of the 15th UAI, pages 401–408, 1999.

[MS06] J. Matoušek and T. Szabó. RANDOM EDGE can be exponential on

abstract cubes. Advances in Mathematics, 204(1):262–277, 2006.

[MSW96] J. Matoušek, M. Sharir, and E. Welzl. A subexponential bound for linear

programming. Algorithmica, 16(4-5):498–516, 1996.

[MTZ10] O. Madani, M. Thorup, and U. Zwick. Discounted deterministic markov

decision processes and discounted all-pairs shortest paths. ACM Trans-

actions on Algorithms, 6(2):1–25, 2010.

[MU05] M. Mitzenmacher and E. Upfal. Probability and computing, Random-

ized algorithms and probabilistic analysis. Cambridge University Press,

2005.

[NN94] Y. Nesterov and A. Nemirovskii. Interior Point Polynomial Methods in

Convex Programming. SIAM, 1994.

[OPS04] J. Orlin, A. Punnen, and A. Schulz. Approximate local search in combi-

natorial optimization. In SIAM Journal on Computing, pages 587–596,

2004.

[Pit06] N. Piterman. From nondeterministic Büchi and Streett automata to

deterministic parity automata. In Proceedings of the 21st Symposium on

Logic in Computer Science, LICS’06, pages 255–264. IEEE Computer

Society, 2006.

286 BIBLIOGRAPHY

[Pur95] A. Puri. Theory of Hybrid Systems and Discrete Event Systems. PhD

thesis, University of California, Berkeley, 1995.

[Put94] M. L. Puterman. Markov decision processes. Wiley, 1994.

[PV01a] V. Petersson and S. Vorobyov. Parity games: Interior-point approach.

Technical Report 2001-008, Department of Information Technology,

Uppsala University, May 2001.

[PV01b] V. Petersson and S. Vorobyov. A randomized subexponential algorithm

for parity games. Nordic Journal of Computing, 8(3):324–345, 2001.

[PY88] C. Papadimitriou and M. Yannakakis. Optimization, approximation,

and complexity classes. In Proceedings of the twentieth annual ACM

symposium on Theory of computing, STOC ’88, pages 229–234, New

York, NY, USA, 1988. ACM.

[San10] F. Santos. A counterexample to the hirsch conjecture. CoRR,

abs/1006.2814v1, 2010.

[Sch86] A. Schrijver. Theory of Linear and Integer Programming. John Wiley

& Sons, 1986.

[Sch07] S. Schewe. Solving parity games in big steps. In Proceedings of the

27th International Conference on Foundations of Software Technology

and Theoretical Computer Science, FSTTCS’07, volume 4855 of LNCS,

pages 449–460. Springer, 2007.

[Sch08] S. Schewe. An optimal strategy improvement algorithm for solving

parity and payoff games. In Proceedings of the 17th Annual Conference

on Computer Science Logic, CSL’08, volume 5213 of LNCS, pages

369–384. Springer, 2008.

[Sha53] L. S. Shapley. Stochastic games. Proceedings of National Academy of

Sciences USA, 39:1095–1100, 1953.

[Sri08] G. Srinivasan. Operations Research: Principles And Applications. Phi

Learning, 2008.

BIBLIOGRAPHY 287

[SS98] P. Stevens and C. Stirling. Practical model-checking using games. In

B. Steffen, editor, Proceedings of the 4th International Conference on

Tools and Algorithms for the Construction and Analysis of Systems,

TACAS’98, volume 1384 of LNCS, pages 85–101. Springer, 1998.

[SS05] I. Schurr and T. Szabó. Jumping doesn’t help in abstract cubes. In

IPCO, pages 225–235, 2005.

[Sti95] C. Stirling. Local model checking games. In Proceedings of the 6th Con-

ference on Concurrency Theory, CONCUR’95, volume 962 of LNCS,

pages 1–11. Springer, 1995.

[SW92] M. Sharir and E. Welzl. A combinatorial bound for linear programming

and related problems. In Proceedings of the 9th Annual Symposium on

Theoretical Aspects of Computer Science, pages 569–579, London, UK,

1992. Springer.

[SW01] T. Szabó and E. Welzl. Unique sink orientations of cubes. In Proceed-

ings of the 42th FOCS, pages 547–555, 2001.

[Tar72] R. Tarjan. Depth-first search and linear graph algorithms. SIAM Journal

on Computing, 1(2):146–160, 1972.

[VAW03] A. Vincent, A. Arnold, and I. Walukiewicz. Games for synthesis of

controllers with partial observations. Theoretical Computer Science,

303(1):7–34, 2003.

[VJ00] J. Vöge and M. Jurdzinski. A discrete strategy improvement algorithm

for solving parity games. In Proceedings of the 12th International

Conference on Computer Aided Verification, CAV’00, volume 1855 of

LNCS, pages 202–215. Springer, 2000.

[Vög00] J. Vöge. Strategiesynthese für Paritätsspiele auf endlichen Graphen.

PhD thesis, University of Aachen, 2000.

[Ye97] Y. Ye. Interior Point Algorithms: Theory and Analysis. Wiley-

Interscience, 1997.

288 BIBLIOGRAPHY

[Ye05] Y. Ye. A new complexity result on solving the Markov decision problem.

Mathematics of Operations Research, 30(3):733–749, 2005.

[Ye10] Y. Ye. The simplex method is strongly polynomial for the Markov

decision problem with a fixed discount rate. Available at http://

www.stanford.edu/~yyye/simplexmdp1.pdf, 2010.

[Zad80] N. Zadeh. What is the worst case behaviour of the simplex algorithm?

Technical report, Department of Operations Research, Stanford, 1980.

[Zie98] W. Zielonka. Infinite games on finitely coloured graphs with applications

to automata on infinite trees. TCS, 200(1–2):135–183, 1998.

[Zie04] G. M. Ziegler. Typical and extremal linear programs. In M. Grotschel

and M. W. Padberg, editors, The Sharpest Cut (MPS-Siam Series on

Optimization). Society for Industrial and Applied Mathematics, Philadel-

phia, PA, USA, 2004.

[ZP96] U. Zwick and M. Paterson. The complexity of mean payoff games on

graphs. Theoretical Computer Science, 158(1-2):343–359, 1996.

http://www.stanford.edu/~yyye/simplexmdp1.pdf
http://www.stanford.edu/~yyye/simplexmdp1.pdf

BIBLIOGRAPHY 289

290 BIBLIOGRAPHY

Index

Alternating games, 55

Arithmetic model, 18

Attractor, 48

AUSO, 89

Binary counting, 13

Binary out-degree, 137

Closed set, 48

Complexity class, 17

Complexity theory, 14

Arithmetic model, 18

Classes, 17

PLS, 19

coNP, 17

Counter strategy, 79

coUP, 17

Cycle gate, 123

Deceleration lane, 120

Determinacy, 49

Deterministic rule, 115

Switch all, 116

Switch all lower bound, 126

Switch best, 139

Switch best lower bound, 146

Diameter, 77

Directed graph, 38

Discounted payoff game, 59

Discounted reward criterion, 60

Discrete strategy iteration, 80

Dominion, 48

Escape payoff game, 108

Fair counting, 192

Finite path, 39

Gadget

Cycle gate, 123

Deceleration lane, 120

Modified cycle gate, 144

Modified deceleration lane, 140

Simple cycle, 117

Stubborn cycle, 143

Game valuation, 74

Game value, 60

Global solving, 51

Graph games, 40

Graph theory, 38

GridUSO, 89

Improvement rule, 77

Improving switch, 75

Infinitary Payoff Games, 38

Landau symbol, 12

Limiting average criterion, 60

Linear number of edges, 135

Linear programming, 20

Bases, 24

Dual algorithm, 32

Duality, 25

Ellipsoid method, 34

Geometry, 22

Interior point method, 34

LP-type problem, 33

PLS, 32

291

292 INDEX

Simplex algorithm, 28

Local solving, 51

LP-type problem, 33

Markov decision process, 63

Mean payoff game, 59

Memorizing rule, 189

Zadeh’s least entered rule, 189

Modal µ-calculus, 44

Model checking algorithm

Algorithm, 218

Lower bound, 224

Upper bound, 224

Modified cycle gate, 144

Modified deceleration lane, 140

Node valuation, 74

NP, 17

P, 17

Parity game, 44

Algorithms, 53

Attractor, 48

Closed set, 48

Determinacy, 49

Dominion, 48

Positional determinacy, 49

Single player, 51

Winning set, 47

Winning strategy, 46

Payoff game, 59

Discounted reward, 60

Limiting average, 60

Outcome, 59

Reward, 59

Value, 60

Players, 41

PLS, 19

Positional determinacy, 49

Positional path, 39

Positional strategy, 43

Probabilistic rule, 149

Random edge construction, 173

Random edge rule, 168

Random facet, 150

Random facet construction, 158

Switch half rule, 187

Random edge rule, 168

Construction, 173

Counting phases, 176

Transition probabilities, 179

Random facet, 32, 150

Construction, 158

Lower bound, 161

MDP lower bound, 164

Optimal strategies, 159

Randomized counting, 154

Randomized counting, 154

Randomized rule, 149

Recursive algorithm

Algorithm, 210

Lower bound, 213

Upper bound, 213

Simple cycle, 117

Simple stochastic game, 67

INDEX 293

Sink game, 106

Small progress measures, 53

Strategy, 42

Strategy iteration, 74

Abstractions, 89

Algorithm, 76

Counter strategy, 79

Diameter, 77

Discrete iteration, 80

Improvement rule, 77

Improving switch, 75

On payoff games, 86

Valuation, 74

Strategy subgame, 43

Strongly connected component, 39

Strongly polynomial time, 18

Stubborn cycle, 143

Switch all, 116

Switch all lower bound, 126

Switch best, 139

Switch best lower bound, 146

Switch half rule, 187

Tree automaton, 44

Turn-based stochastic game, 65

UP, 17

Valuation, 74

Weakly polynomial time, 18

Winning set, 47

Winning strategy, 46

Zadeh’s rule, 189

Construction, 197

Fair counting, 192

Lower bound, 198

	1 A brief history of time
	2 Preliminaries
	2.1 Complexity Theory
	2.2 Linear Programming

	3 Game Theory
	3.1 Infinitary Payoff Games
	3.2 Parity Games
	3.3 Related Games
	3.4 Relations and Reductions

	4 Lower Bounds for Strategy Iteration
	4.1 General Framework
	4.2 Improvement Rules
	4.3 Lower Bound Proof Plan
	4.4 Sink Game Relations
	4.5 Simplex Algorithm Relations
	4.6 Deterministic Rules
	4.6.1 Switch All Rule
	4.6.2 Switch Best Rule

	4.7 Probabilistic Rules
	4.7.1 Random Facet Rule
	4.7.2 Random Edge Rule
	4.7.3 Switch Half and all that

	4.8 Memorizing Rules
	4.8.1 Zadeh's Pivoting Rule

	5 Lower Bounds for Other Methods
	5.1 Recursive Algorithm
	5.2 Model Checking Algorithm

	6 All is well that ends well
	A Proofs of Chapter 4
	A.1 Proofs of Chapter 4.4
	A.2 Proofs of Chapter 4.6
	A.3 Proofs of Chapter 4.7
	A.4 Proofs of Chapter 4.8

	B Proofs of Chapter 5
	B.1 Proofs of Chapter 5.2

	Bibliography
	Index

