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A. General Introduction 

 

1. Overview 

 

―Today it is not only unwise but rather difficult to accomplish an efficient and 

selective multiple synthesis without using organometallics‖.
1
  

 

The synthesis of biologically active compounds or natural products for the 

pharmaceutical and agrochemical industries is one of the most important areas of 

research. Considering that the construction of complex molecules constantly demands 

new, straightforward and efficient methods for achieving chemical transformations, 

undoubtly, developing novel strategies and new reagents for meeting this challenge is 

a major task of modern organic chemists. Since the first preparation of organometallic 

reagent (diethylzinc) was performed by Frankland,
2

 it has been proven that 

organometallics are the most powerful tools in the formation of carbon-carbon and 

carbon-heteroatom bonds, and they also offer access to complex and biological 

molecules to organic chemists. Up to now, nearly every metal in the periodic table has 

been used in synthetic organic chemistry. Among them, a large number of metals were 

used to prepare organometallic reagents and their displayed reactivities to 

electrophiles and compatibilities with functional groups have been studied in detail.
3
 

For instance, organolithium compounds have high reactivity to electrophiles, but they 

display low selectivity and reduced functional group tolerance. In the case of 

organomagnesium reagents and organozinc reagents which possess a more covalent 

character of the carbon-metal bond, they have good reactivity and can tolerate a wide 

range of sensitive functional groups. Moreover, organoaluminum reagents have 

significant functional group tolerance but suffer from decreased reactivity. 

                                                        
1
 Organometallics in Organic Synthesis, E.-I. Negishi, Wiley-VCH; Weinheim, 1980. 

2
 a) E. Frankland, Liebigs Ann. Chem. 1848-9, 71, 171; b) E. Frankland, J. Chem. Soc. 1848-9, 2, 

263. 
3
 a) Handbook of Functionalized Organometallics, P. Knochel, Ed., Wiley-VCH: Weinheim, 

2005; b) Metal-Catalyzed Cross-Coupling Reactions, 2nd ed., A. de Meijere, F. Diederich, 

Wiley-VCH: Weinheim, 2004. 
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Additionally, organomanganese reagents can behave like transition metal derivatives, 

which leads to a much different reactivity than that of the previously mentioned 

organometallic species. Because of their different properties, organometallics offered 

sufficient optional approaches to perform efficient total synthesis of complex 

molecules. Therefore, developing methods for the reliable preparation of various 

organometallics and studying the reactivity of these organometallics are continuously 

necessary and important, and they are also the main goals of this work. 

 

2. Halogen-Metal Exchange Reaction 

 

Organomagnesium reagents, characterized by excellent reactivity and good function 

tolerance to a variety of electrophiles, still occupy a central place in organometallic 

chemistry. Since Victor Grignard reported the first preparation of organomagnesium 

reagents in 1901,
4
 these so-called Grignard reagents have been utilized widely in the 

areas of academic and process chemistry. The well-established methodologies 

concerning organomagnesium reagents include addition to carbonyl functions, 

Kumada cross-coupling, carboxylation with carbon dioxide, and so on.
3
 Especially, 

the reactivity and selectivity of organomagnesium reagents can be tuned after the 

transmetallation with many metallic salts, which dramatically broadened their scope. 

The most common way for the preparation of organomagnesium reagents is the 

oxidative insertion of magnesium metal to organic halides. However, this insertion 

method is usually hindered by low functional group tolerance.
5
 An alternative 

method for synthesizing organomagnesium reagents is the halogen-magnesium 

exchange reaction.
6
 

The first reaction of a halogen-magnesium exchange was disclosed by Prévost who 

showed that cinnamyl bromide (1) reacted with EtMgBr, affording 

                                                        
4
 V. Grignard, Ann. Chim. 1901, 24, 433. 

5
 Grignard Reagents-New Developments (Ed.: H. G.. Richey), Wiley, New York, 2000. 

6
 For selected reviews, see: a) P. Knochel, W. Dohle, N. Gommermann, F. F. Kneisel, F. Kopp, T. 

Korn, I. Sapountzis, V. A. Vu. Angew. Chem. Int. Ed. 2003, 42, 4302; b) A. Boudier, L. O. Bromm, 

M. Lotz, P. Knochel, Angew. Chem. Int. Ed. 2000, 39, 4414; c) H. Ila, O. Baron, A. J. Wagner, P. 

Knochel, Chem. Commun. 2006, 583. 
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cinnamylmagnesium bromide (2) in a moderate yield (Scheme 1, Eq. 1).
7
 In 1967, 

Villiéras demonstrated that the treatment of CHBr3 with iPrMgCl afforded the 

corresponding magnesium carbenoid 3 (Scheme 1, Eq. 2).
8
 A few years later, the 

work of Tamborski and Moore as well as similar work done by Furukawa confirmed 

this halogen-magnesium exchange reaction.
9
 These excellent pioneer breakthroughs 

allowed access to polyfunctionalized organomagnesium reagents by a 

halogen-magnesium exchange reaction. 

 

Scheme 1. First example of a halogen-magnesium exchange (Eq. 1) and 

bromine-magnesium exchange (Eq. 2). 

 

Subsequently, this convenient method has received attention from several research 

groups. In 1998, Knochel and co-workers discovered that the halogen-magnesium 

exchange displays a remarkable functional group tolerance.
10

 A variety of 

arylmagnesium halides bearing sensitive functional groups such as nitriles, esters, or 

amides can be prepared via an I/Mg exchange (Scheme 2).  

                                                        
7
 C. Prévost, Bull. Soc. Chim. Fr. 1931, 49, 1372. 

8
 a) J. Villiéras, Bull. Chem. Soc. Fr. 1967, 5, 1520; b) J. Villiéras, B. Kirschleger, R. Tarhouni, 

M. Rambaud, Bull. Chem. Soc. Fr. 1986, 470. 
9
 a) C. Tamborski, G. J. Moore, J. Organomet. Chem. 1971, 26, 153; b) N. Furukawa, T. Shibutani, 

H, Fujihara, Tetrahedron Lett. 1987, 28, 5845. 
10

 L. Boymond, M. Rottländer, G. Cahiez, P. Knochel, Angew. Chem. Int. Ed. 1998, 37, 1701. 
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Scheme 2. Preparation of highly functionalized Grignard reagents by an I/Mg 

exchange. 

 

Over the years, the scope of substrates in halogen-magnesium exchange reaction has 

been considerably enhanced. For instance, the reaction of amidine-protected 

diiodoamidine 8 with i-PrMgBr in THF afforded the corresponding arylmagnesium 

species 9 within 5 min. After transmetallation of 9 with CuCN·2LiCl, the resulting 

copper reagent underwent allylation with 2-methoxyallyl bromide, furnishing the 

desired allylation product 10.
11

 Interestingly, the treatment of unprotected iodoaniline 

11 with PhMgCl and iPrMgCl formed the dimagnesium derivative 12. 

Transmetallation with CuCN·2LiCl, followed by the addition of 3-bromoprop-1-yne, 

gave the desired product 13 in 89% yield.
12

 Substrates with highly electrophilic 

functionalities such as a nitro group can also be used to prepare Grignard reagent. 

Thus, 4-iodo-3-nitrobenzonitrile 14 reacted with the sterically hindered mesitylMgBr 

within 5 min at -40 
o
C, affording the corresponding Grignard reagent 15. After 

transmetallation with ZnBr2, the reaction of the resulting zinc reagent with ethyl 

4-iodobenzoate (16) in the presence of [Pd(dba)2] (5 mol%) and tfp (10 mol%) 

furnished biaryl derivative 17 in 73% yield (Scheme 3).
13

 In comparison to aryl 

iodides, an I/Mg exchange reaction of alkenyl iodides is slower. However, the 

                                                        
11

 D. M. Lindsay, W. Dohle, A. E. Jensen, F. Kopp, P. Knochel, Org. Lett. 2002, 4, 1819. 
12

 G.. Varchi, C. Kofink, D. M. Lindsay, A. Ricci, P. Knochel, Chem. Commun. 2003, 396. 
13

 I. Sapountzis, P. Knochel, Angew. Chem. Int. Ed. 2002, 41, 1610. 
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presence of an electron-withdrawing functionality directly linked to the double bond 

facilitates the iodine-magnesium exchange reaction. Thus, the alkenyl magnesium 

reagent 19 was readily obtained by an iodine-magnesium exchange of ethyl 

3-iodo-p-cyanocinnamate (18) with iPrMgBr. Transmetallation with CuCN·2LiCl and 

reaction with ethyl (2-bromomethyl)-acrylate led to the expected allylation product 20 

in 70% yield.
14

 In the case of alkyl substrates, the preparation of alkyl magnesium 

reagents is difficult due to the high reactivity of the resulting alkyl magnesium 

reagents. Remarkably, the treatment of 2-iodocyclopropanecarboxylate 21 with 

iPrMgCl within 15 min at -40 
o
C afforded stable cis-cyclopropylmagnesium chloride 

22. Reaction with benzaldehyde after transmetallation with CuCN·2LiCl furnished the 

lactone 23.
15

 

                                                        
14

 I. Sapountzis, W. Dohle, P. Knochel, Chem. Commun. 2001, 2068. 
15

 V. A. Vu, I. Marek, K. Polborn, P. Knochel, Angew. Chem. Int. Ed. 2002, 41, 351. 
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Scheme 3. The scope of the halogen-magnesium exchange reaction. 

 

Additionally, an important application of the halogen-magnesium exchange is the 

construction of polyfunctionalized heterocycles which are becoming more significant 

in many fields. To date, a wide range of functionalized five-membered and 

six-membered heteroaryl magnesium compounds have been synthesized by a 

halogen-magnesium exchange reaction such as 24a,
16

 24b,
17

 24c,
18

 24d,
19

 24e,
20

 

                                                        
16

 M. Bergauer, P. Gmeiner, Synthesis, 2001, 2281. 
17

 M. Abarbri, J. Thibonnet, L. Bérillon, F. Dehmel, M. Rottländer, P. Knochel, J. Org. Chem. 

2000, 65, 4618. 
18

 F. Dehmel, M. Abarbri, P. Knochel, Synlett 2000, 345. 
19

 C. J. Lovely, H. Du, H. V. Rasika Dias, Org. Lett. 2001, 3, 1319. 
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and 24f
21

 (Scheme 4). 

 

Scheme 4. Preparation of functionalized heteroaryl magnesium compounds. 

 

A recent improvement accomplished by Knochel et al. demonstrated that by using a 

stoichiometric amount of LiCl, the rate of the halogen-magnesium exchange was 

increased and the reactivity of the resulting Grignard reagent was enhanced. The 

proposed mechanism is that LiCl breaks the aggregates of iPrMgCl affording a more 

reactive complex 25. By using this new reagent iPrMgCl·LiCl, 

ortho-bromophenylmagnesium halide 26 which is difficult to prepare from 

1,2-dibromobenzene was readily generated via a Br/magnesium exchange (Scheme 

5).
22

 

 

                                                                                                                                                               
20

 L. Bérillon, A. Leprêtre, A. Turck, N. Plé, G. Quéguiner, G. Cahiez, P. Knochel, Synlett 1998, 

1359. 
21

 A. Leprêtre, A. Turck, N. Plé, P. Knochel, G. Quéguiner, Tetrahedron, 2000, 56, 265. 
22

 A. Krasovskiy, P. Knochel, Angew. Chem. Int. Ed. 2004, 43, 3333. 
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Scheme 5. The supposed reactive intermediate 25 and selective Br/Mg exchange. 
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3. Allylic Aluminum Reagents 

 

3.1 Allylic Metals 

 

The addition of allylmetal reagents to carbonyl groups is one of the most common 

strategies to perform highly stereoselective syntheses of an important structural 

subunit bearing sequences of stereocenters which is commonly found in polyether 

antibiotics and polyhydroxylated natural products.
23

 To date, allylic organometallic 

reagents which are derived from a wide range of metals, including magnesium, boron, 

silicon, aluminum, indium, lithium and so on,
24

 have been extensively studied. 

Especially, the excellent pioneering studies of Heathcock,
25

 Hoffmann
26

 and 

Yamamoto
27

 from 1978 to 1980 have shown the potential of allylic organometallics 

reagents for the control of the stereochemistry of the carbon-carbon formed in 

additional reactions. Since then, the asymmetric addition of allylic organometallic 

reagents to carbonyl group or imines has emerged and has been widely used in a 

variety of asymmetric total synthesis. 

Mechanistically, allylic organometallic reagents can be classified in three categories.
28

 

In addition reactions of allylic organometallic reagents of type I to carbonyl group, 

chair-like transition state is presumed. An anti-homoallylic alcohol is obtained when 

(E)-alkene precursor is employed. On the contrary, (Z)-alkene precursor gives a syn- 

homoallylic alcohol (Scheme 6).
24 

                                                        
23

 a) P. A. Bartlett, Tetrahedron 1980, 36, 3; b) I. Paterson, M. M. Mansuri, Tetrahedron 1984, 41, 

3569; c) R. W. Hoffmann, Angew. Chem. Int. Ed. 1987, 26, 489. 
24

 For selected reviews, see: a) Roush, W. R. In Compreh. Org. Synth.; Heathcock, C. H., Ed.; 

Pergamon: Oxford 1990, Vol. 2, p; b) Y. Yamamoto and N. Asao, Chem. Rev. 1993, 93, 2207; c) 

J.W. J. Kennedy and D. G. Hall, Angew. Chem. Int. Ed. 2003, 42, 4732; d) S. E. Denmark, J. Fu, 

Chem. Rev. 2003, 103, 2763; e) Yamamoto, Y. Acc. Chem. Res. 1987, 20, 243. 
25

 C. T. Buse, C. H. Heathcock, Tetrahedron Lett. 1978, 1685. 
26

 R. W. Hoffmann, H.-J. Zeiss, Angew. Chem. Int. Ed. 1979, 18, 306. 
27

 Y. Yamamoto, H. Yatagai, Y. Naruta, K. Maruya, J. Am. Chem. soc. 1980, 102, 7107. 
28

 S. E. Denmark, E. J. Weber, Helv. Chim. Acta 1983, 66, 1655. 
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Scheme 6. The addition of allylic organometallic reagents of type I to an aldehyde. 

 

Allylic organometallic reagents of type Ⅱ undergo addition reaction catalyzed or 

mediated by a Lewis acid. The postulated pathway allows the generation of only 

syn-diastereomer regardless of the geometry of alkene precursor (Scheme 7).
24

  

 

Scheme 7. The addition of allylic organometallic reagents of type Ⅱ to an aldehyde. 

 

Allylic organometallic reagents of type Ⅲ, which typically are formed in situ and 

presumably equilibrated to the more stable (E)-isomer, reacted with aldehydes or 

ketones mainly leading to the anti adduct (Scheme 8).
24 

 

Scheme 8. The addition of allylic organometallic reagents of type Ⅲ to an aldehyde. 
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In the case of allylboron reagent which belongs in type I, cyclic transition state allows 

to predict the stereochemistry of carbon-carbon bond formed in addition to carbonyl 

compounds with regards to the geometry of the double bond in the allylic group. For 

instance, the addition of (E)-crotylboron derivative to aldehyde leads to anti 

homoallylic alcohol 27, whereas the treatment of (Z)-crotylboron derivative with 

aldehyde results in the formation of syn adduct 28. This stereospecific selectivity is 

well rationalized by cyclic transition states 29 and 30 (Scheme 9).
29

 

 

Scheme 9. Cyclic TS in the addition of croylboron to aldehyde. 

 

The scope of the addition reaction of allylic boron or boronate reagents to carbonyl 

compounds has been extended to enantiomerically pure allylic boranes and borinates 

bearing chiral auxiliaries. The extensively developed chiral structures in allylic 

compounds include (+)-α-pinene, (-)-α-pinene, (+)-limonene, (-)-β-pinene, 

(+)-longifolene, (-)-10-methyl-α-pinene, (+)-3-carene as well as tartrate esters. These 

enantiomerically pure allylic boron reagents react with aldehydes generating the 

corresponding homoallylic alcohols in both excellent diastereoselectivities and 

                                                        
29

 a) R. W. Hoffmann and H.-J. Zeiss, J. Org. Chem. 1981, 46, 1309; b) K. Fujita, M. Schlosser, 

Helv. Chim. Acta, 1982, 65, 1258. 
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enantioselectivities.
30

 

Allylic zinc reagents have also proven to be an effective tool to form carbon-carbon 

bond in diastereoselective manner. Recently, Knochel et al. reported that substituted 

allylic zinc reagents can be obtained by using a direct insertion of zinc dust into allyl 

halides in the presence of LiCl and the resulting allylic zinc reagents reacted with 

aldehydes or ketones affording homoallylic alcohols bearing adjacent quaternary 

centers in high diastereoselectivities (Scheme 10).
31

 

 

Scheme 10. Allylic zinc reagents and selected reaction products. 

 

Allylsilanes as well as allylstannanes have also been studied in detail in 

stereoselective reactions to aldehydes. The diastereoselectivity can be tuned by adding 

                                                        
30

 a) H. C. Brown, P. K. Jadhav, J. Am. Chem. Soc. 1983, 105, 2092; b) W. R. Roush, A. E. Walts, 

L. K. Hoong, J. Am. Chem. Soc. 1985, 107, 8186; c) H. C. Brown, K. S. Baht, J. Am. Chem. Soc. 
1986, 108, 293; d) H. C. Brown, P. K. Jadhav, K. S. Baht, J. Am. Chem. Soc. 1988, 110, 1535; e) 

W. R. Roush, L. Banfi, J. C. Park, L. K. Hoong, Tetrahedron Lett. 1989, 30, 6457; f) J. Garcia, S. 

Masamune, J. Org. Chem. 1987, 52; g) H. C. Brown, P. K. Jadhav, J. Org. Chem. 1984, 49, 4089. 

h) F. Peng, D. G. Hall, J. Am. Chem. Soc. 2007, 129, 3070. 
31

 a) H. Ren, G. Dunet, P. Mayer, P. Knochel, J. Am. Chem. Soc. 2007, 129, 5376; b) M. D. Helm, 

P. Mayer, P. Knochel, Chem. Commun. 2008, 1916. 
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Lewis acids.
24

 

 

3.2 Allylic Aluminum Reagents 

 

Aluminum powder hardly inserts into organic halides to generate organoaluminum 

reagents even with reactive allyl compounds because of the passivation of the metal 

surface. However, Gaudemar
32

 and Miginiac
33

 demonstrated that allylic aluminum 

reagents could be prepared from allylic bromides using diethyl ether as solvent in the 

presence of a catalytic amount of HgCl2. The treatment of these resulting allylic 

aluminium reagents with dithienium tetrafluoroborate yielded the expected dithianes 

of type 31 in good yields (Scheme 11).  

 

Scheme 11. The preparation of allylic aluminum reagents in the presence of HgCl2. 

 

Later, a number of additives such as SnCl2, PbCl2, V(Cp)2Cl2 and TiCl4 were used to 

activate the aluminum powder and these Al/additive systems underwent Barbier-type 

allylation with carbonyl compounds or imines.
34

  

The Barbier-type allylation of aldehydes and ketones was also achieved by using 

aluminum and catalytic amount of InCl3. Thus, the reaction of benzaldehyde, allyl 

bromide, aluminum and InCl3 in one pot gave the alcohol 32 in 88% yield. The 

generation of product can be rationalized by the postulated pathway 33 illustrated in 

                                                        
32

 a) M. Gaudemar, Bull. Soc. Chim. Fr. 1958, 1475; b) A. Stefani, P. Pino, Hel. Chim. Acta, 1972, 

55, 1110. 
33

 a) G. Picotin, P. Miginiac, J. Org. Chem. 1985, 50, 1299; b) L. Miginiac-Groizeleau, Bull. Soc. 

Chim. Fr. 1963, 1449. 
34

 a) For general activation of aluminum powder, see: S. Saito in Science of Synthesis (Ed.: H. 

Yamamoto), 2004, vol. 7, p 5; b) K, Uneyama, N. Kamaki, A. Moriya, S. Torii, J. Org. Chem. 

1985, 50, 5396; c) H. Tanaka, T. Nakahara, H. Dhimane, S. Torii, Tetrahedron Lett. 1989, 30, 4161; 

d) H. Tanaka, K. Inoue, Ulrike Pokorski, M. Taniguchi, S. Torii, Tetrahedron Lett. 1990, 31, 3023; 

e) T. Hirano, B. Hatano, Y. Imamoto, A. Ogawa, J. Org. Chem. 1999, 64, 7665. 
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Scheme 12.
35

 

 

Scheme 12. Barbier-type allylation of aldehydes and ketones using aluminum and 

catalytic amount of InCl3. 

 

In 2002, Takai et al. reported that allylic aluminum reagents could be prepared by the 

insertion of aluminum (cut foil, 2 mm-2 mm, 1.0 mmol) to allyl bromide (1.5 mmol) 

in the presence of a catalytic amount of indium(0) powder (0.050 mmol) in THF (5 

mL) at 25 °C within 30 min. The subsequent Grignard-type addition of the allylic 

aluminum reagent to cyclododecanone (1.0 mmol) at 10 °C within 30 min afforded 

the desired alcohol in 98% yield. The catalytic amount of InCl3 in this reaction allows 

the similar generation of the allylaluminum reagent.
36

 

A reliable method for the preparation of allylic aluminum reagents is by 

transmetallation from the corresponding allylic lithium, allylic magnesium as well as 

allylic potassium. The addition of (Z)-crotyldiethylaluminum 34 derived from 

(Z)-crotylpotassium and diethylaluminum chloride to chiral aldehyde 35 led to the 

expected lactone 36 in good 3,4-syn selectivity (Scheme 13).
37

 

                                                        
35

 S. Araki, S.-J. Jin, Y. Idou, Y. Butsugan, Bull. Chem. Soc. Jpn. 1992, 65, 1736. 
36

 K. Takai, Y. Ikawa, Org. Lett. 2002, 4, 1727. 
37

 D. B. Collum, J. H. McDonald, Ⅲ, W. C. Still, J. Am. Chem. Soc. 1980, 102, 2118. 
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Scheme 13. Diastereoselective addition of allylic aluminum reagent 34 derived from 

crotyl potassium to an aldehyde. 

 

Furthermore, allylic aluminum reagent 37 bearing alkoxy functionality has been 

prepared by transmetallation of the corresponding alkoxyallyllithiums with 

diethylaluminum chloride. The treatment of (E)- and (Z)-crotyllithium derivatives 

with iBu2AlCl or iBu2AlOMe generated the corresponding (E)- and 

(Z)-crotylaluminum reagents 38 and 39.
38

 Moreover, heterosubstituted aluminate 

complexes such as 40,
39

 41
40

 and 42
41

 have been prepared in a similar manner. The 

reactions of these allylic aluminum reagents to aldehydes and ketones displayed good 

diastereoselectivity. For example, the syn adduct 44 was observed as the sole product 

in the addition reaction of allylic aluminum reagent 41 to propionaldehyde 43 

(Scheme 14). 

 

                                                        
38

 M. Koreeda, Y. Tanaka, J. Chem. Soc., Chem. Commun. 1982, 845. 
39

 M. Yamaguchi, T. Mukaiyama, Chem. Lett, 1982, 237. 
40

 Y. Yamamoto, H. Yatagai, Y. Saito, K. Maruyama, J . Org. Chem. 1984, 49, 1096. 
41

 Y. Yamamoto, Y. Saito, K. Maruyama, J. Chem. Soc. Chem. Commun., 1982, 1326. 
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Scheme 14. Selected allylic aluminum reagents. 

 

Allylaluminum reagent reacted with prochiral aldehydes in the presence of Sn(OTf)2 

and chiral diamine providing homoallylic alcohol in good yield and moderate optical 

purity (Scheme 15).
42

 

 

Scheme15. Asymmetric addition of allylaluminum reagent to prochiral aldehydes. 

 

Finally, allylic aluminum reagents could smoothly undergo Michael addition. Thus, 

the alkoxy-substituted allylic aluminum reagent 41 reacted with diesters 45 affording 

a mixture of anti and syn adducts (46 and 47) in the ratio of 1:1 (Scheme 16).
43

 

 

Scheme 16. Michael addition of allylic aluminum reagent 41. 

                                                        
42

 T. Mukaiyama, N. Minowa, T. Origama, K. Narasaka, Chem. Lett. 1986, 97. 
43

 Y. Yamamoto, S. Nishii, J. Org. Chem. 1988, 53, 3597. 
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4. Organomanganese Reagents 

 

In 1937, the first examples of organomanganese compounds were disclosed by 

Gilman and Bailie who showed the preparation of phenylmanganese iodide and 

diphenylmanganese by the treatment of phenyllithium with manganese iodide.
44

 

Since then, organomanganese compounds have been studied widely due to their 

excellent chemoselectivity, low toxicity and good availability.
45

 

 

4.1 Preparation of Organomanganese Reagents 

 

4.1.1 Transmetallation from The Corresponding Organolithium or 

Organomagnesium Reagents 

 

To date, the most commonly used way to prepare organomanganese reagents is by 

transmetallation from the corresponding organomagnesium or organolithium reagents 

with manganese halides. As showed in Scheme 17, several types of organomanganese 

reagents including RMnX, R2Mn, R3MnM and R4MnM2 have been synthesized 

depending on the ratio of RMg/MnX2 or RLi/MnX2. The stability of these 

organomanganese reagents increased in the following order: R2Mn < RMnX < 

R3MnM/ R4MnM2 (Scheme 17).
45a 

 

                                                        
44

 a) H. Gilman, J. C. Bailie, J. Org. Chem. 1937, 2, 84; b) H. Gilman, R. Kirby, J. Am. Chem. Soc. 

1941, 63, 2046. 
45

 For selected reviews, see: a) G. Cahiez, C. Duplais, J. Buendia, Chem. Rev. 2009, 109, 1434; b) 

S.-H. Kim, R. D. Rieke, Molecules 2010, 15, 8006; c) J. M. Concellόn, H. Rodrίguez-Solla, V. del 

Amo, Chem.—Eur. J. 2008, 14, 10184; d) K. Oshima, J. Organomet. Chem. 1999, 575, 1; (e) H. 

Shinokubo, K. Oshima, Eur. J. Org. Chem. 2004, 2081. 
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Scheme 17. Types of organomanganese reagents. 

 

The manganese halides used in transmetallation reactions include manganese iodide, 

manganese bromide and manganese chloride. LiBr or LiCl allows the preparation of 

the ate-complexes MnX2·LiX and the resulting organomanganese reagents which are 

more stable and more soluble in the solvent. Among various solvents, THF and ether 

are the commonly used solvents in the preparation of organomanganese reagents.
45a 

This approach allows the generation of a large variety of organomanganese reagents 

such as aryl, benzyl, allyl, alkyl, alkenyl, alkynyl and heteroarylmanganese reagents 

and this method displays an excellent functional group tolerance.
46

 

 

4.1.2 Commercial Manganese Insertion into Reactive Organic Halides 

 

The direct insertion of commercial manganese powder into organic halides is difficult 

because the surface of Mn metal mostly consists of hydroxides and oxides. According 

to the literature, only reactive substrates such as allylic halides and α-halogenesters 

can be used to react with commercial Mn powder giving the corresponding 

organomanganese reagents, which are trapped immediately with ketones or aldehydes 

(Barbier conditions), affording the desired alcohols. The first example was disclosed 

by Hiyama who described that Mn (7 eq.) reacted with allyl bromide (6 eq.) in the 

                                                        
46

 a) G. Cahiez, D. Bernard, J. F. Normant, Synthesis 1977, 130; b) G. Friour, G. Cahiez, J. F. 

Normant, Synthesis 1984, 37; c) G. Cahiez, M. Alami, Tetrahedron 1989, 45, 4163; d) G. Cahiez, 

B. Laboue, Tetrahedron Lett. 1989, 30, 3545; e) G. Cahiez, L. Razafintsalama, B. Laboue, F. 

Chau, Tetrahedron Lett. 1998, 39, 849; f) G. Cahiez, B. Laboue, P. Tozzolino, Eur. Patent 283359, 

1988; g) Chem. Abstr. 1989, 110, 114306; h) G. Cahiez, B. Laboue, P. Tozzolino, Eur. Patent 

374015, 1990; (i) Chem. Abstr. 1990, 113, 191644. 
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presence of an aldehyde or a ketone leading to homoallylic alcohol in 83% yield 

(Scheme 18, Eq. 1).
47

 In 1989, Cahiez et al. reported that the scope of this reaction 

can be extended to substituted allylic halides when ethyl acetate was employed as a 

solvent (Scheme 18, Eq. 2).
48

 

 

Scheme 18. Insertion of commercial Mn into allylic halides. 

 

Later, Cahiez and co-workers found that a catalytic amount of metallic halide such as 

ZnCl2, CuCl2, CdCl2 or HgCl2 can activate commercial manganese powder. This 

activated system allows the preparation of crotylmanganese reagents and 

prenylmanganese reagents (Scheme 19).
48 

 

Scheme 19. Activation of Mn surface by catalytic ZnCl2. 

 

Takai also reported that allylmanganese reagents were formed in the presence of 

catalytic amounts of both PbCl2 and TMSCl (Scheme 20).
49

 

                                                        
47

 T. Hiyama, M. Sawahata, M. Obayashi, Chem. Lett. 1983, 8, 1237. 
48

 a) G. Cahiez, P.-Y. Chavant, Tetrahedron Lett. 1989, 30, 7373; b) G. Cahiez, P.-Y. Chavant, P. 

Tozzolino, Eur. Patent 323332, 1989; c) Chem. Abstr. 1990, 112, 38679; d) G. Cahiez, P.-Y. 

Chavant, P. Tozzolino, Fr. Patent 2625500, 1989; e) Chem. Abstr. 1990, 112, 35281. 
49

 K. Takai, T. Ueda, T. Hayashi, T. Moriwake, Tetrahedron Lett. 1996, 37, 7049. 
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Scheme 20. Activation of commercial Mn by both PbCl2 and TMSCl. 

 

4.1.3 Activated Manganese Insertion into Organic Halides 

 

Although the direct insertion reaction of commercial manganese powder to organic 

halides is straightforward, effective and inexpensive, the scope of this reaction is 

limited as previously shown. The activated manganese metal prepared from 

manganese halides, namely Rieke-metal, is highly reactive. By using Rieke-Mn, a 

wide range of functionalized substrates such as aryl halides, heteroaryl halides, benzyl 

sulfonates and alkyl halides were readily converted to the corresponding 

organomanganese reagents (Scheme 21).
50

 

 

Scheme 21. The scope of substrates in the oxidative addition of Rieke-Mn. 

 

4.1.4 Deprotonation Using TMP2Mn·LiCl Base 

 

Recently, Knochel et al. demonstrated that a direct deprotonation using TMP2Mn 

allowed smooth preparation of functionalized aryl manganese reagents. A variety of 

functionalized aromatic substrates including arenes and heterocycles are readily 

                                                        
50

 a) S.-H. Kim, R. D. Rieke, Synth. Commun. 1998, 28, 1065; b) R. D. Rieke, S.-H. Kim, X. Wu, 

J. Org. Chem. 1997, 62, 6921; c) R. D. Rieke, Y. S. Suh, S.-H. Kim, Tetrahedron Lett. 2005, 46, 

5961; d) S.-H. Kim, R. D. Rieke, Tetrahedron Lett. 1999, 40, 4931; e) G. Cahiez, A. Martin, T. 

Delacroix, Tetrahedron Lett. 1999, 40, 6407; f) J. Tang, H. Shinokubo, K. Oshima, Synlett 1998, 

1075. 
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manganated under mild conditions. Thus, the highly functionalized aryl manganese 

reagent 50 was prepared by the treatment of benzophenone derivative 49 with base 48. 

Its Cu-catalyzed allylation reaction with 3-bromocyclohex-1-ene furnished the 

polyfunctional benzophenone 51 in 74% yield. Similarly, N-benzylbenzimidazole 52 

is converted to the corresponding heterocyclic manganese reagent 53 using base 48. 

Its addition to the aldehyde gave the desired alcohol 54 in 84% yield. The 

arylmanganese reagent 56 prepared under the similar condition underwent an 

oxidative amination with lithium amine providing the aniline 57 in 81% yield 

(Scheme 22).
51

 

 

Scheme 22. The deprotonation of arenes and heterocycles by TMP2Mn base. 

 

4.1.5 Halogen-Manganese Exchange Reaction 

 

Only few halogen-manganese exchange reactions have been reported. Hosomi 

                                                        
51

 S. H. Wunderlich, K. Marcel, P. Knochel, Angew. Chem. Int. Ed. 2009, 48, 7256. 
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demonstrated that the reaction of allylbromide with Bu4MnLi2 in THF afforded an 

allylic manganese reagent.
52

 The treatment of various unsaturated organic iodides 

with Bu4MnLi2 or Bu3MnLi leads to intramolecular cyclization (Scheme 23).
53

 

 

Scheme 23. Radical cyclization promoted by trialkylmanganate reagent. 

 

4.2 Reactions of Organomanganese Reagents 

 

Organomanganese compounds can be used to perform chemoselective 1,2-additions, 

acylations, metal catalyzed cross-coupling reactions, carbometalations, as well as 

copper-catalyzed conjugate additions (Scheme 24).
54

 

 

                                                        
52

 M. Hojo, H. Harada, H. Ito, A. Hosomi, Chem. Commun. 1997, 21, 2077. 
53

 a) J. Nakao, R. Inoue, H. Shinokubo, K. Oshima, J. Org. Chem. 1997, 62, 1910; b) R. Inoue, J. 

Nakao, H. Shinokubo, K. Oshima, Bull. Chem. Soc. Jpn. 1997, 70, 2039. 
54

 Reference 45a and its cited references. 
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Scheme 24. Reactions of organomanganese compounds. 
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 5. Objectives 

 

Heteroarylmetal reagents are key intermediates for the construction of complex 

heterocyclic compounds. Among heterocycles, 1,3,5-triazine and its derivatives have 

been proven to be important in many aspects. In the first project, using highly 

efficient halogen-magnesium exchange reaction, we planned to prepare functionalized 

magnesiated 1,3,5-triazine derivatives which could be a powerful tool to synthesize 

various complex 1,3,5-triazine derivatives. Especially, we tried to meet the challenge 

of the syntheses of dimeric and trimeric 1,3,5-triazine derivatives (Scheme 25). 

 

Scheme 25. Preparation of 2-magnesiated 1,3,5-triazine and 1,3,5-triazine derivatives. 

 

Another subject dealt with the development of allylic aluminum reagents. The goal of 

this project was to prepare allylic aluminum species bearing various sensitive 

functional groups. Additionally, the diastereoselectivity of the addition of these 

reagents to aldehydes or ketones was investigated (Scheme 26). 

 

Scheme 26. Diastereoselective addition of allylic aluminum reagents to carbonyl 

compounds. 
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Finally, the preparation of aromatic and benzylic manganese species was studied. 

Although organomanganese reagents have a lot of advantages, the efficient methods 

for the preparation of organomanganese reagents are limited. The objective was to 

develop a new, straightforward and effective method for the preparation of aromatic 

and benzylic manganese reagents from commercial manganese powder. Also, their 

reactivity towards various electrophiles was investigated (Scheme 27). 

 

Scheme 27. Preparation of organomanganese reagents. 
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B. Results and Discussion 

 

1. Preparation of 2-Magnesiated 1,3,5-Triazines via an Iodine-Magnesium 

Exchange 

 

1.1 Introduction: The Chemistry of 1,3,5-Triazine 

 

Heterocycles have gained increased significance in modern chemistry.
55

 Among 

N-containing heterocycles, 1,3,5-triazine derivatives
56

 have found numerous 

industrial applications as pharmaceuticals,
57

 liquid crystals,
58

 reactive dyes,
59

 and 

organic light-emitting diodes (OLEDs).
60

 Four types of methods for the construction 

of 1,3,5-triazine derivatives are well established: (1) Ring-closure reactions are the 

most commonly used strategy for the successful synthesis of a large variety of 

1,3,5-triazine derivatives (Scheme 28, Eq. 1).
61, 56a

 (2) 1,3,5-Triazine derivatives can 

be prepared by using ring enlargement (Scheme 28, Eq. 2).
62, 56a

 (3) Aromatization has 

been proven to be a useful approach towards 1,3,5-triazine derivatives (Scheme 28, 

Eq. 3).
63, 56a

 (4) Substitution of existing substituents allows the smooth preparation of 

                                                        
55

 a) A. F. Pozharskii, A. T. Soldatenkov, A. R. Katritzky, In Heterocycles in Life and Society; 

Wiley-VCH: Weinheim, 1997; b) T. S. Eicher, S. Hauptmann, In The Chemistry of Heterocycles, 

2nd ed.; Wiley-VCH: Weinheim, 2003; c) A. R. Katritzky, In Advances in Heterocyclic Chemistry; 

Academic Press: Oxford, 2002; Vol. 82. 
56

 For reviews, see: a) S. V. Angerer, In Science of Synthesis; Weinreb, S. M., Ed.; Thieme: 

Stuttgart, 2003; Vol. 17, pp 449; b) G. Giacomelli, A. Porcheddu, In Comprehensive Heterocyclic 

Chemistry III; Turnbull, K., Ed.; Elsevier Science: Oxford, 2008; Vol. 9, pp 197; c) G. Blotny, 

Tetrahedron 2006, 62, 9507. 
57

 a) A. Dhainaut, G. Regnier, A. Tizot, A. Pierre, S. Leonce, N. Guilbaud, L. Kraus-Berthier, G. 

Atassi, J. Med. Chem. 1996, 39, 4099; b) S. Ronchi, D. Prosperi, F. Compostella, L. Panza, Synlett 
2004, 1007. 
58

 a) A. Kohlmeier, D. Janietz, S. Diele, Chem. Mater. 2006, 18, 1483; b) H. C. Holst, T. Pakula, 

H. Meier, Tetrahedron 2004, 60, 6765; c) E. Beckel, N. Cramer, A. Harant, C. Bowman, Liq. 

Cryst. 2003, 30, 1343. 
59

 K. Xie, Y. Sun, A. Hou, J. Appl. Polym. Sci. 2007, 103, 2166. 
60

 a) A. Kulkarni, C. Tonzola, A. Babel, S. Jenekhe, Chem. Mater. 2004, 16, 4556; b) J.-W. Kang, 

D.-S. Lee, H.-D. Park, Y.-S. Park, J. W. Kim, W.-I. Jeong, K.-M. Yoo, K. Go, S.-H. Kim, J.-J. 

Kim, J. Mater. Chem. 2007, 17, 3714; c) T.-Y. Chu, M.-H. Ho, J.-F. Chen, C. H. Chen, Chem. 
Phys. Lett. 2005, 415, 137; d) H. Inomata, K. Goushi, T. Masuko, T. Konno, T. Imai, H. Sasabe, J. 

Brown, C. Adachi, Chem. Mater 2004, 16, 1285; e) J. Pang, Y. Tao, S. Freiberg, X.-P. Yang, M. 

D’Iorio, S. Wang, J. Mater. Chem. 2002, 12, 206. 
61

 F. C. Schaefer, J. Org. Chem. 1962, 27, 3608. 
62

 K. Sakai, J.-P. Anselme, Bull. Chem, Soc. Jpn. 1972, 45, 306. 
63

 T. P. Popovich, B. S. Drach, J. Org. Chem. 1987, 23, 2158. 
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a large number of functionalized 1,3,5-triazine derivatives (Scheme 28, Eq. 4).
64, 56a 

 

Scheme 28. Preparations of 1,3,5-triazine derivatives. 

 

However, the efficient syntheses of polyfunctional 1,3,5-triazines, including dimeric 

and trimeric triazine derivatives by using known methodologies, remain a synthetic 

challenge. As shown previously, metalated heterocyclic intermediates have proven to 

possess great potential for the concise synthesis of functionalized heterocycles.
65

 

Especially, polyfunctionalized organomagnesium compounds show a high tolerance 

                                                        
64

 R. Menicagli, S. Samaritani, V. Zucchelli, Tetrahedron, 2000, 56, 9705. 
65

 a) T. Delacroix, L. Bérillon, G. Cahiez, P. Knochel, J. Org. Chem. 2000, 65, 8108; b) M. 

Poirier, F. Chen, C. Bernard, Y.-S. Wong, G. G. Wu, Org. Lett. 2001, 3, 3795; c) W. Dohle, A. 

Staubitz, P. Knochel, Chem.—Eur. J. 2003, 9, 5323; d) M. Mosrin, M. Petrera, P. Knochel, 

Synthesis 2008, 3697; e) G. Monzon, P. Knochel, Synlett 2010, 304. 
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toward a wide range of functional groups and are easily accessible, e.g., via Br/Mg or 

I/Mg exchange reaction.
66, 6a-c

 It has been reported that the reactions of 2-chloro- 

4,6-dimethoxy-1,3,5-triazine with ketones using lithium powder and 

substoichiometric amounts of naphthalene involving a lithiated 1,3,5-triazine 

intermediate afford the corresponding alcohols in 13-50% yield (Scheme 29).
67

 

Therefore, metalated 1,3,5-triazine intermediate is a potential reagent for 

carbon-carbon bond formation in the area of complex 1,3,5-triazine derivatives. 

 

Scheme 29. The postulated lithiated 1,3,5-triazine intermediate. 

 

We planned to develop a straightforward and practical preparation of fully substituted 

1,3,5-triazines via magnesiated triazines as well as synthetic routes to highly 

functionalized 1,3,5-triazine dimers and trimers which are expected to be valuable 

advanced materials. 

 

1.2 Preparation of Functionalized Iodotriazine Derivatives 

 

First of all, in order to investigate the reactivity of metalated 1,3,5-triazine reagents, 

we designed a short route to synthesize iodotriazine derivatives of type 61 bearing 

various sensitive functional groups. Starting from inexpensive and commercial 

2,4,6-trichloro-1,3,5-triazine, the raw material 2,4-dichloro-6-phenyl-1,3,5-triazine 

(58) was readily obtained in 72% yield.
56a

 The treatment of 

2,4-dichloro-6-phenyl-1,3,5-triazine 58 with HI (57%) between 0 
o
C and 25 

o
C over 

12 h furnished 2,4-diiodo-6-phenyl-1,3,5-triazine (59) in 67% yield.
68

 We envisioned 

                                                        
66

 a) F. Cresty, P. Knochel, Synthesis 2010, 1097; b) L. Melzig, C. Rauhut, P. Knochel, Synthesis 

2009, 1041. 
67

 I. Gómez, E. Alonso, D. J. Ramón, M. Yus, Tetrahedron 2000, 56, 4043. 
68

 G. Vlád, I. T. Horváth, J. Org. Chem. 2002, 67, 6550. 
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that the functionalized iodotriazine derivatives of type 61 could be prepared by using 

a well-established Negishi cross-coupling
69

 reaction of the intermediate 59 with 

functionalized organozinc reagents. After screening the palladium catalysts, 

Pd(PPh3)2Cl2 was employed as an effective catalyst and allowed a smooth preparation 

of functionalized iodotriazine derivatives in 47-80% yield (Scheme 30). 

 

Scheme 30. Preparation of functionalized iodotriazine derivatives. 

 

Thus, the reaction of 2,4-diiodo-6-phenyl-1,3,5-triazine (59) with C8H17ZnBr·LiCl 

obtained after transmetallation of the corresponding Grignard reagent with 

ZnBr2·2LiCl in the presence of 1 mol% Pd(PPh3)2Cl2 afforded the iodotriazine 

derivative 61a in 60% yield (entry 1, Table 1). In addition, 

2,4-diiodo-6-phenyl-1,3,5-triazine (59) reacted with thienyl zinc reagent 60b
70

 in 

THF within 5 h in the presence of 1 mol% Pd(PPh3)2Cl2 leading to the iodotriazine 

derivative 61b (entry 2). Similarly, 2,4-diiodo-6-phenyl-1,3,5-triazine (59) smoothly 

undergoes Pd-catalyzed cross-coupling reactions with various organozinc reagents 

60e-k furnishing the desired adducts 61e-k in 47-72% yield (entries 3-9). 
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Table 1 Preparation of functionalized iodotriazine derivatives via Negishi 

Cross-Coupling 

entry organozinc reagent product, yield (%) 

 

 

 

 

  

1 60a 61a: 60% 

 

 

 

2 60b 61b: 80% 

 

 

 

3 60e 61e: 55% 

 

 

 

4 60f 61f: 72% 

 

 

 

 

5 60g 61g: 51% 

 

 

 

 
 

6 60h 61h: 66% 
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7 60i 61i: 47% 

 

 

 

 

8 60j 61j: 56% 

 

 

 

9 60k 61k: 62% 

 

In the case of 4-iodo-N,N,6-triphenyl-1,3,5-triazin-2-amine (61c), it was obtained in 

80% yield by the treatment of 2,4-diiodo-6-phenyl-1,3,5-triazine (59) with lithium 

diphenylamide prepared by addition of BuLi to a solution of diphenylamine in THF 

(Scheme 31). 2-chloro-4,6-diphenyl-1,3,5-triazine reacted with HI (57%) between 0 

o
C and 25 

o
C over 12 h furnished 2-iodo-4,6-diphenyl-1,3,5-triazine 61d in 75% yield 

(Scheme 31). 
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Scheme 31. Preparation of iodotriazine derivatives 61c and 61d. 

 

1.3 Preparation of 2-Magnesiated 1,3,5-Triazines and Their Subsequent 

Reactions with Various Electrophiles 

 

With key functionalized iodotriazine derivatives at hand, we started to seek an 

effective I/Mg exchange reagent for these iodotriazine derivatives. We found that in 

comparison to well-established Hal/Mg exchange reagents such as iPrMgCl,
71, 3a

 the 

Grignard reagents BuMgCl and OctMgBr are less nucleophilic and more selective, 

avoiding undesired substitution products. Thus, the reaction of 

6-iodo-4-octyl-2-phenyl-1,3,5-triazine (61a) with BuMgCl (1.1 equiv, -78 °C, 10 min) 

provided the corresponding triazinylmagnesium chloride (62a), which after 

transmetallation with ZnBr2·LiCl (1.1 equiv, -20 °C, 30 min) undergoes a 

cross-coupling with ethyl 4-iodobenzoate (63a) in the presence of Pd(dba)2 (5 mol%) 

and tfp (10 mol%), affording the trisubstituted 1,3,5-triazine derivative 64a in 62% 

yield (entry 1, Table 2). Additionally, a copper-catalyzed allylation (CuCN·2LiCl, 20 

mol%) of 62a with ethyl (2-bromomethyl)acrylate (63b) produced the acrylate 64b in 

73% yield (entry 2). In the same manner, a range of 1,3,5-triazinylmagnesium 

reagents bearing electron-donating functional groups such as a 2-thienyl group (62b), 

a diphenylamino group (62c), or an aryl group bearing various substituents (62d-j) 

                                                        
71
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were prepared by reaction with BuMgCl or OctMgBr (1.1 equiv, -78 °C, 10 min) with 

2-iodo-1,3,5-triazine derivatives (61a-j). The resulting 1,3,5-triazinylmagnesium 

reagents 62b-j reacted with various electrophiles 63b-e affording the fully substituted 

1,3,5-triazines 64c-m in 59-75% yield (entries 3-13). Thus, a Cu(I)-catalyzed 

allylation (CuCN·2LiCl, 20 mol%) of the magnesiated triazine 62b with ethyl 

2-(bromomethyl)acrylate (63b) furnished the trisubstituted acrylate 64c in 59% yield 

(entry 3). Similarly, the magnesium reagent 62c afforded, after a Cu(I)-mediated 

benzoylation with 63c (CuCN·2LiCl, 1.1 equiv), the triazinyl ketone 64d in 71% 

yield (entry 4). Moreover, the substituted 2-triazinyl alcohol 64e was obtained after 

addition of the organomagnesium reagent 62d to PhCHO (63d) in 61% yield (entry 5). 

Remarkably, also electron-poor triazines 61e,f underwent a smooth I/Mg-exchange 

with BuMgCl (1.1 equiv, -78 °C, 10 min) affording the functionalized 

1,3,5-triazinylmagnesium reagents 62e,f. Subsequent Cu(I)-catalyzed allylation 

(CuCN·2LiCl, 20 mol%) with ethyl 2-(bromomethyl)acrylate (63b) or addition to 

PhCHO (63d) afforded the trisubstituted 1,3,5- triazines 64f and 64g in 54-71% yield 

(entries 6 and 7). The 1,3,5-triazine-based Grignard reagents 62g-j bearing 

electron-withdrawing functional groups such as ester, cyano, and halo groups in the 

ortho- or para-position of the phenyl substituent were prepared via a rapid I/Mg 

exchange with OctMgBr (1.1 equiv, -78 °C, 10 min) from the corresponding 

substituted 2-iodo-1,3,5-triazines 61g-j. In comparison to BuMgCl, OctMgBr avoids 

side products due to a nucleophilic substitution of the triazine ring. Thus, the 

1,3,5-triazinylmagnesium reagent 62g afforded, after addition to PhCHO (63d) or 

p-NC-C6H4CHO (63e), the functionalized 1,3,5-triazinyl alcohols 64h-i in 63-75% 

yield (entries 8 and 9). Similarly, a Cu-catalyzed allylation of 62g provided the 

triazinylsubstituted acrylate 64j in 71% yield (entry 10). The ethoxycarbonyl-, bromo-, 

and cyano-substituted triazinylmagnesium reagents 62h-j underwent similar additions 

to PhCHO (63d) or Cu-mediated benzoylation with PhCOCl (63c), leading to 

trisubstituted 1,3,5-triazine derivatives 64k-m in 63-68% yield (entries 11-13). 
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Table 2. Functionalized 1,3,5-triazine derivatives of type 64 obtained by I/Mg 

exchange and subsequent quenching with an electrophile 

 

entry magnesium reagent electrophile product, yield
a 

 

 

 

 

  

1 62a
b 

63a 64a: 62%
d 

 

 

 

 

  

 

2 62a
b 

63b 64b: 73%
b
 

 

 

 

 

 

 

 

3 62b
b 

63b 64c: 59%
e
 

 

 

 

 
 

 

4 62c
b 

63c 64d: 71%
f
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5 62d
b 

63d 64e: 61% 

 

 

 

 

 

 

 

6 62e
b 

63b 64f: 71%
e
 

 

 

 

 

 

 

 

7 62f
b 

63d 64g: 54% 

 

 

 

 

 

 

 

 

8 62g
c 

63d 64h: 75% 

   

 

9 62g
c 

63b 64i: 71% 
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10 62g
c 

63e 64j: 63% 

 

 

 

 

 

 

 

11 62h
c 

63d 64k: 63% 

 

 

 

 

 

 

 

 

12 62i
c 

63c 64l: 68%
f
 

 

 

 

 

 

 

 

 

13 62j
c 

63d 64m: 64% 

a
 Isolated yield of analytically pure product. 

b
 Obtained after I/Mg exchange with BuMgCl (-78 °C, 

10 min). 
c
 Obtained after I/Mg- exchange with OctMgBr (-78 °C, 10 min). 

d
 Obtained after 

transmetallation with ZnBr2·LiCl (1.1 equiv) and subsequent Negishi cross-coupling with ethyl 

4-iodobenzoate in the presence of Pd(dba)2 (5 mol%) and tfp (10 mol%). 
e
 Obtained after addition 

of CuCN·2LiCl (20 mol%). 
f
 Obtained after transmetallation with CuCN·2LiCl (1.1 equiv). 
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1.4 Doubly Magnesiated 1,3,5-Triazine 

 

In general, the preparation of bis-magnesiated aromatics requires harsh reaction 

conditions, and only a few examples have been reported.
72

 However, the I/Mg 

exchange of 2,4-diiodo-1,3,5-triazine (59) with sBuMgCl (2.2 equiv, -78 °C, 10 min) 

readily furnished the doubly magnesiated 1,3,5-triazine 65 (>90% yield). 

Transmetallation of 65 with CuCN·2LiCl (2.2 equiv, -78 °C to -40 °C) afforded the 

biscopper derivatives which after allylation or acylation produced the 

bis-functionalized triazines 67 and 68 in yields of 67% and 38%, respectively 

(Scheme 32). 

 

 

 

 

                                                        
72

 a) R. D. Rieke, S. E. Bales, J. Am. Chem. Soc. 1974, 96, 1775; b) F. Bickelhaupt, Angew. 

Chem., Int. Ed. 1987, 26, 990; c) E. Bartmann, B. Bogdanovic, N. Janke, S. Liao, K. Schlichte, B. 

Spliethoff, J. Treber, U. Westeppe, U. Wilczok, Chem. Ber. 1990, 123, 1517; d) D. R. Armstrong, 

W. Clegg, S. H. Dale, D. V. Graham, E. Hevia, L. M. Hogg, G. W. Honeyman, A. R. Kennedy, R. 

E. Mulvey, Chem. Commun. 2007, 598; e) C. E. Reck, C. H. Winter, Organometallics 1997, 16, 

4493; f) F. M. Piller, A. Metzger, M. A. Schade, B. A. Haag, A .Gavryushin, P. Knochel, 
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Scheme 32. Preparation of the dimagnesiated 1,3,5-triazine derivatives 67 and 68 

 

1.5 Syntheses of Trimeric and Dimeric Derivatives 

 

Conjugated molecules bearing 1,3,5-triazine moieties may exhibit useful 

opto-electronic properties.
73

 We have used the functionalized triazinylmagnesium 

reagents of type 62 for the syntheses of dimeric and trimeric derivatives 70, 72 and 74 

(Scheme 33 and 34). Thus, 2-iodo-4,6-diphenyl-1,3,5-triazine (61d) undergoes a 

smooth I/Mg exchange with BuMgCl (1.1 equiv, -78 °C, 10 min) and leads after a 

transmetallation with ZnCl2 (1.05 equiv, -78 °C, 10 min) to the corresponding 

1,3,5-triazinylzinc chloride 69 (>90% yield). Subsequent Pd(0)-catalyzed 

cross-coupling with the iodotriazine 61d (1.0 equiv, -78 to 25 °C, 24 h) provided the 

dimeric triazine 70 in 57% yield (Scheme 33). Similarly, the I/Mg exchange reaction 

of 2-iodo-4-(4-butylphenyl)-6-phenyl-1,3,5-triazine (61k) with sBuMgCl (1.1 equiv, 

-78 °C, 10 min) followed by ZnCl2 addition furnished the 1,3,5-triazinylzinc reagent 

                                                        
73
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71. Subsequent Negishi cross-coupling with 61g (1.0 equiv) using Pd-PEPPSI-iPr
74

 

(5 mol%, 25 °C, 24 h) led to the dimeric triazine 72 in 52% yield (Scheme 33). 

 

Scheme 33. Preparation of dimeric triazines 70 and 72. 

 

The trimeric triazine derivative 74 was prepared from the iodotriazine 61g by I/Mg 

exchange and transmetallation with ZnCl2, leading to the zinc reagent 73 (>90% 

yield). Negishi cross-coupling of 73 with 2,4-diiodo-6-phenyl-1,3,5-triazine (59) in 

the presence of Pd-PEPPSI-iPr
74

 (5 mol%, 25 °C, 24 h) affords the triazine 74 in 45% 

yield (Scheme 34). 

 

Scheme 34. Preparation of tristriazine derivative 74. 

 

                                                        
74
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Organ, Chem.—Eur. J. 2006, 12, 4743; b) M. G. Organ, S. Avola, I. Dubovyk, N. Hadei, E. A. B. 

Kantchev, C. J. O. Brien, C. Valente, Chem, —Eur. J. 2006, 12, 4749; c) S. Sase, M. Jaric, A. 
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1.6 Conclusion 

 

In summary, we have developed a new method for the preparation of stable mono- 

and bis(1,3,5-triazinyl)magnesium reagents, which react with aldehydes, acid 

chlorides, and allylic halides, furnishing a wide range of new functionalized fully 

substituted 1,3,5-triazine derivatives. Remarkably, dimeric and trimeric triazine 

derivatives were also prepared using triazinylzincs as key intermediates. 
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2. Preparation of Polyfunctional Indazoles Using Highly Functionalized Zinc 

Reagents 

 

2.1 Synthetic Strategy 

 

Among various heterocyclic compounds, indazoles have found numerous applications 

in the areas of pharmaceuticals, agrochemicals, and polymers.
75

 As previously shown, 

organometallics are versatile reagents for the preparation of complex heterocycles. 

Especially, organozinc compounds have excellent compatibility with nitrogen 

functionalities at high oxidation degree such as nitro groups, azides, and triazenes.
76

 

It has been reported that diphenylzinc species reacted with diazonium salts giving azo 

compounds.
77

 We envisioned that the treatment of diarylzinc reagent 76 (which can 

be prepared by an I/Mg exchange and a subsequent transmetallation with ZnBr2·LiCl) 

with diazonium salt 77 can provide the desired indazole of type 80 by intramolecular 

nucleophilic substitution of the 2-chloromethylarylazo intermediate 78 and the 

subsequent proton abstraction (Scheme 35). 

 

Scheme 35. Tentative synthesis of indazole of type 80. 

 

2.2 Preparation of Highly Functionalized Zinc Reagents 

 

Functionalized 2-iodobenzyl chlorides of type 75 were generated in two steps in 
                                                        
75

 a) A. Schmidt, A. Beutler, B. Snovydovych, Eur. J. Org. Chem. 2008, 4073; b) W. Stadlbauer, 
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Mini-Rev. Med. Chem. 2005, 5, 869; d) V. Minkin, D. Garnovskii, J. Elguero, A. Katritzky, O. 

Denisko, Adv. Heterocycl. Chem. 2000, 76, 157; e) J. van Ooijen, J. Reedijk, J. Magn. Magn. 
Mater. 1979, 12, 4; f) G. Sagi, K. Szucs, L. Otvos, J. Med. Chem. 1992, 35, 4549; g) O. Dann, P. 

Nickel, Liebigs Ann. Chem. 1963, 667, 101; h) M. De Angelis, F. Stossi, K. Carlson, B. 

Katzenellenbogen, J. Katzenellenbogen, J. Med. Chem. 2005, 48, 1132. 
76
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J. Org. Chem. 2007, 72, 7106; c) C.-Y. Liu, P. Knochel, Org. Lett. 2005, 7, 2543. 
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35-53% yield (Scheme 36). For example, the reaction of 3-iodo-4-methyl-benzoic 

acid ethyl ester with N-bromosuccinimide (1.1 equiv) in the presence of 

dibenzoylperoxide (10 mol%) in THF provided crude 4-bromomethyl-3-iodobenzoic 

acid ethyl ester. Subsequent treatment with LiCl (2.5 equiv) led to the expected 

product 75a in 60% yield (two steps). 2-Iodobenzyl chlorides 75b and 75c were 

obtained respectively in similar manner (Scheme 36). 

 

Scheme 36. Preparation of functionalized 2-iodobenzyl chlorides of type 75 

 

With functionalized 2-iodobenzyl chlorides at hand, the corresponding diarylzinc 

reagents were prepared by using the well-established I/Mg exchange reaction. Thus, 

the treatment of functionalized 2-iodobenzyl chlorides of type 75 with i-PrMgCl·LiCl 

(1.05 equiv, -20 °C, 30 min) furnished 2-chloromethylphenylmagnesium chlorides. 

Transmetallation with ZnBr2·LiCl (0.55 equiv, -20 °C to 25 °C, 20 min) provided the 

desired diarylzinc reagents of type 76 (Scheme 37). 

 

Scheme 37. Preparation of functionalized diarylzinc reagents of type 76. 
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2.3 Preparation of Polyfunctionalized Indazoles 

 

The resulting zinc reagent 76a was then added to aryldiazonium tetrafluoroborate 77a 

in a 1:1 THF:NMP mixture (NMP = N-methyl-2-pyrrolidone) at -40 °C. After stirring 

the reaction mixture at 25 °C (30 min) and warming the solution to 50 °C for 1 h, 

2-(4-ethoxycarbonyl-phenyl)-2H-indazole-6-carboxylic acid ethyl ester (80a) was 

isolated in 71% yield (entry 1, Table 3). Similarly, the diarylzinc reagent 76a reacted 

with aryldiazonium tetrafluoroborate 77b-c affording the corresponding indazoles 

80b-c in 68-90% yield (entries 2-3). In addition, the diarylzinc reagents 76b and 76c 

were converted to the desired adducts 80d (75% yield) and 80e (66% yield) 

respectively under similar conditions (entries 4-5). 

Table 3. Aryl-2H-indazole synthesis by the reaction of di(2-chloromethylaryl) zinc 

with aryldiazonium tetrafluoroborate 

 

entry zinc reagent
a 

diazonium salt product, yield
b 

 

  

 

1 76a
 

77a 80a: 71%
 

  

 

 
 

2 76a
 

77b 80b: 68% 
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3 76a
 

77c 80c: 90% 

 

 

 

 

4 76b
 

77a 80d: 75% 

 

 

 

 

5 76c
 

77a 80e: 66% 

a
 With ZnBr2·LiCl (0.55 equiv), a transmetallation was performed. 

b
 Yield of analytically pure 

product.  

 

2.4  Conclusion 

 

Therefore, we have developed a short and convenient synthetic route to 

2-aryl-2H-indazoles by using highly functionalized arylzinc reagents. 
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3. Diastereoselective Synthesis of Homoallylic Alcohols with Adjacent Tertiary 

and Quaternary Centers by Using Functionalized Allylic Aluminum Reagents 

 

3.1 Introduction 

 

Addition reactions of nucleophiles to carbonyl compounds are excellent reactions for 

generating quaternary centers in a diastereoselective manner.
78

 Especially the 

addition of allylic organometallics to aldehydes or ketones proceeds in several cases 

with high diastereoselectivity.
79

 This novel strategy has been widely applied for the 

construction of the complex molecules. For instance, Paterson and co-workers used 

this methodology in the total synthesis of Swinholide A. Homoallylic alcohol 82 was 

prepared in 60% yield with complete diasteroselectivity by exposing aldehyde to the 

(+)-Ipc-derived crotylboration reagent
80

 (Scheme 38).
81

 As previously shown, the 

scope of this reaction has been extended to allylic zinc reagents, allylic silane reagents, 

allylic aluminum reagents, allylic titanium reagents and so on.
82
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Int. Ed. 2005, 44, 1376; d) G. Sklute, D. Amsallem, A. Shabli, J. P. Varghese, I. Marek, J. Am. 
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Scheme 38. Addition reaction of allylboron reagent in total synthesis of Swinholide A 

 

Recently, Knochel and co-workers have shown that functionalized allylic zinc 

reagents can be prepared from allylic chlorides by the reaction of zinc powder in the 

presence of LiCl. Their addition to aldehydes and ketones proceeds with high 

diastereoselectivities.
31

 Nevertheless, the preparation of allylic zinc reagents bearing 

sensitive functional groups (such as a cyano or an ester function) is limited due to the 

high reactivity of such allylic organometallics.
83

 Besides zinc, aluminum is a metal 

which has many attractive features: it is of low toxicity, inexpensive and due to the 

low ionic character of the carbon-aluminum bond, it may tolerate a number of 

important functional groups.
84

 The preparation of unsaturated aluminum 

organometallics from commercial Al-powder is in general difficult, but a proper 

activation of the aluminum surface allows an effective insertion of aluminum to aryl 

                                                        
83
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Fr. 1963, 7, 1475. 
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halides.
85

 Previously, allylic aluminum reagents were prepared from allylic bromides 

according to Gaudemar
32

 and Miginiac
33

 using diethyl ether as solvent in the presence 

of a catalytic amount of HgCl2. 

We wish to develop a practical synthesis of functionalized allylic aluminum reagents 

bearing various substituents by performing an insertion of commercial Al-powder to 

various allylic chlorides or bromides as well as their diastereoselective addition to 

aldehydes and ketones.  

 

3.2 Preparation of Functionalized Allylic Chlorides 

 

Starting from readily available allylic alcohol, the corresponding functionalized allylic 

halides were obtained by treatment with chlorination reagent such as thionyl chloride. 

Thus, the reaction of 6-hydroxy-cyclohex-1-enecarboxylic acid ethyl ester
86

 (83b) 

with thionyl chloride in benzene at 25 
o
C within 24 h afforded the desired allylic 

chloride 84b in 77% yield. Similarly, starting from ethyl 

5-hydroxycyclopent-1-enecarboxylate
87

 (83c), the corresponding allylic chloride 84c 

was given in 70% yield. This condition can be applied for preparing the allylic 

chloride bearing a cyano function 84g from 5-hydroxycyclopent-1-enecarbonitrile
87

 

(83g). The treatment of 3-methoxybenzaldehyde with vinylmagnesium bromide and 

subsequent reaction with TiCl4 provided the functionalized cinnamyl chloride 84e in 

57% yield.
88

 (E)-(1-chlorobut-2-en-2-yl)trimethylsilane (84h) was prepared in 60% 

yield from the corresponding allylic alcohol 83h
89

 in ether at 25 
o
C within 24h 

(Scheme 39). 
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Scheme 39. Preparation of functionalized allylic halides. 

 

3.3 Preparation of Functionalized Allylic Aluminum Reagents and Their 

Addition to Aldehydes and Ketones 

 

3.3.1 Cyclic Aluminum Reagents 

 

Preliminary studies have shown that an appropriate activation of aluminum is 

essential for achieving a smooth insertion to organic halides.
90

 Thus, 

3-bromocyclohex-1-ene (84a) reacts with Al-powder (1.5 equiv) and InCl3 (1 mol%)
91

 

                                                        
90

 Aluminum powder has been previously activated by PbCl2, SnCl2, TiCl4 for insertion into allyl 

bromides and chlorides, see: a) K, Uneyama, N. Kamaki, A. Moriya, S. Torii, J. Org. Chem. 1985, 

50, 5396; b) H. Tanaka, T. Nakahara, H. Dhimane, S. Torii, Tetrahedron Lett. 1989, 30, 4161; c) H. 

Tanaka, K. Inoue, Ulrike Pokorski, M. Taniguchi, S. Torii, Tetrahedron Lett. 1990, 31, 3023. For 

general activation of aluminum powder, see: S. Saito in Science of Synthesis (Ed.: H. Yamamoto), 

2004, vol. 7, p 5. 
91

 We assume that InCl3 activates the Al-surface; see also: a) K. Takai, Y. Ikawa, Org. Lett. 2002, 

4, 1727; b) S. Araki, S.-J. Jin, Y. Idou, Y. Butsugan, Bull. Chem. Soc. Jpn. 1992, 65, 1736. 



B. Results and Discussion 

 49 

in THF at 0 °C within 2 h and provides the corresponding allylic aluminum reagent 

85a in 82% yield.
92

 Its reaction with 4´-bromoacetophenone (86a, 0.7 equiv, 1 h, 

-78 °C) leads to the syn-homoallylic alcohol (87a) in 97% yield as only 

diastereoisomer (dr > 99:1).
93

 Functional groups like an ester are readily compatible 

with this procedure. Thus, starting from ethyl 6-chloro-cyclohex-1-enecarboxylate 

(84b), the functionalized allylic aluminum reagent (85b) is obtained in 77% yield 

(25 °C, 16 h). It also reacted well with 4
´
-bromoacetophenone (86a, 0.7 equiv) 

affording the homoallylic lactone (87e) with excellent diastereoselectivity (dr > 99:1 

and 81% yield). In addition, ethyl 5-chlorocyclopent-1-enecarboxylate (84c) reacted 

with Al-powder (3 equiv) and InCl3 (5 mol%) in THF affording the aluminum reagent 

85c within 16 h at 25 °C (60% yield). However, in contrast to the six-membered 

analogue (85b), a lactone formation is disfavoured and the reaction with 

4´-bromoacetophenone (86a) yields the ester-substituted homoallylic alcohols (87j) in 

71% yield (Scheme 40). 

                                                        
92

 Yields were determined by iodometric titration after transmetallation with ZnCl2: A. Krasovskiy, 

P. Knochel, Synthesis 2006, 890. 
93

 The stereochemistry has been established by a comparison with the literature (
1
H-NMR and 

13
C-NMR spectra): M. Yasuda, K. Hirata, M. Nishino, A. Yamamoto, A. Baba, J. Am. Chem. Soc. 

2002, 124, 13442. 
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Scheme 40. Preparation of the allylic aluminum reagents 85a-c and their addition to 

4´-bromoacetophenone (86a). 

 

The reaction scope of such additions has been studied and we found that the allylic 

aluminum reagent 85a reacts well with variously substituted aromatic ketones. Thus, 

the addition to methyl 4-acetylbenzoate (86b, 0.7 equiv) furnishes the homoallylic 

alcohol 87b (dr > 99:1; 98% yield; Table 4, entry 1). Remarkably, despite the 

seemingly high nucleophilicity of the allylic aluminum reagent, the reagent 85a adds 
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smoothly to 1-(4-nitrophenyl)ethanone (86c, 0.7 equiv) without reacting with the nitro 

group and the homoallylic alcohol 87c (dr > 99:1) is isolated in 95% yield (entry 2). 

An unprotected amino group is also compatible with the aluminum reagent under 

these reaction conditions and the addition of 85a to 2-amino-5-chlorobenzaldehyde 

(86d, 0.7 equiv) affords the amino-alcohol 87d (dr > 99:1) in 95% yield (entry 3). 

Various aromatic aldehydes and ketones (86e-g) react with the functionalized allylic 

aluminum reagent 85b, leading to the corresponding lactones (87f-h) in 77-87% yield 

(dr > 98:2, entries 4-6). Also, the reaction of the functionalized allylic aluminum 

reagent 85c with 4-acetylbenzoate (86b) provides the ester-substituted homoallylic 

alcohols 87i in 70% yield (entries 7). 

Table 4. Diastereoselective preparation of homoallylic alcohols and lactones of type 

87 using allylic aluminum reagents of type 85. 

entry 
aluminum 

reagent
a carbonyl electrophile

b 
product

c, d 

 
   

1 85a 86b 87b: 98%; 99:1 

 

 

  

2 85a 86c 87c: 95%; 99:1 

 

 

  

3 85a 86d 87d: 95%; 99:1 

 
  

 
4 85b 86e 87f: 78%; 99:1e 
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5 85b 86f 87g: 87%; 99:1 

 

 

 

 
6 85b 86g 87h: 79%; 98:2 

  

 

 

7 85c 86b 87i: 70%; 98:2 
a
 All reactions were carried out on a 1-4 mmol scale. 

b
 0.6-0.7 equivalents of electrophiles have 

been used. 
c
 Isolated yield of analytically pure products. 

d
 The diastereoselectivities were 

determined by 
1
H-NMR analysis. 

e
 The structures have been established by X-ray analysis. 

 

The diastereoselectivity can be best rationalized by a chair-like transition state A 

(Scheme 41). Also, the stereochemistry of homoallylic alcohols 87a and 87d has been 

established by comparison with the literature.
93, 31

 The structure of the bicyclic lactone 

87f has been proven by X-ray analysis (CCDC-775024) and the structures of the 

analogue 87e and 87h were determined by 
1
H NMR and NOESY NMR analysis. 

Again, X-ray analysis of 87j has been used to establish its structure (CCDC-775025) 

(Scheme 41) 
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Scheme 41. Chair-like transition state and X-ray analysis of 87f and 87j. 

3.3.2 Cinnamylaluminum Reagents 

 

Similarly, the reaction of Al-powder (1.5 equiv) and InCl3 (1 mol%) with cinnamyl 

chloride (84d) provides the aluminum reagent 85d (73% yield) within 2 h at 25 °C. 

Addition to methyl ketones such as 4´-bromoacetophenone (86a, 0.7 equiv), methyl 

4-acetylbenzoate (86b, 0.7 equiv) or 4-acetylbenzonitrile (86g, 0.7 equiv), affords the 

corresponding alcohols 87k-m in almost quantitative yields, with high 

diastereoselectivities (>98% yield, entries 1-3, Table 5). Remarkably, in contrast to the 

preparation of the corresponding cinnamylzinc reagent
94

, little homo-coupling of the 

allylic reagent is observed. Even a more electron-rich cinnamyl chloride (84e) bearing 

a methoxy group provides the corresponding aluminum reagent 85e using Al-powder 

(1.5 equiv) and InCl3 (1 mol%; 25 °C, 11 h, 71% yield). It adds smoothly to 

                                                        
94

 M. Gaudemar, Bull. Soc. Chim. Fr. 1962, 974. 
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4-cyanobenzaldehyde (86f, 0.7 equiv) or 4´-bromoacetophenone (86a, 0.7 equiv) 

affording the polyfunctional anti-homoallyllic alcohols (87n-o) in 74-95% yield 

(entries 4-5). Interestingly, a cinnamylaluminum phosphate (85f) could be readily 

prepared by reacting the phosphoric cinnamyl ester (84f) with Al-powder (1.5 equiv) 

and InCl3 (1 mol%) in THF (25 °C, 12 h, 70% yield). Trapping this new 

organometallic reagent with aliphatic methyl ketones such as 1-cyclohexylethanone 

(86h, 0.7 equiv) or 3-methylbutan-2-one (86i, 0.7 equiv) furnishes the corresponding 

homoallylic alcohols bearing two adjacent stereo-controlled tertiary and quaternary 

centers 87p-q (dr > 97:3) in 62-90% yield (entries 6-7). The structures of all 

homoallylic alcohols resulting from the addition to ketones and aldehydes could be 

established either by literature comparison
31, 93

 or X-ray analysis in the case of 87n 

(CCDC-775023) (Scheme 42). 

Table 5. Diastereoselective preparation of homoallylic alcohols and lactones of type 

87 using allylic aluminum reagents of type 85. 

entry 
aluminum 

reagent
a 

carbonyl 

electrophile
b product

c, d 

 
  

 

1 85d 86a 87k: 99%; 98:2 

 

  

 

2 85d 86b 87l: 99%; 96:4 

 

  

 

3 85d 86g 87m: 98%; 94:6 
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4 85e 86f 87n: 95%; 97:3e 

 

  

 

5 85e 86a 87o: 74%; 92:8 

 
 

  

6 85f 86h 87p: 62%; 97:3 

 

 

  

7 85f 86i 87q: 90%; 98:2 
a
 All reactions were carried out on a 1-4 mmol scale. 

b
 0.6-0.7 equivalents of electrophiles have 

been used. 
c
 Isolated yield of analytically pure products. 

d
 The diastereoselectivities were 

determined by 
1
H-NMR analysis. 

e
 The structures have been established by X-ray analysis. 

3.3.3 Cyano-Substituted Cyclopentylaluminum Reagent 

Usually, cyano-substituents react rapidly with allylic organometallics such as zinc 

reagents (Blaise reaction).
95

 Remarkably, a cyano function is well tolerated during the 

Al-insertion reaction. Thus, the preparation of a cyano-substituted cyclopentyl-

aluminum reagent (85g) can be achieved starting from 

5-chloro-cyclopent-1-enecarbonitrile (84g) using Al-powder (1.5 equiv) and InCl3
 

(20 mol%) in 24 h at 25 °C (ca. 60% yield). The addition of this aluminum reagent to 

a ketone or an aldehyde affords the homoallylic alcohols 87r and 87s in 70-89% yield 

(dr > 99:1, Scheme 42). An X-ray analysis for 87s has been performed 

(CCDC-775026) (Scheme 42). 

                                                        
95

 a) P. Knochel, J. F. Normant, J. Organomet. Chem. 1986, 309, 1; b) E. E. Blaise, Compt. Rend. 
1901, 132, 478. 
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Scheme 42. Preparation of a cyano-substituted allylic aluminum reagent (85g) and 

X-ray analysis of 87n and 87s. 

 

3.3.4 β-Silyl-Substituted Crotylaluminum Reagent 

 

In the case of a β-silyl-substituted crotylaluminum reagent (85h), which was prepared 

starting from the β-silyl-substituted crotyl chloride 84h, the addition to benzaldehyde 

(86j, 0.7 equiv) and 4´-bromoacetophenone (86a, 0.7 equiv) was also selective, and 

the syn-homoallylic alcohols 87t (dr > 89:11, 96% yield) and 87u (dr > 97:3, 76% 

yield) were obtained (Scheme 43). 
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Scheme 43: Preparation of a trimethylsilyl-substituted allylaluminum reagent (85h) 

and its addition reactions. Reactions and conditions: a) benzaldehyde (86j, 0.7 equiv), 

-78 °C, 1 h; b) 4´-bromoacetophenone (86a, 0.7 equiv), -78 °C, 1 h. 

 

3.4  Conclusion 

 

In summary, we have demonstrated that allylic aluminum reagents can be 

conveniently prepared using aluminum powder in the presence of catalytic amounts of 

InCl3 from allylic chlorides or bromides under mild conditions. The addition to 

various functionalized aldehydes or ketones affords polyfunctionalized homoallylic 

alcohols, bearing adjacent tertiary and quaternary centers with good 

diastereoselectivity. 
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3.5 Extension of Functionalized Allylic aluminum Reangents 

 

3.5.1 Introduction 

 

As previously mentioned, Paterson constructed homoallylic alcohol 81 using addition 

reaction of the (+)-Ipc-derived crotylboration reagent to an aldehyde in the total 

synthesis of Swinholide A.
80, 81

 The subsequent protection, Wacker oxidation, 

generation of enolate and Mukaiyama aldol reaction afforded the adduct 89 in 5 

overall steps (Scheme 44). 

 

Scheme 44. The proposed allylmetal reagent 

 

We envisioned the development of a new allylic metal reagent of type 90 with masked 

ketone moiety which would allow the generation of product 89 in only two steps 

(Scheme 44). 
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3.5.2 Preparation of Allylic Chlorides 

 

Inspired by the need of the mentioned new allylic metal reagent, we prepared the 

starting allylic chlorides 92a and 92b according to literature.
96

 Thus, the treatment of 

cyclohexanone with LDA and TESCl at -78 
o
C within 5 h led to 

(cyclohex-1-en-1-yloxy)triethylsilane (91a) in 92% yield. Its reaction with NCS at 0 

o
C furnished the expected allylic chloride 92a in 46% yield. Similarly, starting from 

1-benzylpiperidin-4-one, the corresponding 1-benzyl-3-chloro-4-((triethylsilyl)oxy)- 

1,2,3,6-tetrahydropyridine (92b) was obtained in 40% yield (Scheme 45). 

 

Scheme 45. Preparation of starting allylic chlorides 92a and 92b. 

 

3.5.3 Preparation of Allylic Aluminum Reagents and Their Addition to Aldehydes 

and Ketones 

 

To our delight, using the well-established method for the preparation of allylic 

aluminum reagents developed in our laboratories,
97

 ((6-chlorocyclohex-1-en-1-yl)oxy) 

triethylsilane (92a) reacts with Al-powder (3.0 equiv) and InCl3 (5 mol%) in THF at 

25 °C within 14 h and provides the corresponding allylic aluminum reagent 93a in 

70% yield. Also, the preparation of allylic aluminum reagent 93b can be achieved 

                                                        
96

 a) T. V. Lee, J. Toczek, Tetrahedron Lett. 1982, 23, 2917; b) G. F. Hambly, T. H. Chan, 

Tetrahedron Lett. 1986, 27, 2563. 
97

 Z. Peng, T. D. Blümke, P. Mayer, P. Knochel, Angew. Chem. Int. Ed. 2010, 49, 8516. 
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starting from 1-benzyl-3-chloro-4-((triethylsilyl)oxy)-1,2,3,6-tetrahydropyridine 92b 

using Al-powder (3.0 equiv) and InCl3
 
(5 mol%) in 14 h at 25 °C (70% yield, Scheme 

46). 

 

Scheme 46. Preparation of allylic aluminum reagents 93a and 93b. 

 

The reaction of the allylic aluminum reagent 93a with cyclohexanecarboxaldehyde 

(94a, 0.7 equiv, -78 °C, 2 h) afforded the homoallylic alcohol 95a in 75% yield (dr > 

90:10, entry 1, Table 6). Various aromatic aldehydes and ketones (94b-d) react with 

the allylic aluminum reagent 93a, leading to the corresponding alcohols (95b-d) in 

57-76% yield (dr > 90:10, entries 2-4). In addition, the allylic aluminum reagent 93b 

reacted with aldehydes and methyl ketones such as 3,4,5-trimethoxybenzaldehyde 

(94e, 0.7 equiv), 4-acetylbenzonitrile (94f, 0.7 equiv) or methyl 4-formylbenzoate 

(94g, 0.7 equiv), providing the corresponding alcohols 95e-j in 61-70% yield, with 

high diastereoselectivities (dr > 93:7, entries 5-7, Table 6). Interestingly, the allylic 

aluminum reagent 93b reacted with ethyl 2-acetylbenzoate (94f, 0.7 equiv) giving the 

homoallylic lactone 95h in 70% yield with high diastereoselectivity (dr > 97:3, entry 

8, Table 6). 
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Table 6. Diastereoselective preparation of homoallylic alcohols and lactones of type 

95 using allylic aluminum reagents of type 93. 

entry 
aluminum 

reagent
a carbonyl electrophile

b 
product

c, d 

 
 

 
 

1 93a 94a 95a: 72%, dr: 90:10 

 

 

  
2 93a 94b 95b: 76%, 93:7 

 

 

  

3 93a 94c 95c: 57%, dr: 95:5 

 

 

  
4 93a 94d 95d: 63%, dr: 90:10 

 

  
 

5 93b 94e 95e: 62%, dr: 95:5 

 

 

 

 

6 93b 94f 95f: 70%,  dr: 93:7 
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7 93b 94g 95g: 61%, dr: 95:5 

  

 

 

8 93b 94d 95h: 70%, dr: 97:3 

a
 All reactions were carried out on a 1-4 mmol scale. 

b
 0.6-0.7 equivalents of electrophiles have 

been used. 
c
 Isolated yield of analytically pure products. 

d
 The diastereoselectivities were 

determined by 
1
H-NMR analysis. 

 

3.5.4 Conclusion 

 

Preliminary study showed that these special allylic aluminum reagents can be 

conveniently prepared using aluminum powder in the presence of catalytic amounts of 

InCl3 from allylic chlorides under mild conditions. The addition to various functiona-

lized aldehydes or ketones affords polyfunctionalized homoallylic alcohols, bearing 

adjacent tertiary and quaternary centers with good diastereoselectivity. The 

application of this new allylic aluminum reagent and the subsequent Mukaiyama 

reaction of the resulting polyfunctionalized homoallylic alcohols are ongoing in our 

laboratory. 
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4. Preparation of Functionalized Organomanganese(II) Reagents by Direct 

Insertion of Manganese to Aromatic and Benzylic Halides 

 

4.1 Introduction 

 

Functionalized organometallics are versatile reagents for forming carbon-carbon 

bonds reactions in organic synthesis.
1, 3a

 Organomanganese reagents,
45

 due to their 

excellent chemoselectivity, low toxicity and good availability, have found widespread 

applications for performing chemoselective 1,2-additions,
98

 acylations,
99

 

cross-coupling reactions,
100

 as well as copper-catalyzed conjugate additions.
101

 

Despite these advantages, the preparation methods of organomanganese(II) reagents 

are limited. Most organomanganese(II) reagents are prepared by transmetallation from 

the corresponding organolithium or organomagnesium reagents with manganese 

halides.
46

 Recently, a directed manganation using TMP2Mn·2LiCl allows the 

generation of the functionalized arylmanganese compounds by a directed 

deprotonation.
51

 Moreover, organomanganese(II) reagents are difficult to generate by 

an oxidative addition to organic halides using commercial manganese powder due to 

the passivation exhibited by commercial Mn. To date, commercial manganese powder 

 

 

 

                                                        
98

 a) Y. Ahn, W. W. Doubleday, T. Cohen, Synth. Commun. 1995, 25, 33; b) T. Kauffmann, H. 

Kieper, H. Pieper, Chem. Ber. 1992, 125, 899; c) G. Cahiez, B. Figadėre, Tetrahedron Lett. 1986, 

27, 4445; d) M. T. Reetz, K. Rölfing, N. Griebenow, Tetrahedron Lett. 1994, 35, 1969; e) C. 

Boucley, G. Cahiez, S. Carini, V. Cerè, M. Comes-Franchini, P. Knochel, S. Pollicino, A. Ricci, J. 
Organomet. Chem. 2001, 624, 223. 
99

 a) G. Cahiez, A. Masuda, D. Bernard, J. F. Normant, Tetrahedron Lett. 1976, 36, 3155; b) K. 

Ritter, M. Hanack, Tetrahedron Lett. 1985, 26, 1285; c) G. Cahiez, B. Laboue, Tetrahedron Lett. 
1989, 30, 7369; d) G. Cahiez, D. Luart, F. Lecomte, Org. Lett. 2004, 6. 4395. 
100

 a) G. Cahiez, F. Lepifre, P. Ramiandrasoa, Synthesis 1999, 2138; b) M. Rueping, W. 

Ieawsuwan, Synlett 2007, 247; c) E. Riguet, M. Alami, G. Cahiez, J. Organomet. Chem. 2001, 624, 

376; d) A. Leleu, Y. Fort, R. Schneider, Adv. Synth. Catal. 2006, 348, 1086; e) G. Cahiez, S. 

Marquais, Tetrahedron Lett. 1996, 37, 1773; f) J. G. Donkervoort, J. L. Vicario, J. T. B. H. 

Jastrzebski, R. A. Gossage, G. Cahiez, G. van Koten, J. Organomet. Chem. 1998, 558, 61; g) H. 

Kakiya, R. Inoue, H. Shinokubo, K. Oshima, Tetrahedron Lett. 1997, 38, 3275. 
101

 a) G. Cahiez, M. Alami, Tetrahedron 1989, 45, 4163; b) S. Marquais, M. Alami, G. Cahiez, 

Org. Synth. 1995, 72, 135. 
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inserts only into reactive organic halides such as allylic halides or α-halogenoesters.
47, 

48, 49
 By using highly activated Mn (Rieke-Mn), the insertion to aromatic and benzylic 

halides can be achieved.
102, 50

 Recently, we have reported that LiCl facilitates the 

insertion of various metals (Zn,
103

 Mg,
104

 In
105

). By adding small amounts of a 

metallic salt like InCl3 and PbCl2 as pioneered by Takai,
106

 we were able to prepare 

functionalized aromatic, benzylic and allylic aluminum reagents under mild 

conditions.
107

 

We envisioned that commercial manganese activated by adding suitable metallic salts 

could be insert into aromatic or benzylic halides affording the corresponding 

organomanganese reagents. 

 

4.2 Optimization of The Reaction Conditions 

 

An extensive sceening of various metallic salts on the insertion of commercial 

manganese powder(3.0 equiv) to 1-chloro-3-iodobenzene (96) in the presence of LiCl 

(1.5 equiv) in THF was undertaken. Preliminary experiments showed that several 

additives such as TiCl4, ZrCl4, CeF3 and ZnBr2 provided a trace of arylmanganese 

reagent 97 (entries 1-4, Table 7). The addition of only PbCl2 or only InCl3 led to the 

corresponding arylmanganese species 97 in 10-15% yield (entries 5-6). The yield of 

the arylmanganese species 97 can be improved by the addition of both metallic salts 

(entries 7-10). The combination of InCl3 (2.5 mol%) and PbCl2 (2.5 mol%) allows the 

generation of the arylmanganese species 97 (43% yield, entry 7). 

                                                        
102

 a) T. Hiyama, M. Obayashi, A. Nakamura, Organometallics 1982, 1, 1249; b) A. Fürstner, H. 

Brunner, Tetrahedron Lett. 1996, 37, 7009; c) S.-H. Kim, M. V. Hanson, R. D. Rieke, Tetrahedron 
Lett. 1996, 37, 2197; d) S.-H. Kim, R. D. Rieke, Synth. Commun. 1998, 28, 1065; e) R. D. Rieke, 

S.-H. Kim, X. Wu, J. Org. Chem. 1997, 62, 6921; f) H. Kakiya, S. Nishimae, H. Shinokubo, K. 

Oshima, Tetrahedron 2001, 57, 8807. 
103

 a) A. Krasovskiy, V. Malakhov, A. Gavryushin, P. Knochel, Angew. Chem. Int. Ed. 2006, 45, 

6040; b) A. Metzger, M. A. Schade, P. Knochel, Org. Lett. 2008, 10, 1107. 
104

 F. M. Piller, P. Appukkuttan, A. Gavryushin, M. Helm, P. Knochel, Angew. Chem. Int. Ed. 

2008, 47, 6802. 
105

 a) Y.-H. Chen, P. Knochel, Angew. Chem. Int. Ed. 2008, 47, 7648; b) Y.-H. Chen, M. Sun, P. 

Knochel, Angew. Chem. Int. Ed. 2009, 48, 2236. 
106

 K. Takai, Y. Ikawa, Org. Lett. 2002, 4, 1727. 
107

 a) T. D. Blümke, Y.-H. Chen, Z. Peng, P. Knochel, Nat. Chem. 2010, 2, 313; b) Z. Peng, T. D. 

Blümke, P. Mayer, P. Knochel. Angew. Chem. Int. Ed. 2010, 49, 8516. 
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Table 7. Catalyst optimization of insertion reaction of commercial manganese powder 

to aryliodide. 

 

entry catalyst yield of 97
a 

1 TiCl4 (10 mol%) trace 

2 ZrCl4 (10 mol%) trace 

3 CeF3 (10 mol%) trace 

4 ZnBr2 (10 mol%) 8% 

5 PbCl2 (5 mol%) 10% 

6 InCl3 (5 mol%) 15%  

7 InCl3 (2.5 mol%), PbCl2 (2.5 mol%) 43% 

8 InCl3 (2.5 mol%), BiCl3 (2.5 mol%) 26% 

9 InCl3 (2.5 mol%), SnCl2 (2.5 mol%) 16% 

10 ZnCl2 (2.5 mol%), PbCl2 (2.5 mol%) 33% 

a
 The yield was determined by GC. 

 

Next, we investigated the scope of this insertion reaction of commercial mangenese 

powder to organic halides. 

 

4.3 Preparation of Aromatic Manganese Reagents 

 

The reaction of 3-bromo-4-fluorobenzonitrile (98a) in THF with manganese powder 

(3 equiv) in the presence of LiCl (1.5 equiv), 2.5% InCl3 and 2.5% PbCl2 at 50 
o
C was 

complete within 24 h and led to the corresponding arylmanganese reagent (99a) in 

64% yield. Subsequent Negishi cross-coupling with ethyl 4-iodobenzoate (100a, 0.6 

equiv) in the presence of Pd-PEPPSI-iPr (5 mol%) afforded the biphenyl derivative 

101a in 70% yield. Additionally, a smooth allylic substitution of 99a with ethyl 

(2-bromomethyl)acrylate (100b, 0.6 equiv) furnished the acrylate 101b in 71% yield 

(Scheme 47). Both catalytic amounts of InCl3 and PbCl2 and a stoichiometric amount 

of LiCl are required for an efficient insertion reaction. By using only InCl3 or only 

PbCl2, only a trace of the arylmanganese species is formed. This salt combination 
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allows a unique activation of the Mn-surface. 

 

Scheme 47. Preparation of (5-cyano-2-fluorophenyl)manganese(II) bromide (99a) 

and subsequent reaction with electrophiles. 

 

Similarly, 2-bromo-1-chloro-4-(trifluoromethyl)benzene (98b) was converted to the 

corresponding organomanganese reagent 99b (50 
o
C, 24 h, 72% yield). It readily 

underwent a 1,2-addition to 3-formylbenzonitrile (100c) providing the functionalized 

alcohol 101c in 73% yield (entry 1, Table 8). Manganese powder inserted into the 

functionalized thiophene (98c) in the presence of LiCl (1.5 equiv), 2.5% InCl3 and 

2.5% PbCl2 between 0-25 
o
C within 12 h giving the arylmanganese reagent 99c (70% 

yield). It was converted to the functionalized ketone derivative 101d (68% yield) and 

the biaryl derivative 101e (77% yield) respectively by an acylation reaction with 

4-chlorobenzoyl chloride (100d, 0.6 equiv) and a Pd-catalyzed cross-coupling 

reaction with ethyl 3-bromobenzoate (100e, 0.6 equiv) (entries 2-3). In the same 

manner, various substituted aryl iodides such as 98d-f, bearing substituents such as 

chloride or a trifluoromethyl group, were readily converted to the corresponding 

arylmanganese reagents at 25 
o
C within 12-24 h. Subsequent acylation and 

1,2-addition afforded the expected polyfunctionalized adducts 101f-h in 72-85% yield 

(entries 4-6). Remarkably, manganese powder chemoselectively inserted into ethyl 

2,3,5-triiodobenzoate (98g), yielding (2-(ethoxycarbonyl)-4,6-diiodophenyl)mangan- 

ese(II) iodide (99g). Its treatment with aldehyde 100c (0.6 equiv) afforded the desired 

lactone 101i in 68% yield (entry 7). Moreover, heterocyclic 
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4,5-diiodo-2,6-dimethoxypyrimidine (98h) was converted selectively to the 

organomanganese reagent (99h) which underwent acylation and 1,2-addition giving 

the functionalized benzophenone derivative 101j and alcohol derivative 101k in 

71-78% yield (entries 8-9). 

Table 8. Functionalized aromatic manganese(II) halides obtained by direct insertion 

of commercial manganese powder into aromatic halides and subsequent quenching 

with electrophiles 

 

entry substrate conditions 

(temperature, 

time) 

electrophile product (Yield, %)
a 

 

 

 

 

50 
o
C 

24 h  

 

1 98b  100c
b 

101c: 73% 

 

 

 

0-25 
o
C 

12 h 

 

 

2 98c  100d
c 

101d: 68% 

   

  

3 98c  100e
c 

101e: 77%
d 

 

 

 

25 
o
C 

18 h 

  

 

4 98d  100f
b 

101f: 85% 
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25 
o
C 

23 h 

 

 
 

5 98e  100g
b 

101g: 74% 

 

 

 

25 
o
C 

12 h 

 

 

 

6 98f  100h
b 

101h: 72% 

 

 

 

25 
o
C 

16 h 

 

 

 

7 98g  100c
c 

101i: 68% 

 

 

 

0-25 
o
C 

12 h 

 

 

 

8 98h  100d
c 

101j: 71% 

   

  

9 98h  100i
c 

101k: 78% 
a
 Isolated yield of analytically pure product. 

b
 0.7 Equivalents of electrophile were used. 

c
 0.6 

Equivalents of electrophile were used. 
d
 Obtained after cross-coupling with ethyl 3-bromobenzoate 

(100e) in the presence of Pd-PEPPSI-iPr (5 mol%). 

 

4.4 Preparation of Benzylic Manganese Reagents 

 

In the case of benzylic chlorides or bromides, a smooth manganese insertion occurs at 

25 
o
C in the presence of 2.5% InCl3 and 2.5% PbCl2. These insertions proceed best in 

the absence of LiCl since this salt favors extensive homo-coupling reactions. Thus, 

the reaction of 1-chloro-3-(chloromethyl)benzene (102a) with Mn powder (3.0 equiv) 

in the presence of 2.5% InCl3 and 2.5% PbCl2 afforded the benzylic manganese 

reagent 103a within 14 h at 25 
o
C. A Cu-catalyzed 1,4-addition reaction with 
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nitrostyrene (100j, 0.7 equiv) provided the nitro derivative (104a) in 80% yield 

(Scheme 48). 

 

Scheme 48. Preparation of (3-chlorobenzyl)manganese(II) chloride (103a) and its 

1,4-addition to nitrostyrene (100j) 

 

A smooth addition of the benzylic manganese reagent 103a to the benzaldehyde 100h 

(0.7 equiv) generated the functionalized alcohol derivative 104b in 73% yield (entry 1, 

Table 9). Also, the treatment of the benzylic manganese reagent 103a with 

4-chlorobenzoyl chloride (100d, 0.7 equiv) produced the ketone derivative 104c in 

75% yield (entry 2). Several functionalized benzylic substrates (102b-f) readily 

underwent a manganese insertion in the presence of 2.5% InCl3 and 2.5% PbCl2 as 

catalysts, followed by quenching with various electrophiles, affording the desired 

products 104d-k in 66-88% yield (entries 3-10). However, the manganese insertion 

into benzylic chlorides bearing an ester and a cyano group led to unsatisfactory yields. 

In comparison, by using benzylic bromides, a smooth insertion proceeds at 25 
o
C 

allowing the direct preparation of ester- or cyano-functionalized benzylmanganese 

bromides. For instance, the reaction of butyl 3-(bromomethyl)benzoate (102g) with 

Mn powder (3 equiv) in the presence of 2.5% InCl3 and 2.5% PbCl2 furnished the 

benzylic manganese bromide 103g within 17 h at 25 
o
C. A Pd-catalyzed 

cross-coupling with 4-bromobenzonitrile (100m, 0.6 equiv) or ethyl 4-iodobenzoate 

(100a, 0.6 equiv) generated the expected products 104l-m in 67-71% yield (entries 

11-12). Similarly, 3-(bromomethyl)benzonitrile (102h) was converted to the 

corresponding benzylic manganese reagent 103h, followed by an allylic substitution 

with ethyl (2-bromomethyl)acrylate (100b, 0.6 equiv), producing the allylated product 



B. Results and Discussion 

 70 

104n in 45% yield (entry 13). 

Table 9. Functionalized benzylmanganese(II) halides obtained by direct insertion of 

commercial manganese powder into benzylic halides and subsequent reaction with 

electrophiles 

 

 

entry substrate conditions 

(temperature, 

time) 

electrophile product (yield, %)
a 

 

 

 

  

1 102a  100h
b 

104b: 73% 

    

 

2 102a  100d
b
 104c: 75% 

 

 

 

25 
o
C 

16 h 

   

3 102b  100k
b
 104d: 88% 

   

 

 

4 102b  100l
b
 104e: 74% 
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5 102b  100m
b
 104f: 84%

c 

 

 

 

25 
o
C 

16 h 

 

 

 
6 102c  100h

b
 104g: 75% 

    

 

7 102c  100a
b
 104h: 80%

d 

 

 

 

25 
o
C 

13 h 

 

 

 

8 102d  100d
b
 104i: 67% 

 

 

 

25 
o
C 

16 h 

 

 

 

9 102e  100c
b
 104j: 70% 

 

 

 

25 
o
C 

24 h 

 

 

 

10 102f  100b
b
 104k: 70% 

 

 

 

25 
o
C 

17 h 

 

 

 

11 102g  100l
e
 104l: 71%

f 

    

 

12 102g  100a
e
 104m: 67%

g 
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25 
o
C 

17 h 

 

 

 

13 102h  100b
e
 104n: 45% 

a 
Isolated yield of analytically pure product. 

b 
0.7 Equivalents of electrophile were used. 

c 
Obtained 

after cross-coupling with 4-bromobenzonitrile (100m) in the presence of Pd(PPh3)4 (10 mol%). 
d
 

Obtained after cross-coupling with ethyl 4-iodobenzoate (100a) in the presence of Pd(PPh3)4 (10 

mol%). 
e 

0.6 Equivalents of electrophile were used. 
f
 Obtained after cross-coupling with ethyl 

4-bromobenzonitrile (100m) in the presence of Pd-PEPPSI-iPr (5 mol%). 
g 

Obtained after 

cross-coupling with ethyl 4-iodobenzoate (100a) in the presence of Pd-PEPPSI-iPr (5 mol%). 

 

4.5 Conclusion 

 

In summary, we have developed a convenient method for the preparation of 

functionalized arylmanganese halides and benzylic manganese halides by direct 

insertion of commercial manganese powder into aromatic and benzylic halides in the 

presence of 2.5% InCl3 and 2.5% PbCl2. These organomanganese reagents smoothly 

undergo 1,2-addition, acylation, allylic substitution, Pd-catalyzed cross-coupling, and 

copper-catalyzed conjugate addition with various electrophiles affording the desired 

products in good yields. 
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5. Summary and outlook 

 

This work includes three topics: the first part was focused on the construction of 

heterocycles such as 1,3,5-triazines and indazoles by using organomagnesium or 

organozinc reagents. Furthermore, the addition of allylic aluminum reagents to 

aldehydes or ketones in a diastereoselective manner was investigated in detail. Finally, 

we developed a new method for the preparation of aromatic and benzylic manganese 

reagents by a direct insertion of commercial manganese powder to aromatic or 

benzylic halides. 

 

5.1 Preparation of 2-Magnesiated 1,3,5-Triazines and Trimeric and Dimeric 

Derivatives 

 

A convenient method for the preparation of stable mono- and 

bis(1,3,5-triazinyl)magnesium reagents has been developed. This kind of Grignard 

reagents having good compatibility with a variety of sensitive functional groups react 

with aldehydes, acid clorides, and allylic halides, furnishing a wide range of new 

functionalized fully substituted 1,3,5-triazine derivatives (Scheme 49).  

 Scheme 49. Preparation of 1,3,5-triazine derivatives using 2-magnesiated 

1,3,5-triazines. 
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2-Magnesiated 1,3,5-triazine has been utilized successfully to synthesize a dimeric 

1,3,5-triazine derivative which may exhibit useful opto-electronic properties (Scheme 

50). 

 

Scheme 50. Preparation of dimeric 1,3,5-triazine derivative. 

 

A remarkable preparation of a trimeric 1,3,5-triazine derivative was performed 

(Scheme 51). 

 

Scheme 51. Preparation of trimeric 1,3,5-triazine derivative. 

 

5.2 Preparation of Functionalized Indazoles 

 

We have developed a short and convenient synthetic route to 2-aryl-2H-indazoles by 

using highly functionalized arylzinc reagents. This reaction displays an excellent 

functional group tolerance (Scheme 52). 
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Scheme 52. Preparation of functionalized indazoles. 

 

5.3 Diastereoselective Synthesis of Homoallylic Alcohols 

 

A practical protocol for the generation of allylic aluminum reagents was developed. In 

addition, the addition to various functionalized aldehydes or ketones affords 

polyfunctionalized homoallylic alcohols, bearing adjacent tertiary and quaternary 

centers with good diastereoselectivity (Scheme 53). 

 

Scheme 53. Diastereoselective synthesis of homoallylic alcohols using functionalized 

allylic aluminum reagents. 
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The scope of this method was extended to cinnamyl substrates. Cinnamyl aluminum 

reagents can be conveniently prepared using aluminum powder in the presence of 

catalytic amounts of InCl3 and their addition to carbonyl compounds showed also high 

diastereoselectivities (Scheme 54) 

 

Scheme 54. Diastereoselective addition of cinnamyl aluminum reagents to carbonyl 

compounds 

 

The diastereoselectivity can be best rationalized by a chair-like transition state and the 

structures of the homoallylic alcohols have been proven by X-ray or NOESY NMR 

analysis. 

 

5.4 Extension of Functionalized Allylic Aluminum Reagents 

 

The allylic aluminum reagents can be conveniently prepared using aluminum powder 

in the presence of catalytic amounts of InCl3 from allylic chlorides under mild 

conditions. The addition to various functionalized aldehydes or ketones affords 

polyfunctionalized homoallylic alcohols, bearing adjacent tertiary and quaternary 

centers with good diastereoselectivities (Scheme 55). 
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Scheme 55. Diastereoselective preparation of homoallylic alcohols. 

 

5.5 Preparation of Functionalized Organomanganese(II) Reagents by Direct 

Insertion of Manganese to Aromatic and Benzylic Halides 

We have developed a convenient method for the preparation of functionalized 

arylmanganese halides by direct insertion of commercial manganese powder into 

aromatic halides in the presence of LiCl with both 2.5% InCl3 and 2.5% PbCl2 as 

catalysts. These organomanganese reagents smoothly undergo 1,2-addition, acylation, 

allylic substitution, Pd-catalyzed cross-coupling, and copper-catalyzed conjugate 

addition with various electrophiles affording the desired products in good yields 

(Scheme 56). 

 

Scheme 56. Preparation of functionalized arylmanganese halides and their reactions 

with electrophiles. 
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The extension to the preparation of benzylic manganese halides was performed. 

Benzylic manganese reagents can be obtained by direct insertion of commercial 

manganese powder into aromatic halides in the presence of 2.5% InCl3 and 2.5% 

PbCl2 (Scheme 57). 

 

Scheme 57. Preparation of functionalized benzylic manganese halides. 
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C. Experimental Section 

 

1. General Considerations 

 

All reactions were carried out with magnetic stirring and, if the reagents were air or 

moisture sensitive, in flame-dried glassware under argon. Syringes which were used 

to transfer reagents and solvents were purged with argon prior to use. 

 

1.1. Solvents 

 

Solvents were dried according to standard procedures by distillation over drying 

agents and stored under argon. 

CH2Cl2 was predried over CaCl2 and distilled from CaH2. 

DMF was heated to reflux for 14 h over CaH2 and distilled from CaH2. 

EtOH was treated with phthalic anhydride (25 g/L) and sodium, heated to reflux for 6 

h and distilled. 

Et2O was predried over CaH2 and dried with the solvent purification system 

SPS-400-2 from INNOVATIVE TECHNOLOGIES INC. 

NMP was heated to reflux for 14 h over CaH2 and distilled from CaH2. 

THF was continuously refluxed and freshly distilled from sodium benzophenone 

ketyl under nitrogen. 

Triethylamine was dried over KOH and distilled. 

Solvents for column chromatography were distilled prior to use. 

 

1.2. Reagents 

 

All reagents were obtained from commercial sources and used without further 

purification unless otherwise stated. Liquid aldehydes and acid chlorides were 

distilled prior to use. 
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Preparation of Organometallic Reagents: 

 

iPrMgCl·LiCl solution in THF was purchased from Chemetall. 

iPrMgCl solution in THF was purchased from Chemetall 

PhMgCl solution in THF was purchased from Chemetall 

nBuLi solution in hexane was purchased from Chemetall. 

Zinc reagents were prepared according to: (a) A. Krasovskiy, V. Malakhov, A. 

Gavryushin, P. Knochel, Angew. Chem. Int. Ed. 2006, 45, 6040; (b) A. Metzger, M. A. 

Schade, P. Knochel, Org. Lett. 2008, 10, 1107; (c) S. Sase, M. Jaric, A. Metzger, V. 

Malakhov, P. Knochel, P. J. Org. Chem. 2008, 73, 7380. 

CuCN·2LiCl solution (1.00 M) was prepared by drying CuCN (7.17 g, 80.0 mmol) 

and LiCl (6.77 g, 160 mmol) in a Schlenk-flask under vacuum at 140 °C for 5 h. After 

cooling, THF (80 mL) was added and stirring was continued until the salts were 

dissolved. 

 

Preparation of the reagent OctMgBr (1 M in THF) 

A 1-L three-necked round-bottom flask equipped with a magnetic stirring bar, reflux 

condenser, addition funnel, and a thermometer was charged with magnesium turnings 

(14.2 g, 0.584 mol). The flask was gently heated under argon atmosphere (50 °C), 

while the magnesium turnings were vigorously stirred for 1 h affording activation of 

the magnesium surface. After cooling to 25 °C and addition of THF (50 mL), ca. 10 

mL of a solution of octyl bromide (96.5 g, 0.50 mol) in THF (400 mL) was added to 

the suspension while continuously stirring. The reaction started after ca. 2-3 min as 

indicated by a small rise in temperature. Thereafter, the remaining solution of OctBr 

was added dropwise over a period of 4 h while keeping the temperature below 30 °C. 

After stirring the reaction mixture for additional 2 h, the supernatant solution was then 

cannulated into a new dry, argon-flushed Schlenk flask and titrated with iodine 

affording the concentration of active octylmagnesium bromide (1.0 M). 
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Preparation of ZnCl2 solution (1 M in THF) 

A dry and argon-flushed 250 mL Schlenk-flask, equipped with a magnetic stirring bar 

and a septum, was charged with ZnCl2 (20.45 g, 0.15 mol). The salt was heated to 

140 °C under high vacuum for 6 h. After cooling to 25 °C, dry THF (150 mL) was 

added slowly and stirring was continued until the salt was dissolved (4 h) forming a 

clear colourless solution, which was kept over molecular sieves (4 Å). 

 

Preparation of ZnBr2·LiCl solution (1 M in THF) 

 

A dry and argon-flushed 250 mL Schlenk-flask, equipped with a magnetic stirring bar 

and a septum, was charged with ZnBr2 (33.81 g, 0.15 mol) and LiCl (6.35 g, 0.15 

mol). The salts were heated to 140 °C under high vacuum for 6 h. After cooling to 

25 °C, dry THF (150 mL) was added slowly and stirring was continued until the salts 

were dissolved (4 h) forming a clear colourless solution, which was kept over 

molecular sieves (4 Å). 

 

1.3. Content Determination of Organometallic Reagents 

 

Organzinc and organomagnesium reagents were titrated against I2 in a 0.5 M LiCl 

solution in THF according to: A. Krasovskiy, P. Knochel, Synthesis 2006, 5, 890. 

Organolithium reagents were titrated against menthol using 1,10-phenanthroline as 

indicator in THF according to: H.-S. Lin, L. A. Paquette, Synth. Commun. 1994, 24, 

2503. 

 

1.4. Chromatography 

 

Flash column chromatography was performed using silica gel 60 (0.040-0.063 mm) 

from Merck.  

Thin layer chromatography was performed using SiO2 pre-coated aluminium plates 

(Merck 60, F-254). The chromatograms were examined under UV light at 254 nm 
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and/or by staining of the TLC plate with one of the solutions given below followed by 

heating with a heat gun: 

- KMnO4 (3.0 g), 5 drops of conc. H2SO4 in water (300 mL). 

- Phosphomolybdic acid (5.0 g), Ce(SO4)2 (2.0 g) and conc. H2SO4 (12 mL) in water 

(230 mL). 

 

1.5. Analytical Data 

 

NMR spectra were recorded on VARIAN Mercury 200, BRUKER AXR 300, 

VARIAN VXR 400 S and BRUKER AMX 600 instruments. Chemical shifts are 

reported as δ-values in ppm relative to the residual solvent peak of CHCl3 (dH: 7.26, 

dC: 77.0). For the characterization of the observed signal multiplicities the following 

appreviations were used: s (singlet), d (doublet), t (triplet), q (quartet), quint (quintet), 

sept (septet), m (multiplet). 

Mass spectroscopy: High resolution (HRMS) and low resolution (MS) spectra were 

recorded on a FINNIGAN MAT 95Q instrument. Electron impact ionization (EI) was 

conducted with an electron energy of 70 eV. 

For the combination of gas chromatography with mass spectroscopic detection, a 

GC/MS from Hewlett-Packard HP 6890/MSD 5973 was used. 

Infrared spectra (IR) were recorded from 4500 cm
-1

 to 650 cm
-1

 on a PERKIN 

ELMER Spectrum BX-59343 instrument. For detection a SMITHS DETECTION 

DuraSamplIR II Diamond ATR sensor was used. The absorption bands are reported in 

wavenumbers (cm
-1

) 

Melting points (m.p.) were determined on a BÜCHI B-540 apparatus and are 

uncorrected. 
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2. Synthetic Procedures 

 

2.1 Preparation of 1,3,5-Triazine Derivatives. 

 

2.1.1 Typical Procedures (TP) 

 

TP1: Typical procedure for the preparation of iodo-1,3,5-triazine derivatives 

(61a-k). 

To a solution of 2,4-diiodo-6-phenyl-1,3,5-triazine (59, 2.0 mmol) and Pd(PPh3)2Cl2 

(14 mg, 0.02 mmol) in THF (20 mL) in a dry and argon-flushed Schlenk-flask was 

added dropwise a solution of organozinc reagent (1.2 equiv) in THF prepared 

according to literature procedure at -10 °C followed by continously stirring for 2 h. 

After stirring for 13 h at 25 °C, the reaction mixture was quenched with brine (5 mL). 

The aqueous layer was extracted with CH2Cl2 (3 x 20 mL). The combined organic 

phases were dried over Na2SO4, the solvent was removed in vacuo and the residue 

was subjected to flash column chromatography affording the corresponding 

iodo-1,3,5-triazines 61a-k. 

 

TP2: Typical procedure for the preparation of 1,3,5-triazin-2-ylmagnesium 

halides (62a-j) 

A dry and argon-flushed Schlenk-flask, equipped with a magnetic stirring bar and a 

septum, was charged with iodo-1,3,5-triazine derivative (1 mmol) in THF (1 mL) 

followed by dropwise addition of a solution of alkylmagnesium reagent (1.1 equiv) at 

-78 °C. The reaction mixture was stirred for 10 min at the same temperature. 

Complete iodine-magnesium exchange was monitored by GC analysis of reaction 

aliquots, quenched with brine using tetradecane as internal standard. 

 

2.1.2 Preparation of 2-Magnesiated 1,3,5-Triazines and 1,3,5-triazine derivatives. 
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Synthesis of 2,4-diiodo-6-phenyl-1,3,5-triazine (59). 

 

A 50 mL round-bottom flask was charged with HI (57% solution, 20 mL). The 

solution was cooled to 5 °C and 2,4-dichloro-6-phenyl-1,3,5-triazine (4.52 g, 20 

mmol) was added at the same temperature. The reaction mixture was allowed to warm 

up to 25 °C slowly and stirred for 48 h at 25 °C. The mixture was neutralized 

carefully with solid potassium carbonate, and decolorized with a saturated aqueous 

solution of sodium disulfite. Water was added until the solution was formed. The 

organic layer was separated, and the aqueous layer was extracted with 

dichloromethane (3 x 50 mL). The combined organic phases were dried over Na2SO4, 

the solvent was removed in vacuo. Purification by flash column chromatography 

(silica gel, pentane / EtOAc = 50:1) afforded 2,4-diiodo-6-phenyl-1,3,5-triazine (59, 

5.5 g, 67%) as a white solid. 

m. p. = 188.5-190.3 °C. 

1
H NMR (300 MHz, CDCl3): δ (ppm) = 8.49-8.42 (m, 2H), 7.68-7.48 (m, 3H). 

13
C NMR (75 MHz, CDCl3): δ (ppm) = 170.2, 139.6, 134.4, 132.3, 129.8, 128.9. 

IR (Diamond-ATR, neat): ~  (cm
-1

) = 3065 (W), 2924 (W), 1469 (S), 1369 (M), 

1237 (W), 1205 (M), 1170 (M), 1084 (W), 802 (W), 759 (S), 688 (M), 640 (W). 

MS (EI, 70 eV): m/z (%) = 408 (M
+
, 46), 282 (5), 281 (45), 230 (1), 229 (12), 178 

(11). 130 (8), 129 (100), 128 (1), 103 (12), 77 (11). 

HRMS (EI): Calcd. for [C9H5I2N3]
+
: 408.8573; found: 408.8567. 

 

Synthesis of 2-iodo-4-octyl-6-phenyl-1,3,5-triazine (61a). 

 

According to TP1, 2,4-diiodo-6-phenyl-1,3,5-triazine (59, 820 mg) reacted with 

OctZnCl (0.89 M, 2.5 mL). Purification by flash column chromatography (silica gel, 

pentane / EtOAc = 100:1) afforded 2-iodo-4-octyl-6-phenyl-1,3,5-triazine (61a, 474 
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mg, 60%) as colorless oil. 

1
H NMR (300 MHz, CDCl3): δ (ppm) = 8.52-8.48 (m, 2H), 7.63-7.49 (m, 3H), 2.89 (t, 

J = 7.8 Hz, 2H), 1.93-1.82 (m, 2H), 1.44-1.26 (m, 10H), 0.91 (t, J = 7.1 Hz, 3H). 

13
C NMR (75 MHz, CDCl3): δ (ppm) = 180.1, 170.7, 142.2, 134.0, 133.4, 129.3, 

128.8, 38.7, 31.8, 29.3, 29.3, 29.2, 27.7, 22.7, 14.1. 

IR (Diamond-ATR, neat): ~  (cm
-1

) = 2923 (W), 2853 (W), 1600 (VW), 1517 (S), 

1483 (VS), 1360 (W), 1236 (M), 1175 (W), 1117 (W), 1026 (W), 908 (W), 800 (M), 

767 (M), 689 (S). 

MS (EI, 70 eV): m/z (%) = 395 (M
+
, 0.2), 309 (1), 297 (6), 267 (2), 129 (100), 103 

(20), 77 (21). 

HRMS (EI): Calcd. for [C17H22IN3]
+
: 395.0858; found: 395.0887. 

 

Synthesis of 2-iodo-4-phenyl-6-(thiophen-2-yl)-1,3,5-triazine (61b). 

 

According to TP1, 2,4-diiodo-6-phenyl-1,3,5-triazine (59, 820 mg, 2 mmol) reacted 

with thiophen-2-ylzinc(II) iodide (0.72 M, 3.3 mL, 2.4 mmol). Purification by flash 

column chromatography (silica gel, pentane / EtOAc = 50:1) afforded 

2-iodo-4-phenyl-6-(thiophen-2-yl)-1,3,5-triazine (61b, 453 mg, 62%) as a white solid. 

m. p. = 122.8-124.3 °C. 

1
H NMR (300 MHz, CDCl3): δ (ppm) = 8.57-8.52 (m, 2H), 8.27 (dd, J = 3.8 Hz, 1.3 

Hz, 1H), 7.69 (dd, J = 4.9 Hz, 1.3 Hz, 1H), 7.67-7.50 (m, 3H), 7.23 (dd, J = 4.9 Hz, 

3.8 Hz, 1H). 

13
C NMR (75 MHz, CDCl3): δ (ppm) = 170.8, 166.9, 142.2, 139.7, 133.9, 133.8, 

133.4, 133.1, 129.3, 128.8, 128.7. 

IR (Diamond-ATR, neat): ~  (cm
-1

) = 2926 (VW), 2247 (VW), 1509 (S), 1474 (VS), 

1426 (M), 1364 (M), 1246 (W), 1209 (W), 1086 (W), 1019 (W), 819 (W), 768 (S), 

726 (M), 692 (M), 655 (W). 
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MS (EI, 70 eV): m/z (%) = 364 (M
+
, 43), 321 (13), 281 (9), 275 (3), 273 (12), 239 

(15), 238 (100), 229 (2), 137 (4), 136 (7), 135 (93), 129 (75), 108 (18), 77 (12). 

HRMS (EI): Calcd. for [C13H8IN3S]
+
: 364.9484; found: 364.9477. 

 

Synthesis of 4-iodo-N,N,6-triphenyl-1,3,5-triazin-2-amine (61c). 

 

2,4-diiodo-6-phenyl-1,3,5-triazine (59, 409 mg, 1 mmol) reacted with lithium 

diphenylamide (1.1 mmol). Purification by flash column chromatography (silica gel, 

pentane / EtOAc = 50:1) afforded 4-iodo-N,N,6-triphenyl-1,3,5-triazin-2-amine (1c, 

358 mg, 80%) as a white solid. 

m. p. = 205.3-207.1 °C. 

1
H NMR (300 MHz, CDCl3): δ (ppm) = 8.18 (d, J = 7.1 Hz, 2H), 7.51-7.35 (m, 7H), 

7.34-7.27 (m, 6H). 

13
C NMR (75 MHz, CDCl3): δ (ppm) = 170.1, 163.6, 142.5, 141.5, 134.5, 132.7, 

129.1, 128.9, 128.4, 127.5, 126.8. 

IR (Diamond-ATR, neat): ~  (cm
-1

) = 3036 (VW), 1584 (W), 1471 (S), 1436 (S), 

1371 (S), 1309 (W), 1225 (M), 1165 (M), 1024 (W), 995 (W), 773 (M), 747 (M), 692 

(S), 636 (M). 

MS (EI, 70 eV): m/z (%) = 451 (17), 450 (M
+
, 83), 449 (27), 323 (29), 296 (16), 220 

(100), 167 (53), 129 (27), 103 (21), 77 (74). 

HRMS (EI): Calcd. for [C21H15IN4]
+
: 450.0341; found: 450.0333. 

 

Synthesis of 2-iodo-4,6-diphenyl-1,3,5-triazine (61d). 

 

A 50 mL round-bottom flask was charged with HI (57% solution, 20 mL). The 

solution was cooled to 5 °C and 2-chloro-4,6-diphenyl-1,3,5-triazine (2.67 g, 10 
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mmol) was added at the same temperature. The reaction mixture was allowed to warm 

up to 25 °C slowly and stirred for 48 h at 25 °C. The mixture was neutralized 

carefully with solid potassium carbonate, and decolorized with a saturated aqueous 

solution of sodium disulfite. Water was added until the solution was formed. The 

organic layer was separated, and the aqueous layer was extracted with 

dichloromethane (3 x 50 mL). The combined organic phases were dried over Na2SO4, 

the solvent was removed in vacuo. Purification by flash column chromatography 

(silica gel, pentane / EtOAc = 100:1) afforded 2-iodo-4,6-diphenyl-1,3,5-triazine (61d, 

2.69 g, 75%) as a white solid. 

m. p. = 146.5-147.8 °C. 

1
H NMR (300 MHz, CDCl3): δ (ppm) = 8.64-8.59 (m, 4H), 7.67-7.53 (m, 6H). 

13
C NMR (75 MHz, CDCl3): δ (ppm) = 171.1, 142.6, 134.2, 133.4, 129.3, 128.8. 

IR (Diamond-ATR, neat): ~  (cm
-1

) = 3043 (VW), 2924 (VW), 1587 (W), 1515 (VS), 

1480 (VS),1432 (M), 1359 (S), 1314 (W), 1212 (W), 1067 (W),795 (M), 747 (S), 685 

(S), 637 (M). 

MS (EI, 70 eV): m/z (%) = 358 (M
+
, 2), 232 (36), 207 (10), 130 (10), 129 (100), 127 

(1), 126 (1), 103 (22), 77 (35). 

HRMS (EI): Calcd. for [C15H10IN3]
+
: 358.9919; found: 358.9938. 

 

Synthesis of ethyl 3-(4-iodo-6-phenyl-1,3,5-triazin-2-yl)benzoate (61e). 

 

According to TP1, 2,4-diiodo-6-phenyl-1,3,5-triazine (59, 820 mg, 2 mmol) reacted 

with (3-(ethoxycarbonyl)phenyl)zinc iodide (0.75 M, 3.2 mL, 2.4 mmol). Purification 

by flash column chromatography (silica gel, pentane / EtOAc = 20:1) afforded ethyl 

3-(4-iodo-6-phenyl-1,3,5-triazin-2-yl)benzoate (61e, 474 mg, 55%) as colorless oil. 

1
H NMR (300 MHz, CDCl3): δ (ppm) = 9.19 (t, J = 1.5 Hz, 1H), 8.75 (dt, J = 7.7 Hz, 
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1.5 Hz, 1H), 8.60-8.57 (m, 2H), 8.28-8.26 (m, 1H), 7.63-7.59 (m, 2H), 7.55-7.51 (m, 

2H), 4.46 (q, J = 7.1 Hz, 2H), 1.46 (t, J = 7.1 Hz, 3H). 

13
C NMR (75 MHz, CDCl3): δ (ppm) = 171.1, 170.2, 165.9, 142.7, 134.7, 134.1, 

133.9, 133.6, 133.3, 131.3, 130.3, 129.4, 128.9, 128.8, 61.4, 14.4. 

IR (Diamond-ATR, neat): ~  (cm
-1

) = 3070 (VW), 2981 (VW), 1716 (S), 1511 (VS), 

1490 (VS), 1430 (S), 1354 (M), 1260 (S), 1221 (S), 1149 (M), 1070 (M), 906 (S), 799 

(M), 728 (VS), 686 (VS), 638 (M). 

MS (EI, 70 eV): m/z (%) = 431 (M
+
, 3), 385 (17), 305 (18), 304 (100), 298 (4), 282 

(1), 277 (1), 255 (3), 201 (48), 173 (10), 129 (23), 103 (4). 

HRMS (EI): Calcd. for [C18H14IN3O2]
+
: 431.0131; found: 431.0117. 

 

Synthesis of 2-(3,5-difluorophenyl)-4-iodo-6-phenyl-1,3,5-triazine (61f). 

 

 

According to TP1, 2,4-diiodo-6-phenyl-1,3,5-triazine (59, 820 mg, 2 mmol) reacted 

with (3,5-difluorophenyl)zinc bromide (0.68 M, 3.5 mL, 2.4 mmol). Purification by 

flash column chromatography (silica gel, pentane / EtOAc = 50:1) afforded 

2-(3,5-difluorophenyl)-4-iodo-6-phenyl-1,3,5-triazine (61f, 529 mg, 67%) as a white 

solid. 

m. p. = 150.0-152.2 °C. 

1
H NMR (300 MHz, CDCl3): δ (ppm) = 8.61-8.56 (m, 2H), 8.17-8.09 (m, 2H), 

7.69-7.53 (m, 3H), 7.08 (tt, J = 8.4 Hz, 2.4 Hz, 2.3Hz, 1H). 

13
C NMR (75 MHz, CDCl3): δ (ppm) = 171.3, 168.9 (t, J = 3.7 Hz, 1C), 164.9 (d, J = 

12.1 Hz, 1C), 161.5 (d, J = 12.1 Hz, 1C), 142.6, 137.7 (t, J = 9.7 Hz, 1C), 133.8, 

133.7, 129.4, 128.9, 112.2 (d, J = 8.9 Hz, 1C), 111.9 (d, J = 8.9 Hz, 1C), 108.6 (t, J = 

25.5 Hz, 1C). 

IR (Diamond-ATR, neat): ~  (cm
-1

) = 3078 (VW), 2925 (VW), 1600 (W), 1516 (S), 
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1491 (VS), 1361 (M), 1235 (M), 1119 (W), 987 (W), 774 (M), 730 (M), 685 (M), 647 

(W). 

MS (EI, 70 eV): m/z (%) = 394 (M
+
, 15), 382 (6), 381 (23), 281 (6), 269 (11), 267 

(62), 240 (4), 229 (2), 165 (97), 139 (33), 129 (100), 103 (36), 77 (28).  

HRMS (EI): Calcd. for [C15H8F2IN3]
+
: 394.9731; found: 394.9711. 

 

Synthesis of ethyl 4-(4-iodo-6-phenyl-1,3,5-triazin-2-yl)benzoate (61g). 

 

According to TP1, 2,4-diiodo-6-phenyl-1,3,5-triazine (59, 820 mg, 2 mmol) reacted 

with (4-(ethoxycarbonyl)phenyl)zinc iodide (0.72 M, 3.4 mL, 2.4 mmol). Purification 

by flash column chromatography (silica gel, pentane / EtOAc = 20:1) afforded ethyl 

4-(4-iodo-6-phenyl-1,3,5-triazin-2-yl)benzoate (61g, 440 mg, 51%) as a white solid. 

m. p. = 172.3-174.5 °C. 

1
H NMR (300 MHz, CDCl3): δ (ppm) = 8.68-8.57 (m, 4H), 8.22-8.17 (m, 2H), 

7.68-7.51 (m, 3H), 4.45 (q, J = 7.1 Hz, 2H), 1.46 (t, J = 7.1 Hz, 3H), 

13
C NMR (75 MHz, CDCl3): δ (ppm) = 171.2, 170.1, 165.9, 142.7, 138.0, 134.6, 

133.9, 133.6, 129.8, 129.4, 129.2, 128.8, 61.4, 14.3. 

IR (Diamond-ATR, neat): ~  (cm
-1

) = 3054 (VW), 2981 (VW), 1709 (S), 1482 (VS), 

1353 (M), 1271 (S), 1221 (S), 1069 (M), 1018 (W), 827 (W), 797 (M), 754 (S), 688 

(M), 647 (W). 

MS (EI, 70 eV): m/z (%) = 432 (100), 322 (6), 217 (13), 145 (1). 

HRMS (ESI): Calcd. for [C18H14IN3O2 + H]
+
: 432.0209; found: 432.0200 

([C18H14IN3O2 + H]
+
). 

 

Synthesis of ethyl 2-(4-iodo-6-phenyl-1,3,5-triazin-2-yl)benzoate (61h). 
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According to TP1, 2,4-diiodo-6-phenyl-1,3,5-triazine (59, 820 mg, 2 mmol) reacted 

with (2-(ethoxycarbonyl)phenyl)zinc iodide (0.72 M, 3.4 mL, 2.4 mmol). Purification 

by flash column chromatography (silica gel, pentane / EtOAc = 20:1) afforded ethyl 

2-(4-iodo-6-phenyl-1,3,5-triazin-2-yl)benzoate (61h, 569 mg, 66%) as a white solid. 

m. p. = 90.5-92.8 °C. 

1
H NMR (300 MHz, CDCl3): δ (ppm) = 8.58-8.51 (m, 2H), 8.25-8.18 (m, 1H), 

7.78-7.73 (m, 1H), 7.68-7.59 (m, 3H), 7.58-7.50 (m, 2H), 4.30 (q, J = 7.1 Hz, 2H), 

1.19 (t, J = 7.1 Hz, 3H). 

13
C NMR (75 MHz, CDCl3): δ (ppm) = 171.9, 170.7, 168.9, 141.8, 134.3, 134.2, 

133.8, 133.7, 131.8, 130.7, 130.6, 129.5, 129.2, 128.9, 61.6, 14.1. 

IR (Diamond-ATR, neat): ~  (cm
-1

) = 3068 (VW), 2976 (VW), 1726 (S), 1509 (VS), 

1472 (VS), 1357 (M), 1287 (M), 1237 (M), 1217 (M), 1124 (W), 797 (W), 750 (M), 

685 (M). 

MS (EI, 70 eV): m/z (%) = 431 (M
+
, 7), 386 (9), 385 (18), 304 (65), 277 (5), 276 (26), 

275 (6), 274 (9), 249 (2), 201 (14), 173 (37), 130 (27), 129 (100), 104 (3), 77 (12). 

HRMS (EI): Calcd. for [C18H14IN3O2]
+
: 431.0131; found: 431.0119. 

 

Synthesis of 2-(4-bromophenyl)-4-iodo-6-phenyl-1,3,5-triazine (61i). 

 

According to TP1, 2,4-diiodo-6-phenyl-1,3,5-triazine (59, 820 mg, 2 mmol) reacted 

with (4-bromophenyl)zinc iodide (0.68 M, 3.5 mL, 2.4 mmol). Purification by flash 

column chromatography (silica gel, pentane / EtOAc = 100:1) afforded 
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2-(4-bromophenyl)-4-iodo-6-phenyl-1,3,5-triazine (61i, 417 mg, 47%) as a white 

solid. 

m. p. = 163.5-165.4 °C. 

1
H NMR (300 MHz, CDCl3): δ (ppm) = 8.55 (d, J = 7.7 Hz, 2H), 8.44 (d, J = 8.5 Hz, 

2H), 7.66 (d, J = 8.5 Hz, 2H), 7.64-7.50 (m, 3H). 

13
C NMR (75 MHz, CDCl3): δ (ppm) = 171.1, 170.1, 142.6, 133.9, 133.6, 133.1, 

132.1, 130.7, 129.3, 128.8, 128.6. 

IR (Diamond-ATR, neat): ~  (cm
-1

) = 3047 (VW), 1585 (W), 1510 (S), 1480 (VS), 

1441 (M), 1354 (M), 1221 (M), 1063 (M),1011 (M), 818 (W), 800 (M), 766 (S), 647 

(M), 614 (W). 

MS (EI, 70 eV): m/z (%) = 436 (M
+
, 9), 313 (5), 312 (27), 311 (5), 310 (31), 208 (43), 

206 (45), 180 (7), 129 (100), 102 (16), 77 (21). 

HRMS (EI): Calcd. for [C15H9BrIN3]
+
: 436.9025; found: 436.9009. 

 

Synthesis of 4-(4-iodo-6-phenyl-1,3,5-triazin-2-yl)benzonitrile (61j). 

 

According to TP1, 2,4-diiodo-6-phenyl-1,3,5-triazine (59, 820 mg, 2 mmol) reacted 

with (4-cyanophenyl)zinc iodide (0.74 M, 3.2 mL, 2.4 mmol). Purification by flash 

column chromatography (silica gel, pentane / EtOAc = 10:1) afforded 

4-(4-iodo-6-phenyl-1,3,5-triazin-2-yl)benzonitrile (61j, 428 mg, 56%) as a white 

solid. 

m. p. = 176.7-178.5 °C. 

1
H NMR (300 MHz, CDCl3): δ (ppm) = 8.75-8.70 (m, 2H), 8.63-8.58 (m, 2H), 

7.88-7.83 (m, 2H), 7.70-7.54 (m, 3H). 

13
C NMR (75 MHz, CDCl3): δ (ppm) = 171.4, 169.3, 142.7, 138.3, 133.9, 133.7, 

132.5, 129.7, 129.5, 128.9, 118.2, 116.5. 
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IR (Diamond-ATR, neat): ~  (cm
-1

) = 3067 (VW), 2918 (VW), 2227 (VW), 1511 (S), 

1483 (VS), 1355 (M), 1224 (M), 1068 (W), 800 (W), 773 (M), 690 (W).  

MS (EI, 70 eV): m/z (%) = 383 (M
+
, 9), 292 (4), 258 (9), 257 (45), 191 (1), 155 (7), 

154 (80), 129 (100), 103 (12), 77 (11). 

HRMS (EI): Calcd. for [C16H9IN4]
+
: 383.9872; found: 383.9858. 

 

Synthesis of 2-(4-butylphenyl)-4-iodo-6-phenyl-1,3,5-triazine (61k). 

 

According to TP1, 2,4-diiodo-6-phenyl-1,3,5-triazine (59, 820 mg, 2 mmol) reacted 

with (4-butylphenyl)zinc iodide (0.72 M, 3.3 mL, 2.4 mmol). Purification by flash 

column chromatography (silica gel, pentane / EtOAc = 100:1) afforded 

2-(4-butylphenyl)-4-iodo-6-phenyl-1,3,5-triazine (61k, 515 mg, 62%) as a white 

solid. 

m. p. = 103.3-104.9 °C. 

1
H NMR (300 MHz, CDCl3): δ (ppm) = 8.63-8.58 (m, 2H), 8.51 (d, J = 8.3 Hz, 2H), 

7.67-7.51 (m, 3H), 7.36 (d, J = 8.3 Hz, 2H), 2.77-2.70 (m, 2H), 1.74-1.62 (m, 2H), 

1.41 (qt, J = 7.5 Hz, 7.3 Hz, 2H), 0.98 (t, J = 7.3 Hz, 3H). 

13
C NMR (75 MHz, CDCl3): δ (ppm) = 171.1, 170.9, 149.3, 142.6, 134.3, 133.3, 

131.7, 129.4, 129.3, 128.9, 128.7, 35.8, 33.3, 22.4, 13.9. 

IR (Diamond-ATR, neat): ~  (cm
-1

) = 2956 (VW), 2928 (VW), 1609 (VW), 1511 

(VS), 1479 (S), 1441 (W), 1358 (M), 1221 (M), 1070 (W), 801 (W), 767 (M), 693 

(W), 618 (W). 

MS (EI, 70 eV): m/z (%) = 416 (100), 306 (49), 257 (24), 177 (7). 

HRMS (ESI): Calcd. for [C19H18IN3 + H]
+
: 416.0624; found: 416.0619 ([C19H18IN3 + 

H]
+
). 

 

Synthesis of 4-(4-octyl-6-phenyl-[1,3,5]triazin-2-yl)-benzoic acid ethyl ester (64a). 
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According to TP 2, 2-iodo-4-octyl-6-phenyl-1,3,5-triazine (61a, 395 mg, 1 mmol) 

was converted to the corresponding triazinylmagnesium chloride (62a) after I/Mg 

exchange reaction with BuMgCl (1.43 M, 0.77 mL, 1.1 mmol) and was reacted with 

ethyl 4-iodobenzoate (63a, 305 mg, 1.1 mmol) after addition of ZnBr2·LiCl (1 M, 1.1 

mL) in the presence of Pd(dba)2 (5 mol%) and tfp (10 mol%). Purification by flash 

column chromatography (silica gel, pentane / EtOAc = 20:1) afforded 

4-(4-octyl-6-phenyl-[1, 3, 5]triazin-2-yl)-benzoic acid ethyl ester (64a, 292 mg, 62%) 

as a pale yellow solid. 

m. p. = 54.8 – 56.4 °C. 

1
H NMR (300 MHz, CDCl3): δ (ppm) = 8.73 (d, J = 8.8 Hz, 2H), 8.68 (dd, J = 8.0 Hz, 

1.5 Hz, 2H), 8.22 (d, J = 8.8 Hz, 2H), 7.66-7.52 (m, 3H), 4.46 (q, J = 7.1 Hz, 2H), 

3.08-3.00 (m, 2H), 2.04-1.93 (m, 2H), 1.56-1.22 (m, 10H), 1.47 (t, J = 7.2 Hz, 3H), 

0.95-0.86 (m, 3H). 

13
C NMR (75 MHz, CDCl3): δ (ppm) = 180.5, 171.3, 170.3, 166.2, 140.1, 135.9, 

133.7, 132.6, 129.7, 128.9, 128.8, 128.7, 61.3, 39.3, 31.9, 29.5, 29.4, 29.3, 27.7, 22.7, 

14.4, 14.1. 

IR (Diamond-ATR, neat): ~  (cm
-1

) = 3583 (W), 2913 (W), 1724 (M), 1529 (S), 

1364 (M), 1278 (S), 1101 (M), 1021 (M), 759 (S), 689 (M), 665 (S). 

MS (EI, 70 eV): m/z (%) = 417 (M
+
, 7), 388 (2), 372 (3), 332 (12), 320 (18), 319 

(100), 176 (10), 104 (16). 

HRMS (EI): Calcd. for [C26H31N3O2]
+
: 417.2416; found: 417.2408. 

 

Synthesis of 2-(4-octyl-6-phenyl-[1,3,5]triazin-2-ylmethyl)-acrylic acid ethyl ester 

(64b). 
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According to TP 2, 2-iodo-4-octyl-6-phenyl-1,3,5-triazine (61a, 395 mg, 1 mmol) 

was converted to the corresponding triazinylmagnesium chloride (62a) after I/Mg 

exchange reaction with BuMgCl (1.43 M, 0.77 mL, 1.1 mmol) and was reacted with 

ethyl 2-(bromomethyl)acrylate (63b, 213 mg, 1.1 mmol) after addition of 

CuCN·2LiCl (1 M, 0.2 mL). Purification by flash column chromatography (silica gel, 

pentane / EtOAc = 20:1) afforded 2-(4-octyl-6-phenyl-[1,3,5]triazin-2-ylmethyl)- 

acrylic acid ethyl ester (64b, 279 mg, 73%) as yellow liquid. 

1
H NMR (300 MHz, CDCl3): δ (ppm) = 8.48 (d, J = 8.5 Hz, 2H), 7.57-7.44 (m, 3H), 

6.36 (s, 1H), 5.68 (s, 1H), 4.18 (q, J = 7.1 Hz, 2H), 3.98 (s, 2H), 2.92-2.85 (m, 2H), 

1.89-1.79 (m, 2H), 1.44-1.23 (m, 10H), 1.20 (t, J = 7.1 Hz, 3H), 0.87 (t, J = 6.7 Hz, 

3H) 

13
C NMR (75 MHz, CDCl3): δ (ppm) = 179.8, 176.8, 170.8, 166.8, 136.6, 135.7, 

132.4, 128.9, 128.6, 127.1, 60.8, 41.7, 39.1, 31.8, 29.4, 29.3, 29.2, 27.8, 22.7, 14.2, 

14.1. 

IR (Diamond-ATR, neat): ~  (cm
-1

) = 3583 (W), 2956 (W), 2927 (M), 2855 (W), 

1720 (S), 1534 (VS), 1380 (M), 1148 (M), 1027 (W), 735 (W). 

MS (EI, 70 eV): m/z (%) = 381 (M
+
, 19), 380 (3), 352 (9). 336 (8), 308 (12), 296 (25), 

284 (16), 283 (100), 237 (20), 211 (18), 104 (29). 

HRMS (EI): Calcd. for [C23H31N3O2]
+
: 381.2416; found: 381.2412. 

 

Synthesis of ethyl 2-((4-phenyl-6-(thiophen-2-yl)-1,3,5-triazin-2-yl)methyl)- 

acrylate (64c). 
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According to TP 2, 2-iodo-4-phenyl-6-(thiophen-2-yl)-1,3,5-triazine (61b, 365 mg, 1 

mmol) was converted to the corresponding triazinylmagnesium chloride (62b) after 

I/Mg exchange reaction with BuMgCl (1.43 M, 0.77 mL, 1.1 mmol) and was reacted 

with ethyl 2-(bromomethyl)acrylate (63b, 213 mg, 1.1 mmol) after addition of 

CuCN·2LiCl (1 M, 0.2 mL). Purification by flash column chromatography (silica gel, 

pentane / EtOAc = 20:1) afforded 2-((4-phenyl-6-(thiophen-2-yl)-1,3,5- 

triazin-2-yl)methyl)acrylate (64c, 213 mg, 59%) as yellow liquid. 

1
H NMR (300 MHz, CDCl3): δ (ppm) = 8.58 (d, J = 6.8 Hz, 2H), 8.28-8.23 (m, 1H), 

7.65-7.48 (m, 4H), 7.24-7.18 (m, 1H), 6.41 (s, 1H), 5.76 (s, 1H), 4.23 (q, J = 7.1 Hz, 

2H), 4.06 (s, 2H), 1.24 (t, J = 7.1 Hz, 3H). 

13
C NMR (75 MHz, CDCl3): δ (ppm) = 177.4, 171.1, 167.6, 166.9, 141.7, 136.6, 

135.5, 132.6, 132.3, 131.7, 128.9, 128.6, 128.5, 127.1, 60.8, 41.7, 14.2. 

IR (Diamond-ATR, neat): ~  (cm
-1

) = 3583 (W), 3066 (W), 2979 (W), 2928 (W), 

2253 (W), 1716 (VS), 1519 (VS), 1439 (S), 1375 (S), 1152 (M), 1027 (M), 774 (W), 

732 (M), 704 (M), 665 (W). 

MS (EI, 70 eV): m/z (%) = 351 (M
+
, 60), 322 (36), 306 (19), 280 (13), 279 (56), 278 

(100), 273 (18), 219 (10), 175 (30), 129 (18), 110 (31), 108 (29). 

HRMS (EI): Calcd. for [C19H17N3O2S]
+
: 351.1041; found: 351.1031. 

 

Synthesis of (4-(diphenylamino)-6-phenyl-1,3,5-triazin-2-yl)(phenyl)methanone 

(64d). 

 

According to TP 2, 4-iodo-N,N,6-triphenyl-1,3,5-triazin-2-amine (61c, 225 mg, 0.5 

mmol) was converted to the corresponding triazinylmagnesium chloride (62c) after 

I/Mg exchange reaction with BuMgCl (1.43 M, 0.37 mL, 0.55 mmol) and was reacted 

with benzoyl chloride (63c, 60 mg, 0.55 mmol) after addition of CuCN·2LiCl (1 M, 
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0.55 mL). Purification by flash column chromatography (silica gel, pentane / EtOAc = 

10:1) afforded (4-(diphenylamino)-6-phenyl-1,3,5-triazin-2-yl)(phenyl)methanone 

(64d, 154 mg, 71%) as a white solid. 

m. p. = 212.6-214.0 °C. 

1
H NMR (300 MHz, CDCl3): δ (ppm) = 8.31 (d, J = 7.3 Hz, 2H), 8.09 (d, J = 7.3 Hz, 

2H), 7.71-7.21 (m, 16H). 

13
C NMR (75 MHz, CDCl3): δ (ppm) = 190.3, 171.7, 170.5, 165.9, 142.8, 135.5, 

134.4, 133.9, 132.6, 130.8, 129.1, 129.0, 128.5, 128.3, 127.6, 126.7. 

IR (Diamond-ATR, neat): ~  (cm
-1

) = 3583 (W), 3065 (W), 2254 (W), 1969 (W), 

1691 (S), 1595 (M), 1537 (S), 1471 (S), 1372 (S), 1221 (M), 908 (S), 733 (M), 638 

(W). 

MS (EI, 70 eV): m/z (%) = 428 (M
+
, 100), 323 (53), 296 (45), 220 (12), 193 (5), 180 

(8), 167 (7), 105 (20), 77 (21). 

HRMS (EI): Calcd. for [C28H20N4O]
+
: 428.1637; found: 428.1627. 

 

Synthesis of (4, 6-diphenyl-[1,3,5]triazin-2-yl)-phenyl-methanol (64e). 

 

According to TP 2, 2-iodo-4,6-diphenyl-1,3,5-triazine (61d, 359 mg, 1 mmol) was 

converted to the corresponding triazinylmagnesium chloride (62d) after I/Mg 

exchange reaction with BuMgCl (1.43 M, 0.77 mL, 1.1 mmol) and was reacted with 

benzaldehyde (63d, 117 mg, 1.1 mmol). Purification by flash column chromatography 

(silica gel, pentane / EtOAc = 10:1) afforded (4, 6-diphenyl-[1,3,5]triazin-2-yl)- 

phenyl-methanol (64e, 205 mg, 61%) as a white solid. 

m. p. = 135.5 – 137.5 °C.  

1
H NMR (300 MHz, CDCl3): δ (ppm) = 8.70-8.64 (m, 4H), 7.75-7,53 (m, 8H), 7.46 - 

7.30 (m, 3H), 5.97 (s, 1H), 4.97 (br. s, 1H). 
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13
C NMR (75 MHz, CDCl3): δ (ppm) = 178.4, 171.3, 141.2, 135.2, 133.1, 129.1, 

128.8, 128.5, 128.1, 126.8, 75.1.  

IR (Diamond-ATR, neat): ~  (cm
-1

) = 3467 (W), 3064 (W), 2920 (W), 1959 (W), 

1539 (S), 1520 (S), 1373 (M), 1372 (M), 1176 (W), 1061(W), 754 (M), 720 (M), 690 

(M). 

MS (EI, 70 eV): m/z (%) = 239(M
+
, 100), 323 (11), 322 (23), 262 (39), 234 (12), 233 

(53), 130 (30), 105 (14), 103 (60).  

HRMS (EI): Calcd. for [C22H17N3O]
+
: 339.1372; found: 339.1366. 

 

Synthesis of ethyl 3-(4-(2-(ethoxycarbonyl)allyl)-6-phenyl-1,3,5-triazin-2-yl) 

benzoate (64f). 

 

According to TP 2, ethyl 3-(4-iodo-6-phenyl-1,3,5-triazin-2-yl)benzoate (61e, 431 mg, 

1 mmol) was converted to the corresponding triazinylmagnesium chloride (62e) after 

I/Mg exchange reaction with BuMgCl (1.43 M, 0.77 mL, 1.1 mmol) and was reacted 

with ethyl 2-(bromomethyl)acrylate (63b, 213 mg, 1.1 mmol) after addition of 

CuCN·2LiCl (1 M, 0.2 mL). Purification by flash column chromatography (silica gel, 

pentane / EtOAc = 10:1) afforded ethyl 3-(4-(2-(ethoxycarbonyl)allyl)-6-phenyl- 

1,3,5-triazin-2-yl)benzoate (64f, 286 mg, 71%) as colorless oil. 

1
H NMR (300 MHz, CDCl3): δ (ppm) = 9.26 (t, J = 1.7 Hz, 1H), 8.81-8.79 (m, 1H), 

8.65-8.62 (m, 2H), 8.26-8.24 (m, 1H), 7.63-7.57 (m, 2H), 7.55-7.52 (m, 2H), 6.42 (d, 

J = 1.4 Hz, 1H), 5.77-5.76 (m, 1H), 4.46 (q, J = 7.2 Hz, 2H), 4.22 (q, J = 7.2 Hz, 2H), 

4.11 (s, 2H), 1.46 (t, J = 7.2 Hz, 3H), 1.21 (t, J = 7.2 Hz, 3H). 

13
C NMR (75 MHz, CDCl3): δ (ppm) = 177.7, 171.4, 170.5, 166.9, 166.2, 136.6, 

136.3, 135.6, 133.3, 133.1, 132.7, 131.2, 130.0, 129.0, 128.7, 128.6, 127.2, 61.3, 60.8, 

41.8, 14.4, 14.2. 
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IR (Diamond-ATR, neat): ~  (cm
-1

) = 3583 (W), 2981 (W), 2256 (W), 1721 (S), 

1529 (S), 1366 (M), 1257 (M), 1152 (M), 1026 (W), 752 (M), 690 (W). 

MS (EI, 70 eV): m/z (%) = 417 (M
+
, 100), 388 (38), 372 (41), 345 (72), 344 (97), 273 

(15), 241 (12), 213 (14), 169 (20), 149 (10), 130 (12), 104 (30). 

HRMS (EI): Calcd. for [C24H23N3O4]
+
: 417.1689; found: 417.1688. 

 

Synthesis of (4-(3,5-difluorophenyl)-6-phenyl-1,3,5-triazin-2-yl)(phenyl)methanol 

(64g). 

 

According to TP 2, 2-(3,5-difluorophenyl)-4-iodo-6-phenyl-1,3,5-triazine (61f, 395 

mg, 1 mmol) was converted to the corresponding triazinylmagnesium chloride (62f) 

after I/Mg exchange reaction with BuMgCl (1.43 M, 0.77 mL, 1.1 mmol) and was 

reacted with benzaldehyde (63d, 117 mg, 1.1 mmol). Purification by flash column 

chromatography (silica gel, pentane / EtOAc = 20:1) afforded 

(4-(3,5-difluorophenyl)-6-phenyl-1,3,5-triazin-2-yl)(phenyl)methanol (64g, 202 mg, 

54%) as a white solid. 

m. p. = 145.2-147.9 °C. 

1
H NMR (300 MHz, CDCl3): δ (ppm) = 8.66-8.61 (m, 2H), 8.17-8.12 (m, 2H), 

7.69-7.60 (m, 3H), 7.58-7.54 (m, 2H), 7.41-7.37 (m, 2H), 7.33-7.29 (m, 1H), 

7.06-7.02 (m, 1H), 5.94 (d, J = 6.1 Hz, 1H), 4.77 (d, J = 6.1 Hz, 1H). 

13
C NMR (75 MHz, CDCl3): δ (ppm) = 178.9, 171.7, 169.4 (t, J = 3.5 Hz, 1C), 164.0 

(d, J = 12.3 Hz, 1C), 162.4 (d, J = 12.3 Hz, 1C), 140.8, 138.8 (t, J = 9.5 Hz, 1C), 

134.7, 133.4, 129.2, 128.9, 128.5, 128.2, 126.7, 111.9 (d, J = 5.6 Hz, 1C), 111.1 (d, J 

= 5.6 Hz, 1C), 108.2 (t, J = 25.5 Hz, 1C), 75.2. 

IR (Diamond-ATR, neat): ~  (cm
-1

) = 3477 (W), 3080 (VW), 2924 (W), 1522 (VS), 

1369 (S), 1177 (W), 1117 (W), 1062 (W), 986 (W), 878 (W), 697 (M). 
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MS (EI, 70 eV): m/z (%) = 375 (M
+
, 33), 323 (32), 298 (12), 269 (23), 220 (100), 180 

(11), 167 (24), 129 (27), 117 (59), 104 (27), 77 (66). 

HRMS (EI): Calcd. for [C22H15F2N3O]
+
: 375.1183; found: 375.1182. 

 

Synthesis of 4-[4-(hydroxy-phenyl-methyl)-6-phenyl-[1,3,5]triazin-2-yl]-benzoic 

acid ethyl ester (64h). 

 

According to TP 2, ethyl 4-(4-iodo-6-phenyl-1,3,5-triazin-2-yl)benzoate (61g, 431 mg, 

1 mmol) was converted to the corresponding triazinylmagnesium chloride (62g) after 

I/Mg exchange reaction with OctMgBr (1 M, 1.1 mL, 1.1 mmol) and was reacted with 

benzaldehyde (63d, 117 mg, 1.1 mmol). Purification by flash column chromatography 

(silica gel, pentane / EtOAc = 10:1) afforded 4-[4-(hydroxy-phenyl-methyl)-6-phenyl- 

[1,3,5]triazin-2-yl]-benzoic acid ethyl ester (64h, 309 mg, 75%) as a white solid. 

m. p. = 144.7-146.3 °C. 

1
H NMR (300 MHz, CDCl3): δ (ppm) = 8.69 (dd, J = 12.8 Hz, 7.7 Hz, 4H), 8.22 (d, J 

= 8.3 Hz, 2H), 7.74-7.54 (m, 5H), 7.47-7.25 (m, 3H), 5.97 (s, 1H), 4.46 (q, J = 7.1 Hz, 

2H), 1.47 (t, J = 7.1 Hz, 3H). 

13
C NMR (75 MHz, CDCl3): δ (ppm) = 178.7, 171.6, 170.6, 166.0, 140.9, 139.1, 

134.9, 134.2, 133.3, 129.8, 129.2, 128.9, 128.8, 128.5, 128.1, 126.7, 75.2, 61.4, 14.4. 

IR (Diamond-ATR, neat): ~  (cm
-1

) = 3467 (M), 3063 (W), 2982 (W), 2929 (W), 

1717 (S), 1520 (S), 1372 (S), 1275 (S), 1104 (M), 909 (M), 760 (M), 731 (S), 698 

(M). 

MS (EI, 70 eV): m/z (%) = 411 (M
+
, 67), 410 (17), 395 (28). 366 (11), 334 (28), 305 

(22), 232 (12), 219 (15), 130 (16), 105 (100). 

HRMS (EI): Calcd. for [C25H21N3O3]
+
: 411.1583; found: 411.1573. 



C. Experimental Section 

 100 

Synthesis of ethyl 2-(4-(hydroxy(phenyl)methyl)-6-phenyl-1,3,5-triazin-2-yl) 

benzoate (64k). 

 

According to TP 2, ethyl 2-(4-iodo-6-phenyl-1,3,5-triazin-2-yl)benzoate (61h, 431 mg, 

1 mmol) was converted to the corresponding triazinylmagnesium chloride (62h) after 

I/Mg exchange reaction with OctMgBr (1 M, 1.1 mL, 1.1 mmol) and was reacted with 

benzaldehyde (63d, 117 mg, 1.1 mmol). Purification by flash column chromatography 

(silica gel, pentane / EtOAc = 10:1) afforded ethyl 2-(4-(hydroxy(phenyl)methyl)- 

6-phenyl-1,3,5-triazin-2-yl)benzoate (64k, 261 mg, 63%) as colorless oil. 

1
H NMR (300 MHz, CDCl3): δ (ppm) = 8.61-8.58 (m, 2H), 8.21-8.16 (m, 1H), 

7.77-7.73 (m, 1H), 7.65-7.59 (m, 5H), 7.53 (t, J = 7.6 Hz, 2H), 7.37 (t, J = 7.6 Hz, 

2H), 7.32-7.28 (m, 1H), 5.92 (s, 1H), 4.77 (br. s, 1H), 4.17-4.06 (m, 2H), 1.02 (t, J = 

7.2 Hz, 3H). 

13
C NMR (75 MHz, CDCl3): δ (ppm) = 178.3, 172.6, 171.2, 169.1, 140.9, 135.5, 

134.8, 134.1, 133.3, 131.4, 130.7, 130.4, 129.2, 129.1, 128.8, 128.5, 128.1, 126.7, 

75.1, 61.5, 13.8. 

IR (Diamond-ATR, neat): ~  (cm
-1

) = 3469 (W), 3064 (W), 2918 (W), 2250 (W), 

1725 (S), 1536 (S), 1521 (S), 1374 (M), 1287 (M), 1253 (M), 1177 (W), 1121 (W), 

1061 (W), 910 (W), 731 (M), 697 (M), 608 (W). 

MS (EI, 70 eV): m/z (%) = 411 (M
+
, 100), 410 (25), 409 (82), 394 (11), 366 (13), 364 

(32), 349 (23), 335 (15), 288 (24), 276 (20), 259 (20), 234 (38), 173 (23), 130 (71), 

105 (86), 77 (46). 

HRMS (EI): Calcd. for [C25H21N3O3]
+
: 411.1583; found: 411.1580. 

 

Synthesis of (4-(4-bromophenyl)-6-phenyl-1,3,5-triazin-2-yl)(phenyl)methanone 

(64l). 
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According to TP 2, 2-(4-bromophenyl)-4-iodo-6-phenyl-1,3,5-triazine (61i, 438 mg, 1 

mmol) was converted to the corresponding triazinylmagnesium chloride (62i) after 

I/Mg exchange reaction with OctMgBr (1 M, 1.1 mL, 1.1 mmol) and was reacted with 

benzoyl chloride (63c, 169 mg, 1.2 mmol) after addition of CuCN·2LiCl (1 M, 1.1 

mL). Purification by flash column chromatography (silica gel, pentane / EtOAc = 

10:1) afforded (4-(4-bromophenyl)-6-phenyl-1,3,5-triazin-2-yl)(phenyl)methanone 

(64l, 289 mg, 68%) as a white solid. 

m. p. = 144.3-146.1 °C. 

1
H NMR (300 MHz, CDCl3): δ (ppm) = 8.69 (d, J = 7.1 Hz, 2H), 8.58 (d, J = 8.5 Hz, 

2H), 8.14 (d, J = 7.1 Hz, 2H), 7.75-7.63 (m, 4H), 7.62-7.52 (m, 4H). 

13
C NMR (75 MHz, CDCl3): δ (ppm) = 190.3, 172.3, 171.5, 170.9, 134.9, 134.4, 

134.1, 134.0 133.5, 132.1, 130.9, 130.8, 129.3, 128.9, 128.7, 128.5. 

IR (Diamond-ATR, neat): ~  (cm
-1

) = 3583 (W), 3064 (W), 2923 (W), 2248 (W), 

1686 (S), 1588 (M), 1528 (VS), 1367 (S), 1222 (M), 1176 (W), 1068 (W), 1011 (W), 

909 (W), 835 (W), 774 (W), 665 (W), 646 (W). 

MS (EI, 70 eV): m/z (%) = 416 (22), 415 (M
+
, 54), 414 (9), 387 (4), 313 (4), 234 (17), 

206 (4), 156 (2), 105 (100), 77 (30). 

HRMS (EI): Calcd. for [C22H14BrN3O]
+
: 415.0320; found: 415.0320. 

 

 

Synthesis of 4-(4-(hydroxy(phenyl)methyl)-6-phenyl-1,3,5-triazin-2-yl) 

benzonitrile (64m). 
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According to TP 2, 4-(4-iodo-6-phenyl-1,3,5-triazin-2-yl)benzonitrile (61j, 300 mg, 

0.78 mmol) was converted to the corresponding triazinylmagnesium chloride (62j) 

after I/Mg exchange reaction with OctMgBr (1 M, 0.86 mL, 1.1 mmol) and was 

reacted with benzaldehyde (63d, 91 mg, 0.86 mmol). Purification by flash column 

chromatography (silica gel, pentane / EtOAc = 10:1) afforded 

4-(4-(hydroxy(phenyl)methyl)-6-phenyl-1,3,5-triazin-2-yl)benzonitrile (64m, 186 mg, 

64%) as a white solid. 

m. p. = 192.0-194.2 °C. 

1
H NMR (300 MHz, CDCl3): δ (ppm) = 8.76 (d, J = 8.5 Hz, 2H), 8.70-8.62 (m, 2H), 

7.86 ((d, J = 8.5 Hz, 2H). 7.71-7.54 (m, 5H), 7.45-7.29 (m, 3H), 5.98 (s, 1H), 4.79 (br. 

s, 1H). 

13
C NMR (75 MHz, CDCl3): δ (ppm) = 179.0, 171.8, 169.9, 140.8, 139.3, 134.7, 

133.6, 132.5, 129.5, 129.2, 128.9, 128.6, 128.2, 126.7, 118.3, 116.2, 75.2. 

IR (Diamond-ATR, neat): ~  (cm
-1

) = 3445 (W), 3062 (W), 2923 (W), 2230 (W), 

1575 (W), 1519 (VS), 1371 (S), 1344 (M), 1191 (W), 1020 (W), 910 (W), 821 (W), 

695 (W), 665 (W). 

MS (EI, 70 eV): m/z (%) = 364 (M
+
, 20), 363 (12), 362 (39). 348 (21), 347 (11), 258 

(14), 244 (7), 129 (11), 117 (11), 105 (100). 

HRMS (EI): Calcd. for [C23H16N4O]
+
: 364.1324; found: 364.1315. 

 

Synthesis of 2,4-di(cyclohex-2-en-1-yl)-6-phenyl-1,3,5-triazine (67). 
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According to TP 2, 2,4-diiodo-6-phenyl-1,3,5-triazine (59, 409 mg, 1 mmol) as 

converted to the corresponding doubly magnesiated 1,3,5-triazine (65) after I/Mg 

exchange reaction with sBuMgCl (1.77 M, 1.25 mL, 2.2 mmol) and was reacted with 

3-bromocyclohex-1-ene (354 mg, 2.2 mmol) after addition of CuCN·2LiCl (1 M, 2.2 

mL). Purification by flash column chromatography (silica gel, pentane / EtOAc = 

100:1) afforded 2,4-di(cyclohex-2-en-1-yl)-6-phenyl-1,3,5-triazine (67, 211 mg, 67%) 

as colorless liquid. 

1
H NMR (300 MHz, CDCl3): δ (ppm) = 8.55 (dd, J = 7.7 Hz, 1.7 Hz 2H), 7.60-7.41 

(m, 3H), 6.07-5.85 (m, 4H), 3.76-3.61 (m, 2H), 2.28-1.59 (m, 12H). 

13
C NMR (75 MHz, CDCl3): δ (ppm) = 181.4, 170.9, 136.2, 132.2, 128.9, 128.7, 

128.5, 127.2, 44.5, 27.8, 24.8, 21.4. 

IR (Diamond-ATR, neat): ~  (cm
-1

) = 3058 (W), 2959 (W), 1674 (M), 1516 (VS), 

1378 (W), 1260 (W), 1231 (W), 1025 (M), 776 (M), 699 (M), 650 (W). 

MS (EI, 70 eV): m/z (%) = 318 (16), 317 (M
+
, 64), 316 (21), 276 (43), 252 (12), 236 

(16), 281 (10), 106 (33), 104 (100), 79 (33), 77 (41). 

HRMS (EI): Calcd. for [C21H23N3]
+
: 317.1892; found: 317.1893. 

 

Synthesis of 1,1'-(6-phenyl-1,3,5-triazine-2,4-diyl)bis(2,2-dimethylpropan-1-one) 

(68). 

 

According to TP 2, 2,4-diiodo-6-phenyl-1,3,5-triazine (59, 409 mg, 1 mmol) as 

converted to the corresponding doubly magnesiated 1,3,5-triazine (65) after I/Mg 

exchange reaction with sBuMgCl (1.77 M, 1.25 mL, 2.2 mmol) and was reacted with 

3-bromocyclohex-1-ene (354 mg, 2.2 mmol) after addition of CuCN·2LiCl (1 M, 2.2 

mL, 2.2 mmol). Purification by flash column chromatography (silica gel, pentane / 

EtOAc = 50:1) afforded 1,1'-(6-phenyl-1,3,5-triazine-2,4-diyl) 

bis(2,2-dimethylpropan-1-one) (68, 121 mg, 38%) as a white solid. 
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m. p. = 60.9-62.8 °C. 

1
H NMR (300 MHz, CDCl3): δ (ppm) = 8.61-8.55 (m, 2H), 7.70-7.52 (m, 3H), 1.43 

(s, 18H). 

13
C NMR (75 MHz, CDCl3): δ (ppm) = 204.5, 172.1, 171.0, 134.2, 133.9, 129.4, 

128.9, 43.8, 26.7. 

IR (Diamond-ATR, neat): ~  (cm
-1

) = 3062 (W), 2968 (W), 1710 (S), 1528 (VS), 

1477 (M), 1392 (S), 1061 (W), 990 (M), 839 (M), 749 (S), 699 (S), 650 (W). 

MS (EI, 70 eV): m/z (%) = 325 (M
+
, 4), 269 (3), 242 (2), 241 (15), 226 (14), 207 (2), 

185 (3), 157 (2), 129 (6), 103 (11), 85 (11), 77 (10), 57 (100). 

HRMS (EI): Calcd. for [C19H23N3O2]
+
: 325.1790; found: 325.1813. 

 

Synthesis of 4,4',6,6'-tetraphenyl-2,2'-bi(1,3,5-triazine) (70). 

 

According to TP 2, 2-iodo-4,6-diphenyl-1,3,5-triazine (61d, 359 mg, 1 mmol) was 

converted to the corresponding triazinylmagnesium chloride (62d) after I/Mg 

exchange reaction with BuMgCl (1.43 M, 0.77 mL, 1.1 mmol) and was reacted with 

2-iodo-4,6-diphenyl-1,3,5-triazine (61d, 359 mg, 1 mmol) after addition of ZnCl2 (1 

M, 1.1 mL 1.1 mmol) in the presence of Pd(PPh3)4 (5 mol%). Purification by flash 

column chromatography (silica gel, pentane / EtOAc = 10:1) afforded 

4,4',6,6'-tetraphenyl-2,2'-bi(1,3,5-triazine) (70, 265 mg, 57%) as a yellow solid. 

m. p. = 285.0-287.5 °C. 

1
H NMR (300 MHz, CDCl3): δ (ppm) = 8.92-8.84 (m, 8H), 7.72-7.59 (m, 12H). 

13
C NMR (75 MHz, CDCl3): δ (ppm) = 172.9, 170.4, 135.6, 133.1, 129.4, 128.8. 

IR (Diamond-ATR, neat): ~  (cm
-1

) = 3034 (VW), 2924 (VW), 1504 (VS), 1444 (M), 

1355 (S), 1245 (W), 1177 (W), 1024 (M), 839 (M), 794 (M), 751 (S), 686 (S), 643 

(M). 

MS (EI, 70 eV): m/z (%) = 465 (100), 445 (3), 305 (12), 259 (8). 

HRMS (ESI): Calcd. for [C30H20N6 + H]
+
: 465.1828; found: 465.1821 ([C30H20N6 + 
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H]
+
). 

 

Synthesis of ethyl 4-(4'-(4-butylphenyl)-6,6'-diphenyl-[2,2'-bi(1,3,5-triazin)]-4-yl) 

benzoate (72). 

 

According to TP 2, 2-(4-butylphenyl)-4-iodo-6-phenyl-1,3,5-triazine (61k, 249 mg, 

0.6 mmol) was converted to the corresponding triazinylmagnesium chloride after 

I/Mg exchange reaction with sBuMgCl (1.77 M, 0.37 mL, 0.66 mmol) and was 

reacted with ethyl 4-(4-iodo-6-phenyl-1,3,5-triazin-2-yl)benzoate (61g, 216 mg, 0.5 

mmol) after addition of ZnCl2 (1 M, 0.66 mL 0,66 mmol) in the presence of PEPPSI 

(5 mol%). Purification by flash column chromatography (silica gel, pentane / EtOAc 

= 5:1) afforded ethyl 4-(4'-(4-butylphenyl)-6,6'-diphenyl-[2,2'-bi(1,3,5-triazin)]- 

4-yl)benzoate (72, 154 mg, 52%) as a yellow solid. 

m. p. = 164.6-166.5 °C. 

1
H NMR (300 MHz, CDCl3): δ (ppm) = 8.91-8.88 (m, 2H), 8.85-8.81 (m, 4H), 8.73 

(d, J = 8.2 Hz, 2H), 8.27 (d, J = 8.2 Hz, 2H), 7.68-7.57 (m, 6H), 7.41 (d, J = 7.9 Hz, 

2H), 4.45 (q, J = 7.1 Hz, 2H), 2.77-2.73 (m, 2H), 1.72-1.66 (m, 2H), 1.46 (t, J = 7.1 

Hz, 3H), 1.44-1.38 (m, 2H), 0.97 (t, J = 7.4 Hz, 3H). 

13
C NMR (75 MHz, CDCl3): δ (ppm) = 173.0, 172.9, 172.7, 171.9, 170.5, 169.9, 

166.1, 148.9, 139.4, 135.6, 135.3, 134.2, 133.3, 133.0, 132.9, 129.9, 129.4, 129.4, 

129.3, 129.2, 128.9, 128.8, 128.7, 61.4, 35.8, 33.3, 22.4, 14.3, 13.9. 

IR (Diamond-ATR, neat): ~  (cm
-1

) = 3065 (W), 2956 (W), 1715 (S), 1504 (VS), 

1357 (M), 1271 (S), 1099 (M), 1017 (M), 829 (W), 764 (S), 688 (S), 648 (M).  

MS (EI, 70 eV): m/z (%) = 592 (M
+
, 100), 551 (9), 550 (29), 549 (40), 489 (13). 433 

(8), 331 (9), 277 (9), 261 (14), 252 (24), 129 (9), 116 (11), 104 (21). 
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HRMS (EI): Calcd. for [C37H32N6O2]
+
: 592.2587; found: 592.2591. 

 

Synthesis of diethyl 4,4'-(6,6',6''-triphenyl-[2,2':4',2''-ter(1,3,5-triazine)]-4,4''- 

diyl)dibenzoate (74). 

 

According to TP 2, ethyl 4-(4-iodo-6-phenyl-1,3,5-triazin-2-yl)benzoate (61g, 431 mg, 

1 mmol) was converted to the corresponding triazinylmagnesium bromide after I/Mg 

exchange reaction with OctMgBr (0.72 M, 1.53 mL, 1.1 mmol) and was reacted with 

2,4-diiodo-6-phenyl-1,3,5-triazine (59, 144 mg, 0.35 mmol) after addition of ZnCl2 (1 

M, 1.1 mL 1.1 mmol) in the presence of Pd-PEPPSI-iPr (5 mol%). Purification by 

flash column chromatography (silica gel, pentane / EtOAc = 2:1) afforded diethyl 

4,4'-(6,6',6''-triphenyl-[2,2':4',2''-ter(1,3,5-triazine)]-4,4''-diyl)dibenzoate (74, 121 mg, 

45%) as a yellow solid. 

m. p. = 185.0-187.1 °C. 

1
H NMR (300 MHz, CDCl3): δ (ppm) = 8.92 (d, J = 7.9 Hz, 5H), 8.86 (d, J = 7.4 Hz, 

4H), 8.27 (d, J = 7.4 Hz, 4H), 7.73-7.59 (m, 10H), 4.45 (q, J = 7.1 Hz, 4H), 1.45 (t, J 

= 7.1 Hz, 6H). 

13
C NMR (75 MHz, CDCl3): δ (ppm) = 174.3, 173.2, 172.1, 171.0, 169.9, 166.0, 

139.2, 135.1, 134.7, 134.4, 133.9, 133.5, 129.9, 129.5, 129.3, 129.0, 128.9, 61.4, 14.3. 

IR (Diamond-ATR, neat): ~  (cm
-1

) = 3066 (VW), 2927 (VW), 1717 (S), 1504 (VS), 

1361 (M), 1270 (S), 1101 (M), 1020 (M), 834 (M), 759 (M), 733 (M), 688 (M), 650 

(W). 

MS (EI, 70 eV): m/z (%) = 763 (M
+
, 60), 718 (12), 588 (11), 487 (13), 486 (42), 336 

(12), 309 (11), 285 (15), 277 (51), 249 (30), 208 (19), 176 (18), 148 (20), 129 (43), 

104 (100), 77 (17). 
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HRMS (EI): Calcd. for [C45H33N9O4]
+
: 763.2656; found: 763.2656. 
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2.2 Preparation of Functionalized Indazoles 

 

2.2.1 Typical Procedures (TP) 

 

TP1: Typical procedure for the preparation of 2-aryl-2H-indazole derivatives 

(3a-r). 

To a solution of the 2-iodobenzyl chloride derivative (3.0 mmol) in THF (2 mL) in a 

dry and argon-flushed Schlenk-flask was added dropwise a solution of iPrMgCl·LiCl 

(3.2 mmol, 1.8 mL, 1.8 M in THF) at -20 °C. The reaction mixture was stirred for 30 

min at the same temperature. GC-analysis of a quenched reaction aliquot shows full 

conversion. ZnBr2 solution (1.6 mL, 1.6 mmol, 1 M in THF) was added to the 

Grignard reagent at -20 °C and allowed to warm to 25 °C. The solution was stirred for 

20 min at the same temperature. To a solution of diazonium salt (2.0 mmol) in 

NMP/THF (1:1) (4 mL) the diarylzinc species was added dropwise at -40 °C, allowed 

slowly to warm up to 25 °C and stirred for 30 min at 25 °C. The reaction mixture was 

then stirred at 50 °C for 1 h. The reaction mixture was diluted with diethyl ether (5 

mL) and quenched with sat. NH4Cl (aq.) (5 mL). The aqueous layer was extracted 

with CH2Cl2 (3x 20 mL). The combined organic phases were dried over Na2SO4, the 

solvent was removed in vacuo and the residue was subjected to flash column 

chromatography to afford the 2-aryl-2H-indazole derivative. 

 

2.2.2 Preparation of Starting Materials and Functionalized Indazoles 

 

Synthesis of 4-chloromethyl-3-iodo-benzoic acid ethyl ester (75a). 

 

To a solution of 3-iodo-4-methyl-benzoic acid ethyl ester (1.16 g, 4 mmol) in THF 

(10 mL) was added N-bromosuccinimide (783 mg, 4.4 mmol) and dibenzoylperoxid 
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(97 mg, 0.4 mmol). The resulting mixture was refluxed for 9 h. The resulting mixture 

was refluxed for 9 h. Subsequently, the solvent was concentrated in vacuo, filtered 

through a plug of silica and washed with pentane. The solvent was removed in vacuo. 

In a 50 mL round bottom flask the residue was dissolved in THF (15 mL) and LiCl 

(433 mg, 10 mmol) was added. The resulting mixture was refluxed for 4 h. 

Subsequently, the solvent was removed in vacuo. Purification by flash column 

chromatography (silica gel, pentane / EtOAc = 100:1) provided 

4-chloromethyl-3-iodobenzoic acid ethyl ester (75a, 776 mg, 60%) as a white solid. 

m. p. = 79.2-80.4 °C. 

1
H NMR (300 MHz, CDCl3): δ (ppm) = 8.52 (d, J = 1.8 Hz, 1H), 8.04 (dd, J = 1.8 Hz, 

8.1 Hz, 1H), 7.58 (d, J = 8.1 Hz, 1H), 4.70 (s, 2H), 4.41 (q, J = 6.9 Hz, 2H), 1.41 (t, J 

= 6.9 Hz, 3H).  

13
C NMR (75 MHz, CDCl3): δ (ppm) = 164.6, 144.3, 140.7, 131.9, 129.8, 129.8, 98.7, 

61.5, 50.3, 14.3.  

IR (Diamond-ATR, neat): ~ (cm
-1

) = 1708 (VS), 1292 (M), 727 (S).  

MS (EI, 70 eV): m/z (%) = 324 (11), 323 (M
+
, 19), 288 (100), 123 (13). 

HRMS (C10H10ClIO2): Calc.: 323.9414; found: 323.9415 (M
+
).  

 

Synthesis of 1-chloromethyl-4-fluoro-2-iodo-benzene (75b). 

 

To a solution of 4-fluoro-2-iodo-1-methyl-benzene (2.36 g, 10 mmol) in THF (10 mL) 

was added N-bromosuccinimide (1.96 g, 11 mmol) and dibenzoylperoxid (242 mg, 1 

mmol). The resulting mixture was refluxed for 9 h. Subsequently, the solvent was 

concentrated in vacuo, filtered through a plug of silica and washed with pentane. The 

solvent was removed in vacuo. In a 50 mL round bottom flask the residue was 

dissolved in THF (15 mL) and LiCl (693 mg, 16 mmol) was added. The resulting 

mixture was refluxed for 4 h. Subsequently, the solvent was removed in vacuo. 
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Purification by flash column chromatography (silica, pentane) provided 

4-fluoro-3-chloromethyl-2-iodo-benzene (75b, 908 mg, 35%) as colorless oil. 

1
H NMR (300 MHz, CDCl3): δ (ppm) = 7.60 (dd, J = 2.7 Hz, 7.7 Hz, 1H), 7.47 (dd, J 

= 6.0 Hz, 8.6 Hz, 1H), 7.10 (dt, J = 2.7 Hz, 16.8 Hz, 1H), 4.68 (s, 2H).  

13
C NMR (75 MHz, CDCl3): δ (ppm) = 163.4 (d, J = 251.9 Hz), 136.1 (d, J = 3.5 Hz), 

131.1 (d, J = 8.4 Hz), 126.9 (d, J = 23.6 Hz), 116.0 (d, J = 20.9 Hz), 99.0 (d, J = 8.6 

Hz), 50.1 (d, J = 0.6 Hz). 

IR (Diamond-ATR, neat): ~ (cm
-1

) = 1693 (w), 1590 (M), 1225 (M), 863 (S).  

MS (EI, 70 eV): m/z (%) = 269 (M
+
, 12), 234 (37), 155 (12). 

HRMS (C7H5ClFI): Calc.: 269.9109; found: 269.9102 (M
+
).  

 

Synthesis of 1,5-dichloro-3-chloromethyl-2-iodo-benzene (75c)  

 

To a solution of 1,5-dichloro-2-iodo-3-methyl-benzene (2.3 g, 8 mmol) in THF (10 

mL) was added N-bromosuccinimide (1.6 g, 8.8 mmol) and dibenzoylperoxide (194 

mg, 0.8 mmol). The resulting mixture was refluxed for 9 h. Subsequently, the solvent 

was concentrated in vacuo, filtered through a plug of silica and washed with pentane. 

The solvent was removed in vacuo. In a 50 mL round bottom flask the residue was 

dissolved in THF (15 mL) and LiCl (693 mg, 16 mmol) was added. The resulting 

mixture was refluxed for 4 h. Subsequently, the solvent was removed in vacuo. 

Purification by flash column chromatography (silica gel, pentane) provided 

1,5-dichloro-3-chloromethyl-2-iodo-benzene (75c, 716 mg, 54 %) as colorless oil. 

1
H NMR (300 MHz, CDCl3): δ (ppm) = 7.46 (d, J = 2.4 Hz, 1H), 7.41 (d, J = 2.4 Hz, 

1H), 4.71 (s, 2H).  

13
C NMR (75 MHz, CDCl3): δ (ppm) = 143.8, 140.7, 135.2, 128.8, 127.9, 101.4, 

51.6.  

IR (Diamond-ATR, neat): ~ (cm
-1

) = 2362 (S), 1551 (M), 1382 (M), 1266 (W), 1282 

(M), 1017 (S), 862 (M), 811 (M).  



C. Experimental Section 

 111 

MS (EI, 70 eV): m/z (%) = 321 (26), 319 (M
+
, 24), 284 (50), 122 (12). 

HRMS (C7H4Cl3I): Calc.: 319.8423; found: 319.8408 (M
+
).  

 

Synthesis of 2-(4-ethoxycarbonyl-phenyl)-2H-indazole-6-carboxylic acid ethyl 

ester (80a). 

 

According t o TP1, 4-chloromethyl-3-iodo-benzoic acid ethyl ester (75a, 324 mg, 1 

mmol) was converted to the diarylzinc compound and reacted with 

p-(ethoxycarbonyl)benzenediazonium tetrafluoroborate (177 mg, 0.67 mmol). 

Purification by flash chromatograph (silica gel, pentane / EtOAc = 5:1 to 2:1) 

afforded 2-(4-ethoxycarbonyl-phenyl)-2H-indazole-6-carboxylic acid ethyl ester (80a, 

161 mg, 71%) as a pale yellow solid. 

m. p. = 140.6-142.4 °C 

1
H NMR (300 MHz, CDCl3): δ (ppm) = 8.61 (s, 1H), 8.54 (s, 1H), 8.26 (d, J = 8.7 Hz, 

2H), 8.06 (d, J = 8.7 Hz, 2H), 7.70-7.78 (m, 2H), 4.40-4.50 (m, 4H), 1.40-1.45 (m, 

6H).  

13
C NMR (75 MHz, CDCl3): δ (ppm) = 166.7, 165.6, 143.3, 131.2, 130.2, 129.6, 

122.6, 121.8, 120.5, 120.5, 61.4, 61.2, 14.3, 14.3.  

IR (Diamond-ATR, neat): ~ (cm
-1

) = 3068 (VW), 2984 (W), 1697 (VS), 1604 (M), 

1521 (M), 1363 (M), 1257 (S), 1098 (S), 856 (W), 769 (M) , 689 (W). 

MS (EI, 70 eV): m/z (%): = 339 (20), 338 (M
+
, 100), 293 (70), 265 (17), 192 (9). 

HRMS (C19H18N2O4): Calc.: 338.1267, found: 338.1242 (M
+
).  

 

Synthesis of 2-(3-acetylphenyl)-2H-indazole-6-carboxylic acid ethyl ester (80b). 

 

According t o TP1, 4-chloromethyl-3-iodo-benzoic acid ethyl ester (75a, 243 mg, 

0.75 mmol) was converted to the diarylzinc compound and reacted with 

3-(acetyl)benzenediazonium tetrafluoroborate (117 mg, 0.5 mmol). Purification by 
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flash chromatograph (silica gel, pentane / EtOAc = 5:1 to 3:1) afforded 

2-(3-acetyl-phenyl)-2H-indazole-6-carboxylic acid ethyl ester (80b, 104 mg, 68%) as 

a pale yellow solid. 

m. p. = 128.8-130.6 °C 

1
H NMR (300 MHz, CDCl3): δ (ppm) = 8.61 (s, 1H), 8.55 (s, 1H), 8.51 (s, 1H), 8.20 

(d, J = 8.1 Hz, 1H), 8.03 (d, J = 7.8 Hz, 1H), 7.77 (s, 2H), 6.67 (t, J = 8.1 Hz, 1H), 

4.46 (q, J = 7.2 Hz, 2H), 2.72 (s, 3H), 1.45 (t, J = 7.2 Hz, 3H).  

13
C NMR (75 MHz, CDCl3): δ (ppm) = 196.8, 166.8, 149.2, 140.7, 138.5, 130.1, 

129.4, 128.0, 125.3, 124.7, 122.4, 121.7, 120.7, 120.5, 120.3, 61.1, 26.8, 14.4. 

IR (Diamond-ATR, neat): ~ (cm
-1

) = 3341 (VW), 3103 (W), 1707 (VS), 1678 (VS), 

1441 (M), 1368 (M), 1317 (M), 1243 (S), 1060 (M), 795 (M), 741 (M) , 592 (M). 

MS (EI, 70 eV): m/z (%): = 309 (14), 308 (M
+
, 100), 293 (10), 264 (11), 263 (53), 

192 (6). 

HRMS (C18H16N2O3): Calc.: 308.1161, found: 308.1148 (M
+
). 

 

Synthesis of 2-(2-iodophenyl)-2H-indazole-6-carboxylic acid ethyl ester (80c). 

 

According t o TP1, 4-chloromethyl-3-iodo-benzoic acid ethyl ester (75a, 243 mg, 

0.75 mmol) was converted to the diarylzinc compound and reacted with 

o-iodobenzenediazonium tetrafluoroborate (160 mg, 0.5 mmol). Purification by flash 

chromatograph (silica gel, pentane / EtOAc = 5:1) afforded 

2-(2-iodo-phenyl)-2H-indazole-6-carboxylic acid ethyl ester (80c, 177 mg, 90%) as a 

yellow oil. 

1
H NMR (300 MHz, CDCl3): δ (ppm) = 8.60 (s, 1H), 8.22 (s, 1H), 8.01 (d, J = 8.0 Hz, 

1H), 7.72 - 7.84 (m, 2H), 7.41 – 7.61 (m, 2H), 7.09 - 7.35 (m, 1H), 4.42 (q, J = 7.2 Hz, 

2H), 1.42 (t, J = 7.0 Hz, 3H). 

13
C NMR (75 MHz, CDCl3): δ (ppm) = 166.9, 148.6, 143.5, 140.1, 131.1, 129.1, 

129.0, 128.1, 125.2, 123.8, 122.1, 121.8, 120.5, 94.0, 61.1, 14.3. 
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IR (Diamond-ATR, neat): ~ (cm
-1

) = 2980 (W), 1710 (VS), 1504 (M), 1353 (W), 

1314 (W), 1224 (M), 1088 (M), 1021 (W), 948 (W), 746 (M). 

MS (EI, 70 eV): m/z (%): = 393 (21), 392 (M
+
, 100), 346 (48), 218 (19), 192 (27). 

HRMS (C16H13N2O2I): Calc.: 392.0022, found: 392.0034 (M
+
). 

 

Synthesis of 4-(6-fluoro-indazol-2-yl)-benzoic acid ethyl ester (80d). 

 

According to TP1, 1-chloromethyl-4-fluoro-2-iodo-benzene (75b, 406 mg, 1.5 mmol) 

was converted to the diarylzinc compound and reacted with 

p-(ethoxycarbonyl)benzenediazonium tetrafluoroborate (264 mg, 1 mmol). 

Purification by flash chromatograph (silica gel, pentane / EtOAc = 5:1) afforded 

4-(6-fluoro-indazol-2-yl)-benzoic acid ethyl ester (80d, 212 mg, 75%) as a yellow 

solid. 

m. p. = 159.8-161.2 °C 

1
H NMR (300 MHz, CDCl3): δ (ppm) = 8.49 (s, 1H), 8.22 (d, J = 9.0 Hz, 2H) , 7.99 

(d, J = 8.7 Hz, 2H), 7.70 (dd, J = 5.4 Hz, 9.2 Hz, 1H), 7.37 (d, J = 10.2 Hz, 1H), 6.96 

(dt, J = 2.1 Hz, 8.7 Hz, 1H), 4.45 (q, J = 7.2 Hz, 2H), 1.45 (t, J = 7.2 Hz, 3H).  

13
C NMR (75 MHz, CDCl3): δ (ppm) = 165.7, 162.3 (d, J = 244.3 Hz), 150.0 (d, J = 

13.5Hz), 143.3, 131.1, 129.7, 122.4 (d, J = 10.5 Hz), 121.0 (d, J = 1.5 Hz), 120.3, 

120.1, 115.0 (d, J = 28.6 Hz), 101.0 (d, J = 24.0 Hz), 61.35, 14.35. 

IR (Diamond-ATR, neat): ~ (cm
-1

) = 3073 (W), 2986 (W), 1707 (VS), 1639 (M), 

1607 (S), 1370 (M), 1270 (VS), 1101 (VS), 808 (M), 763 (S) , 728 (M).  

MS (EI, 70 eV): m/z (%) = 289 (19), 284 (M
+
, 100), 239 (74), 210 (18), 192 (8). 

HRMS (C16H13FN2O2): Calc.: 284.0961, found: 284.0955 (M
+
) 

 

Synthesis of 4-(5,7-dichloro-indazol-2-yl)-benzoic acid ethyl ester (80e). 
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According to TP1, 1,5-dichloro-3-chloromethyl-2-iodo-benzene (75c, 482 mg, 1.5 

mmol) was converted to the diarylzinc compound and reacted with 

p-(ethoxycarbonyl)benzenediazonium tetrafluoroborate (264 mg, 1 mmol). 

Purification by flash chromatograph (silica gel, pentane / EtOAc = 5:1) afforded 

4-(5,7-dichloro-indazol-2-yl)-benzoic acid ethyl ester (80e, 219 mg, 66%) as a pale 

yellow solid. 

m. p. = 139.6-141.3 °C. 

1
H NMR (300 MHz, CDCl3): δ (ppm) = 8.50 (s, 1H), 8.23 (d, J = 8.7 Hz, 2H), 8.03 (d, 

J = 9.0 Hz, 2H), 7.63 (d, J = 1.8 Hz, 1H), 7.37 (d, J = 1.8 Hz, 1H), 4.45 (q, J = 7.2 Hz, 

2H), 1.45 (t, J = 7.2 Hz, 3H). 

13
C NMR (75 MHz, CDCl3): δ (ppm) = 165.5, 146.2, 142.9, 131.2, 130.4, 128.0, 

127.7, 124.5, 123.8, 121.3, 120.6, 118.0, 61.4, 14.3.  

IR (Diamond-ATR, neat): ~ (cm
-1

) = 2987 (W), 1701 (VS), 1606 (M), 1517 (S), 

1365 (M), 1276 (VS), 850 (S), 765 (S).  

MS (EI, 70 eV): m/z (%) = 335 (18), 334 (M
+
, 100), 288 (41), 226 (14), 191 (5). 

HRMS (C16H12Cl2N2O2): Calc.: 334.0276; found: 334.0280 (M
+
).  
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2.3 Diastereoselective Synthesis of Homoallylic Alcohols with Adjacent Tertiary 

and Quaternary Centers by Using Functionalized Allylic Aluminum Reagents 

 

2.3.1 Typical Procedures (TP) 

 

TP1: Typical procedure for the preparation of allylaluminum reagents (85a-h) 

using the Al/InCl3 method. 

Aluminum powder (1.5 equiv) and InCl3 (1 mol%) were placed in an argon-flushed 

flask and dried for 5 min at 380 °C (heat gun) under high vacuum (1 mbar). The flask 

was evacuated and backfilled with argon three times and THF (2.5 mL / mmol) was 

added. A solution of the corresponding allyl bromide or chloride (1.0 equiv.) in THF 

(2.5 mL / mmol) was added at the appropriate temperature (0-20°C) and the reaction 

mixture was stirred until the conversion of the allyl halide reached >95% (monitored 

by GC-analysis of hydrolyzed reaction aliquots). The remaining aluminum powder 

was allowed to settle down and the allylaluminum reagent is obtained as a clear 

solution. Estimation of the yield was performed by iodometric titration after 

transmetallation with ZnCl2 as follows: To the clear solution of the allylaluminum 

reagent was added ZnCl2 solution (1M in THF, 1.0 equiv.) and the mixture stirred for 

15 minutes at 20°C. The resulting allylzinc solution was added dropwise to a solution 

of iodine (0.5 equiv) in THF (1 mL) until the red colour disappeared. 

 

Typical procedures for preparation of homoallylic alcohols and lactones (87a-u) 

by the addition of allylic aluminum reagents to aldehydes or ketones: 

 

Typical Procedure (TP2): The allylaluminum halides (85a-h) prepared according to 

TP1 were added to a solution of an aldehyde or a ketone in THF at -78 °C and the 

mixture was stirred at this temperature for 1-2 h. After quenching with water (10 mL), 

the reaction mixture was extracted with ether (3 × 30 mL). The combined extracts 

were washed with brine, dried over Na2SO4 and concentrated in vacuo. Purification 

by flash chromatography provided the pure compound. 
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Typical Procedure (TP3): The allylaluminum halides (85a-h) prepared according to 

TP1 were added to a solution of an aldehyde or a ketone in THF at -78 °C and the 

mixture was stirred for 16-24 h warming from -78 °C to 25 °C. After quenching with 

water (10 mL), the reaction mixture was extracted with ether (3 × 30 mL). The 

combined extracts were washed with brine, dried over Na2SO4 and concentrated in 

vacuo. Purification by flash chromatography provided the pure compound. 

 

2.3.2 Preparation of Allylaluminum Reagents (85a-h). 

 

Preparation of 6-chloro-cyclohex-1-enecarboxylic acid ethyl ester (84b): 

 

6-Hydroxy-cyclohex-1-enecarboxylic acid ethyl ester was prepared according to a 

known literature procedure.
86

 Thionyl chloride (2 mL) was slowly added to the 

solution of 6-hydroxy-cyclohex-1-enecarboxylic acid ethyl ester (3.4 g, 20 mmol) in 

benzene (40 mL) at 25 °C. The resulting mixture was stirred for 24 h at 25 °C. After 

the mixture was cooled with ice-bath, water (20 mL) was added slowly. The reaction 

mixture was extracted with diethyl ether (3 × 30 mL). The extracts were washed with 

brine, dried over Na2SO4 and concentrated in vacuo. Purification by flash 

chromatography (eluent: pentane:ether = 1:30) provided the pure compound 84b (3.3 

g, 86%) as colorless oil. 

1
H NMR (300 MHz, CDCl3): δ (ppm) = 7.11 (dd, J = 5.1 Hz, 2.7 Hz, 1H), 5.09-5.04 

(m, 1H), 4.25 (q, J = 7.2 Hz, 2H), 2.49-2.35 (m, 1H), 2.30-2.14 (m, 2H), 2.08-1.66 (m, 

3H), 1.3 (t, J = 7.2 Hz, 3H). 

13
C NMR (75 MHz, CDCl3): δ (ppm) = 165.3, 142.9, 131.4, 60.7, 52.3, 31.3, 25.5, 

15.8, 14.2. 

IR (Diamond-ATR, neat): ~ (cm
-1

) = 3418 (W), 2952 (W), 2361 (W), 1712 (VS), 

1241 (VS), 1062 (S), 761 (S), 660 (M)； MS (EI, 70 eV): m/z (%) = 188 (M
+
, 13), 

160 (11), 152(49), 151 (27), 150 (10),123 (15), 80 (19), 79 (100). 
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HRMS (EI): Calcd. for C9H13ClO2: 188.0604; found: 188.0607. 

 

Preparation of 5-chloro-cyclopent-1-enecarbonitrile (84g): 

 

5-Hydroxy-cyclopent-1-enecarbonitrile was prepared according to a known literature 

procedure.
87 

Thionyl chloride (1 mL) was slowly added to the solution of 

5-hydroxy-cyclopent-1-enecarbonitrile (1.09 g, 10 mmol) in benzene (10 mL) at 

25 °C. The resulting mixture was stirred for 24 h at 25 °C. After the mixture was 

cooled with ice-bath, water (10 mL) was added slowly. The reaction mixture was 

extracted with diethyl ether (3 × 20 mL). The extracts were washed with brine, dried 

over Na2SO4 and concentrated in vacuo. Purification by flash chromatography (eluent: 

pentane:ether = 1:10) provided the pure compound 84g (670 mg, 53%) as pale-yellow 

oil. 

1
H NMR (300 MHz, CDCl3): δ (ppm) = 6.90-6.84 (m, 1H), 5.07-4.98 (m, 1H), 

2.92-2.25 (m, 4H). 

13
C NMR (75 MHz, CDCl3): δ (ppm) = 152.0, 118.0, 114.5, 63.0, 34.5, 32.1. 

IR (Diamond-ATR, neat): ~ (cm
-1

) = 3317 (W), 2947 (W), 2228 (M), 1737 (S), 1442 

(M), 1325 (M), 1233 (M), 1013 (VS), 881 (S), 811 (S), 718 (VS), 645 (S). 

MS (EI, 70 eV): m/z (%) = 127 (M
+
, 9), 92 (7), 91 (100), 64 (32). 

HRMS (EI): Calcd. for C6H6ClN: 127.0189; found: 127.0181. 

 

Preparation of 2-cyclohexenylaluminum bromide (85a): 

 

According to the typical procedure (TP1), aluminum powder (81 mg, 3 mmol) and 

InCl3 (4.4 mg, 0.02 mmol) were placed in an argon-flushed flask and dried for 5 min 

at 380 °C (heat gun) under high vacuum (1 mbar). The flask was evacuated and 
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backfilled with argon three times and THF (5 mL) was added. A solution of 

3-bromo-1-cyclohexene (84a, 322 mg, 2 mmol) in THF (5 mL) was added with a 

syringe pump within 1 h at 0 °C and the resulting solution was stirred at 0 °C for 1 h. 

The insertion reaction was monitored by GC analysis of hydrolyzed reaction aliquots. 

Yield determined by iodometric titration after transmetallation with ZnCl2: 82%. 

 

Preparation of 2-enecarboxylic acid ethyl ester-6-cyclohexenylaluminum chloride 

(85b): 

 

According to the typical procedure (TP1), aluminum powder (81 mg, 3 mmol) and 

InCl3 (4.4 mg, 0.02 mmol) were placed in an argon-flushed flask and dried for 5 min 

at 380 °C (heat gun) under high vacuum (1 mbar). The flask was evacuated and 

backfilled with argon three times and THF (2 mL) was added. A solution of 6-chloro 

cyclohex-1-enecarboxylic acid ethyl ester (84b, 377 mg, 2 mmol) in THF (2 mL) was 

added at 25 °C and the resulting solution was stirred at 25 °C for 16 h. The insertion 

reaction was monitored by GC analysis of hydrolyzed reaction aliquots. Yield: 77%. 

 

Preparation of 2-enecarboxylic acid ethyl ester-5-cyclopentenylaluminum 

chloride (85c): 

 

According to the typical procedure (TP1), aluminum powder (81 mg, 3 mmol) and 

InCl3 (11 mg, 0.05 mmol) were placed in an argon-flushed flask and dried for 5 min at 

380 °C (heat gun) under high vacuum (1 mbar). The flask was evacuated and 

backfilled with argon three times and THF (1 mL) was added. A solution of 

5-chloro-cyclopent-1-enecarboxylic acid ethyl ester (84c, 174 mg, 1 mmol) in THF 

(0.5 mL) was added at 25 °C and the resulting solution was stirred at 25 °C for 16 h. 
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The insertion reaction was monitored by GC analysis of hydrolyzed reaction aliquots. 

Yield: 60%. 

 

Preparation of cinnamylaluminum chloride (85d): 

 

According to the typical procedure (TP1), aluminum powder (81 mg, 3 mmol) and 

InCl3 (4.4 mg, 0.02 mmol) were placed in an argon-flushed flask and dried for 5 min 

at 380 °C (heat gun) under high vacuum (1 mbar). The flask was evacuated and 

backfilled with argon three times and THF (2 mL) was added. A solution of cinnamyl 

chloride (84d, 305 mg, 2 mmol) in THF (2 mL) was added at 25 °C and the resulting 

solution was stirred at 25 °C for 2 h. The insertion reaction was monitored by GC 

analysis of hydrolyzed reaction aliquots. Yield: 73%. 

 

Preparation of 3-methoxycinnamylaluminum chloride (85e): 

 

According to the typical procedure (TP1), aluminum powder (81 mg, 3 mmol) and 

InCl3 (4.4 mg, 0.02 mmol) were placed in an argon-flushed flask and dried for 5 min 

at 380 °C (heat gun) under high vacuum (1 mbar). The flask was evacuated and 

backfilled with argon three times and THF (2 mL) was added. A solution of 

1-(3-chloro-propenyl)-3-methoxy-benzene (84e, 364 mg, 2 mmol) in THF (2 mL) was 

added at 25 °C and the resulting solution was stirred at 25 °C for 11 h. The insertion 

reaction was monitored by GC analysis of hydrolyzed reaction aliquots. Yield: 71%. 

 

Preparation of cinnamylaluminum phosphate (85f): 
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According to the typical procedure (TP1), aluminum powder (81 mg, 3 mmol) and 

InCl3 (4.4 mg, 0.02 mmol) were placed in an argon-flushed flask and dried for 5 min 

at 380 °C (heat gun) under high vacuum (1 mbar). The flask was evacuated and 

backfilled with argon three times and THF (2 mL) was added. A solution of the 

cinnamyl phosphate (84f, 540 mg, 2 mmol) in THF (2 mL) was added at 25 °C and 

the resulting solution was stirred at 25 °C for 12 h. The insertion reaction was 

monitored by GC analysis of hydrolyzed reaction aliquots. Yield: 70%. 

 

Preparation of 2-cyano-5-cyclopentenylaluminum chloride (85g): 

 

According to the typical procedure (TP1), aluminum powder (41 mg, 1.5 mmol) and 

InCl3 (44 mg, 0.2 mmol) were placed in an argon-flushed flask and dried for 5 min at 

380 °C (heat gun) under high vacuum (1 mbar). The flask was evacuated and 

backfilled with argon three times and THF (1 mL) was added. A solution of 

5-chloro-cyclopent-1-enecarbonitrile (84g, 127 mg, 1 mmol) in THF (1 mL) was 

added at 25 °C and the resulting solution was stirred at 25 °C for 24 h. The insertion 

reaction was monitored by GC analysis of hydrolyzed reaction aliquots. Yield: 

ca.60%. 

 

Preparation of β-silyl-substituted crotylaluminum (85h): 

 

According to the typical procedure (TP1) aluminum powder (41 mg, 1.5 mmol) and 

InCl3 (7 mg, 0.03 mmol) were placed in an argon-flushed flask and dried for 5 min at 

380 °C (heat gun) under high vacuum (1 mbar). The flask was evacuated and 

backfilled with argon three times and THF (2 mL) was added. A solution of 
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β-silyl-substituted crotyl chloride (84h, 163 mg, 1 mmol) in THF (1 mL) was added at 

25 °C and the resulting solution was stirred at 25 °C for 36 h. The insertion reaction 

was monitored by GC analysis of hydrolyzed reaction aliquots. Yield: 73%. 

 

2.3.3 Preparation of Homoallylic Alcohols and Lactones (87a-u) 

 

Synthesis of 1-(4-bromo-phenyl)-1-cyclohex-2-enyl-ethanol (87a): 

 

The allylaluminum reagent 85a (10 mL) was added to a solution of 

4
´
-bromoacetophenone (86a, 279 mg, 1.4 mmol) in THF (1.5 mL) according to TP2. 

Purification by flash chromatography (eluent: pentane:ether = 10:1) provides the pure 

compound 87a (384 mg, 97%) as colourless oil. dr > 99:1. 

1
H NMR (300 MHz, CDCl3): δ (ppm) = 7.44 (d, J = 8.8 Hz, 2H), 7.29 (d, J = 8.8 Hz, 

2H), 5.98 - 5.89 (m, 1H), 5.76 (d, J = 10.5 Hz, 1H), 2.55 – 2.46 (m, 1H), 1.98 – 1.89 

(m, 2H), 1.81 (s, 1H), 1.75 – 1.65 (m, 1H), 1.56 (s, 3H), 1.48 – 1.14 (m, 3H). 

13
C NMR (75 MHz, CDCl3): δ (ppm) = 146.2, 132.2, 130.9, 127.2, 125.9, 120.3, 75.8, 

46.4, 28.0, 25.1, 24.3, 21.8. 

IR (Diamond-ATR, neat): ~ (cm
-1

) = 3435 (S, br.), 2930 (W), 1484 (M), 1393 (M), 

1072 (S), 1007 (VS), 829 (M), 720 (M). 

MS (EI, 70 eV): m/z (%) = 280 (M
+
, 6), 200 (96), 198 (100), 183 (17), 80 (23). 

HRMS (EI): Calcd. for C14H17BrO: 280.0463; found: 280.0258. Spectral data 

matching those reported in the literature.
93, 31 

 

Synthesis of 4-(1-cyclohex-2-enyl-1-hydroxy-ethyl)-benzoic acid methyl ester 

(87b): 

 

The allylaluminum reagent 85a (10 mL) was added to a solution of methyl 

4-acetylbenzoate (86b, 250 mg, 1.4 mmol) in THF (1.5 mL) according to TP2. 
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Purification by flash chromatography (eluent: pentane:ether = 9:1) provides the pure 

compound 87b (372 mg, 97%) as a white solid. dr > 99:1. 

m. p. = 63.0 – 64.5 °C. 

1
H NMR (300 MHz, CDCl3): δ (ppm) = 7.99 (d, J = 8.5 Hz, 2 H), 7.49 (d, J = 8.5 Hz, 

2 H), 5.99 - 5.91 (m, 1 H), 5.79 (d, J = 10.5 Hz, 1 H), 3.90 (s, 3 H), 2.61 – 2.50 (m, 1 

H), 1.99  – 1.89 (m, 2 H), 1.81 (s, 1 H), 1.77 – 1.63 (m, 1 H), 1.60 (s, 3 H), 1.51 – 

1.15 (m, 3 H). 

13
C NMR (75 MHz, CDCl3): δ (ppm) = 167.1, 152.5, 132.1, 129.3, 128.3, 125.7, 

125.3, 76.0, 52.0, 46.4, 27.9, 25.1, 24.3, 21.8. 

IR (Diamond-ATR, neat): ~  cm
-1

) = 3506 (M), 2946 (W), 1696 (VS), 1279 (VS), 

1112 (M), 711 (M). 

MS (EI, 70 eV): m/z (%) = 261(1), 179 (100), 137 (8), 77 (5). 

HRMS (EI): Calcd. for [C16H20O3 + H]
+
: 261.1491; found: 261.1491 [C16H20O3 + 

H]
+
. 

 

Synthesis of 1-cyclohex-2-enyl-1-(4-nitro-phenyl)-ethanol (87c): 

 

 

The allylaluminum reagent 85a (10 mL) was added to a solution of 

1-(4-nitrophenyl)ethanone (86c, 231 mg, 1.4 mmol) in THF (1.5 mL) according to 

TP2. Purification by flash chromatography (eluent: pentane:ether = 9:1) provides the 

pure compound 87c (329 mg, 95%) as a yellow oil. dr > 99:1. 

1
H NMR (300 MHz, C6D6): δ (ppm) = 7.85 - 7.80 (m, 2H), 7.07 – 7.02 (m, 2H), 5.75 

- 5.68 (m, 1H), 5.54 – 5.48 (m, 1H), 2.17 – 2.08 (m, 1H), 1.76 – 1.60 (m, 1H), 1.50 – 

1.42 (m, 1H), 1.26 (s, 1H), 1.24 – 1.15 (m, 1H), 1.12 (s, 3H), 1.09 – 1.04 (m, 2H). 

13
C NMR (75 MHz, C6D6): δ (ppm) = 154.0, 146.5, 131.8, 125.9, 125.4, 122.7, 75.2, 

46.0, 27.5, 24.9, 24.0, 21.6. 

IR (Diamond-ATR, neat): ~  (cm
-1

) = 3548 (W), 3028 (VW), 2974 (W), 2932 (W), 

2860 (W), 2838 (W), 1600 (M), 1512 (VS), 1492 (M), 1448 (W), 1434 (W), 1408 (W), 
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1374(W), 1342 (VS), 1264 (W), 1232 (W), 1182 (W), 1142 (W), 1102 (M), 1078 (M), 

1064 (M), 1046 (W), 1014 (W), 942 (W), 926 (VW), 906 (W), 894 (W), 880 (M), 

852 (S), 770 (W), 756 (W), 740 (W),724 (M), 704 (S), 678 (W). 

MS (EI, 70 eV): m/z (%) = 248 (M
+
, 1), 166 (100), 150 (10), 120 (7). 

HRMS (EI): Calcd. for [C14H17NO3 + H]
+
: 248.1287; found: 248.1276 [C14H17NO3 + 

H]
+
. 

 

Synthesis of (2-amino-5-chloro-phenyl)-cyclohex-2-enyl-methanol (87d): 

 

The allylaluminum reagent 85a (10 mL) was added to a solution of 

2-amino-5-chloro-benzaldehyde (86d, 218 mg, 1.4 mmol) in THF (1.5 mL) according 

to TP2. Purification by flash chromatography (eluent: pentane:ether = 2:1) provides 

the pure compound 87d (315 mg, 95%) as a white solid. dr > 99:1. 

m. p. = 114.1 - 115.8 °C. 

1
H NMR (400 MHz, C6D6): δ (ppm) = 6.99 (s, 1H), 6.92 (d, J = 7.6 Hz, 1H), 5.98 (d, 

J = 8.4 Hz, 1H), 5.59-5.47  (m, 1H), 5.22-5.08 (m, 1H), 3.94 (d, J = 8.6 Hz, 1H), 

3.71 – 3.26 (bs, 2H), 2.68 – 2.51 (m, 1H), 1.88 – 1.22 (m, 6H). 

13
C NMR (100 MHz, C6D6): δ (ppm) = 143.7, 129.4, 128.5, 128.0, 127.9, 127.7, 

122.1, 117.5, 77.0, 38.9, 25.1, 25.0, 20.6. 

IR (Diamond-ATR, neat): ~ (cm
-1

) = 3358（W）, 3159 (W), 2919 (VW), 1604 (W), 

1487.5 (M), 1420 (W), 826.5 (VS), 693.4 (S), 667.4 (M), 642.2 (S). 

MS (EI, 70 eV): m/z (%) = 237 (M
+
, 3), 220 (4), 158 (29), 156 (100), 93 (29). 

HRMS (EI): Calcd. for C13H16ClNO: 237.0920; found: 237.0915. 

 

Synthesis of 3-(4-bromophenyl)-3-methyl-3a,4,5,6-tetrahydro-3H-

isobenzofuran-1-one (87e): 
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The allylaluminum reagent 85b (2 mL) was added to a solution of 

4
´
-bromoacetophenone (86a, 140 mg, 0.7 mmol) according to TP3. Purification by 

flash chromatography (eluent: pentane:ether = 5:1) provides the pure compound 87e 

(172 mg, 81%) as colourless oil. dr > 99:1. 

1
H NMR (300 MHz, CDCl3): δ (ppm) = 7.44 (d, J = 8.8 Hz, 2H), 7.00 (d, J = 8.8 Hz, 

2H), 6.83 (q, J = 3.3 Hz, 1H), 2.96-2.85 (m, 1H), 2.32-2.17 (m, 1H), 2.08-1.88 (m, 

1H), 1.86 (s, 3H), 1.85 -1.70 (m, 2H), 1.58 -1.39 (m, 1H), 0.51 – 0.34 (m, 1H). 

13
C NMR (75 MHz, CDCl3): δ (ppm) = 170.0, 140.2, 137.5, 131.4, 129.6, 126.9, 

121.8, 87.5, 48.4, 27.8, 24.8, 24.5, 20.9. 

IR (Diamond-ATR, neat): ~ (cm-1) = 2925 (W), 1755 (VS), 1239 (M), 1031 (S), 921 

(M), 752 (M), 725 (W). 

MS (EI, 70 eV): m/z (%) = 306 (M+, 2), 182 (5), 108 (100). 

HRMS (EI): Calcd. for C15H15BrO2: 306.0255; found: 306.0244. 

 

Synthesis of 4-(3-oxo-1,3,5,6,7,7a-hexahydro-isobenzofuran-1-yl) benzoic acid 

methyl ester (87f): 

                                

The allylaluminum reagent 84b (4 mL) was added to a solution of 4-formyl-benzoic 

acid methyl ester (86e, 230 mg, 1.4 mmol) in THF (1.5 mL) according to TP3. 

Purification by flash chromatography (eluent: pentane:ether = 3:1) provides the pure 

compound 87f (297 mg, 78%) as a white solid. dr > 99:1. 

m. p. = 171.3 – 173.3 °C. 

1
H NMR (300 MHz, CDCl3): δ (ppm) = 8.01 (d, J = 8.3 Hz, 2H), 7.16 (d, J = 8.3 Hz, 



C. Experimental Section 

 125 

2H), 6.95 (q, J = 3.3 Hz, 1H), 5.76 (d, J = 9.2 Hz, 1H), 3.91 (s, 3H), 3.41-3.27 (m, 

1H), 2.37-2.23 (m, 1H), 2.13 -1.94 (m, 1H), 1.85 -1.63 (m, 2H), 1.63 -1.42 (m, 1H), 

0.49 – 0.30 (m, 1H). 

13
C NMR (75 MHz, CDCl3): δ (ppm) = 170.2, 166.5, 142.4, 138.4, 130.1, 129.7, 

127.7, 125.6, 81.8, 52.2, 40.8, 24.9, 24.1, 20.8. 

IR (Diamond-ATR, neat): ~ (cm
-1

) = 2956 (W), 1762 (S), 1715 (VS), 1292 (VS), 

1182 (M), 990 (M), 759 (M). 

MS (EI, 70 eV): m/z (%) = 272 (M
+
, 1), 241 (7), 108 (100), 80 (21), 79 (26). 

HRMS (EI): Calcd. for C16H16O4: 272.1049; found: 272.1046. 

 

Synthesis of 4-(3-oxo-1,3,5,6,7,7a-hexahydro-isobenzofuran-1-yl)benzonitrile 

(87g): 

 

The allylaluminum reagent 85b (4 mL) was added to a solution of  

4-formyl-benzonitrile (86f, 184 mg, 1.4 mmol) in THF (1.5 mL) according to TP3. 

Purification by flash chromatography (eluent: pentane:ether = 2:1) provides the pure 

compound 87g (291 mg, 87%) as a white solid. dr > 99:1. 

m. p. = 153.2 – 155.0 °C. 

1
H NMR (300 MHz, CDCl3): δ (ppm) = 7.65 (d, J = 8.8 Hz, 2H), 7.21 (d, J = 8.8 Hz, 

2H), 6.97 (q, J = 3.4 Hz, 1H), 5.75 (d, J = 9.2 Hz, 1H), 3.43-3.29 (m, 1H), 2.39-2.25 

(m, 1H), 2.15-1.97 (m, 1H), 1.89 -1.69 (m, 2H), 1.65 -1.45 (m, 1H), 0.46 – 0.29 (m, 

1H). 

13
C NMR (75 MHz, CDCl3): δ (ppm) = 169.9, 142.7, 138.9, 132.3, 127.2, 126.3, 

118.3, 112.2, 81.2, 40.7, 24.9, 24.1, 20.8. 

IR (Diamond-ATR, neat): ~ (cm
-1

) = 2959 (W), 1751 (VS), 1029 (M), 990 (M), 856 

(M). 

MS (EI, 70 eV): m/z (%) = 240 (2), 239 (M
+
, 0.4), 166 (2), 140 (5), 130 (7), 108 
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(100). 

HRMS (EI): Calcd. for C15H13NO2: 239.0946; found: 239.0953. 

 

Synthesis of 4-(1-methyl-3-oxo-1,3,5,6,7,7a-hexahydro-isobenzofuran-1-yl)- 

benzonitrile (87h): 

 

The allylaluminum reagent 85b (4 mL) was added to a solution of 

4-acetylbenzonitrile (86g, 203 mg, 1.4 mmol) in THF (1.5 mL) according to TP3. 

Purification by flash chromatography (eluent: pentane:ether = 1:1) provides the pure 

compound 87h (281 mg, 79%) as a white solid. dr > 98:2. 

m. p. = 165.4 – 167.3 °C. 

1
H NMR (300 MHz, CDCl3): δ (ppm) = 7.62 (d, J = 8.3 Hz, 2H), 7.27 (d, J = 8.3 Hz, 

2H), 6.94 (q, J = 3.4 Hz, 1H), 3.03-2.89 (m, 1H), 2.33-2.17 (m, 1H), 2.08-1.93 (m, 

1H), 1.90(s, 3H), 1.87 -1.74 (m, 2H), 1.61 -1.40 (m, 1H), 0.45 – 0.25 (m, 1H). 

13
C NMR (75 MHz, CDCl3): δ (ppm) = 169.6, 146.4, 138.0, 132.1, 129.1, 126.1, 

118.4, 111.7, 87.2, 48.4, 27.7, 24.8, 24.5, 20.9. 

IR (Diamond-ATR, neat): ~ (cm
-1

) = 2943 (W), 2226 (W), 1756 (VS), 1679 (W), 

1401 (W), 1252 (S), 1240 (VS), 1032 (VS), 1015 (M), 923 (M), 844 (S), 736 (S). 

MS (EI, 70 eV): m/z (%) = 253 (0.5), 189 (0.6), 165 (1), 129 (6), 116 (1), 109 (8), 

108 (100). 

HRMS (EI): Calcd. for C16H15NO2: 253.1103; found: 253.1093. 

 

4-[1-(2-ethoxycarbonyl-cyclopent-2-enyl)-1-hydroxy-ethyl]-benzoic acid methyl 

ester (87i): 

 

The allylaluminum reagent 85c (1.5 mL) was added to a solution of methyl 



C. Experimental Section 

 127 

4-acetylbenzoate (86b, 107 mg, 0.6 mmol) in THF (1 mL) according to TP3. 

Purification by flash chromatography (eluent: pentane:ether = 4:1) provides the pure 

compound 87i (134 mg, 70%) as colourless oil. dr > 98:2. 

1
H NMR (300 MHz, CDCl3): δ (ppm) = 7.93 (d, J = 8.5 Hz, 2H), 7.47 (d, J = 8.5 Hz, 

2H), 6.77 (q, J = 1.8 Hz, 1H), 4.21 (dd, J = 7.1 Hz, 3.9 Hz, 2H), 3.90 (s, 3H),  

3.47-3.36 (m, 1H), 2.22-2.03 (m, 2H), 2.01-1.78 (m, 2H), 1.65 (s, 3H), 1.29 (t, J = 7.2 

Hz, 3H). 

13
C NMR (75 MHz, CDCl3): δ (ppm) = 167.6, 167.1, 151.2, 148.9, 136.4, 128.9, 

128.4, 125.9, 76.9, 61.1, 56.3, 51.9, 31.8, 28.8, 27.7, 14.2. 

IR (Diamond-ATR, neat): ~ (cm
-1

) = 3409 (br), 2978 (W), 2950 (W),1711 (VS), 

1680 (VS), 1609 (W), 1434 (W), 1275 (VS), 1192 (M), 1097 (S), 1016 (M), 861 (M), 

756 (M), 710 (M). 

MS (EI, 70 eV): m/z (%) = 287 (4) 279 (3), 241 (6), 179 (56), 163 (9), 140 (100), 112 

(30). 

HRMS (ESI): Calcd. for [C18H22O5 - OH]
+
 : 301.1440; found: 301.1433 [C18H22O5 - 

OH]
+
. 

 

Synthesis of 5-[1-(4-bromo-phenyl)-1-hydroxy-ethyl]-cyclopent-1-enecarboxylic 

acid ethyl ester (87j): 

            

The allylaluminum reagent 85c (1.5 mL) was added to a solution of 

4
´
-bromoacetophenone (86a, 119 mg, 0.6 mmol) in THF (1 mL) according to TP3. 

Purification by flash chromatography (eluent: pentane:ether = 10:1) provides the pure 

compound 87j (144 mg, 71%) as a white solid. dr > 98:2. 

m. p. = 75.1 – 76.6 °C. 

1
H NMR (300 MHz, CDCl3): δ (ppm) = 7.38 (d, J = 8.5 Hz, 2H), 7.26 (d, J = 8.5 Hz, 

2H), 6.79 (q, J = 2.2 Hz, 1H), 4.22 (dd, J = 7.2 Hz, 3.3 Hz, 2H), 3.43-3.35 (m, 1H), 

2.23-2.02 (m, 2H), 1.97-1.80 (m, 2H), 1.61 (s, 3H), 1.30 (t, J = 7.2 Hz, 3H). 

13
C NMR (75 MHz, CDCl3): δ (ppm) = 167.7, 148.8, 144.9, 136.5, 130.6, 127.8, 
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120.6, 76.6, 61.1, 56.3, 31.8, 28.9, 27.8, 14.2. 

IR (Diamond-ATR, neat): ~ (cm
-1

) = 3404 (W), 2976 (W), 1707 (S), 1679 (S), 1254 

(M), 1096 (S), 1006 (S), 827 (M), 757 (S). 

MS (EI, 70 eV): m/z (%) = 361 (87),323 (92), 277 (28), 164 (6). 

HRMS (ESI): Calcd. for [C16H19BrO3 + Na]
+
: 361.0415; found: 361.0410 

[C16H19BrO3 + Na]
+
. 

 

Synthesis of 2-(4-bromo-phenyl)-3-phenyl-pent-4-en-2-ol (87k): 

 

The allylaluminum reagent 85d (4 mL) was added to a solution of 

4
´
-bromoacetophenone (86a, 279 mg, 1.4 mmol) in THF (1.5 mL) according to TP3. 

Purification by flash chromatography (eluent: pentane:ether = 10:1) provides the pure 

compound 87k (440 mg, 99%) as colourless oil. dr > 98:2. 

1
H NMR (300 MHz, CDCl3): δ (ppm) = 7.42 (d, J = 8.5 Hz, 2H), 7.32-7.05 (m, 7H), 

6.19-6.05 (m, 1H), 5.08 (d, J = 10.3 Hz, 1H), 4.96 (d, J = 17.2 Hz, 1H), 3.58 (d, J = 

8.8 Hz, 1H), 1.95 (br s, 1H), 1.43 (s, 3H). 

13
C NMR (75 MHz, CDCl3): δ (ppm) = 145.6, 139.9, 137.1, 130.9, 129.6, 128.3, 

127.6, 127.0, 120.7, 118.4, 76.2, 61.9, 28.5. 

IR (Diamond-ATR, neat): ~ (cm
-1

) = 3353 (W), 2974 (W), 1485 (M), 1075 (M), 1007 

(M), 738 (M), 701 (VS). 

MS (EI, 70 eV): m/z (%) = 334 (39), 283 (100), 255 (55), 227 (5), 117 (2). 

HRMS (ESI): Calcd. for [C17H17BrO + NH4]
+
: 334.0807; found: 334.0801 

[C17H17BrO + NH4]
+
. 

 

Synthesis of 4-(1-hydroxy-1-methyl-2-phenyl-but-3-enyl)benzoic acid methyl 

ester (87l): 

 

The allylaluminum reagent 85d (4 mL) was added to a solution of methyl 
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4-acetylbenzoate (86b, 250 mg, 1.4 mmol) in THF (1.5 mL) according to TP2. 

Purification by flash chromatography (eluent: pentane:ether = 8:1) provides the pure 

compound 87l (455 mg, 99%) as a white solid. dr > 96:4. 

m. p. = 89.4 – 90.7 °C; 
1
H NMR (300 MHz, CDCl3): δ (ppm) = 7.96 (d, J = 8.6 Hz, 

2H), 7.41 (d, J = 8.6 Hz, 2H), 7.29-7.22 (m, 3H), 7.15-7.10 (m, 2H), 6.14-6.07 (m, 

1H), 5.04 (d, J = 10.3 Hz, 1H), 4.92 (d, J = 17.2 Hz, 1H), 3.90 (s, 3H), 3.61 (d, J = 8.8 

Hz, 1H), 2.05 (br s, 1H), 1.45 (s, 3H). 

13
C NMR (75 MHz, CDCl3): δ (ppm) = 167.0, 151.6, 139.7, 136.8, 129.5, 129.1, 

128.4, 128.2, 126.9, 125.6, 118.4, 76.3, 61.8, 52.0, 28.3. 

IR (Diamond-ATR, neat): ~ (cm
-1

) = 3512 (W), 2974 (W), 2362 (W), 1698 (VS), 

1274 (VS), 1101 (M), 916 (M), 699 (VS). 

MS (EI, 70 eV): m/z (%) = 314(9), 248 (12). 

HRMS (ESI): Calcd. for [C19H20O3 + NH4]
+
: 314.1756; found: 314.1751 [C19H20O3 + 

NH4]
+
. 

 

Synthesis of 4-(1-hydroxy-1-methyl-2-phenyl-but-3-enyl)-benzonitrile (87m): 

 

The allylaluminum reagent 85d (4 mL) was added to a solution of 

4-acetylbenzonitrile (86g, 203 mg, 1.4 mmol) in THF (1.5 mL) according to TP2. 

Purification by flash chromatography (eluent: pentane:ether = 6:1) provides the pure 

compound 87m (363 mg, 98%) as a white solid. dr > 94:6. 

m. p. = 101 – 102 °C. 

1
H NMR (300 MHz, CDCl3): δ (ppm) = 7.58 (d, J = 8.8 Hz, 2H), 7.45 (d, J = 8.8 Hz, 

2H), 7.32-7.23 (m, 3H), 7.13-7.10 (m, 2H), 6.13-6.06 (m, 1H), 5.05 (d, J = 10.4 Hz, 

1H), 4.93 (d, J = 17.3 Hz, 1H), 3.56 (d, J = 9.1 Hz, 1H), 2.09 (br s, 1H), 1.44 (s, 3H). 

13
C NMR (75 MHz, CDCl3): δ (ppm) = 151.8, 139.3, 136.5, 131.6, 129.4, 128.4, 

127.2, 126.5, 118.9, 118.7, 110.4, 76.2, 61.8, 28.2. 

IR (Diamond-ATR, neat): ~ (cm
-1

) = 3475 (W), 2981 (W), 2231 (W), 1606 (W), 

1367 (W), 922 (S), 839 (M), 716 (S), 696 (VS), 669 (M). 
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MS (EI, 70 eV): m/z (%) = 281 (100), 249 (8). 

HRMS (ESI): Calcd. for [C18H17NO + NH4]
+
: 281.1654; found: 281.1648 [C18H17NO 

+ NH4]
+
. 

 

Synthesis of 4-[1-hydroxy-2-(3-methoxy-phenyl)-but-3-enyl] benzonitrile (87n): 

                    

The allylaluminum reagent 85e (4 mL) was added to a solution of 

4-cyanobenzaldehyde (86f, 184 mg, 1.4 mmol) in THF (1.5 mL) according to  TP2. 

Purification by flash chromatography (eluent: pentane:ether = 2:1) provides the pure 

compound 87n (371 mg, 95%) as a white solid. dr > 97:3. 

m. p. = 97.1 – 98.5 °C. 

1
H NMR (400 MHz, DMSO-d6): δ (ppm) = 7.66 (d, J = 8.4 Hz, 2H), 7.41 (d, J = 8.4 

Hz, 2H), 7.11 (t, J = 7.9Hz, 1H), 6.75 (d, J = 7.4 Hz, 2H), 6.71-6.67 (m, 1H), 

6.26-6.15 (m, 1H), 5.66 (d, J = 5.1 Hz, 1H), 5.01 (dd, J = 10.3 Hz, 2.1 Hz, 1H), 

4.93-4.82 (m, 2H), 3.66 (s, 3H), 3.54-3.48 (m, 1H). 

13
C NMR (100 MHz, DMSO-d6): δ (ppm) = 159.4, 150.7, 143.7, 138.5, 131.9, 129.4, 

128.1, 121.2, 119.4, 117.1, 114.7, 111.9, 109.7, 75.8, 57.7, 55.3. 

IR (Diamond-ATR, neat): ~ (cm
-1

) = 3476 (M), 2873 (W), 2234 (W), 1605 (M), 1581 

(M), 1454 (W), 1274 (M), 1224 (M), 1048 (M), 752 (S).  

MS (EI, 70 eV): m/z (%) = 297 (100), 108 (1). 

HRMS (ESI): Calcd. for [C18H17NO2 + NH4]
+
: 297.1603; found: 297.1597 

[C18H17NO2 + NH4]
+
. 

 

Synthesis of 2-(4-bromo-phenyl)-3-(3-methoxy-phenyl)-pent-4-en-2-ol (87o): 

 

The allylaluminum reagent 85e (4 mL) was added to a solution of 
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4
´
-bromoacetophenone (86a, 274 mg, 1.4 mmol) in THF (1.5 mL) according to  TP2. 

Purification by flash chromatography (eluent: pentane:ether = 9:1) provides the pure 

compound 87o (359 mg, 74%) as colourless oil. dr > 92:8. 

1
H NMR (400 MHz, DMSO-d6): δ (ppm) = 7.44 (d, J = 8.4 Hz, 2H), 7.38 (d, J = 8.4 

Hz, 2H), 7.15 (t, J = 7.9 Hz, 1H), 6.89-6.84 (m, 2H), 6.77-6.72 (m, 1H), 6.09-6.98 (m, 

1H), 5.17 (s, 1H), 4.76 (dd J = 10.1 Hz,  2.1 Hz, 1H), 4.61 (dd J = 17.2 Hz, 1.9 Hz, 

1H), 3.69 (s, 3H), 3.52 (d, J = 9.2 Hz, 1H), 1.22 (s, 3H). 

13
C NMR (100 MHz, DMSO-d6): δ (ppm) = 159.0, 148.7, 143.4, 139.1, 130.6, 128.9, 

128.5, 122.5, 119.5, 116.5, 115.9, 111.8, 75.6, 61.2, 55.2, 29.1. 

IR (Diamond-ATR, neat): ~ (cm
-1

) = 3493 (W), 2973 (W), 1597 (M), 1581 (M), 1484 

(M), 1260 (M), 1074 (M), 1006 (S), 763 (S). 

MS (EI, 70 eV): m/z (%) = 364 (100), 355 (14), 177 (30). 

HRMS (ESI): Calcd. for [C18H19BrO2 + NH4]
+
: 364.0912; found: 364.0907 

[C18H19BrO2 + NH4]
+
. 

 

Synthesis of 2-cyclohexyl-3-phenyl-pent-4-en-2-ol (87p): 

 

The allylaluminum reagent 85f (4 mL) was added to a solution of 

1-cyclohexylethanone (86h, 177 mg, 1.4 mmol) in THF (1.5 mL) according to TP2. 

Purification by flash chromatography (eluent: pentane:ether = 10:1) provides the pure 

compound 87p (212 mg, 62%) as colourless oil. dr > 97:3. 

1
H NMR (300 MHz, CDCl3): δ (ppm) = 7.37-7.21 (m, 5H), 6.37 (dt, J = 17.3 Hz, 9.8 

Hz, 1H), 5.18 (dd, J = 10.2 Hz, 1.9 Hz, 1H), 5.10 (dd, J = 17.2 Hz, 1.9 Hz, 1H), 3.46 

(d, J = 9.7 Hz, 1H), 2.06-1.58 (m, 6H), 1.58-0.94 (m, 6H), 0.91 (s, 3H). 

13
C NMR (75 MHz, CDCl3): δ (ppm) = 141.9, 137.9, 129.5, 128.3, 126.5, 116.8, 75.7, 

57.3, 44.6, 27.8, 26.8, 26.7, 21.5.  

IR (Diamond-ATR, neat): ~ (cm
-1

) = 2930 (W), 2252 (W), 1452 (W), 902 (S), 723 

(VS), 649 (M). 

MS (EI, 70 eV): m/z (%) =  226 (4), 128 (9), 127 (75), 118 (8), 115 (9), 109 (41), 83 
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(74), 43 (13). 

HRMS (EI): Calcd. for [C17H24O - H2O]
+
: 226.1721; found: 226.1701 [C17H24O - 

H2O]
+
. Spectral data matching those reported in the literature.

 93, 31 

 

Synthesis of 2,3-dimethyl-4-phenyl-hex-5-en-3-ol (87q): 

 

The allylaluminum reagent 85f (4 mL) was added to a solution of 

3-methylbutan-2-one (86i, 120 mg, 1.4 mmol) in THF (1.5 mL) according to TP2. 

Purification by flash chromatography (eluent: pentane:ether = 10:1) provides the pure 

compound 87q (257 mg, 90%) as colourless oil. dr > 98:2. 

1
H NMR (300 MHz, CDCl3): δ (ppm) = 7.22-7.38 (m, 5H), 6.39 (dt, J = 17.2 Hz, 9.9 

Hz, 1H), 5.19 (dd, J = 10.2 Hz, 1.9 Hz, 1H), 5.13 (ddd, J = 17.2 Hz, 1.8 Hz, 0.7 Hz, 

1H), 3.46 (d, J = 9.6 Hz, 1H), 2.00 (hept, J = 6.8 Hz, 1H), 1.40 (br s, 1H), 1.02 (d, J = 

6.9 Hz, 3H), 0.96 (d, J = 6.8 Hz, 3H), 0.91 (s, 3H). 

13
C NMR (75 MHz, CDCl3): δ (ppm) = 141.9, 137.9, 129.4, 128.3, 126.5, 116.9, 76.1, 

57.7, 34.1, 20.2, 17.6, 16.9. 

IR (Diamond-ATR, neat): ~ (cm
-1

) = 3581 (W), 3486 (W), 3076 (W), 2977 (W), 

1635 (W), 1491 (W), 1387 (W), 1080 (W), 906 (S), 728 (VS), 701 (S). 

MS (EI, 70 eV): m/z (%) = 186 (0.3), 161 (2), 128 (2), 118 (85), 117 (29), 87 (100), 

71 (3). 

HRMS (EI): Calcd. for [C14H20O - H2O]
+
: 186.1409; found: 186.1401 [C14H20O - 

H2O]
+
. Spectral data matching those reported in the literature.

93, 31
  

 

Synthesis of 5-[1-(4-bromo-phenyl)-1-hydroxy-ethyl]-cyclopent-1-enecarbonitrile 

(87r): 

 

The allylaluminum reagent 85g (2 mL) was added to a solution of 

4
´
-bromoacetophenone (86a, 119 mg, 0.6 mmol) in THF (1.5 mL) according to TP3. 
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Purification by flash chromatography (eluent: pentane:ether = 1:1) provides the pure 

compound 87r (156 mg, 89%) as a colourless oil. dr > 99:1. 

1
H NMR (300 MHz, CDCl3): δ (ppm) = 7.47 (d, J = 8.6 Hz, 2H), 7.34 (d, J = 8.6 Hz, 

2H), 6.85-6.77 (m, 1H), 3.38-3.27 (m, 1H), 2.32-2.13 (m, 2H), 1.96-1.77 (m, 2H), 

1.74 (s, 3H). 

13
C NMR (75 MHz, CDCl3): δ (ppm) = 154.3, 144.9, 131.2, 127.3, 121.1, 117.8, 

114.8, 76.4, 57.9, 32.8, 28.9, 26.2.  

IR (Diamond-ATR, neat): ~ (cm
-1

) = 3460 (W), 2974 (W), 2217 (W), 1486 (M), 1076 

(M), 1006 (S), 830 (M). 

MS (EI, 70 eV): m/z (%) = 291 (M
+
, 1), 199 (84), 184 (19), 182 (25), 102 (15), 97 

(19). 

HRMS (EI): Calcd. for C14H14BrNO: 291.0259; found: 291.0269. 

 

Synthesis of 5-[(4-bromo-phenyl)-hydroxy-methyl]-cyclopent-1-enecarbonitrile 

(87s): 

  

The allylaluminum reagent 85g (2 mL) was added to a solution of 4-formyl-benzoic 

acid methyl ester (86e, 98 mg, 0.6 mmol) in THF (1.0 mL) according to TP3. 

Purification by flash chromatography (eluent: pentane:ether = 1:1) provides the pure 

compound 87s (108 mg, 70%) as a white solid. dr > 99:1. 

m. p. = 119.8 – 121.8 °C. 

1
H NMR (300 MHz, CDCl3): δ (ppm) = 8.02 (d, J = 8.6 Hz, 2H), 7.46 (d, J = 8.6 Hz, 

2H), 6.79 (d, J = 2.4 Hz, 1H), 5.15 (d, J = 3.2 Hz, 1H), 3.91 (s, 3H), 3.34-3.24 (m, 

1H), 2.51-2.39 (m, 2H), 2.21 (s, 1H), 2.09-1.94 (m, 1H), 1.82-1.66 (m, 1H). 

13
C NMR (75 MHz, CDCl3): δ (ppm) = 166.9, 151.9, 147.3, 129.7, 129.4, 125.9, 

116.2, 115.8, 72.5, 54.3, 52.1, 32.9, 22.6. 

IR (Diamond-ATR, neat): ~ (cm
-1

) = 3489 (M), 2955 (W), 1702 (VS), 1283 (VS), 

1087 (M). 

MS (EI, 70 eV): m/z (%) = 257 (M
+
, 0.3), 226 (4), 166 (11), 165 (100), 133 (11), 93 
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(11). 

HRMS (EI): Calcd. for C15H15NO3: 257.1052; found: 257.1032. 

 

Synthesis of 2-methyl-1-phenyl-3-trimethylsilanyl-but-3-en-1-ol (87t): 

 

The allylaluminum reagent 85h (3 mL) was added to a solution of benzaldehyde (86j, 

74 mg, 0.7 mmol) in THF (1.0 mL) according to TP2. Purification by flash 

chromatography (eluent: pentane:ether = 20:1) provides the pure compound 87t (158 

mg, 96%) as colourless oil. dr: 89:11. 

1
H NMR (300 MHz, CDCl3): δ (ppm) = 7.32-7.12 (m, 5H), 5.73 (d, J = 2.0 Hz, 1H), 

5.51 (d, 
3
J = 2.0 Hz, 1H), 4.66 (d, J = 4.6 Hz, 1H), 2.69 (dq, J = 4.8 Hz, 7.0 Hz, 1H), 

1,78 (br s, 1H), 0.89 (d, J = 7.0 Hz, 3H), 0.00 (s, 9H). 

13
C NMR (75 MHz, CDCl3): δ (ppm) = 155.3, 143.2, 128.0, 126.9, 126.2, 125.6, 74.9, 

44.8, 13.4, -0.12. 

IR (Diamond-ATR, neat): ~ (cm
-1

) = 3564 (br), 2958 (W), 2362 (W), 1248 (M), 906 

(S), 835 (S), 727 (VS), 699 (S). 

MS (EI, 70 eV): m/z (%) = 217(5), 200 (3), 178(19), 128 (37), 113 (66), 107 (100), 

79 (26), 77 (15). 

HRMS (EI): Calcd. for C14H22OSi: 234.1440; found: 234.1416. Spectral data 

matching those reported in the literature.
93, 31 

 

Synthesis of 2-(4-bromo-phenyl)-3-methyl-4-trimethylsilanyl-pent-4en-2-ol (87u): 

 

The allylaluminum reagent 85h (3 mL) was added to a solution of 

4
´
-bromoacetophenone (86a, 140 mg, 0.7 mmol) in THF (1.0 mL) according to TP2. 

Purification by flash chromatography (eluent: pentane:ether = 20:1) provides the pure 

compound 87u (174 mg, 76%) as colourless oil. dr: 97:3. 

1
H NMR (300 MHz, CDCl3): δ (ppm) = 7.47 (d, J = 8.6 Hz, 2H), 7.34 (d, J = 8.6 Hz, 
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2H), 5.93 (d, J = 2.4 Hz, 1H), 5.64 (d, J = 2.4 Hz, 1H), 2.69 (q, J = 7.2 Hz, 1H), 1,73 

(br s, 1H), 1,45 (s, 3H), 0.82 (d, J = 7.1 Hz, 3H), 0.15(s, 9H). 

13
C NMR (75 MHz, CDCl3): δ (ppm) = 155.4, 146.9, 130.9, 127.2, 126.9, 120.2, 76.4, 

47.4, 30.5, 16.8, -0.76. 

IR (Diamond-ATR, neat): ~ (cm
-1

) = 3498 (W), 2955 (W), 1486 (W), 1246 (M), 1078 

(M), 1008 (M), 852 (S), 832 (VS), 757 (M). 

MS (EI, 70 eV): m/z (%) = 311(0.45), 295 (1), 201(96), 199 (100), 183 (10), 113 

(26). 

HRMS (EI): Calcd. for [C15H23BrOSi - Me]
+
: 311.0467; found: 311.0482 

[C15H23BrOSi - Me]
+
. 
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2.4 Extension of Functionalized Allylic Aluminum Reangents 

 

2.4.1 Typical Procedures (TP) 

 

TP1: Typical procedure for the preparation of allylic aluminum reagents 

(93a-b). 

Aluminum powder (3.0 equiv) and InCl3 (5 mol%) were placed in an argon-flushed 

flask and dried for 5 min at 380 °C (heat gun) under high vacuum (1 mbar). The flask 

was evacuated and backfilled with argon three times and THF (2.5 mL / mmol) was 

added. A solution of the corresponding allylic chloride (1.0 equiv.) in THF (2.5 mL / 

mmol) was added at the appropriate temperature (0-20°C) and the reaction mixture 

was stirred until the conversion of the allyl halide reached >95% (monitored by 

GC-analysis of hydrolyzed reaction aliquots). The remaining aluminum powder was 

allowed to settle down and the allylaluminum reagent is obtained as a clear solution. 

 

TP2: Typical procedure for the preparation of homoallylic alcohols and lactones 

(95a-h). 

The allylaluminum halides (93a-b) prepared according to TP1 were added to a 

solution of an aldehyde or a ketone in THF at -78 °C and the mixture was stirred at 

this temperature for 1-2 h. After quenching with water (10 mL), the reaction mixture 

was extracted with ether (3 × 30 mL). The combined extracts were washed with brine, 

dried over Na2SO4 and concentrated in vacuo. Purification by flash chromatography 

provided the pure compound. 

 

2.4.2 Preparation of allylic chlorides 

 

Synthesis of ((6-chlorocyclohex-1-en-1-yl)oxy)triethylsilane (92a). 
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N-Chlorosuccinimide (1.4 g, 10 mmol) was slowly added to the solution of 

(cyclohex-1-en-1-yloxy)triethylsilane (2.1 g, 10 mmol) in dichloromethane (100 mL) 

at 0 °C. The resulting mixture was stirred for 5 h at 0 °C. After the mixture was 

quench with ice water (20 mL) was added slowly. The reaction mixture was extracted 

with dichloromethane (3 × 20 mL). The extracts were dried over Na2SO4 and 

concentrated in vacuo. Purification by flash chromatography (eluent: iso-hexane) 

provided the pure compound 92a (1.15 g, 46%) as colorless oil. 

1
H NMR (300 MHz, CDCl3): δ (ppm) = 4.98 (dd, J = 4.6 Hz, 2.9 Hz, 1H), 4.38-4.33 

(m, 1H), 1.52-0.66 (m, 6H), 1.05-0.93 (m, 9H), 0.76-0.62 (m, 6H). 

13
C NMR (75 MHz, CDCl3): δ (ppm) = 148.7, 107.6, 58.3, 32.9, 23.8, 22.9, 6.7, 5.0. 

IR (Diamond-ATR, neat): ~ (cm
-1

) = 2952, 1659, 1456, 1231, 1195, 1008, 981, 895, 

830, 727, 705. 

MS (EI, 70 eV): m/z (%) = 246 (15), 212 (5), 211 (9), 210 (15), 190 (5), 188 (14), 

182 (13), 180 (29), 150 (7), 121 (100). 

HRMS (EI): Calcd. for [C12H23ClOSi]
+
: 246.1207; found: 246.1207 [C12H23ClOSi]

+
. 

 

Synthesis of 1-benzyl-3-chloro-4-((triethylsilyl)oxy)-1,2,3,6-tetrahydropyridine 

(92b). 

 

N-Chlorosuccinimide (705 g, 5.3 mmol) was slowly added to the solution of 

1-benzyl-4-((triethylsilyl)oxy)-1,2,3,6-tetrahydropyridine (1.6 g, 5.3 mmol) in 

dichloromethane (50 mL) at -20 °C. The resulting mixture was stirred for 12 h 

between -20 °C and 25 °C. After the mixture was quench with ice water (20 mL) was 

added slowly. The reaction mixture was extracted with dichloromethane (3 × 20 mL). 

The extracts were dried over Na2SO4 and concentrated in vacuo. Purification by flash 

chromatography (eluent: iso-hexane) provided the pure compound 92b (0.72 g, 40%) 

as pale yellow oil. 
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1
H NMR (300 MHz, CDCl3): δ (ppm) = 7.47-7.27 (m, 5H), 5.01 (dd, J = 4.4 Hz, 3.0 

Hz, 1H), 4.39-4.33 (m, 1H), 3.80 (d, J = 13.6 Hz, 1H), 3.62 (d, J = 13.6 Hz, 1H), 

3.33-3.24 (m, 1H), 3.06-2.94 (m, 2H), 2.89-2.81 (m, 1H), 1.11-1.02 (m, 9H), 

0.84-0.73 (m, 6H). 

13
C NMR (75 MHz, CDCl3): δ (ppm) = 147.4, 137.8, 128.9, 128.3, 127.2, 105.1, 61.4, 

57.7, 56.8, 51.4, 6.7, 5.0. 

IR (Diamond-ATR, neat): ~ (cm
-1

) = 2953, 2750, 1668, 1454, 1355, 1136, 1057, 

1003, 976, 869, 803, 728. 

MS (EI, 70 eV): m/z (%) = 336 (19), 316 (12), 303 (24), 302 (100), 301 (12), 300 

(36), 246 (3), 210 (3), 189 (5), 121 (15), 91 (68). 

HRMS (EI): Calcd. for [C18H28ClNOSi - H]
+
: 336.1550; found: 336.1541 

[C18H28ClNOSi - H]
+ 

 

2.4.3 Preparation of allylic aluminum reagents, homoallylic alcohols and 

lactones. 

 

Preparation of allylic aluminum reagent (93a). 

 

According to the typical procedure (TP1), aluminum powder (162 mg, 6 mmol) and 

InCl3 (22 mg, 0.1 mmol) were placed in an argon-flushed flask and dried for 5 min at 

380 °C (heat gun) under high vacuum (1 mbar). The flask was evacuated and 

backfilled with argon three times and THF (2 mL) was added. A solution of  

((6-chlorocyclohex-1-en-1-yl)oxy)triethylsilane (92a, 492 mg, 2 mmol) in THF (2 mL) 

was added at 25 °C and the resulting solution was stirred at 25 °C for 16 h. The 

insertion reaction was monitored by GC analysis of hydrolyzed reaction aliquots. 

Yield: 70%. 

 

Synthesis of cyclohexyl(2-((triethylsilyl)oxy)cyclohex-2-en-1-yl)methanol (95a). 
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The allylaluminum reagent 93a (4 mL) was added to a solution of 

cyclohexanecarbaldehyde (94a, 157 mg, 1.4 mmol) according to TP2. Purification by 

flash chromatography (eluent: iso-hexane:ether = 50:1) provides the pure compound 

95a (327 mg, 72%) as colourless oil. dr > 90:10. 

1
H NMR (300 MHz, CDCl3): δ (ppm) = 4.91-4.89 (m, 1H), 3.85 (dd, J = 8.5 Hz, 

1.9Hz, 1H), 2.37-2.32 (m, 1H), 2.17-1.08 (m, 17H), 0.99-0.95 (m, 9H), 0.70-0.63 (m, 

6H). 

13
C NMR (75 MHz, CDCl3): δ (ppm) = 150.9, 106.7, 75.4, 42.0, 41.6, 33.1, 30.6, 

29.9, 26.5, 26.0, 24.3, 22.0, 6.8, 5.4. 

IR (Diamond-ATR, neat): ~ (cm
-1

) = 2928, 2252, 1615, 1449, 1222, 903, 723. 

MS (EI, 70 eV): m/z (%) = 229 (5), 228 (17), 227 (100), 199 (6), 117 (11), 87 (21). 

HRMS (EI): Calcd. for [C19H36O2Si – H2O]
+
: 306.2379; found: 306.2377. 

 

Synthesis of 3-(hydroxy(2-((triethylsilyl)oxy)cyclohex-2-en-1-yl)methyl) 

benzonitrile (95b). 

 

 

The allylaluminum reagent 93a (4 mL) was added to a solution of 

3-formylbenzonitrile (94b, 183 mg, 1.4 mmol) according to TP2. Purification by flash 

chromatography (eluent: iso-hexane:ether = 15:1) provides the pure compound 95b 

(363 mg, 76%) as colourless oil. dr > 93:7. 

1
H NMR (300 MHz, CDCl3): δ (ppm) = 7.61-7.58 (m, 1H), 7.53-7.47 (m, 2H), 

7.42-7.35 (m, 1H), 5.18 (d, J = 3.3 Hz, 1H), 4.95-4.90 (m, 1H), 2.19-2.12 (m, 1H), 

2.04-1.94 (m, 2H), 1.75-1.62 (m, 2H), 1.37-1.12 (m, 2H), 0.92-0.86 (m, 9H), 

0.69-0.61 (m, 6H). 
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13
C NMR (75 MHz, CDCl3): δ (ppm) = 149.3, 146.9, 130.5, 130.1, 129.8, 128.5, 

119.2, 111.8, 106.3, 72.6, 47.6, 24.1, 21.9, 20.9, 6.7, 4.8. 

IR (Diamond-ATR, neat): ~ (cm
-1

) = 2953, 2231, 1670, 1457, 1219, 1009, 904, 727. 

MS (EI, 70 eV): m/z (%) = 325 (1), 248 (5), 247 (17), 246 (100), 181 (1), 115 (28). 

HRMS (EI): Calcd. for [C20H29NO2Si – H2O]
+
: 325.1862; found: 325.1851. 

 

Synthesis of 2,2,2-trifluoro-1-hydroxy-1-phenylethyl)cyclohexanone (95c). 

 

 

The allylaluminum reagent 93a (4 mL) was added to a solution of 

2,2,2-trifluoro-1-phenylethanone (94c, 244 mg, 1.4 mmol) according to TP2. 

Purification by flash chromatography (eluent: iso-hexane:ether = 50:1) provides the 

pure compound 95c (217 mg, 57%) as colourless oil. dr > 95:5. 

1
H NMR (300 MHz, CDCl3): δ (ppm) = 7.58-7.51 (m, 2H), 7.46-7.32 (m, 3H), 6.42 

(s, 1H), 3.34-3.24 (m, 1H), 2.66-2.53 (m, 1H), 2.52-2.42 (m, 1H), 2.27-2.14 (m, 1H), 

1.84-1.47 (m, 5H). 

13
C NMR (75 MHz, CDCl3): δ (ppm) = 216.7, 136.3 (q, J = 1.1 Hz), 128.3, 128.2, 

125.8 (q, J = 288.7 Hz), 125.7 (q, J = 1.7 Hz), 78.5 (q, J = 27.9 Hz), 52.0, 44.3, 32.1, 

30.5, 25.6. 

IR (Diamond-ATR, neat): ~ (cm
-1

) = 2944, 1697, 1450, 1265, 1154, 907, 712. 

MS (EI, 70 eV): m/z (%) = 203 (3), 105 (21), 86 (12), 42 (100). 

HRMS (EI): Calcd. for [C14H15F3O2]
+
: 272.1024; found: 272.1083 [C14H15F3O2]

+ 

 

Synthesis of (2-((triethylsilyl)oxy)cyclohex-2-en-1-yl)(3,4,5-trimethoxyphenyl) 

methanol (95d). 
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The allylaluminum reagent 93a (4 mL) was added to a solution of methyl ethyl 

2-acetylbenzoate (94d, 269 mg, 1.4 mmol) according to TP2. Purification by flash 

chromatography (eluent: iso-hexane:ether = 15:1) provides the pure compound 95d 

(326 mg, 63%) as colourless oil. dr > 90:10. 

1
H NMR (300 MHz, CDCl3): δ (ppm) = 7.86-7.81 (m, 1H), 7.62-7.58 (m, 1H), 

7.48-7.42 (m, 2H), 4.94-4.88 (m, 1H), 2.77-2.69 (m, 1H), 2.16-1.93 (m, 2H), 1.73 (s, 

3H), 1.70-1.52 (m, 2H), 1.40-1.25 (m, 2H), 0.97-0.89 (m, 9H), 0.70-0.61 (m, 6H). 

13
C NMR (75 MHz, CDCl3): δ (ppm) = 170.2, 154.2, 149.0, 133.5, 128.5, 126.5, 

125.3, 121.4, 106.6, 89.7, 45.3, 26.5, 26.2, 23.7, 20.5, 6.7, 4.9. 

IR (Diamond-ATR, neat): ~ (cm
-1

) = 2934, 2253, 1759, 1466, 1223, 904. 

MS (EI, 70 eV): m/z (%) = 358 (4), 330 (8), 329 (33), 213 (5), 212 (18), 211 (100), 

183 (11), 148 (16), 147 (93), 115 (31), 87 (26). 

HRMS (EI): Calcd. for [C21H30O3Si]
+
: 358.1964; found: 358.1968 [C21H30O3Si]

+ 

 

Preparation of allylic aluminum reagent (93b). 

 

According to the typical procedure (TP1), aluminum powder (162 mg, 6 mmol) and 

InCl3 (22 mg, 0.1 mmol) were placed in an argon-flushed flask and dried for 5 min at 

380 °C (heat gun) under high vacuum (1 mbar). The flask was evacuated and 

backfilled with argon three times and THF (2 mL) was added. A solution of  

1-benzyl-3-chloro-4-((triethylsilyl)oxy)-1,2,3,6-tetrahydropyridine (92b, 672 mg, 2 

mmol) in THF (2 mL) was added at 25 °C and the resulting solution was stirred at 

25 °C for 16 h. The insertion reaction was monitored by GC analysis of hydrolyzed 

reaction aliquots. Yield: 70%. 

 

Synthesis of (1-benzyl-4-((triethylsilyl)oxy)-1,2,3,6-tetrahydropyridin-3-yl) 

(3,4,5-trimethoxyphenyl)methanol (95e). 
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The allylaluminum reagent 93b (2 mL) was added to a solution of 

3,4,5-trimethoxybenzaldehyde (94e, 137 mg, 0.7 mmol) according to TP2. 

Purification by flash chromatography (eluent: iso-hexane:ether = 4:1) provides the 

pure compound 95e (216 mg, 62%) as colourless oil. dr > 95:5. 

1
H NMR (300 MHz, CDCl3): δ (ppm) = 7.42-7.27 (m, 5H), 6.61 (br s, 1H), 6.50 (s, 

2H), 5.11 (s, 1H), 4.99 (dd, J = 4.9 Hz, 1.9 Hz, 1H), 3.83 (s, 3H), 3.78 (s, 6H), 

3.65-3.47 (m, 2H), 3.31 (dd, J = 15.3 Hz, 4.3 Hz, 1H), 2.98 (d, J = 12.5 Hz, 1H), 

2.28-2.27 (m, 1H), 2.33-2.20 (m, 2H), 1.11-1.01 (m, 9H), 0.83-0.73 (m, 6H). 

13
C NMR (75 MHz, CDCl3): δ (ppm) = 153.0, 149.2, 137.7, 136.4, 134.4, 129.4, 

128.5, 127.7, 108.7, 102.4, 77.2, 60.8, 58.2, 56.1, 51.6, 50.5, 46.9, 6.7, 5.1. 

IR (Diamond-ATR, neat): ~ (cm
-1

) = 2958, 2251, 1591, 1128, 902, 721. 

MS (EI, 70 eV): m/z (%) = 499 (0.01), 367 (1), 198 (1), 196 (3), 189 (2), 91 (100). 

HRMS (EI): Calcd. for [C28H41NO5Si]
+
: 499.2754; found: 499.2759.

 

 

Synthesis of 4-(1-benzyl-4-((triethylsilyl)oxy)-1,2,3,6-tetrahydropyridin-3-yl)-1- 

hydroxyethyl)benzonitrile (95f). 

 

The allylaluminum reagent 93b (2 mL) was added to a solution of 

4-acetylbenzonitrile (94f, 102 mg, 0.7 mmol) according to TP2. Purification by flash 

chromatography (eluent: iso-hexane:ether = 5:1) provides the pure compound 95f 

(219 mg, 70%) as colourless oil. dr > 93:7. 

1
H NMR (300 MHz, CDCl3): δ (ppm) = 7.48-7.15 (m, 9H), 5.00 (dd, J = 4.3 Hz, 2.4 

Hz, 1H), 3.63 (d, J = 12.4 Hz, 1H), 3.43 (dd, J = 15.3 Hz, 4.3 Hz, 1H), 3.17 (d, J = 
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12.4 Hz, 1H), 2.85-2.76 (m, 1H), 2.49-2.41 (m, 1H), 2.30-2.25 (m, 1H), 2.15 (dd, J = 

11.3 Hz, 3.6 Hz, 1H), 1.50 (s, 3H), 1.09-0.99 (m, 9H), 0.82-0.71 (m, 6H). 

13
C NMR (75 MHz, CDCl3): δ (ppm) = 155.2, 148.7, 136.5, 131.6, 129.8, 128.5, 

127.7, 125.7, 119.1, 109.5, 102.7, 77.4, 61.8, 51.9, 51.5, 48.3, 29.6, 6.8, 5.1. 

 

Synthesis of methyl 4-((1-benzyl-4-((triethylsilyl)oxy)-1,2,3,6-tetrahydropyridin- 

3-yl)(hydroxy)methyl)benzoate (95g). 

 

The allylaluminum reagent 93b (2 mL) was added to a solution of methyl 

4-formylbenzoate (94g, 115 mg, 0.7 mmol) according to TP2. Purification by flash 

chromatography (eluent: iso-hexane:ether = 8:1) provides the pure compound 95g 

(199 mg, 61%) as colourless oil. dr > 95:5. 

1
H NMR (300 MHz, CDCl3): δ (ppm) = 7.81 (d, J = 8.2 Hz, 2H), 7.46-7.40 (m, 3H), 

7.37-7.31 (m, 2H), 6.99 (d, J = 8.2 Hz, 2H), 6.70 (br s, 1H), 5.12 (s, 1H), 5.03 (dd, J = 

4.9 Hz, 1.9 Hz, 1H), 3.91 (s, 3H), 3.72 (d, J = 12.4 Hz, 1H), 3.39 (dd, J = 14.8 Hz, 5.1 

Hz, 1H), 3.26 (d, J = 12.4 Hz, 1H), 2.87-2.76 (m, 2H), 2.16-2.06 (m, 2H), 1.10-1.01 

(m, 9H), 0.83-0.73 (m, 6H). 

13
C NMR (75 MHz, CDCl3): δ (ppm) = 167.1, 150.4, 149.1, 136.9, 129.9, 129.3, 

128.6, 128.2, 127.8, 125.6, 102.0, 73.5, 62.1, 52.3, 51.9, 48.9, 46.6, 6.7, 5.1. 

IR (Diamond-ATR, neat): ~ (cm
-1

) = 2952, 1703, 1443, 1280, 1193, 1103, 829, 728. 

MS (EI, 70 eV): m/z (%) = 466 (4), 438 (6), 376 (3), 319 (6), 304 (6), 303 (22), 302 

(62), 300 (10), 279 (11), 188 (41), 164 (8), 133 (15), 91 (100). 

HRMS (EI): Calcd. for [C27H37NO4Si - H]
+
: 466.2414; found: 466.2407 

[C27H37NO4Si - H]
+ 

Synthesis of 3-(1-benzyl-4-((triethylsilyl)oxy)-1,2,3,6-tetrahydropyridin-3-yl)-3- 

methylisobenzofuran-1(3H)-one (95h). 
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The allylaluminum reagent 93b (4 mL) was added to a solution of methyl ethyl 

2-acetylbenzoate (94d, 269 mg, 1.4 mmol) according to TP2. Purification by flash 

chromatography (eluent: iso-hexane:ether = 7:1) provides the pure compound 95h 

(478 mg, 70%) as colourless oil. dr > 97:3. 

1
H NMR (600 MHz, CDCl3): δ (ppm) = 7.76-7.69 (m, 2H), 7.56-7.51 (m, 1H), 

7.41-7.37 (m, 1H), 7.33-7.22 (m, 5H), 4.62 (dd, J = 4.1 Hz, 3.0 Hz, 1H), 3.51-3.42 (m, 

2H), 3.10 (dd, J = 15.2 Hz, 3.9 Hz, 1H), 2.89 (dd, J = 11.8 Hz, 3.0 Hz, 1H), 2.71-2.62 

(m, 2H), 2.45 (dd, J = 11.8 Hz, 4.4 Hz, 1H), 1.59 (s, 3H), 0.85-0.80 (m, 9H), 

0.56-0.50 (m, 6H). 

13
C NMR (150 MHz, CDCl3): δ (ppm) = 170.0, 153.4, 147.9, 137.8, 132.8, 129.3, 

128.2, 128.1, 127.1, 126.4, 124.7, 123.6, 102.7, 89.7, 62.6, 52.3, 51.2, 46.9, 25.1, 6.5, 

4.6. 

IR (Diamond-ATR, neat): ~ (cm
-1

) = 2953, 2874, 1760, 1671, 1465, 1353, 1284, 

1208, 1118, 1023, 855, 726, 696. 

MS (EI, 70 eV): m/z (%) = 448 (8), 304 (6), 303 (24), 302 (100), 186 (8), 103 (18), 

91 (64), 75 (11). 

HRMS (EI): Calcd. for [C27H35NO3Si - H]
+
: 448.2308; found: 448.2302 

[C27H35NO3Si - H]
+
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2.5 Preparation of Functionalized Organomanganese(II) Reagents by Direct 

Insertion of Manganese to Aromatic and Benzylic Halides 

 

2.5.1 Typical Procedures (TP) 

 

TP1: Typical procedure for the preparation of aromatic manganese reagents 

(99a-h). 

LiCl (1.5 equiv.) was placed in an argon-flushed flask and dried for 5 min at 380 °C 

(heat gun) under high vacuum (1 mbar). After cooled to room temperature, this flask 

was charged with manganese powder (3 equiv.), InCl3 (2.5 mol %) and PbCl2 (2.5 

mol %) and dried for 5 min at 380 °C (heat gun) under high vacuum (1 mbar). The 

flask was evacuated and backfilled with argon three times and THF (2 mL) was added. 

Manganese powder was activated with TMSCl (1 mol%). The solution of organic 

halide in THF (2-8 mL) was then added at the appropriate temperature (0-25 °C) and 

the reaction mixture was stirred until the conversion of the organic halide 

reached >95% (monitored by GC-analysis of hydrolyzed reaction aliquots). Yields of 

these resulting aromatic manganese reagents were determined by iodolysis in THF. 

 

TP2: Typical procedure for the preparation of benzylic manganese reagents 

(103a-h). 

Manganese powder (3 equiv.), InCl3 (2.5 mol %) and PbCl2 (2.5 mol %) were placed 

in an argon-flushed flask and dried for 5 min at 380 °C (heat gun) under high vacuum 

(1 mbar). The flask was evacuated and backfilled with argon three times and THF (5 

mL) was added. Manganese powder was activated with TMSCl (1 mol%). The 

solution of organic halide in THF (5 mL) was then added at 25 °C and the reaction 

mixture was stirred until the conversion of the organic halide reached >95% 

(monitored by GC-analysis of hydrolyzed reaction aliquots). Yields of these resulting 

benzylic manganese reagents were determined by iodolysis in THF. 
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2.5.2 Preparation of Aromatic and Benzylic Manganese Reagents 

 

Preparation of (5-cyano-2-fluorophenyl)manganese(II) bromide (99a). 

 

According to TP1, 3-bromo-4-fluorobenzonitrile (98a, 400 mg, 2 mmol) reacted with 

manganese powder (330 mg, 6 mmol), LiCl (127 mg, 3 mmol), InCl3 (11 mg, 2.5 

mol %) and PbCl2 (14 mg, 2.5 mol %) in THF (4 mL) within 24 h at 50 °C affording 

the corresponding aryl manganese reagent 99a in 64% yield. 

 

Synthesis of ethyl 5'-cyano-2'-fluoro-[1,1'-biphenyl]-4-carboxylate (101a). 

 

Ethyl 4-iodobenzoate (100a, 334 mg, 1.2 mmol), Pd-PEPPSI-iPr (47 mg, 5 mol%) 

and THF (1.5 mL) were placed in an argon-flushed flask. To this mixture was added 

(5-cyano-2-fluorophenyl)manganese(II) bromide (99a, 4 mL) dropwise at 0 °C. The 

reaction mixture was allowed to warm to 25 °C and continuously stirred for 14 h 

followed by quenching with brine (5 mL). The aqueous layer was extracted with 

CH2Cl2 (3 x 20 mL). The combined organic phases were dried over Na2SO4, the 

solvent was removed in vacuo. Purification by flash column chromatography (SiO2, 

hexane/Et2O = 5:1) afforded 101a (227 mg, 70%) as a white solid. 

m. p. = 123.0 – 124.6 °C. 

1
H NMR (300 MHz, CDCl3): δ (ppm) = 8.17 (d, J = 8.6 Hz, 2H), 7.81 (dd, J = 7.1 

Hz, 2.1 Hz, 1H), 7.73-7.67 (m, 1H), 7.61 (d, J = 8.6 Hz, 2H), 7.35-7.28 (m, 1H), 4.44 

(q, J = 7.2 Hz, 2H), 1.44 (t, J = 7.2 Hz, 3H). 

13
C NMR (75 MHz, CDCl3): δ (ppm) = 165.9, 161.9 (d, J = 258.9 Hz), 137.6 (d, J = 

1.5 Hz), 134.9 (d, J = 4.8 Hz), 133.7 (d, J = 9.8 Hz), 130.7, 129.9, 129.8 (d, J = 14.9 
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Hz), 128.9 (d, J = 3.1 Hz), 117.8 (d, J = 24.4 Hz), 117.7 (d, J = 0.6 Hz), 109.2 (d, J = 

4.2 Hz), 61.2, 14.3. 

IR (Diamond-ATR, neat):  (cm
-1

) = 3065 (W), 2983 (W), 2229 (M), 1882 (VW), 

1705 (VS), 1608 (M), 1485 (M), 1365 (M), 1272 (VS), 1222 (S), 1100 (VS), 1014 

(M), 824 (M), 705 (M). 

MS (EI, 70 eV): m/z (%) = 269 (M
+
, 73), 242 (11), 241 (81), 225 (39), 224 (100), 197 

(8), 196 (49), 195 (45), 176 (11), 169 (31), 145 (4), 112 (6), 84 (3). 

HRMS (EI): Calcd. for [C16H12FNO2]
+
: 269.0852; found: 269.0846. 

 

Synthesis of ethyl 2-(5-cyano-2-fluorobenzyl)acrylate (101b). 

 

Ethyl 2-(bromomethyl)acrylate (100b, 232 mg, 1.2 mmol), and THF (1.5 mL) were 

placed in an argon-flushed flask. To this mixture was added 

(5-cyano-2-fluorophenyl)manganese(II) bromide (99a, 4 mL) dropwise at 0 °C. The 

reaction mixture was allowed to warm to 25 °C and continuously stirred for 14 h 

followed by quenching with brine (5 mL). The aqueous layer was extracted with 

CH2Cl2 (3 x 20 mL). The combined organic phases were dried over Na2SO4, the 

solvent was removed in vacuo. Purification by flash column chromatography (SiO2, 

hexane/Et2O = 10:1) afforded 101b (198 mg, 71%) as colorless liquid. 

1
H NMR (300 MHz, CDCl3): δ (ppm) = 7.61-7.51 (m, 2H), 7.19-7.10 (m, 1H), 6.33 

(s, 1H), 5.58 (d, J = 0.6 Hz, 1H), 4.21 (q, J = 7.4 Hz, 2H), 3.69 (s, 2H), 1.29 (t, J = 7.4 

Hz, 3H). 

13
C NMR (75 MHz, CDCl3): δ (ppm) = 165.9, 163.4 (d, J = 255 Hz), 137.4 (d, J = 

0.8 Hz), 135.4 (d, J = 6 Hz), 132.6 (d, J = 9.7 Hz), 128.1 (d, J = 16.5 Hz), 127.4 (d, J 

= 1.1 Hz), 118.1 (d, J = 0.6 Hz), 116.7 (d, J = 23.8 Hz), 108.4 (d, J = 3.9 Hz), 61.0, 

30.8 (d, J = 2.8 Hz).14.0. 

IR (Diamond-ATR, neat):  (cm
-1

) = 2984 (VW), 2232 (W), 1712 (VW), 1633 (W), 
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1495 (S), 1328 (M), 1249 (S), 1145 (S), 1026 (M), 908 (M), 825 (M), 730 (M), 699 

(W), 648 (W). 

MS (EI, 70 eV): m/z (%) = 233 (M
+
, 100), 205 (53), 202 (42), 187 (53), 186 (14), 184 

(41), 159 (97), 158 (92), 157 (64), 133 (52), 106 (16). 

HRMS (EI): Calcd. for [C13H12FNO2]
+
: 233.0852; found: 233.0841. 

 

Preparation of (2-chloro-5-(trifluoromethyl)phenyl)manganese(II) bromide 

(99b). 

 

According to TP1, 2-bromo-1-chloro-4-(trifluoromethyl)benzene (98b, 519 mg, 2 

mmol) reacted with manganese powder (330 mg, 6 mmol), LiCl (127 mg, 3 mmol), 

InCl3 (11 mg, 2.5 mol %) and PbCl2 (14 mg, 2.5 mol %) in THF (4 mL) within 24 h at 

50 °C affording the corresponding aryl manganese reagent 99b in 72% yield. 

 

Synthesis of 3-((2-chloro-5-(trifluoromethyl)phenyl)(hydroxy)methyl) 

benzonitrile (101c). 

 

3-Formylbenzonitrile (100c, 183 mg, 1.4 mmol) and THF (1.5 mL) were placed in an 

argon-flushed flask. To this mixture was added 

(2-chloro-5-(trifluoromethyl)phenyl)manganese(II) bromide (09b, 4 mL) dropwise at 

0 °C. The reaction mixture was allowed to warm to 25 °C and continuously stirred for 

14 h followed by quenching with brine (5 mL). The aqueous layer was extracted with 

CH2Cl2 (3 x 20 mL). The combined organic phases were dried over Na2SO4, the 

solvent was removed in vacuo. Purification by flash column chromatography (SiO2, 

hexane/Et2O = 2:1) afforded 101c (316 mg, 73%) as a white solid. 
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m. p. = 128.1 – 130.0 °C. 

1
H NMR (300 MHz, CDCl3): δ (ppm) = 7.96 (d, J = 1.7 Hz, 1H), 7.73-7.44 (m, 6H), 

6.27 (d, J = 3.3 Hz, 1H), 2.88 (s, 1H). 

13
C NMR (75 MHz, CDCl3): δ (ppm) = 142.9, 141.1, 135.8 (q, J = 1.7 Hz), 131.7, 

131.4, 130.6, 130.3, 129.5, 129.9 (q, J = 33.2 Hz) 126.0 (q, J = 3.7 Hz), 124.8 (q, J = 

3.7 Hz), 123.6 (q, J = 272.5 Hz), 118.5, 112.6, 71.4. 

IR (Diamond-ATR, neat):  (cm
-1

) = 3455 (M), 3050 (VW), 2923 (VW), 2236 (M), 

1609 (W), 1403 (W), 1326 (S), 1277 (M), 1165 (S), 1118 (VS), 1078 (S), 1036 (M), 

898 (W), 828 (M), 694 (M), 641 (W). 

MS (EI, 70 eV): m/z (%) = 311 (M
+
, 65), 292 (14), 276 (15), 258 (14), 208 (52), 206 

(71), 177 (15), 160 (21), 144 (28), 130 (73), 104 (100). 

HRMS (EI): Calcd. for [C15H9ClF3NO]
+
: 311.0325; found: 311.0319. 

 

Preparation of (5-(ethoxycarbonyl)thiophen-2-yl)manganese(II) bromide (99c). 

 

According to TP1, ethyl 5-bromothiophene-2-carboxylate (108c, 470 mg, 2 mmol) 

reacted with manganese powder (330 mg, 6 mmol), LiCl (127 mg, 3 mmol), InCl3 (11 

mg, 2.5 mol %) and PbCl2 (14 mg, 2.5 mol %) in THF (10 mL) within 12 h between 

0-25 °C affording the corresponding aryl manganese reagent 99c in 70% yield. 

 

Synthesis of ethyl 5-(4-chlorobenzoyl)thiophene-2-carboxylate (101d). 

 

4-Chlorobenzoyl chloride (100d, 210 mg, 1.2 mmol) and THF (1.5 mL) were placed 

in an argon-flushed flask. To this mixture was added 

(5-(ethoxycarbonyl)thiophen-2-yl)manganese(II) bromide (99c, 10 mL) dropwise at 

0 °C. The reaction mixture was allowed to warm to 25 °C and continuously stirred for 

14 h followed by quenching with brine (5 mL). The aqueous layer was extracted with 



C. Experimental Section 

 150 

CH2Cl2 (3 x 20 mL). The combined organic phases were dried over Na2SO4, the 

solvent was removed in vacuo. Purification by flash column chromatography (SiO2, 

hexane/Et2O = 20:1) afforded 101d (240 mg, 68%) as a white solid. 

m. p. = 105.9 – 107.3 °C. 

1
H NMR (300 MHz, CDCl3): δ (ppm) = 7.84 (d, J = 8.6 Hz, 2H), 7.79 (d, J = 4.1 Hz, 

1H), 7.59 (d, J = 4.1 Hz, 1H), 7.50 (d, J = 8.6 Hz, 2H), 4.41 (q, J = 7.1 Hz, 2H), 1.41 

(t, J = 7.1 Hz, 3H). 

13
C NMR (75 MHz, CDCl3): δ (ppm) = 186.7, 161.5, 147.1, 140.6, 139.3, 135.5, 

133.7, 132.9, 130.6, 128.9, 61.9, 14.2. 

IR (Diamond-ATR, neat):  (cm
-1

) = 3073 (W), 2980 (W), 2961 (W), 2569 (VW), 

1701 (VS), 1627 (S), 1585 (M), 1444 (W), 1399 (W), 1249 (VS), 1091 (S), 840 (M), 

745 (S), 685 (M). 

MS (EI, 70 eV): m/z (%) = 294 (M
+
, 78), 265 (19), 249 (16), 248 (75), 220 (14), 183 

(63), 154 (39), 140 (32), 139 (100), 111 (49), 75 (17). 

HRMS (EI): Calcd. for [C14H11ClO3S]
+
: 294.0117; found: 294.0112. 

 

Synthesis of ethyl 5-(3-(ethoxycarbonyl)phenyl)thiophene-2-carboxylate (101e). 

 

Ethyl 3-bromobenzoate (100e, 206 mg, 0.9 mmol), Pd-PEPPSI-iPr (30 mg, 5 mol%) 

and THF (1.0 mL) were placed in an argon-flushed flask. To this mixture was added 

(5-(ethoxycarbonyl)thiophen-2-yl)manganese(II) bromide (99c, 7.6 mL) dropwise at 

0 °C. The reaction mixture was allowed to warm to 25 °C and continuously stirred for 

14 h followed by quenching with brine (5 mL). The aqueous layer was extracted with 

CH2Cl2 (3 x 20 mL). The combined organic phases were dried over Na2SO4, the 

solvent was removed in vacuo. Purification by flash column chromatography (SiO2, 

hexane/Et2O = 10:1) afforded 101e (210 mg, 77%) as a white solid. 

m. p. = 80.9 – 82.6 °C. 
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1
H NMR (300 MHz, CDCl3): δ (ppm) = 8.32 (d, J = 1.7 Hz, 1H), 8.07-8.00 (m, 1H), 

7.85-7.77 (m, 2H), 7.54-7.46 (m, 1H), 7.39-7.36 (m, 1H), 4.46-4.35 (m, 4H), 

1.46-1.36 (m, 6H). 

13
C NMR (75 MHz, CDCl3): δ (ppm) = 165.9, 162.1, 149.7, 134.2, 133.7, 133.2, 

131.4, 130.2, 129.5, 129.1, 127.1, 124.2, 61.3, 61.2, 14.4, 14.3. 

IR (Diamond-ATR, neat):  (cm
-1

) = 2978 (W), 1717 (S), 1693 (VS), 1451 (M), 

1366 (M), 1277 (VS), 1238 (S), 1100 (VS), 1080 (S), 1025 (M), 805 (M), 747 (VS), 

683 (W). 

MS (EI, 70 eV): m/z (%) = 304 (M
+
, 100), 276 (22), 260 (15), 259 (77), 247 (10), 231 

(12), 230 (38), 204 (5), 159 (16), 115 (10). 

HRMS (EI): Calcd. for [C16H16O4S]
+
: 304.0769; found: 304.0761. 

 

Preparation of (2-chloro-5-(trifluoromethyl)phenyl)manganese(II) iodide (99d). 

 

According to TP1, 1-chloro-2-iodo-4-(trifluoromethyl)benzene (98d, 613 mg, 2 mmol) 

reacted with manganese powder (330 mg, 6 mmol), LiCl (127 mg, 3 mmol), InCl3 (11 

mg, 2.5 mol %) and PbCl2 (14 mg, 2.5 mol %) in THF (4 mL) within 18 h at 25 °C 

affording the corresponding aryl manganese reagent 99d in 84% yield. 

 

Synthesis of (2-chloro-5-(trifluoromethyl)phenyl)(2-fluorophenyl)methanone 

(101f). 

 

2-Fluorobenzoyl chloride (100f, 221 mg, 1.4 mmol) and THF (1.5 mL) were placed in 

an argon-flushed flask. To this mixture was added 

(2-chloro-5-(trifluoromethyl)phenyl)manganese(II) iodide (99d, 4 mL) dropwise at 
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0 °C. The reaction mixture was allowed to warm to 25 °C and continuously stirred for 

14 h followed by quenching with brine (5 mL). The aqueous layer was extracted with 

CH2Cl2 (3 x 20 mL). The combined organic phases were dried over Na2SO4, the 

solvent was removed in vacuo. Purification by flash column chromatography (SiO2, 

hexane/Et2O = 10:1) afforded 101f (360 mg, 85%) as a white solid. 

m. p. = 50.9 – 52.6 °C. 

1
H NMR (300 MHz, CDCl3): δ (ppm) = 7.88-7.81 (m, 1H), 7.76-7.55 (m, 4H), 

7.35-7.27 (m, 1H), 7.17-7.07 (m, 1H). 

13
C NMR (75 MHz, CDCl3): δ (ppm) = 190.4 (d, J = 0.6 Hz), 161.7 (d, J = 257.5 Hz), 

140.4 (d, J = 0.8 Hz), 135.7 (d, J = 8.9 Hz), 135.1 (m), 131.3 (d, J = 1.1 Hz), 130.7, 

129.6 (q, J = 33.0 Hz), 128.2 (q, J = 3.7 Hz), 126.2 (m), 125.3 (d, J = 10.4 Hz), 123.3 

(q, J = 270.8 Hz), 124.7 (d, J = 3.9 Hz), 116.7 (d, J = 22.2 Hz). 

IR (Diamond-ATR, neat):  (cm
-1

) = 3044 (VW), 1664 (S), 1607 (S), 1481 (M), 

1455 (M), 1332 (S), 1289 (S), 1171 (S), 1123 (VS), 1079 (VS), 957 (W), 914 (W), 

836 (S), 756 (M), 629 (W). 

MS (EI, 70 eV): m/z (%) = 302 (M
+
, 73), 209 (28), 207 (100), 180 (11), 178 (38), 143 

(9), 123 (79), 95 (70). 

HRMS (EI): Calcd. for [C14H7ClF4O]
+
: 302.0122; found: 302.0120. 

 

Preparation of (2-(trifluoromethyl)phenyl)manganese(II) iodide (99e) 

 

According to TP1, 1-iodo-2-(trifluoromethyl)benzene (98e, 544 mg, 2 mmol) reacted 

with manganese powder (330 mg, 6 mmol), LiCl (127 mg, 3 mmol), InCl3 (11 mg, 2.5 

mol %) and PbCl2 (14 mg, 2.5 mol %) in THF (10 mL) within 23 h at 25 °C affording 

the corresponding aryl manganese reagent 99e in 76% yield. 
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Synthesis of thiophen-2-yl(2-(trifluoromethyl)phenyl)methanone (101g). 

 

Thiophene-2-carbonyl chloride (100g, 205 mg, 1.4 mmol) and THF (1.5 mL) were 

placed in an argon-flushed flask. To this mixture was added 

(2-(trifluoromethyl)phenyl)manganese(II) iodide (99e, 10 mL) dropwise at 0 °C. The 

reaction mixture was allowed to warm to 25 °C and continuously stirred for 14 h 

followed by quenching with brine (5 mL). The aqueous layer was extracted with 

CH2Cl2 (3 x 20 mL). The combined organic phases were dried over Na2SO4, the 

solvent was removed in vacuo. Purification by flash column chromatography (SiO2, 

hexane/Et2O = 20:1) afforded 101g (266 mg, 74%) as a white solid. 

m. p. = 58.1 – 59.8 °C. 

1
H NMR (300 MHz, CDCl3): δ (ppm) = 7.83-7.75 (m, 2H), 7.69-7.59 (m, 2H), 

7.57-7.49 (m, 1H), 7.35 (dd, J = 3.7 Hz, 1.2 Hz, 1H), 7.13 (dd, J = 4.8 Hz, 3.7 Hz, 

1H). 

13
C NMR (75 MHz, CDCl3): δ (ppm) = 187.5, 143.8 (q, J = 0.9 Hz), 137.8 (q, J = 2.2 

Hz), 136.0, 135.7, 131.4 (q, J = 1.0 Hz), 130.1, 128.3, 128.2, 128.0 (q, J = 32.3 Hz), 

126.8 (q, J = 4.6 Hz), 123.5 (q, J = 274.0 Hz). 

IR (Diamond-ATR, neat):  (cm
-1

) = 3100 (VW), 1979 (VW), 1648 (VS), 1411 (S), 

1315 (VS), 1286 (S), 1172 (S), 1149 (M), 1113 (VS), 1045 (M), 846 (M), 775 (M), 

730 (W). 

MS (EI, 70 eV): m/z (%) = 256 (M
+
, 39), 237 (2), 173 (10), 145 (15), 111 (100), 95 

(3), 82 (5). 

HRMS (EI): Calcd. for [C12H7F3OS]
+
: 256.0170; found: 256.0160. 

 

Preparation of (2,4-dichloro-6-methylphenyl)manganese(II) iodide (99f). 
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According to TP1, 1,5-dichloro-2-iodo-3-methylbenzene (98f, 574 mg, 2 mmol) 

reacted with manganese powder (330 mg, 6 mmol), LiCl (127 mg, 3 mmol), InCl3 (11 

mg, 2.5 mol %) and PbCl2 (14 mg, 2.5 mol %) in THF (6 mL) within 12 h at 25 °C 

affording the corresponding aryl manganese reagent 99f in 70% yield. 

 

Synthesis of 4-((2,4-dichloro-6-methylphenyl)(hydroxy)methyl)benzonitrile 

(101h). 

 

4-Formylbenzonitrile (100h, 183 mg, 1.4 mmol) and THF (1.5 mL) were placed in an 

argon-flushed flask. To this mixture was added 

(2,4-dichloro-6-methylphenyl)manganese(II) iodide (99f, 6 mL) dropwise at 0 °C. 

The reaction mixture was allowed to warm to 25 °C and continuously stirred for 14 h 

followed by quenching with brine (5 mL). The aqueous layer was extracted with 

CH2Cl2 (3 x 20 mL). The combined organic phases were dried over Na2SO4, the 

solvent was removed in vacuo. Purification by flash column chromatography (SiO2, 

hexane/Et2O = 10:1) afforded 101h (294 mg, 72%) as a white solid. 

m. p. = 156.0-158.3 °C. 

1
H NMR (300 MHz, CDCl3): δ (ppm) = 7.66-7.59 (m, 2H), 7.57-7.41 (m, 2H), 

7.34-7.30 (m, 1H), 7.12 (d, J = 2.1 Hz, 1H), 6.58 (d, J = 5.8 Hz, 1H), 2.82 (d, J = 5.8 

Hz, 1H), 2.21 (s, 3H). 

13
C NMR (75 MHz, CDCl3): δ (ppm) = 147.2, 141.4, 136.1, 134.5, 134.3, 132.1, 

130.7, 127.4, 126.1, 118.8, 110.8, 70.6, 20.3. 

IR (Diamond-ATR, neat):  (cm
-1

) = 3477 (M), 2927 (VW), 2360 (W), 2231 (M), 

1735 (M), 1700 (M), 1392 (M), 1259 (W), 1053 (S), 910 (M), 849 (S), 813 (S), 766 

(W), 688 (W). 

MS (EI, 70 eV): m/z (%) = 290 (M
+
, 42), 289 (66), 287 (100), 272 (13), 255 (14), 237 

(19), 199 (15), 186 (78), 130 (63), 102 (65). 

HRMS (EI): Calcd. for [C15H11Cl2NO]
+
: 291.0218; found: 290.9944. 
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Preparation of (2-(ethoxycarbonyl)-4,6-diiodophenyl)manganese(II) iodide (99g). 

 

According to TP1, ethyl 2,3,5-triiodobenzoate (98g, 1.05 g, 2 mmol) reacted with 

manganese powder (330 mg, 6 mmol), LiCl (127 mg, 3 mmol), InCl3 (11 mg, 2.5 

mol %) and PbCl2 (14 mg, 2.5 mol %) in THF (10 mL) within 16 h between 0-25 °C 

affording the corresponding aryl manganese reagent 99g in 60% yield. 

 

Synthesis of 3-(5,7-diiodo-3-oxo-1,3-dihydroisobenzofuran-1-yl)benzonitrile 

(101i). 

 

3-Formylbenzonitrile (100c, 157 mg, 1.2 mmol) and THF (1.5 mL) were placed in an 

argon-flushed flask. To this mixture was added 

(2-(ethoxycarbonyl)-4,6-diiodophenyl)manganese(II) iodide (99g, 10 mL) dropwise at 

0 °C. The reaction mixture was allowed to warm to 25 °C and continuously stirred for 

14 h followed by quenching with brine (5 mL). The aqueous layer was extracted with 

CH2Cl2 (3 x 20 mL). The combined organic phases were dried over Na2SO4, the 

solvent was removed in vacuo. Purification by flash column chromatography (SiO2, 

hexane/Et2O = 4:1) afforded 101i (397 mg, 68%) as a yellow solid. 

m. p. = 118.0-119.9 °C. 

1
H NMR (300 MHz, CDCl3): δ (ppm) = 8.41 (d, J = 1.4 Hz, 1H), 8.34 (d, J = 1.4 Hz, 

1H), 7.76-7.70 (m, 1H), 7.58-7.45 (m, 3H), 6.16 (s, 1H). 

13
C NMR (75 MHz, CDCl3): δ (ppm) = 166.8, 151.6, 150.2, 135.1, 134.6, 133.4, 

133.3, 132.8, 129.9, 129.5, 117.8, 113.2, 96.0, 90.9, 83.7. 

IR (Diamond-ATR, neat):  (cm
-1

) = 3416 (W), 2964 (W), 2569 (W), 2232 (M), 

1768 (S), 1681 (VS), 1435 (M), 1275 (VS), 1232 (S), 1065 (M), 911 (W), 802 (M), 

753 (S), 675 (M). 
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MS (EI, 70 eV): m/z (%) = 486 (M
+
, 53), 457 (4), 384 (13), 356 (100), 230 (5), 205 

(4), 200 (10), 190 (6), 189 (22), 188 (29), 177 (11), 155 (20), 130 (19), 127 (66), 102 

(10). 

HRMS (EI): Calcd. for [C15H7I2NO2]
+
: 486.8566; found: 486.8550. 

 

Preparation of (4-iodo-2,6-dimethoxypyrimidin-5-yl)manganese(II) iodide (99h). 

 

According to TP1, 4,5-diiodo-2,6-dimethoxypyrimidine (98h, 787 mg, 2 mmol) 

reacted with manganese powder (330 mg, 6 mmol), LiCl (127 mg, 3 mmol), InCl3 (11 

mg, 2.5 mol %) and PbCl2 (14 mg, 2.5 mol %) in THF (10 mL) within 12 h at 25 °C 

affording the corresponding aryl manganese reagent 99h in 65% yield. 

 

Synthesis of (4-chlorophenyl)(4-iodo-2,6-dimethoxypyrimidin-5-yl)methanone 

(101j). 

 

4-Chlorobenzoyl chloride (100d, 210 mg, 1.2 mmol) and THF (1.5 mL) were placed 

in an argon-flushed flask. To this mixture was added 

(4-iodo-2,6-dimethoxypyrimidin-5-yl)manganese(II) iodide (99h, 10 mL) dropwise at 

0 °C. The reaction mixture was allowed to warm to 25 °C and continuously stirred for 

14 h followed by quenching with brine (5 mL). The aqueous layer was extracted with 

CH2Cl2 (3 x 20 mL). The combined organic phases were dried over Na2SO4, the 

solvent was removed in vacuo. Purification by flash column chromatography (SiO2, 

hexane/Et2O = 2:1) afforded 101j (344 mg, 71%) as a white solid. 

m. p. = 176.5-178.8 °C. 

1
H NMR (300 MHz, CDCl3): δ (ppm) = 7.78 (d, J = 8.8 Hz, 2H), 7.46 (d, J = 8.8 Hz, 

2H), 4.05 (s, 3H), 3.89 (s, 3H). 
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13
C NMR (75 MHz, CDCl3): δ (ppm) = 191.8, 167.2, 163.5, 140.8, 133.9, 131.0, 

129.3, 126.7, 120.7, 55.7, 54.9. 

IR (Diamond-ATR, neat):  (cm
-1

) = 2953 (VW), 2360 (VW), 1738 (W), 1670 (M), 

1564 (S), 1523 (S), 1477 (M), 1380 (S), 1314 (M), 1249 (M), 1073 (M), 1009 (S), 

917 (S), 869 (M). 

MS (EI, 70 eV): m/z (%) = 404 (100), 279 (18), 239 (8), 210 (21), 154 (4). 

HRMS (ESI): Calcd. for ([C13H10ClIN2O3]
+
 + H): 404.9503; found: 404.9496 

([C13H10ClIN2O3]
+
 + H). 

 

Synthesis of (3-fluoro-4-methoxyphenyl)(4-iodo-2,6-dimethoxypyrimidin-5-yl) 

methanol (101k). 

 

3-Fluoro-4-methoxybenzaldehyde (100i, 185 mg, 1.2 mmol) and THF (1.5 mL) were 

placed in an argon-flushed flask. To this mixture was added 

(4-iodo-2,6-dimethoxypyrimidin-5-yl)manganese(II) iodide (99h, 10 mL) dropwise at 

0 °C. The reaction mixture was allowed to warm to 25 °C and continuously stirred for 

14 h followed by quenching with brine (5 mL). The aqueous layer was extracted with 

CH2Cl2 (3 x 20 mL). The combined organic phases were dried over Na2SO4, the 

solvent was removed in vacuo. Purification by flash column chromatography (SiO2, 

hexane/Et2O = 1:1) afforded 101k (393 mg, 78%) as a white solid. 

m. p. = 155.6-157.7 °C. 

1
H NMR (300 MHz, CDCl3): δ (ppm) = 7.15-6.86 (m, 3H), 5.96 (d, J = 7.7 Hz, 1H), 

4.01 (s, 3H), 3.93 (s, 3H), 3.89 (s, 3H), 3.41 (br s, 1H). 

13
C NMR (75 MHz, CDCl3): δ (ppm) = 166.8, 162.6, 152.2 (d, J = 246.0 Hz), 146.8 

(d, J = 10.7 Hz), 134.9 (d, J = 5.3 Hz), 133.2, 121.1 (d, J = 3.7 Hz), 120.4, 113.6 (d, J 

= 19.6 Hz), 113.1 (d, J = 2.2 Hz), 75.9 (d, J = 3.0 Hz), 56.3, 55.5, 54.7. 

IR (Diamond-ATR, neat):  (cm
-1

) = 3328 (W), 2958 (VW), 1560 (M), 1535 (S), 

1442 (M), 1362 (S), 1274 (S), 1207 (M), 1109 (M), 1010 (VS), 795 (M), 754 (W). 
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MS (EI, 70 eV): m/z (%) = 419 (M
+
, 71), 415 (11), 401 (10), 388 (17), 294 (17), 292 

(100), 274 (52), 260 (35), 217 (12), 152 (31), 138 (10), 127 (15), 112 (14). 

HRMS (EI): Calcd. for [C14H14FIN2O4]
+
: 419.9982; found: 419.9975. 

 

Preparation of (3-chlorobenzyl)manganese(II) chloride (103a). 

 

According to TP2, 1-chloro-3-(chloromethyl)benzene (102a, 644 mg, 4 mmol) 

reacted with manganese powder (660 mg, 12 mmol), InCl3 (22 mg, 2.5 mol %) and 

PbCl2 (28 mg, 2.5 mol %) in THF (20 mL) within 14 h at 25 °C affording the 

corresponding benzylic manganese reagent 103a in 75% yield. 

 

Synthesis of 1-chloro-3-(3-nitro-2-phenylpropyl)benzene (104a). 

 

Nitrostyrene (100j, 208 mg, 1.4 mmol), CuI (26 mg, 10 mol%) and THF (1.5 mL) 

were placed in an argon-flushed flask. To this mixture was added 

(3-chlorobenzyl)manganese(II) chloride (103a, 10 mL) dropwise at -78 °C. The 

reaction mixture was allowed to warm to 25 °C and continuously stirred for 24 h 

followed by quenching with brine (5 mL). The aqueous layer was extracted with 

CH2Cl2 (3 x 20 mL). The combined organic phases were dried over Na2SO4, the 

solvent was removed in vacuo. Purification by flash column chromatography (SiO2, 

pentane/Et2O = 10:1) afforded 104a (308 mg, 80%) as pale yellow liquid. 

1
H NMR (300 MHz, CDCl3): δ (ppm) = 7.39-7.25 (m, 3H), 7.24-7.12 (m, 5H), 

6.99-6.91 (m, 1H), 4.63 (dd, J = 7.7 Hz, J = 2.2 Hz, 2H), 3.84-3.71 (m, 1H), 2.99 (d, J 

= 7.5 Hz, 2H). 

13
C NMR (75 MHz, CDCl3): δ (ppm) = 139.9, 138.5, 134.3, 129.8, 129.2, 128.9, 

127.9, 127.5, 127.3, 127.0, 79.5, 45.8, 39.5. 
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IR (Diamond-ATR, neat):  (cm
-1

) = 3031 (VW), 2922 (VW), 1548 (VS), 1428 (M), 

1377 (M), 1207 (W), 1078 (W), 908 (W), 776 (M), 697 (S), 682 (M). 

MS (EI, 70 eV): m/z (%) = 275 (M
+
, 5), 245 (4), 228 (12), 227 (22), 226 (27), 213 

(46), 193 (23), 179 (13), 165 (6), 126 (41), 125 (11), 124 (89), 115 (10), 104 (100), 77 

(10). 

HRMS (EI): Calcd. for [C15H14ClNO2]
+
: 275.0713; found: 275.0710. 

 

Synthesis of 4-(2-(3-chlorophenyl)-1-hydroxyethyl)benzonitrile (104b). 

 

4-Formylbenzonitrile (100h, 183 mg, 1.4 mmol) and THF (1.5 mL) were placed in an 

argon-flushed flask. To this mixture was added (3-chlorobenzyl)manganese(II) 

chloride (103a, 10 mL) dropwise at 0 °C. The reaction mixture was allowed to warm 

to 25 °C and continuously stirred for 14 h followed by quenching with brine (5 mL). 

The aqueous layer was extracted with CH2Cl2 (3 x 20 mL). The combined organic 

phases were dried over Na2SO4, the solvent was removed in vacuo. Purification by 

flash column chromatography (SiO2, pentane/Et2O = 4:1) afforded 104b (264 mg, 

73%) as a white solid. 

m. p. = 95.2 – 96.7 °C. 

1
H NMR (400 MHz, CDCl3): δ (ppm) = 7.63 (d, J = 8.3 Hz, 2H), 7.45 (d, J = 8.3 Hz, 

2H), 7.28-7.16 (m, 3H), 7.07-6.99 (m, 1H), 4.96 (dd, J = 7.6 Hz, J = 5.4 Hz, 1H), 

3.05-2.89 (m, 2H), 2.29 (br s, 1H). 

13
C NMR (100 MHz, CDCl3): δ (ppm) = 148.7, 139.1, 134.3, 132.2, 129.7, 129.5, 

127.7, 127.0, 126.5, 118.7, 111.3, 74.2, 45.4.. 

IR (Diamond-ATR, neat):  (cm
-1

) = 3477 (S), 2924 (VW), 2233 (M), 1666 (W), 

1599 (M), 1476 (W), 1402 (M), 1228 (M), 1068 (S), 817 (M), 786 (S), 682 (M). 

MS (EI, 70 eV): m/z (%) = 257 (M
+
, 1), 239 (2), 204 (3), 203 (3), 202 (1), 190 (1), 

176 (1), 132 (100), 128 (23), 104 (39), 91 (19), 76 (15). 
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HRMS (EI): Calcd. for [C15H12ClNO]
+
: 257.0607; found: 257.0586. 

 

Synthesis of 2-(3-chlorophenyl)-1-(4-chlorophenyl)ethanone (104c). 

 

4-Chlorobenzoyl chloride (100d, 245 mg, 1.4 mmol) and THF (1.5 mL) were placed 

in an argon-flushed flask. To this mixture was added (3-chlorobenzyl)manganese(II) 

chloride (103a, 10 mL) dropwise at 0 °C. The reaction mixture was allowed to warm 

to 25 °C and continuously stirred for 14 h followed by quenching with brine (5 mL). 

The aqueous layer was extracted with CH2Cl2 (3 x 20 mL). The combined organic 

phases were dried over Na2SO4, the solvent was removed in vacuo. Purification by 

flash column chromatography (SiO2, pentane/Et2O = 20:1) afforded 104c (281 mg, 

75%) as a white solid. 

1
H NMR (300 MHz, CDCl3): δ (ppm) = 7.95 (d, J = 8.6 Hz, 2H), 7.46 (d, J = 8.6 Hz, 

2H), 7.30-7.26 (m, 3H), 7.17-1.13 (m, 1H), 4.25 (s, 2H). 

13
C NMR (75 MHz, CDCl3): δ (ppm) = 195.5, 139.9, 135.9, 134.6, 130.9, 129.9, 

129.6, 129.0, 128.7, 127.6, 127.3, 44.8. 

IR (Diamond-ATR, neat):  (cm
-1

) = 2958 (VW), 2359 (VW), 1716 (S), 1689 (S), 

1588 (S), 1476 (M), 1398 (M), 1269 (VS), 1090 (VS), 990 (S), 817 (M), 759 (S). 

MS (EI, 70 eV): m/z (%) = 265 (0.2), 191 (3), 175 (5), 164 (2), 157 (3), 156 (2), 155 

(7), 138 (100), 111 (24). 

HRMS (EI): Calcd. for ([C14H10Cl2O]
+
 + H): 265.0187; found: 265.0191 

([C14H10Cl2O]
+
 + H). 

 

Preparation of (2-chlorobenzyl)manganese(II) chloride (103b). 

 

According to TP2, 1-chloro-2-(chloromethyl)benzene (102b, 322 mg, 2 mmol) 
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reacted with manganese powder (330 mg, 6 mmol), InCl3 (11 mg, 2.5 mol %) and 

PbCl2 (14 mg, 2.5 mol %) in THF (10 mL) within 16 h at 25 °C affording the 

corresponding benzylic manganese reagent 103b in 72% yield. 

 

Synthesis of 2-(2-chlorophenyl)-1-phenylethanone (104d). 

 

Benzoyl chloride (100k, 196 mg, 1.4 mmol) and THF (1.5 mL) were placed in an 

argon-flushed flask. To this mixture was added (2-chlorobenzyl)manganese(II) 

chloride (103b, 10 mL) dropwise at 0 °C. The reaction mixture was allowed to warm 

to 25 °C and continuously stirred for 16 h followed by quenching with brine (5 mL). 

The aqueous layer was extracted with CH2Cl2 (3 x 20 mL). The combined organic 

phases were dried over Na2SO4, the solvent was removed in vacuo. Purification by 

flash column chromatography (SiO2, pentane/Et2O = 20:1) afforded 104d (284 mg, 

88%) as a pale yellow solid. 

m. p. = 54.8 – 56.4 °C. 

1
H NMR (300 MHz, CDCl3): δ (ppm) = 8.15-8.07 (m, 2H), 7.66-7.43 (m, 4H), 

7.32-7.24 (m, 3H), 4.47 (s, 2H),. 

13
C NMR (75 MHz, CDCl3): δ (ppm) = 196.3, 136.7, 134.5, 133.3, 133.2, 131.8, 

129.5, 128.7, 128.6, 128.4, 126.9, 43.3. 

IR (Diamond-ATR, neat):  (cm
-1

) = 3026 (VW), 2908 (VW), 1715 (M), 1690 (S), 

1446 (M), 1330 (M), 1272 (S), 1198 (M), 1116 (W), 989 (M), 750 (S), 684 (S), 656 

(M). 

MS (EI, 70 eV): m/z (%) = 231 (M
+
, 11), 196 (7), 195 (46), 194 (2), 165 (10), 152 (2), 

139 (2), 127 (7), 125 (21), 105 (100), 77 (62). 

HRMS (EI): Calcd. for [C14H11ClO]
+
: 230.0498; found: 230.0490. 

 

Synthesis of 2-(2-chlorophenyl)-1-phenylethanol (104e). 
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Benzaldehyde (100l, 148 mg, 1.4 mmol) and THF (1.5 mL) were placed in an 

argon-flushed flask. To this mixture was added (2-chlorobenzyl)manganese(II) 

chloride (103b, 10 mL) dropwise at 0 °C. The reaction mixture was allowed to warm 

to 25 °C and continuously stirred for 14 h followed by quenching with brine (5 mL). 

The aqueous layer was extracted with CH2Cl2 (3 x 20 mL). The combined organic 

phases were dried over Na2SO4, the solvent was removed in vacuo. Purification by 

flash column chromatography (SiO2, pentane/Et2O = 9:1) afforded 104e (241 mg, 

74%) as a white solid. 

m. p. = 72.7 – 74.5 °C. 

1
H NMR (400 MHz, CDCl3): δ (ppm) = 7.43-7.26 (m, 6H), 7.23-7.14 (m, 3H), 5.03 

(dd, J = 8.8 Hz, J = 4.4 Hz, 1H), 3.25-3.04 (m, 2H), 2.02 (br s. 1H). 

13
C NMR (100 MHz, CDCl3): δ (ppm) = 143.9, 135.9, 134.3, 131.9, 129.5, 128.4, 

128.1, 127.6, 126.7, 125.7, 73.4, 43.8. 

IR (Diamond-ATR, neat):  (cm
-1

) = 3278 (M), 3188 (M), 3030 (W), 2892 (W), 

1945 (W), 1444 (M), 1203 (W), 1039 (S), 993 (M), 910 (W), 747 (VS), 695 (S), 681 

(M). 

MS (EI, 70 eV): m/z (%) = 232 (M
+
, 1), 214 (2), 195 (3), 181 (3), 180 (2), 179 (9), 

165 (4), 127 (4), 126 (44), 107 (100), 77 (28). 

HRMS (EI): Calcd. for [C14H13ClO]
+
: 232.0655; found: 232.0654. 

 

Synthesis of 4-(2-chlorobenzyl)benzonitrile (104f). 

 

4-Bromobenzonitrile (100m, 255 mg, 1.4 mmol), Pd(PPh3)4 (162 mg, 10 mol%) and 

THF (1.5 mL) were placed in an argon-flushed flask. To this mixture was added 

(2-chlorobenzyl)manganese(II) chloride (103b, 10 mL) dropwise at 0 °C. The 
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reaction mixture was allowed to warm to 25 °C and continuously stirred for 14 h 

followed by quenching with brine (5 mL). The aqueous layer was extracted with 

CH2Cl2 (3 x 20 mL). The combined organic phases were dried over Na2SO4, the 

solvent was removed in vacuo. Purification by flash column chromatography (SiO2, 

pentane/Et2O = 5:1) afforded 104f (266 mg, 84%) as a white solid. 

m. p. = 61.8 – 63.5 °C. 

1
H NMR (400 MHz, CDCl3): δ (ppm) = 7.56 (d, J = 8.2 Hz, 2H), 7.41-7.37 (m, 1H), 

7.28 (d, J = 8.2 Hz, 2H), 7.26-7.15 (m, 3H), 4.15 (s, 2H). 

13
C NMR (100 MHz, CDCl3): δ (ppm) = 145.1, 136.9, 134.2, 132.2, 131.1, 129.8, 

129.5, 128.3, 127.1, 118.9, 110.1, 39.3. 

IR (Diamond-ATR, neat):  (cm
-1

) = 3402 (VW), 3069 (VW), 2225 (M), 1920 (W), 

1607 (W), 1471 (M), 1433 (M), 1413 (M), 1102 (W), 1048 (M), 915 (W), 805 (M), 

758 (S), 741 (VS), 673 (M), 648 (W). 

MS (EI, 70 eV): m/z (%) = 227 (M
+
, 43), 205 (28), 192 (100), 191 (27), 190 (43), 179 

(14), 165 (38), 125 (9), 95 (10). 

HRMS (EI): Calcd. for [C14H10ClN]
+
: 227.0502; found: 227.0505. 

 

Preparation of (3-fluorobenzyl)manganese(II) chloride (103c). 

 

According to TP2, 1-(chloromethyl)-3-fluorobenzene (102c, 289 mg, 2 mmol) reacted 

with manganese powder (330 mg, 6 mmol), InCl3 (11 mg, 2.5 mol %) and PbCl2 (14 

mg, 2.5 mol %) in THF (10 mL) within 16 h at 25 °C affording the corresponding 

benzylic manganese reagent 103c in 68% yield. 

 

Synthesis of 4-(2-(3-fluorophenyl)-1-hydroxyethyl)benzonitrile (104g).  
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4-Formylbenzonitrile (100h, 183 mg, 1.4 mmol) and THF (1.5 mL) were placed in an 

argon-flushed flask. To this mixture was added (3-fluorobenzyl)manganese(II) 

chloride (103c, 10 mL) dropwise at 0 °C. The reaction mixture was allowed to warm 

to 25 °C and continuously stirred for 14 h followed by quenching with brine (5 mL). 

The aqueous layer was extracted with CH2Cl2 (3 x 20 mL). The combined organic 

phases were dried over Na2SO4, the solvent was removed in vacuo. Purification by 

flash column chromatography (SiO2, pentane/Et2O = 2:1) afforded 104g (254 mg, 

75%) as a white solid. 

m. p. = 84.9 – 86.8 °C. 

1
H NMR (300 MHz, CDCl3): δ (ppm) = 7.64 (d, J = 8.6 Hz, 2H), 7.45 (d, J = 8.6 Hz, 

2H), 7.32-7.23 (m, 1H), 7.01-6.87 (m, 3H), 4.98 (dd, J = 7.9 Hz, J = 5.4 Hz, 1H), 

3.08-2.93 (m, 2H), 2.23 (br s, 1H). 

13
C NMR (75 MHz, CDCl3): δ (ppm) = 162.8 (d, J = 246.2 Hz), 148.8, 139.5 (d, J = 

7.3 Hz), 132.3, 130.1 (d, J = 8.1 Hz), 126.6, 125.2 (d, J = 3.1 Hz), 118.8, 116.4 (d, J = 

21.3 Hz), 113.9 (d, J = 21.0 Hz), 111.4, 74.3, 45.6 (d, J = 1.7 Hz). 

IR (Diamond-ATR, neat):  (cm
-1

) = 3461 (S), 2926 (VW), 2232 (M), 1606 (M), 

1598 (S), 1484 (M), 1446 (M), 1403 (M), 1247 (S), 1138 (M), 1065 (VS), 1010 (W), 

846 (S), 781 (S), 685 (S). 

MS (EI, 70 eV): m/z (%) = 223 (8), 222 (17), 221 (14), 202 (5), 201 (4), 194 (4), 132 

(100), 130 (91), 110 (93), 104 (52), 77 (24). 

HRMS (EI): Calcd. for [C15H12FNO]
+
: 241.0903; found: 241.0890. 

 

Synthesis of ethyl 4-(3-fluorobenzyl)benzoate (104h). 

 

Ethyl 4-iodobenzoate (100a, 386 mg, 1.4 mmol), Pd(PPh3)4 (162 mg, 10 mol%) and 
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THF (1.5 mL) were placed in an argon-flushed flask. To this mixture was added 

(3-fluorobenzyl)manganese(II) chloride (103c, 10 mL) dropwise at 0 °C. The reaction 

mixture was allowed to warm to 25 °C and continuously stirred for 14 h followed by 

quenching with brine (5 mL). The aqueous layer was extracted with CH2Cl2 (3 x 20 

mL). The combined organic phases were dried over Na2SO4, the solvent was removed 

in vacuo. Purification by flash column chromatography (SiO2, pentane/Et2O = 2:1) 

afforded 104h (292 mg, 80%) as colorless liquid. 

1
H NMR (300 MHz, CDCl3): δ (ppm) = 8.02 (d, J = 8.6 Hz, 2H), 7.32-7.22 (m, 3H), 

7.01-6.85 (m, 3H), 4.39 (q, J = 7.2 Hz, 2H), 4.04 (s, 2H), 1.41 (t, J = 7.2 Hz, 3H). 

13
C NMR (75 MHz, CDCl3): δ (ppm) = 166.4, 162.9 (d, J = 246.0 Hz), 145.4, 142.6 

(d, J = 7.3 Hz), 129.9 (d, J = 8.1 Hz), 129.8, 128.8, 128.7, 124.5 (d, J = 2.8 Hz), 115.7 

(d, J = 21.8 Hz), 113.2 (d, J = 21.0 Hz), 60.8, 41.5 (d, J = 1.7 Hz), 14.3. 

IR (Diamond-ATR, neat):  (cm
-1

) = 2984 (VW), 2255 (VW), 1710 (S), 1609 (W), 

1449 (W), 1275 (S), 1103 (M), 906 (S), 774 (W), 726 (VS), 648 (W). 

MS (EI, 70 eV): m/z (%) = 258 (M
+
, 51), 244 (2), 230 (18), 214 (14), 213 (100), 186 

(7), 185 (39), 184 (8), 183 (27), 165 (26), 123 (5), 106 (3). 

HRMS (EI): Calcd. for [C16H15FO2]
+
: 258.1056; found: 258.1051. 

 

Preparation of (2-bromobenzyl)manganese(II) chloride (103d). 

 

According to TP2, 1-bromo-2-(chloromethyl)benzene (102d, 411 mg, 2 mmol) 

reacted with manganese powder (330 mg, 6 mmol), InCl3 (11 mg, 2.5 mol %) and 

PbCl2 (14 mg, 2.5 mol %) in THF (10 mL) within 13 h at 25 °C affording the 

corresponding benzylic manganese reagent 103d in 70% yield. 

 

Synthesis of 2-(2-bromophenyl)-1-(4-chlorophenyl)ethanone (104i). 
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4-Chlorobenzoyl chloride (100d, 245 mg, 1.4 mmol) and THF (1.5 mL) were placed 

in an argon-flushed flask. To this mixture was added (2-bromobenzyl)manganese(II) 

chloride (103d, 10 mL) dropwise at 0 °C. The reaction mixture was allowed to warm 

to 25 °C and continuously stirred for 14 h followed by quenching with brine (5 mL). 

The aqueous layer was extracted with CH2Cl2 (3 x 20 mL). The combined organic 

phases were dried over Na2SO4, the solvent was removed in vacuo. Purification by 

flash column chromatography (SiO2, pentane/Et2O = 20:1) afforded 104i (290 mg, 

67%) as a white solid. 

m. p. = 91.7 – 93.2 °C. 

1
H NMR (300 MHz, CDCl3): δ (ppm) = 8.01 (d, J = 8.8 Hz, 2H), 7.62 (dd, J = 8.0 

Hz, 1.1 Hz, 1H), 7.48 (d, J = 8.8 Hz, 2H), 7.51-7.14 (m, 3H), 4.44 (s, 2H). 

13
C NMR (75 MHz, CDCl3): δ (ppm) = 195.1, 139.7, 134.9, 134.6, 132.8, 131.6, 

129.7, 128.9, 128.8, 127.5, 124.9, 45.7. 

IR (Diamond-ATR, neat):  (cm
-1

) = 2942 (W), 1718 (M), 1688 (S), 1590 (M), 1399 

(M), 1321 (M), 1271 (S), 1216 (M), 1085 (S), 987 (S), 814 (S), 756 (VS), 730 (M), 

654 (W). 

MS (EI, 70 eV): m/z (%) = 308 (6), 232 (1), 231 (4), 230 (2), 229 (11), 170 (3), 168 

(3), 165 (5), 140 (27), 139 (6), 138 (100), 111 (17). 

HRMS (EI): Calcd. for [C14H10BrClO + H]
+
: 308.9682; found: 308.9670 

([C14H10BrClO + H]
+
). 

 

Preparation of (3-iodobenzyl)manganese(II) chloride (103e). 

 

According to TP2, 1-(chloromethyl)-3-iodobenzene (102e, 252 mg, 1 mmol) reacted 

with manganese powder (165 mg, 3 mmol), InCl3 (6 mg, 2.5 mol %) and PbCl2 (7 mg, 
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2.5 mol %) in THF (5 mL) within 16 h at 25 °C affording the corresponding benzylic 

manganese reagent 103e in 68% yield. 

 

Synthesis of 3-(1-hydroxy-2-(3-iodophenyl)ethyl)benzonitrile (104j). 

 

3-Formylbenzonitrile (100c, 93 mg, 0.7 mmol) and THF (1 mL) were placed in an 

argon-flushed flask. To this mixture was added (3-iodobenzyl)manganese(II) chloride 

(103e, 5 mL) dropwise at 0 °C. The reaction mixture was allowed to warm to 25 °C 

and continuously stirred for 14 h followed by quenching with brine (5 mL). The 

aqueous layer was extracted with CH2Cl2 (3 x 20 mL). The combined organic phases 

were dried over Na2SO4, the solvent was removed in vacuo. Purification by flash 

column chromatography (SiO2, pentane/Et2O = 2:1) afforded 104j (166 mg, 66%) as a 

white solid. 

m. p. = 98.7 – 100.0 °C. 

1
H NMR (300 MHz, CDCl3): δ (ppm) = 7.69-7.43 (m, 6H), 7.16-7.01 (m, 2H), 4.93 

(dd, J = 8.0 Hz, J = 5.4 Hz, 1H), 3.01-2.85 (m, 2H), 2.24 (br s, 1H). 

13
C NMR (75 MHz, CDCl3): δ (ppm) = 144.9, 139.5, 138.4, 135.9, 131.3, 130.3, 

130.2, 129.5, 129.2, 128.8, 118.7, 112.4, 94.5, 73.9, 45.4. 

IR (Diamond-ATR, neat):  (cm
-1

) = 3546 (W), 2223 (W), 1726 (W), 1585 (W), 

1430 (W), 1050 (M), 845 (W), 797 (M), 687 (S), 659 (W). 

MS (EI, 70 eV): m/z (%) = 348 (M
+
, 1), 330 (1), 219 (5), 218 (100), 217 (8), 203 (2), 

177 (1), 132 (72), 104 (22), 91 (17), 77 (8). 

HRMS (EI): Calcd. for [C15H12INO]
+
: 348.9964; found: 348.9950. 

 

Preparation of (3-(trifluoromethyl)benzyl)manganese(II) chloride (103f). 
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According to TP2, 1-(chloromethyl)-3-(trifluoromethyl)benzene (102f, 389 mg, 2 

mmol) reacted with manganese powder (330 mg, 6 mmol), InCl3 (11 mg, 2.5 mol %) 

and PbCl2 (14 mg, 2.5 mol %) in THF (10 mL) within 24 h at 25 °C affording the 

corresponding benzylic manganese reagent 103f in 71% yield. 

 

Synthesis of ethyl 2-methylene-4-(3-(trifluoromethyl)phenyl)butanoate (104k). 

 

Ethyl 2-(bromomethyl)acrylate (100b, 270 mg, 1.4 mmol) and THF (1.5 mL) were 

placed in an argon-flushed flask. To this mixture was added 

(3-(trifluoromethyl)benzyl)manganese(II) chloride (103f, 10 mL) dropwise at 0 °C. 

The reaction mixture was allowed to warm to 25 °C and continuously stirred for 14 h 

followed by quenching with brine (5 mL). The aqueous layer was extracted with 

CH2Cl2 (3 x 20 mL). The combined organic phases were dried over Na2SO4, the 

solvent was removed in vacuo. Purification by flash column chromatography (SiO2, 

pentane/Et2O = 20:1) afforded 120k (267 mg, 70%) as colorless liquid. 

1
H NMR (300 MHz, CDCl3): δ (ppm) = 7.52-7.36 (m, 4H), 6.19 (d, J = 1.4 Hz, 1H), 

5.52 (q, J = 1.2 Hz, 1H), 4.25 (q, J = 7.2 Hz, 2H), 2.92-2.85 (m, 2H), 2.69-2.62 (m, 

2H), 1.34 (t, J = 7.2 Hz, 3H). 

13
C NMR (75 MHz, CDCl3): δ (ppm) = 166.9, 142.3, 139.7, 131.9 (q, J = 1.4 Hz), 

130.6 (q, J = 31.9 Hz), 128.7, 125.5, 124.2 (q, J = 272.3 Hz), 125.2 (q, J = 3.7 Hz), 

122.9 (q, J = 3.9 Hz), 60.7, 34.8, 33.7, 14.2. 

IR (Diamond-ATR, neat):  (cm
-1

) = 2985 (W), 1713 (S), 1631 (W), 1449 (W), 1327 

(VS), 1160 (S), 1118 (VS), 1072 (S), 1028 (W), 945 (W), 799 (M), 701 (M), 658 (W). 

MS (EI, 70 eV): m/z (%) = 227 (M
+
, 16), 226 (36), 197 (16), 177 (8), 160 (9), 159 

(100), 157 (12), 129 (13), 127 (8), 109 (11). 

HRMS (EI): Calcd. for [C14H15F3O2]
+
: 272.1024; found: 272.1016. 
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Preparation of (3-(butoxycarbonyl)benzyl)manganese(II) bromide (103g). 

 

According to TP2, butyl 3-(bromomethyl)benzoate (102g, 271 mg, 1 mmol) reacted 

with manganese powder (165 mg, 6 mmol), InCl3 (6 mg, 2.5 mol %) and PbCl2 (7 mg, 

2.5 mol %) in THF (10 mL) within 17 h at 25 °C affording the corresponding benzylic 

manganese reagent 103g in 65% yield. 

 

Synthesis of butyl 3-(4-cyanobenzyl)benzoate (104l). 

 

4-Bromobenzonitrile (100m, 111 mg, 0.6 mmol), Pd-PEPPSI-iPr (20 mg, 5 mol%) 

and THF (1 mL) were placed in an argon-flushed flask. To this mixture was added 

(3-(butoxycarbonyl)benzyl)manganese(II) bromide (103g, 10 mL) dropwise at 0 °C. 

The reaction mixture was allowed to warm to 25 °C and continuously stirred for 14 h 

followed by quenching with brine (5 mL). The aqueous layer was extracted with 

CH2Cl2 (3 x 20 mL). The combined organic phases were dried over Na2SO4, the 

solvent was removed in vacuo. Purification by flash column chromatography (SiO2, 

pentane/Et2O = 5:1) afforded 104l (125 mg, 71%) as colorless liquid. 

1
H NMR (300 MHz, CDCl3): δ (ppm) = 7.97-7.91 (m, 1H), 7.90-7.86 (m, 1H), 7.59 

(d, J = 8.1 Hz, 2H), 7.45-7.26 (m, 4H), 4.33 (t, J = 6.7 Hz, 2H), 4.10 (s, 2H), 

1.82-1.70 (m, 2H), 1.56-1.41 (m, 2H), 0.99 (t, J = 7.4 Hz, 3H). 

13
C NMR (75 MHz, CDCl3): δ (ppm) = 166.4, 145.9, 139.6, 133.3, 132.4, 131.0, 

129.9, 129.6, 128.8, 127.9, 118.8, 110.3, 64.9, 41.7, 30.7, 19.2, 13.7. 

IR (Diamond-ATR, neat):  (cm
-1

) = 2961 (VW), 2229 (VW), 1712 (S), 1606 (W), 

1281 (S), 1187 (M), 1107 (M), 907 (VS), 728 (VS), 648 (W). 

MS (EI, 70 eV): m/z (%) = 293 (M
+
, 12), 278 (9), 251 (14), 238 (52), 237 (90), 221 

(15), 220 (100), 219 (13), 193 (24), 192 (42), 191 (22), 190 (38), 165 (31), 116 (12), 
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89 (6), 71 (7). 

HRMS (EI): Calcd. for [C19H19NO2]
+
: 293.1416; found: 293.1403. 

 

Synthesis of butyl 3-(4-(ethoxycarbonyl)benzyl)benzoate (104m). 

 

Ethyl 4-iodobenzoate (100a, 166 mg, 0.6 mmol), Pd-PEPPSI-iPr (20 mg, 5 mol%) 

and THF (1 mL) were placed in an argon-flushed flask. To this mixture was added 

(3-(butoxycarbonyl)benzyl)manganese(II) bromide (103g, 10 mL) dropwise at 0 °C. 

The reaction mixture was allowed to warm to 25 °C and continuously stirred for 14 h 

followed by quenching with brine (5 mL). The aqueous layer was extracted with 

CH2Cl2 (3 x 20 mL). The combined organic phases were dried over Na2SO4, the 

solvent was removed in vacuo. Purification by flash column chromatography (SiO2, 

pentane/Et2O = 5:1) afforded 104m (137 mg, 67%) as colorless liquid. 

1
H NMR (300 MHz, CDCl3): δ (ppm) = 7.99 (d, J = 8.2 Hz, 2H), 7.94-7.89 (m, 2H), 

7.42-7.34 (m, 2H), 7.27 (d, J = 8.2 Hz, 2H), 4.38 (q, J = 7.1 Hz, 2H), 4.33 (t, J = 6.6 

Hz, 2H), 4.10 (s, 2H), 1.81-1.71 (m, 2H), 1.55-1.44 (m, 2H), 1.39 (t, J = 7.1 Hz, 3H), 

0.99 (t, J = 7.4 Hz, 3H). 

13
C NMR (75 MHz, CDCl3): δ (ppm) = 166.6, 166.5, 145.7, 140.5, 133.3, 130.9, 

129.9, 129.8, 128.9, 128.7, 128.6, 127.6, 64.9, 60.8, 41.7, 30.8, 19.3, 14.3, 13.7. 

IR (Diamond-ATR, neat):  (cm
-1

) = 2958 (W), 1712 (VS), 1607 (W), 1443 (W), 

1272 (VS), 1177 (M), 1101 (S), 1020 (W), 746 (M), 710 (W). 

MS (EI, 70 eV): m/z (%) = 340 (M
+
, 24), 295 (50), 285 (17), 284 (75), 267 (88), 256 

(57), 239 (100), 212 (23), 211 (49), 194 (17), 166 (34), 152 (21), 111 (21), 82 (14). 

HRMS (EI): Calcd. for [C21H24O4]
+
: 340.1675; found: 340.1670. 

 

Preparation of (3-cyanobenzyl)manganese(II) bromide (103h). 
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According to TP2, 3-(bromomethyl)benzonitrile (102h, 196 mg, 1 mmol) reacted 

with manganese powder (165 mg, 6 mmol), InCl3 (6 mg, 2.5 mol %) and PbCl2 (7 mg, 

2.5 mol %) in THF (10 mL) within 17 h at 25 °C affording the corresponding benzylic 

manganese reagent 103h in 52% yield. 

 

Synthesis of ethyl 4-(3-cyanophenyl)-2-methylenebutanoate (104n). 

 

Ethyl 2-(bromomethyl)acrylate (100b, 115 mg, 0.6 mmol) and THF (1 mL) were 

placed in an argon-flushed flask. To this mixture was added 

(3-cyanobenzyl)manganese(II) bromide (103h, 10 mL) dropwise at 0 °C. The reaction 

mixture was allowed to warm to 25 °C and continuously stirred for 14 h followed by 

quenching with brine (5 mL). The aqueous layer was extracted with CH2Cl2 (3 x 20 

mL). The combined organic phases were dried over Na2SO4, the solvent was removed 

in vacuo. Purification by flash column chromatography (SiO2, pentane/Et2O = 4:1) 

afforded 104n (62 mg, 45%) as colorless liquid. 

1
H NMR (300 MHz, CDCl3): δ (ppm) = 7.53-7.36 (m, 4H), 6.18 (d, J = 1.3 Hz, 1H), 

5.49 (q, J = 1.2 Hz, 1H), 4.24 (q, J = 7.2 Hz, 2H), 2.89-2.82 (m, 2H), 2.66-2.59 (m, 

2H), 1.34 (t, J = 7.2 Hz, 3H). 

13
C NMR (75 MHz, CDCl3): δ (ppm) =166.8, 142.8, 139.3, 133.1, 132.0, 129.8, 

129.1, 125.7, 118.9, 112.4, 60.8, 34.5, 33.6, 14.2. 

IR (Diamond-ATR, neat):  (cm
-1

) = 2980 (VW), 2931 (VW), 2228 (W), 1709 (VS), 

1630 (W), 1482 (W), 1368 (W), 1299 (M), 1185 (S), 1094 (S), 1027 (M), 945 (M), 

796 (S), 689 (S). 

MS (EI, 70 eV): m/z (%) = 229 (M
+
, 6), 184 (19), 183 (53), 155 (32), 129 (10), 116 

(100), 97 (9), 89 (25), 71 (28). 
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HRMS (EI): Calcd. for [C14H15NO2]
+
: 229.1103; found: 229.1093 
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D. Appendix  

 

1. X-Ray Structures 

 

1.1 Molecular structure of 87f 

 

O

O

H
H

CO2Me  
net formula C16H16O4 

Mr/g mol
−1

 272.296 

crystal size/mm 0.50 × 0.22 × 0.11 

T/K 200(2) 

radiation MoKα 

diffractometer 'Oxford XCalibur' 

crystal system triclinic 

space group P1bar 

a/Å 7.7033(6) 

b/Å 8.0736(5) 

c/Å 11.7722(7) 

α/° 77.329(5) 

β/° 89.943(5) 

γ/° 70.781(6) 

V/Å
3
 672.49(8) 

Z 2 

calc. density/g cm
−3

 1.34475(16) 

μ/mm
−1

 0.096 

absorption correction 'multi-scan' 

transmission factor range 0.98615–1.00000 

refls. measured 4440 

Rint 0.0149 

mean σ(I)/I 0.0389 

θ range 4.36–26.34 

observed refls. 1953 

x, y (weighting scheme) 0.0492, 0 

hydrogen refinement constr 

refls in refinement 2725 

parameters 182 
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restraints 0 

R(Fobs) 0.0356 

Rw(F
2
) 0.0881 

S 0.958 

shift/errormax 0.001 

max electron density/e Å
−3

 0.186 

min electron density/e Å
−3

 −0.160 

 

1.2 Molecular structure of 87j 

 

Br

CO2EtHO Me

 

net formula C16H19BrO3 

Mr/g mol
−1

 339.224 

crystal size/mm 0.33 × 0.18 × 0.14 

T/K 173(2) 

radiation MoKα 

diffractometer 'Oxford XCalibur' 

crystal system monoclinic 

space group P21/c 

a/Å 13.2712(9) 

b/Å 12.3323(12) 

c/Å 9.6115(8) 

α/° 90 

β/° 99.919(7) 

γ/° 90 

V/Å
3
 1549.5(2) 

Z 4 

calc. density/g cm
−3

 1.45415(19) 

μ/mm
−1

 2.657 

absorption correction 'multi-scan' 

transmission factor range 0.86896–1.00000 

refls. measured 6200 

Rint 0.0252 

mean σ(I)/I 0.0661 

θ range 4.32–26.43 

observed refls. 1969 

x, y (weighting scheme) 0.0278, 0 

hydrogen refinement constr 

refls in refinement 3128 
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parameters 184 

restraints 0 

R(Fobs) 0.0309 

Rw(F
2
) 0.0614 

S 0.853 

shift/errormax 0.001 

max electron density/e Å
−3

 0.619 

min electron density/e Å
−3

 −0.398 

 

1.3 Molecular structure of 87s 

 

MeO2C

CNOH
 

net formula C15H15NO3 

Mr/g mol
−1

 257.285 

crystal size/mm 0.26 × 0.19 × 0.13 

T/K 173(2) 

radiation MoKα 

diffractometer 'KappaCCD' 

crystal system monoclinic 

space group P21/c 

a/Å 14.1750(6) 

b/Å 7.0899(2) 

c/Å 14.2253(5) 

α/° 90 

β/° 114.1439(19) 

γ/° 90 

V/Å
3
 1304.57(8) 

Z 4 

calc. density/g cm
−3

 1.30997(8) 

μ/mm
−1

 0.092 

absorption correction none 

refls. measured 9030 

Rint 0.0342 

mean σ(I)/I 0.0315 

θ range 3.14–26.03 

observed refls. 1979 

x, y (weighting scheme) 0.0484, 0.3295 

hydrogen refinement constr 

refls in refinement 2568 

parameters 174 
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restraints 0 

R(Fobs) 0.0408 

Rw(F
2
) 0.1106 

S 1.048 

shift/errormax 0.001 

max electron density/e Å
−3

 0.194 

min electron density/e Å
−3

 −0.183 

 

1.4 Molecular structure of 87n 

 

NC

OMe

H OH
 

net formula C18H17NO2 

Mr/g mol
−1

 279.333 

crystal size/mm 0.42 × 0.32 × 0.25 

T/K 173(2) 

radiation MoKα 

diffractometer 'Oxford XCalibur' 

crystal system orthorhombic 

space group Pna21 

a/Å 14.4612(7) 

b/Å 10.1206(5) 

c/Å 10.2612(5) 

α/° 90 

β/° 90 

γ/° 90 

V/Å
3
 1501.79(13) 

Z 4 

calc. density/g cm
−3

 1.23546(11) 

μ/mm
−1

 0.080 

absorption correction 'multi-scan' 

transmission factor range 0.97689–1.00000 

refls. measured 3930 

Rint 0.0389 

mean σ(I)/I 0.0474 

θ range 4.27–26.32 

observed refls. 1204 

x, y (weighting scheme) 0.0943, 0 

hydrogen refinement mixed 
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Flack parameter −1(3) 

refls in refinement 1600 

parameters 195 

restraints 1 

R(Fobs) 0.0506 

Rw(F
2
) 0.1409 

S 0.976 

shift/errormax 0.001 

max electron density/e Å
−3

 0.600 

min electron density/e Å
−3

 −0.173 

 

2. NOE Analysis 

 

2.1 NOE Analysis of 87e 

 

 

 

2.2 NOE Analysis of 87h 
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