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1 OVERVIEW 

All modern civilizations are based on economic growth and technological progress.1 With a 

turnover of 145 billion Euro and 416250 employees in 2009, the chemical and pharmaceutical 

industries are one of the most important branches in the manufacturing sector of Germany, 

along with automotive industry (266 bn €), engineering (170 bn €) and electronics industry 

(145 bn €).2 Chemical and pharmaceutical industry expends a total of 18.6 % of its turnover for 

research and development therefore investing second most in R&D among all other branches.3 

Providing basic chemicals and processable materials for other industrial branches on the one 

hand and commodities and pharmaceuticals for consuments on the other, chemical industry is 

strongly dependent on research. Furthermore, limited fossile resources and the need to reduce 

environmental pollution require new concepts for the supply of basic chemicals and a change 

towards sustainable chemistry is inevitable.4 Particularly, organic chemistry will play an 

important role in this fundamental task. Ranging from small molecules over sophisticated 

materials and highly specialized polymers to complex pharmaceuticals and natural products, 

modern organic synthesis must address more than mere chemical issues namely, the challenge 

of atom economical syntheses along with minimized waste production.5 Especially, total 

syntheses of natural products often suffer from extensive protection group interconversions and 

long linear sequences resulting in poor atom economy.6 Great efforts are done to shorten 

syntheses by avoiding protection group manipulations.7 To overcome long, yield-reducing linear 

reaction sequences,8 a convergent synthesis strategy combining highly functionalized building 

blocks to form complex target molecules is highly desireable. Nowadays, organometallic 

chemistry provides versatile tools for modern organic synthesis. Synthetic organic chemists can 

choose from an ever growing toolbox of organometallic reagents, each possessing a unique 

reactivity and selectivity depending on the nature of the metal used.9  Highly reactive 

organometallics, such as organolithium reagents, react with numerous electrophiles but are 

incompatible with sensitive functional groups.10 Organoboron, -indium or –tin reagents show, 

due to a more covalent carbon-metal bond, a higher functional group tolerance, hence needing 

either harsh conditions or appropriate catalysts to react with electrophiles. 

Organomagnesium, -copper and -zinc reagents are settled between those two extremes. 

Although Grignard reagents are highly reactive towards electrophiles, they show an excellent 

functional group tolerance at an appropriate low temperature.11 Organocopper reagents possess 

a well-balanced reactivity allowing reactions with various electrophilic substrates on the one 

                                                             
1 S. Kuznets, Amer. Econ. Rev. 1973, 63, 247. 
2 Verband der Chemischen Industrie (VCI), Chemiewirtschaft in Zahlen, 2010, 42. 
3 http://www.vci.de/default2~cmd~shd~docnr~124244~rub~735~tma~875~nd~.htm#_ftnref1 (accessed Mar 25, 2011). 
4 (a) T. Collins, Science 2001, 291, 48; (b) C. Okkerse, H. van Bekkum, Green Chemistry 1999, 1, 107. 
5 (a) B. M. Trost, Science 1991, 254, 1471;  (b) B. M. Trost, Angew. Chem. Int. Ed. 1995, 34, 259. 
6 (a) Protective Groups in Organic Synthesis  3rd Ed., (Eds.: T.W. Green, P. G. Wuts) Wiley & Sons, Hoboken, 1999; (b) Protecting Groups 
3rd Ed. (Ed. P. J. Kocienski) Thieme, New York, 2005. 
7 (a) P. S. Baran, T. J. Maimone, J. M. Richter, Nature 2007, 446, 404; (b) R. W. Hoffmann, Synthesis 2006, 3531; (c) V. Sofiyev, G. 
Navarro, D. Trauner, Org. Lett. 2008, 10, 149. 
8 Organic Synthesis (Eds.: J.-H. Fuhrhop, G. Li) Wiley-VCH, Weinheim, 2003.  
9 Handbook of Functionalized Oganometallics (Ed.: P. Knochel), Wiley-VCH, Weinheim, 2005. 
10 G. Wu, M. Huang, Chem. Rev. 2006, 106, 2596. 
11 P. Knochel, W. Dohle, N. Gommermann, F. F. Kneisel, F. Kopp, T. Korn, I. Sapountzis, V. A. Vu, Angew. Chem. Int. Ed. 2003, 42, 4302. 
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hand but still allow the presence of versatile functional groups.12  A main drawback of 

organocopper reagents is their thermal instability as well as their preparation from other 

organometallic species such as organolithium or organomagnesium reagents.13 In contrast, 

organozinc reagents generally are stable even at elevated temperature. Thus, they are less 

reactive and often require suitable transition metal catalysis to undergo reactions with 

electrophiles.14 However, this limited reactivity goes in line with an exceptional functional group 

tolerance.15 Despite their stability and functional group tolerance, organozinc reagents are rarely 

used in total syntheses.16 Their moderate reactivity towards standard organic electrophiles is 

compensated by their high reactivity in transition metal catalyzed cross-coupling reactions. Due 

to a relatively fast transmetalation, Pd-catalyzed Negishi coupling reactions usually proceed 

faster and under milder conditions than the corresponding Stille or Suzuki couplings. The 

applicability of a Negishi-coupling of highly functionalized building blocks was impressively 

shown by Smith in the gram-scale synthesis of discodermolide (1, Scheme 1).17  

 

Scheme 1: Total synthesis of discodermolide (1) using a Negishi cross-coupling.  

Iodine-lithium exchange on alkyl iodide 2 using tBuLi (3 equiv.) in the presence of ZnCl2 leads to 

the asymmetric diorganozinc reagent 3 which undergoes a smooth cross-coupling reaction with 

the alkenyl iodide 4 affording in 66 % yield the highly functionalized product 5, a precursor of 

discodermolide (1). 

                                                             
12 (a) P. Knochel, M. J. Rozema, C. E. Tucker, Preparation of Highly Functionalized Copper Reagents in Practical Approach Series in 
Chemistry - Organocopper Reagents, (Ed.: R. J. K. Taylor), Oxford University Press, 1993, 348; (b) Modern Organocopper Chemistry (Ed.: 
N. Krause), Wiley-VCH, Weinheim, 2002. 
13 (a) Organometallics in Organic Synthesis (Ed.: E.-i. Negishi), Wiley, New York, 1980; (b) for halogen-copper exchange reactions see: (i) 
X. Yang, T. Rotter, C. Piazza, P. Knochel, Org. Lett. 2003, 8, 1229; (ii) X. Yang, P. Knochel, Synlett 2004, 1, 81; (iii) M. I. Calaza, X. Yang, 
D. Soorukram, P. Knochel, Org. Lett. 2004, 8, 1229; (iv) X. Yang, A. Althammer, P. Knochel, Org. Lett. 2004, 6, 1665; (c) for a direct 
insertion of highly reactive copper see: (i) G. W. Ebert, R. D. Rieke, J. Org. Chem. 1984, 49, 5280; (ii) R. M. Wehmeyer, R. D. Rieke, J. 
Org. Chem. 1987, 52, 5056; (iii) G. W. Ebert, R. D. Rieke, J. Org. Chem. 1988, 53, 4482.  
14 (a) Metal-Catalyzed Cross-Coupling Reactions 2nd Ed. (Eds.: A. de Meijere, F. Diederich), Wiley-VCH, Weinheim, 2004; (b) Handbook of 
Organopalladium Chemistry for Organic Synthesis (Ed.: E.-i. Negishi), Wiley-Interscience, New York, 2002; (c) Transition Metals for 
Organic Synthesis 2nd Ed. (Eds.: M. Beller, C. Bolm), Wiley-VCH, Weinheim, 2002. 
15 (a) P. Knochel, N. Millot, A. L. Rodriguez, Org. React. 2001, 58, 417; (b) Organozinc Reagents (Eds.: P. Knochel, P. Jones), Oxford 
University Press, New York, 1999. 
16 K. C. Nicolaou, P. Bulger, S. Sarlah, Angew. Chem. Int. Ed. 2005, 44, 4442. 
17 (a) A. B. Smith III, T. J. Beauchamp, M. J. LaMarche, M. D. Kaufman, Y. Qiu, H. Arimoto, D. R. Jones, K. Kobayashi, J. Am. Chem. Soc. 
2000, 122, 8654; (b) A. B. Smith III, M. D. Kaufman, T. J. Beauchamp, M. J. LaMarche, H. Arimoto, Org. Lett. 1999, 1, 1823. 
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Besides transmetalation reactions from other organometallics, there are generally three 

methods for the synthesis of functionalized organometallics (Scheme 2): (i) a direct metal 

insertion (eq 1); (ii) a halogen-metal exchange reaction (eq 2); (iii) a direct metalation via C-H 

activation (eq 3).  

 

 

Scheme 2: General methods for the synthesis of organometallics. 

 

2 ORGANOMAGNESIUM REAGENTS 

Since the times when Victor Grignard in 1900 prepared organomagnesium reagents for the first 

time more than 100 years have passed. Nowadays, these so called Grignard reagents are 

versatile nucleophiles and widely used in chemical laboratories and have found their way to 

chemical industry.18 The direct magnesium insertion into a carbon-halogen bond is still the 

mostly used protocol for the synthesis of Grignard reagents (Scheme 2, eq 1). As the insertion 

reaction according to the standard protocols is highly exothermic and normaly performed at the 

boiling point of the solvent (Et2O or THF), the functional group tolerance is limited and the 

preparation in plant scale is accompanied with safety risks.19  Highly reactive magnesium 

prepared via reduction of magnesium salts using lithium naphthalide allows the synthesis of 

functionalized organomagnesium reagents even at low temperatures.20 The drawback of the 

prior preparation of the highly active magnesium can be avoided by the use of stoichiometric 

amounts of LiCl (Scheme 3).21  

                                                             
18 (a) V. Grignard, Compt. Rend. 1900, 130, 1322; (b) Handbook of Grignard Reagents (Eds.: G. S. Silverman, P. E. Rakita), Marcel Dekker, 
New York, 2000; (c) Grignard Reagents, New Developments (Ed.: H. G. Richey Jr.), Wiley & Sons, New York, 2000; (d) J. Wiss, M. 
Länzlinger, M. Wermuth, Org. Proc. Res. Dev. 2005, 9, 365. 
19 M. C. Jones, Plant and Operations Progress 1989, 8, 200. 
20 (a) R. D. Rieke, Science 1989, 246, 1260; (b) R. D. Rieke, M. V. Hanson, Tetrahedron 1997, 53, 1925. 
21 (a) F. M. Piller, P. Appukkuttan, A. Gavryushin, M. Helm, P. Knochel, Angew. Chem. Int. Ed. 2008, 47, 6802; (b) F. M. Piller, A. 
Metzger, M. A. Schade, B. A. Haag, A. Gavryushin, P. Knochel, Chem. Eur. J. 2009, 15, 7192. 
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Scheme 3: Synthesis of organomagnesium reagents using Mg in the presence of LiCl. 

According to the well established halogen-lithium exchange reaction developed by Wittig and 

Gilman, 22  the corresponding halogen-magnesium exchange reaction allows an efficient 

preparation of Grignard reagents (Scheme 2, eq 2).23 Knochel et al. developed a general protocol 

for an iodine-magnesium exchange on functionalized aromatic iodides using iPrMgBr or 

PhMgCl.24 With the development of the reagent iPrMgCl·LiCl, the halogen-magnesium exchange 

reaction could be further improved. This reagent allows the general preparation of 

organomagnesium reagents starting from aromatic and heteroaromatic bromides (Scheme 4).25 

 

Scheme 4: iPrMgCl·LiCl as reagent for the bromine-magnesium exchange. 

Besides these two halogen-metal interconversions, a direct magnesiation using magnesium 

amide bases is the third major pathway to magnesium organometallics.26 The recently 

developed “Turbo-Hauser” bases TMPMgCl·LiCl and TMP2Mg·2LiCl allow efficient 

deprotonations of various functionalized aromatics and heteroaromatics (Scheme 5).27  

                                                             
22 (a) G. Wittig, U. Pockels, H. Dröge, Chem. Ber. 1938, 71, 1903; (b) R. G. Jones, H. Gilman, Org. React. 1951, 6, 339; (c) H. Gilman, W. 
Langham, A. L. Jacoby, J. Am. Chem. Soc. 1939, 61, 106. 
23 (a) C. Prévost, Bull. Chem. Soc. Fr. 1931, 49, 1372; (b) J. Villéras, Bull. Chem. Soc. Fr. 1967, 5, 1520; (c) J. Villéras, B. Kirschleger, R. 
Tarhouni, M. Rambaud, Bull. Chem. Soc. Fr. 1986, 24, 470. 
24 (a) L. Boymond, M. Rottländer, G. Cahiez, P. Knochel, Angew. Chem. Int. Ed. 1998, 37, 1701; (b) I. Sapountzis, P. Knochel, Angew. 
Chem. Int. Ed. 2002, 41, 1610. 
25 (a) A. Krasovskiy, P. Knochel, Angew. Chem. Int. Ed. 2004, 41, 1610; (b) A. Krasovskiy, B. F. Straub, P. Knochel, Angew. Chem. Int. Ed. 
2006, 45, 159; (c) H. Ren, P. Knochel, Chem. Commun. 2006, 726; (d) C.-Y. Liu, P. Knochel, Org. Lett. 2005, 7, 2543; (e) F. Kopp, A. 
Krasovskiy, P. Knochel, Chem. Commun. 2004, 2288. 
26 (a) L. Meunier, C. R. Hebd. Seances Acad. Sci. 1903, 136, 758; (b) C. R. Hauser, H. G. Walker, J. Am. Chem. Soc. 1947, 69, 295; (c) C. R. 
Hauser, F. C. Frostick, J. Am. Chem. Soc. 1949, 71, 1350; (d) A. Schlecker, A. Huth, E. Ottow, J. Mulzer, J. Org. Chem. 1995, 60, 8414. 
27 (a) A. Krasovskiy, V. Krasovskaya, P. Knochel, Angew. Chem. Int. Ed. 2006, 45, 2958; (b) N. Boudet, J. R. Lachs, P. Knochel, Org. Lett. 
2007, 9, 5525; (c) M. Mosrin, P. Knochel, Org. Lett. 2008, 10, 2497; (d) A. H. Stoll, P. Knochel, Org. Lett. 2008, 10, 113; (e)  G. C. 
Clososki, C. J. Rohbogner, P. Knochel, Angew. Chem. Int. Ed. 2007, 46, 7681; (f) C. J. Rohbogner, A. J. Wagner, G. C. Clososki, P. 
Knochel, Org. Synth. 2009, 86, 374; (g) C. J. Rohbogner, G. C. Clososki, P. Knochel, Angew. Chem. Int. Ed. 2009, 47, 1503. 
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Scheme 5: Direct magnesiation using “Turbo-Hauser” bases TMPMgCl·LiCl and TMP2Mg·2LiCl. 

 

3 ORGANOZINC REAGENTS 

The most common method for the direct synthesis of organozinc reagents is the direct insertion 

of zinc dust in organic halides (Scheme 2, eq 1).28, 15 Although organozinc reagents were already 

discovered in the middle of the 19th century by Frankland, 29 their potential in organic synthesis 

laid idle for over 50 years.30 Their resurrection began in 1936 with the synthesis of ester 

substituted alkyl zinc iodides starting from the corresponding alkyl iodides and zinc dust by 

Hunsdiecker.31 Based on this work, a broad range of organozinc iodides could be prepared often 

at elevated temperature and in polar solvents such as dimethylacetamide, HMPA, DMF, or 

DMSO.32 Alternatively, highly active zinc metal prepared via reduction of ZnCl2 with lithium 

naphthalide, allows a smooth conversion of organic halides to the corresponding organozinc 

reagents.33, 20 A simple and efficient method for the preparation of organozinc reagents using 

commercially available zinc dust in the presence of LiCl was developed by Knochel et al.34 

Besides aromatic iodides, also alkyl bromides and benzyl chlorides react in the LiCl-mediated Zn 

insertion to form the corresponding zinc reagents (Scheme 6). 

                                                             
28 “Polyfunctional Zinc Organometallics for Organic Synthesis”: P. Knochel, H. Leuser, L.-Z. Gong, S. Perrone, F. F. Kneisel, Handbook of 
Functionalized Organometallics, Vol. 1 (Ed.: P. Knochel), Wiley-VCH, Weinheim, 2005, p. 251.  
29 E. Frankland, Liebigs Ann. Chem. 1848, 71, 171. 
30 P. Knochel, R. D. Singer,  Chem. Rev. 1993, 93, 2117. 
31 H. Hunsdiecker, H. Erlbach, E. Vogt, German Patent 722467, 1942. 
32 (a) K. Tagaki, N. Hayama, S. Inokawa, Bull. Chem. Soc. Jpn. 1980, 53, 3691; (b) K. Tagaki, Chem. Lett. 1994, 469; (c) K. Tagaki, Y. 
Shimoishi, K. Sasaki, Chem. Lett. 1994, 2055; (d) T. N. Majid, P. Knochel, Tetrahedron Lett. 1990, 31, 4413. 
33 (a) M. V. Hanson, R. D. Rieke, J. Org. Chem. 1991, 56, 1445; (b) R. D. Rieke, P. T.-T. Li, T. P. Burns, S. T. Uhm, J. Org. Chem. 1981, 
46, 4323. 
34 (a) A. Krasovskiy, V. Malakhov, A. Gavryushin, P. Knochel, Angew. Chem. Int. Ed. 2006, 45, 6040; (b) A. Metzger, M. A. Schade, P. 
Knochel, Org. Lett. 2008, 10, 1107. 
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Scheme 6: LiCl-mediated preparation of functionalized organozinc reagents. 

Recently, a second insertion method leading to functionalized organozinc reagents via LiCl-

mediated magnesium insertion in the presence of ZnCl2 was developed.21, 35  This method uses 

the higher reduction potential of Mg to form a highly reactive organomagnesium reagent which 

is in situ trapped with ZnCl2 leading to the more stable zinc organometallic (Scheme 7). 

 

Scheme 7: Preparation of functionalized zinc reagents via LiCl-mediated magnesium insertion in the presence of 
ZnCl2. 

Another way for the synthesis of organozinc reagents with high functional group tolerance is the 

halogen-zinc exchange reaction (Scheme 2, eq 2).36 Whereas catalytic amounts of Cu(I)-salts 

facilitate the iodine-zinc exchange on alkyl iodides,37 Knochel et al. demonstrated that (iPr)2Zn in 

the presence of Li(acac) allows the convenient conversion of aromatic iodides to their 

diorganozinc derivatives (Scheme 8).38 

                                                             
35 (a) A. Metzger, F. M. Piller, P. Knochel, Chem. Commun. 2008, 5824; (b) T. Blümke, F. M. Piller P. Knochel, Chem. Commun. 2010, 
4082. 
36 M. J. Rozema, A. Sidduri, P. Knochel, J. Org. Chem. 1992, 57, 1956.  
37 M. J. Rozema, C. Eisenberg, H. Lütjens, R. Ostwald, K. Belyk, P. Knochel, Tetrahedron Lett. 1993, 34, 3115.  
38 F. F. Kneisel, M. Dochnahl, P. Knochel, Angew. Chem. Int. Ed. 2004, 43, 1017. 
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Scheme 8: Iodine-zinc exchange on aromatic iodides and subsequent reaction with electrophiles. 

Inspired by the work on the “Turbo-Hauser” bases, the mild and chemoselective bases 

TMP2Zn·2MgCl2·2LiCl and TMPZnCl·LiCl were developed for the hydrogen-metal 

interconversion on sensitive substrates.39 A variety of sensitive heterocycles such as 2-phenyl-

1,3,4-oxadiazole, N-tosyl-1,2,4-triazole or 3,6-dichloropyridazine are smoothly zincated and 

important functionalities such as nitro groups or aldehydes can be tolerated (Scheme 9). 

 

Scheme 9: Zincation of sensitive heterocycles using TMP2Zn·2MgCl2·2LiCl and TMPZnCl·LiCl. 

 

  

                                                             
39 (a) S. H. Wunderlich, P. Knochel, Angew. Chem. Int. Ed. 2007, 47, 7685; (b) M. Mosrin, P. Knochel, Org. Lett. 2009, 11, 1837. 
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4 OBJECTIVES 

The aim of the first topic was the development of a novel Ni-catalyzed cross-coupling reaction of 

benzylic zinc reagents prepared via LiCl-mediated insertion of Zn-dust in benzylic chlorides. The 

catalyst system should combine a cheap Ni(II)-salt, a simple phosphine ligand and a low catalyst 

loading with the possibility to use aromatic and heteroaromatic bromides, chlorides and 

tosylates as electrophiles (Scheme 10). 

 

Scheme 10: Nickel-catalyzed cross-coupling of aromatic and heteroaromatic bromides, chlorides and tosylates. 

Furthermore, the catalytic system should allow the coupling of bromoanilines bearing relatively 

acidic NH-protons (Scheme 11). 

 

Scheme 11: Negishi-coupling of benzylic zinc reagents with bromoaniline derivatives. 

As the addition of LiCl to various insertion reactions allows the simple preparation of alkyl, aryl, 

and benzylic zinc reagents, a general method for the synthesis of alkenyl zinc reagents starting 

from the corresponding unsaturated bromides should be developed (Scheme 12).  

 

Scheme 12: Preparation of alkenyl zinc reagents. 

A further project was the extension of the scope of the directed ortho insertion (DoI) of zinc and 

the orthogonal para insertion of magnesium in polybrominated arenes (Scheme 13). The scale-

up of these reactions up to 100 mmol should demonstrate the industrial applicability of this 

method. 

 

Scheme 13: Directed ortho insertion (DoI) of zinc and orthogonal magnesium insertion in polybrominated arenes. 

As primary amides are important pharmacophores, a simple method for their preparation from 

functionalized organozinc reagents would be highly desireable. Therefore, a general one-pot 

procedure for the conversion of aromatic, heteroaromatic, alkenyl and alkynyl zinc reagents 

leading to primary amides should be developed (Scheme 14). 
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Scheme 14: Synthesis of primary amides from functionalized organozinc reagents. 

Allenes have found increasing interest in organic chemistry, as they are either target molecules 

or intermediates in the synthesis of complex systems. Thus, a synthesis of highly functionalized 

allenes from readily available starting materials using two successive copper-mediated 

substitution reactions was envisioned (Scheme 15). 

 

Scheme 15: Strategy towards highly functionalized allenes using successive copper-mediated substitutions. 

Finally, the structure of organozinc reagents should by elucidated via electrospray ionization 

mass spectrometry. Therefore, organozinc reagents bearing a quaternary ammonium group as 

charged tag had to be synthesized and subjected to ESI mass-spectrometry (Scheme 16). 

 

Scheme 16: Synthesis of organozinc reagents bearing a charged tag for structure elucidation via ESI mass-
spectrometry. 
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1 CROSS-COUPLING REACTIONS OF BENZYLIC ZINC REAGENTS 

1.1 INTRODUCTION 

Diarylmethanes are an important class of compounds with biological or pharmacological 

activity.40 For example Dapagliflozin (6), developed by Bristol-Myers Squibb, or Canagliflozin 

(7), developed by Johnson & Johnson, are selective SGLT2 inhibitors currently in clinical trial 

against diabetes type 1 and 2 (Scheme 17).41  Shionogi-GlaxoSmithKline Pharmaceuticals have 

developed S-1360 (8), a HIV integrase inhibitor which is in clinical trial, also bearing a 

diarylmethane motif.42 

 

Scheme 17: Pharmaceutically active diarylmethanes. 

Also, more simple diarylmethanes such as Trimethoprim (9),43 a widely used bacteriostatic 

antibiotic, or Piritrexim (10),44 a folate antagonist which is in clinical trial against cancer, show 

biological activity and illustrate the importance of an efficient synthesis strategy towards these 

methylene-linked biaryls. 

                                                             
40 (a) P. D. Leeson, J. C. Emmett, V. P. Shah, G. A. Showell, R. Novelli, H. D. Prain, M. G. Benson, D. Ellis, N. J. Pearce, A. H. 
Underwood, J. Med. Chem. 1989, 32, 320; (b) J. S. Wai, M. S. Egbertson, L. S. Payne, T. E. Fisher, M. W. Embrey, L. O. Tran, J. Y. 
Melamed, H. M. Langford, J. P. Guare, Jr., L. Zhuang, V. E. Grey, J. P. Vacca, M. K. Holloway, A. M. Naylor-Olsen, D. J. Hazuda, P. J. 
Felock, A. L. Wolfe, K. A. Stillmock, W. A. Schleif, L. J. Gabryelski, S. D. Young, J. Med. Chem. 2000, 43, 4923; (c) Y.-Y. Ku, R. R. Patel, 
D. P. Sawick, Tetrahedron Lett. 1996, 37, 1949; (d) H. Juteau, Y. Gareau, M. Labelle, C. F. Sturino, N. Sawyer, N. Tremblay, S. 
Lamontagne, M.-C. Carrière, D. Denis, K. M. Metters, Bioorg. Med. Chem. 2001, 9, 1977. 
41 (a) W. Meng, B. A. Ellsworth, A. A. Nirschl, P. J. McCann, M. Patel, R. N. Girotra, G. Wu, P. M. Sher, E. P. Morrison, S. A. Biller, R. 
Zahler, P. P. Deshpande, A. Pullockaran, D. L. Hagan, N. Morgan, J. R. Taylor, M. T. Obermeier, W. G. Humphreys, A. Khanna, L. 
Discenza, J. G. Robertson, A. Wang, S. Han, J. R. Wetterau, E. B. Janovitz, O. P. Flint, J. M. Whaley, W. N. Washburn, J. Med. Chem. 2008, 
51, 1145; (b) B. Xu. B. Lv, Y. Feng, G. Xu, J. Du, A. Welihinda, Z. Sheng, B. Seed, Y. Chen, Bioorg. Med. Chem. 2009, 19, 5632; (c) S. 
Nomura, S. Sakamaki, M. Hongu, E. Kawanishi, Y. Koga, T. Sakamoto, Y. Yamamoto, K. Ueta, H. Kimata, K. Nakayama, M. Tsuda-
Tsukimoto, J. Med. Chem. 2010, 53, 6355. 
42 (a) S. Shimizu, T. Endo, K. Izumi, H. Mikamiyama, Org. Proc. Res. Dev. 2007, 11, 1055; (b) Y.-Q. Long, X.-H. Jiang, R. Dayam, T. 
Sanchez, R. Shoemaker, S. Sei, N. Neamati, J. Med. Chem. 2004, 47, 2561. 
43 (a) R. N. Brogden, A. A. Carmine, R. C. Heel, T. M. Speight, G. S. Avery, Drugs 1982, 23, 405; (b) B. Roth, E. A. Falco, G. H. Hitchings, 
S. R. M. Bushby, J. Med. Pharm. Chem. 1962, 5, 1103; (c) B. Roth, J. Z. Strelitz, B. S. Rauckman, J. Med. Chem. 1980, 23, 379. 
44 (a) A. Rosowsky, C. E. Mota, J. E. Wright, S. F. Queener, J. Med. Chem. 1994, 37, 4522; (b) L. G. Feun, R. Gonzalez, N. Savaraj, J. 
Hanlon, M. Collier, W. A. Robinson, N. J. Clendeninn, J. Clin. Oncol. 1991, 9, 464. 
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So far, the most popular route to diarylmethanes is the addition of organometallic reagents to 

benzaldehydes followed by reduction (Scheme 18).45  

 

Scheme 18: Synthesis of a diarylmethane via addition of an organolithium reagent to 2-fluorobenzaldehyde and 
subsequent reduction. 

Besides the fact that for the synthesis of the relatively simple diarylmethane a two-step 

sequence is used, the biggest drawback of this method is the low functional group tolerance 

towards the nucleophile and the electrophile.  

A more concise strategy to substituted diarylmethanes involves the cross-coupling reaction of 

either an aryl organometallic with a benzylic halide (strategy A) or a benzylic organometallic 

reagent with an aryl halide (strategy B, Scheme 19). 

 

Scheme 19: Synthesis of diarylmethanes starting from benzylic or aryl organometallics. 

Compared to aryl-aryl-cross-coupling reactions, only few examples are known for the reaction of 

aryl organometallics with benzylic halides. 46 A simple and efficient method for the Suzuki-

Miyaura coupling of arylboronic acids with benzylic halides using Pd(OAc)2 and PPh3 as catalyst 

was developed by Monteiro (Scheme 20).46d  

 

Scheme 20: Cross-coupling of arylboronic acids with benzylic halides according to Monteiro. 

Although this method provides high yields, the scope of the reaction is limited to only a few non-

sensitive substituents. Extension of this work, i.e. by Kuwano or McLaughlin allows the use of 

benzylic carbonates, acetates and phosphates as electrophiles instead of the corresponding 

                                                             
45 (a) D.A. Barda, Z.-Q. Wang, T. C. Britton, S. S. Henry, G. E. Jagdmann, D. S. Coleman, M. P. Johnson, S. L. Andis, D. D. Schoepp, 

Bioorg. Med. Chem. Lett. 2004, 14, 3099; (b) Y.-Q. Long, X.-H. Jiang, R. Dayam, T. Sanchez, R. Shoemaker, S. Sei, N. Neamati, J. Med. 

Chem. 2004, 47, 2561; (c) X. Wu, A. K. Mahalingam, M. Alterman, Tetrahedron Lett. 2005, 46, 1501; (d) P. E. Gordon, A. J. Frey, 

Tetrahedron Lett. 2001, 42, 831; (e) N. L’Hermite, A. Giraud, O. Provot, J.-F. Peyrat, M. Alami, J.-D. Brion, Tetrahedron 2006, 62, 11994.  
46 (a) H. Juteau, Y. Gareau, M. Labelle, S. F. Sturino, N. Sawyer, N. Tremblay, S. Lamontagne, M.-C. Carriere, D. Denis, K. M. Metters, 
Bioorg. Med. Chem. 2001, 9, 1977; (b) C. Klaner, A. Greiner, Macromol. Rapid Commun. 1998, 19, 605; (c) N. Miyaura, T. Yano, A. 
Suzuki, Tetrahedron Lett. 1980, 21, 2865; (c) M. J. Sharp, V. Snieckus, Tetrahedron Lett. 1985, 26, 5997; (d) S. N. Nobre, A. L. Monteiro,  
Tetrahedron Lett. 2004, 45, 8225.  



B Results and Discussion 

 

17 
 

halides.47, 48 Also the nucleophile is not limited to arylboronic acids. Molander showed that the 

cross-coupling of potassium aryltrifluoroborates with benzylic halides proceeds with only small 

excess of the nucleophile in excellent yields.49  

As a manifold of functionalized Grignard-reagents has become available by simple and efficient 

halogen-magnesium exchange or direct metal insertion, a direct synthesis of diarylmethanes 

starting from magnesium organometallics was developed by Knochel.21, 24, 25, 50 Starting from 

readily available functionalized Grignard-reagents and benzylic phosphates, a Cu(I)-mediated 

coupling reaction using CuBr (10 mol%) and P(OEt)3 (20 mol%) as catalyst with TBAI (10 

mol%) as additive in DME leads to highly functionalized diarylmethanes in excellent yields 

(Scheme 21). 

 

Scheme 21: Synthesis of Trimethoprim (9) via copper-mediated coupling of an organomagnesium reagent with a 
benzylic phosphate. 

Strategy B towards functionalized diarylmethanes starts from a benzylic organometallic reagent 

and an aryl halide (Scheme 19). Although the synthesis of benzylic boronates via the borylation 

of benzyl halides with pinacolborane/diborane is well established, their use in Suzuki-Miyaura 

coupling reactions is only rarely described in the literature.51 A direct cross-coupling of 

benzylboranes, such as B-benzyl-9-BBN with numerous aryl and heteroaryl halides was 

reported in 2005 by Flaherty (Scheme 22).52 

 

Scheme 22: Suzuki-Miyaura coupling of a benzylborane with a chloro-sulfonamide according to Flaherty. 

Other functionalized benzylic organometallics, such as benzylic lithium or magnesium reagents 

are, due to their high reactivity, rarely known and have never been used in direct cross-coupling 

reactions.53 Less reactive benzylic organometallics such as benzylic organostannanes or benzylic 

                                                             
47 (a) R. Kuwano, M. Yokogi, Org. Lett. 2005, 7, 945; (b) R. Kuwano, M. Yokogi, Chem. Commun. 2005, 5899. 
48 M. McLaughlin, Org. Lett. 2005, 7, 4875. 
49 G. A. Molander, M. D. Elia, J. Org. Chem. 2006, 71, 9198.  
50 C. C. Kofink, P. Knochel, Org. Lett. 2006, 8, 4121. 
51 (a) A. Giroux, Tetrahedron Lett. 2003, 44, 233; (b) M Murata, T. Oyama, S. Watanabe, Y. Masuda, Synth. Commun. 2002, 32, 2513. 
52 A. Flaherty, A.Trunkfield, W. Barton, Org. Lett. 2005, 7, 4975. 
53 A. H. Stoll, A. Krasovskiy, P. Knochel, Angew. Chem. Int. Ed. 2006, 118, 621. 
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manganese reagents suffer from either high toxicity or complicated synthesis and are relegated 

to a niche existence.54  

Recently, we have developed a general method for the preparation of highly functionalized 

benzylic zinc reagents 11 derived from benzylic chlorides 12 using zinc dust and LiCl (Scheme 

23). 

 

Scheme 23: Synthesis of highly functionalized benzylic zinc reagents. 

Remarkably, this method tolerates the presence of important functional groups such as an ester, 

a ketone and a cyanide.34b Although, there are some reports of transition metal-catalyzed cross-

coupling reactions of benzylic zinc reagents, this method broadens dramatically the scope of a 

direct synthesis of diarylmethanes.55 

 

1.2 NICKEL-CATALYZED CROSS-COUPLING REACTIONS OF BENZYLIC ZINC REAGENTS 

Due to the high toxicity and the high price of Pd-catalysts and their highly sophisticated ligands, 

a catalytic system consisting of a cheap Ni-salt and a simple phosphine ligand is highly 

desireable. Thus, a Ni-catalyzed cross-coupling reaction56 of polyfunctionalized benzylic zinc 

reagents of type 11 with aryl halides (13) and tosylates (14) was developed (Scheme 24). 

Although, many ligands have been tested, it was found as a highly efficient, cheap and 

convenient catalytic system PPh3 (2 mol%) combined with Ni(acac)2 (0.5 mol%)57 in a mixture 

of THF and NMP. Under these conditions, a broad range of aromatic and heteroaromatic halides 

(bromides and chlorides, Table 1) and tosylates (Table 2) undergo a smooth cross-coupling 

leading to polyfunctional diarylmethanes of type 15. 

 

Scheme 24: Ni-catalyzed cross-coupling reaction of benzylic zinc reagents with aromatic halides and tosylates.  

                                                             
54  (a) L.-L. Gundersen, Tetrahedron Lett. 1994, 35, 3155; (b) L.-L.Gundersen, A. K. Bakkestuen, A. J. Aasen, H. Øverås, F. Rise, 
Tetrahedron 1994, 50, 9743; (c) S. Usse, G. Guillaumet, M.-C. Viaud, Tetrahedron Lett. 1997, 38, 5501; (d) K. Mori, S. Maki, H. Niwa, H. 
Ikeda, T. Hirano, Tetrahedron 2006, 62, 6272; (e) Y.S. Suh, J.-s. Lee, S.-H. Kim, R. D. Rieke, J. Organomet. Chem. 2003, 684, 20. 
55 E.-i. Negishi, A. O. King, N. Okukado, J. Org. Chem. 1977, 42, 1821 
56 (a) R. M. Moslin, K. Miller-Moslin, T. F. Jamison, Chem. Commun. 2007, 4441; (b) A. Gavryushin, C. Kofink, G. Manolikakes, P. 
Knochel, Org. Lett. 2005, 7, 4871; (c) J. W. Han, N. Tokunaga, T. Hayashi, Synlett 2002, 6, 871;  (d) E. Shirakawa, K. Yamasaki, T. 
Hiyama, Synthesis 1998, 10, 1544; (e) J. Terao, H. Watanabe, A. Ikumi, H. Kuniyasu, N. Kambe, J. Am. Chem. Soc. 2002, 124, 4222; (f) J. 
Terao, S. Nii, F. A. Chowdhury, A. Nakamura, N. Kambe, Adv. Synth. Cat. 2004, 346, 905; (g) V. Percec, J.-Y. Bae, D. H. Hill, J. Org. 
Chem. 1995, 60, 6895; (h) S. Son, G. C. Fu, J. Am. Chem. Soc. 2008, 130, 2756; (i) C. Fischer, G. C. Fu, J. Am. Chem. Soc. 2005, 127, 4594; 
(j) J. Zhou, G. C. Fu, J. Am. Chem. Soc. 2003, 125, 14726. 
57 E.-i. Negishi, H. Matsushita, N. Okukado, Tetrahedron Lett. 1981, 22, 2715. 
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Thus, the reaction of 3-cyanobenzylzinc chloride (11a, 1.2 equiv.) with 4-bromoacetophenone 

(13a) at 60 °C (0.5 h) using Ni(acac)2 (0.5 mol%) and PPh3 (2 mol%)  in THF:NMP (4:1 mixture) 

afforded the desired diarylmethane 15a in 75 % yield (Table 1, entry 1). Also, aromatic chlorides 

such as 13b and 2-chloropyrimidine (13c) react readily within 30 min to the corresponding 

diarylmethanes (15b: 89 %, 15c: 69 %, entries 2 and 3).  

Table 1: Ni(acac)2 and PPh3 catalyzed cross-coupling reactions between functionalized benzylic zinc reagents (11) 
and aryl chlorides and bromides (13). 

Entry Zinc Reagenta Electrophile 
Diarylmethane 

Reaction Time (h) 
Yield [%]b 

1 

  

 

(0.5) 

 

 11a 13a 15a 75 

2  

 

 

(0.5) 

 

 11a 13b 15b 89 

3  
 

 

(0.5) 

 

 11a 13c 15c 69 

4 

  

 

(12) 

 

 11b 13d 15d 95 

5 

  
 

(2) 

 

 11c 13e 15e 86 

6  
 

 

(2) 

 

 11c 13f 15f 98 

7  
  

(1) 

 

 11c 13g 15g 96 
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8 

 

 
 

(1.5) 

 

 11d 13e 15h 84 

9  

 
 

(0.5) 

 

 11d 13h 15i 91 
aFor the cross-coupling reaction, 1.2 equiv. of the zinc reagent is used; bIsolated yield of analytically pure product.  

The reaction of the secondary benzylic zinc chloride 11b with ethyl 4-bromobenzoate (13d) 

affords the 1,1-bisarylethane within 12 h at 60 °C (15d, 95 %, entry 4). 

The cross-coupling of an electron rich benzylic zinc chloride such as 3,4,5-trimethoxybenzylzinc 

chloride (11c) with the protected uracil 13e affords the uracil derivative 15e, a precursor of 

Trimethoprim (9),58 in 86 % yield (entry 5). The isomeric uracil derivative 15f was also 

prepared by cross-coupling of 11c with 4-chloro-2,6-dimethoxypyrimidine (13f) in 98 % yield 

(entry 6).  Ethyl 2-chloronicotinate (13g) is also a suitable substrate for the cross-coupling of 

11c and leads to the nicotinic acid derivative 15g in almost quantitative yield (96 %, entry 7).  

Moreover, an electron poor benzylic zinc chloride bearing a carbethoxy function in meta position 

(11d) undergoes a smooth reaction with the protected uracil 13e to afford 15h in 84 % yield 

(entry 8). Its cross-coupling with 4-chlorobenzonitrile (13h) leads to the diarylmethane 15i 

(60 °C, 30 min) in 91 % yield (entry 9).  

Remarkably, benzylzinc chlorides bearing keto groups in meta position react as well. Thus, the 

reaction of 3-pentanoylbenzylzinc chloride (11e) with the chloropyridine 13g leads to the 

nicotinic acid derivative 15j in 90 % yield (Scheme 25). Even the sensitive acetyl-substituted 

benzylic zinc reagent (11f), added over 30 min via syringe pump, reacts with the chloropyridine 

(13g) without significant enolization to the nicotinic acid derivative 15k in 68 % yield. 

 

Scheme 25: Ni-catalyzed cross-coupling reaction of keto-substituted benzylic zinc reagents 11e and 11f with ethyl 
2-chloronicotinate (13g).  

Various aromatic and heteroaromatic tosylates, which are easily available from the 

corresponding phenols,59 are efficient cross-coupling partners. Thus, aryl tosylates 14a and 14b 

react with 3,4,5-trimethoxybenzylzinc chloride 11c to give the corresponding diarylmethanes 

                                                             
58  C. C. Kofink, P. Knochel, Org. Lett. 2006, 8, 18, 4121. 
59  C.-H. Cho, H.-S. Yun, K. Park, J. Org. Chem. 2003, 68, 3017; Z.-T. Tang, Q.-S. Hu, J. Am. Chem. Soc. 2004, 126, 3058. 
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15l and 15m in yields up to 90 % (Table 2, entries 1 and 2). Also the electron-deficient benzylic 

zinc reagent 11d undergoes smooth Ni-catalyzed coupling reactions with the phenol-derived 

tosylates 14c-e leading to the diarylmethanes 15n-p in 61-69 % yield (entries 3-5).  Its reaction 

with the heterocyclic tosylate 14a affords the quinoline derivative 15q in 69 % yield (entry 6).  

Table 2: Ni-catalyzed cross-coupling of benzylic zinc reagents with aromatic and heteroaromatic tosylates. 

Entry Zinc Reagenta Electrophile 
Diarylmethane 

Reaction Time (h) 
Yield [%]b 

1 

 
  

(12) 

 

 11c 14a 15l 82 

2 11c 

 
 

(12) 

 

  14b 15m 90 

3 

  

 

(2) 

 

 11d 14c 15n 65 

4 11d 
  

(24) 

 

  14d 15o 69 

5 11d 

 
 

(5) 

 

  14e 15p 61 

6 11d 14a 
 

(3) 

 

   15q 69 

7 

 

14b 
 

(16) 

 

 11e  15r 84 
aFor the cross-coupling reaction, 1.2 equiv. of the zinc reagent is used; bIsolated yield of analytically pure product.  
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The keto-substituted benzylic zinc reagent 11e reacts under Ni-catalysis with the 

heteroaromatic tosylates 14b and f to afford the corresponding diarylmethanes 15r and 15s in 

84 and 92 % yield, respectively (entry 7 and Scheme 26). 

 

Scheme 26: Cross-coupling of the benzylic zinc reagent 11e with the heterocyclic tosylate 14f. 

This exceptional reactivity of benzylic zinc reagents in the Ni-catalyzed cross-coupling reaction 

with various aromatic halides and tosylates and the high reaction rates of the coupling with 

aromatic bromides (usually 30 min) allows the use of electrophiles bearing relatively acidic 

protons such as substituted bromoanilines of type 16. Although organozinc reagents are 

reactive towards acidic protons, the catalytic system consisting of Ni(acac)2 and PPh3 in a 

mixture of THF and NMP allows an efficient cross-coupling reaction of benzylic zinc reagents 

and bromoaniline derivatives. As the cross-coupling is performed at 60 °C, a certain amount of 

zinc reagent is quenched by the aniline derivative. Therefore, the catalyst loading is increased to 

2.5 mol% of Ni(acac)2 and 5 mol% of PPh3. Further improvement can be done by addition of the 

organozinc reagent to a premixed solution of the electrophile and the catalyst in THF/NMP via 

syringe pump. Thus, adding the benzylic zinc reagent 11g over a period of 1 h to a solution of 

4-bromo-2-cyanoaniline (16a), Ni(acac)2 (2.5 mol%) and PPh3 (5 mol%) in THF/NMP affords 

the amino-functionalized diarylmethane 17a in 86 % yield (Scheme 27).  

 

Scheme 27: Ni-catalyzed cross-coupling of keto-substituted benzylic zinc reagent 11g and bromoaniline derivative 
16a. 

In the case of the cyano-substituted benzylic zinc reagent 11a, the cross-coupling with 16a 

occurs satisfactorily to the aniline derivative 17b in 81 % yield (Table 3, entry 1). Benzylzinc 

chloride (11h) reacts smoothly with the electron-rich bromo-anilines 16b-d to give the 

corresponding amino-substituted diarylmethanes 17c-e in yields up to 90 % (entries 2-4).  The 

cross-coupling of 11h with cyano or ester substituted bromoanilines 16e and 16f to their 

benzylated derivatives 17f and 17g occurs in 77–84 % yield (entries 5 and 6). 
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Table 3: Ni-catalyzed cross-couplings with aromatic bromides bearing relatively acidic protons. 

Entry Zinc Reagenta Electrophile 
Diarylmethane 

Reaction Time (h) 
Yield [%]b 

1 

  

 

(1) 

 

 11a 16a 17b 81 

2 

  

 

(1) 
 

 11h 16b 17c 90 

3  

 

 

(0.5) 

 

 11h 16c 17d 79 

4  
 

 

(0.5) 

 

 11h 16d 17e 75 

5  

  

(0.5) 

 

 11h 16e 17f 84 

6  

 

 

(2) 

 

 11h 16f 17g 77 

7 

   

(1) 

 

 11i 16g 17h 60 
aFor the cross-coupling reaction, 1.2 equiv. of the zinc reagent is used; bIsolated yield of analytically pure product.  

Finally, the keto-substituted benzylic zinc reagent 11i undergoes a smooth cross-coupling with 

ethyl 4-amino-3-bromobenzoate (16g) affording the benzocaine derivative 17h in 60 % yield 

(entry 7).  
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1.3 PALLADIUM-CATALYZED CROSS-COUPLING REACTIONS OF BENZYLIC ZINC REAGENTS 

Although the nickel-catalyzed cross-coupling reaction of benzylic zinc reagents with 

bromoaniline derivatives affords high yields and uses a cheap nickel salt and ligand,60 the 

reaction was not reliable. As a result, it was difficult to predict if a chosen combination of 

benzylic zinc reagent and aryl bromide would afford the desired diarylmethane in a reasonable 

yield.  Therefore, a Pd-catalyzed version of this Negishi cross-coupling reaction was developed.61  

A catalytic system consisiting of Pd(OAc)2 and S-Phos, introduced by Buchwald,62 gave 

reproducible results for a broad range of substrates. Thus, the keto-substituted benzylic zinc 

reagent 11e reacted with the bromoaniline derivative 16f at room temperature using Pd(OAc)2 

(1 mol%) and S-Phos (2 mol%)  providing the highly substituted diarylmethane 17i in almost 

quantitative yield (99 %, Scheme 28). 

 

 

Scheme 28: Pd-catalyzed cross-coupling reaction of keto-substituted benzylic zinc reagent 11e with 16f. 

Also, 16g and 16a were suitable substrates for the Pd-catalyzed coupling reaction with keto 

substituted benzylic zinc reagents such as 11e and 11g and afforded the desired products 17j, 

17k and 17l in 73–90 % yield, respectively (Table 4, entries 1-3). 

 

Table 4: Pd-catalyzed cross-coupling with aromatic bromides bearing relatively acidic protons. 

Entry Zinc Reagenta Electrophile 
Diarylmethane 

Reaction Time (h) 
Yield [%]b 

1 

  
 

(1) 

 

 11e 16g 17j 73 

                                                             
60 Ni(acac)2 (730 €/mol), Pd(OAc)2 (13308 €/mol) and PPh3 (28 €/mol) were purchased from Acros Organics, S-Phos (29886 €/mol) from 
Sigma-Aldrich. 
61Screening and optimization of the Pd-catalyzed version was performed by Dr. Georg Manolikakes. For further information see: (a) G. 
Manolikakes, C. Munoz Hernandez, M. A. Schade, A. Metzger, P. Knochel, J. Org. Chem. 2008, 73, 8422; (b) Ph.D. thesis G. Manolikakes, 
Ludwig-Maximilians-Universität München, 2008.  
62 (a) S. D. Walker, T. E. Barder, J. R. Martinelli, S. L. Buchwald, Angew. Chem. Int. Ed. 2004, 43, 1871; (b) R. Martin, S. L. Buchwald, J. 
Am. Chem. Soc. 2007, 129, 3844; (c) T. E. Barder, S. L. Buchwald, J. Am. Chem. Soc. 2007, 129, 5096; (d) M. R. Biscoe, T. E. Barder, S. L. 
Buchwald, Angew. Chem. Int. Ed. 2007, 46, 7232. 
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2  

 
 

(0.5) 

 

 11e 16a 17k 90 

3 

 

 
 

(1) 

 

 11g 16a 17l 88 

4 

  

 

(1) 

 

 11a 16f 17m 86 

5  

 
 

(12) 

 

 11a 16h 17n 90 

6 

 

 
 

(0.5) 

 

 11d 16f 17o 97 
aFor the cross-coupling reaction, 1.2 equiv. of the zinc reagent is used; bIsolated yield of analytically pure product.  

Furthermore, the benzylic zinc chloride bearing a cyano function in meta-position (11a) reacts 

with the bromoaniline 16f under Pd-catalysis to afford the substituted benzonitrile 17m in 86 % 

yield (entry 4). Additionally, 11a undergoes a smooth cross-coupling reaction with 3-amino-5-

bromopyridine (16h) to provide the heterodiarylmethane 17n in 90 % yield (entry 5). Finally, 

the electron-deficient benzylic zinc reagent 11d reacts with 16f to give the highly functionalized 

diarylmethane 17o in 97 % yield (entry 6). 
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2 PREPARATION AND APPLICATIONS OF ALKENYL ZINC REAGENTS 

2.1 INTRODUCTION 

Alkenyl substructures can be found in a plethora of naturally occurring products (Scheme 29).  

For instance, Rapamycin (18), found in Streptomyces hygroscopicus, 63  is a known 

immunosuppressant used during organ transplantation and was first synthesized in 1993.64 The 

marine alkaloid Upenamide (19) was first described in 2000 and contains an extended 

conjugated system of double bonds.65 

 

Scheme 29: Selected naturally occurring substances bearing alkenyl substructures. 

Besides extended macrocycles and highly sophisticated molecules, terpenes and terpenoids 

constitute an important class of naturally occurring molecules often containing unsaturated 

carbon-carbon bonds. For instance, Citral (20), a terpenoid present in a variety of plants and 

having a strong lemon odor, and Retinol (21), also known as Vitamin A, a diterpenoid essential 

for vision, should be mentioned (Scheme 29).  

One important and frequently used method for the synthesis of natural products containing 

unsaturated carbon-carbon bonds is olefin metathesis.66 A different approach is the cross-

coupling reaction of alkenyl organometallics with alkenyl halides.67 The first synthesis of 

Rapamycin mentioned above includes as a key step a Stille-coupling of two alkenyl iodides with 

vinylenedistannane to install the three conjugated double bonds.64 Thus, there is a need for a 

simple and efficient synthesis of highly functionalized alkenyl organometallics. Especially 

alkenyl zinc halides are useful organometallics due to their high functional group tolerance and 

their excellent reactivity using an appropriate catalyst. Their synthesis starting from 

functionalized iodoalkenes is known. For instance, an iodine-lithium exchange at -90 to -80 °C on 

                                                             
63 C. Vézina, A. Kudelski, S. N. Sehgal, J. Antibiot. 1975, 28. 721.  
64 K. C. Nicolaou, T. K. Chakraborty, A. D. Piscopio, N. Minowa, P. Bertinato, J. Am. Chem. Soc. 1993, 115, 4419. 
65 J. I. Jimenez, G. Goetz, C. M. S. Mau, W. Y. Yoshida, P. J. Scheuer, R. T. Williamson, M. Kelly,  J. Org. Chem. 2000, 65, 8465. 
66 (a) Metathesis in Natural Product Synthesis: Strategies, Substrates and Catalysts (Eds.: J. Cossy, S. Arseniyadis, C. Meyer), Wiley-VCH, 
Weinheim, 2010; (b) R. H. Grubbs, S. J. Miller, G. C. Fu, Acc. Chem. Res. 1995, 28, 446; (c) D. G. Gillingham, A. H. Hoveyda, Angew. 
Chem. Int. Ed. 2007, 46, 3860. 
67 K. Kiewel, Z. Luo, G. A. Sulikowski, Org. Lett. 2005, 7, 5163. 
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5-chloro-1-iodopent-1-ene and subsequent transmetalation allows the synthesis of the 

corresponding alkenyl zinc reagent (Scheme 30).68 

 

Scheme 30: Synthesis of alkenyl zinc reagents via iodine-lithium exchange followed by transmetalation with ZnI2. 

The big drawback of this method is the very low temperature required to achieve an exchange 

reaction without decomposition of starting materials. The use of iPrMgCl·LiCl as exchange 

reagent allows the formation of an alkenyl magnesium reagent at a higher temperature (Scheme 

31).69 

 

Scheme 31: Preparation of alkenyl magnesium reagents via iodine-magnesium exchange and subsequent reaction 
with propanal. 

Besides the iodine-metal exchange reaction follows by transmetalation there are only few 

methods reported for a direct zinc metalation starting from alkenyl halides. The synthesis of 

alkenyl zinc reagents via zinc insertion in alkenyl halides using highly active zinc metal (Zn*) 

prepared by the reduction of ZnCl2 with lithium naphthalide was reported by Rieke and allows a 

smooth insertion in various bromostyrenes (Scheme 32).70 

 

Scheme 32: Insertion of highly active zinc (Zn*) in beta-bromostyrene and subsequent reaction with valeryl chloride. 

Furthermore, activated alkenyl iodides such as 3-iodocyclohex-2-en-1-one undergo a smooth 

zinc insertion using commercially available zinc dust to form the corresponding zinc reagents 

(Scheme 33).71 

                                                             
68 (a) I. Klement, M. Rottländer, C. E. Tucker, T. N. Majid, P. Knochel, P. Venegas, G. Cahiez, Tetrahedron 1996, 52, 7201; (b) L. 
Labaudinière, J.-F. Normant, Tetrahedron Lett. 1992, 33, 6139. 
69 (a) H. Ren, A. Krasovskiy, P. Knochel, Org. Lett. 2004, 6, 4215; (b) H. Ren, A. Krasovskiy, P. Knochel, Chem. Commun. 2005, 543. 
70 (a) L. Zhu, W. M. Wehmeyer, R. D. Rieke,  J. Org. Chem. 1991, 56, 1445; (b) R. D. Rieke, P. T.-J. Li, T. P. Burns, S. T. Uhm, J. Org. 
Chem. 1981, 46, 4324. 
71 (a) P. Knochel, C. J. Rao, Tetrahedron 1993, 49, 29; (b) A. S. Bhanu Prasad, P. Knochel, Tetrahedron 1997, 53, 16711; (c) T. N. Majid, P. 
Knochel, Tetrahedron Lett. 1990, 31, 4413. 
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Scheme 33: Insertion of zinc dust in 3-iodocyclohex-2-en-1-one and subsequent cross-coupling reaction. 

Although these methods allow the general synthesis of alkenyl zinc reagents, they display 

several drawbacks. Both approaches start from unstable and expensive alkenyl iodides. 

Additionally, the exchange reactions mentioned above require very low temperatures to form 

the organometallic reagents. Therefore, there is a need for a simple and efficient synthesis of 

alkenyl zinc reagents from easily accessible alkenyl bromides. 

 

2.2 DIRECT INSERTION OF ZINC IN ACTIVATED ALKENYL BROMIDES 

In the last decade, several variations of the LiCl-mediated metal insertion in oganic halides were 

reported. 21, 34, 35 Therefore, LiCl allows a smooth zinc insertion into aromatic halides, benzylic 

chlorides and alkyl bromides. Applying this method to activated alkenyl bromides allows an 

efficient synthesis of functionalized alkenyl zinc reagents (Scheme 34). 

 

Scheme 34: Synthesis of alkenyl zinc reagents starting from activated alkenyl bromides. 

Thus, the LiCl-mediated (1.5 equiv.) reaction of the highly activated alkenyl bromide 22a, 

bearing a geminal cyano group, with commercially available zinc dust (1.5 equiv.) in THF (0 °C, 

30 min) leads to the organozinc reagent 23a (Scheme 35).  After Pd-catalyzed cross-coupling 

reaction with 4-bromobenzonitrile (24a), the corresponding cinnamonitrile derivative 25a can 

be isolated in 73 % yield. 

 

Scheme 35: Synthesis of the highly functionalized styrene derivate 25a. 

However, the related ester substituted alkenyl bromide 22b does not afford the expected 

organozinc reagent 23b but only leads to hydrolysis (Scheme 36). A possible explanation for this 

behavior is the formation of a Zn-hemiacetal structure which is not reactive against standard 

electrophiles but prone to hydrolysis. 
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Scheme 36: Zn insertion in the ester-substituted alkenyl bromide 22b only leading to hydrolysis. 

In contrast, a vicinal aldehyde function is perfectly tolerated and allows fast insertion. Hence, 2-

bromocyclohex-1-encarbaldehyde (22c) undergoes a smooth zinc insertion (1.5 equiv., 1 h, 

25 °C) leading to 23c (82 % yield, Scheme 37). Its cross-coupling reaction with 4-

bromobenzonitrile (24a) affords the highly functionalized benzonitrile 25b in 82 % yield. 

 

Scheme 37: LiCl-mediated zinc insertion in  the alkenyl bromide 22c and subsequent cross-coupling reaction. 

Moreover, a Cu(I)-catalyzed allylation reaction with ethyl 2-bromomethyl acrylate (24b) leads to 

the desired product 25c in 94 % yield (Table 5, entry 1). The copper-catalyzed reaction of 23c 

with the bromoacetylene 24c affords the highly functionalized acetylene 25d in 80 % yield 

(entry 2). Furthermore, the acylation reaction using 2-bromobenzoylchloride (24d) affords 

ketone 25e in 56 % yield (entry 3). Additionally, Pd-catalyzed cross-coupling reactions with 5-

bromo-3-cyanopyridine (24e) and 4-bromobenzotrifluoride (24f) furnish the highly 

functionalized tetrahydrobiphenyls 25f and 25g in 65% and 73% yield (entries 4 and 5). Finally, 

the reaction of 23c with the immonium salt 24g72 leads to the dimethylaminomethyl substituted 

cyclohexene derivative 25h (68 % yield, entry 6). 

Table 5: Reactions the alkenyl zinc reagent 23c with electrophiles. 

Entry Zinc Reagent Electrophile Product Yield [%]a 
     

1 
  

 

 

 23c 24b 25c 94 

2   
 

 

                                                             
72 (a) M. Arend, B. Westermann, N. Risch, Angew. Chem. Int. Ed. 1998, 37, 1044; (b) N. Millot, C. Piazza, S. Avolio, P. Knochel, Synthesis 
2000, 941. 
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 23c 24c 25d 80 

3  

 
 

 

 23c 24d 25e 56 

4  
 

 

 

 23c 24e 25f 65 

5  
 

 

 

 23c 24f 25g 73 

6  
  

 

 23c 24g 25h 68 

 aIsolated yield of analytically pure product. 

The heterocyclic dihydropyran derivative 22d can also be converted to its Zn-derivative 23d in 

77 % yield (Scheme 38). After reaction with N,N-dimethylimmonium trifluoroacetate (24g), the 

dimethylaminomethyl substituted dihydropyran derivative 25i can be isolated in 88 % yield. 

 

Scheme 38: Synthesis of the dihydropyran derived Zn-reagent 23d followed by a reaction with 24g. 

Acylation of unsaturated zinc reagents bearing a vicinal aldehyde lead to unsaturated 1,4-

dicarbonyl compounds such as 25e. These substances are highly reactive and are prone to 

condensation reactions with hydrazine giving access to tetrahydrophthalazines.73 Thus, 23c can 

be acylated with benzoyl chloride using CuCN·2LiCl as catalyst affording 25j. After aqueous 

workup, the crude unsaturated 1,4-dicarbonyl compound undergoes a smooth condensation 

reaction using hydrazine hydrate (NH2NH2·H2O) in methanol to afford the 1-substituted 

tetrahydrophthalazine 26a in 54 % yield (Scheme 39). 

                                                             
73 G. Bold, K.-H. Altmann, J. Frei, M. Lang, P. W. Manley, P. Traxler, B. Wietfeld, J. Brüggen, E. Buchdunger, R. Cozens, S. Ferrari, P. 
Furet, F. Hofmann, G. Martiny-Baron, J. Mestan, J. Rösel, M. Sills, D. Stover, F. Acemoglu, E. Boss, R. Emmenegger, L. Lässer, E. Masso, 
R. Roth, C. Schlachter, W. Vetterli, D. Wyss, J. M. Wood, J. Med. Chem. 2000, 43, 2310. 
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Scheme 39: Synthesis of 1-substituted tetrahydrophthalazines of type 26. 

Furthermore, 26b and 26c bearing a 3-chlorophenyl or a thiophene substituent have been 

prepared (54 and 49 % yield, Scheme 39). 

Besides cyclic alkenyl derivatives, also acyclic alkenyl zinc reagents bearing a vicinal aldehyde 

can be prepared. Thus, 3-bromo-4,4-dimethylpent-2-enal (22e) reacts with zinc dust (1.5 equiv.) 

in the presence of LiCl (1.5 equiv.) leading to the alkenyl zinc reagent 23e (67 %, 25 °C, 1 h, 

Scheme 40). Standard reactions with electrophiles such as Cu(I)-catalyzed allylation using 

3-bromocyclohexene (24h) or Pd-catalyzed cross-coupling with 2-bromobenzaldehyde (24i) 

furnish the products 25k and 25l in 92-96 % yield (Scheme 40) 

 

Scheme 40: Synthesis of acyclic alkenylzinc reagent 23e. 

As mentioned before, a direct insertion of zinc dust in 3-iodocyclohex-2-en-1-one and related 

structures is possible.71 However, the corresponding iodides are often unstable at room 

temperature and a synthesis starting from the corresponding bromide would be highly 

desireable. Hence, applying the method described above to 3-bromo-cyclohex-2-en-1-one (22f) 

a smooth insertion reaction occurs furnishing the 3-zincated cyclohexenone 23f in 86 % yield 

(Scheme 41). Pd-catalyzed cross-coupling reaction with 4-bromobenzonitrile (24a) affords the 

3-substituted cyclohexenone derivative 25m in 88 % yield. 
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Scheme 41: Synthesis of 23f starting from 3-bromocyclohex-2-en-1-one (22f) and subsequent cross-coupling.  

Furthermore, Cu(I)-mediated of reactions 23f with 3-bromocyclohexene (24h) or the 

bromoacetylene 24c furnish the unsaturated ketones 25n and 25o in 76 and 71 % yield, 

respectively (Table 6, entries 1 and 2). Moreover, a cross-coupling reaction of 23f with ethyl 4-

iodobenzoate (24j) affords the expected product 25p in 76 % yield (entry 3). 

Table 6: Reaction of cyclohexenone derived zinc reagents with electrophiles. 

Entry Zinc Reagent Electrophile Product Yield [%]a 

1 

 
 

 

 

 23f 24h 25n 76 

2   

 

 

 23f 24c 25o 71 

3  
 

 

 

 23f 24j 25p 76 
aIsolated yield of analytically pure product. 

Additionally, the corresponding 3-bromocyclopentenone (22g) can be converted to its alkenyl 

zinc reagent in 94 % yield (25 °C, 5 h). Pd-catalyzed cross-coupling with 4-(trifluoromethyl)-

bromobenzene (24f) leads to the substituted cyclopentenone 25q in 74 % yield (Scheme 42). 

 

Scheme 42: LiCl-mediated Zn insertion in 3-bromocyclopentenone (22g) and subsequent cross-coupling. 

Also, the related benzyl protected uracil derivative 22h smoothly reacts with zinc dust affording 

the heterocyclic zinc reagent 23h in 86 % yield. Its cross-couplings with ethyl 4-iodobenzoate 

(24j) and 4-trifluoromethylbromobenzene (24f) furnish the substituted uracil derivatives 25r 

and 25s in 90 and 81 % yield, respectively (Scheme 43). 
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Scheme 43: Synthesis of substituted uracil derivatives 25r and 25s. 

 

2.3 MAGNESIUM INSERTION IN THE PRESENCE OF ZINC CHLORIDE IN ALKENYL BROMIDES 

The direct insertion of zinc into alkenyl bromides requires a certain electronic activation via 

adjacent electron-withdrawing functional groups. Alkenyl bromides without electronic 

activation either don’t undergo an insertion reaction or require elevetated temperature and long 

reaction times. To avoid these drawbacks it is possible to make use of the stronger reduction 

potential of Mg. A LiCl mediated Mg insertion in the presence of ZnCl2 allows efficiently the 

synthesis of alkenyl zinc chlorides starting from electronically less activated alkenyl bromides. 

(Scheme 44) 

 

Scheme 44: LiCl mediated magnesium insertion in the presence of ZnCl2 in electronically less activated alkenyl 
bromides. 

Thus, 1,2-dibromocyclopentene undergoes a selective mono magnesium insertion in the 

presence of ZnCl2 and LiCl furnishing the alkenyl zinc reagent 23i in 98 % yield. Its Cu(I)-

catalyzed reaction with 3-bromocyclohexene furnishes 25t (86 %, Scheme 45). 

 

Scheme 45: Selective mono insertion of Mg in the presence of ZnCl2 and LiCl in 1,2-dibromocyclopentene. 

Furthermore, an acylation reaction using 2-bromobenzoyl chloride affords the unsaturated 

ketone 25u in 64 % yield (Table 7, entry 1). Additional Cu(I)-mediated reactions with 

cyclohexenone (24k), 3-iodocyclohexenone (24l) and bromoacetylene 24c lead to the expected 

products  25v–25x in 65-78 % yield (entries 2-4). Finally, the Pd-catalyzed cross-coupling 

reactions of 23i with ethyl 5-bromofuran-2-carboxylate (24m) and 3-bromo-5-cyanopyridine 

(24e) furnish the substituted heterocycles 25y  and 25z in 71 and 54 % yield (entries 5 and 6). 
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Table 7: Reactions of bromocyclopentene zinc chloride (23i) with electrophiles. 

Entry Zinc Reagent Electrophile Product Yield [%]a 
     

1 
   

 

 23i 24d 25u 64 

2  
  

 

 23i 24k 25v 70 

3  
  

 

 23i 24l 25w 65 

4   
 

 

 23i 24c 25x 78 

5  
 

 

 

 23i 24m 25y 72 

6  
 

 

 

 23i 24e 25z 54 
a Isolated yield of analytically pure product.  

However, a functionalization of the related 1,2-dibromocyclohexene (22j) using this method is 

not possible. As the 6-membered ring has a smaller ring strain, the initially formed 

organometallic reagent presumably eliminates MgBr2 leading to cyclohexyne 27. The 

elimination reaction seems to be faster than the transmetalation with ZnCl2, in spite its presence 

in the reaction mixture. Therefore, organozinc reagent 23j could not be observed. Instead, 

trimerisation of 27 affords the cyclic system 28 along with other sideproducts (Scheme 46).  

 

Scheme 46: Reaction of 22j with Mg in the presence of ZnCl2 and LiCl leading to trimerisation. 
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Interestingly, a vicinal ethyl ester functionality does not sufficiently activate the alkenyl bromide 

for a LiCl-mediated zinc insertion. However, the ester substituted alkenyl bromides 22k and 22l 

can be converted to their corresponding zinc reagents 23k and 23l using a magnesium insertion 

in the presence of ZnCl2 and LiCl (Scheme 47). 

 

Scheme 47: Mg insertion in the presence of ZnCl2 and LiCl in cyclic ethyl acrylate derivatives 22k and 22l. 

These alkenyl zinc reagents then react with standard electrophiles to afford highly 

functionalized unsaturated carboxylic acid ester derivatives (Table 8).  Therefore, ester 

substituted cyclopentenezinc chloride 23k reacts in a Pd-catalyzed cross-coupling with ethyl 5-

bromothiophene-2-carboxylate (24n) to give the substituted thiophene 25aa in 79 % yield 

(Table 8, entry 1). Also a Cu(I)-mediated allylation with 24b affords the unsaturated product 

25ab in 86 % yield (entry 2). Finally, the corresponding 6-membered zinc reagent (23l) 

undergoes a smooth cross-coupling reaction with the silyl substituted bromothiophene 24o 

furnishing the 2,5-difunctionalized thiophene 25ac in 71 % yield (entry 3). 

Table 8: Reactions of cyclic alkenyl zinc reagents bearing an ester functionality in alpha position. 

Entry Zinc Reagenta Electrophile Product Yield [%]b 
     

1 
  

 

 

 23k 24n 25aa 79 

2  
 

 

 

 23k 24b 25ab 86 

3 
  

 

 

 23l 24o 25ac 71 

 a Additional complexed salts are omitted for the sake of clarity; b Isolated yield of the analytically pure product. 
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3 REGIOSELECTIVE MAGNESIUM AND ZINC INSERTIONS IN POLYBROMINATED PHENOL 

DERIVATIVES 

3.1 INTRODUCTION 

Magnesium and zinc organometallics are versatile nucleophiles in organic synthesis. As shown 

in the general introduction, there are in general three routes to functionalized 

organomagnesium or –zinc reagents (Scheme 2).  

By using the direct metalation approach, the question of regioselectivity arises. Therefore, so 

called DMGs (directed metalation groups) are used to direct the metalation in ortho-position of 

the DMG. 74 For instance, a N,N,N’,N’-tetramethylphosphorodiamidate group is a very strong 

directing group for selective magnesiations of aromatic systems using TMP2Mg·2LiCl (Scheme 

48).75 

 

Scheme 48: C-H-activation using TMP2Mg·2LiCl and a phosphorodiamidate as DMG. 

In the case of di- or tri-haloaromatics, the question of regioselectivity arises also for the 

exchange and the direct metal insertion approaches. For the halogen-metal exchange, DMGs 

have also been used.11, 76 Thus, an amidine functionality is a strong directing group for Br-Mg 

exchange reactions and directs the exchange in its ortho-position (Scheme 49).77 

 

Scheme 49: Regioselective Br-Mg exchange with an amidine as directing group. 

In 2007, Knochel reported a method for directed ortho insertions (DoI) of Zn in the presence of 

LiCl in di- or tri-halogenated aromatics and heteroaromatics (Scheme 50).78  

                                                             
74 (a) E. J.-G. Anctil, V. Snieckus, J. Organomet. Chem. 2002, 653, 150; (b) V. Snieckus, Chem. Rev. 1990, 90, 879; (c) F. F. Wagner, D. L. 
Comins, Eur. J. Org. Chem. 2006, 3562; (d) A. R. Katritzky, Y.-J. Xu, R. Jain, J. Org. Chem. 2002, 67, 8234. 
75 C. J. Rohbogner, G. C. Clososki, P. Knochel, Angew. Chem. Int. Ed. 2008, 47, 1503. 
76 (a) R. D. Rieke, Science 1989, 246, 1260; (b) X. Wu, R. D. Rieke, J. Org. Chem. 1995, 60, 6658. 
77 G. Varchi, A. E. Jensen, W. Dohle, A. Ricci, G. Cahiez, P. Knochel, Synlett 2001, 477. 
78 N. Boudet, S. Sase, P. Sinha, C.-Y. Liu, A. Krasovskiy, P. Knochel, J. Am. Chem. Soc. 2007, 129, 12358. 
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Scheme 50: Regioslective zinc insertion in polyiodinated aromatics. 

This method tolerates a variety of functional groups and allows the efficient functionalization of 

polyhalogenated aromatics and heteroaromatics. Remarkably, the corresponding Mg insertion in 

the presence of LiCl reacts selectively in para-position and allows an orthogonal reaction 

strategy (Scheme 51).21b 

 

Scheme 51:  Regioselective para insertion of magnesium in a polybrominated aniline derivative. 

 

3.2 REGIOSELECTIVE ORTHO INSERTION IN POLYBROMINATED BENZENE DERIVATIVES 

The DoI mentioned above allows an efficient functionalization of mainly di- or triiodinated 

protected phenols or derivatives thereof. Although some polybrominated phenols can be used, 

the scope of this directed ortho insertion could be broadened by using different directing groups 

on polybrominated phenols. 

Thus, the pivaloyl protected 2,4,6-tribromophenol 29a reacts smoothly to its organozinc reagent 

30a (25 °C, 1 h) using zinc dust (2 equiv.) and LiCl (2 equiv.). 30a then reacts, after a 

transmetalation with CuCN·2LiCl, with 2-fluorobenzoyl chloride (31a) to give the substituted 

benzophenone 32a in 81 % yield (Scheme 52). 

 

Scheme 52: Regioselective metal insertion in the polybrominated phenol derivative 29a. 
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The corresponding magnesium insertion in the presence of LiCl and ZnCl2 leads exclusively to 

the para-organometallic and after a copper-mediated acylation reaction, ketone 33a can be 

isolated in 85 % yield.79 A Pd-catalyzed cross-coupling reaction of 30a using Pd(dba)2 (2 mol%) 

and tris-o-furylphosphine (tfp, 4 mol%) as catalyst with ethyl 4-iodobenzoate (31c) affords the 

highly functionalized biphenyl 32b in 78 % isolated yield (Table 9, entry 1).  

Similarly, the related pivaloyl protected 2,4-dibromophenol 29b undergoes a smooth Zn 

insertion (50 °C, 14 h) to the ortho insertion product 30b. A copper-mediated acylation with 4-

chlorobenzoyl chloride (31d) leads to the benzophenone derivative 32c (75 %). Using Mg in the 

presence of LiCl on 29b, the orthogonal insertion product is observed and after acylation with 

31d the desired product 33b is isolated in 78 % yield (Scheme 53). 79 

 

Scheme 53: Orthogonal insertion pattern in pivaloyl protect 2,4-dibromophenol (29b). 

Furthermore, a tosyloxy moiety orients the zinc insertion into tribromo- or dibromo-substituted 

aromatics to the ortho-position, thereby providing after quenching with standard electrophiles 

the expected products 32d-h in 60-75 % yield (Table 9, entries 2-7, Scheme 54). However, the 

analogous Mg insertions lead to two regioisomers 34a and 34b in 4:1 ratios (Scheme 54).79 

 

Scheme 54: Regioselectivities for the magnesium and zinc insertion in tosyl-protected di- and tribromophenols. 

Similar regioselectivities can be observed when changing the protecting group to an acetyl 

group. Again, using Zn/LiCl, a regioselective insertion occurs in the tribromophenol derivative 

(29e, 25 °C, 1 h) as well as in the dibromo derivative (29f, 50 °C, 6 h). After a copper-mediated 

acylation or a Pd-catalyzed cross-coupling, the expected products 32i and 32j can be isolated in 

79-84 % yield (entries 7 and 8). 

 

 

                                                             
79 The regioslective magnesium insertions were performed by Dr. F. M. Piller and are given here for the sake of completeness. 
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Table 9: Regioselective zinc insertion in polybrominated phenol derivatives. 

Entry Bromide 

Zinc Reagent, 

Conditionsa 

[Time] 

Electrophile Product, Yield [%]b 

     

1 

  
 

 

 29a 30a, A [1 h] 31c 32b, 78 %c 

2 

  
 

 

 29c 30c, A [1 h] 31e 32d, 73 %d 

3   
 

 

 29c 30c 31f 32e,  74 %d 

4   
 

 

 29c 30c 31g 32f,  75 %e 

5 

  

 

31f 
 

 29d 30d, B [14 h]  32g,  61 %d 

6   
 

 

 29d 30d 31h 32h,  60 %e 

7 

  
 

 

 29e 30e, A [1 h] 31b 32i,  79 %d 

8 

  

 

  

 29f 30f, B [6 h] 31i 32j,  84 %c 

     

a Conditions A: 2 equiv. of Zn and LiCl were used and the reaction was performed at 25 °C; conditions B: 3 equiv. of Zn 
and LiCl were used and reaction was performed at 50 °C; b Isolated yield of analytically pure product; c The cross-
coupling reaction was performed using Pd(dba)2 (2 mol%) and tris-o-furylphosphine (4 mol%); d Prior to the reaction 
with the acid chloride, the zinc reagent was transmetalated with 1.1 equiv. CuCN·2LiCl; e catalytic amounts of 
CuCN·2LiCl were added. 
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Again, the respective Mg insertions only lead to mixtures of regioisomers 34c and 34d in 85:15 

ratios (Scheme 55). 79 

 

Scheme 55: Regioselective magnesium and zinc insertions in polybrominated phenol derivatives. 

Finally, tert-butyl 2,4-dibromophenyl carbonate (29g) allows both, the ortho-functionalization 

after a directed zinc insertion (50 °C, 14 h) and the selective orthogonal para-functionalization 

using Mg/LiCl (-10 °C, 0.5 h). Pd-catalyzed reaction of the organozinc reagent with 

3-trifluoromethyliodobenzene (31j) affords the biphenyl 32k (60 %), whereas the magnesiated 

organometallic after transmetalation and coupling with ethyl 4-iodobenzoate (31c) provides 

33c (97 %, Scheme 55). 79 

 

3.3 LARGE SCALE INSERTION REACTIONS 

For a potential industrial application, the scale-up of these reactions is of great importance. One 

great aspect in the scale-up process is the control of the reaction enthalpy. Direct metal 

insertions are often exothermic and need a certain initiation time. Due to the lower reduction 

potential of zinc compared to magnesium, zinc insertions are often less exothermic and 

therefore easier to control.  In order to show a possible industrial applicability, the scale up of 

the regioselective ortho and para insertion was studied (up to 100 mmol). Thus, the 

regioselective zinc insertion in 2,4,6-tribromopivaloyloxybenzene (29a) can be smoothly 

performed at ambient temperature with simple watercooling in a 100 mmol scale using zinc 

dust (2.0 equiv.) and LiCl (2.0 equiv.) in THF (2 h, 65 % yield). In contrast, the orthogonal 

magnesium insertion in a 100 mmol scale requires extensive cooling (-20 °C) and a slow 

addition of 29a over 4 h to form the Grignard-reagent 34e in almost quantitative yield (98 %). 

Both organometallic reagents then react with standard electrophiles to provide the expected 

products 32l-o (64-88 %) and 33d-e (54-60 %, Scheme 56). 
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Scheme 56: Large scale preparation of 30a and 34e and subsequent reactions with electrophiles. 

Additionally, the reaction of 2,4-dibromo-1-pivaloyloxybenzene (29b) with Mg (2.5 equiv.)/LiCl 

(1.25 equiv.) leads selectively to an insertion in para-position (-20 °C, addition over 1 h, 96 %) 

and the resulting organomagnesium reagent (34f) can be trapped with 4-chlorobenzoyl chloride 

(31d) affording the highly substituted benzophenone 33b in 64 % yield (Scheme 57). 

 

Scheme 57: Selective para insertion in 29b using Mg and LiCl. 

The directed ortho insertion in larger scale (50 mmol) can also be performed using the tosyl- or 

Boc-protected 2,4,6-tribromophenol derivatives 29c and 29h. Both substrates undergo smooth 

insertion reactions (25 °C, 1 h) to their zinc reagents 30c and 30h (60-81 %) and afford ketones 

32p and 32r (56 and 82 % yield) after acylation reactions or the biphenyl 32q (71 %, Scheme 

58) after a Pd-catalyzed cross-coupling. 
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Scheme 58: Regioselective Zn-insertion in tribrominated protected phenols 29c and 29h in larger scale. 

Besides coordinating carbonyl, carbonate or sulfonate groups, a simple methoxy substituent 

allows an efficient regioselective ortho insertion using Zn dust in the presence of LiCl. Thus, 30i 

can be readily prepared (2 h, 25 °C, 78 %) from 29i using Zn dust (2 equiv.) and LiCl (2 equiv.) 

on a 75 mmol scale and reacts with cylcopropanecarboxylic acid chloride (31k) using 

CuCN·2LiCl to the cyclopropyl ketone 32s or under Pd-catalysis with ethyl 4-iodobenzoate (31c) 

to the biphenyl 32t in 59-66 % yield (Scheme 59). 

 

Scheme 59: Directed ortho insertion in 2,4,6-tribromoanisole and subsequent reaction with electrophiles. 

Additionally, a triazene moiety, which is a synthetic equivalent of a diazonium salt,80 allows the 

selective para-functionalization using Mg/LiCl. Thus, the slow addition of 29j to Mg/LiCl in THF 

(-20 °C, 1 h) furnishes the Grignard reagent 34g which, after transmetalation with ZnCl2, reacts 

in a Pd-catalyzed coupling reaction with 4-iodobenzonitrile (31i) to afford the highly 

functionalized triazene 33f in 71 % yield (Scheme 60). 

                                                             
80 (a) C.-Y. Liu, P. Knochel, Org. Lett. 2005, 7, 2543; (b) C.-Y. Liu, P. Knochel, Synlett 2007, 2081; (c) S. Braese, Acc. Chem. Res. 2004, 37, 
805. 
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Scheme 60: para-Functionalization of 29j using magnesium in the presence of LiCl. 

Finally, the previously mentioned regioselective ortho and para insertion in tert-butyl 

2,4-dibromophenyl carbonate (29g) can be perfomed in larger scale. Thus, biphenyl 32u can be 

prepared in 82 % yield after a regioselective Zn insertion in 50 mmol scale and subsequent 

cross-coupling with 4-iodobenzonitrile (31i). The orthogonal para insertion using Mg/LiCl can 

be performed on a 10 mmol scale (-10 °C, 0.5 h) and provides 33g in 84 % yield after 

transmetalation with ZnCl2 and Pd-catalyzed reaction with 4-iodoanisole (31j) (Scheme 61). 

 

Scheme 61: Regioselective metal insertion in 29g in large scale. 
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4 PREPARATION OF PRIMARY AMIDES FROM ORGANOZINC HALIDES 

4.1 INTRODUCTION 

The primary amide functionality (CONH2) is found in a variety of natural products and 

pharmaceutically active substances.81 For instance, the isatin derivative 35 was found to be a 

highly selective, reversible SARS CoV 3C-like protease inhibitor with an IC50 value of 0.37 μM.81b 

Darifenacin (36), an acetamide derivative, which is a selective M3 acetylcholine receptor 

antagonist used to treat urinary incontinence.82 Nicotinamide (37) also called vitamin B3, is a 

simple benzamide which is essential for the human body as it is incorporated into nicotinamide 

adenine dinucleotide (NAD) and nicotinamide adenine dinucleotide phosphate (NADP), two 

coenzymes involved in redox reactions in all living cells (Scheme 62).83 

 

Scheme 62: Biologically active compounds and natural products bearing a primary amide function. 

The preparation of functionalized amides from readily available precursors is therefore of great 

interest. Among others, the reaction of carboxylic acid derivatives with ammonia and the 

hydration of nitriles are common methods for preparing primary amides.84, 85 The group of Ley 

developed a general method for the synthesis of primary amides starting from carboxylic esters 

and magnesium nitride as nitrogen source. Upon reaction with water, magnesium nitride 

releases ammonia, which then reacts with the ester to form the corresponding carboxamide 

(Scheme 63).84a 

 

Scheme 63: Preparation of primary amides according to Ley. 

                                                             
81 For example: (a) The Chemistry of Amides (Ed.: J. Zabicky), Wiley-Interscience, New York, 1970; (b) L. Zhuo, Y. Liu, W. Zhang, P. Wie, 
C. Huang, J. Pei, Y. Yuan, L. Lai, J. Med. Chem. 2006, 49, 3440; (c) A. Bhattcharaya, B. P. Scott, N. Nasser, H. Ao, M. P. Mahre, A. E. 
Dubin, D. M. Swanson, N. P. Shankley, A. D. Wickenden, S. R. Chaplan, J. Pharmcol. Exp. Ther. 2007, 323, 665; (d) W. Pringle, J. M. 
Peterson, L. Xie, P. Ge, Y. Gao, J. W. Ochterski, J. Lan, WO 2006/089076 A2, Aug 24, 2006.  
82 K. Miyamae, M. Yoshida, S. Murakami, H. Iwashita, M. Ohtani, K. Masunaga, S. Ueda, Pharmacology 2003, 69, 205. 
83 Chemistry of Natural Products (Eds.: S. V. Bhat, B. A. Nagasampagi, N. Sivakumar), Springer, Berlin, 2005. 
84 (a) For the use of Mg3N2 as NH3 source see: G. E. Veitch, K. L. Bridegwood, S. V. Ley, Org. Lett. 2008, 10, 3623; (b) For a Ru-catalyzed 
hydration of nitriles, see: V. Cadierno, J. Francos, J. Gimeno, Chem. Eur. J. 2008, 14, 6601; (c) V. Y. Kukushkin, A. J. L. Pombeiro, Inorg. 
Chim. Acta 2005, 1, 1; (d) For a Bi(OTf)3-catalyzed Ritter reaction see: E. Callens, A. J. Burton, A. G. M. Barrett, Tetrahedron Lett. 2006, 
47, 8699; (e) For a Pd-catalyzed aminocarbonylation of aryl halides see: A. Schnyder, M. Beller, G. Mehltretter, T. Nsenda, M. Studer, A. F. 
Indolese, J. Org. Chem. 2001, 66, 4311. 
85 (a) For related cyanations see: P. Anbarasan, H. Neumann, M. Beller, Chem. Eur. J. 2010, 16, 4725; (b) For a Grignard addition-acylation 
route to enamides see: F. F. Fleming, G. Wei, Z. Zhang, O. W. Steward, Org. Lett. 2006, 8, 4903; (c) For carbonylations of zinc reagents 
with CO2, see: K. Kobayashi, Y. Kondo, Org. Lett. 2009, 11, 2035; (d) A. Metzger, S. Bernhardt, G. Manolikakes, P. Knochel, Angew. 
Chem. Int. Ed. 2010, 49, 4665. 
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The hydration of nitriles leading to primary amides is conventionally performed in the presence 

of a strong acid or base as catalyst under harsh conditions.86 Gimeno developed a mild and 

efficient method for hydration of nitriles using a Ru-catalyst in aqueous medium and under 

neutral conditions (Scheme 64).84b 

 

Scheme 64: Ru-catalyzed hydration of nitriles to primary amides. 

As these methods are functional group interconversion of already existent carbonyl functions, 

methods for installing a primary amide with a C-C-bond forming reaction would be highly 

desireable. Beller and Indolese recently reported a Pd-catalyzed aminocarbonylation of aryl 

halides using formamide as an ammonia source (Scheme 65).84e  

 

Scheme 65: Pd-catalyzed aminocarbonylation according to Beller. 

A direct organometallic approach is the addition of Grignard reagents to trimethylsilyl 

isocyanate or chloroacetyl isocyanate (Scheme 66).87 A major drawback of this protocol is the 

incompatibility with sensitive functional groups and heterocycles. 

 

Scheme 66: Preparation of primary amides starting from organomagnesium reagents and substituted isocyanates. 

In contrast, the use of organozinc reagents is compatible with a broad range of functional groups 

and sensitive heterocycles in the starting zinc organometallic and allows a one-carbon 

homologation establishing a carbamide function.88 

 

                                                             
86 Methoden Org. Chem. (Houben Weyl) 4th ed., Vol. E5(2), 1985, 1024-1031. 
87 K. A. Parker, E. G. Gibbons, Tetrahedron Lett. 1975, 12, 981. 
88 (a) L. Zhu, R. M. Wehmeyer, R. D. Rieke, J. Org. Chem. 1991, 56, 1445; (b) R. F. W. Jackson, N. Wishart, A. Wood, K. James, M. J. 
Wythes, J. Org. Chem. 1992, 57, 3397; (c) F. Crestey, P. Knochel, Synthesis 2010, 1097; (f) M. Mosrin, M. Petrera, P. Knochel, Synthesis 
2008, 3697; (g) G. Monzon, P. Knochel, Synlett 2010, 304. 
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4.2 PREPARATION OF PRIMARY AMIDES 

Initial experiments showed that organozinc reagents do not react with trimethylsilyl isocyanate 

and chloroacetyl isocyanate to form the desired primary amide. Obviously, organozinc reagents 

are not nucleophilic enough to attack the carbonyl carbon of these isocyanates. The use of 

commercially available trichloroacetyl isocyanate (38) instead allows a smooth addition of 

various organozinc halides of type 39, and the primary amides of type 40 can, after basic 

hydrolysis, be isolated in yields up to 99 % (Scheme 67).89,90  

 

Scheme 67: Reaction of unsaturated zinc reagents with trichloroacetyl isocyanate (38) leading to primary amides. 

Thus, 4-cyanophenylzinc iodide (39a) prepared by the direct insertion of zinc into 

4-iodobenzonitrile, reacts with trichloroacetyl isocyanate (38, 1.1 equiv., -20 °C to 23 °C) to the 

corresponding imidate. After basic hydrolysis using K2CO3 (1.5 equiv.) and MeOH, 

4-cyanobenzamide (40a) was isolated in 95% yield (Scheme 68).  

 

Scheme 68: Reaction of 4-cyanophenylzinc iodide (39a) with trichloroacetyl isocyanate (38). 

Using this method, other substituted benzamides have been prepared. Thus, 

4-(ethoxycarbonyl)phenylzinc iodide (39b)  reacts smoothly with trichloroacetyl isocyanate to 

produce the expected primary amide 40b in 90 % yield (Table 10, entry 1). Furthermore, 

chloro- or trifluoromethyl- substituted arylzinc reagents such as 39c-e react with trichloroacetyl 

isocyanate furnishing the expected primary amides 40c-e in 60-98 % yield (entries 2-4). 

Starting from 2-ethoxyphenylzinc chloride (39f), ethenzamide91 (40f), an analgesic and anti-

inflammatory drug, is obtained in almost quantitative yield (98 %, entry 5).  

 

 

                                                             
89 (a) M.-Z. Deng, P. Caubère, J. P. Senet, S. Lecolier, Tetrahedron 1988, 44, 6079; (b) G. Manolikakes, Z. Dong, H. Mayr, J. Li, P. 
Knochel, Chem. Eur. J. 2009, 15, 1324; (c) For a recent overview on the addition of organozinc reagents to carbonyl compounds, see: L. 
Salvi, J. G. Kim, P. J. Walsh, J. Am. Chem. Soc. 2009, 131, 12483. 
90 Zinc reagents prepared by direct C-H activation using TMPZnCl·LiCl or TMP2Zn·2MgCl2·2LiCl do not give the desired products. Also, 
the use of the corresponding organomagnesium reagents either do not yield in the desired primary amides or only in low yields. 
91  H. Buschmann, T. Christoph, E. Friderichs, Analgesics: From Chemistry and Pharmacology to Clinical Application; Wiley-VCH, 
Weinheim, 2002.  
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Table 10: Reactions of aromatic organozinc reagents leading to funtionalized benzamides.  

Entry Aryl halide Zinc Reagenta Primary Amideb 
Yield 

[%]c 

1 
   

 

  39bd 40b 90 

2 

   

 

  39ce 40c 60 

3 

   

 

  39de 40d 98 

4 
   

 

5  39ee 40e 71 

 
   

 

6  39fe 40f 98 

 

   

 

7  39gd 40g 78 

 

   

 

  39hd 40h 66 
a For the sake of clarity, additional complexed salts are omitted; b All reactions were hydrolyzed at 23 °C, 12 h; c Isolated yield of 
analytically pure product; d Zinc reagent was prepared via LiCl-mediated zinc insertion in the corresponding aryl halide; e Zinc 
reagent was prepared via halogen-magnesium exchange using iPrMgCl·LiCl from the corresponding aryl halide.  

The directed zinc insertion in polybrominated protected phenols78, 21 gives regioselectively the 

arylzinc reagents 39g and 39h which then react with trichloroacetyl isocyanate affording the 

corresponding benzamides 40g and 40h in 66-78 % yield (entries 6 and 7). Furthermore, 

heterocyclic zinc reagents such as the thiophenylzinc  derivatives 39i-k provide the expected 

primary amides 40i-k in 61-99 % yield (Table 11, entries 1-3). Moreover, ethyl 5-

carbamoylfuran-2-carboxylate (40l) and thiazole-2-carboxamide (40m) have been prepared by 

this way in 78-82 % yield (entries 4 and 5). Also electron-deficient 6-membered N-heterocyclic 

zinc reagents have been reacted with trichloroacetyl isocyanate leading to the corresponding 

primary amides. 2,6-Dichloro-4-pyridylzinc iodide (39n) is converted to the isonicotinamide  

40n in 63 % yield (entry 6). 
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Table 11: Reactions of heterocyclic zinc halides with trichloroacetyl isocyanate providing heterocyclic amides. 

Entry Arylhalide Zinc reagenta Primary amideb Yield [%]c 

1 
   

 

  39id 40i 99 

2 
   

 

  39je 40j 99 

3 
   

 

  39ke 40k 61 

4 
   

 

  39le 40l 78 

5 
   

 

  39me 40m 82 

6 

   

 

  39nd 40n 63 

7 
   

 

  39od 40o 69 

8 

   

 

  39pd 40p 73 

9 

   

 

  39qd 40q 70 

10 

   

 

  39rd 40q 78 
a For the sake of clarity, additional complexed salts are omitted; b All reactions were hydrolyzed at 23 °C, 12 h; c Isolated yield of 
analytically pure product; d Zinc reagent was prepared via LiCl-mediated zinc insertion in the corresponding aryl halide; e Zinc 
reagent was prepared via halogen-magnesium exchange using iPrMgCl·LiCl from the corresponding aryl halide.  

Also, the substituted quinoloylzinc iodide 39o and the the protected indole 39p have been 

smoothly converted to the benzamides 40o and 40p in 69-73 % yield (entries 7 and 8). 

Moreover, sensitive 5-membered heterocyclic zinc reagents, such as pyrazolylzinc iodide 39q or 

the zinc reagent derived from the benzyl protected bromo-uracil derivative 39r react with 
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trichloroacetyl isocyanate to provide the corresponding primary amides 40q and 40r in 

70-78 % yield (entries 9 and 10).  

Additionally, 3,5-dimethylisoxazolylzinc chloride 39s provides the amide 40s in almost  

quantitative yield (98 %, Scheme 69).  

 

Scheme 69: Addition of 3,5-dimethylisoxazolylzinc chloride (39s) to trichloroacetyl isocyanate leadin to 40s. 

Also α,β-unsaturated amides can be prepared from the corresponding zinc reagents. Thus, the 

unsaturated zinc reagents derived from α-bromostyrene34a (39t) and 3-iodocyclohex-2-enone 

(39u)71 react with trichloroacetyl isocyanate to give 40t and 40u in 63-85 % yield (Scheme 70). 

 

Scheme 70: Preparation of the unsaturated primary amides 40t and 40u. 

Finally, acetylenic amides can also be prepared by this method. Phenylacetylenezinc chloride 

(39v) reacts with trichloroacetyl isocyanate at room temperature and the acetylenic amide 40v 

was isolated in 71 % yield (Scheme 71). The ester substituted phenylacetylene derived zinc 

reagent 39w can be converted to the primary amide 40w in 57 % yield (Scheme 71). 

 

Scheme 71: Reaction of alkynylzinc halides with trichloroacetyl isocyanate affording 40v and 40w. 
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4.3 REACTIONS OF ORGANOZINC REAGENTS WITH SUBSTITUTED ISOCYANATES 

The extension of the methodology described before to substituted isocyanates would give access 

to N-substituted amides. The secondary amide group is a widespread functionality in natural 

products as well as in pharmaceutically active substances.92  A variety of widely used local 

anesthetics such as Lidocaine (41), Mepivacaine (42) or Articaine (43), possess a secondary 

amide function (Scheme 72). Ibrolipim (44) is a cholesterol lowering drug, which acts as a 

lipoprotein lipase activator.93 Efaproxiral (45) is supportingly used in chemotherapy against 

certain hypoxic tumors.94  

 

Scheme 72: Various parmaceuticals bearing a secondary amide function. 

Furthermore, Roflumilast (46) is a selective PDE-4 inhibitor and is used as an anti-inflammatory 

drug in the therapy of asthma and chronic obstructive pulmonary disease. 95  Standard 

procedures for the synthesis of secondary amides often use harsh conditions and are not 

compatible with a variety of functional groups. A Bi(OTf)3-catalyzed Ritter reaction developed by 

Barrett allows a simple and efficient synthesis of secondary amides (Scheme 73).84d 

 

Scheme 73:  Synthesis of secondary amides using a Bi(OTf)3-catalyzed Ritter reaction. 

In 2010, Buchwald showed a Pd-catalyzed cross-coupling reaction of primary amides with aryl 

mesylates leading to aryl substituted secondary amides.96 The use of tBuBrettPhos allows the 

efficient coupling of a variety of functionalized aryl and heteroaryl mesylates with various aryl 

and alkyl carboxamides (Scheme 74).  

                                                             
92 The Organic Chemistry of Drug Synthesis Vol.7 (Ed.: D. Lednicer), Wiley-Interscience, Hoboken, New Jersey, 2008. 
93 S. Kano, M. Doi, Metabolism 2006, 55 151. 
94 C. Scott, J. Suh, B. Stea, A. Nabid, J. Hackman, Am. J. Clin. Oncol. 2007, 30, 580 
95 (a) C. Herbert, A. Hettiaratchi, D. C. Webb, P. S. Thomas, P. S. Foster, R. K. Kumar,  Clin. Exp. Allergy 2008, 38, 847; (b) V. Boswell-
Smith, D. Spina, Int. J. Chron. Obst. Pulmon. Dis. 2010, 5, 11.  
96 K. Dooleweedt, B. P. Fors, S. L. Buchwald, Org. Lett. 2010, 12, 2350. 
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Scheme 74: Pd-catalyzed cross-coupling of primary amides with aryl mesylates according to Buchwald. 

In contrast to trichloroacetyl isocyanate, other substituted isocyanates, such as cyclohexyl 

isocyanate or tert-butyl isocyanate, do not react directly with organozinc reagents.  A short 

catalyst screening showed that by adding catalytic amounts of Ni(acac)2 (2 mol%), a smooth 

addition reaction occurs (Scheme 75) 

 

Scheme 75: Ni-catalyzed reaction of organozinc reagents with cyclohexyl isocyanate. 

To show the scope of this novel Ni-catalyzed addition reaction, a variety of aryl and benzylic zinc 

reagents were coupled with substituted isocyanates. Thus, 4-(ethoxycarbonyl)phenylzinc iodide 

(39b) reacts with cyclohexyl isocyanate (47a, 0.91 equiv) and catalytic amounts of Ni(acac)2 

(2 mol%) to give the corresponding secondary amide 48a in 60 % yield (Table 12, entry 1). The 

reaction of 4-methoxyphenylzinc iodide (39x) with cyclohexyl isocyanate (47a) affords the 

substituted amide 48b in 53 % yield (entry 2). Aryl zinc reagents bearing electron-withdrawing 

groups such as 39b, 4-chlorophenylzinc iodide (39y) or 4-(trifluoromethyl)phenylzinc iodide 

(39z) react with tert-butyl isocyanate (47b) affording the desired amides 48c-e in 63-79 % 

yield (entries 3-5). 

Table 12: Ni-catalyzed reaction of organozinc reagents with substituted isocyanates affording secondary amides of 
type 48. 

Entry Organozinc reagenta Isocyanate Amide of Type 48 Yield [%]b 
     

1 
  

 

 

 39b 47a 48a 60 

2 
 

47a 

 

 

 39x  48b 53 

3 39b 
 

 

 

  47b 48c 79 
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4 
 

 

 

 

 39y 47b 48d 63 

5 
 

 

 

 

 39z 47b 48e 75 

6 
 

 
 

 

 11j 47b 48f 61 
a For the sake of clarity, additional complexed salts are omitted; b Isolated yield of analytically pure product. 

Also, the benzylic zinc reagent 11j reacts with tert-butyl isocyanate (47b) providing the 

secondary amide (48f) in 61 % yield (entry 6).  

 

Scheme 76: Reaction of 4-(methoxy)benzylzinc chloride (11k) with 2,6-dimethylphenyl isocyanate (47c). 

Finally, the electron-rich benzylic zinc reagent 11k reacts with 2,6-dimethylphenyl isocyanate 

(47c) in the presence of catalytic amounts of Ni(acac)2 to give the highly substituted amide 48g 

in 61 % yield (Scheme 76). 
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5 PREPARATION OF HIGHLY FUNCTIONALIZED ALLENES VIA SUCCESSIVE COPPER-

MEDIATED SUBSTITUTION REACTIONS 

5.1 INTRODUCTION 

Allenes have found increasing synthethic applications over the years.97 They are either target 

molecules (Scheme 77) or versatile intermediates for the preparation of various cyclic or 

heterocyclic compounds.98 Thus, 49 is a pheromone extracted from the insect Acanthoscelides 

obtectus, in which it was found in rather large amounts (0.5 % of its total mass).99 The allenic 

terpenoid 50, has a repellent effect on ants and was isolated from the defence secrete of the 

grasshopper Romalea microptera, and is therefore called grasshopper ketone.100 Compound 50 

can also be found as a subunit in various glycoside derivatives.101 The most recently discovered 

group of naturally occurring allenes is the group of bromoallenes.97 Panacene (51), found in the 

sea hare Aplysia brasiliana in which it acts as antifeedant against fishes, is mentioned 

exemplarily.102 

 

Scheme 77: Natural occurring and pharmaceutically active allenes. 

Enprostil (52), a PGE2-analog, has an in inhibitory effect on gastric acid secretion and is used in 

the treatment of gastroduodenal ulcers.103 Also, the allenic nucleoside analog Cytallene (53) 

shows interesting pharmaceutical activity as it acts as an inhibitor of the replication of 

retroviruses, for instance HIV or hepatitis B virus. 104 

                                                             
97 (a) Modern Allene Chemistry (Eds.: N. Krause, A. S. K. Hashmi), Wiley-VCH, Weinheim, 2004; (b)  The Chemistry of Ketenes, Allenes 
and Related Compounds (Ed.: S. Patai), Wiley, New York, 1980; (c)  The Chemistry of the Allenes (Ed.: S. R. Landor), Academic, London, 
1982; (d) Allenes in Organic Synthesis (Eds.: H. F. Schuster, G. M. Coppola), Wiley, New York, 1984. 
98 (a) A. Hoffmann-Röder, N. Krause, Angew. Chem. Int. Ed. 2004, 43, 1196; (b) N. Krause, A. Hoffmann-Röder, Tetrahedron 2004, 60, 
11671; (c) S. Ma,  Acc. Chem. Res. 2003, 36, 701; d) S. Ma, Chem. Rev. 2005, 105, 2829; (e) S. Ma, E.-i. Negishi, J. Am. Chem. Soc. 1995, 
117, 6345; (f) A. S. K. Hashmi, Angew. Chem. Int. Ed. 2000, 20, 3590. 
99 D. F. Hofer, J. Chem. Soc. C 1970, 859. 
100 (a) J. Meinwald, K. Erickson, M. Hartshorn, Y. C. Meinwald, T. Eisner, Tetrahedron Lett. 1968, 9, 2959; (b) J. Meinwald, L. Hendry, 
Tetrahedron Lett. 1969, 10, 1657. 
101 (a) Y. Shiraga, K. Okano, T. Akira, C. Fukaya, K. Yokoyama, S. Tanaka, H. Fukui, M. Tabata, Tetrahedron 1988, 44, 4703; (b) T. 
Miyase, A. Ueno, N. Takizawa, H. Kobayashi, H. Oguchi,  Phytochemistry 1989, 28, 3483. 
102 (a) R. Kinnel, A. J. Duggan, T. Eisner, J. Meinwald, Tetrahedron Lett. 1977, 18, 3913; (b) K. S. Feldman, C. C. Mechem, L. Nader, J. 
Am. Chem. Soc. 1982, 104, 4011. 
103  (a) P. W. Collins, S. W. Djuric, Chem. Rev. 1993, 93, 1533; (b) N. Omura, H. Kashiwagi, T. Aoki, K. Omura, Y. Fukuchi, J. 
Gastroenterol. 1997, 32, 740. 
104  (a) J. Zemlicka, Pharmacol. Ther. 2000, 85, 251; (b) Y. L. Zhu, S. B. Pai, S. H. Liu, K. L. Grove, B. C. Jones, C. Simons, J. Zemlicka, Y. 
C. Cheng, Antimicrob. Agents Chemother. 1997, 41, 1755. 
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Therefore, the preparation of polyfunctionalized allenes is especially important 105 and there is a 

need for synthetic methods allowing to build up allenes bearing various functional groups.106 

The preparation of allenes from propargylic halides, sulfonates or acetates via substitution 

reactions with copper organometallics is well known.107 Generally, a SN2’-substitution is 

observed with high regio- and stereo-selectivity. Thus, propargylic derivatives of type 54 react 

with organocopper reagents (R3Cu) providing allenes of type 55 (Scheme 78).  

 
Scheme 78:  Reactivity pattern of organocopper reagents on propargylic systems. 

The stereoselective synthesis of “allene-carbacyclin” (56), a prostacyclin analog, includes a SN2’-

substitution to form allene 57.108 The reaction of 4 equivalents of Me2CuLi with the propargylic 

acetate 54a affords the corresponding allene in excellent yield (Scheme 79). 

 

Scheme 79: Reaction of Me2CuLi with propargylic acetate 54a affording the allene 57. 

In addition to this high regioselectivity, the SN2’-substitution on propargylic substrates is highly 

stereoselective. 109 Therefore, alkylmagnesium reagent 58 reacts in the presence of CuBr·LiBr (1 

equiv.) in a stereoselective manner with the propargylic mesylate 54b to provide the 

corresponding allene 59 without loss of stereoinformation (Scheme 80). 

 

Scheme 80: Stereoselective synthesis of 59. 

                                                             
105 (a) A. Hoffmann-Röder, N. Krause, Angew. Chem. Int. Ed. 2002, 41, 2933; (b) R. Zimmer, C. U. Dinesh, E. Nandanan, F. A. Khan, 
Chem. Rev. 2000, 100, 3067; (c) C. Deutsch, B. H. Lipshutz, N. Krause, Org. Lett. 2009, 11, 5010; (d) K. M. Brummond, J. E. DeForest, 
Synthesis 2007, 795; (e) A. H. Stoll, S. B. Blakey, J. Am. Chem. Soc. 2010, 132, 2108. 
106 (a) K. M. Brummond, D. Chen, M. M. Davis, J. Org. Chem. 2008, 73, 5064; (b) J. P. Varghese, P. Knochel, I. Marek, Org. Lett. 2000, 2, 
1849; (c) M. Ogasawara, H. Ikeda, T. Hayashi, Angew. Chem. Int. Ed. 2000, 39, 1042.  
107 (a) P. Rona, P. J. Crabbé, J. Am. Chem. Soc. 1968, 90, 4733; (b) P. Rona, P. J. Crabbé, J. Am. Chem. Soc. 1969, 91, 3289; (c) N. Krause, 
A. Hoffmann-Röder in Modern Organocopper Chemistry (Ed.: N. Krause), Wiley-VCH, Weinheim, 2002, pp. 145-166. 
108 S. W. Djuric, M. Miyano, M. Clare, R. M. Rydzewski, Tett. Lett. 1987, 38, 299. 
109 K. M. Brummond, A. D. Kerekes, H. Wan, J. Org. Chem. 2002, 67, 5156. 
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In contrast, the substitution reaction of allenyl bromides of type 60 provides usually a mixture of 

alkyne 61 (SN2’-substitution) and allene 62 (SN2-substitution, Scheme 81).110  

 

Scheme 81: Reactivity pattern of organocopper reagents with allenyl bromides. 

In all of these substitution reactions on bromoallenes of type 60, the copper organometallics 

were prepared from organo-magnesium or -lithium  reagents.111 

Since arylmagnesium reagents of type 63 (ArMgX) tolerating various functional groups can be 

readily prepared and have proven to be versatile organometallic intermediates for the 

preparation of various polyfunctional molecules,21, 24 their reactivity with bromo- or chloro-

allenes in the presence of copper salts was investigated and a complete SN2-selectivity providing 

only allenes was found. Furthermore, a new reaction sequence allowing the preparation of 

various polyfunctional allenes 62 starting from commercially available terminal alkynes was 

developed. 

 

5.2 PRELIMINARY EXPERIMENTS 

In preliminary studies, the copper-catalyzed substitution of two unfunctionalized 

bromoallenes112 60a (R = Me) and 60b (R = Et) with 4-(carbethoxy) phenylmagnesium chloride 

(63a) using catalytic amounts of various copper salts (Table 13) was examined. In all cases, the 

reaction produces only the SN2-substitution product.113  

Table 13: Influence of the nature of the copper-catalyst.  

 

Entry Cu(I)-salt (10 mol%) R 
Yield 

[%]a 

1 CuBr Et 85 

2 CuCN·2LiCl  Et 89 

                                                             
110 (a) E. J. Corey, N. W. Boaz, Tetrahedron Lett. 1984, 25, 3059; (b) A. M. Caporusso, C. Polizzi, L. Lardicci, J. Org. Chem. 1987, 52, 
3920; (d) C. Polizzi, C. Consoloni, L. Lardicci, A. M. Caporusso, J. Organomet. Chem. 1991, 417, 289; (e) A. M. Caporusso, S. Filippi, F. 
Barontini, P. Salvadori, Tetrahedron Lett. 2000, 41, 1227; (f) A. M. Caporusso, C. Polizzi, L. Lardicci, Tetrahedron Lett. 1987, 28, 6073; (g) 
A. M. Caporusso, A. Zampieri, L. A. Aronica, D. Banti, J. Org. Chem. 2006, 71, 1902. 
111

 (a) M. Kalli, P. D. Landor, S. R. Landor, J. Chem. Soc., Perkin Trans. 1 1973, 1347; (b) R. K. Dieter, N. Chen, V. K. Gore, J. Org. Chem. 
2006, 71, 8755; (c) For the use of organozinc reagents, see: K. Kobayashi, H. Naka, A. E. Wheatley, Y. Kondo, Org. Lett. 2008, 10, 3375; 
(d) For the use of organoindium reagents, see: i) R. Riveiros, D. Rodríguez, J. P. Sestelo, L. A. Sarandeses, Org. Lett. 2006, 8, 1403; ii) K. 
Lee, P. H. Lee, Org. Lett. 2008, 10, 2441; (e) For an allene synthesis via sulfoxide-metal exchange, see: T. Satoh, N. Hanaki, Y. Kuramochi, 
Y. Inoue, K. Hosoya, K. Sakai,  Tetrahedron 2002, 58, 2533. 
112 (a) S. R. Landor, A. N. Patel, P. F. Whiter, P. M. Greaves, J. Chem Soc. 1966, 1223; (b) M. Montury, J. Goré,  Synth. Commun. 1980, 10, 
873.  
113 The formation of the isomeric alkyne of type 61 is only observed if stoichiometric amounts of CuBr were used. 
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3 CuBr Me 73 

4 CuCl·2LiCl Me 79 

5 CuI Me 75 

6 CuCN·2LiCl Me 80 
a Isolated yield of analytically pure product. 

CuCN·2LiCl114 provides the highest yields and the reaction scope varying the nature of the 

arylmagnesium reagents 63 was examined (Table 14).  Thus, the ester-substituted aromatic 

organomagnesium reagents 63b-c (1.0 equiv) reacted with 1-bromo-3-methylbuta-1,2-diene 

(60a, 1.2 equiv, 25 °C, 1 h) to the corresponding trisubstituted allenes 62c-d in 76-85 % yield 

(Table 14, entries 1 and 2). Similarly, the reaction of 2-cyanophenylmagnesium chloride (63d, 

1.0 equiv) and 3,5-bis(trifluoromethyl)phenylmagnesium chloride (63e, 1.0 equiv) with 

1-bromo-3-methylpenta-1,2-diene (60b, 1.2 equiv) at 25 °C provided the allenes 62e-f in 92-89 

% yield within 1 h reaction time (entries 3 and 4). Aromatic Grignard reagents bearing halogen 

substituents, such as 63f-h react smoothly with the bromoallene 60a leading to the 

polyfunctional allenes 62g-i (64-84 %, entries 5-7).   

 

Table 14: Preparation of functionalized allenes starting from bromallenes 60a and 60b. 

Entry Organomagnesium Reagenta Bromoallene Product of Type 62 Yield [%]b 

     

1 

 
 

 

 

 63b 60a 62c 76 

2 
 

 

 

 

 63c 60a 62d 85 

3 
  

 

 

 63d 60b 62e 92 

4 

 

 

 

 

 63e 60b 62f 89 

5 
 

 

 

 

 63f 60a 62g 67 

                                                             
114 P. Knochel, M. C. P. Yeh, S. C. Berk, J. Talbert, J. Org. Chem. 1988, 53, 2390.  
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6 
 

 

 

 

 63g 60a 62h 64 

7 
 

 

 

 

 63h 60a 62i 84 

8 
 

 

 

 

 63i 60a 62j 69 

9 
 

 

 

 

 63j 60a 62k 82 

10 
 

 

 

 

 63k 60a 62l 87 
a For the sake of clarity, additional complexed salts are omitted; b Isolated yield of analytically pure product. 

Furthermore, the reaction of the electron-rich 4-methoxyphenylmagnesium chloride (63i) with 

the bromoallene 60a afforded the desired allene 62j in 69 % yield (entry 8). The functionalized 

2-chloromethylphenylmagnesium chloride (63j), prepared via iodine-magnesium exchange 

from 2-iodobenzyl chloride (iPrMgCl·LiCl, -20 °C, 30 min),115 reacts with the bromoallene 60a to 

the expected allene 62k in 82 % yield (entry 9). Finally, the pyridylmagnesium derivative 63k 

undergoes a copper-catalyzed substitution with 60a furnishing the 3-allenylpyridine 62l (87 %, 

entry 10). 

 

5.3 PREPARATION OF FUNCTIONALIZED CHLOROALLENES 

In order to expand the reaction scope of our method, we also developed a general preparation 

method of functionalized chloroallenes of type 64 starting from commercially available alkynes 

of type 65 (Scheme 82). 

                                                             
115 (a) T. Delacroix, L. Bérillon, G. Cahiez, P. Knochel, J. Org. Chem. 2000, 65, 8108; (b) C. B. Rauhut, C. Cervino, P. Knochel, Synlett 
2009, 67. 
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Scheme 82: Reaction sequence allowing the preparation of polyfunctionalzed allenes of type 62. 

Thus, the alkynes 65b-e were treated with nBuLi (1.1 equiv, -20 °C, 30 min) in THF followed by a 

reaction with DMF (2 equiv, -20 °C to 25 °C, 1 h) leading to the acetylenic aldehydes 66b-e.116 

After work-up, the crude unsaturated aldehydes of type 66 were dissolved in CH2Cl2 and treated 

with PCl5 providing the 1,1-dichloromethyl alkynes 67a-e in 57-84 % yield (Scheme 82, eq 1).117 

The 1,1-dichloro propargylic reagents of type 67 prove to be versatile starting materials for the 

preparation of various polyfunctional allenes. Thus, we have developed a two step reaction 

sequence leading to functionalized allenes of type 62:  

(i) a highly regioselective copper-mediated SN2’-substitution of alkyl and benzylic zinc 

reagents34, 35, 118 with the dichloropropargyl derivatives 67a-e leading to the chloroallenes 64a-

m in 41-96 % yield (Scheme 82, eq 2);  

(ii) a highly regioselective copper-catalyzed SN2-substitution of chloroallenes of type 64 with 

functionalized arylmagnesium reagents (63) providing the polyfunctionalized allenes 62m-u in 

67-86 % yield (Scheme 82, eq 3). 

The preparation of chloroallenes from propargylic alcohols using SOCl2, HCl or halocuprates is 

well known.119 Due to the often strongly acidic conditions the tolerance towards functional 

groups is limited and often isomeric alkynes are observed. Other approaches involve the use of 

TiCl4 and a tertiary amine (Scheme 83, eq 1)120 or a modified Appel-reaction using N-

chlorosuccinimide and PPh3 (Scheme 83, eq 2).121 

                                                             
116 M. Journet, D. Cai, L. M. DiMichele, R. D. Larsen, Tetrahedron Lett. 1998, 39, 6427. 
117 K. N. Shavrin, I. V. Krylova, I. B. Shvedova, G. P. Okonnishnikova, I. E. Dolgy, O. M. Nefedov, J. Chem. Soc., Perkin Trans. 2 1991, 
1875. 
118 A. Metzger, C. Argyo, P. Knochel, Synthesis 2010, 882. 
119 (a) H. Mayr, I. K. Halberstad-Kausch, Chem. Ber. 1982, 115, 3479; (b) T. L. Jacobs, W. L. Petty, E. G. Teach, J. Am. Chem. Soc. 1960, 
82, 4094.  
120 G. V. Karunakar, M. Periasamy, J. Org. Chem. 2006, 71, 7463. 
121 X. Du, Y. Dai, R. He, S. Lu, M. Bao, Synthetic Commun. 2009, 39, 3940. 
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Scheme 83: Synthesis of chloroallenes  using either TiCl4/NEt3 (eq 1) or NCS/PPh3 (eq 2). 

Nevertheless, these approaches have certain drawbacks, such as poor yields or low atom 

economy combined with several byproducts.  

Starting from 1,1-dichloromethyl alkynes, a copper-catalyzed SN2’-substitution using organozinc 

reagents of type 68 allows a simple preparation of functionalized 1-chloroallenes.  Thus, the 

alkylzinc reagent 68a (1.0 equiv.) reacts with 1,1-dichlorobut-2-yne (67a, 1.1 equiv., -20 °C, 

30 min) using CuCN·2LiCl (1.0 equiv.) leading to the chloroallene 64a in 90 % yield (Scheme 84).  

 

Scheme 84: Synthesis of chloroallene 64a via a Cu(I)-mediated reaction of alkyl zinc reagent 68a with the geminal 
dichloride 67a. 

The reaction of 68a with 1,1,7-trichlorohept-2-yne (67b) affords exclusively the allene 64b in 

66 % yield (Table 15, entry 1). Similarly, 4-chlorobutylzinc chloride (68b) undergoes a smooth 

substitution reaction with 1,1-dichloronon-2-yne (67c) to the desired chloroallene 64c in 91 % 

yield (entry 2). The ester-substituted alkylzinc reagent 68c reacts with the propargylic 

dichlorides 67a and 67d furnishing the corresponding chloroallenes 64d and 64e in 76 and 

96 % yield (entries 3 and 4). Furthermore, 4-cyanobutylzinc chloride (68d) affords after a 

copper-catalyzed substitution reaction the cyanobutyl functionalized chloroallene 64f  (76 %, 

entry 5). The highly functionalized alkylzinc reagent 68e bearing a diethylphosphate group122 

reacts with 67a to provide the allene 64g in 79 % yield (entry 6).  

 

 

 

                                                             
122 C. Retherford, T.-S. Chou, R. M. Schelkun, P. Knochel, Tetrahedron Lett. 1990, 31, 1833. 
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Table 15: Cu(I)-mediated substitution on geminal progargylic dichlorides of type 67 leading to substituted 
chloroallenes. 

Entry Organozinc Reagenta Propargylic Dichloride Product of Type 64 Yield [%]b 

1    
 

 68a R = Cl(CH2)4: 67b R = Cl(CH2)4: 64b 66 

2  
 

 

 

 68b 67c 64c 91 

3    
 

 68c R = Me: 67a R = Me: 64d 76 

4 68c R = Pent: 67d R = Pent: 64e 96 

5   
 

 

 68d 67a 64f 76 

6   
 

 

 68e 67a 64g 79 

7 
  

 

 

 68f R = Me: 67a R = Me: 64h 76 

8 68f R = Cl(CH2)4: 67b R = Cl(CH2)4: 64i 87 

9 

 

 

 

 

 68g 67a 64j 41 

10 
 

 

 

 

 68h 67d 64k 89 

11 
  

 

 

 68i R = Pent: 67d R = Pent: 64l 70c 

12 68i R = CN(CH2)4: 67e R = CN(CH2)4: 64m 50c 
a Additional salts generated during the organometallic synthesis are omitted for the sake of clarity; b Isolated yield of 
analytically pure product; c The reaction was performed at -50 °C. 

Also, benzylic zinc reagents, such as 3-cyanobenzylzinc chloride (68f), the keto-substituted 

benzylic zinc reagent 68g and 2-chlorobenzylzinc chloride (68h) react under copper-catalysis 

with 67a, 67b or 67d to the benzyl substituted chloroallenes 64h-k in 41-89 % yield (entries 7-
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10). Finally, the ester-substituted allylic zinc reagent 68i123 provided by a reaction with 67d and 

67e the highly functionalized chloroallenes 64l and m in 70 and 50 % yield, respectively 

(entries 11 and 12). 

 

5.4 PREPARATION OF TRISUBSTITUTED ALLENES 

Encouraged by the good results found in the copper-catalyzed substitution of bromoallenes, we 

applied the method to chloroallenes of type 64. To our delight, this novel substitution reaction 

occurred with SN2-selectivity leading to highly functionalized trisubstituted allenes. Hence, the 

chloroallene 64f (1.2 equiv.) bearing a remote nitrile function smoothly reacts with 4-

carbethoxyphenylmagnesium chloride  (63a, 1.0 equiv., -20 to 25 °C, 1 h) using CuCN·2LiCl as 

catalyst (10 mol%) to give the polyfunctionalized allene 62m in 82 % yield (Scheme 85). 

 

Scheme 85: Preparation of the trisubstituted allene 62m via Cu(I)-mediated coupling of arylmagnesium reagent 63a 
with chloroallene 64f. 

In order to show the scope of this novel SN2-substitution on functionalized chloroallenes, we 

examined the reaction of diverse substituted chloroallenes with various arylmagnesium 

reagents (Table 16). Thus, 2-chloro-5-trifluoromethylphenylmagnesium chloride (63l, 

1.0 equiv.) reacts with chloroallene 64f (1.2 equiv.) to provide the trisubstituted allene 62n in 

86 % yield (Table 16, entry 1). Organomagnesium reagents bearing electron-withdrawing 

groups, such as 3-cyanophenylmagnesium chloride (63m) react smoothly with the allenyl 

chloride 64l affording the functionalized trisubstituted allene 62o in 67 % yield (entry 2).  

 

Table 16: Cu(I)-mediated substitutions on allenyl chlorides  leading to polyfunctional allenes of type 62. 

                                                             
123 N. El Alami, B. Belaud, J. Villiéras, J. Organomet. Chem. 1988, 348, 1. 

Entry Grignard Reagenta Chloroallene Product of Type 62 Yield [%]b 

1 

 
 

 

 

 63l 64f 62n 86 
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a Additional salts generated during the organometallic synthesis are omitted for the sake of clarity; b Isolated yield of 
analytically pure product. 

Furthermore, remote halogen substituents are well tolerated and the reaction of the 

arylmagnesium reagent 63d with the chloroallene 64c gives the expected trisubstituted allene 

62p in 76 % yield (entry 3). The copper-catalyzed reaction of the Grignard-reagent 63d with the 

2-chlorobenzyl substituted chloroallene 64k furnishes the highly substituted allene 62q in 71 % 

yield (entry 4). 4-Ethoxycarbonylphenylmagnesium chloride (63a), prepared from ethyl 

4-iodobenzoate (iPrMgCl·LiCl, -20 °C, 30 min), reacts smoothly with the substituted 

chloroallenes 64e and 64a to the highly functionalized allenes 62r and 62s (83 and 67 % yield, 

entries 5 and 6). Moreover, functionalized heterocyclic Grignard-reagents, such as the 

pyridylmagnesium derivatives 63o and 63k, undergo clean substitution reactions with the 

2 
 

 
 

 

 63m 64l 62o 67 

3 
   

 

 63d 64c 62p 76 

4 63d 

 
 

 

  64k 62q 71 

5 
  

 

 

 63a 64e 62r 83 

6  
 

 

 

  64a 62s 67 

7 
 

  

 

 63o 64c 62t 76 

8 
 

 
 

 

 63k 64h 62u 71 
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chloroallenes 64c and 64h furnishing the polyfunctionalized trisubstituted allenes 62t and 62u 

in 71 and 79 % yield (entries 7 and 8). 
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6 PREPARATION OF CHARGE-TAGGED ORGANOZINC REAGENTS 

6.1 INTRODUCTION 

The quaternary ammonium group is a common motif in biologically active molecules. 

Acetylcholine (69) is an important neurotransmitter bearing a trimethylammonium group.124 

Also Muscarine (70), the poison of Amanita muscaria, better known as fly agaric, contains a 

quaternary nitrogen.125 Finally Tubocurarine hydrochloride (71) is an alkaloid form the bark of 

Chondrodendron tomentosum and is a component of various arrow poisons. 126 

 

Scheme 86: Biologically active molecules bearing cationic quaternary nitrogens. 

Moreover, quaternary ammonium groups are present in a variety of commodities127 and 

industrial chemicals128 and have found increasing interest in material science.129 Besides this 

extrodinary importance in living systems, quaternary ammonium groups allow a direct probing 

of molecules using electrospray-ionization (ESI) mass spectrometry.  

As was shown before, there is a plethora of syntheses for organometallic reagents with an 

enormous diversity of electronic properties, coordination geometries, and aggregation states. 

This diversity in turn leads to various reactivity patterns and offers tremendous opportunities 

for synthesis and catalysis. However, elucidating the mechanism of many synthetically or 

catalytically useful reactions involving organometallics is rather difficult. In particular, the 

ability of metal centers to switch between different oxidation or coordination states and to 

engage in dynamic equilibria can dramatically complicate the situation. Several analytical 

techniques have been used to address this problem. Highly detailed and valuable structural 

information is given by X-ray crystallography. However, this method does not provide direct 

insight into the behavior of reactive intermediates in solution. In contrast, spectroscopic 

techniques can directly probe dissolved organometallic species. While NMR, IR, UV/Vis, and X-

ray spectroscopy are suitable for the identification of reactive organometallic intermediates, the 

information obtained by these methods is not always sufficient for a full characterization of the 

system under investigation. Particularly, the distinction between different coordination and 

aggregation states can be challenging. 

                                                             
124 (a) C. Gotti, M. Zoli, F. Clementi, Trends Pharmacol. Sci. 2006, 27, 482;  (b) C. P. Hansen, A. A. Jensen, J. K. Christensen, T. Balle, T. 
Liljefors, B. Frølund, J. Med. Chem. 2008, 51, 7380. 
125 H. Corrodi, E. Hardegger, F. Kögl, Helv. Chim. Acta 1957, 40, 2454. 
126 (a) H. King,  J. Chem. Soc. 1948, 265; (b) A. J. Everett, L. A. Lowe, S. Wilkinson, J. Chem. Soc. D 1970, 1020; (c) A. M. Betcher, 
Anesth. Analg. 1977, 57, 305. 
127 (a) L. Taub, H. Hahl, F. Leuchs (Alba-Pharmaceutical Company, Inc., New York), US 2087131, 1937; (b) Handbook of Topical 
Antimicrobials, Industrial Application in Consumer Products and Pharmaceuticals (Ed.: D.  S. Paulson), Marcel Dekker, New York, 2003. 
128 L. Gulajski, M. Mauduit, K. Grela, Pure Appl. Chem. 2009, 81, 2001. 
129 (a) D. Izuhara, T. M. Swager, J. Am. Chem. Soc. 2009, 131, 17724; (b) T. L. Andre, T. M. Swager, J. Am. Chem. Soc. 2007, 129, 7254. 
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An alternative approach, which may help to overcome these problems by providing 

unambiguous stoichiometric information, relies on electrospray-ionization (ESI) mass 

spectrometry.130 This method permits the transfer of ions from solution into the gas phase, thus 

allowing the sampling of dissolved charged organometallics in situ. It is therefore not surprising 

that ESI mass spectrometry has been applied to the analysis of numerous different 

organometallic systems. 131  The successful detection of various charged organometallics, 

including rather labile ones,131,132 is consistent with the commonly accepted view that ESI 

constitutes a relatively “soft” ionization technique, which transfers only limited amounts of 

energy into the probed ions and does not significantly change their nature.133 This assumption 

forms the basis on which properties of the solution-phase system are deduced from gas-phase 

measurements. 

Unlike spectroscopic techniques, ESI mass spectrometry exclusively detects charged species. 

This feature can be advantageous if ionic systems shall be probed selectively. In most cases, 

however, the restriction to charged species forms a substantial drawback because neutral 

organometallics usually prevail over their ionized counterparts. While the fraction of ionized 

species may be increased by additives that lead to protonation, deprotonation, or 

complexation,131a these reactions can possibly change the nature of the organometallic system 

under investigation. For instance, protonation will obviously adversely affect organometallics 

sensitive to hydrolysis. In other cases, the use of additives may have more subtle effects and can 

thus lead to less conspicuous artifacts. 

A potentially better approach pioneered by Colton and Traeger134 and the groups of Dyson135 and 

Chen131c,136 uses covalently attached charged tags to make neutral organometallics amenable to 

ESI mass spectrometry. Provided that the charged tags have only low tendencies to form ion 

pairs with the counterions in the chosen solvent, almost the complete population of neutral 

organometallics can thus be ionized. Commonly employed tags are quaternary ammonium 

cations131,134,136-138 and sulfonate anions.135,139 In these ions, the charge is spread over several 

atoms, which does not only reduce their propensity to ion pairing, but also minimizes possible 

interactions with the metal center and unwanted changes in reactivity. Most of the examples 

reported so far bear a charged tag linked to coordinating ligands, 140  such as 

phosphines135,136a,c,138,139 or carbenes.136d Obviously, this strategy is particularly suited for 

                                                             
130 M. Yamashita, J. B. Fenn, J. Phys. Chem. 1984, 88, 4451. 
131 For selected reviews, see: (a) J. C. Traeger, Int. J. Mass Spectrom. 2000, 200, 387; (b) D. A. Plattner, Int. J. Mass Spectrom. 2001, 207, 
125; (c) P. Chen, Angew. Chem. Int. Ed. 2003, 42, 2832; (d) L. S. Santos, L. Knaack, J. O. Metzger, Int. J. Mass Spectrom. 2005, 246, 84; (e) 
W. Henderson, J. S. McIndoe, Mass Spectrometry of Inorganic, Coordination and Organometallic Compounds: Tools, Techniques, Tips, 
Wiley, Chichester, 2005, pp. 175-219; (f) C. A. Müller, C. Markert, A. M. Teichert, A. Pfaltz, Chem. Commun. 2009, 1607; (g) A. Roglans, 
A. Pla-Quintana in Reactive Intermediates: MS investigations in solution, (Ed.: L. S. Santos), Wiley-VCH, Weinheim, 2009, pp. 229-276.  
132 (a) L. A. Hammad, D. Gerdes, P. Chen, Organometallics 2005, 24, 1907; (b) M.-E. Moret, P. Chen, Organometallics 2007, 26, 1523. 
133 R. B. Cole, J. Mass Spectrom. 2000, 35, 763. 
134 (a) R. Colton, J. C. Traeger, Inorg.  Chim. Acta 1992, 201, 153; (b) I. Ahmed, A. M. Bond, R. Colton, M. Jurcevic, J. C. Traeger, J. N. 
Walter, J. Organomet. Chem. 1993, 447, 59. 
135 D. J. F. Bryce, P. J. Dyson, B. K. Nicholson, D. G. Parker, Polyhedron 1998, 17, 2899. 
136 (a) C. Hinderling, C. Adlhart, P. Chen, Angew. Chem. Int. Ed. 1998, 37, 2685 (b) C. Adlhart, P. Chen, Helv. Chim. Acta 2000, 83, 2192; 
(c) C. Adlhart, C. Hinderling, H. Baumann, P. Chen, J. Am. Chem. Soc. 2000, 122, 8204. 
137 C. Adlhart, P. Chen, Helv. Chim. Acta 2003, 86, 941. 
138 A. Dorcier, P. J. Dyson, C. Gossens, U. Rothlisberger, R. Scopelliti, I. Tavernelli, Organometallics 2005, 24, 2114. 
139 J. M. Basset, D. Bouchu, G. Godard, I. Karamé, E. Kuntz, F. Lefebre, N. Legagneux, C. Lucas, D. Michelet, J. B. Tommasino, 
Organometallics 2008, 27, 4300. 
140 For a recent review, see: D. M. Chisholm, J. S. McIndoe, Dalton Trans. 2008, 3933. 
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probing transition metal complexes, whereas it cannot be applied to the detection of main-group 

organometallics that do not bear coordinating ligands. 

Alternatively, the charged tag can be directly incorporated into an organyl moiety covalently 

bound to the metal center.141, 142 This tagging scheme not only enables the analysis of systems 

lacking coordinating ligands but also lends itself to the analysis of coupling reactions that 

transfer the organyl moiety with the charged tag and thus ensure straightforward product 

identification.  

 

6.2 PREPARATION OF CHARGE-TAGGED ORGANOZINC REAGENTS 

Among the commonly used organometallic reagents, organozinc reagents have an extraordinary 

functional group tolerance and unique reactivity. Although, Frankland’s synthesis of diethylzinc 

is known for more than 150 years, only little is known about their aggregates and stoichiometry 

in solution. Therefore, a synthesis of charge-tagged organozinc reagents was envisioned. Starting 

from α,ω-diiodoalkanes, a substitution reaction using a tertiary amine leads to the 

corresponding charge tagged alkyl iodide of type 72 (Scheme 87). 143  

 

Scheme 87: Synthesis of charge-tagged alkyliodides. 

Using this method, a variety of charge tagged alkyl iodides have been prepared (72a-e). Due to 

the polarity of the ammonium group, only 72a and 72b are soluble in THF. Therefore, 72a 

undergoes a smooth LiCl-mediated zinc insertion in THF affording the charge-tagged zinc 

reagent 73a in 70 % yield (Scheme 88). 

                                                             
141 E. Crawford, T. Lohr, E. M. Leitao, S. Kwok, J. S. McIndoe, Dalton Trans. 2009, 9110. 
142 (a) R. A. J. O’Hair, T. Waters, B. Cao, Angew. Chem. Int. Ed. 2007, 46, 7048; (b) G. N. Khairallah, E. J. H. Yoo, R. A. J. O’Hair, 
Organometallics 2010, 29, 1238. 
143 J. Pliml, M. Borovička, M. Protiva, Collect. Czech. Chem. Commun., 1958, 23, 704. 
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Scheme 88: Synthesis of charge-tagged organozinc reagents 73a and 73b in THF. 

Also 72b can be converted to its zinc reagent 73b in 85 % yield. As mentioned before, the 

quaternary ammonium salts 72a-c are not soluble in THF. Therfore, a LiCl mediated Zn insertion 

can not be performed in this solvent. The use of DMF instead of THF turned out to be suitable as 

it dissolves the quaternary ammonium salts and allows an efficient insertion reaction. Thus, the 

reaction of 72c with zinc dust (1.5 equiv.) in DMF affords the charge-tagged organozinc reagent 

73c in 91 % (Scheme 89). 

 

Scheme 89: Synthesis of charge-tagged organozinc reagents 73c-e in DMF. 

Moreover, the triethylammonium substituted butyl iodide 72d reacts with Zn dust to form 73d 

in 81 % yield. Finally, 73e was prepared in 72 % yield from the corresponding charge-tagged 

alkyl iodide 72e.  

 

6.3 ESI-MS ANALYSIS OF CHARGE-TAGGED ORGANOZINC REAGENTS 

As test system for the ESI-analysis of organozinc reagents the charge-tagged butyl iodide 72d 

([RI]+I-)  and 4-iodo trimethylanilinium iodide (72f, [ArI]+I-)144 were chosen. 

 

Scheme 90: Charge-tagged substrates for ESI-analysis of organozinc reagents. 

                                                             
144 H. Kobayashi, T. Sonada, K. Takuma, N. Honda, T. Nakata, J. Flourine Chem. 1985, 27, 1. 
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The reaction of zinc dust with the charge-tagged organic iodides [ArI]+I− (72f) and [RI]+I− (72d) 

in THF and ESI-mass spectrometric analysis of the resulting solutions afforded [ArH]+ (m/z 136, 

Figure 8 in the experimental section) and [RH]+ (m/z 158, Figure 9 in the experimental section), 

thus indicating conversion of both [ArI]+ (m/z 262, and [RI]+ (m/z 284), but also complete 

hydrolysis of the charge-tagged organozinc intermediates.145 A comparison of the two reactions 

shows complete consumption of the alkyl iodide [RI]+ at room temperature overnight whereas 

its aryl counterpart [ArI]+ did not react to completion even at 50 °C. This lower reactivity of the 

aryl iodide toward Zn fully agrees with reports in the literature.  

The extreme hydrolysis sensitivity of the charge-tagged organozinc intermediates is surprising 

because previous studies observed related intact zinc species with simple neutral alkyl 

substituents, such as ZnR(THF)n+ and ZnRHal2− (R = benzyl and butyl, Hal = Br and I, n = 1-3), 

under very similar experimental conditions. The stability of these ions was further enhanced in 

DMF.146 We therefore also tested this solvent for the reaction of Zn with [RI]+I− and now indeed 

could detect the charge-tagged organozinc species [RZnI(DMF)n]+, n = 1 and 2 (m/z 421 and 494, 

respectively), along with some hydrolysis product [RH]+ (m/z 158) and a small amount of 

remaining reactant [RI]+ (m/z 284, Figure 1). 

 

Figure 1: Positive ion mode ESI mass spectrum of an approx. 1 mM solution of the products (m/z ratios the most 
abundant isotopologues in brackets) formed upon reaction of Zn dust with triethyl-(4-iodobutyl)-ammonium iodide 
(72d,[RI]+I−) in DMF measured with the TSQ 7000 instrument. The ion at m/z = 242 corresponds to Na(DMF)3+, which 
presumably originates from a contamination of the ESI source. 

The organozinc species observed display the stoichiometry expected for Zn(II) compounds and 

moreover provide insight into their solvation behavior. The fact that abundant DMF adducts are 

only found for Zn-containing species but not for [RH]+ or [RI]+ strongly suggests coordination of 

the solvent molecules to the Zn center and not to the quaternary ammonium group. The inferred 

coordination numbers of 3 and 4 agree with results obtained for microsolvated alkylzinc cations 

ZnR(solv)n+ (solv = THF, CH3CN, and DMF), for which coordination numbers ≤4 were 

                                                             
145 All ESI-experiments in this chapter were performed by Dr. K. Koszinowski or J. E. Fleckenstein. 
146 (a) K. Koszinowski, P. Böhrer, Organometallics 2009, 28, 771; (b) J. E. Fleckenstein, K. Koszinowski, Chem. Eur. J. 2009, 15, 12745. 
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observed.146b Presumably, these organozinc species adopt tetrahedral coordination geometries 

in solution147b but are prone to lose one solvent molecule during the ESI process. In line with this 

conjecture, we found mass-selected [RZnI(DMF)2]+ (m/z 494) to lose the attached solvent 

molecules quite easily when subjected to gas-phase fragmentation (Figure 2). 

 

Figure 2: Mass spectrum of mass-selected [R64ZnI(DMF)2]+ (m/z = 494, R = 4-triethylammonium-butyl) and its 
fragment ions produced upon collision-induced dissociation (ELAB = 2 eV). 

The cationic charged tags employed were obviously designed for the detection of organometallic 

intermediates by positive-ion mode ESI mass spectrometry. Therefore, we were surprised that 

analysis of the products formed upon reaction of Zn with [RI]+I− in DMF by negative ion mode 

ESI mass spectrometry (Figure 3) not only resulted in the detection of I(DMF)n−, n = 0 (m/z 127) 

and 1 (m/z 200), I3− (m/z 381), and ZnI3− (m/z 445), but also of small quantities of [RZnI3]− (m/z 

602).  

 

Figure 3: Negative ion mode ESI mass spectrum of an approx. 1 mM solution of the products (m/z ratios of the most 
abundant isotopologues in brackets) formed upon reaction of Zn with triethyl-(4-iodobutyl)-ammonium iodide (72d, 
[RI]+I−) in DMF measured with the TSQ 7000 instrument. 

                                                             
147 (a) L. Caggiano, R. F. W. Jackson, A. J. H. M. Meijer, B. T. Pickup, K. A. Wilkinson, Chem. Eur. J. 2008, 14, 8798; (b) F. Dreiocker, J. 
Oomens, A. J. H. M. Meijer, B. T.  Pickup, R. F. W. Jackson, M. Schäfer, J. Org. Chem. 2010, 75, 1203. 
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For the latter, three different structures seem conceivable (Scheme 91). 

 

Scheme 91: Conceivable structures for the observed anion [RZnI3]− (m/z 602). 

In structure 72g, two I− anions are bound electrostatically to the ammonium group. This type of 

complex is considered less likely because the absence of the analogous ions [(RH)I2]− (m/z 412) 

and [(RI)I2]− (m/z 538) in the mass spectrum indicates a low stability of this binding motif under 

the ESI conditions applied.  Structure 72h contains an organozincate moiety, which closely 

resembles previously observed alkylzincates RZnHal2−.146 In structure 72i, coordination of all 

three I− anions to the Zn atom builds up a twofold negative charge at the metal center, which 

would be prohibitively demanding in energy for a linear conformation. However, adoption of a 

cyclic conformation could permit a stabilizing electrostatic interaction between the dianionic 

ZnI3 moiety and the cationic ammonium group. Fragmentation of mass-selected [RZnI3]− (m/z 

602) yields I− and ZnI3− as ionic products (Figure 4), which is of limited significance only because 

the involvement of rearrangement reactions seems quite likely. Hence, the experimental results 

do not suffice for an unambiguous structural assignment. 

 

Figure 4: Mass spectrum of mass-selected [R64ZnI3]− (m/z = 602, R = 4-triethylammonium-butyl) and its fragment 
ions produced upon collision-induced dissociation (ELAB = 17 eV). 

 

6.4 MONITORING OF CROSS-COUPLING REACTIONS 

As shown above, ESI mass spectrometry has permitted us to track the degradation and 

hydrolysis of organometallics bearing organic substituents with charged tags. Obviously, it 

would be even more interesting to use this approach for analyzing synthetically valuable 

reactions of these species. We have done so and demonstrated the potential of this analytical 
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method by studying the Pd-catalyzed cross-coupling of [ArI]+ with benzylzinc bromide (Negishi 

cross-coupling, Scheme 92).148 

 

Scheme 92:  Test system for the Pd-catalyzed cross-coupling of 72f with benzylzinc bromide. 

Negishi cross-couplings constitute one of the most versatile tools in modern organic 

synthesis.149 The mechanisms of these reactions therefore have attracted a great deal of 

attention. It is commonly assumed that these reactions start by the oxidative addition of the 

organic halide to the zero-valent Pd (or Ni) catalyst. The resulting insertion product then 

undergoes transmetallation by the organozinc reagent and finally yields the coupling product by 

reductive elimination.149c 

For our experiments, we employed Pd(dba)2/tfp (L) in CH3CN as catalytic system, which 

efficiently adds [ArI]+.150 In the presence of BnZnBr, the expected coupling product [ArBn]+ (m/z 

226) could indeed be detected by ESI mass spectrometry (Figure 5). The identity of this species 

was confirmed by analysis of its fragmentation pattern (Figure 10 in the experimental section) 

and by a control experiment in which BnZnBr was substituted by m-methylbenzylzinc bromide. 

This resulted in a coupling product of an m/z ratio shifted by 14 amu relative to [ArBn]+. 

 

Figure 5: Positive ion mode ESI mass spectrum of an approx. 2 mM solution of (p-iodophenyl)-trimethylammonium 
iodide ([ArI]+I−), BnZnBr (1.2 equiv), Pd(dba)2 (10 mol%), and tri-(2-furyl)phosphine (L, 20 mol%) in CH3CN approx. 
15 min after mixing measured with the HCT ion trap (m/z ratios of the most abundant isotopologues of the ions 
observed given in brackets). 

                                                             
148 All ESI-experiments were done by Dr. K. Koszinowski.  
149 (a) M. R. Netherton, G. C. Fu, Adv. Synth. Catal. 2004, 346, 1525; (b) A. C. Frisch, M. Beller, Angew. Chem. Int. Ed. 2005, 44, 674; (c) 
E.-i. Negishi, Q. Hu, Z. Huang, G. Wang, N. Yin, in The Chemistry of Organozinc Compounds; (Eds.: Z. Rappoport, I. Marek), Wiley, 
Chichester, 2006, pp 457-553; (d) M. G. Organ, S. Avola, I. Dubovyk, N. Hadei, E. A. B. Kantchev, C. J. O’Brien, C. Valente, Chem. Eur. J. 
2006, 12, 4749; (e) V. B. Phapale, D. J. Cárdenas, Chem. Soc. Rev. 2009, 38, 1598; (f) S. Calimsiz, M. Sayah, D. Mallik, M. G. Organ, 
Angew. Chem. Int. Ed. 2010, 49, 2014.  
150 M. A. Schade, J. E. Fleckenstrein, P. Knochel, K. Koszinowski, J. Org. Chem. 2010, 75, 6848. 
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In addition, smaller amounts of [L2PdBn]+ (m/z 661) were produced. Again, this assignment is 

based on the recorded isotope pattern (Figure 11 in the experimental section), fragmentation 

experiments (Figure 12 and Figure 13 in the experimental section) and on an observed mass 

shift of 14 amu when BnZnBr was replaced by m-methylbenzylzinc bromide. The [L2PdBn]+ (m/z 

661) complex accumulated with time and increased in signal intensity as a function of catalyst 

loading (Figure 14 in the experimental section). Surprisingly, it even formed to some extent in 

the reaction of the Pd catalyst with BnZnBr in the absence of aryl iodide [ArI]+ (Figure 15 in the 

experimental section). However, in this case the abundance of [L2PdBn]+ (m/z 661) was 

considerably decreased as indicated by the relatively poor signal/noise ratio. As a consequence, 

additional ions of similarly low absolute signal intensity, such as [CuLn]+ and [(LO)nZnBn]+ also 

became visible; the assignments of these species, which may have originated from 

contaminations, are based on the observed isotope patterns and fragmentation experiments 

(Figure 16–Figure 27 in the experimental section). The genesis of the complex [L2PdBn]+ (m/z 

661) itself is not obvious. The higher absolute signal intensities observed in the presence of 

added [ArI]+ might suggest that it forms in a metathesis reaction between the primary insertion 

product [L2ArPdI]+ and BnZnBr (Scheme 93). 

 

Scheme 93: Possible reaction to form [L2PdBn]+. 

In this case, however, one would also expect to observe [ArZnX]+, X = Br and/or I (m/z 278/280 

and 326, respectively, or degradation products thereof), which was not detected. Alternatively, 

one may speculate that [L2PdBn]+ (m/z 661) could result from the transmetallation of a Pd(0) 

species. For related Ni(0) phosphine complexes in the presence of organomagnesium and –zinc 

reagents, Terao and Kambe have suggested the occurrence of transmetallation reactions and 

formation of nickelate anions.151 In analogy, the current experiments might potentially produce 

a palladate species (Scheme 94). This extremely electron-rich species could then possibly afford 

the observed [L2PdBn]+ cation by anodic oxidation during the ESI process.152 Negative ion mode 

ESI mass-spectrometric experiments did not detect any palladate species, however, and instead 

only showed the presence of various zincate complexes (Figure 28 in the experimental section). 

 

Scheme 94: Possible genesis of the observed [L2PdBn]+ complex (R = 2-furyl) by anodic oxidation during ESI. 

Returning to the actual Negishi coupling between [ArI]+I− and BnZnBr itself, we wondered 

whether ESI mass spectrometry could also be used to monitor the temporal evolution of 

                                                             
151 J. Terao, N. Kambe, Bull. Chem. Soc. Jpn. 2006, 79, 663. 
152 G. J. Van Berkel, J. Mass Spectrom. 2000, 35, 773. 
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reactants and products and to derive the rate constant(s) of this reaction. To test for this 

possibility, we prepared a mixture of the reactants and the catalyst and continuously 

administered it into the ESI source of the mass spectrometer while recording the positive ion 

mode ESI mass spectrum. Averaging every 50–100 scans then gave a time resolution of approx. 

10 s. The resulting averaged signal intensities still show rather high noise levels (Figure 8), 

which directly reflect the relatively poor absolute signal stability typical of the ESI process. 

Nevertheless, the obtained time profiles clearly exhibit the opposing trends expected for 

reactants and products. While varying the concentration of the benzylzinc reagent (1.2–2.0 

equiv relative to [ArI]+I−) did not have a discernible effect, an increase in the catalyst loading 

strongly accelerated the decay of reactant [ArI]+ (m/z 262, Figure 6). This finding points to a 

rate-determining oxidative addition, which is followed by fast transmetallation and reductive 

elimination steps. The same conclusion can also be derived from the fact that the mass spectra 

show the simultaneous presence of reactant [ArI]+ (m/z 262) and product [ArBn]+ (m/z 226) but 

far less of intermediate [L2ArPdI]+ (m/z 832), because it is almost completely consumed by the 

fast consecutive reaction with BnZnBr (compare Figure 5, although in this case the lower 

concentration of the catalyst helps to suppress the relative signal intensity of [L2ArPdI]+). Note 

that an alternative tagging mode that attached the charged tag to the phosphine ligand would 

neither permit the detection of the reactant aryl iodide nor the cross-coupling product and thus 

would be less useful than the present approach. 

 

Figure 6: Time dependence of the normalized signal intensities of reactant [ArI]+ (m/z 262, black) and product 
[ArBn]+ (m/z 226, grey) formed in the Pd-catalyzed cross-coupling reaction with BnZnBr in CH3CN at room 
temperature as determined by ESI mass spectrometry. Results of two experiments with different catalyst loadings are 
shown (diamonds: 100 mol%, triangles: 5 mol% relative to [ArI]+). The solid lines represent simulated time profiles 
based on a second-order rate constant of k2 = 3.5 L mol−1 s−1 (see text for details). Time zero corresponds to the start 
of the ESI mass-spectrometric experiments, which was approx. 2 min after the mixing of the reaction partners. 

For a quantitative analysis, we focused on the decline of reactant [ArI]+ (m/z 262), which 

according to our model should proceed under pseudo first-order conditions (virtually constant 

concentration of free Pd catalyst). Indeed, the individual time profiles of the [ArI]+ (m/z 262) 

signal intensity could be satisfactorily fitted with mono-exponential functions. Correlating the 

corresponding pseudo first-order rate constants with the concentrations of the Pd catalyst in the 

individual experiments (c(Pd(dba)2) = 10−4–2  10−3 mol L−1) then gave a second-order rate 
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constant of k2 = 4  2 L mol−1 s−1 for the oxidative addition at room temperature. Based on this 

value, the decline of the [ArI]+ (m/z 262) signal intensities in Figure 6 could be reproduced quite 

well. The derived k2 rate constant was also used to predict the increase of the [ArBn]+ (m/z 226) 

signal intensities. Here, it was furthermore necessary to introduce a constant scaling factor to 

account for apparently slightly deviating ESI response factors
153

 of reactant and product ions 

and/or mass-dependent ion transmission and detection efficiencies. The agreement between 

observed and simulated signal intensities of the [ArBn]+ (m/z 226) coupling product does not 

equal that observed for the [ArI]+ (m/z 262) reactant but still is reasonably good. 

The oxidative addition of [ArI]+ to PdL2 (L = tfp) in CH3CN can be compared to the analogous 

addition of simple PhI to PdL2 in THF and DMF. The latter reactions are somewhat faster 

(k2(THF) = 500  200 and k2(DMF) = 99  2 L mol−1 s−1),
154

 although the presence of the electron-

withdrawing ammonium group in [ArI]+ should activate this substrate for the oxidative 

addition.
155

 This comparison suggests that CH3CN significantly slows down the addition of aryl 

iodides to zero-valent Pd complexes, presumably by binding to the metal center and blocking of 

a coordination site. In line with this assessment, CH3CN is not commonly used as solvent in 

Negishi cross-coupling reactions149c although its high polarity and volatility make it ideally 

suitable for the present model studies. 

  

                                                             
153 (a) L. Tang, P. Kebarle, Anal. Chem. 1993, 65, 3654; (b) C. G. Enke, Anal. Chem. 1997, 69, 4885. 
154 C. Amatore, A. Jutand, F. Khalil, Arkivoc 2006, 38. 
155 (a) J. F. Fauvarque, F. Pflüger, M. Troupel, J. Organomet. Chem. 1981, 208, 419; (b) A. Jutand, A. Mosleh, Organometallics 1995, 14, 
1810. 
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7 SUMMARY AND OUTLOOK 

This work focused on the synthesis and application of organozinc reagents. A cheap and efficient 

Ni-catalyzed cross-coupling reaction of benzylic zinc chlorides has been developed and extended 

to a more general Pd-catalyzed coupling reaction. Furthermore, a general synthesis of 

functionalized alkenyl zinc reagents starting from alkenylbromides has been developed. Also, 

the scope of the directed ortho insertion of zinc dust in polybrominated arenes and the 

orthogonal para insertion using magnesium in the presence of LiCl was broadend and the 

industrial applicability of this method by a scale-up to 100 mmol reactions was shown. 

Moreover, it was demonstrated, that primary amides can easily prepared starting from 

functionalized organozinc halides via an addition reaction to trichloroacetyl isocyanate. A Ni-

catalyzed version of this reaction also allows the synthesis of secondary amides. Additionally, 

the synthesis of highly functionalized allenes via two successive Cu(I)-mediated substitution 

reaction was studied. Finally, a synthesis of organozinc reagents bearing a cationic moiety was 

developed and successfully used in monitoring a Negishi-type cross-coupling reaction. 

 

7.1 CROSS-COUPLING REACTIONS OF BENZYLIC ZINC REAGENTS 

A new and highly efficient Ni-catalyzed cross-coupling reaction of benzylic zinc reagents with 

aromatic and heteroaromatic halides and tosylates was developed. With 0.5 mol% catalyst 

loading and cheap and readily available PPh3 as ligand, the reaction tolerates various functional 

groups in the electrophile as well as in the used benzylic zinc reagent and affords a manifold of 

valuable diarylmethanes (Scheme 95).  

 

Scheme 95: Ni-catalyzed cross-coupling reaction of aromatic and heteroaromatic bromides, chlorides, and tosylates. 
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Using a higher catalyst loading (2.5 mol%) and a slow addition of the organozinc reagent to the 

electrophile, also bromoaniline derivatives can be used as electrophiles in the cross-coupling 

reaction without prior deprotonation of the acidic protons (Scheme 96). 

 

Scheme 96: Ni-catalyzed cross-coupling of benzylic zinc reagents with bromoaniline derivatives bearing relatively 
acidic protons. 

To extend the scope of this cross-coupling reaction with bromoaniline derivatives, Pd(OAc)2 and 

S-Phos was found to be a reliable catalytic system (Scheme 97). 

 

Scheme 97: Pd-catalyzed cross-coupling reactions of benzylic zinc reagents with bromoaniline derivatives bearing 
relatively acidic protons. 

 

7.2 PREPARATION AND APPLICATION OF ALKENYL ZINC REAGENTS 

In summary, the LiCl-mediated preparation of alkenyl zinc reagents via direct metal insertion 

was examined. Electronically activated alkenyl bromides, for instance by a geminal cyano group 

or a vicinal aldehyde, undergo a smooth insertion of commercially available Zn dust in the 

presence of LiCl (Scheme 98). 
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Scheme 98: Synthesis of alkenyl zinc reagents via LiCl-mediated zinc insertion.  

These alkenyl zinc reagents undergo smooth reaction with a variety of electrophiles leading to 

highly functionalized unsaturated systems (Scheme 99). 

 

Scheme 99: Reaction of alkenyl zinc reagents with various electrophiles leading to highly functionalized unsaturated 
systems. 

Electronically less activated alkenyl bromides, such as 1,2-dibromocyclopentene (22i) or the 

ester substituted alkenyl bromides 22k and 22l, can be converted to their zinc reagents via a 

LiCl-mediated Mg insertion in the presence of ZnCl2. The corresponding zinc reagents then react 

with a variety of electrophiles furnishing the substituted alkenyl derivatives (Scheme 100). 
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Scheme 100: LiCl-mediated magnesium insertion in the presence of ZnCl2 in electronically less activated alkenyl 
bromides. 

 

7.3 REGIOSELECTIVE MAGNESIUM AND ZINC INSERTIONS IN POLYBROMINATED PROTECTED 

PHENOLS 

The scope of the directed ortho-insertion using Zn/LiCl and the orthogonal magnesium insertion 

using Mg/LiCl was examined. High regioselectivities were obtained in all Zn insertions whereas 

the corresponding Mg insertion is limited to certain protecting groups (Scheme 101). 

 

Scheme 101: Regioselective Zn insertions in polybrominated phenol derivatives. 

With regard to industrial application, the scale up of these reactions was studied. It was shown, 

that both, the directed ortho-insertion and the orthogonal para-insertion can be performed up to 

100 mmol without loss of regioselectivity (Scheme 102). 
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Scheme 102: Regioselective metal insertions in larger scale. 

 

7.4 PREPARATION OF AMIDES FROM FUNCTIONALIZED ORGANOZINC REAGENTS 

A new synthetic route to highly functionalized primary amides (CONH2) using commercially 

available trichloroacetyl isocyanates and organozinc halides was developed. Mild reaction 

conditions, high efficiency and a broad scope of substrates gives an easy access to a great variety 

of substituted primary amides (Scheme 103). 

 

Scheme 103: Synthesis of primary amides starting from functionalized organozinc halides. 
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Using this method, aromatic, heterocyclic, alkenylic and alkynylic primary carboxamides have 

been prepared. Extension of this work to substituted isocyanates is limited and a Ni-catalyst is 

needed to afford the desired secondary amides (Scheme 104). 

 

Scheme 104: Ni-catalyzed synthesis of secondary amides using substituted isocyanates and functionalized 
organozinc halides. 

  

7.5 PREPARATION OF HIGHLY FUNCTIONALIZED ALLENES VIA SUCCESSIVE COPPER-

MEDIATED SUBSTITUTION REACTIONS 

By using readily available 1,1-dichloromethyl alkynes of type 67 (prepared in two steps from 

commercially available alkynes), a convenient synthesis of polyfunctional allenes using two 

successive copper-catalyzed substitution reactions was developed. The first substitution of alkyl 

and benzylic zinc halides on the 1,1-dichloromethyl alkynes 67 proceeds with complete SN2’ 

selectivity leading to 1-chloroallenes of type 64 (Scheme 105).  

 

Scheme 105: Cu(I)-mediated synthesis of 1-chloroallenes of type 64. 

The second copper-catalyzed substitution on chloroallenes 64 using aromatic and 

heteroaromatic Grignard reagents proceeds with complete SN2 selectivity leading to 

polyfunctional trisubstituted allenes of type 62. The functional group compatibility is excellent 
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and functionalities such as ester, cyano, keto, trifluoromethyl and halogens are readily tolerated 

(Scheme 106). 

 

Scheme 106: Cu(I)-catalyzed reaction of arylmagnesium reagents 63 with chloroallenes 64 to polyfunctionalized 
allenes. 

 

7.6 PREPARATION OF CHARGE-TAGGED ORGANOZINC REAGENTS 

Alkyl iodides bearing a trialkylammonium group can be readily converted to the corresponding 

organozinc reagents. Depending on the solubility of the ammonium salts, either a LiCl-mediated 

Zn insertion in THF or a direct insertion of Zn in DMF is possible (Scheme 107). 

 

Scheme 107: Synthesis of charge-tagged organozinc reagents. 

ESI mass spectrometric analysis of 73d reveals that the organozinc species is monomeric and 

the zinc cation is coordinated by 2 solvent molecules (DMF) to adapt presumably a tetrahedral 

geomentry (Figure 7). 
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Figure 7: Positive ion mode ESI mass spectrum of 73d. 

Furthermore, it was shown that this approach is suitable for monitoring cross-coupling 

reactions (Scheme 108).   

 

Scheme 108: Reaction of 72f with benzylzinc bromide as test system for monitoring cross-coupling reaction using 
ESI-mass spectrometry. 

Although, intermediates of the coupling reaction are not detectable, probably due to a very fast 

reductive elimination, it is possible to monitor the reaction via decrease of the starting iodide 

and the increase of the resulting charge-tagged diarylmethane.  
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1 GENERAL CONSIDERATIONS 

If not otherwise stated, all reactions have been carried out using standard Schlenk-techniques in 

flame-dried glassware under nitrogen or argon. Prior to use, syringes and needles have been 

purged with the respective inert gas. 

Solvents 

Solvents needed for moisture sensitive reactions were dried according to the following standard 

procedures via distillation over drying agents and stored under an inert gas atmosphere: 

CH2Cl2 was predried over CaCl2 and distilled from CaH2. 

DME (1,2-dimethoxyethane) was predried over CaCl2 and destilled from Na/benzophenone 

ketyl under argon. 

DMF was refluxed over CaH2 (14 h) and distilled from CaH2. 

DMPU (1,3-dimethyl-3,4,5,6-tetrahydro-2(1H)-pyrimidinon) was predried over CaH2 (4 h) 

and distillied off. 

Et2O was predried over CaCl2 and dried with the solvent purification system SPS-400-2 from 

INNOVATIVE TECHNOLOGIES INC. 

EtOH was treated with phthalic anhydride (25 g/L) and sodium, heated to reflux for 6 h and 

distilled. 

NEP (N-ethylpyrrolidinone) was refluxed over CaH2 and distilled from CaH2. 

NMP (N-methylpyrrolidinone) was refluxed over CaH2 and distilled from CaH2. 

Pyridine was dried over KOH and distilled. 

THF (tetrahydrofuran) was continuously refluxed and freshly distilled from Na/benzophenon 

ketyl under nitrogen. 

Toluene was predried over CaCl2 and distilled from CaH2. 

Triethylamine was dried over KOH and distilled. 

Solvents for reaction workup and for column chromatography were distilled prior to use. 

 

Analytical data 

Gas chromatography was performed with machines of type Hewlett-Packard 6890 or 5890 

series II, using a column of type HP 5 (Hewlett-Packard, 5% phenylmethylpolysiloxane; length: 

15 m, diameter: 0.25 mm; film thickness: 0.25 µm). The detection was accomplished by using a 
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flame ionization detector. The carrier gas was nitrogen. Alkanes like decane or tetradecane were 

used as internal standards. 

Infrared spectra were recorded from 4000-400 cm-1 on a Perkin 281 IR spectrometer. Samples 

were measured neat (ATR, Smiths Detection DuraSample IR II Diamond ATR). The absorption 

bands were reported in wave numbers (cm-1). 

Mass spectra were recorded on Finnigan MAT 95Q or Finnigan MAT 90 instrument for electron 

impact ionization (EI). High resolution mass spectra (HRMS) were recorded on the same 

instrument.  

Melting points are uncorrected and were measured on a Büchi B.540 apparatus. 

NMR spectra were recorded on Varian Mercury 200, Bruker AC 300, WH 400, or AMX 600 

instruments. Chemical shifts are reported as δ-values in ppm relative to the solvent peak. For the 

characterization of the observed signal multiplicities the following abbreviations were used: s 

(singlet), d (doublet), t (triplet), dd (doublet of doublet), ddd (doublet of doublet of doublet), dt 

(doublet of triplet), m (multiplet), q (quartet), quint (quintet), sxt (sextet), as well as br (broad). 

 

Chromatography 

Thin layer chromatography (TLC) was performed using aluminium plates coated with SiO2 

(Merck 60, F-254). The spots were visiualized by UV-light or by staining of the TLC plate with 

the solution below followed by heating if necessary: 

- Phosphormolybdic acid (5.0 g), Ce(SO4)2 (2.0 g) and conc. H2SO4 (12.0 mL) in water 

(230 mL). 

- Iodine absorbed on silica gel. 

- KMnO4 (0.3 g), K2CO3 (20 g) and KOH (0.3 g) in water (300 mL). 

- Ninhydrin (0.3 g) and AcOH (3.0 mL) in butanol (100 mL). 

Flash column chromatography was performed using SiO2 60 (0.04-0.063 mm, 230-400 mesh) 

from Merck. 

Reagents 

Commercially available reagents were used without further purification unless otherwise stated. 

Liquid aldehydes and acid chlorides were distilled prior to use. 

Preparation of organometallic reagents: 

CuCN·2LiCl solution was prepared by drying CuCN (8.96 g, 100 mmol) and LiCl (8.48 g, 200 

mmol) in a Schlenk-flask under high vaccum fo 5 h at 140 °C. After cooling to 25 °C dry THF (100 

mL) was added and the mixture was stirred for 24 h. 
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ZnCl2 solution was prepared by drying ZnCl2 (68.2 g, 500 mmol) in a Schlenk-flask under high 

vacuum for 6 h at 140 °C. After cooling to 25 °C dry THF (500 mL) was added and the mixture 

was stirred until all salts were dissolved. 

iPrMgCl·LiCl was purchased as a solution in THF from Chemetall GmbH (Frankfurt, Germany). 

PhMgCl was purchased as a solution in THF from Chemetall GmbH (Frankfurt, Germany). 

iPrMgCl was purchased as a solution in THF from Chemetall GmbH (Frankfurt, Germany). 

nBuLi was purchased as a solution in hexane from Chemetall GmbH (Frankfurt, Germany). 

The content of organometallic reagents was determined either by the method of Paquette 

(organolithium or -magnesium reagents)156 or the method of Knochel (organomagnesium 

or -zinc reagents)157 prior to use. 

 

2 CROSS-COUPLING REACTIONS OF BENZYLIC ZINC REAGENTS  

2.1 GENERAL PROCEDURES 

Benzylic zinc reagents used for the cross-coupling reaction were prepared via LiCl-mediated zinc 

insertion in the corresponding benzylic chlorides as described in the literature.34b 

 

General procedure 1 (GP1): Preparation of the aromatic tosylates:  

In a round bottom flask equipped with a magnetic stirring bar, the aromatic alcohol was 

dissolved in THF, then NEt3 (1.1 equiv.) and DMAP (2 mol%) were added at 25 °C. After that, 

tosyl chloride (1.1 equiv.) was added at 0 °C and the reaction mixture was allowed to warm up to 

25 °C and stirred for the given time. Then, CH2Cl2 was added and the reaction mixture was 

washed 3 times with saturated aqueous NH4Cl-solution. The combined aqueous layers were 

extracted 3 times with CH2Cl2 and the combined organic layers were washed with brine and 

dried over Na2SO4. Removal of the solvent in vacuo and recrystallization afforded the analytically 

pure product. 

 

General procedure 2 (GP2): Nickel-catalyzed cross-coupling reactions:  

In a dry argon-flushed Schlenk flask equipped with a septum and a magnetic stirring bar, the 

aromatic bromide, chloride or tosylate (2.00 mmol) was dissolved in NMP (0.4 mL) and PPh3 

(0.1 mL, 0.4 M in THF, 0.40 mmol, 2 mol%) was added. Then, Ni(acac)2 (0.1 mL, 0.1 M in THF,  

                                                             
156 H.-S. Lin, A. Paquette,  Synth. Commun. 1994, 24, 2503. 
157 A. Krasovskiy, P. Knochel, Synthesis 2006, 5, 890. 
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0.1 mmol, 0.5 mol%) was added. After the addition of the corresponding benzylic zinc reagent 

(2.40 mmol, 1.2 equiv.), the reaction mixture was warmed to 60 °C and stirred for the given time 

until GC-analysis showed full conversion of the electrophile. The reaction mixture was quenched 

with saturated aqueous NH4Cl-solution and extracted 3 times with EtOAc. The combined organic 

layers were washed with brine, dried over Na2SO4 and the solvent was removed in vacuo. The 

product was purified by flash column chromatography.  

 

General procedure 3 (GP3): Nickel-catalyzed cross-coupling reactions using a syringe 

pump:  

In a dry argon-flushed Schlenk flask equipped with a septum and a magnetic stirring bar, the  

bromoaniline derivative (2.00 mmol) was dissolved in NMP (0.4 mL) and PPh3 (2.5 mL, 0.4 M in 

THF, 1.00 mmol, 5 mol%) was added. Then, Ni(acac)2 (2.5 mL, 0.1 M in THF,  2.50 mmol, 

2.5 mol%) was added. The reaction mixture was heated to 60 °C and the corresponding benzylic 

zinc reagent (2.40 mmol, 1.2 equiv.) was added slowly over 30 min and stirred for the given time 

until GC-analysis showed full conversion of the electrophile. The reaction mixture was quenched 

with saturated aqueous NH4Cl-solution and extracted 3 times with EtOAc. The combined organic 

layers were washed with brine, dried over Na2SO4 and the solvent removed in vacuo. The 

product was purified by flash column chromatography. 

 

General procedure 4 (GP4): Palladium-catalyzed cross-coupling reactions with bromo-

anilines:  

In a dry argon-flushed Schlenk flask equipped with a septum and a magnetic stirring bar, the  

bromoaniline derivative (2.00 mmol) was dissolved in THF (2.0 mL) and Pd(OAc)2 (4.5 mg, 

0.02 mmol, 1 mol%) and S-Phos (16.5 mg, 0.04 mmol, 2 mol%) were added. Then, the 

corresponding benzylic zinc reagent (2.40 mmol, 1.2 equiv.) is added and the reaction mixture is 

stirred for the given time until GC-analysis showed full conversion of the electrophile. The 

reaction mixture was quenched with saturated aqueous NH4Cl-solution and extracted 3 times 

with EtOAc. The combined organic layers were washed with brine, dried over Na2SO4 and the 

solvent removed in vacuo. The product was purified by flash column chromatography. 

 

2.2 PREPARATION OF THE ARYL TOSYLATES 

Preparation of toluene-4-sulfonic acid quinolin-8-yl ester (14a):  

N

OTs
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According to GP1 quinolin-8-ol (3.63 g, 25.0 mmol) was reacted with NEt3 (2.78 g, 27.5 mmol), 

DMAP (61 mg, 2 mol%) and tosyl chloride (5.24 g, 27.5 mmol) in THF (40 mL) for 20 h. 

Recrystallization from heptane/EtOAc afforded 14a as a colorless crystalline solid (6.00 g, 

20.0 mmol, 80 %). 

m.p.: 116.9-119.7 °C. 

1H-NMR (300 MHz, CDCl3) δ (ppm) = 8.85 (dd, J = 4.4 and 1.7 Hz, 1 H), 8.16 (dd, J = 8.3 and 

1.7 Hz, 1 H), 7.90 (d, J = 8.5 Hz, 2 H), 7.76 (dd, J = 8.3 and 1.5 Hz, 1 H), 7.62 (dd, J = 7.5 and 1.2 Hz, 

1 H), 7.64–7.60 (m, 1 H), 7.41 (dd, J = 8.3 and 4.1 Hz, 1 H), 7.27 (d, J = 8.0 Hz, 2 H), 2.42 (s, 3 H). 

13C-NMR (75 MHz, CDCl3) δ (ppm) = 150.6, 145.4, 145.0, 141.3, 135.9, 133.1, 129.6, 129.4, 128.8, 

126.9, 126.0, 122.5, 121.8, 21.6.  

MS (70 eV, EI): m/z (%): 299 (M+, 1), 236 (79), 234 (29), 218 (33), 155 (34), 145 (100), 117 

(87), 91 (87).  

HRMS m/z : calc. for C16H13NO3S 299.0616, found 299.0594. 

IR (ATR): ~  (cm-1) = 3064 (vw), 1941 (vw), 1596 (m), 1493 (m), 1470 (m), 1422 (w), 1369 (s), 

1355 (m), 1309 (m), 1229 (m), 1188 (m), 1177 (s), 1161 (s), 1079 (s), 1073 (m), 1048 (s), 1029 

(m), 1021 (m), 907 (m), 886 (s), 828 (s), 811 (s), 799 (s), 771 (s), 762 (vs), 710 (s), 706 (s), 662 

(s), 643 (s), 632 (m), 607 (m). 

 

Preparation of toluene-4-sulfonic acid 6-methyl-pyridin-3-yl ester (14b):  

N

TsO

Me  

According to GP1 6-methyl-pyridin-3-ol (2.70 g, 24.7 mmol) was reacted with NEt3 (2.78 g, 

27.5 mmol), DMAP (61 mg, 2 mol%) and tosyl chloride (5.24 g, 27.5 mmol) in THF (40 mL) for 

20 h. Recrystallization from heptane/EtOAc afforded 14b as colorless crystalline solid (4.20 g, 

16.0 mmol, 65 %).  

m.p.: 104.7-107.0 °C. 

1H-NMR (300 MHz, CDCl3) δ (ppm) = 7.97 (d, J = 2.7 Hz, 1 H), 7.67 (d, J = 8.3 Hz, 2 H), 7.38-7.34 

(m, 1 H), 7.31 (d, J = 8.8 Hz, 2 H), 7.12 (d, J = 8.5 Hz, 1 H), 2.52 (s, 3 H), 2.43 (s, 3 H). 

13C-NMR (75 MHz, CDCl3) δ (ppm) = 157.2, 145.9, 144.5, 142.7, 131.7, 130.6, 130.0, 128.5, 123.9, 

23.8, 21.7.  

MS (70 eV, EI): m/z (%): 263 (M+, 38), 155 (54), 91 (100), 65 (7), 53 (6). 

HRMS m/z: calc. for C13H13NO3S 263.0616, found 263.0622. 
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IR (ATR): ~  (cm-1) = 3351 (vw), 3259 (vw), 1596 (m), 1478 (m), 1374 (m), 1365 (s), 1349 (m), 

1299 (m), 1284 (m), 1199 (m), 1169 (vs), 1120 (m), 1089 (s), 1021 (s), 923 (m), 860 (s), 845 (s), 

840 (s), 815 (s), 801 (s), 793 (vs), 731 (s), 715 (vs), 701 (s), 655 (vs), 638 (s). 

 

Preparation of 4-(toluene-4-sulfonyloxy)-benzoic acid ethyl ester (14c): 

CO2Et

OTs

 

4-Hydroxy-benzoic acid ethyl ester (3.34 g, 20.1 mmol) was dissolved in pyridine (20 mL), tosyl 

chloride (5.00 g, 26.2 mmol) was added portionwise and the reaction mixture was stirred at 

25 °C for 20 h. Then, the reaction mixture was poured on ice, EtOAc and 2 M HCl were added. The 

aqueous layer was extracted 3 times with EtOAc, and the combined organic layers were washed 

with 2 M HCl, saturated aqueous NaHCO3-solution, brine and dried over MgSO4. The solvent was 

removed in vacuo and flash column chromatographical purification (silica; pentane:Et2O, 6:1) 

afforded 14c as a colorless oil (6.65 g, 20.8 mmol, 99 %) 

1H-NMR (300 MHz, CDCl3) δ (ppm) = 7.96 (d, J = 8.9 Hz, 2 H), 7.69 (d, J = 8.4 Hz, 2 H), 7.30 (d, J = 

8.4 Hz, 2 H), 7.04 (d, J = 8.9 Hz, 2 H), 4.34 (q, J = 7.1 Hz, 2 H), 2.43 (s, 3 H), 1.36 (t, J = 7.1 Hz, 3 H). 

13C-NMR (75 MHz, CDCl3) δ (ppm) = 165.4, 152.9, 145.7, 132.1, 131.2, 129.8, 129.2, 128.5, 122.2, 

61.2, 21.7, 14.2.  

MS (70 eV, EI): m/z (%): 320 (M+, 30), 275 (13), 156 (8), 155 (100), 121 (7), 62 (6), 91 (69), 65 

(9).  

HRMS m/z: calc. for C16H16O5S 320.0718, found 320.0726. 

IR (ATR): ~  (cm-1) = 2980 (w), 2358 (w), 2116 (vw), 1714 (s), 1598 (m), 1498 (m), 1446 (m), 

1372 (s), 1272 (vs), 1198 (s), 1174 (vs), 1152 (vs), 1092 (vs), 1016 (s), 864 (vs), 846 (s), 814 (s), 

800 (s), 778 (s), 734 (vs), 696 (s), 668 (s).  

 

Preparation of toluene-4-sulfonic acid 2-methoxy-phenyl ester (14d):  

TsO

OMe

 

According to GP1 2-methoxy-phenol (3.05 g, 25.0 mmol) was reacted with NEt3 (2.78 g, 

27.5 mmol), DMAP (61 mg, 2 mol%) and tosyl chloride (5.24 g, 27.5 mmol) in THF (40 mL) for 

20 h. Recrystallization from heptane/EtOAc afforded 14d as a colorless crystalline solid (5.91 g, 

21.2 mmol, 85 %).  
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m.p.: 77.1-79.5 °C. 

1H-NMR (300 MHz, CDCl3) δ (ppm) = 7.74 (d, J = 8.3 Hz, 2 H), 7.28 (d, J = 9.2 Hz, 2 H), 7.22-7.17 

(m, 1 H), 7.16-7.11 (m, 1 H), 6.88 (dd, J = 7.9 and 1.8 Hz, 1 H), 6.85-6.80 (m, 1 H), 3.54 (s, 3 H), 

2.43 (s, 3 H). 

13C-NMR (75 MHz, CDCl3) δ (ppm) = 151.8, 144.9, 138.4, 133.3, 129.3, 128.6, 128.0, 124.0, 120.6, 

112.7, 55.5, 21.6.  

MS (70 eV, EI): m/z (%): 278 (M+, 39), 207 (25), 124 (28), 123 (100), 109 (17), 95 (46), 91 (52), 

77 (28), 65 (19), 52 (12).  

HRMS m/z: calc. for C14H14O4S 278.0613, found 278.0615. 

IR (ATR): ~  (cm-1) = 3065 (vw), 2946 (vw), 2845 (vw), 1596 (w), 1498 (m), 1455 (m), 1362 (s), 

1287 (m), 1257 (s), 1188 (s), 1166 (s), 1158 (s), 1106 (s), 1086 (s), 1041 (m), 1023 (s), 925 (m), 

863 (s), 814 (s), 779 (s), 754 (vs), 713 (s), 700 (s), 659 (s), 611 (m). 

 

Preparation of toluene-4-sulfonic acid 2-methyl-quinolin-4-yl ester (14f):  

N Me

OTs

 

According to GP1 2-methyl-quinolin-4-ol (2.39 g, 15.0 mmol) was reacted with NEt3 (1.67 g, 

16.5 mmol), DMAP (37 mg, 2 mol%) and tosyl chloride (3.15 g, 16.5 mmol) in THF (40 mL) for 

20 h. Recrystallization from heptane afforded 3l as colorless crystalline solid (3.85 g, 12.3 mmol, 

82 %).  

m.p.: 113.5-115.4 °C. 

1H-NMR (300 MHz, CDCl3) δ (ppm) = 7.97 (d, J = 8.5 Hz, 1 H), 7.80 (d, J = 8.3 Hz, 2 H), 7.76 (dd, 

J = 8.8 and 1.7 Hz, 1 H), 7.65 (dt, J = 8.4, 6.9 and 1.5 Hz, 1 H), 7.38 (dt, J = 8.3, 7.0 and 1.0 Hz, 1 H), 

7.29 (d, J = 8.5 Hz, 2 H), 7.20 (s, 1 H), 2.71 (s, 3 H), 2.41 (s, 3 H).  

13C-NMR (75 MHz, CDCl3) δ (ppm) = 159.8, 153.2, 149.5, 146.0, 132.3, 130.3, 130.0, 128.3, 126.3, 

121.3, 120.5, 112.9, 76.4, 25.5, 21.7.  

MS (70 eV, EI): m/z (%): 313 (M+, 100), 159 (13), 155 (87), 130 (20), 91 (33), 65 (14). 

HRMS m/z: calc. for C17H15NO3S 313.0773, found 313.0773. 

IR (ATR): ~  (cm-1) = 3069 (vw), 3049 (vw), 2917 (vw), 1600 (m), 1557 (m), 1498 (m), 1406 

(w), 1376 (s), 1332 (m), 1304 (m), 1230 (m), 1188 (s), 1173 (s), 1151 (m), 1091 (m), 1048 (s), 

1018 (m), 993 (m), 965 (s), 870 (s), 814 (s), 804 (s), 786 (m), 765 (vs), 746 (vs), 664 (vs). 
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2.3 PREPARATION OF THE CROSS-COUPLING PRODUCTS 

Preparation of 3-(4-acetyl-benzyl)-benzonitrile (15a):  

 

According to GP2 the benzylic zinc reagent 11a (1.75 mL, 1.37 M in THF, 2.40 mmol) was 

reacted with 1-(4-bromo-phenyl)-ethanone (13a) (398 mg, 2.00 mmol). The reaction time was 

0.5 h. Flash column chromatographical purification (silica; pentane:Et2O, 2:1) afforded 15a as a 

colorless solid (352 mg, 1.50 mmol, 75 %). 

m.p.: 71.6–73.9 °C. 

1H-NMR (300 MHz, CDCl3) δ (ppm) = 7.90 (d, J = 8.2 Hz, 2 H),7.53-7.50 (m, 1 H), 7.45 (s, 1 H), 

7.42-7.40 (m, 2 H), 7.25 (d, J = 8.6 Hz, 2 H), 4.06 (s, 2 H), 2.58 (s, 3 H).  

13C-NMR (75 MHz, CDCl3) δ (ppm) = 197.6, 144.8, 141.5, 135.7, 133.4, 132.3, 130.2, 129.4, 129.1, 

128.9, 126.8, 112.7, 41.3, 26.6.  

MS (70 eV, EI): m/z (%): 235 (M+, 33), 220 (100), 201 (83), 199 (90), 116 (24), 89 (43).  

HRMS m/z: calc. for C16H13NO 235.0997, found 235.1009. 

IR (ATR): ~  (cm-1) = 3516 (m), 2228 (m), 1672 (vs), 1600 (m), 1584 (m), 1568 (w), 1484 (w), 

1456 (w), 1412 (m), 1356 (m), 1268 (m), 1200 (w), 1184 (w), 1140 (w), 1112 (w), 1076 (w), 

1012 (w), 960 (w), 904 (w), 888 (w), 848 (w), 824 (m), 808 (w), 792 (m), 748 (m), 716 (w), 692 

(m), 624 (m), 592 (w), 576 (w), 560 (w).  

 

Preparation of 4-(3-cyano-benzyl)-benzoic acid ethyl ester (15b):  

 

According to GP2 the benzylic zinc reagent 11a (1.75 mL, 1.37 M in THF, 2.40 mmol) was 

reacted with 4-chloro-benzoic acid ethyl ester (13b) (370 mg, 2.00 mmol). The reaction time 

was 0.5 h. Flash column chromatographical purification (silica; pentane:Et2O, 6:1) afforded 15b 

as a colorless solid (473 mg, 1.78 mmol, 89 %). 

m.p.: 60.5–62.4 °C. 

1H-NMR (300 MHz, CDCl3) δ (ppm) = 7.98 (d, J = 8.4 Hz, 2 H), 7.53–7.38 (m, 4 H), 7.22 (d, 

J = 8.4 Hz, 2 H), 4.36 (q, J = 7.1 Hz, 2 H), 4.05 (s, 2 H), 1.37 (t, J = 7.1 Hz, 3 H). 

13C-NMR (75 MHz, CDCl3) δ (ppm) = 166.5, 144.7, 141.9, 133.6, 132.6, 130.4, 130.3, 129.6, 129.3, 

129.1, 118.9, 112.9, 61.2, 41.5, 14.6.  
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MS (70 eV, EI): m/z (%): 265 (M+, 37), 237 (20), 220 (100), 192 (30), 190 (28), 165 (24). 

HRMS m/z: calc. for C17H15NO2 265.1103, found 265.1077. 

IR (ATR): ~  (cm-1) = 3076 (w), 3052 (w), 3000 (w), 2976 (w), 2956 (w), 2900 (w), 2228 (m), 

1708 (vs), 1608 (m), 1576 (w), 1476 (w), 1448 (w), 1436 (w), 1416 (w), 1392 (w), 1364 (m), 

1324 (w), 1308 (w), 1276 (vs), 1192 (w), 1176 (m), 1128 (m), 1108 (s), 1020 (m), 980 (w), 940 

(w), 908 (w), 876 (w), 856 (w), 788 (m), 764 (m), 728 (m), 700 (w), 688 (m), 652 (w), 560 (w). 

 

Preparation of 3-pyrimidin-2-ylmethyl-benzonitrile (15c):  

 

According to GP2 the benzylic zinc reagent 11a (1.75 mL, 1.37 M in THF, 2.40 mmol) was 

reacted with 2-chloro-pyrimidine (13c) (230 mg, 2.00 mmol). The reaction time was 0.5 h. Flash 

column chromatographical purification (silica; Et2O) afforded 15c as a yellow oil (269 mg, 

1.38 mmol, 69 %). 

1H-NMR (300 MHz, CDCl3) δ (ppm) = 8.67 (d, J = 5.1 Hz, 2 H), 7.64 (s, 1 H), 7.60–7.57 (m, 1 H), 

7.52–7.48 (m, 1 H), 7.41–7.36 (m, 1 H), 7.16 (t, J = 4.9 Hz, 1 H), 4.30 (s, 2 H). 

13C-NMR (75 MHz, CDCl3) δ (ppm) = 168.7, 157.4, 139.5, 133.7, 132.7, 130.3, 129.2, 119.0, 118.8, 

112.5, 45.3. 

MS (70 eV, EI): m/z (%): 196 (6), 195 (M+, 53), 194 (100), 193 (5), 167 (2). 142 (3), 116 (4), 115 

(5), 114 (3).  

HRMS m/z: calc. for C12H9N3 195.0796, found 195.0803. 

IR (ATR): ~  (cm-1) = 3040 (w), 2972 (vw), 2924 (vw), 2228 (m), 1604 (vw), 1560 (vs), 1484 

(w), 1416 (vs), 1320 (vw), 1296 (vw), 1280 (vw), 1232 (w), 1180 (w), 1152 (vw), 1096 (w), 996 

(w), 944 (vw), 912 (w), 856 (vw), 792 (m), 716 (w), 688 (m), 636 (w), 584 (w), 564 (w).  

 

Preparation of 4-(1-phenyl-ethyl)-benzoic acid ethyl ester (15d):  

 

According to GP2 the benzylic zinc reagent 11b (1.78 mL, 1.35 M in THF, 2.40 mmol) was 

reacted with 4-bromo benzoic acid ethyl ester (13d) (458 mg, 2.00 mmol). The reaction time 

was 12 h. Flash column chromatographical purification (silica; pentane:Et2O, 98:2) afforded 15d 

as a colorless oil (485 mg, 1.91 mmol, 95 %). 
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1H-NMR (300 MHz, CDCl3) δ (ppm) = 7.97 (d, J = 8.3 Hz, 2 H), 7.33-7.25 (m, 4 H), 7.23-7.16 (m, 

3 H), 4.36 (q, J = 7.1 Hz, 2 H), 4.20 (q, J = 7.1 Hz, 1 H), 1.66 (d, J = 7.3 Hz, 3 H), 1.37 (t, J = 7.1 Hz, 

3 H). 

13C-NMR (75 MHz, CDCl3) δ (ppm) = 166.5, 151.5, 145.4, 129.7, 128.5, 128.4, 127.6, 127.5, 126.3, 

60.7, 44.8, 21.6, 14.3. 

MS (70 eV, EI): m/z (%): 254 (M+, 100), 239 (45), 209 (40), 181 (41), 165 (57). 

HRMS m/z: calc. for C17H18O2 254.1307, found 254.1305. 

IR (ATR): ~  (cm-1) = 3028 (vw), 2973 (w), 2934 (vw), 1712 (s), 1610 (m), 1494 (w), 1451 (w), 

1415 (w), 1367 (m), 1310 (w), 1271 (vs), 1178 (m), 1102 (s), 1019 (s), 857 (m), 758 (m), 738 

(m), 698 (vs), 646 (w), 595 (w). 

 

Preparation of 2,4-dimethoxy-5-(3,4,5-trimethoxy-benzyl)-pyrimidine (15e):  

 

According to GP2 the benzylic zinc reagent 11c (2.00 mL, 1.21 M in THF, 2.40 mmol) was reacted 

with 5-bromo-2,4-dimethoxy-pyrimidine (13e) (438 mg, 2.00 mmol). The reaction time was 2 h. 

Flash column chromatographical purification (silica; pentane:Et2O, 1:2) afforded 15e as a 

colorless solid (551 mg, 1.72 mmol, 86 %). 

m.p.: 74.1-76.3 °C. 

1H-NMR (300 MHz, CDCl3) δ (ppm) = 7.94 (s, 1 H), 6.39 (s, 2 H), 3.98 (s, 3 H), 3.96 (s, 3 H), 3.80 

(s, 9 H), 3.72 (s, 2 H). 

13C-NMR (75 MHz, CDCl3) δ (ppm) = 169.2, 164.2, 157.1, 153.2, 136.6, 134.6, 114.5, 105.7, 60.8, 

56.1, 54.7, 53.9, 32.7. 

MS (70 eV, EI): m/z (%): 320 (M+, 100), 305 (45), 289 (9), 230 (14), 181 (62). 

HRMS m/z: calc. for C16H20N2O5 320.1372, found 320.1348. 

IR (ATR): ~  (cm-1) = 2947 (w), 2909 (w), 2842 (w), 2828 (w), 1593 (s), 1573 (s), 1510 (m), 

1456 (s), 1403 (s), 1373 (s), 1331 (s), 1286 (s), 1249 (s), 1232 (s), 1193 (s), 1121 (vs), 1076 

(vs), 1005 (vs), 976 (s), 935 (m), 859 (s), 833 (s), 784 (vs), 749 (s), 699 (m), 636 (m), 602 (s). 
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Preparation of 2,4-dimethoxy-6-(3,4,5-trimethoxy-benzyl)-pyrimidine (15f):  

 

According to GP2 the benzylic zinc reagent 11c (2.00 mL, 1.21 M in THF, 2.40 mmol) was reacted 

with 4-chloro-2,6-dimethoxy-pyrimidine (13f) (349 mg, 2.00 mmol). The reaction time was 2 h. 

Flash column chromatographical purification (silica; pentane:Et2O, 1:2) afforded 15f as a 

colorless solid (628 mg, 1.96 mmol, 98 %). 

m.p.: 60.8-62.9 °C. 

1H-NMR (300 MHz, CDCl3) δ (ppm) = 6.49 (s, 2 H), 6.12 (s, 1 H), 3.98 (s, 3 H), 3.91 (s, 3 H), 3.84 

(s, 2 H), 3.82 (s, 6 H), 3.81 (s, 3 H). 

13C-NMR (75 MHz, CDCl3) δ (ppm) = 172.0, 171.4, 165.2, 153.2, 136.8, 133.2, 106.3, 99.9, 60.8, 

56.1, 54.6, 53.7, 44.0. 

MS (70 eV, EI): m/z (%): 320 (M+, 74), 305 (60), 181 (13), 69 (13), 57 (11), 44 (100). 

HRMS m/z: calc. for C16H20N2O5 320.1372, found 320.1360. 

IR (ATR): ~  (cm-1) = 3083 (w), 2945 (w), 2932 (w), 2831 (w), 1588 (s), 1564 (vs), 1505 (s), 

1451 (s), 1433 (m), 1419 (s), 1375 (m), 1350 (vs), 1331 (s), 1299 (s), 1244 (s), 1233 (s), 1204 

(s), 1193 (m), 1186 (m), 1149 (s), 1121 (vs), 1092 (vs), 1036 (s), 1003 (s), 980 (s), 922 (m), 862 

(m), 835 (s), 826 (s), 816 (m), 792 (m), 742 (m), 729 (s), 717 (m), 686 (m), 612 (m), 602 (s). 

 

Preparation of ethyl 2-(3,4,5-trimethoxybenzyl)nicotinate (15g):  

 

According to GP2 the benzylic zinc reagent 11c (2.00 mL, 1.21 M in THF, 2.40 mmol) was reacted 

with ethyl 2-chloronicotinate (13g) (371 mg, 2.00 mmol). The reaction time was 0.5 h. Flash 

column chromatographical purification (silica; pentane:Et2O, 1:1) afforded 15g as a yellow oil 

(639 mg, 1.93 mmol, 96%). 

1H-NMR (300 MHz, CDCl3) δ (ppm) = 8.68 (dd, J = 4.9 Hz and 1.9 Hz, 1 H), 8.15 (dd, J = 7.9 Hz and 

1.8 Hz, 1 H), 7.23 (dd, J = 7.9 Hz and 4.7 Hz, 1 H), 6.52 (s, 2 H), 4.51 (s, 2 H), 4.34 (q, J = 7.1 Hz, 2 

H) 3.78 (s, 9 H), 1.34 (t, J = 7.1 Hz, 3 H). 

13C-NMR (75 MHz, CDCl3) δ (ppm) = 166.5, 161.0, 152.9, 151.8, 138.6, 136.4, 135.2, 126.1, 121.3, 

106.2, 61.4, 60.7, 56.0, 42.3, 14.2. 
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MS (70 eV, EI): m/z (%): (19), 331 (M+, 100), 330 (16), 317 (13), 316 (64), 286 (10), 270 (15), 

227 (22), 44 (21). 

HRMS m/z: calc. for C18H21NO5 331.1420, found 331.1395. 

IR (ATR): ~  (cm-1) = 2937 (w), 2836 (w), 1718 (s), 1587 (m), 1567 (m), 1505 (m), 1456 (m), 

1420 (s), 1366 (w), 1330 (m), 1258 (s), 1235 (s), 1182 (m), 1119 (vs), 1079 (s), 1057 (s), 1006 

(s), 968 (m), 809 (m), 789 (m), 739 (m), 680 (m), 656 (m) 

 

Preparation of 3-(2,4-dimethoxy-pyrimidin-5-ylmethyl)-benzoic acid ethyl ester (15h):  

 

According to GP2 the benzylic zinc reagent 11d (1.74 mL, 1.38 M in THF, 2.40 mmol) was 

reacted with 5-bromo-2,4-dimethoxy-pyrimidine (13e) (438 mg, 2.00 mmol). The reaction time 

was 1.5 h. Flash column chromatographical purification (silica; pentane:Et2O, 1:1) afforded 15h 

as a colorless oil (505 mg, 1.67 mmol, 84 %). 

1H-NMR (300 MHz, CDCl3) δ (ppm) = 7.96 (s, 1 H), 7.89–7.86 (m, 2 H), 7.34–7.32 (m, 2 H), 4.35 

(q, J = 7.2 Hz, 2 H), 3.95 (s, 3 H), 3.95 (s, 3 H), 3.82 (s, 2 H), 1.36 (t, J = 7.2 Hz, 3 H). 

13C-NMR (75 MHz, CDCl3) δ (ppm) = 169.2, 166.5, 164.3, 157.1, 139.4, 133.0, 130.7, 129.7, 128.4, 

127.6, 114.1, 60.9, 54.7, 53.9, 32.3, 14.3. 

MS (70 eV, EI): m/z (%): 302 (M+, 100), 301 (53), 287 (27), 273 (33), 257 (33), 241 (21), 200 

(25). 

HRMS m/z: calc. for C16H18N2O4 302.1267, found 302.1269. 

IR (ATR): ~  (cm-1) = 2985 (w), 2957 (w), 2902 (w), 1715 (s), 1600 (s), 1567 (s), 1466 (s), 1398 

(s), 1379 (vs), 1350 (m), 1273 (vs), 1239 (m), 1190 (s), 1153 (w), 1104 (m), 1070 (s), 1052 (m), 

1015 (s), 788 (w), 763 (w), 744 (m), 694 (w). 

 

Preparation of 3-(4-cyano-benzyl)-benzoic acid ethyl ester (15i):  

 

According to GP2 the benzylic zinc reagent 11d (1.74 mL, 1.38 M in THF, 2.40 mmol) was 

reacted with 4-chloro-benzonitrile (13h) (276 mg, 2.00 mmol). The reaction time was 0.5 h. 
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Flash column chromatographical purification (silica; pentane:Et2O, 2:1) afforded 15i as a 

colorless solid (482 mg, 1.82 mmol, 91 %). 

m.p.: 51.0-53.0 °C. 

1H-NMR (300 MHz, CDCl3) δ (ppm) = 7.93–7.89 (m, 1 H), 7.87–7.85 (m, 1 H), 7.56 (d, J = 8.3 Hz, 

2 H ), 7.40–7.30 (m, 2 H), 7.27 (d, J = 8.5 Hz, 2 H), 4.36 (q, J = 7.1 Hz, 2 H), 4.07 (s, 2 H), 1.37 (t, 

J = 7.2 Hz, 3 H). 

13C-NMR (75 MHz, CDCl3) δ (ppm) = 166.3, 146.0, 139.6, 133.3, 132.4, 131.0, 130.0, 129.6, 128.8, 

127.9, 118.8, 110.3, 61.0, 41.7, 14.3. 

MS (70 eV, EI): m/z (%): 265 (M+, 56), 237 (49), 221 (20), 220 (100), 207 (29), 193 (16), 192 

(30), 191 (21), 190 (26), 165 (17).  

HRMS m/z: calc. for C17H15NO2 265.1103, found 265.1089. 

IR (ATR): ~  (cm-1) = 3054 (vw), 2991 (w), 2983 (w), 2937 (w), 2912 (w), 2874 (vw), 2228 (m), 

1707 (vs), 1669 (w), 1604 (m), 1586 (w), 1477 (w), 1446 (m), 1362 (m), 1279 (s), 1188 (s), 

1105 (m), 1024 (m), 939 (m), 854 (m), 796 (w), 762 (m), 734 (m), 696 (m), 602 (m). 

 

Preparation of 2-(3-pentanoyl-benzyl)-nicotinic acid ethyl ester (15j):  

 

According to GP2 the benzylic zinc reagent 11e (2.30 mL, 1.06 M in THF, 2.40 mmol) was 

reacted with 2-chloro-nicotinic acid ethyl ester (13g) (371 mg, 2.00 mmol). The reaction time 

was 1 h. Flash column chromatographical purification (silica; pentane:Et2O, 6:1 then 1:1) 

afforded 15j as a pale yellow liquid (583 mg, 1.79 mmol, 90 %). 

1H-NMR (300 MHz, CDCl3) δ (ppm) = 8.67 (dd, J = 4.9 and 1.9 Hz, 1 H), 8.12 (dd, J = 7.9 and 

1.8 Hz, 1 H), 7.86 (m, 1 H), 7.75 (m, 1 H), 7.44 (m, 1 H), 7.32 (t, J = 7.7 Hz, 1 H), 7.24 (dd, J = 8.0 

and 4.9 Hz, 1 H), 4.63 (s, 2 H), 4.32 (q, J = 7.1 Hz, 2 H), 2.90 (t, J = 7.3 Hz, 2 H), 1.67 (quint, 

J = 7.4 Hz, 2 H), 1.37 (sext, J = 7.5 Hz, 2 H), 1.32 (t, J = 7.2 Hz, 3 H), 0.92 (t, J = 7.3 Hz,3 H). 

13C-NMR (75 MHz, CDCl3) δ (ppm) = 200.6, 166.3, 160.6, 151.9, 140.1, 138.8, 137.1, 133.6, 128.7, 

128.4, 126.1, 125.9, 121.4, 61.5, 42.1, 38.3, 26.5, 22.4, 14.1, 13.9. 

MS (70 eV, EI): m/z (%): 325 (M+, 79), 283 (12), 282 (12), 269 (16), 268 (100), 212 (10), 211 

(13), 167 (27), 166 (24). 

HRMS m/z : calc. for C20H23NO3 325.1678, found 325.1666. 
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IR (ATR): ~  (cm-1) = 2958 (m), 2933 (m), 2872 (w), 1719 (vs), 1681 (s), 1582 (m), 1568 (m), 

1436 (m), 1366 (m), 1274 (s), 1256 (vs), 1173 (m), 1158 (m), 1130 (s), 1111 (m), 1079 (s), 1057 

(m), 1018 (m), 862 (w), 776 (m), 752 (m), 741 (m), 694 (m), 629 (w), 576 (w). 

 

Preparation of 2-(3-acetyl-benzyl)-nicotinic acid ethyl ester (15k):  

 

In a dry argon-flushed Schlenk flask equipped with a septum and a magnetic stirring bar, 2-

chloro-nicotinic acid ethyl ester (13g) (371 mg, 2.00 mmol) was dissolved in NMP (0.4 mL), PPh3 

(0.1 mL, 0.4 M in THF, 0.40 mmol, 2 mol%) and Ni(acac)2 (0.1 mL, 0.1 M in THF, 0.1 mmol, 

0.5 mol%) were added. Then, the benzylic zinc reagent 11f (2.24 mL, 1.07 M in THF, 2.40 mmol) 

was added over 30 min via a syringe pump. The reaction time was 2 h. Flash column 

chromatographical purification (silica; pentane:Et2O, 1:1 then 1:3) afforded 15k as a yellow oil 

(385 mg, 1.36 mmol, 68 %). 

1H-NMR (300 MHz, CDCl3) δ (ppm) = 8.67 (dd, J = 4.7 and 1.8 Hz, 1 H), 8.19 (dd, 

J = 7.9 and 1.8 Hz, 1 H), 7.88–7.85 (m, 1 H), 7.75 (d, J = 7.5 Hz, 1 H), 7.46 (d, J = 7.5 Hz, 1 H), 7.32 

(t, J = 7.7 Hz, 1 H), 7.24 (dd, J = 7.9 and 4.7 Hz, 1 H), 4.63 (s, 2 H), 4.32 (q, J = 7.2 Hz, 2 H), 2.54 (s, 

3 H), 1.32 (t, J = 7.2 Hz, 3 H). 

13C-NMR (75 MHz, CDCl3) δ (ppm) = 198.2, 166.3, 160.5, 151.9, 140.1, 138.8, 137.1, 133.8, 129.0, 

128.4, 126.2, 126.0, 121.5, 61.5, 42.1, 26.6, 14.1. 

MS (70 eV, EI): m/z (%): 283 (100), 267 (37), 210 (39), 195 (13), 167 (29), 135 (12), 43 (58). 

HRMS m/z: calc. for C17H17NO3 283.1208, found 283.1187. 

IR (ATR): ~  (cm-1) = 3049 (vw), 2982 (w), 2936 (w), 1718 (s), 1681 (vs), 1601 (w), 1582 (m), 

1568 (m), 1484 (w), 1436 (m), 1357 (m), 1296 (m), 1258 (vs), 1173 (m), 1130 (m), 1079 (s), 

1057 (m), 1018 (w), 976 (w), 956 (w), 863 (w), 777 (m), 741 (m), 693 (m), 589 (w), 577 (w). 

 

Preparation of 8-(3,4,5-trimethoxybenzyl)quinoline (15l):  

 

According to GP2 the benzylic zinc reagent 11c (2.20 mL, 1.09 M in THF, 2.40 mmol) was reacted 

with quinoline-8-yl-4-methylbenzenesulfonate (14a) (599 mg, 2.00 mmol). The reaction time 
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was 2 h. Flash column chromatographical purification (silica; pentane:Et2O, 1:1) afforded 15l as 

a colorless oil (510 mg, 1.65 mmol, 82 %). 

1H-NMR (300 MHz, CDCl3) δ (ppm) = 8.98 (dd, J = 4.1 Hz and 1.7 Hz, 1 H), 8.17 (dd, J = 8.3 Hz and 

1.7 Hz, 1 H), 7.70 (m, 1 H), 7.45 (m, 2 H), 7.43 (dd, J = 8.3 Hz and 4.1 Hz, 1 H), 6.58 (s, 2 H), 4.62 

(s, 2 H), 3.81 (s, 3 H), 3.78 (s, 6 H). 

13C-NMR (75 MHz, CDCl3) δ (ppm) = 153.1, 149.3, 146.4, 139.9, 136.8, 136.6, 136.2, 129.4, 128.4, 

126.5, 126.4, 121.0, 106.4, 60.8, 56.0, 37.1. 

MS (70 eV, EI): m/z (%): 310 (15), 309 (M+, 72), 295 (17), 294 (100), 278 (10), 263 (8), 208 (9), 

181 (8), 180 (9). 

HRMS m/z: calc. for C19H19NO3 309.1365, found 309.1363. 

IR (ATR): ~  (cm-1) = 2994 (w), 2944 (w), 2832 (w), 1586 (s), 1496 (m), 1450 (m), 1420 (m), 

1327 (m), 1232 (s), 1181 (m), 1121 (vs), 1050 (m), 1027 (m), 997 (s), 967 (m), 907 (m), 875 

(w), 833 (m), 796 (vs), 768 (s), 738 (m), 672 (m), 613 (m). 

 

Preparation of 2-methyl-5-(3,4,5-trimethoxybenzyl)pyridine (15m):  

 

According to GP2 the benzylic zinc reagent 11c (1.90 mL, 1.27 M in THF, 2.40 mmol) was reacted 

with 6-methylpyridin-3-yl-4-methylbenzenesulfonate (14b) (527 mg, 2.00 mmol). The reaction 

time was 1 h. Flash column chromatographical purification (silica; Et2O) afforded 15m as a 

colorless oil (493 mg, 1.80 mmol, 90 %). 

1H-NMR (300 MHz, CDCl3) δ (ppm) = 8.37 (m, 1 H), 7.35 (dd, J = 7.9 Hz and 2.3 Hz, 1 H), 7.06 (d, 

J = 7.8 Hz, 1 H), 6.35 (s, 2 H), 3.85 (s, 2 H), 3.80 (s, 3 H), 3.79 (s, 6 H), 2.51 (s, 3 H). 

13C-NMR (75 MHz, CDCl3) δ (ppm) = 156.2, 153.3, 149.1, 136.6, 136.6, 135.7, 133.1, 123.0, 105.8, 

60.8, 56.1, 38.9, 23.9. 

MS (70 eV, EI): m/z (%): 274 (15), 273 (M+, 100), 259 (7), 258 (37), 230 (14), 215 (11), 214 (8), 

106 (7). 

HRMS m/z: calc. for C16H19NO3 273.1365, found 273.1364. 

IR (ATR): ~  (cm-1) = 2936 (w), 2837 (w), 1588 (s), 1505 (m), 1489 (m), 1455 (m), 1419 (s), 

1391 (m), 1331 (m), 1234 (s), 1182 (w), 1121 (vs), 1029 (m), 1005 (s), 969 (m), 816 (m), 781 

(m), 759 (m), 727 (m), 672 (m), 645 (m). 
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Preparation of ethyl-3-[4-(ethoxycarbonyl)-benzyl]-benzoate (15n):  

 

According to GP2 the benzylic zinc reagent 11d (1.74 mL, 1.38 M in THF, 2.40 mmol) was 

reacted with 4-(toluene-4-sulfonyloxy)-benzoic acid ethyl ester (14c) (641 mg, 2.00 mmol). The 

reaction time was 2 h. Flash column chromatographical purification (silica; pentane:Et2O, 9:1) 

afforded 15n as a yellow oil (385 mg, 1.29 mmol, 65 %). 

1H-NMR (300 MHz, CDCl3) δ (ppm) = 7.99 (d, J = 8.4 Hz, 2 H), 7.94–7.91 (m, 2 H), 7.41–7.34 (m, 

2 H), 7.27 (d, J = 8.6 Hz, 2 H), 4.38 (q, J = 7.2 Hz, 2 H), 4.38 (q, J = 7.1 Hz, 2 H), 4.09 (s, 2 H), 1.40 (t, 

J = 7.1 Hz, 3 H), 1.40 (t, J = 7.2 Hz, 3 H). 

13C-NMR (75 MHz, CDCl3) δ (ppm) = 166.5, 166.5, 145.7, 140.4, 140.4, 133.3, 130.8, 130.0, 129.9, 

128.8, 128.7, 128.6, 127.6, 61.0, 60.8, 41.6, 14.3. 

MS (70 eV, EI): m/z (%): 312 (M+, 40), 268 (17), 267 (100), 240 (14), 239 (37), 167 (15), 166 

(16), 165 (36), 111 (11). 

HRMS m/z: calc. for C19H20O4 312.1362, found 312.1354. 

IR (ATR): ~  (cm-1) = 2982 (w), 2937 (vw), 2906 (vw), 1711 (vs), 1609 (w), 1588 (w), 1444 (w), 

1415 (w), 1366 (w), 1270 (vs), 1187 (m), 1177 (m), 1100 (s), 1082 (m), 1020 (m), 940 (w), 855 

(w), 746 (m), 710 (m), 689 (w), 637 (vw), 590 (w). 

 

 Preparation of 3-(2-methoxy-benzyl)-benzoic acid ethyl ester (15o):  

 

According to GP2 the benzylic zinc reagent 11d (1.74 mL, 1.38 M in THF, 2.40 mmol) was 

reacted with toluene-4-sulfonic acid 2-methoxy-phenyl ester (14d) (557 mg, 2.00 mmol). The 

reaction time was 24 h. Flash column chromatographical purification (silica; pentane:Et2O, 19:1) 

afforded 15o as a colorless liquid (370 mg, 1.37 mmol, 69 %). 

1H-NMR (300 MHz, CDCl3) δ (ppm) = 7.95-7.92 (m, 1 H), 7.86 (d, J = 7.5 Hz, 1 H), 7.40-7.35 (m, 

1 H), 7.31 (t, J = 7.4 Hz, 1 H), 7.20 (td, J = 7.8 and 1.9 Hz, 1 H), 7.07 (dd, J = 7.9 and 1.8 Hz, 1 H), 

6.91-6.84 (m, 2 H), 4.35 (q, J = 7.1 Hz, 2 H), 4.01 (s, 2 H), 3.81 (s, 3 H), 1.38 (t, J = 7.1 Hz, 3 H). 

13C-NMR (75 MHz, CDCl3) δ (ppm) = 166.8, 157.3, 141.4, 133.4, 130.4, 130.2, 130.1, 129.1, 128.2, 

127.6, 127.1, 120.5, 110.5, 60.8, 55.3, 35.8, 14.3. 



C Experimental 

101 
 

MS (70 eV, EI): m/z (%): 270 (M+, 87), 225 (66), 224 (96), 196 (100), 165 (49), 135 (89), 91 

(53). 

HRMS m/z: calc. for C17H18O3 270.1256, found 270.1259. 

IR (ATR): ~  (cm-1) = 2978 (w), 2936 (w), 2835 (vw), 1713 (s), 1586 (m), 1492 (m), 1463 (m), 

1438 (m), 1366 (m), 1275 (s), 1241 (vs), 1193 (m), 1182 (s), 1102 (s), 1079 (m), 1049 (m), 1026 

(s), 1002 (m), 929 (w), 741 (vs), 714 (m), 691 (m), 670 (m), 619 (m). 

 

Preparation of 3-(2-methoxy-benzyl)-benzoic acid ethyl ester (15p):  

 

According to GP2 the benzylic zinc reagent 11d (1.74 mL, 1.38 M in THF, 2.40 mmol) was 

reacted with dimethyl 5-{[(4-methylphenyl)sulfonyl]oxy}benzene-1,3-dicarboxylate (14e) 

(729 mg, 2.00 mmol). The reaction time was 5 h. Flash column chromatographical purification 

(silica; pentane:Et2O, 4:1) afforded 15p as a colorless oil (432 mg, 1.21 mmol, 61 %). 

1H-NMR (300 MHz, CDCl3) δ (ppm) = 8.52 (s, 1 H), 8.05 (s, 2 H), 7.88 (m, 2 H), 7.35 (m, 2 H), 4.35 

(q, J = 7.2 Hz, 2 H), 4.10 (s, 2 H), 3.91 (s, 6 H), 1.37 (t, J = 7.0 Hz, 3 H). 

13C-NMR (75 MHz, CDCl3) δ (ppm) = 166.5, 166.2, 141.5, 140.1, 134.2, 133.3, 131.0, 130.9, 129.9, 

128.9, 128.8, 127.8, 61.0, 52.3, 41.3, 14.3. 

MS (70 eV, EI): m/z (%): 356 (M+, 61), 325 (35), 312 (18), 311 (100), 284 (15), 252 (13), 165 

(32), 140 (20). 

HRMS m/z : calc. for C20H20O 356.1260, found 356.1257. 

IR (ATR): ~  (cm-1) = 2952 (w), 1713 (vs), 1602 (w), 1432 (m), 1334 (m), 1276 (s), 1236 (vs), 

1192 (s), 1104 (s), 1081 (m), 1001 (s), 920 (w), 868 (w), 789 (w), 749 (s), 706 (s), 632 (m). 

 

Preparation of 3-quinolin-8-ylmethyl-benzoic acid ethyl ester (15q):  

 

According to GP2 the benzylic zinc reagent 11d (1.74 mL, 1.38 M, 2.40 mmol) was reacted with 

toluene-4-sulfonic acid quinolin-8-yl ester (14a) (599 mg, 2.00 mmol). The reaction time was 

3 h. Flash column chromatographical purification (silica; pentane:Et2O, 6:1) afforded 15q as a 

colorless oil (491 mg, 1.69 mmol, 85 %). 
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1H-NMR (300 MHz, CDCl3) δ (ppm) = 8.96 (dd, J = 4.3 and 1.8 Hz, 1 H), 8.15 (dd, J = 8.3 and 

1.7 Hz, 1 H ), 8.05-8.02 (m, 1 H), 7.89-7.84 (m, 1 H), 7.72-7.66 (m, 1 H), 7.52-7.47 (m, 1 H), 7.46-

7.38 (m, 3 H), 7.32 (t, J = 7.8 Hz, 1 H), 4.73 (s, 2 H), 4.34 (q, J = 7.2 Hz, 2 H), 1.36 (t, J = 7.2 Hz, 

3 H). 

13C-NMR (75 MHz, CDCl3) δ (ppm) = 166.8, 149.4, 146.4, 141.6, 139.5, 136.4, 133.9, 130.5, 130.4, 

129.6, 128.4, 128.3, 127.2, 126.5, 126.4, 121.1, 60.8, 36.6, 14.3. 

MS (70 eV, EI): m/z (%): 291 (M+, 100), 262 (63), 246 (12), 218 (28), 217 (55), 108 (34). 

HRMS m/z: calc. for C19H17NO2 291.1259, found 291.1261. 

IR (ATR): ~  (cm-1) = 3033 (vw), 2979 (w), 2928 (w), 2902 (w), 1710 (vs), 1594 (w), 1497 (m), 

1442 (m), 1366 (m), 1272 (vs), 1188 (s), 1103 (s), 1081 (s), 1024 (m), 928 (w), 870 (w), 818 

(m), 809 (m), 789 (s), 751 (s), 713 (s), 689 (m), 672 (m), 612 (m). 

 

Preparation of 1-[3-(6-methyl-pyridin-3-ylmethyl)-phenyl]-pentan-1-one (15r):  

N Me

O Bu  

According to GP2 the benzylic zinc reagent 11e (2.30 mL, 1.06 M, 2.40 mmol) was reacted with 

toluene-4-sulfonic acid-6-methyl-pyridin-3-yl ester (14b) (527 mg, 2.00 mmol). The reaction 

time was 16 h. Flash column chromatographical purification (silica; pentane:Et2O, 1:1 then Et2O) 

afforded 15r as a pale yellow liquid (448 mg, 1.68 mmol, 84 %). 

1H-NMR (300 MHz, CDCl3) δ (ppm) = 8.36 (s, 1 H), 7.78 (m, 2 H), 7.35 (m, 3 H), 7.05 (d, J = 8.0 Hz, 

1 H), 3.97 (s, 2 H), 2.90 (t, J = 7.4 Hz, 2 H), 2.5 (s, 3 H), 1.67 (quint, J = 7.4 Hz, 2 H), 1.37 (sext, J = 

7.4 Hz, 2 H), 0.92 (t, J = 7.3 Hz, 3 H). 

13C-NMR (75 MHz, CDCl3) δ (ppm) = 200.4, 156.4, 149.2, 140.7, 137.4, 136.7, 133.2, 132.7, 128.8, 

128.2, 126.2, 123.1, 38.5, 38.3, 26.4, 23.9, 22.4, 13.9. 

MS (70 eV, EI): m/z (%): 268 ([M+H]+, 100), 225 (26), 224 (10), 211 (12), 210 (72), 183 (10), 

182 (13), 181 (15). 

HRMS m/z: calc. for C18H22NO 268.1701[M+H] ,  found 268.1697. 

IR (ATR): ~  (cm-1) = 2957 (s), 2930 (m), 2871 (m), 1681 (vs), 1601 (m), 1585 (w), 1568 (w), 

1488 (m), 1465 (m), 1438 (m), 1409 (w), 1392 (m), 1378 (w), 1346 (w), 1320 (w), 1297 (m), 

1266 (m), 1256 (m), 1228 (m), 1176 (m), 1159 (m), 1109 (w), 1096 (w), 1029 (m), 913 (w), 812 

(w), 792 (w), 754 (m), 728 (m), 693 (m), 646 (w). 
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 Preparation of 1-[3-(2-methyl-quinolin-4-ylmethyl)-phenyl]-pentan-1-one (15s):  

N

O Bu
Me

 

According to GP2 the benzylic zinc reagent  11e (2.30 mL, 1.06 M in THF, 2.40 mmol) was 

reacted with toluene-4-sulfonic acid 2-methyl-quinolin-4-yl ester (14f) (627 mg, 2.00 mmol). 

The reaction time was 16 h. Flash column chromatographical purification (silica; pentane:Et2O, 

1:1 then Et2O) afforded 15s as a colorless, high viscous oil (585 mg, 1.85 mmol, 92 %). 

1H-NMR (300 MHz, CDCl3) δ (ppm) = 8.04 (d, J = 8.5 Hz, 1 H), 7.92 (d, J = 9.2 Hz, 1 H), 7.81 (m, 

2 H), 7.64 (t, J = 7.7 Hz, 1 H), 7.44 (t, J = 7.7 Hz, 1 H), 7.35 (m, 2 H), 7.00 (s, 1 H), 4.43 (s, 2 H), 2.89 

(t, J = 7.4 Hz, 2 H), 2.68 (s, 3 H), 1.67 (quint, J = 7.5 Hz, 2 H), 1.39 (sext, J = 7.5 Hz, 2 H), 0.91 (t, 

J = 7.3 Hz, 3 H). 

13C-NMR (75 MHz, CDCl3) δ (ppm) = 200.4, 158.8, 148.0, 145.8, 139.3, 137.5, 133.2, 129.3, 129.2, 

128.9, 128.3, 126.5, 125.8, 125.6, 123.4, 122.7, 38.4, 38.0, 26.4, 25.3, 22.4, 13.9. 

MS (70 eV, EI): m/z (%): 317 (M+, 25), 275 (100), 261 (44), 260 (38), 247 (15), 231 (63), 216 

(15), 189 (18), 115 (12). 

HRMS m/z: calc. for C22H23NO 317.1780, found 317.1756. 

IR (ATR): ~  (cm-1) = 3063 (w), 2954 (s), 2930 (m), 2871 (m), 1674 (vs), 1601 (s), 1585 (m), 

1562 (w), 1511 (m), 1466 (w), 1437 (m), 1415 (m), 1376 (m), 1336 (m), 1274 (m), 1227 (m), 

1158 (m), 1024 (w), 964 (w), 910 (w), 869 (w), 763 (s), 756 (s), 733 (m), 700 (m), 637 (w), 570 

(w).  

 

2.4 NICKEL-CATALYZED CROSS-COUPLINGS WITH BROMOANILINE DERIVATIVES 

Preparation of 2-amino-5-(3-propionylbenzyl)benzonitrile (17a): 

 

According to GP3 the benzylic zinc reagent 11g (2.2 mL, 1.07 M in THF, 2.4 mmol) was reacted 

with 2-amino-5-bromo-benzonitrile (16a, 394 mg, 2 mmol). The reaction time was 0.5 h. Flash 

column chromatographical purification (silica; pentane:Et2O, 3:1 then 2:1) afforded 17a as a 

yellow oil (452 mg, 1.71 mmol, 86 %). 

1H-NMR (300 MHz, CDCl3) δ (ppm) = 7.81-7.74 (m, 2 H), 7.37 (t, J = 7.8 Hz, 1 H), 7.31 (d, 

J = 7.7 Hz, 1 H), 7.16-7.11(m, 2 H), 6.67 (d, J = 8.4 Hz, 1 H), 3.89 (s, 2 H), 3.86 (s, 2H), 2.96 (q, J = 

7.2 Hz, 2 H), 1.20 (t, J = 7.2 Hz, 3 H). 
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13C-NMR (75 MHz, CDCl3) δ (ppm) = 200.8, 148.1, 141.0, 137.3, 134.8, 133.2, 132.0, 130.3, 128.8, 

128.1, 126.2, 117.5, 115.6, 96.1, 40.3, 31.8, 8.2. 

MS (EI, 70 eV), m/z (%): 264 (M+, 100), 235 (43), 207 (20), 205 (14), 190 (13), 131 (46). 

HRMS m/z : calc. for C17H16N2O 264.1263, found 264.1259. 

IR (ATR): 
~  (cm-1) = 3460 (m), 3362 (s), 3236 (w), 2972 (m), 2938 (m), 2360 (w), 2212 (s), 

1738 (m), 1680 (s), 1630 (s), 1504 (vs), 1424 (m), 1352 (m), 1314 (m), 1240 (s), 1160 (m), 778 

(m), 690 (m). 

 

Preparation of 2-amino-5-(3-cyanobenzyl)benzonitrile (17b): 

 

According to GP3 the benzylic zinc reagent 11a (1.7 mL, 1.4 M in THF, 2.4 mmol) was reacted 

with 2-amino-5-bromo-benzonitrile (16a, 394 mg, 2 mmol). The reaction time was 1 h. Flash 

column chromatographical purification (silica; pentane:Et2O, 3:1) afforded 17b as a colorless oil 

(376 mg, 1.61 mmol, 86 %). 

1H-NMR (300 MHz, CDCl3) δ (ppm) = 7.50-7.47 (m, 1 H), 7.41-7.36 (m, 3 H), 7.14-7.08 (m, 2 H), 

6.70 (d, J = 8.4 Hz, 1 H), 4.35 (s, 2H), 3.86 (s, 2 H). 

13C-NMR (75 MHz, CDCl3) δ (ppm) = 148.4, 142.0, 134.7, 133.2, 132.1, 132.0, 130.1, 129.3, 129.0, 

118.7, 117.3, 115.7, 112.5, 96.0, 39.8. 

MS (EI, 70 eV), m/z (%): 233 (M+, 100), 232 (37), 215 (6), 205 (8), 131 (41), 103 (6). 

HRMS m/z : calc. for C15H11N3 233.0953, found 233.0949. 

IR (ATR): 
~  (cm-1) = 3438 (s), 3320 (s), 3220 (m), 2224 (s), 2208 (s), 1738 (w), 1632 (s), 1504 

(vs), 1478 (m), 1424 (m), 1320 (m), 1264 (m), 1170 (m), 890 (w), 802 (w), 740 (m), 686 (m). 

 

Preparation of 4-benzyl-phenylamine (17c): 

 

According to GP3 the benzylic zinc reagent 11h (1.4 mL, 1.7 M in THF, 2.4 mmol) was reacted 

with 4-bromo-phenylamine (16b, 344 mg, 2.00 mmol). The reaction time was 1 h. Flash column 

chromatographical purification (silica; pentane:Et2O, 6:1) afforded 17c as a brown oil (330 mg, 

1.80 mmol, 90 %). 
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1H-NMR (300 MHz, CDCl3) δ (ppm) = 7.42-7.14 (m, 5 H), 7.04 (d, J = 8.04 Hz, 2 H), 6.67 (d, 

J = 8.4 Hz, 2 H), 3.94 (s, 2 H), 3.46 (s, 2 H). 

13C-NMR (75 MHz, CDCl3) δ (ppm) = 144.4, 141.9, 131.2, 129.7, 128.7, 128.3, 125.8, 115.3, 41.0. 

MS (EI, 70 eV), m/z (%): 183 (M+, 100), 180 (8), 165 (13), 106 (33), 91 (14), 77 (9). 

HRMS m/z : calc. for C13H13N 183.1048, found 183.1045. 

IR (ATR): 
~  (cm-1) = 3448 (w), 3354 (m), 3214 (w), 3024 (m), 3002 (m), 2904 (w), 2838 (w), 

1738 (m), 1620 (s), 1514 (vs), 1492 (m), 1452 (m), 1436 (m), 1366 (w), 1272 (m), 1178 (m), 

1124 (w), 1074 (w), 1028 (w), 836 (m), 726 (m), 696 (m). 

 

Preparation of 4-benzyl-3-methyl-phenylamine (17d): 

 

According to GP3 the benzylic zinc reagent 11h (1.4 mL, 1.7 M in THF, 2.4 mmol) was reacted 

with 4-bromo-3-methyl-phenylamine (16c, 372 mg, 2.00 mmol). The reaction time was 1 h. 

Flash column chromatographical purification (silica; pentane:Et2O, 9:1) afforded 17d as a brown 

oil (312 mg, 1.58 mmol, 79 %). 

1H-NMR (300 MHz, CDCl3) δ (ppm) = 7.31-7.25 (m, 2 H), 7.22-7.18 (m, 1 H), 7.18–7.12 (m, 2 H), 

6.93 (d, J =7.9 Hz, 1 H), 6.56-6.50 (m, 2 H), 3.92 (s, 2 H), 3.45 (s, 2 H), 2.18 (s, 3 H). 

13C-NMR (75 MHz, CDCl3) δ (ppm) = 144.6, 141.2, 137.5, 130.8, 129.1, 128.5, 128.2, 125.6, 117.3, 

112.7, 38.6, 19.7. 

MS (EI, 70 eV), m/z (%): 197 (M+, 80), 182 (55), 180 (11), 120 (100), 99 (10), 91 (21), 77 (13). 

HRMS m/z : calc. for C14H15N 197.1204, found 197.1185. 

IR (ATR): 
~  (cm-1) = 3448 (m), 3352 (m), 3214 (w), 3024 (m), 2914 (m), 1738 (m), 1622 (s), 

1504 (vs), 1450 (s), 1378 (m), 1308 (m), 1278 (m), 1208 (m), 1072 (w), 1028 (m), 858 (m), 828 

(m), 790 (m), 726 (vs), 696 (s). 

 

Preparation of 2-benzyl-phenylamine (17e): 

 

According to GP3 the benzylic zinc reagent 11h (1.4 mL, 1.7 M in THF, 2.4 mmol) was reacted 

with 2-bromo-phenylamine (16d, 344 mg, 2.00 mmol). The reaction time was 0.5 h. Flash 
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column chromatographical purification (silica; pentane:Et2O, 6:1) afforded 17e as a brown oil 

(274 mg, 1.50 mmol, 75 %). 

1H-NMR (300 MHz, CDCl3) δ (ppm) = 7.35-7.28 (m, 2 H), 7.26-7.18 (m, 3 H), 7.17-7.05 (m, 2 H), 

6.80 (dt, J = 7.3, 1.1 Hz, 1 H), 6.70 (d, J = 7.9 Hz, 1 H), 3.93 (s, 2 H), 3.43 (s, 2 H). 

13C-NMR (75 MHz, CDCl3) δ (ppm) = 144.6, 139.3, 130.8, 128.6, 128.5, 127.6, 126.3, 125.1, 118.7, 

115.9, 38.0. 

MS (EI, 70 eV), m/z (%): 183 (M+, 100), 180 (16), 167 (11), 165 (27), 106 (27), 77 (9). 

HRMS m/z : calc. for C13H13N 183.1048, found 183.1039. 

IR (ATR): 
~  (cm-1) = 3452 (m), 3370 (m), 3060 (m), 3024 (m), 2904 (w), 2838 (w), 1738 (m), 

1620 (s), 1492 (vs), 1452 (s), 1366 (m), 1278 (m), 1074 (w), 1028 (w), 932 (w), 852 (w), 748 

(s), 728 (s), 696 (s). 

 

Preparation of 4-amino-3-benzyl-benzonitrile (17f): 

 

According to GP3 the benzylic zinc reagent 11h (1.40 mL, 1.70 M in THF, 2.40 mmol) was 

reacted with 4-amino-3-bromo-benzonitrile (16e, 394 mg, 2.00 mmol). The reaction time was 

0.5 h. Flash column chromatographical purification (silica; pentane:Et2O, 6:1 then 3:1) afforded 

17f as a brown oil (350 mg, 1.68 mmol, 84 %). 

1H-NMR (300 MHz, CDCl3) δ (ppm) = 7.40-7.13 (m, 7H), 6.70 (d, J = 8.0 Hz, 1H), 4.34 (s, 2H), 3.88 

(s, 2H). 

13C-NMR (75 MHz, CDCl3) δ (ppm) = 147.9, 140.4, 134.8, 131.9, 130.9, 128.7, 128.5, 126.3, 117.6, 

115.5, 95.9, 40.4. 

MS (EI, 70 eV), m/z (%): 208 (M+, 100), 207 (60), 205 (8), 190 (8), 180 (6), 131 (25), 103 (5). 

HRMS m/z : calc. for C14H12N2 208.1000, found 208.0986. 

IR (ATR): 
~  (cm-1) = 3460 (vs), 3366 (vs), 3238 (m), 3022 (m), 2218 (s), 1738 (w), 1634 (s), 

1504 (s), 1492 (m), 1454 (m), 1422 (m), 1300 (m), 1262 (m), 1164 (m), 1072 (w), 1030 (w), 

942 (w), 798 (m), 706 (m), 694 (m). 
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Preparation of 2-amino-5-benzyl-benzoic acid methyl ester (17g): 

 

According to GP3 the benzylic zinc reagent 11h (0.75 mL, 1.60 M in THF, 1.20 mmol) was 

reacted with 2-amino-5-bromo-benzoic acid methyl ester (2b, 230 mg, 1.00 mmol). The reaction 

time was 2 h. Flash column chromatographical purification (silica; pentane:Et2O, 6:1) afforded 

17g as a colorless oil (185 mg, 0.77 mmol, 77 %). 

1H-NMR (300 MHz, CDCl3) δ (ppm) = 7.71 (d, J = 2.21 Hz,  1 H), 7.30-7.24 (m, 2 H), 7.22-7.13 (m, 

3 H), 7.08 (dd, J = 8.4, 2.2 Hz, 1 H), 6.60 (d, J = 8.6 Hz, 1 H), 5.59 (s, 2 H), 3.86 (s, 2 H), 3.85 (s, 

3 H). 

13C-NMR (75 MHz, CDCl3) δ (ppm) = 168.5, 148.8, 141.5, 135.0, 131.0, 128.8, 128.7, 128.4, 126.0, 

117.1, 110.7, 51.5, 40.9. 

MS (EI, 70 eV), m/z (%): 241 (M+, 100), 209 (36), 182 (22), 180 (21). 

HRMS m/z : calc. for C15H13NO2 241.1103, found 241.1080. 

IR (ATR): 
~  (cm-1) = 3476 (vs), 3376 (vs), 3024 (w), 2948 (w), 2920 (w), 1680 (s), 1624 (m), 

1588 (m), 1560 (m), 1492 (m), 1436 (s), 1296 (s), 1244 (s), 1204 (s), 1160 (s), 1096 (m), 1072 

(m), 840 (m), 796 (m), 696 (m), 608 (m). 

 

Preparation of ethyl 4-amino-3-(3-isobutyrylbenzyl)benzoate (17h): 

 

According to GP3 the benzylic zinc reagent 11i (3.5 mL, 0.69 M in THF, 2.4 mmol) was reacted 

with 4-amino-3-bromo-benzoic acid ethyl ester (16g, 394 mg, 2.00 mmol). The reaction time 

was 15 h. Flash column chromatographical purification (silica; pentane:Et2O 2:1) afforded 17h 

as a pale yellow oil (389 mg, 1.20 mmol, 60 %). 

1H-NMR (300 MHz, CDCl3) δ (ppm) = 7.82-7.77 (m, 4 H), 7.39-7.31 (m, 2 H), 6.64 (d, J = 8.8 Hz, 1 

H), 4.30 (q, J = 7.1 Hz, 2 H), 3.96 (s, 2 H), 3.55-3.41 (m, 2 H), 1.34 (t, J = 7.1 Hz, 3 H), 1.18 (s, 3 H), 

1.16 (s, 3 H). 

13C-NMR (75 MHz, CDCl3) δ (ppm) = 204.4, 166.7, 149.0, 139.3, 136.6, 132.8, 132.6, 130.1, 129.0, 

128.1, 126.7, 122.9, 120.3, 114.8, 60.3, 37.7, 35.4, 19.1, 14.4. 

MS (EI, 70 eV), m/z (%): 325 (M+, 64), 282 (25), 280 (100), 180 (23), 118 (11). 
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HRMS m/z : calc. for C20H23NO3 325.1678, found 325.1664. 

IR (ATR): 
~  (cm-1) = 3450 (m), 3352 (s), 2970 (s), 2930 (m), 1738 (m), 1694 (vs), 1668 (s), 

1632 (s), 1604 (s), 1434 (m), 1364 (s), 1268 (vs), 1234 (vs), 1190 (s), 1026 (m), 996 (m), 814 

(m), 768 (m), 738 (m). 

 

2.5 PALLADIUM-CATALYZED CROSS-COUPLINGS WITH BROMOANILINE DERIVATIVES 

Preparation of 2-Amino-5-(3-pentanoyl-benzyl)-benzoic acid methyl ester (17i):  

 

According to GP4 the benzylic zinc reagent 11e (3.8 mL, 0.63 M in THF, 2.4 mmol) was reacted 

with 2-amino-5-bromo-benzoic acid methyl ester (16f, 460 mg, 2.00 mmol). The reaction time 

was 0.5 h. Flash column chromatographical purification (silica; pentane:Et2O 3:1) afforded 17i 

as a colorless solid (638 mg, 1.96 mmol, 98 %). 

m.p.: 76.8–79.6 °C. 

1H-NMR (300 MHz, CDCl3) δ (ppm) = 7.78–7.74 (m, 2 H), 7.70 (dd, J = 2.2, 0.4 Hz, 1 H), 7.35–7.33 

(m, 2 H), 7.07 (dd, J = 8.4 and 2.2 Hz, 1 H), 6.60 (d, J = 8.4 Hz, 1 H), 5.63 (s, 2 H), 3.90 (s, 2 H), 3.84 

(s, 3 H), 2.92 (t, J = 7.5 Hz, 2 H), 1.69 (ddd, J = 14.7 and 7.6 and 7.4 Hz, 2 H), 1.39 (td, J = 14.9 and 

7.3 Hz, 2 H), 0.93 (t, J = 7.3 Hz, 3 H). 

13C-NMR (75 MHz, CDCl3) δ (ppm) = 200.9, 168.7, 149.2, 142.3, 137.6, 135.1, 133.5, 131.3, 128.9, 

128.5, 128.3, 126.2, 117.4, 110.9, 51.7, 41.0, 38.6, 26.8, 22.7, 14.2. 

MS (EI, 70 eV), m/z (%):326 (18), 325 (M+, 100), 294 (6), 269 (9), 268 (67), 266 (4), 180 (8), 164 

(25), 132 (14). 

HRMS m/z : calc. for C20H22NO3 325.1678, found 325.1681. 

IR (ATR): 
~  (cm-1) = 3444 (s), 3340 (s), 2956 (m), 2932 (m), 2872 (m), 1684 (s), 1668 (vs), 

1624 (s), 1584 (s), 1564 (m), 1496 (m), 1432 (s), 1404 (m), 1364 (m), 1296 (s), 1248 (vs), 1228 

(m), 1204 (s), 1180 (m), 1156 (s), 1100 (m), 1084 (m), 1024 (m), 980 (m), 832 (m), 792 (m), 

760 (m), 688 (m), 580 (m). 

 

4-Amino-3-(3-pentanoyl-benzyl)-benzoic acid ethyl ester (17j): 
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According to GP4 the benzylic zinc reagent 11e (3.8 mL, 0.63 M in THF, 2.4 mmol) was reacted 

with 4-amino-3-bromo-benzoic acid ethyl ester (16g, 488 mg, 2.00 mmol). The reaction time 

was 3  h. Flash column chromatographical purification (silica; pentane:Et2O 1:1) afforded 17j as 

a colorless solid (498 mg, 1.47 mmol, 73 %).  

m.p.: 137.8–139.3 °C. 

1H-NMR (300 MHz, CDCl3) δ (ppm) = 7.83–7.75 (m, 4 H), 7.39–7.29 (m, 2 H), 6.64 (d, J = 8.8 Hz, 

1 H), 4.31 (q, J = 7.2 Hz, 2 H), 3.96 (s, 2 H), 3.90 (bs, 2 H), 2.90 (t, J = 7.3 Hz, 2 H), 1.67 (quint, J = 

7.4 Hz, 2 H), 1.38 (sext, J = 7.5 Hz, 2 H), 1.35 (t, J = 7.1 Hz, 3 H), 0.92 (t, J = 7.3 Hz, 3 H). 

13C-NMR (75 MHz, CDCl3) δ (ppm) = 199.5, 165.7, 148.0, 138.2, 136.5, 131.9, 131.7, 129.1, 128.0, 

126.8, 125.5, 121.9, 119.3, 113.8, 59.3, 37.4, 36.8, 25.5, 21.4, 13.4, 12.9. 

MS (EI, 70 eV), m/z (%): 339 (M+, 61), 295 (16), 294 (100), 293 (45), 292 (47), 181 (10), 180 

(24).  

HRMS m/z : calc. for C21H25NO3  339.1834, found 339.1837. 

IR (ATR): 
~  (cm-1) = 3468 (m), 3368 (s), 2960 (m), 2936 (m), 2900 (m), 2872 (w), 1680 (vs), 

1628 (s), 1596 (m), 1512 (m), 1436 (m), 1364 (m), 1316 (m), 1268 (s), 1228 (m), 1192 (s), 1152 

(m), 1120 (m), 1108 (m), 1024 (m), 956 (m), 932 (w), 840 (w), 768 (m), 740 (w), 688 (w), 568 

(w).   

  

Preparation of 2-amino-5-(3-pentanoyl-benzyl)-benzonitrile (17k):  

 

According to GP4 the benzylic zinc reagent 11e (3.8 mL, 0.63 M in THF, 2.4 mmol) was reacted 

with 2-amino-5-bromo-benzonitrile (16a, 394 mg, 2.00 mmol). The reaction time was 0.5 h. 

Flash column chromatographical purification (silica; pentane:Et2O 2:1) afforded 17k as a 

colorless solid (529 mg, 1.81 mmol, 90 %).  

m.p.: 98.6–100.8 °C. 

1H-NMR (300 MHz, CDCl3) δ (ppm) = 7.85–7.75 (m, 2 H), 7.43–7.31 (m, 2 H), 7.21–7.14 (m, 2 H), 

6.67 (d, J = 8.4 Hz, 1 H), 4.18 (br, 2 H), 3.89 (s, 2 H), 2.93 (t, J = 7.7 Hz, 2 H), 1.69 (dt, J = 14.7 and 

7.6 Hz, 2 H), 1.46-1.31 (m, 2 H), 0.93 (t, J = 7.3 H, 3 H). 

13C-NMR (75 MHz, CDCl3) δ (ppm) = 200.8, 148.4, 141.3, 137.7, 135.1, 133.5, 132.2, 130.5, 129.1, 

128.5, 126.5, 117.8, 115.9, 96.4, 40.6, 38.7, 26.7, 22.7, 14.2. 

MS (EI, 70 eV), m/z (%): 292 (M+, 100), 250 (21), 236 (46), 235 (35), 207 (22), 205 (30), 190 

(23), 131 (32). 
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HRMS m/z : calc. for C19H20N2O 292.1576, found 292.1560. 

IR (ATR): 
~  (cm-1) = 3452 (s), 3360 (vs), 3240 (s), 2956 (m), 2216 (vs), 1664 (s), 1640 (s), 

1504 (vs), 1464 (m), 1420 (m), 1408 (s), 1372 (s), 1348 (s), 1312 (s), 1272 (s), 1216 (m), 1172 

(m), 924 (m), 840 (m), 776 (m), 756 (m), 728 (s), 684 (m). 

 

Preparation of 2-Amino-5-(3-propionyl-benzyl)-benzonitrile (17l): 

 

According to GP4 the benzylic zinc reagent 11g (2.25 mL, 1.07 M in THF, 2.4 mmol) was reacted 

with 2-amino-5-bromo-benzonitrile (16a, 394 mg, 2.00 mmol). The reaction time was 1 h. Flash 

column chromatographical purification (silica; pentane:Et2O 3:1) afforded 17l as a colorless 

solid (466 mg, 1.76 mmol, 88 %).  

m.p.: 80.5-83.3 °C. 

1H-NMR (300 MHz, CDCl3) δ (ppm) = 7.81–7.74 (m, 2 H), 7.40–7.29 (m, 2 H), 7.16–7.11 (m, 2 H), 

6.67 (dd, J = 8.4, 0.7 Hz, 1 H), 4.35 (bs, 2 H), 3.88 (s, 2 H), 2.96 (q, J = 7.3 Hz, 2 H), 1.20 (t, J = 

7.3 Hz, 3 H). 

13C-NMR (75 MHz, CDCl3) δ (ppm) = 200.8, 148.2, 141.0, 137.3, 134.8, 133.2, 131.9, 130.2, 128.8, 

128.1, 126.1, 117.5, 115.6, 96.1, 40.3, 31.8, 8.2. 

MS (EI, 70 eV), m/z (%): 264 (M+, 65), 235 (100), 207 (13), 205 (9), 190 (9), 180 (5), 131 (27), 

117 (8).  

HRMS m/z : calc. for C17H16N2O  264.1263, found 264.1254. 

IR (ATR): 
~  (cm-1) = 3364 (vs), 2980 (m), 2212 (vs), 1676 (s), 1644 (s), 1612 (m), 1508 (s), 

1424 (m), 1412 (m), 1376 (m), 1340 (m), 1316 (s), 1268 (m), 1232 (s), 1172 (m), 1160 (m), 972 

(m), 904 (m), 868 (m), 828 (m), 804 (m), 776 (s), 740 (m), 688 (m), 648 (m).   

 

Preparation of 2-amino-5-(3-cyano-benzyl)-benzoic acid methyl ester (17m): 

 

According to GP4 the benzylic zinc reagent 11a (1.55 mL, 1.55 M in THF, 2.4 mmol) was reacted 

with 2-amino-5-bromo-benzoic acid methyl ester (16f, 460 mg, 2.00 mmol). The reaction time 

was 1 h. Flash column chromatographical purification (silica; pentane:Et2O 3:1) afforded 17m as 

a colorless oil  (459 mg, 1.72 mmol, 86 %).  
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1H-NMR (300 MHz, CDCl3) δ (ppm) = 7.67 (dd, J = 2.2 and 0.4 Hz, 1 H), 7.48–7.32 (m, 4 H), 7.04 

(dd, J = 8.4 and 2.2 Hz, 1 H), 6.63 (d, J = 8.6 Hz, 1 H), 5.49 (s, 2 H), 3.87 (s, 2 H), 3.85 (s, 3 H). 

13C-NMR (75 MHz, CDCl3) δ (ppm) = 168.2, 149.0, 143.0, 134.8, 133.1, 132.1, 131.2, 129.8, 129.2, 

127.0, 118.9, 117.4, 112.4, 110.8, 51.5, 40.3. 

MS (EI, 70 eV), m/z (%): 266 (M+, 100), 235 (23), 234 (80), 207 (23), 205 (19), 132 (12), 116 

(12).  

HRMS m/z : calc. for C16H14N2O2 266.1055, found 266.1044. 

IR (ATR): 
~  (cm-1) = 3476 (s), 3372 (s), 2228 (s), 1692 (vs), 1628 (s), 1588 (s), 1560 (s), 1500 

(s), 1480 (m), 1440 (s), 1312 (m), 1292 (s), 1248 (s), 1196 (s), 1164 (s), 1092 (s), 800 (m), 788 

(m), 732 (m), 684 (s). 

 

Preparation of 3-(5-Amino-pyridin-3-ylmethyl)-benzonitrile (17n): 

 

According to GP4 the benzylic zinc reagent 11a (1.55 mL, 1.55 M in THF, 2.4 mmol) was reacted 

with 5-bromo-pyridin-3-ylamine (16h, 346 mg, 2.00 mmol). The reaction time was 12 h. Flash 

column chromatographical purification (silica; Et2O) afforded 17n as a brown solid (376 mg, 

1.80 mmol, 90 %).  

m.p.: 120.9–123.2 °C. 

1H-NMR (300 MHz, CDCl3) δ (ppm) = 8.01 (s, 1 H), 7.47–7.43 (m, 3 H), 7.36–7.31 (m, 1 H), 6.93–

6.86 (m, 2 H), 4.02 (s, 2 H), 3.62 (bs, 2 H). 

13C-NMR (75 MHz, CDCl3) δ (ppm) = 149.1, 142.2, 141.2, 137.4, 133.7, 132.6, 130.1, 129.4, 123.5, 

122.8, 119.2, 112.6, 43.2. 

MS (EI, 70 eV), m/z (%): 210 (4), 209 (M+, 35), 208 (100), 207 (8), 206 (2), 192 (2), 181 (3), 179 

(2), 154 (2), 127 (2). 91 (2).  

HRMS m/z :calc. for C13H11N3  209.0953, found 209.0936. 

IR (ATR): 
~  (cm-1) = 3420 (vs), 3312 (s), 3168 (vs), 3080 (s), 3052 (s), 3016 (s), 2928 (s), 2852 

(s), 2228 (vs), 1644 (s), 1600 (s), 1572 (s), 1488 (vs), 1416 (s), 1312 (s), 1268 (s), 780 (s), 708 

(s), 692 (s), 648 (s).   
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Preparation of methyl 2-amino-5-[3-(ethoxycarbonyl)benzyl]benzoat (17o):  

 

According to GP4 the benzylic zinc reagent 11d (1.80 mL, 1.34 M in THF, 2.4 mmol) was reacted 

with 2-amino-5-bromo-benzoic acid methyl ester (16f, 460 mg, 2.00 mmol). The reaction time 

was 0.5 h. Flash column chromatographical purification (silica; pentane:Et2O 3:1 then 2:1) 

afforded 17o as a colorless oil  (606 mg, 1.93 mmol, 97 %).  

1H-NMR (300 MHz, CDCl3) δ (ppm) = 7.88-7.84 (m, 2 H), 7.69 (d, J = 2.4, 1 H), 7.33–7.31 (m, 2 H), 

7.07 (dd, J = 8.5, 2.1 Hz, 1 H ), 6.61 (d, J = 8.2 Hz, 1 H), 5.18 (s, 2 H), 4.35 (q, J = 7.0 Hz, 2 H), 3.89 

(s, 2 H), 3.84 (s, 3 H), 1.37 (t, J = 7.0 Hz, 3 H). 

13C-NMR (75 MHz, CDCl3) δ (ppm) = 168.4, 166.7, 148.7, 141.8, 134.9, 133.2, 131.0, 130.6, 129.7, 

128.4, 128.3, 127.3, 117.3, 110.8, 60.9, 51.5, 40.7, 14.3. 

MS (EI, 70 eV), m/z (%): 314 (20), 313 (M+, 100), 282 (14), 281 (38), 268 (14), 254 (21), 209 

(10), 180 (13), 164 (14), 132 (14), 118 (14). 

HRMS m/z : calc. for C18H19NO4 313.1314, found 313.1311. 

IR (ATR): 
~  (cm-1) = 3431 (m), 3322 (m), 3051 (w), 3027 (w), 2981 (m), 1711 (s), 1687 (vs), 

1621 (m), 1583 (m), 1493 (m), 1438 (s), 1364 (w), 1274 (vs), 1245 (vs), 1190 (vs), 1102 (s), 

1029 (m), 835 (m), 792 (m), 746 (m), 693 (m). 
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 3 PREPARATION AN APPLICATIONS OF ALKENYL ZINC REAGENTS 

Starting materials of type 22 were prepared according to known literature procedures.158 

3.1 GENERAL PROCEDURES 

General procedure 1 (GP1): LiCl-mediated zinc insertion in alkenyl bromides:  

A dry, argon flushed Schlenk-flask equipped with a magnetic stirring bar and a septum was 

charged with LiCl (1.5–2 equiv.) and heated with a heat gun under high vacuum (5 min). After 

cooling to room temperature, zinc dust (1.5–2 equiv.) was added, followed by THF 

(1 mL/mmol). The zinc powder then was activated using 1,2-dibromoethane (5 mol%) and 

TMSCl (5 mol%). Then, the substrate (1 equiv.) was added neat at 25 °C. In the case of very 

exothermic reactions, the reaction mixture was kept at 25 °C using a water bath and stirred for 

the given time until GC-analysis of hydrolyzed reaction aliquot showed full consumption of the 

starting material. Then, the remaining zinc dust was allowed to settle down or centrifuged 

(10 min, 2000 rpm). The yield of the insertion rection was determined by iodometric titration 

and the supernatant solution was then used in the reaction with electrophiles. 

 

General procedure 2 (GP2):  Allylation of alkenyl zinc reagents: 

The freshly prepared zinc reagent was cooled to -40 °C and the corresponding allyl bromide 

(0.8–0.9 equiv.) was added, followed by 3 drops of CuCN·2LiCl (ca. 0.03 mL, 0.03 mmol, 1 M in 

THF). The reaction mixture was allowed to warm to 0 °C. After stirring for the given time, the 

reaction mixture was quenched with sat. NH4Cl/NH3 (9:1) solution (10 mL), washed with sat. 

NH4Cl/NH3 solution (9:1, 2x10 mL) and extracted with EtOAc (3x10 mL). The combined organic 

phases were washed with sat. NaCl solution (10 mL), dried over Na2SO4 and concentrated in 

vacuo. The crude residue obtained was purified by flash column chromatography to give the 

analytically pure product. 

 

General procedure 3 (GP3): Cross-coupling reactions of alkenyl zinc reagents:  

The desired arylbromide or -iodide (0.8 equiv.) was added to the freshly prepared zinc reagent 

followed by Pd(PPh3)4 (5 mol%) and the mixture was stirred for the given time at 50 °C. The 

reaction mixture was quenched with sat. NH4Cl solution (10 mL) and extracted with Et2O (3x20 

mL). The combined organic phases were washed with sat. NaCl solution (10 mL), dried over 

Na2SO4 and concentrated in vacuo. The crude residue obtained was purified by flash column 

chromatography to give the analytically pure product. 

                                                             
158 (a) J. Thibonnet, V. A. Vu, L. Berillont, P. Knochel, Tetrahedron 2002, 58, 4787; (b) J.-J. Lian, A. Odedra, C.-J. Wu, R.-S. Liu, J. Am. 
Chem. Soc. 2005, 127, 4186; (c) C. Shih, J. S. Swenton, J. Org. Chem. 1982, 60, 210; (d) A. E. Nikolaev, V. E.  Semenov, D. R. 
Sharafutdinova, Y. Y. Efremov, V. S. Reznik, Tetrahedron Lett. 2008, 49, 5994; (e) R. D. McCullough, D. O. Cowan, J. Org. Chem. 1985, 
50, 4646, (f) Ph.D. thesis H. Ren, Ludwig-Maximilians-Universität München, 2006. 
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General procedure 4 (GP4): LiCl-mediated magnesium insertion in the presence of zinc 

chloride in alkenyl bromides:  

A dry, argon flushed Schlenk-flask equipped with a magnetic stirring bar and a septum was 

charged with LiCl (1.5 equiv.) and heated with a heat gun under high vacuum (5 min). After 

cooling to room temperature, magnesium turnings (2.5 equiv.) were added, followed by THF 

(1 mL/mmol). The magnesium was activated using 1,2-dibromoethane (5 mol%) and TMSCl 

(5 mol%). Then, ZnCl2-solution (1.1 equiv., 1 M in THF) was added followed by the substrate (1 

equiv.). The reaction mixture was stirred at 25 °C until GC-analysis of hydrolyzed reaction 

aliquot showed full consumption of the starting material. Then, solids were allowed to settle 

down or the reation mixture was centrifuged (10 min, 2000 rpm). The yield of the insertion 

rection was determined by iodometric titration of the supernatant solution. This clear solution  

was then used in the reaction with electrophiles. 

 

General procedure 5 (GP5): Synthesis of tetrahydrophthalates of type 26: 

The freshly prepared zinc reagent was cooled to -40 °C and CuCN·2LiCl (ca. 0.03 mL, 0.03 mmol, 

1 M in THF) was added followed by the corresponding acid chloride (0.6 equiv.). After stirring 

for the given time at -40 °C, the reaction mixture was quenched with sat. NH4Cl/NH3 (9:1) 

solution (10 mL), washed with sat. NH4Cl/NH3 solution (9:1, 2x10 mL) and extracted with Et2O 

(3x10 mL). The combined organic phases were washed with sat. NaCl solution (10 mL), dried 

over Na2SO4 and concentrated in vacuo. The crude residue obtained was dissolved in MeOH 

(20 mL) and hydrazine hydrate (3 equiv.) was added at room temperature. After stirring for the 

given time, the reaction mixture was concentrated in vacuo. The crude residue obtained was 

purified by flash column chromatography to give the analytically pure product. 

 

3.2 DIRECT INSERTION OF ZINC IN ACTIVATED ALKENYL BROMIDES 

Preparation of (1-cyano-2-phenylvinyl)zinc bromide (23a): 

 

According to GP1, the zinc reagent 23a was prepared from (E)-2-bromo-3-phenylacrylonitrile 

(22a, 2.08 g, 10.0 mmol) using Zn dust (980 mg, 15.0 mmol) and LiCl (636 mg, 15.0 mmol) in 1 h 

at 25 °C. Titration against iodine indicates a concentration of 0.80 M (90%). 

 

Preparation of (2-formylcyclohex-1-en-1-yl)zinc bromide (23c): 
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According to GP1, the zinc reagent 23c was prepared from 2-bromocyclohex-1-ene-1-

carbaldehyde (22c, 1.89 g, 10.0 mmol) using Zn dust (1.31 g, 20.0 mmol) and LiCl (848 mg, 

20.0 mmol) in 1 h at 25 °C. Titration against iodine indicates a concentration of 0.77 M (86%). 

 

Preparation of (5-formyl-3,6-dihydro-2H-pyran-4-yl)zinc bromide (23d): 

 

According to GP1, the zinc reagent 23d was prepared from 4-bromo-5,6-dihydro-2H-pyran-3-

carbaldehyde (22d, 955 mg, 5.00 mmol) using Zn dust (490 mg, 7.50 mmol) and LiCl (318 mg, 

7.5 mmol) in 1 h at 25 °C. Titration against iodine indicates a concentration of 0.72 M (77%). 

 

Preparation of (4,4-dimethyl-1-oxopent-2-en-3-yl)zinc bromide (23e): 

 

According to GP1, the zinc reagent 23e was prepared from 3-bromo-4,4-dimethylpent-2-enal 

(22e, 1.91 g, 10.0 mmol) using Zn dust (981 mg, 15.0 mmol) and LiCl (636 mg, 15.0 mmol) in 1 h 

at 25 °C. Titration against iodine indicates a concentration of 0.61 M (67%). 

 

Preparation of (3-oxocyclohex-1-en-1-yl)zinc bromide (23f): 

 

According to GP1, the zinc reagent 23f was prepared from 3-bromocyclohex-2-enon (22f, 1.75 g, 

10.0 mmol) using Zn dust (981 mg, 15.0 mmol) and LiCl (636 mg, 15.0 mmol) in 1 h at 25 °C. 

Titration against iodine indicates a concentration of 0.77 M (86%). 

 

Preparation of (3-oxocyclohex-1-en-1-yl)zinc bromide (23g): 

 

According to GP1, the zinc reagent 23g was prepared from 3-bromocyclopent-2-enon (22g, 1.50 

g, 10.0 mmol) using Zn dust (981 mg, 15.0 mmol) and LiCl (636 mg, 15.0 mmol) in 1 h at 25 °C. 

Titration against iodine indicates a concentration of 0.99 M (94%). 
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Preparation of (1,3-dibenzyl-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-5-yl)zinc bromide 

(23h): 

 

According to GP1, the zinc reagent 23h was prepared from 1,3-dibenzyl-5-bromopyrimidine-

2,4(1H,3H)-dione (22h, 5.58 g, 15.0 mmol) using Zn dust (1.47 g, 22.5 mmol) and LiCl (954 mg, 

22.5 mmol) in 8 h at 25 °C. Titration against iodine indicates a concentration of 0.72 M (86%). 

 

Preparation of ethyl 4-(1-cyano-2-propylpent-1-en-1-yl)benzoate (25a): 

 

The cross-coupling reaction of 23a (3.35 mL, 2.45 mmol, 0.71 M in THF) with 4-

bromobenzonitrile (400 mg, 2.20 mmol) was performed according to GP3 in 12 h. Flash column 

chromatography (silica, pentane:Et2O 7:3) furnished 25a as a yellow solid (276 mg, 73 %). 

m.p.: 137.6–139.2 °C. 

1H-NMR (300 MHz, CDCl3) δ (ppm) = 7.93 (dd, J = 6.7 and 3.0 Hz, 2 H), 7.81 (d, J = 8.8 Hz, 2 H), 

7.74 (d, J = 8.8 Hz, 2 H), 7.65 (s, 1 H), 7.48–7.54 (m, 3 H). 

13C-NMR (75 MHz, CDCl3) δ (ppm) = 144.9, 138.7, 132.9, 132.8, 131.5, 129.6, 129.1, 126.5, 118.1, 

117.1, 112.6, 109.8. 

IR (ATR): 
~  (cm-1) = 3055 (w), 2229 (m), 2215 (m), 1588 (w), 1569 (w), 1510 (w), 1448 (w), 

1418 (w), 1374 (w), 1324 (w), 1182 (w), 933 (m), 834 (vs), 753 (m), 680 (vs).  

 

Preparation of 4-(2-formylcyclohex-1-en-1-yl)benzonitrile (25b): 

 

The cross-coupling reaction of 23c (2.60 mL, 2.00 mmol, 0.77 M in THF) with 4-

bromobenzonitrile (291 mg, 1.60 mmol) was performed according to GP3 in 1.5 h. Flash column 

chromatography (silica, pentane:Et2O 8.5:1.5) furnished 25b as a yellow solid (276 mg, 82 %). 

m.p.: 78.0–79.8 °C. 
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1H-NMR (300 MHz, CDCl3) δ (ppm) = 9.42 (s, 1 H), 7.68 (d, J = 8.6 Hz, 2 H), 7.35 (d, J = 8.6 Hz, 

2 H), 2.57–2.47 (m, 2 H ), 2.43–2.11 (m, 2 H), 1.89–1.65 (m, 4 H). 

13C-NMR (75 MHz, CDCl3) δ (ppm) = 192.2, 156.7, 144.3, 136.9, 132.0, 129.3, 118.3, 112.1, 33.6, 

22.2, 22.2, 21.2. 

MS (EI, 70 eV), m/z (%): 211 (M+, 100), 210 (84), 182 (28), 154 (29), 140 (24), 116 (32). 

HRMS m/z : calc. for C14H13NO 211.0997, found 211.0992. 

IR (ATR): 
~  (cm-1) = 2928 (w), 2856 (w), 2227 (m), 1709 (w), 1663 (vs), 1621 (m), 1604 (m), 

1500 (w), 1408 (m), 1361 (w), 1275 (w), 1211 (m), 1193 (w), 1171 (m), 984 (w), 856 (m), 826 

(s), 711 (m).  

 

Preparation of ethyl 2-[(2-formylcyclohex-1-en-1-yl)methyl]prop-2-enoate (25c): 

 

The allylation reaction of 23c (2.60 mL, 2.00 mmol, 0.77 M in THF) with ethyl 

(2-bromomethyl)acrylate (347 mg, 1.80 mmol) was performed according to GP2 in 1 h. Flash 

column chromatography (silica, pentane:Et2O 9:1) furnished 25c as a colorless oil (377 mg, 

94 %). 

1H-NMR (300 MHz, CDCl3) δ (ppm) = 10.07 (s, 1 H), 6.27 (d, J = 1.1, 1 H), 5.51 (d, J = 1.1, 1 H), 

4.21 (d, J = 7.1 Hz, 2 H), 3.54 (s, 2 H ), 2.28-2.14 (m, 4 H), 1.16 (dt, J = 6.4 and 3.2 Hz, 4 H), 1.37 (t, 

J = 7.1 Hz, 3 H). 

13C-NMR (75 MHz, CDCl3) δ (ppm) = 191.2, 166.5, 154.8, 138.0, 135.5, 126.2, 61.0, 33.7, 31.6, 

22.4, 22.0, 21.6, 14.1. 

MS (EI, 70 eV), m/z (%): 222 (M+, 3), 149 (100), 148 (49), 147 (28), 119 (25), 91 (37), 79 (25). 

HRMS m/z : calc. for C13H18O3 222.1256, found 222.1258. 

 

 

 

Preparation of ethyl 3-(2-formylcyclohex-1-en-1-yl)prop-2-ynoate (25d): 
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A dry, argon flushed Schlenk-flask equipped with a magnetic stirring bar and septum was 

charged with the alkenyl zinc reagent 23c (2.80 mL, 2.40 mmol, 0.85 M in THF) and cooled 

to -78 °C. CuCN·2LiCl (0.24 mL, 0.24 mmol, 1.0 M in THF) was added, followed by ethyl 3-

bromoprop-2-ynoate (354 mg, 2.00 mmol) and the reaction mixture was stirred for 3 h at -78 °C. 

The reaction was quenched with sat. NH4Cl solution (10 mL) and extracted with Et2O (3x20 mL). 

The combined organic phases were washed with sat. NaCl solution (10 mL), dried over Na2SO4 

and concentrated in vacuo. The crude residue obtained was purified by flash column 

chromatography (silica, hexanes:Et2O 4:1) to give 25d as a colorless oil (331 mg, 80 %). 

1H-NMR (300 MHz, CDCl3) δ (ppm) = 10.15 (s, 1H), 4.28 (q, J = 6.0 Hz, 2H), 2.50-2.40 (m, 2H), 

2.35-2.25 (m, 2H), 1.75-1.60 (m, 4H), 1.33 (t, J = 6.0 Hz, 3H). 

13C-NMR (75 MHz, CDCl3) δ (ppm) = 191.5, 153.3, 147.6, 135.8, 88.32, 81.8, 62.4, 31.2, 22.3, 21.5, 

20.6, 14.0. 

MS (EI, 70 eV), m/z (%): 296 (M+, 9), 162 (75), 105 (36), 91 (40), 77 (49), 43 (100). 

HRMS m/z : calc. for C12H14O3 206.0943, found 206.0946. 

IR (ATR): 
~  (cm-1) = 2939 (m), 2210 (m), 1708 (vs), 1678 (vs), 1366 (m), 1255 (vs), 1217 (vs), 

1140 (s), 1017 (s), 747 (m). 

 

Preparation of 2-[(2-bromophenyl)carbonyl]cyclohex-1-ene-1-carbaldehyde (25e): 

 

A dry, argon flushed Schlenk-flask equipped with a magnetic stirring bar and septum was 

charged with the alkenyl zinc reagent 23c (2.80 mL, 2.40 mmol, 0.85 M in THF) and cooled 

to -50 °C. CuCN·2LiCl (2.40 mL, 2.40 mmol, 1.0 M in THF) was added, followed by 

2-bromobenzoyl chloride (439 mg, 2.00 mmol) and the reaction mixture was stirred for 4 h 

at -50 °C. The reaction was quenched with sat. NH4Cl/NH3 (9:1) solution (10 mL) and extracted 

with Et2O (3x20 mL). The combined organic phases were washed with sat. NaCl solution 

(10 mL), dried over Na2SO4 and concentrated in vacuo. The crude residue obtained was purified 

by flash column chromatography (silica, hexanes:Et2O 10:1 then 4:1) to give 25e as a colorless 

oil (297 mg, 51 %). 

1H-NMR (300 MHz, CDCl3) δ (ppm) = 9.74 (s, 1 H). 7.70-7.55 (m, 2 H), 7.45-7.35 (m, 2 H), 2.50-

2.35 (m, 4 H), 1.80-1.70 (m, 4 H), 

13C-NMR (75 MHz, CDCl3) δ (ppm) = 197.3, 191.2, 154.6, 141.7, 139.0, 134.3, 133.2, 131.2, 127.9, 

120.7, 28.7, 22.5, 21.8, 20.8. 
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MS (EI, 70 eV), m/z (%):213 (M+, 100), 185 (77), 183 (77), 109 (72), 43 (80). 

HRMS m/z : calc. for C14H13BrO2 292.0099, found 292.0092. 

IR (ATR): 
~  (cm-1) = 2937 (w), 1751 (vs), 1434 (m), 1172 (m), 1065 (m), 1026 (vs), 1008 (vs), 

911 (s), 755 (vs), 734 (s). 

 

Preparation of 5-(2-formylcyclohex-1-en-1-yl)pyridine-3-carbonitrile (25f): 

 

The cross-coupling reaction of 23c (2.80 mL, 2.40 mmol, 0.85 M in THF) with 5-bromopyridine-

3-carbonitrile (366 mg, 2.00 mmol) was performed according to GP3 in 3 h. Flash column 

chromatography (silica, hexanes:Et2O 1:1) furnished 25f as a yellow oil (276 mg, 65 %). 

1H-NMR (300 MHz, CDCl3) δ (ppm) = 9.42 (s, 1 H). 8.88-8.87 (m, 1 H), 8.69-8.68 (m, 1 H), 7.88-

7.87(m, 1 H), 2.55-2.45 (m, 2 H), 2.43-2.35 (m, 2 H), 1.85-1.70 (m, 4 H), 

13C-NMR (75 MHz, CDCl3) δ (ppm) = 191.0, 152.2, 151.9, 151.7, 138.8, 138.6, 135.5, 115.9, 109.9, 

33.8, 22.3, 22.1, 21.0. 

MS (EI, 70 eV), m/z (%): 212 (M+, 73), 211 (73), 183 (100), 169 (29), 155 (63). 

HRMS m/z : calc. for C13H12N2O 212.0950, found 212.0939. 

IR (ATR): 
~  (cm-1) = 2934 (m), 2860 (w), 2234 (w), 1667 (vs), 1625 (m), 1418 (m), 1223 (m), 

1024 (w), 905 (m), 707 (s), 652 (w). 

 

Preparation of 2-[4-(trifluoromethyl)phenyl]cyclohex-1-ene-1-carbaldehyde (25g): 

 

The cross-coupling reaction of 23c (2.80 mL, 2.40 mmol, 0.85 M in THF) with 4-

bromobenzotrifluoride (450 mg, 2.00 mmol) was performed according to GP3 in 4 h. Flash 

column chromatography (silica, hexanes:Et2O 10:1 then 4:1) furnished 25g as a yellow oil 

(369 mg, 73 %). 

1H-NMR (300 MHz, CDCl3) δ (ppm) = 9.45 (s, 1 H). 7.66 (q, J = 9.0 Hz, 2 H), 7.37 (q, J = 9.0 Hz, 2 

H), 2.60-2.50 (m, 2 H), 2.40-2.30 (m, 2 H), 1.85-1.60 (m, 4 H). 
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13C-NMR (75 MHz, CDCl3) δ (ppm) = 192.1, 157.4, 143.2, 136.7, 130.4 (q, J = 33 Hz), 128.9, 125.3 

(q, J = 4 Hz), 123.9 (q, J = 272 Hz), 33.9, 22.3, 22.2, 21.3. 

MS (EI, 70 eV), m/z (%): 254 (M+, 25), 253 (22), 185 (50), 159 (19), 43 (100). 

HRMS m/z : calc. for C14H13F3O 254.0918, found 254.0907. 

IR (ATR): 
~  (cm-1) = 2937 (w), 1671 (s), 1614 (w), 1322 (vs), 1211 (w), 1163 (s), 1121 (vs), 

1109 (vs), 1067 (vs), 1017 (m), 840 (m). 

 

Preparation of 2-[(dimethylamino)methyl]cyclohex-1-ene-1-carbaldehyde (25h): 

 

A dry, argon flushed Schlenk-flask equipped with a magnetic stirring bar and septum was 

charged with CH2Cl2 (2 mL) and N, N, N’, N’-tetramethyldiaminomethane (204 mg, 2.00 mmol) 

and was cooled to 0 °C. Then, trifluoroacetic anhydride (420 mg, 2 mmol) was added dropwise 

at 0 °C and the resulting clear solution was stirred for 15 min. Then, the alkenyl zinc reagent 23c 

(2.82 mL, 2.00 mmol, 0.71 M in THF) was added and the reaction mixture was stirred for 30 min. 

The reaction was quenched with sat. NaCl solution (10 mL) and extracted with EtOAc (3x20 mL). 

The combined organic phases were dried over Na2SO4 and concentrated in vacuo. The crude 

residue obtained was dissolved in EtOAc (30 mL) and washed with HCl (2x20 mL, 2 M). The 

aqueous solution was neutralized with NaHCO3, NaOH (2 M, 10 mL) was added and subsequently 

extracted with EtOAc (3x10 mL). After drying over Na2SO4 and evaporation of solvents 25h was 

isolated as a yellow liquid (226 mg, 68 %). 

1H-NMR (300 MHz, CDCl3) δ (ppm) = 10.13 (s, 1 H), 3.27 (s, 2 H), 2.36–2.27 (m, 2 H), 2.24 (s, 6 

H), 2.24–2.19 (m, 2 H), 1.68–1.54 (m, 4 H). 

13C-NMR (75 MHz, CDCl3) δ (ppm) = 188.4, 155.1, 136.5, 59.7, 45.4, 30.8, 22.4, 22.0, 21.6. 

MS (EI, 70 eV), m/z (%): 167 (M+, 20), 138 (100), 122 (22), 110 (22), 79 (23), 58 (34), 42 (57). 

HRMS m/z : calc. for C10H17NO 167.1310, found 167.1307. 

 

Preparation of 4-[(dimethylamino)methyl]-5,6-dihydro-2H-pyran-3-carbaldehyde (25i): 

 

A dry, argon flushed Schlenk-flask equipped with a magnetic stirring bar ans septum was 

charged with CH2Cl2 (2 mL) and N, N, N’, N’-tetramethyldiaminomethane (163 mg, 1.6 mmol) 

and was cooled to 0 °C. Then, trifluoroacetic anhydride (336 mg, 1.6 mmol) was added dropwise 

at 0 °C and the resulting clear solution was stirred for 15 min. Then, the alkenyl zinc reagent 23d 
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(3.1 mL, 2.00 mmol, 0.65 M in THF) was added and the reaction mixture was stirred for 30 min. 

The reaction was quenched with sat. NaCl solution (10 mL) and extracted with EtOAc (3x20 mL). 

The combined organic phases were dried over Na2SO4 and concentrated in vacuo. The crude 

residue obtained was dissolved in EtOAc (30 mL) and washed with HCl (2x 20 mL, 2 M). The 

aqueous solution was neutralized with NaHCO3, NaOH (2 M, 10 mL) was added and subsequently 

extracted with EtOAc (3x10 mL). After drying over Na2SO4 and evaporation of solvents 25i was 

isolated as a yellow liquid (237 mg, 88 %). 

1H-NMR (300 MHz, CDCl3) δ (ppm) = 10.08 (s, 1 H), 4.49–4.45 (m, 2 H), 3.39 (t, J = 5.5 Hz, 2 H), 

2.67 (s, 2 H), 2.01–1.95 (m, 2 H), 1.83 (s, 6 H). 

13C-NMR (75 MHz, CDCl3) δ (ppm) = 188.1, 152.7, 136.1, 64.3, 64.0, 58.9, 45.4, 29.7. 

MS (EI, 70 eV), m/z (%): 169 (M+, 19), 124 (100), 123 (16), 94 (25), 58 (87), 44 (15), 42 (16). 

HRMS m/z : calc. for C9H15NO2 169.1103, found 161.1108. 

IR (ATR): 
~  (cm-1) = 2944 (w), 2822 (m), 2768 (w), 1663 (vs), 1461 (m), 1387 (m), 1290 (m), 

1252 (s), 1165 (m), 1115 (m), 1041 (m), 1016 (m), 1002 (m), 950 (m), 855 (m), 839 (m), 758 

(m), 694 (m), 675 (m).  

 

Preparation of ethyl 2-[(2-formylcyclohex-1-en-1-yl)methyl]prop-2-enoate (25k): 

 

The allylation reaction of 23e (3.85 mL, 2.00 mmol, 0.52 M in THF) with 3-bromocyclohexene 

(258 mg, 1.60 mmol) was performed according to GP2 in 30 min. Flash column chromatography 

(silica, pentane:Et2O 95:5) furnished 25k as a colorless oil (294 mg, 96 %). 

1H-NMR (300 MHz, CDCl3) δ (ppm) = 10.36 (d, J = 8.3 Hz, 1 H), 5.84 (dd, J = 8.2 and 1.2 Hz, 1 H), 

5.77–5.58 (m, 2 H), 3.35–3.14 (m, 1 H), 2.23–2.09 (m, 3 H ), 2.00–1.81 (m, 1 H), 1.79–1.51 (m, 

2 H), 1.14 (s, 9 H). 

13C-NMR (75 MHz, CDCl3) δ (ppm) = 191.2, 188.1, 152.7, 145.9, 136.1, 64.3, 64.0, 58.9, 45.4, 29.7, 

26.5. 

MS (EI, 70 eV), m/z (%): 192 (M+, 23), 163 (85), 135 (100), 108 (75), 79 (86), 57 (81), 41 (89). 

HRMS m/z : calc. for C13H20O 192.1514, found 192.1508. 

IR (ATR): 
~  (cm-1) = 2938 (m), 2868 (w), 1668 (vs), 1614 (m), 1449 (w), 1394 (w), 1366 (w), 

1208 (w), 1152 (s), 1134 (m), 1030 (w), 890 (m), 855 (m), 722 (m), 664 (s).  
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Preparation of 2-[1-tert-butyl-3-oxoprop-1-en-1-yl]benzaldehyde (25l): 

 

The cross-coupling reaction of 23e (3.80 mL, 2.00 mmol, 0.53 M in THF) with 2-

bromobenzaldehyde (296 mg, 1.60 mmol) was performed according to GP3 in 2 h. Flash column 

chromatography (silica, hexanes:Et2O 1:1) furnished 25l as a yellow wax (319 mg, 92 %). 

1H-NMR (300 MHz, CDCl3) δ (ppm) = 10.04 (s, 1 H). 9.10 (d, J = 8.0 Hz, 1 H), 8.02 (dd, J = 8.0 and 

1.4 Hz, 1 H), 7.65 (td, J = 7.5 and 1.7 Hz, 1 H), 7.56 (td, J = 7.5 and 1.4 Hz, 1 H), 7.22 (dd, J = 7.6 

and 1.0 Hz, 1 H), 6.39 (d, J = 8.0 Hz, 1 H), 1.18 (s, 9 H). 

13C-NMR (75 MHz, CDCl3) δ (ppm) = 193.0, 190.9, 171.3, 139.3, 134.6, 133.3, 130.2, 129.3, 128.7, 

128.7, 38.0, 29.3. 

MS (EI, 70 eV), m/z (%): 216 (M+, >1), 187 (100), 160 (17), 131 (23), 103 (11), 77 (13), 57 (17), 

41 (11). 

HRMS m/z : calc. for C14H16O2 216.1150, found 216.1158. 

IR (ATR): 
~  (cm-1) = 2970 (m), 2850 (w), 2758 (vw), 1684 (vs), 1671 (vs), 1591 (m), 1480 (m), 

1396 (m), 1366 (w), 1264 (m), 1198 (s), 1176 (m), 1132 (s), 878 (m), 826 (s), 803 (m), 781 (m), 

754 (s), 713 (m), 702 (m).  

 

Preparation of 3-(4-Cyanophenyl)-2-cyclohexen-1-one (25m): 

 

The cross-coupling reaction of 23f (4.80 mL, 2.40 mmol, 0.50 M in THF) with 4-iodobenzonitrile 

(458 mg, 2.00 mmol) was performed according to GP3 in 3 h. Flash column chromatography 

(silica, hexanes:Et2O 1:1 then 1:2) furnished 25m as a colorless solid (349 mg, 88 %). 

m.p.: 95.8–97.4 °C. 

1H-NMR (300 MHz, CDCl3) δ (ppm) = 7.70 (d, J = 8.3 Hz, 2 H). 7.61 (d, J = 8.5 Hz, 2 H), 6.41 (s, 1 

H), 2.75 (td, J = 6.0 and 1.2 Hz, 2 H), 2.50 (d, J = 7.1 Hz, 2 H), 2.18 (quint, J = 6.4 Hz, 2 H),  

13C-NMR (75 MHz, CDCl3) δ (ppm) = 199.1, 157.2, 143.3, 132.5, 127.3, 126.6, 118.2, 113.2, 37.1, 

27.9, 22.6,  

MS (EI, 70 eV), m/z (%): 197 (M+, 44), 169 (100), 141 (69), 140 (90), 113 (24). 
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HRMS m/z : calc. for C13H11NO 197.0841, found 197.0838. 

IR (ATR): 
~  (cm-1) = 2951 (w), 2223 (w), 1662 (vs), 1603 (m), 1343 (m), 1259 (m), 1183 (m), 

1130 (m), 889 (m), 830 (m), 816 (vs). 

 

Preparation of ethyl 1,1'-bi(cyclohexane)-1,2'-dien-3-one (25n): 

 

The allylation reaction of 23f (4.80 mL, 2.40 mmol, 0.50 M in THF) with 3-bromocyclohexene 

(322 mg, 2.00 mmol) was performed according to GP2 in 1 h. Flash column chromatography 

(silica, pentane:Et2O 4:5) furnished 25n as a colorless oil (269 mg, 76 %). 

1H-NMR (300 MHz, CDCl3) δ (ppm) = 5.90-5.80 (m, 2 H), 5.55-5.48 (m, 1 H), 2.95-2.85 (m, 1 H), 

2.40-2.20 (m, 4 H), 2.15-1.80 (m, 5 H), 1.75-1.40 (m, 3 H). 

13C-NMR (75 MHz, CDCl3) δ (ppm) = 200.1, 169.4, 129.7, 126.9, 125.8, 43.22, 37.5, 28.3, 27.6, 

24.9, 23.0, 20.6. 

MS (EI, 70 eV), m/z (%): 176 (M+, 45), 120 (100), 105 (72), 92 (74), 91 (92). 

HRMS m/z : calc. for C12H16O 176.1201, found 176.1201. 

IR (ATR): 
~  (cm-1) = 2930 (m), 1662 (vs), 1619 (m), 1257 (m), 1241 (m), 1187 (m), 1133 (w), 

965 (w), 884 (m), 725 (m). 

 

Preparation of 3-[2-(Ethoxycarbonyl)ethynyl]-2-cyclohexen-1-one (25o): 

 

A dry, argon flushed Schlenk-flask equipped with a magnetic stirring bar and septum was 

charged with the alkenyl zinc reagent 23f (4.80 mL, 2.40 mmol, 0.50 M in THF) and cooled 

to -78 °C. CuCN·2LiCl (0.24 mL, 0.24 mmol, 1.0 M in THF) was added, followed by ethyl 3-

bromoprop-2-ynoate (354 mg, 2.00 mmol) and the reaction mixture was stirred for 3 h at -78 °C. 

The reaction was quenched with sat. NH4Cl solution (10 mL) and extracted with Et2O (3x20 mL). 

The combined organic phases were washed with sat. NaCl solution (10 mL), dried over Na2SO4 

and concentrated in vacuo. The crude residue obtained was purified by flash column 

chromatography (silica, hexanes:Et2O 2:1) to give 25o as a colorless oil (273 mg, 71 %). 
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1H-NMR (300 MHz, CDCl3) δ (ppm) = 6.35 (t, J = 1.9 Hz, 1 H), 4.27 (q, J = 7.1 Hz, 2 H), 2.50-2.40 

(m, 4 H), 2.11–2.01 (m, 2 H), 1.33 (t, J = 7.2 Hz, 3H),  

13C-NMR (75 MHz, CDCl3) δ (ppm) = 197.6, 153.1, 139.4, 135.7, 88.2, 83.1, 62.5, 37.2, 29.3, 22.34, 

13.9. 

MS (EI, 70 eV), m/z (%): 192 (M+, 41), 164 (85), 147 (85), 120 (99), 92 (100). 

HRMS m/z : calc. for C11H12O3 192.0786, found 192.0780. 

IR (ATR): 
~  (cm-1) = 2942 (w), 2218 (m), 1707 (vs), 1676 (vs), 1261 (vs), 1245 (vs), 1187 (s), 

1145 (vs), 1135 (vs), 1015 (m), 747 (m). 

 

Preparation of 3-[4-(ethoxycarbonyl)phenyl]-2-cyclohexen-1-one (25p): 

 

The cross-coupling reaction of 23f (4.80 mL, 2.40 mmol, 0.50 M in THF) with ethyl 4-

iodobenzoate (552 mg, 2.00 mmol) was performed according to GP3 in 3 h. Flash column 

chromatography (silica, hexanes:Et2O 2:1 then 1:1) furnished 25p as a colorless solid (373 mg, 

76 %). 

m.p.: 62.2–64.3 °C. 

1H-NMR (300 MHz, CDCl3) δ (ppm) = 8.07 (d, J = 8.8 Hz, 2 H), 7.58 (d, J = 8.8 Hz, 2 H), 6.44 (t, J 

= 1.5 Hz, 1 H), 4.39 (q, J = 7.1 Hz, 2 H), 2.78 (td, J = 6.1 and 1.5 Hz, 2 H), 2.53–2.47 (m, 2 H), 2.17 

(quint, J = 6.4 Hz, 2 H), 1.40 (t, J = 7.1 Hz, 3 H). 

13C-NMR (75 MHz, CDCl3) δ (ppm) = 199.5, 165.9, 158.4, 143.0, 131.5, 129.8, 126.7, 125.9, 61.2, 

37.2, 28.0, 22.7, 14.3. 

MS (EI, 70 eV), m/z (%): 244 (M+, 100), 216 (41), 199 (48), 171 (99), 144 (94). 

HRMS m/z : calc. for C15H16O3 244.1099, found 244.1099. 

IR (ATR): 
~  (cm-1) = 2944 (w), 1704 (vs), 1665 (vs), 1602 (s), 1287 (s), 1269 (vs), 1184 (s), 

1110 (vs), 1021 (m), 766 (vs), 698 (s). 
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Preparation of 3-[4-(trifluoromethyl)phenyl]-2-cyclopenten-1-one (25q): 

 

The cross-coupling reaction of 23g (3.43 mL, 2.40 mmol, 0.70 M in THF) with 4-

iodobenzotrifluoride (544 mg, 2.00 mmol) was performed according to GP3 in 3 h. Flash column 

chromatography (silica, hexanes:Et2O 1:1 then 1:2) furnished 25q as a colorless solid (333 mg, 

74 %). 

m.p.: 106.5–108.2 °C. 

1H-NMR (300 MHz, CDCl3) δ (ppm) = 8.07 (d, J = 8.8 Hz, 2 H), 7.58 (d, J = 8.8 Hz, 2 H), 6.44 (t, J 

= 1.5 Hz, 1 H), 4.39 (q, J = 7.1 Hz, 2 H), 2.78 (td, J = 6.1 and 1.5 Hz, 2 H), 2.53–2.47 (m, 2 H), 2.17 

(quint, J = 6.4 Hz, 2 H), 1.40 (t, J = 7.1 Hz, 3 H). 

13C-NMR (75 MHz, CDCl3) δ (ppm) = 208.7, 171.7, 137.4, 132.6 (q, J = 32 Hz), 129.4, 127.0, 125.9 

(q, J = 4 Hz), 123.7 (q, J = 272 Hz), 35.3, 28.7,  

MS (EI, 70 eV), m/z (%):226 (M+, 95), 225 (33), 170 (28), 157 (100), 129 (38). 

HRMS m/z : calc. for C12H9F3O 226.0605, found 226.0597. 

IR (ATR): 
~  (cm-1) = 2925 (w), 1689 (s), 1677 (s), 1601 (m), 1319 (vs), 1163 (vs), 1132 (vs), 

1110 (vs), 1064 (vs), 1014 (m), 829 (vs). 

 

Preparation of ethyl 4-(1,3-dibenzyl-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-5-

yl)benzoate (25r): 

 

The cross-coupling reaction of 23g (4.17 mL, 3.00 mmol, 0.72 M in THF) with ethyl 4-

iodobenzoate (745 mg, 2.70 mmol) was performed according to GP3 in 2 h. Flash column 

chromatography (silica, pentane:Et2O 3:2) furnished 25r as a colorless solid (1.19 g, 90 %). 

m.p.: 108.9–110.7 °C. 

1H-NMR (300 MHz, CDCl3) δ (ppm) = 8.04 (d, J = 8.8 Hz, 2 H), 7.56 (d, J = 8.8 Hz, 2 H), 7.45–7.24 

(m, 11 H), 5.26 (s, 2 H), 5.04 (s, 2 H), 4.39  (q, J = 7.2 HZ, 2 H), 1.41 (t, J = 7.1 Hz, 3 H). 

13C-NMR (75 MHz, CDCl3) δ (ppm) = 166.2, 161.5, 151.2, 140.0, 137.3, 136.7, 135.1, 129.7, 129.6, 

129.2, 129.2, 128.6, 128.4, 128.0, 127.7, 114.0, 61.0, 52.5, 45.0, 14.3. 
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IR (ATR): 
~  (cm-1) = 1696 (s), 1654 (vs), 1605 (m), 1447 (s), 1408 (m), 1380 (m), 1363 (m), 

1270 (s), 1105 (s), 1020 (m), 943 (m), 859 (m), 784 (s), 753 (m), 731 (s), 697 (vs). 

 

Preparation of 1,3-dibenzyl-5-(4-(trifluoromethyl)phenyl)pyrimidine-2,4(1H,3H)-dione 

(25s): 

 

The cross-coupling reaction of 23g (4.17 mL, 3.00 mmol, 0.72 M in THF) with 

4-trifluoromethylbromobenzene (608 mg, 2.70 mmol) was performed according to GP3 in 2 h. 

Flash column chromatography (silica, hexanes:Et2O 1:1) furnished 25s as a colorless solid (1.07 

g, 81 %).  

m.p.: 160.2–161.6 °C. 

1H-NMR (300 MHz, CDCl3) δ (ppm) = 7.67–7.52 (m, 6 H), 7.46–7.24 (m, 9 H), 5.26 (s, 2 H), 5.04 

(s, 2 H). 

13C-NMR (75 MHz, CDCl3) δ (ppm) = 161.5, 151.2, 140.0, 136.6, 136.4 (q, J = 1.4 Hz), 135.0, 129.8 

(q, J = 33 Hz), 129.3, 129.2, 128.7, 128.5, 128.4, 128.1, 127.7, 125.3 (q, J = 4 Hz), 124.0 (q, J = 272 

Hz), 113.7, 52.6, 45.1. 

IR (ATR): 
~  (cm-1) = 3064 (vw), 1704 (m), 1651 (vs), 1451 (m), 1409 (m), 1356 (m), 1325 (s), 

1237 (m), 1110 (s), 1063 (m), 1018 (w), 941 (m), 832 (w), 729 (s), 695 (s), 609 (m).  

 

Preparation of 1-phenyl-5,6,7,8-tetrahydrophthalazine (26a): 

 

The acylation reaction of 23c (3.10 mL, 2.00 mmol, 0.65 M in THF) with benzoyl chloride (225 

mg, 1.60 mmol) was performed in 14 h followed by the reaction hydrazine hydrate (300 mg, 

6.00 mmol) according to GP5. Flash column chromatography (silica, CH2Cl2:EtOAc 9:1) furnished 

26c as a colorless solid (166 mg, 49 %). 

m.p.: 80.0–84.2 °C. 

1H-NMR (300 MHz, CDCl3) δ (ppm) = 8.83 (s, 1 H), 7.57–7.33 (m, 5 H), 2.80 (t, J = 6.4 Hz, 2 H), 

2.64 (t, J = 6.2 Hz, 2 H), 1.94–1.66 (m, 4 H). 
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13C-NMR (75 MHz, CDCl3) δ (ppm) = 161.4, 151.3, 137.2, 137.0, 135.5, 129.0, 128.7, 128.2, 26.4, 

26.0, 22.1, 21.4.  

MS (EI, 70 eV), m/z (%): 210 (M+, 67), 209 (100), 195 (11), 165 (11), 152 (11), 77 (14). 

HRMS m/z : calc. for C14H14N2 209.1073 [M+-H], found 209.1079. 

IR (ATR): 
~  (cm-1) = 2922 (m), 2859 (w), 1663 (m), 1565 (m), 1444 (m), 1427 (m), 1407 (m), 

1339 (m), 1234 (w), 1070 (w), 1027 (w), 1017 (w), 1001 (w), 951 (m), 928 (m), 777 (s), 756 (s), 

708 (vs). 

 

Preparation of 1-(3-chlorophenyl)-5,6,7,8-tetrahydrophthalazine (26b):  

 

The acylation reaction of 23c (3.77 mL, 2.00 mmol, 0.53 M in THF) with 3-chlorobenzoyl chloride 

(210 mg, 1.20 mmol) was performed in 14 h followed by the reaction hydrazine hydrate (300 

mg, 6.00 mmol) according to GP5. Flash column chromatography (silica, CH2Cl2:EtOAc 1:1) 

furnished 26c as a brown solid (160 mg, 54 %). 

m.p.: 110.3–112.0 °C. 

1H-NMR (300 MHz, CDCl3) δ (ppm) = 8.85 (s, 1 H), 7.56–7.51 (m, 1 H), 7.46-7.36 (m, 3 H), 2.81 (t, 

J = 6.3 Hz, 2 H), 2.64 (t, J = 6.2 Hz, 2 H), 1.93-1.72 (m, 4 H) 

13C-NMR (75 MHz, CDCl3) δ (ppm) = 160.1, 151.5, 138.7, 137.6, 135.7, 134.3, 129.6, 129.2, 128.9, 

127.2, 26.4, 26.0, 22.0, 21.3.  

MS (EI, 70 eV), m/z (%): 244 (M+, 61), 243 (100), 229 (14), 109 (7), 165 (8), 153 (8), 152 (16). 

HRMS m/z : calc. for C14H13ClN2 245.0846 [M++H], found 245.0839. 

IR (ATR): 
~  (cm-1) = 2944 (w), 2855 (w), 1562 (m), 1425 (m), 1398 (m), 1331 (m), 1231 (m), 

1076 (m), 1022 (m), 1006 (m), 956 (m), 885 (m), 860 (m), 828 (m), 800 (vs), 768 (m), 728 (s), 

700 (vs).  

 

Preparation of 1-thiophen-2-yl-5,6,7,8-tetrahydrophthalazine (26c):  
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The acylation reaction of 23c (4.00 mL, 3.00 mmol, 0.75 M in THF) with 2-thiophenecarbonyl 

chloride (264 mg, 1.80 mmol) was performed in 14 h followed by the reaction hydrazine hydrate 

(450 mg, 9.00 mmol) according to GP5. Flash column chromatography (silica, CH2Cl2:EtOAc 9:1) 

furnished 26c as a yellow solid (164 mg, 42 %). 

m.p.: 120.6–123.4 °C. 

1H-NMR (300 MHz, CDCl3) δ (ppm) = 8.72 (s, 1 H), 7.52 (dd, J = 3.7 and 1.1 Hz, 1 H), 7.49 (dd, J = 

5.0 and 1.1 Hz, 1 H), 7.15 (dd, J = 5.2 and 3.7 Hz, 1 H), 2.99-2.86 (m, 2 H), 2.84-2.71 (m, 2 H), 

1.96-1.76 (m, 4 H). 

13C-NMR (75 MHz, CDCl3) δ (ppm) = 154.8, 150.6, 140.5, 137.2, 134.1, 128.6, 128.5, 127.4, 26.9, 

26.3, 22.2, 21.1.  

MS (EI, 70 eV), m/z (%): 216 (M+, 100), 215 (68), 160 (50), 91 (49), 77 (54), 44 (67), 41 (66). 

HRMS m/z : calc. for C12H12N2S 216.0721, found 216.0719. 

IR (ATR): 
~  (cm-1) = 2940 (w), 2860 (w), 1559 (w), 1542 (w), 1437 (m), 1414 (w), 1365 (m), 

1300 (m), 1114 (w), 1053 (m), 940 (w), 928 (w), 858 (m), 836 (m), 798 (m), 708 (vs). 

  

3.3 MAGNESIUM INSERTION IN THE PRESENCE OF ZINC CHLORIDE IN ALKENYL BROMIDES 

Preparation of 2-bromocyclopentenzinc chloride (23i): 

 

According to GP4, the zinc reagent 23i was prepared from 1,2-dibromocyclopenetene (22i, 

2.26 g, 10.0 mmol) using Mg turnings (608 mg, 25.0 mmol), LiCl (636 mg, 15.0 mmol) and ZnCl2 

(11.0 mL, 1 M in THF) in 8 h at 25 °C. Titration against iodine indicates a concentration of 0.51 M 

(98 %). 

 

Preparation of (2-(ethoxycarbonyl)cyclopent-1-en-1-yl)zinc chloride (23k): 

 

According to GP4, the zinc reagent 23k was prepared from ethyl 2-bromocyclopent-1-ene-1-

carboxylate (22k, 438 mg, 2.00 mmol) using Mg turnings (122 mg, 5.00 mmol), LiCl (127 mg, 

3.00 mmol) and ZnCl2 (2.2 mL, 1 M in THF) in 14 h at 25 °C. Titration against iodine indicates a 

concentration of 0.42 M (84 %). 
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Preparation of (2-(ethoxycarbonyl)cyclohex-1-en-1-yl)zinc chloride (23l): 

 

According to GP4, the zinc reagent 23l was prepared from ethyl 2-bromocyclohex-1-ene-1-

carboxylate (22l, 2.33 g, 10.0 mmol) using Mg turnings (608 mg, 25.00 mmol), LiCl (636 mg, 

15.0 mmol) and ZnCl2 (11.0 mL, 1 M in THF) in 14 h at 25 °C. Titration against iodine indicates a 

concentration of 0.33 M (70 %). 

 

Preparation of 1-bromo-2-(3-cyclohexen-1-yl)cyclopentene (25t): 

 

The allylation reaction of 23i (4.30 mL, 2.40 mmol, 0.56 M in THF) with 3-bromocyclohexene 

(322 mg, 2.00 mmol) was performed according to GP2 in 1 h. Flash column chromatography 

(silica, hexanes) furnished 25t as a colorless oil (392 mg, 86 %). 

1H-NMR (300 MHz, CDCl3) δ (ppm) = 5.85–5.70 (m, 1 H), 5.45–5.35 (m, 1 H), 3.40–3.30 (m, 1 H), 

2.70–2.55 (m, 2 H), 2.35–2.20 (m, 2 H), 2.20–1.40 (m, 8 H).  

13C-NMR (75 MHz, CDCl3) δ (ppm) = 143.9, 128.8, 128.2, 115.2, 39.8, 36.7, 31.1, 26.7, 24.7, 21.8, 

21.7. 

MS (EI, 70 eV), m/z (%): 226 (M+, 7), 147 (100), 119 (37), 91 (57), 91 (57). 

HRMS m/z : calc. for C11H15Br 226.0357, found 226.0335. 

IR (ATR): 
~  (cm-1) = 2930 (vs), 2855 (s), 1708 (m), 1652 (m), 1445 (m), 1316 (m), 1044 (m), 

917 (m), 881 (s), 722 (vs). 

 

Preparation of (2-bromocyclopent-1-en-1-yl)(2-bromophenyl)methanone (25u): 

 

A dry, argon flushed Schlenk-flask equipped with a magnetic stirring bar and septum was 

charged with the alkenyl zinc reagent 23i (3.51 mL, 2.00 mmol, 0.57 M in THF) and cooled 

to -20 °C. CuCN·2LiCl (2.00 mL, 2.00 mmol, 1.0 M in THF) was added, followed by 2-

bromobenzoyl chloride (527 mg, 2.40 mmol) and the reaction mixture was stirred for 4 h 

at -20 °C. The reaction was quenched with sat. NH4Cl/NH3 (9:1) solution (10 mL) and extracted 

with Et2O (3x20 mL). The combined organic phases were washed with sat. NaCl solution (10 
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mL), dried over Na2SO4 and concentrated in vacuo. The crude residue obtained was purified by 

flash column chromatography (silica, hexanes:CH2Cl2 4:1) to give 25u as a colorless oil (421 mg, 

64 %). 

1H-NMR (300 MHz, CDCl3) δ (ppm) = 7.67–7.52 (m, 1 H), 7.49–7.19 (m, 3 H), 2.90 (tt, J = 7.8 and 

2.3 Hz, 2 H), 2.84–2.74 (m, 2 H), 2.04 (quint, J = 7.7 Hz, 2 H). 

13C-NMR (75 MHz, CDCl3) δ (ppm) = 193.4, 141.2, 139.5, 133.1, 133.0, 131.3, 128.9, 127.5, 119.5, 

43.94, 33.4, 21.5. 

MS (EI, 70 eV), m/z (%): 330 (M+, 14), 250 (96), 249 (100), 185 (51), 183 (51), 170 (50). 

HRMS m/z : calc. for C12H12Br2O 329.9255, found 329.9074. 

IR (ATR): 
~  (cm-1) = 2925 (w), 1647 (vs), 1588 (vs), 1431 (s), 1330 (vs), 1298 (s), 1250 (m), 

1025 (m), 744 (vs), 683 (s). 

 

Preparation of 3-(2-bromocyclopent-1-en-1-yl)cyclohexanone (25v): 

 

A dry, argon flushed Schlenk-flask equipped with a magnetic stirring bar and septum was 

charged with the alkenyl zinc reagent 23i (4.3 mL, 2.40 mmol, 0.56 M in THF) and cooled 

to -40 °C. CuCN·2LiCl (2.40 mL, 2.40 mmol, 1.0 M in THF) was added, followed by a solution of 

cyclohexenone (192 mg, 2.00 mmol) and chlorotrimethylsilane (0.8 mL, 5 mmol) in THF (1 mL) 

and the reaction mixture was stirred for 0.5 h at -40 °C and then 2 h at room temperature. The 

reaction was quenched with sat. NH4Cl/NH3 (9:1) solution (10 mL) and extracted with Et2O 

(3x20 mL). The combined organic phases were washed with sat. NaCl solution (10 mL), dried 

over Na2SO4 and concentrated in vacuo. The crude residue obtained was purified by flash column 

chromatography (silica, hexanes:Et2O 9:1) to give 25v as a colorless oil (338 mg, 70 %). 

1H-NMR (300 MHz, CDCl3) δ (ppm) = 3.04–2.91 (m, 1 H), 2.68–2.58 (m, 2 H), 2.47-2.20 (m, 5 H), 

2.19–2.05 (m, 1 H), 2.01–1.88 (m, 2 H), 1.85–1.53 (m,  4H). 

13C-NMR (75 MHz, CDCl3) δ (ppm) = 210.5, 141.6, 116.0, 45.1, 41.1, 39.8, 39.5, 30.3, 29.0, 25.4, 

21.5. 

MS (EI, 70 eV), m/z (%): 242 (M+, >1), 163 (35), 91 (16), 70 (16), 61 (16), 43 (100). 

HRMS m/z : calc. for C11H15BrO 242.0306, found 242.0288. 

IR (ATR): 
~  (cm-1) = 2935 (m), 1699 (vs), 1652 (w), 1446 (w), 1319 (m), 1261 (m), 1221 (m), 

1061 (w), 926 (w), 755 (w). 
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Preparation of 3-(2-bromocyclopent-1-en-1-yl)cyclohex-3-enone (25w): 

 

A dry, argon flushed Schlenk-flask equipped with a magnetic stirring bar and septum was 

charged with the alkenyl zinc reagent 23i (4.3 mL, 2.40 mmol, 0.56 M in THF) and cooled 

to -40 °C. CuCN·2LiCl (2.40 mL, 2.40 mmol, 1.0 M in THF) was added, followed by 3-

iodocyclohexenone (444 mg, 2.00 mmol) and the reaction mixture was stirred for 0.5 h at -40 °C 

and then 2 h at 0 °C. The reaction was quenched with sat. NH4Cl/NH3 (9:1) solution (10 mL) and 

extracted with Et2O (3x20 mL). The combined organic phases were washed with sat. NaCl 

solution (10 mL), dried over Na2SO4 and concentrated in vacuo. The crude residue obtained was 

purified by flash column chromatography (silica, hexanes:Et2O 9:1) to give 25w as a colorless oil 

(314 mg, 65 %). 

1H-NMR (300 MHz, CDCl3) δ (ppm) = 6.10 (s, 1 H). 2.85–2.70 (m, 4 H), 2.65–2.50 (m, 2 H), 2.45–

2.35 (m, 2 H), 2.20–1.90 (m, 4 H),  

13C-NMR (75 MHz, CDCl3) δ (ppm) = 200.1, 155.9, 137.9, 127.2, 123.7, 43.66, 37.4, 34.9, 28.3, 

22.9, 21.7.  

MS (EI, 70 eV), m/z (%): 242 (31), 240 (M+, 32), 161 (38), 133 (100), 105 (44). 

HRMS m/z : calc. for C11H13BrO 240.0150, found 240.0146. 

IR (ATR): 
~  (cm-1) = 2945 (m), 1658 (vs), 1589 (s), 1325 (m), 1254 (s), 1188 (s), 1133 (m), 956 

(m), 884 (s), 732 (m). 

 

Preparation of 1-bromo-2-(2-ethoxycarbonylethynyl)cyclopentene (25x): 

 

A dry, argon flushed Schlenk-flask equipped with a magnetic stirring bar and septum was 

charged with the alkenyl zinc reagent 23i (3.80 mL, 2.00 mmol, 0.53 M in THF) and cooled 

to -78 °C. CuCN·2LiCl (0.20 mL, 0.20 mmol, 1.0 M in THF) was added, followed by a solution of 

ethyl 3-bromoprop-2-ynoate (425 mg, 2.40 mmol) in THF (2 mL) and the reaction mixture was 

stirred for 3 h at -78 °C. The reaction was quenched with sat. NH4Cl solution (10 mL) and 

extracted with Et2O (3x20 mL). The combined organic phases were washed with sat. NaCl 

solution (10 mL), dried over Na2SO4 and concentrated in vacuo. The crude residue obtained was 

purified by flash column chromatography (silica, hexanes:Et2O 10:1) to give 25x as a colorless 

oil (377 mg, 78 %). 
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1H-NMR (300 MHz, CDCl3) δ (ppm) = 4.27 (q, J = 7.1 Hz, 2 H), 2.78 (tt, J = 7.7 and 2.6Hz, 2 H), 

2.61–2.51 (m, 2 H), 2.11–1.97 (m, 2 H), 1.33 (t, J = 7.1 Hz, 3H),  

13C-NMR (75 MHz, CDCl3) δ (ppm) = 153.9, 134.8, 121.9, 85.9, 81.4, 62.1, 40.9, 35.5, 22.6, 14.1. 

MS (EI, 70 eV), m/z (%): 242 (M+, 4), 91 (100), 90 (53), 89 (57), 63 (62), 62 (53). 

HRMS m/z : calc. for C10H11BrO2 241.9942, found 241.9936. 

IR (ATR): 
~  (cm-1) = 2981 (w), 2204 (m), 1704 (vs), 1366 (w), 1268 (s), 1207 (s), 1162 (vs), 

1092 (s), 1020 (m), 746 (m). 

 

Preparation of ethyl 5-(2-bromocyclopent-1-en-1-yl)furan-2-carboxylate (25y): 

 

The cross-coupling reaction of 23i (3.40 mL, 2.00 mmol, 0.59 M in THF) with ethyl 5-

bromofuran-2-carboxylat (350 mg, 1.60 mmol) was performed according to GP3 in 3 h. Flash 

column chromatography (silica, hexanes:Et2O 9:1) furnished 25y as a yellow liquid (333 mg, 74 

%). 

1H-NMR (300 MHz, CDCl3) δ (ppm) = 7.20 (d, J = 3.6 Hz, 1 H), 7.07 (d, J = 3.6 Hz, 1 H), 4.36 (q, J 

= 7.0 Hz, 2 H), 2.87 (t, J = 7.6 Hz, 4 H), 2.05 (dt, J = 15.2 and 7.6 Hz, 2 H), 1.38 (t, J = 7.2 Hz, 3 H). 

13C-NMR (75 MHz, CDCl3) δ (ppm) = 158.8, 153.7, 143.0, 129.4, 119.6, 119.2, 110.5, 60.8, 42.3, 

33.2, 21.8, 14.3.  

MS (EI, 70 eV), m/z (%): 284 (M+, 100), 241 (24), 177 (59), 131 (32), 103 (34), 77 (28). 

HRMS m/z : calc. for C12H3BrO3 284.0048, found 284.0061. 

 

Preparation of 5-(2-bromocyclopent-1-en-1-yl)pyridine-3-carbonitrile (25z): 

 

The cross-coupling reaction of 23i (3.92 mL, 2.00 mmol, 0.51 M in THF) with 5-bromo-3-

cyanopyridine (403 mg, 2.20 mmol) was performed according to GP3 in 3 h. Flash column 

chromatography (silica, hexanes:Et2O 3:1) furnished 25z as a brown solid (271 mg, 54 %). 

m.p.: 74.8–76.7 °C. 
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1H-NMR (300 MHz, CDCl3) δ (ppm) = 9.01 (d, J = 2.2 Hz, 1 H), 8.77 (d, J = 1.9 Hz, 1 H), 8.25 (t, J = 

2.1 Hz, 1 H), 2.97-2.86 (m, 2 H), 2.86-2.75 (m, 2 H),  2.18-2.04 (m, 2 H) 

13C-NMR (75 MHz, CDCl3) δ (ppm) = 151.5, 150.4, 137.5, 133.3, 132.2, 122.2, 116.4, 109.5, 42.5, 

35.4, 21.8.  

MS (EI, 70 eV), m/z (%): 248 (M+, 34), 169 (100), 168 (23), 142 (12), 115 (12), 63 (11). 

HRMS m/z : calc. for C11H9BrN2 247.9949, found 247.9930. 

IR (ATR): 
~  (cm-1) = 2943 (w), 2844 (w), 2231 (m), 1620 (w), 1559 (w), 1431 (m), 1423 (m), 

1308 (w), 1289 (w), 1186 (w), 1158 (w), 1092 (m), 1026 (m), 932 (m), 904 (s), 787 (m), 701 

(vs), 666 (m). 

  

Preparation of ethyl 5-[2-(ethoxycarbonyl)cyclopent-1-en-1-yl]thiophene-2-carboxylate 

(25aa): 

 

The cross-coupling reaction of 23k (6.25 mL, 2.00 mmol, 0.32 M in THF) with ethyl 5-

bromothiophene-2-carboxylate (376 mg, 1.60 mmol) was performed according to GP3 in 1.5 h. 

Flash column chromatography (silica, hexanes:Et2O 9:1) furnished 25aa as a colorless solid 

(373 mg, 79 %). 

m.p.: 64.2–65.5 °C. 

1H-NMR (300 MHz, CDCl3) δ (ppm) = 7.70 (d, J = 3.9 Hz, 1 H), 7.46 (d, J = 3.9 Hz, 1 H), 4.35 (q, 

J = 7.1 Hz, 2 H), 4.27 (q, J = 7.1 Hz, 2 H), 3.00 (tt, J = 7.7 and 2.3 Hz, 2 H), 2.91–2.83 (m, 2 H), 1. 98 

(quint, J = 7.7 Hz, 2 H), 1.38 (t, J = 7.2 Hz, 3 H), 1.32 (t, J = 7.2 Hz, 3 H). 

13C-NMR (75 MHz, CDCl3) δ (ppm) = 165.9, 162.4, 143.8, 143.0, 134.7, 132.6, 129.9, 129.7, 61.1, 

60.5, 39.7, 35.9, 21.5, 14.3, 14.2.  

MS (EI, 70 eV), m/z (%):294 (M+, 100), 265 (30), 251 (45), 223 (16), 222 (58), 221 (36), 193 

(11), 147 (12). 

HRMS m/z : calc. for C15H18O4S 294.0926, found 294.0920. 

IR (ATR): 
~  (cm-1) = 2982 (w), 2961 (w), 1695 (s), 1599 (m), 1519 (m), 1474 (m), 1440 (m), 

1366 (m), 1328 (m), 1216 (vs), 1098 (s), 1040 (s), 1022 (s), 824 (s), 752 (vs). 
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Preparation of ethyl 2-[2-(ethoxycarbonyl)prop-2-en-1-yl]cyclopent-1-ene-1-carboxylate 

(25ab): 

 

The allylation reaction of 23k (6.25 mL, 2.00 mmol, 0.32 M in THF) with ethyl 

(2-bromomethyl)acrylate (309 mg, 1.60 mmol) was performed according to GP2 in 1.5 h. Flash 

column chromatography (silica, pentane:Et2O 9:1) furnished 25ab as a colorless oil (348 mg, 

86 %). 

1H-NMR (300 MHz, CDCl3) δ (ppm) =6.23–6.18 (m, 1 H), 5.54–5.49 (m, 1 H), 4.26–4.12 (m, 4 H), 

3.66-3.61 (n, 2 H), 2.69–2.60 (m, 2 H), 2.49–2.39 (m, 2 H), 1.81 (quint, J = 7.7 Hz, 2 H), 1.33–1.21 

(m, 6 H). 

13C-NMR (75 MHz, CDCl3) δ (ppm) = 167.0, 165.9, 155.1, 137.8, 129.4, 125.5, 60.7, 59.7, 37.9, 

33.6, 31.9, 21.5, 14.3, 14.1. 

MS (EI, 70 eV), m/z (%): 252 (M+, 2), 206 (100), 149 (56), 134 (35), 133 (75), 105 (68), 79 (31). 

HRMS m/z : calc. for C14H20O4 252.1362, found 252.1353. 

IR (ATR): 
~  (cm-1) = 2980 (w), 1706 (vs), 1631 (m), 1446 (w), 1368 (m), 1255 (s), 1174 (s), 

1144 (s), 1107 (vs), 1026 (s), 946 (m), 818 (m), 771 (m).  

 

Preparation of ethyl 5-[2-(ethoxycarbonyl)cyclopent-1-en-1-yl]thiophene-2-carboxylate 

(25ac): 

 

The cross-coupling reaction of 23k (4.00 mL, 2.00 mmol, 0.50 M in THF) with 2-bromo-5-

trimethylsilylthiophene (470 mg, 2.00 mmol) was performed according to GP3 in 3 h. Flash 

column chromatography (silica, hexanes:Et2O 1:1 then 9:1) furnished 25ac as a colorless solid 

(436 mg, 71 %). 

m.p.: 106.5–108.2 °C. 

1H-NMR (300 MHz, CDCl3) δ (ppm) = 8.07 (d, J = 8.8 Hz, 2 H), 7.58 (d, J = 8.8 Hz, 2 H), 6.44 (t, J 

= 1.5 Hz, 1 H), 4.39 (q, J = 7.1 Hz, 2 H), 2.78 (td, J = 6.1 and 1.5 Hz, 2 H), 2.53–2.47 (m, 2 H), 2.17 

(quint, J = 6.4 Hz, 2 H), 1.40 (t, J = 7.1 Hz, 3 H). 

13C-NMR (75 MHz, CDCl3) δ (ppm) = 170.8, 149.3, 139.7, 134.9, 133.6, 129.7, 126.0, 60.5, 32.4, 

27.2, 22.4, 21.6, 13.6, -0.1. 
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MS (EI, 70 eV), m/z (%):308 (M+, 100), 293 (41), 262 (18), 235 (43), 234 (30), 103 (20). 

HRMS m/z : calc. for C16H24O2SSi 308.1266, found 308.1246.  

IR (ATR): 
~  (cm-1) = 2936 (w), 1709 (s), 1277 (m), 1247 (s), 1218 (m), 1046 (m), 990 (m), 836 

(vs), 804 (m), 755 (m). 
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4 REGIOSELECTIVE MAGNESIUM AND ZINC INSERTIONS IN POLYBROMINATED PHENOL 

DERIVATIVES 

4.1 GENERAL PRODCEDURES 

General procedure 1 (GP1): Regioselective zinc insertion: 

A dry, argon flushed Schlenk-flask equipped with a magnetic stirring bar and a septum was 

charged with LiCl (tribromoarenes: 254 mg, 6 mmol, 2 equiv.; dibromoarenes: 382 mg, 9 mmol, 

3 equiv.) and heated with a heat gun under high vacuum (5 min). After cooling to room 

temperature, zinc dust (tribromoarenes: 392 mg, 6 mmol, 2 equiv.; dibromoarenes: 589 mg, 9 

mmol, 3 equiv.) was added, followed by THF (3 mL). The zinc powder then was activated using 

1,2-dibromoethane (5 mol%) and TMSCl (2 mol%).  Then, the substrate (3 mmol) was added 

neat at 25 °C. For tribromoarenes, the reaction mixture was kept at 25 °C using a water bath and 

stirred for the given time. For dibromoarenes, the mixture was heated to 50 °C and stirred for 

the given time. After completion, the remaining zinc dust was allowed to settle down and the 

supernatant solution was carefully transferred to a second dry and argon-flushed Schlenk-flask. 

The resulting clear solution was then used in the reaction with electrophiles. 

 

General procedure 2 (GP2): Acylation of aryl zinc reagents prepared by direct zinc 

insertion:  

The freshly prepared zinc reagent was cooled to -20 °C, CuCN·2LiCl (3 mL, 3 mmol, 1 M in THF) 

was added and the reaction mixture was stirred for 15 min. After the addition of the acid 

chloride, the reaction mixture was allowed to warm to 25 °C and stirred for the given time. The 

reaction mixture was quenched with sat. NH4Cl/NH3 (9:1) solution (10 mL), washed with sat. 

NH4Cl/NH3 solution (9:1, 2x10 mL) and extracted with EtOAc (3x10 mL). The combined organic 

phases were washed with sat. NaCl solution (10 mL), dried over Na2SO4 and concentrated in 

vacuo. The crude residue obtained was purified by flash column chromatography to give the 

analytically pure product. 

 

General procedure 3 (GP3): Cross-coupling of aryl zinc reagents prepared by direct zinc 

insertion: 

Pd(dba)2 (32 mg, 2 mol%), P(o-furyl)3 (26 mg, 4 mol%) were added to the freshly prepared zinc 

reagent followed by the aryliodide (2.7 mmol) and the mixture was stirred for the given time at 

25 °C. The reaction mixture was quenched with sat. NH4Cl solution (10 mL) and extracted with 

EtOAc (3x10 mL). The combined organic phases were washed with sat. NaCl solution (10 mL), 

dried over Na2SO4 and concentrated in vacuo. The crude residue obtained was purified by flash 

column chromatography to give the analytically pure product. 
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General procedure 4 (GP4): Allylation of aryl zinc reagent prepared by direct zinc 

insertion  

The freshly prepared zinc reagent was cooled to  20 °C, the corresponding allylic bromide 

(3.3 mmol) was added, followed by 3 drops of CuCN·2LiCl (ca. 0.03 mL, 0.03 mmol, 1 M in THF) 

and the reaction mixture was allowed to warm to 25 °C. After stirring for the given time, the 

reaction mixture was quenched with sat. NH4Cl/NH3 (9:1) solution (10 mL), washed with sat. 

NH4Cl/NH3 solution (9:1, 2x10 mL) and extracted with EtOAc (3x10 mL). The combined organic 

phases were washed with sat. NaCl solution (10 mL), dried over Na2SO4 and concentrated in 

vacuo. The crude residue obtained was purified by flash column chromatography to give the 

analytically pure product. 

 

General procedure 5 (GP5): Directed zinc insertion in large scale: 

A dry, argon flushed 250 mL Schlenk-flask equipped with a magnetic stirring bar and a septum 

was charged with LiCl (tribromoarenes: 2 equiv.; dibromoarenes: 3 equiv.) and heated with a 

heat gun under high vacuum (5 min). After cooling to room temperature, zinc dust 

(tribromoarenes: 2 equiv.; dibromoarenes: 3 equiv.) was added, followed by THF (1 mL/mmol). 

The zinc powder then was activated using 1,2-dibromoethane (5 mol%) and TMSCl (2 mol%).   

Prior to the addition of the substrate, the reaction mixture was cooled with a water bath. Then, 

the desired polybrominated arene was added neat. For tribromoarenes, the reaction mixture 

was kept at 25 °C using a water bath and stirred for the given time. For dibromoarenes, the 

mixture was heated to 50 °C and stirred for the given time. After completion, the remaining zinc 

dust was allowed to settle down and the supernatant solution was carefully transferred to a 

second dry and argon-flushed Schlenk-flask. The yield of the zinc reagent was determined via 

titration against iodine. 

 

General procedure 6 (GP6): Cross-coupling of aryl zinc reagents prepared by direct zinc 

insertion:  

A dry, argon flushed 100 mL Schlenk-flask equipped with a magnetic stirring bar and a septum 

was charged with the freshly titrated aryl zinc bromide (1.0 equiv.). The corresponding aryl 

iodide (0.8 equiv.) is added followed by Pd(dba)2 (1 mol%), P(o-furyl)3 (2 mol%) and the 

mixture was stirred for the given time at 25 °C. The reaction mixture was quenched with sat. 

NH4Cl solution (50 mL) and extracted with EtOAc (3x100 mL). The combined organic phases 

were washed with sat. NaCl solution (50 mL), dried over Na2SO4 and concentrated in vacuo. The 

crude residue obtained was purified by flash column chromatography or recrystallization to give 

the analytically pure product. 
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General procedure 7 (GP7): Large scale acylation of aryl zinc or magnesium reagents:  

A dry, argon flushed 100 mL Schlenk-flask equipped with a magnetic stirring bar and a septum 

was charged with the freshly titrated organometallic reagent (1.0 equiv.), cooled to -20 °C, 

CuCN·2LiCl (0.2 equiv., 1 M in THF) was added and the reaction mixture was stirred for 15 min. 

After the addition of the acid chloride (0.8 equiv.), the reaction mixture was allowed to warm to 

25 °C and stirred for the given time. The reaction mixture was quenched with sat. NH4Cl/NH3 

(9:1) solution (100 mL), washed with sat. NH4Cl/NH3 solution (9:1, 3x100 mL) and extracted 

with EtOAc (3x100 mL). The combined organic phases were washed with sat. NaCl solution (150 

mL), dried over Na2SO4 and concentrated in vacuo. The crude residue obtained was purified by 

flash column chromatography or recrystallization to give the analytically pure product. 

 

General Procedure 8 (GP8): Regioselective magnesium insertion in large scale  

A dry and argon-flushed Schlenk-flask, equipped with a magnetic stirrer and a septum, was 

charged with LiCl (1.25 equiv.) and heated under high vacuum using a heat gun (5 min). After 

cooling to room temperature, magnesium turnings (2.5 equiv.) were added followed by THF. The 

magnesium was activated with DIBAL-H (1 mol%). After 5 min of stirring the aryl bromide (1 

equiv.) was added neat or as a solution in THF over the specified time at the given temperature. 

The reaction mixture was stirred for the indicated time and then cannulated to a new Schlenk-

flask for the reaction with an electrophile. The yield of the organomagnesium reagent was 

determined via titration against iodine. 

 

4.2.1 REGIOSELECTIVE ZINC INSERTION IN POLYBROMINATED ARENES 

Preparation of 2,4-dibromo-6-(2-fluorobenzoyl)phenyl pivalate (32a): 

 

According to GP1, the zinc reagent 30a was prepared from 2,4,6-tribromophenyl pivalate (29a, 

1.25 g, 3.00 mmol) in 1 h at 25 °C. The acylation reaction with 2-fluoro-benzoyl chloride (31a, 

444 mg, 2.8 mmol) was performed according to GP2 in 14 h. Flash column chromatography 

(silica, pentane:Et2O 9:1) furnished 32a as a colorless solid (1.04 g, 81 %). 

m.p.: 79.8-81.3 °C. 

1H-NMR (300 MHz, CDCl3) δ (ppm) = 7.89 (d, J = 2.4 Hz, 1 H), 7.67 (dt, J = 5.6 Hz and 1.9 Hz, 1 H), 

7.60–7.53 (m, 1 H), 7.57 (d, J = 2.4 Hz, 1 H), 7.26 (t, J = 7.3 Hz, 1 H), 7.16–7.10 (m, 1 H), 1.16 (s, 9 

H). 
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13C-NMR (75 MHz, CDCl3) δ (ppm) = 188.4, 175.0, 161.3 (d, J = 258.0 Hz), 145.7, 145.7, 138.4, 

135.9 (d, J = 1.0 Hz), 135.1 (d, J = 8.7 Hz), 131.9 (d, J = 1.6 Hz), 131.5 (d, J = 1.6 Hz), 125.5 (d, J = 

11.1 Hz), 124.5 (d, J = 3.6 Hz), 118.9 (d, J = 19.1 Hz), 116.8 (d, J = 21.7 Hz), 39.3, 26.8.    

HRMS m/z : calc. for C18H15Br2FO3 455.9372, found  455.9352. 

MS (EI, 70 eV): m/z (%) = 456 (M+, 2), 374 (100), 278 (36), 157 (10), 123 (34), 95 (18), 41 (10).  

IR (ATR): 
~  (cm-1) = 2975, 1760, 1666, 1610, 1481, 1452, 1440, 1294, 1241, 1209, 1090, 1028, 

968, 886, 830, 760, 639. 

 

Preparation of ethyl 3',5'-dibromo-2'-[(2,2-dimethylpropanoyl) oxy]biphenyl-4-

carboxylate (32b): 

 

According to GP1, the zinc reagent 30a was prepared from 2,4,6-tribromophenyl pivalate (29a, 

1.25 g, 3.00 mmol) in 1 h at 25 °C. The cross-coupling reaction with ethyl 4-iodobenzoate (31c, 

773 mg, 2.8 mmol) was performed according to GP3 in 1.5 h at 25 °C. Flash column 

chromatography (silica, pentane:Et2O 19:1 to 9:1) furnished 32b as a colorless oil (825 mg, 78 

%). 

1H-NMR (300 MHz, CDCl3) δ (ppm) =  8.06 (d, J = 8.1 Hz, 2 H), 7.76 (d, J = 2.2 Hz, 1 H), 7.43 (d, J = 

2.2 Hz, 1 H), 7.39 (d, J = 8.6 Hz, 2 H), 4.39 (q, J = 7.1 Hz, 2 H), 1.40 (t, J = 7.1 Hz, 3 H), 1.12 (s, 9 H). 

13C-NMR (75 MHz, CDCl3) δ (ppm) = 175.0, 166.1, 145.1, 140.2, 138.0, 135.1, 132.5, 130.3, 129.4, 

129.0, 119.3, 118.5, 61.2, 39.1, 27.0, 14.3.  

MS (EI, 70 eV): m/z (%) = 482 (M+, 1), 399 (91), 372 (18), 355 (19), 138 (10), 57 (100).  

HRMS m/z : calc. for C20H20Br2O4 481.9728; found: 481.9723. 

IR (ATR): 
~  (cm-1) = 2977, 1758, 1716, 1440, 1367, 1269, 1209, 1182, 1085, 1044, 1022, 885, 

859, 774, 711. 

 

Preparation of 4-bromo-2-(4-chlorobenzoyl)phenyl pivalate (32c): 
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According to GP1, the zinc reagent 30b was prepared from 2,4-dibromophenyl pivalate (29b, 

1.01 g, 3.01 mmol) in 14 h at 50 °C. The acylation reaction with 4-chlorobenzoyl chloride (31d, 

420 mg, 2.4 mmol) was performed according to GP2 in 6 h. Flash column chromatography 

(silica, pentane:Et2O 29:1) furnished 32c as a pale yellow oil (708 mg, 75 %). 

1H-NMR (300 MHz, CDCl3) δ (ppm) = 7.75 (d, J = 8.6 Hz, 2 H), 7.67 (dd, J = 8.6 and 2.4 Hz, 1 H), 

7.61 (d, J = 2.1 Hz, 1 H), 7.45 (d, J = 8.8 Hz, 2 H), 7.07 (d, J = 8.6 Hz, 1 H), 1.06 (s, 9 H). 

13C-NMR (75 MHz, CDCl3) δ (ppm) = 191.8, 175.9, 147.5, 140.1, 135.0, 134.8, 133.3, 132.3, 131.2, 

128.9, 124.7, 118.7, 38.9, 26.5.  

MS (EI, 70 eV): m/z (%) = 394 (M+, 3), 312 (100), 275 (17), 198 (18), 149 (27), 139 (30), 111 

(17), 85 (40), 57 (95).  

HRMS m/z : calc. for C18H16BrClO3 393.9971, found  393.9965. 

IR (ATR): 
~  (cm-1) = 2974, 1754, 1671, 1588, 1471, 1400, 1266, 1201, 1175, 1091, 1077, 1028, 

1014, 939, 889, 842, 818, 766. 

 

Preparation of 3,5-dibromo-4'-methylbiphenyl-2-yl 4-methylbenzenesulfonate (32d): 

 

According to GP1, the zinc reagent 30c was prepared from 2,4,6-tribromophenyl 4-

methylbenzenesulfonate (29c, 1.46 g, 3.00 mmol) in 1 h at 25 °C. The cross-coupling reaction 

with 4-iodotoluoene (31e,610 mg, 2.8 mmol) was performed according to GP3 in 6 h at 25 °C. 

Flash column chromatography (silica, pentane:Et2O 9:1) furnished 32d as a colorless solid 

(1.016 g, 73 %). 

m.p.: 119.5-121.2 °C. 

1H-NMR (300 MHz, CDCl3) δ (ppm) = 7.72 (d, J = 2.5 Hz, 1 H), 7.38 (d, J = 2.5 Hz, 1 H), 7.36 (d, J = 

9.2 Hz, 2 H), 7.07 (d, J = 7.8 Hz, 2 H), 7.01 (d, J = 8.4 Hz, 2 H), 6.94 (d, J = 8.2 Hz, 2 H), 2.37 (s, 3 H), 

2.30 (s, 3 H). 

13C-NMR (75 MHz, CDCl3) δ (ppm) = 144.6, 144.3, 139.4, 138.1, 134.8, 133.8, 133.3, 132.8, 129.2, 

128.9, 128.9, 127.9, 120.6, 120.1, 21.6, 21.2.  

MS (EI, 70 eV): m/z (%) = 494 (M+, 15), 341 (34), 260 (100), 152 (17), 91 (19). 

HRMS m/z : calc. for C20H16Br2O3S 493.9187, found  493.9185. 

IR (ATR): 
~  (cm-1) = 1544, 1428, 1368, 1167, 1091, 1043, 864, 822, 752, 717, 669, 631.  
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Preparation of 2-(3,5-dibromo-2-{[(4-methylphenyl)sulfonyl]oxy}phenyl)-2-oxo-1-

phenylethyl acetate (32e): 

 

According to GP1, the zinc reagent 30c was prepared from 2,4,6-tribromophenyl 4-

methylbenzenesulfonate (29c, 1.46 g, 3.00 mmol) in 1 h at 25 °C. The acylation reaction with O-

acetylmandelic acid chloride (31f, 510 mg, 2.4 mmol) was performed according to GP2 in 14 h. 

Flash column chromatography (silica, pentane:Et2O 7:1 to 4:1) furnished 32e as a colorless solid 

(1.03 g, 74 %). 

m.p.: 122.4-124.2 °C. 

1H-NMR (300 MHz, CDCl3) δ (ppm) = 7.84 (d, J = 8.4 Hz, 2 H), 7.75 (d, J = 2.5 Hz, 1 H), 7.50 (d, J = 

2.5 Hz, 1 H), 7.37 (d, J  = 8.4 Hz, 2 H), 7.28 (s, 5 H), 6.90 (s, 1 H), 2.48 (s, 3 H), 2.14 (s, 3 H). 

13C-NMR (75 MHz, CDCl3) δ (ppm) = 193.3, 169.3, 146.5, 142.5, 139.1, 135.5, 133.8, 132.4, 131.9, 

130.0, 129.2, 129.1, 128.9, 128.3, 121.0, 119.7, 78.7, 21.9, 20.8.  

MS (EI, 70 eV): m/z (%) = 580 (M+, 1), 433 (100), 155 (74), 149 (11), 105 (56), 91 (40), 77 (13), 

43 (31).  

HRMS m/z : calc. for C23H18Br2O6S 579.9191, found  579.9172. 

IR (ATR): 
~  (cm-1) = 1749, 1711, 1595, 1552, 1428, 1383, 1222, 1165, 1086, 1056, 1016, 983, 

831, 816, 735, 696, 674. 

 

Preparation of ethyl 2-(3,5-dibromo-2-{[(4-methylphenyl)sulfonyl]oxy}benzyl)acrylate 

(32f): 

 

According to GP1, the zinc reagent 30c was prepared from 2,4,6-tribromophenyl 4-

methylbenzenesulfonate (29c, 1.46 g, 3.00 mmol) in 1 h at 25 °C. The allylation reaction with 

ethyl (2-bromomethyl)acrylate (638 mg, 3.3 mmol) was performed according to GP4 in 5 h. 

Flash column chromatography (silica, pentane:Et2O 9:1) furnished 32f as a colorless oil (1.17 g, 

75 %). 

1H-NMR (300 MHz, CDCl3) δ (ppm) = 7.88 (d, J = 8.4 Hz, 2 H), 7.56 (d, J = 2.4 Hz, 1 H), 7.36 (d, J = 

8.0 Hz, 2 H), 7.30 (d, J = 2.4 Hz, 1 H), 6.32 (s, 1 H), 5.60 (s, 1 H), 4.13 (1, J = 7.1 Hz, 2 H), 3.74 (s, 2 

H), 2.46 (s, 3 H), 1.21 (t, J = 7.1 Hz, 3 H). 
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13C-NMR (75 MHz, CDCl3) δ (ppm) = 166.0, 145.8, 145.3, 137.7, 137.5, 134.5, 133.8, 132.8, 129.8, 

128.5, 128.1, 120.5, 118.5, 60.9, 33.5, 21.8, 14.0.  

MS (EI, 70 eV): m/z (%) = 516 (M+, 4), 363 (41), 317 (41), 284 (70), 211 (17), 155 (100), 91 (97).  

HRMS m/z : calc. for C19H18Br2O5S 515.9242, found  515.5138. 

IR (ATR): 
~  (cm-1) = 2981, 1713, 1632, 1597, 1554, 1436, 1367, 1299, 1177, 1136, 1086, 1024, 

952, 843, 813, 744, 704, 668, 646. 

 

Preparation of 2-(5-bromo-2-{[(4-methylphenyl)sulfonyl]oxy}phenyl)-2-oxo-1-

phenylethyl acetate (32g): 

 

According to GP1, the zinc reagent 30d was prepared from 2,4-dibromophenyl 4-

methylbenzenesulfonate (29d, 1.22 g, 3.00 mmol) in 14 h at 50 °C. The acylation reaction with O-

acetylmandelic acid chloride (31f, 510 mg, 2.4 mmol) was performed according to GP2 in 14 h. 

Flash column chromatography (silica, pentane:Et2O 6:1 to 4:1) furnished 32g as a yellow oil 

(865 mg, 61 %). 

1H-NMR (300 MHz, CDCl3) δ (ppm) = 7.73 (d, J = 8.4 Hz, 2 H), 7.56 (d, J = 2.6 Hz, 1 H), 7.46 (dd, J 

= 8.7 and 2.5 Hz, 1 H), 7.31–7.28 (m, 7 H), 7.19 (d, J = 8.6 Hz, 1 H), 6.73 (s, 1 H), 2.43 (s, 3 H), 2.17 

(s, 3 H). 

13C-NMR (75 MHz, CDCl3) δ (ppm) = 192.8, 169.8, 146.2, 145.7, 135.8, 133.2, 132.5, 132.1, 131.2, 

130.0, 129.3, 128.9, 128.8, 128.7, 123.8, 120.2, 79.7, 21.7, 20.7.  

MS (EI, 70 eV): m/z (%) = 502 (M+, 0.3), 355 (100), 155 (63), 105 (44), 91 (42), 43 (29).  

HRMS m/z : calc. for C23H19BrO6S 502.0086, found  502.0096. 

IR (ATR): 
~  (cm-1) = 3068, 2959, 1742, 1713, 1595, 1469, 1371, 1225, 1198, 1171, 1118, 1089, 

1056, 976, 934, 836, 815, 735, 676. 

 

Preparation of 4-bromo-2-cyclohex-2-en-1-ylphenyl 4-methylbenzenesulfonate (32h): 
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According to GP1, the zinc reagent 30d was prepared from 2,4-dibromophenyl 4-

methylbenzenesulfonate (29d, 1.22 g, 3.00 mmol) in 14 h at 50 °C. The allylation reaction with 

3-bromocyclohexene (31h, 531 mg, 3.3 mmol) was performed according to GP4 in 14 h. Flash 

column chromatography (silica, pentane:Et2O 19:1) furnished 32h as a colorless solid (739 mg, 

60 %). 

m.p.: 89.4-91.2 °C. 

1H-NMR (300 MHz, CDCl3) δ (ppm) = 7.74 (d, J = 8.3 Hz, 2 H), 7.33 (d, J = 8.4 Hz, 2 H), 7.31 (d, J = 

2.6 Hz, 1 H), 7.26 (dd,  J = 8.1 and 3.1 Hz, 1 H), 6.98 (d, J = 8.6 Hz, 1 H), 5.87–5.82 (m, 1 H), 5.22 

(dd, J = 10.1 and 2.0 Hz, 1 H), 3.49–3.42 (m, 1 H), 2.45 (s, 3 H), 2.08–1.98 (m, 2 H), 1.83–1.74 (m, 

1 H), 1.68–1.58 (m, 1 H), 1.56–1.44 (m, 1 H), 1.40–1.27 (m, 1 H). 

13C-NMR (75 MHz, CDCl3) δ (ppm) = 146.4, 145.6, 141.7, 132.6, 132.4, 130.0, 129.9, 129.4, 128.3, 

128.3, 123.8, 120.5, 34.9, 30.7, 24.7, 21.7, 20.9.  

MS (EI, 70 eV): m/z (%) = 406 (M+, 4), 251 (64), 187 (16), 172 (100), 144 (18), 91 (35).  

HRMS m/z : calc. for C19H19BrO3S 406.0238, found  406.0235. 

IR (ATR): 
~  (cm-1) = 2928, 1595, 1476, 1370, 1182, 1151, 1089, 865, 842, 816, 755, 734, 716, 

678, 660. 

 

Preparation of 2,4-dibromo-6-(2,2-dimethylpropanoyl)phenyl acetate (32i): 

 

According to GP1, the zinc reagent 30e was prepared from 2,4,6-tribromophenyl acetate (29e, 

1.19 g, 3.00 mmol) in 1 h at 25 °C. The acylation reaction with pivaloyl chloride (31b, 289 mg, 

2.4 mmol) was performed according to GP2 in 14 h. Flash column chromatography (silica, 

pentane:Et2O 29:1) furnished 32i as a yellow solid (714 mg, 79 %). 

m.p.: 101.7-105.3 °C. 

1H-NMR (300 MHz, CDCl3) δ (ppm) = 7.76 (d, J = 2.1 Hz, 1 H), 7.31 (d, J = 2.2 Hz, 1 H), 2.24 (s, 

3 H), 1.22 (s, 9 H). 

13C-NMR (75 MHz, CDCl3) δ (ppm) = 207.6, 167.1, 143.7, 136.9, 136.0, 128.2, 119.0, 119.0, 45.1, 

26.9, 20.4.  

MS (EI, 70 eV): m/z (%) = 376 (M+, 0.5), 336 (11), 323 (15), 319 (15), 279 (100), 57 (23).  

HRMS m/z : calc. for C13H14Br2O3 375.9310, found  375.9301. 
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IR (ATR): 
~  (cm-1) = 2973, 1781, 1695, 1551, 1478, 1434, 1363, 1279, 1180, 1150, 1041, 1012, 

985, 899, 861, 768, 727, 682. 

 

Preparation of 5-bromo-4'-(trifluoromethyl)biphenyl-2-yl acetate (32j): 

 

According to GP1, the zinc reagent 30f was prepared from 2,4-dibromophenyl acetate (29f, 

1.06 g, 3.00 mmol) in 14 h at 50 °C. The cross-coupling reaction with 1-iodo-4-

(trifluoromethyl)benzene (31i, 653 mg, 2.4 mmol) was performed according to GP3 in 12 h at 

25 °C. Flash column chromatography (silica, pentane:Et2O 99:1) furnished 32j as a colorless oil 

(701 mg, 81 %). 

1H-NMR (300 MHz, CDCl3) δ (ppm) = 7.71 (d, J = 8.8 Hz, 2H), 7.58-7.50 (m, 4H), 7.08 (d, 

J = 9.9 Hz, 1H), 2.11 (s, 3H).  

13C-NMR (75 MHz, CDCl3) δ (ppm) = 168.9, 146.8, 139.9, 135.5, 133.4, 132.2, 130.3 (q, 

5JCF = 32.7 Hz), 129.2, 125.4 (q, 3JCF = 3.8 Hz), 124.8, 124.0 (q, 1JCF = 272.1 Hz), 119.6, 20.8.  

MS (EI, 70 eV): m/z (%) = 358 (M+, 1), 316 (100), 236 (17), 217 (9), 168 (9), 139 (13), 43 (46).  

HRMS m/z : calc. for C15H10BrF3O2 357.9816, found  357.9811. 

IR (ATR): 
~  (cm-1) = 1764, 1620, 1475, 1414, 1375, 1325, 1156, 1109, 1082, 1068, 1048, 1025, 

1014, 897, 891, 853, 842, 804, 736, 678. 

 

Preparation of 5-bromo-3'-(trifluoromethyl)biphenyl-2-yl tert-butyl carbonate (32k): 

 

According to GP1, the zinc reagent 30g was prepared from tert-butyl 2,4-dibromophenyl 

carbonate (29g, 1.06 g, 3.00 mmol) in 14 h at 50 °C. The cross-coupling reaction with 1-iodo-3-

(trifluoromethyl)benzene (31j, 653 mg, 2.4 mmol) was performed according to GP6 in 12 h at 

25 °C. Flash column chromatography (silica, pentane:Et2O 19:1) furnished 32k as a colorless oil 

(816 mg, inseperable mixture of product and hydrolyzed zinc reagent. Yield determined by 1H-

NMR: 60 %). 

1H-NMR (300 MHz, CDCl3) δ (ppm) = 7.77 (d, J = 2.2 Hz, 1 H), 7.67–7.56 (m, 4 H), 7.46 (dd, J = 8.6 

and 2.2 Hz, 1 H), 7.14 (d, J = 8.4 Hz, 1 H), 1.32 (s, 9 H).   
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13C-NMR (75 MHz, CDCl3): δ (ppm):27.2, 84.0, 117.5, 119.6, 122.2, 123.1, 124.4, 124.8, 125.7, 

125.7, 125.8, 129.1, 130.7, 131.1, 131.6, 132.2, 132.3, 132.3, 133.3, 135.5, 135.7, 136.8, 147.2, 

147.7, 150.4, 150.9 (observed complexicity due to C-F splitting, definitive assignments have not 

been made).  

MS (EI, 70 eV): m/z (%) = 417 (M+ +H, <1), 343 (11), 316 (100), 236 (37), 220 (28), 57 (49).  

HRMS m/z : calc. for C18H17BrF3O3 417.0313, found  417.0314. 

IR (ATR): 
~  (cm-1) = 2984, 1757, 1330, 1278, 1244, 1210, 1165, 1142, 1122, 1096, 1075, 1036, 

892, 803, 702. 

 

4.2.2 DIRECTED ORTHO INSERTION IN LARGE SCALE 

Preparation of 3,5-dibromo-2-(pivaloyloxy)phenylzinc bromide (30a): 

 

According to GP5, the zinc reagent 30a was prepared from 2,4,6-tribromophenyl pivalate (29a, 

41.5 g, 100 mmol) using zinc dust (13.1 g, 200 mmol) and LiCl (8.48 g, 200 mmol) in 2 h at 25 °C. 

Titration against iodine indicates a concentration of 0.56 M (65%). 

 

Preparation of 3,5-dibromo-2-(tosyloxy)phenylzinc bromide (30c): 

 

According to GP5, the zinc reagent 30c was prepared from 2,4,6-tribromophenyl 4-

methylbenzenesulfonate (29c, 24.3 g, 50.0 mmol) using zinc dust (6.54 g, 100 mmol) and LiCl 

(4.24 g, 100 mmol) in 1 h at 25 °C. Titration against iodine indicates a concentration of 0.52 M 

(60%). 

 

Preparation of 3,5-dibromo-2-(tert-butoxycarbonyloxy)phenylzinc bromide (30h): 
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According to GP5, the zinc reagent 30h was prepared from tert-butyl-2,4,6-tribromophenyl 

carbonate (29h, 21.5 g, 50.0 mmol) using zinc dust (6.54 g, 100 mmol) and LiCl (4.24 g, 100 

mmol) in 3 h at 25 °C. Titration against iodine indicates a concentration of 0.68 M (81%). 

 

Preparation of 3,5-dibromo-2-methoxyphenylzinc bromide (30i): 

 

According to GP5, the zinc reagent 30i was prepared from 2,4,6-tribromoanisole (29i, 26.1 g, 

75.0 mmol) using zinc dust (9.81 g, 150 mmol) and LiCl (6.36 g, 150 mmol) in 2 h at 25 °C. 

Titration against iodine indicates a concentration of 0.71 M (78%). 

 

4.2.3 REACTIONS OF ORTHO-ZINCATED POLYBROMINATED ARENES WITH ELECTROPHILES 

Preparation of 3,5-dibromo-4'-methoxybiphenyl-2-yl 2,2-dimethylpropanoate (32l): 

 

The cross-coupling reaction of the zinc reagent 30a (17.9 mL, 0.56 M in THF, 10 mmol) with 4-

iodoanisole (31i, 2.13 g, 9.1 mmol) was performed according to GP6 in 1 h at 25 °C. Flash 

column chromatography (silica, pentane:Et2O 29:1) furnished 32l as a colorless oil (3.54 g, 

88 %). 

1H-NMR (300 MHz, CDCl3) δ (ppm) = 7.72 (d, J = 2.4 Hz, 1 H), 7.44 (d, J = 2.4 Hz, 1 H), 7.26 (d, 

J = 8.8 Hz, 2 H), 6.93 (d, J = 8.8 Hz, 2 H), 3.84 (s, 3 H), 1.18 (s, 9 H).  

13C-NMR (75 MHz, CDCl3) δ (ppm) = 175.1, 159.6, 145.3, 138.7, 134.1, 132.8, 130.1, 128.1, 119.1, 

118.2, 113.6, 55.3, 39.1, 27.0.  

MS (EI, 70 eV): m/z (%) = 440 (M+, 8), 358 (100), 356 (51), 58 (38), 57 (68), 44 (54), 43 (80).  

HRMS m/z : calc. for C18H18Br2O3 439.9623, found  439.9617. 

 

Preparation of 3,5-dibromo-4'-cyanobiphenyl-2-yl 2,2-dimethylpropanoate (32m): 

 



C Experimental 

147 
 

The cross-coupling reaction of the zinc reagent 30a (35.7 mL, 0.56 M in THF, 20 mmol) with 4-

iodobenzonitrile (31i, 3.69 g, 16.0 mmol) was performed according to GP6 in 16 h at 25 °C. 

Flash column chromatography (silica, pentane:CH2Cl2 2:1) furnished 32m as a colorless solid 

(4.51 g, 64 %). 

m.p.: 127.8–129.6 °C. 

1H-NMR (300 MHz, CDCl3) δ (ppm) = 7.79 (d, J = 2.2 Hz, 1 H), 7.69 (d, J = 8.2 Hz, 2 H), 7.44 (d, J = 

8.7 Hz, 2 H), 7.41 (d, J = 2.2 Hz, 1 H), 1.12 (s, 9 H). 

13C-NMR (75 MHz, CDCl3) δ (ppm) = 175.4, 145.4, 140.8, 137.5, 136.1, 132.6, 132.4, 130.2, 119.9, 

119.1, 118.7, 112.7, 39.5, 27.3. 

MS (EI, 70 eV): m/z (%) = 435 (M+, 1), 355 (37), 353 (82), 351 (35), 164 (27), 85 (45), 57 (100). 

HRMS m/z : calc. for C18H15Br2NO2 434.9370, found  434.9464. 

IR (ATR): 
~  (cm-1) = 3066 (vw), 2987 (vw), 2936 (vw), 2225 (vw), 1754 (m), 1606 (vw), 1582 

(vw), 1545 (vw), 1506 (vw), 1480 (vw), 1464 (vw), 1440 (w), 1398 (vw), 1384 (w), 1269 (vw), 

1229 (vw), 1211 (w), 1189 (w), 1180 (vw), 1107 (w), 1084 (vs), 1044 (m), 1027 (m), 944 (vw), 

904 (vw), 884 (w), 856 (m), 834 (w), 799 (w), 751 (w), 741 (w), 731 (w), 700 (w). 

 

Preparation of 2,4-dibromo-6-[(4-chlorophenyl)carbonyl]phenyl 2,2-dimethylpropa-

noate (32n): 

 

The acylation reaction of the zinc reagent 30a (26.8 mL, 0.56 M in THF, 15 mmol) with 2-

chlorobenzoyl chloride (31d, 2.10 g, 12.0 mmol) was performed according to GP7 in 6 h. Flash 

column chromatography (silica, pentane:Et2O 99:1) furnished 32n as a colorless oil (4.32 g, 

76 %). 

1H-NMR (300 MHz, CDCl3) δ (ppm) = 7.92 (d, J = 2.2 Hz, 1 H), 7.74 (d, J = 8.5 Hz, 2 H), 7.50 (d, J = 

2.4 Hz, 1 H), 7.46 (d, J = 8.5 Hz, 2 H), 1.14 (s, 9 H). 

13C-NMR (75 MHz, CDCl3) δ (ppm) = 190.6, 174.8, 145.3, 140.5, 137.9, 135.0, 134.3, 131.5, 131.4, 

129.0, 119.1, 119.0, 39.1, 26.7.  

MS (EI, 70 eV): m/z (%) = 472 (M+, >1), 392 (36), 390 (55), 3188 (22), 278 (20), 85 (25), 57 

(100). 

HRMS m/z : calc. for C18H15Br2ClO3 471.9076, found  471.9079. 
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Preparation of 2,4-dibromo-6-(cyclopropylcarbonyl)phenyl 2,2-dimethylpropanoate 

(32o): 

 

The acylation reaction of the zinc reagent 30a (35.7 mL, 0.56 M in THF, 20 mmol) with 

cyclopropanoylacid chloride (1.45 mL, 16.0 mmol) was performed according to GP7 in 16 h. 

Flash column chromatography (silica, pentane:Et2O 19:1) furnished 32o as a colorless solid 

(5.33 g, 82 %). 

m.p.: 80.5–82.5 °C. 

1H-NMR (300 MHz, CDCl3) δ (ppm) = 7.84 (d, J = 2.2 Hz, 1 H), 7.76 (d, J = 2.5 Hz, 1 H), 2.38–2.29 

(m, 1 H) 1.37 (s, 9 H), 1.22 (m, 2 H), 1.06 (m, 2 H). 

13C-NMR (75 MHz, CDCl3) δ (ppm) = 199.4, 175.7, 145.5, 138.3, 136.9, 131.4, 119.6, 119.5, 39.8, 

27.6, 20.9, 13.5.  

MS (EI, 70 eV): m/z (%) = 402 (M+, 3), 322 (35), 320 (75), 318 (34), 85 (36), 57 (100). 

HRMS m/z : calc. for C15H16Br2O3 401.9466, found  401.9469. 

IR (ATR): 
~  (cm-1) = 3067 (vw), 3015 (vw), 2974 (w), 2934 (vw), 2908 (vw), 2872 (vw), 1751 

(s), 1664 (m), 1577 (vw), 1553 (w), 1479 (w), 1427 (m), 1396 (m), 1363 (m), 1270 (w), 1224 

(m), 1213 (m), 1162 (m), 1081 (vs), 1042 (m), 1027 (m), 1006 (m), 871 (s), 773 (w), 761 (w), 

751 (w), 699 (w), 664 (m). 

 

Preparation of 2,4-dibromo-6-(2,2-dimethylpropanoyl)phenyl 4-methylbenzenesulfonate 

(32p): 

 

The acylation reaction of the zinc reagent 30c (28.8 mL, 0.52 M in THF, 15 mmol) with 

cyclopropanoylacid chloride (1.45 g, 12.0 mmol) was performed according to GP7 in 8 h. Flash 

column chromatography (silica, pentane:Et2O 9:1) furnished 32p as a colorless oil (4.79 g, 

82 %). 

1H-NMR (300 MHz, CDCl3) δ (ppm) = 7.83 (d, J = 8.5 Hz, 2 H), 7.77 (d, J = 2.4 Hz, 1 H), 7.36 (d, 

J = 8.5 HZ, 2 H), 7.30 (d, J = 2.4 Hz, 1 H), 2.47 (s, 3 H), 1.17 (s, 9 H) . 
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13C-NMR (75 MHz, CDCl3) δ (ppm) = 207.2, 145.9, 142.0, 138.3, 136.9, 132.8, 129.7, 129.5, 128.8, 

120.3, 119.8, 45.2, 27.1, 21.8.  

MS (EI, 70 eV): m/z (%) = 488 (M+, 1), 435 (39), 433 (83), 156 (100), 91 (89), 57 (37). 

HRMS m/z : calc. for C18H18Br2O4S 487.9293, found  487.9287. 

 

Preparation of ethyl 3',5'-dibromo-2'-{[(4-methylphenyl)sulfonyl]oxy}biphenyl-4-

carboxylate (32q): 

 

The cross-coupling reaction of the zinc reagent 30c (45.6 mL, 0.44 M in THF, 20 mmol) with 

ethyl 4-iodobenzoate (31c, 4.41 g, 16.0 mmol) was performed according to GP6 in 16 h at 25 °C. 

Flash column chromatography (silica, pentane:Et2O 9:1) furnished 32q as a colorless solid 

(6.30 g, 71 %). 

m.p.: 136.6–138.2 °C. 

1H-NMR (300 MHz, CDCl3) δ (ppm) = 7.84–7.76 (m, 3 H), 7.39 (d, J = 2.5 Hz, 1 H), 7.34 (d, J = 8.4 

Hz, 2 H), 7.28–7.22 (m, 2 H), 6.99 (d, J = 8.7 Hz, 2 H), 6.99 (d, J = 0.7 Hz, 2 H), 4.40 (q, J = 7.2 Hz, 2 

H), 2.32 (s, 3 H), 1.42 (t, J = 7.2 Hz, 3 H). 

13C-NMR (75 MHz, CDCl3) δ (ppm) = 166.3, 145.5, 144.6, 140.4, 138.6, 136.2, 133.9, 133.5, 130.3, 

129.8, 129.7, 129.4, 128.1, 121.1, 120.8, 61.5, 21.8, 14.7.  

MS (EI, 70 eV): m/z (%) = 554 (M+, 10), 356 (46), 354 (100), 352 (46), 248 (42), 246 (44), 155 

(66), 91 (67). 

HRMS m/z : calc. for C24H22Br2O2S 553.9221, found  553.9166. 

IR (ATR): 
~  (cm-1) = 3060 (vw), 2986 (vw), 1709 (m), 1610 (vw), 1594 (vw), 1577 (vw), 1545 

(vw), 1494 (vw), 1476 (vw), 1439 (vw), 1380 (m), 1318 (vw), 1289 (w), 1277 (m), 1204 (vw), 

1191 (w), 1182 (w), 1168 (m), 1130 (w), 1110 (m), 1090 (w), 1042 (w), 1019 (w), 912 (vw), 

856 (m), 816 (w), 788 (w), 780(w), 759 (m), 742 (vs), 700 (w), 677 (m), 663 (m). 

 

Preparation of tert-butyl 2,4-dibromo-6-(furan-2-ylcarbonyl)phenyl carbonate (32r): 
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The acylation reaction of the zinc reagent 30h (29.4 mL, 0.68 M in THF, 20 mmol) with furan-2-

carboxylicacid chloride (1.58 g, 16.0 mmol) was performed according to GP7 in 16 h. Flash 

column chromatography (silica, pentane:Et2O 9:1) furnished 32r as a brown oil (4.03 g, 56 %). 

1H-NMR (300 MHz, CDCl3) δ (ppm) = 7.88 (d, J = 2.3 Hz, 1 H), 7.69–7.67 (m, 1 H), 7.65 (d, J = 2.3 

Hz, 1 H), 7.13 (d, J = 3.6 Hz, 1 H), 6.56 (dd, J = 3.6 und 1.7 Hz, 2 H), 1.46 (s, 9 H). 

13C-NMR (75 MHz, CDCl3) δ (ppm) = 178.0, 151.4, 149.7, 148.5, 145.8, 138.2, 134.1, 131.6, 122.1, 

119.5, 119.3, 112.8, 85.0, 27.6.  

MS (EI, 70 eV): m/z (%) = 373 (21), 348 (31), 346 (M+-Boc, 64), 344 (32), 280 (46), 278 (100), 

276 (47), 95 (29), 57 (97), 41 (13). 

IR (ATR): 
~  (cm-1) = 2982 (vw), 1763 (m), 1656 (m), 1561 (w), 1461 (m), 1442 (w), 1395 (w), 

1370 (w), 1275 (m), 1258 (m), 1225 (s), 1129 (vs), 1080 (w), 1026 (m), 974 (w), 925 (vw), 883 

(m), 828 (w), 765 (m), 732 (m), 694 (m), 669 (m). 

 

Preparation of cyclopropyl(3,5-dibromo-2-methoxyphenyl)methanone (32s): 

 

The acylation reaction of the zinc reagent 30i (17.0 mL, 0.71 M in THF, 12 mmol) with 

cyclopropanoylacid chloride (1.01 g, 9.60 mmol) was performed according to GP7 in 16 h. Flash 

column chromatography (silica, pentane:Et2O 99:1 then 9:1) furnished 32s as a yellow liquid 

(1.90 g, 59 %). 

1H-NMR (300 MHz, CDCl3) δ (ppm) = 7.80 (d, J = 2.9 Hz, 1 H), 7.59 (d, J = 2.9 Hz, 1 H), 3.84 (s, 3 

H), 2.72–2.60 (m, 1 H), 1.24–1.31 (m, 2 H), 1.12–1.03 (m, 2 H). 

13C-NMR (75 MHz, CDCl3) δ (ppm) = 201.3, 155.0, 138.4, 136.6, 131.6, 119.2, 117.3, 62.8, 21.2, 

13.0.  

MS (EI, 70 eV): m/z (%) = 332 (M+, 23), 308 (40), 306 (81), 305 (39), 304 (41), 295 (53), 293 

(100). 

HRMS m/z : calc. for C11H10Br2O2 331.9048, found  331.9037. 

IR (ATR): 
~  (cm-1) = 3067 (vw), 3007 (vw), 2939 (vw), 1669 (s), 1572 (w), 1548 (w), 1458 (s), 

1410 (vs), 1398 (s), 1368 (s), 1241 (s), 1222 (s), 1156 (s), 1092 (w), 1062 (w), 1041 (m), 992 

(vs), 868 (s), 818 (w), 804 (w), 763 (m), 680 (m). 
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Preparation of ethyl 3',5'-dibromo-2'-methoxybiphenyl-4-carboxylate (32t): 

 

The cross-coupling reaction of the zinc reagent 30i (28.1 mL, 0.71 M in THF, 20 mmol) with ethyl 

4-iodobenzoate (31c, 4.41 g, 16.0 mmol) was performed according to GP6 in 16 h at 25 °C. Flash 

column chromatography (silica, pentane:Et2O 99:1) furnished 32t as a colorless solid (4.40 g, 

66 %). 

m.p.: 78.9-80.5 °C.  

1H-NMR (300 MHz, CDCl3) δ (ppm) = 8.10 (d, J = 8.6 Hz, 2 H), 7.70 (d, J = 2.3 Hz, 1 H), 7.60 (d, J = 

8.6 Hz, 2 H), 7.43 (d, J = 2.3 Hz, 1 H), 4.40 (q, J = 7.2 Hz, 2 H). 

13C-NMR (75 MHz, CDCl3) δ (ppm) = 166.6, 154.1, 141.1, 137.4, 135.5, 133.1, 130.4, 130.0, 129.2, 

119.5, 117.6, 61.5, 61.0, 14.7.  

MS (EI, 70 eV): m/z (%) = 414 (100), 412 (M+, 53), 371 (32), 369 (70), 248 (36), 246 (36). 

HRMS m/z : calc. for C18H18Br2O3 411.9310, found  411.9302. 

IR (ATR): 
~  (cm-1) = 2981 (vw), 2956 (vw), 2907 (vw), 1720 (s), 1609 (w), 1460 (w), 1385 (w), 

1366 (w), 1274 (vs), 1181 (w), 1121 (m), 1103 (m), 988 (s), 852 (m), 772 (m), 708 (vs). 

 

Preparation of 5-bromo-4'-cyanobiphenyl-2-yl tert-butyl carbonate (32u): 

 

The cross-coupling reaction of the zinc reagent 30g (29.0 mL, 0.69 M in THF, 20 mmol) with 

ethyl 4-iodobenzonitrile (31i, 3.66 g, 16.0 mmol) was performed according to GP6 in 16 h at 

25 °C. Flash column chromatography (silica, pentane:Et2O 9:1) furnished 32u as a colorless solid 

(4.90 g, 82 %). 

m.p.: 116.2-117.3 °C.  

1H-NMR (300 MHz, CDCl3) δ (ppm) = 7.71 (d, J = 8.6 Hz, 2 H), 7.58–7.49 (m, 4 H), 7.11 (d, J = 8.4 

Hz, 1 H), 1.31 (s, 9 H). 

13C-NMR (75 MHz, CDCl3) δ (ppm) = 151.0, 147.3, 141.1, 135.4, 133.4, 132.9, 132.5, 129.9, 124.8, 

119.9, 118.8, 112.1, 84.4, 27.6.  

MS (EI, 70 eV): m/z (%) = 375 (M+, < 1), 275 (46), 273 (47), 193 (17), 164 (11), 57 (100). 
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HRMS m/z : calc. for C18H16BrNO3 373.0392 (M++H), found  374.0396 (M++H). 

IR (ATR): ): 
~  (cm-1) = 3098 (vw), 3068 (vw), 2999 (vw), 2985 (vw), 2974 (vw), 2932 (vw), 

2230 (vw), 1751 (m), 1708 (vw), 1659 (vw), 1548 (vw), 1506 (vw), 1469 (w), 1453 (vw), 1411 

(vw), 1388 (vw), 1371 (w), 1307 (vw), 1281 (m), 1260 (w), 1240 (m), 1212 (w), 1143 (vs), 1114 

(m), 1078 (w), 1047 (vw), 1027 (w), 1012 (w), 982 (w), 894 (m), 884 (w), 853 (w), 845 (w), 795 

(w), 779 (m), 756 (w), 734 (vw), 692 (w). 

 

4.2.4 REGIOSELECTIVE MAGNESIUM INSERTION IN POLYBROMINATED ARENES 

Preparation of 2,5-dibromo-4-(pivaloyloxy)phenylmagnesium bromide (34a): 

 

According to GP8, 2,4,6-tribromophenyl pivalate (29a, 41.5 g, 100 mmol) was added as a 

solution in THF (50 mL) over 4 h to a suspension of Mg turnings (6.08 g, 250 mmol) and LiCl 

(5.30 g, 125 mmol) in THF (210 mL) so that the temperature remains below -20 °C. After the 

addition the reaction mixture was stirred for additional 30 min at -20 °C, unreacted magnesium 

turnings were allowed to settle down and the supernatant solution was transferred to a second 

Schlenk-flask at -20 °C. Titration against iodine indicates a concentration of 0.27 M (98%). 

 

Preparation of 2-bromo-4-[(4-chlorophenyl)carbonyl]phenyl 2,2-dimethylpropanoate 

(33b): 

 

According to GP8 2,4-dibromophenyl pivalate (8.40 g, 25 mmol) was added as a solution in THF 

(12.5 mL) over 1 h to a suspension of LiCl (1.32 g, 31.3 mmol) and Mg turnings (1.52 mg, 

62.5 mmol) in THF (50 mL) so that the temperature of the reaction mixture remains 

below -20 °C. After the addition, the reaction mixture was stirred for additional 30 min at -20 °C 

and then cannulated to a new Schlenk-flask. The acylation reaction with 4-chlorobenzoyl 

chloride (31d, 3.50 g, 20.0 mmol) was performed according to GP7 in 2 h. Flash column 

chromatography (silica, pentane:Et2O 9:1) furnished 33b as a colorless oil (5.1 g, 64 %). 

1H-NMR (300 MHz, CDCl3) δ (ppm) = 8.02 (d, J = 2.1 Hz, 1 H), 7.76-7.69 (m, 3 H), 7.47 (d, J = 8.4 

Hz, 2 H), 7.22 (d, J = 8.2 Hz, 1 H), 1.41 (s, 9 H). 

13C-NMR (75 MHz, CDCl3) δ (ppm) = 193.0, 175.6, 151.9, 139.3, 136.0, 135.1, 134.9, 131.3, 130.1, 

128.8, 123.7, 116.6, 39.4, 27.1. 
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MS (EI, 70 eV): m/z (%) = 394 (M+, <1), 310 (14), 201 (14), 139 (24), 85 (39), 57 (100), 41 (10). 

HRMS m/z : calc. for C18H16BrClO3 393.9971, found  393.9947. 

 

Preparation of 2,6-dibromo-4-[(2-fluorophenyl)carbonyl]phenyl 2,2-dimethylpropanoate 

(33d): 

 

The acylation reaction of the organomagnesium reagent 34a (27.8 mL, 0.28 M in THF, 10 mmol) 

with 2-fluorobenzoyl chloride (31a, 1.11 g, 7.0 mmol) was performed according to GP7 in 2 h. 

Flash column chromatography (silica, pentane:Et2O 98:2 then 95:5) furnished 33d as a colorless 

oil (4.17 g, 60 %). 

1H-NMR (300 MHz, CDCl3) δ (ppm) = 8.00 (s, 2 H), 7.64-7.52 (m, 2 H), 7.31 (t, J = 7.6 Hz, 1 H), 

7.20 (t, J = 9.1 Hz, 2 H), 1.46 (s, 9 H). 

13C-NMR (75 MHz, CDCl3) δ (ppm) = 189.8, 174.0, 160.0 (d, J = 253 Hz), 150.3, 136.9 (d, J = 1 Hz), 

140.0 (d, J = 9 Hz), 133.5 (d, J = 2 Hz), 130.7 (d, J = 3 Hz), 125.5 (d, J = 14 Hz), 124.6 (d, J = 4 Hz), 

118.3, 116.7 (d, J = 21 Hz), 39.6, 27.1.  

MS (EI, 70 eV): m/z (%) = 457 (M+, 1), 376 (30), 374 (65), 372 (29), 279 (19), 123 (31), 85 (37), 

57 (100). 

HRMS m/z : calc. for C18H16Br2FO3 456.9450 (M++H), found  456.9437. 

 

Preparation of 2,6-dibromo-4-[hydroxy(4-methoxyphenyl)methyl]phenyl 2,2-

dimethylpropanoate (33e): 

 

A dry, argon-flushed Schlenk-flask was charged with the organomagnesium reagent 34a (27.8 

mL, 0.28 M in THF, 10 mmol) at -20 °C and anisaldehyde (0.95 g, 7.0 mmol) was added. The 

reaction was stirred at -20 °C for 1 h and then quenched with a sat. NH4Cl solution (20 mL). After 

extraction with EtOAc (3x50 mL), the combined organic layers were washed with brine (50 mL), 

dried over Na2SO4 and concentrated in vacuo. Flash column chromatography (silica, 

pentane:Et2O 3:1) furnished 33e as a colorless oil (1.77 g, 54 %). 

1H-NMR (300 MHz, CDCl3) δ (ppm) = 7.57 (s, 1 h), 7.52 (s, 1 H), 7.22 (d, J = 8.8 Hz, 2 H), 6.88 (d, 

J = 8.8 Hz, 2 H), 5.67 (s, 1 H), 3.80 (s, 3 H), 2.57 (br s, 1 H), 1.44 (s, 9 H). 
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13C-NMR (75 MHz, CDCl3) δ (ppm) = 174.7, 159.4, 145.0, 144.3, 134.7, 130.2, 128.1, 117.5, 114.1, 

74.1, 55.3, 39.4, 27.2.  

MS (EI, 70 eV): m/z (%) = 470 (M++H, 8), 389 (22), 388 (49), 135 (74), 109 (95), 57 (100). 

HRMS m/z : calc. for C19H21Br2O4 469.9728 (M++H), found  469.9722  

 

Preparation of 3',5'-dibromo-4'-(pyrrolidin-1-ylazo)-biphenyl-4-carbonitrile (33f): 

 

According to GP8 pyrrolidin-1-yl-(2,4,6-tribromo-phenyl)-diazene (29f, 10.3 g, 25 mmol) was 

added as a solution in THF (22.5 mL) over 1 h to a suspension of LiCl (1.32 g, 31.3 mmol) and Mg 

turnings (1.52 g, 62.5 mmol) in THF (40 mL) so that the temperature of the reaction mixture 

remains below -20 °C. After the addition, the reaction mixture was stirred for additional 30 min 

at -20 °C and then cannulated to a new Schlenk-flask containing ZnCl2 (27.5 mL, 27.5 mmol, 1 M 

in THF) at -20 °C. After stirring for 15 min at this temperature, 4-iodobenzonitrile (31i, 4.6 g, 

20.0 mmol) followed by Pd(dba)2 (143 mg, 0.25 mmol) and tris(o-furyl)phosphine (116 mg, 

0.5 mmol) were added and the reaction was allowed to warm to 25 °C. The reaction was 

quenched after 12 h with a sat. NH4Cl solution (20 mL). After extraction with EtOAc (3x 50 mL), 

the combined organic layers were washed with brine (50 mL), dried over Na2SO4 and 

concentrated in vacuo. After flash column chromatography (silica, pentane:Et2O 4:1) and 

recrystallization (heptane/CH2Cl2) 33f was obtained as light yellow solid (6.17 g, 71 %). 

m.p.: 144-146°C. 

1H-NMR (300 MHz, CDCl3) δ (ppm) = 7.73 (s, 2 H), 7.69 (d, J = 8.6 Hz. 2 H), 7.59 (d, J = 8.8 Hz, 

2 H), 3.96 (br s, 2 H), 3.73 (br s, 2 H), 2.08 (br s, 4 H). 

13C-NMR (75 MHz, CDCl3) δ (ppm) = 148.1, 142.5, 137.3, 132.6, 130.9, 127.4, 118.6, 118.4, 111.4, 

51.2, 46.6, 24.0, 23.5.  

MS (EI, 70 eV): m/z (%) = 432 (M+, 7), 364 (61), 337 (97), 257 (100), 177 (67), 149 (14), 89 (11).  

HRMS m/z : calc. for C17H14Br2N4 431.9585, found  431.9574. 

IR (ATR): 
~  (cm-1) = 2227, 1608, 1519, 1402, 1340, 1308, 1274, 1104, 885, 828, 744, 723. 

 

Preparation of 3-bromo-4'-methoxybiphenyl-4-yl tert-butyl carbonate (33h): 
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According to GP8 tert-butyl 2,4-dibromophenyl carbonate (29g, 3.52 g, 10 mmol) was added as 

a solution in THF (10.0 mL) over 1 h to a suspension of LiCl (530 mg, 12.5 mmol) and Mg 

turnings (607 mg, 25.0 mmol) in THF (10 mL) so that the temperature of the reaction mixture 

remains below -20 °C. After the addition, the reaction mixture was stirred for additional 30 min 

at -20 °C and then cannulated to a new Schlenk-flask containing ZnCl2 (11.0 mL, 11.0 mmol, 1 M 

in THF) at -20 °C. After stirring for 15 min at this temperature, 4-iodoanisole (31j, 1.64 g, 

7.0 mmol) followed by Pd(dba)2 (114 mg, 0.2 mmol) and tris(o-furyl)phosphine (93 mg, 

0.4 mmol) were added and the reaction was allowed to warm to 25 °C. The reaction was 

quenched after 2 h with a sat. NH4Cl solution (20 mL). After extraction with EtOAc (3x 50 mL), 

the combined organic layers were washed with brine (50 mL), dried over Na2SO4 and 

concentrated in vacuo. After flash column chromatography (silica, pentane:Et2O 9:1) 33h was 

obtained as light yellow oil (2.24 g, 84 %). 

1H-NMR (300 MHz, CDCl3) δ (ppm) = 7.76 (d, J = 2.2 Hz, 1 H), 7.46 (dd, J = 8.4 and 2.2 Hz. 1 H), 

7.45 (d, J = 8.8 Hz, 2 H), 7.23 (d, J = 8.4 Hz, 1 H), 6.96 (d, J = 8.8 Hz, 2 H), 3.84 (s, 3 H), 1.58 (s, 

9 H). 

13C-NMR (75 MHz, CDCl3) δ (ppm) = 159.5, 151.0, 147.1, 140.5, 131.5, 131.4, 128.2, 126.7, 123.5, 

116.6, 114.3, 84.2, 55.3, 27.6.  

MS (EI, 70 eV): m/z (%) = 378 (M+, 1), 280 (99), 278 (100), 265 (20), 263 (25), 57 (30).  

HRMS m/z : calc. for C18H19BrO4 378.0467, found  378.0457. 
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5 PREPARATION OF PRIMARY AMIDES FROM ORGANOZINC HALIDES  

5.1 GENERAL PROCEDURES 

General procedure 1 (GP1): Typical Procedure for the direct insertion of zinc.  

A Schlenk-flask equipped with a magnetic stirring bar and a septum was charged with LiCl (1.5–

2.0 equiv). The flask was heated with a heat gun (400 °C) for 10 min under high vacuum. After 

cooling to 25 °C, the flask was flushed with argon (3 times). Zinc dust (1.5-2.0 equiv) was added 

followed by THF. 1,2-Dibromoethane (5 mol%) and trimethylsilyl chloride (1 mol%) was added 

and the reaction mixture was heated until ebullition occurs. After cooling to 25 °C, the substrate 

(1.0 equiv) was added at the required temperature (usually 25 °C). When capillary GC analysis of 

a hydrolyzed aliquot containing an internal standard showed a conversion of >98%, the reaction 

mixture was allowed to settle down for some hours. The yield of the resulting organozinc 

reagent was determined by iodiometric titration.159 

 

General procedure 2 (GP2): Typical Procedure for the magnesium insertion in the 

presence of ZnCl2. 

A Schlenk-flask equipped with a magnetic stirring bar and a septum was charged with LiCl (1.25-

1.5 equiv). The flask was heated with a heat gun (400 °C) for 10 min under high vacuum. After 

cooling to 25 °C, the flask was flushed with argon (3 times). Mg turrnings (2.5 equiv) were added 

followed by ZnCl2 (1.1 equiv., 1 M in THF) and the magnesium turnings were activated with 

iBu2AlH (1 mol%).160  After 5 min stirring at 25 °C the aryl halide (1.0 equiv) was added at the 

required temperature (usually 25 °C). When capillary GC analysis of a hydrolyzed aliquot 

containing an internal standard showed a conversion of > 98%, the Mg turnings were allowed to 

settle down and the supernatant solution was transferred to a second Schlenk-tube. The yield of 

the resulting arylzinc reagent was determined by iodometric titration.159  

 

General procedure 3 (GP3):  Typical Procedure for the preparation of organozinc 

reagents via halogen-magnesium-exchange and subsequent transmetallation. 

A Schlenk-flask equipped with a magnetic stirring bar and a septum was charged with the 

desired aryl halide (1.0 equiv) and THF (1 M). Then iPrMgCl·LiCl (1.1 equiv.) was added at the 

given temperature. When capillary GC analysis of a hydrolyzed aliquot containing an internal 

standard showed a conversion of >98%, ZnCl2-solution (1.15 equiv., 1 M in THF) was added. 

After 5 min of stirring at the required temperature, the organozinc reagent was used for the 

reaction with the trichloroacetyl isocyanate. 

                                                             
159 Krasovskiy, A.; Knochel, P. Synthesis 2006, 5, 890. 
160 Tilstam, U.; Weinmann, H. Org. Process Res. Dev. 2002, 6, 906. 
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General procedure 4 (GP4): Typical Procedure for the reaction of organozinc reagents 

with trichloroacetyl isocyanate. 

A dry, Ar-flushed Schlenk-flask equipped with a magnetic stirring bar and a rubber septum was 

charged with the organozinc reagent as a solution in THF. After cooling to -20 °C, trichloroacetyl 

isocyanate (1.1 equiv.) was added at once and the reaction mixture was stirred for 5 min 

at -20 °C. Then, the cooling bath was removed and the reaction was allowed to warm to 25 °C. 

After 2 h, K2CO3 (1.5 equiv.) and MeOH (2 mL) were added and the reaction mixture was stirred 

for 12 h. Then, a sat. aqueous NH4Cl-solution was added and the aqueous layer was extracted 

with EtOAc (3x100 mL) and CHCl3 (3x100 mL). The combined organic layers were dried over 

Na2SO4 and the solvents were removed under reduced pressure. Purification by flash-

chromatography afforded the analytically pure product. 

 

General procedure 5 (GP5): Typcial Procedure for the Ni-catalyzed reaction of organozinc 

reagents with substituted isocyanates. 

A dry, Ar-flushed Schlenk-flask equipped with a magnetic stirring bar and a rubber septum was 

charged with the corresponding isocyanate and THF (1 mL/3 mmol). Then, Ni(acac)2 (2 mol%) 

was added, followed by the desired organozinc reagent (1.1 equiv.). The reaction mixture was 

stirred at the given temperature until the GC-analysis of a hydrolyzed reaction aliquot showed 

complete consumption of the isocyanate. Then, a sat. aqueous NH4Cl-solution was added and the 

aqueous layer was extracted with EtOAc (3x20 mL). The combined organic layers were dried 

over Na2SO4 and the solvents were removed under reduced pressure. Purification by flash-

chromatography afforded the analytically pure product. 

 

5.2 PREPARATION OF PRIMARY AMIDES 

Preparation of 4-cyanobenzamide (40a): 

 

According to GP4, trichloroacetyl isocyanate (622 mg, 3.3 mmol) was added to 4-

cyanophenylzinc iodide161 (39a) (4.4 mL, 3.0 mmol, 0.68 M in THF) at -20 °C. After quenching 

with K2CO3 (622 mg, 4.5 mmol) and MeOH (2 mL), standard workup with EtOAc and CHCl3 and 

flash-chromatographical purification (silica, pentane:EtOAc 1:1) afforded the amide 40a 

(416 mg, 95 %) as a colourless solid.  

m.p.: 222.1–223.3 °C. 

                                                             
161 Krasovskiy, A.; Malakhov, V.; Gavryushin, A.; P. Knochel Angew. Chem. Int. Ed. 2006, 45, 6040. 
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1H-NMR (600 MHz, DMSO-d6) δ (ppm) = 8.19 (br s, 1 H), 8.01 (d, J = 8.6 Hz, 2 H), 7.93 (d, J = 8.6 

Hz, 2 H), 7.65 (br s, 1 H). 

13C-NMR (150 MHz, DMSO-d6) δ (ppm) = 166.4, 138.3, 132.3, 128.2, 118.3, 113.6. 

MS (EI, 70 eV): m/z (%) = 146 (M+, 50), 130 (100), 128 (8), 102 (50), 75 (10). 

HRMS m/z : calc. for C8H6N2O 146.0480, found  146.0475(M+). 

Data are consistent with literature values.162 

 

Preparation of ethyl 4-(aminocarbonyl)benzoate (40b): 

 

According to GP4, trichloroacetyl isocyanate (622 mg, 3.3 mmol) was added to 4-

ethoxycarbonylphenylzinc iodide161 (39b) (4.1 mL, 3.0 mmol, 0.73 M in THF) at -20 °C. After 

quenching with K2CO3 (622 mg, 4.5 mmol) and EtOH (2 mL), standard workup with EtOAc and 

CHCl3 and flash-chromatographical purification (silica, pentane:EtOAc 1:1) afforded the amide 

40b (521 mg, 90 %) as a colourless solid. 

m.p.: 170.0–174.2 °C. 

1H-NMR (600 MHz, DMSO-d6) δ (ppm) = 8.12 (br s, 1 H), 8.01–7.96 (m, 4 H), 7.54 (br s, 1 H), 

4.31 (q, J = 7.1 Hz, 2 H), 1.31 (t, J = 7.0 Hz, 3 H). 

13C-NMR (150 MHz, DMSO-d6) δ (ppm) = 167.0, 165.2, 138.3, 132.0, 129.0, 127.8, 61.0, 14.1. 

MS (EI, 70 eV): m/z (%) = 193 (M+, 26), 177 (41), 165 (45), 148 (100), 103 (22). 

HRMS m/z : calc. for C10H11NO3 193.0739, found  193.0735.163 

IR (ATR): 
~  (cm-1) = 3404 (m), 3156 (m), 2994 (w), 2975 (w), 2930 (w), 1697 (s), 1649 (s), 

1547 (m), 1444 (m), 1414 (m), 1390 (m), 1370 (m), 1286 (vs), 1182 (m), 1109 (s), 1014 (s), 869 

(m), 812 (w), 775 (m), 719 (s). 

 

Preparation of 2,6-dichlorobenzamide (40c): 

 

                                                             
162 Crisóstomo, C.; Crestani, M. G.; García, J. J. J. Mol. Cat. A: Chem. 2007, 266, 139. 
163 Yamazaki, K; Kondo, Y. J. Comb. Chem. 2004, 6, 121. 
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According to GP3, iPrMgCl·LiCl (2.61 mL, 3.3 mmol, 1.26 M in THF) was added to a solution of 

1-bromo-2,3-dichlorobenzene (678 mg, 3 mmol) in THF (3 mL) at 25 °C. After stirring for 1 h at 

25 °C, ZnCl2-solution (3.3 mL, 3.3 mmol, 1 M in THF) was added. After 5 min at 25 °C, the reaction 

mixture was cooled to -20 °C.  According to TP4 trichloroacetyl isocyanate (622 mg, 3.3 mmol) 

was added at -20 °C. After quenching with K2CO3 (622 mg, 4.5 mmol) and EtOH (2 mL), standard 

workup with EtOAc and CHCl3 and flash-chromatographical purification (silica, pentane:EtOAc 

9:1) afforded the amide 40c (340 mg, 60 %) as a colourless solid. 

 1H-NMR (400 MHz, DMSO-d6) δ (ppm) = 8.07 (br. s, 1 H), 7.79 (br. s,1 H), 7.49-7.38 (m, 3 H). 

13C-NMR (100 MHz, DMSO-d6) δ (ppm) = 165.3, 137.0, 130.7, 130.6, 128.0. 

Data are consistent with literature values.164 

 

Preparation of 2-chloro-5-(trifluoromethyl)benzamide (40d): 

 

According to GP4, trichloroacetyl isocyanate (311 mg, 1.7 mmol) was added to 2-chloro-4-

(trifluoromethyl)phenylzinc chloride165 (39d) (3.1 mL, 1.5 mmol, 0.48 M in THF) at -20 °C. After 

quenching with K2CO3 (311 mg, 2.3 mmol) and MeOH (2 mL), standard workup with EtOAc and 

CHCl3 and flash-chromatographical purification (silica, pentane:EtOAc 1:1 then EtOAC) afforded 

the amide 40d (328 mg, 98 %) as a colourless solid. 

m.p.: 142.9–144.4 °C. 

1H-NMR (600 MHz, DMSO-d6) δ (ppm) = 8.07 (br s, 1 H), 7.84–7.77 (m, 3 H), 7.73 (d, J = 9.2 Hz, 1 

H). 

13C-NMR (150 MHz, DMSO-d6) δ (ppm) = 166.8, 138.0, 134.2 (q, J = 1.5 Hz), 130.9, 127.7 (q, J = 

32.6 Hz), 127.2 (q, J = 3.8 Hz), 125.4 (q, J = 3.8 Hz), 123.4 (q, J = 272.6 Hz). 

MS (EI, 70 eV): m/z (%) = 223 (M+, 39), 209 (30), 207 (100), 181 (11), 179 (32). 

HRMS m/z : calc. for C8H5ClF3NO 223.0012, found  223.0007. 

IR (ATR): 
~  (cm-1) = 3371 (w), 3186 (w), 1651 (vs), 1430 (w), 1387 (m), 1320 (s), 1266 (w), 

1169 (m), 1121 (vs), 1080 (s), 1049 (m), 904 (w), 832 (m), 805 (w), 746 (w), 722 (w), 663 (w). 

 

                                                             
164 G. van Baelen, U. W. Maes, Tetrahedron 2008, 64, 5604-5619. 
165 Prepared from via LiCl mediated direct Mg insertion in 2-bromo-1-chloro-4-(trifluoromethyl)benzene and subsequent transmetalation 
with  ZnCl2 (1 equiv.); see: S. Yamada, A. Gavryushin, P.  Knochel, Angew. Chem. Int. Ed. 2010, 49, 2215. 
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Preparation of 3,4-dichlorobenzamide (40e): 

 

According to GP3, iPrMgCl·LiCl (2.54 mL, 3.3 mmol, 1.3 M in THF) was added to a solution of 1-

bromo-3,4-dichlorobenzene (678 mg, 3 mmol) in THF (3 mL) at 25 °C. After stirring for 1 h at 

25 °C, ZnCl2-solution (3.3 mL, 3.3 mmol, 1 M in THF) was added. After 5 min at 25 °C, the reaction 

mixture was cooled to -20 °C.  According to TP4 trichloroacetyl isocyanate (622 mg, 3.3 mmol) 

was added at -20 °C. After quenching with K2CO3 (622 mg, 4.5 mmol) and EtOH (2 mL), standard 

workup with EtOAc and CHCl3 and flash-chromatographical purification (silica, CH2Cl2:EtOAc 

1:1) afforded the amide 40e (404 mg, 71 %) as a colourless solid. 

m.p.: 145.4-147.3 °C. 

1H-NMR (600 MHz, DMSO-d6) δ (ppm) =  8.14 (br s, 1 H), 8.08 (d, J = 1.9 Hz, 1 H), 7.83 (dd, 

J = 8.4 and 1.9 Hz, 1 H), 7.72 (d, J = 8.4 Hz, 1 H), 7.61 (br s, 1 H). 

13C-NMR (150 MHz, DMSO-d6) δ (ppm) =  165.5, 134.6, 134.1, 131.2, 130.6, 129.5, 127.7. 

MS (EI, 70 eV): m/z (%) =189 (M+, 61), 175 (64), 173 (100), 145 (30), 109 (14), 74 (13). 

HRMS m/z : calc. for C7H5Cl2NO 188.9748, found  188.9739(M+). 

IR (ATR): 
~  (cm-1) = 634 (m), 695 (m), 748 (s), 788 (s), 826 (m), 859 (m), 895 (s), 1032 (s), 

1118 (s), 1242 (m), 1277 (m), 1367 (s), 1408 (s), 1557 (m), 1587 (m), 1619 (vs), 1654 (s), 3162 

(m), 3350 (s). 

Data are consistent with literature values.166 

 

Preparation of 2-ethoxybenzamide (40f): 

 

A Schlenk-flask equipped with a magnetic stirring bar and a septum was charged with LiCl 

(318 mg, 7.5 mmol). The flask was heated with a heat gun (650 °C) for 10 min under high 

vacuum. After cooling to 25 °C, the flask was flushed with argon (3 times). Mg turrnings 

(2.5 equiv) were added followed by THF and the magnesium turnings were activated with 

iBu2AlH (1 mol%).  After 5 min stirring at 25 °C, 1-bromo-2-ethoxybenzene (1.01 g, 5 mmol) was 

added at 0°C. After 1 h at 0 °C, capillary GC analysis of a hydrolyzed aliquot containing an 

internal standard showed a conversion of >98%, the Mg turnings were allowed to settle down. 

                                                             
166 K. L. Reed, J. T. Gupton, T. L. Solarz, Synth. Commun. 1990, 20, 563-571. 
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The yield of the resulting aryl magnesium reagent was determined by iodiometric titration 

(0.79 M, 79 %). To the corresponding organomagnesium reagent (3.8 mL, 3 mmol, 0.79 M in THF) 

was added ZnCl2-solution (3.15 mL, 3.15 mmol, 1 M in THF) and the reaction mixture was cooled 

to -20 °C. According to TP4, trichloroacetyl isocyanate (622 mg, 3.3 mmol) was added at -20 °C. 

After quenching with K2CO3 (622 mg, 4.5 mmol) and MeOH (2 mL), standard workup with EtOAc 

and CHCl3 and flash-chromatographical purification (silica, CH2Cl2:EtOAc 9:1) afforded the amide 

40f (488 mg, 98 %) as a colourless solid. 

m.p.: 132.4–133.9 °C.167 

1H-NMR (400 MHz, DMSO-d6) δ (ppm) =  7.83 (dd, J = 7.6 and 1.8 Hz, 1 H), 7.59 (br s, 1 H), 7.54 

(br s, 1 H), 7.47–7.40 (m, 1 H), 7.10 (d, J = 7.6 Hz, 1 H), 7.00 (td, J = 7.5 Hz and 1.0 Hz, 1 H), 4.15 

(q, J = 7.0 Hz, 2 H), 1.37 (t, J = 6.9 Hz, 3 H) . 

13C-NMR (100 MHz, DMSO-d6) δ (ppm) = 166.3, 156.5, 132.4, 130.8, 122.6, 120.4, 112.9, 64.2, 

14.5. 

Data are consistent with literature values.168  

 

Preparation of 3,5-dibromo-2-methoxybenzamide (40g): 

 

According to GP4, trichloroacetyl isocyanate (622 mg, 3.3 mmol) was added to 3,5-dibromo-2-

methoxyphenylzinc bromide (39g) (4.2 mL, 3.0 mmol, 0.71 M in THF) at -20 °C. After quenching 

with K2CO3 (622 mg, 4.5 mmol) and MeOH (2 mL), standard workup with EtOAc and CHCl3 and 

flash-chromatographical purification (silica, CH2Cl2:EtOAc 3:1) afforded the amide 40g (721 mg, 

78 %) as a colourless solid.  

m.p.: 173.8–175.7 °C.169 

1H-NMR (400 MHz, DMSO-d6) δ (ppm) = 7.97 (d, J = 2.5 Hz, 1 H), 7.90 (br s, 1 H), 7.73 (br s, 1 H), 

7.64 (d, J = 2.5 Hz, 1 H), 3.80 (s, 3 H). 

13C-NMR (100 MHz, DMSO-d6) δ (ppm) = 165.6, 153.4, 136.4, 133.7, 131.3, 118.5, 116.3, 61.8. 

IR (ATR): 
~  (cm-1) = 3439 (m), 3151 (m), 1667 (vs), 1596 (m), 1573 (s), 1545 (m), 1451 (s), 

1405 (vs), 1355 (s), 1237 (s), 1119 (m), 1088 (m), 973 (vs), 872 (s), 807 (m), 775 (m), 682 (m). 

Data are consistent with literature values.169 

                                                             
167 S. L. Shapiro, J. Am. Chem. Soc. 1959, 81, 3728. 
168 D. G. de Kowalewski, V. J. Kowalewski, E. Botek, R. H. Contreras, J. C. Facelli, Magn. Reson. Chem.  1997, 35, 351. 
169 T. Nozoe, Proc. Jpn. Acad. 1952, 28, 192. 



C Experimental 

 

162 
 

Preparation of 5-bromo-3-(cyclopropanecarbonyl)-2-methoxybenzamide (40h): 

 

According to GP4, trichloroacetyl isocyanate (311 mg, 1.7 mmol) was added to 5-bromo-3-

(cyclopropanecarbonyl)-2-methoxyphenylzinc bromide (39h) (2.0 mL, 1.5mmol, 0.75 M in THF) 

at -20 °C. After quenching with K2CO3 (311 mg, 2.3 mmol) and MeOH (2 mL), standard workup 

with EtOAc and CHCl3 and flash-chromatographical purification (silica, CH2Cl2:EtOAc 9:1) 

afforded the amide 40h (295 mg, 66 %) as a colourless solid.  

m.p.: 131.8–133.5 °C. 

1H-NMR (400 MHz, DMSO-d6) δ (ppm) = 7.89 (br s, 1 H), 7.79 (d, J = 2.5 Hz, 1 H), 7.71 (br s, 1 H), 

7,67 (d, J = 2.7 Hz, 1 H), 3.80 (s, 3 H), 2.63 (quint, J = 6.2 Hz, 1 H), 1.11 (d, J = 6.3 Hz, 4 H). 

13C-NMR (100 MHz, DMSO-d6) δ (ppm) = 201.2, 165.9, 155.0, 136.1, 134.4, 133.2, 132.5, 115.4, 

63.2, 21.2, 12.4. 

MS (EI, 70 eV): m/z (%) = 298 (100), 297 (55) [M+], 227 (95), 201 (60), 69 (56), 43 (49), 41 (52). 

HRMS m/z : calc. for C12H12BrNO3 297.0001, found  297.006. 

IR (ATR): 
~  (cm-1) = 3442 (w), 1670 (m), 1633 (vs), 1574 (m), 1458 (m), 1416 (s), 1407 (vs), 

1387 (s), 1359 (m), 1217 (s), 1103 (m), 1048 (m), 1015 (m), 985 (s), 907 (m), 876 (m), 843 (w), 

800 (w). 

 

Preparation of thiophene-2-carboxamide (40i): 

 

According to GP4, trichloroacetyl isocyanate (622 mg, 3.3 mmol) was added to 2-thienyl zinc 

iodide (39i) (3.9 mL, 3.0 mmol, 0.77 M in THF) at -20 °C. After quenching with K2CO3 (622 mg, 

4.5 mmol) and MeOH (2 mL), standard workup with EtOAc and CHCl3 and flash-

chromatographical purification (silica, pentane:EtOAc 3:1) afforded the amide 40i (380 mg, 

99%) as a colourless solid.  

1H-NMR (400 MHz, DMSO-d6) δ (ppm) = 7.97 (br s, 1 H), 7.74 (dd, J = 3.8 and 1.3 Hz,  1 H), 7.72 

(dd, J = 5.1 and 1.2 Hz, 1 H) 7.39 (br s, 1 H), 7.11 (dd, J = 4.9 and 3.7 Hz, 1 H). 
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13C-NMR (100 MHz, DMSO-d6) δ (ppm) =  162.9, 140.3, 131.0, 128.7, 127.9. 

Data are consistent with literature values.170 

 

Preparation of 5-(trimethylsilyl)thiophene-2-carboxamide (40j): 

 

According to GP3, iPrMgCl·LiCl (1.60 mL, 2.1 mmol, 1.31 M in THF) was added to a solution of (5-

bromothiophen-2-yl)trimethylsilane (470 mg, 2 mmol) in THF (2 mL) at 25 °C. After stirring for 

1 h at 25 °C, ZnCl2-solution (3.4 mL, 2.2 mmol, 0.65 M in THF) was added. After 5 min at 25 °C, 

the reaction mixture was cooled to -20 °C.  According to TP4 trichloroacetyl isocyanate (452 mg, 

2.4 mmol) was added at -20 °C. After quenching with K2CO3 (414 mg, 3 mmol) and EtOH (2 mL), 

standard workup with EtOAc and CHCl3 and flash-chromatographical purification (silica, 

CH2Cl2:EtOAc 1:1) afforded the amide 40j (397 mg, 99 %) as a colourless solid. 

m.p.: 144.8–146.6 °C. 

1H-NMR (400 MHz, DMSO-d6) δ (ppm) = 7.91 (br s, 1 H), 7.76 (d, J  = 3.5 Hz, 1 H), 7.33 (br s,1 H), 

7.28 (d, J = 3.5 Hz, 1 H), 0.29 (s, 9 H). 

13C-NMR (100 MHz, DMSO-d6) δ (ppm) =  162.6, 145.1, 145.0, 134.8, 129.6, -0.4. 

MS (EI, 70 eV): m/z (%) = 199 (M+, 22), 184 (100), 127 (6), 74 (6), 69 (7), 43 (14). 

HRMS m/z : calc. for C8H13NOSSi 199.0487, found  199.0477. 

IR (ATR): 
~  (cm-1) = 3392 (w), 3220 (w), 1663 (m), 1633 (m), 1601 (s), 1514 (m), 1435 (m), 

1389 (m), 1250 (m), 1214 (m), 1108 (w), 1094 (w), 1058 (m), 989 (s), 839 (vs), 818 (s), 754 (s), 

691 (m). 

 

Preparation of ethyl 5-carbamoylthiophene-2-carboxylate (40k): 

 

According to GP3, iPrMgCl·LiCl (1.60 mL, 2.1 mmol, 1.31 M in THF) was added to a solution of 

ethyl 5-bromothiophene-2-carboxylate (470 mg, 2 mmol) in THF (2 mL) at -20 °C. After stirring 

for 2 h at -20 °C, ZnCl2-solution (3.4 mL, 2.2 mmol, 0.65 M in THF) was added. According to TP4 

trichloroacetyl isocyanate (452 mg, 2.4 mmol) was added at -20 °C. After quenching with K2CO3 

(414 mg, 3 mmol) and EtOH (2 mL), standard workup with EtOAc and CHCl3 and flash-

                                                             
170 M. Kashiwagi, K. Fuhshuku, T. Sugai, J. Mol. Cat. B: Enzym. 2004, 29, 249. 
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chromatographical purification (silica, CH2Cl2:EtOAc 9:1) afforded the amide 40k (245 mg, 61%) 

as a colourless solid. 

m.p.: 195.9–198.3 °C. 

1H-NMR (400 MHz, DMSO-d6) δ (ppm) = 8.20 (br s, 1 H), 7.76, (s, 2 H), 7.67 (br s, 1 H), 4.29 (q, 2 

H), 1.29 (t, 3 H). 

13C-NMR (100 MHz, DMSO-d6) δ (ppm) = 162.0, 161.2, 146.2, 136.2, 133.7, 128.9, 61.3, 14.1. 

MS (EI, 70 eV): m/z (%) = 199 (M+, 61), 183 (34), 171 (36), 155 (47), 154 (100), 111 (31). 

HRMS m/z : calc. for C8H9NO3S 199.0303, found  199.0296. 

IR (ATR): 
~  (cm-1) = 3397 (m), 3159 (m), 1678 (vs), 1621 (s), 1529 (m), 1389 (s), 1363 (s), 

1289 (vs), 1232 (m), 1119 (s), 1103 (s), 1039 (m), 1010 (m), 829 (m), 748 (vs), 720 (m), 667 

(m). 

 

Preparation of ethyl 5-carbamoylfuran-2-carboxylate (40l): 

 

According to GP3, iPrMgCl·LiCl (1.60 mL, 2.1 mmol, 1.31 M in THF) was added to a solution of 

ethyl 5-bromofuran-2-carboxylate (438 mg, 2 mmol) in THF (2 mL) at -20 °C. After stirring for 

1 h at -20 °C, ZnCl2-solution (3.4 mL, 2.2 mmol, 0.65 M in THF) was added. According to TP4 

trichloroacetyl isocyanate (452 mg, 2.4 mmol) was added at -20 °C. After quenching with K2CO3 

(414 mg, 3 mmol) and EtOH (2 mL), standard workup with EtOAc and CHCl3 and flash-

chromatographical purification (silica, CH2Cl2:EtOAc 9:1) afforded the amide 40l (284 mg, 78 %) 

as a colourless solid. 

m.p.: 184.1–185.9 °C. 

1H-NMR (400 MHz, DMSO-d6) δ (ppm) = 8.02 (br s, 1 H), 7.64 (br s, 1 H), 7.35 (d, J = 3.5 Hz, 1 H), 

7.24 (d, J = 3.5 Hz, 1 H), 4.31 (q, J = 7.0 Hz, 2 H), 1.30 (t, J = 7.1 Hz, 3 H). 

13C-NMR (100 MHz, DMSO-d6) δ (ppm) = 158.6, 157.7, 150.4, 144.6, 119.0, 114.7, 61.0, 14.1. 

MS (EI, 70 eV): m/z (%) = 183 (M+, 67), 167 (15), 155 (60), 139 (77), 138 (100), 111 (21), 95 

(38). 

HRMS m/z : calc. for C8H9NO4 183.0532, found  183.0527. 

IR (ATR): 
~  (cm-1) = 3376 (w), 3115 (w), 1723 (s), 1685 (s), 1655 (s), 1623 (m), 1585 (m), 

1380 (s), 1295 (vs), 1222 (s), 1177 (s), 1154 (s), 1116 (m), 1079 (m), 1017 (s), 964 (w), 946 (m), 

866 (w), 838 (m), 826 (w), 763 (s), 688 (w). 
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Preparation of 1,3-thiazole-2-carboxamide (40m): 

 

According to GP3, iPrMgCl·LiCl (2.50 mL, 3.3 mmol, 1.33 M in THF) was added to a solution of 2-

bromothiazole (489 mg, 3 mmol) at 25 °C. After stirring for 1.5 h at 25 °C, ZnCl2-solution (3.5 mL, 

3.5 mmol, 1 M in THF) was added. After 5 min at 25 °C, the reaction mixture was cooled to -20 °C.  

According to TP4 trichloroacetyl isocyanate (678 mg, 3.6 mmol) was added at -20 °C. After 

quenching with K2CO3 (622 mg, 4.5 mmol) and MeOH (2 mL), standard workup with EtOAc and 

CHCl3 and flash-chromatographical purification (silica, CH2Cl2:EtOAc 4:1) afforded the amide 

40m (317 mg, 82 %) as a colourless solid. 

m.p.: 119.2–120.8 °C. 

1H-NMR (600 MHz, DMSO-d6) δ (ppm) = 8.17 (br s, 1 H), 7.99 (d, J = 2.9 Hz, 1 H), 7.97 (d, J = 3.1 

Hz, 1 H), 7.85 (br s, 1 H). 

13C-NMR (150 MHz, DMSO-d6) δ (ppm) = 164.2, 161.0, 143.9, 125.9. 

MS (EI, 70 eV): m/z (%) = 128 (M+, 22), 85 (100), 58 (85), 57 (25), 44 (21). 

HRMS m/z : calc. for C4H4N2OS 128.0044, found  128.0032(M+). 

IR (ATR): 
~  (cm-1) = 3331 (m), 3146 (m), 1689 (vs), 1619 (s), 1494 (m), 1430 (s), 1379 (s), 

1321 (m), 1123 (m), 1088 (s), 757 (m), 732 (s), 710 (s). 

 

Preparation of 2,6-dichloroisonicotinamide (40n): 

 

According to TP1, 4-iodo-2,6-dichloropyridine (1.37 g, 5.0 mmol) was converted to the 

corresponding organozinc reagent 39n using Zn dust (653 mg, 10 mmol) and LiCl (318 mg, 

7.5 mmol) in THF within 1 h at 18 °C (cooling with a water bath). After unreacted Zn dust settled 

down, the supernatant solution was titrated to be 0.55 M. The organozinc reagent (3.6 mL, 

2 mmol, 0.55 M) was transferred to a new Schlenk-flask and cooled to -20 °C. According to TP4 

trichloroacetyl isocyanate (415 mg, 2.2 mmol) was added at -20 °C. After quenching with K2CO3 

(415 mg, 4.5 mmol) and MeOH (2 mL), standard workup with EtOAc and CHCl3 and flash-

chromatographical purification (silica, CH2Cl2:EtOAc 9:1) afforded the amide 40n (240 mg, 63%) 

as a colourless solid. 

m.p.: 212.8–214.5 °C. 

1H-NMR (600 MHz, DMSO-d6) δ (ppm) = 8.35 (br s, 1 H), 7.97 (br s, 1 H), 7.88 (s, 2 H). 
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13C-NMR (150 MHz, DMSO-d6) δ (ppm) = 163.5, 149.8, 147.7, 121.6. 

MS (EI, 70 eV): m/z (%) = 190 (M+, 100), 176 (55), 174 (96), 147 (31), 85 (28), 44 (40). 

HRMS m/z : calc. for C6H6Cl2N2O 189.9701, found  189.9688. 

IR (ATR): 
~  (cm-1) = 3436 (w), 3167 (m), 1698 (vs), 1613 (m), 1580 (m), 1534 (vs), 1428 (m), 

1350 (s), 1197 (m), 1169 (s), 1103 (s), 986 (w), 894 (m), 880 (m), 818 (s), 773 (vs), 707 (m). 

 

Preparation of 6-fluoro-3-methoxyquinoline-4-carboxamide (40o): 

 

According to GP1, 3-fluoro-4-iodo-6-methoxyquinoline (1.52 g, 5mmol ) was added to a 

suspension of LiCl (424 mg, 10 mmol) and Zn dust (654 mg, 10 mmol) in THF (5 mL) at 0 °C. 

After 5 min, the ice bath was removed, and the reaction was stirred 12 h at 25 °C.  According to 

TP4 trichloroacetyl isocyanate (226 mg, 1.2 mmol) was added at -20 °C. After quenching with 

K2CO3 (207 mg, 1.5 mmol) and MeOH (1 mL), standard workup with EtOAc and CHCl3 and flash-

chromatographical purification (silica, CH2Cl2:EtOAc 9:1) afforded the amide 40o (239 mg, 73 

%) as a colourless solid. 

m.p.: 199.3–201.4 °C. 

1H-NMR (400 MHz, DMSO-d6) δ (ppm) = 8.81 (s, 1 H), 8.36 (br s, 1 H), 8.12 (br s, 1 H), 8.00 (d, 

J = 9.2 Hz, 1 H), 7.43 (dd, J = 9.2 and 2.7 Hz, 1 H), 7.19 (d, J = 2.7 Hz, 1 H), 3.88 (s, 3 H). 

13C-NMR (100 MHz, DMSO-d6) δ (ppm) = 163.7 (d, J = 1.2 Hz), 158.6, 151.6 (d, J = 254.7 Hz), 

141.0 (d, J = 2.3 Hz), 138.5 (d, J = 28.0 Hz), 130.9, 126.2 (d, J = 16.4 Hz), 126.1 (d, J = 3.5 Hz), 

121.3 (d, J = 2.7 Hz), 102.9 (d, J = 5.1 Hz), 55.5. 

MS (EI, 70 eV): m/z (%) = 220 (M+, 100), 204 (31), 189 (10), 176 (16), 174 (8), 149 (8). 

HRMS m/z : calc. for C11H9FN2O2 220.0648, found  220.0646(M+). 

IR (ATR): 
~  (cm-1) = 3311 (w), 2959 (w), 1673 (s), 1619 (s), 1507 (s), 1462 (s), 1429 (m), 1395 

(m), 1350 (s), 1311 (m), 1270 (m), 1226 (vs), 1198 (s), 1174 (m), 1134 (m), 1066 (w), 1022 (m), 

906 (m), 828 (s), 806 (m). 

 

Preparation of 2-methyl-1-[(4-methylphenyl)sulfonyl]-1H-indole-3-carboxamide (40p): 



C Experimental 

167 
 

 

According to GP3, iPrMgCl·LiCl (0.83 mL, 1.1 mmol, 1.33 M in THF) was added to a solution of 3-

iodo-2-methyl-1-[(4-methylphenyl)sulfonyl]-1H-indole (411 mg, 1 mmol) in THF (1 mL) 

at -20 °C. After stirring for 4 h at -20 °C, ZnCl2-solution (1.15 mL, 1.15 mmol, 1 M in THF) was 

added at -20 °C and the reaction was stirred for another 5 min. According to TP4, trichloroacetyl 

isocyanate (226 mg, 1.2 mmol) was added at -20 °C. After quenching with K2CO3 (207 mg, 

1.5 mmol) and MeOH (1 mL), standard workup with EtOAc and CHCl3 and flash-

chromatographical purification (silica, CH2Cl2:EtOAc 9:1) afforded the amide 40p (239 mg, 

73 %) as a colourless solid. 

m.p.: 225.9–227.6 °C. 

1H-NMR (400 MHz, DMSO-d6) δ (ppm) = 8.08 (d, J = 8.2 Hz, 1 H), 7.80 (d, J = 8.4 Hz, 2 H), 7.67 

(br s, 1 H), 7.62 (d, J = 7.0 Hz, 1 H), 7.53 (br s, 1 H), 7.38 (d, J = 8.4 Hz, 2 H), 7.32 (td, J = 7.7 Hz 

and 1.4 Hz, 1 H), 7.27 (t, J = 6.9 Hz, 1 H), 2.73 (s, 3 H), 2.31 (s, 3 H). 

13C-NMR (100 MHz, DMSO-d6) δ (ppm) = 165.3, 145.7, 137.2, 134.8, 134.7, 130.4, 127.2, 126.4, 

124.4, 123.7, 120.2, 117.8, 113.8, 21.0, 13.7. 

MS (EI, 70 eV): m/z (%) = 328 (M+, 63), 247 (15), 173 (100), 155 (13), 145 (49), 91 (55). 

HRMS m/z : calc. for C17H16N2O3S 328.0882, found  328.0867. 

IR (ATR): 
~  (cm-1) = 1678 (m), 1650 (m), 1616 (m), 1403 (m), 1365 (m), 1239 (m), 1188 (m), 

1173 (s), 1159 (m), 1116 (m), 1086 (m), 1022 (m), 965 (m), 788 (m), 749 (vs), 684 (m), 666 (m). 

 

Preparation of 1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazole-4-carboxamide 

(40q): 

 

According to GP4, trichloroacetyl isocyanate (622 mg, 3.3 mmol) was added to 1,5-dimethyl-2-

phenyl-1H-4-pyrazol-3-(2H)-on zinc iodide171  (39q) (3.9 mL, 3.0 mmol, 0.76 M in THF) at -20 °C. 

After quenching with K2CO3 (622 mg, 4.5 mmol) and MeOH (2 mL), standard workup with EtOAc 

and CHCl3, flash-chromatographical purification (silica gel, EtOAc) and subsequent 

recyrstallization from EtOAc afforded the amide 40q (484 mg, 70 %) as a colourless solid.  

                                                             
171 P. Knochel, C: J. Rao, C. J. Tetrahedron Lett. 1993, 49, 29. 
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m.p.: 253.3–255.5 °C.172 

1H-NMR (400 MHz, DMSO-d6) δ (ppm) = 7.89 (br s, 1 H), 7.54 (t, J = 7.6 Hz, 2 H), 7.44 (t, J = 7.4 

Hz, 1 H), 7.35 (dd, J = 8.4 Hz and 1.2 Hz, 2H), 7.01 (br s, 1 H), 3.26 (s, 3 H), 2.62 (s, 3 H). 

13C-NMR (100 MHz, DMSO-d6) δ (ppm) = 164.4, 163.4, 154.7, 133.6, 129.3, 128.2, 126.5, 97.9, 

33.3, 11.3. 

MS (EI, 70 eV): m/z (%) = 231 (M+, 48), 215 (18), 214 (100), 199 (44), 77 (14), 67 (14), 56 (10). 

HRMS m/z : calc. for C12H13N3O2 231.1008, found  231.1003(M+). 

IR (ATR): 
~  (cm-1) = 3321 (m), 3158 (w), 1649 (vs), 1604 (s), 1587 (s), 1535 (s), 1499 (s), 1486 

(s), 1420 (s), 1290 (s), 1243 (m), 1129 (m), 1071 (w), 1053 (w), 1022 (w), 822 (w), 787 (m), 

758 (m), 704 (vs). 

Data consistent with literature values.172 

 

Preparation of 1,3-dibenzyl-2,4-dioxo-1,2,3,4-tetrahydropyrimidine-5-carboxamide (40r): 

 

According to GP4, trichloroacetyl isocyanate (415 mg, 2.2 mmol) was added to N,N-dibenzyl-5-

uracilzinc iodide71b  (39r) (2.8 mL, 2.0 mmol, 0.71 M in THF) at -20 °C. After quenching with 

K2CO3 (415 mg, 3 mmol) and MeOH (2 mL), standard workup with EtOAc and CHCl3 and 

recrystallization from EtOAc afforded the amide 40r (522 mg, 78 %) as a colourless solid.  

m.p.: 195.1–196.8 °C. 

1H-NMR (400 MHz, DMSO-d6) δ (ppm) = 8.72 (s, 1 H), 8.18 (br s, 1 H), 7.63 (br s, 1 H), 7.38–7.24 

(m, 10 H), 5.14 (s, 2 H), 5.05 (s, 2 H). 

13C-NMR (100 MHz, DMSO-d6) δ (ppm) = 162.9, 162.1, 150.6, 149.7, 136.5, 136.0, 128.7, 128.3, 

127.9, 127.7, 127.5, 127.2, 104.9, 52.3, 44.2. 

MS (EI, 70 eV): m/z (%) = 335 (M+, 100), 318 (28), 227 (32), 199 (20), 132 (33), 91 (88). 

HRMS m/z : calc. for C19H13N3O5 335.1270, found  335.1262. 

IR (ATR): 
~  (cm-1) = 3369 (w), 1709 (s), 1693 (vs), 1647 (m), 1581 (m), 1495 (m), 1451 (vs), 

1407 (s), 1330 (s), 1230 (m), 1212 (m), 1116 (w), 1071 (w), 1029 (w), 989 (w), 826 (w), 792 

(m), 757 (s), 738 (s), 700 (s). 

                                                             
172 K. Bodendorf, G. Jancke, Arch. Pharm. 1960, 293, 693. 
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Preparation of 3,5-dimethylisoxazole-4-carboxamide (40s): 

 

According to TP2, 5-bromo-3,5-dimethylisoxazol (220 mg, 1.25 mmol) was converted to the 

corresponding organozinc reagent 39s using Mg turnings (97 mg, 4 mmol), LiCl (159 mg, 

3.8 mmol) and ZnCl2 (2.75 mL, 2.75 mL, 1 M in THF) within 1.5 h at 23 °C. After the magnesium 

turnings settled down, the supernatant solution was transferred to a new Schlenk-flask and 

cooled to -20 °C. According to TP4 trichloroacetyl isocyanate (264 mg, 1.4 mmol) was added 

at -20 °C. After quenching with K2CO3 (276 mg, 2.5 mmol) and MeOH (1 mL), standard workup 

with EtOAc and CHCl3 and flash-chromatographical purification (silica, CH2Cl2:EtOAc 1:1) 

afforded the amide 40s (173 mg, 98 %) as a colourless solid. 

m.p.: 125.6–127.7 °C. 

1H-NMR (400 MHz, DMSO-d6) δ (ppm) = 7.40 (br s, 1 H), 7.31 (br s, 1 H), 2.47 (s, 3 H), 2.26 (s, 3 

H). 

13C-NMR (100 MHz, DMSO-d6) δ (ppm) = 169.8, 163.2, 158.3, 112.6, 12.2, 10.7. 

MS (EI, 70 eV): m/z (%) = 140 (M+, 100), 124 (22), 123 (41), 82 (80), 81 (26), 43 (61). 

HRMS m/z : calc. for C6H8N2O2 140.0586, found  140.0576. 

IR (ATR): 
~  (cm-1) = 3359 (m), 3195 (m), 1705 (m), 1647 (vs), 1621 (vs), 1604 (vs), 1462 (m), 

1431 (s), 1392 (s), 1262 (m), 1152 (s), 1133 (m), 1038 (w), 981 (w), 961 (w), 880 (w), 831 (m), 

806 (m), 750 (m), 720 (m), 676 (w). 

 

Preparation of 2-phenylprop-2-enamide (40t): 

 

According to GP4, trichloroacetyl isocyanate (415 mg, 2.2 mmol) was added to 1-phenyl-1-

ethenylzinc bromide34  (39t) (3.6 mL, 2.0 mmol, 0.56 M in THF) at -20 °C. After quenching with 

K2CO3 (415 mg, 3 mmol) and MeOH (2 mL), standard workup with EtOAc and CHCl3 and flash-

chromatographical purification (silica, EtOAc) afforded the amide 40t (251 mg, 85 %) as a 

colourless solid. 
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m.p.: 125.1–126.8 °C.173 

1H-NMR (400 MHz, DMSO-d6) δ (ppm) = 7.61 (br s, 1 H), 7.44–7.29 (m, 6 H), 5.73 (s, 1H), 5.69 (s, 

1 H). 

13C-NMR (100 MHz, DMSO-d6) δ (ppm) = 170.0, 145.1, 136.9, 128.2, 127.9, 127.2, 117.8. 

MS (EI, 70 eV): m/z (%) = 147 (M+, 74), 146 (24), 118 (17), 104 (25), 103 (100), 77 (35). 

HRMS m/z : calc. for C9H9NO 147.0684, found  147.0679. 

IR (ATR): 
~  (cm-1) = 3329 (m), 3159 (m), 1656 (s), 1632 (s), 1597 (s), 1495 (m), 1426 (s), 1257 

(m), 1117 (m), 933 (s), 776 (m), 693 (vs). 

 

Preparation of 3-oxocyclohex-1-ene-1-carboxamide (40u): 

 

According to GP4, trichloroacetyl isocyanate (415 mg, 2.2 mmol) was added to 3-oxo-1-

cyclohexen-1-ylzinc iodide71  (39u) (2.7 mL, 2.0 mmol, 0.73 M in THF) at -20 °C. After quenching 

with K2CO3 (415 mg, 3 mmol) and MeOH (2 mL), standard workup with EtOAc and CHCl3 and 

flash-chromatographical purification (silica gel, EtOAc) afforded the amide 40u (176 mg, 63 %) 

as a colourless solid. 

m.p.: 138.8–140.8 °C. 

1H-NMR (600 MHz, DMSO-d6) δ (ppm) = 7.82 (br s, 1 H), 7.47 (br s, 1 H), 6.34 (t, J = 1.8 Hz, 1 H), 

2.47 (td, J = 6.0 and 1.75 Hz, 2 H), 2.35–2.32 (m, 2 H), 1.95–1.89 (m, 2 H). 

13C-NMR (150 MHz, DMSO-d6) δ (ppm) = 200.0, 168.3, 154.2, 127.9, 37.2, 24.8, 22.0. 

MS (EI, 70 eV): m/z (%) = 139 (M+, 100), 111 (31), 95 (22), 83 (79), 67 (16), 44 (23). 

HRMS m/z : calc. for C7H9NO2 139.0633, found  139.0627. 

IR (ATR): 
~  (cm-1) = 3421 (m), 3172 (w), 2922 (w), 1654 (vs), 1600 (s), 1410 (m), 1347 (m), 

1325 (m), 1301 (w), 1259 (m), 1237 (w), 1187 (m), 1133 (m), 1115 (m), 962 (m), 930 (m), 786 

(m), 679 (w). 

 

 

                                                             
173 H. Staudinger, L. Ružička, Liebigs Ann. Chem. 1911, 380, 278. 
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Preparation of 3-phenylpropiolamide (40v): 

 

Phenylacetylene (204 mg, 2 mmol) was dissolved in dry THF (2 mL), cooled to -20 °C and nBuLi 

(0.93 mL, 2.1 mmol 2.27 M in hexane) was added. After 30 min, ZnCl2-solution (3.4 mL, 2.2 mmol, 

0.65 M in THF) was added and the reaction mixture was stirred for 5 min at this temperature. 

According to GP4, trichloroacetyl isocyanate (415 mg, 2.2 mmol) was added at -20 °C. After 

quenching with K2CO3 (415 mg, 3 mmol) and MeOH (2 mL), standard workup with EtOAc and 

CHCl3 and flash-chromatographical purification (silica, EtOAc) afforded the amide 40v (207 mg, 

71 %) as a colourless solid. 

m.p.: 113.0–140.8 °C. 

1H-NMR (600 MHz, DMSO-d6) δ (ppm) = 8.14 (br s, 1 H), 7.67 (br s, 1 H), 7.49 (m, 5 H). 

13C-NMR (150 MHz, DMSO-d6) δ (ppm) = 153.9, 132.0, 130.1, 128.9, 119.9, 84.2, 82.9. 

MS (EI, 70 eV): m/z (%) =145 (M+, 45), 129 (100), 117 (4), 102 (4), 75 (10), 74 (5).  

HRMS m/z : calc. for C9H7NO 145.0528, found  145.0520. 

IR (ATR): 
~  (cm-1) = 3377 (m), 3167 (m), 2220 (m), 1649 (vs), 1607 (vs), 1489 (s), 1441 (w), 

1387 (vs), 1229 (m), 1181 (w), 1119 (m), 1071 (w), 1027 (w), 908 (m), 752 (vs), 689 (m). 

 

Preparation of ethyl 4-(3-amino-3-oxoprop-1-yn-1-yl)benzoate (40w): 

 

A dry and Ar flushed Schlenk-flask equipped with a magnetic stirring bar was charged with Zn-

powder (262 mg, 4 mmol). After the addition of THF (2 mL) 1,2-dibromoethane (5 mol%) and 

TMSCl (5 mol%) were added and the suspension was heated with a heat gun until ebullition 

occurred. After cooling to room temperature, ethyl 4-(bromoethynyl)benzoate (506 mg, 

2 mmol) was added and the reaction mixture was stirred for 16 h at 23 °C. Then, unreacted Zn 

was allowed to settle down and the supernatant solution was transferred to a second flask. 

According to GP4, trichloroacetyl isocyanate (415 mg, 2.2 mmol) was added at -20 °C. After 

quenching with K2CO3 (415 mg, 3 mmol) and EtOH (2 mL), standard workup with EtOAc and 

CHCl3 and flash-chromatographical purification (silica, CH2Cl2:EtOAc 9:1) afforded the amide 

40w (248 mg, 57 %) as a colourless solid. 

m.p.: 139.8–141.7 °C. 
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1H-NMR (400 MHz, DMSO-d6) δ (ppm) = 8.23 (br s, 1 H), 7.99 (d, J = 8.6 Hz, 2 H), 7.75 (br s, 1 H), 

7.69 (d, J = 8.6 Hz, 2 H), 4.32 (q, J = 7.1 Hz, 2 H), 1.31 (t, J = 7.1 Hz, 3 H). 

13C-NMR (100 MHz, DMSO-d6) δ (ppm) = 164.9, 153.5, 132.3, 130.8, 129.4, 124.5, 86.4, 81.7, 

61.1, 14.1. 

MS (EI, 70 eV): m/z (%) = 217 (M+, 53), 201 (29), 173 (40), 172 (100), 129 (12), 101 (11). 

HRMS m/z : calc. for C12H11NO3 217.0739, found  217.0736. 

IR (ATR): 
~  (cm-1) = 3385 (m), 3153 (w), 2216 (w), 1697 (s), 1666 (vs), 1605 (m), 1563 (w), 

1405 (m), 1372 (s), 1292 (s), 1280 (vs), 1177 (m), 1130 (s), 1110 (s), 1021 (m), 900 (w), 863 

(m), 767 (vs), 726 (m), 695 (s). 

 

5.3 PREPARATION OF SECONDARY AMIDES 

Preparation of ethyl 4-(cyclohexylcarbamoyl)benzoate (48a): 

 

According to GP5, 4-(ethoxycarbonyl)phenylzinc iodide161 (39b,4.54 mL, 3.30 mmol, 0.73 M in 

THF) was added to a solution of cyclohexyl isocyanate (47b, 376 mg, 3.00 mmol) and Ni(acac)2 

(15.6 mg, 0.06 mmol) in THF (1 mL) and stirred for 24 h at ambient temperature. After usual 

workup and flash-chromatographical purification (silica, pentane:EtOAc 4:1) the amide 48a 

(495 mg, 60 %) was isolated as a colourless solid. 

m.p.: 167.6-169.5 °C. 

1H-NMR (300 MHz, CDCl3) δ (ppm) = 8.05 (d, J = 8.6 Hz, 2 H), 7.78 (d, J = 8.6 Hz, 2 H), 6.13 (d, 

J = 7.6 Hz, 1 H), 4.37 (q, J = 7.2 Hz, 2 H), 3.95 (m, 1 H), 2.02 (m, 2 H), 1.74 (m, 2 H), 1.62 (m, 1 H), 

1.38 (m, 5 H), 1.21 (m, 3 H). 

13C-NMR (75 MHz, CDCl3) δ (ppm) = 165.8, 165.7, 138.9, 132.8, 129.7, 126.9, 61.3, 48.9, 33.1, 

25.5, 24.9, 14.3. 

MS (EI, 70 eV): m/z (%) = 275 (M+, 26), 230 (10), 194 (100), 177 (60), 149 (13), 104 (6). 

HRMS m/z : calc. for C16H21NO3 275.1521, found  275.1516. 

IR (ATR): 
~  (cm-1) = 3324 (w), 2931 (m), 2854 (w), 1739 (m), 1712 (vs), 1628 (s), 1532 (s), 

1454 (m), 1446 (m), 1367 (m), 1329 (m), 1271 (vs), 1150 (m), 1109 (s), 1080 (m), 1021 (m), 

892 (w), 868 (s), 843 (m), 793 (w), 736 (s), 693 (s), 656 (m), 627 (m). 
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Preparation of N-cyclohexyl-4-methoxybenzamide (48b): 

 

According to GP5, 4-methoxyphenylzinc iodide161 (39x, 3.10 mL, 3.30 mmol, 1.09 M in THF) was 

added to a solution of cyclohexyl isocyanate (47b, 376 mg, 3.00 mmol) and Ni(acac)2 (15.6 mg, 

0.06 mmol) in THF (1 mL) and stirred for 48 h at ambient temperature. After usual workup and 

flash-chromatographical purification (silica, pentane:EtOAc 1:1) the amide 48b (372 mg, 53 %) 

was isolated as a gray solid. 

m.p.: 156.2-157.9 °C. 

1H-NMR (300 MHz, CDCl3) δ (ppm) = 7.70 (d, J = 8.8 Hz, 2 H), 6.88 (d, J = 9.0 Hz, 2 H), 5.98 (br, 1 

H), 3.93 (m, 1 H), 3.81 (s, 3 H), 1.99 (m, 2 H), 1.67 (m, 3 H), 1.39 (m, 2 H), 1.20 (m, 3 H). 

13C-NMR (75 MHz, CDCl3) δ (ppm) = 166.1, 161.9, 128.6, 127.3, 113.6, 55.4, 48.6, 33.3, 25.6. 

MS (EI, 70 eV): m/z (%) = 233 (M+, 22), 151 (41), 135 (100), 107 (7), 92 (13), 77 (11). 

HRMS m/z : calc. for C14H19NO2 233.1416, found  233.1407. 

IR (ATR): 
~  (cm-1) = 3299 (m), 2928 (m), 2853 (m), 1739 (m), 1624 (s), 1605 (s), 1535 (s), 

1506 (s), 1449 (m), 1332 (s), 1251 (vs), 1239 (s), 1175 (s), 1114 (m), 1085 (m), 1027 (s), 893 

(m), 838 (vs), 768 (m), 716 (m), 677 (s), 631 (s). 

 

Preparation of ethyl 4-(tert-butylcarbamoyl)benzoate (48c): 

 

According to GP5, 4-(ethoxycarbonyl)phenylzinc iodide161 (39b, 4.54 mL, 3.30 mmol, 0.72 M in 

THF) was added to a solution of tert-butyl isocyanate (47c, 297 mg, 3.00 mmol) and Ni(acac)2 

(15.6 mg, 0.06 mmol) in THF (1 mL) and stirred for 2 h at ambient temperature. After usual 

workup and flash-chromatographical purification (silica, pentane:EtOAc 4:1) the amide 48c 

(587 mg, 79 %) was isolated as a colourless solid. 

m.p.: 109.8-111.2 °C. 

1H-NMR (300 MHz, CDCl3) δ (ppm) = 8.03 (d, J = 8.8 Hz, 2 H), 7.74 (d, J = 8.6 Hz, 2 H), 6.04 (br, 1 

H), 4.36 (q, J = 7.0 Hz, 2 H), 1.46 (s, 9 H), 1.38 (t, J = 7.1 Hz, 2 H). 

13C-NMR (75 MHz, CDCl3) δ (ppm) = 166.0, 165.9, 139.7, 132.6, 129.7, 126.7, 61.3, 51.9, 28.8, 

14.3. 
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MS (EI, 70 eV): m/z (%) = 249 (M+, 14), 234 (16), 194 (25), 177 (100), 149 (13). 

HRMS m/z : calc. for C14H19NO3 249.1365, found  249.11352. 

IR (ATR): 
~  (cm-1) = 3300 (w), 2980 (w), 2965 (w), 1716 (s), 1652 (m), 1634 (s), 1545 (s), 

1455 (m), 1391 (m), 1365 (s), 1361 (m), 1321 (m), 1267 (vs), 1232 (s), 1224 (s), 1218 (s), 1173 

(m), 1105 (vs), 1020 (s), 870 (m), 848 (m), 730 (s), 701 (m), 689 (m), 665 (m), 641 (m), 623 (m), 

615 (m). 

Preparation of N-tert-butyl-4-chlorobenzamide (48d): 

 

According to GP5, 4-chlorophenylzinc iodide161 (39y, 4.23 mL, 3.30 mmol, 0.78 M in THF) was 

added to a solution of tert-butyl isocyanate (47c, 297 mg, 3.00 mmol) and Ni(acac)2 (15.6 mg, 

0.06 mmol) in THF (1 mL) and stirred for 2 h at ambient temperature. After usual workup and 

flash-chromatographical purification (silica, pentane:EtOAc 9:1) the amide 48d (401 mg, 63 %) 

was isolated as a colourless solid. 

m.p.: 134.7-136.2 °C. 

1H-NMR (300 MHz, CDCl3) δ (ppm) = 7.66 (d, J = 8.6 Hz, 2 H), 7.38 (d, J = 8.8 Hz, 2 H), 5.95 (br, 1 

H), 1.47 (s, 9 H). 

13C-NMR (75 MHz, CDCl3) δ (ppm) = 165.8, 137.2, 134.3, 128.7, 128.2, 51.8, 28.8. 

MS (EI, 70 eV): m/z (%) = 211 (M+, 17), 196 (24), 156 (15), 139 (100), 111 (18). 

HRMS m/z : calc. for C11H1aClNO 211.0764, found  211.0757. 

IR (ATR): 
~  (cm-1) = 3459 (vw), 3319 (w), 2970 (m), 2929 (w), 2362 (vw), 1739 (s), 1633 (s), 

1592 (m), 1536 (s), 1486 (s), 1449 (s), 1360 (s), 1317 (s), 1304 (m), 1229 (s), 1217 (vs), 1113 

(m), 1090 (s), 1013 (m), 876 (m), 848 (s), 760 (s), 635 (m). 

 

Preparation of N-tert-butyl-4-(trifluoromethyl)benzamide (48e): 

 

According to GP5, 4-(trifluoromethyl)phenylzinc iodide161 (39z, 4.64 mL, 3.30 mmol, 0.71 M in 

THF) was added to a solution of tert-butyl isocyanate (47c, 297 mg, 3.00 mmol) and Ni(acac)2 

(15.6 mg, 0.06 mmol) in THF (1 mL) and stirred for 1 h at ambient temperature. After usual 

workup and flash-chromatographical purification (silica, pentane:EtOAc 9:1) the amide 48e 

(553 mg, 75 %) was isolated as a colourless solid. 
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m.p.: 152.1-153.8 °C. 

1H-NMR (300 MHz, CDCl3) δ (ppm) = 7.82 (d, J = 8.8 Hz, 2 H), 7.66 (d, J = 8.8 Hz, 2 H), 6.04 (br, 1 

H), 1.49 (s, 9 H). 

13C-NMR (75 MHz, CDCl3) δ (ppm) = 165.7, 139.2 (q, J = 1.3 Hz), 132.8 (q, J = 32 Hz), 127.2, 125.5 

(q, J = 3.6 Hz), 123.7 (q, J = 272 Hz), 52.0, 28.8. 

MS (EI, 70 eV): m/z (%) = 245 (M+, 14), 230 (22), 190 (26), 173 (100), 145 (34). 

HRMS m/z : calc. for C11H1aClNO 245.1027, found  245.1024. 

IR (ATR): 
~  (cm-1) = 3265 (w), 3080 (vw), 2970 (w), 1739 (w), 1641 (m), 1548 (s), 1455 (w), 

1365 (m), 1324 (s), 1296 (m), 1218 (m), 1159 (s), 1123 (vs), 1109 (s), 1068 (s), 1017 (s), 881 

(m), 876 (m), 855 (s), 775 (m), 678 (m), 632 (m). 

 

Preparation of N-tert-butyl-4-(trifluoromethyl)benzamide (48f): 

 

According to GP5, 4-fluorobenzylzinc chloride161 (11j, 4.64 mL, 3.30 mmol, 0.71 M in THF) was 

added to a solution of tert-butyl isocyanate (47c, 297 mg, 3.00 mmol) and Ni(acac)2 (15.6 mg, 

0.06 mmol) in THF (1 mL) and stirred for 2 h at ambient temperature. After usual workup and 

flash-chromatographical purification (silica, pentane:EtOAc 4:1 to 1:1) the amide 48f (388 mg, 

61 %) was isolated as a colourless solid. 

m.p.: 117.7-119.6 °C. 

1H-NMR (300 MHz, CDCl3) δ (ppm) = 7.22 (m, 2 H), 7.03 (m, 2 H), 5.29 (br, 1 H), 3.45 (s, 2 H), 

1.30 (s, 9 H). 

13C-NMR (75 MHz, CDCl3) δ (ppm) = 170.0, 162.0 (d, J = 246 Hz), 131.2 (d, J = 3.4 Hz), 130.8 (d, J 

= 8.0 Hz), 115.7 (d, J = 21 Hz), 51.4, 43.8, 28.7. 

MS (EI, 70 eV): m/z (%) = 209 (M+, 2), 110 (77), 100 (5), 57 (100), 44 (12), 40 (15). 

HRMS m/z : calc. for C11H1aClNO 209.1216, found  209.1211. 

IR (ATR): 
~  (cm-1) = 3285 (m), 3071 (w), 2991 (w), 2970 (m), 2926 (w), 1739 (m), 1640 (s), 

1602 (m), 1550 (s), 1506 (vs), 1447 (m), 1356 (vs), 1270 (m), 1226 (s), 1217 (vs), 1202 (s), 

1153 (m), 1090 (w), 1017 (w), 947 (m), 913 (w), 860 (w), 837 (m), 824 (m), 790 (s), 720 (m), 

706 (m), 681 (m). 

 

Preparation of N-(2,6-dimethylphenyl)-2-(4-methoxyphenyl)acetamide (48g): 
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According to GP5, 4-methoxybenzylzinc chloride161 (11k, 2.66 mL, 3.30 mmol, 1.24 M in THF) 

was added to a solution of 2,6-dimethylphenyl isocyanate (47d, 441 mg, 3.00 mmol) and 

Ni(acac)2 (15.6 mg, 0.06 mmol) in THF (1 mL) and stirred for 2 h at ambient temperature. After 

usual workup and flash-chromatographical purification (silica, pentane:EtOAc 3:1 to 2:1) the 

amide 48g (494 mg, 61 %) was isolated as a colourless solid. 

m.p.: 151.8-153.3 °C. 

1H-NMR (300 MHz, CDCl3) δ (ppm) = 7.32 (d, J = 8.8 Hz, 2 H), 7.05 (m, 3 H), 6.95 (d, J = 8.8 Hz, 2 

H), 6.73 (br, 1 H), 3.84 (s, 3 H), 3.73 (s, 2 H), 2.13 (s, 6 H). 

13C-NMR (75 MHz, CDCl3) δ (ppm) = 169.9, 159.1, 135.3, 133.7, 130.7, 128.2, 127.4, 127.0, 114.6, 

55.4, 43.1, 18.3. 

MS (EI, 70 eV): m/z (%) = 269 (M+, 49), 241 (4), 148 (21), 121 (100), 107 (11), 77 (13). 

HRMS m/z : calc. for C17H19NO2 269.1416, found  269.1408. 

IR (ATR): 
~  (cm-1) = 3253 (m), 3030 (w), 3007 (w), 2954 (w), 2929 (w), 2836 (w), 1644 (vs), 

1613 (m), 1521 (s), 1509 (vs), 1464 (s), 1439 (s), 1342 (m), 1301 (m), 1253 (s), 1238 (s), 1175 

(s), 1159 (s), 1036 (s), 980 (m), 812 (m), 790 (s), 766 (vs), 754 (s), 715 (s), 676 (m), 606 (s). 
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5 PREPARATION OF HIGHLY FUNCTIONALIZED ALLENES VIA SUCCESSIVE COPPER-

MEDIATED SUBSTITUTION REACTIONS6 PREPARATION OF HIGHLY FUNCTIONALIZED 

ALLENS VIA SUCCESSIVE COPPER-MEDIATED SUBSTITUTION REACTIONS 

6.1 GENERAL PROCEDURES 

General Procedure 2 (GP1): Cu(I)-catalyzed coupling of arylmagnesium reagents with 

allenyl halides:  

A dry, argon-flushed Schlenk-flask equipped with a magnetic stirring bar and a septum was 

charged with the desired aryl halide (1 equiv) in THF (2 M). iPrMgCl·LiCl (1.2 equiv.) in THF was 

added at the given temperature and the mixture was stirred until the conversion was complete 

(checked by GC-analysis of a hydrolyzed reaction aliquot). To the freshly prepared Grignard 

reagent was added CuCN·2LiCl solution (1.0 M, 10 mol%) and allenyl halide (1.2 equiv.) at -20 °C, 

and the reaction mixture was stirred at room temperature.  After stirring for 1 h, the reaction 

mixture was poured into an ice-cooled saturated aqueous NH4Cl solution (25 mL). After 

extraction with Et2O (3x25 mL), the organic layers were dried (Na2SO4), filtered and 

concentrated in vacuo. The crude residue was purified by column chromatography (silica). 

General procedure 2 (GP2): Reaction of organozinc reagents with propargylic dichlorides:  

A dry, argon-flushed Schlenk-flask equipped with a magnetic stirring bar and a septum was 

charged corresponding organozinc reagent (1 equiv.) and cooled to -20 °C. Then CuCN·2LiCl 

(1 equiv. or 10 mol%, 1.0 M in THF) was added, followed by the desired propargylic dichloride 

(1.2 equiv.). After stirring for the given time at -20 °C, the reaction mixture was quenched with 

sat. NH4Cl-solution, extracted with Et2O (3x20 mL), washed with brine (1x20 mL) and dried over 

Na2SO4. After evaporation of solvents, the crude compound was purified via flash-

chromatography (silica). 

 

6.2 PREPARATION OF 1,1-DICHLORO-2-ALKYNES 

1,1-Dichloro-2-alkynes 10a-e were prepared from the corresponding aldehydes according to a 

known literature procedure.174 The following procedure for the preparation of 1,1-dichloronon-

2-yne (10c) is representative. 

 

Preparation of 1,1-dichloronon-2-yne (67c): 

 

                                                             
174 K. N. Shavrin, I. V. Krylova, I. B. Shvedova, G. P. Okonnishnikova, I. E. Dolgy, O. M. Nefedov, J. Chem. Soc., Perkin Trans. 2 1991, 
1875-1881. 
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A dry, argon-flushed Schlenk-flask equipped with a magnetic stirring bar and septum was 

charged with THF (40 mL) and 1-octyne (5.04 g, 45.7 mmol). The solution was cooled to -20 °C 

and nBuLi (21.1 mL, 48.0 mmol, 2.27 M in hexane) was added dropwise. The reaction mixture 

was stirred for 1 h at -20 °C followed by the addition of DMF (6.58 g, 90.0 mmol). Then, the 

reaction mixture was allowed to warm to room temperature overnight. After an aqueous 

workup using a saturated NH4Cl-solution (30 mL), the aqueous phase was extracted with Et2O 

(3x50 mL), washed with brine (30 mL) and dried over Na2SO4. The crude product obtained was 

dissolved in dry CH2Cl2 (100 mL) and cooled to -20 °C. Then, PCl5 (9.40 g, 45.0 mmol) was added 

portion wise and the reaction mixture was stirred for 3.5 h at this temperature. It was quenched 

by the addition of solid NaHCO3 (19.3 g, 230 mmol) at -20 °C and was allowed to warm to 25 °C 

within 12 h. After filtration and evaporation of solvents, careful distillation afforded 10c as a 

colorless liquid (5.33 g, 60 %, 3.30 mbar, 82 °C). 

1H-NMR (300 MHz, CDCl3) δ (ppm) = 6.27 (t, J = 2.0 Hz, 1 H), 2.32 (td, J = 7.2 and 2.0 Hz, 2 H), 

1.61–1.49 (m, 2 H), 1.48–1.21 (m, 6 H), 0.90 (t, J = 6.7 Hz, 3 H).  

13C-NMR (75 MHz, CDCl3) δ (ppm) = 92.5, 76.3, 56.0, 31.2, 28.4, 27.8, 22.5, 18.9, 14.0. 

MS (EI, 70 eV): m/z (%) = 163 (M+-C2H5, 2), 122 (45), 91 (48), 79 (61), 69 (65), 55 (54), 43 (89), 

41 (100). 

HRMS m/z: calc.  for C7H9Cl2 163.0081[M+-C2H5], found 163.0084. 

IR (ATR): 
~  (cm-1) = 2956 (m), 2930 (s), 2860 (m), 2322 (vw), 2238 (m), 1752 (vw), 1690 (vw), 

1466 (w), 1458 (w), 1428 (w), 1380 (w), 1328 (w), 1252 (m), 1198 (w), 1158 (w), 1030 (vw), 

958 (vw), 814 (w), 780 (w), 718 (vs), 684 (m). 

 

6.3 PREPARATION OF SUBSTITUTED ALLENES STARTING FROM BROMOALLENES  

Preparation of 1-[4-(ethoxycarbonyl)phenyl]-3-methyl-1,2-butadiene (62a):  

 

According to GP1 the Grignard reagent was prepared by mixing ethyl 4-iodobenzoate (552 mg, 

2.00 mmol) in THF (1.00 mL) and iPrMgCl·LiCl (2.00 mL, 2.40 mmol) at -30 °C for 1 h. The 

coupling reaction was done by using CuCN·2LiCl solution in THF (0.20 mL, 0.20 mmol) and 1-

bromo-3-methyl-1,2-butadiene (60a, 353 mg, 2.40 mmol). Purification of the crude residue 

obtained after evaporation of the solvents by flash-chromatography (silica, pentane:Et2O 10:1) 

yielded 62a (346 mg, 80 %). 

1H-NMR (300 MHz, CDCl3) δ (ppm) = 7.96 (d, J = 8.8 Hz, 2 H), 7.31 (d, J = 8.4 Hz, 2 H), 6.03 (spt, 

J = 2.9 Hz, 1 H), 4.37 (q, J = 7.1 Hz, 2 H), 1.84 (d, J = 3.0 Hz, 6 H), 1.40 (t, J = 7.11 Hz, 3 H).  
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13C-NMR (75 MHz, CDCl3) δ (ppm) = 204.4, 166.5, 141.0, 129.8, 128.2, 126.4, 99.6, 92.4, 60.7, 

20.0, 14.3. 

MS (EI, 70 eV): m/z (%) = 216 (M+, 77), 171 (36), 143 (100), 129 (25), 128 (87). 

HRMS m/z: calc. for C14H16O2 216.1150, found 216.1131. 

IR (ATR): 
~  (cm-1) = 2981 (w), 1712 (s), 1606 (m), 1366 (m), 1268 (vs), 1172 (s), 1097 (vs), 

1019 (m), 864 (m). 

 

Preparation of 1-[4-(ethoxycarbonyl)phenyl]-3-methyl-1,2-pentadiene (62b):  

 

According to GP1 the Grignard reagent was prepared by mixing ethyl 4-iodobenzoate (552 mg, 

2.00 mmol) in THF (1.00 mL) and iPrMgCl·LiCl (2.00 mL, 2.40 mmol) at -30 °C for 1 h. The 

coupling reaction was done by using CuCN·2LiCl solution in THF (0.20 mL, 0.20 mmol) and 1-

bromo-3-methyl-1,2-pentadiene (60b, 386 mg, 2.40 mmol). Purification of the crude residue 

obtained after evaporation of the solvents by flash-chromatography (silica, pentane:Et2O 10:1) 

yielded 62b (410 mg, 89 %). 

1H-NMR (300 MHz, CDCl3) δ (ppm) = 7.97 (d, J = 8.5 Hz, 2 H), 7.32 (d, J = 8.5 Hz, 2 H), 6.13 (sxt, 

J = 3.0 Hz, 1 H), 4.37 (q, J = 7.1 Hz, 2 H), 2.19–2.05 (m, 2 H), 1.84 (d, J = 2.7 Hz, 3 H), 1.40 (t, J = 7.1 

Hz, 3 H), 1.07 (t, J = 7.5 Hz, 3 H). 

13C-NMR (75 MHz, CDCl3) δ (ppm) = 203.7, 166.5, 141.1, 129.8, 128.2, 126.2, 106.0, 94.1, 60.7, 

27.1, 18.5, 14.3, 12.2. 

MS (EI, 70 eV): m/z (%) = 230 (M+, 71), 157 (100), 142 (96), 129 (59), 128 (70). 

HRMS m/z: calc. for C15H18O2 230.1307, found 230.1303. 

IR (ATR): 
~  (cm-1) = 2968 (w), 1712 (s), 1606 (m), 1366 (w), 1268 (vs), 1172 (m), 1097 (s), 

1018 (m), 864 (m), 760 (m), 696 (m). 

 

Preparation of 1-[3-(ethoxycarbonyl)phenyl]-3-methyl-1,2-butadiene (62c):  
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According to GP1 the Grignard reagent was prepared by mixing ethyl 3-iodobenzoate (552 mg, 

2.00 mmol) in THF (1.00 mL) and iPrMgCl·LiCl (2.00 mL, 2.40 mmol) at -30 °C for 1 h. The 

coupling reaction was done by using CuCN·2LiCl solution in THF (0.20 mL, 0.20 mmol) and 1-

bromo-3-methyl-1,2-butadiene (60a, 353 mg, 2.40 mmol). Purification of the crude residue 

obtained after evaporation of the solvents by flash-chromatography (silica, pentane:Et2O 10:1) 

yielded 62c (328 mg, 76 %). 

1H-NMR (300 MHz, CDCl3) δ (ppm) = 7.92 (t, J = 1.8 Hz, 1 H), 7.85 (dt, J = 7.6 and 1.6 Hz, 1 H), 

7.49-7.42 (m, 1 H), 7.35 (t, J = 7.7 Hz, 1 H), 6.04 (spt, J = 2.9 Hz, 1 H), 4.39 (q, J = 7.2 Hz, 2 H), 1.84 

(d, J = 2.9 Hz, 6 H), 1.41 (t, J = 7.2 Hz, 3 H).  

13C-NMR (75 MHz, CDCl3) δ (ppm) = 203.4, 166.6, 136.5, 132.7, 130.8, 128.4, 127.7, 127.4, 99.7, 

91.9, 60.9, 20.2, 14.3.  

MS (EI, 70 eV): m/z (%) = 216 (M+, 76), 171 (45), 143 (86), 129 (36), 128 (100). 

HRMS m/z: calc. for C14H16O2 216.1150, found 216.1140. 

IR (ATR): 
~  (cm-1) = 2982 (w), 1715 (vs), 1444 (w), 1367 (m), 1277 (vs), 1188 (vs), 1104 (s), 

1080 (s), 1022 (s), 749 (s). 

 

Preparation of 1-[2-(ethoxycarbonyl)phenyl]-3-methyl-1,2-butadiene (62d):  

 

According to GP1 the Grignard reagent was prepared by mixing ethyl 2-iodobenzoate (552 mg, 

2.00 mmol) in THF (1.00 mL) and iPrMgCl·LiCl (2.00 mL, 2.40 mmol) at -30 °C for 1 h. The 

coupling reaction was done by using CuCN·2LiCl solution in THF (0.20 mL, 0.20 mmol) and 1-

bromo-3-methyl-1,2-butadiene (60a, 353 mg, 2.40 mmol). Purification of the crude residue 

obtained after evaporation of the solvents by flash-chromatography (silica, pentane:Et2O 20:1) 

yielded 62d (366 mg, 85 %). 

1H-NMR (300 MHz, CDCl3) δ (ppm) = 7.84-7.81 (m, 1 H), 7.52-7.50 (m, 1 H), 7.41-7.36 (m, 1 H), 

7.21-7.16 (m, 1 H), 6.97 (spt, J = 2.9 Hz, 1 H), 4.38 (q, J = 7.1 Hz, 2 H), 1.84 (d, J = 2.9 Hz, 6 H), 1.41 

(t, J = 7.2 Hz, 3 H).  

13C-NMR (75 MHz, CDCl3) δ (ppm) = 204.6, 167.6, 137.0, 131.5, 130.4, 128.4, 128.1, 125.9, 98.6, 

90.3, 60.9, 20.1, 14.3.  

MS (EI, 70 eV): m/z (%) = 216 (M+, 37), 188 (31), 187 (100), 169 (27), 115 (23). 

HRMS m/z: calc. for C14H16O2 216.1150, found 216.1134. 
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IR (ATR): 
~  (cm-1) = 2981 (w), 1907 (w), 1712 (vs), 1445 (w), 1292 (m), 1250 (vs), 1128 (s), 

1074 (vs), 1005 (m), 744 (s). 

 

Preparation of 1-[2-cyanophenyl]-3-methyl-1,2-pentadiene (62e):  

 

According to GP1 the Grignard reagent was prepared by mixing 2-iodobenzonitrile (1.15 g, 5.00 

mmol) in THF (2.00 mL) and iPrMgCl·LiCl (5.10 mL, 6.00 mmol) at 0 °C for 1 h. The coupling 

reaction was done by using CuCN·2LiCl solution in THF (0.50 mL, 0.50 mmol) and 1-bromo-3-

methyl-1,2-pentadiene (60b, 966 mg, 6.00 mmol). Purification of the crude residue obtained 

after evaporation of the solvents by flash-chromatography (silica, pentane:CH2Cl2 2:1) yielded 

62e(839 mg, 92 %). 

1H-NMR (300 MHz, CDCl3) δ (ppm) = 7.58 (d, J = 7.9 Hz, 1 H), 7.50-7.45 (m, 2 H), 7.27-7.17 (m, 1 

H), 6.45 (sxt, J = 3.0 Hz, 1 H), 2.20-2.05 (m, 2 H), 1.85 (d, J = 3.0 Hz, 3 H), 1.07 (t, J = 7.4 Hz, 3 H),  

13C-NMR (75 MHz, CDCl3) δ (ppm) = 204.2, 140.0, 133.0, 132.4, 127.0, 126.4, 117.9, 109.7, 107.1, 

91.6, 27.0, 18.5, 12.1.  

MS (EI, 70 eV): m/z (%) = 183 (M+, 67), 182 (57), 168 (100), 167 (38), 154 (42). 

HRMS m/z: calc. for C13H13N 183.1048, found 183.1035. 

IR (ATR): 
~  (cm-1) = 2967 (m), 2222 (m), 1949 (m), 1598 (w), 1487 (m), 1447 (m), 1291 (m), 

1150 (w), 819 (s), 756 (vs). 

 

Preparation of 1-[3,5-bis(trifluoromethyl)phenyl]-3-methyl-1,2-pentadiene (62f):  

 

According to GP1 the Grignard reagent was prepared by mixing 1-bromo-3,5-

bis(trifluoromethyl)benzene (1.46 g, 5.00 mmol) in THF (2.00 mL) and iPrMgCl·LiCl (5.10 mL, 

6.00 mmol) at 0 °C for 1 h. The coupling reaction was done by using CuCN·2LiCl solution in THF 

(0.50 mL, 0.50 mmol) and 1-bromo-3-methyl-1,2-pentadiene (60b, 966 mg, 6.00 mmol). 

Purification of the crude residue obtained after evaporation of the solvents by flash-

chromatography (silica, pentane) yielded 62f (1.307 g, 89%). 

1H-NMR (400 MHz, CDCl3) δ (ppm) = 7.66 (s, 3 H), 6.16 (sxt, J = 3.0 Hz, 1 H), 2.20-2.05 (m, 2 H), 

1.87 (d, J = 3.0 Hz, 3 H), 1.07 (t, J = 7.4 Hz, 3 H).  
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13C-NMR (100 MHz, CDCl3) δ (ppm) = 203.5, 138.9, 131.7 (q, J = 32.2 Hz), 126.1-125.9 (m), 123.4 

(q, J = 272.6 Hz), 119.8 (q, J = 3.0 Hz), 107.6, 92.9, 27.0, 18.5, 12.2.  

MS (EI, 70 eV): m/z (%) = 294 (M+, 75), 279 (100),57 (71), 43 (56), 40 (56). 

HRMS m/z: calc. for C14H12F6 294.0843, found 294.0833. 

IR (ATR): 
~  (cm-1) = 2972 (w), 1406 (w), 1360 (m), 1274 (vs), 1168 (s), 1125 (vs), 1106 (s), 

892 (m), 846 (m), 681 (m). 

 

Preparation of 1-(3,4-dichlorophenyl)-3-methyl-1,2-butadiene (62g):  

 

According to GP1 the Grignard reagent was prepared by mixing 1-bromo-3,4-dichlorobenzene 

(452 mg, 2.00 mmol) in THF (1.00 mL) and iPrMgCl·LiCl (2.00 mL, 2.40 mmol) at 25 °C for 1 h. 

The coupling reaction was done by using CuCN·2LiCl solution in THF (0.20 mL, 0.20 mmol) and 

1-bromo-3-methyl-1,2-butadiene (60a, 353 mg, 2.40 mmol). Purification of the crude residue 

obtained after evaporation of the solvents by flash-chromatography (silica, pentane) yielded 62g 

(287 mg, 67 %). 

1H-NMR (300 MHz, CDCl3) δ (ppm) = 7.34 (d, J = 8.0 Hz, 1 H), 7.33 (d, J = 2.4 Hz, 1 H),  7.07 (dd, J 

= 8.3 and 1.9 Hz, 1 H), 5.90 (spt, J = 2.9 Hz, 1 H), 1.84 (d, J = 2.9 Hz, 6 H),  

13C-NMR (75 MHz, CDCl3) δ (ppm) = 203.6, 136.4, 132.5, 130.3, 128.8, 128.1, 125.8, 100.2, 91.0, 

20.1.  

MS (EI, 70 eV): m/z (%) = 212 (M+, 73), 177 (67), 162 (100), 142 (97), 141 (52). 

HRMS m/z: calc. for C11H10Cl2 212.0160, found 212.0155. 

IR (ATR): 
~  (cm-1) = 2908 (w), 1955 (w), 1588 (w), 1473 (s), 1457 (m), 1217 (m), 1130 (s), 

1028 (s), 881 (s), 827 (vs), 694 (m). 

 

Preparation of 1-(2,6-dichlorophenyl)-3-methyl-1,2-butadiene (62h):  

 

According to GP1 the Grignard reagent was prepared by mixing 1-bromo-2,6-dichlorobenzene 

(452 mg, 2.00 mmol) in THF (1.00 mL) and iPrMgCl·LiCl (2.00 mL, 2.40 mmol) at 25 °C for 1 h. 

The coupling reaction was done by using CuCN·2LiCl solution in THF (0.20 mL, 0.20 mmol) and 
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1-bromo-3-methyl-1,2-butadiene (60a, 353 mg, 2.4 mmol). Purification of the crude residue 

obtained after evaporation of the solvents by flash-chromatography (silica, pentane) yielded 

62h (273 mg, 64 %). 

1H-NMR (300 MHz, CDCl3) δ (ppm) = 7.30 (d, J = 8.0 Hz, 2 H), 7.04 (dd, J = 8.1 and 7.7 Hz, 1 H), 

6.30 (spt, J = 3.2 Hz, 1 H), 1.80 (d, J = 3.2 Hz, 6 H).  

13C-NMR (75 MHz, CDCl3) δ (ppm) = 205.8, 134.3, 131.7, 128.5, 127.2, 97.5, 86.3, 20.1.  

MS (EI, 70 eV): m/z (%) = 212 (M+, 44), 162 (46), 142 (100), 141 (70), 44 (64). 

HRMS m/z: calc. for C11H10Cl2 212.0160, found 212.0154. 

IR (ATR): 
~  (cm-1) = 2910 (w), 1962 (w), 1556 (m), 1434 (s), 1182 (m), 1089 (w), 803 (s), 769 

(vs), 750 (s). 

 

Preparation of 1-(2-iodophenyl)-3-methyl-1,2-butadiene (62i):  

 

According to GP1 the Grignard reagent was prepared by mixing 1,2-diiodobenzene (660 mg, 

2.00 mmol) in THF (1.00 mL) and iPrMgCl·LiCl (2.00 mL, 2.40 mmol) at -78 °C for 1 h.  The 

coupling reaction was done by using CuCN·2LiCl solution in THF (0.20 mL, 0.20 mmol) and 1-

bromo-3-methyl-1,2-butadiene (60a, 353 mg, 2.40 mmol).  Purification of the crude residue 

obtained after evaporation of the solvents by flash-chromatography (silica, pentane) yielded 62i 

(452 mg, 84 %). 

1H-NMR (300 MHz, CDCl3) δ (ppm) = 7.80 (dd, J = 8.0 and 1.2 Hz, 1 H), 7.39 (dd, J = 7.8 and 1.9 

Hz, 1 H), 7.30–7.24 (m, 1 H), 6.90–6.84 (m, 1 H), 6.33 (spt, J = 2.9 Hz, 1 H), 1.83 (s, J = 2.9 Hz, 6 H). 

13C-NMR (75 MHz, CDCl3) δ (ppm) = 204.3, 139.5, 138.3, 128.1, 127.9, 127.9, 99.4, 99.4, 98.2, 

96.7, 20.2.  

MS (EI, 70 eV): m/z (%) = 269 (M+, 70), 128 (100), 71 (38), 57 (59), 44 (80). 

HRMS m/z: calc. for C11H11I 269.9905, found 269.9884. 

IR (ATR): 
~  (cm-1) = 2904 (w), 1952 (w), 1470 (m), 1433 (m), 1273 (w), 1007 (s), 807 (m), 742 

(vs), 655 (m). 
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Preparation of 1-(4-methoxyphenyl)-3-methyl-1,2-butadiene (62j): 

 

According to GP1 the Grignard reagent was prepared by mixing 4-iodoanisole (468 mg, 2.00 

mmol) in THF (1.00 mL) and iPrMgCl·LiCl (2.00 mL, 2.40 mmol) at 25 °C for 1 h. The coupling 

reaction was done by using CuCN·2LiCl solution in THF (0.20 mL, 0.20 mmol) and 1-bromo-3-

methyl-1,2-butadiene (60a, 353 mg, 2.40 mmol). Purification of the crude residue obtained after 

evaporation of the solvents by flash-chromatography (silica, pentane:CH2Cl2 4:1) yielded 62j 

(236 mg, 69 %). 

1H-NMR (300 MHz, DMSO-d6) δ (ppm) = 7.16 (d, J = 8.8 Hz, 2 H), 6.88 (d, J = 8.8 Hz, 2H), 6.04 

(quint, J = 2.9 Hz, 1 H), 3.72 (s, 3H), 1.77 (d, J = 2.9 Hz, 6 H),  

13C-NMR (75 MHz, DMSO-d6) δ (ppm) = 201.7, 158.1, 127.49, 127.47, 114.1, 98.5, 91.9, 55.0, 

20.2.  

MS (EI, 70 eV): m/z (%) = 174 (M+, 100), 159 (93), 144 (35), 128 (21), 115 (22). 

HRMS m/z: calc. for C12H14O 174.1045, found 174.1043 

IR (ATR): 
~  (cm-1) = 2908 (w), 1714 (w), 1608 (m), 1509 (vs), 1295 (m), 1246 (vs), 1170 (s), 

1033 (s), 839 (vs). 

 

Preparation of 1-[2-(chloromethyl)phenyl]-3-methyl-1,2-butadiene (62k):  

 

According to GP1 the Grignard reagent was prepared by mixing 2-iodobenzyl chloride (505 mg, 

2.00 mmol) in THF (1.00 mL) and iPrMgCl·LiCl (2.00 mL, 2.40 mmol) at -30 °C for 1 h. The 

coupling reaction was done by using CuCN·2LiCl solution in THF (0.20 mL, 0.20 mmol) and 1-

bromo-3-methyl-1,2-butadiene (60a, 353 mg, 2.40 mmol). Purification of the crude residue 

obtained after evaporation of the solvents by flash-chromatography (pentane) yielded 62k (316 

mg, 82 %). 

1H-NMR (300 MHz, CDCl3) δ (ppm) = 7.40 (dd, J = 7.8 and 1.2 Hz, 1 H), 7.32-7.28(m, 2 H), 7.21-

7.16 (m, 1 H), 6.31 (sept, J = 2.92 Hz, 1 H), 4.69 (s, 2 H), 1.84 (d, J = 3.2 Hz, 6 H),  

13C-NMR (75 MHz, CDCl3) δ (ppm) = 204.6, 134.7, 133.8, 130.3, 128.9, 128.3, 126.7, 98.7, 89.0, 

44.5, 20.2.  

MS (EI, 70 eV): m/z (%) = 192 (M+, 2), 143 (100), 141 (47), 128 (43), 115 (31). 
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HRMS m/z: calc. for C12H13Cl 192.0706, found 192.0686. 

IR (ATR): 
~  (cm-1) = 2908 (w), 1954 (w), 1490 (m), 1449 (m), 1262 (m), 813 (m), 763 (s), 736 

(s), 668 (vs). 

 

Preparation of 1-(3-bromopyridin-5-yl)-3-methyl-1,2-butadiene (62l):  

 

According to GP1 the Grignard reagent was prepared by mixing 3,5-dibromopyridine (474 mg, 

2.00 mmol) in THF (1.00 mL) and iPrMgCl·LiCl (2.00 mL, 2.40 mmol) at 0 °C for 1 h. The coupling 

reaction was done by using CuCN·2LiCl solution in THF (0.20 mL, 0.20 mmol) and 1-bromo-3-

methyl-1,2-butadiene (60a, 353 mg, 2.40 mmol). Purification of the crude residue obtained after 

evaporation of the solvents by flash-chromatography (silica, pentane:Et2O 4:1) yielded 62l (389 

mg, 87 %). 

1H-NMR (300 MHz, CDCl3) δ (ppm) = 8.45 (d, J = 2.2 Hz, 1 H), 8.38 (d, J = 1.9 Hz, 1 H), 7.69 (t, 

J = 2.1 Hz, 1 H), 5.92 (sept, J = 2.9 Hz, 1 H), 1.84 (d, J = 2.8 Hz, 6 H). 

13C-NMR (75 MHz, CDCl3) δ (ppm) = 204.2, 148.2, 146.1, 135.7, 133.8, 120.8, 100.7, 88.3, 20.0. 

MS (EI, 70 eV): m/z (%) = 225 (74), 222 (M+, 76), 144 (100), 143 (77), 129 (93). 

HRMS m/z: calc. for C10H10NBr 222.9997, found 222.9981. 

IR (ATR): 
~  (cm-1) = 2910 (w), 1955 (w), 1575 (m), 1430 (s), 1372 (m), 1093 (s), 1016 (s), 879 

(vs), 697 (vs), 681 (vs). 

 

6.4 PREPARATION OF SUBSTITUTED CHLOROALLENES 

Preparation of (6-chloro-4-methylhexa-4,5-dien-1-yl)benzene (64a): 

 

According to GP2, zinc reagent 68a, prepared via transmetalation of 3-phenylpropylmagnesium 

bromide (1.37 mL, 1.00 mmol, 0.73 M in THF) with ZnCl2 (1.00 mL, 1.00 mmol, 1.00 M in THF), 

was mixed with CuCN·2LiCl (0.20 mL, 0.20 mmol, 1.00 M in THF) at -20 °C and 1,1-dichlorobut-

2-yne (67a) (148 mg, 1.20 mmol) was added. After 1 h at -20 °C, standard workup and 

purification of the crude product via flash-chromatography (silica, pentane) furnished 64a as a 

colorless liquid (186 mg, 0.90 mmol, 90 %). 
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1H-NMR (300 MHz, CDCl3) δ (ppm) = 7.37–7.11 (m, 5 H), 6.02 (s, 1 H), 2.80–2.56 (m, 2 H), 2.19–

2.06 (m, 2 H), 1.94-1.61 (m, 5 H). 

13C-NMR (75 MHz, CDCl3) δ (ppm) = 199.0, 142.0, 128.5, 128.3, 125.8, 112.1, 87.5, 35.1, 33.6, 

28.8, 19.6.     

MS (EI, 70 eV): m/z (%) = 206 (M+, >1), 171 (9), 129 (6), 105 (11), 104 (100), 91 (26), 77 (9).  

HRMS m/z: calc. for C13H15Cl 206.0862, found 206.0841. 

IR (ATR): ~  (cm-1) = 3086 (w), 3062 (w), 3026 (w), 2986 (w), 2932 (m), 2858 (m), 1960 (m), 

1604 (w), 1496 (m), 1452 (m), 1368 (w), 1202 (m), 1080 (w), 1030 (w), 908 (vw), 864 (vw), 

738 (s), 716 (m), 696 (vs).  

 

Preparation of ([8-chloro-4-(2-chloroethenylidene)octyl] benzene (64b): 

 

According to GP2, zinc reagent 68a prepared via transmetalation of 3-phenylpropylmagnesium 

bromide (6.90 mL, 5.40 mmol, 0.78 M in THF) with ZnCl2 (5.90 mL, 5.90 mmol, 1.00 M in THF), 

was mixed with CuCN·2LiCl (1.10 mL, 1.10 mmol, 1.00 M in THF) at -20 °C and 1,1,7-

trichlorohept-2-yne (67b) (1.18 g, 5.90 mmol) was added. After 0.5 h at -20 °C, standard workup 

and purification of the crude product via flash-chromatography (silica, pentane) furnished 64b 

as a colorless liquid (1.12 g, 3.96 mmol, 66 %). 

1H-NMR (300 MHz, CDCl3) δ (ppm) = 7.36–7.25 (m, 2 H), 7.25–7.19 (m, 3 H), 6.10 (quint, J = 2.2 

Hz, 1 H), 3.56 (t, J = 6.6 Hz, 2 H), 2.67 (td, J = 7.7 and 3.0 Hz, 2 H), 2.12 (td, J = 7.3 and 2.1 Hz, 4 H), 

1.92–1.73 (m, 4 H), 1.70–1.53 (m, 2 H). 

13C-NMR (75 MHz, CDCl3) δ (ppm) = 198.6, 142.0, 128.5, 128.3, 125.8, 116.3, 89.5, 44.7, 35.2, 

32.4, 32.3, 31.9, 28.8, 24.4.     

MS (EI, 70 eV): m/z (%) = 282 (M+, >1), 247 (6), 192 (3), 143 (3), 105 (8), 104 (100), 102 (5), 91 

(10).  

HRMS m/z: calc. for C16H20Cl2 282.0942, found 282.0949. 

IR (ATR): ~  (cm-1) = 3084 (vw), 3062 (w), 3026 (w), 3000 (w), 2936 (s), 2860 (m), 1956 (m), 

1604 (w), 1496 (m), 1454 (m), 1310 (w), 1300 (w), 1206 (w), 1078 (vw), 1030 (w), 790 (w), 

742 (s), 698 (vs), 650 (w). 
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Preparation of 1-chloro-5-(2-chloroethenylidene)undecane (64c): 

 

According to GP2, zinc reagent 68b (21.4 mL, 18.0 mmol, 0.84 M in THF) was mixed with 

CuCN·2LiCl (18.0 mL, 18.0 mmol, 1.00 M in THF) at -20 °C and 1,1-dichloronon-2-yne (67c) 

(3.86 g, 20.0 mmol) was added. After 0.5 h at -20 °C, standard workup and purification of the 

crude product via flash-chromatography (silica, pentane) furnished 64c as a colorless liquid 

(4.09 g, 16.4 mmol, 91 %). 

1H-NMR (300 MHz, CDCl3) δ (ppm) = 6.04 (quint, J = 2.2 Hz, 1 H), 3.56 (t, J = 6.6 Hz, 2 H), 2.16–

2.00 (m, 4 H), 1.92-1.73 (m, 2 H), 1.71–1.54 (m, 2 H), 1.54–1.17 (m, 8 H), 0.98–0.78 (m, 3 H). 

13C-NMR (75 MHz, CDCl3) δ (ppm) = 198.6, 116.7, 89.1, 44.8, 33.1, 32.2, 31.9, 31.6, 28.8, 27.1, 

24.4, 22.6, 14.0.     

MS (EI, 70 eV): m/z (%) = 248 (M+, >1), 143 (25), 104 (30), 102 (100), 79 (19), 67 (19), 41 (23).  

HRMS m/z: calc. for C13H22Cl2 248.1099, found 248.1077. 

IR (ATR): ~  (cm-1) = 3056 (vw), 2954 (s), 2928 (vs), 2858 (s), 1958 (w), 1720 (vw), 1456 (w), 

1378 (w), 1310 (w), 1206 (w), 722 (m), 652 (w). 

 

Preparation of ethyl 7-chloro-5-methylhepta-5,6-dienoate (64d): 

 

According to GP2, zinc reagent 68c (1.40 mL, 1.50 mmol, 1.07 M in THF) was mixed with 

CuCN·2LiCl (0.30 mL, 0.30 mmol, 1.00 M in THF) at -20 °C and 1,1-dichlorobut-2-yne (67a) 

(209 mg, 1.70 mmol) was added. After 0.5 h at -20 °C, standard workup and purification of the 

crude product via flash-chromatography (silica, pentane:Et2O 49:1) furnished 64d as a colorless 

liquid (232 mg, 1.14 mmol, 76 %). 

1H-NMR (300 MHz, CDCl3) δ (ppm) = 6.01–5.94 (m, 1 H), 4.13 (t, J = 7.1 Hz, 2 H), 2.40–2.28 (m, 2 

H), 2.14–2.06 (m, 2 H), 1.84–1.76 (m, 5 H), 1.26 (t, J = 7.1 Hz, 3 H). 

13C-NMR (75 MHz, CDCl3) δ (ppm) = 199.0, 173.3, 111.4, 87.6, 60.3, 33.5, 33.4, 22.3, 19.4, 14.2.   

MS (EI, 70 eV): m/z (%) = 202 (M+, 1), 167 (17), 157 (17), 128 (33), 121 (31), 93 (100), 91 (28), 

79 (36), 77 (32), 65 (18), 51 (18).  

HRMS m/z: calc. for C10H15ClO2 202.0761, found 202.0765. 
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IR (ATR): ~  (cm-1) = 2982 (w), 2940 (w), 2362 (vw), 2338 (vw), 1962 (w), 1730 (vs), 1448 (w), 

1372 (w), 1180 (m), 1028 (w), 744 (w), 716 (w).  

 

Preparation of ethyl 5-(2-chloroethenylidene)decanoate (64e): 

 

According to GP2, zinc reagent 68c (24.4 mL, 10.0 mmol, 0.41 M in THF) was mixed with 

CuCN·2LiCl (2.00 mL, 2.00 mmol, 1.00 M in THF) at -20 °C and 1,1-dichlorooct-2-yne (67d) 

(1.97 g, 11.0 mmol) was added. After 1.5 h at -20 °C, standard workup and purification of the 

crude product via flash-chromatography (silica, pentane:Et2O 99:1) furnished 64e as a colorless 

liquid (2.47 g, 9.58 mmol, 96 %). 

1H-NMR (300 MHz, CDCl3) δ (ppm) = 6.08–5.97 (m , 1 H), 4.13 (q, J = 7.1 Hz, 2 H), 2.30 (t, J = 7.5 

Hz, 2 H), 2.11–1.97 (m, 4 H), 1.73–1.57 (m, 2 H), 1.57–1.30 (m, 6 H), 1.26 (t, J = 7.1 Hz, 3 H), 0.93 

(t, J = 7.4 Hz, 3 H). 

13C-NMR (75 MHz, CDCl3) δ (ppm) = 198.6, 173.7, 117.0, 88.8, 60.2, 35.2, 34.3, 32.8, 28.6, 26.8, 

24.8, 20.5, 14.2, 13.7.     

MS (EI, 70 eV): m/z (%) = 258 (M+, 1), 169 (41), 135 (37), 128 (39), 93 (100), 91 (44), 79 (60).  

HRMS m/z: calc. for C14H23ClO2 258.1387, found 258.1376. 

IR (ATR): ~  (cm-1) = 2958 (m), 2934 (m), 2862 (m), 1956 (w), 1732 (vs), 1462 (w), 1374 (w), 

1250 (w), 1230 (w), 1178 (m), 1096 (w), 1034 (w), 858 (vw), 800 (vw), 732 (w), 716 (w).  

 

Preparation of 7-chloro-5-methylhepta-5,6-dienenitrile (64f): 

 

According to GP2, zinc reagent 68d (1.76 mL, 1.50 mmol, 0.85 M in THF) was mixed with 

CuCN·2LiCl (0.30 mL, 0.30 mmol, 1.00 M in THF) at -20 °C and 1,1-dichlorobut-2-yne (67a) 

(209 mg, 1.70 mmol) was added. After 1.5 h at -20 °C, standard workup and purification of the 

crude product via flash-chromatography (silica, pentane:Et2O 9:1) furnished 64f as a light 

yellow liquid (178 mg, 1.14 mmol, 76 %). 

1H-NMR(600 MHz, CDCl3) δ (ppm) = 6.05–6.01 (m, 1 H), 2.41 (td, J = 7.1 and 1.7 Hz, 2 H) 2.25–

2.20 (m, 2 H), 1.87–1.80 (m, 5 H). 

13C-NMR (150 MHz, CDCl3) δ (ppm) = 198.8, 119.3, 110.3, 88.5, 32.6, 22.8, 19.5, 16.3.  
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MS (EI, 70 eV): m/z (%) = 155 (M+, 6), 127 (39), 120 (82), 102 (97), 79 (100), 67 (45), 51 (44).  

HRMS m/z: calc. for C8H1oClN 155.0502, found 155.0487. 

IR (ATR): ~  (cm-1) = 3058 (w), 2988 (w), 2944 (m), 2360 (vw), 2340 (vw), 2246 (m), 1962 (s), 

1450 (m), 1426 (m), 1370 (w), 1348 (w), 1204 (m), 1150 (w), 976 (w), 960 (w), 788 (m), 738 

(vs), 716 (vs). 

 

Preparation of diethyl (5-chloro-3-methylpenta-3,4-dien-1-yl)phosphonate (64g): 

 

According to GP2, zinc reagent 68e (16.1 mL, 9.00 mmol, 0.56 M in THF) was mixed with 

CuCN·2LiCl (1.80 mL, 1.80 mmol, 1.00 M in THF) at -20 °C and 1,1-dichlorobut-2-yne (67a) 

(1.22 g, 9.90 mmol) was added. After 0.5 h at -20 °C, standard workup and purification of the 

crude product via flash-chromatography (silica, Et2O) furnished 64g as a yellow oil (1.79 g, 

7.10 mmol, 79 %). 

1H-NMR (300 MHz, CDCl3) δ (ppm) = 6.09–5.96 (m, 1 H), 4.23–3.94 (m, 4 H), 2.44–2.20 (m, 2 H), 

1.98–1.63 (m, 5 H), 1.38–1.21 (m, 6 H). 

13C-NMR (75 MHz, CDCl3) δ (ppm) = 198.6, 112.0, 111.7, 88.9, 61.5, 27.0, 24.5, 22.7, 19.4, 16.4.     

MS (EI, 70 eV): m/z (%) = 252 (M+, 12), 224 (15), 217 (32), 196 (20), 189 (23), 161 (100), 79 

(45), 77 (14).  

HRMS m/z: calc. for C10H18ClO3P 252.0682, found 252.0678. 

IR (ATR): ~  (cm-1) = 3474 (vs), 3006 (m), 2350 (m), 2010 (m), 1974 (m), 1636 (s), 1398 (m), 

1314 (m), 1216 (vs), 1012 (s), 974 (s), 874 (m), 812 (m), 754 (m), 724 (m).  

 

Preparation of 3-(4-chloro-2-methylbuta-2,3-dien-1-yl) benzonitrile (64h): 

 

According to GP2, zinc reagent 68f (10.0 mL, 8.10 mmol, 0.81 M in THF) was mixed with 

CuCN·2LiCl (8.10 mL, 8.10 mmol, 1.00 M in THF) at -20 °C and 1,1-dichlorobut-2-yne (67a) 

(1.09 g, 8.90 mmol) was added. After 1 h at -20 °C, standard workup and purification of the 

crude product via flash-chromatography (silica, pentane:Et2O 9:1) furnished 64h as a colorless 

liquid (1.09 g, 5.34 mmol, 66 %). 



C Experimental 

 

190 
 

 

1H-NMR (300 MHz, CDCl3) δ (ppm) = 7.63–7.34 (m, 4 H), 5.93 (sxt, J = 2.1 Hz, 1 H), 3.41 (s, 2 H), 

1.81 (d, J = 2.1 Hz, 3 H). 

13C-NMR (75 MHz, CDCl3) δ (ppm) = 200.4, 139.4, 133.5, 132.4, 130.4, 129.2, 118.7, 112.4, 110.3, 

88.1, 40.6, 18.9.     

MS (EI, 70 eV): m/z (%) = 203 (M+, 5), 168 (100), 167 (34), 153 (52), 141 (25), 117 (9), 116 (43), 

89 (22), 51 (22).  

HRMS m/z: calc. for C12H1oClN 203.0502, found 203.0495. 

IR (ATR): ~  (cm-1) = 3052 (m), 2994 (m), 2950 (m), 2918 (m), 2226 (vs), 1960 (s), 1582 (w), 

1484 (m), 1438 (m), 1372 (m), 1304 (w), 1238 (m), 1192 (m), 1178 (m), 1142 (m), 1096 (w), 

982 (w), 896 (m), 808 (m), 780 (m), 764 (m), 714 (s), 686 (vs).  

 

Preparation of 3-[6-chloro-2-(2-chloroethenylidene)hexyl] benzonitrile (64i): 

 

According to GP2, zinc reagent 68f (17.0 mL, 12.7 mmol, 0.75 M in THF) was mixed with 

CuCN·2LiCl (13.0 mL, 13.0 mmol, 1.00 M in THF) at -20 °C and 1,1,7-trichlorohept-2-yne (67b) 

(2.79 g, 14.0 mmol) was added. After 1 h at -20 °C, standard workup and purification of the 

crude product via flash-chromatography (silica, pentane:Et2O 9:1) furnished 64i as a colorless 

liquid (3.10 g, 11.1 mmol, 87 %). 

1H-NMR (300 MHz, CDCl3) δ (ppm) = 7.62–7.35 (m, 4 H), 6.02 (t, J = 2.0 Hz, 1 H), 3.53 (t, J = 6.5 

Hz, 2 H), 3.43 (s, 2 H), 2.10 (t, J = 7.3 and 2.1 Hz, 2 H), 1.79 (m, 2 H), 1.63 (m, 2 H). 

13C-NMR (75 MHz, CDCl3) δ (ppm) = 200.1, 139.4, 133.5, 132.4, 130.5, 129.2, 118.7, 114.7, 112.5, 

90.2, 44.6, 39.5, 31.7, 31.6, 24.3.     

MS (EI, 70 eV): m/z (%) = 279 (M+, 2), 203 (41), 189 (18), 188 (100), 168 (59), 154 (39), 116 

(41).  

HRMS m/z: calc. for C15H15Cl2N 279.0582, found 279.0577. 

IR (ATR): ~  (cm-1) = 3058 (w), 2942 (m), 2866 (w), 2362 (vw), 2230 (s), 1960 (m), 1736 (vw), 

1602 (w), 1582 (w), 1482 (m), 1434 (m), 1374 (w), 1300 (w), 1212 (w), 1094 (w), 982 (vw), 

896 (w), 810 (m), 790 (m), 744 (m), 718 (vs), 688 (s).  
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Preparation of 1-[3-(4-chloro-2-methylbuta-2,3-dien-1-yl) phenyl]pentan-1-one (64j): 

 

According to GP2, zinc reagent 68g (17.9 mL, 10.0 mmol, 0.56 M in THF) was mixed with 

CuCN·2LiCl (10.0 mL, 10.0 mmol, 1.00 M in THF) at -20 °C and 1,1-dichlorobut-2-yne (67a) 

(1.33 g, 11.0 mmol) was added. After 0.5 h at -20 °C, standard workup and purification of the 

crude product via flash-chromatography (silica, pentane:Et2O 95:5) furnished 64j as a yellow oil 

(1.07 g, 4.10 mmol, 41 %). 

1H-NMR (300 MHz, CDCl3) δ (ppm) = 7.89–7.74 (m, 2 H), 7.44–7.35 (m, 2 H), 5.93 (sxt, J = 2.0 Hz, 

1 H), 3.44 (s, 2 H), 3.03–2.90 (m, 2 H), 1.81 (d, J = 2.2 Hz, 3 H), 1.78–1.66 (m, 2 H), 1.549-1.35 (m, 

2 H), 0.96 (t, J = 7.3 Hz, 3 H). 

13C-NMR (75 MHz, CDCl3) δ (ppm) = 200.5, 200.2, 138.4, 137.3, 133.4, 128.6, 128.5, 126.5, 111.0, 

87.6, 41.1, 38.4, 26.4, 22.4, 18.9, 13.9.     

MS (EI, 70 eV): m/z (%) = 262 (M+, 5), 227 (100), 205 (29), 142 (29), 85 (61), 57 (57).  

HRMS m/z: calc. for C16H19ClO 262.1124, found 262.1119. 

IR (ATR): ~  (cm-1) = 2958 (m), 2932 (m), 2872 (m), 1964 (vw), 1720 (m), 1682 (vs), 1602 (m), 

1584 (w), 1440 (m), 1408 (w), 1378 (m), 1262 (m), 1164 (m), 1108 (m), 1036 (w), 940 (w), 914 

(w), 788 (w), 752 (w), 696 (m).  

 

Preparation of 1-chloro-3-[2-(2-chloroethenylidene)hexyl] benzene (64k): 

 

According to GP2, zinc reagent 68h (26.0 mL, 20.0 mmol, 0.76 M in THF) was mixed with 

CuCN·2LiCl (6.00 mL, 6.00 mmol, 1.00 M in THF) at -20 °C and 1,1-dichlorooct-2-yne (67d) 

(3.94 g, 22.0 mmol) was added. After 1 h at -20 °C, standard workup and purification of the 

crude product via flash-chromatography (pentane) furnished 64k as a colorless liquid (4.78 g, 

17.8 mmol, 89 %). 

1H-NMR (300 MHz, CDCl3) δ (ppm) = 7.49–7.31 (m, 1 H), 7.30–7.13 (m, 3 H), 5.93 (quint, J = 2.1 

Hz, 1 H), 3.54 (d, J = 1.5 Hz, 2 H), 2.11 (td, J = 7.4 and 2.1 Hz, 2 H), 1.62–1.42 (m, 2 H), 1.42–1.21 

(m, 4 H), 0.98–0.73 (m, 3 H). 
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13C-NMR (75 MHz, CDCl3) δ (ppm) = 199.8, 136.0, 134.3, 131.0, 129.4, 128.0, 126.7, 115.4, 89.3, 

37.3, 32.5, 31.2, 26.8, 22.4, 14.0.     

MS (EI, 70 eV): m/z (%) = 268 (M+, 2), 179 (36), 177 (95), 163 (34), 142 (38), 127 (34), 125 

(100).  

HRMS m/z: calc. for C15H18Cl2 268.0786, found 268.0780. 

IR (ATR): ~  (cm-1) = 3060 (w), 2956 (s), 2928 (vs), 2872 (m), 2858 (m), 1962 (w), 1474 (m), 

1444 (m), 1378 (w), 1208 (w), 1126 (w), 1052 (m), 1038 (m), 802 (w), 748 (s), 728 (vs), 682 

(m). 

 

Preparation of ethyl 4-(2-chloroethenylidene)-2-methylidenenonanoate (64l): 

 

According to GP2, zinc reagent 68i (12.0 mL, 10.0 mmol, 0.83 M in THF) was mixed with 

CuCN·2LiCl (10.0 mL, 10.0 mmol, 1.00 M in THF) at -50 °C and 1,1-dichlorooct-2-yne (67d) 

(1.97 g, 11.0 mmol) was added. After 12 h at -50 °C, standard workup and purification of the 

crude product via flash-chromatography (silica, pentane:Et2O 95:5) furnished 64l as a yellow 

liquid (1.80 g, 7.03 mmol, 70 %). 

1H-NMR (300 MHz, CDCl3) δ (ppm) = 6.25 (d, J = 1.2 Hz, 1 H), 6.01 (quint, J = 2.2 Hz, 1 H), 5.60 (q, 

J = 1.2 Hz, 1 H), 4.22 (q, J = 7.2 Hz, 2 H), 3.15-3.02 (m, 2 H), 2.09 (td, J = 7.4 and 2.2 Hz, 2 H), 1.55-

1.41 (m, 2 H), 1.40–1.24 (m, 7 H), 0.90 (t, J = 6.9 Hz, 3 H). 

13C-NMR (75 MHz, CDCl3) δ (ppm) = 199.4, 166.6, 137.4, 126.6, 115.2, 89.5, 60.8, 35.8, 32.7, 31.2, 

26.8, 22.4, 14.2, 14.0.     

MS (EI, 70 eV): m/z (%) = 256 (M+, 23), 185 (36), 183 (100), 147 (12), 127 (14), 91 (13).  

HRMS m/z: calc. for C14H21ClO2 256.1230, found 256.1220. 

IR (ATR): ~  (cm-1) = 3058 (vw), 2958 (m), 2930 (m), 2860 (m), 1960 (w), 1716 (vs), 1634 (w), 

1466 (w), 1368 (w), 1326 (w), 1300 (w), 1182 (m), 1144 (m), 1026 (w), 948 (w), 858 (vw), 808 

(w), 726 (m).  
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Preparation of methyl 4-(2-chloroethenylidene)-8-cyano-2-methylideneoctanoate (64m): 

 

According to GP2, zinc reagent 68i (7.70 mL, 6.40 mmol, 0.83 M in THF) was mixed with 

CuCN·2LiCl (6.40 mL, 6.40 mmol, 1.00 M in THF) at -50 °C and 8,8-dichlorooct-6-ynenitrile (67e) 

(1.25 g, 7.10 mmol) was added. After 12 h at -50 °C, standard workup and purification of the 

crude product via flash-chromatography (silica, pentane:Et2O 3:1) furnished 64m as a yellow 

liquid (982 mg, 3.53 mmol, 50 %). 

1H-NMR (300 MHz, CDCl3) δ (ppm) = 6.26 (d, J = 1.5 Hz, 1 H), 6.05 (quint, J = 2.2 Hz, 1 H), 5.61 (d, 

J= 1 .0 Hz, 1 H), 4.22 (q, J = 7.3 Hz, 2 H), 3.18–3.00 (m, 2 H), 2.37 (t, J = 6.7 Hz, 2 H), 2.15 (td, J 

= 6.4 and 2.2 Hz, 2 H), 1.80–1.58 (m, 4 H), 1.31 (t, J = 7.2 Hz, 3 H). 

13C-NMR (75 MHz, CDCl3) δ (ppm) = 199.4, 166.4, 137.1, 126.9, 119.5, 114.0, 90.3, 60.9, 35.8, 

31.7, 26.0, 24.6, 17.0, 14.2.     

MS (EI, 70 eV): m/z (%) = 267 (M+, 2), 232 (59), 204 (34), 186 (100), 158 (67), 117 (58), 91 (52).  

HRMS m/z: calc. for C14H18ClNO2 267.1026, found 267.1017. 

IR (ATR): ~  (cm-1) = 3058 (vw), 2982 (w), 2938 (w), 2246 (vw), 1960 (w), 1712 (vs), 1634 (w), 

1428 (w), 1368 (w), 1300 (m), 1178 (m), 1142 (m), 1026 (w), 952 (w), 858 (vw), 810 (w), 724 

(m). 

 

6.5 PREPARATION OF POLYFUNCTIONALIZED ALLENES STARTING FROM CHLOROALLENES 

Preparation of ethyl 4-(6-cyano-3-methylhexa-1,2-dien-1-yl)benzoate (62m): 

 

According to GP1 the Grignard reagent was prepared by mixing ethyl 4-iodobenzoate (552 g, 

2.00 mmol) in THF (1.00 mL) and iPrMgCl·LiCl (1.60 mL, 2.10 mmol, 1.30 M in THF) at -20 °C for 

30 min. The coupling reaction was performed after adding CuCN·2LiCl (0.20 mL, 0.20 mmol, 1 M 

in THF) at -20 °C followed by 7-chloro-5-methylhepta-5,6-dienenitrile (64f, 373 mg, 2.40 mmol). 

After 1 h at room temperature, standard workup and purification of the crude product via flash-

chromatography (silica, pentane:Et2O 7:3) furnished 62m as a light yellow oil (444 mg, 

1.65 mmol, 82 %). 
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1H-NMR (300 MHz, CDCl3) δ (ppm) = 7.94 (d, J = 8.2 Hz, 2 H), 7.26 (d, J = 8.4 Hz, 2 H), 6.14 (d, 

J = 2.8 Hz, 1 H), 4.34 (q, J = 7.11 Hz, 2 H), 2.41–2.29 (m, 2 H), 2.29–2.16 (m, 2 H), 1.89–1.74 (m, 5 

H), 1.36 (t, J = 7.1 Hz, 3 H). 

13C-NMR (75 MHz, CDCl3) δ (ppm) = 203.5, 166.4, 140.1, 129.9, 128.7, 126.3, 119.3, 102.6, 94.8, 

60.8, 32.4, 23.2, 18.8, 16.6, 14.3.     

MS (EI, 70 eV): m/z (%) = 269 (M+, 15), 224 (30), 216 (27), 196 (81), 155 (27), 143 (100), 128 

(42).  

HRMS m/z: calc. for C17H19NO2 269.1416, found 269.1407. 

IR (ATR): ~  (cm-1) = 2982 (w), 2940 (w), 2906 (w), 2246 (vw), 1950 (vw), 1710 (vs), 1606 (m), 

1446 (w), 1426 (w), 1392 (w), 1368 (w), 1272 (vs), 1174 (m), 1100 (s), 1018 (m), 868 (w), 762 

(w), 698 (w). 

 

Preparation of 7-[2-chloro-5-(trifluoromethyl)phenyl]-5-methylhepta-5,6-dienenitrile 

(62n): 

 

According to GP1 2-chloro-4-(trifluoromethyl)phenylmagnesium bromide (2.60 mL, 2.00 mmol, 

0.78 M in THF)175 was mixed with CuCN·2LiCl (0.20 mL, 0.20 mmol, 1 M in THF) at -20 °C 

followed by 7-chloro-5-methylhepta-5,6-dienenitrile (64g, 373 mg, 2.40 mmol). After 1 h at 

room temperature, standard workup and purification of the crude product via flash-

chromatography (silica, pentane:Et2O 4:1) furnished 62n as a light yellow oil (513 mg, 

1.71 mmol, 86 %). 

1H-NMR (300 MHz, CDCl3) δ (ppm) = 7.59 (d, J = 2.24 Hz, 1 H), 7.49 (d, J = 8.4 Hz, 1 H), 7.37 (dd, 

J = 8.2 and 2.1 Hz, 1 H), 6.58 (sxt, J = 3.0 Hz, 1 H), 2.41 (t, J = 7.11 Hz, 2 H), 2.38–2.22 (m, 2 H), 

1.93–1.80 (m, 5 H). 

13C-NMR (75 MHz, CDCl3) δ (ppm) = 203.8, 135.4 (q, J = 2 Hz), 133.9, 130.4, 129.4 (q, J = 32 Hz), 

124.7 (q, J = 4 Hz), 124.2 (q, J = 4 Hz), 123.7 (q, J = 272 Hz), 119.2, 103.4, 90.9, 32.4, 23.2, 18.6, 

16.7.     

MS (EI, 70 eV): m/z (%) = 299 (M+, 20), 264 (100), 246 (58), 231 (65), 211 (55), 193 (51).  

                                                             
175 F. M. Piller, A. Metzger, M. A. Schade, B. A. Haag, A. Gavryushin, P. Knochel, Chem. Eur. J. 2009, 15, 7192-7202.  
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HRMS m/z: calc. for C15H13ClF3N 299.0689, found 299.0689. 

IR (ATR): ~  (cm-1) = 2942 (w), 2922 (w), 1954 (vw), 1720 (w), 1610 (w), 1576 (vw), 1486 (w), 

1414 (w), 1324 (vs), 1262 (m), 1230 (w), 1166 (m), 1122 (vs), 1080 (vs), 1044 (m), 904 (w), 

822 (w), 752 (w), 720 (w), 704 (vw). 

 

Preparation of ethyl 4-[2-(3-cyanophenyl)ethenylidene]-2-methylidenenonanoate (62o): 

 

According to GP1 the Grignard reagent was prepared by mixing 3-iodobenzonitrile (229 mg, 

1.00 mmol) in THF (1.00 mL) and iPrMgCl·LiCl (0.80 mL, 1.10 mmol, 1.28 M in THF) at -20 °C for 

45 min. The coupling reaction was performed after adding CuCN·2LiCl (0.10 mL, 0.10 mmol, 1 M 

in THF) at -20 °C followed by ethyl 4-(2-chloroethenylidene)-2-methylidenenonanoate (64l, 229 

mg, 1.10 mmol). After 1 h at room temperature, standard workup and purification of the crude 

product via flash-chromatography (silica, pentane:Et2O 9:1) furnished 62o as a yellow oil 

(215 mg, 0.67 mmol, 67 %). 

1H-NMR (300 MHz, CDCl3) δ (ppm) = 7.49 (t, J = 1.7 Hz, 1 H), 7.45–7.40 (m, 2 H), 7.38–7.31 (m, 1 

H), 6.17 (d, J = 1.5 Hz, 1 H), 6.09 (quint, J = 2.9 Hz, 1 H), 5.59 (d, J = 1.2 Hz, 1H), 4.16–4.01 (m, 2 

H), 3.11 (dd, J = 10.9 and 2.4 Hz, 2 H), 2.18–2.07 (m, 2 H), 1.55–1.39 (m, 2 H), 1.36–1.24 (m, 4 H), 

1.20 (t, J = 7.2 Hz, 3 H), 0.85 (t, J = 7.1 Hz, 3 H). 

13C-NMR (75 MHz, CDCl3) δ (ppm) = 203.6, 166.5, 137.9, 137.1, 130.6, 129.7, 129.7, 129.1, 126.2, 

118.8, 112.5, 108.4, 94.7, 60.6, 35.4, 32.3, 31.4, 27.1, 22.3, 14.0, 13.9.     

MS (EI, 70 eV): m/z (%) = 323 (M+, 25), 250 (100), 210 (41), 194 (80), 180 (77), 154 (75), 116 

(47).  

HRMS m/z: calc. for C21H25NO2 323.1885, found 323.1878. 

IR (ATR): ~  (cm-1) = 2958 (s), 2932 (s), 2872 (m), 2232 (w), 1956 (vw), 1726 (vs), 1602 (w), 

1584 (w), 1466 (w), 1444 (w), 1434 (w), 1370 (m), 1296 (m), 1244 (m), 1180 (s), 1096 (m), 

1020 (m), 924 (w), 860 (w), 802 (m), 754 (m), 688 (w). 

 

Preparation of 2-[3-(4-chlorobutyl)nona-1,2-dien-1-yl]benzonitrile (62p): 
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According to GP1 the Grignard reagent was prepared by mixing 2-iodobenzonitrile (1.60 g, 7.00 

mmol) in THF (5.00 mL) and iPrMgCl·LiCl (5.60 mL, 7.40 mmol, 1.31 M in THF) at 0 °C for 30 

min. The coupling reaction was performed after adding CuCN·2LiCl (0.70 mL, 0.70 mmol, 1.00 M 

in THF) at -20 °C followed by 1-chloro-5-(2-chloroethenylidene)undecane (64c, 1.91 g, 7.70 

mmol). After 1 h at room temperature, standard workup and purification of the crude product 

via flash-chromatography (silica, pentane:Et2O 99:1) furnished 62p as a yellow liquid (1.68 g, 

5.31 mmol, 76 %). 

1H-NMR (300 MHz, CDCl3) δ (ppm) = 7.65 (d, J = 7.48, 1 H), 7.53 (s, 2 H), 7.37–7.21 (m, 1 H), 6.59 

(d, J = 2.2 Hz, 1 H), 3.58 (t, J = 6.6 Hz, 2 H), 2.35–2.07 (m, 4 H), 1.98–1.81 (m, 2 H), 1.81–1.63 (m, 

2 H), 1.63–1.47 (m, 2 H), 1.47–1.23 (m, 6 H), 0.92 (t, J = 6.0 Hz, 3 H). 

13C-NMR (75 MHz, CDCl3) δ (ppm) = 204.0, 139.7, 133.0, 132.5, 126.8, 126.5, 117.9, 109.7, 109.7, 

92.8, 44.7, 32.5, 32.2, 31.7, 31.6, 29.0, 27.4, 24.7, 22.6, 14.0.     

MS (EI, 70 eV): m/z (%) = 315 (M+, 24), 258 (57), 252 (53), 182 (42), 169 (100), 154 (85).  

HRMS m/z: calc. for C20H26ClN 315.1754, found 315.1756. 

 

Preparation of 2-[3-(2-chlorobenzyl)octa-1,2-dien-1-yl]benzonitrile (62q): 

 

According to GP1 the Grignard reagent was prepared by mixing 2-iodobenzonitrile (2.29 g, 10.0 

mmol) in THF (5.00 mL) and iPrMgCl·LiCl (8.02 mL, 10.5 mmol, 1.31 M in THF) at 0 °C for 1 h. 

The coupling reaction was performed after adding CuCN·2LiCl (1.00 mL, 1.00 mmol, 1.00 M in 

THF) at -20 °C followed by 1-chloro-3-[2-(2-chloroethenylidene)hexyl] benzene (64k, 3.23 g, 

12.0 mmol). After 1 h at room temperature, standard workup and purification of the crude 

product via flash-chromatography (silica, pentane:Et2O 95:5) furnished 62q as a colorless liquid 

(2.37 g, 7.05 mmol, 71 %). 

1H-NMR (400 MHz, C6D6) δ (ppm) = 7.27 (dd, J = 8.1 and 0.6 Hz, 1 H), 7.13 (dd, J = 8.0 and 1.3 Hz, 

1 H), 7.05 (dd, J = 7.6 and 1.6 Hz, 1 H), 6.99 (dd, J = 7.8 and 0.9 Hz, 1 H), 6.91 (td, J = 7.7 and 1.4 

Hz, 1 H), 6.84 (td, J = 7.6 and 1.3 Hz, 1 H), 6.71 (td, J = 7.7 and 1.6 Hz, 1 H), 6.58 (quint, J = 2.97 

Hz, 1 H), 6.53 (td, 7.6 and 1.2 Hz, 1 H), 3.50–3.35 (m, 2 H), 2.14–1.92 (m, 2 H), 1.52–1.31 (m, 2 H), 

1.30–1.11 (m, 4 H), 0.99–0.71 (m, 3 H). 

13C-NMR (100 MHz, C6D6) δ (ppm) = 205.9, 139.6, 137.4, 134.9, 133.4, 132.4, 131.8, 130.0, 128.6, 

127.6, 127.3, 127.0, 118.2, 111.0, 109.6, 93.9, 37.4, 32.8, 32.2, 27.8, 23.1, 14.6.     
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MS (EI, 70 eV): m/z (%) = 335 (M+, 5), 278 (29), 266 (27), 265 (20), 264 (100), 210 (36).  

HRMS m/z: calc. for C22H22ClN 335.1441, found 335.1444. 

IR (ATR): ~  (cm-1) = 3066 (w), 2956 (s), 2928 (s), 2858 (m), 1950 (w), 1724 (vw), 1596 (w), 

1570 (w), 1488 (m), 1474 (m), 1444 (s), 1292 (w), 1210 (w), 1162 (w), 1124 (w), 1052 (m), 

1038 (m), 952 (w), 912 (vw), 876 (vw), 812 (w), 750 (vs), 682 (m), 616 (w). 

 

Preparation of ethyl 4-[3-(4-ethoxy-4-oxobutyl)octa-1,2-dien-1-yl]benzoate (62r): 

 

According to GP1 the Grignard reagent was prepared by mixing ethyl 4-iodobenzoate (552 mg, 

2.00 mmol) in THF (1.00 mL) and iPrMgCl·LiCl (1.60 mL, 2.10 mmol, 1.31 M in THF) at -20 °C for 

30 min. The coupling reaction was performed after adding CuCN·2LiCl (0.20 mL, 0.20 mmol, 1.00 

M in THF) at -20 °C followed by ethyl 5-(2-chloroethenylidene)decanoate (64e, 620 mg, 2.40 

mmol). After 1 h at room temperature, standard workup and purification of the crude product 

via flash-chromatography (silica, pentane:Et2O 9:1) furnished 62r as a colorless oil (622 mg, 

1.67 mmol, 83 %). 

1H-NMR (400 MHz, C6D6) δ (ppm) = 8.16 (d, J = 8.5 Hz, 2 H), 7.24 (d, J = 8.4 Hz, 2 H), 6.08 (quint, 

J = 3.0 Hz, 1 H), 4.13 (q, J = 7.2 Hz, 2 H), 3.93 (q, J = 7.1 Hz, 2 H), 2.18 (t, J = 7.3 Hz, 2 H), 2.00–1.88 

(m, 4 H), 1.83–1.73 (m, 2 H), 1.48–1.34 (m, 2 H), 1.24–1.17 (m, 4 H), 1.02 (t, J = 7.1 Hz, 3 H), 0.94 

(t, J = 7.1 Hz, 3 H), 0.87–0.78 (m, 3 H). 

13C-NMR (100 MHz, C6D6) δ (ppm) = 204.1, 173.0, 166.5, 141.4, 130.7, 129.7, 127.0, 109.1, 96.4, 

61.0, 60.4, 34.2, 33.2, 32.5, 32.2, 28.0, 23.6, 23.2, 14.7, 14.6, 14.6.     

MS (EI, 70 eV): m/z (%) = 372 (M+, 5), 270 (65), 241 (100), 155 (52), 141 (63), 129 (61).  

HRMS m/z: calc. for C23H32O4 372.2301, found 372.2292. 

IR (ATR): ~  (cm-1) = 2980 (w), 2956 (m), 2930 (m), 2858 (w), 1946 (vw), 1732 (s), 1714 (vs), 

1606 (m), 1446 (w), 1394 (w), 1368 (w), 1270 (vs), 1172 (m), 1098 (s), 1020 (m), 866 (w), 762 

(w), 698 (w). 
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Preparation of ethyl 4-(3-methyl-6-phenylhexa-1,2-dien-1-yl)benzoate (62s): 

 

According to GP2, the Grignard reagent was prepared by mixing ethyl 4-iodobenzoate (0.552 g, 

2.00 mmol) in THF (1.00 mL) and iPrMgCl·LiCl (2.00 mL, 2.40 mmol) at -30 °C for 1 h.  The 

coupling reaction was done by using CuCN·2LiCl (0.20 mL, 0.20 mmol, 1.00 M in THF) and 1-

chloro-3-methyl-6-phenyl-1,2-hexadiene (64a, 496 mg, 2.40 mmol). After 1 h at room 

temperature standard workup and purification of the crude product via flash-chromatography 

(silica, pentane:Et2O 10:1) furnished 62s as a colorless liquid (427 mg, 1.33 mmol, 67 %). 

1H-NMR (300 MHz, CDCl3) δ (ppm) = 7.99 (d, J = 8.5 Hz, 2 H), 7.34 (d, J = 8.3 Hz, 2 H) 7.31–7.24 

(m, 2 H) 7.23–7.12 (m, 3 H), 6.14 (sxt, J = 2. 9 Hz, 1 H), 4.38 (q, J = 7.1 Hz, 2 H), 2.67 (t, J = 7.8 Hz, 

2 H), 2.21–2.12 (m, 2 H), 1.89–1.75 (m, 5 H), 1.41 (t, J = 7.2 Hz, 3 H). 

13C-NMR (75 MHz, CDCl3) δ (ppm) = 203.9, 166.5, 142.2, 140.9, 129.8, 128.4, 128.3, 128.3, 126.3, 

125.7, 103.9, 93.9, 60.7, 35.5, 33.4, 29.2, 18.7, 14.3.     

MS (EI, 70 eV): m/z (%) = 320 (M+, 1), 216 (36), 143 (100), 129 (12), 128 (25), 91 (14).  

HRMS m/z: calc. for C22H24O2 320.1776, found 320.1780. 

IR (ATR): ~  (cm-1) = 2934 (w), 1712 (s), 1605 (m), 1269 (vs), 1172 (m), 1097 (s), 1018 (m), 

865 (m), 746 (m), 696 (s). 

 

Preparation of 2-chloro-5-(3-(4-chlorobutyl)nona-1,2-dien-1-yl)pyridine (62t): 

 

According to GP1 the Grignard reagent was prepared by mixing 5-bromo-2-chloropyridine (385 

mg, 2.00 mmol) in THF (2.00 mL) and iPrMgCl·LiCl (1.70 mL, 2.10 mmol, 1.27 M in THF) at 0 °C 

for 1 h. The coupling reaction was performed after adding CuCN·2LiCl (0.20 mL, 0.20 mmol, 1 M 

in THF) at -20 °C followed by 1-chloro-5-(2-chloroethenylidene)undecane (64c, 598 mg, 2.40 

mmol). After 1 h at room temperature, standard workup and purification of the crude product 

via flash-chromatography (silica, pentane:Et2O 9:1) furnished 62t as a light yellow oil (498 mg, 

1.53 mmol, 76 %). 
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1H-NMR (300 MHz, CDCl3) δ (ppm) = 8.25 (d, J = 2.4 Hz, 1 H), 7.52 (dd, J = 8.3 and 2.5 Hz, 1 H), 

7.24 (d, J = 8.2 Hz, 1 H), 6.10 (quint, J = 3.0 Hz, 1 H), 3.51 (t, J = 6.6 Hz, 2 H), 2.17–2.03 (m, 4 H), 

1.87–1.75 (m, 2 H), 1.68–1.53 (m, 2 H), 1.52–1.17 (m, 8 H), 0.91–0.78 (m, 3 H). 

13C-NMR (75 MHz, CDCl3) δ (ppm) = 203.0, 148.8, 147.3, 135.9, 131.0, 124.1, 109.6, 91.4, 44.7, 

32.5, 32.2, 31.7, 31.6, 29.0, 27.5, 24.8, 22.6, 14.0.     

MS (EI, 70 eV): m/z (%) = 325 (M+, 3), 255 (36), 179 (62), 178 (40), 166 (30), 164 (100).  

HRMS m/z: calc. for C18H25Cl2N 325.1364, found 325.1369. 

 

Preparation of 3-[4-(5-bromopyridin-3-yl)-2-methylbuta-2,3-dien-1-yl]benzonitrile 

(62u): 

 

According to GP2, the Grignard reagent was prepared by mixing 3,5-dibromopyridine (474 mg, 

2.00 mmol) in THF (1.00 mL) and iPrMgCl·LiCl (1.62 mL, 2.10 mmol, 1.3 M in THF) at 0 °C for 1 h.  

The coupling reaction was done by using CuCN·2LiCl (0.20 mL, 0.20 mmol, 1 M in THF) and 3-(4-

chloro-2-methylbuta-2,3-dien-1-yl) benzonitrile (64h, 369 mg, 1.80 mmol). After 1 h at room 

temperature standard workup and purification of the crude product via flash-chromatography 

(silica, pentane:Et2O 1:1) furnished 62u as a brown oil (413 mg, 1.27 mmol, 71 %). 

1H-NMR(200 MHz, CDCl3) δ (ppm) = 8.47 (d, J = 2.0 Hz, 1 H), 8.34 (d, J = 1.8 Hz, 1 H), 7.63 (t, 

J = 2.0 Hz, 1 H), 7.56–7.34 (m, 4 H), 6.00 (sxt, 2.7 Hz, 1 H), 3.45 (t, J = 2.1 Hz, 2 H), 3.3 (d, J = 2.9 

Hz, 3 H). 

13C-NMR (75 MHz, CDCl3) δ (ppm) = 204.7, 148.4, 145.7, 140.0, 135.9, 133.3, 132.9, 132.3, 130.4, 

129.2, 120.9, 118.7, 112.5, 104.2, 90.3, 40.2, 18.2.     

MS (EI, 70 eV): m/z (%) = 324 (M+, 18), 309 (100), 245 (36), 230 (33), 208 (41), 129 (55). 

HRMS m/z: calc. for C17H13BrN2 324.0262, found 324.0629. 

IR (ATR): ~  (cm-1) = 3036 (w), 2982 (w), 2914 (m), 2852 (w), 2228 (s), 1954 (w), 1708 (w), 

1600 (w), 1576 (m), 1550 (w), 1482 (m), 1430 (s), 1378 (m), 1300 (w), 1224 (m), 1094 (s), 

1016 (s), 880 (s), 862 (m), 800 (m), 770 (m), 682 (vs).  
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7 PREPARATION OF CHARGE-TAGGED ORGANOZINC REAGENTS 

7.1 GENERAL CONSIDERATIONS 

Synthesis of starting materials. (p-iodophenyl)-trimethylammonium iodide (72f) and 

ammonium substituted alkyl iodides 72a-e were prepared according to known literature 

procedures.143 

ESI mass spectrometric experiments. Sample solutions were transferred into a gas-tight 

syringe and administered into the ESI source of a mass spectrometer at flow rates of approx. 

5−30 L min1. Most of the experiments were performed with a TSQ 7000 multistage mass 

spectrometer (Thermo MAT), which has been described in more detail before.176 Nitrogen was 

used as sheath gas and ESI voltages ranging from 3.0 to 4.5 kV were applied. Relatively gentle 

ESI conditions were chosen, the heated capillary being held at 60–100 °C. The m/z ratios of the 

ions were then determined by scanning the first quadrupole mass filter. For the gas-phase 

fragmentation experiments, the first quadrupole mass filter was used to mass-select the ions of 

interest, which then passed an 18 cm long octopole ion guide filled with argon (Linde, 99.998% 

purity, p(Ar) = 0.6–0.9 mtorr as measured with a Convectron). The collision energy ELAB was 

controlled by adjusting the voltage offset of the octopole. The m/z ratios of the fragment ions 

were then determined by scanning the second quadrupole mass filter before the ions reached 

the detector. 

The experiments probing the cross-coupling reaction of [ArI]+ with benzylzinc bromide were 

performed with a HCT quadrupole ion trap (Bruker Daltonik). Nitrogen was used as sheath gas 

and an ESI voltage of 3.5 kV was applied. Standard ESI conditions were chosen with nitrogen 

heated to 60 °C employed as drying gas (5.0 L min−1). The ions were then transferred into the 

instrument’s three-dimensional quadrupole ion trap filled with helium (Air Liquide, 99.999% 

purity, estimated pressure p(He)  2 mtorr). The Compass 1.3 software package was used to 

eject the ions from the trap for their detection. Similar settings were also used for probing the 

charge-tagged intermediates formed in the reactions of [ArI]+ with Pd(dba)2/tfp. In this case, 

fragmentation was achieved by subjecting the mass-selected ions to excitation voltages of 

amplitudes Vexc and allowing them to collide with He gas. 

Synthesis of charge-tagged organozinc species and sample preparation. A flask was flame-

dried under high vacuum and allowed to cool down under argon atmosphere. The procedure 

was repeated twice and Zn dust (1.4 mmol) and 1 mL of solvent (THF, freshly distilled from 

sodium benzophenone ketyl, or DMF, stored over molecular sieves) were added. The Zn metal 

was activated by the addition of 1,2-dibromoethane (4 μL) and TMSCl (4 μL) followed by a short 

boiling-up of the suspension. 0.7 equiv of 72f or 72d, respectively, was added and the resulting 

suspension was stirred for 14 h at room temperature or at 50 °C. Solid material remaining was 

allowed to settle down before an aliquot of the supernatant solution was diluted with the 

respective solvent. 

                                                             
176 K. Koszinowski, P. Böhrer, Organometallics 2009, 28, 100-110. 
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Sample preparation for Negishi cross-coupling experiments. A flame-dried flask was 

charged with [ArI]+I− and CH3CN (dried over molecular sieves) under argon atmosphere. To the 

resulting 2-mM solution were added BnZnBr or m-methylbenzylzinc bromide (1.2 or 2.0 

equiv),177 respectively, and Pd(dba)2/2 tfp (0.05, 0.10, or 1.0 equiv) at −20 °C. After mixing, an 

aliquot of the undiluted solution was taken, warmed up to room temperature, and immediately 

analyzed by ESI mass spectrometry. 

 

7.2 ADDITIONAL FIGURES 

 

 

Figure 8: Positive ion mode ESI mass spectrum of an approx. 2 mM solution of the products (m/z ratios in brackets) 
formed upon reaction of Zn with (p-iodophenyl)-trimethylammonium iodide ([ArI]

+
I

−
) in THF at 50 °C measured with 

the TSQ 7000 instrument. 

 

Figure 9: Positive ion mode ESI mass spectrum of an approx. 1 mM solution of the products (m/z ratios in brackets) 
formed upon reaction of Zn with triethyl-(4-iodobutyl)-ammonium iodide ([RI]

+
I

−
) in THF measured with the TSQ 

7000 instrument. 

                                                             
177The organozinc reagents were prepared according to a procedure reported in the literature: S. C. Berk, M. C. P. Yeh, N. Jeong, P. Knochel, 
Organometallics 1990, 9, 3053. 
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Figure 10: Mass spectrum of mass-selected [ArBn]+ and its fragment ions (m/z ratios in brackets) produced upon 
collision-induced dissociation (Vexc = 0.40 V, HCT ion trap).  

 

Figure 11: Isotope pattern of the complex [L2PdBn]+ with the elemental composition C31H25O6P2Pd measured with 
the HCT ion trap (line) and simulated (bars,  L = tri-(2-furyl)phosphine). 

 

Figure 12: Mass spectrum of mass-selected [L2106PdBn]+ (L = tri-(2-furyl)phosphine) and its fragment ions (m/z 
ratios in brackets) produced upon collision-induced dissociation (Vexc = 0.24 V, HCT ion trap). 
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Figure 13: Mass spectrum of mass-selected [L2108PdBn]+ (L = tri-(2-furyl)phosphine) and its fragment ions (m/z 
ratios in brackets) produced upon collision-induced dissociation (Vexc = 0.24 V, HCT ion trap). 

 

Figure 14: Time dependence of the relative signal intensities of reactant [ArI]+ (m/z 262, increasing) and [L2106PdBn]+ 
(m/z 661, descending) during the Pd-catalyzed cross-coupling reaction of [ArI]+I− with BnZnBr in CH3CN at room 
temperature as determined by ESI mass spectrometry. Results of two experiments with different catalyst loadings are 
shown (diamonds: 100 mol%, triangles: 5 mol% relative to [ArI]+). 

 

Figure 15: Positive ion mode ESI mass spectrum of an approx. 2 mM solution of Pd(dba)2, tri-(2-furyl)phosphine (L, 2 
equiv), and BnZnBr (2 equiv) in CH3CN measured with the HCT ion trap (LO = tri-(2-furyl)phosphine oxide, m/z ratios 
of the most abundant isotopologues of the ions observed given in brackets). 
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Figure 16: Isotope pattern of the complex [(LO)ZnBn]+ with the elemental composition C19H16O4PZn measured with 
the HCT ion trap (line) and simulated (bars, LO = tri-(2-furyl)phosphine oxide). Apparently, small amounts of an 
additional, unknown cation are also present. 

 

Figure 17: Mass spectrum of mass-selected [(LO)64ZnBn]+ (LO = tri-(2-furyl)phosphine oxide) and its fragment ions 
(m/z ratios in brackets) produced upon collision-induced dissociation (Vexc = 0.35 V, HCT ion trap). 

 

Figure 18: Mass spectrum of mass-selected [(LO)66ZnBn]+ (LO = tri-(2-furyl)phosphine oxide) and its fragment ions 
(m/z ratios in brackets) produced upon collision-induced dissociation (Vexc = 0.35 V, HCT ion trap). 
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Figure 19: Isotope pattern of the complex [L2Cu]+ with the elemental composition C24CuH18O6P2 measured with the 
HCT ion trap (line) and simulated (bars, L = tri-(2-furyl)phosphine). 

 

Figure 20: Mass spectrum of mass-selected [L263Cu]+ (L = tri-(2-furyl)phosphine) and its fragment ions (m/z ratios in 
brackets) produced upon collision-induced dissociation (Vexc = 0.30 V, HCT ion trap). [LCu(H2O)]+ apparently results 
from the primary fragment [LCu]+ in an ion-molecule reaction with background water present in the ion trap. 
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Figure 21: Mass spectrum of mass-selected [L265Cu]+ (L = tri-(2-furyl)phosphine) and its fragment ions (m/z ratios in 
brackets) produced upon collision-induced dissociation (Vexc = 0.30 V, HCT ion trap). [LCu(H2O)]+ apparently results 
from the primary fragment [LCu]+ in an ion-molecule reaction with background water present in the ion trap. 

 

Figure 22: Isotope pattern of the complex [(LO)2ZnBn]+ with the elemental composition C31H25O8P2Zn measured with 
the HCT ion trap (line) and simulated (bars, LO = tri-(2-furyl)phosphine oxide). Apparently, small amounts of an 
additional, unknown cation are also present. 

 

Figure 23: Mass spectrum of mass-selected [(LO)264ZnBn]+ (LO = tri-(2-furyl)phosphine oxide) and its fragment ions 
(m/z ratios in brackets) produced upon collision-induced dissociation (Vexc = 0.24 V, HCT ion trap). 
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Figure 24: Mass spectrum of mass-selected [(LO)266ZnBn]+ (LO = tri-(2-furyl)phosphine oxide) and its fragment ions 
(m/z ratios in brackets) produced upon collision-induced dissociation (Vexc = 0.24 V, HCT ion trap). 

 

Figure 25: Isotope pattern of the complex [L3Cu]+ with the elemental composition C36CuH27O9P3 measured with the 
HCT ion trap (line) and simulated (bars, L = tri-(2-furyl)phosphine). Apparently, small amounts of an additional, 
unknown cation are also present. 

 

Figure 26: Mass spectrum of mass-selected [L363Cu]+ (L = tri-(2-furyl)phosphine) and its fragment ions (m/z ratios in 
brackets) produced upon collision-induced dissociation (Vexc = 0.20 V, HCT ion trap). 
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Figure 27: Mass spectrum of mass-selected [L366Cu]+ (L = tri-(2-furyl)phosphine) and its fragment ions (m/z ratios in 
brackets) produced upon collision-induced dissociation (Vexc = 0.20 V, HCT ion trap). 

 

Figure 28: Negative ion mode ESI mass spectrum of an approx. 2 mM solution of Pd(dba)2, tri-(2-furyl)phosphine (2 
equiv), and BnZnBr (2 equiv) in CH3CN measured with the HCT ion trap (m/z ratios of the most abundant 
isotopologues of the ions observed given in brackets). The ions centred around m/z 497 correspond to [ZnBnBr3Cl]−. 
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