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Zusammenfassung

Diese Doktorarbeit betrachtet zwei Methoden der Untersuchung des Vakuums – Holo-

graphie und die resummierte Feldtheorie. Im UV-Bereich spielen die nichtperturbative

QCD-Effekte nur eine untergeordnete Rolle, und die Dynamik der Theorie kann exakt

durch die Störungstheorie vorhergesagt. Im Gegensatz dazu, ist die IR Physik (z.B. Spek-

tren und Zerfälle leichter Mesonen) sehr empfindlich auf die nichtperturbativen Eigen-

schaften der Theorie. Die Beispiele nichtperturbativer Parameter der QCD sind das

Gluon-Kondensat und das Quark-Kondensat. Kondensate gehen in viele niederenergetis-

che Beobachtungsgrössen ein, und sind daher direkt auf Experimente verbunden. Anderer-

seits, erreicht die Leistung der jetzt geplanten moderner Hochleistungslaser-Einrichtungen

(z.B. das ELI-Projekt) bereits nahezu die Grenze der Quark-Skala.

Deshalb ist die Dynamik der Kondensate von besonderer Wichtigkeit; jedoch ist wenig

über den Erzeugungsmechanismus jedes der Kondensate bekannt, und unterschiedliche

Hypothesen darüber werden gehandelt. Deswegen kann hier ein Modell-bildender Ansatz

nützlich sein. In dieser Dissertation vergleiche ich zwei Klassen verschiedener Modelle für

die Dynamik von Kondensaten. Die erste Klasse enthält die sogenannten holographischen

Modelle der QCD. Basierend auf der Maldacena-Vermutung wird hier versucht, die Eigen-

schaften von QCD-Korrelationsfunktionen aus dem Verhalten von klassischen Lösungen

der Feldgleichungen in einer mehr-dimensionalen Theorie zu berechnen. Der Vorteil holo-

graphischer Modelle besteht darin, dass sie eine stark-gekoppelte vierdimensionale Eich-

feldtheorie als dualen Partner einer schwach-gekoppelten (und dadurch lösbaren) String/Su-

pergravitations-Theorie liefern können. Die Schwierigkeit dieser Modelle ist ihre Relevanz

für die tatsächliche QCD. Keines der derzeit gehandelten Modelle wird als “vollständig”

dual zur tatsächlichen QCD angesehen. Mögliche Defizite der Dualität sind die Anwe-

senheit zusätzlicher Teilchen im Spektrum, die verbleibenden Supersymmetrien, falsche

Wiedergabe der Spektren von Mesonen und Baryonen etc. Dennoch stimmt der Holo-

graphische Ansatz in vielen Bereichen hervorragend mit experimentellen Daten überein.

Diese Erfolge beziehen sich auf die Vorhersage eines sehr kleinen Verhältnisses von Viskosität

zu Entropie Verhaltens und die Vorhersage von Mesonen-Spectra auf eine Genauigkeit

von bis zu 5% in einigen Modellen. Andererseits sind die Resummierungsmethoden in der

Feldtheorie bislang sind noch nicht verworfen worden; im Gegenteil es existiert eine ganze

“Resummierungsindustrie” für die QCD-Korellatoren durch Integralgleichungen, vor allem

die Dyson–Schwinger-Gleichungen.

Beide Methodenklassen haben einen Zugang zu den Kondensaten. So wird eine um-

fasende Untersuchung von Kondensaten ermöglicht, in der meine Berechnungen in resum-

mierter Feldtheorie und Holographie miteinander verglichen werden, sowie mit Resultaten
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aus Gitter-Rechnungen und Experimenten. Ich beweise, dass die Niederenergie-Theoreme

der QCD in holographischen Modellen mit einem Gluon-Kondensat in nicht-trivialer Weise

ihre Gültigkeit behalten. Ich zeige, dass das sogenannte “Decoupling relation” der QCD in

holographischen Modellen mit chiralen und Gluon-Kondensaten gültig bleibt, wohingegen

diese Relation im Dyson–Schwinger Ansatz versagt. Im Gegensatz dazu stimmen meine

Ergebnisse zum chiralen magnetischen Effekt bei holographischer Behandlung nicht mit

den Vorhersagen bei der schwachen Kopplung überein; dort ist der chirale magnetische

Effekt (d.h. die Erzeugung elektrisches Stromes in einem Magnetfeld) dreimal geringer als

in der schwach gekoppelten QCD. Für das chirale Kondensat ergibt sich eine quadratische

Abhängigkeit in einem magnetischen Feld sowohl bei Behandlung im Dyson–Schwinger-

Ansatz als auch bei holographischer Behandlung. Dabei wissen wir, dass im exakten

chiralen Limes das Kondensat linear sein sollte. Deshalb fehlt beiden Klassen von Mod-

ellen das korrekte Verhalten des Kondensats im chiralen Limes. Ich finde auch, dass die

Magnetisierung des QCD Vakuums nicht mit Gitter-Daten zur Magnetisierung des chiralen

Kondensates übereinstimmt. Man findet eine merkwürdige nicht-monotone Abhängigkeit

vom Magnetfeld mit einer Spitze bei einem charakteristischen Wert des Feldes. Ich ver-

mute hier, die Spitze mit der kürzlich vorgeschlagenen Hypothese einer elektromagnetis-

chen Supraleitung des QCD Vakuums in Verbindung stehen könnte. Schließlich vergle-

iche ich das Quark-Quark-Potenzial aus der Holographischen Modellen und aus Gitter-

Rechnungen, und mit dem Potenzial, das ich aus einer Kombination von Dyson-Schwinger

und Erickson–Semenoff–Szabo–Zarembo Resummierungen berechne. Abgesehen vom per-

turbativen Coulomb-Potenzial, finde ich Confinement in der resummierten Theorie, jedoch

ist dies auf eine sehr kurze Reichweite begrenzt und erlaubt uns nicht tief ins IR vorzudrin-

gen. Dies wird als ein Hinweis auf eine sehr begrenzte Anwendbarkeit von Resummationen

im tiefen IR interpretiert; im Gegensatz dazu, liefert die Holographie stabile und realistis-

che Ergebnisse.

Wenn resummierte nichtlokale Kondensate mit bekannten nicht-lokalen phänomenolo-

gischen Werten verglichen werden, stellt sich die Abschätzung der Nichtlokalität leichter

Quarks als um viele Größenordnungen falsch heraus, was wiederum auf die Unfähigkeit

der Dyson–Schwinger-Gleichungen zur korrekten Beschreibung der Physik im IR hinweist.

Wenn man diese Eigenschaften der Kondensate zusammengefaßt, muß ich schlußfolgern,

dass die Holographie, im Gegensatz zu Dyson–Schwinger Gleichungen, als Methode der

Wahl für die Behandlung der QCD-Physik betrachtet werden sollte. Man könnte hoffen,

dass in wenigen Jahren zumindest die elektrischen Felder der Quark-Skala zugänglich sein

werden und einige der Vorhersagen dieser Dissertation experimentell überprüft werden

können.
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Abstract

This Thesis is dedicated to a comparison of the two means of studying the electromag-

netic properties of the QCD vacuum – holography and resummed field theory. In the UV

range the non-pertubative QCD effects play an insignificant role and the dynamics of the

theory is exactly predicted by the perturbation theory. On the contrary, the IR physics

(e.g. light meson spectra and decays) is very sensitive to the non-perturbative features

of the theory. Archetypal examples of a non-perturbative parameter in QCD are gluon

condensate and quark condensate. Condensates enter into many low-energy observables

and thus are directly experiment-related. On the other hand, the power of modern ex-

perimental laser-physics facilities being planned (e.g. the ELI project) is already almost

reaching the boundary of quark scales (though not hadron scales yet).

Thus the dynamics of the condensates is of special importance. Yet little is known

about the generation mechanism of either of the condensates and various hypotheses are

on the market. Therefore, a model-building approach might be useful here. In this Thesis

I compare two classes of distinct models for the dynamics of the condensates. The first

class consists of the so-called holographic models of QCD. Based upon the Maldacena con-

jecture, it tries to establish the properties of QCD correlation functions from the behavior

of classical solutions of field equations in a higher-dimensional theory. The advantage of

the holographic models is that they render a strongly-coupled four-dimensional gauge the-

ory as a dual of some weakly-coupled string/supergravity. This is actually the reason of

the immense popularity of holographic models nowadays. The problem of these models is

their relevance to actual QCD. None of the models currently on the market is supposed to

be “exactly” dual to real-life QCD. The possible shortcomings of duality are the presence

of extra particles in the spectrum, remaining supersymmetries, wrong reproduction of the

meson and baryon spectra etc. Yet in many aspects the holographic approach has been

found to be in an excellent agreement with data. These successes are the prediction of

the very small viscosity-to-entropy ratio and the predictions of meson spectra up to 5%

accuracy in several models.

On the other hand, the resummation methods in field theory have not been discarded

so far. There exists a whole industry of resummation for the correlators in QCD, by means

of integral equations, Dyson–Schwinger equations first of all. Non-local observables, such

as Wilson loops, are also subjects to resummations, as proposed by Erickson and Zarembo.

The success of resummation methods was marked by the agreement of lattice calculations

of Green functions with Dyson–Schwinger results.

Both classes of methods have access to condensates. Thus a comprehensive study

of condensates becomes possible, in which I compare my calculations in holography and
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resummed field theory with each other, as well as with lattice results, field theory and ex-

periment. I prove that the low-energy theorems of QCD keep their validity in holographic

models with a gluon condensate in a non-trivial way. I also show that the so-called decou-

pling relation holds in holography models with chiral and gluon condensates, whereas this

relation fails in the Dyson–Schwinger approach. On the contrary, my results on the chiral

magnetic effect in holography disagree with the weak-field prediction; the chiral magnetic

effect (that is, the electric current generation in a magnetic field) is three times less than

the current in the weakly-coupled QCD. The chiral condensate behavior is found to be

quadratic in external field both in the Dyson–Schwinger approach and in holography, yet

we know that in the exact limit the condensate must be linear, thus both classes of models

are concluded to be deficient for establishing the correct condensate behaviour in the chiral

limit. The magnetization of the QCD vacuum does not agree with the lattice data on chi-

ral condensate magnetization; it is found to have a peculiar non-monotonous dependence

on the magnetic field, with a peak at some point, which cannot be explained so far. I

speculate here that the peak might be related to the recently proposed electromagnetic

superconductivity in QCD vacuum. Finally, I compare the quark-quark potential obtained

from the holographic models and the potential obtained from the lattice to the potential

I calculate via a combination of Dyson–Schwinger and Ericson–Semenoff–Szabo–Zarembo

resummations. Apart from the perturbative Coulomb potential, I find confinement in the

resummed theory; yet it is limited by a very short range and does not really allow us to

go deeply in the infrared. This is interpreted as a signal of a very limited applicability of

resummations to the deep infrared; on the contrary, holography yields robust and realistic

results. When resummed non-local condensates are compared to known phenomenological

values of non-locality, the estimate for non-locality of light quarks is wrong by several

orders of magnitude, which again signalizes an inability of Dyson–Schwinger equations to

describe correct physics in the infrared.

Summing up these features of condensates, I must conclude that holography must be

considered as a method to be used for IR physics par excellence, rather than Dyson–

Schwinger equations. One could hope that in a few years at least the quark-scale electric

fields will be feasible and some of the predictions of this work could be actually tested.



Introduction

0.1 Motivation

0.1.1 The Problem of the Strong Coupling

Non-perturbative quantum chromodynamics (QCD) has been a challenge for a number of

decades. A variety of methods to handle it have been developed trying to overcome the

two most notorious problems: strong coupling and colour confinement. Of special interest

has always been the non-perturbative behaviour of QCD in external electromagnetic fields.

This is motivated by the various heavy-ion collision [1] and laser physics [2] experiments

already available, where fields close to the critical electron Schwinger field can be reached

in the near future.

The attempts of going beyond the naive perturbative approach to the said problems

have always been related to some resummation of a part of the perturbative series. Ex-

amples of successful resummations are for example those by Erickson, Semenoff, Szabo

and Zarembo [3] performed for the Wilson loop and predicting properly strong-coupling

behaviour. Another example of an efficient resummation in field theory is the viscosity

calculation of quark-gluon plasma by Yaffe and Jeon [4].

Yet no resummation can account for the very specific property of QCD which is the

non-triviality of vacuum. Speaking figuratively, we can think of the QCD vacuum as filled

with complicated “under-the-barrier” combinations of fields, and therefore, building per-

turbation theory upon the perturbative vacuum and then resumming may not necessarily

bring the correct answer, even if the resummation is full. Thus “instanton physics” was

born [5], its method being decomposition around non-trivial vacuum solutions of QCD

equations. This method is the key e.g. to “statistical CP-violating” effects like Kharzeev’s

chiral magnetic effect [6], claimed to have been observed at RHIC by the STAR collabo-

ration.

The instanton physics, despite the richness of its effects, is unfortunately not a model-

free construction, since the behaviour and properties of the instanton liquid are largely

5
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prescribed ad hoc. Thus alternative ways must be sought for a true non-perturbative

approach to QCD.

A possibility for such an approach could be generalizations of the AdS/CFT correspon-

dence. The latter was conjectured by Maldacena in 1997 [7], see also Witten’s paper [8].

For a review of Maldacena’s conjecture in general, see [9, 10]. A comprehensive modern

treatment of the AdS/CFT corespondence can be found in the recent book [11]. The

statement of the conjecture is that a strongly-coupled gauge theory on a four-dimensional

spacetime is dual in a very well-defined sense to a weakly-coupled gravity theory on a

ten-dimensional space (more specifically, a five-dimensional space of constant negative

curvature times a five-dimensional sphere). Although the initial version of the conjecture

dealt with a supersymmetric theory, it is possible by choosing a suitable geometry on the

gravity side to break extra symmetries. The choice of geometry is, however, not at all

arbitrary, since the metric must be a solution of the Einstein equation. This makes the

predictions of holography robust and model independent.

The famous viscosity-to-entropy ratio prediction from duality and its confirmation in a

series of experiments has made holography one of the most prominent candidates to explain

the true non-perturbative physics. The low viscosity prediction is illustrated in Fig. (1),

taken from [1]. Another tremendous success of AdS/CFT was prediction of strong jet

0 1 2 3 4
p

T 
[GeV]

0

5

10

15

20

25

v 2 (pe
rce

nt)

STAR non-flow corrected (est).
STAR event-plane

CGC
η/s=10

-4

η/s=0.08

η/s=0.16

η/s=0.24

Figure 1: From the 2008 paper by Luzum and Romatschke [1]. Elliptic flow coefficient v2

for different viscosities, comparison of theory predictions and STAR collaboration experi-

mental measurements.

quenching [12], illustrated in Fig. (2), which means that the quark-gluon plasma is very
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strongly coupled.
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Figure 2: From the STAR collaboration paper [12]. Jet quenching for Au-Au collisions.

0.1.2 AdS/CFT Correspondence

The AdS/CFT or Maldacena conjecture, referred also to as holography, states the equiva-

lence (also referred to as duality) between the following theories: the type IIB superstring

theory on AdS5 × S5 spacetime, and the N = 4 supersymmetric Yang–Mills gauge theory

in 4 dimensions with the gauge group SU(Nc). The superstring theory (or its supergravity

limit) is known as bulk theory, gauge theory in 4d is known as boundary theory. Here

both AdS5 and S5 have the same radius R, the string coupling is gs, Yang–Mills coupling

is gYM , Yang-Mills is in its superconformal phase. The following identifications of the pa-

rameters must be done in order to relate bulk to boundary: coupling constants are related

as

4πgs = g2YM , (1)

and the radius of AdS is related to string tension α′ and coupling:

R4 = 4πgsNcα
′2. (2)

Equivalence supposes a precise map between the states (and fields) on the superstring

side and the local gauge invariant operators on the gauge theory side. Each field ΦJ

in supergravity has its counterpart OJ – an operator in gauge theory. The AdS/CFT
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conjecture is the equivalence of partition functions of ZSYM [J ] bulk and Zstring[Φ∂AdS]

boundary theories

ZSYM [J ] = Zstring[Φ] (3)

under the following condition: ZSYM [J ] is calculated in the presence of four-dimensional

sources J(x) on the boundary z = 0, and Zstring[Φ] is calculated with the following bound-

ary conditions upon bulk fields Φ:

ΦJ(x, z)z
δ
∣

∣

z→0
→ J(x), (4)

where δ is related to the dimension of field Φ. Some examples of this operator-field

correspondence:

• The dilaton field φ in supergravity is dual to the gauge field strength operator trG2

in gauge theory.

• The graviton field hµν is dual to the energy-momentum current Tµν in gauge theory.

The geometry of AdS5 ×S5 is shown schematically in Fig. (3). It is designed in such a

AdS5
S

5

+

Figure 3: A cartoon of AdS5 × S5

way that its group of motion would coincide with the internal and Lorentzian symmetry

of the field theory. We illustrate how these symmetries are related with the dynamics of

the bulk theory in Fig. (4). As shown there, the geometry is sourced by pack of Nc copies

D3 branes, Nc ≫ 1, all placed into the same place in a ten-dimensional spacetime. The

branes being heavy act as a source term for the (super)gravity equations of motion. When

solved, they yield the AdS5 × S5 metric with equal radii of the sphere and the AdS part

which is illustrated in the figure below: it is flat at y → ∞, and looks like a “throat” at

y → 0. The “throat” geometry is shown in Fig. (5).
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Figure 4: Cartoon of holography physics

AdS/CFT provides a general framework for our thinking. If we want however to make

some specific predictions for a non-supersymmetric theory with fundamental matter fields,

we must specify some hadronic scale and enter some additional construction elements

responsible for fermionic degrees of freedom.

“Top-down” presumes a formulation of the theory, wherein all elements of the action

(the ten-dimensional supergravity part of the action, the Dirac–Born–Infeld contributions

from additional objects) are string-theory motivated and geometrically well-defined. An

illustration of how one makes e.g. a quark degree of freedom geometrically defined is shown

in Fig. (6). The “throat” geometry is shown in Fig. (5). The Dirac–Born–Infeld action

actually describes fluctuations of the brane surface, which physically are similar to meson

fields in chiral theory. Thus only those fields are allowed which have a clear geometric

interpretation in terms of fluctuations of some objects. A “bottom-up” model [13] is built,

on the contrary, ad hoc, the bulk action is formulated in 5 dimensions; the field content

of the theory is chosen also ad hoc, dependent on which operators we want to study on

gauge theory side, so that as many QCD results are fitted as possible.

The first successful and widely accepted top-down recipe of adding flavour to AdS/CFT
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Figure 5: AdS throat, with a cartoon of a closed string in it.

was suggested by Karch and Katz in 2002 [14] by embedding some extra D7 branes into

the geometry. Later the idea was developed by Sakai and Sugimoto in their D4−D8−D8

model. The Karch–Katz model breaks the symmetry from N = 4 to N = 2, which is still

far away from the real world. One must implement supersymmetry breaking and conformal

symmetry breaking to get closer to physical reality. For imitating QCD, chiral symmetry

must also be broken, both spontaneously (strongly) and explicitly (weakly). This was

performed in [15], where a Constable–Myers deformed non-supersymmetric background

was used instead of pure AdS space. This has allowed to break chiral symmetry, and

eventually to obtain a realistic meson spectrum. Further successes of this model are listed

in Section 0.2.2. In the holographic part of this work, I extend and develop the ideas of

studying the Karch–Katz model in deformed backgrounds with scale.

0.1.3 Structure of this Work

In my work I explore the possible approaches to the non-perturbative QCD in external

fields and compare them. In Chapter 1 I study an instantonic effect in the external

fields – the chiral magnetic effect – at strong coupling. The result is remarkable, since

the current at strong coupling is obtained to be 1/3 of the current at weak coupling.

In Chapter 2 by studying quark and gluon one- and two-point correlators, I establish

the well-known decoupling relation and prove that dilatation Ward identities hold non-

trivially. The scalar condensate within the same model is studied in Chapter 3. Unlike

the chiral perturbation theory, my holographic calculation predicts a quadratic, not linear,

growth of the condensate. This fact surprisingly allows me to discover an underlying field
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u d

Figure 6: Flavour branes u, d are added to “colour” branes (shown in red, green, blue

respectively); quark degrees of freedom are represented by strings, running between them,

as shown in the Figure.

theory structure, which makes it feasible also in chiral perturbation theory to restore the

quadratic dependence at the large Nc limit. External fields also induce vacuum tensor

condensates absent otherwise, and that is reflected by the non-zero vacuum magnetic

susceptibility. The magnetic susceptibility of the vacuum is calculated in Chapter 4 also

at strong coupling, which is analyzed in a comparison study against lattice data on the

condensate susceptibility.

In the second part of my work I compare standard field theory resummation methods

to the non-perturbative holographic models of the first part. In Chapter 5 I consider

a possibility to apply the Erickson-Semenoff-Szabo-Zarembo (ESSZ) resummation to a

non-supersymmetric theory; in Chapter 6 I estimate the contribution of Dyson-Schwinger

resummed propagators to vacuum condensates. In the both latter cases I demonstrate

partial or full failure of the resummed theory to exhibit some or any non-perturbative

features. Thus I conclude superiority of holographic methods to study QCD in external

fields when compared to Dyson-Schwinger and ESSZ resummation and suggest new exper-

iments to check some of the duality predictions, namely, those of chiral magnetic effects

in external fields.
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0.2 Perturbative and Non-Perturbative Approaches

to QCD: a Short Review

0.2.1 Condensates and Hadron Physics

Definition

One of the simplest and most effective ways to describe the non-perturbative effects in QCD

are vacuum condensates. In general, the theoretical basis for the use of condensates [16]

is the Wilsonian operator product expansion (OPE), which reads as

i

∫

d4xeiqx
〈

OA(x)OB(0)
〉

=
∑

C

CABC(q)OC . (5)

The condensates still retain a great phenomenological significance and do indeed explain a

lot of facts which would otherwise be beyond our understanding. The notion of condensate

was first introduced by Shifman, Vainshtein and Zakharov in [17]. They have noticed that

the sum rules

1

π

∞
∫

4m2
q

ds ImΠQCD

(s+ q2)n+1
=

1

π

∞
∫

threshold

ds ImΠphys

(s+ q2)n+1
(6)

manifest a discrepancy in the fifth order in n for φ mesons; here ΠQCD is the perturbative

vacuum polarization, and Πphys(s) is directly related to the experimental observable – the

branching ratio

R(s) =
σ(e+e− → hadrons)

σ(e+e− → µ+µ−)
=
σ(e+e− → hadrons)

4πα2

3s

(7)

in the following way

ImΠ(s) =
1

3
αsR(s), (8)

the left-hand side being an integral in the Euclidean domain, the right-hand side – a

Minkowskian (physical) direct observable. The discrepancy was very effectively cured by

the revolutionary suggestion that the vacuum polarization Π, apart from the standard

perturbative (PT) logarithmic terms

ΠPT = − 1

4π2

(

1 +
αs
π

)

ln
q2

µ2
, (9)

acquires a power correction δΠ, which in the simplest case contains 1/q4 terms:

δΠ = Πpower =
αs
12π

〈trG2〉
q4

+
2mq〈qq〉

q4
. (10)
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Generally, the polarization function in QCD looks like

Π(q2) = ΠPT +
∑

k=2...5

Ck

(

µ2

q2

)k

, (11)

where the power corrections
(

µ2

q2

)k

come from the contribution of the condensates. It is

believed by many [18] that asymptotic freedom and running of the coupling is broken not

by the higher αs terms, but rather by the power corrections.

The gluon condensate, apart from other meanings it has in theory, is thought of as

some soft field, stopping the singular increase of QCD coupling in the IR [19]. A standard

value of the gluon condensate is taken to be

〈αs
π

trG2〉 ≤ 0.01GeV4 (12)

Unusually high estimates for the gluon condensate

0.04 ≤ 〈αs
π

trG2〉 ≤ 0.105GeV4 (13)

from the analysis of J/Ψ and Υ meson families were suggested in [20]. Yet this result was

sharply criticized by Ioffe in [21] as unreliable for not taking into account the finiteness of

mesonic widths in the sum rules. Ioffe gives himself the value

0.04 ≤ 〈αs
π

trG2〉 ≤ 0.005± 0.004GeV4. (14)

Condensate Properties in External Fields

Basic non-perturbative properties of QCD condensates in external fields have been known

from field theory. Among these count:

• Magnetic catalysis of (explicit) chiral symmetry breaking. The mass grows [22] as

m2
q = 2|eqB| (cqαs)2/3 e

− 4Ncπ

αs(N
2
c−1) log(1/cqαs) , (15)

where cq =
e

2πeq
, e is the electron charge, eq is q-th quark electric charge, mq is the

quark mass.

• Chiral condensate growth [23]

∆Σ(H) = Σ(0)
eB log 2

16π2f 2
π

IH

(

m2
π

eB

)

, (16)

where the function I(y) can be easily constructed numerically from its definition

IH(y) = − 1

log 2

∞
∫

0

dz

z2
e−yz

[ z

sinh z
− 1
]

. (17)
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• Chiral condensate growth in the regime [24] of a large magnetic field H ≫ m2
π

∆Σ(H) = Σ(0)
eH log 2

16π2f 2
π

. (18)

Low-Energy Theorems

Furthermore, the condensates lead to a number of very interesting statements in field

theory. In particular, the following low-energy theorems are valid.

Dilatation Ward Identity. Eq. (52) in [25] states the following theorem (dilatation

Ward identity) holds

lim
q→0

i

∫

eiqxd4x

〈

T

{

O(x),
β(αs)

4αs
trG2(0)

}〉

= (−d)〈O〉 [1 + mass-dependent terms] ,

(19)

where d is the canonical dimension of the operator O, the one-loop beta-function is nor-

malized as β(αs) = − bα2
s

2π
, b = 11

3
Nc − 2

3
Nf . Identities for higher correlators are also

available:

i2
∫

d4xd4y

〈

T

{

O(x),
β(αs)

4αs
trG2(y),

β(αs)

4αs
trG2(0)

}〉

= (−d)2〈O〉 [1 + mass-dep. terms] .

(20)

For the gluon field strength operators we obtain:

i

∫ 〈

T

{

3αs
4π

trG2(x),
3αs
4π

trG2(0)

}〉

=
18

b

〈αs
π

trG2
〉

, (21)

the latter is proven in Appendix B of [25]. In fact, the left-hand side of the equation

above is the zero-frequency limit of the gluon correlator.

Gluonia in Self-Dual Fields. In self-dual fields for correlators defined as

S(q2) = i

∫

d4xeiqx〈trG2(x) trG2(0)〉,

P (q2) = i

∫

d4xeiqx〈trGG̃(x) trGG̃(0)〉,
(22)

it is true that [26]

S + P = α2
sq

4

{

1

4π2 log µ2

q2

+
4

g2q2
〈2O1 −O2〉

}

, (23)
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where O1 and O2 are the higher-order gluon field operators

O1 = (fabcGb
µαG

b
να)

2,

O2 = (fabcGb
µνG

b
αβ)

2.
(24)

Another interesting low-energy theorem in a self-dual field is the following correlator of the

energy-momentum components θµν which becomes zero in a self-dual field up to contact

terms

Πµν,µ′,ν′(q) = 0 (+contact terms . . . ), (25)

where

Πµν,µ′ν′(q) = i

∫

eiqx〈T{θµν(x), θµ′ν′(0)}〉, (26)

the energy-momentum tensor is defined as θµν = −Ga
µαG

a
να +

gµν
4
Ga
αβG

a
αβ.

Two-Point Gluonium Correlators. Interesting low-energy theorems on two-point

correlation functions [27] are

i

V4

∫

d4xd4y 〈δijS0(x)S0(y)− Pi(x)Pj(y)〉 = −G
2
πδij
m2
π

+ δij
B2

8π2
(L3 − 2L4 + 3) =

= 2δij

∫

dλ

(

m ∂
∂m
ρ(λ,m)

(λ2 +m2)
− 2m2ρ(λ,m)

(λ2 +m2)2

)

,
(27)

where Si, Pi are scalar and pseudoscalar currents that have been obtained [28] from

AdS/QCD duality as well; Li are chiral perturbation theory coefficients.

Gluonium Correlators and Leading Logs from Field Theory. The following per-

turbative expressions can be explicitly calculated for gluonium correlators [29]

S(q2) = 16i

∫

d4xeiqx〈Tθµµ(x)θνν(0)〉 =
∑

A

CA〈OA〉, (28)

where operators OA are

OA = 1̂,

O4 = αs

π
trG2,

O6 = g3fabcGa
µνG

b
νλG

c
λµ,

O8 = 14(αsfabcG
a
µρG

b
νρ)

2 − (fabcG
a
µνG

b
ρλ)

2,

(29)

and the OPE coefficients up to two loops are

C0 = −2
(

αs

π

)2
Q4 log Q2

µ2

{

1 + 59
4
αs

π
+ β1

2

(

αs

π

)

log Q2

µ2

}

,

C4 = 4παs

{

1 + 49
12
αs

π
+ β1

2

(

αs

π

)

log Q2

µ2

}

,

C6 = 2αs

π

{

1− 29
12
αs
}

,

C8 = 1,

(30)
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where Q2 = −q2, µ is the renormalization scale.

Gluonium Correlators from Holography. In the work [30] the gluonium propagator

Π(q2) = i

∫

eiqx〈trG2(x) trG2(0)〉d4x (31)

was calculated with the non-perturbative correction:

Π(q2) = − 2

π2
q4
[

log
q2

λ2
+

4λ2

q2
log

q2

λ2
+

20

3

λ4

q4

]

, (32)

for the sake of normalization here I quote the condensates of the leading gluonic operators

〈trG2〉 = − 10

3π2
λ4,

〈tr gG3〉 =
4

3π2
λ6,

〈trG4〉 = − 8

15π3αs
λ8.

(33)

The smeared D3-background [31] has lead to a very interesting example of the 〈trG2(x) trG2(0)〉
correlator without the log term:

Π(q2) = − N2
c

32π2
q4ψ

(

1

2
+

1

2

√

1− L4q2

l2

)

, (34)

where L is AdS radius, l is the average distance between the branes, and l
L
≪ 1. The

gluonium propagator was calculated in the soft-wall AdS/QCD model in [32].

Decoupling Relation. For light quarks we have, as derived in [25] (eq. 102):

d

dmq

〈αs
π

trG2
〉

= −24

b
〈qq〉. (35)

This low-energy theorem for heavy quarks is recovered also in an independent manner

from the Cornwall-Jackiw-Tomboulis potential in [33]. For heavy quarks it is true that

〈qq〉 = − 1

12

〈αs
π

trG2
〉

. (36)

the derivation of this relation is found in [16], eq. 6.25, p. 438. The factors 12 and 24 in

the equations above are symmetry factors and come from a direct diagrammatic estimate

of Feynman diagrams with corresponding external legs ending in vacuum fields. Let us

stress that the factors 12 and 24 are universal, they do not contain Nc or Nf .
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A slightly different form of the argument, from which the relation (36) emerges is the

following. Consider the trace of the energy-momentum tensor of a gauge theory. For low

quark mass there is a beta-function contribution from the quark, for heavy quarks there is

only the gluonic contribution to the beta-function, yet there is a quark chiral condensate

present:

θµµ =























(

11

3
Nc −

2

3

)

αs
8π

trG2,

(

11

3
Nc

)

αs
8π

trG2 +mqq.

(37)

When the two are equated, the necessary relation (36) appears. Equating small and large

m domains happens on the ground that we select the scale at which the heavy quarks

“decouple” from the one-loop polarization operator. Hence this theorem is also known as

decoupling relation. A picture of the condensate as a function of the quark mass is given

in [25], Fig. 18, p. 366.

0.2.2 Gluon Condensate and Holography

Different Holographic Approaches to Condensates and Pions

As mentioned above, condensates are not inherent to the AdS/CFT setup, thus it must

be supplied with additional elements. In current literature there are several different

approaches to pions and condensates, which are not quite compatible with each other,

yet all of them remain popular since they yield reasonable results on meson masses, decay

constants and coupling constants. In Section 0.1.2 I have already given the basic distinction

between the two most widely-used classes models, the top-down and bottom-up models.

Now I shall list the most common versions and modifications of them, briefly reviewing

their successes and failures.

• Top-down models:

– The D3/D7 model has been formulated in [15]. The idea of the model is to

represent the fermionic (or mesonic via the quark-hadron duality) degrees of

freedom in QCD by a probe brane, whose action is that by Dirac–Born–Infeld.

Dynamical variables are the brane embedding coordinate X8 + iX9 = w(ρ)eiφ,

and bulk vector fields Aµ, where w fluctuations are identified on the boundary

with scalar mesons, and those of φ with pseudoscalars, fluctuations of the vector

field are identified with vector mesons, while axial-vector mesons are absent in
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this model. The scheme of brane embedding into the background and the

physics corresponding to different sets of modes is illustrated in Fig. (7).

D7 D37-7

3-7

3-3

3-7 chiral multiplet
7-3 chiral multiplet Q
3-3 =4 vector multiplet

Q

N

0123

4567

89

Figure 7: A scheme of an embedding of a D7 brane into the D3 backgrounds; shown are

strings, whose oscillations correspond to the particles of specific sectors of the theory.

– Sakai–Sugimoto: The D4/D8/D8 model [34] is formulated on the similar phys-

ical principles as the D3/D7 model above, yet a different background is used

(type IIA) and a different probe object is placed therein (a pair of D8 branes).

The embedding coordinate is not a dynamical variable any more, dynamical

variables are now two sets of bulk vector fields AL, AR. The holonomy of A5

corresponds to pion on the boundary, AL±AR correspond to vector and axial-

vector mesons. The quark mass, pion mass and condensate cannot be explicitly

introduced in this model, yet the description of meson spectra and coupling

constants is amazingly well fitting experimental data.

• Bottom-up models: Mostly, terms “bottom-up” and “AdS/QCD” are synonyms.

The AdS/QCD has the full set of fields given explicitly as an ad hoc model: X =

vei
π
fπ , which contains the dynamics of scalar and pseudoscalar mesons, bulk vector

fields FV , FA correspond to vector and pseudo-vector mesons. The main difference

between the classes of phenomenological AdS/QCD models is the type of chiral

symmetry breaking. It is characterized by by:

– Presence or absence of a scalar (“tachyon”) field.

– IR boundary condition.
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– Joining two branes in the IR.

– If we regard AdS/QCD as a development of Sakai–Sugimoto, then anX (tachyon)

field arises from gauging the action to the A5 = 0 gauge. If we regard it as a

development of the D3/D7, X is related to the embedding coordinate.

– The so-called improved holographic setup [35] has a peculiar set of fields. Apart

from AL, AR it has a tachyonic field τ in the 5-dimensional DBI action, which

is analogous to the embedding coordinate in the D3/D7 model.

Hard-Wall AdS/QCD Approach

The hard-wall AdS/QCD is due to Erlich, Katz, Son, Stephanov [13], Da Rold and Po-

marol [36]. The model includes left- and right-handed vector SU(Nf )L,R adjoint fields

Lµ, Rµ, corresponding to vector and axial-vector mesons, and a scalar X (“tachyon”) bi-

fundamental SU(Nf )L × SU(Nf )R field, corresponding to the scalar and axial mesons.

The name “hard-wall” comes from the boundary conditions that set an infinitely high

wall in the IR end. The hard-wall model was one of the first models that gave extensive

experiment-comparable predictions. Its obvious disadvantage is the absence of the Regge

spectrum for mesons; masses of resonances are rather organized as m2 ∼ n2. The soft-wall

model allows one to introduce the quark mass and the chiral condensate via the asymp-

totics of X in the UV. Although the hard-wall is now considered to have been mostly

superceded by the soft-wall and other approaches, let us mention its most interesting de-

velopments. The form factors and the wave functions of the vector mesons were found

in [37]. The deconfinement transition temperature in the hard-wall approach was obtained

in [38]. Scalar and pseudoscalar two point correlators, meson masses and interactions were

calculated in [39]. Effects of the gluon condensate upon chiral perturbation theory coeffi-

cients Li are studied in the hard-wall model in [40] by means of quartic deformation of the

metric. Self-bound objects, that is, classical solutions corresponding to the bound states

with strong interactions, were studied in the hard-wall model in [41], and used for mod-

elling nuclei. Surprisingly, the gluon condensate has been shown to be of little importance

for the meson spectra in the hard-wall QCD model [42].

Soft-Wall AdS /QCD

Definition. The original reason to introduce the soft-wall [43] (quadratic dilaton) model

(Karch-Katz-Son-Stephanov, KKSS) was to cure the meson spectrum. In the hard wall

model the spectrum was m2
n ∼ n2. The soft-wall model has a dilaton φ = z2, with the

metric being ds2 = dx2+dz2

z2
. This yields qualitatively a correct Regge trajectory m2

n ∼ n.
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The enormous development of this model is discussed below.

Spectrum. A comparison of heavy quarkonia masses obtained from the soft-wall, hard-

wall and braneless approaches has shown that the soft-wall approach is closer to experiment

than the other two [44]. Glueball spectra were obtained in the soft-wall model in [45, 46],

where it was found that the scalar and pseudoscalar glueballs are degenerate, whereas the

vector glueballs are heavier then those. A “dynamical” version of the soft-wall model was

considered in [47] where a tachyon field was taken into account. Linear Regge trajectories

were obtained for heavy mesons and the tachyon field was interpreted in terms of non-

critical string theory tachyon. It was claimed in [48] that soft-wall QCD predicts vector

dominance breakdown due to the fact that vector meson couplings to other hadrons grow

linearly with the increase of the radial excitation number n. A version of the soft-wall

AdS/QCD with an additional UV cutoff, suggested in [49], has improved the ρ spectrum,

with typical theory vs. experiment discrepancies becoming less then 10% instead of ca.

20% in the original soft-wall model. The soft-wall AdS/QCD was modified in [50] in such

a way that it allows to independently break chiral symmetry spontaneously and explicitly;

meson spectra are in good agreement with the experiment (up to 10%) except for the lowest

ρ and f states. The heavy vector meson state spectral function at finite temperature from

soft-wall AdS/QCD was found in [51] to be in good agreement with the lattice.

Interactions. In [52] it was shown that the effective quadratic dilaton behavior can

be derived from the instanton gas model; the instanton size plays the role of the fifth

coordinate in the field-theoretical approach. The QCD string tension was calculated as a

function of temperature in the soft-wall AdS/QCD in [53]. Quartic and fourth-order in

z corrections to the soft-wall quadratic dilaton, which account for the back-reaction and

contain quark mass and condensate were suggested in [54]. The quark-quark potential

in this back-reaction geometry was further studied in [55]. Form-factors for the ρ-meson

obtained from the soft-wall model have been shown to be more realistic than those of

the hard-wall [56]. The pion form-factor was calculated for spacelike momenta in [57] for

both hard- and soft-wall models; it was found that the soft-wall model is a more realistic

approximation. DIS structure functions were found in [58], for the soft-wall and hard-wall

AdS/QCD similar results were observed. Light mesons were studied in the soft-wall model

in [59], where it was found that a 1/q2 term (coupled to the dimension-two condensate)

is present in the holographic sum rule, which is absent in the normal AdS/QCD. An

absence of renormalons was demonstrated in [60] (the model used there for the Wilson

loop calculation is equivalent, for that purpose, to the soft-wall AdS/QCD). In [61] a

yet unresolved problem of the soft-wall AdS/QCD was noticed, namely, that the strong
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couplings of scalar mesons to pairs of light pseudoscalars are too small compared to the

experimental values. Virtual Compton scattering in the soft-wall model is studied in [62].

Thermodynamics and Kinetics. The deconfinement transition temperature was ob-

tained in [38]; the dilaton running being fixed by the Regge curve, the numeric value for

the transition temperature (ca. 340 MeV) is available, which is close to the lattice re-

sult. The jet quenching parameter was obtained from soft-wall AdS/QCD in [63] to be

3.5GeV2

fm
at the phase transition temperature. Viscosity and entropy in the soft-wall model

were shown to violate the conformality bound in [64]; corrections to the viscosity due to

the dilaton flow coefficient c (the latter defined from dilaton asymptotics φ = ecz
2
) were

found. Liu, Rajagopal and Shi, working in a kind of a soft-wall model have shown [65]

that the drag and momentum diffusion constants, as well as the screening length for a

quark-antiquark pair, become infrared insensitive in the relativistic limit, thus endowing

with greater robustness the holographic results for these values. Agreement between the

4d picture of the confinement-deconfinement phase transition and the 5d Hawking-Page

phase transition was demonstrated in [66]. The quark number susceptibility was calcu-

lated in [67] and has been shown to be identical in hard and soft wall models, zero at

small temperatures (confinement phase), and ∼ T 2 at large (deconfining) temperatures.

The quark number susceptibility was calculated in [68] for both the hard- and the soft-wall

AdS/QCD in the Reissner–Nordström background. It was found that both backgrounds

exhibit the expected peak at T = Tc, yet the hard-wall model is pathological in the sense

that at µ = 0 the susceptibility does not depend on T any more, which is unphysical;

in the soft-wall model this pathology is cured and the quark number susceptibility grows

with temperature. From the analysis of the spectral functions of scalar, pseudoscalar, vec-

tor, pseudovector mesons in the soft-wall model, it was found [69] that the pseudovector

melts earlier than the vector does, while the scalar and the pseudoscalar melt at the same

temperature, but still below that of the vector.

Modified AdS/QCD Models

Pomarol–Wulzer Approach. The model by Pomarol andWulzer is focussed at baryons.

It is a version of AdS/QCD with a Chern-Simons term. The average precision of the model

on a wide range of observables (interaction vertices) is claimed to be 16% against experi-

ment. Nucleon form-factors have been calculated in [70], producing an agreement around

30% against experiment.
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Forkel–Beyer–Frederico Approach. A sui generis modification of AdS/QCD was

proposed by Forkel, Beyer and Frederico [71]. It is an AdS/QCD approach with a con-

stant dilaton and an IR deformed warp factor. The parameters of the deformation are

chosen in such a way that a linear baryon Regge trajectory is observed. The baryons are

modelled by an ad hoc fermion, introduced into the bulk action; its spectrum results in

the tower of the boundary baryons. The model is claimed to be the first in which both

the linear Regge trajectories for the mesons and the baryons have been observed. It has

received various developments. In [72] a c
z2

term was added to the dilaton potential and a

z−dependent mass was introduced, which lets chiral symmetry be broken independently

both spontaneously and explicitly. For axials, vectors and pseudoscalars, masses and de-

cay constants were calculated; the lowest ones disagree greatly, whereas all the rest exhibit

10-20% agreement with experiment.

Hirn-Sanz approach An “interpolation” between the hard-wall and the soft-wall AdS/QCD

was suggested by Hirn and Sanz [73]. The model is ideologically closer to D4/D8/D8,

since it does not have a scalar field, analogous to the embedding coordinate in D3/D7,

D3/D5 or to the X field in hard/soft wall AdS/QCD. The set of fields it features includes

massless pions, higher-resonance radial excitations of pions, vectors and axial-vectors. Chi-

ral symmetry breaking is performed by the IR boundary conditions. The pions arise as

the holonomy of the A5 field. The model predicts a quadratic, not a Regge behaviour of

mesonic resonance masses m2
n, however, the authors argue that this is admissible, since

no-one has proven that linear trajectories must persist for all possible resonances. The

Weinberg sum rules are nicely reproduced (up to the 0.1% level at some instances), and

the vector meson dominance is strongly supported. The model also predicts (with different

degree of success) the chiral Lagrangian interaction coefficients Li. There are problems

in this model with the condensates; the authors advocate the idea to modify the metric

differently for scalar and vector fields, and then to adjust coefficients so that the Novikov–

Shifman–Zakharov sum rules would be satisfied. The program is fulfilled in [74], yet in

such a construction, where the geometry is different for vectors and axials, can be viewed

as standing out of the standard holographic paradigm. The Froissart bound is satisfied.

The axial electromagnetic form factor is found to be identically zero. A correct Nc scaling

of fi, Li and the vector meson mass is observed. The AdS five-dimensional computations

are also compared with a flat-space five-dimensional model; the AdS meson mass results

are better fitting the experiment, yet the results for Li are comparable. Developments

of the Hirn-Sanz model include e.g. a pion-gamma-rho form factor calculation [75]. The

neutron mass, isocalar electric radius, axial coupling and isovector magnetic moment have
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been computed in [76] from the Hirn-Sanz model. Four-point flavour correlators were

calculated in [77].

Sakai–Sugimoto model

A huge amount of literature is dedicated to the Sakai–Sugimoto model [34].

Meson Spectrum Vector and axial-vector meson masses were found with no more

than 15% discrepance against experiment in a generalized embedding with non-anti-podal

branes [78]. Meson mass shifts were studied in [79]. The repulsive nucleon-nucleon 1/r2

potential core was found in [80]. A picture of pionic dominance was proposed near the

phase transition point [81]. The tachyon field introduced into the Sakai–Sugimoto model

in [82] is claimed to account for chiral symmetry breaking dynamics. In this modified

Sakai–Sugimoto model with a tachyonic profile the Gell-Mann–Oakes–Renner relation is

claimed to be established [83]. Low-energy pion-pion scattering amplitudes from hologra-

phy were found in [84] to be in satisfactory agreement with experiment. Meson-baryonic

couplings were obtained in [85] for higher resonances. The quark mass was explicitly in-

troduced into the Sakai–Sugimoto model in [86] by means of adding a special D4-brane

far away from the stack of QCD branes; the Gell-Mann–Oakes–Renner relation is shown

to be fulfilled in such a setting. The quark mass is introduced by means of open strings

in [87].

Baryon Spectrum An excited nucleon spectrum with a precision up to 5% against

experiment was obtained in [88]. Mass splittings of baryons exhibit rather poor coincidence

(up to 50% error) with experiment in the Sakai–Sugimoto model with the strange quark

mass added [89]. A very good precision (4% against experiment and lattice) in the baryon

mass shift due to quark/lightest pion mass is reported in [90].

Interactions A technique for integrating out the higher Kaluza-Klein modes was sug-

gested in [91] that allowed to calculate the pion electromagnetic form factors in the Sakai–

Sugimoto model, which were inaccessible before due to complications with the infinite

sum over the KK tower, leading to a good agreement with experiment (χ2/d.o.f. = 2.8).

Deep inelastic scattering of vector and axial vector mesons is studied in [92] in the Sakai–

Sugimoto model; the Callan-Gross relation is shown to be satisfied holographically. The

n-body nuclear forces from Sakai–Sugimoto were shown to be of the order ∼ Nc(r
2)−n [93].

The leading order hadronic contribution to the muonic (g − 2) was obtained in [94], the

value of it is given as a = 470 · 10−10, whereas the current experimental value from
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e+e− → π+π− is aππ = 515 · 10−10. Holographic vector and axial-vector meson form-

factors were shown in [95] to have relevance to experiment also at high q2. A critical

analysis of the Sakai–Sugimoto model against the Pomarol–Wulzer model was carried out

in [96]; it was shown there that a universal ratio of baryon form-factors [97] fails in the

Sakai–Sugimoto model, but survives in the Pomarol–Wulzer model [76]. An excellent

agreement with experiment is reported [98], for the Regge regime of the p, p and p, p scat-

tering cross-section, where the Pomeron exchange is modelled within the Sakai–Sugimoto

model. At arbitrary distances the nucleon-nucleon potential was found in [99] to be uni-

versally 1/r2 repulsive at small r and 1/r3 attractive at long distances. The 1/r2 repulsion

was also found in [100]. Proton and neutron magnetic moments are shown in [101] to

be holographically related in a model-independent way. An agreement of 20-25% against

experiment is found in [102] for baryonic radii and form-factors. Electric form factor sum

rules are shown to be satisfied up to several % in [103] by means of “resumming” the

vector meson resonance tower in taking the first four resonances.

Thermodynamics A new phase of hadronic matter was claimed to have been pre-

dicted from Sakai–Sugimoto, in which baryons with semi-integer Skyrmionic (“dyonic”)

numbers live in the phase with the restored chiral symmetry, light quark mesons live in the

colour-confined phase [104]. The baryon binding energy as a function of temperature was

found in [105]. The Sakai–Sugimoto and the Nambu–Jona-Lasinio models were compared

in [106], close resemblance between them was found at low values of the chemical potential

and the temperature, whereas at a large chemical potential they essentially disagree. The

baryon number susceptibility is reported at 20-30% agreement against the lattice in [107].

Zero sound and linear scaling of the heat capacity are reported in the Sakai–Sugimoto

model at finite chemical potential, which is interpreted as formation of a Fermi liquid

state. The confined phase of Sakai–Sugimoto is found in [108] to be an incompressible and

static baryonic insulator with a gap, whereas the deconfined state resembles a diffusive

conductor with restored chiral symmetry. It is argued in [109] that the degree of inhomo-

geneity of the nuclear matter phase (observed at values of the baryon chemical potential

above the transition point) can be arbitrarily large. Baryonic matter is considered in [67]

as one large Skyrmion; pion dominance is reported near the phase transition point, and all

meson vector fields disappear. Swelling of baryons in dense matter was observed in [110].

Instanton expansion breakdown below phase transition temperature was reported in [111].

The equation of state is shown to coincide with that of chiral perturbation theory at finite

µ and T in [112]. Essential difference is found in gluon penetration length and quark

transverse momentum diffusion constant as functions of temperature and incoming parti-



Contents 25

cle energy in [113]; it is speculated that heavy-ion experiments could distinguish between

the two.

Magnetic Properties. The chiral magnetic effect was predicted holographically in the

Sakai–Sugimoto model by [114, 115, 116, 117]. A state with the phase of the chiral con-

densate rotating in space, that is, the so-called spiral chiral magnetic state, was found

in [118]. Magnetization of the quark-gluon plasma is studied in [119]; a magnetic phase

transition is reported, partially resembling metamagnetism (i.e. an increase in the magne-

tization of a material with a small change in an externally applied magnetic field). In the

framework of the open Wilson line paradigm, chiral symmetry breaking parameters are

studied in external magnetic and electric fields, as well as temperature [120]. It is found,

as expected, that the electric field decreases chiral symmetry breaking, whereas a magnetic

field enhances it; a chiral phase transition is observed at some temperature. Saturation

of the dimensionless magnetization is observed in [121], where the Meissner effect in the

Sakai–Sugimoto model is studied [122]. Saturation of magnetization is observed in [123] at

large magnetic fields. Chiral condensate enhancement was noticed in [124] in a magnetic

field.

Light-Front Holography (Brodsky – de Teramond approach)

The method formulated in [125] is based on employing a step-function-like warp factor

A(z) in the integral over the holographic coordinate, which makes this setup close to

the MIT bag model. Brodsky and de Teramond show [126] that the hadron light-cone

wave-function, dependent on the light-cone coordinate ζ, can be identified with the 5-

dimensional string amplitude φ(z), with the fifth coordinate identified z = ζ. Numerous

developments have followed since. This model allows a derivation of the Schrödinger

equation for the spectra of hadrons of arbitrary spin and orbital momentum [127]. Light

mesons and baryon spectra are calculated in [128]. The pion form factor was obtained

in [129]. Gravitational form-factors of composite hadrons were calculated in [130]. Light-

front holography predicts correctly (compared to lattice and Dyson-Schwinger) the running

of the non-perturbative QCD coupling [131]. A confining potential was introduced into

this model in [132].

Improved Holography

Gürsoy and Kiritsis Proposal Holographic duals of theories with condensates are

an intense field of research presently. One of such schemes was proposed by Gürsoy and

Kiritsis [133, 35]. The idea is to use a five-dimensional action with a specific dilaton
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potential, containing both gluon condensate and running coupling. The bulk action is

S = N2
c

∫

d5x
√−g

[

R− 4

3
gµν∂µΦ∂νΦ + V (Φ)

]

, (38)

where the potential V (Φ) is guessed, not derived, the metric is

ds2 = dr2 + e2A(r)dx2, (39)

and the dilaton Φ has the following asymptotics

Φ(u) = − log(− log(rΛ)), r → 0,

A(r) = − log(r/l).
(40)

Spectrum. The “improved holography” work [35] has generated a large series of follow-

ups, developments and improvements, on the base of the same set of degrees of freedom,

with an ad hoc potential for the dilaton made responsible for reproducing the beta-function,

and various geometries. In [133] a general criterion of confinement in an improved holo-

graphic QCD setup was derived. Satisfactory linear Regge glueball trajectories were found.

Using this “dynamic holography” in [134, 135], meson masses and decay widths were cal-

culated with precision of ca. 5%. Spectra of hadrons of spin 1/2 and 3/2 were obtained in

this model in [136, 137] with 5-10% accuracy. On the basis of the improved holographic

QCD, a fermionic extension by means of Sen’s tachyonic action was supposed in [138],

which allowed a satisfactory calculation of mesonic masses.

Interactions and Thermodynamics. In [139] the dependence of the confinement-

deconfinement transitions on the type of the IR behavior of the background was studied.

In [140] it was shown that the quark potentials in the improved holography by Gürsoy, Kir-

itsis and Nitti fit lattice results better than those obtained without the RG improvement.

In [141] the thermal gluon condensate was calculated, and it was shown that the physics of

the phase transition in the improved holography is very close to pure YM. Glueball masses

were predicted at a 3% precision level (compared to lattice) from the improved holographic

QCD in [142]. The quark-quark potential in this framework was studied in [143, 144], with

additional quadratic corrections (motivated by string-tension) added to the warp factor.

A review of the “dynamic holography” related topics was recently published in [145].

“Braneless” Approach

Gluon Condensate in the Csaki Model. One of the first systematic studies of back-

grounds with condensates for the purpose of QCD applications was done by Csaki and
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Reece in [146] and is known as “braneless approach”. The idea is to consider the five-

dimensional action

S =
1

2κ2

∫

d5x
√
g

(

−R +
12

L2
+

1

2
gµν∂µφ∂νφ

)

, (41)

where in the Einstein frame the metric and the dilaton are

ds2 =

(

L

z

)2
√

1−
(

z

zc

)8

,

φ(z) =

√

3

2
log







1 +
(

z
zc

)4

1−
(

z
zc

)4






,

(42)

and the gluon condensate is

〈trG2〉 = 4
√
3

√

R3

κ2
1

z4c
. (43)

This has allowed the authors of the model to extract the gluonium propagator (the corre-

lator of gluon field strength)

∫

d4xeiqx〈trG2(x) trG2(0)〉 = −N
2
c − 1

4π2
q4 log

q2

µ2
, (44)

which allows to fix the overall coefficient in front of the condensate as

〈trG2〉 = 8

πz4c

√

3(N2
c − 1). (45)

Dilaton Reconstruction from QCD Within the braneless approach, an inverted logic

(“from known properties of QCD to the background”) allows one to reconstruct such a

potential for the dilaton that it reproduces both running of the coupling and presence of

the condensate

V (φ) = − 6

L2
e±

√
2
3
φ − 12

L2
,

φ(z) = ∓
√
32 log log

z0
z
,

A(z) = log
z

L
− 1

4
log log

z0
z
.

(46)

This metric is reminiscent of the solutions by Kirsch and Vaman [147], which arise in a

top-down approach. The condensate is expressed in this background as

〈trG2〉 = N2
c − 1

11Nc

8

z40
, (47)
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and the running coupling is

αs =
2π

11
3
Nc log z0Q

. (48)

An unusual feature of [146] is that it suggests a framework for dimension 6 condensates,

usually neglected both in field theory and holography.

Developments and Parallels with the Migdal Approach The approach by Csaki

and Reece was further developed by many others. The dissociation of mesons and monopole-

antimonopole bound states was studied in Csaki’s “braneless” approach in [42]. In [148]

it was noticed that the braneless approach has problems with the gluonium spectrum,

namely, that at the large values of the numeric parameter Q > 4/3 (for the “improved”

holography by Kiritsis et al. Q = 4/3) the gluonium spectrum is ill-defined. It was

noted in [149] that there is an amazing similarity between the correlator relations in the

field-theoretic Migdal approach [150] and in the holographic setup by Csaki and Reece.

Other interesting parallels with the Migdal meromorphic program and AdS/CFT were

noticed in [151]. In [152] the Migdal approach was compared to the soft-wall AdS/QCD;

a close relationship between the Migdal ideas and the quark-hadron duality background

was noticed.

Ready-made Condensate Backgrounds for Top-Down D3/D7 Models

The typical (“popular”) backgrounds on the market for studying non-conformality effects

in D3/D7 models are:

• Dilaton flow (dilaton wall) by Gubser, Kehagias and Sfetsos;

• Yang-Mills∗ by Babington et al.;

• Constable–Myers;

• Liu–Tseytlin;

• Nojiri and Odintsov.

Some of these have further variations and modifications.

Gubser–Kehagias–Sfetsos. One of the first non-conformal backgrounds, introduced

into AdS/CFT was that by Gubser [153]. Originally it was intended to explain confine-

ment, yet it came also useful for gluon condensate introduction. Shortly before Gubser the
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background was obtained by Kehagias and Sfetsos [154] in a less convenient parametriza-

tion. In [155] the properties of Gubser’s solution were shown to be universal for a wide

class of five-dimensional actions (e.g. those with extra scalars in the Lagrangian). The

solution by Gubser has made possible the formulation of the idea of a holography de-

scribing a flow between two theories, the IR and the UV [156]. In [42] meson spectra

were studied in Gubser background via AdS/QCD. The Wilson loop in Gubser geom-

etry with finite temperature was studied in [157], where effects of gluon condensate on

quark-quark potential were calculated. In [158] a consistent picture of chiral symmetry

breaking by D7-branes in the Gubser background was suggested. In [159] it was shown

that confinement and chiral symmetry breaking in this background are not intrinsically

unrelated. Non-trivial estimates of mesonic spectra in the D7 model in this background

were done in [160]. Meson and monopole-antimonopole melting in this background was

studied in [42]. Hadronic spectra in the presence of baryon chemical potential in dilaton

flow geometry were studied in [161].

Constable–Myers. Another popular solution of the IIB string theory is the Constable-

Myers background [162]. It has also generated a large flow of follow-up papers, calculating

all kinds of observables. The D7 embeddings were shown by Apreda, Erdmenger and

Evans to be stable in this background [163, 164]. Masses of heavy-light mesons in this

background in the D7 model were obtained in [165]. The quark condensate, pion decay

constant and higher order Gasser-Leutwyler coefficients were calculated for the D7 model

in Constable–Myers background in [166]. The chiral condensate and meson spectrum in

the D7 model in this background were obtained in [15].

Nojiri and Odintsov Background. An early generalization of the background was

constructed by Nojiri and Odintsov in [167]; the solution was given implicitly, and shown

to manifest confinement, running coupling and possess a gluon condensate.

N = 2∗ background. A different deformation of AdS/CFT was suggested by Erd-

menger, Crooks and Evans [168]. It is also known as Yang–Mills∗ background. It in-

cluded an additional scalar operator, which led to the scaling factor in the metric ds2 =

e2Adx2 + dr2 which looks like

eA =
ρ4

ρ6 − 1
, (49)

where in the UV asymptotics ρ = 1+ ve−2r + rm2e−2r. D7 embeddings were shown to be

stable in this background [163].
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Other Backgrounds with Gluon Condensate

Other Models with Log-running Coupling. In [169] the log-running of the coupling

is reached by putting a stack of D3 branes in a 0B theory on top of a conifold, which

results in a gravity-dual of a non-SUSY gauge theory.

Type 0 theories. A simple classical solution for type 0 theories was constructed in [170],

which is dual to some non-supersymmetric theory. This solution was developed further

in [171] to a consistent picture of a flow of a conformal theory into a non-conformal one.

A non-maximal SUSY Background. Typically, such a background is UV-asymptoti-

cally AdS and something different in the IR, thus providing a “holographical renormgroup

flow” between the two boundaries. In [172] such a background in IIB type string the-

ory was proposed, which also incorporated a gluino condensate, analogous to the chiral

condensate in a non-supersymmetric theory.

Beyond the Quenched Approximation.

An extensive review on unquenching the fermions in AdS/CFT is available in the work [173].

Here we briefly review some of developments in the field.

Dynamic Holography. A so-called “dynamic holographic QCD” was formulated in

[174] by de Paula, Frederico, Forkel and Beyer as a development of the “improved AdS/QCD”.

The main issue of this “dynamical holography” is additional deformation of the warp fac-

tor (49):

A(z) = log z + zλ, (50)

where λ > 0 is an extra parameter.

Back-reacted AdS/QCD. Back-reacted geometry of the type

A(z) = log(z) +
m2
q

24
z2 +

mqσ

16
z4 +

σ2

24
z6, (51)

(factor A is defined as in (39)), i.e. the one in which the effects of the scalar field due

to the quark mass and the chiral condensate (though not to the gluon condensate) upon

the metric have been partially taken into account, was considered in [54]. A fully back-

reacted geometry is claimed to have been found for a three-flavoured AdS/QCD in [175].

In this approach, the condensate and the mass are contained in the scalar field, which then
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influences the warp factor. The influence is UV-negligible, whereas it essentially modifies

the geometry in the IR. Yet the effect of back-reaction upon the mass spectrum is almost

unobserved, and does not decrease the discrepancy between theory and experiment.

Back-reacted D3/D7. A comprehensive model of the back-reaction in a D3/D7 system

was suggested in [147], where a self-consistent metric for that system was derived both

numerically and, in an approximation, analytically. The feature of this solution is that it

reproduces the fermionic leading log in the beta-function exactly. The Nf dependence of

the Regge curves is obtained (Regge curves going down at large Nf ). In [176] it is argued

that this type of back-reaction should extend to D7 branes as well, not just to the D3

background. Unquenched flavours in the Klebanov-Witten model with massless quarks

were considered in [177, 178]. Such a background is found to describe the screening of

color charges [179].

Thermodynamics with Backreaction. Quark-gluon plasma properties were studied

in [180] in an unquenched approximation within the D3/D7 model with massive quarks.

It was shown that η
s
remains unmodified, whereas jet quenching and friction coefficients

are increased, the correction in
Nf

Nc
reaching 20-30%. The corresponding backreacted back-

ground was obtained approximately analytically as an expansion up to (Nf/Nc)
2.

Spectra at Backreaction. In [181] screening of mesonic masses was found as a function

of Nc/Nf in a back-reacted background of the Klebanov-Witten type. The backreaction

in the Sakai–Sugimoto model was studied in [182]; in particular, it was found that no

tachyonic modes arise in the mesonic spectrum due to the backreaction, and that the

original embedding remains a solution in the back-reacted metric.

Other Back-reacted Solutions. Backreacted solutions in 2+1 dimensions for an N =

2 geometry were found in [183]. A 2+1 dimensional N = 1 background, deformed by

Nf smeared D5 branes was also found in [184]. The non-deformed solution are NS5-

branes wrapping a 3-sphere, and the deformation is induced by D5 branes. Backreaction

due to a D7 embedding into the Polchinski-Strassler geometry was calculated up to O(m2)

in [185, 186]. In [187] an unquenched Nf D5 background for a 3+1d N = 2 dual geometry

was obtained.
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0.2.3 Chiral Condensate and Holography

Chiral Theory and Sum Rules from Holography

The chiral Lagrangian was derived in [73] from AdS/QCD with quite satisfactory precision

in chiral perturbation theory parameters Li’s. In [188] it was obtained that the shear sum

rule for finite-temperature systems can be reproduced from duality in the case of theN = 4

background, but does not hold exactly in non-conformal backgrounds.

Wilson loop and gluon condensate are related via the following theorem

logW = −
∑

n

cnα
n
s −

π2

36
Z trG2s2, (52)

where s = πa2 is the surface area of the loop, Z−1 = β
β(1) , β is the beta-function, index (1)

points out to its one-loop piece. This relation was confirmed holographically in [189].

Vector dominance was established from holography on an extensive set of comprehen-

sive examples in [190] in a model close to Sakai – Sugimoto.

0.2.4 Condensates and Field Theory Resummations

The idea of relating condensates to somehow (e.g. Dyson-Schwinger) resummed field the-

ory has not so far been very popular. Apart from my present work, we can mention [191],

where it is claimed that the chiral condensate has been obtained at a finite chemical poten-

tial from the Dyson–Schwinger equations. Yet it should be noted that the authors of that

work solve only the quark equation, whereas the gluon propagator is not dynamical, but

substituted by an Ansatz, thus the significance of the result essentially decreases, since

it cannot reproduce the condensate in a model-independent way. A consistent scheme

of defining the chiral condensate from both the full coupled set of the Dyson-Schwinger

equations (the gluon and the quark propagators, the quark-gluon vertex) and the Bethe-

Salpeter equation for pion has been elaborated in [192].
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Chapter 1

Chiral Magnetic Effect in Soft-Wall

AdS/QCD

The essence of the chiral magnetic effect is the generation of an electric current along an

external magnetic field. Recently it has been studied by Rebhan et al. within the Sakai–

Sugimoto model, where it was shown to be zero. As an alternative, the chiral magnetic

effect is calculated by me in this Chapter in the soft-wall AdS/QCD and a non-zero result

is found with natural boundary conditions.

1.1 Introduction

The chiral magnetic effect [193, 6] is best described as a generation of an electric current by

a magnetic field in a topologically nontrivial background. The standard field-theoretical

argumentation is the following. Let us consider QCD with massless quarks, so that left

and right quarks can be dealt with independently, and suppose that a chiral chemical

potential µ5 is present, accounting for a certain topologically nontrivial background. The

topologically nontrivial field configuration will change chirality, and an external magnetic

field B = (0, 0, B) will order spins parallel to itself. Thus a non-zero vector current arises,

which is given by Fukushima, Kharzeev and Warringa [6]

JV3 =
µ5B

2π2
≡ JFKW . (1.1)

During recent years holography has become one of the main alternative tools for analyzing

of non-perturbative QCD. Different conductivities of quark matter, including chiral mag-

netic conductivity, have already been analyzed in a variety of holographic models. Electric

conductivity in the D3/D7 model was examined by Karch and O’Bannon in [194]. Ax-

ial, ohmic and Hall conductivity in a magnetic field were calculated on the basis of the

34
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Kubo formula and correlator analysis for the Sakai-Sugimoto model in [123, 195]. One of

the holographic results for the electric current in [123] is 1/2 of the QCD weak coupling

result (1.1).

An attempt to describe the chiral magnetic effect for the vector current in the Sakai-

Sugimoto model has been made recently in [117]. The result at zero frequency, where

only the Yang–Mills part of the action was used, exactly amounts to the weak coupling

QCD effect; non-zero frequencies have also been considered. In [116] a more sophisticated

anomaly subtraction scheme was suggested. It was argued that if one uses the Bardeen

term subtraction, then one gets a zero effect for the vector current, otherwise one gets 2/3

of the weak-coupling effect. The reason for adding the Bardeen term to the action was to

cure the pathological behavior of the vector anomaly.

The experimental status of the problem is discussed in [196]. Presently it is claimed

that the effect is present, yet the exact proportionality coefficient c in JV3 = c · µ5B

2π2
cannot

be inferred from it. Lattice estimates are also close to 2/3 [197] of the weak-coupling effect.

The discussion of the effect in the framework of NJL model can be found in [198].

The present Chapter aims at comparing the field theoretical result as well as the

derivation of [116] to the chiral magnetic effect as derived in the framework of soft-wall

AdS/QCD. The question whether the effect is present in a holographic model or not,

turns out to be quite delicate. The Chapter is organized as follows. In Section 1.2 I

consider the analysis of the gauge sector of the soft-wall model and confirm the result of

[116]. In Section 1.3 I discuss the contribution of scalars and pseudoscalars and focus on

their boundary conditions in the 5d equations of motion. The results of this Chapter are

summarized in Section 1.4.

1.2 The Soft-Wall Model

1.2.1 Gauge Part of the Action

Consider the gauge field sector of the soft-wall AdS/QCD model [13] taking into account

the Chern-Simons action
∫

A∧F ∧F . Let us begin with an action of Abelian fields L and
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R with a coupling g5 that has the following form:

S = SYM [L] + SYM [R] + SCS[L]− SCS[R] (1.2)

SYM [A] = − 1

8g25

∫

e−φF ∧ ∗F = − 1

8g25

∫

dz d4x e−φ
√
gFMNF

MN (1.3)

SCS[A] = −k ·Nc

24π2

∫

A ∧ F ∧ F − 1

2
A ∧ A ∧ A ∧ F +

1

10
A ∧ A ∧ A ∧ A ∧ A

= −k ·Nc

24π2

∫

dz d4x ǫMNPQRAMFNPFQR. (1.4)

Here k is an integer that scales the CS term and effectively the magnetic field. The

canonical normalization of the CS term is k = 1, but it will be kept for the sake of

generality. The metric tensor is the following:

ds2 = gMNdX
MdXN =

R2

z2
ηMNdX

MdXN =
R2

z2
(−dz2 + dxµdx

µ). (1.5)

In the Az = 0 gauge the YM action acquires the form

SYM [A] = − R

4g25

∫

dz d4x

{

e−φ

z
Aµ(2η

µν − ∂µ∂ν)Aν + Aµ∂z

(

e−φ

z
∂z

)

Aµ
}

+
R

4g25

∫

d4x
e−φ

z
Aµ∂zA

µ

∣

∣

∣

∣

z=∞

z=0

. (1.6)

From the YM part of the action one gets

δSYM [A]

δAµ
= − R

2g25

{

e−φ

z
(2ηµν − ∂µ∂ν)Aν + ∂z

(

e−φ

z
∂zA

µ

)}

. (1.7)

Varying the volume term of the action one obtains

δSCS[A]

δAµ
=
k ·Nc

2π2
ǫµνρσ ∂zAνFρσ. (1.8)

Taking into account
R

g25
=

Nc

12π2
, the equations of motion for the fields L and R are obtained

∂z

(

e−φ(z)

z
∂zL

µ

)

− 24kǫµνρσ ∂zLν∂ρLσ = 0, (1.9)

∂z

(

e−φ(z)

z
∂zR

µ

)

+ 24kǫµνρσ ∂zRν∂ρRσ = 0 (1.10)

with the following boundary conditions
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L0(0) = µL, R0(0) = µR, (1.11)

L3(0) = jL, R3(0) = jR, (1.12)

L1(0, x2) = −1

2
x2B, R1(0, x2) = −1

2
x2B, (1.13)

Lµ(∞) = Rµ(∞), ∂zLµ(∞) = −∂zRµ(∞), (1.14)

here µ =
1

2
(µL + µR), µ5 =

1

2
(µL − µR), and jL,R are the gauge field boundary values, a

variation with respect to which gives the currents

δS[L,R]

δL3(z = 0)
=

1

V4D

∂S[L,R]

∂jL
= JL, (1.15)

δS[L,R]

δR3(z = 0)
=

1

V4D

∂S[L,R]

∂jR
= JR. (1.16)

Conditions (1.14) arise, since both the left- and the right-handed gauge fields are associated

with a single gauge field in the Sakai–Sugimoto model [199, 200]. In that model regions

of positive and negative values of the holographic coordinate ρ = 1/z correspond to left-

handed D8 and right-handed D̄8 branes, respectively. Since the gauge field is smooth and

continuous at ρ = 0, a boundary condition (1.14) is obtained at z = 1/ρ = ∞.

Denoting β = 12kB one can get the following set of e.o.m.’s

∂z

(

e−φ(z)

z
∂zL0

)

= β∂zL3, ∂z

(

e−φ(z)

z
∂zL3

)

= β∂zL0, (1.17)

∂z

(

e−φ(z)

z
∂zR0

)

= −β∂zR3, ∂z

(

e−φ(z)

z
∂zR3

)

= −β∂zR0, (1.18)

∂z

(

e−φ(z)

z
∂zL1

)

= 0, ∂z

(

e−φ(z)

z
∂zR1

)

= 0. (1.19)

The solution is the following

L0(z) = µL +

(

µ5 −
1

2
j5

)

(

e−|β|w(z) − 1
)

, L3(z) =jL −
(

µ5 −
1

2
j5

)

(

e−|β|w(z) − 1
)

,

R0(z) = µR −
(

µ5 +
1

2
j5

)

(

e−|β|w(z) − 1
)

, R3(z) =jR −
(

µ5 +
1

2
j5

)

(

e−|β|w(z) − 1
)

,

R1(z, x2) = −1

2
x2B, L1(z, x2) = −1

2
x2B, (1.20)

here j = jL + jR, j5 = jL − jR, and w(z) =
z
∫

0

du u eφ(u),
e−φ(z)

z
w′(z) = 1.
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1.2.2 On-shell Action and Symmetry Currents

Let us now compute the on-shell action with the gauge fields given by (1.20) for both left-

and right-handed gauge fields. Its Yang–Mills part is given as

SYM [A] = −
∫

dz d4x
e−λz

2

z

R

8g25
ηABηMNFAMFBN

= − R

8g25

∫

dz d4x
e−λz

2

z

{

−2ηαβ∂zAα∂zAβ + ηαβηµνFαµFβν
}

= − R

4g25

B2

4
V4D

∫

dz
e−λz

2

z
(1.21)

The Chern–Simons part of the action is

SCS[A] =
k ·Nc

6π2

∫

dz d4x ǫµνρσ Aµ∂zAνFρσ

=
k ·Nc

3π2

∫

dz d4x (A0∂zA3 − A3∂zA0)F12. (1.22)

Recall that w(z) =
z
∫

0

du u eφ(u), w(0) = 0, w(∞) = ∞. Then the solutions (1.20) have the

following form

L0(z) = µ+
1

2
j5 +

(

µ5 −
1

2
j5

)

e−|β|w(z), L3(z) = µ5 +
1

2
j −

(

µ5 −
1

2
j5

)

e−|β|w(z),

R0(z) = µ+
1

2
j5 −

(

µ5 +
1

2
j5

)

e−|β|w(z), R3(z) = µ5 +
1

2
j −

(

µ5 +
1

2
j5

)

e−|β|w(z),

FL
12 =

1

2
B, FR

12 =
1

2
B. (1.23)

Upon substituting (1.23) into (1.22) the on-shell CS action becomes

SCS[L] =
k ·Nc

3π2

∫

dz d4x FL
12 (L0∂zL3 − L3∂zL0)

=
k ·Nc

6π2
BV4D

(

µµ5 + µ2
5 −

1

2
µj5 +

1

2
µ5j −

1

4
j25 −

1

4
jj5

)

, (1.24)

and

SCS[R] =
k ·Nc

3π2

∫

dz d4x FR
12 (R0∂zR3 −R3∂zR0)

=
k ·Nc

6π2
BV4D

(

µµ5 − µ2
5 +

1

2
µj5 −

1

2
µ5j +

1

4
j25 −

1

4
jj5

)

. (1.25)
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The symmetry currents JL,JR are equal to the partial derivatives of the action with

respect to jL, jR

JL =
1

V4D

∂S

∂jL
=

1

V4D

(

∂j

∂jL

∂S

∂j
+
∂j5
∂jL

∂S

∂j5

)

=
1

V4D

(

∂S

∂j
+
∂S

∂j5

)

, (1.26)

JR =
1

V4D

∂S

∂jR
=

1

V4D

(

∂j

∂jR

∂S

∂j
+
∂j5
∂jR

∂S

∂j5

)

=
1

V4D

(

∂S

∂j
− ∂S

∂j5

)

, (1.27)

J =
2

V4D

∂S

∂j
, J5 =

2

V4D

∂S

∂j5
. (1.28)

As can be seen from (1.21), the YM part of the action does not depend on the current

sources. The CS part, on the other hand, equals

SCS = SCS[L]− SCS[R] =
k ·Nc

6π2
BV4D

(

2µ2
5 −

1

2
j25 + µ5j − µj5

)

. (1.29)

From eqs. (1.28,1.29) one obtains

J =
k ·Nc

3π2
Bµ5, (1.30)

J5 = −k ·Nc

3π2
B(µ+ j5). (1.31)

If one sets k = 1, a standard normalization of the CS action (1.4) is recovered and the result

(1.30) is in agreement with [116] without the Bardeen counterterm. The axial supercurrent

introduced in [116] is an equivalent of my j5. If it is interpreted as a source for the axial

current it has to be set to zero. Minimizing the action with respect to it is analogous to

setting the axial current (1.31) to zero. It is interesting that the answer does not depend

on j, which probably justifies its absence in [116].

1.2.3 The Divergence of the Vector Current

In this section a general formula for the left and right symmetry currents JL,R will be

derived. An approach to calculating currents different yet equivalent to the one of the

previous section will be used here. The current definition is the following (for the current

JL,R ≡ J 3
L,R it is the same as in (1.28)):

J µ
L (x) =

δS

δLµ(z = 0, x)
, J µ

R (x) =
δS

δRµ(z = 0, x)
. (1.32)

The variation of the action δS = δSYM+δSCS can be split into two parts – one proportional

to the equations of motion and one reducible to a surface term

δSYM [A] = δSvolY M [A]− R

2g25

∫

d4x
e−φ(z)

z
∂zA

µδAµ

∣

∣

∣

∣

z=0

, (1.33)

δSCS[A] = δSvolCS[A] +
k ·Nc

6π2

∫

d4x ǫµνρσAνFρσδAµ

∣

∣

∣

∣

z=0

. (1.34)
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The 5D parts are equal to zero on-shell, so that one gets

J µ
L (x) = − R

2g25

e−φ(z)

z
∂zL

µ +
k ·Nc

6π2
ǫµνρσ LνF

L
ρσ, (1.35)

J µ
R (x) = − R

2g25

e−φ(z)

z
∂zR

µ − k ·Nc

6π2
ǫµνρσ RνF

R
ρσ. (1.36)

Recalling that
R

g25
=

Nc

12π2
and Vµ = Lµ + Rµ the following expression for the divergence

of the vector current is obtained

∂µJ µ = ∂µ(J µ
L + J µ

R ) = − Nc

24π2

e−φ(z)

z
∂z∂µV

µ +
k ·Nc

6π2
ǫµνρσ (∂µLνF

L
ρσ − ∂µRνF

R
ρσ)

= − Nc

24π2

e−φ(z)

z
∂z∂µV

µ +
k ·Nc

3π2
ǫµνρσ ∂µVν∂ρAσ. (1.37)

To express the divergence of the vector field Vµ another equation of motion generated by
δS

δAz
will be needed

δSYM [A]

δAz
=

R

2g25

e−φ(z)

z
∂z∂µA

µ =
Nc

24π2

e−φ(z)

z
∂z∂µA

µ,

δSCS[A]

δAz
= − kNc

24π2

δ

δAz

∫

d4x dz ǫµνρσ(AzFµνFρσ − 4AµFzνFρσ) =

= −kNc

2π2
ǫµνρσ ∂µAν∂ρAσ. (1.38)

The corresponding e.o.m.’s assume the form:

e−φ(z)

z
∂z∂µL

µ = 12kǫµνρσ ∂µLν∂ρLσ,
e−φ(z)

z
∂z∂µR

µ = 12kǫµνρσ ∂µRν∂ρRσ,

e−φ(z)

z
∂z∂µV

µ = 12kǫµνρσ ∂µVν∂ρAσ. (1.39)

Thus the divergence in (1.37) equals:

∂µJ µ = −kNc

6π2
ǫµνρσ ∂µVν∂ρAσ. (1.40)

1.2.4 The Bardeen Counterterm

The Bardeen counterterm has a dimensionless prefactor c that is determined from the

following condition

∂µJ µ
subtracted = ∂µJ µ + ∂µJ µ

Bardeen = 0, (1.41)

where the counterterm has the form

SBardeen = c

∫

d4xǫµνρσLµRν(F
L
ρσ + FR

ρσ). (1.42)
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It may be interpreted as a surface counterterm in the spirit of the holographic renormal-

ization. In our case

SBardeen = −2c

∫

d4x(L0R3 − L3R0)∂2V1

∣

∣

∣

∣

z=0

= 2cBV4D (L0R3 − L3R0)|z=0 =

= 2cBV4D(µLjR − µRjL) = 2cBV4D(µ5j − µj5), (1.43)

hence

JBardeen = 4cBµ5, JBardeen 5 = −4cBµ. (1.44)

The general expression for the currents is the following:

δSBardeen =

∫

d4x (J µ
Bardeen L δLµ + J µ

Bardeen R δRµ, ) ,

J µ
Bardeen L = 2cǫµνρσ (Rν∂ρRσ + 2Rν∂ρLσ + Lσ∂ρRν) ,

J µ
Bardeen R = −2cǫµνρσ (Lν∂ρLσ + 2Lν∂ρRσ +Rσ∂ρLν) ,

J µ
Bardeen = 2cǫµνρσ (Rν∂ρRσ − Lν∂ρLσ − 3Lν∂ρRσ + 3Rν∂ρLσ) . (1.45)

The divergence of the Bardeen current equals:

∂µJ µ
Bardeen = −2cǫµνρσ∂µVν∂ρAσ. (1.46)

Based on (1.40, 1.41, 1.46) one gets

c = − kNc

12π2
. (1.47)

As a result, the subtracted current turns out to be zero (1.30, 1.44, 1.47):

Jsubtracted = J +JBardeen =
kNc

3π2
Bµ5 +4cBµ5 =

kNc

3π2
Bµ5 +4

(

− kNc

12π2

)

Bµ5 = 0. (1.48)

1.3 Scalars and Pseudoscalars

1.3.1 Kinetic Term and Potential

Let us consider now the scalar–pseudoscalar sector, which was first omitted from our

considerations. The bilinear part is

SX =

∫

d4xdz e−φ R3

[

1

z3
(DµX)†DµX +

3

z5
|X|2

]

, (1.49)

where Dµ = ∂µX − iLµX + iXRµ; field X is related to pion field via

X = exp

(

i
πata

fπ

)

1

2
v(z). (1.50)
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What is crucial for our case is that there is a scalar interaction with gauge fields. It can be

thought of in two different ways. If one works in Az = 0 gauge (both Lz = 0 and Rz = 0),

than the pion is identified with the phase of the field X as in (1.50), and the interaction

term is

SXAA =
Nc

24π2
tr

∫

d4xdz ∂µVν∂λVρ
∂απ

fπ
ǫµνλρα. (1.51)

If, however, one does not impose this gauge, then the holonomy of the axial field
∫

Azdz is

itself the pion field, and the term (1.51) arises directly from Chern–Simons. Note there is

no double-counting here: when dealing with Chern-Simons solely (as was the case in the

Sakai-Sugimoto model of [116]), Az can always be set to zero. This is impossible without

inducing a phase of X in the true AdS/QCD model by Erlich–Katz–Son–Stephanov [13]

which is used here. Thus the phase is properly absent in [116], and should be present in

our model.

Taking the action (1.51) and differentiating it over Fz3, one gets the following contri-

bution to the current

JXAA =
Nc

2π2

1

3
B
∂0π(x)

fπ
. (1.52)

Special care concerns the boundary conditions. I argue that the linear in time “rotating”

boundary conditions are appropriate. Let us remind the PCAC relation connecting the

axial current and the pion field

Ψ̄γνγ5Ψ ⇔ fπ∂νπ, (1.53)

which implies that one adds the following term in the pion Lagrangian

µ5fπ∂0π. (1.54)

This term changes the pion canonical momentum and the condition of the vanishing of

the canonical momentum yields the rotating boundary condition

P = ∂0π + µ5fπ = 0. (1.55)

Collecting all the terms one gets

Jfull, subtracted = J + JBardeen + JXAA = 1
3
JFKW ,

Jfull, nonsubtracted = J + JXAA = JFKW .
(1.56)

1.3.2 Chern-Simons Action with Scalars

The result of the previous section can be justified from a somewhat different point of view.

Let us once more consider the Chern–Simons action
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SCS =
−kNc

24π2

(∫

L ∧ dL ∧ dL−
∫

R ∧ dR ∧ dR
)

. (1.57)

Its gauge transformation (L→ L+ dαL, R → R+ dαR) is proportional to a surface term

SCS → SCS +
−kNc

24π2

(∫

dαL ∧ dL ∧ dL−
∫

dαR ∧ dR ∧ dR
)

. (1.58)

While in the standard field theory this is satisfactory, in my particular consideration this

boundary term is nonzero and the gauge invariance is violated. When the component Az

is gauged out, one has to introduce in some other way the pion back into the Chern–

Simons action. One may proceed in the following way. An explicitly gauge invariant

Chern–Simons term is defined as

S̄CS =
−kNc

24π2

(∫

(L+ dφL) ∧ dL ∧ dL−
∫

(R + dφR) ∧ dR ∧ dR
)

, (1.59)

where φL,R are scalar fields that transform so as to keep the combinations within the

brackets invariant, φL,R → φL,R − αL,R. This means that the combination fπ (φR − φL)

may be associated with the five-dimensional pion in the gauge in which Az is set to zero.

As in the previous section, arguments can be made in favor of setting the scalar fields

proportional to the chemical potentials on the ultraviolet holographic boundary at z = 0

φL,R|z=0 = −1

2
µL,R · t. (1.60)

To clarify the infrared behavior (z → ∞) of the scalars, let us turn once more to the

Sakai–Sugimoto model [199, 200], in which the infrared region is the area where the D8

and D̄8 branes connect. There the Chern–Simons action is a single integral over both D8

and D̄8 branes

SCS ∼
∫

A ∧ dA ∧ dA, (1.61)

where the holographic coordinate ρ = 1/z runs from −∞ (right D̄8 brane) to ∞ (left D8

brane) and the gauge field A is associated with the left-handed field L of the Erlich–Katz–

Son–Stephanov model at ρ > 0 and with the right-handed field R at ρ < 0.

I might undertake a similar procedure of making this action explicitly gauge invariant

by adding a single scalar φ

S̄CS ∼
∫

(A+ dφ) ∧ dA ∧ dA, (1.62)

and this scalar field will be analogous to φL (φR) for positive (negative) values of ρ.
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Now, since the field φ is smooth and continuous at ρ = 0 a boundary condition is

obtained for the φL,R fields in my setup

for all xµ φL|z=∞ = φR|z=∞ . (1.63)

It is quite analogous to the condition (1.14). In what follows it will be assumed that the

gauge fields are adiabatically tuned out in the temporal positive and negative infinities.

Let us simplify the modification of the Chern–Simons action SφAA = S̄CS − SCS which

happens to be a surface term

SφAA =
−kNc

24π2

(∫

dφL ∧ dL ∧ dL−
∫

dφR ∧ dR ∧ dR
)

=
kNc

6π2
B

(∫

dz d4x ∂tφL∂zL3 −
∫

dz d4x ∂tφR∂zR3

)

. (1.64)

If the surface terms that arise at temporal infinities ∼
∫

dz d3x{L,R}3∂zφL,R
∣

∣

t=+∞
t=−∞ are

neglected, the following is obtained

SφAA =
kNc

6π2
B

[

− (jL∂tφL − jR∂tφR)

∣

∣

∣

∣

z=0

+

(

µ5 +
1

2
jL +

1

2
jR

)

(∂tφL − ∂tφR)

∣

∣

∣

∣

z=∞

]

. (1.65)

Due to the boundary condition (1.63), the second term vanishes and another contribution

to the current is found

JφAA =
kNc

6π2
Bµ5. (1.66)

The total current now equals

Jfull, subtracted = J + JBardeen + JφAA =
1

3

kNc

2π2
Bµ5, (1.67)

Jfull, nonsubtracted = J + JφAA =
kNc

2π2
Bµ5. (1.68)

Here is a summary of all the contributions to the chiral magnetic effect (1.28,1.44, 1.45,-

1.48,1.66, 1.68,1.67).
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Term in Yang–Mills Chern–Simons Bardeen Scalars

the action bulk boundary bulk boundary counterterm in CS

Contribution −1

3

Nc

2π2
Bµ5

1

3

Nc

2π2
Bµ5

1

3

Nc

2π2
Bµ5

1

3

Nc

2π2
Bµ5 −2

3

Nc

2π2
Bµ5

1

3

Nc

2π2
Bµ5

to the current

Action taken Total Total without scalars

into account subtracted nonsubtracted subtracted nonsubtracted

Resulting current,

in terms of
Nc

2π2
Bµ5

1

3
1 0

2

3

1.4 Summary

In this Chapter the holographic derivation of the chiral magnetic effect has been revisited

in the soft-wall AdS/QCD model. Unlike the estimate via the Sakai-Sugimoto model [116],

in the soft-wall model the effect is present under reasonable boundary conditions. Let us

stress here that in no way do I argue against the result by Rebhan et al. [116]; on the

contrary, I confirm it independently; the difference between my model and theirs is the

presence of an additional contribution from the scalar part of the action. Putting it loosely,

scalars act as “catalysts” for the effect, the value of which is determined however not by

those, but by the Chern–Simons term. Thus the effect is still topological in its nature, as

it is within the standard paradigm; though triggered by scalars, it is a robust prediction

in the sense of its independence on the Lagrangian of the scalars. Notice that the effect is

trivially absent in the D3/D7 model due to the different form of the Chern-Simons term.

Some comments are due about other recent attempts to obtain the chiral magnetic

effect in a consistent way. Rubakov’s paper [201] deals with the proper introduction of

the chiral chemical potential in the theory under consideration. It was argued that µ5 has

to be coupled to the conserved chiral current, that is the initial fermionic current has to

be modified by the anomalous contribution; in order to compare this argument with our

approach note that our additional contribution involving the scalar does the same job.

Indeed, I have argued that vanishing of the canonical momentum of the scalar implies

that the scalar field has a constant time gradient proportional to µ5. Substituting this

expression for the gradient of the scalar into my additional CS term, I get the expression
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for the conserved current discussed in [201].

In another paper [115] it has been argued that a nontrivial contribution to the holo-

graphic CME in the Lagrangian without scalars comes from the singular gauge configura-

tions at the horizon. This statement is still to be clarified. Comparing this point to my

approach with the scalar field, I can assume that the nontrivial effect due to this field may

somehow be related with the singular solutions in [115] and could influence the choice of

the gauge. This point certainly needs further clarification.

It is well-known from the study of the triangle diagram that there is an ambiguity in

the regularization which allows to obtain either conserved vector or axial currents. In the

standard situation demanding the conserved vector current, I get the anomaly in the axial

current. In the study of the chiral magnetic effect I can assume that the axial current is

conserved instead of introducing the chiral chemical potential. It is this unusual viewpoint

that amounts to the discussion on the role of the Bardeen counterterm.

In my model I focus on the scalar Goldstone-Wilczek contribution to the vector current,

which is familiar in the chiral theory. This GW contribution has been overlooked in the

previous papers on this issue. For generality I have presented the different answers which

correspond to different ways to account for the Bardeen counterterm.

Rubakov calculates the value of current for a differently defined chemical potential.

Namely, his “axial chemical potential” is related to a conserved chiral charge, whereas

ours is not. The difference manifests itself in whether we include the Bardeen counterterm

into the calculation – it should be taken into account if I treat the axial chemical potential

as a temporal component of a gauge field.

On the other hand, if the Bardeen counterterm is left out, our result may be com-

pared with Rubakov’s. In that case the present result agrees with both the weak-coupling

and with Rubakov’s results. Furthermore, the scalar field contribution in my calculation

corresponds to the anomalous term in the conserved chiral charge according to Rubakov.

The said ambiguity is that between a choice of different models, not within our model

itself; the coefficients in the action of both our and Rubakov’s model are topologically

fixed.

My calculations allow to extract an expression for the axial current J5 = −1
3
Ncµ
2π2B

(with

the Bardeen counterterm left out) which is different from one in the paper by Metlitski

and Zhitnitsky [202]. This is not surprising, since in their paper they consider the regu-

larization corresponding to the conserved vector current, which is necessary to introduce

the standard, not the chiral chemical potential.



Chapter 2

Low-Energy Theorems in Holography

2.1 Introduction

The purpose of this Chapter is to compare holography to field theory by considering a

set of statements, known as low-energy theorems, about one- and two-point functions of

a strongly coupled gauge theory on both sides of the correspondence. I report nice non-

trivial agreement in two important cases: the dilatation Ward identities and the decoupling

theorem. Apart from demonstrating validity of low-energy theorems, a particular result of

our analysis is a statement on the IR universality of theories dual to various backgrounds

with scale.

Firstly, I want to see explicitly the realization of the QCD dilatation Ward indenti-

ties [203]:
∫

d4x〈T (x)O(0)〉 = −dim(O)〈O〉, (2.1)

where T ≡ T µµ is the energy-momentum trace on the boundary. This is trivially ful-

filled in the conformal metric dual to the trivial vacuum (for an explicitly written down

correlator of energy-momentum components see e.g. [204]); one cannot expect anything

else on the r.h.s. other than 0, since there are no condensates in the theory. Thus for

a nontrivial test one needs a background different from the AdS in the IR by having a

gluon condensate. I use the self-dual background [205] in this part of our work. This

check is a necessary prerequisite to testing the typical AdS/QCD models with scale on

validity of low-energy theorems. To perform the test of dilatation Ward identities, I cal-

culate the two-point correlators: 〈trG2(x) trG2(0)〉, 〈trG2(x) trGG̃(0)〉, 〈T (x) trG2(0)〉,
〈T (x) trGG̃(0)〉, 〈Tµν(x)Tαβ(0)〉.

The analysis of correlators is easily extended to non-zero frequency, which opens us

a way to constructing useful quantities, first of all, η/s via 〈TxyTxy〉 [206, 207, 208, 209].

47
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Here our main result after holographic renormalization is the predictable absence of q-

corrections to η
s
(q, ω) |T→0 = 1

4π
. Our analysis of correlators allows us to extract meson

transport coefficients in a self-dual background with temperature.

Secondly, I check the relationship between two-point and one point functions in gauge

theory with fermions, known as decoupling relation 〈trαs

π
G2〉 = −12m〈ψψ〉. Fermions are

introduced into the system via the D3/D7 model. Again, a non-trivial check is possible

only for an IR-non-trivial metric; I use three different backgrounds with gluon condensate

in this part of the work; remarkable universality and agreement with the standard field

theory is observed.

2.2 Normalization of Operators

Definition of the Model. In the Einstein frame the bulk IIB action is [205]

S10 =
1

g2s(2π)
7α′4

∫

d10x
√
g10

(

R− 1

2
(∂µφ)

2 − 1

2
e2φ(∂µC)

2 − 1

2
|F5|2

)

, (2.2)

where R is the curvature, φ is the dilaton, F5 is the 5-form, C is the axion.

Introduction of fermions. I follow what is known as the Karch-Katz model in different

backgrounds, in the quenched approximation Nf ≪ Nc. One can write down the Dirac–

Born–Infeld action for the D7 brane embedding in the Einstein frame

SD7 =
1

(2π)7α′4

∫

d8ξ eφ
√

det
αβ

(∂αXµ∂βXνgµν +Bαβ). (2.3)

I keep here an external Kalb-Ramond field, which will later turn out to be useful to study

the properties of the quark condensate with regard to an Abelian background in this

theory. The embedding of D7 is made as shown in the following table:

AdS5 × S5 0 1 2 3 4 5 6 7 8 9

D7 + + + + + + + + − −
. (2.4)

One can get an image of the corresponding physics in Fig. (7), where the string modes

generating specific sectors of the spectrum are shown. I look for the embeddings of the

form

X9 = w(ρ), X8 = 0, (2.5)

where the embedding function w, worldsheet coordinates ξi and targetspace coordinates

r, ρ are related as

w2(ρ) = r2 − ρ2,

ρ =
√

ξ25 + ξ26 + ξ27 + ξ28 .
(2.6)



Chapter 2. Low-Energy Theorems in Holography 49

5 10 15 20

1.8

1.9

2.1

2.2

5 10 15 20

2.05

2.1

2.15

2.2

2.25

2.3

5 10 15 20

1.55

1.6

1.65

1.7

1.75

(a) Constable-Myers (b) Gubser-Kehagias-Sfetsos
(c) Liu-Tseytlin

Figure 2.1: Embeddings of the spectator D7 brane into Constable–Myers, Gubser and

Liu-Tseytlin backgrounds.

Liu–Tseytlin background. The holography description of gauge theories has originally

been formulated for N = 4 SYM dual to strings on AdS5 × S5 [7]. Various attempts have

been made to generalize it to backgrounds corresponding to non-vacuum states of N = 4

SYM or to non-conformal and non-supersymmetric theories.

Among the generalized backgrounds for holography, those possessing self-duality are

of special interest. Namely, by virtue of self-duality, they are still supersymmetric and

thus still correspond to the same theory on the boundary. However, they can possess

scale parameters which make them closer to real-world physics. The archetypal example

of such a background is the Liu–Tseytlin background [205]. It has a scale – the scale of the

gluon condensate, yet it remains supersymmetric since the metric is self-dual; the latter

self-duality is provided by the presence of a non-trivial axion field. Despite the presence of

the scale, it is conformal (in the UV); in the IR the dilaton singularity is determined by the

condensate. This is not bad for mimicking some features of QCD gluodynamics: there is

UV asymptotic freedom, and the IR is (at least partially) driven by condensate. Physically

this background is understood as a “smeared” D(−1) brane (i.e. instanton distribution

with constant density) with a usual stack of D3-branes. Since the D(−1) brane is an

instanton in 10D, the resulting 4d theory can be considered as having an instanton-gas

type of vacuum, which is advantageous for QCD purposes. Moreover, this background is

confining (in the sense of a Wilson loop linear behaviour at large temporal separation),

and the string tension is proportional to the condensate. Of course, I do not claim to

produce any real QCD results in this framework, but it is generally believed to be a very

useful toy model.

For the Liu–Tseytlin background [205] the metric in the Einstein frame looks like the
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standard conformal solution

ds2 = g0µνdx
µdxν = R2

(

dxµ2√
h3

+
√

h3
dz2 + z2dΩ2

5

z4

)

, (2.7)

but the dilaton is modified by the smeared instanton (nonzero density of D(−1))

eφ = h−1, (2.8)

and the axion is present

C0 =
1

h−1

− 1; (2.9)

the D3 and D(−1) form-factors are:

h3 = z4, (2.10)

and

h−1 = 1 + qz4. (2.11)

The parameter q is the crucial quantity for us, since it measures the degree of IR-non-

conformality of the theory (remember that in the UV, the theory is conformal and its

β-function is zero).

Here I employ the Liu-Tseytlin background to test dilatation Ward identities in Section

2.3.1, and to test decoupling the relation on it in Section 2.3.2.

Constable – Myers background. The Constable – Myers background in the Einstein

frame has the metric

ds2 =

(

b4+r4

r4−b4

) 1
8b4

√
h3

dx2µ +
(r4 − b4)

(

b4+r4

r4−b4

) 1
4(2−

1
2b4

)
√

(

b4+r4

r4−b4
)

1
2b4 − 1

r4
(

dr2 + r2dΩ2
5

)

, (2.12)

where

h3 =

(

b4 + r4

r4 − b4

)
1

2b4

− 1, (2.13)

and the dilaton is

eφ =

(

b4 + r4

r4 − b4

)
1
2

√

10− 1
4b8

, (2.14)

the axion is zero, and F5 = ǫ5
1
h3
, where ǫ5 is the unitary antisymmetric tensor in the S5

directions.
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Gubser–Kehagias–Sfetsos. One of the first non-conformal backgrounds, introduced

into AdS/CFT, was that by Gubser [153]:

ds2 =
4

√

1− b8

r8
r2dx2µ +

1

r2
(

dr2 + r2dΩ2
5

)

, (2.15)

the dilaton in this background is

eφ =

(

r4

b4
+ 1

r4

b4
− 1

)

√
3
2

, (2.16)

and the axion is zero. Originally it was intended to explain confinement, yet it came also

useful for the gluon condensate introduction. Shortly before Gubser the background was

obtained by Kehagias and Sfetsos [154] in a less convenient parametrization.

Recipes of AdS/CFT. I consider now the general rules for two-point functions. What

is calculated is the matrix of correlators

Mij = 〈OiOj〉|(p) =
δ2Sfull

δΦ̄i(p)δΦ̄j(−p)
. (2.17)

The standard wisdom on finding a Green function means setting an action of the type

Sbulk =

∫

d4xdzφ′2gzz
√
g (2.18)

out onto the boundary as

Sboundary =

∫

d4xφφ′gzz
√
g|z→0 (2.19)

and calculating a correlator in terms of bulk-to-boundary Green functions G(x, z) of a

field φ as

〈O(x)O(0)〉 = G(x, z)∂zG(0, z)|z=0. (2.20)

In our case two additional difficulties arise. First, the correct boundary term should be

supplemented by the Gibbons–Hawking term [204], which makes a theory defined on a

manifold with boundary being globally diffeomorphism-invariant. Second, the bilinear

action of fields’ fluctuations is non-diagonal, this means that I shall be dealing with a

matrix of Green functions rather than with separately-treatable ones.

Let us define the Green function matrix. Namely, if the field Φi has a bulk solution

Φi(z), satisfying z
δiΦi(z)|z→0 = Φ̄i, then by definition

Kij(z) =
δΦj(z)

δΦ̄i

. (2.21)
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Let us establish the correct boundary term. The full action of our bulk theory is actu-

ally [204]

Sfull = S10d + Sdiv + S4d (2.22)

where the Gibbons–Hawking term

S4d = −2∂z

∫

d4x
√−g4 − c

∫

d4x
√−g4, (2.23)

here

g4 = det(gij), i = 0, 1, 2, 3. (2.24)

The constant c can be fixed arbitrarily to our convenience, e.g. as in eq. (4.15) in [204].

The other piece which one has to take into account is the full divergence term Sdiv, which

does not affect the equations of motion, but does change the appearance of the action

and makes it diagonal in terms of physical degrees of freedom of the graviton. It is the

well-known fluctuation term

Sdiv =
3

2
∂µW

µ, (2.25)

the vector W µ is (see [210], Vol.II, §96)

W µ =
√−g

(

gαβδΓµαβ − gαµδΓβαβ

)

, (2.26)

where δΓµαβ = Γµαβ(g + h)− Γµαβ(g). Consider now the second variation of these actions in

fluctuation fields; denote these second-order expressions as S
(2)
10d, S

(2)
div, S

(2)
4d , respectively;

they contain both fields and their derivatives. The two-point correlator is then

〈OiOj〉 = Kik
∂2L

∂Φ′
k∂Φ

′
m

∂zKjm +Kik
∂2S

(2)
4d

∂Φk∂Φ′
m

∂zKjm +Kik
∂2S

(2)
4d

∂Φk∂Φm

Kjm, (2.27)

here L is the Lagrangian density of the bulk action:

Sbulk = S
(2)
10d + S

(2)
div =

∫

dz L. (2.28)

The above structure is obvious from the following reasons. Consider the bulk action

δ2Sbulk =
δΦm(z)

δΦ̄j

δ2Sbulk
δΦmδΦk

δΦk(z)

δΦ̄i

, (2.29)

where

δ2Sbulk
δΦmδΦk

=

∫

dz

[

∂2L

∂Φ′
m∂Φ

′
k

∂zδΦm∂zδΦk +
∂2L

∂Φm∂Φ′
k

δΦm∂zδΦk +
∂2L

∂Φm∂Φk

δΦmδΦk

]

.

(2.30)
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Taking into account that Green functions of field fluctuations by definition satisfy equa-

tions:

[

−∂z
∂2L

∂Φ′
m∂Φ

′
k

∂z +
∂2L

∂Φm∂Φ′
k

∂z +
∂2L

∂Φm∂Φk

]

δΦk(z) = 0, (2.31)

one sees that the only contribution of Sbulk into the correlator will be, after taking off the

derivative and integration, the term:

δ2Sbulk = δΦm(z)
∂2L

∂Φ′
m∂Φ

′
k

∂zδΦk(z). (2.32)

Now remembering the definition of the Green function matrix

Kmj =
δΦm(z)

δΦ̄j

, (2.33)

one arrives exactly at (2.27). Then there is a purely boundary term (Hawking-Gibbons

term). It does not require the above procedure, since it already sits on 4d. Then it

contributes the following:

δ2S4d =
∂2S4d

∂Φ′
m∂Φk

∂zδΦmδΦk +
∂2S4d

∂Φm∂Φk

δΦmδΦk. (2.34)

The action S4d contains no more than one derivative term, which is due to normal differ-

entiating of extrinsic curvature, thus ∂2L
∂Φ′2 = 0. This contributes the other two terms into

the correlator (2.27).

Normalization of Gluon Field Strength. Firstly consider the dilaton field. Accord-

ing to the AdS/CFT dictionary it is stated that the fluctuation δφ(z,Q) of the dilaton

field

φ(z,Q) = φ0(z) + δφ(z,Q) (2.35)

is dual to the operator Oφ, proportional to the QCD scalar gluonic operator tr(G2) ≡ 1
λφ
Oφ.

I can fix the normalization constant λφ by comparing the two-point functions

〈OφOφ〉 = λ2φ〈tr(G2) tr(G2)〉. (2.36)

At large momenta the leading behavior of the gluonic correlator in QCD is [211]:

〈tr(G2)(Q) tr(G2)(−Q)〉 = N2
c − 1

4π2
Q4 ln(Q2ǫ2). (2.37)

To obtain a two-point function from holography, I take the second variation of the action

computed on a classical solution. In the vicinity of the boundary of AdS5 (at large r) the

action for the fluctuation is:
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S5 =
π3R8

g2s(2π)
7α′4

∫

d4xdz
1

z3
1

2

[

−(∂zδφ)
2 − ∂µδφ∂

µδφ+ 2eφ0δφ(∂zC)
2
]

. (2.38)

Here coordinates have been changed z = R2

r2
, so that r2 = ρ2 and π3 is the volume of the S5

sphere, R8 came from the determinant of the metric (
√
g = R10

z5
). The last term containing

the profile of the axion field is negligible at the boundary (small z) because ∂zC(z) ∼ z3.

The bulk-to-boundary propagator of φ(z,Q) can be found at small z and large Q2. It is

ϕ(z,Q) =
Q2z2

2
K2(Qz), ϕ(0, Q) = 1, (2.39)

where Ki is the McDonald function. Now the second variation of the action can be

computed. It is

〈OφOφ〉 =
δ2Scl
δφ0δφ0

=
π3R8

g2s(2π)
7α′4

1

2
ϕ(z,Q)

∂zϕ(z,Q)

z3

∣

∣

∣

∣

z=ǫ

=
N2
c

4(2π)2
1

8
Q4 ln(Q2ǫ2), (2.40)

where the definition R4 = 4πgsα
′2Nc was used together with the asymptotics of the Bessel

function of the second kind. Comparing this result with the expression of QCD one finds

Oφ =
1

4
√
2
tr(G2). (2.41)

To establish a relation between gluon condensate and the expansion coefficient of the

dilaton field, the vacuum expectation value of Oφ is computed at zero momentum taking

the first variation of the action with respect to the boundary value of the field φ0. At zero

momentum near the boundary the dilaton field behaves as

φ(z) = φ0 + φ4z
4. (2.42)

One finds

〈Oφ〉 =
δScl
δφ0

=
π3R8

g2s(2π)
7α′4

1

2
ϕ(z,Q)

∂zφ(z,Q)

z3

∣

∣

∣

∣

z=ǫ

=
N2
c

4(2π)2
4φ4. (2.43)

After all, the expression for the gluon condensate is obtained

〈tr(G2)〉 = 4
√
2Oφ = N2

c

4
√
2

(2π)2
φ4. (2.44)

Normalization of “Quark” Operators. Next, following the same steps I explore the

scalar field w dual to the diquark operator q̄q. It is described by the action of the D7

brane, for which w is the embedding coordinate. In the Einstein frame the action is [212]
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S8 = − 1

gs(2π)7α′4

∫

d8ξeφ
√

det(∂aXµ∂bXνg
(10)
µν ). (2.45)

For the fluctuations of the scalar field w it gives

S5 = − 2π2R4

gs(2π)7α′4

∫

d4xdzeφ
[

1

2z
(∂zw)

2 +
1

2z
∂µw∂

µw

]

. (2.46)

Here 2π2 is a volume of a 3-sphere and R4 comes again from the determinant of the metric
√

g(8) = R6

z3
. In the limit of large momenta near the boundary the bulk-to-boundary

propagator is

w̃(z,Q) = Qz K1(Qz), ω̃(0, Q) = 1. (2.47)

The scalar field is dual to the operator Ow, which is proportional to q̄q = 1
λw
Ow. The

two-point function of Ow is computed to fix this proportionality

〈OwOw〉 =
δ2S8cl

δw0δw0

=
2π2R4

gs(2π)7α′4 e
φ1

2
w̃(z,Q)

∂zw̃(z,Q)

z
|z=ǫ =

=
Nc

2(2π)4α′2
1

2
Q2 ln(Q2ǫ2)|z=ǫ.

(2.48)

Here the fact is used that eφ|boundary = 1 and again R4 = 4πgsα
′2Nc. This result is

compared with the QCD calculation (see eq. 4.27 in [16]),

〈q̄q(Q) q̄q(−Q)〉 = Nc

16π2
Q2 ln(Q2ǫ2), (2.49)

and it found that

Ow =
1

2πα′ q̄q. (2.50)

At this stage the boundary value of the field w0 = w|z=0 can be identified. It is the source

of Ow = λw(q̄q), so it is proportional to the quark mass w0 =
1
λw
M . Thus one can state

M =
1

2πα′w0. (2.51)

To identify the quark condensate 〈q̄q〉, the expectation value of Ow is computed at Q = 0.

In this limit near the boundary the field is expressed as

w(z) = w0 + w2z
2. (2.52)

The result is

〈Ow〉 =
δS8cl

δw0

=
2π2R4

gs(2π)7α′4 e
φ 1

2
w̃(z,Q)

∂zw(z,Q)

z

∣

∣

∣

∣

z=ǫ

=
Nc

2(2π)4α′22w2. (2.53)
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The following normalization for the quark condensate is found

〈q̄q〉 = 1

λw
〈Ow〉 =

Nc

(2πα′)3
w2. (2.54)

2.3 Low-Energy Theorems

2.3.1 Dilatation Ward Identities in a Self-Dual Background

Correlators at Zero Frequency

The infinitesimal fluctuations of the fields on the bulk couple to the operators trG2, trGG̃,

Tµν in the boundary theory. The latter is thought to be N = 4 SYM, whose gauge field

part of the action is normalized here as

S4d =
1

2g2YM

∫

d4x

(

trG2 − iθ

16π2
trGG̃

)

, (2.55)

with non-trivial condensates switched on:

〈trG2〉 = 〈trGG̃〉 = Nc
q

π2
. (2.56)

Fluctuation terms are defined as

φ = φc + ϕ,

C = C0 + ξ,

g = g0µν + hµν .

(2.57)

The following interaction term is considered to provide a correspondence with the bound-

ary theory:

Sint =

∫

d4x

[

1

2
Tµν h̄

µν − e−φc
(

ϕ̄ trG2 + ξ̄ trGG̃
)

]

, (2.58)

which, after introduction of useful self-dual and anti-self-dual components

G± =
G± G̃

2
(2.59)

and splitting axion and dilaton fluctuations into a new couple of variables

η± = η ± ξ, (2.60)

becomes

Sint =

∫

d4x

[

1

2
Tµν h̄

µν − e−φc
(

η̄+ trG+2 + η̄− trG−2
)

]

. (2.61)
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Here bars denote four-dimensional sources, which are proportional to boundary values of

five-dimensional fields:

h̄µν = z2hµν |z=0, η̄
± = η±|z=0, ϕ̄ = ϕ|z=0. (2.62)

Fluctuations of F5 are fully determined by hµµ, thus there is no independent source for

them.

Let us choose the gauge h5µ = 0, kµhµν = 0, uµhµν = 0, where the wave-vector

k = (ω, 0, 0, k), the constant vector u is u = (1, 0, 0, 0). I work with five fields:

Φ̄i = (η+, h̄11 + h̄22, h̄11 − h̄22, h̄12, η
−), (2.63)

i = 1, . . . 5, each coupled to the corresponding Oi operator
1

Oi =

(

1

g2s
trG+2,

1

8
T µµ ,

3

8
T11 −

1

8
T22 −

1

8
T33 −

1

8
T00, Txy,

1

g2s
trG−2

)

(2.64)

via

Sint =

∫

d4xdz
5
∑

i=1

OiΦi. (2.65)

The correctly defined double-derivative piece of the fluctuation action in the bulk is

S
(2),double deriv.
10d+div =

∫

d4xdz

(

1

z3
Φ′

1Φ
′
5 +

z

8
Φ′2

2 +
z

8
Φ′2

3 +
z

2
Φ′2

4

)

. (2.66)

One should not be misled by its diagonal structure; beside the diagonal terms with double

derivatives, the full bilinear action contains terms which make it non-diagonal.

The boundary Gibbons-Hawking action term is

S
(2),derivatives
4d =

∫

d4x
1

8

(

4c hxy(z)
2 + 16zh′xy(z)hxy(z) + Φ2(z) (cΦ2(z) + 4zΦ′

2(z))
)

.

(2.67)

The full system of equations upon Green functions (2.31) in the given background (2.7)–

(2.11) is cumbersome and therefore is given in the Appendix, Eq. (2.114). Note that

for the F5 form one always has δF = −2/r3Φ2, which solves automatically the equations

for this field and at the same time retains the constancy of the Ramond-Ramond flow
∫

S5 F5 = Nc.

It is instructive to start with zero-frequency correlators (setting ω = 0 in (2.114)), since

the subsequent introduction of ω in the next section, finding oscillatory (Bessel-function)

solutions instead of rational ones and sending then ω → 0 is an additional check of validity

1Some of these operators, e.g. the O3 are not of immediate interest; however, it costs no additional

effort to incorporate them into the calculation, so I work the correlators out for them as well.
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of our procedure. At zero frequency, the most general solution is the one given in the

Appendix, Eq. (2.115).

Here a very peculiar situation is encountered: out of the ten modes, quite unexpectedly

six are IR finite (C1, C4, C5, C6, C7, C9), and the remaining four are infinite. Since the

Green function matrix (2.21) requires us to be able to differentiate properly over boundary

values of fields, such an ambiguity cannot be tolerated, and must somehow be cured. To

do that, an ad hoc additional condition is imposed that makes the resulting correlator

matrix symmetric: C5 = C6/2. We stress that apart from arguing from the result, there is

no scientific way at this stage of the calculation to justify this additional constraint. The

Green function matrix is then:

Kij =

trG+2

g2s

1
8
T µµ O3 O4

trG+2

g2s
trG+2

g2s
qz4 − qǫ4 + 1 0 0 0 0

1
8
T µµ 0 1

z2
0 0 0

O3 0 0 1
z2

0 0

O4 0 0 0 1
z2

0
trG−2

g2s
−2q (ǫ4 − z4) 0 0 0 qz4 − qǫ4 + 1

(2.68)

As a result, combining our knowledge of the Green function matrix (2.68), the boundary

action (2.67) and the derivative piece of the bulk action (2.66) the correlator matrix is

obtained:

M =

trG+2

g2s

1
8
T µµ O3 O4

trG+2

g2s
trG+2

g2s
−4q −2q 0 0 −2q

1
8
T µµ −2q − 1

4ǫ4
0 0 0

O3 0 0 − 1
4ǫ4

0 0

O4 0 0 0 − 1
ǫ4

0
trG+2

g2s
−2q 0 0 0 0

(2.69)

Some comments are due here. The singular terms 1
ǫ4

are expected on general grounds;

they are subtracted away by the holographic renormalization procedure, quite analogous

to field-theoretical subtraction. An asymmetry in O1 ↔ O5 is also expected: what I con-

sider is a self-dual configuration, therefore, self-dual and anti-self-dual operators develop

different properties.
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Checking Ward Identities

Having obtained the matrix elements, the low-energy theorems can be established. After

due normalization one has














































































































∫

d4x

〈

trG+2(x)

g2
T (0)

〉

= 4

〈

trG+2(0)

g2

〉

,

∫

d4x

〈

trG−2(x)

g2
T (0)

〉

= 0,

∫

d4x

〈

trG2(x)

g2
trG2(0)

g2

〉

=
1

2

1

4π2

〈

trG2

g2

〉

,

∫

d4x

〈

trG2(x)

g2
trGG̃(0)

g2

〉

=
1

4

1

4π2

〈

trG2

g2

〉

,

∫

d4x

〈

trGG̃(x)

g2
trGG̃(0)

g2

〉

= 0.

(2.70)

Here one can see that the first and the second lines of the equations above constitute

exactly the statement of the low-energy theorems

〈ÔT 〉 = dim(Ô)〈Ô〉. (2.71)

The gluonium propagators, i.e. correlators of trG2 and trGG̃ between themselves (i.e.

not with T ) are more difficult for interpretation. In section (2.3.1) the relation (21) was

obtained as a low-energy theorem in field theory exactly for the correlator calculated

here from duality. Comparing the two, one immediately sees that both have the RHS

proportional to the one-loop gluon function. On the other hand, the presence of the beta-

function makes the two quite different. In the Liu–Tseytlin background the dilaton does

not contain any logarithmic terms. Therefore, formally the beta-function is zero. Coupling

is still running though. Field-theoretically such a situation is understood as running due

to instantons solely. It is known that generally instantons provide power-corrections to

the running of the coupling, and the leading term is always the log. This is not the

case with the theory dual to the Liu-Tseytlin background, where only the instanton is

present. Therefore, instead of trying to relate the RHS of the third equation in (2.70) to

the beta-function coefficient in (21), one has rather to think on modifying the standard LE

theorems for the case when power corrections are the dominant or the sole contributors

to the running of the coupling; the same refers to lines 4 and 5 in (2.70), that is, scalar-

pseudoscalar and pseudoscalar-pseudoscalar correlators. Here one should remember that
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the field-theoretical LE theorem
∫

〈trG2 trG2〉 ∼ 1/β0 tr〈G2〉 is a consequence of the form

of the operator identity (dilatation anomaly) θµµ = β trG2. The anomaly is no more here

in this peculiar form. Instead, going along the ideas of eq. 2.17 in [203], one may get

something like

θµµ(p) ∼
(trG2)2

p4
. (2.72)

Then there is no beta-function coefficient in the denominator, and there is no paradox:

instead of questioning the validity of holography for this specific theory, I emphasize a

totally different type of LE relations, if such exist at all. Note also that the dilatation

Ward identity
∫

θµµ(x)O(0) ∼ dim(O)〈O〉 is a consequence of a Callan–Symanzik equation

solution for the operator O, looking approximately as

〈O〉 ∼
(

Me
− 8π2

β0g
2
0

)dim(O)

, (2.73)

where M is the renormalization scale. Again, since everything runs due to power con-

tribution and not due to the log term, the solution might be quite different. Note that

writing 〈trG2〉 in the RHS, while having a pseudoscalar in the LHS, is not a misprint or

mistake: the background field is self-dual, and what one obtains is a number ∼ q, which

is the value of both 〈trG2〉 and 〈trGG̃〉.

Correlators at Finite Frequency

Now let us analyze the finite-frequency solutions. The solutions are given in the Appendix,

eq. (2.116); only relevant modes are shown. Unlike the ω = 0 solutions, which were exact

solutions, here Φ2(z) and Φ5(z) are powerlog expansions in ω and r. Since I am interested

in the near-UV behaviour of Green functions, and eventually expand the correlator matrix

in powers of ω, this approximation is reasonable. The matrix of correlators becomes:

M =

trG+2

g2s

1
8
T µµ O3 O4

trG+2

g2s
trG+2

g2s
−4q −2q 0 0 log(ωe)ω4

8
− 2q

1
8
T µµ −2q − log(ωe)ω4

32
0 0 0

O3 0 0 − log(ωe)ω4

32
0 0

O4 0 0 0 − log(ωe)ω4

32
0

trG+2

g2s

log(ωe)ω4

8
− 2q 0 0 0 0

(2.74)

The most interesting physical implication of this correlator matrix comes from the 〈TxyTxy〉
element. It is proportional to η

s
|T=0, and here its independence of q is observed. This fact is
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not trivial from dimensional considerations, since one does not possess another dimensional

parameter, ω. Thus it has been established that

η

s
(q, ω)

∣

∣

∣

T=0
=

1

4π
. (2.75)

As a bonus of this calculation, in Section 2.4 the matrix of quarkonium transport coeffi-

cients is easily elaborated based on the above correlator matrix.

2.3.2 Decoupling Theorem in Backgrounds with Gluon Conden-

sate

Physics of Decoupling

The other low-energy theorem of interest is known as “decoupling relation”. It can be

found in [16], eq. (6.25):
〈αs
π
Ga
µνG

a
µν

〉

= −12mq〈qq〉. (2.76)

The derivation of this relation is somewhat intuitive, but let us still restate the arguments

by Shifman, Vainshtein and Zakharov. For vacuum expectation values of different opera-

tors pertinent to light quarks, the parameter of expansion is the quark mass. For heavy

quarks one expands in the inverse quark mass and sets the external momentum to Q2 ∼ 0.

Let us suppose there exists a quark for which both expansions, small and large m are true.

As it is in particular a “heavy” quark, the quark condensate can be done perturbatively

from the triangle diagram with gluons as “vacuum sources”, shown in Fig. (2.2). Then,

Gmn

a Gmn

a

mq

Figure 2.2: Vacuum diagram with heavy quarks depicting 〈ψψ〉 as gluon-driven quantity.

using the statement above on the smoothness of the transition between light and heavy

quarks, one can argue that the relation will retain its validity if the quark condensate is

taken as for light quarks, whereas the mass is that of some heavy-light transition point.

To check the decoupling theorem we study the ratio M〈q̄q〉
g2
Y M
4π2 〈tr(G2)〉

, which, when expressed in

terms of the parameters of the bulk solutions, turns out to be
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M〈q̄q〉
g2Y M

4π2 〈tr(G2)〉
=

(2π)

Nc4
√
2α′2g2YM

w0w2

φ4

, (2.77)

coefficients w0, w2, φ4 defined in (2.42), (2.52). It is convenient to express all the coefficients

via the expansion parameters in the coordinate r = R2

z
. Let us denote them φ = φ0 +

b
r4
, w = a+ c

r2
. Obviously, these are related to the former by φ4 =

b
R8 , ω2 =

c
R4 . Recalling,

that R4 = 4πgsα
′2Nc and g

2
YM = 4πgs, one obtains

− M〈q̄q〉
g2Y M

4π2 〈tr(G2)〉
=

g2YMα
′2Nc4π

2(2π)2Nc

Nc4
√
2g2YM2πα′(2π)3α′

ac

b
=

1

4
√
2

ac

b
(2.78)

For the theorem
M〈q̄q〉

g2Y M

4π2 〈tr(G2)〉
= − 1

12
, (2.79)

to hold, the solution asymptotics a, b, c must satisfy

ac

b
=

√
2

3
. (2.80)

This is the most practical form of the decoupling theorem, and will be tested directly in

the next section.

Decoupling in Specific Backgrounds – Numerics

Let us try to establish this relation holographically. It shall be done in different back-

grounds, those by Constable and Myers, by Gubser and by Liu and Tseytlin.

Using these definitions, equations of motion (3.10) are easily constructed upon the

embedding coordinate w(r), and we solve them numerically at different values of the

vacuum parameters and fields. Knowing these embeddings, quark masses and condensates

are easily extracted according to (2.44), (2.51), (2.54).

The most convenient object for our analysis is the dimensionless ratio ac
b
, expected

from (2.80) to be equal
√
2
3
. The ratio of these coefficients, obtained numerically, is shown

in Fig. (2.3) for the Gubser background. Similar pictures are observed for the other two

backgrounds. Each point represents an individual “measurement”, that is, a calculation

of a D7-brane embedding, whence the values for mass and condensates follow. By fitting

the “experimental” points, the value of the ratio and a statistical error margin thereof are

estimated.
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Figure 2.3: Dependence of the ratiom〈ψψ〉
〈trG2〉 on the quark mass

The following results are obtained numerically for the dimensionless ratio ac
b

one is

looking for:

ac

b
=











Constable–Myers 0.4711± 0.0002,

Gubser 0.4694± 0.0004,

Liu-Tseytlin 0.4746± 0.0008.

(2.81)

Comparing the results to the correct analytic value
√
2/3 ≈ 0.47140, an impressive agree-

ment is seen up to the third decimal point. The obvious universality of the three different

metrics might signal that decoupling theorem is insensitive to the details of IR physics.

The susceptibility with respect to the Kalb–Ramond field (which effectively represents

the electromagnetic gauge field) can also be easily extracted by switching on a magnetic

Bαβ. For a small B field one has

ac

b

∣

∣

∣

B
− ac

b

∣

∣

∣

B=0
=











Constable–Myers 0.00014(2πα′)2B2,

Gubser 0.00017(2πα′)2B2,

Liu-Tseytlin 0.00040(2πα′)2.B2

(2.82)

The decoupling theorem is not expected to be independent of an external Abelian field.

However, field-theoretically what one expects is a linear dependence after Smilga and

Shushpanov [24], whereas a quadratic dependence is seen here.
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2.4 Quarkonium Transport in Self-Dual Background

2.4.1 Self-Dual Background at Zero Temperature

Here I review the method of [213] for calculating quarkonium transport properties. The

basic result of this discussion is a decoupled structure, in which the contributions of the

fermionic part of the action will be separated from those of the gluodynamics part accord-

ing to the pattern

meson kin. coeff. =

[

meson mass shift

(D7 contribution)

]

×
[

two-point correlator

(D3 contribution)

]

. (2.83)

Consider a complex field ϕ of a slowly moving meson of velocity v, coupled to some

operators of the gluodynamic sector,

L = ϕ+v∂tϕ+
∑

n

cnϕ
+Onϕ, (2.84)

where the coefficients cn are defined e.g. from the D7 action of a dual model, which secures

the existence of mesons. The latter are understood as eigenmodes of fluctuations above

the classical solution of the D7 equations of motion. Interaction terms modify the spectra

of eigenmodes in the bulk; in terms of the boundary theory this amounts to a meson

mass shift. Coefficients Cn are then introduced as “susceptibility” of mass with regard to

switching on operators On:

δM = −cn〈On〉. (2.85)

Considering one-particle dynamics one can obtain from (2.84)

dpi
dt

= Fi, (2.86)

where

Fi =

∫

d3xϕ+∇icnOnϕ, (2.87)

while a correlator of two forces is directly related to the transport coefficient

κ =
1

3

∫

dt〈F(t)F(0)〉. (2.88)

One can integrate field ϕ out of these relations and obtain finally

κ =
1

3

∫

k2d3kc2n
2T

ω
Im 〈OnOn〉|k , (2.89)

where

〈OnOn〉|k =
∫

d4xθ(t)ei(ωt−
~k~x)〈On(x)On(0)〉. (2.90)

Here the contributions of flavour dynamics and pure gluodynamics are decoupled; below I

proceed in calculating the gluodynamical part (the two-point correlator); the coefficients

cn being responsible for mass shifts are known in literature.
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2.4.2 Self-Dual Background at Finite Temperature

It is possible to obtain quarkonium diffusion and relaxation coefficients at finite temper-

ature and condensate, extending the work [213] towards the background of [214]. This

background has the metric

ds2 = R2

(

1− r4π4T 4

r2
dt2 +

dx23
r2

+
dr2

r2(1− r4π4T 4)

)

+R2dΩ2
5, (2.91)

the dilaton is

eφ = 1 +
q

πT 4
log

(

1

1− r4π4T 4

)

, (2.92)

the axion is related to the dilaton in the same way as in the zero-temperature Liu-Tseytlin

background

C = e−φ − 1. (2.93)

Quarkonium transport coefficients are quantities which feel both the fermionic piece of the

action (some embedded brane) and the gluodynamics. From the former comes the mass

susceptibility to the condensate, from the latter – correlators of interest. In principle, it

would make a good sense to work in a back-reacted metric (e.g. like Kirsch, Vaman; or

Paredes, Cotrone et al.), however this must be postponed till the method is fully technically

developed for a well-controllable Ghoroku–Liu–Tseyltin metric. For convenience I further

use the variable

u = r2π2T 2, (2.94)

which lives in the interval (0, 1). A reduced sector of the fluctuations is considered, namely,

those of fields η+, η−, h11 + h22. The equations of motion are given in Appendix, (2.117).

It can be seen now that the problem of fields coupling to each other is additionally

burdened by the presence of finite temperature. Yet a diagonalization of these equations

is possible by means of the following functional transformation (η+, h, η−) → (η+, h, η−)



















































η+(u) = η+(u),

h(u) = h(u) + q (C1 − π2 log (1− u2)) η+(u),

η−(u) = qh(u)

(

F1 −
log(1−u2)

2π2

)

+ η−(u)+

+q

(

1
4
q log2 (1− u2)− qC1 log(1−u2)

2π2 + C2

)

η+(u).

(2.95)
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Now for each of the variables an equation can be written down, similar to that for the

simple dilaton modes:

ϕ′′(u) +
u (u3 + 6u+ 4ω2 + 4k2 (u2 − 1))− 3

4u2 (u2 − 1)2
ϕ(u) = 0, (2.96)

for which the transport coefficient is known; I calculate it independently, and found it to

be in agreement with the previous results [213]

2ω

T
Gφ,φ = π2k4e−2Cγk/T , (2.97)

where Cγ = 4
√

2
π
Γ
(

5
4

)2 ≈ 2.62. The knowledge of the diagonalization matrix A defined

as






η̄+

h̄

η̄−






=
(

1̂ + qA
)







η+

h

η−






(2.98)

allows us to transform these results (at q = 0) into a non-zero-condensate background:

〈ΦiΦj〉 = (1̂ + qA)〈Φ′
iΦ

′
j〉q=0(1̂ + qA)+, (2.99)

where the zero-condensate solutions are rotated to the non-zero-condensate by the follow-

ing rotation matrix in mode space:

A =







0 0 0

π2 0 0

0 1/2/π2 0






, (2.100)

and the non-perturbed matrix of finite-temperature correlators is diagonal

〈ΦiΦj〉q=0 =







〈trG+2 trG+2〉 0 0

0 〈TT 〉 0

0 0 〈trG−2 trG−2〉






, (2.101)

whence one easily gets the mesonic transport coefficient by use of the following formula:

κ =
∑

O
c2O

1

3

π

2

∫

k2
d3k

(2π)3
2ω

T
〈ΦOΦO〉, (2.102)

where the respective mass susceptibility coefficients are obtained from considering the

fermionic fluctuations coming from the embedded D7 brane piece of the action, and are

defined via

δM = −cO〈O〉, (2.103)
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M is referring to the mass of quarkonium.

The correlators themselves are obtained in the following way, which is illustrated on

the example of the dilaton. Three domains are considered: UV, IR and the intermedi-

ate domain (we denote the latter QC for quasiclassics, since semiclassical approximate

solutions will be valid therein). The physical limitations are infalling boundary condition

on the horizon and a reflected wave in the UV, which reduces the number of unknown

coefficients from 6 to 4. Then we have matching conditions separate for each of the modes

in the matching regions between the UV and the QC, and between the QC and the IR.

This provides additional 4 constraints, thus the system is fully defined. In the UV the

general solution to the EOM is

φ =
2uI2

(

2
√
u
√
k2 − ω2

)

C1

k2 − ω2
+ 2u

(

k2 − ω2
)

K2

(

2
√
u
√
k2 − ω2

)

C2. (2.104)

Taking the UV asymptotic (u→ 0) of φ, it is clear that physical boundary conditions are

C1 = B,C2 = 1, where B is related to the correlator straightforwardly:

2ω

T
Gφφ =

ImB

ω
. (2.105)

On the contrary, expanding it for large k, one gets the form appropriate for matching with

QC:

φ = e−2k
√
u
√
πk−29/2u−5/4 − Be2k

√
uk−9/2u−5/4

√
π

. (2.106)

The quasiclassical equation has the approximate potential

VQC =
k2

u (1− u2)
, (2.107)

which allows to obtain the wave-functions in the standard way

ψ1,2 =
e±

∫

pdx

√
p

, (2.108)

where

p =
√

VQC − E. (2.109)

The quasiclassical solution near u = 0 and u = 1 is

φQC,u→0 = − ie
−2k

√
u
(

e4k
√
uA1 + A2

)

√
k 4
√
u

,

φQC,u→1 = −
ie−

√
2k(

√
1−u+1)

(

e2
√
2kA1 + e2k

√
2(1−u)A2

)

√
k 4
√
2− 2u

.

(2.110)
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The IR solution with an infalling boundary condition has only one degree of freedom:

φIR =
(

e
√
2k

√
1−u csc(πω + e−

√
2k

√
1−u
)

√
πC

23/4
√
k 4
√
1− u

. (2.111)

Equating the QC solution branches with those of IR and UV solutions, one obtains

ImB = π2k4e−2Cγk/T , (2.112)

as already stated above. Taking the integral over phase space (2.102) and performing

linear transformation of correlator matrix (2.99), the transport coefficient is obtained

κ =
1

3
T 960Γ

(

3
4

)6

π2Γ
(

1
4

)6

[

ctrG+2(1 + 2qπ2) + cT (1 + qπ2) + ctrG−2

]

, (2.113)

where ci are found in [213], ctrG2 = 8
5π

(

2π
M0

)3

, cT = 12
5π

(

2π
M0

)3

, M0 being the meson mass.

2.5 Discussion

Let us restate the main results of this Chapter:

• The low-energy theorem
∫

〈TO〉 = dim(O)〈O〉 is satisfied in holography with con-

densates for the pure glue sector.

• A universal constant value has been established for the ratio m〈ψψ〉
〈trG2〉 in duality with

a good precision (0.5%), thus supporting the validity of the decoupling relationship

in holographic models of QCD.

Additional “bonus” results, which follow from our calculations without having been

designated as original objectives:

• A non-trivial relation between two-point and one-point functions
∫

〈G2G2〉 = const〈G2〉
has been established.

• Shear and bulk viscosities have been shown to be independent of condensates.

2.6 Appendix: Equations of Motion

Equations of motion for the Liu–Tseytlin background.
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

z
(

(

qωz4 + ω
)2 − 32q2z6

)

η+(z)+

+ (qz4 + 1)
(

(11qz4 + 3) η′+(z)− z (qz4 + 1) η′′+(z)
)

= 0,

32q2η+(z)z
6 +

(

qz4 + 1
) ((

qz4 + 1
) (

z2ω2 + 4
)

Φ2(z) −
−z
(

8qη′+(z)z
2 + (qz4 + 1) (Φ′

2(z) + zΦ′′
2(z))

))

= 0,

(

z2ω2 + 4
)

Φ2(z)− z (Φ′
2(z) + zΦ′′

2(z)) = 0,

(

z2ω2 + 4
)

hxy(z)− z
(

h′xy(z) + zh′′xy(z)
)

= 0,

−32q2η+(z)z
7 +

(

qωz4 + ω
)2
η−(z)z−

− (qz4 + 1)
(

8qΦ2(z)z
5 +

(

4qΦ′
2(z)z

5 + (qz4 + 1) η′′−(z)
)

z + (5qz4 − 3) η′−(z)
)

= 0.

(2.114)

Solutions for the EOM in the Liu–Tseytlin case:

















Φ1

Φ2

Φ3

Φ4

Φ5

















=



















C2 (qz
4 + 1)

2
+ C1 (qz

4 + 1)
−q2C2z8+C3z4+C4

z2

C8z4+C7

z2

C10z4+C9

z2

qC5 −
C6q2+(q(qz4+2)z4+2)(4q(C1+C2)+2C3)

4q(qz4+1)



















(2.115)

Solution modes for non-zero frequency:
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Φ1 =
1
2
qω2K2(zω)C1z

6 + 1
2
ω2K2(zω)C1z

2,

Φ2 = C1

[

γqω8z10

6144
− 161qω8z10

552960
+

+ qω8 log(z)z10

6144
+ qω8 log(ω)z10

6144
− qω8 log(16)z10

92160
−

− qω8 log(8)z10

27648
− qω8 log(4)z10

184320
+ 1

192
γqω6z8 − 169qω6z8

23040
+

+ 1
192
qω6 log(z)z8 + 1

192
qω6 log(ω)z8 − 1

960
qω6 log(16)z8−

− qω6 log(4)z8

1920
+ 1

16
γqω4z6 − 17

384
qω4z6 + 1

16
qω4 log(z)z6+

+ 1
16
qω4 log(ω)z6 − 1

32
qω4 log(4)z6 + 1

3
qω2z4

]

+ 1
2
ω2K2(zω)C2,

Φ3 =
1

2
ω2K2(zω)C7,

Φ4 =
1

2
ω2K2(zω)C9,

Φ5 = − 1

12
qω2C1z

6 +
1

6
qω2C4z

6 − qC1z
4 − 8qI2(zω)C1z

2

(qz4 + 1)ω2
− ω2K2(zω)C1z

2

qz4 + 1
+

+
4q2I2(zω)C6z

2

(qz4 + 1)ω2
+
qω2K2(zω)C6z

2

8 (qz4 + 1)
.

(2.116)

The thermal version of Liu–Tseytlin backgrounds leads to equations of motion:
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




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

























(u(u3+6u+4ω2+4k2(u2−1))−3)η+

4u2(u2−1)2
+ η+

′′

= 0,

−4q (u2 + 1)h(u)u2 + 4 (u2 − 1)
(

2quh′ + π2 (u2 − 1) η−
′′
)

u2+

+π2 (u (u3 + 6u+ 4ω2 + 4k2 (u2 − 1))− 3) η− = 0,

4
(

h′′ (u2 − 1)
2
+ 2π2q

(

2u (u2 − 1) η+
′ − (u2 + 1) η+(u)

)

)

u2+

+(u (u3 + 6u+ 4ω2 + 4k2 (u2 − 1))− 3)h = 0.

(2.117)



Chapter 3

Chiral Condensate Scaling in a

Magnetic Field

The chiral condensate is studied in this Chapter under the influence of an external Abelian

magnetic field. I work here within the D3/D7 Karch–Katz model of flavoured AdS/CFT

with supersymmetry broken by the Gubser–Kehagias–Sfetsos deformations and by the

self-dual supersymmetric Liu-Tseytlin deformation of the background. It is shown in

this Chapter that this setting yields for different types of metrics a universal quadratic

dependence of the condensate on the field, rather than the non-analytic (linear in field)

dependence, typical for chiral perturbation theory in the exact chiral limit. I argue that

the analytic (quadratic) result must be put into correspondence with the leading-order

in the 1/Nc decomposition for the condensate, whereas the existing chiral perturbation

theory result, which is linear in field strength, is 1/Nc suppressed.

Introduction

The behavior of the QCD vacuum in strong electromagnetic fields has recently attracted

a great deal of attention (e.g. [215, 22]), reinvigorating the subject which had been started

by [216]. Lattice simulations [217, 218], Simonov’s string model [219] are just a few of the

recent studies of QCD vacuum in external fields to be mentioned here. In this Thesis I try

to compare the description of the condensate from the perspective of duality with that from

the point of view of resummed field theory. This Chapter is organized as follows. In the

following Section 3.1 the condensates’ scaling in external fields is reviewed. It is explained

why traditional field-theoretical approaches are still demanding a non-perturbative insight,

possibly coming from the realm of dual models. Then in Section 3.2 a short description of

the specific dual model is given, which we are going to apply. In the subsequent Section

71
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3.3 the numerical calculations are presented. We conclude in 6.5.

3.1 Motivation

The QCD vacuum is quantitatively described by its chiral condensate, gluonic conden-

sate, pion decay constant and some other physical quantities. Below we shall revisit the

properties of some of these objects in the electromagnetic background.

3.1.1 Chiral Condensate in Field Theory

The QCD chiral condensate 〈q̄q〉 is the order parameter of chiral symmetry breaking.

Important ideas of chiral symmetry breaking catalysis were being developed by Gusynin,

Miransky and Shovkovy. In [22, 220, 221] an enhancement of chiral condensates was

studied by them in 2 + 1 and 3 + 1-dimensional Nambu—Jona-Lasinio-like models.

The issue of condensates in an external magnetic field was resolved field-theoretically

by Schramm, Mueller and Schramm [222], and by Smilga and Shushpanov in [223]. For

small magnetic fields H, and in an exact chiral limit, the chiral condensate scales as

〈q̄q〉H = 〈q̄q〉0
(

1 +
eH ln 2

16π2f 2
π

)

. (3.1)

Note that the linear term in H has a 1
Nc

factor, for f 2
π ∼ Nc A second-loop correction to

this result was calculated by Shushpanov and Agasian [224]. It is instructive to compare

this low-energy QCD computation with a Nambu—Jona-Lasinio model computation made

by Klevansky and Lemmer [225]

〈q̄q〉H = 〈q̄q〉0
(

1 + c
e2H2

(〈q̄q〉0)4/3
)

, (3.2)

where c is some model-dependent coefficient. The linear dependence (3.1) by Smilga and

Shushpanov is non-analytic (has a square-root type cut) in terms of the invariants of the

external field, i.e. is organized as ∼
√
F 2. This might seem to be inconsistent from a first

view. However, this non-analyticity is of vital importance. It means there are no other

massive parameters in the low-energy domain, where the chiral perturbation theory is

valid. The non-analyticity of (3.1) is a direct signature of the π-meson being a Goldstone

particle. If the chiral limit is violated, the dependence will be analytic. One must work

here in the exact chiral limit, for otherwise all other massive hadronic states in the vacuum

energy loops must be taken into account. The Nambu—Jona-Lasinio model is at the same

time seen to be deficient to describe full QCD, as it does not reproduce the correct non-

analytic behaviour of the condensate, representing the Goldstone particles.
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Chiral condensates in arbitrary electromagnetic fields were calculated by Cohen, Mc-

Gady and Werbos in [23]. They have obtained expressions for electric, magnetic, and

arbitrary configurations of constant fields. Their results are basically obtained in the

same Heisenberg-Euler technique type as those of Smilga and Shushpanov, and perfectly

reproduce the latter as a particular case.

3.1.2 Limitations of Traditional Approaches

The above chiral perturbation theory results have the status of exact low-energy theorems.

However, they have their domain of applicability, as explained in the review paper by

Ioffe [226]. The one-loop result has been reminded above. This means there will be next-

order loop corrections in chiral perturbation theory to this value. Chiral perturbation

theory has also limitations due to the fact that quarks’ and gluons’ degrees of freedom

are fully absent in it. Therefore, other models have to be considered to be compared with

chiral perturbation theory estimates.

The subject of this Thesis is comparison of AdS/CFT-motivated model with the tradi-

tional field-theoretical approach. The flavoured AdS/CFT correspondence in an external

magnetic field was studied by Filev et al. in [227]. They produce a spectrum of mesons

from pure-AdS background, which satisfies the Gell-Mann–Oakes–Renner relation. In [228]

thermodynamic properties of the gauge theory in a magnetic field have been studied in

the same framework. Properties of the theory in an electric field were obtained in [229]

by the same method.

AdS/CFT with flavours in external fields and at finite temperatures have also been

studied in [230]. The authors calculate a number of external-field-dependent properties for

a supersymmetric background, such as meson masses in electric and magnetic fields. The

Sakai—Sugimoto model in external fields was studied in [231]. It has been concluded that

the Sakai—Sugimoto model is consistent with the picture of magnetic catalysis of chiral

symmetry breaking. Phase transitions in the Sakai—Sugimoto models due to switching

on of electric and magnetic fields were discussed in [232]. Pair production in an electric

field in Sakai—Sugimoto model was studied in [233].

3.1.3 Chiral Symmetry Breaking and Holography

Klebanov and Strassler Conifold Deformation. An early attempt of describing

chiral symmetry breaking was done by Distler and Zamora [234], where additional ad hoc

complex scalar fields, dual to scalar operator ψψ were added into the bulk Lagrangian. The

earliest widely recognized picture of chiral symmetry breaking in duality was suggested by
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the Klebanov and Strassler, who holographically described chiral symmetry breaking by

deforming the conifold of the Klebanov–Tseytlin background [235]. Conifold-type solutions

with additional matter have been used for chiral symmetry breaking modelling by a number

of authors. By means of a D7 embedding into the Klebanov–Strassler background chiral

symmetry breaking was realized in [236]. Chiral symmetry breaking was described in terms

of embedding a stack of D7 − D7 into the Klebanov-Witten background by Kuperstein

and Sonnenschein [237].

D7 Non-Trivial Embedding. A gravity dual of chiral symmetry breaking organized

by means of D7-brane embedding was first suggested in [238]. Holographic studies of the

chiral phase transition in [239] within pure AdS with fermions as D7-branes have shown

that at zero chemical potentials QCD with massless quarks exhibits a first-order phase

transition, whereas with massive quarks there is a crossover. Chiral symmetry breaking

in Klebanov-Witten background is realized via a D7−D7 brane configuration. The soft-

wall model in its naive version predicts chiral symmetry restoration in the mass spectrum,

which is not supported in QCD; the soft-wall model modification [240] eliminates this

by means of considering an exact kink-like solution to the tachyon field equations. The

chiral condensate dependence on the quark mass and external field for the Liu-Tseytlin

background was obtained in [241].

Chiral Condensate in the Sakai–Sugimoto Model. Chiral phase transitions in a

wide class of generalized Sakai–Sugimoto models are studied extensively in [242]. Conden-

sation of the tachyon field added to the Sakai–Sugimoto system is interpreted in terms

of spontaneous chiral symmetry breaking in [82]. An inconsistency in introducing a

scalar field, responsible for spontaneous and explicit chiral symmetry breaking was claimed

in [243], where the appearance of complex values of the mass and condensate was claimed

to have been observed.

A proposal by Aharony and Kutasov is used in [120] to define a gravity dual of a Wilson

loop in the Sakai-Sugimoto model. Following this definition, the condensate of Wilson

loops is regarded in [244] as the chiral symmetry breaking order parameter, its behaviour

as a function of temperature and chemical potential is established holographically in a

type of Sakai-Sugimoto model (the so-called holographic Nambu-Jona-Lasinio model).

Scale Dependence Paradox. A serious problem with chiral symmetry breaking was

observed in [245], namely, in real-life QCD condensate and quark mass are scale-dependent,

whereas such a dependence is absent in hard-wall AdS/QCD, which makes many of the

claims to success of the model superfluous; the work also criticizes the typical assertion
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that the tachyon is related to the condensate and mass simply as

X → mz +
〈

ψψ
〉

z3, (3.3)

whereas the correct identification is claimed to be

X → amz +
〈

ψψ
〉

z3/a, (3.4)

where a is originally not fixed, yet can be obtained form a two-point function as a =
√
Nc

2π
.

3.2 D7 Brane with a Maxwell Field in a Deformed

AdS Background

In this Chapter a modelling of the chiral condensate is discussed by means of a class of

simple models already discussed previously, that features many of the basic QCD char-

acteristics: confinement, conformal symmetry breaking and spontaneous chiral symmetry

breaking, namely, the D3/D7 model that has been described in Chapter 2, Section 2.2. We

take the action of the D3/D7 in the Gubser–Kehagias–Sfetsos background, (2.15)-(2.16).

We also study the Liu–Tseytlin self-dual supersymmetric deformation, Eqs. (2.7)-(2.11).

We put the fermionic degrees of freedom into a magnetic field and observe the behaviour

of condensates.

As we already mentioned in the preceding Chapter, the dynamics of the brane is

described by a Dirac—Born—Infeld action

SD7 = µ7

∫

d8ξ

√

det
α,β

(

2πBαβ + 2πα′Fαβ + gµν
∂Xµ

∂ξα
∂Xν

∂ξβ

)

+µChS

∫

d8ξC4∧F ∧B (3.5)

Here Bµν is the Kalb—Ramond field, defined in the bulk, which is projected to the brane

as Bαβ and Fαβ is the usual Maxwell field on the brane. A constant field F23 = −F32 = B

is chosen, all other field components being zero. Classically the Chern–Simons part of the

action

SChS =
1

2(2π)5α′2

∫

d8ξP [F5] ∧ F ∧ F, (3.6)

where P is projection of S5 onto S3, is identically zero, since F5 is directed over S5, and the

Kalb–Ramond field F has only one non-zero component, F23. It might give a contribution

into the oscillations describing mesonic masses. We work in the approximation Nc ≫ Nf ,

so that the backreaction can be safely neglected.

We remind the reader that the D7 brane runs through the directions of coordinates

x0, x1, x2, x3, w1, w2, w3, w4. These coordinates are respectively ξ1 . . . ξ8 internal coordi-

nates of the brane world-volume. The brane doesn’t run through the remaining w5, w6.
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The latter coordinates are embedding coordinates of the brane into the targetspace. They

are functions of ξi. Solutions in the form w5 = w(ρ), w6 = 0 will be sought, where

ρ =
√

w2
1 + w2

2 + w2
3 + w2

4. (3.7)

With such an Ansatz, the DBI action is organized as

S = µ7

∫

eφ(ρ)ρ3g11(r)g55(r)
2
√

(B2 + g11(r)2) (w′(ρ)2 + 1), (3.8)

where

r =
√

ρ2 + w2(ρ). (3.9)

The equations of motion with a non-zero field B for the embedding coordinate w will look

like

2w
(

−ρ (w2 + 1)
((

−√
rg11 (3B

2 + 2g211) (g
′
11)

2 + (B4 + 3g211B
2 + 2g411) g

′
11−

− √
r (B4 + 3g211B

2 + 2g411) g
′′
11) g

2
55 + 2 (B2 + g211) ((g

′
55 −

√
rg′′55) g

3
11 − 4

√
rg′11g

′
55g

2
11+

+B2 (g′55 −
√
rg′′55) g11 − 2B2

√
rg′11g

′
55) g55 − 2

√
rg11 (B

2 + g211)
2
(g′55)

2
)

w2+

+2
√
rρ2 (w2 + 1) g11 (B

2 + g211)
2
(g′55)

2 +

+rρ (w2 + 1) (B2 + g211) g55 ((B
2 + 2g211) g55g

′
11 + 2g11 (B

2 + g211) g
′
55)+

+g255
(√

r (w2 + 1) g11 (3B
2 + 2g211) (g

′
11)

2 ρ2 +
√
r (w2 + 1) (B4 + 3g211B

2+

+2g411) g
′′
11ρ

2 + (B4 + 3g211B
2 + 2g411) g

′
11 (rρww

′′ + (w2 + 1) (−ρ2 + rφ′(ρ)ρ+ 3r)))+

+2 (B2 + g211) g55 ((
√
r (w2 + 1) g′′55ρ

2+

+g′55 (rρww
′′ + (w2 + 1) (−ρ2 + rφ′(ρ)ρ+ 3r))) g311

+4
√
rρ2 (w2 + 1) g′11g

′
55g

2
11 +B2 (

√
r (w2 + 1) g′′55ρ

2 + g′55 (rρww
′′+

+(w2 + 1) (−ρ2 + rφ′(ρ)ρ+ 3r))) g11 + 2B2
√
rρ2 (w2 + 1) g′11g

′
55)) = 0.

(3.10)

The known functions g00(r), g55(r), φ(r), which have to be supplied for each of the back-

grounds in study, have been left arbitrary on purpose, since when specific values are in-

serted, the equations would look even more cumbersome. The both interrelated variables

r and ρ have been left for brevity.

The equations of motion are solved numerically in the next section. First quark masses

and condensates are extracted and fitted with appropriate interpolation functions.

3.3 Condensate

The standard lore is: one must search for physical solutions of these non-linear second-

order differential equations, which have the following asymptotics in the infinity:

w(ρ) = m+
c

ρ2
. (3.11)
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Figure 3.1: Dependence of the condensate on the mass. “GKS” stands for the Gubser–

Kehagias–Sfetsos background, “LTs” for the Liu–Tseytlin background.

Then the parameters m and c correspond to the quark mass and chiral condensate:

mq =
m

2πα′
,

〈q̄q〉 = c
(2πα′)3

,
(3.12)

where α′ is the string tension parameter. Contrary to the physical solutions, the unphysical

ones are those ending in the singularity of the metrics, or going to infinity at ρ→ 0. The

singularity is marked by an ellipse denoted “singularity” in Fig. (2.1). Physical solutions

can be defined by boundary condition w′(0) = 0. It happens that the generic solutions are

unphysical ones.

To obtain physical solutions, one imposes

{

w′(0) = 0,

w(0) = w0 = const.
(3.13)

For each value of w0 above some value this will yield a curve from the family shown

in Fig. (2.1), the asymptotic behaviour of which will reveal some definite m and c. This

allows one to build the dependence of the condensate on quark mass Fig. (3.1). Doing

the same thing with different values of the magnetic field B, one gets a shifted curve.

It is a subtlety of this method that in order to understand how the condensate shifts in
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Figure 3.2: Magnetic catalysis of chiral symmetry breaking in the Karch—Katz model in

different backgrounds, chiral limit and non-zero mass case. Abbreviations: “GKS” stands

for the Gubser–Kehagias–Sfetsos background, “LTs” for the Liu–Tseytlin background.

the field, one must take a section of Fig. (3.1) at a constant m rather than follow some

fixed w0 value; fixing w0 makes no physical sense at all. The resulting dependence of the

condensate on the field is shown in Fig. (3.2) for the two backgrounds.

We analyze this “experimental” dependence. One could expect either linear (as in

true QCD) or quadratic (as in NJL) condensate growth with the field. In our case, an

approximation with a quadratic polynomial comes out to be quite effective. In Fig. (3.2)

one can see the comparison between the linear and quadratic approximations, and judge

in favor of the latter.

This quadratic dependence on the field value corresponds very nicely to the picture of

magnetic catalysis of chiral symmetry breaking in [221, 22] in NJL models. On the other

hand, it does not correspond to the linear condensate shift, predicted by the low-energy

QCD effective action by Smilga and Shushpanov [223]. This phenomenon may be given

a nice qualitative explanation. The condensate expression (3.1) is a part of the series in

powers of 1
Nc
, for fπ ∼ √

Nc. It starts with the 1
Nc

term. There may be a term, dependent

on field, and containing 1
Nc

in the zeroth power. To our best knowledge, such terms have
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not been reported in chiral perturbation theory. On the contrary, dual models restore the

missing leading-order 1
Nc

contribution.

3.4 Summary

A qualitative conclusion can be drawn upon analyzing the dependence of the chiral con-

densate on the magnetic field. We can see that the linear field dependence of the QCD

condensate from chiral perturbation theory is not reproduced at all. Instead, a quadratic

dependence is retrieved. It is universal for the two backgrounds under considerations.

Our conjecture to explain this phenomenon is very simple. The chiral perturbation theory

estimate, as given in the cited references, misses the leading-order in 1
Nc
. It starts with the

next-to-leading order in 1
Nc
. On the other hand, duality might reproduce the leading-order

effect. Nevertheless, the search for a true dual model of QCD must still be in progress.

One of possible improvements of the model would be to take into account back-reaction

effects. In our setting, the D7 brane was a probe brane, a self-consistent supergravity

solution in a background of a stack of D3 branes and a D7 brane would be advantageous.



Chapter 4

Vacuum Magnetization in Strong

Fields

4.1 Notion of Vacuum and Condensate Magnetiza-

tion

In statistical physics [210] the magnetization of matter is defined as the derivative of the

free energy F over field B

M = −
(

∂F

∂B

)

T,V,N

(4.1)

and magnetic the susceptibility χ as

χ =
∂M

∂B
. (4.2)

In a relativistic field theory, the magnetic susceptibility of the chiral condensate is defined

as

〈ψ̄σµνψ〉 = χ(F )F µν〈ψ̄ψ〉0. (4.3)

where F is the external field strength. It is important to note here that the conden-

sate 〈ψ̄ψ〉0 is taken at B = 0. The two definitions of magnetization are not universally

equivalent; actually one could speak of two different quantities, which may or may not

coincide. To distinguish between them, we shall refer to (4.1) and its derivative as vacuum

magnetization and susceptibility, and to (4.3) and other definitions via matrix element as

condensate magnetization or susceptibility.

The definition (4.3) includes all possible contributions to the vacuum response to the

field. As “contributions” are meant the diamagnetic and the paramagnetic pieces, the

80
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former related to charge effects, the latter to spin effects. To eliminate diamagnetism, one

can also consider

〈ψ̄σµνψ〉 = χpara(F )F
µν〈ψ̄ψ〉B, (4.4)

where 〈ψ̄ψ〉B is the condensate in presence of the field [24]. It is generally believed that

lattice calculations provide us only with the paramagnetic part of χ. For a non-relativistic

fermion gas, a theorem relating χdia and χpara holds

χdia = −1

3
χpara, (4.5)

however, there is no evidence that it holds for the QCD vacuum as well. The standard

lore about condensate susceptibility is [246]

χ(0) = − Nc

4π2f 2
π

=
1

(335MeV)2
. (4.6)

The numerical value of χ defined from sum rules [247] is

χ(0) =
1

(475MeV)2
. (4.7)

Again, in this case only the small-field value χ(0) could be determined. An experimental

determination [248] of χ(0) by a light-cone sum rule analysis of the branching ratios of

radiative meson decays has led to

χ(0) =
1

(590MeV)2
. (4.8)

The definition of magnetization used in the lattice paper [249] is a condensate magnetiza-

tion

M =
〈ψσ12ψ〉
〈ψψ〉

, (4.9)

let us for definiteness choose the magnetic field ~B = (0, 0, F12). Let us try to understand

when and how condensate magnetization can be related to vacuum magnetization. As

known, the energy of the magnetic field interacting with a magnetized medium is [250]

(chap.VII, eq. 37)

W =

∫

d3x
[

−
〈 e

2m
ψσµνF ext

µν ψ
〉

−
〈 e

m
ψ(k)

(

~k′ ~Aext(q)
)

ψ(k′)
〉]

, (4.10)

where we have taken into account Aext0 = 0. In our case the external field is constant, hence

q = 0, k = k′. Although non-locality of the vacuum has been known since [251], here we

work in the approximation of a local vacuum. Thus the “momentum” of the vacuum state
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|ψ〉 is zero. There are no real particles, since temperature and chemical potential are zero.

Therefore, k′ = 0. Had we had a thermal quark gas, the situation would be completely

different.

Diamagnetic contributions to the vacuum energy still arise at the one-loop level, since

virtual quarks do have k′ 6= 0. In QED this would be the leading effect; the Euler–

Heisenberg Lagrangian is the archetypal example of the electron gas diamagnetism phe-

nomenon. Yet in QCD the leading effect is the tree-level effect we deal in this Chapter with.

Diamagnetism could become important only at very large values of the field, when the

field-induced condensate of 〈ψψ〉, which is given in Eq. 7 of [252], is large; the condensate

of free fermions in a magnetic field is

〈

ψψ
〉

= −m3

4π2
+

m3

4π2
log

(

m2

2eB

)

−eBm
4π2

log

(

m2

2eB

)

−eBm
2π2

(

log

(

Γ

(

m2

2eB

))

− 1

2
log(2π)

)

,

(4.11)

whence it follows that the condensate is essentially non-analytical at zero field, therefore,

non-perturbatively small at low fields. Therefore, for a homogeneous QCD vacuum with

zero temperature and zero particle density in a purely magnetic field we are left with the

spin (i.e. paramagnetic) contribution solely:

W =

∫

d3x
〈

− e

2m
ψσµνFµνψ

〉

. (4.12)

Then the tensor condensate is

〈ψσ12ψ〉 = −2m

e

∂W

∂F12

1

V3
. (4.13)

The argumentation we have made above clearly indicates: vacuum magnetization may

coincide with condensate magnetization only for very heavy quarks in a zero temperature,

zero chemical potential theory.

Let us define the paramagnetic vacuum susceptibility holographically. Of course, this

will be vacuum rather than condensate magnetization, since in all of the D7 and similar

models describing fermionic degrees of freedom in holography, we lack a mode coupled

to an antisymmetric tensor of rank 2. Holographically we have direct access to the bulk

action

S = Wt = V3t

∫

Ldρ, (4.14)

where ρ is the holographic coordinate, L is the effective action density, V3t is the four-

volume. Then we have

M = − 2m

〈ψψ〉

∫

dρ
∂L
∂B

. (4.15)
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This will be of direct use below for any L specific for a given background. One can easily

obtain a vacuum magnetization for free fermions very much in the same way as
〈

ψψ
〉

was obtained in [252]. The matrix element
〈

ψσ12ψ
〉

is different from the latter only in

changing

tr
Dirac

eie
s
2
Fµν → tr

Dirac
σ12e

ie s
2
Fµν (4.16)

in the Schwinger proper time integral, that is, one makes the change

coth s→ 1 (4.17)

in the expression for the condensate, leaving the rest of the Schwinger integral untouched.

Following their eq. (5) we have

〈

ψσ12ψ
〉

=
eBm

4π2

∫

ds

s
e−

m2

eB
s =

eBm

4π2
log

(

m2

eB

)

. (4.18)

Recent lattice simulations [249] have revealed a very interesting picture of condensate

magnetization saturation at high values of the magnetic field B. The picture was suggested

to have an explanation in terms of a classical (Langevin) law

µLangevin = µ∞

(

coth
3χ0qB

µ∞
− µ∞

3χ0qB

)

, (4.19)

or in terms of a quantum (Brillouin) law

µBrillouin = µ∞

(

2 coth
2χ0qB

µ∞
− coth

χ0qB

µ∞

)

. (4.20)

It is remarkable that actually a third form of condensate magnetization dependence, not

based on any known simple theoretical model, fits to lattice data with a much better χ2

criterion:

µtrig(B) =
2µ∞
π

arctan
πχ0qB

2µ∞
. (4.21)

It remains a challenge to understand why such a dependence emerges and what it may

mean in the field-theoretic or dual context. A comparison of lattice data and theoretical

model is shown in Fig. (4.1).

Vacuum magnetization can be easily extracted from dual models. Given the classical

action

SF =

∫

dp+1σ
√

det
αβ

(gµν∂αXµ∂βXν + 2πBαβ) (4.22)

of some embedding of Dp-brane, corresponding to adjoint fermionic degrees of freedom,

in the presence of a Kalb-Ramond field B, the vacuum magnetization is related to it via

(4.15).
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Figure 4.1: Condensate magnetization from the lattice, compared to Langevin, Brillouin,

and “arctan” models. Plot taken from [249].

The response of holographic QCD to electric and magnetic fields has been studied

during the last years extensively. We are interested in this Chapter in vacuum magneti-

zation only. Bergman, Lifschytz and Lippert in a series of papers studied these problems

in the Sakai–Sugimoto D4-D8-D̄8 model. In the standard Sakai–Sugimoto framework, as

described above, no saturation was obtained in [232]. In [123] holographic QCD in the

confined phase was studied at a non-zero chemical potential. It has been shown that turn-

ing on the magnetic field induces a gradient for the pseudoscalar, which carries baryons

and becomes a dominant phase at large fields. In [119] it has been shown that in the

deconfined phase the fermions possess a first-order phase transition, where their vacuum

magnetization makes a leap with increase of the field.

In the D3/D7 model in pure AdS space, the following asymptotic was derived [228]

for large quark masses m

µ(B) ∼ B

2
− B

2
log

B

2
+
B(1 + 2B2)

24
, (4.23)

where B is the dimensionless magnetic field strength. This behavior of vacuum suscepti-

bility and vacuum magnetization is shown in Fig. (4.2). Again, no saturation is present.
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Magnetic susceptibility of QCD condensate has been studied within AdS/QCD in [253].

Figure 4.2: Vacuum susceptibility and vacuum magnetization from the D3/D7 model in

pure AdS at large quark mass from [228].

For small fields, the value

χ(0) = −2.15
Nc

8π2
(4.24)

has been obtained, in good agreement with Vainshtein’s result.

4.2 Vacuum Magnetization from Holography

In the preceding Section I have analyzed some of the previous holographic studies of

condensate/vacuum/baryonic matter magnetization and susceptibility. We have seen so

far that none of the holographic models for vacuum magnetization reproduce the saturation

property of condensate magnetization fully; perhaps, there is a good ground to believe they

should in fact not coincide, being physically different objects.

We use here the D3/D7 model which we defined in Chapter 2, Section 2.2. We use

the action (2.3), obtain equations of motion (3.10), find the sets of solutions for different

backgrounds, shown in Fig. (2.1). From those, using (3.12) for the quark condensate

and the quark mass, we easily evaluate the vacuum magnetization according to (4.15)

in the three backgrounds under consideration (Constable–Myers (2.12)–(2.14), Gubser–

Kehagias–Sfetsos (2.15)–(2.16), Liu–Tseytlin, (2.7)–(2.11)); the magnetization is shown

in Fig. (4.3). The asymptotic behavior at small fields is linear, at large fields it is an

unexpected

M =
c√
B
. (4.25)

This asymptotic is shown in Fig. (4.4).
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Figure 4.3: Vacuum magnetization from D3/D7 model in the Constable–Myers metric

(abbreviated as “CM” in the Figure), the Gubser–Kehagias–Sfetsos metric (“GKS”) and

the Liu–Tseytlin metric (“LTs”), at different values of quark mass (m = 2.5, 3, 4).

The value of the constant c is very close for all the three metrics:

c =











4.689,Constable−Myers,

4.602,Gubser

4.604,Liu− Tseytlin.

(4.26)

At small values of the field we have

µ = χ0B, (4.27)

where the linear vacuum susceptibility is

χ0 =











0.0052,Constable−Myers,

0.0062,Gubser,

0.0065,Liu− Tseytlin.

(4.28)

thus the linear vacuum susceptibility is very close in all of the three models. These

results are different from those by [249], yet we see the presence of saturation of vacuum

magnetization at large fields. What the lattice is definitely lacking is the maximum point;

moreover, the vacuum magnetization on the lattice saturates at a non-zero value.

Note that such a strange behavior of the vacuum susceptibility has been observed

in [254] for the transversal magnetization of matter M⊥, see Fig. 2b. This effect for
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Figure 4.4: Asymptotic behavior of the vacuum magnetization at large fields: exact results

and fits. “CM” stands for the Constable–Myers metric, “GKS” for the Gubser–Kehagias–

Sfetsos metric, “LTs” for the Liu–Tseytlin metric.

longitudinal magnetization has been observed for doped silicon and denoted as matter

magnetization inversion in [255], Fig. 1. A remarkably similar curve was observed in

YBa2Cu3O7 in the non-superconducting phase, see Fig. 1 in [256]. A family of analogous

curves with a maximum at some B = Bmax and further diminishing magnetization for

Bi2Sr2CaCu2O8+δ above Tc in magnetic fields is demonstrated in [257], for Bi2Sr2CaCu2O8,

Bi2Sr2−yLayCuO6 and La2−xSrxCuO4. The plot is reproduced in Fig. (4.5)1.

Speaking somewhat loosely, this result could possibly fit into the paradigm of the

electromagnetically superconducting QCD vacuum [258]. Note that this picture does not

have anything to do with the dual color superconductivity, which is one of the archetypal

models of QCD.

The issue of QCD electromagnetic superconductivity is widely discussed in current

literature. The idea of electromagnetic superconductivity for quark matter was proposed

by [259]. For cold and dense quark matter it has been realized by Bailin and Love that

1I thank Dr. Phuan Ong for his kind permission to reproduce this Figure.
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Figure 4.5: Experimental measurements from [257]: magnetization M of

Bi2Sr2CaCu2O8+δ as a function of the field B, at different temperatures (given by numbers

next to curves).

it must be a superfluid and electromagnetically superconducting phase [260, 261]. The

situation was described as most fitting to the physics of neutron stars. In these early

papers the critical magnetic field was calculated for the quark matter; it was found four

orders of magnitudes smaller than that on the surface of neutron stars, thus presumably

rendering the neutron star electromagnetically superconducting. Both s-wave (for u and

d quarks) and p-wave (for s-quarks) were considered.

The case of interest for us is the electromagnetic superconductivity of the QCD vacuum,

as opposed to a hot and dense medium. In [258] a prediction is made that the QCD

vacuum becomes inhomogeneously (longitudinally) electromagnetically superconducting

in the normal electromagnetic sense (ρ± meant as charges) after a second order phase

transition at
√
B > 0.6GeV. This electromagnetic superconductivity transition in a strong

magnetic field in the vacuum is related to a ρ-meson condensation. Thus at the phase

transition point a discontinuity in magnetic vacuum susceptibility should be observed.

We do not observe a true discontinuity, yet there is a significant fall-off and change of the

asymptotic behavior at some Bc, which is rather abrupt, when the M ∼ B law is changed

to M ∼ 1√
B
; thus, if there were indeed a different phase above the value of the critical

point, it would be reached via a crossover rather than a true transition. The numerical

value of the critical point can be obtained by comparing to the known value of the gluon

condensate in each of the respective metrics, 〈α
π
trG2〉 ∼ 0.01GeV2. The estimate we can
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give is
√

Bc ∼ 2GeV. (4.29)

Another dimensionful quantity we can compare against is the linear vacuum susceptibil-

ity. We obtain a result which is an order of magnitude smaller than the experimental

value (4.8):

χ0 =

{

2.7 GeV−2, experiment,

0.14 GeV−2, holography.
(4.30)

4.3 Discussion

This Chapter states the problem rather than fixes it. The problem generally may be

formulated as follows: at large fields the magnetization of the QCD vacuum and baryonic

matter is expected to saturate to

µ(B)|B→∞ = 1. (4.31)

Evidence for that is given both from lattice behaviour of the condensate magnetization

and from standard solid-state results like the Brillouin law. Although neither is an ex-

act physical equivalent of vacuum magnetization, one could speculate that the param-

agnetic saturation to unity due to ordering all the available spins is universal. This is

not what is observed in holography. In the cases considered, namely for my calculations

with the Gubser metric, with the Constable–Myers metric, with the Tseytlin metric, the

D3/D7 and for the Sakai–Sugimoto model results from literature, everything points to a

very interesting non-Brillouin behaviour. In all of the D3/D7 cases done here (Gubser,

Constable–Myers, Liu–Tseytlin), the vacuum magnetization rises to a certain Bc linearly,

then falls of as 1/
√
B. This is very untypical for normal matter, yet we find two examples,

which resemble this behaviour: one is the QCD phase transition to an electromagnetically

superconducting state at zero density and large magnetic field [258], the other one is a

an anomalous (high Tc) cuprate superconductor below the phase transition point (where

such a behaviour is observed for diamagnetism, not for paramagnetism as done here). We

do not claim presently having observed an electromagnetically superconducting behavior

in these models, yet a possibility of it should not be excluded, and the strange behaviour

of vacuum magnetization could be considered as a hint thereto.

Another unsolved problem is the numerical value of the dimensionful parameters, Bc

and χ0. For Bc only a conjecture exists based on rho-meson effective electromagnetic super-

conductivity of the QCD vacuum; our Bc is definitely much greater than the expected Bc

on a ρ-meson scale. For χ0 there exist both experimental and theoretical well-established
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values; our χ0 is ridiculously small. This may be an artefact of setting a physical scale. If,

instead of using trG2 for fixing the scale, we use χ0 itself

χ0 ≡ 2.7GeV−2, (4.32)

then we arrive at
√

Bc = 580MeV, (4.33)

which is not that bad compared to
√
Bc = 600MeV from [258]. The values are dif-

ferent, yet at present level of possible errors, generated by different estimates for χ0 –

(4.6), (4.7), (4.8), it is impossible to make any speculation on this difference. Perhaps,

the main lesson we learn from this comparison is that we roughly land into the ρ-meson

range.

The other important conclusion is independent of the conjectured superconductivity

state and tells us something about the holography itself. Namely, for these three metrics,

different in the IR, the numerical results are almost universal, which makes it possible

to speculate on them defining a universality class of holographic models. The relevance

of the universality class to QCD is only partial, as one sees from spectrum and from the

above considerations of magnetization properties, yet the result is in some sense “model-

independent”.
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Chapter 5

A Novel Resummation of Wilson

Loops

I study in this Chapter the confinement property of the pure SU(3) gauge theory, combin-

ing in this effort non-perturbative gluon and ghost propagators obtained as solutions of

Dyson–Schwinger equations, with solutions of an integral ladder diagram summation type

equation for the Wilson loop. I obtain the string potential and an effective UV coupling.

5.1 Overview

The problem of explaining the quark confinement has been of foremost importance since

the formulation of SU(N) Yang–Mills dynamics. The principal manifestation of confine-

ment is the linear growth of the potential between color charges. This is known to be a

property of the Wilson loop [262]. However, it has been impossible so far to reach this

in an analytic ab initio calculation in a 3 + 1 dimensional Yang–Mills. Along with other

efforts, estimates for the SU(N) string spectra have been done e.g. in [263], but those

were performed on the lattice in 2+1 dimensions. We want to deal with this challenging

problem by combining:

• the Erickson–Semenoff–Szabo–Zarembo (ESSZ) [3, 264] formulation for the Bethe–

Salpeter type equation for Wilson loops, with

• Dyson–Schwinger equations (DSE) for the gluon and ghost propagator in the Landau

gauge [265, 266].

I solve DSE for gluons and ghosts in the pure glue two-point sector. Then I insert

the resulting coupling α = g2/4π and the gluon propagator into the ESSZ equation for
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a rectangular (non-supersymmetric) Wilson loop, and solve this integral equation, which

yields the Wilson potential.

The ESSZ type ladder (or rainbow) diagram summation has long been a major tool

for extracting the non-perturbative information about the dynamics of a gauge theory.

However the strength of this method is more evident in the N = 4 supersymmetric Yang–

Mills due to the higher order vertex correction cancelation. In principle the use of the

ESSZ ladder summation in our context of non-supersymmetric Yang–Mills is doubtful,

and we will make several efforts to establish this approach: we will study the vertex

correction terms by comparing the leading order (LO) contribution to the next to LO

(NLO) contribution of the three-gluon vertex, and we will consider the convergence of the

entire procedure by evaluating the string tension at different DSE scale fixing points.

Within the Yang–Mills, the DSE for propagators and vertex functions have been stud-

ied in great depth, for a review see [266, 265] and references therein. The relation of

DSE to lattice results is discussed in [267]. An alternative related method of the func-

tional renormalization group has been discussed in [268]. Dyson–Schwinger equations for

fermions were extensively used in [269, 270, 271, 272] for hadron physics applications. The

relevant results on three-point functions are seen in [273], and on the quark propagator

in [265], the question of confinement inherent alone in DSE are discussed in [274, 275, 276],

the uniqueness of the infrared (IR) scaling of Green functions was established and gluon

propagator IR non-singularity was strictly supported in [277, 278], while the IR universal-

ity established in [279].

Below in section 5.2 we describe the ESSZ equations in a pure Yang–Mills theory with

an arbitrary propagator (form-factor). In section 5.3 we present DSE and our solution, our

results are in agreement with the standard state-of-the art calculations of ghost and gluon

propagators in the Landau gauge. In section 5.4 we evaluate the ESSZ truncated Wilson

loop, employing the DSE propagators from section 5.3 and check the significance of the

NLO vertex correction. In section 5.5 we discuss the reasons why a confining potential is

not observed either in the pure-glue two-point sector of DSE, or ESSZ solely, yet it is seen

in the combination thereof.

5.2 ESSZ Equation

The Wilson loop

W (C) = 〈tr Pexp







∮

C

Aµ(x)dx
µ







〉 (5.1)



94 5.2. ESSZ Equation

contains information about the behaviour of quarks in the theory, and the quark-antiquark

potential is

V (L) = − lim
T→∞

1

T
lnW (CT,L), (5.2)

where CT,L is a rectangular Wilson loop in the (x0, x1) plane, with T being loop temporal

length, and L loop spatial length, T ≫ L.

The Wilson loop (5.1) can be represented in terms of a perturbative expansion, which

can be found e.g. in the review [280]. A set of Feynman rules for Wilson loops can be

found in [281], which will be of use to us below. A perturbative treatment of Wilson

loops is not useful in the non-Abelian case, and especially in the present context, as it

yields obviously wrong results for the Yang–Mills theory, for which it predicts a Coulomb-

type potential [280]. A large-Nc partial summation of ladder diagrams has been proposed

in [3, 264] and performed for a circular and a rectangular loop in theN = 4 supersymmetric

model (SUSY). This method is adapted here to a non-SUSY theory, for the case that the

partial summation of a perturbation theory (PT) series for propagators has already been

performed in terms of solving DSE.

Consider a trapezoidal loop W (C) = Γ(T1, T2;L) with long parallel temporal sides of

lengths T1, T2, separated by a spatial distance L. Then the requirement that adding a

propagator to the summed expression does not change it leads to the following integral

equation for the sum of all ladder diagrams:

Γ(T1, T2, L) = 1 +
g2Nc

4π2

T1
∫

dt1

T2
∫

dt2 × (5.3)

×Γ(t1, t2, L)Dµν((x1 − x2)
2)ẋµ1 ẋ

ν
2,

dots denote derivatives in t1,2, respectively, where x
µ
1 = xµ1(t1), x

ν
2 = xν2(t2) are paths run-

ning over the Wilson loop as functions of t1, t2. For a rectangular loop x1 = (−L/2, t1, 0, 0),
x2 = (L/2, t2, 0, 0). One should note here that the propagator connecting the long sides

of the loop is just one of the possible corrections to be added even at the level of g2. The

loop has 4 sides, so in principle there could be 10 different propagator corrections (we

consider each side separately when integrating over the loop). Corrections which start

and end on the same side will lead to the perimeter divergence, which is irrelevant for the

present discussion of the potential. Corrections which include one of the shorter sides are

suppressed by their measure L, which satisfies L << T . We believe that this constitutes

the approximation which restricts us from taking the limit of L → ∞. Therefore, when

claiming confinement, we shall not be able to claim it asymptotically, but only within a

certain range of distances.
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A term not considered here is the tad-pole contribution like the one discussed in [282].

The tadpoles are arising on the lattice due to the higher powers of the field vector potential

Aaµ coming from the expansion of Wilson loop. Our method is essentially devised to resum

the non-linear contributions coming from Wilson loops. Thus in our case that the tad-

pole term would lead to double-counting. Note that our approach based on ladder partial

summation of the perturbative series is valid in the 1/Nc approximation. The latter is

often used but is not yet fully established.

The configuration space propagator is related to the momentum-space form-factor

F (p2), introduced in the next Section 5.3 by:

Dµν(x
2) =

1

(2π)4

∫

d4pe−ipx

p2
F (p2)

(

gµν −
pµpν
p2

)

. (5.4)

For simplicity we write Dµν(x
2)ẋµ1 ẋ

ν
2 ≡ D(x2). Boundary conditions imposed upon Γ are

Γ(T, 0;L) = Γ(0, T ;L) = 1. (5.5)

These boundary conditions are valid within the approximation, in which the gluon prop-

agator is inserted between the long temporal sides solely, which is exactly our case. The

potential is related to Γ(T1, T2;L) in the following way

V (L) = − lim
T→∞

1

T
ln Γ (T, T ;L) . (5.6)

Equation (5.3) is depicted symbolically in Fig. (5.1). Obviously, if we write down the

first term for Γ(T1, T2;L) in the g2 expansion of the solution, we shall reproduce the

perturbative result for the Wilson loop.

The central filled square in Fig. (5.1) symbolizes an irreducible kernel, containing (po-

tentially) all the possible loop corrections. Combining the equation for the Wilson loop

and Dyson–Schwinger does not lead to double-counting, because the class of ladder dia-

grams, summed for the Wilson loop, does not contain any iterations inside each particular

propagator. Since the Dyson–Schwinger formalism does not contain any geometric de-

grees of freedom, related to the loop, Dyson–Schwinger does not resum any contributions

of Wilson type. However, one could imagine a reformulation of our approach in which

the Dyson–Schwinger equations include a Wilson line in order to secure gauge invariance

(which we did not do); in that case the overcounting problem would of course be present.

A convenient way of solving (5.3) is to consider the equivalent differential equation:

∂2Γ(t1, t2;L)

∂t1∂t2
=
g2Nc

4π2
D
(

(t1 − t2)
2 + L2

)

Γ(t1, t2;L), (5.7)
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t2

= 1 + g N
2
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dt dt1 2
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T
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Figure 5.1: Summation of ladder/rainbows for a Wilson loop.

We now introduce the variables x = (t1 − t2)/L, y = (t1 + t2)/L. With this Ansatz the

separation of variables becomes possible, and using the form:

Γ =
∑

n

ψn(x)e
Ωny
2L (5.8)

we will be solving the 1d-equation

− d2

dx2
ψn(x) + U(x;L)ψn(x) = −Ω2

n

4
ψn(x), (5.9)

with the effective potential

U(x;L) = −g
2Nc

4π2
L2D

(

L2(1 + x2)
)

. (5.10)

We are solely interested in the unique ground state solution of (5.9), since the Wilson

quark-quark potential is

V (L) = − lim
T→∞

1

T
log
∑

n

ψn(x)e
ΩnT
L = −Ω0

L
. (5.11)

A degeneracy in solutions of (5.9) may arise and thus complicate the situation, however,

we have never observed it in our numeric calculations shown below in section 5.4.

It is now evident, that in order to complete the Wilson potential evaluation we need

the propagator D and the coupling α = g2/4π derived from DSE in order to be able to

evaluate V = −Ω0(L)/L.
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5.3 Dyson–Schwinger Equations

We now obtain the nonperturbative input to the ESSZ equations, i.e. the Dyson–Schwinger

improved gluon propagator and coupling α. The difference between DSE and the sim-

ple renormalization group (RG) improved quantity is in the IR and medium momentum

ranges, their ultra violet (UV) behaviour being identical (up to 1 loop at least). Our DSE

procedure uses the technique described in [283, 284], the reader familiar with this may skip

the current section where we demonstrate that the results of [283, 284] are independently

reproduced by us.

I employ in this Chapter the Newton-method based numerical technique described

in [285]. We solve a system for ghost and gluon propagators, corresponding to the represen-

tation seen in Fig. (5.2). Here bulbs denote dressing of the propagators, and transparent

bulbs – dressing of vertices.

p

p

p

= --1

-1
p

q

ppp p p

q

-1

-1

-1 p p

q

- -

Ghost

Gluon

=

p

p

p

= --1 -1

Quark

Figure 5.2: Diagrammatic representation of DSE.

These equations can be written in the form:























1

G(p2)
− 1

G(µ̄2
c)

= −
(

Σ(p2)− Σ(µ̄2
c)
)

,

1

F (p2)
− 1

F (µ̄2
g)

= −
(

Π(p2)− Π(µ̄2
g)
)

,

(5.12)

where vacuum polarization is

Π(p2) = Π2c(p2) + Π2g(p2), (5.13)
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Π2c(p2) = Ncg
2

∫

ddq

(2π)d
M0(p

2, q2, r2)G(q2)G(r2),

Π2g(p2) = Ncg
2

∫

ddq

(2π)4
Q0(p

2, q2, r2)F (q2)F (r2),

(5.14)

and self-energy is

Σ(p2) = Ncg
2

∫

K0(p
2, q2, r2)G(q2)F (r2)

ddq

(2π)d
. (5.15)

Fermion equations shown in the Figure will be explicitly written down and used in the next

Chapter; in this Chapter pure gluodynamics is considered. Here µ̄g,c are the subtraction

points, µ̄c = 0, µ̄g = µ̄, µ̄ is the limit of the interval p2 ∈ (0, µ̄2) in the momentum

space, where we solve the DSE, the coupling g2 is meant to be the g2(µ̄2). F is the gluon

propagator form-factor in the Landau gauge, defined via the relation

DF ab
µν (p) = δab

(

gµν −
pµpν
p2

)

F (p2)

p2 + iǫ
, (5.16)

and the ghost propagator the non-trivial behaviour is described by the form-factor G

DGab(p) =
δab

p2 + iǫ
G(p2). (5.17)

The variable z is the logarithmic variable

z = ln
p2

µ2
, (5.18)

and the scale µ is yet to be defined upon solving the Dyson–Schwinger equations from

comparing the obtained coupling αDSE(z) to the known values of αPDG(p
2) at point M :

αDSE(ln(M
2/µ2)) = αPDG(M

2). (5.19)

The coupling constant g2/4π ≡ α is expressed in terms of G,F solely [286, 287], as the

vertex is finite in the Landau gauge (at one-loop level)

αDSE(ln(p
2)) = αDSE(µ̄)F (p

2)G2(p2). (5.20)

In our case, we shall use a varying scale fixing pointM , so that we can prove that our results

are independent of scale fixing point choice, within the error margin of our procedure.

The kernelsM0, K0, Q0 are known in literature, but for self-containedness of the Chap-

ter we show them here:

K0(x, y, θ) = y2 sin4(θ)

(−2 cos(θ)
√
xy+x+y)

2 ,

M0(x, y, θ) = − y2 sin4(θ)

3x(−2 cos(θ)
√
xy+x+y)

,
(5.21)
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Q0(x, y, θ) = − 1

12x
(

−2 cos(θ)
√
xy + x+ y

)2×
{

y sin2(θ) [2 cos(2θ) (6x2 + 31xy + 6y2)−

−12x cos(3θ)
√
xy + xy cos(4θ)− 48 cos(θ)

√
xy(x+ y)−

−12y cos(3θ)
√
xy + 3x2 + 27xy + 3y2

]}

.

(5.22)

For convenience, the variables x = p2, y = q2 are introduced; the variable θ is defined via

(p− q)2 = x+ y−2
√
xy cos θ. We neglect the effects of non-trivial dressing of the vertices,

since these do not essentially back-react the IR structure of the propagator themselves, and

we do not apply them anywhere in the ESSZ summation. Had we been doing next-order

corrections to ESSZ, we would certainly have required the modifications of e.g. triple-gluon

vertex as well.

To solve the Dyson–Schwinger equations we use the Ansatz [283, 284]:

F (z) =















































exp

(

n̄
∑

i

aiTi(z)

)

, z ∈ (ln ǫ, ln µ̄2),

F (µ̄)

(

1 + ω log
p2

µ̄2

)γ

, z > ln µ̄2,

Az2κ, z < ln ǫ,

G(z) =















































exp

(

n̄
∑

i

biTi(z)

)

, z ∈ (ln ǫ, ln µ̄2),

G(σ)

(

1 + ω ln
p2

µ̄2

)δ

, z > ln µ̄2,

Bz−κ, z < ǫ.

(5.23)

Here Ti are Tschebyschev polynomials, ai, bi are unknown coefficients yet to be determined

from the numerical solution, n̄ is the number of polynomials used (mostly n̄ = 30 has

been used here, allowing a precision of 10−10 for coefficients), δ = −9/44, γ = −1 − 2δ,

ω = 11Ncα(σ)/(12π). The IR scaling κ is chosen to be the standard [288, 289]

κ = 0.59 (5.24)
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for the case of the Brown–Pennington truncation with ζ = 1 [284] (for discussion of the

meaning of ζ see [290]), which is our case (ζ already set to its number value every-

where). Following [265], we employ the renormalization constant Z1 redefinition, so that

no momentum dependence could possibly enter it, that is

Z1 =
G(y)(1−a/δ−2a)

F (y)(1+a)
G(y)(1−b/δ−2b)

F (y)(1+b)
. (5.25)

Again, following [265] we choose

a = b = 3δ, (5.26)

which minimizes its momentum dependence. The renormalization constant Z1 refers to

the piece with the ghost loop in vacuum polarization. The equations are solved by using

Newton’s method, very clearly described for this particular application by Bloch [285].

The results of the solution are propagator form factors F,G, shown in Fig. (5.3) on the

left, the IR behavior of the propagators corresponds to the standard ghost enhancement

and gluon suppression. The coupling α obtained from DSE (5.20) is shown on the right

in Fig. (5.3). We compare it to the standard coupling from the Particle Data Group [291],

and note that the both coincide very well in the UV. We note here that the IR fixed point

seen in the Figure is

α(0) ≈ 3 (5.27)

for Nc = 3, which is consistent with the up-to-date Dyson–Schwinger results reported by

other groups [265, 266].

Figure 5.3: Ghost (red line) and gluon (green line) propagator form factors obtained in

DSE in Landau gauge; running coupling from the DSE.
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5.4 Solving ESSZ Equation

We have to find the lowest eigenvalue of a Schrödinger equation (5.9)

(

−1

2

d2

dx2
+ U(x;L)

)

ψ(x) = Eψ(x) (5.28)

where the auxillary potential U(x) is related by a linear integral transform to the gluon

form-factor as

U(x) = − 2παNc

(1 + x2)2
1

(2π)2

∫

du

u
×

(

uJ1(u)− (1− 3x2)J2(u)
)

F

(

ln

(

u2

L2µ2(1 + x2)

))

,

(5.29)

where µ is defined at point M as given in Eq. (5.19), M varying from 1 to 10 GeV, u is

a dummy scalar dimensionless integration variable. The coupling α, in the sense of the

DSE approach, is taken here at the scale of 2π
L
. We solve the Schrödinger equation with

the shooting method and find its ground state. Special care is taken to make sure this

state is not degenerate. As a result we get the potential V (L) = −2
√

2|E|
L

. The potential

is defined up to an additive constant, so we shift it to provide convenient comparison to

existent results. It is shown in Fig. (5.4) below, and is compared with lattice results by

Gubarev et al. [292] and Necco [293]. The linear IR behaviour of the potential can be

clearly seen from the figure. We fit the potential by the standard expression

V (L) = −4

3

α0

L
+ c0 + σL. (5.30)

We demonstrate in Fig. (5.5) that the linear part of the potential is indeed clearly present,

comparing the approximation we make with a purely Coulomb approximation. We then

consider this question in a more systematic way in Table (5.1), where we evaluate χ2/DOF

for several possible analytic forms of the potential. The ‘experimental’ error for the po-

tential is taken from the error of string tension, which is estimated below. The linear

“confinement”-type dependence is the one with the acceptable confidence level. This

study demonstrates that the additional potential component is best described by a lin-

ear dependence of the potential and that it is the variation of the Coulomb part of the

potential which misleads the eye to think that there is a nonlinear behavior.

The dependence of the string tension σ on the scale fixing point choice is shown

in Fig. (5.6). We see that the variance of σ does not exceed that of different lattice



102 5.4. Solving ESSZ Equation

Table 5.1: χ2 for different approximations

Model χ2/DOF

ax+ b+ c/x 0.29

ax2 + b+ c/x 2.6

b+ c/x 19

Table 5.2: Comparison of string tension from different sources

Author Year σ,GeV/fm

Bali et al. [294] 2000 1.27

Necco [293] 2003 1.10

Gubarev et al. [292] 2007 0.978

Weise et al. [295] 2009 1.07

Present work 2009 1.07± 0.1

results, shown in the table (5.2). The error we quote arises from an average of results

obtained at different scale fixing points. This yields α0 = 0.24 and σ = 1.07± 0.1.

The key result, the linear confining potential comes as a surprise. It invites the question,

how large are the corrections coming from the three-point vertex? One actually should

not have thought that the Yang–Mills can be described with an ESSZ partial summation

structure. Considering the vertex, the auxillary potential is then modified:

U(x) = U (1)(x) + 4παNcU
(2)(x), (5.31)

where U (2)(x) comes, in the leading 1/Nc order, from the Wilson loop diagram shown

in Fig. (5.7).

Calculating the diagram in Landau gauge with rules as defined in [281] we obtain:

U (2)(t1, t2) =

∫

d4y

1
∫

0

dt3
1

(y − x1)2(y − x2)2(y − x3)2
×

[

(u1u2)(u3y)

(

1

(y − x1)2
− 1

(y − x2)2

)

+ cyclic permut.

]

(5.32)



Chapter 5. A Novel Resummation of Wilson Loops 103

L[fm]

V[GeV]

Figure 5.4: Potential as function of distance, solid line: our result, dashed line: result by

Necco, 2003 [293], dotted line: result by Gubarev et al. 2007 [292].

with






































x1 = (−L/2, t1, 0, 0)
x2 = (L/2, t2, 0, 0)

x3 = (−L/2 + Lt3, t1 + t3(t2 − t1), 0, 0)

u1 = (0, 1, 0, 0)

u2 = (0, 1, 0, 0)

u3 = (L, t2 − t1, 0, 0)

. (5.33)

The additional integral is taken over the intermediate gluon leg coordinate x3 on the loop

and over the position of the three-gluon vertex in spacetime; x1 and x2 are the same points
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Figure 5.5: Comparison of the approximations. Thick black dots are my numeric results,

continuous curve: approximation V (x) = ax+ b+ c/x; dashed curve: V (x) = b+ c/x.
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Figure 5.6: Dependence of string tension σ on the scale fixing point M .
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Figure 5.7: The terms in the ESSZ equations generating a two-loop correction to the

auxiliary potential U (2)(x).

as before. The loop in the NLO must keep its form for consistency with the LO.

A numerical evaluation of this integral shows that within the whole range of values of

t1, t2 with which we work, U (2)(t1, t2) = U (2)(t1− t2) ≡ U (2)(x). This makes a separation of

variables still possible and provides an extra test for the validity of our model. Numerical

values of U (2)(x) are such that U (2)(x)/U (1)(x)
<≈ 10−3, which makes its contribution to an

auxiliary potential ground state negligible. This allows us to justify the use of the ESSZ

equation in the non-SUSY case: a vertex correction is present but numerically suppressed.

5.5 Summary

The ESSZ approach to SUSY-Wilson-loops has worked very well in [3, 264]. The reason

for that is the absence of NLO corrections in the maximally supersymmetric theory. At
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a small coupling their result has restored the perturbatively known IR singularity struc-

ture. Moreover, the calculation originally performed in the small coupling limit, could be

continued into the large coupling limit. At large coupling the solution to the ESSZ equa-

tion reproduces almost exactly the gravity dual result [296, 297, 298] (up to an overall

numerical factor very close to unity). Actually this result, though obtained in a different

theory, has been guiding our SU(N) Yang–Mills treatment: as we are dealing with the IR

strongly coupled theory, we are certainly out of order of applicability of any perturbative

treatment, and even summation of diagrams would be suspicious.

The reason why the ESSZ equation has never been applied to non-SUSY contents is

obvious. It is clear from [3, 264] that when a perturbative propagator input is being used,

only a non-confining Wilson loop, with a Coulomb-type potential may be obtained. This

follows from the fact that dependence on the Wilson loop spatial size L may be scaled

out of the ESSZ equation, so that any potentials one gets from it are Coulombic, varying

from each other by coupling rather than by a distance dependence. Thus such a result

would have been a priori useless in understanding anything about the strong coupling IR

regime of gauge theory, where confinement governs the dynamics. This maybe the reason

why summation à la ESSZ has not before been employed in the pure Yang–Mills theory.

A description of a single Wilson loop, from which one can obtain the SU(N) potential

and provide a criterion of confinement, has not been done so far in terms of the two-

point sector of DSE hierarchy. Thus this Chapter closes an essential gap in the literature.

The main reason for this gap was the theorem by West [299], stating that confinement

is provided by a very IR-singular propagator D(q2) ∼ 1/q4. We know however that the

gluon propagator is regular in the IR in the DSE approach.

My work is based on a combined analysis of Green functions and Wilson loops, allowing

thus a study of the spatial Yang–Mills potential. This distinguishes our approach from

several earlier papers, where gluon non-propagation was considered instead of confinement

and related to the analytic properties of Green functions, in particular, to the IR scaling

κ, Eq. (5.24). These other works use the word “confinement” as in the original paper [262]

when they mean to say of “non-propagation”. Known is the so-called Kugo–Ojima criterion

for colour non-propagation κ > 0 [300], the Zwanziger criterion of ghost non-propagation

κ > 0 and gluon non-propagation κ > 1/2 [301]. A claim has been made [302] for κ > 1/4

to be a quark confinement criterion by an analysis of the Polyakov loop and the effective

QCD action in an external field. All these results are about gluon non-propagation rather

than the properties of a colour charge confining interaction.

Returning to the discussion of my results, I note that the reliability thereof may be

questioned in what concerns the DSE input. The first issue is the truncation of the DSE
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system we solve to the level of two-point functions. This truncation is justified, since the

ghost-gluon vertex does not acquire one-loop corrections in Landau gauge. It has been

proven that the three-point gluon and quark-gluon functions do not change the ghost

dominance property [273], even though they are important for bound states [303]. In this

sense, vertex functions are unimportant for our particular context.

Another question is whether the Green functions obtained from DSE are physically

relevant within the Wilson loop context we are discussing. We note that it is mostly the

medium-energy range that provides the important contribution into the auxiliary potential

U(x;L), rather than the perhaps more model dependent IR piece. The Wilson loop thus

depends on medium energy range values of the propagators, where the DSE behaviour is

the same as on the lattice. There are unresolved questions regarding a comparison of IR

scaling [304] within lattice and DSE. These issues have yet to be understood and resolved,

although they do not affect our results materially.

The observables σ, α we compute are in principle gauge invariant, when taken to all

loop orders. Our results are obtained in Landau gauge, which, as noted, is a convenient

choice. The ESSZ summation, as any ladder diagram summation, relies on a selective

diagram sum, so it may not necessarily be order-by-order gauge-invariant. It should be

possible to check gauge-invariance explicitly at the one loop level, we however do not do

that here, since this transcends the scope of the present Chapter. We think that the

possibility for the observable we consider to be gauge invariant at one-loop level comes

from the fact that several gauge-dependent objects are combined.

I speculate here à propos that a nonperturbative summation a la ESSZ could improve

significantly the properties of a correlator of gluon strengths with Wilson lines

F(x) = 〈trFµν(x)U(C)F µν(0)U+(C)〉 (5.34)

U(C) being a phase factor

U(C) = Pexp







ig

∫

C

Aµdx
µ







, (5.35)

which differs from the Wilson loop since the path is connecting the arguments in (5.34)

i.e. points x and 0. (5.34) had recently been of great interest [305], as it represents an

important vacuum property. As far as we know, a Bethe–Salpeter equation for this kind of

correlator has not been developed yet. We attempted to evaluate it perturbatively [306].

The present effort arose from this earlier one but should have actually anteceded it, since

then the required framework for the ESSZ summation may have been at hand.

A hypothesis should be considered that using a relevant component of the non-pertur-

bative input from Dyson–Schwinger equations, one may be able to obtain a self-consistent
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picture of the Yang–Mills vacuum with all the higher correlation functions, colour con-

finement and condensates, which is supported at the simplest LO level by the presented

calculation.

To conclude, combining a Dyson–Schwinger summation for gluon and ghost propaga-

tors with the Ericson–Semenoff–Szabo–Zarembo summation (truncation) for the Wilson

loop, I have obtained the string tension and have further demonstrated that its value is

nearly not dependent on the selection of the DSE scale fixing point, thus establishing the

internal consistency of this novel description of confinement. The string tension deter-

mined by our method for the pure SU(3) gauge theory is σ = 1.07 ± 0.1 GeV/fm. The

UV Coulomb behavior is governed by α0 ≈ 0.24.

One can actually be quite amazed that our method has worked so well in the SU(3)

Yang–Mills approach, without supersymmetry, thus with vertices non-compensated. One

can speculate that the two truncated summations are complementary, ESSZ taking care of

the ladders and the DSE taking care of rainbows in the vertices. Among interesting further

steps in the development of this framework we recognize the formulation and evaluation

of a similar ESSZ equation for the correlator of two gluons, having in mind its application

to the non-local gluon condensate (5.34). Another, perhaps more challenging further

development could be to solve the ESSZ and the DSE jointly, without the separation into

partial systems.



Chapter 6

Dyson–Schwinger Equations,

Non-Local Condensates and Effective

Actions

I obtain in this Chapter the QCD quark condensate from a consideration of unquenched

quark dynamics in the Dyson–Schwinger gluon vacuum. I consider the non-local extension

of the condensate and determine the quark virtuality. I also obtain the condensate-driven

contribution of the non-perturbative QCD to the Euler–Heisenberg Lagrangian of QED in

external electromagnetic fields.

6.1 Overview

A method relying on the Dyson–Schwinger equations (DSE) for obtaining the (non-local)

quark condensate and Euler-Heisenberg type effective action with quarks in loops is de-

scribed here. A self-consistent scheme for that is developed, based on a full set of DSE with

dynamical quarks, ghosts and gluons. This approach is built on methods and prescriptions

we adapt from Fischer [307], and already partially explained in Chapter 5.

The non-local quark condensate was considered by Shuryak in [5], and further devel-

opments followed soon after [308, 251, 309]. The gauge invariant NLC is defined by

C(x2) ≡ 〈q̄(x)E(x; 0)q(0)〉, (6.1)

where the Wilson phase factor is defined as

E(x; 0) = Pexp



ie

∫

C

Aµ(x)dx
µ



 , (6.2)
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and the contour C connects points x and 0. In this Chapter we focus our attention on the

first terms in powers of x which are independent of the Wilson line contributions. Wilson

line terms are in general very important, and such contributions should be evaluated self-

consistently [310, 311], which may be done by the Ericson – Semenoff – Szabo – Zarembo

(ESSZ) technique used by me in the previous Chapter 5. It has been shown within the

instanton vacuum model [312] that the form of the NLC is nearly independent on possible

irregularities of the path, such as a cusp and thus in general the path can be represented

by a straight line.

The initial motivation for introducing a NLC came from its influence on the hadron

phenomenology. For this reason NLC has been decomposed into the local condensates

(LC) and the measure of the quark fluctuations in vacuum, known as the quark virtuality

(QV). This quantity related to NLC, is defined as

λ2q =
〈q̄D2

µq〉
〈q̄q〉 , (6.3)

(here Dµ is the covariant derivative), arising in the standard operator product expansion

(OPE) of the NLC as the coefficient in front of the quadratic term:

C(x2) = 〈q̄(0)q(0)〉
[

1 +
x2

4

〈q̄D2q〉
〈q̄q〉

]

. (6.4)

Quark virtuality is related to the gluon-quark trilinear (local) condensate

〈q̄D2q〉
〈q̄q〉 ∼ 〈q̄gσµνGµνq〉. (6.5)

and thus can be counted as an independent vacuum structure parameter, characterizing

the non-perturbative QCD vacuum. The standard estimate for λ2q by Chernyak and Zhit-

nitsky [313] is λ2q ≈ 0.4 ± 0.1GeV2. There are other estimates, however, e.g. within

an instanton liquid model [314], the corrected value of which is given in [310, 315] as

λ2q ∼ 0.7GeV2. We note that these numerical values for the correlation length are compa-

rable with the typical hadronic scale.

Our effort to relate DSE and NLC is not the first. An attempt to derive self-consistent

equations upon condensates was made by Pauchy Hwang [316] in the large-1/Nc limit.

A non-local quark condensate has been obtained within the flat-bottom potential ap-

proach to the Dyson–Schwinger equations, where a typical correlation length of 3GeV−1

has been obtained [317]. The Dyson–Schwinger equations are solved in [318] for the quark

dynamical mass and wave-function (no gluons or ghosts solved dynamically; gluon propa-

gator mimicked by an Ansatz, rainbow approximation applied to quark equations); using
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propagators, the quark-quark non-local condensate and the quark-quark-gluon local con-

densates are calculated, the typical correlation length obtained is 0.5 GeV−1. The same

methods were used in [319], where virtualities λ2u,d = 0.7GeV2, λ2s = 1.6 GeV2 are re-

ported. These results are confirmed in [320] and completed with the gluon virtuality as

well λ2g = 0.2α
− 1

2
s − 1.0α3

s GeV2, the latter exhibiting a strong scale dependence via the

coupling constant. The Dyson–Schwinger equations were solved in a similar approximation

(no dynamical gluons and ghosts) in [321]; however, surprisingly large values of virtualities

have been reported: λ2u,d = 12 . . . 16 GeV2, λ2s = 14 . . . 18 GeV2. Till now, there has been

no self-consistent treatment of the non-local condensates based on DSE with gluons. We

consider this to be a disadvantage of the scheme, since quark fluctuations in vacuum are

driven by gluons. We will present our result for QV as function of quark mass.

I describe the DSE methodology and calculate the propagators in the next section (6.2),

the non-local condensate (NLC) and its response to an external field is studied in sec-

tion (6.3). In section (6.4) I do the Euler-Heisenberg type effective action for quarks with

non-perturbative DSE propagators in external fields and compare our results to the meson

based evaluation. I conclude the Chapter in section (6.5).

6.2 Dyson–Schwinger Equations

6.2.1 Formulation of DSE with Quarks

In this section the technique of obtaining quark and gluon propagators in a self-consistent

way is reviewed. As in the previous Chpater, Fisher’s DSE technique is used, which

was described in [307], and it is shown that the propagators are reproduced by us in

the case with quarks as well – they have already been reproduced the gluodynamics sector

above. The Newton optimization method is applied here, based on the numerical procedure

described in the previous Chapter. The system for ghost, gluon and quark propagators

is solved, as shown in Fig. (5.2). Propagator dressing is shown by bulbs, and that of

vertices – by transparent bulbs. The gluon propagator is parameterized in Landau gauge

by the form-factor F , defined via the relation (5.16), and the ghost by formfactor defined

by (5.17). The quark propagator is defined as

S(p) =
1

A(p)

1

p/ +M(p)
. (6.6)

Finding the scalar form-factors F,G,A,M will yield non-perturbative information on the

physical quarks and gluons.
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DSE for this system can be written in the form:



































































1

G(p2)
− 1

G(µ̄2
c)

= −
(

Σ(p2)− Σ(µ̄2
c)
)

,

1

F (p2)
− 1

F (µ̄2
g)

= −
(

Π(p2)− Π(µ̄2
g)
)

,

1

A(x)
= 1− ΠA(x)

A(x)
+ ΠA(µ̄

2
g)

M(x)A(x) =M(µ̄2
g) + ΠM(x)− ΠM(µ̄2

g)

(6.7)

Here µ̄g,c are the points of subtraction, µ̄c = 0, µ̄g = µ̄, µ̄ is the limit of the interval

p2 ∈ (0, µ̄2) in the momentum space where we solve the DSE, the coupling g2 is meant to

be taken at point µ: g2(µ̄2). The gluon vacuum polarization is given in (5.13), the ghost

self-energy is (5.15). The quark self-energy is conveniently split into functions ΠA and

ΠM , given below:

ΠM =
1

3π3

∫

d4y

{

α(z)

z(y +M2(y))

G(z)−2d−d/δ

F (z)d
1

A(y)

[

3

2
(A(x) + A(y))M(y) +

1

2
(∆A(x, y)M(y)−

−∆B(x, y)) (−z + 2(x+ y)− (x− y)2/z)+

+
3

2
(A(x)− A(y))M(y)Ω(x, y)(x− y)

]}

(6.8)

and

ΠA =
1

3π3

∫

d4y

{

α(z)

xz(y +M2(y))

G(z)−2d−d/δ

F (z)d
1

A(y)

[(

−z + x+ y

2
+

(x− y)2

2z

)

A(x) + A(y)

2
−

−
(

∆A(x, y)

2
(x+ y) + ∆B(x, y)M(y)

)

×

×
(

− z
2
+ (x+ y)− (x−y)2

2z

)

+

+
3

2
(A(x)− A(y)) Ω(x, y)

(

x2 − y2

2
− z

x− y

2

)]}

,

(6.9)
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yielding the last two equations of (6.7). Here auxiliary functions ∆A,∆B,Ω,∆Ω have

been introduced:

∆A(x, y) =
A(x)− A(y)

x− y
,

B(x) = M(x)A(x),

∆B(x, y) =
B(x)−B(y)

x− y
,

Ω(x, y) =
x+ y

(x− y)2 + (M2(x) +M2(y))2
.

(6.10)

The constructions (6.8), (6.9), are taken from [307], we have fixed here a typo originally

present in Eq. (6.8). The parameter d is related to the Ansatz for the quark-gluon vertex

that is used. There is no unambiguous way of choosing this parameter, since there is no

fully consistent way of truncating DSE without violating some of the worthy properties of

the original full tower of equations, and we refer the reader to [307] for a comprehensive

discussion on that point. The variable z is a logarithmic variable

z = ln
p2

µ2
, (6.11)

and the scale µ is yet to be defined as in (5.19); in everything what concerns the scale and

coupling constant definition we follow Chapter 5.

The kernels M0, K0, Q0 are given in (5.21)-(5.22). Scalar variables x = p2, y = q2 are

introduced as in Chapter 5.

To solve DSE we use Ansätze similar to (5.23) forM(p), A(p), the rest of the procedure

remains exactly as it was. The coupling and gluon propagators are little modified compared

to the previous chapter, so we do not show the figures for them here again.

Quark wave-functions were obtained for one quark at a time solving in a self-consistent

way the DSE, i.e. these are unquenched quarks. They are quite similar to the quenched

approximation where quark DSE is solved for a given glue DSE solution. The wave function

form factors are shown in Fig. (6.1). Wave-function form factors become perturbatively

unity; within an error margin they are no more distinguishable in the UV, although they

exhibit a different and non-trivial behavior in the IR.

The quark masses are shown in Fig. (6.2). Physically it is important that UV anomalous

dimensions of all the quarks are rendered the same in Fig. (6.2) , which confirms the

validity of the procedure. This can be seen from the dashed parallel lines in Fig. (6.2).

In general, in this Section, we confirm all the current knowledge on the DSE with quarks.

We improve the numerical convergence by smoothing the numerical cut-off on integrals
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Figure 6.1: Wave-function (propagator) form factors A(p) for flavors

u(red), d(green), s(blue), c(magenta) (lines from top to bottom at p = 0.5 GeV.

by superimposing varying limits, which procedure removes Fourier transform ‘echos’ from

the results.

Figure 6.2: Quark massM(p) for flavors u, d, s, c. Punctured parallel tangent lines demon-

strate that anomalous dimension is mass-independent.

6.3 Non-local Condensate

6.3.1 Dependence on Mass of the Condensate Shape

In this Section we calculate the non-local condensate omitting the Wilson line, study its

behavior under external fields and compute the vacuum response due to the presence of

non-local condensates to external fields.
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The nonlocal condensate-related vacuum expectation value (C-VEV)

C0(x) = 〈ψ̄(x)ψ(0)〉, (6.12)

where the local condensate C(0) satisfies C(0) = C0(0), can be related to the propagator

as

C0(x) =
1

(2π)4
Nc

Nf
∑

i

∫

d4p
eipx

Ai(p)

4Mi(p)

p2 +M2
i

− (PT). (6.13)

However, the separation the perturbative (PT) part from the non-perturbative propagator

is not well-defined. Moreover, some argue that the non-perturbative procedure is producing

only the non-perturbative quark propagator and that there is no PT subtraction needed.

We do not have a good argument to support this reasoning, or, alternatively, a PT part

subtraction, thus we follow the former approach. This also does not introduce additional

procedure ambiguity. Accordingly, it should be remembered when evaluating our results

that the full non-perturbative understanding of the QCD vacuum cannot be reached on

grounds of Dyson-Schwinger equations alone, without applying additional resummation

procedures, e.g. the ESSZ-resummation [322]. For this reason our results should be

treated as a first qualitative estimate, and not yet as exact predictions.

Despite any of the above shortcomings, the results obtained are surprizing. The C-

VEV is shown in Fig. (6.3), where it can be seen from top to bottom (at x→ 0) beginning

with the heavy quark 〈c̄(x)c(0)〉, 〈s̄(x)s(0)〉 〈d̄(x)d(0)〉, 〈ū(x)u(0)〉. Numerical difficulties

prevent one from reaching a higher mass than 500 MeV for charm (at scale of 2 GeV). The

non-local condensate exhibits some oscillatory behaviour within 2 < x < 10 GeV−1. It

can be believed that these C-VEV oscillations are due to the numeric uncertainty. At this

large distance the sequence of the C-VEV has reversed with smallest quark mass leading

to largest values of C-VEV.

6.3.2 Local Quark Condensate and Quark Virtuality Dependence

on Mass

The standard wisdom [16] about condensate dependence on mass for heavy quarks is

〈q̄q〉 = − 1

12mq

〈αG2〉, (6.14)

which I checked holographically in Section (2.3.2). This relation is usually derived from

requiring continuity between heavy and light quarks’ properties, imposed at the scale of

about 0.2 GeV. The behavior of our propagators and wave functions is continuous, yet the
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Figure 6.3: Non-local condensate for u, d, c, s quarks (red, green, blue and magenta curves

correspondingly).

dependence on mass we observe is completely different. Another well regarded relation

is [226]

〈s̄s〉 ∼ 0.8〈ūu〉. (6.15)

Note that in my evaluation the local condensate is independent of the Wilson line integral

and thus our results for x → 0 while still the PT subtraction dependent are more secure.

For c and s quarks the values one sees in Fig. (6.3) are considerably larger than expected.

Moreover, it is found that our condensates increase with mass and do not decrease, as was

expected based on the above low-energy theorem. The condensate dependence on mass

was studied by means of a DSE analysis also in [323, 324].

The values of the condensate is fitted surprisingly well by a simple power law

qq(m) = 0.2 GeV3
( m

1GeV

)0.73

, (6.16)

not at all expected from any qualitative QCD model we know. The mass dependence of

condensate is illustrated in Fig. (6.4). The dashed line is the expected light quark value,

the thick line the c, s expectations of Eq.(6.14). Note that these results are obtained

by considering one quark at a time and solving self-consistently DSE (unquenched single

quarks).

It seems that with increasing mass quarks can probe better the non-local glue vacuum

fluctuations and thus their response strength increases. The non-locality of the glue vac-

uum structure is usually not considered in the qualitative condensate models. However,

there is no argument to align the light quark local condensate as a function of m with the

heavy quark condensate. It can be also noted that when dealing with realistic quarks, their

physical magnetic moments must be taken into account. However, this effect diminishes

with quark mass and cannot explain the heavy quark condensate behavior.



116 6.3. Non-local Condensate

0.0050.01 0.05 0.1 0.5
m,GeV

0.005

0.01

0.02

0.05

0.1

<ΨΨ
�����
>,GeV3

Figure 6.4: Local condensate mass dependence. Red dots are DSE results, the thick line

represents the estimate (6.14) for heavy quarks, while the dashed line stands for the

standard 〈ūu〉 value, the thin line indicates the power-law approximation (6.16).

In another attempt to understand this strange behavior, one could suggest that heavy

quarks are worse represented by Dyson–Schwinger equations, since they tend to decouple

and thus a one-loop approximation becomes almost free, but at higher loops they might

become again important, thus yielding the DSE approach invalid. However, this explana-

tion is not valid, since a comparison of quenched approximation to the unquenched shows

very little difference between the two. Thus the issue of condensate dependence on mass

in the DSE scheme presented here remains an open question.

Should this behavior be true, this strong dependence on mass of the light quark conden-

sate would deeply impact the chiral model analysis of quark masses, where a cornerstone

assumption is that light quark condensates have equal values.

The quark virtuality dependence on mass is given in the table 6.1 below and is shown

in Fig. (6.5). We note the highly regular behavior, following the fit

λ2q = 0.39GeV2
( mq

1GeV

)1.07

(6.17)

shown in Fig. (6.5) For comparison recall that virtualities λ2u,d = 0.7GeV2, λ2s = 1.6GeV2

were reported [320], as discussed in Section 1. Recall also λ2q ≈ 0.4± 0.1GeV2 [313] and

λ2q ∼ 1.2GeV2 [325].

6.3.3 Condensate Response to an External Field

The character of the condensate dependence on the external field can also be established.

Considering the diagram shown in Fig. (6.6), F 2-order term in the non-local condensate

can be derived

〈ψ̄ψ〉F = 〈ψ̄ψ〉0 + F 2f1(x)− FναF
α
µ

∂2

∂ν∂µ
f2(x), (6.18)
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Figure 6.5: Quark virtuality dependence on the quark mass.

Figure 6.6: Diagram describing the condensate sensitivity to the field.

where moments f1, f2 are

f1(x) =
1

(2π)4

∫

eipxd4p

A3(p)

(−8)m(p)

(p2 +m2(p))3
,

f2(x) =
1

(2π)4

∫

eipxd4p

A3(p)

(−16)m(p)

(p2 +m2(p))4
.

(6.19)

Notice here that not only the character of the condensate dependence on x changes due

to the field being switched on, but it acquires anisotropy. The function f1 is shown

in Fig. (6.7). It deserves attention that smallest quark masses bring largest response to

the field, which is quite reasonable. The resulting parameters are shown in the table (6.1).

It can be seen from analysis of f1 that already fields of order of magnitude of 10−1 GeV2

may put the local condensate to zero. This is comparable to the prediction of critical fields
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Table 6.1: Main characteristics of the condensate: the local amplitude C(0), the virtuality

λ2, condensate amplitude variation δC(0)
δF 2 , the virtuality variation

δλ2q
δF 2 , the infrared exponent

a (〈ψ̄(x)ψ(0)〉 ∼ e−ax), the variation of the infrared exponent δa
δF 2 . Mass value m = 0.51 in

the fourth line is not a misprint against the expected m = 1.27 GeV, but was the largest

mass at the 2 GeV scale available to us.

mq,GeV q C(0),GeV λ2q,GeV2 δC(0)
δF 2 ,GeV−1 δλ2q

δF 2 ,GeV−2 a,GeV δa
δF 2 ,GeV−3

0.0025 2/3 0.00239 0.00066 0.037 0.00082 0.40 0.20

0.005 1/3 0.0042 0.0013 0.023 0.00094 0.65 0.20

0.105 1/3 0.037 0.039 0.015 0.0017 1.04 0.22

0.51 2/3 0.12 0.18 0.0064 0.0015 1.04 0.37

for condensate

Fcr =
m2
π

log 2
(6.20)

by Smilga and Shushpanov [24].
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Figure 6.7: Factor f1(x) as a function of the distance, describing the nonlocality of the

condensate sensitivity to an external field.

Long-distance correlations will be even more sensitive to fields, since f1 decreases slower

than the condensate itself, thus making the pion wave-function a nice candidate for an

analysis in an external field.
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6.4 Effective Action due to Condensates

One of the simplest nonlinear processes of QED is photon-photon scattering, shown

in Fig. (6.8). In the language of the Euler–Heisenberg effective action, the following term

is responsible for this kind of processes

L = a(FµνF
µν)2 + F ν

µF
λ
ν F

ρ
λF

µ
ρ =

= A(FµνF
µν)2 +B(FµνF̃

µν)2.

(6.21)

Coefficients a, b are in case of QED

a = − α2

36m4
,

b =
7α2

90m4
,

(6.22)

and A,B are linearly related to them: A = a+ b/2, B = b. These coefficients are calculate

din this section for the condensate contribution of the QCD vacuum into QCD-related

photon-photon scattering. It will be clear at the end that the contribution is larger than

expected, compared to standard (perturbative) contribution due to hadrons. However,

the magnitude of the effects is very small compared to what is experimentally accessible

today, and in the foreseeable future in the domain of intense laser physics.

Figure 6.8: Leading nonlinear term in the Euler–Heisenberg effective action, ki are incom-

ing momenta, q quark charges.

Strictly speaking, when dealing with realistic quarks, their physical magnetic moments

must be taken into account. In the effective action quark magnetic moments would invoke

a contribution of the type µ4
qF

µ1ν1F µ2ν2F µ3ν3F µ4ν4 tr[σµ1ν1σµ2ν2σµ3ν3σµ4ν4 ]. Noting that the
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outcome might be non-negligible, this contribution is left aside, since it requires a serious

modification of the DSE solution scheme and complicated issues of truncation validity.

To achieve the result the diagram Fig. (6.8) is calculated with propagators obtained

in the previous section, which are responsible for condensates. The condensate and the

free terms are not separated at the level of each propagator, but rather the full diagram is

done with the full propagators, and then compared to the perturbative terms (a, b already

given above, multiplied by respective quark charges). As the momentum dependence of

the full diagram on the s, t, u invariants would be known only numerically as a result of

a calculation, containing numerical data for propagators, we use the following trick. The

scattering amplitudes M(e1, e2, e3, e4) are worked out, given as

M̃µνλρ(k1, k2, k3, k4) = e4
∫

d4p

(2π)4
tr [S(p)γµS(p+ k1)γ

ν×

× S(p+ k1 + k2)γ
λS(p+ k4)γ

ρ
]

.

(6.23)

For the scattering amplitudes at small values of the photon frequencies ω we extract the

coefficient at the ω4 term:

M̃µνλρ(k1, k2, k3, k4)e
µ
1e
ν
2e
λ
3e
ρ
4 =M0 + ω4α2M(e1, e2, e3, e4), (6.24)

for two specific sets of polarization vectors, namely, (e1⊥, e2⊥, e3⊥, e4⊥) and (e1‖, e2‖, e3⊥, e4⊥),

(ei⊥ denotes the polarization orthogonal to the reaction plane, and e1‖ the polarization in

the reaction plane), at specific values for θ (namely, forward scattering θ = π). These can

be expressed as the following scalar integrals

M(e1⊥, e2⊥, e3⊥, e4⊥) =

=

∞
∫

0

32p3dp

15 [p2 +M(p)2]8A(p)3

[

19p8 + 75M(p)2p6−

−10M(p)4p4 − 330M(p)6p2 + 30M(p)8] ,

(6.25)

M(e1‖, e2‖, e3⊥, e4⊥) =

= −
∞
∫

0

32p3dp

15 [p2 +M(p)2]8A(p)3

[

7p8 − 25M(p)2p6−

−40M(p)4p4 + 60M(p)6p2 − 30M(p)8] .

(6.26)
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Table 6.2: Coefficients a, b, A,B of non-linear terms in the effective action. The “pertur-

bative” (PT) line shows for comparison the coefficients a0, b0, A0, B0 for mass m in the

loops which can be thought of approximately as Λ ∼ 300 GeV; our results are shown as

dimensionless ratios against a0, b0, A0, B0. Quarks charges qi = 2/3, 1/3 are included into

the coefficients.

a0 b0 A0 B0

PT − 1
36m4

7
90m4

1
90m4

7
90m4

flavor a/a0 b/b0 A/A0 B/B0

u 0.07732 0.09317 0.1328 0.09317

d 0.00302 0.00337 0.00425 0.00337

s 0.00019 0.00022 0.0003 0.00022

c 0.00064 0.0007 0.00085 0.0007

Polarization vectors have been
e‖ = {0, 0, 1, 0},
e⊥ = {0, 0, 0, 1}, (6.27)

with center-of-mass kinematics

k1 = ω{1, 1, 0, 0},
k2 = ω{1,−1, 0, 0},
k3 = ω{1, cos θ, sin θ, 0},
k4 = ω{1,− cos θ,− sin θ, 0}.

(6.28)

In the expansion we used the fact that ω is believed to be small, therefore, all non-

perturbative momentum-dependent factors (M(p), A(p)) are taken at the point p.

On the other hand, the coefficients M(. . . ) are known from (6.21) by direct analysis

M(e1⊥, e2⊥, e3⊥, e4⊥) = 64(2a+ b),

M(e1‖, e2‖, e3⊥, e4⊥) = 16(4a+ b).

(6.29)

Thus a simple comparison of (6.25) and (6.29) yields values for a, b and A,B. They are

shown in Table (6.2). This Table is quite instructive. First of all, the contributions are

comparable with the expected hadronic ones. The range of the latter can be estimated

roughly within 1/90m4
π . . . 1/90m

4
ρ ∼ 40 . . . 0.05 GeV−4. Quarks with large bare masses

yield less, as expected on general grounds.
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6.5 Discussion

Solving the one quark-gluon-ghost Dyson-Schwinger equations, the quark non-local con-

densate and quark virtuality have been obtained as functions of the quark mass. The

mass dependence of the condensate disagrees with current qualitative wisdom, and with

our holographic proof of decoupling, given in Section (2.3.2). An explanation for why this is

the case has not been found. The growth of the quark condensate withm0.73,m < 500MeV

implies a significant difference between all mass condensates above and beyond any expec-

tations.

Regarding the influence of an external field on the condensate I predict that fields

of order of magnitude of 10−1 GeV2 can actually destroy the local condensate, and even

smaller fields can destroy the non-local x-dependent condensate at x 6= 0. This result

may have direct impact on the pion wave function in external fields. Pimikov, Bakulev

and Stefanis [326] show that the non-locality of the condensates is needed in a study of

the non-perturbative contributions to the pion form factor. This shows how our results

influence the study of dynamics of the pion wave function in external fields.

In addition I predict that light quarks make important non-perturbative contributions

to the photon-photon scattering amplitude, comparable with the corresponding perturba-

tive contributions based on loops with light mesons. This effect is driven by the condensate

non-locality. The present non-perturbative evaluation suggests that the critical field, above

which the non-linear QCD-QED effects can be seen, is several times lower than the typical

hadronic scale. Even so, experiments to probe the QCD vacuum with intense laser fields

are far beyond the foreseeable future.

I have outlined in the text an opportunity for further theoretical advance, which must

first focus on the resolution of the mass dependence of quark condensate and better under-

standing of the related quark virtuality. The relatively large effects which external fields

can impart on the QCD vacuum must be confirmed in the context of such an improved

theoretical framework.
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6.6 A Recently Proposed Experiment

In the paper [2] is has been suggested that a very precise measurement of the real part

of the vacuum polarization can be reached in the following experiment. Consider a laser

creating a very narrow bunch of high intensity, which we shall call target, and another

one, creating a wider bunch of low intensity, which we shall call probe. The setup is shown

symbolically in Fig. (6.9). The thin target bunch will effectively act as a diffraction object

Probe
X

YZ

Target

diffraction pattern

Figure 6.9: Experiment suggested in [2]

for the probe laser, since it will have a refraction index different from that of the rest of

the medium. The diffraction pattern of it can then be observed on the diffraction screen.

This will measure the phase difference acquired by the laser by means of passing through

the area of intensive field, where vacuum polarization effects are significant.

The effects of QCD will be due to the diagrams of (6.10). The effect of the one-

ee

ee

ee

ee g

g

(a) (b)

Figure 6.10: One- and two-loop contributions to photon-photon scattering.

loop diagrams Fig.6.10(a) is absolutely the same as in QED, modulo charges and group-

theoretical factors. The diagram Fig.6.10(b) is specifically QCD, where a gluon runs inside.

The contributions of Fig. 6.10(a) to the effective action is [327]:

L(4) = Nc
2

45

α2

m4
q

[

( ~E2 − ~H2)2 + 7( ~E ~H)2
]

, (6.30)

and Fig.6.10(b) contributes

L(6) =
αs
π

α2

m4
q

[

16

81
( ~E2 − ~H2)2 +

263

162
( ~E ~H)2

]

, (6.31)
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where αs is the QCD coupling. Here a comment on the applicability of the standard

effective action QED paradigm to QCD is due.

Perturbation theory with the quarks is applicable in QCD mostly in the high-energy

range. The standard lore is that low energy QCD is dominated by pions, and treatment

by means of chiral perturbation theory is prescribed in most of the low-energy QCD

manuals [328]. The low-energy theory is properly described by the effective Lagrangian

L =
f 2
π

4
trDµUD

µU+ +
Σ

2
trMU+ + h.c., (6.32)

where Σ = ψψ, M is the quark mass matrix, U = ei
τaπa
fπ , πa is a pion field. An example of

a typical treatment of low-energy QCD with vacuum loops in external fields is the Smilga-

Shushpanov theorem on a condensate in an external field [24]. From that point of view it

would be simply wrong to do the quark vacuum loop which is done in (6.30), (6.31).

Let us though conjecture the validity of quark loops in this low-energy domain when

we deal with four-gamma scattering. We argue that a zero-point function resummed in

an external field is different from the four-point function we are interested in, with small

but finite external momenta ∼ 1eV. E.g. if we were doing a two-point function at such

a scale, we would say there is no logarithmic term, since the threshold is high above, but

still there is a power-like term
m2

q

q2
in the vacuum polarization function Π(q2), and the mass

would be the quark mass, not the pion mass.

Finally, QCD at low energy is a strongly coupled theory, thus a high-order term with

gluon propagators can yield a contribution larger than that of low-order terms. All this

sets the perturbation theory in powers of αs for such a low-energy observable as effective

action under serious doubts.

The fate of higher-loop (full, planar, non-planar, ladder...) corrections to scattering

amplitudes has been a subject of immense speculations, conjectures [329] (especially in

supersymmetric theories), ladder summations [330], ladder cancellations [331] direct semi-

classical estimates [332], and still remain a point of very intense discussion nowadays; since

there is no all-loop massive QED prediction, we cannot make use of these estimates here.

Then, the coupling being large indeed, we cannot make any claim that the next-order

term will not exceed the second-loop approximation. Then, we have no other way of

incorporating QCD corrections, so let us adhere to the only feasible way of estimating it.

It will serve the experiment as a rough guide to what the expected QCD results may be.

Now let us write down the refraction index tensor from (6.30), (6.31). Define the

refraction index coefficients n0, n1, n2 as

nij = δij + n1
(E2 −H2)

m4
q

δij + n2
HiHj

m4
q

. (6.33)
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Then

n1 = Ncα
2

(

2

3

)4 [
4

45
+
αs
π

32

81

]

, (6.34)

and

n2 = Ncα
2

(

2

3

)4 [
14

45
+
αs
π

232

162

]

. (6.35)

Taking into account that αs is taken in the very IR limit, we use αs = 3.4 as obtained in

our Dyson-Schwinger analysis. Then

n1 = 0.51Ncα
2

(

2

3

)4

, (6.36)

and

n2 = 1.86Ncα
2

(

2

3

)4

. (6.37)

Compare this to pure QED

n1 = α2
m4
q

m4
e

[

4

45

]

, (6.38)

and

n2 = α2
m4
q

m4
e

[

14

45

]

. (6.39)

At mu = 1.5 MeV (lowest possible, as given in PDG tables) one gets that nQCD ∼
10−3nQED.

Analyzing the data from the experiment schematically shown in Fig. (6.9), we can find

an interesting evidence of QCD processes of vacuum polarization. Namely, let us estimate

the limiting precision. As given in [2], the shift of the refraction index for laser pulse of

energy Et passing through a volume Vol3 in the presence of vacuum polarization n is

δn = n
Et

m4
qVol3

. (6.40)

The volume is roughly Vol3 = 1µm3, energy Et = 104J , the limit of measurement of δn is

better than 10−11. Taking QED n = 1.2 · 10−12 we get δn ∼ 10−8, which shall be perfectly

visible in the setup. Taking the QCD estimate, we have δn ∼ 10−11, which is still visible.

This opens a door to measuring the QCD vacuum polarization at the very IR by optical

means. Two basic methods can be suggested then:

• Measure nfull, subtract nQED and try to identify the rest with nQCD.

• Use the birefringence phenomenon, get n1
full, n

1
QCD, n

2
full, n

2
QCD, build ratios n2

full/n
1
full,

n2
QED/n

1
QED.
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The method of ratios could seem attractive since it potentially kills different effects of

dressing the quark propagator etc (pretty much in the similar way as in quarkonium

physics one cancels the unknown wavefunction by considering a ratio of decay widths).

Yet the ratios are not that different: n1

n2
|full = 0.124, n1

n2
|QED = 0.142, thus it might be

better to try to accurately subtract the known QED part and ascribe the remnant to QCD,

which will be of course plagued with greater experimental errors in this case, since it will

be a 10−3 of the original observable δn, thus a precision of at least 10−4 is necessary for

the measurement of a refraction index shift.

6.7 The γγ Scattering in Holography

It makes perfect sense to ask oneself if the refraction index shift due to fermions or mesons

in the loops is present in holography. The fermionic action is a Dirac–Born–Infeld ac-

tion (2.3), which is non-linear in the Maxwell field living on the brane, and it makes no

great trouble to extract the corresponding coefficient, analogous to the four-photon term

in the Euler–Heisenberg action.

We follow here a simplified analysis, in which we consider the background allowing

introduction of chirality-breaking solutions (that is, m ≡ w(ρ)|ρ→∞

2πα′
6= 0) to be not very

different from AdS in the UV. This will alow us to make analytic estimates for the effective

action coefficients. We thus neglect the dependence of the classical solution itself, that is,

we put w(ρ,H) = w(ρ). To evaluate the action on the classical solutions we finally put

w(ρ) = const, and relate this constant to mass. The action (2.3) is

S =
1

(2π)7α′4

∫

d4x

∫

ρ3dρ
√
1 + w′2 ×























√

1 +
(2πα′)2e2H2R4

(ρ2 + w2)2
, magnetic case,

√

1 +
(2πα′)2e4( ~E ~H)2R8

(ρ2 + w2)4
, self-dual case.

(6.41)

The second-order in e term in the expansion of the holographic Dirac–Born–Infeld

action, elaborated in [333], contains a log-term and thus corresponds to quark charge

renormalization.

By expanding the action in terms of the field invariants and writing out the fourth-order

coefficient, we get the coefficients n1, n2 defined as

nij = δij + n1α
2 (E

2 −H2)

m4
q

δij + n2α
2HiHj

m4
q

. (6.42)
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in the vacuum refraction index nij .

n1 = 2
Ncλ

4π3

1

24
≈ 0.006Nc,

n2 =
Ncλ

4π3

1

96
≈ 0.001Nc.

, (6.43)

where λ is ’t Hooft constant (λ =
g2Y MNc

4π
). For comparison the values of these coefficients

in the Euler–Heisenberg effective action for quarks are

n1 ≈ 0.088Nc,

n2 ≈ 0.311Nc.
(6.44)

For a rough estimate, the DSE value of αs has been taken; anyway, the dual theory has

yet nothing to do with QCD. As already noticed, a pure AdS cannot provide a successful

model of QCD vacuum, since it describes a theory with a completely different spectrum.

Therefore, the ideology of this section – to consider the F 4

m4 terms – is tested below on

the three other metrics which have been employed throughout the work as more or less

realistic models of the QCD. One has to adhere to numerical solutions, precisely as was

done in the previous Chapters. The 1
m4 dependence (shown in Fig. (6.11)), as well as the

F 4 dependence will have also to be extracted numerically by means of fitting. The results

m mm

d1
d1d1

4 6 8 10

-0.03

-0.02

-0.01

4 6 8 10

-0.03

-0.02

-0.01

1 2 3 4

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

(a) (c)(b)

Figure 6.11: Dependence of the effective action coefficient d1 (defined from n = 1 +

d1e
4(E2 −H2)2) on m, compared to an 1/m4 fit, (a) – Liu–Tseytlin, (b) – Gubser, (c) –

Constable–Myers backgrounds.

are in this case:

n1 ≈











0.044Nc,Constable−Myers,

0.14Nc,Gubser,

0.16Nc,Liu− Tseytlin.

(6.45)

Comparing the results for the conformal and the non-conformal backgrounds to the

Euler–Heisenberg effective action, one can note first of all that the non-conformal metrics

yield a dimensionless coefficient much closer to the Euler–Heisenberg. The numerical
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estimate for the refraction index contribution will depend not only on the model, but on

the selected quark mass (current quark or constituent quark). For definiteness, let us

indicate the order of magnitude of the effect. The contribution to the refraction index is

δn = c1
H4

H4
cr

, (6.46)

where e.g. for the Liu–Tseytlin model, taken with current quarks masses (ca. 5 MeV),

c1 ≈ 10−5, and Hc is the electron critical field. However, a better logic would be to use this

effect (which can be observed as a discrepancy between the QED and the experimental

value of vacuum nonlinearity) for definition of the mass. By comparing n1 and n2 one can

make sure whether the QCD non-linearity can or cannot be fully described by the QCD

Euler–Heisenberg, or may be described by the Dirac–Born–Infeld action. By comparing

the absolute values of n1, n2 to the estimates given in this Section, one can obtain an

estimate of the effective quark mass.

6.8 Phantom QCD Effects

In this subsection I reexamine a claim made in [334] that QCD condensate effects can in

fact overcome the electron QED one-loop effect. Similarly, in [335] it was claimed that

QCD effects are at least similar in magnitude results to electron QED. Note that both

works have been implying the same attitude to the quarks vs. pions dilemma as we do,

thus a comparison is not hindered.

It is shown that these estimates are based on an inappropriate use of the small-field

limit. The idea of the calculation [334] is to compare two types of one-loop contributions:

four legs, all of them being photons, and six legs, four of them also photons, the remaining

two being vacuum condensate gluons, considered as a kind of constant external field back-

ground, characterized by its field strength vacuum expectation value trG2 = 0.01 GeV4.

The purely photon piece is same as given above (6.30) with quarks inside. The “QED-QCD

interference” term, which is shown in Fig. (6.12), is

L1−loop
6legs =

(

2

3

)2
π4

m8

[

12
(α

π
F 2
)2 〈αs

π
G2
〉

+
13

2

(α

π
FF̃
)2 〈αs

π
G2
〉

]

. (6.47)

Hence it is derived that the second-order term (with gluons) strongly dominates over the

first term:
Leff [4− photon, 2− gluons]

Leff [4− photon]
=

24

7

q2π4

m4
〈α
π
trG2〉 ∼ 104. (6.48)

However, this cannot be true since the gluon field strength must be resummed, as shown

in Fig. (6.13). It is obvious that the resummation must take place: the effective field
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ee

ee

g g

condensate

Figure 6.12: One-loop, four + two legs diagram, claimed to yield a larger contribution

than the LO.

ee

ee

condensate

...

Figure 6.13: Four photon, resummed gluons diagram.

strength trG2 = 0.01 GeV4 should be compared with the quark mass scale m4
q = 6 ·

10−10GeV4; the gluon vacuum field strength squared is 8 orders of magnitude greater

than the corresponding Schwinger limit. The true value of the effective action for this

case must necessarily be given by differentiating the Schwinger formula over the external

electromagnetic field and then substituting necessary charges and symmetry factors in the

remaining non-abelian part

Leff ∼ H4 ∂4

∂H4
Leff (H)|H→G,e→g =

∞
∫

0

(−2s)e−m
2scsch5(Hs)(11Hs cosh(Hs)+

+Hs cosh(3Hs)− 2(3 sinh(Hs) + sinh(3Hs))).

(6.49)

Inserting mq and trG2, we get

LQCD,condens.eff = q4α2H2 · (−9GeV4), (6.50)

which is far smaller than

L
1
uarksinQED
eff = q4α2H2 · (1010GeV4). (6.51)
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Actually, this result of ours is present in [334] as well (eq. 26), and is given the correct

interpretation, namely, of quarks effectively acquiring a large “effective mass” in the gluon

condensate field. Yet this correct result is dismissed there on the ground of the short-

rangedness of gluon correlations and stochastic character of the background. Thus this is

not a valid reason to withdraw particularly the resummed correlation.

Firstly, if it were, it would similarly be a good reason to withdraw the two-gluon

computation as well, which [334] does not do so far. Secondly, the short-rangedness of the

gluon correlation strength must be taken into account only if it falls below the typical scale

associated with the quark mass (that is, its size goes above the de Broglie wavelength size

of the quark). However, the OPE predictions for the gluon field strength non-locality are

well-known and exclude that possibility completely: 〈trG2(x) trG2(0)〉 ∼ (1−λ2x2), where
λ2 ∼ 0.2 GeV2; in the Dyson-Schwinger approach [306] one has λ2 ∼ 1.1 GeV. At large

distances the correlator of gluon field strengths decreases as 〈trG2(x) trG2(0)〉 ∼ e−ax,

where the lattice estimate [336] is a = 0.6 GeV, the Dyson-Schwinger estimate [306] is

a = 1.3 GeV. This makes a resummation for u and d quarks compulsory, since from the

“point of view” of the quark, the field through which it virtually moves, is constant on the

average. On the other hand, heavy quarks could already start noticing the non-locality and

stochasticity of gluon fields, yet their contribution to the vacuum polarization effect is of

no relevance, being strongly suppressed in mass. In other words, a light quark is “greater”

in coordinate space (de Broglie wavelength is meant) than its typical inhomogeneity and

therefore “moves” through them as through some average field (or one can say, a light

quark “averages” the field over itself), whereas a heavy quark is “smaller” than the gluon

field, thus it can “scatter” off the fluctuation of the gluon field, be deflected or refracted.

u

Gluon condensate
inhomogeneities

C

Light
quark

Heavy
quark

Figure 6.14: Symbolic picture of light and heavy quarks in the QCD vacuum with gluon

field fluctuations.

In [335] a more elaborated model was used, namely, the Stochastic Vacuum Model,

which assumed a Maxwell-type stochastic distribution of gluon fields, centered around the
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experimentally-known value of the gluon condensate. Thus a QCD condensate-corrected

Euler-Heisenberg Lagrangian was obtained (electric piece shown for simplicity)

∆Leff = − 2

45
E4
∑

q

64
√
2π

5

〈

αs

π
trG2

〉1/2

m2
q

(eq)
2 , (6.52)

where mq, eq are quark masses and charges, respectively; the authors evaluate it to

∆Leff = 3.86
2

45

E4

m4
e

(6.53)

where the mass of electron is shown to alleviate a comparison to QED. The
√

〈trG2〉
term comes exactly after integrating the gluon fields G out with weight ∼ 1

G
3/2
0

e−G
2/G2

0 .

Unlike [334], the gluon field is not dealt perturbatively from the very beginning. Eq. (39)

is still exact in all tree orders of strong coupling at one-loop level and fourth-order in the

electromagnetic field. Then strong-field limit is taken for gluons (which is justified), and

Eq. (41) is already an approximation.

6.9 Abuse of Condensates

The argumentation of the previous section can be easily understood in terms of the

renowned “Use and Misuse of Sum Rules” by Novikov, Shifman, Vainshtein, Voloshin

and Zakharov [337]. The proper use of the condensate power correction occurs in the

deeply Euclidean kinematics, as shown in Fig. (6.15). The incoming momenta are far

gluon condensate

hard off-shell
photon

-Q >>m
2 2

Q Q

-Q >>m
2 2

Q Q
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e
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gluon condensate
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e
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e
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e
-

e
+

e
-
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++

a

Figure 6.15: Contributions of (a) αs trG
2, (b) 〈qγµtaqqγµtaq〉

off-shell, since otherwise the ideology of small power corrections to large logs does not

work; for the analysis of the vacuum polarization function in the case of electron-positron
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scattering into hadrons this is perfectly fine, since the basic expression for sum rules here

is

− 1

8π2
ln
Q2

µ2
+

1

2Q4
〈qq〉+ 1

24Q4

〈αs
π

trG2
〉

=
1

π

∫

ImΠphys(s)ds

s+Q2
. (6.54)

It is of crucial importance that here, in the case of a hard incoming virtual photon (Q2 &

1GeV2, whereas
√
trG2 . 0.3GeV2), the suppression parameter is not the smallness of the

vacuum field (which is not small at all), but the largeness of the momentum. Then, the

larger the momentum is, the smaller αs, also improving the quality of the approximation.

If one wants to resum the contributions of condensate and thus interpret
√
trG2 as some

effective mass, this is possible but totally pointless since Q4 ≫ trG2.

Now let us analyze our case, namely, very low-energy (1eV) γγ scattering. There is

no suppression in αs, and there is a huge enhancement in 1/Q2. This means that no

accounting for single contributions with external condensate legs is allowed, but only the

Euler-Heisenberg resummed action should be taken into account.

6.10 Instead of a Conclusion: What does QCD Con-

tribute?

As a result of considering the possible QCD contributions to vacuum polarizations in the

last two sections we come to the following conclusions:

• Vacuum polarization due to quarks can be observed by means of the experiment [2],

provided it can measure the refraction index at the level

δn

n
∼ 10−11 (6.55)

• Next-to-leading-order QCD corrections to the QED leading-order (LO) quark loop

are important and can exceed the LO result

• Condensate (tree-level) corrections [334] to the QED quark loop are irrelevant.



Chapter 7

Comparison: Resummations vs.

Holography

7.1 Main Results

This Thesis has attempted to describe electromagnetic effects in QCD in two types of

models, the holographic ones (Part I) and those based on resummation schemes (Part II).

We have thus a basis for comparing the two with each other and with experiment. To

summarize the main results in holography:

• The chiral magnetic effect is essentially different in five-dimensional models at strong

coupling compared to the perturbative approach.

• The viscosity-to-entropy ratio and shear viscosity remain unchanged in the self-dual

background with the gluon condensate.

• The quark condensate is scaled quadratically with the field, unlike the linear scaling

in the resummed field theory.

• Ward identities for the scaling symmetry are satisfied in theories with condensates.

• The decoupling relation remains valid.

• The magnetization of vacuum saturates to zero.

Physically this means, in particular, that dual theories can give robust falsifiable predic-

tions, which can be tested in experiment. The predictions for the chiral magnetic effect

and for the viscosity are already in direct comparison with RHIC data. The predictions

for the magnetization can be tested against the lattice data.

For the resummed theories the successes are more moderate:
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• Decoupling explicitly fails in the Dyson–Schwinger resummation.

• The Erickson-Semenoff-Szabo-Zarembo resummation only partially restores the con-

finement property.

• Quadratic field scaling coefficients of gluon condensate obtained.

Discussing these results, it is instructive to look for the properties that are realized

in both approaches and in experiment as well. Again, a caution should be taken against

accepting the predictions about QCD from holography too literally. None of the existing

holographic models claims to be the true dual theory of QCD. Yet basing on common fea-

tures of holographic models with chiral perturbation theory, we may suggest an “effective

theory ideology” for the holographic theories. Thinking about purely four-dimensional the-

ories, we do encounter effective “strongly-coupled” effective theories; the typical examples

are the Euler–Heisenberg action in the large-field limit and the chiral perturbation theory

(where, strictly speaking, there is no coupling parameter at all, and small momentum acts

as the series expansion parameter; the QCD coupling is of course not small in the IR

area). Both these actions (Chiral PT and Euler–Heisenberg) have actually been pointed

out to possess features similar to holographic models, and geometric setups were proposed

to account for some of their properties. Thus strongly-coupled models are not absent from

the range of commonly discussed theories. Therefore nothing strange or superficial is in

comparing the two sides of the correspondence directly, insofar the strong-coupling regime

is discussed.

The resummation schemes I deal with are not fully and uniquely determined either. All

the functional resummations I have considered arise after an infinite tower of equations is

truncated at some level. The ambiguity of truncations has been discussed above for each

of the integral resummations. Then, a solution to a non-linear equation is not unique, and

the fact that I have obtained some functions numerically as solutions of Dyson–Schwinger

equations does not allow me to state that it is indeed the way to describe the dynam-

ics of the system. The correlators which are yielded by the resummation equations are

limited in the number of points; we might speculate however that the high-multiplicity

processes are thus left beyond the reach of the non-perturbative scheme. The truncated

set of the Dyson–Schwinger equations has problems with retaining both scaling invariance

and gauge invariance simultaneously. Moreover, the Dyson–Schwinger equations ideology

as advocated here: “take the DSE Green functions as the true non-perturbative Green

functions and calculate any observable you want”, surely is based on an intrinsically per-

turbative assumption, namely, that a representation via (dressed) Green functions is valid

for all observables, which is at least questionable. Thus problems plague both sides of our
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comparison.

I present the results of my comparison in the form of a concise table and comment on

them in the next section1. The abbreviation “EH” stands for “Euler–Heisenberg”.

Property Holographic models
Resummation

models
Experiment/Lattice

Decoupling relation is ob-

served
+ − +

The chiral condensate scal-

ing with the magnetic field

H

∼ H2
∼ H(EH)

∼ H2(DSE)
∼ H3/2

The chiral magnetic effect

at strong coupling is exactly

the same as at weak cou-

pling

− + ?

The magnetic susceptibility

saturates to 1
+ − +

The magnetic susceptibility

saturates to 0
− + −

Small shear viscosity + − +

Zero bulk viscosity + − +

Confinement is present + + (this work) +

Quarkonium transport coef-

ficients independent of con-

densates
+ ? ?

7.2 Comments on Compared Values

7.2.1 Decoupling

Field theory is incapable of predicting the values of the condensates. Yet it can predict

some interesting relations between them: decoupling relations and scaling low-energy the-

1The lattice result quoted in this fourth line of the table comes from the unpublished data by the

DESY group, I thank Ingo Kirsch and Tigran Kalaydzhyan for their private communication.
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orems. We reconstruct decoupling relations for gluonic operators in holography fully and

we qualitatively support the decoupling relation numerically on a very high level of ac-

curacy (better than 1%.) Note here that the resummed field theory fails completely to

reproduce the simple decoupling ratio directly from the propagators. This is an important

hint for validity of the idea that the propagator feels directly the presence of the conden-

sate. Taken together with other discrepancies, observed under the hypothesis that the

chiral condensate enters in some extractable way into the quark propagator, and the gluon

condensate – into the gluon propagator, we should abandon this idea more or less com-

pletely. The full non-perturbative propagator, even if such a thing were simply available,

does not shed much light upon the condensate of the corresponding field.

Here a moral can be drawn from our exercises with condensates in Dyson–Schwinger

equations: very little information can be passed into the DSE system, and very little will

proceed to the next stages of the calculation. The propagators are very robust; changes in

boundary conditions or some other parameters alter them comparatively little (I do not

discuss here a completely different set of solutions, provided by some authors). Then, even

if the propagator function is greatly varied, little of this variation is felt by the functional-

type observables, e.g. by the non-local condensate defined as functional on propagator.

This insensitivity of observables to input data puts the whole procedure under a strong

doubt.

On the other hand, special care should be taken on the holographic side of the cor-

respondence in the proper identification of fields to some real-world objects like quark

operators; since presently there is no exact “QCD” background, the results one gets are

endangered by the possibility of misidentifying the QCD operators.

7.2.2 Wilson Line and Quark-Quark Potential

Holographically the three models of QCD I have been considering here possess confine-

ment in the sense of the linear Wilson line scaling. The combined Dyson–Schwinger and

Erickson–Semenov–Szabo–Zarembo resummations seem to provide linearity as well. Yet

this linearity is bound by a limited range (up to 1 fm), and not prolonging further to the

IR scale, where it rather goes to constant. This potential is certainly more realistic than

a pure Coulomb, yet we know that physical reality is different. Even if at some point the

potential formally saturates due to QCD string breaking, this is certainly not inside the

double resummation model and cannot be expected from it; moreover, it would happen

at greater spatial scales. Thus in what concerns Wilson loops, holography gives certainly

a more reasonable-looking result than the resummation.
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7.2.3 Linear Condensate Scaling

The linear condensate behavior in strong fields is an “experimental” (i.e. lattice) fact

nowadays, supporting the Smilga–Shushpanov resummation. Basing on Dyson–Schwinger,

we were destined to obtain a quadratic scaling, since whatever the mass function of the

quark is, there is some mass in this model. On the other hand, the linearity of the Smilga–

Shushpanov result vests fully in the masslessness of pion. Thus it can never be reached in

such a way. Holographically we also see a wrong (quadratic) result already at an exactly

zero mass; we explain that by an inconsistency of the 1/Nc orders of the holographic result

with the field theory.

7.2.4 Magnetization

It has already been stated that the direct comparison between the vacuum magnetization

that I have calculated and condensate magnetization, calculated on the lattice is impos-

sible. Thus the difference in the behavior of the two observables does not signal that

something is wrong with holography. Moreover, the speculations that the decreasing mag-

netization curve may be somehow related to the phenomenon of the quark vacuum elec-

tromagnetic superconductivity, are fitting into the ideas of recent findings of a rho-meson

electromagnetically superconducting phase. I do not claim here that the anomalous behav-

ior exactly means that the QCD vacuum becomes electromagnetically superconducting,

yet there is certainly a lot of possible tests to do in that direction, both in the framework

of the resummed field theories and holography.

7.3 Conclusion

One can see that the comparison is of course incomplete, since not all of the results are

available for all of the three columns. The only result in which resummation models

(and that is not the DSE resummation) supercede the holographic models is the Smilga–

Shushpanov scaling, supported by recent lattice measurements [338].

The other achievement of the resummation ideology is confinement demonstration. Yet

it is very limited and does not extend to the full range of distances. On the other hand,

e.g. the Liu–Tseytlin model with which, in particular, I have worked, demonstrates a truly

confining potential without problems at all sufficiently large distances. On the contrary,

in the resummation paradigm the smallness of shear viscosity cannot be demonstrated,

which is an elementary result in holography, and which I have confirmed here exactly for

theories with condensates.
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Open to discussion are the predictions of both field theory and holography for the

chiral magnetic effect. Till experimental results become not only qualitative, but also

quantitative for this phenomenon, we must withhold from judging on which theory is

better describing it.

Thus the overall conclusion I draw in this Thesis is that despite many shortcomings,

holography is a more apt tool for systematic studies of strongly-coupled theories rather

than the resummation procedures via the Dyson–Schwinger equations.

7.4 Developments of Holographic Models

Holography as an effective model building approach describing the behavior of strongly-

coupled systems is not limited by the QCD applications. In the last three years the new

methods stemming from string theory have been applied to condensed matter systems

with strongly-coupled electrons. AdS/CMT (Anti-de Sitter/Condensed Matter Theory)

correspondence originated several years ago in the works [339] and [340]. The total amount

of papers on AdS/CMT is about 250 presently, and it continues to grow quickly.

AdS/CMT has been an attempt to transfer the strong-coupling methods originally

used for (supersymmetric) gauge field theories down to solid state physics. Surprisingly,

this works for some regions, despite a completely different physics behind gravity on one

side and the correlated electron (hole) gas in the condensed matter on the other. In

superconductivity the p-wave order parameter and the nodes of fermion correlators have

been studied within this methodology. Recently a progress was observed in holographically

describing the non-standard phases of solids such as the Luttinger liquid, other types of

the non-Fermi liquids, the strange metals, and HTSCs.

AdS/CMT methods applied to superconductors come under the name of the holo-

graphic superconductor, meaning a strongly interacting field theory that undergoes a con-

densation to a superconducting or a superfluid phase and that has in addition a dual

gravitational description, see [341, 342, 343] for review.

The similarity of the phase diagrams along with the many observed non-Fermi liquid

properties of the pseudogap region may suggest that there is a quantum critical point

beneath the superconducting dome in the HTSC compounds. Some evidence for such a

quantum critical point is reviewed in [344]. The field theory description can be applied

in the finite region of the phase diagram around the critical point, moreover, this region

expands as temperature grows.

The holographic models were shown to reproduce the spectral function of the “Marginal

Fermi Liquid”, deduced from an analysis of the experimental data to describe the optimally
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doped cuprates [345] as well as the ordinary Fermi-liquid for overdoped samples [346].

The gravity background of holographic models realizes geometrically the scaling properties

and other symmetries of quantum critical points, and the models for both relativistic and

non-relativistic types of symmetries have been developed. The advantage of holographic

models is a relatively easy calculation of the dynamical real-time processes such as the

optical, electrical and heat conductivities and dissipation.

Several holographic models for the d-wave superconductors were recently proposed

[347, 348]. These models contain the field of spin 2 in the bulk, which has allowed the

researchers to describe the d-wave superconductivity and to obtain the Fermi arcs. Holo-

graphically, this amounts to adding some peculiar matter on the five-dimensional side.

These models are still not theoretically complete and require further significant work.
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