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1. Einleitung 

 

Die Erkennung von mikrobiellen Infektionen und die Initiierung einer geeigneten 

Abwehr werden durch eine Vielzahl von Mechanismen des Immunsystems 

kontrolliert. Trifft das Immunsystem auf einen Krankheitserreger (Pathogen), so wird 

dieser zunächst von der angeborenen Immunabwehr erfasst (1), die sowohl zur 

Eliminierung des Erregers beiträgt als auch zur Etablierung der erworbenen, 

adaptiven Immunabwehr führt, vermittelt durch B- und T-Zellen. Das angeborene 

Immunsystem bildet somit die erste Linie der Abwehr und reagiert binnen weniger 

Minuten auf ein potenzielles Pathogen.  

 

 

1.1 Angeborenes Immunsystem - pattern recognition receptors (PRRs) 

 

Das angeborene Immunsystem besitzt die Fähigkeit zwischen „Selbst“ (z. B. eigene 

Proteine und Nukleinsäuren) und „Fremd“ (z. B. Mikroorganismen) zu unterscheiden 

(2-4). Dieses Dogma galt lange Zeit, dennoch stellte sich in den letzten Jahren 

zunehmend heraus, dass das Immunsystem Gefahrensignale per se erkennt. Hierbei 

kann es sich einerseits um exogene Pathogen- bzw. Mikroorganismus-assoziierte 

Strukturen (PAMP, pathogen-associated molecular pattern; MAMP, 

microorganism-associated molecular pattern), oder andererseits um endogene 

Moleküle handeln (DAMP, danger-associated molecular pattern). Hier sind deutlich 

Parallelen zu Matzinger´s „Danger Hypothesis“ zu erkennen, die ursprünglich für das 

adaptive Immunsystem beschrieben wurde (5). DAMPs wie z. B. das nukleäre 

Protein HMGB1, zytosolische DNA, 5’-Adenosintriphosphat und Harnsäurekristalle 

sowie PAMPs wie LPS, Flaggellin, RNA und unmethylierte DNA werden durch 

spezifische Rezeptoren, den so genannten pattern recognition receptors (PRRs) (6) 

erkannt. Diese PRRs umfassen eine Vielzahl an Erkennungsrezeptoren für 

verschiedenste endo- bzw. exogene Strukturmerkmale. Diese sind bei Zelltypen des 

Immunsystems, wie Monozyten, Makrophagen und dendritischen Zellen, aber auch 

bei epithelialen Zelltypen zu finden. Zu ihnen zählen Membranrezeptoren wie 

Toll-like-Rezeptoren (TLR) (7), zytosolische Helikasen wie retinoic acid-inducible 

gene 1 (RIG-I)-like Rezeptoren (RIG-I, MDA-5, LGP-2) oder intrazelluläre 

Rezeptoren wie nucleotide binding and oligomerization domain-like receptors (NLRs) 
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(8). Damit steht eine maßgeschneiderte Immunabwehr zur Verfügung, die in der 

Lage ist, Motive verschiedensten Ursprungs zu erkennen.  

 

 

Toll-like Rezeptoren 

 

Die Bezeichnung Toll-like-Rezeptor leitet sich von einem Protein der Fruchtfliege 

Drosophila melanogaster ab, das vom einem Gen namens Toll codiert wird. Es 

wurde 1985 vom Team um Christiane Nüsslein-Volhard identifiziert (9). Es stellte 

sich heraus, dass Toll eine wichtige Funktion in der Abwehr gegen Pilzinfektionen 

hatte (10). TLRs spielen als PRRs eine wichtige Rolle. Sie erkennen konservierte, 

einfache Strukturen verschiedener Gruppen von Mikroorganismen und endogenen 

Proteinen. Auch in nicht-pathogenen, symbiontischen Mikroorganismen sind diese 

Strukturen zu finden. Während „nicht-signalisierende“ PRRs wie Akute-

Phase-Proteine an eindringende Mikroorganismen binden, um nachfolgende 

Phagozytose zu erleichtern, handelt es sich bei TLRs um signalisierende, 

transmembrane PRRs. Mit der Identifizierung molekularer, mikrobieller Komponenten 

war eine Unterteilung in Lipide, Polysaccharide, Proteine und Nukleinsäuren möglich. 

Bislang sind in Säugetieren zwölf verschiedene TLRs Identifiziert (4, 11-13). TLR1, 

TLR2, TLR4, TLR5, TLR6 und TLR11 (nur in der Maus) sind in der Zellmembran 

verankert und TLR3, TLR7, TLR8 und TLR9 sind in intrazellulären Vesikeln bzw. 

dem endoplasmatischen Retikulum zu finden. TLR-Liganden Erkennung führt neben 

der Aktivierung von MAP-Kinasen (MAPK, mitogen-activated protein kinases) zur 

Translokation von Transkriptionsfaktoren wie NF-κB (nuclear factor-κB) und 

interferon regulatory factor (IRF) 3 und 7. Die extrazelluläre Domäne, LRR-domain 

(leucine rich repeats), dient der Ligandenbindung, während die intrazelluläre 

Domäne, TIR-Domäne (Toll-IL-1 receptor homologous domain), zur 

Signalweiterleitung führt. Mit Ausnahme von TLR3 haben alle Rezeptoren 

gemeinsam, dass sie über das Adapterprotein MyD88 (myeloid differentiation 

primary response gene 88) mit IRAK (IL-1 receptor-associated kinase) assoziieren 

und somit zur Translokation von IRFs und NF-κB führen. TLR3 hingegen, bindet an 

TRIF (TIR-domain-containing adapter-inducing interferon-β). IRFs und NF-κB 

initiieren die Transkription von proinflammatorischen Zytokinen IL-1β, IL-6, IL-12p40 

und TNF-α sowie von Typ-I-Interferonen (IFN-α und β). Die weite Verbreitung von 

TLRs nicht bei von Immunzellen des angeborenen sondern auch bei Zellen des 
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adaptiven Immunsystems (B- und T-Zellen), machen diese zu einem exzellenten 

Werkzeug, mit dessen Hilfe angeborenes und erworbenes Immunsystem 

übergreifend für die Erkennung als Grundlage zur Elimination von Pathogenen 

sorgen. 

 

 

Zytosolische pattern-recognition-Rezeptoren 

Zusätzlich zum TLR-System, welches PAMPs auf der Zelloberfläche bzw. in Vesikeln 

erkennt, wurden kürzlich auch zytoplasmatische PRRs beschrieben. Die Entdeckung 

dieser Rezeptoren beruhte auf der Annahme, dass intrazellulär eingedrungene 

Pathogene nicht über membrangebundene Rezeptoren erfasst werden können, um 

eine Immunreaktion auszulösen. Zu diesen zytosolischen Rezeptorfamilien zählen 

die retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) und die 

nucleotide-binding oligomerization domain like receptors (NLRs).  

 

 

Retinoic acid-inducible gene I-like receptors  

 

Zu dieser Familie gehören die zytosolischen Helikasen retinoic acid-inducible gene I 

(RIG-I), melanoma differentiation-associated gene 5 (MDA-5) und laboratory of 

genetics and physiology 2 (LGP-2). Sie erkennen virale RNA im Zytoplasma (11, 14). 

Durch extensive Forschung an Mäusen mit entsprechenden Gendefekten für die 

einzelnen Rezeptoren konnte ihnen die Erkennung verschiedener Viren zugeordnet 

werden (15, 16). RIG-I erkennt einzelsträngige und doppelsträngige RNA u. a. von 

Influenza A, vesicular stomatitis virus und Japanischem Enzephalitis-Virus. 

Entscheidend hierfür sind bestimmte Strukturen der RNA sowie eine 

Triphosphat-Gruppe am 5´-Ende (17, 18). Erwähnenswert ist hierbei die 

Unterscheidung zwischen „Selbst“- und „Fremd“-RNA, da eigene RNA im 

Zytoplasma der Zelle nicht mit einer freien Triphosphat-Gruppe auftritt. Diese wird 

entweder mittels 5´-Capping (modifiziertes Guanosin) oder über 

RNA-Nukleosidmodifikationen geschützt. MDA-5 erkennt RNA von 

Enzephalomyokarditis-Virus (EMCV), Mengo bzw. Theiler´s Viren (19). Ein 

synthetischer Ligand für MDA-5 ist poly(I:C) (polyinosinic:polycytidylic acid) (16, 20). 

Sowohl RIG-I als auch MDA-5 besitzen eine N-terminale CARD (caspase recruitment 

domain) und eine Helikase-Domäne, RIG-I zusätzlich eine C-terminal repressor 

domain (CRD). Während die Helikase-Domäne und die CR-Domäne RNA binden, 
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dient CARD für die Signalweiterleitung via CARD-CARD Interaktionen 

(Adaptermoleküle bzw. Proteine mit CARD). Nach Bindung an das Adapterprotein 

MAVS (alternative Namen sind IPS-1, VISA oder Cardif), führt die Signalkaskade 

über TRADD (tumor necrosis factor receptor type 1-associated DEATH domain) zur 

Translokation der Transkriptionsfaktoren NF-κB bzw. IRF3 und IRF7 mit Induktion 

von Typ-I-Interferonen. Die Funktion von LGP-2 ist weitgehend unbekannt. Es wird 

vermutet, dass LGP-2 an RIG-I bindet und eine inhibitorische Funktion ausübt (14). 

 

 

Nucleotide-binding oligomerization domain (NOD)-like receptors 

 

Eine zweite wichtige Rezeptorfamilie bilden die NOD-like-Rezeptoren. Diese 

bestehen aus einer N-terminalen Effektordomäne (CARD, Pyrin oder BIR), einer 

zentralen nucleotide oligomerization domain (NOD) und C-terminalen leucine rich 

repeats (LRR). Die N-terminale Effektordomäne dient der Signalweiterleitung via 

Protein-Protein-Interaktionen und die C-terminale LRRs sind meist die 

Erkennungsregionen von PAMPs (21, 22). Von diesen Rezeptoren sind mindestens 

23 humane und 34 murine Typen bekannt, deren physiologische Eigenschaften noch 

wenig erforscht sind (23, 24). NLRs können wiederum in mindestens fünf 

Unterkategorien eingeteilt werden; NLRA (acidic transactivation domain), NLRB 

(baculovirus inhibitor of apoptosis protein repeat – BIR), NLRC (CARD domain), 

NLRP (pyrin domain) und NLRX, dessen Bestandteile unbekannt sind (25, 26). Diese 

Rezeptoren können eine Vielzahl an intrazellulären PAMPs, wie Motive bakteriellen 

Ursprungs oder virale DNA detektieren (27). Durch Ligandenbindung werden 

verschiedene Signalwege aktiviert, z. B. über mitogen-activated protein kinases 

(MAPK) zur Translokation von NF-κB und Transkription proinflammatorischer 

Zytokine oder Typ-I-Interferone. 

 

 

1.2 Das Inflammasom 

 

Einige NLRs können multimere Komplexe formen, so genannte Inflammasome (28). 

Durch ihre Formierung und Aktivierung wird die Protease Caspase-1 

(cysteinyl-aspartate specific protease, auch interleukin 1 converting enzyme 

genannt) rekrutiert, die für die Spaltung von Zytokinen der IL-1 Familie in deren 
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bioaktive Formen verantwortlich ist. Inflammasome sind zytosolische 

Proteinkomplexe, die vorwiegend in Immunzellen wie dendritischen Zellen und 

Makrophagen vorkommen. Sie können, je nach Interaktionspartner, in vier Gruppen 

unterteilt werden; das NLRP1-, das NLRP3-, das NLRC4 (IPAF)- und das 

AIM-2-Inflammasom (Abbildung 1).  

Durch Bindung an das Adaptermolekül ASC (apoptosis-associated speck-like 

protein) kann Caspase-1 gebunden und aktiviert werden. 

 

 

Abbildung 1: Schematische Darstellung verschiedener Inflammasome mit putativen Liganden oder 

Aktivatoren. Je nach Bindungspartner wird über das Adaptermolekül ASC Caspase-1 

rekrutiert und es entsteht der Inflammasom-Komplex. Schema nach Latz E., et al. (29). 

 

PAMPs wie Muramyldipeptid (MDP) und anthrax lethal toxin werden über NLRP1 

(30, 31) und Bakterien wie Salmonellen, Legionellen, Shigellen und Pseudomonaden 

durch IPAF erkannt (32). Von den verschiedenen Inflammasomen ist das 

NLRP3-Inflammasom am besten charakterisiert. NLRP3 wird durch eine Vielzahl von 

Bakterien (u. a. Staphylokokken, Listerien oder Neisseria), Viren (u. a. EMCV, 

Sendai- und Influenza-Viren) und Pilzen (u. a. Candida und Saccharomyces) aktiviert 

(33-36) (Tabelle 1). Eine wichtige Entdeckung waren jedoch endogene Faktoren 

zellulären Stresses, die zur Aktivierung von NLRP3 führen (extrazellulär freigesetztes 

ATP, Hyaluronan oder Amyloid-β) (34, 37, 38). Eine weitere Klasse von potenziellen 

NLRP3-Stimuli bilden Moleküle metabolischen Stresses wie Harnsäurekristalle 

(Gicht) und Cholesterinkristalle (Atherosklerose) (39, 40) oder Umwelt-Reizstoffe wie 

Siliziumoxid, Asbest und UV-B-Strahlung (41-44).  
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PAMP-enthaltende Mikroorganismen 

Viren Adenovirus 
Influenza Virus 
Enzephalomyocarditis Virus 
Sendai Virus 

(36) 
(35, 45) 
(46) 
(35) 

Bakterien/ 
Toxine 

Listeria monocytogenes 
Neisseria gonorrhoeae 
Staphylococcus aureus 
Toxine 

(34) 
(47) 
(34) 
(34, 48, 49) 

Pilze Candida albicans 
Saccharomyces cerevisiae 

(33) 
(33) 

DAMPS 

Kristalle Aluminiumhydroxid  
Asbest 
Cholesterin 
Harnsäure 
Siliziumdioxid 

(41, 50-53) 
(42, 43) 
(40) 
(39) 
(41-43) 

Sonstige Amyloid-β 
ATP 
Glucose 
Hyaluronan 
Imidazochinoline 

(38) 
(34) 
(54) 
(37) 
(35) 

Tabelle 1: Liganden bzw. Stimuli des NLRP3-Inflammasoms. Modifiziert nach Schroder K., et al. 

(55). 

 

Die Mechanismen, die zur Aktivierung des NLRP3-Inflammasoms führen, sind noch 

nicht vollständig geklärt. Es werden drei Modelle diskutiert (Abbildung 2). Das erste 

Modell propagiert, dass extrazelluläres ATP zur Bildung von Pannexin-1 

Membranporen führt. Durch den daraus entstehenden intrazellulären Kalium-Verlust 

wird NLRP3 rekrutiert und einströmende, potenzielle Stimuli können NLRP3 direkt 

aktivieren (56). In einem zweiten Modell führen partikuläre Substanzen die via 

Endozytose aufgenommen wurden zur Zerstörung der Endo-Lysosomen. Die 

Freisetzung von lysosomalen Bestandteilen (z. B. Cathepsine) aktivieren auf bisher 

unbekannte Weise NLRP3 (38, 41). Im dritten Modell werden reaktive Sauerstoff 

Spezies (ROS) für die Aktivierung von NLRP3 verantwortlich gemacht (42, 43, 57). In 

allen Modellen sind für die Aktivierung des NLRP3 Inflammasoms zwei Signale 

notwendig. Im ersten Schritt werden über transkriptionellem Weg (über TLRs oder 

NLRs) die Expression der inaktiven pro-Form von IL-1β sowie NLRP3 selbst reguliert 
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(58). In einem zweiten Schritt entsteht durch oben genannte Modelle der NLRP3 

Inflammasom-Komplex. Dabei dimerisieren oder multimerisieren die Pyrin-Domänen 

von NLRP3 und ASC bzw. die CARD-Domänen von ASC und Caspase-1 wobei die 

katalytisch aktive Caspase-1 entsteht und im folgenden Prozess pro-IL-1β in seine 

biologisch aktive Form überführt (Abbildung 1). IL-1β wiederum ist das Hauptzytokin 

für inflammatorische Immunreaktionen, Fieber und metabolische Erkrankungen. 

 

 

Abbildung 2: Diskutierte Modelle zur Aktivierung des NLRP3 Inflammasoms. Der erste Schritt (i) 

reguliert auf transkriptionellem Weg die Expression von pro-IL-1β bzw. IL-18 sowie von 

NLRP3 selbst. Im zweiten Schritt (ii) entstehen die bioaktiven Formen von IL-1β und IL-18 

durch Aktivierung des NLRP3-Inflammasom-Komplexes (Kaliumverlust, endo-lysosomale 

Destabilisierung, ROS). Schema nach Stutz A., et al. (59). 

 

 

1.3 NLRP3-Inflammasom-assoziierte Erkrankungen 

 

Das angeborene Immunsystem besitzt mit den TLRs und den NLRs zwei 

Erkennungssysteme zur schnellen und unspezifischen Abwehr von Pathogenen 

(PAMPs). Dennoch stellte sich sehr schnell heraus, dass die Bindung von nicht-

mikrobiellen Gefahrenmolekülen (DAMPs) eine ebenso heftige Immunreaktion 

auslösen kann, was zu einer Freisetzung von Entzündungsmediatoren wie IL-1β und 

IL-18 führt. Dabei kann es sich um DAMPs wie extrazelluläres ATP (aus zerstörten 
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oder aktivierten Zellen), kristalline Strukturen (Asbest, Siliziumoxid, Harnsäure-, 

Kalziumpyrophosphat- oder Cholesterinkristalle) oder reaktive Sauerstoff-Spezies 

(ROS) handeln. Allen Substanzen ist gemein, dass diese zur NLRP3-Aktivierung 

führen und somit die Freisetzung von IL-1β veranlassen. Nachdem IL-1β in bioaktiver 

Form freigesetzt wurde, bindet es an seinen Rezeptor (IL-1R) und initiiert 

Entzündungsreaktionen verschiedener Art (60). Eine fehlgeleitete Aktivierung des 

NLRP3-Inflammasoms wurde mit diversen Erkrankung in Verbindung bebracht, auf 

die hier in Kürze eingegangen werden soll. 

 

 

NLRP3-Mutationen 

 

Einige erblich-bedingte oder erst im Lebensverlauf auftretende Erkrankungen stehen 

im Zusammenhang mit erhöhten IL-1β-Serumspiegeln (60). Heute bereits werden 

mehrere dieser Krankheiten erfolgreich mit IL-1-Antagonisten behandelt. Viel 

versprechend ist Anakinra, ein rekombinantes Analogon zum natürlich 

vorkommenden IL-1-Rezeptor-Antagonisten (IL-1RA). Wie bereits erwähnt, spielt das 

NLRP3-Inflammasom eine wichtige Rolle bei der Freisetzung von bioaktivem IL-1β. 

Mutationen im NLRP3-Gen konnten als Auslöser seltener, entzündlicher 

Autoimmunkrankheiten identifiziert werden. Diese Autoimmunkrankheiten werden 

unter dem Überbegriff cryopyrin-associated-periodic syndromes (CAPS) 

zusammengefasst. Dabei handelt es sich um periodisch auftretende Fieber- und 

Entzündungsschübe. Neben CINCA (chronic infantile cutaneous neurological 

articular syndrome) sind außerdem FCAS (familial cold autoinflammatory syndrome) 

und MWS (Muckle-Wells syndrome) bekannt. Bei Letzteren liegt die Ursache in einer 

Überaktivität von NLRP3 mit daraus resultierenden, hohen IL-1β-Spiegeln (61, 62). 

Die Erkenntnis der molekularen Grundlage dieser Erkrankungen haben die 

klinischen Behandlungsmöglichkeiten von Grund auf verändert. 

 

 

Gicht und Pseudogicht 

 

In den letzten Jahren konnten Gicht bzw. Pseudogicht mit NLRP3 in Verbindung 

gebracht werden (39). In beiden Erkrankungen, denen jedoch ein unterschiedlicher 
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Pathomechanismus zugrunde liegt, ist die Entzündungsursache eine erhöhte Bildung 

und Ausfällung von Harnsäure- bzw. Kalziumpyrophosphatkristalle in den Gelenken. 

Eine Vermutung bezüglich der bevorzugten Kristallbildung liegt in der niedrigeren 

Temperatur in den Gelenken und der damit verbundenen geringeren Löslichkeit der 

Kristalle. Diese Kristalle sind ein starker Aktivator von NLRP3 und verursachen eine 

ausgeprägte Freisetzung von IL-1β. Dieser pathophysiologische Zusammenhang 

konnte auch in klinischen Studien belegt werden, in denen Antagonisten von IL-1β 

erfolgreich eingesetzt wurden (63-66).  

 

 

Silikose/Asbestose 

 

Eine Gefahr für die Gesundheit geht auch von anderen kristallinen Substanzen, 

nämlich Silizium- und Asbeststaub aus. Beruflich bedingte Inhalation von diesen 

kristallinen Stoffen kann zu Lungenfibrose bis hin zu Lungen- und Pleurakrebs führen 

(67). Die Aufnahme dieser Stoffe durch Alveolarmakrophagen führt NLRP3-abhängig 

zur vermehrten Produktion von IL-1β (43). Ähnliche Entzündungsreaktionen konnten 

auch für partikuläre Substanzen wie Dieselrußpartikel oder Zigarettenrauch gefunden 

werden (68, 69). Somit vermitteln NLRP3-abhängige chronische 

Entzündungsprozesse, Lungengerüsterkrankungen und wahrscheinlich auch Krebs. 

 

 

Morbus Alzheimer 

 

Morbus Alzheimer ist eine fortschreitende, neurodegenerative Erkrankung der 

Gehirnnerven durch Ablagerung von meist falsch gefalteten β-Amyloid-Peptidketten 

(Alzheimer-Plaques) im zentralen Nervensystem (70, 71). Die Folgen sind 

zunehmende Verschlechterung der kognitiven Leistungsfähigkeit und 

neuropsychologische Störungen. Phagozytierende Zellen im Zentralnervensystem 

(Mikroglia) werden durch β-Amyloid-haltige Plaques zur Phagozytose angeregt und 

schütten inflammatorische Zytokine aus (71-73). Erhöhte IL-1β-Spiegel wurden 

sowohl beim Menschen mit Morbus Alzheimer als auch in entsprechenden 

Mausmodellen gefunden (72, 74) und konnten mit einer β-Amyloid-abhängigen 

NLRP3-Aktivierung in Verbindung gebracht werden (38). Somit spielen 



 10 

NLRP3-vermittelte Entzündungsprozesse auch bei neurodegenerativen 

Erkrankungen eine pathogenetische Rolle. 

 

 

Andere NLRP3-assoziierte Krankheiten 

 

Kontakt-Hypersensitivität ist eine allergische Reaktion vom Typ 4 (Spättyp). Dieser 

Typ ist mit einer Aktivierung von IL-1β und IL-18 durch das NLRP3-Inflammasom in 

Verbindung gebracht worden. Ein Beispiel hierfür ist das Kontaktallergen 

2,4-Trinitrochlorbenzol (75).  

Diabetes mellitus Typ 2 ist eine Stoffwechselerkrankung mit erhöhten 

Blutzuckerwerten (Hyperglykämie) und Insulinresistenz, die durch Übergewicht sowie 

durch genetische Prädisposition entstehen kann. Vor einigen Jahren konnte IL-1β als 

Risikofaktor für die Erkrankung an Typ 2 Diabetes identifiziert werden (76). Hierbei 

führen erhöhte IL-1-Spiegel zur Insulinresistenz, Zerstörung insulinproduzierender 

β-Inselzellen und konsekutiv zur Hyperglykämie (77). Die erhöhten extrazellulären 

Glucosespiegel scheinen Auslöser für eine bisher ungeklärte, NLRP3-abhängige 

Freisetzung von bioaktivem IL-1β zu sein (78). 

 

 

1.4 Zusammenfassung der präsentierten Arbeiten 

 

Das angeborene Immunsystem besitzt eine Vielzahl an Erkennungsmechanismen für 

pathogene Strukturen, um eine maßgeschneiderte Abwehr gegen Gefahrensignale 

mikrobiellen, aber auch körpereigenen Ursprungs zu bilden. Eine besondere Rolle 

spielt das NLRP3-Inflammasom, welches diverse, pathophysiologisch vollständig 

unterschiedliche Erkrankungen, wie erblich bedingte Autoimmunkrankheiten, 

Stoffwechselerkrankungen (Gicht, Pseudogicht, Diabetes mellitus Typ 2), 

neurodegenerative Erkrankungen (Morbus Alzheimer), chronisch fibrosierende 

Lungenerkrankungen (Silikose und Asbestose) und möglicherweise sogar 

Krebserkrankungen (Bronchialkarzinom, Pleuramesotheliom) vermittelt. Die 

jeweiligen pathophysiologischen Mechanismen, die zur Aktivierung bzw. 

Fehlregulation des Inflammasoms führen, sind jedoch nur unvollständig aufgeklärt. 
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Ein besseres Verständnis dieser Mechanismen kann daher zu einer zielgerichteten 

Therapie akuter und chronischer Erkrankungen beitragen. 

 

Der erste Teil meiner Arbeit beschäftigt sich mit einer Theorie zur NLRP3-Aktivierung 

im Zusammenhang mit der Entstehung von Atherosklerose. Die Atherosklerose ist 

eine Systemkrankheit, die, begünstigt durch genetische Faktoren, im Laufe von 

Jahren zu Veränderungen von Gefäßwänden mit das Lumen einengenden 

Ablagerungen führt. Diese Ablagerungen (auch Plaques genannt) enthalten große 

Mengen an Cholesterin, das im Normalfall über HDL aufgenommen und zur Leber 

transportiert und abgebaut wird. Cholesterin ist ein wichtiger Bestandteil von 

Zellmembranen und wird vermutlich bei Überangebot mit Hilfe der 

A:Cholesterin-Acyltransferase (ACAT) als Ester (lösliche Form) gespeichert. Die 

inflammatorische Natur von Atherosklerose ist seit langem bekannt. Übersteigt die 

Menge an freiem Cholesterin die Aufnahmekapazität der Zellen, werden 

Makrophagen angelockt und versuchen dann dieses aufzunehmen und abzubauen. 

Makrophagen sind aber nicht in der Lage, Kristallstrukturen abzubauen. Es entsteht 

eine sich selbst unterhaltende Entzündungsreaktion mit zunehmender Plaquelast. In 

atherosklerotischen Plaques konnten in histologischen Untersuchungen 

Aussparungen gefunden werden, die von Cholesterinkristallen verursacht wurden 

(sog. crystal clefts) und im Rahmen der histologischen Aufarbeitung durch 

organische Lösungsmittel herausgelöst wurden. Es ist jedoch weitgehend 

unbekannt, ob Cholesterinkristalle bereits bei der Entstehung von Atherosklerose 

eine wichtige Rolle spielen und ob diese für die Entzündungsreaktion verantwortlich 

sind.  

In einem Apo-E-transgenen Mausmodell, in dem mit einer Cholesterin-reichen 

Nahrung eine beschleunigte Atherosklerose induziert wird, konnten wir zeigen, dass 

kleinste Cholesterinkristalle bereits nach zwei Wochen in den Plaques großer 

Gefäße nachweisbar waren. Ebenso konnten Immunzellen identifiziert werden, die 

sich um diese Kristalle ansammelten. Nachdem bekannt war, dass verschiedene 

Kristalle in der Lage sind, eine NLRP3-Inflammasom-vermittelte 

Entzündungsreaktion hervorzurufen, waren wir daran interessiert, ob 

Cholesterinkristalle eine ähnliche Eigenschaft besitzen. Tatsächlich zeigten in vitro 

Versuche mit Makrophagen-Zelllinien eine IL-1β-Sekretion nach Inkubation mit 

Cholesterinkristallen. Diese blieb bei Makrophagen mit NLRP3-, ASC- oder 

Caspase-1-Defizienz aus. Zudem konnte die Beteiligung von Cathepsinen an der 

NLRP3-Aktivierung nachgewiesen werden, die mechanistisch auf eine 
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Destabilisierung des Phagolysosoms hinweisen. In einem weiteren Mausmodell 

wurden schließlich Knochenmarkszellen von Wildtyp bzw. von Tieren mit Defizienz in 

verschiedenen NLRP3-Inflammasom-Komponenten in LDL-Rezeptor-defiziente 

Mäuse transferiert und das Auftreten atherosklerotischer Plaques erfasst. Es zeigte 

sich eine deutlich abgemilderte Form von Atherosklerose in Tieren, die mit 

Knochenmark von Mäusen mit Defekten in der NLRP3-Inflammasom-Aktivierung 

rekonstituiert wurden.  

Zusammenfassend zeigt diese Studie, dass bereits in der Frühform der 

Atherosklerose mikrokristallines Cholesterin vorhanden ist und dieses mutmaßlich, 

vermittelt über Komponenten der NLRP3-Inflammasom-Kaskade, zur Entstehung 

und Progression von Atherosklerose beiträgt. Somit stehen potenziell neue 

Therapieansätze für Atherosklerose und deren Folgeerkrankungen, die in der 

westlichen Welt für die meisten Todesfälle verantwortlich sind, zur Verfügung. 

 

Im zweiten Teil meiner Arbeit wurde der Einfluss des NLRP3-Inflammasoms auf die 

Entstehung chronisch entzündlicher Darmerkrankungen anhand eines murinen 

Colitismodells untersucht, welches in vielen Studien herangezogen wird, um deren 

Entstehung, Progression und Therapie zu erforschen. Der Morbus Crohn und die 

Colitis ulcerosa sind chronisch entzündliche Darmerkrankungen, deren Pathogenese 

nicht vollständig geklärt ist. Es wird von Beteiligung genetischer sowie 

umweltbedingter Faktoren ausgegangen. Interessanterweise stehen 

Polymorphismen des NLRP3-Gens mit einer erhöhten Anfälligkeit für Morbus Crohn 

in Zusammenhang (79). Ein wichtiger Befund bei diesen Erkrankungen sind erhöhte 

Spiegel von Entzündungsmediatoren wie IL-1β und TNF-α. Mit dem DSS (dextran 

sulfate sodium)-Colitismodell, in dem die Tiere den sulfatierten Makrozucker DSS im 

Trinkwasser erhalten, steht ein Modell zur Verfügung, das eine klinische 

Symptomatik ähnlich der akuten Kolitis aufweist. Die Tatsache, dass erhöhte 

Mengen an IL-1β im DSS-Colitismodell detektierbar sind und Caspase-1-Inhibitoren 

einen therapeutischen Effekt aufweisen (80), ließen eine Beteiligung des NLRP3 

Inflammasoms vermuten.  

Tatsächlich stellte sich heraus, dass mit DSS inkubierte Makrophagen in vitro 

dosisabhängig IL-1β sezernieren. Dieses Phänomen war von der Molekülintegrität 

abhängig, was darauf schließen lässt, dass das Makromolekül an sich für die 

Aktivität verantwortlich ist. Makrophagen-Zelllinien mit Defekten in NLRP3, ASC oder 

Caspase-1 zeigten schließlich ein nahezu vollständiges Fehlen der 

IL-1β−Freisetzung. Für die Freisetzung von IL-1β war eine vorhergehende 
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Aktivierung der Makrophagen mit LPS (Signal 1) erforderlich. Im in vivo 

Colitisversuch mit DSS im Trinkwasser zeigten NLRP3-defiziente Mäuse im 

Gegensatz zu Wildtyp-Mäusen über einen Zeitraum von neun Tagen eine signifikant 

geringer ausgeprägte Kolitis (weniger Durchfälle und Blut im Stuhl). Dieser Befund 

korrelierte mit einer geringeren Menge an proinflammatorischen Zytokinen im 

Darmgewebe sowie weniger ausgeprägten entzündlichen Veränderungen in der 

Histologie. Diese Befunde deuten auf eine Beteiligung des NLRP3-Inflammasoms in 

der Entzündungsreaktion bei der DSS-induzierten Colitis hin. 

Zusammenfassend lassen sich diese Befunde in einem Zwei-Phasen-Modell 

beschreiben: In einem ersten Schritt, vermittelt durch toxische Effekte von DSS auf 

die Epithelbarriere des Darms, treffen (physiologisch) vorhandene Darmbakterien auf 

Makrophagen in der Darmmukosa, was über Rezeptoren des angeborenen 

Immunsystems die Transkription von pro-IL-1β bewirkt. Im zweiten Schritt kommt es 

zu einer Aktivierung des NLRP3 Inflammasoms mit Freisetzung von bioaktivem 

IL-1β, welches ein Schlüssel-Zytokin für die Initiation und Progression entzündlicher 

Prozesse ist. 

 

 

1.5 Summary of presented publications 

 

Innate immunity covers a multiplicity of recognition mechanisms for pathogens to 

ensure a customized defense against microbial and endogenous danger signals. In 

this regard, the NLRP3 inflammasome plays a major role arranging diverse and 

pathophysiologically completely different diseases such as congenital autoimmune 

diseases, metabolic diseases (gout, pseudo-gout and type 2 diabetes), 

neurodegenerative diseases (Alzheimer disease), chronic fibrosing lung disease 

(silicosis, asbestosis) and possibly cancer (bronchial carcinoma, pleura 

mesothelioma). The distinct pathophysiological mechanisms that lead to the 

activation or dysregulation of the inflammasome are incompletely elucidated. A better 

comprehension of these mechanisms may contribute to novel therapies of acute and 

chronic diseases. 

 

The first part of my work engages in a theory of NLRP3 activation in connection with 

the development of atherosclerosis. Atherosclerosis is a systemic disease that over 

the years, fostered by genetic factors, leads to changes of vascular walls including 



 14 

confining deposit. This deposit (also called plaque) contains huge amounts of 

cholesterol that is normally absorbed by HDL and transported to the liver for 

degradation. Cholesterol is a crucial component of cell membranes and at excessive 

supply it is suggested to be stored as an ester (soluble form) mediated by 

A:cholesterol acyltransferase (ACAT). The inflammatory property of cholesterol has 

been known for a long time. If the amount of free cholesterol exceeds the uptake 

capacity of cells, macrophages get attracted and try to absorb and degrade the 

cholesterol. However, macrophages are not capable of degrading crystalline 

structures. A self-entertaining inflammatory response with increasing plaque burden 

occurs. Histological examinations of late atherosclerotic lesions show cavities caused 

by cholesterol crystals (so called crystal clefts) which occur during histological 

procedures with organic solvents. However, it remains unknown if cholesterol 

crystals occur already in early atherosclerotic lesions and whether these are 

responsible for triggering the inflammatory response. 

Inducing accelerated atherosclerosis with a high-cholesterol diet in an Apo-E 

transgenic mouse model, we could show that minute amounts of cholesterol crystals 

were present in lesions after only two weeks of diet. We also could identify immune 

cells accumulating around these crystals. Because it was known that different 

crystals have the ability to induce NLRP3-dependent inflammation, we were 

interested if cholesterol crystals have similar properties. In deed, in vitro experiments 

with macrophage cell lines showed IL-1β secretion after incubation with cholesterol 

crystals. This was not the case for macrophages with NLRP3-, ASC- or 

caspase-1-deficiency. In addition, involvement of cathepsins could be verified 

suggesting phago-lysosomal rupture. In an additional mouse model using lethally 

irradiated LDLR-deficient donor mice that have been reconstituted with bone marrow 

from mice lacking different NLRP3 inflammasome components, we measured the 

appearance of atherosclerotic lesions. Mice that had been reconstituted with bone 

marrow of NLRP3 inflammasome components showed a significantly ameliorated 

form of atherosclerosis. 

In summary, this study shows that even at an early stage of disease, minute amounts 

of crystalline cholesterol are present, and that it presumably contributes to the 

development and progression of atherosclerosis, mediated by components of the 

NLRP3 inflammasome. These insights open a new field for pharmacological 

research developing novel therapeutic strategies for the treatment of atherosclerosis 

and its sequelae that are responsible for most fatalities in the Western world. 
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The second part of my work focuses on the impact of the NLRP3 inflammasome on 

the development of inflammatory bowel disease (IBD). The studies were performed 

in a murine colitis model that has frequently been used to explore the pathogenesis, 

progression and therapy of IBD.  

Crohn´s disease and ulcerative colitis are two forms of inflammatory bowel disease 

with as yet incompletely clarified pathogenesis. The involvement of genetic and 

environmental factors is being discussed. Interestingly, polymorphisms of the NLRP3 

gen are associated with a higher susceptibility to Crohn´s disease (79). Important 

findings in these diseases are elevated levels of inflammatory mediators such as 

IL-1β and TNF-α. The DSS (dextransulfate sodium) colitis model, in which mice 

receive the sulfated macro sugar DSS in drinking water, is a valuable model 

mirroring many features of acute colitis observed in humans. Elevated levels of IL-1β 

as well as therapeutic efficacy of caspase-1 inhibitors suggest an involvement of the 

NLRP3 inflammasome in this model.  

In fact, macrophages incubated with DSS secrete IL-1β in a dose dependent 

manner. This phenomenon was dependent on the molecule integrity assuming that 

the whole molecule is responsible for the activity. Macrophage cell lines with defects 

in NLRP3, ASC or caspase-1 showed an almost complete failure of IL-1β release. 

However, prior activation with LPS (signal 1) was essential for the release of IL-1β. In 

the DSS colitis model, NLRP3-deficient mice showed a significantly less severe 

colitis (less diarrhea and bloody feces) compared to wild type mice during a period of 

nine-days. This finding correlated with a reduced level of inflammatory cytokines in 

the colon epithelium as well as less severe histological changes. These results point 

at an involvement of the NLRP3 inflammasome in DSS-induced colitis. 

In summary, these results support a two-phase model: In the first step, mediated by 

the toxic effects of DSS on the colon epithelium, (physiologically) existing intestinal 

bacteria encounter mucosal macrophages leading to the transcriptional upregulation 

of pro-IL-1β, mediated by receptors of the innate immune system. A second step 

leads to the activation of the NLRP3 inflammasome followed by secretion of active 

IL-1β, which is a key cytokine for the initiation and progression of inflammatory 

processes. Thus, the NLRP3 inflammasome could serve as a novel target for drug 

development for IBD. 
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1.6 Abkürzungsverzeichnis 

 
ACAT   A:Cholesterin-Acyltransferase 
ApoE   Apolipoprotein E 
ASC   apoptosis-associated speck-like protein containing a CARD 
ATP   Adenosintriphosphat 
BIR   baculovirus inhibitor of apoptosis protein repeats 
CAPS   cryopyrin-associated periodic syndrome 
CARD   caspase recruitment domain 
CINCA   chronic infantile cutaneous neurological articular syndrome 
CRD   C-terminal repressor domain 
DAMP   danger-associated molecular pattern 
DNA   deoxyribonucleic acid 
DSS   dextransulfate sodium 
EMCV   Enzephalomyokarditis-Virus 
FCAS   familial cold autoinflammatory syndrome 
HMGB1  high mobility group protein B1 
ICE   interleukin-1 converting enzyme 
IFN   Interferon 
IL   Interleukin 
IL-1RA   Interleukin-1-Rezeptor-Antagonist 
IPAF   ICE protease activating factor 
IPS-1   IFN-β promoter stimulator 1 
IRF   interferon regulatory factor 
LDL   low density lipoprotein 
LGP-2   laboratory of genetics and physiology 2 
LPS   Lipopolysaccharid 
LRR   leucine rich repeats 
MAMP   microorganism-associated molecular pattern 
MAPK   mitogen-activated protein kinase 
MAVS   mitochondrial antiviral signaling protein 
MDA-5   melanoma differentiation-associated gene 5 
MDP   muramyl dipeptide 
MWS   Muckle-Wells syndrome 
MyD88   myeloid differentiation primary response gene (88) 
NF-κB   nuclear factor 'κ-light-chain-enhancer' of activated B-cells 
NLR   NOD-like receptor 
NOD   nucleotide oligomerization domain 
PAMP   pathogen-associated molecular pattern 
poly(I:C)  polyinosinic:polycytidylic acid 
PRR   pattern recognition receptor 
RIG-I   retinoic acid-inducible gene 1 
RLR   RIG-I-like receptors 
RNA   ribonucleic acid 
ROS   reactive oxygen species 
TIR   Toll-IL-1 receptor homologous domain 
TLR   Toll-like receptor 
TNF-α   tumor necrosis factor α 
TRADD TNF receptor type 1-associated DEATH domain 
TRIF   TIR domain containing adapter inducing interferon-β 
VISA   virus-induced signaling adapter 
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NLRP3 inflammasomes are required for
atherogenesis and activated by cholesterol crystals
Peter Duewell1,3*, Hajime Kono2*, Katey J. Rayner4,5, Cherilyn M. Sirois1, Gregory Vladimer1, Franz G. Bauernfeind6,
George S. Abela8, Luigi Franchi9, Gabriel Nuñez9, Max Schnurr3, Terje Espevik10, Egil Lien1, Katherine A. Fitzgerald1,
Kenneth L. Rock2, Kathryn J. Moore4,5, Samuel D. Wright11, Veit Hornung5* & Eicke Latz1,7,10*

The inflammatory nature of atherosclerosis is well established but the
agent(s) that incite inflammation in the artery wall remain largely
unknown. Germ-free animals are susceptible to atherosclerosis, sug-
gesting that endogenous substances initiate the inflammation1.
Mature atherosclerotic lesions contain macroscopic deposits of cho-
lesterol crystals in the necrotic core, but their appearance late in
atherogenesis had been thought to disqualify them as primary inflam-
matory stimuli. However, using a new microscopic technique, we
revealed that minute cholesterol crystals are present in early diet-
induced atherosclerotic lesions and that their appearance in mice
coincides with the first appearance of inflammatory cells. Other crys-
talline substances can induce inflammation by stimulating the
caspase-1-activating NLRP3 (NALP3 or cryopyrin) inflammasome2,3,
which results in cleavage and secretion of interleukin (IL)-1 family
cytokines. Here we show that cholesterol crystals activate the NLRP3
inflammasome in phagocytes in vitro in a process that involves pha-
golysosomal damage. Similarly, when injected intraperitoneally, cho-
lesterol crystals induce acute inflammation, which is impaired in mice
deficient in components of the NLRP3 inflammasome, cathepsin B,
cathepsin L or IL-1 molecules. Moreover, when mice deficient in low-
density lipoprotein receptor (LDLR) were bone-marrow transplanted
with NLRP3-deficient, ASC (also known as PYCARD)-deficient or
IL-1a/b-deficient bone marrow and fed on a high-cholesterol diet,
they had markedly decreased early atherosclerosis and inflamma-
some-dependent IL-18 levels. Minimally modified LDL can lead to
cholesterol crystallization concomitant with NLRP3 inflamma-
some priming and activation in macrophages. Although there is
the possibility that oxidized LDL activates the NLRP3 inflamma-
some in vivo, our results demonstrate that crystalline cholesterol
acts as an endogenous danger signal and its deposition in arteries or
elsewhere is an early cause rather than a late consequence of inflam-
mation. These findings provide new insights into the pathogenesis
of atherosclerosis and indicate new potential molecular targets for
the therapy of this disease.

Cholesterol, an indispensable lipid in vertebrates, is effectively
insoluble in aqueous environments, and elaborate molecular
mechanisms have evolved that regulate cholesterol synthesis and its
transport in fluids4. Cholesterol crystals are recognized as a hallmark
of atherosclerotic lesions5 and their appearance assists the histo-
pathological classification of advanced atherosclerotic lesions6.
However, crystalline cholesterol is soluble in the organic solvents
used in histology, so that the presence of large crystals is identifiable

but only indirectly as so-called cholesterol crystal clefts, which deli-
neate the space that was occupied before sample preparation7. The
large cholesterol crystal clefts in atherosclerotic plaques were typically
observed only in advanced lesions; crystal deposition was therefore
thought to arise late in this disease. However, given that atheroscler-
osis is intimately linked to cholesterol levels, we were interested to
determine when and where cholesterol crystals first appear during
atherogenesis.

We fed atherosclerosis-prone Apo-E-deficient mice on a high cho-
lesterol diet to induce atherosclerosis8,9 and used a combination of
laser reflection and fluorescence confocal microscopy3 to identify
crystalline materials and immune cells. Many small crystals appeared
as early as two weeks after the start of the atherogenic diet within
small accumulations of subendothelial immune cells in very early
atherosclerotic sinus lesions (Fig. 1a, b and Supplementary Figs 1
and 2). The reflective material was identified by filipin staining as
being mostly cholesterol crystals (not shown). Crystal deposition and
immune-cell recruitment increased steadily with diet feeding, and
the appearance of crystals was correlated with that of macrophages
(r2 5 0.99, P , 0.001) (Fig. 1a–e). Cholesterol crystals were detected
not only in necrotic cores but also in subendothelial areas and found
to localize both inside and outside cells (Fig. 1b). In corresponding
haematoxylin/eosin-stained sections cholesterol crystal clefts were
visible only after 8 weeks of diet, and smaller crystals remained invi-
sible (Fig. 1a). As expected, we failed to detect macrophages or accu-
mulation of crystals in the aortic sinus sections in mice fed on a
regular chow diet (Fig. 1a, b, bottom panels). In addition, in human
atherosclerotic lesions small crystals were abundant in areas rich in
immune cells (Supplementary Figs 3 and 4). These studies establish
that crystals emerge at the earliest time points of diet-induced ather-
ogenesis together with the appearance of immune cells in the sub-
endothelial space.

Various crystals that are linked to tissue inflammation, as well as
pore-forming toxins or extracellular ATP, can activate IL-1 family
cytokines through the triggering of NLRP3 (ref. 10). Of note, cellular
priming through nuclear factor (NF)-kB activation leads to the induc-
tion of pro-forms of the IL-1 family cytokines and NLRP3 itself, a step
that is required for NLRP3 activation, at least in vitro11. To test
whether cholesterol crystals could activate the release of IL-1b, we
incubated lipopolysaccharide (LPS)-primed human peripheral blood
mononuclear cells (PBMCs) with cholesterol crystals. Cholesterol
crystals induced a robust, dose-responsive release of cleaved IL-1b
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in a caspase-1-dependent manner (Fig. 2a, b). Cholesterol crystals
added to unprimed cells did not release IL-1b into the supernatant,
indicating the absence of any contaminants that would be sufficient
for the priming of cells (Fig. 2a)11. IL-1 cytokines are processed by
caspase-1, which can be activated by various inflammasomes9. Indeed,
as previously observed with other crystals, cholesterol crystals induced
caspase-1 cleavage and IL-1b release in wild-type but not in NLRP3-
deficient or ASC-deficient macrophages (Fig. 2c, d). Transfected
double-stranded DNA (poly(dA-dT)Npoly(dT-dA)), a control activ-
ator that induces the AIM-2 inflammasome12, activated caspase-1 and
induced IL-1b release in an ASC-dependent but NLRP3-independent
manner, as expected (Fig. 2c, d). In addition, mouse macrophages also

produced cleaved IL-18, another IL-1 family member that is processed
by inflammasomes (Supplementary Fig. 5a). We also found that
chemically pure synthetic cholesterol crystals activated NLRP3, pro-
viding further evidence that cholesterol crystals themselves rather than
contaminating molecules were the biologically active material
(Supplementary Fig. 5b). Priming of cells for NLRP3 activation could
be achieved by other pro-inflammatory substances such as cell wall
components of Gram-positive bacteria (Supplementary Fig. 5c).
Moreover, minimally modified low-density lipoprotein (LDL) also
primed cells for NLRP3 activation (Supplementary Fig. 5d)13. Taken
together, these data establish that crystalline cholesterol leads to
NLRP3 inflammasome activation in human and mouse immune cells.

For further elucidation of the mechanisms involved in cholesterol
crystal recognition, we inhibited phagocytosis pharmacologically
with cytochalasin D or lantriculin A. We found that these agents
inhibited NLRP3 activation by crystals but not by the AIM2 activator
poly(dA-dT)Npoly(dT-dA) (Fig. 3a and Supplementary Fig. 6a, c, d).
To follow the fate of the internalized particles, we analysed macro-
phages incubated with cholesterol crystals by combined confocal
reflection and fluorescence microscopy. Cholesterol crystals induced
profound swelling in a fraction of cells (Fig. 3b), as observed for other
aggregated materials3,14. Phagolysosomal membranes contain lipid
raft components15, which allowed us to stain the surface of cells with
the raft marker choleratoxin B labelled with one fluorescent colour
and also to label internal phagolysosomal membranes after cell per-
meabilization with differently fluorescing choleratoxin B. Indeed, in
macrophages that had previously ingested cholesterol crystals, this
staining revealed that some cholesterol crystals lacked phagolysoso-
mal membranes and resided in the cytosol of a fraction of cells, thus
indirectly indicating crystal-induced phagolysosomal membrane
rupture (Fig. 3c). This finding was further supported by crystal-
induced translocation of soluble lysosomal markers into the cytosol
(see below). In addition, cholesterol crystals dose-responsively led to
a loss of lysosomal acridine orange fluorescence, further confirming
lysosomal disruption (Supplementary Fig. 6e). These studies suggest
that cholesterol-crystal-induced lysosomal damage in macrophages
leads to the translocation of phagolysosomal content into the cytosol.
In further experiments we found that the inhibition of lysosomal
acidification or cathepsin activity blocked the ability of cholesterol
crystals to induce IL-1b secretion (Supplementary Fig. 6f). Similarly,
analysis of cells from mice deficient in single cathepsins (B or L) also
showed that cholesterol crystals led to a diminished release of IL-1b
in comparison with wild-type cells. However, the dependence of
cholesterol-crystal-induced IL-1b release on single cathepsins was
less pronounced at higher doses, suggesting functional redundancy
of cathepsin B and L or potentially additional proteases (Fig. 3d).
Taken together, these experiments suggest that cholesterol crystals
induce translocation of the lysosomal proteolytic contents, which
can be sensed by the NLRP3 inflammasome by as yet undefined
mechanisms.

It has previously been demonstrated that oxidized LDL, a major
lipid species deposited in vessels, has the potential to damage lyso-
somal membranes16. We found that macrophages incubated with
oxidized LDL internalized this material and nucleated crystals in
large, swollen, phagolysosomal compartments (Fig. 3e); in some cells
these compartments ruptured with translocation of the fluorescent
marker dye into the cytosol (Fig. 3e, arrows). A time-course analysis
revealed that small crystals appeared as early as 1 h after incubation
with oxidized LDL (not shown), and larger crystals were visible after
longer incubation times (Fig. 3f). It is likely that cholesterol crystals
form as a result of the activity of acid cholesterol ester hydolases,
which transform cholesteryl esters supplied by oxidized LDL into
free cholesterol. As indicated above, minimally modified LDL can
prime cells for the NLRP3 inflammasome activation (Supplementary
Fig. 5d). Recent evidence suggests that this priming proceeds through
the activation of a TLR4/6 homodimer and CD36 (ref. 13). This,
together with the propensity of minimally modified LDL to form
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fluorescence and reflection microscopy of mouse macrophages incubated
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stimulated with oxidized LDL for the indicated durations and fluorescent
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crystals and to rupture lysosomal membranes, suggests that these
LDL species could be sufficient to provide both signals 1 and 2 needed
to activate IL-1b release from cells. Indeed, after 24 h of incubation
we observed a spontaneous release of IL-1b in the absence of further
stimulation of NLRP3 inflammasomes (Fig. 3g).

In mouse atherosclerotic lesions we identified not only macrophages
and dendritic cells but also neutrophils accumulated within the intima
space (see Supplementary Fig. 2). IL-1b has a key function in the
recruitment of neutrophils, and the IL-1-dependent intraperitoneal
accumulation of neutrophils has frequently been used as an in vivo
assay for inflammasome activation and IL-1 production2,17,18. Using
this acute inflammation model we found that cholesterol crystals
induced a robust induction of neutrophil influx into the peritoneum
(Fig. 4a). Neutrophil influx into the peritoneum after deposition of
cholesterol crystals was markedly decreased in mice lacking IL-1 or the
IL-1 receptor (IL-1R), indicating that IL-1 production is indeed
induced and essential for cholesterol-crystal-induced inflammation
in vivo. Moreover, mice lacking NLRP3 inflammasome components
or cathepsins B or L also recruited significantly fewer neutrophils
into the peritoneum than wild-type mice after injection of cholesterol
crystals. However, the decrease in neutrophilic influx observed after
deposition of cholesterol crystals was more pronounced in mice lack-
ing IL-1-related genes than in mice lacking NLRP3-inflammasome-
related genes (Fig. 4a), presumably because of the contribution of
IL-1a signalling and/or caspase-1-independent processing of IL-1b
(ref. 19) in vivo. In any case, these data confirm that cholesterol crystals
trigger NLRP3 inflammasome-dependent IL-1 production in vivo.

To test whether the NLRP3 inflammasome is involved in the chronic
inflammation that underlies atherogenesis in vessel walls, we tested
whether the absence of NLRP3, ASC or IL-1 cytokines might modulate
atherosclerosis development in LDLR-deficient mice20, a model for
familial hypercholesterolaemia. We reconstituted lethally irradiated
LDLR-deficient mice with bone marrow from wild-type or NLRP3-
deficient, ASC-deficient or IL-1a/b-deficient mice and subjected these

mice to eight weeks of a high-cholesterol diet. In these bone marrow
chimaeras, the LDLR-deficiency radioresistant parenchyma causes the
animals to become hypercholesterolaemic when placed on a high-fat
diet, whereas their bone marrow-derived macrophages and other
leukocytes lack the NLRP3-inflammasome or IL-1 pathway com-
ponents needed to respond to cholesterol crystals. No significant dif-
ferences in blood cholesterol levels were observed between the different
groups (wild type, 893 6 144 mg dl21; ASC2/2, 781 6 114 mg dl21;
Nlrp32/2,753 6 132 mg dl21; Il1a2/2/b2/2, 832 6 98 mg dl21). How-
ever, mice reconstituted with NLRP3-deficient, ASC-deficient or
IL-1a/b-deficient bone marrow showed significantly lower plasma
levels of IL-18, an IL-1 family cytokine whose secretion is dependent
on inflammasomes and a biomarker known to be elevated in athero-
sclerosis21 (Fig. 4b). Additionally, mice whose bone marrow-derived
cells lacked NLRP3 inflammasome components or IL-1 cytokines were
markedly resistant to the development of atherosclerosis (Fig. 4c, d).
The lesional area in the aortae of these mice was decreased on average
by 69% in comparison with chimaeric LDLR-deficient mice that had
wild-type bone marrow. These data demonstrate that activation of the
NLRP3 inflammasome by bone marrow-derived cells is a major con-
tributor to diet-induced atherosclerosis in mice. However, the contri-
bution of NLRP3 inflammasome activation in parenchymal cells to the
development of atherosclerosis cannot be assessed with this disease
model and remains to be examined in mice that are doubly deficient
in both LDLR and inflammasome components.

The molecules that incite inflammation in atherosclerotic lesions
have presented a long-standing puzzle. Although the lesions are abso-
lutely dependent on cholesterol, this abundant, naturally occurring
molecule has been viewed as inert. Here we show that the crystalline
form of cholesterol can induce inflammation. The magnitude of the
inflammatory response and the mechanism of NLRP3 activation
seem identical to that of crystalline uric acid, silica and asbestos2,3,22.
All these crystals are known to provoke clinically important inflam-
mation as seen in gout, silicosis and asbestosis, respectively.
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Figure 4 | The NLRP3 inflammasome mediates crystal-induced peritoneal
inflammation and atherosclerosis in vivo. a, C57BL/6 (n 5 23), B6-129
(n 5 13) or mice deficient in genes encoding IL-1R (n 5 11), IL-1a/b (double
knockout, dKO; n 5 11), IL-1a (n 5 4), IL-1b (n 5 4), caspase-1 (n 5 7),
ASC (n 5 15), cathepsin B (n 5 10), cathepsin L (n 5 5) or NLRP3 (n 5 10)
were injected peritoneally with cholesterol crystals in PBS or with PBS alone
(C57BL/6, n 5 14; B6-129, n 5 4). Peritoneal lavage cells were analysed for
neutrophils after 15 h. Results are shown as means and s.e.m. for pooled
groups of mice from experiments repeated two to four times. b–d, Female

LDLR-KO mice reconstituted with C57BL/6 (n 5 7), NLRP3-KO (n 5 9),
ASC-KO (n 5 8) or IL-1a/b-dKO (n 5 7) bone marrow were fed a high fat
diet for 8 weeks and analysed for serum IL-18 concentration (b) and average
aortic sinus lesion size (c, d). BMT, bone marrow transplantation. (c) Each
dot represents the mean lesion size of serial cross-sections from individual
mice. (d) Representative photographs of the aortic sinus stained with
Giemsa. Insets show twofold magnified portions of the boxed images; arrows
indicate atherosclerotic lesions.
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The chronic inflammation in gout, silicosis and asbestosis is thought
to derive from the inability of cells to destroy the ingested aggregates,
leading to successive rounds of apoptosis and reingestion of the crystal-
line material23. In the same way, immune cells cannot degrade choles-
terol; instead they depend on exporting the cholesterol to high-density
lipoprotein (HDL) particles, which carry the cholesterol to the liver for
disposal. The success of this or any cellular mechanism in clearing
crystals may thus depend on the availability of HDL. A low concentra-
tion of HDL in the blood is one of the most prominent risk factors for
atherosclerotic disease24, and pharmacological methods of increasing
HDL concentration are being actively pursued as treatments.

Even though cholesterol cannot be degraded by peripheral cells, it
may be transformed to cholesteryl ester by the cellular enzyme acyl-
coenzyme A:cholesterol acyltransferase (ACAT). Cholesteryl esters
form droplets rather than crystals and are considered to be a storage
form of cholesterol4. On the assumption that decreased cholesterol
storage would be beneficial for decreasing atherosclerosis, ACAT
inhibitors were tested in large clinical trials. Studies with two such
inhibitors did not show a decrease but rather an increase in the size of
the coronary atheroma25,26. This apparent paradox may be reconciled
by our findings that the crystalline form of cholesterol, which would
be expected to be increased in concentration after inhibition of
ACAT, may be crucial in driving arterial inflammation. Indeed,
mouse studies of ACAT deficiency show enhanced atherogenesis
with abundant cholesterol crystals27. On the basis of our findings,
therapeutic strategies that would reduce cholesterol crystals or block
the inflammasome pathway would be predicted to have clinical bene-
fit by decreasing the initiation or progression of atherosclerosis. In
this context our findings also indicate novel molecular targets for the
development of therapeutics to treat this disease.

METHODS SUMMARY
Cell culture media and reagents. Immortalized macrophage cell lines and bone

marrow-derived cells were cultured as described3 and primed with 10 ng ml21

LPS for 2 h before the addition of inflammasome stimuli. Inhibitors were added

30 min before stimuli. Crystals and poly(dA-dT)Npoly(dT-dA) were applied 6 h

before supernatant was collected, and ATP (5 mM) and nigericin (10mM) were

applied 1 h before supernatant was collected. Poly(dA-dT)Npoly(dT-dA) was

transfected with Lipofectamine 2000 (Invitrogen). Human PBMCs were freshly

isolated by Ficoll-Hypaque gradient centrifugation, grown in RPMI medium

(Invitrogen), 10% FBS (Atlas Biologicals) 10mg ml21 ciprofloxacin (Celgro) at

2 3 105 cells per 96 wells, and primed with 50 pg ml21 LPS for 2 h before the

addition of inflammasome stimuli. Supernatants were assessed for IL-1b by

enzyme-linked immunosorbent assay (ELISA) and western blotting.

Recruitment of neutrophils to peritoneal cavity. Mice were injected intraper-

itoneally with 2 mg of cholesterol crystals in 200ml of PBS or with PBS alone.

After 15 h, peritoneal lavage cells were stained with fluorescently conjugated

monoclonal antibodies against Ly-6G (clone 1A8; Becton Dickinson) and 7/4

(Serotec) in the presence of monoclonal antibody 2.4G2 (FcgRIIB/III receptor
blocker). The absolute number of neutrophils (Ly-6G-positive 7/4-positive) was

determined by flow cytometry.

Bone marrow transplantation and atherosclerosis model. Ldlr2/2 mice were

irradiated and reconstituted with bone marrow from wild-type, ASC2/2,

Nlrp32/2 or Il1a2/2b2/2 mice. After 8 weeks of high-fat diet, the atherosclerotic

regions of aortic sinuses were quantified on serially sectioned slides.

Full Methods and any associated references are available in the online version of
the paper at www.nature.com/nature.
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METHODS
Mice. Mice were provided as follows: Nlrp32/2 and ASC2/2 by Millennium

Pharmaceuticals; Casp12/2 by R. Flavell; Ctsb2/2 by T. Reinheckel; Ctsl2/2 by

H. Ploegh; and Il1a2/2, Il1b2/2 and Il1a2/2b2/2 by Y. Iwakura. B6-129 (mixed

background), C57BL/6, Il1r12/2, Apoe2/2 and Ldlr2/2 mice were purchased

from Jackson Laboratories. Animal experiments were approved by the

University of Massachusetts and Massachusetts General Hospital Animal Care

and Use Committees.

Reagents. Bafilomycin A1, cytochalasin D and zYVAD-fmk were from

Calbiochem. ATP, acridine orange and poly(dA-dT)Npoly(dT-dA) sodium salt
were from Sigma-Aldrich, and ultra-pure LPS was purchased from InvivoGen.

Nigericin, Hoechst dye, DQ ovalbumin and fluorescent choleratoxin B were

purchased from Invitrogen. MSU crystals were prepared as described17.

Cholesterol crystal preparation. Tissue-culture grade or synthetic cholesterol was

purchased from Sigma, solubilized in hot acetone and crystallized by cooling. After

six cycles of recrystallization, the final crystallization was performed in the presence

of 10% endotoxin-free water to obtain hydrated cholesterol crystals. Cholesterol

crystals were analysed for purity by electron impact gas chromatography–mass

spectrometry and thin-layer chromatography with the use of silica gel and

hexane-ethyl acetate (80:20) solvent. Crystal size was varied with a microtube tissue

grinder. Fluorescent cholesterol was prepared by the addition of DiD or DiI dye

(Invitrogen) in PBS.

ELISA and western blotting. ELISA measurements of IL-1b (Becton Dickinson)

and IL-18 (MBL International) were made in accordance with the respective

manufacturer’s directions. Experiments for caspase-1 western blot analysis were

performed in serum-free DMEM medium. After stimulations, cells were lysed by

the addition of a 103 lysis buffer (10% Nonidet P40 in Tris-buffered saline

(10 mM Tris-HCl, pH 7.5, 150 mM NaCl) and protease inhibitors), and post-
nuclear lysates were separated by 4–20% reducing SDS–PAGE. Anti-mouse

caspase-1 polyclonal antibody was provided by P. Vandenabeele. Anti-human

cleaved IL-1b (Cell Signaling) from human PBMCs was analysed in serum-free

supernatants as above without cell lysis.

Confocal microscopy. Apoe2/2 mice maintained in a pathogen-free facility were

fed with a Western-type diet (Teklad Adjusted Calories 88137; 21% (w/w) fat,

0.15% (w/w) cholesterol, 19.5% (w/w) casein; no sodium cholate) starting at

8 weeks of age; this continued for 2, 4, 8 or 12 weeks (three mice in each group).

Mice were killed and hearts were collected as described28. Hearts were sectioned

serially at the origins of the aortic valve leaflets, and every third section (5mm

thick) was stained with haematoxylin/eosin and imaged by light microscopy.

Adjacent sections were fixed in 4% paraformaldehyde, blocked and permeabilized

(10% goat serum and 0.5% saponin in PBS) and stained for 1 h at 37 uC with

fluorescent primary antibodies against macrophages (MoMa-2; Serotec), den-

dritic cells (CD11c; Becton Dickinson) or neutrophils (anti-Neutrophil;

Serotec) for imaging by confocal microscopy.

Human atherosclerotic lesions were obtained directly after autopsy, serially

sectioned at 2–3-mm intervals, and frozen sections (5 mm thick) were prepared

as above. Parallel sections were stained with Masson’s trichrome stain. Tissues

were prepared for microscopy as above. Macrophages were stained with anti-

CD68 (Serotec); smooth muscle cells were revealed with fluorescent phalloidin

(Invitrogen). Human and mouse samples were counterstained with Hoechst dye

to reveal nuclei. The atherosclerotic lesions were imaged on a Leica SP2 AOBS

confocal microscope where immunofluoroscence staining was revealed by

standard confocal techniques, and crystals were observed with laser reflection

using enhanced transmittance of the acousto-optical beam splitter as described3.

Laser reflection and fluorescence emission occurs at the same confocal plane in

this setup. The mean lesion area, amount of crystal deposition and monocyte

marker presence were quantified from three digitally captured sections per mouse

(Adobe Photoshop CS4 Extended). For quantification of the crystal mass and

macrophages present, the sum of positive pixels (laser reflection and fluorescence,

respectively) was determined and the area was calculated from the pixel size.

Confocal microscopy of mouse macrophages was performed as described3.

DQ ovalbumin fluoresces only on proteolytic processing, marking phagolyso-

somal compartments in macrophages.

Acridine orange lysosomal damage assay. This assay was performed by flow

cytometry as described3.

Bone marrow transplantation and atherosclerosis model. Eight-week-old

female Ldlr2/2 mice were lethally irradiated (11 Gy). Bone marrow was prepared

from femurs and tibiae of C57BL/6, Nlrp32/2, ASC2/2 and Il1a2/2Il1b2/2 donor

mice, and T cells were depleted with complement (Pel-Freez Biologicals) and anti-

Thy1 monoclonal antibody (M5/49.4.1; American Type Culture Collection).

Irradiated recipient mice were reconstituted with 3.5 3 106 bone marrow cells

administered into the tail vein. After four weeks, mice were fed with a Western-

type diet (Teklad Adjusted Calories 88137; 21% (w/w) fat, 0.15% (w/w) choles-

terol, 19.5% (w/w) casein; no sodium cholate) for eight weeks. Mice were killed

and perfused intracardially with formalin. Hearts were embedded in OTC

(Optimal Cutting Temperature) (Richard-Allan Scientific) medium, frozen,

and serially sectioned through the aorta from the origins of the aortic valve leaflets;

every single section (10mm thick) throughout the aortic sinus (800mm) was

collected. Quantification of average lesion area was performed from 12 sections

stained with haematoxylin/eosin or Giemsa from each mouse by two independent

investigators, with virtually identical results. Serum cholesterol levels were deter-

mined by enzymatic assay (Wako Diagnostics), and serum IL-18 was measured by

SearchLight protein array technology (Aushon Biosystems).

Statistical analyses. The significance of differences between groups was evaluated

by one-way analysis of variance (ANOVA) with Dunnett’s post-comparison test

for multiple groups to control group, or by Student’s t-test for two groups. R2 was

calculated from the Pearson correlation coefficient. Analyses were performed with

Prism (GraphPad Software, Inc.).

28. Moore, K. J. et al. Loss of receptor-mediated lipid uptake via scavenger receptor A
or CD36 pathways does not ameliorate atherosclerosis in hyperlipidemic mice.
J. Clin. Invest. 115, 2192–2201 (2005).
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Supplementary Fig. 1: Early aortic sinus atherosclerotic lesions contain crystal-loaded macro-
phages. 
a-c, Combined confocal fluorescence and reflection microscopy of early aortic sinus atherosclerotic 
lesions of Apo-E-KO mice fed a high cholesterol diet for 2 weeks.  Laser reflection of cholesterol 
crystals (red), immunofluorescence of macrophages (green) identified by MoMa-2 and nuclei (blue) 
counterstained with Hoechst dye. Note: In early lesions individual subendothelial crystal-positive 
macrophages can be seen (a) and granuloma-like lesions of a few tens of macrophages encircling 
cholesterol crystal depositions are visible (b). Additionally, cholesterol-crystal positive macrophages 
can be found in leaflets of the heart valves (c). Representative images from serial sections of groups 
of 3 mice are shown.
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Supplementary Fig. 2: Early atherosclerotic lesions contain crystal-loaded macrophages at 
different sites of aortae. 
a-c, Combined confocal fluorescence and reflection microscopy of early aortic sinus atherosclerotic 
lesions of Apo-E-KO mice fed a high cholesterol diet for 4 weeks. Samples were stained for (a) 
dendritic cells (CD11c, red), (b) macrophages (MoMa-2, red) and dendritic cells (CD11c, green) or 
(c) macrophages (MoMa-2, red) and neutrophils (anti-neutrophil, green). Nuclei were counterstained 
with Hoechst dye. Representative images from serial sections of groups of 3 mice are shown.
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Supplementary Fig. 3: Human coronary artery atherosclerotic lesions contain crystals suben-
dothelially and in necrotic cores.
Combined confocal fluorescence and reflection microscopy of a human coronary artery atheroscle-
rotic lesion. Overview image was obtained without reflection microscopy, while magnifications of 
boxed areas were obtained using combined immunofluorescence and reflection detection. Tissue 
was stained for macrophages (CD68, red), smooth muscle cells (phalloidin, light blue) and nuclei 
(Hoechst dye, dark blue). A representative section of one patient is shown.
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Supplementary Fig. 4: Human coronary artery lesion containing large cholesterol crystals
a-c, Combined confocal fluorescence and reflection microscopy of a human coronary artery athero-
sclerotic lesion. Lesion was stained with Masson’s trichrome stain (a). Note: Large cholesterol 
crystal clefts are visible, but small cholesterol crystals are not apparent. (b, c) Lesions were stained 
for macrophages (CD68, red). Note: Large cholesterol crystals are found extracellularly (b) and 
small crystals are found intracellularly (c). Sample imaged at 37 °C using a warmstage. Representa-
tive sections of two patients (b, c) (different from patient shown in Supplementary Fig. 3) are shown.
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Supplementary Fig. 6: Fluorescent cholesterol crystals are phagocytosed by monocytes, macro-
phages and dendritic cells. 
a, IL-1β ELISA of supernatants from LPS-primed mouse macrophages stimulated with cholesterol 
crystals or dAdT in the presence or absence of Latrunculin A. b, A mixture of unlabeled, DiI-labeled 
(green) or DiD-labeled (red) cholesterol crystals was incubated for 24 h and subsequently imaged by 
a combination of reflection (unlabeled, white) or fluorescence confocal imaging. Note: Dyes bound 
to the crystals do not exchange and non-labeled crystals do not acquire dye. c, PBMCs were incu-
bated with DiI-labeled cholesterol crystals in the absence or presence of increasing amount of 
cytochalasin D. Cells were stained with surface markers to distinguish cell populations and analyzed 
by flow cytometry. The mean fluorescence intensity of DiI-cholesterol crystal uptake is shown for 
the different cell populations. d, LPS-primed human PBMCs were left untreated or treated with 
cytochalasin D and subsequently incubated with 250 μg/ml cholesterol crystals. IL-1β was deter-
mined in supernatants by ELISA. e, Murine macrophages stimulated with cholesterol crystals for 6h, 
stained with acridine orange and analyzed by FACS. f, IL-1β ELISA of supernatants from LPS-
primed, murine macrophages stimulated with cholesterol crystals in the presence or absence of 
bafilomycin A1. Data are representative of one experiment repeated twice (a-d) or three times (e, f). 
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Colitis induced in mice with dextran sulfate sodium
(DSS) is mediated by the NLRP3 inflammasome

Christian Bauer,1 Peter Duewell,1 Christine Mayer,1 Hans Anton Lehr,2

Katherine A Fitzgerald,3 Marc Dauer,4 Jurg Tschopp,5 Stefan Endres,6 Eicke Latz,3

Max Schnurr1

ABSTRACT
Background The proinflammatory cytokines interleukin
1b (IL-1b) and IL-18 are central players in the
pathogenesis of inflammatory bowel disease (IBD). In
response to a variety of microbial components and
crystalline substances, both cytokines are processed via
the caspase-1-activating multiprotein complex, the
NLRP3 inflammasome. Here, the role of the NLRP3
inflammasome in experimental colitis induced by dextran
sodium sulfate (DSS) was examined.
Methods IL-1b production in response to DSS was
studied in macrophages of wild-type, caspase-1e/e,
NLRP3e/e, ASCe/e, cathepsin Be/e or cathepsin Le/e

mice. Colitis was induced in C57BL/6 and NLRP3e/e

mice by oral DSS administration. A clinical disease
activity score was evaluated daily. Histological colitis
severity and expression of cytokines were determined in
colonic tissue.
Results Macrophages incubated with DSS in vitro
secreted high levels of IL-1b in a caspase-1-dependent
manner. IL-1b secretion was abrogated in macrophages
lacking NLRP3, ASC or caspase-1, indicating that DSS
activates caspase-1 via the NLRP3 inflammasome.
Moreover, IL-1b secretion was dependent on
phagocytosis, lysosomal maturation, cathepsin B and L,
and reactive oxygen species (ROS). After oral
administration of DSS, NLRP3e/e mice developed a less
severe colitis than wild-type mice and produced lower
levels of proinflammatory cytokines in colonic tissue.
Pharmacological inhibition of caspase-1 with pralnacasan
achieved a level of mucosal protection comparable with
NLRP3 deficiency.
Conclusions The NLRP3 inflammasome was identified
as a critical mechanism of intestinal inflammation in the
DSS colitis model. The NLRP3 inflammasome may serve
as a potential target for the development of novel
therapeutics for patients with IBD.

INTRODUCTION
Human inflammatory bowel disease (IBD), the
most important entities being ulcerative colitis and
Crohn’s disease, are chronic, relapsing and remit-
ting inflammatory conditions that result from
chronic dysregulation of the mucosal immune
system in the gastrointestinal tract.1 The precise
pathogenesis of IBD is still incompletely under-
stood. However, it is now widely accepted that
genetic and environmental factors are involved.
Animal models of experimental colitis have been
developed to investigate the molecular and cellular
mechanisms leading to IBD, and these models are
frequently used to develop and evaluate the efficacy

of novel anti-inflammatory drugs. In the acute
dextran sodium sulfate (DSS) colitis model mice
are fed with DSS polymers in the drinking water
and this induces a colitis characterised by diar-
rhoea, bloody faeces, weight loss and a histological
picture of inflammation and ulceration as seen in
human IBD.2 As the acute inflammatory response
is independent of T and B cells,3 the model is
particularly useful to study the contribution of
innate immune mechanisms in intestinal inflam-
mation and, presumably due to toxic effects of DSS
on the mucosa, epithelial barrier dysfunction.
Increased levels of proinflammatory cytokines,

including interleukin-1b (IL-1b), IL-6, IL-18 and
tumour necrosis factor a (TNFa), are detected in
active IBD and correlate with the severity of
inflammation.4e6 IL-1b and TNFa have been
shown to alter tight junctions and intestinal
permeability.7 As epithelial barrier integrity is
essential for blocking the access of microorganisms
and toxins to underlying tissues, IL-1b is likely to
be essential in the early phase of the inflammatory
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cascade leading to an inflamed colon. Indeed, enhanced levels of
IL-1b are found in colonic mucosa and peritoneal macrophages
in DSS-induced colitis and may hence represent an initial trigger
of intestinal inflammation.8 IL-1b and IL-18 are activated by
caspase-1, and studies with caspase-1e/e mice strongly suggest
that caspase-1 plays a key role in DSS-induced colitis.9

The NLR (nucleotide-binding domain and leucine-rich repeat-
containing) family comprises a group of intracellular pattern
recognition receptors. NLRs have a leucine-rich repeat (LRR) that
recognises diverse pathogen-associated molecular patterns.10

NOD2 and NLRP3 are two of the best characterised NLRs, and
mutations of these receptors have been linked to Crohn’s disease.
NOD2 recognises the bacterial peptidoglycan-derived molecule
muramyl dipeptide (MDP) and activates the nuclear factor-kB
(NF-kB) pathway to induce an inflammatory response. Muta-
tions of the NOD2 gene have been identified in individuals
with Crohn’s disease.11 12 These polymorphisms have been
linked to NF-kB activation and IL-1b secretion.13 However, the
exact interaction of NOD2, NF-kB and pro-IL-1b/IL-1b remains
a matter of debate.14 NLRP3, also known as cryopyrin, forms an
inflammasome with the adaptor molecule ASC and caspase-1 to
convert pro-IL-1b and pro-IL-18 into their active forms. Muta-
tions in NLRP3 lead to chronic autoinflammatory syndromes.15

Single nucleotide polymorphisms (SNPs) in the NLRP3 gene
region are associated with susceptibility to Crohn’s disease.16 In
addition, the combination of polymorphisms in NLRP3 and
CARD8 was recently shown to be associated with Crohn’s
disease in Swedish male subjects.17

Recent studies have identified the autophagy protein Atg16L1
as a further susceptibility factor for Crohn’s disease.18 19

Notably, Atg16L1 deficiency causes Toll/IL-1 receptor domain-
containing adaptor inducing interferon b (TRIF)-dependent
activation of caspase-1, and mice lacking Atg16L1 in haemato-
poietic cells are highly susceptible to DSS-induced acute colitis.20

Elevated systemic IL-1b and IL-18 levels in these mice correlated
with severe mucosal inflammation, pointing towards an
important role for deregulated caspase-1 activity in the patho-
genesis of both IBD and DSS-induced colitis.9

In this study, we investigated the regulation of caspase-1 acti-
vation in response to DSS in murine macrophages with genetic
deletions of NLRP3 inflammasome components. In addition, the
role of the NLRP3 inflammasome in intestinal inflammation was
investigated using the acute DSS colitis model.

METHODS
Cell culture and reagents
Macrophage cell lines of wild-type (WT), caspase-1e/e, NLRP3e/e,
ASCe/e, cathepsin Be/e, cathepsin Le/e and IPAFe/e mice were
generated as described.21 Cells were cultured in Dulbecco’s modi-
fied Eagle’s medium (DMEM) high glucose supplemented with 1%
L-glutamine (all PAA, Pasching, Austria), 10% fetal calf serum
(FCS; GIBCO, Karlsruhe, Germany) and 10 mg/ml ciprofloxacin
(Hexal, Holzkirchen, Germany). Human THP-1 cells were culti-
vated in RPMI supplemented with 10% FCS, 1% Na-pyruvate
and 10 mg/ml ciprofloxacin, and differentiated with phorbol
12-myristate 13-acetate (PMA; 5 nM) 3 h before DSS stimulation.
Primary human macrophages were generated from adherent
peripheral blood mononuclear cells (PBMCs) of healthy donors
and cultivated in RPMI with 2% AB serum (Lonza, Verviers,
Belgium), 1% L-glutamine, 100 U/ml penicillin, 0.1 mg/ml strep-
tomycin (PAA, Pasching, Austria) in the presence of 1000 U/ml
recombinant human granulocyte-stimulating factor (rhGM-CSF;
Berlex, Richmond, California, USA). The caspase-1 inhibitor
z-YVAD-fmk, nigericin, cytochalasin D and bafilomycin A1 were

purchased from Calbiochem (Darmstadt, Germany). Poly(dA:dT)
sodium salt, N-acetyl-L-cysteine (NAC), ammonium pyrrolidine-
dithiocarbamate (APDC) and dextranase were from Sigma-Aldrich
(Munich, Germany). All DSS reagents were from MP Biomedicals
(Illkirch, France). Ultra pure lipolysaccharide (LPS) K12 and
acridine orange were from Invitrogen (Toulouse, France). The
caspase-1 inhibitor pralnacasan was provided by Sanofi-Aventis
(Frankfurt, Germany). Cremophor EL was purchased from BASF
(Ludwigshafen, Germany).

Speck formation assay
Assembly of the ASC-containing NLRP3 inflammasome was
studied using macrophages that stably express the fusion protein
ASCecyan fluorescent protein (CFP). Cells were plated at
a density of 106 cells/well, primed with 10 ng/ml LPS for 2 h and
incubated with DSS for 24 h. The cells were washed and
ASCeCFP speck formation was analysed by fluorescence
microscopy (Zeiss, Jena, Germany) and ImageJ software (NIH,
Bethesda, Maryland, USA) for digitally counting specks per high
power field (HPF).

Flow cytometry
For the analysis of lysosomal damage macrophages were plated
into 24-well culture dishes and stimulated for 24 h with DSS.
The cells were washed and incubated with 1 mg/ml acridine
orange for 15 min for staining of lysosomes. Cells were washed
twice and fluorescence intensity was analysed at 600e650 nm
emission wavelength with a FACSCanto II (BD Biosciences San
Diego, California, USA). Data analysis was performed using
FlowJo software (Tree Star, Ashland, Oregon, USA).

Mice
NLRP3e/e mice22 were bred at the University of Munich and
used for experiments between the ages of 8 and 16 weeks. Age-
matched WTcontrols were purchased from Harlan Winkelmann
(Borchen, Germany). Mice were fed standard mice chow pellets,
had access to tap water supplied in bottles, and were acclima-
tised at least 7 days before they entered into experiments. All
experiments were approved by the regional animal study
committee and are in agreement with the guidelines for the
proper use of animals in biomedical research.

Induction of colitis and treatment
Colitis was induced in C57BL/6 and NLRP3e/e mice with 2%
DSS (molecular weight¼40 kDa) dissolved in drinking water
given ad libitum (days 1e9) as described.2 Control mice were
given tap water. The caspase-1 inhibitor pralnacasan was
dissolved in 25% Cremophor EL solution and was filtered
through syringe filters (0.2 mm). The substance was adminis-
tered intraperitoneally at a dosage of 50 mg/kg body weight
twice daily. Control animals received Cremophor EL intraperi-
toneally twice daily.

Clinical score and histological analysis
Body weight, the presence of occult or gross blood per rectum,
and stool consistency were determined by two investigators
blinded to the treatment groups. A scoring system was applied
to assess diarrhoea and the presence of occult or overt blood in
the stool.23 Changes of body weight are indicated as loss of
baseline body weight as a percentage. Postmortem, the colon
was removed and pieces of colonic tissue were used for ex vivo
analysis. For histology, rings of the transverse part of the colon
were fixed in 4% buffered formalin and embedded in paraffin.
Sections were stained with H&E according to standard
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protocols. Histological scoring was performed in a blinded way
by a pathologist (HAL). Focally increased numbers of inflam-
matory cells in the lamina propria were scored as 1, confluence
of inflammatory cells extending into the submucosa as 2 and
transmural extension of the infiltrate as 3. For tissue damage,
discrete lymphoepithelial lesions were scored as 1, mucosal
erosions as 2, and extensive mucosal damage and/or extension
through deeper structures of the bowel wall as 3. The two
equally weighted subscores (cell infiltration and tissue damage)
were added and the combined histological colitis severity score
ranged from 0 to 6.

Ex vivo analysis of colonic cytokines
Strips of colon were mechanically crushed, vortexed in 200 ml of
Tissue Protein Extraction Reagent (Pierce, Rockford, USA) for
1 min and shock frozen in liquid nitrogen. The homogenate was
centrifuged at 10 000 g at 48C for 15 min. The amount of total
extracted protein was determined by Bradford analysis using the
BioRad Protein Assay (BioRad, Munich, Germany). The amount
of IFNg, IL-1b and TNFa in the colon homogenate was
quantified by ELISA (BD Biosciences Pharmingen, San Diego,
California, USA).

mRNA extraction and reverse transcriptionePCR (RTePCR)
Colonic tissue was cleaned in phosphate-buffered saline (PBS),
snap-frozen in liquid nitrogen and stored at e708C. Total cellular
RNA was isolated by homogenising tissue with an Ultra Turrax
instrument (Janke und Kunkel, Staufen im Breisgau, Germany)
and using the Roche Total RNA Tissue Extraction Kit (Roche,
Mannheim, Germany). The yield and purity of the RNA were
determined by spectroscopic analysis and the concentration of
total RNA was equilibrated. For reverse transcription, M-MLV
reverse transcriptase (Gibco Life Technologies, Paisley, UK),
RNase inhibitor (Roche), oligo(dT) primer for cDNA synthesis
(Roche) and dNTP (Promega, Madison, Wisconsin, USA) were
used. A Light Cycler Instrument (Roche) and the Light Cycler
Fast Start DNA Master SYBR Green I Kit (Roche) were used for
real-time PCR, according to the manufacturer�s recommenda-
tions. Primers for murine glyceraldehyde phosphate dehydroge-
nase (GAPDH) and IP-10 (CXCL-10) were purchased as Light
Cycler Primer Sets including standard DNA from Search-LC
(Heidelberg, Germany). The number of copies in each sample
was correlated with the number of GAPDH copies.

Isolation of peritoneal macrophages
Mice were sacrified by cervical dislocation under isoflurane
anaesthesia, injected with 10 ml of PBS intraperitoneally and,
after shaking, peritoneal lavage was performed. Collected peri-
toneal lavage fluid was centrifuged and erythrocytes in the cell
pellet were lysed using BD Pharm Lyse lysing buffer (BD
Bioscience). The remaining cells were plated into culture dishes
overnight and adherent cells were used for cytokine assays.

ELISA
Primary macrophages and cell lines were seeded into 96-well
plates at a density of 23105 cells per well. After LPS priming for
1 h, cells were stimulated with the indicated amounts of DSS for
24 h. Cell culture supernatant or colon homogenates were used
for ELISAs (BD Bioscience), which were performed according to
the manufacturer ’s protocol.

SDSePAGE and western blotting
Cell culture supernatants of 106 cells or 65 mg of whole protein
from colon homogenate were dissolved in Laemmli buffer

(BioRad) and separated using a 15% acrylamideebisacrylamide
gel. Proteins were blotted onto a 0.45 mm polyvinylidene fluoride
(PVDF) membrane (Millipore, Schwalbach, Germany). Primary
anti-caspase-1 (rabbit, antimouse, Santa Cruz) and anti-IL-1b
(R&D Systems, Wiesbaden-Nordenstadt, Germany) were
applied at 1:500 and horseradish peroxidase (HRP)-coupled
ß-actin (loading control) was used at 1:3000. Immunoglobulin
G (IgG) antigoat-HRP (Santa Cruz) was diluted 1:3000 and
Amersham ECL� (GE Healthcare, Munich, Germany) served for
visualisation via chemoluminescence.

Statistical analysis
Data are expressed as means 6 SEM. Statistical significance of
differences between treatment and control groups was deter-
mined by Student t test. Differences were considered statisti-
cally significant at p<0.05.

RESULTS
DSS induces caspase-1-dependent IL-1b processing in murine
macrophages
Release of active IL-1b is mediated by a two-step process initi-
ated by transcriptional induction of pro-IL-1b, for example by
a Toll-like receptor (TLR) stimulus, followed by caspase-1-
mediated cleavage. DSS, a polyanionic derivate of sulfated high
molecular weight dextrane, induces the release of IL-1b from
murine macrophages.8 To investigate the mechanism of IL-1b
release, we incubated a murine macrophage cell line with DSS
for 24 h with or without prior LPS priming. In the absence of
LPS priming, DSS did not induce a notable release of IL-1b.
However, LPS-primed macrophages strongly responded to the
addition of DSS in a dose-dependent manner (figure 1A). The
requirement of LPS priming for enhanced IL-1b synthesis was
further supported by data obtained from a macrophage cell line
of mice with combined MyD88 and TRIF deficiency. These cells
failed to secrete IL-1b in response to either DSS or nigericin,
a potassium ionophore activating caspase-1, but responded
to poly(dA:dT), which induces IL-1b in a TLR-independent
manner (figure 1B). To demonstrate the role of caspase-1 in DSS-
mediated IL-1b release, we incubated the macrophages with the
caspase-1 inhibitor z-YVAD-fmk and found that this completely
abolished the release of IL-1b (figure 1C). Similar results were
obtained using primary peritoneal macrophages from WT mice
(figure 1D) as well as primary human macrophages and THP-1
cells (Supplementary figure 1). To confirm that IL-1b is released
in its active form, we performed western blotting of IL-1b p17
and caspase-1 p10, which were both present in supernatants
of DSS- or nigericin-stimulated macrophages (figure 1E). To
determine whether intact DSS macromolecules were required
for caspase-1 activation, we digested DSS (40 kDa) with
dextranase, which cleaves 1,6-glycosylic bounds of isomaltose,
before macrophage stimulation. Dextranase almost completely
inhibited the release of IL-1b (figure 1F). Incubating macro-
phages with DSS molecules ranging from 8 to 1400 kDa revealed
a positive correlation between IL-1b release and DSS molecular
weight (figure 1G), suggesting that IL-1b secretion is induced
only by intact DSS macromolecules.

DSS induces NLRP3 inflammasome activation
The NLR protein NLRP3 can form an inflammasome complex
with the adaptor molecule ASC and caspase-1 in response to
various stimuli.24 We speculated that caspase-1 activation by
DSS is mediated by the NLRP3 inflammasome. It has been
shown that NLRP3 inflammasome activation is dependent
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on K+ efflux.25 To assess the role of NLRP3 in DSS-induced
caspase-1 activation, we blocked K+ efflux by the addition of
high concentrations of KCl to the extracellular medium and
found that this completely inhibited IL-1b release (figure 2A).
In addition, macrophages lacking NLRP3, ASC or caspase-1
were devoid of IL-1b secretion in response to DSS exposure
(figure 2B). Consistent with previous observations,21 response
to transfected poly(dA:dT) was NLRP3 independent and ASC
dependent. In contrast, macrophages from IPAFe/e mice (IPAF
is an NLRP3-independent, caspase-1-recruiting inflammasome)
showed no defect in IL-1b secretion (figure 2C). The require-
ment of NLRP3 for IL-1b release was further supported by
studying primary peritoneal macrophages from NLRP3e/e mice
(figure 2D). NLRP3 activation triggers the formation of a large
assembly of ASC, which rapidly activates caspase-1. To analyse
the recruitment of ASC, we used macrophages stably
expressing ASC fused to the fluorescent protein CFP.26

NLRP3eASC assembly results in the formation of fluorescent
specks, which can be visualised by fluorescence microscopy.
DSS induced speck formation in a dose-dependent manner
(figure 2E). We could rule out that DSS, either directly or
indirectly, induces NLRP3 inflammasome activation via the
P2X7 receptor27 by demonstrating that IL-1b secretion in
response to DSS was unimpaired in macrophages lacking
P2X7 (figure 2F). Together, these findings indicate that DSS
activates the NLRP3eASC complex, leading to the activation of

caspase-1 and subsequent cleavage of pro-IL-1b into the mature,
secreted form.

NLRP3 inflammasome activation in response to DSS is
dependent on lysosomal maturation and reactive oxygen species
(ROS)
Phagocytosis of particulate danger-associated molecular patterns
has been shown to activate the NLRP3 inflammasome via lyso-
somal destabilisation.21 To characterise the mechanisms
of NLRP3 inflammasome activation in response to DSS further,
we used pharmacological inhibitors to block pathways of lyso-
some formation and function. The role of phagosome formation
in caspase-1 activation was studied by incubating macrophages
prior to DSS stimulation with cytochalasin D, which inhibits
phagocytosis by disrupting actin filaments. Cytochalasin D
completely abrogated IL-1b secretion in response to DSS,
whereas the response to the potassium ionophore nigericin was
unaffected (figure 3A). Moreover, blocking lysosomal acidification
with bafilomycin A1, an inhibitor of the vacuolar H+ ATPase,
completely inhibited DSS-mediated IL-1b release (figure 3A).
These findings suggest a critical role for functional lysosomes in
DSS-mediated NLRP3 activation. Experiments using specific
inhibitors of cathepsin B have shown a link between lysosomal
cysteine proteinases and NLRP3 inflammasome activation for
crystals and influenza virus.21 28 To assess whether this mecha-
nism is operative during DSS-mediated NLRP3 inflammasome

Figure 1 Dextran sodium sulfate (DSS) induces caspase-1-mediated interleukin 1b (IL-1b) release from murine macrophages. (A) Macrophages were
treated with increasing concentrations of DSS in the absence or presence of lipopolysaccharide (LPS) priming. IL-1b was determined in the
supernatant by ELISA. (B) Absence of IL-1b release of LPS-primed MyD88/TRIF-deficient macrophages in response to DSS or nigericin. Transfected
dAdT served as a MyD88/TRIF-independent stimulus. (C) Influence of the caspase-1 inhibitor z-YVAD-fmk (10 mM) on IL-1b release by a macrophage
cell line and (D) by primary macrophages. (E) Western blot analysis of IL-1b p35 and caspase-1 p45 in cell lysates (CL) and of bioactive IL-1b p17 and
caspase-1 p10 in supernatants (SN) of DSS- or nigericin-stimulated, LPS-primed macrophages. (F) Influence of dextranase treatment of DSS on IL-1b
release by macrophages. (G) Influence of DSS molecule size (8 to 1400 kDa) on IL-1b release. Shown are representative data as means 6 SEM (n¼3
independent experiments). *p<0.05. TRIF, Toll/IL-1 receptor domain-containing adaptor inducing interferon b.
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activation, we compared IL-1b release of the WT with that
of cathepsin B- and cathepsin L-deficient macrophages. IL-1b
secretion in DSS-treated macrophages was significantly reduced
in cathepsin B- and, to a lesser extent, in cathepsin L-deficient
macrophages (figure 3B). Thus, lysosomal proteases appear to be
involved in DSS-induced NLRP3 inflammasome activation. We
next assessed whether DSS leads to lysosomal damage, as has
been proposed for crystalline structures.21 We made use of the
staining properties of acridine orange, a dye with green fluores-
cence in its monomeric state and red fluorescence when forming
dimers in acidic compartments, the red fluorescence intensity
correlating with the cytoplasmic number of lysosomes. Indeed,
DSS induced a loss of red fluorescence of macrophages stained
with acridine orange at similar levels to those previously

reported for crystals,21 suggesting lysosomal damage (figure 3C).
Taken together, these findings point towards a DSS-mediated
phagosomal destabilisation, leading to the release of phagosomal
contents into the cytosol where they are sensed by the NLRP3
inflammasome.
NLRP3 inflammasome activation has been linked with ROS

generation in response to various stimuli.28 29 DSS has previ-
ously been shown to stimulate macrophage ROS production.30

To investigate the role of ROS in DSS-induced IL-1b release, we
treated macrophages with the ROS inhibitors N-acetylcysteine
(NAC) and ammonium pyrrolidinedithiocarbamate (APDC).
Both inhibitors significantly reduced IL-1b secretion (figure 3D).
These data suggest that ROS contribute to DSS-induced NLRP3
inflammasome activation.

Figure 3 Activation of the NLRP3
inflammasome by dextran sodium
sulfate (DSS) requires lysosomal
maturation and reactive oxygen species
(ROS). (A) Macrophages were
incubated with cytochalasin D (2 mM)
or bafilomycin A1 (20 nM) before
treatment with 3% DSS. The potassium
ionophore nigericin served as positive
control. Interleukin 1b (IL-1b) was
determined by ELISA. (B) Macrophage
cell lines from wild-type (WT),
cathepsin Be/e or cathepsin Le/e mice
were primed with lipopolysaccharide
(LPS) and incubated with DSS. (C)
Phagosomes of DSS-treated
macrophages were stained with the
fluorochrome acridine orange. Loss of
fluorescence, which correlates with
reduced numbers of lysosomes, was
analysed by fluorescence-activated cell
sorting. (D) Influence of the ROS
inhibitors, ammonium
pyrrolidinedithiocarbamate (APDC) and
N-acetyl-L-cysteine (NAC), on DSS-induced IL-1b production. Nigericin served as a positive control. Shown are representative data as means 6 SEM
(n¼3 independent experiments). *p<0.05.

Figure 2 Interleukin 1b (IL-1b)
processing in response to dextran
sodium sulfate (DSS) is mediated by the
NLRP3 inflammasome. (A)
Macrophages were primed with
lipopolysaccharide (LPS) and incubated
with 3% DSS in the presence or absence
of high concentrations of KCl (130 mM).
IL-1b was determined in the supernatant
by ELISA. (B) LPS-primed
macrophage cell lines from wild-
type (WT), NLRP3e/e, ASCe/e or
caspase-1e/e mice were incubated with
3% DSS. Incubation with dAdT served
as a NLRP3-independent, but ASC-
dependent stimulus. (C) IL-1b secretion
by macrophages deficient in the IPAF
inflammasome. (D) IL-1b secretion in
response to 3% DSS by primary
macrophages from WT and NLRP3e/e

mice. (E) Recruitment of ASC to the
inflammasome was visualised using macrophages expressing an ASCecyan fluorescent protein (CFP) fusion protein by fluorescence microscopy. The
numbers of specks per high power field (HPF) were counted. (F) IL-1b secretion by macrophages deficient in the P2X7 receptor. Shown are
representative data as means 6 SEM (n¼3 independent experiments). *p<0.05.
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Colitis severity and inflammatory response in the DSS model
depend on NLRP3 signalling
We next investigated the role of the NLRP3 inflammasome
in DSS-mediated intestinal inflammation in vivo. WT and
NLRP3e/e mice received 2% DSS in their drinking water for a
period of 9 days. Clinical parameters, including body weight, the
presence of occult or gross blood per rectum and stool consis-
tency, were determined daily. NLRP3e/e mice were significantly
protected from DSS-induced colitis, showing reduced loss of
body weight and haematochezia (figure 4A). Of note, four out of
15 WT mice had died due to colitis by day 9, whereas all 15
NLRP3e/e mice survived. Histological analysis of colonic tissue
obtained on day 6 revealed less severe mucosal infiltration by
inflammatory cells and reduced tissue damage in NLRP3e/e

mice, translating into a significantly improved histological colitis
severity score (figure 4B and Supplementary figure 2). On day 9,
histology showed severe intestinal inflammation with destruc-
tion of the epithelial layer leading to identical histology scores in
WT and NLRP3e/e mice, despite the reduced clinical colitis
scores in NLRP3e/e mice. These findings indicate that the NLRP
inflammasome plays a more critical role during the early phase
of colitis induction, but cannot prevent colitis progression after
prolonged DSS exposure. As caspase-1 activity is regulated by
NLRP3, inhibition of caspase-1 could be an effective novel
treatment strategy for IBD. In line with this notion, we have
previously reported that pharmacological inhibition of caspase-1
with pralnacasan is effective in the treatment of DSS-induced
experimental colitis.23 Treatment of mice with pralnacasan, at
a dose that had been optimal in our previous study, improved

clinical parameters, such as body weight, stool consistency and
haematochezia (figure 4C). Indeed, the magnitude of the ther-
apeutic benefit was similar to the protective effect observed in
NLRP3e/e mice, providing further evidence that caspase-1 acti-
vation via the NLRP3 inflammasome is a major pathological
mechanism in DSS-induced colitis.
Proinflammatory cytokines, including IL-1b, TNFa and IFNg,

are elevated in colonic tissue in humans and in the acute DSS
colitis model. To assess the influence of the NLRP3 inflamma-
some on the intestinal inflammatory response, we first analysed
IL-1b production of peritoneal macrophages isolated from mice
receiving DSS in their drinking water. Macrophages of WT
mice spontaneously released low levels of IL-1b, which was
strongly enhanced by DSS feeding. In contrast, macrophages of
NLRP3e/e mice secreted no detectable levels of IL-1b in the
absence of DSS feeding and only low levels in response to DSS
(figure 5A). Furthermore, levels of TNFa, IFNg and IP-10 in
colonic homogenates were elevated in WT but not in NLRP3e/e

mice in response to 6 days of DSS feeding (figure 5B). Interest-
ingly, levels of these cytokines were also reduced in NLRP3e/e

mice receiving tap water only, indicating that NLRP3 might also
play a role in physiological intestinal homeostasis. Of interest,
IL-1b levels in colonic homogenates measured by ELISA did not
differ significantly between WT and NLRP3e/e mice. As
the ELISA does not discriminate between pro-IL-1b and active
IL-1b, we performed western blot analysis for cleaved IL-1b
(p17) and found high levels of cleaved IL-1b in the colon of WT
mice receiving DSS, but not in that of NLRP3e/e mice
(figure 5C).

Figure 4 NLRP3 deficiency and caspase-1 inhibition protects mice from dextran sodium sulfate (DSS)-induced colitis. (A) Loss of basal body weight
and haematochezia score of wild-type (WT) and NLRP3e/e mice (n¼15 per group) receiving 2% DSS or tap water for 9 days. y indicates death rate.
(B) Histological score of distal colon sections of WT and NLRP3e/e mice receiving DSS or tap water on day 6 and day 9 of DSS feeding. (C) Loss of
basal body weight and haematochezia score of WT mice treated with tap water or 2% DSS orally ad libitum in the presence or absence of the caspase-
1-inhibitor pralnacasan (50 mg/kg intraperitoneally) or with Cremophor EL (vehicle) alone. Data are presented as means 6 SEM (n¼2 independent
experiments). *p<0.05.
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DISCUSSION
Data from human specimens and from murine colitis models
indicate that excessive expression of IL-1b and IL-18 plays a key
role in the pathogenesis of IBD.5 31 Furthermore, caspase-1,
which regulates the secretion of biologically active IL-1b and
IL-18, has been identified as a central mediator of DSS-induced
colitis.9 In the present study, we provide evidence that DSS
induces caspase-1 activation via the NLRP3 inflammasome
in macrophages and that NLRP3e/e mice are significantly
protected from DSS-induced colitis, developing a decreased
clinical and histological colitis severity and dramatically reduced
levels of proinflammatory cytokines in the colonic tissue. This
protective effect was most pronounced at an early time point of
the disease, indicating a critical role for the NLRP3 inflamma-
some at the initiation of the inflammatory process. Together,
these results strongly argue for a role for the NLRP3 inflam-
masome in DSS-induced colitis. Interestingly, the clinical colitis
severity parameters in NLRP3e/e mice were comparable with
those achieved by inhibition of caspase-1 with pralnacasan in
WT mice, indicating that pharmacological intervention in the
NLRP3 inflammasome complex may have therapeutic potential
in the treatment of IBD.23

The precise mechanism of NLRP3 inflammasome activation
is incompletely understood. The data obtained in the present
study demonstrate that IL-1b release by macrophages in
response to DSS requires lysosomal maturation, the lysosomal
proteases cathepsin B and cathepsin L, loss of lysosomal integ-
rity as well as ROS production. These mechanisms resemble
those previously described for other NLRP3 stimuli, such as
monosodium urate, asbestos, silica crystals and influenza
virus.21 28 29 Assays measuring IL-1b production by DSS-
stimulated macrophages could be exploited for high-throughput
screening of new anti-inflammatory drugs targeting the NLRP3
inflammasome for the treatment of IBD.

In what respect can these findings contribute to our under-
standing of human IBD? Genetic studies provide evidence for an
association of IBD with mutations of NLRP3 inflammasome
components. Villani and co-workers found that susceptibility to
Crohn’s disease is associated with polymorphisms located in
a predicted regulatory region on chromosome 1q44 downstream

of NLRP3.16 Interestingly, these polymorphisms correlated with
impairment of IL-1b processing of PBMCs in response to LPS,
indicating that NLRP3-mediated caspase-1 activation may play
a protective role in IBD, for example in the defence of intestinal
microbial pathogens. On the other hand, McGovern and co-
workers detected an association between IBD and a poly-
morphism of CARD8 (C10X),32 even though this could not be
confirmed by others.33 34 CARD8 is a binding partner of NLRP3
and as such a component of the NLRP3 inflammasome.35 It is
known to suppress NF-kB activity and to regulate caspase-1
activation.36 37 Similarly to mutations in NOD2, CARD8
mutations might lead to perturbations in the NF-kB pathway,
finally leading to upregulation of pro-IL-1b and pro-IL-18 in
lamina propria macrophages. In the same model, an additional
gain-of-function mutation of NLRP3 could lead to an over-
activated caspase-1, cleaving pro-IL-1b and pro-IL-18 into their
biologically active forms. In support of this hypothesis, Schoultz
and co-workers have recently reported that combined NLRP3
and CARD8 mutations increase the susceptibility to Crohn’s
disease in a cohort of Swedish men.17

This ‘two-hit’ model of caspase-1 activation leading to the
secretion of IL-1b and IL-18 in human IBD appears to be closely
mirrored in the DSS colitis model in mice. Initially, DSS exerts
a direct toxic effect on the epithelial barrier, hence allowing
bacteria to stimulate lamina propria macrophages via TLRs and
the NF-kB pathway, which leads to enhanced transcription
of pro-IL-1b and pro-IL-18.38 In a second step, DSS induces
caspase-1 activation via the NLRP3 inflammasome complex,
cleaving IL-1b and IL-18 into their biologically active forms,
which initiates an intestinal inflammatory cascade. Our data
may thus help to understand why DSS-induced colitis is, despite
its striking simplicity, such a valuable model of IBD.
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Figure 5 Reduced inflammatory responses in NLRP3e/e mice in response to dextran sodium sulfate (DSS). (A) Peritoneal macrophages of wild-type
(WT) and NLRP3e/e mice (n¼5 per group) treated with 2% DSS for 9 days or with tap water were obtained by lavage, and spontaneous release of
interleukin 1b (IL-1b) was determined in culture supernatant by ELISA. (B) Cytokine levels in colonic homogenate of WT and NLRP3e/e mice. Levels of
IL-1b, tumour necrosis factor a (TNFa) and interferon g (IFNg) were analysed by ELISA. IP-10 expression was assessed by quantitative reverse
transcriptionePCR. Data are presented as means 6 SEM (n¼2 independent experiments). *p<0.05. (C) Western blots of IL-1b (p17) in colonic
homogenate of DSS-treated WT and NLRP3e/e mice.
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