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Zusammenfassung

In dieser Dissertation stelle ich experimentelle Untersuchungen zur Kopplung zwi-
schen mechanischen Oszillatoren und ultrakalten Atomen vor. Insgesamt werden
drei Kopplungsmechanismen untersucht.

In einem ersten Experiment wird unter Ausnutzung des Oberflächenpotentials
eines mechanischen Oszillators dessen Bewegung an die Schwerpunktsbewegung eines
Bose-Einstein Kondensates gekoppelt. Die Tiefe des magnetischen Fallenpoten-
tials wird in der Nähe des Oszillators von dessen Oberflächenpotential reduziert.
Auslenkung des Oszillators führt zu einer Modulation von Frequenz und Minimums-
position der magnetischen Falle. Der Atomzahlverlust durch die Kopplung wird in
Absorptionsabbildung bestimmt, und ermöglicht die Amplitude des Oszillators mit
den Atomen auszulesen.

In einem zweiten Experiment untersuchen wir die Kopplung zwischen einem mech-
anischen Membran-Oszillator und optisch gefangenen thermischen Atomen. Die
Membran ist der Endspiegel eines optischen Gitters und die Oszillationsbewegung
der Membran koppelt über dieses an die Schwerpunktsbewegung der Atome. Umge-
kehrt verteilen die Atome Photonen zwischen den beiden laufenden Wellen um, die
das Gitter formen, wodurch die Leistung der laufenden Wellen, und letztlich der
auf die Membran wirkende Strahlungsdruck moduliert wird. Wir beobachten in Ab-
sorptionsabbildung die actio der oszillierenden Membran auf die Atome als Temper-
aturerhöhung. Um die reactio der Atome auf die Membran nachzuweisen, wird die
Dämpfungsrate der Membran mit und ohne im Gitter gefangenen Atome gemessen.
In Übereinstimmung mit den theoretischen Erwartungen messen wir eine durch die
Atome erhöhte Dämpfungsrate. Dieses Experiment ist der erstmalige experimentelle
Nachweis der reactio eines atomaren Ensembles auf einen mechanischen Oszillator.

Wir untersuchen ein drittes Kopplungsschema, bei dem die Bewegung eines mech-
anischen Oszillators an den kollektiven Spin eines Bose-Einstein Kondensates gekop-
pelt wird. Die Spitze eines mechanischen Oszillators ist mit einem Magneten funk-
tionalisiert, der dessen Bewegung in Oszillationen eines magnetischen Feldes über-
setzt. Jene überführen gefangene Atome durch Umklappen des atomaren Spins in
ungefangene Bewegungszustände. Die Kopplungsstärke ist hier nicht wie in den an-
deren Kopplungsschemata durch die Wurzel aus dem Massenverhältnis von Atomen
und Oszillator beschränkt. Wir untersuchen dieses Kopplungsschema theoretisch,
und diskutieren eine mögliche Realisierung eines Nanoresonators mit magnetischer
Insel. Ich gebe einen Überblick über den Status der Fabrikation, und schlage eine
vereinfachte Fabrikationsmethode vor.





Abstract

In this thesis I present experiments investigating controlled coupling between me-
chanical oscillators and ultracold atoms. I report on three different coupling mech-
anisms.

In a first experiment, the surface potential experienced by atoms close to the
mechanical oscillator is employed to couple the oscillator motion to the center of
mass (COM) motion of a trapped Bose-Einstein condensate (BEC). The magnetic
trapping potential is modified by the surface potential arising from the oscillator
surface which results in a reduced trap depth. Vibration of the oscillator leads to
a modulation of the trap frequency and the minimum of the trapping potential.
Observing the loss of atoms from the BEC allows us to read out the amplitude of
the mechanical oscillator with the atoms.

In a second experiment, we study the coupling of a mechanical membrane oscillator
and thermal atoms trapped in a 1D optical lattice. The membrane is the end mirror
of the lattice, and oscillation of the membrane couples to the COM mode of the
atomic ensemble. Conversely, the center of mass motion of the atomic ensemble
redistributes photons between the two running waves forming the 1D optical lattice,
effectively modulating their power, and hence the radiation pressure acting onto the
membrane. We observe the action of the oscillating membrane onto the atoms by
detecting the resulting temperature increase of the atomic ensemble in absorption
imaging. To observe the backaction of the atoms onto the mechanical oscillator,
the mechanical damping is measured in experiments with and without atoms in
the lattice, and we measure higher damping in the presence of atoms in agreement
with the theoretical predictions. These experiments are the first demonstration of
backaction of an atomic system onto a mechanical oscillator.

We investigate a third coupling mechanism, where the motion of a mechanical
oscillator is coupled to the collective spin of a BEC. The tip of a mechanical oscil-
lator is functionalized with a magnet, which transduces the oscillators’ motion into
oscillations of the magnetic field. This drives spin-flip transitions of trapped atoms
to untrapped motional states. The coupling strength is not limited by the square
root of the mass ratio of atoms and oscillator as in the other coupling schemes dis-
cussed in this thesis. We investigate this coupling scheme theoretically, and discuss
the realization of a nanometer-sized mechanical oscillator with a magnetic island. I
report on the status of the fabrication, and propose a simplified fabrication method.
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1 Introduction

The concept of a harmonic oscillator is one of the building blocks of physics and
appears in various contexts, ranging from atomic to solid state physics, and many
other fields. The properties of harmonic oscillators are often visualized with me-
chanical oscillators, where a harmonically bound mass oscillates around a potential
minimum. However, mechanical oscillators are not only used as an example sytem
to study the properties of the harmonic oscillator model, but constitute a vivid field
of research themselves. Many applications of micro- and nanosized mechanical os-
cillators have been investigated in recent years due to their high sensitivity with
respect to forces [1, 2], temperature changes [3] or the variation of the oscillating
mass [4]. Even the spin of a single electron in a solid can be detected with magnetic
resonance force microscopy [5].

The mechanical modes of such oscillators are highly occupied with phonons in a
room temperature environment, and the behaviour of such oscillators can be de-
scribed classically. However, many experiments [6, 7, 8, 9] have recently achieved
a significant reduction of the phonon number occupation of mechanical modes, and
are on the way to ’cool’ the motion of a single mode of a mechanical oscillator to
the quantum ground state. In contrast to the more traditional approach, where
all mechanical modes are simultaneously cooled by reducing the thermal bath tem-
perature [10, 11, 12, 13, 14], optomechanical cooling applies a technique which is
similar to laser cooling of atoms [15, 16]. In the optomechanical cooling experiments
[6, 7, 8, 9], mechanical oscillators of micron size are integrated into optical cavities,
and one exploits the resonance characteristics of optical cavities in order to couple
the light field to the mechanical displacement of the oscillator via radiation pres-
sure. This allows one to reduce the initial phonon number occupation of a single
mechanical mode.

To study quantum mechanics with a massive mechanical oscillator beyond the pro-
cess of ground state cooling, it would be favourable to manipulate and to read out the
oscillators’ quantum state experimentally. In an optomechanical system, squeezed
light could be used to prepare a squeezed state of the mechanical oscillator [17].
Moreover, the degree of control which is already achieved for two-level quantum sys-
tems such as atoms [18, 19, 20, 21], ions [22] or superconducting flux qubits [23, 24]
could be extended to mechanical oscillators close to the ground state by coupling
the mechanical oscillator to such a two-level system. A coupled system would be
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an implementation of the Jaynes-Cummings model [25], where e.g. a neutral atom
takes the role of the two-level system, and a single mode of the mechanical oscillator
takes the role of the bosonic field mode, similar to the cavity light field in cavity
quantum electrodynamics. The coupling of the mechanical oscillator to the two-
level system is of resonant character such that the coupling can be controlled and
switched off by tuning the frequency of either of the two coupled systems. If the
coupling is sufficiently strong, a superposition state can be prepared in a two-level
system and swapped to a mechanical oscillator in order to engineer a non-classical
state in a macroscopic mechanical system.

The coupling of solid state quantum systems such as single electron transistors,
Cooper pair boxes or superconducting flux qubits to mechanical oscillators is cur-
rently investigated in several experiments [10, 11, 12, 13]. Recently, strong coupling
of a solid state quantum system to a dilatational volume mode of a mechanical os-
cillator in the groundstate was demonstrated on the single phonon level [14]. The
operation of such quantum systems requires cryogenic temperatures to reduce the
decoherence which arises from the relatively strong coupling to the environment.
This results also in relatively short coherence times of solid state quantum systems.
However, this is compensated in the experiments by fast coupling rates to mechan-
ical oscillators.

In contrast, atomic quantum systems profit from an excellent isolation from the
environment and stand out with coherence times of several tens of seconds [26].
Inspired by the experimental success in cooling a mode of a mechanical oscillator, a
variety of theoretical proposals [27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40]
suggests to couple mechanical oscillators and atomic quantum systems, most of
them claiming the feasibility of strong coupling with realistic parameters. Despite
of these numerous proposals, there are only few experiments which demonstrate
the coupling of a mechanical oscillator to an atomic system. In a first experiment
[41], the atomic spin of atoms in a room temperature vapor cell was coupled to the
motion of a mechanical oscillator via a magnetic gradient field, which arises from a
magnet at the oscillators’ tip. In this implementation, the control over the coupling
is limited due to the thermal motion of the atoms in the vapour cell. While the
atoms were used to detect the motion of the mechanical oscillator, the backaction
of the atoms onto the oscillator was not observed in this experiment.
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This thesis

In this thesis, I present experiments investigating the controlled coupling between
mechanical oscillators and ultracold atoms. We study three different coupling mech-
anisms. First, I report on an experiment where the surface potential experienced by
atoms close to the mechanical oscillator is employed to couple the oscillator motion
to the center of mass (COM) motion of a trapped Bose-Einstein condensate (BEC).
We resolve the mechanical resonance of the driven oscillator with the atoms, and
use the coupling to perform a spectroscopy of the trapped BEC.

In a second experiment, the motion of a mechanical membrane oscillator and the
atomic COM motion are coupled via a 1D optical lattice. In this experiment, we
observe both the effect of the membrane onto the atoms as well as the backaction
of the COM motion of the atomic ensemble onto the membrane oscillations. The
backaction of laser cooled atoms leads to an increased mechanical damping rate of
the oscillator, an effect which could be used for sympathetic cooling of the oscillator
via the atoms.

In these experiments, the coupling strength between the two systems shows a scaling
that is characteristic for the direct coupling of two mechanical oscillators via a
distance dependent force. The coupling strength depends on the square root of the
ratio of their masses. For coupled oscillators with very different masses, one expects
a slower energy exchange rate than for equal masses. This limitation is circumvented
in the third coupling mechanism that I present in this thesis. In this scheme, the
mechanical oscillator is coupled to the collective spin of an atomic Bose-Einstein
condensate rather than to its motion. We investigate this mechanism theoretically.
I discuss the theoretical proposal and steps towards its experimental realization.

Coupling via the surface potential We use an atom chip to prepare and manipu-
late ultracold atoms in a magnetic trapping potential. Atom chips provide a robust
toolbox to achieve [42, 43] and study [44, 45, 21, 46] BEC in compact setups. BECs
can be trapped close to surfaces without compromising on coherence times [47]. We
ramp trapped 87Rb atoms to a distance d < 1 µm from a mechanical oscillator,
which is glued onto an atom chip. The magnetic trapping potential is modified by
the surface potential arising from the non-functionalized oscillator surface which re-
sults in a reduced trap depth [48]. The deformation of the trapping potential leads
to a loss of atoms from the BEC and is measured with absorption imaging [49] by
varying the distance d to the undriven mechanical oscillator. This measurement is
performed on both sides of the oscillator and allows one to calibrate the distance d.
Since the position of a magnetic trap is referenced to the wires on the atom chip, we
can position a BEC reproducibly with a resolution better than 7nm at a distance of
d = 1.3 µm. Vibration of the oscillator leads to a modulation of the trap frequency
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and the minimum of the trapping potential. This results in a coupling of the motion
of the driven mechanical oscillator to the motion of trapped atoms. This coupling
allows us to read out the amplitude of the mechanical oscillator with the atoms,
and to resolve the fundamental mode resonance. It is further employed to perform
a spectroscopy of the trapped BEC. We demonstrate controlled excitation of the
center of mass mode, the radial breathing mode and the quadrupole mode, which
occurs at this frequency only in a BEC due to the atomic mean field interaction.
In this experiment, the surface potential is used to measure the action of the me-
chanical oscillator onto the atomic ensemble. The backaction of the atoms onto the
mechanical oscillator is simply too small to be measured in this experiment.

Coupling via a 1D optical lattice In the second experiment, we observe the back-
action of an atomic ensemble onto the mechanical oscillator. The coupling mech-
anism was investigated theoretically in a collaboration with Klemes Hammerer et.
al. in the group of Peter Zoller, and published in [39]. In the experiment, a red de-
tuned laser beam is reflected at a mechanical membrane oscillator in order to provide
a 1D optical lattice potential for ultracold atoms. Oscillations of the membranes’
fundamental mode shift the lattice potential and couple to the COM mode of the
atomic ensemble. Conversely, the center of mass motion of the atomic ensemble
redistributes photons between the two running waves forming the 1D optical lattice,
and effectively modulates their power, and hence the radiation pressure acting onto
the membrane. The mechanical oscillator used in the experiment is a low-stress
SiN membrane with a mechanical quality factor of 1.5 × 106 at an eigenfrequency
of 273 kHz in our room temperature setup. The calculated amplitude reflectivity
R = 0.56 of the bare silicon nitride allows one to use the membrane itself as a lattice
end mirror, and results in an asymmetric coupling between the mechanical oscillator
and the atomic ensemble, which is typical for cascaded quantum systems [50, 51].
We observe the action of the oscillating membrane onto the atoms by detecting the
resulting temperature increase of the atomic ensemble. The membrane excites the
center of mass mode, and the broadening of the cloud due to dephasing of the COM
mode in the anharmonic lattice potential is observed in time of flight measurements.
To observe the action of the atoms onto the mechanical oscillator, the lattice is
permanently replenished with atoms from a steady state magneto-optical trap. The
membrane is coherently excited to a well-defined amplitude, and the decay of the
amplitude is monitored after the membrane excitation is interrupted. The decay
times observed in such ringdown measurements with and without atoms are com-
pared, and we find shorter time constants in the presence of atoms, as expected.
We find a reasonable agreement of the experimental results and the theoretical pre-
dictions. These experiments are the first demonstration of backaction of an atomic
system onto a mechanical oscillator.
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Coupling to the atomic spin Coupling the motion of a mechanical oscillator to
the collective spin of an atomic ensemble bears the advantage that the coupling
strength is not limited by the square root of the mass ratio as in the motion-to-
motion coupling discussed above. In the situation that we consider, the tip of a
mechanical oscillator is functionalized with a magnet, which transduces the oscilla-
tors’ motion into oscillations of the magnetic gradient field. The oscillations drive
spin-flip transitions in the magnetically trapped and spin polarized atomic ensemble
to untrapped motional states. We investigate this coupling scheme theoretically, and
give guidelines for the design of a suitable nano-sized mechanical oscillator which is
functionalized with a single-domain magnet. I report on the status of the fabrication
of such an oscillator, and the characterization of mechanical and magnetic proper-
ties. In addition, I propose a simplified method to functionalize nanometer-sized
mechanical oscillators with single domain magnets.

Organization of the chapters

• Chapter 2 ’Protagonists and Antagonists’ provides the basic theory of the
experimental systems interacting in this thesis. The eigenmodes of the me-
chanical oscillators are characterized analytically, and their excitation and dis-
sipation mechanisms are reviewed. The trapping of neutral, ultracold atoms
in magnetic traps on atoms chips or in optical potentials is described.

• Chapter 3 gives a short overview of theory, setup and experimental results of
the experiment, where the surface potential is employed to couple the motion
of a mechanical oscillator to magnetically trapped atoms. The mechanical
motion of the driven oscillator is resolved with a BEC, and used in turn to
perform a spectroscopy of the trapped BEC.

• Chapter 4 describes the theory, setup and experimental results of the experi-
ment, where the motion of a mechanical membrane oscillator and the atomic
COM motion are coupled via a 1D optical lattice. The experimental results
show the backaction of ultracold atoms onto the mechanical membrane oscil-
lator as an increased mechanical damping rate.

• Chapter 5 describes a coupling scheme theoretically, where the motion of
a mechanical oscillator is coupled to the collective spin of an atomic Bose-
Einstein condensate. The considerations leading to a suitable chip design of
the nanofabricated chip structure, and the fabrication process developed ac-
cordingly are described in detail.



6 Introduction

List of papers

• S. Camerer, M. Korppi, D. Hunger, A. Jöckel, T.W. Hänsch, and P. Treutlein,
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2 Protagonists and Antagonists

The main players in this thesis are mechanical oscillators and ultracold atoms. Before
we study the interaction of these, the theoretical foundations are briefly reviewed in
this chapter.

2.1 Mechanical oscillators

A massive structure which is subjected to boundary conditions can perform mechani-
cal oscillations. Intrinsic elasticity of the structure provides a restoring force towards
the equilibrium position and gives rise to oscillations about this equilibrium. Free
oscillations are a superposition of orthogonal eigenmodes, which are each character-
ized by an eigenfrequency and a modefunction, the latter describes the geometric
shape of the structure for maximum displacement from the equilibrium. In our ex-
periments where the motion of such mechanical oscillators is coupled to ultracold
atoms we always make use of the fundamental mechanical mode, which is the mode
with the lowest eigenfrequency. Fig. 2.1 shows a variety of mechanical oscillators,
with sizes ranging from the centimeter range down to nanometers. In this thesis,
we employ a silicon nitride membrane as an end mirror in chapter 4, an AFM can-
tilever in chapter 3, and a mechanical oscillator with a 2×2 µm2 mirror in chapter 5.

Mechanical oscillators are employed in a series of recent experiments, and form an
active field of research. Optomechanical experiments [6, 7, 8, 9] are on the way
to achieve ground state occupation of a single mode of a mechanical oscillator.
New transduction schemes of nanomechanical motion allow to drive and read out
mechanical oscillators without the need of functionalization with gates, magnets or
mirros [52]. Other applications are to detect single electron spins [5], or to establish
an alternative (electric) current standard [53].

2.1.1 Analytical description

In this section, I give an analytical description of mechanical oscillators, and focus
on the description of the mechanical oscillators employed in this thesis. The type
of mechanical oscillator used in chapters 3 and 5 is a single-side clamped, cantilever
oscillator, and a membrane oscillator is employed in chapter 4, see Fig. 2.2 for an
overview.



8 Protagonists and Antagonists

Figure 2.1: Mechanical oscillators of various sizes. A silicon nitride membrane is
employed as an end mirror in chapter 4, an AFM cantilever is used in chapter 3
to couple to a BEC via the surface potential, and the mechanical oscillator with a
2× 2 µm2 mirror is characterized in chapter 5. Figure taken from [9].

Figure 2.2: Typical mechanical oscillators. Single-side clamped mechanical oscil-
lator are used in chapters 3 and 5, a membrane oscillator is employed in chapter 4
as an end mirror for an optical lattice. Figure taken from [54].
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Cantilever oscillator – Euler-Bernoulli theory A mechanical cantilever oscillator
consists of a massive beam, which is clamped to a support at one side, see Fig.
2.2b. The structure is micro- or nanofabricated, and the beam consists of an elastic
material like silicon nitride (SiN) or silicon (Si). The dynamic properties are char-
acterized by the mass density ρ and the modulus of elasticity E (Youngs Modulus).
The mode functions and the eigenfrequencies can be explicitly calculated from the
Euler-Bernoulli theory [55].

We consider a beam with length l, width w and height h, and assume that the length
is large compared to width and height. The beam is supported at the small cross
A = wh section at one end (z = 0), and free at z = l. The transverse displacement
U(z, t) is described by

EIy
∂4U(z, t)

∂z4
= −ρA∂

2U(z, t)

∂t2
, (2.1)

with the bending moment Iy = wh3/12, which is assumed to be constant along the
beam. With the additional assumption of a harmonic time dependence of the dis-
placement, U(z, t) = U(z)e−iωt with angular eigenfrequency ω. The spatial ’shape’
of the mode function u(z) is determined by

EIy
∂4u(z)

∂z4
= ρAω2u(z), (2.2)

and takes the general form

u(z) = a cos(βz) + b sin(βz) + c cosh(βz) + d sinh(βz) (2.3)

with β = (ρA/EIy)
1/4ω1/2. The coefficients a, b, c, d are fixed by the boundary

conditions

u(z = 0) =
∂u(z = 0)

∂z
=
∂2u(z = l)

∂z2
=
∂3u(z = l)

∂z3
= 0. (2.4)

The 3rd and 4th conditions account for the requirement that there is zero transverse
force and zero torque acting onto the free end. Inserting the boundary conditions
into equation 2.4 yields an = −cn and bn = −dn, whereby n indexes the eigenmodes,
and n = 1 represents the fundamental eigenmode. Moreover, the eigenfrequencies
of a single-side clamped beam are determined by the solutions of the equation
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Figure 2.3: Modefunctions of the three lowest eigenmodes of a single side clamped
beam oscillator. Figure taken from [54].

cos βnl cosh βnl + 1 = 0, (2.5)

which are numerically determined to be βnl = (1.875, 4.694, 7.855...). The mode-
function ofa single-side clamped beam is obtained by inserting the above mentioned
conditions for an, bn, cn, dn and βnl into equation 2.4, and Fig. 2.3 shows the three
lowest mode functions for n = 1, 2, 3 of such a single-side clamped beam. The
angular eigenfrequencies are given by

ωn =

√
EIy
ρA

β2
n, (2.6)

which can be simplified to

ω1 = 2π × 0.1615

√
E

ρ

h

l2
(2.7)

for the fundamental mode frequency.

In chapter 3 we employ a ’typical’ micromechanical (AFM) cantilever. Such can-
tilevers have frequences in the range ω1 = 10..500 kHz/2π, and typically mechanical
quality factors of Q = 103..105. In chapter 5, we study nanomechanical oscilla-
tors which have a typical length of a few microns, eigenfrequences in the range
ω1 = 1..100 MHz/2π, and typically mechanical quality factors of Q = 103..105 [56].

Membrane oscillator The Euler-Bernoulli theory describes mechanical oscillators
where only the intrinsic elasticity gives rise to a restoring force. The situation is
more complicated as soon as stress or strain contributes to the restoring force. The
mechanical oscillator used in chapter 4 is a thin SiN membrane which is stretched



2.1 Mechanical oscillators 11

onto a rectangular frame. The frame imposes a uniform tension S, which is perpen-
dicular to the membrane edges and directed outwards. If the restoring force due to
stress is large compared with the restoring force due to elasticity, the role of elastic-
ity can be neglected in the description of the membrane. We show in section 4.3.1,
that the behaviour of the membranes used in our experiment can be well described
by neglecting the contribution of elasticity to the restoring force.

Fig. 2.2c shows a sketch of a quadratic silicon nitride membrane (SiN). Such me-
chanical oscillators are fabricated by deposition of a SiN layer on top of a silicon
wafer substrate in a LPCVD process. The tensile stress of the SiN layer can be
explained from a ’lattice’ mismatch of the amorph SiN layer and the underlying sil-
icon wafer. After deposition of the SiN layer, an anisotropic KOH etch is employed
to remove the silicon wafer selectively, leaving the SiN membrane freestanding [57].
The stress can be engineered by adjusting the LPCVD process parameters, and the
typical tensile stress of low stress SiN membranes1 used in our experiments or in
[58], is around 140 MPa. Quality factors of up to 1.5× 106 are achieved in our room
temperature setup at an eigenfrequency of ω11 = 270 kHz. In principle, the tensile
stress of the SiN layer can be increased, and values around 1.4 GPa are favourable
for realizing double-side clamped string oscillators with mechanical quality factors
of up to Q = 2× 105 at several tens of MHz [59, 52].
With the assumption that the restoring force is only due to the uniform tension S
as described above, all possible modefunctions of a rectangular membrane are given
by the Fourier series [60]

w(x, y) =
∞∑
i=1

∞∑
j=1

Φij sin
iπx

a
sin

jπy

b
, (2.8)

with the length of the edges a, b, height h and integer mode indices i and j. We
apply the Lagrange formalism to derive an expression for the eigenfrequencies. The
potential energy of the deflected membrane can be calculated from the area change
due to deflection

δA =

∫ ∫ √
1 +

(
∂w

∂x

)2

+

(
∂w

∂y

)2

dxdy (2.9)

which transforms to

δA ≈
∫ ∫

1 +
1

2

(
∂w

∂x

)2

+
1

2

(
∂w

∂y

)2

dxdy (2.10)

1...which can be purchased at e.g. www.norcada.com



12 Protagonists and Antagonists

Figure 2.4: Modefunctions of the fundamental mode (i, j) = (1, 1) (left), the
degenerate (2, 1) or (1, 2) mode, and the (2, 2) mode of a membrane oscillator.

for small deflections. The potential energy is given by

∆U ≈ Sh

2

∫ ∫ [
1 +

1

2

(
∂w

∂x

)2

+
1

2

(
∂w

∂y

)2
]
dxdy, (2.11)

and with the expression for the kinetic energy

T =
ρh

2

∫ ∫
ẇ2dxdy, (2.12)

the Lagrange formalism provides the equation of motion for free vibrations

Φ̈ij +
Sπ2

ρ

(
i2

a2
+
j2

b2

)
Φij = 0, (2.13)

with the height h of the membrane. Fig. 2.4 shows the mode functions of the lowest
out-of-plane modes of a quadratic membrane. The eigenfrequencies are given by

ωij =

√
Sπ2

ρ

(
i2

a2
+
j2

b2

)
, (2.14)

which reduces for the fundamental mode (i, j) = (1, 1) and a = b to

ω11 = 2π × 1

a

√
S

2ρ
. (2.15)
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Effective mass The potential energy of a harmonically bound massive object can
be expressed as V = 1

2
mω2x2. This assumes that the massive object is point-like,

and that whole mass is concentrated at the point which is displaced by x from the
potential minimum. However, this is not the case for the mechanical oscillators that
we have considered above where the moving mass is distributed over the whole mode
function. The concept of the effective mass meff is introduced for describing such
mechanical oscillators within the simple model. In order to calculate meff , a volume
element is weighted according to the modefunction.

For a beam oscillator with uniform cross section and density along the beam length
L, the effective mass meff is given by the 1D integration over the mode function
along the beam [61]

mi
eff =

m

L

∫
L
ui(y)2dy∫

L
ui(y)dy

, (2.16)

and gives meff = (33/140)m for the fundamental mode i = 1 of a single-side clamped
beam. For a membrane oscillator, an analogue 2D integral has to be solved, and
the effective mass of a membrane oscillator as discussed above is given by meff =
(1/4)m. The expression for the effective mass meff assumes that the amplitude x of
the fundamental out of plane mode is measured at the position where the x attains
a maximum, i.e. at the tip of a cantilever mechanical oscillator or in the center of a
membrane oscillator.

2.1.2 Excitation, damping and thermal motion

Eigenmodes of mechanical oscillators can be excited in several ways. An eigenmode
can be driven coherently with resonant excitation, as we use it in chapters 3 and 4.
There, a piezo is driven at the eigenfrequency of an eigenmode, and radiates acous-
tic waves into the structure which sustains the mechanical oscillator. This leads
to a resonant excitation of an eigenmode of the mechanical oscillator [53, 52]. The
mechanical oscillators’ motion can also be excited or damped by the modulation of
the radiation pressure that a laser fields exerts onto the oscillator [62].

Another excitation mechanism which is always present is the coupling of the me-
chanical oscillator to a thermal bath, which excites the oscillator to thermal motion.
On the other hand, the coupling leads to dissipation of energy in the oscillator, and
to damping of the thermal motion.
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Dissipation in mechanical systems

This section discusses selected sources of dissipation in mechanical oscillators un-
der vacuum conditions2. The mechanisms which lead to mechanical dissipation are
subject of current research, and not fully understood yet. The general observation
is that the mechanical quality factor decreases with decreasing dimensions of the
mechanical oscillator [64, 56]. A strong dependance of the mechanical quality factor
on the surface to volume ratio is reported in [65].

Thermo-elastic dissipation Mechanical deformation of a solid introduces a varia-
tion of the strain field. This mechanism couples to phonons in the solid and transfers
energy from the mechanical mode of interest to the local phonon field in the solid.
The description of this process is based onto a thermal expansion coefficient which
relates a length change of the solid to a temperature change [66], given that the
timescale of the mechanical motion exceeds the timescale of thermalization. Dis-
sipation is present if the thermal expansion coefficient is non-zero, and energy is
transduced from mechanical motion into heat. This can be the dominant dissipa-
tion mechanism of mechanical oscillators under tensile stress, such as SiN membranes
[67] or SiN strings [59].

Clamping losses Clamping of a mechanical oscillator gives rise to an energy trans-
fer from the oscillator into the support. In practical implementations, the support
is stiff, but still has a finite Youngs Modulus. In [68], a model is derived which pre-
dicts increased damping with the increase of the clamping area of an Euler-Bernoulli
type mechanical oscillator. Similar work investigates the transmission of vibrational
waves between joined, thin elastic plates of different widths [69] or the phonon tun-
neling from a mechanical oscillator into the support [70], finding an increase of the
dissipation with the clamping area.

Coupling to local defects Depending on the temperature, local defects in or at
the surface of bulk material can have a high impact on the damping. Local defects
can be atoms or molecular compounds which are bound in an effective double-well
potential [71]. At high temperatures, the double well structure does not play a role
as the potential barrier height is much smaller than kBT . At small temperatures
where kBT is smaller than the barrier height, mechanical deformations of the me-
chanical oscillator couple to a local defect in the material via the deformation of the

2Background gas collisions lead to an additional damping, and the background gas can be modelled
as a viscous medium [63]. This contribution to the overall damping rate is dominant for
mechanical oscillators with a large surface at ambient atmosphere, but negligible under high
vacuum conditions as provided in our experiments
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double well potential. This leads to increased dissipation in the mechanical oscilla-
tor for decreasing temperature as observed in [72]. In [73, 67], a strong influence of
tensile stress and stoichiometric composition onto the mechanical quality factor is
reported. The density of local defects at the surface can be reduced with thermal
annealing [74].

The individual sources of dissipation add up to the total dissipation of a mechanical
oscillator, and are effectively described with the mechanical quality factor Q. Q−1

is proportional to the rate at which energy is dissipated in a mechanical oscillator.
Q is a measure of the number of oscillation cycles that it takes the energy which
is stored in a mechanical oscillator to decay to a fraction 1/e of the initial value in
a ringdown measurement. In terms of the amplitude decay time τ , the mechanical
quality factor is given by

Q =
ωτ

2
(2.17)

If the oscillation frequency is stable, i.e. a drift of the frequency due to e.g. tem-
perature drifts is small compared to the measurement time, and for a not too high
mechanical quality factor, Q can also be determined from a direct measurement in
the frequency domain. With the FWHM κ of a Lorentzian fitted to the amplitude
spectrum,

Q =
ω

2κ
. (2.18)

In the measurements shown in chapter 4, the interaction of ultracold atoms with a
membrane oscillator influences the damping of the membrane, and we observe this
effect in ringdown measurements.

Thermal motion The fluctuation-dissipation theorem states that systems that dis-
sipate energy –as discussed above for mechanical oscillators– are also subject to noise.
An uncorrelated Langevin noise force acts onto each point of the mechanical oscilla-
tor, and enforces thermalization with the thermal bath such that the equipartition
theorem is fulfilled, i.e. each degree of freedom contains the same energy of kBT/2
in thermal equilibrium. This yields

meffω
2x2

rms/2 = kBT/2 (2.19)

for a harmonic mechanical oscillator, where xrms is the rms amplitude of the thermal
motion. Equivalently, each mechanical mode is occupied by
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n =
1

e~ωm/kBT − 1
(2.20)

phonons. The general solution for the differential equation of a harmonic, damped
oscillator in the frequency domain is a Lorentzian. This is reflected in the equation
for the spectral density of x2

rms [55, 75]

S(ω) =
SF (ω)

m2
eff

1

(ω2
0 − ω2)2 + (ω2

0/Q)2
, (2.21)

with the spectrum of the statistic Langevin noise force SF (ω) = 2kBTmeffω0/πQ.
The rms value of the thermal amplitude xrms is given by

x2
rms =

∫
S(ω)dω ≈ kBT

mω2
. (2.22)

This result is used to calibrate the sensitivity of a Michelson interferometer in section
4.2, where one of the two interferometer end mirrors is a membrane oscillator. The
output of the interferometer is Fourier transformed, and the thermal motion shows
up as a Lorentzian in the frequency domain. For calibration of the interferometer,
the mean squared amplitude x2

rms equals the area below the Lorentzian, and a scaling
factor is extracted which allows to determine the membrane amplitude in meters.

2.1.3 Towards quantum mechanical oscillators

The eigenmodes of a mechanical oscillator at room temperature are excited by the
Langevin noise force to a thermal motion amplitude. Mechanical oscillators which
are coupled to a thermal bath at room temperature behave classically due to their
high phonon occupation. This would change for a phonon occupation number smaller
than one, where mechanical oscillators enter the quantum ground state. Many
groups investigate optomechanical cooling of the thermal motion of a mechanical
oscillator experimentally, for a review see [76, 8, 9] with a technique which is similar
to laser cooling of atoms [15, 16]. The displacement of a mechanical oscillator is
coupled to the light field inside an optical cavity, and the motion of the oscillator
detunes the cavity resonance with respect to the frequency of the light field which
leads to a change of the intracavity power and tunes the radiation pressure of the
light field onto the oscillator. This coupling is exploited to reduce the initial phonon
number occupation of a single mechanical mode which is in most cases the fundamen-
tal center of mass mode. This method can be applied to relatively large mechanical
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oscillators which can reflect laser beams, e.g. SiN membranes [58], whereas mechan-
ical oscillators with sub-wavelength dimensions can be cooled in a cryostat where
the phonon number occupation of all modes is simultaneously reduced [12, 13, 14].
An advantage of sub-wavelength sized oscillators in the respective of reaching the
quantum ground state is their relatively high eigenfrequency. In order to cool the
membrane employed in the experiments reported in [58] with an eigenfrequency of
ω/2π = 130 kHz to the quantum ground state cryogenically, T � 6.5 µK would
have to be reached. In comparison, [14] studies a mechanical oscillator with an
eigenfrequency of ω/2π = 6 GHz, which attains the quantum groundstate already
at T ' 100 mK.

In the following, I will give a short overview of applications of mechanical oscillators.

Sensor applications Cooling of the mechanical mode which is used for sensing
could increase the sensitivity of mechanical oscillators with respect to forces [1,
2], temperature changes [3] and additional masses [4]. Magnetic resonance force
microscopy allows to detect a single electron spin in a solid [5]. Interferometric
gravitational wave detection would also benefit from a reduced thermal amplitude
of the interferometer end mirrors [77]. The preferred cooling mechanism for these
applications is cryogenic, since it achieves a permanent reduction of the phonon
number occupation, whereas the cooling in optomechanical schemes is only present
as long as the laser is switched on.

Gravity in quantum mechanics The ground state of a mechanical oscillator which
is coupled to a thermal bath decoheres at a rate γ ∝ κnth = (ω/2Q)nth. The source
of decoherence in quantum mechanics is coupling to the environment. However,
there are non-standard theories which predict additional, intrinsic decoherence of a
quantum state due to gravity. In [78], the self energy E∆ of the difference of the mass
distributions, which represent the two states of a superposition state, is considered
to give rise to an intrinsic decoherence. The lifetime T of such a superposition is
found to be limited by an additional decoherence rate T ∝ ~/E∆. This effects could
be observed [79] in an experiment with a ground-state mechanical oscillator in a
superposition state.

Hybrid quantum systems A potential application for mechanical oscillators in
the ground state is the realization of ’hybrid quantum systems’ which comprise two
quantum systems of different nature or origin, like e.g. ground state mechanical
oscillators and a two-level quantum system. Non-classical states could be prepared
by coupling a mechanical oscillator to a well-controlled two-level system. Extending
the already demonstrated quantum control of atoms [18, 19, 20, 21], ions [22] or
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superconducting flux qubits [23, 24] onto mechanical oscillators could allow for the
preparation of non-classical quantum states in a mechanical mode.

One approach is the coupling of mechanical oscillators to solid-state quantum sys-
tems [10, 11, 12, 13]. These are strongly coupled to the environment which results in
relatively short coherence times, but also in fast coupling rates to mechanical oscilla-
tors which are fabricated nearby on the same chip. The experiments can be operated
without optical access which facilitates experiments at cryogenic temperatures. In
addition, the cryogenic temperatures cool the mechanical oscillator to low phonon
occupation numbers. The effect of a solid state qubit system onto the mechanical
oscillator is already demonstrated. In [80], dispersive coupling of a superconducting
qubit to the center of mass mode of a mechanical oscillator is reported. Recently,
a dilatational volume mode of a mechanical oscillator at a frequency of 6 GHz was
cooled to the ground state in a cryogenic environment, and coupled to a Josephson
flux qubit. The control on the single-phonon level which has been achieved in this
hybrid quantum system is reported in [14].

A second approach is to couple mechanical oscillators to atomic quantum systems.
A variety of theoretical proposals [27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40]
suggests the experimental realization of such systems, involving e.g. neutral atoms
[31, 38, 39, 30, 33, 34, 35, 36, 37]. Atomic systems studied are very well isolated from
sources of decoherence which allows one to achieve long coherence times [47, 26]. De-
spite of the numerous proposals, only few experiments [41, 81, 82] have investigated
the coupling of mechanical oscillators and ultracold atoms experimentally. In chap-
ters 3 and 4, I describe experiments [81, 82] that have been pursued in this thesis.

2.2 Ultracold atoms

In this thesis, I report on experiments which realize a controlled coupling of mi-
crostructured mechanical oscillators to ultracold neutral atoms. Ultracold atoms
are very well isolated from the environment [26], and all degrees of freedom can be
controlled on a quantum level [44, 21, 46]. Atoms in trapping potentials can be
regarded as mechanical oscillators. In the experiments reported in chapters 3 and
4, the vibrations of mechanical oscillators are coupled to the center of mass mode
(COM) of atoms in a trapping potential. In chapter 5 we consider the coupling of a
mechanical oscillator to the collective spin of a magnetically trapped Bose-Einstein
condensate (BEC).
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2.2.1 Magnetic trapping on atoms chips

Magnetic trapping of neutral atoms relies on the interaction of the magnetic mo-
ment µ of an atom with an external magnetic field B [49]. In a classical model,
the interaction of the magnetic moment µ with an external magnetic field B(r) is
decribed by

V (r) = −µ ·B(r) = −µB(r) cos θ, (2.23)

and can be interpreted as a precession of the magnetic moment about the magnetic
field axis, with constant angle θ between µ and B. The constant angle θ requires a
quantum system to remain in the initial quantum state, as discussed below in the
quantum modell of the atom-field interaction.

The behaviour of alkali atoms is dominated by the valence electron [83]. The orbital
angular momentum L of the outer electron and its spin angular momentum S are
coupled to the total angular momentum J = L+S which results in the fine structure
splitting and gives rise to the D1- and D2-line. The total angular momentum of the
electron J couples in turn to the angular momentum of the nucleus I which results
in the total angular momentum of an atom F = I + J . This coupling causes a
hyperfine splitting of each level, e.g. the ground state 52S1/2 of 87Rb is split into
two hyperfine levels, and the fine splitted branch 52P3/2 (D2 line) into four excited
states. Each of these hyperfine levels contains 2F + 1 magnetic sublevels, which are
degenerate if no magnetic field is applied. The degeneracy is lifted for B 6= 0, and
the energy levels are given by

E(mF ) = µBgFmFB(r) = V (r), (2.24)

with the quantum number mF which is associated with the component of F along
the direction of the magnetic field B(r), the g-factor gF and the Bohr magneton
µB. Comparison of the classical and quantum mechanical picture shows that cos θ
corresponds to mF/F in a geometric interpretation.

The sign of gFmF determines the direction of the force which is experienced by a
particle in a magnetic field. For gFmF > 0, the particle is attracted towards the
minima of the magnetic field (weak-field-seeking state). gFmF < 0 yields attraction
to magnetic field maxima. According to Maxwell’s equations, magnetic field maxima
can not be realized in free space and we focus the description onto the confinement
of weak-field-seeking states in magnetic field minima.
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In order to achieve stable magnetic trapping, the atom should not change its quan-
tum state, i.e. the quantum number mF should not change. However, this can occur
if the atomic spin does not follow the direction of the magnetic field adiabatically
for the motion of an atom in the trapping potential. Adiabaticity is fulfilled if the
change of the magnetic field in the reference frame of an atom is slower than the
(Larmor) precession frequency ωL of the atoms’ magnetic moment in the external
magnetic field

dθ

dt
<
µ|B(r)|

~
= ωL. (2.25)

If this equation is not true, the state of the atom can change from an initially weak-
field-seeking state to e.g. an untrapped motional state. The loss of atoms from
the trapped ensemble is called Majorana loss, and can be reduced by increasing the
minimum precession frequency ωL in trap. This is done experimentally by choosing a
relatively high value for the magnetic field at the minimum of the trapping potential.

Magnetic trapping of neutral atoms on an atom chip

Magnetic trapping potentials can be engineered with atom chip technology [84, 85,
86, 87, 88], where a magnetic near field emanates from an electric current which
flows through a microfabricated wire. Magnetic field minima which are suitable for
trapping of ultracold atoms in weak-field-seeking states can be provided by super-
imposing the near field of a chip wire with a homogeneous external field. Fig. 2.5
shows the general principle. Atom chips provide a robust toolbox to achieve [42, 43]
and study or coherently manipulate [44, 21, 46] BEC in compact setups [89]. BECs
can be trapped close to surfaces without compromising on coherence times [47].
Since the position of a magnetic trap is referenced to the wires on the atom chip,
we can position a BEC can be reproducibly approached to the solid state surface,
and in particular to stuructures like e.g. mechanical oscillators. The scalability of
microfabrication allows to create elaborate potential landscapes [85]. The method
proposed in [90] allows to automize the design microfabricated structure in order to
realize complex potential landscapes.

Trapping potentials can be classified by the absolute value of the magnetic field at
the trap minimum, which can be either zero or non-zero [85].

Quadrupole trap If the magnetic field minimum is zero, the trapping potential is
quadrupole-like. It can be approximated by a linear function B = B

′
xxex +B

′
yyey +

B
′
zzez, with B

′
x + B

′
y + B

′
z = 0.This configuration, which is conventionally realized

with two coils in anti-Helmholtz configuration, can also be provided by the near field
arising from a current through a U-shaped wire and a superimposed offset field. The
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Figure 2.5: A 2D trapping potential can be created by superimposing the magnetic
field of a current carrying wire and an external field. The example on the right-
hand side assumes a wire current I = 2 A and an external field B0⊥ = 4 mT. The
magnetic field gradient at the trap center is |B′(r0)| = 40 T/m. Figure taken from
[85].
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Figure 2.6: (a) Quadrupole trap and (b) IoffePritchard trap. The wire layout and
external field direction is sketched on the left-hand side, the right hand side shows
the magnetic potentials for l = 250 µm and I = 2 A. The external field along y is
B0 = 5.4 mT (dashed lines) and 16.2 mT. Figure taken from [85].

magnetic field due to the anti-parallel currents in the bent wires cancels at the trap
center, such that the minimum of the magnetic field is zero. Fig. 2.6 (a) shows
the wire geometry and the magnetic field. The zero magnetic field in the trap cen-
ter gives rise to Majorana losses due to spin flip transitions to untrapped motional
states. This occurs, when an atom travels through the magnetic field minimum
where the quantization axis is not well-defined. The size of this effective trap ’hole’
for an atom with velocity v is

√
2~v/πµB′ . This trapping geometry can be used for

a relatively hot atomic cloud, where most of the atoms occupy orbits far away from
the hole.

Ioffe-Pritchard trap Majorana spin flips can be reduced if a well-defined quan-
tization axis exists throughover the trapping potential, which means that a zero
magnetic field should be avoided. The resulting Ioffe-Pritchard type potential can
be approximated to lowest order by a harmonic potential. The field configuration
with a bias field B0‖ along the x-axis is approximately

B = B0‖

 1
0
0

+B
′

 0
−y
z

+
B
′′

2

 x2 − 1
2
(y2 + z2)
−xy
−xz

 . (2.26)

Close to the minimum, an atom oscillates along the x-axis and the radial axes with
the trap frequencies
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ωx =

√
µBgFmF

m

√
B′′ (2.27)

ω⊥ =

√
µBgFmF

m

(
B′2

B0

− B′′

2

)
. (2.28)

Fig. 2.6 (b) shows the wire geometry and magnetic field of a chip based Ioffe-
Pritchard trap. The contributions of the two wires, which are bent to opposite
directions adds in the trap center to a non zero magnetic field. The external field is
adjusted such that the magnetic field at the minimum is non-zero.

Trap configurations used in our experiment

In the experiment described in chapter 3 atomic ensembles are trapped, transported
and manipulated on an atom chip. Besides a standard Ioffe-Pritchard trap which
loads atoms from the mirror-MOT to the chip, we combine the basic trap geometries
discussed above with additional fields from external coils and additional wires.

• Transport of atoms in a waveguide An application of a quadrupole trap
is the transport of a relatively hot atomic ensemble over large distances [91].
A current carrying wire in combination with a homogeneous field provides a
2D confinement which is translational invariant along the axis of the wire.
This waveguide potential is superimposed with an additional quadrupole field
which is created by coils in anti Helmholtz configuration in order to confine the
atomic ensemble in the waveguide. A shift of the quadrupole field minimum
shifts the trap minimum along the waveguide. This is used to transport atoms
over millimeter distances in the experiment described in chapter 3.

• Modulation of the longitudinal waveguide potential The translationally
invariant waveguide potential can be modulated with a current through a
wire which intersects the wire providing the waveguide perpendicularly, as
illustrated in Fig. 2.7. This can be used to achieve a strong longitudinal
confinement. We prepare Bose-Einstein condensates in a Ioffe-Pritchard type
trap geometry. A current flow through this wire provides strong longitudinal
confinement, and diggs a ’dimple’ into the center of the trapping potential.
Several parallel dimple wires can be used to shift the position of the magnetic
trap along the central wire.

Bose-Einstein condensation (BEC) was achieved in atom chip based magnetic traps
as discussed above roughly ten years ago [42, 43]. In setups following the design
of [42], typically 103..104 atoms are condensed at trap frequencies ranging from
ω/2π = 1..15 kHz [81]. The theory of BEC is briefly reviewed in 3.1.3.



24 Protagonists and Antagonists

Figure 2.7: The intersection of two waveguides provides a barrier in a 2D waveg-
uide. Figure taken from [54].
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2.2.2 Optical trapping

Optical potentials are a dynamic field of research, and one their manifold applica-
tions is to simulate Hamiltonians known from solid state physics, e.g. to study the
phase transition from a superfluid to a mott insulator with bosons [92, 18] or to
study ferromagnetism with fermions [93].

In the experiment described in chapter 4, we load ultracold 87Rb atoms into a
standing wave optical potential, and realize a physical interaction between optical
potentials and solid state physics. This section reviews the interaction of an atom
with a far detuned light field, see [94].

Neutral atoms in light fields An electric field E(r, t) = êE(r) exp(−iωt) + c.c.
induces an oscillating dipole moment in an atom [94]. The complex amplitude d of
the dipole moment is related to the field amplitude E [95] by the polarizability α(ω)
which depends on the laser frequency ω,

d = α(ω)E. (2.29)

The time averaged interaction of the dipole moment and the electric field is described
by the potential

Vdip(r) = −1

2
〈dE〉 = − 1

2ε0c
<(α(ω))I(r) (2.30)

with the intensity I = 2ε0c|E|2. The factor 1/2 in equation 2.30 accounts for the fact
that the dipole moment is not a permanent, but an induced moment. The dipole
force onto an atom is given by the gradient of the interaction potential, and provides
a conservative potential as long as photon scattering can be neglected. The photon
scattering rate is given by

Γsc(r) =
〈ḋE〉
~ω

=
1

~ε0c
=(α(ω))I(r). (2.31)

In order to determine α(ω) one assumes that an electron is elastically bound to the
nucleus of an atom. The situation can be modelled as a damped harmonic oscillator
which is driven from a laser field which oscillates at the frequency ω. The damping
is due to power radiation of the accelerated charge. Integration of the equation of
motion gives the result
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α(ω) = 6πε0c
3 Γse/ω

2
0

ω2
0 − ω2 − i(ω3/ω2

0)Γse

, (2.32)

with the eigenfrequency ω0 of the unperturbed atom without light field and the
damping rate Γse.

In the following, we show how the atomic polarizability α(ω) can be determined
from a semiclassical approach where the atom is modelled as a two-level system
which interacts with the light field. As long as saturation effects can be neglected,
the result corresponds to the result derived from the oscillator model. However, the
damping rate Γse is determined from the dipole matrix element between ground and
excited state for the dipole operator µ = −er

Γse =
ω3

0

3πε0~c3
|〈e|µ|g〉|2. (2.33)

The condition of negligible saturation is usually fulfilled for dispersive trapping of
atoms, with large detuning ∆ = ω−ω0. The expression for the polarizability α allows
us to give explicit expressions for the dipole potential Vdip(r) and the scattering rate
Γsc(r)

Vdip(r) = −3πc2

2ω3
0

(
Γse

ω0 − ω
+

Γse

ω0 + ω

)
I(r) ≈ 3πc2

2ω3
0

Γse

∆
I(r) (2.34)

Γsc(r) =
3πc2

2~ω3
0

(
ω
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Γse

∆

)2
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The counter-rotating term at ω + ω0 is neglected within the rotating-wave approx-
imation (|∆| � ω0). The scattering rate Γsc can also be expressed in terms of the
dipole potential

~Γsc =
Γse

∆
Vdip, (2.36)

which links the absorptive and dispersive response of the atom to the light field.
For ’red’ detuning ∆ < 0, the dipole potential is negative and the atom is attracted
towards the intensity maxima of the light field. This can be employed to realize
trapping potentials for laser-cooled atoms. The scaling of Vdip(r) ∝ I/∆ and Γsc ∝
I/∆2 suggests to choose large detuning and laser power in order to minimize the
scattering rate.
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Figure 2.8: The interaction with the red detuned light field shifts the energy levels
of ground and excited states of a two-level atom. Figure taken from [94].

Multi-level atoms We consider a multi-level atom with a ground and excited state
in order to get a deeper insight into the origin of the trapping potential. In second
order perturbation theory, a far detuned light field shifts the energy of the i-th state
with unperturbed energy Ei by

∆Ei =
∑
j 6=i

|〈j|H1|i〉|2

Ei − Ej
, (2.37)

with interaction Hamiltonian H1 = −µE and the electric dipole operator µ = −er.
For a two-level atom with H1 = −µE, one finds

∆E = ±|〈e|µ|g〉|
2

∆
|E|2 = ±3πc2

2ω3
0

Γse

∆
I, (2.38)

where the negative (positive) sign designates the ground (excited) state energy shift.
The situation is shown in Fig. 2.8. The energy shift of an atom due to the light
field is the origin of the optical dipole potential in the case of low saturation where
atoms reside mainly the ground state.

In order to derive the dipole potential for a multi-level alkali atom, one has to find
an expression for the transition matrix elements µij between the ground state |gi〉
and the excited state |ej〉. The matrix elements µij can be expressed by means of
a reduced matrix element ‖µ‖ which is related to the spontaneous decay rate 2.33.
The real transition coefficients cij account for the coupling strength between the
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sub-levels i and j. The matrix element is given by µij = cij‖µ‖, with the energy
shift of the ground state

∆Ei(r) =
3πc2Γse

2ω3
0

I(r)×
∑
j

c2
ij

∆ij

. (2.39)

In our experiment, we use alkali atoms (87Rb) with a fine structure which is split into
a D1 and D2 line 2S1/2 →2P1/2,

2P3/2 at 795nm and 780nm, respectively. For large
detuning ∆ of the light field with respect to the optical transition, the hyperfine
structure splitting is not resolved and the dipole potential for an atom with total
angular momentum F and magnetic quantum number mF can be written as

Vdip(r) =
πc2Γse

2ω3
0

(
2 + PgFmF

∆2,F

+
1− PgFmF

∆1,F

)
I(r), (2.40)

with g-factor gF , and P = 0,±1 for linearly and circularly polarized σ± light. This
equation holds as long as the detunings ∆1,F ,∆2,F of the light field with respect
to the center of the hyperfine split excited states of the D1 and D2 line are large
compared to the excited-state hyperfine splitting. The hyperfine splittings of 87Rb
are of the order of a few hundred MHz.

For linearly polarized light the dipole potential due to the total light intensity I(r)
is independent of mF and can be written as

Vdip(r) =
~Γ2

se

8

1

∆

I(r)

Isat
, (2.41)

with the saturation intensity Isat = ~Γseω
3
0/12πc2 and the detuning
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The scattering rate in this situation is given by

Γsc =
πc2Γ2

se

2~ω3
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1,F

)
I(r). (2.43)
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1D lattice potential In the experiment described in chapter 4 a red detuned gaus-
sian laser beam is reflected at a mirror such that the incoming and the outbound
beam are overlapped. The modulation depth of the resulting interference pattern is
given by

I = 4I0|L|
(

w0

w(z, z0)

)2

e
− 2r2

w(z,z0)2 cos

(
kz +

kr2

2R(z, z0)

)2

, (2.44)

with wave vector k of the incoming laser beam which is parallel to the z-axis.
The factor |L| = |R||T |2 accounts for the typical experimental situation, that the
reflected beam might be weaker than the incoming beam due to the amplitude
reflectivity |R| of the mirror, and the amplitude transmittivity |T | of the optical
components in the beam path between the atoms and the mirror. The laser beam
of power P is focussed to a waist3 w0 at the position z0 on the z-axis. The peak
intensity of a single beam is given by I0 = 2P/πw2

0. The waist of the gaussian
beam along the z-axis is given by w(z, z0) = w0

√
1 + (z/zray)2. The radius w(z, z0)

increases within the Rayleigh length zray = πw2
0/λ from the waist position at z0 by

a factor
√

2. The curvature of the wavefronts due to the beam divergence is given
by the radius of curvature R(z, z0) = z(1 + (zray/z)2).

Atoms trapped in such a lattice potential are longitudinally confined in a cos2 po-
tential, and this potential can be approximated by a harmonic potential for cold
ensembles with kBT � max(Vdip). In this limit, the same approximation can be
used for the axial confinement which is given by the gaussian beam profile. The
trap frequencies of the harmonic approximation are given4 [96] by

ωax = 2π

√
2Vdip
mλ2

(2.45)

ωrad =

√
4Vdip
mw2

0

(2.46)

In the experimental situation that we encounter in chapter 4, the temperature of
the ensemble is of the order of the trap depth (kBT ≈ max(Vdip)), and the harmonic
approximation is no longer valid. The spectrum of a trapped ensemble is further
broadened due to a variation of the intensity in the lattice due to the nature of the
gaussian beam. The peak intensity of lattice sites for increasing distance from the
beam waist position decreases due to the divergence of the gaussian beam and leads

3w0 is the waist of the beam, which is defined as the shortest distance from the intensity maximum
to the point, where the intensity is decreased to 1/e2.

4Note, that Vdip is composed of the modulation depth given by 2.44 and an offset
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to a spread of trap frequencies along the lattice. The strength of this effect depends
on the relation between the Rayleigh length and the size of the occupied lattice.
If the latter is small compared to the Rayleigh length, this axial spread of trap
frequencies can be small. In addition to this spread of trap frequencies along the
lattice, the intensity of the laser beam is also modulated transversally. Depending
on the temperature of the ensemble, atoms can orbit in regions with I � I0 which
causes a transverse spread of trap frequencies. This effect can be considerable, if
the temperature of the atoms is of the order of the potential depth. These effects
are discussed quantitatively in section 4.3.3

The center of mass motion of an atomic ensemble in the optical lattice leads to a
redistribution of photons between the travelling waves which form the optical lattice,
and effectively to a power modulation of a laser beam. The resulting modulation of
the light pressure onto the mechanical oscillator couples the atomic center of mass
motion to the motion of the oscillator. This mechanism is discussed in 4.1.2.

Laser cooling in optical lattices In the experiment described in chapter 4, atoms
trapped in an optical potential are coupled to a mechanical oscillator. The objective
is to transfer energy from the mechanical oscillator to the atomic center of mass
mode. In order to employ the atoms as a coolant, we apply laser cooling techniques
to the trapped atomic ensemble.

Such laser cooling for trapped atoms was already studied in several experiments. In
[97], atoms were trapped in a 1D optical lattice, and more than every second atom
was cooled to the vibrational ground state with superimposed polarization gradient
cooling. In a later experiment, the same achieve substantially unity occupation in a
3D optical lattice [98] by employing an optimzed experimental sequence. Applying
raman-sideband cooling to atoms trapped in a 3D optical lattice allows one [99] to
cool 3×108 atoms to a phase space density of nλ3

dB = 1/500. This is three orders of
magnitude beyond the density that can be achieved with MOT or Molasses cooling
techniques in free space, which is due to the reduction of light assisted collisions,
which is one of the dominant loss mechanisms in such experiments [100].

However, the trap lifetimes in our experiment are rather short in comparison to the
decay time of the amplitude of our mechanical oscillator, because we trap atoms in
a 1D optical lattice instead of a 3D optical lattice as in [97, 98, 99]. Hence, it is
beneficial to apply a cooling scheme which allows to replenish the lattice permanently
with atoms. We achieve this in our experimental situation where the optical access
is limited, by superimposing a MOT to the 1D optical lattice. This allows us to trap
continuosly a high number of atoms during the experiment despite of the short trap
lifetime.



3 Mechanical coupling via the
surface potential

In this chapter, I report on the experiment where we couple the motion of a microme-
chanical cantilever oscillator to the motion of ultracold atoms. An atom chip is used
to prepare and position a Bose-Einstein condensate (BEC) close to the cantilever
which is glued onto an atom chip. The coupling mechanism between the oscillator
and the BEC relies on surface forces such that functionalization of the mechanical
oscillator with a mirror or a magnet is not required. Since functionalization of small
mechanical oscillators is technically challenging, this coupling mechanism could be
suited for coupling ultracold atoms to molecular scale oscillators, which could be
interesting because of their small effective mass.

The content of this chapter was published in [81]. In the following, I describe briefly
the theoretical foundations, the setup and the central results. For more detailed
information, the reader is referred to the thesis of David Hunger [54] which gives a
thorough description of the subject.

3.1 Coupling scheme

We use an atom chip to prepare and trap a BEC in a magnetic trapping potential
close to a micromechanical cantilever. The trapping potential is generated by a
current flow through microfabricated wires on an atom chip, and a superimposed
homogeneous external field. The experimental situation is shown in Fig. 3.1. The
tip of the mechanical oscillator is positioned at a distance zc above the wire struc-
ture which is employed to provide the magnetic trapping potential for a BEC at a
distance d from the equilibrium position of the mechanical oscillator. An atom in
the vicinity of the oscillator surface experiences an attractive surface potential. For
distances d in the micrometer range, the strong potential gradient of the surface po-
tential modifies the magnetic trap considerably. Motion of the mechanical oscillator
thus leads to a modulation of the trapping potential and couples to the motion of
trapped atoms.

In the following, the potential between a neutral atom and the surface is described.
Excitation modes of a BEC due to the modulation of the trapping potential are
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Figure 3.1: A BEC is trapped close to a mechanical oscillator which is glued onto
an atom chip. The surface potential modifies the magnetic trapping potential and
thus couples the mechanical oscillator to the BEC. A readout laser beam is used to
monitor the motion of the mechanical oscillator independently.

briefly reviewed.

3.1.1 Surface potentials

The attractive surface potential which acts onto neutral atoms close to a surface can
have many origins. We focus our description onto the Casimir-Polder potential and
the adsorbate potential, which arises from a spatially inhomogeneous distribution
of atoms adsorbed on a surface. Other contributions could be magnetic impurities
in the mechanical oscillator, or inhomogeneous electric potentials arising from static
electric charges on a dielectric surface.

Casmir-Polder potential The interaction of an atom and a dielectric surface can
be regarded as the interaction of the fluctuating dipole moment of an atom with
fluctuating dipole moments on the surface. The resulting van-der-Waals potential is
given by UvdW (z) = −C3/z

3. For distances z � λ/2π, retardation has to be taken
into account. In the retarded regime, Casimir and Polder derived the interaction
potential between an atom and a perfectly conducting half-space and found [101]
the total interaction energy

UCP (z) = −3~cα0

8πz4
, (3.1)
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with the static atomic polarizability α0. The theoretical description is adapted for
a dielectric half-space and an atom [102]

UCP (z) = −3~cα0

8πz4

εr − 1

εr + 1
φ(εr) = −C4

z4
(3.2)

with φ(εr,SiN) = 0.77 for εr,SiN = 4.08 [103].

The scaling of the surface potential of a dielectric surface changes if one considers
not a half-space, but a thin dielectric layer. In the limit where the distance z is large
compared to the thickness of the dielectric layer, the van-der-Waals potential falls
off with z−4 and the Casimir-Polder potential scales with z−5. In contrast, metallic
walls with finite thickness can be described with the result obtained for a metallic
half-space, as long as the conductivity of the metal allows for ’metallic’ boundary
conditions [104, 105, 106].

Adsorbate potential In contrast to the van-der-Waals and Casimir-Polder poten-
tial which arise always close to surfaces, adsorbate potentials rely on a spatially
inhomogeneous distribution of atoms adsorbed on the surface. In our experiment,
the mechanical oscillator is in a ultra high vacuum chamber with an enhanced back-
ground pressure of Rb atoms which can stick to surfaces. Moreover, in our experi-
mental situation Rb atoms lost from the magnetic trap due to the influence of the
attractive surface potential are accelerated towards the surface. An adsorbed Rb
atom partially transfers the valence electron to the surface, and forms a permanent
electric dipole moment [107]. The stray field resulting from adsorbed atoms polarizes
Rb atoms trapped nearby, and thus contributes to the effective surface potential.
In particular, an inhomogeneous distribution can have a significant effect onto the
trapping potential and both scaling and strength depend strongly on the distribution
of adsorbed atoms. Estimates [54] assume that the inhomogeneous distribution of
adsorbed atoms follows the shape of the BEC in a trap close to the metallic surface,
and show that the impact of the adsorbate potential onto the trapping poteential can
exceed the impact of the Casimir-Polder potential at micrometer distances, which
is the relevant length scale in our experiments.

3.1.2 Effect of the surface potential onto trapped atoms

As discussed above, the trapping potential is the sum of the magnetic potential Um

and the surface potential Us which includes contributions from the Casimir-Polder
potential UCP and an additional potential Uad due to e.g. adsorbed Rb atoms on or
contamination of the mechanical oscillator. Ugrav accounts for gravitation which is
directed perpendicular to the surface. The combined potential reads
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Figure 3.2: The magnetic trapping potential Um is deformed by the surface poten-
tial Us, resulting in the effective potential U with trap frequency ωz/2π = 10 kHz.
The red area indicates the extension of a BEC of N = 600 atoms. The right hand
side picture illustrates the minimum shift. Picture adapted from [54].

U [z] = Um + UCP + Uad + Ugrav (3.3)

=
1

2
mω2

z,0(z − zt,0)2 − C4

(z − zc)4
+ Uad[z − zc] +mgz, (3.4)

with the surface position zc and the magnetic trap minimum zt,0. The modification
of the harmonic trapping potential due to the surface potential Us = UCP + Uad

is illustrated in Fig. 3.2. The depth of the effective trapping potential is reduced
by the attractive surface potential, when the trap minimum is in the vicinity of the
surface. If the energy of a trapped atom exceeds the remaining trap depth, the atom
is ’suddenly’ lost from the trapped ensemble within one oscillation cycle.

Excitation of the mechanical oscillator to an amplitude a results in a modulation of
the trap frequency and a shift of the trap minimum. These two effects are employed
to couple the motion of the mechanical oscillator to the motion of a trapped BEC
in the experiments described in section 3.3.

• Modulation of the trap frequency: The curvature of the surface potential
depends strongly on the distance to the surface. Modulation of the distance
between the mechanical oscillator and the trapped ensemble results in a vari-
ation of the curvature which translates into a change of the trap frequency
[102]

ω2
z = ω2

z,0 +
1

m

∂2Us

∂z2
. (3.5)
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• Modulation of the trap minimum: The gradient of the surface potential
shifts the minimum zt,0 of the magnetic trap to a new minimum position zt
when the surface is approached

zt ≈ zt,0 −
1

mω2
z

∂Us

∂z
, (3.6)

as illustrated in Fig. 3.2 (right).

3.1.3 Mechanical modes of Bose-Einstein condensates

The motion of the mechanical oscillator couples to excitation modes of the trapped
BEC via modulation of the minimum position and the trap frequency. This excites
the center of mass mode, the radial breathing mode, the quadrupole mode and gives
rise to an energy transfer into the respective mode.

BEC in the Thomas-Fermi regime Bose-Einstein condensation sets in [49, 108,
109], when the thermal de-Broglie wave length λdB is of the same order as the in-
teratomic distance, which is fulfilled if the condition nλ3

dB ' 2.612 with the atomic
peak density n is met.

The BEC is described in mean-field theory by the Gross-Pitaevskii equation (GPE)

(
− ~2

2m
∇2 + Uext(r) + gN0|φ(r)|2

)
φ(r) = µcφ(r), (3.7)

with g = 4π~2as/m and the number of atoms N0. The harmonic oscillator length
is given by aho =

√
~/mωho, with the geometric average of the oscillation frequen-

cies given by ωho = (ωxωyωz)
1/3, with indices i = x, y, z denoting the trap axes.

The interaction of the atoms is modelled with a contact potential with the s-wave
scattering length as

Uint(ri − rj) =
4π~2as
m

δ(ri − rj). (3.8)

In the limit N0as/aho � 1, the description of the BEC can be simplified in the
Thomas-Fermi (TF) approximation under neglection of the kinetic energy term of
the GPE in equation 3.7. The density profile reflects the shape of the trapping
potential
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nc(r) = |φ(r)|2 = max {0, (µc − Uext(r))/g} . (3.9)

The chemical potential µc and the TF radii of the condensate are given by

µc =
~ωho

2

(
15asN0

aho

)2/5

(3.10)

RTF,i =

√
2µc

mω2
i

. (3.11)

In order to describe the situation in our experiment with small atom numbers
N0 ' 103, the TF approximation can be extended [110].

Excitation of a BEC The frequencies of excitation modes of a non-interacting
BEC are given [111, 112] by ω(n, l) = ωho(2n + l), where n and l are the principal
and the angular momentum quantum number. Excitations of a BEC of interacting
atoms are treated within the Bogoliubov theory where the interaction is modelled in
a way which is similar to the description of a superfluid in the hydrodynamic limit.
The frequencies of the lowest collective excitation modes of a BEC in a cigar shaped
trapping potential with ω⊥ � ωx above the dipole mode at ω = ω⊥ are given by

ωl=2,m=0 = 2ω⊥, (3.12)

ωl=2,m=0 =
√

5/2ωx, (3.13)

where the axial component of the angular momentum is described with the quan-
tum number m. The radial compression mode (equation 3.12) corresponds to the
parametric resonance of a thermal non-interacting ideal gas. The frequency of the
quadrupole mode (l = 2,m = 2) (3.13) can be calculated [111, 112, 110] from the
kinetic and potential energies

ωl=2,m=2 =
√

2ω⊥

√
1 + Ekin,⊥/Epot,⊥. (3.14)

In section 3.3.3, the motion of the mechanical oscillator is transduced via the sur-
face potential and modulates the trap such that the center of mass mode, the radial
compression mode and the quadrupole mode can be resolved in a spectroscopy of
the trapped BEC. The excitation of all modes of a trapped BEC dephases quickly
due to a strong anharmonic deformation of the magnetic trapping potential by the
superimposed surface potential.
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Figure 3.3: Relevant wavelengths for adressing 87Rb. Figure adapted from [54].

3.2 Atom chip setup

In this thesis an atom chip setup similar to the setups described in [113, 91] was built
up. The atom chip was designed for the experiments which are described in this
chapter. We further use the setup as a source of ultracold atoms in the experiments
described in chapter 4. This specific setup is already described in detail in the thesis
of David Hunger [54]. I give a brief description of the central components of the
experimental setup.

3.2.1 ’Standard’ setup

Laser system The laser system provides the light which is used for the mirror-
MOT cooling beams, pumping, repumping and detection beams. In our laser system,
we employ diode lasers which are locked to an optical transition with doppler-free
saturation spectroscopy and provide frequency stabilized laser light at the relevant
wave lengths close to the D2 line of 87Rb as shown in Fig. 3.3. The required
frequencies are derived with (double pass) AOMs from the lasers which are frequency
stabilized to the lockpoints. The light is coupled to polarization maintaining single-
mode optical fibers for spatial mode cleaning, collimated and sent into the vacuum
chamber.

Vacuum system The vacuum system is assembled with standard CF components
(see Fig.3.4), and after initial pump down with a turbo pump and baking, an ion
pump maintains a pressure of p ' 5×10−10 mbar, assisted by Ti sublimation once a
year. The speciality of the atom chip setups in our group is the pyrex cell attached to
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Figure 3.4: (a) Schematic of the the vacuum system. (b) Pyrex glass cell. Figure
taken from [54].

the steel vacuum chamber with a glass-to-metal transition. The pyrex cell is closed
with an atom chip which is glued onto the top side with an epoxy glue1. Apart from
good optical access, this construction provides vacuum feedthroughs via chip wires
crossing the adhesive area. Rubidium vapour is provided from dispensers based on
Rb chromate2 which are operated close to the threshold.

Magnetic fields The magnetic field landscape is provided by the current flow
through microfabricated wires, and the superimposed homogeneous magnetic fields.
In addition to the microfabricated atom chip wires and the water cooled (anti)
Helmholtz coils surrounding the glass cell, we employ a water cooled copper U-bar
which is mounted on the backside of the atom chip in order to provide a quadrupole
type magnetic field for the first mirror-MOT stage. The prerequisite for stable mag-
netic fields are stable current sources. Several thereof were developed in our group
and combine high stability, low noise and fast switching times [114].

3.2.2 Atom chip and BEC production

The atom chip used for the experiments consists of a base and an experiment chip,
which is glued on top of the base chip with an epoxy glue3. The assembly is shown
in Fig. 3.5. The gold wire structures on the chip surfaces are fabricated with optical
lithography and electroplating technique. Details of this process can be found in
[113]. The wires on the experiment chip are electrically connected to the wires on
the base chip with bond wire connections. The mirror used for the mirror-MOT is

1Epo-Tek 353 ND
2SAES Rb/NF/3.4/12 FT10+10
3Epo-Tek H77S
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Figure 3.5: (a) Photograph of the atom chip used in the experiment. (b) An
AFM chip supporting mechanical oscillators is glued onto the atom chip. (c) SEM
micrograph of the mechanical oscillators sticking out of the AFM chip.

a dielectric mirror glued on top of the experiment chip.

The mechanical oscillators used in this experiment are commercially available4 me-
chanical oscillators used for atomic force microscopy (AFM). The mechanical oscil-
lators, ’cantilevers’, stick out from the edge of a carrier chip. We glue the carrier
chip onto the experiment chip, sandwiching a spacer chip of 47 µm thickness in
between such that the mechanical oscillators are positioned ' 60 µm above the
microfabricated wires on the experiment chip. The amplitude a of the mechanical
oscillator can be excited by driving a nearby piezo with a signal generator The piezo
is electrically contacted with conducting glue5 from the back and with bond wires
from the top.

4NanoAndMore GmbH, 35578 Wetzlar, Germany
5Epo-Tek H20E
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The experimental sequence starts with a mirror-MOT [86] at several mm distance
from the chip surface using the copper U-bar carrying a current of 55 A, and an
external field of B = (0.0, 9.7, 3.0) Gauss. 87Rb atoms are collected from the back-
ground gas and transferred to a series of overlapping mirror-MOTs which transfer
the atom cloud close to the chip surface. The role of the copper U-bar is taken over
by U-shaped wires on the base chip. To achieve a high density, the atom cloud is
compressed in a MOT with increased detuning prior to the molasses cooling phase.
It is notable, that only the first MOT runs in steady state, while the subsequent
MOT stages are operated in a transient regime which is optimized to transport
a high number of ultracold atoms with a high density close to the chip surface.
The temperature of the ensemble is reduced to ' 10 µK in the molasses phase of
2.8 ms and a detuning of ∆ = −11Γse, with the natural linewidth Γse = 2π×6 MHz.

The molasses cooled atoms are optically pumped to |F = 2,mF = 2〉, and loaded
into a Ioffe-Pritchard trap which is provided by means of a Z-shaped wire struc-
ture on the experiment chip. The transport from the mirror-MOT region to the
mechanical oscillator over a distance of 6.4 mm employs a wire based waveguide
with a superimposed quadrupole field as discussed in 2.2.1. After the transport, the
atoms are loaded into a Ioffe-Pritchard type trapping potential, which is modulated
by currents perpendicular to the central wire. In this dimple trap, the atoms are
Bose-Einstein condensed in three stages of evaporative cooling, and pure BECs of
N ' 2000 atoms are produced at a distance of d = 16.6 µm from the mechanical os-
cillator. The density distribution of the atomic cloud is detected with (destructive)
absorption imaging [49].

3.3 Measurements

We characterize the surface potential of the mechanical oscillator with a BEC in
order to calibrate the distance between the oscillator and the atomic ensemble. In
subsequent experiments, we position the BEC in the range where the surface poten-
tial modifies the magnetic trapping potential significantly, and use this to image the
fundamental mode resonance with the BEC. We further use the modulation of the
trapping potential to perform a spectroscopy of the trapped BEC. We demonstrate
controlled excitation of the center of mass mode, the radial breathing mode and the
quadrupole mode of the BEC.

3.3.1 Characterization of the surface potential

The position of the magnetic trap minimum is simulated from the current flow
through wires on the atom chip and from the external, magnetic fields [54]. In order
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to locate the mechanical oscillator we ramp the magnetic trap minimum adiabat-
ically towards the mechanical oscillator, hold the BEC at a distance d for a hold
time th = 1 ms and ramp the atoms back into a relaxed trap at a large distance
from the surface. These experiments are performed with the non-excited mechanical
oscillator6. In subsequent shots of the experiment, the distance d is decreased, and
we measure the number of remaining atoms in the trap after th with absorption
imaging. Fig. 3.6 shows the result of such measurements at both sides of the me-
chanical oscillator. The upper axis gives the distance to the wires on the chip, and
we plot the remaining fraction of atoms χ = Nr/N as a function of the distance d to
the chip surface. This can be interpreted as a measurement of the effective height
of the mechanical oscillator.

In order to locate the mechanical oscillator, and to obtain the bottom axis with the
distance calibration between the mechanical oscillator and the trap minimum we
analyze the data as follows. We identify χ = 0 with the position where the trap-
ping potential vanishes. The analysis is based on a model which assumes that all
atoms whose energy is larger than the trap depth are suddenly lost from the trapped
ensemble when the depth of the potential is reduced below the energy of an atom
[115]. The remaining fraction of atoms in this model is χ = 1− exp(−U0/kBT ). We
apply this to model the loss of atoms from the thermal cloud which coexists with
the BEC, and we further include losses due to evaporation and tunneling through
the potential barrier.

The resulting model is employed to fit to the data in Fig. 3.6. The surface potential
on the dielectric backside is assumed to be the Casimir-Polder potential UCP of a
thin dielectric slab of silicon nitride (SiN), together with a contribution from the
metallic surface on the other side. The effective Casimir-Polder potential is calcu-
lated with [116, 104, 105, 106], and found to be 25 % larger than UCP of the dielectric
SiN slab alone. For the metallized side, we assume the Casimir-Polder potential of a
perfect conductor due to the decent conductivity of the 65nm thick gold-chromium
layer. One finds that the data in Fig. 3.6 can not be explained exclusively with the
assumption of a Casimir-Potential potential UCP . One has to assume an additional
potential Uad � UCP on at least one side of the mechanical oscillator. A possible
candidate is an attractive potential due to Rb atoms adsorbed on the metallized
side of the mechanical oscillator. Estimates [54, 81] show, that one could expect
a potential Uad due to inhomogeneously adsorbed atoms with Uad � UCP in our
experimental situation. With this analysis, one obtains a calibration of the distance
d between the mechanical oscillator and the trap minimum. The position of the
cantilever is indicated in Fig. 3.6.

6The thermal amplitude is ath ≈ 0.4nm, and can not be resolved in measurements with ultracold
atoms
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Figure 3.6: Fraction χ of atoms remaining in the trap after a hold time th = 1 ms
of the atomic ensamble at a distance d from the cantilever surface. Blue (red) data
points correspond to a trap with ωz/2π = 10.0 kHz (5.1 kHz). The lower axis shows
the calibration obtained from the analysis (solid lines).

We further determine the positioning reproducibility of a BEC from the atom num-
ber noise on the slope at d = 1.3 µm, and find an upper limit to the position
uncertainty of ∆zt,0 = 6nm rms.

3.3.2 Imaging of the mechanical oscillators’ resonance

We investigate the coupling of the mechanical oscillator to a trapped BEC posi-
tioned at a distance d from the metallized side of the mechanical oscillator. The
mechanical oscillator is excited to an amplitude a with the nearby piezo which is
driven at the frequency ωp. The fundamental out-of-plane mode of the mechanical
oscillator has an eigenfrequency of ωm ≈ 2π × 10 kHz7. The oscillator amplitude
is calibrated and permanently monitored with an independent optical readout laser
beam at 830nm, which is sufficiently far detuned from the D1- and D2-line of 87Rb
such that it does not affect the atoms. The laser beam is reflected from the metal-
lized side of the mechanical oscillator such that the angle of the deflection from the
rest position is translated into a position shift of the reflected laser beam. This shift
is monitored with a position sensitive two quadrant photodetector, and allows one
to extract oscillation frequency and amplitude [117].

For studying resonant coupling of the fundamental out-of-plane mode of the me-

7The eigenfrequency of the fundamental mode decreased over time, which we attribute to aging
of the mechanical oscillator.



3.3 Measurements 43

Figure 3.7: Number of remaining atoms after th = 3 ms in a trap with ωz/2π =
10.5 kHz at a distance d = 1.5 µm from the driven mechanical oscillator. The
dark (light) blue circles correspond to a cantilever amplitude a = 120nm (50nm) on
resonance. The solid lines are Lorentzian fits with a 6 Hz FWHM corresponding to
the width of the oscillators’ resonance.

chanical oscillator to the center of mass mode of the trapped ensemble, the trap is
positioned at a distance d = 1.5 µm from the equilibrium position of the cantilever.
The trap frequency of ωz/2π = 10.5 kHz is chosen such that the resonance condition
ωm ≈ ωz is fulfilled. The excitation frequency ωp is scanned from shot to shot of
the experiment, while the magnetic trap is always prepared at the same position.
Scanning ωp effectively results in scanning across the resonance of the mechanical os-
cillator, yielding a different amplitude in each step of the experiment. The sequence
for the detection of the atom number is similar to the experiments described in the
previous section, where the atoms are hold for a time th at a distance d, and ramped
to a relaxed trap for subsequent absorption imaging. Fig. 3.7 shows measured data
for two different (peak) amplitudes a of the mechanical oscillator at ωm = ωz.

The enhanced oscillator amplitude on resonance leads to a modulation of the trap
minimum position zt with an amplitude δzt = 10nm (4nm) for a = 120nm (50nm).
This periodic shaking of the trap couples to the center of mass motion of the trapped
atomic ensemble. The width of the resonance is in reasonable agreement with the
quality factor of the mechanical oscillator which is determined to be Q = 3200 in
a ringdown measurement of the amplitude. From this alternative measurement, we
would expect a FWHM of approximately 10 Hz, while we find a width of 6 Hz from
the measurement with the BEC.

This measurement is done for several oscillator amplitudes a. In Fig. 3.8, we plot the
contrast C = (Nr−Na)/Nr and the signal to noise ratio SNR= (Nr−Na)/σ, where
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Figure 3.8: Sensitivity of the readout on the metallized side of the mechanical os-
cillator on resonance with the atomic ensemble (blue). The contrast C quantifies the
modulation depth of the resonance (see Fig. 3.7). The smallest detectable cantilever
amplitude is a = (13 ± 4)nm for SNR= 1 without averaging. Analogue measure-
ments performed on the dielectric side of the oscillator reveal a weaker coupling
(light blue). The red data point was obtained from measurements with averaging
in an off-resonant trap with ωz/2π = 4 kHz. The rms noise of the measurement is
indicated with the dotted line.

Na (Nr) is the number of remaining atoms after a hold time th at a distance d for
off-resonant (on-resonant) driving. We detect a smallest amplitude a = (13± 4)nm
without averaging and with a SNR= 1. This confirms, that the influence of the ther-
mal motion onto a trapped ensemble is negligible, and that we indeed can assume
the mechanical oscillator as a static freestanding structure in section 3.3.1.

We investigate the dependence of the atomic signal on the distance d from the os-
cillator on the metallized side for a fixed oscillator amplitude a = 90nm. Fig. 3.9
shows the contrast C and the signal to noise ratio SNR of the driven (undriven)
mechanical oscillator. Intuitively, one would expect the maximum of the SNR at
the position of the steepest slope at d ≈ 1.5 µm in Fig. 3.6. This expectation is
confirmed by the measurement shown on the right hand side of Fig. 3.9 in a trap at
10.5 kHz.
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Figure 3.9: Contrast C and signal to noise ratio SNR of the observed atomic signal
as a function of d, for constant a = 90nm and ωp = ωm. Blue (red) data points
correspond to ωz/2π = 10.5 kHz (5.0 kHz) and th = 3 ms (20 ms).

3.3.3 Spectroscopy of the trapped BEC

In the last section, the piezo driving frequency ωp was scanned from shot to shot of
the experiment, allowing to image the resonance of the mechanical oscillator with
the atomic ensemble. In this section, the cantilever is always driven on resonance
at a fixed amplitude a = 180nm. Due to aging of the oscillator, the eigenfrequency
of the fundamental mode has decreased over time to ωm/2π = 9.68 kHz. The BEC
is prepared at the metallized side of the oscillator, and the trap frequency is varied
from shot to shot with the trap position adjusted such that the number of atoms
Nr throughover the scan is approximately constant. The measured SNR is shown
in Fig. 3.10.

We observe the resonance which corresponds to the excitation of the center of mass
mode at ωm = ωz. The modulation amplitude of the trap minimum is δzt = 7nm.
The peak at ωm = 2ωz is attributed to the radial breathing mode which is excited
by modulation of the trap frequency δωz = 2π × 150 Hz. The linewidth of the
resonance at ωz = ωm is broadened in contrast to the linewidth of only 60 Hz of the
resonance at ωz = 2ωm, which might be due to the larger thermal component in the
anharmonic potential with ωz = ωm. On the left hand side of these resonances, we
reproducibly observe ’anti’ resonances (red arrows in Fig. 3.10), where the SNR is
suppressed by a factor of 20. This shows that the coupling can be efficiently con-
trolled by a small detuning of the trap frequency. We also find weaker resonances at
ωm = (1.6, 1.8, 2.1, 2.4)ωz (blue arrows in Fig. 3.10) and identify the first resonance
with the quadrupole mode of the BEC, whose frequency is calculated with equation
3.14. For smaller d we observe a broadening of these resonances, and find that the
resonance which corresponds to an excitation of the quadrupole mode at ωm = 1.6ωz

becomes stronger than the resonance at ωm = 2ωz.
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Figure 3.10: Top graph: Response of the atomic ensemble as a function of ωz for
constant a = 180nm and th = 20 ms (dark blue). Light blue: reference measurement
without piezo excitation. Bottom graph: Set values of d, chosen such that Nr(ωz) ≈
const. (Nr(10 kHz) = 700, Nr(5 kHz) = 1100) and that Na does not saturate.

The experiments presented in this chapter show that it is possible to realize an in-
teraction between a mechanical oscillator and ultracold atoms. However, we did not
observe the backaction of the atomic ensemble onto the oscillator. This aspect is in-
vestigated in the next chapter, where we observe the backaction onto the mechanical
oscillator.



4 Optomechanical coupling via an
optical lattice

The focus of the experiment described in this chapter is the observation of backac-
tion of an ensemble of ultracold atoms onto the center of mass mode of a mechanical
oscillator. The experiment is facilitated by the long-distance coupling mediated by
the optical lattice, which allows one to keep the oscillator and the atoms in indi-
vidual vacuum chambers. Similar to the experiment in chapter 3, the motion of
the oscillator is coupled to the atomic motion which results in a coupling strength
g ∝

√
Nm/M . The coupling strength in the experiments in chapter 3 is too small,

to resolve the backaction of the BEC onto the mechanical oscillator. The coupling
scheme via an optical lattice allows for a sufficient coupling strength to observe the
backaction onto a mechanical oscillator due to an increase of the atom number and
the mechanical quality factor by 3 orders of magnitude each.

In the following the coupling mechanism via an optical lattice is explained. The
experimental implementation of the optical lattice and the readout of the mechanical
oscillator is described, and the chapter closes with measurements which demonstrate
the observation of backaction. These experiments will be published in [82].

4.1 Coupling scheme

The setup is illustrated in Fig. 4.1. A laser beam comes in from the right hand
side and is (partially) retroreflected at a harmonically bound mirror. The reflected
beam is overlapped with the incoming beam, and forms a standing wave pattern.
The frequency of the laser light is red detuned with respect to an optical transition
of 87Rb atoms, which allows to trap atoms in the resulting one dimensional optical
lattice potential (1D optical lattice). Motion of the mechanical oscillator shakes the
lattice and couples the oscillators’ motion to the atomic center of mass (COM) mo-
tion. On the other hand, the motion of the atoms in the trapping potential leads to
a redistribution of photons between the two running wave components forming the
lattice and is thus imprinted onto the power of the laser beam that is retroreflected
at the oscillator. The resulting modulation of the radiation pressure constitutes the
backaction of the atoms onto the oscillator.
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Figure 4.1: A laser beam incoming from the right is partially reflected off a me-
chanical oscillator and forms a standing wave optical potential for ultracold atoms.
The optical lattice provides a long distance coupling, which allows to place the atoms
and the mechanical oscillator in different vacuum chambers, or cryostats. Figure
taken from [39].

Conventional optical lattice experiments impose high demands onto the mechani-
cal stability of lattice end mirrors, as these experiments require a static potential,
whereas we study the situation with an oscillating mirror. We choose a mechanical
oscillator as an end mirror which has a reasonable reflectivity such that the reflected
beam can be used to form an optical lattice.

In the following, we give a simple picture how the membrane acts onto the atoms and
vice versa, treating the light field classically. Radiation pressure induced momentum
diffusion processes are as well neglected as retardation effects of the light field. These
effects are taken into account by a full quantum theory, which is published in [39]
and reviewed in section 4.1.4.

4.1.1 Effect of the mechanical oscillator onto trapped atoms

The situation is simpified in assuming that the coupled system can be described in
the picture of two harmonic oscillators, see Fig. 4.2. A displacement δzm of the
mirror leads to a displacement of the potential minima of the 1D optical lattice.
The displacement results in a change of the potential for a trapped atom, and thus
influences the further motion of the atom. This constitutes a coupling of the mirror
motion to the motion of atoms which are trapped in the 1D optical lattice. The
equations of motion for an atom are derived in order to obtain an expression for the
coupling strength of the mechanical oscillators’ motion to the motion of a trapped
atom.

Starting from a harmonic trapping potential, we write down the Hamiltonian for the
j-th atom with trap frequency ωat
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Figure 4.2: Optomechanical coupling of atomic ensemble and membrane oscillator.

Hj =
p2
j

2m
+

1

2
mω2

at(δzj − δzm)2, (4.1)

where δzj (δzm) are displacements of the atoms (membrane) from the equilibrium
position. The second term which describes the potential energy, accounts for the
influence of the displacement δzm of the mechanical oscillator onto the potential
which the j-th atom experiences. The equations of motion are given by

ṗj = − ∂Hj

∂(δzj)
= −mω2

atδzj +mω2
atδzm (4.2)

δżj =
∂Hj

∂pj
=
pj
m
. (4.3)

The force Fm→j onto an atom due to a displacement of the mirror by δzm, can be
extracted from the first equation

Fm→j = mω2
atδzm. (4.4)

The equations of motion for all atoms N of the ensemble are summed

∑
j

ṗj = −mω2
at

∑
j

δzj +Nmω2
atδzm (4.5)

∑
j

δżj =
1

m

∑
j

pj, (4.6)
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and quantized with dimensionless variables xat = (a†at + aat) and pat = i(a†at −
aat) which describe the COM motion of the trapped atomic ensemble with aat =∑

j aj/
√
N and

[
aat, a

†
at

]
= 1. The mirror position and momentum are defined anal-

ogously by xm = (a†m + am) and pm = i(a†m − am).

With
∑

j δzj = lat
∑

j(a
†
j + aj), one finds

∑
j

δzj =
√
Nlatxat (4.7)∑

j

pj =
√
Nmωatlatpat (4.8)

δzm = lmxm (4.9)

qm = Mωmlmpm (4.10)

where lat =
√

~/2mωat and lm =
√
~/2Mωm are the ground state spread of the

trapped atom and the harmonically bound mirror, respectively, and qm is the mem-
brane momentum.

We rewrite the equations of motion

ṗat = −ωatxat + 2gm→atxm (4.11)

ẋat = ωatpat, (4.12)

and with the assumption that the two systems are nearly resonant, i.e. ωat ≈ ωm,
one obtains the coupling constant on resonance gm→at

gm→at =
ωat

2

√
Nm

M
. (4.13)

From this equation one infers, that the coupling strength depends on the factor√
Nm/M . In the situation of chapter 3, and in this chapter the mass of the me-

chanical oscillator exceeds the mass of the atomic ensemble by several orders of
magnitude, and this imposes a stringent limit onto the coupling strength. If the res-
onance condition ωat = ωm is fulfilled an oscillation of the mirror leads to a resonant
energy transfer to the atomic ensemble, and to the excitation of the atomic COM
mode.
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4.1.2 Effect of the atoms onto the mechanical oscillator

In the last section, we have derived an expression for the coupling strength between
the motion of a mechanical oscillator and an atomic ensemble. Now, we adress the
question how the motion of the mechanical oscillator is influenced by the atomic
ensemble. We consider the situation illustrated in Fig. 4.2. An incoming light beam
from the right hand side travels to the left with the power P and wave vector −k,
with ω = ck. The beam is sent from the optical lattice position to the membrane
through an optical system which consists of mirrors, lenses, polarization optics and
vacuum windows, which has an amplitude transmittivity |T | < 1 on the path be-
tween Atoms and membrane. The beam is partially reflected at the membrane,
which has an amplitude reflectivity R. The 1D optical lattice potential is formed by
the interference of the incoming beam and the reflected beam. If there are no atoms
in the optical lattice, the beam which is reflected at the membrane has a beam power
of |R|2|T |2P right after the membrane. In the following, we study how the presence
of atoms which are trapped in the lattice changes the situation. A harmonically
bound atom oscillates in the trapping potential V and experiences a restoring force

Fj = ṗj = − ∂V

∂(δzj)
= −ω2

atmatzj (4.14)

The force increases linearly with the distance to the minimum of the trapping po-
tential, and is directed towards this minimum. The physical origin of this restoring
force is the momentum transfer associated with the redistribution of photons be-
tween the two running wave components of the 1D optical lattice [118]. The j-th
atom redistributes photons at a rate ṅj in the beam with wave vector +k. With the
atomic momentum change of −2~k per redistribution event, the restoring force Fj

is given by

Fj = −2~kṅj (4.15)

For N trapped atoms we calculate a total photon exchange rate with

ṅ =
∑
j

ṅj = − 1

2~k
∑
j

Fj (4.16)

The power of the beam with wave vector +k which is reflected at the membrane is
changes by

∆P = ~ωṅ = −~ω 1

2~k
∑
j

Fj = − c
2

∑
j

Fj, (4.17)
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when it passes the optical lattice, and the power of the incoming beam is decreased
by −∆P . The value of ∆P depends on the restoring forces acting onto an atomic
ensemble which is displaced from the minimum of the trapping potential. In the situ-
ation considered above, the power P of the incoming beam changes to P−∆P , when
the beam passes the optical lattice position, and is further decreased to T 2(P −∆P )
due optical losses between the atoms and the membrane. The reflected beam has a
power of PR = |R|2|T |2(P −∆P ) right after the membrane.

If the trapped ensemble performs a COM motion in the potential, the beam powers
are periodically modulated. Experiments show that the power modulation can be
significant [119, 120]. According to [119], the power modulation of a lattice laser
beam due to the center of mass motion of a trapped ensemble can be estimated by
|∆P/P | ≈ N(δz)Γse10−5/λ∆ for a large detuning ∆ and a small displacement δz.
For experimental parameters similar to the ones used in section 4.3 with N = 1×106

atoms, a displacement of δz = 0.5nm, and the natural linewidth Γse = 2π × 6 MHz
of the D2 line of 87Rb, a lattice laser wavelength λ = 780nm and a detuning of
∆ = −2π × 20 GHz, one expects a relative power modulation ∆P/P = 1× 10−5.

The incoming beam exerts a static radiation pressure onto the mechanical oscillator
with a modulation on top due to the component |T |2|R|2∆P . Note, that ∆P is fixed
for a given displacement of the atoms in the trapping potential wit fixed ωat. The
backaction of the atoms onto the membrane is reduced by a factor |T |2|R|2, which
accounts for photons which do not contribute to the radiation pressure onto the
membrane, as they are lost in the optical path or transmitted through the membrane.
Each of the photons which is reflected at the membrane transfers a momentum of
−2~k to the mechanical oscillator. Hence, the total radiation pressure acting onto
the membrane is

Fm =
PR

~ω
(−2~k) = −2

c
|T |2|R|2(P −∆P ), (4.18)

and with 4.17 the modulation of the radiation pressure force is given by

∆Fm =
2

c
|T |2|R|2∆P = −|T |2|R|2

∑
j

Fj. (4.19)

We assume a harmonic trapping potential for the atoms with Fj = −mω2
atδzj so

that

∆Fm = |T |2|R|2mω2
at

∑
j

δzj (4.20)
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This expression for ∆Fm allows one to write down the equations of motion for the
membrane

q̇m = −Mω2
mδzm + ∆Fm (4.21)

δżm =
qm
M
, (4.22)

and to sum and quantize as in the previous section

ṗm = −ωmxm + 2gat→mxat (4.23)

ẋm = ωmpm (4.24)

In the near resonant case with ωat ≈ ωm one finds the coupling constant gat→m

gat→m = |T |2|R|2ωat

2

√
Nm

M
. (4.25)

Comparison to the coupling constant which is derived in the previous section reveals
an asymmetric coupling

gat→m = |T |2|R|2gm→at. (4.26)

In a classical picture of the coupling mechanism, the mechanical oscillator and the
atomic ensemble can be each modelled as balls which are moving in bowls with
harmonic curvature due to gravitation. The coupling would be mediated by an
inflexible rod which is rigidly connected to each of the bowls. The result above
shows that this analogy does not hold. Although the light field acts like a transfer
rod in the sense that it provides coupling, the asymmetry of the coupling constants
due to the finite reflectivity can not be understood in this classical analogon.

4.1.3 Backaction of the atoms onto the damping of the
membrane

In the two previous sections we found that the action of the membrane onto the
atoms and vice versa can be described by asymmetrically coupled harmonic oscilla-
tors. In this section, we derive an explicit expression which quantifies the backaction
of the atoms onto the damping of the membrane. We start from the equations of
motion 4.5, 4.6, 4.21, 4.22, and add damping terms −γat

∑
j pj (−γmqm) to the right

hand side of equations 4.5 (4.21).
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The equations of motion are inserted into the time derivatives ȧat and ȧm, which
leads to the equations of motion

ȧat = −iωataat +
γat
2

(a+
at − aat) + ig(a+

m + am) (4.27)

ȧm = −iωmam +
γm
2

(a+
m − am) + ig|T |2|R|2(a+

at + aat) (4.28)

with the coupling constant g = ωat
2

√
Nm
M

near resonance ωat ≈ ωm. In order to sim-

plify the problem within the rotating wave approximation (RWA), the quadratures
aat and am are transformed in a frame which is co-rotating with the membrane at
frequency ωm

aat = ce−iωmt (4.29)

am = de−iωmt (4.30)

Inserting this into equations 4.27, 4.28 and defining a detuning δ = ωat − ωm yields

ċ =
γat
2

(c+e2iωmt − c) + ig(d+e2iωmt + d)− iδc (4.31)

ḋ =
γm
2

(d+e2iωmt − d) + ig|T |2|R|2(c+e2iωmt + c) (4.32)

and with the assumption ωm � δ, g, γat, γm (=RWA)

ċ ≈ −γat
2
c+ igd− iδc (4.33)

ḋ ≈ −γm
2
d+ ig|T |2|R|2c. (4.34)

The damping of the atomic ensemble in our experimental situation is dominated
by dephasing of the atomic COM motion due to the spread of atomic vibration
frequencies due to the gaussian lattice laser profile and the motion in the anharmonic
potential. From the assumption γat � γm, g, we found that ċ = 0, and equation
4.33 simplifies to

0 = −γat
2
c+ igd− iδc (4.35)

which can be transformed
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c =
ig

iδ + γat/2
d (4.36)

and inserted into 4.34

ḋ = −
(
γm
2

+
γat
2

g2|T |2|R|2

(γat/2)2 + δ2

)
d+ iδ

g2|T |2|R|2

(γat/2)2 + δ2
d, (4.37)

which is solved by

d(t) = d0e−
Γpop

2
teiΩt (4.38)

with

Γpop = γm + γat
g2|T |2|R|2

(γat/2)2 + δ2
, (4.39)

Ω = δ
g2|T |2|R|2

(γat/2)2 + δ2
. (4.40)

Note, that Γpop is the damping rate of the membrane population or energy, which
is the damping of the amplitude squared. On resonance δ = 0, the damping of the
membrane energy is given by

Γpop = γm +
4g2|T |2|R|2

γat
. (4.41)

The additional damping of the membrane motion due to atoms bound in the optical
lattice is given by the second term. This term can be accessed experimentally in
ringdown measurements of the membrane amplitude, which decays at a rate

Γ =
ωm

2Q
+

2g2|T |2|R|2

γat
. (4.42)

A direct measurement of the second term, ∆γ = 2g2|T |2|R|2/γat, is shown in section
4.3.4.
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4.1.4 Coupled system – fully quantized theory

The Hamiltonian discussed above included only the energy of the membrane and
the atomic ensemble. There, the light field is assumed to provide a potential where
the minima are referenced to the membrane position. The light field is treated clas-
sically, i.e. quantum fluctuations, which could lead to dissipation are not taken into
account. A full quantum treatment of the problem has to include the light field as a
dynamical system in the Hamiltonian as well as the various dissipation channels, e.g.
shotnoise of the light field. Furthermore, the above analysis does not account for
retardation effects due to the long distance coupling. All these effects are included
in the full quantum treatment published in [39]. In the following, we briefly sketch
the results of this analysis. The treatment does not take transmittivity |T | < 1 of
the optical system between atoms and membrane into account.

We start from the Master equation, which is derived from the full quantum theory

ρ̇ = −i[Hat +Hm + gxatxm, ρ] + Cρ+ Lmρ+ Latρ. (4.43)

The second term Cρ is responsible for the asymmetry in the coupling strengths,
which occurs for |R| < 1

Cρ =
i(1−R)2g

2
([xm, xatρ]− [ρxat, xm]) , (4.44)

with the amplitude reflectivity R of the mirror. This term is typical for cascaded
quantum sytems, where the output of one quantum system forms the input of an-
other quantum system.

The Master equation allows to study the sources of decoherence which arise from
dissipation in the mechanical oscillator, the dissipation of the atoms in the lattice,
and from the interaction of atoms or mechanical oscillator with the light field. The
contributions of the individual sources are described with several Lindblad terms
Lm and Lat which are of the general form

Lxρ =
1

2
γxD[a]ρ, (4.45)

with D[a]ρ = 2aρa† − a†aρ− ρa†a.

• Dissipation in the mechanical oscillator: As discussed in the section
2.1.2, the quality factor Q of the mechanical oscillator is limited. Coupling to
the thermal bath induces decoherence
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Lth
mρ =

γm
2

(n+ 1)D[am]ρ+
γm
2
nD[a†m]ρ, (4.46)

which depends on the thermal occupation n = kBT/~ωm of the mechanical
oscillator which is coupled to a thermal bath with temperature T and the
mechanical damping rate of the energy γm = ωm/Q.

• Decoherence and tunable dissipation of the atoms: The decoherence
of the atoms is due to several effects. The spread of vibrational frequencies of
atoms in the lattice potential due to the gaussian nature of the lattice beam
leads to a dephasing of the center of mass motion as the atoms oscillate at
slightly different trap frequencies. This could be reduced by shaping the ge-
ometry of the lattice laser beam, e.g. by choosing a flat top beam profile and a
large Rayleigh range. Contrarily, the dissipation of the atoms can be controlled
by adjusting the cooling rate γcoolat of e.g. Raman side band cooling which is
applied to the atomic ensemble. The Lindblad term of this contribution is

Lcool
at ρ =

1

2
γcoolat [aat]ρ. (4.47)

Tuning the dissipation allows to change the characteristics of the atomic en-
semble in the coupled system, for example to realize sympathetic cooling of the
mechanical oscillator for large γcoolat , and to switch to a regime where the cou-
pled system evolves coherently, limited only by decoherence of the mechanical
oscillator.

• Light field induced dissipation of atoms/mechanical oscillator: Shot-
noise of the light field leads to momentum diffusion of mechanical oscillator
and atoms. The diffusion rate of the atomic momentum due to spontaneous
emission is given by

γdiffat = (klat)
2Γse

V0

~δ
∝ ωrec

ωat

Γsc, (4.48)

with the natural linewidth Γse, the detuning δ from resonance, and the recoil
frequency ωrec. γdiffat depends mainly on the parameters of the trapping po-
tential. The momentum diffusion rate of the mechanical oscillator due to the
shotnoise in the laser beam with power P is given by



58 Optomechanical coupling via an optical lattice

γdiffm =
4R2P

Mc2

ωl

ωm

. (4.49)

Ground state cooling In the following, we discuss the parameter regime of a pos-
sible experimental realization of this coupling scheme which would allow to reach the
quantum ground state of a mechanical mode. A membrane oscillator as described in
section 2.1.1 serves as lattice end mirror. In our case, the membrane is an amorphous
silicon nitride film which is stretched onto a quadratic silicon frame. The membrane
considered here has dimensions 150 µm ×150 µm ×50nm, a fundamental mode
eigenfrequency of ωm = 2π × 0.86 MHz and an effective mass meff = 8× 10−13 kg.

A favourable lattice configuration is a blue detuned lattice where the transverse
confinement is provided by a very far detuned 2D lattice. Trapping and Raman
sideband cooling of 3 × 108 atoms with a density of 1.1 × 1011 cm−3 was demon-
strated in [99]. In a 3D lattice with additional cooling the trap loss due to light
assisted collisions is reduced as most of the lattice sites are occupied with a single
atom [98]. Coupling the mechanical oscillator via the blue detuned lattice to the
atoms has the advantage of smaller photon scattering rates in comparison to the red
detuned lattice, and thus allows to provide a sufficiently deep potential with a small
detuning, small lattice laser beam power, and thus small heating of the membrane.
This heating due to laser light absorption can be significant due to the reduced
thermal conductivity of the membrane at low temperatures [121]. Reasonable pa-
rameters of the blue detuned lattice laser beam are a power of P = 7 mW, a waist
w0 = 230 µm and a detuning δ = 2π×1 GHz, which are calculated such that atomic
and membrane oscillation frequencies are equal. We assume a spread of detunings
of ∆ωat ' 2π × 24 kHz. For the membrane, we assume an amplitude reflectivity of
the bare silicon nitride of R ≈ 0.57 at λ = 780nm and a mechanical quality factor
Q = 1× 107 at T = 2 K.

With these parameters, a coherent coupling of g = 40 kHz could be achieved, which is
large in comparison to the momentum diffusion rate of the membrane γdiffm = 52 Hz.
The leading decoherence effect of the membrane is due to the coupling to the thermal
bath, which contributes a rate γthm = γmn = 24 kHz at 2 K. The diffusion rate of
the atomic momentum γdiffat = 16 kHz is of the order of the cooling rate, which
can be tuned up to γcoolat = 20 kHz [99]. Assuming these optimistic parameters, the
hierarchy of the rates is

ωm = ωat � g & γcoolat ' γthm & γdiffat � γdiffm . (4.50)
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In this setting, the action of the atoms onto the membrane can be significant, and
one expects sympathetic cooling of the fundamental mode of the membrane oscilla-
tor. The steady state phonon number occupation nss is found by solving the Master
equation 4.43, and the cooling factor for the assumed parameters is nth/nss ' 2×104.
This would allow for ground state cooling with nss ' 0.8, starting from a cryogeni-
cally precooled membrane at T = 500mK.
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4.2 Extension of the atom chip setup

The goal of the experiment is to measure the backaction of the atomic ensemble
onto the mechanical oscillator, which shows up as an additional damping rate to the
oscillators motion in the weak coupling limit. This section describes the setup of an
experiment which aims at measuring the additional damping which is given by ∆γ,
the second term of the equation 4.42.

The setup described in section 3.2 is used as a source of ultracold atoms for loading
a 1D optical lattice with a membrane oscillator as an end mirror. The damping
of the membrane is measured in a ringdown measurement, where the decay of the
initially excited membrane amplitude is observed with a Michelson interferometer.
This section focusses onto the setup of a Michelson interferometer, the controlled
excitation of the membrane amplitude and the integration of a 1D optical lattice
into the atom chip setup described in section 3.2.

4.2.1 Michelson interferometer for membrane readout

The amplitude of the membrane oscillator is read out with a Michelson interferom-
eter as shown in Fig. 4.3. The interferometer consists of a beam splitter (BS) which
splits a light beam from a coherent light source (LS) into two beams which are each
reflected at a mirror (M1, M2). The reflected beams are overlapped at the beam
splitter, and the power is measured with a photodetector (PD).

The power incident on the photodiode depends on the difference of the optical path
lengths of the two interferometer arms with optical path lengths L1 and L2. The
phase difference is given [122] by

φ = 2π(2(L1 − L2)/λ) (4.51)

where λ is the wavelength of the light. The power incident on the photodetector is
given by

P =
1

2
αP0(1 + C sinφ), (4.52)

with the optical power P0 of the light source. C models the contrast due to unequal
powers in L1 and L2. α is an attentuation factor which accounts for optical losses
in the interferometer which occur e.g. due to reflections at air-glass interfaces.

The power shows a sine dependence as indicated in Fig. 4.3 (right), if e.g. L1 is fixed
and L2 continuously varied. The interferometer achieves the highest sensitivity for
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Figure 4.3: (left) Michelson interferometer. (right) Power modulation at the
output port for variation of the length of one arm.

an adjustment on the steepest slope. The interferometer measures the amplitude of
the membrane. The oscillation amplitude is linearly translated into an oscillating
voltage by the photodiode, and can be analyzed with e.g. a Lock-In amplifier.

One fundamental limit to the sensitivity is shotnoise in the photodetector (PD). The
poisson distributed shotnoise of a current I has a standard deviation of

σI =
√
〈i2〉 =

√
2eI∆f, (4.53)

with the electron charge e and the measurement bandwidth ∆f . This has to be
compared to the change of the PD current I + δI due to a length change of one
interferometer arm.

Setup of a Michelson interferometer

The experimental setup of the Michelson interferometer is shown in Fig. 4.4. A
home built, free running diode laser at λ = 830nm is used as a coherent light source.
A grating provides feedback into the laserdiode for narrowing the linewidth [123],
and is adjusted for single mode operation. The beam is shaped with an anamorphic
prism pair (AP) and a telescope, and back reflections from optical components in
the beam path into the laser diode are attentuated with an optical Faraday isolator
(FI). The laser beam is coupled into a polarization maintaining single mode optical
fiber1 for spatial mode cleaning. Both fiber end facets are angle cleaved to avoid sur-
faces which are perpendicular to the beam path, and which might lead to unstable
power of the transmitted laser beam due to the build up of unrequested Fabry-Perot
cavities.

1Thorlabs PM-780HP



62 Optomechanical coupling via an optical lattice

Figure 4.4: Setup of the Michelson interferometer

After outcoupling from the fiber, the beam is collimated and the polarization is
cleaned with a λ/2 plate (WP) and a polarizing beam splitter (PBS) such that the
polarization of the transmitted beam is vertically oriented. The power is split at
the 50/50 beam splitter in the center of the interferometer, and one light beam is
focussed onto the membrane with a lens of f = 100 mm. The beam waist on the
membrane is approximately w0 = 200 µm. The membrane is mounted on a solid
aluminum cuboid in a vacuum chamber which consists of a six way cross (CF40)
which is permanently pumped with an ion pump to a pressure p < 1 × 106 mbar.
A hole at the membrane position in the cuboid and two broadband antireflection
coated windows mounted at opposite flanges allow optical access to the membrane
from both sides. The membrane frame is UV glued to the cuboid at one corner only
in order to avoid bending of the frame due to shrinking of the glue volume during the
curing procedure, which might impose unwanted stress onto the membrane. Reflec-
tions from the windows into the beam path are avoided by rotating the membrane
by 10

◦
with respect to the windows. A neutral optical density filter in the reference

beam path of the interferometer is introduced to match the powers of the interfering
beams. The mirror in the reference arm is a gold coated glass plate which is glued
onto a low voltage multi stack piezo, which allows to vary the length of this arm by
one wavelength per 10V.

The interfered amplitudes of the overlapped beams are measured with an amplified
photo detector (PD) as shown in Fig. 4.5. We use a BPW34 with a reverse bias
voltage of 15 V and perform a current to voltage conversion with the operational
amplifier OP 37, which combines low noise and a gain-bandwidth product which is
sufficient for our purposes. The photodiode circuit provides three different outputs:
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Figure 4.5: Amplification and filtering circuitry of the high sensitivity photo
detector.

(1) right after the current to voltage conversion (general out), (2) a low pass filtered
signal with subsequent operational amplifier OP 27 (DC out), (3) a high pass fil-
tered signal with subsequent operational amplifier OP 27, providing a gain of 5 to
compensate for the drop of the signal level due to filtering (AC out).

To reduce pickup noise it is essential to build the circuit and the photodetector into
a massive aluminum box. The wires which guide the current from the photodiode
to the current to voltage conversion amplifier should be as short as possible2. The
adjustment of the resistor in the feedback arm of the operational amplifier follows
a trade off between sensitivity and bandwidth. In order to measure the bandwidth
of the photodiode, a laser beam which is incident on the photodiode is switched
on, and the rise time of the signal at the photodiode is measured at the respective
output. The bandwidth is given by the inverse of the time that has elapsed when
the signal has reached 63 % of the steady state level. We use the solid state switch
in the AOM controller3 with a switching time of a few tens of ns, which is small
in comparison to the timescale on which the signal rises. The bandwidth of the
photodiode is measured and adjusted to 1 MHz at the general output .The rms
noise at the general output is 3.5× 10−5 of the full range (12 V ).

Operation of the Michelson interferometer

The light beams which are incident on the photodiode are overlapped carefully in
order to achieve a maximum modulation of the interfering beams for a variation of

2A trial to mount the photodiode in a separate box and to guide the current with LEMO con-
nectors and shielded cables to the current to voltage conversion amplifier resulted in significant
pick up noise.

3AOM2100 MHz, Toni Scheich
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Figure 4.6: Photograph of the Michelson interferometer.

the relative optical path length (L2 − L1), and to achieve a minimum power modu-
lation for destructive interference as shown in Fig. 4.3. In the alignment procedure
the power of the beam which is reflected from the membrane and coupled back
into the optical fiber is monitored with the photodiode (PD1). Maximum power
indicates that the beam axis is perpendicular to the membrane, i.e. the incoming
and outbound beams are overlapping. A second condition is that the beam hits
the center of the membrane. These two requirements are fulfilled simultaneously
by aligning the two steering mirrors M3 and M4. In order to overlap the two light
beams incident on the photodiode (PD), the power modulation is maximized while
tapping the vacuum chamber with the membrane which induces variations of the
relative optical path length (L2 − L1) of more than λ/2. The goal of the alignment
procedure is that the interference pattern is only one spot, and that the brightness
changes common mode over the whole area when (L2 − L1) is varied.

Mechanical vibrations which induce arbitrary variations of the relative optical path
length (L2 − L1) are minimized by choosing stable mechanical components and
mounting the interferometer as compact as possible. All relevant optical compo-
nents are mounted on 1/2 inch posts and in stable holders4. The soft spot of the
interferometer is the mechanical mounting of the membrane in the vacuum chamber
which is susceptible to acoustic vibrations.

4Maier GmbH
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The relative path length (L2 − L1) is actively stabilized with a PI regulator5 which
acts on the piezo mirror in the reference arm of the interferometer. To take out
acoustic vibrations, it is sufficient to stabilize the interferometer to frequencies in
the kHz range. In particular, the stabilization should not work at the frequencies
close to the membrane eigenfrequencies. To ensure this, we use the DC out of the
photodiode PD and adjust the cutoff of the low pass filter (LP) to 13 kHz. The
maximum signal level of the DC output is adjusted with the operational amplifier
OPA2 in order to scale to the signal level that the PI regulator requires. The signal
from the DC output is galvanically isolated and input as actual value to the PI
regulator. The proportional and integral part of the output are summed with an
operational amplifier OP 27 in a one to one summing amplifier configuration, and
fed to the piezo (PIstab). The set value is adjusted with a potentiometer such that
the level of the DC output is stabilized to the steepest slope.

Figure 4.7: The thermal motion of the membrane allows to scale the ordinate.

The interferometer is calibrated with the thermal motion of the fundamental mode
of the membrane oscillator which is measured with an oscilloscope6 at the AC output
of the photodiode PD. An FFT is applied to the time trace, and a Lorentzian is fitted
to the peak of the power fluctuations of the photodiode current. The integrated area

5LB5, Toni Scheich
6LeCroy waveRunner 44Xi
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below the Lorentzian is the squared amplitude of the membrane in units [m2]. The
amplitude is taken as the amplitude of a harmonic oscillator and set equal to kBT/2
in order to calculate a scaling factor for the ordinate. The effective mass of the SiN
membrane7 with dimensions 0.5 mm×0.5 mm×50nm is meff = 1.1× 10−8 g. With
the calculated rms amplitude of 1.6 × 10−11m, the ordinate is rescaled as shown
in Fig. 4.7 and the noise floor is found to be at 2.9 × 10−14 m/

√
Hz. A relative

length change of (L2 − L1) = 2.9 × 10−14m results in a change of the current I of
δI = 2.97× 107 e/s, if the interferometer is locked to the steepest slope. This coin-
cides with the shotnoise fluctuations of the photodiode current of 70µA measured in
a bandwidth of 1 Hz, which is estimated with equation 4.53 to be σI = 2.96×107 e/s.
This analysis shows, that the performance of the interferometer is limited by shot-
noise in the photodetector.

4.2.2 Controlled excitation of the membrane amplitude

Acoustic waves are excited with a low voltage multistack piezo and coupled to the
support of the membrane oscillator in order to excite the membrane to a certain
amplitude. When the lattice laser is shined onto the membrane the eigenfrequency
jitters by several linewidths, as discussed in section 4.3.1 such that stable driving
with e.g. a signal generator is not possible. We achieve stable excitation to a set
amplitude with a feedback of the interferometer output onto the membrane via a
piezo mounted nearby, i.e. through self driving of the membrane in a feedback loop
with conrolled gain.

The feedback circuit is shown in Fig. 4.8. The AC output of the photodiode is phase
shifted with all-pass filters in order to provide a (frequency) dependent phase shift
with unity gain. As one allpass filter shifts the phase by less than 180

◦
in practical

implementations, two all-pass filter in series provide all phaseshifts required such
that the membrane can be driven resonantly out of the thermal motion. The ampli-
tude of the membrane oscillation is measured with a Lock-In amplifier8 at the AC
output of the photodiode which is also used to lock the local oscillator frequency
of the Lock-In. The amplitude of the membrane oscillation is controlled with an
integral regulator which acts on a voltage controlled amplifier (VCA). The VCA9

adjusts the amplitude of the signal that is fed back to the piezo. The integral regu-
lator takes the amplitude output of the Lock-In as actual value and compares it to
a set value which is adjusted manually or automatically from the computer control.
The integral regulator stabilizes the amplitude of the driving signal via the control

7Norcada, http://www.norcada.com
8SRS SR844
9AD602, Analog Devices
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voltage which acts onto the gain of the voltage controlled amplifier. The amplifica-
tion of the driving signal has a dynamic range from -10 dB to +30 dB.

Figure 4.8: Feedback loop for stable membrane excitation.

This home built driving circuitry allows to drive the membrane to any amplitude
ranging from the thermal motion up to several nanometers. Different eigenmodes
can be selected with the frequency dependent all-pass phase shifters. We use a me-
chanical relais to close and open the feedback loop.

4.2.3 Optical lattice setup

The atom chip setup described in chapter 3 is used as a source of ultracold atoms
which are loaded into a 1D optical lattice potential. The lasers providing the light for
the optical lattice are set up on another optical table in the laboratory. A freerun-
ning, grating stabilized master laser10 seeds a tapered amplifier11. The power of the
light beam is controlled with an acousto-optic modulator (AOM) which is supplied
from an AOM controller12 and allows to set frequency and power of the radiofre-
quency signal. A solid state switch allows to switch off the signal within less than
20ns. The light which is diffracted into the first order is coupled to a polarization
maintaining single mode optical fiber13, where both end facets are angle cleaved in
order to avoid perpendicular surfaces with respect to the beam path. In addition to
spatial mode cleaning, the fiber transfers the beam to the optical table where the
experiment is performed. The polarization of the light beam is cleaned after the
fiber with a λ/2 plate and a polarizing beam splitter. The laser beam is focussed

10DL pro L, Toptica Photonics, with LD-0780-0100-AR-1
11BoosTA, Toptica Photonics, with TA07800808
12AOM2100 MHz, Toni Scheich
13Thorlabs PM-780HP
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Figure 4.9: Schematic of the optical lattice.

into the atom chip vacuum chamber, and provides a power up to 160 mW.

We use a home built PI regulator for stabilization of the laser beam power. A 4 %
reflection is sidelined with a glass wedge which is mounted close to the atom chip
vacuum chamber. The power of this beam is measured with a photodiode14 in order
to determine the actual value. The PI regulator compares this with the set value
from the computer control and feeds a correction to the modulation input of the
AOM controller.

In principle, it would be nice if the bandwidth of the stabilization would exceed
the required trap frequencies. However, it is not easy to engineer a PI loop with a
bandwidth > 500 kHz with conventional analog components. As the laser is very
stable at frequencies > 10 kHz, we restrict the bandwidth of the stabilization to
12 kHz. The output power of the BoosTA varies up to 1 % for frequencies below
10 kHz. In addition, the stability of the laser beam power was improved by fil-
tering the current supply of the BoosTA with capacitors, yielding a total rms noise
of 2×10−4 of the full level, measured after the optical fiber at a level of P = 80 mW.

Every pickup and electronic noise which enters the feedback loop influences the
power of the light beam. Similar to the photodiode design it was crucial to build
the stabilization circuit and the photodiode into a massive aluminum box to reduce
high frequency pickup. As the beam power does not have to be varied quickly in
the experiments, the set value voltage from the computer control is filtered with

14BPW34
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Figure 4.10: Outcoupler of the lattice laser beam.

capacitors. Fast switching for e.g. time of flight measurements is performed with
the solid state switch of the AOM controller. Also the power amplifier in the AOM
controller is voltage supplied with an external, filtered voltage supply.

The incoming beam from the lattice laser is focussed into the atom vacuum cham-
ber such that the waist is approximately at the position of the MOT. In order to
overlap the incoming beam from the lattice laser with the mirror-MOT, we scan the
frequency of the laser beam across the atomic resonance. The MOT cloud is imaged
with a CCD camera15. If the laser beam is on resonance with the atomic transition
and hits the cloud, atoms are expelled out of the cloud. The signal is optimized such
that maximum overlap of the laser beam with the atom cloud is achieved. The beam
is collimated with a lens and focussed onto the membrane with a second lens with
f = 100 mm to a waist of w0 = 250 µm, and reflected at the membrane.The position
of the two lenses is adjusted such that the beam waist of the reflected beam matches
the beam waist of the incoming beam in the atom chip vacuum chamber. The length
of the optical path between the atom vacuum chamber and the membrane is 0.9m.

In the alignment process, incoming and outbound beam have to be overlapped and
should hit the center of the membrane. The first condition is taken into account by
coupling the reflected beam to the fiber and monitoring the transmitted power with
a photodiode PD, which is a similar procedure as described for the interferometer

15CCD Mini-Fingerkamera, Conrad
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alignment. For the second condition, one makes use of the observation that the fre-
quency of the brownian motion attains a minimum when the beam hits the center
and rises monotonously as the beam position is shifted towards the edges, which
is due to heating of the membrane by absorption of laser power and the resulting
thermal expansion. Both requirements can be fulfilled simultaneously by adjusting
the two steering mirrors16.

If the lattice and the readout laser beam are overlapped, the lattice beam saturates
the photodiode (PD) of the Michelson interferometer. The power of the lattice beam
is suppressed by making use of the linear polarizations of the readout and the lat-
tice laser beam which are perpendicular to each another. We use a λ/2 plate, a
λ/4 plate and a polarizing beamsplitter to separate the two beams, and achieve a
suppression of 3× 10−4. In addition, we use a dichroic beamsplitter17 which reflects
780nm and transmits 830nm. This beamsplitter attentuates the lattice laser power
on the photodiode by another 10−2, such that the total suppression is 3×10−6. This
leads to a DC offset of the dark photodiode level by ' 0.7 V .

16The aligned lattice laser beam is used to align the interferometer beam to the center of the
membrane in a further iteration.

17Laserline Dichroic Plate Beamsplitter 64-289, Edmund Optics
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4.3 Experimental results

In this chapter, I describe the experimental results achieved with the setup described
in the previous section. The main result of this chapter is observation of the interac-
tion of an atomic ensemble with a mechanical membrane oscillator. In section 4.3.3,
the membrane is driven to a well-defined amplitude, and excites the COM mode of
the atomic ensemble. In section 4.3.4, we observe backaction of the atoms onto the
membrane, which shows up as additional damping of the membrane motion. We
compare the measurements with the theoretical predictions of the model derived in
section 4.1.3, and find agreement between theory and experiment.

4.3.1 Characteristics of the SiN membrane

In our experiment we use quadratically shaped, low-stress SiN membranes18, with
dimensions (a, a, t) = (0.5 mm, 0.5 mm, 50nm).

Optical properties

Reflectivity The membrane is a thin dielectric slab with a refractive index of
nSiN = 2.2, surrounded by vacuum. A light beam impinges perpendicular onto
the membrane and is reflected at the first and second surface, as well as between
the two parallel surfaces. The intensity reflectivity is given [124] by

Ir = I0
F sin2 δ/2

1 + F sin2 δ/2
, (4.54)

with F = 4RI
(1−RI)2 , RI =

(
nvac−nSiN
nvac+nSiN

)2

and the geometric phase difference δ =

2π∆s/λ, which arises from the optical path difference ∆s = 2tnSiN .

Hence, for SiN membranes with a thickness of t = 50nm, on expects an amplitude
reflectivity of R = 0.56 for λ = 780nm. The intensity reflectivity of the membrane is
measured with a power meter to be Ir/I0 = 0.24, which corresponds to an amplitude
reflectivity |R| = 0.49. Losses in the optical path reduce the power of the reflected
beam further by a transmission |T | < 1, and the power of the reflected beam at the
position of the atoms is reduced by a factor |R|2|T |4 = 0.176.

18purchased from www.norcada.com
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Absorption Since the absorption of a SiN membrane is small, it can not be mea-
sured precisely with a power meter. One possibility to determine the absorption is to
integrate the membrane into a cavity, orient the surface perpendicular to the cavity
mode and displace the membrane along the axial direction. Since the membrane
thickness t is small compared to λ, this effectively modulates the cavity finesse and
allows to infer a value for the absorption. In [58], the absorption of low-stress SiN
membranes similar to the ones employed in our experiment is investigated, and the
absorption of laser light at λ = 1064nm in a membrane with t = 50nm was found
to be =(nSiN) = 1.6× 10−4. In [67], the absorption of high-stress SiN membranes is
found to be =(nSiN) . 10−5 for laser light at λ = 935nm.

The absorption of a SiN membrane is in particular important for experiments, where
the membrane is kept in a cryogenic environment, as proposed in [38, 39]. The ther-
mal conductivity of low-stress silicon nitride membranes was studied experimentally
in [121], and is decreased by a factor of 50 at 1 K in comparison to room temper-
ature. In our room temperature experiment, the membrane temperature is not a
critical parameter19, as our focus is to observe a change in the damping rate.

Mechanical properties

The description of the mechanical eigenmodes of a membrane oscillator was reviewed
in section 2.1.1. This section gives a characterization of the mechanical properties
of the SiN membrane used in our experiment.

Eigenfrequencies The eigenfrequency of the membrane is measured with the Michel-
son interferometer as described in section 4.2.1. When we increase the power of the
lattice laser beam which impinges on the membrane center, we observe a decrease
of the mechanical eigenfrequency.

Fig. 4.11 shows the decrease of the eigenfrequency of the fundamental out of plane
mode with increasing lattice laser power P . We attribute the decrease of the eigen-
frequency to a relaxation of the tensile stress in the membrane. Most likely, the
origin is that the lattice laser beam is partially absorbed in the membrane, and thus
leads to an increase of the temperature in the membrane center. This leads to ther-
mal expansion of the membrane, and to a reduction of the tensile stress. We adapt
[125] equation 2.15 in order to model the reduction of the membrane eigenfrequency,
and assume20 a heating of the membrane by ∆T = 30K for an impinging power of
P = 100 mW, based on an absorption of 1.5× 10−4. From the equation

19... as long as the temperature increase does not alter the mechanical properties substantially.
From a FEM simulation with typical parameters, one expects an increase of the membrane
temperature by several tens of Kelvin.

20...from a FEM simulation by Philipp Treutlein.
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Figure 4.11: The eigenfrequency of the fundamental out of plane mode decreases
with increasing lattice laser power. This effect can be caused by heating of the
membrane due to absorption of laser light, which yields a relaxation of the tensile
stress of the SiN membrane. Comparison with a simple model for the thermal
expansion shows, that the eigenfrequency drops more than expected from this model
This might be due to higher optical absorption at a laser wavelength λ = 780nm,
in comparison to λ = 1064nm.

ω11 = 2π × 1

a

√
S(1− αE∆T )

2ρ
, (4.55)

we calculate the expected shift of the eigenfrequency with the Young’s Modulus for
SiN E = 250× 109 N/m2, the density ρ = 3440 kg/m3, and the thermal expansion
coefficient α = 2.6× 10−6 K−1.

The result of this calculation is shown as a line in Fig. 4.11. Comparison with the
measurement shows, that the absorption seems to be larger than estimated from
the model described above. This indicates, that the absorption at λ = 780nm is
in particular increased with respect to the value reported in [58] for a wavelength
λ = 1064nm.
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In order to measure the frequencies of the higher order eigenmodes for various power
levels of the lattice laser, we set the power to a constant value. We monitor the time-
trace of the AC out of the interferometer (see section 4.2.3 for details), and perform
an FFT of the time trace. The thermal motion of each eigenmode shows up as a
peak in the spectrum as shown for the fundamental mode in section 4.2.1 in Fig. 4.7.
The noise is reduced with averaging, and this allows one to resolve the frequencies
of eigenmodes up to 1 MHz.

Figure 4.12: Fundamental and higher order mode eigenfrequencies of the SiN
membrane. The eigenfrequencies decrease common mode with increasing lattice
laser power. The mode indices are indicated in white.

Fig. 4.12 shows the measured eigenfrequencies versus the power of the lattice
laser. The lowest line represents the fundamental mode which has a frequency of
ω11/2π = 273 kHz when the lattice laser is switched off. With equation 2.15, we
determine the value of the tensile stress to be S = 128 MPa, which is close to the
value of S = 120 MPa, reported in [58] for a similar membrane with dimensions
(a, a, t) = (1 mm, 1 mm, 50nm). Starting from the value determined for S, one finds
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an agreement between the expected and measured eigenfrequencies of the higher
order modes on the percent level. We identify the modes with the following mode
indices: (1,1), (1,2), (2,2), (1,3), (3,1), (2,3), (1,4), (3,3), (2,4), (1,5), (5,1), (5,2).

Mechanical quality factor Q The fluctuation of the laser power (for the details of
the power stability of the laser, see section 4.2.3) leads to a jitter of the fundamental
mode eigenfrequency ω11 by several linewidths. This, and the expected [58] small
linewidth suggest to measure the mechanical quality factor of the fundamental mode
in a ringdown measurement from the 1/e decay time τ . In order to achieve a stable
initial amplitude, the output of the interferometer is fed back onto the membrane
motion via a piezo mounted nearby, as described in section 4.2.2. The mechanical
quality factor, measured in the room temperature setup is shown in Fig. 4.13 (top),
and found to change with the power of the lattice laser beam.

Figure 4.13: (top) Mechanical quality factor of the fundamental mode of the SiN
membrane. The pattern is very reproducible, and depends on the actual membrane
eigenfrequency ωm. (bottom) The associated mechanical damping rate γm. For the
backaction measurements in section 4.3.4, we choose positions where both the me-
chanical damping and the slope are small in order to achieve comparable conditions.

The behaviour shown in Fig. 4.13 is reproducible, and does not depend on the
power, but on the actual frequency of the membrane. The laser power is a handle
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that allows us to tune the membrane frequency. If we perform the measurement
with a different spot size on the membrane, a different dependence of the membrane
frequency on the laser power results, but the dependence of the quality factor Q on
the membrane frequency is the same. Such a behaviour might arise from coupling of
mechanical modes of the membrane to mechanical modes of the support. In [126],
the impact of mechanical support modes onto the mechanical quality factor of SiN
membranes is studied, and it turns out that the Q-factor for higher harmonics does
not decrease monotonically as it would be expected from elastic radiation of energy
from the oscillator into the support. The behaviour of the quality factor that we
observed might have a similar explanation, and is subject of further research in our
group.

4.3.2 Properties of atoms in the optical lattice

The optical lattice is set up as described in section 4.2.3. The linearly polarized
1D optical lattice potential is provided from a grating stabilized diode laser which
injects a tapered amplifier. The laser frequency is detuned by ∆ = −2π× 20.8 GHz
from the D2 line of 87Rb, and the power P is actively stabilized with a PI regulator
in a bandwidth of 12 kHz to compensate for slow drifts; this yields an overall rms
noise of 2× 10−4. The laser beam with a power ranging from of P = 0..137 mW is
sent through the MOT chamber and is partially reflected at the surface of the SiN
membrane. The incoming and reflected gaussian beam are overlapped and form an
optical lattice with a waist of w0 = (280± 30) µm at the position of the atoms.

The reflected laser beam at the position of the optical lattice is weaker than the
incoming beam due to the finite reflectivity of the membrane and losses in the
optical path by |R|2|T |4 = 0.18. This leads to a not fully modulated lattice poten-
tial. At a typical power P = 63.6 mW, the lattice potential has a total depth21 of
Vlatt ≈ 250 µK, if we assume that the beamwaists of the two beams are the same.

We use a mirror-MOT to load the 1D optical lattice potential. The MOT has a
magnetic field gradient of 15 Gauss/cm along the optical lattice and a the circular
polarized MOT beams are detuned by ∆ = −2.2Γse from the D2 line. We image
the MOT after a short time-of-flight tTOF = 0.5 ms with an off-resonantly detuned
absorption imaging beam22, and extract a cloud radius of σ = 190 µm from a
gaussian fit. We assume the density distribution to be symmetric with a density
profile given by

21calculated, Isat = 16.7 W/m2 for π-polarized light on the D2-line
22...in order to avoid saturation of the optical density.
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n(r) =
N

(2π)3/2σ3
e
− 1

2

(
x2

σ2 + y2

σ2 + z2

σ2

)
, (4.56)

and calculate the atomic peak density in the MOT

np =
N

(2π)3/2σ3
. (4.57)

The cooled ensemble, without the lattice being turned on, has a peak density of
n = 2.5 × 1011 cm−3, N = 2.7 × 107 atoms and a temperature of TMOT ≈ 190 µK,
after a MOT loading time of 6 s.

The optical lattice is loaded by spatial overlapping with the MOT. The lifetimes of
the lattice after switching off the MOT are rather short with 24 ms, which might
be due to light assisted collisions in our relatively near-resonant lattice, which could
be enhanced in a 3D optical lattice, see section 2.2.2. Typical atom numbers in the
optical lattice are N = 0.6..1.5× 106 for a lattice with a beamwaist of 280 µm, and
scale with w2

0 for same lattice modulation depths.

In the loading process, we observe a decrease of the temperature by ∆TMOT = 30 µK,
and a decrease of the MOT atom number by roughly a factor of 2. The temperature
decrease could be due to level shifts introduced by the lattice potential, which might
change the effective detuning of the MOT light to larger values. The decrease of the
atom number could be due to a competition of the photon scattering rate (equation
2.43) Γsc ≈ 10× 103 s−1 of the optical lattice23 with the MOT scattering rate. The
total scattering rate of the MOT can be estimated by ignoring possible contributions
of the magnetic field, and assuming that the atoms do not remain localized in the
standing wave potential created by the MOT beams. In average, the atoms are
exposed to light of all polarizations. In this case, the scattering rate24 is given by
[83]

Γsc,MOT =
Γse

2

(
I/Isat

1 + 4(∆/Γse)2 + I/Isat

)
. (4.58)

With a total power of PMOT = 14 mW and an average MOT beam waist w0 = 5 mm,
we calculate Γsc,MOT ≈ 6.3× 106 s−1.

23calculated
24calculated, Isat = 35.76 W/m2 for isotropic light polarization
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4.3.3 Effect of the membrane onto trapped atoms

In a first expriment, we study the effect of the oscillating membrane onto an atomic
ensemble trapped in the optical lattice. In order to load atoms to the lattice, the
MOT and the lattice are overlapped spatially. In this configuration, absorption
imaging of the atomic cloud after a short holding time is not straight forward, since
not only atoms in, or released from the optical lattice potential are imaged, but also
residual MOT atoms which spoil the absorption images. Due to the short life time
of the lattice without the MOT, it is not possible to hold the atoms until the residual
MOT have dropped away.

In order to image the atomic ensemble released from the optical lattice after a short
time-of-flight (TOF), the repump laser is switched off during the last 1.5 ms of the
MOT phase, while the MOT beams remain switched on and transfer MOT and
lattice atoms into the state F = 1. The lattice beams act as repumper only for
the atoms in the lattice volume, which are partially pumped back to the F = 2
state. For imaging, we use the cycling transition, such that only atoms which are
initially in the F = 2 state are imaged. However, in steady state both F = 1 and
F = 2 states are populated at a ratio given by the slow repumping rate of the lattice
laser. The ratio is determined by imaging after a long hold time, when the residual
MOT atoms have dropped away, with the repumper being switched on. Taking this
correction factor into account, the described procedure allows imaging of the atoms
trapped in the lattice already after relatively short TOFs tTOF = 0.5 ms.

In the experiment, the membrane is continuously driven at a fixed amplitude of
d = 325 pm during the whole experimental cycle. The atomic ensemble is hold for
th = 5 ms, after the MOT is switched off, before it is released into the TOF by
switching off the lattice within 20ns. The temperature of the atomic ensemble is
determined from TOF measurements of the width of the atomic ensemble for the
case when the membrane is driven to d = 325 pm, and compared to the undriven
case with a thermal amplitude of d = 12 pm.

In order to resolve the effect spectrally, the trap frequency is varied by scanning the
lattice laser power P . From these measurements we observe an increase of the tem-
perature of the atomic ensemble along the optical lattice as shown in Fig. 4.14. The
axial and radial temperatures are respectively normalized to reference measurements
without membrane driving, and the ordinate shows the increase of the temperature
due to the membrane oscillation.

The frequency axis is calculated with equations 2.41 and 2.45 from the lattice
parameters. We use the measured detuning ∆ = −2π × 20.8 GHz, the waist
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Figure 4.14: Spectroscopy of atoms trapped in the lattice. The temperature of
the ensemble is normalized to the temperatures without driving of the membrane in
order to take out systematic heating effects due to e.g. photon scattering. Resonant
driving affects the temperature along the lattice direction, whereas the temperature
along the radial direction remains nearly unchanged. At the center of the resonance,
the membrane oscillates at a frequency of ωm = 2π×240 kHz, and the peak appears
at higher trap frequencies than expected. The FWHM of the resonance is 2π×50 kHz



80 Optomechanical coupling via an optical lattice

w0 = 280 µm, and the total amplitude reflectivity25 of |R||T |2 = 0.42. For the
power P = 63.6 mW at the position of the peak, we calculate the axial trap
frequency ωax = 2π × 283 kHz.This is, however in contrast to the expectations
from the experimental situation, since the membrane oscillates with a frequency of
ωm = 2π × 240 kHz when the power of P = 63.6 mW is impinging. Therefore, one
would expect the peak of the resonance to be around ωax = 2π × 240 kHz.

This discrepancy is within the errorbars of the values which enter into the calcula-
tion. Already the uncertainty of the beamwaist w0 = (280 ± 30) µm gives rise to
an error of 10 percent. Also the assumption, that the beamwaists of the incoming
and reflected beam are the same is not true. An analysis of the reflected beam with
a beam profiler reveals, that the transverse beam profile is strongly distorted and
shows a double peak structure26. The uncertainty of the beam waist of the reflected
beam is more like w0 = (280±100) µm. Already this would explain the discrepancy
of measured and calculated trap frequency.

In the following, we discuss two other sources which give rise to a systematic shift.
First, the atoms do not oscillate in a harmonic, but in a cos2 shaped potential. The
anharmonicity of the potential shifts the effective oscillation frequency of an atom
towards a smaller frequency. In addition, the resonance is distorted by the shift
of the membrane frequency with laser power. Second, the trap frequency varies
spatially in the lattice volume with the intensity, which changes due to the gaussian
beam profile in the radial direction, and due to the divergence of the gaussian beam
in the axial direction.

Shift of the trap frequency due to anharmonicities The trapping potential is
harmonic only to first order, and for large excursions of an atom in the trap, the
anharmonicity of the cos2 potential increases the oscillation period. This yields an
effective oscillation frequency of an atom, which is smaller than the trap frequency
calculated for a harmonic potential with equation 2.45. We perform a simulation of
the classical trajectory of an atom in the cos2 shaped potential. For the amplitude
of the oscillation, we calculate the axial radius of the thermal ensemble, which has
a temperature of T = 80 µK at the peak position, if the membrane is not driven27.
We assume that the axial oscillation amplitude is equal to the thermal radius, multi-
plied by the square root of the temperature increase that we observe in Fig. 4.14 in
the situation, where the membrane is driven. This analysis shows that the effective
oscillation frequency of an atom can be shifted by a factor of 0.92 with respect to

25...also taking losses in the optical path between atoms and membrane into account.
26Private message from Maria Korppi
27The temperature of the trapped ensemble is smaller than the temperature of the MOT due to

thermal evaporation
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the trap frequency calculated with equation 2.45. For example, the trap frequency
at the peak position is reduced from ωat = 2π× 283 kHz to ωat = 2π× 260 kHz due
to the anharmonicity. This shows, that anharmonicity can have a significant impact
onto the position of the resonance.

Shift of the membrane oscillation frequency with laser power Another effect
which has to be taken into account is the dependence of the membrane eigenfre-
quency on the lattice laser power which is discussed in section 4.3.1. The membrane
eigenfrequency is shifted, when the trap frequency is scanned by variation of the
lattice laser power. This shift is directed in the opposite direction compared to the
change of the trap frequency. For example, if the lattice laser power is increased,
the membrane eigenfrequency drops. Hence, the resonance appears to be too narrow.

We calculate the anharmonic frequency shift for each data point of the data shown
in Fig. 4.14. Fig. 4.15 shows the same data, plotted over the effective oscillation
frequency of an atom which is extracted from the model discussed above. The peak
of the resonance is shifted towards lower frequencies.

Classical model for the spread of detunings In this paragraph, we develop a
classical model based on the spread of oscillation frequencies in the gaussian lattice
geometry.

• The transverse spread of detunings arises from the transversally shaped gaus-
sian beam profile. We simulate the response of an atom in a cos2 shaped
trapping potential to a modulation of the trap minimum position. Such re-
sponse functions for different ωax are weighted according to the number of
atoms which actually oscillate at the respective trap frequency, which is nu-
merically determined from the thermal distribution in the transverse lattice
potential. The model reproduces the width of the resonance as shown in Fig.
4.15.

• The axial spread of detunings arises from the axially decreasing maximum
intensity of individual lattice sites from the waist position along the optical
lattice. The waist of w0 = 280 µm implies a Rayleigh range of zray = πw2

0/λ =
0.32m, which renders the axial spread of detunings negligible: the highest trap
frequency of an individual site drops by ∆ω = 2π × 0.35 kHz at the radius
σ = 190 µm of the MOT used for loading.

In conclusion, the discrepancy between measured and calculated trap frequencies
can be explained with uncertainties of the beamwaists of incoming and reflected
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Figure 4.15: In comparison to Fig. 4.14, the abscissa shows the effective oscillation
frequency of a trapped atom in a cos2 shaped potential at an amplitude correspond-
ing to the thermal radius of the ensemble. The anharmonicity of the potential
shifts the effective oscillation frequency of an atom towards a smaller frequency.
The resonance (black) is expected to coincide with the membrane eigenfrequency
ωm = 2π × 240 kHz. The prediction (line) from of a classical model based on the
transverse spread of trap frequencies shows that this effect could explain the shape
of the resonance. The amplitude and the frequency offset of the predicted line are
fitted to the data.
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beams. Anharmonicities and spread of detunings yield a shift into the right direction;
however, these shifts are too small to be considered as an exclusive explanation.

4.3.4 Backaction of the atoms onto the membrane

In this section, we investigate the backaction of the atoms onto the membrane which
shows up as an additional damping rate in equation 4.42, which is derived in the
theory section 4.1.3. Due to the sub-hertz linewidth, we determine the quality factor
Q from amplitude ringdown measurements, where the 1/e decay time of the ampli-
tude is measured.

In principle, the interaction of the membrane with the atomic ensemble would be
limited by the lifetime of the atomic ensemble in the optical lattice to several tens of
milliseconds28 To realize an interaction on a longer time scale, the MOT is perma-
nently replenishing the optical lattice during the ringdown measurement such that
a constant number of atoms is trapped in the optical lattice.

A typical measurement sequence is as follows. The optical lattice is permanently
loaded during the experimental cycle with atoms from the overlapping MOT which
runs in steady state. The membrane is driven to a fixed amplitude of d = 540 pm
with a feedback of the interferometer output onto a piezo as described in section
4.2.2. When the feedback loop is opened, the membrane amplitude decays exponen-
tially, and is monitored on the scope.

As discussed in section 4.3.1, the quality factor, and therefore the ringdown time
constants depend on the actual frequency of the membrane. In particular, decay
times of ringdowns which are taken at a membrane frequency where the derivative
dγm/dωm is large (see Fig. 4.13 (bottom)), show a significant scatter in subsequent
experiments. Also ringdowns taken at membrane frequencies ωm where γm is large
show a significant scatter of the decay times. In order to ensure comparable mea-
surement conditions in subsequent measurements, measurements are only taken at
points, where γm is small.

We perform alternating experiments with and without atoms in the lattice29, and
determine the respective amplitude decay rates Γ and γm/2 from an exponential fit
to averaged measurements. This allows us to determine the change of the decay rate
due to the presence of the atoms ∆γ. The statistical errors are determined from the
analysis of subsets of the collected data.

28Possible reasons for this short lifetime are light assisted collisions, which could be suppressed in
3D optical lattices, see section 2.2.2.

29The presence of atoms is controlled by detuning the frequency of the MOT lasers.
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We perform two different experiments. First, we scan the trap frequency as in the
previous section in order to resolve the coupling spectrally. In a second experiment,
we prepare the atoms at a fixed trap frequency and vary the atom number. This
measurement allows us to make a comparison with theoretical predications.

Resonance of the backaction

Similar as in the experiment described in section 4.3.3, we vary the power P of the
lattice laser beam in order to resolve the strength of the backaction spectrally. For
each power level we take 455 ringdown measurements, and alternate measurements
with and without atoms in the optical lattice. The raw data is respectively aver-
aged, and we extract the ringdown time constants from an exponential fit which
allows us to determine the additional membrane damping ∆γ. This procedure is
only valid as long as there are no significant drifts, what is checked by evaluating
the Allan variance of the data sets. Since the signal is not too far above the noise
level, it is important that the drift of the power of the lattice laser and the readout
sensitivity is minimized. The details of the stabilization of the lattice laser power
and the interferometer are discussed in section 4.2.

The result is shown in Fig. 4.16. The frequency axis is calculated from the analytical
formula, i.e. without taking anharmonicities into account. We observe a broad
resonance, which seems to consist of two peaks. The double peak structure could
possibly arise from the distorted beam profile of the reflected beam. The resonance
(red) seems to be centered around f0 ≈ 280 kHz in Fig. 4.16, and is shifted by 40 kHz
in comparison with the result from the previous section (blue). If one considers only
the peak at f0 ≈ 280 kHz, the width seems to be similar to that (blue) resonance.

Backaction vs. atom number

In order to compare the coupling mechanism more quantitatively to theoretical pre-
dictions, the atomic ensemble is prepared at the maximum of the backaction. The
atom number is controlled by varying the repump laser power or detuning, and
measured as described in section 4.3.3. Fig. 4.17 shows the measured decay of the
energy ∆γ. We observe a linear scaling of ∆γ with the atom number N , as expected
from the theory.

The theory predicts, that the additional (energy) damping ∆γ due to the atoms
scales with the atom number N as (see equation 4.41),

∆γ =
ω2
at|R|2|T |2Nm

γatM
. (4.59)
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Figure 4.16: (top) Spectrum of the backaction of the atoms onto the mechanical
oscillator. The abscissa shows the detuning from the peak position of the data
analyzed in Fig. 4.14 (blue). The resonance of the backaction is shifted to higher
frequencies. Further, the resonance is significantly broader than expected from Fig.
4.15, and shows a reproducible double peak structure. The double peak structure
might arise from a transversally distorted trapping potential, which might arise from
a distorted beam profile of the reflected beam, which was observed under a certain
alignment of the lattice configuration. (bottom) Atom number during the coupling
experiment.

We extract the dissipation rate of the atoms γat from the width of the backaction
resonance (red) shown in Fig. 4.16. For an estimate, we take a value of 2π× 50 kHz
for the FWHM, read off for the peak centered around 280 kHz. We calculate ∆γ
according to equation 4.59 for the mass m of an 87Rb atom, the effective membrane
mass M = 1.1× 10−8 g, and the reduction of the coupling constant g due to optical
losses |R|2|T |2 = 0.21. For γat = 2π × 50 kHz and N = 1.5× 106 atoms, the theory
predicts ∆γ = 0.0142 s−1. The interpolation of the measured value ∆γ = 0.0115 s−1

at this atom number agrees very well with this theoretical prediction.
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Figure 4.17: Additional membrane damping ∆γ due to the coupling to the atomic
ensemble. The straight line is a linear fit.

The uncertainties in this equation arise mainly from the atom number and γat. More-
over, due to the width of the resonance in Fig. 4.16, and its double peak structure,
it is uncertain how many atoms actually contribute to the coupling. In principle,
the atom number can be determined precisely by absorption imaging. In our case,
we are limited by the short trap lifetimes of τtrap ≈ 24 ms, which makes it impossible
to take the absorption image after the residual MOT atoms have dropped due to
gravity. For short TOFs, the results for the atom number are influenced by the
background, which is generated by MOT atoms which are not residing in the dark
state F = 1. However, our imaging method as described in section 4.3.3 allows to
make a relative comparison of the trapped atom number in subsequent shots of the
experiment, such that we can observe the linear scaling in Fig. 4.17.

In conclusion, we demonstrated the backaction of an atomic ensemble onto a mem-
brane oscillator for the first time. The results agree nicely with the expected linear
scaling of the backaction with the atom number, and the magnitude of the measured
backaction coincides with the theoretical expectations. The absolute strength differs
by a factor 1/4 from the theoretically expected value, which may be explained from
large uncertainties in the determination of the absolute atom number and the width
of the backaction resonance, which shows a reproducible double peak structure.



5 Coupling to the collective spin of a
BEC

In the experiments described in chapters 3 and 4, the motion of the mechanical
oscillator is coupled to the center of mass motion of ultracold atoms. Coupling to
the collective spin of a Bose-Einstein condensate (BEC) bears the advantage that
the coupling strength is no longer limited by the square root of the mass ratio.
Moreover, the atomic spin typically has a significantly higher coherence time [26] in
comparison to the center of mass (COM) motion which couples to other modes in
the anharmonic trapping potential.

In the following, I review the coupling mechanism and give details of a possible ex-
perimental implementation. With optimistic parameters the strong coupling regime
seems to be within reach. These results are published in [31]. Moreover, I will report
on the status of a fabrication process which was developed in order to realize the
envisaged structure. Finally, I propose a simplified method to fabricate nano-sized
mechanical oscillators which are functionalized at their tip with a single-domain
magnet.

The fabrication was carried out in the cleanroom facilities of the nanophysics group
of Prof. Kotthaus at the LMU München. Without his generous allowance, to access
the very well equipped cleanroom, the experimental results presented in this chapter
would not have been possible.

5.1 Coupling scheme

A mechanical oscillator with an out-of-plane fundamental mode is functionalized
with a single domain cuboid shaped magnet which creates a magnetic field, and an
associated field gradient Gm. The physical situation is illustrated in Fig. 5.1. The
fundamental mode oscillations a(t) = a cos(ωrt+φ) are transduced into an oscillating
magnetic field Br(t) = Gma(t)ex at a distance y0, y0 � a(t). 87Rb atoms are
trapped in a Ioffe-Pritchard type magnetic trapping potential at a distance y0 ≈ 1µm
above the cantilever in spin states |F,mF 〉 = |2, 2〉 or |F,mF 〉 = |1,−1〉. The
energy splitting between neighbouring mF levels is given by the Larmor frequency
ωL = µB|gF |B0/~. Br is perpendicular to the static field B0 = B0ez in the magnetic
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Figure 5.1: BEC-mechanical oscillator coupling mechanism. (a) Atom chip with a
BEC of 87Rb atoms (red: BEC wave function) at a distance y0 from the mechanical
oscillator. The freestanding structure (dark blue) is supported at one end and
performs out-of-plane mechanical oscillations a(t). A single-domain ferromagnet
(purple) on the oscillators’ tip creates a magnetic field with oscillatory component
Br(t) which couples to the atomic spin F. (b) Hyperfine structure of 87Rb in the
magnetic field B0. Transitions between the hyperfine levels |F,mF 〉 are driven (blue
or green arrows, depending on the experimental situation) if the Larmor frequency
ωL is tuned to the oscillation frequency of the mechanical oscillator. Magnetically
trappable states are indicated with red colour.

trap. The interaction of the atomic spin F and the mechanical oscillator is given by
the Zeeman Hamiltonian

HZ = −µ ·Br(t) = µBgFFxGma(t) (5.1)

where µ = −µBgFF is the operator of the atomic magnetic moment.

The Larmor frequency can be tuned in the MHz range by adjusting the static mag-
netic field in the trap center. Resonant coupling can be switched on and off by
controlling the detuning δ = ωr − ωL. In the case of resonant coupling (δ = 0),
the mechanical oscillators’ motion drives spin flips to untrapped internal states
|F,mF 〉 = |2, 0〉 or |F,mF 〉 = |1, 0〉, with an associated continuum of motional
states. The coupling shows up as an additional loss rate Γr of trapped atoms.

The situation is analoguous to a continuous wave atom laser, where a radio frequency
field couples trapped atoms via spin flip transitions to a continuum of untrapped
motional states. Fig. 5.2 shows the harmonic trapping potential for a BEC in the
Thomas-Fermi (TF) limit. The parabola shaped deformation of the energy of un-
trapped motional states is due to the repulsive potential generated by the mean
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Figure 5.2: The action of the mechanical oscillator onto the atoms is similar to an
atom laser. In our case, spin flips of trapped atoms to untrapped motional states
are driven from an oscillating magnetic field which is due to the oscillator motion.
The transition is broadened by the chemical potential µc.

field of trapped atoms and reflects their density distribution. Hence, the transition
is broadenend by the chemical potential µc.

To derive Γr, one follows the description of an atom laser given in [127]. The
approach given there includes atomic interactions and neglects gravity. This is
justified due to the high trap frequencies of approximately 10 kHz. A trapped
BEC in state |F,mF 〉 = |1,−1〉 in the TF regime is coupled to untrapped states
|F,mF 〉 = |1, 0〉 with Rabi frequency ΩR = µBGma/

√
8~. For typical parameters

and ~ΩR � µc, only a fraction ' ~ΩR/µc is coupled out of the BEC with a rate

Γr =
15π

8

~Ω2
R

µc

(rc − r3
c ), (5.2)

with rc =
√

~δ/µc. Only a fraction ~ΩR/µc of the trapped atoms on the ellipsoidal
shell with main axes ri = rcRTF,i fulfills δ = 0, and is coupled to the continuum of
untrapped motional states.
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5.2 Design for achieving a strong coupling

In this chapter we discuss how to implement the coupling scheme, and give design
guidelines for the experimental realization. The goal is to read out the thermal mo-
tion of a mechanical oscillator in a room temperature environment.

The Rabi frequency ΩR = µBGma/
√

8~ scales linearly with the amplitude a of the
mechanical oscillation and with the gradient Gm of the magnetic field at the position
of the trapped atoms; to achieve a strong coupling, the thermal amplitude xrms and
Gm have to be maximized.

5.2.1 Large thermal amplitude xrms

The amplitude xrms of the thermal motion of a mechanical oscillator is

xrms =

√
kBT

meffω2
r

(5.3)

To obtain a large amplitude it is favourable to minimize the product meffω
2
r . The

mechanical frequency is also subject to another condition: it has to be matched to
the Larmor frequency of the trapped atoms in order to enable resonant coupling,
and should therefore be in the MHz range. The fundamental mode eigenfrequency
of a mechanical oscillator clamped at one side to the support is given by

ωr ≈ 2π × 0.16

√
E

ρ(1 + c)

t

l2
(5.4)

with Young’s Modulus E, density ρ, length l, width w and thickness t. c =
m/0.24ρlwt accounts for an additional mass at the tip of the mechanical oscilla-
tor. To minimize the product meffω

2
r , the mass and therefore the dimensions of the

mechanical oscillator should be as small as possible. As the frequency scales with
t/l2, it is favourable to increase the length l and reduce width w and thickness t to
achieve a small effective mass meff at fixed ωr.

Mechanical oscillators out of silicon can be fabricated with typical dimensions of
a few hundred nm to several micrometers. Experimentally, we found that such
mechanical oscillators with dimensions (l, w, t) = 7.5 µm×250nm×100nm can be
reproducibly fabricated. Fig. 5.3 shows an array of single side clamped mechanical
oscillators.
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Figure 5.3: Single side clamped mechanical oscillators. (left) Single side clamped
mechanical oscillators can be reproducibly fabricated up to a length of 7.5 µm. The
eigenfrequency of such oscillators can be matched with the Larmor frequency of
trapped atoms. (right) A gold mirror at the tip of the mechanical oscillator allows
to readout the mechanical motion interferometrically.

5.2.2 Large magnetic field gradient Gm

In order to generate the magnetic field (gradient), the tip of the mechanical oscilla-
tor is functionalized with a permanent magnet. To optimize Γr, the magnet should
have a small mass and exhibit a strong magnetic field gradient. The magnetic prop-
erties of the magnet should not be affected during the coupling experiment, when
the magnet is exposed to the magnetic fields which provide the magnetic trapping
potential for the atoms. Furthermore, it should be possible to define the shape of
the magnet lithographically and to deposit the material with a standard deposition
process.

If the size of a magnetic structure is of the order of several magnetic domains, the
shape determines the pattern of the domain structure, and a configuration of mini-
mal potential energy is favourable. Reducing the size of the magnetic structure can
further lead to the formation of single domain magnets which consist of a single
magnetic domain. Choosing an appropriate shape allows to determine the direction
of the magnetization. A favourable geometry is a cuboid where the long axis ex-
ceeds the dimension of the cross-sections. The magnetization is then aligned along
the long axis. The field that needs to be applied to reverse the magnetization is
called switching field. Fig. 5.4 shows a comparison of the hysteresis loops of a single
domain magnet [128] and a macroscopic ferromagnet [129] which consists of a large
number of domains.

Single domain magnets have a high remanent magnetization because all elementary
magnets are part of the same magnetic domain, and this is the optimal configuration
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Figure 5.4: (left) Hysteresis loop of a macroscopic ferromagnet [129] and recon-
struction of the hysteresis loop of a single domain magnet [128] (right).

to realize both a small mass of the magnet and a strong magnetic field gradient. In
comparison to other magnetic materials like e.g. nickel, the switching field of a cobalt
single domain magnet exceeds 500 Gauss [130] for magnet lengths lm > 1 µm. This
is larger than the typical magnetic fields of 100 Gauss which are used for magnetic
trapping. Simulation of the magnetic gradient field provided by a bar shaped cuboid
[131] shows that the maximum of the magnetic field gradient is at the distance y0 if
lm = y0. As the atoms can be trapped at a distance y0 ≈ 1 µm from the magnet, we
choose lm = 1.2 µm. We measured a switching field of 200 Gauss [132] for a single
domain magnet with dimensions (lm, wm, hm) = (1.1 µm, 225nm, 70nm).

5.2.3 Distortion of the magnetic trap

The field gradient of a magnetic dipole is given by Gm = 3µ0|µm|/4πy4
0 in the ge-

ometry of Fig. 5.1. The gradient depends linearly on the magnetic moment µm, and
for a given distance y0, the equation suggests that Γr can be increased by simply
increasing the magnetic moment µm. However, this is not possible, as the trapping
potential for the atoms is strongly distorted by this additional magnetic field gradi-
ent.

To reduce the impact on the magnetic trapping potential, the magnet on the me-
chanical oscillator can be enclosed with two bar magnets of same cross section at
both ends. The magnetization of the three magnets is aligned parallel. The two
long magnets guide the magnetic field of the center magnet which is sitting on the
mechanical oscillator away such that the static magnetic field gradient at the po-
sition of the trapping potential is effectively reduced. However, the dynamic field
gradient which mediates the coupling is not affected.

Fig. 5.5 (a) shows the magnetic stray field of a single domain magnet and how
this is modified, when two enclosing magnets are added. The BEC is trapped at a
distance y0. Along a line (red dashed line in Fig. 5.5 (c)) at distance y0 parallel to
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Figure 5.5: (a) Magnetic stray field of a single domain magnet. (b) Two magnets
enclosing a single domain magnet reduce the magnetic field gradient along the red
dashed line.

the long axis of the magnets, the gradient of the magnetic field component ∂Bx/∂y
is evaluated. This is the relevant component for coupling to the spin of trapped
atoms. The enclosing magnets change the magnetic field distribution, and hence
the gradient. Fig. 5.6 shows the magnetic field gradient calculated [131] along the
red dashed line in Fig. 5.5 (b). The blue line shows the magnetic field gradient
without enclosing magnets. For the red and green line, enclosing magnets of 9 µm
length and same cross section as the center magnet are added, with a gap between
the center magnet and enclosing magnets of d = 200nm (red line) and d = 50nm
(green line). This shows, that the gradient can be reduced considerably by varying
the gap d between the center magnet and the two enclosing magnets.

5.2.4 Trapping of atoms

In chapter 3, the trapping of ultracold atoms and Bose-Einstein condensation on an
atom chip is described. Instead of the AFM cantilever chip used in that experiment,
an additional chip which contains the mechanical and magnetic structures as dis-
cussed in the previous sections (Mechanical oscillator chip, Mo chip) is fabricated
in order to be glued on top of the atom chip package. MOT and molasses cooling,
as well as loading to a first magnetic trap on the chip and transport in the waveg-
uide can be realized in the same way. After the transport to the Mo chip the atom
cloud can be loaded to a Ioffe-Pritchard trap which is created with wires close to
the mechanical oscillator and condensed with radio frequency evaporation.
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Figure 5.6: The magnetic field gradient is reduced with additional compensation
magnets. The simulation shows the magnetic field gradient of the center magnet
evaluated along the red dashed line in Fig.5.5 (b) without enclosing magnets (blue
line), and enclosing magnets with at a gap distance d = 50nm (green line) and
d = 200nm (red line). The black bars indicate the position of the magnets.
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Figure 5.7: (a) Mo chip layout. The trapping potential is created by
gold wires (width 2 µm, current 4.4 mA) and a homogeneous field Bb =
(−0.1,−4.2,−1.6) Gauss. The color of the wire indicates the current density ob-
tained from a finite element simulation. The Co coupling magnet on the tip of the
Si mechanical oscillator is located directly below the center of the trapping poten-
tial. Compensation magnets on each side of the tip reduce the distortion of the
trapping potential which is due to the static field of the coupling magnet. (b) Trap-
ping potential in the yz-plane intersecting the resonator. The trap minimum is at
(y0, z0) = (1.5, 0.0) µm, the trap frequencies are ωx,y,z/2π = (8.9, 9.7, 1.2) kHz for
the |1,−1〉 state. The static field of the magnets causes a repulsive potential around
y = z = 0. The attractive Casimir-Polder surface potential is visible for y → 0. The
orange area in the trap center shows the extension of the BEC.

5.3 Resolving thermal motion

The considerations in section 5.2 lead to the layout shown in Fig. 5.7 (a). The
single side clamped mechanical oscillator out of silicon has dimensions (l, w, t) =
(7.0, 0.2, 0.1) µm, yielding an effective mass meff = 3 · 10−16 kg and a fundamental
mode eigenfrequency ωr/2π = 1.12 MHz. It carries a single domain magnet with
dimensions (lm, wm, tm) = (1.3, 0.2, 0.08) µm at its tip. This magnet is enclosed by
two compensation magnets with the same cross section which have each a length of
> 5 µm. The gap between the magnets is 200nm. The magnetic trapping potential
is provided by an Ω-shaped wire and a straight wire of width 2 µm, which carry a
current of 4.4 mA, and a homogeneous field Bb = (−0.1,−4.2,−1.6) Gauss. The
center of the magnetic trapping potential is 1.5 µm above the magnet.

Atoms are lost out of the trap with the loss rate γ = γtbl + γ0, where the rate
of background gas collisions and atom-surface interactions γ0 is dominated by the
three-body loss rate γtbl = 2.2× 10−12s7/5(Nωxωyωz)

4/5 for N atoms. The magnetic
trap is optimized to achieve maximum Γr for minimal background losses γ.

Fig. 5.7 (b) shows the magnetic trapping potential in the yz-plane intersecting the
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Figure 5.8: Coupling of a BEC to a thermally driven cantilever at T = 300 K.
Simulated histogram of the fraction of atoms remaining in the trap after a time τ ,
including background losses. For comparison, the atom number distribution without
coupling is shown. Fluctuations of 5 % in the atom number due to technical noise
are assumed.

long axis of the mechanical oscillator. A BEC of 87Rb atoms in the |1,−1 > state
is confined with trap frequencies ωx,y,z/2π = (8.9, 9.7, 1.2) kHz (orange area in the
trapping potential). The repulsive potential around y = z = 0 is due to the static
field of the magnetic structures. The attractive Casimir-Polder surface potential
modifies the potential for y → 0.

In a coupling experiment of a BEC to the mechanical oscillator at room temperature,
the mechanical oscillator is in a thermal state. It performs oscillations with random
phase φ and amplitude a(t) which change on a time scale κ−1 = (ωr/2Q)−1. In a sin-
gle shot of the experiment, the mechanical oscillator is coupled to a BEC and drives
spin flips to untrapped motional states during an interaction time τ � κ−1. The
number of remaining atoms N(a, τ) = N exp[−Γr(a)τ ] is measured with absorption
imaging. For subsequent shots of the experiment, one expects a fluctuating N(a, τ)
due to fluctuating a(t). Fig. 5.8 shows the simulated signal N(a, τ)/N in a his-
togram. The histogram reflects the exponential distribution of the thermal phonon
number in the mechanical oscillator as Γr ∝ a2 ∝ nth = [exp(~ωr/kBT )− 1)]−1.

For a BEC of N = 103, one calculates 〈Γr〉 = 2.1 kHz for rc = 1/
√

3. With a
mechanical quality factor Q = 5 × 103, and an interaction time τ = 0.2/〈Γr〉, we
get κτ = 0.07. The background losses γ are almost negligible in comparison to the
rate Γr, at which atoms are coupled out of the BEC, γ = 0.01〈Γr〉. This parameter
estimate shows that this chip layout could allow to resolve the thermal motion of
the mechanical oscillator experimentally via observing the trap loss from a BEC.
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5.4 Mechanical cavity QED

In a room temperature experiment, the mechanical oscillator discussed above has
a thermal occupation nth ≈ 5 × 106 which exceeds the number of trapped atoms
N = 1000, i.e. the mechanical oscillators’ thermal state is almost not influenced
by the coupling. This changes at low temperatures, where nth ≈ N . Coherent en-
ergy exchange occurs like this: if an atom changes its state, the number of thermal
phonons in the resonator changes by one. Depending on the initial state of the
BEC, the phonon number in the mechanical oscillator can increase or decrease. The
condition nth ≈ N is fulfilled for N = 1× 104 and a bath temperature of T = 0.5 K.

In the following, we describe the quantum dynamics of the coupled system in the
spirit of cQED. We consider transitions between two trapped atomic states |0〉 and
|1〉. In a magnetic trap, the atoms in different hyperfine states experience different
trapping potentials and trap frequencies. For the sake of simplicity, we consider
optically trapped atoms which provides identical traps for all hyperfine states, and
which could be |0〉 ≡ |2, 1〉 and |1〉 ≡ |2, 2〉 in an experimental realization. The
transition |0〉 ↔ |1〉 can be isolated from other hyperfine levels mF by using e.g.
microwave radiation to introduce mF -dependent energy level shifts, or by making
use of the quadratic Zeeman effect.

In this situation, N two-level atoms with level spacing ~ωL can be described by a
collective spin S = N/2 with hamiltonian HBEC = ~ωLSz and eigenstates |S,ms〉,
|ms| ≤ S. The Hamiltonian of the quantized mechanical oscillator is Hr = ~ωra

†a,
where a† (a) is the creation (annihilation) operator for phonons in the fundamental
mechanical mode. The coupling Hamiltonian is obtained by replacing

√
2gFFx →

Ŝx and a(t) → aqm(â† + â), with the rms amplitude of the quantum mechanical
zero point motion aqm =

√
~/2meffωr. The coupled system is described by the

Hamiltonian H = Hr + HBEC + HZ . With Ŝ± = Ŝx ± iŜy and the rotating wave
approximation, we obtain the Tavis-Cummings Hamiltonian

H = ~ωrâ
†â+ ~ωLŜz + ~g(Ŝ+â+ Ŝ−â†), (5.5)

with single atom – single phonon coupling constant g = µBGmaqm/
√

8~.

The situation is analoguous to cavity QED experiments. In our case, the role of the
electromagnetic field in an optical or a microwave cavity is taken over by the phonon
field of a single mode of the mechanical oscillator. The single-atom single-phonon
strong coupling regime is reached for g > (κ, γ) in cavity QED. Due to the coupling
to the thermal bath, one has to achieve g > (κnth, γ) = (kBT/2Q~, γ) in the config-
uration considered here.
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We show that the strong coupling regime for a single atom and a single mode of the
mechanical oscillator can be reached for realistic parameters. The atom is trapped
at a distance y0 = 250nm with ωt/2π = 250 kHz. The high trapping frequencies are
possible due the absence of three-body collisions (N = 1). The mechanical oscillator
consists of silicon, and has the dimensions (l, w, t) = (8.0, 0.3, 0.05) µm. It carries a
cobalt magnet with (lm, wm, tm) = (250, 50, 80)nm and we assume a distance of the
atom to the surface of the magnet of d = 100nm. The fundamental mode frequency
is ωr = 2.8 MHz.

In order to reach the strong coupling regime, the mechanical oscillator has to have a
high mechanical quality factor and a small bath temperature. Quality factors of Q =
1.2 × 105 have been demonstrated [12] at T = 100mK with a mechanical oscillator
which could be functionalized with a single domain magnet. Temperatures as low
as T = 100 µK were reached and maintained in a nuclear demagnetization cryostat
[133]. For these parameters, we obtain (g

√
N, κnth, γ) = 2π × (62, 55, 0.3) Hz with

N = 1, which shows that the strong coupling regime could be reached for a single
atom.

5.5 Steps towards the experimental realization

This chapter describes the fabrication process that was developed in order to re-
alize the chip structure discussed in section 5.2. We fit 12 structures similar to
the structure shown in Fig. 5.7 (a) onto the Mo chip, each containing a mechan-
ical oscillator, cobalt magnets and gold wires for magnetic trapping. In addition
to single-side clamped mechanical oscillators we also fabricate double-side clamped
mechanical oscillators. Fig. 5.9 shows the layout of the Mo chip.

The fabrication process involves optical and electron beam lithography, evaporation
of metallic material, as well as etching techniques [57]. In addition to the consid-
erations in 5.2, the flow of the fabrication process is influenced by the following
considerations.

• The mechanical oscillator is fabricated with a standard technique, which is
based on electron beam lithography and etching techniques carried out on a
Silicon-On-Insulator wafer (SOI wafer). The oscillator is patterned out of the
top (monocrystalline) silicon layer, and left freestanding after removal of the
sacrificial layer.

• The magnetic structure is defined with electron beam lithography and de-
position of ferromagnetic cobalt. This results in a magnetic single domain
structure.
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Figure 5.9: The atom chip consists of 3 chips which are glued on top of each other.
The base chip (green) closes the vacuum glass cell, and provides a feedthrough for
the wires fabricated with optical lithography on the base chip, which provides a
quadrupole potential for a magneto-optical trap (mirror-MOT). The smaller trans-
port chip (yellow) provides magnetic fields for a first Ioffe-Pritchard trap and con-
tains a long wire for creating a waveguide for transporting the atoms from the MOT
region to the Mo chip (red). The Mo chip carries one layer of bond pads and gold
wires that guide currents to the central chip region, where 12 structures (similar)
to the layout discussed in Fig. 5.7 (a) are fabricated.

• The thickness of the gold wires is determined by the currents of up to I =
10 mA which are guided through the wires in the central chip region in order
to provide the magnetic trapping potential for the BEC. A safe value for the
maximum current density jmax ≈ 1×1010 A/m2 which a gold wire can support
should not be exceeded. The smallest width of the gold wires is 2 µm, such
that a thickness of the gold layer ≥ 500nm is favourable.

• The gold wires in the central region of the Mo chip are defined with electron
beam lithography as they have to be fabricated subsequent to the magnetic
structures with an alignment uncertainty < 1 µm. This can not be achieved
with optical lithography.

• The gold wires on the Mo chip are electrically connected to the transport and
the base chip with bond wire connections. Transport and base chip are similar
to the chip package used for the experiments described in chapter 3. The
Mo chip has to have bond pads for the electric connection and gold wires for
guiding the currents to the central chip region. These structures are fabricated
with optical lithography.

• The distance between the wires on the Mo chip and the wires on the transport
chip should not exceed 100 µm in order to facilitate loading of the atoms into a
magnetic trap which is provided by a current flow through wires in the central
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chip region of the Mo chip. As the layer of glue between the two chips has a
typical thickness of 30 µm, the thickness of the Mo chip should be equal or
less than 70 µm.

5.5.1 Fabrication methods

Lithography

We use lithography techniques to expose a resist coated chip in order to transfer the
desired structure into the resist. Resists consist of polymer chains, which are either
broken into smaller chains (positive resist) or crosslinked (negative resist) during
the exposure process. After exposure, the resist is exposed to a developer which
dissolves the resist: the shorter the length of a polymer chain, the higher the rate of
dissolution. Choosing an appropriate development time, a positive (negative) resist
can be dissolved completely in the exposed (unexposed) areas.

Fig. 5.10 shows the principle of the employed lithography techniques. In optical
lithography the desired pattern is imprinted into an optically dense chromium layer
on a glass substrate, such that a shadow mask is formed. The mask is positioned
on top of the resist coated chip and shadows it partially according to the imprinted
pattern. The pattern is transferred into the resist layer via exposure to UV light and
subsequent dissolution of the resist. The resolution of optical lithography is limited
by the wavelength of the UV light.

In comparison to optical lithography where the whole area is exposed in a parallel
procedure, electron beam lithography exposes the resist at discrete grid points in a
serial manner. The electron beam is positioned by applying electric potentials to
capacitor plates arranged parallel to the electron beam path. To expose an area,
the electron beam is unblocked for a set time. Due to backscattered electrons the
neighbourhood of a grid point is exposed to a certain electron dose as well. This
so called proximity effect transforms grid-like exposure into an exposed, connected
area. In practical cases, the resolution of electron beam lithography is limited due
to the proximity effect.

Material deposition

We deposit metallic material onto the resist pattern resulting from lithography and
development of the resist. The material is heated with a focussed electron beam in
a UHV vacuum chamber and evaporates. The chip is mounted at ≈ 30 cm distance
from the material source. The evaporated metal adheres on bare substrate and on
resist. After deposition of a material layer of the desired thickness, the chip is im-
mersed into a solvent which removes the resist and the material evaporated on top,
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Figure 5.10: (left to right): A wafer is spin coated with a resist. The chip
is selectively shadowed with a mask and exposed to UV light or scanned with a
focused electron beam. Both methods change the relative solubility of exposed/not
exposed resist to a developer. This defines a resist mask which partially covers
the chip surface. Material is evaporated and coats the whole chip. The wafer is
immersed into a solvent, which leaves only the material which is evaporated onto
the bare substrate. The undercut (upper series) facilitates lift-off, and can also be
achieved with a multilayer resist structure in e.g. electron beam lithography (lower
series).

but leaves the material that was evaporated onto the bare substrate (lift-off).

Etching techniques – freestanding structures

A Silicon-On-Insulator (SOI) wafer is a stack of three layers, a handle layer of silicon
that supports a sacrificial oxide layer and a silicon layer on top. The top silicon layer
is selectively removed in a reactive ion etching process, where e.g. a metallic etch
mask is deposited on the chip surface. In this process, the chip is placed between
two capacitor plates, which accelerate ionized molecules perpendicular to the chip
surface, resulting in physical, anisotropic material ablation and chemical etching.
The areas which should remain, are protected with an etch mask, which is removed
after etching. The oxide that still supports the remained parts of the top silicon
layer is removed partially with a chemical wet etch, which suspends the top silicon
layer partially for a sufficiently long exposure to the etchant. Fig. 5.11 illustrates
the process flow.

5.5.2 Process flow

The fabrication process is summarized in Fig. 5.12 and in the caption. The order
of the process steps is determined by the design and fabrication methods. In par-
ticular, there is no possibility to exchange the order of any two of the steps. The
main text of this section contains detailed information about the individual steps.
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Figure 5.11: An SOI wafer is partially protected with an etch mask. Reactive ion
etching is used to remove the top silicon layer anisotropically. An isotropic wet etch
removes the oxide layer below the top silicon layer depending on the etching rate
and time.

Process parameters can be found in the appendix.

Substrate

We purchased Unibond SOI wafers at Soitec SA, France, where the Smart Cut Pro-
cess (TM) is applied in wafer fabrication: a monocrystalline silicon wafer is cleaned
and oxidized. Hydrogen ions are implanted into a set depth. The wafer is bonded
to a monocrystalline silicon handle wafer, and cleaved at the surface that is defined
and weakened by implanted hydrogen ions. SOI wafers fabricated with this process
come with a thin and unstressed top silicon layer.

The monocrystalline top silicon layer of our wafer material has a thickness of 100nm.
The silicon is p-type doped with boron, and has a maximum resistivity of 22.5Ω cm,
which is high in comparison to evaporated gold that we use to guide currents on
the chip. The orientation of the silicon monocrystal is 〈100〉. The sacrificial oxide
layer and the handle layer have a thickness of 400nm and 675 µm, respectively. The
diameter of the wafer is 150 mm.

To reduce the thickness of the the wafer to 70 µm, we first tried to grind the handle
layer of the SOI wafer with machines available in our machine shop. However, as
this proved to be not reproducible, we sent a wafer to the Fraunhofer IZM, which has
equipment in place to reduce the thickness of wafers. The thickness of the handle
layer was reduced to 46 µm ±5 µm, and the thinned wafer was cut into pieces (chips)
of 5 mm×7 mm size.

Optical lithography

A drawback in a one step optical lithography as described in 5.5.1 is deficient quality
of the sidewalls of eventually deposited material. If an electric connection is to be
established across conducting material deposited in several lithography steps, the
electrical connection can be unsatisfactory depending on the slope of the sidewalls.
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Figure 5.12: After patterning bond pads and wire structures with optical lithogra-
phy, all further processing employs electron beam lithography. The schematics show
the cross section (top) perpendicular to the chip surface along the dashed red line in
the top view (bottom). (a) Deposition of an etch mask for reactive ion etching with
electron beam lithography and evaporation of a metal. The mechanical oscillator
is shaped laterally and alignment markers for later lithography steps are provided.
The top silicon layer is selectively removed with reactive ion etching, followed by
an oxide wet etch that just underetches the rim of the top silicon layer without
leaving structures freestanding. (b) Evaporation of a continuous stripe of cobalt
across the mechanical oscillator. The topography resulting from the previous step
separates the magnet on the mechanical oscillator from the enclosing magnets by a
gap. Cobalt evaporated into the gap is removed in the subsequent liftoff, the result
is shown in (c). (d) Deposition of gold wires for providing the trapping potential
using electron beam lithography and evaporation of gold. (e) Enclosure of the mag-
netic structure in a matrix of exposed, negative resist for protection of cobalt against
contact with hydrofluoric acid in the following step (resist shelter, green). (f) Wet
etch with hydrofluoric acid to remove the supporting oxide below the mechanical
oscillator, and subsequent removal of the resist matrix from the previous step.
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Figure 5.13: The chip substrate is spin coated with an image reversal resist.
UV exposure cross-links the exposed resist and renders it insoluble in a developer.
Flood exposure makes the resist shadowed in the first exposure step soluble to the
developer, and allows to remove it in the final development step.

This tends to be worse with increasing thickness of the deposited material layer.

Image reversal lithography offers good edge quality and the possibility to control
the slope of the sidewalls, at the cost of a more complicated process (see Fig.5.13).
The Piranha1-cleaned chip substrate is spin coated with the image reversal resist
AZ 5214 E2 with a targeted thickness of the resist layer of 1.6 µm. After baking
the chip on a hotplate, the resist is exposed for a first time. The first exposure with
a chromium mask transfers the desired pattern into the resist, and has to be car-
ried out carefully to achieve a very good resolution. Therefore the distance between
mask and resist surface should be minimized. Resist residues close to the edges of a
chip, that emerge during spin coating can be eventually removed with lens cleaning
paper and acetone. In the image reversal bake, the resist polymers in the exposed
region are cross-linked, and thus made insoluble towards the developer. The critical
parameter of image reversal baking is the temperature which determines the slope
of the resist sidewalls. Very reproducible results are obtained if the temperature
within different runs varies by less than 0.1

◦
C. The image reversal bake is followed

by a flood exposure of the whole chip towards UV light without mask, which makes
the resist shadowed in the first exposure step soluble to the developer.

Evaporation of gold and subsequent lift-off allow to fabricate gold wires with a thick-
ness up to 1 µm with a resolution < 0.5 µm. The positions of structures fabricated
in later steps with electron beam lithography are referenced to the structures in this
gold layer.

Mechanical oscillator – Step (a)

Fabrication of magnetic structures and gold wires in the central chip region has to
be done before the wet etch which suspends the oscillator, as spinning on a resist

1H2SO4 : H2O2 = 4 : 1
2Clariant
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for lithography is not compatible with a fragile single side clamped oscillator. We
split the fabrication of free standing structures into two parts.

We start by structuring the top silicon layer with reactive ion etching. We choose
cobalt as a mask material, which can in principle be used as a mask material for
reactive ion etching processes employing SF6, SiCl4 and CF4. Already a relatively
thin layer resists the etching procedure sufficiently long such that the top silicon
layer can be completely removed without damaging the silicon in the protected ar-
eas. After the etch process, the etch mask is removed in a Piranha cleaning step.

In order to define the lateral shape, we employ one step of electron beam lithography
and evaporate a cobalt etch mask. We also protect the whole area where the top
silicon layer should not be removed in the etching process, e.g. at the areas where
cobalt and gold are deposited in later steps. If the thickness of the evaporated layer
is small in comparison to the resist layer, one can use a single resist layer consisting
of long polymer chains, which results also in a better resolution. We use a single
layer of PMMA 500000 for electron beam lithography, where we define the shape
of the mechanical oscillators. After exposure and development, we evaporate 35nm
of cobalt as an etch mask and use SF6 or CF4 as etchant in reactive ion etching.
The etch mask is removed with piranha. In this process, we reproducibly achieve
almost vertical sidewalls of the etched silicon layer and gap widths down to 100nm.
Finally, we employ hydrofluoric acid to partially remove the sacrificial oxide layer,
but without leaving the mechanical oscillators freestanding. Several steps of electron
beam lithography and material deposition are carried out before the sacrificial layer
below the mechanical oscillator is completely removed.

Note, that this is the last step in the process flow, where we can perform a careful
cleaning of the chip. As soon as cobalt is deposited, cleaning of the chip with e.g.
piranha is no longer possible.

Lithography markers In step (a) we also fabricate markers on the chip which play
an important role in aligning structures fabricated in the individual steps relatively
to each another. In each lithography step, the chip and the coordinate system of
the electron beam lithography system have to be matched. This is done iteratively
by assigning software coordinates to at least three markers located on the chip by
taking scanning electron beam micrographs of these.

There are several methods to define markers with very high resolution in electron
beam lithography. One could think of an individual step of electron beam lithog-
raphy which is optimized to serve this purpose. Such procedures typically yield an
alignment precision in subsequent steps of ±30nm. We fabricate marker structures
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in the same lithography step as the mechanical oscillators. This means, that the
markers are not out of gold as usually, but structured out of the top silicon layer.
As the imaging contrast of these markers, especially if they are below a layer of re-
sist, is not very good on a scanning electron micrograph, we expose the area around
the markers of the spin coated chip with the electron beam, and remove the ex-
posed resist with developer, leaving the resist on the unexposed areas. The markers
without resist coverage can be very well resolved and allow for precise alignment
in the subsequent lithography step, where magnets or gold wires are defined in the
remained resist.

Magnetic structures – Step (b) and Step (c)

We employ electron beam lithography on a multilayer PMMA resist system for defin-
ing the shape of the magnetic structures. The two lower layers (PMMA 150000)
provide planarization for the top layer (PMMA 500000). Evaporation of cobalt goes
along with an increased thermal load on sample and resist. The evaporation process
differs from evaporation of gold in a higher melting point temperature of 1495

◦
C

in comparison to 1064
◦
C. We reduce the thermal load by mounting the cobalt tar-

get with minimal thermal contact in the UHV chamber which allows to melt and
evaporate cobalt from only a small area on top of the target. This reduces the re-
quired electron beam currents significantly, and therefore reduces the thermal load
on the resist and facilitates the lift-off. Furthermore, we insert a small, water cooled
aperture to reduce heating of the sample holder. With these precautions it is easily
possible to deposit cobalt and carry out the subsequent lift-off. We still encounter
a problem with baked resist residues at the edges of the cobalt structures, which
are not soluble in commonly used solvents for lift-off. The residues can make the
mechanical oscillator inoperative, if they bridge the gap between the magnet on the
mechanical oscillator and the enclosing magnets. Carefull optimization of the expo-
sure parameters is necessary to reduce the amount of resist residues.

A continuous stripe of cobalt is evaporated across the mechanical oscillator. The
topography resulting from the previous step separates the magnet on the mechanical
oscillator from the enclosing magnets by a gap, that is well defined with reactive
ion etching. Cobalt evaporated into the gap is removed in the subsequent lift-off.
This technique allows to achieve the desired small gap and a rectangular shape of
the magnets.
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Wire structure for magnetic trapping – Step (d)

Usually, the thickness of a metallic layer deposited onto a resist structure patterned
with electron beam lithography does not exceed 100nm. However, the gold wires
should have a thickness of 500nm to stand the desired currents. Similar to the
procedure in the last chapter, we use several layers of PMMA resist to provide pla-
narization and a sufficient resist thickness allowing for evaporation and a subsequent
clean lift-off for a gold layer of desired thickness. The requirements to the resolution
in this step are not very high in measures of what would be possible with electron
beam lithography. This allows to optimize the resist and exposure parameters to
yield a high reproducibility.

Resist shelter – Step (e)

The mechanical oscillator is finally suspended with a wet etch employing hydroflu-
oric acid to etch the sacrificial oxide layer. However, cobalt is dissolved almost
completely by hydrofluoric acid. As we can not change to another magnetic ma-
terial due to the requirements to the magnet or to another etchant we follow the
strategy to protect cobalt against hydrofluoric acid with a shelter.

The requirements to the material of the shelter are quite demanding: it should be
possible to pattern it with high resolution, it should be impermeable to hydrofluoric
acid and it should be removable without destroying the fragile mechanical oscillator.
We find such a material with the negative resist maN 24033, which can be patterned
with electron beam or optical lithography at a resolution down to 50nm. We pattern
a box of negative resist around the magnetic structure. The sacrificial layer is re-
moved with hydrofluoric acid. After wet etching, the shelter is removed with either
a solvent and a critical point dryer, or with oxygen plasma cleaning. The latter
procedure is an elegant way to circumvent critical point drying, that can be applied
to any fragile mechanical structure: before etching, the structure can be clamped at
several points with exposure of the negative resist. After the wet etch, the chip can
be dried with a nitrogen gun, and the freestanding structure can be released with
plasma cleaning.

We found that the negative resist is impermeable to hydrofluoric acid. We performed
one step of optical lithography to define the magnets on SOI chips, which have been
only exposed to one step of optical lithography and gold deposition. After Cobalt
evaporation and lift-off, we enclosed the cobalt structures with a resist shelter and
exposed the chip to hydrofluoric acid. After removal of the resist, we observed
neither with electron microscopy nor with magnetic force microscopy a change of

3MicroResist
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shape, electron reflectivity or magnetic properties. Hence, the negative resist is a
suitable material for a resist shelter.

5.5.3 Characterization

Mechanical oscillator

As it is difficult, to read out the motion of a sub-wavelength sized mechanical oscilla-
tors on the Mo chip, we fabricated similar, single-side clamped mechanical oscillators
for a preliminary characterization. The oscillators are functionalized with a gold mir-
ror for optical readout in an optical cavity, see [134]. We use essentially the same
process which is employed to fabricate the mechanical oscillators on the Mo chip.
We employ electron beam lithography to deposit a gold mirror. The lateral shape
of the oscillators is transferred into the top silicon layer with reactive ion etching,
employing an etch mask of negative resist maN 2403. After removal of the etch mask
with a piranha etch, the structures are suspended in a wet etch with hydrofluoric
acid. The chip is dried in a critical point dryer. The total length of the mechanical
oscillator is 6 µm, the width is 200nm. At the tip, the Silicon forms a square of
2.4× 2.4 µm2. The thickness of the silicon layer is 100nm, and a gold layer of 90nm
thickness is deposited to enhance the reflectivity. Fig. 5.14 (a) shows a scanning
electron micrograph of the mechanical oscillator.

The setup is illustrated in Fig. 5.14 (c). A Fabry-Perot cavity is formed between
the mirror on the mechanical oscillator (M2) and a gold coated end facet of a sin-
gle mode glas fiber (M1). The reflected signal from the cavity is analyzed with a
spectrum analyzer and allows one to extract a mechanical quality factor Q ≈ 1000
and fundamental mode eigenfrequencies that match the calculated eigenfrequencies
with a deviation smaller than a factor of 2. Fig. 5.14 (b) shows in situ imaging of
the reflectivity of the substrate using the xy positioning stack to displace the chip.

In further experiments, the fundamental mode temperature of this mechanical os-
cillator was laser cooled to T = 175 K, employing a bolometric effect. Fig. 5.15
(a) shows the cavity reflected power versus detuning, and Fig. 5.15 (b) shows the
cooling of the fundamental out of plane mode. Further details are given in [134].

Magnetic characterization

We use magnetic force microscopy (MFM) to characterize the domain structure
of the fabricated cobalt magnets. We apply the procedure which is descibed in
[132]. The measured quantity is the phase shift of the oscillating AFM cantilever
due to the gradient of the force between the magnetic tip of the AFM cantilever
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Figure 5.14: (a) Scanning electron micrograph of mechanical oscillators carrying
a gold mirror for optical characterization, (b) Cavity in situ optical imaging of one
mechanical oscillator, (c) Setup. Figure taken from [134]

.

Figure 5.15: (a) Bottom: Measured (black) and modeled (red) reflectivity of the
cavity. Top: Simulated ratio of the light power sent on the cavity formed by the
mirrors M1 and M2. (b) Thermal motion amplitude spectra for negative cavity
detuning. Figure taken from [134]
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Figure 5.16: MFM measurement with a lift height of 700nm. (Top) Single magnet,
(Bottom) single magnet of same dimensions, with two enclosing magnets. The static
magnetic field gradient is attenuated due to the enclosing magnets by a factor of 15.

and the magnetic structures on the sample. Fig. 5.16 shows a measurement of
the compensation effect. The magnetic tip position is scanned in a plane which is
700nm above the surface. The measured signal at the top originates from a single
domain magnet without enclosing magnets. The structure below has two additional
enclosing magnets with a gap distance of d = 150nm, and the static magnetic field
above the magnet in the center is obviously reduced. A measurement [132] shows
that the magnetic field is attenuated due to the enclosing magnets by factor of 15.

5.5.4 Fabrication: Status

The fabrication process was optimized and the results of all steps satisfied the expec-
tations – except the result of step (e), where the mechanical oscillator is suspended in
a wet etch. Fig. 5.17 shows the chip structure before the wet etch is performed, Fig.
5.18 shows a prototype structure after wet etching. The surface of the top silicon
layer is etched significantly during this step with hydrofluoric acid. As a secondary
effect, the resist shelter which protects the deposited cobalt, was underetched such
that hydrofluoric acid could attack and dissolve the cobalt structures.

These circumstances did not allow to fabricate the desired structures reproducibly.
In all trials at least 80% of the cobalt structures were damaged, which was clearly
visible in an electron beam micrograph. The magnetic properties of the magnets on
the mechanical oscillator could not be characterized with magnetic force microscopy,
because the the mechanical oscillators were destroyed from the AFM tip which is
alternatingly operated in tapping and lift-mode in magnetic force microscopy.

In the first wet etch in step (a), we did not observe any damage of the top silicon
layer. Hence, we attribute the surface degradation occuring in step (e) to a chemi-
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Figure 5.17: Scanning electron micrograph of the chip structure, before step (e)
is performed. The BEC is sketched in red.

cal reaction of contamination accumulated in the process steps later than step (a).
After the deposition of the magnetic material in step (b), cleaning with Piranha is
no longer possible since cobalt is dissolved in Piranha.

We analyze the source of the contamination. The chips were cleaned with piranha
before the fabrication of cobalt magnets in step (b). In principle we have to suspect
all substances used in later steps and any combinations of these:

• Substrate: silicon, silicon oxide

• Resists: PMMA and developer, negative resist and developer

• Solvents: water, isopropanol, acetone or ethanol

• Deposited material: gold, cobalt, titanium (adhesion promoter)

• Wet etchant: hydrofluoric acid and ammonium fluorid

The most suspicious candidate for contamination which interacts in the wet etch
step with the etchant and silicon are the resists and the deposited materials. To ex-
clude the resists and developers, we performed tests with virgin chips, coated them
with the negative resist (or alternatively PMMA), exposed them partially and used
the respective developer. Exposure of these chips to hydrofluoric acid did not result
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Figure 5.18: Scanning electron micrograph of the chip structure, after step (e) is
performed.
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in degradation of the top silicon layer. This excludes unfavourable behaviour of the
resist. In addition, we studied the behaviour of metal on the chip substrate during
the wet etching. We evaporated a thin gold layer onto a silicon chip. We exposed
the chip to the etchant consisting of hydrofluoric acid and ammonium fluorid, and
observed a degradation of the silicon surface. With a similar test, we saw that cobalt
in combination with hydrofluoric acid by contrast does not lead to significant surface
degradation.

We identified one major mechanism responsible for degradation, which involves pre-
dominantly the interplay of gold and the wet etchant. Ideally, the metal which is
deposited during evaporation should be removed from the chip surface with the un-
derlying resist. However, after lift-off traces of gold may remain on the chip surface,
especially if the lift-off is done as gentle as possible in order not to damage the
structures. During the wet etch with hydrofluoric acid, traces of metal on silicon
can modify the etch characteristics of silicon. At the interface of silicon and gold
a contact potential is formed, and leads to a local electric field, which influences
the etching process. Recently, metal assisted etching was studied in several groups
[135, 136, 137, 138]. This etching technique makes use of a thin metal layer deposited
on a silicon wafer. Etching with hydrofluoric acid and an oxidizing agent allows to
etch silicon which is in contact with the metal. Depending on material, oxidizing
agent and doping, the etching process can be controlled, and e.g. nano-sized pillar
fields can be fabricated.

From this analysis, we conclude that contamination of the silicon surface with traces
of gold or titanium may be responsible for the degradation of the top silicon layer,
and the insufficient adhesion of the resist shelter.

5.5.5 Fabrication: Perspective

The philosophy of the fabrication so far aimed at integrating all structures needed
for the experiment on one chip. In practice, this resulted in a complicated process
flow with many critical steps. Fabrication is very challenging as waste has to be
almost avoided. Even if a usable chip is fabricated, it would not be possible to check
the magnetic properties before integrating it into the experiment. Furthermore, it
would be very difficult to read out the oscillation of the mechanical oscillator inde-
pendently with e.g. an optical technique, as it is not functionalized with a mirror.
These uncertainties and the fact that it takes 3 to 6 months to integrate a chip
into an atom chip cell and to achieve Bose-Einstein condensation, raise the demands
towards the perfection of a chip, that might be promising to integrate into an atom
chip experiment, to a very high level. Degradation of the top silicon layer could be
circumvented with a change of the substrate. As silicon nitride is chemically more
resistive, the process could be adapted to a wafer similar to an SOI wafer, but with a
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top layer out of silicon nitride instead of silicon. This would reduce the degradation
of the silicon surface occuring in step (e). First trials showed that an exchange of
the substrate would solve this problem.

In the following, I describe an alternative process which is easier, but requires a
reactive ion etching process that was not available in the cleanroom facilities used
for the fabrication in this thesis. The idea is to fabricate mechanical oscillators at
the edge of a chip, to make use of the anisotropic characteristics of cobalt evapo-
ration and to mount the chip close to wires on an atom chip providing a magnetic
potential, or to use a focused laser beam to provide an optical potential. Mechanical
oscillators fabricated at a chip edge are employed by other groups [139] for measuring
magnetic forces with high sensitivity [5]. The oscillators used there are optimized to
have small spring constants. The oscillators are functionalized with a magnet which
is evaporated onto the flat top surface of the oscillators.

Figure 5.19: Process for fabrication of a mechanical oscillator at a chip edge. (a)
Pattern lateral dimensions of the mechanical oscillator, fabrication of an etch mask
(blue). b) Reactive ion etching and removal of the mask. (c) Pattern etch mask for
handle layer etch, remove handle layer selectively with deep reactive ion etching.
Protect structures on top of the chip with resist. (d) Remove resists with a solvent,
remove oxide with hydrofluoric acid. (e) Cobalt (red) can be deposited without the
need for lithography techniques, simply by orienting the structure carefully during
cobalt evaporation. The distance d can be chosen such that the impact of magnetic
cobalt evaporated onto the support is minimized. (f) and (g) show a top view of
mechanical oscillators fabricated with this procedure. The oscillator shown in (g)
provides a surface which could be used for optical readout of the motion.

The fabrication process involves the removal of the handle layer of an SOI wafer
with reactive ion etching. The process flow is described in the caption of Fig. 5.19.
With this process, monocrystalline cantilevers with dimensions up to (l, w, t) =
(120, 3, 0.1) µm can be fabricated [140]. One could employ this process flow to fab-
ricate single side clamped mechanical oscillators, sticking out of a chip as shown in
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Fig. 5.19. In order to deposit the magnetic structure, the mechanical oscillator is
oriented in a different way in comparison to the work cited above. Here, the long
axis of the mechanical oscillator is oriented parallel to the beam of evaporated cobalt
in the evaporation chamber, such that cobalt sticks only to the small edge of the
mechanical oscillator. Using a small aperture, one can make sure that the cobalt
’beam’ is approximately collimated. This procedure allows for the deposition of a
single domain magnet on the mechanical oscillator and enclosing magnets nearby.

This relatively easy process has the advantage, that deposition of cobalt is the last
process step, i.e. it is unlikely that it looses its ferromagnetic properties in further
process steps. A square at the tip of the mechanical oscillator could be used for
optical readout, using the bare silicon as a partially reflective mirror. Furthermore
it would be possible to fabricate a large number of similar structures along the edge,
and to shift the magnetic trapping potential to a specific oscillator with dimple trap
wires.



6 Outlook

The experiments in this thesis demonstrate the observation of interaction between
microstructured mechanical oscillators and ultracold neutral atoms. In this chapter,
I review the experimental achievements and sketch the prospectives of coupling
mechanical oscillators to neutral atoms.

Coupling via the surface potential We demonstrated the coupling of a mechanical
oscillator to a magnetically trapped BEC on an atom chip via the surface potential
which arises from the oscillators surface. A nice feature of this coupling mechanism
is that no additional functionalization of the mechanical oscillator is required. Thus,
this coupling mechanism is also applicable to molecular scale oscillators which cannot
be functionalized with a magnet or a mirror. One candidate for further experiments
are suspended carbon nano tubes (CNTs), which can have high mechanical quality
factors [141]. A single-wall CNT with a suitable eigenfrequency of ω/2π = 20 kHz
has a mass of M = 2 × 10−17 g [142], which is several orders of magnitude smaller
than the mass M = 5× 10−9 g of the mechanical oscillator used in the experiment
reported in this thesis. Coupling of such a CNT to a BEC of N = 1000 atoms would
achieve a mass difference of only two orders of magnitude. Hence, the coupling would
be significantly stronger for a molecular scale oscillator from this perspective. On
the other hand, the surface potential of a CNT is expected to be weaker by roughly
one order of magnitude [143]. Currently, the coupling of static CNTs to ultracold
atoms via the surface potential is investigated experimentally in the group of Prof.
Joszef Fortagh at the Universität Tübingen.

Coupling via a 1D optical lattice We coupled a mechanical oscillator and thermal
atoms via a 1D optical lattice, and observed the backaction of the atomic ensemble
onto the oscillator. We compare the strength of the effect to theoretical predictions,
and find reasonable agreement. This allows to make trustworthy theoretical esti-
mates on how to improve the system. To enhance the coupling strength between
ultracold atoms and mechanical oscillators in a motion-to-motion coupling as in the
schemes discussed above, equal mass of two coupling partners is favourable. This
results in an optimization such that the mass of the mechanical oscillator is reduced
while the number of trapped atoms is increased.A first step in our experiment is
to increase the number of trapped atoms. We load N ≈ 2 × 106 atoms from a
mirror-MOT into the optical lattice, which is not very good in terms of atom num-
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ber and temperature. Initially, our experimental setup was not designed to trap
a large number of atoms and to perform Raman sideband cooling. This could be
improved in a new setup, where one can apply Raman side-band cooling to prepare
up to N = 3 × 108 atoms in the ground state of a blue detuned 3D optical lattice,
which was already demonstrated in [99]. In addition, the mass of the mechanical
oscillator should be reduced. One possible way, which is currently investigated in
our group, could be structuring of SiN membranes similar to the ones employed in
our experiment. A focused ion beam is used to pattern double side clamped me-
chanical oscillators with a sufficient width which allows to reflect the lattice laser
beam. Apart from these efforts, an enhanced membrane reflectivity1 could increase
the coupling strength directly due to the linear scaling with the power reflectivity
R2. The estimates in section 4.1.4 show, that improvements could allow for sympa-
thetic ground state cooling of a cryogenically pre-cooled mechanical oscillator.

The limitation of the coupling strength due to the dependence on the square root of
the mass ratio could be lifted, if the action of the lighter coupling partner onto the
heavier one could be enhanced using some kind of ’lever’. In the coupling scheme
via a 1D optical lattice, the action of the atoms onto the membrane is due to a
dispersive interaction of the atom with the light field, and results in a power mod-
ulation of the running wave which travels towards the mechanical oscillator. The
power modulation of the light field could be enhanced in an optical cavity, where
already a single atom can modulate the light field considerably [144]. The coupling
to the mechanical oscillator would be mediated by the light field in the optical cav-
ity, similar as in the experiment described in [58], where the intracavity light field
is used to cool the fundamental mode of a membrane oscillator .

A coupling scheme involving these ingredients was recently proposed in [38]. In this
scheme, both the mechanical oscillator and a single, neutral atom are coupled to
the cavity light field as shown in Fig. 6.1 (a). The modulation of the laser intensity
results from the interaction of the light field with a membrane or an atom, and
establishes the coupling. (b) The optical cavity modes are driven by laser light of
two wavelengths, one blue and one red detuned with respect to the cavity response.
(c) In addition, both laser frequencies are red detuned with respect to optical tran-
sitions, e.g. the D1,2 line of an alkali atom, such that light of both laser wavelengths
provide an attractive potential for the atom. (d) (left side) The atom is trapped in
the effective potential provided by the superposition of the red-detuned laser fields
(red and blue curves). (right side) The membrane thickness is small in comparison
to the wavelength, which allows to position the membrane on the slope of the in-

1However, an increase in the reflectivity is not straightforward to realize. A metallic coating
increases the absorption of optical power significantly, whereas a dielectric coating increases
the mass of the membrane oscillator. Moreover, it is likely that the mechanical quality factor
decreases if material is deposited on the membrane.
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tensity profile. (e) The cavity resonances are shifted as indicated by the arrows in
(b) due to the interaction of the membrane with the light field. As a consequence,
the intensity of the red (blue) laser field decreases (increases), and goes along with
a shift of the trap minimum. In this scheme for coupling motion-to-motion, the
square root of the mass ratio does not enter into the coupling constant, due to the
boundary conditions introduced by the mirrors. The interaction of the atom and the
membrane does not rely on a direct interaction, as e.g. in the coupling of the center
of mass modes in the membrane and the atomic ensemble via an optical lattice.

Figure 6.1: Strong coupling of the motion of a single atom and the motion of a
SiN membrane via the intra-cavity light field. See text for the description. Figure
taken from [38].

The exciting feature of this coupling scheme is that strong coupling of a single atom
and a single mode of the mechanical oscillator seems to be feasible for realistic
parameters and available technology. The experimental challenge is to operate a
high finesse optical cavity at cryogenic temperatures, to achieve strong coupling of
the light field to a single atom and to integrate a mechanical oscillator stably into
the small gap between the cavity mirrors, which are a few tens of microns apart.

Coupling to the atomic spin The magnetic coupling of a mechanical oscillator
to the spin of trapped atoms was investigated theoretically. The coupling relies
on the magnetic field gradient field created by the magnet at the oscillators tip.
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The theoretical formulation suggests that the coupling strength can be increased
simply by increasing the gradient of the magnetic field, what could be achieved by
enlarging the magnet. However, the magnetic field of the magnet strongly distorts
the trapping potential, and it turned out in the analysis that the coupling strength
is limited by the requirement, that the trapping potential for the BEC should not
vanish. The impact of the magnet onto the trapping potential can be reduced with
additional magnets, which enclose the magnet sitting on the mechanical oscillator.
We demonstrated the resulting attenuation of the magnetic field experimentally.
This effect should allow to reach a sufficiently high coupling strength for resolving
the thermal motion of a nano-sized mechanical oscillator spectrally. A couple of
years ago, our motivation was to investigate a suitable coupling mechanism between
a mechanical oscillator and ultracold atoms, and to read out the thermal motion of a
nano-sized mechanical oscillator. Spectrally resolved read out and opto-mechanical
cooling [134] have been realized for the mechanical oscillator with a gold mirror
which was presented in section 5.5.3 of this thesis. Based on our fabrication results,
we propose a simplified procedure to functionalize nano-sized mechanical oscillators
with single domain magnets. This could be used for an optimized version of this ex-
perimental design, or for fabrication of a mechanical oscillator which could be useful
in a similar experiment. We started a collaboration on fabrication of mechanical
oscillators with the group of Prof. Mikhail Lukin at Harvard University. This group
is currently setting up an experiment which aims at coupling the mechanical mo-
tion of a nano-sized oscillator with a magnetic tip to single NV centers [145]. This
experiment follows a scheme which is similar to the one that we have investigated
[31], with a single NV center taking over the place of the BEC.



Appendix: Parameters of chip
fabrication

Equipment Standard cleanroom facilities like e.g. hotplates are used; special
equipment is listed below.

• AFM Atomic force microscope, Digital Instruments Dimension 3000 AFM.

• UHV evaporation material deposition system comprising a ultra-high vac-
uum chamber and an electron gun for evaporation.

• Mask aligner Karl Suss MJB3, with Hg UV-light source.

• Plasma cleaner providing oxygen plasma, Lab-Ash 100.

• SEM Scanning electron microscope, LEO 982 Digital Scanning Microscope
equipped with Elphy for electron beam lithography.

• Spin coater Convac 1001S.

• Ultrasound cleaner Bandelin Sonorex Super.

Chemicals

• Standard chemicals like e.g. Acetone, IPA (Isopropanol), MIBK, DI (deion-
ized) water, or acids and bases employed are VLSI selectipur quality through-
out the process.

• Piranha etch mixture of sulphuric acid and hydrogen peroxide in volume
ratio 3:1. It is seriously recommended to strictly avoid mixture of piranha
with organic solvents, this results in an exothermal reaction.

• HF mixture of 1 part hydrofluoric acid and 7 parts ammoniumfluoride.

• Plasma cleaning in oxygen plasma cleaner.

• US bath place sample immersed in a solvent in the ultrasound cleaner.

• Blow dry with nitrogen gun.
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Process parameters

In the following, the process steps for chip fabrication are described in detail. It is
assumed, that the reader is familiar with cleanroom processing.

Cleaning of the substrate Cleaning of the substrate described in section 5.5.2.
Piranha etch. Carefull rinse with DI in two separate beakers. Rinse with IPA. Blow
dry.

Optical lithography Bake substrate for 5 min at 170
◦
C on hotplate. Pause of

5 min between each of the following steps. Spin coat chip with AZ5214 E, 1s at 800
rpm, 30s at 3000 rpm. Bake for 50 s at 110

◦
C on hotplate. Wipe off resist residues

close to the edges of the chip with aceton. UV exposure with chromium mask for
3.5 s. Bake for 2 min at 120

◦
C on hotplate. UV flood exposure for 40 s. Develop

for 15 s to 30 s (depending on the age of the resist) with developer AZ 351:DI=1:4.
Rinse with DI in two separate beakers, shake in first beaker for 1 min, leave for
5 min in second beaker. Bake on hotplate for 1.5 min at 100

◦
C. Plasma cleaning for

10 s at 40 W and 2 Torr.

gold evaporation Clamp chip onto holder. Do not glue with UV compatible tape,
as thin chips are too fragile to be removed applying force. Evaporate 3nm titani-
umiumium and subsequently 400nm gold at 2.5 A/ s. Lift-off is no problem if the
resist edges have an undercut. For Lift-off, immerse chip into Acetone for 20 min.
Rinse with IPA. Blow dry.

Metal etch mask for reactive ion etching Bake substrate for 5 min at 170
◦
C on

hotplate. Spin coat chip with PMMA 500k 4%, 1s at 800 rpm, 30 s at 5000 rpm.
Bake for 2 min at 170

◦
C on hotplate. Expose resist in SEM at U = 10 kV with

a dose D0 = 64 µC/cm2. Develop in MIBK:IPA=3:1 for 50 s. Rinse with IPA for
1min. Plasma cleaning for 10 s at 40 W and 2 Torr.

Alternative process: Resist etch mask for reactive ion etching Bake substrate
for 5 min at 170

◦
C on hotplate. Spin coat chip with maN 2403, 3 s at 800 rpm,

30 s at 3000 rpm. Bake chip for 60 s at 90
◦
C on hotplate. Expose resist in SEM

at U = 20 kV with a dose D0 = 50 µC/cm2. Develop in maD 532 for 70 s. Note:
new developer should be applied for each chip. Rinse with DI for 1 min. Place for
t > 4 min in a second beaker with DI. Blow dry. Plasma cleaning for 10 s at 40 W
and 2 Torr.
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Reactive ion etching Place chips in RIE-PP (homebuilt ion etching facility). Use
a drop of Difelin oil to fix to the lower capacitor plate. Etch for 25 min at 100 W
with a flow of 50 sccm CF4 and a pressure p = 5.8× 10−2 mBar.

Partial underetching Expose chip to HF for 50s. Note: use teflon tweezer instead
of steel or carbon tweezer. Threefold rinse with DI. Piranha etch. Threefold rinse
with DI. Blow dry.

Fabrication of cobalt magnets Bake substrate for 5 min at 170
◦
C on hotplate.

Spin coat chip with 2 layers PMMA 150K 4% and 1 layer PMMA 500k 4%, 1s at
800 rpm, 30 s at 5000 rpm. Bake for 2 min at 170

◦
C on hotplate. Remove resist

on top of the markers in order to achieve higher resolution in a first step of electron
beam lithography at U = 10 kV with a dose D0 = 100 µC/cm2. Develop for 50 s
in MIBK:IPA=3:1. Rinse for 1 min in IPA. Write magnet structures in a second
step of electron beam lithography at U = 10 kV with a dose D0 = 175 µC/cm2.
Develop for 60s in MIBK:IPA=3:1. Rinse for 1 min in IPA. Bake on hotplate for 1
min at 100

◦
C. Plasma cleaning for 7 s at 40 W and 2 Torr. Evaporate 75 nm of

cobalt at 0.3 A/ s. Lift-off with acetone. Rinse in IPA for 1 min. Immerse 10 min
in Panasolve 180 at 50

◦
C. Note, that the size of the written structure might differ

from the fabricated structure due to proximity effect.

Fabrication of gold structures with electron beam lithography Bake substrate
for 5 min at 170

◦
C on hotplate. Spin coat chip with 2 layers PMMA 150k 16%, 1

s at 800 rpm, 30s at 3000 rpm. Spin coat chip with 2 layers PMMA 500k 16%, 1 s
at 800 rpm, 30 s at 3000 rpm. Bake for 2 min at 170

◦
C on hotplate. Remove resist

on top of the markers in order to achieve higher resolution in a first step of electron
beam lithography at U = 10 kV with a dose D0 = 100 µC/cm2. Develop for 50 s in
MIBK:IPA=3:1. Rinse for 1 min in IPA. Write magnet structures in a second step of
electron beam lithography at U = 10 kV with a dose D0 = 150 µC/cm2. Develop for
50 s in MIBK:IPA=3:1. Rinse for 1 min in IPA. Clamp chip onto holder for insertion
into UHV evaporation chamber. Evaporate 3 nm titanium, and subsequently 400
nm gold at 2.5 A/ s. Lift-off is no problem due to an undercut of the resist edges.
For Lift-off, immerse chip into Acetone for 20 min. Rinse with IPA. Blow dry.

Fabrication of resist shelter Bake substrate for 5 min at 170
◦
C on hotplate. Spin

coat chip with maN 2403, 3 s at 800 rpm, 30 s at 3000 rpm. Bake chip for 60 s at 90
◦
C

on hotplate. Expose resist in SEM at U = 20 kV with a dose D0 = 150 µC/cm2.
Develop in maD 532 for 70 s. Note: new developer should be applied for each chip.
Rinse with DI for 1 min. Place for t > 4 min in a second beaker with DI. Blow dry.
Plasma cleaning for 10 s at 40 W and 2 Torr.
Alternatively, development can be done with exposure to 1.6 % NaOH for 5 s.
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Full suspension of the mechanical oscillator and removal of the resist shelter
Note, that this step did not work as expected. The following was tried, and showed
the relatively best results. Exposure of chip to HF for 2 min. Threefold rinse with
DI. Blow dry. Plasma cleaning for 500 s at 40 W and 2 Torr in order to remove the
resist shelter completely. The maximum thickness of the shelter is 300 nm, the rate
at which the resist is removed in the plasma cleaning process is > 1 nm/ s.
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