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1 Introduction 

Global Climate Change (GCC) will impact future human livelihood as well as 

demographic, economic and land-use changes (IPCC 2007A, B). Future freshwater 

availability is a key factor for regional development, as not only drinking water but also 

food and energy production, health, and industrial development are all, to a certain extent, 

based on sufficient fresh water supply. In order to mitigate the water-related effects of 

GCC for societies, appropriate adaptation strategies and Integrated Water Resources 

Management (IWRM) options for potential changes must be developed. This in turn 

requires comprehensive knowledge of the future impacts of GCC on the water balance. 

Mountainous alpine headwaters play an especially significant role in the water balance of 

many large river basins. The temporal storage of water as snow and ice during wet 

periods in the high mountains, and its release during subsequent warm and often dry 

melting periods, makes the water release of snow and glaciers extremely important. 

Under these conditions, melt water is the last available water source. The term “water 

towers” hence reflects the importance of mountainous regions as freshwater resources 

(LININGER ET AL. 1998, VIVIROLI AND WEINGARTNER 2004, WEINGARTNER ET AL. 2007). 

However, glaciers are among the most sensitive systems in terms of climatic change. 

Besides air temperature and precipitation, radiation, humidity and several other 

meteorological conditions influence their mass balance and thus their appearance. The 

accelerating retreat of glaciers during recent years is one of the clearest signs of ongoing 

climate change (UNEP AND WGMS 2008), and has made them a symbol for the impact of 

GCC. Furthermore, after glaciers have melted, they will not be renewed in a continuingly 

warming climate. This is unlike snow storage, which is seasonally renewed, although the 

total amount is likely to decrease (BARNETT ET AL. 2005).  

In order to assess the impacts of GCC in the headwater river basins of alpine mountain 

massifs and to establish IWRM systems, approaches and tools in twinning European and 

Asian basins, the Brahmatwinn project was funded as part of the European Commission’s 

Sixth Framework Programme (FP6 2002-2006) (BRAHMATWINN 2006 – 2009). The large-

scale river basins of the Upper Danube in Europe and the Upper Brahmaputra in Asia 

were chosen for the study, because they represent trans-boundary basins with mountain 

headwaters, which supply their densely populated forelands with freshwater. Water 

release of snow and ice from the mountains therefore is crucial for the water balance.  

Common challenges in the basins include droughts, flood protection during spring melt or 

heavy storms, competing water demands from agriculture, hydropower, rural, urban and 

industrial development, pollution and socio-economic and legal issues related to water 

allocation. In order to deduce appropriate IWRM options, Brahmatwinn consists of a 

multidisciplinary consortium with social and natural scientists and engineers from 

universities and small and medium enterprises from Europe and Asia. Additionally, 

stakeholders of both catchments from governmental and non-governmental organisations 

and enterprises were integrated, in order to identify appropriate adaptation strategies 

within a continuous dialogue. The present natural and socio-economic conditions in the 

basins were comprehensively assessed, and subsequent changes and vulnerabilities 
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were identified. Next, the impact of future climatic conditions on water resources was 

simulated for the period until 2080, and accordingly the IWRM system was developed and 

implemented. In order to determine the influence of future climate impact on the water 

balance, comprehensive socio-economic and hydrological simulations were carried out. In 

the latter, all processes such as snow- and ice-melt, precipitation, evapotranspiration, soil 

and groundwater release, and runoff formation in the river bed needed to be captured by 

the model. Since the headwaters of the Upper Brahmaputra are located in the Himalayas, 

which form the largest ice body outside the polar caps, snow and ice represent a unique 

freshwater reservoir in the basin (IPCC 2007C). Their meltwater release in the 

mountainous headwatersheds supports water availability in the large forelands of the 

Brahmaputra, and the future development of these reservoirs therefore is of particular 

importance in the modelling. To enable the capturing of all the processes, process 

knowledge about the Upper Danube River basin, which was developed within the project 

GLOWA-Danube (GLOWA-DANUBE 2001-2010), was applied to the Upper Brahmaputra. 

Adaptations of the GLOWA-Danube approach were required for various natural conditions 

such as, for example, the monsoonal climate and the related runoff regimes, while 

enhancements to reflect general conditions such as sparse data availability also had to be 

implemented into the model.  

1.1 Climate Change and Glaciers in the Himalayas 

The further increase of air temperature due to rising greenhouse gas concentrations in the 

atmosphere is now commonly accepted, whereas the resulting future rate of glacier 

shrinkage and the date of their disappearance are quite hotly debated. The predicted melt 

from Himalayan glaciers in 2035, published by the United Nations Intergovernmental 

Panel on Climate Change in its 2007 report (IPCC 2007C, P. 493), and afterwards 

assessed as not substantial (IPCC 2010), recently brought the impact of GCC on glaciers 

in High Asia into public and scientific focus, as discussions at the last American 

Geophysical Union Fall meeting (KARGEL ET AL. 2009) or recently published papers 

demonstrate (e.g. ALFORD AND ARMSTRONG 2010, THAYYEN AND GERGAN 2010).  

Studies of present glacier responses to GCC in the Himalayas show considerable 

variation due to widely varying mountain climatic conditions in the Himalayas. The 

variations range from glaciers in a steady state, or even sporadically advancing, to those 

retreating sharply. For instance, individual glaciers in the Karakoram expanded because 

of increasing precipitation (HEWITT 2005), whereas the Gangotri glacier retreated 23 m per 

year between 1985 and 2001 (HASNAIN 2001).  

As well as the ambiguous future development of glaciers, both the influence of glacier 

meltwater release on fresh water supply and the impact of GCC on water availability are 

also controversial in the Himalayas. Due to growing water demands and an increasing 

temperature combined with precipitation changes, water shortage is likely to increase in 

South Asia, according to the IPCC (2007C). Increasing glacier melt water supply, which 

accounts for over 10 percent of runoff in drier regions, will alleviate the situation slightly. 

After the melt from glaciers, a further decrease in discharge is expected (IPCC 2007C). 

BARNETT ET AL. (2005) assume severe impacts especially in China, India and parts of Asia, 
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forming the Himalaya-Hindu Kush region, where glacier meltwater is assessed in general 

as forming 50 to 70 percent of the summer water flows in major rivers. As in the IPCC 

statement, an increased or steady meltwater release from glaciers, followed by a 

decrease after the melting, resulting in water shortages and droughts during dry seasons 

in some regions, is here presumed to be likely (BARNETT ET AL. 2005). These results are 

confirmed for Central Asia by further studies (CASASSA ET AL. 2009, REES AND COLLINS 

2006, SINGH AND KUMAR 1997).  

In contrast, THAYYEN AND GERGAN (2010) point to the varying climatic and hydrological 

conditions along the Hindu Kush – Himalayas, which result in differing influences of ice-

melt water on runoff. In the eastern parts, where the Brahmaputra basin is located, they 

find monsoon precipitation having a major influence on runoff, and ice-melt a minor 

influence. In a small test basin with a glacerization of about 10 percent, the supply of ice-

melt is assessed at between 7 and 13 percent. The future glacier melt water need not 

increase runoff in these regions (THAYYEN AND GERGAN 2010). Shifts in the timing and in 

the amount of the monsoon precipitation are quite significant for future water availability in 

the eastern Himalayas (BENISTON 2003).  

The previous overview of studies of present glacier responses to GCC in the Himalayas 

and their influence on fresh water supply shows uncertainties in future development of 

glacier ice reservoirs and the amount of melt water release. To clarify the controversial 

role of glacier melt water among the other water balance variables, the detailed 

consideration of precipitation, snowmelt, evapotranspiration and ground- and soil-water 

storage in addition to glacier modelling is required under present and past climatic 

conditions. Thus, quantification of ice melt in correlation to the other components is 

enabled. To overcome deficits of general, non-distributed simulations and conclusions in 

previous analyses, the varying climatic and hydrological conditions in the Himalayas have 

to be considered in these studies. 

1.2 Scientific Objectives and Outline of the Thesis 

The objective of this thesis is the development and utilization of a distributed modelling 

approach to determine the impact of GCC on glaciers, and their influence on future water 

availability in a Himalayan river basin under past and future climatic conditions. For this 

purpose, the spatial heterogeneity of complex basins with mountainous headwatersheds 

(for example, the Himalayas), and forelands with large river valleys, such as the 

Brahmaputra in Assam, needed to be captured synchronously by the model. This allows 

the simulation of all relevant processes under varying climatic conditions and varying 

hydrological regimes, with, for instance, the temporal storage of water as snow and glacier 

ice, and its later release. 

The simulation of the amount of melt water released by a glacier is a further objective. As 

this depends on the snow-free area of the glacier (see section 3.2), a simulation of the 

duration of snow cover on all parts of a known glacier surface is required. Together with 

the energy balance of the ice surface, the amount of ice-melt water can be computed. The 

ice thickness distribution over the glacierized area, or in other words, the geometry of the 
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glacier ice reservoir, should be considered. This also includes likely geometry changes 

under future climatic conditions where necessary. 

In order to determine the influence of glacier melt water on runoff, a separation of the 

portion of glacier meltwater from the total river runoff throughout the whole catchment is 

also required. A runoff routing component is therefore required in the hydrological model 

to simulate the flow of meltwater in the river channel. 

The model should also be applicable under future climatic conditions. As a consequence, 

the use of universal parameters, the conservation of mass- and energy balances and a 

strict foundation on physical principles are objectives for the applied modelling approach 

(MAUSER AND BACH 2009, MOORE ET AL. 2009).  

In addition, it should be possible to apply regional climate model (RCM) outputs as future 

meteorological drivers. Bridging the gap between different scales of data and processes 

therefore needs to be feasible. The spatial resolution of RCMs is in the range of 100 to 

1000 km², whereas the area of alpine glaciers often varies from a few ha to several km². 

For the process description of the landsurface, which is limited by the area of the test 

basin as well as the availability of input data, a resolution of the order of 1 km² is adequate 

according to MAUSER AND BACH (2009).  

An application in remote regions with sparse data availability, as it often is the case in the 

Himalayas because of missing observations, is the final goal of the modelling approach 

presented. 

In order to achieve the objectives described above, expertise from the Upper Danube 

River basin, developed within the GLOWA-Danube project (GLOWA-DANUBE 2001-2010), 

is transferred to Asia and adapted to the prevailing conditions, such as different land use 

properties. The integrated model is applied under past and future climatic conditions in the 

Lhasa River basin in Tibet, a sub-basin of the Upper Brahmaputra. The natural conditions 

of the basin, determining the processes to be captured by the modelling approach, are 

described in Chapter 2. For this purpose geology and geomorphology, climatology and 

hydrology of the basin are introduced. The characteristics of the soils and the land cover 

and land use are also explained. Finally, the properties of the glaciers in the investigation 

area are specified.  

In Chapter 3, the modelling approach is explained in detail. First, an overview of the 

PROMET hydrological model (MAUSER AND BACH 2009), including the SCALMET 

meteorological coupling tool (MARKE 2008) to use RCM outputs as meteorological drivers, 

is given (section 3.1). Next, the configuration of the SURGES glacier model (WEBER ET AL. 

2008, PRASCH ET AL. 2009) is explained in detail (section 3.2). Since few data are 

available from the Lhasa River basin, the derivation of the input data required to run the 

model framework is introduced in Chapter 4. The emphasis thereby is on the description 

of the generation of the glacier characteristics to run SURGES. The model validation 

includes verification of the functionality of the glacier model and justification of the input 

data derivation. The utilization of the RCM data as meteorological drivers, which was done 

for the first time in this region, is checked in detail. After the application of the model 

approach in the investigation area is presented (Chapter 5), the results are introduced. 
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They contain a brief introduction of the applied climate scenarios and an analysis of the 

present and future climatic and hydrological conditions with an explanation of future 

glacier coverage. The influence of glacier melt on runoff is analysed in detail in Chapter 6. 

Finally, the model results are discussed and an outlook is given in the conclusion (Chapter 

7). The thesis ends with a summary of the research (Chapter 8). 
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2 The Lhasa River Basin 

The Lhasa River basin is located in the southern part of the Tibet Autonomous Region of 

the People’s Republic of China in Central Asia along the northern ranges of the Himalayas. 

The watershed of the Lhasa River, locally known as Kyi Chu, defines the basin until its 

mouth at the Yarlung Tsangpo, in India called Brahmaputra, southeast of Tibet’s capital 

Lhasa. With an area of 32,500 square kilometres it is ranked among large-scale 

catchments. The geographical coverage of the basin stretches from 29° to 31.3° Northern 

Latitude and from 90° to 93.4° Eastern Longitude. Figure 2.1 shows the topographic map 

of the Lhasa River catchment, as well as the location in Central Asia within the Upper 

Brahmaputra River basin including political boundaries. 

 

Figure 2.1: Geographical position and topographic map of the Lhasa River (Kyi Chu) basin as sub 
basin of the Upper Brahmaputra catchment in Central Asia (based on ESRI (1999-2008), JARVIS ET 

AL. (2006) and REISE-KNOW-HOW VERLAG (2005)).  
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The capital Lhasa and its surroundings within the Lhasa River catchment are the political, 

economical and cultural centre of Tibet (DAJUN 1995). According to the population census 

of China (DEPARTMENT OF POPULATION, SOCIAL, SCIENCE AND TECHNOLOGY STATISTICS OF 

THE NATIONAL BUREAU OF STATISTICS OF CHINA AND DEPARTMENT OF ECONOMIC 

DEVELOPMENT OF THE STATE ETHNIC AFFAIRS COMMISSION OF CHINA 2003) the prefecture 

of Lhasa, which largley coincides with the Lhasa River catchment, has approx. 474,500 

residents (excluding the army), rising to 18 percent of the whole population in Tibet.  

50 percent live in the capital city, where the population density of 4,207 residents per km² 

is comparable to that of Munich. Outside the city, it decreases to eight inhabitants per km². 

Due to recent Chinese political activities, e.g. the completion of the Qinghai-Tibet railway 

between Golmud and Lhasa in 2006, the population is currently increasing. Furthermore, 

the natural conditions (see section 2.1 - 2.6) of the region around Lhasa permit crop 

farming in addition to the semi-nomadic herding that prevails in Tibet. Agriculture still 

dominates Tibetan economy, although as part of political activities industrial locations 

have been installed for the production of textile and handicrafts as well as for mining and 

electricity. Additionally, tourism has become more important during the last decade 

(DREYER 2003), and so energy and water demands are increasing. There are also plans 

to install hydropower plants for energy production (DAJUN 1995). As the Lhasa River 

catchment is partially glacierized, mainly along the northeastern watershed in the 

Nyainqêntanglha Mountains, one of the main glacierized regions of Central Asia (YAO ET 

AL. 2006), meltwater release influences water availability in the catchment. Finally, as one 

of the test sites of the Brahmatwinn project (BRAHMATWINN 2006 - 2009), the region was 

visited during a field trip in September 2006, and so at least some sparse observation 

data are available. Taking into account the characteristics explained above, together with 

assessments of the impact of future climate change on the Tibetan Plateau in several 

studies (CHRISTENSEN ET AL. 2007, LI ET AL. 2008, LIU AND CHEN 2000, YAO ET AL. 2006, 

YOU ET AL. 2007, ZHU ET AL. 2001), the Lhasa River catchment can be regarded as an 

appropriate test site for the analysis of the influence of glaciers and their melt water 

release on water availability under future climatic conditions.  

In the following chapter the physio-geographic conditions, including the glaciological 

setting, of the catchment are described in order to provide an overview of natural 

conditions in the basin. 

2.1 Geology and Geomorphology 

Geologically, the Lhasa River basin is located on the Lhasa terrane, which is separated 

from the Qiangtang terrane in the north by the Bangong-Nujiang suture and from the 

Indian terrane in the southern part by the Yarlung Tsangpo suture zone. This suture zone 

is identical to the rim of the Eurasian and Indian tectonic plate along the Himalaya 

Mountains. Between 50 and 55 million years ago, during the Eocene epoch of the 

Cenozoic Era in the Tertiary period, the Indian plate began to collide with the Eurasian 

plate. This continent-to-continent collision created a double thickness of crust and caused 

the uplift of the Tibetan Plateau as well as the formation of the highest mountain range in 

the world, the Himalayas. Since the Indian plate is still moving northeast against the 
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Eurasian plate, the formation and uplift continues today. Due to tectonic activity, 

earthquakes are frequent in the Lhasa river basin. The Yangbajing Graben, along the 

Nyainqêntanglha Mountains, is one of Tibet’s especially active tectonic zones (PRESS AND 

SIEVER 1994, DAVIS ET AL. 2002, HE ET AL. 2007).  

 

Figure 2.2: Geological Map of the Lhasa River Catchment (modified to DAVIS ET AL. (2002) and 
CHEN (1990)). 

Figure 2.2 gives an overview of the main geological units of the Lhasa river basin 

according to the Geological Map of China (CHEN 1990). Stratigraphy of the basin starts 

with the Pre-Sinian Complex of the Precambrian era: the Nyainqêntanglha Mountains, 

consisting of a sedimentary sequence from the Carboniferous to the Cretaceous period, 

follow. In the northern parts, Jurassic and Cretaceous rocks are widely exposed, 

deposited as sandstones and shale during the subduction of the Thetyan ocean floor, 

whereas in the central regions Carboniferous and Permian rocks are found, which are 

mainly marble. In the central and southern parts of the catchment, uncategorized areas 

between Cretaceous and Tertiary and some Tertiary strata are exposed. Triassic, Jurassic 

and Cretaceous rocks appear in the southern areas around Lhasa. The northern part of 

the Yangbajing Graben is covered by Quaternary alluvium, and the river valleys are filled 

with glacial gravels. The relicts of the glaciation during the Pleistocene formed the 

landscape along the Nyainqêntanglha Mountains and around isolated mountain groups. 
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Due to magmatic intrusions, granite, granodiorite and diorite are spread over the 

catchment. In the northern and central parts, the intrusions are categorized to the Late 

Yanshanian epoch between 110 to 60 Ma: in southern parts they are classified as from 

the Late Yanshanian - Himalayan to the Himalayan epoch, which started approx. 60 Ma 

ago (HÖVERMANN AND LEHMKUHL 1994, PAN ET AL. 1993, CHEN 1990, YI AND XIURONG 

1999). 

 

Figure 2.3: Relief of the Lhasa River Catchment based on the digital elevation model from the 
Shuttle Radar Topography Mission SRTM (JARVIS ET AL. 2006). 

Due to the uplift of the Tibetan Plateau, the Lhasa River basin is characterized by an 

extraordinary mean elevation of 4,888 m a.s.l. The relief (Figure 2.3) stretches from  

3,535 m a.s.l. at the conjunction of the Kyi Chu and the Yarlung Tsangpo, up to 7,162 m 

a.s.l. at the peak of the Nyainqêntanglha Feng in the Nyainqêntanglha Mountain range 

along the northwestern watershed. Only the river valley of the Kyi Chu around Lhasa, with 

a width of about five kilometres, and some tributary valleys in the south-western and 

central parts of the basin are below 4,000 m a.s.l., covering seven percent of the area. 

Fluvial processes as well as sand fields and dunes are characteristic of this 

geomorphologic zone (LEHMKUHL ET AL. 2002). As well as these valleys, the ten-kilometre-

wide Yangbajing Graben, with elevations of between 4,000 m and 4,500 m a.s.l., and the 

source of the Miti Tsangpo in the northeast both form flat areas. Torrent valleys and gully 

erosion are distinctive in this zone (LEHMKUHL ET AL. 2002). In contrast, 75 percent of the 

catchment is characterized by mountainous relief of up to 5,500 m a.s.l., with relative 

altitude differences of 500 to 1,000 m and slopes of 20 to 40 degrees. They belong to the 
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steppe gully zone, where periglacial processes occur at above 5,100 m a.s.l. (LEHMKUHL 

ET AL. 2002). In the western basin on both sides of the Yangbajing Graben and the 

Nyainqêntanglha Mountains, steep slopes and the highest elevations are reached, with 

several peaks rising to above 6,000 m a.s.l. These mountains are cut by trough valleys, 

mainly sloping in a northwestern to southeastern direction. Most of the glaciers in the 

basin are located there. The dominant geomorphologic processes are glacial erosion and 

solifluction (LEHMKUHL ET AL. 2002). Apart from the trough valleys, the catchment in 

general slopes from northeast to southwest, cut by river valleys in this direction, although 

there are a also few with a northwest to southeast orientation.  

2.2 Climatology 

Its location on the Tibetan Plateau determines the climate of the Lhasa River catchment. 

Despite its latitudinal position in the subtropics, it is included in the ice and snow climate 

zone E, according to the climate classification by Köppen and GEIGER (1961), a zone 

characterized by an average temperature in the warmest month of below 10°C (DOMRÖS 

AND GONGBING 1988). A more differentiated pattern of climatic conditions is given in the 

classification by the CHINESE ACADEMY OF SCIENCES (1984), considering air temperature, 

air moisture and the growth of cultivated plants in the classification scheme. The 

classification is composed of climate zones (H III or H IV), climate types according to 

moisture (A, B or C) and the number of days with frost conditions (1, 2 or 3) (LEBER ET AL. 

1995). Table 2.1 lists the characteristics of the classes in the investigation area. Their 

spatial distribution is illustrated in Figure 2.4. 

Table 2.1: Characteristics of the climate classification zones of the CHINESE ACADEMY OF SCIENCES 

(1984) (modified consistent with LEBER ET AL. (1995)). 

Class Zone / Type 

Mean air 

temp. of 

the 

warmest 

month  

[°C] 

Number 

of days 

with 

mean air 

temp.  

0°C 

Annual 

accumu-

lation of 

mean 

daily air 

temp.  

0°C 

Aridity-index 

(annual 

potential 

evapotrans-

piration to 

annual 

precipitation) 

Accumu-

lated 

precipi-

tation from 

March to 

May  

[mm] 

Mean 

lowest air 

temp. of 

the 

warmest 

month  

[°C] 

Days from 

June to 

September 

with lowest 

air temp.  

 0°C 

H III 
Temperate 

zone 
10 – 8 

180 – 

350 

1,500 – 

4,200 
    

H IV Subfrigid zone 6 – 10 
120 -- 

180 

1,000 – 

1,500 
    

A Moist type     1.0  80   

B 
Semi-moist 

type 
   0.5 – 0.99 30 – 80   

C Semi-arid type    0.25 – 0.49 10 – 30   

1 
Mainly frost 

free 
      5 0 

2 
Slightly frost 

prone 
      3  1 

3 Frost prone       3 1 
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The Lhasa River basin is thereby mainly classified in the temperate climate zone (H III), 

with mean annual air temperatures of between 6 and 8°C in the southern part (1, 2)  

(e.g. Lhasa or Nimu) and between 0 and 5°C in the northern part (3) (e.g. Damshung). 

June is the warmest month, when mean monthly temperatures vary from 10°C in the north 

to 17°C in the south. The Nyainqêntanglha Mountains along the north-western borderline 

are ranked within the subfrigid zone (H IV) due to their higher elevation and subsequently 

lower temperatures. There, the mean annual temperatures range between -2 and -3°C. 

Permafrost soils, therefore, often develop. Temperatures from 6 to 10°C are reached 

during the warmest month. The snowline stretches from 5,800 to 6,000 m a.s.l. (KAISER ET 

AL. 2006). As a consequence, only the Nyainqêntanglha Mountains are permanently 

snow-covered. 

The climate types relating to humidity are determined by the aridity index, which in turn is 

defined by the ratio of annual potential evapotranspiration to annual precipitation, as well 

as by the precipitation sum from March to May. These types reproduce the direction of the 

summer monsoon precipitation, which starts in April in the southeast of Tibet and 

advances to the northwest. The easternmost region of the basin is classified as moist (A), 

with a precipitation sum of 600 to 800 mm (e.g. Jiali). The semi-moist type (B) follows, 

covering most of the basin (e.g. Meldro Gungkar). In this region, the summer monsoon 

starts in late May and delivers between 400 and 550 mm of precipitation until its end in 

early October. In July and August, more than 100 mm of average precipitation falls per 

month, accounting for at least 50 percent of annual precipitation. Along the 

Nyainqêntanglha Mountains, orographic precipitation falls when the monsoon strikes, 

especially in the southeast oriented valleys. The mountain range therefore marks the 

border between the semi-moist (B) and semi-arid (C) climate types along the northeastern 

edge of the basin. Coming to the southwestern regions, the monsoon starts later, in June, 

and precipitation decreases, reaching totals of between 300 and 450 mm. Additionally, 

lower elevation and higher temperatures, together with extremely high solar radiation 

resulting from the high elevation and the latitude, lead to arid spring and autumn months 

with high potential evaporation rates. The climate is therefore classified as semi-arid (C) 

(e.g. Lhasa). Moreover, a strong diurnal temperature course and high inter-annual 

variations in precipitation are characteristic of the whole catchment. For example, between 

230 and 614 mm of annual precipitation were recorded at the Lhasa climate station 

between 1980 and 2004 (ICIMOD 2009). Since the monsoon is delayed in some years, 

the already short wet season of between 110 and 140 days is even further shortened, and 

can cause droughts in the worst cases. Reasons for these large differences can be found 

in circulation changes: on one hand, increasing winter surface pressure over the Tibetan 

Plateau and decreasing surface pressure in Siberia might strengthen the Tibetan High, 

which often leads to more precipitation and higher temperatures over the Tibetan Plateau. 

On the other hand, steeper pressure gradients from south to north due to increasing 

pressure over the North Indian Ocean, together with higher temperatures during the 

monsoon season, enhance the transport of moisture to the Tibetan Plateau. Hence, the 

region receives more precipitation (KANG ET AL. 2007). 
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The winter months are arid throughout the catchment due to dry air masses from the north 

and northeast. Only in the easternmost parts do warm fronts of the winter monsoon from 

the Bay of Bengal sporadically bring moist air masses. Snowfall is consequently rare, only 

in the H III A zone are snow and hailstorms frequent, from November until May. As solar 

radiation is extremely high because of the altitude (latitude), fallen snow melts away 

before noon in most parts of the catchment. From December to February, mean winter 

temperatures register slightly below 0°C in the southern, lower parts of the basin along the 

river valleys. They are classified as mainly frost free (1) or slightly frost prone (2), although 

the absolute minimum varies to around -10°C. In the northern part, this value represents 

the mean winter temperature, with an absolute minimum of about -24°C. Mean monthly 

temperatures of below 0°C are recorded from November until March. Accordingly, the 

region is classified as frost prone (3). The following figure gives an overview of the climate 

zones of the Lhasa River catchment and shows representative climate station data (LEBER 

ET AL. 1995, CHU ET AL. 2007, ICIMOD 2009). 

 

Figure 2.4: Climatic sub-regions of the Lhasa River catchment with representative climate diagrams 
(based on CAS (1984) according to LEBER ET AL. (1995) and ICIMOD (2009)). 
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2.3 Hydrology 

The Lhasa River or Kyi Chu is the largest tributary, in the middle reach of the Yarlung 

Tsangpo, among five major tributaries in Tibet. Its catchment has an area of 32,800 km² at 

the junction with the Yarlung Tsangpo at Qushui, and delivers an average annual runoff of 

335 mm or 279 m³/s, measured at the gauge in Lhasa, which is the last before the river’s 

mouth. The Lhasa River is formed by the confluence of the Rong Chu and the Reting 

Tsangpo at the gauge of Pangdo. The sources of the Rong Chu are located in the 

Western Nyainqêntanglha Mountains, which form the watershed of the Lhasa River as 

well as of the Yarlung Tsangpo. Hence, they build the borderline between the exterior 

drainage system with the delta in the Bay of Bengal in the Indian Ocean and the 

endorheic basins of central and northern Tibet. The Reting Tsangpo originates in the 

northeastern part of the catchment, called Miti Tsangpo in the headwaters. After passing 

Lhasa, the Toelung Chu joins the Lhasa River, which also originates in the glacierized 

area of the Nyainqêntanglha Mountains. In the west and east of the basin, small 

catchments adjoin the Lhasa River basin. 

 

Figure 2.5: The Lhasa River basin with sub-basins and mean monthly runoff at the gauging stations 
Yangbajing, Pangdo, Tangga and Lhasa (based on ITP (2008), JARVIS ET AL. (2006), GARBRECHT 

AND MARTZ (1999)). 
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The Lhasa River is primarily fed by precipitation (46%), especially in its lower reaches. 

Meltwater from snow and glaciers (26%) and groundwater (28%) are its main sources in 

the upper reaches (DAJUN 1995, LIU ET AL. 2008, NING ET AL. 2001). The runoff regimes at 

the four gauging stations of the catchment for which data is available are similar. The 

temporal distribution of the mean annual runoff is shown, together with the watersheds of 

the sub-basins, which were derived from a Digital Terrain Model (JARVIS ET AL. 2006) 

using the TOPAZ software (GARBRECHT AND MARTZ 1999), in Figure 2.5; Table 2.2 gives 

an overview of the area, the glacial coverage and the mean annual discharge of the Lhasa 

River basin and its sub-basins. Due to the pronounced wet season during the summer 

monsoon and the dry season lasting the rest of the year, the runoff shows a clear 

seasonal cycle, with the flood peak reached in August. About 90 percent of the mean 

annual runoff is observed between May and November. As monsoon precipitation is the 

dominant factor in the runoff regime, it can be classified as a pluvio-nival regime where 

snow and ice-melt plays a secondary role in spring and autumn. In the winter season, 

runoff is low, because the rare precipitation falls as snow, which is mainly sublimated due 

to the dry air and extreme solar radiation in the lower regions. In higher areas it 

accumulates. Baseflow and small amounts of meltwater release contribute to the winter 

streamflow. Inter-annual variations in the runoff are high, for example, at the Lhasa gauge 

the discharge varied between 171 and 461 m³/s from 1956 to 2003 (ITP 2008), which 

approximates a variation of minus 50 to plus 100 percent. 

Table 2.2: Basin areas and glacierized areas of the Lhasa River basin and sub-basins (based on 
ITP (2008), JARVIS ET AL. (2006), GARBRECHT AND MARTZ (1999)). 

Basin gauge Area [km²] Glacierized area [%] Mean annual runoff [m³/s] 

Mouth of Lhasa River 32,798  2.0 No data 

Lhasa 26,339  1.3 279 

Tangga 20,195  1.7 204 

Pangdo 16,496  2.0 237 

Yangbajing   2,719 11.5 23 

Fertilizers and chemical pesticides are applied sparsely, and sewage drainage is rare, so 

water quality in the Lhasa River basin is good. According to DAJUN (1995) 88 m³ of water 

are available per capita per day.  

Although hydropower potential is estimated at 2,560,000 kW, which means 7.76 kW per 

capita, hydroelectric utilization is small at the moment. 83 medium- and small 

hydroelectric stations with a capacity of 26,124 kW were built as key stations of the Lhasa 

River Electric Net before 1983. Irrigation is subordinate, because only about 0.5 percent of 

the catchment is irrigated at present. For this purpose, 31 irrigation channels with a total 

transfer capacity of 115.5 m³/s and 14 reservoirs with a capacity of 26.37 m³ have been 

implemented downstream of the Tangga gauge (DAJUN 1995). 
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2.4 Soils 

The Harmonized World Soil Database (FAO ET AL. 2009), based on the Soil Map of China 

(SHI ET AL. 2004), provides detailed information about soil units and soil texture in the 

Lhasa River basin. Figure 2.6 shows the distribution of soil units in the investigation area, 

and Figure 2.7 gives an overview of the spatial distribution of the soil texture classes.  

 

Figure 2.6: Soil Units (FAO 90 classification system) in the Lhasa River catchment according to the 
Harmonized World Soil Database (version 1.1) (based on FAO ET AL. (2009)). 

Cambisols, which are weakly- to moderately developed soils, are predominant, especially 

in the higher areas. They are mainly composed of loamy sands. Permafrost occurs on the 

mountain tops along the Nyainqêntanglha Mountains. The diurnal freeze-thaw changes 

which determine the weathering processes and affect the soils are characteristic. Gleysols 

appear in the Lhasa River valley around Lhasa, the Toelung Chu valley and along the 

Reting Tsangpo, as well as in the northeastern area where the Miti Tsangpo has its 

sources. As well as loamy clays, sandy loam covers poor clay loam in some parts. In the 

central valley of the Rong Chu and the Kyi Chu around Pangdo, histosols composed of 

organic material can be found. Temporarily or permanently active flood plains and a high 

groundwater level are characteristic of these alluvial soils, which are composed of clay 

loam. Podzols with poor clay sands occur along parts of the Yangbajing Graben and on 

hill slopes in the central and southern river valleys. Additionally, isolated aeolian sand 

fields can be found in the catchment, due to sandstorms, resulting in loess in some areas, 

which permits little agricultural use. Sporadically, the soil units of Luvisols, Greyzems, 
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Chernozems and Arenosols occur in the catchment. Silty soils can be ignored, having a 

percentage below one (FAO ET AL. 2009, KAISER ET AL. 2006, SMITH ET AL. 1999). 

 

Figure 2.7: German soil texture classes according to the Harmonized World Soil Database (version 
1.1) and its percental distribution in the Lhasa River catchment (based on FAO ET AL. (2009)).  

2.5 Land Cover and Land Use 

The Lhasa River catchment is classified into the dry midlatitudes ecozone, with grass 

steppe as its dominant land cover type, according to SCHULTZ (2005). Due to its 

geographical location and corresponding climatic, hydrological and pedological conditions, 

alpine grass- and shrublands prevail in the natural vegetation. Only a few juniper forests 

and riparian forests can be found along the wide river valleys, where even small wetlands 

exist. In the higher regions, bare rock and gravel are dominant in the paths of glaciers. 

Above 5,800 m a.s.l., snow follows, mainly along the Nyainqêntanglha Mountains (KAISER 

ET AL. 2006, MIEHE ET AL. 2000).  

Physio-geographic conditions determine land use. Most of the area is used as pasture 

land, where semi-nomadic herding is practised. Hence, settlements are rare and small. 

Only the capital of the Tibet Autonomous Region, Lhasa, features as a residential area in 

the land use and land cover classification of the basin, which is derived from the NASA 
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TERRA / MODIS land cover product (BOSTON UNIVERSITY 2004) and is illustrated in  

Figure 2.8. Along the river valleys in the south, climatic conditions enable the cultivation of 

arable land. Barley is predominantly cultivated, due to its adaptability to the rough climatic 

conditions. Accompanied by milk, butter and a little yak meat, it is the staple food of the 

Tibetans. In recent decades, the cultivation of vegetables has been promoted to Chinese 

people settling in the Lhasa River basin. Greenhouses were built to extend the growing 

season, usually spanning from May to October, although annual variations are large due 

to the varying precipitation patterns of the monsoon (see section 2.2). Moreover, heavy 

grazing and wood-cutting for fuel also causes badlands and erosion in the Lhasa River 

basin (CHU ET AL. 2007, KAISER ET AL. 2006). 

 

Figure 2.8: Land use and land cover distribution in the Lhasa River basin modified consistent with 
the NASA TERRA/MODIS land cover product (BOSTON UNIVERSITY 2004). 

2.6 Glaciers of the Lhasa River Catchment 

The Nyainqêntanglha Mountains are one of the main glacierized areas of Central Asia, 

alongside the Himalayas, the Kunlun Shan, the Karakorum and the Tian Shan ranges. 

7,080 glaciers cover an area of 10,701 km², and amount to a volume of 1,002 km³ in total 

(YAO ET AL. 2006). Parts of the Western Nyainqêntanglha Mountains form the north-

western watershed of the Lhasa River basin. Hence, most glaciers of the basin are 

located there, aided by the orientation of the valleys to southeast, where the monsoon 
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comes from, triggering orographic precipitation. West of Lhasa, on both sides of the 

Yangbajing Graben as well as at the peaks in the north-western basin, where the 

Nyainqêntanglha Mountains stretch over to their eastern range, glaciers can be found 

(see Figure 2.8). Altogether they cover 670 km², equating to 2.1 percent of the total basin 

area. In the sub-basins, the percentage is higher due to the smaller sub-basin area. The 

Yangbajing sub-basin holds the highest glacial coverage, with 11.5 percent. Table 2.2 lists 

the glacial coverage of the sub-basins of the Lhasa River catchment.  

Forty percent of the glaciers in the basin can be classified as mountain glaciers according 

to the Chinese Glacier Inventory (WDC 2009). This primary class includes glaciers 

adhering to mountainsides, and comprises cirque, niche and crater glacier types as well 

as hanging glaciers and groups of small ice units (RAU ET AL. 2005). The mountain 

glaciers are distinguished from valley glaciers by not yet having developed or by already 

having melted out of a valley. The Xibu Glacier, originating in the Nyainqêntanglha Feng 

with 7,162 m a.s.l., is the largest example of a valley glacier in the test site, with an area of 

31 km². As well as the glaciers along the mountain range, valley glaciers can also be 

found in the western area southeast of Mount Qungmoganzê (7,048 m a.s.l.), and the 

many trough valleys along the Nyainqêntanglha Mountains indicate the retreat of former 

valley glaciers into mountain glaciers. About 15 percent rank as glacierets, very small ice 

or snow masses without ice movement. They can be found all over the catchment, but in 

the north-eastern region they are predominant. Especially in this region, rock glaciers also 

occur, documenting permafrost regions. Figure 2.9 illustrates the afore-mentioned glacier 

types and their distribution in the Lhasa River catchment. 

 

Figure 2.9: Distribution of glacier classes with illustrated examples in the Lhasa River basin (based 
on GOOGLE EARTH (2010), JARVIS ET AL. (2006), USGS (2009) and WDC (2009)). 
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All glaciers in the Lhasa River catchment rank among the polythermal (obsolete sub-polar) 

types (YAO 2006), which are characterized by a basal ice layer at the melting point, 

overlaid by a layer of cold ice. The surface layer above can seasonally warm to the 

melting point (PATERSON 1994). Due to climatic conditions (see section 2.2) accumulation 

and ablation are determined by the monsoon, and interact with each other. During the 

summer months the monsoon brings snow in the higher regions, although snow and ice-

melt can occur depending on the air temperature. Measurements taken at the Lanong 

glacier close to the Nyainqêntanglha Feng show that snowmelt occurs during summer at 

an elevation of 5,800 m a.s.l. The beginning and ending of the monsoon precipitation 

determine the length of the dry period, with high solar radiation input before and 

afterwards promoting snow and ice-melt (KANG ET AL. 2007).  

Since the Little Ice Age of about 1890, the glaciers in Central Asia have been retreating in 

general, although there were periods with positive mass balance and advancing glaciers 

during the late 1960s and 1970s. Since then, almost all glaciers have been retreating, 

especially during the 1990s when an intensification of melting was recorded as a result of 

the increasing temperatures on the Tibetan Plateau resulting from climate change.  

Table 2.3 gives an overview of the glaciers advancing and retreating in High Asia in 

different periods from 1950 onwards (YAO ET AL. 2006).  

Table 2.3: Advancing and retreating glaciers in High Asia from 1950 (YAO 2006, p. 277). 

Time Glaciers Retreating  
glaciers [%] 

Advancing 
glaciers [%] 

Stationary  
glaciers [%] 

1950 – 1970 116 53.44 30.17 16.37 

1970 – 1980 224 44.2 26.3 29.5 

1980 – 1990 612 90 10 0 

1990 to present 612 95 5 0 

Overall, information about glaciers in Asia is sparse: particularly, detailed mass balance or 

ice volume data are hardly ever available. How the impact of future climate change on 

glacier mass balance and its influence on the water balance can be determined in spite of 

this situation is the subject of this thesis, and will be described in the following chapters. 
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3 Distributed, Process Oriented Hydrological and 
Glacier Modelling 

To determine the impact of future climate change on glaciers and subsequently on the 

water balance of large-scale river basins, the modelling framework needs to capture all 

relevant processes in an accurate spatial and temporal resolution under past and future 

climatic conditions. This includes, regarding a glacier, processes for calculating meltwater 

release, and the quantification of further water balance componenents such as 

evapotranspiration, snowmelt, and soil and groundwater release for the calculation of the 

water balance. Hence, a glacier model and a hydrological model have to be coupled. 

Furthermore, the model approach must also be applicable under future climatic conditions. 

It should therefore be based on physical principles, use universal parameters and not 

require calibration. These measures ensure that the model results are valid under 

changing climatic conditions, because correlation derived under present conditions used 

in a calibration may not be valid anymore in the future. In addition, it should be possible to 

apply regional climate model (RCM) outputs as future meteorological drivers. Accordingly, 

energy and mass balances must be closed in coupling with climate models (MAUSER AND 

BACH 2009). Furthermore, bridging the gap between different scales of data and 

processes must be feasible. The spatial resolution of RCMs is in the range of 100 to  

1,000 km², whereas the area of mountain glaciers often varies between a few ha to 

several km². For process description on the landsurface, which is limited by the area of 

the test basin as well as by the availability of input data, a resolution of the order of 1 km² 

is adequate, according to MAUSER AND BACH (2009). The processes acting on a glacier 

are usually below the scale of 1 km² in mountain glaciers. Figure 3.1 illustrates the various 

scales of the processes which should be adequately connected through the modelling 

approach.  

 

Figure 3.1: Correlation of the various spatial scales between the processes and the models applied 
to bridge the gap. 



Distributed, Process Oriented Hydrological and Glacier Modelling 

 21

In this thesis, the glacier model SURGES (Subscale Regional Glacier Extension Simulator) 

(WEBER ET AL. 2008, PRASCH ET AL. 2009) was implemented in the PROMET (Processes 

of Radiation, Mass and Energy Transfer) (MAUSER AND BACH 2009) hydrological model to 

simulate the main glacial and the detailed hydrological processes, whereas the SCALMET 

(Scaling Meteorological variables) (MARKE 2008) tool was used for coupling with RCMs. 

Figure 3.1 illustrates the applied models in the modelling framework bridging the various 

scales of the processes.  

In the following sections, the PROMET model with the SCALMET coupling tool is 

introduced first (section 3.1). Secondly, the SURGES glacier model is described in detail 

(section 3.2). The reasons for choosing these models are explained through description of 

the demands on the models and the state of the art. 

3.1 The PROMET Hydrological Model 

In studies of the determination of glacier meltwater contribution to runoff under changing 

climatic conditions, simple conceptual hydrological models are commonly applied (HAGG 

ET AL. 2007, HORTON ET AL. 2006, HUSS ET AL. (2008), SINGH AND KUMAR 1997 or STAHL ET 

AL. 2008). Daily temperature and precipitation values are usually considered sufficient as 

meteorological input data for the conceptual models. Hence, sparse data requirements 

are a reason for the application of such hydrological models, especially in remote regions, 

although they do not close mass and energy balances. A direct coupling with climate 

models is, therefore, also impossible from the outset (MAUSER AND BACH 2009). 

Furthermore, the models are calibrated under present conditions. The derived correlations 

used in the calibration may change in the future, invalidating the empirical relationships. 

Consequently, the results for future climatic conditions are afflicted by considerable 

uncertainties. Therefore they should not be used for Climate Change impact assessement.  

Moreover, these studies are largely carried out in small basins. A detailed simulation of 

the water flow considering vegetation growth, soil texture, groundwater flows and finally 

their interaction in routing the water in the river channel is therefore neglected. 

Conclusions are then drawn for larger regions according to these studies (SEVERSKIY 

2009, BARNETT ET AL. 2005, CASASSA ET AL. 2009). For example, REES AND COLLINS (2006) 

assessed two hypothetical small river catchments in the Himalayas, and simulated the 

impact of climate change on the glaciers and their influence on runoff. According to the 

simulation results, they concluded the impact of GCC on glaciers and runoff in the 

Himalayas, considering regional differences, but without modelling the water flows 

downstream with the interactions of soil, vegetation, groundwater and other factors. 

Accordingly, these models do not capture the demands for simulations in large-scale river 

basins under future climatic conditions. By contrast, the PROMET (an acronym of 

Processes of Radiation, Mass and Energy Transfer) model used in this study was 

developed in order to study the impact of climate change on the water balance in large-

scale watersheds (A ~ 100 000 km²). It is used within the GLOWA-Danube integrative 

research project (MAUSER AND LUDWIG 2002, LUDWIG ET AL. 2003, GLOWA-DANUBE 2009). 

The spatial heterogeneity of complex basins with mountain headwatersheds (for example 

the Alps) on the one hand, and mountain forelands with large river valleys such as the 
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Danube on the other hand is captured synchronously by the model. This allows the 

simulation of all relevant processes under varying climatic conditions and hydrological 

regimes. To achieve this, PROMET uses distinct components for meteorology, land 

surface energy and mass balances, vegetation, snow and ice, soil hydraulics and soil 

temperature and a groundwater and channel-flow component with hydraulic structures. 

The components fully interact and consider all processes related to water and energy 

fluxes. Within as well as throughout all its components and feedbacks, PROMET strictly 

conserves mass and energy. Figure 3.2 gives a schematic overview of the components 

mentioned and their interfaces for data exchange. 

 

Figure 3.2: Schematic diagram of the components of PROMET and the interfaces between them. 
Boxes indicate components and arrows indicate interfaces through which data is exchanged 
(MAUSER AND BACH 2009, p.365). 

PROMET is a fully spatially distributed raster model, which is used in the study with a 

resolution of 1 x 1 km. It runs in the study on an hourly time step. Together with mass and 

energy conservation, this characteristic forms the basis for coupling with regional climate 

models, which are also usually raster-based. Furthermore, PROMET is not calibrated to 

using measured discharge data to fully exploit the predictive capabilities of the physically 

based approach. It can therefore be used under past as well as future climatic conditions. 

PROMET has already been successfully applied to changing climatic conditions in the 

Upper Danube basin (MAUSER AND BACH 2009).  

In the following paragraphs the components of PROMET are briefly described, except for 

the snow and ice component, where SURGES is implemented and which is explained in 

detail in section 3.2. For a further, more detailed description of the other components, 

please refer to MAUSER AND BACH (2009). 

3.1.1 Meteorological Data Provision 

In order to run PROMET, hourly data of air temperature, precipitation, air humidity, wind 

speed and incoming short and longwave radiation are required per grid cell. The 
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meteorology component provides PROMET with this data through (a) temporally and 

spatially interpolated station recordings or (b) downscaled regional climate models, by 

coupling with the SCALMET scaling tool (MARKE 2008). In the first case, for each time 

step an altitudinal gradient is deduced from the station recordings, which is then applied in 

the spatial interpolation using the elevation of each grid cell in the catchment to determine 

the “gradient” temperature. Secondly, the residuals between observed and gradient 

temperatures at the station locations are calculated. Depending on the inverse squared 

distance between station and grid cell, weighting factors are determined and interpolated 

residuals are added to the gradient temperature field. The measured values are 

consequently preserved. If a temporal interpolation is required, a cubic spline function is 

applied to all meteorological parameters except precipitation. The latter is classified under 

short events for a single recording and under long-term events for consecutive 

observations. Afterwards, the precipitation is distributed to the hours before the single 

event using a Gaussian distribution, or equally distributed in time for the continuous case 

(STRASSER AND MAUSER 2001, MAUSER AND BACH 2009). 

In the second case, PROMET is coupled with the SCALMET scaling tool (Scaling 

Meteorological variables) (MARKE 2008). The tool connects models simulating the 

atmosphere with those operating on the land surface. To apply RCM data as 

meteorological drivers for modelling land surface processes at a spatial resolution of 1 x 1 

km², their coarse resolution, varying from 10 x 10 km² (e.g. REMO) to 50 x 50 km² (e.g. 

CLM) has to be refined. Two methods are common in overcoming the differences 

between the coarse resolution of global climate model (GCM) or RCM outputs and the 

high-resolution glacier or landsurface models (MOORE ET AL. 2009). In the first approach, 

measured meteorological data from the past are modified by adding or subtracting 

differences so that the temperature and precipitation changes of the climate model 

outputs are reproduced (HAGG ET AL. 2007, HUSS ET AL. 2008, SINGH AND BENGTSSON 

2004, SINGH AND KUMAR 1997). The second method applies statistical downscaling 

procedures to GCM or RCM outputs by using correlations between the model outputs and 

meteorological observations in the area of interest. Consequently, future climatic 

conditions are determined using the deduced correlation factors (e.g. RADIC AND HOCK 

2006, HOFER ET AL. 2010, PAUL AND KOTLARSKI 2010). Dynamic downscaling of climate 

model outputs as a third method has not yet been seen in glacier studies (MOORE ET AL. 

2009).  

Since temperature and precipitation are insufficient meteorological drivers to run 

PROMET as deduced by the first method, and no observation data of other variables are 

available to deduce correlations for them as by the second method, the SCALMET tool 

contains methods for all required meteorological input data. In order to adequately remap 

RCM outputs, SCALMET uses different scaling techniques, ranging from direct 

interpolation methods, such as bilinear interpolation, to statistical approaches using 

empirical relations. Furthermore, quasi-physical methods, a combination of physically 

based approaches and statistical methods are also applied (MARKE AND MAUSER 2008). 

Topographical information (elevation, slope, aspect) is included in order to consider 

subgrid-scale heterogeneities and related natural climate gradients, which are particularly 
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important in mountainous terrain. For each time step, the elevation dependency of 

meteorological variables, strongly varying with terrain elevation, e.g. air temperature, is 

analyzed. A linear regression function is determined, which is then applied and these 

variables adjusted. Specific submodels are implemented to downscale wind speed, 

shortwave and longwave radiation (LISTON AND ELDER 2006, IZIOMON ET AL. 2003) to 

account for subscale heterogeneities within the remapping process. To maintain the mass 

and energy balance predetermined by the RCM outputs, special algorithms are integrated 

into SCALMET which systematically assure the conservation of mass and energy 

between the model scales. Since the temporal resolution of some regional climate models 

is less than one hour, a temporal interpolation routine is also implemented following the 

procedure applied for station recordings described above, in order to disaggregate the 

time step values to an hourly time basis. This routine runs prior to the downscaling 

processes.  

The shortwave radiation fluxes can also be determined by using downscaled cloud cover 

values. Firstly, the potential incoming shortwave radiation is calculated, taking into 

account topographic and astronomic parameters (LISTON AND ELDER 2006). Afterwards, it 

is divided into direct and diffuse fractions, taking into account cloud coverage according to 

BURRIDGE AND GADD (1974). Since the downscaling techniques implemented in SCALMET 

are based on physical and statistical approaches, they are completely general and can be 

applied without any further parameterization in various regions. Figure 3.3 gives a 

schematic overview of SCALMET including input and output data (MARKE 2008). 

 

Figure 3.3: Schematic diagram of SCALMET with required inputs and outputs (MARKE 2008, p. 41, 
modified). 

3.1.2 Land Surface Energy and Mass Balances  

In order to close the energy and mass balances for vegetated and non-vegetated land 

surfaces, the land surface energy and mass balances component iteratively solves the 

energy balance equation by altering the surface temperature. Latent, sensible and ground 

heat flux, as well as reflected shortwave and emitted longwave radiation, are considered. 

Furthermore, transpired water vapour is transported into the free atmosphere consistent 
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with MONTEITH (1973) and CAMPBELL AND NORMAN (1998). In this step, the exchange of 

the results of the vegetation component is essential. This component models the water 

transports and carbon allocations in plants as a function of the specific canopy resistance, 

taking into account leaf area index, stomatal resistance, absorbed photosynthetically 

active radiation, temperature, humidity and soil moisture. Here, a distinction is made 

between two sub-components. The first sub-component, which was applied in this work, 

solves the Penman-Monteith equation (MONTEITH 1965) using factors for the water 

transport in plants described by JARVIS AND MORISON (1981) and BALDOCCHI ET AL. (1987). 

Leaf area index, plant height and albedo are taken either from literature, field 

measurements or remote sensing time series (MAUSER AND BACH 2009). In the second 

sub-component, the fully physiological, dynamic plant growth of active vegetation is 

modelled, based on FARQUHAR ET AL. (1980) and described in detail in HANK (2008). 

Accumulation and ablation of snow and ice are also calculated and the results are taken 

into account in closing the energy and mass balances. A detailed description of the ice 

and snow component with the SURGES glacier model implemented is given in section 3.2. 

3.1.3 Soil Processes 

The 4-layer soil hydraulic and soil temperature component calculates the soil water 

content as a function of infiltration, exfiltration, percolation and capillary rise (EAGLESON 

1978) as well as the vertical and lateral flows in and on the unsaturated soil. Due to the 

slope of the grid cells, lateral flows are calculated amongst them (MAUSER AND BACH 

2009). The current temperature of soil is calculated, considering changes in soil moisture, 

soil freezing and soil surface energy balance and snow cover where required (MUERTH 

2008). 

3.1.4 Groundwater Flows 

The water flow in the saturated zone of a catchment and the exchange between the 

saturated zone and both the unsaturated soil layers and the channel network are captured 

by the groundwater sub-component. In addition to the option of coupling with the 

groundwater model MODFLOW (USGS 2010), a linear storage with an assumed time 

constant is allocated for each grid cell of the basin. Exchanges with the bottom soil layer 

through percolation and capillary rise are considered. Each storage element drains to the 

channel due to the time constant, which is defined by the distance to the main river 

channel, under the assumption that the largest distance equals one year of storage time. 

To grid cells lying close to the channel, an interval of one hour is allocated. By linearly 

interpolating between them, the time constant of all grid cells is assessed (MAUSER AND 

BACH 2009). Since the Lhasa River catchment is characterized by its mountainous relief, 

elevation and slope are also considered in the time constant. Hence, for grid cells above 

5,000 m a.s.l. and slopes larger than 20 percent, the time interval is reduced to a fifth; for 

slopes larger than 30 percent it is reduced to one thirtieth. This equals a reduction from 

one week or one month in the second, to one day. 
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3.1.5 Runoff Formation  

Accounting for the processes described, the runoff components of surface, fast and slow 

interflow and base flow are modelled per grid cell. On the assumption that every grid cell 

of the basin is part of the channel network, all cells are linked downstream following 

topography. The flow components are concentrated and routed through the channel 

network according to topography by the channel flow component. Surface flow is directly 

supplied to the channel, whereas interflow is delivered to major tributaries which are 

derived by using TOPAZ (GARBRECHT AND MARTZ 1999) and described in section 3.1.5. 

Flow velocities and changes in water storage in the channel are simulated using the 

Muskingum-Cunge-Todini approach (CUNGE 1969, TODINI 2007), which also maintains 

mass conservation. Runoff retention in reservoirs is also considered in PROMET. 

Furthermore, the man-made hydraulic structures component notes structures such as 

reservoirs and water transfers. Since the number and size of man-made structures in the 

Lhasa river basin is presently small (DAJUN 1995), they can be excluded from this study.  

3.2 The SURGES Glacier Model  

In this chapter the SURGES glacier model is described in detail. It is implemented in 

PROMET as part of the snow and ice component. The Subscale Regional Glacier 

Extension Simulator SURGES (WEBER ET AL. 2008, PRASCH ET AL. 2009) was developed 

by Dr. Markus Weber and the author within the framework of the GLOWA-Danube project, 

and implemented and used by the author in PROMET to simulate the impact of glacier 

melt water on the water balance. Hence, the emphasis in the modelling approach is on the 

hydrological processes of a glacier, which are described in the following section. The 

consequential requirements for the modelling approach are then introduced, together with 

the present state of the art. Subsequently, the details of the SURGES model are 

explained. 

3.2.1 Characteristics of Glaciers 

Prevailing meteorological and topographical conditions are the essential factors for the 

formation of glaciers. Solar radiation, air temperature, precipitation, wind speed and 

humidity as well as elevation, slope and exposure determine both the amount of snow 

accumulation and the subsequent ablation. When the snowpack outweighs the ablation 

over a long period, the snow on the ground compacts and ice is formed through the 

process of snow metamorphism. When the ice layer reaches approx. 20 to 30 m thickness 

(WINKLER 2009), it begins to move down the mountain slope as a result of the 

disequilibrium between accumulation and ablation area. Ice flow compensates this 

difference by moving the surplus of ice from the accumulation area to the ablation area. In 

general, two modes of movement can be distinguished: internal deformation of the ice 

causes shearing flow first, and basal sliding over the glacier bed is the second mode of ice 

flow. The shape of the terrain, the ice thickness, the temperature and the slope of the 

glacier bed determine the form and velocity of the ice flow (PATERSON 1994, OERLEMANS 

2001).  
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These processes of accumulation and ablation divide the glacier into two areas, the 

accumulation zone with mass gain in the higher regions, and the ablation zone with mass 

loss below. They are separated by the equilibrium line altitude (ELA), where all processes 

are balanced. Figure 3.4 illustrates the meteorological and topographic characteristics 

determining the properties of a glacier. 

 

Figure 3.4: Meteorological and topographic characteristics determining the glacier mass balance 
(WEBER 2008, p. II, modified). 

Glaciers predominantly melt on their snow-free surface. Consequently, the amount of 

meltwater release by the glacier ice is roughly proportional to the snow-free area of the 

glacier. The water is directly delivered into the river channel and contributes to the runoff 

amount alongside precipitation, snowmelt, and soil and groundwater release. Depending 

on the total annual mass balance B [mm] of the glacier, more or less runoff is generated 

than in a non-glacierized basin. For negative mass balances (B < 0), the ice storage is 

reduced and more water is available, whereas in the other case (B > 0), precipitation is 

stored on the glacier and less water is available than in basins without glaciers. 

The total mass balance B of a steady state glacier is zero, because the total amount of 

ablation is balanced by the entire accumulation (OERLEMANS 2001). Nevertheless, 

meltwater is released from the snow-free areas of a glacier during melting periods. A 

distinction can be made, then, between the ice-melt water release of the glacier Cice [mm] 

and the total glacier contribution CG [mm], which is proportional to the mass balance  

B [mm]. CG is defined as the overall change in ice volume V [m³] multiplied by ice density 

ice [kg m-³] (Eq. 3.1), whereas the total ice-melt Cice is calculated by the integral over the 

snow-free area Sice [m²] and the melt rate mr [mm s-1 m-2] in the time step t [s] (Eq. 3.2). 

iceG VBC    (Eq. 3.1) 

  dt)t(SmC icerice  (Eq. 3.2) 
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The amount of Cice is accordingly larger than CG because ice-melt water is released from 

snow-free areas during one mass balance period, independently of the total mass balance 

B. In the case of complete snow cover over the glacier during one mass-balance year, Cice 

is zero and no melt water is released, whereas CG is negative.  

These processes determine the meltwater contribution of a glacier to runoff. In order to 

simulate the impact of future climate change on glaciers and subsequently on the water 

balance, the following demands need to be considered by the modelling framework, in 

addition to the overall requirements described at the beginning of Chapter 3. 

3.2.2 Requirements for Glacier Modelling and State of the Art 

The snow-free area of the glacier is required for the determination of the ice-melt water 

release. The duration of the snow cover on all parts of a glacier surface must therefore be 

calculated. In order to consider the small-scale processes on an alpine glacier, a subscale 

approach is chosen (see section 3.2.3). Accordingly, the amount of ice-melt water can be 

computed, together with the melt-rate, which depends on the energy balance of the ice 

surface. For these processes, the simulation of snow accumulation and of snow and ice 

ablation is required.  

There are several models for simulating the glacier mass balance. In the course of studies 

which analysed the impact of climate change on glacier fed-rivers, conceptual 

temperature-index models were predominantly applied. They estimate the melt rate of 

snow and ice due to air temperature based on correlations which are assessed under 

present climatic conditions (BERGSTRÖM 1976, BRAITHWAITE AND ZHANG 1999, HOCK 2003, 

OERLEMANS ET AL. 1998, PELLICCIOTTI ET AL. 2005). Alternatively, energy balance models 

are used, which simulate snow- and ice-melt in solving the surface energy and mass 

balances (KLOK AND OERLEMANS 2002, STRASSER 2008, STRASSER AND MAUSER 2001, 

ZAPPA ET AL. 2003). Because of the underlying physics, they do not need calibration and 

are independent in space and time, which enables their transfer to other regions and 

application under future climatic conditions (STRASSER 2008). However, energy balance 

models require various meteorological variables such as solar radiation, air temperature, 

humidity, precipitation and wind speed, in contrast to the conceptual models, which often 

only need air temperature and precipitation. Since the required meteorological variables 

are provided by the meteorological component of PROMET (see section 3.1.1) and due to 

advantages such as transferability and application under future climatic conditions, an 

energy balance model is applied in this study (see section 3.2.5). 

The quantity of ice storage limits meltwater release for glaciers that are no longer in a 

steady state. In these glaciers, the transport of ice from the accumulation to the ablation 

area is not balanced, and ice loss or gain occurs. Thus the ice thickness distribution over 

the glacierized area or, in other words, the geometry of the glacier ice reservoir, defines 

the duration of melting until the total melt. Hence, the dynamic adjustment of the 

glacierized areas is another precondition for determination of the melt water release under 

changing climatic conditions. For this purpose, mass balance models are coupled with ice 

flow models, for instance by LE MEUR ET AL. (2007) or ZOU AND OERLEMANS (1997). In 

order to simulate the ice flow and geometry changes of mountain glaciers, simple flowline 
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models (GREUELL 1992, OERLEMANS 1997) and complex 3-dimensional ice flow models 

(GUDMUNDSSON 1999, HUTTER 1982, JOUVET ET AL. 2008, 2009) were developed. The 

latter solve the Navier-Stokes equations in the simulations. Due to the complexity of the 

ice flow processes, all models need detailed information about the glacier bed geometry 

and ice thickness distribution. Since the required data are available only for a few glaciers, 

their application is limited to individual glaciers. This is one reason why glacier changes 

are crudely considered in long-term studies. Moreover, the computational needs of ice 

flow models are intensive. Consequently, they cannot be applied in simulating numerous 

glaciers in meso- or large-scale catchments. Contrary to these complex models, first 

studies try to parameterize the effect of ice flow as submergence and emergence. HUSS 

ET AL. (2010) recently proposed correlations between ice thickness changes and the mass 

balance, size and geometry of the glacier. Nevertheless, their application still requires 

further investigation. Accordingly, in this study a simple approach to the dynamical 

adjustment of the glacier geometry is chosen, as described in section 3.2.7.  

Figure 3.5 summarizes the relationship between meteorological conditions and the 

consequences for glaciers, which should be considered in glacier and melt water release 

modelling.  

 

Figure 3.5: Influencing factors for glacier modelling (OERLEMANS 2001, p. 2, modified). 

Next, the SURGES glacier model is introduced. First, the subscale approach and the 

extrapolation of meteorological data to all subscale elements are shown. The details of 

modelling the mass and surface energy balances of the glacier follow. Since snow 

accumulation and ablation are an essential part of the model, the details of the snow 

component of PROMET are given here as well. Finally, the simulation of snow 

metamorphism and ice redistribution is introduced.  

3.2.3 Subscale Approach 

A glacier is characterized by the mass balance and the geometry of the ice reservoir, 

which in turn depends on the prevailing meteorological and topographic conditions as 

described in the previous section. In the Lhasa River catchment, the dimensions and the 

geometric characteristics of the glaciers vary greatly as introduced in section 2.6. For 

instance, the areas per glacier vary from 0.2 ha to 31.1 km². By contrast, the spatial 

resolution of PROMET is 1 x 1 km. Furthermore, the glacier area is often spread over 

several grid cells (see Figure 3.6, left), which are connected through ice flow. Only  
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30 percent of the grid cells are completely covered by a glacier, whereas for 27 percent of 

the grid cells less than 50 percent of the area is glacierized. Figure 3.6 (right) shows the 

frequency distribution of the glacier area per grid cell according to the Chinese Glacier 

Inventory (WDC 2009), which is introduced with the input data in section 4.3.  

 

Figure 3.6: Distribution of glaciers over several grid cells (left) and frequency distribution of glacier 
area per grid cell in the Lhasa River catchment (right) (based on WDC 2009). 

Within one grid cell, the glacier extends over an elevation range of up to 1,200 m. This 

stretch cannot be represented by the mean elevation of the 1 x 1 km grid cell. 

Consequently, to consider the complex glacier geometry and the related processes in the 

simulation of meltwater release (see section 3.2.1), the gap between the small-scale 

heterogeneous properties of a glacier and the spatial resolution of PROMET must be 

closed. For this reason, a subscale approach is applied in SURGES. In order to account 

for the complex glacier geometry, every glacier is divided into subscale units to 

approximate the area-elevation distribution. The glacier area is therefore intersected using 

digital elevation models. Neighbouring parts of the glacier with similar elevations are then 

merged, in defined distinct elevation intervals between the levels. Figure 3.7 illustrates the 

subdivision of the glacier area into elevation levels.  

 

Figure 3.7: Illustration of the division of the glacier area into distinct levels (WEBER ET AL. 2009,p.10, 
modified). 

For each level, data about the specific ice thickness, the altitude of the glacier bed and the 

glacier area describe the glacier’s properties. The subscale approach thus allows a better 

consideration of the characteristics of each individual glacier by approximation of the ice 



Distributed, Process Oriented Hydrological and Glacier Modelling 

 31

thickness-area-elevation distribution for the meltwater release. For instance, a plane 

glacier tongue will have a larger snow-free ablation area than a steep one and will deliver 

more ice-melt water during the same time interval. The larger area of a plane elevation 

level than that of a steep one is captured by SURGES. Furthermore, the subscale 

approach allows the coexistence of accumulation and ablation zones and the handling of 

neighbouring non-glaciated areas on one grid cell. The modelling steps, which are carried 

out for all subscale elevation levels, are explained below. 

3.2.4 Meteorological Data Extrapolation 

The meteorology component of PROMET or SCALMET supplies every grid cell with 

hourly values of precipitation, air temperature, air humidity, incoming shortwave and 

longwave radiation, air pressure and wind speed (see section 3.1.1). In order to consider 

the elevation of the glacier levels, these data are extrapolated. First, the current surface 

elevation zs [m] is determined by adding the present ice thickness hi [m] and the current 

snow depth hs [m] to the elevation of the glacier bed zb [m]: 

zs = zb + hi + hs  (Eq. 3.3) 

Next, the air temperature T [K] and air pressure P [hPa] are calculated for the various 

glacier levels. According to the present surface elevation zs [m], the level air temperature 

Tl [K] is determined by extrapolating the air temperature T [K] of the grid cell with the 

mean elevation zgc [m], assuming a linear, either dry or moist adiabatic lapse rate  [K m-1]: 

Tl =T +  (zgc-zs) (Eq. 3.4) 

The dry adiabatic lapse rate is set to 0.0098 K m-1 as the quotient of the gravitational 

acceleration go of 9.81 m s-², and the specific heat capacity of dry air at a constant air 

pressure cP of 1,004.67 J kg-1 K-1. The moist adiabatic lapse rate is determined by the 

process of condensation of water vapour, so that latent heat is released. Since this 

process depends on air temperature, the gradient is inversely proportional to air 

temperature and varies between 0.003 and 0.009 K m-1. In this study it is set to an 

average value of 0.0065 K m-1 for an air pressure of 1,000 hPa and an air temperature of 

273.15 K (KRAUS 2000). 

In the case of level air temperatures Tl [K] above the melting point, the feedback of energy 

consumption by melting ice or snow on the glacier surface is taken into account. While the 

absorption of radiation and the turbulent fluxes over a snow- or ice-free area cause an 

increase in air temperature, the radiation input is consumed for melting over the glacier 

and cannot increase the air temperature. Therefore, the air temperature is reduced in the 

model under melting conditions according to WEBER (2008):  
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with α representing the albedo (see also Eq. 3.17) and RS [W/m²] the solar radiation. The 

reduction is limited to a maximum of 0.5 Tl in order to remain within a realistic range. 
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The level air pressure Pl [hPa] is calculated by the barometric formula with the 

gravitational acceleration on Earth go [9.81 m s-2], the molar mass of the atmosphere M 

[0.028964 kg mol-1] and the universal gas constant for air R [8.3143 Nm mol-1 K-1]: 
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As the wind speed on a glacier is different from the wind above nonglacier areas, as 

provided by the climate model, it has to be adopted. The glacier wind v, a katabatic flow 

over glaciers is caused by the differences in heat between the snow-free, surrounding 

areas of a glacier and the comparatively cold glacier surface. The glacier wind is 

characterized by speeds of 3 to 5 m s-1 and increases with proximity to the glacier tongue 

(WEBER 2008). As it is very common over melting surfaces (OERLEMANS AND GRISOGONO 

2002), it is considered in SURGES in a rather simple way for air temperatures above 0°C: 

vl = v + 0.0015 v (z - zs)  (Eq. 3.7) 

The lower limit of the level glacier wind vl [m s-1] is given by half of the wind speed of the 

grid cell v/2, whereas the upper limit vl,max is determined by the air temperature according 

to KUHN (1978) as follows: 

vl,max = 0.61T  (Eq. 3.8) 

For differentiation of rain from snowfall by iteratively solving the psychrometer formula  

(Eq. 3.9), the wet-bulb temperature Tw [K] is calculated for all levels, considering the water 

vapour pressure e [hPa], the saturation vapour pressure of a wet surface Ew [hPa], the 

specific heat of air cP [J kg-1 K-1] at a constant air pressure P [hPa] and the latent heat of 

vaporization r [J kg-1]: 
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The saturation vapour pressure of a wet surface Ew [hPa] is computed with the Magnus 

formula for positive air temperatures T [K] by: 
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  (Eq. 3.10) 

For negative temperatures T [K] it is calculated by: 

)15.273T(44.172
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  (Eq. 3.11) 

The latent heat of vaporization r [J kg-1] is calculated with the following equation: 

)15.273T(23602500827r   (Eq. 3.12) 

The specific heat of moist air cP [J kg-1 K-1] is determined with the specific heat capacity of 

dry air cp,dry [1004. 67 J kg-1 K-1], and the specific humidity sh [kg/kg] by: 
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)sh84.01(cc dry,pp   (Eq. 3.13) 

where the sh is given by: 
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  (Eq. 3.14) 

All the other meteorological variables, e.g. precipitation or incoming radiation, are 

assumed to be constant throughout the grid cell and are taken from the meteorology 

component of PROMET or SCALMET without any adaptation. There is no indication in 

which way the amount of precipitation varies on one km². Additionally, wind- and leeward 

effects are not considered in the modelling approach. In the next paragraph, modelling of 

the mass and energy balance on each glacier level, which is enabled by the extrapolation 

of the meteorological data, is described.  

3.2.5 Mass and Surface Energy Balance of the Glacier 

In order to determine the mass gain and loss of the glacier, the changes of the mass 

balance on its surface have to be calculated. The following calculation steps are similar for 

a snow and ice layer, only differentiated by varying material properties, e.g. the albedo α. 

The algorithms are mainly based on WEBER (2008) and on the snow model ESCIMO, 

which was implemented in the snow component of PROMET (STRASSER AND MAUSER 

2001), and enhanced and validated in various studies (MAUSER ET AL. 2007, PRASCH 

2008A, B, STRASSER 2009). 

First, the energy balance E [W m-2] of the surface is calculated, taking into account the 

radiation balance Q [W m-2], the latent and sensible heat fluxes LE [W m-2] and H [W m-2], 

and the energy supplied by solid or liquid precipitation A [W m-2]: 

E = Q +  LE + H + A (Eq. 3.15) 

The radiation balance consists of the sum of the shortwave QS [W m-2] (Eq. 3.16) and 

longwave radiation balance Ql [W m-2] (Eq. 3.17). The amount of incoming direct Rdir [W m-2] 

and diffuse solar radiation Rdif [W m-2], which is partly reflected due to the albedo α, forms 

the shortwave radiation balance: 

QS = (1 - α) (Rdir + Rdif)  (Eq. 3.16) 

Since solar radiation contributes most to the surface energy under melting conditions, the 

albedo is of great importance. For conditions of snow and ice, it depends on many factors, 

e.g. grain size, density, impurity content, solar elevation etc. In this study, the albedo is set 

to 0.5 in the case of snow-free ice for the Lhasa River catchment, which is a relatively high 

value for glacier ice, similar to clean ice (PATERSON 1994). This value was chosen 

because of extremely dry and clean air on the Tibetan Plateau due to its elevation and 

latitude. In the case of snow covering the glacier, the albedo of freshly fallen snow (0.9) 

decreases due to changes in grain size, density and impurity content of the snow surface. 

The ageing curve of the albedo of freshly fallen snow is simulated following ROHRER (1992) 

(Eq. 3.17). The exponential reduction during the time interval Δt [s] since the last 
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considerable snow fall (0.5 mm per hour) differs between air temperatures above and 

below freezing point, accounted for by changing recession coefficients k. For air 

temperatures above freezing point, k is set to 0.05 per day, whereas for air temperatures 

below, it is set to 0.12 per day. The decrease continues until a minimum value αmin of 0.55 

is reached, or until the next considerable snowfall happens. In this case it is reset to the 

maximum value of 0.9. 

24
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k

minmin e))1t(()t(


   (Eq. 3.17) 

For simulation of the longwave radiation balance Ql [W m-2] (Eq. 3.18), the incoming 

longwave radiation Rli [W m-2], provided by PROMET or SCALMET, is reduced, through 

the emission after the Stefan-Boltzmann Law, with the Stefan-Boltzmann constant σ of 

5.67·10-8 W m-2 K-4. In addition to the emissivity ε, which is 1 for snow and 0.98 for ice, it 

also depends on the current surface temperature TS [K], which is set to 273.15 K for air 

temperatures above freezing point. If the air temperature is below this, the surface 

temperature is determined in an iterative procedure closing the energy balance 

(STRASSER 2008).  

4
Slil TRQ    (Eq. 3.18) 

The turbulent fluxes are computed consistent with WEBER (2008). High mountain 

conditions above glaciers such as high wind speeds, dependency on elevation and 

changing surface roughness are particularly closely considered in the formulation. The 

sensible heat flux H [W m-2] is proportional to the specific heat of air cp [J kg-1K-1]  

(Eq. 3.13), and to the difference between the air temperature T [K] and the surface 

temperature TS [K]: 

H = 0.01182 · ρa · cp ·RwT ·v · (T - TS) (Eq. 3.19) 

For the latent heat flux LE [W m-2] the latent heat of vaporization r [J kg-1] (Eq. 3.12) and 

the difference between the specific humidity of the air sh [kg kg-1] (Eq. 3.14) and at the 

surface shs [kg kg-1] are taken into account: 

LE = 0.0092 · ρa · r · RwT  · v · (sh - shS) (Eq. 3.20) 

Thereby the air density ρa [kg m-3] is calculated with the universal gas constant of air Rd of 

287J kg-1 K-1 by: 

TR

100P

d
a 


  (Eq. 3.21) 

In both equations, RwT stands for a correlation coefficient which describes the turbulent 

exchange according to WEBER (2008). The factor permits an approximate physically-

based description of the fluxes in considering the stability of the atmospheric layering due 

to the air temperature T [K], the surface air temperature TS [K] and the wind speed v [m s-1]. 

For stable layering, RwT is proportional to the gradient of the air temperature T and the 

surface temperature TS, while the efficiency of the turbulent exchange decreases with 
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increasing wind speeds v (Eq. 3.22a). The correlation is limited to a value of 0.2 for large 

temperature gradients in combination with high wind speeds, because this case rarely 

occurs in nature (Eq. 3.22b). For a negative temperature gradient, labile layering is 

assumed. In this case RwT is set to 0.4 (Eq. 3.22c) (WEBER 2008). 

v

TT
119.0438.0R S

wT


    for T > TS and (T-TS) < 3.68v 

RwT = 0.2 for T > TS and (T-TS) > 3.68v 

RwT = 0.4  for T≤ TS 

(Eq. 3.22a) 

(Eq. 3.22b) 

(Eq. 3.22c) 

In the case of precipitation an advective flux A [W m-2] is used to account for the energy 

balance E [W m-2] depending on its phase. As the threshold wet-bulb temperature Tw is 

set at 2°C, a distinction is made between rain (Eq. 3.23a) and snowfall (Eq. 3.23b). In the 

first case the flux is proportional to the specific heat of water cw of 4,180 J kg-1 K-1, 

whereas in the second case it is relative to the specific heat of ice ci of 2,100 J kg-1 K-1. 

Additionally, the amount of precipitation PR [mm] and the difference between air or wet 

temperature T [K] or Tw [K] and surface temperature TS [K] are considered. 

A = PRR· cw (T – 273.15) (Eq. 3.23a) 

A = PRS · ci (Tw – TS) (Eq. 3.23b) 

After these calculations, the energy balance E [W m-1] (Eq. 3.15) is computed. If it is 

positive, the amount of meltwater m [mm] during the time interval Δt [s] of snow or ice is 

calculated as follows, where Hi is the specific melting heat of ice of 337,500 J kg-1: 

iH

tE
m


  (Eq. 3.24) 

Due to the quick release of glacier meltwater and the generally large amount of surface 

runoff in the mountains (LAMBRECHT AND MAYER 2009), in SURGES, the melt water m of 

glaciers is immediately supplied to the surface runoff of PROMET. By contrast, the 

meltwater m release of snow is handled similarly to rain, and drains into the soil layers or 

supplies surface runoff, taking into account varying land cover characteristics. 

In order to determine the mass balance per elevation level, the sublimation or 

resublimation process is also considered, which is especially important in cold, dry regions 

with high radiation input, as it is the case in the Lhasa River catchment. The mass change 

conducted by this process se [mm] per time step Δt [s] is calculated considering the latent 

heat flux LE [W m-1] and the specific sublimation heat of snow and ice His of  

2,835,500 J kg-1: 

Alongside sublimation or resublimation, the amount of snowfall PRS determines the mass 

gain on a glacier surface. As described above, it is distinguished from rain by a threshold 

wet-bulb temperature. In the case of rainfall, the temporal storage capacity of snow for 

isH

tLE
se


  (Eq. 3.25) 
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liquid water liq [mm] is considered in a simple approach. It is assumed that up to a certain, 

empirical amount, sl [%] of the total snow water equivalent swe [mm] (Eq. 3.26), the snow 

cover can store liquid water (DENOTH 2003, FERNANDEZ 1998):  

Rain or modelled melt water is stored until the maximum storage capacity is reached. 

Next, the surplus water is added to melt water, whereas rain on ice is passed accordingly 

to ice-melt water and so to the runoff, without any intermediate storage.  

In the case of existing liquid water storage and air temperatures below freezing point, it is 

assumed that fraction fr [%] of the liquid water storage refreezes. The energy Efr [W m-1] 

(Eq. 3.27) expended in the refreezing process during the timer interval Δt [s] is considered 

in the energy balance. 

Finally, the specific mass balance b(z )[mm] is determined per elevation level: 

If the calculated melt m [mm] exceeds the required melt for an existing snow layer, the 

energy surplus is determined and accordingly expended in for melting the ice layer. In the 

case of a complete melting of the ice layer, the glacier level area is subsequently treated 

as ice-free rock surface.  

3.2.6 Snow Metamorphism 

The formation of glacier ice starts with snow metamorphism. The 50 – 70 kg/m³ density of 

freshly fallen snow increases due to meteorological conditions, e.g. melting and refreezing 

processes, wind or a fresh snow cover, which compact the snow. If snow outlasts an 

ablation period, it is termed firn, with densities of 400 – 830 kg/m³. Finally, the compaction 

proceeds and glacier ice is formed, with densities of 830 – 917 kg/m³. The duration of this 

metamorphism differs from region to region due to meteorological conditions, and varies 

from years, in alpine regions, to centuries, in Polar Regions (PATERSON 1994, WINKLER 

2009). 

Snow compaction, and consequently, snow layers with different snow densities, are not 

considered in the modelling approach. To approximate the mean thickness of the snow 

and ice layers according to the water equivalent, an average snow density snow of  

290 kg/m³, which is referred to as “settled snow” (PATERSON 1994, p. 9), and an ice 

density ice of 910 kg/m³ is therefore assumed. In order to simulate the metamorphism 

from snow to ice in SURGES, the snow layer, which outlasts a defined number of ablation 

periods, is partly added to the ice water equivalent in a rather simple estimation. Even 

though firn is not distinguished specifically, changes with respect to the energy balance 

are taken into account by the simulation of changes in the albedo down to a value of 0.55 

(see Eq. 3.17). 

swe
100

s
liq l   (Eq. 3.26) 

tH
100

fr
E isfr   (Eq. 3.27) 

liqmsePRPR)z(b RS   (Eq. 3.28) 
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In the test site of the Lhasa River catchment, not only accumulation but also ablation 

takes place during the monsoon. Furthermore, alternating melting and refreezing was 

observed up to 5,800 m a.s.l. (KANG ET AL. 2008). These processes accelerate snow 

metamorphism. Thus, after a period of one year, similar to the estimation by KANG ET AL. 

(2008), half of the snow layer is transformed to ice in this study. 

3.2.7 Glacier Geometry Adjustment 

Finally, changes in the glacier geometry have to be considered in the simulation. Since 

the glacier area and the ice reservoir determine the melt water release as described in 

section 3.2.1, capturing the glacier geometry is essential for the results, especially in long-

term studies under changing climatic conditions where the glaciers are no longer in a 

steady state. In combination with specific mass balance, the ice reservoir of the elevation 

level determines the quantity and duration of ice-melt water release. In order to consider 

changes of the glacier area during the modelling period, the total area of the glacier S [m²] 

as sum of all elevation level areas Sl [m²] is reduced according to the melt from ice on a 

specific elevation level. In this case, the area of the ice-free glacier level Sl,icefree [m²] is 

subtracted from the total glacier area: 

This enables the quite simple adaptation of the surface within the subscale approach of 

SURGES. 

The ice reservoir of the glacier level is not only influenced by the mass balance and snow 

metamorphism, but also by the effect of ice flow (see section 3.2.1). The complexity of the 

relevant processes requires detailed information about the glacier’s geometry and cannot 

be simulated in a simple approach on the catchment scale (see section 3.2.2). In fact, the 

effect of the ice flow in transporting ice from the accumulation to the ablation area is quite 

relevant to the ice reservoir. The amount of ice which is delivered from the accumulation 

area and gained in the ablation area should be considered. A correction factor e(z) [mm], 

added to the mass balance b(z) [mm] at the elevation level enables this consideration: 

In the accumulation area e(z) [m] is negative, assuming mass loss, whereas in the 

ablation area it is positive, simulating mass gain. At equilibrium line altitude (ELA), where 

the mass balance equals zero, e(z) is also assumed to equal zero.  

However, the determination of the value of e(z) requires detailed data analysis for different 

glaciers to cover various topographic and meteorological factors. For the Vernagt Ferner 

in Austria, where the ELA is located at 3,300 m a.s.l., MAROWSKY (2010) proposed the 

following parameterization for this glacier e(z) [m] at the level elevation zsl [m]: 


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Since this parameterization is only valid for the Vernagt Ferner, general investigations 

which allow the derivation of a universal parameterization of the factor are required. Due 

to data availability and the location of the Lhasa River basin, this was not possible in the 

present thesis. Accordingly, the geometry changes of the glacier are considered without 

regarding the ice flow.  

All applied parameters of SURGES are listed in Appendix 1. The formula symbols are 

summarized in the list of symbols (p. XIX).  

3.2.8 Method Discussion 

The glacier simulator SURGES within the model PROMET, as described in the previous 

paragraphs, focuses on the effect of the processes in determining the melt water release 

under changing climatic conditions. This hydrological focus results in the neglect of some 

small-scale processes on the glacier so far. Wind-induced snow transport and the small-

scale shading caused by the surrounding mountains which principally facilitate the 

formation of glaciers in some cases, has so far been neglected. The longwave radiation 

flux of neighbouring snow-free rock areas, which accelerates the melting of the glacier 

along its boundary, has not been considered. The phenomena of surging or debris-

covered glaciers, which are secondary in the Lhasa River basin have also so far been 

excluded, as has the effect of transporting ice from the accumulation to the ablation area 

due to the ice flow. This means that the glaciers melt away earlier in the lower ranges in 

the simulations than in reality, whereas in the higher areas the loss of ice thickness is 

underestimated. This in turn leads to a smaller ablation area in the lower ranges. Thus the 

melt water release is slightly underestimated and the glacier’s existence may be longer in 

simulations than in reality. Furthermore, glacier advance cannot be simulated. However, 

under climate warming conditions, ice flow decreases because of shrinking area, as is the 

case in the Lhasa River basin. Finally, the ice flow ceases for small glaciers, as is the 

case with the Northern Schneeferner in Germany, for example. Moreover, SURGES 

includes simplifications in the description of snow metamorphism, neglecting the influence 

of meteorological conditions during the period before and the related compaction 

processes. Accordingly, the metamorphism is simulated similar for every year in contrary 

to reality. 

The approach nevertheless enables the distributed simulation of the main processes for 

determination of the melt water release of all glaciers in a catchment. The properties of 

each single glacier are considered in as much detail as possible by the approximation of 

the ice thickness-area-elevation distribution. This includes capturing the small-scale glacier 

properties below the process scale of PROMET of 1 x 1 km for the simulation of energy and 

mass balances. Furthermore, the coexistence of rain- and snowfall, of the accumulation 

and ablation zones of a glacier and the neighbouring non-glacierized areas on one raster 

element can be handled. Geometry changes in the glacier are considered in reducing the 

glacier area after the ice-melt at given elevation levels, although the implementation of ice 

flow effects could improve the determination. Moreover, SURGES can be applied under 

past as well as future climatic conditions, since it is physically based and uses globally 

valid parameterizations. Through the implementation of SURGES in PROMET, the 
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influence of the melt water release of glaciers for the water balance can be determined in 

a spatially distributed way over the complete large-scale catchment. Finally, in adjusting 

the scale differences with the SCALMET tool, RCMs can be applied as meteorological 

input data. They make the application of the modelling approach independent of 

meteorological station data. This is especially important in remote mountain regions.  

Before the input data for running the modelling framework are described in detail  

(Chapter 4), the technical aspects of the modelling approach are briefly explained. 

3.3 Technical Aspects 

Figure 3.8 gives a schematic overview of the spatial and temporal computational cycle of 

PROMET, including the implementation of SURGES. 

 

Figure 3.8: Scheme of implementation of the glacier model SURGES in PROMET, describing the 
spatial and temporal modelling cycle. 

First, all data describing the present conditions of the grid cell, including the glacier 

elevation levels where required, are initialized according to the simulation results of the 

previous time step or the input data. Next, the following steps are carried out within a loop 

for each raster element. Firstly, the meteorological data are provided by the meteorology 

component. Secondly, the energy and mass balances for all land surfaces are calculated, 

considering vegetated and non-vegetated land surfaces as well as snow and ice cover if 

necessary, whereby the energy and mass balances are closed. If a grid cell is (partly) 

glacierized, SURGES is called. The meteorological data for all subscale elevation levels 

are extrapolated and the energy and mass balances are calculated. Then, snow to ice 

metamorphism is considered. Finally, the data are aggregated for the glacier area and 
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passed on to the other model components. There, they are consolidated with the values 

for the non-glacierized area per grid cell. Mass and energy balances are accordingly 

conserved. Next, the soil and groundwater processes and the runoff formation are 

modelled. After this procedure has been carried out for all grid cells, the water flow in the 

river channel is calculated. Finally, the output data are generated for this time step, 

aggregated where required, and the cycle is started again. In addition to hourly outputs, 

daily and monthly values can be produced for each grid cell. They are available either at 

selected points in the catchment area or spatially distributed across the catchment scale. 

All the model components are written in FORTRAN and can be run in the Microsoft 

Windows environment on a standard personal computer. For the Lhasa River catchment, 

modelling one year takes about 4.5 hours. The annual model output of the whole Lhasa 

River watershed in daily resolution requires approx. 105 Mbytes per model output variable. 
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4 Model Input Data for the Lhasa River Basin 

In order to run the SURGES and PROMET models, input data describing the natural 

characteristics of the catchment are required. Gridded GIS (geographic information 

system) layers describe the distribution of the required parameters in the basin, and plant 

and soil parameters are provided in data tables for each land cover and soil texture class, 

because they are assumed to be homogenous throughout the whole catchment. Table 4.1, 

Table 4.3 and Table 4.4 give an overview of the required input data layers and the plant 

and soil parameters. 

In general, all data layers are processed as raster data with a spatial resolution of one 

square kilometre in the coordinate system UTM, zone 45 N, WGS 84. Since sparse data 

is available for the Lhasa River catchment, publicly accessible data is used as far as 

possible, which are listed in Table 4.1. The compilation of the data in remote regions and 

the transferability of the model approach are also introduced here, focussing on the 

compilation of the glacier properties needed to run SURGES, because it is the first 

application of the model approach outside the Alps. First, the applied meteorological data 

are explained (section 4.1), followed by the introduction of the land surface data 

parameterization (section 4.2). Afterwards, a detailed description of the compilation of the 

glacier properties, which is essential to run SURGES, follows (section 4.3).  

Table 4.1: Required input data layers to run PROMET and SURGES and data sources for the 
Lhasa River catchment. 

Input data set Data source 

Watershed 
Digital terrain analysis of SRTM with TOPAZ  
(GARBRECHT AND MARTZ 1999) 

Elevation [m a.s.l.] SRTM (JARVIS ET AL. 2006) 

Surface slope [%] Digital terrain analysis of SRTM with TOPAZ 

Surface aspect Digital terrain analysis of SRTM with TOPAZ  

Land use / land cover classes NASA TERRA/MODIS land cover product (BOSTON UNIVERSITY 2004) 

Soil texture classes Harmonized World Soil Database (FAO ET AL. 2009) 

Accumulated upstream area [km²] Digital terrain analysis of SRTM with TOPAZ  

Channel slope [%]  Digital terrain analysis of SRTM with TOPAZ  

Flow direction  Digital terrain analysis of SRTM with TOPAZ  

Channel width [m] Deduced, based on field data 

Manning’s roughness parameter  Deduced, based on field data 

Groundwater storage time [h] Deduced, based on the digital terrain analysis of SRTM with TOPAZ  

Meteorological values (see Table 4.2) COSMO-CLM outputs (CLM 2010), downscaled with SCALMET 

Subscale glacier area [m²] Chinese glacier inventory (WDC 2009) 

Subscale glacier elevation [m a.s.l.] Aster GDEM (ERSDAC 2009) 

Subscale ice thickness [m] Deduced, based on WDC (2009) and ERSDAC (2009) 
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4.1 Meteorological Drivers 

Since no meteorological station recordings with the required parameters (see Table 4.2) 

are available in a temporal resolution appropriate to run PROMET on an hourly time step, 

output data from the RCM COSMO-CLM are used. COSMO stands for COnsortium for 

SMall scale MOdelling. It is a nonhydrostatic operational weather prediction model, which 

is applied operationally and further developed by several national weather services. CLM 

is the abbreviation for the climate mode of the model (CLM 2010). For the Lhasa River 

catchment the spatial resolution of the data is 0.44° (~ 50 x 50 km), whereas the temporal 

resolution is three hours. Two methods are used for driving the CLM: Simulations, driven 

by ERA 40 reanalysis data (UPPALA ET AL. 2005) from the European Centre for Medium 

Range Weather Forecasts (ECMWF) are applied for the past to reduce GCM simulation 

biases, since they are based on meteorological observations. Moreover, the CLM is driven 

by the coupled ocean-atmosphere GCM ECHAM 5 / MPI-OM (ROECKNER ET AL. 2003, 

JUNGCLAUS ET AL. 2006), because it realistically simulates the 20th century South Asian 

monsoon compared to other GCMs (KRIPALANI ET AL. 2007). For future climatic conditions, 

soley the application of ECHAM 5 is possible because of missing observations for the 

future, which build the basis of the ERA 40 data. The CLM provides data fields of air 

temperature, precipitation, incoming shortwave and longwave radiation, wind speed, sea 

level pressure and cloud cover percentage for the period from 1960 to 2080. For the 

future period from 2000 to 2080, the data fields are available for the IPCC SRES 

scenarios A1B, B1, A2 and the Constant-Year-2000-concentrations run (see section 6.1). 

Within the framework of the Brahmatwinn project (BRAHMATWINN 2006-2010), bias 

correction methods were applied to the CLM air temperature as well as to precipitation 

during the monsoon months in the whole Upper Brahmaputra basin, described in DOBLER 

AND AHRENS (2008). The revised data were used for this study. As described in section 

3.1.1, the SCALMET tool scales the CLM output down to a resolution of 1 x 1 km and 

disaggregates the data temporally to a resolution of one hour. Thus, the data can be 

applied to run PROMET and SURGES. The quality of the CLM data in the Lhasa River 

basin is discussed in section 5.3.1.  

Table 4.2: Required meteorological drivers (MAUSER AND BACH 2009). 

Parameter Unit 

Air temperature  °C 

Precipitation mm 

Air humidity % 

Wind speed m/s 

Incoming shortwave and longwave radiation W/m² 

or cloud coverage % 
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4.2 Land Surface Data Parameterization 

Data fields of topography (elevation, surface slope and aspect), land use and land cover, 

soil texture, groundwater storage time and various river characteristics are required as 

input data for the description of the landsurce PROMET (see Table 4.1 and section 3.1).  

For topographic properties, the generally available digital elevation model of the Shuttle 

Radar Topography Mission SRTM (JARVIS ET AL. 2006) was applied in the Lhasa River 

basin. The model was up-scaled step-by-step from a resolution of 90 x 90 m up to 1 x 1 

km per grid cell using the bilinear interpolation method. Slope and aspect were deduced 

from the digital elevation model using the terrain analysis tool TOPAZ (GARBRECHT AND 

MARTZ 1999), which was also applied in the hydrological catchment analysis. Alongside 

the watershed of the catchment and the sub-catchments (see Figure 2.5), the main 

channel network with the channel slope and the flow direction are the main outcomes of 

TOPAZ. They, in turn, are required to run the river routing component of PROMET 

(section 3.1.5). Channel width is also needed. It was derived under the assumption that it 

correlates with the accumulated upstream area, also provided by TOPAZ, consistent with 

MAUSER AND BACH (2009). To determine the flow velocity, Manning’s roughness 

parameter is needed. For the Lhasa River basin it was deduced by fieldwork during a field 

campaign in Tibet in September 2006 according to the methods of BARNES (1967). For the 

simulation of groundwater flows, the distance to the main river channel is required, which 

is also provided by TOPAZ. Depending on the distance, the storage time constant is set 

as described in section 3.1.4. 

 

Figure 4.1: Distribution of parameterized land use and land cover classes in the Lhasa River basin, 
modified according to the NASA TERRA/MODIS land cover product (BOSTON UNIVERSITY 2004). 
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The NASA TERRA/MODIS land cover product (BOSTON UNIVERSITY 2004) provides 

information about land cover and land use in the Lhasa River catchment (Figure 2.9). The 

classification was modified by intersecting it with the Chinese Glacier Inventory (WDC 

2009) to obtain a consistent data set. All grid cells which are partly glacierized were 

predisposed to rock. Since several classes cover less than one percent of the basin, 

similar categories were merged for the parameterization. Needleleaf forests and mixed 

forests were aggregated to the coniferous forest class and amount to 0.5 percent of the 

basin area, whereas broadleaf forests, woody savannas and closed shrubland were 

grouped into deciduous forests, which together cover 2.4 percent of the area. Moreover, 

all cropland classes, which only cover 1.6 percent of the catchment, were summarized as 

spring barley, which is widely cultivated in Tibet (see section 2.5). While open shrublands, 

savannas and grassland are used for grazing throughout the whole catchment, these 

classes are coexistent at a spatial resolution of 1 x 1 km. Furthermore, they have similar 

characteristics according to field data. They are therefore grouped under grass- and 

shrublands in this study. Figure 4.1 shows the distribution of the aggregated classes in the 

Lhasa River catchment.  

In order to simulate water transport in plants as well as the energy and mass balances of 

the land use classes in considering their different properties (see section 3.1.2), the 

parameters listed in Table 4.3 are required. Within the basin, the classes are uniformly 

parameterized under the assumption that the properties of the different classes are similar 

throughout the whole catchment. 

Table 4.3: Required parameters for description of the land surface (MAUSER AND BACH 2009). 

Parameter Unit 

Minimal stomatal conductance  m/s 

Slope of stomatal conductance with irradiance - 

Cardinal temperatures K 

Slope of inhibition of stomatal resistance with air humidity - 

Slope and threshold of stomatal inhibition with soil suction MPa 

Root depth m 

Daily leaf area index m²/m² 

Daily plant height m 

Daily albedo % 

The parameterization for the non-vegetated classes of rock, residential areas, glaciers 

and water, as well as for the small percentage of forests, was adopted from the 

classifications applied in Europe in a variety of studies. Further details can be found in 

MAUSER AND BACH (2009), HANK (2008) and MAUSER AND SCHÄDLICH (1998). According to 

literature and data from the field survey 2006, the parameterization of spring barley was 

adapted to the conditions of Tibet. There, it is grown in April and harvested from August to 

September (TASHI 2005). The maximum plant height in the model was set to 0.8 m. The 

course of the daily albedo and the daily leaf area index were adapted, taking measured 

plant densities into account. The grass- and shrubland which accounts for 83 percent of 
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the basin area, was divided into areas above 5,500 m a.s.l. and slopes larger than 40 

percent, where less grazing is assumed than in the ranges with smaller slopes or those 

located below 5,500 m a.s.l. On the basis of the parameterization of natural grassland in 

Europe, the growing height was reduced. The course of the leaf area index and the 

albedo were modified accordingly. In doing this, the grazing and the lower plant density 

were considered. The plants are assumed to grow slightly taller in the higher and steeper 

regions because of missing grazing, although their growth is limited by the altitude and the 

soil formation under natural conditions. Pictures of the investigation area in Appendix 2 

give an impression of the land use. 

In order to model the water processes in the soil, the soil component of PROMET (see 

section 3.1.3) needs soil texture classes, which were taken from the Harmonized World 

Soil Database (FAO ET AL. 2009, see section 2.4 and Figure 2.6). The required 

parameters for the classes, listed in Table 4.4, were adapted from the parameterization 

according to MAUSER AND BACH (2009) and MUERTH (2008). Since the mountainous relief 

characterizes the Lhasa River catchment and the soil depth as observed in the field, the 

soil depth was modified due to elevation and slope. For grid cells above 5,000 m a.s.l. and 

slopes steeper than 20 percent, a total depth of 0.9 m was assumed, whereas for slopes 

steeper than 30 percent it was reduced to 0.5 m. In all other cases, it was set to 1.5 m. In 

differentiating the depth, the slower soil formation processes in higher regions due to 

climate, topography and broken bedrocks is also considered.  

Table 4.4: Required parameters for soil texture parameterization (MAUSER AND BACH 2009). 

Parameter Unit 

Thickness per soil layer m 

Pore size distribution index per layer  

Saturated conductivity per layer m/s 

Effective pore volume fraction per layer % 

Bubbling pressure head MPa 

Depth of groundwater table m 

With these input data, the hydrological model PROMET can be run. In order to simulate 

the glaciers with SURGES, subscale glacier characteristics are required. Their derivation 

is explained in detail in the following chapter. Firstly, the data basis is synthesized. 

Secondly, the processing of the data is explained. 

4.3 Derivation of Glacier Input Data for SURGES 

In order to run SURGES, the area-elevation distribution of all glaciers and the ice 

thickness for all elevation levels is required as input data for all glacierized grid cells in the 

test basin (Table 4.1). These data are only available for a small percentage of glaciers 

worldwide, e.g. for the Bavarian glaciers of the Zugspitze (BAYERISCHE GLETSCHER 2009), 

the Vernagtferner in Austria (MAROWSKY 2010) and the Rhone Glacier in Switzerland 

(FARINOTTI ET AL. 2009), as the detailed collection of these data necessitates intensive 

campaigns. In most cases, glaciers are located in impassable alpine regions, and the data 
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recording itself is very complex. Whereas large amounts of data exist for the glacier areas, 

due to topographic maps, aerial photos and a variety of satellite images with different 

temporal and spatial resolutions, ice thickness recording requires detailed measurements, 

because it varies a lot within one glacier. During recent decades, several methods have 

been applied, ranging from surface drilling to surface- or airborne-radio echo sounding 

and ground-penetrating radar or impulse radar (REES 2006). However, most of these 

techniques do not provide distributed data, and so the point measurements must be inter- 

and extrapolated. Furthermore, these procedures are expensive and time-consuming.  

The surface elevation of glaciers can be determined by using photogrammetric methods 

at the glacier surface, from airplanes or satellites. Digital terrain models are produced with 

laser scanning or synthetic aperture radar data. The spatial resolution depends on the 

system, for example data from the SRTM (JARVIS ET AL. 2006) have a resolution of 90 m.  

Various groups, such as the Global Land Ice Monitoring from Space (GLIMS) (RAUP ET AL. 

2007), the World Glacier Monitoring Service (WGMS 2009) and the National Snow and Ice 

Data Center/ World Data Center for Glaciology (NATIONAL SNOW AND ICE DATA CENTER 

2009), work on the collection and completion of all available data and provide interested 

groups with these data. They also monitor the glaciers to gain information about changes. 

4.3.1 Data Basis 

In general, the availability of glacier data is poor in the Lhasa River catchment, because of 

the reasons described above. Moreover, the political situation in Tibet in the past has 

restricted access both to this region and to Chinese data. In the course of changes, the 

World Data Center For Glaciology and Geocryology in Lanzhou in China has recently 

offered the Chinese Glacier Inventory for free download (http://wdcdgg. 

westgis.ac.cn/DATABASE/Glacier/glacier_inventory.asp). It comprises polygons of the 

glacier areas and additional information about the coordinates, area, length, elevation, 

classification category and mean ice thickness of glaciers in China, compiled by the Cold 

and Arid Regions Environmental and Engineering Research Institute of the Chinese 

Academy of Sciences (WDC 2009).  

Generally available elevation data about the earth’s surface are offered by digital elevation 

models such as: the SRTM data (JARVIS ET AL. 2006), at a resolution of 90 m and an 

accuracy of ± 10 m; and the ASTER Global Digital elevation model GDEM, at a resolution 

of 30 m and an accuracy of ±7-14 m, provided by the Ministry of Economy, Trade, and 

Industry of Japan and the United States National Aeronautics and Space Administration 

(ERSDAC 2009). 

In the following paragraphs, the derivation of the area-elevation distribution and ice 

thickness for the Lhasa River basin is explained in detail. The subsequent flow chart of 

Figure 4.8 summarizes the steps of data generation. 

4.3.2 Glacier Area 

The Chinese Glacier Inventory completely covers the Lhasa River catchment. It provides 

data for the glacier areas from the year 1970 as polygons. The polygons were derived by 

digitizing aerial photographs and maps. The area of the glaciers thus varies between 0.2 
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ha of small glacierets and 31.1 km² of large glaciers, such as the Xibu glacier at Mount 

Nyainqêntanglha. Additional information includes the mean length, ranging from 100 m to 

10 km, the width of the glaciers and a primary classification category (see Figure 2.9). For 

a few glaciers the names are also given (WDC 2009). This information is identical to the 

glacier boundary layer of the GLIMS data set (LI 2003). According to the data set, an area 

of 670 km² is glacierized in the Lhasa River basin, which corresponds to two percent of 

the catchment area. Figure 2.9 shows the glaciation, and Table 2.2 lists the percentage of 

the glacier areas for each sub catchment. 

4.3.3 Glacier Elevation 

In order to obtain the subscale elevation of the glaciers, the ASTER GDEM (ERSDAC 

2009), which was recorded in the year 2000, is used because of its high spatial resolution. 

First, the digital elevation model and the deduced slope are intersected with the glacier 

boundaries of the Chinese Glacier Inventory. Secondly, the elevation data are aggregated 

to levels at intervals of 100 m, ranging from 4,800 to 7,100 m a.s.l. in the Lhasa River 

catchment. Since the elevation model was recorded in the year 2000 and is combined 

with the glacier boundaries of 1970, on average about 6 to 10 m w.e. (FRAUENFELDER AND 

KÄÄB 2009) melted away. Consequently, the elevation data are slightly too low. However, 

this average value is approximately within the range of accuracy of the elevation model of 

± 7-14 m (ERSDAC 2009). Furthermore, the air temperature of the climate model CLM is 

downscaled to the grid cells with SCALMET (see section 3.1.1) and then extrapolated for 

each level due to its elevation, with a gradient of 0.65 K per 100 m in dry and 0.98 K per 

100 m in moist air (see section 3.2.4), causing further deviations. Taking into account the 

uncertainty in all of the data, the chosen interval of 100 m seems appropriate and remains 

within the limits of accuracy. The slope is averaged by weighting it by area within the 

aggregation steps. In this process, each glacier is considered separately, and so the 

elevation levels are not aggregated among different glaciers. This enables modelling the 

ice flow for every single glacier in future simulations with an enhanced SURGES model. 

Next, the area per elevation level is calculated.  

 

Figure 4.2: Intersected digital elevation model with glacier boundaries (left) and aggregated 
elevation levels of glaciers (right) (data source: ERSDAC 2009, WDC 2009). 
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Figure 4.2 shows the steps of the derivation of the elevation levels for the example of the 

Boda and Qingga glacier region of the Nyainqêntanglha Mountains. On the left, the glacier 

boundaries and the DGM are shown, and the derived elevation levels of the glaciers are 

illustrated on the right. The area-elevation distribution of all glaciers in the catchment is 

given in Figure 4.3. Most glacier areas can be found at between 5,600 and 6,000 m a.s.l. 

(78%). The areas above this level amount to 14 percent, with 8 percent of the glacier area 

located below it. 

 

Figure 4.3: Area-elevation distribution of glaciers in the Lhasa River catchment. 

4.3.4 Ice Thickness  

The Chinese Glacier Inventory (WDC 2009) contains the mean values of ice thickness per 

glacier. To consider the different ice thickness distribution of a glacier in more detail than 

assuming a homogenous ice block, the mean ice thickness must be modified for all 

elevation levels of the glacier. Several studies have been conducted to deduce the ice 

thickness distribution of surface characteristics. Among them are inverse methods based 

on modelling (THORSTEINSSON ET AL. 2003). However, they concentrate on Arctic or 

Antarctic ice sheets. FARIONOTTI ET AL. (2009) recently introduced an approach to 

estimating the ice thickness distribution based on the principles of ice-flow mechanics and 

mass-turnover. Since this method requires the flowlines and the ice-flow catchments as 

well as the glacier boundaries for each glacier, it cannot be applied to large areas such as 

the Lhasa River basin. An alternative method, offered by HAEBERLI AND HOELZLE (1995), is 

based on the assumption of a correlation between surface slope, glacier length and ice 

thickness. In a comparable approach, the mean ice thickness of the Chinese Glacier 

Inventory is modified for all elevation levels of the glacier according to its slope and 

position on the glacier. While the glacier thins out to its edges and the glacier front, the 

slope of the bedrock is one of the dominant factors in the ice thickness distribution of a 

glacier. The steeper the slope of the glacier, the thinner is its ice (PATERSON 1994). 

Therefore, the glacier elevation levels are grouped for the ice thickness modification 

according to slope, which is deduced from the digital elevation model on the assumption 

that the surface slope is approximately similar to the bedrock surface, because no further 
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information is available. A distinction is made between very steep levels with a slope 

larger than 45°, steep levels with a slope of between 25° and 45°, levels with a slope of 

between 15° and 25° and finally levels with a slight slope of below 15°. For these 

categories, the mean ice thickness values of the inventory are modified by the factor 

described below. To assess the modifying factor, parts of the glacier inventory data, 

applied in the GLOWA-Danube project (WEBER ET AL. 2008A), were analysed. This 

inventory comprises all available data, including considerable detailed ice thickness 

recordings and the area-elevation distribution of the glaciers in the Upper Danube 

catchment. Glacierets, mountain and valley glaciers are principally found in this region. 

The glacier area varies from about 19 ha to 15 km² (Gepatsch Ferner, Austria), and mean 

ice thickness extends to 111 m (Hintereis Ferner, Austria). Since the geometry and area 

of the glaciers in the Lhasa River catchment resemble that of the glaciers in the Upper 

Danube basin, conclusions of analogy for the ice thickness distribution seem to be 

appropriate. To this purpose, the relationship between the maximum and the average ice 

thickness was analyzed for the Glockner, Venediger and Zillertaler mountain groups 

(Figure 4.4). According to the data and by assuming a linear correlation, the maximum ice 

thickness of the levels is 1.7 times the mean ice thickness of the glacier. Eighty-two 

percent of the relationship can be explained by this factor, as shown in Figure 4.4. 

      

Figure 4.4: Relationship and coefficient of determination of the mean and maximum ice thickness 
of the glaciers in the Glockner, Venediger and Zillertaler mountain groups (map, left) according to 
the Upper Danube glacier inventory (based on WEBER ET AL. (2008A)). 

To remain within a reasonable range, these values are limited by ice thicknesses 

calculated with the following equation:  

ßsingF
h

oice

s
i 


  (Eq. 4.1) 

This formula allows the estimation of ice thickness hi [m] with ice density ice [kg m-³], 

gravitational acceleration go [m s-²] and glacier slope  [°], assuming perfect plasticity of 

the ice. The shear stress s [kPa] varies between 50 and 150 kPa, so 100 kPa is often 
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taken as an average value. To consider the shape of glaciers in alpine terrain, a valley-

factor F between 0.45 and 0.85 should also be inserted (PATERSON 1994). In the Lhasa 

River catchment a value of 0.7 is used as mean valley factor, because glacier width and 

shape are required for detailed determination values of ice thickness at the centre-line, 

and the data are not available for the Lhasa River basin. For steep levels and for the 

upper and lower levels of the glacier where it is usually thinner, hi is calculated with shear 

stresses of 50 kPa whereas at elevation levels in the middle of the glacier with smaller 

slopes, a shear stress of 100 kPa is applied to calculate the limits for the ice thickness 

estimation. After this step, steep glacier levels have a thinner ice layer and flatter levels 

have a higher one. 

As mentioned earlier, the elevation level position at the glacier is also considered. As the 

glacier thins out towards its edges and the glacier front, the ice thickness of the highest 

and lowest elevation level is set to the calculated value with a shear stress of 50 kPa, and 

limited to a maximum value of 20 m. According to the glacier inventory data applied in the 

GLOWA-Danube project (GLOWA-DANUBE 2001-2010), several measurements of alpine 

glaciers showed that this value is not usually exceeded (WEBER ET AL. 2008A). 

Furthermore, the special case of glaciers with only one elevation level is also considered 

in using the mean ice thickness of the inventory without any modifications. Finally, all 

initial ice thickness values are limited to a minimum value of 10 meters, to buffer the 

settling time of the model during the first model year. The decision tree in Figure 4.5 

shows the derivation of the ice thickness distribution, including the distinct values applied.  

 

Figure 4.5: Decision tree for the derivation of the ice thickness distribution of the glaciers. 
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An example is illustrated in Figure 4.6, which shows the mean ice thickness of the 

Chinese Glacier Inventory on the left as well as the ice thickness distribution of the 

elevation levels after the described modifications. On the right, the grid cell structure, 

which overlays the glaciers, is shown. 

    

Figure 4.6: Example of the mean and distributed ice thicknesses of glaciers in the Lhasa River 
catchment, overlaid by the grid cell structure (based on ERSDAC (2009), WDC (2009)). 

According to the deduced ice thickness, 34 km³ of water is stored as ice, which amounts 

to 1,037 mm water per km², distributed equally over the whole Lhasa River catchment. 

The maximum ice thickness can be found between 5,300 and 6,000 m a.s.l., whereas on 

the lower and higher levels the ice is thinner. Reasons are the glacier edges, where the 

ice is thinner than in the middle, which are often located above and below an elevation 

range of 5,300 and 6,000 m a.s.l. (Figure 4.7). Moreover, in higher areas steeper slopes 

can be found. 

 

Figure 4.7: Ice thickness - elevation distribution of the glaciers in the Lhasa River catchment. 

Before the glacier data input is completed, the ice thickness is subtracted from the surface 

elevation to obtain the mean elevation of the glacier bed for every level. Finally, the glacier 

levels, together with the glacier area, the elevation and the ice thickness are intersected 

with the grid cell structure. The required input data to run SURGES are thereby generated 

for all glacierized grid cells. The flow chart of Figure 4.8 clarifies the steps of the 

procedure, including the applied data. 
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Figure 4.8: Flow chart of steps and data for the generation of the required input data to run the 
glacier model SURGES. 
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5 Model Validation 

Modelling the impact of climate change on glaciers and on the water balance in the Lhasa 

River catchment requires validation of the modelling approach introduced. In order to 

check that the relevant processes are captured, the model results are compared to 

observations of the past. The following validation steps are carried out: First, the 

processes on the glacier, such as accumulation and ablation of snow and ice, are 

checked. Next, the reproduction of glacier geometry changes over a long time period is 

evaluated. As the study focuses on meltwater release from glaciers, the simulated runoff 

of a highly glacierized basin is compared to measured runoff, whereby the necessity of the 

subscale approach is also tested. In the next step in validation, the accuracy of the 

derivation of glacier input data is checked. Finally, the performance of the modelling 

framework in the Lhasa River basin is evaluated. This includes the accuracy of the 

downscaled CLM meteorological data, the glacier changes and the water balance during 

the period of 1971 to 2000. 

5.1 Validation of the SURGES Glacier Model  

Detailed observation data are required for validation of the glacier processes, which are 

generally rare. Additionally, the model results must not be altered by errors in the input 

data. Consequently, boundary conditions such as topography and meteorology must be 

as reliable as possible. For this reason, SURGES is applied to places which fulfil these 

requirements for validation of the glacier processes. Since neither detailed meteorological 

station recordings nor glacier observations are available in the Lhasa River basin, the 

Schneeferner at the Zugspitze in Germany, the Vernagt Ferner in Austria and the gauge 

of Huben of the Ötztaler Ache in Austria were chosen for validation of the model (see 

Figure 5.1).  

 

Figure 5.1: Map of the test sites in the Upper Danube basin (based on: GLOWA-DANUBE (2001-
2010), BAYERISCHE GLETSCHER (2009), WEBER ET AL. (2008A)). 
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Within the framework of GLOWA-DANUBE (2001-2010), detailed data describing the 

geometry and the ice reservoir are provided for the three chosen test sites, sometimes 

even for several time steps (WEBER ET AL. 2008A). Furthermore, meteorological drivers of 

a comparatively high spatial and temporal resolution are available in the form of numerous 

station recordings by the German and Austrian weather service DWD and ZAMG.  

Figure 5.1 provides an overview of the location of the test sites within the Upper Danube 

basin. 

The mass balance of a glacier is determined by the accumulation of snow and the ablation 

of snow and ice afterwards. Several studies have validated snow accumulation and 

ablation of the PROMET snow component on the point scale by comparing modelled 

s.w.e. values to observation data at weather stations. The spatial distribution of the 

modelled snow cover on the catchment scale was compared to observed snow coverage, 

deduced from NOAA AVHRR images. These studies showed that the model can 

reproduce snow dynamics at the point and spatial scale (BACH ET AL. 2008, PRASCH ET AL. 

2008B, STRASSER AND MAUSER 2001). In order to determine the model performance on a 

glacier, a detailed validation study at the Vernagt Ferner in Austria was carried out by 

MAROWSKY (2010). In this study, the evolution of snow depth observations at the Vernagt 

Ferner, at an elevation of 3,000 m a.s.l. (BRAUN ET AL. 2004), are compared with the 

modelled s.w.e. at this elevation level for the first half of the year 2005. Although no 

evidence of snow quantity can be given, because no snow density observations are 

available for converting the s.w.e. values into snow depth, the duration of the snow cover 

is similar. Synchronous accumulation and ablation periods can be seen on the chart in 

Figure 5.2. Consequently, the dynamics are reproduced by the model on a glacier. The 

date of complete snow cover melt is especially important for simulation of the glacier ice-

melt, because it determines the duration of the melting period. 

 

Figure 5.2: Comparison of the evolution of the modelled snow water equivalent (blue) and the 
observed snow depth (red) at the Vernagt Ferner (MAROWSKY (2010), p. 64, modified). 
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The ice ablation period was validated by MAROWSKY (2010), in comparing observed ice 

thickness changes with modelled changes. Figure 5.3 shows the comparison for the year 

2006. For the measurements of relative ice thickness changes, an ablatometer was 

installed on the glacier surface (Figure 5.3, method 1, blue). With a second instrument, the 

relative changes of the ice thickness were deduced from observed hydrostatic pressure 

changes (Figure 5.3, method 2, green). Although the absolute values of the observation 

differ, the strong ablation period during July and the proximate snow cover in August are 

in accordance and reproduced by SURGES, meaning that the ice ablation period is also 

captured. 

 

Figure 5.3: Comparison of modelled (red) and observed (blue and green) ice thickness changes 
2006 (MAROWSKY (2010), p. 66, modified). 

By comparing modelled and observed ice thickness observations on the glacier scale of 

the Northern Schneeferner at the Zugspitze in Germany from 1970 to 2006, the accurate 

simulation of glacier development is validated over a long period. Figure 5.4 shows the 

observed ice thickness of the years 1970, 1979, 1990, 2000 and 2006 (red) with the 

simulated ice thickness (light blue) and the evolution of the snow water equivalent (blue). 

The observations are correctly reproduced by the model. Furthermore, the period with 

high snowfall rates during the winters at the beginning of the 1980s and the subsequent 

gain in ice mass is captured by SURGES. The extraordinarily long ablation period of 

summer 2003 is also accurately simulated. Although this validation step only offers the 

comparison at five time steps during this period, it shows the performance of the model 

over a long time period. Only if snow and ice accumulation and ablation are simulated 

correctly over the complete period, the observed ice thickness values are reproduced by 

the model. 
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Figure 5.4: Modelled and observed ice thickness of the Northern Schneeferner at the Zugspitze in 
Germany (based on BAYERISCHE GLETSCHER (2009)). 

By comparing the modelled and measured mass balances of the Vernagt Ferner, 

MAROWSKY (2010) validated the specific mass balance of each glacier elevation level. To 

achieve this, the Vernagt Ferner was divided into different parts, taking into account the 

grid cell structure as illustrated in Figure 5.5.  

 

Figure 5.5: Different parts of the Vernagt Ferner with the grid cell structure covering the glacier 
(MAROWSKY (2010), p. 71, modified). 

The comparison of two years with opposite weather conditions is presented here. While 

1999 is characterized by above-average snowfall during the winter (Figure 5.6), the 

extraordinarily warm, dry summer of 2003 subsequently caused a long ablation period 

(Figure 5.7). The measured values are symbolized by lines, and the modelled mass 

balances are represented for each grid cell of the Vernagt Ferner. The area-elevation 

distribution of the mass balance season is also displayed in grey in the background.  
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Figure 5.6: Observed (line) and modelled (squares) specific mass balance in the four parts of the 
Vernagt glacier for the elevation levels in the mass balance season 1999 (MAROWSKY (2010), p.78, 
modified). 

 

Figure 5.7: Observed (line) and modelled (squares) specific mass balance in the four parts of the 
Vernagt glacier for the elevation levels in the mass balance season 2003 (MAROWSKY (2010), p.79, 
modified). 

In both cases, the modelled specific mass balance values are almost consistent with the 

measurements in all parts of the glacier. Various situations with large accumulation areas 

(specific mass balance > 0) in 1999 and extreme ablation areas (specific mass balance < 0) 

in 2003 are well reproduced by SURGES, except for the slight overestimation of the 

accumulation area in 2003. Positive mass balances were simulated at the highest 

elevation levels on contrary to observations, where negative mass balances were 
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observed for the complete Vernagt Ferner, although the accumulation observations in 

2003 were afflicted with uncertainties at these elevation levels.  

Values with a specific mass balance of 0 (x-axis) are elevations levels, where the ice has 

melted in the simulations. This is possible because the observations represent the 

average value of the complete grid cell. This comparison shows that the mass balance is 

captured by SURGES under different weather conditions for large glaciers separated into 

several grid cells. The extrapolation of the meteorological input data (see section 3.1.1) 

over the glacier elevation levels at the subscale therefore realistically simulates the 

situation in the total glacier area. 

In order to validate glacier geometry changes, the modelled and observed glacier areas 

were compared for the Northern and Southern Schneeferner as presented in Figure 5.8. 

The original areas of 1979 are illustrated in black, whereas the grey areas show the extent 

mapped in 2006. The blue areas symbolize the modelled areas of the year 2006. The 

comparison shows deviations at the edges of the glaciers, in particular at the glacier 

tongues, where the model result is falsified by anthropogenic modifications in the skiing 

area (MAROWSKY 2010). Additionally, ice redistribution is not considered in this simulation. 

The ice flow is low because of the small extent of the Zugspitze glaciers, and so this effect 

can be neglected. Since the longwave radiation flux of neighbouring snow-free rocks is 

not simulated in SURGES, the accelerated melting during the breakup of glaciers in 

different parts with increasing surrounding rock areas is not reproduced. In this case, the 

melting is simulated too slowly, and a uniform ice thickness distribution on the elevation 

levels enforces this effect on the edges. In contrast, the melt from thick areas is simulated 

too quickly, so a conclusion of at least a partial compensation by the two effects can be 

drawn. Nevertheless, the congruence over a modelling period of 26 years dominates, 

especially in the parts of the glaciers where most ice is stored. 

 

Figure 5.8: Comparison of modelled (blue) and observed glacier extent (grey and black) for the 
Northern (left) and Southern (right) Schneeferner at the Zugspitze in Germany between 1979 and 
20006 (MAROWSKY (2010), p.70, modified).  

Since this study focuses on the impact of glacier melt on the runoff, the next step is to 

validate the reproduction of the runoff by the model framework in an alpine glacierized 

catchment. The necessity of the subscale approach to simulate the glaciers on the  
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1 x 1 km size is also tested. As described above, the Huben gauge of the Ötztaler Ache, 

with a glacial coverage of 8 percent, was chosen (see Figure 5.1).  

In order to determine the influence of ice-melt on runoff, the results of three different 

model runs were analysed. In the first model run, the runoff was simulated without 

considering glaciers and subsequently the ice-melt contribution. In the second model run, 

the glacier ice reservoir was equally distributed on the 1 x 1 km grid cell, and in the third 

simulation, the glaciers were considered in the subscale approach as introduced in 

section 3.2.3. The results for the period from 1.1.2000 to 31.12.2005 were compared to 

discharge observations by Huben. This period was selected because the glacier inventory 

for this basin reproduced the status of the year 2000. Table 5.1 lists the coefficient of 

determination R² and the Nash-Sutcliffe efficiency coefficient (NASH AND SUTCLIFFE 1970), 

in the following referred to as NSC, as quality criteria for the various model runs, whereas 

Figures 5.9 and 5.10 show the runoff course of the different simulations for two years from 

1.1.2003 to 1.1.2005.  

Table 5.1: Quality criteria for the simulated runoff of different model runs at the Huben gauge of the 
Ötztaler Ache from 1.1.2000 to 31.12.2005. 

Model runs 

without ice, 

subscale 

approach 

with ice, no   

subscale 

approach 

with ice, 

subscale 

approach 

Coefficient of determination 0.66 0.57 0.82 

Nash-Sutcliffe efficiency coefficient 0.57 0.29 0.82 

 

Figure 5.9: Comparison of modelled daily runoff without considering ice-melt water (green), and 
with ice-melt water (turquoise), to observed values (red) at the gauge in Huben of the Ötztaler Ache 
from 1.1.2003 to 1.1.2005.  
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Figure 5.10: Comparison of modelled daily runoff without subscale approach (blue), and with 
subscale approach (turquoise), to observed values (red) at the gauge in Huben of the Ötztaler 
Ache from 1.1.2003 to 1.1.2005. 

The clear improvement in the coefficient of determination and the NSC from 0.57 or 0.29 

respectivley to 0.82 in the model run, considering ice on the subscale, shows the positive 

influence of this approach on the runoff. The comparison of the quality criteria for the first 

two model runs even shows that the influence of the ice-melt on runoff is less than the 

influence of the subscale approach, because the criteria are higher for the subscale 

simulations without considering ice than for the results with ice, equally distributed over 

the complete grid cell. A comparison of development of the runoff of the different model 

runs with the observed discharge in Huben confirms and clarifies the result.  

Simulating the glacier meltwater release with SURGES reproduces the runoff, whereas a 

considerable amount of water is missed during the summer months in the simulation 

without ice-melt. The glacier meltwater clearly contributes to the runoff, especially in the 

case of the extraordinary summer of 2003. In June, when the lower glacierized elevation 

levels become snow-free, a noticeable ice-melt water contribution to runoff starts. The 

percentage rises with the increase of snow-free glacier areas and culminates in August. 

With the first snowfalls in the highest mountain areas in September, the snow-free areas 

are reduced and the percentage of ice-melt decreases. During winter when the glaciers 

are completely covered with snow, meltwater release from the glaciers almost stops. This 

development of meltwater release is similar across years, but the amount, the beginning 

and end of ice-melt contribution depends on the prevailing weather conditions. In 2004, 

glacier melt did not start until July and contributed less water to the runoff in Huben than in 

2003 (see Figure 5.9). The amount nonetheless remains essential for the simulation of the 

daily discharge. 

A comparison of the second model run with the equally distributed ice on the grid cell 

clarifies the necessity of the subscale approach. The dynamics of the glacier melt water 

release cannot be reproduced in considering the ice storage as uniformly distributed on 
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the grid cell of one square kilometre, and so the dynamics and the amount of the runoff 

peaks are not reproduced. The reason for the deviations is the simultaneous melt of the 

snow cover of the entire grid cell. No melt water is contributed from the ice at the 

beginning of the melting period, whereas water is released from the whole grid cell after 

the snow melt. Furthermore, the snow cover of some glacierized grid cells in the highest 

mountains might outlast the whole summer season. As a consequence, no melt water is 

released from these areas, whereas the ice cover of the lower grid cells with thin ice 

layers melts away quite quickly. Additionally, glacierized areas are larger when distributed 

to the whole grid cell, and determine the amount of melt water release (see section 3.2.1). 

Accordingly, the water release at Huben is less than in the simulation with consideration of 

the glacier’s area-elevation distribution. Since the meltwater release from the glacier is 

determined by the snow-free glacier area, the dynamics for the runoff cannot be captured 

without considering the area-elevation distribution of the glacier. The coexistence of snow-

covered and snow-free parts on one grid cell is also the reason for the improved 

reproduction of runoff dynamics in the subscale approach without ice in the example 

introduced (Figure 5.10).  

This step in the validation process also shows the performance of the hydrological model 

PROMET in the reproduction of the runoff in Huben. The components of PROMET are not 

validated in detail, because several studies have proven the quality of the model, including 

MAUSER AND BACH (2009), STRASSER AND MAUSER (2001) and LUDWIG AND MAUSER 

(2000). Its performance in the Lhasa River basin is shown in section 5.3.3.  

Relevant processes on glaciers are reproduced by SURGES as shown in the previous 

steps, although there are processes which are not adequately reproduced, such as wind-

induced snow transport, latent heat fluxes of the surroundings and ice redistribution (see 

section 3.2.8). Nevertheless, snow and ice accumulation and ablation, geometry changes 

and meltwater release to runoff are captured by SURGES. Furthermore, it has been 

demonstrated that not only consideration of ice, but also the subscale approach used in 

SURGES, is required to model the runoff course adequately in alpine regions with 

mountain glaciers with small-scale heterogenic properties.  

5.2 Validation of Glacier Input Data Derivation 

In this section, the derivation of the input data to run SURGES, as shown in Chapter 4, is 

validated. The accuracy of the glaciated area and the elevation of the glacier levels are 

discussed first, and the derivation of the ice thickness distribution is then tested. The 

procedure introduced is similarly carried out in the Austrian Alps and compared to detailed 

glacier inventory data (WEBER ET AL. 2008A) because, as noted earlier, no observation 

data are available in the Lhasa River basin. 

5.2.1 Glacier Area 

The glacier boundaries are taken from the Chinese Glacier Inventory, which is based on 

topographic maps and aerial photos of the year 1970 in the region of the Lhasa River 

basin (WDC 2009). According to MI ET AL. (2002) and SALERNO ET AL. (2008), the editors 

of the inventory which covers the test basin, the uncertainty of glacier area determinations 
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by topographic maps or aerial photos is in the 5 percent range. This value is confirmed by 

other studies, e.g. by WANG ET AL. (2009). Hence, the total error ae of the glacier area in 

the Lhasa River basin is 0.2 km², calculated by: 

2
i

2
1 )05.0S()05.0S(ae    (Eq. 5.1) 

with the glacier area S [m²] and the number of glaciers i. In respect of a total glacier area 

of 670 km², this seems justifiable.  

5.2.2 Glacier Elevation 

The elevation levels of the glacier areas are deduced from the Aster GDEM (ERSDAC 

2009) with a spatial resolution of 30 m and an accuracy of ± 7 – 14 m, as described in 

section 4.3.2. In the processing steps which generate the subscale levels, the elevation 

values are aggregated to levels with an interval of 100 m, meaning that the maximum 

deviation within the elevation level is 50 m, which is comparable to a temperature 

difference of below 0.5 K and therefore has a minor influence, especially considering the 

uncertainties of meteorological data. The GDEM was recorded in the year 2000, whereas 

the glacier boundaries of the CGI are from 1970. According to FRAUENFELDER AND KÄÄB 

(2009), the glacier volume of the Nyainqêntanglha Mountains has decreased by 6 to 10 m 

w.e. during this period. The surface elevation is therefore slightly too low, but the deviation 

is within the range of accuracy of the GDEM and of the aggregated level elevation, and so 

the data can be combined. The resulting changes in the slope, deduced from the GDEM 

and applied in calculating the ice thickness, might in turn also have changed. 

Nevertheless, after averaging of the values for the different elevation levels, this is 

considered to be negligible. 

5.2.3 Ice Thickness 

In order to complete the required input data to run SURGES, the ice thickness per 

elevation level is deduced. Since no ice thickness data except the mean ice thickness of 

the CGI are available for the Lhasa River basin, the method used to deduce ice thickness 

with generally available data (see section 4.3.4) is similarly carried out in the Ötztal, in 

parts of the Kaunertal and in the Stubaital in the Austrian Alps (Figure 5.11). The results 

are later compared to the Austrian glacier inventory, which provides detailed observation 

data for this region (FISCHER 2009, FISCHER ET AL. 2007, LAMBRECHT AND KUHN 2007, 

SPAN ET AL. 2005), and was applied in the GLOWA-Danube project (WEBER ET AL. 

2008A,B). As the area and geometry of the glaciers are similar to those of the glaciers in 

the Lhasa River basin (see sections 2.6 and 4.3.4) this validation approach seems 

appropriate. However, the factor for maximum ice thickness was deduced from the 

Austrian glacier inventory, but no data from the validation area were used in the derivation 

step (see section 4.3.4) and no other data are available for validation. 



Model Validation 

 63

 

Figure 5.11: The glaciers of the validation area for ice thickness derivation in the Ötztal, Kaunertal 
and the Stubaital in Austria (based on ERSDAC (2009), WEBER ET AL. (2008A)). 

In the method used to derive the ice thickness distribution of the glaciers, the Aster GDEM 

(ERSDAC 2009) and the glacier boundaries of the Austrian glacier inventory are applied 

as input data. In order to proceed on the assumption of a given mean ice thickness per 

glacier as is the case in the CGI, a mean ice thickness hi [m] was calculated with Eq. 5.2 

and consideration of the glacier area S [m²]. This formula is based on the BAHR ET AL. 

(1997) volume-area correlation and modified for the Austrian Alps by WEBER ET AL. 

(2008A). 

36.0
i S0285.0h   (Eq. 5.2) 

With these data, ice thickness per elevation level was derived according to the decision 

tree seen in Figure 4.5.  

In order to check the quality of the deduced ice thickness, the derived ice volumes were 

compared with the inventory data. Deviations are caused by ice thickness, because the 

glacier area is identical in both data sets, and comparison of the volumes allows 

consideration of the quantity of glacier ice. The water reservoir is therefore essential in 

this study. First, the total volume of all glaciers is compared to the Austrian glacier 

inventory. The volume deduced is 0.22 km³ smaller, which equals a deviation of two 

percent. This corresponds to a mean ice thickness of 54 m overall and a deviation of 1 m 

(see Table 5.2). In comparison to uncertainties of ice thickness values for the Austrian 

Alps of between 3 m and 300 m (FISCHER 2009), the deviation is small. 

Table 5.2: Comparison of total observed and deduced ice volume in the Ötztal, the Kaunertal and 
the Stubaital in Austria. 

 Total ice volume [km³] Mean ice thickness [m] 

Observed ice reservoir 9.651 55 

Deduced ice reservoir 9.431 54 

Difference 0.220 1 

Deviation [%] 2 2 
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In the next step, the observed ice volume and the deduced ice volume are compared. The 

linear regression, forced through the origin, shows that the deduced ice volumes have 

been slightly underestimated. Nevertheless, 95 percent of the variance of the volumes can 

be explained by the coefficient of determination (Figure 5.12, left). To further clarify the 

quality of the derivation approach, the deduced ice volume of every elevation level was 

compared to the observed volumes. Here, the coefficient of determination is 0.74 and the 

slope of the linear regression is 0.76. The deviations are accordingly larger than for the 

average glacier values (Figure 5.13, left). The distribution of the values in the chart shows 

somewhat overestimated deduced values for smaller ice volumes, whereas the larger 

ones are slightly underestimated.  

The observed ice volumes larger than 60 * 106 m³ in Figure 5.11 can be attributed to the 

Gepatsch and Hintereis Ferner, which have very narrow valleys. The valley geometry is 

only considered in the applied approach by one general valley factor of 0.7 (see section 

4.3.4), which depends on the ratio of glacier width to ice thickness on the centre line 

(PATERSON 1994). Since these values are not available for every glacier, a mean valley 

factor was taken. In the applied method, the slope and position of the elevation level are 

quite dominant. Hence, in cases where the glacier geometry is crucial, the derivation of 

the ice thickness is not fully captured by the methodology. In order to clarify the influence 

of the Hintereis and Geptasch Ferner, the analysis was repeated without the values of the 

two glaciers. Figure 5.12 (right) and Figure 5.13 (right) show the results of this analysis. 

Although the coefficients of determination remained similar, the slope of the regression 

changed: the bias of the derived glacier volumes is smaller without the two glaciers. A 

further reason for deviations is the cut-off of glacier parts located along the southern 

watershed of the Upper Danube, due to the spatial resolution of 1 x 1 km. The area-

volume relationship therefore delivers different mean ice thickness values. 

            

Figure 5.12: Comparison of observed and deduced total ice volume of all glaciers with (left) and 
without (right) Hintereis and Gepatsch Ferner. 
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Figure 5.13: Comparison of observed and deduced ice volume of all glacier elevation levels with 
(left) and without (right) Hintereis and Gepatsch Ferner.  

Finally, the volumes of the elevation levels of two glaciers are compared. An average 

mountain glacier with an area of 1 km² was chosen, the Rofenkar Ferner, and a large 

valley glacier with an area of 4.7 km², the Kesselwand Ferner, was also selected. Both 

glaciers are marked in Figure 5.11: their characteristics and a comparison of their volumes 

are listed in Table 5.3. 

Table 5.3: Characteristics of the Rofenkar and Kesselwand Ferner and comparison of observed 
and deduced ice volumes. 

Glacier 
Area 
[km²] 

Observed 
ice 

volume 
[km³] 

Deduced 
ice 

volume 
[km³] 

Volume 
difference 

[%] 

Observed 
mean ice 
thickness 

[m] 

Deduced 
mean ice 
thickness 

[m] 

Ice 
thickness 
difference 

[m] 

Rofenkar 
Ferner 

1.0 0.046 0.045 -6 46 49 -3 

Kesselwand 
Ferner 

4.7 0.330 0.320 -3 70 68 -2 

The overall deviation of the ice volume varies between 3 and 6 percent for the two 

selected glaciers, which corresponds to a difference of 2 m or respectively 3 m of mean 

ice thickness. The comparison of the ice volumes of the elevation levels shows an 

overestimation of the smaller Rofenkar Ferner, whereas for the Kesselwand Ferner a 

slight underestimation is seen (Figure 5.14). This confirms the results of the comparison of 

all glacier elevation volumes as discussed above. The coefficients of determination of 0.97 

and 0.89 demonstrate that the approach enables the derivation of a realistic ice 

distribution solely using generally available data. Moreover, the approximately 5 to  

10 percent uncertainty in ice thickness observations arising from the measurement system 

and the properties of ice and bedrock should also be taken into account. For the Austrian 

Alps with ice thickness values of between 3 m and 300 m, the uncertainty equals 0.15 m 

to 30 m (FISCHER 2009). Accordingly, the method of derivation of ice thickness distribution 

for the elevation levels, which requires, by comparison to other methods, relatively little 

time and effort, seems to be reliable. The deviations are also within the accuracy range of 

the digital elevation model, which amounts to between ± 7 and 14 m (see section 5.2.2). 
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Figure 5.14: Comparison of observed and deduced ice volume of the elevation levels of Rofenkar 
Ferner (left) and Kesselwand Ferner (right).  

In comparison to other methods for the estimation of the ice thickness distribution of 

alpine glaciers, the applied approach may be less accurate, but requires a minimum of 

input data and is accordingly applicable in remote and larger areas. For example, the 

method used by FARINOTTI ET AL. (2009) requires a set of ice flowlines and the 

corresponding catchments, in addition to a digital elevation model and glacier outlines. 

The distribution of mass balance and parameters describing the ice-flow dynamics are 

also needed. For remote and larger regions such as the Lhasa River catchment, these 

data are not available. Consequently, the approach is limited to small mountain ranges or 

individual glaciers (FARINOTTI ET AL. 2009). 

Altogether, the validation of the deduced glacier inventory data, containing glacier areas, 

elevation levels and ice thickness distribution, showed that the method results in realistic 

input data for use of SURGES. Although the ice thickness distribution cannot be tested in 

the Lhasa River catchment, the transfer seems justifiable as the area and the geometry of 

the glaciers is similar to those of the Eastern Alps. The modest requirements of time and 

effort, in combination with the minimum of required input data, allow application in remote 

regions without further data. The focus on the hydrological impact, however, requires a 

reliable area-elevation distribution, as this determines meltwater release alongside 

meteorological conditions as described in section 3.2.1. 

5.3 Validation of Model Results for the Lhasa Catchment 

The model approach reproduces the processes on a glacier for meltwater release and 

runoff, as shown in section 5.1. As the derived input data for the model are reasonable, 

they are applied to the Lhasa River catchment. In order to check the performance of 

PROMET including SURGES in the investigation area, they are applied for the period 

from 1971 to 2000. The quality of the CLM data is described first, and then the modelled 

glacier mass balance in the Lhasa River basin is validated. The simulated runoff is finally 

compared to observations. 
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5.3.1 Meteorology 

Meteorological station recordings are insufficient to run the model, and so data from the 

RCM COSMO-CLM (CLM 2010, see section 4.1) are used as meteorological drivers. The 

SCALMET tool scales the data down to the required spatial resolution of 1 x 1 km, and the 

CLM data are disaggregated to a temporal resolution of one hour, as described in section 

3.1.1. As SCALMET was validated in detail in MARKE (2008), only the quality of the 

downscaled CLM output data in the Lhasa River basin is checked in this study. The CLM 

ERA 40 outputs are therefore compared to the few meteorological station recordings at 

Lhasa, Damshung and Meldro Gungkar (see Figure 2.4). Daily air temperature and 

precipitation measurements were provided by ICIMOD (2009) for 1980 to 2000. As part of 

the Brahmatwinn project (BRAHMATWINN 2006-2009), ITP (2008) provided monthly 

precipitation values for the gauging stations of Lhasa and Tangga from 1971 to 2000, and 

for Pangdo from 1976 to 2000 (see Figure 2.4). 

The comparison of the downscaled CLM ERA 40 with the observed mean values of air 

temperature and precipitation is summarized in Table 5.4. The air temperatures are 

slightly underestimated by the CLM data, whereas the precipitation sum is overestimated, 

except for Meldro Gungkar. The deviations vary from 3 percent in Meldro Gungkar to 37 

percent in Lhasa. To clarify the deviations, daily and monthly values are analysed below. 

Table 5.4: Comparison of downscaled CLM ERA 40 and observed mean values of air temperature 
and precipitation. 

Air temperature [°C] Precipitation sum [mm] 
Station and 
time period 

 
Obser-
vation 

Down-
scaled 
CLM  

ERA 40 

Δ 
Obser-
vation 

Down-
scaled 
CLM  

ERA 40 

Δ 

Lhasa 
(1980-2000) 8.1 7.2 -0.9 426 584 158 

Meldro Gungkar 
(1980-2000) 6.0 5.3 -0.7 548 532 -16 

Damshung 
(1980-2000) 1.8 1.7 -0.1 464 543 80 

Pangdo 
(1976-2000) no data 538 647 91 

Tangga 
(1971-2000) no data 517 561 44 

The comparison of the downscaled and observed daily air temperatures is shown in 

Figure 5.15, together with the linear regression and the coefficients of determination. 78 to 

86 percent of the variance in the measurements can be explained by the CLM ERA 40 

data at the stations, although the CLM data slightly underestimate the air temperatures. 

The spread between observations and modelled values for lower temperatures can be 

explained by analysing the development of monthly air temperatures as illustrated for the 

stations of Lhasa and Damshung in Figure 5.16.  
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Figure 5.15: Comparison of modelled (CLM ERA 40) and observed daily air temperatures for the 
Lhasa, Damshung and Meldro Gungkar stations.  

 

Figure 5.16: Development of modelled (CLM ERA 40) and observed monthly air temperatures for 
the Lhasa and Damshung stations.  

 

Figure 5.17: Observed and modelled (CLM ERA 40) trend of the annual air temperature at the 
Lhasa and Damshung stations for 1980-2000. 

The minimum air temperatures are clearly underestimated for some years, e.g. 1996, 

whereas for other years they are overestimated, e.g. 1993, causing greater variance in the 

comparison of low temperatures. While the air temperatures between the minimum and 

maximum are reproduced by the downscaled CLM data, the maximum values are slightly 

underestimated: no overestimation can be seen. The described deviations also explain 

the difference between the observed and simulated trend of the annual air temperatures 

from 1980 to 2000, as shown in Figure 5.17. The years 1989 and 1996 are especially 

noticeable for Lhasa and Damshung, with sizeable underestimations of the minimum 

temperature. The observed trend is thus not reproduced by the downscaled CLM ERA 40 

data. The analysis of Meldro Gungkar delivers similar results (see Appendix 3). 
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The comparison of observed and simulated monthly precipitation shows a coefficient of 

determination of between 0.64 and 0.76 (Figure 5.18). The monthly time series clarify 

deviations (Figure 5.19 and Appendix 4). Although they are approximately reproduced by 

the model, there are some years in which the deviations between observed and modelled 

precipitation are large. For the years 1986, 1992 and 1994, the precipitation sum is 

overestimated for all stations, whereas underestimations can be seen for 1996. During the 

last decade, from 1991 to 2000, the deviations become smaller with high accuracy in 1998, 

for instance. Despite deviations in the precipitation amount, the monthly course is 

reproduced by the downscaled CLM ERA 40 values. 

 

Figure 5.18: Comparison of modelled (CLM ERA 40) and observed monthly precipitation for the 
Lhasa and Tangga (1971-2000), Pangdo (1976-2000) and Damshung and Meldro Gungkar 
stations (1980-2000).  

 

Figure 5.19: Development of modelled (CLM ERA 40) and observed monthly precipitation for the 
Lhasa (1971-2000) and Pangdo stations (1976-2000).  

By contrast to the monthly values, daily precipitation values are not captured by the model 

output. This is the case for years reproducing the total amount, as well as for years with 
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large deviations, as shown for the years of 1998 (-2%) and 1997 (+103%) at the Lhasa 

station in Figure 5.20. The deviations vary between ± 20 mm per day, but without special 

pattern. The values, aggregated to monthly sums, are reproduced when the total amount 

is similar to observations. 

 

Figure 5.20: Daily time series of modelled (CLM ERA 40) and observed precipitation at the Lhasa 
station for the years 1997 and 1998. 

The deviations described influence the modelling of the precipitation trends during the 

past period from 1971-2000. Accordingly, the trend is not clearly reproduced by the model. 

For Lhasa the positive trend is similar, but for Pangdo there is no trend simulated contrary 

to the observations (Figure 5.21 and Appendix 5). Nevertheless, the deviations are 

smaller than those for air temperature trends.  

 

Figure 5.21: Observed and modelled (CLM ERA 40) trend of the annual precipitation sum at the 
Lhasa and Pangdo stations. 

For the simulation of future climatic conditions, the CLM is driven by the ECHAM 5 / MPI-

OM global model (see section 4.1). In order to validate the downscaled ECHAM 5-driven 

CLM data, the model results are compared to the stations’ recordings for the climate 

period of 1971 to 2000. Unlike the ERA driven model output, which is based on 

observation data, the ECHAM 5-driven data, as a climate model, cannot reproduce the 

chronology of the meteorological conditions. The model output should, however, 
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reproduce the meteorological conditions and the climate signal. Consequently, the 

average values, the seasonal course with minimum and maximum values and the trend of 

the data should be comparable to observed data. The mean simulated and observed 

values of air temperature and precipitation for the stations are listed in Table 5.5. The 

recorded air temperature is reproduced for the stations by the model, except that in 

Damshung where the temperature is overestimated by 0.6 K. The mean precipitation sum 

of Damshung and Pangdo is overestimated by the CLM ECHAM 5 data, but the deviations 

are within 10 percent, whereas in Lhasa the overestimation reaches 22 percent. The 

precipitation sum is slightly underestimated for Meldro Gungkar and Tangga. In 

comparison to the CLM ERA 40-driven temperature and precipitation values, the 

deviations seen are smaller. Consequently, the mean meteorological conditions are 

reproduced by the CLM ECHAM 5 model run. Taking into account technical difficulties in 

precipitation observation and the resulting deviations up to 10 percent (BAUMGARTNER AND 

LIEBSCHER 1996), the average results seem to be reasonable. 

Table 5.5: Comparison of simulated ECHAM 5 CLM and observed mean values of air temperature, 
precipitation and wind speed from 1980 – 2000, except precipitation for Lhasa and Tangga (1971-
2000) and Pangdo (1976-2000). 

Air temperature [°C] Precipitation sum [mm] 
Station and 
time period 

 
Obser-
vation 

Down-
scaled 
CLM 

ECHAM5 

Δ 
Obser-
vation 

Down-
scaled 
CLM 

ECHAM5 

Δ 

Lhasa 
(1980-2000) 8.1 7.9 -0.2 426 524 97 

Meldro Gungkar 
(1980-2000) 6.0 6.0 0.0 548 481 -67 

Damshung 
(1980-2000) 1.8 2.4 0.6 464 511 48 

Pangdo 
(1976-2000) no data 538 587 41 

Tangga 
(1971-2000) no data 517 513 -4 

Examples of both observed and modelled monthly air temperature and precipitation are 

illustrated for the station Lhasa in Figure 5.22. The seasonal cycles are captured by the 

model output, with the monsoon precipitation during the summer months and the dry 

winters, although there are overestimations of precipitation during the pre-monsoon time 

in April and May, taking into account that the annual values cannot be reproduced by a 

climate model. The comparison of the monthly simulated and observed values also shows 

simulation of a reasonable range of minimum and maximum values. Two January 

temperatures, however (1987, 1988), are simulated at a clearly lower level than all 

observations.  

Finally, the trend of annual air temperature and precipitation is determined, to validate the 

reproduction of the climate signal by the downscaled CLM ECHAM 5 model outputs. 
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Figure 5.23 shows the trends of observed and simulated annual air temperatures for the 

Lhasa and Damshung stations, and the chart for Meldro Gungkar can be seen in 

Appendix 6. Although there are deviations, the increasing temperature trend is simulated 

for all stations, in contrast to the CLM ERA 40-driven model outputs. This can also be 

seen for the precipitation, where no significant trend is obvious. The linear trend lines 

however tend to develop in opposite directions (Figure 5.24 and Appendix 7). 

 

Figure 5.22: Development of observed and modelled CLM (ECHAM 5) monthly air temperature and 
precipitation at the Lhasa station for 1980-2000. 

 

Figure 5.23: Observed and modelled CLM ECHAM 5 trend of annual air temperature at the Lhasa 
and Damshung stations for 1980-2000. 

 

Figure 5.24: Observed and modelled CLM ECHAM 5 trend of the annual precipitation sum at the 
Lhasa and Pangdo stations for 1970 / 1976-2000. 
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Overall, the quality of the outputs of the ECHAM 5-driven CLM model runs is better than 

those of ERA 40-driven simulations, regarding the mean and extreme values and trends in 

the period of 1971/1980 to 2000. As a result, the climatic conditions are reproduced by the 

ECHAM 5 CLM data in the Lhasa River basin. This result is consistent with DOBLER AND 

AHRENS (2010). 

The comparison, however, validates only air temperature and precipitation. Since no 

further meteorological observations are available, the daily and hourly course of the other 

meteorological variables which determine the energy balance of a glacier, e.g. solar 

radiation (see section 3.2.5), are analysed consistently by comparing them to statistics 

from the WMO station in Lhasa (see Appendix 8, U.S. DEPARTMENT OF ENERGY 2010, 

CRAWLEY ET AL. 1999). Figure 5.25 shows the modelled hourly course of several 

meteorological variables in Lhasa on randomly chosen January and July days. During 

January, a clear diurnal variation in the air temperature can be seen, whereas the 

variation in July is small. Since the winter is characterized by dry conditions without 

appreciable precipitation or cloudiness, the direct solar radiation input determines the 

temperature course reproduced by the model outputs. The global radiation input shows 

similarity to the astronomically possible value, which is in accordance with the observed 

data and is caused by the clear sky conditions, dry, clean air and high elevation of the 

Tibetan Plateau. By contrast, the modelled relative humidity fluctuates at around  

60 percent in January. Compared to a daily January average of 28 percent of the WMO 

statistics, it is too high. In July, the monsoon precipitation dominates the weather in Lhasa. 

Consequently, cloudy and rainy weather causes a solar radiation input similar to January’s, 

because the direct radiation input is minimized. This is in consistence with the statistical 

values of the WMO station recordings. Relative humidity varies, on average, between 40 

and 80 percent in July, and so the modelled values reproduce the July conditions  

(Figure 5.25). The daily course over a year for a CLM ERA 40 and ECHAM 5 model run in 

Lhasa is shown in Figure 5.26. The graphs reproduce the characteristics of a dry winter 

with high solar radiation input, whereas in summer the cloud coverage during the 

monsoon reduces global radiation. The absolute values are within a realistic range for all 

variables. The relative humidity is in the range of the mean observed values of about 20 

percent in winter. Consequently, the hourly values during the randomly chosen January 

(Figure 5.25) can be seen as an outlier. 

Although there are deviations between the observed and the CLM model output data, as 

analysed in the previous validation steps, the situation with monsoon precipitation in 

summer and dry winters is reproduced. Overall, the daily and monthly values are in 

accordance with the observations, regarding average and extreme values, although the 

ECHAM 5-driven results are better than the ERA 40 model outputs. The chronology of 

precipitation is not captured by the CLM ERA 40 run, but the average hourly course is 

given realistically. Taking into account uncertainties in meteorological measurements, and 

the fact that the data are climate model outputs with coarse resolution which is then 

further downscaled by SCALMET, their application seems to provide realistic 

meteorological conditions for simulating the processes in an hourly resolution as required 

by the models. Furthermore, the climatic signal is reproduced by the ECHAM 5 model run. 



Model Validation 

 74

Therefore, the CLM ECHAM 5 can be applied for simulation of future conditions, and the 

results can be compared to past simulations in order to assess climatic changes. To sum 

up, the application of the downscaled CLM data as meteorological drivers seems to be 

appropriate in the Lhasa River basin. 

 

Figure 5.25: Hourly course of downscaled CLM (ERA 40) data in a randomly chosen January (left) 
and July (right) in Lhasa. 
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Figure 5.26: Daily course of downscaled CLM ERA 40 (left) and ECHAM 5 (right) data. 

The meteorological stations used for the validation are all located in the valleys and do not 

provide information about the model’s performance in the mountains where the glaciers 

are located. Since no meteorological station recordings are available, the fact that glacier 

mass balance depends not only on air temperature and precipitation, but also on radiation 

balance and latent and sensible heat fluxes, conclusions may be drawn about the quality 
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of the meteorological data in the mountain regions. Moreover, a comparison of simulated 

and observed runoffs gives evidence of the quality of the precipitation in the catchment. 

On the assumption that the models capture snow and glacier mass balances and simulate 

water-related processes using reliable meteorological data as shown above (see section 

5.1), the following validation steps for glacier mass balance and runoff also offer feedback 

on the quality of the meteorological input data. 

5.3.2 Glacier Mass Balance 

Information about glacier changes in Central Asia during recent decades is sparse 

compared to the information available about Central Europe (UNEP AND WGMS 2008). 

The available sources describe the general trend of glacier changes on the Tibetan 

Plateau. Some give statements about different mountain ranges, and only a few glaciers 

are investigated in detail; for instance, several studies of the glacier Urumqihe S. No. 1 in 

the Tianshan Mountains exist (UNEP AND WGMS 2008, YAO ET AL. 2004). Unfortunately, 

these glaciers are located outside the test basin. Thus, conclusions regarding glacier 

changes in the test site have to be drawn not taking this information into account. Remote 

sensing data can additionally be applied for determination of the changes in the glacier 

area.  

According to UNEP AND WGMS (2008), glacier retreat was dominant in Central Asia 

during the 20th century, although in the 1960s and 1970s glaciers gained mass and 

advances were observed. Since the 1980s, the retreat proceeded, and it accelerated in 

the 1990s. While some glaciers advanced until the 1990s, e.g. in the Kunlun Mountains or 

in the Tanggula Mountains, a general retreat is recorded thereafter, with only a few 

exceptions. The mass balance loss is calculated as having been 0.2 to 0.3 m w.e. per 

year since the 1960s (YAO ET AL. 2004). The mountain range of the Nyainqêntanglha Shan, 

one of the main glacier areas on the Tibetan Plateau, whose western part includes the 

main glacier areas along the north-western watershed of the Lhasa River catchment, is 

often listed separately in glacier studies. YAO ET AL. (2004) quote annual glacier retreat as 

about 30 to 40 m. The ongoing glacier retreat is documented by the negative mass 

balances of 0.8 m in 2006 of the Gurenhekou Glacier and 1.6 m of the Zhadang Glacier in 

the Nyainqêntanglha Mountains near Lhasa (YAO ET AL. 2007). A glacier length retreat of 

10 m per year for the Lanong and Zhadang Glacier and of 39 m per year for the Xibu 

Glacier was observed between 1970 and 2007 according to KANG ET AL. (2007B). A 

glacier area retreat of 15.4 percent in the region around Lake Nam Co, in the Northern 

region of the basin, was found for the years 1970 to 2000 (YAO ET AL. 2007). As part of the 

Brahmatwinn project, a detailed glacier change study for the Lhasa River basin was 

conducted by KÄÄB ET AL. (2008) and FRAUENFELDER AND KÄÄB (2009). By comparing 

multi-temporal optical remote sensing data from the Landsat and ASTER sensors with the 

Chinese Glacier Inventory, they found a total change of +2 to -63 percent in various 

glacier areas with a decreasing glacier size from 1970 onwards. Using various area-

volume relations they estimate a mass balance change of -0.2 to -0.3 m w.e. per year 

(FRAUENFELDER AND KÄÄB 2009). The data are summarized in the following table, whereas 

the simulated changes of glacial coverage and the ice water reservoir in the Lhasa River 
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basin for both meteorological drivers of CLM ERA 40 and CLM ECHAM 5 are listed in 

Table 5.7. 

Table 5.6: Summary of glacier change recordings in Central Asia. 

Data source Region Period 
Mass balance changes  

[m w.e. / a] 
Area changes 

[%] 

Himalayas 1977-1999 -0.4  

Himalayas 1999-2004 -0.8  

China 1960-2000  -6 

Tien Shan 20th century  -25 – -35 

Pamirs 20th century  -30 – -35 

UNEP AND 

WGMS (2008) 

Northern 
Afghanistan 

1960-2000  < -50 

YAO ET AL. 
(2004) 

Chinese part of 
High Asia 

1960-2000 -0.2 – - 0.3 -5.8 – -10.5 

LI ET AL. (2009) Himalayas 1960-2000  -2.2 – -9.0 

Lhasa River Basin -0.2 – 0.3 -21 

Aglacier < 0.1 km²  -63.1 

0.1 < Aglacier < 0.5 
km² 

 -41.1 

0.5 < Aglacier < 1.0 
km² 

 -30.5 

1.0 < Aglacier < 5.0 
km² 

 -18.5 

5.0 < Aglacier < 10.0 
km² 

 -11.2 

10.0 < Aglacier < 20.0 
km² 

 -5.8 

FRAUENFELDER 

AND KÄÄB 

(2009) 

Aglacier > 20 km² 

1970-2000 

 

 +1.9 

YAO ET AL. 
(2007) 

Area around  
Nam Co 

1970-2000  -15.4 

Table 5.7: Simulated changes in glacial coverage and ice water reservoir in the Lhasa River basin 
from 1970 to 2000 for CLM ERA 40- and CLM ECHAM 5-driven model runs. 

Glacier area  

[km²] 

Total glacier ice water 
equivalent [m] 

Ice water reservoir 
[mm/km²] 

Global 
Climate 
Model 

1970 2000 Δ [%] 1970 2000 Δ per a 1970 2000 Δ [%] 

ERA 40 666 475 -29 34001 22027 -0.6 1040 674 -35 

ECHAM 5 666 532 -20 34001 27280 -0.3 1040 834 -20 

For the past 30 years, a decrease of 20 (CLM ECHAM 5) and 29 percent (CLM ERA 40) 

of the glacier area is simulated. This is within the range of the retreat of the studies 

introduced here (see Table 5.6). For the ice-water reservoir, an average mass loss of 0.3 

m (ECHAM 5) and 0.6 m w.e. per year (ERA 40) is modelled. In comparison with the 
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results for this area (see Table 5.6), the ECHAM 5 mass loss is consistent, whereas in the 

ERA 40 run the decrease is overestimated. The daily developments of the glacier area 

and the ice water reservoir are shown in Figure 5.27 for the ERA 40 and the ECHAM 5 

driven model runs. At the beginning of the 1970s, glacier area slightly increased in both 

model runs, although a small decrease in ice volume is simulated. Due to the modelling of 

snow-to-ice metamorphosis after one year, the glacier area increases at the beginning of 

the 1970s, because the snow cover outlasts the metamorphosis period. This development 

is consistent with the observations of glacier increase around the 1960s and 1970s (YAO 

ET AL. 2004). The overall ice water reservoir nonetheless shrinks slightly, due to ice-melt in 

other parts of the catchment where the snow cover melts away. Afterwards, a retreat is 

modelled for both the ice volume and the glacier area, which is stronger in the ERA 40-

driven model run than in the ECHAM 5-driven one. The observed acceleration of the 

retreat during the 1990s (YAO ET AL. 2004) is not reproduced by the simulation. Reasons 

for the differences from observations can be seen in the deviations between observed and 

modelled meteorological conditions. As described above, the observed temperatures and 

precipitation sums are not captured by the CLM ERA 40 and ECHAM 5 model outputs for 

all years, and so the exact time series is not reproduced by the model. The glacier retreat 

for the climate period on average is nonetheless reproduced, particularly by the model run 

driven by ECHAM 5. 

 

Figure 5.27: Simulated total ice water reservoir and glacier area in the Lhasa River basin from 1970 
to 2000 using CLM ERA 40 (left) and ECHAM 5 (right) data as meteorological drivers. 

The comparison of the accumulation series from the Nyainqêntanglha Mountain Peak at 

5,850 m a.s.l., deduced from an ice core in the Lanong Glacier and published by KANG ET 

AL. (2007A), and the modelled series confirms differences between observed and 

simulated annual mass balance values. On the assumption that the metamorphosis from 

snow to ice occurs within one year due to the summer precipitation and the simultaneous 

melting phase, KANG ET AL. (2007A) reconstructed a period with substandard annual 

accumulation during the 1970s and an increase from the late 1980s on, as can be seen in 

Figure 5.28a. In the simulated development of the snow water equivalent without 

considering the ice reservoir, this increase is not reproduced (Figure 5.28b). The 

simulated time series of the ice and snow water equivalent (Figure 5.28d) at this elevation 

level are in accordance with the substandard accumulation of the 1970s and the 

subsequent increasing mass balance, although the accumulation slightly declines again, 

in contrast to the ice core data. The increase in the ice reservoir during the late 1970s and 

the beginning of the 1980s, with the minimum values in between, is captured by the 
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simulation. Since KANG ET AL. (2007A) conclude that the accumulation is strongly 

correlated to the precipitation pattern of the region, although the deduced increase in the 

1990s is larger than that observed at meteorological stations in the Lhasa River basin, the 

annual CLM ERA 40 precipitation and temperature from 1971 to 2000 is shown in  

Figure 5.28c. No increase has been determined since the mid 1980s. Consequently, the 

precipitation trend is in accordance with that of snow accumulation. However, the 

precipitation trend in the observed data (see Figure 5.24) shows a slight increase. 

 

Figure 5.28: Comparison of derived accumulation on the Lanong Glacier (KANG ET AL. 2007A)(a) 
with simulations of snow water equivalent (b), air temperature and precipitation (c) and snow and 
ice water equivalent (d). 

The reasons for the deviations between the simulation and the ice-core values are 

manifold. In addition the uncertainties in the ice core data, the assumption of the snow to 

ice metamorphosis over one year according to KANG ET AL. (2007A) seems to be very 

general. No annual variance in weather conditions are considered thereby. Furthermore, 

processes such as wind drift and small-scale shading of the surrounding mountains are 

not considered in the models, although these processes can add snow to the 
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accumulation. Since the annual accumulation is close to the precipitation sum, and 

therefore larger than the modelled one, this might be the case here. Consequently, the 

snow-melt which, according to KANG ET AL. (2007A), occurs during summer, causes snow 

cover melt during some years in the model. This is not assumed for the ice-core. 

Nevertheless, the simulated mass balance values are consistent with the precipitation 

values. Accordingly, the relevant processes for mass balance simulation are reproduced, 

and the deviations can be traced back to differences between observed and CLM ERA 40 

meteorological conditions.  

As previously shown, the climate signal of the past 30 years is reproduced for loss of 

glacier area as well as for the ice reservoir, at least in the CLM ECHAM 5 driven model runs. 

The general observations, lacking detailed measured mass balance series in the Lhasa 

River basin, only enable a general comparison of the trends on the Tibetan Plateau: no 

confirmation of a similar evolution of the glaciers in the test site can be given. 

Nevertheless, taking into account the coarse resolution of the meteorological CLM data 

and their uncertainties, the performance of the model setup in this remote region seems to 

reproduce the glacier dynamics. 

5.3.3 River Runoff 

In order to validate the simulated runoff in the Lhasa River basin, two models runs, driven 

by downscaled CLM ERA 40 and CLM ECHAM 5 meteorological data, were carried out 

from 1.1.1970 to 31.12.2000, on a temporal resolution of one hour. Due to PROMET’s 

spin up, the first model year is not considered in the validation. The model results are 

compared to runoff observations, which are provided at four gauging stations in the Lhasa 

River catchment (see section 2.3) for various time periods, as listed in Table 5.8, by ITP 

(2008) in BRAHMATWINN (2006-2009).  

Table 5.8: Runoff data availability at the four gauging stations in the Lhasa River catchment (based 
on: BRAHMATWINN 2006-2009, ITP 2008). 

Time period 
Gauging station 

Monthly runoff data Daily runoff data 

Lhasa Jan 1971 – Dec 2000 1.1.1991 – 30.12.2000, gap: Feb. 1991 

Tangga  Jan 1971 – Dec 2000 1.1.1991 – 31.12.2000 

Pangdo Jan 1976 – Dec 2000 1.1.1991 – 30.12.2000, gap: 1996 

Yangbajing Jan 1979 – Dec 2000 – 

First, the modelled monthly runoff is compared to the observed data at the four gauging 

stations. The coefficient of determination R² and the NSC are calculated for ERA 40-

driven model runs for the period of 1971 to 2000, as well as for the three decades of the 

same period (Table 5.9). Whereas between 78 and 85 percent of the variance in the 

runoff data can be explained by the model for all periods, the NSC varies between 0.14 

and 0.61 for the gauges in Lhasa, Pangdo and Tangga. However, the coefficient 

increases in the last of the three decades, in accordance with the accuracy of the 

modelled precipitation sum. The quality criteria for the modelled precipitation are listed 

correspondingly in Table 5.9. Here, the recordings of the Lhasa, Pangdo and Tangga 
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stations are assumed to represent the precipitation of the sub-basins, because no more 

station data are available for these areas. As the precipitation data have been more 

consistent with station recordings since 1996, the period from 1996 to 2000 is also 

considered. In this period, both maximum R² and NSCs, with values from 0.85 to 0.89, are 

reached.  

Table 5.9: Quality criteria for modelled monthly runoff R and precipitation data P, driven by CLM 
ERA 40 meteorological data. 

Lhasa Pangdo Tangga Yangbajing 
Period Criterion 

R  P R  P R  P R  P 

R² 0.84 0.72 - - 0.85 0.75 - - 
1971 – 1980 

NSC 0.22 0.46 - - 0.47 0.71 - - 

R² 0.79 0.61 0.79 0.64 0.79 0.69 0.85 - 
1981 – 1990 

NSC 0.14 0.17 0.22 0.51 0.33 0.69 -2.15 - 

R² 0.79 0.71 0.78 0.75 0.80 0.76 0.85 - 
1991 – 2000 

NSC 0.49 0.50 0.56 0.73 0.61 0.76 -2.59 - 

R² 0.88 0.78 0.87 0.79 0.89 0.78 0.88 - 
1996 – 2000 

NSC 0.85 0.70 0.86 0.79 0.88 0.77 -1.87 - 

R² 0.80 0.68 0.78 0.72 0.81 0.73 0.85 - 
1971 – 2000 

NSC 0.31 0.39 0.39 0.66 0.48 0.72 -4.70 - 

The results for the gauge of the smallest sub-catchment, Yangbajing, differ from those of 

the other stations. Its R² is within the range of the three other gauges, varying between 

0.85 and 0.88, but the NSC remains below zero. The development of the monthly 

observed and modelled runoff for the Lhasa and Yangbajing gauges in Figure 5.29 shows 

the reason for the negative NSC. The runoff course is in fact reproduced for both gauges, 

but the amount of runoff is clearly overestimated by the Yangbajing model. However the 

absolute deviations are not larger than for the Lhasa gauge, but the amount of runoff is 

many times smaller. Accordingly, this results in a low NSC at Yangbajing. There is a 

strong correlation, also shown for the other gauges (Appendix 9), between the quality of 

precipitation and runoff. Although no precipitation recordings are available for that part of 

the test basin, the conclusion can be drawn that the reason for this deviation is 

overestimation of precipitation by the CLM.  

 

Figure 5.29: Monthly modelled and observed runoff at the Lhasa and Yangbajing gauges from 
1971-2000 (ERA 40). 
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The comparison of average runoff and annual precipitation during the climate period from 

1971 to 2000 with the observed data (Table 5.10) confirms the influence of precipitation. 

In all cases, both runoff and precipitation are overestimated for the past 30 years, 

whereas the averages for 1996 to 2000 show only slight deviations which can be traced 

back to precipitation. In this comparison, the ECHAM 5 model runs are also taken into 

account, as the climate model is intended to capture the values of the climate period 

rather than single years. The deviations are smaller for the runoff and for the precipitation 

sum than in the ERA 40 model runs, which is in accordance with the smaller deviations in 

the glacier changes (see section 5.3.2). At the Yangbajing gauge, the largest 

overestimation, of 124 (ERA 40) or 84 percent (ECHAM 5), is simulated. The uncertainties 

in precipitation are also the reason for the deviations in the simulated interannual 

variability in runoff, as Figure 5.30 shows for all four gauges. 

 

Figure 5.30: Comparison of observed and modelled annual runoff in Lhasa, Pangdo, Tangga and 
Yangbajing. 
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Table 5.10: Mean annual runoff [m³/s] and precipitation [mm] for ERA40- and ECHAM 5-driven 
model runs at the four gauges for the climate period from 1971-2000.  

Lhasa Pangdo Tangga Yangbajing 
Period Mean 

R  P R  P R  P R  P 

Observed  279 426 196 538 237 517 23 - 

ERA 40 408 584 270 647 321 561 50 - 

Δ ERA 40 [%] +46 +37 +37 +20 +36 +8 +124 - 

ECHAM 5  351 524 233 587 278 513 41 - 

1971 – 2000 

Δ ECHAM 5 [%] +26 +23 +19 +9 +17 -1 +84 - 

Observed 360 484 248 617 295 598 23 - 

ERA 40 400 572 255 609 311 547 51 - 

Δ ERA 40 [%] +11 +18 +3 -1 +5 -9 +117 - 

ECHAM 5 351 527 234 586 282 500 42 - 

1996 – 2000 

Δ ECHAM 5 [%] -2 +9 -5 -5 -5 -17 +83 - 

Nevertheless, the runoff trend during the climate period should be reproduced by the 

model. This, as with the precipitation trends (see Figure 5.16), is not the case. Whereas 

the increase in runoff for the ERA 40 run is slightly underestimated, no trend is simulated 

for the ECHAM 5 run, as shown in Figure 5.31 and Appendix 10. Again, the enhanced 

agreement in the amount of runoff can be discerned for the years 1996 to 2000. 

 

Figure 5.31: Annual modelled and observed runoff at the Lhasa gauges from 1971-2000 for ERA 
40 (left) and ECHAM 5 (right) meteorological data. 

Next, daily runoff measurements are compared with the modelled discharges at the Lhasa, 

Pangdo and Tangga gauges, considering the CLM ERA 40 data. Since the CLM 

precipitation best fits the observations from 1996 to 2000 as described above, validation 

of the daily values is focused on this period. Figure 5.32 shows the comparison for daily 

runoff values at the three gauges mentioned.  

About 72 percent of the variance of the streamflow data set can be explained by the 

model results for all three gauges, according to the coefficient of determination, which was 

calculated for a linear regression forced through the origin. Small biases of 7 and  

8 percent show slight underestimation of the runoff for the five years in Tangga and 

Pangdo, whereas no bias is calculated for Lhasa. 
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Figure 5.32: Comparison of daily modelled and observed runoff at the Lhasa, Pangdo and Tangga 
gauges from 1996-2000 (CLM ERA 40). 

The NSCs, listed in Table 5.11, vary between 0.67 and 0.73 at the three gauges for the 

period from 1996 to 2000. The results seem contradictory to the analysis results 

presented earlier where daily precipitation values are not reproduced by the CLM model 

output data, however, the modelled precipitation fits well to the observed one in the 

chosen period. The high correlation can therefore be explained. In considering the whole 

decade from 1991 to 2000, an overestimation is assessed at all gauging stations, as 

shown in Table 5.11, in Figure 5.33 and in Appendix 11 and Appendix 12. 

Table 5.11: Quality criteria for modelled daily runoff, driven by CLM ERA 40 meteorological data. 

Period Criterion Lhasa Pangdo Tangga 

R² 0.73 0.72 0.75 
1996 – 2000 

NSC 0.67 0.70 0.73 

R² 0.67 0.65 0.67 
1991 – 2000 

NSC 0.34 0.41 0.44 

 

Figure 5.33: Development of daily observed and modelled runoff at the gauge in Lhasa from 1991 
to 2000 (CLM ERA 40). 
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In order to further clarify the runoff development, the modelled and observed river 

discharge is illustrated in Figure 5.34 for the year 1997, where the precipitation is largely 

overestimated, and for the year 1998 which has, as analysed above, high correlation (see 

Figures 5.19, 5.20 and 5.21). While the observed course is reproduced by the runoff, it is 

overestimated by 43 percent for 1997, whereas a slight underestimation of 4 percent is 

simulated for 1998. Furthermore, the development of the runoff in combination with 

precipitation shows a general conformity in the runoff with the peaks during the monsoon, 

the decline afterwards and finally the low flow during winter. Nevertheless, there are 

disparities of some days between the simulations and the observations, which can be 

traced back to the deviations in the precipitation pattern. As this is only the precipitation at 

the Lhasa station, differences from the areal rain- and snowfall are possible. The 

precipitation deviations are in any case consistent with the runoff deviations. The peaks 

during the summer of 1997 can be particularly clearly seen. The missing precipitation of 

May 1998 causes an underestimation in the simulated discharge. The outstanding peak at 

the end of October 1997 can be traced back to the occurrence of unobserved precipitation. 

The level of the runoff peak suggests stronger deviations in other parts of the catchment. 

Additional precipitation during wintertime does not cause direct output in the streamflow, 

because it is stored as snow. The correlation between runoff and precipitation is also 

reproduced for the other years.  

 

Figure 5.34: Daily modelled and observed runoff at the Lhasa gauges for 1997 and 1998 (ERA 40).  
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To sum up, the validation of the runoff proves agreement between the modelled and 

observed values where the precipitation data are similar to observed data. No exact daily 

runoff can therefore be simulated using climate model output data as meteorological 

drivers. Differences may also be caused by lack of consideration of lakes, water reservoir 

management and water withdrawal, e.g. for irrigation. The amount is, however, small 

according to DAJUN (1995). Finally, Manning’s roughness value is assumed to be constant 

for all water levels. Flood plains are also not included.  

The validation nevertheless showed that the approach can reproduce glacier and 

hydrological dynamics in an appropriate temporal as well as spatial resolution. Taking into 

account uncertainties in input and validation data due to missing observations, the 

challenge of coupling between different scales and the subscale consideration of glaciers 

up to the coarse climate model output of the CLM, the quality of the results is adequate. 
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6 Model Results – The Impact of Future Climate Change 

The model framework captures the relevant processes to simulate the influence of glacier 

meltwater release on runoff for past and present climatic conditions, as presented in the 

previous chapter. As the models are physically based, use universal parameters and are 

not calibrated using measured discharges, they are applicable to future climatic conditions 

with appropriate performance. In order to determine the impact of future climate change 

on the glaciers and their meltwater release, a number of future climate scenarios are 

analysed. In the following chapter, the effect on runoff is identified. The future climate 

scenarios are introduced in the following section; afterwards, the results of the scenario 

simulations are presented.  

6.1 The IPCC Future Climate Scenarios 

Global concentrations of greenhouse gases have been increasing due to human activities 

since 1750, and clearly already exceed pre-industrial values today. As a result, the global 

surface temperature has been, and is still, rising, and the positive trend will continue in the 

future. The magnitude of the increase depends on human activities and natural factors, 

such as future greenhouse gases emissions, solar activity, land surface properties and 

others. The INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE (IPCC) (2007A, B) 

distinguishes between four different emission scenario families resulting from alternative 

developments in demography, economy and technology until the year 2100 in the IPCC 

Special Report on Emission Scenarios (SRES) (NAKIĆENOVIĆ AND SWART 2000). A large 

proportion of the uncertainties in future emissions is covered. The scenario families are 

characterized as follows: 

Scenario family A1 combines the rapid introduction of new, more efficient, technologies 

with fast economic growth. Until the mid-century, the population will increase and then 

decline. The technology changes in the energy system are divided into three groups; fossil 

intensive (A1FI), non-fossil energy sources (A1T), and a balance across all sources (A1B). 

A heterogeneous world with a continuously growing population and a regionally oriented 

economic development is assumed by scenario A2. The technological changes are slower 

than in the other scenarios. Scenario B1 supposes a convergent world with a population 

peak in the mid-century (similar to A1), combined with rapid changes in economy and the 

introduction of clean, resource-efficient technologies. While B1 focuses on global solutions, 

the B2 scenarios assume local solutions to economic, social and environmental 

sustainability. Continuous global population growth and an intermediate economic 

development with less rapid and more diverse technologies than in B1 and A1 go together 

with an orientation towards environmental protection and social equity (NAKIĆENOVIĆ AND 

SWART 2000).  

As a result of the different storylines, a range of increasing future greenhouse gas 

concentrations is assumed. Subsequently, surface temperature increase varies between 

scenarios. The development of the greenhouse gases from 2000 to 2100, including 

carbon dioxide, methane, nitrous oxide and other important gases, is illustrated for the 

various scenarios on the left in Figure 6.1, together with the 80th percentile and the full 
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range of scenarios published since the SRES report. The development assumes no 

additional climate policies. On the right, the development of the global surface warming 

with the standard deviation range of the individual models is shown. The likely ranges for 

the scenarios are symbolized as bars on the side, and the orange line shows the 

simulated temperature increase assuming that all radiative forcing agents were constant 

at year 2000 values (IPCC 2007A, B). Table 6.1 summarizes the projected global averages 

of the temperature changes between 2090 and 2099, in comparison to those of 1980 to 

1999. 

 

Figure 6.1: The IPCC SRES emission scenarios (left) and the development of global surface 
warming with uncertainty ranges (right) (IPCC 2007A, p.44 and IPCC 2007B, p. 14). 

Table 6.1: Projected global temperature changes and their likely range of the various scenarios 
from 2090-2099 relative to 1980-1999 (data source: IPCC 2007B).  

Scenario 
Best estimate 

temperature change [°C] 
Likely range of 

temperature change [°C] 

Constant Year 2000 concentrations 0.6 0.3 - 0.9 

A1B 2.8 1.7 – 4.4 

A1FI 4.0 2.4 – 6.4 

A1T 2.4 1.4 – 3.8 

A2 3.4 2.0 – 5.4 

B1 1.8 1.1 – 2.9 

B2 2.4 1.4 – 3.8 

In order to obtain a range of likely climate change scenarios, the IPCC SRES scenarios 

A1B, A2 and B1 were chosen for the future simulations. The Constant Year 2000 

concentration scenario offers the option of analysing a possible future development 

without including further increasing greenhouse gas emissions, and so was also applied 

and is referred to as CON. The analysis of spatial changes focuses on the A1B scenario, 

because its development is assumed to be very likely, due to mid-line economic growth 

and subsequent greenhouse gas emissions. The results of the B1 scenario are also 

discussed in detail, to offer an overview of possible future changes for a more moderate 
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temperature increase in contrast to the A1B scenario. The spatial distribution of the results 

for the A2 and CON run are illustrated in the appendix. 

Downscaled CLM ECHAM 5 model outputs were used as meteorological drivers. 

Consequently, to assess changes in comparison to the past, the CLM ECHAM 5-driven 

simulation results were used. 

6.2 Future Climatic Conditions in the Lhasa River Basin from 
2001 to 2080 

In this section, the future climatic conditions in the Lhasa River basin according to the 

different IPCC scenario from 2001 to 2080 are described. The mean annual air 

temperature, the precipitation sum and the global radiation are analysed first, and then 

seasonal changes are investigated. In order to derive absolute changes, the mean values 

of the past climate period from 1971 to 2000 are compared to those for the future periods 

of 2011 to 2040 and 2051 to 2080. The trend-to-noise ratio T/N gives evidence about the 

trend, considering the absolute trend between the beginning and the end of the time 

periods and the standard deviations σ (Eq. 6.1). 


trend

N/T   (Eq. 6.1) 

Because normal distribution of meteorological data is not given in most cases, a trend 

analysis based on MANN (1945) and KENDALL (1970) was also applied. This test enables 

the assessment of the significance of a trend without presuming normal data distribution in 

valuating a relative increase or decrease of the series. The test statistic Q is calculated as 

shown in Eq. 6.2 for more than 10 values, taking into account the quantity of values n, the 

series elements aj and ak (j > k), the quantity of data values tp in the pth group and the 

quantity of tied values q: 
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The level of significance α is allocated to the various values of Q, as listed in Table 6.2 

(RAPP AND SCHÖNWIESE 1995). For the Mann-Kendall trend test, the excel template 

MAKESENS by SALMI ET AL. (2002) was applied in this study.  

Table 6.2: Significance levels α of the different Mann-Kendall trend values of Q (RAPP AND 

SCHÖNWIESE (1995), p. 62, modified). 

Q α 

> 1.645 < 0.1 

> 1.960 < 0.05 

> 2.576 < 0.01 

> 3.290 < 0.001 
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Figure 6.2: The development of annual air temperature, precipitation sum and global radiation in 
the Lhasa River catchment from 1971 to 2080 according to the downscaled CLM ECHAM 5 IPCC 
SRES scenarios. 

Figure 6.2 shows the annual linear trends of mean air temperature, precipitation, and 

global radiation in the Lhasa River basin from 1971 to 2080 according to the downscaled 

CLM ECHAM 5 model output. An average air temperature of -0.1°C was simulated for the 

test site for the earlier period, with an absolute increase of 0.7 K at a level of significance 

of 0.05. The positive trend continues in the scenarios A1B (green), A2 (red) and B1 (blue), 

similar to the global trends as shown in Figure 6.1. The graph ends in the year 2080, and 
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so the increase in the A1B scenario is strongest, with 4.6 K, in contrast to the global trend 

to 2100. The air temperature of the A2 scenario does not exceed the A1B values until the 

2070s, whereas the rise of the B1 air temperature slows down after 2060, with an 

absolute increase of 2.4 K. In the period before 2060, the increase in air temperature in 

the three scenarios is relatively similar. According to the Mann-Kendall trend test, the 

positive trend of the temperature development is significant on the 0.001 level for all three 

scenarios (see Appendix 13). By contrast, the CON scenario (yellow) has an exceptional 

position with no increases in greenhouse gas emissions, as described above. 

Consequently, no significant trend can be analyzed. However, an absolute increase of  

0.4 K is assessed for the future period. The global radiation input develops parallel to the 

air temperature at a confidence interval of 0.95 in the future. For the past, the 

development of the radiation differs from that of air temperature, and no trend can be 

assessed. The four scenarios modelled opposite trends for the annual precipitation sum. 

While the absolute trend is almost constant for the past and the B1 scenario run, a 

decrease is simulated for A1B, A2 and CON. However, the annual trend is only significant 

for the A1B scenario at a level of 0.05. For the other scenario runs, the standard deviation 

exceeds the simulated changes, and the range of fluctuation grows in the future time 

series. Precipitation shows large interannual variations especially in the A2 scenario run 

(Figure 6.2). The table in Appendix 14 summarizes the statistical analysis of annual mean 

air temperature, precipitation and global radiation. 

Table 6.3: Changes in the mean annual air temperature in the Lhasa River basin for the four 
scenario runs. 

2011 – 2040 2051 – 2080 
Meteorological variable 1971 – 2000 Scenario 

 Δ  Δ 

A1B 1.4 +1.4 3.6 +3.6 

A2 0.8 +0.9 3.1 +3.2 

B1 1.0 +1.1 2.4 +2.4 

Mean annual air 
temperature [°C] 

-0.1 

CON 0.1 +0.2 0.5 +0.6 

The mean annual air temperature in the Lhasa River basin was -0.1°C from 1971 to 2000 

(Table 6.3). It varies between -9°C on the highest mountain peaks of the Nyainqêntanglha 

Mountain range and 10°C in the Lhasa valley close to the catchment outlet (see  

Figure 6.3, top). According to the A1B scenario, the temperature increases by 1.4 K until 

the future period of 2011 to 2040, whereas the increase in B1 is 1.1 K on average. As 

shown in Figure 6.3 (left) the changes are not equally distributed over the basin in both 

scenarios. In the valleys and in the south-eastern areas, the increase varies between 1 K 

(B1) and 1.5 K (A1B), whereas in the mountain ranges and in the north-west the 

temperature rises between 1.5 K (B1) and 2 K (A1B). This bisection of the basin with 

larger changes in the north-west and smaller ones in the south-east continues in the 

period from 2051 to 2080 (Figure 6.3, right). The differences between the two chosen 

scenarios are also larger than those of the previous period. While a temperature increase 

between 3 K and 4 K is simulated by the A1B scenario, the B1 scenario causes a 
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temperature rise of 1.5 K to 3 K from the 1971 to 2000 period. The average changes for 

the three climate periods of air temperature are summarized for all scenarios in Table 6.3. 

 

Figure 6.3: Mean annual air temperature from 1971 to 2000 (top) and the changes in the periods of 
2011 to 2040 (left) and of 2051 to 2080 (right) according to the A1B scenario (middle) and B1 
scenario (bottom). 

Although the precipitation changes are small on average and only significant for the A1B 

scenario, there are clear differences in the spatial pattern of the future periods in some 

regions (Figure 6.4). From 2011 to 2040, an increase of up to 75 mm is modelled for the 

south-eastern parts in both scenarios, whereas in the central northern parts, a decrease of 

up to 25 mm (B1) and 50 mm (A1B) is simulated. In the north-western regions, almost no 
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changes can be seen. Due to the monsoon direction, precipitation decreases from the 

south-east to the northern parts of the basin (see section 2.2 and Figure 6.4, top). 

Moreover, a gradient with elevation during the monsoon following PUTKONEN (2004) is 

evident in the simulation (Figure 6.4, top). According to the scenario simulations, wetter 

basin areas will gain more precipitation and drier regions will receive less precipitation in 

the future. 

 

Figure 6.4: Mean annual precipitation from 1971 to 2000 (top) and the changes in the periods of 
2011 to 2040 (left) and of 2051 to 2080 (right) according to the A1B scenario (middle) and B1 
scenario (bottom). 
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This trend continues from 2051 to 2080, although the border between precipitation loss 

and gain shifts from a northeast – south-western to a clear west – east direction. 

Precipitation increase is simulated in the A1B scenario only for small regions, whereas the 

decrease reaches 75 mm. In the B1 scenario, the areal fractions of the two parts remain 

constant, with changes in the range of -75 to + 50 mm (Figure 6.4, bottom). Table 6.4 lists 

the annual precipitation sums and changes for the three decades. 

Table 6.4: Changes in the mean annual precipitation sum in the Lhasa River basin for the four 
scenario runs. 

2011 – 2040 2051 – 2080 
Meteorological variable 1971 – 2000 Scenario 

 Δ [%]  Δ [%] 

A1B 621 -1 596 -5 

A2 646 +3 615 -2 

B1 629 0 626 -1 

Mean annual 
precipitation sum [mm] 

630 

CON 612 -3 594 -6 

As the seasonal course of the precipitation, caused by the monsoon and interaction 

between the meteorological variables, is essential for snow and ice-melt, the average 

trends for the Lhasa River basin for winter (October – March) and summer (April – 

September) are discussed. The statistical values are compiled in Appendix 15. The 

significant annual temperature increase (0.05 level) cannot be seen in winter or summer in 

the past: the absolute trend is below standard deviation. This is also the case for the CON 

scenario. By constrast, the rise for the scenarios A1B, A2 and B1 is significant on a level 

of confidence of 99.9 percent in both seasons. While the trend for the first two scenarios 

and the past is greater in winter than in summer, it inverts for the B1 scenario. The 

temperature increase in all scenarios ranges from 0.5 K (CON) to 5.0 K (A1B) in winter, 

and from 0.4 K (CON) to 4.2 K (A1B) in summer. No significant trend is determined for 

precipitation development, except for the A1B scenario. This is also the case for winter 

and summer in all scenarios and for the past. Nevertheless, there are significant changes 

in some months. In January, February, April, May and July, precipitation clearly decreases 

according to the A1B scenario. By contrast, an increase is simulated in the B1 scenario for 

February, which is balanced by a decrease in January. The changes in all other months 

are small (for details see Appendix 15). 

Not only the amount of precipitation is relevant for the water balance, and particularly for 

the glaciers, but also its type (rain or snow). For this reason, the quantity of snowfall is 

also analysed here. The negative trend of the percentage of snowfall on the annual 

precipitation sum during the period from 1971 to 2000 continues in the future scenarios. 

While the percentage was in the 28 percent range in the past, it will decrease to between 

12 and 25 percent (depending on scenario) until 2080. The trend is strongest for the A1B 

scenario and slight for the CON run (Figure 6.5). It represents a reduction of between  

1 and 6 percent in the first future climate period, 2011 to 2040. From 2051 to 2080, the 

decrease varies from between the past period by 3 and 14 percent (see Table 6.5).  
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Figure 6.5: The development of the annual percentage of snowfall in the Lhasa River catchment 
from 1971 to 2080 according to the CLM ECHAM 5 IPCC SRES scenarios. 

Table 6.5: Simulated changes in snow precipitation in the Lhasa River catchment for the four IPCC 
SRES scenarios. 

2011 – 2040 2051 – 2080 
Meteorological variable 1971 – 2000 Scenario 

 Δ  Δ 

A1B 22 -6 14 -14 

A2 24 -4 17 -11 

B1 22 -6 18 -10 

Percentage of snow 

precipitation [%] 
28 

CON 27 -1 25 -3 

The spatial comparison of the percentage of snowfall between the period from 1971 to 

2000 and the two future periods is shown in Figure 6.6. The highest proportion of snowfall 

is reached along the Nyainqêntanglha Mountains and in the northeastern parts of the 

basin, with 40 to 100 percent, because percentage of snowfall correlates to elevation. 

Nevertheless, only a small area with the highest mountain peaks gains more than  

60 percent of snowfall. From 2011 to 2040, the reduction rises to 10 percent for almost the 

entire area in both the A1B and the B1 scenario simulations. The decrease reaches  

20 percent in the northeastern Nyainqêntanglha Mountains. The spatial pattern of the 

trend continues in the 2051 to 2080 period. In accordance with the air temperature 

changes, it is stronger in the A1B run than in the B1-driven simulation (Figure 6.6).  

Analysis of the reduction in snowfall over various elevation levels in the catchment (see 

Figure 6.7 and Table 6.6) shows uneven distribution. In areas above 5,500 m a.s.l. the 

decrease reaches a maximum of about 10 percent for the first future period in both 

scenarios. Below this elevation, it varies at about 5 percent. The decrease becomes larger 

in the second period, with values of between 20 percent (B1) and 33 percent (A1B) in the 

higher areas. A reduction of 2 to 13 percent is modelled for altitudes below 5,500 m a.s.l. 

The percentage of snowfall making up total precipitation consequently declines. The 

present percentage of snowfall will thus be shifted to regions located 500 m higher. This 

trend continues, and leads to a shift of 1,000 m to 1,500 m a.s.l. in the worst case, the 

A1B scenario (see Table 6.6). Consequently, the regions with glaciers are particularly 



Model Results – The Impact of Future Climate Change 

 96

affected. The inequality between elevation levels is partly caused by the pattern of the 

temperature increase, which is larger in higher regions, as described above (see Figure 

6.3). The precipitation decrease is also larger along the Nyainqêntanglha Mountains (see 

Figure 6.4). 

 

Figure 6.6: Mean annual percentage of snow precipitation from 1971 to 2000 (top) and the changes 
in the periods of 2011 to 2040 (left) and of 2051 to 2080 (right) according to the A1B scenario 
(middle) and B1 scenario (bottom). 
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Figure 6.7: Reduction of percentage of snowfall at different elevation levels for the future periods 
2011 to 2040 (blue (A1B) and yellow (B1)) and 2051 to 2080 (green (A1B) and red (B1)), compared 
to the past period. 

Table 6.6: Changes in the percentage of snowfall for different elevation levels in the basin. 

A1B B1 

2011 – 2040 2051 – 2080 2011 – 2040 2051 – 2080
Elevation  
[m a.s.l.] 

Percentage 
of basin 
area [%] 

1971 
– 

 2000 Δ Δ Δ Δ 

3500 – 3999 5.75 5 -1 -3 -2 -2 

4000 – 4499 14.47 11 -2 -5 -3 -4 

4500 – 4999 32.03 23 -4 -11 -5 -8 

5000 – 5499 42.48 35 -7 -17 -7 -13 

5500 - 5999 5.00 48 -9 -26 -10 -20 

6000 – 6499 0.25 58 -10 -31 -10 -24 

> 6500 0.02 73 -9 -33 -8 -23 

As the duration of complete snow coverage determines the melting period of the ice, it 

was also analysed. Figure 6.8 shows the number of days with snow coverage larger than 

10 mm s.w.e. in the Lhasa River catchment. In the lowest valleys, snow cover exists only 

for a few days. The duration increases with rising elevation. In areas above 5,000 m a.s.l. 

snow cover lasts about three months. Only above 6,500 m a.s.l. does it last almost the 

whole year, according to the simulation. Compared to Europe, this duration is very short. 

Reasons for the differences include the dissimilarity of the precipitation pattern, with rare 

snow fall during winter and high precipitation in summer time. Although snow also falls 

during the monsoon, rain is observed up to elevations of at least 5,800 m a.s.l. (KANG ET 

AL. 2007, KAISER ET AL. 2006).  

According to the B1 scenario run, small regions of the southern river valleys will be 

characterized by an increasing number of days with snow cover in the future, as a result 

of the increasing precipitation in the southern parts of the catchment. Furthermore, on the 

mountain peak of the Nyainqêntanglha, above 7,000 m a.s.l., a small increase is also 
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simulated. By contrast, the duration of snow cover in all other regions is reduced. For the 

A1B scenario, it is reduced troughout the Lhasa River basin except at the 

Nyainqêntanglha Mountain Peak (see Figure 6.8). 

 

Figure 6.8: Mean annual days with snow cover (swe > 10 mm) from 1971 to 2000 (top) and the 
changes in the periods 2011 to 2040 (left) and 2051 to 2080 (right) according to the A1B scenario 
(middle) and B1 scenario (bottom). 

The reduction is not equally distributed across all elevation levels. As shown in Figure 6.9 

and Table 6.7, the changes to the past are similar in the A1B and B1 scenario runs for the 

first period, from 2011 to 2040, whereas in the second period, from 2051 to 2080, the 

decrease in the A1B scenario is very high. Consequently, the snow cover below 4,000 m 

a.s.l. will last only for a few hours. The duration of the snow cover increases slightly to two 

and a half months in areas above 6,000 to 6,500 m parallel to elevation rise, which 
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represents a reduction of four months compared to the past period. In the other periods 

and in the B1 scenario run, changes of about 30 percent are simulated, reaching 50 

percent in the lowest and the highest regions. A shift in the number of snow days of about 

500 m a.s.l. is modelled. At elevation levels above 5,500 m a.s.l. with glaciers, this causes 

a shortening of snow cover duration of between two and three months. Moreover, the 

different future precipitation patterns of the two scenario runs are reproduced by the snow 

cover duration, in addition to the larger temperature increase in the higher regions. A clear 

precipitation decrease in the higher regions, especially in the Nyainqêntanglha Mountains, 

is simulated in both the A1B and the B1 runs, whereas increasing precipitation is modelled 

for the lower south-western and southern parts (see Figure 6.4), particularly in the B1 

scenario. The decrease is accordingly smaller in regions between 3,700 and 4,500 m a.s.l. 

in the B1 run than in the A1B run. A slight increase of the snow cover period is even 

simulated in the B1 scenario for the period from 2051 to 2080 for some regions in the 

lower elevation range. 

Table 6.7: Changes in the number of days with snow cover of a swe > 10 mm. 

A1B B1 
2011 – 2040 2051 – 2080 2011 – 2040 2051 – 2080 

Elevation  
[m a.s.l.] 

1971  
– 

 2000  Δ  Δ  Δ  Δ 

3500 – 3999 5 2 -3 0 -5 3 -3 3 -2 

4000 – 4499 16 8 -8 4 -12 12 -4 9 -7 

4500 – 4999 48 30 -18 18 -31 34 -14 30 -18 

5000 – 5499 89 59 -29 34 -54 59 -30 59 -30 

5500 - 5999 147 100 -48 54 -93 100 -47 87 -60 

6000 – 6499 199 136 -63 73 -125 139 -60 113 -86 

> 6500 330 267 -62 219 -110 256 -73 184 -146 

Basin 64 41 -23 24 -40 43 -21 41 -23 

 

Figure 6.9: Changes in days with snow cover (swe > 10 mm) for the future periods 2011 to 2040 
(blue (A1B) and yellow (B1)) and 2051 to 2080 (green (A1B) and red (B1)) compared to the past 
period. 
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According to the applied ECHAM 5 CLM IPCC SRES scenarios, the future meteorological 

conditions in the Lhasa River basin will change considerably. The air temperature will 

increase throughout the basin, while the average precipitation changes are small. The 

spatial pattern of the shifts nonetheless divides the basin into regions with an increase, in 

the south, and those with a decrease, in the central and north-western parts. As a 

consequence, the amount of snowfall and the number of days with complete snow 

coverage will be reduced. Higher regions, where the glaciers are located, are particularly 

affected. The impact of the changing climatic conditions on glacier distribution and on the 

ice water reservoir is presented in the following chapter. 

6.3 Future Glacier Distribution and Ice Water Reservoir  

The retreat of glacial coverage during the period from 1971 to 2000, as described in 

section 5.3.2, will continue in the future. The magnitude of the decrease both in glacier 

area and in water stored as glacier ice is similar to the past period up to 2020 (see  

Figures 6.10 and 6.11) in all scenario simulations, reflecting future meteorological 

conditions. Both air temperature and precipitation develop similarly until 2020. Afterwards, 

the future trends differ between scenarios. While the decrease is strongest in the A1B 

scenario, corresponding to the largest temperature increase, the A1 scenario run 

simulates the lowest shrinkage among the increasing emission scenarios until 2070. In the 

subsequent decade, the A2 temperature increase exceeds the A1B increase, and results 

in an acceleration of glacial retreat. Hence, the A2 trend rises above the glacial decrease 

of the B1 scenario simulation.  

In determining glacier mass balance, both air temperature development and the amount of 

snow precipitation must be considered when explaining the glacier trends. As a 

consequence, years with above average snow precipitation (see Figure 6.12) can be 

identified in the development of the ice water equivalent. Hence, the retreat in the B1 

scenario in the 2020s is largest, but slows down by 2070, in accordance with its larger 

amount of simulated snowfall by comparison with the other scenario runs. Although 

snowfall decreases further, glacier melt slows down during the last decade of the A1B and 

B1 results. As the glaciers retreat into the highest mountain areas until the 2070s in this 

simulation, enough snowfall is nevertheless simulated to enable the glacier retreat to be 

stabilized. Together with the slowdown of the temperature trend, the reduced retreat can 

be explained. The mass loss during the previous decades can however not be balanced, 

and so glacier shrinkage is largest in the A1B scenario in total in 2080. 

The CON-driven model run, without significant changes in meteorological conditions after 

2020, takes an exceptional position. The ice water equivalent fluctuates around the 2020 

period: an equilibrium state is reached by the glaciers in which mass gain and mass loss 

are almost balanced over the years. Average annual mass balances of -0.04 m and  

-0.05 m in the future periods of 2011 to 2040 and 2051 to 2080 respectively confirm the 

result (see Table 6.8). Glacier area nonetheless decreases in the simulation. Disregarding 

the simulation of ice movement, and consequently the transport of mass gain from the 

accumulation region to ablation region, causes a more pronounced melting of the ice in 

the lower areas. For this reason, the glacier area trend is totally different from the 
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development of the ice water reservoir. However, ice redistribution should be considered 

in simulations under changing climatic conditions: the results for the scenarios with 

increasing temperature can be assumed to be reliable. With enlargement of surface area 

and reduction of ice thickness, ice flow would accelerate the retreat of the glaciers. 

Without consideration of ice transport, a lower limit to the retreat is simulated. The ice 

movement of retreating glaciers also slows down as the area shrinks, finally coming to a 

halt. For this reason, the ice movement can be neglected in the final phase of a melting 

glacier. Additionally, glacier geometry is dynamically adapted by reducing the glacier area 

after the melt out of glacier levels. 

 

Figure 6.10: The development of the glacier area in the Lhasa River catchment from 1971 to 2080 
according to the IPCC SRES scenarios. 

 

 

Figure 6.11: The development of the water stored as ice equally distributed over the Lhasa River 
catchment from 1971 to 2080 according to the IPCC SRES scenarios. 
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Figure 6.12: The development of annual snow precipitation in the Lhasa River catchment from 
1971 to 2080 according to the IPCC SRES scenarios 

Table 6.8: Changes in glacial coverage and stored ice water reservoir in the Lhasa River 
catchment for the four scenarios. 

2011 – 2040 2051 – 2080 
Glacier characteristics 1971 – 2000 Scenario 

 Δ [%]  Δ [%] 

A1B 395 -37 147 -77 

A2 406 -35 215 -66 

B1 392 -38 202 -68 
Glacier Area [km²] 629 

CON 416 -34 316 -50 

A1B 686 -26 247 -73 

A2 731 -21 386 -58 

B1 682 -26 362 -61 

Ice water reservoir 
[mm/km²] 

928 

CON 743 -20 740 -20 

A1B -0.54 -1.23 

A2 -0.33 -1.39 

B1 -0.39 -1.09 

Mean annual mass 
balance [m] 

-0.33 

CON -0.04 -0.05 

Table 6.8 compares the changes in the glacial coverage and the ice water equivalent for 

the future periods of 2011 to 2040 and 2051 to 2080 to the period from 1971 to 2000. The 

mean mass balances are also tabulated for the three periods. In order to directly compare 

the size of the ice water reservoir to annual precipitation, the total amount is distributed 

across all grid cells of the catchment. In the past, about one and a half times annual 

precipitation were stored as ice. However, about 20 percent of ice water storage for each 

grid cell in the basin melted away from 1971 to 2000. In the first future period, 2011 to 

2040, both the retreat of the ice water reservoir and the glacier area are quite similar for 

all scenarios, varying between 21 and 26 percent for the water reservoir. A retreat of 35 to 

37 percent is simulated for the glacial coverage. In the second scenario period, the 

decrease fluctuates at around 65 percent for the A2 and B1 scenario. For the A1B 
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scenario, a maximum reduction of around 75 percent for both the ice water and the glacier 

area is simulated. The different mass balances confirm the results. While the retreat in the 

first future period is slightly larger than that of the past, at about 0.4 m per year, it 

increases to more than one meter in the second scenario phase, with a maximum of 1.4 m 

for the A2 simulation.  

The development of the spatial distribution of the future ice water reservoir for all decades 

from 2000 to the end of the scenario period in 2080 is illustrated in Figure 6.13 (A1B) and 

Figure 6.14 (B1). The initializing status of 1970 is also mapped. All decade maps are 

shown separately in higher resolution in Appendix 19. The changes in the past period are 

small, but glaciers did melt, particularly at their edges. In the scenario simulations, the 

retreat until 2030 is small (see Figure 6.11), but some small glaciers in the northeastern 

parts disappear. Afterwards, an accelerating melt is simulated, and large storages with 

reservoirs over 75 m w.e. per km² decrease. More grid cells lose glacierization. In both 

scenario simulations, only around the Nyainqêntanglha Mountain peak is an amount 

larger than 75 m w.e. per km² stored as glacier ice in 2070, whereas a level of 25 m w.e. 

is rarely exceeded in all the other regions. The glaciers in the north-east melted 

completely. The retreat can also be seen in the higher mountain ranges. In the final 

decade, ending in 2080, the shrinkage continues, with clear differences between the two 

scenarios. The ice reservoir at the end of the future period is noticeably smaller in the A1B 

results than in the B1 model run. Along the south-western and the south-eastern 

catchment border, the glaciers overcome the impact of climate change because of 

increasing precipitation and the comparatively minor reduction in snowfall. Moreover, the 

temperature increase is not as large as that in the Nyainqêntanglha Mountain range, 

which is clearly affected by the changing climatic conditions. 
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Figure 6.13: The development of the simulated ice water equivalent distribution from 1970 to 2080 
over the decades according to the CLM ECHAM5 IPCC A1B scenario model run. 
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Figure 6.14: The development of the simulated ice water equivalent distribution from 1970 to 2080 
over the decades according to the CLM ECHAM5 IPCC B1 scenario model run. 
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6.4 Future Development of Snow- and Ice-Melt 

Future climatic conditions affect the amount of water stored as snow and ice in the Lhasa 

River basin, as presented in the previous chapters. The impact on the amount of snow- 

and ice-melt is presented below. The amount of snowmelt has (Figure 6.15), like snow 

precipitation (see Figure 6.12), been decreasing since 1970. This negative trend 

continues until the end of the simulation period in 2080. As a result, the 215 mm mean 

amount of the past is reduced by 118 percent in the A1B model run from 2051 to 2080, as 

a worst-case scenario. Even in the CON model run, a decrease of 40 percent is modelled, 

because of the slight temperature increase (Table 6.9). In contrast to the uniformly 

negative trend of the amount of snow-melt, the future development of ice-melt water 

release varies between the scenario results. In the B1 simulation, the amount varies 

around 10 mm with no significant trend. Under A1B climatic conditions, the development 

of the ice-melt shows an increase to approximately 15 mm by 2050, falling to 5 mm in the 

final decade. By contrast, the maximum ice-melt is reached in the A2 scenario, where it 

exceeds 15 mm after 2040. In the CON run, a decrease to 5 mm until 2020 is simulated, 

whith only small changes until the end of the simulation period (Figure 6.16).  

 

Figure 6.15: Development of annual snowmelt in the Lhasa River catchment from 1971 to 2080 
according to the CLM ECHAM 5 IPCC SRES scenarios. 

 

Figure 6.16: Development of annual ice-melt in the Lhasa River catchment from 1971 to 2080 
according to the CLM ECHAM 5 IPCC SRES scenarios. 
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Additionally, the development of the ice-melt is characterised by large interannual 

variations. The annual amount fluctuates between almost zero and 25 mm. Comparing the 

ice-melt curves with the course of the number of days of complete snow cover  

(Figure 6.17) reveals that long snow cover periods are frequently correlated with low 

meltwater release and vice versa. Hence, variation of the ice-melt can be explained by the 

markedly varying number of snow-cover days. The total amount of ice-melt water is small, 

however, and accounts only for one fifth of the snowmelt. The clear decrease of glacial 

coverage and stored ice water equivalent is therefore not pronounced in the course of the 

ice-melt. Furthermore, shorter snow periods because of higher air temperatures enable 

the melting of ice at higher elevations. As a consequence, the reduction of the ice water 

reservoir is balanced by larger or longer snow-free glacier areas. 

 

Figure 6.17: Development of annual ice-melt and the number of days with complete snowcover 
(s.w.e. > 10 mm) in the Lhasa River catchment from 1971 to 2080, according to the IPCC SRES 
A1B (green) and B1 (blue) scenario. 
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Table 6.9: Changes in annual snow- and ice-melt in the Lhasa River catchment for the four 
scenarios. 

2011 – 2040 2051 – 2080 
 1971 – 2000 Scenario 

 Δ [%]  Δ [%] 

A1B 168 -47 97 -118 

A2 186 -28 114 -101 

B1 170 -45 122 -93 
Snowmelt [mm] 215 

CON 202 -13 175 -40 

A1B 11 -1 10 -2 

A2 8 -4 13 1 

B1 9 -3 10 -2 
Ice-melt [mm] 12 

CON 5 -7 4 -8 

6.5 The Future Water Balance 

In assessing future water availability, important water balance values include not only the 

amount of precipitation, snow- and ice-melt, but also the development of 

evapotranspiration. In accordance with the rising air temperature, evapotranspiration 

increased slightly during the period of 1971 to 2000. This positive trend continues in the 

future simulations. The increase is strongest in the A1B scenario run, as is also the case 

for temperature development (see Figure 6.3), whereas the B1 scenario results in the 

smallest increase under conditions of increasing greenhouse gas emissions (Figure 6.18). 

By contrast, no significant trend is found in the CON run. Table 6.10 lists the average 

evapotranspiration sums of the past climate period and changes in the future periods 

according to the various scenario runs. 

 

Figure 6.18: Development of annual evapotranspiration in the Lhasa River catchment from 1971 to 
2080 according to the CLM ECHAM 5 IPCC SRES scenarios. 
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Table 6.10: Changes in annual evapotranspiration and water availability in the Lhasa River 
catchment for the four scenarios. 

2011 – 2040 2051 – 2080 
 1971 – 2000 Scenario 

 Δ [%]  Δ [%] 

A1B 231 +12 263 +27 

A2 221 +7 253 +22 

B1 216 +4 245 +18 

Evapotranspiration 

[mm] 
207 

CON 215 +4 219 +6 

A1B 410 -7 349 -21 

A2 441 0 383 -13 

B1 430 -3 399 -10 
Runoff [m³/s] 441 

CON 409 -7 385 -13 

The spatial distribution of the past average annual evapotranspiration (Figure 6.19, top) 

shows the correlation between the amount of evapotranspiration and air temperature. In 

the southern river valleys, maximum values of between 500 and 750 mm per year are 

simulated. In the high mountains, a 100 mm evapotranspiration level is not exceeded. The 

pattern of the various land cover classes is also reproduced. As a result, the large amount 

of evaporation in the north-eastern basin is attributed to a small lake. In contrast, less 

evapotranspiration is simulated for Lhasa due to the impervious areas of a town with little 

surface water and few plants. The changes in evapotranspiration in the future periods are 

illustrated for the scenarios A1B and B1 in Figure 6.19 (middle and top). From 2011 to 

2040, a slight increase of up to 50 mm is modelled for both scenarios throughout the basin. 

The mountainous areas and the southern regions form an exception however, with almost 

no differences from the past. In the second future climate period, the amount of 

evapotranspiration increases further, particularly in the A1B scenario, which has the 

largest temperature increase. As the temperature rise is larger at higher elevations, the 

changes are also greater (except the Nyainqêntanglha Mountains). In addition, water 

availability resulting from a precipitation gain in the north-east leads to an increase in 

evapotranspiration of up to 150 mm per year. 

All factors described above, together with soil water content and groundwater changes, 

determine the river runoff. Figure 6.20 shows the various courses of the mean annual 

discharge at the catchment outlet of the Lhasa River. All four scenario runs result in a 

decrease, which is only significant for the A1B and A2 scenarios. In considering the 

seasonal changes in the runoff, a larger decrease is assessed during summer (April - 

September) than during winter (October – March). In accordance with the annual trends, 

only for the A1B and the A2 (summer only) scenarios are the trends significant. All 

statistical values are given in Appendix 22. A comparison of the future climate periods with 

those of the past confirms the results, as listed in Table 6.10. 
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Figure 6.19: Mean annual evapotranspiration from 1971 to 2000 (top) and the changes in the 
periods of 2011 to 2040 (left) and 2051 to 2080 (right) according to the A1B scenario (middle) and 
B1 scenario (bottom). 

The seasonal runoff pattern for the three climate periods after scenario A1B (top) and  

B1 (bottom) is shown in Figure 6.21. In the A1B simulation, the runoff decreases 

significantly (see statistical analysis in Appendix 24) during the summer months from May 

to August, which can clearly be seen in the final period of 2051 – 2080. By contrast, a 

significant decrease in the monthly runoff is only stated for June and July at a significant 

level (0.1) in the B1 scenario. A reduction is accordingly simulated for these two months, 

whereas the water availability in the other months stays constant. Peak discharge even 

increases in August. The monthly runoff at the catchment outlet by decade (Figure 6.21, 
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right) decreases continuously from May to July. In contrast, the past runoff peak is 

exceeded in August in the A1B scenario. The largest runoff is simulated from 2011 to 

2020, whereas the smallest discharge is modelled from 2061 to 2070. The variations 

within decades are sizeable, fluctuating between 1,000 and 1,600 m³/s in August. The 

results under B1 climatic conditions are similar, although the decrease from May to July is 

not as continuous as that of the A1B run. The maximum runoff is also simulated in the last 

decade of the simulation period, whereas from 2041 to 2050 the minimum is modelled. 

 

Figure 6.20: Development of the annual runoff in the Lhasa River catchment from 1971 to 2080 
according to the CLM ECHAM 5 IPCC SRES scenarios. 

 

Figure 6.21 Comparison of mean monthly runoff at the basin outlet between climate periods (left) 
and decades (right), according to the A1B scenario (top) and the B1 scenario (bottom). 
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Figure 6.22: Mean annual runoff from 1971 to 2000 (top) and the changes in the periods of 2011 to 
2040 (left) and 2051 to 2080 (right), according to the A1B scenario (middle) and B1 scenario 
(bottom). 

In order to determine the spatial distribution of future water availability in the Lhasa River 

basin, the difference between precipitation and evapotranspiration was calculated under 

the assumption that storage is in a steady state throughout a 30-year period. Although this 

in reality is not the case, the influences of precipitation and evapotranspiration dominate, 

as analysed in section 6.6. This spatial pattern of changes provides, accordingly, reliable 

information (Figure 6.22). The spatial distribution of the water balance is relatively similar 

to the precipitation pattern (Figure 6.4): precipitation is thus a determinant of water 
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availability. Variations in the amount of evapotranspiration also can be recognized, and 

water availability is larger in the mountainous areas than in the valleys. 

The distribution of the changes in runoff also follows that of the precipitation changes. In 

the southern parts of the basin, an increase of up to 50 mm is simulated, whereas a 

decrease is modelled in the central and the northern parts of the basin. This decrease 

varies between 1 mm and 100 mm during the period of 2011 to 2040, and in the period of 

2051 to 2080 a reduction of up to 200 mm is simulated in the A1B scenario. In contrast, 

the decrease in the B1 simulation does not exceed 100 mm. Overall, the absolute 

changes in water availability are larger than the changes in precipitation, because of the 

rise in evapotranspiration.  

6.6 Analysis of the Influence of Ice-Melt on Runoff 

The simulation of snow and ice-melt and of the water balance enables to determine the 

influence of glacier ice-melt on runoff. In order to determine the amount of glacier ice-melt 

water, which contributes to the river runoff, the model is run under two different model 

settings. Whereas in the first setting, glacier ice melt is not injected in the river network 

and subsequently does not contribute melt water, in the second case the contribution from 

glaciers, which flows directly into the river channel, is fully considered. The difference 

between the runoffs of the two model settings corresponds to glacier ice-melt. This 

method allows determining the proportion of glacier ice-melt water to runoff in the river 

channel network throughout the catchment.  

Figure 6.23 (separate maps in Appendix 25) shows the mean annual amount of glacier 

ice-melt water in the river channels of the Lhasa River basin for the past and the future 

periods. Most of the rivers contain meltwater from the glaciers. Only a few small valleys 

along the southern and the northeastern watershed and the south-central area do not 

contain melt water because of the absence of glacierization. About 1 m³/s is contributed 

by the glaciers in the mountain headwatersheds. After the confluence of river channels in 

the valleys, the amount increases, reaching 8 percent at the catchment outlet. In order to 

determine the percentage of ice-melt water, the difference in the simulated runoff of the 

two model settings is divided by total runoff including ice-melt water. The percentage of 

the melt water in the mean annual runoff is illustrated in Figures 6.24 and 6.25 (separate 

maps in Appendix 26). While ice-melt water amounts to between 50 and 100 percent in 

the glacier headwatersheds, it rapidly decreases as basin area increases. Only between  

1 and 5 percent of the water in larger rivers can be attributed to glacier melt. As the glacial 

coverage of the south-eastern region is larger than that of the other regions, the Toelung 

River, the western river confluencing with the Lhasa River after the city of Lhasa (see 

Figure 2.1), contains between 5 and 10 percent ice-melt water. This figure consequently 

increases for the Lhasa River increases from 2 percent to 4 percent after its confluence 

with the Toelung River. 
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Figure 6.23: Mean annual ice-melt contribution to runoff from 1971 to 2000 (top), 2011 to 2040 (left) 
and 2051 to 2080 (right) according to the A1B scenario (middle) and B1 scenario (bottom). 

Glacier melt water release decreases under future climatic conditions in some regions, 

corresponding with the retreat of the glaciers. In the first future period of 2011 to 2040, the 

small contribution in northeastern and the southern areas decreases further in both 

scenario runs. Ice-melt levels decrease in most rivers. Only in the A1B scenario a slight 

increase is simulated in the ice-melt contribution, for the Upper Toelung Chu. In the 

second future period, the glaciers in the north-east disappear. Consequently, no ice-melt 

water is contributed there. While the pattern under A1B conditions is similar to the first 

future period, a further decrease is modelled in the B1 simulation, except in the Toelung 
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Chu, where the amount of glacier meltwater increases. The annual percentage of ice-melt 

water in the scenario results (Figure 6.24 and Appendix 26) shows similar patterns for 

both the A1B and the B1 conditions. Except in the highly glaciated headwatersheds, the 

percentage of meltwater from the glacier ice clearly decreases. 

 

 

Figure 6.24: Mean annual percentage of ice-melt on runoff from 1971 to 2000 (top) and in the 
periods of 2011 to 2040 (left) and 2051 to 2080 (right) according to the A1B scenario (middle) and 
B1 scenario (bottom). 
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Figure 6.25: Development of the annual percentage of glacier ice-melt in runoff at the Lhasa River 
catchment from 1971 to 2080 according to the CLM ECHAM 5 IPCC SRES scenarios. 

The development of the annual percentage of the glacier ice-melt for all four scenario runs 

under past and future climatic conditions is shown in Figure 6.25. A clear decrease is 

simulated for the past 30 years, whereas the percentage of ice-melt develops differently 

for the scenarios in the future. The changes in runoff are nevertheless considered: the 

trend follows the development of absolute ice-melt (see Figure 6.16). Thus almost no 

trend can be seen in the A1B and the B1 simulations, whereas an increase is modelled in 

the A2 scenario. However, differences occur between the course of the absolute amount 

of ice-melt and the percentage in some years. For example, in the model year 2023, the 

contribution by ice-melt is almost negligible, whereas in 2028 and 2038 the amount is 

above average in the A1B scenario. The peaks of 2060 in the B1, and especially of 2065 

in the A2 scenario simulations are particularly remarkable. Their peaks correlate with 

peaks in the total amount of meltwater, but the magnitudes differ. Although the amount of 

meltwater is similar in the A1B and the B1 simulations, the percentage differs. The 

quantity of annual runoff is quite a determinant of magnitude, because the peaks correlate 

to the minimum runoff. In contrast, the minimal percentages of ice-melt are associated 

with relative runoff peaks. As the runoff minimum can predominantly be attributed to 

comparatively sparse precipitation, a balancing effect by increased glacier melt water 

release in those years is deduced.  

However, not only is the annual amount of the melt water release decisive, but its 

seasonal distribution also proves the compensation effect of glaciers. Figure 6.26 shows 

the average monthly course of the glacier ice-melt contribution for the past and future  

30-year periods of the A1B simulation at the catchment outlet and the Yangbajing gauge, 

considering two (sub-)basins with varying glacierization. In Figure 6.27 the results are 

illustrated parallel to the A1B scenario for the B1 scenario.  
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Figure 6.26: Seasonal distribution of glacier ice-melt contribution and runoff for the three climate 
periods of 1971 to 2000, 2011 to 2040 and 2051 to 2080 according to the A1B scenario at the 
catchment outlet and Yangbajing.  

 

Figure 6.27: Seasonal distribution of glacier ice-melt contribution and runoff for the three climate 
periods of 1971 to 2000, 2011 to 2040 and 2051 to 2080 according to the B1 scenario at the 
catchment outlet and Yangbajing.  

During winter, almost no ice-melt occurs, since the glaciers are snow-covered. Moreover, 

no melting conditions occur at the elevations of glaciers in general; rarely, little 

evaporation can occur because of the high solar radiation input. In accordance with 

increasing temperatures, the ice-melt begins before the monsoon precipitation starts. The 

maximum release is simulated for July, whereas the runoff peak is simulated for one 

month later. Afterwards, the ice-melt water decreases, and ends in October. In the 

seasonal course, both the peaks in runoff and ice-melt occur during summer, synchronous 

with the monsoon precipitation. Since precipitation falls as snow only in the highest areas, 

melting conditions dominate in the lower areas. Consequently, the glacier surface 

becomes snow-free. The seasonal course is similar under changing climatic conditions, 

whereas the melt water contribution clearly decreases during summer according to the 
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A1B and B1 scenario runs at the catchment outlet. In contrast, almost no changes are 

simulated at the catchment outlet under A1B climatic conditions. The contribution at 

Yangbajing does not increase during the final future period, according to the simulation. 

 

Figure 6.28: Seasonal distribution of the percentage of glacier ice-melt contribution and runoff for 
the three climate periods of 1971 to 2000, 2011 to 2040 and 2051 to 2080, according to the A1B 
scenario at the catchment outlet and Yangbajing. 

 

Figure 6.29: Seasonal distribution of the percentage of glacier ice-melt contribution and runoff for 
the three climate periods of 1971 to 2000, 2011 to 2040 and 2051 to 2080, according to the B1 
scenario at the catchment outlet and Yangbajing. 

The seasonal course of the percentage of ice-melt to monthly runoff (Figures 6.28 and 

6.29) is similar to the total amount in the past, with its peak in July. However, the 

importance of the ice-melt is higher in spring, before the monsoon begins, than in the 

post-monsoon period when, for instance, the water storages of the soil are full. Rain and 

meltwater thus contribute to runoff. A maximum value of 4 percent at the catchment outlet 

was simulated for the past, whereas the Yangbajing percentage varies around 13 percent 

in July. Under future climatic conditions, the peak of the percentage shifts to June in both 
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scenarios and at both stations. In the early spring, the importance of the melt water 

release doubles at both stations while the runoff decreases, although the total amount of 

meltwater released is reduced. This effect can also be seen in the distribution of the 

annual values in Figures 6.23 and 6.24. 

 

Figure 6.30: Comparison of future runoff changes with and without consideration of ice-melt 
contribution at catchment outlet (left) and at Yangbajing (right) and for 2011 to 2040 (top) and from 
2051 to 2080 (bottom) in comparison to the period 1971-2000 for the A1B IPCC SRES scenario 
run. 

In order to further analyse the contribution of the glacier melt water to runoff, the runoff 

changes of the two future periods relative to the past period are calculated with and 

without consideration of ice-melt (Figure 6.30). The changes are similar for both options at 

the catchment outlet. Consequently, glacier meltwater cannot compensate the decrease in 

runoff. In contrast, at Yangbajing there are differences between the results with and 

without consideration of ice-melt contribution. In May, June and July of the first future 

period, the increasing ice-melt compensates the small runoff reduction, and so a slight 

increase can be seen in the runoff. This compensation effect can also be seen in May and 



Model Results – The Impact of Future Climate Change 

 120

June of the second future period, although the melt water only relaxes the situation 

somehow, but cannot fully compensate the runoff reduction. 

The average contribution of the glacier ice-melt water to runoff in most parts of the Lhasa 

catchment is nevertheless very small. The comparison of the mean daily amount of 

precipitation, snow- and ice-melt to the daily runoff in Figure 6.31 shows the importance of 

the monsoon precipitation for runoff. The snowmelt’s contribution to the runoff is the 

second most important factor, whereas the amount of ice-melt only varies about 0.1 mm 

per day. The decrease in runoff during spring under scenario conditions (Figure 6.31, A1B) 

can therefore be traced back to the changes in snowmelt. While the course of precipitation 

is almost stable throughout the year, the amount of snowmelt decreases, because of 

higher air temperatures and reduced snowfall (see section 6.2). This reduction is 

particularly significant in spring and early summer.  

 

Figure 6.31: Comparison of changes in the mean daily courses of snow- and icemelt, precipitation 
and runoff for the three climate periods for the Lhasa River catchment under A1B IPCC SRES 
conditions. 

The impact of the compensation effect of glacier ice-melt is analysed for years with lower 

than average monsoon precipitation. The model year 2039 of the A1B scenario is 

analysed in detail in Figure 6.32. In the simulation, little precipitation falls in June and July 

and almost no snow-melt is simulated for the same period. At the catchment outlet during 

this time, the percentage of glacier ice-melt to runoff increases to a maximum value of  

35 percent at the outlet gauge (Figure 6.32, left), which is illustrated in light blue in the 

runoff line. Nevertheless, the runoff is reduced by about 75 percent compared to the 

average amount, which is then reached after considerable precipitation in August. The 
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ice-melt water contribution hence cannot compensate the missing rain- and snowmelt-fed 

discharge, which is then clearly reduced. The situation at the Yangbajing gauge is 

different: here, the glacier ice-melt water contributes up to 80 percent of the water in the 

river during the dry period. Although the rain is absent, the runoff decrease is not as 

pronounced as it is at the outlet gauge. The reduction only amounts to half of the average 

runoff. In this case, between 70 and 80 percent of the water comes from the melting of 

glacier ice. Thus, without the ice-melt contribution, illustrated in light blue in the runoff 

curve, almost no water would be available in Yangbajing (Figure 6.32, right). 

 

Figure 6.32: Influence of glacier ice-melt water in periods with little monsoon precipitation at the 
basin outlet (left) and at Yangbajing (right). 

The previous analysis leads to the conclusion that changes in the monsoon pattern are 

not be fully compensated by glacier melt water. However, in regions with a glacial 

coverage above 10 percent, as it is the case in the sub-catchment of Yangbajing, glacier 

melt water contributes most of the discharge in this situation and balances the missing 

precipitation. Accordingly, only along the headwatersheds can a compensating effect be 

concluded for the Lhasa River basin. The spatial distribution of river channels, for which 

the effect can be assessed, is illustrated in yellow, green or blue in Figure 6.24, which also 

clarifies the changes under future climatic conditions. Although the ice water reservoir 

clearly decreases, the amount of melt water release decreases only slightly (see  

section 6.4) and the percentage even increases slightly due to changes in runoff.  

In order to categorize glacier ice-melt among the various water balance factors, the input 

and output factors are separated, as illustrated, for all sub-catchments and the basin 

outlet in Figures 6.33 and 6.34 and in Appendices 27 and 28 for the period of 1971 to 

2000 and the periods 2011 to 2040 and 2051 to 2080. Input factors comprise rainfall, 

snow- and icemelt and evapotranspiration and runoff are output factors of the water 

balance. Changes in soil water content and ground water are below 1 percent. 
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Consequently, they are stable in the Lhasa River basin in the simulations and so are not 

considered. 

The minor importance of the ice-melt in comparison to such other factors as rainfall, 

snowmelt and evapotranspiration is clearly demonstrated. While a contribution of  

8 percent was simulated at Yangbajing, at the other gauges it varies between 1 and 2 

percent. Snowmelt amounts to around 30 to 40 percent, whereas rainfall is the most 

important factor throughout the Lhasa River basin. As the ice-melt and the monsoon 

rainfall occur simultaneously, the average importance is low. The output parameters of the 

water balance, such as runoff and evapotranspiration, are also illustrated. About  

30 percent of the water evaporates, whereas 70 percent is released as runoff.  

Under future climatic conditions, the annual percentage of ice-melt remains almost stable, 

although an increase to 10 percent is simulated in Yangbajing in both the A1B and the B1 

scenario, whereas a decrease to 1 percent is modelled at the gauges of Pangdo and 

Tangga. The retreat is explained by the disappearance of glaciers in the north-eastern 

parts of the basin. In contrast to the annual changes in ice-melt during the climate periods 

presented, the decrease in snowmelt is significant. During the final future period, it varies 

between 13 percent in Yangbajing and 20 percent in Pangdo in the A1B. Since the 

changes of the meterological parameters are smaller in the B1 scenario, snowmelt varies 

between 19 percent in Yangbajing and 24 percent in Pangdo in the B1 run. The 

importance of rainfall consequently increases at all gauges. Because evapotranspiration 

also rises noticeably (see also Figure 6.18), its influence on the water balance also 

increases. Due to an almost stable precipitation level, runoff decreases.  

To sum up, the amount of precipitation and evapotranspiration determine water availability 

for the water balance in the Lhasa River basin. Significant changes in snowmelt and 

evapotranspiration cannot be compensated by ice-melt in most parts of the catchment. 

Thus, less runoff on average is simulated under changing climatic conditions. In areas 

with glacial coverage of above approximately 10 percent, the reduction is nonetheless 

lower, as a result of increasing proportions of ice-melt. 
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Figure 6.33: Mean annual percentage of inputs and outputs to the water balance in the sub-
catchments from 1971 to 2000 (top), and in the periods of 2011 to 2040 (middle) and 2051 to 2080 
(bottom) according to the A1B scenario. 
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Figure 6.34: Mean annual percentage of inputs and outputs to the water balance in the sub-
catchments from 1971 to 2000 (top), and in the periods of 2011 to 2040 (middle) and 2051 to 2080 
(bottom) according to the B1 scenario. 
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7 Conclusion and Outlook  

The modelling approach presented, of SURGES integrated in PROMET, enables spatially 

distributed simulation of the main processes of meltwater release acting on a glacier, 

together with detailed simulation of all relevant hydrological processes. The regional 

heterogeneities of a meso- or macroscale river basin are considered, with their physio-

geographic characteristics, by using a fully spatially distributed raster model with a 

resolution of 1 x 1 km. Since the models are based on physical principles, use universal 

parameters, conserve mass- and energy balances and are not calibrated to measured 

runoff, they fulfil the requirements for application under future climatic conditions. The 

coupling tool SCALMET allows RCM outputs to be used as meteorological drivers.  

Although the models require a broad range of input data due to the complexity of the 

subject to be modelled, this study demonstrates their applicability in remote regions by 

using publicly available data. The validation for the Lhasa River catchment presented 

proves the reliability of the model results for glaciers and for the hydrological water 

balance. This also includes the application of the downscaled CLM ERA 40 and ECHAM 5 

meteorological drivers. 

The analysis of the model results shows the dominant dependency of the Lhasa River 

runoff on precipitation and evapotranspiration. The amount of snowfall and the 

subsequent duration of snow cover are particularly important for discharge. As a 

consequence, the seasonal course is determined by snowmelt and rainfall. The runoff 

course follows the monsoon precipitation, peaking in summer. Under average climatic 

conditions, the amount of meltwater contribution from glacier ice, considered 

independently of snow-melt release, is only significant in headwatersheds with a glacial 

coverage of above approximately 10 percent. In the Lhasa River basin, this is the case for 

about 8 percent of all river channels, e.g. for those reaching from the sub-basin to the 

gauge in Yangbajing. Solely considering the channels that contain meltwater from glaciers, 

the contribution is significant for approximately 50 percent of them. In Figure 6.24, the 

spatial distribution of such river channels is illustrated in yellow, green or blue. Those 

rivers are mainly located along the northwestern watershed of the Nyainqêntanglha 

Mountains.  

Even though the amount of water contributed to runoff by glaciers is small on average in 

most parts of the Lhasa River basin, the glacier ice reservoir serves as a reliable water 

source in certain cases. When the monsoon is delayed, or brings sparse precipitation, 

glacier meltwater is still released. In these cases, up to 40 percent of runoff originates 

from glaciers at the catchment outlet of the Lhasa River basin. However, the quantity of 

the water does not replace the missing precipitation, and so the runoff is clearly lower than 

average. At Yangbajing, the ice-melt contribution increases to 80 percent in such dry 

periods, but the runoff is still reduced to approximately half of the mean discharge. 

Nevertheless, the comparison of runoff with and without ice-melt contribution shows 

improved water availability in those regions compared to rivers without glacier 

headwatersheds. At this point, the direct release of the meltwater into the river channel, in 
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contrast to precipitation, which first fills soil water storage, should be mentioned. This 

enhances its impact in comparison to precipitation with delayed contribution. 

Under future climatic conditions, the simulation results show a continuous decrease in the 

runoff for all CLM ECHAM 5 IPCC SRES scenario runs applied, with varying significance. 

In both the mid-term (2011-2040) and the long-term (2051-2080) future decades, the 

reduction in water availability compared to the past decades (1971-2000) is strongest in 

the Lhasa River basin in the A1B scenario. The reason for the decrease is the modelled 

temperature increase, whereas precipitation remains almost stable. The amount of 

evapotranspiration consequently increases, whereas snowfall is significantly reduced. 

Snow cover duration is shortened at all elevation levels. As a result, the glacier ice 

reservoir and the glacier area shrink throughout the Lhasa River basin. Since no longer 

periods with above-average snowfalls are simulated by the CLM runs, no recovery periods 

with mass gain by the glaciers occur. As a consequence, the additional melt due to 

increasing temperatures can not be compensated. However, changes in the amount of 

melt water release from glaciers are marginal. Less snowfall and shorter snow periods 

with a reduction of between two and three months because of higher air temperatures 

enable the melting of ice during longer periods. Additionally, a shift of the snow conditions 

of about 500 to 1000 m results in larger snow-free glacier areas where melt occurs. 

Accordingly, the continuous reduction of glacierized area and glacier ice reservoir is 

compensated by ongoing snow cover shifts with larger melting areas and longer melting 

periods. Furthermore, the large ice reservoirs at altitudes between 5600 and 6100 m a.s.l. 

(see Figures 4.3 and 4.7), particularly in the Nyainqêntanglha Mountains, resist increasing 

melting conditions for a long time, so that the total melt out of glaciers is not reached until 

2080 according to the scenario simulations (see Figure 6.11). Since glaciers in the Lhasa 

River basin extend over altitudes up to 7000 m a.s.l, there are still glacierized areas left 

where melting conditions are similar to the present situation despite the impact of GCC. 

This is for example a major difference to the glacier retreat in the Eastern Alps with 

altitudes up to 4000 m a.s.l. 

The contribution of ice melt water to runoff at the catchment outlet is slightly reduced in 

the future periods, whereas the quantity remains almost stable from the sub-basin to the 

Yangbajing gauge, as enough ice water reservoir remains despite the retreat. In contrast, 

a total retreat of glaciers is simulated for the northern regions of the Lhasa River basin. 

The contributed meltwater is thus reduced at the catchment outlet.  

The analysis of the seasonal runoff course and ice-melt contribution shows a 

compensation effect at Yangbajing during spring, whereas no significant differences with 

or without ice-melt contribution to runoff can be seen at the catchment outlet. Hence, in 

basins with a glacial coverage of above approximately 10 percent, a compensational 

effect of the glacier ice-melt to runoff decrease is deduced. Significantly more water is 

therefore available altogether, although a runoff reduction is simulated in some months. 

After the total retreat of glaciers such as that of the northeastern parts of the Lhasa River 

catchment, substantially less water will be available in those sub-basins, especially during 

dry periods. 
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The results presented allow the conclusion that the reduced glacier reservoir has no 

significant impact on runoff under average conditions in the Lhasa River basin, contrary to 

IPCC statements (IPCC 2007A). The monsoon precipitation and subsequent snowfall are 

the key factors for water availability in the Lhasa River basin. Moreover, low flow 

situations usually occur during winter. As almost no glacial meltwater is released in the 

winter months, no balancing effect during low flow can be caused by glaciers. Shifts in the 

timing and intensification of the precipitation pattern and an earlier snowmelt will therefore 

significantly influence water availability. However, according to the simulations driven by 

CLM ECHAM 5 model outputs in this study, no significant changes during winter runoff 

are predicted. In accordance with the results found by THAYYEN AND GERGAN (2010) for a 

“Himalayan catchment”, defined as dominated by monsoon precipitation and a runoff peak 

in summer, precipitation determines the amount of discharge in the simulation. 

Furthermore, below-average flows are related to low precipitation and cannot be 

compensated by increased meltwater. The future development of monsoon precipitation 

under global climate change conditions, which is most important for water availability in 

this region, still needs further investigation, because of, for example, the complicated 

relation between the El Niño Southern Oscillation phenomenon and Himalayan / Eurasian 

snow cover. Spatial distribution is still especially difficult to simulate (KRIPALANI ET AL. 

2007, DOBLER AND AHRENS 2010). Hence, significantly increased monsoon precipitation 

would modify the simulation result for runoff and glacier changes. However, an extensive 

precipitation increase would be required to stop glacier retreat, since  

10 percent increase in precipitation per degree of warming is not sufficient, according to 

OERLEMANS ET AL. (1998). 

Since the impact of Global Climate Change differs regionally due to varying physiographic 

conditions, spatially distributed simulations are required to reliably assess the 

consequences and subsequently derive appropriate adaptation strategies. The impact on 

rivers originating in the Himalayas particularly requires distributed analysis, not only 

because the monsoon varies a lot, but also because the local climatic conditions 

themselves also vary distinctly. The basins in the Kashmir and Karakorum region are 

dominated by winter snowfall. In Ladakh, cold-arid climatic conditions occur, in contrast to 

the monsoon precipitation in summer in India and in parts of Tibet, as is the case in the 

Lhasa River basin. Accordingly, no general conclusions about the Himalayas can be 

drawn without distinguishing regional conditions (THAYYEN AND GERGAN 2010).  

Finally, the ability of hydro-glaciological models to couple with climate models allows the 

simulation of a variety of predicted climatic conditions. This is important because the 

models differ, particularly when simulating the monsoon precipitation (KRIPALANI ET AL. 

2007). As its amount is the key to water availability in the Lhasa River basin, the results 

are limited to the quality of input of the CLM ECHAM 5 outputs and the applied 

donwscaling. However, the results reproduced past conditions in hourly and daily 

resolutions, as shown above. Further uncertainties of the results presented emerge from 

the derived initial conditions of the glacier inventory. Ice-thickness, which determines the 

durability of glacier ice at the chosen elevation levels, and the consequent meltwater 

release were derived with an approach using relations derived in the Alps. Although the 
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glaciers there are similar to those of the Lhasa River basin, the approach requires further 

validation in Asian regions with available ice thickness data. Mass balance data from 

glaciers in the basin would further improve the reliability of the results. Nevertheless, the 

simulations are in accordance with values stated for this region. Disregarding the effect of 

delivering ice from the accumulation to the ablation area by means of ice flow limits the 

simulated decrease in ice coverage. Although the glacier geometry is dynamically adapted 

in the reduction of area after the ice melt and the ice flow slows down in shrinking glaciers, 

it has to be adequately considered. The CON simulation provides an informative basis for 

that. Although the climatic conditions are almost constant and the ice reservoir stays 

almost constant throughout the basin, the glacier area clearly decreases after the 

equilibrium is reached, indicating the consequences of missing ice flows. The reverse 

conclusion can therefore be drawn, that the amount of glacier ice transported from the 

accumulation area to the ablation area can be estimated in determining the required ice 

mass. The glacier area thus would almost stay constant. Accordingly, a redistribution 

factor to describe the amount of transported ice could be deduced. Further enhancements 

of the glacier model include the consideration of more subscale processes on a physical 

basis. This includes the shading of the mountains, which is important in mountainous 

regions, especially on the Tibetan Plateau with the high solar radiation input. Wind-

induced snow transport, together with the shading, enables the formation of a glacier in 

some cases, and so its inclusion in model could improve the simulation. Taking into 

account lateral heat flows from surrounding snow-free rocks to the neighbouring glaciers 

would also enhance the modelling approach. Finally, coupling with climate models should 

be bidirectional at a high spatial resolution, to consider, for instance, changes in snow and 

ice. The feedback of the disappearance of snow and glaciers significantly modifies the 

albedo, altering the radiation balance. The energy consumed for melting snow and ice 

reduces warming: as a result, the temperature increase is above-average after the melt, 

especially in mountainous regions, an effect which can also been found for the Tibetan 

Plateau (LIU AND CHEN 2000). Changes in permafrost result in an increase in debris cover 

on the glacier surface resulting in decreased albedo. Considering the feedbacks to both 

absorbing radiation and protecting the glacier surface of the coverage could also enhance 

simulation of the melt water release. This also applies to rock glaciers. 

To sum up, the approach presented in the thesis enables the distributed simulation of ice-

melt water release from glaciers and the influence of this contribution on water balance in 

a remote largescale river basin with sparse data availability. The characteristics of the 

models enable application under past and future climatic conditions using RCMs as 

meteorological drivers. Although there are still uncertainties, the approach delivers reliable 

results in high spatial and temporal resolution forms the basis for developing IWRM 

strategies to adapt to GCC. 
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8 Summary 

This thesis presents an approach to simulating the role of glacier meltwater in runoff, in 

comparison to such other water balance variables as snow-melt, evapotranspiration and 

precipitation, under past and future climatic conditions in the Himalayan catchment of the 

Lhasa River with its scarce data availability. Mountain regions are of global importance in 

providing fresh water downstream. The function of temporal storage of precipitation and 

its delayed release during melting is one of the key characteristics of glaciers. Simulating 

the impact of global climate change on glaciers and on melt water release therefore 

provides information for the assessment of adaptation strategies in order to support future 

water availability.  

The Lhasa River catchment provides an appropriate largescale test site, with the 

Nyainqêntanglha Mountains that form the northern watershed, as part of one of the largely 

glacierized regions of Central Asia. Because sparse data are available, the transferability 

of the modelling approach to remote regions is also evaluated. The natural characteristics 

of the catchment are determined by the high elevation of the Tibetan Plateau and its 

mountainous relief. The monsoon precipitation during summer and the dry season in 

winter are relevant for water availability, causing a clear seasonal runoff course which 

peaks in August.  

The glaciers in the catchment amount to 670 km². They are classified as mountain and 

valley glaciers, and small glacierets can also be found. Their properties resemble those of 

the glaciers of the Eastern Alps (Chapter 2).  

In order to model the contribution of glacier meltwater under changing climatic conditions, 

several requirements should be fulfilled by the modelling approach as presented in the 

introduction (Chapter 3). This includes the use of universal parameters, conservation of 

mass and energy, the use of physical principles as model basis and the abondnonment of 

calibration to measured runoff. As the meltwater release from glaciers is dependent on the 

snow-free area, glacier geometry and mass and energy balances on the glacier need to 

be considered in the model. However, the hydrological model should also reproduce the 

regional heterogeneities of a meso- or largescale river basin in simulating processes for 

the runoff formation. As the requirements are fulfilled, the following models are applied in 

the study. The SURGES subscale glacier simulator was implemented within the PROMET 

hydrological model, to simulate the main glaciers and the detailed hydrological processes. 

PROMET is a fully spatially distributed raster model with a resolution of 1 x 1 km, and runs 

on an hourly time step. For simulation of hydrological processes under changing climatic 

conditions, it uses distinct components for meteorology, land surface energy and mass 

balances, vegetation, snow and ice, soil hydraulics and soil temperature. Groundwater 

and channel-flow components with hydraulic structures are also included. In order to 

capture the small-scale processes for melt water release acting on the heterogenic glacier 

surfaces, SURGES uses a subscale approach. The area elevation of the glacier is 

approximated in subscale units with similar surface elevations. The simulation of the 

processes includes meteorological data extrapolation to all elevation levels, calculation of 



Summary 

 130

the mass and energy balances on the glacier surfaces, snow metamorphism and glacier 

geometry changes. The SCALMET coupling tool enables the application of RCM outputs 

as meteorological drivers in downscaling the coarse resolution of the climate model 

outputs to the PROMET resolution of 1 x 1 km (Chapter 3). 

Since sparse data are available for running the model framework in the Lhasa River basin, 

a method of deriving the required input data by using publicly available data is introduced. 

As well as the application of the RCM outputs of the CLM ERA 40 and ECHAM 5 model 

runs and land surface data parameterization, the glacier input data derivation is also 

presented in detail. The Chinese Glacier Inventory provides the glacier area. By 

intersecting it with a digital elevation model, elevation levels for all glaciers in the Lhasa 

River basin are deduced. Finally, the ice thickness for every elevation level is deduced by 

considering the slope of the elevation levels and their position on the glacier (bottom, top 

or middle). Relationships from the Alps are transferred to the Lhasa River basin  

(Chapter 4).  

In Chapter 5, the approach presented is validated in detail, in comparing the model results 

to observations, whereby the following validation steps are carried out. First, the 

processes on the glacier such as accumulation and ablation of snow and ice are checked. 

Next, the reproduction of glacier geometry changes over a long time period is evaluated. 

Since the study focuses on meltwater release from glaciers, the simulated runoff of a 

highly glacierized basin is compared to measurements, and the necessity of the subscale 

approach is also tested. In the next validation step, the accuracy of the derivation of the 

glacier input data is checked. Finally, the performance of the modelling framework in the 

Lhasa River basin is evaluated. This includes the accuracy of the downscaled CLM 

meteorological data, the glacier changes and the water balance during the period of 1971 

to 2000 (Chapter 5). 

Because the model framework captures the processes relevant to simulating the influence 

of glacier meltwater release on runoff for past and present climatic conditions, and 

because the models fulfil the requirements for application under future climatic conditions, 

four IPCC SRES scenarios are chosen to simulate of the impact of climate change. While 

the level of precipitation remains almost constant in the scenario runs, the areal 

temperature increases significantly. As a result, the amount of snowfall and the 

subsequent duration of snow cover decreases, whereas evapotranspiration increases. 

Consequently less runoff is simulated. Thus, less water will be available in the future in 

the Lhasa River basin. Both the glacier ice reservoir and the glacier area continuously 

shrink, but do not disappear in the complete test site during the simulation period. 

Nevertheless, meltwater release stays almost constant under future scenario conditions, 

because the continuous reduction of glacierized area and glacier ice reservoir is 

compensated by ongoing snow cover shifts with larger melting areas and longer melting 

periods. Additionally, the large ice reservoirs at altitudes between 5600 and 6100 m a.s.l. 

(see Figures 4.3 and 4.7), particularly in the Nyainqêntanglha Mountains, resist increasing 

melting conditions for a long time. 



Summary 

 131

The overall percentage of ice-melt contribution to runoff is small in the Lhasa River basin, 

although spatial differences and seasonal changes are distinguished. For sub-basins with 

a glacierization of above approximately 10 percent, a compensation effect by glacier 

meltwater is deduced, as shown for the gauge in Yangbajing. The reduction in runoff in 

spring because of the absence of snowmelt is attenuated by the contribution of glacier 

meltwater. In special cases when the monsoon is delayed or delivers only a small amount 

of precipitation, significantly more water is available in basins with a glacierization of 

above 10 percent. The contribution by the ice-melt water does not, at the catchment outlet, 

suffice to balance the lack of precipitation. 

Consequently, the conclusion is drawn that the reduced glacier reservoir has no 

significant impact on runoff under average conditions in the Lhasa River basin. In fact, the 

monsoon precipitation and subsequent snowfall are key factors in water availability. 

Additionally, low flow situations occur during winter, when neither precipitation nor glacier 

ice-melt contribute water. Shifts in the timing and intensity of the precipitation pattern and 

an earlier snowmelt will therefore influence water availability most significantly. Increasing 

evapotranspiration also reduces future water availability. 

To sum up, the approach presented in the thesis enables the distributed simulation of ice-

melt water release from glaciers and of the influence of this contribution on the water 

balance in a remote, largescale river basin with sparse data availability. The 

characteristics of the models enable application under both past and future climatic 

conditions, using RCMs as meteorological drivers. Although uncertainties remain, the 

approach delivers reliable results at high spatial and temporal resolution and forms the 

basis for developing IWRM strategies to adapt to GCC. 
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10 Appendix 

Appendix 1 

Summary of model parameters (see Chapter 3). 

 

Parameter Symbol Value Unit 

Albedo of freshly fallen snow α 0.90 - 

Albedo of ice in regions with high amount of solar radiation α 0.50 - 

Albedo recession factor at air temperature < 273.15 K k 0.05 1/day 

Albedo recession factor at air temperature ≥ 273.15 K k 0.12 1/day 

Condensation/sublimation heat of snow/Ice His 2835500. J/kg 

Dry adiabatic lapse rate  0.00981 K/m 

Emissivity of glacier ice ε 0.98 - 

Emissivity of snow ε 1. - 

Freezing fraction of liquid water storage fr 25 % 

Gas constant of dry air Rd 287 J  kg-1 K-1 

Glacier ice density ice 910. kg/m³ 

Gravitational acceleration on earth go 9.81 m/s² 

Maximum albedo of snow αmax 0.9 - 

Maximum liquid water storage capacity sl 7 % 

Minimum albedo of snow αmin 0.55 - 

Moist adiabatic lapse rate  0.0065 K/m 

Molar mass of air M 0.028964 Kg/mol 

Snow density (settled snow) snow 290. kg/m² 

Soil heat flux G 2. W/m² 

Specific heat capacity of ice ci 2100. J/(kgK) 

Specific heat capacity of water cw 4180. J/(kgK) 

Specific melting heat of ice Hi 337500. J/kg 

Stefan-Boltzmann-constant σ 5.67*10-8 W/(m²K4) 

Threshold wet bulb temperature Tw 2. °C 

Time step Δt 3600. s 

Universal gas constant R 8.31432 Nm/(mol K) 
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Appendix 2 

Pictures of the investigation area, taken during the Brahmtwinn field trip to Tibet in 

September 2006. 

 

 
Large barley fields near Linzhou (18.09.2006). 

 

 

Mixture of grassland and shrubland (14.09.2006). 
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Soil profiles of the Lhasa River basin (18.9.2006 und 14.9.2006) 

 

 

 

 

 
Glaciers of the Nyaingêntanglha Mountains (24.09.2006). 
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Appendix 3 

Observed and modelled (CLM ERA 40) trend of the monthly and annual air temperature at 

the Meldro Gungkar station for 1980-2000 (for other stations see Figure 5.16 and Figure 

5.17). 
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Appendix 4 

Development of modelled (CLM ERA 40) and observed monthly precipitation for the 

Tangga (1971-2000), Damshung (1980-2000) and Meldro Gungkar (1980-2000) stations. 
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Appendix 5 

Observed and modelled (CLM ERA 40) trend of the annual precipitation sum at the 

Tangga (1971-2000), Damshung (1980-2000) and Meldro Gungkar stations. 
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Appendix 6 

Observed and modelled CLM ECHAM 5 trend of the annual air temperature at the Meldro 

Gungkar station for 1980-2000. 
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Appendix 7 

Observed and modelled CLM ECHAM 5 trend of the annual precipitation sum at the 

Tangga, Damshung und Meldro Gungkar stations for 1970 / 1976-2000. 
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Appendix 8 

Extract of statistics of the WMO station in Lhasa (U.S. DEPARTMENT OF ENERGY 2010, 

CRAWLEY ET AL. 1999). 

 

Statistics for CHN_Lhasa.555910_CTYW 

 Location -- Lhasa Tibet CHN  {N 29° 40'} {E  91°  7'} {GMT +8.0 Hours} 

 Elevation --  3650m above sea level 

 Standard Pressure at Elevation --  64504Pa 

WMO Station 555910 

 

Monthly Statistics for Relative Humidity % 

  Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov      Dec 

Max.   93    72    99    95    91    97    99    97    99    99    90         72  

Day:H  23:03 23:09 31:06 19:06 11:04 19:10 30:07 28:06 27:07  4:01  4:07     5:09 

 

Min.   3     3     3     1     5     14    22    22    17    5     5           4     

Day:H   9:02  7:17  7:21  3:14 17:18  9:18 10:21 31:16 13:16 26:15  6:17    10:18 

 

Average Hourly Relative Humidity % 

             Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

 0:01- 1:00    31    25    27    43    49    54    67    72    73    49    40    36 

 1:01- 2:00    34    27    30    46    51    58    70    74    75    52    42    38 

 2:01- 3:00    36    29    33    48    52    61    73    75    76    56    44    40 

 3:01- 4:00    38    30    36    51    54    63    74    75    76    60    46    42 

 4:01- 5:00    40    33    39    54    57    66    76    77    78    65    50    43 

 5:01- 6:00    42    35    43    56    61    69    78    79    82    70    54    45 

 6:01- 7:00    44    38    46    57    63    70    80    81    85    73    56       45 

 7:01- 8:00    45    38    46    55    62    68    78    81    83    68    55    45 

 8:01- 9:00    43    36    41    50    55    63    74    76    76    58    50    42 

 9:01-10:00    39    32    35    44    47    56    67    70    67    47    43    39 

10:01-11:00   33    28    28    37    40    50    61    63    59    38    36     35 

11:01-12:00   26    23    22    30    34    45    57    57    53    33    29    32 

 12:01-13:00   20    20    19    26    31    41    53    52    49    29    24    28 

 13:01-14:00   16    17    16    23    28    37    49    48    45    25    19    24 

 14:01-15:00   14    15    14    21    26    34    46    44    42    22    15    20 

 15:01-16:00   12    13    13    20    24    32    43    42    39    20    14    18 

 16:01-17:00   13    13    13    21    23    31    42    41    39    20    14    17 

 17:01-18:00   14    12    13    21    22    31    43    42    41    23    16    17 

 18:01-19:00   16    13    15    22    23    32    45    46    45    28    19    20 

 19:01-20:00   19    15    17    24    25    35    48    50    50    35    23    23 

 20:01-21:00   22    17    19    27    29    38    52    55    56    40    28    27 

 21:01-22:00   25    19    20    32    34    42    55    60    61    43    32    30 

 22:01-23:00   27    21    22    36    40    46    59    65    66    45    36    32 

 23:01-24:00   29    23    24    41    45    50    63    69    70    46    38    33 

  Max Hour     8     8     7     7     7     7     7     7     7     7     7     7  

  Min Hour    16    18    17    16    18    17    17    17    17    16    16    17 

 

 

 



Appendix 

 158

Monthly Statistics for Solar Radiation  (Direct Normal, Diffuse, Global Horizontal) Wh/m² 

             Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Direct Avg  6213  6632  5264  6283  7023  7802  6816  6763  7138  8131  7341         7246 

 

Direct Max  8911  9837  9247  9842  10462 12143 10919 11210 10720 10301 9553        8903  

 Day       23    27    20    15    20    25    10    31    14     8    10     9  

 Diffuse Av 928   1186  2031  2178  2404  2238  2474  2217  1686  1085  869   665   

Global Av 3804  4746  5117  6396  7139  7868  7497  7032  6420  5588  4369         3931  

Maximum Direct Normal Solar of 12143 Wh/m² on Jun 25  

 

Average Hourly Statistics for Direct Normal Solar Radiation Wh/m² 

             Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

 0:01- 1:00     0     0     0     0     0     0     0     0     0     0     0     

1:01- 2:00     0     0     0     0     0     0     0     0     0     0     0     0 

2:01- 3:00     0     0     0     0     0     0     0     0     0     0     0     0 

3:01- 4:00     0     0     0     0     0     0     0     0     0     0     0     0 

4:01- 5:00     0     0     0     0     0     0     0     0     0     0     0     0 

5:01- 6:00     0     0     0     0     0     0     0     0     0     0     0     0 

6:01- 7:00     0     0     0     0     0     0     0     0     0     0     0     0 

7:01- 8:00     0     0     0   144   425   395   227   120     3     0     0     0 

8:01- 9:00     0    77   444   613   731   607   470   489   518   724   410    10 

9:01-10:00   716            748   730   733   840   680   538   597   709   914   940  769 

10:01-11:00  895   879   800   814   905   777   612   716   814   943  1008  930 

11:01-12:00  910   881   786   818   901   780   646   720   828   929   986  950 

12:01-13:00  869   849   684   771   779   781   682   715   808   883   919  941 

13:01-14:00  808   796   536   689   562   809   748   742   798   841   800  930 

14:01-15:00  725   724   429   563   454   724   708   685   732   798   745  893 

15:01-16:00  597   633   331   414   379   641   627   598   635   769   654  822 

16:01-17:00  433   521   245   307   368   573   597   551   561   732   573 663 

17:01-18:00  257   390   190   255   328   480   485   460   467   558   307  339 

18:01-19:00    2   135    89   161   270   367   346   319   265    40     0     0 

19:01-20:00    0     0     0     2    81   189   130    51     0     0     0     0 

20:01-21:00    0     0     0     0     0     0     0     0     0     0     0     0 

21:01-22:00    0     0     0     0     0     0     0     0     0     0     0     0 

22:01-23:00    0     0     0     0     0     0     0     0     0     0     0     0 

23:01-24:00    0     0     0     0     0     0     0     0     0     0     0     0 

Max Hour*   12    12    11*   12    11*   14    14    14    12    11*   11*   12  

Min Hour      1     1     1     1     1     1     1     1     1     1     1     1  
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Appendix 9 

Monthly modelled and observed runoff at the Pangdo and Tangga gauges from 1971-

2000 (ERA 40). 
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Appendix 10 

Annual modelled and observed runoff at the Pangdo, Tangga and Yangbajing gauges 

from 1971-2000 for ERA 40 (left) and ECHAM 5 (right) meteorological data. 
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Appendix 11 

Development of daily observed and modelled runoff at the gauge in Pangdo and Tangga 

from 1991 to 2000 (CLM ERA 40). 
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Appendix 12 

Quality criterions for modelled daily runoff, driven by CLM ERA 40 meteorological data. 

 

Period Criterion Lhasa Pangdo Tangga 

R² 0.73 0.72 0.75 
1996 – 2000 

NSC 0.67 0.70 0.73 

R² 0.67 0.65 0.67 
1991 – 2000 

NSC 0.34 0.41 0.44 

R² 0.87 0.87 0.88 
1991 

NSC 0.25 0.22 0.43 

R² 0.73 0.71 0.72 
1992 

NSC -6.23 -3.75 -3.81 

R² 0.76 0.77 0.76 
1993 

NSC 0.45 0.39 0.49 

R² 0.75 0.73 0.72 
1994 

NSC -3.05 -2.29 -1.82 

R² 0.78 0.78 0.75 
1995 

NSC 0.37 0.42 0.38 

R² 0.65 0.67 no observations 
1996 

NSC 0.61 0.55 no observations 

R² 0.69 0.69 0.71 
1997 

NSC 0.31 0.50 0.60 

R² 0.88 0.82 0.86 
1998 

NSC 0.86 0.81 0.85 

R² 0.65 0.69 0.67 
1999 

NSC 0.53 0.67 0.64 

R² 0.75 0.70 0.72 
2000 

NSC 0.68 0.66 0.67 
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Appendix 13 

Statistical values for the analysis of annual air temperature, precipitation sum and global 

radiation sum. The time period for the past is 1971 to 2000, whereas the scenario period 

is set from 2001 to 2080. 

 

Meteoro-
logical 
variable 

Scenario Average 
Abso-
lute 

trend 

Standard 
deviation 

σ 

Trend-
to-noise 
ratio T/N 

Mann-
Kendall 
value Q 

Signifi-
cance 
level α 

Past -0.1 0.7 0.8 0.9 2.46 0.05 

A1B  4.6 1.5 3.1 9.77 0.001 

A2  4.3 1.5 2.8 8.40 0.001 

B1  2.4 1.0 2.4 6.64 0.001 

Air 
temperature 
[°C] 

CON  0.4 0.9 0.5 1.57 - 

Past 630 4 87 0.0 0.36 - 

A1B  -73 86 0.8 -2.16 0.05 

A2  -57 99 0.6 -1.15 - 

B1  3 100 0.0 0.18 - 

Precipitation 
[mm] 

CON  -26 92 0.3 -1.34 - 

Past 288515 -200 43388 0.0 -0.04 - 

A1B  93298 45812 2.0 5.50 0.001 

A2  68122 49497 1.4 3.83 0.001 

B1  66429 49575 1.3 3.60 0.001 

Global 
radiation 
[W/m²] 

CON  35975 54532 0.7 0.30 - 
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Appendix 14 

Statistical values for the analysis of summer (April to September) and winter (October – 

March) air temperature and precipitation sum. The time period for the past is 1971 to 2000, 

whereas the scenario period is set to 2001 to 2080. 

Meteoro-
logical 
variable 

Scenario Average 
Abso-
lute 

trend 

Standard 
deviation 

σ 

Trend-
to-noise 
ratio T/N 

Mann-
Kendall 
value Q 

Signifi-
cance 
level α 

Past 5.9 0.3 0.7 0.4 0.71 - 

A1B  4.2 1.4 3.1 9.39 0.001 

A2  3.8 1.3 2.9 8.92 0.001 

B1  2.9 1.1 2.7 7.60 0.001 

Summer air 
temperature 
[°C] 

CON  0.4 0.8 0.5 1.23 - 

Past -6.1 1.1 1.3 0.9 1.28 - 

A1B  5.0 1.8 2.8 8.53 0.001 

A2  4.9 2.0 2.5 6.83 0.001 

B1  1.9 1.3 1.5 3.97 0.001 

Winter air 
temperature 
[°C] 

CON  0.5 1.5 0.3 0.88 - 

Past 551 -3 92 0.0 0.29 - 

A1B  -58 82 0.7 -1.77 0.1 

A2  -51 96 0.5 -0.98 - 

B1  -3 97 0.0 0.03 - 

Summer 
precipitation 
[mm] 

CON  -24 94 0.3 -1.03 - 

Past 78 6.2 21 0.3 0.54 - 

A1B  -15 21 0.7 -1.71 0.1 

A2  -7 29 0.2 -0.46 - 

B1  6 23 0.3 0.79 - 

Winter 
precipitation 
[mm] 

CON  -2 26 0.1 -0.42 - 
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Appendix 15 

Statistical values for the analysis of monthly air temperature and precipitation sum 

according to the four different IPCC SRES scenarios. The time period for the past is 1971 

to 2000, whereas the scenario period is set to 2001 to 2080. 

Mann-Kendall 
value Q 

Signifi-cance 
level α 

Mann-Kendall 
value Q 

Signifi-cance 
level α 

Meteoro-
logical 
variable 

Scenario 

Air temperature [°C] Precipitation [mm] 

Past 1.18  0.21  

A1B 5.84 0.001 -2.08 0.05 

A2 5.31 0.001 -3.02 0.01 

B1 2.47 0.05 -1.92 0.1 

January  

CON -0.95  -0.26  

Past 0.00  -0.54  

A1B 6.66 0.001 -2.70 0.01 

A2 5.11 0.001 -0.91  

B1 3.09 0.01 2.36 0.05 

February  

CON 0.44  -0.59  

Past -0.07  0.68  

A1B 5.76 0.001 -0.64  

A2 5.04 0.001 0.13  

B1 2.72 0.001 -0.22  

March 

CON 0.74  0.41  

Past -0.54  0.18  

A1B 6.30 0.001 -2.40 0.05 

A2 4.67 0.001 -1.92 0.1 

B1 3.44 0.001 -0.49  

April 

CON 1.02  0.22  

Past 0.75  -1.07 0.05 

A1B 7.49 0.001 -2.04  

A2 5.76 0.001 -1.92 0.1 

B1 5.80 0.001 -1.52  

May 

CON 0.86  -1.33  

Past 1.25  0.00  

A1B 6.39 0.001 -0.44  

A2 6.93 0.001 -1.72 0.1 

B1 5.41 0.001 0.10  

June 

CON 0.41  -0.52  
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Mann-Kendall 
value Q 

Signifi-cance 
level α 

Mann-Kendall 
value Q 

Signifi-cance 
level α 

Meteoro-
logical 
variable 

Scenario 

Air temperature [°C] Precipitation [mm] 

Past 1.28  0.79  

A1B 7.26 0.001 -2.75 0.01 

A2 7.41 0.001 -1.03  

B1 5.60 0.001 -0.84  

July 

CON 1.31  0.14  

Past 0.29  0.54  

A1B 8.60 0.001 1.53 0.1 

A2 7.73 0.001 1.74  

B1 7.47 0.001 1.33  

August  

CON 1.30  -0.39  

Past 0.11  -1.75 0.1 

A1B 7.83 0.001 0.57  

A2 7.04 0.001 0.12  

B1 5.70 0.001 0.23  

September 

CON 0.88  -0.10  

Past 0.57  1.00  

A1B 7.11 0.001 0.12  

A2 5.52 0.001 0.74  

B1 4.73 0.001 0.55  

October 

CON 0.59  0.24  

Past 1.82 0.1 -1.11  

A1B 4.75 0.001 -2.46 0.05 

A2 5.60 0.001 -1.12  

B1 3.07 0.01 0.39  

November 

CON -0.24  0.69  

Past 1.57  0.61  

A1B 6.06 0.001 -1-13  

A2 5.72 0.001 -1.31  

B1 1.72 0.1 -1.33  

December 

CON 0.98  -0.80  
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Appendix 17 

Mean annual precipitation from 1971 to 2000 (top) and the changes in the periods 2011 to 

2040 (left) and 2051 to 2080 (right) according to the A2 scenario (middle) and CON 

scenario (bottom). 
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Appendix 16 

Mean annual air temperature from 1971 to 2000 (top) and the changes in the periods 

2011 to 2040 (left) and 2051 to 2080 (right) according to the A2 scenario (middle) and 

CON scenario (bottom). 
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Appendix 18 

Mean annual percentage of snow precipitation from 1971 to 2000 (top) and the changes in 

the periods 2011 to 2040 (left) and 2051 to 2080 (right) according to the A2 scenario 

(middle) and CON scenario (bottom). 
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Appendix 19 

Mean annual days with snow cover (swe > 10 mm) from 1971 to 2000 (top) and the 

changes in the periods 2011 to 2040 (left) and 2051 to 2080 (right) according to the A2 

scenario (middle) and CON scenario (bottom). 
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Appendix 20 

The development of the simulated ice water equivalent distribution from 1970 to 2080 over 

the decades according to the CLM ECHAM5 IPCC Past, A1B and B1, A2 and CON 

scenario model runs. 

1970 

 

1980 
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1990 

 

2000 
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2010 A1B 

 

2010 B1 
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2020 A1B 

 

2020 B1 
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2030 A1B 

 

2030 B1 
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2040 A1B 

 

2040 B1 
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2050 A1B 

 

2050 B1 
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2060 A1B 

 

2060 B1 

 

 



Appendix 

 179

2070 A1B 

 

2070 B1 
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2080 A1B 

 

2080 B1 
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2010 A2 

 

2010 CON 
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2020 A2 

 

2020 CON 
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2030 A2 

 

2030 CON 
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2040 A2 

 

2040 CON 
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2050 A2 

 

2050 CON 
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2060 A2 

 

2060 CON 
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2070 A2 

 

2070 CON 
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2080 A2 

 

2080 CON 
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Appendix 21 

Mean annual evapotranspiration from 1971 to 2000 (top) and the changes in the periods 

of 2011 to 2040 (left) and 2051 to 2080 (right) according to the A2 scenario (middle) and 

CON scenario (bottom). 
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Appendix 22 

Mean annual runoff from 1971 to 2000 (top) and the changes in the periods of 2011 to 

2040 (left) and of 2051 to 2080 (right) according to the A2 scenario (middle) and CON 

scenario (bottom). 
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Appendix 23 

Statistical values for the analysis of the mean annual summer (April to September) and 

winter (October – March) runoff. The time period for the past is 1971 to 2000, whereas the 

scenario period is set to 2001 to 2080. 

 

Scenario Average 

Abso-

lute 

trend 

Standard 

deviation 

σ 

Trend-

to-noise 

ratio T/N 

Mann-

Kendall 

value Q 

Signifi-

cance 

level α 

Past 440 -7 109 0.06 0.43 - 

A1B 389 -145 108 1.34 -3.59 0.001 

A2 420 -114 114 1.00 -21.9 0.05 

B1 406 -40 115 0.35 -0.78 - 

Mean 

annual 

runoff  

[m³/s] 

CON 395 -39 115 0.34 -079 - 

Past 722 -16 199 0.08 0.61 - 

A1B 641 -265 195 1.36 -3.59 0.001 

A2 687 -212 200 1.06 -2.26 0.05 

B1 665 -80 199 0.40 -.094 - 

Mean 

summer 

runoff  

[m³/s] 

CON 644 -72 210 0.34 -0.92 - 

Past 157 +3 32 0.09 0.39 - 

A1B 137 -25 43 0.58 -1.89 0.1 

A2 153 -16 45 0.35 -1.02 - 

B1 147 0 53 0.00 -0.25 - 

Mean  

winter  

runoff  

[m³/s] 

CON 147 -6 40 0.15 -0.42 - 
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Appendix 24 

Statistical values for the analysis of the monthly runoff at the catchment outlet of the 

Lhasa River basin. The time period for the past is 1971 to 2000, whereas the scenario 

period is set to 2001 to 2080. 

Scenario Month 
Mann-

Kendall 
value Q 

Signifi-
cance 
level α 

Month 
Mann-

Kendall 
value Q 

Signifi-
cance 
level α 

Past 0.43  0.39  

A1B -1.71 0.1 -3.29 0.001 

A2 -0.76  -3.32 0.001 

B1 0.36  -1.72 0.1 

CON 

January 

-0.10  

July 

-0.40  

Past 0.57  0.82  

A1B -1.82 0.1 -1.72 0.1 

A2 -1.03  -1.32  

B1 0.25  -0.12  

CON 

February 

0.03  

August 

-0.75  

Past -1.18  -1.32  

A1B -2.50 0.05 0.01  

A2 -1.43  0.66  

B1 0.27  0.05  

CON 

March 

-0.45  

September 

-0.73  

Past -0.11  -0.04  

A1B -0.84  -1.26  

A2 -0.43  -0.68  

B1 1.23  -0.39  

CON 

April 

-0.96  

October 

-0.18  

Past 0.46  0.54  

A1B -3.35 0.001 -1.65 0.1 

A2 -2.09 0.05 -0.80  

B1 -0.05  -0.47  

CON 

May 

-0.67  

November 

-0.42  

Past -1.00  0.68  

A1B -3.19 0.01 -1.52  

A2 -3.61 0.001 -0.75  

B1 -1.76 0.1 -0.18  

CON 

June 

-0.94  

December 

-0.58  
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Appendix 25 

Mean annual ice-melt contribution to runoff from 1971 to 2000 and in the future periods of 

2011 to 2040 and 2051 to 2080 according to the four IPCC SRES scenario runs. 

 

1971 – 2000 (ECHAM 5) 
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2011-2040 A1B 

 

2051-2080 A1B 
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2011-2040 B1 

 

2051-2080 B1 
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2011-2040 CON 

 

2051-2080 CON 
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2011-2040 A2 

 

2051-2080 A2 
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Appendix 26 

Mean annual percentage of ice-melt on runoff from 1971 to 2000 and in the future periods 

of 2011 to 2040 and 2051 to 2080 according to the four IPCC SRES scenario runs. 

 

1971-2000 (ECHAM 5) 
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2011-2040 A1B 

 

2051-2080 A1B 
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2011-2040 B1 

 

2051-2080 B1 
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2011-2040 A2 

 

2051-2080 A2 
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2011-2040 CON 

 

2051-2080 CON 
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Appendix 27 

Mean annual percentage of inputs and outputs to the water balance in the sub-

catchments from 1971 to 2000 (top), and in the periods of 2011 to 2040 (middle) and 2051 

to 2080 (bottom) according to the A2 scenario. 
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Appendix 28 

Mean annual percentage of inputs and outputs to the water balance in the sub-

catchments from 1971 to 2000 (top), and in the periods of 2011 to 2040 (middle) and 2051 

to 2080 (bottom) according to the CON scenario. 
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