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1. Summary 

Natural nucleic acids are the molecules of life. They contain the genetic information of every 

organism and are involved in many biological processes. Additionally, they were involved for 

the development of life on earth. All nucleic acids contain natural modified nucleotides, 

which are incorporated in complex processes and are of tremendous importance for regulation 

and accuracy of transcription and translation in every organism. Over 120 different 

modifications were detected in all natural nucleic acids and the number is still increasing. 

tRNA is the most heavily modified nucleic acid and it additionally contains the broadest 

structural variety of modifications. So far, the function and role of single tRNA modifications 

has been investigated. Natural modified nucleosides were only rarely investigated in a context 

based manner. To overcome this limitation, we developed a method which allows 

quantification of in principle all tRNA modifications in parallel. This is similar to proteomics 

and metabolomics research in which the complete proteome or metabolome of a cell is 

quantified in parallel, respectively.  

The method is based on HPLC-ESI-MS analysis. It enables precise quantification of tRNA 

modifications by using isotope-labeled stable internal standard molecules for each 

modification (Figure 1). In addition, the method was extended to allow quantification of DNA 

modifications. 

 

Figure 1: Representative workflow of the LC-MS based quantification method for tRNA nucleosides 
which is applicable for all kind of cells. Extension of this method allows quantification of DNA, rRNA, 
and mRNA modifications. 

The method starts with isolation and purification of tRNA or DNA, followed by complete 

enzymatic digestion of tRNA or DNA to the nucleosides. Afterwards the isotope-labeled 

nucleosides are spiked to the natural nucleoside mixture, which is analyzed via HPLC-ESI-

MS experiments (Figure 1). In these measurements, the specific mass area of the natural 
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modification is compared with the area of the added corresponding isotope-labeled 

nucleoside. 

Modified tRNA nucleosides 

Availability of isotope-labeled reference compounds is essential for accurate quantification of 

the corresponding natural occurring modified nucleoside. Therefore, in total 13 nucleosides 

including six isotope-labeled derivatives were synthesized and used in this thesis work 

(Figure 2). 

 

Figure 2: The 13 modified nucleosides synthesized in this Ph.D. thesis work. 

These six isotope-labeled nucleosides as well as eleven other modifications synthesized in the 

group of Prof. T. Carell were used as internal standards for quantification of tRNA 

modifications in different bacterial species, mammalian tissues, and human cell lines. 

In a first project we identified quantitative differences between healthy tissues and cancer cell 

lines especially for the modified tRNA nucleosides t6A and ms2i6A (Figure 3A). The 

modification t6A is upregulated in all cell lines compared to the liver tRNA values. In 

addition, the mitochondria specific modification ms2i6A could not be detected in any cancer 

cell line, but is present in significant amounts in liver tRNA. The absence in cancer cells is 

attributed to the Warburg effect, which describes an impaired mitochondrial activity in 

tumors. Furthermore, we analyzed the ms2i6A content in different tissues and found high 
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levels in tissues with high mitochondrial activities (Figure 3B). The data correlate well with 

the mitochondria specific Cytochrome C oxidase activity (Figure 3C). In summary, the 

ms2i6A content represents mitochondrial activity and can be used as marker to differentiate 

between healthy and tumor tissues. 

 

Figure 3: A) Differences of tRNA modification levels between E. coli, liver tissue and three cancer cell 
lines. B) Tissue dependency of ms2i6A. C) Correlation of ms2i6A with Cytochrome C oxidase activity. 

The tRNA modification levels of 11 further nucleosides were determined in 10 different cell 

lines and 10 different tissues (Figure 4A). These results revealed that tissues contain 

significantly different modification levels. tRNA from liver and cerebellum is most heavily 

modified, whereas heart and cerebrum exhibit lowest modification levels. These results are in 

line with in vivo protein synthesis rates from literature. Therefore, an in vitro translation 

system was established and used in this thesis to further support this hypothesis. High in vitro 

translation activity correlated with the modification level (Figure 4B). All cancer cell lines 

showed similar or higher levels than liver as the most heavily modified tissue. This can be 

explained by the high proliferation rates of cancer cells, which necessitates high protein 

synthesis rates (Figure 4A). 

 

Figure 4: A) Quantitative data of cancer cell lines and tissues colored according to the amount. 
B) Correlation of total tRNA in vitro translation activity with normalized nucleoside levels. 
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In a further project the tRNA modification levels of 11 different prokaryotic species were 

investigated. Analysis of bacteria from different parts of the phylogenetic tree revealed large 

tRNA modification level differences. With these data, combined the mammalian tissue values 

and data from two yeast strains, we performed a Cluster correlation analysis. This analysis 

yielded clustering according to phylogenetic correlations (Figure 5A). Eukaryotic and 

prokaryotic organisms cluster separately from each other and the two yeast strains are 

differentiated from mammalian tissues. Furthermore, Gram-positive and Gram-negative 

bacteria are clearly separated from each other and even bacteria from the same genus can 

clearly be differentiated. These results show the high accuracy of our quantitative data and 

hint at an evolutionary controlled development of tRNA modifications. 

In addition, the response of the tRNA modification pattern to external stimulation was 

analyzed in E. coli. Indeed, variations in the tRNA modification values were detected after 

applying different pH stress conditions or antibiotic treatment (Figure 5B). 

 

Figure 5: A) Cluster analysis of determined quantitative tRNA modification data for prokaryotes and 
eukaryotes. B) tRNA modifications variations depending on pH stress. 

The sixth DNA base 5-hydroxymethylcytosine 

Methylation of cytosine at the 5-position (mC) is an epigenetic marker, which is known for 

many decades. It is of high importance to block expression of specific genes. In 2009, the 

modification 5-hydroxymethylcytosine (hmC) was detected as a novel base in purkinje 

neurons of the mammalian cerebellum. Enzymes of the Tet family were identified to convert 

mC to hmC. These observations indicate that hmC has an epigenetic role, which is not 

clarified yet. 

Using our quantification method, we analyzed the hmC and mC content in the mammalian 

body. Analysis of different tissues revealed that hmC is distributed over the whole 
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mammalian body with significantly varying amounts from 0.03% to 0.7% hmC/dG depending 

on the tissue type (Figure 6A). However, mC values are constant around 4.2%. Interestingly, 

tissues from the central nervous system (CNS) contain the highest amount of hmC. Medium 

values were found for tissues like kidney, heart, and lung. Lowest values could be detected in 

liver, spleen and pituitary gland, which is located in the brain. All these results indicate an 

important role of hmC in the nervous system. Therefore, we analyzed the mammalian brain in 

more detail and again found strongly varying values of hmC in different brain regions  

(Figure 6B). An interesting fact is that regions with a high cognitive role (cerebral cortex, 

hippocampus) contain high hmC values. Furthermore, an age dependency for the hmC values 

in hippocampus could be shown (Figure 6C). 

 

Figure 6: A) hmC distribution in the mammalian body. B) hmC distribution in different brain regions. 
C) Age dependency of hmC in hippocampus. 
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2. Zusammenfassung 

Natürliche Nukleinsäuren sind die Moleküle des Lebens. Sie tragen die genetische 

Information in jedem Organismus und sind in viele biologische Prozesse involviert. 

Zusätzlich waren sie sehr wichtig für die Entwicklung des Lebens auf der Erde. Alle 

Nukleinsäurearten enthalten natürlich modifizierte Nukleotide, welche in komplexen 

Prozessen synthetisiert werden. Diese Modifikationen sind von großer Bedeutung für die 

Regulierung und Genauigkeit der Transkription und Translation in jedem Organismus. Über 

120 unterschiedliche Modifikationen sind bisher bekannt und zusätzlich steigt die Zahl der 

neu entdeckten Modifikationen immer weiter. Transfer-RNA (tRNA) besitzt die größte 

Anzahl und Strukturvielfalt an Modifikationen. Bisher wurden die Funktionen von einzelnen 

tRNA Modifikationen untersucht und teilweise aufgeklärt. Allerdings wurden natürliche 

Modifikationen selten im Zusammenhang als Gesamtheit untersucht. Um diese Lücke zu 

schließen, wurde im Rahmen dieser Doktorarbeit eine Methode entwickelt, welche die 

parallele Quantifizierung von grundsätzlich allen tRNA-Modifikationen ermöglicht. Diese 

Methode ist sehr ähnlich zu den Proteomics und Metabolomics Forschungsbereichen bei 

denen jeweils das gesamte Proteom oder Metabolom einer Zelle parallel quantifiziert wird.  

Die von uns entwickelte Methode basiert auf der HPLC-ESI-MS Analyse und ermöglicht 

präzise Quantifizierung von tRNA-Modifikationen unter Verwendung von stabilen 

isotopenmarkierten internen Standardmolekülen (Abbildung 1). Zusätzlich wurde die Methode 

erweitert, um die Quantifizierung von DNA Modifikationen zu ermöglichen. 

 

Abbildung 1: Repräsentative Darstellung der LC-MS basierenden Quantifizierungsmethode für tRNA 
Nukleoside, welche auf alle Zellarten anwendbar ist. Eine Erweiterung dieser Methode ermöglicht die 
zusätzliche Quantifizierung von DNA, rRNA und mRNA Modifikationen. 

Die Methode beginnt mit der Isolierung und Aufreinigung von tRNA oder DNA. Nach dem 

quantitativen enzymatischen Verdau der Nukleinsäuren zu Ihren Nukleosiden werden die 
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isotopenmarkierten Nukleoside zugegeben und die Nukleosidlösung mittels HPLC-ESI-MS 

analysiert (Abbildung 1). In diesen Messungen werden die Flächen der spezifischen 

Massensignale des natürlichen Nukleosids und der entsprechenden isotopenmarkierten 

Verbindung verglichen. 

Modifizierte tRNA Nukleoside 

Die Verfügbarkeit von isotopenmarkierten Referenzverbindungen ist essentiell für die präzise 

Quantifizierung der entsprechenden natürlich vorkommenden Nukleoside. Dafür wurden im 

Rahmen dieser Arbeit insgesamt 13 Nukleoside synthetisiert und verwendet, von denen 

6 isotopenmarkiert sind (Abbildung 2). 

 

Abbildung 2: Die 13 modifizierten Nukleoside, die im Rahmen dieser Doktorarbeit synthetisiert 
wurden. 

Diese 6 isotopenmarkierten Nukleoside und 11 weitere Modifikationen aus der Gruppe von 

Prof. T. Carell wurden als interne Standards zur Quantifizierung von tRNA-Modifikationen in 

verschiedenen Bakterienarten, Säugetiergeweben und menschlichen Zelllinien verwendet. 

In einem ersten Projekt wurden quantitative Unterschiede der modifizierten tRNA Nukleoside 

zwischen gesundem Gewebe und Krebszelllinien insbesondere für die Modifikationen t6A 

und ms2i6A gefunden (Abbildung 3A). In allen Zelllinien ist die Modifikation t6A im 

Vergleich zur Leber-tRNA hochreguliert. Zusätzlich konnte die mitochondrienspezifische 

Modifikation ms2i6A nicht in Krebszelllinien gefunden werden, während sie in signifikanten 
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Mengen in Leber-tRNA vorkommt. Die Abwesenheit in Krebszellen ist in Übereinstimmung 

mit dem Warburg-Effekt. Dieser besagt, dass die mitochondriale Aktivität in Tumoren 

beeinträchtigt ist. Des Weiteren analysierten wir den ms2i6A-Gehalt in verschiedenen 

Geweben und entdeckten besonders hohe Mengen in Geweben mit hoher mitochondrialer 

Aktivität (Abbildung 3B). Der jeweilige ms2i6A-Gehalt korreliert sehr gut mit den 

entsprechenden mitochondrienspezifischen Cytochrom C Oxidase-Aktivitätswerten 

(Abbildung 3C). Zusammengefasst repräsentieren die ms2i6A-Werte die mitochondriale 

Aktivität und können als Marker zur Unterscheidung von gesundem und Tumorgewebe 

verwendet werden. 

 

Abbildung 3: A) Unterschied der tRNA-Modifikationswerte zwischen E. coli, Lebergewebe und drei 
Krebszelllinien. B) Gewebeabhängigkeit der ms2i6A-Werte. C) Korrelation von ms2i6A mit der 
Cytochrome C Oxidase-Aktivität. 

Zusätzlich wurden die tRNA-Modifikationslevel von 11 weiteren Nukleosiden in 

10 Zelllinien und 10 Säugetiergeweben untersucht (Abbildung 4A). Diese Resultate zeigen, 

dass verschiedene Gewebetypen signifikant unterschiedliche Modifikationswerte besitzen. 

Während die tRNAs in Leber und Kleinhirn am Höchsten modifiziert sind, ist der 

tRNA-Modifikationsgrad in Herz und Großhirn am geringsten. Diese Resultate sind in 

Übereinstimmung mit in vivo Proteinsyntheseraten aus Literaturdaten. Um diese Beobachtung 

zu stärken wurde im Rahmen dieser Doktorarbeit ein in vitro-Translationssystem etabliert. 

Hohe in vitro Translationsaktivitäten der tRNA in unterschiedlichen Geweben korrelieren 

sehr gut mit hohen Modifikationswerten (Abbildung 4B). Alle Krebszelllinien besitzen 

entweder gleiche oder höhere tRNA-Modifikationswerte, als das höchstmodifizierte 

Lebergewebe. Dieses Resultat kann durch die schnell prolieferierenden Krebszelllinien erklärt 

werden, die eine hohe Proteinsyntheserate benötigen (Abbildung 4A). 
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Abbildung 4: A) Übersicht der quantitativen Daten von Krebszelllinien und Säugetiergeweben. 
B) Korrelation der in vitro Translationaktivität von Gesamt-tRNA mit den normierten Nukleosidwerten. 

In einem weiteren Projekt wurden 11 unterschiedliche Bakterienarten untersucht. Die Analyse 

von Bakterien aus verschiedenen Bereichen des phylogenetischen Baums zeigt große 

Unterschiede in den tRNA-Modifikationswerten. Diese Werte zusammen mit den Daten von 

den Säugetiergeweben und zwei Hefestämmen wurden mit Hilfe eines Cluster-Algorithmus 

analysiert. Diese Analyse erzielte Zusammenhänge in Übereinstimmung zu phylogenetischen 

Korrelationen (Abbildung 5A). Eukaryotische und prokaryotische Organismen spalten 

unterschiedlich voneinander auf. Zusätzlich sind die beiden Hefestämme deutlich von den 

Säugetiergeweben zu unterscheiden. Auch Gram-positive und Gram-negative Bakterien sind 

deutlich voneinander getrennt und sogar Bakterien der gleichen Gattung sind eindeutig 

unterscheidbar. Diese Resultate zeigen die sehr hohe Genauigkeit unserer quantitativen Werte 

und deuten auf eine evolutionskontrollierte Entwicklung der tRNA-Modifikationen hin. 

Zusätzlich wurde untersucht, ob das tRNA-Modifikationsmuster aufgrund von äußerem Stress 

in E. coli sich verändert. Tatsächlich wurden Variationen der tRNA-Modifikationslevels nach 

Anwendung von unterschiedlichen pH Bedingungen oder Antibiotika gefunden        

(Abbildung 5B). 
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Abbildung 5: A) Clusteranalyse der quantitativen tRNA-Modifikationswerte von Prokaryoten und 
Eukaryoten. B) tRNA-Modifikationsänderung nach Anwendung von pH Stressbedingungen bei E. coli. 

Die sechste DNA-Base 5-Hydroxymethylcytosin 

Die Methylierung von Cytosin in Position 5 (mC) ist ein epigenetischer Marker, der seit 

vielen Jahrzehnten bekannt ist. Die wichtige Aufgabe dieser Modifikation ist es, die 

Expression bestimmter Gene zu unterdrücken. Im Jahr 2009 wurde die DNA-Modifikation 

5-Hydroxymethylcytosin (hmC) als neue Base in Purkinje-Nervenzellen des 

Säugetierkleinhirns entdeckt. Enzyme der Tet Familie wurden identifiziert, die mC zu hmC 

modifizieren. Diese Entdeckungen deuten auf eine epigenetische Rolle von hmC hin, die 

bisher noch ungeklärt ist. 

Mit Hilfe unserer Quantifizierungsmethode analysierten wir den hmC und mC Gehalt im 

Säugetierkörper. Analysen von verschiedenen Geweben zeigen, dass hmC im gesamten 

Säugetierkörper vorkommt. Das Verhältnis hmC/dG ist Gewebespezifisch und liegt zwischen 

0,03% bis 0,7% (Abbildung 6A). Im Gegensatz dazu haben wir konstante mC Werte von 

jeweils ungefähr 4,2% gefunden. Interessanterweise besitzen Gewebe des 

Zentralnervensystems (ZNS) hohe hmC Werte. Mittlere Werte wurden für DNA aus Niere, 

Herz und Lunge detektiert. Die geringsten Werte wurden für Leber, Milz und Hypophyse 

gefunden, welche sich im Gehirn befindet. Diese Resultate deuten auf eine wichtige Funktion 

von hmC im Nervensystem hin. Deshalb untersuchten wir das Säugetiergehirn im Detail und 

haben erneut unterschiedliche Werte detektiert (Abbildung 6B). Eine interessante Entdeckung 

sind hohe hmC Werte in Regionen mit kognitiven Funktionen (Großhirnrinde und 

Hippokampus). Zusätzlich wurde eine Abhängigkeit der hmC Werte vom Alter der Tiere im 

Hippokampus gezeigt (Abbildung 6C). 
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Abbildung 6: A) hmC-Verteilung im Säugetierkörper. B) hmC-Verteilung in verschiedenen 
Gehirnregionen der Maus. C) Altersabhängigkeit von hmC im Hippokampus von Mäusen. 
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3. Introduction 

3.1 Gene expression 

Gene expression is one of the most crucial processes in the life of an organism, where the 

genetic information is converted in a two step procedure into proteins. The genomic DNA 

containing this information is transcribed to messenger RNAs (mRNAs) in a process called 

transcription (Figure 7).[1] This is followed by translation of the mRNAs into proteins by the 

ribosome, using its ribosomal RNA and the transfer RNA (tRNA). These three different RNA 

types, mRNA, rRNA, and tRNA are the main macromolecules involved in translation, which 

exhibit different functions. The mRNA carries the genetic information as a triplet code in 

form of trinucleotide codons. The tRNA serves as an adapter molecule linking an anticodon to 

the corresponding amino acid. In the ribosome a tRNA is matched to the appropriate codon on 

mRNA and the peptide chain is elongated by transferring the amino acid to the previous 

tRNA. After final peptide coupling the full length protein is released from the ribosome.[1] 

 

 

Figure 7: Schematic illustration of the replication of genomic DNA and gene expression.[2] 
A) Replication of genomic DNA. B) Gene expression. Transcriptionto single stranded messenger RNA. 
Messenger RNAs are translated to proteins at the ribosome with tRNAs carrying the amino acids. The 
full length proteins are released to the cytosol. 
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The genetic code is assembled with 64 three letter codes, which are grouped into 16 different 

boxes according to the first two letters (Figure 8). These codon boxes are mainly degenerated 

to decode a single amino acid with up to six codons. Thus, 61 codons are used for 

incorporation of 20 natural amino acids and in addition three stop codons are present to 

terminate protein synthesis. 

 

Figure 8: The genetic code with 64 different codons subdivided in 16 boxes containing four codons 
with the same first two nucleotides. Different degenerated codons are colored: 6-fold in orange, 4-fold 
in green, 3-fold in blue, 2-fold in yellow, and 1-fold in red. The three stop codons are colorless. 

3.2 Natural modified nucleotides 

The correct synthesis of proteins is of tremendous importance and optimized by every 

organism. All steps require tight regulation, fine tuning and proofreading. A mechanisms 

evolved by nature is the modification of the four canonical bases A, C, G, and T(U) in DNA 

and RNA. Modified nucleosides are present in every cellular nucleic acid and range from 

simple methylations up to attachments of large side chains to the canonical bases, which are 

then called hypermodifications.[3-6] However, every single modification changes the properties 

of any RNA type to improve different parts of gene expression.[7-13] 

Mammalian DNA is built up by the canonical bases and two natural cytosine modifications 

(Figure 9). 5-Methylcytosine (mC) was discovered in the 1950s, which is attracting protein 
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complexes to block expression of specific genes. Even though many reports describe the role 

of this epigenetic marker it is still subject of research regarding the development of life and 

memory formation.[13-19] In addition, the Fe(II) and ketooxyglutarate dependent Tet enzymes 

can convert mC to 5-hydroxymethylcytosine (hmC), which was found in 2009 to be a novel 

modification present in DNA of the cerebellum in mammals.[20-21] It was speculated that hmC 

could play a role in cell development or an active demethylation process. Nevertheless, the 

function of this modification still remains to be elucidated. 

 

Figure 9: The first row shows the canonical DNA nucleosides dA, dG, dT, and dC with the two 
modified cytosine derivatives mC and hmC present in mammalian DNA. The representative 

modifications m6A, m7G, Gm, D, and  from rRNA and mRNA are depicted in the second row. 

Mainly simple modifications, such as various methylations, which are either present at the 

base or the 2' position, are found in mRNA and rRNA. While N6-methyladeonsine (m6A), 

7-methylguanosine (m7G), and 2'-O-methylguanosine (Gm) can be found in mRNA and 

rRNA, dihydrouridine (D) and pseudouridine () are present in rRNA (Figure 9).[4] 

3.3 tRNA 

Nevertheless, the majority of all nucleic acid modifications exists in tRNAs with up to 20% 

modified nucleotides. So far, 92 different tRNA modifications have been identified in all 

organisms, while the number of new detected modifications is still increasing.[22-24] The tRNA 

is built up by three different loops, a variable loop and the specific CCA tail (Figure 10). The 

dihydrouridine stem and loop (DSL) and the thymidine stem and loop (TSL) are important for 

the 3D structure of a tRNA. The anticodon stem and loop (ASL) contains the anticodon and 

on the other end of the tRNA the specific CCA tail can be found at the amino acid acceptor 

stem. Modifications are present in most positions of the tRNA, but can mainly be found in the 

three different loops. These are incorporated during the different stages of the tRNA 
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maturation process. For the DSL and TSL it was partially shown that the modifications are 

already incorporated in tRNA precursors before splicing.[25] These modifications are 

responsible for the correct folding of the tRNA and thus play an important structural role.[8] 

The tertiary tRNA structure is additionally stabilized with Mg2+ ions that bind to different 

positions in the tRNA and also contribute to A and P site binding at the ribosome.[26-27] 

Modifications, which are placed in the anticodon are finally incorporated to obtain the mature 

tRNA. It is proposed that they evolved during development of life to optimize each tRNA for 

correct translation.[9-11, 25] 

 

Figure 10: Structures of tRNA with the three loops of DSL (yellow), TSL (blue) and ASL. The 
anticodon is coloured in red and the CCA tail in green. A) 2D cloverleaf structure of tRNA B) 3D 
structure of representative E. coli tRNAPhe.[28] 

The anticodon loop (position 32 to 38) is one of the modification richest parts of tRNAs with 

the highest modification diversity of all natural nucleic acids.[4-5, 7] Outside the anticodon loop 

mainly simple modifications like methylations, thiolations or  can be found. Anticodon 

loops have special sequences with conserved positions in all identified tRNAs of the three 

domains of life (Figure 11). The conserved pyrimidine position 32 is either unmodified, 

contain monomethylations, , or 2-thiocytidine (s2C), while position 33 is unmodified and 

almost exclusively U.[5, 29-30] The highest structural diversity of tRNA modifications is present 

at position 34, the so called wobble position and at position 37, which is directly 3'-adjacent to 

the anticodon. These modifications enable wobble base pairing and are a tool for efficient 
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reading of degenerated codons. The wobble position mainly contains a large diversity of 

uridine derivatives, inosine (I), 2'-O-methylated nucleosides, and nucleosides of the complex 

queuosine family.[5, 29-30] The fold of the ASL is described as a U-turn motif, which was 

already indicated in the first crystal structures of yeast tRNAPhe.[31-32] The loop of this 17-mer 

has an almost 180° reverse of the backbone to align the anticodon bases which are stacking to 

each other. Intrastrand hydrogen bonds stabilize the U-turn structure. Positions 32 and 38 can 

form an additional intrastrand base pair to extend the anticodon stem.[33] 

 

Figure 11: Anticodon stem and loop (ASL) with the anticodon loop from nucleotide 32 to 38. The 
anticodon is marked in red color. In position 32 is a conserved pyrimidine or its modification is present. 
Position 33 is mainly a uridine (green), while the three anticodon nucleotides are varying. While the 
wobble position can be modified the two modifications 35 and 36 are always unmodified. Position 37 is 
a conserved purine position, which is heavily modified, while position 38 is unmodified and 
mainly A.[29-30, 34]  
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3.4 Modifications at position 37 

3.4.1 Structure and distribution in organisms 

Modifications at position 37 are of large structural diversity, ranging from simple methylation 

up to complex hypermodifications and are strongly dependent and specific for the anticodon 

sequence. This position contains exclusively purines and tRNA sequence analysis from 

different organisms revealed that A is occurring in 80% and G in 20% at this position.[27, 35] 

Here adenosine derivatives are the most abundant modifications, which are either modified at 

position 2, 6 or both together.[4-5, 7] So far, 16 modified nucleosides including 12 adenosine 

derivatives were identified at position 37 in tRNAs of organisms from all domains of life and 

can only be found at this position (Figure 12). In addition, the modification 1-methylinosine 

(m1I) and the three guanosine derived modifications 1-methylguanosine (m1G), wybutosine 

(yW), and hydroxywybutosine (OHyW) can also be found in the anticodon loop. While the 

tricyclic modifications yW and OHyW are specific for this position, the m1G and m1I can also 

be found at other tRNA positions. These 16 nucleosides at position 37 can be classified in 

four different groups. 

 

Figure 12: Modified nucleosides exclusively present 3'-adjacent to the anticodon at position 37. 

The monomethylated nucleosides 2-methyladenosine (m2A), N6-methyladenosine (m6A), 

m1G, and m1I are synthesized by S-adenosylmethionine (SAM) dependent enzymes in a one 

step methylation process. Only m1I is deaminated prior to methylation. The modification m1G 
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is present in all three domains of life, while m2A and m6A are only present in bacterial 

tRNA.[3, 5] The nucleoside m6A is additionally present in mitochondrial tRNA of eukaryotes. 

The nucleoside m1I is exclusively present at position 37 in tRNAAla of eukaryotes.[4-5, 7] 

The second class of modified nucleosides carries an isopentyl moiety at the N6-position, 

which are modified by the Mia enzyme family. The simplest representative is 

N6-isopentenyladenosine (i6A), while an additional methylthio group is attached at position 2 

in the further modified nucleoside 2-methylthio-N6-isopentenyladenosine (ms2i6A). These 

modifications are present in bacteria as well as in eukaryotes. The two cis-hydroxylated 

modifications 2-methylthio-N6-(cis-hydroxyisopentenyl)adenosine (ms2io6A) and 

N6-(cis-hydroxyisopentenyl)adenosine io6A are completing the class of isopentyl derivatives 

and are occurring in bacterial tRNA (Figure 12).[4-5, 7] 

The third group carries different amino acids attached to adenosine via a carbonyl group in 

position 6 at the exocyclic amine. These hypermodified nucleosides are located in the 

anticodon loop 3'-adjacent to the anticodon of tRNAs reading ANN codons (N is standing for 

any of the canonical nucleosides A, C, G, or U). The main representative 

N6-threonylcarbamoyladenosine (t6A) is present in all organisms and contains a L-threonine 

moiety linked to position 6 via a carbonyl moiety. It is together with m1G the only modified 

nucleosides present at position 37 in all three domains of life. Additional methylation at this 

position occurs in some prokaryotic and eukaryotic tRNAs to obtain the modified nucleoside 

N6-methyl-N6-threonylcarbamoyladenosine (m6t6A). Two further modifications contain 

glycine and hydroxynorvaline instead of threonine in N6-glycinylcarbamoyladenosine (g6A) 

and N6-hydroxynorvalylcarbamoyladenosine (hn6A), respectively (Figure 12). Furthermore, a 

methylthio moiety attached to the purine at position 2 was detected in the two modified 

nucleosides 2-methylthio-N6-threonylcarbamoyladenosine (ms2t6A) and 2-methylthio-N6-

hydroxynorvalylcarbamoyladenosine (ms2hn6A).[4-5, 7] 

The fourth group is built up by the two wybutosine derivatives yW and OHyW, which are 

present in eukaryotic tRNAPhe. These modifications are the only tricyclic modified bases 

detected in tRNA until today (Figure 12). Interestingly, the modified nucleoside m1G is the 

first intermediate in the biosynthetic cascade to yW and OHyW. These two modifications are 

present only in eukaryotic organisms and are completely absent in prokaryotic or archaeal 

organisms. In eukaryotes yW is present in the unicellular organism yeast and in plants. The 

further hydroxylated and rarely described nucleoside OHyW is present in mammals as well as 

plants.[4-5, 7]  
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3.4.2 Function 

Biochemical, biological and chemical studies of modifications at position 37 were mainly 

performed for the most common nucleosides t6A, ms2t6A, i6A, ms2i6A, m1G, and yW. The 

influence of these modifications in the appropriate ASL was investigated to elucidate the 

impact on anticodon loop stabilization, codon-anticodon interaction, frameshift prevention, 

translocation and aminoacylation. 

3.4.2.1 Structural role 

Modifications at position 37 are important for stabilization of ASL structure and to prearrange 

the anticodon. Structural and conformational effects were investigated by either solution 

studies of synthetic ASLs with NMR, Xray crystallography of whole tRNAs or tRNAs in 

complex with the ribosome. 17mer RNA strands were used as minimum tRNA mimic to 

simulate the 7-membered loop and 5-membered doublestranded stem region of an ASL 

(Figure 11). 

 

Figure 13: Different conformations of the anticodon loop of E. coli tRNAPhe. A) Unmodified ASL with 
intramolecular hydrogen bonds.[33] B) ASL with incorporated ms2i6A and prearranged anticodon bases 
for interaction with the codon.[28] 

NMR studies have shown that incorporation of modifications results in a reduced thermal 

stability and free energy (ΔG), but contribute significantly to increased entropic values 

(ΔS).[36-38] The enhanced entropy and higher flexibility of the ASL is required to overcome 

the entropic penalty for A site binding.[27] Comparison of modified and unmodified ASLs of 

E. coli tRNAPhe with ms2i6A at position 37 shows the importance of modifications for the 
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structure.[28, 33] Incorporation of the modification leads to a conformational change. The 

anticodon bases are prearranged in the modified structure, whereas they are orientated in 

different directions in the unmodified ASL (Figure 13A). Modification ms2i6A base stacks 

with the A36 to stabilize the anticodon prearrangement. In addition the hydrophobic isopentyl 

moiety is flexible and can contribute to anticodon codon interactions. The hydrogen bonds 

between A38 and U32 are disrupted in the modified ASL, which increases the mobility of the 

loop (Figure 13B).[33, 39] 

A main focus of ASL studies was put on the tRNALys
UUU sequences which contain t6A in 

E. coli tRNA and ms2t6A in the mammalian tRNA at position 37 with the two different 

modified uridine nucleosides 5-methylaminomethyl-2-thiouridine (mnm5s2U) and 

5-methoxycarbonylmethyl-2-thiouridine (mcm5s2U) at the wobble position, respectively. In 

general t6A derivatives are found in codons starting with U and especially in pyrimidine rich 

codons, which require special stabilization. This nucleoside stacks over the first codon 

anticodon base pair to promote base stacking of positions 35 and 36. This stabilizes the weak 

U36·A1 anticodon-codon binding. Furthermore, t6A was described to enhance the stability of a 

G·U mismatch base pair at the wobble position in binding studies of whole tRNAs.[40] NMR 

structures of modified ASLs with t6A and ms2t6A reveal inhibition of the noncanonical 

intrastrand binding C32·A
+

38 by neutralization of A+ with the ionized carboxylic acid of 

threonine.[41-42] In contrast, the hydrophobic character of the methyl group in m1G supports 

Cm32·A
+

38 base pairing in tRNAPhe. When m1G is further modified to yW the anticodon loop 

looses flexibility, resulting in three defined, slowly exchanging conformations.[43] Thus, this 

anticodon loop significantly differs to the structure of ASLs with m1G. Furthermore, ASLs 

with the incorporated modifications i6A, ms2i6A, and yW influence Mg2+ binding to bases in 

the anticodon loop.[26-28, 33, 39] 

Interestingly, an extra hydrogen bond in t6A between nitrogen N1 of the base with the amine 

of the coplanar orientated ureido group forms a third ring, which is similar to the tricyclic 

base yW (Figure 14).[38, 44-45] This tricyclic structure leads to an additional stabilization by 

base stacking of the first codon base pair in complex with the mRNA. Furthermore, the 

2-methylthio moiety in ms2t6A is slightly destabilizing this “third ring hydrogen bond”. This 

causes a significant conformational change compared to t6A containing ASLs and results in a 

so-called stair-stepped conformation of the anticodon bases, which are unstacked in ASLs 

lacking ms2t6A.[46] 



Chapter 3 Introduction  

22 

 

Figure 14: The modified nucleoside t6A as the quasi-tricyclic nucleoside with the hydrogen bond 
between N1 and the ureido amino group (red) and the tricyclic nucleoside yW. 

3.4.2.2 Codon-anticodon interaction 

Codon-anticodon interaction properties of modifications were determined with specifically 

programmed 30S ribosomal subunit containing the appropriate mRNA. In these studies the 

binding abilities of unmodified, partially modified, and totally modified ASLs were 

compared. The importance of the 2'-hydroxyl groups in the anticodon was shown in contrast 

to DNA derivatives.[47] Afterwards chemical incorporation of modified nucleosides as 

phosphoramidites enabled more detailed investigations.[38, 42, 44, 46, 48-50] Binding abilities to 

programmed ribosomes were investigated for different unmodified ASL sequences, which 

naturally contain various modifications. Only 5 of in total 21 unmodified ASL sequences 

could bind strongly to the cognate anticodon in the peptidyl tRNA binding site (P site).[51] 

Dissociation rates determined for eight modified and unmodified tRNAs from E. coli in the 

P site as well as the aminoacyl tRNA binding site (A site), also revealed the high impact that 

these modifications have. Unmodified tRNAs are dissociating faster compared to the fully 

modified tRNAs with either m2A, ms2i6A or t6A at position 37.[52]  

The ASL of Escherichia coli (E. coli) tRNALys with the anticodon UUU contains t6A at 

position 37 and is very similar to the human tRNAsLys1,2,3. Binding studies with poly-A 

programmed ribosomes revealed that this ASL, containing only t6A has very similar binding 

affinities than the native E. coli tRNALys, whereas the unmodified ASLs were only binding 

weakly to the ribosome.[37, 51, 53] The fully modified ASL, which additionally contains the 

wobble modification mnm5s2U, has the same binding affinity to the ribosome as the mature 

tRNA. In addition, it showed a significant enhanced binding ability to the wobble codon 

AAG. Thus, ASLs can be used as minimal mimics of a tRNA structure for the investigations 

of the modification properties. Interestingly, a further study with the ASLs from yeast 
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tRNAPhe showed the importance of the modification m1G, which is present at position 37 in 

this tRNA.[36] In contrast to t6A, the completely unmodified ASL was still binding to the 

ribosome with an affinity of up to two-thirds relative to the mature tRNA. However, modified 

ASLs require incorporated m1G, because modifications in the stem or at the wobble position 

without m1G resulted in drastically reduced binding affinities. Thus m1G has a stabilizing 

effect on the codon-anticodon interaction. 

3.4.2.3 Frameshift prevention and translocation 

About 20 to 40 peptide bonds are formed in one second and discrimination between cognate, 

near-matched and non-cognate tRNAs in the A site is the major factor for correct translation. 

Nevertheless, errors occur at a frequency of 10-3 to 10-4.[9, 54] The charged tRNA in the P site 

can slip by one nucleotide before the next cognate tRNA binds to the A site or after the 

complex translocation process, when the tRNA loaded with the peptide chain is transferred 

from the A site to the P site. Frameshift events can either occur as +1 frameshift, with 

addition of one nucleotide or as -1 frameshift with deletion of 1 nucleotide. A defective 

cognate or non-cognate tRNA can more easily cause frameshift (Figure 15).[55-56] These 

frameshifts lead to truncated and misfunctioning proteins, while missense errors would in 

contrast only cause minor activity loss of proteins. 

Investigations clearly prove that modifications 3'-adjacent to the anticodon are improving 

frame maintenance and translocation. Furthermore, it was postulated that the main biological 

Darwinian force for the development of new modifications for position 37 and/or the wobble 

position is frame maintenance, contributing to uniform ribosomal binding to all tRNAs.[57] 
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Figure 15: Three possible situations in which frameshift events are possible. A) Frameshift in the case 
of a near-matched tRNA. B) Frameshift in the case of a cognate tRNA. C) Frameshift in the case of a 
defective cognate tRNA.[56] 

Influence of modified nucleosides in frameshift prevention was shown for the first time in a 

mutant of Salmonella typhimurium, which lacks the methyltransferase modifying G to m1G by 

the group of Björk in 1989.[58] It was shown that the methyl group in position 1 of guanosine 

inhibits base pairing with C as well as prevents +1 frameshifts but not -1 frameshifts.[57, 59-60] 

This modification is present in all three domains of life and was suggested to be an early 

modification in the development of life, because of sequence similarities of the modifying 

enzyme trmD throughout. It was also argued that this modification evolved in an early stage 

of translation improvement to obtain long chain peptides, since its absence leads to impaired 

growth rates in prokaryotes and eukaryotes.[61] In addition, the isopentyl modifications 

(ms2)i(o)6A also prevent +1 frameshifts. Mutants lacking either the 2-methylthio moiety (i6A 

or io6A) or are unmodified (A) showed significant increased frameshift rates by up to 8 fold 

compared to the natural modified tRNA (ms2io6A). Moreover, wobble modifications and 
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yW-derivatives in rabbit liver tRNA also prevent frameshift events.[62] These observation can 

be explained by the fact that the +1 frameshift is sensitive to the rate of codon recognition in 

the empty A site because of slow selection or low concentration of cognate tRNA. In contrast, 

-1 frameshift can only occur by slippage of the strongly bound deacylated tRNAs in the E site 

as well as the peptidyl-tRNA.[60] 

Moreover it was shown that tRNA modifications of tRNAVal and tRNALys are important for 

the translocation. In tRNAVal the modification m6A and the wobble modifications are only 

important for translocation of wobble codons, whereas it is not influencing cognate codons. In 

contrast, both modifications t6A37 and mnmU34 are necessary for correct translocation in 

tRNALys, whereas tRNAs lacking modifications were unable to translocate at all. 

Interestingly, the modifications in tRNAPhe are not important for this step. Thus modifications 

are important depending on the nature of the tRNA and if the codon is a wobble or a cognate 

codon.[52, 63] 

3.4.2.4 Aminoacylation 

To date numerous examples are known where the tRNA modification strongly influences 

correct aminoacylation and mischarging. Aminoacylation of the cognate tRNA is of 

tremendous importance for correct protein synthesis. 

For instance, the arginyl-tRNA synthetase additionally attaches Arg to the wrong yeast 

tRNAAsp with a factor of 300-500 times when the modification m1G at position 37 is 

unmodified.[64-65] Correct aminoacylation in E. coli tRNAIle depends on the wobble 

modification lysidine (k2C). If this modification is lacking, the tRNA is charged with reduced 

activity by IleRS and is in addition mischarged with methionine by MetRS.[66] These tRNAs 

have similar codons AUA (Ile) and AUG (Met) and can specifically be differentiated only by 

the presence or absence of the modification k2C.[67] Thus, single modification exchange can 

completely convert the identity of a whole tRNA.[68-69] 

In addition, the specific lysinyl-tRNA synthetase (lysRS) of E. coli tRNALys is unable to 

charge the unmodified tRNA lacking t6A.[52] Also less efficient in vivo aminoacylation rates 

were found with tRNAs lacking ms2io6A in S. typhimurium. Higher influence on 

aminoacylation was detected for mutants without the isopentyl moiety compared to those 

lacking the 2-methylthio group.[70] The activity of E. coli glutamyl-tRNA synthetase also 

requires m2A at position 37 as well as the wobble modification mnm5s2U.[71] Furthermore, 
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modification present in the anticodon loop result in significantly decreased 

lysine-incorporation rates. Important to note is the fact, that the rates were diverse influenced 

depending on the modification position.[72] 

The reasons behind all these observations can be obtained from crystal structures providing 

insights into the interaction of aminoacyl-tRNA synthetases with the anticodon.[73-75] In the 

crystal structure of methionyl-tRNA synthetase (MetRS) from Aquifex aeolicus in complex 

with the unmodified tRNAMet shows the interaction with the inside of the tRNA L-shape and a 

distorted anticodon loop. Nevertheless, the enzyme binds to positions A38, A35, and C34, 

while bases U36 and A37 are pointing in the opposite direction resulting in a conformational 

change of the whole anticodon loop.[72] Comparison with IleRS-tRNAIle and ValRS-tRNAVal 

complexes by superposition revealed that they provide hydrophobic pockets for interaction 

with positions 37 as well as 34 and 38.[74-75] Therefore, all anticodon loop nucleotides are 

important for recognition and correct aminoacylation. 

3.4.2.5 Diseases 

Some tRNA modifications present in the anticodon are associated with diseases. For example, 

the modifications ms2i6A and queuosine (Q) present in tRNA of S. flexneri are important for 

the expression of the virulence factor VirF, which is incorrectly expressed in mutants lacking 

the corresponding modifying enzymes. Mutants lacking MiaA, the enzyme for the first 

biosynthetic step of ms2i6A, have reduced expression rates with constant mRNA levels of the 

virulence factor.[76-77] 

The anticodon loop of human tRNALys3 is a primer of the human immunodeficiency virus 

type 1 (HIV-1). The complex with the specific viral reverse transcriptase and the viral genome 

is only possible with the presence of the modifications ms2t6A37 and mcm5s2U34 in the 

anticodon loop. Unmodified or partly modified tRNAs show reduced binding constants.[78-79] 

In addition, the two taurine-containing wobble modifications 5-taurinomethyluridine (m5U) 

and 5-taurinomethyl-2-thiouridinem5s2U) are absent in cells with the mitochondrial 

diseases myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) and 

myoclonus epilepsy associated with ragged red fibers (MERRF).[80-83] Lack of both 

modifications results in mitochondrial dysfunction due to a deficient translational systems. 
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3.5 Summary 

The diversity and important regulatory functions of tRNA modifications in the anticodon loop 

at position 37 indicate the evolutionary specialization. Unique tRNA anticodon loop 

properties are obtained by this diversity to enable translation with high accuracy. These 

results show the importance of every modification present in the anticodon stemloop as 

essential recognition elements for correct binding to the codon. Especially, modifications at 

the position 37 are responsible for accuracy of the translational process by decreasing the 

dipeptide synthesis rate and increasing the rejection rate of noncognate codons.[84] It was 

proposed that modified nucleosides at position 37 developed by evolutionary pressure to 

maintain accurate translation.[51] Absence of modifications causes frameshift and 

aminoacylation errors, inefficient translation and is even associated with diseases. 

So far structure-function relationship studies were mainly investigated on the single tRNA 

modification level or of modifications as part of a whole tRNA molecule. Tissues and species 

specific analysis of the whole tRNA modification pattern can provide penetrating insights into 

the regulation of organisms, which probably results in the observation of new biological 

functions as well as new disease correlations. 
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4. Aims of the Project 

Modified RNA nucleosides are of high diversity in structure and to date more than 

120 different modifications are known.[3-5, 35] Databases are available by now, where 

modifications have been collected and classified according to type of modification as well as 

their occurrence in each domain of life and even in different organisms. Modified tRNA 

nucleosides are the most investigated RNA type and have the largest variety with up to 

90 different modifications known today. Up to now quantification of these modifications was 

performed with radioactive labeled 2D TLC analysis and by UV peak integration of HPLC 

chromatograms.[85-94] The results from these studies showed that the abundance as well as the 

modification levels for some hypermodified tRNA nucleosides vary depending on the tissue 

and that some alterations of modified levels are associated with diseases.[78-83, 95] 

In the era of omics research the central scientific approach is the study of broad biological 

systems as a whole, putting individual components in context to each other. The main omics 

areas described so far are genomics, metabolomics, proteomics, and transcriptomics. [96-101] 

Since the development of mass spectrometers with improved sensitivity, most of these areas 

are using mass spectrometric (MS) based methods. For example, proteomics research which 

has rapidly developed in the last decades analyzes bulk protein mixtures via nano-liquid 

chromatography-tandem MS (nano-LC-MS/MS). Metabolomics is also using HPLC-MS 

based methods for the analysis of more than 100 compounds in parallel.[102-103] 

Stable isotope-labeling with amino acids in cell culture (SILAC) or isotope-coded affinity 

tagging (ICAT) are two proteomic methods in which heavy atom labels are inserted either via 

the cell culture medium or by selective reaction of a linker with a reactive group of the 

analyte, respectively.[104-106] These methods use heavy atom labeled samples, which are 

measured in parallel as an internal reference in order to enable comparative analysis of protein 

expression levels. Furthermore previous reports have shown applicability of this method for 

quantification of two uridine modifications and DNA modifications.[107-110] 

HPLC-ESI-MS, which involves chromatographic separation and mass spectrometric analysis, 

is a perfect tool for the parallel quantification of tRNA modifications. First of all this 

combined method is advantageous to quantify compund amounts by UV-peak integration of 

HPLC chromatograms, because of higher sensitivity without background interference. In 
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addition, the natural nucleosides from isolated tRNAs and the corresponding added 

isotope-labeled reference molecules can be distinguished by their different molecular weights. 

The aim of this thesis was to develop and optimize a method for the parallel quantification of 

in principle all modified tRNA nucleosides in different cell types as depicted in Figure 16. 

For successful establishment each of the subdivided steps had to be optimized: 

1) Synthesis of isotope-labeled internal standard nucleosides 

2) Isolation and purification of tRNA 

3) Enzymatic digestion of bulk tRNA with spiking of isotope-labeled nucleosides 

4) HPLC-ESI-MS-analysis 

5) Analysis of data 

 

Figure 16: Workflow of the LC-MS quantification method for tRNA nucleosides. A) The process starts 
with isolation and purification of bulk tRNA out of any cell type followed by enzymatic digestion of 
tRNA. Then isotope-labeled nucleosides were added and the samples were subsequently analyzed 
with HPLC-ESI-MS. B) Representative depiction of the specific ion currents of monomethylated 
adenosine derivatives in parallel (front signals) and their corresponding isotope-labeled derivatives 
(back signals). 

With the optimized HPLC-MS based quantification method analysis of tRNA modifications 

was envisioned in order to gain deeper insights regarding their tissue specificity, phylogenetic 

relationship as well as their association with diseases. Due to the presence in every organism 

and high importance for life of every organism this thesis work should contribute to extend 

the omics research with analysis of natural modified nucleosides. 
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During this thesis work the DNA modification 5-hydroxymethylcytosine (hmC) was detected 

in mammalian tissue for the first time in 2009.[20-21] Thus, the second aim of this thesis was to 

extend our method to enable quantification of the DNA modifications hmC and 

5-methylcytosine (mC). Analysis of these modifications in the whole mammalian body was 

envisioned to enable gaining deeper insight into presence and function of hmC in correlation 

to mC. 

The quantification method for DNA nucleosides includes the following steps (Figure 17): 

1) Preparation of tissue samples and extraction of genomic DNA 

2) Enzymatic digestion of bulk DNA with spiking of isotope-labeled nucleosides 

3) HPLC-ESI-MS-analysis 

4) Analysis of data 

 

Figure 17: Workflow of the LC-MS quantification method for the two DNA nucleosides hmC and mC. 
After preparation of mouse tissue samples, the genomic DNA was extracted and subsequently 
digested to the nucleosides. After spiking with the isotope-labeled derivatives of hmC and mC the 
samples were analyzed via HPLC-ESI-MS. 
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5. Synthesis of modified tRNA nucleosides 

Synthesis of modified nucleosides is fundamental for our method, because every present 

tRNA nucleoside can be quantified as long as isotope-labeled reference molecules are 

available. The different chromatographic and ionization properties of each modified 

nucleoside require a specific reference molecule for each investigated nucleoside. Isotope-

labeled derivatives of the natural molecules are the best choice to enable precise 

quantification. A similar method allowed to quantify dihydrouridine (D) in relation to uridine 

in E. coli tRNA and 23S rRNA.[110] 

The most common nucleosides present in tRNA of bacteria and eukaryotes were synthesized 

as isotope-labeled derivatives. An efficient synthetic route is of high importance to insert 

isotope-labels due to limited commercial availability of labeled reagents. We took care that 

the synthesized isotope-labeled nucleosides have at least three Da difference to avoid 

contamination of natural 13C isotopes in the extracted tRNA nucleosides. The natural 

occurring nucleosides were synthesized as well, which we used for measuring calibration 

curves and assignments of modifications. 

The nucleosides synthesized in this Ph.D. thesis are modified adenosines and mainly belong 

to two modification classes. The first class includes nucleosides of the carbamoyl family and 

the second class contains different methylated adenosine derivatives. Half of these 

modifications are present at position 37 of different decoding tRNAs and thus directly 

involved in codon-anticodon interaction.[7] The other modifications are present all over the 

tRNA except the anticodon stem-loop and mainly stabilize the 3D structure.[7-8] Therefore, a 

broad variety of adenosine modifications with diverse functions were synthesized. The 

syntheses of the modified nucleosides as well as their isotope-labeled derivatives are 

described after a short summary of their first detection in organisms and known biosynthetic 

pathways. 

5.1 The t6A carbamoyl family 

A very important group of modified nucleosides are N6-threonylcarbamoyladenosine (t6A) 

and its derivatives, which are exclusively present in tRNA at position 37. Together with 

N1-methylguanosine (m1G) they are the only modified nucleoside present at position 37 in all 

three domains of life.[3-7, 49] The main member t6A contains a L-threonine moiety attached to 
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adenosine via a carbonyl group at position 6. Additional methylation at this position occurs in 

some tRNAs to obtain the modified nucleoside m6t6A. Two further modifications contain 

glycine and hydroxynorvaline instead of threonine in g6A and hn6A, respectively (Figure 18). 

Furthermore, a methylthio moiety attached to the purine at position 2 was detected in the two 

modified nucleosides ms2t6A and ms2hn6A. 

 

Figure 18: The modified tRNA nucleoside t6A and its derivatives m6t6A, ms2t6A, g6A, hn6A, and 
ms2hn6A. 

These hypermodified nucleosides are located in the anticodon loop 3'-adjacent to the 

anticodon of tRNAs reading ANN codons (N is standing for any of the canonical nucleosides 

A, C, G, or U). The nucleoside t6A was first isolated and characterized from E. coli, yeast, and 

calf liver tRNA in 1969.[111-112] It is the main representative of this modification class and is 

also present in archaeal organisms.[90, 92] Recently, the protein family YrdC/Sua5 has been 

assigned as modifying enzymes for this modification.[113] Studies towards the analysis of the 

biosynthetic pathway of t6A formation elucidated an ATP-dependent process requiring 

L-threonine and bicarbonate. These biosynthetic studies were investigated with purified 

enzyme and t6A-deficient tRNA.[114-115] 

The same enzyme also incorporates glycine in assays lacking threonine.[114] This observation 

could probably explain the detection of the modification g6A in traces from isolated tRNAs in 

yeast, which has only been reported once.[116] 
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The methylated modification m6t6A was first detected in E. coli in 1972 and in wheat embryo 

tRNAThr
GGU two years later.[117] Although the modifying enzyme has not been identified or 

isolated yet, biosynthetic studies proved that the methyl group is inserted after t6A formation 

via the cofactor S-adenosylmethionine (SAM).[118] In this study, the gene tsaA was assigned to 

encode the m6t6A specific methyltransferase, which is only methylating t6A in absence of a 

cytidine in position 32. This hints for a proofreading of the methyltransferase in regard 

to C32.
[119] 

The modification ms2t6A is also present at position 37 and was first identified in mouse liver 

tRNA in 1979.[120-121] It is furthermore part of bacterial and eukaryotic tRNA and the 

modifying enzyme responsible for insertion of the 2-methylthio moiety by further 

modification of t6A has recently been described.[122] 

To complete the list of modified t6A derivatives hn6A and ms2hn6A were isolated from 

thermophilic bacteria and archaea in 1992. No biosynthetic studies have been published for 

the synthesis of hn6A. It is speculated that the enzyme, which inserts the 2-methylthio group 

in ms2t6A catalyzes the last biosynthetic step for biosynthesis of ms2hn6A.[122] 

5.2 Methylated adenosine modifications 

Methylation of nucleosides is one of the simplest modifications and occurs in a large variety 

of RNA species. Monomethylation of adenosine occurs at four different positions at the base 

and at the 2'-O position of the sugar. The monomethylated adenosine modifications 

1-methyladenosine (m1A), 2-methyladenosine (m2A), N6-methyladenosine (m6A), 

8-methyladenosine (m8A), 2'-O-methyladenosine (Am), and the important dimethylated 

nucleoside N6
,N

6-dimethyladenosine (m6
2A) are depicted in Figure 19. The first isolation of 

the methylated adenosine derivatives m2A, m6A, and m6
2A from total RNA of E. coli, 

Aerobacterium aerogenes and yeast was reported in 1958.[123-124] Until today progress in 

purification and analytical tools led to detection of more methylated nucleosides and their 

assignment to specific RNA species and domains.[3-7] All modifying enzymes are 

methyltransferases requiring SAM as methyl donor. 
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Figure 19: Overview of the monomethylated adenosine modifications 1-methyladenosine (m1A), 
2-methyladenosine (m2A), N6-methyladenosine (m6A), 8-methyladenosine (m8A), 
2'-O-methyladenosine (Am), and the dimethylated N6,N6-dimethyladenosine (m6

2A). 

The base modification m1A was first identified in 1961 as a RNA nucleoside. This 

modification is mainly present in tRNA of all three domains of life either at position 9 or in 

the T-loop at position 58.[125-126] It was also found to be present in all three rRNA subunits of 

eukaryotes.[127] Due to its charged betaine structure it possesses a special character and 

enables intramolecular binding to stabilize the 3D structure of the tRNA. The modification 

m1A is e.g. present in 23 of the 34 tRNA sequences of S. cerevisiae.[35] Recently, the bipartite 

structure of the tRNA m1A58 methyltransferase from S. cerevisiae was found to be conserved 

in humans as well as the methyltransferase that catalyses the formation of m1A at position 9 

of archaeal tRNA.[125, 128]  

The nucleoside m2A is only present in bacterial tRNA at position 37 and was isolated for the 

first time in 1958.[124] The methyl group is attached to the purine base in a rarely occurring 

carbon-carbon bond for adenosine derivatives in tRNA.[3] 

Methylation at position 6 of adenosine is a widespread modification present in all three 

domains of life and was found to occur in tRNA, rRNA, mRNA, and small nuclear 

ribonucleic acid (snRNA). The assignment of this modification is problematic, because of the 

instability of the two modified nucleosides m1A and m6t6A. Harsh basic and acidic conditions 

were applied in early protocols for isolation of nucleosides from different RNAs. Both 

nucleosides could decompose or rearrange to yield m6A, which could lead to 

misinterpretation. Databases indicate m6A as a modification present in tRNA and rRNA of 

archaea, prokaryotes, and eukaryotes, while it is exclusively present in mRNA and snRNA of 
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eukaryotic organisms. In tRNA it was found to be present at position 37 adjacent to the 

anticodon.[5] The modification m6A represents the major modification present in mammalian 

mRNA but the function is still unknown, although it was found about 35 years ago. A recent 

study from 2010 claims that a role of m6A to promote splicing seems less likely, while a 

function in translational control or message recycling remains a possibility.[129] 

Methylation in the 2'-O-position of RNA nucleosides is largely abundant in all types of RNA 

(tRNA, mRNA, and rRNA) and mainly for all four canonical nucleosides. Methylation in the 

2'-O-position of RNAs enhances the stability, but the biological role in tRNA is not clarified 

yet. Most commonly 2'-O-methylation is present in 7 different positions in eukaryotes and 

bacteria.[35] Biosynthesis is either guided by a small nucleolar ribonucleoprotein (snoRNP) 

complex in rRNA and snRNA or by independently modifying methyltransferases in bacterial 

and eukaryotic tRNA.[130] The adenosine methylation was detected in yeast tRNAHis placed at 

position 4, which is the only 2'-O-methylated position in a tRNA duplex region.[130-131] 

Nevertheless, this modification is largely conserved in eukaryotes and also present in humans, 

which hints at a specific but unknown role. In other positions Am is deaminated to obtain the 

modification Im. 

In 2009, the modification m8A was identified in rRNA of E. coli for the first time and already 

proven to be involved in resistance to antibiotics.[132-133] 

Two adjacent dimethylated nucleosides m6
2A occur in the highly conserved 3' end in nature of 

the small ribosomal subunit in all organisms with only few exceptions. Furthermore, it has 

been shown, that they are stabilizing the structure of ribosomal subunit complexes and that the 

methyl groups are stimulating the interaction between rRNA subunits and the initiation factor 

IF-3.[134] Specific methyltransferases were identified in all three domains of life.[135] 

5.3 N6-Acetyladenosine 

Recently, N6-acetyladenosine (ac6A) was detected as a novel tRNA nucleoside in the 

hyperthermophilic methanogen Methanopyrus kandleri.[136] The only acetylated modifications 

detected before have been two cytidine compounds with the acetylation at position 4 (ac4C 

and ac4Cm). Therefore ac6A is the only acetylated purine known so far. It is assumed that this 

modification is a minimal analogue to t6A.[136] However, the function, position or the 

biosynthesis of this new modification is still unknown. 
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5.4 Synthesis of modifications 

5.4.1 Synthesis of t6A 

Several synthetic routes were reported for the synthesis of the nucleoside t6A.[48, 50, 137] A 

straightforward synthetic route was selected for the synthesis according to literature 

procedures (Scheme 1). In contrast to previous syntheses the alcohols were protected as TBS-

ethers instead of acetylation.[138] Acetylation was avoided due to the use of compound 1 as 

intermediate in the synthesis of further nucleosides described in this chapter, which are 

instable under basic conditions. This intermediate was functionalized to a carbamate using 

ethylchloroformate as the electrophile, which introduced the carbonyl function together with 

ethanolate as leaving group for subsequent substitution. 

 

Scheme 1: Synthesis of the nucleoside t6A. i) TBSCl, imidazole, DMF, rt, 19 h, 81%; 
ii) ethylchloroformate, pyridine, 0 °C to rt, 5 h, 72%; iii) L-threonine, pyridine, 125 °C, 8.5 h, 80%; 
iv) NEt3·3HF, CH2Cl2, rt, 20 h, 65%. 

Precursor 2 was treated with L-threonine to yield the sugar protected t6A (3). The base 

catalyzed mechanism starts with deprotonation of the acidic proton at the exocyclic amine 

with subsequent loss of ethanolate. The isocyanate intermediate is attacked by the amine of 

L-threonine to form the product after final proton transfer (Scheme 2). Deprotection with 

NEt3·3HF cleaved the TBS groups to obtain final product t6A after purification via HPLC 

(Scheme 1). 
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Scheme 2: Mechanism of the base catalyzed conversion of the carbamate 2 to the urea derivative 3. 
R1 = TBS protected ribose, R2 = L-threonine residue. 

5.4.2 Synthesis of isotope-labeled t6A 

The same route for the synthesis of t6A was chosen to insert the heavy atom label (Scheme 3). 

Commercially available 13C4,
15N-L-threonine was used to react with carbamate 2 to yield the 

sugar protected heavy atom labeled t6A (4). Deprotection with NEt3·3HF resulted in the 

isotope-labeled compound 13C4,
15N-t6A. 

 

Scheme 3: Synthesis of the heavy atom labeled derivative of t6A. i) 13C4,
15N-L-threonine, pyridine, 

125 °C, 6.5 h; ii) NEt3·3HF, CH2Cl2, rt, 72 h, 45% (over two steps). 

5.4.3 Synthesis of g6A 

Synthesis of the modified nucleoside g6A was performed using the same strategy as for 

t6A.[137] Advanced intermediate 2 was treated with glycine to achieve compound 5, followed 

by deprotection of the TBS groups to obtain the modified nucleoside g6A (Scheme 4). The 

obtained product was utilized as reference compound after purification via HPLC. 
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Scheme 4: Synthesis of nucleoside g6A. i) glycine, pyridine, 125 °C, 6 h, 69%; ii) NEt3·3HF, CH2Cl2, rt, 
48 h, 6%. 

A heavy atom labeled derivative of this modification was not synthesized, because we did not 

detect g6A in any of the investigated tRNA samples. Glycine was only inserted into tRNA in 

assays with threonine depleted medium to form g6A as described in literature.[116] However, 

the synthetic procedure of the natural occurring modification enables rapid synthesis of a 

heavy atom labeled derivative by using for example 13C2-glycine, which could be used as 

internal standard in quantification experiments. 

5.4.4 Synthesis of m6A and m6
2A 

A divergent synthetic route was used for the synthesis of both derivatives m6A and m6
2A from 

only one precursor. After acetylation of the inosine alcohol groups (6) the carbonyl function at 

position 6 was converted into a chloro function to yield intermediate 7 using the Vilsmeier 

reagent N-chloromethylene-N,N-dimethylammoniumchloride[139] (Scheme 5). This reagent 

allows better handling with precise amounts compared to other chlorinating reagents like 

POCl3. It gave the product in excellent yields.[139] 

 

Scheme 5: Synthesis of the intermediate 7. i) Ac2O, pyridine, DMF, 75 °C, 0.5 h, 87%; ii) Vilsmeier 
reagent, CH2Cl2, 40 °C, 24 h, 93%. 

 

Precursor 7 was treated with different amines to synthesize the natural nucleosides m6A, m6
2A 

and their heavy atom labeled derivatives d3-m
6A and d3-m

6
2A, respectively. Additionally, it 

was used by Dr. T. Brückl to synthesize the isopentyl nucleosides i6A, io6A, and their 

isotope-labeled derivatives. Details for the synthetic procedures and analytical data are 
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described in his Ph.D. thesis.[140] In total, precursor 7, which is available in large quantities in 

two steps, allowed rapid and efficient synthesis of four nucleosides m6A, m6
2A, i6A, and io6A 

and of the four corresponding heavy atom labeled derivatives in a divergent route (Scheme 6). 

 

Scheme 6: Synthesis of the modified nucleosides m6A, d3-m
6A, m6

2A, and d3-m
6
2A. The two 

nucleosides i6A and io6A were also synthesized from intermediate 7. i) MeNH2 (33% in EtOH), EtOH, 
rt, 18 h, 93%; ii) d3-MeNH2·HCl, Ag2O, EtOH, rt, 48 h, 22%; iii) Me2NH (33% in EtOH), EtOH, rt, 26 h, 
86%; iv) d3-Me2NH, NEt3, MeOH, 60 °C, 20 h, 80%. 

5.4.5 Synthesis of m6t6A 

So far only one synthesis of m6t6A has been reported. The nucleoside m6A was used as the 

intermediate and treated with the isocyanate of protected L-threonine. Attempts to methylate 

t6A using methyliodide under different conditions were not successful.[141] Therefore, a route 

was utilized in this thesis by first introducing the methyl group and second attaching the 

threonine moiety. Nucleoside m6A was first TBS-protected to yield compound 8, which was 

treated with ethylchloroformate according to the synthetic strategy for t6A (Scheme 7). 

Unfortunately, the reaction to compound 9 proceeded in very low yields and the subsequent 

substitution with L-threonine did not result in any product. The lower reactivity can be 
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explained by the methyl group at position 6 in comparison to good reactivity of compound 2 

under the same conditions (Scheme 1). The isocyanate intermediate cannot be formed with the 

present methyl group in derivative 8 like in the base catalyzed mechanism for t6A (Scheme 2). 

In this case the carbonyl group of the carbamate is attacked by L-threonine. No reaction was 

observed, because ethanolate is a bad leaving group in this reaction. 

 

Scheme 7: First synthetic strategy towards synthesis of m6t6A. i) TBSCl, imidazole, DMF, rt, 18 h, 
96%; ii) ethylchloroformate, pyridine, rt, 5 h, 22%. 

Therefore, the synthetic strategy was modified. (4-nitrophenyl)chloroformate was used as a 

more reactive chloroformate instead of the ethyl derivative, which additionally contains a 

better leaving group for substitution with L-threonine. A second difference was the protection 

of L-threonine, which was performed according to a literature procedure for the synthesis of 

t6A.[48] The carboxylgroup was first protected in an esterification with 

2-(4-nitrophenyl)ethanol (NPE-OH) to obtain the salt 10, followed by protection of the 

alcohol with TBSCl to retain the free amine in 11 (Scheme 8). Protection of carboxylic acids 

with the NPE group is a commonly used in peptide chemistry, which retains stereochemistry 

in the deprotection step by -elimination with a non-nucleophilic base.[48] 

 

Scheme 8: Protection of L-threonine. i) p-toluenesulfonic acid, toluene, 150 °C, 12 h, 92%; ii) TBSCl, 
imidazole, pyridine, rt, 18 h, 76%. 

Precursor 8 reacted almost quantitatively with the electrophile (4-nitrophenyl)chloroformate. 

Subsequently, intermediate 12 was treated with the protected L-threonine 11 to obtain the 

fully protected nucleoside m6t6A (13) in good yields (Scheme 9). The reaction had to be 

carried out at rt, because we observed degradation of m6t6A to m6A during heating. It is of 
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importance to note that also the unprotected L-threonine was used to react with 12, but did not 

yield any product. After the two deprotection steps to cleave the TBS groups with NEt3·3HF 

and the NPE group using DBU as a non-nucleophilic base and purification via HPLC the final 

product m6t6A was obtained with NEt3 as counterion due to the HPLC buffer. 

 

Scheme 9: Synthesis of nucleoside m6t6A. i) (4-nitrophenyl)chloroformate, pyridine, 50 °C, 3 h, 80%; 
ii) 11, pyridine, rt, 18 h, 84%; iii) a) NEt3·3HF, CH2Cl2, rt, 24 h, 98%; b) DBU, THF, 40 °C, 3 h, 80%. 

This protected amino acid 11 was also used in a second route for synthesis of nucleoside t6A 

(Scheme 10).[48] Intermediate 2 was treated with compound 11 to obtain the t6A derivative 14. 

The TBS groups of this compound were deprotected with NEt3·3HF to give the carboxylic 

acid protected intermediate 15 in almost quantitative yield. Interestingly, this fluoride source 

is the only applicable reagent for deprotection of this compound and was used for all other 

derivatives as well. The glycosidic bond was at least partially cleaved under treatment with 

TBAF or py·HF. Final deprotection of 15 with the non-nucleophilic base 

1,8-diazabicyclo[5.4.0]undec-7-en (DBU) yielded t6A in a second route (Scheme 10). 
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Scheme 10: Alternative synthesis of the modified nucleoside t6A. i) 11, pyridine, 125 °C, 7 h, 91%; 
ii) NEt3·3HF, CH2Cl2, rt, 96 h, 98%; iii) DBU, THF, 40 °C, 1 h, 56%. 

5.4.6 Synthesis of isotope-labeled m6t6A 

Introduction of a deuterated methyl group in position 6 was chosen for introduction of an 

isotope-label in m6t6A. The intermediate d3-m
6A had to be available in high quantities, which 

would be hardly realizable by the described synthesis with only 22% in the last step    

(Scheme 5). Therefore, a new synthetic strategy was chosen to obtain this intermediate in 

better yields. The synthesis started with TBS-protected adenosine 1, which was treated with 

benzoyl chloride to obtain compound 16 in a yield of 67% (Scheme 11) with dibenzoylated 

compound as unavoidable byproduct. Afterwards the key step in this procedure was 

performed by inserting the deuterated methyl group with the phase transfer catalyst NBu4Br at 

position 6 to yield 17 due to short reaction times.[142] This compound was deprotected with 

methylamine to cleave the benzoyl group to give the sugar protected d3-m
6A 18. This is an 

intermediate in the synthesis of d3-m
6t6A and enables a more efficient synthesis of this 

compound compared to the synthesis in Scheme 5. Additionally, compound 18 was 

deprotected with NEt3·3HF to obtain d3-m
6A in a second route. This reaction sequence was 

also performed with CH3I to yield m6A in a second route with similar yields. Synthesis is 

described in the Experimental Section (Chapter 5.4.6). 



 Synthesis of modified tRNA nucleosides  Chapter 5 

45 

 

Scheme 11: Synthesis of TBS protected d3-m
6A. i) benzoylchloride, pyridine, -5 °C to rt, 2 h, 67%, 

ii) d3-methyliodide, nBu4NBr, 1M NaOH, rt, 3 h, 68%; iii) MeNH2 (33% in EtOH), EtOH, rt, 2 h, 94%; 
iv) NEt3·3HF, CH2Cl2, rt, 16 h, 72%. 

Compound 18 was treated with (4-nitrophenyl)chloroformate to obtain intermediate 19, which 

was subsequently treated with protected L-threonine to substitute the 4-nitrophenol moiety 

and to obtain the fully protected d3-m
6t6A (20) (Scheme 12). The isotope-labeled compound 

d3-m
6t6A was obtained after the two deprotection steps with NEt3·3HF and DBU. 

 

Scheme 12: Synthesis of the nucleoside d3-m
6t6A. i) (4-nitrophenoxy)chloroformate, pyridine, 50 °C, 

5.5 h, 92%; ii) 11, pyridine, rt, 15 h, 84%; iii) a) NEt3·3HF, CH2Cl2, rt, 48 h; b) DBU, THF, 40 °C, 5 h 
25% (over 2 steps). 
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5.4.7 Synthesis of Am and m1A 

The synthesis was performed according to literature using a method for selective methylation 

at the 2' position at the free adenosine.[143-144] The most acidic proton at the alcohol the 

2' position of adenosine enabled mainly methylation in this position. A substoichiometric 

amount of methyl iodide and two workup steps yielded pure nucleoside Am. Again deuterated 

methyl iodide was used to introduce the heavy atom label to obtain the isotope-labeled 

nucleoside d3-Am (Scheme 13). 

 

Scheme 13: Synthesis of nucleosides Am, d3-Am, and d3-m
1A. i) methyliodide, NaH, DMF, 0 °C, 4 h, 

16%; ii) d3-methyliodide, NaH, DMF, 0 °C, 4 h, 21%; iii) d3-methyliodide, DMA, rt, 16 h, 69%; 
iv) 1) conc. NH3, 2) HCOOH. 

The natural nucleoside m1A was commercially available and used as reference compound 

after HPLC purification. The synthesis of the deuterated derivative d3-m
1A was performed 

according to a literature procedure for m1A.[145] Adenosine was treated with deuterated 

methyliodide without using a base, which mainly resulted in the hydroiodide of d3-m
1A 

(Scheme 13). To obtain a more specific and stable counterion this nucleoside was neutralized 

carefully to avoid a methyl transfer to position 6. Afterwards HPLC purification under acidic 

conditions (HCOOH) yielded the protonated m1A with formate as counterion. 
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5.4.8 Synthesis of ac6A 

Monoacetylation at position 6 of compound 1 was obtained after reaction with acetylchloride 

at low temperature and short reaction time. The difficulty in this reaction is to avoid 

diacetylation, which finally gave 21 in a yield of 66%. The TBS-protecting groups at the 

sugar moiety are crucial due to cleavage under non-basic conditions with NEt3·3HF to obtain 

final compound ac6A (Scheme 14).  

The nucleoside ac6A was only detected in archaeal tRNA and we did not detect it in any of 

our tRNA isolates. Therefore no isotope-labeled derivative was synthesized but the presented 

synthesis would be applicable with the commercially available 13C2-acetylchloride for 

synthesis of the heavy atom labeled derivative. 

 

Scheme 14: Synthesis of the archaeal tRNA nucleosides ac6A. i) acetylchloride, pyridine, -5 °C to rt, 
1 h, 66%; ii) NEt3·3HF, CH2Cl2, rt, 15 h, 80%. 

5.5 Overview 

In summary, the five modified nucleosides m6t6A, t6A, m6A, m6
2A, and Am were synthesized 

together with their five corresponding heavy atom labeled derivatives (Figure 20). A modified 

synthetic strategy was developed for m6t6A. Additionally, the deuterated derivative of m1A 

was synthesized as well as the tRNA modifications g6A and ac6A. The six synthesized heavy 

atom labeled derivatives were used as internal standard molecules in the quantification 

experiments. 
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Figure 20: The synthesized 13 modified RNA nucleosides. The six isotope-labeled modifications 
d3-m

6t6A, 13C4,
15N-t6A, d3-m

6A, d3-m
6
2A, d3-Am, and d3-m

1A were used as internal standards in 
quantification experiments within this Ph.D. thesis. 

5.6 Building blocks for RNA synthesis 

The nucleoside t6A has been incorporated in RNA strands via phosphoramidite chemistry 

before.[44, 48, 50] The further methylated derivative m6t6A has never been incorporated into 

RNA strands via phosphoramidite chemistry. Biochemical investigations would be possible to 

reveal the properties of the still unknown methylating enzyme, if RNA strands were available 

with both modifications. Influence of other modified nucleosides in the anticodon stemloop 

and especially at position 32 could be investigated. 

To synthesize RNA strands containing modified nucleosides, RNA phosphoramidites of the 

desired modifications have to be available. It is very important to use a fast and high yielding 

protecting group strategy for phosphoramidites. They have to be present at every nucleophilic 

position at the base and the sugar to prevent undesired side reactions. The protecting group at 

the base can be attached at almost every step of the synthesis of DNA or RNA building 

blocks. For sugars different strategies have been described. Two protection steps are 

necessary for the DNA sugar, while the additional alcohol at the 2' position in RNA building 

blocks necessitates a different strategy. The first and most commonly applied strategy starts 

with protection of the primary alcohol with the acid labile DMT group (Scheme 15A, 

strategy I). The second step is protection of the 2' position with a TBS group and finally the 
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reaction of a phosphoramidite reagent with the 3' position.[146] The disadvantage of this 

procedure is the side reaction of the TBS protection resulting in a 1:1 mixture of the 3' besides 

the 2' protected molecule, which causes low yields. An additional disadvantage of this 

strategy for both used intermediates for t6A (15) and m6t6A (22) is the unprotected 

hydroxygroup at the threonine moiety, which would further decrease the yield in the TBS 

protection step and complicate separation of all isomers (Scheme 15B). Therefore a second 

strategy (II) was applied in which first the 5' and 3' alcohols are protected with (tBu)2Si(OTf)2 

under formation of a six-membered ring.[147-148] Afterwards the 2' position is TBS protected 

and in case of the two t6A derivatives the free alcohol at the threonine moiety gets 

additionally protected. The next step is cleavage of the (tBu)2Si group followed by protection 

of the primary alcohol with DMT. 

 

Scheme 15: A) The two possible protecting group strategies for building block synthesis. Strategy I: 
DMT protection of the 5' position; TBS protection of the 2' position; phosphitylation of the 3' position. 
Strategy II: Simultaneous (tBu)2Si protection of the 3' position and the 5' position and TBS protection of 
the 2' position; cleavage of (tBu)2Si protecting group; DMT protection of the 5' position; phosphitylation 
of the 3' position. B) The two acid protected compounds 15 (t6A) and 22 (m6t6A) used as starting 
compounds for protecting group chemistry. The additional alcohol is colored in green. 

Strategy II in Scheme 15 was used for the synthesis of the t6A and the m6t6A building block 

due to the described advantages. The first step with protection of the 3' and 5' position with 

(tBu)2Si(OTf)2 followed by TBS protection of the 2' alcohols and the alcohol at the threonine 

moiety in a one-pot reaction had to be modified to achieve the desired intermediate     

(Scheme 16). Unfortunately, the glycosidic linkage between the modified base and the sugar 
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was cleaved using the conditions for protection of the four canonical nucleosides.[147-148] 

Therefore the reaction conditions were optimized to yield the protected intermediates of 

t6A (23) and m6t6A (24) in good yields of 71% and 83%, respectively. 

 

Scheme 16: First protection step applied for t6A and m6t6A. i) (tBu)2Si(OTf)2, DMF, -5 °C to rt, 1.5-2 h 
ii) imidazole, TBSCl, DMF, rt, 16 h, 23: 71%, 24: 83%. 

Main changes were performed by increasing the time of both steps and to reduce the 

temperature from 60 °C to rt. The amount of TBSCl was also increased to obtain protection of 

the two unprotected alcohols. 

The protecting group of the 3' and the 5' position was selectively cleaved in intermediates 23 

and 24 by deprotection using py·HF at 0 °C to obtain 25 and 26. Subsequent DMT protection 

of the primary amine at the 5' position yielded compounds 27 and 28 (Scheme 17). The last 

step to obtain the final building blocks for RNA synthesis was not performed in this Ph.D. 

thesis, because RNA synthesis was not part of this thesis work. Sufficient amounts of both t6A 

and m6t6A DMT protected compounds were synthesized. These can be used for incorporation 

in synthetic RNA strands for biochemical studies. 

 

Scheme 17: Protecting group synthesis towards incorporation in RNA of the nucleosides t6A and 
m6t6A. i) py·HF, pyridine, CH2Cl2, 0 °C, 3-5 h, 25: 86%, 26: 77%; ii) DMTCl, pyridine, rt, 16-18 h, 27: 
69%, 28: 71%. 
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6. Quantification method 

The workflow of the develop LC-MS based method is depicted in Figure 21. Each step was 

optimized for successful and accurate quantification. Isolation and subsequent purification of 

a sufficient amount of bulk tRNA was optimized by Dr. T. Brückl and is important for 

convenient realization of the quantitative method. As part of this Ph.D. work conditions were 

screened to achieve quantitative enzymatic digestion of the isolated tRNA. Precise and 

reproducible quantification can only be achieved in case of complete hydrolysis to the 

nucleosides without traces of dinucleotides or 5'-monophosphates of any nucleoside. In 

parallel each part of the HPLC-ESI-MS method was optimized. Final analysis of the obtained 

mass spectrometric data yielded the quantitative values for each analyzed nucleosides. 

 

Figure 21: Workflow of the LC-MS quantification method for tRNA nucleosides. A) The first step is 
isolation and purification of bulk tRNA out of any cells followed by enzymatic digestion of tRNA. Then 
isotope-labeled nucleosides were added and the samples were subsequently analyzed with 
HPLC-ESI-MS. B) Representative depiction of the specific ion currents of monomethylated adenosine 
derivatives in parallel (front signals) and their corresponding isotope-labeled derivatives (back signals). 
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6.1 Extraction and purification of tRNA 

6.1.1 Extraction of tRNA 

For quantification of modified tRNA nucleosides, the extraction and subsequent purification 

of tRNA in sufficient amounts is very important. Initially we used E. coli cells, since it is fast 

growing and enables uncomplicated upscaling to test several tRNA extraction protocols. The 

method that finally allowed extraction of high amounts of tRNA was chosen and further 

modified to achieve tRNA isolation in high purity.[94] 

To this end E. coli cells were grown under optimal conditions, harvested by centrifugation 

and resuspended in our aqueous buffer supplemented with phenol. Here the phenol is used to 

destroy the cell walls and to extract proteins. Extraction, centrifugation, and decantation were 

performed in triplicate and the phenol is finally removed. The aqueous buffer contained all 

nucleic acids, which were separated by their different sizes in a precipitation step using 

2M LiCl.[94] While the large nucleic acids DNA, rRNA, and mRNA are precipitated, the 

tRNA with a lengths of only 70 to 120 nucleotides remained in the supernatant. The crude 

tRNA was isolated by decantation from all other nucleic acid species in the pellet. 

6.1.2 Purification of tRNA 

The crude extracted tRNA was further purified by anion exchange chromatography, which 

enables separation of differently charged molecules. For nucleic acids the separation is 

directly correlating with the size of the molecules due to the negatively charged phosphate 

backbone. Therefore, tRNA is eluting first followed by larger nucleic acids like rRNA and 

mRNA, which are effectively separated (Figure 22). In this way any remaining rRNA and 

mRNA impurities from the precipitation step were removed and pure tRNA was obtained. 
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Figure 22: Representative anion exchange chromatography for purification of tRNA. 

The 5S rRNA subunit consists of approximately 120 nucleotides, which is almost the same 

size as tRNA molecules.[149] To the best of our knowledge, there is no procedure enabling 

separation of these two types of RNAs in parallel. Nevertheless, tRNAs are present in large 

excess in cells compared to 5S rRNA, which in addition is only rarely modified.[150] Thus, 5S 

RNA does not interfere with the quantification experiments. 

This established tRNA extraction method was used successfully for the isolation of tRNA 

from different bacterial species, yeast, plants, mammalian porcine tissue, and human cell 

cultures. An additional desalting step was applied for tissue samples and bacterial species 

experiments due to column binding problems, which caused loss of samples during 

purification. Therefore, this method is generally applicable for tRNA extraction from all kind 

of cells. tRNA extraction and purification were performed by Dr. T. Brückl and is described 

in more detail in his Ph.D. thesis.[140] 

As part of this thesis all further steps leading to quantification of tRNA modifications were 

optimized in parallel because they are dependent for each other. For clarity each part is 

described separately starting with preparation of enzymatic hydrolysis, combined HPLC-MS 

analysis, and finally calibration curve determination. 
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6.2 Enzymatic hydrolysis of tRNA 

Complete enzymatic hydrolysis of the purified tRNAs to their nucleosides is essential in order 

to achieve accurate and precise quantification data. Previously full digestion of tRNA has 

been reported in two main publications by Gehrke et al. and an optimized procedure by 

Crain.[151-152] In both cases a two-step enzymatic protocol was applied starting with hydrolysis 

of tRNA using nuclease P1 to yield the 5'-monophosphates of tRNA nucleosides. In the 

second step alkaline phosphatase and snake venom phosphodiesterase were employed to 

remove the residual phosphates to obtain tRNA nucleosides. This together with a method in 

the Carell group for DNA digestion was used as a starting point. Different enzymatic mixtures 

and concentrations were screened to obtain completely hydrolyzed tRNA nucleoside 

samples.[153] Alkaline phosphatase was replaced with antarctic phosphatase to prevent 

deamination of adenosine to inosine as a side reaction. Other adenosine derivatives would 

also be deaminated which would cause wrong results. We replaced nuclease P1 with nuclease 

S1 because it is available in large amounts and is stable in the appropriate storage buffer for at 

least two months. Complete digestion was tested by quantifying the amount of the two 

modification m2A and m6A in E. coli tRNA (12 µg) and comparing with literature results 

obtained from 2D radioactively labeled nucleotides (Table 1).[86] Each result was determined 

by at least two independent digests. 

In the optimized protocol the tRNA was initially denatured by incubation at 100 °C for 3 min 

to allow efficient digestion by the enzymes which prefer single stranded RNA.[151-152] This 

was followed by addition of different variations of enzyme concentrations with first applying 

nuclease S1 and calf spleen phosphodiesterase II followed by antarctic phosphatase and snake 

venom phosphodiesterase I (Table 1). Each enzyme digestion mixtures were incubated for 3 h 

at 37 °C. Calf spleen phosphodiesterase II seemed to inhibit the activity of nuclease S1, which 

we subsequently omitted from further digestion. 

We finally obtained the enzyme mixture No9 as optimum hydrolysis protocol. Nuclease S1 

(80 units) was incubated with the tRNA mixture for 3 h at 37 °C followed by addition of 

antarctic phosphatase (10 units) and snake venom phosphodiesterase I (0.2 units), which were 

again incubated for 3 h at 37 °C. This enzyme mixture yielded the same results like the 

reference values with perfect reproducibility and no undigested dinucleotides could be 

detected. These conditions were used for all our quantification experiments and a detailed 

procedure of conditions No9 is described in the experimental section (Chapter 10.4.4). 
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Table 1: Different enzymatic hydrolysis conditions tested with relative amounts of m2A and m6A. 
Values of m2A and m6A are obtained from at least two independent digestion experiments in ‰ of total 
tRNA. Standard deviations (s.d.) are shown in parentheses. a) Only one value determined; b) No s.d. 
available from literature values. 

No Nuclease S1 

/ U 

Phospho-

diesterase II 

/ mU 

Antarctic 

phosphatase 

/ U 

Phospho-

diesterase I 

/ U 

‰ (m2A) / 

total tRNA 

‰ (m6A) /  

total tRNA 

1 20 50 5 0.1 1.29 (37) 0.30 (30) 

2 60 50 5 0.1 2.03 (3) 0.55 (1) 

3 80 50 5 0.1 1.87 (9) 0.52 (1) 

4 80 25 5 0.1 2.00 (3) 0.51 (7) 

5 80 25 10 0.2 2.54 (19) 0.63 (17) 

6 80 25 5 0.3 2.75 (14) 0.69 (15) 

7 80 0 5 0.1 2.62 (2) 0.74 (-)a 

8 60 0 5 0.1 2.34 (6) 0.64 (7) 

9 80 0 10 0.2 2.75 (1) 0.69 (6) 
         

Reference[86] 2.80 (-)b 0.70 (-)b 

Nuclease P1[151-152] 2.84 (2) 0.77 (6) 

Nuclease S1 (optimized condition No 9) 2.75 (1) 0.69 (6) 

 

6.3 HPLC-ESI-MS 

HPLC-ESI-MS is a combination of chromatographic separation, followed by mass 

spectrometric analysis. This method is advantageous to HPLC analysis due to the higher 

sensitivity of the MS detector. Additionally, the distinct assignment of each nucleoside is 

possible with the retention time and the corresponding molecular weight. Isotope-labeled 

nucleosides as reference molecules were used in order to turn the MS analysis quantitative. 

They exhibit nearly identical physical HPLC properties like the natural occurring compounds. 

In addition they are comparable by their different molecular weight and are thus essential 

reference molecules for precise quantification. 

The chromatographic conditions were thoroughly optimized to separate all tRNA nucleosides 

with the same molecular weight from each other. Especially monomethylated nucleosides like 

m2A and m6A have similar physical properties, which require a thorough optimization of the 

HPLC conditions for accurate quantification. Other modifications which possess the same 
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chromatographic properties can be distinguished by their molecular weight and analyzed 

separately. Only the two monomethylated guanosines m1G and Gm could not be separated 

and we decided to quantify both together with the d3-m
1G reference nucleoside. 

As the separation column we used a special C18 material, which is specific for separation of 

polar compounds like nucleosides. This column is optimized for gradients with high water 

concentrations over a long time range. The buffers and the flow used for adjusting the 

gradient were also chosen to be suitable to mass spectrometric analysis (Detailed information 

in the experimental section, Chapter 6.3). The optimized gradient enables separation of all 

present modifications and as example the two monomethylated adenosines m2A and m6A are 

shown (Figure 23B). The nucleoside m2A is only present in bacterial tRNA and absent in any 

eukaryotic organisms. Thus a shorter gradient was used for all measurements lacking m2A. 

Figure 23A shows as example a comparison of the HPLC chromatograms of E. coli 

containing m2A and porcine heart. 

 

Figure 23: A) Representative HPLC chromatograms of hydrolyzed tRNA from E. coli and porcine 
heart with separation and assignments of all identified modified nucleosides. Different gradients were 
used for bacterial and porcine tissue tRNA. B) Positive ion traces of the protonated nucleosides m2A 
and m6A with the corresponding isotope-labeled derivatives d3-m

2A and d3-m
6A. The used m/z ranges 

for monomethylated adenosine and the isotope-labeled derivatives are indicated (left). Relevant 
high-resolution mass spectrometry peaks for unlabeled and labeled m2A (right). 
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Quantitative mass spectrometric analysis was established on a LTQ-FT-ICR mass 

spectrometer and afterwards transferred to an Orbitrap XL from Thermo Fisher Scientific. 

The latter system in combination with a dedicated HPLC from Dionex was superior to the 

previous setup due to an increased sensitivity. Therefore, we could reduce the amount of 

injected sample and still enable precise quantification. Importantly, we observed the same 

amounts of nucleosides as for the LTQ-FT-ICR in quantification experiments, which 

additionally proves the general applicability and accuracy of our method. 

All samples were analyzed in the positive polarity mode because higher intensities were 

obtained in comparison to the negative mode. The mass spectrometer values were tuned to 

achieve optimum conditions with freshly mixed adenosine or uridine samples, which were 

dissolved in the buffer used in the HPLC-MS analysis. The injecting needle of the mass 

spectrometer was blocked after some runs due to the high salt concentration from the 

hydrolyzed tRNA samples. Therefore, the first 3.5 min of every hydrolyzed sample were 

omitted from injection into the mass spectrometer since the salts are eluting without 

interacting with the C18 material. Thus, samples could be measured up to seven days without 

exchanging the injection needle. 

Quantification was performed with parallel extraction of the high resolution mass range of 

each modified nucleoside and its corresponding heavy atom labeled nucleoside. These 

specific mass traces allow precise peak integration without background interference. This 

enabled us to quantify nucleosides ranging from very low to large amounts, which is shown in 

the results section of this Ph.D. thesis. 

6.4 Stock solutions 

The stock solutions were prepared by weighing out the HPLC purified and lyophilized 

nucleosides on a balance in a volumetric flask. For accuracy special care was taken to include 

all counterions from the charged nucleosides in the molecular weight calculations. To take 

weighing errors into account calibration curves were determined in triplicate. The weighed 

nucleosides were filled up to 100 mL in a volumetric flask with ddH2O to receive 

concentration 1 of each nucleoside, followed by further dilution of 10 mL to 100 mL to obtain 

concentration 2, resulting in 1/10 of concentration 1. With only rare exceptions the lower 

concentration 2 or further diluted samples were used for quantification experiments. When a 

nucleoside was not soluble in ddH2O, it was first dissolved in an as low as possible amount of 

DMSO and then filled with ddH2O to 100 mL (ms2i6A, m1A, Q, m2G, m2
2G, io6A, and 
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ms2io6A). Importantly, we took care that all four solutions of one compound (3 solutions of 

the unlabeled nucleoside and 1 solution of the isotope-labeled nucleosides) were dissolved in 

the same amount of DMSO to keep the solutions comparable. All stock solutions were stored 

at -20 °C and warmed up to rt prior to addition to the digestion mixture (spiking). No 

decomposition or byproducts were observed after several defrosting and spiking experiments. 

6.5 Calibration curves 

Measurements of calibration curves and assays are machine dependent and were performed 

for the two different mass spectrometers. Calibration curves were determined with five to 

seven samples, which contain different ratios of the natural nucleoside to the corresponding 

isotope-labeled derivative. One value represents measurements with three independent 

samples of the unlabeled nucleoside. For seven different ratios in total 21 samples were 

analyzed with the optimized HPLC gradient as shown in Figure 23B. The calibration curves 

were determined by integration of the specific mass spectrometric areas for each nucleoside 

separately. 

The average determined area ratios from unlabeled to labeled nucleoside were plotted against 

the seven adjusted concentration ratios. The calibration curves with s.d. for all 16 nucleosides 

measured in this Ph.D. thesis are illustrated in Figure 24 and represent perfect correlations 

with R2 values of at least 0.999. The only exception is io6A with R2 value of 0.990, which is 

still applicable for precise quantification. The shown linear equations were used for 

calculation of the exact nucleoside contents in bulk tRNA. Possible errors regarding 

preparation of standard solutions and mixing of the standard solutions are taken into account 

in these calibration curves due to analysis in triplicate with three independent unlabeled 

nucleoside solutions. Isotope-labeled compounds contain traces of unlabeled nucleosides 

since chemicals used in the synthesis are not labeled to 100%. These natural impurities were 

found to be in the range of 0.010.1% and are much lower than the error resulting from 

independent measurements. Impurities of the synthesized nucleosides can be excluded, 

because all nucleosides were purified via HPLC. 
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Figure 24: Calibration curves for the 16 modified RNA nucleosides determined. The first six 
nucleosides were synthesized as part of this thesis work. All others were synthesized by Dr. T. Brückl, 
I. Thoma, P. Thumbs, and A. Hienzsch. 

Precise quantification was enabled by spiking the isotope-labeled modifications into 

hydrolyzed tRNA samples which we analyzed using the optimized HPLC-MS conditions. 

Calibration curves were repeated to check validity over time, and resulted in very similar 

equations. 
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6.6 Accuracy of quantification 

It is extremely important to prove the reproducibility of the quantitative method in order to 

obtain accurate data.[107, 154] Therefore, an intraassay and an interassay test were performed for 

the two nucleosides m2A and m6A, which were quantified in a digested tRNA sample. Here, 

the same amount of one sample was injected six times in a row (intraassay) and area ratios of 

labeled to unlabeled nucleosides were compared, showing a great reproducibility of 1.22% 

(N=6) for m2A and 4.83% (N=6) for m6A. The interassay test with injection of the same 

sample on five subsequent days gave an area ratio reproducibility of 2.74% (N=5) and 1.57% 

(N=5) for m2A and m6A, respectively. In contrast, large variations in the single area of labeled 

or unlabeled nucleoside from 18% to 28% were observed highlighting the importance of the 

labeled nucleosides as reference (Table 2). Nevertheless, this proves the stability of the 

sample after digestion for at least five days at room temperature. Additionally, no memory 

effect due to carry-over contaminations was observed during blank LC/MS experiments 

performed after measurements of a digested sample. 

Table 2: Representative intra- and interassay test (RSD: relative standard deviation). 

Intraassay A(m2A) A(d3-m
2A) n(m2A) 

/ pmol 

A(m6A) A(d3-m
6A) n(m6A) 

/ pmol 

1 1951781 1654081 132.95 856814 1825684 27.10 

2 1666684 1432034 131.21 721705 1647383 25.28 

3 1469647 1266812 130.81 598778 1476839 23.37 

4 1344816 1140608 132.84 584865 1339631 25.19 

5 1177950 1018588 130.41 541967 1246568 25.08 

6 1068219 936646 128.69 489455 1150451 24.54 

Mean value 1446516 1241462 131.15 632264 1447759 25.09 

RSD in % 22.51 21.61 1.22 21.26 17.59 4.83 

       

Interassay A(m2A) A(d3-m
2A) 

n(m2A) 

/ pmol 
A(m6A) A(d3-m

6A) 
n(m6A) 

/ pmol 

1 1068219 936646 128.69 489455 1150451 24.54 

2 883523 756445 131.65 463845 1089846 24.55 

3 1557891 1388066 126.74 780957 1801408 25.01 

4 1545862 1288110 135.11 816523 1904931 24.73 

5 1659433 1390301 134.41 854208 1935446 25.47 

Mean value 1342986 1151914 131.32 680998 1576416 24.86 

RSD in % 25.63 25.08 2.74 27.69 26.64 1.57 
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Furthermore addition of the isotope-labeled nucleosides prior or after enzymatic hydrolysis 

had no influence on the obtained quantitative results. Thus, we decided to add all reference 

nucleosides right after digestion in order to avoid a possible influence of DMSO content in 

stock solutions on the enzyme activity. 

The stability of all nucleosides during enzymatic digestion was tested, showing that all 

nucleosides except the modification m1A were stable under these conditions. The methyl 

group undergoes slow Dimroth rearrangement to yield m6A under basic conditions as 

described before (Scheme 18).[155-156] The first step of the mechanism is the attack of 

hydroxide at position 2 of m1A, which leads to an opened purine ring. Afterwards the bond 

carrying the amidine moiety rotates, followed by nucleophilic attack of the primary amine at 

the formamide. The purine is formed again after release of water to yield m6A.[156] It is known 

that modified nucleosides are more stable in incorporated in RNA strands compared to single 

nucleosides.[157] As all nucleosides are added after digestion, precise quantification of m1A is 

possible because the reference nucleoside gets decomposed in parallel. Additionally, we 

excluded all m6A values in samples with high concentration of m1A. 

 

Scheme 18: Mechanism of the Dimroth rearrangement. Conversion of m1A to m6A under basic 
conditions. 
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The intra- and interassay test for these nucleosides proved again the reproducibility of 

quantification values, which were performed for representative nucleosides m1A, i6A, ms2i6A, 

m1G, and m6A (Table 3). The intraassay after enzymatic digestion showed good 

reproducibility for each nucleoside (N=5) of 0.4%2.6%. In the interassay test we obtained 

reproducibility (N=6) of 1.0%4.3% for all nucleosides on six subsequent days except for 

m6A with 14.3%. As described above the values differ due to the methyl group rearrangement 

of m1A. Using the area ratio with the calibration curves we gained perfect reproducibility. 

Table 3: Intra- and interassay of the representative nucleosides m1A, i6A, ms2i6A, m1G, and m6A 
(RSD: relative standard deviation). 

Intraassay m1A          
/1000 tRNAs 

i6A            
/1000 tRNAs 

ms2i6A         
/1000 tRNAs 

m1G          
/1000 tRNAs 

m6A         
/1000 tRNAs 

1 231.7 81.5 34.4 135.5 43.0 

2 234.1 81.5 34.2 140.8 42.4 

3 231.1 82.3 34.6 136.5 44.3 

4 234.1 81.8 34.0 134.9 43.6 

5 218.9 81.8 34.0 144.2 43.5 

Mean value 230.0 81.8 34.3 138.4 43.4 

RSD in % 2.5 0.4 0.7 2.6 0.6 

      
Interassay m1A          

/1000 tRNAs 
i6A            

/1000 tRNAs 
ms2i6A         

/1000 tRNAs 
m1G          

/1000 tRNAs 
m6A          

/1000 tRNAs 

1 237.9 82.0 33.7 144.6 28.4 

2 232.3 83.2 34.6 128.9 34.1 

3 234.4 80.4 34.3 135.5 37.4 

4 234.8 82.2 35.5 132.0 40.0 

5 218.9 81.8 34.0 144.2 43.5 

6 222.5 81.5 35.2 139.2 44.0 

Mean value 230.1 81.8 34.5 137.4 37.9 

RSD in % 3.0 1.0 1.8 4.3 14.3 
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7. Results tRNA modifications 

7.1 Differences between E. coli, mammalian tissue, and 

cell lines 

We analyzed the modification pattern of different organisms using our described quantitative 

method. Porcine liver was selected as healthy mammalian tissue due to its similarity to 

humans and availability in large amounts.[95] For comparison we decided to use the human 

epithelial cell lines HeLa, HCT-116, and A-375, which were derived from an adenocarcinoma 

of the cervix, from a colorectal tumor and from a malignant melanoma, respectively. 

Additionally, E. coli was chosen as representative bacterial organism. 

The six tRNA modifications m6A, m2A, Am, t6A, ms2i6A, and i6A were used as reference 

nucleosides (Figure 25). The base modifications are present 3'-adjacent to the anticodon at 

position 37 and are therefore directly involved in codon-anticodon interactions.[3-5, 7, 35] The 

only exception is the 2'-O-methylated nucleoside Am present in the amino acid acceptor stem 

at position 4 of eukaryotic tRNA.[130] 

 

Figure 25: Isotope-labeled adenosine modifications d3-m
6A, d3-m

2A, d3-Am, 13C4,
15N-t6A, d3-ms2i6A, 

and d2-i
6A applied as reference molecules. The isotopic labels are indicated by color, with blue for D, 

red for 13C, and green 15N. 
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The modification levels for the six investigated nucleosides in the five different cell types are 

shown in Figure 26. Obviously, the pattern between E. coli and mammalian cells show the 

expected differences. The bacterial modification m2A was only present in E. coli, while the 

eukaryotic nucleoside Am was absent only in E. coli.[3-5] This is a validation of our method 

starting with extraction of tRNA and finally yielding the quantitative data. All bars represent 

the average value of two independent biological replicates and workup procedures with at 

least three independent enzymatic digestions and LC-MS measurements. The average error 

margin of only 5% proves the high quality of the obtained data.

 

Figure 26: A) Comparison of modified tRNA nucleoside levels of E. coli, pork liver, HeLa, HCT-116, 
A-375 cell lines. B) Zoomed values of the modification ms2i6A in mammalian cells. Error bars represent 
the standard deviations calculated from multiple experiments. 

Interestingly, comparison of pork liver and the three cancer cell lines reveals significant 

differences. The amount of the modification t6A is significantly enhanced in all three cancer 

cell lines compared to the healthy tissue indicating either an up-regulated biosynthesis in 

cancerous cells or organism specific differences. Furthermore, we could detect significant 

differences for m6A and i6A between each cancer line with HeLa and A-375 containing twice 

as much m6A than HCT-116. HeLa contains 30% less i6A compared to the other two cell 

lines, which exhibit the same amount. These cell line specific modification patterns may 

provide a novel diagnostic tool for differentiation of cancer types by analysis of modified 

tRNA nucleosides. 

Another highly interesting observation is that the modification ms2i6A is only present in 

healthy tissue (Figure 26B). We detected it in a very low but significant amount in pork liver 
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tissue, whereas it is completely absent in all three cancer cell lines. All other modifications 

were present in both tissue and cultured cells. The modification ms2i6A is known to be present 

only in mitochondrial tRNA showing the high resolution of our method.[5, 35] Tumors have a 

reduced oxidative phosphorylation activity and many tumor cells derive most of their energy 

demand from glycolysis, which induces a reduced pH value in tumor tissue.[158-161] The 

absence of ms2i6A provides a first indication that the impairment of mitochondrial activity in 

tumor cells known as Warburg effect is detectable using our isotope based quantification 

method.[162] Thus, analysis of the tRNA modification ms2i6A could probably be installed as a 

tumor marker. 

7.2 Strategy 

Inspired by our initial results we decided to investigate a broader variety of mammalian 

tissues as well as cancer cell lines to further prove these observations. Additionally, a detailed 

analysis was performed with various bacterial species in order to test how the modification 

content changes between different species. 

In order to obtain a higher amount of data, we increased the number of isotope-labeled 

nucleosides to 17, which are present at different positions in tRNAs (Figure 27). These 

reference nucleosides were applied for quantification in tRNA of the different organisms. 

Next to synthesis of more adenosine modifications, we also synthesized four methylated 

guanosine derivatives m1G, m2G, m2
2G, and Gm as well as the deazaguanosine derivative Q 

as isotope-labeled nucleosides.[163-167] The two tricyclic modifications OHyW and yW were 

additionally synthesized as isotope-labeled derivatives. Syntheses of nucleosides, which are 

not described in Chapter 5.4 were performed by Dr. T. Brückl,[140] I. Thoma, P. Thumbs, and 

A. Hientzsch. Details are described or will be described in their Ph.D. theses. Eleven of our 

reference molecules are present 3'-adjacent to the anticodon at position 37, where they are 

directly involved in the codon-anticodon interaction. Queuosine and Gm are present in the 

wobble position 34. The other methylated nucleosides are present in positions outside the 

anticodon stemloop. Our selection reflects the fact that the largest variety of modifications are 

found in the anticodon stemloop.[3-5, 7, 35] 

We performed all three studies in parallel. Dr. T. Brückl was responsible for the quantitative 

analysis of porcine tissues, while investigations on different bacterial species were performed 

as part of this thesis. M. Wagner extracted tRNA from different cancer cell lines and 

explained experiments of four cell lines analyzed in this thesis. 
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Figure 27: The seventeen synthesized modified tRNA nucleosides, which we applied for quantitative 
analysis during this Ph.D. thesis. The isotopic labels are indicated by color, with blue for D, red for 13C, 
and green 15N. Nucleosides are assigned to positions where they are placed in the tRNA.[3-5, 7, 35] 
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7.3 Porcine tissue 

The quantitative analysis of porcine tissues was performed for liver, spine marrow, spleen, 

kidney, lung, tongue, heart, thyroid gland, and the two brain regions cerebellum and 

cerebrum. Cerebrum and cerebellum were separated due to irreproducible results, which we 

obtained after mixing both brain regions. 

We first investigated the mitochondrial modification ms2i6A.[34, 168] The levels of this 

modification should therefore allow us to characterize the mitochondria density and activity. 

Indeed, we determined varying ms2i6A levels in the investigated tissues (Figure 28A). We 

detected large amounts in heart, cerebellum and tongue, indicating high mitochondrial 

activity. Small values were found for liver, lung, and glands with up to six times less abundant 

than heart. To obtain a reference of mitochondrial activity, we measured cytochrome C 

oxidase activity for all tissues. The absolute values for cytochrome C oxidase activity        

(Figure 28B) correlate well with the ms2i6A content with high significance (P = 0.0017, 

Figure 28C), which confirmed the previously observed correlation of mitochondrial activity 

with ms2i6A levels. These measurements were performed by A. C. Kneuttinger.[169] 

 

Figure 28: Tissue dependent cytochrome C oxidase activity in various tissues. Values of ms2i6A are 
given per 1000 tRNA molecules (‰); A) Levels of ms2i6A in all tissues; B) Averaged cytochrome C 
oxidase activity data of tissues (mean ± s.d.); C) Correlation of the determined cytochrome C oxidase 
activity and the quantified values of ms2i6A in all tissues except thyroid gland (which lacks quantitative 
data for ms2i6A; P = 0.0017). 

In addition, we extracted mitochondria from the tissue samples before tRNA isolation.[170] We 

obtained samples with enriched cytosolic tRNA as well as enriched mitochondrial tRNA and 

proved the purity of the preparations by measurement of cytochrome C oxidase activity as 

well as quantification of the mitochondrial tRNA nucleoside ms2i6A (Figure 29). As 
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expected, the ms2i6A values follow the same trend as the cytochrome C oxidase activity. 

These data clearly provide evidence for a successful separation of cytosolic and mitochondrial 

tRNA pools. We proved this correlation for heart and liver (Figure 29). For all other tissues 

the ms2i6A content was used to prove depletion of mitochondria in cytosol samples. 

 

Figure 29: Cytochrome C oxidase activity and m2i6A content after separation of mitochondria and 
cytosol. These values are increased in mitochondrial fractions and decreased in cytosolic fractions for 
the two representative tissues heart and liver.  

Together with the absence of ms2i6A in cancer cell lines as described before (Figure 26), we 

proved that the method gives accurate insight into mitochondrial activity with the 

quantification of one modification only. A thorough literature search yielded similarly good 

correlations of the ms2i6A values to data for the ATP content,[171] mitochondrial protein 

abundance,[172] and activity[173] with again good correlation supporting our findings      

(Figure 30). 
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Figure 30: Correlation of ms2i6A content and mitochondrial specific activities in different tissues 
derived from literature. ATP content (P = 0.082),[171] mitochondrial MDH mRNA amounts 
(P = 0.0002),[172] and citrate synthase activity (P = 0.025)[173] correlate well with the ms2i6A values. 

The quantitative data obtained for the investigated modifications present in the tRNAs of the 

investigated tissues are shown color coded in Figure 31. The achieved ‰-values are 

normalized to the amount of tRNA present and do not represent the absolute concentration of 

a particular modification in a given tissue sample. Instead they indicate directly to which 

extent certain tRNA modifications are present at their expected position in the tRNA 

ensemble. Thus, the compiled data clearly shows that each tissue type tRNA ensemble is 

composed of different amounts of tRNA modifications, which are incorporated specifically to 

the demand of each tissue. 

While the tRNA ensembles in liver and cerebellum tissue are modified to a large extent, those 

isolated from lung and kidney tissue are less modified in the specific positions. Important 

insights provide the data from the muscle tissues of heart and tongue. Here the modification 

level of the tRNA ensemble is significantly lower showing that many known modification 
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sites stay largely unmodified. An important fact for interpretation of these data is that the 

levels of these modified nucleosides do not correlate with ms2i6A values at all. We can 

conclude that high energy demands do not necessarily imply also a highly modified cytosolic 

tRNA ensemble. 

 

Figure 31: Quantitative data for the investigated tRNA modifications in various tissues. Data represent 
the amount of each modification per 1000 tRNA molecules (‰). These data reveal a similar, tissue-
dependent extent of modification for all investigated nucleosides except Am and ms2i6A. Levels of Q in 
cerebellum and cerebrum are significantly increased relative to other modifications. The color code is 
based on quantile calculations; red: highest value, yellow: 50% quantile, green: lowest value, dark 
green (dark red): thyroid gland, for intermediate values appropriate shades of color were calculated. 

A surprising observation is the different trend of Am, which seems to correlate almost 

inverse. Tissues which operate with a largely unmodified tRNA ensemble seem to have a high 

Am level, possibly to compensate for the accompanied loss in stability associated with low 

modification levels. The function of Am, which is present in the amino acid acceptor stem of 

the tRNA and which is the only known sugar methylation in a double-stranded tRNA region, 

has not yet been identified.[130] However, 2'-O-methylation is generally considered to stabilize 

RNA and to prevent hydrolytic degradation. 

Another interesting observation is the large difference measured between cerebrum and 

cerebellum showing impressively the high plasticity of the translational apparatus. These two 

modifications have an increased level of the hypermodified nucleoside queuosine, which 

could be worth investigating in future projects. 
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In order to further validate our hypothesis we decided to investigate the modification content 

in a sequence context, which is less sensitive to variations like dilution factors or impurities in 

the extracted tRNA ensemble. We therefore performed a parallel LC-MS analysis of partial 

tRNA RNase A digests from liver and heart which represent high and low modification levels, 

respectively. Additionally, these tissues have strongly deviating mitochondrial activity. The 

RNase A digests yield defined tRNA fragments (small oligomers) resulting from selective 

cleavage after C and U. We used the mammalian tRNA sequence database from the Sprinzl 

group[168] to obtain sequences with potentially modified nucleosides. We then calculated the 

molecular weights of a representative set of modified tRNA fragments using the Mongo Oligo 

Mass Calculator program[174] and identified these in the LC-MS data set. We analyzed these 

fragments in negative mode and mainly obtained the fragments with m/z, z = -2. The extent of 

modification of these tRNA fragments was then calculated directly from the ratio between the 

areas of the specific mass peaks for these oligomers carrying modifications and those for the 

corresponding unmodified fragments (Figure 32). The area ratios for heart and liver samples 

were compared to estimate the modification levels in a sequence context. This method is 

similar to a report which describes changes in the tRNA levels due to different growth 

conditions in E. coli.[175] 
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Figure 32: Representative comparison of relative amounts of unmodified RNA fragments AAC and the 

corresponding modified t6AAC in the RNase A digests of liver and heart tRNA. Overlayed LC-MS 

chromatograms showing ions detected at the calculated masses of the AAC 

(m/z = 489.5682-489.5742) and t6AAC (m/z = 562.0863-562.0933) fragments (z = -2). Structures of 

the modified (red) and unmodified (black) fragments. 

We compared ten different fragments with the six representative modified nucleosides m1G, 

m1A, m2G, i6A, t6A, and ms2i6A. Also fragments with multiple modifications were 

investigated and combined indicate a large variety of specific sequences from the anticodon 

region and other parts of the tRNAs. The obtained results show that the representative 

fragments from liver tRNAs are indeed more modified than fragments derived from heart 

(Figure 32). The modified to unmodified area ratios of specific fragments in liver are higher 

than in heart or equal (Table 4). As expected from our quantitative values, the fragment 
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containing ms2i6A is more abundant in the investigated tRNA fragments from heart. These 

results support our quantitative findings that different tissues possess tRNA ensembles that 

vary substantially in tRNA modification levels.  

Table 4: Modified tRNA fragments analyzed after RNase A digestion. The mass area ratios of 

modified to unmodified fragments from total tRNA of liver and heart are shown using specific mass 

peaks (z = -2). Analyzed fragments 1-7 clearly express higher modification levels in liver than in heart. 

Fragments 8 and 9 have similar modified to unmodified ratios. Fragment 10 represents a mitochondrial 

tRNA fragment containing m2i6A, which is present in heart and only in traces in liver. These relative 

non-quantitative data are in strict accordance to the quantitative values described in Figure 32. 

Number tRNA fragments 
Liver 

(modified/unmodified)

Heart 

(modified/unmodified) 

1 A-m2G-Cp 1.00 0.62 

2 G-m2G-Up 0.49 0.41 

3 m1G-m2G-Cp 0.59 0.35 

4 t6A-ACp 1.28 0.85 

5 A-m1A-AUp 20.3 3.69 

6 G-m1A-AACp 6.01 2.20 

7 A-i6A-ACp 1.07 0.14 

8 G-m1A-GCp 0.25 0.24 

9 G-m1A-Up 0.27 0.28 

10 A-ms2i6A-AGCp Traces (<0.1) 0.33 

 

We reasoned that tissues might program their tRNA ensemble to individual translational 

needs by specifically inserting nucleoside modifications. So far we can conclude that tissues 

with a high protein synthesis demand utilize highly modified tRNAs, while cells that have a 

lower protein demand operate with less modified tRNAs. One can hypothesize that the 

modification content has a direct impact on the efficiency of translation. 

In order to test this hypothesis further, we analyzed the impact of the modification content of 

total tRNAs extracted from the different porcine tissues on translational efficiency in an 
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in vitro assay.[176] These experiments will give direct readout of the translational efficiency of 

different tRNA modification levels and thus will give insight in tissue specific regulation of 

translation. 

For the determination of in vitro protein synthesis rates the total tRNAs from the six 

representative tissues liver, heart, cerebellum, cerebrum, kidney, and spleen were applied. To 

measure translation rates, we used an in vitro coupled transcription/translation reticulocyte 

lysate system. The original tRNAs present in the lysate were removed chromatographically 

with an activated ethanolamine-Sepharose column according to a previous report.[176] 

Subsequently, identical amounts of the tRNA ensemble isolated from various porcine tissues 

were added to the tRNA depleted samples with additives to reconstitute the translation 

system. We used the T7 RNA polymerase and luciferase T7 control DNA to determine 

translational efficiency rates, which were measured by detecting the increase in luminescence 

accompanied with the production of the protein luciferase (Figure 33). Each assay mix was 

incubated at 30 °C and 1 µL aliquot was analyzed with the luciferase assay substrate at 

various time points up to 30 min. 

Assays of tRNAs extracted from different tissues were analyzed in parallel with diverse 

tRNA-depleted lysate fractions to exclude artefact problems. A blank assay mix was 

measured as background to determine the activity of residual tRNAs and only fractions with 

low background activities were considered for analysis. 

First, we used a tRNA concentration of 125 µg for each independent measurement, which is 

in the range as described before.[176] The obtained in vitro translation curves are shown in 

Figure 33A. Progress of the luciferase synthesis was measured every third minute. Important 

is the lower activity of the background measurement which is starting later than fractions 

supplemented with tRNA. Initial synthesis rates were calculated by a linear fit of the slopes 

between 13-26 min and normalized to the highest value. These measurements were performed 

in triplicate with different tRNA-depleted lysate fractions. The obtained averaged values are 

shown in Figure 33B showing the highest values for the four tissues cerebrum, kidney, 

cerebellum, and spleen. Slightly lower values were obtained for liver and heart. These values 

do not show any differentiation between tissues and are not at all representing the correlation 

we obtained for the quantified tRNA modification levels (Figure 31). 
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Figure 33: A) Representative in vitro translation experiment read out for tRNA from liver heart, 
cerebrum, cerebellum, kidney, spleen, and a background measurement. B) Averaged in vitro activities 
of each tissue with SD. 

Two possible reasons for these unsatisfying results are discussed in more detail. First critical 

point could be a high impact of mixed cytosolic and mitochondrial tRNA ensembles. A 

second possibility could result from the fast increase of the determined curves. If the tRNA 

was provided in a large excess, the ribosomes would be saturated and subtle differences 

would disappear. We therefore reduced the amount of tRNA, because we are interested in the 

initial rates, which we can obtain with lower tRNA concentrations. 

To address the first possibility, we decided to analyze tRNA preparations depleted of 

mitochondrial tRNA. For all following measurements we used 12.5 µg tRNA for each assay 

resulting in slower increasing curves (Figure 34). In this way the initial synthesis rates of 

luciferase associated to each tissue specific tRNA ensemble can be determined. Absolut 

values of these measurements vary substantially when using different isolated lysate fractions. 

However, reproducible trends were obtained after normalization of the linear fits to the 

highest value (liver or cerebellum). Liver tRNA was used in all measurements as reference 

tissue. Each correlation of liver to the other tissues was performed at least twice. 



Chapter 7 Results tRNA modifications  

76 

 

Figure 34: A) Representative in vitro translation experiment read out in comparison of total and 
cytosolic tRNA in heart and liver. These graphs clearly indicate a decreased activity of cytosolic 
compared to total tRNA. B) Representative in vitro translation experiment read out of cytosolic tRNA 
from the five tissues liver, kidney, cerebrum, spleen, and heart. 

In order to test the impact of mitochondrial tRNAs we analyzed the rates of total and cytosolic 

tRNA of heart and liver. Mitochondrial tRNA from heart should have a huge impact to 

translational activity because of the high mitochondrial activity. Indeed, we determined higher 

efficiency of total tRNA compared to cytosolic tRNA and a tremendous enhanced activity of 

heart total tRNA. An example graph is shown in Figure 34A, which proved the necessity to 

remove mitochondria.  

The results from these in vitro translation experiments are summarized in Figure 35A showing 

the obtained averaged data compared to a normalized measure of tRNA modification levels 

calculated from the LC-MS data. Normalization of our quantitative data include all 

nucleosides except ms2i6A and Am.[140] The translational efficiency of the isolated cytosolic 

tRNA ensembles were found to correlate with modification content (P = 0.028; Figure 35B). 

The high correlation coefficient shows that the modification content of cytosolic tRNA is a 

direct determinant of translational efficiency. We also investigated total tRNA of these six 

tissues and also found a strong correlation if the value from heart was excluded. This value is 

increased relative to the other tissues due to the high impact of the mitochondria           

(Figure 35C). 
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Figure 35: Translation activity of total and cytosolic tRNA originated from different tissues. A) Average 
normalized nucleoside levels of six tissues and relative in vitro translation activities of total and 
cytosolic tRNA. All values are normalized to the highest value and standard deviations (mean ± s.d.) 
are given for the other tissues. While the error values here are relatively large, these represent the 
variation over all modified nucleosides. The measurements for each nucleoside have low errors 
(~5%), and show the same relationship as the averaged set. B) Linear fit of relative in vitro translation 
activity of cytosolic tRNAs and normalized nucleoside levels showing a significant correlation 
(P = 0.028). C) Linear fit of relative in vitro translation activity of total tRNAs and normalized 
nucleoside levels showing a significant correlation for tissues except heart due to huge impact of 
mitochondrial tRNAs. 

The obtained data support the idea that different tissues utilize varying amounts of modified 

tRNA in the tRNA ensembles to translate their genetic information into proteins. Further 

proof of this concept is a strong correlation of the quantitative tRNA modification data with 

in vivo protein synthesis rates determined by flooding dose experiments using radioactive 

labeled phenylalanine (Figure 36).[177-178] 
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Figure 36: Correlations of in vivo protein synthesis rates with normalized nucleoside levels. These 

correlations also show high significance of P = 0.004 (left)[177] and P = 0.011 (right)[178]
. 

Tissues that possess a highly modified tRNA ensemble have indeed a high protein synthesis 

rate. While it is known that the amounts of individual tRNA can vary between tissues,[179-180] 

the fact that the quantitative data for the modifications m1A and m2G present in almost all 

tRNA species follow our correlation trend show that codon bias and tRNA composition do 

not affect our conclusions. A more detailed literature analysis can be found in the Ph.D. thesis 

of Dr. T. Brückl.[140] 

Our result can be explained by the fact that the translation rate is determined by the 

competition between near-cognate and cognate aminoacyl-tRNAs for binding to the 

ribosome[181]. A high modification level increases the affinity of the correct tRNAs to the 

ribosome and thus allows faster discrimination. This reduces the ribosome step time, which in 

turn increases protein synthesis rate. We have now shown that this mechanism is used as a 

tool for regulation of the biosynthesis demand of each tissue by mammalian organisms. The 

tRNA modification level is hence another layer of information that programs cells regarding 

their translational potency. 
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7.4 Cancer cell lines 

We further analyzed 12 cancer cell lines derived from different human tissues, which show a 

complete set of the investigated modified nucleosides from tRNA. This is surprising in light 

of the substantial chromosomal aberrations, gene mutations, and high proliferation rates that 

characterize cancer cells.[182-184] Only the mitochondrial modification ms2i6A was absent in all 

cancer cell lines. This observation is supporting our previous interpretation of ms2i6A as a 

determinant of mitochondrial activity and further suggests a potential role of the nucleoside as 

tumor marker to differentiate between healthy and cancerous cells.[163] 

 

Figure 37: Quantitative data for the investigated tRNA modifications in cancer cell lines. Color code is 
based on the absolute coloring in Figure 31 for better visualization of similarities to the highly modified 
tissue liver. n.q. = not quantifiable because m1A LC-MS signals for cell lines overlap with G LC-MS 
signals. The modification ms2i6A could not be detected in any cancer cell line. 

In addition, all cancer cell lines were found to possess largely elevated modification levels 

close to or even above those detected for liver tissue, which is the tissue found to maintain the 

most heavily modified tRNA ensemble (Figure 37). In line with the high protein synthesis 

rates shown for highly modified tRNA ensembles, these results can be explained by the high 

cell proliferation rates of cancer cells. This further proves the hypothesis, that highly modified 

tRNAs seem to be a requirement for efficient and competitive cellular growth. This is 

supported by the data of the primary cell line HEMa, which is only modified to a low extend. 

The low amount of Am found in cancer cell lines further supports the hypothesis that Am 

compensates for low modification levels and is thus present only in low quantities in the 

generally highly modified cancer cells. The two modifications Q and OHyW, which are 

incorporated into tRNA in complex biosynthetic routes, are the only exception to the high 
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modification levels. This observation hints for an impairment of the modifying system for 

these hypermodified nucleosides. 

Furthermore, the fact that these modified nucleosides yield a modification pattern specific for 

each cell line allows fingerprint analysis of each cancer type. This observation could lead to 

diagnostic application of our method for analysis of each cancer type. 

A more detailed interpretation of cell culture data will be described by M. Wagner in his 

upcoming Ph.D.-thesis who has grown the cell lines and extracted tRNA. The four cell line 

experiments were explained by him, which were analyzed in this Ph.D. thesis work. 
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7.5 Phylogenetic analysis 

In an additional project we investigated the tRNA modification levels of different bacterial 

strains in a comparative analysis in order to investigate, if the tRNA modification patterns are 

conserved, random, or if the collection mirrors phylogenetic relationships. This would argue 

for a strong selective pressure towards fine-tuned balance of modified nucleosides in the 

translation machinery. Sequence similarity comparisons of the small subunit of rRNAs were 

performed to calculate phylogenetic trees using genomic databases which were the gold 

standard in the 80s and 90s.[185-188] Horizontal gene transfer (HGT) was identified to have 

significant influence on the genome of bacteria.[189] Barriers for HGT in E. coli for example 

were found to be very low under laboratory conditions and lead to the acquisition of genes 

different to the original developed ones.[190] Therefore, alternative approaches were 

performed, which achieved phylogenetic correlation adopting protein sequence comparison of 

housekeeping genes,[185, 191] homology of tRNA synthetase sequences,[192] tRNA-dependent 

amidotransferases,[193] and amino acid concentrations.[185, 194] All these factors are present in 

every living organism, which is important for phylogenetic correlation calculations. tRNA 

modifications with their large structural diversity are perfect components, which were 

evolutionary developed and are of tremendous importance for survival. In addition, these are 

inserted by complex modifying machineries. For example, approximately 1% of the whole 

genome of yeast is responsible for insertion of modifications, not counting gene products 

involved in tRNA transcription and tRNA transport.[195] This indicates the importance of 

correct modification system. 

For this study we quantified 12 modified tRNA nucleosides depicted in Figure 38. Bacterial 

tRNAs are less modified compared to eukaryotic tRNA and most modifications are found in 

the anticodon stemloop. Most of our analyzed modifications (m6t6A, ms2i6A, io6A, m6A, t6A, 

m2A, m1G, i6A, ms2io6A, and Q) can be found at this position. The modification m1A is 

present outside of the anticodon stemloop at position 58 in bacterial tRNAs.[5, 7] In contrast to 

eukaryotic tRNA the modification m1G is exclusively present at position 37 in bacterial 

tRNA. The 2'-O-methylated nucleoside Gm is present at the wobble position and in the DSL. 

We quantified it together with m1G due to overlapping UV and mass peaks. 
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Figure 38: tRNA cloverleaf showing the investigated bacterial nucleosides. The 9 modified 
nucleosides m6t6A, ms2i6A, io6A, m6A, t6A, m2A, m1G, i6A, and ms2io6A are present at position 37. Q is 
present at the wobble position as well as Gm, which is additionally present at position 18. Modification 
m1A is mainly present at position 58.[5, 7] 

With these labeled reference tRNA nucleosides in hand, we analyzed the tRNA modification 

pattern of five Gram-negative (E. coli, Pseudomonas putida, Pseudomonas aeruginosa, 

Burkholderia thailandensis, and Burkholderia cenocepacia) and five Gram-positive bacteria 

(Bacillus subtilis, Listeria welshimeri, Listeria monocytogenes, Staphylococcus aureus NCTC, 

and Staphylococcus aureus MU50) to cover several branches of the phylogenetic tree, as well 

as pathogenic and non-pathogenic species of the same genus. 

We further analyzed the interesting bacterium Deinococcus radiodurans, which is 

controversially assigned to both Gram-groups. It is hypothesized that this bacterium as part of 

the genus Deinococcus is a possible prokaryotic intermediate in the transition from the 

Gram-positive to the Gram-negative bacteria.[196] iochemical characteristics of 

D. radiodurans from both bacterial groups support this hypothesis. This bacterium is stained 

like Gram-positive bacteria, but contains additional outer layers characteristic for bacteria 
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from the Gram-negative taxa, whereas the fatty acid profile is closer related to the 

Gram-negative than to Gram-positive bacteria.[196-198] In addition, D. radiodurans can be 

assigned to either Gram-positive or Gram-negative bacteria depending on the method 

applied.[196] We were interested how this bacterium with an ambiguous character would 

cluster in our analysis, also with respect to a described relation of D. radiodurans with 

archaea probably resulting from a horizontal gene transfer accompanied by interdomain 

fusion.[199] In general, bacteria were grown under optimum conditions, followed by extraction 

of bulk tRNA and subsequent analysis of the nucleoside mixture resulting from tRNA 

digestion using our established quantitative HPLC-MS method.[163] Bacteria were grown in 

collaboration with Prof. S. A. Sieber and handed to us after the first tRNA extraction step. 

The results of the investigated prokaryotes are depicted in Figure 39. The distribution of the 

analyzed nucleosides shows large qualitative as well as quantitative differences over the 

investigated bacterial species. The five nucleosides m2A, m6A, m1G, i6A, and t6A are present 

in all investigated organisms, but with largely varying levels ranging between 2 to more than 

300 modifications per 1000 tRNAs (‰). The hypermodified nucleoside Q is unequally 

distributed over bacteria from different groups and is only absent in both bacteria from the 

genus Listeria and D. radiodurans. The modification m1A is present in all Gram-positive 

bacteria and P. putida which is the only representative from the Gram-negative bacteria. 

A first interesting observation is the presence of the two nucleosides m1G and t6A in large 

quantities. They are known to be essential and expected to be important for the development 

of life.[49] These are the only modifications, which are present in organisms of all three 

domains of life and must have evolved early.[5, 7] While the amounts of m1G do not show any 

systematic distribution in the investigated bacteria, t6A seems to be more abundant in Gram-

positive than in Gram-negative bacteria. The modification m6A has the same tendency with 

values of up to 50 times more in Gram-positive bacteria, whereas values for m2A are up to 

150 fold higher in Gram-negative bacteria. The hypermodified nucleoside m6t6A is only 

present in the -proteobacteria E. coli and both Pseudomonas. 

The adenosine derivatives i6A, ms2i6A, io6A, and ms2io6A are nucleosides of one modification 

family containing an isopentenyl moiety at the exocyclic amine in position 6.[3-4] The 

corresponding modifying enzymes MiaA, MiaB, and MiaE are modifying these adenosines at 

position 37 in tRNAs reading codons that start with CGN, CUN, and CCN (N stands for any 

canonical base).[9, 200-201] While i6A is present in all investigated bacteria, ms2i6A is absent in 

Listeria and P. putida. According to literature, we found the two hydroxylated derivatives 
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io6A and ms2io6A predominantly in the -proteobacteria with the genus Pseudomonas.[202-203] 

Interestingly, P. aeruginosa contains all four isopentyl-derivatives, while P. putida lacks both 

2-methylthiolated derivatives, which is somehow compensated by up to 12 times higher 

values of i6A and io6A. Furthermore, we detected the modified nucleoside ms2io6A in both 

-proteobacteria Burkholderia as well as traces in D. radiodurans although the sequence of 

the modifying enzyme MiaE was not detected during genomic analysis.[201] These data are 

indicating that the functionalities for the last hydroxylation step have evolved independently. 

 

Figure 39: tRNA modification pattern of the investigated bacteria. tRNA modification levels are 
presented as nucleosides per 1000 tRNAs as average values of at least two independent growths with 
an average standard deviation of 7%. Listed are the five Gram-negative, than the five Gram-positive 
bacteria and at the end D. radiodurans. Each modification was color-coded independently (Red: 
Highest value; Yellow: Lowest value). a) non-pathogenic bacteria; b) pathogenic bacteria; 
c) non-resistant bacterium; d) methicillin-resistant bacterium. 

Our data clearly indicate that the bacterium D. radiodurans exhibits a special character also in 

regard of the tRNA modification pattern. Interestingly, the two modifications m1G and t6A 

represent about 90% of all investigated modifications at position 37 of Deinococcus tRNAs. 

This ratio is about 50% in all other investigated bacteria. We also found the four bacterial 

modifications m6A, m2A, ms2i6A, and ms2io6A to be less abundant, while i6A is present in 

similar quantities like in the other genera. In addition, this bacterium is lacking Q and contains 

m1A. Combined, these findings confirm the special character of D. radiodurans also at the 

tRNA modification level as described before for other biosynthetic processes[196] and are of 

high interest from an evolutionary point of view. This tRNA modification pattern with 
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signatures from both Gram-types indicates that this bacterium is an intermediate between 

Gram-positive and Gram-negative bacteria. 

In addition, the two predominately modified nucleosides t6A and m1G of D. radiodurans are 

exclusively present at position 37 in archaeal tRNA.[5, 7] This is in line with the observation of 

horizontal gene transfer from archaea to D. radiodurans,[199] and further supports the 

interdomain fusion hypothesis that D. radiodurans is a possible hybrid organism of archaea 

and bacteria. These data demonstrate the high importance of these two modifications for 

organisms, which may be considered as a minimal set of modified tRNA nucleosides at 

position 37 for unicellular organisms. As reported before, they could be possible nucleosides 

of the last universal common ancestor (LUCA) due to their abundance in all domains and 

therefore had to develop early during the evolution of life.[61]  

Inspired from these differences between each species as well as the two different 

Gram-groups we applied a hierarchical clustering algorithm using the programs Cluster and 

Treeview for homology analysis.[204-205] We used the Euclidean distance correlation for a 

measure of similarity, because in our opinion this is the most suitable calculation possibility 

for our data sets. We included the quantitative data of liver, kidney, spleen, and heart, which 

represent four porcine tissues with high, medium, and low protein synthesis rates. 

Additionally, the data of mitochondria and cytosolic tRNA from heart and liver were 

incorporated in our analysis. We added the two yeast strains S. cerevisiae and S. pombe as 

unicellular eukaryotes as well, which were extracted and quantified by A. Hienzsch. In total, 

we applied 17 different modified tRNA nucleosides as well as 16 different organisms and 

with all tissues from S. scrofa domestica we clustered 24 different data sets in total. 

To the best of our knowledge, no quantitative data of tRNA modifications has been applied 

for homology comparison yet. Only one report claims phylogenetic correlations based on the 

presence of conserved modifications in archaeal, which are compared with the phylogenetic 

tree.[90] 

Indeed, this Cluster analysis of modified tRNA nucleosides resembles the phylogenetic tree 

with distinct differentiation of eukaryotic and prokaryotic organisms (Figure 40). The 

eukaryotic organisms are separated from each other with very close correlation of both yeast 

strains and a correlation of 70% to the different porcine tissues. These are clustered in tissues 

according to their average amount of tRNA modification levels. Obviously, Gram-negative 

and Gram-positive bacteria are clearly separated. Even very closely related bacterial classes 
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like -proteobacteria (E. coli and both Pseudomonas) and -proteobacteria (both 

Burkholderia) are distinguishable. Distinct differentiation of the three Gram-positive bacteria 

from the phylum Firmicutes proves the high resolution of our analysis. Interestingly, 

D. radiodurans indicates the ambiguous character in our Cluster analysis as well. This 

bacterium is identically well correlated with Gram-positive and Gram-negative bacteria. This 

can be explained by an impact of both Gram-groups in biosynthetic processes,[197] and could 

hint for D. radiodurans as an evolutionary intermediate of both bacterial groups.[206] 

 

Figure 40: Cluster analysis using quantitative data of analyzed modified tRNA nucleosides of bacteria, 
two yeast strains, four selected tissue from S. scrofa domestica, and mitochondrial and cytosolic tRNA 
from heart and liver. Clustering was performed using the programs Cluster and TreeView correlation of 
the measured values with average linkage clustering using the Euclidean distance correlation as the 
measure of similarity.[204-205] Blue color scale intensities represent the relative tRNA nucleoside 
amounts. The scale bar represents relative similarity of organisms between a factor of 0.0 to 1.0. 

Whereas mitochondrial data sets of liver and heart are related to prokaryotic organisms the 

corresponding cytosolic data sets are clustering with the other eukaryotic organisms. This 

interesting observation is in line with the fact that mitochondria originate from prokaryotes. 

This correlation is certainly shown by our analysis. However, this is a surprising fact, because 

mitochondrial tRNAs contain modifications from eukaryotes and prokaryotes. Furthermore, 

the data indicate the higher impact of mitochondrial tRNA in heart compared to liver. Total 
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tRNA of liver and the corresponding cytosolic tRNA show higher similarity compared to total 

tRNA from heart with its cytosolic values. This result is according to the in vitro translation 

experiments (Figure 35). Both unicellular yeast strains cluster with eukaryotes and are 

additionally distinct separated from all porcine tissues. This shows the difference between 

mammals and unicellular organisms. S. cerevisiae and S. pombe are correlated perfectly with 

each other. 

Analysis of phylogenetic correlations for only prokaryotes revealed the high resolution of our 

method (Figure 41). The more detailed analysis indicates the close relation of bacteria from 

one genus with an excellent correlation factor of 0.94. P. aeruginosa is clustered in closer 

relation to E. coli with a factor of 0.94 than P. putida with a similarity of only 0.88, although 

they are bacteria from the same genus. A possible reason could be the different biochemical 

properties of members from the genus Pseudomonas which are further subdivided in several 

main groups.[207] P. aeruginosa and P. putida are representatives of two subgroups which 

exhibit different biological properties.[208] High levels of horizontal gene transfer could be a 

reason for the different modification levels in the two investigated Pseudomonas by a possible 

early diverse gene development of each species.[209] Horizontal gene transfer was proven for 

aminoacyl-tRNA genes and could influence the development of tRNA modifications as 

well.[210-212] 

 

Figure 41: Cluster analysis using quantitative data of analyzed modified tRNA nucleosides of all 
investigated bacteria. Clustering was performed using the programs Cluster and TreeView correlation 
of the measured values with average linkage clustering using the Euclidean distance correlation as the 
measure of similarity.[204-205] Blue color scale intensities represent the relative tRNA nucleoside 
amounts. The scale bars represent relative similarity of organisms between a factor of 0.0 to 1.0. 

The exceptionally high resolution of our quantitative tRNA modification data represents the 

phylogenetic tree, which is comparable to other described correlations.[185, 191] Furthermore, 
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we were even able to prove the correlation of mitochondrial tRNA from pork with 

prokaryotes. These largely varying quantitative results paired with the phylogenetic 

correlation indicate the different development of modified nucleosides for optimum viability 

of each bacterial species. All these observations indicate optimization of modified tRNA 

nucleosides resulting in an evolutionary controlled distribution and the Darwinian fitness in 

order to adapt to their specific environment. The fact that we have mainly analyzed modified 

nucleosides present at position 37 is supporting the extended anticodon hypothesis. In this 

theory, almost the whole anticodon stemloop is responsible for correct codon anticodon 

interaction.[10, 29, 213] Therefore, modifications have to be evolutionary adapted in parallel to 

the genetic code. Our data additionally hint for a high impact of horizontal gene transfer 

especially for the bacterium D. radiodurans with most modifications known to be present in 

archaeal tRNAs.[199, 209-212] 

7.6 Pathogenic bacteria 

Another possible application of our method is the differentiation of pathogenic from 

non-pathogenic bacteria. Bacterial infections are the primary cause of death in the 

intensive-care units of hospitals worldwide and represent a highly important challenge.[214] 

Antibiotic resistance and biofilm formation as defense strategy are increasing the threat of 

bacteria to humans,[215-216] which is fueling investigations to target bacteria with novel 

tools.[217-220] Specific and fast treatment of each pathogen requires methods for distinct 

differentiation. In the last decade PCR analysis was established as the method of choice.[221-

223] Our method could be applied as further analytical tool to distinguish bacteria. Therefore, 

we compared three pathogenic and non-pathogenic bacteria pairs from the genera 

Pseudomonas, Burkholderia, Listeria and one methicillin-resistant and non-resistant pair from 

the genus S. aureus (Figure 39). These bacteria represent a selection of the most dangerous 

clinical pathogens, which are responsible for many death incidents. 

We are able to distinguish between Gram-positive and Gram-negative bacteria by their 

different tRNA modification pattern.[224] For example, we are able to assign the Gram-group 

to a bacterium by the amounts of m6A, m2A, and t6A, which have varying values in the two 

Gram-types (Figure 39). If we take the other modifications into account, we are even able to 

assign the genus of a bacterium. The content and absence of a modified nucleoside leads to a 

fingerprint for bacteria and enables fast differentiation. In the case of Pseudomonas, Listeria, 

and Staphylococcus the pathogenic and resistant species can be distinguished from their 
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non-harmful counterpart, which probably indicates the different enzyme requirements like for 

the genus Pseudomonas.[207-208] While the modification content was considerably higher for 

the pathogenic and the resistant species in Listeria and Staphylococcus, respectively, the two 

Pseudomonas species even contain a different modified tRNA nucleoside set. While the 

pathogenic species P. aeruginosa contains all four derivatives i6A, ms2i6A, io6A and ms2io6A, 

the non-pathogenic species P. putida contains only i6A and io6A lacking the methylthio group 

at position 2. Interestingly, the presence of the methylthio moiety is important for synthesis of 

virulence protein VirF in Shigella flexneri.[76] Inhibition of the biosynthesis of this 

modification could be a possible drug-target to inhibit virulence. On the other hand, 

nucleoside m1A is only present in the non-pathogenic species P. putida. 

Both Burkholderia species showed almost no difference and are therefore hardly 

distinguishable by their modification pattern. This is known also for other methods, that 

bacteria from this genus are very closely related and distinguishable only using special 

methods.[225-226] In our case, differentiation of these two species may be possible with an 

increased number of modified nucleosides like cytidine and uridine derivatives even though 

we quantified the most frequent modifications. However, our method provides a novel 

possibility for differentiation between pathogenic and non-pathogenic bacteria. 

The ability to characterize bacteria based on tRNA modification pattern may be clinically 

useful. Each bacterial genus can be designated by the modification pattern and even 

pathogenic and non-pathogenic bacteria can be discriminated using our method. It would be 

possible to use the obtained data in this Ph.D. thesis as reference values for pathogenic 

isolates in the clinic.  

7.7 Stress response 

The obtained differences between cancer cell lines, healthy tissue and between the 

investigated prokaryotes led us to the question if cells regulate their modification pattern in 

response to environmental changes. We have chosen the easy available model organism 

E. coli which is one of the most studied organisms. Changes in the tRNA composition and 

proteomic analyses were shown after application of several stress conditions like osmotic 

stress,[227-228] thermal stress,[229] nutrients depletion,[230] and oxidative stress[231-232] for 

different unicellular organisms. So far, no data are reported, which include quantification of 

modified nucleosides in response to these applied stress conditions. 
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We analyzed the amounts of the two modifications m2A and m6A, which are present 

3'-adjacent to the anticodon at position 37. Important is the fact that these two modifications 

are synthesized by two different enzymes resulting in independent responses to external 

stimuli. Additionally, the nucleoside m6A is only present in tRNAVal, while m2A is present in 

six different tRNA species.[3] Nucleoside m6A carries a methyl group at the exocyclic 

nitrogen, while m2A is assembled by a rarely present carbon-carbon bond formation in 

purines (Figure 42). 

We determined reference values for m2A (121.4 pmol) and m6A (29.3 pmol) in 12 ng of total 

E. coli tRNA under optimum growth conditions at 37 °C in LB medium. All presented data 

points are average values of two independent cultivations and at least three independent 

digestion experiments. We strictly applied stress initiation at OD = 1.0 after we observed an 

dependence on culture density.[140] 

We first varied the pH value to three different values of acidic stress (addition of 4M H3PO4) 

and three different values of alkaline stress (addition of 2M NaOH) compared to normal 

medium at pH = 6.5. For m2A the determined values decreased significantly for all deviations 

from the normal pH-value ranging from 2040% with one extreme reduced value of 75% at 

pH = 9.5 (Figure 42A). All changes of nucleoside levels were reproducible with high 

accuracy. In the case of m6A no changes were detected for the pH-range of 5.5 to 8.6. For 

acidic conditions lower than 5.5 and basic conditions decreased values of 2530% were 

detected. These results probably indicate an individual down-regulation of the modified tRNA 

nucleoside level to external stimulation independent for each modified nucleoside m2A and 

m6A. 
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Figure 42: Influence of different pH-values and antibiotics on the nucleoside levels of m2A (blue) and 
m6A (yellow) in E. coli. In total, 12 µg of total tRNA were analyzed and the bars represent average 
values with standard deviation. 

In addition to these results we were interested to study the influence of antibiotics to the 

tRNA nucleoside level. We applied four different ribosome-binding antibiotics at non-lethal 

concentrations, which are directly influencing the bacterial translation process. We used the 

three aminoglycosides Streptomycin, Spectinomycin, Gentamicin, and the broad-spectrum 

antibiotic Chloramphenicol. Aminoglycosides antibiotics are known to bind tRNAs, which 

hinder aminoacetylation of the affected tRNA.[233-236] 

After exposure of E. coli to antibiotics we detected again a strong antibiotic-dependent 

reduction of m2A. While for Chloramphenicol, Spectinomycin and Gentamicin the amount of 

m2A is decreased by 512%, the impact of Streptomycin on the m2A level is 25%. For the 



Chapter 7 Results tRNA modifications  

92 

modified nucleoside m6A we detected a different pattern. It is only reduced after 

Streptomycin application, while the m6A level is raised after Chloramphenicol and 

Spectinomycin treatment. A constant level was observed after application with Gentamicin 

compared to the reference data. The changes of nucleoside m6A range from 612%. 

Streptomycin has a clearly different impact compared to the other investigated antibiotics. It 

induces an at least two fold higher reduction of m2A and a unique decrease for m6A. These 

results indicate that antibiotics can influence the tRNA modification level. 

These reproducible changes imply directed nucleoside level variations as a reaction to 

external stimulation and lead to a directed quantitative response of the modified tRNA 

nucleoside level in E. coli. Interestingly, the low variations of m6A are in line with a recent 

report, that m6A enhances cellular survival during osmotic and oxidative stress.[228] 

Furthermore, we investigated the influence of provided nutrients on varying nucleoside levels. 

We grew E. coli in minimum MOPS medium and found the same amounts of m2A and m6A 

like for the reference data.[237] But, we observed in these experiments the appearance of the 

modified nucleoside epoxyqueuoosine (oQ), which is the precursor of Q. It is known, that this 

last biosynthetic step is a vitamin B12-dependent reduction, even though the modifying 

enzyme is not identified yet.[238-240] We detected oQ in tRNA of E. coli grown in MOPS 

medium because it is lacking vitamin B12. Our constant values indicate no influence on the 

levels of m2A and m6A by presence of the precursor oQ instead of Q. These results prove the 

importance of sufficient nutrients for an organism to maintain the optimum biosynthetic 

machinery. 

We used these tRNA extracts for identification of the modified nucleoside oQ, which was 

synthesized by I. Thoma. After enzymatic digestion of bulk tRNA containing the natural oQ, 

we spiked the synthesized nucleoside in a 1:1 ratio and analyzed this mixture using 

HPLC-MS (Figure 43). The resulting single mass peak without a second peak indicates the 

correct stereoisomerism of the synthetic nucleoside. 
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Figure 43: HPLC-MS analysis of oQ. The specific mass range for the natural and the spiked synthetic 
oQ indicate the correct stereoisomerism of the synthetic nucleoside. 
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8. Modified nucleosides in DNA 

8.1 5-Hydroxymethylcytosine 

Next to the four canonical bases A, C, G, and T natural modifications also exist in genomic 

DNA (Figure 44).[241] The epigenetic modified base 5-methylcytosine (mC) is the most 

abundant modification in mammalian DNA, which is present in promoter elements 

(CpG sequences) and is responsible for repression of gene transcription.[13-14] This 

modification was first identified as DNA constituent in the early 50s[242] and since then huge 

efforts were made to elucidate the role of mC.[13, 15, 243-244] In 2009, the modification 

5-hydroxymethylcytosine (hmC) was detected in purkinje neurons in the cerebellum of 

mammalian tissue indicating a potential role in neuronal function.[20] The hydroxylating 

-ketoglutarate and Fe(II)-dependent Tet protein family was identified to convert mC to hmC 

in embryonic stem cells (ES cells) and hmC appears to play an important epigenetic role in 

mammalian cells.[21, 245] Previously, hmC was reported to be present in high amounts in rat 

liver,[246] but these results could not be verified by others.[247] Moreover, this modified base 

was identified in T-even bacteriophage DNA, where it is further glycosylated by specific 

transferases to protect the phage DNA from cleavage by host nucleases.[248-249] However, the 

role of the new sixth base in mammalian DNA has not been elucidated yet. To shed light onto 

the function of hmC, we adopted our HPLC-ESI-MS based method developed for tRNA 

nucleosides to quantify mC and hmC contents in mammalian tissue. 
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Figure 44: The canonical DNA nucleosides with the two mammalian epigenetic modifications mC and 
hmC. Alterations to C are shown in red. 

8.2 Quantification of hmC by HPLC-ESI-MS 

With the knowledge of the described tRNA projects, we were able to rapidly modify the 

method to quantify these two DNA modifications in mammalian tissue (Figure 45). 

Quantification using HPLC analysis as described before for mC[247, 250-251] is not possible for 

hmC due to the low amounts present in genomic DNA. The signal is therefore mainly hidden 

in the baseline of the HPLC chromatogram. The more sensitive coupled HPLC-MS method 

with the specific high resolution mass range allowed us to quantify hmC.[154, 252] 

In the first step tissues were homogenized to extract genomic DNA. This procedure was 

developed by Dr. T. Brückl and Dr. M. Müller using porcine tissue and is based on the phenol 

extraction which is a key step also in the tRNA isolation procedure. Enriched samples of 

DNA were obtained after two RNase digestion steps.[140] After optimization of the extraction 

method sufficient amounts of DNA from tissues were extracted to enable precise 

quantification. Enzymatic hydrolysis was performed with the same method like for tRNA 

digestion to also achieve complete DNA hydrolysis. We used the same HPLC gradient as 

previously applied for synthetic DNA hydrolysis experiments in the Carell group, because it 

facilitates separation of the canonical bases and the two modified nucleosides mC and hmC. 

The isotope-labeled nucleosides d3-mC and two different isotope-labeled nucleosides 
18O-hmC and d2-hmC were used as reference compounds for quantification. These 

compounds were synthesized by M. Münzel and will be described in his upcoming 

Ph.D. thesis. In the course of this Ph.D. thesis these nucleosides were applied to determine 
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calibration curves, which resulted in excellent R2 values of at least 0.998 (Figure 47). The 

isotope-labeled nucleosides were thereafter applied as isotope-labeled reference compounds in 

the quantification experiments. 

 

Figure 45: Depiction of the method used for quantification of 5-hydroxymethylcytosine in genomic 
DNA. After extraction of DNA from different mouse tissues, the DNA was enzymatically digested. 
Afterwards the nucleoside mixture was spiked with synthesized isotope-labeled nucleosides and 
analyzed via HPLC-ESI-MS. 

The first generation reference nucleoside was 18O-hmC with a content of 30% unlabeled hmC 

due to unavailable pure H2
18O, which was used during the synthesis (Figure 46A). This 

nucleoside allows precise quantification of sufficient amounts of hmC using the 

corresponding calibration curve. Small amounts of hmC can only be quantified in high 

accuracy without background signals of the natural nucleoside. Therefore, we synthesized a 

second labeled derivative d2-hmC which was labeled to above >99% (Figure 46B). 

Importantly, both standard molecules yielded the same data from tissues with levels higher 

than 0.3% hmC of dG. 
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Figure 46: HPLC-ESI-MS ion currents of the two different isotope-labeled nucleosides 18O-hmC and 
d2-hmC. A) The first generation reference nucleoside 18O-hmC contains 30% of the natural nucleoside, 
while B) the second nucleoside d2-hmC contains only traces of the natural nucleoside (approx. 0.06%) 
and allows precise quantification of low amounts of hmC. 

In order to avoid that the results are influenced by possible RNA contaminations in the 

extracted DNA samples, dG was quantified as an internal standard in the UV trace of the 

HPLC-chromatogram. We chose dG, because it is pairing with all cytosine derivatives and the 

HPLC peak of dG is not overlapping with any canonical RNA nucleoside contamination. The 

calibration curve for dG was determined with two different dG concentrations, which were 

measured in duplicate. A R2 value of 0.998 was obtained. The amounts of hmC and mC were 

determined in pmol and calculated in % relative to the internal standard dG. Thus, the 

quantification of hmC and mC is independent of the total amount of DNA used. However, 

best results were obtained when 6-10 µg DNA were analyzed. 
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Figure 47: Mass calibration curves of the labeled nucleosides 18O-hmC, d2-hmC, and d3-mC and 
HPLC calibration curve of dG. All mass spectrometric data represent averaged values of three 
different stock solution concentrations of the unlabeled derivative versus one labeled reference 
nucleoside concentration. The HPLC data points represent two different dG concentrations, which 
were measured in duplicate. Error bars represent standard deviations. 

8.3 Distribution of hmC in mammalian tissue 

Since hmC was initially found in the cerebellum,[20] we were interested to study how hmC 

would be distributed in the whole mammalian body. Therefore, DNA was extracted from 

various tissues of three to four different mice (in collaboration with Dr. S. Michalakis, group 

of Prof. M. Biel, Department of Pharmacy). The respective hmC and mC contents were 

determined at least twice, independently. 

We quantified hmC and mC in tissues from the central nervous system (CNS), muscle tissue, 

different organs, and glands. The methylated cytosine mC was used as a reference, which 

should provide constant values in all tissues.[250, 253] Indeed, the mC values were found to be 

constant, which proves the applicability of our method with a relative standard deviation of 
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only 7% (Figure 48). Only the level of nasal epithelia deviated from the average values of 

4.26% mC of dG. 

The first interesting result is the presence of hmC in all tissues, which clearly establishes hmC 

as a new post-replicatively formed nucleoside in mammalian organisms. Even more important 

is the fact that the hmC value varies significantly between tissues. We identified three 

different classes of hmC values with tissues of the central nervous system (CNS) as the class 

with the highest hmC content. The values are in the range of 0.33%0.65% hmC over dG. 

The tissues kidney, nasal epithelium, bladder, heart, skeletal muscle, and lung have medium 

hmC values from 0.15%0.17% and built the second class of tissues. The last class contains 

liver, spleen, and endocrine glands (testes and pituitary gland), which possess the lowest 

amounts of hmC, ranging from 0.03%0.06%. The determined levels of hmC vary between 

0.03%0.65%. They are up to 20-fold higher in the cerebral cortex than in spleen or testes. 

Interestingly, pituitary gland, which is located in the brain, has a low hmC value of only 

0.06%, supporting the hypothesis that high hmC content is related to neuronal function. Our 

method provides data with standard deviations of SD = 8% for values >0.1 and SD = 23% for 

values <0.1. In summary, these tissue specific varying amounts of hmC compared to the 

constant amounts mC level, indicate a tissue specific epigenetic role of the sixth DNA base 

hmC, independent of mC. The six base hmC might be as important in gene regulation as the 

more abundant base mC, albeit the exact hmC function remains unknown at this point. 
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Figure 48: Distribution of hmC and mC in the mammalian body. Measured values of hmC and mC in 
% over dG shown in blue and yellow, respectively. Data represent values for each tissue of at least 
two mice with standard deviation (s.d.) and are arranged according to hmC values. The red line 
indicates the average mC value of all tissues.[254] 

Since hmC was predominately found in tissues from the CNS, its distribution in the 

mammalian brain was analyzed in more detail. Therefore the hmC and mC content in the 

hypothalamus, hippocampus, olfactory bulb, and retina of in total four 90 days old mice was 

determined (Figure 49A). These brain areas contain hmC in different amounts, while the mC 

values were found to be stable at around 4.5% of dG in accordance with literature. The 

standard deviation is approximately 5%. Between 0.3% and 0.7% of all dC nucleosides are 

hydroxymethylated in the brain. As reported previously hmC was predominately observed in 

purkinje neurons,[20] which are present in the cerebellum. Nevertheless, our data show that the 

amount of the base is even larger in the cerebral cortex and hippocampus, where purkinje 

cells are not present. 

Following our data we can roughly divide the mouse brain into three different areas      

(Figure 49B). Most hmC is found in hippocampus and cortex (I), which are brain areas with 

higher cognitive functions. Brainstem and olfactory bulb form a second category, which 

possess intermediate hmC levels (II). Cerebellum and retina finally contain the lowest 
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amounts of hmC and form group III. In addition, the hypothalamus, which is part of the 

endocrine system that controls hormone based processes, shows a relatively high level of 

hmC as well. 

 

Figure 49: A) Depiction of a sagittal section of the mouse brain. Brain areas highlighted in color were 
analyzed. B) Ratio of hmC and mC to dG in different brain tissues in percent. dG was chosen as a 
reference, because it forms base pairs with dC, hmC and mC in DNA. 

After we could prove the presence of hmC in the whole mammalian body, immunostaining 

experiments were carried out. We used a commercially available hmC-specific antibody to 

determine the exact location of hmC more precisely in the various tissues. The high 

specificity of the antibody for hmC was shown by Dot Blot analysis performed by Dr. M. 

Müller (Figure 50). Neither extracted total RNA nor a DNA strand containing 5-mC were 

stained with this antibody. This indicates the specificity of this commercial antibody, which 

was further confirmed by a second report.[245, 255] 
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Figure 50: Dot Blot analysis indicate the high specificity of the used hmC antibody.[255] 

For the immunostaining experiments hippocampus, kidney, and liver as representative tissues 

from the three groups with high, medium and low hmC content were chosen (Figure 48). 

These experiments were performed by Dr. S. Michalakis und S. Koch from the pharmacy 

department (Group of Prof. M. Biel). The DNA specific dye Hoechst 33342 was used for 

nuclear staining showing that virtually all cells contain hmC. The pictures show that hmC is 

located in the cell nuclei as expected (Figure 51). An important observation is the fact that all 

cells contain hmC. Furthermore, it is clearly evident that the highest intensity for hmC is 

present in the nuclei of the hippocampus. Kidney is stained with a distinct higher intensity 

than liver, which supports our HPLC-MS results. (Figure 51). To further prove the specificity 

of the antibody, the anti-hmC staining signal was competed out by addition of 2 μM DNA 

containing hmC. These experiments are not depicted here.[254-255]  
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Figure 51: Immunolocalization of hmC in mouse hippocampus, kidney, and liver. Scale bar: 200µM. 
Left column: mouse tissues stained with anti-hmC (green). Middle column: mouse tissues stained with 
anti-hmC (green) and Hoechst 33342 (blue) for nuclear staining. Right column: Bright field pictures of 
corresponding tissue. 

Interestingly, whereas hmC is equally distributed in liver and kidney, its location in the 

hippocampus is very diverse. We identified the most intensive signals in the fully 

differentiated neurons of the dentate gyrus (DG). Cells located in the subgranular zone 

between DG and hilus show clearly reduced staining in line with reduced hmC levels       

(Figure 52). This area is especially rich in stem cells associated with neurogenesis.[256-257] 
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Figure 52: Immunolocalization of hmC in mouse hippocampus. Scale bar: 20 µm. Depiction of the 
dentate gyrus (DG) and the hilus. A) Mouse tissues stained with anti-hmC (green) and Hoechst 33342 
nuclear staining is shown in blue. B) Addition of 2µM hmC-DNA. 

We were also interested if the levels of mC and hmC are age dependent and analyzed the 

hippocampus tissue of a one-day old mouse (Figure 53). Interestingly, significantly reduced 

levels of mC and hmC were detected in a young mouse that we also studied. The mC value 

increases with age from 3.5±0.1% to 4.3±0.3% and the hmC value is raised in 90 day old 

mice to almost double amount from 0.34±0.02% to 0.59±0.04%. These values show age 

dependent hmC changes and will be further investigated in future projects. The same hmC age 

dependent trend was shown in a recent publication for cerebellum with lower hmC values in 

young mice.[258] 
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Figure 53: Ratio of hmC and mC to dG in the hippocampus of 1 day and 90 days old mice in percent. 

8.4 hmC as a putative intermediate in the demethylation 

process? 

There are several possibilities of the potential role of hmC. It has been described that 

methyl-CpG binding protein 2 (MeCP2) is unable to bind to the corresponding sequences 

when mCs were converted to hmCs in CpG sequences.[259] Here the question arises, if hmC is 

an intermediate in the active demethylation process. A recent study has shown that MTases 

are able to deformylate hmC in in vitro experiments.[260] Oxidation of the hydroxymethyl 

group to a formyl group would yield 5-formylcytosine (fC) which could expel formic acid and 

react to dC. Another possibility would be further oxidation of hmC or fC to yield 

5-carboxylcytosine (caC) which possesses a carboxy group and would enable quick 

decarboxylation to regenerate dC (Figure 54)[261] Nature's most proficient enzyme orotate 

decarboxylase catalyzes a similar reaction in which orotate (6-carboxyuracil) is 

decarboxylated to uracil.[262-263] Similar oxidation and decarboxylation reactions are known 

for thymine in the pyrimidine salvage pathway of certain eukaryotes.[263-265] Another potential 

active demethylation pathway is the excision of hmC by DNA glycosylases.[266] hmC could be 

converted by deamination with an activation-induced deaminase (AID) analog to yield the 

uracil derivative hmU.[18] This uridine derivative is known to be a substrate for the base 

excision repair (BER) enzyme SMUG1.[267-268] The deoxynucleotide hmC might be a possible 

intermediate in BER as well, because in vitro experiments in extracts from calf thymus have 

shown BER activity for hmC.[269]  
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Figure 54: Depiction of the known cytosine modifications mC and hmC and the putative oxidative 
“demethylation” intermediates fC and caC. The base excision repair (BER) pathway is a second 
possible demethylation pathway via the intermediate hmU. 

In order to test the idea that hmC is an intermediate of a possible oxidative demethylation 

pathway, we used our HPLC-MS method to detect the presence of fC, caC, and hmU in 

different tissues. The three putative intermediates were synthesized by M. Münzel and used in 

this thesis to determine their chromatographic and mass spectrometric properties. Therefore, 

the same HPLC gradient used for hmC quantification was employed, which already provides 

ideal separation of all five modified DNA nucleosides (Figure 55). The difference of each 

modified nucleoside also allows unambiguously assignments by their different molecular 

weights (Figure 55). 
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Figure 55: HPLC chromatogram and nucleoside specific mass spectra of the modified DNA 
nucleosides hmC, and mC with the putative demethylation intermediates caC, hmU, and fC. 
Nucleosides are ordered to their retention time. 

Knowing the retention times of the putative nucleosides all previous recorded LC-MS data 

were screened for these nucleosides. We could however not detect any caC, hmU or fC in the 

quantification experiments described above, in which we used 10 µg DNA (Figure 48 and 

Figure 49). Therefore, the amount of hydrolyzed DNA was enriched up to 16 times. We 

hydrolyzed 716 samples of one tissue in parallel to ensure quantitative digestion and 

combined all samples afterwards which contain in total 70160 µg DNA. The nucleoside 

mixture was taken up in 100 µL ddH2O, d2-hmC was spiked and the sample analyzed via 

HPLC-MS. Importantly, the column was not overload or the entrance of the mass 

spectrometer capped. Thus, highly accurate mass spectrometric data were obtained. Also no 

memory effect was observed in blank runs after these LC-MS measurements. 

As representative tissues for high, average, and low hmC content, olfactory bulb, retina, 

cerebellum, kidney, and liver were chosen. Despite higher DNA concentrations, we could not 

detect any of the three putative intermediates fC, caC, or hmU. The exact concentration of 

hmC in the analyzed samples was determined and even in the olfactory bulb with 342 pmol 

hmC non of these three nucleosides was detected. The detection limit was found to be in the 
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low picomolar range (Figure 56) and all investigated compounds proved to be stable during 

enzymatic hydrolysis, with minor instability of caC. Nevertheless, if these nucleosides were 

present, we would be able to detect these derivatives even in traces 350700 times less 

abundant than hmC. Thus if present, fC does not reach levels above 7·10-4% of all nucleosides 

or 0.3% of all hmC. With other words our results exclude that caC is present in genomic DNA 

with more than 3.5 caCs in 105 nucleosides. 

 

Figure 56: Detected values of the potential hmC demethylation intermediates in olfactory bulb as an 
example. A) Detection limits determined with synthetic nucleoside samples. B) Detection limits in 
digested DNA nucleoside samples. The red line indicates the detection limits of the modified 
nucleosides. The detection limit for hmC is 1.5 pmol. 

The data presented in this thesis provide new insights into the distribution of the modification 

hmC in mammalian tissue. We showed that hmC is present in every cell type in the 

mammalian body and its distribution is tissue dependent, ranging from from 0.03%0.7%. 

This allowed us to classify tissues in three different groups with tissues from the CNS 

containing the highest amounts of hmC with up to 20-fold more compared to other tissues. 

Additionally, substantial further oxidation of hmC to fC or to caC or deamination of hmC to 

give hmU can be excluded. Nevertheless, the absence of these two putative pathways cannot 

fully be ruled out, but the data indicate that the unavoidable intermediates do not accumulate 

to any significant level. Either these reactions do not occur on large scale or the investigated 

intermediates are so short lived that they are not released from the enzymatic complex.[254] 
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8.5 hmC in cancer cell lines 

Additionally, the hmC and mC content in different cancer cell lines as well as in one primary 

cell culture was investigated. Cell lines do not contain hmC as described previously, while 

low amounts are present in ES cells.[20-21] In this work the hmC content in DNA was analyzed 

from the breast cell line MCF-7 originated from mammary gland adenocarcinoma, the 

primary cell culture HMEC originated from primary mammary epithelial cells as well as the 

brain derived cancer cell lines U-87 MG (glial) and Neuro-2a (neuroblastoma) due to high 

quantities of hmC in tissues from the CNS (Figure 48). Moreover the cell line P19 

(teratocarcinoma) was also investigated, which is related to ES cells. Values of 4.24.7% mC 

of dG were determined in HMEC, MCF-7, and P19 cells, while the values for the cell lines 

originated from the two nerve cells are reduced to 3.1% of dG. Nevertheless, we could not 

detect hmC in any of the cell lines, even though they are originated from different cell types. 

Cell lines were grown and DNA was extracted by M. Wagner. 

Traces of hmC of less than 0.01% of dG were found when the amount of enzymatic 

hydrolyzed DNA obtained from the cell line P19 was increased up to 10 times. In an ongoing 

project, we are trying to get exact values of hmC in the investigated cell lines. 

 

Figure 57: Ratio of hmC and mC to dG in the investigated cell lines in percent. 

In summary, the method for quantification of modified tRNA nucleosides could successfully 

be transferred to modified DNA nucleosides. Previously hmC was detected in purkinje 

neurons of the cerebellum. Results in this thesis reveal the presence of hmC in all cells 



 Results 5-hydroxymethylcytosine Chapter 8 

111 

throughout the body but with tissue dependent amounts. Highest amounts were detected in 

tissues from the CNS especially in those tissues associated with high cognate functions. 

Furthermore, an age dependent concentration of hmC was detected in the cerebellum. 

hmC could be part of the active demethylation process but no putative intermediate could be 

detected even though the detection limit was strongly reduced. Furthermore, only traces of 

hmC were detected in cell lines derived from brain tissues. 
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9. Outlook 

The results described in this thesis suggest biological roles of modified tRNA nucleoside that 

are beyond of what was reported before. The quantification of these modifications furnished 

new insights into biological processes like the tissue dependent correlation of high tRNA 

modification levels with high protein synthesis activities. Also, cancer cell lines were found to 

have high tRNA modification levels suggesting a correlation with high proliferation rates. 

Inhibition or down-regulation of the modification machinery in cancer cell lines could lead to 

slower cancer cell growth. This could be tested for specific modifications with siRNA 

experiments. 

The mitochondrial modification ms2i6A is absent in cancer cell lines and is therefore a 

possible marker to differentiate between healthy and tumor tissues. Analysis of cancer tissues 

from mammals could be performed in order to evaluate potential clinical applicability. 

Phylogenetic correlations of the tRNA modifications were shown to occur for eukaryotic and 

prokaryotic organisms. The high resolution of the performed cluster analysis enabled even 

differentiation of bacteria from the same genus. These analyses should be extended with 

archaea and with additional bacterial organisms particularly in order to elucidate the relative 

clustering of D. radiodurans, which is expected to be a hybrid between archaea and bacteria. 

In addition, pathogenic and non-pathogenic bacteria can be distinguished by their tRNA 

modification pattern, which leads to possible further clinical application. This quantification 

method could also be further optimized to allow faster extraction of tRNA as well as analysis 

of lower amounts of tRNA. Another possibility is the quantification of total RNA to reduce 

extraction time. 

The influence of external stimulation to the tRNA modification level in E. coli was shown for 

two modifications. This study should be repeated with an extended number of modifications 

and also should be performed for a yeast strain to elucidate the variability of the tRNA 

modifications pattern in eukaryotes. 

The results of this Ph.D. work were obtained with almost all modified purines and queuosine 

as representative wobble modification. Modified pyrimidine nucleosides should be 

synthesized to extend the nucleoside library and to further enhance the resolution of our 

analyses. Now, with the available quantification method and reference modifications further 
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projects could lead to new insights in organism development and regulation of biological 

processes. 

The distribution of 5-hydroxymethylcytosine (hmC) in the whole mammalian body indicates 

an epigenetic function of this modification. Our results have additionally shown high levels in 

tissues from the central nervous system (CNS) leading to the assumption that it has a neuronal 

function. Therefore learning experiments with mice could elucidate, if hmC is involved in 

learning and memory formation. 

The absence in high quantities of the putative demethylation intermediates indicates that they 

do not accumulate to any significant level in mammalian tissue. Antibodies against theses 

nucleosides would enhance the sensitivity and could be used in immunohistology experiments 

to search for these nucleosides. 

Cancer cell lines contain only a very low amount of hmC. Therefore, differentiation 

experiments could be performed with ES cells related cell lines to show, if the hmC level is 

varying in this process. If hmC is related to diseases, the modifying enzymes would be an 

interesting therapeutic target. Analysis of mammalian cancer tissues and tissues related to 

diseases of the CNS could lead to target validation. 

The method was successfully developed for quantification of tRNA and DNA modifications. 

In addition, the method can be modified for quantification of modifications in rRNA and 

mRNA. 
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10. Experimental Section 

10.1 General chemical materials and methods 

Chemicals and solvents were purchased from ABCR, Alfa Aesar, Acros, Fluka, Sigma-

Aldrich or TCI in the qualities puriss, p.a. or purum, unless stated otherwise. For all solutions 

injected into the mass spectrometer MilliQ water and mass spectrometry grade solvents and 

reagents were used. Dry solvents (< 50 ppm H2O) were obtained from Fluka and Acros. All 

non-aqueous reactions were performed using flame- or ovendried glassware under an 

atmosphere of dry nitrogen or argon. Non-aqueous reagents were transferred under nitrogen 

with a syringe or cannula. Technical grade solvents were distilled prior to use for column 

chromatography and liquid-liquid extractions on a rotary evaporator (Heidolph Laborota 

4000). Reaction products were dried at high vacuum (10 mbar). Aqueous solutions were dried 

on a SpeedVac plus CS110A or SPD 111V from Savant or lyophilized (Christ ALPHA 2-4). 

Column chromatography was performed with Si 60 (40-63 μM) silica gel from Merck.  

Thin layer chromatography (TLC) was performed on Merck 60 aluminum plates (silica gel 

60 F254). Substances were visualized by illumination with UV-light (λ = 254 nm) or by 

staining with subsequent heating. The staining was performed using potassium permanganate 

solution (1.0 g KMnO4 in 100 mL H2O), anisaldehyde solution (2.2 g anisaldehyde, 2.0 mL 

conc. H2SO4, in 100 mL acetic acid), ninhydrin solution (20 g ninhydrin in 600 mL ethanol), 

or molybdatophosphoric acid solution (10 g Ce(SO4)2·H2O, 25 g molybdatophosphoric acid, 

and 60 mL H2SO4 in 940 mL H2O). 

HPLC purification was performed on a Merck-Hitachi system (L-7400 UV detector, L-7480 

fluorescence detector, L-7100 pump), on a Waters system (alliance 2695 with PDA 2996 or 

996 and fluorescence detector 2475; preparative HPLC: 1525EF with 2484 UV detector. As 

columns VP 250/32 Nucleosil 100-7 C18, VP 250/10 Nucleosil 100-7 C18, CC 250/4 

Nucleosil 120-3 C18, VP 250/10 Nucleodur 100-5 C18 ec, VP 250/4 Nucleodur 100-5 C18 

ec, and CC 250/4 Nucleodur 120-3 C18 ec columns from Macherey-Nagel and 

Uptisphere120-3HDO columns from Interchim were used. 

Mass spectrometry data for ESI-MS was performed on a Finnigan LTQ FT-ICR. 

MALDI-TOF was performed on a Bruker Autoflex II spectrometer with 6-aza-2-thiothymine 

(ATT) as matrix (10 mg ATT in 1 mL H2O). 
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HPLC-MS purification was performed on a on a Finnigan LTQ FT-ICR on a Surveyor system 

and on a Thermo Finnigan LTQ Orbitrap XL on a Dionex system (Ultimate 3000 HPLC). The 

Uptisphere120-3HDO column from Interchim was used. 

Melting points were measured with a Büchi Melting Point B-540. 

Infrared spectroscopy was IR measurements were performed on n Perkin Elmer Spectrum 

BX FT-IR spectrometer (Perkin Elmer) with a diamond-ATR (Attenuated Total Reflection) 

setup. The detection ranged from 400 to 4000 cm-1. The following abbreviations were used 

for the characterization of the bands: s (strong), m (medium), w (weak). 

NMR spectra were recorded on the following spectrometers: Varian Oxford 200, Bruker AC 

300, Varian XL 400 and Bruker AMX 600. The chemical shifts () are given in ppm, the 

coupling constants (J) in Hz. Multiplicities are abbreviated as follows: s = singlet, d = doublet, 

t = triplet, q = quartet, m = multiplet. 

10.2 Tissue samples, bacterial strains, and cell culture 

Pork tissue samples were obtained from the local slaughterhouse (Schweineschlachtung 

München GmbH) right after sacrifice. All samples were processed within 4 hours after 

sacrifice. 

Bacterial strains except E. coli and B. subtilis were grown and harvested in the laboratory of 

Prof. S. A. Sieber.  

Mouse tissues from three male mice (C57BL/6N) obtained from the group of Prof. M. Biel 

and were frozen in liquid nitrogen right after sacrifice. Depending on the tissue type each 

mouse supplied enough DNA for up to 4 measurements. 

Cell culture experiments for tRNA and DNA quantification were mainly performed by Mirko 

Wagner. Experiments for tRNA quantification of four cell lines were performed in course of 

this Ph.D. thesis. All cell lines were grown to 80 to 90% confluence at 37 °C and 5% CO2 in 

RPMI 1640 medium containing L-glutamine (Invitrogen GmbH, Karlsruhe, Germany). 

RPMI 1640 was supplemented with 10% (v/v) fetal bovine serum and penicillin (10 mg/L) / 

streptomycin (0.025 mg/L). 
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10.3 Biochemical materials 

10.3.1 Equipment 

Equipment Supplier 

Äkta purifier chromatography system GE, Munich 

Agarose gel electrophoresis chamber Biorad, Munich 

Autoclave Vakulab S3000 Systec, Gießen 

Biofuge pico Heraeus, Hanau 

BioPhotometer 6131 Eppendorf, Hamburg 

Blender, Waring, 37-110 mL VWR, Darmstadt 

Centrifuge 5810R Eppendorf, Hamburg 

Fermenter Minifors Infors AG, Bottingen 

French pressure cell press Thermo, Dreieich 

Elisa Reader, FP Spectrometer Tecan, Crailsheim 

Gel scanner IDA Raytest, Straubenhardt 

Gel documentation device LAS3000 Raytest, Straubenhardt 

Inkubator 1S Noctua, Wiesloch 

Inkubator 44R New Brunswick 

Microplate Reader Genios Pro Tecan, Crailsheim 

Mini Protean 3 Cell Biorad, Munich 

Multicaster Biorad, Munich 

Nanodrop UV-spectrometer Peqlab, Erlangen 

pH meter MP220 Mettler Toledo, Gießen 

Sorvall centrifuge, Evolution RC Kendro, Dreieich 

Spectrophotometer V-650 Jasco, Groß-Umstadt 

Thermomixer Comfort Eppendorf, Hamburg 

Tissue grind tube, SZ 24 VWR, Darmstadt 

TissueLyser Qiagen, Hilden 

Deep-freezer Sanyo, Bad Nenndorf 

Desktop centrifuge 5415R Eppendorf, Hamburg 

Ultrasonic bath Bandelin, Berlin 

Vortexer VWR, Darmstadt 

Water bath Labora, Mannheim 

Waters Millipore System Millipore, Schwalbach 
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10.3.2 Bacterial strains and cell lines 

Strain 

Cancer cell line 
Supplier 

A-375 Cell Lines Service, Eppelheim 

BT-549 Cell Lines Service, Eppelheim 

E. coli K12 DSMZ, Braunschweig 

HCT-116 Cell Lines Service, Eppelheim 

HeLa Cell Lines Service, Eppelheim 

HEMA Cell Lines Service, Eppelheim 

HMEC Cell Lines Service, Eppelheim 

IGR-1 Cell Lines Service, Eppelheim 

MCF 7 Cell Lines Service, Eppelheim 

MDA-MB-231 Cell Lines Service, Eppelheim 

Neuro-2a Cell Lines Service, Eppelheim 

P19 Cell Lines Service, Eppelheim 

SK-HEP-1 Cell Lines Service, Eppelheim 

SK-MEL-2 Cell Lines Service, Eppelheim 

SK-MEL-5 Cell Lines Service, Eppelheim 

SK-MEL-28 Cell Lines Service, Eppelheim 

T-47D Cell Lines Service, Eppelheim 

U-87 MG Cell Lines Service, Eppelheim 
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10.4 Biochemical methods 

10.4.1 Bacterial strains and growth conditions 

Bacteria were stored as glycerol stocks at -80 °C before usage. During the studies they were 

kept on LB agar at 4 °C and transferred to a new agar plate every second week. Inocula 

(50 mL) were grown over night at 37 °C shaking at 240 rpm in the medium, in which the later 

experiment was performed. 

E. coli cultures (1 L) were inoculated with an overnight culture (5 to 8 mL) and shaken at 

240 rpm at 37 °C until OD 1 (600 nm) was reached, unless stated otherwise. To gain 

reference modification levels samples were taken at this point. For stress response studies the 

stress factor was introduced at this point and the culture was shaken at 240 rpm at 37 °C, 

unless stated otherwise. Detailed experimental procedures are described in the Ph.D. thesis of 

Dr. T. Brückl.[140] 

Bacteria for phylogenetic analysis were grown and harvested by the group of Prof. S. A. 

Sieber. B. subtilis was grown by Dr. D. Pearson. The OD values at which the bacteria were 

harvested is shown in Table 5. 

Table 5: OD values at which the bacteria were harvested 

Bacterium OD Bacterium OD 

E. coli 1.0 L. monocytogenes 1.9 

P. putida 1.1  L. welshimeri 1.9 

P. aeruginosa 1.2 B. thailandensis 1.0 

B. subtilis 1.0 B. cenocepacia 1.1 

S. aureus MU 50  4.1 D. radiodurans 1.0 

S. aureus NCTC  3.6   

 

Each bacterium was grown in its optimum media (Table 6): 

1) LB: 1% Pepton, 0.5% NaCl, 0.5% Yeast extract (pH 7.5) 

2) BHB: 37 g Brain Heart Broth (Fluka 53286) in 1L H2O 

3) CASO: 30 g CASO Broth (Fluka 22098) in 1L H2O 

4) TGY: 0.5% Trypton, 0.1% Glucose, 0.3% Yeast extract (pH 7,2) 
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Table 6: Bacterial media 

Medium Bacteria 

LB E. coli, P. putida, P. aeruginosa, B. subtilis  

BHB 
S. aureus MU 50, S. aureus NCTC, L. monocytogenes, 
L. welshimeri 

CASO B. thailandensis, B. cenocepacia 

TGY D. radiodurans 

 

After completion of growth the culture was quickly transferred to two precooled 500 mL 

centrifugal tubes equipped with ice. After centrifugation (8 min, 10816 g, 4 °C) the 

supernatants were discarded. The pellets were suspended in buffer 1 (10 mL, 0.01 M 

Mg(OAc)2, 0.05 M NaOAc, 0.15 M NaCl, pH 4.5). The suspensions were combined in a 

50 mL Falcon tube and centrifuged (30 min, 3220 g, 4 °C). The supernatant was discarded 

and the pellet was stored at -80 °C until further use. 

10.4.2 tRNA purification 

10.4.2.1 tRNA extraction 

Tissue samples were cut out from inside the organ omitting surface areas, inhomogeneous 

areas, and vessels. For brain samples meninges and surface blood vessels were removed 

before processing, because for these samples surface areas could not be omitted. 

All extraction steps were performed on ice or at 4 °C. A Waring Blender was equipped with 

pork tissue (5 g), buffer 1 (15 mL) and ice. The mixture was blended until a homogenous 

suspension was obtained and transferred to a 50 mL Falcon tube. After addition of 80% aq. 

phenol (15 mL) the suspension was shaken vigorously for 30 min. The mixture was 

centrifuged (30 min, 3220 g). The aq. layer was collected and treated again with 80% aq. 

phenol (20 mL). The suspension was shaken vigorously for 1 min, centrifuged (30 min, 

3220 g) and the layers were separated. The second phenol layer was extracted with buffer 1 

(5 mL). The aq. layer was collected, all aq. layers were combined and extracted with 80% aq. 

phenol (5 mL). The aq. layer was collected and extracted with chloroform (5 mL) twice. The 

aq. layer was collected and 20% KOAc, pH 4.5 (0.1 vol) and 12 M LiCl were added to a 

2.0 M final LiCl concentration. DNA and long RNAs were precipitated on ice for 4 h and 

pelleted by centrifugation afterwards (20 min, 38724 g). The supernatant was added to abs. 
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EtOH (3.0 vol) in a 500 mL centrifugal tube and kept at -20 °C over night. After 

centrifugation (60 min, 24336 g) the supernatant was discarded and the pellet was dried. 

The cell pellet of bacteria, yeast strains and cell culture were allowed to thaw on ice and 

suspended in buffer 1 (15 mL) and 80% aq. phenol (15 mL) was added. Further tRNA 

isolation was performed as described for pork tissue. Desalting was not necessary for tRNAs 

isolated from yeast and cancer cell lines. The obtained tRNA pellet was kept at -80 °C until 

anion exchange chromatography was performed. 

10.4.2.2 tRNA purification 

A PD10 column (GE health care) was preequilibrated with buffer A (25 mL, 0.10 M 

Tris-HCl, pH 7.5, 0.01 M MgCl2). The tRNA pellets obtained from bacteria and pork tissue 

were dissolved in buffer A (2.5 mL) and applied on the PD10 column. The suspension 

containing the crude tRNA was allowed to enter the column and the flow-through was 

discarded. The crude tRNA was eluted with buffer A (10 to 15 mL) until the eluant showed 

no UV absorbance any more. The obtained solution containing crude tRNA was kept at 

-80 °C until subjection to anion exchange chromatography. The utilized PD10 column was 

reequilibrated with buffer A (25 mL) and reused up to ten times. For storage PD10 columns 

were equilibrated with 20/80 ethanol/water (25 mL). 

The isolated tRNA was further purified by anion exchange chromatography. All associated 

steps were performed on ice or at 4 °C. The tRNA pellet from bacteria, yeast, and cell culture 

cells were dissolved in buffer A (10 mL). Crude tRNA from pork liver tissue entered this 

purification phase already in solution. Remaining impurities were removed from the tRNA 

samples by weak anion exchange chromatography (DEAE Sepharose Fast Flow 5 mL, 

column volume (CV): 5 mL) utilizing an ÄKTA purifier. The gradient was 5 CV, 

0% buffer B (25 mL, 0.10 M Tris-HCl, pH 7.5, 0.01 M MgCl2, 1.0 M NaCl); 10 CV, 0% → 

40% buffer B; 5 CV, 100% buffer B; 3 CV, 0% buffer B. The fractions eluting at about 20% 

to 40% buffer B and showing approximately a 2:1 ration for the absorption at 254 nm and 

280 nm were collected. To the combined fractions abs. EtOH (3.0 vol) was added and the 

mixture was kept at -20 °C over night. After centrifugation (60 min, 24366 g) the supernatant 

was discarded and the pellet was dissolved in MilliQ water (2 x 1.0 mL). In case the resulting 

tRNA concentration proved to be too low for the subsequent digestion (< 140 ng/μl) another 

EtOH precipitation step was conducted. 
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10.4.3 DNA isolation from tissue samples and cancer cell lines 

DNA isolation was performed on the basis of the QIAamp DNA Mini Kit. Instead of column 

purification phenol extraction was performed as outlined in the next paragraph. The RNA 

digest was executed twice. All other steps were performed as described by the manufacturer. 

For samples with more than 25 mg weight the quantities of the reagents were increased 

accordingly. Tissue samples were homogenized with PBS and a stainless steel bead in a 

TissueLyser (Qiagen, 30 Hz, 2 min). Buffer ATL and proteinase K were added and the 

solution was incubated. DNase-free RNase A (4 mL, 100 mg/mL) was added. After mixing 

the sample was incubated and shaken (600 rpm) at rt for 5 min. A second portion of 

DNasefree RNase A (4 mL, 100 mg/mL) was added and the mixture was again incubated and 

shaken (600 rpm) at rt for 5 min. The tube was centrifuged briefly and buffer AL was added. 

The sample was mixed and incubated. Following this step the sample was no longer processed 

on the basis of the QIAamp DNA Mini Kit. The sample was distributed equally to two 2 mL 

reaction tubes, if necessary. A 1/1 mixture of RotiHPhenol/chloroform (1 vol.) was added and 

the tube was shaken vigorously at rt for 5 min. The tube was centrifuged (12100 g, 15 min) 

and the aq. layer was collected. This procedure was repeated once. To the obtained aq. layer 

chloroform (1 vol.) was added and the tube was shaken at rt for 1 min. After centrifugation 

(12100 g, 5 min) the aq. layer was collected. During collection of the aq. layers special care 

was taken to include the interphase. The sample was distributed equally to two 2 mL reaction 

tubes, if necessary. Ethanol (3 vol.) was added. The sample was left to stand at rt for 

approximately 2 h. After precipitation of the DNA the tube was centrifuged (12100 g, 

30 min). The supernatant was discarded and the pellet was dried. Subsequently, it was 

dissolved in water (100–400 mL). The solution was centrifuged (12100 g, 30 min) and the 

supernatant was collected. 

10.4.4 Enzymatic digestion of tRNA 

Solutions of bulk tRNA from all samples in water (12 µg in 100 µL final volume) were heated 

to 100 °C for 3 min to denature tRNA and then rapidly cooled on ice. After addition of 

buffer 2 (10 μL, 300 mM ammonium acetate, 100 mM CaCl2, 1 mM ZnSO4, pH 5.7) and 

nuclease S1 (80 units, Aspergillus oryzae) the mixture was incubated for 3 h at 37 °C. 

Addition of buffer 3 (12 μL, 500 mM Tris-HCl, 1 mM EDTA, pH 8.0), antarctic phosphatase 

(10 units), snake venom phosphodiesterase I (0.2 units, Crotalus adamanteus venom) and 

incubation for further 3 h at 37 °C completed the digestion. All labeled nucleosides of interest 

were added. Then the sample was centrifuged (12100 g, 15 min). The supernatant was 
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removed and lyophilized to a total volume of 105 µL. Each digestion and HPLC-ESI-MS 

measurement was performed at least in triplicate with three independent concentrations of the 

appropriate labeled nucleosides. The concentrations of standard solutions were chosen to be in 

the expected range of the sample nucleoside concentration. 

10.4.5 Enzymatic digestion of DNA 

DNA mixtures (4 to 10 mg in a final volume of 100 mL H2O) were heated to 100 °C for 

5 min to denature the DNA and rapidly cooled on ice. Buffer 2 (10 mL, 300 mM ammonium 

acetate, 100 mM CaCl2, 1 mM ZnSO4, pH 5.7) and nuclease S1 (80 units, Aspergillus 

oryzae) were added to the mixture and incubated for 3 h at 37 °C. Addition of buffer 3 

(12 mL, 500 mM Tris-HCl, 1 mM EDTA), antarctic phosphatase (10 units), snake venom 

phosphodiesterase I (0.2 units, Crotalus adamanteus venom) and incubation for further 3 h at 

37 °C completed the digestion. Labeled nucleosides were added, followed by centrifugation 

of the sample (12100 g, 15 min). The supernatant was removed, the volume reduced to 

100 µL and measured with HPLC-ESI-MS. Each sample was analyzed at least in duplicate 

with independent concentrations of the two labeled nucleosides. The concentrations of 

standard solutions were chosen to be in the expected range of the sample nucleoside 

concentration. 
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10.4.6 HPLC-ESI-MS 

The samples (100 mL injection volume) were analyzed by HPLC-ESI-MS on a Thermo 

Finnigan LTQ Orbitrap XL and chromatographed by a Dionex Ultimate 3000 HPLC system 

with a flow of 0.15 mL/min over an Uptisphere120-3HDO column from Interchim. The 

column temperature was maintained at 30 °C. The chromatographic eluent was directly 

injected into the ion source without prior splitting. Ions were scanned by use of a positive 

polarity mode over a full-scan range of m/z 200–1000 with a resolution of 30.000. Parameters 

of the mass spectrometer were tuned with a freshly mixed solution of adenosine (5 mM) in 

buffer C. The parameters used in this section were sheath gas flow rate, 16 arb; auxiliary gas 

flow rate, 11 arb; sweep gas flow rate, 4 arb; spray voltage, 5.0 kV; capillary temperature, 

200uC; capillary voltage, 12 V, tube lens 60 V. 

Eluting buffers were buffer C (2 mM HCOONH4 in H2O (pH 5.5)) and buffer D (2 mM 

HCOONH4 in H2O/MeCN 20/80 (pH 5.5)). The elution was monitored in all cases at 260 nm 

(Dionex Ultimate 3000 Diode Array Detector). 

The gradient for tRNA (with m2A): 0 → 41.25 min; 0% → 6% buffer D; 41.25 → 80 min; 

6% → 60% buffer D; 80 → 82 min; 60% → 100% buffer D; 82 → 100 min; 100% buffer D; 

100 → 105 min; 100 → 0% buffer D; 105 → 115 min; 0% buffer D. 

The gradient for tRNA (without m2A)was 0 → 12 min; 0% → 3% buffer D; 12 → 60 min; 

3% → 60% buffer D; 60 → 62 min; 60% → 100% buffer D; 62 → 70 min; 100% buffer D; 

70 → 85 min; 100 → 0% buffer D; 85 → 95 min; 0% buffer D. The elution was monitored at 

260 nm (Dionex Ultimate 3000 Diode Array Detector). 

The gradient for DNA was 0 → 12 min; 0% → 3% buffer D; 12 → 60 min; 3% → 60% 

buffer D; 60 → 62 min; 60% → 100% buffer D; 62 → 70 min; 100% buffer D; 70 → 85 min; 

100 → 0% buffer D; 85 → 95 min; 0% buffer D. The elution was monitored at 260 nm 

(Dionex Ultimate 3000 Diode Array Detector). 

10.4.6.1 Mass filter 

The areas of labeled and unlabeled nucleosides from LC-MS measurements were determined 

using the Qualbrowser program by extraction of the accurate mass range with a mass filter 

(Table 7) from the total ion current (TIC). 
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Table 7: High resolution mass ranges of natural and corresponding labeled nucleosides used for 
quantification. 

Nucleoside 
Nucleosides 

mass range m/z 

Labeled nucleosides 

mass range m/z 

Am, m6A, m1A, m2A 282.1142-282.1262 285.1335-285.1435 

t6A 413.1315-413.1475 418.1420-418.1580 

i6A 336.1606-336.1716 338.1740-338.1840 

ms2i6A 382.1484-382.1594 385.1679-385.1789 

m2
2G 312.1248-312.1368 315.1441-315.1561 

m2G, m1G, Gm 298.1076-298.1196 301.1276-301.1396 

Q 410.1640-410.1730 413.1778-413.1898 

m6t6A 427.1532-427.1622 430.1707-430.1807 

OHyW 525.1879-525.2029 528.2065-528.2195 

yW 509.1937-509.2037 512.2138-512.2238 

io6A 352.0915-352.2315 354.1041-354.2441 

ms2io6A 398.1423-398.1563 400.0918-400.2318 

m6
2A 296.1233-296.1413 299.1488-299.1608 

hmC 258.1024-258.1144 
260.1167-260.1277 (d2-hmC) 

260.1067-260.1177 (18O-hmC) 

mC 242.1075-242.1195 245.1261-245.1381 

caC 272.0827-272.0947 - 

fC 256.0858-256.0988 - 

hmC 259.0858-259.0978 - 

10.4.6.2 Calibration curves 

Mass calibration curves of the labelled and corresponding unlabelled synthesized nucleosides 

were obtained at five different concentration ratios. For each concentration an average value 

of three independent measurements was determined (Figure 24). Each labelled nucleoside 

solution was mixed with three different concentrations of the corresponding unlabelled 

nucleosides. The areas of labelled and unlabelled nucleosides from LC-MS measurements 
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were determined using the Qualbrowser program by extraction of the accurate mass range 

with a mass filter (Table 1) from the total ion current (TIC). The linear fits of the determined 

area ratios with the amount ratios gave R2-values of minimum 0.9992. The linear fit equations 

were used for calculation of the exact nucleoside contents in bulk tRNA samples. Synthetic 

labelled nucleosides were added to the digest solutions and the areas of labelled and 

unlabelled nucleosides were determined as described above. The amount of each nucleoside 

was calculated from the obtained area ratios and the linear fit equations of the calibration 

curves. 

10.4.7 Separation of mitochondria and cytosol 

These experiments were performed by A. C. Kneuttinger and Cytochrome C oxidase 

experiments are described in her Masterthesis.[169] 10-20 g tissue samples were sliced and 

washed on ice with ice-cold buffers as described in the manual. The preparations of liver, 

kidney, spleen, cerebellum and cerebrum (“soft” tissues) were washed twice in 2 volumes of 

extraction buffer E (10 mM HEPES, pH 7.5, containing 0.2 M mannitol, 70 mM sucrose, and 

1 mM EGTA). Subsequent homogenization was performed in 10 volumes of 2 mg/mL 

albumin in buffer E using a commercial blender and a potter homogenizer for large amounts 

of tissue. Heart preparations (“hard” tissue) required pretreatment with trypsin to promote 

breakdown of the cellular structure. The samples were washed once briefly in 2 volumes of 

buffer E, 3 min in 10 volumes of 0.25 mg/mL trypsin in buffer E and 20 min in 8 volumes of 

0.25 mg/mL trypsin in buffer E. To quench the proteolytic reaction, albumin solution was 

added to a final concentration of 10 mg/mL. After one additional washing step with 

8 volumes of buffer E, the preparations were homogenized in 8 volumes of buffer E as 

described above. The centrifugation steps for fractionation of the cellular components were 

adopted from literature[170] to avoid simultaneous enrichment of lysosomes and peroxisomes 

in the mitochondria pellet. Low-speed centrifugation was carried out at 4 °C and 600 g for 

15 min and high-speed centrifugation of the previous supernatant at 4 °C and 7,000 g for 

15 min. The mitochondria pellets and the supernatant, which contained components of the 

cytosol, were subsequently assayed for purity by a commercial cytochrome C oxidase assay 

(Sigma-Aldrich) and the tRNA was isolated for further analysis. Extraction of mitochondrial 

and cytosolic tRNA was performed as described for whole tissue samples. 
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10.4.8 In vitro translation assay 

We used the non-radioactive luciferase control reaction with TNT RNA Polymerase T7 and 

Luciferase control DNA as described in the Promega Kit with minor changes. Each assay 

contained TNT reaction buffer (0.5 µL), T7 TNT RNA Polymerase (0.25 µL), amino acid 

mixture minus leucine (1 mM), amino acid mixture minus methionine (1 mM), RNasin 

ribonuclease inhibitor (10 U), Luciferase T7 control DNA (0.25 µg). Afterwards the 

appropriate tRNA (12.5 ng) and RNase-free water were added to a total assay volume of 

6.25 µL, followed by addition of tRNA-depleted lysate (6.25 µL). 

These translation reactions were incubated at 30 °C and a 1 µL aliquot was removed every 

2-3 min from each fraction starting at 12 min. This sample was transferred into a 96 well 

plate, mixed well with 25 µL of Luciferase Assay substrate and analyzed immediately. 

Luminescence was measured with a TECAN Microplate Reader Genios Pro in 10 cycles for 

100 ms each cycle. Reproducible luminescence slopes were obtained after normalization to 

the liver value and the results are shown in Fig 2. The data were averaged and plotted against 

time. A linear fit of each initial slope was performed and normalized to the highest value 

(usually liver). Every measurement was repeated at least in triplicate and every value 

represents mean value with s.d. Care was taken to use different tRNA-depleted fractions. 

10.4.9 Immunohistochemistry 

Immunohistochemistry was performed by Dr. S. Michalakis and S. Koch from the group of 

Prof. M. Biel. Coronal cryosections (12 mm) from 12 week old C57-BL6/N mice were 

rehydrated in phosphate buffered saline (PBS), fixed (10 min, 4% paraformaldehyde in PBS, 

pH 7.4), treated with 2N HCl in PBS (20 min) and incubated for 16 hours (4uC) with primary 

antibodies in 5% chemiblocker (Millipore, Germany) and 0.3% Triton X-100 in PBS. The 

primary antibody used was: rabbit anti-5-hydroxymethylcytosine (hmC, 1:500, Active Motif, 

Belgium). For secondary detection we used goat Alexa488 anti-rabbit (1:800, Cell Signaling 

Technologies, Germany). Cell nuclei were counterstained with Hoechst 33342 (5 mg/mL, 

Sigma, Germany) and sections were mounted with aqueous mounting medium (PermaFluor, 

Beckman-Coulter, USA). Tissues were analyzed using a Zeiss Axioscope epifluorescence 

microscope equipped with a HBO 100 mercury arc lamp, appropriate filters equipped with an 

MRc ccd camera (Zeiss, Germany). Laser scanning confocal micrographs were collected 

using a LSM 510 meta microscope (Carl Zeiss, Germany). 
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10.5 Phylogenetic analysis 

For phylogenetic analysis the programs Cluster 3.0 and Java Treeview were used.[204-205] 

Hierarchical clustering was performed with the euclidean distance algorithm of the averaged 

quantitative raw data. Average linkage yielded the clustered data, which were visualized with 

Java Treeview. Correlation factors were used as labeled in this program. 

  



  Experimental Section Chapter 10 

129 

10.6 Syntheses 

10.6.1 Synthesis of t6A 

2',3',5'-Tri-O-(tert-butyldimethylsilyl)adenosine (1) 

 

Adenosine (15.0 g, 56.1 mmol), imidazole (34.4 g, 0.51 mol), and TBSCl (29.5 g, 196 mmol) 

were suspended in dry DMF (60 mL) and stirred for 19 h at rt. The reaction mixture was 

stopped with H2O and extracted with CH2Cl2 (3 × 200 mL). The combined organic phase was 

dried over MgSO4, the solvent removed in vacuo and purified via column chromatography 

(EtOAc/cyclohexane = 20:80 → 50:50). Compound 1 (27.7 g, 45.4 mmol) was obtained as 

colorless foam with 81%. 

Rf = 0.39 (EtOAc/cyclohexane = 1:1). M.p.: 144 °C. 

1H NMR (CDCl3, 600 MHz) δ (ppm) = 8.31 (s, 1H, C2H), 8.16 (s, 1H, C8H), 6.01 (d, 
3J=5.2 Hz, 1H, C1'H), 5.96 (s, 2H, NH2), 4.65 (t, 3J=4.7 Hz, 1H, C2'H), 4.29 (t, 3J=3.9 Hz, 1H, 

C3'H), 4.11 (dd, 3J=3.7 Hz, 3J=6.7 Hz, 1H, C4'H), 4.01 (dd, 3J=4.1 Hz, 2J=11.3 Hz, 1H, C5'Ha), 

3.77 (dd, 3J=2.8 Hz, 2J=11.3 Hz, 1H, C5'Hb), 0.12 – 0.08 (3s, 27H, SiC(CH3)3), 0.12 – (-0.25) 

(6s, 18H, Si(CH3)2).
 

13C NMR (CDCl3, 151 MHz) δ (ppm) = 155.2, 152.3, 150.1, 140.1, 120.2, 88.6, 85.7, 76.1, 

72.2, 62.7, 26.3, 26.1, 25.9, 18.7, 18.3, 18.1, -4.2, -4.5, -4.5, -4.9, -5.1, -5.2. 

HRMS (ESI+): calcd. for C28H55N5O4Si3 [M+H]+: 610.3635, found: 610.3645. 

IR: 
~

 (cm−1) = 3317 w, 3151 w, 2953 s, 2929 s, 2897 m, 2857 s, 1658 m, 1643 m, 1597 m, 

1552 w, 1472 m, 1416 w, 1361 m, 1329 m, 1297 m, 1253 s, 1156 m, 1128 m, 1072 m, 1043 m, 

999 m, 968 m, 939 m, 831 s, 776 s, 669 w. 
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N6-Ethoxycarbonyl-2',3',5'-tri-O-(tert-butyldimethyl-silyl)adenosine (2)[50, 137] 

 

Compound 1 (27.7 g, 45.4 mmol) was dissolved in dry pyridine (300 mL), followed by slow 

addition of ethylchloroformate (15.2 mL, 159 mmol) at 0 °C. The yellow reaction mixture 

was stirred for 5 h at rt, then H2O (500 mL) was added to stop the reaction and afterwards 

extracted with CH2Cl2 (3 × 350 mL). The combined organic phases were dried over MgSO4 

and the solvent removed in vacuo. Afterwards the crude material was purified via column 

chromatography (EtOAc/cyclohexane = 20:80 → 50:50) to obtain compound 2 (22.2 g, 

32.5 mmol, 72%) as a colorless foam.  

Rf = 0.70 (EtOAc/cyclohexane = 1:1). M.p.: 114 °C. 

1H NMR (CDCl3, 600 MHz) δ (ppm) = 8.74 (s, 1H, C2H), 8.39 (s, 2H, C8H, NH), 6.07 (d, 
3J=5.0 Hz, 1H, C1'H), 4.62 (t, 3J=4.6 Hz, 1H, C2'H), 4.31 (q, 3J=7.1 Hz, 2H, CH2CH3), 4.27 (t, 
3J=4.0 Hz, 1H, C3'H), 4.13 (dd, 3J=3.6 Hz, 3J=6.4 Hz, 1H, C4'H), 4.01 (dd, 3J=3.9 Hz, 
2J=11.4 Hz, 1H, C5'Ha), 3.79 (dd, 3J=2.6 Hz, 2J=11.4 Hz, 1H, C5'Hb), 1.33 (t, 3J=7.1 Hz, 3H, 

CH2CH3), 0.94 – 0.77 (3s, 27H, SiC(CH3)3) 0.12 – (-0.27) (6s, 18H, Si(CH3)2). 

13C NMR (CDCl3, 151 MHz) δ (ppm) = 153.1, 151.1, 149.5, 141.6, 121.8, 88.7, 85.9, 76.3, 

72.0, 62.6, 62.4, 27.1, 27.1, 27.1, 26.3, 26.0, 25.9, 18.8, 18.3, 18.1, 14.6, -4.2, -4.5, -4.5, -4.8, 

-5.1, -5.2. 

HRMS (ESI+): calcd. for C31H59N5O6Si3 [M+H]+: 682.3846, found: 682.3865. 

IR: 
~

 (cm−1) = 2953 w, 2930 w, 2857 w, 2360 w, 1751 m, 1734 m, 1613 m, 1586 m, 1521 w, 

1464 m, 1252 m, 1211 m, 1154 s, 1072 m, 1022 w, 834 s, 774 s, 670 m, 644 m. 
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2',3',5'-Tri-O-(tert-butyldimethylsilyl)-N6-threonylcarbamoyladenosine (3)[50, 137] 

 

Compound 2 (1.00 g, 1.46 mmol) and L-threonine (0.26 g, 2.21 mmol) were dissolved in dry 

pyridine (20 mL) and refluxed at 125 °C for 6.5 h. Then another portion of L-threonine 

(0.09 g, 0.73 mmol) was added and the reaction was refluxed for another 2 h. The solvent was 

then removed in vacuo, followed by purification via column chromatography (MeOH/CH2Cl2 

= 0:100 → 10:90) of the crude product. Compound 3 (0.88 g, 1.16 mmol, 80%) was obtained 

as a colorless solid. 

Rf = 0.10 (CH2Cl2/MeOH = 10:1). M.p.: 183 °C. 

1H NMR (d6-DMSO, 400 MHz) δ (ppm) = 9.62 (d, 3J=6.4 Hz, 1H, C6NH,), 9.45 (s, 1H, 

CNH), 8.60 (s, 1H, C8H), 8.51 (s, 1H, C2H), 6.01 (d, 3J=6.4 Hz, 1H, C1'H), 4.94 (dd, 
3J=4.5 Hz, 3J=6.1, 1H, C2'H), 4.35 (d, 3J=4.2 Hz, 1H, C3'H), 4.15 – 3.93 (m, 3H, C4'H, CaH, 

CH), 3.80 – 3.70 (m, 2H, C5'H2), 1.02 (d, 3J=6.3 Hz, 3H, -CH3), 0.95 – 0.64 (3s, 27H, 

SiC(CH3)3), 0.19 – (-0.45) (6s, 18H, Si(CH3)2). 

13C NMR (d6-DMSO, 101 MHz) δ (ppm) = 173.5, 152.7, 151.0, 150.4, 150.2, 120.3, 87.1, 

85.5, 74.2, 72.2, 66.3, 62.4, 58.7, 54.9, 25.8, 25.7, 25.4, 19.3, 18.0, 17.8, 17.5, -4.7, -4.8, -4.8, 

-5.5, -5.5. 

HRMS (ESI-), calcd. for C33H62N6O8Si3 [M-H]-: 753.3864, found: 753.3864. 

IR: 
~

 (cm−1) = 2953 w, 2930 w, 2857 w, 2361 m, 2320 m, 1726 w, 1612 m, 1548 w, 1530 w, 

1469 m, 1254 m, 1073 m, 834 s, 777 s, 668 m, 582 m. 
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L-Threonine-[2-(4-nitrophenyl)ethyl]ester-mono(para-toluol-sufonate)salt (10)[48] 

 

Para-toluenesulfonic acid (22.2 g, 118 mmol) and 2-(4-nitrophenyl)ethanol (19.6 g, 

118 mmol) were added to a mixture of L-threonine (7.00 g, 58.8 mmol) in toluene 

(350 mL). The reaction mixture was refluxed under Dean Stark conditions at 150 °C for 12 h. 

Diethylether (120 mL) was added to the brown two phase mixture and the upper layer was 

decanted. After a second addition of diethylether (120 mL) and the residual solvent was 

removed in vacuo after decantation of the upper layer. The brown oil was dissolved while 

heating in MeOH (60 mL) and diethylether (220 mL) added to crystallize the product at 4 °C 

for 24 h. The brown crystals were washed with cold MeOH and dried in vacuo to yield 

compound 10 (23.9 g, 54.4 mmol, 92%) as brown crystals. 

M.p.: 192–194 °C. 

1H NMR (d6-DMSO, 400 MHz) δ (ppm) = 8.23 (s, 3H, NH3
+), 8.17 [d, 3J=8.8 Hz, 2H, 

HNpe(o-NO2)], 7.58 [d, 3J=8.8 Hz, 2H, HNpe(m-NO2)], 7.49 [d, 3J=8.0 Hz, 2H, HTos(m-CH3)], 

7.11 [d, 3J=7.8 Hz, 2H, HTos(o-CH3)], 4.52 – 4.36 (m, 2H, CH2CH2O), 4.11 – 4.00 (m, 1H, 

CβH), 3.90 (s, 1H, CH), 3.10 (t, 3J=6.4 Hz, 2H, CH2CH2O), 2.28 (s, 3H, Tos-CH3), 1.14 (d, 
3J=6.5 Hz, 3H, -CH3). 

13C NMR (d6-DMSO, 101 MHz) δ (ppm) = 168.1, 146.3, 146.2, 145.6, 137.7, 130.3, 128.0, 

125.5, 123.4, 65.4, 64.9, 57.8, 33.8, 20.8, 20.0. 

HRMS (ESI+): calcd. for C12H16N2O5 [M+H]+: 269.1132, found: 269.1134. 

IR: 
~

 (cm−1) = 3395 m, 3197 m, 2895 s, 2793 m, 2693 w, 1733 s, 1608 m, 1600 m, 1524 s, 

1480 w, 1396 w, 1345 m, 1297 m, 1227 s, 1168 s, 1116 s, 1083 s, 920 w, 677 w, 634 w, 563 s. 
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O-(tert-Butyldimethylsilyl)-L-threonine-[2-(4-nitrophenyl)-ethyl]ester (11)[48] 

 

Compound 10 (23.9 g, 54.4 mmol), imidazole (18.5 g, 272 mmol) and TBSCl (16.4 g, 

109 mmol) were dissolved in dry pyridine (400 mL). The reaction mixture was stirred at rt for 

18 h, followed by evaporation of the solvent in vacuo. To the orange oil H2O (200 mL) was 

added, extracted with CH2Cl2 (150 mL) and washed three times with H2O (3 × 200 mL). The 

combined organic layers were dried over MgSO4, the solvent removed in vacuo and the crude 

product purified by column chromatography (CH2Cl2/MeOH = 20:1). Pure compound 11 

(15.9 g, 41.5 mmol, 76%) was obtained as an orange oil. 

Rf = 0.73 (CH2Cl2/MeOH = 10:1).  

1H NMR (CDCl3, 200 MHz) δ (ppm) = 8.25 – 8.07 [m, 3J = 8.8 Hz, 2H, HNpe(o-NO2)], 

7.45 - 7.31 [m, 3J = 8.8 Hz, 2H, HNpe(m-NO2)], 4.63 – 4.04 (m, 3H, CH2CH2O, CβH), 3.23 (d, 
3J=2.8 Hz, 1H, CαH), 3.05 (t, 3J=6.8 Hz, 2H, CH2CH2O), 1.55 (s, br, 2H, NH2), 1.19 (d, 
3J=6.3 Hz, 3H, CH3), 0.80 (s, 9H, SiC(CH3)3), -0.01 – (-0.10) (2s, 6H, Si(CH3)2). 

13C NMR (CDCl3, 75 MHz) δ (ppm) = 174.2, 147.2, 145.6, 130.0, 124.0, 69.8, 64.7, 61.0, 

35.1, 25.8, 21.1, 18.1, -4.1, -5.0. 

HRMS (ESI+): calcd. for C18H30N2O5Si [M+H]+: 383.1997, found: 383.2004. 

IR: 
~

 (cm−1) = 3588 w, 2955 m, 2930 m, 2896 m, 2857 m, 1739 s, 1679 m, 1600 w, 1519 s, 

1472 w, 1472 m, 1345 s, 1320 w, 1251 s, 1154 s, 1110 m, 1075 m, 1039 w, 1006 m, 968 m, 

939 w, 835 s, 807 s, 775 s, 697 m, 632 w, 616 w. 
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2',3',5'-Tri-O-(Tert-butyldimethylsilyl)-N6-{{{(1S,2R)-2-{[(tert-butyl)dimethyl]silyloxy}-

1-{[2-(4-nitrophenyl)ethoxy]carbonyl}propyl}amino}carbonyl}adenosine (14) 

 

O-(tert-Butyldimethylsilyl)-L-threonine-[2-(4-nitrophenyl) ethyl]ester (11, 2.10 g, 5.46 mmol) 

and compound 2 (3.10 g, 4.55 mmol) were dissolved in dry pyridine (35 mL). The reaction 

mixture was refluxed for 7 h at 125 °C and subsequently CH2Cl2 (200 mL) was added. 

Afterwards the organic layer was washed with H2O (3 × 150 mL), dried over MgSO4 and 

filtrated. After evaporation of the solvent in vacuo the raw product was purified via column 

chromatography (EtOAc/cyclohexane = 20:80). Pure compound 14 (3.53 g, 4.14 mmol, 91%) 

was obtained as colorless foam after drying in vacuo. 

Rf = 0.65 (EtOAc/cyclohexane = 1:1). 

1H NMR (CDCl3, 400 MHz) δ (ppm) = 9.90 (d, 3J=9.1 Hz, 2H, CαNH), 8.46 (s, 1H, C2H), 

8.43 (s, 1H, C8H), 8.17 (s, br, 1H, C6NH) 7.99 [d, 3J=8.8 Hz, 2H, HNpe(o-NO2)], 7.32 [d, 
3J=8.7 Hz, 2H, HNpe(m-NO2)], 6.08 (d, 3J=4.6 Hz, 1H, C1'H), 4.62 (t, 3J=4.4 Hz, 1H, C2'H), 

4.55 (dd, 3J=1.6 Hz, 3J=9.1 Hz, 1H, C'H), 4.50 (qd, 3J=1.6 Hz, 3J=9.2 Hz, 1H, CαH), 4.43 – 

4.29 (m, 3H, C3'H, CH2CH2O), 4.15 (dd, 3J=3.7 Hz, 3J=6.5 Hz, 1H, C4'H), 4.04 (dd, 
3J=3.7 Hz, 2J=11.5 Hz, 1H, C5'Ha), 3.79 (dd, 3J=2.5 Hz, 2J=11.5 Hz, 1H, C5'Hb), 3.02 (t, 
3J=6.5 Hz, 2H, CH2CH2O), 1.24 (d, 3J=6.3 Hz, 3H, CβCH3), 0.95 – 0.81 (4s, 36H, 

SiC(CH3)3), 0.14 – (-0.17) (8s, 24H, Si(CH3)2). 

13C NMR (CDCl3, 101 MHz) δ (ppm) = 171.1, 154.3, 150.3, 150.1, 147.0, 145.7, 141.5, 

130.0, 123.8, 120.3, 88.9, 85.6, 77.4, 76.4, 71.8, 68.9, 64.9, 62.5, 59.8, 35.0, 26.3, 26.1, 25.9, 

25.7, 21.3, 18.8, 18.3, 18.1, 18.0, -4.1, -4.1, -4.5, -4.5, -4.7, -5.1, -5.2. 

HRMS (ESI+): calcd. for C47H83N7O10Si4 [M+H]+: 1018.5351, found: 1018.5428. 
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IR: 
~

 (cm−1) = 323 8 w, 2954 m, 2930 m, 2857 m, 1735 w, 1701 m, 1610 m, 1587 m, 1522 s, 

1471 m, 1345 w, 1311 w, 1250 s, 1162 w, 1127 w, 1096 m, 1069 w, 998 m, 968 w, 940 w, 

833 s, 745 s, 671 m. 
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N6-{{{(1S,2R)-2-hydroxy-1-{[2-(4-nitrophenyl)ethoxy]carbonyl}propyl}amino}carbonyl} 

adenosine (15) 

 

Compound 14 (3.53 g, 4.14 mmol) was dissolved in CH2Cl2 (3 mL) and afterwards NEt3·3HF 

(4.53 g, 28.1 mmol) added. The reaction mixture was stirred for 24 h at rt and afterwards 

stopped with methoxytrimethylsilane (30 mL, 0.22 mol). After stirring for another hour the 

solvent was removed in vacuo and the crude material purified via column chromatography 

(CH2Cl2/MeOH = 50:1 → 10:1). Pure product 15 (1.62 g, 4.09 mmol, 98%) was obtained as a 

colorless foam after removing the solvent in vacuo. 

Rf = 0.15 (CH2Cl2/MeOH = 10:1). 

1H NMR (d6-DMSO, 400 MHz) δ (ppm) = 9.88 (s, 1H, C6NH), 9.80 (d, 3J=8.3 Hz, 1H, 

CNH), 8.69 (s, 1H, C8H), 8.52 (s, 1H, C2H), 8.08 [d, 3J=8.8 Hz, 2H, HNpe(o-NO2)], 7.54 [d, 
3J=8.7 Hz, 2H, HNpe(m-NO2)], 6.00 (d, 3J=5.4 Hz, 1H, C1'H), 5.52 (d, 3J=5.9 Hz, 1H, C2'OH), 

5.21 (dd, 3J=2.4 Hz, 3J=4.7 Hz, C3'OH, COH), 5.12 (t, 3J=5.6 Hz, 1H, C5'OH), 4.59 (dd, 
3J=5.4 Hz, 10.8 Hz, 1H, C2'H), 4.45 – 4.25 (m, 3H, CαH, CH2CH2O), 4.19 (dd, 3J=4.8 Hz, 
3J=8.8 Hz, 2H, C3'H, CβH), 3.98 (dd, 3J=3.8 Hz, 3J=7.8 Hz, 1H, C4'H), 3.76 – 3.65 (m, 1H, 

C5'Ha), 3.59 (m, 1H, C5'Hb), 3.05 (t, 3J=6.4 Hz, 2H, CH2CH2O), 1.12 (d, 3J=6.3 Hz, 3H, 

-CH3). 

13C NMR (d6-DMSO, 101 MHz) δ (ppm) = 170.8, 153.7, 150.7, 150.3, 150.2, 146.6, 146.2, 

142.2, 130.2, 123.3, 120.4, 87.8, 85.6, 73.9, 70.2, 66.2, 64.3, 61.2, 58.9, 34.0, 20.5. 

HRMS (ESI+): m/z for C23H27N7O10 [M+H]+: calcd. 562.1892, found: 562.1902. 

IR: 
~

(cm−1) = 3228 m, 2926 m, 1736 m, 1684 s, 1615 m, 1590 m, 1516 s, 1469 m, 1397 w, 

1343 s, 1297 m, 1236 m, 1108 m, 1079 s, 1017 m, 896 w, 856 w, 796 w, 736 w, 696 w, 642 w.
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N6-Threonylcarbamoyladenosine (t6A) 

 

Method A: Compound 3 (0.44 g, 0.58 mmol) and NEt3·3HF (0.91 mL, 5.55 mmol) were 

dissolved in CH2Cl2 (3 mL) and stirred at rt for 20 h. Afterwards methoxytrimethylsilane 

(10 mL, 0.73 mol) was added to stop the reaction and stirred for additional 30 min. After 

removing the solvent in vacuo the crude material was dissolved in EtOH while heating, 

filtrated and the solvent was again removed in vacuo. The crude product was purified via RP-

HPLC (eluent A: H2O, eluent B: MeCN, gradient: 100% A, 0% B → 0% A, 100% B in 

45 min, retention time = 18.5 min) to yield nucleoside t6A (174 mg, 0.38 mmol, 65%) as a 

colorless hygroscopic salt with NEt3 as counterion (ratio of 1.5:1). 

Method B: 50.0 mg (89.0 μmol) of compound 15 were dissolved in 900 µL THF and treated 

with 100 μL (660 µmol) 1,8-Diaza-bicyclo[5.4.0]undec-7-en. Afterwards the reaction mixture 

was shaken for 2 h at 45 °C at 700 rpm. The solvent was removed and crude product was 

purified via RP-HPLC (eluent A: H2O, eluent B: MeCN, gradient: 100% A, 0% B → 0% A, 

100% B in 45 min, retention time = 18.5 min) to yield t6A (23.0 mg, 49.7 µmol, 56%). 

1H NMR (CD3OD, 400 MHz) δ (ppm) = 8.59 (s, 1H, C8H), 8.51 (s, 1H, C2H), 6.07 (d, 
3J=5.9 Hz, 1H, C1'H), 4.77 – 4.72 (m, 1H, C2'H), 4.39 – 4.31 (m, 3H, C3'H, CH, CH), 4.17 

(q, 3J=3.0 Hz, 1H, C4'H), 3.89 (dd, 3J=2.8 Hz, 2J=12.4 Hz, 1H, C5'Ha), 3.77 (dd, 3J=3.1 Hz, 
2J=12.4 Hz, 1H, C5'Hb), 3.19 (q, 3J=7.3 Hz, 4H, N(CH2CH3)3), 1.30 (t, 3J=7.3 Hz, 6H, 

N(CH2CH3)3), 1.26 (d, 3J=6.3 Hz, 3H, -CH3).
 

13C NMR (CD3OD, 101 MHz) δ (ppm) = 175.4, 154.6, 150.9, 150.5, 149.8, 142.4, 120.6, 

89.6, 86.4, 74.2, 70.9, 67.7, 61.8, 60.2, 46.3 (NEt3), 18.9, 7.7 (NEt3). 

HRMS (ESI-), calcd. for C15H20N6O8 [M-H]-:411.1270, found: 411.1264. 

IR: 
~

 (cm−1) = 3234 m, 2929 w, 2360 w, 2341 w, 1681 s, 1607 s, 1589 s, 1531 s, 1467 s, 1391 

s, 1359 m, 1331 m, 1298 m, 1252 s, 1081 s, 1055 s, 984 m, 895 m, 838 m, 796 s, 642 s. 
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10.6.2 Synthesis of 13C4,
15N-t6A 

13C4,
15N-2',3',5'-Tri-O-(tert-butyldimethylsilyl)-N6-threonylcarbamoyladenosine (4) 

 

Compound 2 (183 mg, 269 µmol) and 13C4,
15N-L-threonine (50.0 mg, 403 µmol) were 

dissolved in dry pyridine (4.0 mL) and refluxed at 125 °C for 6.5 h. Afterwards the solvent 

was removed in vacuo and the raw product purified via column chromatography 

(MeOH/CH2Cl2 = 0:100 → 10:90). Compound 4 was obtained as a colorless solid and used in 

the following reaction. 

HRMS (ESI-), calcd. for C29
13C4H62N5

15NO8Si3 [M-H]-: 758.3969, found: 758.3980. 
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13C4,
15N-N6-Threonylcarbamoyladenosine (13C4,

15N-t6A) 

 

The isotope-labeled compound 4 (133 mg, 175 µmol) and NEt3·3HF (142 μL, 875 µmol) were 

dissolved in CH2Cl2 (3 mL) and stirred at rt for 72 h. Afterwards methoxytrimethylsilane 

(1.50 mL, 4.84 mmol) was added to stop the reaction and stirred for additional 30 min. After 

removing the solvent in vacuo the colorless crude material was dissolved in EtOH while 

heating, filtrated and the solvent was again removed in vacuo. The crude product was purified 

via RP-HPLC (eluent A: H2O, eluent B: MeCN, gradient: 100% A, 0% B → 0% A, 100% B 

in 45 min, retention time = 18.5 min) to yield nucleoside 13C4,
15N-t6A (57.0 mg, 122 μmol, 

45% over two steps) as a colorless oil with NEt3 (ratio of 1.5:1). 

1H NMR (CD3OD, 400 MHz) δ (ppm) = 8.58 (s, 1H, C8H), 8.52 (s, 1H, C2H), 6.07 (d, 
3J=5.9 Hz, 1H, C1'H), 4.77 – 4.71 (m, 1H, C2'H), 4.34 (s, 1J=140 Hz, 2H, CH, CH), 4.37 

(dd, 3J=3.3 Hz, 3J=5.1 Hz, 1H, C3'H), 4.17 (dd, 3J=3.0 Hz, 3J=6.1 Hz, 1H, C4'H), 3.89 (dd, 
3J=2.8 Hz, 2J=12.4 Hz, 1H, C5'Ha), 3.77 (dd, 3J=3.1 Hz, 2J=12.4 Hz, 1H, C5'Hb), 3.18 (q, 
3J=7.3 Hz, 4H, N(CH2CH3)3), 1.29 (t, 3J=7.3 Hz, 6H, N(CH2CH3)3), 1.25 (dd, 3H, 3J=5.9 Hz, 
2J=8.4 Hz, 1J=124 Hz). 

13C NMR (CD3OD, 101 MHz) δ (ppm) = 177.3 (d, 1J=53 Hz, 13CO), 156.1 (d, 1J=22 Hz, 
15N CO) 152.5, 152.0, 151.4, 144.0, 122.1, 91.1, 88.0, 75.8, 72.5, 69.3 (t, 1J=39 Hz, -13CH), 

63.3, 61.9 (t, 1J=44 Hz, -13CH), 47.8 (NEt3), 20.6 (d, 1J=38 Hz, -13CH3), 9.3 (NEt3). 

HRMS (ESI-), calcd. for C11
13C4H20N5

15NO8 [M-H]-: 416.1374, found: 416.1367. 
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10.6.3 Synthesis of g6A 

2',3',5'-Tri-O-(tert-butyldimethylsilyl)-N6-glycinylcarbamoyladenosine (5)[137] 

 

Compound 2 (500 mg, 0.79 mmol) and glycine (110 mg, 1.47 mmol) were dissolved in dry 

pyridine (12.5 mL) and refluxed at 125 °C for 7 h. Afterwards the solvent was removed in 

vacuo, followed by purification via column chromatography (CH2Cl2/MeOH = 10:1) of the 

crude product. Compound 5 (389 mg, 0.55 mmol, 69%) was obtained as a colorless solid. 

Rf = 0.07 (CH2Cl2/MeOH = 10:1). M.p.: 209 °C. 

1H NMR (d6-DMSO 400 MHz): δ (ppm) = 9.52 – 9.40 (m, 2H, C6–NH, Cα–NH), 8.60 (s, 1H, 

C2H), 8.52 (s, 1H, C8H), 6.02 (d, 3J=6.4 Hz, 1H, C1'H), 4.92 (dd, 3J=4.4 Hz, 3J=6.4 Hz, 1H, 

C2'H), 4.34 (dd, 3J=1.8 Hz, 3J=4.3 Hz, 1H, C3'H), 4.04 – 3.97 (m, 2H, C4'H, C5'Ha), 3.77 (dd, 

3J=3.2 Hz, 2J=10.2 Hz, 1H, C5'Hb), 3.72 (d, 3J=4.6 Hz, 2H, CH2), 0.93 – 0.70 (3s, 27H, 

3 SiC(CH3)3), 0.14 – (-0.39) (6s, 18H, 3 Si(CH3)2). 

13C NMR (d6-DMSO, 101 MHz) δ (ppm) = 171.7, 153.2, 150.9, 150.3, 150.3, 142.1, 120.3, 

87.0, 85.5, 74.3, 72.2, 62.4, 45.4, 25.8, 25.7, 25.4, 18.0, 17.8, 17.4, -4.7, -4.8, -4.9, -5.5, -5.5, 

-5.5. 

HRMS (ESI-): calcd. for C31H58N6O7Si3 [M-H]-: 709.3602, found: 709.3596. 

IR: 
~

 (cm−1) = 2945 w, 2929 m, 2857 w, 1696 m, 1612 m, 1591 m, 1542 m, 1472 m, 1403 w, 

1360 w, 1252 s, 1159 m, 1098 m, 1072 m, 1005 w, 966 w, 940 w, 835 s, 776 s, 671 w. 
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N6-Glycinylcarbamoyladenosine (g6A)[137] 

 

Compound 5 (160 mg, 0.23 mmol) and NEt3·3HF (110 μL, 0.68 mmol) were dissolved in 

CH2Cl2 (5 mL) and stirred at rt for 48 h. Afterwards methoxytrimethylsilane (1 mL, 

7.52 mmol) was added to stop the reaction and stirred for additional 1 h. After removing the 

solvent in vacuo the colorless crude material was dissolved in EtOH while heating, filtrated 

and the solvent was again removed in vacuo. The crude product was purified via RP-HPLC 

(eluent A: H2O, eluent B: MeCN, gradient: 100% A, 0% B → 0% A, 100% B in 45 min, 

retention time = 17.8 min) to yield nucleoside g6A (5.00 mg, 13.58 μmol, 6%) as a colorless 

hygroscopic salt with NEt3 as counterion (ratio 1.5:1). 

1H NMR (CD3OD, 200 MHz) δ (ppm) = 8.59 (s, 1H, C2H), 8.51 (s, 1H, C8H), 6.06 (d, 
3J=5.9 Hz, 1H, C1'H), 4.74 (t, 3J=5.5 Hz, 1H, C2'H), 4.36 (dd, 3J=3.3 Hz, 3J=5.0 Hz, 1H, 

C3'H), 4.17 (dd, 3J=2.7 Hz, 3J=5.6 Hz, 1H, C4'H), 3.99 (s, 2H, CH2), 3.83 (dd, 3J=2.8 Hz, 
2J=12.4 Hz, 2H, C5'H2), 3.20 (q, 3J=7.3 Hz, 4H, N(CH2CH3)3), 1.31 (t, 3J=7.3 Hz, 6H, 

N(CH2CH3)3). 

13C NMR (CD3OD, 101 MHz) δ (ppm) = 176.5, 155.9, 152.5, 152.4, 151.1, 143.9, 122.1, 

91.2, 88.0, 75.8, 72.5, 63.3, 47.8 (NEt3), 45.6, 9.5 (NEt3). 

HRMS (ESI-), calcd. for C13H16N6O7 [M-H]-:367.1008, found: 367.1005. 

IR: 
~

 (cm−1) = 3334 w, 3146 m, 2924 w, 2362 w, 2338 w, 1718 w, 1633 s, 1593 m, 1543 w, 

1448 m, 1404 m, 1333 m, 1308 m, 1221 s, 1190 m, 1101 s, 1081 m, 1054 s, 985 m, 947 w, 

863 m, 758 s, 668 w, 639 w, 625 w. 

  



Chapter 10  Experimental Section  

142 

10.6.4 Synthesis of m6A, d3-m
6A, m6

2A, and d3-m
6
2A 

2',3',5'-Tri-O-acetylinosine (6)[139] 

 

Inosine (5.00 g, 18.6 mmol) was dissolved in dry DMF (12 mL), followed by addition of dry 

pyridine (5 mL) and acetic anhydride (10 mL, 106 mmol). The reaction mixture was refluxed 

at 75 °C for 30 min. Afterwards the solvent was removed in vacuo and the crude product 

recrystallized from iso-propanol. The obtained crystals were filtered off and washed twice 

with iso-propanol to obtain product 6 (6.38 g, 16.2 mmol, 87%) as a colorless solid. 

Rf = 0.12 (CH2Cl2/MeOH 20:1). M.p.: 243°C.  

1H NMR (d6-DMSO, 400 MHz): δ (ppm) =12.48 (s, 1H, NH), 8.31 (s, 1H, C8H), 8.10 (s, 1H, 

C2H), 6.19 (d, 3J=5.7 Hz, 1H, C1'H), 5.91 (t, 3J=5.7 Hz, 1H, C2'H), 5.55 (t, 3J=5.8 Hz, 1H, 

C3'H), 4.41 – 4.22 (m, 3H, C4'H, C5'H2), 2.11 – 2.02 (3s, 9H, COCH3). 

13C NMR (d6-DMSO, 101 MHz) δ (ppm) = 170.0, 169.4, 169.2, 156.4, 147.9, 146.3, 139.3, 

124.8, 85.6, 79.5, 72.2, 70.0, 62.8, 20.5, 20.3, 20.2. 

HRMS (ESI+): calcd. for C16H18N4O8 [M+H]+: 395.1197, found: 395.1203. 

IR: 
~

 (cm−1) = 3564 w, 3052 w, 3008 w, 2808 w, 1758 m, 1740 m, 1728 m, 1703 s, 1592 w, 

1553 w, 1512 w, 1370 m, 1344 w, 1228 s, 1199 s, 1114 m, 1092 m, 1053 w, 1019 m, 960 w, 

920 m, 862 w, 636 w. 
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2',3',5'-Tri-O-acetyl-6-chloroinosine (7)[139] 

 

(Chloromethylen)dimethyliminiumchloride (20.1 g, 157.1 mmol) was dissolved in dry 

CH2Cl2 (130 mL), followed by addition of 2',3',5'-tri-O-acetylinosine (6, 31.0 g, 78.6 mmol). 

The yellow suspension was refluxed at 40 °C for 24 h and afterwards slowly poured into 1 L 

of half concentrated NaHCO3 solution in 50% water (300 mL). Then the solution was 

extracted with CH2Cl2 (3 × 100 mL), the combined organic layers were dried over MgSO4 

and the solvent removed in vacuo. Purification via column chromatography (CH2Cl2/MeOH = 

40:1) of the crude material obtained product 7 (30.0 g, 72.7 mmol, 93%) as a yellow oil. 

Rf = 0.77 (CH2Cl2/MeOH = 10:1). 

1H NMR (CDCl3, 300 MHz) δ (ppm) = 8.74 (s, 1H, C2H), 8.27 (s, 1H, C8H), 6.20 (d, 
3J=5.1 Hz, 1H, C1'H), 5.91 (t, 3J=5.3 Hz, 1H, C2'H), 5.61 (t, 3J=5.2 Hz, 1H, C3'H), 4.50 – 4.29 

(m, 3H, C4'H, C5'H2), 2.17 – 1.99 (3s, 9H, COCH3). 

13C NMR (CDCl3, 75 MHz) δ (ppm) = 170.4, 169.7, 169.5, 152.5, 151.9, 151.5, 143.8, 132.6, 

87.1, 80.8, 73.3, 70.7, 63.1, 21.0, 20.7, 20.6. 

HRMS (ESI+): calcd. for C16H17ClN4O7 [M+H]+: 413.0859, found: 413.0869. 

IR: 
~

 (cm−1) = 3611 w, 2960 w, 1741 s, 1673 m, 1592 m, 1561 m, 1493 w, 1425 w, 1369 m, 

1340 m, 1200 s, 1147 m, 1042 s, 958 w, 924 m, 901 m, 860 w, 635 w. 
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N6-Methyladenosine (m6A)[139] 

 

Compound 7 (30.0 g, 72.7 mmol) was dissolved in 500 mL ethanol and treated with ethanolic 

methylamine solution (33%, 43.0 mL) and stirred for 18 h at rt. The solvent was removed in 

vacuo, washed with ethanol and the resulted solid was recrystallized twice from methanol. 

After washing with methanol and drying in vacuo, the pure nucleoside m6A (19.1 g, 

67.7 mmol, 93%) was obtained as a white solid. 

Rf = 0.18 (CH2Cl2/MeOH = 10:1). M.p.: 146 °C. 

1H NMR (d6-DMSO, 400 MHz) δ (ppm) = 8.33 (s, 1H, C2H), 8.22 (s, 1H, C8H), 7.79 (s, br, 

1H, HNCH3), 5.88 (d, 3J=6.2 Hz, 1H, C1'H), 5.42 (dd, 2H, 3J=4.6 Hz, 3J=6.8 Hz, C2'OH, 

C5'OH), 5.17 (d, 3J=4.6 Hz, 1H, C3'OH), 4.60 (dd, 3J=6.2 Hz, 3J=11.3 Hz, 1H, C2'H), 4.15 (td, 
3J=3.1 Hz, 3J=4.8 Hz, 1H, C3'H), 3.97 (q, 3J=3.5 Hz, 1H, C4'H), 3.72 – 3.63 (m, 1H, C5'H2a), 

3.55 (ddd, 3J=3.6 Hz, 3J=7.3 Hz, 2J=12.1 Hz, 1H, C5'H2b), 2.96 (s, 3H, NCH3). 

13C NMR (d6-DMSO, 101 MHz): δ (ppm) = 155.1, 152.4, 148.1, 139.6, 119.9, 87.9, 85.9, 

73.5, 70.7, 61.7, 27.0 ppm. 

HRMS (ESI+): calcd. for C11H15N5O4 [M+H]+: 282.1197, found: 282.1201. 

IR: 
~

 (cm−1) = 3332 w, 3146 w, 2922 w, 1686 w, 1634 s, 1593 m, 1500 m, 1404 m, 1381 m, 

1333 m, 1309 s, 1222 m, 1190 m, 1134 m, 1101 m, 1082 m, 1056 s, 1031 m, 986 m, 947 w, 

864 m, 822 w, 794 w, 759 m, 669 w, 625 w. 
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d3-N
6-Methyladenosine (d3-m

6A) 

 

Method A: Ag2O (1.35 g, 5.82 mmol) was added to a solution d3-methylamine hydrochloride 

(0.34 g, 4.85 mmol) in 6 mL EtOH. After 30 min stirring at rt, the precipitate was filtered off 

and 2',3',5'-tri-O-acetyl-6-chloroinosine (7, 0.20 g, 0.49 mmol) was added to the filtrate and 

stirred for 48 h at rt. The reaction mixture was filtrated afterwards and the solvent of the 

filtrate was removed in vacuo. Afterwards the crude product was purified via RP-HPLC 

(eluent A: H2O, eluent B: MeCN, gradient: 100% A, 0% B → 40% A, 100% B in 45 min, 

retention time = 20.8 min) to yield pure nucleoside d3-m
6A (30.0 mg, 0.11 mmol, 22%) as a 

colorless solid. 

Method B: Compound 17 (34.0 mg, 54.0 µmol) were dissolved in 2 mL CH2Cl2 with 

subsequent addition of NEt3·3HF (35 µL, 217 µmol) and stirred at rt for 16 h. The reaction 

was stopped with methoxytrimethylsilane (300 µL), stirred for another 30 min and then the 

solvent was removed in vacuo. Afterwards the crude product was purified via RP-HPLC 

(eluent A: H2O, eluent B: MeCN, gradient: 100% A, 0% B → 40% A, 100% B in 45 min, 

retention time = 20.8 min) to yield pure nucleoside d3-m
6A (11.0 mg, 39.0 µmol, 72%) as a 

colorless solid. 

1H NMR (CD3OD, 400 MHz) δ (ppm) = 8.23 (s, 2H, C2H, C8H), 5.95 (d, 3J=6.5 Hz, 1H, 

C1'H), 4.74 (dd, 3J=5.2 Hz, 3J=6.4 Hz, 1H, C2'H), 4.32 (dd, 3J=2.5 Hz, 3J=5.1 Hz, 1H, C3'H), 

4.17 (q, 3J=2.5 Hz, 1H, C4'H), 3.89 (dd, 3J=2.5 Hz, 2J=12.6 Hz, 1H, C5'Ha), 3.74 (dd, 
3J=2.6 Hz, 2J=12.5 Hz, 1H, C5'Hb).

 

13C NMR (CD3OD, 101 MHz) δ (ppm) = 155.5, 152.0, 146.5, 140.0, 120.1, 89.9, 86.8, 74.0, 

71.3, 62.1. 

HRMS (ESI+): calcd. for C11H12D3N5O4 [M+H]+: 285.1382, found: 285.1387. 
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N6,N6-Dimethyladenosine (m6
2A)[139] 

 

Compound 7 (1.00 g, 2.43 mmol) was dissolved in 22 mL ethanol, treated with ethanolic 

dimethylamine solution (33%, 5.00 mL) and stirred at rt. After 18 h another portion of 

ethanolic dimethylamine solution (33%, 2.00 mL) was added, the solution stirred for another 

8 h and the solvent was removed afterwards in vacuo. CH2Cl2 was added and stirred for 

30 min. The precipitated white solid was filtered off, washed with CH2Cl2 and dried in vacuo 

to obtain pure nucleoside m6
2A (0.62 g, 2.10 mmol, 86%) as a white solid. 

Rf = 0.31 (CH2Cl2/MeOH = 10:1). M.p.: 153 °C. 

1H NMR (d6-DMSO, 200 MHz) δ (ppm) = 8.35 (s, 1H, C2H), 8.19 (s, 1H, C8H), 5.89 (d, 
3J=6.1 Hz, 1H, C1'H), 5.44 (d, 3J=6.2 Hz, 1H, C2'OH), 5.36 (dd, 3J=4.7 Hz, 3J=6.9 Hz, 1H, 

C5'OH), 5.18 (d, 3J=4.7 Hz, 1H, C3'OH), 4.55 (dd, 3J=5.9 Hz, 3J=11.1 Hz, 1H, C2'H), 4.12 (dd, 
3J=4.8 Hz, 3J=8.1 Hz, 1H, C3'H), 3.94 (dd, 3J=3.5 Hz, 1H, C4'H), 3.73 – 3.35 (m, 8H, C5'H2, 

N(CH3)2). 

13C NMR (d6-DMSO, 101 MHz) δ (ppm) = 155.0, 152.4, 150.6, 139.3, 120.5, 88.4, 86.4, 

74.2, 71.2, 62.2, 45.0. 

HRMS (ESI+): calcd. for C12H17N5O4 [M+H]+: 296.1353, found: 296.1356. 

IR: 
~

 (cm−1) = 3393 m, 3272 m, 2928 m, 2780 m, 2449 w, 1596 s, 1534 m, 1480 m, 1428 m, 

1404 m, 1348 m, 1306 m, 1272 m, 1204 m, 1181 m, 1125 m, 1114 m, 1083 s, 1033 s, 985 m, 

960 w, 894 m, 861 s, 791 m, 755 m, 695 s, 656 s, 628 s. 
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d3-N
6,N6-Dimethyladenosine (d3-m

6
2A) 

 

Compound 7 (100 mg, 0.24 mmol) was dissolved in 6 mL methanol and treated with 

d3-dimethylamine (170 mg, 3.53 mmol). After addition of NEt3 (700 µL) the reaction mixture 

was stirred for 18 h at 60 °C. Then the solvent was removed in vacuo and the product purified 

via RP-HPLC (eluent A: H2O, eluent B: MeCN, gradient: 100% A, 0% B → 40% A, 100% B 

in 45 min, retention time = 38.0 min). Isotope-labeled nucleoside d3-m
6

2A (57.0 mg, 

0.19 mmol, 80%) was dried in vacuo and was obtained as a white solid. 

1H NMR (D2O, 400 MHz) δ (ppm) = 8.14 (s, 1H, C2H), 7.95 (s, 1H, C8H), 5.96 (d, 
3J=5.9 Hz, 1H, C1'H), 4.71 (t, 3J=5.5 Hz, 1H, C2'H), 4.42 (dd, 3J=2.6 Hz, 3J=6.0 Hz, 1H, 

C3'H), 4.30 (d, 3J=2.6 Hz, 1H, C4'H), 3.96 (dd, 3J=2.3 Hz, 2J=12.7 Hz, 1H, C5'Ha), 3.86 (dd, 
3J=3.3 Hz, 2J=12.9 Hz, 1H, C5'Hb), 3.22 (s, br, 3H, NCH3). 

13C NMR (D2O, 101 MHz) δ (ppm) = 153.7, 151.4, 148.2, 138.2, 119.0, 88.1, 85.5, 73.6, 

70.5, 61.4, 38.6. 

HRMS (ESI+): calcd. for C12H14D3N5O4 [M+H]+: 299.1539, found: 299.1547. 
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10.6.5 Synthesis of m6t6A 

2',3',5'-Tri-O-(tert-butyldimethylsilyl)-N6-benzoyladenosine (16)[142] 

 

Compound 1 (0.10 g, 0.16 mmol) was dissolved in pyridine (2.0 mL) and treated with 

benzoylchloride (28.5 µL, 0.25 mmol) at -5 °C. The reaction mixture was stirred for 5 min at 

-5 °C, slowly warmed to rt and stirred for another 2 h. Afterwards the reaction mixture was 

stopped with H2O, diluted with CH2Cl2 (20 mL) and washed with H2O (3 × 10 mL). All 

aqueous layers were again extracted with CH2Cl2 (20 mL). The combined CH2Cl2-layers were 

dried over MgSO4, filtrated and the solvent was removed in vacuo. Pure product 16 (78.0 mg, 

0.11 mmol, 67%) was obtained after column chromatographic separation 

(EtOAc/cyclohexane = 20:80) as a colorless foam.  

Rf= 0.79 (cyclohexane/EtOAc 1:1). 

1H NMR (CDCl3, 599 MHz) δ (ppm) = 9.10 (s, br, 1H, NH), 8.80 (s, 1H, C8H), 8.35 (s, 1H, 

C2H), 8.01 (d, 3J=7.1 Hz, 2H, HPh), 7.57 (d, 3J=7.5 Hz, 1H, HPh), 7.50 (t, 3J=7.7 Hz, 2H, HPh), 

6.10 (d, 3J=5.2 Hz, 1H, C1'H), 4.66 (t, 3J=4.7 Hz, 1H, C2'H), 4.30 (t, 3J=3.9 Hz, 1H, C3'H), 

4.14 (d, 3J=3.0 Hz, 1H, C4'H), 4.06 – 3.75 (m, 2H, C5'H2), 0.94 – 0.78 (3s, 27H, SiC(CH3)3), 

0.16 – (-0.32) (m, 18H, Si(CH3)2). 

13C NMR (CDCl3, 151 MHz) δ (ppm) = 164.6, 152.7, 151.6, 149.4, 141.9, 133.8, 132.7, 

128.8, 127.8, 123.1, 88.4, 85.7, 75.9, 71.9, 62.5, 26.1, 25.8, 25.6, 18.5, 18.1, 17.8, -4.4, -4.7, 

-4.7, -5.0, -5.4, -5.4. 

HRMS (ESI+): calcd. for C35H59N5O5Si3 [M+H]+: 714.3897, found: 714.3907. 

IR: 
~

 (cm−1) = 2952 s, 2929 s, 2896 m, 2857 s, 1704 m, 1610 s, 1581 s, 1513 w, 1453 s, 

1390 w, 1328 w, 1251 s, 1155 m, 1071 s, 999 m, 969 m, 939 m, 843 s, 775 s, 705 m, 671 m.
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2',3',5'-Tri-O-(tert-butyldimethylsilyl)-N6-benzoyl-N6-methyl-adenosine (29)[142] 

 

Compound 16 (0.50 g, 0.70 mmol) was dissolved in CH2Cl2 (16.5 mL), treated with 

methyliodide (0.17 mL, 2.80 mmol) and afterwards cooled to -5 °C. After addition of 

tetrabutylammoniumbromide (0.23 g, 0.70 mmol) and a NaOH solution (1M, 7.0 mL), the 

reaction mixture was stirred for 2 h at -5 °C, followed by 1 h at rt. The reaction was stopped 

with H2O, then the crude mixture was diluted with CH2Cl2 (30 mL) and washed with H2O 

(3 × 50 mL). All aqueous layers were extracted again with CH2Cl2 (50 mL), the combined 

organic layers were dried over MgSO4 and filtrated. After removing the solvent in vacuo, the 

crude material was purified via column chromatography (EtOAc/cyclohexane = 30:70). 

Product 29 (0.33 g, 0.46 mmol, 65%) was obtained as a colorless foam. 

Rf= 0.87 (cyclohexane/EtOAc 1:1). 

1H NMR (CDCl3, 599 MHz) δ (ppm) = 8.53 (s, 1H, C8H), 8.24 (s, 1H, C2H), 7.41 (dd, 
3J=1.2 Hz, 3J=8.3 Hz, 2H, HPh), 7.23 – 7.21 (m, 1H, HPh), 7.12 (t, 3J=7.8 Hz, 2H, HPh), 6.01 

(d, 3J=5.6 Hz, 1H, C1'H), 4.58 (dd, 3J=4.4 Hz, 3J=5.5 Hz, 1H, C2'H), 4.23 (dd, 3J=3.2 Hz, 

4.2 Hz, 1H, C3'H), 4.10 (dd, 3J=2.8 Hz, 3J=7.0 Hz, 1H, C4'H), 3.96 (dd, 3J=4.2 Hz, 
2J=11.4 Hz, 1H, C5'Ha), 3.77 (s, 3H, CH3), 3.75 (dd, 3J=2.8 Hz, 2J=11.4 Hz, 1H, C5'Hb), 

0.95 - 0.71 (3s, 27H, SiC(CH3)3), 0.15 – -0.42 (6s, 18H, Si(CH3)2). 

13C NMR (CDCl3, 151 MHz) δ (ppm) = 172.3, 155.0, 152.8, 151.9, 142.8, 136.4, 130.8, 

128.9, 128.0, 126.8, 88.4, 86.2, 76.0, 72.3, 62.8, 36.1, 26.3, 26.0, 25.8, 18.7, 18.3, 18.0, -4.2, 

-4.4, -4.5, -4.9, -5.2, -5.2. 

HRMS (ESI+): calcd. for C36H61N5O5Si3 [M+H]+: 728.4053, found: 728.4062. 

IR: 
~

 (cm−1) = 2953 s, 2929 s, 2896 m, 2857 s, 1642 s, 1580 m, 1544 m, 1462 m, 1377 w, 

1309 w, 1251 s, 1160 m, 1071 s, 1004 m, 968 w, 939 w, 847 s, 774 s, 722 m, 660 m. 
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2',3',5'-Tri-O-(tert-butyldimethylsilyl)-N6-methyladenosine (8) 

 

Method A: N6-Methyladenosine (m6A, 7.41 g, 26.3 mmol) and imidazole (16.2 g, 0.24 mol) 

were dissolved in dry DMF (36 mL), then TBSCl (16.0 g, 0.11 mol) was added to the yellow 

solution and stirred for 18 h at rt. Afterwards CH2Cl2 (250 mL) was added to the reaction 

mixture and then washed with H2O (3 × 200 mL). The combined organic layers were dried 

over MgSO4, evaporated in vacuo and the crude material was purified via column 

chromatography (EtOAc/cyclohexane = 40:60). Product 8 (15.8 g, 25.4 mmol, 96%) was 

obtained as a colorless oil. 

Method B: Compound 29 (0.05 g, 68.7 µmol) was treated with an ethanolic methylamin 

solution (33%, 1.5 mL) and stirred for 30 min. Afterwards the solvent was removed in vacuo 

and the crude material was purified by column chromatography 

(EtOAc/cyclohexane = 50:50). Compound 8 (0.04 g, 65.7 µmol, 96%) was obtained as a 

foam. 

Rf(EtOAc/cyclohexane = 1:1) = 0.74. 

1H NMR (d6-DMSO, 400 MHz) δ (ppm) = 8.32 (s, 1H, C2H), 8.22 (s, 1H, C8H), 7.76 (s, br, 

1H, NH), 5.93 (d, 3J=6.4 Hz, 1H, C1'H), 4.91 (dd, 3J=4.4 Hz, 3J=6.3 Hz, 1H, C2'H), 4.32 (dd, 
3J=1.8 Hz, 3J=4.4 Hz, 1H, C3'H), 4.08 – 3.93 (m, 2H, C4'H, C5'Hb), 3.74 (dd, 3J=6.6 Hz, 
2J=13.5 Hz, 1H, C5'Hb), 2.95 (s, br, 3H, CH3), 0.91 – 0.71 (3s, 27H, SiC(CH3)3), 0.10 – 

(-0.36) (6s, 18H, Si(CH3)2). 

13C NMR (d6-DMSO, 101 MHz) δ (ppm) = 155.4, 153.0, 148.8, 139.6, 120.1, 87.3, 85.7, 

74.7, 72.8, 62.9, 26.2, 26.1, 25.9, 18.4, 18.2, 17.9, -2.8, -4.2, -4.4, -4.5, -5.0, -5.1. 

HRMS (ESI+): calcd. for C29H57N5O4Si3 [M+H]+: 624.3791, found: 624.3796. 

IR: 
~

 (cm−1) = 3344 w, 2952 m, 2929 m, 2896 m, 2857 m, 1622 m, 1582 m, 1472 w, 1362 w, 

1253 m, 1158 m, 1070 m, 1043 w, 1000 w, 968 m, 938 m, 831 s, 773 s, 671 m, 651 m. 
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2',3',5'-Tri-O-(tert-butyldimethylsilyl)-N6-methyl-N6-(4-nitrophenoxy)carbonyl 

adenosine (12) 

 

The reagent (4-Nitrophenoxy)chloroformate (12.6 g, 62.5 mmol) was added to a solution of 

2',3',5'-Tri-O-(tert-butyldimethylsilyl)-N6-methyladenosine (8, 15.6 g, 25.0 mmol) in dry 

pyridine (130 mL). The resulting suspension was stirred at 50 °C for 3 h and subsequently 

diluted with CH2Cl2 (250 mL). After washing with H2O (3 × 200 mL) the combined organic 

layers were dried over MgSO4, filtrated and the solvent removed in vacuo. The crude product 

was purified via column chromatography (EtOAc/cyclohexane = 10:90) and the solvent was 

removed in vacuo to yield compound 12 as a colorless solid in 80% (15.8 g, 20.1 mmol). 

Rf(EtOAc/cyclohexane = 1:1) = 0.83. M.p.: 137 °C. 

1H NMR (CDCl3, 600 MHz) δ (ppm) = 8.81 (s, 1H, C2H), 8.48 (s, 1H, C8H), 8.23 – 8.17 [d, 
3J=9.2 Hz, 2H, HNpe(o-NO2)], 7.41 [d, 3J=9.3 Hz, 2H, HNpe(m-NO2)], 6.11 (d, 3J=4.9 Hz, 1H, 

C1'H), 4.53 (t, 3J=4.6 Hz, 1H, C2'H), 4.28 (t, 3J=4.1 Hz, 1H, C3'H), 4.13 (dd, 3J=3.6 Hz, 
3J=6.2 Hz, 1H, C4'H), 4.00 (dd, 3J=3.6 Hz, 2J=11.5 Hz, 1H, C5'Ha), 3.78 (dd, 3J=2.4 Hz, 
2J=11.5 Hz, 1H, C5'Hb), 3.66 (s, 3H, CH3), 0.91 – 0.75 (3s, 27H, SiC(CH3)3), 0.08 – (-0.29) 

(6s, 18H, Si (CH3)2). 

13C NMR (CDCl3, 151 MHz) δ (ppm) = 156.1, 152.8, 152.6, 152.5, 152.2, 145.3, 143.0, 

127.7, 125.1, 122.7, 88.6, 85.8, 76.7, 71.9, 62.6, 35.9, 26.3, 26.0, 25.8, 18.7, 18.3, 18.0, -4.2, 

-4.5, -4.5, -4.9, -5.1, -5.2. 

HRMS (ESI+): calcd. for C36H60N6O8Si3 [M+H]+: 789.3853, found: 789.3892. 

IR: ν
~

 (cm−1) = 2952 m, 2929 m, 2858 m, 1743 s, 1592 m, 1574 s, 1525 s, 1461 m, 1345 s, 

1309 s, 1253 m, 1217 s, 1155 s, 1108 s, 968 w, 864 m, 835 s, 776 s, 691 m, 648 w. 
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N6-Methyl-2',3',5'-Tri-O-(Tert-butyldimethylsilyl)-N6-{{{(1S,2R)-2-{[(tert-butyl)-

dimethyl]silyloxy}-1-{[2-(4-nitrophenyl)ethoxy]carbonyl}propyl}amino}carbonyl} 

adenosine (13) 

 

Compound 12 (1.10 g, 1.39 mmol) and O-(tert-butyldimethylsilyl)-L-threonine-[2-(4-

nitrophenyl)ethyl]ester (11, 0.80 g, 2.09 mmol) were dissolved in dry pyridine (20 mL) and 

stirred for 18 h at rt. The solvent was removed in vacuo, then CH2Cl2 (80 mL) were added and 

washed with water (3 × 120 mL). The crude product was dried over MgSO4, filtrated and 

purified via column chromatography (EtOAc/cyclohexane = 20:80). Compound 13 (1.21 g, 

1.17 mmol, 84%) was obtained as a colorless foam. 

Rf(EtOAc/cyclohexane = 1:1) = 0.79. 

1H NMR (CDCl3, 300 MHz) δ (ppm) = 11.00 (d, 3J=8.7 Hz, 1H, CNH), 8.46 (s, 1H, C2H), 

8.26 (s, 1H, C8H), 8.03 [d, 3J=8.5 Hz, 2H, HNpe(o-NO2)], 7.31 [d, 3J=8.5 Hz, 2H, 

HNpe(m-NO2)], 6.10 (d, 3J=5.3 Hz, 1H, C1'H), 4.71 – 4.64 (t, 3J=4.6 Hz, 1H, C2'H), 4.57 (dd, 
3J=1.6 Hz, 3J=8.6 Hz, 1H, CH), 4.51 – 4.22 (m, 4H, CH, C3'H, OCH2CH2), 4.13 (dd, 
3J=3.4 Hz, 3J=6.5 Hz, 1H, C4'H), 4.06 – 3.94 (m, 4H, C5'Ha, NCH3), 3.78 (dd, 3J=2.9 Hz, 
2J=11.4 Hz, 1H, C5'Hb), 3.01 (t, 3J=6.6 Hz, 2H, OCH2CH2), 1.22 (d, 3J=6.3 Hz, 3H, -CH3), 

0.87 (4s, 36H, SiC(CH3)3), 0.22 – (-0.32) (8s, 24H, Si(CH3)2). 

13C NMR (CDCl3, 75 MHz) δ (ppm) = 171.5, 156.6, 153.4, 152.6, 150.1, 147.1, 145.7, 140.4, 

130.0, 123.9, 122.8, 99.6, 88.4, 85.9, 76.1, 72.3, 69.0, 64.8, 62.8, 60.7, 35.1, 26.3, 26.1, 25.9, 

25.8, 21.4, 18.8, 18.3, 18.1, 18.0, -4.1, -4.2, -4.4, -4.5, -4.8, -5.1, -5.2, -5.2. 

HRMS (ESI+): calcd. for C48H85N7O10Si4 [M+H]+: 1032.5508, found: 1032.5551. 

IR: 
~

 (cm−1) = 2941 m, 2930 m, 2857 m, 2361 w, 1734 m, 1685 m, 1570 m, 1520 s, 1464 m, 

1346 s, 1251 s, 1215 w, 1165 m, 1138 m, 1087 m, 1023 m, 834 s, 775 s, 748 m, 669 m. 
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N6-Methyl-N6-{{{(1S,2R)-2-hydroxy-1-{[2-(4-nitrophenyl)ethoxy]carbonyl}propyl}-

amino}carbonyl}adenosine (22) 

 

Compound 13 (3.00 g, 2.95 mmol) was dissolved in dry CH2Cl2 (2.5 mL), then treated with 

triethylamine-tris(hydrofluoride) (3.89 mL, 24.1 mmol) and stirred at rt for 24 h. After 

evaporation of the solvent in vacuo, the reaction mixture was left for 48 h at 25 °C. 

Afterwards CH2Cl2 (2 mL) was added and the reaction stopped with trimethylmethoxysilane 

(1 mL). After subsequent removal of the solvent in vacuo the crude mixture was purified via 

column chromatography (CH2Cl2/MeOH = 10:1) and obtained 22 (1.62 g, 2.89 mmol, 98%) 

as a colorless foam. 

Rf (CH2Cl2/MeOH 10:1) = 0.34. 

1H NMR (d6-DMSO, 400 MHz) δ (ppm) = 10.69 (d, 3J=7.8 Hz, 1H, CNH), 8.74 (s, 1H, 

C2H), 8.54 (s, 1H, C8H), 8.07 [d, 3J=8.9 Hz, 2H, HNpe(o-NO2)], 7.52 (d, 3J=8.9 Hz, 2H, 

HNpe(m-NO2)], 6.05 (d, 3J=5.3 Hz, 1H, C1'H), 5.53 (d, 3J=5.9 Hz, 1H, C2'H), 5.21 (dd, 
3J=4.9 Hz, 3J=7.8 Hz, 2H, C2'OH, C3'OH), 5.12 (t, 3J=5.5 Hz, 1H, C5'OH), 4.56 (dd, 
3J=5.3 Hz, 3J=10.8 Hz, 1H, C2'H), 4.41 – 4.29 (m, 2H, OCH2CH2), 4.27 (dd, 3J=2.9 Hz, 
3J=7.8 Hz, 1H, CH), 4.21 – 4.11 (m, 2H, C3'H, CH), 3.99 (q, 3J=3.9 Hz, 1H, C4'H), 3.82 (s, 

3H, NCH3), 3.70 (dd, 3J=5.4 Hz, 2J=10.5 Hz, 1H, C5'Ha), 3.60 (dd, 3J=6.0 Hz, 2J=11.8 Hz, 

1H, C5'Hb), 3.05 (t, 3J=6.3 Hz, 2H, OCH2CH2), 1.10 (d, 3J=6.3 Hz, 3H, -CH3). 

13C NMR (d6-DMSO, 101 MHz) δ (ppm) = 170.8, 155.3, 152.3, 152.1, 149.8, 146.6, 146.1, 

141.5, 130.1, 123.2, 121.8, 87.6, 85.5, 73.9, 70.1, 66.2, 64.2, 61.1, 59.9, 34.3, 34.0, 20.6. 

HRMS (ESI+): calcd. for C24H29N7O10 [M+H]+: 576.2049, found: 576.2054. 

IR: ν
~

 (cm-1) = 3342 m, 2930 m, 2361 w, 1734 m, 1670 m, 1570 s, 1516 s, 1464 s, 1343 s, 

1269 m, 1180 m, 1107 s, 1079 s, 1022 s, 854 m, 746 m, 697 m, 644 m.  
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N6-Methyl-N6-threonylcarbamoyladenosine (m6t6A) 

 

Compound 22 (50.0 mg, 86.9 μmol) of were dissolved in 900 µL THF and treated with 

1,8-Diazabicyclo[5.4.0]undec-7-en (100 μL, 0.66 mmol). The reaction mixture was shaken 

for 3 h at 40 °C at 700 rpm. Afterwards the solvent was removed in vacuo and the crude 

product purified via RP-HPLC (eluent A: 0.1 M NEt3/HOAc in H2O, pH = 7.0, eluent B: 

0.1 M NEt3/HOAc in MeCN, pH = 7.0, gradient: 100% A, 0% B → 40% A, 100% B in 

45 min, retention time = 18.7 min) to yield nucleoside m6t6A (33.0 mg, 69.2 µmol, 80%) as a 

colorless hygroscopic salt with NEt3 (ratio of 2:1). 

1H NMR (CD3OD, 400 MHz) δ (ppm) = 8.61 (s, 1H, C8H), 8.54 (s, 1H, C2H), 6.10 (d, 
3J=5.8 Hz, 1H, C1'H), 4.75 – 4.70 (m, 1H, C2'H), 4.41 – 4.30 (m, 3H, C3'H, CH, CH), 4.17 

(s, 1H, C4'H), 3.92 (s, 3H, NCH3), 3.90 (dd, 3J=2.8 Hz, 2J=12.4 Hz, 1H, C5'Ha), 3.77 (dd, 
3J=3.1 Hz, 2J=12.4 Hz, 1H, C5'Hb), 3.20 (q, 3J=7.3 Hz, 3H, N(CH2CH3)3), 1.30 (t, 3J=7.3 Hz, 

6H, N(CH2CH3)3), 1.25 (d, 3J=6.4 Hz, 3H, -CH3). 

13C NMR (CD3OD, 101 MHz) δ (ppm) = 174.9, 156.3, 153.1, 151.8, 149.8, 141.5, 122.6, 

89.4, 86.2, 74.2, 70.8, 67.5, 61.7, 60.7, 46.3 (NEt3), 34.0, 19.1, 7.7 (NEt3). 

HRMS (ESI): calcd. for C16H22N6O8 [M-H]-: 425.1426, found: 425.1417. 
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10.6.6 Synthesis of d3-m
6t6A 

d3-2',3',5'-Tri-O-(tert-butyldimethylsilyl)-N6-benzoyl-N6-methyladenosine (17) 

 

Compound 16 (732 mg, 1.03 mmol) was dissolved in CH2Cl2 (24 mL) and treated with 

methyliodide (255 µL, 4.10 mmol). After addition of tetrabutylammoniumbromide (0.23 g, 

0.70 mmol) and a NaOH solution (1M, 7.0 mL) the solution was stirred for 3 h at rt. The 

reaction was stopped with H2O, then the crude mixture was diluted with CH2Cl2 (30 mL) and 

washed with H2O (3 × 20 mL). All aqueous layers were extracted again with CH2Cl2 (20 mL), 

the combined organic layers were dried over MgSO4 and filtrated. After removing the solvent 

in vacuo, the crude material was purified via column chromatography (EtOAc/ cyclohexane = 

30:70 → 50:50). The crude reaction mixture was added to the column using pure CH2Cl2 due 

to solubility reasons. Product 17 (508 mg, 0.69 mmol, 68%) was obtained as a colorless foam. 

1H NMR (CDCl3, 599 MHz) δ (ppm) = 8.57 (s, 1H, C8H), 8.29 (s, 1H, C2H), 7.43 (d, 
3J=7.6 Hz, 2H, HPh), 7.26 (d, 3J=7.4 Hz, 1H, HPh), 7.14 (t, 3J=7.6 Hz, 2H, HPh), 6.02 (d, 
3J=5.5 Hz, 1H, C1'H), 4.56 (t, 3J=4.8 Hz, 1H, C2'H), 4.26 – 4.21 (m, 1H, C3'H), 4.10 (dd, 
3J=2.9 Hz, 3J=6.4 Hz, 1H, C4'H), 3.96 (dd, 3J=4.1 Hz, 2J=11.4 Hz, 1H, C5'Ha), 3.76 (dd, 
3J=2.7 Hz, 2J=11.4 Hz, 1H, C5'Hb), 0.95 – 0.69 (3s, 27H, SiC(CH3)3), 0.12 – -0.43 (6s, 18H, 

Si(CH3)2). 

13C NMR (CDCl3, 151 MHz) δ (ppm) = 172.3, 154.9, 152.8, 151.6, 142.9, 136.2, 130.9, 

128.9, 128.1, 126.4, 88.5, 86.2, 76.1, 72.3, 62.8, 26.3, 26.0, 25.8, 18.7, 18.3, 18.0, -4.2, -4.4, 

-4.5, -4.9, -5.1. 

HRMS (ESI+): calcd. for C36H58D3N5O5Si3 [M+H]+: 731.4239, found: 731.4231. 
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d3-2',3',5'-Tri-O-(tert-butyldimethylsilyl)-N6-methyladenosine (18) 

 

Compound 17 (2.98 g, 4.08 mmol) was treated with an ethanolic methylamin solution (33%, 

80 mL) and stirred for 2 h. Afterwards the solvent was removed in vacuo and the crude 

material was purified by column chromatography (EtOAc/cyclohexane = 50:50). The crude 

mixture was dissolved in CH2Cl2 before it was load to the column. Compound 18 (2.39 g, 

3.82 mmol, 94%) was obtained as a pure colorless foam. 

1H NMR (CDCl3, 599 MHz) δ (ppm) = 8.36 (s, 1H, C2H), 8.05 (s, 1H, C8H), 5.99 (d, 
3J=5.4 Hz, 1H, C1'H), 5.67 (s, br, 1H, NH), 4.69 (t, 3J=4.8 Hz, 1H, C2'H), 4.29 (t, 3J=3.8 Hz, 

1H, C3'H), 4.10 (dd, 3J=3.4 Hz, 3J=7.0 Hz, 1H, C4'H), 4.01 (dd, 3J=4.4 Hz, 2J=11.3 Hz, 1H, 

C5'Ha), 3.76 (dd, 3J=2.9 Hz, 2J=11.3 Hz, 1H, C5'Hb), 0.97 – 0.73 (3s, 27H, SiC(CH3)3), 0.14 – 

(-0.31) (6s, 18H, Si(CH3)2).
 

13C NMR (CDCl3, 151 MHz) δ (ppm) = 155.6, 153.2, 149.1, 139.1, 120.6, 88.4, 85.8, 75.9, 

72.4, 62.9, 26.3, 26.1, 25.9, 18.7, 18.3, 18.1, -4.2, -4.5, -4.5, -4.9, -5.2. 

HRMS (ESI+): calc. for C29H54D3N5O4Si3 [M+H]+: 627.3976, found: 627.3967. 
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d3-2',3',5'-O-Tris(tert-butyldimethylsilyl)-N6-methyl-N6-(4-

nitrophenoxy)carbonyladenosine (19) 

 

(4-Nitrophenoxy)chloroformate (0.30 g, 1.69 mmol) was added to a solution of d3-2',3',5'-Tri-

O-(tert-butyldimethylsilyl)-N6-methyladenosine (18, 353 mg, 563 µmol) in dry pyridine 

(4 mL). The resulting suspension was stirred at 50 °C for 5.5 h and subsequently diluted in 

CH2Cl2 (20 mL). After washing with H2O (3 × 40 mL) the combined organic layers were 

dried over MgSO4, filtrated and the solvent removed in vacuo. The crude product was purified 

via column chromatography (EtOAc/cyclohexane = 10:90) and compound 19 (411 mg, 

0.52 mmol, 92%) was obtained as a colorless foam. 

1H NMR (CDCl3, 599 MHz) δ (ppm) = 8.80 (s, 1H, C2H), 8.46 (s, 1H, C8H), 8.21 [d, 
3J=9.2 Hz, 2H, HNpe(o-NO2)], 7.40 [d, 3J=9.2 Hz, 2H, HNpe(m-NO2)], 6.11 (d, 3J=4.9 Hz, 1H, 

C1'H), 4.53 (t, 3J=4.6 Hz, 1H, C2'H), 4.28 (t, 3J=4.1 Hz, 1H, C3'H), 4.13 (d, 3J=2.6 Hz, 1H, 

C4'H), 4.00 (dd, 3J=3.6 Hz, 2J=11.5 Hz, 1H, C5'Ha), 3.78 (dd, 3J=2.4 Hz, 2J=11.5 Hz, 1H, 

C5'Hb), 0.91 – 0.73 (3s, 27H, SiC(CH3)3), 0.17 – (-0.31) (6s, 18H, Si (CH3)2). 

13C NMR (CDCl3, 151 MHz) δ (ppm) = 156.1, 152.9, 152.6, 152.5, 152.2, 145.3, 143.1, 

127.9, 125.1, 122.7, 88.6, 85.8, 76.6, 72.0, 62.6, 26.3, 26.0, 25.8, 18.7, 18.3, 18.1, -4.2, -4.4, 

-4.5, -4.9, -5.1, -5.2. 

HRMS (ESI+): calcd. for C36H57D3N6O8Si3 [M+H]+: 792.4038, found: 789.4031. 
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d3-N
6-Methyl-2',3',5'-Tri-O-(Tert-butyldimethylsilyl)-N6-{{{(1S,2R)-2-{[(tert-butyl)-

dimethyl]silyloxy}-1-{[2-(4-nitrophenyl)ethoxy]carbonyl}propyl}amino}carbonyl} 

adenosine (20) 

 

Compound 19 (2.40 g, 3.03 mmol) and O-(tert-Butyldimethylsilyl)-L-threonine-[2-(4-

nitrophenyl)ethyl]ester (11, 1.74 g, 4.54 mmol) were dissolved in dry pyridine (26 mL) and 

stirred for 15 h at rt. Extra addition of compound 11 (0.30 g, 0.78 mmol) completed the 

reaction by stirring at rt for another 7 h. CH2Cl2 (100 mL)was added after removal of the 

solvent in vacuo and washed with water (3 × 150 mL). The crude product was dried over 

MgSO4, filtrated and purified via column chromatography (EtOAc/cyclohexane = 30:70). 

Compound 20 (2.62 g, 2.53 mmol, 84%) was obtained as colorless foam. 

1H NMR (CDCl3, 200 MHz) δ (ppm) = 11.01 (d, 3J=8.8 Hz, 1H, CNH), 8.46 (s, 1H, C2H), 

8.27 (s, 1H, C8H), 8.03 [d, 3J=8.8 Hz, 2H, HNpe(o-NO2)], 7.31 [d, 3J=8.6 Hz, 2H, 

HNpe(o-NO2)], 6.10 (d, 3J=5.2 Hz, 1H, C1'H), 4.66 (t, 3J=4.7 Hz, 1H, C2'H), 4.61 – 4.24 (m, 

5H, CH, C4'H, C3'H, OCH2CH2), 4.13 (dd, 3J=3.5 Hz, 3J=6.3 Hz, 1H, CH), 4.01 (dd, 
3J=3.9 Hz, 2J=11.4 Hz, 1H, C5'Ha), 3.77 (dd, 3J=2.9 Hz, 2J=11.4 Hz, 1H, C5'Hb), 3.01 (t, 
3J=6.1 Hz, 2H, OCH2CH2), 1.21 (d, 3J=6.3 Hz, 3H, -CH3), 0.95 – 0.75 (4s, 36H, SiC(CH3)3), 

0.22 – (-0.35) (8s, 24H, Si(CH3)2). 

HRMS (ESI+): calcd. for C48H82D3N7O10Si4 [M+H]+: 1035.5693, found: 1035.5665. 
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d3-N
6-Methyl-N6-{{{(1S,2R)-2-hydroxy-1-{[2-(4-nitrophenyl)ethoxy]carbonyl}propyl}-

amino}carbonyl}adenosine (30) 

 

Compound 20 (1.50 g, 1.45 mmol) was dissolved in dry CH2Cl2 (2 mL), then treated with 

triethylamine-tris(hydrofluoride) (3.89 mL, 24.1 mmol) and stirred at 25 °C for 24 h. After 

evaporation of the solvent in vacuo, the reaction mixture was left for 48 h at 25 °C. 

Afterwards CH2Cl2 (2 mL) was added and the reaction stopped with trimethylmethoxysilane 

(1 mL). After subsequent removal of the solvent in vacuo the crude mixture was purified via 

column chromatography (CH2Cl2/MeOH = 10:1) to obtain compound 30 (372 mg, 643 µg, 

44%). 

1H NMR (CD3OD, 400 MHz) δ (ppm) = 8.53 (s, 1H, C8H), 8.50 (s, 1H, C2H), 7.99 [d, 
3J=8.8 Hz, 2H, HNpe(o-NO2)], 7.42 [d, 3J=8.8 Hz, 2H, HNpe(o-NO2)], 6.10 (d, 3J=5.5 Hz, 1H, 

C1'H), 4.70 (t, 3J=5.3 Hz, 1H, C2'H), 4.46 – 4.38 (m, 3H, OCH2CH2, CH), 4.35 (dd, 
3J=3.8 Hz, 3J=5.1 Hz, 1H, C3'H), 4.31 (qd, 3J=2.9 Hz, 3J=6.4 Hz, 1H, CH), 4.15 (dd, 
3J=3.1 Hz, 6.6 Hz, 1H, C4'H), 3.89 (dd, 3J=2.8 Hz, 2J=12.3 Hz, 1H, C5'Ha), 3.76 (dd, 3J=3.2, 
2J=12.4 Hz, 1H, C5'Hb), 3.06 (t, 3J=6.3 Hz, 2H, OCH2CH2), 1.21 (d, 3J=6.4, 3H, -CH3). 

13C NMR (CD3OD, 101 MHz) δ (ppm) = 171.1, 156.6, 152.8, 151.9, 149.5, 146.6, 146.2, 

141.6, 129.6, 122.9, 122.5, 89.4, 86.1, 74.3, 70.7, 66.9, 64.4, 61.6, 60.1, 34.1, 19.2. 

HRMS (ESI+): calcd. for C24H26D3N7O10 [M+H]+: 579.2234, found: 579.2238. 
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d3-N
6-Methyl-N6-threonylcarbamoyladenosine (d3-m

6t6A) 

 

Compound 30 (50.0 mg, 86.4 μmol) were dissolved in 900 µL THF and treated with 

1,8-Diaza-bicyclo[5.4.0]undec-7-en (100 μL, 0.66 mmol). The reaction mixture was shaken 

for 3 h at 40 °C. Afterwards the solvent was removed in vacuo and purified via RP-HPLC 

(eluent A: H2O, eluent B: MeCN, gradient: 100% A, 0% B → 40% A, 100% B in 45 min, 

retention time = 23.0 min) to yield nucleoside d3-m
6t6A (28.5 mg, 48.9 µmol, 57%) as a 

colorless hygroscopic salt with DBU as counterion (ratio of 1:1). 

1H NMR (D2O, 400 MHz) δ (ppm) = 8.70 (s, 1H, C8H), 8.57 (s, 1H, C2H), 6.19 (d, 
3J=5.7 Hz, 1H, C1'H), 4.85 (t, 3J=5.5 Hz, 1H, C2'H), 4.48 (t, 3J=4.6 Hz, 1H, C3'H), 4.32 (m, 

2H, CH, CH), 4.26 (d, 3J=3.9 Hz, 1H, C4'H), 3.92 (m, 2H, C5'H2), 3.61 – 3.49 (m, 4H, 

DBU), 3.34 (t, 3J=5.8 Hz, 2H, DBU), 2.67 – 2.61 (m, 2H, DBU), 2.08 – 1.98 (m, 2H, DBU), 

1.71 (m, 6H, DBU), 1.28 (d, 3J=6.4 Hz, 3H, CCH3). 

13C NMR (D2O, 101 MHz) δ (ppm) = 177.4, 165.8 (DBU), 157.1, 153.2, 151.4, 150.6, 142.0, 

122.8, 88.3, 85.5, 73.6, 70.3, 68.2, 62.1, 61.2, 54.0 (DBU), 48.1 (DBU), 37.9 (DBU), 32.7 

(DBU), 28.3 (DBU), 25.8 (DBU), 23.2 (DBU), 19.3, 18.8 (DBU). 

HRMS (ESI-): calcd. for C16H19D3N6O8 [M-H]-: 428.1612, found: 428.1607. 
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10.6.7 Synthesis of Am, d3-Am, and d3-m
1A 

2'-O-Methyladenosine (Am)[143] 

 

Adenosine (1.36 g, 5.09 mmol) was dissolved in dry DMF (20 mL) at 80 °C and cooled to 

0 °C. Then sodiumhydride (60% in mineral oil, 0.22 g, 9.17 mmol) was added. Afterwards 

methyliodide (0.24 mL, 3.82 mmol) was dissolved in DMF (2.5 mL) and added under 

vigorously shaking. After stirring for 4 h at 0 °C, the suspension was filtrated. The solvent of 

the filtrate removed in vacuo. The residue was dissolved in methanol (25 mL) and adsorbed 

on silica (3 g). The raw material was purified via column chromatography (CH2Cl2/MeOH = 

50:1 → 20:1). For further purification of the monomethylated adenosine fractions were 

recrystallized twice in ethanol to yield nucleoside Am (0.17 g, 0.60 mmol, 16%) as a colorless 

solid.  

M.p.: 205 °C. 

1H NMR (d6-DMSO, 400 MHz) δ (ppm) = 8.38 (s, 1H, C8H), 8.14 (s, 1H, C2H), 7.34 (s, 2H, 

NH2), 6.00 (d, 3J=6.0 Hz, 1H, C1'H), 5.40 (dd, 3J=4.7 Hz, 3J=6.9 Hz, 1H, C5'OH), 5.25 (d, 
3J=4.9 Hz, 1H, C3'OH), 4.39 – 4.32 (m, 2H, C2'H, C3'H), 3.98 (q, 3J=3.5 Hz, 1H, C4'H), 3.72 – 

3.62 (m, 1H, C5'Ha), 3.53 – 3.60 (m, 1H, C5'Hb), 3.30 (s, 3H, CH3). 

13C NMR (d6-DMSO, 101 MHz) δ (ppm) = 156.1, 152.5, 149.0, 139.7, 119.2, 86.4, 85.8, 

82.4, 68.8, 61.5, 57.4. 

HRMS (ESI+): calcd. for C11H15N5O4 [M+H]+: 282.1197, found: 282.1198. 

IR: 
~

 (cm-1) = 3264 s, 3236 s, 3104 s, 2915 m, 2830 m, 1693 s, 1613 s, 1568 m, 1475 m, 

1422 m, 1382 m, 1344 m, 1292 s, 1194 m, 1121 s, 1075 s, 1021 m, 980 m, 874 w, 809 w, 

778 w, 727 m, 700 m, 638 m. 
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d3-2'-O-Methyladenosine (d3-Am) 

 

Adenosine (2.00 g, 7.48 mmol) was dissolved in dry DMF (25 mL) at 80 °C and cooled to 

0 °C. Then sodiumhydride (60% in mineral oil, 0.32 g, 13.5 mmol) was added, stirred for 

20 min. Methyliodide (0.81 mL, 5.61 mmol), dissolved in DMF (3.7 mL) was added under 

vigorous shaking after completed H2-formation. After stirring for 3.75 h at 0 °C, MeOH 

(4 mL) was added to stop the reaction. Then the suspension was filtrated and the solvent of 

the filtrate was removed in vacuo. The residue was dissolved in methanol (30 mL) and 

adsorbed on silica (3 g). The raw material was purified by column chromatography 

(CH2Cl2/MeOH = 50:1 → 20:1). For further purification the monomethylated adenosine 

fractions were recrystallized twice in ethanol to yield isotope-labeled compound d3-Am 

(0.34 g, 1.20 mmol, 21%) as a colorless solid.  

1H NMR (d6-DMSO, 400 MHz) δ (ppm) = 8.38 (s, 1H, C8H), 8.14 (s, 1H, C2H), 7.34 (s, 2H, 

NH2), 6.00 (d, 3J=5.9 Hz, 1H, C1'H), 5.41 (dd, 3J=4.8 Hz, 3J=6.6 Hz, 1H, C5'OH), 5.25 (d, 
3J=3.4 Hz, 1H, C3'OH), 4.40 – 4.29 (m, 2H, C2'H, C3'H), 3.98 (q, 3J=3.5 Hz, 1H, C4'H), 3.67 

(dt, 3J=4.1 Hz, 2J=12.0 Hz, 1H, C5'Ha), 3.60 – 3.51 (m, 1H, C5'Hb). 

13C NMR (d6-DMSO, 101 MHz) δ (ppm) = 156.1, 152.5, 149.0, 139.7, 119.2, 86.4, 85.8, 

82.3, 68.8, 61.5 (sept, 1J=21 Hz) CD3. 

HRMS (ESI+): calcd. for C11H12D3N5O4 [M+H]+: 285.1382, found: 285.1388. 
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d3-1-Methyladenosine (d3-m
1A)[145] 

 

Adenosine (5.00 g, 18.7 mmol) and d3-methyliodide were dissolved in dry DMA (60 mL) and 

stirred for 16 h at rt. Then 0.5 g celite was added, stirred for 20 min and afterwards filtrated. 

After addition of acetone (250 mL) the solution was left standing for 24 h at 4 °C. The 

resulting precipitate was filtrated, washed with cold acetone, diethylether and dried in vacuo 

afterwards. The slightly yellow product was detected as pure d3-m
1A hydroiodide (5.31 g, 

12.9 mmol, 69%). Afterwards 2.00 g of the hydroiodide was adjusted to pH 8 with conc. NH3 

and acetone (40 mL) was added. Then the solution was left at 4 °C for 16 h and the formed 

crystals were filtered off and purified via RP-HPLC (eluent A: H2O (2 mM NH4HCOO, 

pH = 5.5), eluent B: H2O/MeCN = 80:20 (2 mM NH4HCOO, pH = 5.5), gradient: 100% A, 

0% B → 40% A, 100% B in 45 min, retention time = 41.5 min). 

M.p.: 211 °C. 

1H NMR (d6-DMSO, 200 MHz) δ (ppm) = 8.15 (s, 1H, C2H), 8.08 (s, 1H, C8H), 7.01 (s, 1H, 

HCOOH), 5.75 (d, 3J=5.9 Hz, 1H, C1'H), 5.48 (s, 1H, C2'OH), 5.27 – 5.05 (m, 2H, C5'OH, 

C3'OH), 4.47 (dd, 3J=5.1 Hz, 3J=10.3 Hz, 1H, C2'H), 4.11 (dd, 3J=4.1 Hz, 3J=7.9 Hz, 1H, 

C3'H), 3.92 (q, 3J=3.7 Hz, 1H, C4'H), 3.73 – 3.45 (m, 2H, C5'H2). 

HRMS (ESI+): calcd. for C11H12D3N5O4 [M+H]+: 285.1382, found: 285.1386. 

IR: 
~

 (cm-1) = 3102 m, 2928 m, 1687 m, 1644 m, 1570 s, 1505 s, 1425 m, 1378 m, 1327 m, 

1217 m, 1171 m, 1081 s, 1052 s, 982 w, 866 w, 775 w, 699 w, 676 w, 638 m. 
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10.6.8 Synthesis of ac6A 

2',3',5'-Tri-O-(tert-butyldimethylsilyl)-N6-acetyladenosine (21) 

 

Compound 1 (200 mg, 0.33 mmol) was dissolved in dry pyridine (4 mL), slowly treated with 

acetylchloride (0.79 mL, 11.2 mmol) at -5 °C and stirred for 5 min. Then the reaction mixture 

was warmed to rt and stirred for another 1 h. The reaction was stopped with water (2 mL), 

extracted with CH2Cl2 (20 mL) and washed three times with H2O (3 × 25 mL). The combined 

organic layers were dried over MgSO4, filtrated and the solvent was removed in vacuo. The 

crude product was purified by column chromatography (EtOAc/cyclohexane = 30:70) to 

obtain compound 21 (140 mg, 0.21 mmol, 66%) as colorless foam. 

Rf (EtOAc/cyclohexane 1:1) = 0.60. M.p.: 64 °C. 

1H NMR (CDCl3, 400 MHz) δ (ppm) = 8.66 (s, 1H, C8H), 8.61 (s, br, 1H, NH), 8.33 (s, 1H, 

C2H), 6.06 (d, 3J=5.2 Hz, 1H, C1'H), 4.62 (t, 3J=4.7 Hz, 1H, C2'H), 4.29 (t, 3J=4.0 Hz, 1H, 

C3'H), 4.13 (dd, 3J=3.6 Hz, 3J=6.4 Hz, 1H, C4'H), 4.00 (dd, 3J=3.9 Hz, 2J=11.4 Hz, 1H, C5'Ha), 

3.77 (dd, 3J = 2.6 Hz, 2J=11.4 Hz, 1H, C5'Hb), 2.59 (s, 3H, CH3), 0.97 – 0.69 [3s, 27H, 

SiC(CH3)3], 0.17 – (-0.41) (6s, 18H, Si(CH3)2). 

13C NMR (CDCl3, 101 MHz) δ (ppm) = 152.5, 151.3, 149.2, 142.0, 122.2, 88.6, 85.8, 76.3, 

72.1, 62.7, 27.1, 26.3, 26.0, 25.9, 25.9, 18.7, 18.3, 18.1, -4.2, -4.5, -4.5, -4.9, -5.2, -5.2. 

HRMS (ESI): ber. für C30H57N5O5Si3 [M+H]+: 652.3740, found: 652.3756. 

IR: 
~

 (cm-1) = 2953 w, 2929 m, 2897 w, 2857 m, 2341 w, 1703 m, 1608 m, 1584 m, 1463 m, 

1372 m, 1294 m, 1281 m, 1251 m, 1153 m, 1123 m, 1071 m, 1031 m, 1000 m, 969 m, 939 m, 

835 s, 775 s, 668 m, 644 m, 572 m. 
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N6-Acetyladenosine (ac6A) 

 

Compound 21 (0.20 g, 0.31 mmol) and triethylamin-trihydrofluoride (0.16 mL, 0.98 mmol) 

were dissolved in CH2Cl2 (2.0 mL) and stirred at rt for 15 h. Then more triethylamin-

trihydrofluoride (0.16 mL, 0.98 mmol) was added and the reaction mixture was stirred for 

another 30 h. After the reaction mixture was diluted with CH2Cl2, trimethylmethoxysilane 

(3.2 mL) was added to stop the reaction and the solution was stirred for 30 min at rt. The 

solvent was removed in vacuo, followed by dissolving the residue in hot EtOH and 

subsequent filtration. After the solvent was removed in vacuo, the crude product was purified 

via RP-HPLC (eluent A: H2O, eluent B: MeCN, gradient: 100% A, 0% B  0% A, 100% B 

in 45 min, retention time = 18.2 min) to obtain nucleoside ac6A (77.0 mg, 0.25 mmol, 80%) 

as a pure solid. 

Rf (CH2Cl2/MeOH 10:1) = 0.08. M.p.: 176 °C 

1H NMR (CD3OD, 200 MHz) δ (ppm) = 8.59 (s, 1H, C8H), 8.58 (s, 1H, C2H), 6.09 (d, 
3J=5.8 Hz, 1H, C1'H), 4.74 (t, 3J = 5.5 Hz 1H, C2'H), 4.36 (dd, 3J=3.4 Hz, 5.1 Hz, 1H, C3'H), 

4.17 (dd, 3J=3.1 Hz, 3J=6.2 Hz, 1H, C4'H), 3.83 (qd, 3J=3.0 Hz, 2J=12.4 Hz, 2H, C5'H2), 2.37 

(s, 3H, COCH3).
 

13C NMR (CD3OD, 101 MHz) δ (ppm) = 170.5, 152.0, 151.5, 151.3, 143.1, 123.2, 89.4, 86.3, 

74.3, 70.8, 61.7, 23.2. 

HRMS (ESI+): calcd. for C12H15N5O5 [M+H]+: 310.1146, found: 310.1148. 

IR: 
~

 (cm-1) = 3261 s, 3133 s, 2923 s, 2855 m, 1682 s, 1623 s, 1584 s, 1536 w, 1462 s, 

1414 m, 1372 m, 1307 s, 1251 m, 1190 m, 1103 s, 1077 s, 1038 m, 896 w, 870 w, 795 w, 

680 w, 643 m. 
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10.6.9 Synthesis towards incorporation of t6A into RNA 

2'-O-(Tert-butyldimethylsilyl)-[3',5'-O-bis(tert-butyl)silylen]-N6-{{{(1S,2R)-2-{[(tert-

butyl)dimethyl]silyloxy}-1-{[2-(4-nitrophenyl)ethoxy]carbonyl}propyl}amino}carbonyl} 

adenosine (23)[147-148] 

 

Compound 15 (400 mg, 712 µmol) was dissolved in dry DMF (8 mL). Then di-tert-

butylsilylbis(trifluoromethanesulfonate) (97%, 346 µL, 1.07 mmol) was added dropwise at 

-5 °C for 15 min and the reaction mixture stirred for 2 h. Afterwards imidazole was added 

(242 mg, 3.56 mmol) and stirred for 5 min at -5 °C. The reaction was warmed to rt, then 

TBSCl (429 mg, 2.85 mmol) was added and the reaction mixture stirred for 15 h. Afterwards 

the reaction mixture was extracted with CH2Cl2 (60 mL), followed by washing with water 

(3 × 80 mL) and extraction of the aqueous layers with additional CH2Cl2 (60 mL). The 

combined organic layers were dried over MgSO4, filtrated and the solvent evaporated in 

vacuo. The crude product was purified via column chromatography (EtOAc/cyclohexane = 

20:80) to obtain 23 (468 mg, 503 µmol, 71%) as colorless foam. 

Rf (CHCl3/MeOH 10:1) = 0.73. 

1H NMR (CDCl3, 600 MHz) δ (ppm) = 9.97 (d, 3J=8.9 Hz, 1H, CNH), 8.46 (s, 1H, C8H), 

8.40 (s, 1H, C2H), 8.15 (s, 1H, C6NH), 7.92 [d, 3J=8.7 Hz, 2H, HNpe(o-NO2)], 7.30 [d, 
3J=8.4 Hz, 2H, HNpe(m-NO2)], 5.98 (s, 1H, C1'H), 4.63 (d, 3J=4.6 Hz, 1H, C2'H), 4.55 (dd, 
3J=1.5 Hz, 3J=9.1 Hz, 1H, C3'H), 4.53 – 4.44 (m, 3H, C4'H, CH, CH), 4.41 – 4.30 (m, 2H, 

CH2CH2O), 4.23 (td, 3J=5.1 Hz, 2J=10.1 Hz, 1H, C5'Ha), 4.07 – 4.01 (m, 1H, C5'Hb), 3.01 (t, 
3J=6.5 Hz, 2H, CH2CH2O), 1.23 (d, 3J=6.3 Hz, 3H, CCH3), 1.07 – 1.03 (2s, 18H, 

Si[C(CH3)3]2), 0.94 – 0.87 (2s, 18H, SiC(CH3)3), 0.08 (4s, 12H, Si(CH3)2). 
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13C NMR (CDCl3, 151 MHz) δ = 171.0, 154.5, 151.3, 150.3, 149.8, 146.9, 145.7, 141.5, 

129.9, 123.7, 121.1, 92.7, 76.0, 75.8, 75.0, 68.8, 68.0, 64.7, 59.8, 35.0, 27.7, 27.2, 26.1, 25.7, 

22.9, 21.3, 20.6, 18.5, 18.0, -4.1, -4.8, -5.2. 

HRMS (ESI+): calcd. for C43H71N7O10Si3 [M+H]+: 930.4643, found: 930.4675. 

IR: 
~

 (cm-1) = 3245 w, 2932 m, 2895 w, 2858 m, 1737 w, 1702 m, 1611 m, 1588 m, 1521 s, 

1466 m, 1345 m, 1251 s, 1165 m, 1133 m, 1097 m, 999 m, 940 w, 895 w, 828 s, 778 s, 751 m, 

695 w, 652 m. 
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2'-O-(Tert-butyldimethylsilyl)-N6-{{{(1S,2R)-2-{[(tert-butyl)dimethyl]silyloxy}-1-{[2-(4-

nitrophenyl)ethoxy]carbonyl}propyl}amino}carbonyl}adenosine (25)[147-148] 

 

Compound 23 (447 mg, 480 µmol) was dissolved in a polypropylene tube in dry CH2Cl2 

(5 mL) and dry pyridine (50 μL). The solution was cooled to 0 °C and subsequently treated 

with pyridine·HF (70%, 65.0 μL, 504 µmol). The reaction was stopped after 3 h using 

methoxytrimethylsilane (600 μL) und stirred for another 30 min at rt. Then the solvent was 

removed in vacuo and the crude product purified via column chromatography (CH2Cl2/MeOH 

= 50:1). Compound 25 (327 mg, 414 µmol, 86%) was obtained as a colorless foam. 

Rf (CH2Cl2/MeOH 10:1) = 0.48. 

1H NMR (CDCl3, 600 MHz) δ (ppm) = 9.99 (d, 3J=8.6 Hz, 1H, CNH), 8.90 (s, 1H, C8H), 

8.46 (s, 1H, C2H), 8.22 (s, 1H, CNH), 8.05 [d, 3J=7.9 Hz, 2H, HNpe(o-NO2)], 7.33 [d, 
3J=7.9 Hz, 2H, HNpe(m-NO2)], 5.85 (m, 1H, C1'H), 5.15 – 5.00 (m, 1H, C2'H), 4.56 (d, 
3J=8.7 Hz, 1H, CH), 4.51 – 4.16 (m, 5H, C4'H, C3'H, CH, CH2CH2O), 3.94 (d, 2J=12.6 Hz, 

1H, C5'Ha), 3.74 (d, 2J=11.9 Hz, 1H, C5'Hb), 3.08 – 2.95 (m, 2H, CH2CH2O), 1.21 (d, 
3J=5.9 Hz, 3H, CCH3), 0.81 (2s, 18H, SiC(CH3)3), -0.16 (4s, 12H, Si(CH3)2). 

13C NMR (CDCl3, 151 MHz) δ (ppm) = 170.9, 154.3, 151.1, 151.0, 149.5, 147.0, 145.6, 

143.6, 130.0, 123.9, 122.2, 91.3, 87.6, 74.8, 72.9, 68.8, 65.1, 63.4, 59.7, 35.0, 25.7, 21.3, 18.0, 

18.0, -4.1, -5.2, -5.3. 

HRMS (ESI+): calcd. for C35H55N7O10Si2 [M+H]+: 790.3622, found: 790.3649. 

IR: 
~

 (cm-1) = 3244 w, 2953 m, 2930 m, 2857 m, 1736 w, 1697 s, 1611 m, 1588 m, 1520 s, 

1470 m, 1345 m, 1312 m, 1250 s, 1214 m, 1129 m, 1093 s, 1035 m, 996 w, 840 w, 856 m, 

835 s, 777 s, 747 m, 696 w, 671 w, 645 w, 564 w. 
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2'-O-(Tert-butyldimethylsilyl)-5'-O-(4,4'-dimethoxytrityl)-N6-{{{(1S,2R)-2-{[(tert-

butyl)dimethyl]silyloxy}-1-{[2-(4-

nitrophenyl)ethoxy]carbonyl}propyl}amino}carbonyl}adenosine (27)[147-148] 

 

Compound 25 (145 mg, 184 µmol) was dissolved in dry pyridine (8 mL) and treated with 

DMTCl (78.0 mg, 0.23 mmol). The reaction mixture was stirred for 16 h at rt, then another 

portion of DMTCl was added (20.0 mg, 59.0 µmol) and the reaction mixture stirred for 

another 2.5 h. The reaction was stopped afterwards with MeOH (1.8 mL), extracted with 

CH2Cl2 (30 mL), washed with conc. NaHCO3 (2 × 40 mL) and conc. NaCl (2 × 40 mL). All 

aqueous layers were extracted again with extra CH2Cl2 (30 mL). The combined organic layers 

were dried over MgSO4, filtrated and the solvent evaporated in vacuo. The crude product was 

purified via column chromatography (CH2Cl2/MeOH/NEt3 = 98:0:2 → 96:2:2), followed by a 

second purification via NP-HPLC (eluent A: heptane, eluent B: EtOAc, gradient: 100% A, 

0% B  70% A, 30% B in 45 min, retention time = 43.1 min) to obtain 27 (138 mg, 

126 µmol, 69%) as colorless foam. 

Rf (CH2Cl2/MeOH/NEt3 20:1:0.2) = 0.76. 

1H NMR (acetone, 400 MHz) δ (ppm) = 9.95 (d, 3J=9.2 Hz, 1H, CNH), 8.64 (s, 1H, CNH), 

8.50 (s, 1H C8H), 8.40 (s, 1H, C2H), 8.02 [d, 3J=8.7 Hz, 2H, HNpe(o-NO2)], 7.55 – 7.48 [m, 

4H, HNpe(m-NO2), HDMT], 7.37 (dd, 3J=2.4 Hz, 3J=8.9 Hz, 4H, HDMT), 7.31 – 7.15 (m, 3H, 

HDMT), 6.84 (dd, 3J=2.7 Hz, 3J=9.0 Hz, 4H, HDMT), 6.16 (d, 3J=4.5 Hz, 1H, C1'H), 5.16 (t, 
3J=4.7 Hz, 1H, C2'H), 4.60 – 4.49 (m, 3H, C3'H, CH, CH), 4.47 – 4.34 (m, 2H, CH2CH2O), 

4.29 (dd, 3J=4.6 Hz, 3J=8.1 Hz, 1H, C4'H), 3.92 (d, 3J=5.8 Hz, 1H, C3'OH), 3.77 (s, 6H, 

OCH3), 3.53 – 3.42 (m, 2H, C5'H2), 3.13 (t, 3J=6.2 Hz, 2H, CH2CH2O), 1.28 (d, 3J=6.2 Hz, 

3H, CCH3), 0.92 – 0.86 (2s, 18H, SiC(CH3)3), 0.10 – (-0.04) (4s, 12H, Si(CH3)2). 

13C NMR (d6-acetone, 101 MHz) δ (ppm) = 171.6, 159.7, 159.7, 154.7, 151.6, 151.5, 151.4, 

147.7, 147.5, 146.2, 143.6, 136.8, 136.8, 131.2, 131.1, 131.1, 129.1, 128.6, 127.6, 124.2, 
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122.0, 114.0, 90.3, 87.2, 85.0, 76.5, 72.1, 69.7, 65.7, 64.5, 60.4, 55.6, 35.4, 30.7, 27.6, 26.2, 

26.1, 21.6, 18.8, 18.5, -4.0, -4.5, -4.7, -5.1. 

HRMS (ESI+): calcd. for C56H73N7O12Si2 [M+H]+: 1092.4929, found: 1092.4967. 

IR: 
~

 (cm-1) = 2929 w, 2855 w, 1734 w, 1700 m, 1608 m, 1588 m, 1520 s, 1509 s, 1465 m, 

1345 m, 1248 s, 1175 m, 1129 w, 1095 m, 1033 s, 994 m, 939 w, 908 m, 828 s, 778 s, 750 w, 

698 w, 673 w, 644 w. 
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10.6.10 Synthesis towards incorporation of m6t6A into RNA 

N6-Methyl-2'-O-(tert-butyldimethylsilyl)-[3',5'-O-bis(tert-butyl)silylen]-N6-{{{(1S,2R)-2-

{[(tert-butyl)dimethyl]silyloxy}-1-{[2-(4-

nitrophenyl)ethoxy]carbonyl}propyl}amino}carbonyl} adenosine (24)[147-148] 

 

Compound 22 (286 mg, 497 µmol) was dissolved in dry DMF (7 mL), then di-tert-

butylsilylbis(trifluoromethanesulfonate) (97%, 300 µL, 928 µmol) was added dropwise at 

-5 °C for 15 min and the reaction mixture was stirred for 1.5 h. An additional portion of 

di-tert-butylsilylbis(trifluoromethansulfonate) (97%, 50.0 µL, 155 µmol) was added and the 

reaction mixture stirred for another 2.5 h. Afterwards imidazole (169 mg, 2.48 mmol) was 

added and stirred for 5 min at -5 °C. The reaction was warmed to rt, TBSCl (375 mg, 

2.48 mmol) was added afterwards, the reaction mixture stirred for 16 h and subsequently 

extracted with CH2Cl2 (60 mL). The organic layer was washed with water (3 × 80 mL) and 

the aqueous layers again extracted with CH2Cl2 (60 mL). The combined organic layers were 

dried over MgSO4, filtrated and the solvent evaporated in vacuo. The crude product was 

dissolved in CH2Cl2 and purified via column chromatography (EtOAc/cyclohexane = 20:80) 

to obtain 24 (389 mg, 412 µmol, 83%) as colorless foam. 

Rf (CH2Cl2/MeOH 10:1) = 0.89. 

1H NMR (CDCl3, 600 MHz) δ (ppm) = 10.96 (d, 3J=8.6 Hz, 1H, CNH), 8.41 (s, 1H, C8H), 

7.99 – 7.96 [m, 3H, C2H, HNpe(o-NO2)], 7.30 [d, 3J=8.7 Hz, 2H, HNpe(m-NO2)], 6.00 (s, 1H, 

C1'H), 4.58 (d, 3J=4.6 Hz, 1H, C2'H), 4.56 (dd, 3J=1.2 Hz, 3J=8.2 Hz, 1H, CH), 4.51 – 4.44 

(m, 3H, C3'H, C4'H, CH), 4.38 (dt, 3J=6.5 Hz, 2J=11.1 Hz, 1H, CH2CHaO), 4.31 (dt, 
3J=6.6 Hz, 2J=11.1 Hz, 1H, CH2CHbO), 4.24 (td, 3J=5.2 Hz, 2J=10.1 Hz, 1H, C5'Ha), 4.02 (dd, 
3J=9.4 Hz, 2J=10.4 Hz, 1H, C5'Hb), 3.96 (s, 3H, N6CH3), 3.01 (t, 3J=6.5 Hz, 2H, CH2CH2O), 

1.21 (d, 3J=6.3 Hz, 3H, CCH3), 1.10 – 0.84 (4s, 36H, Si[C(CH3)3]2, SiC(CH3)3), 0.17 – 

(-0.08) (m, 12H, Si(CH3)2). 
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13C NMR (CDCl3, 151 MHz) δ (ppm) = 171.4, 156.5, 153.5, 151.7, 150.2, 146.9, 145.7, 

139.4, 129.9, 123.7, 122.8, 92.6, 76.1, 75.7, 74.9, 69.0, 68.0, 64.7, 60.7, 35.0, 35.0, 27.7, 27.5, 

27.2, 26.1, 25.8, 23.0, 21.4, 20.6, 20.0, 18.5, 18.0, -4.1, -4.1, -4.8, -5.2. 

HRMS (ESI+): calcd. for C44H73N7O10Si3 [M+H]+: 944.4800, found: 944.4822. 

IR: 
~

 (cm-1) = 3290 w, 2934 m, 2892 w, 2859 m, 1738 w, 1681 m, 1585 w, 1569 w, 1520 m, 

1466 m, 1389 w, 1362 m, 1343 m, 1251 m, 1171 w, 1138 m, 1078 m, 1061 m, 1012 m, 

1000 m, 938 m, 896 w, 825 s, 798 s, 654 s. 
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N6-Methyl-2'-O-(tert-butyldimethylsilyl)-N6-{{{(1S,2R)-2-{[(tert-butyl)dimethyl]silyloxy}-

1-{[2-(4-nitrophenyl)ethoxy]carbonyl}propyl}amino}carbonyl}adenosine (26)[147-148] 

 

Compound 24 (185 mg, 196 µmol) was dissolved in a polypropylene tube in dry CH2Cl2 

(3.5 mL) and dry pyridine (40 μL). The solution was cooled to -5 °C and subsequently treated 

with pyridine·HF (70%, 26.0 μL, 206 µmol). After 5 h the reaction was stopped using 

methoxytrimethylsilane (200 μL) und stirred for 30 min at rt. Then the solvent was removed 

in vacuo and the crude product purified via column chromatography (CH2Cl2/MeOH = 50:1). 

Compound 26 (122 mg, 152 µmol, 77%) was obtained as colorless foam. 

Rf (CH2Cl2/MeOH 10:1) = 0.53. 

1H NMR (CDCl3, 600 MHz) δ (ppm) = 10.87 (d, 3J=8.6 Hz, 1H, CNH), 8.46 (s, 1H, C8H), 

8.08 [d, 3J=8.5 Hz, 2H, HNpe(o-NO2)], 7.95 (s, 1H, C2H), 7.35 [d, 3J=8.6 Hz, 2H, 

HNpe(m-NO2)], 5.80 (d, 3J=7.3 Hz, 1H, C1'H), 5.12 (dd, 3J=4.8 Hz, 3J=7.2 Hz, 1H, C2'H), 4.54 

(dd, 3J=1.7 Hz, 3J=8.6 Hz, 1H, CH), 4.47 – 4.41 (m, 2H, C4'H, CH), 4.37 – 4.33 (m, 2H, 

CH2CHaO), 4.24 (dt, 3J=6.9 Hz, 11.0 Hz, 1H, CH2CHbO), 3.97 (s, 3H, N6CH3), 3.94 (dd, 
3J=1.5 Hz, 2J=12.9 Hz, 1H, C5'Ha), 3.74 (dd, 3J=1.3 Hz, 2J=12.9 Hz, 1H, C5'Hb), 3.04 (t, 
3J=6.7 Hz, 2H, CH2CH2O), 1.20 (d, 3J=6.3 Hz, 3H, CCH3), 0.91 – 0.87 (2s, 18H, 

SiC(CH3)3), 0.03 – (-0.16) (4s, 12H, Si(CH3)2). 

13C NMR (CDCl3, 151 MHz) δ (ppm) = 171.2, 156.2, 154.2, 151.3, 149.8, 147.1, 145.7, 

141.5, 130.0, 123.9, 91.5, 87.7, 74.3, 72.9, 68.9, 65.0, 63.5, 60.7, 35.2, 35.1, 25.8, 25.7, 21.4, 

18.0, 18.0, -4.0, -5.1, -5.2, -5.2. 

HRMS (ESI+): calcd. for C36H57N7O10Si2 [M+H]+: 804.3778, found: 804.3799. 

IR: 
~

 (cm-1) = 3206 w, 2953 m, 2930 m, 2856 m, 1734 m, 1683 m, 1570 m, 1519 s, 1463 m, 

1423 w, 1346 s, 1253 s, 1215 w, 1177 w, 1129 m, 1088 s, 1024 m, 976 w, 857 m, 836 s, 

811 w, 778 s, 748 m, 696 m, 672 w, 646 w, 526 w.  
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N6-Methyl-2'-O-(tert-butyldimethylsilyl)-5'-O-(4,4'-dimethoxytrityl)-N6-{{{(1S,2R)-2-

{[(tert-butyl)dimethyl]silyloxy}-1-{[2-(4-

nitrophenyl)ethoxy]carbonyl}propyl}amino}carbonyl}adenosine (28)[147-148] 

 

Compound 26 (239 mg, 297 µmol) was dissolved in dry pyridine (10 mL) and treated with 

DMTCl (131 mg, 386 µmol). The reaction mixture was stirred for 16 h at rt. The reaction was 

stopped afterwards with MeOH (1.8 mL), extracted with CH2Cl2 (30 mL), washed with conc. 

NaHCO3 (2 × 40 mL) and conc. NaCl (2 × 40 mL). All aqueous layers were extracted again 

with another CH2Cl2 (30 mL). The combined organic layers were dried over MgSO4, filtrated 

and the solvent evaporated in vacuo. The crude product was purified via column 

chromatography (CH2Cl2/MeOH/pyridine = 98:0:2 → 97:1:2), followed by a second 

purification via NP-HPLC (eluent A: heptane, eluent B: EtOAc, gradient: 100% A, 0% B  

70% A, 30% B in 45 min, retention time = 43.1 min) to obtain compound 28 (232 mg, 

210 µmol, 71%) as colorless foam. 

Rf (CH2Cl2/MeOH/pyridine 20:1:0.2) = 0.63. 

1H NMR (d6-acetone, 400 MHz) δ (ppm) = 10.90 (d, 3J=8.7 Hz, 1H, CNH), 8.49 (s, 1H, 

C8H), 8.44 (s, 1H, C2H), 8.01 [d, 3J=8.7 Hz, 2H, HNpe(o-NO2)], 7.50 [d, 3J=8.7 Hz, 2H, 

HNpe(m-NO2)], 7.48 – 7.42 (m, 2H, HDMT), 7.37 – 7.31 (m, 4H, HDMT), 7.29 – 7.17 (m, 3H, 

HDMT), 6.83 (dd, 3J=1.9 Hz, 3J=8.9 Hz, 4H, HDMT), 6.19 (d, 3J=4.4 Hz, 1H, C1'H), 5.01 (dd, 
3J=4.9 Hz, 3J=10.0 Hz, 1H, C2'H), 4.79 (t, 3J=5.0 Hz, 1H, C3'H), 4.52 (dd, 3J=1.8 Hz, 7.5 Hz, 

2H, CH), 4.47 – 4.33 (m, 2H, CH2CH2O), 4.28 (d, 3J=5.7 Hz, 1H, C3'OH), 4.24 (dd, 
3J=4.7 Hz, 3J=8.5 Hz, 1H, C4'H), 3.94 (s, 3H, NCH3), 3.76 (s, 6H, OCH3), 3.54 (dd, 
3J=3.6 Hz, 2J=10.6 Hz, 1H, C5'Ha), 3.35 (dd, 3J=4.7 Hz, 2J=10.6 Hz, 1H, C5'Hb), 3.12 (t, 
3J=6.2 Hz, 2H, CH2CH2O), 1.26 (d, 3J=6.2 Hz, 3H, CCH3), 0.94 – 0.79 (2s, 18H, 

SiC(CH3)3), 0.15 – (-0.02) (4s, 12H, Si(CH3)2). 
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13C NMR (d6-acetone, 101 MHz) δ (ppm) = 171.8, 159.7, 156.8, 154.0, 153.2, 150.4, 147.7, 

147.5, 146.1, 142.5, 136.8, 136.7, 131.1, 131.1, 131.0, 129.1, 128.6, 127.6, 124.1, 123.5, 

114.0, 113.9, 90.3, 87.2, 85.0, 74.7, 73.3, 69.8, 65.5, 64.2, 61.4, 55.6, 35.3, 35.1, 32.7, 26.4, 

26.1, 23.4, 21.7, 18.9, 18.5, 14.4, -4.1, -4.2, -4.5, -5.1. 

HRMS (ESI+): calcd. for C57H75N7O12Si2 [M+H]+: 1106.5085, found: 1106.5123. 

IR: 
~

 (cm-1) = 2952 w, 2929 w, 2856 w, 1734 w, 1685 m, 1607 w, 1569 m, 1510 s, 1464 m, 

1346 s, 1301 m, 1250 s, 1176 m, 1131 m, 1088 m, 1026 s, 975 m, 938 w, 912 w, 835 s, 778 s, 

751 m, 699 m, 673 w, 646 w, 616 w. 
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11. Abbreviations 

A Adenosine 
A site Aminoacyl tRNA binding site 
ac6A N6-Acetyladenosine 
ac4C N4-Acetylcytidine 
ac4Cm N4-Acetyl-2'-O-methylcytidine 
AID Activation-induced deaminase 
AIDS Acquired immune deficiency syndrome  
Am 2'-O-Methyladenosine 
ASL Anticodon stem and loop 
ATT 6-Aza-2-thiothymine  
BER Base excision repair 
C Cytidine 
calcd. Calculated 
caC 5-Carboxylcytosine 
CNS Central nervous system 
conc. Concentrated 
D Dihydrouridine 
dA Deoxyadenosine 
DBU 1,8-Diazabicyclo[5.4.0]undec-7-en 
dC Deoxycytidine 
dG Deoxyguanosine 
DG Dentate gyrus 
DMA N,N-Dimethylacetamide 
DMEM Dulbecco's Modified Eagle's Medium 
DMF N,N-Dimethylformamide 
DMT Dimethoxytrityl 
DNA  Deoxyribonucleic acid 
DSL Dihydrouridine stem and loop 
dT Deoxythymidine 
E. coli Escherichia coli 
EDTA Ethylendiamine tetraacetate 
EI Electron ionization 
ES cells Embryonic stem cells 
ESI Electrospray ionization 
fC 5-Formylcytosine 
g6A N6-Glycinylcarbamoyladenosine 
G Guanosine 
Gm 2'-O-Methylguanosine 
HGT Horizontal gene transfer 
HIV-1 Human immunodeficiency virus type 1 
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hmC 5-Hydroxymethylcytosine 
hmU 5-Hydroxymethyluracil 
hn6A N6-Hydroxynorvalylcarbamoyladenosine 
HPLC High performance liquid chromatography 
HRMS  High resolution mass spectrometry 
Hz Hertz 
I Inosine 
i6A N6-Isopentenyladenosine 
io6A N6-(cis-Hydroxyisopentenyl)adenosine 
ICAT Isotope-coded affinity tagging 
IR Infra red 
k2C Lysidine 
LB Lysogeny broth 
LC Liquid chromatography 
LUCA Last universal common ancestor 
m1A 1-Methyladenosine 
m1I 1-Methylinosine 
m1G 1-Methylguanosine 
m2A 2-Methyladenosine 
m2G N2-Methylguanosine 
m2

2G N2,N2-Dimethylguanosine 
m6A N6-Methyladenosine 
m6

2A N6,N6-Dimethyladenosine 
m6t6A N6-Methyl-N6-threonylcarbamoyladenosine 
m7G 7-Methylguanosine 
m8A 8-Methyladenosine 
M.p. Melting point 
mC 5-Methylcytosine 
mcm5s2U 5-Methoxycarbonylmethyl-2-thiouridine 
MeCN Acetonitrile 
MeCP2 Methyl-CpG binding protein 2 
MELAS Myopathy, encephalopathy, lactic acidosis, and stroke-like episodes 
MeOTMS Methoxytrimethylsilane 
MERRF Myoclonus epilepsy associated with ragged red fibers 
mnm5s2U 5-Methylaminomethyl-2-thiouridine 
MOPS 3-(N-morpholino)propanesulfonic acid 
mRNA Messenger ribonucleic acid 
MS Mass spectrometry 
ms2i6A 2-Methylthio-N6-isopentenyladenosine 
ms2io6A 2-Methylthio-N6-(cis-hydroxyisopentenyl)adenosine 
ms2t6A 2-Methylthio-N6-threonylcarbamoyladenosine 
ms2hn6A 2-Methylthio-N6-hydroxynorvalylcarbamoyladenosine 
n Amount of substance 
nano-LC-
MS/MS 

nano-liquid chromatography-tandem MS 
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NMR Nuclear magnetic resonance 
NPE 4-Nitrophenylethyl 
OD Optical density 
OHyW Hydroxywybutosine 
oQ Epoxyqueuosine 
P site Peptidyl tRNA binding site 
pH Pondus hydrogenii 
Ph.D. Doctor of philosophy 
ppm Parts per million 
Q Queuosine 
Rf Rate of flow 
RNA Ribonucleic acid 
rpm Rotation per minute 
rRNA Ribosomal ribonucleic acid 
RS tRNA synthase 
RSD Relative standard deviation 
rt Room temperature 
s2C 2-Thiocytidine 
SAM S-Adenosylmethionine  
SILAC Stable isotope labeling with amino acids in cell culture 
snoRNP Small nucleolar ribonucleoprotein 
snRNA Small nuclear ribonucleic acid 
t6A N6-Threonylcarbamoyladenosine 
TBS tert-Butyldimethylsilyl 
THF Tetrahydrofurane 
TLC Thin layer chromatography 

m5U 5-Taurinomethyluridine 

m5s2U 5-Taurinomethyl-2-thiouridine 

TMS Trimethylsilyl 
TSL Thymidine stem and loop 
tRNA Transfer ribonucleic acid 
U Uridine 
UV Ultraviolet 
vol. Volume 

 Pseudouridine 

yW Wybutosine 
ZNS Zentralnervensystem 
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