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Abstract 
 
Immunotherapy using T cells is a new approach that is being explored for the 

treatment of metastatic melanoma. For renal cell carcinoma (RCC), adoptive T cell 

therapy (ATT) is currently hampered by the lack of T cells expressing suitable T cell 

receptors (TCR). A tumor-infiltrating T cell population (TIL) was identified in our group 

(TIL-53) that showed a pattern of tumor recognition consistent with the requirements 

of a TCR applicable for immunotherapy. With the advent of genetic TCR engineering 

it was possible to further define the TIL specificity which was previously precluded by 

the failure to cultivate TIL-53. To achieve high expression levels and functionality, the 

TCR53 required the exchange of the human TCR constant region by the TCR murine 

constant region (TCR53m).  

The B3Z T cell hybridoma which stably expressed TCR53m after retroviral 

transduction was used to analyze a large panel of tumor lines and non-malignant cell 

cultures for expression of the TCR53 ligand. The analysis included 34 RCC cell lines, 

55 tumor cell lines of different histologies and 30 non-tumor cell lines. 65 % of the 

HLA-A2
+
 RCC cells and 25 % of other HLA-A2

+
 tumor lines were recognized by the 

B3Z-TCR53m cells. Among the non-RCC tumors, the TCR53 ligand was frequently 

found in malignant B cell lines and EBV-transformed B-lymphoblastoid cell lines 

(5/13, 38 %). Of 25 HLA-A2
+
 non-tumor cells only 2 were marginally recognized.  

The TCR53 ligand expression could be increased with IFN- but not IFN- treatment 

on cell lines that already had some TCR53 ligand expression. De novo induction in 

cell lines that had no prior expression of the TCR53 ligand was not observed. The 

B3Z-TCR53m cell line could detect the TCR53 ligand on fresh tumor material and, if 

used for therapy, B3Z-TCR53m could be used to identify those patients whose 

tumors are positive for the TCR53 ligand and thus could benefit from the therapy. 

To achieve high expression levels and functionality of the TCR53m on human PBLs, 

the TCR53  and  chain sequences had to be optimized for codon usage. PBLs 

expressing these recombinant TCR sequences (TCR53mc) showed very low 

formation of hybrid TCRs between the TCR53mc  chain and endogenous TCR  

chains. TCR53mc-expressing T cells of RCC patients and healthy donors showed 

specific killing of tumor cell lines and had a polyfunctional profile, defined by the 

detection of T cells that simultaneously secreted cytokines (IFN-, TNF- or IL-2) and 

performed granule exocytosis when recognizing targets. The functional response of 
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TCR53mc-expressing T cells depended on the expression of HLA-A2 on the target 

cells.  

Analysis of RCC tumors using multicolor fluorescence immunohistology allowed the 

detection and localization of CD8
+
 T cells in relation to blood vessels. The majority of 

CD8
+
 T cells were found extra-luminal, indicating strong extravasation of T cells into 

RCC tumors. The majority of the T cells in the lumen of the blood vessel had perforin 

(~ 90 %), while T cells that were outside the blood vessels were to a large 

percentage perforin negative (~ 60 %). Thus, CD8
+
 T cells apparently arrive at the 

tumor being perforin-positive and lose perforin when outside the blood vessels. 

The three-dimensional growth of cells in spheroids was used to mimic the tumor 

milieu in vitro and to evaluate the functional capacity of T cells with transgenic RCC-

specific TCR expression. T cells infiltrated the spheroids and preferentially 

accumulated in the rim of the spheroid (~ 100 µm). The killing capacity of TCR53mc-

expressing T cells in the 3-D environment in a 4 h assay was similar to that observed 

in a standard 4 h chromium release assay with RCC cells in suspension. However, 

after being cultured for 24 h in the spheroids, the T cells were no longer able to 

secrete cytokines upon stimulation with target cells and were negative for perforin, 

granzyme B and CD28. The presence of CD4
+
 T cells in the spheroids significantly 

increased the number of CD8
+
 T cells infiltrating the 3-D tumors. Moreover, the CD8

+
 

T cell response was enhanced with more degranulating T cells and T cells secreting 

cytokines, which was not seen in the absence of CD4
+
 T cells. The functional 

improvement of the CD8
+
 T cell response required the CD4

+
 T cells to be activated, 

as it was not observed when CD4
+
 T cells were used that lacked TCRs specific for 

the spheroid tumor cells. 
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Zusammenfassung 
 
Die T-zellbasierte Immuntherapie ist ein neuer Therapieansatz, der seit ein paar 

Jahren bei metastasierten Melanompatienten in klinischen Studien evaluiert wird. Die 

Anwendung bei Nierenzellkarzinompatienten ist derzeit nicht möglich, da keine T-

Zellen mit geeigneter Spezifität verfügbar sind. In der Arbeitsgruppe wurde vor 

Jahren eine T-Zellpopulation aus dem Tumor eines Patienten isoliert (TIL-53), die ein 

Spezifitätsmuster zeigte, welches die Voraussetzung für eine mögliche 

therapeutische Anwendung zu erfüllen schien. Da die Zellen nicht kultiviert werden 

konnten, war eine bessere Charakterisierung erst möglich, als neue Methoden des 

Gentransfers die Expression von rekombinanten T-Zellrezeptoren (TCR) in Spender-

T-Zellen ermöglichten. Um eine gute Expression und Funktion des TCR53 β-

Heterodimers zu erreichen, mussten die TCR53 Sequenzen modifiziert werden. So 

war ein Austausch der Gensegmente der konstanten Domäne des humanen TCR 

gegen die entsprechenden Gensegmente des Maus-TCR nötig (TCR53m).  

In dieser Arbeit, wurde die B3Z-Hybridom-T-Zelllinie, die nach retroviralem 

Gentransfer den TCR53m stabil auf der Zelloberfläche exprimierte (B3Z-TCR53m), 

an 34 Nierenzellkarzinom (RCC)-Zelllinien und 55 Tumorlinien anderer Histologie 

sowie 30 Nichttumor-Kulturen getestet, um die Häufigkeit der Expression des TCR53 

Liganden zu bestimmen. Von den RCC-Linien exprimierten 65 % den TCR53-Ligand. 

Unter den Tumoren anderer Histologie wurde eine positive Reaktion nur vereinzelt 

gefunden, mit der Ausnahme von Tumoren der B-Lymphozytenlinie und EBV-

transformierten B-lymphoblastoiden Zelllinien, von welchen 38 % (5/13) als positiv 

identifiziert wurden. Von den getesteten Nichttumor-Kulturen wurden nur zwei 

marginal erkannt. Die Erkennung war HLA-A2 restringiert. Weitere Untersuchungen 

zeigten, dass der von TCR53 erkannte Ligand durch Behandlung der Tumorzellen 

mit Interferon-alpha (IFN-) hochreguliert aber nicht de novo induziert wird. Die 

TCR53m-exprimierende B3Z-Linie konnte den TCR53 Liganden auch auf frischem 

Tumorgewebe erkennen. Sollte eine adoptive Therapie mit TCR53-exprimierenden 

T-Zellen zum Einsatz kommen, so wäre denkbar, mithilfe der B3Z-TCR53m Zellen 

Biopsiematerial zu testen und gezielt solche Patienten für die Therapie auszuwählen, 

welche TCR53 Ligand-positive Tumore haben.  

Um eine Expression und Funktion des TCR53m β-Heterodimers auf der Oberfläche 

von humanen PBL zu erreichen, musste die gesamte Sequenz kodonoptimiert 

werden. Diese optimierten Sequenzen (TCR53mc) bildeten so gut wie keine Hybrid-
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TCR-β-Heterodimere mit den endogenen TCR-Ketten der PBL. PBL von 

gesunden Spendern und RCC-Patienten zeigten vergleichbare Effizienz des 

retroviralen TCR53mc-Gentransfers, ähnliche TCR53mc-Heterodimerexpression und 

vergleichbares HLA-A2-abhängiges, Tumorzell-spezifisches Funktionsprofil mit 

Tumorzelllyse, Granulaexozytose und Sekretion von mehreren Zytokinen (IFN-, 

TNF-, IL-2).  

Mithilfe von immunhistologischer Multifarbenfluoreszenzfärbung wurde die Verteilung 

der CD8
+
 T-Zellen und deren Perforinexpression in RCC-Tumorgeweben in 

räumlicher Verteilung zu Blutgefäßen evaluiert. Es zeigte sich, dass sich die meisten 

CD8
+
 T-Zellen nicht mehr im Blutgefäßsystem des Tumors, sondern im 

Tumorgewebe, befanden. Die CD8
+
 T-Zellen, welche im Blutgefäß verblieben, waren 

zu mehr als 90 % Perforin-positiv, während die intratumoralen CD8
+ 

 T-Zellen zu 

einem großen Prozentsatz (~ 60 %) Perforin-negativ waren. Mithilfe eines 

dreidimensionalen Tumorzellkultursystems (Sphäroid-Kultur) wurde gezeigt, dass 

das Tumormilieu in zytotoxischen CD8
+
 T-Zellen den Verlust von Perforin und eine 

funktionelle Inaktivierung in Abhängigkeit von der Expositionszeit induziert. Innerhalb 

der ersten 4 Stunden der Sphäroidexposition waren alle T-Zellen Perforin-positiv und 

zeigten eine lytische Aktivität vergleichbar mit der gegen Tumorzellen in Suspension. 

Jedoch nach 24 Stunden Kultur mit Sphäroiden waren die T-Zellen negativ für 

Perforin, Granzym B und CD28 und sezernierten keine Zytokine mehr. Enthielten die 

Sphäroide CD4
+
 T-Zellen, so wurden sie stärker von CD8

+
 T-Zellen infiltriert und die 

CD8
+
 T-Zellen zeigten höhere funktionelle Kapazität mit mehr degranulierenden T-

Zellen. Die CD8+ T-Zellen sezernierten zudem mehr Zytokine, während sie das in 

Sphäroiden ohne CD4
+
 T-Zellen nicht taten. Die verbesserte CD8

+
 T-Zellenreaktion 

war von der Aktivierung der CD4
+
 T-Zellen im Sphäroid abhängig, da sie nur dann 

auftrat, wenn die im Sphäroid anwesenden CD4
+
 T-Zellen einen tumorzell-

spezifischen TCR exprimierten. 

 

 

 

 

 





________________________________________________________________ Introduction 

1 

 

1 Introduction 
 
 

1.1 The T lymphocytes  

 

T cells express a unique antigen-binding molecule on their membrane, the T cell 

receptor (TCR). The TCR can recognize peptides that are bound to cell-membrane 

proteins called major histocompatibility complex (MHC) molecules. MHC molecules 

are polymorphic glycoproteins. There are two major classes of MHC molecules: class 

I, expressed by nearly all nucleated cells, consists of a heavy chain non-covalently 

associated with a small invariant protein called 2-microglobulin. Class II molecules 

are heterodimers of  and  glycoprotein chains, and are expressed mainly by 

antigen presenting cells (APC) [1].  

In the adaptive immunity, T helper (Th) and cytotoxic T lymphocytes (CTL) are two 

well defined subpopulations of T cells that participate in fighting diseases. They can 

be distinguished from one another by the presence of either cluster of differentiation 

(CD)4 (CD4+ T cell) or CD8 (CD8+ T cell) membrane glycoproteins on their surfaces, 

respectively. Classically, the CD4+ T cells recognize, through their TCR, a peptide 

that is presented by MHC class II proteins, whereas peptides recognized by CD8+ T 

cells are presented by MHC class I proteins.  

 
 

1.1.1 The TCR complex 
 

The specificity of a T cell is defined by its TCR, a heterodimer consisting of a TCR α 

and TCR β (Figure 1.1a) [2]. Both chains contain a variable (V) and a constant (C) 

domain. Similar to antibody molecules, TCRs are generated by recombination of a 

family of gene segments that form the diverse TCR repertoire (as high as to 1014 

different sequences). 70 V and 52 V gene segments are used to constitute the first 

two variable loops named complementarity determining regions (CDR1 and CDR2), 

while the third variable loops (CDR3) are formed by the random joining of V and J (in 

TCR ), or by V, D, and J (in TCR ) (Figure 1.1b). The joining process itself 

generates further diversity both by removing nucleotides and by introducing non-

germline nucleotides at each junction [3].  
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Figure 1.1. Structure of a TCR and TCR-pMHC interaction.  

(a) The TCR complex consists of the variable (V) and constant (C)  and  chains and the invariant 

dimers CD3δ, CD3 and CD3δδ. Basic residues within the membrane (M) region are shown as red 
dots and acidic residues as blue dots. Tyrosine-based activation motifs (ITAM) are marked in orange. 

(b) Example of the gene sequence and protein domain of the  chain. After somatic recombination of 
the genomic gene segments and processing of the RNA, an mRNA sequence containing V, D 
(„diversity“), J („joining“) and C is generated. The CDR3 region corresponds to the junction of the V, D 

and J sequences. The TCR  chain structure is similar except that it does not contain the D region. (a) 
and (b) are modified from [2]. (c) 3-D structure of a TCR-pMHC interaction, modified from [6].  

 
 

In the peptide-MHC (pMHC) interface (Figure 1.1c) with TCR, the most variable 

CDR3 loops of the TCR are positioned over the center of the binding site where they 

contact the peptide, whereas the relatively conserved CDR1 and CDR2 loops of the 

TCR are located on the top region of MHC [4]. Each TCR chain has a single 

membrane-spanning domain, a very short cytoplasmic tail, and are covalently linked 

through disulfide bonds. Surface expression and proper function of the TCR α 

requires intracellular assembly with invariant CD3 components. There are 4 different 

CD3 proteins that form two heterodimers (CD3δ and CD3) and one homodimer 

(CD3δδ). In the assembly of CD3 dimers with TCR αβ, three transmembrane 

interactions are formed between CD3δ and TCR , CD3 and TCR β, and CD3δδ and 

 

(a) 

(b) 

(c) 
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TCR , thereby CD3 molecules provide an acidic amino acid and TCR  or β chains 

provide a basic amino acid to form polar interactions [5]. CD3 components contain 

immune receptor tyrosine-based activation motifs (ITAM) that endow the TCR/CD3 

complex with means for intracellular signaling. Following pMHC binding, the 

TCR/CD3 complex initiates synapse formation between T cell and APC resulting in T 

cell activation [2] [5]. 

 

 

1.1.2 Effector functions of T lymphocytes  
 

When a T cell recognizes a pMHC ligand on a target cell (an APC), the area of 

apposition of the T cell with its target assembles into a well organized immunological 

synapse [7] [8]. In the central region of the T cell synapse, the TCR, CD3, CD8 and 

associated signaling molecules cluster and are surrounded by larger molecules, such 

as CD2 and leukocyte function-associated antigen 1 (LFA1), that form circumferential 

zones that stabilize the synapse. The synapse forms within minutes of the initial 

interaction of the TCR with its APC and can last for more than an hour until the entire 

TCR complex is internalized and degraded. The formation of a stable synapse in the 

inductive phase of an immune response provides a stop signal for the migrating T 

cell and allows cytokine secretion by the T cell to be focused on an APC or target cell 

[9]. 

 
 

1.1.3 Secretion of cytokines  
 

After a T cell recognizes and interacts with a pMHC, the T cell is activated and 

becomes an effector T cell that secretes various growth factors known collectively as 

cytokines. CD4+ T cells can be divided into two main categories: T helper 1 (Th1) and 

Th2 depending on the cytokines they produce in response to antigen activation. 

Secretion of cytokines by Th1 and CTL upon TCR engagement can include interferon 

(IFN), tumor necrosis factor (TNF) and interleukin (IL), among others. 
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1.1.3.1  The interferon family 

 
The IFNs were originally discovered as agents that interfere with viral replication. 

They are classified into type I and type II according to receptor specificity and 

sequence homology. The type I IFNs are comprised of multiple IFN- subtypes, IFN-

, IFN-, and IFN-, all of which are structurally related and bind to a common 

heterodimeric receptor (IFNAR, comprised of IFNAR1 and IFNAR2 chains). Although 

type I IFNs can be secreted at low levels by almost all cell types, hematopoietic cells 

are the major producers of IFN- and IFN-, whereas fibroblasts are a major cellular 

source of IFN-. Viral infection is the classic stimulus for IFN- and IFN- expression.  

IFN- is the sole type II IFN. It is structurally unrelated to type I IFNs, binds to a 

different receptor, and is encoded by a separate chromosomal locus. Known 

producers of IFN- are CD4+ Th1 lymphocytes, CD8+ CTLs, natural killer (NK) cells, 

B cells, natural killer T cells (NKT) and professional APCs [2]. IFN- production by 

professional APCs (monocytes/macrophages, dendritic cells (DCs)) acting locally 

may be important in cell self-activation and activation of nearby cells. IFN- secretion 

by NK cells and possibly professional APCs is likely to be important in early host 

defense against infection, whereas T lymphocytes become the major source of IFN- 

in the adaptive immune response [10].  

 
 

1.1.3.2  TNF  
 

TNF- is a 17-kDa protein that is a homotrimer in solution. In humans, the gene is 

mapped to chromosome 6. Its bioactivity is mainly regulated by soluble TNF--

binding receptors. TNF- is mainly produced by activated macrophages, CTLs, Th1 

lymphocytes and NK cells. Lower expression is known for a variety of other cells, 

including fibroblasts, smooth muscle cells, and tumor cells. TNF- is synthesized as 

pro-TNF (26 kDa), which is membrane-bound and is released upon cleavage of its 

pro-domain by the TNF-converting enzyme (TACE). TNF- acts via two distinct 

receptors. Although the affinity for TNF receptor 2 (TNFR-2) is five times higher than 

that for TNFR-1, the latter initiates the majority of the biological activities of TNF-. 

TNFR-1 (p60) is expressed on all cell types, while TNFR-2 (p80) expression is mainly 

confined to immune cells. The major difference between the two receptors is the 
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death domain (DD) of TNFR-1 that is absent in TNFR-2. For this reason, TNFR-1 is a 

member of the death receptor family that has the capability of inducing apoptotic cell 

death. TNFR-1 has a dual role in that, in addition to inducing apoptosis, it also has 

the ability to transduce cell survival signals [11]. The life-death switch signaling 

regulation is still poorly understood [12]. 

 
 

1.1.3.3  IL-2 and IL-15 

 

IL-2 binds to a heterotrimeric receptor composed of IL-2R, IL-2/15R, and c. IL-

2Rα is a receptor chain that is specific for IL-2, binds IL-2 with low affinity (Kd  8-10 

M) and possesses a short cytoplasmic domain that does not appear to recruit intra-

cytoplasmic signaling molecules. IL-2/15R is a chain shared by the IL-15 receptor 

that is responsible for stimulating JAK3-, STAT5-, and AKT-dependent signaling 

pathways that support cellular survival and proliferation. The IL-15 receptor is thought 

to be a heterotrimeric receptor that closely parallels the IL-2R, except that the IL-

15R chain substitutes for IL-2R in the complex with IL-2/15R and c. IL-15R 

differs from IL-2R in that it alone binds IL-15 with high affinity (Kd  11-10 M). 

Expression of IL-2, IL-2R, and IL-2/15R are all induced in T cells after TCR 

engagement, and multiple in vitro studies demonstrate that T cell activation depends 

on the presence of IL-2. Recently activated T cells are the predominant source of IL-

2 during immune responses and these cells increase surface expression of both IL-

2/15R and IL-2R. Although IL-15R expression is induced on both CD4+ and CD8+ 

T cells, the higher expression of IL-2/15R on activated CD8+ T cells compared with 

activated CD4+ T cells renders CD8+ T cells more sensitive to IL-15. Multiple lines of 

evidence suggest that IL-15 signals are important for maintaining memory CD8+ T 

cells. Memory CD8+ T cells are selectively expanded by heterologous IL-15, 

consistent with the higher expression levels of IL-2/15R on these cells compared 

with naive CD8+ T cells or CD4+ T cells [13]. Memory phenotype of CD8+ T cells does 

not develop in IL-15-/- mice, IL-15R-/- mice and in normal mice treated with blocking 

antibodies against IL-2/15R (presumptively blocking both IL-2 and IL-15 signals) but 

does develop in mice treated with antibodies against IL-2 or IL-2R (blocking IL-2) 

[13].  
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1.1.4 Cytotoxicity 

 
Under the influence of Th-derived cytokines, a T lymphocyte, that recognizes an 

antigen-MHC class I molecule proliferates and differentiates into CTL. The CTL has a 

vital function to monitor the cells of the body and eliminate any that display a cognate 

antigen. One of the classical effector functions performed by a CTL is granule 

exocytosis. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2. Cytotoxic effector function.  

When a CTL recognizes its specific target, the cytotoxic granules migrate from their dispersed 
locations in the cytosol towards the synapse. The movement of the granules is orchestrated by the 
microtubule-organizing center (MTOC). The synapse formed by the CTL has been shown to be 
divided into two domains, a signaling domain similar in structure to the synapse formed by non-
cytolytic T cells, and a secretory domain to which the membrane of the cytotoxic granules fuses to 
deliver their cytolytic contents into the synapse. How perforin delivers granzymes to the target-cell 
cytosol is still unknown. ICAM1, intercellular adhesion molecule 1; CD107, lysosome marker (LAMP1); 
LFA1, leukocyte function-associated antigen 1; PKC, protein kinase C; TCR, T-cell receptor; ZAP70, 

-chain associated protein kinase of 70 kDa [8]. 

 
 
Cytotoxic granules are the key effectors of the „lethal hit‟ delivery. Such granules 

have secretory lysosome characteristics, including an electron-dense core found in 

secretory organelles and a vesicular surrounding region typical of lysosomes. 

Perforin and a family of serine proteases known as granzymes (for granule enzyme) 

 

CD107 
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are the main cytotoxic components of the dense core [14]. Like lysosomes, cytotoxic 

granules have a low pH and contain lysosomal proteins such as Lamp1 (CD107a), 

Lamp2 (CD107b) and CD63 [8] [15]. As shown in Figure 1.2, after recognition of a 

target cell, cytotoxic granules are transported along microtubules and cluster around 

the microtubule-organizing center (MTOC) [16]. Then, after the polarized MTOC 

contacts the plasma membrane, cytotoxic granules are delivered to the 

immunological synapse where they fuse with the plasma membrane [17].  

 
 

1.1.5 Lytic granule: perforin and granzymes 

 

Mice genetically deficient in perforin have severe immunodeficiency and impaired 

protection against viruses and tumors, because perforin is required to deliver 

granyzmes into the cytosol of the target cell [18] [19]. The original model of how 

perforin carries out this task involves homopolymerization in the plasma membrane in 

a Ca2+-dependent manner to produce pores that act as a channel. Recently, this 

model has been called into question. The revised hypothesis holds that although 

perforin is not required for granzymes to get into cells, it is required for the release of 

granzymes from the endocytic compartment into the cytosol and for trafficking to the 

nucleus. This idea is supported by the ability of non-replicating adenovirus and 

bacterial proteins that are known to facilitate endosomal exit to substitute for perforin 

[20]. Perforin probably associates with its inhibitor calreticulin in the endoplasmic 

reticulum and needs to be activated on route to or in the granules by a cysteine 

protease, which removes a carboxy-terminal glycosylated peptide [21]. This protects 

intracellular membranes from damage during biosynthesis and storage. Perforin is 

also thought to bind to serglycin in the granules. After exocytosis, perforin dissociates 

from calreticulin and serglycin, polymerizes and inserts in the plasma membrane [22]. 

What happens next is uncertain. Although the membrane barrier remains largely 

intact as the cell initially remains impermeable to small extracellular dyes, perforin 

clearly perturbs the plasma membrane, because fluorescently labeled plasma-

membrane lipids rapidly redistribute within a few minutes to other intracellular 

membranes, including mitochondrial and nuclear membranes [22]. The granzymes 

are processed either on route to or in the granules from inactive pro-enzymes into 

active enzymes by cathepsin C. At the acidic pH of the granules, the granzymes are 
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inactive. Granzymes are highly specific proteases, the substrate specificity of which 

seems to be determined by an extended binding site around the cleavage site [23]. 

Granzyme A and B are the most abundant granzymes in mice and humans. 

Granzyme B cuts after aspartate residues (similar to the caspases), activates 

caspase-mediated apoptosis by cleaving caspase-3 and other caspases. However, 

cell death induced by CTLs occurs in the presence of complete caspase blockade 

[24]. This indicates that CTLs also activate caspase-independent cell death. 

Recently, caspase-independent cell death pathways induced by three cytotoxic 

granule mediators granzyme A, granzyme C and granulysin have begun to be 

elucidated.  

 
 

1.2 T lymphocytes in cancer therapy 

 
Adoptive cell therapy (ACT) is currently being investigated as an approach to treat 

malignant diseases in humans. Barnes and colleagues [25] proved the feasibility and 

efficacy of transplanting homologous bone marrow after irradiation in an animal 

model of leukemia. These preliminary murine experiments were crucial steps for a 

large scale of early phase trials in humans that eventually led to the application of 

allogeneic hematopoietic stem cell transplantation (HSCT) to a growing number of 

hematologic [26] and some solid malignancies [27]. In view of the limitations of 

allogeneic HSCT, such as low overall response rate, transplantation-associated 

complications and the requirement for an HLA-matched family member to donate 

stem cells, the attention was directed to autologous adoptive cell therapy.  

Improved CTL cell culture technology [28] has permitted the first clinical tests of 

adoptive transfer of CTLs. T cells used in adoptive therapy can be harvested from a 

variety of sites, including peripheral blood, bone marrow, malignant effusions, 

resected lymph nodes, and tumor biopsies [29].  

Adoptive transfer of autologous tumor-infiltrating or peripheral blood T cells results in 

clinical responses when treating melanoma [30-33] as well as virus infections and 

virus-associated tumors [34] [35]. Objective response rates were as high as 51 % 

when melanoma patients were treated with non-myeloablative chemotherapy prior to 

transfer of autologous tumor-infiltrating lymphocytes (TILs) [36]. Recently, 
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myeloablative irradiation as a more stringent patient pre-conditioning regimen 

resulted in response rates of up to 72 % [33].  

The isolation and expansion of TILs for patient treatment is often laborious and, 

depending on the localization of the solid tumor, tumor material may not be 

accessible for TIL isolation. Most human tumor-associated antigens that are shared 

between individuals consist of non-mutated self antigens [30] [37]. Consequently, the 

endogenous T cell repertoire that reacts to these antigens will generally be small in 

size and activity due to thymic selection and peripheral tolerance induction. If 

adoptive therapy is to become a reality for a larger number of tumor patients, other 

alternatives are needed. 

 
 

TCR gene-modified T cells 
 
One alternative to circumvent the low number of reactive T cells and low levels of 

endogenous anti-tumor reactivity is to infuse patients with ex vivo expanded T cells 

that are selected for good tumor recognition. T cells harvested from the peripheral 

blood can be engineered to express TCRs that have been selected for tumor 

recognition. This approach enables the generation of therapeutic quantities of T cell 

populations with defined anti-tumor characteristics in a relatively short period of time. 

It also allows the introduction of tumor-specific TCRs that are not normally found 

naturally, and hence provide a strategy to overcome the limitations of the 

endogenous T cell repertoire. 

Engineering T cells toward a desired reactivity against a targeted antigen has been 

developed with some promising results [38-40]. It has been applied to melanoma 

antigens [39], minor histocompatibility antigens [41] and common oncoproteins [42]. 

In vitro experiments show that following TCR gene transfer, redirected T cells acquire 

the antigen specificity of the parent T cell clone, including production of IFN- in 

response to antigen stimulation and lysis of tumor cells in coculture assays. 

Additionally, mouse studies have shown that infusion of T cells transduced with 

antigen-specific TCRs encofing vectors can eliminate tumors in vivo [40] [43].  

The feasibility of this approach in the clinic has recently been demonstrated for the 

treatment of metastatic melanoma [40] [44]. In the first study, Morgan et al. [44] 

infused patients with T cells genetically modified with TCRs recognizing the MART-1 

melanoma antigen and observed prolonged persistence of CTLs and objective 
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regression of metastatic lesions in two patients. Nevertheless, the resulted objective 

response rate was of only 12 % and thus much lower than that observed with TILs. 

Reasons that might explain the observed drop in therapeutic effectiveness of TCR-

transduced T cells compared to TIL include sub-optimal surface expression, T cell 

low avidity and limited TCR repertoire to fight the tumor, when compared with TILs 

that have a heterogeneous TCR repertoire. A more reactive TCR recognizing MART-

1 was used in a recent study to engineer autologous T cells and treat melanoma 

patients. Objective cancer regression was seen in 30 % of patients and thus 

improved in comparison to the previous trial [40]. However, patients exhibit 

destruction of normal melanocytes in the skin, eyes and ear.  

The strategies for adoptive transfer of T cells that are currently being explored, like 

TIL infusion into patients or transfer of PBLs engineered with new TCR specificities 

are shown in Figure 1.3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3. Strategies of adoptive transfer using autologous in vitro expanded T cells. 

(i) TILs can be isolated from resected surgical specimens and expanded in vitro for adoptive transfer 
after lymphodepleting chemotherapy. (ii, red) Alternatively, autologous T cells are harvested from 
peripheral blood, undergo in vitro activation, transfer of a new TCR  specificity (PBL-TCR engineered) 
and expansion, and are reinfused after lymphodepleting chemotherapy. Following most adoptive 
transfer therapy approaches, cytokines like IL-2 are given to the patients as a support for growth of the 
transferred T cells in vivo. Modified from [29]. 
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1.2.1 TCR optimization strategies  

 

TCR mispairing results in diluted surface expression of the therapeutic TCR  and 

consequently to a diminished functional sensitivity [45]. Recently, various genetic 

strategies have been developed to optimize the expression and performance of TCR-

engineered T cells. The replacement of the human TCR constant gene segment (C) 

C and C by the corresponding murine TCR C and C domains (Figure 1.4) 

enhances the preferential pairing of the TCR chains containing the murine constant 

region [46]. Gene transfer of TCR chains containing the murine constant region in 

human T cells resulted in enhanced and more sustained levels of surface expression 

when compared with fully human TCRs [47]. With regard to TCR function, human-

murine TCR chimeras with MART-1/A2 and p53/A2 specificities demonstrated 

increased T cell activity in terms of cytotoxicity as well as IFN- secretion [46]. In 

addition, there is evidence for a competitive advantage of TCRs containing the 

murine constant regions for interacting with the human CD3 molecules from the 

observation that murine TCR C domains bind more strongly to human CD3δ than 

human TCR C domains [46].  

An expected consequence of enhanced TCR pairing is a concomitantly decreased 

TCR mispairing of the transferred TCR  or  chains with the TCR  or  chain 

endogenously expressed by the recipient T cells [42]. Recently, proof of TCR 

mispairing induced autoreactivity has been shown in mouse models of adoptive T cell 

therapy (ATT) [48]. Notably, MART-1/A2 binding by human TCR or human-murine 

TCR chimera in Jurkat T cells was reduced by 80 % and 20 %, respectively, upon 

introduction of a second non-related human TCR suggesting that the presence of the 

murine constant region reduces TCR mispairing.  

The expression of TCR transgenes can be further enhanced by the use of codon-

optimized synthetic TCR encoding sequences. Redundancy in the genetic code 

allows some amino acids to be encoded by more than one codon, but certain codons 

are less „„optimal‟‟ for translation than others because of the relative availability of 

matching tRNAs. Highly expressed mammalian genes share a similar codon usage 

suggesting that codon usage can affect protein production. Modifying the TCR  and 

TCR  gene sequences such that each amino acid is encoded by the optimal codon 
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for mammalian gene expression, as well as eliminating mRNA instability motifs or 

cryptic splice sites, has been shown to significantly enhance TCR expression [49-51]. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.4. Genetic strategy that addresses TCR pairing. 

Using the non-modified TCR as a reference (depicted in a), the human-murine TCR has the human 

constant domains C and C exchanged for their murine counterparts C and C (in pink) as shown 
in (b). Modified from [45]. 

 
 

1.2.2 The importance of CD4+ in the tumor immunotherapy 

 

Although both CD4+ and CD8+ T lymphocytes are involved in the immune response 

against cancer and viral infections, a preferential attention has been given to the anti-

tumor responses mediated by MHC class I restricted CD8+ T lymphocytes. This focus 

on CD8+ T lymphocytes stems from experimental data showing that (i) many tumors 

express MHC class I but not MHC class II molecules and (ii) CD8+ T lymphocytes are 

capable to directly kill tumor or virally infected cells upon recognition of MHC-

presented antigenic peptides. Moreover, clinical adoptive immunotherapy studies 

demonstrated that the transfer of tumor-reactive CD8+ T lymphocytes can result in 

effective anti-tumor responses, as discussed before. Although CD8+ T cells are 

potent effectors of the adoptive anti-tumor immune response, tumor-specific CD4+ T 

cells were also identified as a critical component [52]. Th cells can provide help for 

the maintenance of CTL responses to tumors [53]. In this study, it is suggested that 

 

(a) (b) Non-modified TCR Human-murine hybrid TCR 
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costimulatory receptors on CTLs such as CD27, CD134 and MHC class II molecules 

are capable of directly interacting with the corresponding ligands on Th lymphocytes 

resulting in enhanced proliferation and survival of the CTL during the effector phase 

of anti-tumor immune responses. In addition, the adoptive transfer of tumor-specific 

CD4+ T lymphocytes has resulted in de novo generation of tumor-specific CD8+ T 

lymphocytes [54]. The importance of CD4+ T cells was recently consolidated with the 

successful treatment of a melanoma patient using the adoptive transfer of autologous 

tumor-specific CD4+ T cells specific for the NY-ESO-1 antigen [55]. Adoptive transfer 

of CD4+ tumor-specific T lymphocytes is therefore clinically relevant for effective anti-

tumor responses.  

Although CD4+ T cell recognition of peptide is normally restricted by MHC class II 

molecules, CD4+ T cells that recognize peptides presented by MHC class I molecules 

have been found. Nishimura et al [56] reported an MHC class I-restricted CD4+ T cell 

isolated from TIL of a patient with metastatic melanoma. They showed that this TIL 

was weakly cytolytic and secreted cytokines in a pattern consistent with a Th1 profile. 

This finding demonstrates that CD4+ T cells recognizing a MHC class I presented 

peptide, showing a Th1 profile, can be naturally found. MHC class I restricted Th 

cells have the advantage over the classical Th cells that tumor cells normally express 

MHC class I, but not MHC class II molecules. In this way, a direct recognition of 

tumors by the CD4+ MHC class I-restricted cells is possible. 

Recently, a new mechanism by which CD4+ T cells act in response to a virus 

infection was discovered [57]. In this work, the authors found that CD4+ T cells recruit 

CD8+ effector cells toward the site of virus infection, a mechanism that is dependent 

on IFN- secretion by the Th cells.  

 
 

1.3 Renal cell carcinoma 

 

Renal cell carcinoma (RCC) accounts for 2 % of all new cancer cases worldwide, 

with estimated 57760 new cases diagnosed in the United States in 2009 [58]. RCC is 

a therapeutic challenge. Radical nephrectomy can be curative for early stage 

disease; however, approximately one third of patients have metastatic disease at the 

time of diagnose and a further third will relapse after initial surgery [59]. Metastatic 

RCC (mRCC) is resistant to chemotherapy, hormone therapy, and radiotherapy with 
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an objective response rate below 10 %. mRCC responds modestly to monoclonal 

antibodies that block T cell regulation like CTLA4 [60] or PD1 [61] and tumor 

vaccines [62]. New targeted agents such as tyrosine kinase inhibitors (sunitinib and 

sorafenib), a mammalian target of rapamycin inhibitor (temsirolimus) and a 

monoclonal antibody against vascular endothelial growth factor (bevacizumab) have 

been developed and are currently the standard of care for most patients with mRCC. 

Although these agents represent a major advance in the treatment of this disease, 

they are palliative treatments and do not produce durable complete remissions [63].  

Allogeneic HSCT in RCC showed extremely variable response rates, ranging from 0 

to 57 % [64] [65]. Between July 1999 and September 2003, 124 patients with 

metastatic RCC underwent HSCT at 21 European centers. Acute graft versus host 

disease (GVHD) was seen in 40 % of the patients, chronic GVHD in 33 %. 

Transplant-related mortality was 16 % and complete response was seen in 4 patients 

[65]. Adoptive transfer of lymphocytes activated in vitro by IL-2 (named LAK) have 

been assessed in many phase I/II trials for the treatment of patients with mRCC. The 

objective response, as defined by either complete or partial response, of various 

clinical trials using LAK cells in RCC varied remarkably, however the randomized 

trials revealed no survival benefit of this approach in RCC patients [66]. Unlike for 

melanoma, clinical trials with TILs in RCC did not yield substantial benefit [63] [67].  

Cytokines such as IL-2 and IFN- were the standard of care before the advent of the 

targeted agents and produced modest benefits [62] [63]. However, high-dose IL-2 

can produce durable complete remissions in small numbers of patients, albeit at the 

expense of considerable toxicity requiring careful patient selection and monitoring 

[62] [64].  

 
 

1.3.1 Tumor-associated antigens and antigen specific T cells for the 
immune therapy of RCC 

 

In comparison to melanoma there are relatively few tumor-associated antigens (TAA) 

identified in RCC, resulting in a paucity of reports on the use of HLA class I and II 

restricted T cell epitopes in clinical trials of RCC patients [68] [69]. TAAs can be 

classified into different groups: i) differentiation antigens, expressed by certain cell 

lineages, that are overexpressed in the tumors and have a low level of expression in 
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normal cells (i.e. MART, tyrosinase, etc.); ii) cancer testis antigens expressed by 

many different tumor types and not in normal cells except testis and iii) 

overexpressed antigens (i.e. survivin) [69].  

G250/carbonic anhydrase (CA)-IX is one of the most extensively studied RCC-

associated antigens [70]. It is considered a TAA, as it is expressed on > 75 % of clear 

cell RCC (ccRCC) and less frequent on normal tissues [71]. CA-IX antigen has been 

targeted using many forms of immunotherapy to treat mRCC patients. A clinical 

benefit was achieved in some patients by the administration of chimeric monoclonal 

antibody G250 [72]. A clinical trial of adoptive transfer of T cells transduced with a 

CA-IX chimeric immune receptor was terminated at an early stage due to liver 

toxicity, which seemed to occur as a result of “on-target” effects due to expression of 

the G250 antigen on bile duct cells [73].  

Human endogenous retrovirus type E (HERV-E) is the most recent RCC antigen to 

be discovered [74]. It was identified using allogeneic T cells from an mRCC patient 

who experienced a complete response following hematopoietic stem cell 

transplantation. HERV-E appears to be a very promising TAA to target, because of 

its expression in RCC but not in normal kidney. Despite of that, there are no HERV-E 

specific T cells with restriction through a common MHC allele, thus limiting their 

widespread application. 

The difficulty in generating sufficient numbers of RCC-reactive T cells in vitro remains 

the main drawback of the TIL therapy in RCC. To overcome this problem, genetic 

engineering of T cells toward a desired reactivity against a targeted antigen has been 

developed with promising results, attesting the feasibility of the generation of large 

numbers of T cells recognizing RCC [75]. Despite of that, to date, there are no 

completed clinical trials using T cells expressing recombinant TCRs for treating RCC 

patients. The only known TCR with broad RCC recognition is now undergoing clinical 

evaluation, even though it recognizes RCC in an unknown, non-MHC restricted 

manner (www.clinicaltrials.gov: NCT00870389) [76]. 
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2 Rationale of the PhD project  
 
Clinical data on RCC trials include spontaneous remissions and response to cytokine 

therapy [62] [77] [78], suggesting that this tumor type is susceptible to immune-

mediated effector mechanisms. T cells are found in tumors and blood of patients that 

have reactivity against RCC lines when tested ex vivo. However, most RCC-reactive 

T cells proliferate poorly, recognize antigens expressed only by a small set of tumors, 

or use infrequent MHC-restriction elements [62]. As a consequence, there are few 

suitable T cell specificities to spur clinical development. Because RCC tumors are 

immune sensitive, it is conceivable that clinical benefit could be improved, if better 

suited T cells can be identified.  

The aims of this PhD project were: 

1. to generate T cells expressing TCR specific for RCC; 2. to characterize the 

functional capacity of these engineered T cells, including their functionality in a 3-D 

environment that mimics the tumors more closely than 2-D monolayer cultures; 3. to 

investigate whether PBLs of RCC patients can express the new specificity and be 

functional and 4. to generate and characterize CD4+ T cells that recognize peptides 

presented by MHC I on RCC.    

Some reagents used in this thesis were generated by other PhD students of the 

working group of Dr. Nößner and in collaboration with Prof. Uckert in Berlin. These 

reagents and results are described in this chapter as “previous work”. 

 
 

Previous work 
 
TILs were isolated from a primary ccRCC tumor of patient 53 (TIL-53) in 1993. The 

specificity was analyzed by Michaela Rosmanit, who also identified the TCR 

sequence [79]. TIL-53 was found to recognize its autologous tumor cell line RCC-53 

and, additionally, allogeneic tumor lines, e.g. RCC-26, RCC-36 and MZ-1257, 

indicating recognition of an antigen that is shared among RCC cell lines. HLA-A2 

negative tumor lines were not recognized, suggesting HLA-A2 class I restricted 

recognition. This was confirmed by blocking with an antibody directed against HLA-

A2. Importantly, normal kidney cultures were not recognized by TIL-53.  

After limited dilution cloning, one T cell clone was identified (TIL-53.29) that 

recapitulated HLA-A2 restriction and the TIL-53 reactivity pattern. Poor cell growth 
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limited further detailed characterization of the parental TIL-53 and the derived T cell 

clone TIL-53.29. The TCR sequences of TIL-53.29 revealed one in-frame TCR  

sequence V20 and two in-frame TCR  sequences V3.1 and V19, nomenclature 

after Arden et al [80].  

In the Diploma thesis of Leisegang [81] (collaboration group of Prof. Uckert) the TCR 

V19 and TCR V20 chains were found to form the TCR53 heterodimer and were 

first transduced in the TCR-deficient Jurkat 76 cells. TCR53 expression was seen in 

most cells. Retroviral TCR transfer into primary human T cells, however, resulted in 

very poor TCR53 expression with only 9 % CD8+TCRV20+ cells. Therefore, TCR 

sequence modifications were performed, including codon optimization (GENEART, 

Regensburg) and the replacement of the human TCR constant regions by their 

mouse counterparts, thereby creating a human-murine chimera TCR. Using the 

TCR53 sequences containing the murine constant regions (TCR53m) 19 % of 

CD8+TCRV20+ cells were achieved and with the addition of codon optimization 

(TCR53mc) 38 % of CD8+TCRV20+ cells was achieved. Importantly, TCR53 

sequence optimization improved functionality of engineered PBLs, as seen by 

superior target-specific cytokine response of PBLs transduced with MP71-TCR53mc. 

The TCR53 used for engineering of PBL recipient cells analyzed in this thesis had 

the optimized TCR53mc sequences. 

To allow the analysis of a large panel of different tumor and non-malignant cell lines 

a TCR53m-expressing indicator cell line was generated using the B3Z mouse T cell 

hybridoma as the TCR53m recipient cell. The B3Z mouse T cell hybridoma is derived 

from the fusion of Z.8, a derivative of the CD4+ BW5147, with the OVA/Kb-specific 

cytolytic T cell clone B3 that expresses V5 endogenously [82]. TCR53m was 

introduced into B3Z cells by retroviral transduction and function could be detected as 

secretion of mouse IL-2 (mIL-2). Function was dependent on the expression of the 

human CD8 protein, as B3Z-TCR53m that only expressed mouse CD8 did not 

recognize RCC-26 [83]. 
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3 Results 

 
 

3.1 The B3Z-TCR53m indicator cell line for the analysis of the 
TCR53-pMHC ligand prevalence among tumors and non-
malignant cell lines 

 
To investigate the prevalence of TCR53-pMHC ligand in a great number of cell lines, 

it was important that the TCR53 recipient T cell would fulfill 3 important criteria. They 

should be easily transfectable, should expand well and they should provide a reliabe 

read out system for function. Because B3Z cells secrete mIL-2, are easy to cultivate 

and to expand [82], they were chosen to be tranduced with the pMP71-TCR53m 

retroviral vector to generate an indicator cell line named B3Z-TCR53m. To analyze 

expression of the endogenous B3Z OVA-TCR after transduction of pMP71-TCR53m, 

V5 on both B3Z and B3Z-TCR53m cells was analyzed by flow cytometry. The 

expression level of the endogenous TCR V5 was slightly reduced after expression 

of the V20+ TCR53m. B3Z-TCR53m showed uniform expression of TCR53m V20 

with high MFI of positive cells. Shown is 1 representative of 2 stainings. The T2 cell 

line, which does not express V5 nor V20, was used as control for the specificity of 

both anti-V5 and anti-V20 antibodies (Figure 3.1a). 

Even with the B3Z-TCR53m cells expressing both OVA-TCR and TCR53m, TCR53m 

was functional as B3Z-TCR53m cells secreted mIL-2 in the supernatants of 24 h-

incubations with the tumor cell lines RCC-26 and RCC-53, which have the TCR53 

ligand (TCR53-pMHC+), but not after coculture with NKC-26 cells, which are TCR53 

pMHC-. In addition, no secretion of mIL-2 was detected in the supernatant when the 

RCC cell lines or NKC-26 cells were incubated with the untransduced B3Z cells. Data 

shown is the mean of 2 experiments (Figure 3.1b). 
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Figure 3.1. Analysis of B3Z OVA-TCR (mouse V5) and TCR53 (human V20) in B3Z and B3Z-
TCR53m cells and B3Z-TCR53 function.  

Assessment of TCR expression in B3Z untransduced (B3Z) and B3Z transduced with pMP71-
TCR53m (B3Z-TCR53m) and function of B3Z-TCR53m cells upon target recognition. (a) Using anti-

mouse V5 and anti-human V20, B3Z OVA-TCR (left) and TCR53 (right) were detected by flow 
cytometry. T2 cells served as negative control for both TCRs (traced line). b) Detection of mIL-2 on the 
24 h supernatant of NKC-26 (white column), RCC-53 (grey column) and RCC-26 (black column) 
coincubations with B3Z (upper columns) or B3Z-TCR53m (lower columns) by ELISA. Data shown in 
(a) is a representative of two stainings and in (b) is the mean of 2 experiments. Error bars show the 
standard deviation. % of max (% of maximal projection) is a normalization of the y axis, where the 
number of cells in each bin on the x axis (256 bins) is divided by the number of cells in the bin that 
contains the largest number of cells.  
 
 

3.1.1 High incidence of TCR53-pMHC ligand in RCC cells and in 
tumor cells of other histologies 

 
T cells recognizing an antigen shared among many RCC cell lines is an important 

criterium if T cell therapy is to be used for the benefit of a great number of patients. 

Along the same line, the restriction of recognition by a common MHC class I allotype 

would permit more patients to be considered for therapy. Furthermore, it is of great 

importance that the T cells do not recognize non-malignant cells. Considering the 

aspects mentioned, the frequency of TCR53-pMHC ligand occurrence in RCC and 

tumors of other histologies as well as in non-transformed cell lines of normal tissue 

was determined with the help of the B3Z-TCR53m cells. The distribution of the 

TCR53-recognized antigen was analyzed in 33 RCC cell lines, 1 RCC primary 

culture, 54 tumor cell lines of other histologies, 19 normal kidney primary cultures, 2 

normal kidney cell lines and 10 other normal cell types. The method involved 
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coculturing the B3Z-TCR53m with the respective cell types for 24 h after which the 

cell culture supernatant was harvested and measured for the mIL-2 content by 

ELISA. A summary of the results is given in Figure 3.2, details are listed in Table 1 to 

4. Because the recognition of targets by the original TIL-53 population was HLA-A2 

restricted, HLA-A2 status of the cell lines tested with the B3Z-TCR53m is given in the 

figure and tables. 13 of 20 (65 %) HLA-A2+ RCC cell lines and the primary culture 

tested were found to stimulate mIL-2 secretion above the background (12 pg/ml) after 

coculture with B3Z-TCR53m cells (Figure 3.2, Table 1). None of the 11 HLA-A2- RCC 

cell lines stimulated secretion of mIL-2 above the background. To determine how 

many of the HLA-A2- RCC did express the TCR53 recognized antigen, HLA-A2- RCC 

cell lines were electroporated with HLA-A2 in vitro transcribed (IVT)-mRNA. HLA-A2 

expression was confirmed by flow cytometry (not shown). 7 of the 11 RCC lines 

transfected with HLA-A2 IVT-mRNA (64 %) induced mIL-2 secretion of the B3Z-

TCR53m. Of the 30 HLA-A2+ RCC lines, 16 are of known clear cell histology. B3Z-

TCR53m recognition was observed for 11 (73 %) of the ccRCC (Figure 3.2, Table 1).  

To determine whether the TCR53-pMHC ligand is present on healthy tissue cells, 27 

human normal cell cultures, among 17 normal kidney cultures (primary cell cultures 

and cell lines, Table 2), 7 PBMC from healthy donors, a brain microvascular 

endothelial cell line (BMEC), a mesenchymal stem cell (MSC) and a fibroblast cell 

line (K4IM), which either expressed HLA-A2 endogenously or after HLA-A2 IVT-

mRNA electroporation (Table 3), were tested for TCR53-pMHC ligand expression. 

Only one of the normal kidney cells (NKC-33) induced marginal mIL-2 secretion (19 

pg/ml). None of the PBMC were recognized. The fibroblast cell line K4IM induced 

mIL-2 secretion (14 pg/ml) slightly over background.  

To investigate if the TCR53-pMHC ligand is also present on other tumors than RCC, 

55 tumor lines of other origins were tested. From the 48 cell lines expressing HLA-A2 

endogenously or after electroporation with HLA-A2 IVT-mRNA, 12 (25 %) were 

recognized by B3Z-TCR53m. Among the recognized tumor histologies were 

lymphocytic malignancies like EBV-transformed B-lymphoblastoid cells (LCL-1 and 

LCL-4) and B-lymphocytic lymphoma (Nalm-6, SKW-6, Granta-519), brain tumor 

lines (glioblastoma U-373, neuroblastoma SK-NSH and astrocytoma U-251MG), 1 

melanoma (BLM), 1 pancreatic adenocarcinoma (Panc-Tu1), and 1 squamous cell 

carcinoma (UT-SCC-15) (Figure 3.2, Table 4).  
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Figure 3.2. B3Z-TCR53m recognition pattern of RCC cell lines, tumor of other histologies and 
normal cell cultures.  

RCC cell lines, tumor cell lines of other histologies and normal cells were cocultured with B3Z-
TCR53m for 24 h and the supernatants were harvested for mIL-2 ELISA. The cells used in the screen 
were either HLA-A2

+
 or were electroporated with HLA-A2 IVT-mRNA or were HLA-A2

-
. Shown is the 

amount (pg/ml) of mIL-2. Each symbol corresponds to one cell line. The traced horizontal line marks 
the background of mIL-2 produced by B3Z-TCR53 cells cultivated alone (never higher than 12 pg/ml). 
nkc= normal kidney cells, ntc= non-tumor cells. 
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Table 1. B3Z-TCR53m recognition pattern and HLA-A2 status of RCC cell lines. 

 
RCC cell lines HLA-A2

+
 HLA-A2 

tf
 mIL-2 (pg/ml) 

786-0* - + 320 
A498* + - 52 
CCA-1* - - <12 
CCA-1* - + 191 
CCA-7* - - <12 
CCA-8* - - <12 
CCA-8* - + <12 
CCA-9* - - <12 
CCA-9* - + 102 
CCA-13* - - <12 
CCA-17* + - 433 
CCA-23* - - <12 
CCA-23* - + 21 
CCA-29* + - <12 
KT-2 + - 20 
KT-13 + - 34 
KT-15 + - 152 
KT-30 + - 19 
KT-53 + - 21 
KT-111 + - <12 
KT-187 - - <12 
KT-187 - + <12 
KT-195 - - <12 
KT-195 - + 137 
MZ-1257 + - 61 
MZ-2175 - - <12 
MZ-2175 - + 555 
RCA-1770 - - <12 
RCC-1.11* + - <12 
RCC-1.24 + - 70 
RCC-1.26* + - <12 
RCC-26* + - 267 
RCC-36* + - 720 
RCC-43* + - 49 
RCC-53* + - 60 
SKRC-12 - - <12 
SKRC-12 - + 61 
SKRC-17 + - <12 
SKRC-28 - + <12 
SKRC-38 - + <12 
SKRC-44 + - <12 
SKRC-59 + - <12 

 
B3Z-TCR53m cells were cocultured with the indicated cells and the resulted mIL-2 values are listed 
(12 pg/ml was the highest background value of the B3Z-TCR53m cells cultivated alone). Cell lines 
were collected through laboratory exchanges or generated locally. HLA-A2 transfection was performed 
using HLA-A2 IVT-mRNA. The HLA-A2 status of all cell lines and cultures was confirmed by flow 
cytometry.  
*Cell lines with known clear cell histology. CCA are ccRCC lines generated by Gerharz et al [133]. 
RCC-43 is a primary culture. All other are RCC cell lines. Shaded in grey are those cell lines which 
induced mIL-2 secretion above the background. 
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Table 2. B3Z-TCR53m recognition pattern and HLA-A2 status of normal kidney cultures and the 
cell line HEK-293T.  

 
Normal kidney cells HLA-A2

+
 HLA-A2 

tf
 mIL-2 (pg/ml) 

HEK-293T + - <12 
NKC-2* + - <12 
NKC-3* + - <12 
NKC-4* + - <12 
NKC-6* - - <12 
NKC-7* + - <12 
NKC-26 + - <12 
NKC-32* - - <12 
NKC-33* + - 19 
NKC-36* - + <12 
NKC-37* + - <12 
NKC-38* - + <12 
NKC-39* - + <12 
NKC-40* - - <12 
NKC-40* - + <12 
NKC-41* - + <12 
NKC-42* + - <12 
NKC-43* + - <12 
NKC-47* - - <12 
NKC-49* + - <12 
RPTEC - + <12 

 
B3Z-TCR53m cells were cocultured with the indicated cells and the resulted mIL-2 values are listed 
(12 pg/ml was the highest background value of the B3Z-TCR53m cells cultivated alone). Cell lines 
were collected through laboratory exchanges or generated locally. HLA-A2 transfection was performed 
using HLA-A2 IVT-mRNA. The HLA-A2 status of all cell lines and cultures was confirmed by flow 
cytometry. 
*Short-term primary cultures of cells of tumor free kidney areas. NKC = normal kidney cells. RPTEC 
2814-3 is a primary renal proximal tubular epithelial cell purchased from BioWhittaker (Maryland, 
USA). Shaded in grey is the cell line which induced mIL-2 secretion above the background. 
 
 
Table 3. B3Z-TCR53m recognition pattern and HLA-A2 status of normal cell lines other than 
kidney. 
 

Other normal cells HLA-A2
+
 HLA-A2 

tf
 mIL-2 (pg/ml) 

hBMEC + - <12 
hMSC1  - + <12 
K4IM  - + 14 
PBMC 1 + - <12 
PBMC 2 + - <12 
PBMC 3 + - <12 
PBMC 4 + - <12 
PBMC 5 + - <12 
PBMC 6 + - <12 
PBMC 7 + - <12 

 
B3Z-TCR53m cells were cocultured with the indicated cells and the resulted mIL-2 values are listed 
(12 pg/ml was the highest background value of the B3Z-TCR53m cells cultivated alone). Cell lines 
were collected through laboratory exchanges. HLA-A2 transfection was performed using HLA-A2 IVT-
mRNA. HLA-A2 status was determined by flow cytometry. 
PBMC = peripheral blood mononuclear cells from healthy donors. hBMEC is a brain microvascular 
endothelial cell line, hMSC is a mesenchymal stem cell. K4IM is a fibroblast cell line. Shaded in grey is 
the cell line which induced mIL-2 secretion above the background. 
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Table 4. B3Z-TCR53m recognition pattern and HLA-A2 status of tumor cell lines other than 
RCC. 

Tumor cell lines HLA-A2
+
 HLA-A2 

tf
 mIL-2 (pg/ml) 

Melanoma     
624.38Mel + - <12 

93.04.A12 
 

+ - <12 

A-375 + - <12 
BLM + - 56 
SK-23 + - <12 
SK-Mel25 + - <12 
SK-Mel29 - - <12 
SK-Mel29 - + <12 
WM-115 + - <12 
WM-266.4a + - <12 
    
Sarcoma     
A-673 + - <12 
CCL121  - - <12 
CRL-1543 + - <12 
CRL-1544 + - <12 
EWING-AK - - <12 
MG-63 - - <12 
SAOS2 + - <12 
TC-71 + - <12 
U2OS + - <12 
    
Lymphocytic malignancies    

BOE - - <12 
BOE - + <12 
Granta- 519 + - 350 
HBL-2 - + <12 
Jeko-1 + - <12 
JVM-2 - + <12 
Karpas-422 + - <12 
L-428 - - <12 
LCL-1 + - 57 
LCL-2 + - <12 
LCL-3 + - <12 
LCL-4 + - 25 
LCL-26 + - <12 
Nalm-6 + - 49 
SKW-6  + - 35 
    
Myelocytic malignancies    

K-562 - - <12 
K-562 - + <12 
THP-1 + - 13 
    
Colon carcinoma    
Colo-205 + - <12 
HCT116 + - <12 
HT-29 - + <12 
SW-480 + - <12 
SW-620 + - <12 
    
Breast carcinoma    
MaCa-1 - - <12 
MaCa-1 - + <12 
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Tumor cell lines HLA-A2
+
 HLA-A2 

tf
 mIL-2 (pg/ml) 

    
MCF7 + - <12 
    
Neuroblastoma    
Kelly - - <12 
SK-NSH + - 38 
    
Glioblastoma    
U-373 + - 155 
U-87 + - <12 
    
Medullablastoma    
D-458 - - <12 
    
Astrocytoma    
U-251 MG + - 45 
    
Pancreas Carcinoma    
Colo-357 - - <12 
Panc Tu1 + - 136 
    
Prostate Carcinoma    
Du-145 - + <12 
PC-3   - + <12 
LNCAP + - <12 
    
Squamous carcinoma    
FaDu - - <12 
FaDu - + <12 
PCI-1 + - <12 
UT-SSC-15 + - 313 

 
B3Z-TCR53m cells were cocultured with the indicated cells and the resulted mIL-2 values are listed 
(12 pg/ml was the highest background value of the B3Z-TCR53m cells cultivated alone). Cell lines 
were collected through laboratory exchanges. HLA-A2 transfection was performed using HLA-A2 IVT-
mRNA. HLA-A2 status was determined by flow cytometry. Tumor types listed are classified as follows: 
melanoma, sarcoma, lymphocytic malignancies, myelocytic leukemia, colon carcinoma, breast 
carcinoma, neuroblastoma, glioblastoma, medullablastoma, astrocytoma, pancreas carcinoma, 
prostate carcinoma, squamous carcinoma. Shaded in grey are those cell lines which induced mIL-2 
secretion above the background. 
 

 

3.2 Expression of TCR53 in PBLs and functional analysis 

 

The TCR53 used for engineering of all PBL recipient cells analyzed in this thesis had 

the codon optimized TCR53m sequences (TCR53mc). 

The TCR53-pMHC ligand was found to be shared among RCC cell lines and some 

tumors of other histologies, but not present in normal cell counterparts and thus had 

characteristics of potential clinical value. Therefore, the expression of TCR53mc on 

PBLs and the specificity and functional profile of TCR53mc-expressing PBLs were 

investigated. 
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3.2.1 Cross-pairing of TCR53mc with endogenous TCR of PBLs. 

 

A possible complication of the expression of additional TCR  and β chains in PBL is 

the formation of TCR hybrids between the newly introduced TCR chains with the 

endogenous TCR chains. Unknown TCR specificities could be created that could 

recognize epitopes on normal tissue leading to autoimmunity. The replacement of the 

human TCR constant region by the murine TCR constant region is thought to 

minimize the occurrence of hybrids by fostering the pairing between the two  and  

chains containing the murine constant region. To assess the formation of hybrid TCR 

pairs of endogenous and TCR53mc chains in PBLs, IVT-mRNA of TCR53mc  and β 

chains were individually electroporated in PBLs of healthy donors. Electroporation of 

both TCR53mc  and β chains together served as positive control for the 

electroporation and function of the PBLs examined. The detection on the cell surface 

of TCRs formed with the TCR53mc β chain was done by staining with anti-murine 

TCR  chain antibody (anti-mTCR), labeled with APC. The anti-mTCR antibody 

detects the murine constant region of the TCR53mc  chain, but does not detect the 

endogenous human TCR of the PBLs. Cross-pairing of the TCR53mc  chain with 

endogenous  chains could not be analyzed because there are no antibodies to 

detect neither the murine constant TCR  chain nor the human TCR V19 of 

TCR53mc. After electroporation of the TCR53mc  chain IVT-mRNA into PBLs (left 

plot Figure 3.3a), hardly any (2 %) of the PBLs were found positive for the mTCR 

antibody indicating that pairing of endogenous TCR  chains with the transfected 

TCR53mc  chain was a rare event. Electroporation of both the TCR53mc  and  

chain IVT-mRNA (right plot, Figure 3.3a) resulted in 25 % mTCR-expressing cells.  

To investigate whether mixed pairs of the TCR53mc  or  chains with the 

endogenous PBL TCR  or  chains, respectively, would have the specificity as the 

TCR53mc  heterodimer, PBLs electroporated with either TCR53mc  or  chains 

IVT-mRNA or with TCR53mc  plus  chains IVT-mRNA (TCR53mc ) were 

cocultured with the tumor cells RCC-26 for 5 hours in the presence of intracellular 

transport blockers (monensin and brefeldin A (BFA)) to enrich cytokines in the 

endoplasmatic reticulum. Staining with 7-AAD allowed the analysis of viable cells 

(gated on 7-AAD-) and staining with anti-CD45 (conjugated with PE-Cy7) 

discriminated the lymphocytes from the tumor cells (gated on CD45+). Recognition of 
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RCC-26 by electroporated PBLs was determined by the detection of TNF- positive 

cells (stained with an anti-TNF antibody conjugated with A700) using flow cytometry. 

PBLs electroporated with only TCR53mc  or only  chain IVT-mRNA showed no 

TNF- positive cells indicating that they did not express TCRs with the specificity of 

the TCR53mc  plus  heterodimer (Figure 3.3b). On the other hand, 11 % of the 

PBLs electroporated with both TCR53mc  plus  chain encoding IVT-mRNA 

produced TNF-. PBLs that were electroporated without IVT-mRNA (PBL-mock) 

were used as negative control. Data shown is 1 representative of 2 independent 

experiments. 

 

Figure 3.3. Analysis of cross-pairing of the TCR53mc  with endogenous TCR 
chains in PBLs. 

(a) mTCR expression of PBLs electroporated with only TCR53mc β chain (left) or TCR53mc  and β 

chains (right) IVT-mRNA or electroporated without IVT-mRNA (PBL-mock). (b) Assessment of TNF- 
secretion by flow cytometry after cocultures of RCC-26 with PBLs electroporated with only TCR53mc 
β chain encoding IVT-RNA (left), with only TCR53mc chain encoding IVT-RNA (midlle) or with 

TCR53mc  plus β chain encoding IVT-RNAs (right). PBL-mock served as negative control. Shown in 
the y axis is the percentage of maximal projection and in the x axis is the fluorescence intensity of 
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TNF- of the gated CD45
+
 7-AAD

-
 (live) population. Data shown is 1 representative of 2 independent 

experiments. % of max= % of maximal projection. 

3.2.2 Transduction with pMP71-TCR53mc endows PBL with HLA-A2 
restricted specific tumor recognition 

 
 

3.2.3 PBL-TCR53mc can kill RCC targets  

 

To generate human T cells that stably express TCR53, PBLs of healthy donors were 

transduced with the TCR53mc encoding retroviral vector (pMP71-TCR53mc). 48 h 

before transduction, PBLs were stimulated with anti-CD3 and anti-CD28 antibodies. 

Untransduced, anti-CD3/anti-CD28 stimulated cells (PBL-mock) or PBLs transduced 

with pMP71-GFP (PBL-GFP) were used as control for any unspecific reactivity of the 

PBLs. The efficiency of the retroviral transduction was assessed before each 

experiment by staining with the anti-mTCR antibody to detect the TCR53mc. The 

transduction efficiency using the pMP71-GFP vector was determined by detecting the 

GFP fluorescence. 

To assess the capacity of PBLs to kill tumor cells after expressing TCR53mc, a 

chromium release assay was performed with RCC-26 and the TCR53 autologous 

tumor cell line RCC-53 as targets. Both RCC-26 and RCC-53 express the TCR53 

pMHC ligand, as identified before in the screen using the B3Z-TCR53m indicator 

cells. The MHC class I-negative K-562 line and Daudi were used as controls to 

detect NK cell activity, if present. The TCR53mc-expressing PBLs used in this 

experiment had a transduction efficiency of 25 % (e.g. 25 % of T cells were 

TCR53mc+) and the GFP transduction efficiency was 35 %. Both RCC-26 and RCC-

53 were killed by PBL-TCR53mc cells, with 80 % and 50 % specific lysis at an 

effector to target ratio of 40:1, respectively (Figure 3.4). K-562 lysis was close to zero 

and the lysis of Daudi cells was 40 % at an effector to target ratio of 40:1. The lytic 

response of PBL-TCR53mc cells to Daudi cells was identical to that of the PBL-GFP 

population, which does not express a homogeneous set of TCRs. Together with the 

fact that Daudi is MHC class I-negative, the response is considered non-MHC 

restricted and classically associated with LAK cells. This non-restricted response is 

also seen against RCC-26 and RCC-53, but not K-562 (which is insensitive to LAK 

activity). The LAK activity observed in the PBLs was likely induced by exposing them 

to IL-2 and anti-CD3/anti-CD28 antibody stimulation, which is necessary to achieve 
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retroviral transduction. The experiment shown is 1 representative of 3 independent 

experiments with different PBLs donors.  

 

 

 

Figure 3.4. Killing capacity and specificity of PBLs transduced with pMP71-TCR53mc or 
pMP71-GFP. 

Chromium release assay showing percentage of specific killing for each PBL population. PBL 
transduced with the retroviral vector MP71-TCR53mc (PBL-TCR3mc) showed 25 % of TCR53mc

+
 

cells and PBL transduced with retroviral vector MP71-GFP (PBL-GFP) showed 35 % GFP
+
 cells. K-

562 and Daudi cells were used as control for TCR53mc unrelated killing. Percent specific lysis values 
are means of duplicates ± mean deviation. Shown in the x axis is the effector:target ratio. The data 
shown is 1 representative of 3 independent experiments. 

 
 

3.2.4 The antigen specificity of PBL-TCR53mc is HLA-A2 restricted 

 
To investigate the specificity of the TCR53mc associated killing activity, an HLA-A2- 

RCC cell line, KT-195 and its HLA-A2+ variant, generated by electroporation with 

HLA-A2 IVT-mRNA, were used as targets in a chromium release assay. PBL-GFP 

cells and PBL-mock cells were used as controls to detect unspecific reactivity. KT-

195 cells expressing HLA-A2 were specifically killed by PBL-TCR53mc cells while 

the HLA-A2- KT195 cells were not (Figure 3.5a).  
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Further substantiation of the HLA-A2 restricted specificity of TCR53mc was obtained 

by blocking the HLA-A2-TCR53mc interaction using the anti-HLA-A2 antibody HB-54. 

RCC-26 cells were used for the induction of IFN- secretion by the PBL-TCR53mc 

cells. Detection of IFN- in the supernatant of 24 h effector-target cocultures was 

done by ELISA. The isotype antibody was used as a specificity control and the 

cocultures in the absence of antibody were the positive control for IFN- secretion by 

the PBL-TCR53mc cells.  

 

 

Figure 3.5: Analysis of HLA-A2 restriction of PBLs transduced with pMP71-TCR53mc.  

(a) Specific killing of KT-195 HLA-A2
-
 (left) or KT-195 transfected with HLA-A2 IVT-mRNA (right) by 

PBL-TCR53mc, PBL-GFP or PBL-mock cells assessed by chromium release. Shown in the x axis is 
the effector:target ratio. The percentage of specific lysis values are means of duplicates ± mean 

deviation. (b) IFN- detection by ELISA (pg/ml) of 24 h supernatants of PBL-TCR53mc cultivated with 
RCC-26 or NKC-26 without addition of antibodies ( no AB), with the IgG1 isotype antibody (Iso) or with 
the HLA-A2 specific antibody HB-54 (HB-54). Error bars are the mean deviation. The experiment 
shown is 1 representative of 3 independent experiments with PBLs of different donors.  
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NKC-26, the normal kidney cell line counterpart of RCC-26, was used as a control for 

tumor specificity of the PBL-TCR53mc cells. PBL-TCR53mc cells recognized RCC-

26 as shown by the IFN- secretion in the presence or absence of the isotype 

antibody. The response was completely blocked by addition of the HB-54 antibody. In 

none of the conditions, NKC-26 was recognized by PBL-TCR53mc cells (Figure 

3.5b). Similar results were obtained with pMP71-TCR53mc-transduced PBLs of 3 

other healthy donors.  

 
 

3.2.5 PBL-TCR53mc cells are cytotoxic toward tumors of other 
histology but not normal kidney  

 

Given that targets of TCR53mc, other than RCCs, were identified in the screening 

using the B3Z-TCR53m hybridoma, it remained to be tested whether the non-RCC 

tumor cells could also be killed by the PBL-TCR53mc cells. Furthermore, the 

screening had shown that normal kidney cells did not stimulate IL-2 production of 

B3Z-TCR53m cells. The susceptibility of normal kidney cells to killing by the PBL-

TCR53mc cells was another important issue to be examined. Therefore, the HLA-A2+ 

NKC-26 and two HLA-A2+ primary normal kidney cell cultures, NKC-3 and NKC-42, 

were tested in a chromium release assay. The HLA-A2+ cell lines UT-SSC-15 

(squamous carcinoma) and U-373 (glioblastoma) were chosen as targets 

representing tumor cells of other histologies. RCC-26 cells served as a positive 

control for the killing mediated by PBL-TCR53mc cells. PBL-mock and PBL-GFP 

cells were used to identify the background for unspecific killing.  



Results                                                                                                                                         

 32 

 

 

Figure 3.6. Lytic activity of PBL-TCR53mc, PBL-mock and PBL-GFP cells against tumors and 
primary normal kidney cultures. 

Cell-mediated cytotoxicity of titered numbers of PBL-TCR53mc (transduction efficiency: 20 %), 
untransduced PBLs (PBL-mock) or GFP-expressing PBLs (PBL-GFP, transduction efficiency: 30 %) 
against the HLA-A2

+
 cell lines RCC-26, U-373 (glioblastoma), UT-SCC-15 (squamous cell carcinoma) 

and normal kidney cells NKC-26, NKC-42 and NKC-3. The percentage of specific lysis values are 
means of duplicates ± mean deviation. Shown in the x axis is the effector:target ratio. 

 
 

As seen in Figure 3.6, both UT-SSC-15 and U-373 cells were strongly and 

specifically lysed by PBL-TCR53mc cells and lysis of both cell lines was comparable 

to that of RCC-26 cells. Lysis of NKC-26 and NKC-3 cells was only slightly above the 

background. NKC-42 cells were not killed by the PBL-TCR53mc cells. 

 
 

3.3 TCR53mc is expressed on both CD4+ and CD8+ T cells but only 
functional in CD8+ T cells. 

 
The TCR53 was identified in the TIL-53.29 clone, which was of the CD8+ T cell 

lineage that normally recognizes peptide ligands complexed with MHC class I 

molecules. For therapeutic application, it would be advantageous if TCR53mc could 

also be expressed and functional on CD4+ T cells, because then, as T helper cells, 
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they could support the activity of CD8+ cytotoxic T cells directly at the tumor site [52-

56]. It is generally assumed that the low efficacy of antigen-specific CD8+ T cells in 

ATT is in part a consequence of missing help by CD4+ T helper cells [52] [84]. CD4+ 

T cells recognize antigens presented by MHC class II molecules. However, there are 

reports of CD4+ T cells recognizing antigens presented by MHC class I [56]. This 

could be consequence of a TCR that binds the pMHC strong enough to generate a 

response independently of CD4 or CD8 co-receptor interaction with the pMHC. 

Epithelial tumors, such as RCC, generally are not MHC class II positive and thus 

CD4+ T cells are not activated in the tumor environment, leaving the effector CD8+ T 

cells without concomitant CD4+ T cell help. If the TCR expressed by the CD4+ T cells 

would be identical to that on CD8+ T cells, then both T cell types could be activated 

by the same tumor cell and help would be provided where and when it is required.  

To determine whether CD4+ cells can express TCR53mc, PBL-TCR53mc cells were 

stained with anti-mTCR (APC), anti-CD4 (FITC) and anti-CD8 (PE) antibodies. As 

shown in Figure 3.7, both CD8+ and CD4+ T cell subsets expressed TCR53mc. 

Expression of TCR53mc by CD4+ T cells was seen on approximately two fold more 

cells (40 %) than on CD8+ T cells (22 %).  

 

Figure 3.7. TCR53mc expression on CD4
+
 and CD8

+
 T cells after retroviral transduction of PBLs 

with pMP71-TCR53mc.  

PBLs of a healthy donor were transduced with TCR53mc (PBL-TCR53m) or not transduced (PBL-
mock) and stained with anti-mTCR, anti-CD8 and anti-CD4 antibodies. Expression of TCR53mc gated 
on CD8

+
 T cells is shown in the left plot and gated on CD4

+
 T cells in the right plot. PBL-mock cells 

were used as negative control for mTCR staining. Numbers are the percentage of mTCR
+
 cells of the 

gated CD8
+
 or CD4

+
 T cell population, respectively. % of max= % of maximal projection.  
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To evaluate the function of the different PBL T cell subsets expressing TCR53mc, 

exocytosis of lytic granules (degranulation) and cytokine secretion were measured by 

flow cytometry. PBL-TCR53mc cells were incubated with RCC-26 cells in the 

presence of intracellular transport inhibitors (monensin and BFA) for 5 h to enrich 

cytokines in the endoplasmatic reticulum. Degranulation was assessed by membrane 

staining with anti-CD107a and anti-CD107b (both conjugated with FITC) with both 

antibodies being present during the T cell-RCC-26 coculture. Whether the cytokines 

IFN- and TNF-  were induced in T cells during the coculture with RCC-26 was 

determined, after the coculture, by intracellular staining using specific antibodies 

(anti-IFN-PE and anti-TNF-A700). The gating strategy used to select the cells to be 

analyzed is shown in Figure 3.8. First, PBLs were selected based on the morphology 

of the T cells (FSC and SSC, Figure 3.8, gate 1). Then, dead cells were excluded by 

staining with 7-AAD (Figure 3.8, gate 2). The use of an anti-CD45 (conjugated with 

PE-Cy7) served to eliminate tumor cells from the analysis (Figure 3.8, gate 3). The 

anti-mTCR antibody (conjugated with APC) was included in the multichromatic 

staining to evaluate whether the observed effector functions were performed by T 

cells expressing the TCR53mc (Figure 3.8, gate 4). Finally, staining with anti-CD4 

(conjugated with APC-A750) and anti-CD8 (conjugated with PB) antibodies 

distinguished both T cell subtypes (Figure 3.8, G5 and G6, respectively). PBL-mock 

cells were used to detect the amount of unspecific reaction of stimulated PBLs 

toward RCC-26 cells.  
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Figure 3.8. Gating strategy for the analysis of the effector function of CD4
+
 and CD8

+
 T cells 

after T cell-tumor cell coculture. 

Gate 1 (G1) was placed enclosing events corresponding to the typical size and morphology of PBLs 
(upper left plot). Gate 2 (G2) selects the 7AAD

-
 cells (upper right plot). Gate 3 (G3) selects CD45

+
 

lymphocytes, thus eliminating tumor cells from the analysis (lower left plot). Gate 4 (G4) was used to 
select only T cells expressing mTCR. Gate 5 (G5) distinguishes the CD4

+
 and gate 6 (G6) 

distinguishes the CD8
+
 T cells subsets (lower right plot, CD4 x CD8).  

 
 
As evident in Figure 3.9a, CD8+ T cells expressing TCR53mc responded to RCC-26 

stimulation with degranulation (60 % were CD107+) and secretion of IFN- (18 %) 

and TNF-  (47 %), whereas CD4+ T cells expressing TCR53mc showed no functional 

response upon incubation with RCC-26 cells (Figure 3.9b). PBL-mock cells had no 

functional response (Figure 3.9c). Experiments were repeatedly done with PBLs of 4 

different donors with similar results. A set of representative data is shown. 
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Figure 3.9. Cytokine secretion and degranulation by CD8
+
TCR53mc

+
 and CD4

+
TCR53mc

+
 T 

cells upon target recognition. 

PBL-TCR53mc cells stimulated with RCC-26 cells shown in (a) were gated on CD45
+
CD8

+
TCR53mc

+ 
T cells and shown in (b) were gated on CD45

+
CD4

+
TCR53mc

+ T cells. (c) PBLs untransduced (PBL-
mock) and cultivated with RCC-26, gated on CD45

+
, were used as negative control. The plots shown 

are 1 representative of 4 independent experiments.  

 
 
It is expected that only the TCR53mc+ population of the PBL-TCR53mc cells will 

react to RCC-26 and that the TCR53mc- population would show none or minor 

reactivity, comparable to PBL-mock cells. To confirm this, PBL-TCR53mc cells gated 

on the CD45+CD8+TCR53mc+ were plotted side by side with the cells gated on 

CD45+CD8+TCR53mc-  and degranulation and cytokine secretion were compared. As 

shown in Figure 3.10, the reactivity of PBL-TCR53mc gated on the 

CD45+CD8+TCR53mc- population to RCC-26 cells was very low and similar to that 

seen in the mock control (Figure 3.9c). The response regarding degranulation and 

cytokine secretion was predominantly seen in the CD45+CD8+TCR53mc+ population. 

Experiments were repeatedly done with PBL of 4 different donors with similar results. 

A set of representative data is shown. 
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Figure 3.10. Degranulation and cytokine response of the gated CD45
+
CD8

+
TCR53mc

-
 versus the 

gated CD45
+
CD8

+
TCR53mc

+
populations. 

The population shown in black represents the gated CD45
+
CD8

+
TCR53mc

-
 T cells and in green are 

the CD45
+
CD8

+
TCR53mc

+
 T cells. The numbers in black or in green are percentage of 

CD45
+
CD8

+
TCR53mc

-
 or CD45

+
CD8

+
TCR53mc

+
 population, respectively, in each quadrant. Plots 

shown are of 1 representative experiment of 4 independent experiments.  

 
 

3.3.1 PBL-TCR53mc cells are polyfunctional upon target 
recognition 

 
It has been reported [85] that T cells performing multiple effector functions 

simultaneously (e.g. polyfunctional T cells) determine the success of viral infection 

clearance. In addition, high avidity of a T cell response has been implicated as 

playing a critical role in tumor rejection [45]. To determine the quality of the effector 

response of PBL-TCR53mc cells, the polyfunctional profile composed of cytokine 

secretion and degranulation was analyzed by flow cytometry using polychromatic 

staining. The response profile of PBLs expressing TCR53mc was compared to 2 

other PBL populations transduced with 2 different tyrosinase-specific TCRs (TCR-

D115m and TCR-T58m) that recognize the same tyrosinase-peptide 369-377 with 

distinct TCR avidities: TCR-D115m has an intermediate avidity for the peptide and 
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TCR-T58m is of high avidity [86]. The T cell avidity is commonly determined by 

measuring the functional response against titrated peptide concentrations. Because 

the antigen recognized by TCR53 is unknown, T cell avidity of TCR53 cannot be 

directly measured. A way to infer the T cell avidity of the PBL-TCR53mc cells is to 

compare their functionality with that of the TCRs with known avidity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.11. Surface expression of TCR53mc, TCR-T58m and TCR-D115m in PBL of healthy 
donors after retroviral transduction. 

PBLs were transduced with pMP71-TCR53mc (left), pMP71-TCR-D115 or pMP71-TCR-T58 (right 
upper and lower panels, respectively). The percentage of cells among the gated lymphocytes 
expressing TCR53mc or TCR-T58m was determined by staining with the mTCR antibody and the 

TCR-D115m with the anti-human TCRV8 antibody. PBL-mock cells were used as control for 
unspecific binding of the antibodies used. The panels in (a) and in (b) are parallel transductions using 
the same PBL donors, while (a) and (b) are different experiments with different PBL donors.  
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detected by the anti-mTCR antibody. TCR53mc and TCR-D115m were transduced in 

parallel into PBLs from the same donor and a PBL-mock was used as control for both 

of them. Retroviral transduction yielded 60 % TCR53mc+ T cells (detected with an 

anti-mTCR) and 50 % of TCR-D115+ T cells (detected with the specific anti-V8) 

(Figure 3.11a). In a different experiment, TCR53mc and TCR-T58m were transduced 

in parallel into PBL derived from the same donor (who was different from the 

previous transduction shown in Figure 3.11a) with a PBL-mock being used as control 

for both of them. The percentage of TCR53mc+ T cells was 40 % and of TCR-T58+ T 

cells was 20 % (Figure 3.11b). 

 

To determine the functional response profile, each PBL population expressing the 

recombinant TCR was cocultured with target cells, RCC-26 cells for PBL-TCR53mc 

cells or Mel-93.04A12 cells for both PBL-TCR-D115 and PBL-TCR-T58 cells, for 5 h 

in the presence of anti-CD107a+b antibodies (FITC) and BFA and monensin. After 

the coculture, cells were subjected to polychromatic staining as follows: CD45-

AmCyan, mTCR-PE, CD8-PB, IFN--PE-Cy7, TNF--A700 and IL-2-APC. Anti-

mTCR was included to allow gating on the T cell population expressing TCR53mc, 

TCR-D115m or TCR-T58m. The specific gating strategy focusing on the T cell 

population expressing the mTCR (and setting this to 100 %) allowed to compare the 

functional profile of the different transduced PBL populations even though the 

percentages of CD8+ T cells with transgenic TCR expression was not the same (see 

Figure 3.11). Compared in 3.12a is the functional response of PBL-TCR53mc and 

the PBL-TCR-D115m cells. In 3.12b is the comparison between PBL-TCR53mc and 

PBL-TCR-T58m cells, representing another experiment. Stimulation with RCC-26 

cells (for PBL-TCR53mc cells) or Mel-93.04A12 cells (for PBL-TCR-D115m and PBL-

TCR-T58m cells) caused CD8+ T cells to degranulate and secrete cytokines. 
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Figure 3.12. Functional response of CD8
+
-TCR53mc, CD8

+
-TCR-D115m and CD8

+
-TCR-T58m T 

cells.  

PBL-TCR53mc cells were cocultured with RCC-26 cells and PBL-TCR-D115m and PBL-TCR-T58m 
cells were cocultured with Mel-93.04A12 cells for 5 h in the presence of monensin, BFA and 

CD107a+b antibodies. Cell suspensions were then stained with anti-CD45, anti-CD8, anti-IFN-, anti-

TNF- and anti-IL-2 antibodies and examined by flow cytometry. Cells shown were gated on 
CD45

+
CD8

+
mTCR

+
. Numbers in black show percentage of positive cells in the respective gate. 

 
 
The responding population was defined as the percentage of CD45+CD8+mTCR+ 

cells that showed at least one function, independently whether it was degranulation 

(CD107+) or any of the cytokines. The percentage of responding CD8+ T cells among 

the transgenic TCR-expressing population was determined (Figure 3.13a and b). The 
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number of responding CD8+mTCR+ cells was found to be equivalent for TCR53mc+ 

and TCR-D115m+ T cells (60 % vs 59 %, respectively) (Figure 3.13a) while PBL 

expressing TCR-T58m had a higher number of responding T cells (70 %) than 

TCR53mc (60 %) (Figure 3.13b). 

 
 

 
 

 

Figure 3.13. Percentage of CD8
+
 T cells expressing TCR53mc, TCR-D115m or TCR-T58m 

showing at least 1 functional response upon target recognition.  

PBLs expressing the respective recombinant TCR were cocultured with target cells and then 
subjected to polychromatic staining and Boolean gating. The percentage of responding cells was 
assessed in PBL-TCR53mc cells after incubation with RCC-26 cells (a and b) and in PBL-TCR-D115m 
(a) or PBL-TCR-T58m cells (b) after incubation with Mel-93.04A12 cells. Responding T cells are those 

that showed at least 1 function, like degranulation or secretion of 1 of the cytokines IFN-, TNF- or IL-

2. T cells were gated on CD45
+
CD8

+
mTCR

+. 
 
 

To determine which is the most prominent effector function of the T cell population 

with the different transgenic TCRs and whether there is a difference related to the 

avidity of the respective TCR, the percentage of positive cells for degranulation, IFN-

, TNF- or IL-2 were determined (Figure 3.14a and c). TCR53mc+ and TCR-D115m+ 

CD8+ T cells were found to be very similar with regards to all functional responses 

having, respectively, 39 % and 34 % IFN-+ cells, 22 % and 21 % IL-2+ cells, 44 % 

and 38 % TNF-+ cells and 17 % and 12 % T cells that degranulated. The highest 

percentages of responding cells were observed for TNF- and IFN-. Additionaly, the 

MFI, which represents the strength of the response, was found to be similar for all 

functions in PBL-TCR53mc and PBL-TCR-D115m cells (Figure 3.14b and d). In 
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contrast, the response of PBL-TCR53mc and PBL-TCR-T58m cells differed in the 

percentage of CD107+ T cells as well as in the strength of degranulation per cell (MFI 

of CD107), both of which were significantly higher in TCR-T58m+ compared to 

TCR53mc+ T cells (p=0.009 and p=0.03 respectively) (Figure 3.14c and d). The 

secretion of cytokines was similar between TCR-T58m- and TCR53mc-expressing 

PBLs. The experiments evaluating the comparison of PBL-TCR53mc and PBL-TCR-

T58m were done twice. Shown is the mean of two experiments. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.14. IFN-, IL-2, TNF or CD107 positive cells among the gated CD45
+
CD8

+
mTCR

+
 T 

cells in PBL-TCR53mc, PBL-D115m and PBL-T58m cells after coculture with targets. 

Cytokine production or degranulation upon recognition of RCC-26 cells (PBL-TCR53mc cells) or Mel-
93.04A12 cells (PBL-TCR-D115m and PBL-TCR-T58m cells). The percentage of positive cells for IFN-

, IL-2, TNF  or CD107 within the gated CD45
+
CD8

+
mTCR

+
 PBL-TCR53mc and PBL-D115m cells (a) 

or PBL-TCR53mc and PBL-T58m cells (c) assessed by flow cytometry. (b and d) The MFI of each 
cytokine or CD107 of the gated CD45

+
CD8

+
mTCR

+
 populations was likewise assessed. The statistical 

analysis to evaluate significant differences between TCR53mc and TCR-T58m was the unpaired 
Student T test (p values are shown in case of significance). 
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The polyfunctionality of the recombinant TCR-expressing populations, which is the 

percentage of CD45+CD8+mTCR+ T cells that simultaneously performed different 

combinations of responses, was investigated using Boolean gating analysis. Figure 

3.15 shows the distribution of cells among the responding population that produced 

either 1 function (only degranulation or only 1 cytokine), 2 functions (combination of 

any 2 of the functions investigated), 3 functions (combination of any 3 of the functions 

investigated) or all 4 functions combined. This analysis revealed similar percentage 

of cells distributed in the 4 categories (production of 1, 2, 3 or 4 functions) among the 

PBLs expressing TCR53mc+, TCR-D115m+ or TCR-T58m. More than 50 % of the 

responding TCR53mc+, TCR-D115m+ and TCR-T58m T cells displayed 2 or more 

functions. 

 

 

 
Figure 3.15. Polyfunctional profile of PBL-TCR53mc, PBL-TCR-D115m and PBL-TCR-T58m 
upon target recognition. 
The capacity of CD8

+
 T cells expressing TCR53mc or TCR-D115m (a) and CD8

+
 T cell expressing 

TCR53mc or TCR-58m (b) to be polyfunctional upon recognition of targets (RCC-26 for PBL-
TCR53mc or Mel-93.04A12 for PBL-TCR-D115m and PBL-TCR-T58m) was analyzed by Boolean 
gating. The percentage of cells among the functional population that perform 1, 2, 3 or 4 functions is 

shown. T cells were gated on CD45
+
CD8

+
mTCR

+. 
 

 

3.3.2 TCR53mc-mediated killing of RCC-26 cells in a spheroid 
model mimicking the tumor environment 
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Spheroids are 3-D cell culture models commonly used by the pharmaceutical 

industry as a tool to evaluate drugs for the cancer treatment [87]. Because they 

mimic tumor behavior in many different aspects, they are much closer to the situation 

that T cells will encounter in vivo than simple monolayer tumor cell cultures [87]. 

TCR53mc-expressing T cells were found to mediate specific killing of RCC-26 cells 

and other targets that were cultivated as monolayer cultures. The next step was to 

investigate whether TCR53mc-expressing PBL would be able to kill RCC-26 targets 

that were grown as spheroids. For this purpose, mixed-cell spheroids were prepared 

composed of equal numbers of RCC-26 cells, which express the TCR53-pMHC 

ligand, and of HLA-A2- KT-195 cells that do not have the TCR53-pMHC ligand. To 

allow distinguishing both cell types, they were stained with live-cell fluorescent dyes, 

RCC-26 cells with Bodipy and KT-195 with CFDA-SE (CFSE when fluorescent). After 

5 days of spheroid formation, PBLs transduced with pMP71-TCR53mc were added 

for 4 h to the spheroids. Then, the spheroids were harvested and either frozen or 

disintegrated with the help of accutase. The frozen samples were sectioned and 

stained with anti-CD3 and the secondary anti-mouse IgG1-A568 labeled antibody. 

DAPI was used to stain nuclei. Using laser fluorescence scanning confocal 

microscopy, the distribution of RCC-26 (blue) and KT-195 (green) and the presence 

of infiltrating T cells (CD3, red) in the spheroid was documented (Figure 3.16a).  

The disrupted cell suspension was used to analyze whether killing of RCC-26 cells 

had occurred, which should be reflected in the change of the RCC-26 to KT-195 

ratio. For this, the suspension was stained for flow cytometry analysis using anti-

CD45-PE-Cy7 (to distinguish T cells from the tumor cells) and 7-AAD to exclude 

dead cells. Tumor cells were gated on the CD45 negative population. If specific killing 

occurred, then a decrease in the ratio of RCC-26 to KT-195 cells should become 

measurable. The equations used for the calculation are shown in the methods 

section 6.7.10.2 and in the figure legend. In Figure 3.16b, the left plot shows the 

percentages of RCC-26 cells in gate “a” and KT-195 cells in gate “b" of spheroids 

cultured without T cells. In this case, RCC-26 represented 43 % and KT-195 51 % of 

the gated tumor cell suspension, respectively (the rest to complete 100 % were 

unstained cells). The plot in the middle utilizes the same gating strategy and shows 

spheroids exposed to PBL-TCR53mc cells. Here, the percentage of RCC-26 cells 

(gate a, 30 %) diminished in relation to the percentage of KT-195 cells (gate b, 66 
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%), indicating a loss of RCC-26 cells. The calculated killing was 32 %. This 

experiment was repeated 3 times with similar results.  

 

 

 

 

 
 

 

Figure 3.16. Killing of RCC-26 cells by PBL-TCR53mc cells in a 3-D environment. 

(a) Confocal microscopy showing a histologic section of a mixed-cell RCC spheroid containing CFSE 
stained KT-195 cells (5 x 10

4
, green) and Bodipy stained RCC-26 cells (5 x 10

4
, blue) without PBL-

TCR53mc infiltration (left) or after PBL-TCR53mc infiltration (right). PBL-TCR53mc cells were detected 
using a mouse anti-human CD3 with secondary anti-mouse A568 labeled antibody (red). DAPI, shown 
in grey, labeled the nuclei. The image is shown as the maximal projection of 6 z-planes acquired at a 
step-size of 0.8 µm. Bars show the scale of the images. (b) The plots show the percentage of Bodipy 
stained RCC-26 in gate a and the percentage of CFSE stained KT-195 in gate b, derived from 
spheroids without exposure to T cells (left plot), or after 4 h of exposure to PBL-TCR53mc cells 
(middle plot) or spheroids after 4 h of exposure to PBL-TCR53mc cells that were  treated overnight 
with anti-CD8 antibody (right plot). c) The histograms show CD8 expression on PBL-TCR53mc cells 
after treatment with anti-CD8 antibody or without treatment.  
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Whereby the % of target cells (RCC-26) in the spheroid is derived from the formula: 
 

SE -CFDA  with stained cells % Bodipy  with stained cells %

Bodipy with stained cells %
spheroidin  cells target %


  

To evaluate whether the loss of RCC-26 cells was mediated by the T cells 

expressing TCR53mc, the property of TCR53mc to be dependent on the CD8 

molecule for function was used. PBL-TCR53mc cells were incubated overnight with 

an anti-human CD8 antibody resulting in the disruption of the CD8 surface 

expression (Figure 3.16c, histogram). The PBL-TCR53mc cells treated with an anti-

CD8 antibody were incubated with the mixed-cell spheroids for 4 h. The ratio of RCC-

26 to KT-195 cells resembled that of spheroids that were not exposed to PBL-

TCR53mc cells, suggesting that the anti-CD8-treated PBL-TCR53mc cells no longer 

performed cytotoxic activity against RCC-26 cells (Figure 3.16b, right plot). The 

calculated killing was 6 %. 

 
 

3.3.3  TCR53mc expression and functional performance after 
retroviral transduction of PBLs of RCC patients 

 

PBMCs of sarcoma patients show deviations in the composition of T cell subsets 

when compared to PBMCs of healthy donors [88]. In addition, the proliferation of 

PBLs of head and neck carcinoma patients was shown to be deficient [89]. Because 

systemic immune impairments are seen in PBMCs of cancer patients, it was not 

certain that PBLs of RCC patients would be as successfully transduced with pMP71-

TCR53mc as the PBLs of healthy donors. An additional concern is that the pMP71-

TCR53mc-transduced PBLs of RCC patients would be functionally impaired. To test 

whether PBLs of RCC patients can be used to generate large amounts of RCC-

specific T cells, PBL of 5 RCC patients were tested. All patients had progressive 

metastatic disease and 2 of them had received several applications of IFN- and 5-

fluorouracil (5-FU) prior to blood donation (Table 5).  

 

Table 5. Clinicopathologic status of the RCC patients and treatment condition. 

RCC patient 
Treatment *TMN status/  

RCC-histology 
IFN-/5-FU tumor grade  
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°1 + T3, M0, N1/ G3  clear cell 
°2 - T2, M0, N2/ G1  papillar-chromophile 
°3 - T3, M0, N2/ G3  clear cell 
°4 + bone metastasis  clear cell 
°5 - T2/ G3  Clear cell 

 
* „T“ = tumor size, „M“ = distant metastasis, „N“ = lymph node status and „G“ = tumor grade, 
according to the “Union International Contre le Cancre” (UICC) [90].  

The transduction efficacy of pMP71-TCR53mc in cryo-preserved PBLs of RCC 

patients and a healthy donor, their expansion capacity and TCR53mc-associated 

functionality was assessed. The conditions used for PBL expansion were based on 

the current protocol used for the generation of trangenic T cells for the adoptive T cell 

therapy of melanoma [30]. According to the protocol designed for clinical application 

(clinical trial registration number NCI-07-C-0175) T cells are being used 

approximatedly 9-14 days and 20-28 days after transduction with the vector 

containing the desired TCR. Accordingly, the timepoints 9 and 20 days after the 

retroviral transduction were used for assessment of function and to investigate 

whether long-term cultured PBLs, without restimulation, could still be used for 

treatment of patients. Hedfors and Brinchmann [91] examined two T cell activation 

protocols following the initial CD3/CD28 activation, whereby T cells were either 

repeatedly stimulated or maintained in medium containing IL-2. They found that while 

repeated stimulation led to activation-induced cell death (AICD) of a large proportion 

of T cells, holding T cells in IL-2 without restimulation resulted in greater cell survival 

at the end of the culture period (~ 4 weeks). Therefore, although in the protocol for 

clinical application PBLs were restimulated with anti-CD3 9 days after the first 

stimulation, in this work, the PBLs were not restimulated but kept in medium with 

cytokine (IL-2 or IL-15) after the first stimulation. PBLs of a healthy donor were used 

as reference in all experiments. 

 
 

3.3.3.1   Expression of TCR53mc in PBLs of RCC patients 

 

Cyro-preserved PBLs of RCC patients were defrosted and stimulated with anti-CD3 

and anti-CD28 in 300 U/ml IL-2 and transduced with pMP71-TCR53mc alongside 

with PBLs of a healthy donor. The TCR53mc expression was measured at day 5 

after stimulation using anti-mTCR (APC). Gating on the living population (7-AAD-) 

revealed that all PBLs of RCC patients were efficiently transduced with pMP71-
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TCR53mc, despite the poor clinical status and the exposure to chemotherapeutics. 

The TCR53mc expression varied between 19 % and 38 % among PBLs of RCC 

patients and the TCR53mc expression in the PBLs of the healthy donor was 30 % 

(Figure 3.17). 

 

 

Figure 3.17. Transduction efficiency of pMP71-TCR53mc in PBLs of RCC patients and a healthy 
donor.  

PBLs of RCC patients (°1-°5) and 1 healthy donor were retrovirally transduced with pMP71-TCR53mc 
(PBL-TCR53mc) or not transduced (PBL-mock) and stained with anti-mTCR. PBL-mock was used as 
a negative control for the mTCR staining. Shown in the y axis is the percentage of maximal projection 
and in the x axis is the fluorescence intensity. 

 
 

3.3.3.2   Expansion capacity of PBLs of RCC patients 9 days after 
stimulation and supplementation with IL-2  

 
For adoptive T cell therapy to treat melanoma patients current clinical protocols [30] 

forsee the infusion of about 10
10 T cells, which are obtained from approximately 5 x 

10
8 PBMCs, isolated from the patient previously to lymphodepletion. This represents 

an expansion of 20 fold.  
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To determine the expansion capacity of PBL of RCC patients and 1 healthy donor, 

PBMCs obtained from 5 RCC patients were stimulated with plate-coated anti-CD3 

and anti-CD28 in T cell medium supplemented with IL-2. 9 days after stimulation the 

cell expansion was evaluated. Cell counting of TCR-transduced PBLs was done 

using a Neubauer chamber and trypan blue staining to distinguish dead cells. Both 

PBLs of the healthy donor and the patients could be successfully expanded ex vivo 

following the protocol utilized for clinical application (without restimulation), reaching 

at least a 60 fold increase in cell number by day 9 after stimulation (Table 6).  

 

Table 6. Expansion of pMP71-TCR53mc transduced PBLs of 5 RCC patients and of a healthy 
donor, 9 days after stimulation with anti-CD3 and anti-CD28. 
 

Fold expansion at day 9 after initiation of culture 
PBL donors Expansion (x-fold*) 

healthy 65 
RCC°1 67 
RCC°2 65 
RCC°3 65 
RCC°4 60 
RCC°5 60 

 
* The initial number of PBLs that were stimulated was 1 x 10

6
 

 
 

3.3.3.3   Expansion capacity of PBLs of RCC patients 20 days after 
stimulation in medium-containing IL-2 or IL-15 

 

Although IL-2 is the main cytokine used for expansion and activation of tumor-

specific T cells [37], IL-2 possesses qualities that may preclude it from being the 

optimal T cell growth-activation factor for the use in immunotherapy. IL-2 plays a 

pivotal role in AICD of T cells [92] and inhibits memory CD8+ T cell proliferation and 

survival [93]. IL-15 is a cytokine shown to overlap in function with IL-2, without having 

the disadvantage of inducing early onset of apoptosis or impairing survival of CD8+ 

memory T cells. IL-15 was found to play an essential role in the development, 

homeostasis, function, and survival of NK, NKT, and CD8+ T cells [94]. Thus, it was 

of great interest to determine the responsiveness of CD8+ and CD4+ T cells over 

long-term cultures to homeostatic cytokines like IL-15. To compare IL-2 and IL-15 

regarding the expansion of PBLs of RCC patients and a healthy donor, these cells 

were switched at day 9 after stimulation to medium containing IL-15 (10 ng/ml) or 

kept in medium with 50 U/ml IL-2. The cell counts were determined on day 20 after 
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the stimulation with anti-CD3 and anti-CD28 antibodies. As shown in Figure 3.18, the 

expansion from day 9 to day 20 after stimulation was better when the PBLs were 

cultivated in IL-2 than in IL-15 containing medium.    

 

 

Figure 3.18. PBL counts of RCC patients and a healthy donor at day 9 and day 20 after 
stimulation, cultivated in either IL-2- or IL-15-containing medium. 

Number of PBLs of RCC patients (RCC°1-°3) and 1 healthy donor, at day 9 and day 20 after anti-
CD3/anti-CD28 stimulation, treated with IL-2- or with IL-15-containing medium. Cell counting was 
performed after trypan blue staining, using a Neubauer chamber. Dead cells (stained with trypan blue) 
were discarded from the analysis. 

 
 

3.3.3.4   CD28 expression on PBLs cultured in medium 
supplemented with IL-2 or IL-15  

 
Optimal activation of T cells requires costimulation in addition to antigen-specific 

signals. One such costimulatory mechanism functions by activating the receptor 

CD28 expressed on the T cell surfaces. CD28 plays a key role in promoting survival 

of T cells upon stimulation [95] [96]. Powell and colleagues [96] showed that in 

melanoma patients responding to adoptive T cell therapy, the tumor antigen-specific 

T cell population contracted between 1 and 4 weeks after transfer, while stable 

numbers of CD28+ tumor-reactive T cells were maintained and persisted at 2 months 

after transfer, suggesting their contribution to the development of long-term 

melanoma-reactive memory CD8+ T cells in vivo.  

Prolonged TCR stimulation and cultivation results in the subsequent down regulation 

of the CD28 expression. Because IL-15 is thought to be important for maintaining T 

cells homeostasis, an evaluation of the CD28 dynamics upon cultivation with IL-15, in 

comparison with the cultivation in IL-2 was conducted. Cells were stained with anti-

CD28-APC, anti-CD8-PB and anti-CD4-APC-A750 at day 22 after stimulation. After 
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gating on either CD4+ or CD8+ T cells, the CD28 expression was analyzed. As shown 

in Figure 3.19, there was a tendency of lower percentages of CD28+CD8+ T cells 

upon IL-15 cultivation when compared with IL-2 supplemented cultures. The CD28 

expression on CD4+ T cells, on the other hand, either remained the same or even 

more cells expressed upon IL-15 cultivation. 

 

 
 

Figure 3.19. Percentage of CD28
+
 cells among CD8

+
 and CD4

+
 T cells of RCC patients and a 

healthy donor cultivated in IL-2- or IL-15-containing medium.  

Detection of CD28 by flow cytometry, on day 22 after stimulation, on PBL-TCR53mc of patients 
(RCC°1-°3) and 1 healthy donor. Shown is the percentage of CD28

+
 gated on CD4

+
 or CD8

+
 T cells. 

All PBLs were cultivated in IL-2 until day 9 after stimulation and then either kept in IL-2 or changed to 
IL-15 until day 20.  

 
 

3.3.3.5   Cytotoxic capacity of PBLs of RCC patients transduced with 
pMP71-TCR53mc  

 
Signaling defects in T cells were observed in PBLs of patients with cancer [89] [97]. 

Additionaly, the percentage of cells positive for the cytotoxic protein perforin was 

found to be significantly lower in PBLs of sarcoma patients [88]. Thus, it was a 

concern that PBLs of RCC patients would not be functional and therefore not suitable 

for therapy. To investigate whether transduction of pMP71-TCR53mc into PBLs of 

RCC patients confers TCR53mc associated specificity and functionality, PBL-

TCR53mc cells of RCC patients were analyzed for their cytotoxic capacity in a 4 h 

chromium release assay. pMP71-TCR53mc-transduced or not transduced PBLs of 

all donors were incubated with titrated amounts of chromium-labeled targets. All PBL-
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against the of HLA-A2+  RCC-26 and CCA-17 cells, while the HLA-A2- KT-195 cell 

line was not recognized (Figure 3.20), documenting the HLA-A2 restriction. Only 

PBL-RCC°3  transduced with pMP71-TCR53mc showed overall less killing capacity 

(30 % and 20 % killing of RCC-26 and CCA-17 cells at the E:T ratio 20:1, 

respectively) than the PBL from the healthy donor. All PBL-mock cells showed only 

marginal lytic activity against all cell lines.  

 

 

Figure 3.20 Lytic capacity of pMP71-TCR53mc transduced PBLs of RCC patients and a healthy 
donor, assessed at day 9 after TCR stimulation. 

Chromium release assay showing percentage of specific killing for PBL-RCC°1-°3 and 1 healthy 
donor, transduced with pMP71-TCR53mc (PBL-TCR53mc) or not (PBL-mock). The transduction 
efficiency was 38 % for PBL-RCC°1, 21 % for PBL-RCC°2, 36 % for PBL-RCC°3 and 30 % for PBL-
healthy. PBLs were incubated with titrated numbers of chromium-labeled targets. Shown in the first 
row are PBLs incubated with RCC-26 cells, in the second row are PBLs incubated with CCA-17 cells 
and in the third row are PBLs incubated with the HLA-A2

-
 KT-195 cells, used as control for TCR53mc 

unrelated killing. The percentage of specific lysis values are means of duplicates ± mean deviation. 
Shown in the x axis is the effector to target cell ratio. 
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3.3.3.6  PBLs of RCC patients transduced with pMP71-TCR53mc are 
polyfunctional  

 
To assess the polyfunctional response of PBLs of RCC patients transduced with 

pMP71-TCR53mc, PBL-TCR53mc cells of the 5 RCC patient donors and of the 

healthy donor were incubated with RCC-26 in the presence of the intracellular 

transport inhibitors BFA and monensin and CD107a+b antibodies (FITC). After 5 h of 

coculture, cytokine production and degranulation were analyzed by flow cytometry 

using polychromatic staining. The staining panel was done as follows: CD45-

AmCyan, mTCR-PE, CD8-PB, IFN--PE-Cy7, TNF--A700 and IL-2-APC. For each 

donor, PBL-mock cells were used as negative control. The gating strategy was as 

follows: T cells were selected according to cell morphology, then CD45+ cells were 

selected (excluding the tumor cells), then CD8+ and mTCR+ cells were selected.  

The functional profile of PBL-TCR53mc cells of the different RCC donors was 

compaired to that of PBL-TCR53mc cells of the healthy donor. Although there were 

variations in the percentage of cells expressing TCR53mc among the samples 

(Figure 3.17), these differences did not influence the analysis, as cells were gated on 

mTCR positive cells.  

 

 

Figure 3.21. TCR53mc-triggered response of T cells from RCC patients and a healthy donor. 

Shown are responding T cells with at least 1 function, like secretion of 1 of the cytokines IFN-, TNF- 
and IL-2 or degranulation. The percentage of responding cells was assessed in PBL-TCR53mc gated 
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on CD45
+
CD8

+
TCR53mc

+
 of each donor (PBL-healthy and RCC°1-°5) after incubation with RCC-26 

cells.  

 
 
 
As shown in Figure 3.21, the percentage of CD8+TCR53mc+ PBLs that showed at 

least 1 function varied among the samples with the lowest being 41 % (PBL-RCC°2) 

and the highest 74 % (PBL-RCC°4). PBLs of the healthy donor had 54 % of 

CD8+TCR53mc+ cells with at least 1 function.  

 
The percentage of cells positive for each cytokine or degranulation is shown in Figure 

3.22a and the MFI, representing the average amount of each marker per T cell, is 

shown in Figure 3.22b. The percentage of CD45+CD8+mTCR+ T cells secreting IFN- 

and their MFI were very similar in all PBLs donors. The percentages of TNF-, 

CD107 and IL-2 positive cells varied among the samples, whereas the MFI of the 

positive cells  was very similar among the samples. PBL-TCR53mc cells of RCC°4 

and RCC°5 donors had higher number of cells producing TNF- (32 % and 40 %, 

respectively) and IL-2 (39% and 38%, respectively) than the others (average of 25 % 

for both cytokines). PBL-TCR53mc of RCC°4 had the highest percentage of cells that 

degranulated (46 %, average of 33 %).  

 

 

Figure 3.22. IFN-, TNF, CD107 or IL-2 positive cells among the gated CD45
+
CD8

+
TCR53mc

+
 T 

cells of PBL of RCC patient donors (RCC°1-°5) and a healthy donor.  

Cytokine production or degranulation by PBL-TCR53mc cells of RCC donors (RCC°1-°5) and a 
healthy donor upon recognition of RCC-26 cells. (a) The percentage of PBL-TCR53mc cells gated on 
CD45

+
CD8

+
TCR53mc

+
 secreting each cytokine or degranulating was assessed by flow cytometry. (b) 

MFI of each cytokine or CD107 was likewise assessed by flow cytometry. Black lines show the mean 
of each marker among all PBL donors. 
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PBL-RCC°2 showed the lowest percentage of responding cells in all functions. The 

function with the highest variation among the different PBL donors was IL-2 

secretion. The MFI of each marker varied less among the PBL donors than the 

percentage of positive cells, indicating that the amount of the response produced was 

homogeneous among the responding PBL-TCR53mc of the different donors. The 

PBLs of patient RCC°2 presented the lowest IL-2 content per cell (13.5 x 102) and 

the PBLs of patient RCC°4 presented the highest IL-2 content per cell (22 x102).  

 

 

 
 

Figure 3.23. TCR53mc-mediated polyfunctional response of PBLs of RCC patients and a 
healthy donor. 
Polyfunctional response of PBL-TCR53mc of RCC donors (RCC°1-°5) and 1 healthy donor upon 
incubation with RCC-26 cells. The capacity of a CD45

+
CD8

+
 T cell expressing TCR53mc to exhibit 1, 

2, 3 or 4 functions among secretion of the cytokines IL-2, IFN-, TNF- or degranulation was analyzed 
by Boolean gating.  

 
 
The polyfunctional response, i.e the simultaneous secretion of multiple cytokines and 

degranulation, calculated by Boolean gating, revealed a similar profile for all PBLs 

donors (Figure 3.23). The PBLs of the patient donor RCC°5 exhibited the highest 

number of cells capable of producing all 4 functions (11 %). 

 
 

3.4  Maintenance of functionality of PBLs transduced with pMP71-
TCR53mc  
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Anergy refers to a state in which a viable, antigen-specific T cell is unable to respond 

to an immunogenic stimulus. Anergy can be induced under normal antigenic 

stimulation received in the absence of costimulation, or by altered and/or chronic 

TCR stimulus and long-term culturing [98]. To investigate whether the functional 

profile of the PBL-TCR53mc cells was affected by the long-term culture, the 

functional response of PBLs of RCC patients and a healthy donor was assessed at 

day 20 to 22 after the stimulation with anti-CD3 and anti-CD28, in IL-2 or IL-15 

culturing conditions. 

 

3.4.1  Cytotoxic response of PBLs of RCC patients and a healthy 
donor expressing TCR53mc at day 22 after stimulation. 

 
To investigate whether the PBLs of RCC patients and one healthy donor expressing 

TCR53mc maintain cytotoxic function after long-term culture, the killing of CCA-17 

cells, which has the pMHC-ligand recognized by TCR53, was analyzed in a 4 h 

chromium release assay. PBL-TCR53mc and PBL-mock cells of all donors cultivated 

in IL-2- or IL-15-containing medium were incubated with titrated amounts of 

chromium-labeled CCA-17 cells.  

 

 

 

Figure 3.24. Lytic capacity of PBLs of RCC patients and a healthy donor transduced with 
pMP71-TCR53mc, assessed at day 22 after stimulation. 

The specific killing was assessed by a 4 h chromium release assay using CCA-17 cells cultivated with 
the patient PBLs (RCC-PBL°1-°3) or healthy PBLs transduced with pMP71-TCR53mc (PBL-
TCR53mc) or not transduced (PBL-mock). The percentage of specific lysis values are means of 
duplicates ± mean deviation. Shown in the x axis is the effector to target ratio. 
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As shown in Figure 3.24, the PBL-TCR53mc of all RCC (RCC°1-°3) and healthy 

donors, cultivated in IL-2 or in IL-15, were still cytotoxic after long-term cultivation, 

with the PBL-TCR53mc cells of the RCC donors exhibiting even higher killing of the 

targets than the PBL-TCR53mc cells of the healthy donor. PBL-TCR53mc cells 

cultivated in the presence of either of the cytokines showed a very similar killing 

efficiency. The PBL-mock control cells of all donors showed only very low TCR53mc-

unrelated killing. 

 
 

3.4.2  Polyfunctional response of PBL-TCR53mc of RCC patients 
and a healthy donor at day 20 after stimulation  

 

To assess the polyfunctional response of long-term cultured T cells of RCC patients 

and a healthy donor, PBL-TCR53mc or PBL-mock cells at day 20 after stimulation 

were incubated with RCC-26 cells in the presence of the intracellular transport 

inhibitors BFA and monensin. Cytokine secretion and degranulation were analyzed 

by flow cytometry using polychromatic staining. The staining panel was: anti-CD45-

AmCyan, anti-mTCR-PE, anti-CD8-PB, anti-IFN--PE-Cy7, anti-TNF--A700 and 

anti-IL-2-APC.  

 
 
 

Figure 3.25. Polyfunctional profile of PBL-TCR53mc cells of RCC patients or a healthy donor 
cultured in IL-2- or IL-15-containing medium, at day 20 after stimulation. 

The capacity of PBLs of RCC patients (RCC°1-°3) and 1 healthy donor, expressing TCR53mc, to 

perform 1, 2, 3 or 4 functions among secretion of the cytokines IL-2, IFN-, TNF- or degranulation 
upon recognition of RCC-26 was determined by Boolean gating of a polychromatic staining. The 
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percentages of the functional population that performed 1 or more functions is shown for PBLs gated 
on CD45

+
CD8

+
mTCR of each RCC patient or healthy donors, cultivated in IL-2 or in IL-15 containing 

medium. 
 

 

T cells were selected according to cell morphology, then CD45+CD8+mTCR+ cells 

were selected. The functional profile of PBLs from RCC patients or the healthy donor 

expressing TCR53mc and cultivated in medium containing IL-2 or IL-15 was 

compared using Boolean gating analysis. Seen in Figure 3.25 is the percentage of 

PBL-TCR53mc cells that performed 1, 2, 3 or 4 functions among secretion of the 

cytokines IL-2, IFN-, TNF- or degranulation. All PBL-TCR53mc samples showed 

high percentages (> 50 %) of cells that performed more than 1 function. PBLs 

cultured in IL-15 showed, in general, lower percentages of T cells that were 

polyfunctional. PBLs of patient RCC°2 had the highest percentage of T cells showing 

3 functions. 

 
 

3.4.3  Comparison of the functional capacity of PBL-TCR53mc of 
RCC patients and a healthy donor at day 9 and 20 after 
stimulation 

 
The secretion of cytokines and degranulation upon recognition of RCC-26 cells, 

assessed on day 9 and 20 after stimulation with anti-CD3 and anti-CD28, were 

compared among all PBL donors cultivated in IL-2, gated on CD45+ CD8+ mTCR+ 

cells. 

 

Figure 3.26. CD107, IFN-, TNF and IL-2 in PBL-TCR53mc of RCC patients and a healthy donor 
on days 9 and 20 after stimualtion. 
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Upon RCC-26 recognition, the percentage of PBL-TCR53mc cells of RCC patients (RCC°1-°3) and 1 
healthy donor, secreting the respective cytokine or degranulating, was assessed by flow cytometry on 
day 9 and day 20 after the stimulation. Cells shown were gated on CD45

+
CD8

+
mTCR

+
. 

 
 

Figure 3.26 shows that the total percentage of cells positive for IFN, TNF or 

degranulation was much higher in all PBL-TCR53mc at day 20 than on day 9 after 

stimulation. In contrast, the percentage of cells with IL-2 secretion was slightly 

reduced in most PBL donors at day 20.  

 

Shown in Figure 3.27 is the comparison of the polyfunctional profile of PBL-

TCR53mc of RCC patients and the healthy donor between days 9 and 20 after 

stimulation, cultivated in IL-2 and gated on CD45+CD8+mTCR+. All PBL donors 

improved the polyfunctional response to RCC-26 after 20 days of the stimulation. 

Patient RCC°2 had the highest percentage of polyfunctional cells on day 20 (88 %) 

and the best improvement (+ 31 %) in relation to the polyfunctional response on day 

9 after pMP71-TCR53mc transduction. The lowest percentage of polyfunctional cells 

on day 20 (67 %) and the lowest improvement in relation to day 9 (+ 12 %) was seen 

in the PBLs of the healthy donor. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.27. Polyfunctional profile of PBL-TCR53mc cells of RCC patients or one healthy donor 
cultured in IL-2 containing medium, at days 9 and 20 after stimulation. 

The polyfunctional capacity of PBL-TCR53mc of RCC patients (PBL-RCC1°-3°) or 1 healthy donor 
was compared between days 9 and 20 after stimulation. The percentages of the functional population 
that performed 1 or more functions is shown for PBLs gated on CD45

+
CD8

+
mTCR of each RCC 

patient or healthy donors, cultivated in IL-2 containing medium. 

0

50

100
1 function

2 functions

3 functions

4 functions

1 function 

2 functions 

3 functions 

4 functions 

TCR53 D115
0

50

100
1 function

3 functions

4 functions

2 functions

%
 o

f 
re

s
p

o
n

d
in

g

 

9 20 9 20 9 20 9 20 

100 

0 

50 

PBL-

healthy 

PBL-

RCC°1 

PBL-
RCC°2 

PBL-

RCC°3 

%
 o

f 
re

s
p

o
n

d
in

g
 c

e
ll
s
 

[C
D

4
5

+
C

D
8

+
m

T
C

R
+
] 

 



Results                                                                                                                                         

 60 

 

 

 

 

 

3.4.4  IFN- treatment of target cells enhances TCR53-associated 
recognition 

 
Until the present day, one of the most successful treatments of mRCC patients has 

been accomplished with IL-2 and IFN- . One possible mechanism for the positive 

outcome is that treatment with cytokines from the interferon type I family activates 

antigen-presenting cells to perform better T cell stimulation [99]. Additionally, the 

expression of tumor antigens can be modulated through upregulation of transporter 

associated with antigen presentation (TAP)-1 [100]. To test whether IFN- or IFN- 

would regulate the pMHC ligand recognized by TCR53, target cells were cultured for 

48 h with IFN-  or IFN- containing medium or medium without cytokines. Then, 

HLA-A2 expression was determined by flow cytometry and the cells were cocultured 

with B3Z-TCR53m cells. RCC-26, which was well recognized by B3Z-TCR53m and 

RCC-53, which was weakly recognized, were used to investigate whether the 

different IFNs would differentially modulate the expression of the TCR53-pMHC 

ligand and, consequently, the response of B3Z-TCR53m cells. NKC-49, a primary 

normal kidney cell line, and RCC-1.26, a RCC cell line that expresses HLA-A2 

endogenously but did not stimulate B3Z-TCR53m (Table 2 and Table 1, respectively) 

were used to monitor whether the IFNs would induce de novo TCR53 pMHC-ligand 

expression enough for TCR53m recognition. Induced recognition of normal kidney 

cultures would be undesirable because it would suggest that TCR53-pMHC ligand 

expression could be induced on normal kidney tissues by inflammatory conditions 

(such as IFN- ), raising concern about TCR53-associated autoreactivity in the clinical 

application. 

Shown in Figure 3.28a is the HLA-A2 expression for all cell lines after the treatment 

with IFN- or IFN- . All cell lines treated with IFN- and IFN-  showed an increase in 

HLA-A2 surface expression when compared to incubation in medium without 

cytokines. Figure 3.28b shows the mIL-2 secretion by the B3Z-TCR53m cells after 

incubation with the IFN-treated or untreated RCC or NKC lines. Although almost all 

IFN--treated cells had the highest HLA-A2 expression, the B3Z-TCR53m T cell 
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response to IFN--treated RCC-26 cells was not higher than the response to the 

same cells treated with IFN-  or medium without cytokines. In contrast, IFN-  

treatment reproducibly increased the B3Z-TCR53m response toward RCC-26 

(p=0.04, Figure 3.29b, mean of 3 experiments). Neither IFN-  nor IFN- treatment 

induced recognition of RCC-1.26 or NKC-49 by B3Z-TCR53m cells, indicating that 

IFNs are not able to induce de novo expression of the TCR53-pMHC ligand. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.28. Recognition of IFN-- or IFN--treated or untreated cell lines by B3Z-TCR53m cells. 

RCC cell lines expressing the TCR53-pMHC ligand (RCC-26 and RCC-53) and the HLA-A2
+
 cells that 

were not recognized by B3Z-TCR53m (RCC-1.26 and NKC-49) were cultured in IFN-- or IFN--
containing medium or in medium without cytokines for 48 h and then incubated with B3Z-TCR53m 
cells. (a) HLA-A2 detection by flow cytometry on RCC-26, RCC-53, NKC-49 and RCC-1.26 subjected 

to IFN- or IFN- treatment or medium without cytokines. Numbers indicate the MFI for each 
population in the corresponding color of the treatment. Isotype antibodies showed the same 
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fluorescence intensity in all different media. Isotype control histograms correspond to each cell line in 
medium without cytokines. (b) mIL-2 secretion detected by ELISA in the 24 h supernatants of B3Z-
TCR53m cultures with TCR53 target cells (RCC-26 and RCC-53) or non-target HLA-A2

+
 cells (NKC-

49 and RCC-1.26) treated with IFN- or IFN- or medium without cytokines. The values for mIL-2 
secretion shown are the mean of 3 independent experiments. Error bars are the standard deviation. 
Statistics used was the unpaired student T test; p values are shown in case of significance. 

 
 

3.4.5  B3Z-TCR53m cells can be used to detect TCR53-pMHC ligand 
expression on fresh tissue 

 
About 40 % of the RCC lines were found not to express the TCR53-pMHC ligand 

(Table 1 and Figure 3.2). Considering clinical application of the PBL-TCR53mc cells 

in adoptive therapy, it would be advantageous if pre-selection of patients with tumors 

that express the TCR53-pMHC ligand was possible. Therefore, it was investigated 

whether the B3Z-TCR53m cells could be used to identify TCR53-pMHC expression 

on tumor biopsies. Fresh tissue material received from nephrectomy surgery of HLA-

A2 positive patients were used for cocultivation with B3Z-TCR53m cells. The tissues 

received contained areals of tumor and areals of normal kidney tissue, which were 

separated by the local pathologist. Before incubation with B3Z-TCR53m cells, the 

normal kidney or tumor tissues were incubated with collagenase and DNAse and 

mechanically disrupted. RCC-26 cells were used as positive control for B3Z-TCR53m 

recognition. As evidenced in Figure 3.29, tissue suspension from the tumor but not 

from the normal kidney triggered mIL-2 secretion by the B3Z-TCR53m cells  

 

 

Figure 3.29. B3Z-TCR53m recognition of fresh RCC tissue suspension. 

Fresh tissue of tumor (RCC) and normal kidney (NKC) were disrupted to yield a tissue suspension and 
incubated separately with B3Z-TCR53m cells for 24 h. Incubation of B3Z-TCR53m cells with RCC-26 
cells served as a positive control for B3Z-TCR53m functionality. Supernatants were collected and 
used to detect mIL-2 by ELISA. Values shown are the mean of duplicates. 
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3.5 T cells develop deficits when exposed to spheroids  

 

Spheroids mimic tumor pathophysiology aspects, like resistance to drugs and 

radiation, and are important tools to measure the therapeutical applicability of new 

reagents used for cancer treatment [87]. PBL-TCR53mc cells were found to mediate 

specific killing of RCC-26 cells cultivated as spheroids in a 4 h incubation assay 

(Figure 3.16). Now, viability and phenotype of T cells that stayed in the spheroid 

beyond the 4 h of incubation were studied. 

 
 

3.5.1  T cell survival after 4 h and 24 h in spheroids 

 

To study the viability and the phenotype of T cells that stayed in the spheroid beyond 

4 h, PBL-TCR53mc cells of a healthy donor were allowed to enter the 3-D cultures (5 

days-old spheroids) for 4 h or 24 h. After that, spheroids were harvested and washed 

to remove non-adherent T cells, then they were either disrupted using accutase and 

used for T cell characterization by flow cytometry, or they were frozen in liquid 

nitrogen and then cut into 5 µm sections and used for immune staining to detect the 

T cell infiltration. As shown in the histological section of a spheroid stained with anti-

CD8 antibody (Figure 3.30a), T cells strongly infiltrated spheroids after 4 h of 

coincubation. The highest density of T cells was seen at the spheroid periphery (~ 

100 µm in width). Beyond this rim, in the spheroid center, the density of T cells 

sharply dropped. After 24 h, the numbers of T cells visible in the periphery as well as 

in the spheroid center were drastically reduced. The examples of immune staining 

depicted in Figure 3.30a are representative of 3 independent experiments.  

Hypoxic tissue areas, defined as areas with values of partial pressures of oxygen 

(pO2) ≤ 2.5 mmHg, are a characteristic of locally advanced solid tumors and are 

found across a wide range of human malignancies [101]. Sutherland and colleagues 

[126] found severe hypoxia in the center of almost all tumor spheroids studied that 

had a radius ranging from 300 µm to 500 µm. The RCC spheroids used in my 
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experiments had a radius of approximately 360 µm. Therefore, the pO2 curve 

obtained by Sutherland and colleagues can be applied to estimate their pO2 values. 

Accordingly, the 100 µm rim of the RCC spheroid containing most T cells (Figure 

3.30a) would have a pO2 value of ~ 30 mm Hg and thus normoxic. The center of the 

spheroid would have a pO2 value of 0 mm Hg.   

The cell suspension obtained from the PBL-TCR53mc-spheroid incubations was 

stained with anti-CD45-PE-Cy7 to identify the T cells and 7-AAD to assess number of 

dead cells and to gate on viable cells (7-AAD-). To obtain the number of CD45+ T 

cells that were inside spheroids, counting beads were added to the stained cell 

suspension immediately before acquisition by flow cytometry (for details of the 

method, see section 6.1.7). The time points analyzed corresponded to T cells 

cultivated for 4 h or 24 h in a hanging drop of medium with or without spheroid (for 

details see section 6.7.9). T cells cultivated without spheroid for either 4 h or 24 h 

always had identical characteristics. Therefore, only 1 time-point (24 h) is shown in 

the graphs. For each time-point, 8 spheroids were taken. As shown in  Figure 3.30b, 

the number of CD45+ T cells inside the spheroids was significantly higher (p=0,001) 

after 4 h than after 24 h, confirming the histological observation. The staining with 7-

AAD revealed an increased number of CD45+ 7-AAD+ cells after 24 h in spheroids 

(Figure 3.30c), suggesting loss of T cell viability after long exposure to spheroids. 

The results shown in Figure 3.30c are 1 representative example of 4 independent 

experiments.  
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Figure 3.30. Numbers and viability of PBL-TCR53mc cells after 4 h and 24 h of infiltration in 
RCC-26 spheroids. 

PBL-TCR53mc cells (1 x 10
5
 cells per spheroid) were allowed to enter 5 days-old RCC-26 3-D 

cultures for 4 h or 24 h, then spheroids were washed and used for analysis. Spheroids were analyzed 
histologically by APAAP staining (a) or they were disrupted and the cell suspension was used for flow 
cytometry (b and c). In (a) histological sections of cryo-preserved RCC-26 spheroids exposed to PBL-
TCR53mc for 4 h (left) or 24 h (right) were stained with anti-CD8 antibody to detect CD8

+
 T cells (red). 

Pictures were taken at a magnification of 100 x. The distance „d1“ (102 µm) indicates the width of the 
rim of the spheroid where most T cells were found after 4 h. The spheroid radius (R) is 360 µm. In (b) 
4 experiments are summarized in which PBL-TCR53mc cells were exposed to spheroids for 4 h or 24 
h. The absolute number of CD45

+
7-AAD

-
 T cells was calculated with the help of counting beads. The p 

value was calculated by unpaired student T test. In (c) the histograms show the gated CD45
+ 

population, values are the percentages of cells stained positively for 7-AAD. As a control, T cells were 
cultivated without spheroid for 24 h on the Petri-dish lid. The traced vertical line indicates the threshold 
considered to be 7-AAD positive. Shown is 1 representative of 3 experiments.    
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3.5.2  Cytotoxic proteins in T cells exposed to spheroids 

 
To characterize the functional status of T cells after coculture with spheroids, the 

presence of the cytotoxins perforin (Pfn) and granzyme B (GrzB) was analyzed. PBL-

TCR53mc or PBL-mock cells were exposed to spheroids for 4 h or 24 h in a hanging 

drop culture. Controls were T cells cultivated without spheroid for 4 h or 24 h. Both 

controls always yielded similar results, therefore, only one timepoint (24h) is shown in 

the graphs. After the indicated culture time, spheroids were washed to remove T cells 

that were not inside the spheroid and then mechanically disrupted into a cell 

suspension. The cell suspension was stained for flow cytometry with anti-CD45-PE-

Cy7, anti-Pfn (plus secondary anti-IgG2b-A488) or anti-GrzB-PE-TexasRed. For 

each time-point, 8 spheroids were taken. The gating strategy started with selecting 

the T cells according to the morphology (FSC, SSC), followed by selection of the 

viable cells (7-AAD-) and then CD45+ T cells. Analysis of perforin and granzyme B in 

the viable T cells revealed that T cells exposed to spheroids for 24 h were no longer 

positive for perforin (Figure 3.31a and b) or granzyme B (Figure 3.31c).  

 

 

 

 

 

 

 

 

 

 

Figure 3.31. Perforin and granzyme B in PBLs in coculture with RCC-26 spheroids. 

PBL-TCR53mc (a and c) or PBL-mock (b) were incubated with 5 days-old RCC-26 spheroids for 4 h or 
24 h (1 x 10

5
 cells per spheroid) or for 24 h without spheroid. For each time-point 8 spheroids were 

taken. Spheroids were washed, disrupted and the cell suspensions were stained and analyzed by flow 
cytometry. Values in black (right) represent the percentage of 7-AAD

-
CD45

+ 
cells stained for the 

respective protein. Perforin (Pfn) is shown in (a and b) and granzyme B (GrzB) is shown in (c). The 
filled grey histograms show the respective isotype control. The traced vertical line sets the threshold 
for positive stained cells. The data shown are 1 representative of 2 experiments. 
 

  

6 % 
 

90 % 
 

90 % 
 

7 % 
 

75 % 
 

90 % 

 

 

80 % 

 

36 % 
 

6 % 
 

GrzB 

Isotype 

Pfn 

(a) (c) (b) PBL-TCR53mc PBL-mock PBL-TCR53mc 

24 h w/o 

spheroid 

4 h 

24 h 

In
 s

p
h

e
ro

id
 

PBL: 



___________________________________________________________________ Results 

67 

 

 
 
 

The loss of perforin occured independently of TCR signaling because it was also 

observed for PBL-mock (Figure 3.31b), which did not have a homogeneous 

expression of TCRs that could be triggered by the RCC-spheroid. Loss of perforin 

was also seen when PBL-TCR53 cells were exposed to spheroids of the HLA-A2- 

KT195 cells that did not express the TCR53-pMHC ligand (not shown), further 

supporting that the perforin loss was independent of TCR signaling. The loss of 

granzyme B was apparent already after 4 h of incubation (Figure 3.31c). Data shown 

are 1 representative example of 3 independent experiments. 

 
 

3.5.3  CD28 expression on CD4+ and CD8+ T cells exposed to 
spheroids 

 

The interaction of CD28 with CD80 (B7-1) and CD86 (B7-2) on antigen-presenting 

cells amplifies TCR-mediated T cell proliferation and activation and promotes cell 

survival. CD28 expression on adoptively transferred T cells seems to correlate with 

the clinical response [33] [96]. To determine the dynamics of CD28 expression on 

both CD8+ and CD4+ T cell subsets when exposed to spheroids, PBL-TCR53mc 

were incubated with 5 days-old RCC-26 spheroids for 4 h or 24 h. T cells that did not 

infiltrate were washed out. Spheroids were disrupted and the cell suspension was 

stained with CD45-PE-Cy7, anti-CD8-PB, anti-CD4-APC-A750 and anti-CD28-APC 

for analysis by flow cytometry. The 0 h controls were done for T cells cultivated on 

small drops on the Petri-dish lid for 4 h or 24 h (both controls were similar, shown in 

the graphs is the 24 h time point).  

As evidenced in Figure 3.32, of the starting T cell population only a subset of CD8+ T 

cells (~ 36 %) and most CD4+ T cells were CD28 positive, consistent with the general 

notion that human CD8 T cells lose CD28 expression when differentiating to effector 

T cells. After 4 h of exposure to the spheroids, nearly all CD8+ T cells became CD28 

negative. Loss of CD28 was also apparent in the CD4+ T cell subset. It is known that 

TCR stimulation causes down-regulation of CD28 [102]. However, PBL-mock cells 

exposed to RCC-26 spheroids showed very similar CD28 loss (not shown), thus 
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arguing that the observed effects can occur without TCR signaling. Data shown are 1 

representative example of 2 experiments. 

 

 

 

 

 

 

 

 

 

 

Figure 3.32 CD28 expression on PBL-TCR53mc cells in coculture with RCC-26 spheroids. 

PBL-TCR53mc (1 x 10
5
 cells per spheroid) cells were allowed to enter 5 days-old RCC-26 spheroids 

for 4 h or 24 h. As a control, T cells were cultivated without spheroid for 24 h on the Petri-dish lid. 
Spheroids were washed, disrupted and the cell suspensions were stained and analyzed by flow 
cytometry. T cells were gated on 7-AAD

-
CD45

+
CD8

+
 (a) or 7-AAD

-
CD45

+
CD4

+
 (b) and CD28 

expression was assessed. Values in black (right) represent the percentage of cells stained for each 
marker in the 7-AAD

-
CD45

+
 population. The histogram tinted grey show the isotype control. Traced 

vertical line sets the threshold for positive stained cells. Data shown is a representative example of 2 
experiments. 

 
 

3.5.4  Functional performance of PBL-TCR53mc cells in 3-D tumor 
cell spheroids 

 
The functional capacity of PBL-TCR53mc cells was examined after they had been 

exposed to RCC-26 spheroids for 24 h. RCC-26 cells express the pMHC ligand for 

TCR53 and should induce a functional response such as secretion of cytokines. To 

detect this response, 8 spheroids that were incubated with PBL-TCR53mc cells for 

24 h were taken and mechanically disrupted to obtain a cell suspension. The cell 

suspension was then incubated for additional 4 h with intracellular transport blockers 

(monensin and BFA). As a control, PBL-TCR53mc cells were cultured in parallel with 

RCC-26 cells from monolayer cultures for 24 h and then for additionally 4 h in the 

presence of monensin and BFA. The secretion of cytokines was investigated by 

staining the cell suspensions with IL-2-APC, IFN--PE-Cy7 and TNF--A700. 

Staining with 7-AAD, CD45-AmCyan and anti-CD8-PB served to gate on the viable 

CD8+ T cells and mTCR-PE to assess the TCR53 expression status. As shown in the 
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upper plot in Figure 3.33a, PBL-TCR53mc lost most of the mTCR expression after 24 

h of incubation in the spheroids. No IFN-, IL-2 nor TNF- were detected in the T 

cells that were exposed to spheroids for 24 h. The control PBL-TCR53mc cells 

cultured with RCC-26 from monolayer cultures exhibited positive cells for all 

cytokines examined (Figure 3.33b).  

 
 
 

 
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 

Figure 3.33. Functional capacity of PBL-TCR53mc exposed to spheroids.  

PBL-TCR53mc were exposed for 24 h to spheroids (1 x 10
5
 PBL-TCR53 per spheroid, E:T ratio 1:1) or 

to RCC-26 cells of monolayer cultures (1 x 10
5
 PBL-TCR53mc, E:T ratio 1:1). After 24 h, intracellular 

transport blockers were added to each coculture and incubated for further 4 h. The cell suspensions 

were stained with anti-CD45, anti-CD8, anti-mTCR, anti-TNF-, anti-IFN- and anti-IL-2. (a) TCR53mc 
expression was determined after incubation with spheroids (upper histogram) and after incubation with 

RCC-26 cells from monolayer cultures (lower histogram). In (b) is the cytokine content (IFN-, IL-2 or 

TNF-) of PBL-TCR53mc cells after 24 h of incubation with spheroids (upper plot) or with RCC-26 
cells from monolayer cultures (lower plots). Cells shown were gated on CD45

+
CD8

+
. Numbers are 

percentage of cells in each quadrant. 

 
 

3.6 Perforin deficits are seen in CD8 T cells in tumor tissues. 

 
T cells exposed to tumor cell spheroids were found to localize preferentially in the 

spheroid periphery and, depending on the time of exposure, they lost perforin and 

granzyme B. Helmlinger and colleagues [103] measured the pO2 profiles in mouse 

tumors and found that the mean pO2 on the vessel wall is of 14 mmHg (normoxic). 

T
N

F
-

 

IFN- IL-2 

 

  

 

13 

10 

16 6 

0 

26 

0 

0 

0 0 

0 

0 

(a) 
(b) 

mTCR 

PBL-TCR53mc  

24 h in spheroids 

PBL-TCR53mc  
24 h with RCC-26 

suspension cells 

Functional response 

 

TCR53 expression 

n
u

m
b

e
r 

o
f 

c
e
ll

s
 

n
u

m
b

e
r 

o
f 

c
e
ll

s
 5 95 

21 79 



Results                                                                                                                                         

 70 

Thus, the milieu around the blood vessels regarding oxygenation may be correlated 

to the milieu in the outer rim of the spheroids (normoxic, ~ 30 mmHg).  

 

 

 

 

 

 

 

Figure 3.34. Confocal images of histological sections of RCC tumor tissues stained with CD31, 
CD8 and perforin. 

Histological cryo-sections of RCC tumors were stained with multicolor immunofluorescence and 
analyzed by confocal microscopy. Field selections of RCC tumor from patient °8 (a) and patient °9 (b) 
reveal the distribution of CD8

+
Pfn

+
, CD8

+
Pfn

-
 and CD8

-
Pfn

+
 in relation to vessels (CD31

+
). The first 

panels depict CD31 (red) and Pfn (cyan), CD8
+
 T cells are outlined with punctuated white lines. 

Arrows indicate CD8
+
 Pfn

+
 cells. The second panel corresponds to the first one now with inclusion of 

the fluorescence for CD8
+
 T cells (green). In the third panel all channels, including DAPI (grey) that 

stains the nuclei, are shown. Images were taken in the magnification of 630 x. Depicted is the maximal 
projection of 10-12 z-stacks (step-size 0.65 µm).  

 
 
To evaluate whether these findings reflect the in vivo situation in the tumor tissue, the 

number of CD8+ T cells with or without perforin in spatial relationship to the tumor 

blood vessels was determined in histological sections of different RCC tumors using 

multicolor immunofluorescence staining and confocal microscopy.  
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In the histological sections of the tumor tissue, the blood vessels were identified by 

staining with an anti-CD31 antibody specific for endothelial cells. Shown in Figure 

3.34 are representative examples of visual fields of two different tumors. In the upper 

field (Figure 3.34a), 24 CD8+ cells can be seen (green), of which one was perforin 

positive (arrow). The lower panels depict 10 CD8+ cells, of which 5 have perforin 

(arrows). All CD8+ T cells shown in the picture that had perforin were located inside 

vessels. The spatial distribution of the CD8+ T cells in relation to the blood vessels, 

and their perforin content were evaluated. Figure 3.35 shows the summarized results 

for the 6 RCC tumors examined (RCC°6-°11).  
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Figure 3.35. Spatial distribution of CD8
+
 and CD8

+
Pfn

+
 T cells in RCC tumors in relation to the 

blood vessels.   

Cryo-sections of 6 different RCC tumors (RCC°6-°11) were stained with multicolor 
immunofluorescence for Pfn (A488), CD8 (Cy5) and CD31 (A568) and analyzed by confocal 
microscopy. CD8

+
 T cells (green) were quantified in relation to the position to the vessels (CD31

+
, 

red). (a) The localization was defined as: cells inside vessels (inside), outside and on the vessel (on) 
and away from the vessels (away). White arrows point to the closest vessel. In (b) are the percentages 
of CD8

+ T cells in each localization for each tumor in (c) are the percentages of CD8
+
Pfn

+
 in each 

localization for each tumor. The statistics used was the Kruskal-Wallis test with the Dunn‟s multiple 
comparison post test.The p values are shown in case of significance.  

Except for RCC°6 and RCC°7, for each 4 visual field were analyzed, the other tumors 

had 10 visual fields evaluated. CD8+ T cells were divided into groups, with or without 

perforin and according to the localization, inside the vessels, outside the vessels on 

the vessel wall and away from the vessels (more than 1 nucleus away from the 

vessel wall into the tumor tissue, Figure 3.35a). Figure 3.35b shows the percentage 

of CD8+ T cells in each compartment. The CD8+ T cells were seen mainly outside, on 

the vessels, indicating infiltration of the tumor tissue. The majority of the CD8+ T cells 

that were found inside the vessels contained perforin, whereas away from the 

vessels a high percentage of CD8+ T cells were Pfn negative (p= 0.002). A tendency 

can be observed between increased distance from the vessels and decreased 

percentage of CD8+ T cells with perforin.  

Table 7 shows the absolute number of cells analyzed per tumor. As indicated in the 

table, the tumor of RCC°7 shows much more perforin negative CD8+ T cells than 

perforin positive CD8+ T cells. The tumor with the highest number of T cells found 

inside vessels is RCC°10, although this is the tumor with the lowest total counting of 

T cells. 

 

Table 7. Number of CD8
+
 T cells with or without perforin of each tumor grouped according to 

the different locations.  

Tumors 
CD8

+
Pfn

+
 CD8

+
Pfn

-
 

total 
in on away in on away 

RCC°6 9 58 1 1 75 51 195 

RCC°7 5 11 10 3 74 88 191 

RCC°8 19 55 81 0 32 119 306 

RCC°9 17 137 4 1 197 50 406 

RCC°10 38 42 5 3 69 25 182 

RCC°11 29 122 51 1 83 46 332 
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3.7 The role of CD4+ T cells in supporting CD8+ CTLs  

 

CD4+ T cells have multiple effects on the outcome of an immune response and are 

thought to be required for optimal CD8+ T cell responses [52] [54] [55]. CD4+ T cells 

of the Th1 type provide help to the differentiation of CD8+ T cell into effector CTLs, 

which generally recognize peptides on MHC class I molecules on tumors and exert 

lytic activity. CD4+ T cells are generally MHC class II restricted. In epithelial tumors, 

where CD8+ CTLs have to exert function, MHC class II ligands for CD4+ T cells are 

sparse as epithelial tumors mostly do not express MHC class II molecules. Thus, 

stimulation of CD4+ T cells in the tumor is rare, and concomitantly sparse is the 

support of the CD8+ T cell function by the CD4+ T cells. The few reports about CD4+ 

T cells recognizing peptides presented by MHC class I molecules [56] are particularly 

interesting in the context of combating epithelial tumors, as these CD4+ T cells would 

be stimulated at the site of the tumor and consequently would be able to provide 

support for the CD8+ T cells. Therefore, an aim of this work was to characterize and 

analyze the function of MHC class I-restricted CD4+ T cells and their potential 

capacity in rescuing the deficits observed in the CD8+ T cells upon exposure to the 

spheroid milieu. Given that TCR53mc was found to be non-functional on CD4+ T 

cells, TCR26 was used to address this question. 

 
 

3.7.1  TCR26 is expressed on CD8+ and CD4+ T cells and is 
functional in both 

 

TCR26 was isolated from a CD8+ TIL (TIL-26) of a RCC tumor [104]. 

Characterization of TIL-26 showed that it recognizes an HLA-A2 restricted antigen, 

expressed by its autologous RCC cell line (RCC-26) but not by the normal kidney 

counterpart NKC-26 [104]. TIL-26 carried the TCR V20 and V22 chains, 

nomenclature used after [105]. In this work, the functionality of CD8+ and CD4+ T 

cells expressing TCR26 was investigated. 

IVT-mRNA of TCR26  and β chains was electroporated into PBLs that had been 

activated with anti-CD3 and anti-CD28 at least seven days before. To detect TCR26 

expression on the different T cell subsets, PBLs were stained for CD4+ (anti-CD4-

FITC) and CD8+ (anti-CD8-PB) T cells and TCRV22 (anti-V22-PE) 4 h after 
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electroporation. PBLs electroporated without IVT-mRNA were used as control (PBL-

mock). Figure 3.36 shows TCRV22 expression on CD8+ T cells and CD4+ T cells. 

CD4+ T cells showed 12 % more V22+ cells than the CD8+ T cells.  

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.36. Expression of TCR26 on CD8
+
 and CD4

+
 T cell subsets. 

PBLs were electroporated with IVT-mRNA of TCR26  and  chains (PBL-TCR26) or without IVT-

mRNA (PBL-mock) and stained after 4 h with anti-CD8, anti-CD4 and anti-V22 antibodies to identify 
expression of TCR26 on the T cell subsets. Percentages of gated CD4

+
 or CD8

+
 Vβ22-expressing T 

cells after subtraction of the endogenous Vβ22 are shown. % of max= % of maximal projection. 
 
 

The capacity of TCR26 to trigger function in CD4+ and CD8+ T cells was then 

analyzed by coculturing TCR26 transfected PBL with RCC-26 cells in the presence of 

monensin and BFA and anti-CD107a+b (FITC) over 5 h. The control was PBL-mock 

cells cocultured with RCC-26 cells. After 5 h of incubation, cells were stained with 7-

AAD, anti-IFN-PE-Cy7, anti-TNF--A700 and anti-IL-2-APC and with anti-CD45-

Amcyan, anti-CD8-PB and anti-CD4-APC-A750 antibodies to discriminate the T cell 

subsets. Shown in Figure 3.37 is 1 representative example of 3 showing cytokines 

and degranulation performed by PBL electroporated with TCR26  gated on CD45+ 

and CD8+ (a) or CD4+ (b) T cells. Shown in the first row of Figure 3.37a and b are 

PBL-TCR26 cells cocultured with RCC-26 cells and in the second row are the PBL-

mock cells cocultured with RCC-26 cells. Evident is that the CD8+ T cells of PBL-

TCR26 degranulated more (~ 24 %) than the CD4+ T cells (~ 7.5 %) while the CD4+ 

T cells secreted more TNF- and IL-2 ( ~ 61 % and 11 %, respectively) than the 

CD8+ T cells ( 25 % and 7 % respectively). Thus, both CD8+ and CD4+ T cells 
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subsets, transfected with TCR26, recognized the RCC-26 cells. CD4+ and CD8+ T 

cells of PBL-mock exhibited only a slight response to RCC-26 cells. 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.37. Functional performance of CD8
+
 and CD4

+
 T cells electroporated with IVT-mRNA of 

TCR26  and  chains. 
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Activated PBLs were electroporated with the IVT-mRNA of TCR26  and  chains or without IVT-
mRNA (PBL-mock) and cocultured with RCC-26 cells for 5 h, then stained with 7-AAD to distinguish 
dead from viable cells, with anti-CD45 antibody to distinguish T cells from tumor cells and with anti-

CD8 and anti-CD4 antibodies to discern the T cell subsets. IFN-, IFN- and IL-2 were detected by 
intracellular staining and CD107 was detected by membrane staining during the incubation time. In (a) 
cell suspension was gated on CD45

+
CD8

+
 T cells and in (b), cell suspension was gated on 

CD45
+
CD4

+
 T cells. 

 
 

To investigate how the TCR26 expressing CD4+ T cells (CD4+-TCR26) differ in their 

functional profile from the TCR26 expressing CD8+ T cells (CD8+-TCR26), 

degranulation and secretion of IFN-, TNF- and IL-2 upon RCC-26 recognition were 

analyzed in the gated CD4+ or CD8+ population (Figure 3.37). CD4+-TCR26 T cells 

exhibited a different profile than CD8+-TCR26 T cells under the same conditions of 

cultivation and stimulation (Figure 3.38). Significant differences included lower 

degranulation capacity (CD107, p=0.04), and higher TNF- secretion (p=0.04) per 

cell (MFI) by CD4+-TCR26 T cells in comparison to CD8+-TCR26 T cells. A tendency 

could be observed of CD4+-TCR26 secreting more IL-2 than the CD8+-TCR26 T 

cells. IFN- secretion was similar for both T cells subsets. The data set shown is the 

mean of 3 independent experiments.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.38. Functional profile of CD8
+
-TCR26 and CD4

+
-TCR26 cells. 

PBLs electroporated with IVT-mRNA of TCR26  and  chains were incubated with RCC-26. The 
functional analysis was performed as described in the Figure 3.37 legend. Shown is the MFI of 

CD107, IFN-, TNF- and IL-2 positive T cells gated on CD45
+
CD8

+
 or CD45

+
CD4

+
. Data shown 

represents the mean of 3 independent experiments. Error bars are the standard deviation. Statistics 
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was calculated using the unpaired student T test. The p values are shown where statistic significances 
were found.  

 
 
 
 
 
 

3.7.2  CD4+ T cells expressing TCR26 are HLA-A2 restricted  

 

To obtain a T cell population with a more stable expression of TCR26, the TCR  and 

 chain sequences were cloned into the retroviral vector pMP71. Activated PBLs, 

transduced with TCR26 encoding retroviral vectors, were sorted into CD4+ and CD8+ 

T cell subsets by negative MACS sorting (Figure 3.39a). The sorting efficacy was 96 

% for the CD8+ T cells and 90 % of CD4+ T cells. TCRV22 staining confirmed 

expression of the TCR26 on both T cell subsets. PBL-mock cells served as control to 

detect the amount of endogenously expressed V22 (Figure 3.39b). 
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Figure 3.39. Sorting of CD8
+
 and CD4

+
 T cells from PBL-TCR26 and analysis of V22 

expression. 
CD8

+
 and CD4

+ 
T cells from PBL transduced with TCR26 encoding vectors were sorted negatively 

with the help of magnetic beads. Shown in (a) is the TCR26 transduced PBL population before sorting 
(left) and after sorting of CD8

+ 
(middle) or sorting of CD4

+ 
T cells (right). (b) For detection of TCR26 

expression, cells were stained with anti-V22 antibody. The endogenous expression of V22 in the 

PBL-mock is seen on the left plot. The endogenous V22 expression was subtracted from the 

percentages of V22 positive cells seen in the middle and right plots. 

 
Since TCR26 was HLA-A2 restricted in the original CD8+ TIL, the HLA-A2 restriction 

of the TCR26 transduced, sorted CD4+ and CD8+ T cells was analyzed. Sorted CD4+-

TCR26 or CD8+-TCR26 cells were cocultured with RCC-26 cells in the presence of 

the anti-HLA-A2 antibody (HB-54) or the isotype control antibody and the 

supernatants were used for IFN- detection by ELISA. As shown in Figure 3.40, IFN- 

was seen in CD8+-TCR26 and CD4+-TCR26 T cell cocultures with RCC-26 cells 

treated with the isotype control. RCC-26 cells treated with HB-54 failed to stimulate 

IFN- secretion in both CD8+-TCR26 and CD4+-TCR26 T cells.  

 

 
 

Figure 3.40. HLA-A2 restriction of CD4
+
-TCR26 and CD8

+
-TCR26 T cells. 

HLA-A2 restriction was investigated by adding the HLA-A2 antibody HB-54 to stimulation cultures 

containing CD4
+
-TCR26 cells (left) or CD8

+
-TCR26 cells (right) with RCC-26 cells. Shown is the IFN- 

detected by ELISA in the supernatant after 24 h of coculture. Cocultures in the presence of the isotype 
antibody served as control. Shown is the mean of duplicates with error bars showing the mean 
deviation. 

 
 

3.7.3 CD4+ T cells expressing TCR26 are lytic against RCC-26 

 
To test the killing capacity of the sorted CD4+ T cells expressing TCR26, a chromium 

release assay with RCC-26 as target cells was conducted. Sorted CD8+-TCR26 T 

cells and CD4+ T cells from untransduced PBLs (CD4+-mock) were used as controls. 
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Both T cell populations could kill RCC-26, as shown in Figure 3.41. The lytic activity 

of CD8+ T cells was about 1.5 fold higher than that of CD4+ T cells. Absence of lytic 

activity with CD4+-mock T cells showed that the killing seen in the CD4+-TCR26 was 

linked to the TCR26 expression. 

 

Figure 3.41. Specific lysis of RCC-26 mediated by the sorted CD8
+
-TCR26 and CD4

+
-TCR26 T 

cells. 
The capacity of CD8

+
-TCR26 and CD4

+
-TCR26 T cells to kill RCC-26 cells was investigated in a 

chromium release assay. CD8
+
-TCR26, CD4

+
-TCR26 and CD4

+
-mock T cells were incubated 

individually with chromium labeled RCC-26 cells at the indicated effector:target ratios. Error bars show 
the mean deviation.  

 
 

3.7.4 CD4+ T cells facilitate CD8+ T cell recruitment into spheroids 

 
In a recent report [57], the capacity of CD4+ T helper cells to mobilize cytotoxic T 

cells to infected tissue was demonstrated in a mouse model. To explore whether 

CD4+-TCR26 T cells would enhance the number of CD8+ T cells that migrate into 

spheroids, RCC-26 spheroids were first exposed to sorted CD4+-TCR26 or CD4+-

mock T cells or to medium without T cells in hanging drops. After 2 h, spheroids were 

washed to get rid of non-integrated CD4+ T cells and transferred to wells of an agar-

coated 96-well plate and then sorted CD8+-TCR26 T cells were added. The CD8+-

TCR26 T cells were previously labeled with CFSE to allow discrimination from the 

CD4+ T cells. After 4 h, spheroids were washed to remove T cells that did not 

infiltrate, mechanically disrupted and incubated with accutase to completely free T 

cells from the solid spheroid. The cell suspension was stained with anti-CD45-PE-

Cy7 and anti-CD4-APC-A750 antibodies. For flow cytometry, an equal amount of 
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counting beads was added to each sample and the number of CD4+ and CFSE+ 

CD8+ T cells was assessed.  

 

 

 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

 
 
 
 
 
 
 
 
 
 
Figure 3.42. CD4

+
 T cells mobilize CD8

+
-TCR26 T cells to infiltrate 3-D spheroids cultures.  

Spheroids were incubated for 2 h with 5 x 10
4
 of either CD4

+
-TCR26 or CD4

+
-mock sorted T cells or 

without T cells in a hanging drop culture, then washed, transferred to agar coated 96 wells and 
cocultured with 5 x 10

4
 CFSE stained CD8

+
-TCR26 T cells for 4 h. After 4 h, 8 spheroids per assay 

were taken, washed and mechanically disrupted and incubated with accutase to free T cells from the 
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solid spheroids. The cell suspension was stained with anti-CD45 and anti-CD4 antibodies and an 
equal amount of counting beads was added to each sample before flow cytometry, which allowed the 
calculation of absolute cell number of CD8

+
-TCR26 T cells that infiltrated the spheroids. Shown in (a) 

are FSC versus SSC scatter plots of one representative example of 3 independent experiments. The 
beads are indicated by the number 1 and 2, number 3 indicates the T cells. Plots in (b) depict the 
events of the gated lymphocytes after gating in CD45

+ 
cells. The numbers in red are the absolute 

numbers of CD8
+
-TCR26 T (CFSE

+
, green boxes). The graph in (c) shows the mean of the absolute 

number of CD8
+
-TCR26 T cells assessed in 3 independent experiments. Statistics used was the 

unpaired student T test; p values are shown where statistical significance was found.  

Shown in Figure 3.42a is an FSC x SSC scatter plot of 1 representative example of 

CD8 T cells cocultures with RCC-26 spheroids containing CD4+ T cells or without 

CD4+ T cells. Figure 3.42b shows the CD8+ and CD4+ T cells in the different 

incubation combinations. Spheroids that were pre-treated with CD4+ T cells 

contained about 20 % of CD4+ T cells. In the example shown, the number of CD8+-

TCR26 T cells in spheroids without CD4+ T cells was 942 and it increased to 5236 or 

2906 if spheroids contained CD4+-TCR26 or CD4+-mock T cells, respectively. Figure 

3.42c shows the mean of 3 experiments and the statistics. The CD8+-TCR26 T cell 

numbers in spheroids without CD4+ T cells was much lower than that of spheroids 

with CD4+ T cells. These differences were found to be statistically significant.  

 
 

3.7.5  CD4+ T cells support the functional response of CD8+ T cells 

 
CD8+ T cells exposed to the spheroid milieu developed functional deficits. To analyze 

whether CD4+ T cells engineered to express TCR26 impact positively on the 

functional capacity of the CD8+ T cells, RCC-26 spheroids were pre-treated for 2 h 

with either CD4+-TCR26 or with CD4+-mock sorted T cells or without T cells. After 2 

h, non-infiltrated CD4+ T cells were washed away, the spheroids were transferred to 

agar-coated 96-well plates and sorted CD8+-TCR26 T cells were added. After 4 h, 

spheroids were washed and mechanically disrupted to free T cells from the solid 

mass and the suspension was incubated with the intracellular transport blockers, 

monensin and BFA, for additional 4 h. The cell suspension was then stained with 

anti-CD45-Amcyan and anti-CD4-APC-A750, with antibodies to cytokines (IFN-, 

TNF- and IL-2) and to CD107. Cells were gated on viable CD45+CD8+ (a) or on 

CD45+CD4+ (b) (Figure 3.43). Shown in (a) are the functional responses of the CD8+-

TCR26 T cells, in (b) that of the CD4+-TCR26 T cells. The first row in (a) depicts the 

condition where spheroids were cultivated only with sorted CD8+-TCR26 T cells, in 

the second row are spheroids containing sorted CD4+-TCR26 and CD8+-TCR26 T 



Results                                                                                                                                         

 82 

cells and in the third row are spheroids with sorted CD4+-mock and CD8+-TCR26 T 

cells.  

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.43. Functional response of CD8
+
-TCR26 and CD4

+
-TCR26 T cells in 3-D RCC-26 

spheroid cultures.  

CD8
+
-TCR26 T cells (5 x 10

4
) were cocultured for 4 h with RCC-26 spheroids that were either 

untreated (first row), treated with 5 x 10
4
 CD4

+
TCR26 (second row in (a) and first row in (b)) or with 5 x 

10
4
 CD4

+
-mock T cells (third row in (a) and second row in (b)). After non-infiltrated T cells were 
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washed away, spheroids were mechanically disrupted and monensin, BFA and CD107a+b antibodies 
were added to the cell suspensions. After 4 h, the cell suspensions were stained with anti-CD45, anti-

CD4, anti-IFN-, anti-TNF- and anti-IL-2 antibodies and examined by flow cytometry. Shown in (a) 
are cells gated on CD45

+
CD8

+
 and in (b) are cells gated on CD45

+
CD4

+
. Numbers in black show 

percentage of positive cells in the respective quadrant. 
 
 

As shown in Figure 3.43a, the percentages of CD8+-TCR26 T cells that produced 

IFN-, TNF- and CD107 was higher when spheroids were pre-incubated with sorted 

CD4+-TCR26 T cells (~ 24 %, 17.5 % and 23.5 %, respectively) than without CD4+ T 

cells (~ 9 %, 5.5 % and 16 %, respectively). This enhancement required the CD4+ T 

cells to express TCR26, as no enhancement was seen when spheroids contained 

CD4+-mock T cells (~ 10.6 %, 7.5 % and 16.5 %, respectively). No differences were 

found in the amount of CD8+-TCR26 T cells secreting IL-2. 

To characterize the CD4+ T cells that were in the spheroid, the stained cell 

suspension was gated on the CD4+ population (Figure 3.43b). CD4+-TCR26 T cells 

were found to secrete IFN- (~ 10.5 %) and TNF- (~ 10 %). Very few CD4+-TCR26 

cells (but more than CD8+-TCR26 T cells) secreted IL-2 (~ 5 %). Approximately 10 % 

of CD4+-TCR26 T cells degranulated. Some unspecific response (less than for each 

function 3.5 %) was seen in the CD4-mock T cell population. 
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4 Discussion 
 
RCC is a cancer type for which standard treatments do not result in a significant 

benefit for the patients. Tyrosine kinase inhibitors are new treatments that, for the 

first time, resulted in extended life expectancy. However, no cure is observed and 

resistance eventually develops [62]. Immunotherapy has a long history and although 

the objective responses are low, in some rare cases, durable complete remissions in 

metastatic RCC patients treated with IL-2 are observed, suggesting an advantage of 

immunotherapy over the other treatments in this cancer type. A better understanding 

of the immune mechanisms involved in the positive responses observed in RCC 

patients treated with IL-2 is necessary before immunotherapy is to become a widely 

applicable beneficial therapy for RCC. 

Immunotherapy using antigen-specific T cells is a promising approach because of the 

intrinsic ability of the T cells to recognize specific antigens, giving the possibility of 

selectively targeting tumor cells. Because of the immune sensitive properties of RCC, 

adoptive T cell therapies using LAK cells and TILs were started in the early 1980s. 

However, due to the difficulty of selecting and transferring T cells specific for the 

tumors, the response rate was low [78]. In the subsequent years, advances in 

proteomics and molecular biology allowed the identification of many tumor TAAs, 

especially in melanoma. Later the advent of the tetramer staining allowed the 

detection of antigen specific T cells, which moved the field forward. For melanoma, 

adoptive T cell therapy with pre-selected TAA-reactive TIL resulted in success rates 

higher than 50 %, demonstrating the power of this therapy [33] [36]. However, for 

RCC this approach is hampered by the difficult task of finding TAA and 

corresponding T cells that meet the criteria for clinical application. These criteria are: 

i) a useful antigen must be processed and presented in an amount sufficient to 

trigger a T cell response; ii) it should not be expressed in healthy tissues and iii) it 

should be shared among tumors of many patients to allow its application to a wider 

patient group. The lack of T cells recognizing RCC antigens that meet these criteria 

poses a challenge to the application of T cell therapy for RCC. 

In our group, aspects of the immune response toward RCC are investigated, such as 

the possibility to use redirected RCC-specific T cells to boost the anti-tumor immune 

response [75] [83]. For that, we seek the identification of TILs that display RCC 

recognition in a pattern that meets the criteria of a good antigen. The initial 
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characterization of TIL-53, isolated in our group in 1993, pointed to a HLA-A2 

restricted, shared recognition of RCC tumors without recognition of normal kidney 

cells. Thus TIL-53 seemed to have the right features for clinical application. Due to 

the impossibility of expansion of TIL-53, to preserve TIL-53 specificity, the TIL-53 

TCR chains were identified, sequenced and inserted into cloning vectors. The recent 

developments in the field of genetic engineering [38] now allow TCRs to be efficiently 

transferred to T cells. Using these new technologies, the TCR of TIL-53 was now 

further explored. 

 
 
High incidence of TCR53-pMHC ligand in RCC cells and in tumor cells of other 
histologies 
 
The limited growth capacity of the parental TIL-53 and the derivative T cell clone, 

TIL-53.29, was overcome through TCR cloning and transfer into recipient 

lymphocytes. Thereby, unlimited numbers of T cells became available to perform 

functional testing and address the question how widely the antigen of TIL-53 is 

shared among different tumors and non-tumor cell lines. To perform the task of 

screening a large panel of cell lines, the indicator cell line B3Z-TCR53m was 

developed [83]. It stably expresses TCR53 and is easily cultivated. Because B3Z-

TCR53m cells do not recquire a specific cycle of restimulation, they can be used at 

any time of cultivation and whenever tumor cells or primary material becomes 

available. Using B3Z-TCR53m cells, over 119 different cell types including tumor and 

normal cell lines and primary cell cultures from different histologies were tested for 

the presence of the antigen recognized by TCR53. The results of the screen firmly 

established the shared expression of the TCR53-pMHC ligand among RCC cells, 

with 65 % of the HLA-A2+ RCC cells being recognized by B3Z-TCR53m. Tumor lines 

of other histologies were rarely recognized, except for those of the B lymphoid 

lineage like malignant B cell lines and B-LCL. There was no evidence of recognition 

of sarcoma cell lines. At present, the molecular nature of the TCR53-stimulatory 

antigen is not known. It can be assumed that its expression is not intrinsically linked 

to the clear cell RCC (ccRCC) histology, which is the most common type of RCC and 

considered to be the immunogenic one [69], as not all ccRCCs were recognized. The 

TCR53 antigen does not seem to belong to the group of TAA called differentiation 

antigens, such as MART-1, gp100 and tyrosinase [69], because then it should be 
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expressed at low levels by normal cells. A second group of antigens called 

cancer/testis antigens are generally shared among a variety of human tumors of 

different histologies including melanoma, breast, RCC and prostate cancers [37] 

[106]. Because TCR53 reactivity was rarely found in tumor types other than RCC, the 

TCR53 antigen is likely not a cancer/testis antigen. The oncofetal antigen 5T4 is 

described to be expressed by most RCC cell lines with no or only limited expression 

in normal tissues, but it is also expressed in many other carcinomas [107-108]. This 

pattern of expression does not correspond to the pattern of recognition of TCR53- 

expressing cells. Furthermore, the cell line HT-29 which expresses 5T4 [109] was not 

recognized by B3Z-TCR53m cells. Thus it is not likely that 5T4 is the antigen 

recognized by TCR53.  

Antigens that contain mutations, like the mutated tumor suppressor p53, can be 

found in many carcinomas [110]. More than 60 % of RCC tumors have somatic 

mutations in the von Hippel-Lindau (VHL) gene, which have been linked to the 

development of sporadic ccRCC [111]. Because mutations are generally different 

between different tumors, the shared recognition pattern of TCR53 is inconsistent 

with a potential recognition of a mutated VHL protein form. 

Because of the high incidence of recognition of B-lymphocytic tumors transformed by 

EBV, we considered that the antigen recognized by TCR53 could be associated with 

the EBV transformation. However, because the B-lymphocytic tumor cell line Nalm-6, 

which is EBV negative [112] and was recognized by B3Z-TCR53m cells, and 

because some B-lymphocytic cell lines with EBV (LCL-2 and LCL-3) were not 

recognized, it is unlikely that the TCR53 antigen is associated with the presence of 

EBV. 

Recently HERV-E, a retroviral derived antigen was found to be expressed in many 

RCC cell lines but not in normal kidney cells [74] [113] [114]. Using RT-PCR for the 

HERV-E sequence [74] the pattern of expression of HERV-E among cell lines with or 

without th TCR53-pMHC ligand was not consistent with that of recognition by B3Z-

TCR53m cells (data not shown). 

The identification of the TCR53-pMHC ligand is underway and, if identified, it will 

allow, in addition to the adoptive transfer of T cells expressing TCR53, the use of 

corresponding peptides for vaccination. 
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Human T cells expressing TCR53 meet important requirements for T cell 
therapy 
 
In addition to determining the frequency of the TCR53 ligand, it is of importance to 

define that the TCR is functional and specific in human T cells, i.e. PBLs of patients, 

which will be the therapeutic T cell population applied in adoptive therapy. The 

formation of TCR hybrids of the transfected TCR with the endogenous TCR chains is 

a concern because it may create unknown TCR specificities that could recognize 

epitopes on normal tissue leading to autoimmunity [38] [48]. In this work the 

formation of hybrid TCRs, coming from the cross-pairing of the introduced codon 

optimized human-murine hybrid TCR53  chain with endogenous TCR  chains was 

investigated and was found to be minimal.  

PBLs retrovirally transduced with the retroviral vector containing the optimized 

TCR53mc showed specific killing of RCC cell lines and some tumors of other 

histologies that depended on the expression of the MHC class I molecule HLA-A2. 

Importantly, normal primary kidney cultures were not killed.  

In addition to tumor specific cell lysis, TCR53mc-expressing T cells also secreted the 

cytokines IFN-, TNF-, IL-2 which in turn can activate other accessory components 

of the immune system. T cells expressing TCR53mc could simultaneously exert 

multiple effector functions upon target recognition. This polyfunctionality is 

considered to be important for clinical efficacy [85].   

Another important feature of a TCR is its functional avidity. T cell functional avidity is 

defined as the sensitivity of a T cell to become activated by an antigenic peptide 

bound by an MHC molecule. The sensitivity of a T cell to antigen is influenced by 

multiple factors: the affinity of the TCR-peptide MHC interaction, the engagement of 

multiple other receptors on T cells, and the density of these receptors on the T cell 

surface. The combination of these binding interactions with an APC determines the 

functional avidity of a T cell [116]. T cell functional avidity is frequently determined by 

the relative capacity of T cells to produce effector cytokines or to lyse target cells in 

an antigen-specific manner. It was found that the polyfunctional profile of TCR53mc-

expressing T cells was very similar to that of TCR-D115 expressing T cells, which 

have a known intermediate avidity [86]. When compared to T cells expressing TCR-

T58, of known high avidity, T cells expressing TCR53mc showed much lower 

degranulation capacity, thus it seems that the functional avidity of TCR53mc-
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expressing T cells is intermediate. High avidity T cells are thought to be superior in 

tumor recognition and rejection than low avidity T cells [86] [85] [117]. However, a 

recent report on high avidity CD8+ T cell clonotypes generated during early HIV 

infection showed that these high avidity T cells were lost in the chronic infection due 

to activation induced cell death, while CD8+ T cell clonotypes with intermediate or 

lower TCR avidity persisted [118]. It is possible that TCR53mc-expressing T cells 

would persist after repeated activation, however this remains to be tested.  

Several groups identified high avidity TCRs specific for a peptide of Her-2/neu that 

recognized peptide loaded targets but not tumors, rendering them clinically irrelevant 

[119] [120]. The TCR53 was identified in a TIL, and thus, the TCR53-pMHC ligand is 

naturally processed and presented. Further, the functionality of TCR53 expressing 

cells was tested against targets with endogenous pMHC presentation and not with 

cells loaded with peptides. 

For clinical application, the T cells to be engineered with TCR53 will be patient PBLs. 

It has been described that tumor growth can influence the phenotype and functional 

capacity of peripheral immune cells. CD3 chain down regulation in PBLs of head 

and neck and non-small lung carcinoma, melanoma and sarcoma cancer patients is 

associated with the poor ability of these cells to proliferate in response to anti-CD3 

antibody [88] [89] [121] [122]. From these reports, it can be reasoned that PBLs from 

patients may prove difficult to be retrovirally transduced as such procedure requires 

cell division for the entry of the viral integration complex into the nucleus. In this work, 

no defects in the proliferation of PBLs of RCC patients was detected as, in response 

to anti-CD3 stimulation, they proliferated as good as PBLs of a healthy donor. PBLs 

of RCC patients were successfully transduced with pMP71-TCR53mc, with levels of 

expression comparable to that achieved for a healthy donor PBLs. Also cytolytic 

activity as well as cytokine secretion was comparable between PBLs of RCC patients 

and a healthy after transduction with pMP71-TCR53mc. Functionality of PBLs-

expressing TCR53mc were kept and even enhanced after long-term culture after 

activation and transduction. Because PBLs of RCC patients can be successfully 

transduced and expanded in vitro, generating high numbers of functional T cells with 

the specificity redirected toward tumors, it is conceivable that these cells can be 

applied for the treatment of cancer patients. 
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Other relevant aspects to be considered for the application of T cells in therapy 

concern the culture conditions that would be best to achieve maximal T cell 

expansion with maintenance of the effector function. 

CD28 on the surface of T cells enhances the magnitude of TCR signaling, thereby 

decreasing the level of TCR ligation required for activation [123]. The signaling 

cascade initiated by cross linking CD28 supports cell survival and the maintenance of 

effector function [95] [96]. CD28 is lost on CD8 T cells with repeated TCR stimulation 

and culturing with IL-2. Alternative culturing methods have been proposed [94]. In 

this work, a comparison between IL-15 and IL-2 was undertaken. 

IL-15 and IL-2 possess similar properties. Both cytokines bind to and signal through a 

common, intermediate affinity receptor complex composed of  (CD122) and c 

receptor (CD132) subunits. Each cytokine, however, interacts with a unique, ligand-

specific  chain receptor [13]. Despite similarities, it is clear that IL-2 and IL-15 can 

play very different, and at times oppositional, roles in T cell biology [13]. Despite its 

use and clinical success, IL-2 may not be the optimal T cell growth activation factor 

for use in immunotherapy as it can promote activation-induced cell death of T cells 

and inhibit memory CD8 T cell proliferation and survival. In contrast, signaling 

through the IL-15R complex contributes to the maintenance of memory CD8+ T cells 

[13] [94]. In this work, contrary to the expectation, no advantage of T cells cultured in 

IL-15 medium was observed, not in expansion nor in the functional capacity. In fact, 

IL-15 cultivated TCR53mc-expressing T cells showed slightly less percentages of 

polyfunctional cells than IL-2 cultivated T cells. The CD28 expression in CD8+ T cells 

cultured with IL-15 was lower than in T cells cultured with IL-2. This observation is in 

line with results by Godlove and colleagues [102] who showed that IL-15 is capable 

of inducing stable loss of CD28 expression in actively dividing CD28+CD8+ memory T 

cells. Thus, growing CD8+ T cells with IL-15 may not only maintain CD28-CD8+ T 

cells but may also generate CD28-CD8+ memory T cells from their CD28+ 

counterparts. More experiments should be done to clarify how IL-15 causes CD28 

loss in CD8+ T cells and the use of IL-15 for the in vitro expansion of CD8+ T cells for 

the purpose of T cell therapy should probably be rethought. In contrast to the results 

observed for CD8+ T cells, CD4+ T cells of some donors exhibited a small 

improvement in the expression of CD28 after cultivation with IL-15. This observation 

is unique and more experiments should be done to confirm it.  
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IFN- treatment may be beneficially combined with adoptive therapy of TCR53-
expressing T cells  
 

Treatment of RCC patients with IFN- or IL-2 gives an overall response of 12 % and 

is one of the current treatments for metastatic RCC [62]. IFNs are known to exert 

their anti-tumor effects directly through anti-proliferative activation and indirectly 

through immunomodulation leading to a better stimulation of effector T cells. In this 

work it was found that although both IFN- and IFN- induced similar up regulation of 

HLA-A2 on target cells, only the IFN- treatment enhanced the recognition of tumor 

cells by B3Z-TCR53m cells. The better response of B3Z-TCR53m cells against RCC 

cells treated with IFN- is probably due to an up regulation of the TCR53 antigen. 

Importantly, de novo induction of the TCR53-pMHC ligand on HLA-A2-expressing 

cells that were previously not recognized by B3Z-TCR53m cells did not occur. 

Greiner et al. [124] reported that IFNs could enhance the expression of various TAAs 

in human breast and colon carcinoma and Brouwers and colleagues showed up 

regulation of G250, a tumor associated antigen present in many RCC cell lines in the 

presence of IFN- or IFN- [125]. The stronger recognition of IFN--treated RCC 

cells by B3Z-TCR53m cells suggests that adoptive T cell therapy with TCR53-

expressing T cells could be successfully combined with IFN- therapy, improving the 

clinical outcome.   

Because the TCR53-pMHC ligand is not 100 % prevalent on RCC cell lines, not all 

RCC patients would benefit from a therapy using T cells expressing TCR53. Besides 

RCC cell lines, it was shown here that some tumors of other histologies also express 

the ligand for TCR53. Therefore, it would be desirable to have means of selecting 

patients to include only those with TCR53-pMHC ligand positive tumors, who would 

most probably benefit from the treatment with TCR53-expressing T cells. By testing 

B3Z-TCR53m cells against fresh kidney tumor or normal tissue, it could be shown 

here that B3Z-TCR53m cells recognized the fresh tumor tissue. Therefore, B3Z-

TCR53m cells seem to be suitable to screen patients biopsies. 
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The 3-D spheroid model mimics tumor induced deficits in T cells and can be 

used to develop strategies to prevent their development 

 
The tumor milieu has gained attention recently as functional deficits in TILs from 

human and mouse tumors are being reported [121]. As seen in this work, CD8+ T 

cells in RCC tumor sections were perforin positive when located inside the lumen of 

the blood vessels. However, CD8+ T cells located outside the vessel within the tumor 

parenchyma were perforin negative to a large percentage. Thus, CD8+ T cells appear 

to arrive in the tumor being positive for perforin and lose it when entering the tumor 

parenchyma. However, it is not possible to determine how long the CD8+ T cells have 

been in the tumor before losing perforin. Therefore we developed an in vitro system 

using 3-D spheroids to better address questions related to the functional capacity 

and the phenotype of T cells over time of exposure to a milieu that resembles that of 

the tumor.    

Spheroids mimic avascular sites of a tumor or of micrometastasis with respect to 

growth kinetics, presence of an extracellular matrix, nutrient gradients, oxygen 

tension, and pH [87]. Because of the diminished oxygenation, 3-D spheroid cultures, 

like RCC tumors, are resistant to radiation and chemotherapeutic drugs [126]. RCC-

26 spheroids with a diameter of approximately 720 µm were strongly infiltrated by 

TCR53mc expressing T cells with most T cells located within the peripheral rim of 

about 100 µm in depth. After that perimeter T cell numbers strongly declined. 100 µm 

is the estimated diffusion limit for oxygen [127]. Measuring oxygen concentration as 

the partial pressure of oxygen (pO2), Sutherland at al. found that the center of 

spheroids with diameters between 600 µm and 1000 µm were severely hypoxic 

whereas the periphery (100 µm in depth) was mostly normoxic with pO2 values of 

approximately 30 mm Hg [126]. This might be the reason why the T cells-expressing 

TCR53mc were mostly seen in the periphery of the spheroids.  

For the rejection of solid tumors, T cells must efficiently function in a 3-D tumor 

environment. T cell cytotoxicity is commonly investigated with tumor cells grown as 2-

D monolayers, which only partially mimic the tumor microenvironment. T cells-

expressing TCR53mc could kill target cells growing as spheroids in a 4 h assay. This 

result was comparable to the killing of targets grown as monolayer cultures. Thus, 

after 4 h of exposure to spheroids, T cells were still functional and exerted lytic 
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activity and cytokine secretion. However, after 24 h of exposure, T cells were no 

longer functional. PBL-TCR53mc after 24 h of exposure to spheroids exhibited 

increased cell death and T cells that were still alive showed loss of perforin and 

granzyme B, independent of the presence of pMHC ligand on the tumor cells. CD28 

expression was also lost in cultures with RCC-26 spheroids already after 4 h of 

incubation. It can thus be assumed that TIL cannot survive in the tumor environment 

for much longer than 24 h and if they still survive, they are probably impaired in 

function. These results document a temporal relationship between the functional 

capacity and survival upon exposure to a 3-D environment. 

Hypoxia leads to the shift of cell metabolism towards glycolysis and production of 

lactic acid. Upon exposure to low pH combined with lactic acid, CTL showed 

impaired functionality with reduction of cytokine secretion [128]. The functional 

defects seen in the T cells after 24 h of exposure to spheroids and loss of perforin 

seen in CD8+ T cells in the tumor parenchyma, may, in part, be explained by the 

combination of low pH and the presence of lactic acid observed in spheroids and 

tumors. Preliminary results in our group indicate that lactic acid can lead to perforin 

loss. These observations could motivate the study of possibilities to render T cells 

more resistant to such environments.   

 

Using the spheroid model it was possible to mimic the tumor milieu in vitro. This 

model can be further explored to test strategies to prevent or to revert the 

development of impairments observed in the T cells. In this work, one strategy was 

explored asking whether CD4+ T cells could help the CD8+ T cells to better function 

in the 3-D environment. It was found that recruitment of CD8+ T cells into spheroids 

was strongly improved if CD4+ T cells were present. A recent report also found that 

CD4+ T cells help the mobilization of CTLs toward inflammation sites in a mouse 

model of infection. The mobilization of CTLs, in their case, was dependent on 

secretion of IFN- by the CD4+ T cells [57]. Because in the spheroid model, the CD4+ 

mock T cells that do not recognize an antigen on the tumors cells also increased the 

recruitment of CTL, it is possible that IFN- is not the only molecule involved in the 

mobilization of the CTL. This observation needs more experiments like the 

assessment of chemokine levels in the presence or absence of CD4+ T cells to clarify 

how CD4+ T cells could influence the migration of CTL. CD8+ T cells showed 

increased degranulation and secretion of cytokines if CD4+ T cells recognizing pMHC 
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ligand but not if CD4+ T cells mock were present in the spheroid, indicating that the 

improvement of the CTL function depended on the activation of the CD4+ T cells. In 

line with that, Schafer-Weaver et al. showed that sustained provision of activated 

tumor-specific CD4+ T cells prevented CTL tolerization leading to the control of tumor 

growth [84].  

 

Altogether, it was observed here that T cells suffer impairments upon long exposure 

to the spheroid milieu and similar impairments were seen in the T cells within the 

RCC tumor tissue. The provision of CD4+ helper T cells could induce the recruitment 

of CTL and supported their function. Thus, efforts to the development of T cell 

therapy for RCC and other solid tumors should focus on infusing both tumor specific 

CD8+ and CD4+ T cells. Because T cells are no longer functional after 24 h in the 

suppressive tumor milieu, adoptive T cell therapy should probably consider the 

administration of T cells repeatedly in short intervals to increase the presence of 

functional T cells at the tumor site, thereby boosting the response to the tumor.
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5 Material 
 
 

5.1 Equipment  

 

Equipment / type Manufacturer 

Centrifuge Heraeus 
Cryostat/ CM1900 Leica Jung CM 3000 
Flow cytometer/Calibur Becton Dickinson, Heidelberg 
Flow cytometer/LSR II Becton Dickinson, Heidelberg 
Gene Pulser Xcell Electroporator Bio-Rad Laboratories, Hercules, California, 

USA 
Incubator (cell culture)/ BB6220 Heraeus Instruments, Hanau 
InGenius gel documentation Syngene, Cambridge, UK 
Laminar flow cabinet BDK, Sonnenbrühl-Genkingen 
Laser scanning system/ TCS SP2 Leica Microsystems, Heidelberg 
Phase contrast inverted light microscope Leica Microsystems, Heidelberg 
Light microscope/ Axio scope Zeiss, Jena 
Liquid nitrogen system, chronos biosafe Messer Griesheim, Krefeld 
Microscope/ Leica DM IRBE Leica Microsystems, Heidelberg 
Milli-Q- water purification system Millipore, Schwalbach 
Pipettes and multichannel pipettes Eppendorf, Hamburg 
Scintillation counter TOPCounter Canberra Packard, Dreieich 
Spectrophotometer Nanodrop

®
 ND-100  

pH-Meter 766 Calimetric 
Thermo Fisher Scientific 
Knick, Berlin 

Spectrophotometer/ TECAN Genios plus Tecan, Crailsheim 
Table vortexer Neo-Lab, Munich 
Thermo mixer/ BT 130-2 HLC Biotech, Bovenden 
Water bath Köttermann Labortechnik, Uetze 

 

 

5.2 Consumable material  

 

Product Manufacturer 

0.1 ml tubes (PCR) Eppendorf, Hamburg 
1.5 ml tubes Eppendorf, Hamburg 
6-, 24-, 12- and 96-well plates (flat-bottom) Nunc, Wiesbaden 
96-well plates (U-bottom) Nunc, Wiesbaden 
96-well plates (V-bottom) Nunc, Wiesbaden 
96-well plates, with filter (LUMA) Canberra Packard, Dreieich 
Cell culture flasks (25, 75 and 175 cm

2
) Greiner bio-one, Frickenhausen 

Cryo conserving tubes (1.5 ml) Nunc, Wiesbaden 
Electroporation cuvettes (2 and 4 mm) Bio-Rad, Hercules, CA 

Filter units (0.45 μm and 0.22 µm) Millipore, Billerica, USA 

Folded paper filters  Whatman, Dassel 

SuperFrost Plus glass slides and coverslips Menzel, Braunschweig 
Heparin 2500 IE Essex Pharma GmbH, Munich 

LS/MS MACS columns Miltenyi, Biotec, Bergisch Glattbach 
MACS separation columns Miltenyi, Biotec, Bergisch Glattbach 
Magnetic separator Miltenyi, Biotec, Bergisch Glattbach 
Multistepper Eppendorf, Hamburg 

Neubauer counting chamber Assistent, Sondheim 

Pasteur pipettes, glass Peske OHG, Munich 
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Product Manufacturer 

Petri-dish Nunc, Wiesbaden 
Pipette tipps Eppendorf/Gilson 
Polyestyrene round bottom tubes Greiner Bio-one, Frickhausen 
Polypropylene round-bottom tube (bacteria) Greiner Bio-one, Frickhausen 
Polypropylene tubes for flow cytometry Greiner Bio-one, Frickhausen 
Polystyrene conical tubes (15 and 50 ml) Becto Dickinson, Heidelberg 
RNAse free tipps Eppendorf/Gilson 

 

 

5.3 Reagents 

 

Product Manufacturer 

4‟, 6‟- Diamodino-2-phenylindol (DAPI) Merck, Darmstadt 
51

Cr- Sodium chromate Hartmann Analytic, Braunschweig 
7- Aminoactinomycin D (7-AAD) Sigma-Aldrich GmBH, Steinheim 

Accutase PAA Laboratories, Cölbe 

Acetic acid Merck, Darmstadt 
Acetone Merck, Darmstadt 
Agarose Invitrogen, Karlsruhe 
APAAP, mouse monoclonal  Dako, Glostrup, DK 
Aqua ad iniectabilia  B.Braun Melsungen AG, Melsungen 
Bodipy 630/650-methyl bromide Invitrogen, Karlsruhe 
Brefeldin A Becton Dickinson, Heidelberg 
Calcium chloride Merck, Darmstadt 
Caltag Counting Beads Invitrogen, Karlsruhe 
Vybrant Carboxyfluorescein diacetate N-succinimidyl  
ester (CFDA-SE) tracer kit 

Molecular Probes, Göttingen 

Collagenase IA Sigma-Aldrich GmBH, Steinheim 
CompBeads Becton Dickinson, Heidelberg  
Diethylpyrocarbonate (DEPC) Sigma-Aldrich GmBH, Steinheim 
Dimethyl sulfoxide (DMSO) Merck, Darmstadt 
DNA ladder, 1 kb New England BioLabs, Frankfurt am Main 
DNA Typing Grade 50x TAE buffer Invitrogen, Karlsruhe 
DNAse I Sigma-Aldrich GmBH, Steinheim 
ELISA  TMB substrate reagent set BD Pharmingen, San Diego 
Embedding medium for cryo-tissue Natutec, Frankfurt am Main 
Ethanol Merck, Darmstadt 
Ethidium bromide Sigma-Aldrich GmBH, Steinheim 
Ethylenediaminetetraacetic acid (EDTA) Invitrogen, Karlsruhe 
Fetal calf serum (FCS) Invitrogen, Karlsruhe 

Ficoll (Biocoll, density 1.077 g/ml) Biochrom AG, Berlin 

Freezing medium for cell culture Ibidi, Martinsried 
GeneRuler

TM
 1kb DNA ladder Fermentas 

Glucose Merck, Darmstadt 
Glycerol Merck, Darmstadt 
HCl solution (2mol/l, 2N) Merck, Darmstadt 
Hematoxilin (Mayers hemalum solution)  Merck, Darmstadt 
Human serum Cambrex corporation 
Immersion oil Leica Microsystems, Wetzlar 
Immomount Thermo Electron Corporation 
Isopropanol Merck, Darmstadt 
Loading Dye 2x RNA Invitrogen, Karlsruhe 
Loading Dye 6x DNA Invitrogen, Karlsruhe 
Methanol Merck, Darmstadt 
Monensin (GolgiStop) Becton Dickinson 
Naphtol-AS-phosphate-disodium salt Sigma-Aldrich GmBH, Steinheim 
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Product Manufacturer 

New fuchsin Sigma-Aldrich GmBH, Steinheim 
Orthophosphoric acid Merck, Darmstadt 
Penicillin/ Streptomycin 100x  Invitrogen, Karlsruhe 

Phosphate buffered saline (PBS) Invitrogen, Karlsruhe 
Potassium chloride Merck, Darmstadt 
Powdered milk Roth, Karlsruhe 
Propidium iodide Invitrogen, Karlsruhe 

Protamine sulfate Sigma-Aldrich GmBH, Steinheim 
RetroNectin

®
 , Fibronectin Fragment Lonza Verviers, Potsdam 

RiboRuler
TM

 RNA ladder Fermentas, St. Leon-Rot 
RNA- Loading Dye (2x) Fermentas, St. Leon-Rot 
RNase Zap

®
 Solution  Ambion, Austin, Texas 

Saponin Sigma-Aldrich GmBH, Steinheim 
Sea Plaque agarose Cambrex, Rockland, USA 
Sodium azide Sigma-Aldrich GmBH, Steinheim 
Sodium chloride Sigma-Aldrich GmBH, Steinheim 
Sodium dihydrogen phosphate Merck, Darmstadt 
Sodium nitrite Merck, Darmstadt 
Tetramisole hydrocloride Sigma-Aldrich GmBH, Steinheim 
Tripsin/EDTA 100x Invitrogen, Karlsruhe 
Trypan blue Invitrogen, Karlsruhe 
Tryptone Sigma-Aldrich GmBH, Steinheim 
Tween 20 Sigma-Aldrich GmBH, Steinheim 
Vectashield Vector Laboratories, Peterborough, UK 
Yeast extract Sigma-Aldrich GmBH, Steinheim 

 
 

5.4 Cell culture basis-medium and supplements 

 
Product Manufacturer 

Sodium pyruvate Invitrogen, Karlsruhe 
Non-essential amino acids Invitrogen, Karlsruhe 
L-Glutamine Invitrogen, Karlsruhe 
HEPES Invitrogen, Karlsruhe 

Human serum of several donors IMI, Helmholtz-Zentrum Großhadern 

DMEM medium Invitrogen, Karlsruhe 
OptiMEM medium Invitrogen, Karlsruhe 
RPMI 1640 medium Invitrogen, Karlsruhe 
LB medium Sigma-Aldrich GmBH, Steinheim 
LB-agar medium Sigma-Aldrich GmBH, Steinheim 

 

5.5 Cytokines and growth factors 

 

Product Manufacturer 

Human recombinant IFN--1b (IMUKIN) Boehringer Ingelheim 

Human recombinant IFN--2a Biomedical Laboratories, Piscataway, USA 

Recombinant interleukin 2 (Proleukin) Cetus, Emeryville, USA 
Recombinant Interlekin 15  PromoCell GmbH, Heidelberg 
Epidermal growth factor (EGF) Invitrogen, Karlsruhe 
Basic fibroblast growth factor (bFGF) Sigma-Aldrich GmBH, Steinheim 
Insulin transferrin selenium 100x (ITS)  Invitrogen, Karlsruhe 
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5.6 Commercial kits 

 

Kit Manufacturer 

ELISA-kit IFN-, human Becton Dickinson, Heidelberg 

ELISA-kit IL-2, murine Ebioscience 
mMESSAGE mMachine®-T7-Kit Ambion, Austin, Texas, USA 
Nucleo Spin®-Extract II  Machery-Nagel 
Poly(A)-Tailing-Kit Ambion, Austin, Texas, USA 
Qiagen maxi prep kit Qiagen, Hilden 
Qiagen mini prep kit Qiagen, Hilden 
Qiagen QIAquick Gel Extraction Kit Qiagen, Hilden 
RNEasy Mini Kit Qiagen, Hilden 

 
 

5.7 Human cell lines 

 
 

5.7.1 RCC cell lines 

 

RCC cell lines Histological origin Source 

786-0 Clear cell (cc) RCC ATCC (CRL-1932) 
A498 ccRCC ATCC (HTB 44) 
CCA-1, -7, -8, -9, -13, -17, -23 
and -29  

ccRCC C. D. Gerharz (Duisburg) 

KT-2, -13, -15, -30, -53, -111, -
187 and -195 

Unknown RCC subtype M. Siebels (Heidelberg) 

MZ-1257 -2175 Unknown RCC subtype E. Jäger (Mainz) 
RCA-1770 Unknown RCC subtype M. Ziegler (Berlin) 
RCC-1.11, -1.24, -1.26 ccRCC J. Mautner (Munich) 
RCC-26 ccRCC IMI, HMGU 
RCC-36 ccRCC IMI, HMGU 
RCC-43  Primary culture, ccRCC Produced in this work 
RCC-53 ccRCC IMI, HMGU 
SKRC-12, -17 Unknown RCC subtype J. Vissers (Leiden) 
SKRC-28, -38/49, -44/9  Sloan Kettering Institute (USA) 
SKRC-59 Unknown RCC subtype J. Vissers (Leiden) 

ATCC= american type culture collection 

 
 

5.7.2 Tumor cell lines 

 

Other tumor cell lines Histological origin Source 

Mel-624.38 Melanoma M. C. Panelli (Pennsylvania) 

Mel-93.04A12  
 

Melanoma P. Schrier (Leiden) 

A-375 Melanoma ATCC (CRL-1619) 
A-673 Rhabdomyosarcoma P. J. Nelson (Munich) 
BLM Melanoma J. Vissers (Leiden) 
BOE B-ALL I. Jeremias (Munich) 
HT1080  Fibrosarcoma ATCC (CCL-121) 
Colo-205 Colon adenocarcinoma ATCC (CCL-222) 
Colo-357 Pancreas carcinoma S. Endres (Munich) 
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Other tumor cell lines Histological origin Source 

CRL-1543 Osteosarcoma P. J. Nelson (Munich) 
CRL-1544 Osteosarcoma P. J. Nelson (Munich) 
D-458 Medullablastoma I. Jeremias (Munich) 
Du-145 Prostate carcinoma R. Riesenberg 
EWING-AK Ewing sarcoma P. J. Nelson (Munich) 
FaDu Squamous Carcinoma B. Wollenberg (Lübeck) 
Granta 519 B-NHL M. Dreyling (Munich) 
HBL-2 B-NHL M. Dreyling (Munich) 
HCT-116 Colon carcinoma I. Jeremias (Munich) 
HT-29 Colon carcinoma ATCC (HTB-38) 
Jeko-1 B-NHL M. Dreyling (Munich) 
JVM-2 B-PLL M. Dreyling (Munich) 
K-562 Myelogenous leukaemia C. M. Britten (Mainz) 
Karpas 422 B-NHL M. Dreyling (Munich) 
Kelly Neuroblastoma I. Jeremias (Munich) 
L-428 Hodgkin lymphoma I. Jeremias (Munich) 
LCL-1 Lymphoblastoid cell line IMI, HMGU 
LCL-2 Lymphoblastoid cell line IMI, HMGU 
LCL-26 Lymphoblastoid cell line IMI, HMGU 
LCL-3 Lymphoblastoid cell line IMI, HMGU 
LCL-4 Lymphoblastoid cell line IMI, HMGU 
LNCAP Prostate carcinoma I. Jeremias (Munich) 
MaCa-1 Breast carcinoma R. Wonz (Munich)  
MCF7 Breast carcinoma ATCC (HTB-22) 
MG-63 Osteosarcoma P. J. Nelson (Munich) 
Nalm-6 BCP-ALL I. Jeremias (Munich) 
Panc Tu1 Pancreas carcinoma I. Jeremias (Munich) 
PC-3   Prostate carcinoma R. Riesenberg 
PCI-1 Squamous carcinoma B. Wollenberg (Lübeck) 
SAOS2 Osteosarcoma Irmela Jeremias (HMGU) 
SK-23 Melanoma M. C. Panelli (Pennsylvania) 
SK-Mel25 Melanoma M. C. Panelli (Pennsylvania) 
SK-Mel29 Melanoma Wölfel, T. 
SKW-6  B-ALL Irmela Jeremias (HMGU) 
SW-480 Colon carcinoma ATCC (CCL-228) 
SW-620 Colon carcinoma ATCC (CCL-227) 
T2  Lymphoblastoid cell line ATCC (CRL-1992) 
TC-71 Ewing sarcoma P. J. Nelson (Munich) 
THP-1 Monocytic leukemia ATCC (TIB-202) 
U-251 MG Astrocytoma S. Grau (Munich) 
U2OS Osteosarcoma P. J. Nelson (Munich) 
U-373 Glioblastoma P. J. Nelson (Munich) 
U-87 MG Glioblastoma P. J. Nelson (Munich) 
UT-SCC-15 Squamous carcinoma M. Schmitz (Dresden) 
WM-115 Melanoma ECACC 
WM-266.4a Melanoma ECACC 

In italic are cells that grow in suspension, all others are adherent cells. 
ATCC= american type culture collection 
ECACC= European collection of cell cultures 
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5.7.3 Normal kidney cell lines 

 

Normal kidney cells Histological origin Source 

HEK-293T Human embryonic kidney H. Engelmann (Munich) 
NKC-2 Primary normal kidney Produced in this work* 

NKC-3 Primary normal kidney Produced in this work* 

NKC-4 Primary normal kidney Produced in this work* 

NKC-6 Primary normal kidney Produced in this work* 

NKC-7 Primary normal kidney Produced in this work* 

NKC-26 Normal kidney SV40 
transformed 

IMI (HMGU) 

NKC-32 Primary normal kidney Produced in this work* 

NKC-33 Primary normal kidney  Produced in this work* 
NKC-36 Primary normal kidney Produced in this work* 

NKC-37 Primary normal kidney Produced in this work* 

NKC-38 Primary normal kidney Produced in this work* 

NKC-39 Primary normal kidney Produced in this work* 

NKC-40 Primary normal kidney Produced in this work* 

NKC-40 Primary normal kidney Produced in this work* 

NKC-41 Primary normal kidney Produced in this work* 

NKC-42 Primary normal kidney Produced in this work* 

NKC-43 Primary normal kidney Produced in this work* 

NKC-47 Primary normal kidney Produced in this work* 

NKC-49 Primary normal kidney Produced in this work* 

RPTEC Renal proximal tubule epithelial 
cells 

BioWhittaker/Maryland 

*R. Oberneder (Urology Clinic Dr. Castringius, Munich-Planegg) and A. Buchner (Urology Clinic, LMU, 
Munich) provided the kidney samples from which primary cultures were stablished. All cells are 
adherent. 

 
 

5.7.4 Other normal cell lines 

 

Other normal cells Histological origin Source 

PBL-1 PBMC Healthy donor 
PBL-2 PBMC Healthy donor 
PBL-3 PBMC Healthy donor 
PBL-4 PBMC Healthy donor 
PBL-5 PBMC Healthy donor 
PBL-6 PBMC Healthy donor 
PBL-7 PBMC Healthy donor 
hBMEC Brain microvascular endothelial 

cells 
S. Grau (Munich) 

K4IM  Fibroblast, SV40T transformed P. J. Nelson (Munich) 
hMSC1  Mesenchymal stem cell, SV40T 

transformed 
S. Grau (Munich) 

In italic are cells that grow in suspension, all others are adherent cells. 
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5.8 RCC patient samples 

 
RCC patient sample *TMN status/ tumor grade RCC histology 

PBL-RCC°1 T3, N1, M0/ G3 clear cell 
PBL-RCC°2 T2, N2, M0/ G1 papillar-chromophile 
PBL-RCC°3 T3, N2, M0/ G3 clear cell 
PBL-RCC°4 bone metastasis clear cell 
PBL-RCC°5 T2/ G3 clear cell 
Tumor RCC°6 T3, Nx, M0/ G2 clear cell 
Tumor RCC°7 T3, N2, M0/ G2 clear cell 
Tumor RCC°8 T1, N0, M1/ G3 clear cell 
Tumor RCC°9 T3, N0, M1/ G2 clear cell 
Tumor RCC°10 T2, N0, M0/ G2 clear cell 
Tumor RCC°11 T2, N0, Mx/ G2 clear cell 

* „T“ = tumor size, „N“ = lymph node status, „M“ = distant metastasis and „G“ = tumor grade according 
to the “Union International Contre le Cancre (UICC), stand 2003 [90]. 
 
 

5.9 Blood samples 

 
Blood samples were taken from healthy volunteers by instructed and authorized 
personnel. The procedure had the approval of the local ethics committee.     
 
 

5.10  Bacteria strain 

 

The bacteria strain used was the Escherichia coli-derived XL1 (Source: Invitrogen, 

Karlsruhe). 

 
 

5.11  Murine cells 

 

The Murine cells used were B3Z and B3Z-TCR53m (Source: W. Uckert, MDC, 

Berlin). 
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5.12  Antibodies 

 
 

5.12.1 Anti-human antibodies 

 

Anti-human Dilution Species/Isotype Clone Conjugation 
Application/ 
Manufacturer 

CD107a 1:25 Mouse /IgG1 H4A3 FITC FCM/BD 
CD107b 1:25 Mouse /IgG1 H4B4 FITC FCM/BD 
CD28 - Mouse /IgG1 CD28.2 - Stimulation/ BD 
CD28 1:10 Mouse /IgG1 CD28.2 APC FCM/Pharmigan 
CD3 - Mouse /IgG2a OKT3 - Stimulation/IMI 
CD3 1:25 Mouse /IgG1 UCHT1 Pacific Blue FCM/BD 
CD3 1:300 Mouse /IgG1 UCHT1 - IF/BD 
CD31  Mouse/IgG1 WM59 - IF 
CD4 1:25 Mouse /IgG1 RPA-T4 APC-Alexa-750 FCM/BD 
CD4 1:10   FITC FCM/BD 
CD45 1:25 Mouse /IgG1 HI30 PE-Cy7  FCM/BD 
CD45 1:25 Mouse /IgG1 2D1 AmCyan  FCM/BD 
CD8 - Mouse /IgG2a UCHT-4 -  Blocking/ Sigma 
CD8 1:100 Rabbit  - IF, ICH 
CD8 1:25 Mouse/IgG1 39I10545 Pacific blue  FCM/BD 
CD8 1:20 Mouse /IgG1 SK1 AmCyan  FCM/BD 
CD8 1:20 Mouse /IgG1 B9.11 PE  FCM/BD 
Granzyme B 1:20 Mouse/IgG1 GB11 PE-TexasRed FCM/Caltag 
HLA-A2 - Mouse/IgG1 HB-54 - FCM and block/ 

E. Kremmmer 
(HMGU) 

IFN- 1:25 Mouse /IgG1 4S.B3 PE-Cy7 FCM/BD 

IFN- 1:25 Mouse /IgG2b 25723.11 APC FCM/BD 

IL-2 1:20 Rat/IgG2a MQ1-
17H12 

APC FCM/BD 

Perforin 1:100 Mouse/IgG2b δG9 - FCM, IF/BD 
TNF 1:20 Mouse /IgG1 4S.B3 Alexa Fluor 700 FCM/BD 

V8 1:20 Mouse/IgG2b JR2 PE FCM/BD 

Vβ20 1:20 Mouse/IgG1 ELL1.4 PE FCM/Serotec 
Vβ22 1:20 Mouse /IgG1 IMMU546 PE FCM/Serotec 

FCM= flow cytometry, IH= immunohistochemistry, IF= Immunofluorescence 

 
 

5.12.2 Anti-mouse and anti-rabbit antibodies 

 

Anti-mouse Dilution Species/Isotype Clone Conjugation 
Application/ 
Manufacturer 

IgG2b 1:500 Goat Polyclonal 
Alexa Fluor 
647 

FCM/ Invitrogen 

IgG2b 1:500 Goat Polyclonal 
Alexa Fluor 
488 

IF/Invitrogen 

IgG1 1:500 Goat Polyclonal 
Alexa Fluor 
568 

IF/Invitrogen 

Immunoglobulin 1:20 rabbit anti-mouse Polyclonal - IH, Dako 
TCRβ 1:100 Hamster/IgG2 H57-597 PE FCM 
TCRβ 1:50 Hamster/IgG2 H57-597 APC FCM 

V5 1:20 Mouse /IgG1 MR9-4 PE FCM 
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Anti-rabbit  Dilution Species/Isotype Clone Conjugation 
Application/ 
Manufacturer 

IgG2b  1:100 Goat Polyclonal Cy5 
IF/ Jackson 
Immuno 
Research 

FCM=flow cytometry, IH= immunohistochemistry, IF= Immunofluorescence 
 
 

5.12.3 Isotype antibodies 

 

Species/Isotype Clone Conjugation Application/ manufacturer 

Mouse/IgG2b MOPC 141 - FCM/Sigma 
Mouse/IgG1 MOPC 21 - FCM/Sigma 
Mouse/IgG1 MOPC 21 FITC FCM/BD 
Mouse/IgG1 GB11 PE-TexasRed FCM/Caltag 
Mouse/IgG1 MOPC 21 APC FCM/BD 
Mouse/IgG1 MOPC 21 PE FCM/BD 

FCM= flow cytometry 

 
 

5.13  Enzymes 

 

Enzyme Manufacturer 

NotI and 10 x O-buffer Fermentas 
ClaI and 10 x Tango-buffer Fermentas 
T4 DNA Ligase  NewEngland Biolabs, Schwalbach, Germany 
XbaI and 10 x Tango-buffer Fermentas 
XhoI and 10 x R-buffer  

 
 

5.14  Cell culture medium  
 

Medium Composition Application 

CML 

 
RPMI V 

15 % FCS 

 

Used to wash 
51

Cr-labeled cells 

HEK 

 
DMEM (4.5 g/L Glucose) 
10 % FCS 
1 % L-glutamine 
1 % non essential amino acids 
1 % Sodium pyruvate 
1 x Pen/Strep 

 

Used for HEK-293T cells line 
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Medium Composition Application 

Hunger  

 
DMEM (4.5 g/L Glucose) 
3 % FCS 
1 % L-glutamine 
1 % non essential amino acids 
1 % Sodium pyruvate 
 

Used for HEK-293T before 
transfection 

LB 
 
Commercial 
 

Used for bacteria liquid cultures  

LB-agar 
 
Commercial 
 

Used for bacteria cultured in 
Petri-dishes 

LCL 

 
RPMI V 
10 % FCS 
 

Used for T cell hybridoma  

Primary culture 

 
RCC medium  
10 ng/mL EGF 
5 ng/mL bFGF 
1 x Insulin transferrin selenium 
 

Used to induce primary cultures 
out of fresh kidney tissue 

RCC  

 
Medium RPMI V 
12 % FCS 
 

Used for most adherent cells 

RPMI IV 

 
RPMI 1640 
1 % non essential amino acids  
1 % sodium pyruvate 
1 % L-glutamine 
 

Medium used as basis for other 
mediums 

RPMI V 

 
RPMI 1640 
1 % non essential amino acids  
1 % sodium pyruvate  
1 % L-glutamine 
1 x Pen/Strep    
 

Medium used as basis for other 
mediums 

SOC (1 liter)  

 
20 g tryptone  
5 g yeast extract    
0.6 g NaCl                   
0.5 g KCl                    
10 mM MgCl2            
10 mM MgSO4             
20 mM glucose 
 

Used for bacteria recovery after 
electroporation 

T-Cell 

 
Medium RPMI IV 
10 % human serum 
IL-2 as indicated 
 

Used for PBL cultures 
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5.15  Buffers and other solutions 
 

Solution Composition Comment 

2 x HBSS buffer  
(100 mL) 

 
1.64 g NaCl 
0.075 g KCl 
0.216 g Glucose 
1.19 g HEPES 
0.0267 g Na2HPO4*2H2O 
 

Solution made and filtered moments 
before the transfection, pH adjusted 
to 7.06 

Ampicillin stock 

 
100 mg/ml Ampicillin 
in 70 % Ethanol, sterilized by 
filtration (0.22 µm).  
 

For selection of bacteria carrying 
plasmids, stored at - 20°C 

APAAP buffer 

 
dissolve 12.1 g Tris-hydroxy (methyl) 
aminomethane (0.1 M) and 
5.84 g Sodium chloride in 1 L Aqua 
ad iniectabilia 
 

Component of APAAP-developing 
solution 

APAAP-developing 
buffer 

 
dissolve 1.21g Tris-hydroxy(methyl-) 
aminomethane (0.1 M) 
and 5.85 g Sodium chloride  
in 1 L Aqua ad iniectabilia 
 

Component of APAAP-developing 
solution 

APAAP-developing 
solution  

 
A 30 mg tetramisole hydrocloride in 
18.75 ml APAAP-buffer 
52.5 ml APAAP developing-buffer  
B 30 mg sodium nitrite  
150 μl new fuchsin stock solution 
375 μl Aqua ad iniectabilia  
C 37.5 mg naphtol-AS-phosphate-
disodium salt,  
450 μl dimethylformamide  
Mixed in the order B, C and A 
 

For immunohistochemistry, freshly 
prepared, filtered with folded 
whatman paper 

CaCl2 (2M, 10 ml) 
 
2.22 g in 10 mL H2O bidest 
 

Solution made and filtered shortly 
before transfection 

DEPC water 

 

1:1000 diluted from a 97 % Stock-
solution of DEPC in H2O. Incubated 
at 37°C overnight 

 

Autoclaved, stored at room 
temperature 

Digest solution 

 
0.1 % BSA 
100 µg/ml pen/strep 
10 mM Hepes  
218 U/ml Collagenase IA and 435 
U/ml DNAse added freshly in RPMI 
 

Used for the disruption of kidney 
tissue 

ELISA blocking buffer 
 
1 % pulvered milk in PBS 
 

Freshly prepared 
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Solution Composition Comment 

ELISA coating buffer 

 
0.1 M carbonate at pH 9.5 prepared 
in PBS 
 

Stored at 4°C 

ELISA washing buffer 
 
0.05 % Tween20 in PBS 
 

Freshly prepared 

FACS buffer  

 
2 % FCS 
0.1 % Sodium azide 
2 mM EDTA, in PBS 

 

Freshly prepared in PBS and used 
for a maximum of 3 weeks. 

MACS buffer 

 
0.1 % human serum 

0.5 mM EDTA, in PBS 

 

Freshly prepared in PBS 

New fuchsin solution 
 
5 g new fuchsin in 100 ml 2 N HCl 
 

For immunohistochemistry 

Paraformaldehyde 
solution 

 
1 % or 4 % as indicated 
Freshly prepared in PBS  
Stock was 4 % stored at - 20°C  
 

Used for fixation of cells, Stored at 
4°C. 

Saponin 10 % 

 
Stock: 10 % 
1 g in 10mL PBS 

 

Used for permeabilization of cells 

TAE buffer 
 

 
1 x prepared with Millipore water. 
TAE stock was 50 x.  
 

 

Trypsin-EDTA Solution 

 
2 x trypsin-EDTA in PBS, stock was 
10 x 
 

Used for cell culture, Stored at 4°C 

 
The reagents were prepared under sterile conditions and autoclaved when 

mentioned. Cell culture media, MACS and HBSS buffer were filtered (0.22 µm filter). 

All reagents, if not otherwise mentioned, were stored at 4°C. 
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5.16  Vectors 
 

Vector Description Resistance Source 

pALF10A1 

cDNA encoding the virus 10A1 
envelope derived from the 
murine leukemia virus, under 
the Friend-mouse-leukemia-
virus-LTR control. 

Ampicillin W. Uckert (Berlin)  

pCDNA3.1-MLV g/p 
(„gag-pol“) 

cDNA encoding “gag”, a 
polyprotein and an acronym for 
group antigens (ag); “pol” is the 
reverse transcriptase under the 
control of the CMV promoter. 

Ampicillin W. Uckert (Berlin)  

pMP71-GFP 
Retroviral vector with the eGFP 
cDNA under the MPSV-LTR-
control. 

Ampicillin W. Uckert (Berlin) [129] 

pMP71-TCR53m 

Retroviral vector with the 

TCR53 sequences as -chain-

P2A--chain, with the human 

constant chains of  and  
chains replaced by the murine 
constant chains. The TCR 
specificity is unknown. 

Ampicillin W. Uckert (Berlin) [130] 

pMP71-TCR53mc 

Retroviral vector with the 

TCR53 sequences as -chain-

P2A--chain, with the human 

constant chains of  and  
chains replaced by the murine 

constant chains. TCR53  
chains are codon optimized. 
The TCR specificity is 
unknown. 

Ampicillin W. Uckert (Berlin) [130] 

pMP71-TCR26 

Retroviral vector with the 

TCR26 sequences as -chain-

P2A--chain. The TCR 
specificity is unknown. 

Ampicillin M. Leisegang (Berlin) 

pMP71-TCR-D115m 

Retroviral vector with the TCR-

D115 sequences as -chain-

P2A--chain, constant chains 

of  and  TCR-D115 are from 

the mouse. TCR-D115  
chains are codon optimized. 
TCR specific for the 
tyrosinase-peptide 369-377. 

Ampicillin 
S. Wilde (Munich) 

[86] 

pMP71-TCR-T58m 

Retroviral vector with the TCR-

T58 sequences as -chain-

P2A--chain, constant chains 

of  and  TCR-T58 are from 

the mouse TCR-T58  chains 
are codon optimized. TCR 
specific for the tyrosinase-
peptide 369-377. 

Ampicillin 
S. Wilde (Munich) 

[86] 
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Vector Description Resistance Source 

    

pCDNA3.1-  TCR26 
TCR26  chain under the T7 
promoter, vector for in vitro 
transcription (IVT). 

Ampicillin Produced in this work 

pCDNA3.1-  TCR26 
TCR26  chain under the T7 
promoter, vector used for IVT 

Ampicillin Produced in this work 

pCDM8-HLA-A2 
HLA-A*0201 cDNA under the 
T7 promoter, vector used for 
IVT 

Ampicillin 
and 
tetracycline 

E. Weiß (Munich) 

pPBSTCR26 
TCR26  chains, template for 
subcloning 

Ampicillin W. Uckert (Berlin) [75] 

 

5.17  Primer sequences 

 

Primer  Sequence 5’-3’ Manufacturer 

TCR26-V20 TAGCGGCCGCCACCATGAGGCAAGTG Metabion. 
Martinsried 

TCR26-C CACTCGAGTCAGCTGGACCACAGC Metabion. 
Martinsried 

TCR26-V22 CGTGCGGCCGCCACCATGGATACCTGGC Metabion. 
Martinsried 

TCR26-C GCATCTAGACTAGCCTCTGGAATCCTTTCTCTTG Metabion. 
Martinsried 

 

Vα19mc-fw      GGATCC TAATACGACTCACTATAGGG AACAG 

 

CCACC ATGGTGAAGATCCGGCAG 
 
 

MWG, 
Ebersberg 

Vα19mc-rv       TCAGCTGCTCCACAGCCGC 

 

MWG, 
Ebersberg 

   

Vβ2053mc-fw      GGATCC TAATACGACTCACTATAGGG AACAG 

 

CCACC ATGCTGTGCAGCCTGCTG 
 

 

MWG, 
Ebersberg 

Vβ20mc-rv TCAGCAGGCTGAAGTTGGTGGCGCC MWG, 
Ebersberg 

 

Spacer T7 Promoter Spacer 

Kozak Vα1953mc 

Kozak Vα1953mc 

Spacer T7 Promoter Spacer 
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5.18  Computer softwares  

 
Software Application 

ApE v. 8.5.2 Plasmid editor 
FlowJo v. 7.2.2 Flow cytometry analysis 
Nanodrop DNA/RNA concentration determination 
GeneSnap v. 2.0 DNA/RNA gel documentation 
Microsoft Word (MS Office XP) Text and tables 
Microsoft Excel (MS Office XP) Tables 

GraphPad Prism  Graphs and statistics 
Leica software LCS Lite Processing of confocal pictures 



___________________________________________________________________Methods 

109 

 

6 Methods 
 
 

6.1 Cell culture methods 

 
 

6.1.1  General considerations 

 
To avoid any contamination, the work with cell culture was performed under sterile 

conditions. All cells were cultivated at 37°C with 6.5 % CO2 in a water vapor 

saturated incubator. The work involving retroviral transduction of cells was performed 

in a S2 laboratory with all S2 safety protocols being observed. 

 
 

6.1.2 Thawing cells  

 

A vial of cells was removed from the vapor phase of liquid nitrogen. The vial contents 

were allowed to thaw at 37°C in a water bath until only a small ice pellet remained. 

The vial was sprayed down with a 70 % alcohol solution which was allowed to 

evaporate. 100 % of cold fetal calf serum (FCS) was added to the cell suspension 

and resuspended. To remove residual DMSO, cells were centrifuged at 1500 rpm for 

5 min at room temperature, the supernatant was discarded and an appropriate 

medium was added to the cells.  

 
 

6.1.3 Cell freezing procedure  

 
Cryo-preservation is an efficient method by which cells are stored in liquid nitrogen   

(-179°C) without significantly losing their viability. The following procedure describes 

the method used to freeze cells.  

A commercial freezing medium containing dimethyl sulfoxide (DMSO) was used. 

Formation of ice crystals inside the cells is avoided by the addition of DMSO because 

it diffuses into the cells at the expense of dehydration. Cells were harvested in mid-

logarithmic growth using standard procedures. Cells were counted after pelleting by 

centrifugation and resuspending in FCS. After centrifuging, cells were carefully 
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resuspended in freezing medium at the desired concentration (that ranged from        

2 x 106 to 1 x 107) and aliquoted into sterile vials. The vials were wrapped in a dense 

stack of towel paper and placed at - 80°C to freeze overnight. For long storing, they 

were transferred from - 80°C into the vapor phase of liquid nitrogen. 

 
 

6.1.4 Cell culture 

 

Cell lines and primary cell cultures with the respective optimal medium are listed in 

the section 5.7. Each medium utilized for cultures was taken out of the fridge and 

allowed to adjust to room temperature before use. Cultures were observed using an 

inverted phase contrast microscope. Cell growth was monitored by observing the 

change in pH of the medium, indicated by change in color of the phenol in the 

medium from red to yellow. In general, adherent cell lines were grown in 75 cm2 

(T75) flasks in a horizontal position, supplemented with 10 ml of the optimal medium. 

When expansion was needed, cells were cultivated in 175 cm2 flasks with 20 ml of 

medium. At the desired growth confluence, adherent cells were harvested by EDTA 

treatment and trypsination. In brief, culture medium was removed and cell layer was 

washed once with 5 ml PBS without Ca2
+/Mg2

+(for a T75 flask). Then the cells layer 

was incubated with 1 ml of a 2x trypsin/EDTA solution for 2 min at room temperature. 

Trypsin cleaves the adhesion proteins in cell-cell and cell-matrix interactions, and 

EDTA is a chelator of calcium ions which integrins need to interact with other proteins 

for cell adhesion. Fresh medium containing FCS or HS was added to the culture and 

loose cells were resuspended carefully with the help of a 10 ml glass pipette. The 

amount of medium removed depended on the number of cells needed. In order to 

keep cells in culture, depending on the growth rate, the culture was split at a 

minimum of 1:2 or a maximum of 1:10 every 3-5 days. 

For cells growing in suspension, cultivation took place in T25 or T75 flasks. The 

cultures were split according to necessity every 2-3 days by removing a certain 

amount of cell suspension and replacing it with fresh medium. Peripheral blood 

lymphocytes were cultured in 24-well plates placed into a humidified chamber in the 

incubator. 

 
 



___________________________________________________________________Methods 

111 

 

6.1.5 Primary culture from normal and RCC kidney tissue 

 
Primary cultures are short-term cultures (passage 2 to 4) of cells from tumor-free 

kidney cortices or tumor areas obtained from RCC patients undergoing complete 

nephrectomy. Tissue fragments were placed in primary culture medium and 

mantained in RCC medium supplemented with ITS. In brief, the tissue was placed in 

a petri-dish and moistured with 5 mL of HBSS, then cut into pieces of approximately 

2 mm2. The small pieces were transferred into a T25 culture flask (about 6 

pieces/flask) and 2 ml primary culture medium was slowly poured in. The tissue 

fragments should remain in close contact with the flask‟s floor. After 4-6 days 

adherent cells emanating from the tissue could be seen. Cultures were kept for the 

first two weeks in conditioned RCC medium supplemented with IST, meaning half of 

the culture medium was replaced by new medium every 3 days. When the cell layer 

was confluent, cells were trypsinized as described before.  

In contrary to normal kidney, induction of primary RCC cultures was troublesome and 

achieved only rarely. The RCC tumors were often very necrotic and only few cells 

emanated out of the tissue pieces. In addition, the cells that grew out of the tissue 

pieces proliferated very poorly and mostly did not yield enough numbers to be used 

for experiments.  

 
 

6.1.6 Cell count determination with trypan blue  

 
Trypan blue is the stain most commonly used to distinguish viable from non-viable 

cells. The dye cannot penetrate intact membrane, saving viable cells from being 

stained, while non-viable cells absorb it and appear blue when viewed with a 

microscope. In the case of counting PBMC, acetic acid in a concentration of 1 % was 

added to the trypan blue solution. Acetic acid destroys the erythrocytes which 

otherwise are often wrongly counted for lymphocytes. The cells should be in 

suspension as single cells in medium or a buffered saline before counting. Trypan 

blue was first diluted with PBS to a working concentration of 1 %. Then, the cells 

were prepared for counting in dilutions not higher than 1:10 in trypan blue solution. 

After being stained with trypan blue, the cells were counted within the next few 

minutes to avoid that viable cells suffer damage and consequently also take up the 
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dye. Unstained cells were counted in at least two squares of 1 mm2. In the case of a 

strong variation in the counted cell number, further quadrants were counted. Given 

that a quadrant has an area of 1 mm2 and the height between the chamber and the 

coverslip is 0.1 mm, the total volume is of 0.1 µl. The number of cells/ml was 

calculated using the following equation:   

 
 
 
 

6.1.7 Cell count determination with counting beads 

 
Counting beads are a composition of two different fluorescent beads (A and B beads) 

used for absolute cell counts by flow cytometry. The two fluorospheres are used as 

double internal standards for volume calculation. A known volume of counting beads 

is added to the same known volume of the sample. The beads are counted along 

with the cells (for gating strategy see Figure 6.1). The accuracy of the data 

acquisition is determined by verifying that the proportion of both types of beads 

corresponds to the manufacturer‟s description. Bead A is a 6.4 μm sphere that, in 

flow cytometry, presents a low forward scatter (FSC) signal, a lower side scatter 

(SSC) signal, and emits broadly when excited with a 488 nm argon laser. Bead B is a 

6.36 μm sphere that has a low FSC signal, a slightly higher SSC signal and a higher 

fluorescent signal when excited with a 488 nm argon laser.  

 

 

 

 

 

 

 

 

 

 

 

 

 

factordilution   10 
counted square ofnumber 
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Figure 6.1. Analysis of A and B bead proportion 

A gate selecting all beads (type A and type B) in a FSC vs. SSC dot plot (Region R1) is created. For 
the cell subset of interest, a gate must be created (G1) and number of total events in the gate must be 
noted (a). In a FL2 vs. SSC dot plot, events of region R1 are displayed and a second gate (Region R2) 
is created to exclude debris (b). Two new gates on each bead type must be created (R3 and R4) to 
verify that the proportion of both beads agrees with the manufacturer‟s indicated proportions (c). For 
that, the gate statistic of both R3 and R4 must be verified for the number of events. Also the number of 
total beads (R2 in (b) must be noted for later calculations. The absolute number of the cell population 
of interest (in G1) is calculated according to the following formula: 
 

µlper  beads of n
B))(A counted beads of n (total

counted cells of n
(cells/µl)Count  Cell Absolute o

o

o




  

 
 

6.1.8 Treatment of cells with IFN- and IFN- 

 
For interferon treatment, tumor cell lines were split into its appropriate medium which 

was then supplemented with either 1000 U/ml Interferon- or 500 U/ml Interferon- or 

none and grown for a total of 3 days. On day 3, cells were counted and adjusted to 

15000 cells /100 l in RCC medium and used for experiments (see section 6.1.11).  

 
 

6.1.9  PBMC isolation by ficoll density centrifugation 

 
Before blood collect, a 50 ml syringe was filled with 100 µl of heparin. Heparin is 

used as an anticoagulant to avoid clumping of leukocytes. After blood collection, the 

blood was gently mixed with an equal volume of RPMI medium and layered over 15 

ml of ficoll in 50 ml conical tubes. The filled tubes were centrifuged at 2000 rpm for 

20 min with the break turned off. Ficoll is an inert, high molecular weight polysucrose 

 

A 

B 

A 

B 

(a) Total events (b) Events gated in R1 (c) Events gated in R2 

G1 
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with a density of 1077 g/ml. After centrifugation a greyish-white band forms at the 

plasma-ficoll interface, separated from the underlying erythrocytes.  

Using a 5 ml pipette, this layer, consisting of lymphocytes, monocytes and 

thrombocytes with only few erythrocytes, was recovered and transferred to a new 

tube. The cell suspension was diluted with 1 volume RPMI to wash out the ficoll and 

centrifuged at 2000 rpm for 10 min with the break turned on. The supernatant was 

discarded and the PBMC pellet resuspended in appropriate medium. After counting, 

the cell suspension was adjusted to 1 x 106/ml and transferred at 1 ml/well to a 24-

well plate and incubated in a humidified chamber in the incubator.  

 
 

6.1.10 Anti-CD3 stimulation of PBMC  

 

For the induction of proliferation of PBMC, anti-CD3 stimulation was carried out. The 

stimulation was performed directly after isolating the PBMC through Ficoll gradient. 

24-well plates were coated with 1 µg/well of anti-CD28 and 0.5 µg/well anti-CD3 

(OKT3) in 500 µl PBS for 1 h at 37°C or overnight at 4°C. Isolated PBMC was 

resuspended in T cell medium supplemented with 300 U/ml IL-2 at 1 x 106 cells/ml 

and added to the wells of the pre-coated anti-CD3/anti-CD28 plate (1 ml/well) and 

were kept in a humified chamber in the incubator. After 48 h, PBLs were transferred 

to a new 24-well plate and split if necessary. PBLs were generally split into two wells 

every 2-3 days. In the first split, IL-2 concentration was kept at 300 U/ml. From the 

second split on, with each split, the concentration of IL-2 was reduced to 200, then 

100 U/ml and was finally kept at 50 U/ml. The intention of reducing the IL-2 

concentration in the cultures was to avoid the generation of LAK cells that would 

show unspecific killing of tumor cells. LAK cells are generated by long-term 

cultivation of lymphocytes in a high concentration of IL-2. 

 

 

6.1.11 T cell stimulation with tumor cell lines or fresh tissue 
suspension  

 

For the detection of function unleashed by TCR-pMHC interaction, different tumor 

cell lines (specified in the results) were used as targets for T cells expressing TCR53. 

RCC-26 was used as target for T cells expressing TCR53 or TCR26 and Mel-
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93.04A12 was used as target for T cells expressing TCR-D115m or TCR-T58m. The 

KT-195 cell line, was used as negative control for all TCRs mentioned above, as it 

does not express the HLA-A2 allotype needed for presentation of the ligands 

recognized by any of the TCRs used in this work. Effector to target cell ratio, if not 

mentioned otherwise, was 1:1 (1 x 105 cells of each type in 100 µl RCC medium).  

Different read out systems were used to determine the functional response of T cells 

and depending on the method, cocultures of effectors and targets were carried out 

for 4 h (chromium release assay), 4 to 5 h (detection of cytokines and degranulation 

by flow cytometry) or 24 h (if cytokines were to be determined in the supernatant by 

immunosorbent assay). The different methods to detect function in the T cells 

unleashed by target cells will be individually described in the next sections. 

For the analysis of the TCR53-pMHC ligand detection in the cell lines treated with 

IFN- or IFN-, the cell suspension (in RCC medium) was transferred into 96-well 

round bottom plates at a cell density of 15000 cells/well in 200 µl cultured in the 

presence of 75000 B3Z-TCR53m or without B3Z for 24 h in a humidified chamber in 

the incubator. The supernatants were taken for analysis of the IL-2 content. 

To investigate the presence of TCR53 pMHC on fresh tissue of RCC tumors or 

normal kidney, the tissues were disrupted as follows. Tissue was washed with HBSS 

buffer and cut into small pieces (10-15 pieces of about 1 mm2). After a second wash 

with HBSS, tissue pieces were incubated with digestion solution (containing 

collagenase IA and DNAse I) for 30 min. After the incubation, tissue pieces were 

pressed vigorously with the back of a Petri-dish lid and the disrupted tissue was 

washed again with HBSS and resuspended in 1 ml of RCC medium. For stimulation 

of 1 x 105 B3Z-TCR53mc cells in 100 µl RCC medium, 100 µl of the tissue 

suspension (either RCC tissue or NKC tissue) was used.  

 
 

6.1.12 Isolation of CD4+ and CD8+ T cells 

 

Magnetic-activated cell sorting (MACS) technology utilizes tiny super-paramagnetic 

microbeads for labeling targets; separation is achieved by using columns in which 

magnetically labeled cells are retained and unlabeled cells can pass through.  

For the isolation of untouched human CD8+ or CD4+ T cells, a magnetic labeling 

system was used that indirectly sorted CD8+ or CD4+ T cells from PBLs by depletion 
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of non-CD8+ or non-CD4 T cells (negative selection). For sorting of CD8+ T cells, 

PBLs were incubated with a cocktail of biotin-conjugated antibodies against CD4, 

CD14, CD16, CD19, CD36, CD56, CD123, TCR γ/δ and CD235a (Glycophorin A) in 

order to deplete CD4+ T cells, γ/δ T cells, B cells, NKC, monocytes, dendritic cells, 

granulocytes and erythroid cells. For sorting CD4+ T cells, PBLs were submitted to a 

cocktail of biotin-conjugated antibodies against CD8, CD14, CD16, CD19, CD36, 

CD56, CD123, TCR γ/δ, and CD235a (glycophorin A). These cells were 

subsequently magnetically labeled with anti-biotin MicroBeads for depletion. Thereby, 

highly pure CD8+ or CD4+ T cells respectively were obtained as magnetically labeled 

cells can be depleted by holding them on magnetic separator columns in the 

magnetic field of a magnetic separator. Unlabeled CD8+ or CD4+ T cells were 

collected as they passed through the columns. This procedure was used for activated 

PBL engineered with a TCR or not (mock control). CD8+ and CD4+ T cells were 

cultivated the same way as normal PBLs. 

 

6.2 Detection of cytokines in the supernatant of cultures (ELISA) 

 

For the analysis of cytokines present in the supernatant of cultures the enzyme-

linked immunosorbent assay (ELISA) after the “sandwich-method” was used. 

Sandwich ELISA measures the amount of antigen between two layers of antibodies 

(i.e. capture and detection antibody). It typically uses antibodies coupled to easily 

assayed enzymes as detection reagents. These enzyme conjugates act on 

chromogenic or fluorogenic substrates that ultimately produce an amplified detection 

signal. The supernatants were not necessarily assayed freshly after the coincubation 

but were mostly measured after they have been frozen at - 20°C. The procedure 

described below was used for the detection of human IFN- and murine IL-2 (mIL-2). 

Subtle differences in the protocol are specified. A 96-well plate with flat bottom was 

coated with a cytokine-specific first antibody (capture-antibody either anti-IFN- or 

anti-IL-2) diluted in carbonate buffer overnight at room temperature or for at least 1 h 

at 37°C. The plate was washed with a PBS-tween solution and blocked for 1 h at 

room temperature with 1 % milk (for the IFN- ELISA) or blocking solution (for the 

mIL-2 ELISA, included in the kit). Supernatants were centrifuged at 1500 rpm for 5 

min to pellet any cells and 50 µl was transferred into the antibody coated 96-well 

plate. Incubation was done for 1 h (IFN- ELISA) or 2 h (mIL-2 ELISA). The plate was 
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then washed with PBS-tween and incubated with a biotin-marked second antibody 

for 1 h (detection antibody). The plate was washed again and avidin bound to 

“horseradish-peroxidase” (HRP) was added and incubated for 30 min at room 

temperature. The plate was washed again and the substrate 3,3‟,5,5‟-

Tetramethylbenzidine (TMB) was added. In solution, TMB forms a blue product when 

allowed to react with horseradish peroxidase. Using orthophosphoric acid the 

reaction was halted and the product turned to a yellow color which was read at 450 

nm. Using a standard dilution of the cytokine of interest (present in the commercial 

kit), a standard curve correlating the OD at 450 nm to the concentration of the protein 

was established which allowed the cytokine concentration in the samples to be 

determined. A cytokine standard dilution curve was included in every experiment 

performed. 

 

6.2.1 Blocking of membrane proteins by specific antibodies 

 
 

6.2.1.1  Blocking the HLA-A2-TCR interaction 

 
To analyze HLA-A2 restriction, the HLA-A2-TCR was blocked by incubating the 

target cells with an anti-HLA-A2 antibody. 15000 target cells in 100 µl RCC medium 

were seeded in 96-well U-bottom plates (100 µl/well) and treated with 4 µg/ml of an 

anti-HLA-A2 (HB-54) or the isotype control MOPC21 and incubated at 37°C for 30 

min. T effector cells were added at an effector to target cell ratio of 5:1. Cocultures 

were incubated for 24 h and supernatant were taken for analysis of cytokine content 

by ELISA. 

 
 

6.2.1.2  Blocking the interaction of CD8 with MHC class I molecules 

 
To block the interaction of CD8 with MHC class I molecules, 1 x 106/ml T cells were 

incubated for 12 h with 1 µg of anti-CD8 (Sigma). Without a washing step, T cells 

were added to target cells. 
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6.3 Generation of cryo-sections of frozen tissue 

 

For the analysis of tissues by microscopy, shock-frozen tissue was taken and treated 

with embedding medium for cryo-tissues to form a tissue-cryomedium-block. Tissue 

was then fixed in the object holder of a cryostat and sections of 5 to 10 microns were 

generated and stretched on the surface of a SuperFrost Plus glass slide. This special 

slide differs from the standard slides in that it has a permanent positively charged 

surface. The positively charged slide electrostatically attracts frozen tissue sections, 

binding them tightly to the slide. The tissue sections were dried at room temperature 

overnight and then used or stored at - 80°C. 

 
 

6.4 Immunohistochemistry using the APAAP staining method 

 
Immunohistochemistry allows the identification of cells with expression of specific 

markers in tissues. APAAP stands for alkaline phosphatase- anti-alkaline 

phosphatase method. In this method, the primary antibody is linked to the detection 

antibody through a bridge antibody. If the primary antibody stems from rabbit, then a 

polyclonal mouse antibody that recognizes different epitopes of the Fab fragment of 

the primary rabbit antibody is used as a bridge antibody. The detection antibody 

stems from the rabbit, like the primary antibody, and is also recognized by the bridge 

antibody, which increases the signal generated. The signal is generated by the 

alkaline phosphatase present on each Fab arm of the detection antibody which 

hydrolyzes naphtolphosphatester to phenol and phosphate. The phenol generated 

binds to the chromogen new fuchsin, generating a red dye.  

Detection of CD8 within spheroid sections was done using an anti-human CD8 

antibody from rabbit. Sections were fixed with ice-cold acetone for 10 min and 

washed with PBS. It is important that after fixation the tissue is never left to dry. Each 

tissue section was surrounded with a fat pen to create a hydrophobic border that 

allows the aqueous reagent solution to stay on the tissue section. The tissue was 

blocked with 2 % BSA in PBS for 30 min, followed by incubation with the specific 

primary antibodies for 120 min (for an antibody list and concentrations see section 

5.12). Then tissue sections were washed 3 x with PBS before the bridge antibody 
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(1:20) was added. After 30 min, the tissue was washed 3 x with PBS and incubation 

for 30 min with the detection APAAP mouse monoclonal (1:40) antibody was done. A 

second incubation with the bridge antibody followed and then the detection was 

performed, each step lasting 15 min. Tissue sections were washed 3 x with PBS. 

After that, the slides containing the tissue sections were incubated for 20 min in the 

dark in a cuvette containing the APAAP developing solution (containing new fuchsin). 

Tissue sections were washed with PBS and the nuclei were stained with a 

hematoxilin solution for 30 s. The sections were washed with bidestilled water and 

tap water, respectively. The ions present in the tap water react with the hematoxilin 

stain, which can then bind negative charged molecules, like DNA, and therefore the 

nuclei appear blue. Slides were covered with a drop of Immomount medium and 

sealed with a coverslip and nail polish. For analysis, a light microscope was used. 

 
 

6.5 Immunofluorescence staining  

 
This technique is used to visualize different cell types or markers and their 

subcellular distribution of a biomolecule of interest. Immunofluorescent labeled tissue 

sections or cultured cells are studied using a fluorescence microscope or a confocal 

microscopy. Most commonly, immunofluorescent staining employs two sets of 

antibodies: a primary antibody is used against the antigen of interest; a subsequent, 

secondary, dye-coupled antibody is introduced that recognizes the primary antibody. 

Several primary antibodies that recognize different antigens can be combined if the 

antibodies are derived from different species or are of different isotypes. In a second 

step secondary fluorescent labeled antibodies directed against the species or the 

isotype are added. In this work, a combination of 3 markers and 4´,6-Diamindino-2- 

Phenylindol (DAPI) was mostly used. DAPI stains DNA and is used to visualize the 

nuclei.  

For the immunostaining of histological sections, slides containing the tissue sections 

(stored at - 80°C) were thawed at room temperature for 1 h. Tissue was fixed with 

ice-cold acetone for 10 min and blocked for 20 min with 2 % BSA in PBS. All primary 

and secondary antibodies were diluted in PBD containing 12.5 % human serum 

(Cambrex) and PBS. After fixation the tissue was washed 3 x with PBS and then 

incubated for 1 h with the primary antibodies. The following antibody combinations 
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were used: rabbit anti-human CD8, mouse anti-human CD31 (mouse IgG1) and 

mouse anti-human perforin (mouse IgG2b). For staining of CD3 in spheroids, mouse 

anti-human CD3 (mouse IgG1) was used. After washing the sections 3 x with PBS, 

the secondary antibodies were added and incubated for 1 h. The secondary antibody 

combinations were: anti-rabbit Cy5, anti-IgG1-Alexa Fluor 568 and anti IgG2b-Alexa 

Fluor 488. The sections were washed 3 x with PBS again and fixed in a 4 % PFA 

solution for 10 min. Nuclei were stained with DAPI (150 µg/ml) for 1 min. Finally, the 

tissue sections were embebbed in Vectashield and sealed with nail polish. Stained 

tissue sections were stored at - 20°C in the dark until analysis. For all analysis 

specificity controls were used in which the sections were stained with the secondary 

antibodies only. 

 
 

6.6 Laser scanning confocal microscopy 

 
Fluorescent tissue sections were subjected to confocal laser microscopy. Confocal 

imaging allows the resolution of fluorescent signals not only in the xy plane but also 

in the z plane, by using a spatial pinhole light is focused to a defined point of a small 

diameter to eliminate out of focus light in specimens that are thicker than the focal 

plane. Because resolution also includes the z plane, three-dimensional structures of 

images can be obtained. As only one point in the sample is illuminated at a time, 2D 

or 3D imaging requires scanning over a regular raster (i.e. a rectangular pattern of 

parallel scanning lines) in the specimen. The minimal thickness of the focal plane is 

defined mostly by the wavelength of the used light divided by the numerical aperture 

of the objective lens, but also by the optical properties of the specimen. 

The microscope used here was equipped with a laser scanning system/ TCS SP2. In 

this work, all visual fields acquired were analyzed for the presence of one cell or 

protein in all section levels (stacks). The lasers used for the acquisition of each 

fluorescent dye are shown in the Table 8.  

 
 

Table 8. Overview of the lasers used for the acquisition of fluorescent dyes. 

Fluorescent dye Lasers  of laser Beam splitter 

Alexa Fluor 488 Argon-Krypton 488 nm 488/543 
Alexa Fluor 568 Helium-Neon 543 nm 488/543 
Cy5 Helium-Neon 633 nm 488/543/633 
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DAPI Diode 405 nm Substrate 

 

 

6.6.1 Image acquisition and processing 

 

Acquisition of the images was done using a HCX PL APO 63 x 1.40 NA oil immersion 

objective lens. Cells were imaged with a pinhole 1.0 Airy units, 512 x 512 pixel image 

format, four frame averages and a TD488/568/633 dichroic beam splitter. 

Simultaneous image acquisition of samples stained with multiple dyes can result in 

crosstalk since all dyes will be excited at the same time. To avoid cross-talk of the 

various fluorochromes, the width of the detection channels and filter settings were 

carefully controlled, and images for Alexa Fluor 488, Alexa Fluor 568, Cy5 and DAPI 

were acquired using sequential image recording. Besides avoiding a cross-talk 

among fluorochromes, another advantage of this method is that each sequence can 

be recorded using an individual parameter set with optimized performance for each 

dye.  

For each tissue section, images were recorded at a magnification of 400 x. Stacked 

series of confocal single z-planes were taken with a step size of 0.6-0.8 µm to cover 

the full thickness of the tissue section. To detect all CD8+ cells with perforin and to 

detect whether they were on, inside or outside the vessels, all optical z-planes of 

each CD8+ cell were evaluated. For the image presentation contrast and brightness 

of the whole image were adjusted with the Leica confocal software LCS Lite. 

 
 

6.7 Flow cytometry  

 

Flow cytometry is a technique of quantitative single cell analysis. The flow cytometer 

was developed in the 1970‟s and rapidly became an essential instrument for the 

biologic sciences. The present “state-of-the art” flow cytometers are capable of 

analyzing up to 13 parameters (forward scatter, side scatter, 11 colors of immuno-

fluorescence) per cell at rates up to 100,000 cells per second. 

 
 

6.7.1 Principle of flow cytometry 
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Flow cytometers are used in a range of applications from immunophenotyping, to 

ploidy analysis to cell counting and expression of engineered proteins. The flow 

cytometer performs this analysis by passing thousands of cells per second through a 

laser beam and capturing the light that emerges from each cell as it passes through. 

The data gathered can be analyzed statistically by flow cytometry software to report 

cellular characteristics such as size, complexity, phenotype and viability. In Figure 

6.2 the primary systems of the flow cytometer are schematically shown.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.2. Schematics of a flow cytometer. 

The fluidic system presents samples to the interrogation point and takes away the waste. The lasers, 
are the light source for scatter and fluorescence. The optic system gathers and directs the light which 
the detectors receive. The electronic and peripheral computer systems then convert the signals from 
the detector into digital data and perform the necessary analysis. 

 
The interrogation point is where the laser and the sample intersect and the optics 

collects the resulting scatter and fluorescence. For accurate data collection, the cells 

that are transported through the interrogation point must be present as an alignment 

of single cells. For that, the cells are injected into a flowing stream of sheath fluid and 

the sample becomes compressed to a fluidic stream of roughly one cell in diameter. 

In general, flow cytometers can detect cells between one and 15 µm. As a cell 

passes the laser beam, it refracts scatter light at all angles. Forward scatter is the 

amount of light that is scattered in the forward direction as the laser light strikes the 

cell. The magnitude of forward scatter is roughly proportional to the size of the cell. 
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The scattered light is quantified by a detector that converts intensity into voltage 

pulses. Because a small cell produces a small amount of forward scatter and a large 

cell produces a large amount, the magnitude of the voltage pulse recorded for each 

cell is proportional to the cell size. If a histogram is plotted with this data, smaller cells 

appear toward the left and larger cells appear toward the right of the histogram.  

Light scattered at larger angles, for example to the side, is caused by granularity and 

structural complexity inside the cell. This side-scattered light is focused through a 

lens system and is collected by a separate detector, usually located 90° from the 

laser‟s path. The signals collected by the forward-scatter or the side-scatter detector 

can be plotted on a one-dimensional histogram or combined in a two-dimensional dot 

plot. Another parameter that can be detected is fluorescence. Fluorescence is the 

excitation of a fluorochrome to a higher energy level followed by the return of that 

fluorochrome to its ground state with the emission of light. The energy of the emitted 

light depends on the energy level to which the fluorophore was excited and is 

recorded by means of its wavelength. Labeled antibodies with a fluorescent molecule 

can be added to a cell sample. The antibody then can bind to its specific molecule on 

the cell surface (membrane staining) or inside the cell (intracellular staining) thereby 

marking the cells. When the laser light of the right wavelength strikes the fluorophore, 

a fluorescent signal is emitted and detected by the flow cytometer. The fluorescent 

light coming from a labeled cell as it passes through the laser is directed through a 

series of filters and mirrors, so that selected ranges of wavelength are delivered to 

the appropriate detector where it is translated into a voltage pulse proportional to the 

amount of fluorescence emitted. In a population of labeled cells, some will have more 

antibodies bound and thus are brighter than others. If an experiment with more than 

one fluorescence is needed, then the spectra of the fluorophores must be checked to 

see if they are compatible. Alexa Fluor 488 (A-488) and phycoerythrin (R-PE) can be 

detected from a single laser, a 488 nanometer light. Because when excited the 

emission peaks for these two dyes are far enough apart so that discrete emission 

data can be collect, these are considered compatible dyes. A 530-nanometer 

bandpass filter will collect most of the A-488 emission peak (FL-1) and a 585-

nanometer bandpass filter will collect the bulk of the R-PE emission peak (FL-2). As 

seen in Figure 6.3, portions of the FL-1 and FL-2 emission overlap. This overlap 
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requires compensation, because otherwise the FL-1 would be mistakenly detected in 

the FL-2 channel. 

 

 

Figure 6.3. Emission and excitation spectrum of the fluorophores Alexa Fluor 488 and R-PE.  

The laser used is a 488 nm Argon-Krypton that can excite both A-488 and R-PE. An overlap in the 
emission of both fluorophores is evidenced by the light green filled area A. This overlap can be 
mistakenly detected in the FL-2 detector and must therefore be compensated to obtain a correct 
analysis.  

 

 

6.7.2 Compensation 

 

In order to analyze multicolor flow cytometry experiments it is necessary to employ a 

mechanism called fluorescence compensation. Specialized circuitry in the flow 

cytometer is used to subtract the portion of the fluorescence signal in one detector 

that comes from the emission of a fluorochrome that should be recorded by another 

detector, leaving only the desired signal. Subtractions can also be applied after 

acquisition with the help of a compensation matrix generated by analysis softwares. 

The percentages to be subtracted depend on the shape of the spectrum and the 

characteristics of the band pass filters but not on the intensity of the fluorescent 

signal. The same percentage may be therefore subtracted regardless of whether the 

signal is strong or weak. Figure 6.4 shows in the left hand panel, uncompensated 

data for a mixture containing unstained, FITC labeled (FL-1) and PE labeled cells 

(FL-2). The FITC labeled cells should only show a signal in the FL-1 detector, but 

A 



___________________________________________________________________Methods 

125 

 

because a portion of the FITC emission is detected in the FL-2 channel, it also shows 

a signal in the FL2 detector (1). Conversely the PE labeled cells, which should only 

show a signal in the FL2 detector, also show a signal in the FL1 detector. 

Compensation will remove the amount of fluorescence that overspills into the wrong 

detector, allowing detection in the correct channel only. The compensated example is 

shown in the right hand panel in Figure 6.4.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.4.Schematic plots showing three populations (1-3) before and after compensation in a 
“two-color” staining. 

The population “1” is labeled with FITC only, “2” is labeled with PE only and “3” is unlabeled. For the 
detailed explanation, see text. 

 

 

6.7.3 Polychromatic compensation 

 

In a polychromatic staining compensation is more complex. With the knowledge of 

the emission spectra of the fluorophores involved, the above explained strategy may 

be applied to the compensation of any set of fluorescent combinations, subject to 

hardware and software limitations. Controls like unstained cells and single stained 

samples are needed for proper compensation. Fluorophores and detection conditions 

used in this work are listed in Table 9.  

Table 9. Scheme of fluorophores, lasers and detectors used in this work. 

 

Lasers          

Detectors 
[nm] 

 450/50  525/50 530/30 575/26 695/40 610/20 660/20 730/45 780/60 

Fluorophores 
Pacific 
blue 

Amcyan FITC 

or  

  PE 

   or 

PE-Cy7 7AAD APC  

or 

A700 APC-
Cy7 

Compensated 

FL-1 (FITC)  

2 

2 

1 

1 

3 

3 

Violet Red Blue UV 

Uncompensated 

F
L

-2
 (

P
E

) 

2 
1 

3 

FL-1 (FITC)  
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  CFSE PE-
Texas 
Red 

  Bodipy   

 

6.7.4 Staining of surface proteins 

 

For the staining of surface proteins (e.g. TCR expression after retroviral transduction 

or HLA-A2 expression), 1 x 105 to 1 x 106 cells were washed with ice cold FACS 

buffer and incubated with fluorophore-conjugated antibodies or primary antibodies 

for 20 min. If primary antibodies were used, incubation for 20 min with fluorophore-

conjugated secondary antibodies followed. To stain dead cells, samples were then 

washed with ice cold FACS buffer and stained with propidium iodide (PI) for 5 min, 

shortly before acquisition. Acquisition was done with a FACS-Calibur or LSR-II 

instrument. The analysis involved compensation and was done using the FlowJo 

software. 

 
 

6.7.5  Staining of intracellular proteins 

 
Investigation of intracellular proteins was normally combined with staining of 

membrane proteins. For that membrane staining was carried out together with 

staining of dead cells by 7- aminoactinomycin D (7-AAD) for 20 min. Samples were 

washed with PBS and fixed with 1 % paraformaldehyde (PFA) for 15 min and 

washed twice with PBS. For permeabilization of membranes, cells were washed 

once with 0.1 % saponin and subsequently with 0.35 % saponin. Samples were 

resuspended in 100 µl 0.35 % saponin and antibodies were added. After 20 min, if 

secondary antibodies were needed, samples were washed again with 0.1 % saponin 

and subsequently with 0.35 % saponin and incubated with secondary antibodies for 

20 min. Samples were then washed once with 0.1 % saponin and once with PBS. 

Cells were washed with 1 % PFA and resuspended in 100 µl FACS buffer for 

acquisition with LSR-II. The analysis involved compensation and was done using the 

FlowJo software. 
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6.7.6 Boolean gating 

 

Boolean combination gating was performed to calculate the frequencies of 

expression profiles corresponding to the 4 different combinations of cytokines and 

degranulation using the FlowJo software. It automatically creates a series of Boolean 

gates that represent all combinations (plus and minus) of a set of gates. The Boolean 

gate combination used here was done with the polychromatic staining of IFN-, 

TNF, CD107 and IL-2 and included the following gates: 

 

CD107+ and IFN-+ and IL-2+ and TNF+   

CD107+ and IFN-+ and IL-2+ and not TNF+   

CD107+ and I IFN-+ and IL-2+ and TNF+   

CD107+ and not IFN-+ and IL-2+ and TNF+   

not CD107+ and IFN-+ and IL-2+ and TNF+   

CD107+ and IFN-+ and not IL-2+ and not TNF+   

CD107+ and not IFN-+ and IL-2+ and not TNF+   

CD107+ and not IFN-+ and not IL-2+ and TNF+   

not CD107+ and IFN-+ and IL-2+ and not TNF+   

not CD107+ and IFN-+ and not IL-2+ and TNF+   

not CD107+ and not IFN-+ and IL-2+ and TNF+   

CD107+ and not IFN- and not IL-2+ and not TNF+ 

not CD107+ and IFN- and not IL-2+ and not TNF+ 

not CD107+ and not IFN- and IL-2+ and not TNF+ 

not CD107+ and not IFN- and not IL-2+ and TNF+ 
 

 

 

6.7.7 Detection of cytokine production and degranulation of T cells 
by polychromatic flow cytometry 

 
Using polychromatic flow cytometry, the diverse response profiles of a T cell upon 

recognition of tumor cells including the production of various cytokines and 

degranulation can be analyzed. For the detection of function unleashed by each 

TCR used in this work upon recognition of target, different tumor cell lines were 

used that contained the cognate pMHC. For T cells expressing TCR53 or TCR26, 

RCC-26 was used as the pMHC+ target and for T cells expressing TCR-D115m or 

TCR-T58m it was Mel-93.04A12. Effector to target cell ratio, if not mentioned 

otherwise, was 1:1 (2 x 105 cells) in 300 µl in a FACS tube. To detect cytokines, the 

intracellular transport inhibitors monensin (GolgiStop) and brefeldin A reagents were 

used to enrich cytokines in the Golgi complex and the endoplasmic reticulum, 

4 functions 

3 functions 

2 functions 

1 function 
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respectively. Both transport reagents were added at 2 µM to the target/effector cell 

cultures. Incubation was done for 4 or 5 h in 300 µl RCC medium in the incubator. 

To detect degranulation, the antibodies CD107a and CD107b were present during 

the 4-5 h incubation time. The tubes were then removed from the incubator and 

washed with ice cold FACS buffer and then stained with fluorescent labeled 

antibodies to cell surface molecules (CD45 and CD4) and with 7-AAD for 20 min. 

Cells were then fixed and made permeable (see section 6.7.5) and stained with 

antibodies to IL-2, IFN-, TNF-, CD8 and TCR for 20 min. Acquisition was done 

using the LSR II flow cytometer. The analysis involved compensation and was done 

using the FlowJo software. 

 
 

6.7.8 Generation of tumor cell spheroids 

 

Spheroids were generated using the liquid overlay culture technique [131]. For that, 

48-well plates were coated with 150 µl 1 % Seaplaque agarose in RPMI medium. To 

generate a meniscus in which cells could aggregate, plates were rotated 360° in an 

inclination of approximated 90° in a vertical orientation 15 times, while the agarose 

was still fluid (Figure 6.5a and b). Then the plate was placed on a horizontal position 

for 20 min to allow the agarose to become solid. RCC cells from exponentially 

growing monolayers were detached from the culture flasks with 5 mM EDTA, 

resuspended in RCC medium, centrifuged and washed once with RPMI medium. 

Cells were resuspended at 1 x 105 cells/500 µl RPMI medium and put into the wells 

coated with agarose. Plates were centrifuged at 1500 rpm, for 5 min and placed in 

the incubator. Spheroids were grown for 4-5 days at 37°C and 6.5 % CO2. After 4-5 

days, cells had formed tight aggregates and they were ready to use for coculture with 

T cells.  

 
 

6.7.9 Coculture of T cells with tumor cell spheroids  

 
On the inside of a petri-dish lid, circles were drawn with a fat pen and allowed to dry 

for 5 min at room temperature. Spheroids were taken out of the 48-well plate, 

washed carefully with RPMI medium to remove cells that did not attach and placed in 

the fat circles on the lid of the petri-dish. A drop (20 µl) of T cell medium 
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supplemented with 50 U IL-2/ml, containing T cells (1 x 105 cells), was transferred to 

the top of each spheroid and, together, spheroids and T cells were cultivated as 

hanging drops. The bottom of the petri-dish contained a film of water so that the drop 

of cells would not dry out (Figure 6.5c). After 4 h of incubation, spheroids were 

washed with RPMI medium to remove T cells that had not migrated into the 

spheroids and were either harvested or the medium was replaced by 20 µL of fresh T 

cell medium with 50 U IL-2/ml and incubated for additional 20 h. In the case of the 

CD8+ T cell attraction assay, spheroids that contained CD4+ T cells (0.5 x 105 CD4+ T 

cells incubated with spheroids in hanging drops for 2 h) or not, were transferred into 

agarose-coated 96-well plates, one spheroid per well. 100 µl T cell medium 

supplemented with 50 U IL-2/ml containing the CD8+ T cells (0.5 x 105) was added 

drop-wise against the wall of each well (Figure 6.5d). After the incubation end, 

spheroids were harvested and washed with PBS to remove T cells that had not 

entered the spheroids. A single-cell suspension was obtained by incubation with 5 

mM EDTA and mechanic disruption (vigorously pipetting up and down), or, where 

indicated, incubation was performed with undiluted accutase for 20 min at 37°C. 

Disruption with only EDTA is less aggressive and optimal for detecting proteins by 

flow cytometry. Accutase, which gives a more homogeneous cell suspension, was 

used when the determination of absolute T cell number was important.  

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

48-Well plate 

(a) Agarose coating of wells (b) Spheroid formation 

(c) Coculture in a hanging drop (d) Coculture in a agarose 

coated well 
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Vertical section 
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+ T cells 



Methods___________________________________________________________________ 

 130 

 

Figure 6.5. Generation of spheroids and coculture with T cells. 

In (a) the coating of 48-well plates with agarose is demonstrated. In (b), the formation of spheroids is 
depicted. In (c), the cultivation of spheroids with T cells in hanging drops is shown and in (d), the 
coculture of spheroids with T cells in wells is schematically shown. For detailed explanation see text. 

6.7.9.1  Generation of multicellular spheroids using two RCC cell 
lines stained with two different fluorescent dyes 

 
To stain RCC cells, Bodipy-methyl bromide and CFDA-SE dyes were used. Bodipy-

methyl bromide penetrates through the cell membrane of viable cells and diffuses 

into the cytoplasm where it reacts with thiol groups to form a complex that can no 

longer diffuse through the membrane anymore. The maximum emission of Bodipy 

630/650-methyl bromide is 640 nm. CFDA-SE, due to its acetate groups, is highly 

cell permeable, it is non-fluorescent but when it enters the cytoplasm of cells, 

intracellular esterases remove the acetate groups and convert the molecule to the 

fluorescent ester, CFSE, which is retained within cells and covalently couples, via its 

succinimidyl group, to intracellular molecules. Due to this covalent coupling reaction 

fluorescent CFSE can be retained within cells for extremely long periods. Also, due to 

this stable linkage, once incorporated within cells the dye is not transferred to 

adjacent cells. 

RCC-26 and KT-195 cells from exponentially growing monolayer cultures were 

detached from the culture flasks with 5 mM EDTA and washed once with RPMI. KT-

195 was stained in RPMI with 1 mM/ 2 x 106/ ml cells carboxyfluorescein diacetate 

succinimidyl ester (CFDA-SE) for 8 min at 37°C and RCC-26 was stained in RPMI 

with 1 mM/ ml/ 1x106 cells Bodipy, for 15 min at 37°C. Both stained RCC-26 and KT-

195 were incubated with 1 volume of FCS at room temperature for 5 min, then 

washed with RPMI and resuspended in RCC medium. The stained cultures stayed in 

the incubator, protected from light, for at least 2 hours before they were taken to 

generate multicellular spheroids. The incubation with medium containing FCS was 

necessary and indispensable to avoid the presence of residual dye in the medium 

that would then label other cells in the subsequent coculture. Cells were washed 

again with RPMI and 0.5 x 105 cells of each RCC-26 and KT-195 were mixed and 

resuspended in 500 µl RPMI medium and put in agarose coated wells and 

centrifuged at 1500 rpm for 5 min to allow spheroid formation.  
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6.7.10 Quantification of T cell lytic activity 

 
In this work, the lytic activity of a T effector cell was assessed in a 2-D monolayer 

culture using the chromium release assay and in a 3-D culture using multicellular 

spheroids containing pMHC+ and pMHC- tumor cells stained with different dyes.  

 
 

6.7.10.1  Quantification of chromium release associated with T 
cell lytic activity (Chromium release assay) 

 
Target and non-target cells were harvested, resuspended in 100 µl FCS (> 1x106 

cells) and labeled by incubating them with 100 μCi radioactive sodium chromate 

(Na2
51CrO4) for 1 h at 37°C. Sodium chromate enters the cells by diffusion and binds 

to intracellular proteins so that it cannot diffuse back into the medium. After labeling 

cells were washed three times with CML medium and 2000 target cells in 50 µl were 

seeded into each well of a 96-well V-bottom plate. T effector cells were added to the 

target cells in different effector to target ratios as indicated and incubated for 4 h, the 

final volume was 100 µl. For spontaneous release determination, targets were plated 

without T cells in 100 µl. For maximum 51Cr labeling determination, target cells in 50 

μl medium were put directly after labeling into the wells of a Luma plate (containing a 

filter). After the incubation period, 50 µl of the supernatant was carefully taken out 

and put into the wells of the Luma plate. After drying overnight, the counts per min 

were measured using a Topcounter. Duplicate wells were averaged and the 

percentage of specific cytotoxicity was calculated as follows, where cpm is counts 

per min. 

 

100
cpm) sspontaneou - cpm (maximal

cpm) sspontaneou - cpm tal(experimen
lysis specific %   
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6.7.10.2  Quantification of cell lysis in multicellular tumor 
spheroids 

 

To quantify the lytic activity of effector T cells in 3-D cell cultures, multicellular 

spheroids were generated with Bodipy stained RCC-26 and with CFDA-SE stained 

KT-195 and T cells were added for 4 h as schematically shown in Figure 6.6.  

Parallel cocultures had no T cells. The method used for the coculturing of spheroids 

with T cells was the “hanging drop”. After incubation, spheroids were washed with 

PBS to remove T cells that did not enter spheroids. Then the washed spheroids were 

mechanically disrupted and incubated with undiluted accutase for 15 min at 37°C. 

Cell suspension was stained with PI and CD45-PE-Cy7 and analyzed by flow 

cytometry. Tumor cells were gated as CD45 negative and CFSE versus Bodipy 

stained cells were plotted in a dot plot. Gates were set around the CFSE+ and 

Bodipy+ populations and the ratio was determined. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.6. Detection of lytic activity of T cells in RCC multicellular spheroids. 

RCC-26 cells were stained with Bodipy (blue) and KT-195 cells with CFDA-SE (green). By coculturing 
both stained cell lines at a 1:1 ratio for 4-5 days, multicellular mixed spheroids were generated. After 
incubation alone or with T cells for 4 h, spheroids were disrupted with accutase for cell quantification. 
For more details see text.  
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The ratio of pMHC+ to pMHC- was calculated in the spheroids with or without T cells 

after 4 h of incubation using the following formula:  

100
cells T without spheroidsin  cells target %

cells T with spheroidsin  cells target %
-1killing % 








  

 

 

SE -CFDA  with stained cells % Bodipy  with stained cells %

Bodipy with stained cells %
spheroidin  cells target %


  

6.8 Molecular biology methods 

 
 

6.8.1 Determination of nucleic acid concentration and quality  

 
To determine the quality and yield, DNA or RNA solutions were measured in an UV 

spectrophotometer (Nanodrop) at 260 and 280 nm, diluting 1:10 in nuclease free 

sterile bidestilled water. The ratio A260/A280 was measured and DNA preparations 

with a ratio below 1.5 were discarded. To ensure the correct size of the DNA-

plasmids/inserts or IVT-RNA, DNA plasmids were analyzed by one or more 

restriction enzyme digestions. Both DNA-plasmids and IVT-RNA were controlled in 

an ethidium bromide containing agarose gel by UV light. For documentation, photos 

were taken by the InGenius Gel documentation system. 

 
 

6.8.2 DNA extraction from gels and purification  

 
The protocol adapted from QIAquick Gel Extraction Kit Protocol is designed to extract 

and purify DNA from standard or low-melt agarose gels in TAE or TBE buffer. Up to 

400 mg agarose can be processed per spin column. This kit can also be used for 

DNA cleanup from enzymatic reactions.  

DNA was separated by electrophoresis and the DNA fragment with the desired size 

was excised from the agarose gel with a clean, sharp scalpel. The gel slice was 

weighed and 3 volumes of Buffer QG were added per 1 volume of gel (100 mg ~ 

100 μl). The maximum weight of a gel slice per QIAquick column is 400 mg. The 

sample was incubated at 50°C for 10 min. To help dissolve the gel, the sample was 

mixed by vortexing the tube every 2-3 min during the incubation. One gel volume of 
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isopropanol was then added to the sample and mixed thoroughly. The sample was 

applied to the QIAquick column and centrifuged for 1 min at 13000 rpm. The DNA 

binds to the column and the flow-through was discarded. The QIAquick column was 

placed back in the same collection tube. 0.75 ml of Buffer PE was added to the 

QIAquick column. The column was left standing for 2-5 min at room temperature after 

addition of Buffer PE before centrifuging. Centrifugation was done for 1 min at 13000 

rpm. The flow-through was again discarded and the QIAquick column was 

centrifuged for an additional 1 min at 13000 rpm. Then the QIAquick column was 

placed into a clean 1.5 ml microcentrifuge tube. To elute the DNA, 30 μl of Buffer EB 

(10 mM Tris·Cl, pH 8.5) or water (pH 7.0-8.5) was added to the center of the 

QIAquick column membrane and left standing for 1 min before centrifuging it for 1 

min. 

 
 

6.8.3 Vector and insert preparation 

 

The TCR26  and  chain encoding sequences were digested out of the plasmid 

pPBS-TCR26 [75] shown in Figure 6.7, by incubating 1 µg of pPBS-TCR26 with the 

restriction enzymes ClaI and XhoI to cut out the TCR26  and NotI and XbaI to cut 

out the TCR26 .  

 

 

 

 

 

 

 

 

 

 

 

Figure 6.7 Schematics of the plasmid-DNA template for the cloning of TCR26 into pCDNA3.1. 

Arrows indicate coding regions of the plasmid. Numbers give the position of the corresponding cDNA 
in the plasmid. ColE1= colicin E 1 origin of replication; AmpR= ampicillin resistance; T7= T7 promoter 
for the T7 RNA polymerase; IRES= internal ribosomal entry site.  
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The enzymes and the buffer system used were from fermentas. pCDNA3.1, the 

plasmid in which TCR26  chain or  chain sequences were to be cloned, was 

digested with ClaI and XhoI (to receive TCR26 ) or with NotI and XbaI (to receive 

TCR26 ). The plasmid digestion reaction was done with 1 μg of plasmid-DNA. 5-10 

U of restriction enzymes, 1 x enzyme buffer and sterile water up to 30 μl were added 

to the plasmid in a 1.5 ml tube and incubated in a thermo block at 37°C overnight. 

After digestion, inactivation of the enzyme was performed at 65°C for 15 min. 

Digested pPBS-TCR26 and pCDNA3.1 were run in a gel electrophoresis and purified 

from the agarose gels using the QIAquick gel extraction kit protocol (for details see 

section 6.8.2), performed according to the manufacturer‟s instructions. The DNA was 

precipitated with 2 vol of 100 % Ethanol, 1/10 vol of a 3 M sodium acetate pH 5.3 

solution and mixed thoroughly. The reaction was chilled at - 20°C for 20 min. The 

reaction was then pelleted for 15 min at 13000 rpm at 4°C. The supernatant was 

carefully taken out and washed with 100 µl of 70 % ethanol. The washed DNA was 

centrifuged at 13000 4°C for 10 min and then the fluid was removed and the pellet 

dried at RT for 10-20 min. The DNA pellet was resuspended in nucleic acid free 

sterile water and stored at - 20°C until use. 

 
 

6.8.4 Ligation of plasmid vector and insert DNAs 

 
After the vector and insert DNAs were purified, the concentration of DNA was 

estimated by agarose gel electrophoresis in comparison to a molecular weight 

standard. The ligation was performed using T4 DNA Ligase at room temperature for 

2 h or at 16°C overnight, with a molar ratio of vector to insert of 1:3 in a final volume 

of 10 µl as follows: 

 
1-2 µl of vector (50 to 200 ng) 

1-2 µl of insert (1:3 molar ratio of vector to insert) 

2 µl of DNA Ligase buffer (5 x) 

1 µl T4 DNA Ligase 

DEPC treated water to 10 µl 
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6.8.5 Transformation of ligation products into bacteria 

 

2 µl of the ligation reaction of pCDNA3.1 and TCR26  chain or pCDNA3.1 and 

TCR26  chain was electroporated into electrocompetent XLI E. coli. To monitor the 

frequency of auto-ligation of the vector pCDNA3.1, the linear vector was transformed 

in the absence of the DNA insert. To control the quality of the selection plates, 

bacteria were electroporated in the absence of any DNA. 

6.8.5.1  Preparation of electrocompetent bacteria cells 

 

LB Medium (250 ml) was inoculated with a starter culture of XLI (a single bacterial 

colony that had been cultured in 3 ml LB medium overnight) and grown at 37°C 

shaking (200-300 rpm). OD600 measurement was carried out every hour. Once the 

OD600 reading was in the range 0.5-0.6, the flask was taken out of the shaker and 

chilled in an ice-water bath for 10 min. The culture was then distributed in 4 (50 ml 

each) conical bottles and pelleted at 4500 g for 5 min at 4°C. The supernatant was 

discarded and cells were resuspended in 40 ml ice cold water by pooling pellet from 

all tubes into one tube and subsequently centrifuged at 4500 x g for 5 min at 4°C. 

The supernatant was again discarded and cells were resuspended in 40 ml ice cold 

water. Further centrifugation was carried out at 4500 g for 5 min at 4°C. After 

discarding the supernatant, cells were washed in 40 ml of 10 % glycerol (prepared by 

mixing with ice cold water) and centrifuged at 4500 g for 5 min at 4°C. The 

supernatant was discarded and the pellet was resuspended again in 40 ml of 10 % 

glycerol and centrifuged at 4500 g for 5 min at 4°C. Finally, 50 μl aliquots were 

transferred to 1.5 ml tubes. The aliquots were immediately frozen in liquid nitrogen 

and later stored at - 80°C. 

 
 

6.8.5.2  Electroporation of DNA into bacteria  

 

The electroporation method of transforming E. coli can produce efficiencies greater 

than those obtained with the best chemical methods. Briefly, subjecting a mixture of 

cells and DNA to intense electrical fields of exponential decay waveform 

(electroporation) routinely results in more than 109 transformants/µg of DNA. The 
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precise protocol is as follows. Frozen electrocompetent bacterial cells were thawed 

on ice and 25 µl were mixed with the required amount of DNA (2 µl of the plasmid 

ligation or 50-100 ng of a plasmid mini preparation, in a volume not bigger than 5 µl) 

and incubated further on ice for 1 min. The mixture was pipetted into an 

electroporation cuvette (2 mm) and put on the electroporation device. The 

electroporation apparatus was set to 2.5 kV and 25 µF and the sample was pulsed 

and immediately transferred to 2 ml of antibiotic free SOC medium in a polypropylene 

round-bottom tube and incubated for 1 h at 37°C in an incubator with a horizontal 

shaker set to 220 rpm. SOC is a rich medium, important for the reconstitution of the 

membrane of electro-competent bacteria immediately after transformation and to 

allow expression of transferred resistance genes before exposing cells to selective 

conditions. The bacterial sample was later pelleted by centrifugation and 

resuspended in 100 µl of LB medium and plated on an LB-agar plate in the 

appropriate dilution and with antibiotic selection. 

 
 

6.8.6  Plasmid DNA preparations from bacteria  

 

 

6.8.6.1  Plasmid DNA mini preparation  

 
The protocol used is based on the QIAGEN plasmid purification handbook. 

Approximately 1.5 ml of a bacterial overnight culture was centrifuged at 11000 rpm 

for approximately 1 min. The supernatant was decanted and the pellet was 

resuspended with 300 μl Buffer P1. 300 μl P2 was immediately added and the 

mixture was left at room temperature for 5 min. Following the 5 min incubation, 300 μl 

P3 was added and samples were centrifuged at 13000 rpm for 10 min. 900 μl of the 

supernatant was taken and transferred to a fresh tube. Plasmid DNA was 

precipitated by adding 0.7 volume isopropanol. Tubes were kept at -20°C for 30 min 

and were then centrifuged at 13000 rpm for 30 min at 4°C. The supernatant was 

discarded and the pellet was washed with 70 % ethanol by centrifuging at 13000 rpm 

for 15 min. The supernatant was discarded and the pellet was dried at room 

temperature for 10 min. The pellet was resuspended with 20 μl of 1 x TE buffer and 

kept at - 20 °C for future use.  
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6.8.6.2  Plasmid DNA maxi preparation  

 
The protocol used is based on the QIAGEN Plasmid Purification Handbook. A single 

bacterial colony was picked from a freshly selective plate and a starter culture of 2-5 

ml LB medium containing the appropriate selective antibiotic was inoculated. The 

starter culture was incubated overnight at 37°C with vigorous shaking (approx. 300 

rpm). A tube or flask was used with a volume of at least 4 times the volume of the 

culture. 250 ml LB medium was inoculated with 250-500 μl of the starter culture. The 

culture was grown at 37°C for 12-16 h with vigorous shaking (approx. 300 rpm). A 

flask with a volume of at least 4 times the volume of the culture was used. The 

culture usually reaches a density of approximately 3-4 x 109 cells/ml, which typically 

corresponds to a pellet wet weight of approximately 3 g/l medium. For bacteria 

stocks, 1 ml of the bacteria culture was centrifuged at 4000 g for 5 min and 

resuspended in a solution of 15 % glycerol and LB medium and frozen at - 80°C. The 

rest of the bacteria culture was harvested by centrifugation at 6000 g for 15 min at 

4°C. If there was a need to interrupt the procedure, cells were frozen at - 20°C. The 

bacterial pellet was resuspended in 10 ml Buffer P1. For efficient lysis it is important 

to use a vessel that is large enough to allow complete mixing of the bacterial pellet 

with the lysis buffers. The pellet was resuspended completely by vortexing or 

pipetting up and down until no cell clumps remained. Following resuspension, 10 ml 

Buffer P2 was added and mixed thoroughly by vigorously inverting the sealed tube 4-

6 times, and incubated at room temperature (15-25°C) for 5 min. During the 

incubation the QIAfilter Cartridge was prepared. 10 ml of pre-chilled Buffer P3 was 

added to the lysate and mixed immediately and thoroughly by vigorously inverting 4-6 

times. Precipitation is enhanced by using chilled Buffer P3. The lysate was poured 

into the barrel of the QIAfilter Cartridge and incubated at room temperature (15-25°C) 

for 10 min. 2.5 ml buffer ER was added to the filtered lysate and was mixed by 

inverting the tube 6 times and incubating on ice for 30 min. QIAGEN-tip 500 was 

equilibrated by applying 10 ml Buffer QBT and the column was allowed to empty by 

gravity flow. The filtered lysate was applied to the QIAGEN-tip and allowed to enter 

the resin by gravity flow. The QIAGEN-tip was washed with 2 x 30 ml Buffer QC. 

Buffer QC was allowed to move through the QIAGEN-tip by gravity flow. DNA was 
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eluted with 15 ml Buffer QN. DNA was precipitated by adding 0.7 volumes of room-

temperature isopropanol to the eluted DNA. The mixture was centrifuged immediately 

at ≥ 15000 g for 30 min at 4°C. The supernatant was carefully decanted. The DNA 

pellet was washed with 5 ml of 70 % ethanol and centrifuged at ≥ 15000 g for 10 min. 

Again, the supernatant was carefully decanted without disturbing the pellet. The 

pellet was air-dried for 5-10 min, and re-dissolved in a suitable volume of TE buffer. 

For long-term storage, plasmid DNA was kept at - 80°C.  

6.8.7 Restriction analysis of plasmid DNA 

 

pCDNA3.1 plasmids with TCR26  or  chain sequences recovered from bacteria 

were controlled for the insert size by digesting with the restrictions enzymes ClaI and 

XhoI for the TCR26  and NotI and XbaI for the TCR26 . The enzymes and the 

buffer system used were from Fermentas. The digested products were visualized in 

agarose gel after electrophoresis. 

 
 

6.8.8 Electrophoresis  

 
 

6.8.8.1  DNA electrophoresis  

 
DNA electrophoresis is a technique by which DNA fragments in a gel are separated 

by the application of an electric current. The separation, as DNA is negatively 

charged, is based on size whereby larger fragments move slower than smaller 

fragments. The Tris acetate EDTA (TAE) buffer system was used. The agarose 

concentration for a clear separation of DNA fragments > 2 kb was 0.8 % and for DNA 

fragments up to 300 bp it was 1.5 %. Gels were prepared by mixing the agarose at 

the desired concentration with 1 x TAE, melting it in a microwave device and adding 

ethidium bromide from a 10 mg/ml stock at a concentration of 0.3 µg/ml after the 

temperature of the gel was such that the gel beaker could be held with bare hands 

for more than 5 sec. The liquid agarose was poured into a horizontal tray and left to 

solidify at room temperature for 15 to 20 min. Samples to be loaded were mixed with 

loading dye (1x final concentration) and loaded on the gel after submerging the gel in 
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the same buffer used for preparing it. Running conditions usually were 30 to 45 min 

at 90 Volts, depending on the size of DNA to be analyzed. 

 
 

6.8.8.2  RNA electrophoresis  

 
The gel preparation for RNA electrophoresis was 1.2 % agarose in 1 x TAE treated 

with DEPC and autoclaved. Samples were mixed with RNA loading dye (1 x final 

concentration) and incubated for 10 min at 70°C in order to denature secondary 

structures and loaded into the gel. Electrophoresis was conducted at 90 Volts for 30 

min.  

6.8.9 Cloning of TCR26  and  chain sequences into pCDNA3.1 

 
The plasmids generated in this work were prepared by subcloning the already 

existent TCR26  and  chain cDNAs from the plasmid pPBS-TCR26 [75] into 

pCDNA3.1. The restriction sites surrounding the TCR26  and  chains were 

digested and cloned into the recipient vector. The strategy used is described below, 

for detailed explanation see the correspondent section. 

 
1) Vector and insert were digested with restriction enzymes (section 6.8.3); 

2) Preparative gel/DNA extraction and purification (section 6.8.2); 

3) Vector and insert were ligated (section 6.8.4); 

4) Ligation products were electroporated into E. coli electrocompetent cells and 

plated on appropriate selection plates (sections 6.8.5.1 and 6.8.5.2); 

5) Bacteria colonies were picked and mini preparations were done to amplify  

plasmid DNA (section 6.8.6.1); 

6) Restriction analysis was done to identify the clones containing the correct size  

of the DNA insert (6.8.7); 

7) The plasmids containing the correct insert sizes were sequenced; 

8) Maxi preparation of the correct plasmids was performed and the plasmids were  

stored as DNA and bacteria glycerol stock at - 20°C (6.8.6.2). 

 

The schematics of the pCDNA plasmids containing the TCR26  and TCR26  

sequences generated in this work is shown in Figure 6.8. 
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Figure 6.8. Plasmid-DNAs containing the TCR26 α and β chain sequences for the generation of 
TCR26 IVT-RNA. 
Arrows indicate coding regions of the plasmid. Numbers give the position of the corresponding cDNA 
in the plasmid. AmpR= ampicilin resistance; F1= Bacteriophage F1 origin of replication; T7= T7 
promoter for the T7 RNA polymerase. 
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6.9 Generation of virus particles containing cDNAs of interest 
using transfected HEK-293T  

 

Transient transfection of HEK-293T cells with cDNAs of interest is a convenient way 

to overexpress genes and obtain cellular or extracellular proteins. HEK-293 is a 

human embryonic renal epithelial cell line which is transformed by the adenovirus 

E1A gene product. HEK-293T is a derivative which also expresses the SV40 large T 

antigen, allowing episomal replication of plasmids containing the SV40 origin of 

replication and early promoter region. In this work the HEK-293T cells were used as 

a packaging cell line to generate retroviral particles encoding the cDNA of interest. 

The retroviral vector with the desired encoding sequence is transiently introduced, 

together with the packaging constructs, into the HEK-293T cells by Ca3(PO4)2 

precipitation. The schematics of the vectors used for the retroviral transduction of the 

TCR gene segments into T cells is shown for TCR53mc and TCR26 in Figure 6.9. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.9. Schematic of the pMP71 vectors used for the transduction of pMP71-TCR53mc α 
and β chain sequences and TCR26 α and β chain sequences into T cells.  

 

 

PMP71-TCR53mc 

7284 bp 

PMP71-TCR26 

7307 bp 
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Arrows indicate coding regions of the plasmid. Numbers give the position of the corresponding cDNA 
in the plasmid. AmpR= ampicilin resistance;ColE1= colicin E 1 origin of replication; LTR= long terminal 
repeats; P2A= porcine teschovirus 2A element.  

 
 

One day prior to the transfection, 0.7 × 106 HEK-293T cells in 4 ml HEK medium 

were plated in wells of a 6-well plate. On the next day, 1 h prior to the transfection, 

the medium was carefully removed from the cells and replaced by 4 ml of hunger 

medium. The transfection solution was then prepared. For the plasmid solution, 6 µg 

of each plasmid-DNA (pMP71 encoding TCR  and  sequences or GFP, pALF10A1 

and pCDNA3.1-MLV g/p) and 15 μl of a 2 M CaCl2 (freshly prepared) were added to 

a 15 ml polystyrene falcon tube containing sterile deionized water to a final volume of 

150 µl and mixes. In a second step, 150 μL of 2 x HBSS saline buffer, added to a 

second 15 ml polystyrene falcon, was hold under mild vortexing and the plasmid 

solution was added drop-wise. After incubation at room temperature for 15-30 min, 

the transfection solution was added to the cells drop-wise. The plates were swirled to 

distribute the precipitate evenly over the cells. After 6 h, the culture medium was 

changed to fresh HEK medium and the cells were incubated at 37°C for 48 h. Then 

the supernatant was collected for the transduction of PBLs (Figure 6.10). 
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Figure 6.10. Transfection of HEK-293T cells for virus production and transduction of T cells 

A replication incompetent vector encoding the TCR of interest (TCR53mc, TCR-D115m, TCR-T58m or 
TCR26) and the vectors encoding the retrovirus genes gag/pol (g/p) and 10A1 were introduced, via 
calcium phosphate transfection, into the packaging line HEK-293T. The plasmid can be transcribed 
either transiently from nonintegrated plasmid molecules or stably from integrated plasmid molecules. 
The viral transcript is initiated in the 5′ LTR and terminated in the 3′ LTR, and is thus a full-length viral 
transcript. It contains the packaging sequence Ψ, which is recognized by the capsid proteins and 
allows it to be packaged into viral particles. In contrast, the viral RNA that encodes the structural 
proteins does not contain the retroviral packaging sequence Ψ. A fully infectious viral particle 

containing the vector with the TCR-P2A-TCR is budded from the packaging cell. The culture 
supernatant is removed from the cells and used as the source of virus for transduction of T cells. 
Modified from [132]. 

6.10  Retroviral transduction of PBLs  and culture conditions of the 
transduced cells 

 

PBLs to be used for retroviral transduction were activated by anti-CD3/anti-CD28 

stimulation 48 h before transduction. Before transduction 24-well plates were coated 

with 5 µg/well RetroNectin in PBS overnight at 4°C, or for at least 1 h at 37°C. 

Retronectin is a recombinant human fibronectin fragment composed of three 

Virus secreted in the 

supernatant 

TCR 10A1 

g/p 

 

TCR  TCR  

TCR53, TCR-D115, TCR-T58 or 
TCR26 

TCR-P2A-TCR 

TCR-P2A-TCR 
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functional domains, cell-binding (C-domain), heparin-binding (H-domain), and CS-1 

sequence of the human fibronectin. Binding of retroviral particles containing 

sequences of the H-domain, and of target cells, through the cell surface integrin 

receptor VLA-4 to the fibronectin CS1 site enhances retroviral mediated gene 

transduction by colocalizing target cells and virions.  

PBLs were taken out of the anti-CD3/CD28 plate, washed, resuspended at 1 x 106/ml 

in T cell medium with 300 U IL-2 and 1 ml/well was transferred to the retronectin 

coated plates. The supernatant containing the virus particles of the HEK-293T (see 

section 6.9) was taken 48 h after transfection, filtered (0.45 µm) and adjusted to 300 

U IL-2 and 8 µg/ml protamine sulfate 1 ml was added to each well containing 1 ml of 

PBL. Supernatant of untransfected HEK-293T was used to generate the control cells 

called PBL-mock. The rest of the HEK-293T supernatant was kept at 4°C until the 

next day. To facilitate direct contact of the viruses with the T cells, plates containing 

PBL and viruses were centrifuged for 90 min (spinoculation) at 32°C. After 

spinoculation, the plates were incubated at 37°C in a humified chamber in the 

incubator. 24 h later, 1 ml of medium was removed from each well and replaced by 1 

ml of new virus containing medium (stored at 4°C from the day before) and the plate 

was spinoculated again for 90 min at 32°C and incubated for 24 h in the incubator.  

Then PBLs were harvested, centrifuged at 1500 rpm for 5 min, counted and 

resuspended at 1 x 106/ml in T cell medium and seeded in new 24-well plates 1 ml/ 

well. PBLs were split into two wells every 2-3 days. In the first split, the IL-2 

concentration was kept at 300 U/ml. From the second split on, with each split, the 

concentration of IL-2 was reduced to 200, then 100 and was finally kept at 50 U/ml. 

In one experiment parallel cultures received IL-15 (10 ng/ml) or 50 U/ml IL-2 9 days 

after the transduction. The cultivation protocol was adapted from the current protocol 

used for adoptive therapy of melanoma [30].  

 

Figure 6.11 gives an overview of the cultivation protocol. 

 

 

 

 

 

 



Methods___________________________________________________________________ 

 146 

 

 

Figure 6.11. Overview of the protocol used for the generation and cultivation of retrovirally 
transduced PBL. 

 
 

6.11  Synthesis of in vitro transcribed RNA (IVT-RNA) 

 

The work with RNA requires great care due to the risk of contamination with 

ubiquitous RNases. Therefore, to avoid degradation by contamination, the working 

surface and the material involved were cleaned with RNase Zap solution. In addition, 

only RNase-free filter-tips were used. 

The cDNAs of TCR26 and HLA-A2 were in two different plasmids, pCDNA3.1 for 

TCR26 and pCDM8 for HLA-A2. Both plasmids contain the T7 promoter and the 

Kozak sequence that make them optimal templates for in vitro transcription (IVT) and 

subsequent translation after IVT-RNA is electroporated into cells.  

Before IVT, the plasmids were linearized by digesting the next restriction site after 

the cDNA of interest (XbaI for TCR26 and NotI for HLA-A2). For the digestion, 12 μg 

of plasmid-DNA was used. 3 μl of 10 x tango-buffer and 2 μl of XbaI enzyme for 

TCR26 or 10 x O-buffer and 2 µl NotI enzyme for HLA-A2 and for both DEPC H2O 

was added to a final volume of 30 µl. Digestion was performed overnight at 37°C. 

Thereafter enzymes were deactivated at 65°C for 15 min and DNA was precipitated 

as described in section 6.8.3. The DNA-Pellet was eluted in TE-buffer (Qiagen-kit) 

and 1 µl was taken for the IVT reaction.  

For the generation of IVT-RNA of TCR53mc, specific primers for TCR53mc 

containing the T7 promoter and the Kozak sequence were used to amplify the 

TCR53mc from the pMP71-TCR53mc plasmid, which was used as template for the 

transcription in vitro. IVT was performed according to the instructions of the 

manufacturer (mMESSAGE mMachine®-T7-Kit, Ambion). Reactions were done as 

follows, scaled to a double reaction: 

Added to 40 μL nuclease-free Water 
20 μl 2 x NTP/CAP 
4 μl 10 x Reaction Buffer 
2 μg linear template DNA 
4 μl enzyme mix 
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The reaction was mixed and incubated at 37°C for 2 h in a thermo mixer. After 2 h, 

1.5 μl of TURBO DNase (present in the kit) was added and the reaction was 

incubated at 37°C for 30 min. 

To enhance RNA stability once inside cells, polyadenylation of IVT-RNA was 

performed with the help of the Poly(A)-Tailing-Kit. Reactions were scaled to a double 

reaction and done as follows, according to the manual instructions:  

 
40 μL mMESSAGE mMACHINE reaction 
72 μL Nuclease-free Water 
40 μL 5X E-PAP Buffer 
20 μL 25 mM MnCl2 
20 μL 10 mM ATP 
8 μL of E-PAP added  
 
The reaction was mixed gently and incubated at 37°C for 1 h. After polyadenylation, 

purification of the mRNA was done with the help of the RNeasy Mini Kit (Qiagen). 

The quality of the polyA-IVT RNA was controlled in a RNA-agarose gel. The 

concentration of the RNA was measured using the nanodrop photometer as 

described in section 6.8.1.  

 
 

6.12  Electroporation of cells with IVT-RNA 

 
T cells usually are poorly transfected by common chemical methods like calcium 

phosphate. Besides retroviral transduction, another method to transfer genes of 

interest into T cells, not involving an S2 laboratory, is the electroporation with IVT-

RNA. A second advantage of this method is the prompt avaiability of engineered T 

cells, as they express the gene of interest as soon as 2 h after electroporation. 

Before electroportion, cells were washed 2 x with 10 ml cold OptiMEM medium and 

resuspended in the same medium at 2 x 106/200 µl, placed in a 0.4 cm 

electroporation cuvette and briefly incubated on ice. Polyadenylated IVT-RNA (15 µg 

for HLA-A2 or 8 µg for each chain of the TCR26 or TCR53mc) was added and mixed 

carefully by pipetting up and down. Cells that were electroporated with water only 

were used as mock controls. Electroporation was performed with the Gene Pulser 

Xcell at 800 V and 5 ms for PBL or 400 V and 5 ms for adherent cells. Immediately 

after electroporation, cells were returned to pre-warmed culture medium. In the case 

of TCR IVT-RNA, cells were taken for functional assays after a minimum of 2 h of 
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incubation at 37°C. For adherent cells electroporated with HLA-A2 IVT-RNA, cells 

were taken for assays after 12 h of incubation at 37°C. Cell surface expression was 

determined by flow cytometry using an TCR-specific or HLA-A2-specific antibody. 
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