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1 Einleitung 

1.1 Das Nierenzellkarzinom 

Das Nierenzellkarzinom gilt nach Prostata- und Harnblasenkrebs als dritthäufigste 

maligne Erkrankung des Urogenitaltraktes des Erwachsenen und betrifft rund 3% aller 

malignen humanen Erkrankungen. Von allen urologischen Neoplasien hat es die 

schlechteste Prognose (Rekha et al. 2008). Da die Erkrankung meist nur unspezifische 

Symptome wie Mattigkeit, Appetitlosigkeit, unspezifischer Gewichtsverlust und / oder 

Fieber aufweist, wird die Diagnose häufig erst in einem weit fortgeschrittenen 

Erkrankungsstadium gestellt. Viele Tumoren der Nieren werden heute zufällig, im 

Rahmen bildgebender Verfahren auf Grund anderer Erkrankungen diagnostiziert. 

Dennoch haben bis zu einem Drittel der Erkrankten zum Zeitpunkt der 

Diagnosestellung bereits Metastasen (Axwijk et al. 2010), da die klassische 

Symptomentrias bestehend aus Hämaturie, Flankenschmerz und tastbare abdominale 

Raumforderung in den meisten Fällen fehlt. Zur Diagnostik dienen neben 

labordiagnostischer Verfahren die bildgebenden Verfahren wie Sonographie, 

Computertomographie und Magnetresonanztomographie als das Mittel der Wahl. 

Morphologisch liegt für gewöhnlich ein solider, in der Regel an den Nierenpolen 

lokalisierter Tumor mit einem Durchmesser von 3-15 cm vor. Die Schnittfläche der 

Tumoren reicht von hellgelb bis grauweiß, da sie häufig Nekrosen, Blutungen und 

Zysten aufweisen. Infolgedessen stellen sie sich als so genanntes „buntes Bild“ dar. 

Die Metastasierung erfolgt hämatogen in absteigender Reihenfolge in Lunge, Knochen, 

Leber, ZNS und Nebennieren. Die lymphogene Metastasierung erfolgt in die 

regionären Lymphknoten am Nierenhilus. Nach einem erfolgreich therapierten 

Nierenzellkarzinom können noch nach vielen Jahren Metastasen auftreten. 

1.1.1  Epidemiologie und Risikofaktoren 

In den letzten Jahren ist die Erkrankungsrate des Nierenzellkarzinoms beständig 

angestiegen (Abbildung 1). Es besteht ein erhöhtes Risiko, ab dem 50. Lebensjahr an 

einem Nierenzellkarzinom zu erkranken. Der Erkrankungsgipfel liegt bei 

70-80 jährigen Frauen und bei 60-80 jährigen Männern. Vom Robert Koch-Institut wird 

die Neuerkrankungsrate in Deutschland bei Männern auf 10.750 und bei Frauen auf 

6.650 geschätzt. Im Jahr 2006 betrug die Erkrankungsrate bei Männern 10.050, bei 

Frauen 6.440. Dies entspricht einem errechneten Anteil von 4,4 % bei Männern und 

von 3,3 % bei Frauen bezogen auf alle Krebserkrankungen pro Jahr (Abbildung 2). Die 

Sterbefälle betragen bei Männern 3,6 %, bei Frauen 2,7 % pro Jahr und sind damit 

relativ hoch. Die Mortalität für Europa wird derzeit auf 7,5 / 100 000 Einwohner 

geschätzt (RKI, 7. Ausgabe 2010).  
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Abbildung 1: Altersstandardisierte Neuerkrankungs- und Sterberaten beim Nierenzellkarzinom 
in Deutschland von 1980-2006. Fälle pro 100.000 (Europastandard); Quelle: RKI, 7. Ausgabe 
2010. 

 

Abbildung 2: Altersstandartisierte Neuerkrankungs- und Sterberaten beim Nierenzellkarzinom 
in Deutschland im internationalen Vergleich für das Jahr 2006, Fälle pro 100.000 (Europa-
standard); Quelle: RKI, 7. Ausgabe 2010. 
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Das Risiko am Nierenzellkarzinom zu erkranken ist noch nicht völlig geklärt. 

Nikotinabusus gilt als einer der Risikofaktoren (IARC press 2007). Weiterhin scheint  

ein Zusammenhang zwischen Adipositas (Übergewicht) sowie Hypertension 

(Bluthochdruck) – durch direkten Schaden oder metabolische Störungen am 

Nierenkörperchen – und dem Auftreten von Nierenkrebs zu bestehen  

(Brennan et al. 2008). Eine chronische Niereninsuffizienz begünstigt insgesamt und 

unabhängig von der Ursache die Krebsentstehung.  

1.1.2 Äthiologie und Pathogenese 

Im angloamerikanischen Raum wird für die Bezeichnung des Nierenzellkarzinoms der 

Begriff Renal Cell Carcinoma (RCC) verwandt. Man bezeichnet damit epitheliale  

Tumoren, die sich von unterschiedlichen Abschnitten des Nierentubulussystems oder 

des Sammelrohrsystems ableiten. Die Karzinogenese ist jedoch weitgehend 

unbekannt. Diese malignen Tumoren der Niere im Erwachsenenalter sind zu etwa 

85 % klarzellige Nierenkarzinome (ccRCC). Sie haben ihren Ursprung im proximalen 

Tubulus des Nephrons. Als histologisches Charakteristikum weisen die 

Tubulusepithelzellen ein helles und klares Zytoplasma auf, das durch eine hohe 

Konzentration von Glykogen und Fetten zustande kommt (Abbildung 3). 

Das papilläre Nierenzellkarzinom (pRCC) ist das zweithäufigste Karzinom des renalen 

Tubulusepithels. Auch dieser Typ kommt im proximalen Tubulusabschnitt, jedoch nur 

zu 10-15 %, vor. Weitere Klassifikationen sind das chromophobe Nierenzellkarzinom 

(chRCC), das Sammelrohrkarzinom (collecting duct carcinoma) sowie das 

unklassifizierte Nierenzellkarzinom (unclassified RCC), zu dem auch das sarkomatoide 

Karzinom zählt, welches sich oft aus einem ccRCC entwickelt. Alle drei letztgenannten 

Karzinome kommen in den distalen Abschnitten der Nephrone vor. Die Häufigkeit 

beträgt hier 1-5% (Störkel et al. 1997). Die Einteilung in die unterschiedlichen 

histologischen Typen gilt zudem als Prognoseparameter. So weisen z. B. das 

chromophobe und papilläre Nierenzellkarzinom eine günstigere Prognose auf als das 

klarzellige Nierenzellkarzinom, das sarkomatoide Nierenzellkarzinom hingegen verfügt 

über ein erhöhtes Progressionsrisiko (de Peralta-Venturina et al. 2001). Letzteres stellt 

eine extreme Form der Entdifferenzierung eines Nierenzellkarzinoms dar. Es entwickelt 

sich meistens aus einem klarzelligen oder papillären Nierenzellkarzinom. Beim 

sarkomatoiden Nierenzellkarzinom sind die Tumorzellen histomorphologisch 

spindelförmig oder polymorph und weisen eine extrem hohe Proliferation mit rapidem 

Wachstums- und Metastasierungsverhalten auf (Delahunt et al. 2007). 
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Abbildung 3: Vergleichende Darstellung eines klarzelligen (links) und eines sarkomatoiden 
Nierenzellkarzinoms (rechts). Links: Helles und klares Zytoplasma durch hohen Glykogen- und 
Lipidgehalt, dadurch entsteht ein pflanzenzellartiges Aussehen mit zartem Zytoplasmasaum. 
Rechts: Spindelförmige und polymorphe Tumorzellen, die morphologisch bindegewebszelligen 
Charakter aufweisen. Quellen: (links) Böcker et al. 4. Auflage 2008, Elsevier; (rechts) Elsevier 
Inc. 2006 aus www.pathconsultddx.com. 

Ein familiär bedingtes Auftreten des Nierenzellkarzinoms kommt vor allem beim 

Von-Hippel-Lindau-Synrom (VHL) vor. Bei der Mehrzahl der sporadischen 

Nierenkarzinome sind Mutationen des VHL-Gens nachweisbar. Beim 

Von-Hippel-Lindau-Synrom handelt es sich um ein autosomal dominant vererbtes 

Neoplasie-Syndrom, welches durch eine Genmutation des kurzen Arms von 

Chromosom 3 hervorgerufen wird. Es verursacht benigne und maligne Tumoren 

verschiedenster Organe. Die Wahrscheinlichkeit, dass bei Hippel-Lindau-Patienten ein 

klarzelliges Nierenzellkarzinom auftritt, beträgt 25-70 % (Lonser et al. 2003). 

1.1.3 Einteilung der Erkrankungsstadien und Prognose 

Die Tumorausdehnung zum Zeitpunkt der Erstdiagnose beeinflusst maßgeblich die 

Prognose (Moch et al. 2000). Sie wird mit der Tumorgraduierung (Grading) und der 

Stadieneinteilung (Staging) erfasst. Die Einteilung epithelialer Neoplasien der Nieren 

wird gemäß der International Union Against Cancer (UICC) und dem American Joint 

Committee on Cancer (AJCC) (Störkel et al. 1997) vorgenommen.  

Das Grading beinhaltet histologische und zytologische Parameter wie Kernatypien, 

Mitosezahl und Differenzierungsgrad (Ähnlichkeit zum Ursprungsgewebe).  

Die Differenzierungsgrade werden nach UICC/AJCC von Grad 1 bis Grad 4 

folgendermaßen eingeteilt: 

G1  Gut differenziertes Nierenzellkarzinom 

G2  Mäßig differenziertes Nierenzellkarzinom 

G3  Schlecht differenziertes Nierenzellkarzinom 

G4  Undifferenziertes Nierenzellkarzinom 
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Neben dem histologischen Differenzierungsgrad ist das Tumorstadium, das Staging, 

einer der wichtigsten prognostischen Parameter. Es definiert die lokale Ausbreitung 

des Primärtumors (T), die regionäre Lymphknotenmetastasierung (N) sowie die 

Fernmetastasen (M) und wird als TNM-System bezeichnet. Dieses TNM-System 

besagt, dass die Prognose umso günstiger ausfällt, je niedriger der Tumor eingestuft 

wird (Moch et al. 2009). 

Tabelle 1: TNM-Klassifikation der Nierenzellkarzinome nach UICC 2002 

T-Primärtumor 

T1 Tumor auf die Niere begrenzt, maximal 7 cm in größter Ausdehnung 

  T1a Tumor misst 4,0 cm oder weniger in größter Ausdehnung 

  T1b Tumor misst zwischen 4,0 und 7,0 cm in größter Ausdehnung 

T2 Tumor auf die Niere begrenzt, größer als 7 cm in größter Ausdehnung 

T3 Tumor breitet sich in größere Venen aus und / oder infiltriert Nebenniere oder  
perirenales Gewebe, jedoch nicht über die Gerota-Faszie (Fascia renis) 

  T3a Tumor infiltriert Nebenniere oder perirenales Gewebe, aber nicht über die  
Gerota- Faszie 

  T3b Tumor mit makroskopischer Ausbreitung in Nierenvene(n) oder Vena Cava   
unterhalb des Zwerchfells 

  T3c Tumor mit makroskopischer Ausbreitung in Vena Cava oberhalb des Zwerchfells 

T4 Tumor wächst über die Gerota-Faszie hinaus 

N-regionäre Lymphknoten 

Nx regionäre Lymphknoten können nicht beurteilt werden 

N0 keine regionäre Lymphknotenmetastasen 

N1 Metastasen in einem regionären Lymphknoten 

N2 Metastasen in mehr als einem regionären Lymphknoten 

M-Fernmetasatasen 

Mx Fernmetastasen können nicht beurteilt werden 

M0 Keine Fernmetastasen 

M1 Fernmetastasen vorhanden 

Quelle:  AJCC cancer staging manual. 6th ed. New York, NY: Springer, 2002. 
 

Um die unterschiedlichen Ausprägungen aller drei Kategorien gleichzeitig 

berücksichtigen zu können, werden diese TNM-Klassifikationen in das UICC-Stadium 

I-IV zusammengefasst. Diese Einteilung beschreibt dabei die 5-Jahres-Überlebensrate. 

So liegen nach neuester Schätzung die 5-Jahres-Überlebensraten bei Patienten mit 

einem UICC-Stadium I und II jeweils bei 80 % bzw. 73 %, im Stadium III und IV bei nur 

noch 55 % bzw. 17 % (Nese et al. 2009). 
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Tabelle 2: UICC-Stadieneinteilung des Nierenzellkarzinoms nach der International Union  
Against Cancer (UICC) 

UICC-Stadium T-Kategorie N-Kategorie M-Kategorie 

I T1 N0 M0 

II T2 N0 M0 

III T1 N1 M0 

 T2 N1 M0 

  T3 N0, N1 M0 

IV T4 N0, N1 M0 

 Jedes T N2 M0 

  Jedes T Jedes M M1 

Quelle: AJCC cancer staging manual. 6 th ed. New York, NY: Springer; 2002.  

 

1.1.4 Behandlungsstrategien 

1.1.4.1 Chirurgie 

Noch heute gilt die komplette Entfernung der tumortragenden Niere, die radikale 

Nephrektomie, als Goldstandardtherapie. Normalerweise wird bei der radikalen 

Nephrektomie der betroffenen Niere auch die umgebende Fettkapsel mit reseziert. Bei 

entsprechend kleinen oder randständigen Tumoren oder wenn nur noch eine  

Niere vorhanden ist, kann alternativ zur Nephrektomie eine organerhaltende  

Resektion durchgeführt werden. Dies stellt aber eine schwierige Herausforderung  

des chirurgischen Managements dar. Die erkrankungsspezifischen Überlebensraten 

führen zu zufriedenstellenden Ergebnissen bei gleichzeitig erhaltender  

Nierenfunktion (Lee DJ et al. 2010). Erst nach Zusammentragen aller präklinischen und 

postoperativen TNM-Klassifikationen entscheidet sich die Wahl der anschließenden 

weiterführenden Therapie. 

1.1.4.2 Klassische Chemo- und Strahlentherapie 

Die Chemotherapie repräsentiert normalerweise einen unverzichtbaren Bestandteil der 

Behandlung von Krebserkrankungen und ist gegenwärtig eine der wirkungsvollsten 

Therapieformen bei der Behandlung von Krebs. Jedoch spricht die Mehrzahl der 

Patienten bei der Behandlung des Nierenzellkarzinoms nur unzureichend oder gar 

nicht darauf an (Yagoda et al. 1995; Hartmann und Bokemeyer 1999). Einer der 

Hauptgründe hierfür liegt in der Multidrug-Resistenz (MDR), die auch als Arzneimittel-

Vielfachresistenz bezeichnet wird. Die Ausprägung einer Multidrug-Resistenz wird 

durch die Expression einer Reihe von MDR-assoziierten Genen verursacht  

(Gottesman et al. 2002; Borst et al. 2002). Mitverantwortlich für diese 

Arzneimittelresistenz ist die Proteinsuperfamilie der ABC-Transporter (ATP-binding 

cassette transporter), über die eine Vielzahl an Medikamenten intra- und extrazellulär 

transloziert wird.  



1 Einleitung 9 

 

Diese ABC-Transporter zählen zur größten Genfamilie transmembraner Proteine 

(Dean et al. 2001) und dienen als Multidrug-Resistenz-assoziierte Gene. Zu diesen 

Multidrug-Resistenz-assoziierten Genen zählen auch die für die ABC-Transporter 

kodierenden Gene wie das Multidrug Resistance Gene 1 (MDR1). Dieses Gen selbst 

kodiert für das Genprodukt Phospho-Glykoprotein (Pgp), welches Substrate aus Zellen 

transportiert und für die eigentliche Medikamentenresistenz von normalerweise  

sicher wirkenden Immunsuppresiva in der Krebstherapie verantwortlich ist (Morjani und 

Madoulet 2010). 

Wie die Chemotherapie spielt auch die Strahlentherapie zur Behandlung von 

Primärtumoren nur eine untergeordnete Rolle. Aufgrund der geringen Ansprechbarkeit 

der Neoplasien kommt es weder bei päoperativer Strahlentherapie (Plasswilm et al. 

2001) noch bei postoperativer Strahlentherapie zu einer Prognoseverbesserung von 

RCC-Patienten (Gez et al. 2002). Trotz dieser unbefriedigenden Erfolge wird die 

Strahlentherapie bei bestehenden Metastasen, zum Beispiel bei Knochen- oder 

Gehirnmetastasen, im Rahmen eines palliativen Managements eingesetzt. Dadurch 

werden die Beeinträchtigungen, welche der Patient durch die Metastasen erfährt, 

gelindert. Angestrebt wird hierbei vor allem eine Schmerzlinderung, um die 

Lebensqualität der Patienten zu verbessern (DiBiase et al. 1997). 

1.1.4.3 Zielgerichtete medikamentöse Therapieformen 

Als weitere Therapieform wurde die Immuntherapie durch Einsatz von Interleukin-2 als 

Monotherapie und als Kombination mit Interferon-α und 5-Fluoruracil viele Jahre lang 

als mögliche Standardtherapie erachtet. Die Ergebnisse waren jedoch enttäuschend 

(Motzer et al. 2000; Atzpodien et al. 2004). Aufgrund der schlechten Ergebnisse  

dieser Therapieform und der unzureichenden Ansprechbarkeit des RCCs auf 

Chemotherapeutika und Strahlentherapie wird intensiv nach weiteren alternativen 

Behandlungsstrategien geforscht.  

Dabei steht besonderes die „targeted therapy“ im Mittelpunkt der Forschung. Diese 

Wirkstoffpräparate greifen gezielt in verschiedene Signalwege des Tumorstoffwechsels 

ein und werden begleitend zu den konventionellen Therapiemethoden eingesetzt. Ihr 

Einsatz findet vor allem bei lokal fortgeschrittenem oder metastasiertem 

Nierenzellkarzinom statt. Eingesetzt werden vornehmlich Multikinaseinhibitoren und 

monoklonale Antikörper, die beim Nierenzellkarzinom gute Ergebnisse gezeigt haben. 

Trotz vielversprechender Ergebnisse kann eine komplette Remission mit diesen 

Substanzen nur selten erzielt werden. Bei Multikinaseinhibitoren handelt es sich um 

Substanzen aus der Gruppe der „small molecules“. Die beiden Tyrosinkinasehemmer 

Sorafenib und Sunitinib verfügen über die besondere Eigenschaft, dass sie gleichzeitig 

mehrere Tyrosinkinasen hemmen können. So können sie durch Hemmung der 

Wachstumsfaktoren VEGF (vascular epithelial growth factor) und PDGF (platelet 

derived growth factor) die Neoangiogenese und damit die Zellproliferation, welche 

entscheidend zum Tumorwachstum beiträgt, unterbinden.  
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Bei der Behandlung mit Sunitinib konnte eine progressionsfreie Zeit mit 11 Monaten 

gegenüber 5 Monaten bei der Behandlung mit IFN (Interferon) deutlich verlängert 

werden (Motzer et al. 2009). Darüber hinaus wurde ein signifikanter Anstieg der 

Lebensqualität über den Ausgangswert beobachtet (Cella et al. 2008). Unter der 

Therapie mit Sorafenib konnte bei zuvor unbehandelten Patienten oder Patienten, die 

nicht mehr als eine Vortherapie erhalten hatten, in einer klinischen Phase-II-Studie eine 

Tumorremissionsrate von 50 % erzielt werden (Amato 2007). 

Die Wirkstoffe Everolimus und Temsirolimus sind ebenfalls aus der Gruppe der  

„small molcules“. Sie greifen in den mTOR-Signalweg ein. mTOR ist eine 

Serin-Threonin-Kinase, die zentralen Einfluss auf das Zellwachstum und die 

Angiogenese hat. Der monoklonale Antiköper Bevacizumab bindet an intravasal 

zirkulierenden VEGF und verhindert damit die Aktivierung von VEGF-abhängigen 

Signalwegen. Folglich werden die Neoangiogenese und damit das Tumorwachstum 

gehemmt. Bei der Kombination von Bevacizumab mit Interferon-α konnte eine höhere 

Remissionsrate von 31 % gegenüber 13 % durch eine Monotherapie mit Interferon-α 

erzielt werden (Escudier et al. 2007). 

1.1.4.4 Onkologische Immuntherapie 

Neben der bereits oben erwähnten Immuntherapie haben weitere 

Immunotherapieformen in die Behandlung des Nierenkrebses Einzug gehalten. Es 

handelt sich um eine große Zahl therapeutischer Maßnahmen, die allesamt in die 

immunologischen Wirt-Tumor-Beziehungen eingreifen, um eine spezifische 

Immunantwort gegen den Tumor auszulösen. Die wichtigsten innovativen Vertreter 

dieser Therapieformen sind Ganzzellvakzine mit Tumorzellen sowie DNA-, RNA-, 

Protein- und Peptidvakzine. Sie basieren auf der Identifikation tumorassoziierter 

Antigene. Die Impfung mit diesen Vakzinen soll zur Verstärkung der Immunantwort 

führen. Impfstoffe auf der Basis von Tumorantigenen sind nach derzeitigem Stand ein 

vielversprechender Ansatz, bei denen eine durch T-Zellen vermittelte Immunantwort 

ausgelöst werden soll, die Tumorzellen abtötet. 

1.2 Angeborenes unspezifisches und erworbenes adaptives 

Immunsystem 

Das Immunsystem dient dem Schutz des Körpers gegen eindringende 

Krankheitserreger wie Bakterien, Viren, Pilze und Parasiten. Es schützt aber auch vor 

Fremd- und Schadstoffen, vor Toxinen und gefährlichen körpereigenen Zellen wie 

Tumorzellen. Das Immunsystem besteht aus zwei Komponenten, dem unspezifischen 

und dem spezifischen Immunsystem. Diese beiden Komponenten enthalten humorale 

und zelluläre Elemente. 
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Das unspezifische Immunsystem wird auch als angeborene Immunität bezeichnet.  

Es ist von Geburt an vorhanden und kann ein breites Spektrum von Krankheitserregern 

bekämpfen, da es nicht spezifisch gegen bestimmte molekulare Strukturen gerichtet 

ist. Zum unspezifischen Immunsystem zählen diejenigen Abwehrmaßnahmen des 

Körpers, die beim Eindringen eines Erregers als erstes und innerhalb kurzer Zeit aktiv 

werden. Dazu zählen unter anderem der Säureschutzmantel der Haut, die intakte 

Epidermis und die Schleimhaut der Hohlorgane. Zu den zellulären Elementen gehören 

Granulozyten, das Monozyten-Makrophagensystem und natürliche Killerzellen (NK). 

Das Komplementsystem wird sowohl vom unspezifischen als auch vom spezifischen 

Immunsystem vereinnahmt und spielt daher auch bei den humoralen Elementen des 

Immunsystems eine wichtige Rolle. 

Das spezifische Immunsystem ist gezielt gegen bestimmte molekulare Strukturen 

gerichtet und wird von einem komplexen System aus Immunzellen getragen. Es wird 

auch als adaptives oder erworbenes Immunsystem bezeichnet. Es ist gekennzeichnet 

durch ein hohes Maß an Spezifität und besitzt die Eigenschaft, nach Erstkontakt mit 

einem Antigen ein immunologisches Gedächtnis aufzubauen. Bei einem späteren 

Zweitkontakt mit demselben Antigen ist das Immunsystem dann in der Lage, schneller 

und präziser zu reagieren. Verantwortlich dafür sind die B- und T-Lymphozyten, die auf 

ihren Membranoberflächen Rezeptoren tragen, welche die unterschiedlichsten 

Antigenstrukturen erkennen können und der Haupthistokopatibilitätskomplex. Letzterer 

präsentiert den Lymphozyten Antigenstrukturen, mit denen ein Teil dieser Zellen eine 

Bindung eingeht. Neben den hier genannten zellulären Elementen sind die 

B-Lymphozyten fähig, Immunglobuline zu produzieren. Sie werden daher auch zu den 

humoralen Elementen des spezifischen Immunsystems gezählt. 

1.2.1 Zellen des Immunsystems 

1.2.1.1 Natürliche Killerzellen 

Die zu den Lymphozyten zählenden natürlichen Killerzellen (NK) stammen aus einer 

lymphatischen Vorläuferzelle ab. Bei der Differenzierung der NK im Knochenmark ist 

keine Aktivierung durch Fremdantigene oder Rearrangement (Umlagerung) der Gene 

für Antigenrezeptoren notwendig, weshalb diese zelluläre Komponente zum 

angeborenen Immunsystem zählt. Im Gegensatz zu B- und T-Lymphozyten tragen NK 

auf ihren Membranoberflächen ein begrenztes Repertoire antigenspezifischer 

Rezeptoren. Sie haben damit nur ein begrenztes Erkennungspotential für immunogene 

Strukturen. Ihre Rezeptoren können jedoch inhibitorisch oder aktivierend wirken. Ihre 

inhibitorischen Rezeptoren verhindern die Stimulation von aktivierenden Rezeptoren, 

wenn die inhibitorischen Rezeptoren an eigene MHC-Klasse-I-Moleküle  

(major histocompatibility complex) binden. Dies bedeutet, dass Zielzellen dann lysiert 

werden können, wenn auf diesen kein MHC-Klasse-I-Molekül erkannt  

wird – beispielsweise bei virusinfizierten oder maligne entarteten Zellen – dadurch 
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werden die NK aktiviert. Die Zerstörung der Zielzellen findet vornehmlich durch 

Ausschüttung von zytotoxischen Granula statt. 

1.2.1.2 Lymphozyten 

Es gibt zwei große Gruppen von Lymphozyten, die B- und die T-Lymphozyten. Beide 

Zelltypen entstehen aus einer lymphatischen Vorläuferzelle, die aus einer pluripotenten 

hämatopoetischen Stammzelle im Knochenmark differenziert wird. Die Reifung und 

Differenzierung der T-Lymphozyten von Vorläuferzellen zu funktionellen reifen T-Zellen 

findet im Thymus statt, die der B-Lymphozyten im Knochenmark. 

B-Lymphozyten 

Zur ersten großen Gruppe der Lymphozyten zählen die B-Lymphozyten. Sie haben ihre 

Bedeutung im Immunsystem in der Bildung von Antikörpern (AK). Nach Antigenkontakt 

über antigenspezifische Rezeptoren können sie sich zu Gedächtniszellen oder zu 

Plasmazellen differenzieren. Als Plasmazellen können sie große Mengen Antikörper 

produzieren und geben diese dann als zirkulierende Antikörper ins periphere Blut ab. 

Allerdings sind Krankheitserreger nur im Blut und in den Extrazellularräumen für diese 

Antikörper erreichbar. Da sich jedoch einige Krankheitserreger wie beispielsweise 

Viren, Parasiten oder Bakterien innerhalb von Zellen vermehren können, können sie 

von Antikörpern nicht aufgespürt werden. Die Zerstörung dieser Eindringlinge wird von 

der zweiten großen Gruppe der Lymphozyten, den T-Lymphozyten, bewältigt.  

T-Lymphozyten 

Die T-Zellen sind an der Aktivierung von Makrophagen sowie der Beeinflussung der 

humoralen Immunantwort beteiligt. Sie gehören – wie die Dendritischen Zellen (DCs) – 

zum zellulären adaptiven Immunsystem. Die wesentliche Funktion der T-Zellen besteht 

in der Erkennung spezifischer Peptide durch ihre an den Oberflächen integrierten 

antigenspezifischen Rezeptoren, den T-Zell-Rezeptoren (T cell receptor, TCR). Mit 

Hilfe dieser T-Zell-Rezeptoren (siehe auch unter Punkt 1.22 und 1.2.3.4) können 

T-Zellen fremde Antigene erkennen, die durch einen MHC-Komplex auf körpereigenen 

Zellen präsentiert werden. Dafür benötigt jede T-Zelle einen Rezeptor, der spezifisch 

ein Antigen erkennt und trotzdem bei allen T-Zellen zur gleichen Reaktion führt. 

T-Zellen werden untergliedert in T-Helferzellen (TH1, TH2, TH17), in regulatorische 

T-Zellen (Treg) sowie in zytotoxische Killerzellen (cytotoxic T lymphocytes, CTLs). Die 

T-Helferzellen erkennen mit ihren Rezeptoren sowohl extrazelluläre als auch vaskuläre 

und intrazelluläre Antigene. Die Präsentation dieser Antigene geschieht durch antigen 

presenting cells (APC). Durch die Präsentation von Antigenen werden Helferzellen 

angeregt, andere Zellen zu aktivieren, in dem sie beispielsweise Zytokine sezernieren. 

So aktivieren TH1 vor allem Makrophagen, die TH2 dagegen vorwiegend B-Zellen und 

stimulieren dadurch die Produktion von Antikörpern.  

CTLs dagegen können mit ihren Rezeptoren nur zytoplasmatische Antigene – 

beispielsweise virale oder tumorale Antigene – die mit Hilfe von MHC-I-Komplexen auf 

Zelloberflächen präsentiert werden, erkennen.  
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In dieser Arbeit wurden ausschließlich Peptide identifiziert, die von 

MHC-Klasse-I-Molekülen auf den Zelloberflächen präsentiert wurden. Aus diesem 

Grunde werden im Folgenden nur die Antigenpräsentation von MHC-I-Komplexen 

sowie die dazu notwendigen Strukturen für Zellinteraktionen dezidiert beschrieben. 

1.2.2 Aufbau des T-Zell-Rezeptors (TCR) 

Der TCR ist ein aus Glykoproteinen bestehendes Transmembranmolekül, das in zwei 

Untergruppen vorkommt. Es sind dies die αβ- und die γδ-T-Zellen. Die überwiegende 

Anzahl reifer T-Zellen im Blut exprimieren die αβ-T-Zellen. Sie können ihre 

zugehörigen Antigene nur erkennen, wenn sie von MHC-Molekülen präsentiert werden. 

Im Gegensatz dazu können die in wesentlich geringeren Mengen vorkommenden 

γδ-T-Zellen auch kleine Nichtpeptidantigene direkt erkennen. In der vorliegenden 

Arbeit liegt der Schwerpunkt auf den αβ-T-Zellen, weshalb sich im Folgenden der 

Begriff T-Zellen bzw. T-Lymphozyten ausschließlich auf die αβ-TCR tragenden 

T-Zellen bezieht. Diese T-Zell-Rezeptoren bestehen aus je 2 Polypeptidketten, der  

α- und der β-Kette. Das Gewicht der α-Polypeptidkette beträgt 40-60 kDa, das der 

β-Polypeptidkette 40-50 kDa. Die α- und β-Ketten der T-Zellen sind über eine 

Disulfidbrücke miteinander verbunden. Jede Kette des TCR besitzt eine variable (V) 

und eine konstante (C) Region, eine Transmembranregion sowie einen kurzen 

zytosolischen Anteil und besitzt strukturelle Ähnlichkeit mit Fab-Fragmenten eines 

Antikörpers (Garboczi et al. 1996).  

In der α-Kette wird die Verbindung zwischen der V- und C-Region durch ein 

J-Gen-Segment (J: joining) hergestellt. In der β-Kette existiert zusätzlich zwischen der 

V- und C-Region zum J-Gen-Segment ein D-Gen-Segment (D: diversity). Für die 

Kopplung an ein MHC-Molekül ist die variable Region des TCR verantwortlich. Analog 

zu den Immunglobulinen unterliegen die V x D x J-Segmente dem Rearrangement 

während der T-Zell-Differenzierung. Dadurch und durch das Vorhandensein der 

variablen Segmente des TCR auf verschiedenen Exons, die anschließend durch 

Splicing mit den konstanten Regionen der Rezeptoren gekoppelt werden, ergibt sich 

eine sehr hohe Variabilität von 1015 möglichen T-Zell-Rezeptoren (Rowen et al. 1996). 

Der TCR ist mit weiteren Molekülen, den Korezeptoren, an der Zelloberfläche 

assoziiert. Nur in Verbindung mit einem aus fünf Untereinheiten bestehendem 

Komplex, dem CD3-Komplex (CD: Cluster of Differentiation), bilden die 

T-Zell-Rezeptoren eine funktionelle Grundeinheit zur Signaltransduktion. Weitere 

Korezeptoren wie die Moleküle CD4 und CD8, die sich auf funktionell unterschiedlichen 

T-Zell-Klassen befinden, dienen zur Erkennung von MHC-Klasse-I-Molekülen oder 

MHC-Klasse-II-Molekülen. Von diesen Rezeptoren bindet das CD8-Molekül an 

MHC-Klasse-I-Moleküle, das CD4-Molekül bevorzugt an MHC-Klasse-II-Moleküle  

(Gao et al. 1997). T-Zellen, die den Rezeptor CD8 tragen, differenzieren sich zu 

zytotoxischen T-Zellen. CD4 tragende T-Zellen dagegen differenzieren sich zu TH1-, 

TH2-, TH17-Zellen und regulatorischen T-Zellen. 
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1.2.3 Der Haupthistokompatibilitätskomplex und seine Funktion 

Bereits in den zwanziger Jahren wurde anhand von Tierexperimenten an Mäusen 

entdeckt, dass bei genetisch nicht identischen Tieren Transplantate abgestoßen 

wurden. Dafür konnten die MHC-Antigene verantwortlich gemacht werden. Der Begriff 

MHC steht für Major Histocompatibility Complex und wird für jede Spezies verwandt. 

Erst in den fünfziger Jahren gelang es, diese MHC-Antigene auch beim Menschen 

nachzuweisen. Beim Menschen werden diese MHC-Antigene als HLA-Antigene 

(human leukocyte antigen) bezeichnet. Sie wurden im Jahr 1958 von J. Dausset 

entdeckt. Der Name Human Leukocyte Antigen ist darauf zurückzuführen, dass die 

ersten Antigene durch den Einsatz von Antikörpern entdeckt wurden, welche gegen 

menschliche Leukozyten gerichtet waren. 

Mit Hilfe des MHC-Komplexes werden zytosolische bzw. intrazelluläre Peptide an 

Zelloberflächen von APCs transportiert und den TCRs präsentiert. Damit erfüllt das 

Immunsystem eine seiner wesentlichsten Aufgaben, zwischen krankmachenden 

gefährlichen und ungefährlichen Stoffen zu unterscheiden. Die klassischen 

HLA-Moleküle, HLA-Klasse-I und HLA-Klasse-II, werden auf dem kurzen Arm des 

Chromosoms 6 kodiert und zählen wie die B- und T-Zellen zum erworbenen adaptiven 

Immunsystem.  

1.2.3.1 Aufbau von MHC-Molekülen 

Die Gene der MHC-Klasse-I-Moleküle (im Folgenden als MHC-I-Moleküle bezeichnet) 

für HLA-A, HLA-B und HLA-C befinden sich, mit Ausnahme von β2-Mikroglobulin, auf 

dem kurzen Arm von Chromosom 6. Die MHC-I-Moleküle befinden sich auf nahezu 

allen kernhaltigen Körperzellen und werden auf den Zelloberflächen von CTLs erkannt. 

Ihre Benennung hat sich in der Reihenfolge ihrer geschichtlichen Entdeckungen 

ergeben. MHC-I-Moleküle bestehen aus zwei Polypeptidketten. Die längere etwa 

45 kDa schwere α-Kette besteht aus drei Domänen: α1-, α2- und α3-Domäne. Die 

α3-Domäne bildet den transmembranen und einen kurzen intrazellulären Anteil. Die 

leichtere 12 kDa schwere Kette bildet das β2-Mikroglobulin (β2m), liegt extrazellulär und 

ist auf Chromosom 15 kodiert. Sie geht mit der α-Kette eine nicht kovalente Bindung 

ein.  

Die α1- und α2-Domänen falten sich zusammen zu einer Struktur aus zwei getrennten 

α-Helices, die auf einem Faltblatt aus je vier parallel verlaufenen β-Faltblattsträngen 

liegt. Die α1- und α2-Domänen bilden dabei die Wände einer Bindungsgrube, in der die 

antigenen Peptide gebunden werden. Der TCR erkennt nun das MHC-Molekül sowie 

das in der Bindungsgrube enthaltene Peptid (Bjorkman et al. 1987; Garrett et al. 1989).  

MHC-II-Moleküle befinden sich auf spezialisierten antigenpräsentierenden Zellen wie 

B-Zellen, Dendritischen Zellen und Makrophagen und ähneln in der Gesamtstruktur 

den MHC-I-Molekülen, werden auf den Zelloberflächen aber von TH-Zellen erkannt. Sie 

bestehen aus einer 32-34 kDa schweren α- und einer 29 kDa schweren 

β-Polypeptidkette.  
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Beide Ketten sind nicht kovalent miteinander verbunden, durchdringen die 

Zellmembran und bestehen aus einer α1- und α2- bzw. einer β1- und β2-Domäne. Die 

nicht membranständigen α1- und β1-Domänen sind hochpolymorph. Sie bestehen aus 

einer Bodenplatte aus β-Faltblattsträngen, an der sich seitlich α-Helices anschließen, 

so dass analog zum MHC-I-Molekül eine Bindungsfurche entsteht  

(Germain et al. 1986; Madden 1995). In dieser Bindungsfurche liegen die Peptide meist 

in gestreckter Form.  

Aus diesen speziellen Strukturen der MHC-Moleküle ergeben sich bei verschiedenen 

MHC-Molekülen bevorzugte Peptidmotive (Rammensee et al. 1993). Die  

C- und N-Termini der Peptide werden über unveränderliche Positionen der 

Bindungsfurchen gehalten (Bouvier und Wiley 1994), die Seitenketten jedoch stehen in 

Interaktion mit Bindungstaschen innerhalb der Furche. Diese Bindungsfurchen sind 

hochpolymorph, werden durch mehrere spezifische Aminosäuren gebildet  

(Falk et al. 1991; Saper et al. 1991) und binden sogenannte Ankerreste der Peptide. 

Als Ankerreste werden kleine Gruppen von nahen verwandten Aminosäuren 

bezeichnet, die an der gleichen Position im Peptidliganden eines MHC-Moleküls 

auftreten. Sie bilden die Grundlage der großen Variabilität verschiedener 

MHC-I-Allotypen und der dazu passenden Peptidliganden (Rammensee et al. 1993). 

Daraus ergibt sich aus den Taschen eines jeden Moleküls und den Ankerresten seiner 

Liganden ein spezifisches Peptidmotiv, wodurch eine Vorhersage von MHC-I-Liganden 

möglich wird (Pamer et al. 1991; Rötzschke et al. 1991; Parker et al. 1994). Mit Hilfe  

eines Programms wie beispielsweise SYFPEITHI, welches einen Liganden  

anhand seiner wahrscheinlichen Bindungseigenschaften auf einem bestimmten 

MHC-I-Molekül beurteilt, kann die Vorhersage von präsentierten Peptiden erfolgen 

(Rammensee et al. 1999). 



1 Einleitung 16 

 

 

A

peptidbindender 

Spalt

BA

peptidbindender 

Spalt

B
 

Abbildung 4: Röntgenstrukturanalyse als Banddiagramm eines MHC-Klasse-I-Moleküls;  
A) HLA-A*02:01-Molekül ohne gebundenes Peptid (Quelle: Bjorkman et al. 1987);  
B) das Aufsichtmodell zeigt die parallel verlaufenden β-Faltblattstränge sowie die 
Bindungsfurche, die durch die Faltung der α1- und α2-Domäne erzeugt wird (Quelle: Janeway 
2009).  

1.2.3.2 Diversität von MHC-Molekülen 

Wie bereits oben erwähnt haben Menschen drei Genorte für die MHC-I-Moleküle. Es 

sind dies die Gene für die α-Kette der antigenbindenden Seite, die als HLA-A, -B  

und -C bezeichnet werden (Bjorkman und Parham 1990). Für die MHC-II-Moleküle 

kodieren die Moleküle HLA-DR, -DP und -DQ jeweils für die α- und β-Kette. Damit 

entsteht ein ausgeprägter Polymorphismus. Ein Mensch trägt auf jedem Chromosom 6 

etwa 12 verschiedene HLA-Allele in seinen Zellen. Alle diese MHC-Moleküle können 

ein anderes Spektrum von Peptiden binden und so den T-Zellen präsentieren.  

Durch das Vorkommen von mehreren Allelen jeder MHC-Klasse und dem breiten 

Spektrum der Peptidspezifität ergibt sich eine außerordentliche Vielfalt von 

Kombinationsmöglichkeiten, die bei jedem Menschen individuell ist und damit die 

Immunantwort eines jeden Menschen individualtypisch macht. Durch diese reichhaltige 

Kombinationsmöglichkeit der HLA-Allele ergibt sich die fehlende Gewebeverträglichkeit 

bei Transplantationen eines Organismus in einem nicht genetisch identischen 

Organismus.  

Die Anzahl der bekannten Allele steigt ständig. Nach neuestem Update  

(31. Dezember 2009) waren für das Gen HLA-A 965 Allele, für das Gen HLA-B 1 543 

usw. bekannt. Der aktuelle Stand ist in Tabelle 3 dargestellt. 
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Tabelle 3: Gesamtanzahl bekannter HLA-Allele 

  MHC-Klasse-I MHC-Klasse-II 

Locus A B C DRα DRβ DPα DPβ DQα DQβ 

Anzahl der  
Allele 965 1543 626 3 855 28 138 35 107 

Quelle: Marsh et al. 2010, Nomenclature for factors of the HLA system (www.ncbi.nlm.nih.gov). 

1.2.3.3 Antigenprozessierung und Antigenpräsentation  

Proteine unterliegen in Zellen einem ständigem Auf- und Abbau. Dabei werden 

abgebaute Proteine durch neu synthetisierte Proteine ersetzt. Peptide, die auf 

MHC-I-Moleküle binden, stammen von intrazellulären Proteinen (meist im Zytosol) ab. 

Bei diesen zytosolischen Proteinen handelt es sich im Krankheitsfall auch um virale 

Proteine und Tumor-assoziierte Proteine, die an MHC-I-Moleküle gebunden und an 

Zelloberflächen den CTLs präsentiert werden. Das Protein Ubiquitin markiert endogene 

Proteine die anschließend durch das Proteasom in einzelne Peptidfragmente abgebaut 

werden. Das Proteasom ist ein hohler, fassförmig gebauter Proteasekomplex, der aus 

28 Untereinheiten besteht und in vier Ringen übereinander gestapelt ist. Die vier Ringe 

bestehen aus je sieben β- oder α-Einheiten.  

Es gibt zwei Arten des Proteasoms: das konstitutive Proteasom, das in allen Zellen 

vorkommt und das Immunproteasom. Letzteres kommt nur in Zellen vor, die durch 

Interferone als Reaktion auf Virusinfektionen stimuliert werden. Beim Immunproteasom 

werden β-Untereinheiten des Proteasomenkomplexes durch proteolytisch aktive 

Untereinheiten wie LMP2 (low molecular weight protein), LMP7 und MECL1 

(multicatalytic endopeptidase complex subunit) ersetzt. Die proteolytische Aktivität des 

Immunoproteasoms verändert die Spezifität des Proteasoms. Es kommt zu einer 

verstärkten Spaltung von Polypeptiden hinter hydrophoben Resten und die Spaltung 

von sauren Resten wird herabgesetzt. Dadurch entstehen Peptide mit Carboxylenden, 

die als Verankerungsreste bei der Bindung von Peptiden an die meisten 

MHC-I-Moleküle und beim Transport durch TAP (transporter associated with antigen 

processing) bevorzugt werden (York et al. 1999).  

Eine weitere Reaktion, die durch IFN-γ (Interferon) induziert wird, ist die Bildung des 

Proteinkomplexes PA28-Proteasom, welcher zur erhöhten Geschwindigkeit, mit der 

Peptide aus dem Proteasom entlassen werden, führt. Damit wird eine bessere 

CTL-Antwort hervorgerufen (Sijts et al. 2002). Meist gelangen Peptide mit einer Länge 

von 8-10 Aminosäuren über ATP-abhängige Proteintransporter TAP1 und TAP2 ins 

Endoplasmatische Retikulum (ER). TAP-Transporter bevorzugen Peptide mit 

hydrophoben oder basischen Aminosäurenresten am Carboxylende. Dies entspricht 

den Merkmalen der Peptide, die an MHC-Moleküle binden. Die TAP-Transporter sind 

Heterodimere, die in der Membran des ER sitzen.  
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Sie kodieren für zwei Proteine, die zur Familie von Transportmolekülen mit 

ATP-Bindungskasette (ATP binding cassette, ABC) gehören. Diese Proteine besitzen 

eine ATP-Bindungskassetten-Domäne, die ins Zytosol ragt und eine hydrophobe 

Transmembran-Domäne, die in das Lumen des ER ragt. Sie bilden einen Kanal,  

den Peptide passieren können (Lankat-Buttgereit und Tampé 1999; Abele und  

Tampé 2004). 

Im ER falten sich die α- und die β-Ketten der MHC-Moleküle und bauen sich 

zusammen. Damit ist die Peptidbindungsstelle der MHC-Moleküle nie dem Zytosol 

ausgesetzt. Erst wenn die MHC-Moleküle zusammengebaut sind, werden die Moleküle 

mit Peptiden an der peptidbindenden Grube beladen, sofern die Seitenketten ihrer 

Aminosäuren perfekt zu den Aminosäuren der Bindungsgrube der MHC-I-Moleküle 

passen. Zu Beginn wird die α-Kette des MHC-Moleküls durch die Chaperone Calnexin, 

Calretikulin und Erp57 gebunden, die die Peptidbindung regulieren. Ein weiteres 

Protein, Tapasin, bildet eine Brücke von der α-Kette zu TAP. Der so gebildete stabile 

MHC-Peptid-Komplex wird dann durch Exozytose über den Golgi-Apparat zur 

Membranoberfläche transportiert. Bildet ein Peptid durch eine nicht-produktive 

Interaktion keinen Komplex mit einem MHC-I-Molekül, wird das Peptid entweder direkt 

im ER oder nach retrogradem Transport in das Zytoplasma in seine einzelnen 

Aminosäuren gespalten. 

T-Zelle
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Protein

TAP

MHC-Peptid-
Komplex
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Abbildung 5: Antigenprozessierung 
Grob schematisierte Antigenprozessierung: Endogene Proteine werden durch das Proteasom in 
Peptide gespalten und über einen TAP-Komplex ins ER transportiert. Im ER werden 
MHC-I-Moleküle solange zurückgehalten, bis sie durch die Bindung an ein Pepid freigesetzt 
werden. Hat ein Peptid an einen MHC-Komplex gebunden, verlässt der MHC-Peptid-Komplex 
das ER und wird durch Exozytose über den Golgi-Apparat an die Zelloberfläche transportiert.  

Wie oben beschrieben werden normalerweise nur endogene Proteine auf 

MHC-I-Molekülen präsentiert. Jedoch kann die sog. Kreuzpräsentation 

(crosspresentation) auch zu einer Präsentation von exogenen Proteinen auf 
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MHC-I-Molekülen führen. Dieser Mechanismus ist jedoch noch nicht vollständig 

geklärt. Es wird angenommen, dass tumorinfiltrierende APCs exogene Proteine – wie 

beispielsweise nekrotisierende Tumorzellen – durch Endozytose aufnehmen können 

und deren Proteinfragmente unabhängig von Proteasom und TAP-Transportern auf 

MHC-I-Moleküle laden. Somit sind auch exogene Proteine an einer CTL-Antwort gegen 

Tumorgewebe maßgeblich beteiligt (Spiotto et al. 2002; Win et al. 2011). 

1.2.3.4 T-Zell-Aktivierung durch Antigenpräsentation von  

MHC-Klasse-I-Molekülen 

T-Zellen können infizierte Zellen erkennen, wenn ihnen von antigenpräsentierenden 

Zellen Peptidfragmente durch MHC-I-Moleküle von intrazellulären Krankheitserregern 

präsentiert werden. Die in den V-Domänen kodierten Domänen der antigenbindenden 

Stelle des TCR binden dabei an die α1- und α2-Domäne eines MHC-I-Moleküls. 

Zusätzlich steht der TCR mit seiner Vα-Domäne in Kontakt mit dem Aminoende, die 

Vβ-Domäne mit dem Carboxylende (Kjer-Nielsen et al. 2003). Dadurch entstehen 

Bindungsenergien, die den TCR und den MHC-Peptid-Komplex zusammenhalten und 

stabilisieren. Neben dieser Bindung sind weitere stabilisierende Wechselwirkungen der 

T-Zelle mit dem MHC-Komplex notwendig.  

Es sind dies die Kofaktoren CD4 und CD8 (s.o.), die als weitere Proteinkomplexe auf 

den Zelloberflächen von T-Zellen vorkommen. Bei der Antigenerkennung durch TCR 

binden diese Kofaktoren an unveränderlichen Stellen auf dem MHC-Teil des 

MHC-Peptid-Komplexes (Gao et al. 1997). Diese Bindungsstellen liegen entfernt vom 

Peptid. Erst durch eine weitere Bindung mit dem Kofaktor CD3 kann eine 

Signalübertragung im Zellinneren der T-Zellen erfolgen, wodurch diese verschiedene 

Substanzen – beispielsweise Zytokine, Granzyme, Perforine – in ihre Zielzellen 

sezernieren und dort eine zytotoxische Wirkung entfalten. 

1.3 Transformation von Zellen und Einteilung der 

tumorassoziierten Antigene (TAAs) 

Kenntnisse der Entstehungsmechanismen, des Wachstums und der biologischen 

Eigenschaften von Tumoren bilden die Basis für das Verständnis von 

Tumorerkrankungen. Die Umwandlung von einer einzigen normalen gesunden 

Körperzelle in Tumorzellen unterliegt vielfältigen Mechanismen und läuft in mehreren 

Stufen ab. So ist das in gesunden Zellen durch regulierende Signale enthaltende 

Gleichgewicht zwischen Proliferation, Apoptose und Differenzierung in Krebszellen 

aufgehoben. Insbesondere ist das Kontrollsystem in der Wachstumsphase während 

des Zellzyklus gestört. Die Ursache dafür liegt in einer Reihe von Mutationen 

verschiedener Gene, die zu einem veränderten Expressionsverhalten der Zelle führen. 

Folglich sind Tumorzellen dann in der Lage, unkontrolliert zu proliferieren  

(Shih et al.1981; Vogelstein et al. 1988).  
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Die progressive Proliferation führt zunächst aus einem Zellhaufen zu einem soliden 

Tumor – welcher noch innerhalb anatomischer Barrieren sitzt – bis hin zu invasivem 

und destruierendem Wachstum sowie der Fähigkeit zur Metastasierung.  

Die wichtigsten antagonistischen Systeme des Tumorwachstums werden von den 

Onkogenen sowie den Tumorsuppressorgenen und ihren Genprodukten reguliert. Die 

Gensysteme wie Transkriptionsregulatoren, DNA-Reparaturgene und Apoptosegene 

spielen bei der Tumorentwicklung eine weitere wichtige Rolle. Sie führen bei 

Tumorzellen intrazellulär gegenüber gesunden Zellen zu einem veränderten 

Proteinpotential. Teile dieses veränderten Proteinpotentials können dann auf 

Zelloberflächen als antigene Peptide von MHC-Molekülen präsentiert werden. Diese 

antigenen Peptide werden auch als Tumorantigene bzw. tumorassoziierte  

Antigene (TAA) bezeichnet und lassen sich in verschiedene Klassen unterteilen 

(Rosenberg 1999; Stevanović 2002; Novellino 2005). Inzwischen wurden mehr als 

2.000 Tumorantigene identifiziert (Yang F und Yang XF 2005). Einige ausgesuchte 

Tumorantigene mit ihren zugehörigen HLA-Allelen sind in Tabelle 4 dargestellt. 

Tabelle 4: Beispiele von humanen tumorassoziierten Antigenen 

  Antigen-Klasse TAA HLA-Allele 

1. Cancer-Testis Antigene BAGE Cw*16 

  GAGE-1, -2 Cw*06 

  MAGE-1 A*01, A*03, A*24, Cw*16 

  MAGE-3 A*01, A*02, A*24, B*44 

    NY-ESO-1 A*02, A*31 

2. Melanozyten-Differenzierungsantigene gp100 
A*02, A*03, A*24, A*68, 
B*35:01, Cw*08 

  Melan A/MART-1 A*02 / B*45 

  Tyrosinase A*01, A*02, A*24, B*44 

3. Mutationsantigene β-catenin A*24 

  Caspase-8 B*35 

  CDK-4 A*02 

  MUM-1 B*44 

  K-RAS B*35 

    N-RAS A*01 

4. Überexprimierte Antigene Adipophilin A*02 

  HER-2/neu A*02, A*03, A*24 

  MUC-1 A*02, A*11 

  PRAME A*02, A*24 

  p53 A*24, B*46 

    Survivin A*02 

5. Virale Antigene HPV-derived E6 A*02 

  LMP1 A*02 

    LMP2 A*02 

Quelle: Rosenberg 1999; Jäger et al. 2003; Novellino 2005. 
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1. Cancer-Testis Antigene (CT) 

Normalerweise werden Cancer-Testis Antigene nur in Keimzellen des Hodens,  

den Trophoblasten der Plazenta und den normalen Ovarialzellen exprimiert  

(van der Bruggen 1994; Chen YT et al. 1997). Sie können deshalb nur in diesen 

Geweben detektiert werden. Für gewöhnlich befinden sich CT in adultem Gewebe in 

ruhendem Zustand (de Smet et al. 1994), können aber bei verschiedenen Tumortypen 

durch Transkription reaktiviert werden (de Smet et al. 1999). In anderen Gewebearten 

werden sie daher nur bei fortschreitenden Tumorerkrankungen exprimiert. Das  

erste Cancer-Testis Antigen, das identifiziert wurde, war das Antigen MAGE-1  

(van der Bruggen et al. 1991). 

2. Melanozyten-Differenzierungsantigene 

Die Melanozyten-Differenzierungsantigene sind spezifisch für die Haut und werden nur 

in Melanozyten und in besonderem Maße in Melanomen exprimiert. Viele dieser 

Melanozyten-assoziierten Proteine spielen eine Rolle in der Synthese von Melanin. 

3. Mutationsantigene 

Bei den Mutationsantigenen handelt es sich um mutierte Proteine, die durch 

Translokation oder Punktmutation hervorgerufen werden. Mutationen können in 

normalen gesunden Genen jeglichen Gewebes vorkommen. Bei Gen-Veränderungen, 

wenn zelleigene Reparatur-Mechanismen nicht greifen, können sie zur malignen 

Transformation einer Zelle führen und werden daher ausschließlich in Tumorgeweben 

exprimiert. 

4. Überexprimierte Antigene 

Überexprimierte Antigene sind in Normalgeweben schwach exprimiert, können aber in 

Tumorgeweben stark exprimiert sein und haben oft keine Gewebspezifität. Zu diesen 

Antigenen zählen beispielsweise das Tumorsuppressorprotein p53 und HER2/neu.  

In vielen gastrointestinalen sowie in esophagealen Tumoren ist p53 überexprimiert 

(Umano et al. 2001), HER2/neu (human epidermal receptor 2 / neurological) vor allem 

beim Mamma- und Ovarialkarzinom (Fisk et al. 1995). 

5. Virale Antigene 

Die Viralen Antigene werden durch Infektionen mit verschiedenen Viren reproduziert. 

Sie werden in verschiedenen Tumoren exprimiert, bei denen ein ursächlicher 

Zusammenhang mit Virusinfektionen stattfand. Eines der wohl bekanntesten dieser 

Antigene ist das HPV (Humanes Papillom-Virus), das die Schleimhaut des 

Genitaltraktes infizieren kann. In infizierten Zellen kann dann ein unkontrolliertes 

Wachstum bis hin zum Zervixkarzinom hervorgerufen werden. Da sich diese Antigene 

aus einer virusinfizierten Zelle entwickeln, stellen sie relevante Zielantigene dar. 

Da es sich bei den Cancer-Testis Antigenen und den Melanozyten-Differenzierungs-

antigenen jeweils um gewebespezifische Antigene handelt, sind sie für den Einsatz als 

Zielantigene einer Immuntherapie von besonderem Interesse, weil die Gefahr einer 

Autoimmunreaktion als eher unwahrscheinlich einzustufen ist.  
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So sind zum Beispiel im Hodengewebe keine MHC-I-Moleküle vorhanden, weshalb 

diese Zellen immunprivilegiert sind. Wird nun eine Immuntherapie mit Cancer-Testis 

Antigenen durchgeführt, so werden die Zellen des Hodengewebes nicht mit angegriffen 

(Smith und Cerundolo 2001).  

Anders dagegen verhält es sich bei Tumorantigenen, die in vielen Zellen sowohl in 

Tumorzellen als auch in normalem gesundem Gewebe exprimiert werden. Bei einer 

Immuntherapie auf Peptid-Basis kann schon eine geringe Menge eines Antigens 

ausreichen, um Immunreaktionen gegen Antigen-exprimierendes Normalgewebe 

auszulösen. Trotz dieser Tatsache wurden die beiden tumorselektiven Antigene p53 

und HER2/neu, die auf vielen Zellen exprimiert werden, bereits zur aktiven 

Immunisierung bei Patienten eingesetzt (Disis und Cheever 1996).  

1.4 Zielsetzung dieser Arbeit 

Obwohl das Nierenzellkarzinom von allen Tumorerkrankungen im Gegensatz zu 

anderen malignen Erkrankungen in einer geringen Prozentzahl vorkommt, beträgt die 

errechnete Sterberate bei Männern bis zu 3,6 %, bei Frauen bis zu 2,7 % pro Jahr und 

ist damit fast annähernd so hoch wie die jährliche Neuerkrankungsrate. Eine der 

Hauptursachen dafür ist vermutlich auf die geringe Ansprechbarkeit der klassischen 

Chemotherapie sowie der Strahlentherapie zurückzuführen, die nur sehr geringe 

Heilungserfolge aufweisen (siehe unter 1.1.4.2).  

Ziel dieser Arbeit ist es, MHC-gebundene tumorassoziierte Peptide aus primären 

Nierenzellkarzinomen zu isolieren. Aus diesen isolierten Peptiden sollen 

Peptid-basierte Impfstoffe hergestellt werden, um damit eine spezifische Immunantwort 

betroffener Patienten auszulösen. Allerdings gibt es bis heute nur eine geringe Anzahl 

bekannter Peptide, die beim Nierenzellkarzinom tumorassoziiert sind und somit als 

Impfstoffe eingesetzt werden können. Es sollen daher neue weitere tumorassoziierte 

Peptide isoliert und neue Quellproteine identifiziert werden. Da jeder Mensch auf 

Grund des Polymorphismus ein einzigartiges und individualtypisches Repertoire an 

HLA-spezifischen präsentierten Peptiden aufweist, sollten Impfstoffe auf Peptid-Basis 

nach Möglichkeit diesen individualtypischen Eigenschaften entsprechen.  

Deshalb ist es ein weiteres Ziel, die im Zuge eines chirurgischen Konzeptes erhaltenen 

Gewebeproben von Tumorresektaten jedes einzelnen Patienten auf seine 

HLA-spezifischen präsentierten Peptide zu untersuchen, um damit eine individuell auf 

den einzelnen Patienten zugeschnittene Tumorvakzine herzustellen. Das 

Immunsystem hat im Prinzip die Fähigkeit, bösartige Zellen zu erkennen und zu 

zerstören. Diese Fähigkeit soll gezielt angeregt werden. Gelingt es, diese Fähigkeit mit 

einer Impfung gezielt anzuregen und zu nutzen, kann diese Immuntherapie ein 

effizientes Verfahren zur Behandlung des Nierenkrebses darstellen. 
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2 Material & Methoden 

2.1 Material 

2.1.1 Geräte und Verbrauchsmaterialien 

Tabelle 5: Geräte 

Produkt Hersteller 
Becherglas von Schott Zentrallager, Universität Tübingen 

Branson Sonifier 250 Branson Ultrasonics, Danbury, USA 

Erlenmeyerkolben  Zentrallager, Universität Tübingen 

Gefrierschrank (-20) Liebherr, Deutschland 

Gefrierschrank Thermo Forma (-80)  Klatt, Berlin 

Gefriertrockner KF-2-  Saur, Reutlingen 

Glaspipetten von Hirschmann (5 ml, 10 ml) Zentrallager, Universität Tübingen 

Hamilton Glasspritze (100 �l, 250 �l) Hamilton, Reno, USA 

HPLC Eksigent Nano LC-2D Eksigent, Dublin 

Kühlschrank Liebherr, Deutschland 

Lyophilisierungsanlage Vaco5 Zirbus, Bad Grund 

Magnetrührerer RCT basic IKA, Staufen 

Massenspektormeter Q-TOF Ultima  Waters/Micromass, Milford, USA 

Massenspektrometer LTQ Orbitrap Thermo Scientific, Deutschland 

MassLynx Software V 4.0 Waters/Micromass, Milford, USA 

Mixer Waring Commercial Laboratory  
Blender 

Waring, Torrington 

Photometer Ultraspec 300 Pharmacia Biotech, Uppsala, Schweden 

Pipettierboy  Integra Biosience  

Potter Heidolph RZR 2020 mit 
Glasgefäß und Teflonpistill 

Heidolph Instruments GmbH,  
Schwabach 

Proteome Discoverer Software 1.1 Thermo Sientific, Deutschland 

Quarzküvette (10 �l) Hellma, Müllheim 

Rotator mit Drehteller und Klammern Bachhofer, Reutlingen 

Rotoren für Ultrazentrifuge Optima L-80  
(Ti45, Ti70)  

Beckman Coulter, Krefeld 

Schlauchpumpe PK-1 Amersham, Pharmacia Biotech, Freiburg 

Schüttler Rotamax 120  Heidolph Instruments GmbH,  
Schwabach 

Tischkühlzentrifuge Biofuge fresco Heraeus, Hanau 

Tischkühlzentrifuge Megafuge 1.0 R Heraeus, Hanau 
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Produkt Hersteller 

Tubes für Ultrazentrifuge Optima L-80  Beckman Coulter, Krefeld 

Ultraschallbad Sonorex Super RK 514 BH Bandelin, Berlin 

Ultrazentrifuge Optima L-80  Beckman Coulter, Krefeld 

Vortexer 7-2020 neoLab, Heidelberg 

Vortexer Minishaker MS1 IKA, Staufen 

Waage Sartorius AC 211 S Sartorius, Göttingen  

Wasserbad Thermomix BM-S  Braun, Biotech Göttingen 

 
Tabelle 6: Verbrauchsmaterialien 

Produkt Hersteller 
Affinitätssäulen Econo-Column BioRad, München 

Agilent Peptide Cleanup C18 Spin Tubes Agilent, Böblingen 

Amicon Filter Ultra-4, MWCO 10.000 Da  
(15 ml) 

Millipore, Schwalbach 

BD FalconTM-Röhrchen, konisch  
(15 ml, 55 ml) 

Becton Dickinson, Heidelberg 

Einmalpipetten (5 ml, 10 ml) Becton Dickinson, Heidelberg 

Einmalspritzen (1ml, 10 ml, 30 ml) Becton Dickinson, Heidelberg 

Eppendorf Tubes (1,5 ml) Eppendorf, Hamburg 

Filter (0.20 �m) Millipore, Schwalbach 

pH-Indikatorstäbchen Universalindikator  
pH-Fix 0-14 

Merck, Darmstadt 

Pipettierspitzen (20 µl - 1000 µl) Eppendorf, Hamburg 

Sartolab-P20 Filter (0,20 µm) Sartorius, Göttingen 

Stericup Filter Unit (0,22 µm) Millipore, Schwalbach 

 

2.1.2 Chemikalien und Antikörper 

Tabelle 7: Chemikalien (Reinheit mindestens p.a., falls nicht angegeben) & Antikörper 

Reagenzien Hersteller 
Acetonitril 50% (AcN) Fluka Chemie, Buchs, Schweiz 
Ameisensäure (FA) Merck, Darmstadt 

Antikörper L243  Falkenburger C., Universität Tübingen 

Antikörper W6/32  Falkenburger C., Universität Tübingen 

CHAPS Roche Diagnostics GmbH, Mannheim 

CNBr-activated SepharoseTM 4B Amersham, Pharmacia Biotech, Freiburg 

Glycin Roth, Karlsruhe 
1H4- und 2D4-NicNHS-Ester Weik, S., Universität Tübingen 

Salzsäure (HCl) Merck, Darmstadt 

Hxdroxylamin Sigma-Aldrich, Buchs, Schweiz 
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Reagenzien Hersteller 

LC-MS Wasser LiChrosolv Merck, Darmstadt 

O-Methyl-Isoharnstoff-Hemisulfat 94 %  ACROS Organics, Geel, Belgien 

PBS Dulbecco's Falkenburger C., Universität Tübingen 

Phosphatpuffer (Na2HPO4, NaH2PO4)  Merck, Darmstadt 

Protease Inhibitor Cocktail Tablets Roche Diagnostics GmbH, Mannheim 

Trifluoressigsäure (TFA) Applied Biosystems, Warrington, UK 

2.1.3 Rezepturen 

Lysepuffer 

Zur Herstellung des doppelt konzentrierten Lysepuffers wurden 200 ml PBS 

(phosphate buffered saline), 2,4 g CHAPS (3-[(3-Cholamidopropyl)-dimethyl-ammonio]-

1-propansulfonat) und 6 Proteinaseinhibitor-Tabletten (Protease Inhibitor Cocktail 

Tablets) verwendet.  

Kopplungspuffer 

Zur Herstellung des Kopplungspuffers wurden 0,5 M NaCl und 0,1 M NaHCO3 in 1 Liter 

doppelt entionisiertem Wasser gelöst und mit NaOH auf einen pH-Wert von 8,3 

eingestellt. 

GUA-Reagenz 

Zur Herstellung der 1,1 M GUA-Reagenz wurden 100 mg O-Methyl-Isoharnstoff in 

102 µl doppelt entionisiertem Wasser gelöst. 

Elutionslösung zur Modifizierung 

50 ml Acetonitril und 1 ml 10 %-ige Ameisensäure wurden auf 100 ml LiChrosolv 

aufgefüllt. 

Lösungsmittel für die analytische HPLC 

Als Eluent A wurde eine Mischung aus 97,9 % H2O (MS-grade, Baker), 2 % Acetonitril 

und 0,1 % Ameisensäure (pH = 3) verwendet, als Eluent B eine Mischung aus 19,9 % 

H2O (MS-grade, Baker), 80 % Acetonitril (HPLC-grade, Lichrosolv) und 0,1 % 

Ameisensäure (pH  = 3). 
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2.2 Biochemische Methoden 

2.2.1 Isolierung MHC-Klasse-I gebundener Peptide 

Bei dieser Methode werden aus soliden Tumoren des Nierenzellkarzinoms und, sofern 

vorhanden, aus korrespondierendem gesundem Nierengewebe die von den 

MHC-Molekülen präsentierten Peptide isoliert. Die Gewebeproben wurden nach 

schriftlicher Einverständniserklärung betroffener Patienten von der Klinik für Urologie 

der Universität Tübingen zur Verfügung gestellt. Noch intraoperativ wurden die 

Resektate mit flüssigem Stickstoff schockgefroren und bis zur weiteren Verarbeitung 

bei Tiefkühltemperaturen von -80°C aufbewahrt. Zusätzlich wurde den Patienten zur 

HLA-Typisierung Blut abgenommen. Die Isolierung MHC-Klasse-I gebundener  

Peptide verläuft in mehreren Schritten. Dabei werden die im Gewebe enthaltenen 

MHC-Peptid-Komplexe affinitätschromatographisch aufgereinigt. Die ersten beiden 

Schritte, die Herstellung des Gewebelysats und die Präparation der Säulen für die 

Affinitätschromatographie, wurden parallel durchgeführt. Um die empfindlichen 

Proteine gegenüber Verderb zu schützen, wurden alle Schritte zur Gewinnung des 

Gewebelysats bei Kühlraumtemperaturen von maximal + 4°C, die Präparation der 

Säulen dagegen bei Raumtemperatur (RT) durchgeführt. Die sich anschließende 

Affinitätschromatographie sowie die einen Tag später durchgeführte Elution wurden 

wiederum bei Kühlraumtemperaturen von maximal + 4°C durchgeführt. Zur  

Bindung der MHC-Klasse-I-Moleküle wurde der anti-HLA-A, -B und –C-spezifische 

anti-human IgG2a-Antikörper W6/32 verwendet (Barnstable et al. 1978;  

Parham et al. 1979), und zur Bindung der MHC-Klasse-II-Moleküle der anti-HLA-DR-

spezifische Antikörper L243 (Lampson und Levy 1980).  

2.2.1.1 Herstellung des Gewebelysats 

Die tiefgefrorenen Gewebeproben wurden unter Zugabe eines zuvor hergestellten 

doppelt konzentriertem Lysepuffers1 im Verhältnis 1:1 zunächst grob und dann mit 

einem Mixer fein zerkleinert. Während dieses Prozesses tauten die Proben auf. Ein 

weiterer Gewebeaufschluss erfolgte mit dem „Potter“ nun unter Zugabe eines dem 

Tumorvolumen äqivalenten einfach konzentrierten Lysepuffers.  

Die erhaltene Zellsuspension wurde eine Stunde auf dem Magnetrührer inkubiert und 

anschließend dreimal für je 20 Sekunden mit Ultraschall (Branson Sonifier 250) 

behandelt. Die Ultraschallwellen bewirken einen weiteren Aufschluss von 

Zellmembranen, wodurch Transmembranproteine herausgelöst werden. 

                                                
1 Im Lysepuffer enthaltenes CHAPS bewirkt als Detergenz einen ersten Aufschluss der  
Zellmembranen, wodurch HLA-Moleküle herausgelöst werden. Um die in den Zellen 
enthaltenen HLA-Komplexe nicht durch aktivierte Proteinasen zu schädigen, wurden dem 
Lysepuffer zusätzlich Proteinaseinhibitoren zugesetzt. 
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Nach einer weiteren Stunde Rühren wurde das Lysat bei 4 000 rpm zentrifugiert 

(Tischkühlzentrifuge Megafuge 1.0 R), um Zelldetritus aus dem Lysat zu beseitigen. 

Zur Beseitigung aller noch schweren Zellbestandteile inklusive Zytoskelett wurde nun 

der Überstand bei 40 000 rpm unter Vakuumbedingungen (Ultrazentrifuge Ultima L-80) 

eine Stunde zentrifugiert. Schließlich wurde der Überstand mit einem Proteinfilter der 

Porengröße 0,20 �m sterilfiltriert, um alle noch vorhandenen kolloidalen 

Zellbestandteile und Fett vollständig zu entfernen. 

2.2.1.2 Herstellung der Antikörpersäulen  

Pro Gewebeprobe wurden mit den o.g. Antikörpern, die als stationäre Phase dienten, 

je zwei Chromatographiesäulen hergestellt. Nach Abwiegen der benötigten Menge 

CNBr-Sepharose 4B (37,5 mg Sepharose pro 1 mg AK), wurde diese zunächst mit 

1 mM HCl auf einem „Rotator“ aktiviert und gequollen. Die nach allen 

Zwischenschritten notwendige Inkubationszeit wurde jeweils auf einem Rotator 

durchgeführt. Daraufhin erfolgte eine Zentrifugation über 4 Minuten bei 300 rpm ohne 

Bremse mit anschließendem Verwerfen des Überstandes. 

Nach 30 Minuten Inkubationszeit wurde die aktivierte CNBr-Sepharose 4B 

abzentrifugiert und der Überstand verworfen. 1 mg AK pro Gramm Gewebe wurde der 

Sepharose mittels Kopplungspuffer zugesetzt und 2 Stunden inkubiert. Durch Zugabe 

des Kopplungspuffers wurde der saure pH-Wert des sedimentierten Gels neutralisiert. 

Zur photometrischen Bestimmung wurden direkt nach Zugabe der Antikörper (t0
2) und 

nach Ablauf der Inkubationszeit (t1) je 200 �l abgenommen. Die Messung der OD3 

erfolgte bei 280 nm4. Mit dem Quotient der OD280 zwischen t0 und t1 wurde die 

Bindungskapazität der Antikörper an die Sepharose ermittelt und lag in der Regel 

zwischen 90 % und 99 %. Die restlichen freien aktivierten Bindungsstellen der 

CNBr-Sepharose wurden mit 0,2 M Glycin-Lösung durch eine 60-minütige Inkubation 

mit anschließender Zentrifugation blockiert. Schlussendlich wurde die Sepharose noch 

zweimal mit PBS gewaschen und die Chromatographiesäulen mit der Sepharose 

beschickt. 

2.2.1.3 Affinitätschromatographie und Elution 

Das aus den Gewebeproben gewonnene Filtrat wurde über Nacht zyklisch mit einer 

Flussrate von 1-2 ml/min über die Antikörpersäulen geleitet, damit möglichst alle im 

Filtrat enthaltenden MHC-Peptid-Komplexe an die mit Antikörper beladene Sepharose 

binden konnten. Am nächsten Tag wurden mit einer Säureextraktion nicht kovalent 

gebundene Peptide, MHC-Moleküle und zum Teil Antikörper von der Sepharose 

abgelöst. Dazu wurden die Antikörpersäulen 30 Minuten zunächst mit PBS bei einer 

Flussrate von 1-2 ml/min gewaschen. 

                                                
2 Zeit 
3 Optische Dichte 
4 Nanometer 



2 Material & Methoden 28 

 

Ein zweiter Waschschritt mit doppelt entionisiertem Wasser folgte bei gleicher 

Flussrate über 60 Minuten. Danach wurden die Säulen trockengepumpt. Nun wurde 

das Gelbett der Säulen mit 0,2 % TFA (Trifluoressigsäure) soweit aufgefüllt, dass die 

Sepharose gerade bedeckt war. Beim ersten Elutionsschritt wurden zusätzlich noch 

10 �l 10 % TFA pro 10 mg AK zugesetzt und unter kräftigem Schütteln etwa 

20 Minuten inkubiert. Nach der Inkubation wurde die TFA-Lösung auf einen Proteinfilter 

(Amicon Ultra-4, MWCO 10.000 Da) pipettiert.  

Weitere sieben- bis neunmal wurde die Sepharose mit 0,2 % TFA bedeckt, inkubiert 

und die Lösung abpipettiert. Anschließend wurde der Amiconfilter bei 4 000 rpm 

solange filtriert, bis sich das Volumen des Eluats restlos als Filtrat im Reagenzröhrchen 

befand. Aufgrund der Proteinfiltergröße befanden sich im Filtrat nur Peptide, die ein 

Molekulargewicht von maximal 10 kDa aufwiesen. Die restlichen Moleküle wiesen ein 

Molekulargewicht von 45 kDa (MHC-I-Moleküle α-Kette), 12 kDa (MHC-I-Moleküle 

β-Kette), 22 kDa (Molekulargewicht der IgG-AK λ-Kette) und 55 kDa (Molekulargewicht 

der IgG-AK γ-Kette) auf. Anschließend wurde das Filtrat bei -80°C eingefroren. Als 

letzter Schritt folgte die Lyophilisierung (Gefriertrocknung). Bei dieser Methode wird 

dem eingefrorenen Filtrat schonend das enthaltene Wasser entzogen. 

2.2.2 Modifizierung von Peptiden 

Die Modifizierung von Peptiden erlaubt eine Anlagerung von  

1-(Nicotinoyloxy)succinimid (NIC-NHS) an der primären Aminogruppe von 

Aminosäuren. Dabei wird die Nikotinsäure über eine Amid-Bindung am N-Terminus 

kovalent gebunden. An den Lysinresten der Peptide wurden die ε-Aminogruppen  

mit einem Guanidin-Rest blockiert. Durch diesen Vorgang wird verhindert, dass  

bei der Modifizierung der α-Aminogruppen nicht gleichzeitig ε-Aminogruppen von  

Lysinresten mit Nikotinsäure reagieren können. Wird an eine Gruppe von  

Peptiden 1-([H4]Nicotinoyloxy)succinimid gebunden, an die andere dagegen 

1-([D4]Nicotinoyloxy)succinimid, so sind die Peptide der ersten Gruppe mit dem 

leichten Isotop der Nikotinsäure (NIC), die der anderen mit der schweren Form der 

Nikotinsäure (dNIC) markiert. Zwischen NIC und dNIC besteht eine Massendifferenz 

von 4 Da, weshalb sich die Peptide im Massenspektrometer durch ihre 

Massendifferenz leicht voneinander unterscheiden lassen. Daduch können 

beispielsweise Peptide von Tumorgewebe und von Normalgewebe in einem Lauf einer 

massenspektrometrischen Messung gemischt und trotzdem relativ zueinander 

quantifiziert werden.  

2.2.2.1 Guanidinylierung der ε-Aminogruppen von Lysinen 

Die lyophilisierten und tiefgefrorenen HLA-Ligand-Filtrate wurden in 500 �l doppelt 

entionisiertem Wasser aufgenommen und die Peptidlösungen sodann mit 10 M NaOH 

auf einen pH-Wert von 10,5 bis 11 eingestellt. Zu jeder Peptidlösung wurden 92 �l 

GUA-Reagenz (O-Methyl-Isoharnstoff) zugegeben. Die Guanidierung erfolgte 
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10 Minuten bei + 65°C. Die Reaktion wurde mit 10 �l konzentrierter Ameisensäure auf 

Eis durch eine pH-Reduzierung auf 3 bis 4 gestoppt.  

2.2.2.2 Nikotinylierung der α-Aminogruppen guanidinylierter Peptide 

Die guanidinylierten Peptide wurden wie nachfolgend beschrieben auf zentrifugen-

tauglichen Säulchen nikotinyliert, die mit C18 reversed-phase-Säulenmaterial gefüllt 

waren (Agilent Peptide Cleanup C18 Spin Tubes). Nach allen Reaktionsschritten 

erfolgte eine Zentrifugation bei 2 000 rpm für je 15 sec bei RT, die mit einer 

Tischzentrifuge durchgeführt wurde (Biofuge Fresco, Heraeus). Anschließend wurden 

die C18-Säulchen zunächst je dreimal mit 200 �l 0,1 % TFA aktiviert und dann dreimal 

mit je 200 �l ddH2O / 0,1 % FA (v/v) äquilibriert. Im Anschluss daran wurden die 

guanidinylierten Peptide in drei 200 �l-Portionen auf die Säulchen geladen. Dabei 

wurde jede Portion Peptide durch das C18-Säulenmaterial zentrifugiert. Danach 

wurden die Säulen dreimal mit 200 �l ddH2O gewaschen und vor der eigentlichen 

Nikotinylierung auf abgeschnittene 1 ml-Einmalspritzen gesteckt (Becton Dickinson). 

Zur Nikotinylierung wurden 500 �l der jeweiligen 1H4- bzw. 2D4-NicNHS-Ester-Lösung 

auf die Säulen aufgetragen und innerhalb von 20 Minuten jede Minute 25 �l Lösung mit 

dem Kolben der Spritze aus den Säulen gesaugt. Wieder wurden die Säulen dreimal 

mit je 200 �l ddH2O gewaschen. Um eventuell eingegangene Verbindungen zwischen 

NIC-Ester und Tyrosinresten zu lösen, wurden die Säulen erneut auf 

1 ml-Einmalspritzen appliziert und je 500 �l Hydroxylamin mit einer Geschwindigkeit 

von 50 �l/min mit Hilfe der Spritzen durch die Säulen gezogen. Nach je drei weiteren 

Waschschritten mit ddH2O wurden die Peptide durch viermalige Applikation von je 

50 �l Elutionslösung (50 % AcN / 1 % FA) von den Säulen eluiert und die Eluate 

gepoolt. Anschließend wurden die Proben für etwa 1,5 Stunden in einer SpeedVac 

(Vacuum Concentrator, Bachhofer) für die MS-Analysen eingeengt.  

2.3 Analytische Methoden 

2.3.1 Massenspektrometrische Analysen 

Die Massenspektrometrie wird heute als Methode der Wahl zur Sequenzierung von 

Peptiden eingesetzt. Sie ist eine Methode zur Identifizierung der molekularen Masse 

von chemischen Verbindungen durch Messung des Masse-zu-Ladungs-Verhältnisses 

ionisierter Analyten. Die Bestimmung der Masse erfolgt meistens durch die 

Manipulation von Ionen mit elektromagnetischen Feldern in der Gasphase. Alle 

massenspektrometrischen Analysen laufen in drei Schritten ab. In einer Ionenquelle 

werden die zu messenden Proben ionisiert. Danach folgt die Auftrennung der Ionen 

nach ihrem Masse-zu-Ladungs-Verhältnis (m/z) im Massenanalysator. Im letzten 

Schritt folgt die Detektion der Ionen in einem Detektor, der die Informationen in ein 

Massenspektrum umwandelt.  
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Um große Moleküle wie Proteine oder Peptide in die Gasphase zu überführen ohne sie 

zu zerstören, werden schonende Ionisierungsmethoden benötigt. Diese 

zerstörungsfreie Überführung in die Gasphase wird durch die Elektrospray 

Ionisation (ESI) und die Matrix-Assisted Laser Desorption / Ionisation (MALDI) 

ermöglicht. Dies sind die Ionenquellen, die in der Peptid- und Proteinanalytik am 

häufigsten eingesetzt werden. 

Die ESI eignet sich gut für die fragmentierungsarme Ionisierung von großen 

nichtflüchtigen Biomolekülen. Da diese Methode bei allen massenspektrometrischen 

Analysen verwendet wurde, soll sie hier näher beschrieben werden. Zur 

Fragmentierung wird die Lösung einer Probe durch eine sehr feine Kapillare zu einer 

Metallspitze geleitet, an die eine Spannung angelegt ist. Die Spannung führt zum 

Aufbau eines elektrischen Feldes zwischen Kapillare und Gegenelektrode. Das 

elektrische Feld durchdringt die Lösung, weshalb die Ionen der Lösung zur 

Gegenelektrode wandern.  

An der Spitze der Kapillare bildet sich ein Überschuss von gleichartig geladenen Ionen, 

die sich gegenseitig abstoßen. Es entsteht ein Flüssigkeitsfilament, aus dem sich 

kleine geladene Tröpfchen im Mikrometerbereich abschnüren und als feines Aerosol 

aus der Kapillare austreten. Die Zugabe eines neutralen Trägergases unterstützt die 

Vernebelung und fördert die Verdampfung des Lösungsmittels. Dadurch verkleinert 

sich die Tröpfchengröße, gleichzeitig nimmt die Dichte des elektrischen Feldes auf der 

Tröpfchenoberfläche zu. Der Radius der Tröpfchen wird immer kleiner, bis er 

schließlich ein bestimmtes Limit unterschreitet. Dadurch zerfallen die einzelnen 

Tröpfchen durch eine Coulomb-Explosion in sehr viele, noch kleinere Tröpfchen 

(Kebarle 2000), bis ein Tröpfchen nur noch ein Makromolekül, also ein Peptid, enthält 

(Schmelzeisen-Redeker et al. 1998). Durch dieses Verfahren entstehen mehrfach 

positiv geladene Ionen [M + nH]n+, weshalb sich innerhalb eines Spektrums eines 

Analyten eine Serie von nacheinander geschalteten Signalen mit unterschiedlichen 

m/z-Werten ergeben. Diese Signale unterscheiden sich in der Anzahl der angelagerten 

Protonen n und damit in ihrer Ladung. 

Im Gegensatz zur ESI werden bei der MALDI-Massenspektrometrie Analyten mit 

Photonen beschossen. Dazu werden niedermolekulare Matrix-Moleküle auf einer 

Metalloberfläche mit einem gepulsten UV-Laserstrahl angeregt. Durch die 

Laserbestrahlung kommt es zu einem Energieübertrag der angeregten 

niedermolekularen Matrix auf die in einem Kristall eingebauten Analyten, wodurch die 

Analyt-Moleküle desorbiert und ionisiert werden. Charakteristisch bei diesem Vorgang 

ist, dass meist einfach positiv geladene Ionen in die Gasphase überführt werden, die 

im elektrischen Feld extrahiert und beschleunigt werden.  

Eine sehr häufige Kombination dieser Systeme ist das aus zwei Analysatoren 

bestehende Q-TOF-Massenspektrometer (Q-TOF-MS), mit dem zwei meiner Proben 

untersucht wurden (RCC460; RCC471). Bei diesem System ist zwischen Ionenquelle 

und dem Flugzeitmassenanalysator ein Quadrupol (Q) zwischengeschaltet.  
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Letzterer dient als Massenfilter. Er besteht aus vier Metallstäben, die parallel  

und in gleichem Abstand zueinander liegen, an denen Gleich (U)- und 

Wechselspannungen (V) angelegt sind. Durch die Spannungen wird ein elektrisches 

Feld erzeugt, wodurch die von der Ionenquelle eingeleiteten Ionen nach m/z 

ausgewählt werden können. 

Zu jedem erzeugten Ion existiert ein Verhältnis von Gleich- und Wechselspannung, das 

dem Ion die Passage durch den Quadrupol erlaubt. Dieses Verhältnis bestimmt den 

Filterdurchlass bzw. das Auflösungsvermögen, da nur Ionen eines bestimmten m/z bei 

einem bestimmten Verhältnis von U und V die vier Pole entlang fliegen und dadurch 

den Filter passieren können. Die Passage der Ionen wird dadurch erreicht, dass die 

Polarität der Stäbe wechselt, bevor die Ionen auf den Stäben auftreffen können. Somit 

werden sie von den geladenen Stäben abgestoßen. Ionen mit unterschiedlichen bzw. 

nicht definierten m/z-Verhältnissen fliegen auf instabilen Bahnen, sie kollidieren mit den 

Metallstäben und werden dadurch in ihrer Passage gestoppt.  

In der dahintergeschalteten feldfreien Vakuum-Flugröhre, dem TOF-MS, fliegen 

beschleunigte Teilchen gleicher kinetischer Energie mit unterschiedlichen 

Geschwindigkeiten wenn sie unterschiedliche Massen aufweisen. Diese 

unterschiedlichen Massen werden durch Messungen der Flugzeit bestimmt. Die 

Bestimmung der zu analysierenden Ionen findet im Hochvakuum statt. Dieses 

Hochvakuum stellt ein feldfreies Vakuum dar. Dadurch fliegen die zuvor 

beschleunigten Ionen mit ihrer erreichten Geschwindigkeit dahin, ohne erneut 

beschleunigt oder abgebremst zu werden. Alle Ionen durchfliegen die gleiche Strecke 

des Flugrohrs und treffen auf einen Detektor. Ionen mit unterschiedlichen Massen 

fliegen mit unterschiedlichen Geschwindigkeiten und erreichen somit den Detektor zu 

unterschiedlichen Zeiten. Durch die Bestimmung der Zeit, die die Ionen benötigen um 

die Strecke zwischen Ionenquelle und Detektor zu durchfliegen, werden ihre Massen 

ermittelt.  

Durch Messung der Flugzeit lässt sich somit das m/z-Verhältnis aller Analyten 

berechnen: 

Ekin = ²
2

1
vm ⋅⋅ = 

²2 t
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⋅

⋅
 = Uez ⋅⋅  

m/z = 
²

²2

L
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m = Masse des Ions 

v = Geschwindigkeit des Ions nach Beschleunigungsstrecke 
z = Ladungszahl 

e = Elementarladung 
t = Gesamtflugzeit 
L = Länge der feldfreien Driftstrecke des Flugrohrs 

Ekin = kinetische Energie des Ions 
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Es gibt zwei verschiedene Analysenmethoden. Bei der ersten findet keine 

Fragmentierung statt, da der Quadrupol (MS1) und die dahinter geschaltete 

Kollisionszelle nicht eingeschaltet sind. Dadurch werden Ionen direkt zum sog. Pusher 

geleitet, der den Analyten direkt in den TOF-Analysator leitet. Bei der zweiten Methode 

dagegen werden Ionen fragmentiert. Der Quadrupol wird so programmiert, dass nur 

Ionen mit definierten m/z-Verhältnissen in die Kollisionszelle gelangen, die mit einem 

Kollisionsgas (gewöhnlich Helium oder Argon) gefüllt ist. Dabei wird ein 

Zusammenstoß der Analyt-Ionen mit dem Kollisionsgas erzwungen, infolge dessen 

Fragmentierungsreaktionen entstehen (collisionally induced decay, CID). Vor Eintritt in 

die Kollisionszelle werden die Ionen nochmals mit einer zusätzlichen Spannung 

beschleunigt, um damit den Durchtritt und dadurch die Detektierbarkeit der Fragmente 

zu gewährleisten. Die Gerätesteuerung, Datenaufnahme und Datenverarbeitung wurde 

mit dem Software-Programm MassLynx 4.0 durchgeführt. 

Beim LTQ-Orbitrap-MS (Thermo Fisher Scientific, Bremen) handelt es sich um ein 

Massenspektrometer der neuen Generation, mit dem ein weiterer Teil meiner Proben 

untersucht wurde. Dieses Massenspektrometer ist ein Hybrid-MS bestehend aus einer 

linearen Ionenfalle und einem neu entwickelten Analysator, einer elektrostatischen 

Ionenfalle. Auch hier kommen die Ionen von einer ESI, werden aber im Gegensatz zum 

Q-TOF über mehrere dazwischen geschaltete Transport-Module geleitet, bevor sie in 

die kombinierte C-Trap / HCD Collision Cell Combination (higher-energy collisional 

dissociation, HCD) gelangen. Diese Kombination bewirkt eine höhere und schnellere 

Ausbeute fragmentierter Ionen sowie eine erhöhte Sensitivität (Perry et al. 2008). Sie 

hat den Vorteil, dass auch Ionen fragmentiert werden können, die nur in geringer 

Konzentration vorliegen. Die Ionen werden dabei von den Transport-Multipolen über 

die C-Trap in die HCD-Kollisionszelle geleitet. Hier werden die Ionen sehr stark 

beschleunigt, prallen mit den Stickstoffmolekülen zusammen und werden dabei 

fragmentiert. Danach werden die fragmentierten Ionen wieder in die C-Trap 

zurückbefördert, bevor sie wie unten beschrieben, in die Orbitrap transferiert werden. 

Zu den Transport-Modulen (siehe Abbildung 6) zählt die S-Lens, sie wird auch als 

Stacked Ring Ion Guide bezeichnet. Sie bewirkt einen um den Faktor 5 -10 höheren 

Ioneneinstrom in das Massenspektrometer als herkömmliche Geräte. Nach der S-Lens 

folgt die dual-pressure ion trap. Sie besteht aus zwei identisch nacheinander 

geschalteten Quadrupol-Zellen, die durch eine Linse getrennt sind. Die erste 

Ionenfalle, die high pressure cell, arbeitet mit einem höheren Gasdruck als die zweite 

und erlaubt somit eine höhere Fragment-Ausbeute. In der zweiten Zelle, der  

low pressure cell findet dagegen ein langsames Scannen und Detektieren der Ionen 

statt. 
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Abbildung 6: Schematische Darstellung der LTQ-Orbitrap-MS. Quelle: Olsen et al. 2009. 

Das Prinzip des LTQ-Orbitrap-MS besteht darin, dass Ionen zunächst in der 

Quadrupol-Ionenfalle gespeichert werden, bevor sie axial über ein Radiofrequenz (RF)-

Transport-Oktapol (Multipole) in eine C-förmige Ionenfalle, die C-Trap, ausgeworfen 

werden. Das Volumen der C-Trap ist mit Stickstoff gefüllt. Kollidieren die Ionen mit 

Stickstoff, erfahren sie einen Energieverlust und werden komprimiert, da an beiden 

Enden der C-Trap ein elektrisches Potential angelegt ist. Durch einen 

Gleichstromimpuls werden sie dann komprimiert in die Orbitrap radial 

hineingeschossen. In der Orbitrap rotieren die radial eingeschossenen Ionen durch 

elektrostatische Anziehung auf Kreisbahnen um eine spindelförmige Elektrode, 

gleichzeitig oszillieren die Ionen axial. Diese oszillierenden Ionen induzieren einen 

Strom, der mit Hilfe eines Verstärkers aufgezeichnet werden kann. Dabei erzeugen die 

Ionen einer Masse ein sinusförmiges Signal. Viele Ionen erzielen ein komplexes 

Signal, dessen Frequenz mit Hilfe der Fouriertransformation ermittelt werden kann.  

Der m/z-Wert eines Ions lässt sich mit der Frequenz der axialen Oszillation nach 

folgender Gleichung ermitteln (Perry et al. 2008): 

ω = 
zm

k

/
 

ω = Frequenz der Oszillation 

k = instrumentenabhängige Konstante 

m = Masse des Ions 

z = Anzahl der Ladungen des Ions 
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Die Gerätesteuerung, Datenaufnahme und Datenverarbeitung bei der LTQ-Orbitrap 

wurde mit dem Software-Programm Proteome Discoverer 1.1 durchgeführt. 

Abschließend wurden die fragmentierten Analyten von einem Detektorsystem 

detektiert, welches das Massenspektrum liefert. Häufig wird als Detektor eine  

multi channel plate (MCP) oder ein Sekundärelektronenvervielfacher (SEV) eingesetzt. 

Beim SEV werden durch Sekundäremissionskaskaden kleinste Elektronenströme  

zu messbaren Größen verstärkt. Die MCP ist aus vielfach nebeneinander 

angeordneten Kanälen aufgebaut und ist ein flächenhafter, bildauflösender 

Sekundärelektronenvervielfacher. Er dient zur rauscharmen Verstärkung geringer 

Ströme freier Elektronen, die mit einer bestimmten Energie auf die Platte auftreffen und 

dort Sekundärelektronen auslösen.  

2.3.2 LC-MS-Kopplung 

Vor der massenspektrometrischen Sequenzierung war die chromatographische 

Auftrennung der Peptide notwendig. Dazu wurde eine High Performance Liquid 

Chromatography (HPLC) mit der Elektrospray-Einheit des Massenspektrometers 

gekoppelt (Liquid Chromatography Mass Spectrometry (LC-MS)-Kopplung). Diese 

Methode ermöglicht die fortwährende Aufnahme von MS- und MS/MS-Spektren der 

von der Säule eluierenden Komponenten. Weiterhin erlaubt diese Methode die 

Ermittlung der Retentionszeit, über die zusammen mit der Masse eines Peptids eine 

Aussage über das Peptid vorgenommen werden kann. Die Flüssigchromatographie 

basiert auf der Verteilung und Trennung von Komponenten eines Gemisches zwischen 

einer festen, stationären Phase und einer flüssigen, mobilen Phase.  

Bei der HPLC wird die mobile Phase mit Druck über die stationäre Phase gepumpt, die 

in ein Säulenrohr gefüllt ist. Dabei wird die stationäre Phase ständig von der mobilen 

Phase sowie dem zu trennenden Peptidgemisch durchströmt. Der Vorteil darin liegt in 

der optimalen Trennung auch sehr kleiner Partikel und kleiner Elutionsvolumina. Die 

mobile Phase ermöglicht die Wechselwirkung der Substanzmischung mit der 

stationären Phase. Diese Wechselwirkung bewirkt einen unterschiedlich verzögerten 

Transport der einzelnen Komponenten des Gemisches, welche so nach einer 

bestimmten Retentionszeit das Säulenmaterial in Einzelbestandteile aufgetrennt 

verlassen.  

Bei den massenspektrometrischen Messungen wurde zur Trennung eine 

C18-Nano-HPLC (Eksigent, Dublin) verwendet, der eine C18-Vorsäule vorgeschaltet 

war. Die C18-Säule enthält kovalent gebundene Kohlenwasserstoffketten und dient so 

als unpolarer Träger (reversed phase). Es kommt zu hydrophoben Wechselwirkungen 

zwischen der Substanzmischung und der unpolaren stationären Phase. Während der 

Chromatographie erfolgt die Elution mittels  eines steigenden Anteils eines unpolaren 

Lösungsmittels (Acetonitril). Dieses Lösungsmittel konkurriert um freie Bindungsstellen 

mit den Peptiden, die in Gegenwart eines polaren Eluenten (0,1 % Ameisensäure) an 

der stationären Phase adsorbiert werden. Die Trennung erfolgt mit ansteigender 
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Konzentration des organischen Eluenten, weil sich die Elutionskraft durch Verringerung 

der Polarität der mobilen Phase erhöht. 

Beim Q-TOF betrug die Flussrate des HPLC-Systems üblicherweise 300 nl/min. Vor 

der Probentrennung wurden die Kapillarsäulen 20 Minuten mit 100 % Eluent B 

gewaschen. Nun wurde die gefriergetrocknete Probe in 100 – 150 µl Eluent A 

aufgenommen und manuell in eine 200 µl-Probenschleife injiziert. Unter 

Äquilibrierungsbedingungen wurde die Probe bei einer Flussrate von 20 µl/min 

innerhalb von 30 Minuten aus der Probenschleife auf die C18-Vorsäule geladen. 

Anschließend wurde bei einer Flussrate von 300 nl/min die Vorsäule mit der 

Nano-HPLC-Säule (µ-Kapillarsäule) in Reihe geschaltet, die Probe von der Vorsäule 

eluiert und auf der µ-Kapillarsäule durch einen linearen Gradienten aufgetrennt. Zur 

Reinigung der Säule von stark hydrophoben Probenresten wurde schließlich ein 

weiterer Waschschritt mit Eluent B durchgeführt. 

Beim LTQ-Orbitrap-MS wurde an die HPLC ein Spark Micro Autosampler 

angeschlossen, um das Injizieren der Proben in die Probenschleife zu automatisieren. 

Die Flussrate der Vor- und Trennsäule betrug üblicherweise 500 nl/min. Durch diese 

Flussrate, im Gegensatz zur Flussrate von 300 nl/min beim Q-TOF, wurde die 

Waschzeit am Anfang eines Laufs auf 60 Minuten erhöht. Die im Anschluss 

stattfindende Äquilibrierung dauerte 180 Minuten, bevor die Flussrate des 

Lösungsmittels auf die für die Elution benötigten 300 nl/min reduziert wurde. Danach 

wurde die Probe auf die Vorsäule geladen und durch einen linearen Gradienten 

aufgetrennt. 

2.3.3 Interpretation von MS/MS-Spektren zur Peptidanalyse 

Bei der Massenspektrometrie von Proteinen mit der Elektrospray Ionisation als 

Ionisierungsmethode werden bevorzugt Protonen erzeugt, die an allen basischen 

Stellen der Peptide angeheftet sein können, vor allem an den α-Aminogruppen der 

N-terminalen Aminogruppen und den Seitenketten der basischen Aminosäuren 

Histidin, Lysin und Arginin. In der Gasphase ist die Basizität der Seitenketten sehr 

stark, weshalb an dieser Stelle anhaftende Protonen trotz Stoßaktivierung in der 

Kollisionszelle fixiert sind. Die Protonen an den N-terminalen Enden können jedoch zu 

jeder der Peptidbindungen wandern. Dies wird als Migration durch interne 

Solvatisierung bezeichnet. Die Protonen sind dann an den Carbonylsauerstoff 

angelagert. Dadurch entsteht aus einem Peptid eine heterogene Population von Ionen, 

die sich hinsichtlich der Position der Protonen an den Amidbindungen unterscheiden 

(Wysocki et al. 2000). Die Stellen an die sich Protonen anlagern lenken die 

Fragmentierungsreaktion, da die Spaltung der Peptide bevorzugt an diesen Stellen im 

Peptidrückgrat stattfindet. Infolgedessen fragmentiert jede Subpopulation von 

Vorläuferionen unterschiedlich, so dass eine Serie von Fragmentionen entsteht, die in 

ihrer Gesamtheit die Sequenz eines Peptids erkennen lässt (Hunt et al. 1986).  
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Die einzelnen Fragmente unterscheiden sich jeweils um die aminosäurenspezifische 

Masse und werden im Spektrum als hintereinander geschaltete Peaks dargestellt. Aus 

den Massendifferenzen können daher die zugehörigen Aminosäuren und in der Folge 

die Aminosäuresequenz abgeleitet werden.  

Im Idealfall brechen die Peptide genau an einer Peptidbindung. Die entstehenden 

Fragmente tragen entweder den C- oder den N-Terminus. N-terminale Fragmente  

sind wegen ihrer Ladung im Spektrum sichtbar und werden als 

a-, b- und c-Fragmente bezeichnet. Diejenigen Fragmente, die den C-Terminus 

beinhalten, werden als x-, y- oder z-Ion bezeichnet. In den Spektren dominieren die  

b- und die y-Serien. Die a-Serien entstehen durch neutralen Verlust von 

Kohlenmonoxid aus den b-Ionen. Dies zeigt sich in den Spektren durch einen Abstand 


m = 28 zwischen den beiden entsprechenden Signalen auf der m/z-Achse. Weitere 

neutrale Verluste können durch Abspaltung von Wasser entstehen (
m = 18) aus  

b- und y-Fragmenten sowie aus den Seitenketten von Serin, Threonin, Aspartat und 

Glutamat. Der Verlust von Ammoniak (
m = 17) kann bei den Seitenketten von 

Glutamin, Lysin und Arginin vorkommen. Weitere Informationen liefern die Immonium-

Ionen (H2N=CHR+). Sie sind im unteren Massenbereich des Spektrums sichtbar und 

weisen typische Massen für bestimmte Aminosäuren auf.  
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Abbildung 7: Fragmentierung von Peptiden mit Fragmentionenserien und dem zugehörigen 
Fragmentionen-Spektrum. Benachbarte Signale entstehen durch das Wegfallen der in der 
Primärsequenz benachbarten Aminosäure. Somit wird der Abstand zwischen benachbarten 
Peaks einer Fragmentserie dazu benutzt, die jeweils nächste Aminosäure über die 
Massendifferenz zu ermitteln. Aus dieser Massendifferenz lässt sich somit zwischen b3 und 
b2-Ion die Masse und damit die Identität des Aminosäurenrestes R3 ableiten, aus  
der Massendifferenz zwischen b2 und b1-Ion die Masse von R2. A) Vorläufer-Ion;  
B) Fragment-Ionen; C) Fragmentionen Spektrum. 
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Eine wesentliche Grundlage zur Interpretation der MS/MS-Spektren ist daher die 

Kenntnis der 20 proteinogenen Aminosäuren, aus denen Proteine und Peptide 

aufgebaut sind. Dazu wurden die genauen m/z-Werte tabelliert. Alle unterscheiden sich 

in ihren Massen, außer Leucin und Isoleucin (je 113). Die Massen von Lysin und 

Glutamin unterscheiden sich nur in ihren Nachkommastellen (siehe Tabelle 8).  

Tabelle 8: Massen der 20 proteinogenen Aminosäuren im Drei- und Einbuchstabencode sowie 
deren Immonium-Ionen 

Aminosäure 
Immonium- 

Ion 
Molekulare 

Masse 

Glycin Gly G   30.03383   57.02146 

Alanin Ala A   44.04948   71.03711 

Serin Ser S   60.04439   87.03203 

Prolin Pro P   70.06513   97.05276 

Valin Val V   72.08078   99.06841 

Threonin Thr T   74.06004 101.04768 

Cystein Cys C   76.02155 103.00918 

Leucin Leu L   86.09643 113.08406 

Isoleucin Ile I   86.09643 113.08406 

Asparagin Asn N   87.05529 114.04293 

Asparaginsäure Asp D   88.03930 115.02694 

Glutamin Gln Q 101.07094 128.05858 

Lysin Lys K 101.10732 128.09496 

Glutaminsäure Glu E 102.05495 129.04259 

Methionin Met M 104.05285 131.04048 

Histidin His H 110.07127 137.05891 

Phenylalanin Phe F 120.08078 147.06841 

Arginin Arg R 129.11347 156.10111 

Tyrosin Tyr Y 136.07569 163.06333 

Tryptophan Trp W 159.09167 186.07931 
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Wie bereits erwähnt unterscheiden sich die einzelnen Fragmente jeweils um die 

aminosäurenspezifische Masse und werden im Spektrum als hintereinander 

geschaltete Peaks dargestellt. Aus den Massendifferenzen können daher die 

zugehörigen Aminosäuren und in der Folge die Aminosäuresequenz abgeleitet werden. 

Als Beispiel ist das ermittelte Peptid SEARELVAL in Abbildung 8 dargestellt. 
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Abbildung 8: Fragmentspektrum eines analysierten Peptids der Probe RCC460 am Beispiel 
von SEARELVAL. Das Spektrum zeigt eine gute Annotation der b-Serie. Verwendetes 
Massenspektometer: Q-TOF Ultima. 

2.3.4 Computerunterstützte Interpretation von MS/MS-Spektren 

Bei der Interpretation der MS/MS-Spektren können häufig nur Peptidfragmente 

identifiziert werden. Mit Hilfe von verschiedenen Datenbanken können diese 

Informationen dazu verwendet werden, die gesamte Peptidsequenz und das 

zugehörige Quellprotein zu ermitteln. Durch Vergleich des gemessenen Spektrums mit 

Spektren aus einer Datenbank mit Protein- bzw. DNA-Sequenzen wird versucht, die 

gesamte Sequenz zu ermitteln. Hierfür kann beispielsweise eine Datenbank des NCBI 

mit Hilfe des MASCOT-Programms verwendet werden (www.matrixscience.com) 

(Perkins et al. 1999). Beim MASCOT-Programm wird ein theoretisch berechnetes 

Spektrum mit dem gemessenen Spektrum verglichen. Passen beide Spektren mit der 

Reihenfolge ihrer Fragmentionen und mit ihrer Masse überein, kann daraus die 

vollständige Sequenz eines Peptids identifiziert werden.  

Wurde ein Peptid ermittelt, erfolgte im Anschluss die Beurteilung der Vorhersage von 

Peptidmotiven (s. auch unter 1.2.3.1) mit Hilfe des Programms SYFPEITHI  

(www. syfpeithi.de) um die Ankeraminosäuren zu bestimmen.  
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Auf diese Weise wurde verglichen, ob die Typisierung des Patienten mit den auf die 

Typisierung passenden MHC-I-Molekülen des Peptids übereinstimmt. Schließlich 

wurden die Quellproteine der identifizierten Peptide mit Hilfe der  

NCBI-Datenbank (www.blast.ncbi.nlm.nih.gov/Blast.cg) sowie die zugrunde liegenden 

Funktionen der Proteine ermittelt. Um Informationen über die Proteine und deren 

mögliche Assoziation mit Tumorerkrankungen zu erhalten, wurde im Anschluß eine 

Literaturrecherche ausgeführt. 

2.3.5 Vergleichende Genexpressionsanalyse 

Um zu beurteilen, ob die bei den massenspektrometrischen Analysen identifizierten 

HLA-Liganden tumorspezifisch exprimiert sind, wurden parallel vergleichende 

Untersuchungen von Proteinen auf mRNA-Ebene durchgeführt. 

Zur Untersuchung der Genexpressionsanalysen wurde die RNA-Micro-Array-

Technologie eingesetzt. Da Tumorzellen im Vergleich zu gesunden Zellen ein 

verändertes Genexpressionsmuster auf der Ebene der Transkription (mRNA) oder der 

Translation (Proteine) aufweisen, können solche differenziell exprimierten Gene mit der 

Array-Technologie auf der Stufe der mRNA in sehr großer Anzahl bestimmt werden. 

Dabei werden auf eine Trägersubstanz (Nylonmembran oder Glas- und 

Kunststoffträger) als feste Phase in regelmäßiger Anordnung Nukleinsäure-Moleküle 

oder Oligonukleotide (Sonden, probes) mit bekannter Basensequenz punktförmig 

(spot) und in hoher Dichte aufgetragen. Die spot-Dichte liegt zwischen mehreren 

zehntausend und hunderttausend spots pro cm², z.B. GeneChip von Affymetrix. 

Bei der Isolation von Gewebeproben wird durch Retrotranskription die mRNA in 

doppelsträngige cDNA umgeschrieben und gleichzeitig radioaktiv oder mit 

Fluoreszenzfarbstoffen markiert. Die bekannten Nukleinsäure-Moleküle oder 

Oligonukleotide werden auf der festen Phase immobilisiert und mit den zu 

untersuchenden markierten Nukleinsäuren hybridisiert. Ein markiertes cDNA-Molekül 

der Probe bindet nur dann an die arraygebundene cDNA, wenn ihre Basensequenzen 

komplementär zueinander sind. 

Die Untersuchungen und die computerunterstützte Datenanalyse mit der Affymetrix-

Software wurden in der Medizinischen Genetik Tübingen, Institut für Humangenetik von 

Herrn Dr. rer. nat. Michael Bonin durchgeführt. Zur Untersuchung wurden kleine 

Gewebeproben von Nierenzellkarzinomen sowie korrespondierendem normalem 

Nierengewebe eingesetzt, welche intraoperativ gewonnen worden waren. Diese 

wurden in eigens dafür vorbereitete Laborgefäße eingefüllt und schockgefrostet. 
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3 ERGEBNISSE 

In den folgenden Kapiteln werden die Ergebnisse untersuchter Gewebeproben 

vorgestellt. Untersucht wurden sowohl solide Tumoren des Nierenzellkarzinoms als 

auch in geringem Maße korrespondierendes gesundes Nierengewebe. Tumor und 

Normalgewebe stammten jeweils vom selben Patienten. Parallel zu den 

massenspektrometrisch analysierten Gewebeproben wurden als quantitative 

Untersuchungsmethode vergleichende Genexpressionsanalysen durchgeführt. Alle 

massenspektrometrisch gewonnene Ergebnisse beziehen sich aussschließlich auf 

HLA-Klasse-I-Peptide. 

3.1 Gewebeproben im Überblick 

In dieser Arbeit wurden solide Tumoren des Nierenzellkarzinoms von insgesamt 

dreizehn Patienten präpariert. Tabelle 9 zeigt die verwendeten Gewebeproben sowie 

deren Patientendaten. Zehn der präparierten Proben gehörten histologisch zum 

klarzelligen Typ. Zwei Proben entsprachen dem chromophoben, eine Probe dem 

sarkomatoiden Typ. Fünf der Proben waren von Frauen, acht von Männern. Bei allen 

Proben handelte es sich um eine weitgehend schlechte Differenzierung (G2-G3) bei 

bereits fortgeschrittenem Stadium (II-III/IV). Bei der Probe RCC468 fehlte das Grading, 

bei RCC482 die Typisierung. Tabelle 9 zeigt das Grading & Staging aller präparierten 

Gewebeproben. 
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Tabelle 9: Übersicht aller präparierten Gewebeproben und deren Einteilung nach dem 
TNM-System 

Probe 
Alter 

in 
Jahren 

Geschlecht HLA 
Histologischer Typ 

und  
Grade & Stage 

Stadium  
nach 
UICC 

RCC389 47 f 

A*03 
A*30 
B*07 
B*49:01  

ccRCC 
pT1a G2 
4,4 cm 

I 

RCC410 21 f 
A*24 
B*38 
B*55  

chromophob RCC 
pT1a cN0 cM0 L0 V0 G2 

3,5 cm 
I 

RCC411 47 m 

A*02 
A*03 
B*27:02 
B*40  

ccRCC 
pT2 pN0, pM1, L0 V0 G3 

18 x 12 cm 
III-IV 

RCC417 73 m 

A*01 
A*02 
B*15 
B*37  

ccRCC 
pT1b cN0 cM0 G2 

5 cm 
I 

RCC421 55 m 
A*02 
A*03 
B*07 

ccRCC 
pT1b cN0 cM0 G2 

6,5 cm 
I 

RCC425 56 m 

A*03 
A*26 
B*40 
B*44 

sarkomatoid  
z.T. (cc)RCC 

pT3b pN0 cM0 L0 V1 G3 
16 cm 

III 

RCC426 72 m 

A*03 
A*32 
B*14 
B*27 

ccRCC 
pT3a cN0 cM1 L0 V0 G3 

8,5 cm 
IV 

RCC431 66 m 

A*26 
A*32 
B*07 
B*39 

ccRCC 
pT2 cN0 cM0 L0 V0 G2 

10 cm 

II 

RCC454 49 m 

A*02 
A*23 
B*15 
B*57 

chromophob RCC 
pT2 pN0 Mx L0 V0 G2 

11,5 cm 
II 

RCC460 87 f 

A*01 
A*03 
B*35 
B*40 

ccRCC 
pT3b pNx Mx L0 V1 G2 

6 cm 
III 

RCC468 42 m 

A*03 
A*68 
B*13 
B*44:02 

ccRCC 
pT3b pN0(0/1) 

7 cm 
III 

RCC471 43 f 
A*02 
A*24 
B*38 

ccRCC 
pT3b cN0 cM0 G2 

6,5 cm 
III 

RCC482 74 f n.b. 
ccRCC 

pT1b cN0 cM0 L0 V0 G3 
6,5 cm 

I 

Legende: [ccRCC] clear cell Renal Cell Carcinoma; [n.b.] nicht bekannt; [p] postoperative 
histopathologische Klassifikation; [c] (clinical) prätherapeutische Bestimmung der Klassifikation;  
[L] Invasion in Lymphgefäße; [V] Invasion in Venen; [G] Differenzierungsgrad. 
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Von den dreizehn Gewebeproben wurden zur Immunpräzipitation Tumorgewebe und, 

sofern vorhanden, korrespondierendes gesundes „Normal“-Nierengewebe präpariert. 

Zur Herstellung der Antikörpersäulen für die Affinitätschromatographie wurde für die 

MHC-Klasse-I-Moleküle der Antikörper W6/32 und für die MHC-Klasse-II-Moleküle der 

Antikörper L243 verwendet. Die Kopplungseffizienzen der Antikörper an die Sepharose 

betrugen im Durchschnitt rund 90 %. 

Tabelle 10: Kopplungseffizienzen der Antikörper W6/32 und L243 für Tumor und 
korrespondierendes gesundes Nierengewebe  

R C C G e w i c h t K o p p l u n g s e f f i z i e n z  

Proben 
T 

in g 
 N 

in g 

AK W6/32  
für T 
in % 

AK W6/32  
für N 
in % 

 AK L243  
für T 
in % 

AK L243  
für N 
in % 

  3.9  3.4 98 96 98 97 

410 3.3  1.3 89 98 98 94 

411 10.3  2.2 91 89 84 94 

417 3.9  2.0 84 90 92 86 

421 10.5  2.8 85 78 88 65 

425 20.6  ─ 99 ─ 96 ─ 

426 10.5  1.0 83 67 83 83 

431 9.4  3.0 92 54 88 84 

454 13.0  1.0 80 88 95 92 

460 4.0  ─ 82 ─ 89 ─ 

468 15.3  ─ 98 ─ 98 ─ 

471 10.1  ─ 85 ─ 91 ─ 

482 3.4  ─ 91 ─ 96 ─ 

Legende: [T] Tumorgewebe, [N] korrespondierendes gesundes Normalgewebe. 

3.2 Massenspektrometrische Analyse von soliden Tumoren 

des Nierenzellkarzinoms 

3.2.1 Identifizierung von HLA-Klasse-Liganden 

Acht Gewebeproben (RCC417, -421, -425, -431, -460, -468, -471 und RCC482) der 

dreizehn präparierten Gewebeproben wurden der massenspektrometrischen Analyse 

zugeführt. Parallel dazu wurden vergleichende Genexpressionsanalysen von 

Tumorgewebe und korrespondierendem Normalgewebe mit der Microarray-Methode 

(exklusive RCC471) durchgeführt. Auf Grund weiterer fehlender Gewebeproben  

konnte bei der Probe RCC471 eine Untersuchung durch vergleichende 

Genexpressionsanalyse nicht veranlasst werden.  
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Da bei der Probe RCC421 auch eine genügende Menge von Normalgewebe 

vorhanden war, wurde diese einer differenziellen quantitativen Guanidinylierung und 

Nikotinylierung unterzogen.  

Die massenspektrometrischen Analysen der Proben RCC460 und RCC471 wurden 

von Gabor Mester mit der Q-TOF Ultima, die Proben RCC421, -425, -431, -468, und 

RCC482 von Oliver Drews, Marc Günder und Christian Hotz mit der LTQ-Orbitrap-MS 

durchgeführt. Nach der massenspektometrischen Analyse erfolgte die Auswertung mit 

Hilfe spezieller Software, wie unter 2.3.3 beschrieben. 

Die Proben RCC460 und RCC471 wurden mit der Software MassLynx 4.0 analysiert, 

alle weiteren mit der Software Proteome Discoverer. Bei der Probe RCC471  

war es nicht möglich, nach Immunpräzipitation der HLA-Moleküle mit dem 

monoklonalen Antikörper W6/32 und chromatographischer Auftrennung der Probe 

massenspektrometrisch Peptide zu identifizieren. 

Auf Grund der Einführung eines neuen Massenspektrometers (LTQ-Orbitrap-MS) und 

damit verbunden einer neuen Software (Proteome Discoverer) zur Auswertung der 

Peptidsequenzen war es nur bei der Probe RCC421 möglich, einen Vergleich von 

Tumorgewebe mit korrespondierendem gesunden Nierengewebe durchzuführen.  

Bei der Auswertung der Fragmentspektren wurden die Sequenzen aller ermittelten 

HLA-Liganden wie unter 2.3.4 beschrieben mit Hilfe der MHC-Datenbank SYFPEITHI 

zur Bestimmung des HLA-Allotyps, mit Hilfe des MASCOT-Programms zur 

Bestimmung des theoretisch berechnetes Spektrums abgeglichen. 

Das unter 2.3.3 in Abbildung 8 vorgestellte Peptid SEARELVAL (identifiziert mit Hilfe 

der Software MassLynx) zeigt ein neu identifiziertes Peptid, das zur Familie von 

Cytochrom P450 gehört. Cytochrom P450 zählt zu den Hämproteinen mit 

enzymatischer Aktivität. Es stammt aus der Gewebeprobe RCC460 und wurde mit der 

Q-TOF-Ultima detektiert. Auch in dieser Probe neu identifiziert war der HLA-Ligand 

NPVDWKEKY aus dem Protein procollagen-lysine, 2-oxoglutarate 5-dioxygenase 2 

(Abbildung 9). Es handelt sich hier um ein Enzym, das wichtig für die Stabilität der 

Quervernetzungen von Bindegeweben ist.  
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Abbildung 9: Fragmentspektrum der Sequenz NPVDWKEKY, hier als y-Reihe dargestellt. Die 
Buchstaben an den Peaks weisen auf die in den Signalen enthaltenden Aminosäuren hin und 
sind im Einbuchstabencode dargestellt. Verwendetes Massenspektometer: Q-TOF Ultima. 

Die folgenden Fragmentspektren wurden mit Hilfe der Software Proteome Discoverer 

erstellt. Beim ersten handelt es sich um Nebulin. Bei diesem bereits bekannten Protein 

konnte SVYRTPVVNLK als neue Sequenz detektiert werden. Nebulin ist ein großes 

Protein und zählt zum Zytoskelett. Seine Funktion besteht in der Stabilisierung der 

dünnen Filamente der Muskelfasern (Aktin) und erhöht die Geschwindigkeit mit der 

sich Myosin-Moleküle an das Aktin der dünnen Filamente bei Muskelkontraktionen 

anlagern (Chandra et al. 2009). 
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     F:\cho_RCC425_T_25%_100414_msms1.RAW  #947-956, RT=21.12-21.43 min
     FTMS, CID, Precursor: z=+2, Mono m/z=638.37416 Da, MH+=1275.74104 Da

 
Abbildung 10: Fragmentspektrum SVYRTPVVNLK aus dem Protein Nebulin der  
Probe RCC425. Das Spektrum zeigt eine gute Annotation der b-Serie. Verwendetes  
Massenspektrometer: LTQ-Orbitrap. 
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Der HLA-Ligand YSDLNTQRPYY konnte zum bereits bekannten protein tyrosine 

kinase binding protein (TYROBP) sequenziert werden. Dieses spielt eine wichtige Rolle 

in der transmembranären Signaltransduktion.  

Sowohl die Superoxid-Dismutase (SOD2) als auch der zugehörige HLA-Ligand 

NLNVTEEKY wurden neu identifiziert. Dies ist ein Enzym, das für die Umwandlung von 

Superoxid-Anionen zu Wasserstoffperoxid im Zellstoffwechsel verantwortlich ist. 
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     ITMS, CID, Precursor: z=+2, Mono m/z=710.33063 Da, MH+=1419.65398 Da
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Abbildung 11: Fragmentspektren der Gewebeprobe RCC482. A) y-Serie: HLA-Ligand 
YSDLNTQRPYY aus dem Protein TYROBP. B) b-Serie: HLA-Ligand NLNVTEEKY des Enzyms 
SOD2. Verwendetes Massenspektrometer: LTQ-Orbitrap. 

3.2.2 Identifizierung von HLA-Klasse-I Liganden nach Guanidinylierung 

und Nikotinylierung 

Die Modifikation erlaubt durch Anlagerung von Nicotinsäure und Guanidin eine 

quantitative Unterscheidung in der Bestimmung gleicher Sequenzen zweier 

verschiedener Quellen, wie beispielsweise Tumorgewebe und Normalgewebe. Durch 

diese Methode wurde in einem Modifikationslauf der Probe RCC421 mit der 

LTQ-Orbitrap-MS für jede identifizierte Sequenz eines Peptids das zugehörige Pärchen 

gesucht. Im Peptidspektrum lassen sich dadurch zwei zugehörige gleiche Peptide 

anhand ihrer Masse unterscheiden. Die monoisotopische Masse der mit dNIC 

modifizierten Peptide war um 109 Da schwerer, die mit NIC modifizierten Peptide  
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um 105 Da schwerer als vergleichbare Peptide ohne Modifikation. Beide Peptide 

konnten daher bei der Auswertung durch die Differenz von 4 Da ihrem 

Ursprungsgewebe zugeordnet werden. Bei Anlagerung von Guanidin an die 

Aminosäure Lysin hatten alle modifizierten Peptide eine um 42 Da schwerere Masse 

als Peptide ohne Modifikation. In dieser Studie konnten beim Vergleich von Tumor zu 

Normalgewebe in der Probe RCC421 vier Probenpärchen zugeordnet werden.  

Tabelle 11: Darstellung der vier detektierten Peptidpärchen der modifizierten Gewebeprobe 
RCC421 sowie deren monoisotopischer Massen. Die Differenz zwischen der mit dNIC 
modifizierten Tumorprobe und der mit NIC modifizierten Normalgewebeprobe beträgt 4 Da. 
Neue, bisher noch nicht an der Universität Tübingen identifizierten Peptide und Proteine sind 
fett markiert.  

Sequenz HLA Gene ID Quellprotein   MH+ [Da] MH+ [Da] 

        Abkürzung dNIC NIC 

AVGPHLTAK A*03 126282 tumor necrosis factor, alpha-induced 
protein 8-like 1 

TNFAIP8L1  1044.58 1040.56 

AVNAHSNILK A*03 10989 inner membrane protein, mitochondrial IMMT  1217.66 1213.64 

DEAIRAVL k.A. 5880 ras-related C3 botulinum toxin substrate 
2 (rho family, small GTP binding protein 
Rac2) 

RAC2  995.54 991.52 

GVHGGILNK A*03 345456 profilin 3 PFN3 1045.58 1041.56 

 

Der Peptidsequenz AVGPHLTAK konnte das Protein tumor necrosis factor, 

alpha-induced protein 8-like 1 zugeordnet werden. Beide – Peptid und Protein – 

wurden an der Universität Tübingen neu identifiziert. Die Expression dieses Proteins 

wird durch den Tumornekrosefaktor (TNF) induziert. TNF regelt die Aktivität 

verschiedener Immunzellen durch Apoptose, Zellproliferation und Zelldifferenzierung. 

Die genaue Aufgabe des TNFAIP8L1 ist nicht bekannt. Die Funktion des auf der 

Innenseite der Mitochondrienmembran lokalisierten Proteins inner membrane protein, 

mitochondrial besteht in der Faltung der inneren Mitochondrienmembran. Das inner 

membrane protein, mitochondrial ist auf der Innenseite der Mitochondrienmembran 

lokalisiert und bildet die Faltung derselben. Das zugehörige Protein des HLA-Liganden 

DEAIRAVL ist an mehreren Zellfunktionen beteiligt wie beispielsweise der Kontrolle 

des Zellwachstums, der Umstrukturierung des Zytoskeletts und der Aktivierung von 

Proteinkinase. Es konnte jedoch nicht zur Typisierung annotiert werden. Das Peptid 

GVHGGILNK, zu dem das Protein profilin 3 zugeordnet werden konnte, spielt eine 

Rolle bei der Struktur des Zytoskeletts. Zusammenfassend kann darauf geschlossen 

werden, dass von diesen vier Peptiden nur das Quellprotein des Peptids DEAIRAVL in 

der vergleichenden Genexpressionsanalyse überexprimiert war (siehe Tabelle 14).  

In dieser modifizierten Probe wurden insgesamt 55 Peptide ermittelt. Von diesen 

Peptiden wurden 20 neue Peptide und 11 neue Quellproteine detektiert. Die Tabellen 

12 und 13 zeigen weitere ermittelte modifizierte Peptide, zu denen keine Pärchen 

gebildet werden konnten. 
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Tabelle 12: Ermittelte Peptide der modifizierten Normalgewebeprobe, zu denen keine Pärchen 
gefunden werden konnten. 

Sequenz HLA Gene ID Quellprotein   

        Abkürzung 

AKLPALASVA k.A 151 adrenergic, alpha-2B-, receptor ADRA2B 

DRLLALNSL k.A 5591 protein kinase, DNA-activated, 
catalytic polypeptide 

PRKDC  

GAFEHLPSL A*02 7162 trophoblast glycoprotein TPBG  

RENLEFGKV k.A 2322 fms-related tyrosine kinase 3 FLT3 

RSVEGLSR k.A 5744 parathyroid hormone-like hor-
mone 

PTHLH  

TLIDLPGITRV A*02 4599 myxovirus (influenza virus) resis-
tance 1, interferon-inducible protein 
p78 (mouse) 

MX1  

Tabelle 13: Ermittelte Peptide der modifizierten Tumorgewebeprobe, zu denen keine Pärchen 
gefunden werden konnten.  

Sequenz HLA Gene ID Quellprotein   

        Abkürzung 

AAPRTVALTA k.A. 3115 major histocompatibility complex, 
class II, DP beta 1 

HLA-DPB1 

ALADGVQKV A*02 8542 apolipoprotein L, 1 APOL1  

ALKTGIVAK A*03 79002 chromosome 19 open reading 
frame 43  

C19orf43  

ALSDHHIYL A*02 226 aldolase A, fructose-bisphosphate ALDOA  

APIAKVGVL B*07 51474 LIM domain and actin binding 1 LIMA1  

APRQPGLMA B*07 51142 oiled-coil-helix-coiled-coil-helix do-
main containing 2 

CHCHD2 c 

APRTVALTAL B*07 3115 major histocompatibility complex, 
class II, DP beta 1 

HLA-DPB1  

ARPGPTVRT k.A. 3805 killer cell immunoglobulin-like recep-
tor, two domains, long cytoplasmic 
tail, 4  

KIR2DL4 

ATANQIILK A*03 10150 muscleblind-like 2 (Drosophila) MBNL2 

EILAKSSL A*02 64006 endogenous retroviral sequence 
K, 6 

ERVK6  

EPRHGGLTL B*07 57418 WD repeat domain 18 WDR18 

EVLHSPAI A*02 64781 ceramide kinase  CERK  

GPVLGLLLFV B*07 92736 otopetrin 2 OTOP2 

GVANALAHK A*03 3043 hemoglobin, beta  HBB  

IARNLTQQL B*07 123 perilipin 2 PLIN2  

IVAGSLITK A*03 55660 PRP40 pre-mRNA processing factor 
40 homolog A (S. cerevisiae) 

PRPF40A  

IVAKHTSAL A*02 83660 talin 2  TLN2  

KLPGGSYMAK A*03 3127 major histocompatibility complex, 
class II, DR beta 5 

HLA-DRB5  

KTFEGNLTTK A*03 10594 PRP8 pre-mRNA processing factor 8 
homolog 

PRPF8  

KVAGAATPK A*03 3007 histone cluster 1, H1d  HIST1H1D  

KVAPAPAVVK A*03 6130 ribosomal protein L7a  RPL7A   

KVAPAPAVVKK A*03 6130 ribosomal protein L7a RPL7A  

MMSLRRDLY A*03 23007 phospholipase C, eta 1 PLCH1  

QLYKEQLAK A*03 4627 myosin, heavy chain 9, non-muscle MYH9  

QPDQTRIVAL B*07 2091 fibrillarin FBL  

QSLPTTSAA k.A. 115701 alpha-kinase 2 ALPK2  
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Sequenz HLA Gene ID Quellprotein   

        Abkürzung 

QTYVGITEK A*03 23020 small nuclear ribonucleoprotein 
200kDa (U5)  

SNRNP200  

RIQGPLQH k.A. EAW85283.1 hCG2045458 k.A. 

RPSTSRSL B*07 7431 vimentin VIM  

RVAPEEHPVL Artefakt 60 
71 

actin, beta 
actin, gamma 1  

ACTB  
ACTG1  

SPRVQSTI B*07 10517 F-box and WD repeat domain 
containing 10 

FBXW10  

SQEKPPVQL k.A. 23116 family with sequence similarity 179, 
member B 

FAM179B 

SVNGKVLSK A*03 23420 
283820 
408050 

NODAL modulator 1 
NODAL modulator 2 
NODAL modulator 3 

NOMO1 
NOMO2 
NOMO3  

TLYEAVREV A*02 4736 ribosomal protein L10a RPL10A  

TPEEKSAVTAL B*07 3043 hemoglobin, beta  HBB  

TPSLVKSTSQL B*07 517 ATP synthase, H+ transporting, 
mitochondrial Fo complex, subunit 
C2 (subunit 9) 

ATP5G2  

VAKAVTQAL k.A. 7094 talin 1 TLN1  

VSYSHIQSK A*03 4134 microtubule-associated protein 4 MAP4  

VVRHQLLKT k.A. 1350 cytochrome c oxidase subunit VIIc COX7C  

VYPDGIRHI k.A. 23450 splicing factor 3b, subunit 3, 130kDa SF3B3 

YAVAVVKK A*03 4057 LTF lactotransferrin  LTF 

 

3.2.3 Identität von HLA-Klasse-I Liganden aus soliden Tumoren 

Die Festlegung der Identität aller neu sequenzierten HLA-Klasse-I Liganden erfolgte 

über eine weitere Datenbankrecherche (www.blast.ncbi.nlm.nih.gov/Blast.cg). Die 

Identität bekannter Peptide wurde aus einer hauseigenen Proteindatenbank der 

Universität Tübingen entnommen. Die Zuordnung aller neuen Peptide erfolgte 

ausschließlich über eine Sequenzähnlichkeitssuche, die BLAST-Suche (Basic Local 

Alignment Search Tool, BLAST).  

Dieses Programm vergleicht Nukleotid- oder Proteinsequenzen mit Sequenzen 

mehrerer Datenbanken und kalkuliert die statistische Signifikanz der Treffer für die 

zugehörigen Gene und deren Funktionen. Dabei wird in der BLAST-Datenbank  

die Anzahl der Treffer mit einer entsprechenden Bewertung (Score) als e-value  

(expect threshold) belegt. Der e-value ist also ein Maß für die Signifikanz der Treffer. 

Je kleiner dieser Wert, desto geringer ist die Wahrscheinlichkeit, nicht nur eine zufällige 

Übereinstimmung gefunden zu haben. E-values, die bei Null oder kleiner Null liegen 

bedeuten, dass die Wahrscheinlichkeit gleich Null ist, dass dieser Treffer in der 

Datenbank zufällig auftrat. Deshalb wurden zur Bestimmung der Quellproteine nur die 

Proteine als wahr betrachtet, die den kleinsten e-Wert aufwiesen und in der Regel 

kleiner Null waren.  
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Die folgenden zwei Abbildungen zeigen von zwei neu sequenzierten Peptiden ihre 

zugehörigen Quellproteine. Das erste Quellprotein, basic helix-loop-helix family, 

member e41 (BHLHE41), ist ein in dieser Arbeit neu ermitteltes Protein und wurde nur 

in einer Gewebeprobe ermittelt. Es enthält 480 Aminosäuren. Das sequenzierte Peptid 

GQKLEPLAY befindet sich zwischen Stellung 209 und 216 und wurde mit einem 

e-value von 0,23 mit Hilfe der BLAST-Datenbank des NCBI ermittelt.  

 

Abbildung 12: Quellprotein BHLHE41 zum HLA-Ligand GQKLEPLAY. 

Im Gegensatz dazu zeigt das zweite Quellprotein, perilipin 2 (PLIN2), ein Protein, das 

in den untersuchten Tumorproben insgesamt viermal mit jeweils verschiedenen 

Peptidsequenzen identifiziert werden konnte Drei dieser Sequenzen waren bekannt. 

Das Peptid mit der Sequenz KSELLVEQY wurde neu identifiziert und befindet sich 

zwischen Stellung 182 und 190, mit einem e-value der BLAST-Datenbank von 0,17. 

 

Abbildung 13: Quellprotein PLIN2 zum HLA Ligand KSELLVEQY. Die rote Umrandung zeigt 
das neue Peptid, die blauen Umrandungen die bekannten Peptide. 
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In den Körperzellen finden laufend lebhafte Auf- und Abbauvorgänge von Proteinen 

statt. Zu diesen Proteinen gehören viele Enzyme, die ihre grundlegende Funktion im 

Zellstoffwechsel und der Zellatmung haben und ubiquitär vorkommen. Infolgedessen 

wurden als häufig auftretende HLA-präsentierte Peptide viele Enzyme wie zum Beispiel 

Superoxid-Dismutase (SOD2), Cytochrom P450 (CYP1B1), Hämoxygenase (HMOX1) 

oder Aldolase A (ALDOA) identifiziert.  

Zum Einsatz bei einer Immuntherapie finden Peptide auf Basis von Enzymen selten 

Verwendung, da die Gefahr einer reaktiven Autoimmunerkrankung groß ist. Weitere 

häufig vorkommende ubiquitäre präsentierte Peptide waren Proteine des Zytoskeletts, 

die den Zellen Stabilität und Elastizität verleihen. Dazu zählen die Proteine 

Vimentin (VIM), Desmin (DES), Profilin (PFN) und Nebulin (NEB). Auffällig war, dass 

einige dieser Strukturproteine eine zum Teil sehr starke Überexpression aufwiesen. 

Desweiteren waren Proteine, die häufig als Quelle von HLA-präsentierten Peptiden 

sequenziert werden konnten, HLA-Klasse-I Moleküle und Hämoglobine, die jedoch 

hinsichtlich einer Überexpression unauffällig waren.  

Einige bereits bekannte tumorassoziierte Antigene des Nierenzellkarzinoms konnten in 

dieser Arbeit identifiziert werden. Besonders auffällig war das mehrfach und häufig 

identifizierte Protein Perilipin (PLIN2), auch Adipophilin (adipose differentiation-related 

protein, ADFP) genannt. Dieses Protein konnte in drei verschiedenen Tumorproben 

nachgewiesen werden. In einer Probe wurden zu diesem Protein zwei verschiedene 

bereits bekannten Sequenzen identifiziert, bei einer Probe konnte eine neue Sequenz 

ermittelt werden. In allen Proben war dieses Protein auf mRNA-Ebene überexprimiert. 

Ein weiteres bekanntes Protein, Apolipoprotein L1 (APOL1), konnte hier einmal mit 

einer bekannten Sequenz und einer starken mRNA-Überexpression identifiziert 

werden.  

Sequenzen von neuen, zuvor noch nicht beschriebenen Proteinen wie der  

van Willebrand Faktor (VWF), das Prokollagen Lysin (PLOD2), der Transkriptionsfaktor 

basic helix-loop-helix family (BHLHE41) und das Ras suppressor protein 1 (RSU1) 

werden unter 3.2.2 näher beschrieben.  
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Tabelle 14: Gesamtdarstellung aller identifizierten HLA-Klasse-I Liganden der zu 
analysierenden Proben. Bei allen RCC-Proben, außer RCC421, handelte es sich ausschließlich 
um solide Tumoren der Niere. Bei der Probe RCC421 wurde zur Tumorprobe auch 
Normalgewebe untersucht. Die mRNA-Expressionswerte wurden mit aufgeführt. In dieser Arbeit 
neu identifizierte Peptide und Proteine sind fett markiert. Bei gleichen Liganden mehrerer 
unterschiedlichen Proben wurde der HLA-Allotyp und der mRNA-Expressionswert zur 
zugehörigen Probe in der gleichen Zeile dargestellt. [FC] Fold-Change der 
mRNA-Expressionswerte, [–] keine Detektion von mRNA-Expressionswerten, [T] Tumor,  
[N] Normalgewebe, [k.A.] kein HLA-Allotyp zuordenbar, graue Markierung: in Diskussion 
herausgearbeitete Proteine. 

Sequenz HLA Gene ID Quellprotein   FC RCC 

      Abkürzung mRNA Probe 

AIDQLHLEY A*01 81 actinin, alpha 4 ACTN4 – 417 

AAPRTVALTA k.A. 3115 major histocompatibility complex, 
class II, DP beta 1 

HLA-DPB1 + 1,7 421 T 

ADVLKVEVF B*37 3692 eukaryotic translation  
initiation factor 6 

EIF6 – 417 

AEAIRAVL k.A. 5880 ras-related C3 botulinum toxin 
substrate 2 (rho family, small GTP 
binding protein Rac2)  

RAC2 + 2,0 421 T 

AEFKEAFQL B*40 4637 myosin, light polypeptide 6, alkali, 
smooth muscle and non-muscle 

MYL6 - 2,5 
– 

425 
460 

AEIRHVLVTL B*40 4637 myosin, light polypeptide 6, alkali, 
smooth muscle and non-muscle 

MYL6 - 2,5 425 

AEMLPGVLQQF B*44 10397 N-myc downstream regulated 1 NDRG1 – 468 

AESKVFYL B*37 7534 tyrosine 3 monooxygenase/ trypto-
phan5-monooxygenase activation 
protein, zeta polypeptide 

YWHAZ – 417 

AIVDKVPSV A*02 22820 coatomer protein complex, subunit 
gamma 

COPG – 482 

AKLPALASVA k.A. 151 adrenergic, alpha-2B-, receptor ADRA2B  421 N 

ALADGVQKV A*02 8542 apolipoprotein L, 1 APOL1  + 5,2 421 T 

ALASHLIEA A*02 30846 EH-domain containing 2 EHD2 + 2,5 482 

ALFDGDPHL A*02 23273 KIAA0367 KIAA0367 – 417 

ALkTGIVAK A*03 79002 chromosome 19 open reading 
frame 43  

C19orf43  – 421 T 

ALQEFGPISY A*03 3191 heterogeneous nuclear ribonucle-
oprotein L 

HNRNPL – 468 

ALSDHHIYL A*02 226 aldolase A, fructose-bisphosphate ALDOA  – 421 T 

APIAKVGVL B*07 51474 LIM domain and actin binding 1 LIMA1  – 421 T 

APRQPGLMA B*07 51142 coiled-coil-helix-coiled-coil-helix 
domain containing 2 

CHCHD2 – 421 T 

APRTVALTAL B*07 3115 major histocompatibility complex, 
class II, DP beta 1 

HLA-DPB1 + 1,7 
– 

431 
421 T 

AQYLINARL B*13 5093 poly(rC) binding protein 1 PCBP1 – 468 

ARPGPTVRT k.A. 3805 killer cell immunoglobulin-like 
receptor, two domains, long cyto-
plasmic tail, 4  

KIR2DL4 – 421 T 

ATANQIILK A*03 10150 muscleblind-like 2 (Drosophila) MBNL2 – 421 T 

ATNRITVTW A*32 51588 protein inhibitor of activated STAT, 
4 

PIAS4 – 431 

AVGPHLTAK A*03 126282 tumor necrosis factor, alpha-
induced protein 8-like 1 

TNFAIP8L1  – 421 T/N 

AVIPVLANF A*03, A*26 4594 methylmalonyl Coenzyme A 
mutase 

MUT - 2,6 425 

AVNAHSNILK A*03 10989 inner membrane protein, mito-
chondrial 

IMMT  – 421 T/N 

DAVLKDPGL A*26 26046 ring finger protein 160 RNF160 – 425 
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Sequenz HLA Gene ID Quellprotein   FC RCC 

      Abkürzung mRNA Probe 

DEAIRAVL k.A. 5880 ras-related C3 botulinum toxin 
substrate 2 (rho family, small GTP 
binding protein Rac2) 

RAC2  + 2,0 421 T/N 

DEDPLCMLLLI B*40 22980 transcription factor 25 (basic helix-
loop-helix) 

TCF25  – 460 

DEMEEKDIL  B*40  29761 ubiquitin specific peptidase 25 USP25 – 460 

DEVSRIVGSVEF B*44 6772 signal transducer and activator of 
transcription 1, 91kDa 

STAT1 + 2,0 468 

DIYNFPIHAF A*26 84549 RNA binding motif protein 13 MAK16 - 1,7 425 

DLIEHFSQF A*26 10949 heterogeneous nuclear ribonucle-
oprotein A0 

HNRNPA0 – 425 

DLIEKLLNY A*26 5441 polymerase (RNA) II (DNA di-
rected) polypeptide L, 7.6kDa 

POLR2L – 425 

DRLLALNSL k.A. 5591 protein kinase, DNA-activated, 
catalytic polypeptide 

PRKDC   421 N 

DSISITSHY A*26 11328 FK506 binding protein 9, 63 kDa FKBP9 – 425 

DTDHYFLRY A*01 51604 phosphatidylinositol glycan anchor  
biosynthesis, class T 

PIGT – 417 
460 
482 

DTIEIITDR A*68 3181 heterogeneous nuclear ribonu-
cleoprotein A2/B1 

HNRNPA2B1 – 468 

DVAEGDLIEHF A*26 10949 heterogeneous nuclear ribonucle-
oprotein A0 

HNRNPA0 – 425 

DVELDDLGKDEL A*26 10130 protein disulfide isomerase family 
A, member 6 

PDIA6 – 425 

DVIERVIQY A*26 25836 Nipped-B homolog (Drosophila) NIPBL – 425 

DVIGKALQY A*26 1806 dihydropyrimidine dehydrogenase DPYD + 1,7 431 

DVIGTLSGF A*26 81614 non imprinted in Prader-
Willi/Angelman syndrome 2 

NIPA2 – 425 

DVISSIRNF A*26 401505 chromosome 9 open reading frame 
105) /translocase of outer mito-
chondrial membrane 5 homolog 
(yeast) 

C9orf105/ 
TOMM5 

– 431 

DVVRVVGAY A*26 84514 GH3 domain containing GHDC – 431 

DVYPEIIER A*68 10916 melanoma antigen family D, 2 MAGED2 – 468 

EEIAFLKKL B*40; B*44 7431 vimentin VIM + 2,3  
– 

460 
468 

EEIKEILRF B*44 6519 solute carrier family 3 (cystine, 
dibasic and neutral amino acid 
transporters, activator of cystine, 
dibasic and neutral amino acid 
transport), member 1 

SLC3A1 – 468 

EEVLIPDQKY B*44 26224 F-box and leucine-rich repeat 
protein 3 

FBXL3 – 468 

EFHEAFSGQIL A*26 3032 hydroxyacyl-CoA dehydrogena-
se/3-ketoacyl-CoA thiolase/enoyl-
CoA hydratase (trifunctional prote-
in), beta subunit 

HADHB – 425 

EGVRVLGPL k.A. 1723 dihydroorotate dehydrogenase DHODH – 482 

EIAMATVTALR A*68 226 
230 

aldolase A, fructose-bisphosphate 
aldolase C, fructose-bisphosphate 

ALDOA 
ALDOC 

+ 1,8 
+ 1,7 

468 

EIFDGIQPKM A*26 1434 CSE1 chromosome segregation 1-
like (yeast) 

CSE1L – 425 

EIIGKRGIIGY A*26 10632 ATP synthase, H+ transporting, 
mitochondrial F0 complex,  
subunit G 

ATP5L - 3,3 425 

EIIKIIGKY A*26 285527 furry homolog-like (Drosophila) FRYL – 425 

EILAKSSL A*02 64006 endogenous retroviral sequence 
K, 6  

ERVK6  – 421 T 
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EITPPVVLR A*68 4869 nucleophosmin (nucleolar phos-
phoprotein B23, numatrin) 

NPM1 + 1,9 468 

ELIAKIPNF A*26 6418 SET translocation  
(myeloid leukemia-associated) 

SET – 425 

ELIKPPTILR A*68 10947 adaptor-related protein complex 3, 
mu 2 subunit 

AP3M2 – 468 

ELVKIIYK A*03 51110 lactamase, beta 2 LACTB2 – 425 

EPRHGGLTL B*07 57418 WD repeat domain 18 WDR18 – 421 T 

ETDKNGFLQY A*01 54981 chromosome 9 open reading 
frame 95 

C9orf95 – 482 

ETELDGLRY A*01 23498 3-hydroxyanthranilate 3,4-
dioxygenase 

HAAO – 482 

ETIPLTAEKL A*68 595 cyclin D1 CCND1 + 2,6 468 

ETVNLRSLGF A*26  202 absent in melanoma 1 AIM1 – 425 

EVAEKINAF A*26 338 apolipoprotein B (including Ag(x) 
antigen) 

ApoB + 3,3 431 

EVAQFLTGR A*68 27351 PPPDE peptidase domain contai-
ning 2 

PPPDE – 468 

EVFPLAMNY A*26 896 cyclin D3 CCND3 – 425 

EVFPLKVFGY A*26 9204 zinc finger, MYM-type 6 ZMYM6 - 2,8 425 

EVGGEALGRLL B*13 3043 hemoglobin beta HBB – 468 

EVIASYAHL A*26 7450 von Willebrand factor VWF + 5,6 431 

EVIGKITAL A*26 9183 ZW10, kinetochore associated, 
homolog (Drosophila) 

ZW10 – 425 

EVIGLLGGRY A*26 114803 Myb-like, SWIRM and MPN do-
mains 1 

MYSM1 – 425 

EVIKEVQEF A*26 928 CD9 molecule CD9 - 4,3 425 

EVILIDPFHK A*68 6138 ribosomal protein L15 RPL15 – 468 

EVIPYTPAM A*26 3162 heme oxygenase (decycling) 1 HMOX1 + 3,2 431 

EVIPYTPAMQR A*68 3162 heme oxygenase (decycling) 1 HOMX1 – 468 

EVIQEIKSF A*26 6738 TROVE domain family, member 
2 

TROVE2 – 425 

EVISHIGKl A*26 53407 syntaxin 18 STX18 – 431 

EVISTPGVVAR A*68 3836 karyopherin alpha 1 (importin 
alpha 5) 

KPNA1 – 468 

EVLHSPAI A*02 64781 ceramide kinase  CERK  – 421 T 

EVNDPSLTIK A*68 4513 mitochondrially encoded cyto-
chrome c oxidase II 

MT-CO2 – 468 

EVSTLVSKY A*26 11336 exocyst complex component 3 EXOC3 – 431 

EVTDVDSVVGR A*03 81704 dedicator of cytokinesis 8 DOCK8 + 2,1 468 

EVTELLARY A*26 5434 polymerase (RNA) II (DNA di-
rected) polypeptide E, 25kDa 

POLR2E + 1,8 431 

EVVAGIKEY A*26  9643 mortality factor 4 like 2 MORF4L2 – 431 

EVVDFSSHY A*26 26235 F-box and leucine-rich repeat  
protein 4 

FBXL4 - 2,4 425 

EVVDKINQV A*26 23224 spectrin repeat containing, nuclear 
envelope 2 

SYNE2 - 2,3 431 

EVVERVLTF A*26 26263 F-box protein 22 FBXO22 – 
– 

425 
431 

EVYPFGIVGM A*26 7812 cold shock domain containing E1,  
RNA-binding 

CSDE1 - 1,9 425 

FAYDGKDYI A*02 k.A. MHC class I antigen k.A. – 482 

FGGRNPFDTF A*26 3337 DnaJ (Hsp40) homolog, subfamily 
B, member 1 

DNAJB + 1,9  
– 

425 
468 

FGIDRPAEL k.A. 57794 splicing factor 4 SF4 – 482 
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FLARRLDLT k.A. 84078 kelch repeat and BTB (POZ) do-
main containing 7 

KBTBD7  – 460 

FLDASGAKLDY A*01 9689 basic leucine zipper and W2 do-
mains 1 

BZW1 – 482 

FLDESRSTQY A*01 10856 RuvB-like 2 (E. coli) RUFBL2 – 482 

FLDSTGSRLDY A*01 28969 basic leucine zipper and W2 
domains 2 

BZW2 – 482 

FSDIVKQGY A*01 55715 docking protein 4 DOK4 + 1,6 482 

FTDVNSILRY A*01 2058 (glutamyl-prolyl-tRNA synthetase) EPRS  – 460 

FTEEQAVLY A*01 6730 signal recognition particle 68kDa SRP68 – 417 

FTILNPIYSITT k.A. 3191 heterogeneous nuclear ribonucle-
oprotein L 

HNRNPL – 425 

FVDKNNDLLY A*01 10579 transforming, acidic coiled-coil 
containing protein 2 

TACC2 – 482 

FVFDLPIHR A*68 2635 guanylate binding protein 3 GBP3 – 468 

FVHDLVLYL B*13 1213 
8218 

clathrin, heavy polypeptide (Hc) 
clathrin, heavy polypeptide-like 1 

CLTC 
CLTCL1 

– 468 

FVILRKNPNYDL k.A. 5708 proteasome (prosome, macropain) 
26S subunit, non-ATPase, 2 

PSMD2 – 468 

GAFEHLPSL A*02 7162 trophoblast glycoprotein TPBG   421 N 

GAGAFRSAGRL k.A. 126755 leucine rich repeat containing 38 LRRC38  – 460 

GEHTLLVTV B*40 389541 chromosome 7 open reading  
frame 59 

C7orf59  – 460 

GEITGEVRM B*40 2316 filamin A, alpha (actin binding 
protein 280) 

FLNA – 425 

GELGNGNIKL B*40, B*44 5111 proliferating cell nuclear antigen PCNA - 2,4 425 

GESDDSILRL B*40 6227 ribosomal protein S21 RPS21 – 425 

GEVNDIKTRSW B*44 2162 coagulation factor XIII, A1 polypep-
tide 

F13A1 - 2,4 425 

GFTLGNVVGMY A*26 647087 PL-5283 protein PL-5283 – 425 

GLASFKSFLK A*03 8490 regulator of G-protein signalling 5 RGS5 + 2,5 468 

GLATDVQTV A*02 5691 proteasome (prosome, macropain) 
subunit, beta type, 3 

PSMB3 – 482 

GLLSQTVIL A*02 10683 delta-like 3 (Drosophila) DLL3 – 482 

GLNDFIQKI B*13 6446 serum/glucocorticoid regulated 
kinase 1 

SGK1 – 468 

GLVAKGLLIK A*03 55342 spermatid perinuclear RNA 
binding protein 

STRBP - 1,6 460 

GPVLGLLLFV B*07 92736 otopetrin 2 OTOP2 – 421 T 

GQFKDIITKV B*13 1213 clathrin, heavy chain (Hc) CLTC  468 

GQKLEPLAY B*15 79365 basic helix-loop-helix family, 
member e41 

BHLHE41 + 4,5 417 

GQLGITKVF B*15 5265 serpin peptidase inhibitor, clade A 
(alpha-1 antiproteinase, antitryp-
sin), member 1 

SERPINA1 2,8 417 

GQVEIVTKV B*13 158471 prune homolog 2 (Drosophila) PRUNE2 + 2,0 468 

GQVQKIVLY B*15 1213 clathrin, heavy chain (Hc) CLTC – 
– 

417 
482 

GTDELRLLY A*01 81887 LAS1-like (S. cerevisiae) LAS1L  – 460 

GTDNPLSGGDQY A*01 7520 X-ray repair complementing defec-
tive repair in Chinese hamster cells 
5 (double-strand-break rejoining) 

XRCC5 – 482 

GTPGSTGKRV A*02 22850 ADNP homeobox 2 ADNP2 – 417 

GVANALAHK A*03 3043 hemoglobin, beta  HBB  – 421 T 

GVAPFTIAR A*03 1293 collagen, type VI, alpha 3 COL6A3 + 1,8 425 

GVHGGILNK A*03 345456 profilin 3 PFN3 – 421 T/N 
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GVIEKLLTSY A*26 7812 cold shock domain containing E1,  
RNA-binding 

CSDE1 - 1,9 425 

HPRIITEGF B*35 908 chaperonin containing TCP1, 
subunit 6A (zeta 1) 

CCT6A  – 460 

HPVPQPLQSF B*35 9935 v-maf musculoaponeurotic  
fibrosarcoma oncogene homolog B 
(avian) 

MAFB – 460 

IARNLTQQL B*07 123 perilipin 2 PLIN2  + 3,3 421 T 

IEVDGKQVEL B*40 387 
 

388 
 

389 

Ras homolog gene family, 
member A  
Ras homolog gene family,  
member B  
Ras homolog gene family,  
member C 

RHOA 
 
RHOB 
 
RHOC 

- 3,9 
 

– 
 

– 

425 

ILNPDNSFEIL k.A. 

B*13  

821 calnexin CANX – 
+ 2,3 

425 
468 

IQHDLIFSL B*13 3091 hypoxia inducible factor 1, alpha 
subunit (basic helix-loop-helix 
transcription factor) 

HIF1A – 468 

IQKQANISI B*15 3908 laminin, alpha 2 LAMA2 – 417 

ISKALVAY B*15:01 6217 ribosomal protein S16 RPS16 – 482 

ITDSAGHILY A*01 10972 transmembrane emp24-like traf-
ficking protein 10 (yeast) 

TMED10 – 417 
482 

ITIFEKQEY A*01 1806 dihydropyrimidine dehydrogenase DPYD – 482 

ITQGTPLKY A*01 9612 nuclear receptor co-repressor 2 NCOR2 – 482 

IVAGSLITK A*03 55660 PRP40 pre-mRNA processing 
factor 40 homolog A (S. cerevisiae) 

PRPF40A  – 421 T 

IVAKHTSAL A*02 83660 talin 2  TLN2  – 421 T 

KDVLSVAF B*37 10399 guanine nucleotide binding protein  
(G protein), beta polypeptide  
2-like 1 

GNB2L1 – 417 

KEIFLRELI B*40, B*44 3320 
3324 
3326 
7184 

heat shock protein: 90kDa alpha 
(cytosolic), class A member 1, 
class A member 2 and class B 
member 1; heat shock protein 
90kDa beta (Grp94), member 1 

HSP90AA1 
HSP90AA2 
HSP90AB1 
HSP90B1 

- 3,9 
– 

- 2,2 
+ 2,0 

425 

KEIGELTQL B*40, B*44 6251 Ras suppressor protein 1 RSU1 + 2,1 425 

KENPLQFKF B*37 5962 
7430 

radixin 
ezrin 

RDX 
EZR 

– 417 

KESEVFYEL B*37 3091 hypoxia inducible factor 1, alpha 
subunit (basic helix-loop-helix 
transcription factor) 

HIF1A – 417 

KESTLHLVL B*40, B*44 
B*40 

6233 ribosomal protein S27a  RPS27A – 425 
460 

KIADRFLLY A*03 8543 LIM domain only 4 LMO4 – 460 
468 

KIEAPALAF B*15 9802 DAZ associated protein 2 DAZAP2 + 1,6 417 

KITDVIIGF A*26 4627 myosin, heavy chain 9, non-muscle MYH9 – 431 

KIVPIAIQL B*13 240 arachidonate 5-lipoxygenase ALOX5 + 3,9 468 

KLGSVPVTV A*02 9747 family with sequence similarity 
115, member A / KIAA0738 gene 
product 

FAM115A – 482 

KLLNYAPLEK A*03 5441 polymerase (RNA) II (DNA di-
rected) polypeptide L, 7.6kDa 

POLR2L – 468 

KLPGGSYMAK A*03 3127 major histocompatibility complex, 
class II, DR beta 5 

HLA-DRB5  – 421 T 

KQALSGFGY B*15:01 10016 programmed cell death 6 PDCD6 – 482 
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KSELLVEQY A*01 123 
10111 

perilipin 2 
RAD50 homolog (S. cerevisiae) 

PLIN2 
RAD50 

+ 3,3 
– 

482 

KTFEGNLTTK A*03 10594 PRP8 pre-mRNA processing factor 
8 homolog 

PRPF8  – 421 T 

KVAGAATPK A*03 3007 histone cluster 1, H1d  HIST1H1D  – 421 T 

KVAPAPAVVK A*03 6130 ribosomal protein L7a  RPL7A  – 421 T 

KVAPAPAVVKK A*03 6130 ribosomal protein L7a RPL7A  – 421 T 

KVTGTQPI A*02 4638 myosin light chain kinase MYLK – 482 

KVVPEMTEILKK A*03 2108 electron-transfer-flavoprotein, 
alpha polypeptide 

ETFA  – 425 

KVYENYPTY A*03 7913 DEK oncogene (DNA binding DEK – 425 

LARAELALL A*02 554 arginine vasopressin receptor 2 AVPR – 482 

LASVSTVLTSKY k.A. 3039 
3040 

hemoglobin, alpha 1 
hemoglobin, alpha 2 

HBA1 
HBA2 

– 468 

LDFGSLSNL B*40 
B*44 

6218 ribosomal protein S17 RPS27 - 2,0 
– 

425 
468 

LEQQNKILL B*40, B*44 7431 vimentin VIM + 4,2 425 

LILPGYIDF k.A. 3615 IMP (inosine monophosphate)  
dehydrogenase 2 

IMPDH2 – 425 

LLDIRSEY A*01 311 annexin A11 ANXA11 – 482 

LLDPSQKNLY A*01 7568 
7637 
7678 
7695 
90589 
93474 

199692 

zinc finger protein 20 
zinc finger protein 84 
zinc finger protein 124  
zinc finger protein 136 
zinc finger protein 625 
zinc finger protein 670 
zinc finger protein 627 

ZNF20 
ZNF84 
ZNF124 
ZNF136 
ZNF625 
ZNF670 
ZNF627 

– 482 

LLDQGQLNKY A*01 1213 clathrin heavy chain CLTC – 460 
482 

LLQEKGLVF B*15:01 79991 oligonucleotide/oligosaccharide-
binding fold containing 1 

OBFC1 – 482 

LPSPVTAQKY B*35 1938 eukaryotic translation elongation 
factor 2 

EEF2 – 460 

LQAKQAAGII B*15:01 23013 spen homolog, transcriptional 
regulator (Drosophila) 

SPEN – 482 

LQEFGPISY B*13 3191 heterogeneous nuclear ribonucle-
oprotein L 

HNRNPL – 468 

LQKNVPILY B*15:01 1495 catenin (cadherin-associated 
protein), alpha 1, 102kDa 

CTNNA1 – 482 

LQNADPLKV B*13 972 CD74 molecule, major histocom-
patibility complex, class II invariant 
chain 

CD74 + 2,4 468 

LSDLGRLSY A*01 7994 MYST histone acetyltransferase 
(monocytic leukemia) 3 

MYST3 – 482 

LSERYAELY A*01 389792 immediate early response 5-like IER5L – 482 

LTDDDLLRY A*01  2632 (glucan (1,4-alpha-), branching 
enzyme 1) 

GBE1  – 460 

LTDITKGVQY A*01 1938 eukaryotic translation elongation 
factor 2 

EEF2 – 460 

LTDITKGVQY A*01 1938 eukaryotic translation elongation 
factor 2 

EEF2 – 482 

LVVYPWTQR Artefakt 3043 hemoglobin beta HBB + 2,3 425 

LVVYPWTQRF Artefakt 
 

3043 hemoglobin beta HBB – 
– 

460 
468 

MAGDIYSVFR A*68 123 perilipin 2 PLIN2 + 2,6 468 

MMSLRRDLY A*03 23007 phospholipase C, eta 1 PLCH1  – 421 T 
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MPSASMTRL B*35 10397 
65009 

N-myc downstream regulated 1 
NDRG family member 4 

NDRG1 
NDRG4 

+ 1,5 
– 

460 

MPVGPDAILRY k.A. 7917 HLA-B associated transcript 3 BAT3 – 425 
460 

MRFLAATFL k.A. 10577 Niemann-Pick disease, type C2 NPC2 – 468 

MRYVASYLL k.A. 6181 ribosomal protein, large, P2 RPLP2 – 468 

MTSALPIIQK A*68 124 perilipin 2  PLIN2 + 2,6 468 

MVKDVIGSY A*26 4692 necdin homolog (mouse) NDN + 2,3 431 

NEFPEPIKL B*40 7879 RAB7A, member RAS oncogene 
family 

RAB7A – 425 

NETIKISIY B*40 653 bone morphogenetic protein 5 BMP5 – 460 

NLNVTEEKY B*15:01 6648 superoxide dismutase 2, mito-
chondrial 

SOD2 + 3,2 482 

NPVDWKEKY  B*35 5352 procollagen-lysine, 2-
oxoglutarate 5-dioxygenase 2 

PLOD2 + 2,5 460 

NTDSPLRY A*01 3921 ribosomal protein SA RPSA – 482 

NVIRDAVTY A*03 8294 histone1, H4i HIST1H4i – 460 

NYIDKVRFL B*13 7431 Vimentin VIM – 468 

PISATPPAL A*02 54455 F-box protein 42 FBXO42 – 482 

PSLRILAIGTR A*68 3993 lethal giant larvae homolog 2  
(Drosophila) 

LLGL2 – 468 

PTDPKVVVY A*01 202 absent in melanoma 1 AIM1 – 482 

QDVARVLGF B*37 9240 paraneoplastic antigen MA1 PNMA1 – 417 

QLYKEQLAK A*03 4627 myosin, heavy chain 9, non-muscle MYH9  – 421 T 

QPDQTRIVAL B*07 2091 fibrillarin FBL  – 421 T 

QSLPTTSAA k.A. 115701 alpha-kinase 2 ALPK2  + 1,8 421 T 

QTYVGITEK A*03 23020 small nuclear ribonucleoprotein 
200kDa (U5)  

SNRNP200  – 421 T 

QVDPLSALKY A*01 4289 muskelin 1, intracellular mediator 
containing kelch motifs 

MKLN1 – 460 

REFIAPVTL B*40 5352 procollagen-lysine, 2-
oxoglutarate 5-dioxygenase 2 

PLOD2 + 2,6 425 

REKMTQIMF  B*40 58 
60 
72 

actin, alpha 1, skeletal muscle 
actin, beta 
actin, gamma 2, smooth muscle, 
enteric 

ACTA1  
ACTB 
ACTG2 

– 
- 2,0 
- 1,7 

460 

RENLEFGKV k.A. 2322 fms-related tyrosine kinase 3 FLT3  421 N 

REYQDLLNVKM B*40 1674 
 

7431 

desmin 
 
vimentin 

DES 
 
VIM 

- 2,6 
– 

+ 4,2 
- 2,3 

425 
460 
425 
460 

RIQGPLQH k.A. EAW 
85283.1 

hCG2045458 k.A. – 421 T 

RLAPLIQVI B*13 3092 huntingtin interacting protein 1 HIP1 – 468 

RLFEHPLYR A*03 56975 family with sequence similarity 
20, member C 

FAM20C – 425 

RLFPVPGSGLV B*13 3920 lysosomal-associated membrane 
protein 2 

LAMP2 – 468 

RLIGQIVSSI B*13 7278 
7846 

tubulin, alpha 3c 
tubulin, alpha 1a 

TUBA3C 
TUBA1A 

– 468 

RPAPVEVTY B*35 7803 protein tyrosine phosphatase type 
IVA, member 1 

PTP4A1 - 2,5 460 

RPFERTITM B*35 6386 syndecan binding protein (synte-
nin) 

SDCBP  – 460 

RPSTSRSL B*07 7431 vimentin VIM  + 1,9 421 T 

RQNGDDPLLTY B*15:01 4000 lamin A/C LMNA – 482 
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RSVEGLSR k.A. 5744 parathyroid hormone-like hor-
mone 

PTHLH  – 421 N 

RVAPEEHPVL Artefakt 60 
71 

actin, beta 
actin, gamma 1  

ACTB  
ACTG1  

– 421 T 

RVQEAVESMVK  A*03 84908 family with sequence similarity 
136, member A 

FAM136A – 460 

SDALKVTF B*37 8933 family with sequence similarity 
127,member A 

FAM127A – 417 

SDIVAHLL B*37 338 apolipoprotein B (including Ag(x)  
antigen) 

APOB + 4,3 417 

SDPVTKDPPA k.A. 85446 zinc finger homeobox 2 ZFHX2 – 425 

SDVLELTDDNF B*44 2923 protein disulfide isomerase 
family A, member 3 

PDIA3 – 468 

SEARELVAL  B*40 1545 cytochrome P450, family 1, sub-
family B, polypeptide 1 

CYP1B1 - 3,3 460 

SEVMGEPHL B*40, B*44 52371 proteasome maturation protein POMP – 425 

SEVQDRVML B*40 51646 yippee-like 5 (Drosophila) YPEL5 - 1,9 425 

SHLPVIHEL B*39 11067 chromosome 10 open reading 
frame 10 

C10orf10 + 3,4 431 

SIDRTVMYY A*01 6519 solute carrier family 3 (cystine, 
dibasic and neutral amino acid 
transporters, activator of cystine, 
dibasic and neutral amino acid 
transport), member 1 

SLC3A1 – 417 

SLADIMAKR A*68 2152 ribosomal protein L24 RPL24 – 468 

SLFVSNHAY B*15:01 226 aldolase A, fructose-bisphosphate ALDOA – 482 

SPRVQSTI B*07 10517 F-box and WD repeat domain 
containing 10 

FBXW10  – 421 T 

SQALAIRSY B*15:01 23787 mitochondrial carrier homolog 1 (C. 
elegans) 

MTCH1 – 482 

SQANIAQVL B*39 
B*15:01 

162 adaptor-related protein complex 
1, beta 1 subunit 

AP1B1 – 431 
482 

SQEKPPVQL k.A. 23116 family with sequence similarity 
179, member B 

FAM179B – 421 T 

SQIFISRTY B*15:01 2665 GDP dissociation inhibitor 2 GDI2 – 482 

SQINRAYQF B*15:01 9694 tetratricopeptide repeat domain 35 TTC35 – 482 

SQKKIINEA B*15 202333 cardiomyopathy associated 5 CMYA5 - 2,2 417 

SQWDSVLHI B*13 389524 GTF2I repeat domain containing 
2B 

GTF2IRD2B – 468 

SQYPNQPTRF B*15:01 7026 nuclear receptor subfamily 2, 
group F, member 2 

NR2F2 – 482 

SSVDQPLKI B*13 832 capping protein (actin filament) 
muscle Z-line, beta 

CAPZB – 468 

STDHIPILY A*01  2673 glutamine-fructose-6-phosphate  
transaminase 1 

GFPT1 – 460 

STDKFKTDFY A*01 10980 COP9 constitutive photomorpho-
genic homolog subunit 6 (Arabi-
dopsis) 

COPS6 – 460 

STDPSVLGKY A*01 3280 hairy and enhancer of split 1, 
(Drosophila) 

HES1 – 417 

SVAGLTAAAYR A*68 126328 NADH dehydrogenase 
(ubiquinone) 1 alpha subcom-
plex, 11, 14.7kDa 

NDUFA11 – 468 

SVDPHGFISY A*01 92609 translocase of inner mitochondrial 
membrane 50 homolog (S. cere-
visiae) 

TIMM50 – 482 

SVIDIINKY A*26 23228 phospholipase C-like 2 PLCL2 - 2,7 425 

SVIEQILHY A*26 9690 ubiquitin protein ligase UBE3C - 1,7 425 
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SVNGkVLSK A*03 23420 
283820 
408050 

NODAL modulator 1 
NODAL modulator 2 
NODAL modulator 3 

NOMO1 
NOMO2 
NOMO3  

– 421 T 

SVYRTPVVNLK A*03 4703 nebulin NEB + 7,5 425 

TDGKVFQF B*37 6152 ribosomal protein L24 RPL24 – 417 

TDNQRKLFF B*37 7145 tensin 1 TNS1 – 417 

TEISSAEKVAL B*40, B*44 4134 microtubule-associated  
protein 4 

MAP4 + 2,2 425 

TEITDDLHFY B*44 27044 staphylococcal nuclease and tudor 
domain containing 1 

SND1 – 468 

TEVGEKIAL B*40 
B*44 

1968 eukaryotic translation initiation 
factor 2, subunit 3 gamma, 52kDa 

EIF2S3 – 425 

TLFPVRLLV B*13 79888 lysophosphatidylcholine  
acyltransferase 1 

LPCAT1 + 1,9 468 

TLIDLPGITRV A*02 4599 myxovirus (influenza virus) resis-
tance 1, interferon-inducible pro-
tein p78 (mouse) 

MX1  – 421 N 

TLYEAVREV A*02 4736 ribosomal protein L10a RPL10A  – 421 T 
482 

TPEEKSAVTAL B*07 3043 hemoglobin, beta  HBB  – 421 T 

TPSLVKSTSQL B*07 517 ATP synthase, H+ transporting, 
mitochondrial Fo complex, subunit 
C2 (subunit 9) 

ATP5G2  – 421 T 

TQKPLPVSL B*15:01 55627 sphingomyelin phosphodiesterase 
4, neutral membrane (neutral 
sphingomyelinase-3) 

SMPD4 – 482 

TQMPDPKTF B*15 51123 zinc finger protein 706 ZNF706 – 417 

TQRPVDIVF B*15:01 1292 
3687 

collagen, type VI, alpha 2  
integrin, alpha X (complement 
component 3 receptor 4 subunit) 

COL6A2 
ITGAX 

+ 2,1 
+ 2,0 

482 

TQVVGILKI B*13 830 capping protein (actin filament) 
muscle Z-line, alpha 2 

CAPZA2 – 468 

TTEVHPELY A*01 51614 ERGIC and golgi 3 ERGIC3 – 482 

TVAQITQRF B*15:01 3134 major histocompatibility complex, 
class I, F 

HLA-F – 482 

TVAVPLVGK A*03 79139 DerL1-like domain family,  
member 1 

DERL1 – 425 

TVGLIRNL B*13 1499 catenin (cadherin-associated 
protein), beta 1, 88kDa 

CTNNB1 – 468 

VAKAVTQAL k.A. 7094 talin 1 TLN1  – 421 T 

VAKLLAQSY B*15:01 51421 angiomotin like 2 AMOTL2 – 482 

VEFSSGLKGMSL B*44 498 ATP synthase, H+ transporting, 
mitochondrial F1 complex, alpha 
subunit 1, cardiac muscle 

ATP5A1 – 468 

VEKEFEPLL  B*40 7184 heat shock protein 90kDa beta 
(Grp94), member 1 

HSP90B1 + 1,9 460 

VESLIQKF B*37 115548 FCH domain only 2 FCHO2 – 417 

VESLLQKF B*37 56339 methyltransferase like 3 METTL3 – 417 

VLDEAFQRY A*01 3073 hexosaminidase A (alpha poly-
peptide) 

HEXA – 482 

VLEKNLIKV B*13 64766 S100P binding protein S100PBP – 468 

VLIDYQRNV A*02 7514 exportin 1 (CRM1 homolog, yeast) XPO1 – 482 

VLRPFPASY B*15:01 54956 poly (ADP-ribose) polymerase 
family, member 16 

PARP16 – 482 

VLYDRVLKY A*03 6730 signal recognition particle 68kDa SRP68 – 425 
468 
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Sequenz HLA Gene ID Quellprotein   FC RCC 

      Abkürzung mRNA Probe 

VMAPRTVLL B*07 3106 
 

4276 

major histocompatibility complex, 
class I, B 
MHC class I polypeptide-related 
sequence A  

HLA-B 
 
MICA 

- 2,1 
 

– 

431 

VQGIFVEKY B*15:01 5906 
 

5908 

RAP1A, member of RAS onco-
gene family 
RAP1B, member of RAS onco-
gene family 

RAP1A 
 
RAP1B 

– 
 

– 

482 

VSDKTLSFY A*01 10061 ATP-binding cassette, sub-family F 
(GCN20), member 2 

ABCF2 – 482 

VSDLLHQY A*01 5696 proteasome (prosome, macropain) 
subunit, beta type,8 (large multi-
functional peptidase 7) 

PSMB8 + 1,7 482 

VSYSHIQSK A*03 4134 microtubule-associated  
protein 4 

MAP4  – 421 T 

VTELHVISY A*01 57674 ring finger protein 213 RNF213 + 1,7 
+ 2,1 

– 

417 
460 
482 

VTIPPKSSL A*02 718 complement component 3 C3 + 5,5 482 

VTVPPGPSL A*26 5710 proteasome (prosome, macropain)  
26S subunit, non-ATPase, 4 

PSMD4 – 425 

VVRHQLLKT k.A. 1350 cytochrome c oxidase subunit VIIc COX7C  – 421 T 

VVYPWTQRF Artefakt 
k.A. 

3043 hemoglobin beta HBB – 460 

VYPDGIRHI k.A. 23450 splicing factor 3b, subunit 3,  
130 kDa 

SF3B3 – 421 T 

WAGLALLSI A*02 55013 coiled-coil domain containing 
109B 

CCDC109B – 417 

WQVKSGTIFDNF k.A. 811 calreticulin CALR – 468 

WSVDPLDR k.A. 2934 gelsolin (amyloidosis, Finnish 
type) 

GSN - 2,6 425 

YAVAVVKK A*03 4057 LTF lactotransferrin  LTF – 421 T 

YAYDGKDYIA Fragment k.A. MHC class I antigen k.A. – 482 

YAYDGKDYIAL k.A. 3105 
 

3106 
 

3107 

major histocompatibility complex, 
class I, A 
major histocompatibility complex, 
class I, B 
major histocompatibility complex, 
class I, C 

HLA-A 
 
HLA-B 
 
HLA-C 

– 
 

- 1,6 
 

– 

425 

  A*02 3105 
 

3106 
 

3107 

major histocompatibility complex, 
class I, A 
major histocompatibility complex, 
class I, B 
major histocompatibility complex, 
class I, C 

HLA-A 
 
HLA-B 
 
HLA-C 

– 
 

– 
 

– 

482 

YIDEQFERY A*01 4735 septin 2 SEPT2 – 
– 

460 
482 

YLLPAIVHI B*13 1655 DEAD (Asp-Glu-Ala-Asp) box 
polypeptide 5 

DDX5 + 1,5 468 

YLNEKAVSY B*15:01 8301 phosphatidylinositol binding 
clathrin assembly protein 

PICALM – 482 

YQDPDATSLKY k.A. 9557 chromodomain helicase DNA 
binding protein 1-like 

CHD1L – 482 

YRDIPELQGF k.A. 65985 acetoacetyl-CoA synthetase AACS – 468 

YSDKYGLGY A*01 5347 polo-like kinase 1 (Drosophila) PLK1 – 482 

YSDLNTQRPY A*01 7305 TYRO protein tyrosine kinase 
binding protein 

TYROBP + 3,9 482 

YSDLNTQRPYY A*01 7305 TYRO protein tyrosine kinase 
binding protein 

TYROBP + 3,9 482 
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Sequenz HLA Gene ID Quellprotein   FC RCC 

      Abkürzung mRNA Probe 

YSIITPNILRL k.A. 718 complement component 3 C3 – 
+ 4,6 

425 
468 

YTADGKEVLEY A*01 51399 trafficking protein particle complex 
4 

TRAPPC4 – 482 

YTDPEVFKY A*01 5740 prostaglandin I2 (prostacyclin) 
synthase 

PTGIS  – 460 

YVDDTQFVRF k.A. k.A. MHC class I antigen k.A. – 468 

YVDPQFLTY A*01 9867 praja 2, RING-H2 motif containing PJA2 – 482 

 

3.2.4 Gesamtdarstellung aller identifizierten HLA-Klasse-I Liganden 

In den massenspektrometrisch untersuchten Proben konnten insgesamt 318 Peptide 

identifiziert werden. Von diesen Peptiden wurden 147 neue Peptide und 65 neue 

Quellproteine identifiziert. Abbildung 14 zeigt alle detektierten Peptide, alle neuen 

Peptide und alle neuen Quellproteine der einzelnen Gewebeproben. Da einige Peptide 

in mehreren Tumoren detektiert werden konnten, reduzierte sich die Gesamtanzahl 

von eigentlich 346 HLA-Liganden auf 318 HLA-Liganden aller ermittelten Peptide. 
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Abbildung 14: Gesamtausbeute der HLA-Liganden aller Gewebeproben. Die Ordinate zeigt die 
Anzahl der sequenzierten HLA-Liganden. 
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3.3 Vergleichende Genexpressionsanalyse von Tumor und 

autologem Normalgewebe  

3.3.1 Isolierung und Analyse von differentiell exprimierten Genen 

Als quantitative Untersuchung zur HLA-Ligandenanalyse mittels Massenspektrometrie 

wurden vergleichende Genexpressionsanalysen von Tumor und autologem 

Normalgewebe mittels Affymetrix Micro-Array-Technologie veranlasst. Das 

Genexpressionsprofil wurde für sieben Nierenzellkarzinome der Patienten RCC417, 

RCC421, RCC425, RCC431, RCC460, RCC468 und RCC482 untersucht. In die 

Analyse wurden alle Gene mit einbezogen, die sowohl im Tumor als auch im 

Normalgewebe vorhanden waren. 

Um eine Aussage über das Expressionsverhalten der Peptide auf Proteinebene zu 

treffen wurden zunächst alle Signalintensitäten logarithmiert. Die Berechnung erfolgte 

für jede Gewebeprobe von Tumor- und Normalgewebe getrennt. Mit diesen 

logarithmierten Werten wurde der Fold-Change (FC) – der Faktor der differentiellen 

Expression – ermittelt und die Werte von Tumor und Normalgewebe ins Verhältnis 

gesetzt.  

Bei Genexpressionsanalysen werden bei einer Probe pro Messung bis zu mehrere 

tausend Signalintensitäten, also Messwerte, erfasst. In diesen Messwerten sind neben 

aussagekräftigen Werten von mRNA auch diejenigen von nur bruchstückhaft 

vorhandener mRNA, Wiederholungen oder auch zufälligen mRNA-Veränderungen 

enthalten, die falsch positive Resultate liefern können. Um falsch positive Resultate zu 

vermeiden wurden daher nun für die ins Verhältnis gesetzten Logarithmus-Werte ein 

Cut-Off-Wert (Toleranzwert) von ± 1,5 festgelegt. Damit die Streubreite aller 

Signalintensitäten relativ gering gehalten wurde, wurden die errechneten Werte durch 

die Gauß-Verteilung normalisiert. 

Diese Vorgehensweise wurde bei allen ins Verhältnis gesetzten Probenpärchen 

durchgeführt. Mit dem zweiseitigen Referenzbereich wurde das Konfidenzintervall 

bestimmt und lag bei allen Proben bei 95 %. Als statistisch signifikant wurde ein p-Wert 

von < 0,05 betrachtet. Expressionswerte die außerhalb des Konfidenzintervalls im 

positiven Bereich lagen wurden als Überexpression, Werte im negativen Bereich als 

Unterexpression betrachtet. Der Korrelationskoeffizient R², der als Grad des linearen 

Zusammenhangs dient, wurde auf einen Wert nahe + 1 bestimmt.  
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Abbildung 15: Gauß-Normalverteilung der mRNA-Expressionswerte. Tumor versus 
Normalgewebe wurde ins Verhältnis gesetzt. Das Konfidenzintervall aller sieben Proben lag bei 
95 % und ist durch die senkrechten und fetten unterbrochenen Linien dargestellt. Der 
Korrelationskoeffizient R² lag nahe 1. 
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3.3.2 Identifizierung überexprimierter Proteine 

In diesem Kapitel sollen die mRNA-Expressionswerte der Proteine, aus denen die 

HLA-Liganden in Tabelle 14 stammen, näher erläutert werden. Eine Vielzahl an 

Proteinen war in den vergleichenden Genexpressionsanalysen über- oder 

unterexprimiert. Jedoch gab es auch viele Proteine, die nicht detektiert werden 

konnten. Der Grund hierfür lag am gesetzten Cut-Off von ± 1,5 in dessen Bereich sich 

eine Vielzahl weiterer Daten befanden. 

Ein Teil der Proteine, von denen ein HLA-Ligand auf der Zelloberfläche ermittelt 

werden konnte, zeigte in der vergleichenden Genexpressionsanalyse eine 

Überexpression auf mRNA-Ebene. Es wurde daher davon ausgegangen, dass wenn 

eine Überexpression auf mRNA-Ebene stattgefunden hatte, auch eine vermehrte 

Präsentation von MHC-Peptid-Komplexen auf Zelloberflächen vorhanden war. 

Solche präsentierte Peptide auf Zelloberflächen können vom Immunsystem potentiell 

erkannt werden und stellen daher die Möglichkeit für ein immuntherapeutisches 

Eingreifen durch Erkennen der MHC-Peptid-Komplexe von T-Zellen dar. Jedoch muss 

darauf geachtet werden, dass das ermittelte Zielprotein in anderen Körpergeweben 

nicht stark exprimiert ist, um die Gefahr einer Autoimmunreaktion zu minimieren. Daher 

wird das Vorhandensein von Proteinen, die als potentielle Zielproteine gelten, in 

anderen Körpergeweben bestimmt. Die Abbildungen 16 bis 19 zeigen vier ausgesuchte 

Quellproteine und deren relative mRNA-Expressionswerte in verschiedenen 

Normalgeweben (Quelle: www.biogps.gnf.org).  

Die weiter unten aufgeführten Angaben in den eckigen Klammern hinter den Genen, 

respektive den Proteinen, geben den Expressionswert und das Konfidenzintervall (KI) 

an.  

Bei den überexprimierten Proteinen wurden einige Differenzierungsantigene ermittelt, 

die eine zum Teil sehr hohe mRNA-Expression aufwiesen. Der Transkriptionsfaktor 

basic helix-loop-helix family, member e41 (BHLHE41) kann sowohl die basale als 

auch die spezifische Transkription unterdrücken und erreichte einen Expressionswert 

von + 4,5 bei einem Konfidenzintervall von ± 1,6. Er kommt vor allem in quergestreifter 

Skelettmuskulatur und im Gehirn vor, ist aber normalerweise auch in geringem Maße in 

inneren Organen vorhanden.  
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Abbildung 16: Relative mRNA-Expressionswerte des Transkriptionsfaktors BHLHE41 in 
verschiedenen Normalgeweben. Die Zahlenangabe links oben bezieht sich auf den 
verwendeten GeneChip. Quelle: www.biogps.gnf.org. 
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Als weiteres in dieser Antigengruppe ermitteltes Protein war das Ras suppressor 

protein 1 (RSU1) mit einem Expressionswert von + 2,1 und dem Konfidenzintervall 

von + 1,9 / - 1,7. Es spielt in der Differenzierung vieler Zellen als Supressor eine 

wichtige Rolle. 

 

Abbildung 17: Relative mRNA-Expressionswerte des Suppressorantigens RSU1 in 
verschiedenen Normalgeweben. Die Zahlenangabe links oben bezieht sich auf den 
verwendeten GeneChip. Quelle: www.biogps.gnf.org. 
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Das prune homolog 2 (Drosophila) (Prune2), aus dem das identifizierte Peptid 

GQVEIVTKV stammt, hat eine wichtige Funktion in der Regulation bei der 

Zelldifferenzierung sowie dem Überleben von Zellen. In der Literatur wurde die 

Aggressivität von Tumorzellen bei diesem noch relativ unbekannten Protein 

beschrieben (Machida et al. 2006). Es ist ein Protein des Zytoplasmas und kommt 

überwiegend im zentralen Nervensystem und den Nebennieren vor. Der 

Expressionswert von PRUNE2 lag bei + 2,0 und damit deutlich über dem 

Konfidenzintervall von ± 1,5. 
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Abbildung 18: Relative mRNA-Expressionswerte von PRUNE2 in verschiedenen 
Normalgeweben. Die Zahlenangabe links oben bezieht sich auf den verwendeten GeneChip. 
Quelle: www.biogps.gnf.org. 

Das Protein signal transducer and activator of transcription 1 (STAT1) 

[+ 2,0; KI ± 1,4 (RCC468)] gehört zur STAT-Familie dessen Mitglieder 

insgesamt 7 STATs zählen (STAT1, STAT2, STAT3, STAT4, STAT5a, STAT5b und 

STAT6). STAT befindet sich in den meisten Körperzellen, zählt zu den 

Transkriptionsfaktoren des JAK-STAT-Signalwegs und leitet Informationen 

extrazellulärer Signalpeptide von der Zellmembran intrazellulär zu den Promotoren der 

Zielgene im Zellkern weiter. STAT wirkt somit an vielen verschiedenen Wachstums- 

und Differenzierungsprozessen mit. 

Das bereits bekannte Protein nucleophosmin (nucleolar phosphoprotein B23, 

numatrin) (NPM1) [+ 1,9; KI ± 1,4 (RCC468)] gehört sowohl zu den Phosphoproteinen 

als auch zu den Protoonkogenen und bewegt sich als Transporter von Proteinen 

zwischen Nukleus und Zytoplasma. Es ist in verschiedenen Zellprozessen wie 

Proliferation und Regulation des Tumor suppressor TP53 (p53) beteiligt. 
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Das neu identifizierte Protein docking protein 4 (DOK4) [+ 1,6; KI ± 1,5 (RCC482)] ist 

ein Protein der Signaltransduktion. Da es ein in dieser Arbeit neu identifiziertes 

Protoonkogen ist soll es hier und in der Diskussion erwähnt werden, obwohl es nur 

gering überexprimiert war. 

Die sehr stark exprimierten Proteine nebulin (NEB) [+ 7,5; KI + 1,9 / -1,7 (RCC425)], 

microtubule-associated protein 4 (MAP4) [+ 2,2; KI + 1,9 / -1,7 (RCC425)], pro-

collagen-lysine, 2-oxoglutarate 5-dioxygenase (PLOD2) [+ 2,6; KI + 1,9 / -1,7 

(RCC425) und + 2,5; KI ± 1,5 (RCC460)], superoxide dismutase 2, mitochondrial 

(SOD2) [+ 3,2; KI ± 1,5 (RCC482)], apolipoprotein L1 (APOL1) [+ 5,2; KI ± 1,5 

(RCC421 T)] und apolipoprotein B (APOB) [+ 4,3; KI ± 1,5 (RCC417) und + 3,3; 

KI + 1,7 / -1,9 (RCC431)] sind Proteine die von den Körperzellen selbst produziert 

werden und deshalb auch als Autoantigene bezeichnet werden. Von diesen Proteinen 

gehören PLOD2 und SOD2 zu den Enzymen des Zellstoffwechsels, APOL1 und APOB 

zum Fettstoffwechsel. Sie wurden besonders häufig sowie in mehreren Proben mit 

sehr hohen Expressionswerten identifiziert.  

Weitere zu den Enzymen zählenden Autoantigene waren protein tyrosine kinase 

binding protein (TYROPB) [+ 3,9; ± 1,5 (RCC482)] und heme oxygenase 

(decycling) 1 (HMOX1) [+ 3,2; KI + 1,7 / -1,9 (RCC431)]. 

Die Proteine NEB und MAP4 zählen zu den Strukturproteinen der Zellen, die das 

Zytoskelett bilden. Ersteres ist ein rein muskelspezifisches Protein, welches die dünnen 

Filamente der Muskelfasern stabilisiert und auch nur in quergestreifter Muskulatur 

vorkommt. Letzteres ist ein Proteinfilament und hat vor allem in den Zellen des 

Nervensystems eine Stützfunktion. 
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Abbildung 19: Relative mRNA-Expressionswerte von MAP4 in verschiedenen 
Normalgeweben. Die Zahlenangabe links oben bezieht sich auf den verwendeten GeneChip. 
Quelle: www.biogps.gnf.org. 



3 ERGEBNISSE 69 

 

Ein weiteres Protein des Zytoskeletts, Vimentin (VIM) [+ 1,9; KI ± 1,5 (RCC421 T); 

+ 4,2; KI + 1,9 / -1,7 (RCC425); + 2,3; KI ± 1,6 (RCC460)], das bereits bei vielen RCCs 

identifiziert wurde, wurde auch diesmal wieder mit zum Teil hohen Expressionswerten 

gefunden. Insgesamt wurden von diesem Strukturprotein 7 antigene Peptide 

identifiziert. Dieses Protein war bei vier Peptiden über- und bei einem Peptid 

unterexprimiert. Bei zwei Peptiden konnte VIM nicht als exprimiert gewertet werden. 

Auffallend war, dass in der Probe RCC425 dieses Protein mit einem Expressionswert 

von + 4,2 zweimal mit unterschiedlichen Sequenzen vorhanden war. Es waren dies die 

HLA-Liganden REYQDLLNVKM mit dem HLA-Allotyp B*40 und LEQQNKILL mit dem 

HLA-Allotyp B*40/B*44. Weitere Strukturproteine sind die identifizierten Proteine 

collagen, type VI, alpha 2 (COL6A2) [+ 2,1; KI ± 1,5 (RCC482)] und collagen, type 

VI, alpha 3 (COL6A3) [+ 4,2; KI + 1,9 / -1,7 (RCC425)]. 

Weitere Autoantigene, die als überexprimiert identifiziert werden konnten waren 

Calnexin (CANX) [+ 2,3; KI ± 1,4 (RCC468)], Cyclin D1 (CCND1) [+ 2,6; KI ± 1,4 

(RCC468)], EH-domain containing 2 (EHD2) [+ 2,5; KI ± 1,5 (RCC482)] und integrin, 

alpha X (complement component 3 receptor 4 subunit) (ITGAX) 

[+ 2,0; KI ± 1,5 (RCC482)]. 

Wie bereits in früheren Studien belegt, konnten auch diesmal mehrere Peptide  

des Proteins peripilin (PLIN2) [+ 3,3; KI ± 1,5  (RCC421 T); + 2,6; KI ± 1,4  (RCC468); 

+ 3,3; KI ± 1,5  (RCC482)], auch bekannt als adipophilin oder adipose differentiation-

related protein (ADFP), mit zum Teil starken Expressionswerten diagnostiziert werden. 

Insgesamt kam dieses Protein einmal als neues Peptid und dreimal in 

unterschiedlichen bekannten Peptidvarianten vor (siehe Abbildung 13). 

In der Gewebeprobe RCC431 konnte der für Endothelzellen spezifische  

van Willebrand-Faktor (VWF) [+ 5,6; KI + 1,7 / -1,9], in RCC468 bzw. RCC482 

complement component 3 (C3) [+ 4,6; KI ± 1,4 bzw. + 5,5; KI ± 1,5] mit hohen 

Expressionswerten detektiert werden. Beides sind Plasmaproteine. Dabei hat das 

Protein VWF seine wesentliche Aufgabe im Blutgerinnungssystem durch Anhaftung an 

Endothelzellen und an Thrombozyten, das C3 hingegen im Immunsystem durch 

Zerstörung von Krankheitserregern und wirkt bei der Aktivierung von 

Entzündungsreaktionen mit.  

Weiterhin sollen noch die Hämoglobine-β bis -γ [+ 2,3; KI + 1,7 / -1,9 (RCC425)] 

sowie MHC-Klasse-II-Moleküle major histocompatibility complex, class II,  

DP beta 1 (HLA-DPB1) [+ 2,3; KI ± 1,4 (RCC421)] und CD74 molecule, major 

histocompatibility complex, class II invariant chain (CD74) [+ 2,4; KI ± 1,4 

(RCC468)] nicht unerwähnt bleiben. 
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3.3.3 Identifizierung unterexprimierter Proteine 

Ein weiterer Teil der Quellproteine der auf den Zelloberflächen ermittelten 

HLA-Liganden zeigte in der Genexpressionsanalyse eine auffallend schwache 

Signalintensität und dadurch eine Unterexpression. Bei allen hier durchgeführten 

Genexpressionsanalysen wurde Tumor versus Normalgewebe ins Verhältnis gesetzt. 

Aufgrund dessen sind die ermittelten Peptide auf mRNA-Ebene im Normalgewebe 

stärker exprimiert als im Tumorgewebe. Somit können Peptide aus diesen Proteinen 

nicht als auf der Zelloberfläche übermäßig detektierte HLA-Liganden angesehen 

werden. Trotzdem sind diese Quellproteine Teil eines Expressionsmusters 

neoplastischer Zellen.  

Das Protein Ras homolog gene family, member A (RHOA) [- 3,3; KI + 1,9 / -1,7 

(RCC425)] befindet sich in den meisten Körperzellen und gehört zu den kleinen 

zytosolischen GTPasen (GTPase-activating-protein). Es hat eine Schlüsselposition in 

der Signalweiterleitung von Wachstums- und Differenzierungsprozessen. Die 

Aktivierung von RHOA führt zur Ausprägung spezialisierter kontraktiler 

Zytoskelettstrukturen, sogenannte Stressfasern (stress fibers) sowie zur Bildung 

fokaler Adhäsionsplaques (focal adhesions). Diese dienen der Verbindung des 

Zytoskeletts mit der extrazellulären Matrix. 

Das CD9 molecule (CD9) [- 4,3; KI + 1,9 / -1,7 (RCC425)] ist ein Membranprotein, das 

in vielen hämatopoetischen und epithelialen Zellen vorkommt. Es ist involviert in der 

Signalinduktion, Zelladhäsion und -migration und kann die Thrombozytenaktivierung 

und –aggregation auslösen. 

Die ubiquitär vorkommenden Hitzeschockproteine 90 sind Chaperone, die mit anderen 

Chaperonen assoziiert sind. Sie spielen eine zentrale Rolle in der Faltung neu 

synthetisierter Proteine oder in der Stabilisierung und Rückfaltung denaturierter 

Proteine nach Stress. Es gibt zwei bedeutende zytosolische Hitzeschockproteine: das 

heat shock protein: 90 kDa alpha (cytosolic), class A member 1 (HSP90AA1)  

[- 3,9; KI + 1,9 / -1,7] und heat shock protein: 90 kDa alpha (cytosolic), class B 

member 1 (HSP90AB1) [- 2,2; KI + 1,9 / -1,7]. HSP90AA1 ist die induzierbare Form, 

HSP90AB1 die konstitutive Form. Interessanterweise war das im endoplasmatischen 

Retikulum vorkommende heat shock protein 90 kDa beta (Grp94), member 1 

(HSP90B1) [+ 2,0; KI + 1,9 / -1,7] derselben Probe überexprimiert. Alle drei Proteine 

wurden in der Probe RCC425 identifiziert. HSP90B1 wurde zudem in RCC460 

überexprimiert [+ 1,9; KI ± 1,6].  

Das Protein myosin, light polypeptide 6, alkali, smooth muscle and non-muscle 

(MYL6) [- 2,5; KI + 1,9 / -1,7 (RCC425)] ist ein ATPase abhängiges Motorprotein und 

kommt in glatter Muskulatur sowie in muskulaturlosen Geweben vor. Es konnte in der 

Gewebeprobe RCC425 zweimal, jedoch mit unterschiedlichen Peptidsequenzen 

bestimmt werden. 
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Cytochrome P450, family 1, subfamily B, polypeptide 1 (CYP1B1) [- 3,3; KI ± 1,6 

(RCC460)] gehört zur Cytochrom P450-Familie. Es ist ein ubiquitäres, in hohen 

Konzentrationen besonders in der Leber vorkommendes Hämprotein und hat als 

Oxydoreduktase enzymatische Aktivität. Hauptsächlich ist es für die Oxidation 

körpereigener Stoffe wie beispielsweise Cholesterolsynthese, Synthese von Steroiden 

sowie Fetten verantwortlich. Körperfremde und körpereigene hydrophobe Stoffe 

werden durch Oxidation leichter in lösliche Formen biotransformiert. Sie können 

dadurch schneller aus dem Körper ausgeschieden werden.  
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4 Diskussion 

Zur Identifizierung von TAAs wurden in dieser Arbeit massenspektrometrische 

Analysen sowie parallel durchgeführte vergleichende Genexpressionsanalysen auf 

mRNA-Ebene als gut etablierte Methoden durchgeführt. Die Genexpressionsanalysen 

wurden mit der Micro-Array-Methode ausgeführt. Bei dieser Methode werden 

differentiell exprimierte Genprodukte sowohl bei Tumorgewebe als auch bei 

Normalgewebe in hoher Anzahl detektiert (Kallioniemi et al. 2001). Dabei sind in 

transformierten Tumorzellen andere Stoffwechselvorgänge und Transkripte zu finden 

als in vergleichbaren gesunden Zellen des gleichen Körpergewebes. Infolgedessen 

weisen Tumorzellen im Vergleich zu gesunden Zellen bei Genexpressionsanalysen 

andere Expressionswerte auf (Ross et al. 2000). 

Neben diesen beiden Untersuchungsmethoden wurde zur Beurteilung einer 

Tumorassoziation identifizierter Peptide respektive Proteine die biologische Funktion 

derselben bewertet. Da T-Zellen mit ihrem TCR Tumorzellen erkennen können, wurde 

zudem auf Immunreaktionen von T-Zellen geachtet. Es wurde auch darauf Wert gelegt, 

dass die Antigene eine möglichst hohe Tumorspezifität aufweisen, um das Risiko von 

Autoimmunreaktionen durch nachfolgende Immunisierung zu minimieren. Dazu wurden 

die relativen Expressionswerte der Antigene auf Normalgewebe mit Hilfe von 

Datenbanken (www.biogps.gnf.org; www.swissprot) geprüft. Ferner wurde untersucht, 

wie häufig die betreffenden TAAs auf bereits zuvor untersuchten RCCs zu finden 

waren. 

Im Folgenden sollen nun diejenigen identifizierten HLA-Liganden diskutiert werden, für 

die sich der Verdacht einer Tumorassoziation im Nierenzellkarzinom ergab bzw. die mit 

einem Tumorwachstum im Zusammenhang stehen können.  
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4.1 Überexprimierte Proteine 

4.1.1 Proteine der Signaltransduktion 

GQKLEPLAY aus BHLHE41 

Das Quellprotein dieses Liganden heißt basic helix-loop-helix family, member e41 und 

ist ein noch relativ neu entdecktes Mitglied in der basic helix-loop-helix-Familie. Beide, 

Ligand und Quellprotein, wurden neu identifiziert. Dieses Protein ist ein 

Transkriptionsfaktor, der sowohl die basale als auch die spezifische Transkription 

unterdrücken kann (Garriga-Canut et al. 2001) und spielt eine wichtige Rolle in der 

Kontrolle der Zelldifferenzierung, des Zellwachstums und der Morphogenese. In 

Studien konnte gezeigt werden, dass durch Unterdrückung von BHLHE41 die 

Apoptose in humanen Brustkrebszellinien induziert werden kann. Ferner kann die 

Expression von Faktoren beeinflusst werden, die mit Apoptose verknüpft sind wie 

beispielsweise Bax, C-Myc oder Fas. In der gleichen Studie konnte festgestellt werden, 

dass durch den Einfluss von TNF-α (Tumornekrosefaktor alpha) die BHLHE41-

Expression reguliert wird (Liu et al. 2010). In anderen Untersuchungen wurde belegt, 

dass unter dem Einfluss von BHLHE41 bei hypoxischen Bedingungen die VEGF-

Genexpression (vascular endothelial growth factor, VEGF) unterdrückt werden kann 

(Sato et al. 2008). In dieser Studie wurde auch nachgewiesen, dass BHLHE41 den 

VEGF negativ reguliert. Dadurch erscheint dieses Protein, das in quergestreifter 

Skelettmuskulatur und im Gehirn hoch exprimiert, aber nur moderat in Pankreas und 

Herz sowie schwach in Plazenta, Lunge und Leber exprimiert ist (Fujimoto et al. 2001), 

als ein hochinteressanter Kandidat für eine Peptid-basierte Immuntherapie. Es sollten 

daher weitere Studien über eine Eignung als T-Zell-Epitop durchgeführt werden. 

GQVEIVTKV aus PRUNE2 

Auch hier sind Ligand und Quellprotein neu. Diesem noch relativ unbekannten, im  

Zytoplasma von ZNS (Gehirn und Rückenmark) sowie Nebennieren vorkommenden 

Transkriptionsfaktor prune homolog 2 (Drosophila) wurde bei Tumorzellen eine erhöhte 

Aggressivität vor allem beim Neuroblastom – eine bösartige, von der Embryonalleiste 

ausgehende Neubildung bei Kindern – zugeschrieben. Bei dieser malignen Erkrankung 

dient PRUNE2 als Prognose-Faktor. PRUNE2 spielt eine wichtige Rolle in der 

Regulation der Zelldifferenzierung, dem Überleben und der Aggressivität von 

Tumorzellen (Machida et al. 2006). Allerdings ist über die Funktionsweise dieses 

Proteins nur sehr wenig bekannt. Das Vorkommen dieses Proteins in den 

Körpergeweben ist limitiert, es könnte daher ein Kandidat für eine 

Vakzinierungstherapie sein. Allerdings müssten hierzu T-Zellstimulationen durchgeführt 

werden um festzustellen, ob mögliche Immunreaktionen vorhanden sind.  
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KEIGELTQL aus RSU1 

Das Quellprotein dieses Liganden ist das Ras suppressor protein 1 und enthält  

7 LRR (leucine-rich repeat). Es gehört als kleines GTP-bindendes Protein zur 

Ras-Familie und wurde nebst Peptid neu detektiert. 

Die kleinen GTPasen der Ras-Proteine funktionieren als molekulare Schalter, die 

zwischen inaktiven GDP-gebundenen und aktiven GTP-gebundenen Konfirmationen 

wechseln. In der aktiven Form kann Ras mit nachgeschalteten Effektoren wie Raf, 

Phosphatidylinositol 3-Kinase und Phospholipase C – welche die Signalkaskade 

einleiten – reagieren. Diese Reaktion führt am Ende einer Signalkaskade zur 

Transkription, Translation und zum Ablauf des Zellzyklus. Das Ende eines 

Ras-vermittelten Signals innerhalb der Zelle ist in der Regel mit Zellwachstum und 

Zellproliferation verbunden. Deshalb sind Mutationen innerhalb des Ras-Proteins oft an 

der Tumorentstehung beteiligt. Die Ras-Proteine spielen jedoch nicht nur im 

Zellwachstum eine Rolle, sondern können auch als Suppressoren wirken wie 

beispielsweise RSU1. 

Dieses Protein hat seine Funktion in der Ras-Signaltransduktion. Jedoch ist über die 

RSU1 spezifische RNA noch wenig bekannt, obwohl es in vielen Geweben vorkommt. 

Es wird vermutet, dass dieses Protein eine Rolle in der Ras-vermittelten 

Signaltransduktion als Protoonkogen spielt. RSU1 ist seither nur in zwei Gewebearten 

als Tumorsuppressor beschrieben. Aus Studien ist bekannt, das die Expression von 

RSU1 das Wachstum von Zelllinien des Brustkrebses und des Glioblastoms hemmt 

(Chunduru et al. 2002). Weitere Studien belegen, dass RSU1 an die Domäne LIM5 des 

Adapterproteins PINCH-1 (LIM and senescent cell antigen-like domains 1, LIMS1) 

bindet (Dougherty et al. 2005) und dadurch eine Interaktion mit IPP (integrin-linked 

kinase {ILK}, PINCH-1 / LIMS1, parvin) eingeht. Durch die dadurch entstehende 

Signalkaskade kann eine Zellmigration gehemmt werden. Diese hemmende  

Funktion kann allerdings durch eine Ras-Aktivierung wieder aufgehoben werden 

(Dougherty et al. 2008). Dadurch, dass diese Proteinfamilie einerseits am 

Zellwachstum beteiligt ist und andererseits aber als Tumorsuppressor fungiert, ist es 

ein sehr interessantes Protein. Allerdings fehlen bis dato noch weitere 

Forschungserkenntnisse, um dieses Protein in der Immuntherapie erfolgreich 

einsetzen zu können. 

FSDIVKQGY aus DOK4 

Dieses neue und noch recht unbekannte Protein und sein zugehöriger Ligand werden 

von dem Gen docking protein 4 (auch als downstream of tyrosine kinase-4 bezeichnet) 

kodiert. DOK-Proteine sind wichtige Adapter-Proteine im multimolekularen  

Signalkomplex. DOK4 reguliert positiv den MAP-Kinase-Signalweg und hat Funktionen 

im RET-vermittelten Neuritenwachstum sowie bei der Regulation von T-Zell-vermittelter 

Immunantwort (Favre et al. 2003). Ubiquitär vorkommend weist DOK4 hohe  

Expressionswerte im Skelettmuskel, im Herz, in der Leber und in der Niere auf  
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(Grimm et al. 2001). Außerdem ist DOK4 in ruhenden T-Zellen exprimiert und greift 

dort negativ regulierend in die T-Zellantwort ein (Gérard et al. 2009).  

Ein Zusammenhang mit malignen Erkrankungen konnte beschrieben werden. So 

wurde DOK4 eine Rolle im Insulin-Signalweg zugeschrieben, indem es als 

Adapter-Protein dem IRS5 (insulin receptor substrate-5) nachgeschaltet ist und mit 

diesem einen IRS5 / DOK4-Komplex bildet und als IRS5 / DOK4-Komplex in der Niere 

hoch exprimiert ist (Cai et al. 2003). In einer weiteren Studie konnte dokumentiert 

werden, dass der IRS5 / DOK4-Komplex beim klarzelligen Nierenzellkarzinom hohe 

Expressionswerte aufweist (Al-Sarraf et al. 2007). Ähnliche Ergebnisse konnten auch 

für das großzellige Lungenkarzinom gewonnen werden (Gray et al. 2008). Obwohl über 

das Protein noch recht wenig bekannt ist, scheint dennoch ein starker Zusammenhang 

mit neoplastischen Erkrankungen zu bestehen. Durch die zusätzlich erbrachten 

T-Zellreaktionen spielt dieses Protein zudem auch eine wichtige Rolle in der 

Immunantwort. Aufgrund dieser Ergebnisse kann der Ligand von DOK4 als neues 

tumorassoziiertes Antigen bezeichnet werden. Als Einsatz in der 

immuntherapeutischen Vakzinierung wäre dieser HLA-A*01-Ligand ein 

hochinteressanter Kandidat. 

DEVSRIVGSVEF aus STAT1 

Dieser neu entdeckte HLA-Ligand stammt aus dem Protein signal transducer and 

activator of transcription 1. Das Protein ist Bestandteil der STAT-Protein-Familie. 

HLA-Liganden dieses Proteins wurden bereits in unterschiedlichen Zelllinien sowie 

Primärtumoren an der Universität Tübingen identifiziert (Peptiddatenbank des IFIZ: 

www.elchtools.de). Der STAT-Signalweg ist als Reaktion auf verschiedene Zellstimuli 

und Pathogene sowie für die Zellvariabilität von eminenter Wichtigkeit. Als Protein des 

Nukleus und des Zytosols kommt STAT1 in nahezu jeder Körperzelle, besonders 

ausgeprägt jedoch in Herzmuskelzellen, glatter Muskulatur sowie in Zellen der 

Immunabwehr – insbesondere CD4- und CD8-Zellen – vor. 

Durch Bindung extrazellulärer Zytokine und Wachstumsfaktoren an den Zellmembran-

Oberflächen werden STAT-Proteine im Zytosol durch Rezeptor-assoziierte 

Janus-Kinasen phosphoryliert. Daraufhin werden die STAT-Proteine zu Homo- oder 

Heterodimeren dimerisiert, wodurch diese Proteine in den Nukleus verlagert werden. 

Im Nukleus wirken sie dann als Transkriptionsfaktoren (Rogers et al. 2003). Seit der 

Entdeckung dieses Proteins konnten viele Liganden ausfindig gemacht werden, die 

den STAT-Signalweg nutzen, so zum Beispiel IFN-α, IFN-γ, EGF (epidermal growth 

factor), PDGF (platelet derived growth factor C) und viele Interleukine, um nur einige zu 

nennen (Quelle et al. 1995; Gupta et al. 1996). Vermutlich durch die vielfältigen 

Aktivierungsreagentien spielt dieses Protein nicht nur bei Entzündungen, Infektionen 

und hormonellen Erkrankungen eine große Rolle, sondern ist auch in der 

Tumorgenese vieler Malignome sowie an der Pathogenese des Wilms-Tumors  

(Wang et al. 2010) beteiligt. Beim großzelligen Bronchialkarzinom spielt STAT1 als 

Biomarker bei der Diagnosestellung seit kurzem eine Rolle (Xiaoling et al. 2008), 
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ebenso zur Prognoseeischätzung beim Rektumkarzinom (Clarke et al. 2008) sowie bei 

Kopf- und Halstumoren (Ferris 2010).  

EITPPVVLR aus NPM1 

Das Gen, das dieses Protein reguliert, gehört zur Nukleophosmin-Familie. NPM1 ist ein 

nukleozytoplasmatisches Shuttling-Protein mit sehr komplexen Funktionen. Als 

multifunktionales regulatorisches Protein ist es in allen Zellen vertreten und an vielen 

verschiedenen Prozessen beteiligt wie z.B. Duplikation von Zentrosomen (Lingle und 

Salisbury 2000), Zusammenbau von Histonen (Swaminathan et al.  2005), Regulierung 

der Tumor Suppressor Gene TP53 (p53) und ARF (alternate reading frame)  

(Tago et al.  2005) sowie in der Biogenese von Ribosomen (Maggi et al.  2008), um nur 

einige zu nennen. Eine Alteration von NPM1 kann zum Funktionsverlust, zur Mutation 

oder Translokation in Zellen führen. Der Verlust des regulatorischen Potentials dieses 

Proteins kann daher zur Onkogenese beitragen. Hochinteressant in diesem 

Zusammenhang ist, dass eine Überexpression von NPM1 in gesunden Zellen einen 

p53-abhängigen Zellzyklusarrest verursacht, wohingegen bei Abwesenheit von p53 die 

S-Phase im Zellzyklus eintritt (Lee SB et al. 2008). Im Gegensatz dazu schwächt der 

Verlust der NPM1-Expression das Zellwachstum und führt zu vermehrtem Zelltod. 

NPM1 hat deshalb sowohl Potential als Onkogen und auch als Tumor-Suppressorgen. 

Als Phosphoprotein enthält NPM1 mehrere Phosphorylierungsstellen, wodurch NPM1 

durch verschiedene Kinasen phosphoryliert werden kann. Über CDK2 (cyclin-

dependent kinase 2) greift NPM1 als weiterer Bindungspartner regulatorisch in den 

Zellzyklus ein. Wird NPM1 durch CDK2 phosphoryliert, leitet es die Verdopplung der 

Zentrosome ein. Inzwischen wurde eine Reihe von Fusionspartnern von NPM1 

charakterisiert, die mit Mutationen von Chromosomen bei malignen Erkrankungen des 

blutbildenden Systems assoziiert sind (Morris et al. 1994; Dicker et al. 2010). Aber 

auch bei malignen Erkrankungen anderer Organsysteme wie beispielsweise in 

Schilddrüsentumoren (Pianta et al. 2010), in Mammatumoren (Olson et al. 2010) sowie 

in soliden Tumoren verschiedenster Organsysteme (Grisendi et al. 2006) konnte 

dieses Protein überexprimiert nachgewiesen werden.  

Zusammenfassend kann für die o.g. Proteine der Signaltransduktion beurteilt werden, 

dass diese Transkriptionsfaktoren aufgrund ihrer vielfältigen Funktionen, deren 

teilweise auslösender Immunreaktionen sowie der in der Literatur beschriebenen 

Funktionsweise als tumorassoziierte Antigene angesehen werden können. BHLHE41 

und PRUNE2 könnten wegen ihrer Expressionsmuster sehr interessante Kandidaten 

für eine Peptid-basierte Immuntherapie darstellen, zumal sie physiologischerweise in 

nur sehr wenigen Zellen vorkommen. Die durch TNF-α regulierende Expression von 

BHLHE41 läßt zudem bei diesem Protein auf eine mögliche T-Zellreaktion schließen. 

Als weiterer möglicher und interessanter Impfkandidat wäre RSU1 zu sehen, der wie 

PRUNE2 ein noch sehr wenig erforschtes Protein ist. Durch sein häufiges Vorkommen 

in den Körpergeweben kann allerdings die Gefahr einer Autoimmunreaktion gegeben 

sein, weshalb seine Anwendung für eine Immuntherapie genau überdacht werden 

sollte.  
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Auch DOK4 lässt vermuten, dass bei Einsatz als Impfpeptid T-Zellstimulationen 

vorhanden sein könnten. Auf jeden Fall müssten diese Proteine näher erforscht und 

T-Zellstimulationen durchgeführt werden, um diese in der Zukunft möglicherweise als 

Impfpeptid einsetzen zu können. 

Ein Einsatz von STAT1 in der Immuntherapie sollte nur nach ganz besonderer 

Abwägung erfolgen, da dieses Protein in allen Körperzellen vorkommt und nicht nur in 

der Tumorgenese, sondern auch bei Entzündungen, Infektionen und hormonellen 

Erkrankungen eine Rolle spielt. Da bei Tumorerkrankungen Entzündungsreaktionen 

mit vergesellschaftet sind, ist die Gefahr einer Autoimmunreaktion bei Vakzinierung mit 

diesem Peptid besonders groß. Ähnlich verhält es sich mit NPM1. Aufgrund seiner 

vielfältigen Reaktionen als Transkriptionsfaktor, Onkogen und Suppressorgen wäre es 

ein idealer Impfpartner vor allem auch deshalb, weil dieses Protein in hohem Maße an 

der Tumorgenese verschiedener Gewebe beteiligt ist. Aber genau hier liegt der 

limitierende Faktor. Gerade weil NPM1 in allen Körperzellen vorkommt, könnten bei 

einer Impftherapie die als Reaktion gebildeten T-Zellen nicht nur Tumorzellen 

angreifen, sondern auch Zellen, die in geringem Maße dieses Protein exprimieren, also 

Zellen, die beispielsweise einer ständigen Zellmauserung unterliegen wie 

Schleimhautepithelzellen oder Zellen des hämatopoetischen Systems. Aus diesen 

genannten Gründen ist es nicht empfehlenswert, STAT1 und NPM1 in der  

Peptid-basierten Immuntherapie einzusetzen. 

4.1.2 Proteine der Faltung 

VEKEFEPLL aus HSP90B1 

Dieser neue Ligand mit dem HLA-Allotyp B*40 ist aus der Familie der 

Hitzeschockproteine. Hitzeschockproteine sind Chaperone, deren Zentralaufgaben in 

der Faltung von Proteinen liegen. Das Hitzeschockprotein 90B1, auch bekannt als 

gp96, grp94 oder ERp99 ist das einzige in dieser Familie, das konstitutiv aktiv ist 

(Csermely et al. 1998). HSP90B1 ist sehr gut erforscht und kommt in vielen soliden 

Tumoren stark exprimiert vor (Chen B et al. 2005). Es bindet viele Peptide, unter denen 

sich auch viele immunogene Tumorpeptide befinden, wodurch T-Zellstimulationen 

ausgelöst werden. Inzwischen werden aus autologem Tumorgewebe verschiedener 

Gewebearten HSP90B1-Proteine isoliert und Patienten als Vakzine verabreicht. Diese 

Behandlungsstrategie findet breite Anwendung, z.B. beim malignen Melanom  

(Belli et al. 2002), beim kolorektalen Karzinom (Mazzaferro et al. 2003) sowie beim 

Nierenzellkarzinom (Cohen et al. 2002). Durch den bewiesenen Zusammenhang  

mit Tumorerkrankungen sowie den bereits ausreichend dokumentierten 

T-Zellstimulationen und dem Einsatz eines aus autologem Gewebe gewonnenen 

Tumorvakzins ist VEKEFEPLL ein neues tumorassoziiertes Peptid. Dieses Peptid ist 

damit ein weiterer, sehr attraktiver Kandidat für den Einsatz einer Peptid-basierten 

Immuntherapie beim Nierenzellkarzinom.  
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4.1.3 Autoantigene 

4.1.3.1 Proteine des Zytoskeletts 

SVYRTPVVNLK aus NEB 

Das Quellprotein des neu sequenzierten Liganden SVYRTPVVNLK ist das 

Muskelprotein Nebulin. Nebulin ist ein Aktin-bindendes Protein und inseriert an der  

Z-Scheibe des Aktin-Myosinkomplexes (Witt et al. 2006). Für die Integrität des 

Sarkolemms ist es unerlässlich, da es bei der Stabilität und Kontraktion quergestreifter 

Muskulatur mitwirkt. Allerdings ist die genaue Funktionsweise dieses Proteins noch 

weitgehend ungeklärt. Mutationen in diesem Gen sind die Ursache für die 

Muskelschwäche Nemaline Myopathie. Ob und wie Nebulin eine Rolle im Signalweg 

spielt, ist weitgehend unsicher. Die kleinere Isoform von Nebulin ist Nebulette, bei der 

als Fusionspartner das Mixed Lineage Leukemia (MLL)-Gen bereits beschrieben wurde 

(Cóser et al. 2010). Interessant ist, dass dieses Protein in der Probe RCC425 massiv 

überexprimiert war, was möglicherweise auf den sarkomatoiden Charakter 

zurückzuführen ist. Bei diesem histologischen Typ wachsen spindelige und proliferative 

Tumorzellen sarkomartig und aggressiv in ihre Umgebung ein. Vermutlich handelt es 

sich bei diesem sarkomatoiden Typ sogar um einen Typ mit vermehrt 

myosarkomartigem Charakter. Dies würde die massive Expression dieses Proteins 

erklären. Bei diesem Patienten ist dieses Peptid als tumorassoziiert anzusehen. Ein 

immuntherapeutischer Einsatz mit diesem Peptid sollte versucht werden, allerdings 

besteht die Gefahr, dass als Komplikation eine Muskelschwäche aufteten kann. 

TEISSAEKVAL aus MAP4 

Das neu gefundene Microtubule-associated protein 4 ist ein Protein, das vom Gen 

MAP4 kodiert wird. Es gehört zur Familie der Mikrotubuli und kommt auf allen 

Geweben auf niedrigem Niveau vor. Nur in Zellen des ZNS ist es hoch konzentriert. Es 

handelt sich um ein nicht-neuronales, konstitutiv aktives Mikrotubulus-assoziiertes 

Protein. MAP4 ist am Aufbau des mitotischen Spindelapparats beteiligt und dafür 

bekannt, dass es Mikrotubuli stabilisiert. Bei der Ausbildung des Spindelapparates 

kommt es zur Phosphorylierung der prolinreichen Regionen von MAP4 mit dem 

Komplex Cyklin B-CDC2 (cell division cycle 2). Allerdings ist diese Phosphorylierung 

kritisch, da sie die Ausbildung des Spindelapparates positiv oder negativ beeinflussen 

kann. Die negative Beeinflussung kann pharmakologisch zur Bekämpfung von Krebs 

positiv genutzt werden, da eine weitere Zellteilung ohne Spindelapparat nicht erfolgen 

kann (Kitazawa et al. 2000). MAP4 ist ein noch relativ jung entdecktes Protein, dem bei 

der Tumorgenese und der Aggressivität eine wichtige Rolle zugeschrieben wird, so 

auch beim oralen Plattenepithelkarzinom (Jensen et al. 2008) oder dem 

Mammakarzinom (McGrogan et al. 2008).  
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In den Zellen des großzelligen Lungenkarzinoms zeigt MAP4 eine stärkere Expression 

als im autologen Normalgewebe (Cucchiarelli et al. 2008). Ein direkter Zusammenhang 

mit zellulären Komponenten des Immunsystems in Verbindung mit Tumorerkrankungen 

konnte bisher nicht bewiesen werden. Es existieren lediglich Untersuchungen, bei 

denen es bei Beimpfung von Leberzellkulturen mit Plasmodien zur Stimulation von 

CTLs kam (Franke et al. 2000). Dies lässt vermuten, dass die von MHC-I-Molekülen 

präsentierten MAP4-Peptide zu einer Stimulation von T-Zellen führen könnten. 

Aufgrund der Interaktion von MAP4 mit dem Tumorproteinp53 (Grinkevich et al. 2009; 

Hait und Yang 2006), der starken mRNA-Überexpression in Verbindung mit der 

identifizierung auf der Zelloberfläche und einer vermutlichen zellulären Abwehr kann 

das Peptid TEISSAEKVAL als tumorassoziiert angesehen werden. Es wäre somit ein 

neuer Kandidat für die Immuntherapie des Nierenzellkarzinoms. 

TQRPVDIVF aus COL6A2 und GVAPFTIAR aus COL6A3 

Diese Strukturproteine der genannten Liganden, collagen, type VI, alpha 2 (COL6A2) 

und collagen, type VI, alpha 3 (COL6A3), gehören zum Kollagentyp 4 der 

hauptsächlich in der extrazellulären Matrix des Bindegewebes als zweidimensionales 

Netzwerk vorkommt. Dieses Netzwerk verbindet Epithel- und Muskelzellen mit der 

extrazellulären Matrix und bildet im Nierenglomerulus die funktionell wichtige 

Filterstruktur. Mutationen in diesem Gen können zu benignen Nephropathien führen 

(Torra et al. 2004). Insgesamt konnte in der Literatur kein Hinweis auf maligne 

Tumorassoziationen gefunden werden. Einzig bei benignen, tendosynovialen 

Riesenzelltumoren ist seither eine Überexpression für COL6A3 beschrieben worden 

(Möller et al. 2008). COL6A2 wurde in der Literatur nur beim Plattenepithelkarzinom 

von Kopf und Hals als überexprimiert beschrieben (Vachani et al. 2007). Durch 

immunhistochemische Untersuchungen konnte weder beim klarzelligen noch beim 

sarkomatoiden Nierenzellkarzinom eine Überexpression für Kollagentyp 4 

nachgewiesen werden (Delahunt et al. 2007). Dieser Befund stimmt mit dem Ergebnis 

der sarkomatoiden Probe RCC425 überein. Die Expressionswerte befanden sich hier 

innerhalb des Konfidenzintervalls. Die Probe RCC482 war auf mRNA-Ebene 

überexprimiert und widerspricht somit den Ergebnissen der Literatur. Die Peptide 

können daher nicht als tumorassoziiert angesehen werden.  

REYQDLLNVKM, LEQQNKILL, RPSTSRSL und EEIAFLKKL, aus VIM 

Diese Liganden wurden aus dem Protein Vimentin sequenziert, wobei die zwei 

Liganden REYQDLLNVKM und LEQQNKILL neu sequenziert wurden. RPSTSRSL 

und EEIAFLKKL waren bereits bekannt. Von diesen Beiden wurde der MHC-Ligand 

EEIAFLKKL am Interfakultären Zentrum für Zellbiologie der Universität Tübingen 

(IFIZ) bereits mehrfach in verschiedenen soliden Nierenzellkarzinomen identifiziert. 

Auch bei diesen Untersuchungen war das zugehörige Quellprotein in vergleichenden 

Genexpressionsanalysen überexprimiert (Krüger et al. 2005). Vimentin gehört wie 

NEB und MAP4 zu den Autoantigenen des Zytoskeletts. Als ubiquitäres und 

intermediäres Filament sorgt es für die Stabilität der Zellorganellen. Es ist schon lange 
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bekannt, dass die Expression dieses Proteins häufig beim klarzelligen 

Nierenzellkarzinom vorkommt und signifikant mit einer schlechten Prognose assoziiert 

ist, unabhängig von Grade & Stage (Moch et al. 1999). Die Ergebnisse von Moch et al. 

von 1999 wurden inzwischen auch durch Expressionsanalysen auf DNA-Ebene 

bestätigt (Shi et al. 2005). VIM wird deshalb auch als immunhistochemischer Marker in 

der Pathologie eingesetzt. Diese Ergebnisse spiegeln sich in unseren hiesigen 

Genexpressionsdaten wider. Insgesamt war dieses Protein in vier soliden 

Nierenzellkarzinomen überexprimiert. Auffallend hohe Werte fanden sich in der Probe 

RCC425 mit dem sarkomatoiden Charakter und sind am ehesten auf die 

spindelförmigen, proliferativ wachsende Tumorzellen zurückzuführen. 

Zusammenfassend lässt sich für die o.g. Proteine des Zytoskeletts darstellen, dass die 

Probe des Patienten RCC425 massiv exprimierte Strukturproteine aufwies, die mit dem 

histologischen Charakter des Nierenzellkarzinoms zu erklären sind. Bis auf COL6A2 

und COL6A3 stellen sich obige Strukturproteine als tumorassoziiert dar. Wegen des 

extrem aggressiven Tumorverhaltens beim sarkomatoiden Nierenzellkarzinom könnte 

der Ligand SVYRTPVVNLK des Peptids Nebulin als Kandidat für eine Immuntherapie 

eingesetzt werden. MAP4 eignet sich wegen der Interaktion mit p53 für ein 

immuntherapeutisches Vorgehen. Jedoch sollten vor einem Einsatz beide antigenen 

Peptide auf eine T-Zellstimulation geprüft werden.  

Im Folgenden werden weitere Autoantigene des Zytoskeletts diskutiert. 

ILNPDNSFEIL aus CANX 

Der bekannte HLA-Ligand ILNPDNSFEIL gehört zu Calnexin, einem 

membrangebundenen Protein des ER, das in APM (antigen-processing machinery) 

eingebettet ist. Eine der Hauptfunktionen dieses Chaperons besteht in der Faltung der 

α-Kette von MHC-I-Molekülen in Membranen des ER, ohne die keine stabile 

Antigenpräsentation stattfinden kann. Es ist in allen kernhaltigen Zellen vertreten. 

Aufgrund von tumor-escape-Mechanismen besteht bei vielen soliden Tumoren eine 

eingeschränkte Funktion von APM. Dieser Mechanismus dient dem Selbstschutz der 

Tumorzellen vor CTLs und wurde bei vielen malignen Neoplasien beschrieben 

(Meissner et al. 2005; Belicha-Villanueva et al. 2010; Cathro et al. 2010). Erst wenn 

das Zellwachstum schon weit fortgeschritten ist, kommt es durch Einfluss von IFN-γ zur 

Hochregulation der APM (Seliger et al. 2000). Somit kann Calnexin nicht als 

tumorassoziiertes Antigen angesehen werden. 

ETIPLTAEKL aus CCND1 

Das Gen, das dieses Protein kodiert, heißt CCND1 und kodiert für Cyclin D1. Das 

HLA-A*68 präsentierte Peptid ETIPLTAEKL von Cyclin D1 wurde bereits als etabliertes 

Tumorantigen des Nierenzellkarzinoms sequenziert (Weinschenk et al. 2002) und seit 

einiger Zeit in der Immuntherapie eingesetzt (Stenzl et al. 2007; Reinhardt et al. 2010). 

Es gehört zu einer Proteingruppe, die eine Schlüsselrolle in der Steuerung des 

Zellzyklus am Übergang der G1/S-Phase durch Regulation von CDK-Kinasen spielt. 
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Cyclin D hat die Eigenschaft, das Tumorsuppressorgen Retinoblastomprotein Rb zu 

inaktivieren, wodurch der mitogene Transkriptionsfaktor E2F freigesetzt wird (Müller et 

al. 1994; Ramana et al. 2010). Mutationen, Amplifikationen und Überexpressionen, die 

den Zellzyklus ändern, wurden in vielen soliden Tumoren nachgewiesen. So wurde 

Cyclin D1 auch im Nierenzellkarzinom nachgewiesen (Hedberg et al. 1999). Aufgrund 

der Überexpression von CCND1, der Interaktion mit Rb sowie dem nachgewiesenen 

Vorkommen in Tumoren kann dieses Protein als tumorassoziiert angesehen werden.  

ALASHLIEA aus EHD2 

Das Protein dieses bekannten Liganden ist EH-domain containing 2. Es steht mit Aktin 

in gegenseitiger Wechselwirkung. Durch eine Verbindung mit Aktin führt EHD2 zur 

Clathrin-abhängigen Endozytose und spielt dadurch eine Rolle im Membrantransport. 

Starke Expressionen befinden sich in der Herzmuskulatur, moderate in Plazenta, 

Lunge und Skelettmuskelgewebe. Nachweise über eine involvierte Tumorgenese 

bestehen nur für das Glioblastom und das Ovarialkarzinom (Quinn et al. 2009). 

Hinweise über T-Zellreaktionen bestehen nicht. Ein Polymorphismus dieses Gens 

konnte seither nur beim Oligodentrogliom beschrieben werden (Yang P et al. 2005). 

TQRPVDIVF aus ITGAX 

Dieses Peptid konnte dem Protein ITGAX zugeordnet werden, das von dem Gen 

Integrin alpha-X kodiert wird. Innerhalb der gleichen Probe RCC482 konnte diesem 

Protein außerdem das Protein COL6A2 zugeordnet werden (s.o.). Dieses 

Transmembranprotein ist ein Leukozyten-Adhäsionsprotein und bildet zusammen mit 

Integrin beta 2 einen Komplex. Als Komplex vermittelt dieses Protein 

Zell-Zell-Wechselwirkungen bei Entzündungsprozessen und ist daher bei der 

Monozytenadhäsion und der Chemotaxis besonders wichtig. Die höchsten relativen 

Expressionswerte befinden sich deshalb in Mono- und Granulozyten. Eine 

Überexpression dieses Proteins in soliden Tumoren wird in der Literatur nicht gesehen, 

allerdings findet sich in der Literatur sehr häufig ITGAX als Antwort auf die in 

Neoplasien stattfindenden Entzündungsreaktionen. Dies ist nicht verwunderlich, da bei 

der Tumorgenese durch ablaufende Gewebshypoxien Nekrosen auftreten können, die 

in der Folge zu Entzündungsreaktionen führen, bei denen Gewebs- und 

Plasmamakrophagen involviert sind. Daher kann dieses Peptid als nicht 

tumorassoziiert angesehen werden. 
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4.1.3.2 Proteine des Fettstoffwechsels 

KSELLVEQY, MTSALPIIQK, MAGDIYSVFR, IARNLTQQL aus PLIN2 

Aus PLIN2 konnten insgesamt vier Peptide sequenziert werden. PLIN2 wird kodiert 

vom Peripilin-2-Gen auch bekannt als lipid droplet-associated protein oder Adipophilin 

und ist die neue Bezeichnung für ADFP bzw. ADRP (Adipose differentiation-related 

protein). Von diesen vier Peptiden konnte das Pepid KSELLVEQY als neues Peptid 

dem HLA-Allotyp A*01 zugeordnet werden. PLIN2 ist ein Differenzierungsprotein der 

Adipozyten und wird daher in Fettgewebszellen hoch exprimiert. In weiteren 

verschiedenen Zelltypen wird dieses Protein unterschiedlich exprimiert, darunter 

befinden sich Epithelzellen laktierender Drüsen, Zellen der Nebennierenrinde, Sertoli- 

und Leydigzwischenzellen sowie Hepatozyten bei alkoholischer Leberzirrhose  

(Yao et al. 2007). Pathophysiologisch zählt Peripilin zu den Hypoxie-induzierbaren 

Genen. Die Aktivierung der Peripilin-Transkription wird durch HIF (hypoxia-inducible  

factor) vermittelt (Saarikoski et al. 2002). Dieses Protein zählt zu den überpräsentierten 

TAAs (Novellino et al. 2005; siehe auch unter Kapitel 1.3). Die bekannten Peptide 

SVASTITGV und SLLTSSKGQLQK, die schon vor längerer Zeit am IFIZ in soliden 

Nierenzellkarzinomen identifiziert wurden (Krüger et al. 2005), konnten in dieser Arbeit 

allerdings nicht identifiziert werden. Für den HLA-A*02 Ligand SVASTITGV konnte 

nachgewiesen werden, dass es als immunogenes T-Zell-Epitop wirkt und dass 

T-Zellen eine Tumorzellyse bewirken können (Schmidt et al. 2004). In 

Vakzinierungsstudien zur Bekämpfung des Nierenzellkarzinoms wird PLIN2 schon seit 

längerer Zeit eingesetzt (Stenzl et al. 2007; Reinhardt et al. 2010). 

Bereits im frühen Erkrankungsstadium des klarzelligen Nierenzellkarzinoms zeigte  

PLIN2 eine Überexpression auf Proteom und Genom-Ebene (Weinschenk et al. 2002; 

Schultz et al. 2002; Pomara et al. 2008). Die Höhe der PLIN2-Expression auf 

Transkriptions- und Protein-Ebene gilt seit neueren Untersuchungen ausschlaggebend 

für die Prognose beim Nierenzellkarzinom und dient deshalb seit kurzem als 

molekularer Expressionsmarker beim Nierenzellkarzinom (Yao et al. 2007). Für den 

Einsatz in der Peptid-basierten Immuntherapie waren einerseits hohe 

Expressionswerte von PLIN2 und häufiges Vorkommen von Peripilin-Peptiden auf 

Tumorzellen des klarzelligen Nierenzellkarzinoms sowie die nachgewiesene 

Immunogenität dieser Peptide ausschlaggebend. Sollte der neu identifizierte  

HLA-A*01 Ligand KSELLVEQY von PLIN2 positive T-Zell-Reaktionen aufweisen, so 

wäre er ein neuer attraktiver Kandidat in der Vakzinierungstherapie beim 

Nierenzellkarzinom.  

ALADGVQKV aus APOL1 

APOL1 ist ein Protein, das von dem Gen Apolipoprotein 1 reguliert wird. Es gehört zu 

den High Density Lipoproteinen (HDL), die im wesentlichem im Dünndarm und der 

Leber produziert und ins Plasma sezerniert werden. Hohe Expressionswerte befinden 

sich im Endothel von Lunge, moderate in Pankreas, Prostata, Milz und den 

Blutgefäßen.  
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Der HLA-A*02-restringierte Ligand ALADGVQKV ist als tumor-assoziiertes Peptid des 

Nierenzellkarzinoms bekannt. APOL1 ist als Lipoprotein in oxidative Prozesse wie z.B. 

Entzündungen involviert (Duchateau et al. 2001). Ein pathogener Zusammenhang mit 

Tumorerkrankungen via Literatur konnte nicht eruiert werden. Trotzdem wurden an der 

Universität Tübingen verschiedene Peptide dieses Proteins auf mehreren klarzelligen 

Nierenzellkarzinomen identifiziert (Peptiddatenbank des IFIZ: www.elchtools.de). Auf 

mRNA-Ebene war zu diesen Peptiden eine deutliche Überexpression vorhanden. Auch 

in dieser Gewebeprobe eines soliden klarzelligen Nierenkarzinoms (RCC421 T) konnte 

für APOL1 eine sehr hohe Überexpression von + 5,2 bei einem Konfidenzintervall von 

± 1,5 bestimmt werden. Dies lässt darauf schließen, dass dieses Protein vom 

Tumorgewebe exprimiert wird. Ein genauer Zusammenhang zwischen Expression und 

Tumor müsste noch weiter erforscht werden. Allerdings ist auch nicht auszuschließen, 

dass es sich bei der Expression um Proteine, respektive Peptide handelt, die aus dem 

Blutgefäßsystem gewonnen wurden. Daten zur Immunogenität fehlen, weshalb bei 

diesem Peptid Studien über eine Eignung als T-Zell-Epitop durchgeführt werden 

sollten. 

EVAEKINAF und SDIVAHLL aus APOB  

Diese beiden neu identifizierten HLA-Liganden (EVAEKINAF HLA-A*26-restringiert 

(RCC431); SDIVAHLL HLA-B*37-restringiert (RCC417)) konnten dem Protein 

Apolipoprotein B zugeordnet werden. Dieses Protein kommt im Blutplasma in zwei 

Isoformen, ApoB-48 und ApoB-100, vor. Ersteres wird im Dünndarm synthetisiert, 

ApoB-100 in der Leber. Der wesentliche Unterschied beider Isoformen besteht darin, 

dass ApoB-48 als Membranmolekül in den Chylomikronen eingelagert ist, ApoB-100 

jedoch als LDL (Low Density Lipoprotein) vorkommt. Auch hier fehlt ein expliziter 

pathogener Zusammenhang mit Tumorerkrankungen. Die wenigen diskutierten 

malignen Neoplasien beziehen sich vorwiegend auf das Gallenblasenkarzinom 

(Pandey et al. 2007). Daten zu Immunreaktionen stehen bei diesem Protein 

überwiegend mit Artherosklerose in Zusammenhang. Obwohl beide Gene hohe 

Expressionswerte erreichten, sind die Ergebnisse kritisch zu werten. 

4.1.3.3 Proteine des grundlegenden Zellstoffwechsels 

NPVDWKEKY und REFIAPVTL aus PLOD2 

Die beiden neu detektierten Sequenzen NPVDWKEKY und REFIAPVTL konnten dem 

neu identifizierten Protein PLOD2 / LH2 zugeordnet werden, das von Procollagen-

lysine, 2 oxoglutarate 5-dioxygenase 2 bzw. Lysyl hydroxylase 2 (LH2) kodiert wird. Es 

ist ein membrangebundenes Enzym des ER, das die Hydroxylierung von Lysylresten in 

kollagenähnlichen Peptiden zu Hydroxylysinen katalysiert. Diese Hydroxylysine dienen 

als Bindungsstellen von Kohlenhydraten in Kollagen und sind entscheidend für die 

Stabilität der intermolekularen Quervernetzungen beim Aufbau von Kollagen. LH2 ist 

vor allem in Fibroblasten der Haut, der Lunge, der Dura mater und der Aorta exprimiert 

(Yeowell und Walker 1999). Im Nierengewebe ist LH2 nur niedrig exprimiert  

(Walker et al. 2005). Mutationen dieses Gens wurden bis jetzt nur bei benignen 
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fibrotischen Erkrankungen beschrieben. Überexpressionen bei malignen Erkrankungen 

sowie Immunreaktionen gegen dieses Enzym wurden seither nicht veröffentlicht. Da 

keine Daten über maligne Erkankungen existieren und die Enzyme in jeder Zelle 

vorkommen können, diese Peptide nicht als tumorassoziiert angesehen werden. 

NLNVTEEKY aus SOD2  

NLNVTEEKY wird von dem Gen superoxide dismutase 2, mitochondrial kodiert. 

Dieses hochinteressante, in den Mitochondrien vorkommende Enzym zerstört 

intrazelluläre, toxisch wirkende Sauerstoffradikale durch Bindung eines Mangan-Ions 

pro Untereinheit. Es wurde nebst Peptid am IFIZ identifiziert. Mutationen in der 

SOD2-Promotor-Region bilden die molekulare Grundlage für die Expression der 

Mangan-Superoxiddismutase in Krebszellen. So ist bekannt, dass in neoplastisch 

transformierten Zellen die MnSOD in einem niedrigen Grad exprimiert, in aggressiven 

Tumoren jedoch überexprimiert ist (Oberley und Buettner 1979). Die Ursache dafür 

liegt in einer Interaktion von NF-κB und NPM1, wobei sich beide letztgenannten 

Proteine gegenseitig beeinflussen. Eine Aktivierung von NF-κB führt zur Expression 

von MnSOD, eine Inaktivierung zu einer Herunterregulierung von MnSOD. Die Antwort 

auf oxidativen Stress wird zudem durch viele Zytokine beeinflusst (Xu et al. 2008). 

Nach heutigem Stand bestehen für viele maligne Neoplasien Daten für die Bedeutung 

der Mn-Superoxiddismutase in der Tumorgenese, jedoch nicht explizit für das 

Nierenzellkarzinom. Zudem existieren keine Angaben über Immunreaktionen, die in 

direktem Zusammenhang mit T-Zellstimulationen stehen. Trotzdem kann es als neues 

tumorassoziiertes Peptid angesehen werden. Als Kandidat für eine Immuntherapie 

kommt es allerdings nicht in Frage, da es in allen Körperzellen vorhanden ist. 

YSDLNTQRPYY und YSDLNTQRPY aus TYROBP 

Der von dem protein tyrosine kinase binding protein stammende neue  

HLA-restringierte Ligand YSDLNTQRPYY stammt aus transmembranen 

Signalpolypeptiden, die an ihrer zytoplasmatischen Seite ITAMs (immunoreceptor 

tyrosine-based activation motif) aufweisen. Sie stehen in Verbindung mit KIR (killer-cell 

inhibitory receptor) und spielen außer in der Signaltransduktion weitere wichtige 

vielfältige Rollen bei Prozessen, die bei Entzündungen ablaufen sowie bei der 

Knochenentwicklung und der Myelinisierung des Gehirns. In myeloischen Zellen ist 

dieses Gen hochexprimiert. TYROBP steht oft mit malignen Neoplasien von 

myeloischen Zellen in Verbindung, bei denen auch CD8-positive Immunreaktionen 

stattfinden. Ein Zusammenhang zum Nierenzellkarzinom konnte jedoch nicht 

hergestellt werden.  
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EVIPYTPAM aus HMOX1 

Dieses Protein, das von dem Gen heme oxygenase kodiert wird, ist ein antioxydatives, 

antiinflammatorisches und zytoprotektives Enzym, das Häm zu Eisen, Biliverdin und 

Kohlenmonoxid oxidiert und abbaut. Seine vielfältige Rolle wird zudem auch in der 

Signaltransduktion über wichtige Stimuli wie Wachstumsfaktoren  

(TGF-β, PDGF, VEGF, SDF-1) sowie durch Gewebshypoxie und oxidativen Stress 

beeinflusst. In zahlreichen soliden Tumoren konnte mittlerweile eine Beziehung 

zwischen dem Verhalten neoplastischer Zellen und der Änderung des 

Expressionsverhaltens von Heme oxygenase bewiesen werden (Tauber et al. 2010). 

Das ist nicht verwunderlich. Eine Zunahme neoplastischer Zellen führt zunächst zur 

Gewebshypoxie. Als Antwort auf diesen oxidativen Stress kommt es zur Aktivierung 

von Wachstumsfaktoren der Gefäße mit anschließender Neoangiogenese. Mit der 

daraus resultierenden Nährstoffversorgung sowie weiteren Wachstumsfaktoren kommt 

es schließlich zur weiteren Zellvermehrung. Aufgrund der Anwesenheit dieses Proteins 

in allen Körperzellen kann trotz dieser wichtigen Pathomechanismen dieses Enzym 

nicht in der Immuntherapie eingesetzt werden.  

Weitere überexprimierte Autoantigene, deren Peptide verschiedenen Enzymklassen 

zugeordnet werden konnten, wurden im Rahmen dieser Arbeit als neue oder bereits 

bekannte HLA-Liganden identifiziert. Darunter befand sich die Aldolase (ALDOA), die 

bereits schon bei früheren Untersuchungen des Nierenzellkarzinoms aufgefallen war 

und deren zwei identifizierte Peptide bereits bekannt waren (Weinschenkt et al. 2002; 

Krüger et al. 2005) sowie das Enzym ALOX5 (arachidonate 5-lipoxygenase), dessen 

HLA-Ligand neu sequenziert wurde. Weitere Peptide konnten den Enzymen DPYD, 

POLR2E, LPCAT1, SERPINA1, und PSMB85 zugeordnet werden, von denen das 

Enzym LPCAT1 neu identifiziert wurde. Alle diese Proteine können, obwohl sie 

überexprimiert und teilweise mit Tumorerkrankungen in Verbindung stehen, nicht als 

tumorassoziierte Antigene des Nierenzellkarzinoms angesehen werden. Trotzdem  

sind sie durch ihre grundlegende Funktion im Zellstoffwechsel Teil eines 

neoplastischen Expressionsmusters, das auf ein verändertes  Mikroökosystem 

neoplastischer Zellwucherungen zurückzuführen ist. Daraus erklärt sich auch ihre 

Peptid-Sequenzierung und die Überexpression auf mRNA-Ebene. 

                                                
5 DPYD  (dihydropyrimidine dehydrogenase) 
POLR2E  (polymerase (RNA) II (DNA directed) polypeptide E, 25 kDa) 
LPCAT1  (lysophosphatidylcholine acyltransferase 1) 
SERPINA1  (serpin peptidase inhibitor, clade A (alpha-1 antiproteinase, antitrypsin), member 1) 
PSMB8  (proteasome (prosome, macropain) subunit, beta type,8 (large multifunctional peptidase 7)) 
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4.1.4 Proteine des Blutplasmas 

EVIASYAHL aus VWF 

EVIASYAHL aus dem Protein VWF wird von dem Gen van Willebrand-Faktor kodiert 

und spielt als Glykoprotein in der Blutgerinnung eine sehr wichtige Rolle. VWF wird von 

den Endothelzellen gebildet, weshalb in diesen Zellen hohe Expressionswerte zu 

finden sind. Ferner wird es auch in den α-Granula von Thrombozyten exprimiert. Als 

Träger des Antihämophilen Faktors und als Vermittler zwischen Thrombozyten und der 

Blutgefäßwand nimmt es eine Doppelfunktion ein. Seine wichtigste Funktion bezüglich 

neoplastischer Zellen dürfte wohl in der Interaktion von Tumorzellen mit Thrombozyten 

und der Gefäßwand bestehen, was zur Extravasation von Tumorzellen führt  

(Terraube et al. 2007; Shavit und Motto 2006). Es beeinflusst somit eine frühe 

Tumorausbreitung. In den letzten Jahren wurde der van Willebrand-Faktor vermehrt im 

Zusammenhang mit Tumorerkrankungen diskutiert. So konnte unter Einfluss des VWF 

eine Progression von Endothelzellen des Kolon-, Lungen-, Mamma- und 

Leberkarzinoms sowie von Kopf- und Halstumoren belegt werden, um nur einige zu 

nennen (Ahmed und Mohammed 2010; Sweeney et al. 1990). Unter anderem besteht 

auch ein Zusammenhang zwischen VWF-Serum-Werten und der Prognose einer 

Karzinomerkrankung (Gil-Bazo et al. 2003). In einer weiteren Studie konnten 

Zusammenhänge zwischen hohen VWF-Serum-Werten mit verschiedenen malignen 

Entartungen erbracht werden, die vermutlich durch gesteigerte endotheliale 

Zellschäden zustande kommen (Röhsig et al. 2001). Ein direkter Zusammenhang mit 

zellulären Komponenten des Immunsystems in Verbindung mit Tumorerkrankungen 

konnte bisher nicht ermittelt werden. Aufgrund des Zusammenhanges mit  

tumorösen Erkrankungen sowie des hohen ermittelten Expressionswertes 

[+ 5,6; KI + 1,7 / -1,9 (RCC431)] könnte der VWF ein weiteres hochinteressantes 

tumorassoziiertes Protein darstellen. Allerdings fehlen hierzu noch Angaben, die auf 

direkte Immunreaktionen hinweisen. Selbst wenn in den nächsten Jahren positive 

T-Zellstimulationen nachgewiesen werden sollten, wäre ein Einsatz von VWF-Peptiden 

in der Immuntherapie kontraindiziert, da durch die Doppelfunktion des VWF die Gefahr 

der Hemmung des Antihämophilen Faktors zu groß ist. 

VTIPPKSSL, YSIITPNILRL aus C3 

Diese HLA-Liganden konnten dem Quellprotein complement component 3 zugeordnet 

werden. C3 spielt eine zentrale Rolle bei der Aktivierung des Komplementsystems. Die 

Aktivierung des Komplementsystems kann im klassischen und im alternativen 

Komplementsignalweg stattfinden. Für C3 konnte in der Probe RCC482 ein neuer 

HLA-Ligand, VTIPPKSSL, ermittelt werden. Zu YSIITPNILRL als bekanntem Peptid 

konnte in der Probe RCC468 keine HLA-Zuordnung erbracht werden. In diesen zwei 

Gewebeproben war dieses Protein stark exprimiert. Da es sich bei C3 um ein  

Protein handelt, das ausschließlich im Plasma vorkommt, dürften die  

hohen mRNA-Expressionswerte auf die bei Tumorerkrankungen assoziierten 
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Entzündungsreaktionen sowie auf die Bildung von Nekrosen zurückzuführen sein. 

Demzufolge handelt sich hier also nicht um ein tumorassoziiertes Antigen.  

LVVYPWTQR aus Hämoglobin-β bis Hämoglobin-γ  

Das Quellprotein, das diesen Liganden liefert, ist Hämoglobin-β bis Hämoglobin-γ und 

gehört zur sauerstofftransportierenden Globin-Familie. Hämoglobin-β ist zusammen mit 

Hämoglobin-α die am häufigsten vorkommende Hämoglobinform. Verschiedene 

Längenvarianten des Peptids LVVYPWTQR wurden in mehreren der sieben 

untersuchten Proben detektiert, allerdings war das Gen nur in einer Gewebeprobe 

überexprimiert. Ein HLA-Allotyp zu diesem Liganden konnte in keiner der untersuchten 

Proben zugeordnet werden. In vielen weiteren Gewebeproben wurde dieser Ligand in 

verschiedenen Längenvarianten am IFIZ bereits sequenziert (Krüger et al. 2005). Da 

dieses Peptid in verschiedenen Längenvarianten vorkommt und in nahezu jeder 

Gewebeprobe mit den unterschiedlichsten HLA-Allotypen zu finden ist, gilt es als 

Artefakt. Als tumorassoziiertes Antigen kann dieser Ligand nicht angesehen werden, 

da es mit hoher Wahrscheinlichkeit aus dem Blut der Blutgefäße der Tumorproben 

stammt. 

APRTVALTAL aus MHC-DBP1 und LQNADPLKV aus CD74 

Diese Liganden gehören zur MHC-Klasse-II-Familie. Im Gegensatz zur Präsentation 

von MHC-Klasse-I-Molekülen werden Peptide, die mit Hilfe von 

MHC-Klasse-II-Molekülen auf Zelloberflächen präsentiert werden, über den vesikulären 

Stoffwechsel auf die Zelloberflächen transportiert. Dies bedeutet, dass überwiegend 

extrazelluläre Proteine meist via Endozytose ins Zellinnere gelangen, bevor deren 

Peptide auf Zelloberflächen präsentiert werden. Maligne Neoplasien, die  

mit einer MHC-Klasse-II-Expression einhergehen, sind selten. Häufig werden 

Autoimmunerkrankungen sowie chronische Entzündungsprozesse nachgewiesen 

(Malviya et al. 2010). In nur einer Studie konnten MHC-Klasse-II-Moleküle bei 

verschiedenen soliden Tumoren sowie beim Nierenzellkarzinom nachgewiesen 

werden, die jedoch vermutlich auf eine durch IFN-γ induzierte MHC-Klasse-II-

Expression zurück zu führen sind (Dengjel et al. 2006). 

4.2 Unterexprimierte Proteine  

4.2.1 Proteine der Signaltransduktion 

IEVDGKQVEL aus RHOA 

Das Protein dieses Liganden zählt wie RSU1 (siehe unter 4.1.1) zur RAS-Superfamilie 

und gilt als Schlüsselprotein bei der Regulation des Aktin-Zytoskeletts. Die 

Funktionsweise dieses Quellproteins wurde unter 4.1.1 ausführlich beschrieben. Beide, 

Protein und Ligand, sind bereits bekannt. Es wird hier nur deshalb erwähnt, weil es als 

Suppressorgen stark unterexprimiert ist [- 3,3; KI , KI + 1,9 / -1,7 (RCC425)]. Diese 
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starke Unterexpression ist Ausdruck dafür, dass RHOA in seiner Funktionsweise 

blockiert wurde. Fällt die supprimierende Wirkung eines Suppressorgens im Zellzyklus 

weg, kann folglich ein ungebremstes Zellwachstum stattfinden. Dies lässt darauf 

schließen, dass auf molekularer Ebene Zellen so transformiert wurden, dass in der 

Tumorgewebeprobe RCC425 eine geringere Intensität gemessen wurde als im 

entsprechenden Normalgewebe.  

Die Unterexpression der Genexpressionsanalysen zeigt, dass zwar die mit Hilfe der 

massenspektrometrischen Analysen ermittelten HLA-Liganden auf soliden 

Nierenzellkarzinomen vorhanden waren, die mRNA-Expression jedoch geringer war als 

in vergleichbarem korrespondierendem gesundem Nierengewebe. Aus diesem 

Ergebnis lässt sich interpretieren, dass viele der im gesunden Gewebe vorkommenden 

Proteine in den maligne transformierten Zellen zugrunde gegangen sind. Die meisten 

der herunterregulierten Proteine betrafen die Gewebeprobe RCC425, deren 

histologische Klassifikation ein sarkomatoides Nierenzellkarzinom war. Hier kann  

der Schluss gezogen werden, dass sämtliche Zellfunktionen des Tumorgewebes  

wie Zellstoffwechsel, Signaltransduktion, Abbau des Zytoskeletts sowie  

Zell-Zell-Interaktionen nicht mehr statt gefunden haben. 

4.3 Peptid-Paar 

Bei der Identifizierung von Peptid-Paaren konnte nur ein Peptid-Paar mit differenzieller 

Expression nachgewiesen werden. Es war das Protein RAC2 mit dem HLA-Liganden 

DEAIRAVL. RAC2 wird von ras-related C3 botulinum toxin substrate 2 reguliert und ist 

eine GTPase, die zur Ras-Superfamilie der kleinen G-bindenden Proteine zählt. Damit 

liegen seine wichtigsten Funktionen in der Zellkontrolle, im Zellwachstum, der 

Reorganisation des Zytoskeletts und der Aktivierung von Kinasen. Mutationen in 

diesem Gen, die zu malignen Tumorerkrankungen führen können, beziehen sich auf 

Gehirntumoren (Hwang et al. 2005). Als konstitutiv aktives Protein ist RAC2 mit 

verschiedenen bösartigen zellproliferativen Erkrankungen assoziiert wie z.B. dem 

Fibrosarkom (Niggli et al. 2009) oder mit hämatopoetischen Erkrankungen (Meacham 

et al. 2009). Beim Prostatakarzinom wurde ein Anstieg der RAC-Expression im 

Tumorgewebe als prognostischer Marker beschrieben (Engers et al. 2007). 

Desweiteren spielt RAC2 als Protoonkogen in der T-Zell-Entwicklung eine wesentliche 

Rolle (Guo et al. 2008). Alle diese dokumentierten Daten zeigen, dass RAC2 als 

Protoonkogen eine wichtige Rolle in der Entstehung maligner Zellproliferationen spielt. 

Da aber für diesen Liganden kein HLA-Allotyp zur bekannten Typisierung des 

Patienten zugeordnet werden konnte, würde aufgrund dessen eine Vakzinierung mit 

diesem Peptid ausscheiden.  
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4.4 Endbeurteilung 

Durch die vergleichenden Genexpressionsanalysen sollte gezeigt werden, in welcher 

Stärke die Quellproteine der mit Hilfe massenspektrometrischer Analysen ermittelten 

Peptide auf mRNA-Ebene exprimiert wurden. Proteine, die mit dieser Methode nicht 

oder nur mit geringen Signalintensitäten erfasst wurden, konnten zum Zeitpunkt der 

Untersuchung vielfältigen Mechanismen unterworfen sein. Da Zellen einem ständigen 

Fluss lebhafter Auf- und Abbauvorgänge unterworfen sind, ist die Detektion der mRNA 

sowie die Ausbeute der an Zelloberflächen präsentierten Antigene abhängig von der 

Protein- bzw. der Peptidsynthese, von der enzymatischen Aktivität und von der 

Halbwertszeit vorhandener Proteine. Die Quellproteine vieler sequenzierter 

HLA-Liganden zeigten in den GeneChip-Analysen eine deutliche Überexpression. Dies 

bedeutet eine mögliche Erkennung der immunogenen Peptide durch das Immunsystem 

und gleichzeitig die Möglichkeit eines immuntherapeutischen Eingreifens in der 

Therapie des Nierenzellkarzinoms für diese Liganden. 

Bei den beschriebenen Untersuchungsmethoden gelangen ganze Gewebeproben zur 

Untersuchung. Daher wurden auch anhaftende Strukturen wie Fett-, Nerven- und 

Bindegewebe, Gefäßendothel und Zellen des hämatopoetischen Systems mit erfasst. 

Es ist somit nicht auszuschließen, dass ein bestimmter Anteil der ermittelten Peptide 

nicht nur vom Tumorgewebe stammt. Dies macht die Beurteilung einiger Peptide 

schwierig. Es ist ferner nicht auszuschließen, dass beispielsweise der VWF aus noch 

gesundem Gefäßendothel stammt. Andererseits wird in den letzten Jahren VWF eine 

große Rolle bei der Entstehung von Metastasen zugeschrieben. Da dieses Protein sehr 

hohe Expressionswerte aufwies ist davon auszugehen, dass VWF aus der 

Neovaskularisation des Tumors detektiert werden konnte. Ähnlich verhält es sich mit 

DOK4. Laut Gérard et al. (2009) ist DOK4 auch in ruhenden T-Zellen exprimiert. 

Demnach könnte dieses Protein aus T-Zellen und nicht aus dem Tumorgewebe 

stammen. Da es sich bei diesem Protein zudem um ein noch nicht lange entdecktes 

Protein handelt bleibt abzuwarten, ob DOK4 künftig öfter diagnostiziert werden kann. 

Sollte dies der Fall sein, wäre DOK4 ein weiterer möglicher Impfkandidat. 

Im Gesamtergebnis konnte anhand der Unterexpressionen dargestellt werden, dass 

zwar die mittels massenspektrometrischer Analysen ermittelten HLA-Liganden auf 

soliden Nierenzellkarzinomen vorhanden waren, die mRNA-Expression jedoch geringer 

war als in vergleichbarem korrespondierendem gesundem Nierengewebe. Aus diesem 

Ergebnis lässt sich interpretieren, dass viele im gesunden Gewebe vorkommende 

Proteine in den maligne transformierten Zellen zugrunde gegangen sind. Die meisten 

der herunterregulierten Proteine betrafen die Gewebeprobe RCC425, bei der es sich 

gemäß histologischer Klassifikation um ein sarkomatoides Nierenzellkarzinom 

handelte. Hier kann der Schluss gezogen werden, dass sämtliche Zellfunktionen des 

Tumorgewebes wie Zellstoffwechsel, Signaltransduktion, Abbau des Zytoskeletts sowie 

Zell-Zell-Interaktionen nicht mehr statt gefunden haben.  
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Besonders bemerkenswert bei dieser Probe war zudem, dass trotz der großen 

Tumormasse (siehe unter 3.1 Tabelle 9) nur wenige Proteine differentiell exprimiert 

waren. Diese Proteine waren massiv hochreguliert und betrafen vornehmlich die 

Proteine des Zytoskeletts wie MAP4, NEB und VIM. Bei den klarzelligen 

Nierenzellkarzinomen hingegen wurde eine bunte Mischung hochregulierter Proteine 

ermittelt. 
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Zusammenfassung  

Entscheidend für die Erkennung maligner Zellen durch T-Zellen des Immunsystems 

sind tumorassoziierte HLA-präsentierte Peptide, da das Immunsystem im Prinzip die 

Fähigkeit besitzt bösartige Zellen zu erkennen und zu eliminieren. Gelingt es, diese 

Fähigkeit mit einer Impfung gezielt anzuregen und zu nutzen, kann eine 

Peptid-basierte Immuntherapie ein effizientes Verfahren zur Behandlung des  

Nierenkrebses darstellen. Ziel dieser Arbeit war es, durch massenspektrometrische 

Untersuchungen HLA-Klasse-I Ligandome von maligne transformierten Zellen des 

soliden Nierenzellkarzinoms zu identifizieren und mit Hilfe vergleichender 

Genexpressionsanalysen diejenigen Gene respektive Proteine zu identifizieren, die 

aufgrund ihres Expressionsmusters als tumorassoziiert angesehen werden können.  

Ferner war es Ziel, die individualtypischen tumorassoziierten Peptide eines jeden 

einzelnen Patienten aufzuarbeiten, um individuell auf Patienten zugeschnittene 

Tumorvakzine herstellen zu können (from bench to bedside). In den sieben 

untersuchten soliden Nierenzellkarzinomen wurden insgesamt 318 verschiedene 

Peptidsequenzen identifiziert. Bei 58 dieser Peptide zeigten die zugehörigen 

Quellproteine in den vergleichenden Genexpressionsanalysen eine signifikante 

Überexpression. Einige dieser Peptide konnten Quellproteinen zugeordnet werden, die 

mit der Tumorgenese in Verbindung gebracht werden oder die bereits Zielmoleküle der 

klinischen Forschung darstellen (BHLHE41, PRUNE2, MAP4, RSU1, NEB, DOK4, 

PLIN2, HSP90B1). Diese aus HLA-Liganden abgeleiteten Tumorantigene stellen 

potentielle T-Zellepitope für eine Peptid-basierte Immuntherapie dar. 

Zu den Liganden dieser neu identifizierten Quellproteinen zählen beispielsweise der 

Ligand GQVEIVTKV mit dem HLA-Allotyp B*13 aus prune homolog 2 (Drosophila) 

(PRUNE2) und der Ligand FSDIVKQGY mit dem HLA-Allotyp A*01 aus docking 

protein 4 (DOK4). Der neue Ligand KSELLVEQY mit dem HLA-Allotyp A*01 hingegen 

gehört zu einem bereits bekannten Quellprotein.  

 

Charakterisierung des HLA-Klasse-I Ligandoms in 
Primärtumoren beim humanen Nierenzellkarzinom 
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Summary 

For the recognition of malignant cells by T cells of the immune system tumor-

associated HLA-presented peptides are crucial, because the immune system has the 

ability to recognize and to eliminate such malignant cells. If it is successful to stimulate 

the immune system by vaccination, a peptide based immune therapy can be an 

efficient treatment in the therapy of RCC. The aim of this study was to identify 

HLA-class-I restricted peptides from malignant / transformed cells of solid RCC via 

mass spectrometry analysis. With additional analysis of gene expression those proteins 

should be identified which are tumor associated due to their pattern of expression.  

A further aim was to analyse the individual typical tumor associated peptides from each 

patient in order to produce specific tumor vaccines for each patient, literally from bench 

to bedside. In the seven examined solid RCC we identified in total 318 different peptide 

sequences. The source proteins of 58 of these peptides showed significant 

overexpressions in the comparing gene expression analysis. Some of these peptides 

could be assigned to proteins of source, which are associated with tumorgenesis or 

which are known target molecules in clinical research (BHLHE41, PRUNE2, MAP4, 

RSU1, NEB, DOK4, PLIN2, HSP90B1). These tumor antigens, derived from the 

HLA-ligands, represent potential T-cell-epitopes for a peptide based vaccination 

therapy.  

To the ligands of these new identified source proteins for example belong HLA-B*13 

ligand GQVEIVTKV from prune homolog 2 (Drosophila) (PRUNE2) and the HLA-A*01 

ligand FSDIVKQGY from docking protein 4 (DOK4). The new ligand KSELLVEQY with 

the HLA-Allotype A*01 belongs to the known source protein Peripilin (PLIN2). 

Keywords: renal cell carcinoma, HLA-Class-I restricted peptides, peptide based 

immune therapy 

Characterization of the HLA-class-I Ligandom in Primary Tumors 

of the Human Renal Cell Carcinoma 
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Abkürzungsverzeichnis 
AcN Acetonitril 

AJCC American Joint Committee on Cancer 

AK Antikörper 

APC Antigenpräsentierende Zellen 

ATP Adenosin-triphoshphat 

BAGE B antigen 

Bax BCL2-associated X protein 

BrCN Bromcyanid 

ccRCC Clear cell Renal Cell Carcinoma 

CD Cluster of differentiation 

CDK4 Cyclin-dependent kinase 4 

cDNA Complementary deoxyribonucleic acid; komplementäre  

Desoyribonukleinsäure 

CEA Carcinoembryonic antigen 

CHAPS 3-[(3-Cholamidopropyl)-dimethyl-ammonio]-1-propansulfonat 

chRCC Chromophob Renal Cell Carcinoma 

CID Collisionally induced decay 

c-Myc v-Myc myelocytomatosis viral oncogene homolog (avian) 

CNBr Bromcyan 

CTLs Cytotoxic T lymphocytes 

DCs Dendritische Zellen 

DNA Desoxyribonukleinsäure 

EGF Epidermal growth factor 

ER Endoplasmatisches Retikulum 

ESI Electrospray Ionisation 

Fas Fas (TNF receptor superfamily, member 6) 

FC Fold-Change 

GAGE G antigen 

gp100 Glycoprotein 100 kDa 

GUA O-Methyl-Isourea Hemisulfat 94 % 

HCl Salzsäure 

HER2/neu Human epidermal receptor 2/neurological 

HIF1a Hypoxia inducible factor 1 alpha 
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HLA Human leukocyte antigen 

HPV Humanes Papillom-Virus 

IFIZ Interfakultäres Institut für Zellbiologie 

IFN Interferon 

K-RAS V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog 

LC-MS Liquid chromoatography mass spectrometry 

LMP Low molecular weight protein 

LTQ Linear trap quadrupole 

m/z Masse-zu-Ladungs-Verhältnis 

MAGE Melanoma antigen 

MALDI Matrix-Assisted Laser Desorption/Ionisation 

MART-1 Melanoma antigen recognized by T cells-1 

MCP Multi channel plate 

MDR1 Multidrug resistance gene 1 

MECL1 Multicatalytic endopeptidase complex subunit  

MHC Major histocompatibility complex  

MLANA Melan-A 

mRNA Messenger ribonucleic acid; messenger Ribonukleinsäure 

MUC-1 Mucin 1 

MUM-1 Melanoma ubiquitous mutated 1 

N Korrespondierendes gesundes Nierengewebe 

NF-κB Nuclear factor 'kappa-light-chain-enhancer' of activated B-cells 

NK Natürliche Killerzellen  

N-RAS Neuroblastoma RAS viral (v-ras) oncogene homolog 

NY-ESO-1 New York esophageous 1 

PBS Phosphate buffered saline 

PDGF Platelet derived growth factor C 

Pgp Phospho-Glykoprotein 

PRAME Preferentially expressed antigen of melanoma 

pRCC Papillary Renal Cell Carcinoma 

Raf Zinc fingers and homeoboxes 2 

RCC Renal Cell Carcinoma 

RKI Robert Koch-Institut 

RNA Ribonukleinsäure 

rpm Rounds per minute; Umdrehung pro Minute 

RT Raumtemperatur 
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SDF-1 Stromal cell-derived factor 1 

SEV Sekundärelektronenvervielfacher 

T Tumorgewebe 

TAA Tumorassoziierte Antigene 

TAP Transporter associated with antigen processing 

TCR T-Zell Rezeptor 

TFA Trifluoressigsäure 

TGF-β Transforming growth factor 

TNF Tumornekrosefaktor 

TOF Time of flight 

TP53/p53 Tumor protein p53 

UICC International Union Against Cancer 

VEGF Vascular Endothelial Growth Factor 

VHL Von-Hippel-Lindau-Syndrom 

vs Versus 

ZNS Zentrales Nervensystem 
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