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Zusammenfassung

Die Friherkennung selbst kleinster physiologischer und funktioneller Verdnderungen innerhalb eines
Organismus ist gerade bei der Entwicklung neuer Medikamente von entscheidender Bedeutung. Vor
allem die molekulare Fluoreszenztomografie (FMT) hat sich als &dufBerst hilfreich dabei erwiesen,
solche Verdnderungen makroskopisch und in-vivo sichtbar zu machen. Die Rekonstruktion von FMT-
Bildern ist jedoch duferst schwierig, da die Ausbreitung von Licht in biologischen Geweben durch
Streuungs- und Absorptionseffekte nicht geradlinig erfolgt. Dies fiihrt zu Fehlern und Artefakten in
den FMT-Bildern. Um diese Probleme zu l6sen und die Qualitit der Bildgebung zu verbessern, wurde
ein hybrides FMT/XCT-System konstruiert. Mit dessen Hilfe kénnen a-priori Informationen tiber die
Anatomie eines Versuchstieres gewonnen und fiir eine Verbesserung der FMT-Rekonstruktion
eingesetzt werden. Dazu ist es jedoch noétig, anatomische Strukturen in den XCT-Bildern zu finden
und zu klassifizieren. Ziel dieser Arbeit ist es, verschiedene Moglichkeiten aufzuzeigen, um
unterschiedliche anatomische Strukturen vollautomatisch, schnell und exakt zu segmentieren. Es wird
ein Framework prisentiert, welches das Skelett, die Lunge und das Herz in CT-Aufnahmen von
Méusen findet. Die Ergebnisse werden evaluiert und es wird demonstriert, wie diese
Segmentierungsergebnisse in die FMT-Rekonstruktion integriert werden kénnen und wie dadurch die
Qualitdt von FMT-Bildern signifikant verbessert werden kann.

Abstract

The early detection of even the smallest physiological and functional changes within an organism is of
critical importance especially for the development of novel pharmaceutical agents. Most notably the
fluorescence molecular tomography (FMT) has proven to be helpful to visualize those changes
macroscopically and in-vivo. However, the reconstruction of FMT images is very complicated
because the propagation of light in biological tissues is not linear due to scattering and absorption
effects. This leads to errors and artefacts within FMT images. To solve this problem and to increase
imaging quality a hybrid FMT/XCT system has been developed. With its help a-priori information
about the anatomy of a laboratory animal can be gained and utilized to improve FMT reconstruction.
Therefore it is necessary to find and to classify anatomical structures within the XCT images. The
intention of this work is to present multiple methods for the fast, automatic and accurate segmentation
of anatomical structures. A framework will be presented which finds the skeleton, the lung and the
heart within CT images of mice. The results are evaluated and it will be demonstrated how these
segmentation results can be integrated into the FMT reconstruction and how this improves FMT
image quality significantly.
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1. Einleitung

1.1 Einfiihrung in die molekulare Fluoreszenztomografie

Verfahren zur dreidimensionalen biologischen und medizinischen Bildgebung wie die Rontgen-
Computertomografie (engl.: X-ray Computed Tomography, XCT) oder die Magnetresonanz-
tomografie (MRT) haben die moderne Medizin mafBigeblich beeinflusst und verdndert. Einer der
Hauptgrinde dafiir ist ihre Fahigkeit, einen nichtinvasiven Einblick in lebende Organismen zu
ermoglichen. Dadurch sind sie vor allem fiir die Diagnose pathologischer Verinderungen der
Physiologie und Anatomie von Patienten, sowie der Beobachtung von Behandlungsfortschritten von
entscheidender Bedeutung. Eine der neuesten und innovativsten Methoden der biologischen bzw.
medizinischen Bildgebung stellt die Diffuse Optische Tomografie (DOT) dar, welche die Ausbreitung
von Licht, d.h. von elektromagnetischer Strahlung mit einer Wellenldnge von ca. 380 bis 780 nm, in
Korpern aufzeichnet, um dreidimensionale Schnittbilder zu rekonstruieren.

Da sich Licht in biologischen Geweben jedoch nicht linear ausbreitet, sondern stark durch
Streuungs-, Absorptions-, und Reflektionseffekte beeinflusst wird, ist die Anatomie deutlich schwerer
zu rekonstruieren als beispielsweise bei der Verwendung von Rontgenstrahlen. Die notwendigen
Grundlagen zur DOT konnten deshalb erst Anfang der 90er Jahre des 20. Jahrhunderts entwickelt
werden, als die ersten theoretischen Modelle zur Tomografie von diffusen Signalen verdffentlicht
wurden [Arridge 1993, Graber 1993, Schotland 1992]. Wenige Jahre spéter wurde die DOT durch
eine weitere Entwicklung in einem anderen Fachgebiet wesentlich beeinflusst: die kiinstlichen
Herstellung des griin fluoreszierenden Proteins (GFP) [Prasher 1992, Chalfie 1994, Inouye 1994],
welches in natiirlicher Form in der Medusenart Aequorea victoria vorkommt. Dieses Protein hat die
besondere Eigenschaft, Licht einer bestimmten Wellenldnge, der sogenannten Emissionswellenlidnge,
zu erzeugen, sobald es angeregt wird. Die Anregung erfolgt dabei ebenfalls optisch, wobei die
Anregungswellenldnge nicht identisch mit der Emissionswellenlidnge ist. Dadurch ldsst sich die
spezifische Fluoreszenz des GFP gut vom Licht der Anregungsquelle trennen. Da sich das GFP zudem
praktisch beliebig mit anderen Proteinen auf genspezifische Art verbinden ldsst, kann es zum
Markieren von Proteinen verwendet werden.

Durch die Verwendung von GFP in der DOT entstand die Molekulare Fluoreszenztomografie
(engl.: Fluorescence Molecular Tomography, FMT), die sich zu einem der vielversprechendsten
Bildgebungsverfahren unserer Zeit entwickelt hat [Ntziachristos et al. 2005]. Dabei werden
Fluorochrome, bei denen es sich heutzutage meist um anwendungsspezifische Variationen des
originalen GFPs handelt, einem lebenden Organismus injiziert, um sich mit den anvisierten Proteinen
zu verbinden. Mit Hilfe von Lasern, welche Licht der spezifischen Anregungswellenlinge der
Fluorochrome ausstrahlen, konnen die Fluorochrome aktiviert werden und beginnen dadurch Licht
ihrer spezifischen Emissionswellenldnge zu emittieren. Diese Emissionen konnen auferhalb des
Organismus mit Hilfe von CCD-Kameras aus verschiedenen Perspektiven aufgenommen werden.
Diese zweidimensionalen Bilddaten erlauben die Rekonstruktion dreidimensionaler Schnittbilder,
welche die Konzentration und Verteilung der Fluorochrome, und damit des anvisierten Proteins,
innerhalb des Organismus widerspiegeln.

Gerade fiir die medizinische Bildgebung ergeben sich durch die FMT interessante
Anwendungsmdoglichkeiten. So gelang es bereits Ende der 90er Jahre mit Hilfe fluoreszierender
Kontrastmittel, Tumore sichtbar zu machen. Da die DOT aufgrund der geringen Eindringtiefe von
Lichtwellen in organisches Gewebe bisher auf die Rekonstruktion diinner Objekte beschrinkt ist,
kommt sie beim Menschen nur fiir die oberflachliche Bildgebung in Frage. Grofle Bedeutung kommt
ihr jedoch in der pharmazeutischen Entwicklung zu, da sie fiir die Untersuchung kleiner Versuchstiere
wie z.B. von Méusen sehr gut geeignet ist. Vor allem mit Licht im Nahinfrarotbereich, d.h. ab einer
Wellenldnge von 650 nm, koénnen Eindringtiefen bis zu mehreren Zentimetern erreicht werden
[Chance 1991, Joebsis 1977]. Dies ist bei Kleintieren absolut ausreichend. Der Vorteil der DOT bzw.
der FMT im Speziellen liegt dabei in der Moglichkeit, selbst kleinste Tumore und ihre Aktivitét in-
vivo, d.h. am lebenden Objekt, und makroskopisch sichtbar zu machen. Damit unterscheidet sie sich
von herkémmlichen Verfahren wie XCT und MRT, in denen Tumore lediglich bei grofflichigen,
physiologischen Verinderungen erkannt werden konnen, als auch von der Mikroskopie, die zwar
selbst kleinste Tumorzellen visualisieren kann, aber bei der Suche nach diesen raumlich sehr begrenzt
ist. Aulerdem erfordert die Mikroskopie eine invasive Biopsie, um das zu untersuchende Gewebe zu
entnehmen. Die FMT eignet sich deshalb dazu, um u.a. die Wirkung pharmazeutischer Wirkstoffe auf
Tumorzellen direkt und innerhalb kiirzester Zeit nachzuweisen, ohne das betrachtete Versuchstier fiir



histologische Untersuchungen opfern zu missen. Dadurch sind auch Studien an den selben
Versuchstieren und tiber lingere Zeitraume moglich.

Ein groBBes Problem der FMT ist jedoch weiterhin die Komplexitidt der Lichtausbreitung im
Gewebe, da die Photonen sich nicht geradlinig durch ein Objekt bewegen, sondern diffus gestreut
werden. Zudem kommt es auch zur teilweisen Reflexion und Absorption des Lichtes. Dies allein
macht die Rekonstruktion der Fluorochromkonzentration und -verteilung bereits deutlich
komplizierter als bei herkommlichen Tomografieverfahren. Hinzu kommt, dass die unterschiedlichen
Gewebearten innerhalb eines Organismus unterschiedliche FEigenschaften beziiglich der
Lichtausbreitung besitzen. Daraus ergibt sich unweigerlich der Schluss, dass nur bei moglichst
genauer Kenntnis der spezifischen Physiologie und Anatomie eines Organismus, eine optimale
Rekonstruktion gewihrleistet werden kann. Aus diesen Grinden werden fiir die FMT fast
ausschlielich modellbasierte Rekonstruktionsverfahren angewendet.

1.2 Modellbasierte Rekonstruktion und hybride FMT-Systeme

Um das Potential der FMT auszuschopfen, miissen die Probleme bei der Rekonstruktion gelost
werden. Eine Moglichkeit bilden modellbasierte Rekonstruktionsverfahren. Dazu wird das
Rekonstruktionsproblem auf die folgende Gleichung reduziert:

Wx=y

Hierbei représentiert x die Fluorochromkonzentration und -verteilung innerhalb des Organismus.
Die Fluoreszenzemissionen werden durch ein System bzw. Modell W beeinflusst, welches die
Lichtausbreitung innerhalb des untersuchten Organismus beschreibt. Dadurch entstehen die
Messwerte y d.h. die Bilddaten des FMT. Ziel einer Rekonstruktion ist es nun, x moglichst genau zu
ermitteln. Da das Gleichungssystem in der Regel unterbestimmt ist, kann eine Losung nur durch
Approximation erreicht werden, d.h. es reicht, wenn das Gleichungssystem die Bedingung Wx = y
erfullt. Eine Losung kann dann durch Minimierung des folgenden Residuums erreicht werden:

HWx - sz — min

Wie bereits erwdhnt wurde, ist die Ausbreitung des Lichts in starkem Mafle von den zu
durchdringenden Gewebetypen abhidngig. Je nach chemischer Zusammensetzung und physischer
Struktur (z.B. Oberflichenbeschaffenheit) wird Licht unterschiedlich stark absorbiert und gestreut.
Wie man aus diesen Zusammenhidngen erkennen kann, setzt die modellbasierte Rekonstruktion
deshalb voraus, dass das Modell W moglichst akkurat an den abgebildeten Organismus angepasst
wird. Ansonsten wird x zwangsldufig fehlerhaft rekonstruiert, da eine falsche Lichtausbreitung
innerhalb des Gewebes angenommen wird. Es existieren zwar bereits sehr gute Methoden, um die
diffuse Ausbreitung des Lichts mathematisch zu beschreiben [Arridge 1993, Flock 1989], dennoch
muss immer die Heterogenitdt der Anatomie und Physiologie des abgebildeten Organismus
berticksichtigt werden. Dies fithrt zu dem unweigerlichen Schluss, dass moglichst detaillierte
Informationen iiber die spezifische Anatomie des betrachteten Organismus gewonnen werden miissen.
Nur dann kann das Modell individuell auf den Organismus angepasst werden, um eine exakte
Rekonstruktion der Fluorochromkonzentration und -verteilung zu erméglichen.

Um diese Informationen zu erhalten, wurden in den letzten Jahren eine Reihe hybrider Systeme
entwickelt. Dabei wird das FMT um ein zusitzliches Bildgebungssystem erweitert, welches die
anatomischen Informationen liefert. Dazu eignen sich vor allem die klassischen MRT- und XCT-
Gerite, da sie eine hohe Auflosung besitzen, die Anatomie gut darstellen kénnen und sich in
langjahriger Praxis bewdhrt haben. Am Institut fiir biologische und medizinische Bildgebung (engl.:
Institute for Biological and Medical Imaging, IBMI) des Helmholtz Zentrums Miinchen wurde im
Rahmen eines EU-Projekts die Entwicklung eines hybriden FMT/XCT-Systems vorangetrieben. Ein
Ziel war es, die Qualitdt der optischen Bildgebung mit Hilfe anatomischer a-priori Informationen
signifikant zu steigern; u.a. durch Berticksichtigung anatomischer a-priori Informationen wahrend der
Rekonstruktion. Das FMT wurde dazu in ein kommerzielles, bereits bestehendes pCT integriert.

Die wesentlichen Komponenten des XCT (Rontgenquelle und -detektor) sind in Abb. 1 auf der
horizontalen Achse angebracht. Die Hauptkomponenten des FMT (Laserquelle und CCD-Kamera)



Abbildung 1: Technischer Aufbau des hybriden FMT/XCT-Systems am Institut fiir biologische und
medizinische Bildgebung (Helmholtz Zentrum Miinchen) mit den Hauptkomponenten (A) Rontgenquelle, (B)
Rontgendetektor, (C) Laser und (D) CCD-Kamera mit Filterrad.

liegen auf der vertikalen Achse. Die CCD-Kamera ist zusdtzlich mit einem Filterrad ausgestattet. Dies
erlaubt multispektrale Aufnahme. So kdnnen Bilder im Anregungs- und Emissionsspektrum sowie im
Bereich des sichtbaren Lichts getrennt voneinander aufgenommen werden. AuBlerdem musste ein
Bleischutz angebracht werden, um die CCD-Kamera wéihrend XCT-Aufnahmen vor den fiir sie
schddlichen Rontgenstrahlen abzuschirmen. Die gesamte Apparatur ist auf ein bewegliches Gertist
montiert, dass 360° um das zu betrachtende Objekt rotiert werden kann.

1.3 Automatische Segmentierung zur Klassifikation anatomischer Strukturen

Es wurde beschrieben, wie mit Hilfe eines XCT anatomische Informationen gewonnen werden
konnen, die zwangsldufig bendtigt werden, um ein detailliertes Modell der Ausbreitung des Lichts
innerhalb des Gewebes zu erstellen, und wie sich dadurch die Rekonstruktion der FMT verbessern
lasst. Die XCT-Bilder konnen jedoch nicht ohne weiteres direkt verwendet werden. Der Grund dafiir
ist, dass keine unmittelbare Korrelation zwischen der Dichte eines Materials, d.h. seiner Intensitét
innerhalb der CT-Bilder, und seinen optischen Eigenschaften (im Wesentlichen Absorption und
Streuung) besteht. Dies bedeutet, dass die unterschiedlichen Gewebe und Organe erst identifiziert
werden miissen. Nur so ist es moglich die gewebespezifischen Parameter in das Modell zu integrieren.
Da dies manuell mit einem erheblichen zeitlichen Aufwand verbunden ist, wurden Moglichkeiten
gesucht, die Klassifikation anatomischer Strukturen mit Hilfe von Segmentierungsalgorithmen zu
automatisieren. Dabei wurde besonderes Augenmerk auf die zeitliche Effizienz gelegt, die natiirlich
neben der Qualitét der Klassifikation selbst, entscheidend fiir die praktische Anwendung ist.

Meine Aufgabe innerhalb unseres FMT/XCT-Projekts umfasste daher die komplette Entwicklung
und Implementierung von Methoden zur Segmentierung anatomische Strukturen innerhalb der XCT-
Bilder. Als wichtigste Strukturen wurden das Skelett, die Lunge und das Herz definiert, da das
FMT/XCT vor allem fiir Thoraxaufnahmen verwendet werden sollte. Die wichtigsten Anforderungen
an die Software waren eine hohe Qualitit der Segmentierung sowie eine vollautomatische und
zeiteffiziente Funktionsweise. Dadurch sollte das Programm nutzerfreundlich und die eigentliche
Bildgebung nicht signifikant verlangsamt werden. Aus diesem Grund mussten groftenteils schnelle
Segmentierungsmethoden zum Einsatz kommen. Zur weiteren Zeitersparnis und um das
Segmentierungsergebnis zu verbessern, sollten die einzelnen Teile zudem nicht separat von einander
arbeiten sondern als eine funktionelle Einheit. Dadurch wiirde erworbenes Wissen und Information



Abbildung 2: Die Bilder zeigen die Verbesserung der Rekonstruktionsqualitit mit Hilfe anatomischer a-priori
Informationen. Linkes Bild: Rekonstruktion ohne Beriicksichtigung anatomische Informationen. Mittleres
Bild: Rekonstruktion unter Berlicksichtigung anatomischen Informationen. Rechtes Bild: Aufnahme der
Fluoreszenz in einem Gewebeschnitt des selben Tieres zur Evaluation der Ergebnisse.

wihrend eines Teilschrittes benutzt, um spétere Schritte beschleunigen zu kénnen und auch die
Qualitdt zu steigern. Die einzelnen Segmentierungen bauen deshalb immer auch auf den vorherigen
Schritten und Ergebnissen auf.

Ein Beispiel dafiir ist die Lungensegmentierung, bei der die ungefihre Position der Lunge mit
Hilfe einer Detektion des Brustkorbs anhand des bereits segmentierten Skeletts approximiert wird.
Auch die Initialposition bei der Herzdetektion basiert auf den Ergebnissen der vorherigen Schritte.
Dadurch war es moglich, Zeit zu sparen und diese gewonnene Zeit in den Einsatz komplexerer
Algorithmen zu investieren. Wihrend im ersten Schritt der Software im Wesentlichen ein einfaches
und schnelles Schwellwertverfahren Verwendung findet, werden im weiteren Verlauf deutlich
komplexere regionenbasierte sowie modellbasierte Verfahren eingesetzt. Das bedeutet, es werden zu
Beginn die einfacheren Aufgabe bewiltigt, um dadurch die komplexeren besser und effizienter 16sen
zu konnen. Durch diese hierarchische Struktur konnen selbst aufwendigere Verfahren verwendet
werden, wobei der Zeitaufwand verringert und die Segmentierungsqualitdt verbessert wird.

So konnte eine Software entwickelt werden, die in weniger als zwei Minuten das komplette
Skelett, die Lunge sowie das Herz in Datensdtzen mit etwa 3 Millionen Voxeln segmentiert. Im
Vergleich zur Bilderfassung des FMT/XCT-Systems (ca. 30-60 Minuten) und der Rekonstruktion (ca.
10 Minuten) wird deutlich, dass die Segmentierung den Ablauf praktisch nicht verzégert. Zur
Validierung der Segmentierungsqualitdt wurden die Ergebnisse des automatischen Verfahrens mit
manuellen Segmentierungen verglichen. Als Maf3 diente der Dice-Koeffizient s der den Schnitt zweier
Mengen X und Y auf Basis ihrer Gesamtgrof3e vergleicht:

21X NY|
=21
X[+ 7]

und einen Wert zwischen 0 und 1 hat, wobei 1 einer perfekten Segmentierung entspricht. Dabei
konnte das von mir entwickelte Programm Dice-Werte von 0,76 bis 0,87 erreichen. Vergleicht man
manuellen Segmentierungen, die von verschiedenen Personen durchgefiihrt wurden, ergibt sich ein
Dice-Wert von etwa 0,85 bis 0,90. Dies zeigt, dass der Segmentierungsfehler zwischen Mensch und
Maschine nur geringfiigig grofer ist als zwischen verschiedenen Menschen. Vor allem fiir die
Verwendung in der FMT-Rekonstruktion, ist diese Qualitdt ausreichend.

Zusammenfassend konnte eine komplexe Programmarchitektur konstruiert werden, die durch
Vollautomatisierung und Zeiteffizienz einen sehr geringen Arbeitsaufwand hat, dabei aber hilft, die
Bildqualitdt der Fluoreszenztomografie signifikant zu verbessern. Der Vorteil ist dabei die
Moglichkeit, pathologische Verdnderungen wie z.B. Tumore deutlich besser und in-vivo detektieren
zu konnen. Vor allem die visuelle Abgrenzung von Tumoren ist mit Hilfe dieses Verfahrens viel
besser moglich, da Unschirfen mit dieser Methode deutlich reduziert werden konnten. Fiir die ersten
Publikationen wurde Fluoreszenz lediglich simuliert, um die Ergebnisse korrekt gegen eine definierte
Grundwahrheit validieren zu kénnen. Mittlerweile wurden jedoch auch in-vivo Bilder verwendet und
mit Hilfe von Gewebeschnitten auf ihre Richtigkeit tiberpriift. Diese Ergebnisse sind in Abb. 2 zu
sechen. Sie zeigen am deutlichsten den Vorteil unserer Methoden. Wie man erkennen kann, ist unter
Beriicksichtigung der anatomischen Informationen eine sehr exakte Rekonstruktion in-vivo moglich.
Um dies zu erreichen, waren die von mir entwickelten Methoden und Programme von essentieller
Bedeutung.



In den beiden folgenden Publikationen wird unser FMT/XCT-Projekt detailliert vorgestellt. Dabei
werden auch die Ergebnisse meiner Arbeit ausfithrlich dargelegt und es wird gezeigt, wie mit Hilfe
der von mir entwickelten Programmarchitektur die Fluoreszenzbildgebung verbessert werden konnte.
Die erste Publikation [Schulz et al. 2010] beschreibt das hybride FMT/XCT-System unserer
Arbeitsgruppe sowie die grundlegende Einbindung anatomischer a-priori Information in den
Rekonstruktionsprozess. Hier liegt der Fokus vor allem auf der Beschreibung der Hardware und des
Rekonstruktionsansatzes. Die zweite Publikation [Freyer et al. 2010] geht speziell auf die von mir
entwickelten und untersuchten Algorithmen zur Segmentierung ein, beschreibt ihr Funktionsweise
und Ergebnisse und erldutert, wie diese Ergebnisse fiir die Rekonstruktion verwendet wurden und
welche Erfolge dadurch erzielt werden konnten.
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Hybrid System for Simultaneous Fluorescence
and X-Ray Computed Tomography

Ralf B. Schulz*, Angelique Ale, Athanasios Sarantopoulos, Marcus Freyer, Eric Soehngen,
Marta Zientkowska, and Vasilis Ntziachristos

Abstract—A hybrid imaging system for simultaneous fluores-
cence tomography and X-ray computed tomography (XCT) of
small animals has been developed and presented. The system
capitalizes on the imaging power of a 360°-projection free-space
fluorescence tomography system, implemented within a micro-
computed tomography scanner. Image acquisition is based on
techniques that automatically adjust a series of imaging param-
eters to offer a high dynamic range dataset. Image segmentation
further allows the incorporation of structural priors in the optical
reconstruction problem to improve the imaging performance. The
functional system characteristics are showcased, and images from
a brain imaging study are shown, which are reconstructed using
XCT-derived priors into the optical forward problem.

Index Terms—Fluorescence tomography, hybrid imaging.

1. INTRODUCTION

HE USE OF fluorescence in biomedical in vivo imaging

has shown a steady increase over the past decade, as it
offers a flexible platform for visualizing tissue function at the
physiological, metabolical, and molecular levels in whole an-
imals and tissues [1]. Following the successful development
of fluorescent probes and reporter technologies for preclinical
imaging, significant technological progress on macroscopic op-
tical imaging has been achieved, in particular, when utilizing
tomographic principles [2]-[11].

The use of hybrid methods is common in the development
of imaging systems, as it offers the advantage to pack together
complementary characteristics of different modalities. A most
prominent example is the development of X-ray computed to-
mography (CT) and positron emission tomography (PET) sys-
tems for high-resolution anatomical, and high-sensitivity func-
tional and molecular imaging, respectively [12], [13]. Hybrid
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methods in optical and fluorescence imaging have also been pro-
posed in the past [14]-[16] and systems for clinical magnetic
resonance imaging and optical tomography have been proposed
since 1998 [17]-[22]. With the advancement of fluorescence
molecular tomography (FMT) as a method to offer noninvasive
tomographic reconstruction of cellular and subcellular function
in tissues, it becomes similarly crucial to develop a technique
for hybrid imaging that can improve imaging performance and
offer a versatile imaging tool with high-dissemination potential.

Standalone FMT has undergone significant progress in terms
of resolution and sensitivity. A first step in this direction was
the development of free-space noncontact detection for FMT
[23]-[25], which allowed to perform imaging without the use of
fibers or matching fluids, by direct lens coupling of charge-cou-
pled device (CCD) cameras, resulting in resolution and image
quality improvement [26]. This development was recently
taken a step further by developing systems that allow complete
angle projections, around the animal or object imaged, offering
360°-projection free-space tomography [9]. Regardless, even
state-of-the-art FMT systems are still far from reaching their
potential of accurately visualizing biological information in
high resolution for two main reasons: First, although in modern
free-space systems, the reconstructed fluorescence biodistri-
bution is registered with the outer boundaries of the imaged
specimen, there is a lack of interior anatomical information to
accurately orient in the tomographic image stacks. Second, the
mathematical models used to date are derived using significant
approximations to the photon distribution inside the volume
imaged, as the interior structure of the volume is difficult to
determine or remains unknown with standalone optical tomog-
raphy systems.

To overcome these limitations, the combination of FMT
with X-ray computed tomography (XCT) was pursued. The
approach herein is markedly different than previous hybrid im-
plementations using compromised optical collection systems,
such as optical fibers inside an MR bore [22], but combines
highly powerful 360°-projection free-space FMT with a
high-resolution XCT system. An advantage of the development
of free-space FMT is the ability to integrate it in a straight-
forward manner onto an XCT gantry, in transillumination
mode on which a source is mounted opposite to the respective
detector. XCT and FMT are truly complementary modalities.
XCT offers high anatomical resolution and low soft-tissue
contrast, whereas FMT offers high sensitivity and very versatile
tissue contrast ability, to overall yield a hybrid system that
significantly improves the information available compared to
any of the components alone. With the exception of potential
radiation damage to the CCD camera of the FMT system,

0278-0062/$26.00 © 2010 IEEE
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Fig. 1. Hybrid FMT/XCT imaging system. (a) Schematic top view of the ro-
tating gantry, describing the main elements. (b) Photographic view onto the ro-
tating gantry with front shielding and mouse bed removed. The animal is posi-
tioned in the center of the gantry.

which can be prevented using appropriate shielding, there is no
interference between the optical and X-ray signals. On the other
hand, XCT images provide a useful anatomical map on which
FMT images overlap and can be used as a form of structural
a priori information into the FMT reconstruction problem to
improve optical imaging performance [3], [27]-[29]. While
many approaches have been suggested for the use of priors, it
is important to utilize methods that do not bias the result.

Herein, we present the newly developed system, and list tech-
nical and operational parameters. The performance of the devel-
oped FMT/XCT hybrid system is showcased with a brain study
performed on mice. The use of priors in the forward model is
investigated as a method to improve reconstruction without sig-
nificantly biasing the solution.

II. EXPERIMENTAL SETUP

A. Instrumentation

The hybrid imaging system presented herein was realized by
integrating free-space FMT equipment onto the rotating gantry
of a commercial micro-CT (eXplore Locus, General Electric
HealthCare, London, ON, Canada). The XCT system comprises
an X-ray source and an X-ray detector mounted on a common
rotating gantry of ~ 1 m diameter. The distance of the X-ray
detector to the center of rotation can be changed to achieve dif-
ferent magnification ratios, and thus, different spatial resolution.
For the experiments conducted herein, a resolution of 95 ym
was chosen, resulting in a field of view of ~ 35 mm along
the animal and ~ 8 cm across. In the original eXplore Locus
system, the animal is placed on a solid epoxy bed that can be
moved along the rotating axis into the field of view of the X-ray
system. The micro-CT is controlled via a standard PC (Pentium
IV, 1 GB memory) and several external control units.

To integrate FMT onto the gantry, a CCD camera and a
scanned laser source were mounted orthogonally to the X-ray
source—detector axis, as shown in Fig. 1. A back-illuminated
cooled CCD camera (Pixis 512B, Princeton Instruments,
Trenton, NJ) coupled to a 50-mm macrolens (Carl Zeiss,
Oberkochen, Germany) was selected for detection due to its
high sensitivity. In front of the lens, a proprietary six-position
filter wheel was positioned. One position in the filter wheel
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was occupied by a lead filter for radiation shielding during
X-ray exposure, the others were different combinations of
long-pass glass filters (Schott, Mainz, Germany) and bandpass
filters (Andover, Salem, NH) to filter fluorescence light or
the excitation wavelegth. Filter wheel and camera are located
behind shielding, composed of 1 mm lead and 500 pm copper
to shield the CCD from potential scattered radiation from the
XCT subsystem. The field of view of the optical system covers
an area of approximately 5 cm X 5 cm in the focal plane. On the
opposite side of the shielding, two electroluminescent plates
are mounted to provide white light illumination of the animal
when needed.

Opposite to the camera along its optical axis, two collimated
source fibers are mounted that can be moved by an XY stage
(Standa, Vilnius, Lithuania) through the field of view of the
camera. The focus length of the collimator was chosen such that
the focus would be close to the animal positioned in the rotation
center.

Two diode laser sources at 670 nm and 750 nm (B&W
Tek, Newark, DE) with maximum optical power of 300 mW
are used for illumination through the two source fibers. The
laser diode modules can be selectively switched on and off,
and their optical output power can be controlled via an analog
input. Switching and current control is performed using a
universal digital/analog input/output box with 10 bit resolution
(RedLab with UBRE switchbox, Meilhaus Electronic, Puch-
heim, Germany). The switchbox is also used to switch on and
off the white light illumination. All components for the FMT
subsystem (camera, laser, D/A module, optical switch, stages)
mounted on the XCT gantry are controlled through a single
USB2.0 connection added to the central cable hub of the gantry
and connected to a second standard PC (Pentium IV, 3 GHz,
1 GB memory). Mechanical control of the instrument and data
acquisition is performed using proprietary software written in
LabView (National Instruments, Austin, TX).

The mouse bed itself had to be redesigned, as the standard
animal holders blocked the view. The epoxy bed was replaced
by two carbon rods (@2 mm) 10 mm apart, mounted on two
miniature linear stages (Thorlabs, Newton, NJ) to allow precise
alignment of the animal to the rotation center of the gantry.

To enable simultaneous imaging without a change in the
original Micro-CT framework, the communication between the
motor controlling gantry rotation and the PC controlling the
Micro-CT was intercepted by the FMT control PC. For details,
refer to Section II-B below.

B. Data Acquisition

To start data acquisition, the user interactively defines a
protocol, consisting of the angular positions at which optical
imaging is to be performed, and a source pattern to be used at
each angle. This source pattern is defined by the minimum and
maximum axial positions, and the distance between sources in
axial and transversal direction. This source pattern is adapted to
the imaged object at each angular projection as described next.

Optical projection data are then acquired by rotating the
gantry around the animal. At each angular position that requires
measurements, the rotation is stopped and X-ray images or
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Fig. 2. Data acquisition and reconstruction scheme. XCT data, segmented into

different tissue regions, is used to set up an appropriate forward model. Intrin-

sically coregistered FMT data, automatically optimized for optimal use of the
dynamic range, is used in the inversion.

Fig. 3. Examples of acquired data. (a) and (b) White light image used to extract
the boundaries of the animal for two different projection angles. The grid of
source positions is automatically adapted to be centered along the animal. The
resulting source positions are indicated by dots. Visible are also the black carbon
rods holding the animal in place. Pixels covered by the rods are excluded from
reconstruction. (¢) Automatically generated finite-element mesh.

FMT images are acquired. A schematic drawing of the data
acquisition procedure is shown in Fig. 2.

For XCT projections, a number of frames are acquired,
and then, averaged, while the FMT system is protected using
the lead filter of the filter wheel. For FMT acquisitions, first
a white light image of the animal is taken, using no filter.
An automatic threshold is applied to the image to distinguish
between animal and background. For each row of the image,
the central line of the animal is determined. The desired source
pattern is then centered to this line; sources that should fall
outside the animal are ignored. For all other positions, the
laser is moved according to the position, and transmission and
emission images are acquired, subsequently, by using different
filters. Additionally, for each transmission image, the laser
power is set to an optimal value by controlling the voltage on
the analog input of the laser module. This laser intensity is then
kept constant for the acquisition of the according fluorescence
image to facilitate the accurate normalization of imaging data.
However, for optimal SNR, the fluorescence exposure time
is adapted. The method for optimized image acquisition is
detailed in Section III-C shortly. An example of an adapted
source pattern and normalized image data for a representative
projection is depicted in Fig. 3(a) and (b).

Input data are extracted from the images by first considering
all pixels that: 1) cover the animal, i.e., that are within the de-
tected boundaries of the animal, and 2) reach above a certain in-
tensity threshold in the excitation image. This way, pixels cov-
ering the rods of the animal holder, as well as very absorbing

regions in the animal where no light could be detected, are ex-
cluded. The area of the remaining pixels is then covered by de-
tector points that keep a minimum distance to each other. From
these points, actual measurement values are extracted as inputs
to the reconstruction.

C. Reconstruction

Photon propagation is modeled using the diffusion approxi-
mation to the radiative transport equation [7] as

[~VDV + 1a] Unn (r) = —n(r)Us () (1)

where D and p, are the possibly spatially varying diffusion
and absorption coefficients, n o cis some function proportional
to the concentration c¢ of fluorochrome, and U,, and U,,, describe
the photon density at the excitation and emission wavelength,
respectively. If the (potentially spatially varying) optical coef-
ficients are known, an explicit solution can be given using the
Green’s functions G (r,r’) as

[-VDV + pa] G(r,x') = —éo(r — ') 2

leading to

Upn(r) = .//ev G(r, v )n(r)U,(r')dr’. 3)

Equation (3) is a linear system that can be inverted using stan-
dard methods to yield n, a measure of concentration, for each
voxel r’ in volume V. For inversion, it is required to know the
photon density U,, which is usually modeled using the same
Green’s functions as U,,,, thus assuming identical optical prop-
erties at both excitation and emission wavelength.

The Green’s function are computed using a finite-element
system implemented using a proprietary MATLAB interface to
the Deal.Il framework [30]. This system solves the diffusion
equation using appropriate Robin boundary conditions, as de-
scribed in the literature [31]. The necessary finite-element mesh
is created from the X-ray data directly, using the outer isosur-
face of tissue as an outer bounday. An example of a resulting
mesh is depicted in Fig. 3(c). To stabilize the solution numeri-
cally, sources and detectors are not modeled as single points, but
as diffuse boundary sources of Gaussian shape with full-width
half maximum (FWHM) of 1 mm, as described previously [31].

To eliminate the effect of varying source intensities and de-
tector sensitivities in the experiments, the normalized ratio of
measured fluorescence over measured transmittance U, /U, is
used [32]. It has been shown that this normalized approach also
has the capability to correct for heterogeneities of the optical
coefficients [33].

Equation (3) is, by discretization, transformed into a linear
system Wx = y, with W containing the contribution of the
integral over (5, x being the discretized vector of concentration
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values n, and y being the vector of measurements. A stable solu-
tion to this ill-conditioned equation can be found by minimiza-
tion of the regularized residual as

[Wx — y|” + A||Lx||* — min!. (4)

This minimization was performed using the least-squares
algorithm (LSQR) by Paige and Saunders [34]. To demon-
strate the improvements obtained by hybrid versus standalone
imaging, three different types of regularization matrices L
were evaluated: 1) an identity matrix to get standard Tikhonov
regularization that does not depend on structural priors; 2) a
Laplace prior; and 3) a diagonal weighting prior. Both, 2) and
3) are taking into account different structures in the XCT data,
as obtained through a segmentation of the volume. The most
common type of regularization is Tikhonov regularization, with
L = Id, leading to

[Wx — y|” + A||x||> — min!. (5)

For optical tomography, the use of structured priors on the
basis of a Laplacian regularization term has also been reported
[31, [29], [35]. In this case, each voxel, i.e., each entry in x, is
assigned to a discrete region s, wher 1 < s < n. If voxels are
ordered by region, L is a block diagonal matrix

L, 0 --- 0

L — 0 Lo ©)
S .0
0 -~ 0 Ly

where for each region s consisting of wy voxels, and the regu-
larizing matrix L, is defined by

1 1
b= 0—a:
1 . .
— 1 . .
Ly=| ws . (7
. t. . 1
—L
1 _ 1 1

ws ws

Each matrix element /; ; of the full matrix L = (I; ;) is thus
given by

1, fori=j
lij = f%, if voxels i and j are in the same region r
0, otherwise

(®)
The Laplace prior penalizes the variation V2n of the es-
timated fluorophore distribution within a region. Thus, it
smoothes results within regions while allowing strong dif-
ferences across region boundaries. The regions used in the
reconstruction are bones, lung, heart, tumor, and other tissue.
The diagonal weighting prior is a diagonal matrix
L = diag{w;} penalizing the variance of voxels i indi-
vidually, depending on the region the voxels belong to. It is
created in a two-step process [14], where first a piecewise
constant reconstruction is performed, delivering a constant
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concentration value ¢; for each voxel ¢ in region r. The idea is
to penalize regions with a lower value more than regions with a
larger value. According the penalty w; is set to [36]

_ (I+p)maxc
7 (e + B)maxc

®

Parameter (3 is chosen arbitrarily; in this paper, we employed
a value of # = 0.1.

For Tikhonov regularization, the minimization of (5) can effi-
ciently be solved for many different values of A simultaneously
using a hybrid method [37]. For the more general problem of
(4), if the inverse of L exists, the same hybrid inversion can be
used by substituting x = L~!%, leading to

[WL % — y|* + Allx]|> — min!. (10)

The inverse of the diagonal weighting matrix is trivial to de-
termine. Due to the block-diagonal structure of the Laplace ma-
trix given by (6) and (7), its inverse L' = (I; ;) can also easily
be derived as

w2f“_|f1, for ¢ = j and i is in region r
17'- = w“’j_l, if voxels i and j are in the same region r
0, otherwise

(1D
The minimization of (10) yields a result for X, which can then
be transformed back to x.

III. METHODS AND MATERIALS

A. Geometric FMT System Calibration

After careful alignment of the optical components on the
gantry, two important calibration steps need to be performed,
determining: 1) the position of the rotational axis in the ac-
quired CCD images and 2) the spatial localization of the laser
beam depending on laser stage position.

The axis of rotation is found by placing a small object in
the field of view of the camera and acquiring images of that
object from many rotational positions. If the object is small
enough and rotation symmetric, it can be assumed that its image
for each angular position should look the same except for the
fact that its position will change. If we assume that the op-
tical axis of the camera is ideally parallel to the gantry plane,
and that the gantry plane is orthogonal to the rotational axis,
we can reduce the problem to finding the abscissa z( in the
image that identifies the axis of rotation. The object will ap-
pear at coordinate x, following a sine curve z = Asin(a — ¢)
depending on rotation angle « and the polar coordinate (A, ¢)
of the object, relative to the center of rotation. By determining
the maximum and minimum positions Zmax and T,y of the ob-
ject in the image, the rotation center is determined as the mean,
2o = 1/2(Zmin + Tmax)-

Experimental determination of the rotation center was per-
formed by imaging a 25 G injection needle (0.5 mm, length
24 mm) placed in the field of view. The needle was painted
black, and imaged against a white background [see Fig. 4(a)].
A region of interest was chosen interactively in which only the
needle was visible. From this region, the horizontal position
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Fig. 4. System calibration procedure. Determination of the rotation center in
CCD images is performed by (a) acquiring images of a needle placed in the field
of view at different rotation angles and (b) extracting the sinusoidal movement
whose center is at the rotation center. (c) Inverted grayscale image of the laser
source, moving on a grid with 1.5 mm distance. White crosses show the pre-
dicted positions. (d) Linearity measurement of the laser intensity, as obtained in
ten independent measurements.

of the needle was extracted at different angular positions [see
Fig. 4(b)]. The center between the two maxima defines the coor-
dinate of the rotation center. This experiment was repeated sev-
eral times with the object placed at different positions in space.
The accuracy of the measurement was +0.5 pixel.

For laser stage calibration, the laser spot as created on a sheet
of paper placed on the animal bed was imaged, while moving
both stages on a fixed grid pattern with 1.5 mm distance [see
Fig. 4(c)]. The change in image position of the resulting spots
for movements along the two linear stages was used to deter-
mine 2-D vectors on the image along which each individual axis
moves.

B. Coregistration of FMT and XCT Data

While both subsystems, XCT and FMT, are mounted on
a common geometrical arrangement, an initial calibration to
match both individual coordinate systems is necessary.

The XCT was factory-calibrated to deliver X-ray volumes
matched to a metric coordinate system centered to the axis of
rotation and the center of the X-ray source path, with the co-
ordinate axes aligned to the rotational, horizontal, and vertical
axes. After calibration of the FMT subsystem, as described pre-
viously, resulting datasets are automatically delivered in a co-
ordinate system centered to the axis of rotation and having a
defined vertical axis. The only remaining unknown is the axial
distance between optical axis and X-ray source. To determine
this value, a small piece of metal wire (0.5 mm) placed on
black paper on the animal bed was imaged in a vertical X-ray
projection, as well as optically. The shift between both images

was subsequently evaluated, determining the axial offset to be
5.0 mm.

C. Optimization of Excitation and Fluorescence Acquisitions

Each pair of excitation (transmission) and fluorescence im-
ages for a single source position is optimized by using the max-
imum laser power for the acquisition of excitation images that
does not saturate the images, and subsequently, adapting the
exposure time for fluorescence images. Images are considered
to be optimal if the maximum intensity /.y is above a given
threshold Iip,esh, but below the saturation point I, which we
set to 90% of the theoretical maximum intensity deliverable by
the CCD.

Optimal transmission images are acquired in an iterative
manner as follows.

1) Acquire an image using low laser power at voltage Viin.

This image has a maximum intensity Ip,,x.

2) Select a new voltage V' = ¢y (Ltnresh/Imax) Vinin, Where
cy is a proportionality constant relating voltage to detected
intensities.

3) Repeat as necessary, or stop after a maximum of three
iterations.

The coefficient ¢y, was experimentally determined by tran-
silluminating a thick object of scattering and absorbing mate-
rial, and detecting the voltage-dependant mean intensity 1(V)
over a chosen region of interest, to which a linear regression
line I(V) = ey V + V, was subsequently fit [see Fig. 4(d)].
The coefficient ¢, is independent of the detection method or
types of filters used, exposure time, and optical properties of
the phantom.

Subsequent fluorescence image acquisition is optimized by
keeping the voltage constan,t but summing a number of acquired
frames using a constant exposure time until the threshold was
reached or a maximum total exposure of 10 s was reached. The
mean read noise was automatically subtracted from each indi-
vidual frame prior to the summation.

D. Creation and Imaging of Artificial Brain Lesion

In the brain of euthanized nude mice, a mixture of 1 pMol/1
Alexa 750 fluorochrome and clinical CT contrast agent were
stereotactically implanted at a depth of 4 mm in the right brain
lobe. The animal was then placed in the imaging machine with
its ears taped to the back to prevent imaging artifacts.

Reconstructed XCT data were then automatically segmented
into bones and tissue by applying an automatically estimated
threshold for the bones. Due to the high concentration of clinical
contrast agent in the brain lesion, this segment was automati-
cally detected as bone. In a manual step, the lesion was separated
from the automatically segmented bone to create a new segment.
The result of the segmentation can be seen in Fig. 6(a) and (b).

IV. EXPERIMENTAL RESULTS

From 18 projections with 2 x 7 sources each, a total of
~12000 source—detector pairs were utilized. Voxel resolution
for reconstruction was 1 mm, yielding a total of 1700 voxels
inside the mesh. For inversion, 100 LSQR iterations were used,
simultaneously obtaining results for 200 different values of
the regularization parameter A, distributed on a logarithmic
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Fig. 5. (a) XCT slice showing the artificial brain lesion due to the injected
CT contrast agent. The profiles in Fig. 7 are taken from the two cross sections
indicated by white lines. (b) Segmentation of XCT slice into tissue (dark gray),
bones (light gray), and lesion (white).

Fig. 6. Reconstructed slices on an arbitrary color scale. Reconstructions used
are (a) Tikhonov regularization, (b) Laplace regularization, and (c) weighted-
segment diagonal regularization.

scale. From these results, the optimal value of A was chosen
by determining the position of the L-corner. Experimental
measurements were acquired in approximately 1 h although
much faster acquisitions can be reached with system opti-
mization. Constructing the mesh and weight matrix (forward
problem) required ~ 10 min on a standard PC (Intel CoreDuo
processor, 2 GB RAM), using a hexahedral finite-element grid
with > 60000 first-order elements. Weight matrix inversion
was performed in < 1 min.

XCT is capable of visualizing the injected bolus clearly,
as can be seen from the central XCT volume slice shown
in Fig. 5(a). The according semiautomatic segmentation is
depicted in Fig. 5(b), separating tissue, bones, and lesion.

All three inversion methods succeed in resolving the lesion
with a spatial accuracy corresponding to voxel resolution
(1 mm). Reconstructed FMT slices at the same position as the
X-ray reconstruction in Fig. 5 are presented in Fig. 6, overlaid
onto the X-ray slice. Reconstructed values are given on an
arbitrary scale, normalized for each image. Due to the fact that
regularization matrices change absolute reconstructed values in
an, up to now, unknown fashion, we did not attempt to deliver
absolutely quantitative results. Instead, we perform a relative
comparison between the images, each created with an optimal
lambda chosen with respect to the image quality.

Tikhonov regularization [see Fig. 6(a)] delivers the worst con-
trast between signal from the lesion and artifacts than Laplace
regularization [see Fig. 6(b)] or the two-step diagonal weighting
method [see Fig. 6(c)]. In fact, the artifacts appear at least two
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Fig. 7. Intensity profiles taken through the volume slices shown in Fig. 5,

alongside with XCT intensity profile at the same position. (a) Profiles along the
x-axis. (b) Profiles along the y-axis.

times stronger than the lesion, while in the Laplace method, ar-
tifacts and lesion are of the same order of magnitude. Using di-
agonal weighting, the amplitude of artifacts is at most 20% of
the maximum reconstructed value inside the lesion.

Fig. 7 shows two profile plots through the shown recon-
structed slice along the z- and y-axis, at the position depicted in
Fig. 5(a). Additionally, the profile of the XCT slice is provided.
The lesion on the XCT image has a fEWHM of 2.1 mm along
z, corresponding to only 2-3 voxels in FMT, and 2.5 mm along
y. The respective reconstructed FWHMs are 4/2.5 mm (z, y
for Tikhonov regularization), 3.5/4.2 mm (z, y for Laplace
regularization), and 1.4/1.8 mm (z, y for diagonal weighting).
FWHMs were determined on a cubic interpolation of recon-
structed voxel values to reach submillimeter estimations.

Regarding artifacts in the profiles, in the profile along ¥, a
strong second peak appears on the right side of the inclusion
with an amplitude similar to the inclusion for Tikhonov regular-
ization and smaller amplitude for the Laplace method. It nearly
disappears when using the weighted diagonal regularizer. Inter-
estingly enough, this artifact for the Laplace method is moving
closer toward the reconstructed lesion and obscuring this main
peak, leading to the lower spatial resolution (FWHM) as stated
previously. A reason for this bad performance of the Laplace
method is that for the construction of the regularization matrix
as described further previously, each voxel is just attributed to
one single segment. As the actual lesion is very small, we chose
to consider every voxel that is at least 10% inside the lesion seg-
ment to be part of that lesion. As the Laplace method smoothes
over whole segments, this overestimation of segment size will
also lead to a blurring in the result, lowering achievable reso-
lution. This drawback is not present for the weighted diagonal
method.
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The small underestimation of lesion size in the weighted di-
agonal method can possibly be attributed to partial volume ef-
fects due to the small lesion size with respect to voxel resolution.
The same holds for the shift that can be observed between the
lesion center on the XCT image and in reconstructed images.
Along z, the locational error in the Tikhonov and Laplace re-
sult is ~ 1 mm (corresponding to a single voxel), while for the
weighted diagonal method, itis reduced to ~ 0.2 mm (0 voxels).
Along y, in all methods, the locational accuracy is fully reached
(< 0.5 mm error).

V. DISCUSSION

Herein, we presented a hybrid system for combined XCT
and free-space 360° FMT. This is the first system developed to
offer a fully integrated FMT and XCT components delivering
intrinsically coregistered datasets. The system dynamically ad-
justs acquisition parameters to achieve high dynamic range and
employs semiautomatic segmentations of the XCT stacks to be
used as structural priors in the reconstruction. By utilizing priors
to improve the forward problem, experimental results show the
benefits of the hybrid approach over standalone implementation,
in particular, the accurate superposition of molecular contrast
onto anatomical images and the delivery of improved FMT per-
formance.

Obviously, much more work needs to be done with respect to
defining an optimal regularization method. The three methods
used herein were used as standard examples for regularized
inversion, but have never been compared in detail. However,
even without having a gold standard for hybrid reconstruction,
we could show that the inclusion of a priori information in a
Laplace or weighted diagonal matrix significantly improves
SNR; resolution and spatial accuracy, however, were only
significantly improved for the two-step diagonal weighting
method.

The combination of FMT and XCT in one system offer highly
complementary characteristics that can lead to practical systems
of high-dissemination potential. The image contrast employed
in orthogonal, i.e., each of the two modalities collects markedly
different information on the object under investigation. Stand-
alone XCT has significant limitations as to the tissue contrast it
can achieve and its low sensitivity in molecular imaging appli-
cations. Conversely, FMT is one of the most versatile methods
in terms of molecular imaging contrast, but lacks anatomical
information and resolution. The combination of the two, yields
a modality that not only combines information on tissue con-
trast, but one with the potential to improve FMT performance
through the use of priors, leading overall to a truly novel im-
plementation with superior imaging characteristics, compared
to XCT and FMT operating as standalone.

While several methods for the use of a priori information
have been suggested, it is important to select methods that do
not bias the solution. For this reason, herein, we employed a
moderate use of image priors, with no assumptions on the flu-
orescence biodistribution and demonstrate that even simple ap-
proaches like the one presented bear strong potential to improve
the inversion capacity over standalone approaches that need to

TABLE I
ACQUISITION TIMES

Action Required Time
X-ray imaging® 0:05h
Optical acquisitions® 0:10h
Gantry movement 0:11h
Movement of laser and filter wheel, 0:34h
software overhead®
Total acquisition time 1:00h

*The protocol used an angular stepping of 0.9° for full 360°, resulting in
400 angular positions. At each position, the resulting image was averaged
over two frames acquired with 400 ms exposure each.

°The FMT acquisitions were performed every 20° over full 360°, resulting
in 18 angular positions. At each position, one white light image (100 ms
exposure) and 14 source positions were acquired, resulting in a total of 252
sources from which 184 were used in the reconstruction. At each source
position, up to three transmission images (300 ms exposure) and up to ten
emission images (1s exposure each) were acquired, depending on received
light intensities.

“The time was estimated by subtracting the total exposures of the FMT
acquisition (0:10h, as obtained from the log files), and the total duration of
the XCT protocol (0:16h) from the total acquisition time (1:00h). The stated
time includes the data transfer between CCD and PC and movement of
mechanical parts.

significantly regularize the inversion problem and reduce the
resolution offered in order to yield high-fidelity imaging. A truly
hybrid system, such as the FMT-XCT developed herein, further
allows the collection of datasets that can lead to accurate evalu-
ation of different algorithms using priors. Therefore, the current
availability of such system points to further validation or new
development of algorithms for optimal use of priors.

The required experimental times for the presented prototype
are in the order of 1 h, which limits throughout and applications
in imaging of fast-changing phenomena. However, the acquisi-
tion time achieved is a result of a system unoptimized for speed,
at each current state. With faster stages and gantries, as well as
the interleaving of acquisition of XCT and FMT data, it is ex-
pected that future acquisition times can become of the order of
10-15 min or better (see Table I).

Further imaging improvements can be obtained by the use
of an inhomogeneous forward model, taking into account the
differences in attenuation and scattering coefficients between
tissue types, preferably as found in the XCT data. However, as
opposed to optoacoustic tomography, where results can directly
be interpreted as optical attenuation coefficients [38], which al-
lows for easy integration into hybrid optoacoustic/fluorescence
tomography systems [39], optical attenuation coefficients and
XCT densities are unrelated. A preferable approximation would
be the use of segmentations as derived from the XCT and the
extraction of average tissue properties as published for example
by Niedre [40]. This method has shown certain improvements
in simulation studies [41].

The results presented herein relied on relatively large, coarse
segmentations that required limited user interaction. Future re-
search should incorporate fully automatic reliable segmenta-
tions, as can be for example obtained using anatomic atlases
[42] to lead to a fully automated system.
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Overall, we have showcased the development and improved
ability of an FMT-XCT system. The system can be built of rela-
tive low-cost components and at small form factors, thus leading
to high dissemination of this technology for biomedical research
and drug discovery applications.
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Abstract. The recent development of hybrid imaging scanners that
integrate fluorescence molecular tomography (FMT) and x-ray com-
puted tomography (XCT) allows the utilization of x-ray information as
image priors for improving optical tomography reconstruction. To
fully capitalize on this capacity, we consider a framework for the
automatic and fast detection of different anatomic structures in murine
XCT images. To accurately differentiate between different structures
such as bone, lung, and heart, a combination of image processing
steps including thresholding, seed growing, and signal detection are
found to offer optimal segmentation performance. The algorithm and
its utilization in an inverse FMT scheme that uses priors is demon-
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1 Introduction

Optical tomography has drawn significant attention in recent
years due to its operational simplicity and the rich contrast
offered, especially when employing targeted fluorochromes.
Fluorescence molecular tomography (FMT) in particular has
been shown to be capable of resolving highly versatile cellu-
lar and subcellular contrast in whole animals'” in vivo and
noninvasively. There have been significant technological de-
velopments in FMT methods, especially associated with
360-deg projection free-space techniques that avoid the use of
matching fluids,*® the use of charge-coupled device (CCD)
cameras for high spatial sampling of data fields,” and the de-
velopment of fast and tomographic algorithms to impart quan-
titative 3-D imaging.g'12 In addition, the use of early photons
has further shown imaging improvements over constant inten-
sity illumination data. These developments essentially bring
out the full potential of stand-alone diffuse optical tomogra-
phy methods.

The use of image priors has been also considered for fur-
ther improving the performance of the optical tomography
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reconstruction over stand-alone systems.]3 ~17 A common ap-
proach is the utilization of anatomical information for the
construction of a more accurate solution to the forward prob-
lem, or the regularization of the ill-posed inverse problem,
resulting in improved image fidelity and resolution. To capi-
talize on the improvements that are offered by the use of
image priors, there has been recent interest in the develop-
ment of hybrid imaging systems.m24 Our group has recently
developed a fully integrated FMT x-ray computed tomogra-
phy (XCT) scanner, where all optical and CT components are
mounted on a common gantry.25 This modality provides accu-
rately registered CT data that can be used to improve FMT
image quality. A particular requirement that in consequence
arose is the segmentation of the CT data to identify different
organs or structures in the tissue imaged. This is important for
three main reasons. The identification of different structures
and their corresponding interfaces allows the generation of
more accurate numerical meshes for the optical tomography
problem. Importantly, they also allow for the assignment of
optical properties, based on the knowledge of the optical
properties of the organ or structure segmented, since there is
no direct relation between x-ray CT images and optical at-
tenuation. Finally, the resolved structures can then be used to
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guide the inversion scheme utilized, as further explained in
the methods.

We therefore considered an automatic segmentation
scheme for streamlining the FMT-XCT inversion. Several ap-
proaches have been suggested in the past for automated seg-
mentation of medical CT images.%_30 However, the segmen-
tation and subsequent utilization of the results into the FMT-
XCT code required different image processing approaches
compared to published methods for medical CT data. The
differences can be attributed related to the use of uCT data,
i.e., data of varying noise levels and reduced image contrast
between organs compared to clinical CT data.

In addition, the work here considers an automatic integra-
tion scheme of segmented data into the FMT inversion
scheme. Particular attention has been given to obtaining effi-
cient computation to reach fast inversion times. For this rea-
son, attention was given to the use of low dimensional spaces
and adaptive parameter definition that can be solved using
minimum computing requirements in terms of memory and
CPU time.

In the following, we introduce the framework developed,
examined for segmentation in the torso, as it relates to the
study of lung disease. We present the segmentation tools em-
ployed, their performance with experimental mouse images,
and the consequent integration of the results into a finite-
element method (FEM)-based FMT inversion code.

2 Automatic Detection of Anatomical
Structures

Automatic detection of specific structures has been of great
interest in medical imaging fields. Different approaches have
been developed in the last few decades for image segmenta-
tion. Typically, the solutions presented work optimally for a
particular set of problems and cannot be generalized for any
segmentation specification. We consider segmentation of three
major structures in the mouse torso, i.e., skeletal tissue, lung,
and heart. The image data were taken using a commercial
micro-CT? with a tube voltage of 80 kV and an electric cur-
rent of 450 uA. The selection of the torso was driven by an
elevated interest to study lung cancer and lung inflammatory
diseases such as asthma and COPD associated with pharma-
cological studies. We found that each tissue required different
image processing steps for optimal segmentation, as described
in the following.

2.1 Bone Segmentation

Since bone structures exhibit high contrast on CT images,
they can be easily identified with a conventional application
of a threshold, which conveniently is also a fast operation. To
automatically assign a threshold, we examined the histogram
of the intensities of the CT volume data. When dealing with a
normalized scale like the Hounsfield scale, it is straightfor-
ward to select a certain threshold that divides the image in
bone and background. However, in this work we make no
assumption on the CT data scaling so that the method can
work seamlessly with different CT acquisition parameters and
datasets, since in small animal imaging there exists less stan-
dardization between the data obtained, compared to clinical
data. The analysis of many histograms of our CT data had
shown that there are no significant features representing the
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Fig. 1 From the CT volume data, a histogram of the intensities was
computed. In this example you can recognize the two distinct peaks
(arrows) that represent soft tissue, consisting mostly of water and air.

intensity of bone tissue, like a local maxima or minima, which
could be traced. The intensity of the bones is usually widely
distributed throughout the histogram. Therefore we approxi-
mated our threshold 7} by finding other distinct intensities,
and assume that there is a linear relationship between those
intensities and the threshold we need. Mathematically, this
can be described by

Tb211+W(|11—12|), (1)

with /; and I, being the reference intensity points and w being
a factor for weighting the distance between those points.

When considering a typical histogram of a mouse CT, two
distinct peaks can be noticed that could be used as reference
points (Fig. 1). The highest peak can be found at the left side
of the histogram and corresponds to voxels of very low den-
sity, in this case primarily the voxels corresponding to the air
in the field of view surrounding the animal. A second signifi-
cant peak, corresponding to water, can also be easily identi-
fied as a second maximum in the histogram. Soft tissue con-
tains high amounts of water, and the area around that peak
essentially indicates voxels corresponding to soft tissue.
These two peaks can be employed for approximating the op-
timal threshold in Eq. (1). To determine the scaling factor w in
Eq. (1), we considered the Hounsfield scale, since it is a com-
mon standard for CT images. In the Hounsfield scale, air has
an intensity of —1000 Hounsfield units (HU), water has an
intensity of 0 HU, and bone structures start at 400 HU, i.e.,
0.4 of the water-air difference. Thus in the Hounsfield scale,
the threshold for bone structures 7;, at 400 HU can be deter-
mined by rewriting Eq. (1) as

Ty =1lyaer + O~4(Iwaler - Iair) > (2)

with ;. and /., being the intensities of air and water in HU.
This equation was utilized to compute the threshold in CT
volume data with arbitrary units. The respective peaks repre-
senting the intensities of air and water can be determined by
simple maxima detection in the according histogram. Using
this threshold, the CT images were converted to binary for
subsequent processing as described in the following.

May/June 2010 = Vol. 15(3)
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Fig. 2 (a) The histogram function h,(t) displays the number of segmented bone voxels per slice. Note the very harmonious frequency produced by
the ribcage between the dotted lines. The lines mark the beginning and the end of the sternum. (b) The response of the Gabor filter has its highest
peak close to the center of the ribcage. The solid line connecting all peaks is the interpolation of all maxima of the filter response.

2.2 Ribcage Detection

For segmentation of lung and heart, we considered first the
identification of orientation points to serve as initial points for
subsequent segmentation steps. In this role, the ribcage serves
as an easily identifiable structure that accurately delineates a
big part of the outer surfaces of the lung and heart. To identify
the ribcage, we analyzed the result of the bone segmentation
by computing a histogram of the number of segmented bone
voxels per axial slice. We treated the histogram as a signal
h,(f), where ¢ is the slice number. Within this signal the rib-
cage creates a distinct harmonic frequency [Fig. 2(a)]. To de-
tect the periodicity, we opted for the use of a Gabor filter;
essentially a Gaussian function multiplied with a cosine, i.e.,

P t
INOE exp(— ﬁ) . cos<2wx), (3)

where the parameters o and N define the width and frequency
of the filter.

This approach is similar to template matching, where the
Gabor function describes the periodic oscillation of the rib-
cage. Since the frequency of the Gabor filter needs to match
the frequency the ribcage produces in /,(¢), specific values
for o and A had to be defined. To determine those values, we
analyzed the frequency produced by the ribcage in three train-
ing datasets and adjusted o and N so that the Gabor filter fitted
this frequency. When performing the ribcage detection on un-
known test data, we used the differences of the voxel spacing
and voxel size in the training and test data sets to compute a
scaling factor for o and N. Thus the procedure is independent
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from scaled image data. Inherent in this procedure is the as-
sumption that the size of the imaged mice does not vary sig-
nificantly, and that the ribs have a distinct separation to each
other. To apply the filter, we convoluted the histogram signal
ho(1) with the Gabor filter g, (). The result of the convolu-
tion 1,(1)* g, (?) is a filter response that usually had its glo-
bal maximum near the axial center of the ribcage [Fig. 2(b)].
Furthermore, we used just the local maxima of the filter re-
sponse to interpolate a new function [also Fig. 2(b)]. In this
function, the next minima to the left and right sides of the
global maximum (the center of the ribcage) were selected as
landmark points that defined a bounding box in the axial di-
rection around the ribcage. Those landmarks do not necessar-
ily mark specific anatomical points, but usually they appear
near the top and bottom endings of the sternum.

To define the bounding box also in sagittal and coronal
directions, we computed the histograms /,(¢) and k() indica-
tive of the number of segmented bone voxels in these direc-
tions. Note that we only used the slices between the axial
landmark points to compute those histograms. In the histo-
grams, we searched for the global maxima and the first slices
left and right to them, where h,(¢) and h.(¢) respectively equal
zero, that is, were the ribcage ends. We confined our bounding
box only around the ribcage and excluded artifacts outside the
mouse that sometimes occur. If this detection scheme experi-
ences difficulties due to noise and artifacts, it is possible to
employ searches that define areas where h,(r) and h.(f) be-
come smaller than a predetermined value greater than zero to
get a bounding box tight around the ribcage. Overall, ribcage
determination is an essential step for further detection of ana-
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Fig. 3 (a) The image shows a CT slice including the SROI (brighter spherical region), the computed bounding box (solid line), and possible seed
points (white spots). The dotted line marks the middle of the bounding box, dividing right and left lobes of the lung. (b) The graph shows the
intensity distribution within the region of interest. The peak represents water in the soft tissue.

tomic structures, as described in the following.

2.3 Lung Segmentation

To enable lung segmentation, we utilized a seed growing al-
gorithm within the confines of the detected ribcage. For this
purpose, possible seed points inside the lungs had to be found
automatically. The whole respiratory system can be naturally
recognized on XCT images by means of its low density and
the corresponding high contrast to surrounding tissue. How-
ever, image intensity and contrast alone did not suffice for
accurate detection. This was because the bounding box of the
seed growing algorithm was usually still wide enough to oc-
casionally contain regions of air outside the mouse or parts of
the digestive system that showed also a low intensity and
contrast. Other challenges involved the blurring of borders
due to possible moving artifacts. To refine the region of inter-
est and achieve a correct segmentation result, we created a
spherical region of interest (SROI) inside the bounding box.
The SROI was initialized as a sphere with a radius of zero at
the center of the bounding box [see Fig. 3(a)], and was al-
lowed to grow so that the sphere radius measured 90% of the
distance between the center of the sphere and the boundary of
the mouse. In Fig. 3(a) a CT image is displayed with the
according bounding box (solid blue line) and the SROI (bright
circle).

To find seed points inside the SROI, we computed an in-
tensity histogram from all the voxels inside the SROI [Fig.
3(b)]. Here, the voxels with the lowest intensity /;,,, mark the
dark bronchial tubes, and the high peak /¢, marks soft tissue.
We took these easy to detect points as references to compute
an interval [/,,1,], where

2 1
Il = gllow + glpeak’ (4)

and
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12=11+0'5(1peak_]1)s (5)

which represents the intensity of voxels that by consequence
belong to lung tissue. The parameters of Egs. (4) and (5) were
roughly determined empirically using about five datasets. All
voxels of the SROI that possessed this intensity were consid-
ered possible seed points for the seed growing algorithm. In
Fig. 3(a), these seed point possibilities are marked green.

For the seed growing algorithm itself, a mean intensity 7‘,
was defined using the chosen seed point s and its neighboring
voxels. Also, a confidence interval was defined by

[1,-mo,L,+ma], (6)

with o representing the intensity’s standard deviation of the
seed point and its neighboring voxels, and m serving as a
multiplier to manually control the width of the interval. The
algorithm iteratively searched for all voxels that had intensi-
ties within the confidence interval and that were connected to
the seed point or an already segmented voxel. To avoid over-
segmentation, we chose m to be very small. To compensate
the resulting undersegmentation, we used multiple, randomly
chosen seed points, thereby computing multiple segmenta-
tions and combining them. Since the algorithm is sensitive to
noise, we smoothed the result by using a Gaussian filter,
thereby interpolating small gaps and holes. Finally, we rebi-
narized the image using a threshold filter.

Because we also wanted to be sure that both the right and
left lobes of lung are segmented, we chose an equal number of
seed points from both. We distinguished between the right and
left lobe by simply dividing our bounding box in the middle.

2.4 Heart Position Approximation and
Segmentation

The last procedure of our framework is the approximation of
the heart position and its segmentation. For this purpose we
propose the use of a shape model of the heart generated from
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manually segmented training data. In this work we used one
manually segmented volume dataset to gain this model. The
model is a closed mesh that consists of a number of vertices
connected through edges. To yield a rough initial position and
scaling factor for the model, we used the bounding box from
the ribcage detection as reference. Using the training dataset,
we examined the heart position relative to the borders of the
bounding box by considering the box as a normalized cube
with a side length of 1. We initialized the heart model at the
same position in bounding boxes of other CT volume images.
A scaling factor for controlling the size of the heart model
was approximated using the sizes of the bounding boxes
around the ribcages of training and test datasets as references.
Scaling factors were computed for all three directions and
averaged to get the main scaling factor. This averaging results
in a more robust scaling, for our experiments had shown that
the sizes of the bounding boxes varied enough to receive un-
usual heart shapes.

This operation generally placed the heart model close to its
supposed position. However, it also attained regions where the
heart model was overlapping the other segmentations of the
lung and bone structures. This is because of the rough initial
position and scale approximation. To adjust the model posi-
tion, we searched for all of the overlapping voxels and created
for each one a unit vector that points to the center of gravity
of the heart model. Thus a vector field was created. The field
represents forces that push the model away from overlapping
sections. After the heart model was translated by the vector
field, the procedure was repeated iteratively. A decreasing
weighting factor thereby ensures the convergence of the pro-
cedure. The iterative process was stopped when either no
more voxels with segmentation overlap were detected, or the
translational improvement was beneath a specified threshold.
The latter usually occurs when there is a balance between
forces from opposite sides, i.e., lung and ribcage/sternum,
which means that the heart model is too large to fit. We then
scaled down the heart model to 95% of its size and restarted
the iterative position adjustment until finally no more regions
with overlapping segmentations remained.

We note that this algorithm does not provide a segmenta-
tion of the heart that fully incorporates wide shape variations.
Since the heart model is static, it cannot fully fit the actual
image data. Nevertheless, it still can be used as an approxi-
mation of a segmentation result and as a new initial position
for further, more advanced segmentation algorithms like ac-
tive contour models that have yet to be implemented.

2.5 \Validation of Segmentation Results

As a reference for evaluation of segmentation results, we used
gold-standard manual segmentation revised by an expert spe-
cialized in mouse anatomy. We segmented the whole skeleton,
both lobes of the lung, and the heart of a CT volume image
with a size of 267 X 242X 452 voxels on a 64-bit PC with a
quad core CPU (2.67 GHz) and 4 GB of RAM. Notice that
results of the bone segmentation will always be constant. The
lung segmentation algorithm, on the other hand, picks ran-
domly only a few of many possible seed points, thus produc-
ing different results. Since the heart position approximation
depends on the lung segmentation result, these results vary
too. To compensate for this fact, we performed the segmenta-
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tion process several times to yield the mean performance.
As a main criterion for the evaluation, we used the Dice
coefficient 0=<s=<1 with

21X NY]
S=To o (7
x| +[¥]
which measures the similarity of two sets X and Y, i.e., the
manually and automatically segmented data volumes. Other
criteria were the false rejection rate (FRR) and the false ac-
ceptance rate (FAR)

IX|-[x N Y| . XNy

FRR , (8)
x| IX|
|- XN Yl XNyl
FAR = =1- 9)
Y] Y]

The Dice coefficient is a more general measure for accuracy
of the segmentation that the FRR and FAR can also show, if
segmentation errors are due to over- or undersegmentation.
The FRR measures the amount of voxels of the manually
segmented data that were not segmented by the automatic
framework (undersegmentation), while the FAR measures the
number of voxels of the segmented data that do not belong to
the respective tissue (oversegmentation).

3 Fluorescence Molecular Tomography
Reconstruction

For fluorescence tomography, the propagation of photons in
the tissue was modeled by using the diffusion approximation
to the radiative transport equation

[_VDV"';LLu]Um(r)=_n(r)Ux(r), (10)

where D and u, are the spatially varying diffusion and ab-
sorption coefficients, n>c¢ is a function proportional to the
fluorochrome concentration ¢, and U, and U,, describe the
photon density at the excitation and emission wavelength. If
D and p, are known Green’s functions G(r,r'), a solution is
given by

[-VDV+ u,G(r,r")==68(r—r"), (11)

leading to

U,(r)=- f G(r,r")n(r"YU(r")dr'. (12)
r'ev

In addition, to eliminate the influence of varying source inten-
sities and detector sensitivities and to correct for heteroge-
neous optical coefficients, we used the normalized ratio be-
tween fluorescence and transmittance U,,/ U,, as presented by
Refs. 31 and 32.

Equation (12) can be inverted by standard methods to yield
the concentration measurement n for each voxel r’ of the
volume data V. Successful inversion requires knowledge of
the photon density x, which we modeled by using the same
Green’s functions as U,,. Green function computations were
based on a finite element solution of the diffusion equation.™
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The finite element mesh was created based on the CT volume
data, where the surface of the mouse itself defines the bound-
ary of the mesh. After segmentation, average optical proper-
ties representative of the tissue type represented by each node
were assigned to the node.

Equation (12) can be transformed into the linear system
Wx=y through discretization. Here, W contains the contribu-
tion of the integral over G, x is the discretized vector of the
concentration values n, and y is the vector of measurements.
This equation is usually ill-conditioned and thus a stable so-
lution can be found by minimization of a regularized residual

[Wx = y|* + A||Lx]]* — min. (13)

The anatomical priors from the segmentation procedure were
integrated in the regularization term by using Laplace regu-
larization as proposed in Refs. 13 and 15. Here, matrix L is
defined by

ll,l 12,1 lw,l
lio 1 :
L= 1.,2 .2,2 i (14)
lw,w—l
ll,w e lwfl,w lw,w

where w is the number of voxels in the CT date volume and /
is thus given by

1 ifi=j
L . .
l;j=\—— if voxels i,j are part of the same region s,
WS
0 otherwise

(15)

with w; being the number of voxels in region s. The regions
are defined by the segmentations, thus utilizing spatial infor-
mation in the reconstruction.

The Laplace prior employed here smoothes estimated fluo-
rochrome distributions within a region while it allows for
strong differences across the boundaries of the regions. For
comparison to reconstructions without anatomical a-priori
knowledge, we also used the common Thikonov regulariza-
tion, with L=Id, which does not include structural priors.

4 Results
4.1  Segmentation

Figure 4 shows the empiric results of the bone segmentation.
Notice that very thin bone structures like the blade bones
exhibit holes. In our CT images, these structures show lower
intensities than bone usually does due to blurring artifacts.
Overall, the results yielded Dice coefficients of 0.8721. FRR
(0.1062) and FAR (0.1485), which show that these operations
resulted in oversegmentation. When we visually evaluated the
result, we recognized that nearly all segmentation errors oc-
curred along the borders. This is mainly due to blurring arti-
facts at the borders between different tissues. Thus we con-
sidered these errors to be within normal uncertainty bounds.
The segmentation of the bones took 3.3 sec, and the recogni-
tion of the ribcage took 1.2 sec, which is very fast for data
volumes of such large size.
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Fig. 4 The result of typical bone segmentation: (a) the original CT
slice, (b) the corresponding slice of the segmented data, and (c) sur-
face model of the skeleton computed from the segmentation result.

For the lung segmentation, we analyzed 30 segmentations
of our reference image data. We experienced that five seed
points per lobe of the lung usually were enough to achieve an
accurate and robust segmentation result while still being time
efficient. The results are displayed in Fig. 5. The framework
achieved a mean Dice coefficient of 0.766 with a variance of
0.007. Nonsegmented voxels (FRR 0.3096) had the greatest
influence on this result, while oversegmentation was much
smaller (FAR 0.1091). Falsely accepted voxels were usually
part of the bronchial tubes outside the lung. The falsely re-
jected voxels were mostly voxels with a considerably higher
intensity, where the lung tissue showed pathologies. The
speed of the lung segmentation differs, since the number of
iterations of the seed growing algorithm depends on the initial
seed point. Usually the segmentation was done in less than
30 sec, including the search for appropriate seed points.

The heart segmentation was also done 30 times. In Fig. 6
you can see the adapted heart model inside the ribcage. The
mean Dice coefficient was 0.7647 and had a variance of only
0.0004. Considering that we only used a static model build
from one single training dataset, we consider this a very good
result. Most notably, this result was due to the quite high FRR

(b)

Fig. 5 Result of the lung segmentation: (a) the original CT slice, (b)
the corresponding slice of the segmented data, and (c) surface model
of the skeleton and the lung computed from the segmentation results.
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Fig. 6 Result of the heart segmentation. The image shows surface
models of all three segmented anatomical structures.

of 0.3378, while only 0.0936 of the segmented voxels were
falsely accepted. The time needed for the approximation of
the heart also depends on the initial position. On our test data
it took less than 45 sec to adjust the heart model.

4.2 Reconstruction

Figure 7 shows the results of the utilization of XCT anatomi-
cal information as priors in an FMT inversion scheme. The
FMT images are laid over the corresponding CT slice. To
simplify matters, only one slice out of a reconstructed volume
is presented for each approach. For the evaluation of the re-
construction improvement using anatomical priors, we simu-
lated a situation of inflamed lungs [Fig. 7(a)], modeled after
previous studies of lung inflammation,”* and used three dif-
ferent reconstruction procedures, i.e., 1. no regularization, 2.
inversion using Thikonov regularization, and 3. the Laplace
regularization. However, segmentation of the in-vivo CT im-
aging data was done using our framework, and no simulated
segmentation was used. We note that the first two approaches
do not utilize the segmented information image priors, and
that no noise was added in the simulation.

Figure 7(b) shows the inversion obtained without regular-
ization. In this case the inversion generates significant arti-
facts, especially on the borders leading to a highly inaccurate
reconstruction. Figure 7(c) depicts high blurring of the fluo-
rescent signal. The intensity of the signal is also too low, and
a prominent spot can be recognized in one lobe of the lung
while the intensity should be homogeneous. Finally, Fig. 7(d)
shows the best reconstruction results due to the priors. The

45

25

156

(a) (b)

fluorescence intensity was reconstructed accurately; it is dis-
tributed homogeneously in the lung and only small blurring
artifacts occur along the borders.

5 Discussion

We have introduced an automatic segmentation scheme for
bones, lungs, and the heart for streamlining FMT-XCT inver-
sion. The framework utilized several segmentation and signal
processing methods in an automatic manner. Another advan-
tage of the framework is its speed. The segmentation, even in
very large volume data, was done in less than 2 min. This
renders the approach very useful to integrate it subtly into the
FMT reconstruction of our hybrid FMT/XCT imaging system.
We proved the quality of the segmentation compared to a
gold-standard manual segmentation.

However, the framework still does not exploit its full po-
tential. Most of the parameters of the algorithms were chosen
by educated guess and were roughly adapted through exam-
ining the measured segmentation quality. We think that opti-
mizing these parameters could improve the segmentation re-
sults even more. Most notably there are three parts of the
framework that would, in our opinion, benefit from a closer
analysis of the parameter values. 1. The computation of a
threshold for bone segmentation. Here, the parameter w [Eq.
(1)] could be adapted to achieve better bone segmentation. 2.
The detection of seed points for lung segmentation. The inter-
val that is used to detect those points could be adapted to yield
seed points that are more feasible for the subsequent region
growing. 3. The parameters o and m for the seed growing
itself. They heavily influence the algorithm, and we do not
know the values to yield optimal results. It should also be
considered that the segmentation of the lung and heart de-
pends on the correct detection of the ribcage, and so far the
robustness of our approach could not be evaluated. Thus this
essential part of the framework should be investigated and
improved further. Also, the accuracy of the heart segmentation
could be improved significantly. Here, the static, undeform-
able model proves to be a disadvantage, since it cannot fully
adapt to the shape variances. Nevertheless, the approach could
be used to initialize more complex segmentation methods
such as deformable models that use flexible meshes to over-
come this handicap.

We have also shown how the gained anatomical informa-
tion can be used as a-priori knowledge for the reconstruction
of FMT images. We proved that this increases FMT image

20 0 =2 0 @ N @ e

(c) (d)

Fig. 7 (a) Simulated fluorescence signal in the lung. (b) Result without regularization. (c) Tikhonov regularization. (d) Laplace regularization

showing the best imaging performance in this case.
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quality considerably in simulations. Further studies have to be
conducted to prove this behavior also for real FMT measure-
ments in in-vivo experiments. From our experience, we expect
notable FMT image quality improvements in those studies as
well. Nevertheless, the conclusion is that we have to put focus
on the segmentation of more structures for even better, more
accurate FMT reconstruction results. It also has to be dis-
cussed how accurate the segmentations need to be, and if
more time-consuming and complex segmentation algorithms
are actually necessary and practical, because there will always
be a tradeoff between speed and accuracy.
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