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1. Einleitung 
 
Bei der Hauskatze wurde 1989 erstmals eine Studie über die In vitro Maturation (IVM)  

von Oozyten durchgeführt  (Johnston et al. 1989). Inzwischen wurden sowohl bei den 

Haus- als auch bei den Wildkatzen die Techniken der In vitro Maturation (IVM), der In 

vitro Fertilisation (IVF) und die In vitro Kultivierung (IVC) von Embryonen 

weiterentwickelt, ebenso  die Kryokonservierung  von Embryonen und der 

Embryotransfer.  

 

Mittlerweile konnte wiederholt nachgewiesen werden, dass diese Techniken auch bei 

Wildkatzen angewendet werden können. Damit stehen neue Instrumente zur Verfügung,  

die bei Programmen zur Erhaltung gefährdeter Tierarten  eingesetzt werden können.  

 

In dieser Arbeit sollte ein Verfahren zur Selektion von Eizellen geprüft werden, mit dem 

deren Entwicklungskompetenz schon vor der IVM beurteilt werden kann. Das Enzym 

Glucose-6-Phosphat-Dehydrogenase (G6PDH) ist in wachsenden Eizellen aktiv, die 

noch keine volle Entwicklungskompetenz besitzen, nicht aber in Eizellen nach 

Abschluss der Wachstumsphase. Werden Eizellen mit dem Farbstoff  Brillantcresylblau 

behandelt, wird dieser in wachsenden Eizellen durch das aktive Enzym abgebaut. Bei 

verschiedenen Spezies konnte bereits gezeigt werden, dass mit diesem Verfahren 

Eizellen mit einer höheren Entwicklungskompetenz selektiert werden können.  
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2. Literatur 
 
 
2.1. Zyklus der Katze 
 
Unter natürlichen Lichtverhältnissen ist der Zyklus der Katze saisonal polyöstrisch. Die 

Pubertät findet in der Regel zwischen dem 6. bis 9. Lebensmonat statt. Dies ist jedoch 

auch abhängig vom Körpergewicht der Katze. Die erste Östrusphase findet man bei 

Katzen, die ein Körpergewicht von ca. 2,3 bis 2,5 kg erreicht haben. Katzen haben  eine  

induzierte Ovulation. Die Zyklusdauer beträgt 14 bis 21 Tage (Simpson et al. 1998). Bei 

der Katze ist eine Unterscheidung von Proöstrus und Östrus anhand klinischer 

Symptome schwierig. Sie werden deshalb als Phase der Rolligkeit mit einer Dauer von 

durchschnittlich 3-10 Tagen zusammengefasst. Der Proöstrus dauert 1-4 Tage, der 

Östrus 2-6 Tage, der Interöstrus (Ruhephase ohne CL) 10-14 Tage und der Anöstrus 

mehrere Monate (variabel, tritt in den Wintermonaten auf). Der Interöstrus ist die Zeit 

zwischen zwei Rolligkeiten. Bei der Katze gibt es drei unterschiedliche Zyklusverläufe 

nach dem Proöstrus und Östrus. Paart sich die Katze während der Rolligkeit  nicht und  

findet keine Ovulation statt, atresieren die  Follikel  und der nächste Östrus tritt nach 1-2 

Wochen ein. Kommt es zu einer Ovulation folgt eine Pseudogravidität von ca. 25-45 

Tagen. Danach folgen wieder Zyklen mit Proöstrus und Östrus, auf die im Herbst/Winter 

die Anöstrusphase folgt. Kommt es nach der Ovulation zur Gravidität (58-63 Tage), folgt 

eine Laktationsphase von 40-50 Tagen. Darauf folgen wieder Proöstrus, Östrus und 

Anöstrus (Feldmann und Nelson 1996).  Im Proöstrus schmiegt die Katze ihren Kopf 

und ihren Nacken an Objekte, die sie angenehm findet und zeigt ein anhängliches 

Verhalten. Sie wird jedoch noch nicht zulassen, dass ein Kater sie deckt. Diese Phase 

dauert etwa 1-2 Tage und ist so unauffällig, dass sie oft nicht bemerkt wird. Während 

dieser Phase induziert das follikelstimulierende Hormon (FSH) aus der 

Hirnanhangsdrüse die ovarielle Follikelentwicklung. Im weiteren Verlauf nimmt der 

Durchmesser der Follikel zu und es kommt zu einem Anstieg von Östradiol, das von den 

Granulosazellen der Ovarien ausgeschüttet wird. Östradiol beeinflusst die 

Vaginalschleimhaut und das Verhalten im Östrus (Shille et al. 1979). Im Verlauf des 

Östrus erreichen drei bis sieben Follikel das Stadium des dominanten Follikels, während 

andere Follikel in der Entwicklung atresieren (Feldmann und Nelson 1996). In dieser 

Phase zeigt die Katze ihr „rolliges“ Verhalten, sie schreit, nimmt eine Kauerstellung ein 

und zeigt sich anhänglich. Eine Einteilung des ovariellen Zyklus der Katze kann im 
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Rahmen der assistierten Reproduktion anhand des Funktionszustandes der Ovarien 

beschrieben werden. Als „follikulär“  werden Ovarien mit mindestens einem sichtbaren 

Follikel mit einem Durchmesser von mehr als 2 mm bezeichnet und als  „luteal“ Ovarien 

mit mindestens einem  Corpus luteum. Beim Vorliegen  von einem oder mehreren 

Corpora lutea wird das Ovar als „frisch ovuliert“ klassifiziert. Unter die Einteilung 

„intermediär“ fallen Ovarien  mit Follikeln, die 1-2 mm groß sind. „inaktive“ Ovarien 

weisen keine sichtbaren Funktionsgebilde auf (Freistedt et al. 2001a).  

 
Karja et al. (2002) haben den Einfluss des ovariellen Zyklus auf die  In-Vitro Reifung 

(IVM),  die In Vitro Fertilisation (IVF) und die Entwicklung der befruchteten Oozyten 

untersucht. Es hat sich gezeigt, dass die Teilungs- bzw. Blastozystenrate bei den 

Oozyten, die aus Ovarien im „follikulären“ Stadium gewonnen wurden, niedriger war, als 

die Teilungs- und Blastozystenraten der Oozyten aus den „inaktiven“ bzw. den 

„lutealen“ Ovarien. 

 

2.2. Follikel- und Eizellentwicklung in vivo und in vitro 

 

Follikelentwicklung beschreibt einen Prozess, in dem einige Follikel den ruhenden 

Follikelpool verlassen und sich über einige Entwicklungsstadien zum dominanten 

Follikel entwickeln (Gordon 2003). Die Population der ovariellen Follikel kann in einen 

ruhenden Primordialfollikelpool und einen wachsenden Follikelpool (Primär-, Sekundär- 

und Tertiärfollikel) unterteilt werden (Kanitz et al. 2001).  

 

In vivo beginnen die Oozyten nach Beendigung ihrer Wachstumsphase mit der 

nukleären Reifung durch das Eintreten in die Prophase I. Im Diplotän dieser Phase 

erfolgt ein Block der Kernreifung (Diktyotän). Das Diktyotän wird aufgrund der großen 

Kerngröße der Oozyte auch als Germinalvesikelstadium (GV) bezeichnet. Die Oozyte  

nimmt den Vorgang der Kernreifung, ausgelöst durch den LH-Peak, kurz vor der 

Ovulation wieder auf. Dieser Vorgang wird als Germinal vesicle breakdown (GVBD) 

bezeichnet. Zum Zeitpunkt der Ovulation befindet sich die Oozyte in der Metaphase II 

mit einem Polkörperchen und hat damit das Stadium einer befruchtungskompetenten 

Oozyte erreicht. In der Metaphase II erfolgt nun der zweite Block der Kernreifung. 

Dieser Block, und damit die Vollendung der 2. meiotischen Teilung, wird erst nach der 

Penetration eines Spermiums aufgehoben (Rüsse und Sinowatz 1991). Nach Eppig 
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(1993) wird die Eizellreifung (Maturation) beschrieben als ein Prozess zur Erlangung der 

Fähigkeit zur Fortführung und Vollendung der ersten meiotischen Teilung. Dieser 

Prozess beinhaltet auch die spätere Entwicklung bis zur Metaphase II und das Erlangen 

der zytoplasmatischen Reife für eine erfolgreiche Befruchtung.  

 

Neben der nukleären Reifung spielt die zytoplasmatische Reifung der Eizelle eine 

wichtige Rolle. Diese ist z.B. charakterisiert durch eine Umverteilung sowie einer Zu- 

bzw. Abnahme bestimmter Zellorganellen (Eppig 1993). Progesteron und Östrogen sind 

vermutlich die Hauptregulatoren der zytoplasmatischen Reifung (Laufer et al. 1984). Die 

zytoplasmatische Reifung weist in vitro deutliche Unterschiede zur Reifung in vivo auf 

(Motlik und Fulka 1976). Unvollständige zytoplasmatische Reifung führt bei in vitro 

maturierten und befruchteten Oozyten dazu, dass sich die Oozyten nicht zu 

Blastozysten entwickeln können (Singh et al. 1997). Dieses Problem wird häufig bei IVM 

Systemen  für feline Oozyten beobachtet (Wood et al.1995, Wolfe und Wildt 1996). 

      

Für die IVP werden aus den Ovarien kastrierter Katzen in der Regel Oozyten im GV-

Stadium  gewonnen.  Bei den meisten Spezies treten Oozyten nach der Entfernung aus 

dem Follikel automatisch in die Kernreifung ein und es kommt zum GVBD. Dies ist auf 

die Tatsache zurückzuführen, dass sich in der Follikelflüssigkeit ein Oocyte Maturation 

Inhibitor (OMI) befindet, der von den Granulosazellen produziert wird  (Rüsse und 

Sinowatz 1991). Für die aus den Follikeln gewonnenen Oozyten ist so eine In vitro 

Maturation möglich. Gegenwärtig erreichen ca. 40-60% der felinen Oozyten in vitro die 

Metaphase II.  (Farstadt  2000, Herrick und Swanson 2003). Farstadt (2000) hat bei 

seinen Untersuchungen zum Stand der Reproduktion von Katzen festgestellt, dass der 

Anteil von Oozyten, die die Metaphase II erreichen, niedriger ist als bei den Nutztieren 

(v. a Rind). Der höchste Anteil an  Eizellen in der  Metaphase II kann nach ca. 40-48 Std. 

der IVM erwartet werden, ähnlich dem Zeitraum von der Paarung bis zur Ovulation bei 

der Katze (Goodrowe et al. 1998). Einige Studien haben herausgefunden, dass die 

meisten Eizellen die Metaphase II innerhalb der ersten 24 Std. der IVM erreichen und 

dass die Befruchtung nach 40 Std. oder mehr Reifungsdauer keinen Einfluss auf die 

Entwicklung der Eizellen hat (Wolfe und Wildt 1996, Luvoni und Oliva 1993). Ein IVM 

System sollte alle dynamischen Veränderungen unterstützen, die von den Oozyten 

durchlaufen werden (Luvoni et al. 2006). 
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2.3. Entwicklungskompetenz von Eizellen 

 

Die feline Oozyte erwirbt während der Follikulogenese eine Reihe von Leistungs-

merkmalen, die das Entwicklungspotential beeinflussen. Das Erlangen der 

Entwicklungskompetenz gliedert sich in die Wiederaufnahme und Fortführung der 

meiotischen Teilung sowie die Durchführung zytoplasmatischer Reifungsvorgänge, die 

erfolgreiche Befruchtung, sowie die Anfänge der embryonalen Entwicklung bis zu einer  

Blastozyste (Luvoni et al. 2006).  Fünf verschiedene Stufen bis zum Erwerb der 

Entwicklungskompetenz wurden von Sirard et al. (2006) an bovinen Oozyten 

beschrieben. Diese umfassen die Meiose,  die frühe Embryonalentwicklung mit ersten 

Teilungsstadien sowie die Fähigkeit, sich zu einer Blastozyste zu entwickeln, eine 

Trächtigkeit zu induzieren und gesunde Nachkommen hervorzubringen. Erst nach dem 

Abschluss der Wachstumsphase erlangt die Oozyte ihre meiotische Kompetenz. (Maus: 

Sorensen und Wassarman 1976, Rind: Fair et al. 1995b). Im Rahmen des Erwerbs der 

meiotischen Kompetenz lassen sich nach Eppig (1993) zwei Phasen unterscheiden. 

Zunächst muss die Oozyte die Kompetenz zur Durchführung des Germinal vesicle 

breakdown (GVBD) bis zum Erreichen der Metaphase I erlangen (GVBD-Kompetenz). 

Die Oozyte erwirbt dann nach einer weiteren Entwicklungsphase die Kompetenz zur 

Fortführung der ersten meiotischen Reifeteilung ebenso wie für den Eintritt in die zweite 

meiotische Reifeteilung bis zur Arretierung in der Metaphase II. (Maus: Szybek 1972, 

Hamster: Iwamatsu und Yanagimachi 1975, Maus: Sorensen und Wassarman 1976). 

Auch das Wachstum und die Atresie ovarieller Follikel können einen Einfluss auf die 

Entstehung der Entwicklungskompetenz  von Oozyten haben (Schwein: Hunter et al. 

2005). 

 

Wang  und Sun (2007) beschreiben mehrere Faktoren, die  im Zusammenhang mit der 

Enwicklungskompetenz von Eizellen stehen. Diese Faktoren besitzen auch eine 

Bedeutung bei der Beurteilung der Entwicklungskompetenz. Dabei werden intrinsische 

Faktoren und extrinsische Faktoren unterschieden. 

 

Zu den intrinsischen Faktoren zählt der mitochondriale Status. Das Muster der 

Verteilung der Mitochondrien ist ein hoch dynamischer Prozess während der 

Eizellreifung und der frühen Embryonalentwicklung. Übereinstimmende Ergebnisse 

deuten an, dass die inadäquate Neuverteilung der Mitochondrien innerhalb des 
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Zytoplasmas ein Marker für die zytoplasmatische Unreife ist und eng mit geringer 

Entwicklungskompetenz verknüpft ist  (Mensch: Bavister und Squirrell 2000, Schwein: 

Sun et al. 2001, Rind: Otzdorff 2006).  Da es sich bei der Feststellung dieser Reife um 

ein invasives Verfahren handelt, ist es für die Selektion der Oozyten vor einer  IVP nicht 

geeignet. Dieser Parameter  wird vor allem für die Entwicklung und Erprobung von 

Kulturverfahren und  –medien  herangezogen. 

 

Nogueira et al. (2006) erhielten in ihren Untersuchungen an  humanen Oozyten 

Hinweise auf eine mögliche Bedeutung der Aktivität der Phosphodiesterase (PDE) 3 

und 4  als Beurteilungsparameter für die Entwicklungskompetenz.  Phosphodiesterase 4 

(PDE4D) kommt in Cumuluszellen, in Granulosazellen und in Thekazellen (PDE4B) vor, 

während man die PDE3 nur in Oozyten nachweisen kann (Nogueira et al. 2003). Bei 

Versuchen mit spezifischen PDE3 Inhibitoren konnte nachgewiesen werden, dass PDE3 

eine wichtige Rolle bei der Oozytenreifung von Nagetieren (Tsafriri et al.1996),  beim 

Rind (Mayes et al. 2002) und bei den Primaten (Nogueira et al. 2003) spielt. Außerdem 

hat sich die Verwendung von spezifischen Inhibitoren zur Steuerung der PDE3-Aktivität 

als gute Methode erwiesen, um die Kulturbedingungen und die zytoplasmatische 

Reifung von unreifen humanen Oozyten zu verbessern (Nogueira et al. 2006).  

 

De Matos et al. (2002) hat beim Schaf Untersuchungen zum intrazellulären 

Glutathiongehalt im Zusammenhang mit der Entwicklungskompetenz durchgeführt. 

Glutathion ist ein wichtiger Bestandteil bei der Bekämpfung freier Sauerstoffradikale im 

Kulturmedium.  Cysteamin- und Beta-Mercaptoethanol-Zugabe zum IVM-Medium 

steigert den intrazellulären Glutathiongehalt (GSH) von Oozyten und verbessert dadurch 

die Embryonalentwicklung und die Qualität der Oozyten verschiedener Spezies. Die 

Oozyten  mit einem höheren Glutathiongehalt zeigten in der Studie eine bessere 

Entwicklungskompetenz. Es konnte ebenfalls gezeigt werden, dass ein Cysteamin-

Zusatz im Reifungsmedium die Embryonalentwicklung stimuliert. Sowohl Cysteamin als 

auch Beta-Mercaptoethanol stimulieren die GSH-Synthese.  Der Anstieg von 

intrazellulärem GSH steht im Zusammenhang mit einem sinkendem Peroxyd Niveau in 

der Oozyte.  

 

Ein weiterer intrinsischer Faktor ist die Glucose-6-Phosphat-Dehydrogenase Aktivität. 

Unreife Eizellen synthetisieren eine Vielzahl an Proteinen, darunter auch Glucose-6-
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Phosphat-Dehydrogenase, ein Enzym des Pentosephosphatweges. G6PDH ist aktiv in 

wachsenden Oozyten, die meiotisch inkompetent sind. In kompetenten Oozyten nach 

der Wachstumsphase sinkt die Aktivität des Enzyms deutlich ab. Mit Hilfe der 

Brillantcresylblau- Färbung kann die G6PDH-Aktivität beurteilt werden. Auf die 

Bedeutung der G6PDH-Aktivität in der Selektion von Oozyten wird in Kapitel 2.4.2. 

genauer eingegangen.    

 

Zu den extrinsischen Faktoren zählen nach Wang und Sun (2007) die nachfolgend  

beschriebenen Faktoren. 

 

Einige Studien konnten zeigen, dass die Apoptoserate der Cumuluszellen einen Einfluss 

auf die Entstehung der Entwicklungskompetenz hat. Die meisten  durchgeführten 

Studien kommen überein, dass es zwischen dem Grad der Apoptose  in den 

Cumuluszellen eine negative Korrelation zur Entwicklungskompetenz gibt (Mensch: 

Host et al. 2000, Mensch: Saito et al. 2000, Mensch: Lee et al. 2001, Rind: Zeuner et al. 

2003, Rind: Yuan et al. 2005). Zum Nachweis gibt es jedoch nur sehr aufwändige 

Verfahren, die eine weitere Nutzung der selektierten COK für die IVP ermöglichen. 

 

Zu den extrinsischen Faktoren nach Wang und Sun (2007) wird auch das  

Expressionsmuster von Insulin-like growth factor (IGFs) und IGF bindenden Proteinen in 

der Follikelflüssigkeit gezählt. Nach Wang und Sun (2007) beschreiben die Autoren 

verschiedener Artikel erfolgreich die Bestimmung der Entwicklungskompetenz,  indem 

sie das Expessionsprofil von IGF- Bindungsproteinen (IGFBPs, IGFBP4 und IGFBP5) in 

der Follikelflüssigkeit als Selektionskriterium verwenden. Insgesamt scheint das 

Expessionsmuster von IGFs und/oder von IGFBSs in der Follikelflüssigkeit ein nicht 

invasiver, brauchbarer Indikator zur Bestimmung der Oozytenqualität zu sein. Dieses 

Verfahren muss jedoch noch verfeinert und spezifiziert werden.  

 

Wang und Sun (2007) beschreiben, dass verschiedene Autoren die Konzentration 

einzelner Steroide in der Follikelflüssigkeit  zur Beurteilung der Entwicklungskompetenz 

herangezogen haben. Wenn man das komplexe Zusammenspiel  zwischen den 

Steroiden betrachtet, könnten multifaktorielle Kriterien eine gute Hilfe bei der 

Beurteilung der Oozytenqualität  sein. Die Progesteronkonzentration in der 

Follikelflüssigkeit steigt  durch die Zugabe (durch Injektion) von luteinisierendem 
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Hormon (LH)  oder follikelstimmulierendem Hormon (FSH) bei Schweinen (Xia et al. 

1994, Coskun et al. 1995), den Ratten (Zhang und Armstrong, 1989) und beim Rind 

(Armstrong et al. 1996). Progesteron scheint die Interaktion zwischen der Oozyte und 

den Cumuluszellen zu fördern, wenn es zu den Medien in den Konzentrationen 

zugegeben wird, die auch in der Follikelflüssigkeit vorhanden sind (Schwein: Mattioli et 

al. 1998). Außerdem steigert die Zugabe von Östrogen oder Testosteron im 

Reifungsmedium die Entwicklungskompetenz von Rinderoozyten nach der IVF (Silva 

und Knight, 2000). Arias-Alvarez et al. (2009) haben beim Kaninchen Untersuchungen 

zur Leptin Konzentration in der Follikelflüssigkeit oder im Serum durchgeführt. Leptin ist 

ein Proteohormon und spiegelt den Anteil an Körperfett wieder. Es könnte als ein 

Indikator für die Oozytenqualität herangezogen werden. Ziel dieser Studie war es  zu 

untersuchen, ob Leptin die meiotische und zytoplasmatische Reifung und die 

Ausschüttung von Steroidhormonen durch die Cumuluszellen beeinflusst. In dieser 

Studie konnte dafür jedoch kein Nachweis erbracht werden. Leptin konnte in humanen 

Oozyten und in der Follikelflüssigkeit nachgewiesen werden. (Karlsson et al. 1997). Es 

konnte aber keine klare Aussage über die Verwertbarkeit von Leptin im Zusammenhang 

mit der Entwicklungskompetenz festgestellt werden. Joo et al. (2010) haben ebenfalls 

Untersuchungen mit Leptin im Zusammenhang mit der Entwicklungskompetenz von 

Oozyten durchgeführt. Bei Mäusen wurde Leptin während der Superovulation injiziert 

und es zeigte  sich, dass die Ovulationsrate und die Entwicklungskompetenz anstiegen. 

Sirotkin et al. (2009) kamen zu den gleichen Ergebnissen bei Untersuchungen mit 

Oozyten von Kaninchen. 

 

Cumuluszellen, die die Oozyten während der Follikelentwicklung  und zum Zeitpunkt der 

Ovulation umgeben, spielen eine wichtige Rolle im Zusammenhang mit der 

Eizellentwicklung, -reifung und der Befruchtung. Die Verbindung zwischen den 

Cumuluszellen untereinander und zwischen Cumuluszellen und Oozyte wird durch Gap 

junctions vermittelt. Diese enge Verbindung ist für den Austausch metabolischer Stoffe 

und von Signalmolekülen notwendig (Buccione et al. 1990). Durch den engen Kontakt 

mit der Oozyte beeinflussen die Cumuluszellen das Wachstum der Oozyte und die 

zytoplasmatische Reifung. Sie ermöglichen auch die Bereitstellung von 

Energiesubstraten und sind beteiligt an der Inhibition wie auch an der Wiederaufnahme 

der Meiose (Ratte: Larsen et al. 1996, Carabatsos et al. 2000). Mc Kenzie et al. (2004) 

hat Untersuchungen durchgeführt, ob das Expressionsmuster von Cumuluszellen als 
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Parameter für die Entwicklungskompetenz herangezogen werden kann.  Im Ergebnis 

wurde in dieser Untersuchung festgestellt, dass die Verwendung eines einzigen Gens, 

Gremlin, eine genaue Voraussage über Maturation, Befruchtungspotential und 

Embryonenqualität liefern kann.  

 

Unzweifelhaft führen die Studien zum Expressionsmuster von Cumuluszellen zum 

besseren Verständnis des Mechanismus der  Eizellreifung und ermöglichen es, 

Aussagen zur Oozytenqualität machen zu können (Wang und Sun 2007). 

 

2.4 . Beurteilung der Entwicklungskompetenz 

 

2.4.1. Morphologie 

 

Das morphologische Erscheinungsbild ist bei COK das vor der Verwendung im Rahmen 

einer IVP am häufigsten herangezogene Kriterium zur Beurteilung der Oozytenqualität. 

Die Qualität der Oozyten  kann nach Lasiene et al. (2009) durch  folgende Kriterien  

beurteilt werden: Die Struktur des COK, die Kompaktheit und Dicke des Cumulus, die 

Färbung und die Beschaffenheit des Zytoplasmas, die Form, Größe und Oberfläche des 

Polkörperchens, die Größe des perivitellinen Raums, die Zona Pellucida und die 

meiotischen Spindel.  Beim Rind hat sich eine Beurteilung des Zytoplasmas und des 

Cumulus oophorus als guter Parameter für die Klassifizierung erwiesen. Eine bovine 

Oozyte guter Qualität weist ein einheitlich dunkles homogenes Zytoplasma auf und ist 

von mehreren Cumuluslagen umgeben. Bei den Oozyten schlechter Qualität ist das 

Zytoplasma aufgehellt bis mosaikartig und die Cumuluszellen fehlen fast vollständig 

(Gordon 2003). Durch den unterschiedlichen Grad  der zytoplasmatischen Transparenz 

in den Oozyten verschiedener Spezies  gibt es im Hinblick auf die Beurteilung des 

Zytoplasmas unterschiedliche Kriterien (Wang und Sun 2007). So zeigen humane 

Oozyten schlechter Qualität ein dunkles Zytoplasma, wohingegen ein dunkles 

Zytoplasma in porcinen Oozyten eine gute Qualität bedeutet (Zeuner et al. 2003).  

 

Die Beurteilung des Cumulus oophorus hat sich aufgrund der Bedeutung der 

Cumuluszellen für die Reifung und die weitere Entwicklung der Oozyte als 

Klassifizierungsparameter bewährt. Motlik et al. 1986 haben bei Oozyten vom Schwein 

die Verbindung zwischen den Cumuluszellen und zwischen Cumuluszellen und der  
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Eizelle untersucht. Es hat sich gezeigt, dass  die innersten Cumuluszellen den engen 

Kontakt zwischen der Oozyte und der follikulären Umgebung (mindestens bis zur 

Metaphase I) sicherstellen. Sie kamen zu dem Schluss, dass nur Oozyten, die mit 

Granulosazellen co-kultiviert wurden, oder die mit ihren Granulosazellen in einem 

Medium mit LH kultiviert wurden, eine gute Entwicklungskompetenz nach der 

Befruchtung zeigten.  

 

Bei bovinen Oozyten hat sich auch der Durchmesser der Zona pellucida als möglicher 

Parameter zur Klassifizierung herauskristallisiert. De Witt und Kruip (2001) konnten 

einen Zusammenhang  zwischen der follikulären Atresierate und dem Durchmesser der 

Zona pellucida herstellen. Eine erhöhte Atresierate führt zu einem größeren 

Durchmesser der Zona pellucida und damit zu einem größeren Durchmesser der 

Oozyte. Dies  bedeutet eine größere Entwicklungskompetenz. 

 

Bei felinen Oozyten gibt es bei verschiedenen Arbeitsgruppen unterschiedliche Ansätze 

zur Klassifizierung. Bei den meisten Studien, die sich mit der IVM feliner Oozyten 

beschäftigen, erfolgte die Klassifizierung der Oozyten anhand morphologischer Kriterien. 

Bei Wood und Wildt (1997) findet man eine Klassifizierung von felinen Oozyten unter 

Einbeziehung der Beschaffenheit des Zytoplasmas und der Zahl der Cumuluszelllagen. 

In der Studie von Wood und Wildt wurde eine Unterteilung in vier Klassen 

vorgenommen. Oozyten der Klasse I hatten ein gleichmäßiges granuliertes Zytoplasma 

und mindestens fünf Cumuluszelllagen. Die Klasse II  hatte weniger als fünf Cumulus-

zelllagen. Die Klassen III und IV zeichneten sich dagegen durch ein aufgehelltes 

mosaikartiges Zytoplasma und einen Verlust der Cumuluszellen aus. In den meisten 

Studien wurden Oozyten mit zwei und mehr Cumuluslagen verwendet. (Nagano et al. 

2008, Freistedt et al. 2001, Boglio et al. 2001).  Bristol-Gould und Woodruff (2006) 

haben neben den oben genannten Kriterien auch den Durchmesser der Oozyten erfasst. 

Bei ihren Untersuchungen zur Follikulogenese von felinen Oozyten stellten sie fest, 

dass die Oozyten in den unterschiedlichen Follikeln unterschiedlich aufgebaut sind. Die 

Oozyten im Primordialfollikel wurden in 3 Kategorien eingeteilt. Der erste Typ mit 1-8 

Lagen von Cumuluszellen hat einen Durchmesser von 20-30µm. Der zweite Typ besitzt 

nur eine einzige Cumuluszelllage und hat ebenfalls einen Durchmesser von 20-30µm. 

Der dritte Typ Oozyten hat einen Durchmesser von 30-50µm und eine einzige Lage 

kubischer Granulosazellen. In den Sekundärfollikeln befinden sich durch die größere 
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Anzahl von Zelllagen Oozyten mit einem Durchmesser von 40-75µm. Die Oozyten in 

den Antralfollikeln  haben ca. einen Durchmesser von 75-90µm. In dieser Studie wurde 

keine Eizellgewinnung durchgeführt. Die Erkenntnisse lassen sich daher nicht zur 

Beurteilung der Entwicklungskompetenz nutzen. Bei Luvoni et al. (2006) wurden nur 

Oozyten mit dunklem Zytoplasma verwendet, die einen Durchmesser von mehr als 

100µm  haben und die mit mindestens einer Lage Cumuluszellen umgeben sind. 

  

2.4.2. Grundlage der Brillantcresylblau- Färbung (BCB) 

 

Die Verwendung einer Vitalfärbung mit BCB, zur Selektierung von Oozyten für die  IVP, 

gewinnt in der Literatur immer mehr Beachtung.  Die ersten Untersuchungen mit BCB 

für die Selektion von Oozyten mit BCB findet man bei Ericson et al. (Schwein, 1993).  

Um eine nicht invasive Methode für die Selektion von homogeneren und 

entwicklungskompetenteren Eizellen für die IVP  zu etablieren, wurde die 

Brillantcresylblaufärbung bereits beim Rind  (Pujol et al. 2000, Pujol et al. 2004,  Alm et 

al. 2005, Bhojwani et al. 2007, Torner et al. 2008), beim Büffel (Manjunatha et al. 2007),  

bei der Ziege (Rodriguez-Gonzales et al. 2002, Rodriguez-Gonzales et al. 2003, 

Urdaneta et al. 2003), beim Schwein (Ericson et al.1993, Roca et al. 1998, Wongsrikeao 

et al. 2006), beim Hund (Rodrigues et al. 2009),  beim  Pferd (Mlodawska et al. 2005) 

und bei der Maus (Wu et al. 2007)  verwendet. Unreife Eizellen synthetisieren 

bekanntermaßen eine Vielzahl von Proteinen, unter anderem Glucose-6-Phosphat-

Dehydrogenase (G6PDH) (Wassarman 1988). Dieses Enzym ist in der wachsenden 

Oozyte aktiv (Mangia, 1975). G6PDH ist ein Enzym des Pentosephosphatweges, das in 

der ersten Hälfte der S-Phase der Wachstumsphase einer Oozyte synthetisiert wird 

(Wassarman  1988).  Es stellt  Ribosephosphat für die Nucleotidsynthese bereit und der 

größte Anteil des Nicotinamidadenindinukleotidphosphates (NADPH) dient als 

Wasserstoff- oder Elektronendonor bei den Synthesereaktionen wie zum Beispiel der 

Bildung von Fettsäuren (de Schepper  et al. 1987). Die G6PDH Aktivität spielt eine 

kritische Rolle beim  Zellwachstum, um NADPH  für die Redoxregulierung 

bereitzustellen. BCB ist eine Farbzusammensetzung, die durch G6PDH-Aktivität farblos 

wird. Oozyten, die ihre Wachstumsphase abgeschlossen haben, zeigen verminderte 

G6PDH Aktivität. Diese Oozyten zeigen nach Inkubation in BCB ein blaues Zytoplasma, 

da sie nicht die Fähigkeit haben, BCB zu entfärben (Ericsson et al. 1993). Die 

anschließende IVP mit Beurteilung der Teilungs- bzw. Blastozystenrate der BCB+ und 
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BCB- ist ein Kriterium zur Beurteilung dieses nicht invasiven Verfahrens. Da BCB nicht 

toxisch ist, ist eine nachfolgende Kultur möglich. 

 

 
  wachsende Oozyte   Oozyte mit abgeschlossenem 
       Wachstum 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Abb. 1 Mechanismus der Brillantcresylblau-Färbung 

Oozyte während der Exposition 
mit BCB 

G6PDH G6PDH 

Oozyte nach der 
Exposition  

BCB- 

Oozyte nach der 
Exposition  

BCB+ 
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2.4.3.  Weitere Kriterien 
 
Neben der direkten Beurteilung der Oozyten kann eine Selektion von felinen Oozyten 

auch bereits bei der Auswahl der Spendertiere erfolgen. Dies kann z.B. anhand des 

Zyklusstadiums, des Alters oder des Körpergewichts der Spenderkatze erfolgen.  Bei 

manchen Studien wurden sowohl der saisonale Einfluss als auch der Status der Ovarien 

berücksichtigt. Freistedt et al. (2001) haben bei Ihren Studien das Jahr in vier Intervalle 

eingeteilt (Januar bis März, April bis Juni, Juli bis September und Oktober bis 

Dezember). Es hat sich gezeigt, dass die Teilungsrate von April bis Juni und von Juli bis 

September signifikant höher war, als bei den anderen beiden Intervallen. Die höchste 

Blastozystenrate trat zwischen Juli und September auf. Der saisonale Einfluss wurde 

bei Martins et al. 2009, Pope et al. (2009) und Spindler et al. (2002) nicht berücksichtigt. 

Der ovarielle Status wurde in einigen Studien ebenfalls erfasst. Es erfolgte eine Unter-

scheidung nach „frisch ovuliert“, „follikulär“, „luteal“, „intermediär“ und „inaktiv“ (Freistedt 

et al. 2001, Karja et al. 2002). Bei Freistedt et al. (2001) wurde auch das Körpergewicht 

der Spenderkatzen berücksichtigt. Es wurden zwar nur Katzen mit einem Körpergewicht 

von mind. 2,5 kg wurden in dieser Studie einbezogen, der Parameter wurde aber nicht 

speziell ausgewertet. In dieser Studie lag die Teilungsrate bei 50%, die Blastozystenrate 

bei 30,9% und die Blastozystenrate bezogen auf die geteilten Oozyten bei 61,1%.  

Gomez et al. (2000) überprüften den Einfluss einer hormonellen Stimulation auf die 

Qualität der gewonnenen Oozyten. In dieser Studie wurden nur Eizellen von Katzen 

verwendet, die vier Tage vor der Ovarektomie mit FSH stimuliert wurden. In ihrer Studie 

hat sich gezeigt, dass Oozyten, die von Katzen gewonnen wurden, die vorher mit FSH 

stimuliert wurden, eher ihre meiotische Reifung abgeschlossen hatten als Oozyten von 

Tieren, bei denen keine vorherige Stimulation erfolgte.   

 

2.5. In-vitro-Produktion von felinen Embryonen 
 
 
2.5.1. Gewinnung von Eizellen 

  

Bei  den meisten Versuchen wurde das Slicingverfahren zur Gewinnung der Eizellen 

angewandt. Bei diesem Verfahren wird die Ovaroberfläche eingeschnitten und mit etwas 

Slicingmedium abgespült. Die Cumulus-Oozyten-Komplexe (COK) werden dann unter 

dem Stereomikroskop aufgesucht. Dieses Verfahren findet man unter anderem bei 
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Versuchen mit felinen Oozyten bei Martins et al. (2009), Ciani et al. (2008), Katska-

Ksiazkiewicz et al. (2003) und bei Wood et al. (1997). Es gibt jedoch auch die 

Möglichkeit, die Eizellen der Katze durch Punktion des Ovars und Aspiration zu 

gewinnen (Pope et al. 2009, Lopes et al.  2004, Luvoni et al. 1993, ca. einundzwanzig 

Oozyten pro Ovar). Dieses Verfahren ist jedoch wesentlich aufwändiger und führt zu 

einer geringeren Gewinnungsrate. Beim Slicing lässt sich  eine wesentlich höhere Rate 

gewinnen. 

 

2.5.2. Medien und Zusätze für die In-vitro-Maturation (IVM) 

 

In der Literatur zur IVM von felinen Oozyten gibt es einige Autoren, die sich damit 

befassen, welches Kulturmedium für die IVM  am besten geeignet ist. In den meisten 

Arbeiten findet man Hepes-gepuffertes Tissue Culture Medium(TCM 199). Katska-

Ksiazkiewicz et al. (2003) haben  den Einfluss von Synthetic Oviductal Fluid (SOF) und 

TCM 199 auf die Maturation von Katzeneizellen untersucht.  Im Ergebnis hat sich 

gezeigt, dass die Teilungsraten bzw. Blastozystenraten bei Verwendung der beiden 

Medien sich nicht signifikant unterscheiden. Auch Boglio et al. (2001) haben den 

Einfluss beider Medien auf die Maturationsrate untersucht. Sie kamen jedoch zu dem 

Ergebnis, dass die Zahl der Oozyten, die die Metaphase II erreichen, bei Verwendung 

von SOF, mit 80% signifikant höher ist, als bei TCM 199 mit 66,7%. Bei dieser Studie 

gibt es jedoch keine Untersuchungen zur Teilungs- bzw. Blastozystenrate. In den 

meisten Arbeiten zur IVP der Katze findet man TCM als Medium (Freistedt et al. 2001a, 

Karja et al. 2002a, Murakami et al. 2002 und Gomez et al. 2003).  

 

Wood et al. (1995) haben den Einfluss von Hormonzugaben bei der IVP untersucht. Sie 

konnten den  positiven Einfluss der Zugabe von FSH und LH bei der IVF und der 

Embryonalentwicklung nachweisen. Diese Ergebnisse zeigen, wie wichtig exogenes 

Gonadotropin und Östrogen für die Kultivierung von Oozyten  ist.  Diese Studie ergab  

auch, dass die Anwesenheit von FSH, LH und Östradiol die Teilungsrate von Oozyten 

verbessert. Exogenes Gonadotropin scheint in Gegenwart von Östrogen die meiotische 

Reifung zu fördern. FSH stimuliert die Produktion eines reifungsfördernden Faktors 

durch einen cAMP abhängigen Prozess. Dies bedeutet, das  FSH und LH in vivo  das 

Follikelwachstum stimulieren und die Lebensfähigkeit der Oozyte erhalten.  Die Zugabe 

von FSH und LH findet sich bei den meisten Autoren. Die verwendeten  
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Konzentrationen sind jedoch sehr unterschiedlich, von 0,02 IU/ml (FSH und LH) 

(Freistedt et al. 2001a) bis 2,2 IU/ml (Herrik und Swanson 2003). Eine Erklärung für die 

Verwendung unterschiedlicher Konzentrationen könnte die unterschiedliche biologische 

Aktivität der verwendeten Präparate sein. In weiteren Studien findet sich in der Literatur 

auch noch die Zugabe von 1µg/ml 17ß-Östradiol. (Wood et al. 1997, Pope et al. 1999, 

Karja et al. 2002a, Murakami et al. 2002, Comizzoli et al. 2003). 

 

Als weiteren Bestandteil  findet man in der Literatur standardmäßig Antibiotika  

(Gentamicinsulfat oder Penicillin G), Calziumlaktat, Natriumpyruvat und L-Glutamin. Als 

Zwischenprodukt für die GSH-Synthese wird L-Cystein zugegeben (Schwein: Yoshida et 

al. 1993). Als Proteinquelle wird bovines Serumalbumin (BSA) bevorzugt. Bei den 

meisten Arbeiten wird ein IVC–Medium mit 0,4-0,6% BSA verwendet (Murakami et al. 

2002, Karja et al. 2002a, Bogliolo et al. 2001). Johnston et al. (1991a) konnten jedoch 

zeigen, dass sich fetales Kälberserum und das Serum östrischer Katzen im Austausch 

von BSA positiv auf die Entwicklung feliner Embryonen auswirkt.  

 

2.5.3.  Brutschrankbedingungen 

 

Johnston et al. (1991b) haben in ihrer Studie den Zusammenhang zwischen 

verschiedenen Temperaturen und unterschiedlichen Gaskonzentrationen bei der IVP 

untersucht. Sie kamen zu dem Ergebnis, dass unterschiedliche Konzentrationen und 

Temperaturen keinen Einfluss auf die Embryonalentwicklung haben. Bei fast allen 

Studien wurden die Katzeneizellen bei maximaler Luftfeuchtigkeit unter 5% CO2 in Luft 

bei 38,0 – 39,0°C kultiviert (Pope C. E. et al. 2009, Nagano M. et al. 2008, Kityanat et al. 

2003, Comizzoli et. al. 2003, Murakami et al. 2002, Luvoni et al. 2000). Der Standard 

beim Rind beträgt nach Gordon (2003) 39°. Da der O2 Gehalt physiologisch erniedrigt 

ist, findet man in vielen Studien eine Begasung mit 90% N2, um einen O2-Gehalt von 

weniger als 5% zu erreichen. Bei anderen Autoren findet man eine Begasung mit 90% 

N2 nur bei der IVM (Uchikura et al 2010, Ciani et al. 2008, Merlo et al. 2008). 
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2.5.4.  Reifungsdauer 

 

Katska-Ksiazkiewicz et al. (2003) haben Untersuchungen zur unterschiedlichen 

Reifungsdauer von felinen Oozyten durchgeführt. Es wurde die IVM für 6 Gruppen mit 

einer Reifungsdauer von 17 Std. bis maximal 45 Std. durchgeführt. Die Ergebnisse 

zeigten, dass es zwei  „Wellen“ der Kernreifung bei felinen Oozyten gibt. Die erste Welle 

findet man nach 26 Std. IVM, wobei es sehr wahrscheinlich ist, dass die meisten 

Oozyten innerhalb von 17-18 Std. das Stadium der Metaphase II erreichen. Die zweite 

Welle findet man nach ca. 28-30 Std IVM. In den  meisten Studien herrscht eine 

Reifungsdauer von 23-26 Std vor. (Herrick et al. 2009, Nagano et al 2008, Pope et al. 

2009, Spindler et al. 2000). 

 

2.5.5.  In-vitro-Fertilisation (IVF) 

 

Gewinnung der Spermien 

 

Das Sperma für die IVF wurde bei den meisten Studien aus den Nebenhoden von  

Katern nach Kastration gewonnen. (Nagano et al. 2008, Bogliolo et al. 2001, Karja et al. 

2002, Freistedt et al. 2001). Die Spermagewinnung erfolgt bei Bogliolo et al. (2001) 

durch die Spülung des Ductus deferens. Bei anderen Studien wird der Nebenhoden 

zerkleinert und Gewebestücke werden anschließend gespült (Nagano et al. 2008, Karja  

et al. 2002, Freistedt et al. 2001a). Bei einigen Versuchen findet man Frischsperma von 

konditionierten Katern, das mit Hilfe einer künstlichen Scheide gewonnen wurde 

(Herrick et al. 2009, Gomez et al. 2000, Sojka et al. 1970). Eine weitere Möglichkeit der 

Gewinnung von Sperma beim Kater ist die Elektroejakulation (Herrick et al. 2009, Tebet 

et al. 2006, Wildt et al. 1991, Wildt et al. 1983). Die Spermien werden unmittelbar nach 

der Gewinnung für die IVF verwendet, gekühlt gelagert oder kryokonserviert. 

 

Technik der IVF 

 

Die Separierung motiler Spermien für die IVF erfolgt in der Regel durch das Swim-up 

Verfahren (Parrish et al. 1986). Anschließend erfolgt eine Motilitätskontrolle des 

Spermas. Die Motilität  sollte bei mindestens 50% liegen. Durch Waschen und 

Zentrifugieren mit speziellem IVF-Medium bei 300-500g für 5-8 Min wird die 
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Verdünnerflüssigkeit entfernt (Wolfe und Wildt  1996, Wood und Wildt, 1997, Spindler 

und Wildt, 1999, Karja et al. 2002a, Comizzoli, 2006, Herrick et al. 2009).  Nach dem 

Zentrifugieren wird der Überstand abpipettiert und das Spermienpellet resuspendiert. 

Als Medium wird überwiegend Ham´s F10 verwendet. Es folgt eine Inkubation von 0,5-1 

Std. bei Raumtemperatur (Gomez et al. 2003, Luvoni und Pellizzari, 2000, Spindler und 

Wildt, 1999). Im Anschluss an das Swim-up-Verfahren erfolgt eine erneute Motilitäts- 

und Konzentrationsprüfung  (Herrick et al. 2009, Luvoni und Pellizari 2000, Hay und 

Goodrowe 1993). 

 

Für die IVF wurden bei den meisten Gruppen die Oozyten nach einem oder, mehreren 

Waschvorgängen in einen 50-100µl großen Tropfen unter Öl verbracht und die 

Spermiensuspension wurde in die Tropfen pipettiert. Die Inkubationszeit variiert bei den 

meisten Studien von 12-18 Std. (Comizzoli et al. 2006).  Bei manchen Autoren findet 

man auch eine Inkubationszeit von 22-24 Std. (Herrick et al. 2009, Freistedt et al. 1999). 

 

Bei verschieden Studien zur IVF von felinen Oozyten findet man bei unterschiedlichen 

Autoren (Gomez et al. 2000, Bogliolo et al. 2001, Comizzoli et al. 2006) auch die 

Intrazytoplasmatische Spermieninjektion (ICSI). Bei diesem Verfahren wird eine 

Samenzelle mit einer Injektionskapillare aufgenommen und durch Mikroinjektion in die 

Eizelle injiziert. Bei beiden Studien war die Blastozystenrate jedoch geringer als beim 

oben genannten Verfahren. 

 

Spermienkonzentration für die IVF 

 

Ein gängiges Verfahrung zur Konzentrationsbestimmung von Spermien ist das 

Auszählen mit einer Zählkammer. Für die Befruchtung wird in den meisten Studien eine 

Konzentration von 2-5x105 Spermien/ml verwendet (Herrick et al. 2009, Comizzoli et al. 

2003, Spindler et al. 2000, Goodrowe et al. 1998). Es gibt jedoch auch Gruppen, die die 

zehnfache Konzentration verwenden (Karja et al. 2002, Murakami et al. 2002). Eine 

Erhöhung der verwendeten Spermakonzentration führte jedoch nicht zu einer 

Steigerung der Befruchtungsrate. 

 

 

 



 22 

2.5.6.  In-vitro-Kultivierung (IVC) 

 

Durch Vortexen werden die Cumuluszellen von den zukünftigen Zygoten entfernt.  Als 

Kulturmedium wird ein modifiziertes SOF verwendet. Die COKs werden für 7 Tage in  

SOF Medium unter Öl bei einer Temperatur von 39°C und mit 5% CO2, 5% 02 und 90% 

N2 kultiviert (Nagano et al. 2008). Wie bei den Medien und bei den 

Brutschrankbedingungen beschrieben, findet man bei den Autoren Unterschiede in der 

Verwendung der Medien SOF und TCM und dem O2 Gehalt. Es ist nachgewiesen, dass 

die Kultivierung in Gruppen einen positiven Effekt auf die Entwicklung hat (Spindler und 

Wildt 2002). Dies beruht auf der Tatsache, dass Embryonen einen auto- parakrinen 

Effekt haben. Bei einigen Arbeitsgruppen werden drei bis fünf Embryonen in 100µl 

Medium unter Öl kultiviert (Karja et al. 2002a, Murakami et al. 2002).  Größere Gruppen 

werden in 400-500µl Medium kultiviert (Gomez et al. 2000, Freistedt et al. 2001a). Die 

Cumuluszellen werden durch vorsichtiges auf und ab pipettieren entfernt. Nach 

dreimaligem Waschen werden die Oozyten in Ham´s F10 Medium verbracht und 

kultiviert (Comizzoli et al. 2006, Hoffert 1997). 

 

Beurteilung der Teilungs- und Blastozystenrate 

 

Die erste Zellteilung ist bei felinen Oozyten in vitro spätestens 24 Std. nach der 

Befruchtung abgeschlossen. Ab dem 5. Tag entwickelt sich der Embryo zu einer 

kompakten Morula und bis zum 8. Tag zu einer Blastozyste. Diese expandiert und 

beginnt ab dem 8. Tag zu schlüpfen (Wolfe und Wildt 1996, Wood und Wildt 1997). Die 

Teilungsrate wird bei den meisten Studien am 1.-4. Tag nach der Befruchtung beurteilt 

(Freistedt et al. 2001a, Bogliolo et al. 2001, Gomez et al. 2000, Goodrowe et al. 1998). 

Als geteilt gezählt werden in der Regel alle Embryonen mit mindestens zwei 

Blastomeren. Die Beurteilung der Blastozystenrate erfolgte in den meisten Fällen nach 

morphologischen Kriterien. Hier wurde nach den Richtlinien der IETS in den meisten 

Studien auf eine dunkle, gleichmäßige Färbung und eine gleichmäßige Form ohne 

Vakuolen oder Fragmentierung geachtet. Die Bestimmung der Blastozystenrate erfolgt 

am Tag 6-9 (Murakami et al. 2004. Gomez et al. 2003, Comizzoli et al. 2003, Freistedt 

et al. 2001, Gomez et al. 2000).  Für die Beurteilung werden die Embryonen nach 72 

Std. noch mindestens 3 Tage kultiviert, um die Entwicklung zu beurteilen. (Karja et al. 

2002). Bei einigen Studien wurden die Blastozysten fixiert und gefärbt. Unter dem 
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Lichtmikroskop oder dem Fluoreszenzmikroskop wurde die Zahl der lebenden Zellen in 

den Blastozysten bestimmt (Nagamo et al. 2009, Spindler et al. 2000). Gegenwärtig 

erreichen unter optimalen Kulturbedingungen etwa 40-60% der Katzeneizellen die 

Kernreife. Die Befruchtungsrate nach in vitro Fertilisation von Eizellen von Hauskatzen 

liegt zwischen 40 und 50% und die der in vivo zwischen 60-80% (Farstadt et al.  2000). 

In den Studien zur IVP bei der Katze variiert die Blastozystenrate von  10 – 50% (Wolfe 

und Wildt 1996, Wood und Wildt 1997, Pope et al. 1997, Freistedt et al. 1999, Swanson 

et al. 1999). 
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3. Material und Methoden 
 
 
3.1. Versuchsaufbau 
 
3.1.1. Erster Versuchsabschnitt: Selektion feliner Oozyten mittels BCB-Färbung 
 
Für den ersten Versuch wurden 1587 COK der Klassen I-III  aus Ovarien kastrierter 

Katzen gewonnen. COK der Klasse IV wurden nicht verwendet. 

 

682 COK wurden für 90 Min. in BCB verbracht und anschließend je nach Färbung des 

Zytoplasmas in BCB+  und BCB- aufgeteilt. Als Inkubationskontrolle (IK) wurden 239 

Eizellen ebenfalls für 90 Minuten mit den BCB Gruppen inkubiert, jedoch ohne Farbstoff. 

Eine weitere Gruppe mit 666 COK wurde als Kontrollgruppe direkt der IVP unterzogen. 

 

Für diesen Versuchsabschnitt wurden Katzen aller Altersgruppen verwendet. Nach der 

BCB-Färbung wurden die COK je nach der Gesamtgruppengröße in Gruppen von 

durchschnittlich 15-25 COK für 24 Std. maturiert. Es folgte eine IVF und eine 

Kultivierung bis zum Tag 9. Am 3. Tag wurde die Teilungsrate ermittelt.  Die Embryonen 

wurden am Tag 7, 8 und 9 beurteilt. 

 
3.1.2. Zweiter Versuchsabschnitt: Einfluss des Alters der Spenderkatze auf das 

Ergebnis der IVP 
 
Beim zweiten Versuchsabschnitt wurden nur Ovarien von Katzen mit bekanntem Alter 

zum Kastrationszeitpunkt einbezogen.  

 

Die Katzen wurden in folgende Altersgruppen eingeteilt: jünger als 9 Monate (Gruppe 1), 

jünger als 1,5 Jahre (Gruppe 2) und älter als 2 Jahre (Gruppe 3). Auch hier wurden nur 

COK der Klasse 1-3 verwendet. Die IVP erfolgte für jede COK-Klasse separat. 

 

In diesem Versuchsteil wurden insgesamt 258 COK in Gruppen von 2-32 Eizellen für 24 

Std. maturiert. Es folgte wie bei Versuchsabschnitt 1 eine IVF und eine Kultivierung bis 

zum Tag 9. 

 

In der Gruppe 1 wurden 10 COK der Klasse I, 27 COK der Klasse II und 101 COK der 

Klasse III gereift. In der Gruppe 2 befanden sich 19 COK der Klasse I, 12 COK der 
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Klasse II und 26 COK der Klasse III. Die Gruppe 3 bestand aus 13 COK der Klasse I,16 

COK der Klasse II und 34 COK der Klasse  III. Die Beurteilung der Teilungsrate erfolgte 

am Tag 3 und die Blastozystenrate wurde am Tag 7, 8 und 9 bestimmt. 

 

Für beide Versuchsabschnitte wurden zur experimentellen Bearbeitung insgesamt 1845 

Cumulus-Oozyten-Komplexe verwendet. 

 
Die Versuche wurden von Oktober 2006 bis Juli 2008  durchgeführt. 
 
 
 
 

 
 
 
 
 

Abb. 2  Schematische Darstellung des ersten Versuchsabschnitts 

BCB 

Tag 3 p.fert.  
Beurteilung der Teilungsrate 

Tag 7,8,9 p.fert. 
Bestimmung der Blastozystenrate 

Kontrolle 

IVM 

IVF 

IVC 

Inkubationskontrolle 

Inkubation unter 
Färbebedinungen 

ohne Farbstoff 

IVM 

IVF 

IVC 

IVM 

IVF 

IVC 

Inkubation in BCB 
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3.2 . Herkunft des Probematerials 
 
Die verwendeten Ovarien stammen aus Kastrationen vom Tierheim des Münchner 

Tierschutzvereins e. V. und aus verschiedenen Tierarztpraxen in München. Die Ovarien 

wurden innerhalb von 1-4 Stunden nach der Kastration verwendet. Bis zu diesem 

Zeitpunkt wurden sie in sterilen 50-ml Röhrchen (Fa. VWR, Darmstadt) mit 

Transportmedium bei Raumtemperatur gelagert. 

 

Die praktischen Versuche wurden im IVF Labor der Chirurgischen und Gynäkologischen 

Kleintierklinik im Zentrum für klinische Tiermedizin der Ludwigs Maximilians Universität 

München durchgeführt. 

 

 

 

 

Tag 3 p.fert.  
Beurteilung der Teilungsrate 

Tag 7,8,9 p.fert. 
Bestimmung der Blastozystenrate 

IVM 

IVF 

IVC 

Abb. 3  Schematische Darstellung des zweiten Versuchsabschnittes 
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3.3 .     Gewinnung von Oozyten 

 

Die Ovarien wurden aus den sterilen Röhrchen entnommen und mit einer kleinen 

Klemme fixiert und mit Zellstoff abgetrocknet. Das überschüssige Gewebe wurde 

abgeschnitten. 

 

    

 
         Abb. 4  Katzenovar 
 

         
           
  

 
Eine gerasterte Petrischale (90mm, Fa. VWR, Darmstadt) wurde mit etwas PBS-Lösung 

(phosphatgepufferte Salzlösung nach Dulbecco, (Fa. Biochrom, Berlin)  benetzt. Die 

Oberfläche des Ovars wurde nun mit einer Skalpellklinge mehrmals gleichmäßig 

eingeschnitten (Slicing) und anschließend mit PBS abgespült. Ebenso wurde mit dem 

restlichen Ovarmaterial verfahren. Die COK werden unter dem Stereomikrosop (10-40 

fache Vergrößerung) aufgesucht und in eine kleine Petrischale (40mm, Fa. VWR, 

Darmstadt) mit Reifungsmedium überführt. Es erfolgte eine Klassifizierung nach Tabelle 

1. Danach wurden die COK (Klasse I-III) in einer 4-Wellschale (Nunc-Multischale, Fa. 

VWR, Darmstadt) mit PBS in der linken oberen Vertiefung gesammelt.  Alle Schritte 

wurden mit sterilisierten 20µm-Glaskapillaren und einem Pipettierhelfer (Fa. Brand, 

Wertheim) durchgeführt. Die Glaskapillaren wurden zwischen den einzelnen Schritten 

gewechselt. 
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                  Abb. 5  Slicing eines Katzenovars 
 

                     
 
 
  
  
           Tab. 1 Klassifizierung der Eizellen nach Wood und Wildt 
 

Klasse I 

Klasse II

Klasse III

Klasse IV

COKs mit einheitlichem dunklem granuliertem Zytoplasma 

mit  fünf oder mehr Cumuluszellagen

COKs mit einheitlichem dunklem granuliertem Zytoplasma 

mit weniger als fünf Cumuluszellagen

COKs mit aufgehelltem mosaikartigem Zytoplasma nur zum 

Teil mit Cumuluszellen umgeben

COKs mit aufgehelltem mosaikartigem Zytoplasma mit 

vollständigem Verlust der Cumuluszellen

Klassifizierung der Eizellen nach Wood und Wildt (1997)

 
 
  
Die Klassifizierung der Oozyten erfolgte anhand des oben stehenden Schemas nach 

Wood und Wildt (1997) 

 

Für die Versuche wurden Eizellen der Klassen I-III verwendet. 
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Abb. 6  COK der Klassen I  bis III 
 

   
Klasse I                      Klasse  II                               Klasse III  
 
                                       
Nicht verwendet wurden Eizellen der Klasse IV 
 
                                                Abb. 7  COK der Klasse IV 
 

 
                           

 
 
3.4.  BCB-Färbung (Versuch 1) 
 
Für die BCB-Färbung wurde eine  4-Wellschale (Fa. VWR, Darmstadt) verwendet. Die 

Oozyten der Inkubationskontrolle wurden in die linke Vertiefung pipettiert. In dieser 

befanden sich 500µl PBS-Lösung ohne Farbstoff. Die restlichen Oozyten wurden in die 

rechte Vertiefung der Schale überführt. In dieser befanden sich 500µl der Färbelösung 

(26µM BCB in PBS + 0,4% BSA).  Die 4-Wellschale wurde für 90 Min bei 38,5°C und  

maximaler Luftfeuchtigkeit in den Brutschrank (Fa. Memmert, Schwabach) verbracht. 

                           
Nach 90 Minuten erfolgte die Beurteilung  der Zytoplasmafärbung unter dem Mikroskop 

(Axiovert 25, Fa. Zeiss). Die BCB+ Zellen (Zellen mit blauem Cytoplasma) und BCB- 

Zellen (Zellen mit ungefärbtem Zytoplasma) wurden selektiert und in die unteren 

Vertiefungen der 4-Well-Schale verbracht. Für die Selektion der einzelnen COKs 
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wurden feine Glaskapillaren verwendet.  Da für die präzise Selektion sehr feine 

Kapillaren erforderlich waren wurden diese selbst  hergestellt.  

 

Es erfolgte ein Waschschritt in PBS-Lösung und ein Waschschritt in IVM Medium 

(Reifungsmedium, bzw. Maturationsmedium (s. Anhang). 

 
    Abb. 8   Versuchsaufbau der BCB-Färbung 
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Abb. 9 Darstellung einer BCB- und BCB+ Oozyte 
 

 
 
 
3.5 .  IVM 
 
Die IVM wurde für beide Versuche in gleicher Weise durchgeführt. Für die IVM wurden 

10-20ml Reifungsmedium  (s. Anhang), abhängig von der Anzahl der Ovarien, 

hergestellt. Die COK der Kontrollgruppe wurden direkt nach dem Slicing in eine kleine 

Petrischale mit  Reifungsmedium überführt. Es erfolgte ein Waschschritt in einer kleinen 

Petrischale, die ebenfalls mit Reifungsmedium gefüllt wurde. Die COKs wurden in die 

Vertiefungen einer 4-Wellschale, die mit 500µl Reifungsmedium mit einem 

Hormonzusatz gefüllt wurden verbracht. Anschließend an diesen Waschschritt wurden 

die COK in eine identische 4-Wellschale für die Reifung pipettiert. Beim zweiten 

Versuchsabschnitt wurden die COK nach Klassen getrennt in die 4-Wellschalen 

pipettiert. Die Anzahl der Oozyten wurde im Protokoll festgehalten und es erfolgte eine 

Inkubation für 24 Std. bei 38,5°C und 5% CO2 bei maximaler Luftfeuchtigkeit. 

 

Die Oozyten der BCB-Gruppen  und die Inkubationskontrollgruppe wurden nach der 

Inkubation in BCB und dem 1. Waschschritt in PBS in eine mit 500µl Maturations-

medium  pro Well gefüllte 4-Wellschale pipettiert. 
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Es erfolgte eine Inkubation für 24 Std.  bei 38,5°C und 5% CO2  bei maximaler 

Luftfeuchtigkeit. Die Inkubationszeit der BCB-Gruppen wurde um ca. 90 Min. verkürzt, 

da die COK bereits mit dem Farbstoff inkubiert wurden. 

 

3.6.  IVF und Aufbereitung der Spermien 

 

3.6.1. Gewinnung der Spermien 

 

Die IVF wurde für alle Versuchsgruppen in gleicher Weise durchgeführt. 

 

Für die IVF wurde Nebenhodensperma von Katern nach Kastration verwendet. Falls es 

am gleichen Tag verfügbar war, wurde Frischsperma verwendet. 

 

Die Hoden stammen ebenfalls aus Kastrationen vom Tierheim des Münchner 

Tierschutzvereins e. V. und aus verschiedenen Tierarztpraxen in München. Die Hoden 

wurden innerhalb von 1-4 Stunden verwendet. Bis zu diesem Zeitpunkt wurden sie in 

sterilen 50ml Röhrchen (Fa. VWR, Darmstadt) in Transportmedium bei 5°C gelagert. 

Die Hoden wurden aus dem Transportmedium entnommen, der Ductus deferens und 

der Cauda epididymidis  isoliert, das überflüssige Gewebe entfernt und mit Zellstoff 

gesäubert. Bei unmittelbarer Verwendung wurde eine kleine Petrischale mit TL-Medium 

(s. Anhang) und bei Kryokonservierung mit Triladyl (Fa. Minitüb, Tiefenbach) benetzt. 

Das Gewebe wurde dann mit einem Skalpell zerkleinert und mit TL-Medium oder 

Triladyl Verdünner gespült und an der Skalpellklinge ausgedrückt. Das Gewebe wurde 

anschließend mit einer anatomischen Pinzette entfernt. Im Wasserbad wurde das TL-

Medium bzw. der Triladyl Verdünner vor der Verwendung auf Raumtemperatur gebracht. 

 

Bei 400-facher Vergrößerung wurde die Spermiensuspension auf einem angewärmten 

Objektträger unter einem Mikroskop (Olympus CX 41) bezüglich der Vorwärts-

beweglichkeit und Dichte beurteilt. Ab einer Vorwärtsbeweglichkeit von 70% wurde das  

Sperma kryokonserviert. 

 

Die Spermiensuspension wurde 1:1 mit Verdünnermedium verdünnt und in Reaktions-

gefäße (Fa. Eppendorf, Hamburg) aufbewahrt (maximal für 24 Std. im Kühlschrank). 
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3.6.2. Kryokonservierung der Spermien 

 

Für die Kryokonservierung wurde die Spermiensuspension 1:1 mit Triladyl Verdünner 

verdünnt. Die Spermiensuspension wurde nun in 0,25 ml-Straws  (Fa. Minitüb, 

Tiefenbach) aufgezogen. Bei der Befüllung verblieb ein Leerraum von ca. 0,5 cm. Die 

Straws wurden anschließend mit einem Stick verschlossen. Mit einem Folienstift wurden 

die Sticks mit dem Einfrierdatum und einer Nummer versehen. Die 

Vorwärtsbeweglichkeit und Informationen über die Dichte wurden festgehalten. Bei der 

IVF wurde die Nummer der verwendeten Straws auf dem Versuchsprotokoll 

festgehalten. 

 

Die Pailletten wurden auf einem Styroporrack aufgereiht und für 1 Std. bei 5°C im Kühl-

schrank gelagert. Eine Styroporbox wurde mit LN2 gefüllt und in die Nähe des Kühl-

schranks gestellt. Das Rack wurde vorsichtig aus dem Kühlschrank genommen,  in der 

Box auf einen Steg gelegt und die Box wurde verschlossen. Die Straws blieben für 20 

Min. in LN2-Dampf. Anschließend wurden sie in Goblets in einen Stickstoffcontainer zur 

Aufbewahrung verbracht. Die Goblets wurden mit dem Inhalt beschriftet. 

 

3.6.3. Swim-up 

 

Für das Swim-up wurden 2-3 Straws (je nach Qualität) für 10s in einem 38° C warmen 

Wasser aufgetaut. Mit dem Swim-up wurde ca. 1,5 Std. vor Ablauf der Maturationszeit 

der Oozyten begonnen. Für den Swim-up wurden zwei kleine Röhrchen (Fa. Greiner, 

Frikenhausen) im Winkel von 45° in einem Reagenzglasständer aufgestellt. In die 

Röhrchen wurde jeweils 1ml TL-Swim-up- Medium pipettiert. Die Suspension wurde 

vorsichtig unter das Medium abgesetzt. Der Inhalt der Pailletten wurde gleichmäßig auf 

beide Röhrchen verteilt. Die Deckel wurden vorsichtig locker auf die Röhrchen gelegt. 

Der Ständer wurde dann für eine Stunde bei 38,5° C und 5% CO2  in den Brutschrank 

gestellt. Ein leeres Zentrifugenröhrchen (15ml, Fa. Greiner,  Frickenhausen) wurde 

ebenfalls in den Brutschank gelegt. 

 

Bei der Verwendung von Frischsperma wurde der Inhalt der Reaktionsgefäße vorsichtig 

unter die Suspension pipettiert. 
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Nach einer Stunde wurden aus jedem Röhrchen vorsichtig 800µl von oben 

abgenommen und in das Zentrifugenröhrchen pipettiert. Es erfolgte eine Zentrifugation 

bei 700g für 10 Minuten. Nach dem ersten Zentrifugieren wurde das Medium bis zum 

Spermienpellet abpipettiert und mit ca. 1,5 ml Swim-up-Medium aufgefüllt. Nach einer 

weiteren 10 minütigen Zentrifugation wurde erneut der Überstand bis zum 

Spermienpellet entfernt. Mit 40µl Befruchtungsmedium wurde das Pellet durch 

vorsichtiges Auf- und Abpipettieren resuspendiert. 

 

3.6.4. Co-Kultivierung 

 

Die Oozyten wurden aus der Reifungsschale mit möglichst wenig Medium in eine 

Waschschale mit Befruchtungsmedium umgesetzt. Anschließend erfolgte das Umsetzen 

in Befruchtungstropfen. 

 

Für die Herstellung der Befruchtungstropen wurden in eine kleine Petrischale  3 Tropfen 

mit 15µl Befruchtungsmedium pipettiert. Diese wurden mit Öl (Mineralöl Fa.Sigma, 

Steinheim) bedeckt. Anschließend wurden die 3 Befruchtungstropfen mit weiteren 45µl 

Medium aufgefüllt. Die einzelnen Oozytengruppen wurden in jeweils separate Tropfen 

verbracht. 

 

Die Schale wurde dann bis zur Befruchtung in den Brutschrank gestellt. Je nach Dichte 

der Spermiensuspension wurden jedem Befruchtungstropfen 15-30µl zugegeben. Pro 

Befruchtungstropfen wurden 100.000 Spermien zugegeben. Die Dichtebestimmung 

erfolgte mit einer Zählkammer nach Bürker-Türk unter 400-facher Vergrößerung.   Im 

Dunkelfeld unter dem Stereomikroskop erfolgte die Kontrolle der Spermiendichte. 

 

3.7.    IVC 

 

Die Kultivierung erfolgte nach 24 Std. in SOF-Medium (s. Anhang).  In eine kleine 

Petrischale wurden 150µl Topfen Reifungsmedium verbracht und mit Öl überschichtet  

(pro Oozytengruppe  zwei Tropfen). In jeden 2. Tropfen wurde 1 Gruppe  aus den 

Befruchtungstropfen überführt. Mit einer 20ml Pipette erfolgte durch Auf- und 

Abpipettieren die Denudierung der Oozyten. Für einen weiteren Waschschritt wurden 
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die Oozyten in die restlichen Reifungstropfen pipettiert. Die Gruppen wurden bei jedem 

Schritt beibehalten. 

 

Eine 4-Wellschale mit 500µl Kultivierungsmedium Tag 1 (mit Öl überschichtet) wurde 

vorbereitet. Nach dem Waschschritt wurden die Oozyten in die 4-Wellschalen verbracht 

und bis zum Tag 3 im Brutschrank (Fa. Hereus, Hanau) bei 38,5° C, 5% CO2 und 5% O2  

inkubiert. 

 

3.8. Beurteilung der Teilungs- und Blastozystenrate 

 

Am Tag 3 nach der Kultivierung wurden die befruchteten Eizellen ermittelt und die 

Teilungsrate berechnet. Die Beurteilung erfolgte unter dem Stereomikroskop. Alle 

Embryonen mit mindestens 2 gleichmäßigen Blastomeren wurden als geteilt gezählt. 

Vor der Zählung wurden die Zygoten über einen Waschschritt in SOF Medium Tag 4    

(s. Protokoll) überführt. Die Beurteilung der Embryonen erfolgte am Tag 7,8 und 9. 

 

    
 
Abb. 10  Embryo mit 2 Blastomeren        Abb. 11  Blastozyste Tag 8 
  
 
 
3.9. Statistische Auswertung 

 

Zum Vergleich der Versuchsgruppen wurde ein Chi-Square-Test  (Past Version 1.97) 

verwendet. Alle Ergebnisse, die p < 0,05 sind wurden als signifikant gewertet. 
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4.  Ergebnisse 
 
4.1 .  Einfluss der Selektion mit BCB 

 
 
Ziel dieses  Versuchsabschnittes war die Überprüfung der Eignung der BCB-Färbung 

zur Selektion feliner Oozyten für die IVP. Hierfür wurden 682 COK in BCB inkubiert und 

je nach Färbung des Ooplasmas in BCB+ und  BCB- aufgeteilt. Im weiteren Verlauf 

wurde für jede Gruppe die Teilungs- und Blastozystenrate ermittelt. In der BCB+ Gruppe 

wurden 23, in der BCB- Gruppe 26, in der Gruppe der Inkubationskontrolle 18 und in der 

Kontrollgruppe 37 Wiederholungen durchgeführt.    

 
4.1.1.  Anteil der BCB+ und BCB- Oozyten 
 
Von insgesamt 682 COK wurden 45,8%(N=312) als BCB- und 54,2%(N=370) als BCB+ 

klassifiziert. Bei drei Ansätzen wurden nur ungefärbte Oozyten (BCB-) beobachtet.   

 
4.1.2. Teilungsrate 
 
Abb. 12 Teilungsrate des ersten Versuchsabschnittes 
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Neben den 682 COK der Färbegruppe wurden gleichzeitig 239 COK als 

Inkubationskontrolle und 666 COK als Kontrolle fertilisiert und bis zum Tag 9 kultiviert. 

Bei einer Gesamtzahl von 1587 COK wurden am Tag 3 522 COK (32,9%) als geteilt 

beurteilt. 

 

Bei den BCB+ Oozyten (44,1%) konnte eine signifikant höhere Teilungsrate  als bei den  

BCB- Oozyten (18,9%) sowie den Oozyten der Kontrollgruppe (32,7%) festgestellt wer-

den. Die Teilungsrate der Oozyten der Inkubationskontrolle (34,3%) war signifikant 

höher zur Teilungsrate der BCB- Oozyten. Zwischen den Teilungsraten der  beiden 

Kontrollgruppen bestand kein signifikanter Unterschied (Abb. 13).  

 
4.1.3. Blastozystenrate 
 
Die Blastozystenrate wurde am Tag 7, 8 und 9 post fertilisationem beurteilt. Die 

Beurteilung der Blastozysten erfolgte nach den Richtlinien der IETS (International 

Embryotransfer Society).  Bei der Gesamtzahl von 1587 COK betrug die 

Blastozystenrate 10.9% bezogen auf die Anzahl der verwendeten COK bzw. 32,9% 

bezogen auf die Teilungsrate. Bezogen auf die Gesamtzahl der verwendeten COK 

(BCB+: n=370, BCB-: n= 312) zeigten die BCB+ Oozyten eine Blastozystenrate von 

11,4% und die BCB- Oozyten eine Blastozystenrate von 5,8%. Dieser Unterschied in 

der Blastozystenrate war signifikant (Abb. 13). Es konnte kein signifikanter Unterschied 

zwischen der Blastozystenrate der BCB+ Oozyten und den beiden Kontrollgruppen (IK: 

13%, K: 12,2%) festgestellt werden. Die Blastozystenraten der Kontrollgruppen waren 

jedoch signifikant höher als die Blastozystenrate der BCB- Oozyten. Wurde die 

Blastozystenrate auf die geteilten Oozyten bezogen (Abb. 14), zeigte sich lediglich ein 

signifikanter Unterschied in der Blastozystenrate zwischen BCB+ Oozyten und der 

Kontrollgruppe (BCB+: 25,8%, K: 37,2%). 

 

 

 

 

 

 

 

 



 38 

Abb. 13 Blastozystenrate des ersten Versuchsabschnittes 
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Abb. 14  Blastozystenrate/ geteilte Eizellen des 1. Versuchsabschnittes  
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4.2. Einfluss des Alters der Spenderkatzen auf die IVP 
 
 
Beim zweiten Versuchsabschnitt  wurden die Spenderkatzen in drei Altersgruppen 

aufgeteilt. Altersgruppe 1 enthielt die Oozyten der Spenderkatzen bis 9 Monate. In die  

Altersgruppe 2 wurden die Oozyten der Spendertiere, die älter als 9 Monate und jünger 

als 24 Monate waren, zugeordnet. Oozyten von Spenderkatzen, die älter als 24 Monate 

waren, wurden in die Altersgruppe 3 eingeteilt. In allen Altersgruppen wurden  die 

Oozyten nach COK-Klassen I-III (s. Tab. 1) getrennt der IVP unterzogen. Insgesamt 

wurden 258 Oozyten verwendet. Davon entfielen 138 Oozyten auf die Altersgruppe 1, 

57 Oozyten auf die Altersgruppe 2 und 63 Oozyten auf die Altersgruppe 3. Die Zahl der 

Wiederholungen in den Altersgruppen 1,2 und 3 betrugen 5,3 bzw. 5. 

 

4.2.1. Anteil der verschiedenen COK-Klassen innerhalb einer Altersgruppe  
 
 
Abb. 16 zeigt die Anteile der verschiedenen COK-Klassen in den einzelnen 

Altersgruppen. Bei den Spenderkatzen aller Altersgruppen wurde der größte Anteil der 

COK der COK-Klasse III zugeordnet. Bei den Spenderkatzen der Gruppe 1 lag der  

Anteil an Klasse III COK bei 73,2% und war damit höher als die Anteile an Klasse I und 

II zusammen.  

 

Die Unterschiede zwischen den einzelnen COK-Klassen waren in dieser Gruppe alle 

signifikant. Bei den COK der Gruppe 2 war lediglich der Unterschied zwischen Klasse II 

und III signifikant. Die Spendertiere der Gruppe 3 wiesen einen signifikant höheren 

Anteil an Klasse III COK im Vergleich zu den Klassen I und II auf (54% zu 20,6% bzw. 

25,4%). Im Vergleich der Altersgruppen untereinander ist der Anteil an Klasse III COK in 

der Altersgruppe 1 signifikant höher als in den Gruppen 2 und 3. 
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Abb. 15  Anteil der verschiedenen COK-Klassen innerhalb einer Altersgruppe 
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Unterschiedliche Buchstaben p < 0,05 
 
 
4.2.2. Vergleich der Altersgruppen ohne Berücksichtigung der COK-Klassen 

 

Teilungsrate 

 

Die Teilungsrate war in der Altersgruppe 3 mit 50,8% signifikant höher als in den 

anderen Altersgruppen (Abb. 16). 

 
                   Abb. 16 Teilungsraten in den Altersgruppen 
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Blastozystenrate 
 
Anschließend erfolgte die Ermittlung der Blastozystenrate zunächst für die Gesamtzahl 

der  COK und dann bezogen auf  die geteilten Eizellen, für jede  Altersgruppe getrennt 

(s. Abb. 17). Hier ergaben sich keine Signifikanzen. 

 
 
                   Abb. 17 Blastozystenraten in den Altersgruppen bezogen auf 
         die Gesamtzahl und geteilten Oozyten 
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Die Blastozystenraten bezogen auf die Gesamtzahl der COK schwankten zwischen 

5,3% (Gruppe2), 7,2% (Gruppe 1) und 14,3% (Gruppe 3).  Bezogen auf die Teilungsrate 

wurde eine Blastozystenrate von 16,7% (Gruppe 2), 24,4% (Gruppe 1) und 28,1% 

(Gruppe 3) erreicht.  Die Unterschiede bei beiden Vergleichen waren nicht signifikant. 

 
 
4.2.3. Vergleich der Altersgruppen mit Berücksichtigung der COK-Klassen 
 
Teilungsrate 
 
Zunächst wurden die Teilungsraten zwischen den Klassen innerhalb einer Altersgruppe 

verglichen (Abb. 18). Die höchste Teilungsrate (48,1%) wurde in der Altersgruppe 1 bei 

den Oozyten der Klasse II beobachtet. Dieser war signifikant höher als bei den Oozyten 

der Klasse III. Bei den Katzen im Alter zwischen 10 und 24 Monaten (Gruppe 2) gab es 

keine signifikanten Unterschiede bezüglich der Teilungsraten der verschiedenen COK-
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Klassen. In der Altersgruppe 3 (>24 Monate) wiesen die COK der Klasse I eine 

Teilungsrate von 84,6% auf. Die niedrigste Teilungsrate wurde mit den COK der Klasse 

III erzielt (35,3%; p < 0,05). Beim Vergleich der Teilungsraten der COK-Klassen 

bezogen auf die Altersgruppen ergab sich nur eine Signifikanz bei der Altersgruppe 1, 

bei den Klassen II und III (36,8% zu 84,6%) und I und III (40% zu 84,6%). Der Vergleich 

der Klassen I und II war nicht signifikant. Bei den Vergleichen innerhalb der Gruppen 2 

und 3 ergaben sich keine Signifikanzen. 

 
 
Abb. 18  Teilungsraten der COK-Klassen innerhalb der Altersgruppen 
 

 
a:b p<0,05 
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Abb. 19 Teilungsraten der Altersgruppen innerhalb der COK-Klassen 
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Blastozystenrate  
 
Bei der Betrachtung der Blastozystenrate bezogen auf die Gesamtzahl der COK wurden 

Raten zwischen 0% und 25% ermittelt. Bezogen auf die Teilungsrate ergaben sich 

Blastozystenraten zwischen 0% und 50%. Aufgrund der geringen Anzahl an 

Blastozysten waren die ermittelten Unterschiede nicht signifikant bzw. nicht statistisch 

auswertbar.   

 
4.3.  Einfluss der verschiedenen COK-Klassen  
 

In diesem Abschnitt soll der Einfluss der verschiedenen COK-Klassen ohne 

Berücksichtigung des Alters der Spenderkatze auf das Ergebnis einer IVP überprüft 

werden.  
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4.3.1. Anteil der verschiedenen COK-Klassen  
 
Von insgesamt 258 COK wurden 16,3% (n=42) als Klasse I klassifiziert, 21,3% (n=55) 

als Klasse II und 62,4% (n=161) als Klasse III (Abb. 20). Es wurde somit ein signifikant 

höherer Anteil an COK der Klasse III gewonnen. 

 

                   Abb. 20 Verteilung der COK-Klassen 
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4.3.2. Teilungsrate in den verschiedenen COK-Klassen 
 
Am Tag 3 post fertilisationem zeigten die Oozyten (Abb. 21) der Klasse I (52,4%, 22/42) 

und Klasse II (47,3%, 26/55) eine signifikant höhere Teilungsrate im Vergleich zu den 

Oozyten der Klasse III (26,7%, 43/161). 
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                   Abb. 21 Teilungsrate in den verschiedenen COK-Klassen 
 

52,4%
47,3%

26,7%

0%

10%

20%

30%

40%

50%

60%

70%

Klasse I Klasse II Klasse III

a
a

b

 
                   a:b  p < 0,05 
 
 
4.3.3. Blastozystenraten in den verschiedenen COK-Klassen 
 
Tab. 2 Blastozystenraten in den verschiedenen COK-Klassen  
 

Klasse Anzahl 
COK/Blastozyste 

Blastozystenrate/COK 
(%) 

Blastozystenrate/geteilte Eizellen     
(%) 

I 42/4 9,5 18,2 

II 55/7 12,7 26,9 

III 161/1 6,8 25,6 

 
 
 

Beim Vergleich der Blastozystenraten der verschiedenen COK-Klassen konnte kein 

signifikanter Unterschied festgestellt werden. Bei der Betrachtung der absoluten Zahlen 

der Blastozystenrate bezogen auf die Gesamtzahl an COK konnte eine erhöhte 

Blastozystenrate der Oozyten der Klasse II beobachtet werden.    
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5. Diskussion 
 

Die Ergebnisse der In vitro Produktion von Embryonen (IVP) bei der Hauskatze, lassen 

sich auf wildlebende Großkatzen übertragen. So dient die Hauskatze als Modelltier für 

die Reproduktionstechniken bei den Großkatzen, die damit zur Erhaltung von 

Genmaterial von gefährdeten Großkatzen beitragen können. Bei der sehr gut etablierten 

IVP boviner Embryonen konnte bereits in mehreren Studien gezeigt werden, dass die 

Eizellqualität eine entscheidende Rolle für den Erfolg einer IVP spielt. Auch bei der 

Katze wird jetzt intensiv im Bereich der Entwicklungskompetenz von Eizellen gearbeitet. 

Unter anderem sollen nicht invasive Methoden für die Selektion von Oozyten etabliert 

werden. Eine Selektion entwicklungskompetenter Oozyten könnte zu einer Erhöhung 

der Blastozystenrate nach einer IVP beitragen. 

 

Die BCB-Färbung hat sich inzwischen zur Beurteilung der Entwicklungskompetenz von 

Oozyten bewährt. Es liegen hierzu bereits Untersuchungen an Oozyten verschiedener 

Spezies vor, so z.B. beim Rind  (Pujol et al. 2000, Pujol et al. 2004,  Alm et al. 2005, 

Bhojwani et al. 2007, Torner et al. 2008), beim Büffel (Manjunatha et al. 2007),  bei der 

Ziege (Rodriguez-Gonzales et al. 2002, Rodriguez-Gonzales et al. 2003, Urdaneta et al. 

2003), beim Schwein (Ericson et al.1993, Roca et al. 1998, Wongsrikeao et al. 2006), 

beim Hund (Rodrigues et al. 2009),  beim  Pferd (Mlodawska et al. 2005) und bei der 

Maus (Wu et al. 2007).   

 
In der vorliegenden Arbeit sollte im ersten Versuchsabschnitt die BCB-Färbung im 

Hinblick auf die Selektion kompetenter feliner Oozyten überprüft werden. Zunächst 

wurden, ohne Berücksichtigung des Alters der Spenderkatzen, COK mit BCB inkubiert, 

danach in vitro maturiert, fertilisiert und bis zum Tag 9 nach der IVF kultiviert. 

 

Der BCB-Test ermöglicht die Bestimmung der Aktivität des Enzyms G6PDH. G6PDH ist 

ein Enzym des Pentosephosphatweges und ist aktiv in wachsenden Oozyten (Maus: 

Mangia und Epstein 1975). Oozyten, die ihre Wachstumsphase beendet haben, zeigen 

einen Abfall der G6PDH-Aktivität. Nach Inkubation von Cumulus-Oozyten-Komplexen in 

BCB wird in Oozyten mit aktiver G6PDH der Farbstoff entfärbt (Schwein: Ericsson et al. 

1993). Bei Oozyten, denen das aktive Enzym fehlt, ist diese Entfärbung nicht möglich 

und die Oozyten behalten nach ihrer Inkubation ein blaues Ooplasma. Wachsende 
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Oozyten zeigen eine schlechtere Entwicklungskompetenz im Rahmen einer IVP als 

Oozyten, die ihre Wachstumsphase bereits abgeschlossen haben. (Rind: Hyttel et al. 

1997). 

 

Die bereits vorliegenden Studien bei anderen Spezies konnten nachweisen, dass sich 

die BCB-Färbung nicht negativ auf die Vitalität der behandelten Oozyten auswirkt. 

Manjunatha et al. (2007) haben in ihrer Studie mit Büffeloozyten die Eignung 

verschiedener Konzentrationen von BCB überprüft. Die Oozyten wurden mit einer 

Konzentration von 13µM BCB, 26µM BCB und 39µM BCB inkubiert. Im Ergebnis hat 

sich gezeigt, dass es einen Anstieg der Blastozystenrate bei einer Erhöhung der BCB-

Konzentration bis 26µM gab. Eine weitere Erhöhung der Konzentration führte  zu einem 

Abfall der Blastozystenrate. In einer Studie von Tiffin et al. 1991 an Rinderoozyten 

wurde ebenfalls nachgewiesen, dass die Verwendung einer Konzentration von 26µM 

BCB am effektivsten ist. Bei Rodriguez-Gonzales et al. (2002) wurden Untersuchungen 

an Ziegenoozyten zu verschiedenen Konzentrationen von BCB durchgeführt. Auch hier 

zeigte sich, dass eine Konzentration über 26µM eher zu einer Abnahme der 

Embryonenrate führt. Aufgrund dieser Ergebnisse wurde bei der vorliegenden Studie 

eine Konzentration von 26µM BCB verwendet. 

 

Im ersten Schritt wurde  das Verhältnis von BCB+ und BCB- Oozyten ermittelt. Von 

insgesamt 682 COK waren 54,2% BCB+ und 45,8% BCB-. Der in dieser Arbeit 

ermittelte Anteil an BCB+ Oozyten ist mit den ermittelten Werten anderer Arbeiten 

vergleichbar. Alm et al. (2005) konnten in ihren Untersuchungen an Rinderoozyten 

einen Anteil von 57,9% BCB+ Oozyten beobachten. Bhojwani et al. (2007) erhielten in 

ihrer Studie mit Rinderoozyten einen Anteil von 59,4% BCB+ Oozyten. Ähnliche 

Ergebnisse wurden beim Büffel (Manjunatha et al. 2007: 57,2% BCB+) und beim 

Schwein (Ishizaki et al. 2009: 65,2% BCB+) erzielt.  Bei Mlodawska et al. (2007) waren 

die Ergebnisse bei Untersuchungen mit Pferdeoozyten unterschiedlich je nach COK 

Klasse und Follikelgröße.  Katska-Ksiazkiewicz et al. (2007) erhielten bei 

Untersuchungen mit Oozyten von adulten Ziegen 85,6% BCB+ Oozyten. 

Zusammenfassend kann gesagt werden, dass in den meisten Studien ein Anteil von 50-

80% der Oozyten als BCB+ selektiert wurde. Interessant ist hierbei, dass meistens 

bereits nach morphologischen Kriterien selektierte COK für die BCB-Färbung verwendet 

wurden.  Dennoch findet sich nach der BCB-Färbung ein hoher Prozentsatz an Oozyten 
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mit geringerer Entwicklungskompetenz (BCB-).  Die Ergebnisse der Studien zeigen, 

dass die Selektion der Oozyten nach morphologischen Kriterien allein nicht ausreichend 

ist und unterstreicht den heterogenen Charakter von Eizellen, die aus Follikeln 

verschiedener Größe und Entwicklungsstand gewonnen wurden. Auch in der 

vorliegenden Studie findet sich dieses Phänomen. Obwohl nur nach morphologischen 

Kriterien geeignete Oozyten verwendet wurden, werden 45,8% der Oozyten nach der 

BCB-Färbung als „ungeeignet“ selektiert.  

 

Ein höherer Anteil BCB- Oozyten konnte in Studien mit präpubertären Oozyten 

beobachtet werden. Rodriguez-Gonzalez et al. (2002) haben eine Studie mit 

präpubertären Ziegen durchgeführt und erhielten 30,1% BCB+ Oozyten und 69,9% 

BCB- Oozyten. Tagawa et al. (2007) erhielten in ihrer Studie mit Kälberoozyten 65,6% 

BCB- Oozyten.  Bei präpubertären Oozyten bestätigt die BCB-Färbung somit die 

schlechtere Entwicklungskompetenz im Vergleich zu adulten Oozyten.  

 

In der vorliegenden Studie konnte eine signifikant höhere Teilungsrate in der Gruppe 

der BCB+ Oozyten beobachtet werden.  Für die Teilungsrate ergaben sich signifikante 

Differenzen zwischen BCB+ und BCB-, BCB+ und Kontrollgruppe und zwischen BCB- 

und die Inkubationskontrolle. Ähnliche Ergebnisse finden sich auch bei anderen Spezies 

(Rind: Opiela et al. 2008; Büffel: Manjunatha et al. 2007; Schwein: Ericsson et al. 1993, 

Roca et al. 1998, Wongsrikeao et al. 2006; Ziege: Rodriguez-Gonzalez et al. 2003, 

Katska-Ksiazkiewicz et al. 2007). Einige Arbeitsgruppen konnten hingegen keine höhere 

Teilungsrate bei BCB+ Oozyten im Vergleich zu BCB- Oozyten nachweisen (Rind: Alm 

et al. 2005, Torner et al. 2008; Ziege: Rodriguez-Gonzalez et al. 2002; Schwein: Ishizaki 

et al. 2009).  

 

In allen bisher vorliegenden BCB-Studien findet sich eine höhere Blastozystenrate bei 

den BCB+ Oozyten im Vergleich zu BCB-. Diese Ergebnisse lassen sich auch bei der 

vorliegenden Studie an Katzeneizellen für die Blastozystenrate (bezogen auf die Anzahl 

der COK) nachweisen. Die BCB-Färbung ist demnach auch für die Selektion 

entwicklungskompetenter feliner Oozyten geeignet. Allerdings zeigt sich auch in der 

vorliegenden Arbeit das Phänomen, dass  BCB+ Oozyten zwar eine signifikant höhere 

Blastozystenrate als die BCB- Oozyten zeigen und somit eine höhere 

Entwicklungskompetenz aufweisen, allerdings fehlt ein Anstieg der allgemeinen 
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Blastozystenrate (Bols et al. 2007). Bei allen Spezies gelang es nicht, die allgemeine 

Blastozystenrate, die bei einer IVP bisher erzielt wird, zu steigern.  

 

Die Selektion von Eizellen mittels BCB-Färbung kann einen wichtigen Beitrag zum 

besseren Verständnis der Entwicklungskompetenz von Eizellen leisten. Hierzu wurde in 

einigen Studien versucht, die BCB+ Oozyten verschiedener Spezies genauer zu 

klassifizieren. Dies ist ein interessanter Ansatz zur weiteren Aufklärung geeigneter 

Parameter für die Beurteilung der Entwicklungskompetenz von Oozyten. Rodriguez-

Gonzalez et al. (2002) haben bei Untersuchungen mit Ziegenoozyten festgestellt, dass 

ein höherer Anteil von BCB+ Oozyten die Metaphase II erreicht als BCB- Oozyten und 

unbehandelte Oozyten. Die unterschiedliche Kinetik der Kernreifung bei BCB+ und 

BCB- Oozyten wird ebenfalls von weiteren Studien bestätigt (Rind: Alm et al. 2005; 

Schwein: Egerszegi et al. 2010; Büffel: Manjunatha et al. 2007; Pferd: Mlodawska et al. 

2005; Ziege: Rodriguez-Gonzalez et al. 2002). Torner et al. (2008) untersuchten bovine 

BCB-selektierte Oozyten auf molekularer und subzellulärer Ebene. Dabei zeigten BCB+ 

Oozyten eine signifikant höhere Phosphorylierung von Akt und MAP-Kinase (mitogen-

activated protein) und wiesen eine hohe Expression von Genen der 

Translationsregulation, der Regulation des Zellzyklus sowie der Proteinbiosynthese auf. 

BCB- Oozyten zeichneten sich durch eine höhere mitochondriale Aktivität und 

nachweisbare Nucleoli im GV aus. Des Weiteren exprimierten BCB- Oozyten vor allem 

Gene der ATP-Synthese, des mitochondrialen Elektronentransportes und der 

Calciumbindung.   

 

Neben der Überprüfung der Eignung der BCB-Färbung zur Selektion von Eizellen für die 

IVP gibt es weitere Ansätze zur Nutzung der BCB-Färbung. So untersuchten Bhojwani 

et al. (2007) die Eignung der BCB-Färbung zur Selektion von bovinen Oozyten für die 

Verwendung im Kerntransfer. Auch hier zeigten die BCB+ Oozyten eine bessere 

Entwicklungskompetenz.  

 

Eine große Anzahl von Oozyten erreichen nach In vitro Maturation, Fertilisation und 

Kultivierung nicht das Blastozystenstadium. In vivo liegt der Anteil von felinen Oozyten, 

die nach der Befruchtung das 2-Zellstadium erreichen, bei 60-80% (Johnston et al. 

1991b), In vitro hingegen nur bei ca. 25% (Wood et al. 1995). Sicherlich spielen 
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suboptimale Bedingungen bei der IVP eine Rolle. Die Medien und Zusätze werden 

meist in Anlehnung an die IVP beim Rind gewählt  (Freistedt et al. 1999). 

 

Bei der Betrachtung der Ergebnisse dieser Arbeit im Vergleich zu anderen Studien zur 

IVP bei der Katze wird deutlich, dass die erzielten Teilungs- und Blastozystenraten im 

unteren Bereich liegen. Als Ursache für die geringen Raten kommen verschiedene 

Aspekte in Betracht. Zum einen könnte der saisonale Zeitpunkt der Gewinnung  der 

COK einen Einfluss auf die Teilungs- und Blastozystenrate haben. In der vorliegenden 

Studie erfolgte die Gewinnung der über das gesamte Jahr hinweg, so dass saisonale 

Einflüsse nicht berücksichtigt werden konnten.  Bei einigen Studien zur IVP bei der 

Katze erfolgte die Gewinnung der COK nur zu eingegrenzten Jahreszeiten. Bei Freistedt 

et al. (2001a) wurden bei der IVF vier Saisonzeiten unterschieden (Jan.- Mär., Apr.-Jun., 

Jul.-Sep. und Okt.-Dez.). Die Teilungsraten waren im Zeitraum von Apr. – Jun. und Jul.- 

Sep. signifikant höher (53,1% und 54,6%). Die Blastozystenrate war in der Saison  von 

Oktober bis Dezember  mit 23,6% signifikant niedriger als bei den Zeiten von Jan. – Sep.  

Bei Karja et al. (2002) wurden die Oozyten nur im Zeitraum April bis Juni gewonnen. Die 

Teilungsrate lag hier bei 65% und die Embryonenrate bei 32%. Dies könnte zu dem 

Schluss führen, dass bei der Katze saisonale Einflüsse auf Teilungs- und 

Blastozystenrate vorliegen.  

 
Im zweiten Abschnitt  dieser Studie wurde der Einfluss des Alters der Spenderkatzen 

auf die Teilungs- bzw. Blastozystenrate untersucht. Beim ersten Versuchsabschnitt 

stammte ein großer Teil der Ovarien zur Eizellgewinnung  aus  Kastrationen des 

Münchner Tierschutzvereins. Da  es sich hierbei meist um Fundkatzen handelte, war 

das Alter der Spenderkatzen oft nicht bekannt. Aus diesem Grund  konnte dieser 

Parameter im ersten Versuchsteil nicht erfasst werden. 

 

Im zweiten Versuch konnte eine Unterteilung in drei Altersgruppen vorgenommen 

werden. In der Altersgruppe 1 wurden die Spendertiere bis zu einem Alter von neun 

Monaten (präpubertäre Tiere) erfasst. Die Altersgruppe 2 umfasst  die Spendertiere im 

Alter  von 10 bis 24 Monaten. In die Altersgruppe 3 wurden die Tiere zusammengefasst,  

die zum Kastrationszeitpunkt älter als 24 Monate waren. Auch bei anderen Studien mit 

felinen Oozyten  wurde versucht, Unterschiede im Bezug auf die Eizellqualität bei 

präpubertären und adulten Spendertieren zu erfassen. Bei Martins et al. (2009) wurden 
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die Oozyten nach der Maturation fixiert und die Ultrastruktur elektronenmikroskopisch 

untersucht. Es zeigte sich, dass nur die Oozyten der Gruppe der adulten Tiere eine 

ansteigende Zahl an Mikrovilli aufwies. Eine hohe Zahl an Mikrovilli bedeutet eine 

größere Entwicklungskompetenz. Bei den Oozyten von präpubertären Spenderkatzen 

war der Anteil von Mikrovilli wesentlich geringer.   

 

Im zweiten Versuchsabschnitt wurden auch die Anteile der verschiedenen COK-Klassen 

in den einzelnen Altersgruppen erfasst. Bei allen Altersgruppen war der Anteil an COK 

der Klasse III (wenig Cumulus oophorus, inhomogenes Ooplasma)  am größten. Der mit 

73,2 % signifikant höchste Anteil wurde in der Altersgruppe 1 (jünger als 9 Monate) 

beobachtet.  Dies könnte bedeuten, dass die Oozyten von präpubertären Tieren über 

eine geringere Entwicklungskompetenz verfügen.  Dies kann auch die geringe 

Blastozystenrate im ersten Versuchsteil erklären, bei dem wahrscheinlich viele 

präpubertäre Spenderkatzen verwendet wurden. 

 

Bei der Betrachtung der Teilungsrate zeigte sich, dass die Teilungsrate der COK der 

Altersgruppe über 2 Jahren mit 50,8% signifikant höher war, als die Teilungsrate der 

andern Altersgruppen.  In einer Studie, bei der nur adulte Tiere verwendet wurden 

(Karja et al. 2002a), wurden mit einer Teilungsrate von 65.1% und einer Embryonenrate 

von 32% sehr gute Ergebnisse erzielt. Damit liegt die Vermutung nahe, dass die 

Oozyten adulter Spenderkatzen eine größere Entwicklungskompetenz besitzen. Bei 

verschiedenen Spezies gibt es auch schon Untersuchungen zum Zusammenhang 

zwischen dem Alter der Spendertiere und der Teilungs- bzw. Blastozystenrate. Pujol et 

al. (2004) haben die Entwicklungskompetenz von Oozyten der Färse im Vergleich zu 

denen des Rindes untersucht und dabei festgestellt, dass die Oozyten von adulten 

Kühen eine größere Kompetenz für die IVP hatten, als die Färsenoozyten der 

Kontrollgruppe. Wiederholt wurde festgestellt, dass Oozyten von Kälbern und Lämmern 

weniger entwicklungskompetent sind, als die von adulten Tieren (O`Brien et al. 1996, 

Khatir et al. 1998, Revel et al. 1995). 

 

In den Studien zur IVP bei der Katze variiert die Blastozystenrate zwischen  10 – 50% 

(Wolfe und Wildt 1996, Wood und Wildt 1997, Pope et al. 1997, Freistedt et al. 1999, 

Swanson et al. 1999). Die hier im Versuch ermittelten Blastozystenraten liegen unter 

den in anderen Studien erzielten Ergebnissen. Eine mögliche Ursache der geringen 
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Teilungs- und Blastozystenrate könnte in der Qualität des verwendeten Spermas liegen. 

Für die IVF bei der Katze wird Sperma unterschiedlicher Herkunft verwendet. Einige 

Studien verwenden Sperma, das durch Elektroejakulation bzw. durch Verwendung einer 

künstlichen Scheide gewonnen wurde. Diese Ejakulate besitzen meist eine gute Qualität 

hinsichtlich Konzentration und Motilität. Swanson et al. (1996)  erzielten in ihrer Studie 

mit  Sperma, das durch Elektroejakulation gewonnen wurde, eine Teilungsrate von ca. 

80% und eine Blastozystenrate von ca. 30% (je nach Art des verwendeten Mediums). 

Comizzoli et al. (2006) nutzen für die IVF Sperma, das nach Elektroejakulation 

gewonnen wurde und erreichten eine Blastozystenrate von 21%. Wood und Wildt (1997) 

erreichten mit Sperma, das mit Hilfe einer künstlichen Vagina gewonnen wurde, eine 

Teilungsrate von 18% und eine Blastozystenrate von ca. 10%. Gomez et al. (2000) 

haben bei ihrer Studie Sperma, das durch eine künstliche Vagina gewonnen wurde, für 

das Verfahren der intrazytoplasmatischen Spermieninjektion (ICSI) verwendet. Sie 

erhielten eine Teilungsrate von 60,3 % und eine Blastozystenrate von 22,9%. 

 

In der vorliegenden Studie wurde Nebenhodensperma aus den Organen kastrierter 

Kater verwendet. Dies weist in der Regel eine schlechtere Ausgangsqualität im 

Vergleich zu den anderen Gewinnungsmethoden auf. Außerdem musste das 

gewonnene Nebenhodensperma zur besseren Verfügbarkeit kryokonserviert werden. 

Die Kryokonservierung führte zu einer weiteren Abnahme der Spermaqualität. Ein 

weiterer Grund für die schlechtere Qualität des verwendeten Spermas könnte das Alter 

der Spenderkater sein, da meist sehr junge Kater kastriert wurden. In Studien in denen  

Nebenhodensperma kastrierter Kater verwendet wurde, wurden teilweise sehr hohe 

Teilungsraten erzielt (60%: Pope et al. 2006; 60%: Comizzoli et al. 2006; 80%: Bogliolo 

et al. 2001, Karja et al 2002; 65,1%), die erzielten Blastozystenraten liegen aber 

teilweise in einem ähnlichen Bereich wie in den eigenen Arbeiten.  Bei einer Studie mit 

ICSI  mit Nebenhodensperma erhielten Bogliolo et al. (2001) eine Teilungsrate von 

82,2 % und eine Blastozystenrate von 6,6%. Zur besseren Beurteilung dieser 

Ergebnisse wäre ein Vergleich des Alters der verwendeten Kater interessant, dies wird 

aber in der Regel in den Studien nicht angegeben.  

 

Ein weiteres Problem bei der IVF von felinen Oozyten liegt darin, dass für jeden 

Versuchsansatz häufig unterschiedliche Ejakulat verwendet werden müssen. Dadurch 

ergeben sich Schwankungen zwischen den einzelnen Wiederholungen. In der bovinen 
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IVF besteht dieses Problem nicht, da hier für die einzelnen Wiederholungen jeweils das 

gleiche Ejakulat eines vorher getesteten Bullen verwendet wird.     

 
 
Schlussfolgerung: 

 

Zusammenfassend kann festgestellt werden, dass die BCB-Färbung für die Selektion 

kompetenter Oozyten bei der Katze geeignet ist. Eine Nutzung nur von adulten 

Oozytenspendern, eine weitere Optimierung der Kulturbedingungen und die 

Verwendung geeigneter Samenspender kann zu besseren Ergebnissen beitragen.  
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6. Zusammenfassung 
 
 
 

Es sollte untersucht werden, ob bei der Katze mit Hilfe der Brillantcresylblau-Färbung 

(BCB) entwicklungskompetente Oozyten für die In-Vitro-Produktion selektiert werden 

können. Zusätzlich wurde der Einfluss des Alters der Spenderkatzen auf die Teilungs- 

bzw. Blastozystenrate der Eizellen untersucht. 

 

Im ersten Versuchsabschnitt standen 1587 Cumulus-Oozyten-Komplexe (COK), die aus 

Ovarien nach Kastration von Katzen unbekannten Alters gewonnen wurden, zur 

Verfügung. Zur Kontrolle des Inkubationseffekts vor der in vitro Maturation (IVM) wurden 

239 COK für 90 Minuten in 0,4%igem BSA bei 38,5°C inkubiert und danach in vitro 

gereift, befruchtet und bis zu 8 Tage kultiviert. 682 COK wurden vor der IVM für 90 Min. 

bei 38,5°C mit 26µM BCB gelöst in DPBS + 0,4% BSA behandelt. BCB-positive (blaues 

Zytoplasma, niedriges G6PD) und BCB-negative Oozyten (farbloses Zytoplasma, 

höhere G6PD) wurden danach getrennt in vitro gereift, befruchtet und bis zu 8 Tage 

kultiviert. Als Kontrollgruppe wurden 666 COK direkt nach der Gewinnung in vitro gereift, 

befruchtet und bis zu 8 Tage kultiviert.  Der Anteil der BCB+ Oozyten betrug 54,3%. 

BCB+ Oozyten wiesen am Tag 3 eine signifikant höhere Teilungsrate (bezogen auf alle 

Oozyten) als BCB- Oozyten (44,1% gegenüber 18,9%) auf. Oozyten der Kontrollgruppe 

hatten eine Teilungsrate von 32,7%. Oozyten der Inkubationskontrolle hatten eine 

signifikant höhere Teilungsrate (34,3%) als BCB- Oozyten. Die BCB+ Oozyten zeigten 

eine Blastozystenrate (bezogen auf die Gesamtzahl der COK) von 11,4% und die BCB- 

Oozyten eine Blastozystenrate von 5,8% (Differenz p<0,05). Es konnte kein signifikanter 

Unterschied zwischen der Blastozystenrate der BCB+ Oozyten und der 

Inkubationskontrolle (13%) oder der Kontrollgruppe (12,2%) festgestellt werden. Bei der 

Blastozystenrate, die auf die geteilten Oozyten bezogen wurde, zeigte sich ein 

signifikanter Unterschied zwischen BCB+ Oozyten und der Kontrollgruppe (25,8% 

gegenüber 37,2%). 

 

Für den zweiten Versuch wurden nur Spendertiere mit bekanntem Alter zum 

Kastrationszeitpunkt verwendet. Gruppe 1 bestand aus präpubertären Spendertieren (< 

9 Monate; 138 COK). Gruppe 2 umfasste  COK (n = 57) von Spendertieren im Alter  von 



 55 

10 bis 24 Monaten. In Gruppe 3 wurden COK (n = 63) von Spendertieren verwendet, die 

zum Kastrationszeitpunkt älter als 24 Monate waren. Die COK (n = 258) wurden nach 

der Gewinnung morphologisch beurteilt und in 3 Klassen eingeteilt. Bei den 

präpubertären Tieren (Gruppe 1) lag der Anteil von COK in Klasse III (wenig 

Cumuluszellen, heterogenes Ooplasma) bei 73,2%. Dies war signifikant höher als die 

Anteile bei älteren Tieren (Gruppe 2 45,6%, Gruppe 3 54,0%). 

 

Beim Vergleich der Altersgruppen mit Berücksichtigung der COK-Klassen wurde die 

höchste Teilungsrate (48,1%) in der Altersgruppe 1 bei den Oozyten der Klasse II 

beobachtet. Bei den Katzen bis 24 Monate (Gruppe 2) gab es keine signifikanten 

Unterschiede bezüglich der Teilungsraten der verschiedenen COK-Klassen. In der 

Altersgruppe 3 (>24 Monate) wiesen die COK der Klasse I eine Teilungsrate von 84,6% 

auf. Die niedrigste Teilungsrate wurde bei allen Altersgruppen mit den COK der Klasse 

III erzielt (35,3%; Differenz p < 0,05). 

 

Die Blastozystenrate bezogen auf die Gesamtzahl der COK schwankte zwischen 0% 

und 25% in den verschiedenen Gruppen. Bezogen auf die Teilungsrate ergaben sich 

Blastozystenraten zwischen 0% und 50%. Aufgrund der geringen Anzahl an 

Blastozysten ergaben sich keine signifikanten Unterschiede zwischen den Gruppen bzw. 

den COK-Klassen.  

 

Zusammenfassend kann festgestellt werden, dass die BCB-Färbung für die Selektion 

kompetenter Oozyten bei der Katze geeignet ist. Eine Nutzung nur von adulten 

Oozytenspendern, eine weitere Optimierung der Kulturbedingungen und die 

Verwendung geeigneter Samenspender kann zu besseren Ergebnissen beitragen.  
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6. Summary 
 
Selection of feline oocytes using brilliant cresyl blue test (BCB) 
 
 
The aim of this study was to investigate the effect of oocyte selection via BCB test on 

the in vitro developmental competence of feline oocytes. In addition the influence of age 

of the donor cats on the cleavage or blastocyst rate of the oocytes was examined. 

 

In the first part of this study, 1587 cumulus oocytes complexes (COC) collected from cat 

ovaries after elective ovarectomy were available. To examine the effect of incubation 

before in vitro maturation (IVM) 239 COCs were kept in DPBS containing 0,4% BSA at 

38,5°C for 90 minutes before IVM (holding control). After IVM the oocytes were fertilized 

in vitro and cultured for 8 days. 682 freshly recovered COCs were stained for 90 

minutes at 38,5°C with 26µM BCB diluted in DPBS + 0.4% BSA before IVM. After 

staining the oocytes were  divided into BCB- (colorless cytoplasm) and BCB+ (blue-

colored cytoplasm). After IVM the oocytes were fertilized in vitro and cultured for 8 days 

separately. 666 control COCs were subjected to IVM and subsequently fertilized and 

cultured for 8 days. The percentage of BCB+ oocytes was 54.3%. The cleavage rate on 

day 3 in BCB+ oocytes was significantly higher than the cleavage rate of the BCB- 

oocytes (44.1% vs 18.9%). Oocytes of the control group  had a cleavage rate of 32.7% 

and oocytes of the holding control group showed a cleavage rate of 34,3%. This was 

significantly higher than the  cleavage rate of the BCB- oocytes. The blastocyst rate was 

significantly higher in BCB+ oocytes (11.4%) compared with the BCB- group (5.8%). 

There was no significant difference between the blastocyst rate of the control group 

(12.2%) and the rate of the holding control group (13.0%). A comparison of the 

blastocyst rate based on cleaved oocytes showed a significant difference between 

BCB+ oocytes (25.8%) and control  group (37.2%).  

 

For the second part of this study, only donor cats with known age at the day of 

ovarectomy were used. Group 1 included prepuberal donor cats (less than 9 month, 138 

COC). The second group consisted of donor cats aged from 10 to 24 month (n= 57). 

Donor cats older than 2 years were allocated to group 3 (n=63).   
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258 COCs were evaluated by morphological standards after collection and divided into 3 

classes. In group 1 (prepuberal cats) the percentage of COCs in class III (few cumulus 

cells, heterogenous cytoplasm) was 73.2%. This was significantly higher than the 

corresponding values in groups 2 and 3 (45.6% and 54.0%, respectively). 

 

In group 1 the highest cleavage rate (48.1%) was obtained (prepuberal cats) with 

oocytes of class II. In group 2 (adult cats < 2 years) there were no significant differences 

concerning the cleavage rate in the different COC classes.  Within Group 3 (> 2 years) 

class I oocytes showed a cleavage rate of 84.6% which was significantly higher when 

compared to class III oocytes (35.3%). 

 

The blastocyst rate based on the total number of COC ranged from 0% to 25% whereas 

the blastocyst rate based on cleavage rate ranged from 0% to 50%. Because of the 

small number of blastocysts obtained no significant differences between the groups or 

COC classes could be detected. 

 

This study indicates that the BCB test may be a useful method to select developmentally 

competent feline oocytes for in vitro production. The use of adult donor cats, optimized 

culture conditions and the use of semen donors with known fertility could help to 

improve the results. 
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8. Anhang 
 
 
8.1. Verwendete Medien und Färbelösungen 
 

Die bei den Versuchen verwendeten Medien wurden nach einem modifizierten Protokoll 

von FREISTEDT et al. (2001a) hergestellt 

 
1. Transportmedium für Ovarien 

 
1000 ml  Phosphatgepufferte Salzlösung nach DULBECCO (PBS) 

  (Fa. Biochrom, Berlin) 
    
  100 ml Penicillin G(P 3032, Fa. Sigma,Taufkirchen) 
 
  100 ml Steptomycin Sulfat (S 6501, Fa. Sigma, Taufkirchen) 
  

 
2. Aufbewahrungs-, Slicing- und Basislösung für die BCB-Färbung 

(Modifizierte PBS-Lösung) 
 
500 ml    Phosphatgepufferte Salzlösung nach DULBECCO (PBS)  
     (Fa. Biochrom, Berlin) 
 
500 mg   Glucose (Fa. Merck, Darmstadt) 
 
  18 mg   Na-Pyruvat (P4562, Fa. Sigma, Taufkirchen) 
 
  10 mg   Penicillin G (P3032, Fa. Sigma, Taufkirchen) 
 
  20 mg   Steptomycin Sulfat (S 6501 Fa. Sigma, Taufkirchen) 
 
  5,6 mg  Heparin (H3149, Fa. Sigma, Taufkirchen) 
 
150 mg   Bovines Serumalbumin (BSA) (A9647,Fa. Sigma, Taufkirchen) 
 
 
Die Lösung wurde im Kühlschrank im Labor aufbewahrt und in sterilen 50ml-

Röhrchen (Fa. VWR, Darmstadt) in den Tierarztpraxen für die Aufbewahrung der 

Ovarien bis zur Abholung gelagert. 
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3. Stammlösung für das  Reifungsmedium (TCM Stock) 
 

 100ml  Aqua ad injectabile (Fa. Baxter) 
 
1500mg Medium 199 Hepes Modification (M2520, Fa. Sigma, Taufkirchen) 
 
  300mg  NaHCO3 (S 3632, Fa, Sigma, Taufkirchen) 
 
      5mg  Gentamicin Sulfat (G 3632, Fa. Sigma, Taufkirchen) 
 
   2,5 mg Natriumpyruvat (P 4562, Fa. Sigma, Taufkirchen) 
 
Es wurde ein pH-Wert von 7,4 eingestellt und das Medium wurde mit einem 

Spritzenvorsatzfilter (Porengröße: 0.22µm, Fa. VWR Darmstadt) sterilfiltriert. Die 

Stammlösung wurde im Kühlschrank bis maximal 4 Wochen aufbewahrt. 

 

 Reifungsmedium 

 

Das Medium wurde am Tag vor der Verwendung hergestellt und vor der 

Verwendung im Brutschrank äquilibriert. Danach wurde es mit einem 

Spritzenvorsatzfilter (Porengröße 0,2 µm, Fa. VWR, Darmstadt) sterilfiltriert, und 

je 500µl in eine 4-Well-Schale (Nunc-Multischalen, Fa. VWR, Darmstadt) 

pipettiert. 

 

20 ml TCM Stock 

12 mg Calziumlaktat 

 5 mg Na-Pyruvat 

 2 mg Cystein 

60 mg BSA 

  2 µl   Pluset® (0,1 IU FSH/LH) 

 

   

4. Stammlösung für das Befruchtungs- und  Swim-up-Medium (TL Stock) 
 

250 ml Aqua ad injectabila(Fa. Baxter) 
  
 522,5 mg NaH2PO4 (A 957546, Fa. Merk, Darmstadt) 
 
 75 mg CaCl2 x 2H2O (C 3881, Fa. Sigma, Taufkirchen) 
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 595 mg Medium 199 Hepes Modification (M2520, Fa. Sigma, Taufkirchen) 
 
 1450 mg NaCl (S 5886, Fa. Sigma, Taufkirchen) 
 
 57,5 mg KCL (26868, Fa. Merk, Darmstadt) 
 
 9 mg NaH2PO4 (A 957546,Fa. Merk Darmstadt) 
 
 920µl Natriumlaktat-Sirup (L 1375, Fa. Sigma, Taufkirchen) 
 
 25mg MgCl2 x 6 H2O (M0250, Fa. Sigma, Taufkirchen) 
 
 2,5 mg Phenolrot (P 5530, Fa. Sigma, Taufkirchen) 
 
 
 Swim up-Medium  
 
 10 ml TL – Stammlösung 
 
 60 mg BSA ( Fa. Sigma, Taufkirchen) 
 
 2,2 mg Natriumpyruvat (P4562, Fa. Sigma, Taufkirchen) 
 
 Das Medium wurde am Tag der Verwendung hergestellt und vor der Verwendung  

mindestens drei Stunden im Brutschrank äquilibriert. Danach wurde je 1 ml mit 

einem Spritzenvorstatzfilter (Porengröße 0,2µm, Fa. VWR, Darmstadt) steril, in 

sterile  5 ml-Röhrchen (Fa. VWR, Darmstadt) filtriert. 

 

Befruchtungsmedium 
 
 Am Abend vor der Verwendung wurde das Befruchtungsmedium mit folgenden 

 Substanzen vorbereitet: 

  
 10 ml TL-Stock 
 

60 mg BSA (Fa. Sigma, Taufkirchen) 
 
2,2 mg Na-Pyruvat (Fa. Sigma, Taufkirchen) 

 
am Tag der Verwendung 

 
+ 100µl Heparin Stammlösung 
 
+ 100µl Gentamycin Stammlösung 
 

      Wurden in eine mittlere Petrischale mit großem Filter (Fa. VWR, Darmstadt)   
            sterilfiltiert und im Brutschrank bis zur Verwendung gelagert. 



 61 

 
 

5. SOF-Stammlösung 
 

100 ml Aqua ad injectabila (Fa. Baxter) 
 
629,2 mg NaCl (S 5886, Fa. Sigma, Taufkirchen) 
 
53,4 mg KCL (Fa. Merck, Darmstadt) 
 
16,2 mg KH2PO4 (Fa. Merck, Darmstadt) 
 
210,6 mg NaHCO3 (S 5761, Fa. Sigma, Taufkirchen) 
 
50 µl Phenolrot-Lösung (Fa. Gibco, Schottland) 
 
500 µl L-Glutamin (G 6392, Fa. Sigma, Tufkirchen) 
 
47,0 µl Natriumlaktat-Sirup (L 1375, Fa. Sigma, Taufkirchen) 
 
24,8 mg CaCl2 x 2H2O (C3881, Fa. Sigma, Taufkirchen) 
 
9,6 mg MgCl2 x 6H2O (M 0250, Fa. Sigma, Taufkirchen) 
 
 

Das Medium wurde auf einen ph-Wert von 7,2-7,3 eingestellt  und mit einem  

Spritzenvorsatzfilter (Porengröße 0,2µm, Fa. VWR, Darmstadt) sterilfiltriert. 

Im Kühlschrank wurde die Stammlösung maximal 4 Wochen lang aufbewahrt. 

 
Kulturmedium (Tag 1) 
 
10 ml SOF-Stammlösung 
 
3,6 mg Natriumpyruvat (P 4562, Fa. Sigma, Taufkirchen) 
 
100 µl BME (essentielle Aminosäuren, B6766, Fa. Sigma, Taufkirchen) 
 
50µl MEM (nicht-essentielle Aminosäuren, M 7145, Fa. Sigma, Taufkirchen) 
 
1 ml ECS (Östrisches Kuhserum) 
 
40mg BSA (Fa. Sigma, Steinheim) 
 
Das Medium wurde am Tag vor der Verwendung hergestellt und vor der 

Verwendung im Brutschrank äquilibriert. Danach wurde es mit einem Rotrandfilter 

(Porengröße 0,2µm, Fa. VWR, Darmstadt) sterilfiltriert, und je 400µl in eine 4-

Well-Schale (Nunc-Multischalen, Fa. VWR, Darmstadt) pipettiert. 
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Kulturmedium (Tag 4) 
 
10 ml SOF-Stammlösung 
 
3,6 mg Natriumpyruvat (P 4562, Fa. Sigma, Taufkirchen) 
 
100 µl BME (essentielle Aminosäuren, B6766, Fa. Sigma, Taufkirchen) 
 
50µl MEM (nicht-essentielle Aminosäuren, M 7145, Fa. Sigma, Taufkirchen) 
 
0,5 ml ECS (Östrisches Kuhserum) 
 
9,9 mg Glucose (G 6152, Fa. Merk, Darmstadt) 
 
Das Medium wurde am Tag vor der Verwendung hergestellt und vor der 

Verwendung im Brutschrank äquilibriert. Danach wurde es mit einem Rotrandfilter 

(Porengröße 0,2 µm, Fa. VWR, Darmstadt) sterilfiltriert, und je 400µl in eine 4-

Well-Schale (Nunc-Multischalen, Fa. VWR, Darmstadt) pipettiert. 

 

6. BCB-Stammlösung 
 
1 mg BCB in 10ml PBS + 04% BSA 
 

 
Arbeitslösung 
 
100µl BCB-Stammlösung 
 
880µl PBS + 4% BSA 
 

 
 
8.2. Medienzusätze 
 

1. Pluset FSH – LH 1/1 (Fa. Calier S.A. Barcelona, Spanien) 
 

gebrauchsfertige Lösung, Lagerung bei -20°C in Portionen à 10 µl 
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2. ECS 
 

Zur Gewinnung von ECS wurde von brünstigen Kühen je 1l Blut in sterile 50ml-

Röhrchen (Fa. VWR, Darmstadt) ohne Zusatz von Gerinnungshemmern abgefüllt 

und bis zur Gerinnung ca. 1 Stunde stehen gelassen. Anschließend wurde das Blut 

20 Min bei 600g zentrifugiert und das Serum in sterile 50 ml-Röhrchen abpipettiert. 

Nach einer zweiten Zentrifugation (10 Min, 600g) wurde das Serum in einem 

Becherglas gepoolt und zur Inaktivierung des Komplementsystems 30 min in 

einem auf 56° C  erwärmten Wasserbad inkubiert. Danach wurde es in Eppendorf-

Cubs á 1ml bei -20° C eingefroren. 

 

 

3. Heparinstock 
 
5 ml Aqua ad injectabila (Fa. Baxter, Unterschleissheim) 

 
5 mg Heparin (Fa. Sigma, Steinheim) 

 
    Die fertige Lösung wurde sterilfiltriert und in Tubes (Fa. Eppendorf, Hamburg) 

              a 100µl abgefüllt und anschließend eingefroren.      

                          

 
4. Gentamycinstock 

 
5ml Aqua ad injectabila (Fa. Baxter, Unterschleissheim) 
 
5 mg Gentamicin-Sulfat (Fa. Sigma, Steinheim) 

 
  
    Die fertige Lösung wurde sterilfiltriert und in Tubes (Fa. Eppendorf, Hamburg) 

     a 100µl abgefüllt und anschließend eingefroren.                                  
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