Expression von Adhäsionsmolekülen in der Magenschleimhaut
Helicobacter pylori positiver Kinder

Sylvia Hexamer
Expression von Adhäsionsmolekülen in der Magenschleimhaut
Helicobacter pylori positiver Kinder

Dissertation
zum Erwerb des Doktorgrades der Medizin
an der Medizinischen Fakultät der
Ludwig-Maximilians-Universität zu München
vorgelegt von

Sylvia Hexamer
aus
München

2011
Mit Genehmigung der Medizinischen Fakultät
der Universität München

Berichterstatter: Priv. Doz. Dr. med. S. Krauss-Etchmann

Mitberichterstatter: Prof. Dr. Rainer Haas
Priv. Doz. Dr. Michael Kasparek

Mitbetreuung durch den promovierten Mitarbeiter:

Dekan: Prof. Dr. med. Dr. h. c. M. Reiser, FACR, FRCR

Tag der mündlichen Prüfung: 03.03.2011
Meinem Vater in Liebe und Dankbarkeit

und

Hendrik, meiner Gegenwart und Zukunft
ABBILDUNGEN .. 4

TABELLEN .. 5

1 EINLEITUNG .. 7

1.1 GRUNDLAGEN ZUR INFektION MIT HELICOBACTER PYLORI .. 7
1.2 ENTZÜNDUNGSMechANISMUS DER INFektION MIT H. PYLORI .. 9
1.3 ADHÄSIONSMOLEKÜLE UND IHR FUNKTIONSPRINZIP BEI ENTZÜNDUNGSREAKTIONEN 10
1.4 KLASSIFIKATION DER ADHÄSIONSMOLEKÜLE .. 12
1.5 REGULATION DER ADHÄSIONSMOLEKÜLE DURCH ENTZÜNDUNGSMEDIATOREN 17

2 ZIELSETZUNG DER ARBEIT ... 19

3 MATERIAL UND METHODEN ... 20

3.1 KRITERIEN DER PATIENTENAUSWAHL UND EINTEILUNG IN PATIENTENGRUPPEN............ 20
3.2 VERFAHREN ZUM NACHWEIS VON H. PYLORI .. 21
 3.2.1 \(^{13}C\)-Harnstofftest .. 21
 3.2.2 Endoskopische Untersuchung .. 21
 3.2.3 Urease- Schnelltest ... 22
 3.2.4 Anzüchtung einer Bakterienkultur ... 22
 3.2.5 Histologie ... 23
3.3 MATERIALGEWINNUNG .. 23
3.4 ANFERTIGUNG VON KRYOSTATSLICHTBLATTEN UND IMMUNHISTOCHEMISCHE FÄRBUNG ... 24
3.5 AUSWERTUNG UND ARCHIVIERUNG DER IMMUNHISTOCHEMISCHEN LIGHTBLATTEN 24
3.6 STATISTISCHE AUSWERTUNG ... 25
3.7 MATERIAL .. 26
 3.7.1 Glas- und Plastikmaterialien ... 26
 3.7.2 Geräte .. 27
 3.7.3 Chemikalien .. 27
 3.7.4 Antikörper .. 28

4 ERGEBNISSE .. 29
4.1 PATIENTENGRUPPEN

4.1.1 Gruppe eins: Patienten mit verifizierter H. pylori-Infektion

4.1.1.1 H. pylori-Status der Patienten

4.1.1.2 Familien- und Medikamentenanamnese und frühere H. pylori-Eradikationstherapie

4.1.2 Gruppe 2: H. pylori-negative Kinder mit sicherer oder möglicher Magenerkrankung

4.1.2.1 Diagnosen und Symptomatik der Kinder aus Gruppe 2

4.1.3 Gruppe 3: H pylori-negative Kinder mit ausgeschlossener oder unwahrscheinlicher Magenerkrankung

4.2 ENDOSKOPISCH ERHOBENE BEFUNDE

4.2.1 Veränderungen im Ösophagus

4.2.2 Veränderungen im Antrum

4.2.3 Veränderungen im Duodenum

4.3 AUFFÄLLIGKEITEN NACH DER SYDNEY-KLASSIFIKATION IM ANTRUM

4.3.1 Entzündungsaktivität

4.3.2 Entzündungschronizität

4.3.3 H. pylori-Dichte

4.3.4 Atrophie der Magenmukosa

4.3.5 Intestinale Metaplasie

4.4 QUALITATIVE BEURTEILUNG DER IMMUNHISTOCHEMISCHEN FÄRBUNG IM ANTRUM

4.4.1 Vorhandensein von Lymphfollikeln im Antrum

4.5 QUANTITATIVE BEURTEILUNG DER IMMUNHISTOCHEMISCHEN FÄRBUNG IM ANTRUM

4.5.1 Adhäsionsmoleküle in der Lamina propria

4.5.1.1 CD106-positive Zellen

4.5.1.2 CD11b-positive Zellen

4.5.1.3 CD54-positive Zellen

4.5.1.4 CD162-positive Zellen

4.5.1.5 CD18-positive Zellen

4.5.1.6 CD11a-positive Zellen

4.5.1.7 CD62L-positive Zellen

4.6 KORRELATIONEN DER HISTOLOGISCHEN UND IMMUNHISTOCHEMISCHEN ERGEBNISSE
4.6.1 Zusammenhänge der immunhistochemischen Ergebnisse untereinander 53
 4.6.1.1 Korrelationen innerhalb der Gruppe 1 .. 53
 4.6.1.2 Korrelationen innerhalb der Gruppe 2 .. 55
 4.6.1.3 Korrelationen innerhalb der Gruppe 3 .. 56

5 DISKUSSION .. 57
 5.1 PATIENTENKOLLEKTIV .. 57
 5.1.1 Bedeutung der Patienteneinteilung in drei Gruppen .. 57
 5.1.2 Bedeutung der Kollektivgrösse .. 59
 5.1.3 Bedeutung des Lebensalters ... 60
 5.1.4 Einfluss der Nationalität .. 61
 5.1.5 Eradikationstherapien in der Vergangenheit ... 61
 5.2 ENDOSKOPISCH ERHOBENE BEFUNDE .. 62
 5.3 HISTOLOGISCHE BEFUNDE NACH DER SYDNEY-KLASSIFIKATION 64
 5.3.1 Entzündungsaktivität ... 64
 5.3.2 Entzündungsschroinizität .. 66
 5.3.3 H. pylori -Dichte .. 67
 5.3.4 Atrophie der Magenmukosa ... 68
 5.3.5 Intestinale Metaplasie .. 69
 5.4 QUALITATIVE BEURTEILUNG DER IMMUNHISTOCHEMISCHEN FÄRBUNG IM ANTRUM 69
 5.4.1 Vorhandensein von Lymphfollikeln im Antrum ... 69
 5.5 QUANTITATIVE BEURTEILUNG DER IMMUNHISTOCHEMISCHEN FÄRBUNG IM ANTRUM 71
 5.5.1 CD106 positive Zellen ... 71
 5.5.2 Positive Zellen der \(\beta_2 \)-Integrine ... 72
 5.5.3 CD54 positive Zellen ... 73
 5.5.4 CD162 positive Zellen ... 75
 5.5.5 CD62L positive Zellen ... 76

6 ZUSAMMENFASSUNG ... 78

LITERATURVERZEICHNIS ... 82
Abbildungen

Abbildung 1: Mehrstufiges Modell der Leukozyten-Endothelzell-Zelladhäsion.................... 12
Abbildung 2: Sydney-Klassifikation nach histologischen Untersuchungskriterien.................. 23
Abbildung 3: Einteilung der Patientengruppen... 29
Abbildung 4: CD106-Expression für die einzelnen Gruppen mit Median, IQR, Minimum, Maximum und Ausreißern ... 43
Abbildung 5: CD11b-Expression in der Lamina propria (Median, IQR, Minimum, Maximum und Ausreißer) pro mm2 ... 45
Abbildung 6: Streudiagramm der CD54-Expression der 3 Gruppen in der Lamina propria, wobei weiße Kästchen einzelne Patienten darstellen und schwarze Balken mehrere Patienten mit ähnlicher Molekülzahl pro mm2 .. 46
Abbildung 7: Streudiagramm der CD162-Expression pro mm2 der 3 Gruppen 48
Abbildung 8: CD18-Expression pro mm2 (Median, IQR, Minimum, Maximum und Ausreißer) ... 49
Abbildung 9: Streudiagramm der CD11a-Expression der 3 Gruppen 51
Abbildung 10: Streudiagramm der CD62L-Expression der 3 Gruppen......................... 53
Tabellen

Tabelle 1: Glas- und Plastikmaterialien .. 26
Tabelle 2: Geräte .. 27
Tabelle 3: Chemikalien ... 27
Tabelle 4: Antikörper .. 28
Tabelle 5: Auflistung der Patienten aus Gruppe 2 ... 32
Tabelle 6: Patienten der Gruppe 3 ohne Hinweis auf Magenerkrankung 35
Tabelle 7: Entzündungsaktivität im Antrum (Grad 0-3) ... 37
Tabelle 8: Chronizität der Entzündung im Antrum ... 38
Tabelle 9: Nachgewiesene H. pylori-Dichte im Antrum ... 39
Tabelle 10: Glanduläre Atrophie im Antrum .. 40
Tabelle 11: Auflistung der Kinder der Gruppe 2 mit nachgewiesenen Lymphfollikeln im Antrum ... 41
Tabelle 12: Vorkommen von Lymphfollikeln in Antrumbiopsien in den einzelnen Gruppen (Prozentangaben beziehen sich auf die jeweilige Gruppe) .. 41
Tabelle 13: Nachgewiesene CD106-positive Zellen pro mm² und deren Verteilung mit Median, Minimum und Maximum innerhalb der verschiedenen Patientengruppen 43
Tabelle 14: CD11b-positive Zellen pro mm² und deren Verteilung inklusive Median, Minimum und Maximum in den drei untersuchten Gruppen... 44
Tabelle 15: CD54-Expression der Lamina propria mit Median, Minimum und Maximum der einzelnen Gruppen pro mm² .. 46
Tabelle 16: CD162-positive Zellen pro mm² mit Median, Minimum und Maximum in den einzelnen Gruppen... 47
Tabelle 17: CD18-Expression pro mm² mit Median, Minimum und Maximum im
Patientenkollektiv..49
Tabelle 18: CD11a positive Zellen pro mm² mit Median, Minimum und Maximum...............50
Tabelle 19: Verteilung der CD62L-Expression mit Median, Minimum und Maximum52
Tabelle 20. 1-7: Korrelationen der immunhistochemischen Ergebnisse untereinander für die
Gruppe 1 mit Korrelationskoeffizient r und Signifikanzniveau p...55
Tabelle 21.1-2: Korrelationen der immunhistochemischen Ergebnisse untereinander für die
Gruppe 2 mit Korrelationskoeffizient r und Signifikanzniveau p...55
Tabelle 22.1-3: Korrelationen der immunhistochemischen Ergebnisse untereinander für die
Gruppe 3 mit Korrelationskoeffizient r und Signifikanzniveau p...56
1 Einleitung

1.1 Grundlagen zur Infektion mit Helicobacter pylori

Der Italiener Guilio Bizzozero war der Erste, der spiralförmige Organismen in Mägen von Hunden beobachtete und dokumentierte. Obwohl er nicht wusste, was er wirklich gesehen hatte, war ihm seine Entdeckung wichtig genug, um sie im Jahre 1893 zu veröffentlichen (83; 92). Gerade einmal drei Jahre später bestätigte der Deutsche Hugo Salomon, Bizzozeros Beobachtungen und Anfang des 20ten Jahrhunderts entdeckte ein weiterer Deutscher, W. Krienitz, spiralförmige Bakterien in Mägen von Magenkarzinompatienten (83). Keiner dieser drei Forscher hätte je gedacht, dass sich ihre Entdeckung als die meist verbreitete Ursache von gastroduodenalen Krankheiten herausstellen würde, von welcher mehr als 50 % der gesamten Menschheit betroffen ist (22). Denn es schien, trotz dieser Veröffentlichungen sehr zweifelhaft, dass ein Überleben von Bakterien in einem solch sauren Milieu, wie dem des Magens, überhaupt möglich ist (83; 92).

Das Bakterium \(H. pylori \) ist ein gram-negativer Organismus, der in zwei verschiedenen morphologischen Formen, der Stäbchen- und der kokkoiden Form auftritt (50). Die biologische Relevanz der beiden Morphologien ist nicht bekannt, jedoch wird vermutet, dass die Stäbchenform eine höhere Virulenz besitzt, während die kokkoide Form entweder einen
nichtvitalen Zustand, oder eine Schutzhülle für das inaktive Bakterium darstellt (51). Die Stäbchenform ist durch multiple, unipolare Flagellen äußerst beweglich.

Wie aber überlebt *H. pylori* in der unwirtlichen Umwelt zwischen Schleimschicht und Epithelzellen des Magens (50)? Die Antwort geben unter anderem die verschiedenen Enzyme, die vom Bakterium exprimiert werden. Katalase beschützt *H. pylori* vor schädlichem Wasserstoffperoxid, welches von Phagozyten freigesetzt wird. Die Superoxiddismutase verwertet das Superoxid, welches von Neutrophilen und Makrophagen ausgeschüttet wird und Urease, als Schlüsselenzym des Organismus schützt den Keim vor der Magensäure, indem Harnstoff in Ammoniak und CO₂ gespalten wird und so eine pH-Verschiebung ins alkalische Milieu in der unmittelbaren Nähe des Keimes erreicht wird (50; 51; 83).

Eine Infektion mit *H. pylori* erfolgt meist in der Kindheit. Risikofaktoren stellen enge Wohnverhältnisse, schlechte hygienische Versorgung und ein schwacher soziokultureller Status dar (22; 50; 51; 85; 112). Die Prävalenz bei den unter Zehnjährigen in den Industrienationen beträgt ca. 1-5 %, während sie in Ländern der dritten Welt 30-70 % beträgt (51; 83).

Das Spektrum der Erkrankungen nach Infektion mit *H. pylori* reicht von Gastritis, über gastroduodenale Ulzera bis zu maligner Transformation, wie dem MALT-Lymphom oder
dem Adenokarzinom des Magens (22; 50; 51; 92). Etwa 90% aller duodenaler und 70% aller Magenulzera entstehen auf dem Boden einer Infektion mit \textit{H. pylori} (17). Das Risiko einer Neoplasie steigt mit der Infektion um das 3- bis 12-fache an, vor allem bei einer Keimbesiedlung in früher Kindheit (50; 51). Diese Fakten führten dazu, dass \textit{H. pylori} von der Weltgesundheitsorganisation (WHO) 1994 zum Karzinogen der Gruppe 1 erklärt wurde (22; 92).

1.2 Entzündungsmechanismus der Infektion mit \textit{H. pylori}

Die Infektion mit \textit{H. pylori} ist durch eine chronische Entzündungsreaktion mit ständiger Aktivierung und Invasion von segmentkernigen Granulozyten und Lymphozyten ins betroffene Gewebe charakterisiert (81). Obwohl sich in neueren Studien immer wieder Anhaltspunkte dafür finden lassen, dass \textit{H. pylori} oder Untereinheiten davon ein invasives Potential besitzen (84; 138), wird bis zum heutigen Tag angenommen, dass es sich bei \textit{H. pylori} in erster Linie um einen nicht invasiven Keim handelt. Dieser heftet sich an humane Magenmukosa (35; 49; 72) und passiert die Epithelschranke nicht, oder nur in verschwindend geringer Anzahl (89; 138). Auf welche Weise dennoch eine Entzündungsreaktion in den Epithelzellen oder darunterliegender Lamina propria hervorgerufen wird (20; 35; 74), im Verlauf derer es zu chronisch atrophischer Gastritis, Magenulcera, Magenkarzinomen und B-Zell- Lymphomen (80; 134) des Magens kommen kann (31; 118; 122), ist weiterhin nicht ganz geklärt.

Es wird angenommen, dass Proteinkomponenten und bisher unentdeckte Produkte des Erregers die Epithelschranke passieren können, und es daraufhin durch direkte oder indirekte Interaktionen mit Leukozyten zu deren Aktivierung und Kumulation in der Mukosa kommt (13; 69). Diese Aktivierung wird zum einen wohl durch direkte Interaktion der Bakterien mit Epithelzellen des Magens erreicht, wobei es zu einer vermehrten Freisetzung von chemotaktischen Stoffen und Zytokinen kommt (33; 35; 48; 54; 81; 94). Zum anderen wirken
Proteinkomponenten des Erregers direkt chemotaktisch auf neutrophile Granulozyten und Monozyten (17; 34; 110; 111; 120). Die im Laufe der Infektion mit *H. pylori* auftretenden Ulzerationen könnten durch Zellschädigungen im Zuge dieser stetigen Aktivierung und Rekrutierung von Entzündungszellen und deren Proteine auftreten (35; 61; 175), aber auch durch *H. pylori*-eigene Proteine entstehen, wie Urease oder Phospholipase (13; 160), welche Oberflächenschäden verursachen (13; 17; 31).

Wie es auch immer zur Entzündungsreaktion kommen mag, die dazu nötigen Vermittler der transendothelialen Migration von Leukozyten in die Lamina propria der Magenmukosa stellen die Adhäsionsmoleküle auf Leukozyten und Epithelzellen dar (69).

1.3 Adhäsionsmoleküle und ihr Funktionsprinzip bei Entzündungsreaktionen

In Entzündungsherden ermöglicht es die, durch Weitstellung der Gefäße induzierte, geringere Fliessgeschwindigkeit den Blutleukozyten, aus der Mitte der Gefäße an den Rand zu gelangen, um mit dem Gefässendothel in Verbindung zu treten (82).

1.4 Klassifikation der Adhäsionsmoleküle

extrazelluläre Ende ist mit den Kohlenhydrat-bindenden Proteinen (C-Lektine) der Säuger verwandt (40; 82; 153; 161). Die Ligandenbindung der Selektine ist, wie die der C-Typ-Lektine, kalziumabhängig. Dieser Lektindomäne folgt zunächst eine Sequenz (EGF-Sequenz) von ca. 35-40 Aminosäuren die sechs Zysteine enthält (64; 155), und ihrerseits von mehreren Domänen in Tandemform abgelöst wird. Diese sind gekennzeichnet durch eine variierende Anzahl von homologen Sequenzen (159; 161), jede davon ca. 60 Aminosäuren lang. Die spezielle Funktion der so genannten Komplement-Bindungen ist unklar (172), aber mit steigender Anzahl der Domänen könnte die Effizienz des Rollens unterstützt werden (137). Schließlich folgen noch eine hydrophobe Transmembran- und eine kurze C-terminale, zytoplasmatische Region (1).

sekretorischen Exozytosevorgangs, innerhalb von Minuten die Verschiebung von P-Selektin an die Zelloberfläche zur Folge (172; 179). So wird die Initiierung des „Rollens“ zum frühen Zeitpunkt gesichert (179). Auf der Zellmembran vermittelt P-Selektin die Bindung neutrophiler Granulozyten und Monozyten an Liganden. Den einzigen biologisch relevanten Liganden für P-Selektin stellt

P-Selektin-Glykoprotein-Ligand 1 (PSGL-1 oder CD162) dar (101; 172; 179), der auf Leukozyten und in geringerer Zahl auf Thrombozyten exprimiert wird (52; 172). Es handelt sich dabei um ein Homodimer mit einem Molekulargewicht von 210000, das aus zwei Ketten besteht, die durch eine Disulfidbrücke kovalent verbunden werden. Die für die Bindung essentiellen Kohlenhydratepitope sind Oligosaccharide in spezieller Verknüpfung mit Fucose und terminaler Sialinsäure, die Sialyl Lewis\(^x\) genannt werden (102; 149; 159; 183). Zusätzlich trägt PSGL-1 am N-terminalen Ende ein sulfatisiertes Tyrosin (139; 147; 172), welches zur hohen Affinität der Bindung an P-Selektin beiträgt.

Integrine vermitteln die feste Adhäsion auf den Endothelzellen. Sie sind heterodimere Transmembranproteine der Zelloberfläche, die aus zwei nicht kovalent gebundenen Polypeptidketten, α und β, bestehen (161; 131; 181) und aus einer großen extrazellulären und einer kleinen, aber funktionellen zytoplasmatischen Domäne zusammengesetzt sind (155). Das extrazelluläre Ende jeder Kette bildet einen globulären Kopf, der an der Verbindung zwischen den beiden Ketten sowie an der Bindung des Liganden beteiligt ist. Der globuläre Kopf der α-Untereinheit weist eine Domäne auf, die Ca\(^{2+}\) abhängig (161) divalente Kationen
bindet, essentiell für die Rezeptorfunktion der Integrine (1). Es folgen Transmembransegmente und zytoplasmatische Enden, die gewöhnlich weniger als 50 Aminosäuren aufweisen (1).

Die β1-haltigen Integrine werden auch als VLA-Moleküle (very late activation) bezeichnet, da sie erst sehr spät nach einem Stimulationsreiz exprimiert werden. Der wichtigste Vertreter ist VLA-4, der auf Leukozyten und nicht-hämatologischen Zellen verbreitet ist und durch Interaktion mit seinem Liganden VCAM-1 an die extrazelluläre Matrix von Endothelzellen bindet.

Integrine der β2–Familie bestehen aus einer gemeinsamen β2–Einheit, CD18, die mit einer von bisher vier bekannten α-Untereinheiten: CD11a, CD11b, CD11c und CD11d verbunden ist (131; 155). Obwohl die Expression von β2-Integrinen auf Leukozyten beschränkt bleibt, variiert die Verteilung der einzelnen Unterklassen.

CD11a/CD18 oder auch LFA-1 genannt ist an der Oberfläche aller Leukozyten, einschließlich der Lymphozyten ausgeprägt. Es interagiert mit den interzellulären Adhäsionsmolekülen ICAM-1, -2 und -3 auf Endothelzellen im Schritt der festen Adhäsion (29; 59; 113; 131).

CD11b/CD18 oder Mac-1 wird auf Granulozyten, Monozyten und NK-Zellen ausgebildet (131). Dieses Integrin interagiert ausschließlich mit ICAM-1 an Endothelzellen.

Die Regulierung der Integrinaktivierung auf den Blutzellen wird durch Wechsel der Konformität und Affinität sowie Wechselwirkungen mit anderen Molekülen, wie Oberflächenproteinen erklärt (113). Dafür gibt es zwei Modelle. Das „inside-out“-Modell
beschreibt einen Aktivierungskomplex, ausgelöst durch ein proinflammatorisches Signal, welcher die Konformation der Zytoplasma-Domänen verändert. Diese Veränderung wird an die extrazellulär liegenden Domänen weitergeleitet, (105; 155; 162) die Ligandenbindung kann erfolgen. Das „outside-in“-Modell beinhaltet eine Interaktion der Integrine mit Liganden, durch, welche eine Konformationsänderung erreicht, die dann ins Zytoplasma übermittelt wird (105; 155).

ICAM-1 (intercellular adhesion molecule-1) hat, im Gegensatz zu Immunglobulinen, die gepaarte Ig-Domänen aufweisen, fünf ungepaarte Ig-typische Domänen (10). Davon erkennt und bindet die erste den Integrinliganden CD11a/CD18 (37) und die dritte CD11b/CD18 (79; 113; 163; 170). ICAM-1 ist hauptsächlich auf Leukozyten, Fibroblasten, Epithel- und Endothelzellen zu finden, ist in nicht aktivierten Zellen jedoch nur gering exprimiert. (44; 78; 132). Durch Zytokinausschüttung aktiviertes Endothel führt zu vermehrter ICAM-1 Expression auf den Epithelzellen (44; 73; 88), die durch mRNA-Duplikation erreicht wird (154). Dies führt, durch Wechselwirkungen mit β-2-Integrinen, zu vermehrter Bindung von Leukozyten ans Epithel (5; 132). ICAM-1 könnte sogar das Schlüsselprotein dieser Leukozytenrekrutierung darstellen (93).
VCAM-1 (vascular cell adhesion molecule-1) ist als zytokinaktiviertes Adhäsionsmolekül der Endothelzellen (28; 75; 128) definiert. Es besteht aus sieben Ig-ähnlichen Domänen, dessen Nummer zwei und drei homolog zu Nummer vier und sechs sind (76), weshalb eine Genduplikation zur Entstehung seiner Struktur angenommen wird. Seinen Hauptliganden VLA-4 bindet es an Domäne eins und vier (131), und trägt somit zur späten Leukozytenrekrutierung zum Entzündungsherd bei. Zusätzlich wurde ein gesplittetes VCAM-1 gefunden, bei welchem die vierte Domäne fehlt und dessen biologische Signifikanz weiterhin rätselhaft bleibt (129).

1.5 Regulation der Adhäsionsmoleküle durch Entzündungsmediatoren

Die Expression von Adhäsionsmolekülen wird von vielen physikalischen, chemischen und molekularen Faktoren beeinflusst, was letztendlich zu einer Auf- beziehungsweise Abregulation von Entzündungsreaktionen führt.

Die Koordination wird durch mediatorspezifische Bereitstellung von Adhäsions-Glykoproteinen an der Oberfläche von Leukozyten oder Endothelzellen gewährleistet (129). Die wichtigsten Zytokine, die in eine Entzündungsreaktion involviert sind, stellen Tumor-Nekrose-Faktor-α (TNF-α), Interleukin-1 (IL-1), IFN-γ und Chemokine dar (59; 109). Andere lösliche Mediatoren, wie Plättchen-aktivierender-Faktor (PAF), Prostaglandine etc. spielen eine zusätzliche Rolle im Entzündungsphänomen. Den hauptsächlichen Stimulus zur IL-1 und TNF-α Synthetisierung und Freisetzung stellen bakterielle Lipoploysaccharide dar (171). TNF-α und IL-1 induzieren die Aktivierung von Leukozyten und Endothelzellen, die selbst daraufhin Adhäsionsmoleküle, wie ICAM-1, VCAM-1 oder P-Selektin exprimieren (17; 38; 71; 82). Dabei reagieren Adhäsionsmoleküle verschiedenartig auf gleiche Stimuli. IFN-γ induziert zum Beispiel ICAM-1 auf dem Gefäßendothel (162), VCAM-1-Expression wird jedoch nicht beeinflusst (143). Dadurch wird es ersichtlich, dass die verschiedenen Aktivatoren das Spektrum der Moleküle an verschiedensten Stellen beeinflussen. Des
Weiteren konnten synergistische Effekte in der Regulierung von Adhäsionsmolekülen gefunden werden, wenn mehrere Aktivatoren gleichzeitig auf sie einwirkten (140).

Die meisten Zelllinien, wie Endothelzellen, Leukozyten und Thrombozyten, sind fähig auf diese proinflammatorische Stimulationen Chemokine auszuschütten, die ihrerseits die Aktivierung uns Anlockung von Leukozyten zum Entzündungsherd fördern (8; 144). Die Ausschüttung unterschiedlicher Chemokine zieht die Aktivierung bestimmter Leukozyten nach sich (8; 144), daher wird angenommen, dass die selektive Freisetzung bestimmter Chemokine die Zusammensetzung des entzündlichen Zellinfiltrates bestimmt (59).
2 Zielsetzung der Arbeit

Ziel der vorliegenden Arbeit war es deshalb, die Expression von Adhäsionsmolekülen bei *H. pylori*-Infektion in der Magenmukosa *in situ* zu untersuchen.

Im Einzelnen wurden folgende Fragen gestellt:

- Welche Adhäsionsmoleküle sind bei Kindern nachweisbar?
- Welche Adhäsionsmoleküle sind in der Magenmukosa *H. pylori*-infizierter Kinder im Vergleich zu *H. pylori*-negativen Kindern mit anderen Magenerkrankungen und zu magengesunden Kindern nachweisbar?
- Gibt es eine Altersabhängigkeit in der Expression der Adhäsionsmoleküle?
- Korrelieren Adhäsionsmoleküle untereinander, sowohl innerhalb, als auch zwischen den Molekülgruppen?
3 Material und Methoden

3.1 Kriterien der Patientenauswahl und Einteilung in Patientengruppen

Für unsere Arbeit wurden Magenschleimhautpiopsien von 70 Kindern verwendet, die wegen unterschiedlicher abdomineller Symptomatik endoskopisch untersucht wurden. Sie litten unter anderem an: gastroösophagealem Reflux, rezidivierendem Erbrechen, chronischen abdominellen Schmerzen, Gedeihstörungen, chronisch entzündlichen Darmerkrankungen oder Zöliakie.

Die untersuchten Kinder wurden nach den folgenden, zuvor festgelegten Kriterien, in drei Gruppen eingeteilt.

In Gruppe 3 wurden Kinder eingeschlossen, die ebenfalls *H. pylori*-negativ waren und bei deren Grunderkrankung eine Beteiligung des Magens als ausgeschlossen oder äußerst
unwahrscheinlich war. Zum Einschluss in unsere Studie musste bei Kindern dieser Gruppe die Medikamentenanamnese für Wirkstoffe, welche die Funktion der Magenmukosa oder des Immunsystems beeinträchtigen könnten, negativ beantwortet werden.

Bei allen Kindern, unabhängig deren Gruppenzugehörigkeit, wurden Alter, Geschlecht und Nationalität erhoben.

3.2 Verfahren zum Nachweis von *H. pylori*

3.2.1 13C-Harnstofftest

Der 13C-Harnstofftest ist ein etabliertes, nicht-invasives Verfahren, um eine Infektion mit *H. pylori* aufzudecken. Der Test macht sich die Fähigkeit von *H. pylori* zu Nutze, das Enzym Urease freizusetzen, welches Harnstoff zu Kohlendioxid (CO$_2$) und Ammoniak (NH$_3$) abbaut (158, 90). Der Patient nimmt dabei radioaktiv markierten Harnstoff (13C) zu sich. In unserem Falle verabreichten wir den Kindern 200 ml Apfelsaft, die mit 75 mg 13C-Harnstoff angereichert waren. Befindet sich *H. pylori* und damit eine entsprechend hohe Urease-Enzymaktivität im Magenepithel, wird dieser Harnstoff abgebaut und taucht in der Ausatemluft als radioaktiv markiertes CO$_2$ auf.

Deshalb wurde, in unserem Falle, nach 15 und 30 Minuten eine Atemprobe gewonnen und massenspektrometrisch deren Gehalt an 13CO$_2$ bestimmt. Diese Ergebnisse wurden danach mit einem vor Testbeginn bestimmten Nullwert verglichen.

Betrag der 13CO$_2$-Gehalt mehr als 5 ‰ Abweichung von diesem Nullwert, wurde der Test als positiv im Bezug auf eine Infektion mit *H. pylori* bewertet.

Verschiedene Studien befassten sich mit der Sensitivität und Spezifität dieses diagnostischen Verfahrens und gaben diese mit 90-95 % und 99% (58) an.

3.2.2 Endoskopische Untersuchung

Die endoskopische Untersuchung umfasste den Ösophagus, den gesamten Magen (Kardia,
Korpus, Antrum) und das Duodenum bis hin zum Pars descendens. Beurteilt und
dokumentiert wurden, die makroskopische Beschaffenheit der Mukosa von Magen und
Bulbus duodeni und deren pathologische Veränderungen, wie Erythema, Erosionen, Ulcera
und „Gänsehaut“-Mukosa durch noduläre Lymphfolikelhyperplasie.
Die Untersuchung wurde in den meisten Fällen in einer Sedierung mit Dormicium
durchgeführt. In einigen Fällen war eine Intubatuionsnarkose erforderlich.

3.2.3 Urease-Schnelltest
Dabei handelt es sich um ein invasives Testverfahren, bei welchem man sich wiederum die
Aktivität des Enzyms Urease und die bei der Spaltung von Harnstoff entstehenden Produkte
NH₃ und CO₂ zu Nutze macht. Die CO₂-bedingte pH-Verschiebung in den alkalischen
Bereich lässt sich mit Hilfe eines beigefügten Farbindicators leicht nachweisen.
Die bei der Endoskopie gewonnenen Gewebeproben wurden in 2 - 6 % harnstoffhaltige
Gelatine gebettet (HUT ®). Bei einer Konzentration von mehr als 10’000 Keime in diesem
Gewebssstück kam es nach ca. 20 Minuten durch die Erhöhung des pH-Wertes zu einem
Farbumschlag des Indicators.
Beim Ablesen des Testergebnisses bis zu wenigen Stunden nach der Durchführung, liegt
dessen Spezifität bei 95 % bis 98 % und die Sensitivität bei 90 % bis 97 % (97; 123)

3.2.4 Anzüchtung einer Bakterienkultur
Hierbei handelt es sich um ein weiters invasives Diagnostikverfahren mit einer Spezifität von
100 %. Der Keim reagiert jedoch äußerst empfindlich auf jegliche Art von Umweltreizen,
deshalb kann eine ebenso hohe Testsensitivität nur durch einen äußerst schnellen Transport
ingebrachte Labor (innerhalb 4 h nach Biopsieentnahme) in einem Spezialnährmedium
erreicht werden. Unsere untersuchten Antrumbiopsien wurden deshalb sofort nach der
Entnahme, in Portagerm®-Transportmedium gebettet, zum Max-von-Pettenkofer-Institut zur
kulturellen Anzüchtung gebracht.
3.2.5 Histologie

<table>
<thead>
<tr>
<th>Ätiologie</th>
<th>Verlauf</th>
<th>Topographie</th>
<th>Entzündung</th>
<th>Grad</th>
</tr>
</thead>
<tbody>
<tr>
<td>H. pylori</td>
<td>akut</td>
<td>Antrum</td>
<td>Aktivität</td>
<td>nicht = 0</td>
</tr>
<tr>
<td>Autoagression</td>
<td>chronisch</td>
<td>Korpus</td>
<td>Atrophie</td>
<td>geringgradig =1</td>
</tr>
<tr>
<td>chem. Noxe</td>
<td>Sonderform</td>
<td>Pan-</td>
<td>Metaplasie</td>
<td>mittelgradig = 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Erregernachweis</td>
<td>hochgradig = 3</td>
</tr>
</tbody>
</table>

Abbildung 2: Sydney-Klassifikation nach histologischen Untersuchungskriterien

Dabei wurde besonderes Augenmerk gerichtet, auf:

1. Aktivität der Entzündung, anhand der Anzahl der neutrophilen Granulozyten
2. Chronizität der Entzündung, anhand der Anzahl der Lymphozyten
3. Atrophie der Drüsen
4. Metaplasie
5. Dichte der H. pylori-Besiedlung

Diese einzelnen Gesichtspunkte wurden anhand der Gradeinteilung mit einer Zahl von 0 - 3 bewertet.

3.3 Materialgewinnung
Während der endoskopischen Untersuchung wurde je eine Biopsie für die H. pylori-Diagnostik, die immunhistochemische Untersuchung, den Urease- Schnelltest, die kulturelle Anzüchtung, die feingewebliche Untersuchung und die molekularbiologische Untersuchung entnommen und entsprechend ihres Verwendungszwecks weiterverarbeitet (91). Siehe dazu auch Material und Methoden Kapitel 3.2. und 3.4.
3.4 Anfertigung von Kryostatschnitten und immunhistochemische Färbung

3.5 Auswertung und Archivierung der immunhistochemischen Schnitte

Die Auswertung der Schnitte erfolgte in zwei Schritten.

Zuerst wurde eine qualitative Betrachtung des gesamten Schnittes durchgeführt. Dabei richtete sich besonderes Augenmerk auf das Vorkommen von Lymphfollikeln in den Schnitten. Es wurde untersucht, welche der Adhäsionsmoleküle innerhalb der Lymphfollikel angefärbt worden waren; die Ergebnisse dieser Untersuchung wurden schriftlich festgehalten.

Der zweite Schritt beinhaltete die quantitative Auswertung der Schnitte am Computer.

Pro Patient wurde in diesem Programm eine Mappe angelegt, in der die Bilder aller ausgezählten Moleküle gespeichert wurden. Die drei Gesichtsfelder pro Molekül wurden dabei jeweils in doppelter Ausführung digitalisiert, pro Gesichtsfeld wurde somit jeweils ein Bild bearbeitet, das andere in der unbearbeiteten Form belassen.

Angefärbte Zellen der Lamina propria wurden zuerst farbig markiert. In einem zweiten Schritt wurde ein Raster mit 22 µm Kantenlänge über das Bild gelegt und die Eckpunkte dieses Rasters, welche die Lamina propria schnitten, markiert. Über diese Schnittpunkte wurde schließlich die Fläche der Lamina propria quantitativ bestimmt. Die in der Lamina propria angefärbten Zellen wurden auf die Flächen von einem Quadratmillimeter hochgerechnet.

3.6 Statistische Auswertung

Die statistische Auswertung erfolgte nach intensiver Beratung durch das Institut für Biometrie und Statistik der LMU München, und dessen Mitarbeiter Dr. Dirschedl.

Um die Korrelation sowohl zwischen den einzelnen Parametern der Sydney-Klassifikation und den dazugehörigen Zellzahlen, als auch der Ergebniswerte untereinander zu berechnen, bedienten wir uns des Spearman-Rho-Koeffizienten. Dabei galt:

Signifikante Korrelation = Korrelationskoeffizient r > 0,3 und Signifikanzniveau p < 0,05.

Eine graphische Umsetzung der Werte erfolgte in Box-Plots, in welchen die Werte der 25. - 75. Perzentile als Box dargestellt sind (Interquartilenabstand). Der Median ist als schwarzer Querbalken innerhalb der einzelnen Boxen ersichtlich. Der T-Balken zeigt die Minimal- und

3.7 Material

3.7.1 Glas- und Plastikmaterialien

An Glas- und Plastikmaterialien wurden Gegenstände verschiedener Firmen verwendet.

<table>
<thead>
<tr>
<th>Material</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deckgläser (2,4 cm x 6,4 cm)</td>
<td>Firma Langenbrinck</td>
</tr>
<tr>
<td>Färbeküvetten mit Einsatz</td>
<td>Firma Merck</td>
</tr>
<tr>
<td>Objektträger (8- und 10- fach)</td>
<td>Firma Hölzel und Langenbrinck</td>
</tr>
<tr>
<td>Pipetten (0 –10 µl; 10 –100 µl; 20 –1000 µl)</td>
<td>Firma Eppendorf</td>
</tr>
<tr>
<td>Pipettenspitzen</td>
<td>Firma Eppendorf</td>
</tr>
<tr>
<td>Einmalpipetten, Tiefkühldosen, OT- Boxen</td>
<td>Firma Peske</td>
</tr>
<tr>
<td>Petrischalen</td>
<td>Firma Greiner</td>
</tr>
</tbody>
</table>

Tabelle 1: Glas- und Plastikmaterialien
3.7.2 Geräte

In der folgenden Tabelle werden alle benötigten Geräte aufgelistet.

<table>
<thead>
<tr>
<th>Gerät</th>
<th>Firma</th>
</tr>
</thead>
<tbody>
<tr>
<td>- 20°C</td>
<td>Firma Bosch</td>
</tr>
<tr>
<td>- 80°C</td>
<td>Firma Kendro</td>
</tr>
<tr>
<td>Kühlshrank + 4°C</td>
<td>Firma Bosch</td>
</tr>
<tr>
<td>Gefrierschränke</td>
<td></td>
</tr>
<tr>
<td>Messer für Mikrotom</td>
<td>Firma Leica</td>
</tr>
<tr>
<td>Mikroskop</td>
<td>Firma Leica</td>
</tr>
<tr>
<td>Software dhs Bilddatenbank</td>
<td>Firma dhs- Solution</td>
</tr>
<tr>
<td>PC</td>
<td>Intel</td>
</tr>
<tr>
<td>Videofarbkamera</td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 2: Geräte

3.7.3 Chemikalien

Zur Anfärbung der histologischen Schnitte wurden folgende Chemikalien verwendet.

<table>
<thead>
<tr>
<th>Chemikalien</th>
<th>Firma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formaldehyd, 37 %</td>
<td>Firma Sigma</td>
</tr>
<tr>
<td>Formaldehyd, 4 %</td>
<td>Klinikapotheke</td>
</tr>
<tr>
<td>DAB</td>
<td>Firma DAKO</td>
</tr>
<tr>
<td>Portagerm</td>
<td>Firma Bio Merieux</td>
</tr>
<tr>
<td>Hämalaun</td>
<td>Firma Meyer</td>
</tr>
<tr>
<td>Tissue-Tek</td>
<td>Firma Miles</td>
</tr>
<tr>
<td>Peroxidase-Blocking-Reagent</td>
<td>Firma DAKO</td>
</tr>
<tr>
<td>Glyceringelatine</td>
<td>Firma Kaiser</td>
</tr>
<tr>
<td>Di-natriumhydrogenphosphat</td>
<td>Firma Sigma</td>
</tr>
<tr>
<td>Kalium-di-hydrogenphosphat</td>
<td></td>
</tr>
<tr>
<td>NaCl</td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 3: Chemikalien
3.7.4 **Antikörper**

Zur Anfärbung der immunhistochemischen Schnitte wurden verschiedene Antikörper in unterschiedlicher Verdünnung verwendet.

<table>
<thead>
<tr>
<th>Antikörper</th>
<th>Zelluläre Expression / Funktion</th>
<th>Herkunft</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD11a</td>
<td>Lymphozyten, Granulozyten, Monozyten und Makrophagen</td>
<td></td>
</tr>
<tr>
<td>CD11b</td>
<td>Myeloide Zellen und NK-Zellen</td>
<td></td>
</tr>
<tr>
<td>CD18</td>
<td>Leukozyten</td>
<td></td>
</tr>
<tr>
<td>CD54</td>
<td>Hämatopoetische und nichthämatopoetische Zellen</td>
<td></td>
</tr>
<tr>
<td>CD62L</td>
<td>B-Zellen, T-Zellen, Monozyten, NK-Zellen</td>
<td></td>
</tr>
<tr>
<td>CD106</td>
<td>Endothelzellen</td>
<td></td>
</tr>
<tr>
<td>CD162</td>
<td>Neutrophile Zellen, Lymphozyten, Monozyten</td>
<td></td>
</tr>
<tr>
<td>IgG2a,2b</td>
<td>Isotyp- Kontrolle</td>
<td>PharMingen</td>
</tr>
<tr>
<td>IgG1</td>
<td>Isotyp- Kontrolle</td>
<td>Prof. Rieber</td>
</tr>
<tr>
<td>P 260</td>
<td>Peroxidase markierter Sekundärantikörper</td>
<td>DAKO</td>
</tr>
</tbody>
</table>

Tabelle 4: Antikörper
4 Ergebnisse

4.1 Patientengruppen

Abbildung 3: Einteilung der Patientengruppen

4.1.1 Gruppe eins: Patienten mit verifizierter H. pylori-Infektion

31 der 70 untersuchten Kinder zeigten eine Infektion mit H. pylori, wobei 17 Mädchen und 14 Jungen davon betroffen waren. Der Altersmedian dieser Gruppe lag bei 10,7 Jahren (Range 3,5 - 17 Jahre) und somit um ca. ein Jahr höher als der Altersmedian der Gesamtgruppe. Je 10 der Kinder kamen gebürtig aus Deutschland und der Türkei (n1,2=10). 5 Kinder waren afghanischer Herkunft, 4 Kinder kamen aus dem ehemaligen Jugoslawien, 2 der Kinder waren in Italien geboren und je ein Kind stammte aus Afrika, Polen und Südamerika.
4.1.1.1 *H. pylori*-Status der Patienten

Bei allen Kindern der Gruppe 1 lagen mindestens drei positive Untersuchungsergebnisse vor, so dass von einer sicheren *H. pylori*-Infektion ausgegangen werden konnte.

Eine kulturelle Anzüchtung des empfindlichen Keims gelang in drei Fällen nicht, was auf Fehler beim Transport und störende Umwelteinflüsse zurückzuführen sein könnte. Eine Fluoreszenz-in-situ-Hybridisierung zur Diagnostik war in 12 Fällen durchgeführt worden.

4.1.1.2 Familien- und Medikamentenanamnese und frühere *H. pylori*-Eradikationstherapie

Eine Eradikationstherapie des Keimes war in der Vergangenheit bei sieben der *H. pylori*-positiven Kinder durchgeführt worden. Vier dieser Kinder (Pat. 12, 13, 24, 27) hatten eine einmalige, zwei (Pat. 4, 5) eine zweimalige und eines (Pat. 21) sogar eine mehrfache anti-*H. pylori*-Therapie hinter sich gebracht. 30 der 31 erkrankten Kinder klagten über abdominelle Schmerzen.

4.1.2 Gruppe 2: *H. pylori*-negative Kinder mit sicherer oder möglicher Magenerkrankung

4.1.2.1 Diagnosen und Symptomatik der Kinder aus Gruppe 2

Die Kinder dieser Patientengruppe wurden entweder zur Abklärung gastrointestinaler Symptome oder zur Verlaufskontrolle von bekannten Erkrankungen des Gastrointestinaltraktes endoskopisch untersucht.

Wegen Erkrankungen des Magens wurden 11 Kinder endoskopiert (Pat. 36, 37, 39, 42, 43, 46, 47, 49, 50, 53, 55). Fünf Kinder zeigten einen hoch-, bzw. höchstgradigen gastrointestinalem Reflux (GÖRK) (Pat. 36, 46, 49, 53, 55), weshalb eines dieser Kinder (Pat. 49) zum Studienzeitpunkt mit einem Protonenpumpenhemmer (Omeprazol: Antra®) behandelt wurde.

Bei fünf Kindern (Pat. 37, 43, 46, 47, 49,) wurde eine Verlaufskontrolle nach erfolgreich eradifiziertem Keim *H. pylori* durchgeführt, um den Fortbestand eines in der Vergangenheit bestandenen Ulcus duodeni (Pat. 37, 47) oder eine erneute Beschwerdesymptomatik zu klären. Ein Patient zeigte eine varioliforme Gastritis bei bestehender Autoimmunthyreoiditis Hashimoto (Pat. 42), ein anderer litt an einer Infektion mit *H. heilmanii* (Pat. 39) und ein dritter zeigte endoskopisch eine streifige Rötung der gesamten Magenmukosa (Pat. 50) bei klinisch stärksten epigastrischen Schmerzen.
32	M. Crohn, Lactose-Intoleranz	Antibiose
33	Zöliakie	Keine
34	Zöliakie	Keine
35	M. Hirschsprung, Z.n.Kolektomie, Crohn like Disease	Steroide, Immunsuppressiva
36	GÖRK, Z.n. Funduplikatio	Cisaprid
37	Z.n. H. pylori-Infektion mit Ulcus duodeni, Eradikation vor 11 Monaten, Laktose-Intoleranz	Lactase
38	V.a. Zöliakie (Spec. AK erhöht), Nahrungsmittelallergie, Trisomie 21	Keine
39	H. helmanii-Infektion	Eisen-Substitution
40	Neurodermitis, allergische Rhinitis, GÖRK I	Keine
41	Pankolitis	Steroide, Antibiose
42	Varioliforme Gastritis, Autoimmunthyreoiditis mit Hypothyreose	Schilddrüsenhormone
43	Z.n. H. pylori-Infektion mit Eradikation 3/96, GÖRK I	Cisaprid
44	M. Crohn, Nahrungsmittelallergie	Keine
45	Zöliakie	Keine
46	Z.n. H. pylori-Infektion mit Eradikation 7/97, Z.n. GÖRK	Keine
47	Z.n. H. pylori-Infektion mit Ulcus duodeni	Keine
48	Zöliakie, ASD II	Keine
49	Z.n. H. pylori-Infektion mit Eradikation, GÖRK, Sandifer-Syndrom, intestinale Mastzellinfiltration	Antra
50	Stärkste epigastrische Schmerzen	Keine
51	Zöliakie	Keine
52	Allergie (periphere Eosinophilie 25%)	Keine
53	GÖRK, entwicklungsneurologische Retardierung	Keine
54	Z.n. schwerer allergischer ulcerativer Colitis, Duodenitis, Ösophagitis, Neurodermitis	Perenterale Ernährung
55	Allergische Rhinitis, Neurodermitis	Keine

Tabelle 5: Auflistung der Patienten aus Gruppe 2
An Erkrankungen des Darms litten 13 der Kinder in Gruppe 2 (Pat. 33, 34, 35, 38, 40, 41, 44, 45, 48, 51, 52, 54, 55). Fünf Kinder waren nachweislich an Zöliakie erkrankt (33, 34, 45, 48, 51), Drei Kinder litten an Kohlenhydratintoleranz im Zuge eines Laktasemangels (32, 37, 47). Bei einem Kind lag der Verdacht auf Zöliakie, wegen stark erhöhter, spezifischer Antikörper (Gliadin-IgG-AK positiv; Gliadin-IgA-AK negativ; Endomysium-IgA-aK positiv) vor, der histologisch nicht bestätigt werden konnte (Pat. 38). Dieses Kind litt zusätzlich, wie noch ein weiterer Patient, an ein verschiedenen Nahrungsmittelallergien (Pat. 38, 44).

Bei drei Kindern war ein M. Crohn bekannt (Pat. 32, 35, 44), ein Kind hatte eine Pankolitis (Pat. 41) und ein weiteres wurde wegen allergisch bedingter ulcerativer Colitis, Duodenitis und Ösophagities kontrollendoskopiert (Pat. 54). Zwei Patienten wovon der eine an Typ I Allergie und starker peripherer Eosinophilie (Pat. 52), und der andere an allergischer Rhinitis uns Neurodermitis litt (Pat. 40), wurden in Gruppe zwei aufgenommen, da bei diesem Beschwerdebild eine Magenbeteiligung nicht ausgeschlossen ist.

Drei der an Darmerkrankungen leidenden Kinder nahmen Immunsuppressiva (Pat. 35), Steroide (Pat. 35, 41) oder Antibiotika (Pat. 32, 41) ein. Zur besseren Übersicht dieser Gruppe führt die nachfolgende Tabelle alle Patienten der Gruppe 2 mit Diagnosen und Medikamenten erneut auf.

4.1.3 Gruppe 3: *H. pylori*-negative Kinder mit ausgeschlossener oder unwahrscheinlicher Magenerkrankung

15 *H. pylori*-negative Kinder, die nicht der Gruppe 2 zugeordnet werden konnten bilden diese letzte Gruppe. Bei ihnen ist eine Magenbeteiligung im Zuge ihrer Grunderkrankung nicht wahrscheinlich. Unter diesen Patienten waren neun Mädchen und sechs Jungen. Der Altersmedian lag hier mit 6,2 Jahren (Range: 1,6 - 15,7 Jahre) deutlich niedriger als jener der beiden anderen Gruppen. Zehn dieser Kinder waren aus Deutschland, zwei Kinder waren türkischer Abstammung und je ein Kind war in den USA und Russland geboren.
4.1.3.1 Diagnosen und Symptomatik der Kinder aus Gruppe 3

<table>
<thead>
<tr>
<th>Patientennummer</th>
<th>Diagnosen</th>
</tr>
</thead>
<tbody>
<tr>
<td>56</td>
<td>epigastrische Oberbauchschmerzen</td>
</tr>
<tr>
<td>57</td>
<td>GÖRK I, Cerebralparese bei Frühgeburt</td>
</tr>
<tr>
<td>58</td>
<td>GÖRK I, kleine Hiatushernie</td>
</tr>
<tr>
<td>59</td>
<td>epigastrische Oberbauchschmerzen</td>
</tr>
<tr>
<td>60</td>
<td>V.a. Refluxösophagitis</td>
</tr>
<tr>
<td>61</td>
<td>V.a. Refluxösophagitis</td>
</tr>
<tr>
<td>62</td>
<td>V.a. Refluxösophagitis</td>
</tr>
<tr>
<td>63</td>
<td>V.a. Refluxösophagitis</td>
</tr>
<tr>
<td>64</td>
<td>Nahrungsverweigerung</td>
</tr>
<tr>
<td>65</td>
<td>epigastrische Oberbauchschmerzen</td>
</tr>
<tr>
<td>66</td>
<td>GÖRK I</td>
</tr>
<tr>
<td>67</td>
<td>Ausschluss einer Zöliakie</td>
</tr>
<tr>
<td>68</td>
<td>Hirnfehlbildung, Epilepsie, PEG-Anlage</td>
</tr>
<tr>
<td>69</td>
<td>GÖRK I, V.a. psychomotorisches Schmerzsyndrom</td>
</tr>
<tr>
<td>70</td>
<td>Achalasie</td>
</tr>
</tbody>
</table>

Tabelle 6: Patienten der Gruppe 3 ohne Hinweis auf Magenerkrankung

4.2 Endoskopisch erhobene Befunde

4.2.1 Veränderungen im Ösophagus

Davon waren betroffen: ein Kind der Gruppe 2 (Pat. 46) und zwei Kinder der Gruppe 3 (Pat. 61, 64). Ein Kind der Gruppe 1 zeigte eine kleine Hiatushernie. Die übrigen Kinder zeigten einen endoskopisch unauffälligen Ösophagus.

4.2.2 Veränderungen im Antrum

4.2.3 Veränderungen im Duodenum

Im Duodenum zeigten nur zwei Kinder der Gruppe 1 Auffälligkeiten. Bei beiden reichte die Nodularität bis in den Zwölffingerdarm (Pat. 5, 12). Alle übrigen Kinder zeigten ein blandes Duodenum.

4.3 Auffälligkeiten nach der Sydney-Klassifikation im Antrum

4.3.1 Entzündungsaktivität

zeigte keines der Kinder eine solche Besiedlung.

Anhand der Entzündungsaktivität ließen sich die *H. pylori*-infizierten Kinder der Gruppe 1 und die nicht Infizierten der Gruppen 2 und 3 signifikant voneinander unterscheiden (*p* < 0,0001). Gruppe 2 und 3 zeigten im direkten Vergleich keinen signifikanten Unterschied.

Die folgende Tabelle zeigt den Grad der Entzündungsaktivität der einzelnen Gruppen:

<table>
<thead>
<tr>
<th>Entzündungsaktivität</th>
<th>Gruppe 1: H. pylori-positive Kinder (n = 31)</th>
<th>Gruppe 2: H. pylori-negative Kinder mit Hinweis auf Magenerkrankung (n = 24)</th>
<th>Gruppe 3: H. pylori-negative Kinder ohne Hinweis auf Magenerkrankung (n = 15)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grad 0</td>
<td>2</td>
<td>22</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>6,4 %</td>
<td>91,6 %</td>
<td>100 %</td>
</tr>
<tr>
<td>Grad 1</td>
<td>14</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>45,2 %</td>
<td>4,2 %</td>
<td>-</td>
</tr>
<tr>
<td>Grad 2</td>
<td>14</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>45,2 %</td>
<td>4,2 %</td>
<td>-</td>
</tr>
<tr>
<td>Grad 3</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>3,2 %</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Tabelle 7: Entzündungsaktivität im Antrum (Grad 0-3)

4.3.2 Entzündungschronizität

Chronizität

Gruppe 1: H. pylori-positive Kinder (n = 31)
Gruppe 2: H. pylori-negative Kinder mit Hinweis auf Magenerkrankung (n = 24)
Gruppe 3: H. pylori-negative Kinder ohne Hinweis auf Magenerkrankung (n = 15)

<table>
<thead>
<tr>
<th>Chronizität</th>
<th>Grad 0</th>
<th>Grad 1</th>
<th>Grad 2</th>
<th>Grad 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gruppe 1:</td>
<td>3</td>
<td>12,5 %</td>
<td>24</td>
<td>77,4 %</td>
</tr>
<tr>
<td>Gruppe 2:</td>
<td>1</td>
<td>75 %</td>
<td>3</td>
<td>12,5 %</td>
</tr>
<tr>
<td>Gruppe 3:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 8: Chronizität der Entzündung im Antrum

Es gab einen signifikanten Unterschied im Chronifizierungsgrad zwischen Kindern der Gruppe 1 und denen der Gruppen 2 und 3 mit p < 0,001. Die Gruppen 2 und 3 untereinander zeigten auch hier keinen signifikanten Unterschied in ihrer Ausprägung.

4.3.3 H. pylori-Dichte

Alle Kinder, die im 13C-Harnstofftest positiv auf H. pylori getestet wurden, zeigten auch einen histologisch nachweisbaren Bakterienbefall. Bei einem chronischen Befall mit dem Keim korreliert die Bakteriendichte möglicherweise mit keimassoziierten Erkrankungen.

Ein Kind der Gruppe 2 hatte einen Befall der Magenmukosa mit H. heilmanii (Pat. 39). Dieses Kind wurde in der folgenden Tabelle nicht berücksichtigt, da die Bakteriendichte vom Grad 2, die in der Biopsie gefunden wurde, nicht mit einer H. pylori-assozierten Bakteriendichte zu verwechseln ist.
H. pylori-
Dichte

H. pylori-	Gruppe 1:	Gruppe 2:	Gruppe 3:
Dichte	H. pylori-positive	H. pylori-negative	H. pylori-negative
	Kinder (n = 31)	Kinder mit Hinweis auf Magenerkrankung (n = 24)	Kinder ohne Hinweis auf Magenerkrankung (n = 15)
Grad 0	-	24	15
	100 %	100 %	
Grad 1	4	-	-
	12,9 %	-	-
Grad 2	12	-	-
	38,7 %	-	-
Grad 3	15	-	-
	48,4 %	-	-

Tabelle 9: Nachgewiesene H. pylori-Dichte im Antrum

4.3.4 Atrophie der Magenmukosa

4.3.5 Intestinale Metaplasie

Glanduläre Atrophie

Gruppe 1: H. pylori-positive Kinder (n = 31)
Gruppe 2: H. pylori-negative Kinder mit Hinweis auf Magenerkrankung (n = 24)
Gruppe 3: H. pylori- negative Kinder ohne Hinweis auf Magenerkrankung (n = 15)

<table>
<thead>
<tr>
<th>Grad</th>
<th>Gruppe 1</th>
<th>Gruppe 2</th>
<th>Gruppe 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>27</td>
<td>22</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>87,1 %</td>
<td>91,7 %</td>
<td>80,0 %</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>12,9 %</td>
<td>8,3 %</td>
<td>20,0 %</td>
</tr>
<tr>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Tabelle 10: Glanduläre Atrophie im Antrum

4.4 Qualitative Beurteilung der immunhistochemischen Färbung im Antrum

4.4.1 Vorhandensein von Lymphfollikeln im Antrum

Lymphfollikel sind per Definitionem Lymphozytenansammlungen in der Mukosa, bei welchen ein Keimzentrum sichtbar ist. Die Struktur der Follikel darf dabei nicht von Teilen der Mukosa unterbrochen werden.

Bei 38 der 70 Kinder fanden sich in der mikroskopischen Betrachtung solche Lymphfollikel, die sich in allen Fällen im Zentrum mit B-Zellmarkern und am Rand mit T-Zellmarkern anfärben ließen. Die Gruppe 1 der *H. pylori* positiven Kinder stellte, mit 28 Lymphfollikel enthaltenden Biopsien, fast drei viertel dieser Gruppe. 10 Kinder aus der Gruppe 2 enthielten auch Lymphfollikel in ihrer Biopsie. In Tabelle 11 werden die einzelnen Diagnosen der Kinder dieser Gruppe mit Lymphfollikeln in der Biopsie ersichtlich:
<table>
<thead>
<tr>
<th>Patientennummer</th>
<th>Diagnose</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>M. Crohn, Laktose-Maldigestion</td>
</tr>
<tr>
<td>34</td>
<td>Zöliakie</td>
</tr>
<tr>
<td>39</td>
<td>H. heilmanii-Infektion</td>
</tr>
<tr>
<td>44</td>
<td>M. Crohn, Nahrungsmittellallergie</td>
</tr>
<tr>
<td>45</td>
<td>Zöliakie</td>
</tr>
<tr>
<td>46</td>
<td>Z.n. H. pylori-Eradikation, Z.n. GÖRK</td>
</tr>
<tr>
<td>48</td>
<td>Zöliakie, ASD II</td>
</tr>
<tr>
<td>49</td>
<td>Z.n. H. pylori-Eradikation, GÖRK, Sandifer-Syndrom, intestinale Mastzellinfiltration</td>
</tr>
<tr>
<td>52</td>
<td>Allergie mit peripherer Eosinophilie</td>
</tr>
<tr>
<td>55</td>
<td>Allergische Rhinitis, Neurodermitis</td>
</tr>
</tbody>
</table>

Tabelle 11: Auflistung der Kinder der Gruppe 2 mit nachgewiesenen Lymphfollikeln im Antrum

In der Gruppe 3 der Kinder ohne wahrscheinliche Magenbeteiligung ihrer Erkrankung, ließen sich bei keinem der Kinder Lymphfollikel nachweisen. Dies wird in Tabelle 12 verdeutlicht.

<table>
<thead>
<tr>
<th>Lymphfollikel</th>
<th>Gruppe 1: H. pylori-positive Kinder (n = 31)</th>
<th>Gruppe 2: H. pylori-negative Kinder mit Hinweis auf Magenerkrankung (n = 24)</th>
<th>Gruppe 3: H. pylori-negative Kinder ohne Hinweis auf Magenerkrankung (n = 15)</th>
<th>Gesamt-kollektiv (n = 70)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lymphfollikel</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>vorhanden</td>
<td>28</td>
<td>10</td>
<td>0</td>
<td>38</td>
</tr>
<tr>
<td>90 %</td>
<td>42 %</td>
<td>100 %</td>
<td></td>
<td>54,3 %</td>
</tr>
<tr>
<td>keine</td>
<td>3</td>
<td>14</td>
<td>15</td>
<td>32</td>
</tr>
<tr>
<td>Lymphfollikel</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>vorhanden</td>
<td>10 %</td>
<td>58 %</td>
<td>100 %</td>
<td>45,7 %</td>
</tr>
<tr>
<td>keine</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 12: Vorkommen von Lymphfollikeln in Antrumbiopsien in den einzelnen Gruppen (Prozentangaben beziehen sich auf die jeweilige Gruppe)

4.5 Quantitative Beurteilung der immunhistochemischen Färbung im Antrum

Eine Anfärbung von Adhäsionsmolekülen konnte bei 65 Kindern erreicht werden. Dabei
zeigte sich jedoch, dass die unterschiedlichen Adhäsionsmoleküle auch ein unterschiedliches Färbeverhalten aufwiesen. CD54 konnte in der Lamina propria bei 60 Kindern angefärbt werden. Dies gelang nicht bei den Probanden der Nummern 9, 11, 27, 30 und 54. Bei CD18 verhielt es sich ähnlich. Auch hier konnte eine des Moleküls in der Lamina propria bei fünf Kindern (2, 8, 27, 30, 60) nicht erreicht werden. Wenn die Anfärbung nicht gelang lag das meist an zu kleinen Präparaten, die nicht ausgewertet werden konnten, schlecht geschnittenen, bzw. löchrigen oder zerstörten Präparaten. Bei CD11b handelte es sich um sechs Kinder, (8, 11, 27, 37, 54, 55) deren Präparate nicht ausreichend angefärbt worden konnten und bei CD11a (Kind 8, 11, 37, 39, 54, 55, 68), CD106 (Kind 8, 11, 16, 30, 37, 39, 54) und CD162 (Kind 17, 27, 36, 39, 59, 60, 61) mussten je sieben Präparate aufgrund mangelhafter Präparate aus der Arbeit ausgeschlossen werden.

Signifikanter wurden die Probleme beim Anfärben jedoch bei CD62L. Hier konnten lediglich 32 der 65 Präparate der Lamina propria angefärbt werden.

4.5.1 Adhäsionsmoleküle in der Lamina propria

4.5.1.1 CD106-positive Zellen

Gruppe | Charakterisierung | Anzahl | Median | Minimum | Maximum |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>H. pylori-positiv</td>
<td>24</td>
<td>1</td>
<td>0,4</td>
<td>2,53</td>
</tr>
<tr>
<td>2</td>
<td>H. pylori-negativ mit Hinweis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>auf Magenerkrankung</td>
<td>20</td>
<td>0,46</td>
<td>0,00</td>
<td>1,82</td>
</tr>
<tr>
<td>3</td>
<td>H. pylori-negativ ohne Hinweis</td>
<td>14</td>
<td>0,24</td>
<td>0</td>
<td>1,07</td>
</tr>
<tr>
<td></td>
<td>auf Magenerkrankung</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 13: Nachgewiesene CD106-positive Zellen pro mm² und deren Verteilung mit Median, Minimum und Maximum innerhalb der verschiedenen Patientengruppen

Das nachfolgende Boxplot-Diagramm veranschaulicht die in der Tabelle aufgeführten Werte für CD106 und stellt das Signifikanzniveau der Gruppen untereinander dar.

Abbildung 4: CD106-Expression für die einzelnen Gruppen mit Median, IQR, Minimum, Maximum und Ausreißern
Bei der Betrachtung des Diagramms fallen in Gruppe 2 zwei Kinder mit hoher CD106-positiver Zellzahl auf, die als Ausreißer gewertet wurden. Die übrigen Marker dieser beiden Kinder in der Lamina propria stellten sich unauffällig dar.

4.5.1.2 CD11b-positive Zellen

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>Charakterisierung</th>
<th>Anzahl</th>
<th>Median</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>H. pylori-positiv</td>
<td>25</td>
<td>0,26</td>
<td>0</td>
<td>0,69</td>
</tr>
<tr>
<td>2</td>
<td>H. pylori-negativ mit Hinweis auf Magenerkrankung</td>
<td>20</td>
<td>0,06</td>
<td>0</td>
<td>0,56</td>
</tr>
<tr>
<td>3</td>
<td>H. pylori-negativ ohne Hinweis auf Magenerkrankung</td>
<td>13</td>
<td>0,06</td>
<td>0</td>
<td>0,51</td>
</tr>
</tbody>
</table>

Tabelle 14: CD11b-positive Zellen pro mm² und deren Verteilung inklusive Median, Minimum und Maximum in den drei untersuchten Gruppen

Das nachfolgende Box-Plot Diagramm verdeutlicht auch hier das Signifikanzniveau der einzelnen Gruppen zueinander. Dabei werden in Gruppe 2 drei Kinder und in Gruppe 3 ein Kind mit hohen CD11b-positiven Zellzahlen sichtbar. Da diese Kinder bei Betrachtung der übrigen Marker unauffällig blieben, werden sie als Ausreißer bewertet.
Abbildung 5: CD11b-Expression in der Lamina propria (Median, IQR, Minimum, Maximum und Ausreißer) pro mm²

4.5.1.3 CD54-positive Zellen

In der Lamina propria waren bei allen Kindern der verschiedenen Gruppen CD54-positive Zellen nachweisbar. Kinder mit *H. pylori*-Infektion unterschieden sich hinsichtlich diesen Markers nicht signifikant von den nicht-infizierten Kindern (p = 0,238). Auch bei den nicht-infizierten Kinder der Gruppen 2 und 3 untereinander, war ein Signifikanzunterschied bei p = 0,594 nicht gegeben. (siehe Tabelle 15)

Das Streudiagramm (Abbildung 6) verdeutlicht die Anzahl CD54-positiver Zellen der verschiedenen Patientengruppen in der Lamina propria. Die Nummerierung neben den Kästchen gibt die Patientennummer der Kinder an. Auffallend dabei ist, dass bei allen
Kindern der Studie, unabhängig ihrer Gruppenzugehörigkeit, CD54 in der Lamina propria nachgewiesen werden konnten.

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>Charakterisierung</th>
<th>Anzahl</th>
<th>Median</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>H. pylori-positiv</td>
<td>23</td>
<td>1,42</td>
<td>0,29</td>
<td>3,89</td>
</tr>
<tr>
<td>2</td>
<td>H. pylori-negativ mit Hinweis auf Magenerkrankung</td>
<td>22</td>
<td>1,67</td>
<td>0,48</td>
<td>4,9</td>
</tr>
<tr>
<td>3</td>
<td>H. pylori-negativ ohne Hinweis auf Magenerkrankung</td>
<td>14</td>
<td>1,72</td>
<td>0,08</td>
<td>2,75</td>
</tr>
</tbody>
</table>

Tabelle 15: CD54-Expression der Lamina propria mit Median, Minimum und Maximum der einzelnen Gruppen pro mm²

CD54

Abbildung 6: Streudiagramm der CD54-Expression der 3 Gruppen in der Lamina propria, wobei weiße Kästchen einzelne Patienten darstellen und schwarze Balken mehrere Patienten mit ähnlicher Molekülzahl pro mm²
Unter den ausgefüllten Kästchen verbergen sich mehrere Patienten, deren Zellzahlen so eng beieinander lagen, dass sie zusammengefasst wurden, um die Tabelle übersichtlich zu halten.

4.5.1.4 CD162-positive Zellen

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>Charakterisierung</th>
<th>Anzahl</th>
<th>Median</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>H. pylori-positiv</td>
<td>25</td>
<td>0,56</td>
<td>0,05</td>
<td>1,64</td>
</tr>
<tr>
<td>2</td>
<td>H. pylori-negativ mit Hinweis auf Magenerkrankung</td>
<td>21</td>
<td>0,63</td>
<td>0,22</td>
<td>1,92</td>
</tr>
<tr>
<td>3</td>
<td>H. pylori-negativ ohne Hinweis auf Magenerkrankung</td>
<td>11</td>
<td>0,65</td>
<td>0,07</td>
<td>1,74</td>
</tr>
</tbody>
</table>

Tabelle 16: CD162-positive Zellen pro mm² mit Median, Minimum und Maximum in den einzelnen Gruppen

Das Streudiagramm (Abbildung 7) zeigt die Zellzahlen der CD162-positiven Zellen. Unter den ausgefüllten Kästchen wurden wiederum mehrere Kinder zusammengefasst.
4.5.1.5 CD18-positive Zellen

Tabelle 17 gibt diesen Sachverhalt wieder.
Tabelle 17: CD18-Expression pro mm² mit Median, Minimum und Maximum im Patientenkollektiv

Im nachfolgenden Boxplot-Diagramm (Abbildung 8) ist eine Visualisierung dieser Daten zu sehen.

Abbildung 8: CD18-Expression pro mm² (Median, IQR, Minimum, Maximum und Ausreißer)

4.5.1.6 CD11a-positive Zellen
Dieses Molekül konnte bei zwei der 57 Kinder nicht nachgewiesen werden. Beide Kinder gehörten der Gruppe 1 an, also jener Kinder mit positivem Nachweis von *H. pylori*. Des

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>Charakterisierung</th>
<th>Anzahl</th>
<th>Median</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>H. pylori-positiv</td>
<td>26</td>
<td>0,44</td>
<td>0</td>
<td>1,6</td>
</tr>
<tr>
<td>2</td>
<td>H. pylori-negativ mit Hinweis auf Magenerkrankung</td>
<td>18</td>
<td>0,66</td>
<td>0,12</td>
<td>1,38</td>
</tr>
<tr>
<td>3</td>
<td>H. pylori-negativ ohne Hinweis auf Magenerkrankung</td>
<td>13</td>
<td>0,39</td>
<td>0,05</td>
<td>0,81</td>
</tr>
</tbody>
</table>

Tabelle 18: CD11a positive Zellen pro mm² mit Median, Minimum und Maximum

Das Streudiagramm (Abbildung 9) verdeutlicht die Verteilung der einzelnen Werte noch einmal, und gibt die exakten Molekülzahlen in mm² an. Einige der Werte wurden hier wieder zusammengefasst in einem Kästchen wiedergegeben.
0,06 deutlich darunter. Aus diesen Zahlen wird deutlich, dass auch bei diesem Molekül kein signifikantes Ergebnis erreicht werden konnte.

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>Charakterisierung</th>
<th>Anzahl</th>
<th>Median</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>H. pylori-positiv</td>
<td>12</td>
<td>0,13</td>
<td>0</td>
<td>0,6</td>
</tr>
<tr>
<td>2</td>
<td>H. pylori-negativ mit Hinweis auf Magenerkrankung</td>
<td>14</td>
<td>0,06</td>
<td>0</td>
<td>0,29</td>
</tr>
<tr>
<td>3</td>
<td>H. pylori-negativ ohne Hinweis auf Magenerkrankung</td>
<td>7</td>
<td>0,13</td>
<td>0</td>
<td>0,63</td>
</tr>
</tbody>
</table>

Tabelle 19: Verteilung der CD62L-Expression mit Median, Minimum und Maximum

Abbildung 10: Streudiagramm der CD62L-Expression der 3 Gruppen

4.6 Korrelationen der histologischen und immunhistochemischen Ergebnisse

4.6.1 Zusammenhänge der immunhistochemischen Ergebnisse untereinander

4.6.1.1 Korrelationen innerhalb der Gruppe 1

In der Gruppe der Integrine korrelierten CD11a und CD18 untereinander. Des Weiteren korrelierten alle drei, zu den Integinen gehörende Moleküle, mit CD106, das zur Gruppe der Ig-Superfamilie zählt.
Die zur Ig-Superfamilie gehörenden Moleküle CD54 und CD106 korrelierten in ihrem Ergebnis nicht miteinander. CD106 zusätzlich mit dem Selektin CD62L und CD54 mit CD11a.

Alle Korrelationen innerhalb der Gruppe 1 mit ihrem jeweiligen Signifikanzniveau zeigt die folgende Tabelle.

<table>
<thead>
<tr>
<th>CD11a</th>
<th>CD54</th>
<th>CD106</th>
<th>CD162</th>
<th>CD18</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>r = 0,521</td>
<td>r = 0,476</td>
<td>r = 0,605</td>
<td>r = 0,506</td>
</tr>
<tr>
<td></td>
<td>p<0,013</td>
<td>p<0,019</td>
<td>p<0,002</td>
<td>p<0,014</td>
</tr>
</tbody>
</table>

Korrelation mit CD11a in der Lamina propria

<table>
<thead>
<tr>
<th>CD11b</th>
<th>CD106</th>
<th>CD62L</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>r = 0,632</td>
<td>r = 0,641</td>
</tr>
<tr>
<td></td>
<td>p<0,001</td>
<td>p<0,025</td>
</tr>
</tbody>
</table>

Korrelation mit CD11b in der Lamina propria

<table>
<thead>
<tr>
<th>CD18</th>
<th>CD106</th>
<th>CD11a</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>r = 0,441</td>
<td>r = 0,506</td>
</tr>
<tr>
<td></td>
<td>p<0,04</td>
<td>p<0,014</td>
</tr>
</tbody>
</table>

Korrelation mit CD18 in der Lamina propria
Korrelation mit CD54 in der Lamina propria

<table>
<thead>
<tr>
<th>CD54</th>
<th>CD11a</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(r = 0,521)</td>
</tr>
<tr>
<td></td>
<td>(p < 0,013)</td>
</tr>
</tbody>
</table>

Korrelation mit CD62L in der Lamina propria

<table>
<thead>
<tr>
<th>CD62L</th>
<th>CD106</th>
<th>CD11b</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(r = 0,869)</td>
<td>(r = 0,641)</td>
</tr>
<tr>
<td></td>
<td>(p < 0,000)</td>
<td>(p < 0,025)</td>
</tr>
</tbody>
</table>

Korrelation mit CD162 in der Lamina propria

<table>
<thead>
<tr>
<th>CD162</th>
<th>CD11a</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(r = 0,605)</td>
</tr>
<tr>
<td></td>
<td>(p < 0,002)</td>
</tr>
</tbody>
</table>

4.6.1.2 Korrelationen innerhalb der Gruppe 2

In der Gruppe 2 der *H. pylori*-negativen Kinder mit Hinweis auf Magenerkrankung zeigte sich nur eine einzig Korrelation. Diese bestand zwischen dem Integrin CD11b und dem zur Ig-Familie gehörenden CD54. Die übrigen Moleküle korrelierten in ihrem Anfärbeverhalten nicht miteinander.

<table>
<thead>
<tr>
<th>CD54</th>
<th>CD11b</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(r = -0,53)</td>
</tr>
<tr>
<td></td>
<td>(p < 0,016)</td>
</tr>
</tbody>
</table>

Korrelation mit CD11b in der Lamina propria
4.6.1.3 Korrelationen innerhalb der Gruppe 3

In der Gruppe 3 der Kinder ohne Nachweis auf Magenerkrankung gab es zwei Korrelationen verschiedener Molekülklassen. Das zur Ig-Superfamilie gehörige CD54 korrelierte sowohl mit dem Selektin CD162 als auch mit dem Integrin CD11b. Weitere Korrelationen innerhalb dieser Patientengruppe konnten nicht aufgewiesen werden.

Die folgende Tabelle stellt den Sachverhalt noch einmal dar.

<table>
<thead>
<tr>
<th></th>
<th>CD162</th>
<th>CD11b</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD54</td>
<td>r = 0,618</td>
<td>p<0,043</td>
</tr>
</tbody>
</table>

Korrelation mit CD54 in der Lamina propria

<table>
<thead>
<tr>
<th></th>
<th>CD54</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD11b</td>
<td>r = 0,873</td>
</tr>
</tbody>
</table>

Korrelation mit CD11b in der Lamina propria

<table>
<thead>
<tr>
<th></th>
<th>CD54</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD162</td>
<td>r = 0,618</td>
</tr>
</tbody>
</table>

Korrelation mit CD162 in der Lamina propria

Tabelle 22.1-3: Korrelationen der immunhistochemischen Ergebnisse untereinander für die Gruppe 3 mit Korrelationskoeffizient r und Signifikanzniveau p
5 Diskussion

5.1 Patientenkollektiv

5.1.1 Bedeutung der Patienteneinteilung in drei Gruppen

Die **Gruppe 1** bestand aus Kindern, die in ihrer Diagnostik mindestens drei Mal positiv auf *H. pylori* getestet wurden. Eine kulturelle Anzüchtung des Keims glückte nicht in allen Fällen, da dieser Test zwar eine Spezifität von 100 % aufweist, aber seine Sensitivität um einiges niedriger liegt. Rüssmann et al. erreichten in ihrer Studie nur eine Sensitivität von 82,7 %, obwohl die Biopsien nur eine kurze Transportzeit ins Labor hatten (148). Er hält die Stabilität von *H. pylori* in einer Biopsie während des Transportes für den limitierenden Faktor (148). In einer anderen Studie wurde sogar nur eine Sensitivität von 42 % der kulturellen Anzüchtung erreicht (125). In unserer Studie stellen sich alle Kinder die keine Infektion mit *H. pylori* hatten, negativ im Atemtest dar.

Viele Zweiterkrankungen stellten ein Ausschlusskriterium für diese Gruppe dar, da bestimmte Entzündungen mit Magenbeteiligung, wie chronisch entzündliche Darmerkrankungen oder Zöliakie eine spezifische Immunreaktion nach sich ziehen, die Ergebnisse verfälschen könnten. Drei der Kinder hatten jedoch einen Nebenbefund, bei welchem keine Veränderungen der Magenmukosa erwartet wurden und sie somit in die Studie aufgenommen werden konnten. Eins der Kinder hatte eine kleine Hiatushernie (Pat. 8) ein anderes litt an Laktose-Intoleranz (Pat. 22) und das dritte zeigte klinisch unauffällige Gallensteine (Pat. 24).

Gruppe 2 setzte sich aus Kindern zusammen, die nachweislich nicht mit *H. pylori* infiziert waren, da mindestens drei der Nachweismethoden ein negatives Ergebnis erbracht hatten. Diese Kinder litten an einer Grundkrankheit, bei welcher eine Magenbeteiligung nachgewiesen war, oder zumindest eine Zellinfiltration in die Magenmukosa nicht

\textbf{Gruppe 3} bestand aus \textit{H. pylori}-negativ getesteten Kindern, die keine Hinweise auf eine mögliche Magenerkrankung zeigten. Da aber nur Kinder mit gastrointestinalen Beschwerden endoskopiert wurden, konnte auch bei ihnen eine Magenbeteiligung nicht mit 100-prozentiger Sicherheit ausgeschlossen werden.

Eine gezielte Aufschlüsselung der Kinder ohne \textit{H. pylori}-Infektion wurde deshalb

Zur Interpretation der Arbeit, ist es sehr wichtig, zu berücksichtigen, dass unsere Gruppe 2 eine sehr heterogene Einheit darstellt, da auch die Möglichkeit besteht, dass gesunde Kinder in dieser Gruppe repräsentiert werden. Retrospektiv lässt sich jedoch sagen, dass unsere klinische Einschätzung der Kinder so gut war, dass sich die Patienteneinteilung mit der Sydney-Klassifikation, die heute den Goldstandard der Gastritiden-Einteilung darstellt, gut vereinbaren lässt. Dies hebt die Schlüssigkeit unserer Patienteneinteilung deutlich hervor.

5.1.2 Bedeutung der Kollektivgrösse

Für eine Studie, die immunhistochemische Methoden verwendet, stellt eine Menge von 70 Patienten jedoch eine sehr relativ hohe Fallzahl dar, wie man im Vergleich mit anderen Studien sehen kann. In vergleichbaren Studien wurden 64 Patienten (69), 31 Patienten (149) und in einer dritten Studie 25 Patienten (77) untersucht.

Alle diese Studien wurden bei erwachsenen Patienten durchgeführt. Die insgesamt etwas niedrige Fallzahl lag deshalb am erheblichen zeitlichen Aufwand der quantitativen Auswertung der einzelnen Adhäsionsmoleküle.
5.1.3 Bedeutung des Lebensalters

5.1.4 Einfluss der Nationalität

Die Ergebnisse unserer Studie zeigten, dass nur 25 % der *H. pylori*-erkrankten Kinder von deutscher Nationalität waren, obwohl sie mit 70 % die Mehrheit der Studienteilnehmer stellten. Es gilt als gesichert, dass ein signifikanter Unterschied in der Infektion zwischen entwickelten und weniger entwickelten Ländern existiert (167). Als größter Risikofaktor für eine Infektion gilt demnach der niedrige sozioökonomische Status einer Bevölkerungsgruppe (85), da in unterprivilegierteren Schichten oft enge Wohnräume, schlechte sanitäre Verhältnisse und Mangel an frischem Trinkwasser vorherrschen (167). Das erklärt, warum auch in westeuropäischen Ländern die Prävalenz einer *H. pylori*-Infektion bei 30-40 % der Kinder in sozial schwächeren Familien liegt (147). Den gleichen Prävalenzwert erreichen Kinder in Ost- und Südosteuropa (146). Dieser Wert steigt auf 80-100 % der erkrankten Kinder in Entwicklungsländern an (146). Einen weiteren Risikofaktor stellt der Infektionsstatus in der Familie dar, da die Infektion wohl meist oral-oral übertragen wird (85). In der Gruppe 1 fanden sich fünf Geschwister einer afghanischen Familie, die alle mit *H. pylori* erkrankt waren. Hier zeigte sich, dass sowohl die Eltern als auch ein weiteres Geschwisterkind ebenso an diesem Keim erkrankt waren, was die These einer Infektion innerhalb der Familie stützt.

5.1.5 Eradikationstherapien in der Vergangenheit

Eine Anti-*H. pylori*-Therapie war in der Vergangenheit bei 12 der Kinder unserer Studie durchgeführt worden. Sieben Kinder profitierten von dieser Therapie und zeigten sich zum Zeitpunkt der Studie negativ auf eine Infektion mit dem Keim. Fünf der behandelten Kinder waren jedoch weiterhin *H. pylori*-positiv. Dabei handelte es sich mit großer Wahrscheinlichkeit um keine Neuinfektionen, sondern um ein Fehlschlagen der Therapie. In Studien wurde belegt, dass ca. 10 % der behandelten Personen „Non-Responders“ darstellen, die nach einer Therapie *H. pylori* infiziert bleiben (79). Das Scheitern der Therapie kann viele
Ursachen haben unter anderen ist dabei immer an eine mangelnde Compliance des Patienten oder eine Resistenz des Erregers auf die Therapie zu bedenken (79).

Bei einer erfolgreichen Eradikation der Keims zeigt sich schon bald eine histologische Verbesserung der Entzündungszeichen in der Magenmukosa. Eine Infiltration von neutrophilen Granulozyten verschwindet bereits ein bis zwei Monate nach erfolgreicher Eliminierung des Keims (166). Die chronische Komponente, die durch T-Lymphozyten, B-Lymphozyten, Plasmazellen und Monozyten verursacht wird (39), klingt erst später ab, sollten jedoch auch nach ca. ein bis zwei Jahren verschwunden sein (166).

Das zeigte sich auch bei den Kindern unserer Studie, deren erfolgreiche Keimeliminierung mindestens sechs Monate zurücklag. Die Zahl des Zellinfiltrates war deutlich, im Vergleich zu den erkrankten Kindern, zurückgegangen. Bei allen 5 genesenen Patienten lag ein Grad 1 der Chronizität vor, im Vergleich zu der erkrankten Patientengruppe, die einen Median von 2,16 der Chronizität zeigten. Die übrigen Parameter waren bei den geheilten Kindern jeweils auf den Grad 0 gesunken Dies zeigt, dass in der Mukosa nach erfolgreicher Therapie eine vollständige Wiederherstellung des gesunden Zustandes oder zumindest eine starke Regression des Entzündungszustandes erreicht werden kann, was auch zahlreiche Studien belegen (125; 98).

5.2 Endoskopisch erhobene Befunde

Makroskopisch wurden während der Endoskopie verschieden Befunde erhoben. Erythema, Exsudate, Erosionen und Nodularität konnten meist mit einer Infektion mit *H. pylori* in Verbindung gebracht werden (126). Nodularität im Antrum ist vor allem bei Kindern, ein Marker für die Infektion mit *H. pylori* (9; 103; 107, 169), kann aber auch in Magenmukosa Erwachsener *H. pylori*-Patienten gefunden werden (169). Bei Kindern ist diese Nodularität oft mit höchster Entzündungsaktivität verbunden (9; 107).Sie zeichnet sich durch eine sehr hohe Spezifität, aber eine meist geringere Sensitivität aus (103; 107;126). Die Spezifität lag in den
verschieden Studien bei 100 % (105) 98 % (9) und 83 % (103). In unserer Studie lag die Spezifität mit 97,4 % damit genau im Bereich der anderen Studien. die Sensitivität lag mit 40,5 % (107) und 39, 8 % deutlich niedriger. In unserer Studie wurde hier ein Wert von 96, 7 % erreicht. Dieser liegt damit deutlich höher, als in allen anderen Studien, was aber mit unserer relativ geringen Fallzahl zusammenhängen könnte, denn diese lag bei den Vergleichsstudien mit 174 bis 305 Patienten deutlich höher.

Zusammenfassend kann gesagt werden, dass sich hinter einer makroskopisch unauffällig erscheinenden Magenmukosa ein entzündliches Infiltrat verbergen kann (60) und dass, wie in unserem Falle, eine makroskopische Veränderung nicht immer mit der erwarteten mikroskopischen korreliert. Deswegen sollte bei jeder endoskopischen Untersuchung auch die Entnahme einer Biopsie zur histologischen Aufarbeitung erfolgen.

5.3 Histologische Befunde nach der Sydney-Klassifikation

Um in unserer Studie die subjektive Komponente klein zu erhalten, wurde diese Bewertung nach der Sydney-Klassifikation von einer Pathologin in Form einer Blindstudie ausgeführt.

5.3.1 Entzündungsaktivität

Sie ist nach der Sydney-Klassifikation durch Anwesenheit von segmentkernigen neutrophilen Granulozyten in der Magenmukosa definiert. Wie schon in der Einleitung erwähnt, verursachen diese, wohl durch Freisetzung von Sauerstoffradikalen und Proteasen, eine
Gewebschädigung.
Granulozyten sind ein sensitiver Marker für die Infektion mit *H. pylori*, da sie bei einer Infektion fast immer vorliegen (39) und schon bald nach der Genesung nicht mehr in der Magenmukosa zu finden sind (166), eine gesunde Magenschleimhaut weist keine Neutrophilen auf (6).

Von den 31 Kindern der Gruppe 1 wiesen jeweils 14 Kinder eine Entzündungsaktivität vom Grad 1 und 2 im Antrum auf. Nur ein Kind zeigte eine Grad 3-Infiltration mit neutrophilen Granulozyten.

Fand in einer Studie des letzten Jahres keinen signifikanten Unterschied der Entzündungsaktivität zwischen *H. pylori*-positiven Kindern und Erwachsenen (169) und in anderen Studien (167; 177) zeigten die Kinder eine geringere Entzündungsaktivität.

5.3.2 Enzündungschronizität

Der Gruppeninteilung nach sollte die Chronizität der Entzündung von Gruppe 1 bis 3 stetig abnehmen, da in der letzteren ja Kinder ohne Magenbeteiligung zusammengefasst wurden. Das bestätigt sich dann auch, da es eine hochsignifikante negative Korrelation zwischen Gruppenzahl und Chronizitätsgrad besteht. (r = -0,73; p ≤0,001). Die Auswahlkriterien der einzelnen Gruppen wurden also treffend gestellt.

5.3.3 *H. pylori*-Dichte

5.3.4 Atrophie der Magenmukosa

Die Atrophie von Magenmukosa ist definiert als Verlust von Drüsenkörpern. Dies führt mit der Zeit zur Verdünnung der gesamten Schleimhaut und hat intestinale Metaplasie zur Folge. Eine Drüsenatrophie ist leicht zu erkennen, wenn sie stark ausgeprägt ist. Schwächer Formen sind jedoch schwierig zu differenzieren (24). In verschiedensten Studien wird dargelegt, dass in der Bestimmung des Atrophiegrades die größte Interobserver-Unstimmigkeit im Bezug auf das Sydney-System besteht (24; 166). In unserer Arbeit zeigten insgesamt neun Kinder eine Atrophie vom Grad 1, was 12,8 % des Patientenkollektives entspricht. Unter diesen neun Kindern waren jedoch nur vier, bei welchen diese Atrophie aufgrund einer Infektion mit H. pylori entstehen konnte (entspricht 12,9 %). Die übrigen fünf Kinder waren den Gruppen 2 und 3 der H. pylori-negativen Kindern zugeordnet. Natürlich zeigte sich bei diesem Ergebnis kein signifikanter Unterschied zwischen den einzelnen Gruppen. Unsere Ergebnisse decken sich mit denen anderer Studien, wo zum Beispiel 17 % der erkrankten Kinder eine geringgradige und 2 % eine mittelgradige Atrophie aufwiesen. Auch hier waren die übrigen
Kinder unauffällig (177). Über die Entstehungsmechanismen wird kontrovers diskutiert. Eine Studiengruppe stellte die Hypothese auf, dass Atrophie einen frühen Reparationsmechanismus der Magenmukosa darstellt (177), eine andere ist der Meinung, dass die Atrophie durch den Keim selbst, oder durch die Immunantwort entsteht (30). Da fünf Kinder der vorliegenden Arbeit eine leichte Atrophie der Antrummukosa ohne Zeichen einer erhöhten Immunantwort im Magen aufwiesen, erscheint der erste Erklärungsversuch im Bezug auf unsere Studie als denkbar.

5.3.5 intestinal Metaplasie
Intestinale Metaplasie ist ein weit verbreiteter Aspekt einer chronischen Gastritis, der mit der zeitlichen Dauer dieser Entzündungsreaktion zunimmt und einen Risikofaktor für nachfolgende Dysplasie und Kanzerogenese darstellt (39; 177). Metaplasie könnte einen späten Reparaturmechanismus der Magenschleimhaut darstellen (177), was mit den verschiedensten Studien in Einklang steht, da bei Kindern nie metaplastische Veränderungen in Verbindung mit *H. pylori*-Infektion gefunden wurden (177; 55; 116). Dies trifft auch auf unsere Studie zu, denn keines der 70 Kinder zeigte eine Metaplasie des Antrums. Bei Erwachsenen stellt sie jedoch einen gewöhnlichen Befund dar, was durch mehrere Studien belegt werden kann (169; 177) und wieder mit der oben beschriebenen Hypothese übereinstimmt.

5.4 Qualitative Beurteilung der immunhistochemischen Färbung im Antrum

5.4.1 Vorhandensein von Lymphfollikeln im Antrum
Genta RM, et al. vertraten in ihrer Studie von 1993 die Meinung, dass Lymphfollikel mit Keimzentren charakteristisch für eine chronische Besiedlung mit *H. pylori* seien und eine Kennzeichen der Infektion darstellten. Wurden sie nicht gefunden, so die Meinung der

Sicher ist heute, dass *H. pylori* in der Entstehung von MALT-Lymphomen des Magens eine große Rolle spielt (2; 56), da diese vor allem in Gebieten mit hoher *H. pylori*-Prävalenz in Erscheinung treten (2) und mit Hilfe einer Eradikationstherapie eine Regression des Tumors erfolgen kann (50; 92).

5.5 Quantitative Beurteilung der immunhistochemischen Färbung im Antrum

5.5.1 CD106 positive Zellen

CD106 ist einer der Hauptmediatoren der Leukozytenadhäsion und spielt als Co-Stimulator auch eine Rolle in Entzündungsreaktionen verschiedener Organe. Es ist normalerweise auf aktivierten Endothelzellen entzündeter Gewebeoberflächen zu finden und ermöglicht so die Diapedese der Leukozyten durch das Endothel zum Entzündungsherd (70).

Diese Studien decken sich mit dem Ergebnis unserer Arbeit. Es zeigte sich ein signifikanter Zusammenhang zwischen CD106-Konzentration der Lamina propria und *H. pylori*-Infektion. Auch zwischen den Gruppen 2 und 3 kann ein Unterschied in der Konzentration der CD106
ausgemacht werden. Dieser fällt jedoch nicht signifikant aus. Der Median beträgt dabei 0,46 für Kinder der Gruppe 2 und 0,24 für Kinder der Gruppe 3, was mit den oben genannten Ergebnissen von Yoshida et al. übereinstimmt, da eine vermehrte CD106-Expression in allen Entzündungsprozessen, wenn auch in unterschiedlichen Ausprägungsgraden zu finden ist.

5.5.2 Positive Zellen der β2-Integrine
Die einzelnen Adhäsionsmoleküle der Integrinfamilie werden hier zusammen abgehandelt, da sie in vivo als Zusammenschluss einer gemeinsamen β2-Untereinheit und einer dazugehörigen α-Untereinheit zusammensetzt. In dieser Arbeit werden dabei nur CD11a/CD18, auch LFA-1 genannt, und CD11b/CD18, auch Mac-1 genannt, berücksichtigt.

In einer Studie von Sixt et al. jedoch, wird gezeigt, dass nicht β2-Integrine für die Adhäsion und Migration von Molekülen in die interstitielle Matrix notwendig sind, sondern nur β1- und β3-Integrine (156).

5.5.3 CD54 positive Zellen

CD54 positive Zellen sind auf den Oberflächen von Endothelzellen in den meisten Körperregionen auch bei gesunden Menschen stets nachweisbar. Das gilt demnach auch für die Lamina propria gesunder Magenmukosa (77). Läuft nun eine Entzündungsreaktion im Magen ab, treten stets proinflammatorische Stimuli, wie Endotoxine oder Ischämie auf und CD54 kann in vermehrter Anzahl nachgewiesen werden (62; 132).

In einer Studie von El Kaisouri et al. wurde überprüft, ob ein Unterschied in der CD54
Konzentration zu finden ist, je nachdem ob es sich um eine Gastritis mit nachgewiesener
H. pylori-Infektion handelt, oder ob eine andere Ursache zu diesem Krankheitsbild geführt hat
(46). Dazu untersuchte er zuvor entnommene Proben der Magenmukosa mit der
Immunfluoreszenztechnik. Dabei stellte er bei beiden Gastritisformen eine Erhöhung der
CD54 Konzentration in der Mucosa fest, die bei *H. pylori*-positiven Proben jedoch stärker
ausgeprägt waren, woraus er eine aktive Beziehung zwischen Bakterium und Endothelzelle
schloss. Zu einem vergleichbaren Ergebnis kam die Arbeit von Byrne et al., die nach einer
6-stündigen Exposition von Endothelzellen mit *H. pylori* einen Anstieg der CD54
Konzentration von 100% erhielt.

In der vorliegenden Arbeit konnte solch eine signifikante Unterscheidung der Gruppe 1 mit
gesicherter Infektion mit *H. pylori* gegen die Gruppen 2 und 3 leider nicht erzielt werden. Die
CD54-Werte lagen in allen Gruppen etwa auf demselben Niveau. Dabei ist jedoch
anzumerken, dass die Kinder der Gruppe 2 unter gesicherten Erkrankungen des
Gastrointestinaltraktes leiden und deswegen auch eine erhöhte Dichte von CD54 zu erwarten
ist. Warum die CD54-Konzentration bei Kindern der Gruppe 3 auch dieses Niveau erreicht ist
unklar. Sicher ist nur, dass auch bei ihnen eine gesicherte gastrointestinale Symptomatik,
jedoch ohne organisches Korrelat, vorliegt. Bisher gibt es jedoch keine vergleichbaren
Studien, die das erklären könnten, da bisher meist erwachsene Probanden untersucht worden
sind und Kinder sich in der Art und Intensität der Entzündungsreaktion davon unterscheiden
können. Des Weiteren wurden die meisten Studien per mRNA-Transkription, ELISA oder
ähnlichem untersucht. Vergleichbare Arbeiten mit angefärbten und unter dem Mikroskop
ausgezählten Zellen liegen uns nicht vor. Ein gewisses Fehlerpotential könnte hier bei der
Auswertung liegen, weil sich die Färbung des Moleküls als problematisch erwies und
Farbarteffekte nicht vermieden und sich daraus ableitende Auszählungsunsicherheiten nicht
sicher vermieden werden konnten.

In der vorliegenden Arbeit kann eine Differenzierung der CD54-Dichte durch Entzündungsaktivität und Chronizität nicht getroffen werden.

5.5.4 CD162 positive Zellen

Das auch PSGL-1 genannte Molekül wird hauptsächlich auf Leukozyten exprimiert und stellt den einzigen biologisch wichtigen Liganden für P-Selektin dar. P-Selektin ist verantwortlich für die Initiierung des Rollens und damit für den Beginn der Entzündungsreaktion innerhalb der ersten Minuten nach proinflammatorischer Stimulation (47; 65; 104; 131).

Im Stadium der festen Adhäision, also nach Abschluss des Rollens, werden PSGL-1 und
P-Selektin nicht mehr benötigt, ihre Expression sinkt nach der Leukozytenaktivierung.

5.5.5 CD62L positive Zellen

Wie schon zuvor erwähnt, ist die Datenlage bei CD62L bei weitem nicht so umfangreich, wie bei vielen anderen Adhäsionsmolekülen.

Der „homing-Rezeptor“ auf postkapillären Venolen der Lymphknoten und auf Leukozyten, ist für das initiative „Rollen“ bei Entzündungsreaktionen zuständig und wird schnell danach im so genannten „Shedding“ abgestreift. (168; 172)

In einer Arbeit von Ostanin et al., in welcher die Induktion und Aufrechterhaltung der chronischen Kolitis bei Mäusen untersucht wurde und die Funktion verschiedener Adhäsionsmoleküle dabei festgestellt werden sollte, zeigte sich, dass kein T-Zell-assoziiertes CD62L notwendig war, um die Entwicklung eine chronischen Kolitis zu initiieren (130).

Beide Studien decken sich mit den Ergebnissen der vorliegenden Arbeit. Es konnte kein signifikanter Unterschied in der Ausprägung des Adhäsionsmoleküls zwischen den einzelnen
Gruppen gefunden werden. Alle drei Patientengruppen zeigten ähnliche Moleküläusprägungen.
6 Zusammenfassung

Einleitung:

Eine Infektion mit *H. pylori* zeichnet sich durch eine chronische Entzündung des betroffenen Gewebes aus, in welchem ständig neue Entzündungszellen aktiviert und zum Entzündungsherd transportiert werden.

Gruppe 2 beinhaltete diejenigen H. pylori-negativen Kinder (n=24), bei denen eine Magenbeteiligung im Rahmen der Grunderkrankung gesichert war oder nicht ausgeschlossen werden konnte, die in den letzten vier Wochen Medikamente eingenommen hatten oder die früher einmal H. pylori-infiziert gewesen waren.

Gruppe 3 umfasste die H. pylori-negativen Kinder (n=15), bei welchen weder die Anamnese noch der endoskopische Befund Hinweise auf eine Magenerkrankung lieferten, die in den letzten vier Wochen keine Medikamente eingenommen hatten und keine beeinträchtigte Immunität vorlag.

Immunhistochemie: Gefrierschnitte aus dem Antrum wurden mit Hilfe der indirekten
Immunperoxidase-Technik auf das Vorkommen von Adhäsionsmolekülen der Klasse der Integrine (CD11a, CD11b, CD18), Selektine und deren Liganden (CD62L, CD162) und Familie der Ig-Superfamilie (CD54, CD106) untersucht und dargestellt. Qualitativ wurde das Vorkommen von Lymphfollikeln festgehalten. Jeder Marker wurde quantitativ für eine Fläche von 0,625 mm² am Bildschirm ausgezählt, nachdem die Schnitte digitalisiert gespeichert wurden (dhs-Bilddatenbank, Version 4.0). Die angefärbten Zellen der Lamina propria wurden mm² ausgewertet.

Ergebnisse:
Lamina propria qualitativ: Lymphfollikel wurden bei 90% der H. pylori-positiven Kinder gesehen, bei 42% der Kinder der Gruppe 2, jedoch nicht bei Kindern der Gruppe 3. Die Sydney-Klassifikation bestätigte retrospektiv die klinische Patienteneinteilung: Patienten der Gruppe 3 zeigten eine unauffällige Histopathologie, während bei einem Teil der Kinder in Gruppe 2 und bei allen Kindern in Gruppe 1 ein Entzündungsgeschehen nachgewiesen werden konnte.

Korrelationen: In Gruppe 1 gab es auffällig mehr Korrelationen, als in den beiden anderen Gruppen. Vor allem in der Gruppe der Integrine zeigten sich verschiedenste Korrelationen, sowohl untereinander (CD11a, CD18), als auch zu Molekülen anderer Herkunftsklassen (CD54; CD106; CD162; CD62L). Selektine und Moleküle der Ig-Superfamilie korrelierten überhaupt nicht innerhalb ihrer Molekülklassen.
Schlussfolgerungen:

- CD106 kam regelmäßig in Zellen normaler Magenmukosa vor. Dieses Vorkommen ist nicht altersabhängig.
- Während *H. pylori*-Infektionen zeigte sich ein signifikanter Anstieg von CD106 positiven Zellen.
- Ein signifikanter Anstieg bei einer Infektion mit *H. pylori* zeigte sich auch bei CD11b positiven Zellen.
- CD54 positive Zellen sind regelmäßig in der Magenmukosa zu finden. Die Anfärbung unter ex-vivo-Bedingungen war allerdings sehr schwierig und ungenau, so dass dieses Molekül nicht für einen Nachweis von *H. pylori* unter den vorhandenen Versuchsbedingungen eignet.
Literaturverzeichnis

57. Genta RM, Hamner HW, Graham DY. Gastric lymphoid follicles in Helicobacter pylori infection: frequency, distribution and response to triple therapy. Hum Pathol. 1993;24:577-583.

58. Goddard AF, Logan RP. Review article: urea breath tests for detecting Helicobacter pylori.

78. Huang GTJ, Eckmann L, Savidge TR, Kagnoff MF. Infection of human intestinal epithel

98. Lawrence MB, Springer TA. Leukocytes roll on a selectin at physiologic flow rates:

100. Ley K. Integration of inflammatory signals by rolling neutrophils. Immunological Reviews. 2002;186:8-18.

107. Maciorkowska E, Dzieciol J, Kemona A, Kaczmarski M. Evaluation of selected cytokines and mononuclear cell infiltrations in gastric mucosa of children with food

infection evaluated by the modified Sydney system. Am J Gastroenterol. 2000.
Sep;95(9):2195-2199.

Aug;63(8):665-668.

eexpression of vascular adhesion molecule, a cytokine-induced endothelial protein that

128. Osborn L, Vassallo C, Benjamin CD. Activated endothelium binds lymphocytes
through a novel binding site in the alternately spliced domain of vascular cell adhesion

JM, Grisham MB. Tcell- associated CD18 but not CD62L, ICAM-1 or PSGL-1 is required
for the induction of chronic colitis. Am J Physiol Gastrointest Liver Physiol.

130. Panés J, Granger DL. Special Reports and Reviews: Leucocyte-Endothelial Cell
Interactions. Molecular Mechanisms And Implications in Gastrointestinal Disease.

CL, Miyasaka M, Kviets PR, Granger ND. Regional differences in constitutive and
induced ICAM-1 expression in vivo. The American Physiological Society. 1995:H1955-
H1964.

132. Parkos CA. Cell adhesion and migration. I. Neutrophil adhesive interactions with

133. Parsonnet J, Hansen S, Rodriguez L, Gelb AB, Warnke RA, Jellum E, Orentreich N,
Vogelmann JH, Friedmann GD. Helicobacter pylori infection and gastric lymphoma. N
144. Rothenbacher D, Bode G, Gommel R, Gonser T, Adler G, Brenner H. Prevalence and

154. Sims TN, Dustin ML. The immunological synapse: integrins take the stage. Immunological Reviews 2002;186:100-117.

Lebenslauf

<table>
<thead>
<tr>
<th>Persönliche Daten:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Name:</td>
<td>Hexamer</td>
</tr>
<tr>
<td>Vorname:</td>
<td>Sylvia</td>
</tr>
<tr>
<td>Geburtsdatum:</td>
<td>10.06.1977</td>
</tr>
<tr>
<td>Geburtsort:</td>
<td>München</td>
</tr>
<tr>
<td>Anschrift:</td>
<td>Kaiserstr. 34, 80801 München</td>
</tr>
<tr>
<td>Familienstand:</td>
<td>Ledig</td>
</tr>
<tr>
<td>Religion:</td>
<td>Römisch-katholisch</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Schulbildung:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>09/1983-07/1987</td>
<td>Grundschule in München</td>
</tr>
<tr>
<td>09/1987-07/1995</td>
<td>Gymnasium in München</td>
</tr>
<tr>
<td>09/1995-06/1997</td>
<td>Gymnasium Neubiberg; Abschluss mit allgemeiner Hochschulreife</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Auslandsaufenthalte:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>02/1995-04/1995</td>
<td>Dreimonatiger Schüleraustausch am Heywood and District Secondary College, Victoria, Australien</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hochschulbildung:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>05/1998-10/2004</td>
<td>Ludwig-Maximilians-Universität-München Studium der Humanmedizin</td>
</tr>
<tr>
<td>10/2004</td>
<td>Abschluss des Studiums mit der Gesamtnote 1,66</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Berufliche Tätigkeit:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>03/2005-07/2006</td>
<td>Weiterbildungsassistentin für Pädiatrie; Praxis Dr. Thomas Sturm, Fürstenfeldbruck</td>
</tr>
<tr>
<td>seit 02/2008</td>
<td>Josefinum Augsburg, Assistenzärztin für Kinder- und Jugendpsychiatrie und Psychotherapie</td>
</tr>
</tbody>
</table>