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Zusammenfassung
Dem aktuellen kosmologischen Modell nach wachsen Galaxienhaufen – die größten virialisierten

Systeme des Universums – durch die Akkretion kleinerer Objekte aus der umgebenden, wabenartigen

kosmischen Massenverteilung. Die entsprechenden Galaxien kommen dabei in Wechselwirkung

sowohl mit anderen Galaxien als auch mit dem heißen Röntgengas (ICM) und dem Gravitationsfeld

des Galaxienhaufens, und verändern in der Folge ihre Struktur. Einige der dabei auftretenden Prozesse

sind ’tidal stripping’ (Massenverlust durch Gezeitenkräfte), die Verschmelzung mit anderen Galaxien

und ’ram pressure stripping’ (Gasverlust durch den Staudruck des Röntgengases im Haufen). Diese

Prozesse spielen nicht nur für die weitere Entwicklung derGalaxien eine Rolle, sondern sind auch

verantwortlich für die Entstehung des sog. ’intraclusterlight’ (ICL). Beim ICL handelt es sich um

Sterne, die nicht mehr an einzelne Haufengalaxien gebundensind. Numerische Simulationen sagen

voraus, dass alle Wechselwirkungsprozesse der Galaxien imHaufen Sterne ins ICL übergehen lassen,

aber insbesondere jene, die mit der Bildung der hellsten Haufengalaxie (BCG) im Zusammenhang

stehen.

Gegenstand dieser Arbeit ist die Untersuchung des ICL im Zentrum des Galaxienhaufens Hydra

I. Hydra I gehört zur südlichen Hemisphäre, ist etwa 50 Mpc entfernt und von mittlerer Kompaktheit.

Im Röntgenlicht erscheint der Galaxienhaufen als ein relaxiertes System, das von zwei nicht in

Wechselwirkung stehenden elliptischen Galaxien beherrscht wird: NGC3311 (cD) und NGC3309

(E3). Wir wollen herausfinden, wie die Kinematik des ICLs mitder im Halo der cD Galaxie NGC3311

zusammenhängt, und was man an der Photometrie und Kinematik des ICLs über die Entwicklung des

Haufens insgesamt ablesen kann.

Um das Zentrum von Hydra I genauer zu untersuchen, wurden drei unterschiedliche Datensätze

verwendet. Die Absorptionslinienkinematik von NGC3311 wurde mit Hilfe von Langspalt-Spektren

(gewonnen mit FORS2 am UT1) untersucht. Mit ’multislit imaging spectroscopy’ (MSIS; Daten vom

gleichen Instrument) haben wir die Kinematik von Planetarischen Nebeln (PNe) gemessen, welche

Teil der Sternverteilung des Haufens in den innersten 100x100 kpc2 um NGC3311 sind, und mit

Photometrie vom WFI-ESOS2.2 Teleskop haben wir um die cD Galaxie die Lichtverteilung und ihre

Unterstruktur untersucht.

Die Absorptionslinienkinematik von NGC3311 zeigt, dass der Halo dieser Galaxie von den

inneren Sternen des Galaxienhaufens selbst beherrscht wird. Die Dominanz der Haufensterne beginnt

in etwa 4-12 kpc Entfernung vom Galaxienzentrum, während die Sterne weiter innen an die Galaxie

gebunden sind. Das ICL im Hydra Haufen ist dynamisch noch nicht durchmischt. In der projizierten

Geschwindigkeitsverteilung (LOSVD) der PNe findet man mehrere Maxima, die Unterstrukturen im

Haufenzentrum anzeigen. Mittels V-Band Photometrie habenwir entdeckt, dass das Licht im Halo

von NGC3311 nicht symmetrisch um die Galaxie verteilt ist, sondern dass der nord-östliche Teil

heller ist. Die Geschwindigkeit in diesem Halobereich passt zu einem Maximum der PN LOSVD bei

5000 km/s Geschwindigkeit, und außerdem zu der einer Gruppe von Zwerggalaxien im Zentrum von

Hydra I. Das asymmetrische Licht könnte von der kleinen Gruppe von Zwerggalaxien stammen, wenn

diese während eines kürzlichen Durchgangs durch das Haufenzentrum teilweise zerrieben wurden
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und sich nun hinter NGC 3311 befinden. Die stellare Population und die Strukturparameter einer

dieser Zwerggalaxien, HCC 26, sind konsistent mit denen anderer zwergelliptischer Galaxien.

Zusammengefasst, obwohl der Hydra I Haufen in Röntgenbeobachtungen als Prototyp eines

relaxierten und dynamisch entwickelten Haufens erscheint, schreitet die Bildung des diffusen ICL

und des Halos der zentralen cD Galaxie NGC 3311 immer noch voran.



Abstract
In the current cosmological scenario clusters, that are thebiggest virialized systems of the

Universe, are formed through accretion of smaller objects from thecosmic webin which they are

embedded. During these events the galaxies involved are modified due to interaction with other

galaxies, the cluster hot X-ray emitting gas and the clusterpotential well. Some of mechanisms

acting in dense environments are tidal stripping, mergers and ram pressure stripping, just to name a

few. These mechanisms involved in galaxy evolution are alsoresponsible for the formation of what

is called the intracluster light (ICL). ICL consists of stars in clusters that are not bound to any cluster

member. Numerical simulations predict that the stars contributing to the ICL component are unbound

by the processes that are involved in galaxy evolution and inthe formation of the brightest cluster cD

galaxies in particular.

The aim of this work is to study the ICL component in the central core of Hydra I. Hydra I is a

medium compact cluster in the Southern Hemisphere at a distance of∼50 Mpc. The cluster, a relaxed

system from X-ray observations, is dominated by two non interacting elliptical galaxies, NGC 3311

(cD) and NGC 3309 (E3). We are interested in the kinematic relation between the ICL component

and the cD halo of NGC 3311 and in exploring what can be understood from the photometric and

kinematic characteristics of the ICL about the evolutionary history of the cluster as a whole.

We studied the core of Hydra I using three different kinds of data. With UT1-FORS2 long-

slit spectroscopy we investigated the absorption line kinematics of NGC 3311. With UT1-FORS2

multislit-imaging spectroscopy we probed the kinematics of the Planetary Nebulas (PNs) tracing

the stellar light in the central 100× 100 kpc2 of the cluster, around NGC 3311. Finally, with

WFI-ESO2.2m telescope photometry we studied the light distribution around the cD galaxy and its

substructures.

The absorption line kinematics of NGC 3311 shows that the stellar halo of NGC 3311 is

dominated by the central intracluster stars of the cluster.The transition from predominantly galaxy-

bound stars to cluster stars occurs in the radial range from 4to 12 kpc from the center of the galaxy.

The diffuse light in the Hydra I cluster is still un-mixed. The PN line-of-sight velocity distribution

(LOSVD) shows a multi-peaked structure and reveals the presence of subcomponents in the cluster

core. From V-band photometric data we discovered an excess of light, with respect to a symmetric

distribution, in the North-East part of the halo of NGC 3311.The excess has a velocity compatible

with the velocity of the PNs contributing to a high-velocitypeak in the PN LOSVD and a group of

dwarf galaxies populating the central core of the Hydra I cluster. The excess of light could have

formed from stars unbound from the small group of dwarf galaxies that were partially disrupted

during a recent close passage through the dense cluster coreand which are now behind NGC 3311.

The stellar population and structural properties of one of the DWs, HCC 26, are consistent with those

of other dwarf elliptical galaxies.

We conclude that even if from X-rays Hydra I appears to be the prototype of a relaxed and

dynamically evolved cluster, the build up of the diffuse light and halo of its central cD galaxy,

NGC 3311, is still ongoing.
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Chapter 1

Introduction

This thesis is dedicated to the study of the kinematics of theintracluster light (ICL) in the core of the

Hydra I cluster.

In the introduction I describe the main physical characteristics of galaxy clusters in the X-ray and

optical ranges and I give a general overview on the mechanisms that drive the evolution of galaxies

in dense cluster environments. Then I go on to define ICL, discussing its characteristics and its

importance for the study of galaxy clusters, with a short review of several techniques used for its

detection and investigation. A brief paragraph on the physics of the Planetary Nebulas (PNs), post-

AGB stars at the end of their lives, follows, highlighting inparticular the relevance of these stars

for the study of the ICL. The Multi-Slit Imaging Spectroscopy technique for the PNs detection is

introduced and an overview is given of the principal characteristics of the Hydra I cluster. Finally, the

main results from the subsequent chapters are summarized.

1.1 Clusters of Galaxies

According to the Concordance Cosmological model we live in an expanding Universe that formed

about∼ 13.7 billions years ago in the Big Bang after a plasma phase at very high density and

temperature. Structure formation started about 300,000 years later, due to the growth of cosmological

perturbations, with a typical comoving scale of∼ 10 h−1Mpc, through gravitational instability. The

driver of this gravitational instability is dark matter, a weakly interacting form of matter whose nature

is not yet completely understood. The Universe observed today appears as a net, commonly called

cosmic web, consistent of high density regions populated by galaxies and voids. In the formation

scenario mentioned above, the structures aggregate in a hierarchicalbottom-upway, with small mass

virialized systems forming first and then enlarging by accretion and merging events (Peebles, 1993;

Peacock, 1999).

Galaxy clusters are the most massive virialized systems in the Universe and the last structures to

form. They are part of the cosmic web, occurring at the intersection of filaments and they keep
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accreating material from infalling galaxies or groups of galaxies. The masses of clusters are in

the range from 1013 to 1015 M⊙, while their extension is of the order of some 10s Mpc. As the

densest regions in the Universe, clusters are very important both (i) as physical laboratories, for the

study of the mechanisms leading to the evolution of galaxies(Böhringer, 2004) and (ii) as probes

of cosmological models. Constraints on cosmological parameters can be obtained by the study of a)

the cluster baryonic content, b) the cluster abundance and its evolution with redshift, c) the spatial

distribution of the clusters (Kofman et al., 1993; White et al., 1993; Eke et al., 1998; Borgani, 2006,

for a review).

80-87% of the total cluster mass is made of dark matter, whichdetermines the depth of their potential

wells. The remaining 13-20% is in the form of baryonic matter. N-body simulations predict that the

dark matter density profile is well described by the Navarro,Frenk and White profile:

ρ(r)
ρcr
=

δc

(r/rs)(1+ r/rs)2
(1.1)

whereρcr = 3H2/8πG is the critical cosmic density,rs is the scale radius andδc(c) = 200
3 c3/[ln(1+c−

c/(1+c))] is a characteristic dimensionless density (Navarro et al., 1997).H is the Hubble constant, G

the gravitational constant and c is called concentration parameter. It is proportional tor200/rs, where

r200 is defined as the radius at which the cluster density is 200 times the mean density of the Universe.

From Eq. 1.1 it is possible to derive the corresponding integrated mass profile:

M(< R) = 4πρcrr
3
sδc(c)[ln (1 + R̃) − R̃/(1+ R̃)] (1.2)

whereR̃ = R/rs. This quantity can be directly measured in a reliable way from X-ray and lensing

observations in relaxed clusters (Pratt and Arnaud, 2002; Lewis et al., 2003). Both in low mass

and massive systems the measured mass profile is found to be well described by a NFW model,

indicating that simulations properly reproduce the dark matter halo density structure (Allen et al.,

2001; Buote and Lewis, 2004; Pointecouteau et al., 2005; Pratt and Arnaud, 2005).

The baryonic matter is mostly in the form of hot, X-ray emitting gas permeating the cluster potential

- the so called intracluster medium (ICM). Only∼3% of the baryonic mass is in the form of stars and

galaxies. Roughly 10-20% of the stars in a cluster contribute to what we call intracluster light (ICL).

The ICL is therefore a very small component in galaxy clusters and its study has developed only in

the last 10-15 years. However, as I will discuss later in thisintroduction, the ICL plays a major role

in the understanding of the formation history and dynamicalstatus of clusters.

1.1.1 Substructures in clusters of galaxies

An important consequence of the hierarchical structure formation scenario is that clusters are

often not-relaxed systems and present, instead, subcluster components. This is a direct effect of

the accretion events. The identification and analysis of such substructures is important not only



1.1 Clusters of Galaxies 3

to test cosmological models, but also for understanding galaxy evolution. In the last decades

substructure components have been identified in∼40% of the observed cluster (Geller and Beers,

1982; Dressler and Shectman, 1988). The identification of these subcomponents is possible with

different methods: (i) by using the projected phase-phase distribution of galaxies (Biviano et al.,

2006), (ii) by studying the irregularities in the hot X-ray emitting gas, tracing the potential well of the

cluster (Briel et al., 1992; Böhringer et al., 2010), or by (iii) gravitational lensing (Abdelsalam et al.,

1998). In the fifth chapter of this thesis we will show how the investigation of the kinematics of the

intracluster light component in Hydra I, a cluster in the local Universe, contributed to the identification

of one of the substructures of the cluster in its central region.

1.1.2 Clusters of galaxies: X-ray observations

Clusters of galaxies are the most common bright extragalactic X-ray sources. In this band they are

relatively easy to identify because they stand as single extended sources. The first cluster X-ray survey

was done at the beginning of the 70s, with the launch of the theUhurusatellite (see Sarazin, 1988, for

a review on the first X-ray surveys). The new X-ray satellites, ROSAT, Newton-XMM, Chandraand

SUZAKUcontinue to give us an increasingly detailed picture of the galaxy clusters (see Fabian, 1994;

Borgani and Guzzo, 2001; Rosati et al., 2002; Böhringer andWerner, 2010 for some reviews). With

the next generation missions, for exampleIXO andASTRO-H, more and more exhaustive information

will be accessible.

The Intracluster medium and the physics of the X-ray emission

When clusters are formed, the primordial gas trapped in the dark matter potential is heated due to

adiabatic compression, reaching very high temperatures ofthe order of 107 − 108K. The gas has an

extremely low density,ne = 10−3cm−3; it is mainly composed of fully ionized hydrogen (∼75%)

and helium (∼24%). The remaining∼1% consists of heavier elements. The hydrogen and helium

concentrations are similar to the cosmic abundances, confirming that the ICM is primarily constituted

by primordial gas that has been trapped by the cluster potential. The metal abundance is related

to the star-formation history of the galaxy cluster and models predict that the ICM is enriched

with heavy elements coming from supernovae explosions or stellar winds in the member galaxies

(Matteucci and Vettolani, 1988; Böhringer et al., 2005b; Ettori, 2005).

Observations have shown that the ICM has a radial density profile well fitted by aβ-model:

ρ(r) = ρ(0)
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whererc is the so called core radius, defined as the radius where the density projected on the sky

is half of the central value (Cavaliere and Fusco-Femiano, 1976). The ICM emits Bremsstrahlung

radiation, with luminosity of the order of 1043−45erg s−1, plus a series of emission line features
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due to the presence of heavy elements (Felten et al., 1966). Among these, the strongest is the 7

KeV iron line (Sarazin, 1988). The typical metal abundance in nearby galaxy clusters is 0.3Z⊙
(Mushotzky and Loewenstein, 1997; Ettori et al., 2001).

The Bremsstrahlung radiation at frequencyν is given by the formula:

ǫν =
25πe6

3mec3

(

2π
3mek

)1/2

Z2nenig(Z,Tg, ν)T
−1/2
g exp(−hν/kTg) (1.4)

wherene and ni are the ion and electron densities,e is the elementary charge and the ion charge

number. Tg is the temperature of the gas,me is the electron mass,k is the Boltzmann constant,h

the Planck constant andg(Z,Tg, ν) is the Gaunt factor, a dimensionless quantity related to the scatter

mean distance between electrons and ions (Sarazin, 1988, and references therein). This formula

shows a linear dependence of the Bremsstrahlung emissivityon both ion and electron densities, so as

all ni ∝ ne for fixed T and metallicity the emission is proportional ton2
e. The exponential cutoff of

Eq. 1.4 is sensitive to the gas temperatureTg. The Bremsstrahlung emission and the line emissions

can be fitted with different models (Liedahl et al., 1995; Kaastra and Mewe, 2000) that allow us an

estimation of the temperature and abundance of heavy elements of the observed ICM.

From the measurement of the ICM density and temperature, in the hypothesis of hydrostatic

equilibrium (a hypothesis that is reasonably justified in the central core of a cluster) it is possible to

calculate the mass distribution of the cluster:

M = −
kTr
µpG

(

∆lnρg

∆lnr
+
∆lnTg

∆lnr

)

(1.5)

The cooling flow problem and the feedback mechanism

One of the most important open questions regarding the studyof the ICM is the cooling flow problem.

As mentioned above, the gas forming the ICM emits in the X-rayrange. In this way it looses energy.

The time scale of this cooling process for pure Bremsstrahlung emission is given by:

tcool = 8.5× 1010yr
( np

10−3cm−3

)−1
(

Tg

108K

)1/2

(1.6)

This time scale is in general larger that the age of the Universe. As a consequence, the cooling should

be a negligible effect. But already the first observations carried out with theUhuru satellite in the

70s (Giacconi et al., 1972; Forman et al., 1978) showed very bright X-ray SB values at the center of a

large fraction of clusters. These, associated with a temperature drop and an increase of the gas density

in the same regions, demonstrated that for some clusters thecooling time can drop below the cluster

age. Observations have confirmed that 50-70% of the clustershave a cooling core. These are more

frequent in more relaxed and dynamically evolved systems (Fabian, 1994 and references therein).

The most luminous cluster cooling core was discovered by Böhringer et al. (2005a) in the X-ray-

luminous galaxy cluster, RXC J1504.1-0248. Models have been developed to explain the cooling flow
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mechanism (Fabian and Nulsen, 1977). These models predict adrop of the central temperature in the

cool core clusters and a gas density increase, with a mass deposition rate of the order of 100-1000

M⊙/yr. The cooling flow problemconsists in the fact that both the temperature drop and the mass

deposition rates predicted are larger than those observed (Böhringer et al., 2002; Edge and Frayer,

2003; Bauer et al., 2005). The observations can be explainedif some heating mechanism acts to

balance the cooling (Böhringer et al., 2007). At present, supernovae explosions are considered likely

candidate heat sources (Kravtsov and Yepes, 2000; Menci andCavaliere, 2000), as well as the so

called active galactic nucleus (AGN) feedback (Peterson and Fabian, 2006). This last mechanism

is observationally supported by strong interaction seen inthe local Universe between black holes

(BH) and the gas surrounding their host elliptical galaxiesor BCGs. This gas often contains X-ray

bubblesfilled with relativistic plasma inflated by relativistic jets launched from their central AGN

BH (Fabian et al., 2006). Models predict that the energy output from AGNs should be sufficient to

compensate the cooling rate (Voit, 2005).

1.1.3 Clusters of galaxies: optical observations

In optical surveys, clusters appear as enhancements of the surface density of galaxies on the plane of

the sky. One of the most extensive, and still used cluster catalog was obtained by Abell at the end

of the 50s (Abell, 1958). In this catalog clusters were classified as objects with at least 50 galaxies

concentrated within a radius ofR= 1.7/z arcmin, where z is the measured cluster redshift, and within

a well established magnitude range (m3 < mgalaxy < m3+2, wherem3 is the magnitude of the third

brightest galaxy of the cluster). From the morphological point of view many different classifications

have been proposed. Zwicky et al. (1961) classified clustersas compact, medium compact and open,

based on the presence of one, more than one or no single pronounced concentration of galaxies in the

cluster. Bautz and Morgan (1970) divided clusters in Type I-II-III according to the presence of one

(Type I), more than one (Type II) or no (Type III) dominant brightest cluster galaxies. Alternatively

Rood and Sastry (1971) proposed a classification relative tothe spatial distribution of the ten brightest

galaxies in the cluster, from cD clusters, dominated by one central brightest galaxy to Irregular cluster,

in which the ten brightest galaxies of the cluster are distributed in an irregular way. Based only on

photometric images the identification of clusters can be very difficult. If spectroscopic data are not

available, it is often impossible to establish if a galaxy isa cluster member or not due to projection

effects. Many different techniques and algorithms have been developed in the last decades to solve

this problem, since spectroscopy follow-up is highly desirable, but can be very time consuming

(Rosati et al., 2002 for a review). Among others, one of the techniques that has proved to be very

efficient also atz ≥ 1, if multi-band photometric images of the sky are available, is that of the

identification of the so called red sequence. This is formed by a population of red, early-type galaxies

(see next Section), present in clusters but not in the field, lying on a well defined sequence in the

galaxy color-magnitude plane (Stanford et al., 1997; Gladders and Yee, 2000; Koester et al., 2007).
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Galaxies: a morphological classification

If sorted according to their morphology, galaxies can be divided in a relative small number of

classes. The most widely used classification is the Hubble sequence (Hubble and Rosseland, 1936;

Sandage and Bedke, 1994). This sequence is populated from left to right by four different types

of galaxies: ellipticals (E), lenticulars (S0), spirals (S) and irregulars (Irr). Ellipticals, in first

approximation, have a surface brightness (SB) profile that can be described by a Sersic law:

Σ(r) ∝ Σeexp(r/re)
1/n − 1 (1.7)

wherere is called effective radius and is defined so that half of the luminosity of the galaxy falls

inside this radius andn is an index that is inversely related to the concentration ofthe light profile in

the galaxy (Sersic, 1968). In the particular case in which n=4 Eq. 1.7 is called de Vaucouleurs law

(de Vaucouleurs, 1948).

On the other end of the Hubble sequence there are spiral galaxies. These can be divided into barred

and non-barred systems. In the middle, between ellipticalsand spirals, there are the lenticular

galaxies. Both spirals and lenticulars are characterized by a central region, often called bulge, whose

SB profile, similarly to ellipticals, can be described by a Sersic law. In addiction to the bulge, they

have a rotating disk. But, while spirals are so called because they present spiral structures in the disk,

in the S0 galaxies these structures are not visible. The SB ofthis disk structure is, in general, well

described by an exponential law:

Σ(r) = Σ0exp(−r/rs) (1.8)

where Σ0 is the central SB. In the Hubble sequence, lenticulars are between ellipticals and

spirals because they show intermediate properties betweenthese two classes of galaxies. From a

morphological point of view they have a structure more similar to disk galaxies, but like ellipticals

they are characterized by an older stellar population, theyare red, more massive and they do not show

a lot of star formation activity. Ellipticals and lenticulars are often referred to as early-type galaxies.

Spirals on the other hand are blue, they have a younger stellar population, they often show sites of

ongoing star formation, and are also called late-type galaxies.

Another class of systems very common in the Universe but not contained in the Hubble sequence,

is that of dwarf galaxies (DWs). These are morphologically similar to ellipticals, but with much lower

SBs (Mateo, 1998). These galaxies, in general, do not contain young stars.

Galaxy Luminosity Function (LF)

How galaxies are distributed in luminosity is described by the luminosity function,Φ(L). The law

that better fits observations is the Schechter function (Schechter, 1976):

Φ(L) = (Φ∗/L∗)(L/L∗)αexp(−L/L∗) (1.9)
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whereΦ(L)dL gives the number of galaxies in the luminosity rangeL + dL, L∗ is the characteristic

luminosity above which the number of galaxies sharply falls,Φ∗ is a normalization factor andα is the

slope of the luminosity function at the faint end. It is well known that the Schechter law is only an

approximation to the real luminosity function of galaxies,since this depends both on the galaxy type

and the environment (Dressler, 1978; Jerjen and Tammann, 1997; Hansen et al., 2005). The study of

the LF for different systems is, in fact, a way to investigate the influence of environment on galaxy

formation and evolution (Garilli et al., 1999; De Propris etal., 2003).

Analyzing a sample of galaxies in the Virgo cluster and in thefield, Binggeli et al. (1988) found

evidence suggesting that the luminosity function of the individual morphological types differs from

type to type, but for a give type is instead invariant with environment, with just the amplitude changing

in different host systems. The difference observed between the LF of galaxies in the field and in

clusters arises as a consequence of the morphology density relation (see following Sections) (Lugger,

1986). The slopes of the LFs are very similar at the bright endbecause spiral galaxies and ellipticals

have comparable characteristic luminosities. The main difference is observed at the faint end. The

slope of the LF of galaxies in clusters is significantly steeper than that of the galaxies in the field.

This is due to dwarfs galaxies which are much more frequent inclusters than in the field (Pracy et al.,

2004).

The Fundamental plane (FP)

For ellipticals and bulges of spiral and S0 galaxies a relation exists between their morphological

and dynamical properties. In the three-dimensional space given by velocity dispersion, effective SB

Σe and effective radiusre, ellipticals and bulges fall on a plane, called theFundamental plane(FP)

(Dressler et al., 1987; Faber et al., 1987; Bender et al., 1992) given by:

log(re) = a log(σ0) + b Σe+ c (1.10)

where a, b, c are constants. The projection of the FP onΣe vs re plane is known as the

Kormendy relation (Kormendy, 1977) and on theΣe vs σ0 plane is called Faber-Jackson relation

(Faber and Jackson, 1976). Dwarf ellipticals also lie on a plane in this 3D space, but not the same as

the one defined by the ellipticals and bulges.

An alternative way to define the FP is the via theκ-space formulation (Bender et al., 1992):
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(1.11)

In this case k1 is proportional to the considered system mass, k2 depends on its SB and k3 on its

M/L ratio. DWs lie on a distribution perpendicular to those formed by ellipticals and bulges in the

k1 − k2 plane (de Rijcke et al., 2005). This evidence suggests a different origin and/or evolution

history for these systems with respect to ellipticals. Evenif DWs are the most common objects
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in the Universe, their formation is still debated. The most likely mechanisms responsible for their

formation are: (i) gravitational collapse of primordial density fluctuations, similarly to ellipticals

(Dekel and Silk, 1986); (ii) ram-pressure stripping from low-mass irregular galaxies (Boselli et al.,

2008); (iii) galaxy-galaxy or galaxy-cluster potential well tidal interactions from more massive

galaxies (Mastropietro et al., 2005).

Brightest cluster galaxies (BCGs)

A particular class of objects of which we have not yet talked about is that of the brightest cluster

galaxies (BCGs). Morphologically they are similar to ellipticals, but apart from being, by definition,

the most luminous galaxies in clusters, from an observational point of view they are particular for

several reasons. (i) They are special for their positions being located near the centers of galaxy

clusters, close to the peak of X-ray emission (Lin and Mohr, 2004; Rafferty et al., 2008), at the

bottom of the potential well. (ii) They usually show small offsets in velocity in comparison to

their host cluster systemic velocity (Zabludoff et al., 1990). (iii) They are larger and have higher

velocity dispersions (von der Linden et al., 2007) and masses with respect to other ellipticals. They,

in fact, lie off standard relations fornormalearly-type galaxies (Bernardi et al., 2007). Their Faber-

Jackson relation, for example, is steeper than for the brightest non-BCG ellipticals. This is consistent

with significant growth of BCGs via dry mergers (Desroches etal., 2007). (iv) Their SB profiles

are special, since BCGs often present faint and extended cD halos around them in the form of an

excess of light with respect to a de Vaucouleurs law (Binggeli et al., 1988). (v) BCGs also seem

to be brighter than expected from the bright end of the luminosity function of galaxies in clusters

(Bernstein and Bhavsar, 2001) and (vi) they are more likely to host AGNs than other ellipticals of the

same stellar mass (Best et al., 2007).

Since BCGs are different from normal early-type galaxies, studying their characteristics is

important in particular to understand the physics acting incores of clusters. Their peculiar position

indicates, in fact, that their formation is tightly relatedto that of clusters as a whole (Brough et al.,

2005). In the next section we discuss some of the processes that are thought to be involved in the

evolution of BCGs and galaxies in general.

How galaxies populate clusters

Many studies have been done to investigate the characteristics of galaxies in clusters and the existence

of a strong relation between galaxy properties and the density of their host environment is known since

many decades (Hubble and Rosseland, 1936). This dependenceaffects most of the characteristics

of galaxies from their mass to their star-formation history. Some of the most important observed

relations are: the Butcher-Oemler (BO) effect, the morphology-density relation and the downsizing

effect. Butcher and Oemler (1978a,b) were the first to notice that the number of blue galaxies in the

cores of clusters increases with increasing redshift. Later Dressler et al. (1994), using Hubble space
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telescope images, showed that these galaxies are seen in clusters at high redshift but not in the local

Universe, and are star-forming spiral galaxies. The morphology density (MD) relation relates the

frequency of the various galaxy types and the local environment density (Oemler, 1974; Dressler,

1980). What is observed is that elliptical galaxies are morefrequent in the dense cores of the clusters,

while there is an inverse trend with density (i.e. distance from the cluster center) for the population

of lenticular and spiral galaxies. These tend to be more frequent in the outskirts of clusters. This

relation seems to hold at all redshifts (Dressler et al., 1997), but while at high redshift the fraction

of spiral galaxies is high, as redshift decreases spiral galaxies seem to be substituted by S0 galaxies

(Fasano et al., 2000). Finally the downsizing effect is related to galaxy star-formation and mass. From

observations it appears that galaxies with lower mass have longer star-formation histories. That means

that blue, low mass spiral galaxies have more star-formation activity than bright massive ellipticals.

This has two effects: (i) since as we have already noticed the number of spiral galaxies decreases with

decreasing redshift, then also the star-formation activity decreases with redshift in an anti-hierarchical

way (Smail et al., 1998; De Lucia et al., 2004; Poggianti et al., 2004); (ii) as a consequence of the MD

relation the outskirts of clusters show more star-formation than the cores and the field (Balogh et al.,

1999). The truncation of star-formation in clusters can be due to evolution of galaxies in dense

environments, for example due to gas loss in the interactionwith the cluster ICM. This is supported

by the observational evidence that the fraction of star-forming galaxies is also anti-correlated with

cluster mass (Poggianti et al., 2006).

1.1.4 Mechanisms causing galaxy evolution in clusters

There has been much discussion in the last decades about the formation of the Hubble sequence.

The origin of the MD and downsizing effects or the formation processes involved in the formation

of BCGs are not yet completely understood. It is not clear if the observed correlations are due to

mechanisms acting in dense environments or are imprinted during structure formation. Attempting

to summarize the work that has been done to try to find an answerto these questions is beyond the

purpose of this introduction, but, since many of the mechanisms involved in galaxy evolution are also

important for the formation of the intracluster light component, I give here a brief overview of the

proposed processes. The most accredited mechanisms proposed to cause galaxy evolution involve

galaxy-galaxy, galaxy-ICM and galaxy-cluster potential well interactions.

Mergers result from strong and direct galaxy-galaxy collisions (Mihos, 2004, for a review). There

are different types of mergers, major and minor mergers and wet and dry mergers. The first two classes

refer to the dimensions of the galaxies involved. In a major merger the two involved galaxies have

comparable masses, in a minor merger one is much bigger than the other. The second two classes are

related to the presence of gas in the involved galaxies. Wet are those mergers in which gas is involved

and dry are those in which gas is not involved. Mergers are considered to be rare events and numerical

simulations predict that during their lifetime galaxies with a massM ≤ 1011M⊙ experience at most

one merger event. Only more massive galaxies, like BCGs, have an evolution tree that involves a



10 Introduction

higher number of mergers up to∼5 (De Lucia et al., 2006; De Lucia, 2007). Numerical simulations

demonstrated that mergers can also change the morphology ofgalaxies from spirals to early-type

galaxies (Toomre and Toomre, 1972; Gerhard, 1981; Naab and Burkert, 2003). Dry mergers between

two ellipticals are often responsible for the formation of BCGs, while encounters between an elliptical

and a spiral galaxy produce less massive ellipticals. Very low luminous ellipticals can be generated

by wet mergers between spirals (Khochfar and Burkert, 2003). Mergers are more efficient if they

happen between galaxies that move at a relative low velocity(Merritt, 1985). For this reason they are

expected to be more efficient in groups of galaxies than in galaxy clusters.

Actually, recent observations demonstrated that mergers happen both in groups and clusters.

Studying a sample of 515 clusters in the redshift range 0.03≤ z≤ 0.12 Liu et al. (2009) discovered 18

ongoing major dry mergers involving BCG galaxies. From thisthey calculated that 3.5% of BCGs in

the local Universe are involved in merger events. Atz≤ 0.12 McIntosh et al. (2008) investigated the

formation of massive early-type galaxies analyzing a sample of 845 groups and clusters of galaxies.

They identified 38 pairs of merging galaxies and found that dry mergers are more likely at the center

of massive groups. At intermediate redshift,z= 0.39, Rines et al. (2007) reported, in the very massive

cluster CL 0958+4702, the detection of one of the biggest major merger eventsever observed. They

predicted that the process will lead to the formation of the BCG of the cluster. At higher redshift,

z ∼ 0.83, Tran et al. (2005) identified six merging pairs of galaxies in the MS 1054-03 cluster. They

calculated that galaxies in bound subsystems make up 15.7% of the cluster population at this redshift.

Tidal stripping and harassment can be classified into two main mechanisms: galaxy-galaxy

tidal stripping and galaxy-cluster potential well interactions. Tidal fields, produced by massive

galaxies (Gnedin, 2003) or by the global cluster halo (Merritt, 1984), can lead strong dynamical

evolution in galaxies that happen to pass close enough to them. In this case the satellite galaxies are

distorted by the tidal fields and can lose material beyond a certain radius called tidal radius. Numerical

simulations showed that the tidal radius in general is a function of the potential of the two interacting

galaxies or the galaxy and the cluster, and of the orbit of thesatellite galaxy (Barnes, 1988; Read et al.,

2006). These encounters, apart from distorting the shape ofsatellite galaxies can truncate their dark

matter halos and quench star-formation. They can also be responsible for the transformation of spiral

galaxies into S0, and in the case of a very low mass satellite galaxy they can also completely destroy

it. During these events the formation of tidal tails and debris is very common (Toomre and Toomre,

1972).

Harassment is similar to tidal stripping, but is related to faster encounters. At high speed (of the order

of the cluster velocity dispersion) close interactions cancause impulsive gravitational shocks that can

severely damage galaxies. In particular, this mechanism could be responsible for the transformation

of very low luminosity disk galaxies into dwarfs (Moore et al., 1996; Mayer et al., 2006).

Ram pressure stripping is related to galaxy-ICM interactions. On the one hand, its effect

consists in the loss of intergalactic gas from a galaxy that crosses at high velocity the central core of a

cluster, due to the friction with the hot, X-ray emitting ICM(Gunn and Gott, 1972). This effect helps
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explaining the deficiency of gas observed in the S0 galaxies in the densest regions of clusters and star-

formation quenching. On the other hand, the interaction of agalaxy with the ICM can compress the

galaxy gas inducing star formation (Dressler and Gunn, 1983). Observations of the clusters A1689 at

z ∼ 0.18 and A2667 atz ∼ 0.23 indeed confirmed these scenarios. Cortese et al. (2007) detected in

these clusters infalling galaxies with bright blue star formation knots. They explained the morphology

and the star formation of the galaxies as a consequence of both tidal interactions with the cluster

potential well and of the ram pressure experienced by them while being accreted on the clusters.

1.2 The Intracluster Light

Intracluster light (ICL) consists of stars that are born in galaxies but have been lost by them during

the interaction they undergo in the cluster environment with other galaxies or the cluster potential

well. Even if diffuse light represents only a relatively small fraction of thelight emitted by clusters,

its study is important to understand the dynamical status ofthe cluster to which it belongs and the

physics involved in galaxy formation and evolution. Once this component has formed it will not be

able to lose energy and/or angular momentum and will remain on the orbit on which it was formed,

conserving the chemical characteristics of the objects from which it has been lost. This makes ICL

a good probe of the mechanisms acting in the build up of structures and explains why the study of

this component is fundamental to understand the dynamical state of a cluster and cluster evolution in

general.

The existence of the ICL is suspected since the 50s. Zwicky ina paper of 1951 on the Coma

cluster wrote:“vast and often very irregular swarms of stars and other matter exist in the spaces

between the conventional spiral, elliptical and irregulargalaxies” (Zwicky, 1951). Unfortunately,

due to very low surface brightness of this component, which is less than 1% of the brightness of the

night sky (Vı́lchez-Gómez, 1999), a systematic study of ICL has been possible only in the last decade,

with the advent of CCDs.

Since then the main questions that the astronomers have tried to answer are: where, in a cluster,

ICL is mainly formed? Is there a preferential time during cluster evolution in which it is formed?

Which are the mechanisms that contribute more to the formation of the ICL and is there any relation

between the cluster mass and the amount of ICL? Do all galaxies contribute to the formation of ICL

or only the most massive ones?

To answer these questions different approaches have been used. On the one side the increasing

resolution of numerical simulations has given the possibility to predict the origin and behavior of

ICL in more detail (see Sec. 1.2.1). On the other side, from the observational point of view, deep

photometry has allowed to understand the spatial distribution of the ICL, to study its color in relation

to the color of the galaxies in the cluster and to estimate itsamount in relation to the global properties

of the hosting system (see Sec. 1.2.2). In parallel in some cases, the study of single intracluster stars,

like red-giant stars and supernovae and globular clusters,has allowed to derive an estimate of the age
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and metallicity for the ICL (see Sec. 1.2.3). And finally, this is the framework in which the presented

thesis is embedded, the study of Planetary Nebulas (see Sec.1.2.5) has also allowed to study the

kinematic properties of this component.

In the next sections, I give a brief summary of the most recentresults on ICL, both from

simulations and observations.

1.2.1 Formation mechanisms and numerical simulations

Today the existence of ICL is well known, but the physics involved in its production is still subject of

debate. The main candidate mechanisms to produce ICL are: (i) galaxy mergers; (ii) fast encounters

between galaxies (galaxy harassment); (iii) tidal interactions between two galaxies or betweena

galaxy and the cluster potential; (iv) stripping of groups of galaxies falling into a bigger structure;

(v) stripping of stars from galaxies in the initial collapseof clusters (see Sec. 1.1.4 for more detailed

physical description of these mechanisms). Reasonably allof these mechanisms contribute to the

formation of ICL, but it is not clear yet in which measure theycontribute and in which phase of the

cluster formation they mainly play a role. It is likely that there is not a common path for all the

clusters, but that the formation of the ICL strongly dependson the dynamical evolution history of the

particular systems and that generalized conclusion cannotalways be drawn (Merritt, 1984; Dubinski,

1998; Willman et al., 2004). However, in general we expect more massive and evolved systems to

have a higher amount of ICL than dynamically younger and lessmassive systems.

Numerical simulations were performed and studied to understand the formation of the diffuse light

component and to put it in relation to the global characteristics of the host structure. Napolitano et al.

(2003) performed aΛCDM dark matter simulation with tracer particles of a Virgo like cluster,

and more recently hydro-dynamical simulations comprisingcooling and heating mechanisms, star

formation and stellar evolution have been analyzed. In accordance to observations (see next

paragraphs), most of the simulations found that the amount of ICL in the simulated clusters at z=0

comprises of the order from 10 to 30% of the total optical light emitted by the clusters (Willman et al.,

2004; Sommer-Larsen et al., 2005; Purcell et al., 2007), even if in some cases a bigger amount was

observed (Murante et al., 2007; Puchwein et al., 2010). Simulations suggest that the ICL evolves

in parallel to cluster, with the increase of ICL strongly related to the accretion of groups onto the

system (Rudick et al., 2006). Most is formed at z< 1 (Murante et al., 2007; Dolag et al., 2009). The

morphology of the ICL changes with the dynamical status of the cluster. Tidal streams are more

present in dynamically young systems. These substructuresare generally colder that the galaxies

in the system and present unmixed stellar populations (Napolitano et al., 2003; Rudick et al., 2009).

Their predicted color is comparable to the color of elliptical galaxies with metallicities that decrease

from near solar at the cluster core, to metal-poor in the outer regions (Sommer-Larsen et al., 2005).

Their formation is mainly due to the stripping in close passages near the central cluster galaxy of both

massive and small galaxies, with the stars mainly stripped from the outer, lower-metallicity parts of

the galaxies (Willman et al., 2004). As clusters evolve, ICLevolves in parallel and a more diffuse and
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homogeneous ICL envelope forms (Rudick et al., 2009).

Simulations agree that massive galaxies mainly contributeto the formation of intracluster stars

(Murante et al., 2007; Puchwein et al., 2010). Murante et al.(2007), analyzing a sample of 117

clusters, showed that most of the ICL is produced during the merger history that lead to the formation

of the BCG or other massive galaxies in the cluster, while smaller galaxies and tidal stripping

mechanisms are responsible only for a minor fraction of the ICL in the outskirt of the cluster. Debated

remains the role of dwarf galaxies (DWs) in the formation of ICL. Wetzel and White (2010), studying

the fate of satellite galaxies in galaxy cluster, found thatmost of them are disrupted by tidal stripping

into the ICL. Baria et al. (2009) found that during cluster evolution DW galaxies are mainly destroyed

by mergers with massive galaxies, but that in the case of destruction by tidal fields of other galaxies,

the light released is sufficient to explain the ICL observed in clusters.

1.2.2 Amount and morphology

ICL is a common component in all structures, from massive clusters to groups (Feldmeier et al., 2002,

2004), but the amount of diffuse light as a function of host system mass and other main characteristics

remains a controversial issue. Observations of the Leo group showed that only a few percent of the

optical light in these systems is in the form of intragroup light (IGL) (Castro-Rodrı́guez et al., 2003).

On the other side, HGC 15, HGC 35 and HGC 51 have a detected IGL component that emits from 15%

to 30% of the total light of the group (Da Rocha et al., 2008) and as an extreme case the compact group

HGC 90 has an IGL component that is 45% of the total group light(White et al., 2003). In galaxy

clusters recent studies have shown that ICL comprises of theorder of 10-30% (Gonzalez et al., 2000;

Zibetti et al., 2005) of the total optical light emitted by a cluster, but in young systems like Virgo its

fraction can be very low (Aguerri et al., 2005) while it can reach values of about 50% at the center of

very massive clusters like Coma (Bernstein et al., 1995).

Several deep photometry multi-band campaigns have been carried out in clusters in the nearby

and intermediate redshift Universe. These studies have shown that the ICL is present in the form of

diffuse component among galaxies or extended halos around BCGs,and also in the form of plumes

and tidal tails. The extended halos are thought to built-up by the accretion of material onto the central

BCG galaxy of the cluster, while tidal debris is the sign of recent interaction of galaxies in the dense

cluster environment.

However, the spatial distribution of ICL is, in general, very different from cluster to cluster. The

presence of a cD galaxy often corresponds to both centrally concentrated galaxy profiles and centrally

concentrated ICL profiles (Gonzalez et al., 2005; Krick and Bernstein, 2007). Studying a sample of

683 BCG clusters in the SDSS survey, Zibetti et al. (2005) found that the ICL fraction is 30-40%

of the total optical light of the cluster within the central 100 kpc and that this fraction dramatically

decreases to a value of< 5% at a galactic distance of 600− 700h−1
70 kpc. This is consistent with

ICL either forming from galaxy interactions at the center orforming at earlier times in groups and

later combining in the center. The spatial distribution of ICL in dynamically young and non-cD
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galaxy clusters is less regular and reveals the ongoing formation of ICL by galaxy-galaxy interactions

(Feldmeier et al., 2004). Therefore, there seems to be a tight bond between ICL and BCG galaxies.

The two components remain difficult to disentangle and several authors speak about a BCG+ICL as

a single component (Gonzalez et al., 2007) (see Sec. 1.2.4 for a more detailed discussion).

A well studied system is the Virgo cluster. Very deep imaging, covering a large area, obtained

with the Burrell Schmidt Telescope, revealed a complex network of diffuse light and extended tidal

features in the core of this cluster (Mihos et al., 2005; Rudick et al., 2010). In Fig. 1.1 the upper panel

shows an DSS image of the Virgo cluster and the lower panel a very deep photometric image of the

same area obtained by Mihos et al. (2005). It is evident in this second image how the space between

the galaxies is filled with light distributed in a very complicated way. The study of the color of the

ICL around M 87, out to a radius of 2000′′ showed that the diffuse light component becomes bluer

from the center to larger radii. A similar color for the BCG galaxy halo and most of the observed

streams was found (Rudick et al., 2010).

An interesting case is also that of the Centaurus cluster. Deep images revealed the presence of

an arc of diffuse light that stretches for over 100 kpc South of NGC 4079, one of the galaxies in the

cluster (see upper left panel of Fig. 1.2). Comparison with simulations support the hypothesis that

such feature is what remains from a galaxy that was disruptedby a close passage with this elliptical

galaxy (Calcáneo-Roldán et al., 2000).

Multi-wavelength analysis of the Coma cluster showed a similar situation in the Coma cluster,

where several different concentrations of diffuse light around the central galaxies of the cluster,

NGC 4874 and NGC 4889, were detected (Bernstein et al., 1995;Adami et al., 2005). Most of the

ICL has a red color, compatible with old non star forming material lost from elliptical galaxies, while

one of the light concentrations has a bluer color, and is probably due to the recent disruption of a

spiral galaxy near the two main galaxies of the cluster.

At higher redshift, i.e. z∼ 0.3, Pierini et al. (2008) analyzed a sample of three X-ray luminous

clusters selected from the REFLEX cluster survey. Two of them are relaxed clusters, the other is a

merging cluster dominated by two subclusters, each dominated by a pair of BCGs. From the color

study they found a consistency between the color of the BCGs and the ICL component in the clusters

that from the X-rays are classified as relaxed. The color of the diffuse light observed around the

BCGs galaxies in the non-relaxed systems is significantly bluer than that of the BCGs themselves.

This result suggests again that the mechanisms leading to the formation of the ICL depend on the

dynamical status of the cluster. In the un-relaxed system, for example, the bluer color of the diffuse

light could be due to the recent disruption of star-forming,low metallicity dwarf galaxies.

A systematic study of ICL characteristics as a function of redshift remains for the moment a

difficult task to implement. A first attempt in this direction was done by Krick and Bernstein (2007).

They detected ICL for all the groups and clusters in their sample up to a redshift of z=0.3. They

found that ICL is present both in cD and non-cD clusters, withICL not centralized in non-cD ones.

Unfortunately, this result is not conclusive due to the biases in the used cluster sample which contains
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Figure 1.1: Upper panel: DSS image of the core of the Virgo cluster.Lower panel: Deep V band image of the core of the
Virgo cluster showing the diffuse light (Mihos et al., 2005). The black levels saturate atµV ∼26.5, while the
faintest features visible have a surface brightness ofµV ∼28.5. North is up; East is to the left.
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Figure 1.2: High-contrast image of the core of the Centaurus galaxy cluster with NGC 4696, the brightest galaxy in the
cluster (upper right). Under NGC 4079 (lower left) the extremely faint jet-like feature extending towards the
lower left corner is visible.

no low-luminosity high-redshift clusters and no high flux low-redshift clusters.

A further important issue to mention is the relevance of the IGL and ICL to address the problem

of the missing baryon mass. The inclusion of the diffuse component in the calculation of the baryonic

mass fraction may help to fill the gap between the values measured by WMAP (Spergel et al.,

2007) and direct measurements of baryons in groups and clusters. Gonzalez et al. (2007) found,

in particular, that the importance of the BCG+ICL component in the baryon budget is inversely

proportional to system mass and velocity dispersion and that its contribution is more fundamental

at the center of the groups and clusters and less in the outskirts.

1.2.3 Metallicity: individual stars as diffuse light tracers

The study of the age and metallicity of the ICL is possible by the detection of individual stars and

globular clusters (GCs) lost by galaxies which now belong tothe diffuse ICL component.

Among others giant branch (RGB) stars are particularly goodfor this purpose, both because they

are bright and therefore relatively easy to detect, and because the absolute magnitude of the tip of their

luminosity function is related to the age and metallicity oftheir parent stellar population. Durrell et al.

(2002) using the Wide Field Planetary Camera 2 on theHubble Space Telescope, detected a sample of

intracluster RGB stars in a field 41’ North-West of the cD galaxy M 87 in the Virgo cluster. From the

LF of the detected stars they calculated the age of the parentdiffuse stellar population to be greater

than 2 Gyrs, and found it moderately metal-rich. This resultsupports the hypothesis that this diffuse

component has been stripped from intermediate luminosity galaxies. Williams et al. (2007), using the
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Advanced Camera for Surveys on theHubble Space Telescope, detected a sample of∼ 5300 stars in

another field of Virgo, half-way between M 86 and M 87. They found that the age of this population

is mostly older that 10 Gyrs. More interestingly, they discovered that the detected stars span a wide

range in metallicity. This indicates that the ICL componenthas originated from different galaxies and

is not well mixed yet.

In parallel also intracluster supernovae (SNe) have been observed. Already in 1998 Reiss

(Reiss and Hola, 1998; Reiss et al., 1998) talked about Supernovae in“anonymous galaxy”, but at

the time the lack of a spectroscopic follow-up of these objects precluded the possibility of assigning

the object to a cluster. The first confirmed intracluster SNe were observed by Gal-Yam et al. (2003)

in a sample of clusters at 0.06<z< 0.2. They found in these clusters a couple of SNe of Type Ia that

are in projection on top of the halo of the cD galaxies of the clusters, but with a velocity offset of 750-

2000 km s−1 relative to those galaxies themselves. They calculated that 20% of the SNe generated

in clusters derive from an intracluster stellar population. Analyzing a sample of 1401 low-redshift

groups McGee and Balogh (2010) discovered 19 new intracluster SNe Ia. From this they calculated

an amount of IGL in the observed groups equal to∼47% of their total stellar mass. This supports the

hypothesis that mechanisms like tidal stripping are very efficient in the production of diffuse light in

low mass systems.

Also globular clusters are good tracers of the intraclusterstellar population, both because of their

abundance and their brightness. It is not very clear yet how well they follow light. In fact, in general

they seem to follow a different distribution than the stars. However, there is evidence suggesting that

blue GCs trace ICL better than red GCs. Intracluster GCs wereobserved both in Coma and in Virgo

(Jordán et al., 2009; Takamiya et al., 2009). An excess of blue, metal poor GCs with respect to a red,

metal rich population was detected in the Hydra I and in the Centaurus clusters (Richtler et al., 2004;

Misgeld et al., 2009).

1.2.4 The ICL and the BCGs

We have already seen that BCG galaxies have characteristicsthat are different from that of their

elliptical counterparts in the field. It was observed that many of them emit more light at lager radii

than expected for a R1/4 profile, often referred to as the cD halo of BCG galaxies.

cD halos of BCG galaxies have been subjects of many studies inthe last decades. The aim of

such studies was to understand the origin of the cD halo, the mechanisms leading its formation and

also to understand the relation to the BCG itself and the ICL.A particularly interesting open question

is, in fact, the dynamical status of the cD halo. Is it dynamically bound to the BCG or is it made of

stars floating in the cluster potential?

Gonzalez et al. (2005) studied the photometric characteristics for a sample of 24 BCG clusters

at 0.03 <z< 0.13, out to a radius∼ 300 kpc. They found that in most cases the surface brightness

of the BCG galaxies is best fitted by a double R1/4 model with independent scale lengths, ellipticity

and orientations. They showed that the inner profile has properties typical of giant elliptical galaxy,
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while the outer profile has a scale lengths of the order of 10-40 times larger. They interpreted this

second component as due to a population of intracluster stars tracing the cluster potential. Moreover,

they interpreted the misalignment of the two light profiles,strong in about 60% of the clusters, as an

evidence of the different physical nature of the BCG and the ICL. Zibetti et al. (2005) considered a

sample of more than 683 BCGs galaxies at 0.2 <z< 0.3, selected from the Sloan Digital Sky Survey.

By stacking images they were able to measure light out to∼ 700 kpc from the cluster center. As in

the previously mentioned case, the light profile measured shows an excess with respect to a simple

R1/4 profile. This excess was interpreted as the presence of an ICLcomponent.

On the one hand, this hypothesis is supported by numerical simulations. Willman et al. (2004)

observed that in simulated clusters the halos of cD galaxiesalso show, in accordance with observations

(Zibetti et al., 2005), an excess of light in comparison to a de Vaucouleur profile and that their

formation is tightly related to the formation of the ICL component. Dolag et al. (2010) found that

the kinematics of the BCGs in their simulated clusters identify two distinct populations. There is

a more spatially concentrated cD component gravitationally bound to the galaxy, and an additional

diffuse component that traces the cluster potential. The velocity dispersion of the diffuse component

is comparable to the velocity dispersion of the member galaxies in the cluster and its age is∼1.5

Gyrs, significantly older that the cD component. On the otherhand, in a recent study on the structure

of all ellipticals and spheroidal galaxies in Virgo Kormendy et al. (2009) showed that to have Sersic

index n> 4 is common not only for BCGs, but also for many giant elliptical galaxies, mainly due

to their merger origin. Therefore, the hypothesis that the excess with respect to a R1/4 profile is

related to ICL needs to be demonstrated by studying the kinematics and stellar population of this

light. Only a kinematic study can really explain if the excess is bound to the BCG, as seen in the

Dolag et al. (2010) simulations, and the stellar populationcan give hints on the most likely formation

scenario. The problem with such studies is unfortunately related to the very low surface brightness

of the halo component. Therefore it has been very difficult till now to study these galaxies beyond

one effective radius (i.e.∼ 5− 10 kpc Carter et al. (1999); Loubser et al. (2008, 2009)) to reach the

regions dominated by the halo light.

Coccato et al. (2010a) presented the kinematics of the central two galaxies of the Coma cluster out

to a radius of∼ 65 kpc for NGC 4889 and∼ 50 kpc for NGC 4874 along their respective major axis.

They used very deep long-slit spectroscopic (LSS) data obtained with the SUBARU telescope with

FOCAS. In this case the velocity dispersion of both the galaxies shows a flat profile, that indicates

that the stars also at R∼ 4Re are still bound to the central BCGs and that there is no measurable

contribution of ICL in the halo of these cD galaxies. However, in accordance with what is suggested

by Kormendy et al. (2009), the study of the stellar population of NGC 4889 reveals that the stellar

population of the galaxy within 1Re have been formed in a timescale significantly shorter than the

stars in the halo (Coccato et al., 2010b). This is compatiblewith a scenario in which the halo has

a completely different evolution history and has formed by later accretion ofstars from old systems

with different star formation rates.



1.2 The Intracluster Light 19

A different velocity dispersion profile was measured for the cD galaxy NGC 6166 in the Abell

2199 cluster (Kelson et al., 2002). This is the only case known, for which the kinematics of the ICL

in the halo of a BCG has been measured. The velocity dispersion profile of the galaxy, in fact, first

decreases, from a value of 300 km/s at the center to 200 km/s within a few kpc, and then rises up

to the cluster velocity dispersion at R=60 kpc, showing that at this radius the halo of the galaxy is

dominated by intracluster stars, floating in the cluster potential and not bound to the BCG anymore.

An alternative and efficient way of studying the kinematics of the halo of BCG galaxies at low

SBs, i.e. large radii, and also the ICL in general is to explore the characteristics of the Planetary

Nebulas (PNs). Why PNs are particularly suitable for this aim and how they have been studied till

now is the main topic of the next section.

1.2.5 Kinematics

After what we have learned about ICL it is clear that a study ofthe kinematics of this diffuse

component is very important to better explore its physical characteristics. The kinematic study

of the observed structures in the ICL can, in fact, give very important hints on the origin of the

diffuse component. It is also fundamental to study the kinematicstatus of the halo of cD galaxies,

giving the opportunity to disentangle if the cD halo is dynamically linked to central BCG or it is

dynamically distinct and part of the ICL component as suggested by photometric studies of BCGs

systems (Zibetti et al., 2005; Gonzalez et al., 2007).

As already seen, due to the very low surface brightness of theICL component, the study of ICL

kinematics with absorption line spectroscopy is very hard due to variable sky background and sky

noise (see section 1.2.4). Moreover, absorption line spectroscopy gives information only on the

integrated light along the line of sight, and the identification of substructures, if possible, is very

challenging. A valid alternative is to study single stars tracing the underlying stellar population and

kinematics.

The Planetary Nebulas and their physical characteristics

The best known discrete tracers are Planetary Nebulas (PNs). A star becomes a PN, after its post-AGB

phase, if at this point of its evolution its core mass is in therange 1M⊙ < Mcore< 8M⊙ (Richer et al.,

2010). The star becomes unstable, its atmosphere is ejectedand the resulting PN consists of a central

white dwarf star, surrounded by low density ionized gas. Dueto the extreme rarefaction of the gas,

PNs re-emit up to 15% of their light in the [OIII]λ5007 Å (Dopita et al., 1992). It is because of this

bright and narrow emission line that PNs are relative easy todetect. The typical spectrum of a PN

is shown in Fig. 1.3. It is characterized by many emission lines. Among these, apart from the [OIII]

λ5007 Å other strong lines are [OIII]λ4959Å and Hα.

The PN luminosity function (PNLF), measured as the distribution of the [OIII] λ5007Å emission

line fluxes, is characterized by a very sharp cutoff on its bright end. The PNLF is empirically well
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Figure 1.3: Example of two PNs’ spectra from Jacoby and Ciardullo (1999).

described by the formula:

N(m5007) = e0.307m5007[1 − e3(m∗5007−m5007)] (1.12)

wherem∗5007 is the observed bright cutoffmagnitude (Ciardullo et al., 1989). Different observations of

the PNLF in numerous galaxies of the local Universe and comparison with other distance estimators

have demonstrated that the bright cutoff corresponds to an intrinsic magnitude ofM∗5007= −4.51 mag,

independent from the characteristics of the parent stellarpopulation (Ciardullo et al., 1989; Jacoby,

1989; Jacoby et al., 1992; Ciardullo, 2003). This makes the PNLF bright cutoff a strong distance

indicator. Unfortunately, theories have till now failed inexplaining, from a theoretical point of

view, the physical reason for such behavior. They predict, on the contrary, the bright cutoff to be

dependent on the age and metallicity of the parent stellar population (Mendez and Soffner, 1997;

Marigo et al., 2004). In particular, from the models the bright cutoff should be fainter for early type

galaxies than for late type galaxies. A possible partial solution to the problem could lie in the presence

of blue stragglers formed by coalescence of binary stars (Ciardullo et al., 2005). These rejuvenated

stars could have sufficient mass to be the cause of the observed bright PNs in early type galaxies

(Ciardullo et al., 2005).

An interesting relation exists between the number density of PNs and the total luminosity of their
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parent stellar population. This relation is given by the luminosity-specific planetary nebula number,

the so calledα parameter, defined as

α =
NPN

Ltot
(1.13)

whereNPN is the number of PNs andLtot is the bolometric total luminosity of the sampled light.

Simple stellar population (SSP) models (Renzini and Buzzoni, 1986) predict that theα parameter is

physically related to the so called specific evolutionary flux, β, that is linked to the rate to which stars

turn from the main sequence (MS) to the post-AGB phase, and tothe visibility lifetime of a PN, i.e.

the time in which its [OIII] emission is visible:α = β ∗ τPN. An exhaustive description of this issue

is beyond the purpose of this introduction, but what is important to remember is that empirically a

relation between theα parameter and the color of observed light exists. A list of values is given in

table 6 of Buzzoni et al. (2006). Therefore it is possible, knowing the color, and consequently theα

parameter, and the total bolometric luminosityLtot emitted by the sampled light, to predict the number

of observed PNs and vice versa.

Summarizing the reasons why PNs are good to study are:

• the envelope of a PNs re-emit about 15% of the total light emitted by the central white dwarf

in only one emission line, the green [OIII]λ5007Å forbidden emission line. This makes PNs

relatively easy to detect. Moreover, the [OIII]λ5007Å emission line is narrow (∼ 30 km/s),

therefore the PNs’ velocities can be measured with medium resolution spectroscopy;

• the PNLF is a standard candle distance indicator due to its bright cutoff;

• from the number count of PNs is possible to predict the SB of the parent stellar population, via

theα parameter.

Moreover, recent studies on a sample of galaxies in the localUniverse demonstrated that

• the PNs trace light, because they follow the same spatial distribution and kinematics of stars

(Coccato et al., 2009).

PN surveys forD < 25Mpc

At low redshift the most widely used technique to detect PNs is the on/off-band technique

(Ciardullo et al., 1989). It consists in taking two images ofthe sky. One is obtained through a

narrow band filter, centered around the redshifted [OIII]λ5007Å emission line at the distance of

the observed object and the other is obtained through a broader filter (V or R band most frequently).

PNs are distinguishable from other sources because they have a very faint continuum level. For this

reason they are visible in the narrow band filter image because of their bright [OIII]λ5007Å emission

line, but not in the broad band image. The technique allows tomeasure with two exposures both flux

and position for the detected sources. Possible contamination to the sample from [OII] regions and

Lyα background galaxies have been taken under control by the useof blank field surveys used for
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comparison (Freeman et al., 2000), the additional observations of the PNs via a Hα narrow band filter

(Okamura et al., 2002; Arnaboldi et al., 2003) and by spectroscopic-follow up of subsamples of the

detected objects.

Surveys of PNs were done in M 81 (Jacoby, 1989) and in the Leo group (Castro-Rodrı́guez et al.,

2003), but the Virgo cluster has been the most observed system in the local Universe. Since 1998 a

considerable number of PN surveys have been carried out. At the present time a total of 18 different

fields spread all over the cluster have been observed, reaching regions at a distance larger that∼ 3◦

from the cluster center (Arnaboldi et al., 2002; Feldmeier et al., 2003, 2004; Aguerri et al., 2005;

Castro-Rodriguéz et al., 2009). The PN samples were used both to infer, from theα parameter, the

SB of the parent ICL stellar population, and by the analysis of the bright cut-off of the PNLF the

distance of the light in the cluster.

The overall picture that comes from the analysis of the characteristics of the detected PNs is that

the distribution of ICL is not uniform in the cluster (Castro-Rodriguéz et al., 2009). The ICL is more

concentrated at the center of the cluster, where the galaxy density is higher and lower elsewhere. In

the core, no significant trend of the SB of the parent stellar population was observed in the different

surveyed fields with increasing distance from M 87 (Aguerri et al., 2005). Feldmeier et al. (2004),

from studying a sample of more than 300 PNs (Feldmeier et al.,2003), calculated an amount of

ICL for this cluster of the order of 10% in its core, a result confirmed by the photometric study

of Mihos et al. (2005). Moreover, several evidence contributed to give an image of the cluster as

dynamically young and now on the point of forming: (i) the observed inhomogeneity of the spatial

distribution of the ICL on scales of 30′ − 90′ (Aguerri et al., 2005), (ii) the study of the PNLF as

distance indicator, in a region in the North with respect to the cluster center where no big galaxies

are visible (Arnaboldi et al., 2002), suggesting that the front end of the cluster may be closer to us by

about∼ 14− 18% with respect to the cD galaxy M 87, and (iii) theα parameter suggesting that many

observed PNs come from late-type galaxies (Feldmeier et al., 2004).

In parallel, very interesting results were obtained from the study of the kinematics of the PNs

for which a spectroscopic follow-up was done. Velocities were obtained for a sample of 40+12

PNs in the Virgo core (Arnaboldi et al., 2004; Doherty et al.,2009). The spectra were obtained with

the FLAMES spectrograph on UT2. The velocity distribution of the whole sample shows an unmixed

kinematics that confirm the young dynamical status of the cluster. The study of the spatial distribution

and kinematics of the PNs bound to M 87 as a function of the distance from the center of galaxy,

together with results suggested by dynamical models, reveals a truncation of the halo of the galaxy

at ∼ 160 kpc and a decreasing velocity dispersion profile with increasing distance from the galaxy

center.

Méndez et al. (2001) and Teodorescu et al. (2005) measured the velocity of 531 and 195 PNs in

two Fornax cluster galaxies, respectively NGC 4697 and NGC 1344. To do that they used the classical

on/off band technique, but combined with a dispersed image obtained during the same observing run.

In this way they were able to study the kinematics of these galaxies up to three effective radius from
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their center.

An alternative technique to detect PNs in galaxies in the nearby Universe is the so called counter-

dispersed slitless spectroscopy technique. The techniqueconsists in observing each field twice, the

first time with a dispersed image and the second time with a dispersed image obtained with the

spectrograph rotated 180 degrees with respect to the previous observation. The technique allows us

to measure flux, position and velocity of the detected sources. The velocity of the detected emission

lines is proportional to the separation between their positions in the two spectral images. A dedicated

instrument for the detection of PNs with the counter-dispersed technique is the PN Spectrograph

(Douglas et al., 2002). The instrument is build so that the light coming through the telescope is split

in two opposite arms at the end of which two identical spectrographs are located.

McNeil et al. (2010) used the counter-dispersed technique with FORS1 on the VLT to study the PN

population in a five field survey around NGC 1399, a cD galaxy inthe Fornax cluster. Of the 187

detected PNs McNeil et al. (2010) showed that 146 are bound toNGC 1399. Of the remaining 44,

some are bound to NGC 1404, another galaxy in the cluster and the rest reveals the presence of a

substructure at low velocity. The superposition of these various components highlight the complexity

of the cluster core structures and the importance of discrete components as PNs, to detect them.

Multi-Slit Imaging Spectroscopy technique: PN surveys forD > 25Mpc

The techniques described till now are suitable to detect PNsup to a distance of∼25 Mpc. At a

distance of∼ 100 Mpc, the flux from the [OIII]λ5007 Å emission line of a PN at the bright cutoff of

the PNLF is of the order of a few 10−18 erg cm−2s−1. In a window of 40-50 Å (the typical FWHM

of a narrow band filter), the level of the sky noise is of the same order of magnitude. To detect PNs

at these distances it is necessary to reduce substantially the noise from the night sky. This is possible

by using the Multi-Slit Imaging Spectroscopy technique (MSIS, Gerhard et al., 2005). The MSIS is

a blind search technique. It combines the use of a mask of parallel slits (see Fig.1.4), a narrow band

filter centered at the redshifted [OIII]λ5007Å emission line, and a dispersing element. With the use

of the mask of slits and the dispersing element the sky noise is reduced by a factor of 5-10, depending

on the instrumental resolution. The technique allows us to detect all the emission line objects that

happen to lie behind the mask slits, and to measure their fluxes, positions and velocities with only one

exposure. To survey as much surface as possible, the mask is stepped along the dispersion direction

in order to cover the distance between two adjacent slits of the mask.

The technique was pioneered at the SUBARU telescope, where afield South of the cD galaxy

NGC 4874, the second brightest galaxy in the Coma cluster, was observed with the FOCAS

spectrograph. The velocity distribution of 37 ICPNs detected has a main peak at a systemic velocity

∼700 km/s bluer than the systemic velocity of the nearby galaxy NGC 4874, but coincident with the

redshift of the other cD galaxy, NGC 4889. These ICPNs are therefore not bound to NGC 4874,

and have been probably stripped from the halo of NGC 4889 during a close passage to NGC 4874.

Combined with galaxy redshifts and X-ray data the PN line of sight velocity distribution (LOSVD)



24 Introduction

Figure 1.4: Multi-Slit mask used in the observations carried out in the Hydra I cluster, with FORS2 on UT1-VLT, using
the MSIS technique. The mask has 21 horizontal× 24 vertical slits. Each is∼ 17′′ .5 long and 0′′.8 wide. The
dispersion direction is horizontal and the spatial direction is vertical

suggests that the cluster is currently in the midst of a subcluster merger, where the two subcluster

cores around the supergiant galaxies NGC 4874 and NGC 4889 are presently beyond their first and

second close passage, during which the elongated distribution of intracluster light has been created

(Gerhard et al., 2007).

Another two fields in the Coma cluster have been observed withFOCAS at the SUBARU

telescope and other surveys have been realized with FORS2 onUT1. One of these is analyzed in this

work, covering the core of the Hydra I cluster around its central cD galaxy NGC 3311. Moreover,

two fields have been observed, one East and one South of the central galaxy of the Centaurus cluster,

NGC 4696, and in the summer of this year, also the central coreof the compact group HGC 90 has

been observed.

1.3 The Thesis

The work presented in this thesis is dedicated to the study ofthe kinematics of the ICL component

in the core of the Hydra I cluster. Hydra I is a medium compact cluster in the Southern hemisphere

at a distance of∼50 Mpc. The cluster is dominated by two central non interacting elliptical galaxies,
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NGC 3311 and NGC 3309. It has a systemic velocity of∼ 3683 km s−1 with a velocity dispersion

of ∼ 724 km s−1 (Christlein and Zabludoff, 2003; Misgeld et al., 2008). A complete description of

the characteristics of the cluster is presented in Sec. 5.2 of this thesis. The goal of our study is,

by analyzing the Hydra I case, to address in particular to twoquestions: (i) Which is the relation

between the ICL and the halo of BCGs galaxies: are these two physically distinct? Does the BGCs’

halo smoothly blend into the ICL light or do the two form two kinematically different components?

(ii) How does the study of the kinematics of the ICL help us in understanding the dynamical status of

a cluster as a whole? Does it help us in the identification of the cluster substructure, if any is present?

We have chosen Hydra I to answer these questions, because from X-ray observations, the cluster

appears to be the prototype of a relaxed system. The study of the interaction of the halo of NGC 3311

with the intracluster light component should therefore be relatively easy to investigate in this system.

To reach this aim we study the core of the cluster, the central∼ 100 kpc2, by using different data sets.

First we analyze deep Gemini GMOS-South archive long-slit data and UT1-VLT FORS2 long-slit

(LSS) data to study the absorption line kinematics of NGC 3311 along its major axis. Then using the

Multi-Slit Imaging Spectroscopy (MSIS, see Sec. 1.2.5) technique with FORS2 on UT1 we detect the

Planetary Nebulas (PNs) (see Sec 1.2.5) populating the coreof the cluster. PNs trace light and we use

them as single tracers to study the kinematics of the light inthe core of the cluster. The MSIS mask

used for the Hydra I observations is shown in Fig. 1.4 superposed on a DSS image of the cluster itself.

The two galaxies are NGC 3311 at the center of the image and NGC3309 on the upper right. Finally

we use photometric K band 2MASS archive data and V band WFI data to study the distribution of

light around NGC 3311 and NGC 3309.

The thesis is organized as follows: in Chapter 2 we present the measurements of the velocity

and velocity dispersion profiles of NGC 3311 along its major axis as published in Ventimiglia et al.

(2010b). These are obtained from the study of the LSS data andshow the kinematics of the galaxy

out to a radius of∼25 kpc. The velocity dispersion profile turns out to be particularly interesting. As

in the case of NGC 6166 (see Sec. 1.1.3), it shows an increase,from a value of∼ 150 km s−1 at the

center of the galaxy to∼ 450 km s−1 at a radius of∼12 kpc. Further out, to a distance of∼25 kpc,

the velocity dispersion remains constant. The outer velocity dispersion is about 65% of the velocity

dispersion of the cluster. We conclude that the stellar haloof NGC 3311 is dominated by intracluster

stars and that the passage from galaxy-bound to intracluster stars happens in the radial range from 4

to 12 kpc.

Chapter 3 and 4 are dedicated to the MSIS technique. Here we describe the data reduction and

the selection criteria used to classify the detected emission line objects. With the MSIS technique

with the setup used for the Hydra I cluster, in fact, we detecttwo classes of objects: PNs at the

distance of Hydra I and background galaxies. These are [OII]emitters at z∼0.37 and Lyα galaxies at

z∼ 3.1. PNs are identified as unresolved emission line sources both spatially and in wavelength, with

no continuum. Background galaxies are resolved emission line sources with or without continuum

and unresolved emission lines sources with continuum. In Chapter 3 we present the evidence for
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the objects classified as PNs to be really stars associated tothe Hydra I cluster and show their

distribution in the velocity-magnitude plane (Ventimiglia et al., 2008). In Chapter 4 we describe the

main characteristics of the background galaxies, their redshift, observed flux and equivalent width

distribution (Ventimiglia and Arnaboldi, 2010).

In Chapter 5 we concentrate on the kinematics of the PNs detected with the MSIS in the central

100× 100 kpc2 of the cluster (Ventimiglia et al., 2010a). We find that the line-of-sight velocity

distribution (LOSVD) of the 56 detected PNs is highly non-Gaussian and has a multi-peaked structure.

The distribution is dominated by a broad central component at around the average velocity of the

cluster. By simulating a sample of PNs at the distance of Hydra I, observed with the MSIS and

distributed in velocity according to a Gaussian centered atthe systemic velocity of NGC 3311 and

with a velocity dispersion of∼ 460 km s−1 (i.e. the velocity dispersion of the halo of NGC 3311 at

R≥ 12 kpc), we are able to demonstrate that the central peak observed in the PN LOSVD is compatible

with PNs tracing the hot halo of NGC 3311. This confirms the LSSresults described in Chapter 2.

The other two detected peaks, one at∼ 1800 km s−1 and the second one at∼ 5000 km s−1, reveal the

presence of real substructures in the core of the Hydra I cluster. From this we conclude that the ICL

component in the core of the cluster is still unmixed. This suggests that the build-up of the halo of

NGC 3311 is on-going. From the comparison of the spatial and velocity distribution of the detected

PNs with the phase-space distribution of the galaxies in thecluster we find that the redder of the two

peaks in the PN LOSVD is consistent both spatially and in velocity with a group of DWs populating

the core of the cluster.

In Chapter 5 we also present the study of the luminosity function of the detected PNs used as a

distance indicator and their number density in relation to the light in the cluster. We find that the

luminosity function is consistent with that expected at a distance of∼ 50 Mpc, while the PN number

density is∼ 4 times lower than expected. A possible explanation for thisevidence is that the PNs

lifetime in the central core of NGC 3311 is significantly shortened by ram pressure effects.

Chapter 6 is dedicated to the study of the light distributionin the core of the cluster. We perform

a complete photometric study for the two central galaxy of Hydra I, NGC 3311 and NGC 3309, both

in Ks and V bands. We find that the SB profile of NGC 3309 is well described by a de Vaucouleurs

law, while NGC 3311 is described by a de Vaucouleurs law for R≤ 12 kpc and with a Sersic law with

n∼6.9 for R≥ 12 kpc. This evidence confirms again the LSS results. Moreover, from the study of the

2D photometry of the cluster core we find that there is an excess of light in the North-East part of the

halo of NGC 3311 with respect to a symmetric distribution of light. We measure the velocity of this

excess. The excess is shown to be correlated both spatially and in velocity with the PNs contributing

to the redder peak in the PN LOSVD and to the group of DWs in the core of the cluster.

In Chapter 7 we discuss the characteristics of these DWs, concentrating on one of them, HCC 26.

For this object we study the stellar population and the structural properties. We discuss the possibility

that the group of DWs was partially disrupted during a recentclose passage through the dense cluster

core.



1.3 The Thesis 27

Finally, in Chapter 8 the main conclusions of this thesis anda summary of its results are presented

and future work and prospectives are discussed.
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The dynamically hot stellar halo around

NGC 3311: a small cluster-dominated

central galaxy

Giulia Ventimiglia, Ortwin Gerhard, Magda Arnaboldi, Lodovico Coccato

Astronomy& Astrophysics, 2010, 520, L91

Abstract

An important open question is the relation between intracluster light and the halos of central galaxies

in galaxy clusters. Here we report results from an on going project with the aim to characterize the

dynamical state in the core of the Hydra I (Abell 1060) cluster around NGC 3311. We analyze deep

long-slit absorption line spectra reaching out to∼ 25 kpc in the halo of NGC 3311. We find a very

steep increase in the velocity dispersion profile from a central σ0 = 150 km s−1 toσout ≃ 450 km s−1

at R ≃ 12 kpc. Farther out, to∼ 25 kpc,σ appears to be constant at this value, which is∼ 60% of

the velocity dispersion of the Hydra I galaxies. With its dynamically hot halo kinematics, NGC 3311

is unlike other normal early-type galaxies. These results and the large amount of dark matter inferred

from X-rays around NGC 3311 suggest that the stellar halo of this galaxy is dominated by the central

intracluster stars of the cluster, and that the transition from predominantly galaxy-bound stars to

cluster stars occurs in the radial range 4 to 12 kpc from the center of NGC 3311. We comment on

the wide range of halo kinematics observed in cluster central galaxies, depending on the evolutionary

state of their host clusters.

1FCQ8 fits were preformed by L. Coccato.
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2.1 Introduction

An important open question is the physical and evolutionaryrelation between the intracluster light

(ICL) and the extended halo of the brightest cluster galaxies (BCGs), whether they are truly

independent components or whether the former is a radial extension of the latter. Using a sample

of 683 SDSS clusters Zibetti et al. (2005) found a surface brightness excess with respect to an inner

R1/4 profile that characterizes the mean profile of the BCGs, but itis not yet known whether this cD

envelope is simply the central part of the cluster’s diffuse light component, or whether it is distinct

from the ICL and part of the host galaxy (Gonzalez et al., 2005).

In the Southern hemisphere, the cD galaxy NGC 3311 and the giant elliptical NGC 3309 dominate

the central region of the Hydra I cluster, an X-ray bright, non-cooling flow, medium compact cluster

with a velocity dispersionσHydraI = 784 km s−1 (Misgeld et al., 2008). The X-ray observations

show that the hot intracluster medium centered on NGC 3311 has a fairly uniform distribution of

temperature and metal abundance from a few kpc out to a radiusof 230 kpc (Tamura et al., 2000;

Yamasaki et al., 2002; Hayakawa et al., 2004, 2006). Given the overall regular X-ray emission and

temperature profile, the Hydra I cluster is considered as a prototype of an evolved and dynamically

relaxed cluster; it is therefore a suitable candidate for a dynamical study of a relaxed extended stellar

halo around a BCG.

The primary goal of this work is to establish the dynamical state of the stellar halo of NGC 3311.

We use long-slit spectra to uncover the kinematics in the halo region of NGC 3311 out to∼ 25 kpc

from its center. In Sect. 2.2 we present observations with FORS2 at VLT and the GEMINI GMOS

archive data, which we reanalyze. We describe the data reduction and the kinematic measurements in

Sect. 2.3. The newly measured halo kinematics and their implications are discussed in Sect. 2.4, and

our conclusions are summarized in Sect. 2.5.

We adopt a distance to NGC 3311 of 51 Mpc (NED), equivalent to adistance modulus of 33.54

mag. Then 1′′ corresponds to 0.247 kpc.

2.2 Observations and archive data

VLT FORS2 long slit spectra- The long-slit spectra were obtained during the nights of 2009 March

25-28, with FORS2 on VLT-UT1. The instrumental setup had a long-slit 1′′.6 wide and 6′.8 long,

Grism 1400V+18, with instrumental dispersion of 0.64 Å pixel−1 and spectral resolutionσ = 90

km s−1, and a spatial resolution along the slit of 0′′.252 pixel−1. The seeing during observations

ranged from 0′′.7 to 1′′.2. The wavelength coverage of the spectra is from 4655 Å to 5965 Å, including

absorption lines from Hβ, MgI (λλ5167, 5173, 5184 Å) and Fe I (λλ5270, 5328 Å). We obtained eight

spectra of 1800 sec each, for a total exposure time of 4 hrs. Inthe FORS2 observations, the long slit

is centered on the dwarf galaxy HCC 26 atα = 10h36m45.85s andδ = −27d31m24.2s (J2000), with

a position angle of P.A.=142◦; HCC 26 is seen in projection onto the NGC 3311 halo. The position of
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Figure 2.1: Optical DSS 7′ × 7′ image centered on NGC 3311 in the Hydra I cluster. The relative positions of the GMOS
slit (5′.5, blue line) and FORS2 slit (6′.8, red line) are illustrated. Green and yellow sections on the FORS2
slit indicate regions where average spectra are extracted.The adjacent numbers specify the radial distances of
their light-weighted mean positions from the center of NGC 3311. The center of the FORS2 slit coincides with
the position of the dwarf galaxy HCC 26 and is marked by a blackcircle. North is up and East to the left.

the FORS2 long slit is shown in Fig. 2.1. Its center is locatedat P.A.=64◦ with respect to NGC 3311,

approximately along the major axis of the galaxy.

Gemini GMOS-South long slit spectra- We use Gemini archive long-slit spectra in the wavelength

range from 3675 Å to 6266 Å observed with the B600 grating, a dispersion of 0.914 Å pixel−1, a

spectral resolution ofσ = 135 km s−1, and a spatial scale of 0′′.146 pixel−1; a detailed description

of the instrumental setup is presented in Loubser et al. (2008). The seeing was typically in the range

from 0′′.6 to 1′′.2. We target the same absorption lines as for the FORS2 spectra, i.e. Hβ, MgI

(λλ5167, 5173, 5184 Å) and Fe I (λλ5270, 5328 Å). The 0′′.5 wide and 5′.5 long Gemini slit is

centered on NGC 3311, atα = 10h36m42.74s andδ = −27d31m41.3s (J2000), along P.A.= 63◦, the

direction of the galaxy major axis. Its position is shown in Fig. 2.1.
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Figure 2.2: Kinematic fits with PPXF of the spectra extracted at−47′′ (VLT FORS2) and at−34′′ (Gemini GMOS). Inblack
we display the galaxy spectra, ingreenthe wavelength range excluded from the fit because of sky residuals,
and inred the best-fit-broadened template model. All spectra are normalized to the value of the best-fit model
at 5100 Å.

2.3 Data reduction

The data reduction of the FORS2 long slit spectra is carried out in IRAF. After the standard operations

of bias subtraction and flat-fielding, the spectra are registered, co-added and wavelength calibrated.

The edges of the FORS2 slit reach well into sky regions, whichare then used to interpolate the sky

emission in the regions covered by the stellar spectra.

In the low surface brightness regions, spectra are summed along the spatial direction in order

to produce one-dimensional spectra with an adequate S/N ratio (≥ 20 per Å). Four independent one-

dimensional spectra are extracted along the slit where the light is dominated by the halo of NGC 3311;

of these, two are from regions North and two from regions South of HCC 26, respectively. We extract

spectra from slit regions of∼ 31′′ ×1′′.6 and∼ 25′′ ×1′′.6 at distances of about 54” and 47” from the

center of NGC 3311, and of∼ 58′′ × 1′′.6 and∼ 36′′ × 1′′.6 at central distances of about 100” and
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67”. We properly mask the spectra of foreground stars in those areas.

The data reduction for the GMOS long slit spectra is carried out independently here, also inIRAF

and with the standard tasks in the Gemini package. The procedure is described in Loubser et al. (2008)

for the wavelength calibration and background subtraction; also in this case the edges of the slit are

used to interpolate the sky emission in the regions covered by the stellar continuum. Because our

goal is to sample the kinematics well into the halo, the one-dimensional spectra for the absorption

line measurements are summed along the slit direction so that a minimum S/N ∼ 20 per Å is obtained

in each radial bin, out to a radial distance of about 40” from the center of NGC 3311.

Stellar kinematics- The stellar kinematics is measured from the extracted 1D spectra in the

wavelength range 4800 Å< λ < 5800 Å, using both the “penalized pixel-fitting” method (PPXF,

Cappellari and Emsellem (2004)) and the Fourier correlation quotient (FCQ) method (Bender, 1990),

in order to account for possible systematic errors and template mismatch.

In the PPXF method, stellar template stars from the MILES library (Sanchez-Blazquez et al.,

2007) are combined to fit the one-dimensional extracted spectra; the rotational velocity, the velocity

dispersion and Gauss-Hermite moments (e.g. Gerhard (1993)) are measured simultaneously. Fig. 2.2

shows two of the extracted spectra and the broadened templates fit by PPXF. In the FCQ method, the

rotational velocity and velocity dispersion are derived for each extracted one-dimensional spectrum

by assuming that the LOSVD is described by a Gaussian plus third- and fourth- order Gauss-Hermite

functions. Before to the fitting procedure the MILES template spectra are smoothed to the GMOS and

FORS2 spectral resolution with the measured broadening offsets. While FCQ provides error estimates

along with the measured kinematics, errors for the PPXF kinematic parameters are calculated with a

series of Monte Carlo simulations adopting the appropriateS/N for each bin.

Because the stellar populations in cD halos may have different metal abundances and ages from

those of the inner regions (Coccato et al., 2010a,a), systematic effects caused by template mismatch

must be evaluated and accounted for. We therefore extract kinematic measurements with PPFX and

FCQ as follows:

1. fit with PPFX the best stellar template from the MILES library in the central regions with the

highest S/N, and extractv andσ at all radii, using the same stellar template;

2. simultaneously fit the best stellar template,v andσ in each radial bin with PPFX;

3. adopt the respective best-fit PPXF stellar template to derive the LOSVD with FCQ for all radial

bins;

4. finally, average rotational velocitiesv and velocity dispersionsσ are computed as weighted

means of the three values extracted in each radial bin as detailed above. Errors for these

weighted average values are computed from those of the threemeasurements, but if the reduced

χ2 = 1
(n−1)

∑n
i=1

(xi−x̄)2

ǫ2i
is greater than one, they are increased by

√

χ2 in order to take into

account systematic differences. I.e.,ǫ2x̄ =
1

∑n
i=1 1/ǫ2i

× χ2 where ǫi , ǫx̄ are the errors on the

individual measurementsxi and the weighted mean ¯x, respectively.
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Mean velocities and velocity dispersions in all radial binsare listed in Table 2.1, and the profiles

are shown in Fig. 2.3 together with the previous measurements from Loubser et al. (2008). Table 1,

which is available in electronic form, contains the following information: source of data (Col. 1),

distance from galaxy center (Col. 2), P.A. (Col. 3),v,σ with errors for each of the procedures 1.-4.

described in the text, in Col. (4-5), (6-7), (8-9), and (10-11), respectively. Heliocentric and relativistic

corrections have been applied to the mean velocities. The systemic velocity is 3800kmsand has been

subtracted.

In the central region of NGC 3311, our new velocity dispersion profile marginally agrees with that

of Loubser et al. (2008). The new mean line-of-sight velocity measurements agree with the systemic

Figure 2.3: Major axis line-of-sight velocity and velocity dispersionprofiles for NGC 3311 (P.A.= 63◦). The open light
blue triangles are the values published by Loubser et al. (2008), based on Gemini-South GMOS data. The
black asterisks are our independent measurements from these GMOS (archival) spectra, and the red asterisks
show measurements from the new VLT-FORS2 spectra. These areweighted averages of three independent
measurements which are obtained with PPXF and FCQ as described in Sec. 2.3 and shown separately as the
gray, magenta and green diamonds. The FORS2 data points are obtained from averages over∼ 25′′ and∼ 31′′

in the inner regions and over∼ 36′′ and∼ 58′′ in the outer regions of the slit; see Fig. 2.1. These off-axis
measurements are plotted at their light-weighted average radii, corrected for projection onto the major axis of
NGC 3311 with an isophotal flattening of 0.89. Positive distances are South-West from the center of NGC 3311
and negative values are North-East, along P.A.=63◦.
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velocity of NGC 3311 obtained by Misgeld et al. (2008), but have a systematic offset from thev data

of Loubser et al. (2008), by about 91 km s−1. The agreement between the new FORS2 measurements

at−47” and the revised value at−34” from archive GMOS data gives us confidence that the systematic

effects from wavelength calibration offsets, template mismatch, etc., are sufficiently small in the new,

independent data reductions. However, several tests have convinced us that the data do not allow

us to reliably determine full line-of-sight distributions(e.g.,h3, h4), which could be used to test for

subcomponents, which one would expect in particular at radii ∼ 30” − 40”.

2.4 The kinematics of the NGC 3311 stellar halo

The combined new velocity dispersion profile for NGC 3311 reaches toRm j = 39′′ ≃ 10 kpc from

the center of NGC 3311 along the galaxy’s major axis (P.A.=63◦), and to an off-axis distance of

R = 100′′ ≃ 25 kpc along the FORS2 slit. It shows a very unusual steep risewith increasing radial

distance from the galaxy center: from a central valueσ0 = 150 km s−1, to σ = 231 km s−1 at

R = 15′′ ≃ 3.7 kpc, and then on to a flatσout ≃ 450 km s−1 outsideR = 47′′ = 12 kpc. The steep

outward gradient is supported by two independent data sets and data reductions. The measurements of

Loubser et al. (2008) near the galaxy center had already hinted at a positive gradient from 190 km s−1

at R = 5′′ to ∼ 240 km s−1 at a radius ofR = 10′′, and data shown in Fig. 1 of (Hau et al., 2004)

reach≃ 300 km s−1 at∼ 25”. With the new data we now have very clear evidence of a dynamically

hot stellar halo in NGC 3311.

To put the extremely rapid rise of the velocity dispersion profile of NGC 3311 in context, we

compare its kinematic properties with those of early-type galaxy (ETG) halos mapped using planetary

nebula data (Coccato et al., 2009) and with the halos of the two Coma BCG galaxies NGC 4889,

NGC 4874 from deep absorption line spectroscopy (Coccato etal., 2010b). Fig. 2.4 shows the mean

< V/σ >, X-ray luminosity, and total absolute B-band magnitude forthese galaxies versus their

outermost halo velocity dispersion. For NGC 3311, we use a bolometric X-ray luminosity within

50′′ ≃ 12 kpc, LX = 2.75 × 1040 erg s−1 (based on the flux in the 0.5-4.5 keV energy range

from Yamasaki et al. (2002) and corrected to bolometricLX according to Table 1 of O’Sullivan et al.

(2001)), and the total extinction corrected B-band magnitude (12.22) from de Vaucouleurs et al.

(1991). For the velocity dispersion of NGC 3311, we use the values at the center, at 15” (≃ 3.7 kpc)

and at 47′′ (≃ 12 kpc). Only the centralσ0 puts NGC 3311 in the middle of the ETG distribution;

σ(47”) deviates strongly, with a much largerσ than expected for the givenLX, BT.

The natural interpretation for these results is that the outer stellar halo of NGC 3311 is dominated

by the central intracluster star component of the Hydra cluster. This is supported by several pieces

of evidence: (i) The steep rise of theσ-profile; more isolated ETGs all have slightly or even steep

falling σ-profiles (Coccato et al., 2009). (ii) The saturation ofσ at ≃ 12 kpc, outside of which the

dynamically hot component dominates completely.σ(47”) is∼ 60% of the galaxy velocity dispersion

in the cluster core. (iii) The large amount of dark matter inferred from X-ray observations around
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Figure 2.4: Properties of the stellar halo of NGC 3311 compared with other early-type galaxy halos: mean< V/σ >
(upper panel), total X-ray luminosity (central panel), and B-band total magnitude (lower panel) against stellar
velocity dispersionσ. Solid diamond, circle, and square show the measuredσ of NGC 3311 at the center, 15”
(≃ 3.7 kpc), and 47” (≃ 12 kpc). Crosses show outermost velocity dispersions from Coccato et al. (2009), and
open diamonds for NGC 4889/4874 from Coccato et al. (2010b).

NGC 3311 (∼ 1012 M⊙ within 20 kpc, Hayakawa et al. (2004)).

In recent cosmological hydrodynamic simulations of cluster formation, Dolag et al. (2010)

applied a kinematic decomposition to the stellar particlesaround cD galaxies. With a double

Maxwellian fit to the velocity histogram of star particles centered on a simulated cD, they were able

to separate an inner, colder Maxwellian distribution associated with the central galaxy, and an outer,

hotter component of stars that orbit in the cluster potential. For both components they derived radial

density profiles and, fitting Sersic profiles, found that the inner stellar component is much steeper
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than the outer diffuse stellar component. A comparison with these simulationsindicates that the steep

velocity dispersion gradient in the halo of NGC 3311 traces the transition from central galaxy stars

to the diffuse intracluster stellar component. In the NGC 3311 halo, the transition between the two

occurs at smaller radii than in other BCGs in nearby clusters, in the range between 4 and 12 kpc.

NGC 3311 appears to have a similar halo as the cD galaxy NGC 6166 in the Abell 2199 cluster

(Kelson et al., 2002), whoseσ-profile rises to cluster values atR ∼ 60 kpc. But NGC 3311 is even

more extreme; it is a fairly small galaxy, based on its central σ0 = 150 km s−1, and it is already

dominated by the surrounding cluster component atR∼ 12 kpc. Presumably, this is because the core

of the “relaxed” Hydra cluster has had time to collapse onto the galaxy. For comparison, the two BCG

galaxies in the Coma cluster core, which have a nearly constantσ-profile (Coccato et al., 2010b), may

be in the middle of an ongoing merger (Gerhard et al., 2007), so that their previous subcluster halos

would have been stripped and a new cluster halo could have been built only after the merger was

completed; and in the outer halo of the more isolated M87, thevelocity dispersion appears to drop

(Doherty et al., 2009) towards the edge.

2.5 Conclusions

Based on two independent long-slit data sets and reductions, we find a steep gradient in the velocity

dispersion profile of the central galaxy NGC 3311 in the HydraI cluster, fromσ0 ≃ 150 km s−1 to

σout ≃ 450 km s−1 outside 12 kpc (60% of the velocity dispersion of the galaxies in the surrounding

cluster).

The new data provide evidence that NGC 3311 is a fairly small galaxy dominated by a large

envelope of intracluster stars already beyondR ∼ 12 kpc, whose orbits are dominated by the cluster

dark matter potential. Comparison with other BCG galaxies shows a wide range of dynamical

behavior in their halos.
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Table 2.1: Measured mean velocities and velocity dispersions for NGC 3311. For details see text. The galaxy’s systemic velocityVsys= 3800 km s−1 has been obtained by a
linear fit to the velocities in the central 20′′ and has then been subtracted from the measurements. This value includes heliocentric and relativistic corrections. The
calculated correction to the velocity in heliocentric system are∼ −25 km/s and∼ −5 km/s for the Gemini-South and FORS2 spectra, respectively.

Instr. R P.A. Vppxf1 σppxf1 Vppxf2 σppxf2 VFCQ σFCQ < V > < σ >

(arcsec) (km s−1) (km s−1) (km s−1) (km s−1) (km s−1) (km s−1) (km s−1) (km s−1)
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

GMOS-S 38.6 63◦ 38± 33 399± 38 −47± 33 381± 38 −62± 45 435± 48 −17± 31 401± 23
GMOS-S 14.89 63◦ −18± 8 238± 13 −50± 8 228± 13 −49± 8 241± 14 −39± 11 235± 8
GMOS-S 7.88 63◦ −7± 8 209± 15 −21± 8 203± 15 19± 5 193± 5 5± 12 195± 5
GMOS-S 3.8 63◦ −14± 7 194± 13 −27± 7 191± 13 1± 3 145± 3 −5± 7 151± 11
GMOS-S 0 63◦ −10± 6 204± 10 −22± 6 201± 10 −3± 3 143± 3 −8± 5 154± 16
GMOS-S −4.09 63◦ 2± 6 206± 14 −14± 6 204± 14 16± 4 169± 4 5± 9 174± 9
GMOS-S −8.05 63◦ 23± 11 244± 20 9± 11 200± 20 26± 7 182± 8 21± 5 191± 14
GMOS-S −15 63◦ 29± 11 295± 16 −6± 11 267± 16 30± 7 200± 9 22± 11 231± 28
GMOS-S −34 63◦ 111± 13 323± 22 50± 13 252± 22 −8± 17 292± 18 60± 33 289± 19
FORS2 −47 45◦ 76± 12 479± 14 71± 12 433± 14 117± 7 466± 12 100± 15 460± 13
FORS2 −54 83◦ 67± 13 456± 15 87± 13 447± 15 124± 8 467± 14 105± 17 457± 8
FORS2 −67 6◦ 87± 53 471± 49 66± 53 454± 49 97± 55 476± 97 83± 31 464± 33
FORS2 −100 114◦ 14± 21 437± 35 47± 21 432± 35 50± 29 405± 51 35± 13 429± 22

Notes – Col. 1: Instrument. Col. 2: Radial distance from center of NGC 3311. Col. 3: Position angle of data with respect to NGC 3311’s center. Col.
4: Velocity measured with PPXF (using template determined at R= 0”), relative to the galaxy systemic velocity. Col. 5: Velocity dispersion measured
with PPXF (using template determined atR= 0”). Col. 6: Velocity measured with PPXF (free template), relative to the galaxy systemic velocity. Col.
7: Velocity dispersion measured with PPXF (free template).Col. 8: Velocity measured with FCQ, relative to the galaxy systemic velocity. Col. 9:
Velocity dispersion measured with FCQ. Col. 10: Weighted average velocity. Col. 11: Weighted average velocity dispersion.
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Abstract

Using the Multi-Slit Imaging Spectroscopy (MSIS) technique at the FORS2 spectrograph on VLT-

UT1, we have identified 60 Intracluster Planetary Nebula (ICPN) candidates associated with the

Intracluster Light (ICL) in the central region of the Hydra Icluster. Hydra I is a medium compact,

relatively near (∼ 50 Mpc), rich cluster in the Southern hemisphere. Here we describe the criteria

used to select emission sources and present the evidence forthese PN candidates to be associated

with the ICL in the Hydra I cluster.

3.1 Introduction

Diffuse intracluster light (ICL) has been observed both in nearby and intermediate redshift clusters

(Feldmeier et al., 2004; Mihos et al., 2005). Observations show that the diffuse light in galaxy clusters

amounts to∼ 10% of the total light emitted by the cluster galaxies (Aguerri et al., 2005; Zibetti et al.,

2005).

Cosmological simulations of structure formation predict intracluster stars to be lost from galaxies

in interactions during the assembly of galaxy clusters (Napolitano et al., 2003; Murante et al., 2004;

Willman et al., 2004; Sommer-Larsen et al., 2005). Simulations suggest that most of the diffuse light

in galaxy cluster cores originates from mergers that lead tothe formation of the brightest cluster

1Last section of this proceeding and references in the text tothis section are omitted because a more accurate comparison
of the number of detected PNs with that expected from the luminosity and stellar population of NGC 3311 is presented in
Sec. 5.7.3 of this thesis.
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galaxy and of the other massive galaxies, while the tidal stripping mechanism dominates the formation

of the ICL at larger radii (Murante et al., 2007).

The study of the properties of this diffuse component has then an important role in understanding

the mechanisms relevant for the evolution of galaxies in high density environments, and the formation

history, dynamics and merging status of clusters.

Wide field imaging has already shown the morphological complexity of the ICL: studies of the

Virgo and Coma cluster ICL have shown that it is characterized by tidal features like streamers and

extended galaxy halos (Adami et al., 2005; Mihos et al., 2005). Due to its intrinsically low surface

brightness,µV > 28.5 mag arcsec−2 (Feldmeier et al., 2004; Mihos et al., 2005), the kinematicsof

ICL can only be studied using theIntracluster Planetary Nebulas(ICPNs) associated with this stellar

component (Arnaboldi et al., 2004; Gerhard et al., 2007; Doherty et al., 2009). ICPNs are relatively

easy to detect because their spectra are characterized by two strong emission lines: [OIII]λ4959Å and

[OIII] λ5007Å, with relative flux ratio 1 : 3.

The goal of our project is to measure the velocity distribution of the PNs associated with the

diffuse light in the central region of the nearby Hydra I cluster (Abell 1060, D∼ 50 Mpc, z ∼ 0.0126),

a medium compact, non-cooling flow, rich cluster in the Southern hemisphere. This will be presented

in a forthcoming paper. Here we present the selection criteria and the evidence for the detection of

PNs associated with the ICL in Hydra I.

At the distance of the Hydra I cluster, the flux of the O[III]λ5007Å emission line of a PN

is less than 8× 10−18 erg s−1cm−2, therefore we need to reduce substantially the noise from

the night sky in order to detect these lines. This is possibleby using the Multi-Slit Imaging

Spectroscopy technique (MSIS: Gerhard et al. (2005); Arnaboldi et al. (2007). In what follows we

define m5007 = −2.5 log F5007 − 13.74 (the Jacoby formula, Jacoby (1989)), where F5007 is the

integrated flux in the [OIII]λ5007Å emission line, and we assume a distance of 50 Mpc for the

Hydra I cluster implying 1”∼ 0.24 kpc.

In the next section we present the MSIS observations carriedout with FORS2 on UT1. In Section

3 we summarize the data reduction. We present the adopted selection criteria to identify the emission

sources and the evidence for PNs associated with the ICL in the Hydra I cluster in Section 4. In

Section 5 we show that the number density of PN candidates detected is consistent with that expected

for the stellar population associated with the central cD galaxy of the cluster, NGC 3311. In Section

6 we summarize our results.

3.2 Observations

3.2.1 The Multi-Slit Imaging Spectroscopy technique

The MSIS technique consists of the combined use of a mask of parallel slits, a narrowband filter

centered around the redshifted [OIII]λ5007Å line, and a dispersing element. It is a blind search

technique and allows one to obtain spectra of all PNs (and other emission line objects) that happen
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to lie behind the mask slits. Because the [OIII] emission lines from PNs are only∼ 30 km/s wide

(Arnaboldi et al., 2008), when dispersed at spectral resolution R = λ/∆λ ∼ 6000, their entire flux

falls into a small number of pixels in the two-dimensional spectrum, determined by the slit width

and seeing. By dispersing the sky noise on many pixels, the technique allows measurement of very

faint fluxes. We can detect PNs with magnitudes∼ 1.2 mag below the bright cut-off of the Planetary

Nebulas Luminosity Function (PNLF; Ciardullo et al. (1998)) and their positions and radial velocities

can be measured at the same time.

3.2.2 Observational set up

Data were collected in visitor mode during 2006 March 26-28,using the FORS2 spectrograph on

UT1. The observed area covers the central region of the HydraI cluster, around NGC 3311, at

α = 10h36m42.8s,δ = −27d31m42s (J2000).

The FORS2 field of view (FoV) is 6′.8× 6′.8 wide, corresponding to (∼ 100 kpc)2, and is imaged

onto a mosaic of two CCDs, rebinned 2× 2 in the readout. We used two narrow band filters, one

centered atλ = 5045Å and a second one atλ = 5095Å, both with a FWHM of 60Å. We cover, in

this way, the whole range of cluster line-of-sight (LOS) velocities and, for fast, vLOS ≥ 4000 km s−1,

and bright PNs, m5007 ≤ 29.3, the [OIII] λ5007Å emission line falls in the red filter and the [OIII]

λ4959Å line in the blue filter. Spectra were obtained with the GRIS-600B grism, which has a spectral

resolution of 0.75 Å/pixel at 5075 Å. The MSIS mask is made of 24× 21 slits, each of them 0”.8

wide and 17”.5 long. Each slit is projected along the dispersion axis onto∼ 40 rebinned pixels. The

effective area imaged by the slits is∼ 7056 arcsec2, that is∼ 4.5% of the whole FORS2 FoV. In order

to cover the whole field the MSIS mask was stepped 15 times on the sky to cover the region between

two adjacent slits. For each mask position 3 exposures, of 1200 sec each, were taken, ensuring a

proper cosmic ray subtraction. The seeing during the three observing nights was in the range from

0”.6 to 1”.5.

Arclamp calibration frames were acquired for the wavelength calibration, as well as flats and bias

images. The flux calibration was done using long slit observations of the standard star LTT7379 with

narrow band filter plus Grism.

3.3 Data reduction

Data reduction was carried out following the procedure described in Arnaboldi et al. (2007). After

bias subtraction, the images were properly co-added and thecontinuum light from the two main

galaxies was subtracted, with an fmedian filtering using a window of 19× 35 pixels.

Then we extracted and rectified the 2D spectra (fig. 3.1) of theemission sources and performed

the wavelength and flux calibration. The total number of emission sources detected is 95. On the

basis of the flux calibration the 1σ limit on the continuum is∼ 7× 10−20 erg cm−2 s−1 Å
−1

.
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Figure 3.1: Upper panel: 2-D spectrum of a PN candidate. The dispersion axis is alongthe vertical direction. The emission
line falls onto about 6 pixels both in the spatial and spectral direction.Lower panel: 1-D spectrum of the same
PN candidate. The emission line has the same FWHM as the arc lamp lines, showing that the observed emission
line is unresolved in wavelength.

A first classification of the emission line objects can be carried out according to the following

criteria:

• PN candidates: unresolved emission line objects, both in space and in wavelength, with no

continuum;

• background objects candidates: continuum sources with unresolved or resolved emission line.

Of the 95 emission lines sources identified, 60 were classified as possible PN candidates, the

remaining sources as background object candidates. Monochromatic point like emissions appear

in the final images as unresolved sources with a width of∼ 6 pixels both in the spatial and in the

wavelength direction. The final spectral resolution is∼ 4.5 Å, or 140 km s−1. Magnitudes for the PN

candidates were computed using the Jacoby formula.
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3.4 Selection Criteria for the PN population: the wavelength-

magnitude plane

We now describe the physical properties of PNs belonging to the Hydra I ICL in a two dimensional

wavelength-magnitude space, as shown in fig. 3.2.

A PN population is characterized by a bright cut-off of the PNLF, which according to

Ciardullo et al. (1998) has absolute magnitude of the [OIII]λ5007Å emission line of M∗ = −4.48.

At the Hydra I cluster distance (m− M = 33.49), this corresponds to an apparent magnitude of

m5007= 29.1 (plotted as the dotted horizontal line in fig. 3.2). The apparent magnitude for the [OIII]

λ4959Å emission line is 1.2 mag fainter.

Figure 3.2: The plot shows the wavelength vs magnitude space in which we describe the physical properties of a PN
population at 50 Mpc and bound to the Hydra I cluster. Blue andred crosses are the PN candidates detected in
the MSIS images. The various lines and the characteristics of the 4 regions identified in the plot are explained
in the text.

The red inclined line in fig. 3.2 shows the apparent magnitudeof a PN at the PNLF bright cutoff,

as a function of the Hubble flow distance, and the blue line shows the same dependence for the [OIII]

λ4959Å emission line. If the line-of-sight velocity corresponded only to the Hubble flow, then the
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magnitude of the two emission lines, [OIII]λ4959Å and [OIII]λ5007Å of a PN fainter than the bright

cut-off would fall on the left side of the blue and red line, respectively.

The systemic velocity of the Hydra I cluster vHydra I = 3683 km s−1 and its velocity dispersion

σHydra I = 724 km s−1 (Christlein & Zabludoff 2003) identify a wavelength range in which [OIII]

emissions from objects orbiting in the Hydra I cluster potential can be observed. At the systemic

velocity of the cluster, the [OIII] emission lines are redshifted to λ = 5068Å andλ = 5020Å,

respectively. In fig. 3.2 the central green line is atλ = 5068Å where the [OIII]λ5007Å line is

redshifted to the cluster systemic velocity. The other two vertical green lines are at the wavelengths

bounding the±3σ velocity range, respectively atλ = 5032Å andλ = 5104Å.

The black continuous lines in fig. 3.2 show the measured profiles of the narrow band filters,

T(λ), normalized so that the maximum transmission is at the PNLFbright cutoff. They are centered

respectively atλ = 5045Å andλ = 5095Å and have a FWHM of∼ 60Å.

Considering the magnitude limit and wavelength range specified, we can identify different areas

in this wavelength-magnitude space, separated by black horizontal lines:

• Region #1According to their velocity and magnitude all emission lines are [OIII]λ5007Å.

• Region #2It is the region where, considering the flux and wavelength, we can find both faint

[OIII] λ5007Å or [OIII] λ4959Å emission lines.

• Region #3Here we have high flux and red wavelengths so that we can see thebright [OIII]

λ5007Å emissions. For such emissions we expect to detect the corresponding [OIII]λ4959Å

in region #2.

• Region #4Here the emissions are most likely [OIII]λ5007Å. In principle, we may find both

[OIII] λ4959Å and [OIII]λ5007Å; however, if an emission were identified as [OIII]λ4959Å

its LOS velocity would be about 8600 km s−1 which is more than 6σ away from the cluster

systemic velocity. This PN would then not be bound to Hydra I and its velocity driven by the

Hubble flow. Then its [OIII]λ4959Å magnitude should fall on the left side of the blue line.

Therefore [OIII]λ4959Å emission lines in this region are ruled out.

We can now populate the wavelength-magnitude plane with thePN candidates detected in the

MSIS spectra. This gives us important information to validate the PNs catalogue. In the plot the blue

and red crosses are the PN candidates detected in the wavelength ranges covered by the blue and red

filters respectively.

The first result is that the fluxes of these candidates are all consistent with those of PNs at the

distance of the Hydra I cluster, in the range from 1.7 × 10−18 to 8.4 × 10−18 erg s−1cm−2, i.e.

30.7 > m5007 > 28.9.

The second is that for the two bright [OIII]λ5007Å emission sources identified in region #3,

the corresponding [OIII]λ4959Å have been identified in region #2: these objects are encircled in

magenta. All others emission sources in the plot are [OIII]λ5007Å if in the cluster.
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Moreover, we know that the 1σ continuum upper limit flux in both filters is∼ 7 ×
10−20 erg cm−2s−1Å

−1
. Considering that the compact HII regions detected in the Virgo cluster

(Gerhard et al., 2002) have a V-band continuum flux of∼ 8.2×10−19 erg cm−2s−1Å
−1

, corresponding

to ∼ 9.6 × 10−20 erg cm−2s−1Å
−1

at the distance of the Hydra I cluster, this allows us to rule out

from our sample compact HII regions such as or brighter than those observed in Virgo. Also, from

the continuum upper limit flux we calculate that the Equivalent Width (EW) of the most luminous

candidates is EW> 90Å. This value is larger than those of [OII] emitting background galaxies at

z = 0.37, which have EW[OII ] < 50 (Hogg et al., 1998). Therefore, we can rule out all contaminations

to our sample except a few background Lyα galaxies.

In summary, from analysing the PN candidates in the wavelength-magnitude plane we learn that:

• fluxes are consistent with PNs at the distance of the Hydra I cluster; the only possible

contaminants are Lyα emitters at high redshift;

• objects in magenta circles can reliably be classified as PNs because we are able to see both their

[OIII] λ5007Å and [OIII]λ4959Å emission lines;

• for all other PNs we have detected the [OIII]λ5007Å at the LOS velocity expected for objects

bound to the Hydra I cluster.

3.5 Conclusions

In this work, we have presented MSIS observations of PN candidates associated with the diffuse light

around the central cD galaxy NGC 3311 in the Hydra I cluster. We have discussed criteria used for

selecting these emission sources and have analyzed their properties in the wavelength-magni- tude

plane. In total, we have identified 60 PN candidates around NGC 3311.

In the next steps of our analysis we will focus on the kinematics of the diffuse stellar population

in the halo of NGC 3311. We will study the histogram of the LOS velocity distribution of the PNs

candidates to obtain information about possible substructures in the ICL and the merging status of the

cluster. Together with the X-ray temperature profile (Yamasaki et al., 2002) and the surface brightness

profiles of the stellar light this will give us constraints onthe orbit distribution in the halo of this cD

galaxy.
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Abstract

We describe the results of a deep survey for Lyα emission line galaxies at z∼ 3.1, carried out

with the Multi-Slit Imaging Spectroscopy (MSIS) technique, with the FORS2 spectrograph on VLT-

UT1. We discuss the criteria used to select the emission linegalaxies and present the main physical

characteristics of the sample: redshift, observed flux and equivalent width distributions.

4.1 Introduction

In the last decades our knowledge of the high redshift (z> 2) Universe has significantly increased.

The observational technique that allowed such galaxies to be found, in a significant number, is the

dropout technique (Giavalisco, 2002). It detects Lyman Break galaxies by the flux discontinuity due

to their Lyman limit absorption (Steidel et al., 1996a,b). Since 1998, narrow band surveys reported

the detection of Lyα emission from objects in the redshift range 2.4< z < 6.5 (Hu et al., 1998;

Ciardullo et al., 2002; Ajiki et al., 2003; Ouchi et al., 2005, 2008; Gronwall et al., 2007; Schaerer,

2007). The Lyα emission not only allows galaxies to be detected at very highredshifts, but also gives

a valuable star formation diagnostic and facilitates the study of large scale structures at high redshift.

With spectroscopic surveys the Lyα emission line profiles can be studied (Kudritzki et al., 2000;

Shapley et al., 2003; Martin et al., 2008; Rauch et al., 2008). This, in turn, provides the possibility

of testing models of the physical parameters of the Lyα emitters and to derive constraints on their

stellar populations and their gas and dust content (Verhamme et al., 2008).
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Here we present the results of a survey at z∼ 3.1 carried out with the Multi-Slit Imaging

Spectroscopy technique (MSIS, Gerhard et al., 2005) with FORS2 on UT1.

4.2 The Multi-Slit Imaging Spectroscopy technique

MSIS is a blind search technique that consists of the combined use of a mask of parallel slits, a

narrowband filter, and a dispersing element. It obtains the spectra of all emission line objects that

happen to lie behind the mask slits. Our main purpose is to detect the [OIII]λ5007 line emission for

Planetary Nebulas (PNs), in order to study the kinematic properties of the Intracluster light (ICL) in

the central regions of nearby (< 100 Mpc) clusters of galaxies (Gerhard et al., 2007; Ventimiglia et al.,

2008). By dispersing the sky noise on many pixels, the technique enables measurements of very faint

fluxes. Thus MSIS surveys are also suitable for the detectionof the redshifted 1216 Å emission line

from high-redshift Lyα galaxies.

4.3 Observational set up

Data were collected in visitor mode during 2006 March 26-28,using the FORS2 spectrograph on

UT1. The observed area covers the central region of the HydraI cluster, around NGC 3311, at

α = 10h36m42.8s, δ= -27d31m42s (J2000). The FORS2 field of view (FOV) is 6′.8 × 6′.8 wide,

corresponding to∼ 10000 kpc2, and it is imaged onto a mosaic of two CCDs, rebinned 2× 2 in

the readout. We used two narrow band filters, one centered atλ = 5045 Å and a second one at

λ = 5095 Å, both with a FWHM of 60 Å. In this way we are able to detectLyα emission lines in

the redshift range 3.12< z < 3.21. Spectra were obtained with the GRIS-600B grism, whichhas a

spectral resolution of 0.75 Å/pixel at 5075 Å. The MSIS mask is made of 24× 21 slits, each of them

0”.8 wide and 17”.5 long. Each slit is projected along the dispersion axis onto∼ 40 rebinned pixels.

The effective area imaged by the slits is∼ 7056 arcsec2, that is∼ 4.5% of the whole FORS2 FOV.

In order to cover the whole field, the MSIS mask was stepped 15 times on the sky to fill the region

between two adjacent slits. For each mask position 3 exposures, of 1200 sec, were taken, ensuring a

proper cosmic ray subtraction. The seeing during the three observing nights was in the range from

0”.6 to 1”.5. We can detect emission line objects with a flux completeness limit of ∼ 3.4 ×10−18

erg cm−2s−1, and their positions and radial velocities can be measured at the same time. With this

instrumental set up and total exposure time, monochromaticpoint like emissions appear in the final

images as unresolved sources with a width of∼ 6 pixels both in the spatial and in the wavelength

direction. Therefore, the FWHM spatial resolution is 1”.1 and the FWMH spectral resolution is 450

km s−1.
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4.4 Data reduction

Data reduction was carried out following the procedure described in Arnaboldi et al. (2007);

Ventimiglia et al. (2008). After bias subtraction, the images were co-added and the continuum light

from the two Hydra I galaxies was subtracted, with an fmedianfiltering using a window of 19× 35

pixels. The 2D stacked spectra of the emission sources were then extracted, rectified, wavelength

and flux calibrated. The total number of emission sources detected is 86. On the basis of the flux

calibration the 1σ limit on the continuum is∼ 7×10−20 erg cm−2 s−1Å−1. Continuum fluxes were

calculated in the 60 Å wavelength range covered by the filter in which the emission line was detected.

In a first classification, all objects with unresolved emission lines and no continuum were

classified as PN candidates; the remaining as background galaxy candidates. The PN candidate

sample likely contains a fraction of unresolved Lyα emitters without continuum which are not

included in the present study.

4.5 Lyα candidates and their physical characteristics

In the background galaxy sample 6 objects are classified as [OII] emitters; they are characterized

by an emission line with a clearly visible continuum at all wavelengths. The remaining 20 objects

are classified as candidate Lyα galaxies. They include sources with resolved emission lines,

either spatially or in wavelength or both, without continuum, and sources with resolved/unresolved

emission lines and continuum only to the red side of the spectrum. This classification is supported

by spectroscopic follow up of similar sample of background galaxies in previous PN surveys

(Freeman et al., 2000; Arnaboldi et al., 2002; Kudritzki et al., 2000), and by the fact that the deep

sample of 2.7 < z < 3.7 Lyα galaxies of Rauch et al. (2008) contains few foreground [OII] emitting

galaxies, contrary to higher redshift samples (Martin et al., 2008).

The redshift distribution of the Lyα candidates (LACs) is shown in Figure 4.1. The emission

lines of all objects were fitted by simple Gaussian profiles, both in the spatial and in the dispersion

direction. For all the LACs, Fig.4.1 (upper left panel) shows the FWHM of the Gaussian profiles

along the spatial direction vs. the FWHM of the Gaussian profiles along the dispersion direction.

About 65% of the sample has an emission line which is spatially unresolved; the rest is spatially

resolved. About 60% of the sample is unresolved in velocity and the rest is resolved.

Based on this information we adopt a simple morphological classification of the candidates:

unresolved objects both spatially and in wavelength (PS), resolved objects in both directions (EXT)

and resolved objects only in the spatial or wavelength direction, respectively (EXTs, EXTv). A

proper morphological classification is beyond the purpose of the current work. More detailed

discussion about morphology and the related physics of LACscan be found in Rauch et al. (2008);

Verhamme et al. (2008).

The fluxes were measured in apertures of 0”.8× 2” × 755 km/s centred around the emission lines
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Figure 4.1: Physical characteristics of all emission line sources in the survey classified as Lyα candidate galaxies (LACs).
Upper left panel: Distribution of the Gaussian FWHM along the spatial direction vs. the Gaussian FWHM
along the dispersion direction. One extended object in velocity could not be fitted by a Gaussian and is omitted.
In the rectangle on the lower left are LACs whose emission line is unresolved both spatially and in wavelength.
Blue crosses are objects detected in the wavelength range covered by the blue filter and red crosses are those
detected in the wavelength range covered by the red filter.Upper right panel: Flux vs. wavelength for the
LACs (black crosses) detected in the MSIS field. The blue and the red lines show the normalized measured
profiles of the blue and red filters, respectively.Lower left panel: Histogram of the LACs emission line flux
distribution. The red vertical line defines the flux completeness limit.Lower right panel: Histogram of LACs
EW distribution.
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and corrected for the filter response. Fig.4.1 shows the fluxes of the LACs as a function of wavelength

(upper right panel), and their flux distribution (lower leftpanel). The latter is peaked at∼ 3×10−18 erg

cm−2s−1 and is truncated at faint fluxes, because our survey is flux limited. The completeness limit

of the sample is∼ 3.4×10−18 erg cm−2s−1, while the detection limit is∼ 2×10−18 erg cm−2s−1. The

most luminous objects have fluxes greater than 20×10−18 erg cm−2s−1.

The equivalent width (EW) distribution is also shown in Fig.4.1 (lower right panel). The

continuum fluxes go from the limit on the 1σ continuum value of 7×10−20 erg cm−2s−1 to ∼ 7×10−19

erg cm−2s−1. Most of the objects have an observed EW< 200 Å.

A study of the luminosity function and a comparison of the number densities with results from

previous surveys at redshift∼ 3.1 will be the subject of a forthcoming paper.
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Abstract

Diffuse intracluster light (ICL) and cD galaxy halos are believed to originate from galaxy evolution

and disruption in clusters.

The processes involved may be constrained by studying the dynamical state of the ICL and the

galaxies in the cluster core. Here we present a kinematic study of diffuse light in the Hydra I (Abell

1060) cluster core, using planetary nebulas (PNs) as tracers.

We use Multi-Slit Imaging spectroscopy with FORS2 on VLT-UT1 to detect 56 PNs associated

with diffuse light in the central 100× 100 kpc2 of the Hydra I cluster, at a distance of∼ 50 Mpc.

We measure their [OIII]m5007 magnitudes, sky positions, and line-of-sight velocity distribution

(LOSVD), and compare with the phase-space distribution of nearby galaxies.

The luminosity function of the detected PNs is consistent with that expected at a distance of∼ 50

Mpc. Their number density is∼ 4 times lower for the light seen than expected, and we discussram

pressure stripping of the PNs by the hot intracluster mediumas one of the possible explanations. The

LOSVD histogram of the PNs is highly non-Gaussian and multi-peaked: it is dominated by a broad

central component withσ ∼ 500 km s−1 at around the average velocity of the cluster, and shows two

additional narrower peaks at 1800 km s−1 and 5000 km s−1. The main component is broadly consistent

with the outward continuation of the intracluster halo of NGC 3311, which was earlier shown to have

a velocity dispersion of∼ 470 km s−1 at radii of≥ 50′′. Galaxies with velocities in this range are

1In Sec. 5.7.1 the through-slit convolution of the PNLF, the photometric error convolution and the completeness
correction were performed with a code written by O. Gerhard.- The analysis of Sec. 5.7.3 was done by M.Arnaboldi
and O. Gerhard.
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absent in the central 100× 100 kpc2 and may have been disrupted earlier to build this component.

The PNs in the second peak in the LOSVD at 5000 km s−1 are coincident spatially and in velocities

with a group of dwarf galaxies in the MSIS field. They may tracethe debris from the on-going tidal

disruption of these galaxies.

Most of the diffuse light in the core of Abell 1060 is still not phase-mixed. The build-up of ICL

and the dynamically hot cD halo around NGC 3311 are on-going,through the accretion of material

from galaxies falling into the cluster core and tidally interacting with its potential well.

5.1 Introduction

Intracluster light (ICL) consists of stars that fill up the cluster space among galaxies and that are not

physically bound to any galaxy cluster members. For clusters in the nearby Universe, the morphology

and quantitative photometry of the ICL have been studied with deep photometric data or by detection

of single stars in large areas of sky.

Deep large field photometry shows that ICL is common in clusters of galaxies and it has

morphological structures with different angular scales. The fraction of light in the ICL with

respect to the total light in galaxies is between 10% and 30%,depending on the cluster mass

and evolutionary status (Feldmeier et al., 2004; Adami et al., 2005; Mihos et al., 2005; Zibetti et al.,

2005; Krick and Bernstein, 2007; Pierini et al., 2008). The detection of individual stars associated

with the ICL, such as PNs (Arnaboldi et al., 2004; Aguerri et al., 2005; Gerhard et al., 2007;

Castro-Rodriguéz et al., 2009), globular clusters (GCs) (Hilker, 2002; Lee et al., 2010), red giants

stars (Durrell et al., 2002; Williams et al., 2007), and supernovae (Gal-Yam et al., 2003; Neill et al.,

2005) is a complementary approach to deep photometry for studying the ICL, enabling also kinematic

measurements for this very low surface brightness population.

An important open question is the relation between the ICL and the extended outer halos of

brightest cluster galaxies (BCGs), whether they are independent components, or whether the former

is a radial extension of the latter. Using a sample of 683 SDSSclusters, Zibetti et al. (2005) found

a surface brightness excess with respect to an inner R1/4 profile used to describe the mean profile

of the BCGs, but it is not known yet whether this cD envelope issimply the central part of the

cluster’s diffuse light component, or whether it is distinct from the ICL and part of the host galaxy

(Gonzalez et al., 2005).

Both the ICL and the halos of BCGs are believed to have formed from stars that were tidally

dissolved from their former host galaxies, or from entirelydisrupted galaxies. A number of processes

have been discussed, starting with early work such as Richstone (1976); Hausman and Ostriker

(1978). Contributions to the ICL are thought to come from weakly bound stars generated by

interactions in galaxy groups, subsequently released in the cluster’s tidal field (Rudick et al., 2006,

2009; Kapferer et al., 2010), interactions of galaxies witheachother and with the cluster’s tidal field

(Moore et al., 1996; Gnedin, 2003; Willman et al., 2004), andfrom tidal dissolution of stars from
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massive galaxies prior to mergers with the BCG (Murante et al., 2007; Puchwein et al., 2010). Stars

in BCG halos may have originated in both such major mergers aswell as through minor mergers with

the BCG. Which of these processes are most important is stillan open issue.

Kinematic studies of the ICL and the cD halos are instrumental in answering these questions.

The kinematics of the ICL contains the fossil records of pastinteractions, due to the long dynamical

timescale, and thus helps in reconstructing the processes that dominate the evolution of galaxies in

clusters and the formation of the ICL (Rudick et al., 2006; Gerhard et al., 2007; Murante et al., 2007;

Arnaboldi and Gerhard, 2010). The kinematics in the cD haloscan be used to separate cluster from

galaxy components, as shown in simulations (Dolag et al., 2010); so far, however, the observational

results are not unanimous: in both NGC 6166 in Abell 2199 (Kelson et al., 2002) as well as NGC 3311

in Abell 1060 (Ventimiglia et al., 2010b) the velocity dispersion profile in the outer halo rises to nearly

cluster values, whereas in the Fornax cD galaxy NGC 1399 (McNeil et al., 2010) and in the central

Coma BCGs (Coccato et al., 2010b) the velocity dispersion profiles remain flat, and in M87 in Virgo

(Doherty et al., 2009) it appears to fall steeply to the outeredge. Evidently, more work is needed both

to enlarge the sample and to link the results to the evolutionary state of the host clusters.

The aim of this work is to further study the NGC 3311 halo, how it blends into the ICL, and what

is its dynamical status. NGC 3311 is the cD galaxy in the core of the Hydra I (Abell 1060) cluster.

Based on X-ray evidence, the Hydra I cluster is the prototypeof a relaxed cluster (Tamura et al., 2000;

Furusho et al., 2001; Christlein and Zabludoff, 2003). Surface photometry is available in the Johnson

B, Gunn g and r bands (Vasterberg et al., 1991), and the velocity dispersion profile has been measured

out to∼ 100” (Ventimiglia et al., 2010b), showing a steep rise to∼ 470 km s−1 in the outer halo. Here

we use the kinematics of Planetary Nebulas (PNs) from a region of 100× 100 kpc2 centered on

NGC 3311, to extend the kinematic study to larger radii and characterize the dynamical state of the

outer halo and of the cluster core.

In Section 5.2 we summarize the properties of the Hydra I cluster from X-ray and optical

observations. In Section 5.3 we discuss PNs as kinematical and distance probes, and the “Multi-

Slit Imaging Spectroscopy - MSIS” technique for their detection in clusters in the distance range

40 − 100Mpc. We present the observations, data reduction, identification, and photometry in

Sections 5.4 and 5.5. In Section 5.6 we describe the spatial distribution, line-of-sight (LOS) velocity

distribution (LOSVD), and magnitude-velocity plane of thePN sample. In Section 5.7 we use the

properties of the Planetary Nebulas luminosity function (PNLF) and a kinematic model for the PN

population to predict its LOSVD in MSIS observations. The simulation allows us to interpret the

observed LOSVD and also to determine theα parameter for the halo of NGC 3311. In Section 5.8 we

correlate the velocity subcomponents in the PN LOSVD with kinematic substructures in the Hydra I

galaxy distribution and discuss implications for galaxy evolution and disruption in the cluster core.

Finally, Section 5.9 contains a summary and the conclusionsof this work.
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5.2 The Hydra I cluster of galaxies (Abell 1060)

The Hydra I cluster (Abell 1060) is an X-ray bright, non-cooling flow, medium compact cluster in the

Southern hemisphere, whose central region is dominated by apair of non-interacting giant elliptical

galaxies, NGC 3311 and NGC 3309. NGC 3309 is a regular giant elliptical (E3) and NGC 3311 is a

cD galaxy with an extended halo (Vasterberg et al., 1991).

X-ray properties of Hydra I- Except for two peaks associated with the bright ellipticalgalaxies

NGC 3311 and NGC 3309, the X-ray emission from the hot intracluster medium (ICM) in the

Hydra I (A 1060) cluster is smooth and lacks prominent spatial substructures. The center of the

nearly circularly symmetric emission contours roughly coincides with the center of NGC 3311

(Tamura et al., 2000; Yamasaki et al., 2002; Hayakawa et al.,2004, 2006). A faint extended emission

with angular scale< 1′ trailing NGC 3311 to the North-East, overlapping with an Fe excess, could

be due to gas stripped from NGC 3311 if the galaxy moved towards the South-West with velocity

≥ 500 km s−1, according to Hayakawa et al. (2004, 2006). The total gas mass and iron mass contained

in this region are∼ 109 M⊙ and 2×107 M⊙, respectively (Hayakawa et al., 2004, 2006). The emission

components of NGC 3311 and NGC 3309 themselves are small, extending to only∼ 10” ≃ 2.5 kpc,

suggesting that both galaxies lost most of their gas in earlier interactions with the ICM. In both

galaxies, the X-ray gas is hotter than the equivalent temperature corresponding to the central stellar

velocity dispersions, and in approximate pressure equilibrium with the ICM (Yamasaki et al., 2002).

On cluster scales the X-ray observations show that the hot ICM has a fairly uniform temperature

distribution, ranging from about 3.4 KeV in the center to 2.2 KeV in the outer region, and constant

metal abundances out to a radius of 230 kpc. Deviations from uniformity of the hot gas temperature

and metallicity distribution in Hydra I are in the high metallicity region at∼ 1.5 arcmin North-

East of NGC 3311, and a region at a slightly higher temperature at 7 arcmin South-East of

NGC 3311 (Tamura et al., 2000; Furusho et al., 2001; Yamasakiet al., 2002; Hayakawa et al., 2004,

2006; Sato et al., 2007). Based on the overall regular X-ray emission and temperature profile, the

Hydra I cluster is considered as the prototype of an evolved and dynamically relaxed cluster, with the

time elapsed since the last major subcluster merger being atleast several Gyr. From the X-ray data the

central distribution of dark matter in the cluster has been estimated, giving a central density slope of

≃ −1.5 and a mass within 100 kpc of≃ 1013 M⊙ (Tamura et al., 2000; Hayakawa et al., 2004). Given

these properties, the Hydra I cluster is an interesting target for studying the connection between the

ICL and the extended halo of NGC 3311.

The cluster average velocity and velocity dispersion- From a deep spectroscopic sample of

cluster galaxies extending to MR ≤ −14, Christlein and Zabludoff (2003) derive the average cluster

redshift (mean velocity) and velocity dispersion of Hydra I. We adopt their values here: ¯vHy =

3683± 46 km s−1, andσHy = 724± 31 km s−1. The sample of measured galaxy spectra in Hydra I is

extended to fainter magnitudes MV > −17 through the catalog of early-type dwarf galaxies published

by Misgeld et al. (2008); their values for the average cluster velocity and velocity dispersion are
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v̄Hy = 3982± 148 km s−1 andσHy = 784 km s−1, with the average cluster velocity at somewhat larger

value with respect to the measurement by Christlein and Zabludoff (2003). Both catalogues cover

a radial range of∼ 300 kpc around NGC 3311. Close to NGC 3311, a predominance of velocities

redshifted with respect to ¯vHy is seen, but in the radial range∼ 50− 300 kpc, the velocity distribution

appears well-mixed with about constant velocity dispersion.

Distance estimates- The distance to the Hydra I cluster is not well constrained yet, as different

techniques provide rather different estimates. The cosmological distance to Abell 1060 based on the

cluster redshift is 51.2±5.7 Mpc assumingH0 = 72±8km−1 Mpc−1 (Christlein and Zabludoff, 2003),

while direct measurements using the surface brightness fluctuation (SBF) method for 16 galaxies give

a distance of 41 Mpc (Mieske et al., 2005).

The relative distance of NGC 3311 and NGC 3309 along the line of sight is also controversial.

Distance measurements based on the globular cluster luminosity function locate NGC 3311 about

10 Mpc in front of NGC 3309, which puts NGC 3309 at 61 Mpc (Hilker, 2003), while SBF

measurements suggest the opposite, with NGC 3311 now at shorter distance of about 41 Mpc and

NGC 3309 even closer at 36 Mpc, 5 Mpc in front of NGC 3311 (Mieske et al., 2005).

In this work we assume a distance for NGC 3311 and the Hydra I cluster of 51 Mpc, corresponding

to a distance modulus of 33.54. Then 1” corresponds to 0.247 kpc. The systemic velocity for

NGC 3311 and its central velocity dispersion are vN3311 = 3825 (3800)±8 km s−1 (heliocentric;

without and in brackets with relativistic correction), andσ0 = 154± 16 km s−1 (Ventimiglia et al.,

2010b). The systemic velocity of NGC 3309 is vN3309 = 4099 km s−1 (Misgeld et al., 2008). The

velocities of the other Hydra I galaxies are extracted from the catalogs of Misgeld et al. (2008) and

Christlein and Zabludoff (2003).

5.3 Probing the ICL kinematics using Planetary Nebulas

5.3.1 Planetary Nebulas as kinematical probes and distanceindicators

Planetary Nebulas (PNs) occur as a brief phase during the late evolution of solar-type stars. In stellar

populations older than 2 Gyrs, about one star every few million is expected to be in the PN phase at

any one time (Buzzoni et al., 2006). Stars in the PN phase can be detected via their bright emission in

the optical [OIII]λ 5007 Å emission line, because the nebular shell re-emits∼ 10% of the UV photons

emitted by the stellar core in this single line (Ciardullo etal., 2005). When the [OIII] emission line is

detected, the line-of-sight velocity of the PN can be easilymeasured.

The number density of PNs traces the luminosity density of the parent stellar population.

According to single stellar population theory, the luminosity-specific stellar death rate is independent

of the precise star formation history of the associated stellar population (Renzini and Buzzoni, 1986;

Buzzoni et al., 2006). This property is captured in a simple relation such that

NPN = αLgal (5.1)
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whereNPN is the number of all PNs in a stellar population,Lgal is the bolometric luminosity of that

parent stellar population andα is the luminosity-specific PN number. The predictions from stellar

evolution theory are further supported by empirical evidence that the PN number density profiles

follow light in late- and early-type galaxies (Herrmann et al., 2008; Coccato et al., 2009), and that the

luminosity-specific PN numberα stays more or less constant, with (B-V) color. The empiricalresult

that the rms scatter ofα for a given colour is about a factor 2-3 remains to be explained, however

(Buzzoni et al., 2006).

The planetary nebula luminosity function (PNLF) techniqueis one of the simplest methods for

determining extragalactic distances. This is based on the observed shape of the PNLF. At faint

magnitudes, the PNLF has the power-law form predicted from models of uniformly expanding shells

surrounding slowly evolving central stars (Henize and Westerlund, 1963; Jacoby, 1980). However,

observations and simulations have demonstrated that the bright end of the PNLF dramatically

breaks from this relation and falls to zero very quickly, within ∼ 0.7 mag (Ciardullo et al., 1998;

Mendez and Soffner, 1997). It is the constancy of the cutoff magnitude,M∗ = −4.51, and the high

monochromatic luminosity of PNs, that makes the PNLF such a useful standard candle.

5.3.2 The Multi-Slit Imaging Spectroscopy technique

At the distance of the Hydra I cluster, the brightest PNs at the PNLF cutoff have an apparentm5007

magnitude equal to 29.0, corresponding to a flux in the [OIII]λ5007Å line of∼ 8× 10−18 erg s−1cm−2

according to the definition ofm5007 by Jacoby (1989). To detect these faint emissions we need

a technique that substantially reduces the noise from the night sky. This is possible by using a

dedicated spectroscopic technique named “Multi-Slit Imaging Spectroscopy” (MSIS, Gerhard et al.,

2005; Arnaboldi et al., 2007).

MSIS is a blind search technique that combines the use of a mask of parallel slits, a dispersing

element, and a narrow band filter centered at the redshifted [OIII] λ5007Å emission line. With MSIS

exposures, PNs and other emission objects in the filter’s wavelength range which happen to lie behind

the slits are detected, and their velocities, positions, and magnitudes can be measured at the same

time. The [OIII] emission line from a PN is∼ 30 km s−1 wide (Arnaboldi et al., 2008), so if dispersed

with a spectral resolutionR ∼ 6000, it falls on a small number of pixels, depending on the slit width

and seeing.

In this work we use MSIS to locate a sample of PNs in the core of the Hydra I cluster and

measure their velocities and magnitudes. Our aim is to inferthe dynamical state of the diffuse light

in the cluster core, as described below in Sections 5.7 and 5.8.

5.4 Observations

MSIS data for Hydra I were acquired during the nights of March26-28, 2006, with FORS2 on

UT1, in visitor mode. The FORS2 field-of-view (FoV) is∼ 6.8 × 6.8 arcmin2, corresponding to
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∼ 100 kpc× 100 kpc at the distance of the Hydra I cluster. The effective field area in which it was

possible to position slits with the grism used here is 44.6 square arcmin. The FoV was centered on

NGC 3311 atα = 10h36m42.8s, δ = −27d31m42s (J2000) in the core of the cluster. The FoV

is imaged onto two 2× 2 rebinned CCDs, with spatial resolution 0′′.252 per rebinned-pixel. The

mask used has 24× 21 slits, each 0′′.8 wide and 17′′.5 long. The area covered with the mask is

about 7056 arcsec2, corresponding to about 4.4 % of the effective FoV. To cover as much of the field

as possible, the mask was stepped 15 times so as to fill the distance between two adjacent slits in

the mask. The total surveyed area is therefore 29.4 arcmin2, i.e., 66 % of the effective FoV. Three

exposures of 800 sec were taken at each mask position to facilitate the removal of cosmic rays during

the data reduction process.

The dispersing element was GRISM-600B with a spectral resolution of 0.75 Å pixel−1 (or

1.5 Å rebinned-pixel−1) at 5075 Å. With the adopted slit width, the measured spectral resolution is

4.5 Å or 270 km s−1. Two narrow band filters were used, centered at 5045 Å and 5095Å, respectively,

both with 60 Å FWHM. This ensures the full coverage of the Hydra I cluster LOS velocity range.

Each illuminated slit in the mask produces a two-dimensional spectrum of 40 rebinned pixels in the

spectral direction and 70 rebinned pixels in the spatial direction.

The seeing during the observing nights was in the range from 0′′.6 to 1′′.5. For the average seeing

(0′′.9) and with the spectral resolution of the set-up, monochromatic point-like sources appear in the

final spectra as sources with a total width of∼ 5 pixels in both the spatial and wavelength directions.

Biases and through-mask flat field images were also taken. Arc-lamp calibration frames with

mask, grism and narrow band filter were acquired for the extraction of the 2D spectra, their

wavelength calibration and distortion correction. Long slit data for the standard star LTT 7379 with

narrow band filter and grism were acquired for flux calibration.

5.5 Data reduction and analysis

The data reduction is carried out inIRAF as described in Arnaboldi et al. (2007) and Ventimiglia et al.

(2008). The frames are registered and co-added after bias subtraction. The continuum light from the

bright galaxy halos is subtracted using a median filtering technique implemented in theIRAF task

.images.im f ilter.median, with a rectangular window of 19×35 pixels. Then emission line objects are

identified, and 2D-spectra around the emission line positions are extracted, rectified, wavelength and

flux calibrated, and background subtracted. Finally the wavelength of the redshifted [OIII]λ 5007Å

emission line for all the identified sources is measured via aGaussian fit. The heliocentric correction

for the PN velocities is−5.44 km s−1.

5.5.1 Identification of Emission-Line Objects

All emission line objects found are classified according to the following criteria as
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• PN candidates: unresolved emission line objects, both in wavelength and in the spatial

direction, with no continuum;

• background galaxy candidates: unresolved emission line objects with continuum, or resolved

emission line objects both with and without continuum.

The total number of detected emission line sources in our data set is 82, of which 56 are classified

as PN candidates and 26 as background galaxy candidates, of which 6 are classified as [OII] emitters

and the remaining 20 as candidate Lyα galaxies2.

For details on the background galaxy candidates see Ventimiglia and Arnaboldi (2010). Note

that the background galaxy classification is independent ofluminosity and that these objects have a

broad equivalent width distribution. Therefore, the fact that the PN candidates (unresolved emission

line objects without detectable continuum) have a luminosity function as expected for PNs observed

with MSIS at a distance of∼ 50 Mpc (see Section 5.7.1), implies that the large majority of these

PN candidates must indeed be PNs. In addition, Fig. 1 of Ventimiglia and Arnaboldi (2010) shows

that all of the background galaxy candidates but two fall in the blue filter in the velocity range

between 1000 km s−1 and 2800 km s−1, blue-shifted with respect to the Hydra I cluster. Several of the

unresolvedbackground galaxies in this blue-shifted velocity range have a continuum level just above

the detectability threshold, suggesting that the PN candidate sample may contain a few background

galaxy contaminants in this velocity range whose continuumis too faint to detect.

The two background galaxies seen in the red filter are both extended and have medium bright

emission fluxes; one has a very bright continuum, the other nodetectable continuum. From this we

conclude that the residual contamination of the PN candidate sample at velocities> 3000 km s−1 must

be minimal. With this in mind, we will in the following simplyrefer to the PN candidates as PNs.

5.5.2 Photometry

Magnitudes of the PN candidates are computed using them5007 definition by Jacoby (1989),m5007=

−2.5 logF5007− 13.74, whereF5007 is the integrated flux in the line computed in circular apertures

of radius 0′′.65− 0′′.85 in the 2D spectra, measured using theIRAF task.noao.digiphot.aphot.phot.

The 1σ limit on the continuum in these spectra is 7.2× 10−20erg cm−2s−1Å
−1

.

Photometric errors and completeness function

The photometric errors are estimated using simulations on asample of 2D wavelength, flux calibrated

and background subtracted spectra. For each simulation 100artificial PN sources are generated using

the IRAF task .noao.artdata.mkob ject. The adopted PSF is a Gaussian with a dispersion obtained

2 Note that the equivalent widths (EWs) of the PN candidates are mostly distributed between 30 Å< EW < 100 Å,
similar to the EWs of the background galaxy candidates, and cannot therefore be used to discriminate between both types
of emission sources. This is because these distant PNs are faint and the continuum level in the MSIS images is given by the
1σ limit from the sky noise; see Section 5.2.
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by fitting a 2D Gaussian to the profile of a detected PN candidate with adequate signal-to-noise. The

σ value is 1.1 pixels, i.e., FWHM∼ 0′′.7, and the FWHM in wavelength is∼ 4 Å. The simulated

PN samples have luminosity functions (LFs) given by a delta function at one of five different input

magnitudes (29.3, 29.7, 30.1, 30.5 and 30.9 mag). The outputmagnitudes on the 2D spectra are

measured with.noao.digiphot.aphot.phot using circular apertures, in the same way as for real PN

candidates. In these experiments, no significant systematic shift in the magnitudes was found, and

the standard deviation of the retrieved magnitude distribution is adopted as the measured error at the

respectiveoutputmagnitude.

On the basis of these simulations, we thus model the errors for the MSISm5007photometry, which

increase approximately linearly towards fainter magnitudes, by

ǫ ≃ 0.25(m5007− 28.5) [29.0, 30.4]. (5.2)

We then evaluate a completeness correction function, usingthe fraction of objects retrieved at each

magnitude as these become fainter. This fraction is nearly 100% at 29.0 mag, the apparent magnitude

of the PNLF bright cutoff at 51 Mpc, and decreases linearly down to 10-20% at 30.4 mag, the

detection limit magnitude of our observations. We model this dependence by

fc ≃


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
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




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


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

1 if m5007≤ 29.0,

0.64(−m5007+ 30.55) if 29.0 < m5007≤ 30.4,

0 if m5007> 30.4.

(5.3)

The error distribution and the completeness function are used in Section 5.7 below to perform

simulations of the LOSVD for the PN sample.

5.6 The PN sample in Hydra I

Our PN catalog for the central (100 kpc)2 of the Hydra I cluster contains 56 candidates, for which

we measure vLOS, xPN, yPN andm5007. The detected PN velocities cover a range from 970 km s−1 to

6400 km s−1 with fluxes from 2.2×10−18erg cm−2s−1 to 7.6×10−18erg cm−2s−1. The detected sample

of objects have a magnitude distribution compatible with the PNLF at the distance of Hydra I; see

also Section 5.7.1.

The magnitude-velocity plane- The properties of the PN sample in the velocity-magnitude plane

are shown in the left panel of Fig. 5.13. In this plot, the apparent magnitude of the PNLF bright cutoff

at the distance of the Hydra I cluster corresponds to a horizontal line at 29.0 mag. The blue and red

lines are the filter transmission curves, as measured from the spectra, normalized so that the maximum

transmission occurs near the PNLF bright cutoff. The PNs are indeed all fainter thanm5007= 29.0 and

3This plot is based on more accurate photometry than and updates Fig.1 of Ventimiglia et al. (2008).
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Figure 5.1: PNs in the Hydra I cluster core.Left upper panel: the PN velocity-magnitude distribution. The black crosses
show the entire sample of 56 PN candidates. The blue and red lines are the measured transmission curves of
the blue and the red filter, respectively, normalized so thatthe maximum transmission is near the theoretical
bright cutoff of the PNLF at the distance of Hydra I.Right upper panel: the PN LOSVD (black histogram).
The bins in velocity are 270 km s−1 wide. The blue and the red solid lines show again the suitablynormalized
transmission curves of the blue and red filters. The verticalmagenta, green and gray lines in both panels mark
the systemic velocity of Hydra I, NGC 3311 and NGC 3309, respectively. Lower panel: Spatial distribution of
the PNs (black diamonds) in the MSIS field. The field is centered on NGC 3311 and has size∼ 100×100 kpc2;
North is up and East to the left. The two open triangles indicate the positions of NGC 3311 (center) and
NGC 3309 (upper right). The PN indicated by the gray symbol isthe only object compatible with a PN bound
to NGC 3309, based on its position on the sky and LOS velocity,vgrayPN= 4422 km s−1.
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extend to the detection limit magnitude, mdl. This is slightly different for the two filters; the faintest

PNs detected through the blue filter have mB,dl = 30.45, and those detected with the red filter have

mR,dl = 30.3.

The PN LOSVD- The measured LOSVD of the PN sample is shown by the black histogram

in the central panel of Fig. 5.1. The velocity window coveredby the two filters is also shown and

the systemic velocities of Hydra I, NGC 3311 and NGC 3309 (seeSection 5.2) are indicated by the

magenta, green and gray vertical lines, respectively. These velocities fall in the middle of the velocity

window allowed by the filters, where both filters overlap. Themean velocity of all PN candidates is

v̄PNs = 3840 km s−1 and the standard deviation is rmsPNs = 1390 km s−1. The distribution is highly

non Gaussian and dominated by several individual components. The main peak appears in the range

of velocities from 2400 to 4400 km s−1 and its maximum is at∼ 3100 km s−1, within 1σHy of the

systemic velocity of the Hydra I cluster. In the blue filter velocity range there is a secondary peak at

∼ 1800 km s−1 that falls 2− 3σHy from the systemic velocity of Hydra I. This blue peak may contain

a few background galaxy contaminants, as discussed in Section 5.5.1 above. Finally a red peak at

∼ 5000 km s−1 within ∼ 2σHy of the cluster mean velocity is detected in the velocity interval from

4600 to 5400 km s−1, and there are some PNs with even larger LOS velocities.

The spatial distribution of the PNs- The locations of the detected PNs on the sky are shown in

the right panel of Fig. 5.1. Their spatial distribution can be characterized as follows:

• most PNs follow an elongated North-South distribution approximately centered on NGC 3311;

• there is no secondary high density concentration around NGC3309. Only one PN, indicated

by the gray symbol in the right plot of Fig. 5.1, has a combination of velocity and position that

are compatible with a PN bound to the halo of NGC 3309;

• a possibly separate concentration of PNs is present in the North-East corner of the field.

We summarize our main results so far:

1. The PN candidates detected in the MSIS field have luminosities consistent with a population of

PNs at the distance of the Hydra I cluster.

2. The distribution of PNs in the MSIS field is centered on NGC 3311. Only one candidate is

consistent with being bound to NGC 3309, even though NGC 3309is of comparable luminosity

to NGC 3311 and, on account of the X-ray results (see Section 5.2), is likely located in the inner

parts of the cluster within the dense ICL, at similar distance from us as NGC 3311.

3. There is no evidence for a single, well-mixed distribution of PNs in the central 100 kpc of the

Hydra I cluster, contrary to what one would expect from the dynamically relaxed appearance of

the X-ray emission. Instead, the observed PNs separate intothree major velocity components.
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5.7 Kinematic substructures andα parameter for the observed PN

sample in Hydra I: comparison with a simulated MSIS model

At this point, we would like to reinforce the last point by comparing the observed velocity distribution

with a simple model. The model is obtained by assuming a phase-mixed PN population placed at

the distance (51 Mpc) and mean recession velocity of NGC 3311, and simulating its line-of-sight

velocity distribution by convolving with the MSIS instrumental set up. The velocity dispersion of

the PN population is taken to be 464 km s−1, the hightest value measured from the long-slit data

in Ventimiglia et al. (2010b). In this way we can test more quantitatively whether the observed

multi-peaked LOSVD for PNs in our field is biassed by the MSIS observational set-up, or whether it

provides evidence for un-mixed components in the Hydra I cluster core.

5.7.1 Predicting the luminosity function and LOSVD with MSIS for a model PN
population

We first characterize the model in terms of the intrinsic luminosity function and LOSVD of the PN

population. Then we describe the steps required to predict the correspondingm5007 magnitude vs.

LOS velocity diagram and LOSVD that would be measured with the MSIS set up. In the next

subsection we compare the results obtained with the observed Hydra I PN sample.

Model for the intrinsic PN population- The intrinsic PN luminosity function can be approximated

by the analytical function given by Ciardullo et al. (1989):

N(m) = C e0.307m
[

1− e3(m∗−m)
]

(5.4)

wherem is the observed magnitude,m∗ = 29.0 is the apparent magnitude of the bright cutoff at the

adopted distance of NGC 3311, andC is a multiplicative factor. The integral ofN(m) from m∗ to

m∗ + 8 gives the total number of PN associated with the bolometricluminosity of the parent stellar

population (NPN in Eq. 5.1), and theC parameter can be related to the luminosity-specific PN number

α (Buzzoni et al., 2006). For our model we distribute the magnitudes of a PN population according

to a very similar formula fitted by Méndez to the results of Mendez and Soffner (1997).

Next we assume that this PN population is dynamically phase-mixed and that its intrinsic LOSVD

is given by a Gaussian centered on the systemic velocity of NGC 3311, v̄,

G(v) =
1

σcore
√

2π
exp

[

(v − v̄)2

2σ2
core

]

(5.5)

where here we adopt v̄= 3830 km s−1 (Ventimiglia et al., 2010b, corrected to the filter frame), and for

the velocity dispersion we takeσcore= 464 km s−1, the hightest value measured from the long-slit data

in this paper. This approximates the velocity dispersion for the intracluster component in the outer

halo of NGC 3311, at central distances∼ 20− 30 kpc (Ventimiglia et al., 2010b). We will consider
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the magnitude-velocity diagram and the LOSVD as histogramsin velocity; then in each velocity bin

∆vi , the number of PNs is

LF(vi) ≃ N(m) G(vi)∆vi (5.6)

where G(v) is normalized so that
∑

i G(vi)∆vi = 1.

Simulating the MSIS observations- The magnitude-velocity diagram for such a model population

is modified by a number of effects in the MSIS observations, which we simulate as described below.

The MSIS simulation procedure implements the following steps:

• the through-slit convolution of the PNLF;

• the convolution with the filter transmission;

• the photometric error convolution;

• the completeness correction;

• the computation of the LOSVD.

The through-slit PNLF- The MSIS technique is a blind survey technique. Therefore the positions

of the slits on the sky are not centered on the detected objects, and the further away an object is from

the center of its slit, the fainter it becomes. This effect is a function of both seeing and slit width, and

it modifies the functional form of the PNLF, which needs to be accounted for when using the LF from

MSIS PN detected samples.

In principle, some PNs may be detected in two adjacent slits of the mask, and this would need to

be corrected for. However, at the depth of the present Hydra Isurvey this effect is not important for

the predicted PNLF, and indeed no such object has been found in the sample.

Given a “true” PNLF LF(m), the “through slit PNLF” sLF(m) can easily be computed, and

depends on slit width and seeing; for further details see Gerhard et al. (2010, in preparation). The

effect of the through-slit correction is to shift the sLF(m) faintwards in the observable bright part,

compared to the ”true” PNLF.

Convolution with filter transmission- When the filter transmission T(vi) is less then 1 (100%),

it shifts the through-slit PNLF to fainter magnitudes. The∆m depends on the value of the filter

transmission curve at the wavelengthλ or equivalent binned velocity vi, and is equal to∆m(vi) =

−2.5 log T(vi). The resultinginstrumental PNLF, the distribution of source magnitudes before

detection, becomes velocity dependent, i.e., iLF(m, vi).

For the present MSIS Hydra I observations, the combined filter transmission curve from both

filters is defined as

T(v)i = max[TB(vi),TR(vi)], (5.7)

where B and R denote the blue and red filters. It is 1 where the transmission is 100%, approximately

from ∼ 1500 km s−1 to ∼ 3300 km s−1 and from∼ 4200 km s−1 to ∼ 6300 km s−1; it is < 1 in the filter

gap around∼ 3800 km s−1 and at the low and high velocity ends of the observed range.
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Photometric error convolution- Once the instrumental LF iLF(m, vi) is computed, it must be

convolved with the photometric errors which, for the case ofthe Hydra I observations, are given by

the linear function in Eq. 5.2. Because of the photometric errors, PNs that are intrinsically fainter

than the detection limit (here mag∼ 30.4) may be detected if they happen to fall on a positive noise

peak on the CCD image, and PNs that are intrinsically brighter than mag∼ 30.4 may be lost from the

sample. Generally, because the through-slit PNLF sLF(m) increases towards fainter magnitudes, the

photometric errors scatter more faint objects to brighter magnitudes than vice-versa; so the effect of

the convolution is to shift the PNLF to brighter magnitudes again.

Completeness correction- The completeness correction at a given observed magnitudeis a

multiplicative function which accounts for the decreasingfraction of PNs at fainter magnitudes

detected against the noise on the MSIS image. For the case at hand it is given in Eq. 5.3. After

the last two steps, we arrive at the final “MSIS PNLF”, MSLF(m) for short.

Computation of the simulated LOSVD- For each velocity bin the MSLF(m, vi) is integrated

between the apparent magnitude of the PNLF bright cut off (m∗ = 29.0 for Hydra I) and the detection

limit magnitude in the relevant filter,mf ,dl (see Section 5.6), to obtain the “observed” cumulative

number of PNs in each velocity bin:

NMSIS(vi) =
∫ mf ,dl

m∗
MSLF(m, vi)dm. (5.8)

The most cumbersome step in this procedure is the correctionfor the filter transmission, because it

makes the final MSLF(m, vi) velocity-dependent. It must correctly be appliedbeforethe convolution

with the photometric errors, because the latter depend on the flux measured at certain positions on

the CCD. So the errors on the through-slit magnitudes dependon the filter transmission values of the

PNs.

However, we have found that the observed MSLF for the Hydra I PN sample, when obtained from

wavelength regions where the filter transmission is∼ 100%, is very similar to the one obtained by

summing over the entire filter bandpass. The effect of the velocity dependence on the overall MSLF

must therefore be small, and for the comparison of simulatedand measured LOSVDs below we have

therefore applied the filter transmission only after the error convolution and completeness correction.

Before we discuss the LOSVD obtained from the complete model, we show in Fig. 5.2 the

predicted cumulative luminosity function resulting from error convolution, completeness correction,

and filter transmission correction of the through-slit luminosity function, weighting by the number of

observed PNs in each velocity bin. Also shown in Fig. 5.2 is the cumulative histogram of them5007

magnitudes for the 56 observed PNs in the MSIS field. With a cutoffmagnitude of 29.0 the model fits

the observed histogram fairly well; however, this is not a formal best fit to the distance. The important

point shown by Fig. 5.2 is that the observed MSIS luminosity function of the PN emission sources in

the Hydra cluster core is evidently consistent with a population of PNs at∼ 50 Mpc distance.
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Figure 5.2: Cumulative luminosity function predicted for the present MSIS observations and the nominal cutoffmagnitude
of the Hydra I cluster, 29.0 (full red line, see text), compared with the cumulative histogram of the observed
m5007 magnitudes.

5.7.2 Reality of observed kinematic substructures

The simulated MSIS LOSVD given byNMSIS(vi) for the simple Gaussian velocity distribution model

and luminosity function of Eq. 5.4 is shown as the green histogram in Fig. 5.3, with the observed

PN LOSVD overplotted in black. The simulated MSIS LOSVD is scaled to approximately match the

observed Hydra I sample in the central velocity bins.

The comparison between the simulated LOSVD and the Hydra I PNLOSVD in Fig. 5.3 identifies

the central peak at about 3100 km s−1 in the observed PN LOSVD with that of the PN population

associated with the stellar halo around NGC 3311 in the cluster core, withσcore ∼ 500 km s−1. The

mean v̄core andσcore of this component are approximately consistent with those of the intracluster

light halo of NGC 3311 derived from the long-slit kinematic analysis in Ventimiglia et al. (2010b).

However, the asymmetry and offset of the peak of the observed histogram (by several 100 km s−1)

relative to the MSIS convolved model centered at the systemic velocity of NGC 3311 appear

significant (σcore/
√

Ncore ≃ 100 km s−1), arguing for some real asymmetry of the central velocity

component. We shall refer to the central peak in the Hydra I PNLOSVD in Fig. 5.3 as the central

ICL component.

Two additional velocity peaks are seen in the LOSVD in Fig. 5.3, one near 1800 km s−1 and one
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Figure 5.3: LOSVD for the Hydra I PN sample from Fig. 5.1 (black histogram), compared with a simulated MSIS LOSVD
(green histogram) for a Gaussian velocity distribution withσcore= 464 km s−1; see text for further details. The
blue-red solid line shows the combined filter transmission curve as given in Eq. 5.7. The vertical magenta,
green and gray lines mark the systemic velocity of Hydra I, NGC 3311 and NGC 3309, respectively.

at ∼ 5000 km s−1, which do not have any correspondence with the velocity distribution derived for

the simulated MSIS model. These velocity components cannotbe explained as artifacts of the MSIS

set up, in particular, the filter gap in the B+R filter combination. We will refer to these two velocity

components as secondary blue and red peaks, respectively. They reveal the possible presence of two

kinematical substructures in the core of Abell 1060, whose origins must be investigated further; see

Section 5.8.

5.7.3 Lowα-parameter in the core of Hydra I

We now compare the number of observed PNs with the expectations from the luminosity distribution

and kinematics in and around NGC 3311. One issue is the absence of a clear subcomponent of

PNs with velocity dispersion∼ 150− 250 km s−1, as would be expected from the central∼ 25”

of NGC 3311 (Ventimiglia et al., 2010b). It is known that PN samples in elliptical galaxies are

generally not complete in the central regions because of theincreasing surface brightness profile;

PNs are hard to detect against the image noise in the bright centers. E.g., in observations with
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the Planetary Nebula Spectrograph, the threshold surface brightness is typically in the rangeµV =

20− 22 mag/arcsec2 (Coccato et al., 2009). In the current Hydra I data, the PN sample is severely

incomplete atµV = 21.0 mag/arcsec2 (only two PNs are seen atµV ∼ 21.0 mag/arcsec2, and six at

µV ≥ 21.5 mag/arcsec2). Referring to Fig. 13 of Méndez et al. (2001), we estimate that the current

sample is not complete forµV ≤ 22.0 mag/arcsec2, which is reached at a distance of≃ 30” from the

center of NGC 3311 (Arnaboldi et al. 2010, in prep.). At this radius, the projected velocity dispersion

has risen toσN3311(30”) ≃ 300− 400 km s−1 (Ventimiglia et al., 2010b). Thus the PNs detected in

this paper almost exclusively sample the hot (intracluster) halo of NGC 3311. The cold inner galaxy

component is not sampled.

The second issue is the observed total number of PNs, given the detection limit, the instrumental

set up and the light in NGC 3311 and NGC 3309. Integrating the simulated MSIS luminosity function

down to the detection limit of 30.4 mag, we obtain an effectiveα parameter for our observations of

αMSIS,Hy = 0.012αtot, whereαtot quantifies the total number of PNs 8 mag down the PNLF4. This

value is similar toα0.5, the integrated value 0.5 mag down the PNLF. It is consistent with Fig. 5.1,

even though in this figure PNs are seen up to 1.5 mag fainter than the nominal cutoff magnitude,

because of (i) the shift towards fainter magnitudes due to the slit losses, and (ii) the completeness

correction (Eq. 5.3).

We can estimate the bolometricαtot for NGC 3311 from its (FUV-V) colour, the relation between

(FUV-V) and logα1.0 shown in Fig. 12 of Coccato et al. (2009), and correcting to logαtot by using

Fig. 8 of Buzzoni et al. (2006). The (FUV-V) colour is determined from the Galex FUV magnitude

and the V band magnitude from RC3, both corrected for extinction, as described in Coccato et al.

(2009). The resulting value, (FUV-V)=6.7, corresponds to logα1.0 = 1.1 and logαtot = −7.34. This

is very similar to the value of logαtot = −7.30 found for the Fornax cluster cD galaxy NGC 1399

(Buzzoni et al., 2006). Using the V band light profile of NGC 3311 measured in Arnaboldi et al.

(2011, in preparation), and a bolometric correction of 0.85mag, we can then predict the expected

cumulative number of PNs within radius R from the center of NGC 3311. This is shown as the red

curve in Figure 5.4, after subtracting the luminosity within 20” which is not sampled by our MSIS

observations. Also shown are the cumulative histograms of the observed number of PNs in the MSIS

data, both for all PNs in the field, and for PNs with velocitiesin the central velocity component only.

Fig. 5.4 shows that the total number of PNs detected in the field falls short of the number

predicted from the luminosity profile by a factor∼ 4. Outside∼ 100”, the number of PNs with

velocities consistent with the central ICL halo of NGC 3311 is a factor∼ 2 lower than the number

of all PNs. Clearly therefore, some of the light at these radii is in a component different from the

phase-mixed central ICL halo, but the amount is uncertain because we do not know whether the

luminosity-specificα-parameter of this component is similarly low as for the NGC 3311 ICL halo.

For example, agreement between observed and predicted PN numbers could be achieved by scaling

only the NGC 3311 halo component by a factor∼ 6. On the other hand, scaling only an outer

4This value includes the light between adjacent slits for thenormalisation.
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component will not work, because the discrepancy in Fig. 5.4is already seen at small radii. Thus we

can conclude that theα-parameter of the NGC 3311 ICL halo is low by a factor 4−6.

Such an anomalous specific PN number density requires an explanation. One possibility is that

the stellar population in the halo of NGC 3311 is unusually PNpoor; this will need studying the stellar

population in the galaxy outskirts. A second possibility isthat the ram pressure against the hot X-ray

emitting gas in the halo of NGC 3311 is sufficiently large to severely shorten the life-time of the PNs

(Dopita et al., 2000; Villaver and Stanghellini, 2005). In their simulations, Villaver and Stanghellini

(2005) consider a gaseous medium of densityn = 10−4 cm−3 and a relative velocity of 1000 km s−1.

They find that the inner PN shell is not significantly affected by the ram pressure stripping during the

PN life-time, and because the inner shell dominates the lineemission in their model, the PN visibility

life-time is therefore not shortened relative to an undisturbed PN. However, with a density of the ICM

inside 5′ around NGC 3311 of∼ 6×10−3 cm−3, and a typical velocity of
√

3×450 km s−1 ≃ 800 km s−1

the ram pressure on the NGC 3311 is∼ 40 times larger than in their simulated case, so the ram

pressure effects could be much stronger. Unfortunately, simulations ofthe evolution of PNs in such

dense media are not yet available, to our knowledge.

If this explanation is correct, PNs should be most efficiently ram pressure stripped in the

innermost, densest regions of the ICM. Hence in this case we would expect most of the observed

PNs to be located in the outermost halo of NGC 3311, even thoseprojected onto the inner parts of our

MSIS field. At these outer radii, dynamical time-scales are longer, and phase-mixing should be less

complete. This would fit well with the unmixed kinematics andspatial distribution of the observed

sample (see also next Section).

The third issue is that we do not see a concentration of PNs around NGC 3309. As shown in

Section 5.6, only one PN in the sample, shown by the gray symbol in the right panel of Fig. 5.1,

has both position and LOS velocity compatible with being bound to NGC 3309. Whereas using

the relative total luminosities of NGC 3309 and NGC 3311 to scale the number of PNs associated

with the main LOS velocity component for NGC 3311 in Fig. 5.3 (i.e., 27 PNs), we would expect

about 11 PNs associated with the light of NGC 3309 if both galaxies were at the same distance.

There are two possible explanations for this fact. One is that NGC 3309 is at significantly larger

distance than NGC 3311, such that even PNs at the bright cutoff would be difficult to see. However,

a simple calculation shows that then NGC 3309 would be put at∼ 70 Mpc well outside the cluster,

at variance with X-ray observations finding that its gas athmosphere is confined by the ICM pressure

(see Section 5.2). The second possibility is that, similarly as for NGC 3311, also the PNs in NGC 3309

may be severely ram pressure stripped by the galaxy’s motionthrough the dense ICM in the cluster

core. This would require that NGC 3309 moves rapidly throughthe cluster core, and is physically

rather close to NGC 3311. Again simulations would be needed to check this quantitatively.
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Figure 5.4: Observed and predicted cumulative PN numbers, as a functionof radial distance from the center of NGC 3311.
The green line shows the cumulative number of PNs associatedwith the central ICL halo of NGC 3311, based
on their velocities. The black line shows the cumulative number of all PNs, without velocity selection. The
red curve shows the predicted cumulative number of PNs computed using the luminosity-specific parameter
α estimated in the text, the MSIS observational set-up, and the integrated bolometric luminosity in increasing
circular apertures centred on NGC 3311.

5.8 The substructures in the Hydra I cluster core

We now turn to a more general discussion of the spatial distribution and kinematics of PNs and

galaxies in the central region of the cluster. ICL is believed to originate from galaxies, so it is

interesting to ask whether the phase-space substructures seen in the distribution of the PNs that trace

the ICL has some correpondence to similar structures in the distribution of cluster galaxies. Thus we

want to investigate the spatial distributions of the PNs associated with the velocity subcomponents in

the PN LOSVD discussed earlier, and compare them with the spatial distribution of Hydra I galaxies

in similar velocity intervals. In this way, we may obtain a better understanding of the dynamical

evolution of the galaxies in the cluster core, and of the relevance of cluster substructures for the origin

of the diffuse cluster light.

5.8.1 Spatial distributions of the PN velocity components

We first consider the spatial distribution of the PNs associated with the different velocity components

in the PN LOSVD. This is shown in the three panels of Fig. 5.5, divided according to the classification
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in Sect. 5.7.2. Each panel covers a region of 6.8 × 6.8 arcmin2 ≃ 100 × 100 kpc2 centered on

NGC 3311.

PNs associated with the central ICL component (middle panelof Fig. 5.5) can be divided into two

spatial structures. There is a prominent PN group concentrated, as expected, around NGC 3311, and

an elongated East-West distribution in the Northern part ofthe FoV. By contrast, we see a low PN

density region in the Southern part of the MSIS field.

Figure 5.5: Left upper panel: Spatial distribution of the PNs associated with the blue secondary peak in the PN LOSVD
(< 2800 km s−1). Right upper panel: Spatial distribution of the PNs associated with the central ICL component
( 2800 km s−1 to 4450 km s−1). Lower panel: Spatial distribution of the PNs associated with the secondary red
peak at> 4450 km s−1 in the PN LOSVD. The black triangles indicate NGC 3311 (center) and NGC 3309
(North-West of center), respectively. North is up and East is to the left.
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Such a North/South asymmetry is seen also in the spatial distribution of the galaxies. Fig. 5.7

displays a larger area, 20× 20 arcmin2, which includes the MSIS field studied in this work, as

indicated by the orange square. We can see from the two panels(foto, and schematic) that NGC 3311

and NGC 3309 dominate the center of the MSIS field, that there is a high density of bright galaxies

in the Northern part of the field, but a deficit of galaxies to the South of NGC 3311.

The spatial distribution of the PNs associated with the secondary red peak in the PN LOSVD

is shown in the right panel of Fig. 5.5. It has a North/South elongation, apparently extending

further towards the South of NGC 3311 than the central ICL component, with a high density region

North/East of NGC 3311.

Finally, the spatial distribution of the PNs associated with the secondary blue component at

1800 km s−1 (left panel of Fig. 5.5) also appears elongated along the North/South direction, but the

smaller number of objects in this subsample makes inferringtheir spatial structure more difficult.

In summary, there is little evidence for a spherically symmetric well-mixed distribution of PNs in

the outer halo of NGC 3311 in the cluster core. Several velocity components are seen, and even the

central ICL component centered on NGC 3311 shows signs of spatial substructures.

5.8.2 Spatial and velocity distribution of Hydra I galaxies: comparison with the PNs
sample

The spatial distribution of the galaxies from Christlein and Zabludoff (2003); Misgeld et al. (2008) in

the central 20× 20 arcmin2 centered on NGC 3311 is shown in Fig. 5.7. We would like to analyze

their phase-space distribution by dividing into the same velocity components as identified in the PN

LOSVD. Therefore, in the image on the left the bright galaxies are encircled with the colours of the

PN components in Fig. 5.5, and in the right panel all galaxiesin the field are shown schematically as

squares and crosses with the same color code for these velocity bins. NGC 3311 and NGC 3309 are

marked in the center of the MSIS field (orange square).

In Fig. 5.6, the left panel shows the velocity distribution of all the galaxies in the 20× 20 arcmin2

region centered on NGC 3311. In the right panel, the velocityhistograms for the bright galaxies

(mR < 15.37, violet color) and dwarf galaxies (mR > 15.37, green color) are shown separately.

The LOSVD for the Hydra I galaxies covers the same velocitiesas for the PN sample. If we select

only galaxies in the range of velocities of the PNe in the central ICL component, from 2800 km s−1

to 4450 km s−1, their LOSVD is consistent with a Gaussian distribution centered at a velocity of

3723±100 km s−1 with a dispersion of 542±80 km s−1. This confirms results from long-slit kinematics

in the outer halo of NGC 3311 (Ventimiglia et al., 2010b), where the velocity dispersion was found

to increase to∼ 465 km s−1 at∼ 70” radius, 64% of the velocity dispersion of all cluster galaxies.

This subsample of galaxies also has an interesting spatial distribution: the central 6.8×6.8 arcmin2

region of the cluster (the MSIS field), while dominated by NGC3311 and NGC 3309, contains no

other Hydra I galaxies with these velocities. Whereas outside this region, they appear uniformly

distributed over the field (see the green squares and crossesin the right panel of Fig. 5.7). NGC 3311
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is at the center of the distribution of these galaxies both inspace and in velocity. The distribution

of these galaxies, as well as the similarity of their velocity dispersion with that measured in the halo

of NGC 3311, supports the interpretation of Ventimiglia et al. (2010b) that the halo of NGC 3311

is dominated by intracluster stars that have been torn from galaxies disrupted in the cluster core:

galaxies that passed through the central 100 kpc of the cluster core at modest velocities have all been

disrupted.

By contrast, the galaxies with LOS velocities> 4450 km s−1 as in the secondary red peak of the

PN LOSVD are mostly locatedwithin the central 100× 100 kpc2 region of the cluster (red squares

and crosses in the right panel of Fig. 5.7). In this subsample, there are 14 galaxies in total, 5 are

classified as bright galaxies and 9 are dwarfs, and 3 bright galaxies and 6 dwarfs fall within the MSIS

FORS2 field. These 6 dwarfs are concentrated in the North-Eastern part of the halo of NGC 3311, in

the same region occupied by many PNs associated with the secondary red peak.

Finally, in this region there are only a few galaxies with a LOS velocity lower than 2800 km s−1,

compatible with the secondary blue peak in the PNs. They are 8in total (blue squares and crosses in

the right panel of Fig. 5.7). Only one of these falls on the boundary of the central 100×100 kpc2 region

around NGC 3311. One of these galaxies is the giant spiral NGC3312, South-East of NGC 3311.

The others, including the spiral galaxy NGC 3314, are located at larger distances from NGC 3311.

5.8.3 Galaxy evolution and presence of substructures in thecore of the Hydra I cluster

The distribution of galaxy properties in clusters holds important information on galaxy evolution and

the growth of galaxy clusters. In Sect. 5.8.2, we have discovered an apparent lack of galaxies in the

central 100× 100 kpc2 region of the cluster core with velocities in the same range as covered by the

cD halo. A similar result has been found in the NGC 5044 group (Mendel et al., 2009). A possible

explanation is the tidal disruption of galaxies at small cluster-centric radii. Galaxies with LOS

velocities in the range of the central ICL component of the Hydra I cluster are no longer seen in the

central region of the cluster, because they were all disrupted in the past during close encounters with

the luminous galaxy and the dark matter distribution at the cluster center (Faltenbacher and Mathews,

2005). Their former stars now contributes to the diffuse stellar component in the Hydra I core.

Differently from the NGC 5044 group, however, we have found a number of dwarf galaxieswith

high velocitiesin the Hydra I core, with small cluster-centric radii (< 100 kpc). These dwarfs have

LOS velocities larger than 4400 km s−1 and seem to form a well defined substructure both in velocity

and spatial distribution. We speculate that these galaxiesare falling through the cluster core and

are not yet disrupted by the tidal interaction with NGC 3311.The PNLF of the subsample of PNs

associated spatially and in velocity with this substructure places it almost at the same distance as the

central ICL component of the cluster: this group of galaxiesmay indeed now be on the point of close

encounter with NGC 3311 in the cluster center.

Finally, we have found a correlation between the PNs contributing to the secondary blue peak of

PN LOSVD, and 8 galaxies with a LOS velocity lower than 2800 kms−1. Among these galaxies is
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Figure 5.6: Left panel: Histogram showing the LOSVD of all galaxies from the catalog of Christlein and Zabludoff (2003)
within an area of 20 arcmin in size centered around NGC 3311.Right panel: The purple histogram indicates
the LOSVD for the bright galaxies in this field, and the light green histogram the LOSVD for all dwarf galaxies
from the catalog of Misgeld et al. (2008) in the same area.
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Figure 5.7: Upper panel: 20× 20 arcmin2 DSS image of the Hydra I cluster. The two bright galaxies at the field center
are NGC 3311 (center) and NGC 3309 (North-West of center). The blue circles indicate galaxies with
vsys < 2800 km s−1, the green circles galaxies with 2800 km s−1 < vsys < 4450 km s−1 (only those within
10 arcmin around NGC 3311 and with mR > 15.37), and the red circles galaxies withvsys > 4450 km s−1.
Lower panel: Spatial distribution of Hydra I galaxies in the same area of20 arcmin2 centered on NGC 3311.
Squares indicate galaxies from the catalog of Christlein and Zabludoff (2003) and crosses indicate galaxies
from Misgeld et al. (2008). The color of the symbols refers tothe velocity components in the PN LOSVD as
described in Fig. 5.5. The two diamonds locate NGC 3311 and NGC 3309. The orange square shows the FoV
used in the FORS2 MSIS observations.
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the large spiral galaxy NGC 3312 (vsys = 2761 km s−1) as well as NGC 3314 (vsys = 2795 km s−1).

Fitchett and Merritt (1988) and McMahon et al. (1992) have claimed the presence of a foreground

group of galaxies associated with these spirals. Unfortunately due to the small area covered by the

current MSIS survey, it is difficult to determine unambiguously whether the low velocity PNs (which

from their PNLF are at the distance of the cluster) are associated with these galaxies. A PN survey

covering the region between NGC 3311 and NGC 3312 may providea definite answer to this question.

5.9 Summary and Conclusions

Using Multi-Slit Imaging Spectroscopy with FORS2 on VLT-UT1, we have studied a sample of 56

planetary nebula candidates in the Hydra I cluster at 50Mpc distance, targeting a region 100×100 kpc2

centered on the cluster cD galaxy, NGC 3311. The MSIS technique allows us detect these emission

sources and measure their velocities, positions and magnitudes with a single observation.

PN candidates are defined as unresolved emission sources without measurable continuum.

Emission sources that are either resolved spatially or in wavelength or have a detected continuum

are classified as background galaxies; see Ventimiglia and Arnaboldi (2010). We show that the

luminosity function of the PN candidates is as expected for apopulation of PNs at the distance of

Hydra I. Moreover, almost all the detected background galaxies occur in the velocity range between

1000 km s−1 and 2800 km s−1, blue-shifted by≥ 900 km s−1 with respect to the mean recession

velocity of the Hydra I cluster. From these facts we concludethat any residual contamination of

the PN sample by background galaxies with undetectable continuum must be small and restricted to

the velocity range given.

The luminosity-specific number densityα inferred from the PN sample and the luminosity of

diffuse light around NGC 3311 is is a factor∼ 4 smaller than expected, even if we compare with the

low α value determined from the (FUV-V) colour which is one of the lowest for elliptical galaxies.

A possible interpretation is that ram pressure stripping bythe dense, hot X-ray emitting intracluster

medium in the center of the cluster core around NGC 3311 dramatically shortens the life-time of

the PN phase. This also seems the most likely explanation forthe observed lack of PNs bound to

NGC 3309, the other giant elliptical galaxy in the Hydra I core.

The line-of-sight velocity distribution (LOSVD) of the observed PNs shows at least three

separate peaks, and their phase-space distribution is inconsistent with a single well-mixed intracluster

distribution. One peak, which we term the central intracluster component, is broadly consistent with

the outward continuation of the intracluster halo of NGC 3311, which was earlier shown to have a

velocity dispersion of∼ 470 km s−1 at radii of≥ 50′′ (Ventimiglia et al., 2010b). Simulating MSIS

observations for a Gaussian intrinsic LOSVD with∼ 470 km s−1 centered on the systemic velocity of

NGC 3311 has additionally shown significant residual asymmetries, suggesting that also this central

component is not completely phase-mixed in the central cluster potential.

Many cluster galaxies are found in the LOS velocity range associated with this central intracluster
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component (2800 km s−1 to 4450 km s−1), butnonein the central 100× 100 kpc2 around NGC 3311.

We suggest that the missing galaxies have been disrupted by the gravitational field of NGC 3311 and

the surrounding cluster dark matter, and that their light has been added to the diffuse intracluster halo

of NGC 3311 which is traced by the PNs.

The second main peak in the PN LOSVD is centered at 5000 km s−1, some 1200 km s−1 to the

red of the main component. In the same velocity range, a number of dwarf galaxies are seen, which

areprojected onto the central 100× 100 kpc2 around NGC 3311 where also the PNs are located. We

suggest that the PNs and the galaxies in this red peak of the LOSVD are linked, i.e., on similar orbits

through the cluster core, indicating that the galaxies havebeen partially disrupted and the tidal debris

is traced by the PNs. This will be the subject of a further study based on deep photometry (Arnaboldi

et al. 2010, in preparation).

Finally, a third, blue peak in the PN LOSVD is seen at∼ 1800 km s−1. The spatial distribution

of these PNs is elongated in the same sense as for the other twocomponents in the cluster core,

but the number of sources with these velocities is smaller and a few of them might be unresolved

background galaxies. This makes it difficult to establish a robust association between these PNs and

cluster galaxies, such as the group related to the spiral NGC3312. A larger survey area would be

needed to establish such a link.

In summary, from this study of the kinematics of diffuse light in the Hydra I cluster core with

PNs, and the comparison with the projected phase-space distribution of galaxies, we infer that: (1)

The intracluster stellar population in the Hydra I cluster is not well-mixed, even though this cluster is

believed to be the prototype of an evolved and dynamically relaxed cluster based on X-ray indicators.

(2) The build-up of diffuse intracluster light and of the cD halo of NGC 3311 are on-going, through

the accretion of material from galaxies falling into the cluster core and tidally interacting with its

potential well.
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Chapter 6

Disrupted galaxies in the Hydra I cluster.

Deep photometry and spectroscopy of

galaxies’ debris in Hydra I core.

Magda Arnaboldi, Giulia Ventimiglia, Ortwin Gerhard, Enrica Iodice, Lodovico Coccato

2010, to be submitted to A&A1

Abstract

The aim of this work is to reach a better understanding of the relevance of cluster substructures for

the origin of the diffuse light. We compare the structures of the surface brightness distribution in the

core of the Hydra I cluster and their line-of-sight velocities with substructures in the planetary nebulas

(PNs) and galaxy distributions.

In this work we perform surface brightness photometry in Ks and V band for the giant elliptical

galaxies NGC 3311 and NGC 3309 to derive their structural parameters (Sersic indexn, Re, a/b and

P.A.) and quantify the presence of additional light, with respect to an axisymmetric two-dimensional

model. We then use deep long slit spectroscopy to establish alink among the light excess, the

substructures in the galaxy distribution and PN line-of-sight (LOS) velocity distribution.

There is an light excess in the North-East quadrant of NGC 3311. Such light excess is at the

same position on the sky and velocity-space as the PNs associated with the red velocity component

discovered at 5000 km s−1, and the dwarf galaxies at 5000 km s−1 average velocity within a region

of 100 kpc radius centred on NGC 3311. These observational results are consistent with a scenario

where the contribution to the light in the intracluster component and extended halos around brightest

cluster galaxies is an on-going process facilitated by the infall of substructures and tidal disruption by

1My part in this work was to perform the data reduction of the photometry and the measurement of the velocity of the
excess of light.
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the overall cluster potential.

This study of the Hydra I cluster provides evidence that diffuse light is associated with infalling

substructures, it can be deposited in the cluster cores, andthat such mechanisms take place at zero

redshift.

6.1 Introduction

Galaxy clusters are the most massive overdensity structures in the Universe, and they may be formed

by thousands of galaxies. One of the most interesting open fields in modern cosmology is the

understanding of the mechanisms leading to the formation ofsuch systems and the evolution of

galaxies in these massive clusters. The hierarchical modelpredicts that structure formation and

evolution occur by the merging of smaller units into larger systems (De Lucia and Blaizot, 2007), and

this model has been supported by many observational evidences. Merges, cannibalism, harassment,

gas stripping and tidal forces are only some of the most accredited mechanism acting on galaxies as

they experience infall into dense environments (Poggianti, 2004; De Lucia, 2007; Moore et al., 1998).

Which mechanism takes a leading role under which conditionsfor a given galaxy morphological type

is still to be clearly understood.

In the nearby Universe those questions concerning the evolution of clusters as a whole and the

mechanisms leading the evolution of galaxies in clusters can be addressed with the study of the

physics of the intracluster light (ICL). The ICL is the diffuse light in galaxy clusters emitted by stars

which are not bound to any specific galaxy; for a review on the subject see Arnaboldi and Gerhard

(2010). Wide field surface brightness photometry shows structures in the ICL on all scales, from

few arcminutes to degrees on the sky (Thuan and Kormendy, 1977; Mihos et al., 2005; Rudick et al.,

2009). Recent studies have shown that ICL provides direct evidence for the dynamical status of

galaxy cluster cores (Gerhard et al., 2007; Doherty et al., 2009; Ventimiglia et al., 2010a), because it

contains the fossil record of past interactions, due to its long dynamical time.

Cosmological hydro-dynamical simulations predict that the ICL is formed by stars that are

unbound from galaxies during the interactions they experience as they fall in the cluster potential well

and interact with other cluster galaxies. In these simulations the ICL shows significant substructures

on all scales in its spatial and velocity distribution (Napolitano et al., 2003; Murante et al., 2004;

Willman et al., 2004; Sommer-Larsen et al., 2005). At early times the ICL morphology is dominated

by long, linear features like streams that become more diffuse and spread out as envelopes within

the cluster volume at later times (Rudick et al., 2009). Murante et al. (2007) predict that most of the

intracluster stars become unbound from their parent galaxies during the merging history leading to

the formation of the brightest cluster galaxies (BCGs) in the cluster cores, and that other mechanism

like tidal stripping becomes more important at large radii.

In this paper we perform surface photometry and long slit spectroscopy measurements of the

ICL in the Hydra I cluster, a medium compact cluster at a distance of∼ 50 Mpc, in the Southern
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hemisphere. The aim is to compare the structures in the surface brightness distribution in the core

of the Hydra I cluster and their LOS velocities around its central cD galaxy NGC 3311 with the

kinematic of the Intracluster Planetary Nebulas (ICPNs) detected in Ventimiglia et al. (2008, 2010a).

The study of the kinematics of the ICL in nearby clusters likethe Hydra I cluster is possible using

ICPNs, because these objects are relatively easy to detect due to their strong O[III] emission line

(Jacoby, 1989; Ciardullo et al., 1989) and trace the light distribution of the parent stellar population

(Coccato et al., 2009).

Ventimiglia et al. (2010a) measured the LOS velocity distribution of the ICPNs associated with

the diffuse light within 100 kpc distance from the NGC 3311 center. They detected the presence of

discrete velocity components at∼ 1800 km s−1 (blue peak) and∼ 5000 km s−1 (red peak), in addition

to a broad component withσ ≃ 500 km s−1 at the systemic velocity of the Hydra I cluster. The

presence of the broad velocity component in the ICPN LOSVD and a steep positive velocity gradient

in the halo of NGC 3311 (Ventimiglia et al., 2010b), led Ventimiglia et al. (2010a) to conclude that the

core of the Hydra I cluster is not relaxed, with sub-components being accreted and infalling through

its core.

The core of the Hydra I cluster is dominated by two giant elliptical galaxies, NGC 3311 and

NGC 3309. Early CCD surface photometry showed that both NGC 3311 and NGC 3309 are fitted by

an R1/4 law within 30′′ distance from their center (Vasterberg et al., 1991). On thebasis of the large

Re = 98′′ value from the R1/4 fit, Vasterberg et al. (1991) classified NGC 3311 as a cD galaxy.

In the center of NGC 3311, there is a complex dust lane, and theobserved surface brightness

profile is less luminous than the best fit R1/4 interpolation in the center. Both the dust lane and

the core central profile are confirmed by the HST WFPC2 imagingcarried out by Laine et al. (2003).

NGC 3309 does not have a dust lane in its core (Vasterberg et al., 1991). Clearly, any two-dimensional

models of the light distribution in NGC 3311 may be affected by the dust lane in the optical band;

for an appropriate decomposition of the surface brightnessprofile in the central regions, near infrared

(NIR) images are therefore required.

This paper is structured as follows: in Sect. 6.2 we present the optical V band and 2MASS Ks

band images for the Hydra I cluster core. The isophote fitting, the analysis of the surface brightness

radial profiles, the two-dimensional models and the evaluation of the residuals with respect to the

symmetric models are illustrated in Sect. 6.3. The long slitspectroscopy data and the measurements

of the recession velocity of the light excess in the halo of NGC 3311 are presented and discussed in

Sect. 6.4. In Sect. 6.5 we investigate the association amongthe ICPN component at the 5000 km s−1

velocity peak, the dwarf galaxies within 100 kpc radius of NGC 3311 center, and the excess of light

in the North-East quadrant of the NGC 3311 halo. Summary and conclusions are drawn in Sect. 6.6.

We assume a distance to the Hydra I cluster ofD = 50 Mpc, so 1′′ = 0.247 kpc.
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6.2 Optical and Near Infrared imaging of the Hydra I core

6.2.1 V band photometry - Observations and data reduction

Johnson V band imaging of the Hydra I cluster was acquired in service mode on the night of January

12, 2006 at the Wide Field Imager (WFI) on the ESO/MPI 2.2 m telescope, at the La Silla observatory.

The WFI is a mosaic of 4×2 CCDs (2k×4k), with an angular scale of 0′′.238 pixel−1. The field-of-

view (FoV) of 34′ × 33′ was centered atα = 10h36m51s, δ = −27d31m35s. 13 exposures of 300

sec each were obtained for a total observing time of∼ 0.5 hr. The average seeing in the combined

median image isFWHM∼ 0′′.7.

Standard calibrations, bias, sky flats and dark skies, were acquired. Several Landolt standard stars

in the Rubin 149 field were observed in V band for the photometric calibration. The zero point for

the V band photometry isZPV = 24.018± 0.002.

Data reduction is carried out with standard IRAF tasks for pre-reduction and calibration. After

bias subtraction and flat fielding, the average background emission is measured in several regions of

the FoV far from the galaxy light and the final average value issubtracted off each single frame. The

IRAF taskNOAO.NPROTO.IRMOSAICis used to obtain a mosaic of the CCDs. Finally, the mosaic

images are registered and combined in the final co-added image.

As the first step in the study of the light distribution in NGC 3311, we determine the extension

of the dust lane in its central region. We use theFMEDIAN task in IRAF with a smoothing box of

15× 15 pixels, and compute the ratio of the V band image with theFMEDIANsmoothed version; the

V band unsharped image is shown in Figure 6.1.

Figure 6.1: Unsharp masked V band image obtained from optical data acquired at the ESO/MPI 2.2m telescope with the
WFI; North is up, and East to the left. The green bar indicates10′′ length. The inner dust lane at the center of
NGC 3311 is about 2′′ wide (Laine et al., 2003) and it is embedded within a central light excess of about 10′′

in diameter, which is also visible in the HST image (see Laineet al., 2003).



6.3 Surface photometry for NGC 3311 and NGC 3309 in V and Ks bands 83

This image illustrates the complex structure at the center of NGC 3311, where the dust lane is

embedded within a brighter central region. A complex dust lane crosses the galaxy center in the

direction North-South and extends to about 2′′ in radius, see the high angular resolution image in

Laine et al. (2003). Bright regions are seen East, at the center and SW of the galaxy center, within

and around the dust lane, out to 5′′ in radius. According to Vasterberg et al. (1991), the dominant

knot is bluer,∆(B− r) = −0.10, than the surrounding stellar population.

Because of the presence of the dust lane, we need to move to longer wavelengths to obtain the

best two-dimensional model for the light distribution in the central regions of NGC 3311, as the effect

of dust absorption is weaker at those wavelengths. In the next Sections, we combine the analysis of

the V band photometry with the archive 2MASS Ks band data.

6.2.2 Ks band photometry - 2MASS archive data

We retrieve a 9′ × 7′ image with a pixel scale of 1′′ pixel−1, centered on the galaxy NGC 3311

in the core of the Hydra I cluster, from the 2MASS archive (http://irsa.ipac.caltech.edu/cgi-

bin/2MASS/LGA/). This image includes both NGC 3311 and NGC 3309. The 2MASS archive

images are already reduced and flux calibrated, with a zero point for the Ks band photometry

ZPKs = 19.91 with 2-3% uncertainty (Jarrett et al., 2003).

The 2MASS Ks data are shallower than the ESO/MPI V band data. We can reliably measure

surface brightness down to a value of 19 mag arcsec−2 in the Ks band, corresponding to a distance

of 53′′, while the V band surface photometry can be measured reliably down to 23 mag arcsec−2,

corresponding to a distance of 81′′; the extracted profiles in Ks and V band plotted in Fig. 6.8

show that the background noise starts to dominate at these radii. These surface brightness limits

are computed from the noise in the co-added images and the background level, using the photometric

zero point in the different bands. Therefore, we expect the surface brightness parameters to be noisier

for the Ks band image than for the V band. An average background level value is estimated and

subtracted off before the surface photometry analysis is carried out in both V and Ks band.

6.3 Surface photometry for NGC 3311 and NGC 3309 in V and Ks

bands

6.3.1 Isophote fitting

We use theELLIPSEtask in IRAF on the V and Ks images to perform the isophotal analysis of

NGC 3311 and NGC 3309. We produce the P.A., ellipticity and average surface brightness profiles

for NGC 3311 and NGC 3309; those for NGC 3311 are shown in Fig. 6.2; in addition the isophotes

shape parameter profiles are also computed and shown in Fig. 6.3.

The V band average surface brightness profiles extends out to81′′ from the galaxy center; the Ks

band profile extends to 53′′, see also Sect. 6.2.2. The half-light radiusRe evaluated from the light-
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Figure 6.2: Plots of the isophotes’ major axis P.A., ellipticity and average surface brightness profiles obtained with
ELLIPSEfor the V (black full dots) and Ks (red full dots) band images of NGC 3311.

Figure 6.3: Plots of the isophote shape parameter (a3, a4, b3, b4) profiles obtained withELLIPSEfor NGC 3311 V (black
full dots) and Ks (red full dots) band images.
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growth curve areReV = 27′′ ± 2′′ (∼ 6.5 kpc),ReK = 53′′ ± 2′′ (∼ 12.8 kpc), in the V and Ks bands

respectively. AtR≤ 10′′, the presence of a dust-lane is seen in the V band ellipticity, P.A. and shape

parameter (a3, a4, b3, b4) profiles because of the large spread in the measured values.Between 5′′

and 15′′ the V band isophotes twist by about 20 degrees; a twist of the NGC 3311 isophotes was also

reported by Vasterberg et al. (1991), but the P.A. variationwas not quantified. At radiiR> 15′′, both

ellipticity and P.A. profiles are nearly constant and with average valuesǫ ≃ 0.05 andP.A. ≃ 36◦. This

behavior suggests that the V, Ks band isophotes are almost round and coaxial. Furthermore, the shape

parameter profiles are about zero atR > 15′′, thus the V, Ks isophotes do not deviate significantly

from a regular elliptical shape.

6.3.2 Analysis of the V, Ks surface profiles

We now concentrate on the description of the average surfacebrightness profiles extracted by

ELLIPSEin the V, Ks band. They are shown in Figure 6.4, plotted as function of theR1/4 semi-

major axis radius. We discuss their properties in turn. The Ks bandµK(R) shows the presence of a

core atR< 3′′ and then follows anR1/4 law at larger radii. The V band average profileµV(R) flattens

for R < 5′′, and deviates from theR1/4 law at larger radii as the V band surface brightness profile

shows an up-turn curvature which signals additional light at R> 20′′ with respect to theR1/4 law.

We wish to investigate the distribution of light in the V bandat large radii in detail. We extracte

the surface brightness profile along P.A.= 36◦ for the kinematic major axis and a second profile at

P.A.= 126◦, along the minor axis; these profiles are shown in Figure 6.5.The profile extracted at

P.A.= 126◦ shows the light of NGC 3309 atR> 50′′ distance from NGC 3311. Any two-dimensional

model of the NGC 3311 light must be carried out simultaneously with NGC 3309, as the outer regions

of the two elliptical galaxies overlap along the LOS.

The folded profile of NGC 3311 along the major axis shows an excess of light in the North-East

quadrant in the radial range 20′′ < R < 95′′, with the largest excess of about 1 mag atR = 60′′. We

note that the additional light indicated by the folded profile along the major axis for NGC 3311 is

superposed to the azimuthally averaged light halo that causes the up-turn in theR1/4 semi-major axis

radius plot, shown in Figure 6.4.

6.3.3 Two-dimensional model for the light distribution in NGC 3311 and NGC 3309
in V, Ks bands

We perform the two-dimensional model of the light distribution in the V, Ks bands with the GALFIT

program (Peng et al., 2002). The light from foreground starsand nearby galaxies is accurately masked

with the exception of NGC 3309, whose continuum is modeled simultaneously to the NGC 3311 light.

We also mask the Southern region of NGC 3311, where the CCD gaps overlap and the ADU counts

in the background are lower than other sky regions on average.

As a first step and according with the morphological classification in NED (NGC 3311 cD2 and
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Figure 6.4: The average surface brightness profile in V (black full dots)and Ks (red full dots) band from the ELLIPSE fit
plotted against theR1/4 semi-major axis radius. The vertical black line indicates the radius of the central masked
area. The dotted line through Ks ELLIPSE profile shows the profile from the two-dimensional GALFIT fit to
the Ks light distribution, see Sect. 6.3.3. The long and dashed lines through the V ELLIPSE profile show the
surface brightness profile of the two-dimensional GALFIT fitto the V band light. The dashed line is for the
GALFIT model computed with the light excess masked, see Sect. 6.3.3.

NGC 3309 E3), the light of both galaxies is fit using a single Sersic law (Sersic, 1968). The results

show that the light distribution of NGC 3309 is reproduced bya single Sersic profile withnV = 2.7 in

V andnKs = 2.0 in Ks; see a summary of the GALFIT parameters in Table 6.1.

In case of NGC 3311, the fit to the V, Ks light distribution witha single Sersic law is poor, due to

the presence of a core, a dusk lane and additional light in thecentral regions (R ≤ 5′′), as shown by

the unsharp masking in Sect. 6.3 and the average surface brightness profile in Sect. 6.3.2. When the

center is masked with a circle of 5′′ radius, the fit to NGC 3311 light distribution gives a betterχ2

for both Ks and V band. Because of the central mask, the centerof the two-dimensional GALFIT

model is determined a priory with a Gaussian fit to the centralparts of NGC 3311. In the Ks band, the

galaxy light distribution in NGC 3311 is well described by a single De Vaucouleurs law atR≥ 5′′ (see

Fig. 6.4, dotted line); the GALFIT two-dimensional model ofthe Ks band light distribution and the

residuals are shown in Figure 6.6. In the V band, the light distribution is modeled with a Sersic law

and indexnV1 = 7.1, see the continuum line in the Fig. 6.4. Here the largern is driven by the positive

curvature in the radial profile, as described in Section 6.3 and shown in Fig. 6.4. The GALFIT two-

dimensional model for the V band distribution and the residuals are shown in Figure 6.7. The surface

brightness profiles in Ks, V band extracted along the major and minor axis of NGC 3311 are shown in
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Figure 6.5: Upper panel: V band profile extracted at P.A.= 126◦ along the minor axis.Lower panel: V band profile
extracted along P.A.= 36◦. The folded profile along the major axis illustrates the excess of light in the North
East quadrant of the NGC 3311 halo, in the range of radii 20′′ < R< 95′′, with the maximum excess of about
one magnitude atR= 60′′. Along the minor axis, we see the contribution from the outerregion of NGC 3309.
The P.A.= 36◦ coincides with the kinematics major axis, see Ventimiglia et al. (2010b).

Fig. 6.8, with the corresponding profiles from the GALFIT twodimensional light distribution models.

The best GALFIT two-dimensional models for the Ks and V band light distributions for NGC 3311

require very different Sersicn indices,nKs = 4 andnV1 = 7.1, with the largern in the V band, which

signals more light at large radii than the De Vaucouleurs law. Is the halo light in NGC 3311 becoming

bluer in the outer parts? The (B−V) aperture photometry profile by Vasterberg et al. (1991) is nearly

constant and equal to∼ 1.1, with no evidence of bluer color gradient, in the same radial interval - 10”

to 100” - of the current V band data. As already discussed in Sect. 6.2.2, the outer halo is not detected

in the Ks 2MASS data because of the large background noise.

We investigate whether the excess of light in the North-Eastquadrant of NGC 3311 changes the

Sersic fit determined by GALFIT to the light distribution of NGC 3311. The light excess in the North-

East quadrant is detected when folding the light profile along P.A.= 36◦ (see Sect. 6.3.2 and Fig. 6.5).

When the light excess is masked, the index of the Sersic law isnV2 = 6.98, see the dashed line in

Figure 6.4. The Sersic indexnV2 is consistent with thenV1 derived previously and only a few percent

smaller. The final values of the parameters for the best fit GALFIT model to the Ks, V bands are
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given in Table 6.1.

Figure 6.6: Left panel: Ks band image of the central core of the Hydra I cluster, 3′.6 × 2′.0. The two main galaxies are
NGC 3311 (center) and NGC 3309 (upper right).Central panel: model, obtained with GALFIT for NGC 3311
and NGC 3309.Right panel: residual image. It has been obtained by subtracting the model (central panel)
from the Ks band image of the cluster (left panel). North is upand East to the left.

Figure 6.7: Left panel: V band image of the central core of the Hydra I cluster, 6′.3 × 4′.2. The two main galaxies are
NGC 3311 (center) and NGC 3309 (upper right).Central panel: 2D model from GALFIT of NGC 3311 and
NGC 3309 in the V band.Right panel: residual image obtained by subtracting the model (centralpanel) from
the V band image of the cluster (left panel). North is up and East to the left.

Table 6.1: Parameters for the two-dimensional GALFIT fit for NGC 3309 and NGC 3311

Parameter Ks band V band Ks band V band
Comp. type NGC 3309 Sersic Sersic NGC 3311 De Vauc. Sersic

mToT 8.72 14.92 8.0 12.92
Re 11′′.30 18′′.00 44′′.21 355′′.56
n 2.0 2.68 4.0 6.9

b/a 0.87 0.88 0.89 0.90
P.A. 50.6 54.5 39.76 54.65
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Figure 6.8: The upper panels show the V band profiles, along the major and minor axis. The lower panels display the Ks
band profiles, along the major and minor axis. Crosses are thedata points from V, Ks band images and the
continuous green curves are from the GALFIT two dimensionallight distribution models, see Sect. 6.3.3.

6.3.4 Morphology of the light excess in the NE quadrant of NGC3311

The residual image obtained by subtracting the two-dimensional GALFIT model to the V band image

shows an excess of light with respect to a symmetric light distribution, in the North-East quadrant

of NGC 3311, as previously illustrated by the analysis of thefolded light profiles at P.A.= 36◦ (see

Figure 6.5). The morphology of the excess resembles of thick“C” from 20′′ to 80′′ in radius with a

peak luminosity at about 60′′ and a fainter luminosity in the South-West quadrant. As discussed in

Sect. 6.2.2, the archive NIR image is not deep enough to sample the faint surface brightness regions

at large radii, where the light excess is situated.

We can compute the ratio between the flux in the V band image andthe two-dimensional GALFIT
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model for NGC 3311 in the V band. In a rectangular area of 100′′ × 50′′ centered on the peak of the

light excess, the average flux ratio isIVband/IGALFIT = 1.09± 0.08, and we estimate an upper limit to

the fraction of light in the excess of the order of 10% of the NGC 3311 halo light in this region. We

then carry out the surface photometry in the area covered by the light excess with polyphot, and the

luminosity in the excess amounts toLexcess≃ 3.3(±1.8)× 109L⊙.

6.4 Long slit spectroscopy of the NGC 3311 halo: contribution from

the excess of light in the North-East quadrant

Deep long slit spectroscopic observations of the NGC 3311 halo were carried out by Ventimiglia et al.

(2010b) with FORS2 on VLT-UT1, in visitor mode. These 4655− 5955 Å spectra include absorption

lines from Hβ, MgI (λλ5167, 5173, 5184 Å) and Fe I (λλ5270, 5328 Å) and were acquired with a

long-slit 1′′.6 wide and 6′.8 long, GRISM 1400+V, an instrumental dispersion of 0.64 Å pixel−1 and

a spectral resolution ofσ = 90 km s−1. The long slit was centered on the dwarf galaxy HCC 26 at

α = 10h36m45.85s andδ = −27d31m24.2s (J2000), with a position angle of P.A.=142◦; HCC 26 is

seen in projection onto the NGC 3311 halo. Eight exposures of1800 sec each were taken (in total 4

hrs). In addition to the deep spectra, the standard star G dwarf star HD102070 and spectrophotometric

standard star EG 274 were also observed with the same set up. Standard reduction steps were then

applied to these data; for further details on the observational set-up and data reduction we refer to

Ventimiglia et al. (2010b).

Ventimiglia et al. (2010b) used the deep two-dimensional spectrum to measure the velocity

dispersion and LOS velocity profiles for the halo of NGC 3311 at several radial distances from the

galaxy center. Our immediate goal is different here: we wish to detect a secondary component in the

spectrum, in addition to the main absorption features from the continuum emitted by the NGC 3311

halo. We expect these secondary absorption lines to come from the light excess, and to be about

10% of those associated with the NGC 3311 halo atvHy,halo = 3921 km s−1, and at a different LOS

velocity.

We extract the light profile along the slit and identify thoseregions where the continuum is bright

enough to provide a suitable S/N. We identify a region of∼ 22′′.5 wide (95 pixels), North-West

of HCC 26 as indicated by the back section along the slit in Fig. 6.12. All signal in this region is

co-added to reach aS/N ≃ 20 in the continuum of the extracted single spectrum. We are aware

that co-adding all the signal from an extended portion of theslit we may cause a broadening of the

absorption lines, but this does not affect our goal, which is the detection of a secondary componentat

a different LOS from the NGC 3311 halo light atvHy,halo.

The stellar kinematics is measured from the extracted one-dimensional spectrum in the

wavelength range 4800< λ < 5800 Å using a “penalized pixel-fitting” method (PPXF,

Cappellari and Emsellem, 2004). In the PPXF method, stellartemplate stars from the MILES

library (Sanchez-Blazquez et al., 2007) are combined to fit the one-dimensional extracted spectra;
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the velocity and the velocity dispersion are measured simultaneously. The best PPFX fit to the co-

added spectrum provides a stellar template, a LOS velocity and velocity dispersion values which are

consistent with those measured by Ventimiglia et al. (2010b) for NGC 3311. From the photometry

carried out in Section 6.2, we set an upper limit to the luminosity in the excess of light equals to

∼ 10% of the light in the region sampled by the long slit. To be able to detect the weak kinematic

signal from the excess of light, we need to subtract the main NGC 3311 halo contribution. We achieve

this by taking the PPFX best stellar template fit from the MILES library to the original extracted

science spectrum, multiply it by 0.9 and subtract it off; the residual spectrum is shown in Figure 6.9.

Clearly, the S/N of the residual spectrum is not high enough for a direct pixel fitting, although the

Figure 6.9: The flux calibrated spectrum extracted in the region with thelight excess. The rest frame wavelengths of the
strongest absorption lines are indicated in the plot.

main absorption features are readily identified, and we mustnow use a different approach. We use

theRV.FXCORtask in IRAF to identify the velocity components in the residual spectrum; this task

implements the Fourier cross-correlation technique by Tonry and Davis (1979), which makes use of

template stars. To be able to detect the weak signal from the excess of light, we compute the Fourier

cross-correlation between the residual spectrum and the 1Dextracted spectrum of the G dwarf star

HD102070 (G8III), in the wavelength interval 4800< λ < 5800 Å. The computed cross correlation

function is shown in Fig. 6.10. In the lower panel, the regioncentered on the two strongest peaks

show the presence of two components at different velocities: the strongest peak is at 5054 km s−1 and

a second weaker peak at 3931 km s−1. The results from the Fourier cross-correlation on the residual

spectrum in the NGC 3311 halo provide evidence for a second component at∆V = +1100 km s−1

relative velocity with respect to the NGC 3311 systemic velocity Vsysat this position. From the results

of the two-dimensional photometry, we conclude that the light excess in the North-East quadrant of
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Figure 6.10: Upper panel: Plot of the Fourier cross-correlation function computed using the residual spectrum and the G
dwarf star HD102070 spectrum. The result of the Fourier cross-correlation indicates the presence of two sets
of absorption lines features at different velocities in the residual spectrum. The strongest peak in the Fourier
cross-correlation is atVLOS,1 = 5054 km s−1 and the second weaker peak is atVLOS,2 = 3931 km s−1. Lower
panel: Region of the Fourier cross-correlation function (in pixel scale) centred on the two main peaks.

NGC 3311 is at a LOS velocity of 5054 km s−1.

6.5 Correlation among substructures in the Hydra I diffuse light, PNs

and galaxies distributions

6.5.1 Light excess and PNs substructure

As we move towards smaller cluster-centric radii, we ask whether there are additional correlations

among substructures in the PNs and galaxies distributions with those in the halo light of NGC 3311.

Our aim is to reach a better understanding of the relevance ofcluster substructures for the origin of

the diffuse light.

In Ventimiglia et al. (2010a), we identified different velocity components in the PN LOSVD and

describe their spatial distribution. We summarize the velocity components in the PN LOSVD in the

Hydra I core briefly in turn:

• there is a broad central velocity component in the PN LOSVD peaked at about 3100 km s−1with

σ ≃ 500 km s−1, which is consistent with the kinematics of the extended stellar halo around

NGC 3311. The spatial distribution of these PNs follows the spatial distribution of the bright

galaxies in the Hydra I core and the NGC 3311 halo light.

• A narrow “bluer” velocity component, near 1800 km s−1, whose PNs have an elongated
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distribution along the North/South direction. There is no clear association with galaxies in

a 6.8′ × 6′.8 field centred on NGC 3311.

• A second “redder” velocity component, at≃ 5000km s−1. These PNs show a strong spatial

and velocity correlations with an assembly of dwarf galaxies, that is located within a central

100× 100 kpc2 region of the cluster core, centred on NGC 3311.

In the current work we use two dimensional photometry to quantify the main radial profile and

substructures in the NGC 3311 halo light distribution. In the V band, the main halo component of

NGC 3311 is represented by a Sersic law with a largen ∼ 7.0 value, that indicates the presence of

an extended halo out to≃ 90′′ = 20 kpc. The PNs associated with the broad velocity component

correlate in space , i.e. round circular distribution around NGC 3311, and in velocity with the halo

light, whose kinematics is provided by the the long slit measurementsVsys = 3800 km s−1 and

σhalo = 460 km s−1from Ventimiglia et al. (2010b). There are no other Hydra I galaxies at these

velocities within a 100 kpc distance from NGC 3311’s center.

Once the main symmetric halo component is subtracted off, we detect a light excess in the North-

East quadrant of NGC 3311 whoseVLOS measurement is 5054 km s−1, see Sect. 6.4. We plot the PNs

associated with the blue and red components of the PN LOSVD onthe residual image in the V band

of the central 6′.5× 4′.20 around NGC 3311, obtained as difference from the V band images and the

GALFIT two-dimensional models for NGC 3311 and NGC 3309; theplot is shown in Figure 6.11. In

the whole region covered by the light excess, there are nine PNs associated with the red-peak velocity

component and only three PNs with the blue-peak component ofthe PN LOSVD. We speculate that

the nine PNs atV > 4450 km s−1 are associated with the stellar population of the light excess, as they

are coincident in sky position and LOS velocity.

6.5.2 Differences in theα parameter

Ventimiglia et al. (2010a) derived a very lowluminosity specific PN numberor α parameter for the

NGC 3311 halo light. They argued that theα parameter of the NGC 3311 stellar halo is a factor

4 − 6 lower than theα parameter value logαTot = −7.34 determined from the (FUV-V) color vs

logα1.0 relation shown in Fig. 12 of Coccato et al. (2009), and corrected to logαTot by using Fig.8

of (Buzzoni et al., 2006). They identified two possible explanations: either the stellar population in

the halo of NGC 3311 is unusually PN poor, or the ram pressure stripping of PNs by the hot X-ray

emitting gas in the halo of NGC 3311 is sufficiently large to severely shorten the lifetime of PNs

(Villaver and Stanghellini, 2005).

In this study we can explore theluminosity specific PN numberfor the substructures and the

halo light. In a window of 100′′ × 50′′ centered on the peak of the light excess, we find 3/4 PNs

associated with the light excess, because they are on the same sky position, distance and LOS velocity.

In a similar region of the sky, we count six PNs associated with the NGC 3311 halo light, from

Ventimiglia et al. (2010a). For the light excess we calculate αexcess= 6 × αhalo, a value which is in
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agreement with those of red and old stellar population, as predicted by the (FUV-V) color vs logα1.0

relation. The implication is that the effect of the hot environment on the PN evolution is not acting on

the PNs associated with the light excess.

If the ram pressure stripping is effective during the PN lifetime, it acts similarly on the halo

PNs and the light excess PNs, as the stars associated with thelight excess cover 100 kpc distance in

108 yrs, while a PN lifetime of about∼ 104 yr. Our estimate of a normal PN number for the light

excess indicates that this light is most likely beyond the Hydra-I core, and outside the hot X-ray halo,

therefore the ram pressure stripping of PN is not taking place.

6.5.3 Light excess and substructures in the galaxy distribution

Ventimiglia et al. (2010a) discussed that while there are nogalaxies in the Hydra core at small cluster-

centric radii (< 100kpc), several dwarf galaxies at high velocitiesVLOS > 4450 km s−1are present.

In Table 6.2 we list the sky coordinates, apparent total V band magnitude, and LOS velocities from

Misgeld et al. (2008) for these dwarf galaxies.

These dwarfs are associated with a well defined substructureboth in velocity and spatial

distribution, see Fig. 6.12. The substructure traces by these dwarfs occurs at the same sky position

and velocity as the light excess.

Table 6.2: Names, position, magnitude in V band and LOS velocities (Misgeld et al., 2008) for the dwarf galaxies in the
NGC 331 field.

Galaxy α(2000) δ(2000) MV v
[h:m:s] [◦:’:”] [mag] [km s−1]

HCC 19 10:36:52.573 -27:32:16.34 16.91 5735±55
HCC 22 10:36:40.373 -27:32:57.68 18.23 4605±37
HCC 23 10:36:48.911 -27:30:01.49 18.07 4479±44
HCC 24 10:36:50.140 -27:30:46.20 17.75 5270±32
HCC 27 10:36:45.700 -27:30:31.30 18.48 5251±89

The total luminosity of the five DWs is∼ 1.1 · 109L⊙, and amounts to about one third of the total

luminosity in the excess of light.

The association between the light excess and the dwarf galaxies may result because of these

dwarfs are falling through the cluster core, and their halo light was unbound during any previous

close pericenter passages with NGC 3311. As we discuss in Sect. 6.5.2, the light excess is beyond

the Hydra I core now, and it is made up by stars being now on slightly different orbits than the dwarfs

galaxies they were once bound to.
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Figure 6.11: PNs contributing to the blue peak at 1800 km s−1(blue diamonds) and to the red peak at 5000 km s−1in the PN
LOSVD (red diamonds) on top of the residual V band image of Hydra I. The green and gray triangles are at
the position of NGC 3311 (center) and NGC 3309 (upper right),respectively. The FOV is 6′.5× 4′.20. North
is up and East is to the left.

Figure 6.12: Residual image obtained by subtracting the model of NGC 3311and NGC 3309 (central panel in Fig. 6.7) to
the V band image of the central core of the cluster (left panelin Fig. 6.7). In the image we see the excess of
light centered on NGC 3311 and spanning from North to South-East. In the white circles are shown the DWs
that are superposed, along the line of sight, onto the excessof light. Their velocities are shown as well. In the
green circles is the DW galaxy HCC 26. The white line is at the position of the long-slit data Ventimiglia et al.
(2010b), centered on HCC 26 and with a P.A.= 142◦, that were used to measure the kinematics of the excess
of light and the characteristics of HCC 26. The black part of the long-slit is the one used to measure the excess
of light velocity. The FoV is 6′.5× 4′.2; North is up and East to the left.
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6.6 Summary and conclusions

In the current work we extend our investigation on the substructures present in the projected phase-

space of galaxies and PNs associated with the diffuse light in the Hydra I core further. The aim is to

correlate them with the structures in the light distribution around NGC 3311.

We use V band imaging data obtained at the ESO/MPI 2.2m telescope and 2MASS archive Ks

data to derive the structural parameters of the light distribution of NGC 3311 and NGC 3309. In case

of NGC 3309, the light profile is reproduced by a single Sersicfit, with nKs = 2.0 in the K band and

nV = 2.68 in the V band. The light distribution in NGC 3311 is characterized by several components,

that are more easily detected in the V band. The central regions of NGC 3311 are affected by a dust

lane and bright luminous regions, which are then masked by a 10′′ circular aperture. The galaxy’s

light in the 2MASS Ks band is reproduced by a De Vacouleurs profile, and by a SersicnV = 7.0

profile in the V band. The large value of the Sersic indexn in the V band indicates a bright halo and

a characteristic up-turn of the radial surface brightness profile in aµ(R) vsR1/4 diagram at large radii.

Furthermore, the analysis of the extracted profiles indicates a light excess in the North-East quadrant

of the galaxy NGC 3311 halo: this light is in addition to the extended halo traced by the surface

brightness profile up-turn. The total luminosity in the light excess is 3.3(±1.8)× 109L⊙.

We then measure the LOS of this outer component by studying the weaker absorption lines in a

deep long-slit spectrum acquired in the region of the light excess. We carry out the Fourier cross-

correlation between a residual spectrum, where 90% of the contribution from the best fit kinematic

model spectrum of the NGC 3311 is subtracted off, and a standard G8III template star spectrum;

we detect clearly two velocity components along the same LOS, with the stronger peak at a redder

velocity of 5054 km s−1and a second weaker peak which we identify with the NGC 3311 halo.

We conclude that in a region within 100 kpc radius from NGC 3311, the PNs in the red velocity

peak at 5000km s−1, the dwarf galaxies atVLOS > 4400 km s−1 and the excess of light occupy

the same location in velocity and space, and are physically associated. The light excess is made up

of stars unbound during previous close passages of the dwarfs in the Hydra I core, and are now on

slightly different orbits from the galaxy they were bound to previously.

As the case investigated here, stars can be unbound as galaxies fall through the cluster cores, and

they can be seen as structures in the diffuse light at this location. While the current study proves

that stars are added to the diffuse light at redshift zero, we cannot conclude that this is the main

mechanism for the halo formation, as the contributed light is only a small fraction, about 10%, of the

whole halo light around NGC 3311. Two-dimensional photometry and deep spectroscopy aimed at

the determination of the Lick indices and stellar abundanceare instrumental in addressing the issue

of the main galaxy progenitors for the ICL.
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Chapter 7

HCC 26: the characteristics of one of the

dwarf galaxies in the core of the Hydra I

cluster

Giulia Ventimiglia, Ortwin Gerhard, Magda Arnaboldi, Lodovico Coccato

2010, in preparation1

7.1 Introduction

In Chapter 6 of this work we discussed the photometry of the central core of Hydra I. The V band

image shows a faint excess of light in the North-East part of the central cD galaxy of the cluster,

NGC 3311. The velocity of the excess is vexcess= 5054 km s−1, ∼ 1400 km s−1 higher than the mean

velocity of the Hydra I cluster. In the central 100× 100 kpc2 of the cluster, apart from NGC 3311 and

NGC 3309, no galaxies with velocity within 1.5σ of the systemic velocity of Hydra I are observed.

This region is populated only by galaxies with similar velocity as the excess of light. Most of them

are dwarf galaxies (DWs) positioned in projection on top of the excess. In Chapter 4 of this thesis

we investigated the kinematics of the intracluster Planetary Nebulas (PNs) in the same core area of

Hydra I. The observed PN line of sight velocity distributionshows a multi-peaked structure. One of

the peaks is at the same velocity as the excess. The group of DWs and many of the PNs contributing

to this peak fall on top of the excess. We concluded that we areseeing a small group of galaxies,

unbound light kinematically related to the group and the PNsassociated with it. We are now interested

in understanding how this diffuse light has formed. V band photometric data for all the DWs and LSS

data - the same used to measure the kinematics of NGC 3311 along its major axis and the kinematics

of the excess of light - for one of them, HCC 26, are available.In this chapter we analyze these data

1The results presented in this chapter are the preliminary version of a forthcoming paper focused on the DW galaxy
HCC 26. The study of the indices, age and metallicity of HCC 26were done by L. Coccato.



100 HCC 26: the characteristics of one of the dwarf galaxies in the core of Hydra I

with the aim of understanding if the above mentioned DWs havesigns of tidal disruption and/or their

characteristics give us any hint on how the diffuse light, observed in the North-East part of the halo

of NGC 3311 has formed.

7.2 The dwarf galaxies in the core of the Hydra I cluster: photometric

characteristics

7.2.1 Observational set up, data reduction and 2D modeling

Johnson V band images of Hydra I were acquired with the Wide Field Imager (WFI) on the ESO/MPI

2.2 m telescope, for a total exposure time of 0.5 hrs. All the information about the observational set

up and the data reduction are described in Chapter 6 of this thesis. The best fit models for the 2D

light distribution of the 6 DWs were obtained using the GALFIT program (Peng et al., 2002). For

each galaxy the fit was performed considering a boxy region centered on the galaxy with size roughly

twice its dimensions. The light from foreground stars was properly masked and the background light

due to the light of the halo of NGC 3311 was fitted and subtracted.

7.2.2 Results

All the galaxies are well described by a Sersic profile. The parameters of the fits are summarized in

Table 7.1. Their values are in good agreement with those previously found by Misgeld et al. (2008).

Galaxy α(2000) δ(2000) mV Re n P.A. [N=0, E=90] v
[h:m:s] [◦:’:”] [mag] [arcsec] [degree] [km/s]

HCC 19 10:36:52.573 -27:32:16.34 16.91 4.43 1.66 -87 5735±55
HCC 22 10:36:40.373 -27:32:57.68 18.23 2.19 0.87 87 4605±37
HCC 23 10:36:48.911 -27:30:01.49 18.07 3.79 1.02 11 4479±44
HCC 24 10:36:50.140 -27:30:46.20 17.75 3.58 1.47 -71 5270±32
HCC 26 10:36:45.85 -27:31:24.2 18.00 3.50 1.15 61 4949∗±10
HCC 27 10:36:45.700 -27:30:31.30 18.48 2.82 0.98 -1 5251±89

Table 7.1: Position, magnitude in V band, effective radius, index n of Sersic profile, position angle, as obtained by a
2-dimensional fit with the GALFIT task, on the residual V-band image for the 6 DW galaxies in the central
(100 kpc)2 of the Hydra I cluster. Velocities are from Misgeld et al. (2008) (∗ except for HCC 26. For this object
velocity was determined from FORS2 data in this work, see Sec. 7.3 for more details.)

The photometry of the 6 DWs in the core of the Hydra I cluster does not show any peculiar

characteristics. The shape of the galaxies’ isophotes is regular with no clear sign of tidal tails or other

features indicating disruption. The total luminosity of the 6 galaxies amounts to∼ 3.1 · 109L⊙, about

1/3 of the total luminosity of the excess of light on which they lie.
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7.3 HCC 26

We now focus on HCC 26. For this galaxy we have LSS spectroscopic data. We will use them to

study the kinematics, the age and the metallicity of the object. HCC 26 is particularly interesting in

our study because it falls in the middle of the region where wedetected the excess of light.

7.3.1 Kinematics

Observational set up and data reduction

The LSS data were acquired with FORS2 on VLT-UT1. The slit, 1′′.6 wide, was centered on HCC 26,

atα = 10h36m45.85s andδ = −27d31m24.2s (J2000). The GRISM used is the 1400V+18. With this

set up the spectral resolution isσ = 90 km s−1. The data reduction was carried out in IRAF. After the

standard operations of bias subtraction, flat-fielding and background subtraction HCC 26’s spectrum

was extracted, rectified and flux calibrated. The 1D spectrumwas obtained by summing over a region

∼ 6′′.8 wide along the spatial direction, where HCC 26’s light dominates. The spectrum covers the

wavelength range from 4600 Å to 5800 Å. For further details regarding both the observational set up

and the data reduction we refer to Chapter 2 of this work.

Results

HCC 26’s stellar kinematics was measured from the galaxy 1D spectrum using the “penalized pixel

fitting” method (PPXF, Cappellari and Emsellem, 2004). The velocity, velocity dispersion and Gauss-

Hermite moments were computed simultaneously.

We find a mean velocity for HCC 26 of 4946± 4 km s−1 and a velocity dispersion 15 km s−1.

Errors are calculated performing Monte Carlo simulations.The galaxy velocity was previously

obtained by Christlein and Zabludoff (2003) using Las Campanas LSS data. The value they found is

4195 km/s, about 300 km/s lower than ours. The better agreement with the mean velocity of the other

DWs (vDWsmean= 5068 km s−1, see Tab. 7.1) and with the excess of light (vexcess= 5054 km s−1),

and more importantly the larger S/N of our spectrum (S/N≥20), significantly higher than theirs

(S/N=8), give us confidence on the reliability of our value. The measurement of the dispersion of

the galaxy is instead very difficult, because the recovered number is significantly smallerthan the

FORS2 instrumental resolution,∼ 90 km s−1. We consider our value not conclusive and set an upper

limit to the velocity dispersion of∼ 90 km s−1.

In Fig. 7.1 HCC 26’s spectrum is shown in black and the PPXF best fit in red. The spectrum is

characterized by several strong absorption lines. Among these we distinguish Hβ at 4941.48 Å and

magnesium lines at 5254.23 Å, 5258.08 Å, 5269.68 Å, respectively.

The stellar template that fits HCC 26 spectrum is typical for aG8III star. We use this information

to estimate the color for HCC 26 to be (B-V)∼ 0.7 (Scheffler and Elsasser, 1990).
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Figure 7.1: HCC 26’s spectrum. The black line is the calibrated spectrumof HCC 26. The red line is the fit to the spectrum
obtained by using the PPXF method.

7.3.2 Age and metallicity

We also evaluated HCC 26’s Lick indices and metallicity.

A set of Lick spectrophotometric standard stars for correction to the Lick system were taken from

the ESO archive. We chose them so as to have an instrumental set up as similar as possible to the set

up for HCC 26. The 7 Lick stars were observed with FORS2 on UT1 with a 1′′.0 slit and with the

Grism 1400V+18.

We measured the Hβ, Mg2, Mgb, [MgFe]′ and 〈Fe〉 line-strength indices as defined

by Faber et al. (1985) and Worthey et al. (1994) (〈Fe〉 = (Fe I + FeII)/2 and [MgFe]′ =
√

Mgb · (0.72 Fe5270+ 0.28 Fe5335). Spectra were convolved with a Gaussian function to match the

spectral resolution of the Lick system (FWHM= 8.4 Å at 5100 Å, Worthey and Ottaviani, 1997).

Measurements were also corrected for the galaxy intrinsic broadening, following the procedure

described in Kuntschner et al. (2006). Correcting coefficientsCI for each line strength indexI were

determined by comparing (i) the “intrinsic” values (I0, in Angstrom) measured on the optimal stellar

template; and (ii) the line-of-sight-velocity-distribution “modified” values (ILOS VD) measured on the

best fit model (i.e. the optimal template convolved with the galaxy LOSVD). Corrected galaxy line

strength indices (in angstrom) are then given by:
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Icorrect = CI · Imeasured=
I0

ILOS VD
· Imeasured (7.1)

No focus correction was applied because atmospheric seeingwas the dominant effect during

observations. Errors on line-strength indices were determined via Monte Carlo simulations, which

accounted for the errors on radial velocity measurement also. The measured values are Hβ =

1.77 ± 0.22, Mgb = 2.40 ± 0.27, [MgFe]′ = 2.30 ± 0.16, 〈Fe〉 = 2.29 ± 0.17. From them we

also calculated [MgFe]=
√

Mgb· < Fe> = 2.34± 0.2.

Luminosity-weighted age, [Z/H] and [α/Fe] of the stellar population are determined from the fit

of single stellar population models by Thomas et al. (2003) to the line-strength indices Hβ, Mgb,

〈Fe〉 and [MgFe]. The measured age is 12−3.5
+1 Gyrs, the metallicity [Z/H] = −0.5 ± 0.15 and

[α/Fe] = −0.06± 0.15. Errors on ages, [Z/H] and [α/Fe] were computed by means of Monte Carlo

simulations.

7.4 HCC 26: comparison with dwarf galaxy samples in nearby clusters

Our data indicate that HCC 26 falls, in projection, in the middle of the region where we detected the

excess of light and it has a velocity compatible with that of the excess, the other DWs on top of the

excess, and the PNs contributing to the red peak in the PN LOSVD (see Sec. 7.3.1).

What can we learn from the characteristics of this galaxy about the whole group of DWs and

about the core of Hydra I? Does HCC 26 have the characteristics of a typical DW galaxy? If not,

could this galaxy be the remains of a spiral galaxy that has lost its disk? Can the observed excess

of light be the disrupted disk of this galaxy? Do we see any evidence suggesting that HCC 26 has

undergone some disruption process?

To answer these questions we compared HCC 26’s characteristics with those of other DWs and

bulges of spirals in the local Universe.

7.4.1 Lick indices and stellar population parameters

In Fig. 7.2 are shown the Lick indices for HCC 26 (red asterisk), a group of 24 DWs in the Virgo

cluster and the field (black crosses, Michielsen et al., 2008) and a sample of 14 bulges of disc galaxies

(light blue crosses, Morelli et al., 2008) in nearby clusters. Fig. 7.3 displays HCC 26’s magnitude

versus age and magnitude versus metallicity compared to thesame sample of DWs and bulges. The

B magnitude for HCC 26 was calculated from the V-band image, using (B-V)∼ 0.7 from Sec. 7.3.1.

Analyzing the plots in Fig. 7.2 and 7.3 we learn that from the Hβ versus [MgFe] and the

Mgb/ < Fe > versus Hβ relations we have an indication that HCC 26 has Lick indices that are

more typical for a DW galaxy than for the bulge of a spiral galaxy. In the first plot HCC 26 falls

∼ 1.5σ out of the relation for bulges, and∼ 1σ out in the second plot. This is consistent with the

age and metallicity values of HCC 26, which tend to be higher (lower) that the age (Z) for bulges, but
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Figure 7.2: Comparison of Lick indices for HCC 26 with dwarfs and bulges of spiralsUpper left panel: Hβ versus [MgFe].
Upper right panel: Mgb versus< Fe >. Lower left panel: Mgb/ < Fe > versus Hβ. Lower right panel:
Mgb/ < Fe> versus [MgFe]. The red asterisks show the index values foundfor HCC 26. Black crosses denote
indices for the 24 DWs in the Virgo cluster studied by Michielsen et al. (2008). Light blue crosses represent
the indices calculated for the the bulges from the 14 clusterdisk galaxies studied by Morelli et al. (2008).

are typical for DWs. This is without taking into account the fact that the galaxy falls in the very faint

end of the plot. On the other hand, from the Mgb versus< Fe > and Mgb/ < Fe > versus [MgFe]

relations HCC 26 has index values that are somewhat in the middle between the values typical for

DWs and for bulges. The same can be said about theα/Fe value.

We conclude that the lick indices and stellar population analysis of HCC 26 indicate that the

galaxy has the characteristics of a dwarf galaxies, but the evidence is not so strong.
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Figure 7.3: Stellar population of HCC 26 compared to dwarfs and bulges ofspiral galaxiesUpper left panel: Age versus B
magnitude.Upper right panel: metallicity versus B magnitude.Lower panel: α/Fe versus B magnitude. The
symbols are the same as in Fig. 7.2.

7.4.2 Structural parameters and fundamental plane

The position of HCC 26 on theΣe vs re (Kormendy relation, Kormendy, 1977),Σe vs MB andre vs

MB planes (total B magnitude MB, effective radiusre and effective surface brightnessΣe) compared

with the sample of 24 DWs in Virgo and a group of DWs galaxies (grey squares) and bulges (blue

squares) from Bender et al. (1992) is displayed in Fig. 7.4. To estimate the effect of tidal stripping

on the structural parameters we assume a simple isothermal sphere model for the light distribution of

HCC 26, whereL(r) ∝ r and the outer shells are sequentially stripped. If HCC 26 wasis the past 4
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times more luminous than it is now, as suggested by the ratio of the luminosity in the excess of light

and the luminosity of the six DWs superposed on it, then this galaxy should have moved in theΣe vs

re, Σe vs MB andre vs MB planes along the arrows shown in Fig.7.4.

Figure 7.4: Kormendy,Σe vs MB and re vs MB relations for HCC 26 compared to dwarfs and bulges of spiral galaxies
Left upper panel: effective surface brightness in B band vs effective radius. Right upper panel: effective
surface brightness in B band versus B magnitude.Central lower panel: effective radius versus B magnitude.
The red asterisks show HCC 26. Light blue crosses represent the 24 DWs in the Virgo cluster studied by
Michielsen et al. (2008). Blue squares denote bulges from Bender et al. (1992) and grey squares show DWs
from the same catalog.

To complete HCC 26’s analysis, we finally investigated its position on the Fundamental Plane
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(FP). We calculated k1, k2, k3, as described in Eq.1.11, which we rewrite here:
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In this case k1 is proportional to the logarithm of the total mass of the system, k2 depends on its

SB and k3 on its M/L ratio (Bender et al., 1992). We compared the position of HCC 26 on the k3
vs k1 and k2 vs k1 planes to those of the galaxies in Bender’s catalog. The catalog comprises giant

ellipticals (green squares), bulges (blue squares), bright DWs (grey squares) and DW spheroidals

(magenta squares), see Fig 7.5.

As discussed in Sec. 7.3.1 we consider our velocity dispersion measurement for HCC 26 from the

LSS data not reliable. We decided therefore to compute it using the virial theorem:

σ2
v =

0.4G L
3 re

· M
L

(7.2)

where from the V band magnitude found for HCC 26 we calculatedL = 1.3 108 L⊙ and we assumed

M/L ∼ 5. This value is typical for a DW with HCC 26’s magnitude (Geha, 2003). The resulting

velocity dispersion isσv ∼ 20 km s−1. This value is consistent with the one obtained from the

absorption line kinematics. This suggests that at the present HCC 26 is probably in virial equilibrium.

In Fig.7.5 we show the position of HCC 26 on the FP for three different velocity dispersion values,

i.e. the measured value (15 km s−1, red asterisk), the value from the virial theorem (20 km s−1,

orange asterisk), and the upper limit given by the FORS2 instrumental resolution (90 km s−1, yellow

asterisk).

From the diagrams shown we conclude that the photometric characteristics of HCC 26 give fairly

convincing evidence that this galaxy is a DW. Even if it had inthe past 4 times the luminosity it has

now it can not have originated from the bulge of a disk galaxy.Moreover, in the k2 vs k1 plane, for

all three velocity dispersion values the DW falls in the region typical for DWs. In the k3 vs k1 plane

the measured velocity dispersion and the one calculated from the virial theorem put HCC 26 among

DWs, while the velocity dispersion ofσ = 90 km s−1 requires aM/L ratio for HCC 26, i.e. a dark

matter halo, too high for a DW of this luminosity.

7.5 Summary and conclusions

In this chapter we presented the analysis of the DW galaxy HCC26. We have focused on this object,

since it is particularly interesting for the scientific casepresented in this thesis. HCC 26 is a member

of a group of DW galaxies that populate the central 100× 100 kpc2 of the Hydra I cluster. In Chap. 6

of this work we detected an excess of light, with respect to a symmetric distribution, in the North-East

part of the halo of NGC 3311. The excess has the same velocity as the group of DWs in the core of

the cluster to which HCC 26 belongs and also as the PNs contributing to the redder peak in the PN



108 HCC 26: the characteristics of one of the dwarf galaxies in the core of Hydra I

Figure 7.5: Upper panel: k1 versus k3. Lower panel: k1 versus k2. The squares represents the values for the sample of
galaxies in Bender et al. (1992). The red, orange and yellow asterisks represent the values found for HCC 26
(see text for more details).
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LOSVD (see Chap. 5). Both the DWs and the PNs fall, in projection, on top of the excess of light. We

are therefore seeing a small group of galaxies separated in velocity with respect to the main galaxy

population of the cluster, diffuse light kinematically linked to the group, and the PNs associated with

it.

We are interested in understanding the origin of the unboundlight. We studied the 6 DW

galaxies from photometric data, and spectroscopic data forHCC 26. The aim was to see if from

the characteristics of these galaxies was possible to understand the origin of the detected diffuse light.

In particular, we tried to verify whether the photometric characteristics of the DWs present any sign

of disruption and if HCC 26 is a real DW galaxy or if it is, perhaps, the bulge of a disk galaxy that

has lost its disk, whose stripped light is now part of the observed diffuse light.

From our analysis we find that the photometry of the 6 DWs does not show any clear sign of tidal

tails or other disruption features in the light distribution of the galaxies. The shape of the galaxies’

isophotes appear regular. The light in the excess is currently about 3 times that in the DWs. The stellar

population and structural properties of HCC 26 are consistent with the characteristics of a typical DW

galaxy and there are indications that it is in virial equilibrium and does not show signs of disruption

at the present time.

One possible scenario that could explain the sum of the evidences is that the observed group

of DWs was damaged by a recent close passage through the densecore of the cluster. The DWs

could have, during this close interaction, lost their outershells. Considering the relative velocity and

distance between HCC 26 and NGC 3311, the high speed encounter hypothesis is valid. In such a

case the tidal force acting on HCC 26 would induce stars to getunbound from the galaxy only outside

∼ 3re, while the central regions should remain unaffected. In this picture the resulting unbound stars

could have had time to fill the space between the group membersif sufficient time has passed since

the interaction at the pericenter,∼ 200 Myrs. In this time the DWs should have moved∼ 200 kpc

behind the cluster core, and might now be located near the apocenter of their orbits. This would also

explain why the galaxies do not show any disruption feature at the present time.

This scenario needs, of course, to be more quantitatively confirmed. Moreover, in the near future

we are also planning to perform a spectroscopic follow-up ofall the above-mentioned DWs. We hope

that the study of their kinematics, age and metallicity willgive us a clear picture of the group as a

whole and thus on how the diffuse light we observe in the North-East part of the halo of NGC 3311

has formed.
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Chapter 8

Summary and conclusions

This thesis work is dedicated to the study of the kinematics of the intracluster light (ICL) component

in the core of the Hydra I cluster.

ICL consists of stars that fill up the cluster space between galaxies and are now not bound to any

cluster member. Numerical simulations predict that the ICLis formed by stars lost by galaxies in

tidal stripping and mergers events (Murante et al., 2007) that happen during structure formation. It

comprises of the order of 10-30% of the total optical light emitted by a cluster depending on the

dynamical status and history of the hosting system (Feldmeier et al., 2004; Zibetti et al., 2005). Its

amount can reach higher values in very massive and dynamically evolved clusters like Coma, where it

has been estimated to be 50% of the total star light in the core(Bernstein et al., 1995). ICL has a very

faint SB, of the order of 1% of the night sky, and its observation is very challenging. Deep photometric

studies have revealed that ICL occurs in the form of extendedhalos around BCGs, tidal tails and

plumes and diffuse light between galaxies (Mihos et al., 2005). Once this component has been created

it remains on the orbits on which it formed, conserving the color and chemical characteristics of the

objects from which it has been lost. So, in the cases where it is possible to detect it, the study of the

ICL can give information both about the evolution mechanisms acting on single galaxies and on the

kinematics status of clusters as a whole.

Hydra I is a medium compact cluster in the Southern hemisphere at a distance of∼50 Mpc. In

its central region it is dominated by a pair of non-interacting giant elliptical galaxies, NGC 3311

and NGC 3309. NGC 3309 is a regular giant elliptical (E3) and NGC 3311 is the BCG of the

cluster and is a cD galaxy with an extended halo (Vasterberg et al., 1991). The cluster velocity

and velocity dispersion as measured from a deep spectroscopic sample of cluster galaxies are

v̄Hydra I = 3982±148 km s−1 andσHydra I = 724 km s−1, respectively (Christlein and Zabludoff, 2003).

The virial radius of the cluster isr200 = 1 Mpc. Within this radius Hydra I has a mass of M(≤1

Mpc)=1014M⊙ (Hayakawa et al., 2004, 2006).

By investigating the kinematics of the core of Hydra I, the central ∼ 100× 100 kpc2 around

NGC 3311, our aim was to answer mainly three questions. The first two are related to ICL and
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BCGs:

(i) What is the relation between the ICL and the cD halo of BCGs? Is the cD envelope made of stars

dynamically bound to the BCG itself or are these part of the ICL and therefore responding to the

cluster potential?

(ii) From the study of the ICL kinematics what can we learn about the mechanisms involved in the

build-up of the cD halo of BCGs?

These two questions are important in the framework of modernextragalactic astronomy because one

of the challenging issues in the field of galaxy evolution andICL is the formation of BCG galaxies.

These objects have special characteristics if compared to Hubble sequence galaxies. They stay at

the center of clusters, at the bottom of their potential well, are brighter than normal ellipticals of

the same size and often have extended halos, commonly calledcD halos. Cosmological N-body

and hydrodynamical simulations predict that the origin of intracluster stars is strongly related to

BCG formation. The main mechanisms responsible for stars tobe unbound from galaxies could be

merging leading to the formation of cD galaxies and tidal stripping processes (Sommer-Larsen et al.,

2005; Murante et al., 2007; Rudick et al., 2009). For the moment however, the relation between the

ICL and the cD halos remains unclear. It is not understood yetwhether the cD envelope is simply the

central part of the cluster’s diffuse light component, or if it is distinct from it and part of the host galaxy

(Gonzalez et al., 2005). To answer this question by using LSSabsorption line spectroscopy is difficult

due to the low surface brightness of the cD halos. Most of the kinematical studies have been limited to

the central regions (within∼ 1 Re) of BCGs (Fisher et al., 1995; Carter et al., 1999; Hau et al.,2004).

Only in few cases the data have allowed to explore the halo dominated areas. Unfortunately, these

studies have not provided an unanimous picture. In NGC 6166 in Abell 2199 (Kelson et al., 2002)

for example, the velocity dispersion profile in the outer halo of the galaxy, at a distance of∼ 60 kpc

from the galaxy center, rises to nearly cluster values, indicating the passage from the galaxy-bound

stars to the ICL component. In the central Coma BCGs (Coccatoet al., 2010a), instead, the velocity

dispersion profiles of NGC 4889 and NGC 4874 remain flat, indicating in this cases that the stars

also at R∼ 4Re are still bound to the central BCGs and that there is not a measurable contribution

of ICL in their halos. More extreme is the case of M87 in Virgo (Doherty et al., 2009), in which

the measured dispersion profile falls steeply to the outer edge. These discordant results suggest that

further observations are needed to increase the statisticsand to better understand the problem.

The third question we tried to address is related to the ICL and clusters as a whole:

(iii) What can the study of the ICL tell us about the kinematicstatus of a cluster in general? Is the

ICL a relaxed and well mixed component or is it un-mixed and reveals the presence of substructures?

This question arises, because in the current cosmological scenario clusters are formed in a hierarchical

way. Small mass virialized systems are formed first and bigger structures of the size of clusters are

formed later by assembly of galaxies or groups of galaxies. Among others one observational evidence

strongly supporting this scenario is the presence in many clusters of subcluster components, related

to recent accretion events (Dressler and Shectman, 1988).
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Hydra I was chosen as a target to address these questions, because from X-rays observations it

appears to be the prototype of a relaxed and evolved system. The X-ray emission of the hot ICM

of the cluster is smooth and has no spatial substructures. This makes Hydra I a good candidate for

the study of the relation between the central cD galaxy of thecluster, NGC 3311, and the ICL. If

the cluster is dynamically evolved, as suggested by X-rays,we expect ICL to form a well mixed and

relaxed component.

In this work the study of the ICL in the core of Hydra I was performed using three different types

of data. First we analyzed the kinematics of NGC 3311, along aP.A.∼ 63◦ (major axis direction),

using long-slit spectroscopic data. Then using the Multi-Slit Imaging Spectroscopy (MSIS) technique

we detected the Planetary Nebulas (PNs) associated with thecentral ICL component, and finally we

used photometric data to study the distribution of light around NGC 3311.

The main results of this work can be summarized in the following five points. The first three

are related to the kinematics of the ICL in the core of the cluster. The last two concern the physical

characteristics of the sample of PNs detected with the MSIS.

• The stellar halo of NGC 3311 is dominated by the central intracluster stars of the cluster, and

the transition from predominantly galaxy-bound stars to cluster stars occurs in the radial range

from 4 to 12 kpc from the center of the galaxy.

The study of the kinematics of NGC 3311 along its major axis was performed by combining Gemini

GMOS-South and VLT-FORS2 deep LSS data. Absorption line spectra reach out to∼25 kpc in the

halo of this galaxy.

In Hydra I the situation is similar to the one of NGC 6166 in Abell 2199 (Kelson et al., 2002),

but more extreme. The velocity dispersion of NGC 3311 increases more rapidly from a value of

σ0=150 km s−1 at the center toσout=450 km s−1 at R∼12 kpc. Farther out the dispersion remains

roughly constant around this value, which is 60% of the velocity dispersion of the Hydra I galaxies

(724 km s−1).

With these characteristics, NGC 3311 is far from being a typical elliptical galaxy. We calculated

for this galaxy its position on theV/σ, X-ray luminosity LX and total absolute B-band magnitude

BT vs velocity dispersionσ planes. Its position on these planes was estimated for threedifferent

values of velocity dispersion, at R=0, R=4 kpc and R=12 kpc. The comparison of the obtained values

with those calculated for a sample of early-type galaxies from Coccato et al. (2009, 2010b) showed

that NGC 3311 falls in the middle of the other early-type galaxies distribution only when the central

velocity dispersion value is used. In the other cases it deviates strongly, with a much largerσ than

expected for itsLX or BT. This shows that the properties of NGC 3311’s halo are different from that

of a typical galaxy-bound halo.

We concluded that NGC 3311 is a small galaxy, because of its central low dispersion value,

and that its halo is dynamically hot with the galaxy being dominated by the central intracluster star

component of the cluster already at small radii. This interpretation is supported not only by the trend
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of the velocity dispersion profile, but also by the large amount of dark matter inferred from X-rays

around NGC 3311 (∼ 1012M⊙ within 20 kpc, Hayakawa et al., 2004). Previous works from Hau et al.

(2004) and Loubser et al. (2008) already indicated NGC 3311’s rising velocity dispersion profile, to

a radius of∼ 5− 7 kpc, and Hau et al. (2004) already suggested that the observed trend indicates the

response of the stars to the Hydra I cluster potential, but now we have shown this conclusively.

• The diffuse light in the central100× 100kpc2 of the Hydra cluster, around NGC 3311, is still

un-mixed and reveals the presence of substructures in the cluster core. This indicates that the

build-up of the hot intracluster halo of NGC 3311 is still on-going.

To understand whether the central region of Hydra I is relaxed, as suggested by X-ray observations,

or it contains substructures, we wanted to further investigate the kinematics of the ICL component

in the core of the cluster. The kinematics of very low surfacebrightness regions is very difficult

with traditional absorption line spectroscopy, given the low S/N we can achieve with this technique.

The study of the kinematics is easier if observations of single stellar indicators associated with the

galaxy light and tracing its underlying kinematics are performed. Planetary Nebulas (PNs) are the

best tracers for this purpose. They are post-AGB stars at theend of their lives. They consist of a

central white dwarf star surrounded by an envelope of low density gas. The gas re-emits more than

15% of the light of the central star in the [OIII]λ5007 forbidden line. The detection of this emission

line makes the identification of PNs possible. At the distance of the Hydra I cluster the flux from the

[OIII] λ5007 Å line of the brightest PNs is a few 10−18erg s−1. To detect them is possible only by

using the Multi-Slit Imaging Spectroscopy technique (MSIS, Gerhard et al., 2005). The MSIS is a

blind search technique that combines the use of a mask of parallel slits, a narrow band filter centered

at the redshifted [OIII] emission line and a dispersing element. The technique allows to measure

velocity, position and magnitude of all the emission line objects that happens to lie behind the MSIS

mask slits.

In Chapter 3 of this thesis we described the data reduction ofthe MSIS data, the selection criteria

of the PN candidates, defined as unresolved emission sourceswithout measurable continuum, and

the evidence for these stars to be associated with the ICL in the Hydra I cluster. Together with PNs,

two other categories of objects were identified in the MSIS images: [OII] emitters at z∼0.37 and

Lyα galaxies at z∼3.12. We do not investigated in detail the properties of these objects, but their

main physical characteristics are summarized in Chapter 4 of this work. The most relevant result

is that almost all the detected background galaxies are in the velocity range between 1000 km s−1

and 2800 km s−1. From this we concluded that any possible contamination to the PN sample by

background galaxies with undetectable continuum must be mainly restricted to the this velocity range.

In total we identified 56 intracluster PNs in the central 100×100 kpc2 of the cluster. From the LSS

results if the ICL around NGC 3311 forms a relaxed diffuse component, we expect the line-of-sight

velocity distribution (LOSVD) of the PNs in the core of the cluster to be the superposition of two

Gaussians. The first cold component should consist of PNs spatially concentrated on the central core
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of the galaxy with a velocity dispersion similar to the values measured for NGC 3311 at 0≤R≤5 kpc.

The second component should be hotter, with a higher velocity dispersion value as measured at R≥12

kpc and spatially associated with the halo of the BCG. The presence of any additional structure in the

observed PN LOSVD will indicate that the stellar populationin the core of the cluster is not relaxed.

Results are partially different from our expectations. The first evidence is that no subcomponent

of PNs with velocity dispersion∼ 150− 250 km s−1 is seen, associated with the central∼ 5 kpc

of NGC 3311. This is mainly due to the high SB of the galaxy at its center. The observed

PN LOSVD shows, instead, three separated peaks. The main peak is centered at a velocity of

∼ 3000 km s−1, within 1σ the systemic velocity of the cluster. This component is, in accordance

with our expectation, related to the PNs associated with thehot halo of NGC 3311. We confirmed

this result simulating the LOSVD, as observed through our observational set up, for a sample of PNs

at the distance of the galaxy. The simulated stars were distributed in velocity according to a Gaussian

centered at the systemic velocity of NGC 3311 and with a velocity dispersion of∼ 470 km s−1,

i.e. the value measured from the absorption line spectroscopy at R≥12 kpc. The comparison

of the simulated LOSVD with the main peak of the observed PN LOSVD showed that the two

distributions are approximately consistent. The investigation of the phase-space distribution of the

galaxies in the central 20 arcmin square (150× 150 kpc2) of the cluster (Christlein and Zabludoff,

2003; Misgeld et al., 2008) showed a lack of galaxies with velocities within 1σ the velocity dispersion

of the cluster in the 100× 100 kpc2 region around NGC 3311. Outside this region these galaxies are

homogeneously distributed in the cluster. This evidence suggests a scenario, in which the missing

galaxies were disrupted by the gravitational field of NGC 3311 and the surrounding cluster dark

matter, with their light now contributing to the hot intracluster halo of NGC 3311.

The other two secondary peaks detected in the PN LOSVD are a blue component centered at a

velocity of∼ 1800 km s−1, about 1900 km s−1 bluer than the systemic velocity of the cluster, and a red

component centered at∼ 5000 km s−1, at a velocity about 1300 km s−1 redder than Hydra I systemic

velocity. These two additional peaks show that the ICL component is still un-mixed and reveal the

presence of real substructures in the core of the cluster. Weconcluded that the diffuse light is not

relaxed and the build-up of the intracluster hot cD halo of NGC 3311 is still on-going.

The possible origin of the secondary peaks in the PN LOSVD is discussed below.

• V-band photometric data around NGC 3311 reveals the presence of an excess of light, with

respect to a symmetric distribution, in the North-East partof the halo of this galaxy. The

excess has a velocity compatible with the PNs contributing to the red peak of the PN LOSVD

and a group of dwarf galaxies (DWs) falling through the central core of the Hydra I cluster at

∼ 1100km s−1. Our hypothesis is that the light in the excess consists of stars stripped from the

group of DWs in a recent close passage to the dense cluster core.

Once discovered that the ICL in the core of Hydra I does not form a relaxed and well mixed

component, we were interested in investigating the origin of the substructures related to the two
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secondary velocity peaks in the PN LOSVD: the blue componentat ∼ 1800 km s−1 and the red

component at∼ 5000 km s−1. With this in mind we studied the light distribution in the core of Hydra I.

The aim was to identify the light possibly associated with the above-mentioned substructures. The

2D analysis of the surface photometry of the two central galaxies of the cluster both in Ks and V band

was performed. The Ks-band images are from 2MASS archive data and the V-band image are from

deeper WFI data. We found that the surface brightness profileof NGC 3309 is well described by a

Sersic law with an exponentn = 2.7. The analysis of NGC 3311 was more complicated. The central

5 arcsec2 ∼ 1.2 kpc of the galaxy are dominated by the presence of a dust lane, well visible in the

V-band image. The galaxy SB profile is well described by a de Vaucouleur law roughly from R=1.2

kpc to R=5 kpc, while in the outer regions the light distribution is better fitted by a Sersic law with

indexn ∼ 7.0. This model is consistent with the results obtained in the earlier study of the absorption

line kinematics of the galaxy that describe NGC 3311 as dominated by a central cold component from

the center to a radius of R=5-6 kpc and by a dynamically hot cD halo further out.

But the most interesting discovery from the study of the photometry of the core of Hydra I was

the presence of an excess of light, with respect to a symmetric light distribution, around NGC 3311 in

the North-East side of its halo. This has the shape of a thick “C” extending from 20′′ to 80′′ from the

center of NGC 3311 from North-East to South-East. The amountof light in this excess is∼10% of

the total light emitted in the region. Despite the low luminosity, we measured, from FORS2 long-slit

data, its kinematics. The excess has a mean velocity∼ 5054 km s−1, ∼ 1400 km s−1 higher than the

systemic velocity of the cluster. This value is similar to the velocity of the PNs contributing to the red

peak in the PN LOSVD. Most of them fall in projection of top of the excess of light. By analyzing

also the phase-space galaxy distribution we found that in the central 100× 100 kpc2 of Hydra I, apart

from the two main cD galaxies, NGC 3311 and NGC 3309, no galaxies with velocity within 1.5σ of

the systemic velocity of the cluster are observed. This region is mainly populated by dwarf galaxies

(DWs) at the same velocity as the excess of light and positioned in projection on top of it. Currently,

the diffuse light contains three times as much light as the DWs.

The evidence retrieved suggest the existence of a kinematics link between the reddest peak in the

PN LOSVD, the excess of light and DWs in the core of the cluster. Our hypothesis is that we are

seeing a small group of galaxies, separated in velocity fromthe cluster main component, associated

diffuse light and the related PN. The group was probably disrupted in a close passage near the dense

cluster core, and is now behind NGC 3311. The absence of tidalfeatures in the group member

galaxies (none were detected in the photometric study) could mean that these had time to come back

to equilibrium after losing their outer envelops. To confirmthis hypothesis further investigation is

needed. We are planning to perform a spectroscopic follow-up of the above-mentioned DWs. The

aim is to measure the velocity dispersions of these objects so to put them on the fundamental plane

and to study their ages and metallicities. This will show us if the galaxies have kinematic signs

of tidal disruption and constrain further how and from what kind of stars the IGL we observe in

the North-East part of the halo of NGC 3311 formed. For the moment, we analyzed the physical
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characteristics of only one of these DWs, for which LSS data are available, HCC 26. Unfortunately,

the low resolution of the data do not allow us to draw any definitive conclusion abot its intrinsic

dynamics (see Chapter 7).

The origin of the peak at 1800 km s−1 in the PN LOSVD remains unclear. There is an indication

of a possible correspondence between the PNs in this peak and8 galaxies in the cluster with a velocity

slower than 2800 km s−1. Among these galaxies there is the spiral NGC 3312. This galaxy, according

to McMahon et al. (1992), should be at the center of a foreground group. Unfortunately, due to the

small area covered by the MSIS survey and the statistically small number of detected PNs, it was not

possible to confirm this connection. The realization of a second MSIS survey in the region connecting

NGC 3311 to NGC 3312 would help to solve the problem.

• The number density of the PNs detected in the core of Hydra I is∼4 times lower for the light

seen than expected.

In parallel to the investigation of the kinematics of the core of the Hydra I cluster, we have also

analyzed the characteristics of the detected PN sample. Thenumber density of PNs (NPN) is related

to the total bolometric luminosity of the parent stellar population (LBol), by the simple relation:

NPN = α ∗ LBol

whereα is the so called luminosity-specific PN number. This parameter is empirically related to the

color of the light of the considered galaxy. A list of values are given in Table 6 of Buzzoni et al.

(2006). Knowing theα parameter of a given system and its total bolometric luminosity it is possible

to predict the number of observed PNs and vice versa.

We computed the expected number of PNs in NGC 3311 using theα parameter calculated by

Buzzoni et al. (2006) for the red and old central galaxy of theFornax cluster, NGC 1399. The total

bolometric light was calculated in circular apertures around NGC 3311 from V-band images of the

core of Hydra I (Chapter 6). In this calculations the central5 kpc of the galaxy were eliminated

because in this region the SB of the galaxy is too high to allowthe detection of the [OIII] emission

line from PNs.

We found that the number of PNs observed is lower than expected by a factor of 4. We proposed

two possible scenarios to explain this evidence. The first isthat the stellar population of the halo of

NGC 3311 is unusually PN poor. The second is that the PN lifetime in this galaxy is significantly

shortened by ram pressure effects. The density of the ISM in the central 5′ around NGC 3311 is

∼ 6 × 10−3 cm−3, and the typical velocity of a star is
√

3 × 450 km s−1 ≃ 800 km s−1. In these

conditions ram pressure, due to the fast movement of PNs in the hot ISM, might significantly affect

their visibility (Villaver and Stanghellini, 2005).

The second hypothesis would also explain the lack of PNs associated to NGC 3309. In our PN

sample, in fact, we saw only one star that has a position and a velocity compatible with an object

bound to the second brightest galaxy of the Hydra I cluster. If this lack of PNs was due to the distance
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of the galaxy, so that also its brightest PNs were too faint tobe detected with the MSIS observational

setup, then the elliptical should have a distance of∼70 Mpc, significantly out of the cluster. We know

from X-ray observations that this is not the case (Hayakawa et al., 2004).

• The luminosity function of the PNs detected with the MSIS is consistent with that expected at a

distance of∼50 Mpc.

The PN luminosity function (PNLF), defined as the luminositydistribution of their [OIII]λ5007 lines,

has a sharp cutoff at its bright end at a fixed intrinsic magnitude ofM∗5007 = −4.51. This makes PNs

useful as distance indicators.

Since the MSIS allowed us to measure not only the positions and velocity, but also the fluxes of

the detected emission line objects, we were able to recover the luminosity function of the observed

stars. But the MSIS is a blind search technique and the detected sources are not previously centered

on the MSIS mask slits. The measured fluxes are dimmed in relation to the distance of the object

from the slit center.

We used a technique to take into account this statistical fluxloss, and convolved with the errors on

magnitudes and the sample incompleteness at faint magnitudes, and we performed all the appropriate

corrections necessary to use the observed MSIS PNLF as a distance indicator (Gerhard et al. 2010,

in preparation, Ciardullo et al., 1998). A preliminary analysis in the Hydra I cluster suggests that the

observed PNLF is consistent with a population of stars at a distance of∼ 50 Mpc.

The study of the PNLF bright cutoff in BCG galaxies has potential for understanding the stellar

population in such systems. The results obtained with the MSIS could give important hints in

explaining the discrepancy with the prediction from stellar population evolution models, that predict

a trend of the PNLF bright cutoff with the age of the parent stellar population (Marigo et al.,2004;

Ciardullo et al., 2004). This study could be complementary to that of the PNLF in the Galaxy and

other late type galaxies in the local Universe, for which thePN population has been better studied.

RRR

In the current cosmological scenario structure formation happens in a hierarchicalbottom-upway,

with small mass virialized systems forming first and then enlarging by accretion and merging events.

Clusters, being the most massive virialized systems in the Universe, are the last to form. Their growth

continue to happen also at z=0 through the accretion of new galaxies or group of galaxies from the

filaments that surrounds them and that link them to thecosmic web. During these events different

mechanisms influence the life of the involved galaxies. Galaxies falling toward the cluster center

experience a more and more dense environment and can interact between each other, with the ICM and

with the global cluster potential. The more accredited mechanisms responsible for galaxy evolution

are tidal interactions, mergers and ram-pressure stripping, to mention only a few. These processes

can completely change galaxy properties, from morphology to gas content to star formation activity.

In this framework a particular role is played by BCGs. Simulations suggest that the formation of
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these objects, that sit at the bottom of cluster potential wells at their centers, is related to the overall

cluster formation history. All the above mentioned processes that involve galaxy evolution and BCG

formation can also be responsible for stars to be lost from galaxies and contribute to the build-up of

the ICL component. When, during a cluster life, ICL is created and which are the mechanisms that

more contribute to its formation and under which conditionsthe play a significant role, is still matter

of debate. Numerical simulations indicate that massive galaxies mainly contribute to the build-up of

the ICL component (Puchwein et al., 2010). According to their predictions, most of it is produced

at z< 1 during the merger history that leads to the formation of BCGs, or other massive galaxies

in clusters while smaller galaxies and tidal stripping mechanisms are responsible only for a minor

fraction of the ICL in the outskirts (Murante et al., 2007; Dolag et al., 2009). The direct study of ICL

properties, when possible, can give useful hints both for the identification of the processes involved

in galaxy interactions and BGC formation and in the investigation of the characteristics of clusters as

whole.

In this framework two are the conclusions that can be drawn from this thesis work: (i) A possible

interpretation of the retrieved evidences is that in dynamically evolved clusters, as X-ray observations

suggest for Hydra I, the stars in the outer halo of their BCGs are not bound to the galaxy itself, but

have had enough time to start feeling the cluster potential and contribute to the ICL component. This

indicates that possibly the kinematics of BCGs’ halos is strongly related to the dynamical status of

the histing cluster. Such hypothesis is supported by the fact that in other cluster, whose dynamical

status is significantly different than in Hydra I, different situations were observed. In Coma, that is

in a middle evolutionary state with the two BCGs of the cluster probably involved in a second close

passage, the velocity dispersion profiles of the two interacting galaxies are flat. In Virgo, that is

considered to be a dynamically young system, the halo of M 87 has a decreasing velocity dispersion

profile. The analysis of the kinematics of BCG halos in different systems will help to confirm this

scenario. (ii) From our results we learned that the halo formation can be related to accretion processes.

The study confirms that accretion of stars from galaxies falling in the cluster core is a possible ICL

formation mechanism. These events can happen at redshift z=0 and leave their mark by the presence

of substructures of diffuse light where they occur. However, from our analysis we cannot genarelize

this result and conclude that the formation of the halo of NGC3311 has happened only though galaxy

stripping. To really investigate this topic the study of NGC3311 halo stellar population is needed.

This is going to be done in the next future (Coccato et al. 2011, in preparation). Moreover, the studies

of various systems suggest that other mechanisms, like merger and stripping from different galaxies,

may play a major role in ICL formation.

Our work contributes to the study of the ICL at z=0 and the proceses involved in galaxies’ and

BCGs’ formation. Similar studies in other systems in the local Universe that investigate ICL’s and

BCGs’ properties in relation to the whole cluster dynamicalstate will help to increase the statistics

and give more general answers to the questions we tried to answer in this thesis. For the moment the

studied systems have provided different results and a clear picture is difficult to be drawn. It will be
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also extremely interesting to explore the group environment to understand if in less massive systems

the mechanisms leading ICL formation are similar as in clusters. This will be an important step in

the study of the formation of diffuse stellar components, since the group environment has notbeen

deeply explored yet. An analysis similar to the one performed for Hydra I is already in progress for

the Centaurus cluster and the HGC 90 compact group. MSIS, LSSand photometric data for these

systems are available.
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and Andrè, Lodovicolo, Daria, Erica and her beautifulpuffi, la fratenita’, Giò, Lucy and Marchito,
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Castro-Rodriguéz, N., Arnaboldi, M., Aguerri, J. A. L., Gerhard, O., Okamura, S., Yasuda, N., and Freeman,

K. C. (2009). Intracluster light in the Virgo cluster: largescale distribution.A&A, 507:621–634.

Cavaliere, A. and Fusco-Femiano, R. (1976). X-rays from hotplasma in clusters of galaxies.A&A, 49:137–144.

Christlein, D. and Zabludoff, A. I. (2003). Galaxy Luminosity Functions from Deep Spectroscopic Samples of

Rich Clusters.ApJ, 591:764–783.

Ciardullo, R. (2003). Planetary Nebulae as Extragalactic Distance Indicators (invited review). In S. Kwok,

M. Dopita, & R. Sutherland, editor,Planetary Nebulae: Their Evolution and Role in the Universe, volume

209 ofIAU Symposium, pages 617–+.

Ciardullo, R., Feldmeier, J. J., Krelove, K., Jacoby, G. H.,and Gronwall, C. (2002). A Measurement of

the Contamination in [O III]λ5007 Surveys of Intracluster Stars and the Surface Density of z=3.13 Lyα

Galaxies.ApJ, 566:784–793.

Ciardullo, R., Jacoby, G. H., Feldmeier, J. J., and Bartlett, R. E. (1998). The Planetary Nebula Luminosity

Function of M87 and the Intracluster Stars of Virgo.ApJ, 492:62–+.

Ciardullo, R., Jacoby, G. H., Ford, H. C., and Neill, J. D. (1989). Planetary nebulae as standard candles. II -

The calibration in M31 and its companions.ApJ, 339:53–69.

Ciardullo, R., Mihos, J. C., Feldmeier, J. J., Durrell, P. R., and Sigurdsson, S. (2004). The Systematics of

Intracluster Starlight. In P.-A. Duc, J. Braine, & E. Brinks, editor,Recycling Intergalactic and Interstellar

Matter, volume 217 ofIAU Symposium, pages 88–+.

Ciardullo, R., Sigurdsson, S., Feldmeier, J. J., and Jacoby, G. H. (2005). Close Binaries as the Progenitors of

the Brightest Planetary Nebulae.ApJ, 629:499–506.

Coccato, L., Arnaboldi, M., Gerhard, O., Freeman, K. C., Ventimiglia, G., and Yasuda, N. (2010a). Kinematics

and line strength indices in the halos of the Coma Brightest Cluster Galaxies NGC 4874 and NGC 4889.

ArXiv e-prints.

Coccato, L., Gerhard, O., and Arnaboldi, M. (2010b). Distinct core and halo stellar populations and the

formation history of the bright Coma cluster early-type galaxy NGC 4889.MNRAS, pages L97+.

Coccato, L., Gerhard, O., Arnaboldi, M., Das, P., Douglas, N. G., Kuijken, K., Merrifield, M. R., Napolitano,

N. R., Noordermeer, E., Romanowsky, A. J., Capaccioli, M., Cortesi, A., de Lorenzi, F., and Freeman, K. C.

(2009). Kinematic properties of early-type galaxy haloes using planetary nebulae.MNRAS, 394:1249–1283.

Cortese, L., Marcillac, D., Richard, J., Bravo-Alfaro, H.,Kneib, J., Rieke, G., Covone, G., Egami, E., Rigby,

J., Czoske, O., and Davies, J. (2007). The strong transformation of spiral galaxies infalling into massive

clusters at z ˜ 0.2.MNRAS, 376:157–172.



BIBLIOGRAPHY 127

Da Rocha, C., Ziegler, B. L., and Mendes de Oliveira, C. (2008). Intragroup diffuse light in compact groups of

galaxies - II. HCG 15, 35 and 51.MNRAS, 388:1433–1443.

De Lucia, G. (2007). How ‘Heredity’ and ‘Environment’ ShapeGalaxy Properties. In N. Metcalfe & T. Shanks,

editor,Cosmic Frontiers, volume 379 ofAstronomical Society of the Pacific Conference Series, pages 257–+.

De Lucia, G. and Blaizot, J. (2007). The hierarchical formation of the brightest cluster galaxies.MNRAS,

375:2–14.

De Lucia, G., Poggianti, B. M., Aragón-Salamanca, A., Clowe, D., Halliday, C., Jablonka, P., Milvang-Jensen,
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