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Abstract

In this work a new method for the detection of faint, both point-like and extended, as-
tronomical objects based on the integrated treatment of source and background signals is
described. This technique is applied to public data obtained by imaging methods of high—
energy observational astronomy in the X-ray spectral regime. These data are usually
employed to address current astrophysical problems, e.g. in the fields of stellar and galaxy
evolution and the large—scale structure of the universe. The typical problems encountered
during the analysis of these data are: spatially varying cosmic background, large variety
of source morphologies and intensities, data incompleteness, steep gradients in the data,
and few photon counts per pixel. These problems are addressed with the developed tech-
nique. Previous methods extensively employed for the analysis of these data are, e.g., the
sliding window and the wavelet based techniques. Both methods are known to suffer from:
describing large variations in the background, detection of faint and extended sources and
sources with complex morphologies. Large systematic errors in object photometry and loss
of faint sources may occur with these techniques.

The developed algorithm is based on Bayesian probability theory, which is a consistent
probabilistic tool to solve an inverse problem for a given state of information. The infor-
mation is given by a parameterized model for the background and prior information about
source intensity distributions quantified by probability distributions. For the background
estimation, the image data are not censored. The background rate is described by a two—
dimensional thin—plate spline function. The background model is given by the product
of the background rate and the exposure time which accounts for the variations of the
integration time. Therefore, the background as well as effects like vignetting, variations of
detector quantum efficiency and strong gradients in the exposure time are being handled
properly which results in improved detections with respect to previous methods. Source
probabilities are provided for individual pixels as well as for correlations of neighbour-
ing pixels in a multiresolution analysis. Consequently, the technique is able of detecting
point-like and extended sources and their complex morphologies. Furthermore, images of
different spectral bands can be combined probabilistically to further increase the resolution
in crowded regions. The developed method characterizes all detected sources in terms of
position, number of source counts, and shape including uncertainties.

The comparison with previous techniques shows that the developed method allows for an
improved determination of background and source parameters. The method is applied
to data obtained by the ROSAT and Chandra X-ray observatories whereas particularly
the detection of faint and extended sources is improved with respect to previous analyses.
This lead to the discovery of new galaxy clusters and quasars in the X-ray band which
are confirmed in the optical regime using additional observational data. The new tech-
nique developed in this work is particularly suited to the identification of objects featuring
extended emission like clusters of galaxies.



Zusammenfassung

In der vorliegenden Arbeit wird eine neue Methode zur Entdeckung lichtschwacher punktférmiger
sowohl als auch ausgedehnter Himmelsobjekte basierend auf einer integralen Behandlung des Sig-
nals und des Untergrundes vorgestellt. Das Verfahren wird auf offentlich zugingliche Daten
angewandt, die mit bildgebenden Beobachtungsverfahren der Hochenergieastronomie im Ront-
genspektralbereich gewonnen wurden, um aktuelle Fragen der Astrophysik, z.B. aus den Be-
reichen Stern- und Galaxienentwicklung sowie der groffiraumigen Struktur des Universums zu
beantworten. Die entwickelte Methode widmet sich den typischen Problemen, mit denen die Date-
nanalyse aufwartet, die da sind: das rdumlich variable kosmische Hintergrundsignal, die vielfaltige
Morphologie der Quellen und deren grofier Intensitéatsbereich, Datenunvollstiandigkeiten, starke
Gradienten sowie wenige Photonenzahlimpulse pro Bildelement. Die beiden bisher weitgehend zur
Bilddatenanalyse eingesetzten Verfahren “Sliding-Window” und Wavelet-basierte Technik haben
sich als unzureichend erwiesen bei grofler Hintergrundvariation und bei der Detektion schwacher
ausgedehnter Quellen und Quellen komplexer Morphologie. Bei diesen Verfahren sind grofle sys-
tematische Fehler in der Photometrie méglich und schwache Quellen kénnen verpasst werden.

Der entwickelte Algorithmus basiert auf der Bayes’schen Theorie, die den wahrscheinlichkeits-
theoretisch konsistenten Rahmen bietet, um ein inverses Problem fiir einen gegebenen Infor-
mationszustand zu losen. Dabei wird das Untergrundsignal durch ein parametrisiertes Mod-
ell beschrieben und die Prior-Informationen der Quellintensititen werden in Form geeigneter
Wahrscheinlichkeitsverteilungen quantifiziert. Fiir die Bestimmung des Untergrundes werden die
Bilddaten nicht zensiert. Die Rate des Untergrundsignals wird durch zweidimensionale Spline-
funktionen beschrieben (sog. Thin-Plate Splines). Das Untergrundmodell ist das Produkt von
Untergrundsrate und Belichtungszeit, wobei letztere Variationen der effektiven Integrationszeit
im Bild beriicksichtigt. Daher werden Effekte wie Vignettierung, Variationen der Detektorquan-
tenausbeute sowie grofle Gradienten in der Integrationszeit korrekt beschrieben, was im Vergleich
zu bisherigen Methoden zu deutlich verbesserten Detektionswahrscheinlichkeiten insbesondere
an den Bildrandern fiihrt. Im Rahmen einer Multiskalenanalyse werden Quellenwahrschein-
lichkeiten sowohl fiir individuelle Bildelemente als auch fiir Korrelationen benachbarter Bildele-
mente ermittelt. Dadurch ermoglicht die Methode punktférmige und ausgedehnte Quellen sowie
deren komplexe Morphologien zu detektieren. Dariiberhinaus kénnen Aufnahmen verschiedener
Spektralbereiche mit Hilfe der Bayes’schen Wahrscheinlichkeitstheorie kombiniert werden, um
die Auflésung dicht benachbarter Quellen weiter zu verbessern. Alle erkannten Quellen werden
durch die entwickelte Methodik automatisch hinsichtlich Position, Anzahl der Quellenimpulse,
und Gestaltparametern einschliefSlich deren Unsicherheiten charakterisiert.

Der Vergleich mit bisherigen Techniken zeigt, dass die entwickelte Methode eine verbesserte
Bestimmung des Untergrundes als auch der Quellenparameter erlaubt. Die Methode wurde auf
Daten der Rontgensatelliten ROSAT und Chandra angewendet, wobei insbesondere die Detektions-
wahrscheinlichkeit lichtschwacher oder ausgedehnter Quellen im Vergleich bisheriger Analysen
verbessert werden konnte. Dadurch wurden neue Galaxienhaufen und Quasare im Rontgen-
band entdeckt, die durch Heranziehen zusatzlicher Beobachtungsdaten im sichtbaren Bereich des
Spektrums bestatigt werden konnten. Das hier entwickelte Verfahren eignet sich besonders fiir
die Identifizierung von Objekten mit ausgedehnter Emission wie z.B. Galaxienhaufen.



Summary

In this thesis, a new probabilistic technique for the joint estimation of background and
sources with the aim of detecting faint and/or extended celestial objects is developed. The
novel probabilistic technique is applicable to astronomical images at any wavelength of
the spectrum. This work exploits public imaging data from observations of high—energy
astrophysics in the X-ray spectral regime. These data are usually employed to address
current astrophysical problems, for instance in the fields of stellar evolution, evolution
of galaxies and the large-scale structure (LSS) of the universe. In this Summary, the
motivations for developing a new source detection method are addressed. The problems
encountered analysing X-ray data and the difficulties experienced by previous techniques
applied to these data are briefly reviewed. Successively, the technique and its capabilities
are outlined.

The problem Astronomical images, collected by ground— or space—based telescopes, are
frequently difficult to analyse because they consist of a diffuse background with superposed
celestial objects and corrupted by effects due to instrumental complexity. The data in
an image often show steep gradients due to instrumental structures, and are altered by
smearing effects, vignetting effects, charge—coupled device (CCD) failures and instrumental
calibrations. An astronomical image is often a combination of several individual pointings
and the effects due to steep gradients in the data are cumbersome. The background,
instead, is a composition of instrumental, particle and cosmic emissions. The cosmic
background is not necessarily spatially constant, especially in high—energy astrophysics.
Celestial objects are characterized by a large variety of (sometimes complex) morphologies
and apparent brightnesses. Sources can be superposed to both, smooth and highly, varying
background. Faint sources may be difficult to detect, because of background fluctuations in
the data. In high—energy astrophysics, few or no photon counts per pixel frequently occur.
Poisson statistics is required to analyse these data. Telescope time, i.e. the allocated time
to the observations of individual astronomical topics, is limited and hence valuable. It is
of great importance to make the best use of the data available.

The interpretation of observational data implies the solution of an inverse problem:
From the observational manifestation of some process, one wishes to deduce what factors
generated that process (Tikhonov, 1992). The data contained in astronomical images are
characterized by the pervasive presence of noise. Hence, the inverse problem of extracting
astrophysically interesting information from observed data is ill-posed, in the sense that
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the solution is not unique or it is not stable under perturbations on the data, i.e. small
changes in the observational data can entail very large changes in the solution being sought.
Ill-posed problems depend in a discontinuous way on the data. Consequently, small er-
rors (e.g., measurement errors, perturbations caused by noise) can create large deviations.
Therefore, solving ill-posed problems calls for a special approach to ensure that the solu-
tion is stable, unique and close to the exact solution of the inverse problem. The numerical
treatment of ill-posed inverse problems is a challenge. Often, ad hoc algorithms, as the
“regularized” solutions by Tikhonov, make use of constraints to provide for a stable and
unique solution (regularization). However, ad hoc algorithms may provide misleading solu-
tions especially as the solution approaches numerical instability (Jaynes, 1984). Instead of
using ad hoc algorithms, inference/decision theory methods are applied to solve ill-posed
problems. The work of Jaynes (1984) shows that probability theory is the only approach
allowing one to convert an ill-posed problem of deductive reasoning into a well-posed prob-
lem! of inference. In this thesis, Bayesian statistics is applied, providing the principles of
inference required to solve ill-posed problems. An ill-posed problem which is addressed in
this thesis is the detection of faint, both point-like and extended, sources.

In the environment of X-ray astronomy, standard methods, such as the sliding window
and the wavelet based techniques, are employed for the detection of faint and/or extended
sources. The sliding window technique is beneficial for the detection of point-like objects
but has problems in detecting (mostly faint) extended sources. Wavelet based techniques
have the advantages to detect point—like and extended sources employing several resolu-
tions (or scales), but the result depends crucially on the wavelet base chosen and therefore
often favour the detection of circularly symmetric sources. Sliding window and wavelet
based techniques are known to suffer from: describing large variations in the background,
detection of faint and extended sources and sources with complex morphologies. Conse-
quently, large systematic errors in object photometry and loss of faint sources may occur
with these techniques. Furthermore, background fluctuations give rise to false positives
in source detection. In order to reduce the number of false positives, standard techniques
employ a detection level (thresholding), usually at 3—5 o above the local background. All
sources below the detection level are disregarded. It results that extended objects, which
can be detected by eye, are not detected by standard techniques (Starck and Murtagh,
2006). A common practice for the detection of extended low surface brightness sources
is to analyse the data in sequential steps, see e.g. the works of Pierre et al. (2004) and
Giacconi et al. (2002b). Point-like sources are first detected with a standard algorithm
and then removed from the astronomical image. The regions of the image without sources
are filled with a simulated background. The resulting image, often rebinned to a larger
pixel size, is successively investigated with a standard algorithm to detect extended sources.
The detected extended sources suffers from biased results, because uncertainties of the ex-
perimental measurements are not properly propagated.

The problem arising for the interpretation of observational data has to consider all the

"'Well-posed problems have the following properties: 1. A solution exists; 2. The solution is unique; 3.
The solution depends continuously on the data.
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information available in order to provide the most reliable answer for source detection and
characterization. An accurate estimation of the background, that accounts for gradual as
well as steep gradients in an image, is crucial for the detection of faint sources and for pro-
viding good estimates in object photometry. Background estimation and source detection,
including a large variety of morphologies shown by the celestial objects, is achievable in a
single algorithm.

The method A statistical tool to obtain unbiased results from incomplete or noisy data
is provided by Bayesian probability theory (BPT), which supplies a general and consis-
tent frame for logical inference. A suitable regularizing algorithm is developed with BPT
taking advantage of all available information over a parameter set, which is described by
a probability density over the corresponding parameter space. The solution of the inverse
problem combines all the available information (Tarantola, 1987). The available informa-
tion concern the background and the sources distributed in the image. The background is
assumed to be smoother than the source signal. Background and sources are assumed to
have positive values only. The properties of the source signal are described with a prob-
ability distribution. Several choices for the probability distribution of the source signal
are possible and studied. Furthermore, the solution of the inverse problem entails the
estimation of model parameters.

A probabilistic two—component mixture model is incorporated into the Bayesian tech-
nique. One component represents the background signal, the other component the source
plus background signals. The mixture model technique is used to jointly estimate the
background and to detect the sources. In this way, consistent uncertainties of background
and sources are provided.

The background rate is described by a two—dimensional spline function. The thin—
plate-spline (TPS) is selected to model the background rate, because the shape of the
interpolating spline surface suffices a minimum curvature condition. Nonetheless, the ap-
proach can be easily adapted to other smooth functions. For the background rate estima-
tion, the source signal is considered a nuisance parameter and it is integrated out following
the rules of BPT. The background model combines the use of the background rate and
the telescope’s exposure time. The resulting background model is sensitive to cosmic, in-
strumental and exposure time variations. The image data are not censored for background
estimation.

Each pixel of an astronomical image is characterized by a probability of source detection.
In order to detect faint objects, independent of their size, a multiresolution analysis is
employed within the developed Bayesian technique. It consists in analysing the probability
of source detection correlating neighbouring pixels. It allows to analyse statistically the
source structures at several resolutions. The resolution is related to the correlation length
(or scale) used to group neighbouring pixels. The correlation length increases at decreasing
resolutions and covers a large range of values. The outcome of the multiresolution analysis
is provided by source probability maps (SPMs) at several scales. Each SPM is an image
that enhances the detection of sources whose size is within the size of the used scale. Faint,
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both point-like and extended, sources are revealed at decreasing resolutions and complex
morphologies of celestial objects are detected.

The Bayesian algorithm gives the benefit of an additional technique intrinsic to BPT:
the multiband analysis. The multiband analysis provides a statistical combination of mul-
tiple data at different energy bands improving the detection of faint sources and sources
in crowded regions.

In a second step, all the detected sources are characterized automatically providing
source position, net counts, morphological parameters and their errors. No explicit back-
ground subtraction is used for source characterization.

Poisson statistics is used for the analysis of the data in the X—ray spectral regime. The
developed technique correctly handle Poisson statistics throughout the whole algorithm.
Different statistics are easily adapted.

The results The Bayesian technique, developed in this thesis, is capable of detecting
point-like and extended sources equally well and of describing variations in the background
according to the diffuse emission and to spatial exposure non—uniformities. Vignetting ef-
fects, failure of pixels, instrumental structures and exposure variations are properly treated
in the background model with the advantages to reduce greatly the number of false pos-
itives in source detection and to improve the photometric characterization especially for
faint, both point-like and extended, sources with respect to standard techniques.

The classification of pixels into two mixture components takes into account the detection
of sources without employing predefined morphologies.

The multiresolution analysis allows one to detect source features at different scales,
to separate celestial objects from underlying diffuse emissions and to separate close by
objects.

The multiband analysis provides improvements in the detection of faint sources and
objects in crowded regions, taking into account the spectral properties of the detected
sources.

The omnipresent problem of false positives in source detection due to background
fluctuations is addressed with a priori information employed to describe the source and
background signals and the level of detection probability selected for the identification
of sources. A 99% source probability threshold is mostly effective to strongly reduce the
number of false positives in source detection. Furthermore, the Bayesian probabilities of
source detection are compared to p—values. The comparison is pursued in order to show the
intrinsic difference in the nature of the two statistics. Consequently, the p—values cannot
be calibrated with Bayesian source probabilities.

Simulated data sets are used for performance assessment of the Bayesian technique.
The simulated data sets are characterized by several background intensities to cover differ-
ent cases one encounters in observational data. The effects of different prior information
incorporated into the algorithm are investigated. The results depend on the definition of
the models for background and sources. The selected spline allows for the estimation of
smooth backgrounds, which are consistent with the simulated ones. The prior information
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for the source signal distributions helps to sort data, which are marginally consistent with
the background model, in background and sources. Bright and faint sources are detected in
a multiresolution analysis, allowing also for the detection of substructures. The estimated
source parameters are consistent with the simulated ones. However, the uncertainties of
parameters for faint sources can be large due to propagation of the background uncertainty.
The results from the analysis of the simulated data sets with the probabilistic technique are
compared with the WAVDETECT algorithm (Freeman et al., 2002), a wavelet based tech-
nique. The developed technique improves on the detections of WAVDETECT especially in
the low count regime. The backgrounds estimated with WAVDETECT are not as smooth
as the ones obtained with the developed technique. The WAVDETECT backgrounds show
rings due to the Mexican Hat function employed to filter the images. The residuals on
source fluxes and positions obtained with the Bayesian technique are by a factor of 10
smaller than the ones from WAVDETECT. Furthermore, the Bayesian technique provides
less contaminated samples (as much as a factor of 5) than WAVDETECT.

The Bayesian method is applied to real data from two major X-ray missions: ROSAT
and Chandra satellites.

Analysing the ROSAT all-sky survey (RASS) data, the Bayesian technique improves
the background model, the detection of faint and/or extended sources and the estimates
of source parameters with respect to previous methods employed for the analysis of these
data, such as the Standard Analysis Software System (SASS) algorithm (based on the
sliding window technique for source detection and on the maximum likelihood approach
for source characterization).

The SASS background model is not stable on the whole field, meaning that e.g. the
background shows insignificant structures at the image boarders as well as the exposure
non—uniformities. The background model obtained with the Bayesian algorithm, instead,
is stable on the complete field even for gaps in the data where the satellite was switched
off.

The developed Bayesian method allows one to detect faint and/or extended objects, such
as clusters of galaxies and quasars, which could not be detected previously by the SASS
method because of their low surface brightness and/or extent. Some of these new findings
have a counterpart in other catalogues produced from deeper X-ray observations and/or
from the optical and near—infrared bands. In addition, for cases where the SASS method
detects faint extended objects, it may fail in providing the source extent: Sources may
look point-like while they are extended objects. Source parameters of celestial objects
embedded in a hot diffuse emission, like galactic supernova remnants (SNRs), are also
shown to be improved with the Bayesian technique.

The application to the Chandra Deep Field South (CDF-S) data demonstrates that the
Bayesian technique is suited for the analysis of images from new generation instruments.
The Bayesian algorithm is capable to cope with spatial exposure non—uniformities, large
background variations, CCD gaps and images superposed. Sources located at the image
edge are not distorted. The technique improves the detection of faint and extended sources
and the estimates of their structural parameters with respect to conventional techniques
employed for these tasks, such as WAVDETECT. The WAVDETECT technique, instead, intro-
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duces systematic errors in the estimates of source parameters (source counts and extent).
The BSS results are robust, allowing for the construction of reliable catalogues.

The novel Bayesian algorithm provides additional benefits. Complex or compact morpholo-
gies of faint extended sources are detected and identified as extended. A large range of
surface brightnesses is explored with the BSS algorithm. Sources nearby or along the line
of sight of diffuse emissions are separated with the multiresolution analysis developed with
the Bayesian algorithm.

New clusters of galaxies and a filament connecting two clusters are found in the CDF-S
region. Potential galaxy clusters and groups are detected, for which further work is needed
to confirm their nature. The BSS technique has the power to provide a large and homo-
geneous sample of clusters and groups of galaxies detected in sky surveys. Consequently,
the BSS technique is a suitable tool to address current astrophysical problems. Clusters
and groups of galaxies, detected in the X-ray part of the electromagnetic spectrum, are
important tools to evaluate cosmological models to describe the universe, to study the
LSS, to determine the amount of baryonic matter in the local universe. Furthermore, the
Bayesian technique allows for the analysis of the mass distribution within clusters or groups
of galaxies.



Chapter 1

Introduction

1.1 Motivation

Information extraction from astronomical images is fundamental to build astrometric and
photometric catalogues. In the age of new—technology telescopes and space—based missions,
catalogues are employed to support observing programs. As shown in Lasker et al. (2008),
catalogues have to provide deep (in limiting magnitude) data with multicolour and multi-
epoch information. The complex project of building precise astronomical catalogues is
of vital importance in astrophysical science. Analyses of astronomical catalogues allow
us to study physical properties of detected objects, to test models of structure formation
(as for clusters of galaxies), to explore stellar and galaxy evolution, to provide insight
for the origin of the Cosmos. For instance, the distribution of galaxies throughout the
universe is not uniform. Deep astronomical images show voids, filaments and clusters. The
distribution of these objects constrains cosmological theories, see e.g. Rosati et al. (2002b),
Brandt and Hasinger (2005) for more details.

Astronomical data are costly and therefore limited, corrupted by noise due to back-
ground fluctuations, affected by selection effects due to e.g. instrumentation, calibrations,
sampling design. The detection and characterization of faint sources require precise statis-
tical methods. In fact, statistical selection biases may arise because of data manipulation
and of overestimation of the statistical significance in the data leading to wrong conclu-
sions. Today, methods that move away from classical techniques, like Bayesian methods,
are widely used to address the problem of separating data components and analysing the
resulting signals (Starck et al., 2008).

Independent to the wavelength employed by an observatory, the astronomical data are a
composition of objects of interest superimposed on a relatively smooth signal, called back-
ground signal. Celestial objects exhibit a large variety of morphologies and apparent bright-
nesses. Astronomical images contain typically a large set of point—like sources (e.g. stars,
active galactic nuclei (AGNs) and quasars), some quasi point-like objects (e.g. faint galax-
ies, double stars), and some complex and diffuse structures (e.g. galaxies, nebulae, clusters
of galaxies, superclusters) (Starck and Murtagh, 2006).
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The background signal arises because of instrumental, particle and cosmic emissions. The
instrumental emission is due to dark current in photosensitive devices. In modern de-
tectors, like CCDs, the background arising from instrumental emissions represents only
few a percent of the total one. CCDs are the detectors of choice for most astronomi-
cal observations, because not only these detectors offer very low dark current for cooled
cameras, but also they provide high quantum efficiency and linear response. Commonly
CCD detectors have Poisson and/or Gaussian noise components: See Gilliland (1992),
Massey and Jacoby (1992), Berry and Burnell (2005) and Starck and Murtagh (2006) for
more details. More complex is the case with digitized photographic images, which show
additive Poisson and Gaussian noise components plus nonlinear distortions (Lasker et al.,
2008; Starck and Murtagh, 2006). Note that the quantum efficiency of detectors varies
over the field-of-view (fov). The particle background are due to galactic emissions. The
particles contributing to the background are, for instance, cosmic rays, interplanetary rays,
radiation belts around the Earth, solar activity. Calibrations of astronomical images re-
duce the corruption of the data due to particles. The cosmic emission is, instead, due to
galactic and extragalactic photons detected by the observatory (Snowden and Freyberg,
1993). The cosmic background represents the integrated emission of unresolved (point—
like) sources. For deep observations as in the X-ray spectral regime, the cosmic back-
ground is mostly due to the extragalactic background light, providing important informa-
tion about galaxy formation and the LSS of the universe, see e.g. Giacconi et al. (1962) and
Brandt and Hasinger (2005) for more details. The cosmic background is not necessarily
spatially constant, especially in the high—energy range of the electromagnetic spectrum.
Background estimation is essential for a proper interpretation of the data in image analysis.

The separation between background and sources is not a trivial task. Background esti-
mation is an omnipresent problem for source detection methods in astrophysics, especially
when the source signal is weak and difficult to discriminate against the background. More-
over, a reliable background model is required for the detection of extended sources' and
of source features extending to the edge of the fov: See Snowden et al. (1994) for more
details. An inaccurate estimation of the background may produce large systematic errors
in object photometry and the loss of faint and/or extended objects (Starck and Murtagh,
2006).

The background-source separation task suffers additionally from the fact that the qual-
ity of astronomical images is corrupted by effects due to instrumental complexity. The
causes for quality degradation in astronomical images are the followings:

1. Space telescopes may dither during an observation as in the X-ray spectral regime
(energy range of 0.1 — 120 keV), producing a smearing effect;

2. The quality of astronomical images may be affected by the tracking system and the
telescope shake;

L An extended source differ from a point-like one, because its angular size is greater than the resolution
of the instrument used to observe it. Hence, an extended source is a resolved object.



1.1 Motivation 3

3. Space—based observatories are characterized by a compact geometry and mirror place-
ment in a folded optical system. The main disadvantage of such construction is
shown by an image that is brighter on axis and dimmer off axis (vignetting). The
vignetting is therefore a deterioration on the quality of the image going towards the
edge of the fov. It is a feature of folded telescope optics which cannot be avoided
(Berry and Burnell, 2005);

4. Astronomical images may exhibit instrumental structures, such as detector window
support structures as for Wolter type telescopes and gaps between adjacent CCDs;

5. Deep observations are commonly obtained by combining several individual exposures
to generate a final astronomical image. The background may vary significantly within
the field and steep gradients in the data are present.

These effects increase statistical (random) and systematic errors in the data.

The telescope’s exposure time (exposure map) provides important information for ad-
dressing some of the causes for quality degradation in astronomical images: effects 3 — 5.
Exposure maps contain information on how long a given pixel was exposed to the sky.
Exposure maps include factors such as vignetting, dead time (i.e. the time after each event
during which the system is not able to record another event if it happens), pile—up (conse-
quence of the sensor dead time), defective pixels (such as hot, stuck and dead pixels?). The
exposure map accounts for instrumental structures, such as detector ribs or CCD gaps. In-
strumental structures produce lack of data. The missing data must be handled consistently
for the background estimation to prevent undesired artificial effects. Moreover, the data,
produced by merging individual exposures, are characterized by large exposure variations.
Thus, celestial objects, especially extended ones, can be superposed to both, smooth and
highly varying background (Snowden et al., 1994). Hence, the background modelling has
to incorporate the knowledge provided by the observatory’s exposure time without com-
promising the statistical properties. If the exposure map is not supplied, steep gradients
in the data are not handled, which would yield many false positives in source detection
(Damiani et al., 1997) and poor estimates of source properties.

Furthermore, a source detection technique should be capable of detecting a large variety
of source morphologies.
Some source detection techniques need the point—spread function (PSF) for source detec-
tion (see e.g. Stewart 2006). The PSF describes the distribution of light in the focal plane of
a telescope after the light from a point source has passed through the optics of a telescope.
The PSF is a measure of how well the instrument focuses all of a source’s photons. Pow-
erful astronomical systems are characterized by optical systems with a narrow PSF. The
width of the PSF is important to distinguish close by objects, faint objects, discern details
on the surface of a celestial object, such as a planet, a moon or an asteroid. Nonetheless,

2 A hot pixel is a pixel which is saturated on long exposures. A stuck pixel is an extreme case of a hot
pixel. It has large charge leakage, regardless of the exposure time. A dead pixel is a pixel that reads zero
on all images taken. See (Gilliland, 1992) for more details.
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the PSF can be spatially varying along the fov, as in high-energy astrophysics. Often, the
PSF is not known precisely and some functional form of the PSF' is used for background
estimation and source detection. Source detection methods employing a PSF or its func-
tional form are designed for the detection of point-like objects regardless of extended ones
(Starck and Pierre, 1998). Hence, a source detection algorithm capable of detecting a large
variety of source morphologies should be able to operate effectively without the knowledge
of the instrument characteristics.

Other techniques employ the PSF for source characterization (see e.g. Starck et al. 2000),
reducing systematic errors in the photometry. However, the photometric solution is not
only depending on the deconvolution of the detected source flux with a known PSF. The
photometric solution of detected sources depends on both, systematic and statistical, un-
certainties. Both kinds of uncertainties need to be accounted for background—source sep-
aration and properly distributed in the final solution. In this thesis, a detailed PSF is
not included neither in the source detection procedure nor in the source characterization
routine. The developed technique described in this thesis tackle the problem of reliably
detecting background as well as sources with their respective uncertainties. Nevertheless,
if the instrumental PSF is known precisely for the whole fov, then the developed technique
can take into account that information in a further step of source characterization within
the properties of a specific observational set—up.

For a reliable detection of celestial objects and for a proper propagation of errors in

background and source estimates, a source detection technique should be capable of jointly
estimating the background and detecting the sources.
Many techniques subtract an estimated background from the data, leading even to negative
count rate values of the signal of interest (see e.g. Sliwa et al. 2001). A joint background—
source separation is, instead, a necessary condition for preserving the statistics through-
out the whole algorithm and, therefore, for providing consistent uncertainties of back-
ground and sources. This is of major importance in astrophysics. In fact, modern astro-
nomical instruments, from optical (wavelength range ~ 380 — 750 nm) to y-ray (wave-
length < 1072 nm) bands of the electromagnetic spectrum, can detect individual photons
(Starck et al., 2008). Thus, the data are discrete counts and Poisson statistics has to be
used. Noise dominates the signal especially at high frequencies of the electromagnetic
spectrum (Starck and Murtagh, 2006).

If all the above issues are addressed, any source detection technique improves the de-
tection of faint sources with respect to other methods. The detection of faint sources is
an hot topic in high—energy astrophysics (Burkert et al., 2008). Faint sources may provide
important information about the Cosmos. For instance, the detection of quasistellar ob-
jects (QSOs) allows one to improve the knowledge about the evolution of the early phase
of the universe (Burkert et al., 2008). However, the detection of faint, both point-like and
extended, sources is limited by the pervasive presence of background fluctuations in the
data. Often, source detection techniques estimate the noise in the data analysing an area
of the astronomical image that supposedly contains only background. Several approaches
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to estimate the standard deviation of Gaussian noise in an image have been developed. In
Bertin and Arnouts (1996), for instance, the noise is estimated employing a k — o clipping
approach on meshes of the image. Once the variability of the data around the background
is known, a detection level at about 3 —5 o above the background is chosen. Faint sources
with intensities below the detection level are lost.

Noise in the data corrupts background and source signals. Thus, source detection
techniques should be capable of including systematic and random errors in the analy-
sis of both background and sources. In addition, noise in the data can not be reliably
estimated (Starck and Murtagh, 2006). In order to improve the detection of faint celes-
tial objects, multiscale (Starck and Pierre, 1998) and multiband (see Collet and Murtagh,
2004; Murtagh et al., 2005; Laidler et al., 2007) approaches have to be employed.

The multiscale analysis allows one to detect sources and their substructures at multiple
scales. It facilitates the detection of faint objects close to the background signal and the
detection of complex morphologies of extended sources. Another motivation to employ a
multiscale approach to source detection, for instance, in the X-ray spectral regime, is due
to the presence of a spatially varying PSF.

The multiband analysis matches sources detected at different energy bands of the electro-
magnetic spectrum to improve the sensitivity of source detection. Modern CCD detectors
can measure not only the positions of incident photons but also their energies, as in the
X-ray spectral regime. Consequently, the same portion of the sky can be observed at
different energy bands by the same instrument. The information coming from different
energy bands can be combined, separating more efficiently nearby objects accounting for
their different spectra.

The data in astronomical images give rise to an inverse problem that is ill-posed.
The inverse problem is described as follows by Sivia (1990): “Having seeing the outcome
of several 'moves’ in a game, we want to infer the rules governing that game.” Inverse
problems are solvable when providing a reasoning (or inference) about the data, that are
corrupted by noise. The solution of an inverse problem is not unique and, hence, is ill-
posed. An ill-posed inverse problem requires the use of decision theory methods in order
to provide for a unique and stable solution.

The solution of an ill-posed inverse problem is given by inferring the values of model
parameters defined to describe completely the physical system arised by the data. The
values of the model parameters are inferred from the observed data. Lack of data and
experimental uncertainties may produce biased results. The most efficient way to solve
ill-posed inverse problems is to use the calculus of probability theory as introduced by
Bayes (Bayes, 1783): See Tarantola (1987) for more details. BPT allows for plausible rea-
soning and for unbiased results. With BPT the solution of an ill-posed inverse problem is
found making the best inference based on the experimental data and any available a priori
information, that are described using probability densities. The information entering the
models is combined to provide a unique and stable solution. BPT allows one to combine
optimally any information, because uncertainties are taken into account. In the light of
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new data, the solution can be revised (Sivia, 1990).

In this thesis, the detection of faint, both point—like and extended, sources is addressed
to data coming from astronomical images in the X-ray spectral regime. These images are
typically containing from 0.1 to a few photons per pixel (Starck and Pierre, 1998).

In Section 1.2, conventional methods extensively applied for the analysis of X-ray as-
tronomical images are introduced. Faint objects may be lost by these source detection
methods (see, e.g., Starck and Murtagh 2006, Valtchanov et al. 2001 for more details), be-
cause large variations in the background are not described. The detection of extended
sources, their complex morphologies and their substructures is demanding for these tech-
niques.

In recent years, for the detection of low surface brightness sources in deep astro-
nomical images and in surveys, alternative approaches have been used. In the works
of e.g. Giacconi et al. (2002b) and Pierre et al. (2004), the detection of extended sources is
achieved with the application of several techniques in sequential order. The employment of
several techniques in sequential order does not allow to properly account for uncertainties
in the data.

In Section 1.3, source detection methods employing BPT are introduced. These tech-
niques are advanced with respect to the conventional ones, because ill-posed inverse prob-
lems are tackled from the consideration of random and systematic uncertainties. An intro-
duction to the technique developed in this thesis is given.

In Section 1.4, an outline of the thesis structure is provided.

1.2 Conventional source detection methods

Conventional source detection methods employed in deep imaging surveys are: k — o
clipping for background modelling, peak finding and thresholding for source detection,
adaptive aperture photometry with isophotal corrections for source characterization (see,
e.g., the software program SEXTRACTOR described in Bertin and Arnouts, 1996); sliding
window technique (Harnden et al., 1984; Gioia et al., 1990) and maximum likelihood (ML)
PSF fitting (see Hasinger et al. 1994 and Boese and Doebereiner 2001 for more details);
wavelet transformation (e.g. Slezak et al., 1990; Rosati et al., 1995; Damiani et al., 1997;
Starck and Pierre, 1998; Lazzati et al., 1999; Freeman et al., 2002). A review of these
techniques can be found in Valtchanov et al. (2001) and Becker et al. (2007).

The SEXTRACTOR software package is one of the most widely used source detection
procedures in astronomy. It has a simple interface and very fast execution. It provides
the morphology of any object through its list of pixels. It produces reliable aperture
photometry catalogues (Becker et al., 2007). The main pitfall of the SEXTRACTOR is
the low accuracy in the background model. Consequently, the SEXTRACTOR does not
show high sensitivity in detecting faint and extended sources. However, the SEXTRACTOR
software can be applied in X-ray regime on filtered images (Valtchanov et al., 2001).

The sliding window technique is a fast and robust source detection method. This tech-
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nique may fail while detecting extended sources, sources near the detection limit and nearby
sources (Valtchanov et al., 2001). This source detection method has been refined with more
elaborated techniques, such as matched filters (e.g. Vikhlinin et al., 1995; Stewart, 2006)
and recently the Cash method (Stewart, 2009). The Cash method is a ML technique. For
source detection, the method employs a Cash likelihood-ratio statistic, that is an extended
x* statistic for Poisson data (Cash, 1979). Both the matched filters and Cash methods
are at least by a factor of 1.2 more sensitive than the sliding—window technique (Stewart,
2009). Though, both methods are designed for the detection of point sources. The candi-
date sources are characterized in a further step using ML PSF fitting. The ML PSF fitting
procedure performs better than other conventional techniques for flux measurements of
point-like sources. However, accurate photometry is achieved if a well-determined PSF
model is used (Valtchanov et al., 2001). In Pierre et al. (2004), the ML profile fit on pho-
ton images is extended taking into account a spherically symmetric f—model (King profile,
see King, 1962; Cavaliere and Fusco-Femiano, 1978) convolved with the instrumental PSF
for improving the photometry of extended objects.

Wavelet transform (WT) techniques improve the detection of faint and extended sources
with respect to other conventional methods (see Starck and Pierre 1998 for more de-
tails). In fact, WT techniques are able to discriminate structures as a function of scale.
Within larger scales, faint and extended sources are detected. W'Ts are therefore valu-
able tools for the detection of both point-like and extended sources (Valtchanov et al.,
2001). Nonetheless, these techniques often favour the detection of circularly symmetric
sources (Valtchanov et al., 2001). In addition, artefacts may appear around the detected
structures in the reconstructed image, and the flux is not preserved (Starck and Pierre,
1998). In order to overcome these problems, some refinements have been applied to the
WT techniques. In Starck and Pierre (1998), for instance, a multiresolution support fil-
tering is employed to preserve the flux and the adjoint WT operator is used to suppress
artefacts which may appear around the objects. An advance on this method is provided in
Starck et al. (2000). A space—variant PSF is incorporated in their WT technique. Object
by object reconstruction is performed. For point sources the flux measurements are close
to that obtained by PSF fitting.

1.3 Advanced source detection methods

A self—consistent statistical approach for background estimation and source detection is
given by BPT, which provides a general and consistent frame for logical inference. The
results of BPT methods are probabilities, such as the probability that a detected photon is
emitted from some hot interstellar gas contributing to the background or emitted from some
well defined source. Estimates of parameters and their uncertainties can be derived from
the calculated probability distributions. BPT is based on the natural idea of probability
as 'degree of belief” and on the rules of logic.

As James Clerk Maxwell (1831-1879) realized in 1850, the true logic is the calculus
of probabilities because in science we always have to deal with incomplete information
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(Jaynes, 2003). BPT provides a unique method of dealing with noisy or incomplete data
and uncertainties in models, and for combining information of various types in one coin-
cided algorithm. BPT provides an elegantly simple and rational approach for answering
any scientific question for a given state of information (Gregory, 2005). Moreover, the need
to extract as comprehensive information as possible from a given set of data is pressing
in any physical experiment where the data sets available can not be augmented at will.
Therefore, the available data should be exploited with every conceivable care and effort.

For these reasons, Bayesian data analysis is becoming an established tool in astrophysics
(Dose, 2003).

1.3.1 Source detection methods employing BPT

The achievement of Bayesian techniques on signal detections in astrophysics has already
been shown, for example, in the works of Gregory and Loredo (1992), Loredo (1995) and
Scargle (1998). In modern observational astrophysics, BPT techniques for image analysis
have been extensively applied, e.g., Hobson and McLachlan (2003), Carvalho et al. (2009),
Savage and Oliver (2007) and Strong (2003).

For the detection of discrete objects embedded in Gaussian noise (microwave regime),
Hobson and McLachlan (2003) utilizes a model-fitting methodology, where the shape of
the objects of interest is assumed a priori. Markov—chain Monte Carlo (MCMC) techniques
are used to explore the parameter space.

An advance to this work is provided by Carvalho et al. (2009). For speeding up the method
of Hobson and McLachlan (2003), Carvalho et al. (2009) proposes to use Gaussian approxi-
mation to the posterior probability density function (pdf) peak when performing a Bayesian
model selection for source detection.

The work of Savage and Oliver (2007) is developed within Gaussian statistics (infrared
data). At each pixel position in an image, their method estimates the probability of the
data being described by point source or empty sky under the assumptions that the back-
ground is uniform and the sources have circular shapes. The Bayesian information criterion
is used for the selection of the two models. Source parameters are estimated in a second
step employing Bayesian model selection.

In the work of Strong (2003), a technique for image analysis is developed within Poisson
statistics. The technique is instrument specific and is applied to y-ray data. The first
objective of this technique is to reconstruct the intensity in each image pixel given a set
of data. The Maximum Entropy method is used for selecting from the data an image
between all the available ones from a multidimensional space. The dimension of the space
is proportional to the number of image pixels.

None of these techniques provides for a general formulation for the detection of faint,
both point-like and extended, sources in astronomical images coming from most of the
electromagnetic spectrum. In order to detect these faint sources, the requirements for
a new source detection method are the followings: (1) Background model on the whole
fov capable of describing large variations in the data; (2) Bayesian inference; (3) Mixture
models; (4) Multiresolution analysis; (5) Multiband analysis. In Section 1.3.2, the main
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properties of the technique developed in this thesis are highlighted.

1.3.2 The novel method with BPT

A new source detection method based on BPT combined with the mixture-model technique
is proposed. The algorithm allows one to estimate the background and its uncertainties
and to detect celestial sources jointly. The new approach deals directly with the statisti-
cal nature of the data. Each pixel in an astronomical image is probabilistically assessed
to contain background only or with additional source signal. The results are given by
probability distributions quantifying our state of knowledge. The developed Background-—
Source separation (BSS) method encounters: background estimation, source detection and
characterization.

The background estimation incorporates the knowledge of the exposure map. The esti-
mation of the background and its uncertainties is performed on the full astronomical image
employing a two—dimensional spline. The spline models the background rate. The spline
amplitudes and the position of the spline supporting points provide flexibility in the back-
ground model. This procedure can describe both smooth and highly varying backgrounds.
Hence, no cut out of regions or employment of meshes are needed for the background esti-
mation. The BSS technique does not need a threshold level for separating the sources from
the background as conventional methods do. The threshold level is replaced by a measure
of probability. In conventional methods, the threshold level is described in terms of the
noise standard deviation, then translated into a probability. The classification assigned
to each pixel of an astronomical image with the BSS method allows one to detect sources
without employing any predefined morphology. Only, for parametric characterization of
the sources predefined source shapes are applied. The estimation of source parameters and
their uncertainties includes the estimated background into a forward model, where only
the statistics of the original data are taken into account. The BSS method provides simul-
taneously the advantages of a multiresolution analysis and a multiband detection. In order
to quantify the multiscale structure in the data, a multiresolution analysis is required (see
Kolaczyk and Dixon, 2000; Starck et al., 2000). In the BSS approach the multiresolution
analysis is incorporated in combination with the source detection and background estima-
tion technique with the aim to analyse statistically source structures at multiple scales.
When multiband images are available, the information contained in each image can be
statistically combined in order to extend the detection limit of the data (see Szalay et al.,
1999; Murtagh et al., 2005).

The capabilities of this method are best shown with the detections of faint sources in-
dependent of their shape and with the detections of sources embedded in a highly varying
background. The technique for the joint estimation of background and sources in dig-
ital images is applicable to digital images collected by a wide variety of sensors at any
wavelength.

The BSS technique is applied to images in the X-ray spectral regime. The X-ray en-
vironment is particularly suitable to the novel Bayesian approach for a number of reasons.
X-ray astronomy is characterized by small numbers of photon counts even for relatively
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long exposures and the observational data are rarely reproduced. The astronomical images
are affected by incomplete data due to telescope support structures, smearing effects caused
by dithering of the telescope, vignetting effects and instrumental calibrations. Astronom-
ical images provided by new generation instruments are usually a combination of several
individual CCD imaging pointings. The PSF is spatially varying and it is often not known
exactly on the full fov. The cosmic background is not necessarily spatially constant. X-ray
astronomy primarily involves the study of plasma with thermal temperatures in the range
of 10° to 10® K. Such plasma radiate the majority of their energy in the range of (0.1 —10)
keV. Extended sources, like galaxy clusters and groups, with complex morphologies are
detected. The background estimation directly underneath a source, especially an extended
source, is a difficult task for source detection methods. In fact, there are few source detec-
tion algorithms developed so far for an automated search of faint and extended sources. A
large homogeneous sample of clusters of galaxies is needed for cosmological studies.

1.4 Outline of the thesis

This thesis is organized as follows:

In Chapter 2, basic aspects of BPT are briefly reviewed (Section 2.1). A detailed
description of the BSS algorithm is provided: In Section 2.2 the technique for the joint
estimation of background and sources is introduced; In Section 2.3 the BSS algorithm is
extended in order to obtain an automated method for source characterization.

In Chapter 3, an important issue related to false positives in source detection is ad-
dressed. A commonly used tool for signal significance testing with classical statistics is
discussed and compared to the source probabilities estimated with the BSS method.

In Chapter 4, the BSS technique is applied to simulated data. The data sets are meant
to test the limits and to show the potentials of the BSS method at varying background
values. Results for two different choices of prior pdfs of the source intensities are provided.

In Chapter 5, the standard techniques currently employed in the X-ray regime are
briefly reviewed, including those for sky surveys. Then, the BSS results on the three simu-
lated data sets are compared with the outcome from WAVDETECT algorithm (Freeman et al.,
2002).

In Chapters 6 and 7, the BSS method is tested on astronomical images coming from
the RASS data and on deep astronomical images of the CDF-S region, respectively. The
detection of new X-ray sources is shown and a sample of galaxy clusters and groups is
provided.

In Chapter 8, concluding remarks and outlook are given.



Chapter 2

The BSS technique

In this Chapter the novel method for the search and characterization of celestial sources in
digital astronomical images is described. The BSS algorithm is based on BPT combined
with the mixture-model technique. In Section 2.1, the basic aspects of BPT are reviewed.
The principles of the background—source separation technique are introduced in Section
2.2. The source characterization method is described in Section 2.3. The BSS algorithm
is published in Guglielmetti et al. (2009, 2005, 2004a,b,c).

2.1 Bayesian probability theory

In image processing, an automated system to reason, i.e. to take information about the
world and to reach conclusions, is required. The expert knowledge is used to design repre-
sentative models and to develop a simplified description of a complex process for reasoning.
BPT allows us to investigate probabilistic models. Probabilistic models are used to deal
with uncertainties in the data with a principled and definite method.

Bayesian analysis is named after Thomas Bayes (1702-1761). In his “An essay towards
solving a problem in the doctrine of chances’ (Bayes, 1783) he applied this analysis for
a game of chance. In the late eighteenth and early nineteenth centuries, Pierre-Simon
Laplace (1749-1827) extensively developed the Bayesian approach to statistics (Laplace,
1812). Much of Laplace’s motivation in this development was the solution of problems
in celestial mechanics. It remained the dominant form of statistics until the early twenti-
eth century. Although fundamental work was still being done in astronomy and physics,
it remained out of fashion as late as the 1970s (Connors, 1997). Nowadays one sees
many applications, especially in image processing, as it allows to tackle problems that
are ill-posed and cumbersome for classical statistics (see Berger, 1997; Connors, 1997 for
more details). BPT allows one to infer an image given data constraints, prior knowledge,
and uncertain information. For more on the subject see, e.g., Jeffreys (1961); Bretthorst
(1988); Bernardo and Smith (1994); Gelman et al. (1995); Loredo (1995); Sivia (1996);
Dose (2003); Jaynes (2003); O’Hagan and Forster (2004); Gregory (2005).

BPT provides a framework for scientific reasoning and rules for processing any kind of
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incomplete information. The knowledge is always incomplete because of lack of data and
uncertainties in the data. The information available is given by the observed data set and
the expert knowledge about the physical system under investigation: priori information,
statistical models and supplementary information such as first—principle physics knowledge.
Each data set and parameters entering the models are subject to uncertainties which have to
be estimated and encoded in probability distributions. Within BP'T the so—called statistical
and systematic uncertainties! are not distinguished. Both kinds of uncertainties are treated
as a lack of knowledge.

The outcome of the BPT analysis is the pdf of the quantity of interest, which encodes
the knowledge to be drawn from the information available (a posteriori). Any uncertainty
of the physical system is accounted for and propagated in the posterior pdf. The posterior
pdf comprises the complete information which can be inferred from the data and the expert
knowledge. Values of model parameters and their uncertainties are directly computed from
the posterior pdf.

BPT is a statistical approach based on comparisons among alternative hypotheses (or
models). Probability densities are assigned to the full hypothesis space. The probability
of an hypothesis covers the full range of real values from 0 to 1. In classic statistic, the
probability of an hypothesis can only be 0 or 1, being an hypothesis only true or false.
In addition, in contrast to classical statistics, probabilities are assigned using the single
observed data set. Therefore, BPT does not need sample data drawn from a population
to assess the intrinsic uncertainty in the population.

BPT provides for additional benefits with respect to classical statistics. For instance,
when data from different experiments are available, BPT allows for an integrated data
analysis (IDA). Heterogeneous diagnostics are individually modelled and, successively, com-
bined probabilistically. The combination of heterogeneous diagnostics occurs accounting
for interdependencies between the data sets and for uncertainties of the measured data,
the calibration measurements and the physical model. Thus, the extraction of informa-
tion from sets of heterogeneous data is optimized and results are improved with respect to
previous techniques: Refer to Fischer and Dinklage (2004, 2007) for more details.

BPT is based on the sum and product rules of probability theory. Consequently, nui-
sance parameters are integrated out through marginalization. Uncertainties of nuisance
parameters are accounted in the posterior pdf. BPT allows for tackling problems such
as parameter estimation, uncertainty determination, model comparison with models of
varying complexity, and classification of data within a mixture of models.

2.1.1 Probability axioms

BPT rests on two rules of probability theory (see, e.g., Cox, 1946; Dose, 2003):
the sum rule

p(H;|I) + p(Hi|I) =1 (2.1)

!Systematic errors reflect, for instance, uncertainties in instrumental calibration.
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and the product rule
p(Hi, DII) = p(Hi|I) - p(D|H;, I) = p(D|I) - p(Hi| D, I). (2.2)

The hypotheses (models, values for parameters) H; are formulated in the light of some
background information I. Equation (2.1) simply states that the probability that a par-
ticular hypothesis H; is true plus the probability that the negation H; of H; is true add up
to one. Similarly, the product rule states that the joint probability for H; and D, the data,
being true given the background information I may be expressed as the probability for H;
being true conditional on I times the probability for D given that H; is true (Dose et al.,
1998). Equation (2.2) shows that the decomposition can be achieved in two equivalent ways
because of the symmetry in the arguments (H;, D) of p(H;, D|I). The notation employed
is the one introduced by Jeffreys (1961).

In BPT the number of competing hypotheses has to be larger or equal to 2, since no
hypothesis is ever regarded true until there is no plausible alternative explanation of the
data. Another version of the sum rule can be derived from eqs (2.1) and (2.2):

p(Hy + Ha|I) = p(Hy|I) + p(Ha|I) — p(Hy, Ha|T), (2.3)

this is called the extended sum rule. Equation (2.3) can contain several competing hy-
potheses. Dealing with mutually exclusive hypotheses (i.e. if one hypothesis is true then
all the other are false), the sum rule can be written as

p(>_H|I) =Y p(H|I)=1.
This is the normalization rule (Dose et al., 1998).

2.1.2 Bayes’ theorem

Comparison of the two equivalent decompositions in eq. (2.2) yields Bayes’ theorem:

1D, 0, 1) - P D) o)

where the notation introduced by Jeffreys in eq. (2.2) is changed highlighting the errors,
o, entering the experiment. The vertical bars in eq. (2.4) denote conditionality property,
based on either empirical or theoretical information.

Equation (2.4) relates the posterior pdf p(H;|D, o, I) to known quantities, namely, the
likelihood pdf p(D|H;, 0, I) and the prior pdf p(H;|I). p(D|I) is the prior predictive value
for D, called the evidence. The evidence is the global likelihood for the entire class of
hypotheses and is obtained by application of the sum and product rules:

p(DID) = > p(t DID) = 37 p(HH[D) - (D] 1) (2:5)
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Essentially, the evidence is the average likelihood for D, with the prior giving the averaging
weight. In this form, eq. (2.5) has the meaning of a normalization constant.

Note that Bayes’ theorem and all other rules above discussed can apply to both discrete
and continuous parameters. Hence, all equations are modified accordingly. If more than
one (continuous) parameter is considered, multiple integrals are used. In the case of a
direct assignment of the prior density and the likelihood, the evidence is an uninteresting
normalization constant. Thus, the posterior pdf is simply proportional to the product of the
prior and the likelihood pdfs. Nonetheless, the evidence has two important applications:
first, marginalization, that is required for the parameterization of a problem; second, model
comparison. These applications are explained in the following Sections.

The posterior pdf in eq. (2.4) is the quantity to be inferred. It depends on the full data
set D, on the errors o entering the experiment and on all relevant information concerning
the nature of the physical situation and knowledge of the experiment I. The likelihood pdf
represents the probability of finding the data D for given quantities of interest, uncertainties
o and additional information I. It reveals the error statistics of the experiment. The prior
pdf represents physical constraints or additional information from other diagnostics.

The terms ‘posterior’ and ‘prior’ have a logical rather than temporal meaning. The
posterior and prior pdfs can be regarded as the knowledge ‘with’ and ‘without’ the new
data taken into account, respectively.

Bayes’ theorem constitutes a recipe of learning (inductive inference). The result of
the learning process implied by eq. (2.4) is the posterior distribution, that constitutes the
result of a Bayesian analysis (Dose, 2003). The theorem provides a formal rule for updating
knowledge in the light of new data or learning from observations. In BPT, probabilities
are not frequencies, although frequency arguments are often important for assigning priors
and frequency estimates can be derived from Bayesian probabilities (Fischer et al., 1997).

2.1.3 Marginalization rule

The marginalization rule, eq. (2.6), is a straightforward application of the sum rule (eq. 2.1)
of probability theory (see Bretthorst, 1988 for more details) and of a deconvolution in the
parameter variables.

In order to arrive at the pdf of any quantity z, marginalization of the multidimensional
pdf can be regarded as a projection of the complete pdf on to that quantity. Marginalization
is performed by integration over the quantity y one wants to get rid of:

p(I‘D,O‘,I, Hi) :/p(x,y|D,a, I; Hl)dy
x /P(D\x,y,f,m H;) - p(w,y|I, Hy)dy

x p(z|I, H;) /p(D|x,y,I,0, H,) - p(y|l, Hy)dy. (2.6)

Equation (2.6) gives the marginal posterior pdf for x, p(z|D, o, I, H;), in terms of the
weighted average of the likelihood function, p(D|z,y, I, o, H;), weighted by p(y|I, H;), the
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prior pdf for y (Gregory, 2005). Marginalization of a quantity y thus takes into account the
uncertainty of y which is quantified by the pdf p(y|I, H;). The uncertainty of y propagates
into the pdf p(z|D, o, I, H;).

Marginalization provides a way to eliminate variables (nuisance parameters) which are
necessary to formulate the likelihood but otherwise uninteresting. Marginalization reduces
the dimensionality of the problem.

2.1.4 Parameter estimation

Parameter estimation is a standard problem in data analysis. For given measurements,
model parameters are estimated to explain at best the data (learning process). Commonly
the least-squares algorithm for estimating the parameters or the ML method to estimate
the parameters and their uncertainties have been used (Dose, 2003).

Bayesian analysis and the ML method analyse the problem of parameter estimation
in a probabilistic framework. BPT, as the ML method, provides estimate of parameters
and their uncertainties. The main difference between the Bayesian and the ML approaches
to parameter estimation is that BPT makes probability statements about the parameters,
while classic statistics can not. In fact, in classic statistics parameters are not allowed to
be random variables (O’Hagan, 2000).

In a ML estimation approach, the mode (or maximal value) of the likelihood func-
tion, i.e. a pdf associated with the data given some parameters, is computed. Often, the
Conjugate Gradient optimization technique is used for maximizing the likelihood. The ML
solution maximizes the probability of the data. However, only a point in parameter space is
found and no certainty is given for its uniqueness: A local maximum may be found instead
of a global one. The local curvature of the likelihood function at the ML solution is used to
construct error bars (confidence intervals). Hypothesis testing follows using a likelihood—
ratio statistics. The strengths of the ML estimation rely on its large—sample properties:
When the sample size is sufficiently large, then one can assume both normality of the test
statistics about its mean and that the likelihood-ratio tests follow x? distributions. These
nice features don’t necessarily hold for small samples (see, e.g., Kendall and Stuart, 1979;
Eadie et al., 1982; Loredo, 2004 for more details).

Bayes’ theorem, instead, combines initial knowledge about the distribution of the un-
known parameters entering the model with the likelihood pdf of the data given the pa-
rameters. The strengths of the Bayesian procedure in parameter estimation are due to the
employment of not only prior knowledge, but also marginalization (described in Section
2.1.3): See Loredo (2004) for more details. The Bayesian solution to parameter estimation
is the full posterior pdf of the parameters and not just a single point in the parameter
space. Hence, BPT allows one to obtain a predictive distribution of the parameters. The
values of the parameters and their uncertainties are derived from their joint posterior pdf.
Probability contours (credible regions) in the parameter space describe uncertainties of the
parameters. A credible region R of probability p is the region of highest posterior density
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containing a volume in parameter space p:

/Rde p(0|D, 1) = p, (2.7)

where 0 is a set of parameters (Loredo and Lamb, 2002). Credible regions are more robust
than confidence intervals in classical statistics (Connors, 1997). In fact, with BPT there is
no need to employ sample data drawn from a population to derive statements about the
parameters.

BPT provides a valid approach to parameter estimation also for moderate and small
data sets. A peculiarity of the Bayesian approach to parameter estimation is shown by the
accuracy estimates of the parameters, which depends on the estimated noise. Everything
probability theory can not fit to the model is assigned to the noise. Large uncertainties
in model parameters are assigned when the noise is estimated to be large (see Bretthorst,
1988 for more details).

Note that a parameter contained within a model for the prior distribution for multiple
parameters, which are themselves directly included in a model describing the data, is called
hyperparameter.

Prior information

Physical situation always supports proper information (Fischer and Dose, 2002). Within
BPT, each relevant information entering the models is explicitly stated. Priors are neces-
sary to perform the ’probability inversion’ of eq. (2.4). Priors account for the geometry
of the hypothesis space, converting the likelihood from ’intensity’ to 'measure’ (Loredo,
2009). Prior information, encoded in probability distributions, helps to improve estimates
of parameters (Bretthorst, 1988).

In order to formulate a distribution given a certain state of a priori knowledge, the
principle of maximum information entropy is used (Dose, 2003). The maximum entropy
(MaxEnt) principle assigns probabilities to incomplete or uncertain information, allowing
one to maximize the uncertainty in the probability distribution (Gregory, 2005). With
the MaxEnt principle, constraint (or testable) information is combined with Shannon’s
entropy measure of the uncertainty of a probability distribution to arrive at a unique
probability distribution (Shannon, 1948; Jaynes, 1968, 2003). Maximizing entropy achieves
the probability distribution which is most conservative and noncommittal while agreeing
with the available information. One example is given when prior information is constrained
to a mean value. The distribution which has maximum entropy, subject to a given average
value, is an exponential function: be # a parameter and 0 a point estimate (i.e. the only
knowledge about 6), then the MaxEnt distribution is

exp(—0/)\)

p(e‘é, I) = Z()\) )

(2.8)

where A must be determined such that < 6 >=  and Z (A) is the partition function
(Jaynes, 1968). If the support range of 6 is 0 < # < oo, then eq. (2.8) is simplified with
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A=0and Z (A) = 0. On the same line of this example, the distribution with maximum
entropy is given by a Gaussian function, when prior knowledge is constrained to the mean
value and the variance of the distribution. Last, when no constraint is applied, then the
distribution with maximum entropy is a uniform distribution. Flat priors are the least
informative ones. A flat prior of a parameter gives the same probability to each model
parameter value within the range of the prior. See, e.g., Jaynes (1968, 2003); O’Hagan
(2000); Dose (2003); Gregory (2005) for more details.

The impact of the prior pdf on the posterior pdf can be tested employing differ-
ent choices of priors. When the choice of prior pdf does not change the posterior pdf
significantly, then the data (i.e. the likelihood function) contain significant information
(Kass and Wasserman, 1996).

2.1.5 Model comparison, classification

Model comparison or object classification is a complementary statistical task to parame-
ter estimation (Loredo and Lamb, 2002). Data interpretation is accomplished comparing
parametrized models. Essential for model comparison is the marginal likelihood (evidence,
prior predicted value) (Dose, 2003). Marginalization (integration) of the likelihood over
parameter space provides a measure for the credibility of a model for given data. Ratios
of marginal likelihoods (Bayes factors) are frequently used for comparing two models: See
Berger (1985); Kass and Raftery (1995) for a comprehensive description of Bayes factors.
In the literature other techniques for model comparison can be found, such as the Akaike
information criterion and the Bayesian information criterion (or Schwarz criterion). An
overview of these techniques is given in Kass and Raftery (1995). Bayes factors are the only
penalization criteria of model complexity that take into account the full variability of pa-
rameters (and their uncertainties) by integrating over parameter space (Fischer and Dose,
2002).

Be H; and H; two competing models, Bayes’ theorem (2.4) for model H; can be written
as follows:

p(D|H;, 0, 1) - p(Hi 1)
p(D|H;,0,1) - p(H;|I) + p(D|Hj, 0, 1) - p(H;|I)
The posterior pdf for the competing model is given by eq. (2.9), exchanging the subscripts
1 and j.

The ratio between the two posterior pdfs of the competing models (odds ratio) can be
written as follows:

p(Hi‘D,U,[) = (29)

H;|1 D|H;, 0,1

Oz‘j:p( | )p( |Hi,o ), (2.10)
p(H;|I) p(D|Hj,0,1)

from model H; to model H;. The first factor (the ratio of the priors) is called prior odds.

In most physical problems the prior odds is set to 1, since it is not known a priori which

is the most preferable model. The second factor is the Bayes factor:
p(D‘Hjaaal) fp(D’¢,H],O',[)p(¢u,H])d¢ o

(2.11)
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where model parameters (6, ¢) can be completely independent or one can include the other.
The Bayes factor is the ratio of marginal likelihoods of models H; and H;. The marginal
likelihood is called evidence, in the sense that the higher this number is, the higher the
evidence is that the data provide in favour of the model (Astone et al., 2003).

The problem with Bayes factors is the cumbersome multidimensional integral over pa-
rameter space to be calculated for the marginal likelihood. On the one hand, an exact
analytic evaluation of the integrals in eq. (2.11) is possible only for exponential family dis-
tributions with conjugate (or convenience) priors (Fischer and Dose, 2002; Gelman et al.,
2004), that represent a narrow class of models. On the other hand, the integrands in
eq. (2.11) are highly peaked around its maximum (Kass and Raftery, 1995). Numerical
methods, capable of finding the region where the integrand mass is accumulating, are:
asymptotic approximation (Laplace’s method and its variants); Monte Carlo integration
(e.g. adaptive Gaussian quadrature); MCMC techniques simulating from the posterior
(e.g. Metropolis-Hastings algorithm, Gibbs sampler, RIMCMC). A review of these tech-
niques can be found in Kass and Raftery (1995); Fischer and Dose (2002). In this thesis,
the sample size of the multidimensional integral is moderate. Therefore, the Laplace’s ap-
proximation is preferable with respect to other techniques. The Laplace’s approximation
is described in details in the next subsection.

An important aspect of model comparison with Bayes factors is that the rule known as
"Ockham’s Razor’, i.e. ” Prefer the simpler model unless the more complicated model gives a
significantly better fit” (Loredo, 1995), is automatically implemented. For example, when
employing the Laplace’s approximation, Bayes factors are estimated by approximation of
the marginal likelihood evaluated at the maximum values of the parameters multiplied by
a parameter volume factor (Ockham or simplicity factor) (Dose, 2003). The Ockham factor
is a quantification of the rule ’Ockham’s Razor’. The Ockham factor accounts for the ratio
between the volumes of the likelihoods around the maximum and the prior volumes. Model
H; will be preferred over model H; only if the likelihood increases sufficiently to overwhelm
the additional Ockham factor (see Jeffreys and Berger, 1992; Loredo et al., 1997 for more
details).

In classic statistics, ratios of maximum likelihoods are commonly used to compare
models. More complicated models have higher likelihoods than simpler ones. Since 'Ock-
ham’s Razor’ is not automatically incorporated in the likelihood ratio test (or Neyman—
Pearson lemma), a specified critical value is used to provide preference for simplicity
(Loredo and Lamb, 2002). Therefore, the specified critical value can be seen as a prior
information, that is not included into the analysis, but it is externally prefixed. In addi-
tion, the classic hypothesis test, in contrast to Bayes factors, can not take into account
model uncertainty. Model uncertainties are needed especially for comparing more than two
models or nested models. Model comparison in classic statistics can lead to very misleading
results (Kass and Raftery, 1995).
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Laplace’s approximation

The integrands in eq. (2.11) represent each the posterior pdf. For instance, at the denom-
inator the posterior pdf is P(0|D, H;, 0, 1) and it represents all the information necessary
to decide how reasonable a solution 6 is (Dose, 2003). The posterior pdf allows one to
determine many quantities of interest, such as the posterior mode, maxy P(0|D, H;, 0, 1),
resulting in the most probable solution, 0, the mean < 0; >= [0;,P(0|D, H;,0,1)d"0, and
confidence intervals via the variance var(6;) =< 67 > — < 6, >2.

For multivariate problems, the posterior pdf can be approximated with a Gaussian
distribution. This is a commonly used method for estimating parameters. It is termed
Laplace’s approximation (or evidence approximation) (O’Hagan, 2000).

The posterior pdf is assumed to have a single dominant interior mode, i.e. the mode
is not on the boundary of the allowed parameter space, with N parameters. The mode is
indicated with 6. In the vicinity of the mode, the product of the prior and the likelihood
pdfs can be approximated by a multivariate Gaussian (given by the second-order Taylor
expansion of the posterior pdf around the mode), such that:

p(0|H;, 1) - p(D|0, Hy,0,1) =~ p(0|H;, I) - p(D|0, Hy, 0, 1) - exp[—=(0 — 0)"® (6 — §)],(2.12)

1

2
where the Hessian (or Fisher information) matrix W is the matrix of second derivatives
evaluated at the mode:

— 82 ln[p(mHla I) ) p(D‘ea Hia g, I)]

0%0 P
W is the covariance matrix. Its inverse is the model parameter covariance matrix, that
provides information about the uncertainties of the determined parameters. Specifically,
the Hessian matrix provides the full curvature of the posterior pdf within the Gaussian

approximation.
From eq. (2.12), the marginal likelihood (evidence) can be written as:

p(D|H,, 0, 1) ~ p(0|H,, I) p(D|0, H;, 0, 1) (2m)N/? det ™/ ®. (2.13)

v

Marginal likelihoods are necessary to solve Bayes factors (2.11). Equation (2.13) shows
that the evidence is approximately equal to the posterior maximum times the volume of
the posterior pdf below the peak. This representation may fail when the posterior pdf
is skewed or highly non-Gaussian. For more on the subject, see refs. Kass et al. (1990);
Loredo (1999); O’Hagan and Forster (2004).

Note that eq. (2.12) is also used to do the integrals needed to eliminate nuisance param-
eters. The mode of the parameters can be estimated employing the maximum a posteriori
(MAP) solution to locate the mode.

Maximum a posteriori MAP is an estimate for the most probable parameter 0 found
maximizing the posterior distribution of the parameters 6:

0 = max p(0|H;, 1) - p(D|0, H;, 0, 1). (2.14)
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The normalization factor is not considered, since only the maximum value is of interest.

2.1.6 Mixture model technique

Another important property of BPT is the capability of modelling the data by mixture
distributions in the parameter space (see Everitt and Hand, 1981; Neal, 1992; Sivia, 1997;
Dose, 2003; Gelman et al., 2004 and references therein).

Mixture models are often useful to describe complex statistical problems. Identification
of outlying observations, probabilistic classification, and clustering are some of the problems
which may naturally be modelled in mixture form. Mixture distributions are, therefore,
an appropriate tool for modelling processes whose output is thought to be generated by
several different underlying mechanisms, or to come from several different populations.

A mixture model is a probabilistic model described by the density (Bernardo and Girén,
1988):

k
p(D|X,0) Z)\]p DIf;), A\>0,> N\=1,
=1

where A = {\,---, A}, 0 = {01, -+ ,0;} and k denotes the number of mixands in the
mixture. Note that each 8; € 0 is represented itself by a vector of parameters. In this model,
p(D|6;) describes the probablhstlc mechanism of generating data D within population P;,

which is completely identified by its corresponding parameters ¢;. For instance, in image
analysis the population P; can be given by the data coming from background only or
from background plus source signal. \; denotes the probability that a random observation
comes from population FP;. The number of mixands depends on the physical problem one
intends to model. The functional form of all the terms in the mixture depends on the
physical models under investigation. For example, in image analysis two mixands can be
employed with the two terms in the mixture represented by a Poisson and a marginal
Poisson distributions, respectively.

The identification and characterization of these underlying ‘latent classes’ is of major
importance in this thesis. The mixture model technique is employed within BPT. The
Bayesian mixture model technique allows one to separate the source signal from an un-
derlying background signal. For this, the standard Bayesian approach to this problem is
followed. Hence, a prior distribution is defined over the parameter space of the mixture
model, that is combined with the observed data to give a posterior distribution over the
parameter space.

Several applications of mixture modelling in the framework of BPT can be found in the
literature, e.g., von der Linden et al. (1999, 1997); Fischer and Dose (2002); Fischer et al.
(2001, 2000). In particular, Fischer and Dose (2002) demonstrates the capability of the
Bayesian mixture model technique even with an unknown number of components for back-
ground separation from a measured spectrum. The present approach follows these previous
works.
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Figure 2.1: Flow chart illustrating the background estimation and source detection al-
gorithm. The two boxes in the upper row represent the input information. The output
information is provided by the boxes in the lower row.

2.2 The joint estimation of background and sources

The aim of the BSS method is the joint estimation of background and sources in two—
dimensional image data. The algorithm is characterized by: background estimation and
source detection; calculation of source probability maps in a multiresolution analysis. A
scheme of the BSS algorithm for source detection and background estimation is provided
in Fig. 2.1.

The input information of the developed algorithm is given by the experimental data,
i.e. the detected photon counts, and the telescope’s exposure time. Other input parameters
are listed in the upper right box of Fig. 2.1. They are considered as follows.

The background rate is assumed to be smooth, e.g. spatially slowly varying compared
to source dimensions. To account for smoothness the background rate is modelled with a
two—dimensional TPS (Section 2.2.2). The number and the positions of the pivots, i.e. the
spline’s supporting points, determine what data structures are assigned to be background.
All structures which cannot be described by the background model will be assigned to
be sources. The number of pivots required to model the background depends on the
characteristics of the background itself. Though the minimum number of pivots is four
(since the minimum expansion of the selected spline has four terms), their number increases
with increasing background variation.
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The co—existence of background and sources is described with a probabilistic two—
component mixture model (Section 2.2.1) where one component describes background
contribution only and the other component describes background plus source contribu-
tions. Each pixel is characterized by the probability of belonging to one of the two mixture
components. For the background estimation the photons contained in all pixels are con-
sidered including those containing additional source contributions. No data censoring by
cutting out source areas are employed.

For background estimation the source intensity is considered to be a nuisance parameter.
According to the rules of BPT, the source signal distribution is described probabilistically
in terms of a prior pdf. The prior pdf of the source signal is an approximation to the true
but unknown distribution of the source intensity in the field. Two prior pdfs of the source
signal have been studied: the exponential and the inverse-Gamma function.

The background and its uncertainties (Section 2.2.3) are estimated from its posterior
pdf. Therefore, for each pixel of an astronomical image an estimate of its background and
its uncertainties are provided.

Moreover, the Bayesian approach introduces few hyperparameters, that are fundamen-
tal for the estimation of the posterior pdfs for the background and the source intensities.
Specifically, in Section 2.2.4 the hyperparameters are shown to be estimated exclusively
from the data. Alternatively, hyperparameters can be chosen in advance.

The source probability is evaluated with the mixture model technique for pixels and
pixel cells? in order to enhance the detection of faint or extended sources in a multiresolution
analysis. Pixels and pixel cells are treated identically within the Bayesian formalism. For
the correlation of neighbouring pixels, the following methods have been investigated: box
filter with a square, box filter with a circle, Gaussian weighting filter (see Section 2.2.1 for
more details).

The BSS technique is morphology free, i.e. there are no restrictions on the object size
and shape for being detected. An analysed digital astronomical image is converted into
the followings:

I) the background rate image, or ‘T'PS map’, is an array specifying the estimated back-
ground rate at each image pixel for a given observation;

IT) the background image, or ‘background map’, is an array specifying the estimated
background amplitude at each image pixel for a given observation. It is provided by
the TPS map multiplied with the telescope’s exposure time. The effect of exposure
variations are consistently included in the spline model;

III) the source probability images, or ‘SPMs’, display the probability that source counts
are present in pixels and pixel cells for a given observation in a multiresolution anal-
ysis.

2The image finest resolution limited by instrumental design is defined as pixel, while pixel cells are a
group of correlated neighbouring pixels.
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Movies are produced with the SPMs obtained at different resolutions. The moving im-
ages allow one to discern interactively the presence of faint extended sources in digital
astronomical images. The size of faint extended sources is correlated to the scale of the
resolution, used for their detection. SPMs coming from other energy bands can be com-
bined statistically to produce conclusive SPMs at different resolutions with the advantage

to provide probabilities for the detected sources from the combined energy bands (Section
2.2.5).

2.2.1 Two—component mixture model

The general idea of the described Bayesian model is that a digital astronomical image
consists of a smooth background with additive source signal, which can be characterized
by any shape, size and brightness. The background signal is the diffuse cosmic emission
added to the instrumental noise and particle background. The source signal is the response
of the imaging system to a celestial object. A surface b(x) describes the background in
addition to the source signal, where x = (z,y) corresponds to the position on the grid in
the image.

Therefore, given the observed data set D = {d;;} € Ny, where d;; is photon counts in pixel
(or pixel cell) {ij}, two complementary hypotheses arise:

Eij . dij = bij + €ij
Bij : dij = bij + Sij + Eij.

Hypothesis Bj; specifies that the data dj; consists only of background counts b;; spoiled
with noise ¢;, i.e. the (statistical) uncertainty associated with the measurement process.
Hypothesis Eij specifies the case where additional source intensity sj contributes to the
background. Additional assumptions are that no negative values for source and background
amplitudes are allowed and that the background is smoother than the source signal.

The smoothness of the background is achieved by modelling the background count rate
with a bivariate TPS where the supporting points are chosen sparsely to ensure that sources
cannot be fitted. The spline fits the background component whereas count enhancements
classify pixels and pixel cells with source contributions.

In the following, pixel cells are subsumed by pixels. Pixel cells are collections of pixels
where d;; is the total photon count in cell {ij}. The photon counts of neighbouring pixels
are added up and the formed pixel cell is treated as a pixel. In principle, any cell shape
can be chosen. In practice, two methods have been developed when pixels have weight of
one within the cell (box filtering with cell shape of a square or of a circle) and one method
when pixels have different weights within the cell (Gaussian weighting). The box filter
with cells of squared shape consists of taking information of neighbouring pixels within
a box. The cell size is the box size. The box filter with cells of circular shape considers
pixels with a weight of one if inside the cell size, otherwise zero. Pixels have a weight of
one when the cell size touch them at least at the centre. This method allows the pixel
cells to have varying shapes. The Gaussian weighting method provides Gaussian weights
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(A) (B) (€)

Figure 2.2: Representation of pixel cells at several correlation lengths: box filtering with
cell shape of a square (A) and of a circle (B); Gaussian weighting (C).

around a centre: weights are given at decreasing values according to the distance from the
centre.
In Fig. 2.2, the developed methods for correlating the information of neighbouring pixels
are depicted. Four correlation lengths are used. Plot (A) shows the box filtering with cell
shape of a box. The employed correlation lengths have values of 0.5, 1.5, 2.5, 3.5 pixels, that
indicate the collections of 1,9, 25,49 pixels respectively. In plot (B), the box filtering with
the cell shape of a circle is represented with correlation lengths of 0.5, 1.0, 1.5, 2.0 pixels. In
this case, pixel cells with 1,5,9, 13 pixels are formed for each indicated correlation length.
Finally, plot (C') shows the Gaussian weighting method for the same correlation lengths
employed for plot (B). The grey shades indicate decreasing weights to pixel counts for
increasing correlation length.

As expressed in eq. (2.4), estimates of probabilities of the hypotheses (B;; and Bj;) are
of major interest.

In this thesis, the problem arising with small number of photon counts in astronomical
images is addressed. Poisson statistics has to be used. The likelihood probabilities for the
two hypotheses within Poisson statistics are:

dij
p(d ij | Blvalj) d 1€ bijv (2.15)
bl 1 . ..
p(d . | Buabmsu) ( J—;‘S{J) o~ (bitsij) (2.16)

This technique is easily adaptable to other likelihoods, for instance employing Gaussian
statistics as given in Fischer et al. (2001).
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The prior pdfs for the two complementary hypotheses are chosen to be p(B;;) = 5 and
p(BIJ) = 1—73, independent of ¢ and j. Specifically, the parameter (3 is the prior probability
that a pixel contains only background.

Since it is not known if a certain pixel (or pixel cell) contains purely background or
additional source signal, the likelihood for the mixture model is employed. The likeli-
hood for the mixture model effectively combines the probability distributions for the two
hypotheses, Bj; and Eij:

(by + s33) %

o e (butsi)y (2.17)
ij:

p(Db,s) = H{ﬂ e (1-0)

where b = {b;;}, s = {s;;} and {ij} corresponds to the pixels of the complete field.
The probability of having source contribution in pixels and pixel cells is according to
Bayes’ theorem (details can be found in Fischer et al. 2001):

(1—0) - p(ds | By, by, Sij)_
B - p(dy | By, byg) + (1 = B3) - p(dy | Bij, byj, si5)

This equation enables the data contained in an astronomical image to be classified in two
groups: with and without source signal contribution. Specifically, eq. (2.18) provides the
probability of source detection.

Equation (2.18) is used in the multiresolution analysis. The SPM with the largest reso-
lution is characterized by the probability of uncorrelated pixels. At decreasing resolutions
a correlation length is defined. Starting from a value of 0.5 or 1, the correlation length
increases in steps of 0.5 or 1 pixel for decreasing resolution. The value of 1 is used only
for the box filtering with the cell shape of a box. The SPMs at decreasing resolutions are,
therefore, characterized by the information provided by background and photon counts in
pixel cells. Specifically, photon counts and background counts are given by a weighted inte-
gration over pixel cells. The integrated photon and background counts enter the likelihood
for the mixture model. Then, the source probability is estimated for each image pixel in
the multiresolution analysis. The multiresolution algorithm preserves Poisson statistics.

p(Bj | D) = Prource. (2.18)

Source signal as a nuisance parameter

Following Fischer et al. (2000, 2001), the source signal in eq. (2.16) is a nuisance parameter,
which is removed by integrating it out (see eq. 2.6), resulting in the marginal likelihood:

p(dsj| Bij, by;) = /0 p(dyj| Byj, bij, s33) - p(s| By, byj)dsij. (2.19)

A nuisance parameter is a parameter which is important for the model (describing the
data), but it is not of interest at the moment. Following BPT, a prior pdf of the source
signal has to be chosen. The final result depends crucially on the prior pdf set on the source
signal. In fact, in addition to the choice of the TPS pivots, the prior pdf of the source
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p(photon countsl ¥)

photon counts

Figure 2.3: Representation of selected prior pdfs of the source signal versus the photon
counts. The exponential prior pdf is drawn at two A values (dashed lines). The inverse-
Gamma function prior pdf is plotted at two a values (continuous lines). On the ordinate,
~ indicates A or a.

signal is crucial for background—source separation: All, that the prior pdf on the source
signal does not allow to describe as a source, is identified as background and vice versa.
Two approaches are described: the first method accounts for the knowledge of the mean
value of the source intensity over the complete field (ezponential prior), the second ap-
proach interprets the source signal distribution according to a power—law (inverse-Gamma
function prior).

Exponential prior Following the works of Fischer and Dose (2002); Fischer et al. (2000,
2001), a prior pdf of the source signal has been selected such that is as weakly informative
as possible. The idea follows a practical argument on the difficulty of providing sensible
information. The prior pdf on the source intensity is described by an exponential distri-
bution,

Sij

e
p(sij | A) = 3

This is the most uninformative distribution according to the Maximum Entropy distribu-
tion for known mean value of the source intensity A over the complete field (see eq. 2.8).
In Fig. 2.3, equation (2.20) is drawn for two values of the mean source intensity: A = 1
count and A = 10 counts. No bright sources are expected to appear in fields with A ~ 1.
In the case of values of A > 1, bright and faint sources are represented in these fields.
The marginal Poisson likelihood for the hypothesis Bj; has the form:

(2.20)

[~

ex T(dy +1), b5(1 + 3)]
AL+ )Y [(dyj +1) ’

p(dij| By, b, \) = (2.21)

where I'[a, 2] = [ e~"t*"dt (a > 0) is the incomplete-Gamma function and I'[a] = I'[a, ]
is the Gamma function (see refs. Fischer et al. 2000, 2001 for more details).
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The behaviour of the Poisson and the marginal Poisson distributions is depicted with a
parameter study. For the parameter study three background amplitudes b are chosen: 0.1,
1 and 10 counts. In Fig. 2.4 the Poisson distribution, eq. (2.15), and the marginal Poisson
distribution, eq. (2.21), are drawn on a logarithmic scale. These plots are indicated with
(a), (b) and (c), respectively. The parameter A, which describes the mean intensity in a
field, has values of: 1, 10 and 100 counts. The selected values for the background and
for the parameter A\ are chosen such that a large variety of cases one encounters analysing
digital astronomical images are covered. For instance, b = 10 counts and A = 1 count
(plot ¢) corresponds to a field when the source signal is much smaller than the background
signal. On the other side, b = 0.1 counts and A = 100 counts (plot @) corresponds to a
field characterized by bright sources and small background amplitude.

The Poisson distribution is always larger than the marginal Poisson distribution for
photon counts lower or equal to the background intensity. Hence, hypothesis Bj; is more
likely than the complementary hypothesis Eij. This situation changes when the photon
counts are larger than the background amplitude.

The decay length of the marginal Poisson distribution is determined by the expected
source intensity A. The probability to detect pixels satisfying hypothesis Bj; is sensitive to
the decay length of the marginal Poisson distribution and to the background amplitude,
that is recognizable in the distance between the Poisson and the marginal Poisson distri-
butions. Hence, the BSS method allows probabilities to be sensitive to the parameters
characterizing the analysed digital astronomical image.

Let us consider plot (b) in Fig. 2.4 for photon counts in the range (0 — 10). The
background amplitude has a value of 1 count. If the expected mean source intensity on
the complete field has a value of 1 count, i.e. A = 1 count, 3 photon counts or more in
a pixel are classified as a source, because the marginal likelihood is much larger than the
likelihood. The probability of detecting a source increases with increasing counts in a
pixel. This is due to the increasing distance of the marginal Poisson likelihood from the
Poisson likelihood. If an analyst allows for many bright sources distributed in the field,
then the relative number of faint sources is reduced. In fact, when a mean source signal
100 times larger than the background is expected, then 5 photon counts or more in a pixel
are needed to identify the event due to the presence of a source. When A\ = 100 counts,
5 photon counts in a pixel reveal a source probability lower than the one obtained when
A =1 count. This situation changes for 7 or more photon counts in a pixel.

Inverse—-Gamma function prior Alternatively to the exponential prior, a power—law
distribution can be chosen to describe the prior knowledge on the source signal distribution.

One is tempted to claim that any physical situation contains sensible information for
a proper (normalizable) prior. The choice of the prior pdf is inspired by the cumulative
signal number counts distribution used often in astrophysics for describing the integral
flux distribution of cosmological sources, i.e. a power—law function (see Rosati et al. 2002b;
Brandt and Hasinger 2005 and references therein). The power law cannot be employed
as a prior pdf, because the power law is not normalized. A normalized inverse-Gamma
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Figure 2.4: Likelihood pdfs versus photon counts. The Poisson distribution is indicated with PD. The marginal Poisson
distribution is indicated with MPD. Panels (a) — (¢) are obtained using the ezponential prior pdf. Panels (d) — (f) are
created using the inverse—Gamma function prior pdf.



2.2 The joint estimation of background and sources 29

function is instead used. It behaves at large counts as the power law, because it is described
by a power law with an exponential cutoff.
The prior pdf of the source signal, described by an inverse-Gamma function, is:

a

<. — a—1
plsila,a) = e sy g5 a>1 a>0; (2.22)
mean = =55 o> 2;
. 2
variance = m; a > 3,

with slope a and cutoff parameter a. The location and the dispersion of the distribution
depend on the values of the two parameters a and a. When a has a small positive value,
the inverse-Gamma function is dominated by a power-law behaviour (see Appendix A,
Section A.1 for more details).

The parameter a gives rise to a cutoff of faint sources. This parameter has important
implications in the estimation of the background. If a is smaller than the background
amplitude, the BSS algorithm detects sources of the order of the background. If a is larger
than the background amplitude, the BSS algorithm assigns faint sources with intensities
lower than a to be background only. Note that the effect of a on the selection of background
and faint sources is valid also for structures, which are not due to sources but to background
fluctuations.

In Fig. 2.3, equation (2.23) is drawn for two values of the parameter a.. For this example
the cutoff parameter a has a value of ~ 0.1 count. The distributions peak around a. The
decay of each distribution depends on the value of . When « is large, i.e. for values > 2,
the distribution drops quickly to zero. Instead the distribution drops slowly to zero, when
« approaches 1. Hence, small values of « indicate bright sources distributed on the field.

The marginal Poisson likelihood for the hypothesis Eij is now described by:

p(d;j| B, byj, a, a) =

di; di;—k
2 b N biju
_ L by =t Kpoor1(2V/a), 2.23
Ta—1) ° ;a T DTy — k1) kot va) (2.23)

where o > 1, a > 0 and Kj_,41(2+v/a) is the Modified Bessel function of order k — o + 1.
The proof for eq. (2.23) can be found in Appendix A, Section A.2.

In order to avoid numerical problems with the Bessel function, the following upward
recurrence relation was derived:

2(v—1) ~
Gk T o e

where K, (z) := K,(2)/T(k+1) and v = k—a+1. K,(2) is the Bessel function of complex
argument and it has the property: K_,(z) = K, (2).

Figures 2.4 (d)—(f) show the corresponding parameter study for the inverse-Gamma
function prior. The parameter « is chosen to be 1.3, 2.0 and 3.0 and the cutoff parameter
a ~ 0.1 counts. The decay length of the marginal Poisson distribution, eq. (2.23), is now
given by the value of . The decay length decreases with increasing « values.
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Figure 2.5: Likelihood pdfs for the mixture model using the ezponential prior (dashed line)
and the inverse-Gamma function prior (continuous line). The Poisson and the marginal
Poisson likelihood pdfs are weighted with 3 and (1 — [3), respectively.

The likelihood for the mixture model

The marginal Poisson likelihood pdf will be indicated with p(d;;| Bjj, bij, 7), where 7 indicates
Aor a. In the case of the inverse-Gamma function prior pdf, the cutoff parameter a does not
appear since the value of this parameter is chosen such that the inverse-Gamma function
is dominated by a power—law behaviour.

The likelihood for the mixture model, as written in eq. (2.17), now reads:

p(D | b,7,8) = H[ﬁ -p(dyj | By, by) + (1 = B) - p(dy | By, by, 7)];
ij

D = {dy}, b= {by}. (2.24)

In Fig. 2.5 the effect of the likelihood for the mixture model on the data (semilog plot)
is shown. The likelihood pdf for the mixture model is drawn for each prior pdf of the
source signal employing the background value b and the prior pdf 3. The value chosen
for the parameter (3 indicates that 99% of the pixels distributed in the astronomical image
are containing only background, which is frequently observed. The likelihood pdfs are
composed by a central peak plus a long tail. The central peak is primarily due to the
presence of the Poisson distribution. The long tail is caused by the marginal Poisson
distribution. The presence of the long tail is essential in order to reduce the influence of
the source signal for background estimation. The same technique was also used for outlier
detections, where outliers are downweighted employing a mixture likelihood, for estimating
the background contributions to measured spectra: For more details about the technique
refer to Fischer et al. (2000). In this thesis, the source signal is considered an outlier.
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)

Figure 2.6: Example of thin—plate spline, f(x — x;) = 7?In(r?) is drawn with one support
point centred at the Cartesian origin. The projection of f(x — x;) on the (z,y) plane is
placed below and its contour plot on top of the surface image.

2.2.2 Thin—plate spline

The TPS has been selected for modelling the structures arising in the background rate of
a digital astronomical image. It is a type of radial basis function (RBF).

The TPS is indicated with ¢(x), where x = (z,y) corresponds to the position on the
grid in the detector field. The shape of the interpolating TPS surface fulfills a minimum
curvature condition on infinite support.

More specifically, the TPS is a weighted sum of translations of radially symmetric basis
functions augmented by a linear term (see Meinguet, 1979; Wahba, 2006 for more details),
of the form

t(x) = E(x) + Z Mf(x—x), x€R%

E(x) = ¢y + c12 + coy is the added plane. N; is the number of support points (also called
pivots, knots). The weight is characterized by A. f(x — x;) is a basis function, a function
of real values depending on the distance between the grid points x and the support points
x, such that |x — x| > 0.

Given the pivots x; and the amplitude z, = z(xy), the TPS satisfies the interpolation
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conditions:

t(Xk> = E(Xk) + Zr: )‘lf(xk - Xl) = Zk; ke {17 SRR Nk}7 Xy € {X1}7

=1

and minimizes
It = 10pe ) = [ [ (R 2p + S )dody.

|£]|? is a measure of energy in the second derivatives of ¢. In other words, given a set of data
points, a weighted combination of TPSs centred about each pivot gives the interpolation
function that passes through the pivots exactly while minimizing the so—called ‘bending
energy’. The TPS satisfies the Fuler-Lagrange equation and its solution has the form:
f(x —x1) =~ r?In(r?), where 7 = (z — x1)? + (y — y1)*. This is a smooth function of two
variables defined via Euclidean space distance. In Fig. 2.6 an example of TPS with one
pivot is pictured.

For fitting the TPS to the pivots’ amplitudes, it is necessary to solve for the weights
and the plane’s coefficients so that it is possible to interpolate the local TPS’s amplitude:

tiy = ty(Ne, {x1, 2,0 = 1,..., N;})

which is the background rate. b;; will indicate the local background amplitude, i.e. the
multiplication of #; and the local value of the satellite’s exposure time (7):

bij = tij X Tij-

The TPS interpolant is defined by the coefficients, ¢ of the plane E(x) and the weights \
of the basis functions. The solution for the TPS has been evaluated on an infinite support,
since no solutions exist on a finite support (Wahba, 2006), where the requirements for this
function to be fulfilled are:

1. t(x) is two times continuously differentiable,
2. t(x) takes a particular value z at the point xy,
3. I[f(x,y)] is finite.

Given the interpolation values z = (21, ..., 2y, ), the weights A and ¢, are searched so that
the TPS satisfies:

t(Xl):Zl, lzl,...,Nr
and in order to have a converging integral, the following conditions need to be satisfied:

lN:r1 A =0,
ZzNzrl Az =0,
ZZN:H Ay = 0.
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This means that there are (N, + 3) conditions on ¢(x;) = z for estimating N, A} weights
and the coefficients ¢ for the plane.

The coefficients of the TPS, \;, and the plane, ¢, can be found by solving the linear
system, that may be written in matrix form as:

(e 3)()=(5), 029

where the matrix components are:

Fy = f(x —xj),
z = (z1,...,2n5)%,
1 o wn .
1 i) Y2 0 = (07070) )
Q-| . "
i A = (Al,...,ANr)T,
I zn, yn,

cC = (Co,Cl,Cg)T.

After having solved (), ¢)”, the TPS can be evaluated at any point. For more information
about splines, see Appendix B.

The pivots can be equally spaced or can be located in structures arising in the astro-
nomical image. Following the works of Fischer et al. (2000) and von Toussaint and Gori
(2007), the present work can be extended employing adaptive splines, i.e. allowing the
number of pivots and their positions to vary in accordance with the requirements of the
data.

2.2.3 Estimation of the background and its uncertainties

The posterior pdf of the background is, according to Bayes’ theorem, proportional to the
product of the mixture likelihood pdf, equation (2.24), and the prior pdf p(b), that is
chosen constant for positive values of b and null elsewhere. The maximum of the posterior
pdf with respect to b, b*, gives an estimate of the background map which consists of the
TPS combined with the observatory’s exposure map. The estimation of the background
considers all pixels, i.e. on the complete field, because the source signal is tackled implicitly
as outlier. In Appendix C details about the minimization procedure employed for the
background model are given.
The posterior pdf for b is given by:

p(D | 2)p(z)
p(D)

This integral is complicated due to the presence of the delta function. This is, however,
of minor importance since the expectation values of some functionals of b, say ¢(b), are of

ez

p(b| D) = / p(b| D, 2)p(= | D)dz = / 5(b— b(=))
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interest. Therefore:

(2.26)

Assuming the maximum of p(D | z)p(z) is well determined, the Laplace approximation is
applied:

p(D | 2)p(2) = p(D | 2*)pl="Yexp{—5 A" H Az}, (2.27)

that means the integrand function is approximated by a Gaussian at the maximum z* and

the volume under that Gaussian is computed. The covariance of the Gaussian is determined

_ 92In[p(D|2)p()]
02z;0z;

is element {ij} of the Hessian matrix. This approximation is the second—order Taylor

expansion of a multivariate Gaussian around the optimized pivots amplitude’s values. For

more details see Section 2.1.5.

Then equation (2.26) becomes:

by the Hessian matrix, as given by eq. (2.27), where Az = z—2z* and H;; :=

J a(b(z ))GXP{ 1AZT}'{AZ}(JZNRZ
(2 ) (detH)

E(g(b) | D) =

Therefore, the posterior mean of b is:

v/ detH

E(b; | D) = exp{——AzTHAz}der =Tlz" =< by >,

where bj(z) = T} - z, and the variance is:

E(Ab;Aby | D) =

\/d tH 1
© / i(2)— < by >) - (bi(2)— < bi >)eXp{—§AzTHAz}der

_Ti’gH Ty, (2.28)

The 1o error on the estimated background function is therefore calculated by the square
root of eq. (2.28).

2.2.4 Determining the hyperparameters

The two hyperparameters v and § have so far been assumed to be fixed. However, these
parameters can be appropriately estimated from the data.
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Within the framework of BPT the hyperparameters (nuisance parameters) v and § have
to be marginalized.

Alternatively, and not quite rigorous in the Bayesian sense, the hyperparameters can be
estimated from the marginal posterior pdf, where the background and source parameters
are integrated out,

rrﬁlfixp(ﬁ,v | D) — [*,7".

Hence, the estimate of the hyperparameters is the maximum of their joint posterior.
The basic idea is to use BPT to determine the hyperparameters explicitly, i.e. from the
data. This requires the posterior pdf of v and (3. Bayes’ theorem gives:

p(D | v, 8)p(v)p(B)
p(D) ‘

p(v, 8| D) = (2.29)

The prior pdfs of the hyperparameters are independent because the hyperparameters are
logically independent. These prior pdfs are chosen uninformative, because of lack of knowl-
edge on these parameters. The prior pdf for 3 is chosen to be constant in [0,1]. Since
7 is a scale parameter, the appropriate prior distribution is Jeffrey’s prior: p(y) ~ 1/ ~.
Equation (2.29) can be written as follows:

p(7,8 | D) o< p(D | 7, Ap(7) = p(7) / p(D | 2,7, B)p(2)d=. (2.30)

Assuming the maximum of p(D | z,~, #)p(z) is well determined, the Laplace approximation
is applied

* * 1
p(D | 2,7, 8)p(z) = p(D | 2°,7, ) - p(=")exp{—5 Az" HAz} (2.31)
where Az = z—z*, z* corresponds to the maximum value of the integrand in eq. (2.30), and
o, = -2 (62 |,3;’fﬂ 2N s element {ij} of the Hessian matrix. Considering dim(z) = N,
10%j

where N, is the number of support points, eq. (2.30) can be written as follows:

(2m) %

p(v, B D) =p(y)p(D | Z*,%ﬁ)p(?«'*)m‘

(2.32)

p(z*) is chosen to be constant. The last term corresponds to the volume of the posterior
pdf of v and 3 for each v, 3 estimates.

2.2.5 Probability of hypothesis B

In principle, the probability of detecting source signal in addition to the background should
be derived marginalizing over the background coefficients and the hyperparameters. Fol-
lowing the works of von der Linden et al. (1999) and Fischer et al. (2000), the multidi-
mensional integral, arising from the marginalization, can be approximated at the optimal
values found of the background coefficients and the hyperparameters.
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Figure 2.7: Source probability (Piurce); PD and MPD versus photon counts as given by: egs (2.21), (2.15) and (2.33) for
the exponential prior pdf, panels (a), (b) and (c); egs (2.23), (2.15) and (2.33) for the inverse-Gamma function prior pdf,
panels (d), (e) and (f).
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Equation (2.18) is approximated with:

1

p(dij| Bi;,b5;)
1+ 1L AN L
=B p(dij|Bij i)

p(By | dy) =

- Psourc97 (233)

where b* = {b;} is the estimated background amplitude, as explained in Section 2.2.3.
SPMs are estimated employing this formula.

The BSS method does not need to incorporate the shape of the PSF. When the PSF
full width at half-maximum (FWHM) is smaller than the image pixel size, then one pixel
contains all the photons coming from a point—like source. Otherwise point—like sources are
detected on pixel cells as large as the PSF FWHM. Extended objects are detected in pixel
cells large enough that the source size is completely included. The pixel cell must be larger
than the PSF FWHM and it can exhibit any shape.

Equation (2.33) shows that the source probability strictly depends on the ratio between
the Poisson likelihood, p(d;; | Bjj, byj), and the marginal Poisson likelihood, p(d;; | By, byj, )
(Bayes factors). Bayes factors offer a way of evaluating evidence in favour of competing
models.

Figure 2.7 shows the effect of the mixture model technique on the probability of having
source contribution in pixels and pixel cells for the exponential and the inverse-Gamma
function prior pdfs. For the parametric studies, the parameter g is chosen to be 0.5. This
non—committal value of [ arises if each pixel (or pixel cell) is equally likely to contain
source signal contribution or background only. For photon counts of about the mean
background intensity, Piource 1S sSmall. Piyuee increases with increasing photon counts due
to the presence of the long tail in the marginal likelihood. This allows efficient separation
of the source signal from the background.

In panels (a)—(c) of Fig. 2.7, the distribution function of Piyce, the Poisson pdf (PD)
and the marginal Poisson pdf (M PD) are drawn using the exponential prior (see also
Figs 2.3 and 2.4). In the case of fields with bright sources (A > 10 times the background
intensity), Psouwce 1S nearly zero for photon counts less or equal to the mean background
intensity. Psouce increases rapidly with increasing photon counts. In the case of fields where
the mean source intensity is similar to the mean background intensity, pixels containing
photon counts close to the mean background intensity have probabilities about 50%. In
these cases, Piource increases slowly with increasing photon counts, because the two Poisson
distributions are similar. In the case of fields dominated by large background signal (A <
mean background amplitude), Psouce increases very slowly with increasing photon counts.
In this case, the decay of the marginal Poisson distribution follows closely the decay of the
Poisson distribution (e.g. for b = 10 counts and A = 1 count).

In Fig. 2.7, panels (d)—(f), the distribution functions are shown using the inverse—
Gamma function prior (see also Figs 2.3 and 2.4). Again, the source probability depends
on the distance between the Poisson distribution and the marginal Poisson distribution.
For photon counts in the vicinity of the mean background intensity, the source probability
is small. This is due to the small distance between the Poisson and the marginal Poisson
distributions. The source probability curves increase with increasing photon counts. The
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Table 2.1: Interpretation of source probability values.

Piource <50% 50% 90% 99%  99.9%

Interpretation Background Indifferent Weak Strong  Very
only strong

steepness of the slope depends on the parameter « (Fig. 2.3). The source probability curve
increases faster at decreasing « values, because small a values indicate bright sources
distributed in the field. In panels (e) and (f), Psource provides values close to 50% at low
numbers of photon counts. This effect addresses the cutoff parameter a. In fact, in these
plots the cutoff parameter a is smaller than the background amplitude. The situation is
different in the simulations with small background amplitude (panel d), where the source
probabilities decrease below 50% at low numbers of photon counts. In these simulations
the cutoff parameter a is chosen larger than the mean background amplitude. Faint sources
with intensities lower than a are described to be background.

The interpretations of the probability of having source contributions in pixels and
pixel cells are shown in Table 2.1. Source probabilities <50% indicates the detection of
background only. Py is indifferent at values of 50%. In both cases, P.yuce might
contain sources but they cannot be distinguished from the background due to statistical
fluctuations. Source probability values > 50% indicate source detections. False sources
due to statistical fluctuations may occur especially for values <99%. For more details about
the interpretations provided in Table 2.1, see Jeffreys (1961); Kass and Raftery (1995).

Statistical combination of SPMs at different energy bands

An astronomical image is usually given in various energy bands. SPMs, obtained with
eq. (2.33), acquired at different energy bands can be combined statistically. The probability
of detecting source signal in addition to the background for the combined energy bands

{k} is:

n

p(Bi | dig)eoms = 1 = [ [11 = p(Bj; | diy)l, (2.34)

k=1

where n corresponds to the effective energy band.

Equation (2.34) allows one to provide conclusive posterior pdfs for the detected sources
from combined energy bands. It results, as expected, that if an object is detected in
multiple bands, the resulting p(Eij | dij)comb 15 larger than the source probability obtained
analysing a single band. An application of this technique is shown in Chapter 6. This

analysis can be extended to study crowded fields or blends by investigating source colours.
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Image data,
Exposure Map,
Background Map,
SPMs

!

Produce source list
for each SPM

v

Merged source list

Y

Source fitting routine:
optimization of position,
counts and morphological
parameters

A i

Output source catalogue

Figure 2.8: Flow chart illustrating the source characterization algorithm. The upper box
represents the input information. The generated catalogue is in FITS standard.
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2.3 Source characterization

Following the estimation of the background and the identification of sources, the sources
can be parametrized.
SPMs at different resolutions are investigated first. Sources are catalogued with the largest
source probability reached in one of the SPMs. Local regions are chosen around the detected
sources. The regions size is determined by the correlation length where the maximum of
the source probability is reached. A scheme of the source fitting routine is displayed in
Fig. 2.8.

Although any suitable source shape can be used, the detected sources are modelled by
a two—dimensional Gaussian. The data belonging to a source detection area 'k’ are given
by:

Dy =b;+Gy  V{u} € {k}. (2.35)

D;; are the modelled photon counts in a pixel {ij} spoiled with the background counts b;;.

Gjyj is the function which describes the photon counts distribution of the detected source:

I 1 N G Y\ 2
Gy = -exp{ - 5 [(xJ xs) + <M) +
2mogoyy/1 — p? 2(1 = p?) Ox Oy

a(Ez) (o))

where I is the intensity of the source, i.e. the net source counts, oy, o, and p provide the
source shape and zg, ys is the source pixel position on the image.

Position, intensity and source shape are provided maximizing the posterior pdf assum-
ing constant priors for all parameters:

D 5
P(we, Yo, I, 0, 0y, plb, d) o | [ —Srexp{=Dy}  v{ij} € {k}, (2.36)
ig

where dj; are the photon counts detected on the image.

According to egs (2.35) and (2.36) the source fitting is executed on the sources for given
background. This is reasonable since the uncertainty of the estimated background is small.
No explicit background subtraction from the photon counts is needed for estimating the
source parameters.

Source position and size are converted from detector space to sky space. Source fluxes
are provided straightforwardly.

The rms uncertainties of the source parameters are estimated from the Hessian matrix,
where Hj; := —W is element {ij} of the Hessian matrix and ¢ indicates the
source parameters. The quuare root of the diagonal elements of the inverse of the Hessian
matrix provides the 1o errors on the estimated parameters.

The output catalogue includes source positions, source counts, source count rates, back-
ground counts, source shapes and their errors. The source probability and the source
detection’s resolution are incorporated.
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Source characterization can be extended with Bayesian model selection. With the
Bayesian model selection technique, the most suitable model describing the photon count
profile of the detected sources can be found. The models to be employed are, for instance,
Gaussian profile, King profile (Cavaliere and Fusco-Femiano, 1978) (i.e. the density profile
of an isothermal sphere), de Vaucouleurs model, Hubble model. Such an extension to the
actual method would allow an improvement in the estimation of the shape parameters of
faint and/or extended sources.
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Chapter 3

Reliability of detections

Statistical significance tests are used to verify whether data are consistent with the pre-
dictions of a theoretical model. Several statistical hypothesis tests are available. In this
Chapter statistical hypothesis test with p—values is compared with the Bayesian solution
provided within the BSS algorithm. In Section 3.1, statistical hypothesis tests are reviewed
and an historical note on hypothesis testing is emphasized. In Section 3.2, the definition of
p—values is provided. In Section 3.3, the general view on how this problem can be tackled
with BPT is expressed. The commonly used measure of statistical significance with Poisson
p—values is introduced in Section 3.4. In Section 3.5, simulations are utilized for comparing
the Poisson p-values with the Bayesian probabilities. A summary of this Chapter is given
in Section 3.6.

3.1 Introduction

The detection of sources is often spoiled by statistical fluctuations, which produce false
detections of sources. The number of detected false sources depends on the method used
and on the setting of thresholds. Thresholds are employed for tuning the number of false
sources. Any chosen threshold will result in some astronomical sources being identified
as background (false negative) and some false sources, due to background fluctuations,
measured as real (false positives). Consequently, thresholds reduce the detectability of
sources with low surface brightness, that can be most interesting for assessing cosmological
theories.

Statistical hypothesis test can be described as follows. Data and models are tested
for overall differences using a statistical measure of discrepancy, e.g. employing x? for
uncorrelated data. If the discrepancy is large enough, then there are significant differences
beyond those accounted for by randomness in the data. A threshold is employed to put
a cutoff to the measure of discrepancy. Classically, a test is declared significant if the
discrepancy is larger than twice the standard error of the measurements (20 approach),
that means a probability of 0.05 to declare significance erroneously (Miller et al., 2001).
Often, a 3 — 50 cutoff is used (Miller et al., 2001; Starck and Murtagh, 2006), because of
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multiple hypothesis tests and of noisy data.

In image analysis one wants to decide whether pixels contains background photons only
or background plus source photons. The recurrent statistical problem to decide whether
data belong to astronomical sources can be addressed with statistical hypothesis tests.
Two competing hypothesis are used: the null hypothesis, Hy, that the pixel contains
background photons only, and the alternative hypothesis, that a pixel contains source
photons in addition to the background ones. A critical threshold is commonly selected
to classify pixels into the two groups. The rule for classifying pixels using the data is an
example of a statistical hypothesis test. Mistakes can be made in the classification process
when data are insufficient to detect the discrepancy between the data and the model,
because of small number of counts or of large background fluctuations. Often, statistical
procedures for making a prediction about the number of false sources require only the
knowledge of Hy: See Miller et al. (2001) for more details.

Several methods for making a prediction about the number of false sources are avail-
able, one is to use p—values from statistical significance tests (Linnemann, 2003). An
example of a popular technique employing p—values is the false discovery rate method of
Benjamini and Hochberg (1995). The false discovery rate technique is employed to find a
significant discovery from a small set of data (Ball and Brunner, 2009). A p—value cutoff
adapts to the data, since its value changes systematically as the source intensity changes
(Miller et al., 2001; Hopkins et al., 2002). P—values are used to a great extent in many
fields of science. Unfortunately, they are commonly misinterpreted. Researches on p—
values (see, e.g., Berger and Sellke, 1987) showed that p—values can be a highly misleading
measure of evidence.

3.1.1 Historical note on testing

Hypothesis testing with p-values was developed in the first half of the 20th century by
Ronald Fisher (1890-1962). In Fisher’s approach the researcher sets up Hy. A sample
coming from a hypothetical infinite population with a known sampling distribution is used
to provide the predicted reference distribution. The probability of the data (observed
and more extreme one) given the truth of Hy supplies an amount of evidence required to
accept that an event is unlikely to have arisen by chance (Hubbard and Bayarri, 2003).
This probability defines the p—value. A typical justification that Fisher would give for his
procedure is that p—values can be viewed as an index of the ‘strength of evidence’ against
Hy, with small p indicating an unlikely event and, hence, an unlikely hypothesis (Berger,
2003).

The method has been criticized by his contemporaries: Jerzy Neyman (1894-1981)
and Sir Harold Jeffreys (1891-1989) (see, e.g., Berger, 2003 and references therein for
more details). Both Neyman and Jeffreys were proposing different methods for hypothesis
testing. Each was quite critical of the other approaches.

Neyman was founding his believing in classic statistics as Fisher did. Neyman consid-
ered alternative hypotheses to Hy and introduced error probabilities: the Neyman—Pearson
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theory of hypothesis testing !. Nonetheless, he recommended testing with fixed error proba-
bilities. Jeffreys, a pioneer in Bayesian inference, proposed the use of posterior probabilities
of hypotheses.

Neyman criticized p-values for violating the Frequentist Principle (i.e. in repeated actual
use of a statistical procedure the average actual error should not be greater than the
average reported error). Jeffreys criticized the logic of employing a ‘tail area’ rather than
a likelihood—based measure for hypothesis testing: “a hypothesis that may be true may be
rejected because it has not predicted observable results that have not occurred’ (Jeffreys,
1961).

Note that in classic statistics, the argument of a probability is restricted to a ran-
dom variable. Since a hypothesis cannot be considered a random variable, the truth of
a hypothesis can only be inferred indirectly. In Bayesian inference, one can compute the
probabilities of two or more competing hypothesis directly for a given state of knowledge
(Gregory, 2005).

The three approaches can lead to very different results (Berger, 2003).

3.2 P-values

In hypothesis testing one is interested in making inferences about the truth of some hy-
pothesis Hy, given a set of random variables X: X ~ f(x), where f(x) is a continuous
density and x is the actual observed values. A statistic T'(X) is chosen to investigate
compatibility of the model with the observed data x, with large values of T indicating less
compatibility (Sellke et al., 2001). The p—value is then defined as:

p = Pr(T(X) = T(x)|H).

The significance level of a test is the maximum allowed probability, assuming H, that
the statistic would be observed. The p—value is compared to the significance level. If
the p—value is smaller than or equal to the significance level then Hj is rejected. The
significance level is an arbitrary number between 0 and 1, depending on the scientific field
one is working in. However, often a significance level of 0.05 is accepted. Berger and Sellke
(1987); Sellke et al. (2001) demonstrated that a significance level of 0.05 can indicate no
evidence against Hy.

An extensive literature dealing with misinterpretations about p—values exists, see, for in-
stance, Berger and Sellke (1987); Berger and Delampady (1987); Berger and Berry (1988);
Delampady and Berger (1990); Loredo (1990, 1992); Kass and Raftery (1995); Sellke et al.
(2001); Hubbard and Bayarri (2003); Astone et al. (2003); Gregory (2005) and references
therein.

!The Neyman-Pearson hypothesis testing can be summarised in the following: Suppose one observes
data X ~ f(z|0), where 6 are the parameters of the statistical model. Hy : § = 6 is tested versus some
alternative hypothesis Hy : 6 = 0;. Hy is rejected if a test statistic T = ¢(X) > ¢, where ¢ is a critical
value. Type I (false positive) and type II (false negative) error probabilities are computed, with o = Py
(rejecting Hy, when Hy is true) and 5 = Py (fail to reject Hy, when Hj is false).
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3.3 The Bayesian viewpoint

Since the state of knowledge is usually incomplete, a hypothesis can never be proven false
or true. One can only compute the probability of two or more competing hypotheses (or
models) on the basis of the only data available, see e.g. Gregory (2005).

The Bayesian approach to hypothesis testing is conceptually straightforward. Prior
probabilities are assigned to all unknown hypotheses. Probability theory is then used to
compute the posterior probabilities of the hypotheses given the observed data (Berger,
1997). This is in contrast to standard significance testing which does not provide such
interpretation. In fact, in the classic approach the truth of a hypothesis can only be
inferred indirectly.

Finally, it is important to underline that the observed data and parameters describing
the hypotheses are subject to uncertainties which have to be estimated and encoded in
probability distributions. With BPT there is no need to distinguish between statistical (or
random) and systematic uncertainties. Both kinds of uncertainties are treated as lack of
knowledge. For more on the subject see Fischer et al. (2003).

3.4 Significance testing with p—values

Several measures of statistical significance with p—values have been developed in astro-
physics. A critical comparison and discussion about methods for measuring the signifi-
cance of a particular observation can be found in Linnemann (2003). Following the work
of Linnemann (2003), the Poisson probability p—value is defined as:

o0 _bbj
pp = P(> d|b) = Z (3.1)

j=d

pp is the probability of finding d or more (random) events under a Poisson distribution
with an expected number of events given by b. Note that p—values are not probabilities
that Hp, in this case the 'only background’ hypothesis, is true (Astone et al., 2003).

Linnemann (2003) remarks that Poisson probability p—value estimates lead to overes-
timates of the significance since the uncertainties on the background are ignored.

3.5 Comparing threshold settings for source reliabil-
ity

In order to restrain the rates of false source detections per field, a threshold on probabilities

is commonly set according to the goal of a specific research. For instance, Freeman et al.

(2002) have chosen an upper limit of 1 spurious detection per analysed Chandra field. This

value corresponds to a false-positive probability threshold of 10=7. The method developed
by Freeman et al. (2002) is a wavelet-based source detection algorithm (WAVDETECT).
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For the XMM-Newton serendipitous source catalogue, Watson et al. (2003) have chosen a
detection likelihood L = 10, corresponding to ~ 40. L is given by —In(1—P), where P is the
probability of source detection obtained by a maximum likelihood method (Cruddace et al.,
1988). The selected likelihood threshold corresponds to the detection of < 1 spurious
source per field. In any systematic investigation to source detection, the threshold level is
a tradeoff between the detection power and false detections rate.

Comparison Following this idea, the Poisson probability p—value, equation (3.1), is com-
pared to the Bayesian source probability Pigurce, €quation (2.33). Figures 3.1 and 3.2 com-
pare the two statistics. In Fig. 3.1, the prior distribution of the source signal is chosen
to be exponential, equation (2.20), where in Fig. 3.2, it is given by an inverse-Gamma
function, equation (2.23).

Specifically, each plot of Figs 3.1 and 3.2 illustrates a relation between pp (ordinate) and
the background probability obtained with BPT (abscissa). The squares on each plot indi-
cates the photon counts d chosen for calculating equation (3.1). The corresponding number
counts are indicated on some of the squares. On the abscissa, the background probability
is calculated as the complementary source probability provided by the Bayesian method
(1 — Psowrce)- The value close to unity corresponds to a source probability, Psource, Which
goes to zero, instead a value of 0.1 corresponds to 90% source probability and 0.01 to 99%
source probability.

In Figs 3.1 and 3.2, panels (a) — (¢) show the relation between pp and (1 — Piource) for
varying background amplitudes and source intensities. The plots are ordered with respect
to increasing source intensities. Panels (d) — (f) of Figs 3.1 and 3.2 display the same data
but with fixed background value and varying source intensities. The background values
increase from left to right.

Each plot shows a general tendency. For a given count number d, Py and (1-pp)
increase with decreasing background intensity. However, Piyuce is more conservative. This
is due to the dependency of Piouee not only on the mean background intensity but also on
the source intensity distribution. This dependency is expressed by the likelihood for the
mixture model equation (2.17), that plays a central role for the estimation of the source
probability equation (2.33).

An example of the different interpretations of source detection employing the two statis-
tics is provided in Table 3.1. This example is taken from Fig. 3.1, panels (a) and (c).
[lustrations A, B, C' are derived from panel (a), while illustration D from panel (¢). The
mean source intensity in a field (\) is 10 (A, B,C) and 1000 (D) times larger than the
mean background intensity (b). Illustration A: For a mean background intensity of 0.1
count, 2 photon counts in a pixel are assigned with a Py, value of 0.97. Poisson statis-
tics provides the probability of detecting 1 photon count or less equal to 0.995, stating
that 5 over 10? pixels would show 2 or more photon counts due to Poisson random process.
Lllustration B: For a mean background value of 1.0 count, 2 photon counts in a pixel are
characterized by a Psouwce value of 0.29. (1-pp), instead, has a larger value of 0.74 and
26 over 10? pixels would show 2 or more photon counts due to background fluctuations.
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Table 3.1: Bayesian source probability (Psouce) versus Poisson p—value (pp).

b A d Psource 1- pbp 1- Psource bp
(counts) (counts) (counts)

A 0.1 1.0 2 0.97  0.995 0.03 0.005
B 1.0 10.0 2 0.29 0.74 0.71 0.26
C 10.0 100.0 2 0.01  0.0005 0.99 0.9995
D 1.0 1000.0 ) 0.28  0.997 0.72 0.003

Note. This example shows the variation of Piyu.ce and pp for detecting d photon counts in a
pixel at three background levels. The mean source intensity distributed in the field is 10 and
1000 times larger than the background for illustrations from A to C and D, respectively.
Piource TEpresents the source probability for detecting 2 (A, B, C') or 5 (D) photon counts in
a pixel according to the Bayesian technique. (1-pp) is the classic cumulative distribution
function (cdf). It provides the probability for detecting 1 (A, B, C) or 4 (D) photon counts
or less in a pixel according to Poisson statistics, respectively. (1-Psouce) is the background
probability estimated with the Bayesian method. pp provides the probability for detecting
2 (A, B,C) or 5 (D) photon counts or more in a pixel according to Poisson statistics.

Both, the Bayesian solution and the Poisson p—value classify 2 photon counts in a pixel
to belong to the background. However, the Bayesian solution is more conservative than
Poisson p—value. Illustration C: When b = 10 counts, both statistics classify 2 photon
counts in a pixel to belong to the background. Illustration D: For a mean background
intensity of 1.0 count, the Bayesian analysis classifies 5 photon counts in a pixel to belong
to the background (Piouee = 0.28), because the source intensity distributed in the field
is 1000 times larger than the mean background intensity. Poisson statistics provides the
probability of detecting 4 photon counts or less equal to 0.997, stating that 3 over 10° pixels
would show 5 or more photon counts due to Poisson random process. In this illustration,
the two statistics provide contrasting results.

In Fig. 3.3, the dependency of P, On the source intensity distributed on a field is
shown. Pjuce 18 drawn for a given number of photon counts in a pixel versus A/b (panels
a — ¢) and versus « (panels d — f) for fixed background values. The prior (3 is fixed at
0.5. In the abscissas the parameters A/b and « are plotted in order to feature from faint to
bright sources. The abscissas are drawn in logarithmic scale. For a given number of photon
counts, the value of P, varies with the source intensities expected in the astronomical
image and with the background amplitude. Py is drawn with different linestyles for
given number of photon counts.

Let us consider the plot in panel (a) of Fig. 3.3, where the background has a value of 0.1
count. For 2 photon counts, Py reaches a maximum where the mean source intensity
in the field has values in the range (1 — 5) counts. In this part of the curve, 2 photon
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counts in a pixel are discriminated best from the background. Away from this range, the
source probability decreases. For small \/b values, Psouce approaches 0.5 because source
and background cannot be distinguished. For large A/b values, Piource decreases since more
sources with large intensities are expected relative to small intensities. Therefore, a signal
with 2 counts is assigned to be background photons only.

(1 — pp) is calculated for the same values of background and photon counts as for Piyyrce-
The linestyles and colours used correspond to the one employed for Piyuee. (1 — pp) is
constant, since it does not depend on the source intensities expected in the field. Its value
for 2 photon counts (that is 0.995 from Table 3.1) is larger than the maximum of Piuree
(with a maximum value of 0.97 from Table 3.1). In general, (1 — pp) is larger than Piyree
for values of photon counts larger than the mean background intensity. If the values of the
photon counts are lower than or equal to the mean background intensity, (1 — pp) is lower
than the maximum of Py See, for instance, panel (¢) of Fig. 3.3 for a value of 8 photon
counts.

Remarks on p—values versus BSS technique The comparison shows that it is not
possible to calibrate pp with P,y because of the intrinsic difference in the nature of the
two statistics.

Poisson p—values are used to interpret background and sources, without including un-
certainties on the background. P-values are one point estimate. Only, the null hypothesis
is required for classification purposes.

The Bayesian method, instead, gives information about background and sources and
their uncertainties. The BSS technique utilizes the full pdf for a predicted property, rather
than simply its single scalar value as with p—values. Therefore, much more information is
included in the BSS solution with respect to p—values. Threshold levels as p—values are not
used in the BSS algorithm. The separation between background and sources occurs with
probability distributions. The BSS technique has a built in statistical significance test,
where Hj and its alternative hypothesis are considered jointly in the likelihood for the
mixture model through Bayes factors. The BSS algorithm includes a wider interpretation
of background and sources with respect to Poisson p—values. The interpretation of the
background model is defined by its smoothness. The source signal distributed on an image
is encoded in probability distributions. Parameters describing the background model and
the source signal distributed in the astronomical image are estimated from the data. The
BSS technique is capable of classifying background and sources taking into account the
intensities distributed in an image. Therefore, the BSS technique can adaptively select
background and sources according to the properties of the analysed astronomical image.
Discrepancies from the data to the model are properly accounted for and false positives
in source detections are reduced. (The same effect is expected for false negatives, since
both false positives and negatives are treated identically in one unique algorithm.) Last,
with the BSS algorithm thresholds on source probability values can be set according to the
application one is investigating. Interpretations of source probability values are given in
Table 2.1. Such interpretations are used to reduce the number of false detections.
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Remarks on false positives detected with the BSS technique Comparing the
results shown in Figs 3.1 and 3.2, slightly different answers are arising for the two priors of
the source signal. When the exponential prior is employed, fields with large intensities are
less penalized by false positives caused by random Poisson noise than fields with source
signal very close to the background amplitude. When the inverse-Gamma function prior
is used, false positives’ detections depend on the cutoff parameter a. This is because the
cutoff parameter has an effect on faint sources. The same behaviour is expected on false
positives in source detection. The exponential prior, instead, does not exclude small source
intensities.

This result is not surprising, because the choice of the source signal prior pdf is crucial
for source detection. For a reliable analysis, the source signal prior pdf chosen has to be
as close as possible to the true one.

3.6 Summary

Fisher’s approach to hypothesis testing employs p—values to assess the ’strength of evidence’
against the null hypothesis. In Fisher’s approach the argument of a probability is restricted
to random variables and the truth of a probability can only be inferred indirectly. A
statistic is chosen to find compatibility between a model and the observed data. The p—
value expresses the probability of finding a result at least as extreme as the one obtained
with the observed data, assuming that the null hypothesis is true. The significance level
of a test is compared to the p—value with the result of rejecting or accepting Hy.

BPT allows one to compute the probability of two or more competing hypotheses on the
basis of the only data available. Prior pdfs are assigned to all hypotheses. Bayes’ theorem,
eq. (2.4), is used to compute the posterior pdfs of the hypotheses given the observed data.
Furthermore, the uncertainties due to the data and parameters describing the hypotheses
are estimated and encoded in probability distributions.

The Poisson probability p—values are compared to the Bayesian source probability.

The comparison allows one to demonstrate the intrinsic difference in the nature of the two
statistics. In fact, the two statistics provide different interpretations to source detection.
Poisson p—values supply the Poisson probability of finding a certain number of photon
counts (or larger) given a background value. Poisson p—values account only for H, and
only false positives in source detection are addressed.
The Bayesian technique, instead, gives the (source) probability for detecting a certain
number of photon counts given the information coming from the background, the source
intensities distributed on the field and their errors. Both false positives and negatives are
jointly addressed in the BSS technique. The number of false detections are drastically
reduced with respect to p—values.

Finally, the two prior pdfs of the source signal provide different answers for the number
of false positives in source detection. This is mainly due to the cutoff parameter in the
inverse-Gamma function, that has an effect on the detection of faint sources and conse-
quently also on false positives.
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Figure 3.2: Same explanation as for Fig. 3.1, but employing the inverse-Gamma function prior pdf, equation (2.23).
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Chapter 4

Source characterization from
simulated data

In this Chapter, artificial data are used for performance assessment of the BSS technique.
Three simulations are analysed using the exponential and the inverse-Gamma function
prior pdfs of the source signal. The data sets, described in Section 4.1, are meant to
test the capabilities of the BSS method at varying background values. The idea is to
cover different cases one encounters while surveying different sky regions or employing
instruments of new and old generations. In Section 4.2, the outcome of the analysis on the
three simulated data sets is reviewed. Last, a summary on the outcome of the analysis is
provided in Section 4.3.

4.1 Simulations set—up

Three sets of simulated fields composed of 100 sources modelled on a constant background
with added Poisson noise are generated. Groups of ten sources are characterized by the
same number of photon counts but with different sizes. A logarithmic increment in photon
counts per group is chosen ranging from 1 to 512. The shape of each source is characterized
by a two-dimensional circular Gaussian. The source extensions, given by the Gaussian
standard deviation, increase from 0.5 to 5.0 pixels in steps of 0.5. Sources are located
equidistantly on a grid of 500 x 500 pixels. Initially, the simulated sources are located
on the grid such that the source intensities increase on the abscissa, while the source
extensions increase on the ordinate. Subsequently, the 100 sources are randomly permuted
on the field. A background is added on each simulated field with values of 0.1, 1 and 10
counts respectively. A constant exposure is assumed. Note that by construction, a number
of sources have intensities comparable to or lower than the background amplitude in the
images. Consequently, not all sources can be recovered in every image.

In Fig. 4.1, the simulated data with small background are shown. Image (a) represents
the simulated data with added Poisson noise. The image indicated with (b) is the simulated
data without Poisson noise. It is placed for comparison: Sources close to or below the



56 4. Source characterization from simulated data

23 23.0

2 2.0

1 1.1

0 0.1
1.0 0.122
0.7 0.116
0.3 0.111
0.0 0.105
1.0 0.124
0.7 0.118
0.3 0.112
0.0 0.106

Figure 4.1: Panels (a) — (b): simulated data with small background (b = 0.1 count):
image with Poisson noise, image without Poisson noise, respectively. Panels (¢) — (d):
results with exponential prior pdf: SPM with 3 pixels resolution and background map,
respectively. Panels (e) — (f): results with inverse-Gamma function prior pdf.
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Figure 4.2: Simulated data with intermediate background (b = 1 count). Each panel has
same explanation as given in Fig. 4.1.
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Figure 4.3: Simulated data with large background (b = 10 counts). Each panel has the
same explanation as given in Fig. 4.1.
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background amplitude become difficult or impossible to detect, even visually, when Poisson
noise is added. The simulated data sets (a) and (b) are scaled in the range (0 — 3) photon
counts pixel™! in order to enhance faint sources. The original scale of the simulated data
with Poisson noise is (0 —317) photon counts pixel ™'. The simulated data without Poisson
noise show counts pixel ™ in the range (0.1 — 326.0).

The images representing the other two data sets for b = 1 count (Fig. 4.2) and b = 10
counts (Fig. 4.3) are similar to the one shown in Fig. 4.1. In these data sets, the number
of sources to be separated from the background decreases with increasing background
intensity. In Figs 4.2 and 4.3, panels (a) — (b) are scaled in the range (0 — 5) and (0 —
40) photon counts pixel ™!, respectively. The original scales for the simulated data with
intermediate and large backgrounds and added Poisson noise, panels (a), are (0 —334) and
(0 — 365) photon counts pixel ™!, respectively.

The cutoff parameter a is chosen to be 0.14 counts in the three simulated data sets.
This is to show the effect of a when the background is smaller or larger than a.

4.2 Results

4.2.1 Background estimation

For the background modelling, only four pivots located at the field’s corners are used. This
choice is driven by the presence of a constant background. An optimization routine is used
for maximizing the posterior pdf of having source contributions in pixels and pixel cells,
eq. (2.18). The solution of the optimization routine is the pivots amplitude’s estimates
from which the background is calculated.

The three set—ups are designed such that half of the 100 simulated sources are char-
acterized by < 16 photon counts. Some of these simulated sources are too faint for being
detected. These sources may contribute to the background model.

In Fig. 4.1, the estimated background maps are displayed when employing the expo-
nential prior pdf (image d) and the inverse-Gamma function prior pdf (image f) for the
simulated data with small background.

The two images show that the background intensity decreases slightly from the centre
toward the upper left— and lower right—hand corners of about 5%, while toward the upper
right— and lower left-hand corners increases up to ~ 20%. The same trend is seen also in
the estimated backgrounds with intermediate and large values (panels d and f in Figs 4.2
and 4.3), but with much smaller relative change. Evidently, the variations in the estimated
background amplitudes are not introduced by the prior over the signal. Furthermore,
these variations are not introduced by the selected pivots positions. If that were the case,
then the same magnitude is expected at each image corner. Instead, these variations are
an overall effect induced by the simulated sources. All simulated sources are randomly
permuted. In the upper left— and lower right—hand corners are located numerous faint
sources. In the lower left—hand corner many bright sources are clustered. The increment in
the background intensity is due to the statistical distribution of the sources. This explains
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why the same trend in background intensities is seen in all background models.

When employing the exponential prior pdf, the estimated background intensities are in
agreement with the simulated background amplitudes. In the case of the inverse-Gamma
function prior pdf, the estimated backgrounds are sensitive to the cutoff parameter a. When
a is set larger than the mean background (i.e. simulated data with small background), the
background is overestimated. The overestimated background is due to the presence of
source signal below the cutoff parameter. Hence, no source intensities below 0.14 counts
are allowed. It results that the estimated background is 40% larger than the simulated one.
For simulated data with intermediate background value, the cutoff parameter a is fixed to
a value lower than the simulated background. The background model is underestimated of
only ~ 1% with respect to the simulated one. For simulated data with large background,
the cutoff parameter a is much lower than the simulated mean background value. The
estimated background is in agreement with the simulated one.

The background uncertainties are quite small compared with the background itself, on
the order of few a percent. This effect holds because the background is estimated on the
full field. However, the errors increase where the estimates deviate from the simulated
background. The absolute uncertainties increase from the centre to the images’ edge by a
factor of ~ 4, independent to the prior pdf of the source signal used. In addition, when
applying the inverse-Gamma function prior pdf, the errors are larger than those found
using the exponential prior pdf. The absolute uncertainties on the estimated background
amplitudes with the inverse-Gamma function prior pdf are few a percent larger than
the ones obtained with the exponential prior pdf for the simulated data with small and
intermediate background values. The absolute uncertainties on the estimated background
intensities are, instead, very similar whether employing the exponential or the inverse—
Gamma function prior pdfs for the simulated data with large background. This effect is
due to the cutoff parameter.

4.2.2 Hyperparameter estimation

In Fig. 4.4 the contour plot in (\, 3) parameter space for the joint probability distribution is
shown for the hyperparameters evaluated from the simulated data with small background.
The contour levels indicate the credible regions, i.e. the locus of points of a constant
probability which surrounds a region containing a specified probability in the joint proba-
bility distribution. The values of the estimated hyperparameters are: 5 = (99.2 + 0.03)%,
A = (3.68£0.1) counts. The estimated 3 value provides the information that only 0.8% of
the pixels in the field contains sources. A similar answer is found with the other simulated
data. The ( value increases slightly at increasing background amplitudes. In fact, the
number of pixels containing background only increases at increasing backgrounds. The A
value, instead, provides the mean source intensity in the field. The estimated value of A
increases with increasing background amplitudes because small intensities are assigned to
be background. Hence, more bright sources and less faint sources are found at increasing
backgrounds.

A test on the hyperparameter values is pursued with the simulated data set charac-
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Figure 4.4: Contour plot of the posterior pdf for the hyperparameters, p(\, 5| D), estimated
from the simulated field with small background (b = 0.1 count) using the exponential prior
pdf.

terized by small background. A value > 2 photon counts per pixel is selected to indicate
source detection '. The number of pixels with more than 1 counts are counted from the
simulated field, resulting in ~ 3000 pixels with source signal in addition to the background.
The respective percentage of pixels with expected signal is 1.2%. The parameter [ indi-
cates the number of pixels with background only, which has a value of 98.8% in this test.
A mean source intensity value of ~ 3.5 counts is found. This quantity indicates the pa-
rameter A\. The values of each hyperparameter obtained within the test are close to the
estimated ones (5% and 0.4% difference for the A and 3 values are found, respectively).
Realistic values of the estimated hyperparameters are found.

When employing the inverse-Gamma function prior pdf, the hyperparameter « is found
with the smaller value in the simulated data with small background. The largest value of «
is found in the simulated data with intermediate background. Large values of a indicates
that more faint sources and less bright sources are expected in the field (Fig. 2.3). These
results do not contradict our expectations on the hyperparameter estimates, since the cutoff
parameter selects the source signal distribution at the faint end.

The true source signal distribution differs from both, the exponential and the inverse—
Gamma functions. However, the employed models for the source signal distribution provide
a realistic situation. The employed models are robust.

4.2.3 The components of the mixture model

In Fig. 4.5, the Poisson and the marginal Poisson distributions multiplied with their prior
knowledge on the model are plotted over the normalized histogram of each simulated data
set. The likelihoods are drawn for the exponential and the inverse-Gamma function prior

!The choice for > 2 counts is justified by the components of the mixture model, see subsection 4.2.3
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Figure 4.6: Examples of detected sources at several correlation lengths from simulated data with small background (b = 0.1
count), employing the exponential prior pdf. src# is the source detection sequence. N and o provide the simulated source
counts and extent in pixel units, respectively.
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pdfs. The values of the estimated hyperparameters are shown in each image.

The exponential prior pdf is plotted over the histogram with a continuous line. The
inverse-Gamma function prior pdf, instead, is plotted with a dashed line. The simulated
data are neither distributed exponentially nor as an inverse-Gamma function. Hence, the
prior pdfs of the source signal are not expected to fit the data exactly.

The marginal Poisson distribution weighted with (1 — ) is drawn with a dash—dot
line when employing the exponential prior pdf and with long dashes line in the case of the
inverse-Gamma function prior pdf. The Poisson distribution (dotted line) is weighted with
[ for the exponential and the inverse-Gamma function prior pdfs. The same line style is
used for the two Poisson distributions, because the two curves do not differ.

The intersection between the Poisson pdf and the marginal Poisson pdf indicates the
source detection sensitivity. When employing the exponential prior pdf in the simulated
data with small background (panel a), the exponential prior pdf enables the detection
of fainter sources than the inverse-Gamma function prior pdf. This is expected since the
cutoff parameter occurs at a value larger than the simulated mean background. Considering
the simulated data with intermediate background (panel b), the detection is more sensitive
to faint sources when employing the inverse-Gamma function prior pdf compared to the
exponential prior pdf. In fact, the cutoff parameter allows to describe as source signal part
of the simulated background amplitude. Note that the background is still modelled by
the data and the identification of sources occurs only when Pioyee is large (i.e., > 50%).
For the simulated data with large background (panel ¢), the same sensitivity in source
detection is expected when employing the two priors over the signal distribution.

4.2.4 Source probability maps

The box filter method with a circle is used in the three simulations for the multiresolution
analysis. Examples of SPMs are shown in Figs 4.1, 4.2 and 4.3 for the simulated data with
small, intermediate and large backgrounds, respectively. Images (¢) and (e) are obtained
employing the exponential and the inverse—-Gamma function prior pdfs, respectively. These
images represent the probability of having source contributions in pixel cells with a resolu-
tion of 1.5 pixels. At this resolution a pixel cell is composed by 9 pixels. A pixel cell with
a correlation radius of 1.5 pixels is drawn in the lower right-hand corner of image (¢) in
Fig. 4.1. It is indicated with an arrow.

The sensitivity in source detection slightly varies with the prior pdf of the source signal
employed. In the case of the inverse-Gamma function, the cutoff parameter have important
implications, as already discussed throughout this Chapter. For instance, in Fig. 4.2, panel
(e), the source probability map does not contain pixels with 100% probability of detecting
background only. This is due to the cutoff parameter. In this simulated data set, the cutoff
parameter is selected such that part of the source signal is described at the background
amplitudes. Correspondingly, the background map in panel (f) of Fig. 4.2 is slightly
underestimated: The percentage of difference varies only in the range (0.3 — 2)%.

The multiresolution technique provides an analysis of source probabilities variation with
correlation length and of source features of the detected sources.
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The source probabilities variation allows one to analyse the source probability changes
at different correlation length (Fig. 4.6). Different behaviours are found for bright and faint
source detections. Panel (a) of Fig. 4.6 shows that the probabilities of bright sources do not
vary significantly at decreasing resolutions because of the source brightness relatively to the
small background value (b = 0.1 count). Faint sources, instead, are detected at decreasing
resolutions (panel b, Fig. 4.6). The source size (or extent) of faint sources is found within
the correlation length at which approximately the maximum of the source probability
is reached. For increasing correlation length, the source probability decreases, because
the difference between background and source signals is low. Last, source probabilities
variation may provide hints on sources close to the background amplitude, as shown in
panel (c), Fig. 4.6.

SPMs enable the analysis of source features. In Fig. 4.7, the photon count image and
the SPMs of a bright extended source are displayed. The source probabilities variation
for this source is shown in panel (a) of Fig. 4.6. This source is detected with the largest
source probability (~ 1) at 2.5 pixels resolution. At this resolution the source is detected
as one unique object, as given by the simulation. This object, however, is simulated as
circular symmetric. Due to statistical fluctuations, source counts are grouped and the
simulated geometric symmetry is lost. At correlation lengths smaller than 2.5 pixels, the
BSS technique detects the data as they appear because of statistical fluctuations. At
correlation lengths larger than 2.5 pixels, one unique object and its substructures are
detected. In an astronomical observation, more information is needed to know if the
detection represents an individual object or an object with substructures. Secondly, the
maximum in source probability is reached at a correlation length that is smaller than the
source size. This is due to the source brightness relatively to the small background value
(b = 0.1 count). Within the range of resolutions studied, the source probability is constant
at correlation lengths larger than 2.5 pixels.

This example shows that the multiresolution technique combined with the BSS method
is particularly appropriate for the search of sources, independent to their morphologies.
Statistical fluctuations may corrupt the data, but the BSS technique still provides a robust
detection of these sources. This aspect of the technique is very important for real data
since the majority of extended sources are not spherically symmetric.

4.2.5 Comparison between estimated and simulated source pa-
rameters

Source parameters and their uncertainties are derived as described in Section 2.3. Sources
are catalogued when a probability larger than 50% is reached at least in one of the SPMs.
A value of Piuree = 50% does not provide a clear detection of a source. The explanations
of the different threshold levels are supplied in Table 2.1. A threshold of 50% is chosen for
these simulated data sets in order to clarify the different interpretations.

The parameters of bright sources are precisely estimated. In Fig. 4.7, an example
of detection of a bright extended source employing SPMs in the multiresolution tech-
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Figure 4.7: The upper left-hand image is a zoom in of the photon count image (panel a,
Fig. 4.1) on a simulated source located at (z,y) = (360,270). The width of the photon
count image is 65 pixels. The following images are SPMs at decreasing resolutions. The
correlation length of each SPM is written on the lower right-hand corner of each image in
pixel units.
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Figure 4.8: Panels (a)-(b): simulated data with small background (b = 0.1 count) with and
without Poisson noise, respectively, and scaled in the range (0-3) counts. The catalogue
obtained employing the ezponential prior pdf (a) and the shapes of the region of the
simulated sources (b) are superposed.

nique is given. The true parameters of this source are: 128 photon counts, (ox,0y)=(5,5)
pixels, (z,y)=(360,270) in pixel units. The estimated parameters of this source are:
(129.79£23.70) net source counts, (ox,0y)=(4.924+0.67,4.96+0.71) pixels, (z,y)=(359.57+
0.92,269.29 + 0.98) [pixel]. Instead, the effect of background fluctuations on faint source
estimates can be quite pronounced.

In Fig. 4.8, an example of the estimated source positions and shape on the simulated
data with small background is provided, using the exponential prior pdf. The errors on the
estimated parameters are not considered in this plot. Some of the detected faint sources
look uncentred and distorted. Four false positives in source detection are found. The
simulated data without Poisson noise with the simulated source shapes superimposed are
shown for comparison.

Table 4.1 reports the number of detected sources for each simulation. Different columns
are used for accounting true detections and false positives separately at different source
probabilities threshold values. The number of detected sources employing the inverse—
Gamma function prior pdf is larger with respect to the exponential prior pdf case only
when the cutoff parameter is set lower than the mean background amplitude.

In Fig. 4.9, the estimated source counts are related to the correlation length where the
maximum of Piyee 0ccurs (panels a and ¢) and their source probability (panels b and d)
for the simulated data with small background. These are log-linear plots. The results
using the exponential and the inverse-Gamma function prior pdfs are shown in panels (a)
and (b) and in panels (¢) and (d), respectively. The asterisks indicate true sources, while
the squares show spurious detections.
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Figure 4.9: Results on simulated data with small background (b = 0.1 count) employing
the exponential prior pdf (panels a and b) and the inverse-Gamma function prior pdf
(panels ¢ and d). Panels (a) and (¢): correlation length in pixel units versus the net source
counts. Panels (b) and (d): source probability versus net source counts. Sources matched
with the simulated input catalogue are indicated with an asterisk. A square indicates false
positives in source detection.
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Table 4.1: Source detections on simulated data employing different prior pdfs of the source
signal.

Simulated ~ Prior pdf > 50% > 90% > 99% > 99.9%

background True False True False True False True False
0.1 Epr 64 4 60 3 57 1 52 0
’ IGpr 57 7 54 1 52 0 49 0
10 Epr 41 6 41 3 39 0 38 0
' IGpr 42 10 42 2 40 0 37 0
10.0 Epr 25 0 24 0 22 0 22 0
' IGpr 26 2 26 2 26 2 26 2

Note. The background amplitudes of the simulated data are reported in counts pixel .
Epr and IGpr have same meaning as given in Fig. 4.5. The terms "True’ and 'False’
provide the number of detected sources matched and not matched with the simulations,
respectively. The number of detected sources is listed when Pjgyree is larger then 50%, 90%,
99% and 99.9%. See Table 2.1 for the meaning of these threshold values.

The plots on panels (a) and (c¢) show source detections at different correlation lengths,
that are resulting from the multiresolution analysis. In both plots, a line is drawn only
with the purpose to guide the eye. Left to the line — sources are not detected, because
very faint objects are not distinguished from the background amplitude. Right to the line
— sources are found. Very faint sources with few photon counts (< 10) are resolved by
small correlation lengths, indicating that these sources are detected when their sizes are
small (within 3 pixels). In the range (10 — 100) net source counts, sources are detected
at decreasing resolutions. The multiresolution analysis detects efficiently sources with
increasing sizes (and therefore with decreasing brightness) at increasing correlation lengths.
Bright sources do not require large correlation lengths for being detected. Plots on panels
(a) and (c) show that the multiresolution analysis is a robust and efficient technique for
the detection of faint and extended sources.

The plots in panels (b) and (d) of Fig. 4.9 provide evidence for source selections ac-
cording to their probabilities. Bright sources are all characterized by probabilities larger
than 99.9%. Faint point-like sources have probabilities larger than 97%. Faint extended
sources are represented by a wider range in source probability. These plots show that the
detection of faint sources may be spoiled by false positives in source detection, especially
for probabilities lower than 99%.

Note that the effect of the cutoff parameter a on source detection is visible in panels
(c) and (d). In this example, the value of a is chosen larger than the simulated background
amplitude. Hence, the inverse-Gamma function prior pdf does not allow to detect sources



4.2 Results 69

as faint as the exponential prior pdf.

In Fig. 4.10, the relation between the simulated and the estimated source parameters
is shown. Good estimates in source parameters are achieved. The estimated net source
counts errors and source size errors can be large for faint sources.

In Fig. 4.11 a summary on the analysis of all the detected sources employing the expo-
nential prior and the inverse-Gamma function prior pdfs on the three simulated data sets
is provided. Each plot in Fig. 4.11 is used to check the reliability of the BSS technique.
The plots in panels (a) and (¢) show the difference between estimated and simulated net
source counts, normalized with the estimated errors (residuals), versus the source probabil-
ity of the merged data. Within these simulations, more than 85% of all detections occurred
with probability larger than 99%, when employing one or the other prior pdf of the source
intensities. The images in panels (b) and (d) are semilog plots of the residuals versus the
simulated net source counts of ~ 99% true sources detected in the three simulations. When
employing the exponential prior pdf, the values of two sources, detected in the simulated
data with large background, are outside the selected y range. The estimated parameters
of these two sources, missing from panel (b), are corrupted by background fluctuations.
These two detections are included in the analysis of verification with existing algorithms
(Chapter 5). When using the inverse-Gamma function prior pdf, the values of two sources
are also found outside the selected y range. These two sources, missing from panel (d),
are detected on the simulated data with intermediate and large background values. Their
residuals values are about —15. The extreme values of these two sources are, as before,
due to background fluctuations, because the optimization routine found an optimum for all
sources. Comparing panels (b) and (d), the exponential prior pdf allows for the detection
of fainter sources since the simulated data with small background are processed employing
the inverse-Gamma function prior pdf with the cutoff parameter fixed to a larger value
with respect to the background amplitude. Hence, faint sources composed by less than 8
counts are not detected with the inverse-Gamma function prior pdf with the chosen cutoff
parameter.

The residuals are normally distributed, as expected. They are located symmetrically
around zero. At the faint end, the results are only limited by the small number of simulated
faint detectable sources. Faint and bright sources are equally well detected.

4.2.6 False positives

Until now, the detections that have counterparts with the simulated data have been dis-
cussed. The detection of false positives are now considered.

In Table 4.1 the number of detected false positives are listed for each simulation. At
50% probability threshold more false positives are found with the inverse-Gamma function
prior compared to the exponential one. At a 90% source probability threshold, the analyses
with the two prior pdfs provide similar results. True detections are strongly separated from
statistical fluctuations for source probability values larger than 99%. Source probability
values larger than 99.9% separate very strongly true detections from false positives.

When employing the inverse-Gamma function prior pdf, the number of false positives
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Figure 4.10: Relation between the simulated sources with small background (b = 0.1
count) and the measured sources as in output from the processing with the developed
method employing the exponential prior pdf. Panels (a) and (b) show the comparison of
the measured source positions with the simulated input positions on the x—axis and on
the y—axis. Panel (¢) displays the relation of the measured source photon counts versus
the simulated intensities. A comparison of the estimated source extensions (i.e., source
size) oy and o, with the input source extensions are displayed in panels (d) and (e). The
errors estimated for the source parameters are superposed. The error bars on the estimated
values denote the 68% confidence limit of the corresponding posterior distribution. The
lower panel in each image shows the residuals.
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Figure 4.11: Merged information from three simulated data sets of the detected sources
employing the exponential prior pdf (panels a—b) and the inverse-Gamma function prior
pdf (panels ¢—d). Panels (a) and (c¢): difference between estimated and simulated net
source counts normalized by the errors on the estimated net source counts versus source
probability. Panels (b) and (d): difference between estimated and simulated net source
counts normalized by the errors on the estimated net source counts versus the simulated
counts.
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is sensitive to the cutoff parameter. Less false positives are found when a is set larger
than the background, because it reduces the number of detectable faint sources. It may
be worth noting that even when the cutoff parameter is set larger than the background, a
probability threshold > 90% has to be considered (see Fig. 4.9 for more details).

False positives in source detections show large errors in their estimated parameters. The
source probability variations with respect to the correlation length of source detection and
the source features analyses in the multiresolution technique provide hints of ambiguous
detections. However, as all methods, the BSS approach is limited by statistics. Spurious
detections can never be ruled out completely.

4.2.7 Choice of the prior pdf of the source signal

The big difference between the two prior pdfs of the source signal follows on from one prior
pdf having one parameter and the other pdf having two.

The parameter A, indicating the mean intensity in an astronomical image, introduced
with the exponential prior pdf is estimated from the data.

The parameter «, that is the shape parameter of the power—law, given by the inverse—
Gamma function prior pdf is also estimated from the data. Instead the cutoff parameter
a is selected to a small value such that the inverse-Gamma function prior pdf behaves as
a power—law. Astronomical images can be characterized by a small background. It results
that a can be chosen from a number of alternatives, ranging from values that are above
or below the background amplitude. The choice of a implies a selection on the detectable
sources: sources whose intensity is lower than a are not detected; sources close to the
background amplitude are detected when a is set below the background amplitude.

On real data much more prior information for the cutoff parameter is needed. The
inverse-Gamma function prior pdf can be employed if a mean value of the background
amplitude is already known from previous analyses.

The exponential prior pdf is preferable over the inverse-Gamma function prior pdf,
since no predefined values are incorporated. This is also supported by the results obtained
with the simulated data. However, the inverse-Gamma function prior pdf is a more suited
model to fit the data and it has potentials for improving the detections of faint objects.

One way to improve the knowledge acquired with the inverse-Gamma function prior
pdf is by the estimation of the cutoff parameter from the data. This change in the BSS
algorithm is not straightforward and MCMC algorithms have to be employed. This task
exceeds the scope of this thesis.

4.3 Summary

Simulated data are employed to assess the properties of the BSS technique. The estimated
background and source probabilities depend on the prior information chosen. A successful
separation of background and sources must depend on the criteria which define background.
Structures beyond the defined properties of the background model are, therefore, assigned
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to be sources. There is no sensible background-source separation without defining a model
for the object background. Additionally, prior information on source intensity distribu-
tions helps to sort data, which are marginally consistent with the background model, into
background or source. Therefore, prior knowledge on the background model as well as
on the source intensity distribution function is crucial for successful background-source
separation.

For the background model a two-dimensional TPS representation was chosen. It is
flexible enough to reconstruct any spatial structure in the background rate distribution.
The parameters are the number, position and amplitudes of the spline supporting points.
Any other background model capable to quantify structures which should be assigned to
background can be used as well.

For the prior distribution of the source intensities the exponential and the inverse—
Gamma function are used for illustrations. For both distributions the source probability
can be given analytically. The hyperparameters of both distributions can either be chosen
in advance to describe known source intensity properties or can be estimated from the
data. If they are estimated from the data simultaneously with the background parameters,
properties of the source intensity distribution can be derived, but at the expense of larger
estimation uncertainties. It is important to note that the performance of the BSS method
increases with the quality of prior information employed for the source intensity distribu-
tion. The prior distribution of the source intensities determines the general behaviour of
the sources in the fov and the hyperparameters are useful for fine—tuning.

The aim of detecting faint sources competes with the omnipresent detection of false
positives. The suppression of false positives depends both on the expedient choice of prior
information and on the level of detection probability accepted for source identification.
Compared to, e.g., p-values the BSS technique is rather conservative in estimating source
probabilities. Therefore, a probability threshold of 99% is mostly effective to suppress false
positives.

The estimated background rates are consistent with the simulated ones. Crowded
areas with regions of marginally detectable sources might increase the background rate
accordingly.

The SPMs at different correlation lengths are an important feature of the technique.
The multiresolution analysis allows one to detect fine structures of the sources.

The source parameters are well determined. Their residuals are normally distributed.
In Chapter 5 it will be shown that the BSS technique performs better than frequently used
techniques. Naturally, the estimation uncertainties of parameters for faint sources are large
due to the propagation of the background uncertainty.
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Chapter 5

Verification with existing algorithms

In this Chapter the source detection results from the developed Bayesian technique are
compared with other source detection methods. In Section 5.1, actual source detection
techniques implemented within the Poisson regime are reviewed. In Section 5.2, further
complications encountered by the available techniques applied to X—ray surveys are ad-
dressed. The BSS results on the three simulated data sets, described in Chapter 4, are
compared with the outcome from the WAVDETECT algorithm in Section 5.3. Finally, a
summary of this Chapter is provided in Section 5.4.

5.1 Standard techniques

The typical observations in high—energy astrophysics feature photon fluxes in the ranges
from 0.1 to a few photons per pixel. The detection and characterization of faint point—like
and extended sources is a challenging task. A large sample of faint sources, e.g. AGNs,
clusters or groups of galaxies and extragalactic SNRs, is required to improve the knowl-
edge about the evolution and the origin of the Cosmos. Nonetheless, source detection
algorithms in the Poisson regime suffer from the pervasive presence of (random) back-
ground fluctuations. Often, compromises for the treatment of the background estimation
are taken.

Traditionally, source detection methods subtract an estimated background from the
data. The background is measured on an area around the presumed detected source or on
an area away from the sources, which is presumed to contain only background. Inappro-
priate subtraction can lead to artificial structures in the desired image. If too much is sub-
tracted, the data constraints cannot be fulfilled by a positive image (von der Linden et al.,
1997). Other side—effects of this technique are the loss of faint sources during background
subtraction and the statistics is not preserved. The subtraction of a background from
the photon count data produces a new data set that is not anymore Poisson distributed
(Skellam, 1946).

Often, a photon density distribution is used to estimate a cutoff value for describing a
global background (background thresholding) or a locally determined background is used
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in order to flag possibly significant density enhancements in the photon distribution (peak
finding).

An example of a source detection method employing the simple background threshold-
ing is given by the technique of Bertin and Arnouts (1996) in the SEXTRACTOR software
package. In the work of Bertin and Arnouts (1996), the whole image is subdivided into a
regular grid of background cells each, e.g., 200 x 200 pixels on the side, on which the back-
ground is estimated using k— o clipping for each cell. The k—o¢ clipping is used to suppress
the influence from outliers (i.e. sources) from the background signal. The local background
histogram is clipped iteratively until convergence at +30 around its median. The mean of
the clipped histogram is used as a value for the local background in non—crowded fields,
otherwise the mode is employed. In a further step, a bicubic—spline is used to interpolate
from the background grid to the image pixels in order to estimate the local background.
Although a median filter is applied to suppress possible local overestimations due to bright
stars, the background is inevitably overestimated. The estimated background map is then
subtracted from the astronomical image. Faint sources are lost.

Other techniques (e.g., Gioia et al. 1990; Freeman et al. 2002) employ a locally deter-
mined background to flag possible sources. In a second step, count enhancements above
the local background are removed from the image. In a third step, the background is esti-
mated in the censored image. Consequently, the estimated background amplitude can be
too high, because of faint sources in the locally determined background. These techniques
are described in the next Sections.

Methods, that employ background thresholding and/or peak finding, show very low
sensitivity for variations in the background estimation. These methods do not properly
account for the detection of those very extended sources, whose characteristic size is several
times larger than the instrumental PSF and for which the background may vary signifi-
cantly. Moreover, an inadequate estimation of the background can lead to a large number
of false positives in source detection. Faint point—like objects may get lost.

A brief review on few conventional source detection methods for Poisson data, frequently
used for the search of faint point-like and extended sources, is given. A short outlook of
the following detection procedures is provided: sliding window technique and ML; WT
techniques; Voronoi tessellation and percolation (VTP) (Ebeling and Wiedenmann, 1993);
growth curve analysis (GCA) (Bohringer et al., 2000).

5.1.1 Sliding window technique and Maximum Likelihood

The sliding window technique (see, e.g., Harnden et al. 1984; Gioia et al. 1990) and the
ML (see, e.g., Cruddace et al. 1988; Hasinger et al. 1994; Boese and Doebereiner 2001)
procedures are the standard detection algorithm of the SASS processing for ROSAT data
(Voges et al., 1999). Both procedures address mainly the analysis of point sources. SASS
is also included in Chandra and XMM-Newton data analysis tools. In Chapter 6, some
applications of the BSS technique on ROSAT data and comparisons of SASS and BSS
outcomes are shown.

The sliding window technique searches locally for count enhancements relative to the
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intensity in a surrounding area defining the background intensity. The source signal is de-
rived from the pixel values inside the cell. In multiple steps the window width is changed
to allow for the detection of extended sources. But extended sources, blended sources in
crowded fields and sources near the detection limit may get lost (Voges et al., 1999). One
reason is due to the local estimation of the background in a small region around the sliding
window which may provide only poor signal-to-noise ratios. In a following step, circular
regions around the detected objects are removed from the image to form the so—called
‘cheese’ image. A coarser binning is applied to the cheese’ image (Boese and Doebereiner,
2001). The background count distribution is often modelled with two perpendicular unidi-
mensional cubic—splines from the resulting binned image. A consequence of the coarser bin-
ning is that no abrupt variations in the background are modelled (Boese and Doebereiner,
2001). Pitfalls due to the employed class of bivariate splines are that the background model
is not stable along the whole field and the background model shows steep slopes towards
the field edge: See Boese (2004), Fig. 4 and text related, for more details. The oscillatory
behaviour of the SASS background model produces regions with too large or too small
values (with respect to the true ones), leading to an increasing number of false positives
in source detection and problems in source photometry.

The original image is investigated once more with the sliding window technique em-
ploying the background map. A second source list is created and merged with the original
source list. These lists provide the input sources for the ML algorithm. The ML algo-
rithm computes the source properties like position, flux, angular extent and significance.
The ML technique works on the photon event data and the background map. The spa-
tial distribution of the observed photons is compared with the spatial distribution of the
theoretical PSF!. For each photon the probability to belong to source or background is cal-
culated. A likelihood that the instrumental PSF and a two—dimensional Gaussian source
distribution are matching is calculated. The parameters specifying source position in de-
tector coordinates, source counts, extent are varied until the likelihood is maximized. The
likelihood is defined as [—In(1 — P)] where P is the probability of existence of the source
(Cruddace et al., 1988). A multi-PSF fit is also implemented to allow for deblending and
reconstructing the parameters for close by sources. A confidence level for each parameter is
used to reject sources with insufficient significance (Hasinger, 1985; Boese and Doebereiner,
2001). An advantage of the ML technique is the capability of taking into account the ar-
rival time, sky and detector positions and energy of each infalling photon on the detector.
The main pitfalls of the ML approach comprise: The optimum value found for the de-
tected sources is not unique (Boese and Doebereiner, 2001), so that a local maximum may
be observed instead of a global one; The background counts in addition to a source are
considered constant with respect to the optimized source parameters; Background sub-
traction is used leading in extreme cases to negative count rates (Voges et al., 1999); The
uncertainties entering the optimized source parameters are based on the normal distribu-

! Note that for reason of computational speed, the photon space is binned and the best fit PSF density
in radially symmetric Gaussian form is taken as the PSF model for point sources (Boese and Doebereiner,
2001; Boese, 2004). For extended sources, a radial two—dimensional Gaussian function is fitted to the
photon distribution (Boese and Doebereiner, 2001).
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tion (Boese, 2004), leading to unreliable uncertainties especially for faint sources. Last, the
work of Boese (2004) shows that the ML technique provides reliable source positions for the
detected sources, but fluxes for faint point—like or extended sources are often overestimated.

In Chapter 1, Section 1.2, additional benefits, pitfalls and further developments of these
procedures are introduced.

5.1.2 Wavelet Transformation

Wavelet based methods have been extensively applied to astronomical image processing in
the last 10 years: See Rosati (1995) as one of the pioneering works on wavelet analysis.
The reasons for their success is based on their ability of detecting image structures at
all spatial scales and locations and on modelling the local background in addition to a
source in wavelet space (Starck and Murtagh, 2006). After providing a short presentation
of WT techniques, the WAVDETECT algorithm (Freeman et al., 2002), version 3.4, part of
the Chandra Interactive Analysis of Observations (CIAQO) software package is reviewed.
This algorithm is employed in Section 5.3 for quality assessment of the BSS technique.

WT techniques convolve the input image with a wavelet function (e.g. Haar, Mexican
Hat, Morlet functions). The solutions are wavelet coefficients at different scale param-
eters. Object translations are included in the solution through a position parameter.
By varying the scale parameter, the original image is decomposed into wavelet images
(Starck and Pierre, 1998). WTs localize the image structures associated to the maxima
of the wavelet coefficients. Hence, sources are detected whose size is comparable to the
employed scale. Extended sources are detected at increasing scales of the WT.

In each wavelet image, the detection threshold at a given scale is estimated through
a statistical model to justify if a wavelet coefficient is significant, i.e. not due to back-
ground. The statistical significance of a coefficient is often determined by: employing a
histogram of the wavelet function (Starck and Pierre, 1998); through Monte Carlo simula-
tions (Damiani et al., 1997; Vikhlinin et al., 1998a; Freeman et al., 2002).

Photons, contributing to the calculation of the wavelet coefficients, are used to compute
histograms. Histograms are employed to derive threshold values. Threshold values are
compared to the wavelet coefficients. Wavelet coefficients are significant if their values are
larger than the estimated threshold values.

Monte Carlo techniques are commonly used on simulated images composed by a spatially
uniform background with Poisson noise and convolved with the wavelet coefficients. The
distribution of the local maxima in the convolved images is used to define the detection
threshold. Often, the threshold level is chosen between 3 — 50 (of a Gaussian distribution)
above the background level.

Note that WT techniques do not require an estimation of the background on the whole
image for source detection. The background in addition to a source is assumed to be
constant and is estimated locally in the negative annuli of the wavelet function. The
locally estimated background is biased when nearby sources are present. In addition,
the parameters of extended sources are not properly accounted for, when the background
amplitude is characterized by large variations.
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Following the selection of the significant wavelet coefficients at each scale, the maxima
of the wavelet coefficients are used to define the detected objects at each scale. Source char-
acteristics are extracted from the detected structures, including position, flux, positional
angle and deviation from sphericity.

In Chapter 1, Section 1.2, advantages, pitfalls and further developments of these tech-
niques are discussed.

The wavdetect algorithm is a powerful and flexible software package. It has been
developed for a generic detector. It is applicable to data with low background. The
algorithm includes satellite’s exposure variations. It estimates the local background count
amplitude in each image pixel and it provides a background map.

The WAVDETECT algorithm detects candidate source pixels by repeatedly convolving
the original image with a Mexican Hat function at different scales. This wavelet function
employed is the second derivative of the Gaussian function. The local background is
taken from the negative annulus of the wavelet function. The background estimate can be
biased when sources are located within the wavelet negative annulus producing rings. The
background model is improved with further iterations. Pixels identified with candidate
sources are removed from the image iteratively. When very few source candidates are
found or when an iteration—count limit is reached, this process stops. The background
is estimated on the new censored data set (input image with source pixels extracted).
The final background may still contain rings, that affect source characterization. In the
background map, problems can arise also near under exposed regions or at the field edge,
since the sharp gradient can be erroneously detected as a source.

The estimated background is used to set detection thresholds. These thresholds are then
applied to the wavelet images to identify the candidate sources. At each set of wavelet
scales, a list of candidate sources and the background image are provided. The background
image is corrected for exposure variations and for sensitivity variations of the instrument
at a local scale (flat—field). The background errors are also supplied.

In a second step the source lists are merged and cross—correlated. For each source, a cell
containing the majority of the source flux is computed. Within that cell, source properties
are computed.

5.1.3 Voronoi Tessellation and Percolation

The VTP procedure is a general method for the detection of non—Poissonian structures in
a distribution of points. The VTP technique, as described in Ebeling and Wiedenmann
(1993), is designed for the detection of faint and extended sources. The VTP proce-
dure is applied on X-ray data, especially on ROSAT data (see, e.g., Scharf et al. 1997,
Ebeling et al. 2000) and it is also included in the CIAO software package (see, e.g., Boschin
2002).

This technique works on unbinned data. No particular source geometry is assumed for
the detection process. Each photon defines the centre of a polygonal cell. Each polygonal
cell side is connected to the nearest neighbour photon. The photon cells form the Voronoi
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tessellation of the field. The surface brightness associated with the photon in the cell equals
the inverse of the product of cell area and local exposure (Scharf et al., 1997). A cutoff
for defining the global background is obtained by comparing the cumulative distribution
of the inverse areas of the resulting Voronoi cells with that expected for a random Poisson
distribution. A spatial Percolation algorithm is used to group individual cells with photons
exceeding the background density. Sources are identified and removed from the field in
order to revise the background estimate. A minimal number of photons required for true
sources is computed in order to reduce the number of false positives. The background
amplitude is then provided by the mean surface brightness calculated from all nonsource
photons.

Source positions are computed as the flux—weighted mean values of photons identi-
fied as belonging to one source. A preliminary width of the sources is also provided.
Source fluxes are provided with and without fitting a model profile to the detected emis-
sion (Ebeling et al., 1998). The source parameters are estimated employing two kinds of
source profiles: for extended emissions a f-model (Cavaliere and Fusco-Femiano, 1978),
for point-like sources a Dirac’s delta function (see Ebeling et al. 1998 for more details).
The source profiles are convolved with the instrumental PSF. The convolution process
provides the observed surface brightness distribution. Moreover, source count rates for
the detected objects are corrected to an arbitrary fraction of the total source flux. The
motivation for this correction is due to the presence of an X-ray background that always
limits the emission directly detectable (unobserved flux). The correction is performed in
the far wings of the source.

This method is particularly designed for the detection of extended sources in the Pois-
son regime. Sources with low surface brightness are found independently of their actual
shape. However, this procedure is characterized neither by a well-defined background
model nor by a multiresolution support. Although the estimated background accounts
for the telescope’s exposure, the background rate is obtained by iterations on a censored
image. Large variations in the background are not modelled. Fields with very high pho-
ton densities, like the RASS fields at high ecliptic latitude, can not be processed in one
go (Ebeling et al., 1998). Problems in the evaluation of source positions and intensities
may arise when studying fields of high source densities (Valtchanov et al., 2001). Since a
multiresolution analysis is missing within VTP, diffuse emissions with embedded point-like
sources are combined (Ebeling et al., 1998) and substructures of extended sources are not
detected (Starck and Pierre, 1998). The performance of the VTP technique is best only
for either small fields or low—event density regions.
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5.1.4 Growth Curve Analysis

The GCA (Bohringer et al., 2000) is a source characterization technique designed for the
flux and width estimation of X-ray clusters of galaxies. It is applied to RASS data,
processed by SASS and catalogued with a low source likelihood: L = 7, instead of L =
15 as for the Bright Source Catalogue (BSC) (Voges et al., 1999): See Bohringer et al.
(2001) for more details. The reanalysis of the source fluxes of extended objects has been
necessary because the flux of these sources is underestimated by the SASS algorithm
(Bohringer et al., 2001). The GCA method consists in measuring background-—corrected
source counts as a function of an increasing circular aperture.

From the RASS data, fields with sizes of 1°.5 x 1°.5 in the sky are selected. The
positions of the fields are the X-ray positions provided by the ML technique incorporated
in the SASS algorithm. However, the ML approach is designed for the parameterization
of point—like sources. Source positions are, therefore, estimated once more employing a
moment method, i.e. a two—dimensional centre of mass of the photon distribution within
an aperture of (3 — 7.5) arcmin around the centre.

The background model given by the sliding window technique of the SASS algorithm
is not used. The background is, instead, calculated as follows. An average background
rate is derived from a ring area centred on the source, but away from the X-ray extended
emission. The inner and the outer ring radii (often with values of 20 and 41.3 arcmin,
respectively) are chosen large enough to cover the full field size. The ring area is divided
in twelve sectors. In each sector, the count rates are accounted and averaged for providing
the surface brightness (background). The background rate is corrected performing a k — o
clipping on the twelve sectors of the ring, so that the median of the background count
rates is determined in an attempt of excluding discrete sources and statistical fluctuations.
For this reason, a sector is discarded if its surface brightness deviates from the average.
Detected sources still contaminated by nearby sources after the k— o clipping are improved
employing a deblending algorithm.

The cumulative source count rate as a function of radius is calculated by integrating the
source counts (background corrected and weighted with the local exposure time) in concen-
tric rings. The results are count rate profiles that allow one to estimate the total observed
source count rate and to suggest the source extent (i.e., the size of the detected source). The
source width is improved employing a x? fit of a —profile (Cavaliere and Fusco-Femiano,
1978) convolved with the instrumental PSF. Additionally, the estimated source profiles are
tested for deviation from the count rate profile expected for a point source. A Kolmogorov—
Smirnov test is used for this purpose. Furthermore, the GCA provides the following param-
eters: background subtracted source count rate and its Poisson error, a significance of the
source detection, source extent and spectral information. X-ray fluxes are corrected for
the missed flux outside the detection aperture by extrapolating to the cluster’s estimated
virial radius (Kocevski and Ebeling, 2006).

The GCA method ameliorates the results obtained with the sliding window technique
and the ML method and with the VTP technique (Bohringer et al., 2000). However,
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the GCA technique works only locally? and does not account for large variations in the
background. The GCA technique shows more clearly than other methods that an accurate
estimation of the background is very important.

5.1.5 Summary of some standard techniques

Table 5.1 provides a summary of the strengths and the weaknesses of the detection tech-

niques supplying background estimation, source detection and characterization.

Methods

Strengths

Weaknesses

Sliding window  Detection of point sources.

Coarse background estimation due to box
filter and subtraction of sources,

Low sensitivity in detecting faint and nearby
sources,

Fine tuning of parameters for extended
sources,

Speed decreases at increasing number of cell
sizes and of detected sources.

and ML Best performance for parameter Extended sources may be divided into point
estimates of point sources, sources.
Each individual photon is taken
into account.

WAVDETECT Multi scale analysis for source Mexican Hat function is used as a filter for
detection, source detection,
Source characteristics are extracted  Circularly symmetric sources are favoured
from detected structures, in source detection,
Closely spaced point sources are Detection threshold given by significant
separated, wavelet coefficients,
Extended sources are detected at Fluxes are often not preserved,
different scales, Problems at the field edge, with increasing
Local background is estimated in number of false positives,
wavelet space. Speed decreases at increasing number of

scales used.
VTP Morphology free method for source Coarse background estimation,

detection,

Each individual photon is taken
into account,

Find low surface brightness features,
Detected photons provide position,
flux, width.

Combines close by point sources,

Combines diffuse emission with embedded
point sources,

Applicable to small fields or low—event
density regions,

Speed decreases at increasing number of cells.

Table 5.1: Summary table listing strengths and weaknesses of standard source detection
methods discussed in Section 5.1. Note that the GCA technique is not listed, since it
provides only source characterization.

2The GCA method has so far been employed only in an interactive, supervised way.



5.2 Application of standard techniques to sky surveys 83

5.2 Application of standard techniques to sky surveys

X-ray sky surveys offer the possibility to study complete samples of, e.g., rare objects, such
as galaxy clusters, AGNs and QSOs, in order to quantify their properties (as luminosity,
temperature, space density) and to probe cosmological models (while connecting observed
quantities to model predictions). The ROSAT data and catalogues provided the starting
point to construct X-ray samples over wide areas of the sky. In the search of galaxy
clusters, the largest statistically homogeneous sample drawn from the RASS is given by
the works of Bohringer et al. (2000, 2004): the northern galaxy clusters (NORAS) and the
southern clusters (REFLEX) surveys. In these works, galaxy clusters are analysed with
the GCA algorithm, providing for an homogeneous sample in all its selection parameters,
especially in its coverage of the sky (Bohringer et al., 2001). Optical identifications and
spectroscopic observations followed on the X-ray identified galaxy clusters to provide for a
robust local (z ~ 0.15) reference frame and to measure fundamental cosmological quantities
(see Bohringer et al. 2000, 2004; Guzzo et al. 2009 for more details). Several other surveys
employing ROSAT data have been published in the past years. Utilizing ROSAT pointed
observations, for instance, the ROSAT Deep Cluster Survey (RDCS) (Rosati et al., 1998)
and the 160 Square Degree Survey (Vikhlinin et al., 1998b) extended galaxy clusters studies
at higher redshifts (up to z ~ 0.8). For a review of X-ray sky surveys employing ROSAT
data, see, e.g., Finoguenov et al. (2007); Guzzo et al. (2009).

With the advent of more powerful instruments, as the XMM-Newton satellite®, X-ray
sky surveys are carried out extending previous works in the search of evolution of the X—
ray luminosity function (XLF), as well as of the luminosity—temperature relation for galaxy
clusters emitting in X-ray. The XMM-Cosmological Evolution Survey (XMM-COSMOS)
(Hasinger et al., 2007) and the XMM-Large Scale Structure (XMM-LSS) (Pierre et al.,
2004) survey are performed on mosaic of images. Mosaic of images are difficult to handle.
In an automated search for X-ray extended sources, some of the standard techniques
previously described (Section 5.1) are combined for the analysis of a mosaic of images. The
sequential application of different techniques may provide inconsistent results. Previous
works (see Bohringer et al. 2001 for more details) have already shown that the sequential
application of, e.g., the SASS and the VTP techniques (Ebeling et al., 1998) produces an
inhomogeneous selection function and, therefore, biased results.

In Sections 5.2.1 and 5.2.2, a summary on the data analysis performed for the XMM-
COSMOS and the XMM-LSS surveys is given. In Section 5.2.3, an alternative way to
analyse a mosaic of images is described employing the BSS algorithm.

5.2.1 XMM-COSMOS

The XMM-COSMOS project employs WT on a mosaic of images (Finoguenov et al., 2007).
Each image composing the mosaic is background subtracted and exposure corrected.

3Due to its sensitivity (10 times better than ROSAT), large fov (~ 30 arcmin) and good PSF (the
on—axis PSF is ~ 6 arcsec FWHM), XMM-Newton is ideally suited for clusters LSS surveys.
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Firstly, the background is estimated on each single image before the mosaic is created.
The background is estimated employing templates for instrumental and sky backgrounds.
The measured background is then subtracted from the data. Problems arising from the
subtraction of a background from image data have been discussed in Section 5.1. Succes-
sively, the mosaic of ‘cleaned’ images is created and corrected for the mosaic of exposure
maps.

Clusters of galaxies are searched applying the WT method of Vikhlinin et al. (1998q)
on the resulting mosaic of 'cleaned” and ’corrected’ images (later on, simply, images). The
search for clusters of galaxies on the mosaic of images proceeds in several steps. Initially,
the wavelet transformed image with a scale of 32 arcsec is used to derive a detection
threshold. An area of the detected source is selected above the detection threshold for
flux measurements. A list of cluster candidates is created and cleaned for contamination
from point—like sources comparing wavelet scales. The number of cluster candidates is still
overestimated, so that optical data are used for straining the final cluster sample. Finally,
the estimated flux of the detected clusters of galaxies is improved removing the contamina-
tion from point—like sources according to optical identifications. For the characterization
of these point—like sources the instrumental PSF information is taken into account. A
B-model (Jones and Forman, 1984, 1999) is used for the characterization of clusters of
galaxies emission.

5.2.2 XMM-LSS

The XMM-LSS pipeline (Pacaud et al., 2006) employs a mixed approach with the WT
technique of Starck and Pierre (1998) and the SEXTRACTOR software package, described
in Bertin and Arnouts (1996), for source detection and a ML method (Pacaud et al., 2006)
for source characterization.

For source detection the W'T technique, based on the Multiscale Vision Model described
in Starck and Murtagh (2006), is used enabling the filtering of the image, i.e. the removal of
insignificant signal and the recovering of relevant structures. SEXTRACTOR is subsequently
applied on the filtered image to find the sources. The detection of sources is established
through sets of connected pixels above a certain threshold. Though, this scheme may fail
when the characteristic scale of variation of the background is approximately the scale of
the structures. This combined solution has the advantage of a fast and robust detection,
as in the standard method, while keeping the ability to detect faint objects, which is not
possible with SEXTRACTOR alone.

The third step consists in examining the likelihood of the detections and characterizing
their extent by a ML method. The ML profile fit is performed on (single and coadded)
photon images. In this step, the instrumental PSF variation with energy and off-axis
radius is considered, as well as other detector characteristics (vignetting, CCD gaps, local
instrument sensitivity). Two source models are used: an instrumental PSF model for
point-like sources, a spherically symmetric -model (Cavaliere and Fusco-Femiano, 1978)
convolved with the instrumental PSF for extended sources.

Last, X-ray/optical overlays for every extended source candidate are employed for
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quality assessment of the detected extended sources. Each overlay is inspected by eye, since
instrumental artefacts could have been detected as extended features. A list of plausible
extended sources is given when obvious enhancements of galaxies are shown (only for
clusters at z < 1). These clusters may be confirmed from spectroscopical data. Detected
extended objects with no significant optical counterpart are considered cluster candidates
at z > 1. These candidate clusters are searched on follow—up images in the near—infrared.
If confirmed, a spectroscopic follow—up is planned.

5.2.3 Analysis of mosaic of images with the BSS algorithm

In the search of extended sources in deep surveys, the analysis of a mosaic of images is
particularly difficult because of the increasing uncertainties of the source and background
signals towards the edge of the fov where individual images are superposed. Often, an
estimated background is subtracted from individual observations for successively merging
and analysing the images. The drawback of such technique is that substructures often arise
in the regions of superposed images due to residuals left over after background subtraction.
Large—scale residual variations in the background can be detected as spurious extended
sources.

A starting point for improving the analysis of mosaic of images could be given by
the BSS algorithm. An efficient way to handle mosaic of images is given by a statistical
combination of each individual image. In fact, each image of the mosaic can be analysed
individually with the BSS algorithm, creating SPMs with the multiresolution analysis.
Successively, each SPM can be statistically combined with the multiband technique (see
Section 2.2.5) for each resolution. Hence, the source signal contained in superposed regions
would increase in the same way as analysing the mosaic of images.

Another critical aspect of galaxy clusters detections in deep surveys is the contamination
of point-like sources on the line of sight of extended ones. The contamination of point-like
sources along the line of sight of galaxy clusters is straightforwardly handled with the BSS
technique due to the multiresolution analysis (examples are given in Chapter 7).

Last, the BSS source characterization algorithm (Section 2.3) can be easily adapted for
the analysis of clusters survey.

5.3 Verification

In the X-ray regime, the sliding window technique and the WT techniques are widely used.
However, the WT has been shown to perform better than the sliding window technique
for source detection: See Freeman et al. (2002) for more details. The WT improvement
in source detection with respect to the sliding window technique is inversely proportional
to the background amplitude (Freeman et al., 2002). The WT has also other favourable
aspects for being compared with the BSS method developed in this thesis: The WT allows
for the search of faint extended sources; The W'T and the BSS methods are both based on
a multiresolution analysis.



86 5. Verification with existing algorithms

Table 5.2: Number of detected sources employing WAVDETECT on three simulated data
sets.

Simulated  Simulated True False
background  sources  detections positives

0.1 100 56 4
1.0 100 37 1
10.0 100 23 1

Note. For the simulation set—up see Section 4.1. The results obtained with the BSS
technique can be found in Table 4.1.

Among all the available software employing WT, the WAVDETECT algorithm described
in Freeman et al. (2002), part of the freely available CTAO software package, is chosen.
Version 3.4 is used.

WAVDETECT is applied on the simulated data described in Chapter 4. The threshold
setting for the significance (‘sigthresh’) is chosen to be 4.0 x 1075 in order to detect on
the average 1 spurious source per image. The ‘scale’ sizes are chosen with a logarithmic
increment from 2 to 64. Tests have been made changing the levels of these parameters,
assuring that the selected values provide a good performance: This problem is already
known in the literature, see e.g. Nandra et al. (2005).

In Fig. 5.1, the reconstructed source images and estimated backgrounds as in output
from WAVDETECT are displayed. The reconstructed source images are scaled as the photon
count images shown in Figs 4.1, 4.2 and 4.3, panels (a).

In Table 5.2, the number of detected sources per simulated field is reported, separating
the sources correlated with the simulated one (True detections) to the false positives in
source detection found employing the above mentioned threshold setting. The three simu-
lated data sets are distinguished by their mean background values (counts). The simulated
background values are reported in column Simulated background. These results are com-
pared with the ones obtained with the BSS algorithm when employing the exponential
prior pdf as shown in Table 4.1.

In Fig. 5.2 efficiency and contamination of the BSS technique, employing the expo-
nential prior, and the WAVDETECT algorithm are compared at fixed threshold levels. The
efficiency is defined by the ratio of the detected real sources and the simulated sources.
The contamination, instead, is defined by the ratio of the detected false positives and
the total number of detected sources. Each line in the plot connects three points. Each
point indicates the estimated values of contamination and efficiency at the three simulated
background values. The points at the right—hand, middle and left—hand locations of the
plot are obtained with the backgrounds of 0.1, 1.0 and 10 counts respectively. The BSS
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technique is more efficient (up to 3% when Pi,yce = 0.99) and provides a less contaminated
sample (up to 5% when Piyyree = 0.99) than the WAVDETECT algorithm especially in the
simulated data with small background. Note that the absolute efficiency depends on the
selected values of the simulated fields.

The BSS technique finds all sources detected by WAVDETECT. In the simulated data
characterized by small background, the two algorithms find the same number of false pos-
itives. This occurs when a threshold level of 50% is chosen for P, .. The BSS algorithm
detects 8% more true detections than WAVDETECT. These sources are characterized by
counts in the range (4 — 8). Hence, the BSS technique performs better than WAVDETECT
in the low number counts regime. The number of detected true sources with the two tech-
niques on the data sets with intermediate and large background values is similar, though
the BSS technique provides for a less contaminated sample.

The explanation for these results is given analysing the background estimates (see panels
b, d, f in Fig. 5.1 for WAVDETECT and panels d in Figs 4.1, 4.2, 4.3 for the BSS algorithm).
The WAVDETECT estimates of background values are similar to the results obtained with
the BSS technique in the intermediate and high background data sets. Though, the back-
grounds provided by WAVDETECT show rings due to the Mexican Hat function employed as
a filter on the image data. In the simulated data with small background, the WAVDETECT
background model has on the average larger values than the ones estimated with the BSS
method. The plots in Fig. 5.3 support these conclusions (semilog plots). The image in
panel (a) provides the flux recovery of WAVDETECT detections versus the simulated fluxes.
WAVDETECT fluxes are underestimated for ~ 20% of all detected sources. In addition,
WAVDETECT sensitivity for source detection is limited to 16 counts per source within these
simulated data sets. In Fig. 4.11, panel (b), the flux recovery of the BSS technique versus
the simulated fluxes is improved with respect to WAVDETECT. In fact, residuals of esti-
mated and simulated source counts are normally distributed and the sensitivity achieved by
the BSS method is of 4 counts. The plot in panel (b) of Fig. 5.3 displays a relation between
the sources detected by WAVDETECT (ordinate) and by BSS (abscissa), both matched with
the simulated data. Most of the WAVDETECT underestimated sources are coming from
the simulated data with small background. The BSS technique provides only two sources
underestimated and detected in the simulated data with large background. By chance,
the triangle located at (—8,—2) indicates the detection of two sources. Both sources where
simulated with 256 source counts and a circular extension of 4 pixels one, 5 pixels the other.
The estimated source positions are also improved with BSS (Fig. 5.4, semilog plots).

The residuals provided by the BSS technique are a factor of 10 smaller than the ones
from WAVDETECT. WAVDETECT estimates have many outliers. The BSS estimates are
normally distributed.

Though the comparison between the two detection methods is not yet carried out on real
data, these results are encouraging. The BSS method detects at least as many sources as
WAVDETECT. The simulations prove that the developed Bayesian technique ameliorates the
detections in the low count regime. The BSS estimated positions and counts are improved.
Finally, the BSS technique will refine WAVDETECT sensitivity on real data, because the
BSS technique is designed for modelling highly and slowly varying backgrounds taking into
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Figure 5.1: Analysis of simulated data with WAVDETECT. Panels (a), (¢), (e): recon-
structed source images. Panels (b), (d), (f): estimated backgrounds. From up to down:
simulated data with small (b = 0.1 count) (a) — (b), intermediate (b = 1 count) (¢) — (d)

and large (b = 10 counts) (e) — (f) backgrounds.
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Figure 5.2: Comparison between the BSS technique employing the exponential prior ("Epr’)
and the WAVDETECT algorithm on simulated data. The background b is indicated in counts
per pixel units.

account instrumental structures.

5.4 Summary

In high—energy astrophysics, several source detection algorithms have been developed. Each
technique tackles the ill-posed inverse problem in image analysis with different strategies.
It results that for deep sky surveys, standard techniques are employed in sequential order.
The employment of several techniques in sequential order does not allow the uncertainties
of the experimental measurements to propagate. The final result can be biased.

The results obtained from the simulated data with the BSS and the WAVDETECT
(Freeman et al., 2002) techniques are compared. The BSS technique improves the de-
tections of WAVDETECT especially in the low count regime.

In the low count regime, the BSS background model with the employment of the expo-
nential prior pdf of the source signal is closer to the true value and is on average 10% lower
than the one found with the wavelet technique. Note that even employing the inverse—
Gamma function prior pdf with the cutoff parameter larger than the background amplitude,
the BSS background model is still lower than the one found with WAVDETECT of ~ 5%. In
the simulated data set with low background, sources with > 4 counts are found with the
BSS technique. Although scale sizes are chosen from 2 to 64 (in logarithmic increment),
the wavelet based technique is sensitive only to sources with > 16 counts. In order to
increase the sensitivity of WAVDETECT, the significance threshold can be decreased to val-
ues < 4.0 x 107%. However, the efficiency and also the contamination of the WAVDETECT
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technique increase: many false positives arise at the field edge.

In the simulated data with intermediate and large backgrounds, the background models
obtained with the two techniques are similar in amplitude and they differ by less than
1%. However, the BSS background models are smoother than the ones estimated with
WAVDETECT. Therefore, the BSS background models reproduce a more realistic scenario
than WAVDETECT background models, since the simulated backgrounds are constant.

WAVDETECT fluxes are underestimated for 20% of the sources. Biases in flux estimation
with WAVDETECT are expected, because the background is not accurately estimated. The
BSS residuals on source fluxes and positions are normally distributed. The BSS residuals
are a factor of 10 smaller than the ones from WAVDETECT.

The BSS technique because of the reliable background estimation (that includes expo-
sure variations), the joint background—source separation, the multiresolution reconstruc-
tion, the multiband analysis and a Bayesian approach for source characterization has a
larger sensitivity than standard techniques. The search for clusters and groups of galaxies,
QSOs and AGNSs in sky surveys can be improved employing the BSS method.
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Figure 5.3: Panel (a): normalized difference between WAVDETECT estimated source counts
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comparison between the normalized differences of WAVDETECT source counts and simulated
counts, on the ordinate, and the normalized difference of BSS source counts and simulated
counts, on the abscissa. Sources detected from the simulated data with small background
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5. Verification with existing algorithms




Chapter 6

Application to observational data:
ROSAT All-Sky Survey

In this Chapter, the BSS technique is applied to RASS data. In Section 6.1, the promi-
nent aspects of the ROSAT satellite, its all-sky survey data and published catalogues are
described. Other sky surveys and catalogues employed for the validation of the BSS detec-
tions are commented. In Section 6.2, the applications of the BSS technique to RASS data
are meant to show the capabilities of this novel technique on astronomical images with
large variations in the satellite’s exposure and/or in the cosmic background. A comparison
of the BSS method with the standard techniques employed for the analysis of the RASS
data is provided. Evidence for celestial sources not previously catalogued by any detection
technique in the X-ray regime is given. In Section 6.3, a summary is provided.

6.1 ROSAT PSPC Survey Mode data

The BSS algorithm is applied to a data sample measured by the Position Sensitive Pro-
portional Counter (PSPC) on board of ROSAT (Rontgensatellit) in survey mode.

ROSAT, an overview: ROSAT was lunched on June 1, 1990. ROSAT operated in a
circular Earth orbit with inclination of 53° and an altitude of 580 km. The orbit period
was of approximately 96 minutes. The main payload of ROSAT is the X-ray telescope,
formed by four concentric parabolic-hyperbolic mirror pairs (Wolter Type—I) with a focal
length of 2.4 m. Tt is designed for measurements of soft X—rays (0.1 —2.4 keV). In its focus
were three X-ray detectors: two PSPCs and one High Resolution Imager (HRI).

The first six months of ROSAT operations were performed in scan mode, providing the
only all-sky survey realized using an imaging X -ray telescope. A pointing mode followed
the all-sky survey for a duration of 8.5 years. The telescope’s sensitivity was improved in
pointing mode compared to scan mode, because larger exposure time was dedicated for
observing selected X-ray sources. The accuracy of X—ray object coordinate determinations
was improved by a factor of 3 from scan mode to pointing mode (< 10 arcsec on axis). For
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pointing mode observations, both the PSPC and the HRI detectors were used. The all-sky
survey, instead, was performed employing only the PSPC. The PSPC detector has a very
low intrinsic background (particle background). The particle background contribution is
< 6% to the cosmic diffuse X-ray background (Snowden et al., 1994), leaving a residual
count rate of only 2-107° count s~! arcmin™2 (Schmitt, 1991). The PSPC combined with
the wide telescope angle allows for the detection of extended sources, e.g., SNRs, clusters
or groups of galaxies and the diffuse X-ray background. ROSAT data, from both scan
and pointing mode, are publicly available!.

RASS data and catalogues RASS was performed surveying the sky in circles of 2° x
360°, whose planes were oriented almost perpendicularly to the solar direction. The strips
were merged to supply a unique map of the sky. The map of the sky was divided in
1378 fields each of 6.4° x 6.4°, corresponding to 512 x 512 pixels (1 pixel= 45 arcsec).
Neighbouring fields were superposed by at least 0.23°. Each RASS field is provided in three
energy bands: broad (0.1 — 2.4 keV), soft (0.1 — 0.4 keV) and hard (0.5 — 2.4 keV). The
satellite’s exposure time can vary between about 0.4 and 40 ks at the ecliptic equator and
poles, respectively. In addition, some parts of the sky are without observations due to the
satellite’s crossing of the auroral zones and of the South Atlantic Anomaly. Consequently,
the exposure over parts of the sky can be highly varying. It results that RASS data provide
a wide range of possibilities for testing the BSS algorithm.

RASS data were analysed previously by the SASS algorithm. The SASS procedure
combines the sliding window technique (Gioia et al., 1990) with the ML PSF fitting method
(Cruddace et al., 1988) for source detection and characterization, respectively: Refer to
Section 5.1.1 for more details about the SASS algorithm. SASS works well for point-like
sources, but this algorithm is less suited to extended, low surface brightness sources. Ex-
tended, low surface brightness sources can consequently be missed, leading to a significant
incompleteness in flux—limited cluster samples (Rosati et al., 2002b). For each detected
X-ray source, the SASS algorithm provides: detection likelihood, source positions, source
and local background count-rates, exposure time, hardness ratios (HR1, HR2), source
extent and corresponding likelihood. Source fluxes are provided in the broad (0.1 — 2.4
keV) energy band. Hardness ratios allow one to convert the source count rates in the broad
energy band to the soft (0.1 —0.4 keV) and hard (0.5 — 2.4 keV) energy bands. Specifically,
the hardness ratio is defined as the normalized difference of counts in two energy bands:
HR1=(B—-A)/(B+ A)and HR2 = (D — C)/(D + C). The four energy bands indicate
the following channels: (11 —41) for A, (52 —201) for B, (52 —90) for C, (91 —201) for D.
Bands A and B represent the soft and the hard energy bands, respectively. Bands C' and
D together contain the same channels as the hard band B. Hence, H R2 is a hardness ratio
constructed in the hard region onl