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Einleitung 1 

1 Einleitung 

1.1 Die akute myeloische Leukämie 

Die akute myeloische Leukämie (AML) ist eine maligne klonale Neoplasie myeloischer 

Zellen mit autonomer Proliferation und meist Ausschwemmung unreifer Blasten ins Blut. 

Die AML kann in jedem Lebensalter auftreten, wobei die Inzidenz bis zum 4. 

Lebensjahrzehnt 1/100 000 pro Jahr beträgt und bis zum 7. Lebensjahrzehnt bis auf 

10/100 000 pro Jahr ansteigt. Bis in die 70er Jahre basierte die Diagnose ausschließlich auf 

pathologischen und zytologischen Untersuchungen von Knochenmark und Blut. Fünf-

Jahres Überlebensraten betrugen weniger als 15%. Im Laufe der letzten Jahrzehnte 

verbesserten sich sowohl die Diagnose der verschiedenen Untergruppen als auch die 

Therapiemöglichkeiten der AML. Trotz dieser Fortschritte liegen die Überlebensraten 

heute bei unter 65-jährigen nur bei 40% (Löwenberg, 1999). Aus der ungehemmten 

Proliferation des leukämischen Klons im Knochenmark und der Verdrängung der 

präexistenten nichtneoplastischen Hämatopoese resultieren klinisch Anämie und 

Thrombozytopenie. Da die Blasten meist in das periphere Blut ausgeschwemmt werden, 

findet man in der Mehrzahl der Fälle eine erhebliche Leukozytose. Die Diagnosestellung 

erfolgt über blastäre Elemente im peripheren Blut und einem Blastenanteil von über 20% 

der kernhaltigen Zellen im Knochenmark. In der Regel findet man eine erhebliche 

Hyperzellularität des Knochenmarks. 

Zurzeit werden sowohl die FAB (French-American-British-Cooperative Group) 

Klassifikation als auch die 2008 zuletzt revidierte WHO (World Health Organisation) 

Klassifikation zur Einteilung der akuten myeloischen Leukämien benutzt (Bennet, 1976 

und Vardiman, 2009). Bei der FAB-Klassifikation erfolgt die Einteilung in acht Gruppen 

entsprechend des Reifegrades der Blasten und ihrer Zugehörigkeit zu einer 

hämatopoetischen Linie. Die WHO-Einteilung in vier Hauptgruppen berücksichtigt auch 

rekurrente zytogenetische Alterrationen. Die Subtypisierung ist von therapeutischer und 

prognostischer Relevanz (Kriener, 2004).  
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Tabelle 1: WHO Klassifikation der AML auf der Basis zytogenetischer und molekulargenetischer Befunde 
WHO-Klassifikation der AML und verwandte myeloische Neoplasien  

I. AML mit rekurrenten genetischen 
Aberrationen, 
Transolaktionen/Inversionen 

AML mit t(8;21)(q22;q22); RUNX1-
RUNX1T1 
AML mit inv(16)(p13q22) oder 
t(16;16)(p13;q22); CBFß/MYH11 
Akute Promyelozytenleukämie mit 
t(15;17)(q22;q12); PML/RARα 
AML mit t(9;11)(p22;q23); MLLT3-
MLL  
AML mit t(6;9)(p23;q34); DEK-
NUP214 
AML mit inv(3)(q21q26.2) oder 
t(3;3)(q21;q26.2); RPN1-EVI1 
AML (Megakaryoblastisch) mit 
t(1;22)(p13;q13); RBM15-MKL1 
Genmutationen:  
Provisorische Entität: AML mit 
mutiertem NPM1 
Provisorische Entität: AML mit 
mutiertem CEBPA 

II. AML mit Myelodysplasie-assoziierten 
Eigenschaften 
 

aus MDS entstanden oder 
MDS zugehörige zytogenetische 
Veränderung 
>50% der Zellen einer oder mehrerer 
myeloischen Zelllinien dysplastisch  

III. Therapie-assoziierte myeloische 
Neoplasien 

 

IV. AML ohne weitere Spezifizierung AML mit minimaler Differenzierung 
AML ohne Ausreifung 
AML mit Ausreifung 
Akute myelomonozytäre Leukämie 
Akute monoblastäre/monozytäre 
Leukämie 
Akute erythroide Leukämien 
Reine erythroide Leukämien 
Erythroleukämie erythroid/myeloisch 
Akute megakaryoblastäre Leukämie 
Akute basophile Leukämie 
Akute Panmyelose mit Myelofibrose 

V. Myeloisches Sarkom  
VI.  Myeloische Proliferation assoziiert mit 

dem Down-Syndrom 
 

VII. Blastische plasmatytoide dendritische 
Zell Neoplasien 

 

Modifiziert nach: Vardiman, 2009 
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Tabelle 2: FAB-Klassifikation der AML nach morphologischen Kriterien 
FAB-Subtyp  Häufigkeit (%) 
AML-M0 akute myeloische Leukämie mit minimaler 

myeloischer Differenzierung 
5-10 

AML-M1 akute Myeloblastenleukämie ohne Ausreifung 10-20 
AML-M2 akute Myeloblastenleukämie mit Ausreifung 30-45 
AML-M3 akute Promyelozytenleukämie 5-10 
AML-M4 akute myelomonozytäre Leukämie 20 
AML-M5a akute Monoblastenleukämie 5 
AML-M5b akute Monozytenleukämie 5 
AML-M6 akute Erythroleukämie 5 
AML-M7 akute Megakaryoblastenleukämie 5 
Modifiziert nach: Kriener, 2004 
 
AML mit normalem Karyotyp (AML-NK), die 40-50% der Fälle ausmacht, ist die 

biologisch und klinisch am wenigsten erforschte und verstandene Gruppe. Bei 

molekulargenetischen Analysen von AML-NK wurden sowohl verschiedene Mutationen in 

Genen für Transkriptionsfaktoren (AML1 2%-3%, CEBPA 15%-20% der Fälle), 

Rezeptortyrosinkinasen (FLT3 25%-30%, KIT 1%) (Schnittger, 2002 und Thiede 2002) 

und der RAS-Gruppe (10% der Fälle), als auch partielle Tandemduplikation des MLL-

Gens (MLL-PTD; 5%-10% der Fälle) gefunden. Nucleophosmin (NPM1)-Genmutationen 

liegen in 50-60% der AML-NK bei Erwachsenen vor (Falini, 2005) und sind damit die 

häufigsten Mutationen bei adulter de-novo AML die bis jetzt beschrieben wurden. Da bei 

NPM1 Mutationen Nucleophosmin in das Zytoplasma disloziert ist, wurde diese AML-

Untergruppe auch „NPM-cytoplasmic positive“ (NPMc+) AML genannt (Falini, 2007a). 

1.2 Nucleophosmin 

Nucleophosmin (NPM), auch B23, Numatrin oder NO38 genannt, ist ein Transportprotein 

zwischen Nukleus und Zytoplasma mit vorwiegend nukleolärer Lokalisation. Das NPM-

Gen umspannt 25kb, besteht aus 12 Exons und liegt auf dem Chromosom 5q35. Es kodiert 

für drei alternative Spleißformen: B23.1 (np_002511), B23.2 (np_954654) und B23.3 

(np_001032827) (Falini, 2007a). 

1.2.1 Struktur des NPM Gens und Proteins 

Die häufigste Isoform, B23.1, ist ein aus 294 Aminosäuren bestehendes Protein von 

ungefähr 37 kD, welches die N-Terminus-Region mit den anderen Isoformen gemeinsam 

hat. Es hat zusätzlich noch weitere funktionelle Domänen (Hingorani, 2000). Der 

N-Terminus besteht aus einer hydrophoben Region (Hingorani, 2000) welche die Selbst-
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Oligomerisierung steuert und Chaperon-Aktivität besitzt. In ruhenden und proliferierenden 

Zellen besteht NPM zu über 95% als Oligomer. Sowohl die hydrophobe N-Terminus-

Region als auch der multimere Zustand des NPMs scheinen ausschlaggebend für die 

korrekte Zusammensetzung von Ribosomen im Nukleolus zu sein. Der mittlere Teil des 

NPM enthält zwei Regionen mit sauren Aminosäuren welche entscheidend für die Histon-

Bindung sind. Das Segment dazwischen übt Ribonuklease-Aktivität aus (Hingorani, 2000). 

Die C-Terminus Domäne bindet Nukleinsäuren und besitzt Ribonuklease-Aktivität 

(Hingorani, 2000). Essentiell für die NPM Lokalisation im Zellkern ist jeweils ein 

Tryptophan an Position 288 und 290. B23.1 ist außerdem mit einem zweiteiligen nuklearen 

Lokalisationssignal (NLS) (Hingorani, 2000), einem Leucin-reichen nuklearen 

Exportsignal (NES-Motiv) und verschiedenen Phosporylierungsstellen ausgestattet. 

Immunhistochemisch zeigt B23.1 auf den Zellkern begrenzte Verteilung.  

B23.2 ist eine um die letzten 35 c-terminalen Aminosäuren des B23.1 verkürzte Isoform 

welche in Geweben nur in geringen Mengen gefunden wird. Immunhistochemisch ist 

B23.2 im Zytoplasma lokalisiert.  

Über 23.3 welches aus 259 Aminosäuren besteht ist nur wenig bekannt (Falini, 2007a). 

1.2.2 Expression und Funktionen des NPM Proteins 

Nucleophosmin ist ein Phosphoprotein welches ubiquitär in Geweben vorkommt. Obwohl 

der Großteil des NPM in der granulären Region des Nukleolus lokalisiert ist, pendelt es 

kontinuierlich zwischen Nukleus und Zytoplasma. Der nukleo-zytoplasmatische Transport 

des NPM Protein ist streng reguliert. Bedeutende Funktionen, wie der Transport von 

ribosomalen Komponenten in das Zytoplasma und die Regulation der Zentromer-Teilung 

sind eng mit der Fähigkeit, aktiv in bestimmte zelluläre Kompartimente zu wandern, 

verknüpft (Falini, 2007a, Okuwaki, 2008). Einige der Hauptfunktionen des NPM die bis 

jetzt erforscht worden sind, werden im Folgenden vorgestellt.  

NPM spielt mit der Regulierung von Exportsignalen, der nukleo-zytoplasmatischen Shuttle 

Eigenschaft, und der Fähigkeit Nukleinsäuren zu binden, eine Schlüsselrolle in der 

Biogenese von Ribosomen. Diese Eigenschaften sind notwendig um den Transport von 

Ribosomenkomponenten in Form von rRNA vom Nukleus zum Zytoplasma zu 

ermöglichen. Chaperon-Aktivität des NPM-Proteins verhindert Proteinaggregation im 

Nukleolus während des Zusammenbaus von Ribosomen (Falini, 2007a). 

NPM scheint aufgrund der Mitwirkung bei der Regulation der Proteintranslation eine 

zentrale Rolle im Gleichgewicht von Proteinsynthese, Zellwachstum und Proliferation zu 
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spielen. NPM Überexpression wird eng mit Zellproliferation korreliert. Im Knochenmark 

z.B. steigt die NPM-Expression stufenweise während der Reifung von Pro-Erythroblasten 

zu Normoblasten und von Promyelozyten zu Neutrophilen (Falini, 2007a). Darüber hinaus 

begünstigt NPM Überexpression das Überleben und die Reaktivierung von 

hämatopoetischen Stammzellen unter Stressbedingungen (Li 2006). Die Inhibition des 

NPM Transports oder der Verlust von NPM blockiert dagegen die Translation von 

Proteinen und resultiert damit in einem Zellzyklusarrest.  

Weitere Funktionen des NPM-Proteins sind die Unterstützung der genomischen Stabilität 

(Grisendi, 2005b), und die Kontrolle der DNA-Reparatur und der Zentrosomteilung 

während der Mitose. Die Duplikation des Zentrosoms erfolgt in Abstimmung mit der 

Duplikation der Chromosomen. NPM scheint vor Zentrosom-Hyperamplifizierung zu 

schützen, da seine Inaktivierung unrestriktive Zentrosomteilung und genetische Instabilität 

mit der erhöhten Gefahr von zellulärer Transformation bewirkt (Grisendi, 2005b). 

Schließlich interagiert NPM mit den Tumorsuppressorgenen p53 und p19Arf und deren 

Partnern und beeinflusst damit Zellproliferation und Apoptose. NPM reguliert p53 Level 

und Aktivität. Der Tumorsupressor p53 spielt als Transkriptionsfaktor eine Rolle bei der 

Regulation des Zellzyklus, der Apoptose-Induktion und der DNA-Reparatur.  

Es existiert eine funktionelle Verbindung zwischen nukleolärer Integrität, NPM und p53 

Stabilität (Colombo, 2002). Stimuli, die zellulären Stress (z.b. UV-Strahlung oder 

Medikamente die in die rRNA Prozessierung eingreifen) auslösen, führen zu einem Verlust 

von nukleolärer Integrität, zur Umlagerung von NPM vom Nukleolus ins Zytoplasma und 

zur Aktivierung von p53 (Falini, 2007a). 

1.2.3 Entdeckung von NPM1 Mutationen bei AML 

NPM wurde von Onkologen als Partnergen für mehrere chromosomale Translokationen 

erkannt. Diese Translokationen resultieren in chimeren Genen, die für Fusionsproteine wie 

NPM-ALK (anaplastic lymphoma kinase), NPM RARα (retinoic acid receptor α) oder 

NPM-MLF1 (myelodysplasia/myeloid leukemia factor 1) kodieren, die wiederum 

Heterodimere mit NPM bilden und Zellveränderungen hervorrufen (Falini, 2007b). 1999 

wurden die ersten AML Fälle mit zytoplasmatischem NPM ohne ein dazugehöriges 

bekanntes NPM Fusionsprotein entdeckt. Aufgrund der Dislozierung von Nucleophosmin 

vom Zellkern ins Zytoplasma wurde diese Untergruppe „NPM-cytoplasmic positive“ 

(NPMc+) AML genannt. In den darauf folgenden Jahren wurde beobachtet, dass das 

Auftreten von zytoplasmatischem NPM die wichtigsten Chromosomenaberrationen 
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ausschließt, eng mit einem normalen Karyotyp korreliert ist und bestimmte klinische und 

biologische Merkmale zeigt (Falini, 2005). Durch Gen-Sequenzierung wurden bei 

zytoplasmatischem NPM Exon 12 Mutationen im NPM-Gen aufgedeckt (Falini, 2005).  

1.2.4 Nachweis der NPM1 Mutationen 

NPM Mutationen können mithilfe von verschiedenen Techniken wie denaturierender 

HPLC, Kapillarelektrophorese, LNA-mediated PCR clamping, und wie in dieser Arbeit 

mithilfe von RT-PCR, zuverlässig identifiziert werden. (Ammatuna, 2005; Roti, 2006; 

Noguera, 2005; Lin, 2006; Thiede, 2006b). 

Immunhistochemischer Nachweis von zytoplasmatischem NPM bei AML wurde als 

prädiktiv für NPM1 Mutationen gefunden (Falini, 2006a) und ist damit ein indirekter 

Nachweis von NPM1 Mutationen. Die Vorteile dieser Methode sind die einfache 

Anwendung, geringe Kosten und die Möglichkeit zytoplasmatisches NPM mit der 

Morphologie und topographischen Verteilung von leukämischen Zellen zu korrelieren.  

1.2.4.1 Auftreten von NPM1 Mutationen 

NPM1 Mutationen sind AML-spezifisch, da andere humane Neoplasien konsistent auf den 

Zellkern beschränkte NPM Expression zeigen und gezeigt werden konnte, dass mutiertes 

NPM zytoplasmatische Expression zeigt. (Falini, 2005). NPM Mutationen wurden auch 

sporadisch bei chronischen myeloproliferativen Krankheiten detektiert (5/200 Fällen; 

2,5%) (Caudill, 2006). In allen fünf Fällen lagen myelo-monozytäre Leukämien vor, von 

denen vier innerhalb eines Jahres in einer AML endeten. Dies legt nahe, dass sie einer M4 

oder M5 mit deutlicher Monozytendifferenzierung entsprachen, die häufig NPM 

Mutationen tragen (Falini, 2005; Schnittger, 2005a). Zudem wurden NPM1 Mutationen in 

2 der 38 (5,2%) myelodysplastischen Patienten gefunden. (Zhang, 2007). Jedoch ist es 

nicht einfach einen Fall als „NPM1-mutiertes Myelodysplastisches Syndrom“ zu 

definieren, da NPMc+ AML häufig Beteiligung mehrerer Zelllinien, und somit 

dysplastische Eigenschaften zeigt (Pasqualucci, 2006). NPM1 Mutationen sind eng mit 

de-novo AML assoziiert. Sekundäre AMLs, nach myeloproliferativen 

Erkrankungen/Myelodysplasie und therapieassoziierter AML exprimieren selten 

zytoplasmatisches NPM (Falini, 2005). 

1.2.4.2 Typen, Häufigkeit und Stabilität von NPM1 Mutationen 

NPM1 Mutationen sind typischerweise heterozygot, die Zellen behalten ein Wildtyp-Allel. 

Bei AML im Kindesalter reicht die Inzidenz von 2,1% in Taiwan (Chou, 2006) bis zu 6,5% 
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in westlichen Ländern (Cazzaniga, 2005), was 9 bis 26,9% aller AML-NK Fälle bei 

Kindern ausmacht (Chou, 2006; Cazzaniga, 2005). Bei ungefähr 3000 erwachsenen AML 

Patienten liegt die Häufigkeit von NPM1 Mutationen zwischen 25% und 35%, was 

45,7 bis 63,8% der erwachsenen AML-NK Fälle ausmacht (Schnittger, 2005a; Döhner, 

2005; Verhaak, 2005; Thiede, 2006a; Chou, 2006; Suzuki, 2005; Boissel, 2005).  

Basierend auf diesen Untersuchungen wird von einer unterschiedlichen molekularen 

Pathogenese der AML-NK bei Erwachsenen und Kindern ausgegangen.  

Bis auf zwei Fälle welche die Splice-Donor-Sequenz der NPM1 Exons 9 und 11 betrifft, 

sind Mutationen, soweit bekannt, auf das Exon 12 beschränkt. (Falini, 2005; Schnittger, 

2005a; Döhner, 2005; Verhaak, 2005;  Thiede, 2006a; Chou, 2006; Suzuki, 2005; Boissel, 

2005). Die häufigste NPM1 Mutation, welche Mutation A genannt wurde (Falini, 2005), ist 

eine Duplikation eines TCTG Tetranukleotides an Position 956 bis 959 der 

Referenzsequenz (GenBank Accession Number NM_002520) und wurde in 75%-80% aller 

NPM1 Mutationen gefunden. Mutationen B und D wurden in ungefähr 10% und 5% der 

NPMc+ AML Fälle beobachtet. Alle anderen Mutationen sind selten. Bis 2007 sind 

insgesamt 37 verschiedene NPM1 Mutationen identifiziert worden (Falini, 2007a). Die 

bekanntesten sind folgend in Tabelle 3 dargestellt.  

Tabelle 3: Die bekanntesten  NPM Mutationen 
Typ der 
Mutation 

GenBank 
Accession 
No. 

Sequenz 

Wildtyp NM_002520 GATCTCTG……...GCAGT……...GGAGGAAGTCTCTTTAAGAAATAG 
Mutation A AY740634 GATCTCTGTCTGGCAGT………GGAGGAAGTCTCTTTAAGAAATAG 
Mutation B AY740635 GATCTCTGCATGGCAGT……..GGAGGAAGTCTCTTTAAGAAATAG 
Mutation C AY740636 GATCTCTGCGTGGCAGT……..GGAGGAAGTCTCTTTAAGAAATAG 
Mutation D AY740637 GATCTCTGCCTGGCAGT……..GGAGGAAGTCTCTTTAAGAAATAG 
Mutation E AY740638 GATCTCTG……...GCAGTCTCTTGCCCAAGTCTCTTTAAGAAATAG 
Mutation F AY740639 GATCTCTG……...GCAGTCCCTGGAGAAAGTCTCTTTAAGAAATAG 
Modifiziert nach: Falini, 2005 
 
Laut Suzuki et. al scheinen Veränderungen des NPM1 Gens stabiler zu sein, als 

Mutationen des Gens der Rezeptor Tyrosinkinase FLT3 (Suzuki, 2005), welche die 

häufigsten genetischen Alterationen in der AML darstellen. Nach Chou et. al ist ein 

Verlust der NPM1 Mutation bei einem Rezidiv selten, und könnte aufgrund der 

Proliferation eines anderen leukämischen Klons vorkommen (Chou, 2006). In einigen 

Fällen wurde der Verlust von NPM1 Mutationen mit dem Übergang von einem normalen 

zu einem abnormalen Karyotyp in Zusammenhang gebracht (Chou, 2006; Suzuki, 2005). 

AML Patienten mit einem Wildtyp NPM1 Gen zum Zeitpunkt der Diagnose scheinen im 

Laufe der Erkrankung keine NPM1 Mutation zu erwerben, was die Annahme nahe legt, 
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dass die Mutationen in der Progression der Erkrankung kaum eine Rolle spielen (Chou, 

2006). 

1.2.4.3 Zusammenhang zwischen NPM1 Mutationen, Karyotyp und anderen Mutationen 

Zytoplasmatisches NPM ist, wie bei der NPM1 Mutationsanalyse von über Tausend AML 

Patienten bestätigt worden ist (Schnittger, 2005a; Döhner, 2005; Verhaak, 2005; Thiede, 

2006a; Cazzaniga, 2005; Suzuki, 2005; Boissel, 2005), eng mit normalem Karyotyp 

assoziiert. Chromosomale Veränderungen, die nur in wenigen NPMc+ AML Fällen 

gefunden worden sind (14%) (Falini, 2005), sind wahrscheinlich sekundär da i) sie in Typ 

und Häufigkeit ähnlich zu sekundären chromosomalen Veränderungen bei AML mit 

rekurrenten Veränderungen sind, ii) Zellen mit einem abnormen Karyotyp Subklone in der 

leukämischen Population mit normalem Karyotyp darstellen, und iii) diese Veränderungen 

gelegentlich zum Zeitpunkt des Rezidivs von Patienten mit AML-NK bei Erstdiagnose 

auftreten (Falini, 2007a).  

Mehrere Studien beschreiben, dass NPMc+ AML häufig von einer internen Tandem-

Duplikation der Rezeptortyrosinkinase FLT3 (FLT3-ITD) begleitet ist (Falini, 2005; 

Schnittger, 2005a; Döhner, 2005; Verhaak, 2005; Thiede, 2006a). NPM1 und FLT3-TKD 

(Tyrosin-Kinase-Domäne) korrelierten in einigen Studien (Schnittger, 2005a; Döhner, 

2005; Suzuki, 2005), in anderen nicht (Falini, 2005; Verhaak, 2005). Thiede et al. 

beobachteten, dass NPM1 Mutationen primäre Ereignisse sind, welche gefolgt werden von 

der Entstehung von FLT3-ITD oder anderen Mutationen (Thiede, 2006a).  

Eine partielle Tandemduplikation des mixed-lineage-leukemia-Gens (MLL-PTD) 

fällt selten mit zytoplasmatischem/mutiertem NPM zusammen (Falini, 2005). Einige 

Autoren (Schnittger, 2005a; Döhner, 2005) berichten über keinen Unterschied in der 

Häufigkeit von CCAAT/enhancer binding protein alpha (CEBPA) Mutationen bei NPM1 

mutierten, zu NPM1 unmutierten AML-NK, währenddessen Chou et al. eine negative 

Korrelation zwischen NPM1 und CEPBA Mutationen fanden (Chou, 2006). 

Neuroblastoma RAS viral oncogene (NRAS) Mutationen und Mutationen der 

Rezeptortyrosinkinase KIT wurden nicht signifikant mit NPM1 Mutationen assoziiert 

(Schnittger, 2005a; Döhner, 2005). KRAS Mutationen wurden in 5/8 AML Fällen mit 

NPM1 Mutationen gemeldet (Verhaak, 2005). Wenig überraschend kommen Mutationen 

des Tumorsuppressorgens TP53 selten bei NPMc+ AML vor (Suzuki, 2005), da sie 

hauptsächlich mit abnormalem Karyotyp in Verbindung gebracht werden.  
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1.2.5 Nukleo-zytoplasmatischer Transport von Wildtyp-NPM 

Obwohl NPMwt ein nukleo-zytoplasmatisches Shuttle-Protein ist, ist die IHC-Lokalisation 

auf den Zellkern beschränkt. Von der Analyse der funktionellen Domänen ist bekannt, dass 

das Nukleäre-Lokalisations-Signal (NLS) NPM vom Zytoplasma zum Nukleoplasma 

steuert, wo es durch seine nukleoläre Bindungsdomäne in den Zellkern transloziert wird. 

Der nukleäre Export von NPM wird über einen Export-Rezeptor vermittelt. Unter 

physiologischen Umständen überwiegt der Import von NPMwt in den Zellkern gegenüber 

dem Export um ein Vielfaches (Falini, 2007a). 

1.2.6 Veränderter nukleo-zytoplasmatischer Transport von Nucleophosmin in 

NPMc+AML 

Bei NPMc+ AML überwiegt die zytoplasmatische Lokalisation von NPM aufgrund von 

zwei mutationsbedingten Veränderungen am C-Terminus von NPM (Falini, 2006b). Die 

zytoplasmatische Lokalisation von NPM1 kann anhand von Immunhistochemie 

nachgewiesen werden (Falini, 2007a). Die Veränderungen sind die Bildung eines 

zusätzlichen Leucin-reichen NES Motivs (Nakagawa, 2005) und der Verlust der AS 

Tryptophan an Position 288 und 290 (oder nur 290) (Falini, 2007a). Beide Veränderungen 

sind bedeutend für eine Störung des Transports des mutierten NPM (Falini, 2006b). 

1.2.7 Mögliche Rolle von NPM Mutanten bei der Entstehung von Leukämien 

NPM1 gehört einer Kategorie von Genen an, denen man abhängig von der Gendosis, dem 

Expressionslevel, interagierenden Partnern und Kompartimentierung, sowohl Onkogen-, 

als auch Tumorsuppressorgen-Eigenschaften zuschreibt (Grisendi, 2006). 

Bei unterschiedlichen Tumoren und hämatologischen Erkrankungen kommen sowohl 

Überexpressionen, Transkolationen, Mutationen sowie auch Deletionen des NPM1 Gens 

vor. NPM Überexpression korreliert mit unkontrolliertem Zellwachstum und 

Zelltransformation. Aber auch die Reduzierung der NPM Expression kann in genomischer 

Instabilität und Zentromer-Amplifikation, mit dem Risiko zellulärer Veränderungen 

resultieren. NPM1 scheint Zellwachstum zu fördern, da als Antwort auf mitogene Stimuli 

die Expression zunimmt, und es in hochproliferierenden und malignen Zellen in besonders 

hohem Umfang detektiert werden kann. Andererseits kann NPM über eine positiv 

regulatorische Interaktion mit dem ARF-Protein, und damit über ARF Tumor-Suppressor-

Wege, zu wachstumshemmenden Mechanismen beitragen. Dadurch kann auch ein Verlust 

der NPM Expression oder Funktion zur Tumorentstehung beitragen (Grisendi, 2006).  
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Zurzeit existiert kein experimentelles Modell für NPMc+ AML. In NPM Knock-out 

Mäusen ist NPM in die Kontrolle der Hämatopoese (speziell Erythropoese) involviert. 

NPM Haploinsuffizienz ist hier mit uneingeschränkter Zentromerduplikation assoziiert, 

was zu genomischer Instabilität, und der Entstehung eines hämatologischen Syndroms 

führt, welches an die Myelodysplasie beim Menschen erinnert (Grisendi, 2005b). Bei 

NPMc+ AML könnte man sagen, dass Blasten eine Form von NPM Haploinsuffizienz 

zeigen, da ein NPM Allel mutiert ist und die NPM Mutanten das NPMwt des nicht 

betroffenen Allels ins Zytoplasma dislozieren. NPMc+ AML ist allerdings mit einem 

normalen Karyotyp assoziiert und NPM1 Mutationen sind bei Myelodysplasie beim 

Menschen sehr selten. 

Bei der Entstehung von AML beim Menschen werden andere Eigenschaften von 

mutiertem NPM diskutiert, die leukämische Transformation fördern. Zytoplasmatisches 

NPM könnte zur Entstehung von AML beitragen, indem es ARF, ein wichtiges Anti-

Onkogen inaktiviert. In bestimmten Fibroblasten delokalisiert humanes leukämisches 

NPM1 Typ A Protein NPMwt und ARF vom Nukleolus zum Zytoplasma. Dies führt zu 

verminderter p53-abhängiger und p53-unabhängiger ARF Aktivität. Wenn ARF und 

mutiertes NPM-Protein in einem Komplex vorliegen führt dies zu einer Beeinträchtigung 

der Stabilität von ARF und am G1/S Übergang des Zellzyklus kommt es darauf folgend 

seltener zu einem p53-abhängigem Zellzyklusarrest. ARF ist nur eines der potenziellen 

Ziele von NPM Mutanten und es wird erwartet, dass neue Moleküle entdeckt werden, die 

mit mutiertem NPM interagieren und zur Entstehung von Leukämien beitragen. 

1.2.8 Pathologische und klinische Eigenschaften von NPMc+ AML 

NPMc+ AML zeigt ein weites morphologisches Spektrum (Falini, 2005), allerdings 

kommen NPM1 Mutationen in den FAB Kategorien M4 und M5 häufiger vor (Falini, 

2005; Schnittger, 2005a; Döhner, 2005). Über 95% der NPMc+ AML Fälle sind 

CD34-negativ (Falini, 2005). Ein weiteres Merkmal ist die Beteiligung mehrerer Zelllinien 

(myeloid, monozyt, erythroid und megakaryozyt, jedoch nicht lymphoid) (Pasqualucci, 

2006), unabhängig von weiteren genetischen Alterationen, wie FLT3-ITD. Die häufige 

Beteiligung mehrerer Zelllinien ist überraschend, da sie meist mit sekundären Leukämien 

vergesellschaftet wird und NPMc+ AML meistens de-novo Leukämien sind. Die 

Blastenzahl ist bei NPM Mutierten höher als bei NPMwt AML-NK (Döhner, 2005; Thiede, 

2006a), und steigt bei gleichzeitiger FLT3-ITD Mutation (Thiede, 2006a) und mit dem 

LDH Serumspiegel (Döhner, 2005). NPM1 Mutationen korrelieren mit einer 



Einleitung  11 

  

extramedullären Beteiligung der AML, hauptsächlich Gingivahyperplasie und 

Lymphadenopathie, möglicherweise weil die extramedulläre Ausstreuung meist bei M4 

und M5 auftritt und diese Subtypen häufig NPM1 Mutationen besitzen (Schnittger, 2005a; 

Döhner, 2005). 

Thrombozytenzahlen sind bei AML mit NPMc+ höher als bei AML-NK mit Wildtyp 

NPM1 (Döhner, 2005; Thiede, 2006a). Interessanterweise zeigen Knochenmarkbiopsien 

von NPMc+ AML (besonders M4) häufig eine hohe Anzahl von Megakaryozyten die 

mutiertes NPM exprimieren und dysplastische Eigenschaften besitzen (Pasqualucci, 2006). 

Diese Erkenntnisse legen nahe, dass Megakaryozyten mit NPM1 Mutationen eine 

bestimmte Kapazität für die Differenzierung von Thrombozyten beibehalten.  

NPM1 Mutationen sind bei Frauen häufiger (Schnittger, 2005a; Döhner, 2005; Thiede, 

2006a), die Inzidenz von AML ist höher bei Männern (Thiede, 2006a). Diese Beobachtung 

scheint für NPM1 Mutationen spezifisch zu sein, da keine ähnliche Assoziation für 

FLT3-ITD (Thiede, 2006a), ebenfalls häufig bei AML-NK, zu sehen ist.  

1.2.9 Klinische Bedeutung von NPM1 Mutationen 

1.2.9.1 Ansprechen auf Therapie und prognostischer Wert von NPM1 Mutationen 

Nach der Induktionstherapie zeigt AML-NK mit mutiertem, und damit zytoplasmatischem 

NPM eine höhere Rate von kompletter Remission als AML-NK ohne NPM1 Mutationen 

(Falini, 2005; Schnittger, 2005a; Thiede, 2006a; Suzuki, 2005). Döhner et al. schreiben, 

dass der NPM1 Mutationsstatus kein unabhängiger Vorhersagewert für das Ansprechen auf 

Chemotherapie ist, da die höchste Remissionsrate in der NPM1+/FLT-ITD negativen 

Gruppe beobachtet wurde, und die niedrigste Ansprechrate bei Patienten, die positiv für 

beide Mutationen sind (Döhner, 2005). In vier großen europäischen Studien (Schnittger, 

2005a; Döhner, 2005; Verhaak, 2005; Thiede, 2006a) an über 1000 AML-NKs, 

kennzeichnen NPM1 Mutationen in Abwesenheit von FLT3-ITD eine Untergruppe von 

Patienten mit einer günstigen Prognose. Besonders jüngere NPM1+ AML Patienten 

(Döhner, 2005) ohne begleitendes FLT3-ITD zeigten eine 5-Jahres-Überlebens-

Wahrscheinlichkeit von ungefähr 60%, das heißt ähnlich zu Langzeitverläufen von AML 

mit Core-Binding-Faktor (CBF) oder AML-NK mit CEBPA Mutationen (Falini, 2007a)  

Bei AML-NK gibt es also zwei Mutationen, NPM1 und FLT3-ITD, die mit guter bzw. 

schlechter Prognose assoziiert sind. Bei Patienten mit beiden Mutationen kann es sein, dass 

FLT3-ITD-induzierte, anti-apoptotische und proliferative Stoffwechselwege, besonders 
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über STAT5, den leukämischen Phänotyp dominieren. Dies würde erklären warum zwei 

andere Arbeitsgruppen (Suzuki, 2005; Boissel, 2005), die nicht nach NPM1 und 

begleitenden FLT3-ITD Mutationen unterschieden haben, keine Unterschiede im 

Überleben der NPM1 mutierten Fälle berichten können. Dies beweist den Nutzen von 

umfangreichem molekulargenetischem Screening bei AML-NK für die 

Risikostratifizierung von Patienten. 

Es ist nicht klar, warum NPM1+/FLT-ITD- Patienten relativ gut auf Therapie ansprechen. 

Die Verteilung von nukleoplasmatischem und zytoplasmatischem NPMwt durch NPM 

Mutanten könnten die Proteinfunktionen beeinflussen. NPMwt schützt hämatopoetische 

Zellen vor p53 induzierter Apoptose bei zellulärem Stress (Li, 2005). Man könnte 

spekulieren, dass mutiertes NPM Zellen nicht schützen kann, was sie anfälliger für 

genotoxischen Stress der Chemotherapie macht. Naoe et. al haben die verschieden Studien 

zur Prognose von NPM1 positiver AML verglichen und die Ergebnisse als Tabelle 

veröffentlicht.  

Tabelle 4: Klinische Relevanz der NPM1 Mutation bei AML 
Prognose Referenz Patientenzahl 

(normaler 
Karyotyp) 

NPM1 mutiert 
(%) (normaler 

Karyotyp) 
CR OS EFS RFS 

Falini, 2005 591 (230) 35,2 (61,7) F NA NA NA 
Suzuki, 2005 257 (97) 24,9 (47,4) F NS NA U 
Boissel, 2005 (106) (47) NS NS NS NS 
Döhner, 2005 (300) (48) NS NS NA F 
Schnittger, 2005a (401) (52,9) F NS F NS 
Verhaak, 2005 275 (116) 35 (64) NA NS NS NA 
Thiede, 2006a 1485 (709) 27,5 (45,7) F F F (DFS) NA 
(CR: komplette Remission; DFS: disease-free survival; EFS: event-free survival; F: favorable; NS: not 
significant; OS: overall survival; RFS: relapse-free survival; U: unfavorable; NA: not analyzed) 
Modifiziert nach: Naoe, 2006  
 

1.2.9.2 Überwachung von minimaler Resterkrankung 

Als minimale Resterkrankung (MRD = minimal residual disease) bezeichnet man die im 

Körper verbliebene Tumorlast, im Fall der AML die nach einer Therapie verbliebenen 

Leukämiezellen. MRD Diagnostik gewinnt zunehmend an Bedeutung, begleitend zur 

Leukämiebehandlung und zur Erfolgsbeurteilung der durchgeführten Therapie. Auf der 

Grundlage dieses MRD-Monitorings sollen in Zukunft zunehmend risikoadaptierte 

Therapieprotokolle entwickelt werden, bei denen der Patient nicht nur anhand der zum 

Zeitpunkt der Diagnosestellung verfügbaren Risikomerkmale, sondern auch durch sein 
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individuelles Therapieansprechen einer weiteren Therapie zugeführt wird. Darüber hinaus 

verspricht man sich durch ein regelmäßiges MRD-Monitoring die Erkennung eines 

molekularen Rezidivs aufgrund residueller Leukämiezellen vor Auftreten der 

hämatologischen Manifestation, um damit eventuell eine erneute Therapie auch ohne den 

Nachweis eines hämatologischen Rezidivs beginnen zu können.  

Da es notwendig ist eine geringe Anzahl von Tumorzellen zu detektieren, wird die 

minimale Resterkrankung üblicherweise anhand einer Genmutation oder 

Chromosomenaberration mittels Polymerase-Kettenreaktion (PCR) ermittelt. Die relativ 

einfache Methode der Immunhistochemie ist nicht geeignet, da nicht annähernd die gleiche 

Sensitivität wie mit molekulargenetischen Methoden erreicht werden kann, worauf in der 

Zielsetzung dieser Arbeit noch mal eingegangen wird.  

Die Diagnostik der minimalen Resterkrankung bei AML-NK ist erschwert durch das 

Fehlen von verlässlichen und eindeutigen molekularen Markern. Das Wilms’ Tumor Gen 1 

(WT1) (Weisser, 2005) oder FLT3-ITD (Schnittger, 2002) können z.B. für diesen Zweck 

verwendet werden. WT1 als molekularer Marker für MRD bei AML wird allerdings 

kontrovers diskutiert, da verschiedene Arbeitsgruppen unterschiedliche Ergebnisse 

hinsichtlich der Korrelation zwischen Klinik und WT1-Levels der Patienten sowie auch 

hinsichtlich der prognostischen Relevanz gefunden haben. Zudem konnte mit den bisher 

vorgestellten Assays keine sehr hohe Sensitivität in der Detektion des WT1-Gens erreicht 

werden (Weisser, 2005). 

Der Nachteil der MRD Diagnostik über die FLT3-ITD Mutation ist, dass diese nur in 30% 

der AML-NK Fälle vorkommt (Schnittger, 2002; Thiede, 2002). Da NPM1 Mutationen 

über den Verlauf der Erkrankung zudem stabiler als FLT3-ITD Mutationen zu sein 

scheinen (Chou, 2006; Suzuki, 2005; Boissel, 2005; Gorello, 2006; Palmisano, 2007), und 

in 50-60% der AML-NK Fälle auftreten (Falini, 2005; Schnittger, 2005a; Döhner, 2005; 

Verhaak, 2005; Thiede, 2006a), könnten diese zu einem neuen Werkzeug für die MRD-

Diagnostik werden. Vorläufige Ergebnisse mit sensitiven Real-Time quantitativen PCR-

Assays (Gorello, 2006; Chou, 2007; Ottone, 2008) liegen vor, müssen jedoch in großen 

klinischen Studien validiert werden.  
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2 Zielsetzung der Arbeit 

Es werden zunehmend prognostisch und therapeutisch relevante genetische Alterationen 

bei der AML entdeckt. Hierzu gehören Mutationen im NPM1 Gen bei Patienten mit 

normalem Karyotyp. Bei einer kompletten klinischen Remission, d.h. die Anzahl 

leukämischer Blasten fällt unter die Nachweisgrenze konventioneller diagnostischer 

Verfahren (< 1-5% maligne Zellen im Knochenmark), kann noch ein erheblicher Anteil 

residueller Leukämiezellen im Patienten vorhanden sein, ohne dass diese mit gängigen 

Nachweismethoden (Morphologie, Imunophänotypisieung, Zytogenetik und Southern Blot 

Analyse) identifiziert werden können. Einsatz der Real-Time quantitativen PCR-

Technologie (RQ-PCR) ermöglicht eine sehr viel sensitivere Erfassung minimaler 

residueller Leukämiezellen, indem die mutierte mRNA des NPM1 Gens bestimmt werden 

kann. 

Ziel dieser Arbeit ist es, einen PCR-Assay zu etablieren, der die Quantifizierung von 

minimaler Resterkrankung (MRD) aus Knochenmarksproben von Patienten, mit für die 

NPM1 Mutation positiver AML, mit einer möglichst hohen Sensitivität und Spezifität 

ermöglicht. Der Test wird auf die NPM1 Mutation Typ A ausgelegt, da diese mit 80% die 

häufigste unter den NPM1 Mutationen ist. Da das NPM1 Wildtyp-Gen ubiquitär in Zellen 

exprimiert wird, muss diese Mutation in Gegenwart von großen Mengen NPM1 Wildtyp 

mRNA nachgewiesen werden.  

Hierfür wird mRNA aus Zellen isoliert und in cDNA umgeschrieben. Die quantitative PCR 

wird mithilfe der AML-Zelllinie OCI/AML3 etabliert, die positiv für die NPM1 Mutation 

ist. Die Zelllinie wird zusammen mit anderen Zelllinien für Negativ-Kontrollen im 

Hämatologikum des GSF-Forschungszentrums für Umwelt und Gesundheit kultiviert. 

Nach der Etablierung des Tests mit den OCI/AML3 Zellen wird der Assay auf ausgewählte 

bekannt NPM1 A positive und bekannt NPM1 A negative Patientenproben übertragen. 

Diese Patientenproben wurden im Labor für Leukämiediagnostik für die NPM1 A 

Mutation gescreent. Patientenproben, die bisher noch nicht auf die NPM1 Mutation 

untersucht worden sind, werden im Rahmen dieser Arbeit getestet. Für diese Arbeit werden 

bis zum Herbst 2006 alle verfügbaren Patientenproben von NPM1 Typ A positiven 

Patienten, von denen zumindest zwei Proben zu verschiedenen Zeitpunkten vorhanden 

sind, quantifiziert.  
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Bei einzelnen Patienten sollen NPM1 A mRNA-Level im Verlauf der Erkrankung 

quantifiziert und mit der Klinik in Bezug gesetzt werden. Die Korrelation des quantitativen 

Nachweises der NPM1 A Mutation mit Ergebnissen anderer diagnostischer Verfahren 

hinsichtlich Krankheitsaktivität soll überprüft werden.  

Passende Patientenproben sollen mithilfe der Datenbank des Labors für 

Leukämiediagnostik der Universität München ermittelt und herausgesucht werden.  

Für diese Arbeit wird die vorhandene LightCycler-Technologie im Labor für 

Leukämiediagnostik der Universität München und vorhandene Patientenproben, sowie 

zum Teil cDNA von verschiedenen Zelllinien genutzt, welche im Rahmen der 

Routinediagnostik angefertigt wurden.  
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3 Material und Methoden 

3.1 Materialien 

3.1.1 Oligonukleotide 

Die verwendeten Oligonukleotide wurden von der Firma Metabion (München) 

synthetisiert. 

Die Sequenzen sind in 5’ → 3’ Richtung angegeben. 

 

qNPM1 RT-PCR: 

NPM1 Primer und Sonde: 

Forward Primer: 5’-AAAGGTGGTTCTCTTCCCAAAGT-3’ 

Reverse Primer: 5’-CTTCCTCCACTGCCAGACAGA-3’ 

Hydrolysesonde: 5’6-FAM-CTTCCGGATGACTGACCAAGAGGCTATTCA-BHQ1-3’ 

ABL1 Primer und Sonde: 

Forward Primer: 5’-CCTTTTCGTTGCACTGTATGATTT-3’ 

Reverse Primer: 5’-GCCTAAGACCCGGAGCTTTT-3’ 

Hydrolysesonde: 5’-6-FAM-TGGCCAGTGGAGATAACACTCTAAGCATAACTAAA-

BHQ1-3’ 

 

Schmelzkurvenanalyse NPM1: 

Forward Primer: 5’-TCCCAAAGTGGAAGCC-3’ 

Reverse Primer: 5’-GGAAAGTTCTCACTCTGC-3’ 

Hybridisierungssonden: 

Sensor: 5’-CGGATGACTGACCAAGAGGCTATTCA-Fluorescein-3’ 

Anchor: 5’-LC-Red-640-ATCTCTGGCCGTGGAGGp-3’ 
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3.1.2 Zelllinien 

3.1.2.1 OCI/AML3 

Quentmeier et. al untersuchten zahlreiche Zelllinien auf Exon-12 NPM Genmutationen und 

identifizierten die Zelllinie OCI/AML3, die eine TCTG Duplikation auf Exon 12 trägt. 

Dies entspricht einer NPM Mutation Typ 1, die häufigste unter den NPM Mutationen. 

OCI/AML3 Zellen zeigen auch die phänotypischen Eigenschaften der NPMc+ AML: 

Expression von Makrophagenmarkern, Fehlen von CD34 und die immunhistochemische 

Eigenschaft dieser Leukämie-Untergruppe, die aberrante zytoplasmatische Expression von 

NPM. Quentmeier et. al schreiben, dass OCI/AML3 die einzige Zelllinie ist, die permanent 

alle molekularen und biologischen Eigenschaften von primärer NPMc+ AML zeigt, und 

damit ein geeignetes Werkzeug für die weitere Untersuchung dieses Leukämietyps 

darstellt. Die Zelllinie wurde aus dem peripheren Blut eines 57-jährigen Mannes mit AML 

FAB-M4 etabliert (Quentmeier, 2005). Die Zelllinie OCI/AML3 wurde in dieser Arbeit für 

die Etablierung der LightCycler PCR, für die Erstellung von Standardkurven und für 

Positivkontrollen des Tests verwendet. Standardkurven für NPM1 und ABL1 wurden 

mithilfe von Verdünnungen in 10er Schritten (10-6-10-1) von cDNA der OCI/AML3-

Zelllinie mit TE-Puffer erstellt. Von jeder Verdünnungsstufe wurde eine Vierfach-

Bestimmung durchgeführt (Velden, van der, 2003). Die Zelllinie wurde unter der DSM 

ACC Nummer 582 von der DSMZ (Deutsche Sammlung von Mikroorganismen und 

Zellkulturen GmbH) Zelllinienbank bezogen.  

3.1.2.2 NMP1 A negative Zelllinien 

Die Zelllinien K562, MV4-11 und MOLM-13 wurden als Negativkontrolle für die 

Etablierung der PCR verwendet. Die cDNA der Zelllinien wurde im Labor für 

Leukämiediagnostik im Rahmen der Routinediagnostik aufbereitet und zur Verfügung 

gestellt. 

3.1.3 Blut- und Knochenmarkproben 

Knochenmark und/oder peripheres Blut von Leukämiepatienten wurde im Rahmen der 

Diagnostik an das Labor für Leukämiediagnostik geschickt. Von den auswärtigen Kliniken 

erfolgte der Versand in der Regel über Nacht, so dass das Material 24 Stunden nach 

Entnahme im Labor eintraf. Die AML wurde im Labor für Leukämiediagnostik mithilfe 

der FAB und WHO Klassifikation diagnostiziert (Bennet, 1976; Vardiman, 2009). Für alle 

in dieser Arbeit beschriebenen AMLs, wurde im Labor für Leukämiediagnostik eine 
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detaillierte Chromosomenanalyse, und zum Teil Mutationsanalysen, wie NPM1, 

FLT3-ITD und MLL-PTD durchgeführt. Als Referenz- bzw. Negativkontrollen für die 

Etablierung der quantitativen NPM1 RT-PCR wurden Blut- und Knochenmarkproben von 

CML-Patienten verwendet. Die verwendete cDNA wurde nach dem Schritt der reversen 

Transkription mithilfe einer bereits etablierten LightCcyler-PCR auf ausreichende Qualität 

hin getestet und freigegeben.  

Tabelle 5 gibt Auskunft über die Probenanzahl zu den untersuchten Zeitpunkten. Die 

klinischen Daten der Patienten deren Proben untersucht worden sind, sind in Tabelle 6 

zusammengefasst. 

50 der insgesamt 51 Patienten wurden gemäß AMLCG 99 Studienprotokoll therapiert 

(Büchner, 1999; Büchner, 2003; Büchner, 2006). Eine Patientin wurde aufgrund ihres 

hohen Alters nicht gemäß dem AMLCG 99 Studienprotokolls therapiert, sie erhielt eine 

niedrigdosierte Chemotherapie.  

Die AML-Patientenproben wurden im Labor für Leukämiediagnostik auf NPM1 

Mutationen mit einem LightCycler-Assay mit Schmelzkurve untersucht (Schnittger, 2005). 

Bereits vorhandene Patientenproben, die noch nicht hinsichtlich der Mutationen analysiert 

waren, wurden im Rahmen dieser Arbeit auf die NPM1 Mutation getestet. Auffällige 

Proben wurden sequenziert. In dieser Arbeit wurden dadurch charakterisierte AML-Proben 

mit einer NPM1 Typ A Mutation verwendet. Alle cDNA Proben wurden mit einer 

ABL1-PCR auf ausreichende Qualität untersucht. 

Tabelle 5: vorhandene Patientenproben 
Patientenzahl 51 (2/51 PB)  
Erstdiagnose 51 
Tag 16 27 
vor Konsolidierung 27 
Rezidiv 21 
Quelle: Papadaki, 2009 
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Tabelle 6: Klinische Daten der 51 analysierten Patienten 
Alter (Jahre) 
Range 22,5 - 78 
Median 58,1 
WBC x 103/ µl 
Range 0,6 -315 
Median 27 
PLT x 103/ µl 
Range 10 - 250 
Median 62,5 
FAB 
M0 5 
M1 12 
M2 11 
M4 13 
M5 9 
M6 1 
Zytogenetik 
Normal 47 
Aberrant 4 
zusätzliche Mutationen 
FLT3/ITD 
+ 21 
- 30 
FLT3/D835 
+ 4 
- 37 
nicht bestimmt 10 
MLL-PTD 
+ 0 
- 49 
nicht bestimmt 2 
CEBPA 
+ 0 
- 11 
nicht bestimmt 40 
Quelle: Papadaki, 2009 
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3.1.4 Chemikalien und Kits 

Zellkultur: 

alpha-Minimum Essential Medium (α-MEM) (Sigma, Taufkirchen) 

Dimethylsulfoxid (DMSO) (Sigma, Taufkirchen) 

Dulbecco's Modified Eagle Medium (DMEM) (PANBiotech, Aidenbach) 

Fötales Kälberserum (FKS) (Biochrom, Berlin) 

Penicillin-Streptomycin (Life Technologies, Karlsruhe) 

RPMI 1640 Medium (PANBiotech, Aidenbach) 

Rinderserumalbumin (BSA) (Fluka, Buch, Schweiz) 

Trypan Blau (Invitrogen, Karlsruhe) 

Lösungen FACS: 

Ficoll Isotonic Solution (Dichte 1,077 g/ml) (Biochrom, Berlin) 

PBS (Phosphat gepufferte Kochsalzlösung) (Biochrom, Berlin) 

Türks Reagenz (Merck, Darmstadt) 

RNA-Isolierung: 

RNeasy Mini-Kit (Qiagen, Hilden) 

RLT-Puffer (Qiagen, Hilden) 

ß-Mercaptoethanol (Sigma, Taufkirchen) 

Reagenzien cDNA-Synthese: 

Superscript II (Reverse Transkriptase) (Invitrogen, Karlsruhe)  

dNTP-Mix (10 mM) (Invitrogen, Karlsruhe)  

Random Primer (50 ng/µl) (Roche, Mannheim) 

RNasin Plus (40 U/µl) (Promega, Mannheim) 

RNase Inhibitor (Promega, Mannheim) 

Sonstige Chemikalien: 

Agarose (Invitrogen, Karlsruhe) 

DNA molecular weight marker VI, 0.15-2.1 kbp (Roche, Mannheim) 

Ethidiumbromid 1% (Carl Roth, Karlsruhe) 

Loading buffer 6x (Promega, Mannheim) 

TBE-Puffer (Roche, Mannheim) 

TE-Puffer pH 7,0 10mM Tris 1mM EDTA 

Quicklyser-II (Sysmex, Norderstedt) 
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Kits: 

RNeasy Mini Kit (Qiagen, Hilden) 

MagNa Pure LC mRNA Isolation Kit (Roche, Mannheim)  

LightCycler TaqMan Master (Roche, Mannheim) 

LightCycler FastStart DNA Master HybProbe (Roche, Mannheim) 

Omniscript Reverse Transcriptase Kit (Qiagen, Hilden) 

3.1.5 Laborausstattung 

CO2-Inkubator für Zellkultur (Heraeus, Osterode) 

Cyclone 25 Thermocycler (peqlab Biotechnologie, Erlangen) 

Eppendorf Zentrifuge 5415D (Eppendorf, Hamburg) 

Eppendorf Cups (0,5-1,5 ml) (Eppendorf, Hamburg) 

Eppendorf Tischzentrifuge 5415D (Eppendorf, Hamburg) 

FACS Calibur (Beckton Dickinson, Heidelberg) 

Falcon Röhrchen (Beckton Dickinson, Heidelberg) 

Flow Hood Werkbank (Bio Flow Technik, Meckenhein) 

Gefrierschränke (-80°C) UF80-450S (Colora Messtechnik, Lorch) 

Gelelektrophoresekammer (GIBCO BRL Life Technologies, 

Eggenstein) 

Gelelektrophoresesysteme (Biorad, München) 

Kühl-/Gefrierschränke (4°C, -20°C) (Siemens, Erlangen) 

LC Carousel Centrifuge 2.0 (Roche, Mannheim) 

LightCycler 1.5 Instrument (Roche, Mannheim) 

MagNaPure LC (Roche, Mannheim) 

Megafuge (Haereus, Osterode) 

Mikroskop (Zeiss, Oberkochen) 

Pipette Accu-Jet (Brand, Wertheim) 

Pipettenspitzen (Star Labs, München) 

Pipetten (Gilson, Langenfeld und Eppendorf, 

Hamburg) 

QIAshredder (Qiagen, Hilden) 

ABI Prism 310 Genetic Analyzer (Applied Biosystems, ForsterCity, 

USA) 

Vortexer (Scientific Industries, Bohemia, USA) 
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Zellzähler (Sysmex, Norderstedt) 

Zentrifuge Rotanta 460R (Hettich, Tuttlingen) 

Zellkultur Flaschen (Sarstedt, Nümbrecht) 

Zentrifugenröhrchen (Sarstedt, Nümbrecht) 

3.1.6 Software 

Adobe Illustrator (Adobe Systems, Unterschleißheim)  

Adobe Photoshop (Adobe Systems, Unterschleißheim)  

Microsoft Office 2003 (Microsoft, Redmond, USA) 

LightCycler SW Version 3.5 und 4.05 (Roche Diagnostics, Mannheim) 

Primer Express 2.0 (Applied Biosystems, ForsterCity, 

USA) 

Datenbanken 

Patientendatenbank des Labors für Leukämiediagnostik (LfL), Klinikum der Universität 

München-Großhadern  

Datenbank des „National Center for Biotechnology Information“ (NCBI, Bethesda, MD, 

USA) 

3.2 Methoden 

3.2.1 Zellkultur 

Die AML-Zelllinie OCI/AML3 wurde wurden in einem Inkubator bei 37°C und 95% 

relativer Luftfeuchtigkeit in Gegenwart von 5% CO2 kultiviert. Dem verwendetem 

Kulturmedium, alpha-MEM wurde 20% fötales Kälberserum (FKS) sowie 50 U/ml 

Penicillin und 50 μg/ml Streptomycin zugesetzt. Die Zellen wurden in der Regel alle drei 

Tage im Verhältnis 1:3 gesplittet. 

Das Auftauen der Zellen erfolgte in einem 37°C warmen Wasserbad. Die Zellsuspension, 

die das zelltoxische DMSO enthält, wurde sofort mit 20- 25 ml Medium verdünnt. Die 

Zellen wurden 5 min bei 1000 rpm (210 g) abzentrifugiert, der Überstand verworfen und 

die Zellen in Medium resuspendiert. Nach dem Auftauen wurden die Zellen vor Ansatz 

eines Experiments mindestens 3 Tage kultiviert. 

Die Bestimmung der Viabilität und Zellzahl erfolgte unter Anfärbung eines Zellaliquots 

mit Trypanblau in der Neubauer-Zählkammer.  
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3.2.2 Isolierung von mononukleären Zellen 

Die Isolierung von mononukleären Zellen wurde im Rahmen der Routinediagnostik im 

Labor für Leukämiediagnostik, Medizinische Klinik III, Klinikum Großhadern 

durchgeführt. Aus den Knochenmarksaspiraten bzw. dem Gesamt-Blut wurden 

mononukleäre Zellen mittels einer Ficoll-Dichtegradientenzentrifugation abgetrennt, um 

Leukämiezellen anzureichern und sie von Granulozyten und Erythrozyten abzutrennen. 

5-10 ml Knochenmark oder Blut wurden mit einer gleichen Menge PBS vermischt. Das 

Gemisch wurde in einem 50 ml Zentrifugenröhrchen vorsichtig auf eine gleiche Menge 

Ficoll geschichtet. Es folgte eine Zentrifugation ohne Bremse bei Raumtemperatur für 

20 min bei 2400 rpm in der Megafuge. Die mononukleären Zellen bilden nach der 

Zentrifugation einen Ring zwischen der wässrigen Phase und dem Ficoll. Der Ring wurde 

mit einer 10 ml Einwegpipette abgenommen. Die Zellen wurden mit 50 ml PBS 

gewaschen. Danach wurden die Zellen durch Zentrifugation für 10 min bei 1500 rpm mit 

Bremse pelletiert und der Überstand abgenommen. Je nach Größe des Sediments wurde 

mit PBS verdünnt. Die Bestimmung der Zellzahl erfolgte mit einem automatischen 

Zellzähler (Papadaki, 2009). 

3.2.3 RNA Präparation 

3.2.3.1 RNA-Isolierung aus Patientenproben 

Die Isolierung von RNA aus Zellen wurde mit Hilfe des RNeasy Mini-Kits durchgeführt. 

Zur Analyse der Patientenproben wurde mRNA mittels des MagNA Pure LC Systems im 

Labor für Leukämiediagnostik, Medizinische Klinik III, Klinikum Großhadern, extrahiert:  

Direkt nach der Ficoll-Isolierung wurden jeweils 0,5- 1 x 107 der mononukleären Zellen in 

300 bzw. 350 µl RLT-Puffer (mit 10 µl ß-Mercaptoethanol pro 10 ml RLT versetzt) 

aufgenommen und durch 4-5 maliges Auf- und Abpipettieren mit einer 1 ml 

Eppendorfspitze lysiert. Ein RLT-Lysat entspricht 30 µl RNA. Das Lysat wurde entweder 

gleich weiterverarbeitet, über Nacht bei -20°C oder bis zu 5 Jahre ohne merklichen 

Qualitätsverlust bei -80°C eingefroren. Alle Arbeiten mit RNA oder mRNA wurden mit 

Rnase-freien Plastikmaterialien (Pipettenspitzen und Reagenzgefäßen) durchgeführt. Die 

RLT-Lysate von je 300 µl wurden nach dem Auftauen bei RT zunächst mit einem 

QIAshredder homogenisiert. Die Aufreinigung von mRNA aus den Lysaten erfolgte 

automatisiert nach den Angaben des Herstellers mit dem MagNA Pure LC unter 

Zuhilfenahme des mRNA Isolierungs Kits für Zellen. Die Isolierung erfolgte nach dem 
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Protokoll „mRNA Isolation for cells“. Die finale Eluation der mRNA erfolgte in einem 

Volumen von 30 µl (Papadaki, 2009). 

3.2.3.2 RNA-Isolierung aus Zellen 

1x107 OCI/AML3 Zellen wurden mit 300 µl RLT-Puffer versetzt und lysiert. Die weitere 

Prozessierung erfolgte analog zu den Patientenproben (Papadaki, 2009). 

3.2.4 cDNA-Synthese 

Isolierte RNA wurde in cDNA revers transkribiert. Bei der reversen Transkription dient 

mRNA als Matrize zur Synthese der komplementären DNA (cDNA). Die Synthese wird 

von einer RNA abhängigen DNA-Polymerase (Reverse Transkriptase) katalysiert. Es 

wurde mit dem Omniscript Reverse Transcriptase Kit von Qiagen mit Oligo-dT-Primern 

nach Herstellerangaben gearbeitet. Pro Reaktion wurde maximal 2 μg Template-RNA 

eingesetzt. 30 µl eluierte mRNA wird aus bis zu 1 x 107 Zellen isoliert. Aus 1 x 107 

Knochenmarkszellen ließen sich in der Regel ca. 0,3 µg mRNA gewinnen. Für die cDNA-

Synthese von AML-Primärdiagnosen wurden 5 µl mRNA (entsprechend 2 µg mRNA) 

eingesetzt. Bei Verlaufskontrollen zur Detektion minimaler Resterkrankung wurden, um 

möglichst viele Zellen in einem Ansatz untersuchen zu können, 30 µl RNA eingesetzt. Bei 

Primärdiagnosen wurden 15 µl mRNA mit Rnase-freiem Wasser auf ein Volumen von 

30 µl aufgefüllt. Diese 30 µl wurden für 10 min bei 70°C in einen Eppendorfinkubator 

gestellt, um die RNA zu denaturieren. Diese wurde anschließend für eine Minute auf Eis 

gestellt und dann kurz abzentrifugiert. In der Zwischenzeit wurde ein Mastermix pipettiert, 

der pro Reaktionsansatz folgende Volumina enthielt: 

Tabelle 7: Pipettierschema MasterMix cDNA-Synthese 
MasterMix cDNA Synthese Volumen pro Ansatz 
1st Strand Puffer 10,0 µl 
NTPs (10 pmol/µl) 4,4 µl 
Random Primer (50 µg/µl) 2,5 µl 
Rnasin (40 U/µl) 1,2 µl 
MasterMix 20µl 
RNA 30µl 
 

Zu jeder RNA wurden 20 µl dieses Mastermixes pipettiert und der Ansatz für 60 min bei 

37°C inkubiert. Durch Inkubation für 5 min bei 95°C wurde die Reaktion abgestoppt. Die 

cDNA wurde bei -20°C gelagert (Papadaki, 2009). Für jede cDNA Probe wurde eine ABL-
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spezifische RT-PCR durchgeführt, um die Integrität der DNA nachzuweisen (Schnittger, 

2002). 

3.2.5 Real-Time-PCR 

Bei der PCR (Polymerase-Kettenreaktion) werden in-vitro definierte DNA-Fragmente in 

einer enzymatischen Reaktion exponentiell vervielfältigt. Oligonukleotide, sogenannte 

Primer, dienen der thermostabilen DNA-Polymerase als Startsequenz. Die Primer binden 

spezifisch an einen bestimmten DNA-Abschnitt der als Vorlage für den Aufbau der 

komplementären Stränge dient. Die Reaktion wird durch zyklische Temperaturänderung 

gesteuert und läuft in drei Schritten ab: Denaturierung der doppelsträngigen DNA bei über 

90°C, Annealing der Primer sequenzabhängig bei 35 bis 65°C, und Extension der Primer 

komplementär zur gebundenen DNA-Vorlage bei etwa 70°C. Die PCR Reaktion kann 

zudem in drei Segmente eingeteilt werden: die Anfangsphase dauert bis das Signal des 

PCR Produktes größer ist als das Hintergrundsignal des Systems; Die Phase des 

exponentiellen Wachstums der Reaktion läuft nach der Gleichung Tn = T0 (E)n. Zum 

Schluss mündet die Reaktion in ein Plateau, weil die Primer mit PCR-Produkten im 

Annealing konkurrieren, eventuelle Nebenprodukte die Reaktion hemmen und die Enzyme 

zum limitierenden Faktor werden (Rasmussen, 2001).  

 

Abbildung 1: Phasen der PCR-Reaktion 
Quelle: Roche Diagnostics 
 
Der Name Kettenreaktion rührt daher, dass die Amplifikation exponentiell abläuft, weil 

bereits synthetisierte Stränge wiederum als Matrize dienen. Sind nach etwa 20 Zyklen 

ausreichend Kopien des gewünschten DNA-Abschnitts vorhanden kann diese mittels 

speziellen Farbstoffen nachgewiesen werden.  

Real-Time-PCR bedeutet, dass Fluoreszenzsignale schon im Verlauf der Reaktion über 

mehrere Zyklen gemessen werden. Bei der quantitativen PCR erfolgt nicht nur der 
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Nachweis einer spezifischen DNA-Sequenz in einer Probe sondern zugleich eine 

Mengenbestimmung des DNA-Abschnittes. Quantitative RT-PCR ist die Konvertierung 

der Fluoreszenzsignale jeder Reaktion in einen numerischen Wert für jede Probe.  

In dieser Arbeit wurde die RT-PCR am LightCycler durchgeführt. 

In diesem Gerät werden die Reaktionen in Glaskapillaren durchgeführt, die in einem 

Karussell platziert werden. Ein eingebautes Fluorimeter misst Fluoreszenzsignale. Durch 

die Verwendung dünner Glaskapillaren und die Möglichkeit schneller Temperaturwechsel 

mittels eines Luftstroms ermöglicht der LightCycler schnelle PCR-Ansätze (Wittwer, 

1997b). Während des Laufs kann der Fortschritt der Reaktion über eine Kurve am 

Bildschirm des angeschlossenen PCs mitverfolgt werden. Die Fluoreszenz repräsentiert die 

Menge an Produkt, die zu diesem Zeitpunkt der Reaktion vorhanden ist. Umso mehr 

Template am Anfang der Reaktion vorhanden ist, desto weniger Zyklen werden benötigt, 

um an den Punkt zu kommen, wo das gemessene Fluoreszenzsignal zum ersten Mal 

statistisch signifikant über dem Hintergrundsignal liegt. Dieser Zeitpunkt ist als Crossing 

Point (CP) definiert. Die Quantifizierung wird nicht durch limitierende 

Reaktionskomponenten in der Plateauphase beeinträchtigt, da sie nicht auf Messungen der 

gesamten Produktausbeute basiert. Somit können systemische Bias durch den Überschuss 

einiger Templates reduziert werden. (Bustin, 2000). Es wird für jede Probe ein CP 

angezeigt. Aus diesem Wert können quantitative Berechnungen des Produktes erfolgen. 

3.2.5.1 Detektion der PCR-Produkte  

Die gebräuchlichsten Formate der Detektion der PCR-Produkte teilen sich in zwei 

Kategorien auf: sequenzunabhängige Detektions-Assays wie mit SYBR Green I, und 

Assays mit sequenzspezifischen Sonden. Der LightCycler bietet mehrere Formate für die 

Detektion von PCR-Produkten, unter anderem über Hydrolyse- oder TaqMan-Sonden, 

welche in dieser Arbeit Anwendung fanden. Diese sind sequenzspezifisch und zweifach 

mit einem Farbstoff gelabelt. Hydrolyse-Sonden emittieren Fluoreszenz wenn sie von der 

5’-3’ Exonuklease-Aktivität der Taq Polymerase hydrolisiert werden. Dieser Ansatz 

fundiert auf der Spaltung einer einzelnen, nicht amplifizierbaren 3’-Sonde, um die Bildung 

der spezifischen Ziel-Sequenz anzuzeigen. Diese Sonde enthält einen fluoreszierenden 

Reporter und einen fluoreszierenden Quencher, welche nahe beinander liegen. Solange die 

Sonde intakt ist, ist der Quencher-Farbstoff nahe genug am Reporter-Farbstoff lokalisiert, 

um diesen zu unterdrücken. Das Fluoreszenz-Quenching beruht auf fluorescence resonance 

energy transfer (FRET) (Clegg, 1995). Während der PCR, zerstört die 5’-Nuklease-
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Aktivität der Polymerase die Sonde, separiert Reporter und Quencher, und erlaubt dem 

Reporter-Farbstoff Fluoreszenz freizusetzen. Die Vermehrung des PCR-Produktes wird 

direkt durch die proportionale Zunahme der Fluoreszenz des Reporter-Farbstoffs 

gemessen. In Abbildung 2 ist das Prinzip der Hydrolysesonden schematisch dargestellt. 

quencherreporter quencherreporter quencherreporter

 

Abbildung 2: Prinzip der Hydrolysesonden 
Quelle: Roche Applied Science, Technical Note No. LC 18/2004 
 

Nach der Amplifikation in einem TaqMan PCR Assay sind die Sonden gespalten (Wittwer, 

1997a und Bustin, 2000). Es kann daher keine Schmelzkurvenanalyse durchgeführt 

werden, was für diese Arbeit nicht nötig war, da die Schmelzkurvenanalyse bereits im 

Screeningverfahren auf NPM1 Mutationen angewendet wird. Falls das Screening positiv 

auf eine NPM1 Mutation Typ A ausfällt, kann anschließend eine Quantifizierung 

durchgeführt werden.  

3.2.5.2 Relative Quantifizierung im LightCycler 

Relative Quantifizierung bedeutet, die Ziel-Konzentration wird über das Ratio von Ziel- zu 

Referenz-Gen (Housekeeping-Gen) definiert. Im Gegensatz dazu, wird zur absoluten 

Quantifizierung die Ziel-Konzentration als absoluter Wert bestimmt (z.B. Kopienzahl, 

µg/µl). Für die relative Quantifizierung werden externe Standards mit einer definierten 

Konzentration an Ziel- und Referenz-Gen verwendet. Die Berechnung erfolgt aus der 

PCR-Effizienz und dem Crossing Point der Probe, dadurch muss nicht in jedem Lauf eine 

Standardkurve generiert werden. Für die Berechnung der Ratios der relativen 

Quantifizierung werden Effizienzkorrekturen für die PCR Effizienz des Ziel- und des 
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Referenz-Gens berücksichtigt, welche in separaten Läufen bestimmt wurden. Durch die 

Normalisierung der Ratios über den Calibrator werden Schwankungen von Lauf zu Lauf, 

z.B. durch Unterschiede in der Ausführung oder bei den verschiedenen PCR-Reagenzien 

ausgeglichen. Die meisten Quantifizierungsmethoden verwenden eine Standardkurve für 

die Berechnung der unbekannten Proben, bei der relativen Quantifizierung mit 

Normalisierung über eine Calibrator und Effizienzkorrektur wird die Standardkurve 

zusätzlich als Maß für Amplifikationseffizienz verwendet. Die externe Standardkurve ist 

eine Funktion der Anzahl der Zyklen am Crossing Point (Y-Achse) gegen die initiale 

Template Menge (X-Achse). Die Standards sind Verdünnungsreihen mit repräsentativen 

Konzentrationen, welche den erwarteten Konzentrationen der Proben entsprechen. Die 

Steigung der Standardkurve (-1/log E) entspricht der Effizienz (E) der PCR Reaktion, 

wobei unter optimalen Bedingungen (E = 2) die Steigung -3,32 entspricht. Die Formel zur 

Berechnung der Effizienz ist: E=10 -1/slope. Die Berechnungen in dieser Arbeit sind um die 

Effizienz E korrigiert. Der Fehler r spiegelt Variationen von Kapillare zu Kapillare wieder.  

 

Abbildung 3: Prinzip der relativen Quantifizierung mit externen Standards 
Quelle: Roche Applied Science Technical Note No. LC 10/update 2003 
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Abbildung 4: Ermittlung der Konzentration einer unbekannten Probe anhand ihres CP-Wertes und der 
Standardkurve 

Quelle: Roche Diagnostics 
 

Die Standardkurve wurde nach den Angaben des LightCycler Manual erstellt. Von allen 

Patientenproben wurden Duplikate gemessen, für die Berechnungen wurde der Mittelwert 

verwendet. In allen LightCycler-Läufen wurde cDNA aus OCI/AML3 Zellen als 

Positivkontrolle und H2O als Negativkontrolle mitgeführt. 

Die PCR Analyse für NPM1 A und ABL1 wurde mit einem LightCycler durchgeführt. Die 

Ergebnisse wurden mit dem SW 4.5 Software-Paket ausgewertet. Die RQ-PCR wurde in 

einem Gesamtvolumen von 20 µl pro Kapillare durchgeführt. Darin enthalten: 

Tabelle 8: Pipettierschema RQ-PCR 
MasterMix PCR Konzentration Volumen pro Kapillare 
RNAse freies H2O  11,6 µl 
Sonde (probe) 10 µM 0,2 µM 0,4 µl 
left primer 10 µM 0,5 µM 1 µl 
right primer 10 µM 0,5 µM 1 µl 
5x TaqMan Master 1x 4 µl 
MasterMix  18 µl 
cDNA  2 µl 
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Der TaqMan Master Reaktions-Mix wurde nach den Angaben des Herstellers verwendet. 

Die PCR wurde mit folgenden Reaktionskonditionen durchgeführt: 

Tabelle 9: Protokoll RQ-PCR 
Analysis 

Mode 
Cycles Segment Target 

Temperature 
Hold Time Acquisition 

Mode 
Pre-Incubation 

None 1  95°C 10 min none 
Amplification 

45 Denaturation 95°C 10 s none 
 Annealing 63°C 20 s none 

Quantification 

 Extension 72°C 1 s single 
Cooling 

None 1  40°C 30 s none 
 

Die Inkubation wurde bei 95°C für 10 min durchgeführt. Das Protokoll beinhaltet 45 

Quantifizierungszyklen mit Denaturierung bei 95°C für 10 sec, Annealing der Primer bei 

63°C für 20 sec und Extension bei 72°C für 1 sec. Zum Schluss erfolgt ein 

Abkühlungsschritt bei 40°C für 30 sec. Der Temperaturanstieg (Slope) wurde auf 20°C/sec 

eingestellt. Die Temperatur, bei der das Gerät die Proben erkennt (Seek Temperature) ist 

30°C. Die Fluoreszenz wird im Kanal F1während jedes Annealing-Schrittes gemessen und 

für die Auswertung wurde der Kanal F1/F3 (530/705) angezeigt. Jede Probe wurde in 

Duplikaten gemessen (Papadaki, 2009). 

Zum Nachweis von spezifischer Amplifikation, d.h. Amplifikation des NPM1 bzw. ABL1 

Gens, wurden in der Etablierungsphase die PCR Produkte sowie die Negativkontrollen 

(NPM1 negative Patienten und Zelllinien) mittels Gelelektrophorese aufgetrennt.  

3.2.6 Mutationsanalyse mittels Schmelzkurven-PCR 

Das Screening auf NPM1 Mutationen erfolgte in der Regel im Rahmen der 

Routinediagnostik mithilfe eines auf einer Schmelzkurve basierenden LightCycler Assays 

(Schnittger, 2005a). Im Rahmen dieser Arbeit wurden auch ältere Proben, die noch nicht 

hinsichtlich der Mutationen analysiert waren, herausgesucht und getestet.  

Im Gegensatz zur oben beschriebenen NPM1 RQ-PCR werden hier die PCR-Produkte über 

Hybridisierungssonden qualitativ detektiert. Es findet keine relative Quantifizierung statt. 

Im Anschluss an die PCR wird automatisch eine Schmelzkurve erstellt. Die Sensorsonde 

ist komplementär zur Wildtyp-Sequenz, so dass der Komplex zwischen Sensorsonde und 

Wildtyp stabiler ist als der Komplex zwischen Sensorsonde und mutiertem Allel. Wenn die 
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hybridisierten Produkte langsam, unter stetiger Messung der Fluoreszenz erhitzt werden, 

kommt es zum Ablösen der Sonden und damit Abbruch des Fluoreszenzsignals bei 

Überschreiten der Schmelztemperatur. Liegt eine Fehlpaarung zwischen Sensor und 

Zielsequenz von zwei oder mehr Basen vor, löst sich die Sonde bereits bei niedrigeren 

Temperaturen und der Schmelzpunkt ist verschoben. So ergeben sich für die verschiedenen 

Mutationen unterschiedlich aussehende Schmelzkurven. Ein Basenaustauch alleine 

verursacht dabei eine Änderung von 2-10°C, abhängig von der Art des Austausches, und 

der Nachbarschaft dieser Base. Ist nur ein Allel mutiert, zeigt die Schmelzkurve zwei 

Peaks. Tabelle 10 zeigt das Pipettierschema für die Schmelzkurven-PCR, Tabelle 11 das 

Protokoll wie es im LightCycler programmiert wurde. 

Tabelle 10:Pipettierschema Schmelzkurven-PCR 
MasterMix PCR Konzentration Volumen pro Kapillare 
RNAse freies H2O  9,6 µl 
MgCl2 4 mM 2,4 µl 
Sensorsonde  0,75 µM 1 µl 
Anchorsonde 0,75 µM 1 µl 
left primer 10 µM 0,5 µM 1 µl 
right primer 10 µM 0,5 µM 1 µl 
LightCycler Fast Start DNA Master  1x 2 µl 
MasterMix  18 µl 
cDNA  2 µl 
 

Tabelle 11:Protokoll Schmelzkurven-PCR 
Analysis 

Mode 
Cycles Segment Target 

Temperature 
Hold Time Acquisition 

Mode 
Pre-Incubation 

None 1  95°C 10 min none 
Amplification 

40 Denaturation 95°C 1 s none 
 Annealing 55°C 10 s single 

Quantification 

 Extension 72°C 26 s none 
Melting Curve 

Melting Curve 1  95°C 2 min none 
   33°C 20 s none 
   70°C 0 continuous 

Cooling 
None 1  40°C 0 none 

 

Die Fluoreszenz wurde nach Angaben des Herstellers gemessen. 

Diejenigen Proben, die von der Wildtyp-Schmelzkurve abwichen, wurden sequenziert. In 

dieser Arbeit wurden Proben mit NPM1 Typ A Mutation, welches die häufigste unter den 
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NPM1 Mutationen ist, verwendet. In Abbildung 5 sind typische Schmelzkurven in der 

Auswertungsansicht zu sehen. Die Schmelzkurve mit einem einzelnen Peak entspricht der 

Wildtypsequenz, die doppelgipflige Kurve einer mutierten Sequenz, mit einem mutierten 

und einem Wildtyp-Allel. 

 

 

Abbildung 5: Screening mittels Schmelzkurvenanalyse 
Quelle: Schnittger, 2005 
 

3.2.7 Gelelektrophorese 

Zur Bestimmung der Größe von DNA-Fragmenten wurde DNA in einem 2%igen 

Agarosegel anhand der Größe und damit korrespondierend der Laufstrecke aufgetrennt. 

Die Agarose wurde in 1xTBE-Puffer durch kurzes Aufkochen in der Mikrowelle aufgelöst, 

nach dem Abkühlen auf ungefähr 50°C mit 10 mg/ml Ethidiumbromid versetzt, und in 

einer Gelkammer polymerisiert. Die Proben wurden mit Ladepuffer verdünnt und in einer 

Gelelektrophoresekammer auf das Gel aufgetragen, das Gel mit 1xTBE überschichtet und 

durch Anlegen eines elektrischen Feldes aufgetrennt. Anschließend wurden die DNA-

Fragmente unter UV-Licht sichtbar gemacht und fotografiert. Zur Größenbestimmung der 

DNA-Fragmente wurde ein Marker mit definierten Fragmentgrößen (0.15-2.1 kbp) 

aufgetragen.  
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4 Ergebnisse 

4.1 cDNA als aus OCI/AML3 Zellen als Positivkontrolle 

Aus 4 x 30 µl RNA wurde, wie im Methodenteil beschrieben 4 x 300 µl cDNA generiert 

(Papadaki, 2009). Die insgesamt 1200 µl cDNA wurden gepoolt, aliquotiert und 

eingefroren. Für die Etablierung der LightCycler-PCR und Erstellen der Standardkurven 

wurden folgende Verdünnungen der OCI/AML3 cDNA in TE-Puffer pH 

7,0 10mM Tris 1mM EDTA angefertigt: 1:10, 1:50, 1:100, 1:500, 1:1 000, 1:5 000, 

1:10 000, 1:100 000 und 1:1 000 000. Außerdem wurden 150 Aliquots a 10 µl mit einer 

1:10 Verdünnung der OCI/AML3 cDNA in TE-Puffer pH 7,0 10mM Tris 1mM EDTA 

hergestellt. Diese Aliquots werden als Calibrator und Positivkontrolle verwendet. Zur 

Erläuterung des Calibrators siehe unten.  

4.2 Etablierung einer Real-Time PCR (RQ-PCR) für die quantitative 

Bestimmung von NPM1 Typ A 

4.2.1 Prinzip der Relativen Quantifizierung 

Relative Quantifizierung meint eine quantitative PCR, mit der Genlevels eines Gens von 

Interesse, wie hier das NPM1 A Gen, in einer cDNA Probe relativ zu Genlevels eines 

Referenzgens in derselben Probe bestimmt werden.  

nReferenzgeion Konzentrat
nion ZielgeKonzentrat Ratio  Relatives =  

Als Referenz für Quantifizierung von mRNA wird hier ein sogenanntes Housekeeping 

Gen, hier ABL1, verwendet. Dies ist ein Gen, dass konstitutiv auf dem gleichen Level in 

allen untersuchten Proben exprimiert wird. Über die Wahl des ABL1-Gens als 

Housekeeping-Gen wird im Abschnitt  4.2.3 näher eingegangen. 

4.2.2 Normalisierung über einen Calibrator 

Wenn zusätzlich eine Normalisierung der Ergebnisse mithilfe eines Calibrator erfolgt, 

können Ergebnisse, die in verschiedenen LightCycler Läufen ermittelt werden miteinander 

verglichen werden. Ein Calibrator ist eine positive Probe, die ein konstantes Ratio von 
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Zielgen- zu Referenzgenexpression besitzt, mit der alle anderen Proben verglichen werden. 

Hierfür wurde cDNA der OCI/AML3 Zelllinie, die positiv für die NPM1 A Mutation ist, 

verwendet (Papadaki, 2009).  

)
CalibratorReference

CalibratorTarget(CalibratorRatio

)
SampleReference

SampleTarget(SampleRatio
RatioNormalizedCalibrator =−  

Der in dieser Arbeit entwickelte Test kann Änderungen der Genexpression eines 

bestimmten Gens in Proben mit cDNA feststellen, auch wenn die Proben zu 

unterschiedlicher Zeit gewonnen wurden oder von unterschiedlicher Qualität sind.  

4.2.3 Ermittlung der Primer-Paare und Sonden 

Die verwendeten Oligonukleotide wurden mithilfe der Primer Express Software 2.0 

entworfen. Die cDNA Sequenz des NPM1 Gens wurde mit Hilfe der Datenbank des 

National Center for Biotechnology Information (NCBI, Bethesda, MD, USA) ermittelt 

(Genbank Accession Nr. AY740634). Das ABL1 Gen wurde als Housekeeping Gen, nach 

den Empfehlungen des „Europe Against Cancer Programs“ (Gabert, 2003 und Beillard, 

2003) verwendet (Genbank Accession Nr. M14752). Ein Housekeeping Gen sollte 

konstitutiv in allen Zellarten exprimiert sein. Weitere wichtige Kriterien für ein 

Housekeeping Gen sind eine konstante Expression auch während der antileukämischen 

Behandlung, und die Abwesenheit von Pseudogenen.  

Es wurden die Design-Guidelines der Primer Express Software berücksichtigt, welche 

auch den allgemeinen Vorgaben für Primerentwicklung entsprechen (Bustin, 2000 und 

Wang, 2006). Für die Sonden und Primer sollte der Gehalt an den Basen G und C zwischen 

30 und 80% liegen, wobei Wiederholungen desselben Nukleotids, insbesondere eine 

Wiederholung von viermal Guanin vermieden werden sollten. Bei der Sonde sollte kein 

Guanin am 5`-Ende stehen. Der Schmelzpunkt einer TaqMan Sonde sollte 68-70°C 

betragen, die Schmelzpunkte der Primer 58-60°C. Der Schmelzpunkt der Sonde sollte um 

10°C höher als der der Primer sein, um sicherzustellen, dass diese vor den Primern 

hybridisiert (Bustin, 2000). Die Primer werden nach der Sonde ausgewählt und sollten so 

nahe wie möglich an der Sonde liegen ohne zu überlappen. Innerhalb der letzten fünf 

Nukleotide am 3`-Ende der Sonde sollten nicht mehr als zwei G oder C Basen liegen. 

Diese Anforderungen werden von den ausgewählten Oligonukleotiden erfüllt. Die Primer-

Express Software ermittelt nach einigen Eingaben selbstständig geeignete Abschnitte auf 
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der Gensequenz für das ausgewählte Amplikon. Die von der Software erbrachten 

Vorschläge für Primerpaare und Sonde wurden nochmals auf die vorgegebenen 

Empfehlungen hin geprüft. Mittels BLAST wurde eine Sequenzähnlichkeitssuche 

durchgeführt. Die ausgewählten Primerpaare für NPM1 A und ABL1 sind spezifisch für 

ihr Template. Es wurden keine anderen Zielsequenzen in der Datenbank NCBI Transcript 

Reference Sequences für Homo sapiens gefunden. Für die NPM1 A Primer gilt: 

Forward Primer mit GC-Gehalt von 43% und Schmelzpunkt von 58°C; Reverse Primer mit 

GC-Gehalt von 57% und Schmelzpunkt von 59°C. Für die ABL1 Primer gilt: 

Forward Primer mit GC-Gehalt von 38% und Schmelzpunkt von 58°C; Reverse Primer mit 

GC-Gehalt von 55% und Schmelzpunkt von 58°C. Diese Angaben wurden von der Primer-

Express Software 2.0 ermittelt. Die TaqMan Sonden haben einen Schmelzpunkt von 

jeweils 70°C. Die NPM1 A Sonde überspannt die Exon 11/Exon 12 Grenze, um zu 

gewährleisten, dass die Amplifikation für mRNA spezifisch ist. Der reverse Primer 

überspannt die TCTG-Insertion (Papadaki, 2009). Die Amplikonlänge beträgt 112 

Basenpaare bei NPM1 A und 85 Basenpaare bei ABL1. Bustin et al. empfehlen eine 

Amplikonlänge von weniger als 100 bp, da kürzere Amplikons effizienter amplifiziert 

werden, und toleranter hinsichtlich der Reaktionskonditionen sind (Bustin, 2000). Die 

verwendeteten Primer überspannen zwischen 20 und 24 bp. Die Sonden sind 30 und 37 bp 

lang. Für TaqMan Sonden wird eine Länge von 30 Basen empfohlen, da ein 

Zusammenhang zwischen Sondenlänge und der Fähigkeit zu quenchen besteht (Shipley, 

2006). Die Primer-Express Software prüft die Primer ebenfalls auf mögliche Primer-Dimer 

Bildung.  

4.2.4 Programmierung LightCycler 

Angaben zum Programmieren und Durchführen eines LightCycler Laufes siehe 

LightCycler Software Short Guide Version 3.3 April 2000 und LightCycler 

Operator’s Manual Version 3.5 October 2000. Die Angaben in der Packungsbeilage für 

den LightCycler TaqMan Master, Enzymmix für die PCR mit Hydrolysesonden, 

hinsichtlich der Reaktionskonditionen wurden berücksichtigt. 

4.2.5 Optimierung der PCR-Bedingungen für NPM1 Typ A 

Das Austesten der Primer und Sonden und die Optimierung der PCR-Bedingungen wurden 

mit cDNA durchgeführt, die aus der Zelllinie OCI/AML3 gewonnen wurde. Die cDNA 

wurde unverdünnt und in mehreren Verdünnungen eingesetzt. Die Reaktionskonditionen 
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wurden in mehreren Schritten optimiert, um eine möglichst hohe Spezifität bei gleichzeitig 

hoher Ausbeute zu erreichen. Das heißt möglichst hohe Amplifikation des NPM1 A 

mutierten Gens, nicht aber des Wildtyp-Gens oder anderer Gene. Die Mutation A 

unterscheidet sich vom NPM1 Wildtyp-Gen, das in allen Zellen exprimiert wird, um eine 

Insertation von vier Basen. Es wurden Annealing-Temperaturen von 55, 57, 59, 60, 61, 63 

und 64°C getestet. Die Annealingzeit wurde zwischen 15 sec und 30 sec variiert. Die 

besten Ergebnisse hinsichtlich Ausbeute, Spezifität und Sensitivität konnten mit einer 

Annealing-Temperatur von 63°C bei einer Annealing-Zeit von 20 sec erreicht werden 

(siehe Tabelle 12). Unter diesen Konditionen war die Effizienz hoch, es wurden keine 

Wildtyp-NPM1 Sequenz oder andere Gensequenzen amplifiziert und NPM1 A wurde auch 

in höheren Verdünnungen noch zuverlässig amplifiziert. Bei niedrigeren Annealing-

Temperaturen und längeren Annealing-Zeiten war das PCR-Produkt nicht spezifisch 

genug. In der Gelelektrophorese der PCR-Produkte konnten bei Produkten aus weniger 

stringenten Protokollen andere, zusätzliche Genbanden sichtbar gemacht werden, und zum 

Teil konnte ein PCR-Produkt aus NPM1 A negativen Proben nachgewiesen werden. 

Andersherum war die Effizienz, oder Ausbeute bei stringenteren Bedingungen mit höherer 

Annealing-Temperatur und kürzeren Annealing-Zeiten nicht optimal. Geringe Ausbeute 

heißt, wenig oder kein PCR-Produkt in höheren Verdünnungen der cDNA, und hohe CP-

Werte im Gegensatz zu optimalen Protokollen. 

Tabelle 12: Optimiertes Protokoll RQ-PCR 
Analysis 

Mode 
Cycles Segment Target 

Temperature 
Hold Time Acquisition 

Mode 
Pre-Incubation 

None 1  95°C 10 min none 
Amplification 

45 Denaturation 95°C 10 s none 
 Annealing 63°C 20 s none 

Quantification 

 Extension 72°C 1 s single 
Cooling 

None 1  40°C 30 s none 
 

Die initiale Denaturierung wurde bei 95°C für 10 min durchgeführt. Das Protokoll 

beinhaltet 45 Zyklen mit Denaturierung bei 95°C für 10 sec, Annealing der Primer bei 

63°C für 20 sec und finaler Extension bei 72°C für 1 sec. Unter diesen 

Reaktionsbedingungen läuft bereits während der Annealing-Phase die Extension der 

Primer ab. Zum Schluss erfolgt ein Abkühlungsschritt bei 40°C für 30 sec. Der 

Temperaturanstieg (Slope) wurde auf den maximalen Wert von 20°C/sec eingestellt. Die 
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Fluoreszenz wird nach Angaben des Herstellers gemessen und ausgewertet. Jede Probe 

wurde in Duplikaten gemessen (Papadaki, 2009). 

4.2.6 Etablierung der PCR für das Referenzgen ABL1 

In der fertig entwickelten RQ-PCR werden NPM1 A und ABL1 gleichzeitig, und damit 

unter den gleichen Bedingungen amplifiziert. Die ermittelten optimierten Bedingungen für 

die NPM1 A PCR wurden also auch für das Referenzgen ABL1 ausgetestet. Auch wenn 

die Sensitivität niedriger ist als bei der Amplifizierung des Zielgens, ist sie ausreichend für 

die Verwendung als Referenz für die Berechnung der Ziel- zu Referenzgen-Ratios. Ein 

Kriterium für die Verwendung von ABL1 als Referenzgen ist unter anderem eine konstante 

Exprimierung in allen kernhaltigen Zellen, auch unter antileukämischer Therapie. Somit 

kann davon ausgegangen werden, dass jede cDNA-Probe genügend Genkopien des ABL1 

Gens enthält, um unter den ermittelten Bedingungen ausreichend amplifiziert zu werden. 

Alle verwendeteten cDNAs wurden hinsichtlich ihrer Qualität in einer im Labor für 

Leukämiediagnostik etablierten ABL1-PCR getestet, um Fehler in den Schritten der RNA-

Isolierung oder cDNA-Synthese auszuschließen.  

4.2.7 Erstellen der Standardkurven für die relative Quantifizierung 

Als die Bedingungen für die PCR festgelegt waren, wurden Standardkurven mit diesen 

Bedingungen für die NPM1 A und ABL1 PCR erstellt. Die Standardkurven wurden für 

NPM1 A und ABL1 gesondert durchgeführt, da die NPM1 A PCR, wie oben bereits 

erwähnt, sensitiver als die ABL1 PCR ist und in der Standardkurve höhere 

Verdünnungsstufen berücksichtigt werden. Für die NPM1 Standardkurve wurde cDNA in 

folgenden Konzentrationen jeweils in vierfach Replikaten eingesetzt: cDNA unverdünnt, 

1:10, 1:100, 1:1 000, 1:10 000, 1:100 000 und 1:1 000 000 (Papadaki, 2009). 
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Abbildung 6: Amplifikationskurven für die Verdünnungsreihe der OCR/AML3 cDNA 
Quelle: Papadaki, 2009 
 

Die CP Differenzen zwischen den Mittelwerten der 10er Verdünnungen sollten theoretisch, 

jeweils 3,3 betragen, was einer Steigung der Standardkurve von -3,3 und einer maximalen 

Effizienz = 2 entspricht (Velden, van der, 2003). Die CP Differenzen zwischen den 10er 

Verdünnungen der Standardkurve betragen: 3,62; 3,79; 3,58; 3,43 und 2,4. Das heißt, die 

Standardkurve ist in der höchsten Verdünnungsstufe nicht mehr linear, die Effizienz fällt 

ab. Tabelle 13 stellt nochmals die CP-Werte der unterschiedlichen Verdünnungen 

zusammen. 

Tabelle 13: Zusammenstellung CP-Werte aus Verdünnungsexperiment 
Verdünnung OCI/AML3 CP-Wert 
1 20,38 
1:10 24 
1:100 27,79 
1:1 000 31,37 
1:10 000 34,8 
1:100 000 37,2 
1:1 000 000  
 

Die Amplifizierung des Ziel- und des Referenzgens wird in einem LightCycler-Lauf 

durchgeführt. Da die ABL1 Amplifizierung eine niedrigere Sensitivität als die NPM1 A 

Amplifizierung zeigt, weil die Optimierung der Temperaturen und Zeiten im Protokoll 
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hinsichtlich der Primer und der Sequenz des Zielgens optimiert wurden, sind die cDNA 

Verdünnungsstufen der NPM1 A Standardkurve in der ABL1 Reaktion nicht mehr 

nachweisbar. Für die ABL1 Standardkurve wurden daher folgende Verdünnungsstufen der 

cDNA jeweils in vierfach Replikaten eingesetzt: cDNA unverdünnt, 1:10, 1:50, 1:100, 

1:500, 1:1 000 und 1:5 000. Es ist sinnvoll, den Konzentrationsbereich der ABL1 

Genkopien der von der Standardkurve abgedeckt wird, an die tatsächlich zu erwartenden 

Konzentrationen der zu messenden Patientenproben anzupassen. Eine Voraussetzung für 

die Freigabe der cDNA Patientenproben hinsichtlich ihrer Qualität  ist eine ausreichende 

Nachweisbarkeit von ABL1 in einer ABL-spezifischen PCR wie schon im Materialienteil 

beschrieben. Somit kann von einer ausreichenden cDNA Konzentration in jeder Probe 

ausgegangen werden. Die Quantifizierung des Ziel- und des Referenzgens wurde also 

einzeln, mithilfe der erstellten Standardkurven auf den zu erwartenden 

Konzentrationsbereich der Patientenproben kalibriert, so dass die Berechnungen der 

Software aus der Effizienz der einzelnen Reaktionen, und nicht aus extrapolierten Werten 

erfolgen.  

Nach der Optimierung zeigt die relative Quantifizierung anhand der Standardkurven eine 

gute Linearität und Reproduzierbarkeit. Die von der Software ermittelte 

Amplifikationseffizienz beträgt 1,89 für beide Sequenzen. Der von der Software 

angegebene Fehlerwert („Error“) zu jeder Standardkurve beschreibt die mittlere 

quadratische Abweichung der einzelnen Datenpunkte zur Funktion. Er ist ein Maß für die 

Genauigkeit der Quantifikation, basierend auf der Standardkurve. Der für die 

Standardkurven ermittelte Wert beträgt 0,00974 für NPM1 A und für ABL1 0,0128. Nach 

Herstellerangaben ist ein Fehler unter 0,2 akzeptabel (Roche Applied Science, 

Technical Note No. LC 11/update 2003). 

Die European Study Group on MRD detection on ALL (Europäische Studiengruppe zur 

Bestimmung von minimaler Resterkrankung bei ALL) fordert in den gegenwärtigen 

Leitlinien (Velden, van der, 2003) eine Steigung der Standardkurve zwischen -3,0 und 

-3,9. Mit einer Effizienz von 1,89, was einer Steigung von -3,617 entspricht, erfüllt der in 

dieser Arbeit entwickelte Test diese Leitlinie. Auf das Prinzip der Efficiency Correction 

wird unter  4.3.3, Effizienzkorrektur bei der Auswertung mithilfe der LightCycler Software 

näher eingegangen. Die Standardkurve für das Target-Gen NPM1 ist in Abbildung 7 zu 

sehen. 
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Abbildung 7: Die Standardkurve für die Amplifikation des Target-Gens mit einer Effizienz von 1,89 
Quelle: Papadaki, 2009 
 

4.2.8 Sensitivität und Spezifität in Zelllinien 

Um den Assay möglichst spezifisch zu machen überspannt der reverse Primer für NPM1 A 

die Insertion der vier Basen, um die sich die mutierte Sequenz vom Wildtyp unterscheidet. 

Sensitivität wurde mittels Verdünnungsreihen von cDNA mit TE-Puffer bestimmt, wobei 

die maximale Sensitivität der niedrigste Verdünnungsschritt ist, der spezifische 

Amplifikation zeigt. Bei der Verwendung von cDNA aus der Zelllinie OCI/AML3 ist 

1:100 000 die maximale Verdünnung die reproduzierbar Amplifikation des NPM1 A Gens 

zeigt (Papadaki, 2009). Die Verdünnung 1:1 000 000 zeigt nur in einem von acht 

Replikaten Amplifikation. Für die Amplifikation des ABL1 Gens aus OCI/AML3 cDNA 

ist 1:10 000 die höchste Verdünnung, die verlässlich amplifiziert wird. Bei der 

Verdünnung 1:100 000 werden zwei von acht Replikaten amplifiziert.  

Für ein weiteres Experiment für die Ermittlung der Sensitivität des Test wurde cDNA aus 

OCI/AML3 Zellen mit cDNA aus K562 Zellen, die keine NPM1 Mutation tragen, in 

verschiedenen Verhältnissen gemischt, und im LightCycler amplifiziert. Auch hier war die 

höchste zuverlässig für NPM1 A amplifizierte Probe die Verdünnung 1:100 000. Das 

Experiment wurde zweimal mit je 2 Replikaten durchgeführt. Hiermit konnte gezeigt 
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werden, dass der Test auch in höheren Verdünnungen in Wildtyp-cDNA nicht negativ 

beeinflusst wird. Dieses Experiment simuliert MRD-Verhältinsse mit zwei verschiedenen 

Zelllinien.  

Die konstante ABL1-Expression in den beiden Zelllinien zeigt sich durch CP-Werte im 

Bereich von 20,94 bis 23,75 bei einer ABL1 Amplifikation in allen Proben. 

Außerdem wurde cDNA aus K562, MV4-11 und MOLM-13 Zellen gemessen. Die 

Zelllinien zeigten keine falsch positive Amplifikation für NPM1 A in Form einer 

Amplifikationskurve (Papadaki, 2009).  

4.2.9 Etablierung des Tests mit Patientenproben 

Der Test mit den optimierten Bedingungen aus Material von Zelllinien wurde im 

Folgenden auf cDNA aus Knochenmark von Patienten angewendet. 

Um die Spezifität der PCR zu testen, wurden cDNA-Proben von 79 NPM1 A negativen 

Patienten gemessen. Darunter 15 Patienten mit AML, 9 mit MDS und 56 mit CML.  

NPM kommt bei allen cDNA-Proben als Wildtyp vor. Da kein PCR-Signal nachweisbar 

war, bedeutet dies, dass die NPM1 Typ A PCR spezifisch für die Mutation ist, und die 

Wildtypsequenz nicht amplifiziert wird. 

Bei NPM1 A positiven Patienten zeigt sich analog zu cDNA aus OCI/AML3 Zellen 

Amplifikation des NPM1 Gens in Form einer Amplifikationskurve in der PCR und einer 

Bande in der zusätzlich zur Kontrolle durchgeführten Gelelektrophorese.  

Es konnte gezeigt werden, dass die mit cDNA aus OCI/AML3 Zellen erhobenen 

Ergebnisse mit denen aus cDNA aus Patientenproben korrelieren. Patientenproben zur 

Erstdiagnose zeigen eine ähnlich hohe Expression von NPM1 A, das heißt ähnlich hohe 

NPM1 A zu ABL1 Ratios, wie eine 1:10 Verdünnung der OCI/AML3 cDNA in TE-Puffer. 

Wie erwartet ist die NPM1 A Expression in Patienten-cDNA zur Erstdiagnose höher als 

nach Therapiebeginn, z.B. am Tag 16 der Therapie oder vor der Konsolidierungstherapie. 

Bei den meisten Patienten kann, wenn diese sich in Krankheitsremission befinden, mittels 

RQ-PCR kein NPM1 A mehr nachgewiesen werden. Wenn die Krankheit rezidiviert, ist 

NPM1 A in den meisten Fällen wieder nachweisbar. Siehe dazu auch Gliederungspunkt 

 4.4.2, in dem auf die Stabilität der NPM1 Mutation eingegangen wird. NPM1 A RNA 

Expressionslevel wurden von 51 Patienten in 154 Knochenmark- und Blutproben zu 

unterschiedlichen Stadien der Krankheit bestimmt (Papadaki, 2009).  

Um die Aussagekraft des Tests bei echter minimaler Resterkrankung (minimal residual 

disease, MRD) zu bewerten, wurde cDNA von 5 NPM1 A mutierten Patienten mit einem 
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Pool von cDNA von mehr als 50 NPM1 A negativen Patienten in verschiedenen 

Verhältnissen verdünnt. Jede Probe wurde in Duplikaten gemessen. Das Experiment wurde 

dreimal wiederholt. Die höchste nachweisbare Verdünnungsstufe von cDNA von NPM1 A 

positiven Patienten in NPM1 A negativen Patienten war 1:100 000 (Papadaki, 2009).  

Mit cDNA aus Patientenproben werden die Kurvenverläufe unruhiger als mit cDNA aus 

Zelllinien, und die Software berechnet bei einzelnen Proben CP-Werte zwischen 33,75 und 

>41. Die nachträgliche Überprüfung der einzelnen Amplifikationskurven zeigt keine 

tatsächliche Amplifikation des NPM1 A Gens, das heißt keinen echten Anstieg der Kurve 

über das Hintergrundsignal. Die Software erkennt in diesen Fällen eine Unregelmäßigkeit 

im Kurvenverlauf als signifikanten Anstieg, entsprechend wird der Probe ein CP-Wert 

zugeordnet. In der Elektrophorese zeigt sich keine spezifische NPM1 A Bande, jedoch 

unspezifische Amplifikation in Form von mehreren dünnen Banden kleinerer Fragmente. 

Alle CP-Werte aller LightCycler-Läufe wurden anhand der dazugehörigen Kurven auf 

Amplifikation bei dem angegebenen Zyklus überprüft. Die in manchen Fällen mittels 

Gelelektrophorese nachgewiesene unspezifische Amplifikation kann vernachlässigt 

werden, da keine Bande mit der NPM1 A Bande übereinstimmt. Im Rahmen der 

Routinediagnostik wird in der Regel keine Gelelektrophorese zusätzlich zur Auswertung 

mittels LightCycler durchgeführt.  

4.2.10 Reproduzierbarkeit 

Es konnte nachgewiesen werden, dass die Daten, die bei der RQ-PCR Analyse erhoben 

werden, reproduzierbar sind. Die European Study Group on MRD detection on ALL 

(Europäische Studiengruppe zur Bestimmung von minimaler Resterkrankung bei ALL) 

(Velden, van der, 2003) fordert in den gegenwärtigen Leitlinien zur MRD bei Leukämie, 

dass solange der CP-Wert einer Probe unter 36 ist, die Varianz zwischen den Replikaten 

unter 1,5 sein sollte. Wenn der mittlere CP-Wert höher ist, wird auch die Varianz innerhalb 

der CP-Werte höher. Das bedeutet, dass man zwei Sensitivitäten definieren könnte: eine 

reproduzierbare Sensitivität, die das Level bis zu dem präzise quantifiziert werden kann 

angibt, und eine maximale Sensitivität, die das gerade noch detektierbare, aber nicht genau 

reproduzierbare Level angibt (Velden, van der, 2003). Bei dieser PCR wurde der 

Mittelwert von 6 Replikaten gegen den kleinsten und größten CP-Wert innerhalb der 

Replikate aufgetragen. Die Variation des mittleren CP-Wertes bis zu 37 Zyklen war mit 

unter 1,5 Zyklen niedrig (Papadaki, 2009). Dieses Ergebnis ist in Abbildung 8 zu sehen. 
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Abbildung 8: Variation der minimalen und maximalen CP-Werte der RQ-PCR für die Detektion von NPM1 A 
Quelle: Papadaki, 2009 
 

Um die Reproduzierbarkeit der Ergebnisse innerhalb des gleichen LightCycler-Laufs zu 

bestimmen wurde OCI/AML3 cDNA 1:10 mit Wasser verdünnt und NPM1 A und ABL1 

in jeweils 15 Replikaten aus demselben Ansatz amplifiziert.  

Der Mittelwert der 15 NPM1-Replikate beträgt 24,24, die Standardabweichung 0,189. Für 

ABL 1 beträgt der Mittelwert der 15 Replikate 29,25 und die Standardabweichung 0,167. 

4.3 Auswertung der RQ-PCR-Daten mithilfe der LC SW 4.05 

4.3.1 Datentransfer in SW 4.05 

Für die Auswertung wurden die Daten, die mit der LightCycler Software 3.5 erhoben 

wurden, in die LightCycler Software 4.05 importiert, da diese die Quantifizierungsanalyse 

unter Berücksichtigung der Standardkurven für Ziel- und Referenzsequenz automatisch 

durchführt.  

4.3.2 Quantifizierungsanalyse 

Die Quantifizierungsanalyse benutzt die CP-Werte der einzelnen Proben um die relative 

Konzentration der Ziel-Sequenz (target DNA) in unbekannten Proben zu bestimmen. Hier 

wurde die Quantifizierungsanalyse „Relative Quantifikation – Monocolor“ verwendet, 
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wobei das Ratio zweier DNA-Sequenzen (target und reference) in unbekannten Proben mit 

dem Ratio der beiden Sequenzen in einem Calibrator verglichen wird. Das Prinzip der CP-

Werte und Standardkurven wurde unter  3.2.5.2, wo auf die relative Quantifizierung im 

LightCycler eingegangen wird, bereits erläutert. In diesem Test wurde zur Auswertung 

eines jeden Laufes eine externe, einmalig erstellte Standardkurve in das 

Auswertungsprogramm geladen. Bei der Verwendung von externen Standardkurven 

müssen die Reaktions- und Detektionsbedingungen der auszuwertenden Experimente und 

der Erstellung der Standardkurve identisch sein. Die Berechnung der CP-Werte erfolgt 

durch die vom Hersteller empfohlene automatische Methode („Automated Method“), da 

diese Methode, im Gegensatz zur „Fit Point“ keine Eingabe seitens des Nutzers erfordert. 

Die Software führt alle weiteren Berechnungen schnell und mit hoher Reproduzierbarkeit 

aus. Für die Berechnung der Ratios der unbekannten Proben definiert der Benutzer je nach 

Probe die einzelnen Positionen im Lauf mit Target Unknown, Target Calibrator, Target 

Negative, Reference Unknown, Reference Calibrator, und Reference Negative. Die 

Software berechnet die Ratios für die vom Benutzer definierten Probenpaare und zeigt 

diese im Ergebnis („Results“)-Fenster an. 

Für weitere Angaben siehe auch LightCycler Software 4.05 Handbuch.  

4.3.3 Effizienzkorrektur  

In Calibrator-normalisierten Tests der relativen Quantifizierung ist die Genauigkeit des 

Ergebnisses von Unterschieden der Effizienz von Ziel- und Referenzgenamplifikation 

beeinflusst. Die Effizienzkorrektur wird nach einigen manuellen Eingaben automatisch von 

der Software durchgeführt und ermöglicht eine höhere Genauigkeit der Ratios von Ziel- zu 

Referenzgen. Für die Berechnung der Genexpression der einzelnen unbekannten Proben 

wurden Standardkurven mit bekannten Konzentrationen verwendet um einen möglichen 

Analysefehler durch Verwendung einer falschen PCR-Effizienz zu umgehen. Die 

Calibrator-normalisierte relative Quantifizierung eliminiert praktisch alle Faktoren, die das 

Ergebnis verzerren könnten. Zwei verschiedene Gene werden normalerweise nicht mit der 

gleichen Effizienz amplifiziert, da diese von Faktoren wie Primer-Annealing, GC-Gehalt 

und Größe des Produktes beeinflusst wird. Um die jeweilige Effizienz für eine Reaktion zu 

bestimmen wird eine relative Standardkurve erstellt, indem der Logarithmus der 

Konzentration der Standardverdünnungen gegen die Zykluszahl aufgetragen wird. Aus der 

Steigung dieser Kurve kann die Effizienz der Reaktion mithilfe der Formel E=10 -1/slope 

ermittelt werden. Eine Steigung von -3,32 entspricht der maximal möglichen Effizienz von 
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2,0, was bedeutet, dass das PCR-Produkt sich in jedem Zyklus verdoppelt. Abbildung 9 

veranschaulicht die Auswirkungen der Effizienz einer PCR auf das Ergebnis einer 

unbekannten Probe. Tabelle 14 gibt Rechenbeispiele über den möglichen systematischen 

Fehler bei der Verwendung einer unkorrekten Effizienz. 

 

Abbildung 9: Auswirkungen der Effizienz auf das Ergebnis 
Quelle: Roche Applied Science, Technical Note No. LC 16/2005 
 

Tabelle 14: systematischer Fehler von PCR-Effizienzen 
Detektionszyklus (n) PCR-Effizienz (E) 

10 20 30 
2,00 - - - 
1,97 16% 35% 57% 
1,95 29% 66% 113% 
1,90 67% 179% 365% 
1,80 187% 722% 2260% 
1,70 408% 2480% 13000% 

Berechnung des Fehlers: (2n/En – 1) x 100 
Quelle: Roche Applied Science, Technical Note No. LC 26/2005 
 

Für beide Gene wurde bei der Erstellung der Standardkurven eine Effizienz von 1,89 

ermittelt. Auch wenn die Effizienz nicht bei jedem Experiment exakt dieselbe ist, kann 

doch davon ausgegangen werden, dass sie in etwa gleich für die Amplifikation von NPM1 

und ABL1 ist. Je näher die eigentliche Effizienz an 2,00 liegt desto geringer wird der 

systematische Fehler wenn eine fiktive Effizienz von 2,00 für die Berechnungen 

angenommen wird. Wenn bei einer Relativen Quantifizierung beide Gene mit derselben 

Effizienz amplifiziert werden, gleicht sich der systematische Fehler wieder aus. Für den 
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vorliegenden Test unterscheiden sich die Ergebnisse deshalb relativ wenig, unabhängig 

davon ob die tatsächliche, ermittelte Effizienz in Form einer Standardkurve für die 

Berechnungen in die Software geladen wird, oder ob von einer fiktive Effizienz von 2,00 

ausgegangen wird.  

4.4 Anwendung der RQ-PCR auf Patientenproben  

4.4.1 MRD Monitoring mit ausgewählten Patientenproben 

4.4.1.1 Charakterisierung der verwendeten Patientenproben  

Die untersuchte Gruppe von 51 NPM1 A positiven Patienten wurde in der Arbeitsgruppe 

Molekulargenetik im Labor für Leukämiediagnostik auch auf andere genetische 

Alterationen untersucht (Schnittger, 2003; Schnittger, 2004). Es konnte gezeigt werden, 

dass die Häufigkeit von FLT3-ITD Mutationen bei 41,18% (21/51), und von FLT3-D835 

bei 9,76% (4/41) lag. Keiner der Patienten hatte eine MLL-PTD Mutation. Diese 

Ergebnisse zeigen eine Übereinstimmung mit früheren Publikationen (Chou, 2007, 

Schnittger, 2005a und Döhner, 2005). 

4.4.1.2 Vergleich von Proben zu unterschiedlichen Zeitpunkten der Erkrankung 

Um eine Aussage über die Eignung der RQ-PCR für NPM1 A für die Detektion von MRD 

treffen zu können, wurden cDNA Proben von 51 NPM1 A positiven Patienten zum 

Zeitpunkt der Diagnose und zu verschiedenen Zeitpunkten im Verlauf der Therapie 

analysiert. Zum Zeitpunkt der Diagnose reichte das NPM1 A / ABL1 Ratio von 11,39 bis 

249,00 mit einem Mittelwert von 52,35. Bei 27 Patienten konnten Daten zum Zeitpunkt der 

Diagnose und nach Induktionstherapie erhoben werden. Nach der Induktionstherapie war 

das mittlere NPM1 A / ABL1 Ratio 0,00571 (Bereich von 0,0 bis 13,81). Das entspricht 

einer log10-Reduktion von 0,34 bis 4,91 (Mittelwert 2,48) (Papadaki, 2009). Dieses 

Ergebnis wird in Abbildung 10 veranschaulicht. Dieses Ergebnis korreliert mit dem Erfolg 

der Behandlung, da jeweils auch die Blastenzahl im Knochenmark der Patienten rückläufig 

war. 
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Abbildung 10: NPM1 A Ratio zum Zeitpunkt der Diagnose und vor Konsolidierung. Die Ergebnisse sind als 
NPM1 A / ABL1 Ratios dargestellt 

Quelle: Papadaki, 2009 
 

21 der 51 Patienten erlitten ein, in der Datenbank des Labors für Leukämiediagnostik 

dokumentiertes Rezidiv. Bekannt ist außerdem, dass ein Patient ein myelodysplastisches 

Syndrom entwickelte. Die mittlere Follow-up-Zeit der einzelnen Patienten betrug 

12,5 Monate. Es ist unbekannt ob weitere Patienten ein Ereignis wie ein Rezidiv hatten, 

und dem Labors für Leukämiediagnostik keine Dokumentation darüber vorliegt. Von 6 der 

21 Patienten mit bekanntem Rezidiv war Probenmaterial nach Induktionstherapie und zum 

Zeitpunkt des Rezidivs verfügbar. 2 der 6 Patienten erlitten ein Rezidiv nach 1 und 2 

Jahren. Keiner der Patienten mit einem frühen Rezidiv zwischen 5 bis 8 Monate nach der 

Diagnose hatte eine negative PCR nach der Induktionstherapie. Diese Rezidive wurden 

begleitet von einer Zunahme des NPM1 A / ABL1 Ratios mit einer mittleren Zunahme von 

0,18fach (Bereich 0,04 bis 4,42). Bei der Mehrzahl der Patienten korrelierte ein Anstieg 

der Blastenzahl im Knochenmark mit einem angestiegenen NPM1 A / ABL1 Ratio 

(Papadaki, 2009). 

4.4.1.3 Fallbeispiele 

Die Quantifizierung von NPM1 A Levels in zwei repräsentativen Patienten, die 

Chemotherapie und allogene Knochenmarktransplantation im Krankheitsverlauf erhalten 

haben, wird im Folgenden näher vorgestellt. Bei diesen Patienten konnte auf mehrere 
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Knochenmarksproben im Verlauf der Erkrankung zurückgegriffen werden. In Abbildung 

11 wird das NPM1 A / ABL1 Ratio zweier Patienten im Verlauf über die Zeit dargestellt. 

Die Punkte auf der Kurve repräsentieren eine Knochenmarkspunktion mit 

Probenentnahme. Die erste Entnahme war jeweils zum Zeitpunkt der Erstdiagnose der 

AML. Die entnommenen Zellen wurden wie im Methodenteil beschrieben prozessiert, und 

in cDNA synthetisiert. Bei Patient 1 fällt nach Therapiebeginn, also zur zweiten Entnahme 

das Ratio im Vergleich zur Erstdiagnose. Es ist gut zu erkennen, dass das NPM1 A / ABL1 

Ratio zu jedem Rezidiv ansteigt, nachdem es nach Therapie jeweils abgefallen war. Nach 

einer ersten Knochenmarkstransplantation rezidiviert die Krankheit erneut. Nach der 

zweiten Knochenmarkstransplantation stirbt der Patient an einer Graft-versus-Host 

(Transplantat gegen Wirt) Reaktion, einer immunologischen Reaktion die nach einer 

allogenen Knochenmarks- oder Stammzelltransplantation auftreten kann (Papadaki, 2009). 

Bei Patient 2, anders als Patient 1, bei dem zu jedem Zeitpunkt der Krankheit NPM1 A 

nachweisbar war, ist das NPM1 A / ABL1 Ratio nach der Therapie zunächst nicht mehr 

nachweisbar. Wie schnell das Ratio angestiegen ist, ist nicht bekannt, da vor dem Rezidiv 

keine weitere Probe vorliegt. Auch nach dem Rezidiv fällt das NPM1 A / ABL1 Ratio 

wieder unter die Nachweisgrenze. Nach der Knochenmarkstransplantation, die in 

Remission durchgeführt wurde, ist kein NPM1 A mehr nachweisbar (Papadaki, 2009). 
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Abbildung 11: NPM1 A Levels bei zwei repräsentativen Patienten 
Das braune Dreieck markiert die allogene Knochenmarkstransplantation 
Quelle: Papadaki, 2009 
 
Ein weiteres Fallbeispiel einer Patientin, die lediglich low dose AraC und palliative 

Therapie erhalten hat wird im Folgenden vorgestellt. Die Patientin wurde aufgrund ihres 

hohen Alters nicht gemäß Studienprotokoll therapiert. Auch bei dieser Patientin wurde die 

NPM1 A Expression im Verlauf der Krankheit quantifiziert. Die Ergebnisse wurden mit 

der Blastenzahl und Thrombozytenzahl korreliert. Wie man in Abbildung 12 sieht, ist die 

PCR sensitiv genug um NPM1 A Mutationslevel bei Abwesenheit von Blasten im 

peripheren Blut detektieren zu können. Wieder repräsentiert ein schwarzer Punkt auf der 

Kurve eine Probenentnahme, das heißt einen Messwert. Vor der vierten Gabe von AraC 

stieg das NPM1 A Ratio deutlich stärker als die Blastenzahl (Papadaki, 2009). 
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Abbildung 12: Quantifikation einer NPM1 A Mutation eines Patienten in mononukleären Zellen aus 
peripherem Blut 

Die braunen Balken markieren die Gabe von AraC 
Quelle: Papadaki, 2009 
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4.4.2 Stabilität der NPM1 Mutation  

Es ist aufgefallen, dass bei zwei NPM1 A positiven Patienten, die klinisch und im 

Knochenmarksaustrich ein Rezidiv erlitten kein NPM1 A nachgewiesen werden konnte. 

Um dieses Ergebnis zu bestätigen wurde erneut eine Schmelzkurven-PCR durchgeführt, 

welche sonst nur als Screening-Verfahren zur Erstdiagnose eingesetzt wird. 

Interessanterweise zeigte die Schmelzkurve in beiden Fällen nur einen Peak, den für das 

Wildtyp NPM1 Gen. Von 21 Patienten mit Rezidiv verloren somit 9,5% die NPM1 A 

Mutation. Bei den anderen 19 Patienten konnte die Mutation zum Rezidiv per RQ-PCR 

nachgewiesen werden. Beide betroffenen Patienten hatten zum Zeitpunkt der Diagnose 

einen normalen Karyotyp. Die Chromosomeneigenschaften der beiden Patienten sind in 

Tabelle 15 zusammengestellt. Zum Zeitpunkt des Rezidivs hatte einer der Patienten eine 

neuerworbene Chromosomenaberration, eine unbalancierte Translokation 

der(7), t(1; 7)(q21; q22), die die Chromosomen 1 und 7 betraf. Derselbe Patient verlor 

auch seine FLT3-ITD Mutation zum Rezidiv. Bei dem anderen Patienten fand sich auch 

zum Zeitpunkt des Rezidivs kein Hinweis auf numerische oder strukturelle 

Chromosomenaberrationen.  

Der Verlust der NPM1 Mutation bei diesen Patienten zum Rezidiv kann durch klonale 

Evolution erklärt werden (Papadaki, 2009). 

Tabelle 15: Patienten die im Verlauf der Krankheit die NPM1 A Mutation verloren haben. Genetische 
Eigenschaften zum Zeitpunkt der Diagnose und des Rezidivs 

Diagnose Rezidiv 
46XX [28]                           46XX,der(7)t(1;7)(q21;q22) [23]
NPM1+   
FLT3 ITD+ /FLT3 D835- 
MLL-   

NPM1- 
FLT3 ITD- /FLT3 D835- 
MLL-   

46XY [25]                           46XY [25]   
NPM1+ 
FLT3 ITD- /FLT3 D835- 
MLL- 

NPM1- 
FLT3 ITD- /FLT3 D835- 
MLL- 

Quelle: Papadaki, 2009 
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5 Diskussion 

5.1 NPM1 A RQ-PCR 

Real-Time reverse transcription PCR (Real-Time RT PCR) ist eine etablierte Technik um 

mRNA in biologischen Proben zu quantifizieren. Vorteile gegenüber konventionellen 

Methoden RNA zu messen sind die hohe Sensitivität, der relativ große messbare Bereich, 

schnelle Prozessierung und genaue Quantifizierung (Huggett, 2005). Trotzdem gibt es eine 

Reihe von Schwachpunkten bei der Real-Time RT PCR, wie natürliche Schwankungen der 

RNA, Schwankungen in den Extraktionsprotokollen und damit unterschiedliche 

Effizienzen bei der reversen Transkription und PCR. 

Die Durchführung einer RQ-PCR mit dem LightCycler Instrument ist sehr flexibel, da 

verschiedene Protokolle und Anwendungen möglich sind. Die von der Maschine benötigte 

Zeit ist je nach Protokoll verschiedenen, bleibt aber meistens unter einer Stunde. Die 

Auswertung der Daten erfolgt durch eine Software, so dass keine händische Auswertung 

oder Weiterverarbeitung der PCR-Produkte notwendig ist. Die Kapillaren müssen nicht 

geöffnet werden, um z.B. das PCR-Produkt auf ein Agarosegel aufzutragen um Menge und 

Größe des Produkts zu bestimmen. Das Kontaminationsrisiko lässt sich dadurch erheblich 

reduzieren. Die Auftrennung von PCR-Produkten über eine Gelelektrophorese erfolgte im 

Rahmen dieser Arbeit lediglich in der Entwicklungs- und Optimierungsphase der PCR, um 

Produkte auf Nebenprodukte hin zu untersuchen. Die Probenanzahl ist bei dem 

LightCycler 1.5 und 2.0 auf 32 limitiert. Die Standardkurven mussten nicht für jeden Lauf 

neu generiert werden, sondern wurden in separaten Läufen mit Replikaten bestimmt 

(Papadaki, 2009). Die Daten der Standardkurve werden zur Auswertung der unbekannten 

Proben importiert. Der Calibrator wird in jedem Lauf im Duplikat bestimmt und dient 

hierbei als Referenz für die Standardkurve. 

5.1.1 Vergleich one-step zu two-step RT-PCR 

Für die PCR muss RNA in cDNA umgeschrieben werden. Es gibt hierbei zwei Ansätze die 

reverse Transkription und PCR kombinieren. Bei der Durchführung in einem Schritt 

erfolgt die manuellen Arbeiten und die Analyse in kürzerer Zeit, allerdings wird für jede zu 

untersuchende RNA eine extra RT-Reaktion benötigt. Bei der RT-PCR in zwei Schritten 
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wird die reverse Transkription von der PCR getrennt. Dies birgt den Vorteil, dass mehrere 

PCR-Reaktionen von einer cDNA Probe angesetzt werden. Die aus Patientenproben 

generierte cDNA wird im Labor für Leukämiediagnostik sowohl im Screening auf 

Mutationen als auch bei der Verlaufskontrolle verwendet. Die einmal generierte cDNA 

kann über längere Zeit gelagert, und zu einem späteren Zeitpunkt nochmals für 

Experimente herangezogen werden. Im Rahmen dieser Arbeit wurde hauptsächlich auf 

bereits bestehende, eingefrorene cDNA Proben zurückgegriffen. Dagegen bietet die 

Durchführung der RT-PCR in einem Schritt den Vorteil, dass das Risiko einer 

Kontamination verringert wird, da der Assay in nur einem Probengefäß abläuft.  

5.1.2 Vergleich von LightCycler und ABI PRISM 7700 SDS 

Bei einem Vergleich von den beiden meist gebrauchten RQ-PCR Instrumenten, dem 

LightCycler (Roche Diagnostics) und dem ABI PRISM 7700 Sequence Detection System 

(„TaqMan“) (Applied Biosystems), wurden bei der Quantifizierung von minimaler 

Resterkrankung bei ALL mithilfe von Immunglobulin- und T-Zell-Rezeptor-Genen in 

einer Arbeit von Eckert et. al vergleichbare Ergebnisse erzielt. Beide Systeme produzieren 

reproduzierbare, spezifische und sensitive Ergebnisse für die MRD-Quantifizierung in dem 

Bereich, der für die klinische Entscheidungsfindung wichtig ist. Eckert et al. schließen 

daraus, dass, solange dasselbe Detektionsformat verwendet wird, beide Techniken 

zusammen in Multicenter MRD-Studien, Anwendung finden können (Eckert, 2003).  

5.1.3 Hydrolysesonden im Vergleich mit anderen Detektionssystemen 

Es gibt verschiedene Detektionssysteme bei denen über die Änderung der Fluoreszenz der 

Probe der Anstieg an PCR-Produkt ermittelt werden kann. Für diese Arbeit wurden 

Hydrolysesonden, auch TaqMan-Sonden genannt, verwendet. Die Sonde wird während der 

Synthese des Gegenstranges am 5'-Ende von der Taq-Polymerase, die zusätzlich eine 

Exonuclease-Aktivität besitzt, abgebaut. Dadurch entfernen sich Quencher und Fluorophor 

voneinander, und es kann, proportional zur Produktmenge, eine steigende Reporter-

Fluoreszenz gemessen werden. Chou et al. verwenden bei ihrem quantitativen NPM1 

Assay (Chou, 2007) sogenannte minor groove-binding (MGB)-Sonden. Diese Sonden 

besitzen ein Molekül, das stark an der kleinen Furche (minor groove) der DNA bindet. 

Damit ist die Bindung der Sonde insgesamt verbessert, was in einer Erhöhung des 

Schmelzpunktes resultiert. Deswegen können MGB-Sonden kürzer und damit, besonders 

in AT-reichen Regionen, potentiell spezifischer sein (Velden, van der, 2003). Da MGB-
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Sonden deutlich teuerer als herkömmliche Hydrolysesonden sind, und der Assay in der 

Routinediagnostik angewendet werden soll, wurden in dieser Arbeit keine MGB-Sonden 

verwendet.  

Eine weitere Möglichkeit die Bildung von spezifischem Produkt nachzuweisen, ist über 

zwei Hybridisierungssonden, von denen die eine am 3`-Ende, die andere am 5`-Ende mit 

einem Farbstoff gelabelt sind. Wenn diese beiden Farbstoffe benachbart hybridisieren, 

interagieren beide Sonden über Fluoreszenz Resonanz Energietransfer (FRET), und 

Signalfluoreszenz wird proportional zur Menge an Zielsequenz emittiert. Dieses Format 

lässt eine Schmelzkurvenanalyse des PCR-Produkts zu, was mit Hydrolysesonden nicht 

möglich ist. Man benötigt allerdings immer 2 Hybridisierungssonden, wodurch ein 

Experiment etwas aufwändiger und teurer wird.  

Eine andere Möglichkeit des Nachweises von PCR-Produkten bietet der Farbstoff 

SYBR Green. Er detektiert die Akkumulierung von dsDNA, indem der Farbstoff an 

dsDNA bindet und somit nicht nur spezifische Produkte nachweist, was in einer 

Einschränkung der Spezifität resultieren kann. Je mehr dsDNA in einer Lösung vorliegt, 

desto stärker ist das Signal des Farbstoffs. Bei den anderen beiden Techniken wird 

ausschließlich die Akkumulation von spezifischem Produkt gemessen, da die Sonde 

sequenzspezifisch bindet.  

Mit keiner Detektionstechnik ist die Fluoreszenz streng proportional zur Menge an 

spezifischem Produkt. Bei Hydrolysesonden z.B. steigt das Fluoreszenzsignal auch nach 

der Plateauphase weiter an (Wittwer, 1997b). Wittwer et al. verglichen Hydrolysesonden, 

Hybridisierungssonden und die Detektion über SYBR Green und kommen zu dem Schluss, 

dass alle drei Techniken amplifizierte Produkte mit der gleichen Sensitivität zu detektieren 

scheinen, und alle drei Techniken Artefakte in späteren Zyklen zeigen, die nicht mit der 

spezifischen Produktakkumulation korrelieren (Wittwer, 1997b). 

5.1.4 Wahl des Referenzgens 

Um quantitative MRD-Daten zu erhalten müssen Kontrollgene in die Analyse 

eingeschlossen werden um hinsichtlich der Quantität und Qualität der cDNA korrigieren 

zu können. Bei MRD-PCR sollte ein Kontrollgen auf einem Chromosom gewählt werden, 

welches nicht oft an Chromosomenverlust oder -gewinn beteiligt ist (Velden, van der, 

2003). Das ABL1 Gen liegt auf dem langen Arm des Chromosoms 9 (9q34) (Beillard, 

2003). Weitere Kriterien für die Wahl des Referenzgens sind laut van der Velden et al. ein 

ähnliches Expressionslevel in verschiedenen Zellen, kein Zusammenhang mit dem 
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Zellzyklus, und eine Stabilität und Expression die mit der der MRD-Zielsequenz 

vergleichbar ist. Innerhalb des Europe Against Cancer Programms wurden verschiedene 

Kontrollgene in Leukämie-Studien untersucht. ABL1 scheint das am besten geeignete zu 

sein, da seine Expression stabil und vergleichbar zwischen peripherem Blut und 

Knochenmark, und zwischen normalen und leukämischen Proben ist (Velden, van der, 

2003; Beillard, 2003). 

Beillard et. al äußern allerdings auch zwei Einwände gegen ABL1 als Housekeeping-Gen. 

Infolge des relativ kurzen Introns wird zum Teil auch genomische DNA amplifiziert. Und 

zweitens wurden gemäß der Lage der ABL Primer und Sonde zwischen den Exons 2 und 3 

sowohl Wildtyp-, als auch BCR-ABL Transkripte amplifiziert. Diese Begebenheiten 

wurden von Beillard et. al als vernachlässigbar eingestuft (Beillard, 2003). 

5.1.5 Normalisierung 

Es ist notwendig, eine oder mehrere Methoden zur Normalisierung der Ergebnisse 

anzuwenden, um die bereits angesprochenen Fehlerquellen der RQ-PCR auszugleichen 

(Huggett, 2005). Bei diesem Test wurde zuerst über die Probengröße normalisiert, indem 

die Zellzahl nach der Ficollisolierung gemessen wurde, und jeweils 0,5-1x107 der 

mononukleären Zellen aus den Patientenproben in 300 µl RLT lysiert wurden. Für die 

OCI/AML3 Zellen erfolgte eine Zellzahlbestimmung mit einer Neubauer-Zählkammer vor 

der Zentrifugation. Es wurden je 1x107 Zellen in 300 µl RLT lysiert. Eine Normalisierung 

über die RNA Menge vor der reversen Transkription, wie von Huggett et al. gefordert, 

wurde bei unseren Proben nicht durchgeführt. Es wurde statt dessen jeweils für 

Erstdiagnose-Proben und Verlaufsproben immer die gleiche Menge an Zellen in RLT 

verwendet, und zu cDNA umgeschrieben. Die Qualität der gewonnenen cDNA wurde 

mithilfe eines PCR-Assays zur Quantifizierung des ABL1 Gens kontrolliert, welches 

theoretisch immer auf einem ähnlichen Level exprimiert, und somit bei ausreichender 

cDNA-Qualität immer ausreichend nachzuweisen ist.  

Eine weitere Normalisierung der Ergebnisse fand über die Verwendung eines Referenz-

Gens bei der Quantifizierung der NPM1 A Expression statt. Referenz- oder Housekeeping-

Gene gleichen Fehler bei allen Schritten der Quantifizierung des Target-Gens aus, indem 

die Expression des Target-Gens immer mit der Expression des Referenz-Gens in der 

gleichen Probe verglichen wird. Einer der größten Einflussfaktoren auf das Ergebnis einer 

PCR, ist die Ausbeute in der RNA- oder DNA-Isolierung. Mit der Normalisierung über ein 

Referenzgen ist dieser Faktor ausgeglichen. Auch Qualitätsunterschiede von 



Diskussion  56 

  

Patientenmaterial nach dem Verschicken, und eine mögliche Degradierung von RNA oder 

cDNA nach längerem Einfrieren können so kompensiert werden. Einige Autoren wie 

Huggett et. al fordern auch die Verwendung von mehreren Referenz-Genen gegen die 

normalisiert wird (Huggett, 2005). Es ist allerdings aufgrund von damit verbundenen 

höheren Kosten und der limitierten Verfügbarkeit mancher Patientenproben nicht immer 

machbar und praktikabel, gleichzeitig die Expression mehrerer Referenz-Gene zu 

bestimmen. Das Europe Against Cancer Programm favorisiert die Verwendung von ABL1 

als Kontroll-Gen für die MRD Diagnostik, da seine Expression stabil und vergleichbar 

zwischen peripherem Blut und Knochenmark, und normalen und leukämischen Proben ist 

(Velden, van der, 2003; Beillard, 2003).  

Die dritte Maßnahme der Normalisierung der ermittelten Gen-Levels ist die Verwendung 

eines Calibrators in jedem LightCycler-Lauf. Der Calibrator ist eine cDNA Probe aus 

kultivierten OCI/AML3 Zellen mit gleichbleibender Expression des Target- und Referenz-

Gens. Es wurden größere Mengen dieses Calibrators hergestellt und aliquotiert. Treten z.B. 

Unterschiede in der Effizienz der PCR-Reaktion von Ziel- und Referenzsequenz auf, so 

werden diese Unterschiede dadurch ausgeglichen, dass alle ermittelten Expressions-Ratios 

durch das Ratio des Calibrators geteilt werden. Dadurch können Unterschiede in der 

Detektionssensitivität zwischen Ziel- und Referenzgen ausgeglichen, und Daten aus 

verschiedenen LightCycler-Läufen miteinander verglichen werden. Bei einigen käuflich 

erwerblichen Kits ist ein Calibrator im Lieferumfang enthalten. Damit wird das Problem 

umgangen, selber große Mengen an Calibrator herstellen zu müssen. Gleichzeitig 

garantiert die Firma, von der das Kit erworben wurde für die Integrität und Stabilität des 

Calibrators. Für den Fall, dass ein solches Kit, aus welchen Gründen auch immer, vom 

Markt genommen wird, ist allerdings eine dauerhafte Verfügbarkeit des darin enthaltenen 

Calibrators nicht garantiert.  

Für Unterschiede zwischen verschiedenen Abfüllchargen eines nicht kommerziellen 

Calibrators findet ein Korrekturfaktor Anwendung. Diesen Korrekturfaktor kann man 

mithilfe einer PCR nach bekanntem Schema ermitteln. In der Roche Applied Science 

Technical Note No. LC 16/2005 wird empfohlen immer einige Aliquots des ersten 

verwendeteten Calibrators aufzubewahren. Für eine statistisch gültige Bestimmung werden 

12 Proben des neuen mit 12 Proben des alten Calibrators verglichen. Die LightCycler 

Software 4.05 berücksichtigt einen solchen Korrekturfaktor bei der Auswertung der Daten, 

die mit der neuen Charge des Calibrators produziert werden. Somit können Experimente 

mit altem bzw. Original-Calibrator mit neuen Experimenten direkt verglichen werden.  
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5.1.6 Sensitivität 

Van der Velden et al. gehen davon aus, dass mit RQ-PCR-Analysen eine Sensitivität von 

mindestens 10-3, besser 10-4 bis 10-5 erreicht werden sollte. Bei anderen MRD-PCR 

Zielsequenzen wie z.B. FLT3-ITD und WT-1 können Sensitivitäten von mindestens 10-4 

erreicht werden (Velden, van der, 2003). Für die quantitative Bestimmung von NPM1 als 

MRD-PCR Ziel wurde mit cDNA aus OCI/AML3 Zellen eine Sensitivität von 10-5 

ermittelt (Papadaki, 2009). Für die Bestimmung der Sensitivität werden 

Verdünnungsexperimente mit einem Standard, z.B. cDNA einer Zelllinie, vorgeschlagen 

(Velden, van der, 2003). Für diese Arbeit wurde cDNA aus OCI/AML3 Zellen mit 

TE-Puffer verdünnt. Die höchste Verdünnung die verlässlich nachgewiesen werden kann 

ist 1:100 000. Die Sensitivität bei der Verwendung von cDNA aus Patientenproben wurde 

durch Verdünnung von NPM1 A positiver Patienten-cDNA mit NPM1 A negativer 

Patienten-cDNA ermittelt. Sie ist ebenfalls 1:100 000 (Papadaki, 2009). 

Indem man den logarithmischen Wert der Verdünnung gegen den CP-Wert aufträgt, wird 

eine Standardkurve generiert, die optimalerweise eine Steigung von -3,3 (in der Praxis -3,0 

bis -3,9) aufweist (Velden, van der, 2003). Die Steigung der Standardkurven für NPM1 

und ABL1 bei dem hier entwickelten Test beträgt jeweils -3,617. 

Weitere Parameter, die die Sensitivität beeinflussen, sind die untersuchte Zellzahl, damit 

verbunden die Menge an analysierter RNA bzw. cDNA, und die Anzahl der PCR-Zyklen 

(Velden, van der, 2003). Die Sensitivität der NPM1 A Analyse ist größtenteils von der 

Wahl der Primer und Sonde und den Reaktionskonditionen abhängig. Es kann davon 

ausgegangen werden, dass die Sensitivität nicht von ähnlichen Sequenzen in normalen 

Zellen beeinflusst wird. 

5.1.7 Spezifität 

Der Nachweis einer bestimmten Gensequenz in einer DNA-Probe mittels PCR sollte 

spezifisch für diese Sequenz sein. Für die NPM1 A Mutation bedeutet dies, dass nur die 

gewünschte cDNA Sequenz mit der NPM1 Typ A Mutation, und nicht die Wildtyp-

Sequenz, andere Gene oder genomische DNA amplifiziert werden. Im Etablierungsprozess 

des PCR-Assays wurden zum Nachweis von spezifischer Amplifikation, die PCR-Produkte 

zusammen mit einem Längenmarker auf ein Agarosegel aufgetragen und fotografiert. In 

den für NPM1 A positiven Proben konnte unter den finalen Reaktionsbedingungen jeweils 

nur eine Bande in der entsprechenden Größe des Amplikons nachgewiesen werden. In 

NPM1 A negativen Patienten findet sich zum Teil unspezifische Amplifikation in der 
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Gelelektrophorese in Form von kleineren Banden unterschiedlicher Größe. Im LightCycler 

wurde keine Amplifikationskurve angezeigt, dass heißt, es fand keine Bindung der 

produktspezifischen Sonden an mögliche unspezifische Nebenprodukte statt. 

Schnelle Temperaturänderungen und -kontrolle der temperaturabhängigen Schritte der 

DNA-Amplifikation kann Produktspezifität signifikant verbessern, wobei die nötige 

Amplifikationszeit verringert werden kann (Wittwer, 1991). Der LightCycler kann diese 

schnellen Temperaturänderungen mithilfe von heißer und kalter Luft bewerkstelligen und 

schnell auf die Proben in den dünnen Glaskapillaren übertragen.  

Durch eine Optimierung der Amplifikationsszeit und -temperatur in der RQ-PCR in 

mehreren Schritten wurde die größtmögliche Spezifität mit gleichzeitig größtmöglicher 

Ausbeute gewählt. Eine höhere Annealing-Temperatur bedeutet eine spezifischere 

Bindung der Primer an die Zielsequenz, gleichzeitig aber auch eine niedrigere 

Produktausbeute, die wahrscheinlich aus inkomplettem Annealing resultiert (Wittwer, 

1991). Die optimale Annealing-Temperatur für DNA-Amplifikation ist abhängig vom 

Basengehalt, der Nukleotidsequenz und Primerlänge und -schmelztemperatur. Sie ist meist 

um etwa 10°C höher als die Schmelztemperatur der Primer. Wittwer et al. beschreiben, 

dass Protokolle mit kürzest möglicher Annealingzeit (unter 1 s) und schnellst möglichem 

Wechsel zwischen Denaturierung und Annealing die höchste Ausbeute hervorbringen, bei 

gleichzeitig niedriger unspezifischer Amplifikation. Solange die DNA bereits vor der 

Amplifikation durch Erhitzen denaturiert wurde, findet eine ausreichende Denaturierung in 

weniger als 1 s statt. Diese Bedingungen konnten durch die Verwendung des LightCyclers 

erfüllt werden. 

5.1.8 Reproduzierbarkeit 

Real-Time RT-PCR Assays unterliegen signifikant weniger Schwankungen als 

konventionelle Methoden der RNA-Quantifizierung (Bustin, 2000).  

Reproduzierbarkeit wird auch von Parametern wie die statistische Verteilung nach dem 

Gesetz von Poisson beeinflusst. So werden CP-Werte mit sinkender Kopienzahl aufgrund 

von stochastischen Effekten in der Quantifizierung von wenigen Zielmolekülen weniger 

reproduzierbar (Bustin, 2000). Die Verteilungsstatistik sagt aus, dass eine viel größere Zahl 

an Replikaten braucht um 5 von 10 RNA-Kopien zu unterscheiden, als 5 000 von 10 000 

RNA-Kopien zu differenzieren. Die Variation des mittleren CP-Wertes von 6 Replikaten 

war bei diesem Test bei bis zu 37 Zyklen unter 1,5 Zyklen (Papadaki, 2009). 
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Nach Bustin et al. wird bei der RNA-Isolierung mithilfe des MagNA Pure LC Systems 

gute reproduzierbare mRNA-Qualität erzielt (Bustin, 2002). Das Gerät arbeitet nach einem 

festgelegten Protokoll. Die Reagenzien und Einwegmaterialien zur Bestückung des Geräts 

wurden streng nach Angaben des Herstellers eingesetzt. 

Bustin et al. schreiben, dass eine Ursache für erhebliche Unterschiede innerhalb von 

RT-PCR-Ergebnissen die Variabilität zwischen verschiedenen Anwendern und Reagenzien 

ist (Bustin, 2002). So kann es sein, dass besonders fluoreszierende Sonden im Laufe der 

Zeit degradieren, und sich daraus Unterschiede bei CP-Werten ergeben. Diese 

Unterschiede können mit dem Calibrator eruiert werden, da dieser eine gleichbleibende 

Expression der Gene zeigt und somit der CP-Wert in einem bestimmten Bereich konstant 

sein sollte. In der LightCycler Software 4.05 gibt es ein Werkzeug, um LightCycler-Läufe 

mit niedriger Effizienz oder anderen Abweichungen automatisch zu markieren. Es kann ein 

Soll-Bereich für die CP-Werte des Calibrators eingegeben werden. Für den Fall, dass einer 

der Werte vom angegebenen Minimum oder Maximum abweicht, wird dies angezeigt. Bei 

sämtlichen Experimenten dieser Arbeit wurden die CP-Werte des Calibrators kritisch 

verglichen.  

Die Varianz innerhalb eines LightCycler Laufs war mit einer Standardabweichung von 

0,189 für NPM1 A und 0,167 für ABL1 bei jeweils 15 Replikaten niedrig. Durch die 

relative Quantifizierung werden Variationen aufgrund Probenqualität oder Degradierung 

der Reagenzien ausgeglichen. Das NPM1 A zu ABL1 Ratio des Calibrators variiert in 

einem Zeitraum von September 2006 bis Januar 2007 von 0,23 bis 1,08 bei 31 gemessenen 

Werten. Das entspricht einer Standardabweichung von 0,205. Die Varianz zwischen den 

einzelnen Versuchen müsste weiter reduziert werden. Für eine Anwendung des Assays im 

Klinikalltag müsste in weiteren Experimenten die Stabilität der Proben und Reagenzien 

näher untersucht und verbessert werden um eine solche Streuung zu vermeiden.  

Gabert et al. stellten bei einer Studie bei der Protokolle für die RQ-PCR-Analyse für 

Fusionstranskripte erstellt wurden fest, dass die Ergebnisse zum Teil erhebliche 

Schwankungen zwischen teilnehmenden Laboren zeigten, die vor allem mit den 

Aufreinigungs-Schritten vor der eigentlichen PCR zusammenhingen (Gabert, 2003). Es ist 

wahrscheinlich, dass diese Abweichungen aus RNA-Degradation während Lagerung oder 

Versand, oder aus Variationen zwischen den Laboren in der Effizienz der reversen 

Transkription folgen. Durch die Verwendung eines Kontroll-Gens um Daten zu 

normalisieren konnten Gabert et al. die Reproduzierbarkeit von Ergebnissen zwischen 

verschiedenen Labors erheblich verbessern, was nahe legt, dass Variationen in der RNA 
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Qualität und Quantität und die Effizienz der reversen Transkription wenigstens zum Teil 

durch Normalisierung kompensiert werden können (Gabert, 2003). Obwohl durch 

Normalisierung der Effekt von RNA-Degradation oder unterschiedlicher Effizienz der 

reversen Transkription reduziert werden kann, ist es wichtig daran zu denken, dass diese 

Einflüsse die Sensitivität der MRD Detektion deutlich reduzieren können. 

5.1.9 Alternativen zur RQ-PCR 

Nach gängiger Lehrmeinung ist eine nested PCR sensitiver als andere PCR Verfahren. Mit 

der nested PCR kann man geringe Mengen an Template nachweisen. Das Produkt einer 

ersten PCR wird in eine zweite eingesetzt. Das Primerpaar der zweiten, inneren PCR liegt 

dabei zwischen den Primern der ersten, äußeren Reaktion. Dadurch sollen falsche 

Amplifikationen der ersten PCR ausgesondert werden. 

Der Versuch eine nested Hot-Block PCR mit ähnlicher Sensitivität und Spezifität der RQ-

PCR zu etablieren war nicht erfolgreich. Die Sensitivität war deutlich geringer als bei der 

RQ-PCR, bei gleichzeitig unspezifischen Produkten bei dem Einsatz cDNA von NPM1 A 

negativen Patienten und Zellen. Es wurden zwei verschiedene Primer Paare für die erste, 

also die externe PCR, und drei verschiedene Primer Paare für die zweite, also die nested 

PCR ausgetestet. Die Annealing-Zeiten und -temperaturen für die Primer der primären und 

nested PCR erfolgten in einem weitläufigen Rahmen ohne durchschlagenden Erfolg. 

Tabelle 16 zeigt das Protokoll mit den Temperaturen und Zeiten zwischen denen variiert 

worden ist. 

Tabelle 16: Protokoll mit den ausgetesteten Variationen der nested hot-block-PCR 
Zyklen Segment Temperatur Zeit 

Prä-Inkubation 
1  95°C 5 min 

Amplifikation 
Denaturation 95°C 30 s 
Annealing 47°C bis 59°C 30 s 

25 bis 35 

Extension 72°C 60 s 
Elongation 

1  72°C 10 min 
 

5.1.10 Vergleich der NPM1 A RQ-PCR mit anderen Arbeiten 

Es liegen Arbeiten anderer Gruppen vor, die Ergebnisse mit NPM1 als MRD-Marker in 

einer RQ-PCR vorstellen.  
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Gorello et al. entwickelten einen Assay für DNA und RNA, bzw. cDNA der für 

verschiedene NPM1 Mutationen spezifisch ist. Es wurden Patientenproben von 13 NPM1 

positiven Patienten zum Zeitpunkt der Diagnose untersucht. Mithilfe des cDNA Assays 

können NPM1 Mutationen Typ A und B quantitativ nachgewiesen werden. Die 

Standardkurve wurde mithilfe eines Plasmids generiert. ABL1 fungierte als Housekeeping-

Gen gegen das normalisiert wurde. Der NPM1 A Mutationsstatus wurde als Anzahl der 

mutierten NPM1 A Kopien über 104 Kopien des ABL Gens wiedergegeben. Für die PCR 

wurde ein gemeinsamer Forward Primer und eine gemeinsame Sonde und ein 

unterschiedlicher Reverse Primer für die Mutationen A und B verwendet. Die Sensitivität 

variierte zwischen 10-4, 10-5 und 10-6. Mithilfe des DNA Assays konnten zusätzlich zu den 

NPM1 Mutationen Typ A und B auch die Mutationen Typ D, E, G und H nachgewiesen 

werden. Es wurde dieselbe Sonde und, bis auf Mutation A, derselbe Reverse Primer 

verwendet, sowie ein jeweils für die Mutation spezifischer Forward Primer. Mithilfe des 

Albumin Gens wurde hinsichtlich Quantität und Qualität normalisiert. Es konnte eine 

Sensitivität von 10-3 bzw. 10-4 erreicht werden. Die Anzahl der ermittelten mutierten 

Genkopien korrelierte mit dem klinischen Status der Patienten (Gorello, 2006). 

Chou et al. untersuchten 194 Knochenmarksproben von 38 NPM1 positiven Patienten. Die 

Standardkurven bei diesem Assay wurden ebenfalls mit Plasmiden generiert. Die Reversen 

Primer sind mutationsspezifisch während die Sonde und der Forward Primer für die 

Amplifikation des Wildtyp-Gens sowie alle untersuchten Mutationen benutzt wurden. 

Normalisiert wurde gegen die Anzahl von detektiertem mutierten NPM1 plus Wildtyp 

NPM1. Die Sensitivität dieses Assays wird mit 10-5 angegeben. Die ermittelte Kopienzahl 

des mutierten Gens korrelierte mit dem klinischen Status der Patienten. Laut Chou et al. 

ermöglicht die absolute Quantifikation der NPM1 Mutation die Identifikation von 

Patienten mit höherem Rezidivrisiko und kürzerem Überleben. Sie sehen eine starke 

prognostische Bedeutung im Monitoring von NPM1 Mutationen mithilfe eines RQ-PCR 

Assays. Alle 38 von dieser Gruppe untersuchten Patienten mit einem echten Rezidiv 

behielten die NPM1 Mutation zum Rezidiv. Ein Patient entwickelte 56 Monate nach der 

Erstdiagnose der AML eine zweite, von der ersten unabhängige Leukämie. Bei diesem 

Patienten konnten maligne Zellen mit neuen klonalen chromosomalen Veränderungen 

nachgewiesen werden, allerdings nicht die NPM1 Mutation (Chou, 2007).  

Ottone et al. stellten einen Allel-spezifischen (ASO)-RT-PCR Assay vor, der kostengünstig 

schnelle und sensitive Detektion von NPM1 A Mutationen ermöglicht, besonders in 

Ländern mit limitierten Ressourcen ohne die Technologie der Real-Time quantitative PCR. 
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Es wurden Knochenmarksproben von 21 NPM1 positiven Patienten untersucht. Die 

Spezifität des Assays wurde mithilfe von Kapillarelektrophorese und DNA-Sequenzierung 

nachgewiesen. Die Sensitivität des ASO-RT-PCR Assays und semi-nested ASO-PCR 

Assays wird mit 10-2 bzw. 10-5 angegeben. Dieser Ansatz ist nicht quantitativ, ist allerdings 

laut Ottone et al. für das molekulare Monitoring von NPM1 A positiven AML Patienten 

geeignet auch wenn zu keinem der untersuchten Patienten eine Knochenmarksprobe, die 

zeitlich kurz vor einem Rezidiv entnommen worden ist, vorlag. Es konnte somit nicht 

nachgewiesen werden, ob der entwickelte Ansatz dazu verwendet werden kann, ein 

Rezidiv auf molekularer Ebene zu diagnostizieren (Ottone, 2008).  

Alle aufgeführten Arbeiten konnten lediglich auf eine limitierte Patientenzahl und 

Probenzahl zurückgreifen. Es bleibt zu sehen ob die Ergebnisse mit weiteren Proben 

bestätigt werden können.  

 

5.2 Übertragung der Ergebnisse der OCI/AML3 Zellen auf 

Patientenproben 

5.2.1 Datenauswertung der Patientenproben  

Die erhobenen MRD-Daten eines Patienten wurden immer mit dem Genexpressionslevel 

desselben Patienten zum Zeitpunkt der Diagnose verglichen. Das von der Software 

ermittelte Expressionsratio der unbekannten Probe wurde jeweils durch das 

Expressionsratio des Calibrators geteilt, und somit normalisiert. Der Verlauf der MRD-

Ratios durch das Ansprechen auf Therapie ist wahrscheinlich wichtiger als die absoluten 

Werte zu einem bestimmten Zeitpunkt. Expression kann nur im reproduzierbaren Bereich 

also gleich oder höher als die reproduzierbare Sensitivität, verlässlich quantifiziert werden. 

Der Messwert einer Patientenprobe wurde als positiv gewertet, wenn der CP-Wert eines 

oder mehrerer Replikate dieser Probe deutlich außerhalb des Bereichs der 

Negativkontrollen war. Das heißt der CP-Wert der Patientenprobe war mindestens einen 

Zyklus niedriger als der niedrigste CP-Wert der unspezifischen Amplifikation, und 

zugleich innerhalb des Bereichs des letzten Verdünnungsschritts der für die Ermittlung der 

maximalen Sensitivität verwendet wurde (Velden, van der, 2003). Der Messwert einer 

Patientenprobe wurde als negativ gewertet, wenn keinerlei Amplifikation zu sehen war, 

wenn der CP-Wert der Zielsequenz innerhalb oder nahe der CP-Werten der 

Negativkontrollen lag, oder wenn der CP-Wert weit weg vom höchsten CP-Wert der 
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maximalen Sensitivität war (Velden, van der, 2003). Eine positive Probe deren CP-Wert 

höher als der CP-Wert der maximalen reproduzierbaren Sensitivität ist, sollte als positiv, 

mit einem maximalen MRD-Level, dass niedriger als das reproduzierbare Level ist 

(positiv; < 10-5), ausgewiesen werden. Niedrige MRD-Level sollten mit Bedacht, auch 

hinsichtlich der cDNA Qualität, welche durch einen ausreichend niedrigen CP-Wert der 

Referenz-Sequenz bestätigt werden kann, interpretiert werden.  

Bei der Auswertung der LightCycler-Daten sollten für jede Probe die 

Amplifikationskurven zusammen mit dem von der Software ermittelten CP-Wert 

berücksichtigt werden. Es kommt vor, dass die Software einen CP-Wert ermittelt, die 

dazugehörige Kurve aber negativ ist. Dabei wird ein Schwanken auf der Ebene der 

unspezifischen Amplifikation als Kurvenanstieg gewertet und ein CP-Wert ermittelt. 

Fehler können durch manuelle Zuordnung der einzelnen CP-Werten zu ihrem 

Kurvenverlauf und Überprüfung der Plausibilität bei der Auswertung eines jeden 

Experiments verhindert werden. 

5.2.2 Ergebnisse bei Beispielpatienten 

Es konnte gezeigt werden, dass die Ergebnisse mit der Zelllinie OCI/AML3 mit denen mit 

Patientenmaterial korrelieren. An einem Kollektiv von 51 Patienten wurde aufgezeigt, dass 

die NPM1 A Ratios sich wie erwartet verhalten und mit dem klinischen Verlauf und der 

Diagnostik aus dem Knochenmarksausstrich korrelieren. Bei Erstdiagnose ist das NPM1 A 

Ratio hoch, es nimmt nach Therapiebeginn ab und steigt im Falle eines Rezidivs erneut an. 

Anhand einzelner Patientenfallstudien wurde dies noch mal anschaulich dargelegt 

(Papadaki, 2009). Es bleibt diese Ergebnisse an einem größeren Kollektiv nochmals zu 

zeigen, um später eventuell bereits nach der Induktionstherapie anhand des gemessenen 

NPM1 A / ABL1 Ratios eine Aussage über die Prognose eines bestimmten Patienten 

treffen zu können. Auch für die Klärung der Frage, ob Patienten, deren NPM1 A Ratio mit 

oder nach Therapie nicht vollständig gegen Null geht, ein höheres Risiko für die Erleidung 

eines Rezidivs haben, werden weitere Ergebnisse mit größeren Patientenzahlen benötigt.  

5.3 Verwendung von peripherem Blut als Material für die RQ-PCR 

Standardprotokolle zur Verlaufskontrolle der AML-Patienten schlagen vor, bei Patienten in 

kompletter Remission (CR) im ersten Jahr nach Erreichen der CR alle zwei bis drei 

Monate, und für die nächsten zwei Jahre alle zwei bis sechs Monate eine 

Knochenmarksaspiration und -biopsie durchzuführen. Man weiß heutzutage, dass eine 
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regelmäßige Kontrolle der minimalen Resterkrankung posttherapeutisch essentiell für die 

Identifikation der Patienten mit einem höheren Rezidivrisiko ist, und dabei hilft, diese 

Patienten früher und effektiver zu behandeln. Bei einem AML Patienten, der lediglich 

niedrigdosiertes AraC als palliative Therapie bekommen hat, wurde in dieser Arbeit 

peripheres Blut verwendet um NPM1 A Transkriptionslevel zu quantifizieren. Mit der 

Verwendung von Blut für die Quantifizierung bestand die Möglichkeit die minimale 

Resterkrankung ungefähr zweimal pro Monat zu erfassen. Die NPM1 A Mutationslevel 

korrelierten mit der Klinik des Patienten, der Thrombozyten-, und Blastenzahl. Wie in 

Abbildung 12 zu sehen ist kann ein Anstieg der NPM1 A Level noch bei Abwesenheit von 

morphologisch detektierbaren Blasten im peripheren Blut detektiert werden.  

Peripheres Blut als Alternative für MRD Monitoring wurde bereits von verschiedenen 

Arbeitsgruppen vorgeschlagen und diskutiert. 

Maurillo et al. beobachteten 50 AML Patienten nach dem Erreichen einer kompletten 

Remission auf minimale Resterkrankung. Mithilfe einer Durchflusszytometrie wurden die 

MRD-Level von 50 und 48 Probenpaaren mit Knochenmark und peripherem Blut nach 

Induktionstherapie bzw. Konsolidierung untersucht. Aus den vorläufigen Ergebnissen 

wurde interpretiert, dass die Untersuchung von peripherem Blut die Beurteilung von 

Knochenmark für MRD Detektion bei AML Patienten ergänzen kann, und der MRD Status 

in peripherem Blut am Ende der Konsolidierung eventuell hilfreiche prognostische 

Informationen liefern kann (Maurillo, 2007). 

Tobal et al. kommen ebenfalls zu dem Schluss, dass auch peripheres Blut anstatt von 

Knochenmark für die Bestimmung von minimaler Resterkrankung, in ihrem Fall des 

AML1-MTG8 Transkripts, verwendet werden kann. Die von ihnen detektierten MRD-

Level in peripherem Blut waren 1-2 log-Stufen niedriger, als die in Knochenmarkproben. 

Es konnten aber in den Proben, die aus Blut gewonnen waren trotzdem Unterschiede in der 

Expression der AML1-MTG8 Transkripte festgestellt werden, die von den Veränderungen 

in den Knochenmarkproben widergespiegelt wurden (Tobal, 2000).  

Gabert et al. untersuchten bei der RQ-PCR-Analyse von Fusionstranskripten bei AML 

gepaarte und ungepaarte Knochenmark- und Blutproben zum Zeitpunkt der 

Diagnosestellung und stellten fest, dass nach der Korrektur um die Blastenzahl und 

Normalisation über ein Kontroll-Gen die relative Expression keine signifikanten 

Unterschiede zwischen dem unterschiedlichem Probenursprung zeigte (Gabert, 2003). 

Dieses Ergebnis legt nahe, dass sowohl Knochenmark, als auch peripheres Blut für die 

Einschätzung der Expressionlevel der Fusionstranskripte oder des veränderten Gens in 
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individuellen Leukämiefällen zum Zeitpunkt der Diagnose genutzt werden kann, um als 

Referenz für MRD Bewertungen im Verlauf der Krankheit zu dienen. Es bleibt zu 

untersuchen ob dies auch für spätere Zeitpunkte im Krankheitsverlauf gilt. Für diese Arbeit 

gab es keine Probenpaare, also cDNA aus Knochenmark und cDNA aus Blut von einem 

Patienten zu einem bestimmten Zeitpunkt, an denen man den direkten Vergleich 

vornehmen hätte können.  

5.4 Prognoseschätzung mithilfe NPM1  

Informationen über minimale Resterkrankung sind bei verschiedenen Krankheiten, wie 

ALL des Kindesalters, CML mit BRC-ABL und APL mit PML-RARA bereits als 

unabhängiger, prognostischer Faktor etabliert worden (Gabert, 2003). Der klinische 

Einfluss von minimaler Resterkrankung bei NPM1 positiver AML-NK konnte bereits in 

mehreren Studien gezeigt werden (Schnittger, 2005a; Döhner, 2005; Verhaak, 2005; 

Thiede, 2006a). Tabelle 4 zeigt in der Einleitung dieser Arbeit einen Vergleich der 

Ergebnisse der verschiedenen Arbeitsgruppen. Auch in unserer Arbeitsgruppe wurden 

Daten zur prognostischen Bedeutung von NPM1 (und FLT3) Mutationen erhoben, die im 

Rahmen des AMLCG-Studientreffen in Essen am 09.06.2006 vorgestellt wurden. Es 

wurden 803 Patienten mit AML-NK bei Erstdiagnose auf eine NPM1 Mutation gescreent. 

690 der 803 Patienten (85,9%) waren positiv für eine NPM1 Mutation. Die mediane 

Beobachtungszeit betrug 23 Monate. Zusammenfassend kann gesagt werden, dass NPM1 

positive Patienten in 87,3% der Fälle ein gutes Induktionsergebnis erzielt haben, d.h. dass 

die Blastenzahl an Tag 16 der Therapie unter 10% lag. NPM1 negative Patienten erreichten 

dies nur in 65,7% der Fälle. Die Patienten mit NPM1 Mutation zeigten auch ein längeres 

Gesamtüberleben als Patienten ohne diese Mutation.  

5.5 NPM1 als MRD-Marker 

Verschiedene Arbeitsgruppen haben NPM1 Mutationen auch hinsichtlich ihrer Stabilität 

im Laufe der Erkrankung untersucht.  

Boissel et al. fanden bei 50 von 106 Patienten (47%) mit AML-NK zur Diagnosestellung 

eine NPM1 Mutation mithilfe von PCR und Fragmentanalyse. Bei allen 10 NPM1 

positiven Patienten die auch zum Zeitpunkt des Rezidivs untersucht wurden, konnte auch 

zum Zeitpunkt des Rezidivs die NPM1 Mutation diagnostiziert werden. Von den 5 NPM1 
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negativen Patienten, die zum Zeitpunkt der Diagnosestellung und des Rezidivs  untersucht 

worden sind, hat kein Patient zum Rezidiv eine NPM1 Mutation erworben (Boissel, 2005). 

Suzuki et al. screenten 257 Patienten mit AML auf eine NPM1 Mutation durch 

Sequenzierung und Klonierung. Bei 64 der 257 Patienten (24,9%) konnte eine NPM1 

Mutation gefunden werden. Von 17 NPM1 positiven Patienten mit Probenpaaren von 

Diagnose und Rezidiv haben zwei Patienten, die zum Zeitpunkt der Diagnose NPM1 

positiv waren, die Mutation beim Rezidiv verloren. Ein Patient zeigte einen normalen 

Karyotyp bei Diagnose (46XY) und zum Zeitpunkt des Rezidivs einen abnormen Karyotyp 

46XYdel (20) (q1?). Eine FLT3, NRAS und TP53 Mutation lag bei diesem Patienten zu 

keinem Zeitpunkt vor. Der andere Patient zeigte weder Veränderungen im Karyotyp noch 

hinsichtlich des Mutationsstatus im Verlauf der Erkrankung. Sein Karyotyp ist 46XX, 

FLT3-ITD positiv (Suzuki, 2005). 

Palmisano et al. untersuchten den NPM1 und FLT3 Mutationsstatus im Krankheitsverlauf 

von 28 erwachsenen AML Patienten mithilfe von Denaturing High Performance Liquid 

Chromatography (D-HPLC) und direkter Sequenzierung. 11 der 28 Patienten (39%) 

zeigten eine NPM1 Mutation bei Diagnosestellung. Von allen Patienten waren 

Probenpaare für die Diagnose und das Rezidiv, bei einem Patienten auch eine weitere 

Probe bei einem zweiten Rezidiv vorhanden. Alle Patienten zeigten dieselbe NPM1 

Mutation bei Diagnose und erstem, bzw. zweitem Rezidiv. Im rezidivfreien Verlauf, 

solange sich die Patienten in kompletter Remission befanden, konnte die Mutation nicht 

detektiert werden. Dies zeige laut Palmisano et al., dass die Mutationen somatische 

Mutationen in Verbindung eines leukämischen Klons seien (Palmisano, 2007). 

In einer Studie von Gorello et al. wird aufgezeigt, dass NPM1 ein stabiler MRD-Marker 

ist. Allerdings lagen dieser Gruppe lediglich für 3 Patienten Proben im Verlauf der 

Krankheit vor (Gorello, 2006).  

Auch Chou et al. berichten in einer Studie mit insgesamt 38 NPM1 positiven AML 

Patienten, dass die NPM1 Mutation in leukämischen Zellen während einer mittleren 

Verlaufsperiode von 20,6 Monaten sehr stabil ist. Ein Patient entwickelte eine zweite, 

eigenständige Leukämie 56 Monate nach der initialen AML Diagnose. Alle der 22 

Patienten die im Beobachtungszeitraum rezidivierten zeigten eine Anstieg in der mutierten 

Genkopienzahl (Chou, 2007). 

Bei den im Rahmen dieser Arbeit untersuchten 21 NPM1 A positiven Probenpaaren von 

Diagnose und Rezidiv konnten bei 2 Proben nur zur Diagnose eine NPM1 Mutation 

nachgewiesen werden, d.h. 2 der 21 Patienten (9,5%) haben die Mutation im 
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Krankheitsverlauf verloren. Beide Patienten hatten zum Zeitpunkt der Diagnose einen 

normalen Karyotyp. Zum Zeitpunkt des Rezidivs hatte einer der Patienten eine 

neuerworbene Chromosomenaberration, eine unbalancierte Translokation 

der (7), t (1; 7) (q21; q22), die die Chromosomen 1 und 7 betraf. Derselbe Patient verlor 

auch seine FLT3-ITD Mutation zum Rezidiv (Papadaki, 2009).Dies kann mit der 

Differenzierung und Proliferation eines neuen leukämischen Klons erklärt werden. Klonale 

Evolution führt zu genetischen Veränderungen einer Zellpopulation. Während einer 

antileukämischen Behandlung überlebt eine kleine Population von leukämischen 

Stammzellen, die als minimale Resterkrankung detektiert werden kann. Der Erwerb 

zusätzlicher Mutationen im Laufe der Erkrankung kann weitere Selektionsvorteile bieten, 

und somit zur fortschreitenden Entartung maligner Tumorzellen führen. Aufgrund dieser 

genetischen Veränderungen in Tumorzellen kann es zum Verlust der NPM1 Mutation im 

Laufe einer AML kommen. Angesichts dieser Ergebnisse ist der Nutzen der NPM1 

Mutation als MRD Marker möglicherweise limitiert (Papadaki, 2009). 

5.6 Ausblick 

Trotz der bemerkenswerten Fortschritte in der biologischen, diagnostischen und klinischen 

Charakterisierung von NPM1 Mutationen seit ihrer Entdeckung 2005, bleiben noch 

wichtige Rückschlüsse für die Krankheit AML mit normalem Karyotyp offen. Die neuen 

Errungenschaften in Diagnose und Subtypisierung von AML müssen im klinischen Alltag 

ihre Signifikanz und Zuverlässigkeit beweisen. 

5.6.1 Reproduzierbarkeit und Stabilität  

Für eine Verwendung des Assays in der klinischen Routine wäre eine Prüfung der 

Reproduzierbarkeit der Ergebnisse auch über mehrere Monate oder Jahre hinweg 

notwendig. Es müsste ausgeschlossen werden können, dass verwendetes Material mit der 

Lagerung degradiert. 

5.6.2 NPM1 Mutationen Typ B und D 

Die hier etablierte RQ-PCR liefert lediglich den Nachweis der Expression von NPM1 

Typ A. Da diese Mutation A für den hohen Prozentsatz von, je nach Quelle 75%- 80% 

aller NPM1 Mutationen verantwortlich ist, wurde der Test auf diese Mutation ausgelegt. 

Der nächste Schritt wäre die Entwicklung eines quantitativen Nachweisverfahrens für die 

Mutationen B und D, die immerhin noch 10% und 5% aller NPM1 Mutationen ausmachen.  
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5.6.3 Klassifikation von AML mithilfe von Genexpressionsprofilen 

Mit der in dieser Arbeit entwickelten RQ-PCR kann nur eine Mutation, die NPM1 A 

Mutation nachgewiesen werden. Mithilfe von DNA-Chips kann die Expression mehrerer 

Tausend Gene in einer DNA-Probe innerhalb eines Experiments nachgewiesen werden. 

Sogenannte Genexpressionsprofile wurden als nützliches Werkzeug für die Klassifizierung 

von Leukämien entdeckt, da verschiedenste Varianten vieler Gene gleichzeitig bestimmt 

werden können. Alcalay et al. haben gezeigt, dass NPMc+ AML ein bestimmtes 

Genexpressionsmuster exprimiert, dass mit der Hochregulierung von Genen verknüpft ist, 

die mutmaßlich an der Erhaltung von Stammzellen beteiligt sind. Daraus werden 

Rückschlüsse auf mögliche Entstehungsweisen von Leukämieerkrankungen gezogen 

(Alcalay, 2005). Wilson et al. identifizierten mithilfe von Genexpressionsprofilen bei AML 

neue biologische Cluster für Risikoklassifikation und Prognose (Wilson, 2006). Es bleibt 

zu sehen, ob die Microarray Technologie sich bei der Prognosebestimmung der AML mit 

normalem Karyotyp bewährt, und möglicherweise die Testung auf verschiedene einzelne 

Genalterationen mit prognostischer Signifikanz ablösen wird.  

5.6.4 Klassifikationen für AML mit normalem Karyotyp 

Aufgrund des Fehlens spezifischer klonaler Marker gibt es keine Information zur 

Beteiligung unterschiedlicher Zelllinien, und der Ursprungszelle bei AML mit normalem 

Karyotyp. Da das NPM-Gen häufig bei AML-NK mutiert ist und aberrante 

zytoplasmatische Lokalisation hervorruft (NPMc+), wurde es als Klonalitäts-Marker für 

AML Linien benutzt. Pasqualucci et al. entdeckten klonale NPM Exon 12 Mutationen in 

myeloiden, monozytischen, erythroiden und megakaryozytischen Zellen. Aberrante 

zytoplasmatische Expression von mutiertem NPM Protein wurde mithilfe von anti-NPM-

Antikörpern in zwei oder mehr myeloiden hämatopoetischen Zellreihen in 99 von 161 

(61,5%) in paraffin-gebetteten Knochenmarkbiopsien von NPMc+ AML gefunden 

(Pasqualucci, 2006). Lymphoide Beteiligung konnte in 3 untersuchten Fällen 

ausgeschlossen werden. Diese Ergebnisse deuten darauf hin, dass NPMc+ AML entweder 

von einer gemeinsamen myeloiden, oder einer frühen Vorläuferzelle abstammt. 

Immunhistochemische Studien zeigen, dass verschiedene Kombinationen und Anteile der 

NPMc+ leukämischen Zellen von verschiedenen Linien verantwortlich für die 

Heterogenität innerhalb jedes FAB Klassifikationstyps sind, und dafür, dass NPMc+ AML 

in verschiedene FAB Kategorien fällt (Pasqualucci, 2006). Die FAB Kriterien sind somit 

nicht für NPMc+ AML anwendbar. Die WHO Klassifikation, die auch zytogenetische und 
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molekulargenetische Merkmale berücksichtigt, ist 2008 revidiert worden. Wie von 

Pasqualucci et al. schon 2006 gefordert, ist für den klinischen Gebrauch, unter anderen, 

NPMc+ AML als provisorische Entität als eigenständige AML mit prognostischer 

Bedeutung eingeführt worden (Pasqualucci, 2006 und Vardiman 2009). 

Auch Mrózek et al. weisen auf die Bedeutung von rekurrierenden molekularen genetischen 

Veränderungen bei zytogenetisch normaler AML hinsichtlich der Prognose, und somit der 

Möglichkeit von risikoadaptierter Postremissionstherapie, hin. Sie werteten die Datenlage 

über verschiedene Genmutationen und Veränderungen in der Genexpression (FLT3-, 

NPM1, und CEBPA- Genmutation, partielle Tandem Duplikation des MLL-Gens, 

Überexpression des BAALC- und ERG-Gens) aus, und unterbreiteten einen Vorschlag für 

ein Schema, dass Patienten risiko-adaptierter Therapie zuführt, indem Informationen über 

alle bekannten prognostischen Marker verwendet wird (Mrózek, 2007). AML mit FLT3 

Mutation wird bisher nicht in der WHO Klassifikation geführt. Die FLT3 Mutation 

begleitet häufig andere Mutationen wie t (15; 17) (q22; q12) und t (6; 9) (p23; q34). 

Dennoch ist es sinnvoll, aufgrund der prognostischen Aussage, in allen Fällen von AML, 

besonders bei zytogenetisch normaler AML, den Mutationsstatus hinsichtlich der FLT3 

Mutationen zu bestimmen (Vardiman, 2009). 



Zusammenfassung  70 

  

6 Zusammenfassung 

Exon 12 Nucleophosmin (NPM1) Mutationen stellen die häufigsten molekularen 

Aberrationen bei Erwachsenen mit akuter myeloischer Leukämie (AML) dar. Molekulare 

Detektion der Mutation Typ A (NPM1 A), welche 80% aller NPM1 Mutationen ausmacht, 

könnte für die Bestimmung von minimaler Resterkrankung (MRD) eingesetzt werden. Der 

molekulardiagnostische Nachweis minimaler Resterkrankung mittels RQ-PCR ist von 

wesentlichem prognostischem Wert, um in Zukunft eine möglichst präzise Abschätzung 

des individuellen Rezidivrisikos, sowie eine risikoadaptierte Behandlung des Patienten zu 

ermöglichen. 

In dieser Arbeit wurde ein RT-PCR-Test für die relative Quantifizierung von NPM1 

Mutation A Expressionslevels im Vergleich zu Genlevels des Housekeeping-Gens ABL1 

entwickelt. Die Expressionsratios wurden zusätzlich zur Normalisierung über das 

Referenz-Gen ABL1 über das Expressionsratio von NPM1 A zu ABL1 eines Calibrators 

normalisiert. Die PCR wurde mithilfe der Zelllinie OCI/AML3, welche positiv für die 

NPM1 A Mutation ist, etabliert. Der Calibrator entspricht einer Probe OCI/AML3 cDNA. 

Mithilfe einer Verdünnungsreihe von OCI/AML3 cDNA wurden getrennte Standardkurven 

für die Amplifikation von NPM1 und ABL1 erstellt. Der Assay hat eine Sensitivität von 

10-5, das heißt die letzte nachweisbare Verdünnung von für die Mutation positive cDNA ist 

1:100 000. Die Spezifität der PCR konnte mit mehreren Zelllinien, welche negativ für die 

NPM1 Mutation sind und keine Amplifikation gezeigt haben, nachgewiesen werden. Die 

Ergebnisse hinsichtlich Sensitivität und Spezifität konnten mit ausgewählten 

Patientenproben bestätigt werden.  

Die klinische Anwendung wurde mithilfe von Verlaufsmessungen von 51 NPM1 A 

positiven Patienten durchgeführt. NPM1 A mRNA Expressionslevel wurden in 154 

Knochenmark- und Blutproben zu unterschiedlichen Stadien der Krankheit bestimmt. Bei 

27 Patienten, die zum Zeitpunkt der Diagnose und nach Induktionstherapie analysiert 

worden sind, zeigten die NPM1 A Expressionsratios eine mittlere log10-Reduktion von 

2,48. Dieses Ergebnis korreliert mit dem Erfolg der Behandlung, auch sichtbar in der 

Reduzierung der Blastenzahlen im Knochenmark. 

Von den 51 Patienten die zur Diagnosestellung untersucht worden sind, erlitten 21 ein 

Rezidiv. Zwei der 21 Patienten mit Rezidiv verloren die NPM1 A Mutation im Rezidiv, 



Zusammenfassung  71 

  

was durch eine Schmelzkurven-PCR bestätigt wurde. Die Beobachtung vom Verlust der 

Mutation durch klonale Evolution bei 9,5% der untersuchten Probenpaare von Diagnose 

und Rezidiv limitiert den Wert der NPM1 Mutation als molekularer Marker für MRD.  
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7 Abstract 

Nucleophosmin (NPM1) mutations in exon 12 represent the most frequent molecular 

aberrations in adult patients with acute myeloid leukemia (AML). Molecular detection of 

the most prevalent nucleophosmin mutation A (NPM1 A), accounting for 80% of all 

NPM1 mutations, could be a useful marker for minimal residual disease (MRD). MRD 

detection using RQ-PCR is of importance for future individual risk assessment and 

subsequent risk adapted therapy for each patient.  

A calibrator normalized relative quantification assay for NPM1 A levels, suitable for 

routine diagnostics was developed. A real-time polymerase chain reaction (PCR) assay was 

established for NPM1 A using the OCI/AML3 cell line which carries the NPM1 A 

mutation. ABL1 served as a reference housekeeping gene. Relative quantification was 

performed by calculating the NPM1 A / ABL1 ratio which was further normalized to the 

NPM1 A / ABL1 ratio of a calibrator containing OCI/AML3 cDNA. Separate standard 

curves for the amplification of the NPM1 and ABL1 gene were created using dilutions of 

the OCI/AML3 cDNA. The assay showed a sensitivity of 10-5, which means the highest 

dilution of NPM1 positive cDNA to be detected, was 1:100 000. Specificity was proved 

with several NPM1 A negative cell lines which showed no amplification. The results 

regarding sensitivity and specificity obtained with cDNA from cell lines could be shown 

with several patient cDNA as well.  

The clinical usefulness was evaluated by monitoring MRD in 51 AML patients with 

NPM1 A. We quantified mutant NPM1 RNA levels in 154 bone marrow and peripheral 

blood samples from different phases of the disease. In 27 patients analyzed at diagnosis 

and after induction treatment, NPM1 A ratios showed a median log10 reduction of 2.48, 

which correlated with the treatment outcome also shown as blast count. Among the 51 

patients diagnosed at the beginning of the disease, 21 relapsed and two of them lost the 

mutation. The loss of the NPM1 A mutation at the time of the relapse was shown with a 

melting curve PCR as well. Clonal evolution was observed in 9.5% limiting the usefulness 

of the NPM1 A mutation as a molecular marker in these patients (Papadaki, 2009). 
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9.2 Abkürzungsverzeichnis 

ABL Abelson-Gen 

ALK anaplastic lymphoma kinase 

ALL akute lymphatische Leukämie 

AML akute myeloische Leukämie 

AMLCG AML Cooperative Group 

AML-NK akute myeloische Leukämie mit normalem Karyotyp 

APL akute Promyelozytenleukämie 

AraC Arabinosyl-Cytosin 

ARF Adenosyl-Ribosylierungs-Faktor 

AS Aminosäure 

ASO-PCR allele-specific oligonucleotide polymerase chain reaction 

BAALC brain and acute leukemia gene, cytoplasmic 

BCR breakpoint cluster region 

BCR/ABL Fusionsgen der Gene BCR und ABL 

BLAST Basic Local Alignment Search Tool 

BM bone marrow; Knochenmark 

BP Basenpaare 

CBF core binding factor 

CD cluster of differentiation; Zell-Oberflächenmarker 

CEBPA CCAAT enhancer binding protein alpha 

CML  chronische myeloische Leukämie 

CP Crossing Point 

CR complete remission; komplette Remission 

DEK DEK Onkogen 

DEK/NUP214 Fusionsgen der Gene DEK und NUP214 

DEPC Diethylpyrocarbonat 

DMSO Dimethylsulfoxid 

DNA Desoxyribonukleinsäure 

dsDNA Doppelstrang-DNA 

EDTA Ethylendiamintetraessigsäure 

EVI1 ecotropic viral integration site 1 
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FAB French-American-British 

FACS  fluorescence activated cell sorter 

FCS  fötales Kälberserum 

FISH Fluoreszenz-in-situ-Hybridisierung 

FLT3  FMS-like Tyrosine Kinase 3 

FLT3 ITD Interne Tandem Duplikation des FMS-like Tyrosine Kinase 3 

Gens 

FLT3 TKD Tyrosinkinase Domäne Mutationen des FMS-like Tyrosine 

Kinase 3 Gens 

FLT3 D835 Mutation der Aminosäure 835 von FLT3 

GvHD Graft-versus-host-disease  

HPLC high-performance liquid chromatography 

IHC immunhistochemistry 

ITD internal tandem duplication 

kD kilo Dalton 

KIT Tyrosinkinase 

KM Knochenmark 

k-RAS Kirsten-Ras, Proto-Oncogen 

LfL Labor für Leukämiediagnostik 

MDS Myelodysplastisches Syndrom 

MKL1 megakaryoblastic leukemia (translocation) 1 

MLF1 myelodysplasia/myeloid leukemia factor 1 

MLL mixed-lineage Leukemia Gen 

MLL1 PTD Partielle Tandemduplikation des mixed-lineage Leukemia 

Gens 

MLLT3 mixed-lineage Leukemia Gen auf Chromosom 3 transloziert 

MLLT3/MLL Fusionsgen der Gene MLLT3 und MLL 

MRD minimal residual disease; minimale Resterkrankung 

NCBI National Center for Biotechnology Information 

NES nuclear export signal 

NLS nuclear localization signal 

NPM Nucleophosmin 

NPMwt Nucleophosmin Wildtyp 

NUP214 Nucleoporin 214kDa 
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p53 Tumorsuppressorgen 

PB peripheral blood; peripheres Blut 

PBS  phosphat buffer saline 

PCR  polymerase chain reaction; Polymerase-Kettenreaktion 

PLT platelets; Thrombozyten 

PML ProMyelocytic Leukemia 

PML/RARα Fusionsgen der Gene PML und RARα 

RARα Retinoic Acid Rezeptor alpha 

RAS rat sarcoma, Proto-Oncogen 

RBM15 RNA binding motif Protein 15 

RBM15/MKL1 Fusionsgen der Gene RBM15 und MKL1 

RPN1 Ribophorin 1 

RPN1/EVI1 Fusionsgen der Gene RPN1 und EVI1 

RT Raumtemperatur 

SDS Sodiumdodecylsulfat 

TBE Tris-Borat-EDTA 

TE Tris-EDTA 

Tm Schmelzpunkt 

WBC white blood cells; weiße Blutzellen 

WHO World Health Organization; Weltgesundheitsorganisation 
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