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ABSTRACT

Enabling non-experts to publish data on the web is an important
achievement of the social web and one of the primary goals of
the social semantic web. Making the data easily accessible in turn
has received only little attention, which is problematic from the
point of view of incentives: users are likely to be less motivated
to participate in the creation of content if the use of this content
is mostly reserved to experts.

Querying in semantic wikis, for example, is typically realized
in terms of full text search over the textual content and a web
query language such as SPARQL for the annotations. This ap-
proach has two shortcomings that limit the extent to which data
can be leveraged by users: combined queries over content and
annotations are not possible, and users either are restricted to
expressing their query intent using simple but vague keyword
queries or have to learn a complex web query language.

The work presented in this dissertation investigates a more
suitable form of querying for semantic wikis that consolidates two
seemingly conflicting characteristics of query languages, ease of
use and expressiveness. This work was carried out in the context
of the semantic wiki KiWi, but the underlying ideas apply more
generally to the social semantic and social web.

We begin by defining a simple modular conceptual model
for the KiWi wiki that enables rich and expressive knowledge
representation. A component of this model are structured tags, an
annotation formalism that is simple yet flexible and expressive,
and aims at bridging the gap between atomic tags and RDFE. The
viability of the approach is confirmed by a user study, which finds
that structured tags are suitable for quickly annotating evolving
knowledge and are perceived well by the users.

The main contribution of this dissertation is the design and
implementation of KWQL, a query language for semantic wikis.
KWQL combines keyword search and web querying to enable
querying that scales with user experience and information need:
basic queries are easy to express; as the search criteria become
more complex, more expertise is needed to formulate the corre-
sponding query. A novel aspect of KWQL is that it combines both
paradigms in a bottom-up fashion. It treats neither of the two
as an extension to the other, but instead integrates both in one
framework. The language allows for rich combined queries of full
text, metadata, document structure, and informal to formal se-
mantic annotations. KWilt, the KWQL query engine, provides the
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full expressive power of first-order queries, but at the same time
can evaluate basic queries at almost the speed of the underlying
search engine. KWQL is accompanied by the visual query lan-
guage visKWQL, and an editor that displays both the textual and
visual form of the current query and reflects changes to either
representation in the other. A user study shows that participants
quickly learn to construct KWQL and visKWQL queries, even
when given only a short introduction.

KWQL allows users to sift the wealth of structure and annota-
tions in an information system for relevant data. If relevant data
constitutes a substantial fraction of all data, ranking becomes
important. To this end, we propose PEsT, a novel ranking method
that propagates relevance among structurally related or similarly
annotated data. Extensive experiments, including a user study
on a real life wiki, show that PEST improves the quality of the
ranking over a range of existing ranking approaches.
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ZUSAMMENFASSUNG

Eine wichtige Errungenschaft des Social Web und gleichzeitig
eines der Hauptziele des Social Semantic Webs ist es, Laien die
Veroffentlichung von Daten im Web zu ermoglichen. Der Frage,
wie wiederum ein einfacher Zugang zu diesen Daten ermoglicht
werden kann, wurde hingegen bisher nur wenig Aufmerksamkeit
gewidmet. Dies ist problematisch, da mit einer geringeren Moti-
vation der Benutzer bei der Erstellung von Inhalten zu rechnen
ist, wenn die Verwendung dieser Inhalte Experten vorbehalten
ist.

Anfragen in semantischen Wikis sind etwa in der Regel durch
Volltext-Suche {tiber die textuellen Inhalte und eine Webanfrage-
sprache wie SPARQL fiir Annotationen realisiert. Dieser Ansatz
hat zwei Nachteile, die Benutzer in der Fahigkeit einschranken,
Daten zu ihrem Vorteil zu nutzen: kombinierte Anfragen tiber
Volltext und Annotationen sind nicht moglich, und Benutzer
miissen ihre Anfrage entweder durch einfache und damit vage
Stichworte ausdriicken, oder aber eine komplexe Webanfrage-
sprache lernen.

Die in dieser Dissertation vorgestellte Forschung untersucht
eine geeignetere Form der Anfrage von Daten in semantischen
Wikis, die zwei scheinbar gegensitzliche Eigenschaften von An-
fragesprachen zusammenfiihrt: Benutzerfreundlichkeit und Aus-
druckskraft. Diese Forschung wurde im Rahmen des semantis-
chen Wikis KiWi durchgefiihrt, die zugrundeliegenden Ideen sind
jedoch auf das Social Semantic und Social Web im Allgemeinen
anwendbar.

Wir beginnen mit der Definition eines einfachen und modu-
laren konzeptuellen Modells fiir das KiWi Wiki, das eine méchtige
und ausdrucksstarke Reprasentation von Wissen ermoglicht. Ein
Bestandteil dieses Modells sind strukturierte Tags, ein einfacher
und dennoch flexibler und ausdrucksstarker Annotationsformal-
ismus, der darauf abzielt, die Kluft zwischen atomaren Tags und
RDF zu {iiberbriicken. Die Tragfdhigkeit dieses Ansatzes wird
durch eine Nutzerstudie bestitigt, die zeigt, dass strukturierte
Tags von den Benutzern positiv aufgenommen werden und zur
schnellen Annotierung sich kontinuierlich entwickelnden Wis-
sens geeignet sind.

Der Hauptbeitrag dieser Dissertation sind der Entwurf und die
Implementierung von KWQL, einer Anfragesprache fiir semantis-
che Wikis. KWQL kombiniert Stichwortsuche und Web-Anfragen
und kann sich so der Erfahrung und dem Informationsbedarf
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des Nutzers anpassen: Elementare Anfragen konnen einfach aus-
gedriickt werden. Mit der Komplexitit der Suchkriterien wéachst
auch das Fachwissen, das benotigt wird, um die entsprechende
Anfrage zu formulieren. Neu ist dabei, dass KWQL die beiden
Paradigmen von Grund auf verbindet. Es behandelt keines der
beiden als Erweiterung des anderen, sondern integriert beide in
einem gemeinsamen System. Die Sprache ermdoglicht méachtige
kombinierte Anfragen iiber Volltext, Metadaten, Dokumentstruk-
tur, und informale und formale semantische Annotationen. KWilt,
die Anfrage-Engine von KWQL, bietet die volle Ausdruckskraft
von Logik erster Stufe, gleichzeitig konnen einfache Anfragen
nahezu mit der Geschwindigkeit der zugrundeliegenden Such-
maschine ausgewertet werden. KWQL wird ergdnzt durch die
visuelle Anfragesprache visKWQL sowie durch einen Editor, der
sowohl die textuelle als auch die visuelle Form der aktuellen
Anfrage anzeigt und Anderungen in einer Darstellung in der
jeweils anderen wiedergibt. Eine Nutzerstudie zeigt, dass die
Teilnehmer schnell lernen, Anfragen in KWQL und visKWQL zu
erstellen, selbst wenn nur eine kurze Einfithrung gegeben wurde.

KWQL ermoglicht es, die reichhaltige Struktur und Anno-
tationen eines Informationssystems nach relevanten Daten zu
durchsuchen. Wenn die relevanten Daten einen erheblichen An-
teil aller Daten ausmachen, gewinnt deren Ranking an Bedeutung.
Zu diesem Zweck stellen wir PEST vor, eine neue Methode zur
Berechnung von Rankings, die Relevanz zwischen strukturell
verwandten oder dhnlich annotierten Daten propagiert. Umfan-
greiche Experimente, darunter eine Nutzerstudie in einem realen
Wiki, zeigen, dass PEsST die Qualitdt des Rankings verglichen mit
eine Reihe bestehender Ansitze verbessert.
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INTRODUCTION

Most queries submitted to web search engines consist of a small
number of simple keywords that approximate the user’s query
intent and serve as filtering criteria for the retrieval of documents.
Often, no operators or other syntactic constructs are provided,
and conjunction between the individual terms is assumed, mean-
ing that a matching document must contain all terms. Conse-
quently, queries are simple bags of terms, and selection criteria
that make reference to the structure of the data cannot be ex-
pressed.

An important reason why no search engine offers this capa-
bility, apart from (substantial) concerns about increased storage
and computation costs, is that the utility of augmenting content-
based queries with structural selection criteria is limited in light
of the heterogeneity of HTML documents: HTML is a lightweight
markup language that is used by a large number of authors with
varying expertise and intentions to create a vast number of web
pages. There often exist many different, equally valid ways to
express a given piece of information. Inversely, the structure of
a piece of HTML code is not necessarily related to the meaning
of the underlying text. Often, HTML is used not to structure
information in a meaningful way, but simply to format it to the
author’s liking.

While structure as a selection criterion may often not be nec-
essary or useful in general web search, the case is different for
the web 2.0 or social web, a category of web applications that has
gained much popularity over the past five years. Here, the struc-
ture of individual pages is to some extent standardized, either
by design or due to social conventions. Consequently, structural
selection criteria can have a meaningful and consistent interpre-
tation with respect to the semantics of the data.

Social web applications enable users to easily publish content,
collaborate and interact. Up until the middle of the previous
decade, the creation of web content required at least basic knowl-
edge of web technologies. A small number of content creators
therefore faced many consumers, for whom the web was a read-
only medium. The Web 2.0 is more democratic in the sense that
publishing content does not require technological expertise and
that content creation is often an inclusive, iterative, and interactive
process. Examples of social web applications include blogs, social
networking sites, as well as many specialized applications, for



INTRODUCTION

example for saving and sharing bookmarks,* publishing photos?,
and aggregating users’ listening habits.

Wikis are social web applications for collecting and sharing
knowledge. They allow users to easily create and edit documents,
so-called wiki pages, using a web browser. The pages in a wiki
are often heavily interlinked, which makes it easy to find related
information and browse the content. A common characteristic of
all wikis is that the content is version-controlled, meaning that
older versions of a wiki page can be restored at any time.

In many respects, wikis are a prototypical social web applica-
tion, and their success is tightly connected to the proliferation of
the social web. In particular, wikis are conceptually simple, easy
to use, and support users in the content creation process.

In many social web applications, individual pages are all for-
matted in the same manner. The fixed layout can be seen as a
template which is filled with users” contributions. This has several
advantages: users do not need to know HTML, CSS, and related
technologies, they can easily publish content without having to
specify the layout of a page, and the usability of the website
is improved by a consistent look and structure. In wikis, the
formatting and structure of the wiki content itself often follows
additional conventions that have developed over time through a
collaborative social process. Since it is relatively consistent, the
structure of these web pages could be leveraged for the targeted
selection of data items, for example to retrieve all wiki pages
with “Munich” in their title or all pages of users who mention
programming as one of their interests.

While HTML offers the possibility to provide metadata, this
possibility is often not used at all, or to give incorrect information
in an attempt to influence search engine rankings. On the social
web, data items are typically augmented with metadata regarding
the author and time of creation. This information could be used,
for example, to search a snapshot of a wiki at a certain point in
the past, or to retrieve those items a specific user has commented
on. So far, however, most social websites provide only simple
keyword search, usually augmented with methods for result
navigation, such as snippets, relevance rankings, and facets. They
do not offer query languages that would allow users to exploit
the structure of the data.

Social semantic web applications are social websites in which
knowledge is expressed not only in the form of text and multime-
dia, content structure, and metadata, but also through informal to
formal annotations that describe, reflect, and enhance the content.

1 See, e.g., http://www.delicious.com/.
2 See, e.g., http://www.flickr.com/.
3 See, e.g., http://www.last.fm/.
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In traditional wikis, knowledge is given in the form of text
in natural language, and is not directly amenable to automated
semantic processing. It can therefore only be located through
full text keyword search or via simple, mostly user-generated,
structures like tables of content and links between pages. More
sophisticated functionalities such as querying, reasoning, and se-
mantic browsing are not available. The goal underlying semantic
wikis is to provide at least some of these enhancements by rely-
ing on semantic technologies, that is, knowledge representation
formalisms and automated reasoning methods. Semantic wikis
extend conventional wikis by—more or less sophisticated—for-
mal languages for expressing knowledge as machine processable
annotations to wiki pages containing text or multimedia. These
annotations typically take the shape of RDF graphs backed by
ontologies, though less formal annotations for expressing knowl-
edge such as free-form tags or tags from a controlled vocabulary
may also be available. Semantic wikis have their foundation in
semantic web research and aim at combining semantic web tech-
nologies with the collaborative nature and user-friendliness of
the social web.

Data retrieval in semantic wikis is typically realized through
keyword search and web query languages. Keyword search is
the prevalent paradigm for search on the web. Its strength, and
presumably the main reason for its success, is that it is very acces-
sible: there is no syntax that has to be learned before queries can
be issued, and relevant information can be found without any
knowledge of the structure of the underlying data. On the down-
side, keyword search is inherently imprecise and inexpressive. It
does not allow for the specification of structure-based selection
criteria, and often not even for logical operations. As a matter
of fact, queries remain vague. Even when users know precisely
which data they are interested in, they may not be able to express
the corresponding selection criteria. Finally, web search does not
allow for the automation of tasks.

While structure as a selection criterion may be of arguable
utility in general web search, the rich structure of social and
social semantic web data could be utilized to enable the precise
and targeted selection of data, thereby allowing users to fully
leverage the data that they contribute to social semantic web
applications.

Web query languages are in many respects the exact opposite
of keyword search: similar to queries on relational databases, web
queries are highly specific and select individual data items which
can then be processed further to re-format the data or deduce
and display new knowledge. Once defined, these tasks can be
performed automatically and without human intervention. Web
query languages are powerful tools that enable the selection and
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construction of data items. They are comparable to programming
languages both in their expressive power and their complexity.

While keyword search does not allow the structure of the data
to be used as a selection criterion, web querying does not easily
accommodate queries that do not use it. Web query languages
only support vague queries in a very weak sense, for example
in the form of wildcards and regular expressions over structure
and values. Therefore, users must be aware of the respective data
schema to be able to formulate queries. This is just one example
for the high cognitive investment that is required before a web
query language can be used to retrieve data from a given dataset:
in addition to the schema, the user has to know and understand
the data type, such as XML or RDEF, and its characteristics and
properties, and finally the query language itself. Especially for
casual or beginning web users, acquiring this knowledge can
be a hard and laborious process, and many may lack the time,
dedication, motivation, or confidence to tackle it.

Web query languages usually do not support the gradual re-
finement of basic exploratory queries, fuzzy matching, or the
ranking and clustering of results. This means that that the user is
not supported in developing and concretizing her information
need and in navigating the results. Unlike keyword search, web
querying typically lacks a notion of gradual relevance of a result
to a query: either a data item is a suitable answer to a query, or it
is not.

Despite recent research into versatile query languages, many
web query languages can only be used to query data of one
specific type, such as XML or RDEF. In social semantic web ap-
plications containing data of various different types, this means
that any given web query language can only be used to query
part of the data. Querying all of the data requires the integration
of several differing query languages or the conversion of data to
other data types.

In summary, web query languages are well suited for querying
structured data, while keyword search is generally more appro-
priate for search over weakly structured or unstructured text. In
a social semantic web application one typically finds both types
of data. It is not enough, however, to simply provide both key-
word search and a web query language, because the two could
only be used to query different parts of the data separately, for
example textual content with keyword search and annotations
with SPARQL.

To be able to leverage the knowledge contained in these rich
data repositories, a query language for social semantic web ap-
plications should be expressive enough to allow for precise selec-
tions using complex criteria and to enable the aggregation and
combination of data, and thus the derivation of new data through
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a simple form of reasoning. Automation in the form of embed-
ded queries—queries that are contained in a piece of content and
are evaluated when this content is retrieved—and continuous
queries—queries that are evaluated repeatedly at set intervals
or when the data changes—further requires query evaluation to
operate without the need for human intervention.

At the same time, a query language for social semantic web ap-
plications should be accessible even to casual users and without
much training: the success of a social semantic web applica-
tion crucially depends on the active participation and the con-
tributions of users, most of which cannot and should not be
expected to have much experience with query languages. Making
it easy for non-experts to publish data on the web is an important
achievement of the social web and a primary goal of the social
semantic web. The goal of making the data thus produced easily
accessible in turn has received relatively little attention. This is
problematic because users are likely to be less motivated to par-
ticipate in the creation of content if they cannot leverage the data
that they and others have contributed and the exploitation of the
data is reserved to expert users.

The methods currently available, keyword search and web
querying, fail to provide the desirable characteristics outlined
above. Keyword search has a very basic syntax, which is an ad-
vantage in terms of usability but means that it cannot express
complex queries. Web query languages, on the other hand, are
powerful but do not support vague queries. They further require
knowledge of the data type and schema and of the query lan-
guage itself, thereby excluding many users from exploiting the
collaboratively created data.

This dissertation describes the design and implementation of
KWQL, a query language for the semantic wiki KiWi. KWQL
combines keyword search and web querying to enable a form of
querying that adapts to the user’s information need and knowl-
edge and accommodates simple search and complex selections
alike. A novel aspect of KWQL is that it combines both para-
digms, keyword search and web queries, in a bottom-up fashion.
It treats neither of the two as an extension to the other, but instead
integrates both in one framework and bridges the gap between
them. Depending on the user’s knowledge and query intent, the
language can behave more like keyword search or more like web
querying. KWQL allows for rich combined queries over textual
content, metadata, document structure, and informal to formal
semantic annotations.

While querying the semantic wiki KiWi is the main focus of
this dissertation, the underlying ideas apply more generally to
querying and search on the social and social semantic web.
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1.1 CONTRIBUTIONS

The contributions of this dissertation are as follows:

* A survey of keyword query languages for semi-structured
data: Web search and web queries have mostly been treated
separately in the past, but this has begun to change over the
past few years. A particular effort towards combining the two
are keyword-based web query languages for XML and RDF
documents. We give an overview, to the best of our knowledge
the first of its kind, over the most important issues, aspects, and
approaches in this area of research, and discuss achievements,
limitations, and open problems.

* A conceptual model for the KiWi wiki: Several semantic
wikis have been put to practical use, but so far there has been
little explicit theoretical exploration on the possible choices for
conceptual models and their consequences. We show that the
design of a concept model for a semantic wiki is a non-trivial
task and discuss possible design choices and their advantages
and disadvantages. Based on this, we suggest a conceptual model
for the KiWi wiki.

¢ Structured tags, a mechanism for semi-formal annotation:
To help overcome the limitations of simple, free-form tags and to
enable a transition between informal and formal annotation, we
introduce an annotation formalism that is easy to use but more
expressive than common tags. We then report on the findings
of an extensive user study we performed. The results indicate
that structured tags are well-suited as a user-friendly, flexible
alternative in situations where casual users annotate evolving
knowledge. We also describe how structured tags could be im-
plemented in the KiWi wiki in a simple, intuitive way that does
not require an extension to the wiki’s conceptual model.

* Accessible and flexible querying: The central topic of this
work is the development of the semantic wiki query language
KWQL. We argue that a query language for social semantic
data should be accessible and flexible and describe how current
approaches fall short of these criteria. We then describe how the
two characteristics could be realized in a query language.

e KWQL, a semantic wiki query language: Based on the de-
veloped requirements, and on the underlying idea of querying
that adapts its expressivity—and thereby its simplicity—to the
user’s information need and knowledge, we describe the syntax
of KWQL in an example-driven manner and provide a relational
semantics for the language.

¢ visKWQL, a visual rendering of KWQL: Editors for visual
languages support the creation of valid queries by providing user
guidance and preventing editing operations that would result in
incorrect queries. We introduce visKWQL, a visual interface for
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KWQL, and describe its functionality and features for supporting
users in the query creation process.

* An evaluation algorithm for KWQL queries: We describe
KWilt, an evaluation procedure for KWQL bodies that combines
information retrieval, structure matching, and constraint evalua-
tion tools in a patchwork fashion. We show that it is possible to
efficiently recognize KWQL queries that can be evaluated using
only information retrieval or information retrieval and structure
matching. This makes it possible to evaluate basic queries at
almost the speed of the underlying search engine, but provides
the power of full first-order queries where needed. Using a pro-
totypical implementation, we compare the evaluation times for
various types of queries and, based on the findings, describe how
the evaluation algorithm could be improved.

¢ An experimental evaluation of KWQL and visKWQL: We
describe the setup and results of a study performed to determine
how KWQL and visKWQL are perceived by users and how easy it
is for them to learn to write and understand KWQL and visKWQL
queries. We compare the findings between participants that have
some experience with other query languages and those who do
not, as well as between participants who used KWQL and those
who used visKWQL. We found that KWQL and visKWQL were
well perceived by the participants, who specifically thought that
the languages are expressive and easy to use, at least given some
time and practice. Even after a very short introduction and a
small amount of time to solve the assignments, participants could
on average write correct queries for more than half of the tasks
they were assigned and understand more than eighty percent of
the queries they were presented with.

¢ PEST, fuzzy matching and ranking over structured data:
We present PEsT, an approach to approximate querying of graph-
structured data that exploits the structure to propagate term
weights among related data items. We focus on data where mean-
ingful answers are given through the application semantics. This
includes pages in wikis, but also persons in social networks or
papers in a research network. The PEST matrix generalizes the
PageRank matrix with a term-weight dependent leap and allows
different levels of (semantic) closeness for different relations in
the data. The eigenvectors for all terms together form a (vector
space) index that takes the structure of the data into account
and can be used with standard document retrieval techniques.
In extensive experiments including a user study on a real-world
wiki we show how pest improves the quality of the ranking over
a range of existing ranking approaches.

In addition, two practical contributions are available in the form
of software:
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¢ A prototype implementation of KWilt, the KWQL query
evaluation engine described in Chapter 10, and a lightweight
implementation of the visKWQL editor that runs on the client
side and is based on standard technologies are part of the lat-
est release of the KiWi wiki. Queries can be posed via a textual
query interface, as embedded inline queries, or from the com-
bined visual and textual query editor. A showcase installation
of the KiWi wiki is available at http://pms.ifi.lmu.de/kwql/
and the KiWi wiki software can be downloaded at http://www.
kiwi-community.eu/display/SRCE/Get+KiWi/.

¢ A prototype implementation of PEstT, together with the
dataset used for the evaluation described in Section 11.5, is avail-
able for download at http://www.pms.ifi.lmu.de/pest/.

1.2 STRUCTURE OF THIS THESIS

The body of this dissertation is structured into four chapters.

The first part lays the foundation for the rest of the text by
giving an overview of relevant technologies and developments in
the areas of the semantic web, semantic wikis, and web query-
ing. Chapter 2 discusses the idea, formalisms, and technologies
underlying the semantic web, as well as two recent directions
that semantic web research has taken: Linked Data and the social
semantic web. Chapter 3 reviews existing semantic wikis and the
facilities they provide for searching and querying. Chapter 4 pro-
vides a brief introduction into XML and RDF and an overview of
web query languages. The second part of the chapter is devoted
to a survey of keyword query languages for semi-structured
data and a discussion of the advantages and limitations of the
approach.

The second part is concerned with the KiWi wiki and its con-
ceptual model. In Chapter 5, we propose a conceptual model for
the KiWi wiki and discuss the design choices involved. We also
suggest structured tags, a formalism for semi-formal annotations.
Chapter 6 reports on a user study that compares how RDF and
structured tags are used and perceived in a text annotation task.

Part three introduces the KiWi query language KWQL. Chap-
ter 7 provides an overview of KWQL, discusses the underlying
principles and ideas, and presents its syntax and semantics. Chap-
ter 8 briefly summarizes previous work in the area of visual query
languages and then describes visKWQL, a visual rendering of
KWQL, and an editor for visual and textual queries. Chapter 9
then describes the setup and results of a user study performed to
evaluate the suitability of KWQL and visKWQL for querying in
the KiWi wiki. Chapter 10 describes an evaluation procedure for
KWQL bodies using a patchwork approach and reports on the
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findings of an performance evaluation of a prototype implemen-
tation of the system.

The fourth and final part describes several extensions to KWQL.
PEST, discussed in Chapter 11, is a scheme for exploiting con-
nections between data items to extend the set of query answers
by results that do not strictly match the query but that are still
relevant, and for re-ranking results based on their structural re-
lationships. Chapter 12 describes how structured tags could be
implemented in the KiWi wiki and how KWilt could be mod-
ified to support the evaluation of queries over structured tags.
Chapter 13 discusses how KWQL could be extended to RDF
querying.

Chapter 14 finally provides an outlook and a conclusion.
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THE SEMANTIC WEB

In this chapter, we aim at giving an overview over the idea,
formalisms, and technologies of the semantic web. We then sum-
marize criticism that has been directed at the semantic web and
introduce two recent directions that semantic web research has
taken: Linked Data and the social semantic web.

2.1 VISION, ACHIEVEMENTS, AND CHALLENGES

The Semantic Web is not a separate Web but an
extension of the current one, in which information is
given well-defined meaning, better enabling comput-
ers and people to work in cooperation.

(Berners-Lee, Hendler, and Lassila [55])

The world wide web, as it has been used by an increasing num-
ber of users over the past twenty years, consists of interlinked
documents containing text and multimedia. Despite advances
in the fields of natural language processing and artificial intelli-
gence, the meaning of the content of these documents can only
be processed and understood by humans. The idea behind the
semantic web, first prominently presented by Berners-Lee et al.
[55] in 2001, is to change this, by shifting the focus from docu-
ments to data and making the meaning of data on the world wide
web accessible to computers and thereby amenable to automatic
semantic processing.

Giving information on the web a well-defined meaning could
enable the development of computer agents that behave intelli-
gently without the help of large-scale artificial intelligence sys-
tems. These agents could then autonomously perform complex
tasks like scheduling on behalf of humans by querying, reasoning,
and the exchange and combination of data from trusted sources.

This functionality is to be realized through a semantic web
that is an extension of the human-readable web, and in which
information is represented as structured data via the Resource
Description Framework (RDE, see Section 4.1.2). The entities used in
these descriptions are represented as and semantically grounded
in Uniform Resource Identifiers (URIs) serving as unique identifiers.
The underlying vocabulary or schema of a set of RDF data is
defined by an ontology, a description of the concepts that can exist
and the relations between them.

When RDF data is exchanged or combined, ontologies enable
the detection of differences between the conceptualizations of

13
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the data. Ontology mapping or ontology alignment, the combination
of different ontologies into one, are used to integrate the data,
thereby ensuring the interoperability between different systems
and data sources. Using RDF data, ontologies, and mechanisms
for querying, reasoning, and data integration, computer agents
are then envisioned to solve sophisticated tasks by aggregating
and exchanging information, and deducing new information as
needed.

Artificial intelligence never succeeded in creating intelligent
agents that display human-like “common sense” [183], despite
much initial confidence within the research community and the
success of Al systems that are domain-specific and narrow in
scope. By contrast, the semantic web is seen as a simpler and more
generic approach which, once realized, could enable computer
agents to perform a wide range of tasks that require intelligent
behavior.

In terms of the technologies involved, the semantic web is
based on formalisms for expressing information, ontologies and
mechanisms for ontology mapping and information exchange,
as well as methods for querying, reasoning and determining the
provenance and trustworthiness of information.

In the nine years since the original article about the semantic
web vision was published, a large body of research has been
dedicated to realizing the semantic web vision. Available seman-
tic web technologies include RDF Schema (RDEFS) [70] and the
Web Ontology Language (OWL) [171], various XML serializa-
tion formats for RDF [42, 34], the query language SPARQL (see
Section 4.2.2.1), Rule Interchange Format (RIF) [64], Resource
Description Framework in attributes (RDFa) [11], RDF triple
stores [366, 72] and tools for ontology development [284, 129].

Semantic web research is of course not just limited to the de-
velopment of languages and tools; other topics that have been in-
vestigated include ontology evolution [283] and alignment [139],
scalability and performance [6], trust and provenance [26], rea-
soning [82], and the role of logic and logic languages on the
semantic web [83, 141].

Despite all the efforts aimed at realizing the semantic web
vision, however, and despite the fact that RDFa, a simpler version
of RDE, is employed by a number of large websites including
Facebook and Google, the semantic web vision has not yet become
a reality, and semantic web technologies so far have not been
adopted by a significant, non-technical user base. Possible reasons
for this have been widely discussed [263, 192, 183, 159, 336, 9, 47].
They can be grouped into three interdependent categories, which
will be summarized in the following.
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THE SEMANTIC WEB VISION HAS BEEN MISUNDERSTOOD

Considering that the very word “semantic” is all
about meaning, it’s ironic that the term “Semantic
Web” is so ill defined. (Nova Spivack [271])

According to Berners-Lee et al. [55], the ultimate goal of the
semantic web is a scenario where automated computer agents
assist humans in everyday tasks. However, this view is not shared
by all advocates of the semantic web. The understanding of what
constitutes the semantic web and what can actually be achieved
has evolved during a decade of semantic web research, and the se-
mantic web vision can also be taken as an aspirational motivating
scenario for what currently is a more humble realization of the
semantic web. For these reasons, there are a number of different
views on the nature and goals of the semantic web, which give
rise to different expectations.

Marshall and Shipman [263] discuss different views of the se-
mantic web. According to them, the semantic web is portrayed in
three ways—as a way to bring order to the web and enable tar-
geted search, access and data collection (“taming the web”), and
as a distributed knowledge base that automated agents can use
to solve a wide variety of tasks and in which the knowledge base
itself, technology, and application scenarios are either generic
(“knowledge navigator”) or targeted at a specific, limited domain
(“federated data/knowledge base”).

This categorization likely still holds today, although the num-
ber of proponents of each view may well have changed over
time. A view similar to the “taming the web” scenario is widely
accepted [191, 311, 271] (see also Section 2.2.1), but may be seen
only as an intermediate step on the way to a more powerful
semantic web.

MANY SEMANTIC WEB TECHNOLOGIES ARE BASED ON UNRE-
ALISTIC ASSUMPTIONS

[A]Il sufficiently broad-based reasoning about the
natural world must eventually reach conclusions that
are incorrect, independent of the reasoning process
used and independent of the representation employed.
Sound reasoning cannot save us: If the world model is
somehow wrong (and it must be), some conclusions
will be incorrect, no matter how carefully drawn. A
better representation cannot save us: All representa-
tions are imperfect, and any imperfection can be a
source of error.

(Davis, Shrobe, and Szolovits [127])

The semantic web approach has been met with some skepticism
regarding its feasibility and practicality in real-life knowledge
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management scenarios, especially when it is applied in a broad
domain as intended in the original semantic web vision [263, 192,
183, 159, 336, 9]. In particular, it has been criticized for failing to
solve problems that have been encountered before in the context
of philosophy, artificial intelligence, and knowledge management
such as the symbol grounding problem [186, 159, 118] and the
frame problem [268, 183].

A large part of this criticism concerns ontologies, which repre-
sent the world view behind a dataset and therefore form the basis
for system interoperability and reasoning. Ontologies constitute a
priori agreements on the concepts in a domain and their relations.
They are finite and static, represent only one point in time, and
do not easily support inconsistency, vagueness, disagreements,
changes, context-sensitivity, and evolving understanding of a
situation. As such, an ontology can only be a limited, simplified
model of the real world, which in turn has repercussions on the
accuracy and the validity of reasoning and the applicability of the
model to the world, meaning that computer agents can generally
not be trusted to solve tasks correctly.

Even disregarding more sophisticated semantic web function-
alities and general purpose scenarios, the fact that ontologies do
not represent crucial characteristics inherent to human cognition,
knowledge management, and interaction makes them less practi-
cal and relevant to real-life knowledge management scenarios.

A practical point concerning the development of ontologies
was raised by Hepp [192]: depending on the domain and the
level of abstraction, maintaining an ontology and updating it
to always reflect the current state of knowledge could be hard
or even impossible, or it might be so resource-intensive that the
initial cost is ultimately not offset by the benefits.

Since all the information in an ontology is expressed via sym-
bolic structures that are not grounded in the real world, and since
ontologies by their very nature can only offer a biased view on the
world, it is difficult to exactly match meaning when combining
two ontologies, let alone to do so automatically [159, 336, 118].

SEMANTIC WEB TECHNOLOGIES FOCUS ON RICH FUNCTION-
ALITY, NOT ON USABILITY

Semantic Web is one of the enabling technologies, a
means to an end, and not the end itself. Every time I
look critically at the current use of (information) tech-
nology, I cannot help but wonder how it is possible
to actually get away with the approach taken today
(where substantial burden is placed on the users).

(Lassila [237])

Semantic web research for the longest time was concerned with
creating technology and tools that are complex, powerful, and ex-
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pressive, but neglected the issue of usability and did not provide
users with an incentive to use semantic web technologies. This
focus on rich functionality over simplicity and user-friendliness
likely is another reason why semantic web technologies do not
yet enjoy a wide user base. RDF and OWL may not be overly
complex as far as formal languages go, but they are far beyond
the experience of most web users, who would have to exert
considerable effort to learn them.

At the same time, there is little incentive for users to provide
RDF annotations. This is problematic insofar as the semantic web
ultimately cannot rely on expert content creators and automatic
extraction alone to generate semantic annotations. Users, on the
other hand, are rarely willing to adapt their behavior to the needs
of technology without an immediate benefit.

Not only can RDF be hard to learn for the layman, expressing
knowledge via rigid formal structures is also very different from
human cognition and thus not accommodating to users. Specif-
ically, tacit and evolving knowledge, premature structure, and
situation-specific knowledge are known to cause problems when
users attempt to express their knowledge in formal representa-
tions [335].

Even if users could be assumed to spend some time learning
RDF and were willing to provide annotations, several problems
would remain:

* Semantic web tools in general are not very forgiving with
respect to errors, inconsistencies, or disagreements that can easily
arise when several users with imperfect knowledge collaborate.

* The original semantic web vision and semantic web research
are concerned only with the trustability of individual sources.
Such a coarse-grained concept of trust may be insufficient since a
person might be very trustworthy with respect to one area, but
not with respect to another one [263].

* When users annotate data with RDF vocabulary from a spe-
cific ontology, they commit to the expressed world view [192]
even though they might not agree with it. However, understand-
ing an ontology in full detail is hard and requires considerable
effort.

2.2 NEW DIRECTIONS IN SEMANTIC WEB RESEARCH

Over the past few years, two emerging areas in semantic web
research have received considerable attention: linked data and
the social semantic web. They share a practice-driven, bottom-
up approach to the semantic web and give up on the goal of
“ontological purity.” We give an overview over the two areas in
this section.
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2.2.1 Linked Data

The term “Linked Data” refers to structured data, typically using
RDF, that is published on the web and obeys the following four
principles:

1. Use URIs as names for things.

2. Use HTTP URIs so that people can look up those
names.

3. When someone looks up a URI, provide useful in-
formation, using the standards (RDF, SPARQL).

4. Include links to other URIs, so that they can
discover more things.

(Berners-Lee [53])

Linked Data that is freely accessible is referred to as Linked Open
Data. The idea behind Linked Data is to create a “web of data,”
a global database that is structured and interlinked. Both ontol-
ogy and instance data can be queried, combined, and used, for
example in the form of mash-ups or domain-specific applica-
tions [60, 27].

While the realization of the semantic web vision remains one
of the goals, Linked Data puts the focus on structured datasets,
creating additional semantics and value by interlinking them,
and using the data for practical applications. In other words,
Linked Data is concerned with exploiting current possibilities
using comparatively simple and established tools, but it is also
considered a means to realize the semantic web vision [60].

Linked Data still faces some of the same problems discussed
in the previous section, for example concerning schema mapping
and trust and privacy [60]. On the other hand, its pragmatic,
bottom-up approach and the fact that it does not currently strive
for or rely on the automatization of sophisticated knowledge
tasks allows it to avoid many of the problems mentioned.

Over the past three years, Linked Data has received much
attention and the Linked Open Data cloud has constantly grown.
As of October 2010, it consists of more than 25 billion triples from
203 datasets. A snapshot is shown in Figure 1. Most of the data
was extracted from other data sources concerning a broad range
of different areas such as music, geography, law, genetics, and
scientific publications.®

2.2.2  The Social Semantic Web

Up to the middle of the previous decade, the world wide web
was mostly used to retrieve information, while the means for

1 Details can be found at http://www4.wiwiss.fu-berlin.de/lodcloud/.
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Figure 1: Snapshot of the Linked Data cloud, maintained by Richard
Cyganiak and Anja Jentzsch at http://lod-cloud.net/

publishing data on the web and interacting with other users
were limited. Thanks to the availability of free webspace and
WYSIWYG editors, even laypeople could create and publish their
own website, but the possibilities for publishing small amounts
of data or for contributing to the content of another website were
limited. Websites or even the web in general were “read-only.”

This changed with the emergence of the social web, also re-
ferred to as the “web 2.0” or “read-write web.” Social websites
are based on user interaction, user-created content, collaboration,
and information sharing. A multitude of different types of social
websites have become popular over the past few years, for exam-
ple blogging and microblogging platforms, wikis, and websites
for bookmarking, cataloging, and networking.

While individual social websites differ greatly in their goals,
application domains, and the nature and extent of the data con-
tributed by their users, they share a low barrier for participation,
and the fact that they derive their value from user-generated
content and facilitate interaction and in some cases collaboration
among users.

In addition to textual and multimedia content, many social
websites support tags, simple semantic annotations in the form
of freely chosen keywords that can be assigned to data items like
books, songs, blog posts, photographs, or bookmarks. Unlike RDF
data, which may or may not be attached to a specific document,
tags by themselves express little information, but only become
useful through the association with a data item and, since tag
assignments are often subjective, a user. Tagging systems are
thus commonly viewed as tripartite graphs [370, 184, 274]. Tags
are used to categorize, describe, and group data items, thereby
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facilitating search, navigation, or visualization in the form of a
tag cloud.

The fact that tagging enables the ordering and retrieval of
content provides an incentive for assigning tags. In many appli-
cations, tags are also pooled across users, meaning that a user
can see which tags other users have assigned to a given resource
and which items have been assigned a given tag. The aggre-
gated collection of tags used in a system is called a folksonomy,
a portmanteau of “folk” and “taxonomy.” Unlike a taxonomy, a
folksonomy does not natively possess a hierarchical structure or,
for that matter, any structure at all.

In a tagging system, no meaning is assigned to strings a priori,
and no specific string is designated to express a concept. Instead,
the meaning of a tag emerges as individual users assign it to
different data items. Users thus do not have to commit to a pre-
defined view on categorization. Conversely, the meaning of a
data item is given by the tags assigned to it.

In a study of tags used on the social bookmarking web site
delicious®, Golder and Huberman [161] found that the frequency
distribution over the different tags assigned to a bookmark sta-
bilizes after about 100 tag assignments. Possible reasons for this
convergence are imitation and shared knowledge. In a followup
study which again used data from delicious, Halpin et al. [184]
showed that tagging distributions over time converge to power
law distributions where a small number of tags are used consis-
tently and a large number of tags are assigned rarely.

A consequence of the large degree of flexibility that accommo-
dates different points of view is that the same concepts are often
expressed via different tags, e.g., synonyms, tags in different
languages, or inflections or different spellings of the same term.
Similarly, tags of the same form may have different intended
meanings due to polysemy and homography [162]. Yet another
problem is basic level variation, i.e., varying degrees of specificity in
tagging depending on the level of expertise in a given area [162].
Since in a folksonomy no explicit relations exist between tags,
the relationship between tags referring to similar or identical
concepts at different degrees of specificity is not recognized.

All these factors have a negative influence on the consistency
of the emergent semantics and on users’ understanding of the
tagging conventions. The practical and social aspects of this are
interrelated and mutually reinforce each other, since users who
are unsure about tagging conventions are more likely to break
them.

The success of tagging has prompted extensive research in
the area, investigating the properties of tag sets and tagging

2 http://www.delicious.com
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behavior [190, 161, 48, 261], the suitability of tags for improving
search results [59], and motivations for tagging [382, 21].

Unlike the semantic web, the social web was not driven so
much by research or technological innovation (although some
technological innovations such as Ajax facilitated the realization
of interactive websites), but rather by practical applications and
changes in how the web is seen and used. As such, the social
web is concerned with social factors and practicality rather than
technological or scientific innovation.

The semantic web and social web have emerged mostly inde-
pendently of each other, but they share some of their goals and
characteristics: they both aim at collecting and organizing infor-
mation that is, at least in part, generated by the users. However,
while the semantic web is based on the formal representation of
palpable facts, user-generated data in social web applications con-
sists mainly of text or multimedia and often expresses differing
points of view, uncertainty, and, especially in the case of wikis,
work in progress.

In recent years, scientific efforts have been made to extend
social web applications with semantic web technologies, in order
to create systems that are user-friendly, error-tolerant, and take
a bottom-up approach to knowledge management, but that also
allow for the formalization of concepts and use semantic web
technologies where appropriate. In the following, social web
applications that employ user-provided semantic annotations
will be called “social semantic web applications.” Together they
form the social semantic web.

It is worth noting that this definition includes not only applica-
tions which make use of RDF or other semantic web technologies,
but also those that only use informal annotations in the form of
tags: while tags alone are less powerful than formal annotations
backed by ontologies, they do describe the meaning of data items
and can form the basis for a (manual or automatic) transition to
more formal annotations and the addition of advanced function-
alities. Consequently, what makes a web application semantic
in our view is not the use of specific technologies or expressive
formalisms, but rather the presence of some form of semantic
annotation that, if required, can serve as a starting point for a
further formalization of knowledge.

A number of recent articles have pointed out the benefits of
combining the social and the semantic web to achieve collective
intelligence [172]. Mikroyannidis [276] points out that “[w]ith
their tendency to form stable structures, folksonomies can po-
tentially bridge the gap between the Social and the Semantic
Web” [276, p. 114] and that “[i]Jn addition, ontologies derived
from folksonomies would represent online communities” collec-
tive intelligence rather than the perception of a limited group of
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experts.” Ankolekar et al. [25] emphasize that the two fields need
to draw from each other’s strengths.

Several approaches for combining the social and the seman-
tic web and enhancing social web applications with semantic
web technologies have been investigated over the past few years.
Topics in this area include the development of ontologies for
tagging [173], the extraction of ontologies from social network
graphs [274] and folksonomies [124], the inference of global se-
mantic models or tag hierarchies from folksonomies [370, 193,
90], collaborative ontology evolution [251], tag similarity mea-
sures [89], reasoning over tags [81], and the effect of tag sugges-
tions on folksonomy size [229].



SEMANTIC WIKIS

In this chapter we introduce wikis and semantic wikis and give
an overview the search and querying functionalities provided by
current semantic wiki engines.

3.1 WIKIS: COLLABORATIVE CONTENT CREATION

Wikis' are web applications for collecting and sharing knowledge.
They allow users to easily create and edit documents, so-called
wiki pages, using a web browser. The pages in a wiki are often
heavily interlinked, which makes it easy to find related infor-
mation and browse the content. While a wiki may or may not
use access control to decide who may view and edit the con-
tent, a characteristic common to all wikis is that the content is
version-controlled, meaning that older versions of a wiki page
can be restored at any time. This feature does not only counteract
“vandalism,” i.e., intentional acts aiming to destroy or falsify the
content of a wiki page, but can also be used to correct uninten-
tional mistakes and to display the progress or state of knowledge
at a certain point in time.

The first wiki software, WikiWikiWeb, was developed by Ward
Cunningham and released in 1995.% Since then, wikis have been
widely adopted for a large number of applications, and their
usage ranges from personal to collaborative knowledge manage-
ment and from hobby purposes to corporate intranets. The best-
known wiki, Wikipedia, is an online encyclopedia launched in
2001.3 It now consists of 16 million articles in 272 languages and
is one of the most-visited sites on the web. While for some people
Wikipedia is synonymous with the concept of wikis in general, it
is by no means the only widely known and publicly accessible
wiki; other examples include wikiHow,* a collection of how-to
guides, Wikiquote,> covering notable quotations, LyricWiki,® a
database of song lyrics, and The TV IV,” a wiki covering TV
shows.

Apart from the original WikiWikiWeb wiki engine, there ex-
ists a large number of wiki engines differing in their features,

1 “Wiki” is the Hawaiian word for “fast.”
2 http://c2.com/cgi/wiki/

3 http://www.wikipedia.org/

4 www.wikihow.com/

5 http://www.wikiquote.org/

6 http://lyrics.wikia.com/

7 http://tviv.org/
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implementation, and application area, for example MediaWiki,
Atlassian Confluence,? and PhpWiki."®

In many respects, wikis are a prototypical social web applica-
tion, and their success is tightly connected to the proliferation of
the social web. In particular, wikis are conceptually simple, easy
to use, and support users in the content creation process.

The basic elements of the conceptual model of a wiki are wiki
pages and links between them. Creating or editing a wiki page is
no harder than using a word-processing application, and content
can be formatted using WYSIWYG editors or wiki markup. While
not all features of a markup language like that of MediaWiki
are easy to use, their use is optional and users can edit wiki
pages without knowing anything about the syntax of the markup
language. Wikis are particularly well-suited for the collaborative,
gradual creation of content, and they live from user participation:
a wiki page may start out as a short outline and grow and
evolve as more people participate or more details become known.
Discussion pages allow wiki users to exchange and, if necessary,
align their views on how a wiki page should cover a given topic.
A typical wiki pages is edited and enhanced repeatedly, meaning
that a final, definite version does not necessarily exist, but that
each wiki page is a perpetual work in progress.

At the same, wikis as knowledge management applications
could profit from improved methods for structuring knowledge,
making it more accessible and amenable to automatic processing.
As mentioned above, wiki pages are often heavily interlinked,
meaning that related concepts are often connected. In terms of
structuring knowledge, this is a valuable contribution and, after
all, one of the core principles of Linked Data (see Section 2.2.1).
Individual wiki pages, on the other hand, are often weakly struc-
tured and only express knowledge as free text or multimedia.

Wikipedia allows wiki pages to be assigned one or more cate-
gories. In addition, many articles contain so-called infoboxes, fixed
format tables that summarize an article by listing the values of
certain attributes that depend on the category of the concept de-
scribed. The English language Wikipedia article about Munich,**
for example, has been assigned the categories “Cities in Bavaria,”
“1158 establishments” and “Host cities of the Summer Olympic
Games,” among others. Its infobox provides values for some
attributes of a city, for example the country and state the city is
located in, its population size, and the time zone.

To exploit these structuring mechanisms, a scheme for extract-
ing taxonomies from Wikipedia category assignments has been

http://www.mediawiki.org/
http://www.atlassian.com/software/confluence/
http://phpwiki.sourceforge.net/
http://en.wikipedia.org/wiki/Munich
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suggested [341]. Relatedly, DBpedia Knowledge Base [27] is a
large set of Linked Data that consists of RDF triples extracted
from Wikipedia’s infoboxes, categories, internal links, etc.

While extracted RDF data can be queried using SPARQL or
other RDF query languages, the structure of the data cannot
be used for querying Wikipedia directly. Search in Wikipedia
is limited to full text search, with links, categories and table of
contents supporting the location, browsing, and navigation of
information. Even though Wikipedia provides more mechanisms
for the structuring of data than many other wikis, their use is
limited, since only a small part and very specific aspect of the
content of a page is expressed and since users cannot assign
arbitrary annotations.

In summary, the content of traditional wikis consists of natural
language text and possibly multimedia files and is not directly ac-
cessible to automated semantic processing. Therefore, knowledge
in wikis can be located only through basic user-generated struc-
tures, like tables of content and inter-page links, and through
simple full text keyword search. More advanced functionalities
that would be highly desirable in knowledge-intensive contexts,
such as querying, reasoning, and semantic browsing, are not
available.

3.2 SEMANTIC WIKIS: CONCEPTS AND SYSTEMS

Semantic wikis extend conventional wikis by combining the wiki
philosophy with semantic web technologies and introducing
capabilities for specifying knowledge not just in natural language
but also in more formal, machine-processable ways.

The term “semantic wiki” is used to refer to two different types
of systems [236, 321]: Semantic wikis of the first type (“wikitol-
ogy” [221] or “wikis for semantics”) use wiki technology as a
means for the collaborative authoring of ontologies. The main
focus here is on creating semantic web data, and human-readable
wiki content is only needed to support the editing process. When
used in the second sense, “semantic wiki” refers to a wiki that
uses (social) semantic web technologies to enhance the function-
ality of the wiki and support the process of collaborative content
creation (“semantics for wikis”). Here, the focus is not (only) on
metadata, but text and multimedia content.

Some semantic wiki engines fall clearly into one of these two
categories, while others can be used for both purposes [321]. In
the following, we use “semantic wiki” in the second meaning.

Semantic wikis extend conventional wikis by providing func-
tionalities for expressing knowledge in a structured form. This is
realized mainly by adding support for annotations to data items,
most frequently wiki pages and tags, but also smaller portions of
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text [218]. The annotations may be freely chosen tags [142], but
sometimes more formal mechanisms such as RDF backed by (im-
ported) RDFS or OWL ontologies are offered as well. In particular,
several semantic wikis support limited RDF annotations where
the subject is always the URI of the annotated resource, and
predicate and object are provided by the user [344, 31, 32]. Some
semantic wikis also enable the editing of ontologies, meaning
that not only the metadata annotations, but also their schemata
evolve over time.

The annotations, whether they have been assigned manually
or extracted (semi-)automatically, can be used for realizing func-
tionalities like consistency checking, improved navigation, search,
querying, personalization, context-dependent presentation, and
reasoning. Annotations are often represented as RDF. They can
thus be exported and integrated with data from other sources and
are compatible with standard RDF technologies such as SPARQL.

The annotation of wiki content is optional, and semantic wikis
do not require users to add annotations. While in particular
only some of the users may actually annotate content, this can
still enable all users of the semantic wiki to benefit from the
functionalities that semantic wikis offer over conventional wikis,
for example an automatically generated table of contents [321].
Furthermore, the semantic wiki data may be formalized in a
collaborative fashion over time, with different users providing the
textual content and informal and formal annotations. This holds
especially when different modes of annotations are available, for
example free-form tags and RDF. Semantic wikis thus maintain,
at least to some extent, the ease of use of conventional wikis.

Semantic wikis are sometimes referred to as the “semantic web
in the small:” they consist of pages, links, and annotations, all
of which are typically created by a number of different people.
However, unlike the world wide web, semantic wikis to some
extent are subject to central control in the form of administrators,
and the number of users and topics and the amount of data are
much smaller and often more homogeneous than those of the
web. This makes semantic wikis ideal testbeds for novel semantic
web technologies.

Currently, most semantic wiki engines provide few advanced
functionalities beyond RDF querying and, in some cases, basic
reasoning [319, 132]. To better leverage the potential of the combi-
nation of the social and the semantic web, and to provide more so-
phisticated and user-friendly functionalities, additional research
in several areas is required. Relevant directions include querying
and search (see Section 3.4), personalization, user-assisted extrac-
tion of annotations, visualization, reasoning maintenance, and
inconsistency-tolerant reasoning [227, 322, 297].
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3.3 SEMANTIC WIKIS: TWO EXAMPLES

Now that we have given an overview over semantic wikis and
their characteristics, we will discuss two semantic wikis in more
detail, Semantic MediaWiki and IkeWiki. Semantic MediaWiki is
one of the oldest and most popular semantic wikis, and its data
model has been thoroughly described in the scientific literature.
IkeWiki is a feature-rich semantic wiki that is the predecessor
of the KiWi wiki, the wiki that is one of the focal points of this
dissertation.

3.3.1  Semantic MediaWiki

Semantic MediaWiki (SMW) [231] is realized as an extension to
MediaWiki. In SMW, annotations can be added inline with the
textual content in the wiki editor using a markup language that
is based on MediaWiki’s syntax for creating links. Aiming for the
realization of a semantic Wikipedia [232], annotations are seen
to describe the concept represented by the wiki page rather than
the wiki page itself.

Annotations conceptually resemble simple RDF triples and
take the shape of property statements that characterize a binary
relationship between a wiki page and some (typed) value. These
statements can be used to assign types to links and to augment
wiki pages with class and attribute information. Like in Me-
diaWiki, class information is expressed through the property
“Category.” For example, the annotation [[Category:City]] ex-
presses that a wiki page represents a city. Semantic MediaWiki
extends this to arbitrary properties of individual concepts. By
default, a newly introduced property is assumed to take a wiki
page as a value, i.e., the annotation is interpreted as a typed link
between two wiki pages. However, SWM also provides several
other data types that can be assigned to properties, for example
“string,” “date,” and “geographic coordinate.”

In addition to individual concepts, all categories, properties,
and types are represented by wiki pages, and namespaces are
used to distinguish between the different types of wiki pages. A
property can be assigned a type through an annotation on its wiki
page, and it can be designated as the subtype of another property.
Similarly, just like in MediaWiki, wiki pages of categories can be
annotated with category information, thus creating a category
hierarchy. The wiki pages of categories, properties, and types can
further be used to describe their meaning in a textual form.

While the category hierarchies of SMW constitute shallow
ontologies that are not defined a-priori, the wiki also allows for
the use of external ontologies, either via wiki pages representing
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the elements and relations of the ontology or by mapping wiki
pages to elements of existing ontologies [232].

SMW annotations are formally grounded through a mapping
of annotations to OWL-DL statements, which can be exported as
RDF data. The generated annotations can be used for semantic
browsing and querying (see Section 3.4).

In one of the few scientific articles on the formal foundation
of semantic wikis, Bao et al. [38] point out that a semantics
based on description logic or RDF is not ideally suited for SMW
annotations. In particular, a semantics based on description logic
constrains the expressivity of SMW annotations, since categories,
properties, and instances must be disjoint sets. This means, for
example, that a property may not be used as a category instance
and that a category cannot serve as a property value, although
both of these cases have useful applications. Bao et al. [38] instead
provide a model-theoretic semantics as well as an entailment
system. They further describe the use of entailment rules in SMW,
which can be triggered selectively in wiki pages and natively
introduce a form of reasoning to SWM.

3.3.2  lkeWiki

IkeWiki** [319, 230] was envisioned as a system that supports
users in the gradual formalization of knowledge in a collaborative
fashion. It aims for user-friendliness and offers an interactive
WYSIWYG editor for text and annotations as well as an editor
supporting Wikipedia syntax, thus making it easy to copy and
paste content from Wikipedia.

IkeWiki relies on semantic web standards for expressing and
formalizing knowledge and is aimed at supporting a process in
which the knowledge base and its degree of formalization evolve
over time. To this end, it supports RDF and OWL annotations to
links, as well as wiki pages containing text and multimedia.

Imported ontologies are used to determine which annotations
can be assigned to a given link or wiki page; it is not possible to
assign annotations that are not backed by the ontology. IkeWiki
not only allows for the use of ontologies, but to some extent also
for their editing, and specifically for the addition of sub- and
superclasses, ranges, and inverse relations.

In contrast to Semantic MediaWiki, IkeWiki stores annotations
separately from the content of the wiki pages, meaning that they
are not versioned. Annotations can be leveraged immediately for
presentation, navigation, and search. Unlike many other semantic
wikis, IkeWiki also supports OWL-RDFS and OWL-DL reasoning.
For example, class relationships and relationships between pages

12 “lke” is the Hawaiian word for “knowledge.”
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are used to infer additional annotations and to make sure users
only choose applicable concepts when annotating a data item.

3.4 SEARCHING AND QUERYING IN SEMANTIC WIKIS

Better search and querying is one of the main ways in which
semantic wikis intend to improve upon conventional wikis. The
need for simple yet powerful data retrieval [297, 30] and for
combined queries over content and annotations [31] have been
pointed out in particular.

So far, however, all semantic wikis that we are aware of treat
the querying of content and annotations separately [297, 321],
while other sources of data such as content structure and system
metadata cannot be queried at all.

In many cases, semantic wikis provide simple full text search
for the querying of textual content or RDF literals [218, 344, 295].
In addition, a standard RDF query language such as SPARQL or
RDQL can often be used for querying the annotations [319, 142,
30, 28]. The embedding of queries in wiki pages [319, 150] allows
those queries to be evaluated every time a page is loaded, and
always shows an up-to-date list of results.

A number of semantic wikis also come with their own language
for querying annotations that can be used in addition to or instead
of a conventional RDF query language.

KAON, the query language of COW [150], can make use of
simple reasoning to find query answers. The following retrieves
physicists born in Europe, regardless of whether or not the data
explicitly represents that their place of birth is located in Europe:

[#Physicist] AND
(SOME (<#1is-born-in>.<#located-in>=!#Europe!)
OR SOME (<#is-born-in>=!#Europe!))

Rhizome [339] and its query language RxPath aim at mak-
ing RDF querying easy for users who are already familiar with
XML. To this end, RDF triples are mapped to a virtual, possibly
infinitely recursive tree which can then be queried with XPath
expressions. The query /foaf:Document/dc:creator/* for example
selects all authors of document resources.

WIikSAR [33] uses queries consisting of a series of predicate-
object pairs. The answer to such a query then consists of all wiki
pages whose annotations match all predicate-object conditions.
Predicate and object can be connected by operators for equality,
ranges, and regular expressions. The following query for example
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returns the set of pages describing authors that were born in 19th
century England:

InstanceOf=LiteraryAuthor BornIn=~England
DateOfBirth between 1800 and 1900

Two different query languages have been suggested for Se-
mantic MediaWiki. The first, referred to as “SMW-QL” by Bao
et al. [38], has a syntax similar to that used to express annota-
tions in SMW. The simple query [[Category:City]], for example,
retrieves all wiki pages that have this annotation. Subqueries, de-
noted by <g>...</qg>, ranges of values, or wildcards can also be
used in place of fixed property values. SWM-QL further supports
(implicit) conjunction, disjunction, negation and comparison oper-
ators, but no variables. The following query for example returns
the wiki pages of cities that are located in the EU or have more
than 500,000 inhabitants:

[[Category:City]]
<g>[[located in::<g>[[Category:Country]]
[[member of::EU]l</g>11 ||
[[population:: >500,000]] </qg>

By default queries return wiki pages, but so-called print requests
can be used to display specific property values in the query
answers. Krotzsch and Vrandecic [231] provide a semantics for
SWM-QL through a translation to DL queries.

Bao et al. [38] present a variation of the language that uses
a slightly different syntax. They point out that the open world
assumption underlying the DL semantics are not well-suited for
a wiki and is at odds with the implementation of SML-QL in
SMW. Instead, the authors provide a semantics that is based on
the translation of SMW-QL queries into logic programs.

The second query language of Semantic MediaWiki [181] em-
ploys keyword search over RDF data (also discussed in Sec-
tion 4.3.3). Users express their query intent using a number of
keywords. These keywords are matched in the data using a fuzzy
scheme that considers semantic and syntactic similarity and as-
signs a score to each match. An augmented schema graph that
combines the keyword matches and schema information is then
constructed. Query graphs, connected subgraphs containing at
least one match for each keyword, are then extracted from the
augmented schema graph using a top-k procedure. The query
graphs are translated into SPARQL queries and are displayed to
the user in a visual, table-based form. The user can then select
the query that corresponds to her query intent and the matching
entity tuples are displayed together with a facets menu which
can be used to further refine the results.
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As mentioned above, the languages currently employed in se-
mantic wikis do not allow for combined queries over content,
annotation, and structure. Such queries would be useful and desir-
able because the textual content is often not expressed completely
in the annotations, and vice versa [59]. Furthermore, semantic
wikis are a social medium, so users should for example be able to
use the metadata to retrieve all pages edited by a specific person,
without having to rely on potentially incomplete or incorrect
authorship information expressed manually via an annotation.

Usability and expressiveness of the above query languages
vary widely. The RDF keyword query language of Semantic
MediaWiki is the only annotation query language that allows
users to formulate a query right away, without having to learn the
language first. On the other hand, the keyword queries are not
very expressive, and for example do not allow for the expression
of disjunction and negation. To select the correct query, users
further need to be able to understand the visualized SPARQL
queries.

AceWiki [234] differs from all the approaches presented above
in that it employs a controlled natural language, Attempto Con-
trolled English or ACE [155], to represent information in the wiki.
The language is a subset of English but can be translated into a
variant of first-order logic, meaning that it can be understood by
humans and machines alike. Consequently, there is no distinc-
tion between content and annotations in AceWiki. The authors
suggest that using ACE, queries can simply be represented as
questions.
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When we talk about web queries, we subsume two distinct areas
of research and technology: Web search as provided for example
by Google or Yahoo!, and database-style queries on web data
(mostly in the form of XML or RDF) as provided through lan-
guages such as XQuery or SPARQL.

Web search acts as a filter to the discovery of documents on the
web that are relevant to a specified query. Given the vast amount
of available data, web search has become an indispensable tool
for navigating the web for casual and proficient web users alike.
Web search is easy and convenient to use; query intents are ap-
proximated through queries consisting of a number of keywords,
which in practice is usually small [43, 35].

While many web search engines provide additional syntax for
specifying for example disjunction, classical negation and phrase
searches, research has shown that these advanced features are
only employed by a small number of users [202, 43].

Given a particular query, a search engine sifts through an
index of (a substantial portion of) all web data and retrieves the
matching documents. The assessed relevance of a document to the
query is not strict or boolean, but nuanced and often approximate.
For example, returned documents might not contain a query term
itself, but its plural or a synonym. The answer to a query is a
ranked list of documents [71, 222].

In contrast to traditional information retrieval techniques for
finding and ranking relevant documents, web search exploits
not only the content of each individual document, but also their
relationships as expressed through hypertext links. This infor-
mation must be usable without sacrificing scalability to millions
or billions of documents. Web Search engines harvest structural
information as well as non-local search terms (e.g., anchor text
used to link to a document) at indexing time only. This allows for
the independent evaluation of a search request on each document
(and its associated results of the harvesting process) and enables
a highly parallel—and thus scalable—evaluation of web searches.

Thus, web search allows us to filter down the huge amount
of web data to what is likely related to our search request. The
downside of web search is that the results to a search request
are often only vaguely related to the user’s search intent and,
in terms of their presentation, that only a document ranking is
provided. In practice, the user has to look at the individual results
to gauge their true relevance to his information need.
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Database-style Web queries, formulated in languages such as
XQuery or SPARQL, are in many respects the exact dual of web
search: we peek inside a small set of homogeneous documents to
find precise data items such as the price of a book or the capital of
a country. These data items can then be processed automatically,
for example to place an order for a book as soon as its price is
below a certain threshold. We can also deduce new knowledge
such as the number of books by a specific author, or the fact that
some author has published in all of the top five conferences in a
given research area and year. Such queries cannot be answered
by a web search engine, unless the corresponding knowledge is
available in document a priori. In contrast to traditional databases,
database-style web queries operate on web data formats such
as XML and RDF, the presumptive foundation for the semantic
web. Both XML and RDF differ from the relational data model in
that they allow for more flexible schemata where repetition and
recursion are common. This pushes issues that have only been
treated cursorily for relational data, such as the influence of tree
queries or tree data on query evaluation or efficient reachability
queries in trees and graphs to the front.

The price we pay for the ability to precisely select individual
data items of a certain characteristic and process them automati-
cally is twofold: First, web query languages are significantly more
complex than web search interfaces. Writing correct, let alone
efficient, web queries requires significant training and is compa-
rable to a programming task. Second, most web query languages
scale no better than traditional SQL database technology, and are
clearly unable to process a significant portion of all web data.

In summary, where web search allows us to operate on (nearly)
all the web, database-style web queries operate only on a small
fraction. Where web search is limited to filtering relevant docu-
ments for human consumption, web queries allow for the precise
selection of data items in web documents as well as their for-
matting, reorganization, aggregation, and the deduction of new
data. Where web search can operate on all kinds of web docu-
ments, web queries are usually restricted to a more homogeneous
collection of documents (e.g., XHTML documents or DocBook
documents). Where web search requires a human in the loop to
ultimately judge the relevance of a search result, web queries
allow automated processing, aggregation, and deduction of data.
Where web search can be used by untrained users, web queries
usually require significant training to be employed effectively.

In the context of social semantic software, both aspects of web
queries play an essential role: We want to be able to precisely
specify selection criteria for data items and automatically derive
new information, operations that squarely fall into the domain
of database-style web queries. On the other hand, the essential
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premise of the social semantic web is accessibility to untrained
users. In this sense a mechanism closer to web search is needed.

Web search and web queries have mostly been treated sepa-
rately in the past, but recently this has started to change in more
than one way:

1. Web search engines are beginning to “peek” into web docu-
ments to provide more useful answers to queries. For instance,
Google integrates querying of structured data about videos, im-
ages, and items from Google Base® into the search result listing.
Yahoo provides similar features that allow content providers to
use structured data to customize their search result listings.?
More ambitiously, Google Squared, an experimental search tool,
returns tables containing facts extracted from web pages as query
answers.3

2. Considerable effort has been put into adding information
retrieval functionality and primitives to XQuery and similar XML
query languages. This line of research has culminated in a candi-
date recommendation by the W3C that is inspired by traditional
information retrieval and proposes selection and ranking op-
erators for XQuery [15]. An overview of relevant articles and
proceedings can be found in one of the more recent tutorials on
XQuery and XML retrieval [116, 20].

3. The most significant effort towards combining some of the
virtues of web search, viz. being accessible to untrained users
and being able to cope with vastly heterogeneous data, with
those of database-style web queries are keyword-based web query
languages for XML and RDF documents. Theses languages op-
erate in the same setting as XQuery or SPARQL, but with an
interface suitable for untrained or barely trained users instead of
a complex query language. The interface is often (in label-keyword
query languages) enhanced to allow not only bag-of-word queries
but some annotations to each word, most notably a context (e.g.,
that a term must occur as the author or title of an article). Results
are excerpts of the queried documents, though the precise extent
is often determined automatically rather than by the user. Thus,
keyword-based query languages trade some of the precision of
languages like XQuery for a more accessible interface. The yard-
stick for these languages becomes an easily accessible interface
(or query language) that does not sacrifice the essential premise
of database-style web queries, namely that selection and con-
struction are precise enough to allow for automated processing
of data.

In the following, we focus on keyword-based web query lan-
guages as the most promising direction for combining the ease of

1 http://www.google.com/base/
2 http://developer.yahoo.com/searchmonkey/
3 http://www.google.com/squared
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use of web search engines with the powerful features of database-
style web query languages.

To ground the discussion of keyword-based query languages,
we first give a summary of what we perceive as the main contribu-
tions of research and development on web query languages in the
past decade (Section 4.2). This summary is focused specifically on
what sets web query languages apart from their predecessors for
traditional (mostly relational) databases. It comes in two parts,
one on XML (Section 4.2.1), one on RDF (Section 4.2.2). For XML,
we consider three contributions: reachability (as expressed, e.g.,
in XPaths descendant axis) in trees, how the restriction to tree
queries and tree data enables highly efficient query evaluation,
and the effect of order as a first class concept of the data model.
For RDF we consider again three contributions: reachability in
graphs, dealing with RDF’s multi-valued, optional properties, and
how existential information (or blank nodes) affects querying and
construction.

In both discussions we also briefly introduce the preeminent
exemplars of XML, resp. RDF query languages: XQuery and
SPARQL. Where illuminating or necessary for the context we also
reference other query languages. However, for more extensive
introductions to and an extensive comparison of the mentioned
query languages (and many more) we refer to previous surveys
of XML and RDF query languages [36, 157].

The main part (Section 4.3) of this chapter is dedicated to
keyword-query languages: We start with a brief overview of the
principles and motivation of keyword-based query languages as
well as their relation to web search. The main focus of research
in the area of keyword query languages for semi-structured data
has been on XML. Section 4.3.2 gives an overview over the most
important issues, aspects and approaches in this field, namely
determining semantic entities, determining return values, the
expressive power of keyword languages and ranking.

Section 4.3.3 then individually presents various keyword query
languages for RDF.

We conclude this survey with a summary of how keyword-
based query languages for XML and RDF aim to bring the ease
of use of web search together with the capabilities of traditional
web queries. Further, we discuss where the existing approaches
succeed in this aim, what, in our opinion, the most glaring open
issues are, and where, beyond keyword-based query languages,
we see the need, the challenges, and the opportunities for com-
bining the ease of use of web search with the virtues of web
queries.
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4.1 DATA ON THE SEMANTIC WEB

This section introduces XML and RDF, two of the most prevalent
and well-studied semi-structured web and semantic web data
formats.

4.1.1  Extensible Markup Language (XML)

XML [69] is the foremost data representation format for the web
and for semi-structured data in general. It has been adopted in
a large number of application domains from document markup
(XHTML, DocBook [354]) over video annotation (MPEG 7 [264])
and music libraries (iTunes?) to preference files (Apple’s property
lists [2]), build scripts (Apache Ant>), and XSLT stylesheets [215].

XML is a generic markup language for describing the structure
of data. In contrast to HTML, the predominant markup language
on the web, neither the tag set nor the semantics of XML are fixed.
XML can thus be used to derive markup languages by specifying
tags and structural relationships.

Our overview of XML is based on the XML Infoset [117], which
describes the information content of an XML document. The
XQuery data model [148] is, for the most part, closely aligned
with this view of XML documents. We deviate from the Infoset,
and instead follow the XPath and XQuery data model, by viewing
XML data as tree-shaped.® This is in line with most XML query
languages, notable exceptions include Xcerpt [84] and Lorel [10].

XML in 500 Words

The core provision of XML is a syntax for representing hierarchi-
cal data. Data items in XML are called elements and are enclosed
in start and end tags, both carrying the same tag name or label.

The following listing shows a small XML fragment that illus-
trates elements and element nesting.

In this example, <author>...</author> is an element that con-
tains other elements or character data as children between the
start and end tag.

<bib xmlns:dc="http://purl.org/dc/elements/1.1/">

2 <article journal="Computer Journal" id="12">
<dc:title>...Semantic Web...</dc:title>

4 <year>2005</year>
<authors>

6 <author>

4 http://www.apple.com/itunes/

5 http://ant.apache.org/

6 In the Infoset, valid 1D/IDREF links are resolved, resulting in a data model that
is a graph rather than a tree.
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<first>John</first> <last>Doe</last>
</author>
<author>
<first>Mary</first> <last>Smith</last>
</author>
</authors>
</article>
<article journal="Web Journal">
<dc:title>...Web...</dc:title>
<year>2003</year>
<authors>
<author>
<first>Peter</first> <last>Jones</last>
</author>
<author>
<first>Sue</first> <last>Robinson</last>
</author>
</authors>
</article>
</bib>

In addition, we can observe attributes, i.e., name-value pairs asso-
ciated with start tags. Attributes are like elements but may only
contain character data and no other nested attributes or elements.
Also, by definition, element order is significant while attribute
order is not. For instance

<author><last>Doe</last><first>John</first></author>

represents different information than the author element in lines
6—9, but

<article id="12" journal="Computer
Journal">...</article>

represents the same element information item as lines 2-15.

Figure 2 shows a graphical representation of the above XML
document. When represented as a graph, an XML document
without links is a labeled tree where each node in the tree cor-
responds to an element and its type. Edges connect elements to
their children (i.e., elements nested within them), their content,
and their attributes. Since the parent-child relationship can be
recognized without edge labels, and since attributes are not ad-
dressed or receive no special treatment in the research presented
here, edges will not be labeled in the following.

Elements, attributes, and character data are the most common
information types in XML. In addition, XML documents may
also contain comments, processing instructions (name-value pairs
with specific semantics that can be placed anywhere an element
can be placed), document level information (such as the XML or
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Figure 2: A graphical representation of an XML document

the document type declarations), entities, and notations, which are
essentially just other kinds of information containers.

On top of these information types, two additional facilities
relevant to the information content of XML documents have been
introduced by subsequent specifications: Namespaces [68] and
Base URIs [262]. Namespaces allow the partitioning of element
labels used in a document into different containers, identified
by a URL Thus, an element is no longer labeled with a single
label but with a triple consisting of the local name, the namespace
prefix, and the namespace URI. For example, the dc:title element
in line 3 has the local name title, the namespace prefix dc, and
the namespace URI (called “name” in Cowan and Tobin [117])
http://purl.org/dc/elements/1.1/. The latter can be derived
by looking for a namespace declaration for the prefix dc. Such a
declaration is shown in line 1: xmlns:dc="http://... It associates
the prefix dc with the given URI in the scope of the current
element, i.e., for that element and all elements contained within,
unless there is another nested declaration for dc, which would
take precedence. Thus, we can associate with each element a set
of in-scope namespaces, i.e., of pairs of a namespace prefix and a
UR], that are valid in the scope of that element. Base URIs [262]
are used to resolve relative URIs in an XML document. They are
associated with elements using xml:base="http://... and, like
namespaces, are inherited to contained elements unless a nested
xml:base declaration takes precedence.

4.1.2  Resource Description Framework (RDF)

The Resource Description Format (RDF) [259, 223, 189] is emerging
as the preeminent data format on the semantic web. While much
less common than XML, RDF enjoys widespread use for inter-
changing (meta-)data together with descriptions of the schema
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and, in contrast to XML, a basic description of the semantics of
the data.

Not to distract from the salient points of the discussion, we omit
typed literals and named graphs from the following discussion.

RDF in 500 Words

RDF graphs contain simple statements about resources, i.e., about
elements of the domain that may partake in relations (in other
contexts, these are called “entities,” “objects,” etc.). Statements
are triples consisting of subject, predicate, and object, all of which
are resources. If we want to refer to a specific resource, we use
(supposedly globally unique) URIs; to refer to a resource for
which we know that it exists and maybe to some of its properties,
we use blank nodes which play the role of existential quantifiers
in logic. Blank nodes may not occur as predicates. Finally, for
convenience, we can directly use literal values as objects.

RDF may be serialized in many formats (for a recent survey
see Bolzer [65]), such as RDF/XML [42], an XML dialect for
representing RDF, or Turtle [34], which is also used in SPARQL.
The following Turtle data represents roughly the same data as
the XML document discussed in the previous section:

awrs

@prefix dc: <http://purl.org/dc/elements/1.1/> .
@prefix dct: <http://purl.org/dc/terms/> .
@prefix vcard: <http ://www.w3.0rg/2001/vcard—rdf/3.0#> .
@prefix bib: <http ://www. edutella.org/bibtex#> .
@prefix ex: <http ://example.org/libraries/#> .
ex:smith2005 a bib:Article ; dc:title "...Semantic
Web..." ;
dc:year "2005" ;
ex:isPartOf [ a bib:Journal ;
bib:number "11"; bib:name "Computer Journal"
I 3
bib:author [ a rdf:Bag ;
rdf:_1 [ a bib:Person ;
bib:last "Smith" ; bib:first "Mary" ] ;
rdf:_2 [ a bib:Person ;
bib:first "John" ; bib:last "Doe" ] ]

Following the definition of namespace prefixes used in the
remainder of the Turtle document, each line contains one or more
statements separated by semicolons, meaning that the subject of
the previous statement is carried over. For example, line 6 reads as
ex:smith2005 is a (has rdf:type) bib:Article and has dc:title
“...Semantic Web. ...” Lines 8—9 show a blank node. The article is
part of some entity which we cannot (or do not care to) identify
by a unique URI, but for which we give some properties: it is



4.2 DATABASE-STYLE QUERY LANGUAGES

ffffffffffffffffffffffffffffffffffffffffffffff

] i
i i
| i
i . Other ! Smith
i [ Class } Literal Resource i
e e T |

Person

last Mary

type N
Co tor first
mpu
1 Journal Bag

\ % \ /4 Person
name /4
Journal number type _2
— type

type
11— first —»| John
2005 \ /

isPartOf
™ year author last

X

it @ vee §' poe
. ——file

Figure 3: A sample RDF graph

...Semantic
Web...

a bib:Journal, has bib:number “11,” and bib:name “Computer
Journal.”

Figure 3 shows a visual representation of the above RDF data.
We denote classes (i.e., resources that can be used for classifying
other resources) by square boxes with rounded edges, literals by
square boxes, and all other resources by plain ellipses.

4.2 QUERIES AS PROGRAMS: DATABASE-STYLE QUERY LAN-
GUAGES

Having introduced XML and RDF, the following two sections
present web query languages for the two formats together with
the most important research issues.

4.2.1  Trees and Documents—XML

As discussed in Section 4.1.1, XML differs from both the relational
and previous semi-structured data models (as in Abiteboul et al.
[10]) in its focus on ordered tree data. Both orderedness and tree-
shape are direct consequences of XML’s heritage as a simplified
variant of SGML, which is primarily used for document markup.
Documents in formats such DocBook [354] or (X)HTML exhibit
an intrinsic hierarchical organization of the data and are strictly
ordered, just like they would be in printed form. It is clearly not
acceptable to reorder paragraphs even within the same section,
or sections within the same chapter. While previous data models
do allow the modeling of tree data and sometimes even ordered
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tree data, XML is the first data format that limits itself to tree
data while placing a premium on the maintenance of sibling and
document order.

These novelties are reflected well in the contributions of XML
query languages and will guide the following discussion. In
Section 4.2.1.3 we illustrate how XML’s focus on tree data pushes
the issue of reachability (or descendant and ancestor) queries to
the center stage and how different XML query languages address
this issue. In Section 4.2.1.5 we then summarize the effect order as
a first class citizen in XML has on XML query languages. Finally,
we briefly recall how the limitation to tree data and consequently
tree queries has lead to a number of novel evaluation strategies
that are tailored to this setting and significantly outperform
traditional, less focused approaches.

We start off the discussion of XML query languages with a
closer look at two of the more prominent exemplars: XPath and
XQuery. We focus on the essentials of these languages, and refer
the reader to Bailey et al. [36] for a more in-depth comparison of
more than two dozen XML query languages.

4.2.1.1  XPath

XPath provides an elegant and compact way of describing paths
in an XML document viewed as an ordered tree. Paths are made
up of “steps,” each specifying a direction, or axis, for navigating
through the document, e.g., child, following, or ancestor. An
illustration of the different axes is shown in Figure 4. Along with
the axis, a step contains a restriction on the type or label of the
data items to be selected, called a node test. Node tests may be
labels of element or attribute nodes, node kind wildcards such
as * (any node with some label), element(), node(), text(), or
comment (). Any step may be adorned by one or more qualifiers,
each of which is denoted with square brackets and expresses
additional restrictions on the selected nodes. The most distinctive
feature of XPath, as compared to other query languages such as
XQuery, SQL, or SPARQL, is the lack of explicit variables. This
makes it impossible to express n-ary queries and limits XPath,
for the most part, to two-variable logic (see Marx [267], Bojanczyk
et al. [63] for details).

XxPATH EXAMPLES. The XPath expression

/descendant::article/child: :author

consists of two steps. The first step selects article elements that
are descendants of the root (indicated by the leading slash), the
second one selects author children of such article elements.
More interesting queries can be expressed by exploiting XPath’s
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Figure 4: XPath axes, adopted from Geneves and Vion-Dury [160]

qualifiers; the following XPath expression for example selects all
authors that are also PC members of a conference :

/child: :conference/descendant: :article/child: :author[. =
/child: :conference/child: :member]

In addition to the strict axis plus node test notation, XPath
provides an abbreviated syntax where child may be omitted,
descendant is (roughly) abbreviated by //, and the current node
is referenced by .. In the following, we only use the full syntax
and limit ourselves to the core feature of XPath as discussed here,
thus presenting a view of XPath similar to Navigational XPath
of Gottlob et al. [167] and Benedikt and Koch [46].

SYNTAX OF NAVIGATIONAL XPATH. The syntax of naviga-
tional XPath is defined as follows (again following Gottlob et al.
[167] and Benedikt and Koch [46]):

For details on the semantics as well as differences to full XPath
see Benedikt and Koch [46].

The theoretical properties of XPath have also been investigated
in detail. Formal semantics for (more or less complete) fragments
of XPath have been proposed in Wadler [353], Olteanu et al.
[291], Gottlob and Koch [164]. Surprisingly, most popular im-
plementations of XPath embedded within XSLT processors ex-
hibit exponential behavior, even for fairly small data and large
queries, while the combined complexity of XPath query evalua-
tion has been shown to be P-complete [165, 166]. Various sub-
languages of XPath (e.g., forward XPath [291], Core or Naviga-
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(path) = (step) | (step) '/’ (path) | (path) ‘U’ (path) |
/" (path)

(step) n= (axis) “::" (node-test) | (step)’[’(qualifier)’]’

(axis) == ‘child’ | ‘descendant’ | ‘descendant-or-self’
| ‘next-sibling’ | “following-sibling’ |
“following’

(node-test)
(qualifier)

(label) | “node()’

(path) | (path) ‘/\ (path) | (path) N/’ (path) |
‘—'(path) | “lab()" ‘=" ‘N"| (path) ‘=" (path)

tional XPath [165, 44]) and extensions (e.g., CXPath [265]) have
been investigated, mostly with regard to expressiveness and the
complexity of query evaluation. Satisfiability of positive XPath ex-
pressions is known to be in NP and, even for expressions without
boolean operators, NP-hard [194]. Containment of XPath queries
(with or without additional constraints, e.g., by means of a docu-
ment schema) has been investigated as well [369, 136, 275, 329]).
For a recent summary of fundamental results on XPath com-
plexity, containment, etc. see Benedikt and Koch [46]. Several
methods which provide efficient implementations of XPath that
rely on standard relational database systems have been pub-
lished [174, 177, 292].

As part of its activity on the specification of XQuery, the W3C
has recently developed a revision of XPath, XPath 2.0 [51]. An
introduction to XPath 2.0 can be found in Kay [214]. The most
striking additions in XPath 2.0 are a facility for defining variables
(using for expressions), sequences instead of sets as answers, the
move from the value typed XPath 1.0 to extensive support for
XML schema types in a strongly typed language, a considerably
expanded library of functions and operators [258], and a complete
formal semantics [138].

4.2.1.2  XQuery

XQuery has achieved the status of the predominant XML query
language, at least as far as database products and research are
concerned (in total, XSLT [105] is probably still more widely
supported and used). XQuery is essentially an extension of XPath
(though some of the axes of XPath are only optional in XQuery),
but most of XPath becomes syntactic sugar in XQuery. This is
particularly true for XPath qualifiers, which in XPath can be
reduced to where or if clauses. Indeed, the XQuery standard is
accompanied by a normalization of XQuery to a core dialect of
the language [138].
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XQUERY PRINCIPLES. At its core, XQuery is an extension of
XPath 2.0, adding features needed to capture all the use cases
of Chamberlin et al. [93] in order to turn it into a “full query
language” and not just a language for (mostly tree-shaped) node
selection. The most notable of these features are the following;:

1. Sequences. While in XPath 1.0 the results of path expressions
are node sets, XQuery and XPath 2.0 use sequences. Sequences
can be constructed or result from the evaluation of an XQuery
expression. In contrast to XPath 1.0, sequences cannot only be
composed of nodes but also of atomic values. For example, (1,
2, 3) is a proper XQuery sequence.

2. Strong typing. Like XPath 2.0, XQuery is a strongly typed
language. In particular, most of the (simple and complex) data
types of XML Schema are supported. The details of the type
system are described in Draper et al. [138]. Furthermore, many
XQuery implementations provide static type checking.

3. Construction, Grouping, and Ordering. While XPath is limited
to selecting parts of the input data, XQuery provides ample
support for constructing new data. Constructors for all node
types as well as the simple data types from XML Schema are
provided. New elements can be created either by so-called direct
element constructors (that look just like XML elements) or by
what is referred to as computed element constructors. The latter
for example allows the name of a newly constructed element to
be the result of a part of the query.

4. Variables. Like XPath 2.0, XQuery has variables which are
defined in so-called FLWOR expressions. A FLWOR expression
usually consists of one or more for clauses, an optional where
clause, an optional order by clause, and a return clause. The
for clause iterates over the items in the sequence returned by the
path expression in its in part; for \$book in //book for example
iterates over all books selected by the path expression //book.
The where clause specifies conditions on the selected data items,
the order by clause allows the items to be processed in a certain
order, and the return clause specifies the result of the entire
FLWOR expression (often using constructors as shown above).
Additionally, FLWOR expressions may contain, after the for
clauses, let clauses that also bind variables but without iterating
over the individual data items in the sequence bound to the
variable.

5. User-defined functions. XQuery allows the user to define new
functions specified in XQuery . Functions may use recursion.

6. Universal and existential quantification. Both XPath 2.0 and
XQuery 1.0 provide some and all for expressing conditions using
existential or universal quantification.
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7. Schema validation. XQuery implementations may (optionally)
provide support for schema validation, both of input and of
constructed data, using the validate expression.

8. Full host language. XQuery completes XPath with capabilities
for setting up the context of path expressions (e.g., for declaring
namespace prefixes and default namespace), importing function
libraries and modules, and providing flexible means for serializa-
tion that are in fact shared with XSLT 2.0 [216].

9. Unordered sequences. To assist query optimization, XQuery
provides the unordered keyword, indicating that the order of
elements in sequences that are constructed or returned as result of
XQuery expressions is not relevant. For example, unordered\{for
\$book in //book return \$book/name\} indicates that the nodes
selected by //book may be processed in any order in the for
clause, and that the order of the resulting name nodes can also
be arbitrary. Note that inside unordered query parts, the result
of any expressions querying the order of elements in sequences,
such as fn:position or fn:last, is non-deterministic.

There is at least one respect in which XQuery is more restric-
tive than XPath, namely that not all of XPath’s axes are manda-
tory. An XQuery implementation may not support ancestor,
ancestor-or-self, following, following-sibling, preceding,
and preceding-sibling. This does not restrict XQuery’s expres-
siveness, as expressions using reverse axes (such as ancestor) can
be rewritten [291], and the “horizontal axes” such as following
or following-sibling, can be replaced by FLWOR expressions
using the and operators that compare two nodes with respect to
their position in a sequence.

For a comprehensive yet easy to follow introduction to XQuery
see, e.g., Katz et al. [211].

COMPOSITION-FREE XQUERY IN 1000 WORDS. In the follow-
ing, we focus on a fragment of XQuery, called non-compositional
XQuery [224, 45], that has a well-defined, fairly easy to under-
stand semantics and illustrates all issues salient for this thesis.
However, many of the restrictions to the syntax can be dropped
without affecting expressiveness and complexity, e.g., we could in-
tegrate full navigational XPath as discussed in Section 4.2.1.1. The
only real restriction of composition-free XQuery in comparison
to full XQuery is that it disallows any querying of constructed nodes,
i.e., the domain of all relations is limited to the input nodes. This
limitation clearly does not hold for full XQuery (even if we do
not consider user-defined functions). Its effect on expressiveness
and complexity is discussed in detail in Koch [224].
(Composition-free) XQuery is built around controlled itera-
tions over nodes of the input tree, expressed using for clauses.
Controlled iteration is important for XQuery as it is founded on
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sequences of nodes rather than sets of nodes (as XPath 1.0). In
this respect it is more similar to languages such as DAPLEX [334]
or OQL [88] than to XPath 1.0. For loops use XPath expressions
for navigation and XML-look-a-likes for element construction, all
of which can be, essentially, freely nested. The following query
creates a list of articles containing one author element for each
author in the input XML tree (bound here and in the following
to the canonical input variable $inp).

<paperlist>
for $a in $inp/descendant::author return
<author> for $p in $inp/descendant::article return
if some $x in $p/descendant::author satisfies
deep-equal($x, $a)
then $p
</author>
</paperlist>

For each author element, the nested for loop creates a list of all
its articles. The latter expression can be more elegantly expressed
in full XQuery using XPath qualifiers or where clauses, but here it
is shown in the “normalized” syntax of composition-free XQuery
following Koch [224].

We use deep-equal, XQuery’s structural equality that tests
whether the sub-trees at $x and $a are isomorphic, as authors
can be represented using last and first name elements in our
context and both have to be equal for it to be the same author.

A complete definition of the syntax of composition-free XQuery
is given in Table 1. In addition to the specification, the usual
semantic restrictions apply, e.g., the label of the start and end
tags must be the same, variables must be defined (using for)
before use, etc. As mentioned, there is one exception to the rule
for variables: the canonical input variable $inp is always bound
to the input XML tree.

The semantics of a composition-free XQuery expression is
defined in Benedikt and Koch [45].

XQUERY IN INDUSTRY AND RESEARCH. From the very start,
the development of XQuery has been followed by industry and
research with equal amounts of interest.Even before the devel-
opment was finished, initial practical introductions to XQuery
had been published, e.g., Katz et al. [211], Brundage [73]. In-
dustry interest is also visible in the simultaneous development
of standardized XQuery APIs, e.g., for Java [140], and numer-
ous implementations, both open source (e.g., Galax [149]) and
commercial (BEA [151], IPSI-XQ [146]). First results concerning
the implementation of XQuery on top of standard relational
databases [131, 176] indicate that this approach leads to very
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(query) (query) (query) | (element) | (variable)
I (step) | (iteration) | (conditional)
(element) n= ‘<" (label) '>" (query) ‘<" (/label) ">’

| ‘<" “lab(’ (variable) ’)>" (query) ‘</’ "lab(’
(variable) ')>’

(step) = (variable) '/’ (axis) ‘::" (node-test)

(iteration) == ‘for’ (variable) ‘in’ (step) ‘return’ (query)
(conditional) == ‘if’ (condition) “then’ (query)

(condition) = (variable) ‘=" (variable) | (variable) ‘=" ‘<’ (label)

‘7> | “true’
| ‘some” (variable) ‘in’ (step) ‘satisfies’

(condition)
| (condition) ‘and’ (condition) | (condition) ‘or’
(condition) | ‘not” (condition)
(axis) == ‘child’ | ‘descendant’ | ‘descendant-or-self’
| ‘next-sibling’” | ‘following-sibling” |
“following’
(node-testy == (label) | ‘node()’
(variable) = ‘$/(identifier)

Table 1: Syntax of composition-free XQuery

efficient query evaluation if a suitable relational encoding of the
XML data is used.

It is intuitively clear that XQuery is Turing complete since it
provides recursion and conditional expressions. A formal proof of
the Turing-completeness of XQuery is given in Kepser [217]. Effi-
cient processing and (algebraic) optimization of XQuery, although
acknowledged as crucial topics, have not yet been sufficiently
investigated. Moreover, techniques for efficient XPath evaluation,
as discussed above, can form the basis for XQuery optimization.

Beyond querying XML data, it has also been suggested to
use XQuery for data mining [355], for web service implementa-
tion [293], for querying heterogeneous relational databases [365],
for access control and policy descriptions [280], for synopsis
generation [114], and as the foundation of a visual XML query
language (XQBE) [29], of a XML query language with full text
search capabilities [16, 15], and of an update [313, 74, 95] and
reactive [67] language for XML.

Recently, the W3C has proposed a revision [96] to XQuery 1.0,
termed XQuery 1.1, which among minor changes adds explicit
grouping (using a new group-by clause) and iteration windows
(or blockwise iteration, using a new window clause with several
flavors).
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4.2.1.3 Reachability in Trees

Like XPath, most XML query languages provide some form of
path expression or axis for expressing different forms of reacha-
bility in a graph, most notably direct reachability or child axis
vs. descendant axis. Path expressions have been introduced al-
ready for relational databases, e.g., in GEM [375], an extension
of QUEL, and for object-oriented databases, e.g., in OQL [88].
OQL expresses paths with the extended dot notation introduced in
GEM: SELECT b.translator.name FROM Books b selects the names,
or components, of the translators of books. Note that there must
be at most one translator per book for this expression to be legal.

Generalized (or reqular) path expressions [154, 104] extend this idea
with operators similar to regular expressions, e.g., the Kleene
closure (and thus indirect reachability) operator on (sub-)paths
under the additional requirement that each component is a node
label. As a consequence, and in contrast to the extended dot
notation, generalized path expressions do not require explicit
naming of all nodes along a path. Lorel [10] is an early exemplar
of a semi-structured query language, though being based on a
(graph-shaped) data model. Lorel’s syntax resembles that of SQL
and OQL, extending OQL’s extended dot notation to generalized
path expressions. To illustrate this aspect of Lorel, assume that
one is interested in books having “Peter Jones” either as author
or translator. Assume also that the literal giving the name of
the author is either wrapped inside a name child of the author
element, or directly included in the author element. The selection
of such books can be expressed in Lorel by the following where
clause filter on all books B: where B. (author|translator).name?
= "Peter Jones".

Given that these efforts predate XPath significantly, it might
seem surprising that XPath chose not to offer general path ex-
pressions, but only the weaker concept of axes. Remember, XPath
allows navigation in all directions (vertical using descendant and
ancestor, horizontal using following and preceding and their
respective -siblings variants), while generalized path expres-
sions only allow vertical navigation. However, XPath only pro-
vides closure axes (i.e., a path with any number of arbitrarily
labeled nodes), but no closure of actual expressions. Thus it is not
possible to express, for example, that two elements are connected
by nodes carrying a certain label.

The difference with respect to the possible directions of nav-
igation is clearly motivated by the particular emphasis placed
on order in XML. The choice to provide only closure axes, how-
ever, is less obvious. Without closure of arbitrary path expres-
sions, XPath cannot express regular path expressions such as
a.(b.c)*.d (meaning “select d’s that are reached via one a and
then arbitrary many repetitions of one b followed by one c”).
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Moreover, it turns out that such a feature (sometimes called
conditional axes) is exactly what is missing from XPath to turn it
into a first-order complete language on ordered trees [266, 265].

The inclusion of reverse axes in XPath has been shown not
to increase the expressive power of XPath [291]. Consequently,
they are used infrequently and, with the exception of the trivial
parent axis, are considered optional features in XQuery that do
not have to be provided by a conforming implementation.

Nevertheless, the efficient realization of closure axes has proved
to be one of the more fruitful issues on the road to a scalable XML
query language. In the following section, we classify approaches
for implementing tree queries expressed in XPath or XQuery. All
of these approaches have to deal in some form or the other with
the presence of closure axes.

4.2.1.4 Tree Queries on Tree Data

While XQuery (and even full XPath 1.0) can also express more
powerful graph queries, the most significant results have been
achieved on the implementation of tree queries. For tree queries,
the restriction of XML to tree data can be exploited to provide
highly efficient (i.e., linear time and space) evaluation of XML
queries even in the absence of sophisticated indices. To keep the
discussion focused we ignore index-based evaluation of XML,
and refer the interested reader to the survey of Weigel [361].

Most of the remaining approaches to the evaluation of XML
tree queries fall into one of the following four classes:

1. Structural joins, proposed by Al-Khalifa et al. [14], are most
reminiscent of query evaluation for relational queries and ar-
guably inspired by earlier research on acyclic conjunctive queries
on relational databases [168]. Tree queries are decomposed into
a series of (structural) joins. Each structural join enforces one
of the structural properties of the given query, e.g., a child or
descendant relation between nodes or a certain label. Due to
its similarity with relational query evaluation it has proved to
be an ideal foundation for implementing XPath and XQuery on
top of relational databases [174]. It turns out, however, that the
use of standard joins is often not ideal, and that structure- or
tree-aware joins [66] can significantly improve XPath and XQuery
evaluation.

2. Twig (or stack) joins [75, 101], by contrast, employ a single
operator to solve an entire tree query rather than decomposing
it into structural joins. Twig joins operate by keeping one stack
for each step in a query, which represents partial answers for the
corresponding node set. These stacks are organized hierarchically
with (where possible, implicit) parent pointers connecting partial
answers for upper stack entries to those of lower ones. Different
approaches from this class mostly vary in how the stacks are
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populated. In contrast to the other approaches, twig joins are
limited to vertical, i.e., child and descendant, axes and have not
been adapted for the full range of XPath axes.

3. PDA-based approaches, based on pushdown automata, aim
to evaluate XPath queries on a single input stream similar to a
SAX event stream. This is in contrast to twig joins, which assume
one stream of nodes from the input document for each stack
(and thus XPath step). SPEX [290, 289, 288], for example, also
maintains a record of partial answers for each XPath step, but
minimizes memory usage and exploits the existential nature of
most XPath steps by maintaining only generic conditions rather
than actual pointers to elements from the XML stream (except
for candidates of the actual results set, of course). Furthermore,
in contrast to the twig join approaches, it supports all XPath axes.
This comes at the cost of a slightly more complex algorithm.

4. Interval-based approaches finally combine the tree-awareness
of twig joins and SPEX with the structural join approach: The
query is decomposed into a series of structural relations, but each
relation is organized in such a way that all elements related to
one element of its parent step lie in a single continuous interval.
This allows for both efficient storage and join of intermediate
answers. The first interval-based approach are the Complete
Answer Aggregates (CAA) [273, 272]. Furche [156] proposed the
clacaG algebra, which improves on the complexity of CAA and in
contrast to CAA covers arbitrary tree-shaped relations. It is also
shown that interval-based approaches can be extended even to a
large, efficiently detectable class of graphs (so called continuous-
image graphs) that is not covered by any of the other linear-time
approaches discussed above.

4.2.1.5 Supporting Order

In the previous sections, we have focused on the tree aspect of
XML and its effect on query languages and their evaluation. An-
other characteristic that sets XML apart from many other data
formats is its emphasis of ordered data. While very appropriate
in a document setting such as XHTML or DocBook [354], this
presents a challenge for query languages, which traditionally
prefer a set-oriented perspective under the assumption that it
enables more diverse evaluation strategies and thus better auto-
matic optimization. XML query languages have addressed this
challenge in various different ways.

Most of the early proposals ignore order in XML documents
entirely or support it only superficially. While XPath 1.0 allows
querying the order, its results are either in document or in reverse
document order, depending on the axis of the final step. For
query languages like XQuery that also support construction of
new XML trees, however, this would be utterly insufficient. For
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example, selecting authors together with their articles from the
sample data in Section 4.1.1 and then constructing one XHTML
section for each author containing a list of her articles requires
control over the order in which section elements (e.g., h1) and list
elements (ul or ol) are intertwined.

This need is recognized in XQuery, and in fact there are many
ways in which XQuery is designed around proper support for
ordered XML. Where results of path expressions are node sets in
XPath 1.0, XQuery and XPath 2.0 use sequences.

The disadvantage of XQuery’s choice to make order so preva-
lent in the language is that implementations have to maintain this
order to conform to the specification.XQuery partially acknowl-
edges this problem by providing the unordered keyword, which
allows a sub-query to be evaluated indifferent to order, as if it
had a set-based semantics. Grust et al. [175] discuss how order
indifference in XQuery can be exploited. Similarly, some query
languages, most notably Xcerpt [320], provide both ordered and
unordered queries without preference for either.

This concludes our brief overview of XML query languages.
For a comparison of a larger set of XML query languages the
reader is referred to the survey of Bailey et al. [36]. In all three
areas discussed, XML has triggered the development of novel
approaches to query evaluation that have considerably extended
our understanding of hierarchical queries in general.

In the next section, we turn to RDF and try to illustrate where
related questions arise for RDF querying. We will see that knowl-
edge about RDF query evaluation is significantly less advanced,
due to the fact that RDF it is less established as a data format
and topic of research.

4.2.2  Graphs and Resources—RDF

Compared to XML query languages, the field of RDF query lan-
guages is less mature and has not received as much attention from
research, just as RDF itself. Whereas XML query languages focus
on trees and order, RDF query languages have to deal with the
simple, but also highly flexible RDF: RDF data (see Section 4.1.2)
comes in the shape of arbitrary (usually node- and edge-labeled)
graphs. Surprisingly, and in sharp contrast to the XML case, many
RDF query languages only provide access to direct properties but
not to reachability information (see Section 4.2.2.2). In contrast
to relational or object-oriented data, all properties (i.e., outgoing
edges) are optional and multi-valued. For instance, an author may
or may not have a last name, or even many of them. How query
languages deal with this inherent optionality is discussed in Sec-
tion 4.2.2.3. Resources (i.e., nodes) are in general labeled with
globally unique identifiers that allow us to talk about the same
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resource in different datasets. However, RDF also allows blank
nodes which play the role of purely local identifiers. Blank nodes
are like existential data and pose particular challenges for RDF
query evaluation (see Section 4.2.2.4).

Again, we start off the discussion of RDF query languages
with a closer look at one of the more prominent exemplars:
SPARQL. We focus on the essentials of SPARQL, for a more in-
depth comparison of more than a dozen RDF query languages
see Furche et al. [157].

4.2.2.1  SPARQL in 1000 Words

Fundamentally, SPARQL is a fairly simple query language in the
spirit of basic subsets of SQL or OQL. However, the specifics of
RDF have lead to a number of unusual features that arguably
make SPARQL more suited to RDF querying than previous ap-
proaches such as RDQL [278]. This comes at the price of a more
involved semantics complemented by a tendency to redefine
or ignore established notions from relational and XML query
languages rather than build upon them [308].

Nevertheless, SPARQL is expected to become the “lingua franca”
of RDF querying, and it is well worth further investigation.

Let us look at an example. The following SPARQL query se-
lects from the graph in Section 4.1.2 all articles in the journal
named “Computer Journal” and returns a new graph where
the bib:isPart0f relation of the original graph is inverted to
bib:hasPart.”

CONSTRUCT { ?j bib:hasPart ?7a }
WHERE { ?a rdf:type bib:Article AND ?a bib:isPartOf ?j
AND ?j bib:name ‘Computer Journal’ }

This query illustrates SPARQLSs fundamental query construct: a
pattern (subject, predicate, object) for RDF triples. Any RDF triple
is also a triple pattern, but a triple pattern differs from a triple
in that it allows variables for each of the components. To make
it easier to define the syntax of the language, we use the variant
syntax for SPARQL discussed in Pérez et al. [303] We consider
two forms of SPARQL queries, SELECT queries that return lists
of variable bindings and CONSTRUCT queries that return new RDF
graphs. Triple patterns contained in a CONSTRUCT clause (or “tem-
plate”) are instantiated with the variable bindings provided by
the evaluation of the triple pattern in the WHERE clause. We omit
named graphs and assume that all queries are on the single input
graph.

Here and in the following we use namespace prefixes to abbreviate URIs. The
usual URIs are assumed for rdf, rdfs, textttdc (dublin core), foaf (friend-of-a-
friend), vcard vocabularies. bib is a prefix bound to an arbitrary URIL.
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(query) = ‘CONSTRUCT’ (template) ‘WHERE’ (pattern)
| ‘SELECT’ (variable)+ ‘WHERE’ (pattern)
(template) == (triple) | (template) ‘AND’" (template) | “{’ tem-
plate ‘}’
(triple) = (resource)’,” (predicate)’,” (resource)
(resource) == (uri) | (variable) | (literal) | (blank)
(predicate) = (uri) | (variable)
(variable) n= ‘7 (identifier)
(pattern) u= (triple) | ‘{’ (pattern) '}
| (pattern) ‘FILTER’ “(’ (condition) *)" |
| (pattern) ‘AND’ (pattern) | (pattern) ‘UNION’
(pattern)
| (pattern) ‘MINUS’ (pattern) | (pattern) 'OPT’
(pattern)
(condition) == (variable) ‘=" (variable) |  (variable) ‘=’
((literal) | (uri))
| “BOUND(’ <varmble> )" | “isBLANK(” (variable) )’
| “isLITERAL(’ (variable) *)’ | “isIRI(’ (variable)
I)I
| (negation) | (conjunction) | (disjunction)
(negation) = '='(condition)

(conjunction) ::= (condition) ‘/\" (condition)

(disjunction) = (condition) "/ (condition)
Table 2: Syntax of SPARQL

The full grammar of SPARQL queries considered here, which
extends that of Pérez et al. [303] by CONSTRUCT queries, is given
in Table 2.

We impose a number of additional syntactic restrictions: range-
restrictedness requires that all variables in the head (CONSTRUCT
or SELECT clause) must also occur in the body (WHERE clause)
of the query; error-freeness requires that all variables occurring
in the (right-hand) condition of a FILTER expression must also
occur in the (left-hand) pattern. Finally, we allow only valid RDF
constructions in CONSTRUCT clauses, i.e., no literal may occur as a
subject, variables occurring in subject position are never bound
to literals, and variables occurring in predicate position are only
ever bound to URIs (but not to literals or blank nodes). The
first condition can be enforced statically, the others by adding
appropriate isURI or negated isLITERAL filters to the query body.

Formal semantics for SPARQL were given by Pérez et al. [303]
and Polleres [307].
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Recently, SPARQL has been subject to a number of studies and
extensions. Its complexity and formal semantics have been stud-
ied by Pérez et al. [303], who showed that full SPARQL patterns
are just as expressive as relational algebra and thus PSPACE-
complete with respect to their query complexity. This is some-
what disappointing, especially since many graph queries that
are highly desirable for RDF query languages (including simple
reachability queries) cannot even be expressed in SPARQL [23].
Extensions of SPARQL with rules have received some attention,
in part because they address some of these weaknesses and can
be seen as the natural next step towards a semantic web query
engine [307].

Finally, embeddings of SPARQL in XQuery, or vice versa, have
been studied (see, e.g., Akhtar et al. [13]).

4.2.2.2  Reachability

In sharp contrast to the XML case, many RDF query languages do
not provide a means to access reachability information, or in fact
any form of navigation in the RDF graph beyond the traversal of
a fixed number of edges. Angles and Gutiérrez [23] describe a set
of graph queries that are desirable for an RDF query language,
but cannot be expressed by SPARQL or RQL.

If we look beyond SPARQL and RQL, however, we find that
RDF query languages actually support a wide variety of path
expressions:

1. Basic path expressions are abbreviations for triple patterns as
found in SPARQL and RQL. They allow only the specification of
fixed length traversals, i.e., the traversed path in the data has the
same length as the path expression. Basic path expressions are no
more expressive than triple patterns, but are nevertheless encoun-
tered in several query languages as syntactic sugar. Examples of
query languages which only provide basic path expressions are
GEM [375], OQL [88], SPARQL [308], and RQL [210].

2. Unrestricted closure path expressions augment basic path ex-
pressions by the ability to traverse arbitrary-length paths. XPath
path expressions (disregarding XPath predicates for the moment)
fall into this category, with closure axes such as descendant. They
are strictly more expressive than basic triple patterns, and can
be realized in languages that provide (at least linear) recursive
views in addition to triple patterns. SQL-99 is an example of a
language that provides no closure path expressions but linear re-
cursion and can emulate (unrestricted) closure path expressions.
Unrestricted closure path expressions can be found in many XML
query languages, e.g., in XML-QL [135], Quilt [97] and XPath.
In RDF query languages they are much less common, iTQL [3]
being a notable exception. The reason for this is that RDF, in
contrast to XML, has no dominant hierarchical relation but many
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relations of equal importance. This makes unrestricted closure
often too unrestrictive for interesting queries.

3. To address this issue, several RDF query languages provide
generalized or regular path expressions. Here, full regular expression
syntax is provided on top of path expressions. For example, the
expression a*. ((b|c).e)+ traverses all paths of arbitrary many
a properties followed by at least one repetition of either b or c
followed by e. Regular path expressions are provided, e.g., by
Versa’s traverse operator, Xcerpt’s qualified descendant, or the
extension of XPath with conditional axes [266]. Marx [266] also
showed that regular path expressions are even more expressive
than unrestricted closure path expressions, and that a path lan-
guage like XPath becomes first-order complete with the addition
of regular path expressions.

To summarize, path expressions provide a convenient way to
specify structural constraints in RDF queries and are therefore
supported by a large number of RDF query languages. However,
surprisingly many RDF query languages ignore (unrestricted or
regular) closure path expressions. This is surprising insofar as
these path expressions make writing queries easier and can be
implemented efficiently. In particular, unrestricted closure path
expressions can be implemented nearly as efficiently as basic
path expressions.

EVALUATION OF REACHABILITY QUERIES ON GRAPHS. For
tree data, membership in closure relations can be tested in con-
stant or almost constant time (e.g., using interval encodings [137]
or other labeling schemes such as that of Weigel et al. [363]). For
graph data this is far less obvious. Fortunately, recent years have
seen a considerable amount of research on reachability or closure
relations and their indexing in arbitrary graph data. Obviously,
we could carry out the membership test in constant time if we
store the full transitive closure matrix. However, for large graphs
this is infeasible. Therefore, two classes of approaches have been
developed that allow membership tests in sub-linear time and
significantly less space.

The first class is based on the idea of a 2-hop cover [106]. In-
stead of storing the full transitive closure, we allow reachable
nodes to be reached via at most one other node (i.e., in two
“hops”). More precisely, each node n is labeled with two connec-
tion sets, in(n) and out(n). The former contains a set of nodes
that can reach n, the latter a set of nodes that are reachable from
1. Both sets are assigned in such a way that a node m is reachable
from n if and only of out(n)Uin(m) # (. Unfortunately, comput-
ing a smallest 2-hop cover is NP-hard, and even approximating it
might be too hard in practice [324].
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A different approach is to use interval encoding for label-
ing a tree core and treating the remaining non-tree edges sepa-
rately [12, 101, 356, 350]. This allows for a membership test in
sublinear or even constant time (though the latter would still
incur a considerable indexing cost), e.g., in Dual Labeling [356],
where a full transitive closure over the non-tree edges is com-
puted. GRIPP [350] and SSPI [101] obtain a different trade-off by
attaching additional interval labels to non-tree edges. This leads
to linear index size and time at the cost of increased query time.

These considerations show that reachability, at least in its basic
form, does not need to have a significant negative effect on the
performance of RDF query evaluation. It clearly does not affect
its theoretical complexity, given that the evaluation of SPARQL
SELECT queries is already PSPACE-complete.

4.2.2.3 Optionality

So far, we have focused on purely conjunctive queries. Disjunc-
tion or equivalent union constructs allow the query author to
collect data items with different characteristics in one query. For
example, to find colleagues of a researcher from an RDF graph
containing bibliography and conference information, one might
choose to select co-authors, as well as co-editors and members of
the same program committees. On RDF data, disjunctive queries
are far more common than on relational data, since all RDF
properties are by default optional. Many queries have a core of
properties that have to be defined for the data items in question,
but also include additional properties (often labeling properties
or properties relating the data items to further information such
as web sites) that should be reported if they are defined but may
also be absent. The following SPARQL query for example returns
pairs of articles and editors for articles that have editors, and just
articles otherwise. If one considers the results of a query as a
table with nil values, the editor column is nil when an article
has no bib:editor property.

SELECT ?article, ?editor
WHERE { ?article a bib:Article AND
OPTIONAL { ?article bib:editor ?editor } }

This kind of optional selection makes life simpler for both the
query author and the query processor, as compared to a dis-
junctive or union query which has to duplicate the non-optional
part:
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SELECT ?article, ?editor
WHERE { ?article a bib:Article AND
?article bib:editor ?editor }
UNION
{ ?7article a bib:Article }

In fact, the latter query is not even equivalent as it returns
an additional result tuple (X, nil) for articles X that do have an
editor. This raises the question of the precise semantics of an
optional selection operator. The answer to this question is not
the same for different RDF (or XML) query languages. The main
difference between the offered semantics in languages such as
SPARQL, Xcerpt, or XQuery lies in the treatment of multiple
optional query parts with dependencies. For example, in the
expression A /\ optional(B) /\ optional(C) the same variable
V may occur in both B and C. In this case, if we just go ahead and
use the B part to determine bindings for V, these bindings may
be incompatible with C, i.e., prevent the matching of C.

The different ways to handle this case of multiple interdepen-
dent optionals yields the following four semantics for optional
selection constructs:

1. Independent optionals disregard interdependencies between
optional clauses by imposing an order on the evaluation of op-
tional clauses. SPARQL for example uses the order of optional
clauses in the query. The following query selects articles together
with their respective editor and, if that editor is also an author,
also with the author name:

SELECT ?article, ?person, ?name
WHERE { ?article a bib:Article AND
OPTIONAL { ?article bib:editor ?person }
OPTIONAL { ?article bib:author ?person AND
?person bib:name ?name } }

If we changed the order of the two optional parts, the semantics
of the query would also change: select all articles together with
their authors and author names, if any. The second optional
becomes redundant, as it only checks whether the binding of
?person is also an editor of the same article. Whether or not the
check fails does not affect the outcome of the query.

It should be obvious that this semantics for interdependent op-
tionals is equivalent to allowing only a single optional clause per
conjunction that may in turn contain other optional clauses. The
above query could also be written as follows:

SELECT ?article, ?person, ?name
WHERE { ?article a bib:Article .
OPTIONAL { ?article bib:editor ?person



4.2 DATABASE-STYLE QUERY LANGUAGES 59

OPTIONAL { ?article bib:author ?person AND
?person bib:name ?name }

Pl

This observation, however, only applies if the optional clauses are
interdependent. If they are not interdependent, multiple optional
clauses in the same conjunction differ from the case where they
are nested.

2. Maximized optionals consider any order of optionals. In the
example they would return the union of the orders, i.e., either
first binding editors and then checking whether they are also
authors, or first binding authors and author names and then
checking whether they are also editors. This semantics, which
was first used in Xcerpt [320], is more involved than the above
and assigns different meanings to consecutive vs. nested option-
als. The advantage of this is that it is equivalent to a rewriting of
optional to disjunctions with negated clauses: A /\ optional(B)
/\ optional(C) is equivalent to (A /A not(B) A not(C)) V (A
A not(B) A C) V (AA B A not(C) V (AA B A (). Thisen-
sures that the maximal number of optionals for a certain (partial)
variable assignment is used.

3. All-or-nothing optionals are a rare case of optional semantics
where either all optional clauses are consistent with a certain
variable assignment or all optional variables are left unbound.
This semantics can be obtained in SPARQL and Xcerpt by using
a single optional clause instead of multiple independent ones.

4.2.2.4 Existential Information

Recall that RDF data may contain specifically marked resources,
called blank nodes, whose identity is limited to the RDF graph
and that express only existential information. If we see an RDF
graph as a logical conjunction of triples, they act as existential
quantifiers over the resulting formula. Blank nodes pose a number
of challenges for RDF query evaluation.

First, when blank nodes are selected by a query, should a query
language return them like any other resource? Blank nodes are
essentially local identifiers and thus may not carry much infor-
mation outside the scope of their original graph. Furthermore,
blank nodes express existential information, which may already
be implied by the other data and therefore redundant. Consider
for example the data of Figure 3 on page 41, and assume that this
data additionally contained a statement that the article smith26005
is part of issue 11 of some journal. That information is obviously
already implied by the existing data (that smith2005 is part of
issue 11 of the journal “Computer Journal”) and can thus safely
be omitted. An RDF graph without such redundant information
is called lean [189]. Ideally, we might expect an RDF query lan-
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guage to return only those blank nodes that are not redundant
(perhaps together with enough additional information to retrieve
them again, e.g., a concise bounded description [340]). However,
simply computing the lean graph for any given RDF graph is
co-NP-complete [180]. Therefore, many RDF query languages
choose to ignore this issue and return blank nodes just like any
other resource.

Second, when constructing new RDF graphs (e.g., through
SPARQL’s CONSTRUCT clause), we need to be able to construct also
new blank nodes to obtain an adequate RDF query language. Say
we want to construct a new blank node with edges to all articles
selected by this query. Then a single blank node for all articles
is needed. However, we might also want to construct, for each
article, a new blank node with edges to each of its authors. Now
we need one “fresh” blank node for each article (otherwise all
articles share all authors) but only one for each group of authors
of the same article. SPARQL only allows the construction of blank
nodes that are in the scope of all query variables and thus can
express neither of the above queries. In RDFLog [78, 77] the
effect of blank nodes on RDF querying is studied in detail. It is
shown, in particular, that the combination of blank node support
(even as in SPARQL) with (recursive) rules (as, e.g., in Schenk
and Staab [323]) immediately leads to an undecidable, Turing-
complete language that can be reduced, using Skolemization and
a so-called un-Skolemization, to standard logic programming.
It is also shown that arbitrary scoping of blank nodes is not
more expensive as SPARQL-style V3 scopes and that, at least in
presence of rules, the two are actually equivalent.

This concludes our brief summary of core issues on RDF query-
ing and RDF query languages. The above discussion shows that
RDF querying is a less mature field of research than XML query-
ing, but that there are a number of open questions that need to
be addressed for efficient and convenient access to RDEF, and thus
arguably the entire semantic web vision, to move forward.

4.2.3  Outlook—Versatile Languages

In the previous sections we have discussed XML and RDF query-
ing separately. However, in recent years, GRDDL [115] and similar
initiatives have invested effort into defining a means to conve-
niently access both XML and RDF data within the same appli-
cation or even the same query language. This is reflected in an
increasing number of approaches to integrate XML and RDF
querying. Existing approaches for integrating XML and RDF
access roughly fall into one of two categories: transformational
and multi-language approaches. In the former, a pure XML or
a pure RDF query language is used, and some encoding in the
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corresponding format is used to access data in the respective
other format. In the latter, a query language for one of the data
formats is combined with, most often embedded into, one for the
other format. Examples include XSPARQL and GRDDL. Trans-
formational approaches have the advantage that users only need
to learn a single language. However, this is offset by the need to
understand the encoding of RDF in XML or vice versa and very
limited support for specifics of the encoded data format that are
not present in the native format.

A unique position among these approaches is held by Xcerpt
and its extension Xcerpt"PF: through a slight extensions to the
pattern- and rule-based XML query language Xcerpt, convenient
querying of RDF is enabled that, in contrast to languages like
SPARQL, addresses also the graph nature of RDF. The vast ma-
jority of language features is shared by both the XML and the
RDF version of Xcerpt, thus alleviating the problems of the above-
mentioned integration approaches.

We proceed by briefly outlining the basic ideas of Xcerpt to
give an impression of how a versatile semi-structured query
language compares with XQuery or SPARQL as discussed in
the previous sections. A more detailed description of Xcerpt is
given by Schaffert and Bry [320], its RDF extension XcerptRDF is
discussed by Bry et al. [79].

Xcerpt

Xcerpt [320] is a query language designed after principles given
by Bry et al. [80] for querying both data on the “standard web”
(e.g., XML and HTML data) and data on the semantic web (e.g.,
RDF and Topic Maps data, etc.). Xcerpt is data versatile, i.e., the
same Xcerpt query can access and generate as answers data in
different web formats. Xcerpt is strongly answer-closed, i.e., it not
only allows for the construction of answers in the same data
formats as the queries like, e.g., XQuery [94], but also for further
processing of the data generated by this same query program.
Xcerpt queries are pattern-based and allow for an incomplete
specification of the data to be retrieved, by (1) not explicitly
specifying all children of an element, (2) specifying descendant
elements at indefinite depths (restrictions in the form of regular
path expressions being possible), and (3) specifying optional
query parts. The evaluation of incomplete queries is based on
a novel unification algorithm called simulation unification. The
processing of XML documents is graph-oriented, i.e., Xcerpt is
aware of the reference mechanisms of XML (e.g., of ID/IDREF
attributes and links).

An Xcerpt program consists of a finite set of Xcerpt rules. The
rules of a program are used to derive new, or transform existing,
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data from existing data (i.e., the data being queried). Construct
rules are used to produce intermediate results while goal rules
form the output of a program.

While Xcerpt works directly on XML or RDF data, it has its own
data format for modeling XML documents or RDF graphs: Xcerpt
data terms. For example, the XML snippet <book><title>White
Mughals</title></book> corresponds to the data term book [
title [ "White Mughals"] ]. The data term syntax makes it easy
to reference XML document structures in queries and extends
XML slightly, most notably by allowing unordered data and
making references first class citizens (thus moving from a tree to
a proper graph data model).

The construct rule in the following query for example defines
data about books and their authors, which is then queried by the
goal rule. Intuitively, the rules can be read as deductive rules (like
in, say, Datalog): if the body (after FROM) holds, then the head
(following CONSTRUCT or GOAL) also holds. A rule with an empty
body is interpreted as a fact, i.e., the head always holds.

GOAL

authors [ var X ]
FROM

book [[ author [ var X 1 1]
END

CONSTRUCT book [ title [ "White Mughals" 1,
author [ "William Dalrymple" ] ] END

Xcerpt query terms are used for querying data terms, and in-
tuitively describe patterns of data terms. Query terms are used
with a pattern matching technique, called simulation unification,
to match data terms [318]. They can be configured to take incom-
pleteness or ordering of the underlying data terms into account
during matching (indicated by different types of brackets). Query
terms may also contain (logic) variables. When they do, suc-
cessful matching with data terms results in variable bindings,
which are then used by Xcerpt rules to derive new data terms.
Matching the query term book [ title [ var X ] ] against the
XML snippet above for example results in the variable binding
{X/"White Mughals"}. In addition to the query term types dis-
cussed by Schaffert and Bry [320], we also consider non-injective
ordered and unordered query terms indicated by three braces or
brackets, respectively.

Construct terms are essentially data terms with variables. The
variable binding produced via query terms in the body of a rule
can be applied to the construct term in the head of the rule in
order to derive new data terms. For the above example we obtain
the data term authors [ "William Dalrymple"] as a result.
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4.3 QUERIES AS KEYWORDS: KEYWORD-BASED QUERY LAN-
GUAGES

Two important characteristics generally desirable for social seman-
tic web applications, accessibility and flexibility, make web query-
ing as described in the last section a less than ideal choice as a
means for data retrieval:

ACCESSIBILITY To make structured data accessible for a broad
user base, a query language is needed that is easy to use, a
criterion which web query languages do not fulfill. Like most
programming languages [298], they are designed for usage by
experienced programmers, and usability is of far lesser concern
than for example scalability and expressiveness. Accordingly,
the small number of usability studies carried out for web query
languages focus on comparing users’ performance in different
query formalisms but do not assess overall usability [328, 169].
A notable exception is a study by O’Keefe and Trotman [287],
which found that even researchers in the area of XML have
considerable problems creating valid XPath queries, indicating
that the usability of web query languages is low.

Usability studies performed on database query languages, the
paradigm after which web query languages are modeled, indicate
that participants generally find it hard to use these languages.
Ogden and Brooks [286] give reasons for this, which are likely
to apply also to web query languages: The languages require
the user to have extensive knowledge of the data schema and
they are highly constrained. This leads to frequent mistakes,
which in turn increase the learning time and discourage the
users. In addition, the languages are seen as “overly verbose and
complicated” ([286], page 161).

FLEXIBILITY When many people contribute to data creation,
or when data from different sources is aggregated in one data
repository, strict enforcement of homogeneity of data in terms
of a certain data schema is not feasible without discouraging
potential users from contributing. Additionally, data of various
different types, for example XML and RDF, may be present in the
system, and it should be possible to query over the different data
types using only one query formalism.

The heterogeneity of data necessitates a flexible query interface
which does not require knowledge of the schema and offers
integrated access to data in various formats. While versatile web
query languages (see Section 4.2.3) are designed to address this
issue, most current web query languages fail to do so.

In the domain of textual queries, keyword querying and natural
language querying are the paradigms most commonly used to
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facilitate easy-to-use querying. While some approaches exist for
using natural language querying of XML data [248, 249], we
will not consider this paradigm in the following for two reasons.
First, and notwithstanding the fact that there is no unequivocal
experimental evidence for the superiority of either of the two
paradigms in terms of usability [360, 212, 346], keyword search
has become the de facto standard for information access on the
web, and practically all web users have practice creating keyword
queries. Second, natural language query processors can only
understand a limited subset of natural language. The limits of
this understanding are hard to convey to human users and can
lead to a “spiral of failure” ([360], page 114).

Keyword search is used in a wide variety of applications and
domains, in web search engines such as Google,8 Yahoo!,® and
Bing'® as well as in more specialized contexts and domains.
Entering the query XML Web into Google for example yields a
lists of web pages in which these terms occur; on the shopping
site. Amazon'' and the auction site Ebay'? it results in a list
of products available on the site, and on the social networking
site Facebook," the search results for the same query contain
relevant user groups, events, user profile add-ons, and users who
are interested in the web and XML.

In web search, most queries are keyword-only queries. Google
for instance supports a limited set of label-keyword-like con-
structs like allintitle: XML, which retrieves web sites that have
the word “XML” in their title element. However, these are rarely
used in practice [202, 43].

In general, the structure of web documents can only be queried
to a very limited degree using web search. For example, it is
not possible to specify an arbitrary HTML tag as a surrounding
context for a keyword. In the case of web search engines, which
process vast amounts of data, this can be attributed to the fact that
indexing and retrieving structural information would increase the
data and processing load, thereby decreasing search efficiency.

Amazon, on the other hand, which operates on much less, and
much more homogenous, data, offers advanced search function-
ality for various categories of products like books and magazines
(see Figure 5). The user can provide values for a number of at-
tributes, for instance author and language. While the advanced
search is realized in terms of a form, it is essentially equivalent
to a limited label-keyword query language.

http://www.google.com/
http://www.yahoo.com/
http://www.bing.com/
http://www.amazon.com/
http://www.ebay.com/
http://www.facebook.com/
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Figure 5: The Amazon advanced search interface, which can be
accessed at http://www.amazon.com/gp/browse.html?node=
241582011

Keyword-based querying is an established technique and has
shown great effectiveness in querying the web in a variety of
domains. It is increasingly applied to facilitate non-expert query-
ing of the ever growing amount of (semi-)structured data on the
web. The majority of research in the area of keyword querying
for semi-structured data is concerned with XML data. The most
likely reasons for this are that XML is older and more established
than RDF, and that keyword querying for RDF data is harder to
realize because of its graph structure, labeled edges, and blank
nodes.

In the remainder of this section we will give an introduction
to the topic of keyword querying on semi-structured data. Sec-
tion 4.3.2 identifies the most important research issues in the
area of XML keyword querying and provides an overview of the
different approaches. The less numerous schemes for keyword
querying of RDF are presented individually in Section 4.3.3. We
assume familiarity with XML, RDEF, and their respective data
models (see Section 4.1). The related topic of keyword querying
in relational databases (see, e.g., Bhalotia et al. [57]) will not be
treated here.

4.3.1 Classifying Keyword Query Languages

Web search and web querying can be seen as two extremes with
respect to the degree to which explicit querying of the structure
of the data is supported. The former typically does not allow
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querying of the structure, while in the latter the structure of the
data is usually fully specified. Based on this observation, we can
distinguish three types of keyword-based query languages for
structured data according to the extent to which structure can be
used as a selection criterion.

1. In keyword-only query languages, queries consist of a number
of terms which are matched to the textual content of nodes in
an XML or RDF document, and in some cases to node or (in
the case of RDF) edge labels. Queries make no reference to the
structure of the data. This category includes most keyword query
languages, like XKeyword [37, 198], XRank [179], Spark [378],
and XKSearch [372].

2. In label-keyword query languages such as XSearch [109] and

XBridge [245], a query term is a label-keyword pair of the form
[:k. The term matches data where a node with the label | contains,
either directly or through a descendant node, text matching the
associated keyword k. It is thus possible to indicate the context
in which the keyword should occur.
Depending on the particular query language, either the label or
the keyword may be optional, meaning that query terms can have
the form :k, I:, or I:k. Applied to the example data of Figure 2, the
query title:Web matches node 3. The query :Web, on the other
hand, does not impose any constraints on the node label and
matches nodes 3 and 23.

3. Keyword-enhanced query languages [250, 152, 327] extend tra-

ditional web query languages with simple keyword querying.
They allow for the specification of structure to the extent to which
it is known, but also include constructs for the use of keyword
querying where it is not. Keyword-enhanced query languages
constitute an extension of traditional query languages and there-
fore provide their full expressive power.
Given that (some) web query languages also offer ways to spec-
ify queries when the user lacks knowledge about the schema,
for example through regular path expressions in XPath, one
might wonder what distinguishes traditional query languages
and keyword-enhanced query languages. As pointed out by Flo-
rescu et al. [152] and Schmidt et al. [327], regular path expressions
are useful when the schema is not completely known to the user,
but not when the user has no knowledge of the schema at all. The
reason for this is that query evaluation in web query languages is
not optimized for evaluating vague queries. Furthermore, while
the schema of the data may not have to be known, knowledge
of the query language itself is still necessary, making web query
languages unsuitable for casual users.

A second, orthogonal characteristic of keyword query lan-
guages is the way they are implemented.
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1. Most keyword query languages are implemented as stand-
alone systems that handle all steps of the query evaluation.

2. Another group of keyword query languages translate the
keyword queries into another query language and thus outsource
the query evaluation. This category includes many RDF keyword
query languages [349, 378, 359], but to the best of our knowledge
only one XML language, XBridge [245], which translates keyword
queries into XQuery. The approach of Ladwig and Tran [235]
takes an exceptional position in that it tightly integrates query
translation and query evaluation, and generates queries and
candidate answers at the same time.

3. Keyword-enhanced query languages finally build on exist-
ing systems by combining conventional query languages like
XPath or XML-QL with keyword-querying techniques.

4.3.2  Querying XML

This section gives an overview over the most important issues in
the area of keyword queries for XML data.

4.3.2.1 Determining Semantic Entities

In keyword querying on the web, some structural information
may be taken into account when ranking the results, for example
by assigning different scores depending on whether a keyword
occurs in the title or is printed in big or bold text [71]. The type
of the return value, however, is fixed, and the structure of a
document does not play a role when determining it. Apart from
efficiency, there are two reasons for this. First, web or wiki pages
typically have a comparably small size, and it is reasonable to
return results at the granularity of whole pages. Secondly, in
the case of domain-specific querying on a limited, homogeneous
dataset like that of a shopping website, querying only serves one
task, namely finding matching products. There are only few types
of objects, e.g., books and DVDs, and the return types can easily
be predefined. For example, keywords matching a book might
yield a return entity of type book which by default displays the
title, author, and price, while the return entity for DVDs might
show the title, price and region code.

When applying the concept of keyword-search to RDF or XML
documents, on the other hand, we may be dealing with a single
big document that represents a bibliography or an address book
and contains thousands of entries. In this case, returning the
whole document would not be meaningful. To determine a useful
return value, the data must first be partitioned into semantic
entities.
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Figure 6: Document-centric XML representing an excerpt of an article

XML documents may be data-centric like in the case of a
bibliography, see Figure 2 on Page 39, or also document-centric,
representing a text and its structure or formatting, as shown in
Figure 6. A truly versatile keyword-based query language for
XML should yield useful results for both kinds of documents,
and any type that might exist in between.

As an illustration of the return value problem, again consider
the XML document of Figure 2, which represents a bibliography.
A query K = {wj, ..., wx} matched on an XML dataset T yields the
result lists L ={Ly, ..., L}, where each list L; = {vq, v, ...} consists
of all the nodes v that contain w;. For the data of Figure 2, the
first term in the query K = {Smith, Web} (conjunction is assumed
here and in the following) has one match: the content of node
11, which is the last name of one of the authors of an article
(Ly ={11}). The second term matches the titles of both articles,
and thus L, ={3,23}.

Returning only the matched nodes would not provide much
useful information for the user. Neither would returning the
whole document, which might contain many more entries. Given
the nature of the data and the query, we can assume that the
user is interested in obtaining information about articles that
contain the two search terms. This means that the meaningful
semantic entities which should be returned (as a whole or in
part) in response to the query, are subtrees governed by article
nodes. In general, these semantic entities are determined either
at the schema level or, more frequently, by connecting keyword
matches in the data.
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One approach to the grouping of matches is to find the most
specific element that is an ancestor to at least one match instance
of each keyword, and to consider it the root of their common se-
mantic entity. The underlying idea is that the ancestor-descendant
relationship indicates a strong semantic connection, particularly
when the distance between ancestor and descendant is small.
Correspondingly, a node which is the closest common ancestor
of instances of all keywords is likely to encode the most specific
concept that the keyword matches have in common. This concept
is called the Lowest Common Ancestor (LCA) [185], and was used
in an early approach to XML keyword querying by Schmidt et al.
[327].

Depending on the application and the specific algorithm, an
answer set S ={S1,S;, ...} may contain either one (||Si|| = ||K]|) or
more than one (||Si|| > ||K||) matched node for each keyword. In
the above example, and assuming the latter case, the three answer
sets are S; ={11,3}, S, ={11,23}, and S3 = {11, 3,23} with LCA
nodes LCA(S1) =2, LCA(S;) =1, and LCA(S3) = 1, respectively.
The latter two answer sets contain nodes that belong to two
different publications and thus not to a meaningful semantic
entity given the context. They are considered to be false positives.

Several refinements of LCA have been proposed to remedy
the problem of false positives, that is, the grouping of matches
which do not belong to a common relevant or meaningful seman-
tic entity. The alternative grouping semantics presented in the
following reduce the set of LCA answers by eliminating matches
that are considered false positives. However, this often introduces
false negatives, meaning that not all relevant answers are returned.
An extensive review of some of the connection heuristics pre-
sented here is given by Vagena et al. [351].

INTERCONNECTION SEMANTICS The assumption underlying
Interconnection Semantics [109] is that two different nodes with
the same label correspond to different entities of the same type,
while nodes with differing labels represent concepts belonging
to different types.

Accordingly, two nodes vy and v, are interconnected if the path
from them to their LCA does not contain distinct nodes with
the same labels except for vi and v, themselves. An answer set
contains only one match for each keyword in the query and is
interconnected if either it contains a node, the star center, that is
interconnected with all other nodes in the set (star relatedness) or
if all nodes are pairwise connected (all-pairs relatedness).

Again consider the query on the example data which yields the
result lists L1 = {11} and L, = {3, 23} and answer sets S; = {11, 23}
and S; = {11,3}. The shortest path between nodes 11 and 3
contains every node label only once, which means that the two
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Figure 7: False positives in interconnection semantics

are interconnected. Nodes 11 and 23, on the other hand, are not
interconnected since nodes 2 and 13, which both lie on the path
between the respective nodes and the LCA node bib, have the
same label, namely article. The only answer to the query is
thus S; = {11, 3}. The interconnection relation in this case avoids
grouping matches together that belong to different articles as
simple LCA-based grouping would.

Since each set S; in the previous example contains only two
elements, the interconnected nodes are both star-related and
all-pairs related. However, this is not always the case, since star-
relatedness is a relaxation of all-pair relatedness in the sense
that for a set of nodes to be all-pairs related, every node has to
be a star center. For example, the query K = {Smith, Doe, 2005}
yields the answer set S; = {11,8,4}. Nodes 11 and 8 are not
interconnected, since the path between them passes two nodes
with label author. Node 4, however, is interconnected with both
nodes 11 and 8. Consequently, S; = {11,8,4} is not a query
answer if all-pairs interconnection is used, but it is according to
star related interconnection.

This example illustrates that all-pairs interconnection can lead
to false negatives, since S; is a valid answer to the query. Both
types of interconnection semantics are also sensitive to false
positives when node labels differ but refer to similar concepts.
Applying the query K = {Smith, 2003} to the data of Figure 7
would wrongly return the root node as a result, because article
and book are different labels but signify conceptually related
entities.

EXCLUSIVE LCA XRank [179] introduces the concept of the Ex-
clusive LCA (ELCA) [379], which is targeted at keyword querying
on document-centric XML. The idea behind the ELCA is that
more specific LCAs should be preferred, but only if this does not
cause the loss of additional matches.



4.3 KEYWORD-BASED QUERY LANGUAGES

The ELCA is computed by first finding Ry, the set of nodes that
contain at least one instance of each keyword in the query via an
ancestor-descendant relationship. A query result node then is a
node in Ry which, for each keyword, contains at least one match
instance that is not contained in any of its descendant nodes that
are also in Rp. Formulated in terms of the LCA, the procedure
yields those LCA nodes which either are not ancestors to any
further LCA nodes or, if they are, are also LCA nodes when
ignoring the keyword matches in the contained LCA subtree.

As an example, consider the query K = {XML, Web} evaluated
on the data in Figure 6 on page 68. The keyword match lists
are L1 ={14,15,21}, and L, ={2,15,18,21}. Based on this, some
exemplary answer sets are S; = {13}, S, = {14,18}, and S3 =
{15,18}. S1 consists of a single node containing all keywords,
meaning that the LCA of S7 is identical with its element, node 13.
Since this node is the LCA node and does not have any children,
it also is query result node. Similarly, node 11, the LCA of S;,
is also a result node. Node 11 also is the LCA of S3, and it
is an ancestor of node 13, itself an LCA node. It contains an
occurrence of k, = Web which is not part of an LCA, namely in
node 18. However, S3 does not contain a match of k1 = XML in
a descendant of node 11 which is not also contained in an LCA.
Therefore, S3 is not a valid grouping.

ELCA does not remove all false positives since unrelated enti-
ties are still grouped together if no better matching is possible.
Additionally, false negatives may be introduced under certain
conditions [351].

SMALLEST LCA The Smallest Lowest Common Ancestor [372],
also used in XBridge [245], enhances the concept of LCA by a
minimality constraint. Only LCA nodes that do not have further
LCA nodes among their descendants are SLCA nodes. It should
be noted that this definition is stricter than that of ELCA in that
it generally forbids LCA nodes that have LCA nodes among their
descendants, while ELCA only constrains the context in which an
LCA node may contain another LCA node. Furthermore, SLCA
only allows one match instance for each keyword in an answer
set.

SLCA addresses the problem of false positives as described
in Section 4.3. Evaluation of the query K = {Smith, Web} on the
data in Figure 2 leads to the LCA nodes 2 and 1. Node 2 is a
node of type article and constitutes a meaningful result, while
node 1 is the root node of the document and the keyword matches
are distributed over two different articles. According to SLCA
semantics, only node 2 is a suitable result node since it does not
contain LCA nodes. Node 1 is an LCA node but not a return
node since it is an ancestor of another LCA node, node 2.
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Figure 8: Sample XML data

However, as in ELCA, false positives can still occur. The query
K = {Smith, 2003} has S; = {11,15} and LCA(S;) = 1 as a result
according to SLCA. This answer is not meaningful since the
keyword matches are distributed over two different articles, but
is not filtered out since there are no further keyword matches
and thus no further LCA in the data.

Additionally, disallowing nested LCAs can also lead to false
negatives, for example when the same query, K = {Smith, Web}, is
applied to the data in Figure 8. Among others, this produces the
answer sets S ={18,14} and S, = {10, 2} and the corresponding
groupings LCA(S7) = 13 and LCA(S;) = 1. Both LCA nodes
represent articles which contain both of the query terms and thus
constitute relevant results. However, since the second LCA is an
ancestor of the first, SLCA filters out the latter. Consequently,
only the referenced article is retrieved as a result.

MEANINGFUL LCA The Meaningful Lowest Common Ancestor
(MLCA) [250] of a set of nodes is its LCA given that for each
pair of nodes, there are no other combinations of nodes with the
same label. that have an LCA node which is a descendant of their
LCA node. Intuitively, this means that for all keywords, the node
with the keyword label that is most closely related to the other
matched nodes is found. This is based on the assumption that a
lower LCA means a stronger connection. The concept of MLCA
combines SLCA with Interconnection Semantics and suffers from
similar problems with respect to false positives and negatives.
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AMOEBA JOIN Amoeba Join [7] is another method used for
grouping matched nodes. An Amoeba is an answer set which
contains its LCA node, meaning that one of the nodes in the
answer set is in an ancestor-descendant relationship with all
other nodes in the set.

Applying the query Ky = {Smith, Web, article} to the data in
Figure 2 yields the answer sets S; ={11,23,2} and S, ={11, 3,2},
among others. The former is not an Amoeba since LCA(S1) ¢ S,
and is not considered a valid grouping of matches according to
Amoeba join. On the other hand, S, is a valid grouping because
it contains its LCA, node 2.

Amoeba join can be too restrictive, leading to false negatives
and unintuitive results: the query K, = {Smith, Web} does not
yield any results in the data of Figure 2 even though it is a
relaxation of Ky, and it can be expected that all query answers of
K7 are also answers to K;. On the other hand, recursive elements
can lead to false positives as discussed by [351].

VALUABLE, COMPACT, AND COMPACT VALUABLE LCA

A Valuable LCA (VLCA) [243] is an LCA in which the keyword-
matching nodes are homogeneous. A set of matched nodes is said
to be homogeneous if no node label on the paths between them
and their LCA (excluding matched nodes themselves) occurs
more than once. In other words, each element in the set of the
labels encountered when traversing from each matched node to
the common LCA should be unique. In Figure 2, for example,
nodes 7 and 22 are not homogeneous since there are two nodes
with label article on the path between them, nodes 2 and 13.
Nodes 3 and 5, on the other hand, are homogeneous. VLCA is
conceptually identical to all-pairs related interconnection seman-
tics in XSearch and has the same problems with false positives
and false negatives.

Compact VLCAs (CVLCAs) were introduced to achieve faster
computation of VLCA nodes. CVLCAs are compact in that they
enforce maximally specific results. More precisely, a Compact
LCA node is the LCA node of an answer set that dominates all
nodes in the set. A node v; is said to dominate another node vj if
there is no answer set involving v; that has an LCA which is a
descendant of v;. Intuitively, an LCA is only a Compact LCA if
it holds for all contained matched keywords that they could not
be part of a grouping of matches that has a more specific LCA.
This concept is similar to that of SLCA and suffers from the same
drawbacks. A Compact Valuable LCA (CVLCA) finally is a CLCA
that is also a VLCA.

RELAXED TIGHTEST FRAGMENT Kong et al. [226] introduce
the idea of Relaxed Tightest Fragments (RTF), which allows for
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multiple matches of a keyword in one answer set. RTF requires
that, for a given answer set S;, no subset which is also an answer
set may have an LCA that is different from the LCA of S;. Ad-
ditionally, the set of keyword matches has to be the maximum
set of matches for the given LCA, i.e., it should not be possible
to add further keyword matches to the set without the addition
resulting in a different LCA. Finally, no keyword match node in
the set can be part of a keyword answer set whose LCA node is a
descendant of the LCA of S;.

RTF is a variation of CVLCA where the way of generating the
answer set and the first two constraints ensure that the result
subtrees are complete with respect to the keyword matches while
still being as small as needed to cover at least one instance of
each keyword match.

For example, the query K = {XML, RDF} executed on the data
in Figure 6 yields keyword match lists L; ={14,15,21}and L, =
{17,21} and, among others, answer sets S; = {14,17} and S; =
{14,15,17} with LCA(S1,S,) = 11. Sy satisfies the first constraint
since it does not contain an answer set as a subset. Still, S; is
not a valid query answer, because keyword matches could be
added to it without changing the LCA. S; has another answer
set as a subset, namely S7, but the LCA nodes of S7 and S, are
identical. The only keyword match that could be added to S; is
node 21, which would change the LCA node to node 10. There
are no possible LCA nodes below the LCA node of S;. Thus, S,
satisfies all constraints and is considered a query answer.

It should be noted that RTF can lead to false positives when
keyword matches are distributed over several unrelated semantic
entities (see above).

xKEYWORD  Xkeyword [198] is one of the few approaches to
determine semantic entities at the schema level. Here, the XML
schema graph is manually grouped into possible return types,
so-called target objects, which are then annotated with their re-
lationships to other target objects. For example, a target object
of type article could consist of article, author and title nodes
and stand in a contained in relation to a target object of type
proceedings. Queries are then processed by retrieving the objects
relevant for the keywords and generating minimal cycle-free sub-
graphs that contain all keywords. These in turn can be mapped
to subtrees of the target object graph, yielding the query results.

SCHEMA-LEVEL SLCA  Schema-level SLCA [238] is a connection
heuristic that is similar to SLCA, but further limits the number
of groupings by requiring that a valid grouping may not contain
any other groupings not at the instance level but at the schema
level. This means that the path to a Schema-level SLCA root node



4.3 KEYWORD-BASED QUERY LANGUAGES

for $a in mlcas doc("bib.xml")//author
$b in mlcas doc("bib.xml")//title,
$c in mlcas doc("bib.xml")//year

where $a/text() = "Mary"

return <result> {$b, $c} </result>

Figure 9: Schema-Free XQuery

may not be a prefix of the path to any other Schema-level SLCA
root nodes. For example, the query K = {web, journal} evaluated
on the data of Figure 6 yields the answer sets S; = {12,3} and
S> ={23} with LCA(S7) =2 and LCA(S2) = 23.

The path to LCA(S7), however, i.e., the path bib/article, is
a prefix of the path to LCA(S2), /bib/article/journal. Thus,
S1 is not a valid grouping according to Schema-level SLCA se-
mantics. As the example demonstrates, Schema-level SLCA intro-
duces additional false negatives compared to SLCA. Furthermore,
Schema-level SLCA does not solve the false positive problem that
occurs when keyword matches span several articles and their
LCA does not contain further keyword matches.

4.3.2.2 Determining Return Values

Once the relevant semantic entities have been identified and the
domain of the answer is established, the return values can be com-
puted. Ideally, the query answer should contain all the informa-
tion that is relevant to the query without being too verbose or in-
cluding irrelevant information. In many systems, the return value
is either the whole semantic entity, i.e., a subtree [372, 243, 179],
or a summary of it, such as the paths from the keyword matching
nodes to the root node [243, 226, 197]. However, several other
approaches exist as well.

XSEARCH XSearch [109] returns the matched nodes together
with their content. As long as the query only consists of keywords
or label-keyword pairs, this leads to relatively uninformative an-
swers. However, XSearch also allows for query terms of the form
1 :, thereby enabling the targeted selection of entity properties.
For example, executing the query K = {last:Doe, title:} on the data
of Figure 2 returns nodes 3 and 8, thereby providing the title of
the publication authored by John Doe.

SCHEMA-FREE XQUERY Schema-Free XQuery [250] is an ex-
tension of XQuery by the MLCAS (Meaningful Lowest Common
Ancestor Structure) operator for keyword querying.
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An example of a query in Schema-Free XQuery is shown in
Figure 9. The result of this query are the years and titles of
works by author “Mary.” Since the MLCAS keyword is present,
the variables $a, $b and $c are respectively bound to nodes with
labels author, title and year upon evaluation. The MLCAS then
is the structure consisting of those nodes among which the MLCA
relationship holds.

Having determined the MLCAS, the variables are bound to the
content of the children of the respective nodes in the MLCAS.
The keyword aspect of Schema Free XQuery thus pertains to
node labels and not, as in many other keyword query languages,
to content.

XSEEK  XSeek [255, 254, 253] infers return structures, automati-
cally grouping the terms in a query into those that express search
predicates and those that specify return information. If a key-
word w; matches a node label, and no other keyword in the
query matches the node content of a descendant of w;, then w;
is considered to be a return node. All nodes that are not found to
be return nodes are predicates.

If no return nodes can be inferred, the entities in the paths
from the matched nodes to the VLCA node as well as the lowest
ancestor entity of the VLCA node are considered to be the return
nodes. A node is considered an entity if it is in a many-to-one
relationship with its parent. For example, a bibliography often
has several article nodes among its children, making article nodes
entities. These relationships can be inferred from the relations in
the data or, if present, from the schema.

The result of a query then consists of two parts, the return
nodes and their associated information and the paths from the
VLCA to the matched nodes.

4.3.2.3 Expressive Power

In their most basic and also their most common form, keyword
queries consist of unordered lists of terms connected by implicit
conjunction. Using such a simple syntax, most query intents can
only be approximated vaguely and a targeted selection of data
according to precisely specified criteria is not possible. Keyword-
enhanced web query languages provide greater expressive power,
but also carry a significant overhead and are less easy to use.
Apart from label:keyword syntax and user-defined return val-
ues (see Section 4.3.2.2), some languages allow for slightly in-
creased expressive power in the form of disjunctions [342], op-
tional terms [109], or operators for numerical comparisons [371].
Abbaci et al. [7] present a keyword-only query language that of-
fers an advanced syntax using the operators AND (conjunction), OR
(inclusive disjunction), INC (inclusion, meaning that one operand
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semantic

Figure 10: Query tree (left) and query evaluation (right)

must occur in a node that is a descendant of the node containing
the other operand), SIB (sibling), and NOT (negation), as well as
parentheses to indicate precedence.

Query evaluation is realized by transforming the query into a
binary tree with leaf nodes containing the keywords and internal
nodes containing the operators. Then, sets of matching elements
are constructed for each leaf node, i.e., for each keyword. If
a node v; contains a keyword wj, all ancestors of v; are also
represented in the list of matches for w; since they contain it
indirectly. The data structure recording the matches stores the
ID of the node in which the keyword term occurs, the type of
occurrence, and the distance from the keyword match to the
respective node (where a distance of zero means that the node
contains the keyword directly). The answer sets for each leaf node
are then further processed by applying the operator specified
in a node to the answer sets of its children. The operator AND
corresponds to the intersection of two sets, OR to their union, and
NOT to their difference. Operators INC and SIB are realized via
constraints on the distance from the keyword match. The query
tree is processed in a bottom-up fashion, and once the root node
of the query tree has been processed only the nodes matching
the full query remain. Since indirect matches via ancestors are
included in the answer sets, in the case of conjunctive queries,
the LCA node is among the query results.

As an illustration, consider the query Web AND NOT semantic
evaluated on the data in Figure 2. The query tree of this query is
displayed on the left in Figure 10. The query is evaluated by first
adding information about matching nodes to the leaf nodes, as
shown on the right in Figure 10. The keyword “Web” is contained
directly in nodes 23 and 3 and indirectly (i.e., via a descendant), in
nodes 2, 1, and 13. The keyword “semantic” is contained directly
in node 3 and indirectly in all its ancestors, i.e., in nodes 2 and
1. The operator NOT is applied by taking the difference between
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the set of all nodes in the XML data and the nodes containing
“semantic,” resulting in the set of all nodes that do not contain
“semantic,” either directly or via an ancestor. Finally, to find the
nodes that satisfy both conditions, the intersection of the sets of
nodes containing “Web” and those not containing “semantic” is
taken. The node list after application of the AND operator is the
final result since the root node has been reached.

XQSuggest [247] is a system that supports the user in creating
more expressive queries by suggesting for each keyword a num-
ber of semantic strings, path-like expressions that disambiguate
between the possible elements the keyword can refer to. The user
can then replace the keyword by one of the semantic strings in
order to state his query in more precise terms.

4.3.2.4 Ranking

Several metrics for ranking query answers that operate not at the
document level but at the granularity of the returned structures
have been suggested.

XSketch [246] and the work by Bao et al. [39] use a ranking
scheme based on tf-idf [205] and structural properties that does
not rank individual results but rather types of nodes (LCA nodes
in the case of Li et al. [246]), thereby indicating which types of
subtrees are suitable query answers. As such, the approach lies
between determining return entities and result ranking.

The schemes employed for ranking query answers are typi-
cally based on the size of the answer subtree [226], the distance
between the matched nodes [327], or a variant [109, 39] of the
vector space model [316] and tf-idf measure. The ranking mecha-
nism of XRank [179] employs a combination of several of these
criteria with a variant of PageRank [71] adapted to XML data.
We exemplarily describe it in detail in the following.

XRank uses three criteria to rank results: specificity, keyword
proximity, and the connections between elements. Specificity refers
to the distance between the matched leaf nodes and the return
node, while keyword proximity means the distance between the
keyword matches themselves. Specificity, describing vertical dis-
tance, and keyword proximity, describing horizontal distance,
combine into a two-dimensional proximity metric. A variant of
Google’s PageRank, ElemRank, is finally used to let the links
between elements factor into the ranking value of the result node.

ElemRank is an adaptation of PageRank that takes specific char-
acteristics of XML data into account, namely the bi-directional
propagation of ElemRanks through links, the aggregation seman-
tics for reverse containment relationships, and the distinction
between containment links and hyperlinks. While hyperlinks
are ignored when matching the keywords, they are considered
when calculating ElemRanks. Containment links, which describe
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the parent-child relationship between XML elements, represent a
stronger relation than hyperlinking, e.g., through IDREFs. The
two are thus handled separately, with the propagation of Elem-
Rank value between elements connected by containment edges
taking place in both directions. Additionally, the ElemRank of
a node is defined as the sum of the ElemRanks of its children,
which means that the ranking values of the subparts of an entity
in turn combine into that entity’s ranking value.

The ranking value of each instance of a keyword match is then
calculated as its ElemRank value, scaled by a decay factor that
is inversely proportional to the distance between the result node
and the keyword match. The ranking value of the result tree
finally is the sum of the ranking values of the contained keyword
occurrences multiplied by a measure of keyword proximity which
is based on the size of the smallest text window containing all
matches. If a keyword has several occurrences in the subtree
governed by the result node, the value of the node with the
highest ElemRank value is used.

In summary, the criterion of specificity is realized as the decay
scaling factor, where decay increases as the distance between a
keyword occurrence and the result node grows, meaning that
the ElemRank calculated from the link connections between the
elements becomes smaller. The keyword proximity criterion, on
the other hand, is represented by the scaling factor of the overall
ranking value of the result, with a bigger distance between the
keyword occurrences corresponding to a smaller scaling factor.

4.3.3 Querying RDF

This section presents various approaches to keyword querying
on RDF data.

4.3.3.1 SemSearch

SemSearch [239] is a search engine for web documents aug-
mented with RDF annotations. As output it returns a ranked
list of matching HTML documents. Only the RDF data but not
the documents themselves are processed during query evalua-
tion.

A SemSearch query consists of pairs of a subject and a keyword
connected by a colon, and the operators and and or to indicate
conjunction and disjunction. During query evaluation, the key-
words are matched only to semantic entities, that is, to classes,
properties, and instances, but not to relations. It is assumed that
query subjects refer to RDF classes and specify the return type. If
no class matches the subject, the type of the subject is determined
and rules are used to infer the return type from the types of
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entities of the keyword and subject. For example, in the query
Mary:John, Mary and John are both instances, and the rule for
this case says that the return type should also be an instance, e.g.,
an article co-authored by Mary and John.

Using the list of matching entities and their types, the user
query is then translated into SeRQL via templates. Multiple
queries are constructed if a keyword matches several semantic
entities. Since the number of such queries can be very large when
keywords in the original query have multiple matches, rules are
employed to reduce this number. If there are several matches of
type class, for example, only the most specific class is considered.
The application of the rules can be expected to decrease the recall
of the search.

Finally, the retrieved documents are ranked, and the individ-
ual results are augmented with information about the matched
entities. For ranking, two factors are considered, namely the dis-
tance between each keyword and its matches and the number of
keywords satisfied by a search result.

4.3.3.2 SPARK

SPARK [378] is a search system for RDF data that translates
keyword-only queries into SPARQL and ranks the resulting
queries. Keywords are mapped to resources in the knowledge
base, that is, to classes, instances, properties, and literals. This
is achieved by using both the form and the semantics of the
keywords. The form-based mapping uses string comparison tech-
niques like the edit distance [241] and in addition applies stem-
ming [256]. The semantics-based mapping retrieves semantically
related words like synonyms using a thesaurus. In the process, a
single query term can be mapped to several resources of different
types. The different translations are augmented with confidence
scores based on the similarity between the keyword and the
concept.

Next, the query sets are constructed. If each keyword is mapped
to exactly one resource, there is only one query set, otherwise
all combinations of query sets, each containing one resource for
each keyword, are generated. For each query set, a query graph
is constructed using the minimum spanning tree algorithm of
Kruskal [233], and missing relations and concepts are introduced
to obtain a connected graph, which is then translated into a
SPARQL query.

Finally, ranking scores for the generated queries are computed
from the similarity of the keywords and the concepts they are
mapped to, the proportion of overlap in resources between the
keyword query and the corresponding SPARQL query and the
information content of the query.
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4.3.3.3 Q2Semantic

Q2Semantic [359] provides a system for querying RDF data
using keyword-only queries. The latter are translated into for-
mal queries, which can in turn be mapped directly to SPARQL
queries. The system aims at a higher efficiency than comparable
approaches. It operates on summarized RDF graphs, so-called
RACK graphs, instead of the original data.

Q2Semantic ranks the query results and uses Wikipedia to find
concepts related to the query terms. These concepts are also used
to assist the user in entering his keyword query, as the interface
offers auto-completion for RDF literals and Wikipedia terms.

When displaying the query results, Q2Semantic also shows
the portion of the RDF data used in the query, as well as the
translated formal query and a natural language explanation.

An RDF graph is converted into a RACK graph by mapping
relations, attributes, instances, and attribute values to R- and
A-edges and C- and K-nodes, respectively. R- and A-edges and
C-nodes are then clustered together if they have the same labels
and, in the case of edges, the same connections. K-nodes are
merged when they are incident to the same A-edges, and the
newly merged node inherits the labels of all the original K-Nodes.
Costs are calculated for edges and nodes based on the number of
elements merged to obtain them.

A keyword query is first matched against an inverted index
which stores the K-Node labels. To allow for a broader vocabu-
lary in the queries, the index is augmented with related terms
extracted from Wikipedia, e.g. the anchor text of articles linking
to an article whose title is a K-node label. Keywords are thus only
matched to RDF attribute values. If there are several matches for
one term, all of them are returned and used in the next step.

Starting from the matched K-Nodes for all query terms and
using the cost functions of the edges as a heuristic for guiding
the search, a tree is then gradually built up in the graph in a
round robin fashion. To avoid recursion, repeated exploration of
the same node within one path is penalized by adding a large
number to the cost. A formal query is obtained when a root that
is common to at least one instance for each keyword is reached.

Since several formal queries for the same keyword query may
exist, a ranking function is employed that uses the lengths of the
paths in the formal query, the scores of the matched K-nodes in
the formal query, and a tf-idf-like measure to calculate ranking
scores.

4.3.3.4 QuizRDF

QuizRDF [126] is a browse-and-query system for web pages that
combines full text search with querying of RDF annotations,
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where present. The idea behind this approach is that not all web
data is annotated, and that it is not possible to capture every
detail of the content of a text in its annotations. Combining full
text search with RDF querying can thus potentially improve
recall.

QuizRDF is described as an “information-seeking system” in
which information is found by an interactive, gradual process
rather than a targeted one-shot search. This approach is similar
to the one proposed by Schmidt et al. [327], and allows users
to explore the data, refining their queries as they gain more
information about the nature of the data.

Initially, a so-called ontological index is created from both the
textual content of a web site and its RDF annotations, which are
linked to the RDF Schema ontology [70]. This index can then be
queried using keyword search to obtain a list of matching web
sites, which are ranked using the tf-idf measure [205]. For web
sites with RDF annotations, the search results can be refined by
restricting matches to a certain RDF resource class and entering
literal values for RDF properties. QuizRDF also provides infor-
mation about the ontological structure by displaying superclasses
of the currently selected class as well as relationships to other
classes.

4.3.3.5 Q2RDF

Q2RDF [309] is a system for querying RDF data using keyword-
only queries. Results are ranked in a way that is similar to
Q2Semantic. Q2RDF operates on an RDF sentence graph [377],
an undirected graph consisting of RDF sentences and the connec-
tions between them. An RDF sentence is the set of all RDF triples
that are b-connected, that is, that contain the same blank node.
B-connectedness is transitive, and RDF statements which do not
contain blank nodes are separate sentences. The label of a node
in an RDF sentence graph consists of the words contained in the
subjects, predicates and objects it summarizes. Any RDF graph
can be collapsed into an RDF sentence graph. Figure 11 shows an
example of an RDF graph and its grouping into sentences. Due
to the transitivity of the b-connectedness relation, RDF sentences
are not stable and may change when a blank node is introduced
in a different part of the RDF graph, see Figures 11 and 12.

In the preprocessing step, an inverted index and a path index
are created. The inverted index indicates which word appears in
which sentences. The path index indicates for each node which
other nodes it can reach, and allows for the construction of all
shortest paths between nodes. Shortest paths are calculated using
Dijkstra’s single source shortest path algorithm.

When a user poses a query, the keywords are first mapped to
the RDF sentences in which they appear. The goal then is to find
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answer trees, that is, trees that contain all keywords and in which
every leaf node contains at least one keyword. This is achieved
by starting from the matched nodes and gradually visiting nodes
until a path connecting all matched nodes is found. The next
node to visit is determined by first computing the set of keyword
match nodes with the smallest cardinality and expanding the
nodes contained in it first. Then, the node that is closest to the
node currently being expanded is visited and added to the set of
nodes to expand.

If only tree size is considered as a measure of goodness, then
this method allows for the generation of the top-k answer trees
without having to generate all the answer trees first, since the
length of the paths and thus the size of the result trees grows
as the number of visited nodes increases (the same is true for
finding the top-k lowest cost answer trees in Q2Semantic, since
all cost values are positive).

The algorithm can result in isomorphic answer trees, such
duplicate answers are discarded. The generated answer trees are
then ranked using a variant of the term frequency measure.

Q2Semantic and Q2RDF are similar in that they both summa-
rize the initial RDF graph and then construct minimal answer
trees containing all matched nodes to find the top-k results, which
are then ranked using a tf-idf-like measure. The two approaches
differ in the way in which they evaluate results (Q2Semantic
translates queries into complex queries while Q2RDF retrieves
the results directly) and reduce the RDF graph, in the element
types against which keywords are matched, and in the cost func-
tion that guides the search for answer trees. Additionally, the
answer trees of Q2Semantic show a lower granularity, because
Q2Semantic merges edges and attributes only when they have
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Figure 12: The data of Figure 11 represented as an RDF sentence graph

the same label, while Q2RDF collapses all elements that belong
to the same sentence into a single node.

4.3.4 Discussion

The majority of keyword query languages for semi-structured
data in the literature are concerned with keyword-only querying
of XML data. Fewer proposals exist for querying RDF data, and a
majority of them translate keyword queries into traditional query
languages. Most XML keyword query languages, on the other
hand, evaluate queries without mapping them to another query
language.

At the same time, keyword query languages for XML usually
limit themselves to the processing of tree-shaped data, that is,
to XML without hyperlinks. Those languages that do work on
graph-shaped XML, like XRank, ignore hyperlinks during the
matching and grouping process and only use them for ranking.
A notable exception is SAILER [242], which models XML and
HTML documents as graphs. There also exists work on extending
interconnection semantics to deal with XML data containing
IDREEF links [107], which due to its purely theoretical nature has
not been discussed here. As Schmidt et al. [327] point out, one
reason for the relative lack of keyword querying for graph-shaped
XML is the expected increase in complexity and thus processing
time, which would be very problematic in an application area
dealing with large amounts of data.
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Correspondingly, the lack of RDF keyword query languages
that evaluate queries directly can be attributed to the fact that
RDF is graph-shaped and cannot be converted into tree-shaped
data as easily as XML. In addition, querying RDF poses additional
challenges in the form of labeled edges and blank nodes. A
possible solution to this problem is to summarize the RDF graph
into a different structure [309, 359], but this comes at the cost of
partially ignoring the structure of the data and thus reducing the
granularity of the query result.

For XML querying, on the other hand, the grouping of matches
is of great importance, and it is a central aspect of many of
the approaches discussed in this chapter. Various heuristics for
grouping have been proposed, a large majority of which are re-
finements of the established concept of LCA, e.g., SLCA [372],
MLCA [250], CVLCA [243], and interconnection semantics [109].
All of these approaches add constraints to LCA in order to rem-
edy the problem of false positives in LCA and improve the group-
ing of matched nodes according to their semantic entities. The
approaches differ in the filter that they apply to remove undesir-
able results from the set of LCA nodes; each of them produces a
set of results that is a subset of the results obtained by applying
LCA.

The reason why determining semantic entities in structured
data is so important to keyword querying is that, in contrast to
traditional query languages, queries are never fully specified, and
in fact often cannot be fully specified by the user. The inferred se-
mantics are what is used to determine what constitutes a relevant
result.

While most of the approaches determine the LCA or a vari-
ant thereof automatically based on keyword match instances, an
alternative approach that was used in XKeyword [37, 198] but
also mentioned in connection with XRank [179] and employed
in keyword querying databases [57, 125] is to manually group
the data into concepts and thus pre-define the possible query an-
swer components. This method uses an extra level of processing
where parts of query answers are defined a priori and therefore
independent of a specific query. While this has the disadvantage
of requiring manual annotation, it alleviates two fundamental
problems of LCA-based methods for automatic grouping.

The first problem stems from the underlying assumption that
only elements in the subtree governed by the concept root node
are relevant to the query answer. As mentioned in the beginning
of Section 4.3, this means that relevant information about an entity
is not returned when the keywords in a query are contained in
a subtree of the tree representing an entity. Given the example
data of Figure 2, for example, the queries K = {Doe, Smith} and
K = {Semantic, 2005} will produce only trivial results without any
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additional information about the respective articles, like the title
and year of co-authored articles in the first case and the names
of the authors in the second.

There are two ways to overcome this problem: displaying the
query result in conjunction with the data and enable search-
and-browse behavior, or allowing matching on label nodes and
enabling a more targeted specification of a return value. For
example, the first keyword query above could be extended to
K = {Doe, Smith, title, journal}, meaning that the concept node,
i.e., the root node of the semantic entity is of type article and
not authors, and that the entity subtree contains the desired
information. This is possible in the query language of Cohen et al.
[109] and in XSeek [255, 252] and will be discussed further below.

The second problem is closely related to the first: the different
heuristics for grouping aim at being universal or at least versa-
tile; on the other hand, they are data-driven and make assump-
tions about the relations between structure and semantics that
may not be universal. The difference between data-centric and
document-centric XML, for example, suggests different require-
ments concerning grouping and return values. When querying
document-centric XML, multiple occurrences of the same key-
words within an XML subtree indicate particular relevance. The
same is not necessarily the case for data-centric XML.

Consequently, all LCA-based grouping strategies presented
in this chapter are not universally applicable and under certain
circumstances may lead to both false positives and false negatives.
This raises the question to what extent it is possible to reliably
deduce semantics from structural characteristics of data alone.

A small number of very recent approaches group keyword
matches not just based on structure, but also take the distribution
of keyword matches and node types in the data into account [246,
39]. Whether these methods will solve the problems associated
with LCA-based grouping remains to be seen.

To summarize, manual grouping at the schema level works
well and has the advantage that data containing hyperlinks does
not pose a problem. An obvious disadvantage is that it requires
users or administrators to invest time and effort to define the
groupings. LCA and its variations, on the other hand, are com-
puted automatically, but all algorithms require the presence of
certain characteristics in the data to perform well. One way to
achieve good grouping performance could thus be to simply
consider the manual grouping as an additional, possibly optional,
step of semantic annotation and to encourage users to actually
perform the grouping.

A more promising approach is the use of modes to determine
which grouping mechanism is appropriate for a given dataset or
a given combination of a dataset and a query. Since the various
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grouping algorithms make different assumptions about the rela-
tion between syntax and semantics in the data, the best algorithm
could then be selected automatically, which hopefully would
leading to an improved overall performance.

To evaluate the feasibility of this approach, several questions
have to be addressed. A priori, it is not clear how many, and
which, grouping algorithms should be used, whether there is
a universally optimal combination of grouping mechanisms,
or whether the selection should be application- and domain-
dependent. A more basic question concerns the characteristics
according to which the grouping mechanisms should be selected:
a small number of maximally complementary algorithms could
simplify mode selection, whereas a larger number of algorithms
might prove more versatile and thus improve the result.

Finally, one would have to decide which features or charac-
teristics of the data or query should trigger a change of mode,
and how the optimal mode should be selected. Examples for
relevant features include the amount of content relative to the
amount of structural information, term frequency distributions,
and structural characteristics derived either from the schema or
the data itself.

Learning, either through implicit or explicit feedback, might
prove useful for the automatic selection of the appropriate mode.
An example for implicit feedback in this context are results that
are favored and disfavored by the users, based on results that
are clicked or skipped given a page of results [310]. Explicit
feedback could be provided in the form of a manually annotated
training set or Query-By-Example type queries [381] by which the
user indicates the intended form of the result. Querying of semi-
structured data using the Query-By-Example paradigm has been
studied previously, resulting in the query language visXcerpt for
XML data [49].

Even if automatic mode selection proves feasible, the issue
of cyclic data remains problematic, since none of the existing
automatic grouping mechanisms can operate on data containing
hyperlinks. It is thus desirable to find a generalized universal
grouping mechanism which can be applied both to XML and
RDF data.

Many of the keyword languages discussed is this chapter focus
on connecting keyword matches, whereas the form of the query
answers has been addressed in less detail. Possible strategies are
for example to return the subtree governed by the concept node,
the paths from the keyword matches to the concept nodes, or just
the concept node. These different return structures offer different
tradeoffs between conciseness and information value.

An important characteristic of traditional query languages,
namely the targeted and flexible retrieval of elements, can be
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found only in two of the presented stand-alone keyword query
languages, in that of Cohen et al. [109] and in XSeek [255, 252].
Both of these languages return the content of a node whose label
is matched.

However, neither of them allows for the binding of specific
values to variables. Query results thus cannot be used further
in construction terms, which is a desirable feature in various
applications, for example when embedding queries in Wiki pages.
Furthermore, it is not possible in XSeek to specify explicitly that
the content of a node with a specific label should be retrieved.
Rather, the necessary information is inferred from the keyword
query and is therefore relatively hard to control by the user,
even if she knows exactly which nodes she would like to have
returned.

Keyword-enhanced query languages, on the other hand, allow
for a more targeted selection and enable construction to varying
degrees. Schmidt et al. [327] only retrieve the label of the LCA
node, the approach of Florescu et al. [152] makes the granularity
of the return value dependent on the specificity of the query,
and Schema-Free XQuery allows for the binding of variables to
specific nodes in an entity subtree.

Another important aspect of keyword querying concerns the
ranking of the results. Here, the underlying principle is that a
smaller distance between matched nodes and between matched
nodes and concept nodes generally means more specific and thus
better results. Ranking is usually realized in terms of the vector
space model and a variant of the tf-idf measure. It makes sense
to rank the results before fully generating them, since this allows
for retrieving only the top-k results, such that the results can be
displayed faster and that processing time can be saved when the
user is not interested in all results.

A different, but equally important, question is how to convey
the vocabulary for queries. Keyword query languages are flexible
with respect to the structure of the data being queried, and the
ability to query over heterogeneous data is often highlighted as
one of their advantages. In this context, heterogeneity can refer
either to differences in the structural organization of the data or
to differences in the vocabulary used.

Figure 13 shows the data of Figure 2 in a different structural
organization, with articles grouped by their authors.*# Due to the
automatic grouping, one keyword query can be used to query
both documents. However, the query results may differ since the
grouping uses structural characteristics to find query answers.

Yet another reformulation of the data in Figure 2, with iden-
tical structure but different node labels, is shown in Figure 14.
A query involving node labels can never successfully retrieve

14 The repetitions of the article subtrees have been omitted to increase readability.
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(1)

authors

N

() (10) (18) (26)

author author author author
) () ®) (11) (12) (13) (19) (20) @1) (27) (28) (29)
first last bib first last bib first last bib first last bib

John Doe a r{f:)l e Mary Smith a:t};)e Peter Jones ar(12i<?IL Sue Robinson
) (8) (9) (23) (24) (25)
title year journal title year journal
...Semantic Web... 2005 Computer Journal ...Web... 2003 Web Journal

Figure 13: Alternative formalization of the data in Figure 2, articles

grouped by authors
(1)
bibliography
2 (13)
/ panet \ ' \
(3) (4) (5) (12) (14) (15) (16) (23)
name published creators publication name published creators publication
i (6) (9) (17) (20)
...Semantic Web... 2005 first second Computer Journal ...Web... 2003 first second Web Journal
(7) 8) (10) (11) (18) (19) (21) (22)

forename surname forename surname forename surname forename surname

John Doe Mary Smith Peter Jones Sue Robinson

Figure 14: Alternative formalization of the data in Figure 2, different
node labels

results from both the document in Figure 2 and that in Fig-
ure 14, because they use different vocabularies. For example, the
label-keyword queries Ky = {published:2005, surname:Smith} and
K2 = {year:2005, last:Smith} express the same informational need,
but use different words. Consequently, K; does not produce any
matches in the data of Figure 2, and the same is true for K, and
the data of Figure 14. In general, a query term may have many
synonyms, and a user may not know which words to use in her
query. This problem also applies to homogeneous data, since a
user may not know a priori which terms are used. It is however
of particular concern when querying heterogeneous data using
different vocabularies, in which case there is no standardized
vocabulary that the user could learn.

In a seminal study of the vocabulary problem, Furnas et al. [158]
found that participants used a large number of different terms
to refer to the same concepts. The probability of two people
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choosing the same word for a given object was found to be below
20%. At most 36% of the participants chose the “best,” that is,
most frequent term for an object. The proposed solution to this
problem is to establish a list of synonyms or aliases for each term.
For example, a system could map the term “published” to “year,”
thus enabling the use of both terms in queries.

More generally, query expansion can be used to improve the
recall in information retrieval applications by finding synonyms,
morphological variations, and misspellings. A variety of tech-
niques for automatic query expansion have been proposed [123,
206, 130, 120], some of which are employed in the keyword query
languages presented in this chapter. Q2Semantic uses Wikipedia
to find terms similar to the keywords. Li et al. [250] identify
different ways to obtain a domain-specific thesaurus to be used
with the expand function of Schema-Free XQuery: deriving a
list of synonyms for each term from the corpus of XML data,
creating it manually, or through information retrieval techniques
like bootstrapping. For cases where no domain-specific thesaurus
is available, the authors suggest the use of a universal thesaurus
like WordNet [277]. This is also how semantic mapping works in
SPARK. In addition, morphological mapping is employed, which
functions on the form (rather than the semantics) of the keywords
and uses stemming and other methods and measures from natu-
ral language processing. Each term mapping is augmented with
a confidence score, meaning that the list of synonyms can also
serve as a controlled way to semantically relax the query.

Overall, current keyword-query languages for XML and RDF
satisfy one of the two criteria laid out in the beginning of Sec-
tion 4.3, simplicity. While keyword-enhanced query languages
are likely not simple enough to be used by all users, a majority
of keyword-query languages have a very basic syntax that is no
more complex than that of regular web search. The syntactic
extensions offered by some of the languages are optional and
comparatively simple.

The case is less clear for the second criterion, flexibility. All
languages are schema-agnostic in the sense that they can query
data independent of the underlying schema, or even independent
of the fact whether there is a single schema that all data adheres to.
However, as grouping mechanisms are data-driven and therefore
depend not only on the structure but also on naming conventions,
results can vary significantly depending on the schema being
used.

Flexibility with respect to the data type, i.e., the ability to query
data in different formats, has received relatively little attention.
XRank and Sailer can be used to query both XML and HTML
documents, but do so mainly by treating HTML documents as
unstructured text.



4.3 KEYWORD-BASED QUERY LANGUAGES

The combined querying of XML and RDF is particularly desir-
able in the context on the semantic web, where not all content of
the (XML) data is necessarily represented in (e.g., RDF) metadata,
or vice versa [59]. If both could be queried using a single query
language, recall would be increased, and users would only have
to familiarize themselves with one query language.

SemSearch and QuizRDF can query web documents augmented
with RDF annotations. The former only evaluates the query on
the RDF annotations, meaning that it is not possible to impose
conditions on both the document itself and its annotations in
one query. QuizRDEF, on the other hand, allows for the restriction
of web documents matching a given query through their RDF
annotations. However, it is not possible to query the structure of
web documents or to combine XML and RDF search in a single
query. Moreover, QuizRDF is a search-and-browse system and
returns web documents, i.e., it does not allow for the grouping
of entities and consequently provides no flexible return values.
Because of this, it is much more suited for interactive exploration
of data than for expressive querying at a high granularity.

While to the best of our knowledge there are currently no
systems for the combined keyword querying of XML and RDF
data, a number of approaches to keyword querying are explicitly
concerned with queries over HTML and XML data and relational
databases [208, 244], thereby realizing data type flexibility to a
certain extent.
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A CONCEPTUAL MODEL FOR THE KIWI WIKI

Traditional wikis excel at enabling collaborative work on emerg-
ing content and structure. Semantic wikis go further by allowing
users to expose knowledge in ways suitable for machine pro-
cessing using semantic web technologies. The combination of
ease of use, support for work in progress, and semantic web
technologies makes semantic wikis particularly interesting for
knowledge-intensive areas of work such as project management
and software development.

Most of the advanced technologies that semantic wikis employ
were developed for use in a static environment with annotations
and rules being crafted by knowledge representation experts.
This is in contraposition to the ever-changing, dynamic character
of wikis where content and annotations are, for the most part,
created by regular users. In such an environment, inconsistencies,
disagreements and ambiguities can easily arise and the system
should therefore be able to cope with them to support users in
their work.

While several semantic wikis have been put to practical use
(see Chapter 3), each using its own conceptual model, there has
been little explicit theoretical exploration on the possible choices
for conceptual models and their consequences [348].

By conceptual model, we here understand the basic concepts or
buildings blocks that a user interacts with when using the seman-
tic wiki as well as the relations between them. In a traditional
wiki, there are only few such building blocks, typically pages
and links. Semantic wikis extend this model by new concepts
such as typed links, tags and RDF or OWL annotations. The basic
building blocks of a semantic wiki and how they relate to each
other have rarely been discussed in the literature, and one can
assume that many decisions in this regard have been without full
consideration of the design space.

In this chapter, we seek to draw attention to this issue, suggest-
ing a conceptual model for KiWi and showing that the design
of a conceptual model for a semantic wiki is a non-trivial issue
and design choices greatly influence which functionalities the
system can offer and how the user sees the system. We will show
that there are several possibilities for approaching various issues
in a semantic wiki which have advantages and disadvantages,
as well as important consequences on how other issues can be
approached.
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Note that the conceptual model described here is similar but
not identical to the conceptual model behind the current im-
plementation of the KiWi wiki. Specifically, KiWi does not yet
support annotated links, negative and structured tags, the assign-
ment of multiple labels to a single tag concept and the calculation
of the social weight of tags.

5.1 CONTENT

This section outlines the representation of content in the KiWi
wiki. “Content” here refers to text and multimedia which is used
for sharing information, most frequently through the use of natu-
ral language, between the users of the wiki, and whose meaning
is not directly accessible for automatic processing. Information
Extraction techniques enable the computerized processing of
structured data extracted from text or speech, but this introduces
another level of representation which we do not consider content
in this sense.

While the data in many conventional wikis is restricted to con-
tent and link structure, semantic wikis add further layers, namely
annotations that can be used for human as well as automatic
processing and annotations that are intended mostly for comput-
ers and not easily understandable for humans. These two other
types of data, informal and formal annotations, are discussed in
Section 5.2.

5.1.1 Content Items

Content items, the primary unit of information in the KiWi wiki,
are composable, non-overlapping documents. Every content item
has a unique URI and can be addressed and accessed individually.
There is no inherent distinction between wiki pages and content
items or rather, all content items are wiki pages.

A content item can directly contain only one type of content,
for example text or video. An atomic textual content item can
be thought of as being similar to a paragraph or section in a
formatted text in that it contains some relatively self-contained
text and can be combined with other such data items to form
a content structure: Content items can be nested through tran-
sclusion [282] to enable the representation of complex composite
content structure. Consequently, a content item may contain
(textual or multimedia) content and any number of inclusion
declarations.

Having an explicit concept of content structure in a wiki is
desirable both with respect to the semantic as well as the social
nature of a semantic wiki; the structural semantics of the content
can be immediately used for querying and reasoning, for example
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for automatically generating tables of contents through queries,
as well as for facilitating collaboration and planning of content.
In addition, content items constitute a natural unit for assigning
annotations to content (see Section 5.2).

Allowing one content item to have several parents, that is, to
be directly contained in multiple other content items, is a design
decision that adds functionality but also has side-effects, some of
which may be undesirable.

The multiple embedding of content items means that content
items can be easily reused and shared, which is useful for exam-
ple for schedules or contact data. If only a copy of the content
item’s content was embedded, multiple occurrences of the con-
tent item in the wiki could not be traced as naturally or easily.
For example, changes to a schedule or email address would have
to be made manually in all content items where the information
appears. On the other hand, updating a content item that is a
child of several other content items or reverting it to an earlier
version can have unintuitive and unwanted side effects when the
content item changes in all contexts it is embedded in without the
editing user being aware of all these contexts. Therefore, upon
modifying a content item that appears in several different loca-
tions, the user should be presented with a list of the embedding
locations and the choice to edit the content item itself or a copy
of its content.

Loops arise when a content item contains itself as a descendant
through content item nesting. The resulting infinite recursion is
problematic with respect to the rendering of the content item" as
well as reasoning and querying. Since loops additionally arguably
have no straightforward meaningful interpretation in the wiki
context, transclusions which would cause loops are generally
forbidden. However, it is possible to embed a content item several
times into another content item or one of its descendant content
items as long as the embedding does not lead to a loop.

Assuming that all content item nestings are resolved, the wiki
content can be seen as a set of finite trees. Root nodes, that is,
content items that are not contained in another content item, then
have a special status in that they encompass all content that forms
a cohesive unit. In this, they can be seen as being alike to a wiki
page in a conventional wiki.

5.1.2 Fragments

Fragments are small continuous portions of text (or, potentially,
multimedia) that can be annotated. While content items allow
authors to create and organize their documents in a modular
and structured way, the motivation behind fragments is to enable

1 At least if we assume that all of the content item is to be rendered at once.
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the annotation of user-defined pieces of content independently
of the canonical structure. If content items are like chapters and
sections in a book, then fragments can be seen as passages that
readers mark and annotate; they are linear and in that transcend
the structure of the document, spanning across paragraphs or
sections. Different parts of the book might be marked depending
on which aspect or topics a reader is interested in, and the same
is true for defining and tagging fragments.

Fragments should be maximally flexible in their placement,
size and behavior to allow for different groupings of text. To-
wards this goal, it is generally desirable that —unlike content
items— fragments can overlap. The intersection between two
overlapping fragments can either be processed further or can be
ignored. When two overlapping fragments f; and f; are tagged
with a and b respectively, a third fragment that spans over the
overlapped region and is tagged a, b could be derived automat-
ically. Similarly, automatically taking the union of identically
tagged overlapping or bordering fragments might be intuitive
and expected by the user. However, this automatic treatment of
fragments might not always be appropriate or wanted.

Therefore, fragments in KiWi are seen as co-existing but not
interacting, meaning that the relationships between fragments
are not automatically computed and no tags are added. This view
has the advantage of being simple and leaving the control of the
fragments and their tags to the user. It is also in tune with the
philosophy that, unlike content items that always only realize one
structuring, fragments are individual in that different users can
group a text in many different ways and under many different
aspects which are not necessarily related.

Fragments can either be restricted to be directly contained
in one content item, or they can span across content items. In
the latter case, a rearrangement of content items can lead to
fragments that are part of multiple content items which no longer
occur in successive order in the wiki and, similarly, content item
nesting means that content items may contain only part of a
fragment with the other part being absent (but present in some
other content in which the content item is used). Fragments could
be automatically deleted when the structure of content items no
longer supports them, but this means that a user might find
a fragment she created destroyed as a consequence of another
user’s rearrangement of content items.

To avoid these problems, in the KiWi wiki, fragments start and
end in the same content item and cannot span over contained
content items. One single content item’s text then contains the
whole fragment.

Two possibilities for realizing fragments are the insertion of
markers in the text to flag the beginning and end of a fragment
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(intrusive), or external referencing of certain parts of a content
item, using for example XQuery (see Section 4.2.1.2), XPath (see
Section 4.2.1.1), or XPointer [133] (non-intrusive). As the former
means that fragments are less volatile and updates to the text do
not affect fragments as easily, for example when text is added to
the fragment, fragments in the KiWi wiki are intrusive.

5.1.3 Links

Links, that is simple hypertext links as in HTML, can be used
for relating content items to each other and to external resources.
Links have a single origin, which is a content item, an anchor in
this origin, and a single target, which is a content item or external
URL Links can be annotated. Taking into account the internal
links in a wiki, the content items present in the KiWi wiki form
an unconnected directed graph which may contain loops.

5.2 ANNOTATIONS

Annotations are metadata that can be attached to content items,
fragments and links. They convey information about the data
item’s meaning or properties. Annotations can be assigned man-
ually by the users or derived automatically via rules.

Content items, fragments, links, and annotations carry system
metadata such as the creation date and time and the author of a
content item or tagging. These metadata are realized in the form
of automatically generated annotations which cannot be modified
by the user. The KiWi wiki comes with a pre-defined, application
independent RDFS vocabulary expressing authorship, versions,
and the like. This is not further developed in the following and
the text focuses on user-generated annotations.

Two kinds of annotations are currently available in the KiWi
wiki: tags and RDF triples. Tags allow to express knowledge
informally without having to use a pre-defined vocabulary, while
RDF triples are used for formal knowledge representation, pos-
sibly using an ontology or some other application-dependent
pre-defined vocabulary. Users are by default not confronted with
RDF, which is considered an advanced feature for experienced
users, but the KiWi wiki aims to allow for a smooth transition
between informal and formal annotation as will be described in
the following.

5.2.1  Formal Knowledge Representation—RDF

The Resource Description Framework (RDF, see Section 4.2.2) is
currently the most common format for semantic web data. RDF
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data is suited for processing by machines but is often not easily
human-interpretable. In practice, support for RDF is important
to enable interoperability with current semantic web and linked
data [53, 54] applications and a semantic wiki should therefore
support at least the import and export of RDF data.

Ontologies can be specified using for example RDF Schema [70]
or OWL [171]. The KiWi system uses the RDFS language to
specify its ontologies because it is in many ways simpler than
OWL but is sufficient for most purposes in KiWi. However, KiWi
is not limited to RDFS but can also handle OWL ontologies, albeit
to a limited extent and without full support for reasoning.

5.2.2 Informal to Semi-Formal Annotations—Tags and Structured
Tags

One problem that frequently arises in the context of semantic web
applications is that it is hard to motivate users to annotate content
since they find the process complicated and laborious. Further,
first having to learn RDF before being able to make an annotation
is discouraging to users. One solution is to provide means for
creating less formal annotations which are easier to use. As work
progresses and users gain more knowledge, these annotations
can be made increasingly more precise and can eventually be
transformed into formal knowledge. Tagging (also discussed in
Section 2.2.2) is one such kind of informal annotation. A tag
assignment consists of the association of a term of phrase with a
resource. Despite their simplicity, there are many possibilities as
to how exactly tags are realized [338].

The conceptual model of the KiWi wiki employs tagging with
advanced features to help overcome the downsides of uncon-
trolled, ad-hoc categorization and to enable a transition between
informal and formal annotation, that is, tags and RDF.

Tag assignments can be explicit, that is, performed manually by
a user, or implicit, inferred by a reasoner based on user-defined
rules.

A tagging in KiWi is a tuple consisting of a user, a content item
of the type tag, a tag label, a tagged resource, and maintenance in-
formation needed for processing. The latter includes for example
information about the date when the tagging was created and a
marker which allows to distinguish between explicit and derived
taggings. The process of assigning a tag can then be seen as the
user creating an association between a resource and a tag using a
specific label.

TAGS AS CONCEPTS A hindrance in the transition from tags to
more formal knowledge (e.g., RDF triples) is that tags are simple
keywords that do not unequivocally map onto concepts. Often
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different keywords can be used to express the same abstract
concept (e.g., keywords in different languages or synonyms). Sim-
ilarly, the same term might be used to express different concepts
(e.g., homonyms like “bank”). A possibility that fits well in the
wiki context, is to separate keywords and abstract concepts by
using content items representing the abstract concepts instead of
keywords for tagging.

The KiWi wiki distinguishes between tags as mere strings or
labels and the abstract concepts they stand for by representing
the tag concepts as content items, tags in our terminology. Each
tag is associated with one or more labels which may overlap
between tags, thus mirroring the non-unique mapping between
names and concepts. Each tag concept content item may, but does
not have to, contain a textual description of its meaning and a
list of resources it has been assigned to, thus making it easier for
users to negotiate the meaning and use of the concept.

Keywords still play an important role, as they are what is en-
tered by the user, but the system automatically converts them
to the corresponding underlying tag, possibly interactively by
asking for clarifications in the case of ambiguities. When a user
enters a tag label to be assigned to a resource, the system automat-
ically resolves it to the corresponding tag concept, allowing the
user to intervene if she disagrees with the result of the concept
disambiguation.

Various approaches for semantic disambiguation, for example
based on the co-occurrence of concepts and distances between
words in WordNet [277], exist and may be employed. The URI of
each tag concept’s content item can be used as a tag label, mean-
ing that each concept can be unambiguously addressed during
tagging, even when all of its associated labels are ambiguous.
This is especially relevant for the automatic assignment of tags
where no user-intervention is possible or desired. When no re-
solving of ambiguous tag labels is available or desired, the system
can be adjusted for this by requiring tag labels to be unique.

Using content items as tags also solves some further issues be-
yond synonyms and homonyms: Unlike keywords, content items
have a URI and are addressable when transforming information
of semi-formal tags into formal RDF models (e.g., by the use
of rules). More importantly, content items also offer a place for
further describing tags. This encompasses both natural-language
explanations for humans on the meaning and intended use of the
tag as well as machine-readable descriptions, e.g., by means of
tagging a tag’s content item.

Apart from the solution for resolving ambiguous mappings
between concepts and labels discussed above, tags can also be
matched to formal concepts in an ontology, allowing for the
ontological grounding of tags.
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TAG LABEL NORMALIZATION Tag normalization defines an
equivalency on the set of tag labels. Tag label normalization can
mean for example that the tag labels “Wifi,” “WiFi,” and “WIF1”
are all converted to the tag label “wifi,” the canonical form of
this tag label equivalency class. Trailing whitespace and multiple
whitespace within a tag are always removed upon saving the
tag. Further, tag label normalization in KiWi is performed by
converting all letters to lowercase and removing punctuation.

NEGATIVE TAGS In a collaborative context, we may be inter-
ested in tracking disagreements which requires a way to express
negative information. Just as a user can tag a resource with the
tag label “t,” he or she may want to tag it with “not t” as a way
to express disagreement or to simply state that the resource is
not “t” or does not have the property “t.” An example may be a
medical doctor tagging a patient’s card as “not lupus” to state
that the patient definitely does not have “lupus.” Negative tags
thus explicitly express that something is not the case.

Although a tag “not t” could be seen as introducing classical
negation into the system, it may in fact be only a very weak
form of negation because we can allow the negation of pure tags
only, not general formulae or sets of tags, and the only way to
interpret this kind of negation would be by introducing a rule
which says that from tag t and tag nott a contradiction should
be derived. Negative tags can be represented by extending the
tuple representing the tagging with polarity information.

STRUCTURED TAGS Ordinary flat tags are limited in their ex-
pressiveness. To overcome this limitation, different extensions of
tagging have been proposed, for example machine tags® and sub-
tags [40] as used in the website RawSugar3. Most of the proposals
employ a variation of annotations in the form of keyword-value
pairs, sometimes extended to full RDF triples [373]. Note that
keyword-value pairs can be seen as triples, too — the resource
being annotated is the subject, the keyword is the predicate and
the value is the object of the triple.

More complex schemes which involve nesting of elements
might be practical in some cases, e.g. hotel(stars(3)) could
express that the tagged resource is a three-star hotel. These ex-
tensions develop the structure of the tag itself and a set of tags is
interpreted as a conjunction. It is conceivable to allow users to
tag resources with a disjunction of tags or even with arbitrary for-
mulae. This may be practical for some applications but it has two
drawbacks: Reasoning with disjunctive information is difficult
and simplicity and intuitiveness would suffer.

2 http://tech.groups.yahoo.com/group/yws- flickr/message/2736
3 http://www.rawsugar.com/


http://tech.groups.yahoo.com/group/yws-flickr/message/2736
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5.2 ANNOTATIONS

Structured tags are used in KiWi’s conceptual model to enhance
the expressive power of tags and achieve an intermediate step
between informal (atomic tags) and formal (RDF triples) annota-
tion.

Two basic operations lie at the core of structured tagging:
grouping and characterization.

The grouping operator, (), allows to relate several (complex or
atomic) tags. For example, a wiki page might describe a meeting
that took place in Warwick, UK on May 26, 2008, began at 8 am
and involved a New York customer. Using atomic tags, this page
can be tagged as Warwick, New York, UK, May 26, 2008, 8am
leaving an observer in doubts whether “Warwick” refers to the
city in Great Britain or to a town near New York. Grouping can
be used in this case to make the tagging more precise: (Warwick,
UK), New York, (May 26, 2008, 8am). A group of tags can also
be used to describe the properties of something whose name is
not yet known or for which no name exists.

Characterization enables the classification or naming of a tag.
The characterization operator, denoted :, can be used to make
the tagging more precise. For example, if we wanted to tag a
wiki page representing a meeting with the geo-location of the
city Warwick, we could tag it as (52.272135, -1.595764) using
the grouping operator. This, however, would not be sufficient
as the group is unordered. Therefore we could use the charac-
terization operator to specify which number refers to latitude
and which to longitude, (lat:52.272135, lon:-1.595764), and
extend the structured tag to specify that the whole group refers to
a geo-location: geo: (lat:52.272135, lon:-1.595764). Similarly,
Warwick in our example could be written as location: (warwick)
to differentiate it from Warwick fabric or person with the last
name Warwick.

Together, grouping and characterization provide a powerful
tool for structuring and clarifying the meaning of tags. Structured
tags are a step between informal simple tags and formal RDF
annotations that allows users to assign freely chosen tags and
vague annotations to content, but also gives them the opportunity
to structure the annotations.

The meaning of a structured tagging is not pre-defined but
rests, for the most part, on the user who specified it. Structured
tags do not impose strict rules on their use or purpose, but merely
provide the means to introduce structure into tag assignments.
Structured tags can be seen as a wiki-like approach to annotation
which enables a gradual, bottom-up refinement process during
which meaning emerges as users’ work and understanding de-
velop.
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Structured tags are governed by simple, minimal rules:

¢ Tag groupings

— can consist of atomic and complex tags or a combina-
tion thereof,

— are unordered,

- cannot contain duplicate members, e.g. (Bob, Bob,
Anna) and ((Bob, Anna), (Anna, Bob)) are not valid,

- can contain arbitrarily but finitely many elements,
— can be arbitrarily but finitely nested,

- are identical in meaning to the constituent tag when
they only contain one element, i.e. (Anna) is equivalent
to Anna

¢ Tag Characterizations
— can be used on atomic and complex tags,

— are not commutative, i.e. geo:x is not the same as
X:geo.

— can use atomic and complex tags as a label

Using structured tags, the same information can be expressed
in several different ways. The above described way of structuring
tags describing a location is only one of many. Others include
for example geo:(x:y):(1,23:2,34), geo:(y:x):(2,34:1,23),
geo:(1,23:2,34), and geo:1,23:2,34.

Different users and different communities might agree on dif-
ferent ways of structuring the same information and users are
free to assign structured tags in a way that suits their needs and
purpose the best. Of course, for structured tags to be useful in a
community, users should agree on a common way of structuring
information in tag assignments. We expect that such conven-
tions for the usage of structured tags evolve over time as users
collaboratively create and annotate content.

THE SEMIOTIC TRIANGLE One question to consider when
designing a system that includes annotations is whether the
annotations are seen to describe the data item or the concept
described by it. A tag or other annotations added to a content item
about a city could state a fact about the content item describing
the city or about the city itself. Depending on which philosophy
is adopted, different annotations can be appropriate, for example,
a text but not a city can be well-written and, inversely, a city
but not a text can have a certain number of inhabitants. The
distinction is important because it may have consequences on
how annotations are interpreted and treated. If the distinction is
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not made, annotations can be ambiguous when they can apply
either to the concept or to its representation in the wiki.

This problem is well known and has been addressed before in
linguistics in the context of the semiotic triangle [285], Peirce’s
triad [302], and de Saussure’s distinction between the signifier
and the signified [317]. Oren [294] describes a system that lets
users specify explicitly whether an annotation refers to a signifier,
that is, the text, or its signified, the concept described by the text,
through a syntax that supports the distinction of those two cases.

The KiWi system addresses the problem of multiple meanings
of a tag label as described above. It, however, purposefully does
not address the problem of what a tagging refers to —to a con-
cept or the page that describes it. The reasons for this are that
such a distinction may not be needed in practice, and might be
irrelevant to most users. Above all, requiring users to be aware
of the distinction and employ it during tagging reduces the user-
friendliness of tagging and thus deters users from annotating
content. Introducing such a distinction would therefore likely
lead to an increase of the complexity of the tagging process.
Where needed, structured tags can be used to specify the sense
in which the annotation is intended.

TAGS Vs LINKS When tag concepts are represented as content
items, tag assignments to content items can be seen as links
between the tagged resource and the content item representing
the tag concept. Similarly, structured tags, such as keyword-
value pairs, can be seen as expressing a relation (or a link), with
its type given by the keyword, between the tagged resource
and another resource, given by the value. In a wiki supporting
semantic browsing over such tags, the question may then arise
what differentiates a link from a (structured or atomic) tag. From
a technical point of view, there may not be a strict differentiation
and simple unstructured tags can be seen as specialized links
between a taggable resource and the content item describing
the tag concept, as a link is then simply a way of expressing a
relation. The difference usually lies in the way links and tags are
presented and used. Tags are usually represented separately from
a content item, e.g. in a special area of the page, while links are
represented with anchors inside the content item. Further, tags
make a statement about a single content item, e.g. give it a type,
whereas the purpose of links is to express an association between
two content items. Finally, while links can be tagged, and tag
concepts can be linked, it is not possible to link to or from a link.

TAG HIERARCHIES. Tag hierarchies constitute a step in the
transition from informal to formal annotation. They are useful
for example for reasoning and querying since they enable the
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processing of tag relationships. Tag hierarchies could be created
through assigning tags to tags, that is, tagging a tag’s content
item to indicate an “is-a” relationship.

Semi-formal annotations described in this section provide a
means to transform knowledge from human-only content de-
scribed in Section 5.1 to machine-processable information. Semi-
formal annotations are an valuable feature of social software be-
cause they provide a low-barrier entry point for user participation
in enrichment of content with machine processable annotations.
Users can make use of gradually more expressive and formal
methods of annotation as they become familiar with the system.
First, they may only create and edit content and assign flat tags
to content. When users become more familiar with the system
and its content and want to make more expressive annotations,
they may begin to use structured tags. Advanced users or system
administrators can further enhance the annotations by specifying
reasoning rules for semi-formal annotations [79] or translating
structured tags into RDF.

5.3 SOCIAL CONTENT MANAGEMENT

To facilitate social collaboration and leverage the social aspects of
a semantic wiki, several options and aspects may be considered.

USER GROUPs User groups can be leveraged, among other
things, for the personalization of wiki content, for querying and
reasoning and to attribute wiki data to a group of wiki users.
Tags are a simple way to group things, making it an obvious idea
to form user groups by tagging users’ content items. Generally,
every set of users that have been assigned the same tag could be
considered a group. However, when there are many tags used in
the system and special mechanisms are to be implemented for
groups such as discussion boards, it may be more efficient and
practical to use a mechanism to distinguish between user groups
and all collections of users and documents tagged with the same
tag. To distinguish between regular tag assignments and those
that assign a user a group, groups could be created by assigning
at structured tag with the label group to a content item, fragment
or link, e.g. group: (java).

ACCESSs RIGHTS Users, user groups and rules for reasoning
could be used to handle access rights in the wiki. Questions
that arise include who owns the rules, what the access rights on
rules are, and who can assign the tags that restrict the access.
Static rules would not be suited for rights managements in all
environments. For them to function well, the organization and
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roles in the wiki have to be relatively stable, which may be the
case in professional applications. In other areas, such as the
development of open source software, such rules may not be
desired or the social organization might not be static enough for
such rules to be adequate.

THE SOCIAL WEIGHT OF TAGS When several users tag one
item with the same tag, it may be useful to aggregate these tag
assignments to give a clearer view of all the tags assigned and
derive information about the popularity of the tag assignment.
Tag assignments then can be seen to have weights depending on
how often they were assigned. On the other hand, other users
might not agree with the assignment of a certain tag to a content
item, and add a negative component to the tags” weight to express
this. The overall social weight of a tag could be calculated by
assigning a value to both a tag assignment and disagreement
with it and calculating the total score.

The social weight of a tag then summarizes the users’ views
on the appropriateness of a specific tag assignment and thus
provides a valuable measure that can be used in reasoning and
querying. Note that agreeing with a tag assignment is identical to
assigning it but disagreement is not identical to adding the nega-
tive tag since not being content with the assignment of tag does
not necessarily imply that one thinks its negation should be as-
signed. Negative tagging and disapproving with a tag assignment
are not to be confused, the former explicitly expresses negative
information, while the latter is merely a negative assessment of a
tag assignment.

Further, the tag weight gives an overview over users’ opinions
and could help form a consensus on tag usage. Thom-Santelli
et al. [347] show evidence that users have a desire for consistency
with other users’ tag assignments and are often willing to adopt a
tag that they know has been used on the same resource by other
users. Weighting tags could further foster this process.

Reinforcing a tag assignment or disagreeing with it further con-
stitutes a low-barrier activity in the wiki, which might encourage
beginning users to participate and express their opinion.
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EXPERIMENTAL EVALUATION: STRUCTURED
TAGS AND RDF

This chapter describes the design, execution, and evaluation of
a user study that we performed to compare structured tags and
RDF in practice.

Structured tags, as described in the previous chapter, are sim-
ple free-form tags extended by two mechanisms, grouping and
characterization. Grouping is used to divide a set of tags into
smaller units to indicate which tags belong together, while char-
acterization is used to assign descriptive labels to a tag or a group
of tags.

Structured tags are intended to serve as an annotation formal-
ism that is more expressive than simple tags, but that at the same
time is also more flexible and easier to use than RDEFE. As such,
structured tags constitute a bottom-up approach to expressing
structured annotations that supports and accommodates the evo-
lution of knowledge: Structured tags make it easy for beginning
users to introduce some structure into their annotations, thereby
making them more expressive. At the same time, structured tags
are well-suited to express information that is vague and still
evolving.

The annotations created in these scenarios can then serve as
the basis for further formalization, for example in the form of
more complex structured tags, or RDF. This might happen for
example when more information becomes available or when a
user revises her annotations made previously.

Structured tags are flexible in their use, allowing users to apply
grouping and characterization to simple and structured tags. The
resulting annotation do not have a strict, pre-defined semantics,
but, like simple free-form tags, their meaning arises from use.
Additionally, structured tags can vary wildly in their complexity:
In the most basic case, every single atomic tag can be seen as a
structured tag consisting of a grouping with one element, but
when grouping and characterizing are repeatedly applied, an
intricate structure can arise.

Since the characteristics of structured tags are strongly deter-
mined by their usage, an experimental evaluation is warranted
to provide insight into the respective roles of structured tags
and RDF. As user-friendliness and user acceptance are crucial
to social semantic web applications, the present study focuses
on the user experience and aggregates participants’ opinions on
structured tags and their usability.
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In addition, we present first findings on how structured tags
are used in practice, how complex the structured tags are that
users create and how suitable the formalism is for expressing
evolving knowledge.

We consider structured tags to be not an alternative to RDF,
but rather as a complement that helps bridge the gap between
simple tags and RDF. For this reason, we evaluate RDF in the
same manner as structured tags and compare the results.

The evolution of annotations from structured tags to RDF
and the conversion between the two is another interesting topic
worthy of investigation that is not treated in this first study of
structured tags.

6.1 EXPERIMENTAL SETUP AND EXECUTION

Nineteen participants were recruited through announcements
in several computer science lectures at LMU. They each were
rewarded with 100 Euros for their participation in the study.

Participants” ages ranged from 21 to 26 with the average age
being 23 years. All of the participants were students. Most studied
computer science or media computer science at LMU, but some
were students of related disciplines like mathematics, physics
and computational linguistics. On average, participants had been
students for 5.2 semesters with the individual durations ranging
from two to ten semesters.

The study was performed in a single session that lasted about 8
hours and included a half-hour break at noon. Participants were
split up into two groups that were balanced in terms of the fields
of study and study progress of the group members. All materials
that the participants were given were written in English, but
comments could be given in English or German. At the start of
the session, participants were asked to rate their experience with
RDF and of tags on a scale from 1 (“never used/no knowledge”)
to 3 (“frequent use”).

The participants were provided with a short introduction into
the experiment scenario, reproduced here:

You work in a software development company that
runs several projects. When a project starts, informa-
tion about it is added in the company wiki. The text
there describes the project, its goals and projects and
the people involved in it. Since several people collab-
orate to write the text and since more information
becomes available as the project progresses, the text is
changing and is also becoming more detailed. How-
ever, the company’s wiki does not only contain text
but also annotations that describe the content of the
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text, that is, it is a semantic wiki. These annotations
are useful for example for retrieving wiki content and
for automated reasoning, the deduction of new facts.

The first part of the experiment consisted of participants anno-
tating different revisions of a text on project management in a
software development scenario using RDF. Since structured tags
are not yet implemented and available in practice, participants
wrote down their annotations to the text on paper. The texts
were written specifically for use in the study and represented
the content of a wiki page describing a fictional software project.
Two different texts of equal length with six revisions each were
written, we will refer to them as “text A” and “text B” in the
following. All revisions of both texts as they were presented to
the participants are respectively given in Sections A.3 and A 4.

To provide participants with an introduction into the annota-
tion formalisms, two texts of similar length describing structured
tags and RDF were prepared. They are respectively given in Sec-
tions A.1 and A.2. To ensure that the texts were comparable in
quality and intelligibility, they were examined by two computer
science researchers at LMU who knew both formalisms and were
not involved with the study. The description of RDF was simpli-
fied in that URIs and namespaces were omitted and capitalization
and quotation marks were used to distinguish between classes,
instances and literals. The introduction to structured tags did not
mention negative tag assignments as described in Section 5.2.2.

Participants were provided with the introductory text on RDF
and instructions for the experiment. Participants could refer to
the introduction at any point, and were asked not to modify their
annotations once they had received the following revision of the
text. Changes in the text between revisions were highlighted.
Participants were told to add as many annotations as they felt
appropriate.The instructions further encouraged participants to
refer to annotations made to previous revisions and to describe
new annotations in terms of modifications to these annotations.

The annotation process was self-paced and the next revision
of the text was only handed out once a participant had finished
annotating the previous revision.

In this first part of the experiment, one group annotated text A,
while the other group was given text B to annotate. Participants
were asked to write down the times when they started and
stopped annotating each of the revisions.

After they had completed annotating the final revision, par-
ticipants were provided with questionnaires where they had to
indicate their agreement with ten statements about the annotation
formalism and their impressions of the annotation process. For
each statement, participants were asked to tick one of five boxes
corresponding to a Likert scale representing different extents of
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agreement. The categories were “strongly disagree,” “disagree,”
“undecided,” “agree,” “strongly agree.”

In addition, participants could optionally provide written com-
ments.

The second part of the experiment was executed in the same
manner using structured tags instead of RDF as an annotation
formalism. Additionally, the group that annotated text A with
RDF was now given text B and vice versa.

When participants had completed both parts of the study, they
were asked to fill out a final questionnaire describing which
formalism they preferred and for which reasons.

6.2 RESULTS

The analysis of participants’ previous experience with RDF and
tagging shows that out of the nineteen participants, only five had
any knowledge of RDF before the experiment. All five rated their
amount of experience with RDF as “a little” and no participants
indicated that they used RDF frequently or knew it well.

The situation is similar for tags; all but six participants stated
that they had never used tags. Out of these six participants, five
indicated that they occasionally assigned tags to web content,
and one participant declared that he often uses tags.

6.2.1  User Judgments

This section describes participants” level of agreement with ten
statements about the annotation formalisms. For each statement,
two figures are given, one showing the distribution of participants’
answers ranging from 1 (“strongly disagree”) to 5 (“strongly
agree”) grouped by the text type, and the second showing the
same data grouped by the annotation formalism used. The for-
mer allows to determine for each statement whether there is a
connection between the text, A or B, and the answer given. The
latter shows how answers differ with the annotation formalism
used. In addition, we performed Wilcoxon-Mann-Whitney tests
to determine whether the differences are significant.

STATEMENT 1: “After reading the introductory text, I felt I had under-
stood how to use the annotation formalism”  This statement refers
only to the introductory text and is independent of the anno-
tated text. Figure 15a confirms that the answers are similarly
distributed in both texts. The difference across texts was not sig-
nificant (W=178, p=0.40), but a significant difference in reactions
depending on the annotation formalism used was found (W=275,
Pp=0.001).
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Figure 15: Percentages of participants” levels of agreement (1 to 5) with
statement 1, grouped by (a) text and (b) annotation formalism
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Figure 16: Percentages of participants” levels of agreement (1 to 5) with
statement 2, grouped by (a) text and (b) annotation formalism

Participants perceived the introduction on structured tags as
being more helpful than that on RDF. Over seventy percent of
participants agreed or agreed strongly with the statement with
respect to structured tags, but about 65 percent of participants
disagreed or disagreed strongly with the statement after they
had read the introduction to RDEF. In both cases, only about ten
percent of participants were unsure whether they agreed with
the statement.

Regardless of the annotation formalism, most participants’
written comments state that more examples should have been
included.

STATEMENT 2: “The annotation formalism allowed to annotate the
text in an intuitive way”  As before, the answers are similarly
distributed across the texts (see Figure 16a), indicating that partic-
ipants” opinions were independent of the text they had annotated.
Indeed, the difference in answers between annotation formalisms
(W=317.5, p<0.001) but not that between texts (W=188, p=0.59)
was found to be significant.
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Figure 17: Percentages of participants’ levels of agreement (1 to 5) with
statement 3, grouped by (a) text and (b) annotation formalism

More than eighty percent of the participants found structured
tags to be intuitive (“agree” or “strong agree,” see Figure 16b),
and a small number was undecided. No participant found struc-
tured tags to be unintuitive. The situation is reversed for RDF
which almost three quarters of participants found unintuitive.
Only about ten percent of participants agreed with the statement
with respect to RDF.

Many participants in their comments criticized what they con-
sidered to be limitations of RDF, for example that annotations
always take the shape of triples, that a clear idea of the domain
is needed to formalize the concepts and relations, and that the
content of long and complex sentences is hard to express as RDF.

Comments about the intuitiveness of structured tags were
mostly positive, although here, too, one participant found it hard
to express long sentences as structured tags.

STATEMENT 3: “The annotation formalism allowed to annotate the
text in a convenient way”  The reactions to the third statement
differ slightly more between texts than those to the two state-
ments before, but overall are comparable (see Figure 17a). Again,
the difference between the answers given by participants using
different annotation formalisms (W=43.5, p<0.001) but not that
between participants annotating different texts (W=158.5, p=0.39)
is significant.

Again, with respect to structured tags, most participants agree
with the statement, while the majority of participants using RDF
disagrees with it (see Figure 17b). While the difference between
the two formalisms is considerable, the reactions are less divided
across formalisms than those to the previous statement.

Only few participants added further comments about this
statement. One participant found writing RDF triples repetitive,
while another remarked that structured tags often need to be
rearranged when new information is provided.
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Figure 18: Percentages of participants” levels of agreement (1 to 5) with
statement 4, grouped by (a) text and (b) annotation formalism

STATEMENT 4: “I feel that way to represent negative facts is missing
from the formalism”  The reactions to this statements are similar
across texts, although participants annotating text B slightly more
frequently agreed with the statement than those annotating text
A (see Figure 18a). However, the difference between texts is
not significant (W=136.5, p=1), while that between annotation
formalisms is (W=85, p=0.05).

There is little difference in the reactions across formalisms (see
Figure 18b). Overall, more participants feel that RDF is missing
a way to represent negative facts, but only by a small margin.
For both formalisms, more than 75% of participants agree or
agree strongly with the statement and no participants disagrees
strongly with it.

In the comments, one participant remarked that he considered
a way to express conditions and consequences to be of greater
importance than support for negation.

STATEMENT 5: “The annotation formalism was expressive enough
to let me annotate the text the way I wanted” Here, reactions
differ across texts, but less strongly than the reactions across
formalisms (see Figures 19a and 19b) and, again, the difference
between annotation formalisms (W=99.5, p=0.26) but not that
between texts (W=48.5, p=0.001) is significant.

When using structured tags, over eighty percent of participants
found structured tags expressive and agreed or strongly agreed
with the statement. The levels of agreement are more varied when
participants use RDF with roughly equal proportions answering
“disagree,” “undecided” and “agree.”

STATEMENT 6: “I feel confident about the formal correctness of the
annotations I made”  Participants’ answers are very similar across
texts (see Figure 20a). As before, the difference in answers be-
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Figure 19: Percentages of participants’ levels of agreement (1 to 5) with
statement 5, grouped by (a) text and (b) annotation formalism
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Figure 20: Percentages of participants’ levels of agreement (1 to 5) with
statement 6, grouped by (a) text and (b) annotation formalism

tween texts is not significant (W=130.5, p=0.85) but that between
annotation formalisms is (W=69, p=0.014).

More than sixty percent of participants are not confident about
the correctness of their RDF annotations (“disagree” or “strongly
disagree,” see Figure 20b), only few are undecided and about 25
percent agree with the statement. The situation is different for
structured tags where more than forty percent of participants are
undecided, that is, are not sure whether their annotations were
formally correct. Another forty percent of participants agrees
or strongly agrees with the statement and only about a fifth
disagrees with it.

STATEMENT 7: “I feel confident about the appropriateness of the anno-
tations I made”  Again, the distributions of reactions across texts,
while not identical, are highly similar and the difference between
texts is smaller than that between formalisms (see Figures 21a
and 21b). Neither the difference between texts (W=117.5, p=0.70)
nor annotation formalisms (W=97.5, p=0.24) is significant.



6.2 RESULTS
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Figure 21: Percentages of participants” levels of agreement (1 to 5) with
statement 77, grouped by (a) text and (b) annotation formalism
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Figure 22: Percentages of participants” levels of agreement (1 to 5) with
statement 8, grouped by (a) text and (b) annotation formalism

The reactions of participants using RDF are distributed in com-
parable proportions over “disagree,” “undecided,” and “agree.”
A smaller number of participants strongly disagreed with the
statement. With respect to structured tags, the reactions are very
different with more than half being undecided, a small number
disagreeing and about a third agreeing or agreeing strongly.

STATEMENT 8: “I feel that the annotations I made convey the impor-
tant aspects of the text”  For this statement, again, the distribu-
tions of the different levels of agreement do not greatly differ
across texts or annotation formalisms (see Figures 22a and 22b),
and the answer distributions do not differ significantly between
texts (W=200, p=0.30) or annotation formalisms (W=128, p=0.13).

The majority of participants agrees or agrees strongly, while a
minority of about twenty percent is uncertain. In the case of RDE,
about ten percent of participants disagree with the statement.

Several participants in both groups wrote in their comments
that they felt they might have annotated too much and expressed
too many unimportant details in their annotations.
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Figure 23: Percentages of participants’ levels of agreement (1 to 5) with
statement 9, grouped by (a) text and (b) annotation formalism

STATEMENT 9: “I enjoyed using the formalism” Here, a small
difference in reactions between the texts can be observed (see
Figure 23a). The difference in reactions between texts is not sig-
nificant (W=148, p=0.48), but that between annot