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Summary

The aim of this thesis was to use the genealogical information contained in genetic variation profiles
of natural populations to describe the evolution of a particular species.

In the first project we analysed the colonization process that brought Drosophila
melanogaster from Africa to Asia. Southeast Asian populations of the fruit fly D. melanogaster
differ from ancestral African and derived European populations by several morphological
characteristics. It has been argued that this morphological differentiation could be the result of an
early colonization of Southeast Asia that predated the migration of D. melanogaster to Europe after
the last glacial period (around 10,000 years ago). To investigate the colonization process of
Southeast Asia, we collected nucleotide polymorphism data for 200 X-linked and 50 autosomal loci
from a population of Malaysia. We analysed this new SNP dataset jointly with already existing data
from an African and a European population by employing an Approximate Bayesian Computation
(ABC) approach. By contrasting different demographic models of these three populations, we do
not find any evidence for an early divergence between the African and the Asian populations.
Rather, we show that Asian and European populations of D. melanogaster share a non-African most
recent common ancestor (MRCA) that existed about 2500 years ago.

The second project of my PhD thesis is an analysis of the importance of seed dormancy at
the population level in two wild tomato species. Seed banks, that is, plant seeds remaining in soils
for several generations before germination, are of practical importance in conservation biology
because they diminish the immediate ecological impact of habitat fragmentation and prevent species
extinction. From an evolutionary perspective, seed banks increase the genetic diversity of plant
populations and buffer the effect of varying climatic conditions by magnifying the effects of good

years and by dampening the effects of bad years. In this study we estimate the germination rates for
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two wild tomato species (Solanum chilense and Solanum peruvianum) found in western South-
America in a wide range of habitats by using DNA sequences coupled to a coalescent model in
combination with ecological data. We develop an ABC framework to integrate ecological
information on above ground population census sizes, in order to estimate seed bank and
metapopulation parameters for each species. We provide the first evidence that it is possible to
disentangle the effect of the metapopulation structure from that of the seed bank on the effective
population size and to obtain accurate estimates of germination rates based on a coalescent model.
The third and last project of this thesis is related to the development of a computational tool
that facilitates the analysis of nucleotide polymorphism datasets in an ABC framework. With the
availability of whole-genome sequence data, biologists are able to test hypotheses regarding the
demography of populations. Furthermore, the advancement of the ABC methodology allows the
demographic inference to be performed in a simple framework using summary statistics. We present
here msABC, a coalescent-based software that facilitates the simulation of multi-locus data, suitable
for an ABC analysis. msABC is based on Hudson's ms algorithm, which is used extensively for
simulating neutral demographic histories of populations. The flexibility of the original algorithm
has been extended so that sample size may vary among loci, missing data can be incorporated in
simulations and calculations, and a multitude of summary statistics for single or multiple
populations is  generated. @ The source code of msABC is available at

http://bio.lmu.de/~pavlidis/msabc.
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Zusammenfassung

Ziel dieser Doktorarbeit war, anhand von genetischen Daten die demographische Evolution von
Arten zu untersuchen.

Das erste Projekt der vorliegenden Arbeit beschiftigt sich mit der Analyse des
Kolonisierungsprozesses, welcher die Fruchtfliege, Drosophila melanogaster, von Afrika nach Asia
brachte. Siidostasiatische Populationen von D. melanogaster unterscheiden sich von afrikanischen
und europdischen Populationen durch verschiedene morphologische Merkmale, und es wurde die
Hypothese aufgestellt, dass dies die Folge einer sehr alten demographischen Spaltung zwischen
asiatischen und afrikanischen Populationen sein konnte. Um den Kolonisierungsprozess zu
untersuchen, haben wir innerhalb einer malaysischen Population 200 X-chromosomale und 50
autosomale Fragmente sequenziert. Wir haben diesen neuen Datensatz gemeinsam mit bereits
bestehenden Daten aus einer afrikanischen und einer europiischen Population anhand einer ABC
Methode (Approximate Bayesian Computation) analysiert. Nachdem wir verschiedene
demographische Modelle miteinander vergleichen konnten, steht fest, dass eine friihe Spaltung
zwischen afrikanischen und asiatischen Populationen eher unwahrscheinlich ist. Stattdessen zeigen
wir, dass asiatische und europdische Populationen einen gemeinsamen Ahnen teilen, der vor 2500
Jahre existierte.

Das zweite Projekt beschiftigt sich mit dem Einfluss der Samenruhe auf die Evolution von
zwei wilden Tomatenarten der Gattung Solanum. Samenbanken ( d.h. Samen, die vor der Keimung
mehrere Jahre im Boden verweilen) sind ein wichtiges Merkmal, dass die genetische Vielfaltigkeit
einer Art bestimmt. Die Identifizierung einer Samenbank hat eine praktische Bedeutung in der
Konservationsbiologie, da Samenbanken einen kurzfristigen Schutz gegen die Zerstdrung von

Lebensrdumen bieten. Aus evolutiondrer Sicht sind Samenbanken wichtig, um die Effekte von
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wechselnden klimatischen Bedingungen zu dadmpfen. In dieser Studie schidtzen wir die
Keimungsrate von Samen aus zwei wilden Tomatenarten (Solanum peruvianum und Solanum
chilense) aus Siidamerika anhand von DNS-Sequenzen. Dafiir haben wir eine ABC Methode
entwickelt, die auf einem Koaleszenz- Modell beruht und die 6kologische Informationen iiber die
Anzahl von oberirdischen Pflanzen integriert. Wir zeigen zum ersten Mal, dass es moglich ist, die
Effekte von Metapopulationsstruktur und Samenruhe auf die effektive Populationsgrée zu trennen,
und daher genaue Schitzungen der Keimungsrate zu erhalten.

Das dritte und letzte Projekt meiner Doktorarbeit besteht aus der Entwicklung eines
Computerprogramms, das die Analyse von demographischen Modellen durch ABC-Methoden
ermoglicht. Mit der anwachsenden Verfiigbarkeit von DNS-Sequenzen befinden sich Biologen jetzt
in der Lage, Hypothesen zu testen, die die demographische Vergangenheit von Populationen
betreffen. Die neuesten Fortschritte der ABC-Methode ermdglichen es, solche Analysen in einem
vereinfachten Rahmen zu fithren, und zwar anhand von zusammenfassenden Statistiken. Wir
prisentieren in diesem Kapitel msABC, ein neues Koaleszenz-Simulationsprogramm fiir ABC-

Analysen in Populationsgenetik.
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General Introduction

Inferring the history of populations from genetic variation data: The most important
information stored in DNA is the genetic instruction for the development and the functioning of all
known organisms . However, DNA is also carrying another type of information that reveals itself
when we observe the differences between DNA molecules belonging to different individuals. While
genetic instructions carry information about the future history of organisms, the differences between
the DNA molecules that are found in a given population can be exploited to gain insight into its
evolutionary past. It has been a major objective for population geneticists, since the foundation of
the field at the beginning of the twentieth century, to understand the relations between the
evolutionary process and the frequencies of segregating alleles within a population. Population
genetics developed a set of theoretical models that describe and quantify the relations between the
forces of the evolutionary process and the patterns of genetic diversity within a population or a
network of populations. Since the introduction of polymerase chain reaction (PCR) about 30 years
ago, the ease with which biologists are able to collect genetic variation data from natural
populations has been ever increasing and the interpretation of this new data at the light of the results
of theoretical population genetics already yielded some very interesting insights into the
evolutionary past of a series of species including our own, Homo sapiens. To start with, analyses of
genetic variation data sampled from human populations on a world-wide scale showed that our
modern gene pool has recent and predominant African origin and also revealed the major
demographic events that occurred during the range expansion of Homo sapiens across the world
(Prugnolle et al. 2005; Fagundes et al. 2007). The inferred models of human evolution have been

shown to be compatible with the information provided by the available fossil record (Manica et al.
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2007) and helped to clarify the debate concerning the occurrence of interbreeding between Homo
sapiens and other members of the Homo genus by showing that little or no contribution from gene
pools of other hominid species is necessary to explain present patterns of genetic variation in
humans. The same kind of datasets have also been used to reveal the genetic structure of human
populations, even among closely spaced ones. For example, Novembre et al. (2008) found a close
correspondence between genetic and geographic distances in European human populations such that
DNA of a European individual can be used to infer his geographic origin with a surprising accuracy.
Results concerning the structure of human populations are not only of interest from an
anthropological point of view but also play a key role in statistical medical genetics where genome-
wide arrays of allele frequencies are used to infer mutations that are responsible for genetic diseases
(McCarthy et al. 2008). The same kind of studies have also been conducted on other species. The
results of these analyses revealed the history and the structure of populations in situations where
poor fossil record is available, as it is the case for chimpanzee, our closest living relative (Bequet et
al. 2007), or for pathogenic species for which there is a strong medical interest (Szmaragd and
Balloux 2007; Jombart et al. 2009; Tanabe et al. 2010).

Besides demographic history, there is something even more fascinating that can be found in
the patterns of genetic variation observed in natural populations: traces left by past events of natural
selection. Locating, timing and quantifying such events is important for the understanding of the
adaptive history of life because it reveals the evolutionary challenges that species had to cope with
and how evolution modified their genetic instructions in such a way that they could successfully
adapt to their ever-changing environment. One of the important selective processes that can be
investigated by analyzing genetic variation profiles from wild populations is the fixation dynamic of
an advantageous mutation in a population. This process is called a selective sweep and has been the

focus of much attention during the last decades since its seminal description by Maynard Smith and



Haigh (1974). When a new mutation significantly increases the fitness of its carrying organism, the
frequency of this beneficial mutation is expected to rise until it reaches fixation within the
population and eventually within the whole species. Because mutations occur on a molecule
composed of many physically linked nucleotides, the effect that selection has on the frequency of
the advantageous mutation is transmitted to neighboring loci along the DNA molecule. The range
on which the frequencies of linked neutral mutations are affected by the transmitted action of
positive selection, depends on the crossing-over rate in this genomic region. If local recombination
rates are high, crossing-overs will break down the physical links between loci and the transmission
of the effect of positive selection on neighboring loci will be constrained locally. The main
consequence of such a selective sweep on genetic variation data is a local reduction in diversity
around the selected allele. This particular feature can be searched for in genome-wide scans of
genetic polymorphism datasets that have been sequenced in small samples of individuals from wild
populations. This approach allows, without prior knowledge about the nature of the adaptations, to
identify genes that have been targeted by positive selection within one species and to infer the time

and the strength of the selective event (Li and Stephan 2006; Stephan 2010).

Approximate Bayesian computation in population genetics: From these results it appears that
molecular data provides biologists with an important amount of information about the demographic
and adaptive processes that have affected the evolution of natural populations. However, the current
increase of the complexity of molecular datasets and of the models built to address more complex
biological questions represent an important challenge for the statistical methods used in these
studies. Most statistical approaches that have been developed in the early years of molecular
population genetics are model-based and rely on the derivation of likelihood functions (Beaumont

and Rannala 2004; Kuhner 2009). Many of these methods, however, are limited by the difficulty of



computing the likelihood functions when the models and datasets are becoming too complex (large
numbers of parameters and loci). Early studies have therefore been restricted to the analysis of small
datasets using simple theoretical models for which likelihood functions could be derived (Wilson
and Balding 1998; Beerli and Felsenstein 2001). It seems that these approaches will probably not be
able to keep up with the important amount of data that are already produced by modern high-
throughput DNA sequencing technologies (Metzker 2010). New statistical methods had to be
developed to bypass the problem of computing exact likelihoods. One of these approaches is
approximate Bayesian computation (ABC) (Beaumont et al. 2002; Csilléry et al. 2010; Beaumont et
al. 2010), a method that is characterized by the use of summary statistics and of computer
simulations.

A long tradition in population genetics consists in using summary statistics of full genetic
polymorphism datasets. These summary statistics are numerical values calculated from the full data
such as to maximize the information about a specific aspect of the evolutionary process. In
molecular population genetics, summary statistics can be grouped into four classes describing: 1. the
amount of genetic variation (Watterson 1975; Tajima 1983), 2. the shape of the distribution of
frequencies of mutations (Tajima 1989; Fu and Li 1993; Fay and Wu 2000), 3. linkage
disequilibrium, that is, the non-random association between alleles on a chromosome (Kelly 1997;
Sabeti 2002), and 4. the amount of genetic differentiation between individuals sampled from
different populations (Wright 1951; Hudson et al. 1992). These summary statistics correlate with
parameters such as population sizes, migration rates, time of demographic events (fission or fusions
of populations) or selective pressures. Nevertheless, correlations usually heavily depend on the
evolutionary models that are considered. Under relatively simple models, analytical relationships
between evolutionary parameters and these statistics could be derived (Wright 1951; Wattersson

1975; Zivcovic and Wiehe 2008). However, for more complex models, population geneticists have



developed a set of computational tools to be used for simulating the evolution of genetic information
in artificial populations and computing summary statistics on these simulated datasets. The most
widely used method to do this is a simulation algorithm that is based on the coalescent process
(Hudson 2002; Wakeley 2009), a retrospective model in population genetics that traces all copies
from a gene, found in a sample of individuals, to a single ancestral copy known as the most recent
common ancestor . The fact that vectors of summary statistics can be easily simulated under a
range of complex evolutionary scenarios is one of the key aspects of the ABC estimation procedure
in population genetics. This method compares a vector of summary statistics computed on the
observed data with those computed on a large numbers of simulated datasets for which the
parameters of interest are known. It can therefore be applied when suitable likelihoods are not
available or computationally prohibitive and allows population geneticists to use their datasets to
make inferences about complex evolutionary histories and to compare their theoretical models to
observations made in natural populations. This is done in a Bayesian framework in which the
important steps are model building, model fitting and model improvement.

In evolutionary biology, theoretical models tend to be explanatory rather than predictive. The
interest of statistical analyses of genetic variation found in natural populations is to uncover the
evolutionary history that generated the present data and not to predict what will happen to these
populations. The formulation of the statistical models therefore reflects the different hypotheses that
evolutionary biologists have about the processes that generated the diversity of their biological
systems. In the ABC framework the formulation of scientific hypotheses into abstract statistical
models can be done in a flexible way. External information about the biological system, such as
mutation rates, recombination rates, dates of demographic events based on fossil records or other

ecological informations can be incorporated into the models. This approach increases the

*Coalescent theory studies the statistical properties of the inheritance relationships of gene copies based on different

assumptions about the evolutionary history of the population in which the gene copies were sampled.
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information about the parameters of interest that can be extracted from the data. The fit of a model
to the data is done by generating many simulations across a large range of parameter values and
models, and by retaining only those parameter values that eventually generated simulated datasets
almost identical to the observed data. The proportion of retained simulations generated by a given
model is then interpreted as the probability that the observed data has been generated by this model
given the set of tested models. The retained values of the parameters of the best model are used to
construct the posterior probability distributions for the parameters that needed to be quantified.
Although this procedure allows the identification of the model that provides the best fit to a dataset
among a set of predefined models, it doesn't report any information about the absolute fit of this
model to the data. In other words, in an ABC model choice analysis, the model associated with the
highest posterior probability is certainly the least bad of all tested models but might well be unable
to fully reproduce all the aspects of the complete data. Information about the absolute fit of a model
to the data is an important aspect of such statistical analyses because it indicates whether or not new
hypotheses need to be constructed. Knowing which aspects of the data are not correctly predicted by
a model also gives an idea about how to improve the model. Assessing the absolute fit of a model to
the data is usually done by performing predictive simulations, which are the distribution of future
observations conditional on the observed data. This is done by sampling numerical values from the
posterior probability distribution obtained for the best model and to use them to generate simulated
datasets. Observed statistics can be compared with these simulated distributions to identify aspects
of the observed dataset that cannot be predicted by the model.

By avoiding the computation of likelithood functions, ABC simplifies the process of
comparing evolutionary hypotheses among each other and against the data. It will certainly establish
itself as an important tool to analyse the new full-genome datasets generated by new sequencing

technologies and help to confront these new data with the important theoretical framework



developed in evolutionary biology since the beginning of the twentieth century.

Outline of the thesis: During my PhD thesis I applied ABC methods to answer current issues in the
study of the evolution of Drosophila melanogaster and wild tomatoes species from the genus
Solanum. My worked encompassed the acquisition of new nucleotide polymorphism datasets, the
development of computational tools to perform ABC estimations in population genetics, and the
statistical analysis of datasets from Drosophila and tomatoes in an ABC framework. This
manuscript is organized as a cumulative dissertation composed of three chapters.

The first chapter is a study about the origin of Asian populations of the fruit fly Drosophila
melanogaster. An ongoing debate about the age of the colonization of the Southeast Asian continent
by this species could be resolved by showing that Asian flies diverged only recently from their
ancestral African populations. In the second chapter Dr. Tellier and 1 used an ABC approach to
investigate the impact of seed dormancy on the evolutionary history of species from the genus
Solanum. Seed dormancy is a life-history trait that can have a dramatic impact on the genetic
diversity of plant populations. It confers an evolutionary potential that wouldn't be suspected if only
observable, above-ground individuals would be considered. The third and last chapter of my
dissertation is the description of a software written by Pavlos Pavlidis and myself to facilitate
coalescent simulations in an ABC framework. It consists of an important modification of the
standard coalescent simulator ms (Hudson 2002) that allows the user to set prior distributions on
demographic parameters and to summarize the simulated datasets into a series of summary

statistics.



Chapter 1

ABC analysis of Drosophila melanogaster polymorphism data reveals a recent

colonization of Southeast Asia

Laurent SJY, Werzner A, Excoffier L, Stephan W. Mol Evol Biol. in press.

Abstract

Southeast Asian populations of the fruit fly Drosophila melanogaster differ from ancestral African
and derived European populations by several morphological characteristics. It has been argued that
this morphological differentiation could be the result of an early colonization of Southeast Asia that
predated the migration of D. melanogaster to Europe after the last glacial period (around 10,000
years ago). To investigate the colonization process of Southeast Asia, we collected nucleotide
polymorphism data for more than 200 X-linked fragments and 50 autosomal loci from a population
of Malaysia. We analysed this new SNP dataset jointly with already existing data from an African
and a European population by employing an Approximate Bayesian Computation approach. By
contrasting different demographic models of these three populations, we do not find any evidence
for an early divergence between the African and the Asian populations. Rather, we show that Asian
and European populations of D. melanogaster share a non-African most recent common ancestor

(MRCA) that existed about 2500 years ago.



Introduction

The demographic history of wild populations of the fruit fly Drosophila melanogaster has been a
subject of investigation for several decades (David and Capy 1988; Baudry et al. 2004; Stephan and
Li 2007). This is mainly due to the fact that this species is used as a model organism in studies of
local adaptation (Ometto et al. 2005; Li and Stephan 2006; Pool et al. 2006). These studies attempt
to detect evidence for past events of positive selection by scanning the genome for specific patterns
of genetic variation. In these analyses, the identification of major demographic events that affected
the populations in the recent past plays an important role for at least two reasons. First, being able to
identify the ancestral and derived populations and obtaining reliable estimates for the times at which
the derived populations colonized new habitats is critical in understanding to which environmental
conditions these populations had to adapt. Second, studies of local adaptation that are trying to
detect genes targeted by positive selection are based on the assumption that the adaptive event
required the fixation of beneficial alleles. The rapid increase in frequency of a favorable allele
may leave a typical signature in DNA polymorphism data (Maynard Smith and Haigh 1974) that is
called a selective sweep. Such signatures can be detected by recently developed methods (Kim and
Stephan 2002; Kim and Nielsen 2004; Nielsen 2005; Stephan et al. 2006; Jensen et al. 2007,
Pavlidis et al. 2010a). Some of these methods rely on a demographic model that allows them to take
into account the fact that neutral demographic forces (such as population size bottlenecks in the
recent past) can generate similar signatures as selective sweeps (Barton 1998). Estimation of
demographic models can therefore be used to reduce the false positives rate of selective sweeps
detection methods and to identify chromosomal regions that are not compatible with neutral
demographic scenarios.

Previous studies showed that ancestral populations of D. melanogaster live in the African



mainland south of the Saharan desert (Tsacas and Lachaise 1974). Furthermore, historical and
morphological lines of evidence indicate that derived populations can be categorized into ancient
populations that have colonized the Eurasian continent during prehistoric times, and new
populations that have colonized the American and Australian continents during historic times along
with recent human migrations (David and Capy 1988). More recently, studies based on a rigorous
statistical analysis of genome-wide samples of nucleotide polymorphism data could confirm that D.
melanogaster originated in sub-Saharan Africa (Li and Stephan 2006). These studies could also
show that divergence between African and European populations occurred about 16,000 years ago
and that this event was associated with a population size bottleneck (Li and Stephan 2006; Thornton
and Andolfatto 2006). In contrast, the timing of the colonization process of the Asian populations
has not been identified yet. The first study that analysed Asian populations of D. melanogaster
contrasted patterns of morphological variation between derived and ancestral populations (David et
al. 1976). This study showed that Asian populations are characterized by specific morphological and
physiological properties such as slower development growth, higher fresh weight, and smaller
ovariole numbers than African and European populations. Based on these results the authors
proposed the existence of a ‘Far Eastern Race’ of D. melanogaster. One of the hypotheses that has
been proposed to explain the morphological divergence was the occurrence of an ancestral
divergence between African and Asian populations. This early colonization of Asia would have
predated the divergence between African and European flies and occurred before or during the last
ice age. In contrast to these results, recent population genetics surveys revealed that non-African
populations of D. melanogaster share a unique origin (Baudry et al. 2004; Schlétterer et al. 2006).
However, these latter studies do not provide an estimation of the time at which D. melanogaster
colonized the Asian continent. Furthermore, they do not explicitly model the colonization process.

In this study, we conducted a population genetic analysis of three populations of D.
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melanogaster from Africa, Europe and Southeast Asia. We sequenced nearly 280 fragments of the X
and third chromosome of the Asian population and analysed this new dataset together with existing
data that have been collected for the African and European populations (Glinka et al. 2003; Ometto
et al. 2005; Hutter et al. 2007). We employed an Approximate Bayesian Computation (ABC)
approach (Beaumont et al. 2002) to investigate the demographic histories of these three populations.
We found that a model in which Asian and European populations share a common non-African
ancestor is more likely than a scenario with an independent early colonization of the Southeast
Asian region. We show that the divergence between Southeast Asian and European D. melanogaster

populations occurred about 2500 years ago.

Materials and Methods

Samples: The individuals analysed come from 36 inbred lines sampled from an African population
from Zimbabwe, a European population from The Netherlands, and an Asian population from Kuala

Lumpur (Glinka et al. 2003; Glinka et al. 2005).

Collection of DNA sequence data: We sequenced from the Asian sample a subset of the loci that
have also been sequenced in the African and European samples (Glinka et al. 2003; Ometto et al.
2005; Hutter et al. 2007). We re-used the same primers to sequence 226 fragments of about 550 bp
on the X chromosome and 52 fragments on the third chromosome. Sequences were generated as
described in Glinka er al. (2003). We aligned the new Asian sequences to the already existing
African and European datasets and retained for the demographic analysis only the fragments for
which data was available from at least 9 individuals in every population (208 X-linked and 50

autosomal fragments).
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Evolutionary scenarios: We analysed two different demographic scenarios to investigate how the
Asian population is related to the Africa and European ones. Graphical representations of the two
models are given in Figure 1.1 and a description of the prior distributions of the model parameters
can be found in Table 1.1. Both models are characterized by the absence of migration between
populations and a stepwise expansion in population size of the ancestral African population, as it
has been described in Li and Stephan (2006). The first model that we called the Double
Colonization Scenario (DCS) describes a demographic history where the Asian and European
populations split off independently from the African population (Figure 1.1). This model has been
designed to test the hypothesis that the migration of D. melanogaster from Africa to Asia predated
the colonization of the European continent. The second scenario that we called the Single
Colonization Scenario (SCS) describes a situation in which D. melanogaster has migrated out of
Africa through a single colonization route, in other words, all non-African (cosmopolitan)
populations of D. melanogaster share a non-African common ancestor (Baudry et al. 2004). To
model this scenario we relied on previous demographic analyses of the African and European
populations. These studies showed that the European population derived from the African one and

went through a population size bottleneck (Li and Stephan 2006; Thornton and Andolfatto 2006).

<0.001 >0.999

EU AF AS AF EU AS
Double Colonization Scenario Single Colonization Scenario

Figure 1.1: Demographic models with associated posterior probability.
AF: Africa, AS: Asia, EU: Europe.
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Table 1.1: Prior distributions of the demographic models

Parameter Prior Models
Distribution
Min Max Distribution

Sizes
Current African size 10° 3x107 uniform All
Current European size 10* 5%10° uniform All
Current Asian size 10* 5% 10° uniform All
Bottleneck size of the Asian 10 10° uniform All
Bottleneck size of the European 10 10° uniform All
Size of the ancestral population 10° 2%107 uniform All

Times
Exit out of Africa 102 10° uniform SCS & SCS-2
Divergence between European and Asian 102 Exit out of Africa uniform SCS & SCS-2
population
Exit out of Africa of the Asian population 102 10° uniform DCS
Exit out of Africa of the European population 102 10° uniform DCS

Sizes are given in effective numbers of individuals (Ne) and times are given in years assuming 10
generations per year. In the coalescent simulations, times were scaled in units of 4Ne generations for
the autosomal dataset and in units of 3Ne generations for the X-linked dataset.

We modelled the Asian population assuming that it split off from the European population and
underwent a population size bottleneck associated with this founding event (Figure 1.1). Since this
model is making the assumption that the European population underwent one bottleneck against two
for the Asian population we also investigated an additional model that we called the SCS-2 model,
where we inverted the situation and applied one bottleneck to the Asian and two to the European
population. This approach allowed the European and Asian populations to experience different
levels of genetic drift in our models. It is important to note here that our modelling approach doesn't
make any assumption concerning the geographic location of the split between European and Asian
populations. (The fact that the Asian population splits off from the European one in the SCS model

in Figure 1.1 doesn't mean that this split occurred in Europe.)
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Approximate Bayesian inference: To estimate the posterior probabilities of different demographic
models and posterior distributions of the parameters of these models, we took an ABC approach.
ABC is a computational method in Bayesian statistics that is used in population genetics to perform
model-based parameter inference when suitable likelihoods are not available or computationally

prohibitive (Pritchard et al. 1999; Beaumont et al. 2002; Excoffier et al. 2005). The method relies
on the comparison of a vector of summary statistics computed on the observed data, A s, with those

computed on a large number of simulated datasets for which the parameters of interest are known, A
sm- Here we implemented our ABC algorithm following Excoffier et al. (2005).

The algorithm used to estimate the parameters of a model is composed of three steps: a
simulation step, a rejection step, and an estimation step. The simulation step consisted in simulating,
for every evolutionary scenario, one million datasets that were identical to our observed dataset in
terms of numbers of loci and sample sizes. Every evolutionary scenario was defined by a set of
parameters (population sizes, age of different demographic events) and every parameter was
characterized by a prior distribution (Table 1.1). For each evolutionary scenario we sampled from
the prior distribution and used the randomly picked parameter values to perform coalescent-based
simulations. The way in which the rejection and the estimation steps have been applied to these
simulated datasets differed for the model-choice and the parameter estimation procedures and are
described later in the corresponding sections.

To simulate these datasets we incorporated available external information about the local

mutation rates () and the local crossing-over rate (r). This allowed us to directly estimate posterior
distributions for effective population sizes instead of estimating them for the compound population
parameters 6 =4 N, L and r = 4 N, r where 6 is the coalescent mutation parameter, r the coalescent
recombination rate and N. the effective population size. Mutation rates for every fragment were

calculated based on genetic divergence to the sister species D. simulans (Kimura 1980) following Li
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et al. (1999), that is, by assuming a divergence time between D. melanogaster and D. simulans of
2.3 My and correcting for pre-speciation divergence. However, divergence-based estimates of
mutation rates can potentially be biased by the long-term action of purifying selection on non-
coding regions. We therefore took this uncertainty into account by putting a uniform prior

distribution on the mutation rate of every simulated fragment centered around the local divergence-

based estimate [lest With lower and upper boundaries est/2 and 2|lest.

Similarly, external information about the local recombination rates was used to generate our
simulated datasets. Recombination rates are given as the local rates of crossing-over per site per
generation, and were calculated using the Recombination Rate Estimator web-based program
(Fiston-Lavier et al. 2010; see also Hutter and Stephan 2009) available at http://petrov.stanford.edu/
RRcalculator.html. However, these estimates have been obtained using a North American
population and it is reasonable to think that the real recombination rates in our populations may
deviate from these values. To show that the results of our study are robust to this potential
deviations, we put a prior distribution on the recombination rate at each locus centered on the
Fiston-Lavier et al. (2010) estimate rest, with lower and upper boundaries set at resy/2 and 2rest.

The coalescent simulations were performed using a slightly modified version of the program
ms that allows to simulate datasets with unequal sample sizes across loci (Hudson 2002; Ross-Ibarra
et al. 2008). However, to sample parameter values from prior distributions and to compute summary
statistics on the simulated data efficiently, we developed our own code. For this we used the GSL
C++ library and the libsequence C++ library (Thornton 2003). Simulations were launched on a 64-
bit Linux cluster with 510 nodes. We checked for errors in our code by comparing simulation results
with similar computations performed by msABC, a coalescent simulator for ABC simulations

(Pavlidis et al. 2010b).
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The model choice procedure: To summarize our datasets for the model choice procedure we
computed the following statistics in the three populations: the average and the variance across all
fragments of the number of polymorphic sites (S), the average and the variance of Tajima's D
(Tayima 1989) and the average Zns (Kelly 1997). Additionally we computed for all pairs of
populations the average distance of Nei, Da (Nei and Li 1979), and the average proportion of shared
polymorphisms between populations, Ss. Monomorphic fragments were removed from the analysis.
These statistics have been chosen based on their correlation with important demographic
parameters. For example, the number of polymorphic sites is expected to increase with the effective
population size and variations of Tajima's D statistic can reflect past fluctuations in population size.
The Zys statistic (Kelly 1997) is a measure of linkage disequilibrium defined as the average r? over
all pairwise comparisons of polymorphic sites in a sample of sequences, where 72 is the squared
correlation of allelic identity between two loci (Hartl and Clark 1989, pp. 53-54). This statistic is
expected to be sensitive to variations in the length of the oldest branches of gene genealogies and
can therefore carry information about ancestral population sizes and the severity of population size
bottlenecks. The distance of Nei and the proportion of shared polymorphisms are measures of
genetic differentiation between our populations and are expected, in a model without migration like
ours, to correlate with times of divergence of two populations. All summary statistics presented in
this study have been computed using the routines of the C++ library “libsequence” (Thornton 2003).

The posterior probabilities of different demographic models can be estimated on the basis of

the Euclidean distance 0 between the observed summarized dataset and the simulated summarized
datasets of all models. The inference procedure consists in retaining only simulations for which the
Euclidean distance is smallest. Pritchard er al. (1999) proposed that the posterior probability of a
model can be approximated by the proportion of retained simulations under that model, relative to

the number of retained simulations under all models. Beaumont (2008) proposed an improvement of
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the method that corrects for the fact that retained simulations never exactly match the observed data.
The method is based on a weighted multinomial logistic regression procedure, where the response
variable is the indicator of the model and the predictor variables are the summary statistics
(Fagundes et al. 2007; Beaumont 2008).

We computed posterior probabilities for every demographic model, using the 500
simulations associated with smallest Euclidean distance following the method of Beaumont (2008)
and applied this procedure to the X-linked and the autosomal dataset independently. Since the same
number of datasets have been simulated under each model we computed Bayes factors as the ratio of

the posterior probabilities. To investigate if the results of our estimations were stable with regard to

the proportion of retained simulations, Pg, we computed posterior probabilities for our three models

using several values of Pg ranging from 0.025 to 1%. We also investigated the accuracy of our
model choice procedure, following Peter et al. (2010). We therefore simulated 1000 pseudo-
observed datasets, with the same number of fragments and sample sizes as our autosomal dataset,
under each demographic model (DCS and SCS) and computed for each one of them the posterior
probability of having been generated under the DCS model and the posterior probability of having
been generated under the SCS model. To decide whether a pseudo-observed dataset should be
assigned to the DCS or the SCS model we used as an arbitrary threshold value a ratio of posterior
probabilities of 10 in favor of one of both models. Precision was measured as the proportion of

correctly identified datasets under each model.

Parameters estimation: In ABC estimations, the quality of the analysis generally relies on well-
chosen summary statistics (Joyce and Marjoram 2008). This is a sensitive point in the analysis
because on the one hand, using a small number of summary statistics may lead to a substantial loss

of information compared to the information carried by the full dataset, but on the other hand,
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increasing the number of summary statistics can cause two problems. First, summary statistics that
are not related to the parameters of the model or that correlate with other summary statistics will be
uninformative and will only add noise to the Euclidean distance. Second, correlations between
summary statistics will violate the assumption of singularity which is required when performing the
locally weighted linear regression for estimating the parameters (Beaumont er al. 2002). To
overcome this problem Wegmann er al. (2009) proposed to reduce the dimensionality of the
summarized dataset by performing a partial least-square (PLS) transformation.

The advantage of the PLS transformation is twofold. First, similar to a principal component
analysis, it allows extracting a small number of orthogonal components from a matrix composed of
a larger number of summary statistics of our dataset. This is leading to a reduction of the
uninformative signals of the Euclidean distance and ensures the singularity of the final matrix of
summary statistics. Second, in a PLS transformation the dimensionality reduction is coupled with a
regression model, and the latent components (i.e. the transformed summary statistics) are
constructed to maximize the prediction of the response variable of the regression model (i.e. the
parameters of our demographic model) (Boulesteix et al. 2007). Although this approach can be
applied when estimating the posterior distributions of the parameters of a given demographic
model, it cannot be applied for model choice. The reason is that PLS components are constructed
independently for every single demographic model whereas our model choice procedure requires
that the set of summary statistics remains identical for all compared models.

We summarized our nucleotide polymorphism datasets into 12 summary statistics that carry
information about the level of polymorphism, the site frequency spectrum, linkage disequilibrium,
and the amount of differentiation between all three populations. All statistics have been computed
for every population separately and for the pooled dataset. Summary statistics describing

differentiation between populations have been computed for all possible pairwise comparisons. We
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used this set of summary statistics to summarize our observed and our simulated data. We
constructed the PLS latent components using 10,000 simulated datasets under the best demographic
model for the chromosomes X and 3. To do this we employed code available in the ABCtoolbox
package (Wegmann et al. 2010). Choosing the best number of partial least square components for
parameter estimations has been done by investigating the decrease of the root mean square error
(RMSE) for every parameter as a function of the number of PLS components. The RMSE indicates
the percentage of variation unexplained by the PLS components and is constructed by comparing
the simulated parameter values with the ones predicted using a given number of PLS components.
We chose the number of components to be used in the parameter estimation procedure such that
additional components don't decrease the RMSE of any parameter of the model. The retained PLS

components were used to transform the observed and the simulated datasets. The rejection step
consisted in computing the Euclidean distance 0 between simulated and observed sets of summary

statistics and to retain the 5000 simulations closest to the observed data based on their value of 9.
Finally, we estimated posterior distributions of the parameters of interest by applying the locally
weighted multivariate regression method of Beaumont er al. (2002) implemented in the abcEst
program (Excoffier er al. 2005). We estimated the marginal posterior probability distribution of each
demographic parameter using the kernel density estimation method implemented in the R core
package and reported the mode and the 95 credibility intervals of these distributions.

To investigate if the results of our estimations were stable with regard to the proportion of
retained simulations, Pg, we re-estimated the marginal posterior distributions of all parameters of
the best model using several values of Pg ranging from 0.01 to 5%. To avoid the posterior
distributions to exceed the upper and lower bound of our prior distributions we transformed the data

as z=log[tan(1/x)) as described in Hamilton et al. (2005), where x is the original dataset and z is the

transformed data.
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Posterior predictive simulations: To see how well our best model is able to reproduce the observed
data, we performed posterior predictive simulations (Gelman et al. 2003; Thornton and Andolfatto
2006). This has been done by sampling parameter values from the probability density functions of
the marginal posterior distributions of our best demographic model and by using them to simulate
multi-locus summaries of the data. This procedure allowed us to check which aspect of the data
could be explained by our model and which aspects might indicate some limitations of our model.
We generated 1000 simulated datasets that had the same number of fragments and sample sizes as
our X-linked and autosomal datasets and summarized them into the mean and variance of a large
number of summary statistics. For every summary statistic we computed the probability that the

simulated mean and variance are smaller than the observed ones.

Results

X-linked and autosomal polymorphism patterns in the Asian population: For the X
chromosome, we gathered polymorphism data from a total of 226 fragments, spanning 126,154
nucleotide sites (gaps were excluded). 1309 of these sites are polymorphic. Information about this
new genome scan is summarized in Table 1.2. On average data could be obtained from 11.6 (of 12)

lines. The sequenced fragments show recombination rates ranging between 2.1 and 4.3 x 10 per bp

per generation. The means (SE) of ® (Tajima 1983) and 6w (Watterson 1975) across the X
chromosome are 0.0037 (0.0003) and 0.0035 (0.0002), respectively. We found 39 loci with no
polymorphism. The average and variance of Tajima's D along the X chromosome are 0.17 and 1.28,
respectively (Table 1.2). In order to contrast X-linked with autosomal genetic variation we
sequenced 52 autosomal loci spanning 28,441 sites from which 323 are polymorphic. Glinka et al.

(2005) identified four autosomal inversions in the Asian population segregating at frequencies
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ranging from 0.04 to 0.24. For this study only lines harboring no inversions were used. The
fragments are randomly spread along the third chromosome. On average data could be obtained for

11.6 lines and sequenced fragments show recombination rates between 1.22 and 3.33 x 10® per bp

per generation. The means (SE) of ® and Oy for the autosomal fragments are 0.0039 (0.0005) and
0.0038 (0.0004), respectively, which is slightly higher than for X-linked data. Only four fragments
are monomorphic. The average and the variance of Tajima's D along chromosome 3 are 0.19 and

0.81, respectively.

Table 1.2: Polymorphism patterns in the Asian population

X chromosome Autosome
No. of loci 226 52
Average sample size 11.64 11.57
Average length of alignment 567.16 551.04
No. of invariant loci 39 4
Average (SE) 0,, in % 0.35 (0.02) 0.39 (0.0004)
Average (SE) win % 0.37 (0.03) 0.38 (0.0005)
Average (SE) divergence (K) in % 6.8 (0.25) 5.5 (0.54)
Average (SE) 0,, /K 0.05 (0.004) 0.086 (0.013)
Average (SE) Tajima D 0.17 (0.08) 0.19 (0.12)
Average (SE) Z,s 0.5 (0.02) 0.53 (0.04)

Comparison of the African, European and Asian populations: In order to compare our new
Asian data with the data that have previously been collected for the African and European
populations (Glinka et al. 2003; Ometto et al. 2005; Hutter et al. 2007), we aligned data from the
three populations and analysed the data jointly. Data for all three populations was available for 208
X-linked and 50 autosomal fragments. We computed the number of SNPs S, Tajima's D, Z,s, and Fst
values (Hudson et al. 1992) for every population and every fragment and generated distributions of
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these statistics across X and chromosome 3. The results of these analyses are summarized in Figure
1.2 and Table 1.3a and 1.3b. Compared to the African and European populations, the Asian
population shows the lowest amount of nucleotide diversity (Figure 1.2A) both for X-linked and
autosomal data. The distribution of Asian Tajima's D values is similar to those observed in the
European population although the average D is slightly more positive on the Asian X chromosome
and the variance slightly smaller on the Asian third chromosome (Figure 1.2B). The Asian
population also harbors the highest levels of LD among all three populations both on the X and
autosome (Figure 1.2C). The distributions of Fsr values between all three pairs of populations
indicate that the African and Asian populations are the most differentiated populations, and that the
Asian and European populations are the most closely related ones (Figure 1.2D). These analyses
show that the Asian population shares several characteristics with the European population: low
diversity, large variance in Tajima’s D, and high LD. This suggests that, similar to the European
population (Stephan and Li 2007), the Asian population is also derived, characterized by past
population size fluctuations, and might share part of its recent demographic history with the

European population. This hypothesis will be further evaluated by the following ABC analysis.
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Figure 1.2: Box plots representing the distributions of four summary statistics for all three

populations. A) Number of segregating sites, B) site frequency spectrum, C) linkage disequilibrium,
and D) differentiation between populations. Results from the analysis of X-linked data are shown in

red, while those of autosomal data are shown in blue.
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Table 1.3a: Vectors of observed within-population summary statistics for the ABC analysis. These

are the observed summary statistics that were used in the ABC analysis

X 3
Statistics Asia Europe Africa pooled Asia Europe Africa pooled
T 1.67 2.09 5.07 4 1.78 3.08 4.59 3.83
Var () 3.39 4.5 8.44 6.52 2.31 6.97 11.43 7.66
(S‘) 471 6.11 17.42 21.08 5.1 8.84 12.68 17.96
Var(S) 24.72 272 7137 99.08 17.85 46.63 77.98 103.59
D 0.16 -0.11 -0.66 -0.9 0.24 0.15 -0.42 -0.64
Var(D) 1.29 1.5 0.37 0.51 0.94 1.21 0.53 0.61
K 2.8 3.86 9.48 13.97 3.16 4.92 6.22 11.82
Var(K) 2.18 3.64 5.26 18.11 1.61 2.81 242 14.68
ZnS 0.53 0.43 0.14 0.11 0.55 0.37 0.23 0.13
Var(ZnS) 0.1 0.01 0.01 0.01 0.1 0.05 0.02 0.004

Table 1.3b: Vectors of observed summary statistics of population pairs for the ABC analysis. Sqis

the proportion of shared polymorphic sites between two populations

X 3
AS-AF AS-EU EU-AF AS-AF AS-EU EU-AF
]ja 0.95 0.27 0.77 0.65 0.3 0.4
§S 3.14 3.32 3.99 2.84 3.74 5.12
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Statistical evidence for a single colonization event out of Africa: The results of the model choice
procedure showed strong evidence in favor of the SCS model. The Bayes factor (Kass and Raftery

1995) was larger than 100 for both X-linked and autosomal datasets (Figure 1.1). The method also
revealed that the SCS model, in which the Asian population undergoes two successive bottlenecks,
is associated with higher posterior probabilities for both X-linked and autosomal data, when
compared to the SCS-2 model in which the Asian population is bottlenecked only once. The

posterior probabilities were 0.99 vs 0.01 for the X-chromosome and 0.9996 vs 0.0004 for

chromosome 3. When letting Pg, the proportion of retained simulations in the model choice

procedure, vary from 0.025 to 1% we observed that the strength of evidence in favor of the SCS

model remained decisive for all values of Pgand both chromosomes (Table 1.4). For the comparison
between model SCS and SCS-2 the results also remained stable for both chromosomes. Finally, the
results of our analysis of the accuracy of our model choice procedure showed that both the SCS and
the DCS model could be correctly identified by the method in 97.9 and 96.8% of the cases,
respectively. We thus identified the SCS model as our best demographic model and estimated the

marginal posterior distribution of each parameter.

Estimation of the demographic parameters: We summarized the X-linked and the autosomal
datasets using eight partial least squares components. Using the larger X-linked dataset we find that
the effective population size of the ancestral African population is about 1,837,000 individuals
(932,000 , 2,531,000) and that the out-of-Africa migration occurred approximately 16,800 years ago
(9,400 , 33,500). The colonization of the Southeast Asian continent occurred about 2,500 years ago
(700 , 5,200) and the effective size of the Asian founding population was approximately 8,300

individuals (3000 , 77,000).
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Table 1.4: Stability of the posterior probabilities of the different demographic models as a function

of the proportion of retained simulations in the model choice procedure

Chromosome- Autosome
X

Tolerance DCS SCS SCS-1 DCS SCS SCS-1
250 3.12x10% 0.988 0.012 9.55x10* 1 1.36x107
500 1.95%x10* 0.989 0.011 7.82%x 107" 1 3.53%x10*

750 2.16X10% 0.977 0.023 1.18x10™ 0.998 0.002

1000 2.6X10* 0.966 0.034 2.93x10" 0.998 0.002

2500 6.67x10"" 0.854 0.146 7.24x10" 0.997 0.003

5000 2.82x10°% 0.848 0.152 1.01x10° 0.994 0.006

7500 3.86x102 0.598 0.402 1.62x101° 0.995 0.005

10000 1.03x 10 0.644 0.356 6.36X10" 0.991 0.009

The values in bold correspond to the threshold we used for the model choice estimation.

The corresponding estimates based on the autosomal data are comparable except for the estimate of
the time of colonization of the Southeast Asian continent that is larger for chromosome 3: 5000
years (1000 , 11,000). Estimates of the demographic parameters for the African and European
populations can also be found in Table 1.5 and graphical representations of all marginal posterior
distributions for chromosome X and 3 are in Figure 1.3. These estimates do roughly agree with
earlier results that were obtained with a maximum likelihood analysis of the joint mutation

frequency spectrum of the African and European population (Li and Stephan 2006). When letting

Ps, the proportion of retained simulations in the parameter estimation procedure, vary from 0.01 to

5% we observed that the mode and the credibility intervals of our posteriors distributions remained

stable (Figure 1.4).
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Table 1.5: Estimates of the demographic parameters

Parameters Priors chromosome-X R? | Autosome R2
Current African population size (10° 3x10") 4,786,360 (2,040,701 ,10.62 | 3,134,891 ( 1,371,066 ,10.55
29,208,295) 28,013,950 )

Current European population size (10* 5x10°, 1,632,505 (780,907 , 4,870,580) 0.40 | 878,506 ( 383,361 , 4,775,964 ) 0.3

Current Asian population size (10* 5% 105, 1,632,505 (780,907 , 4,870,580) | 0.18 | 512,748 ( 143,082 , 4,542,090 ) 0.12
European bottleneck population size | (10, 10°) 22,066 (14,338 , 81,102) 0.47 132,128 (15,968 , 95,162 ) 0.48
Asian bottleneck population size (10, 10°) 8,279 (2,971,717,482) 0.36 | 11,862 (4,255, 81,044 ) 0.35
Exit out of Africa (10, 10%) 16,849 (9,392 ,33,452) 0.63 | 12,843 ( 7,095, 31,773) 0.62
Southeast Asia colonization time (102, Exit out of Africa) | 2,467 ( 711, 5,195) 0.72 15,012 (992, 11,084 ) 0.68
African expansion time (102, 4X10%) 25,553 ( 1,698 , 376,730 ) 0.02 37,323 (3,636, 379,212) 0.01
Ancestral African population size (10* 2x10") 1,837,229 (931,637, 2,530,609 ) |0.83 1,705,328 (609,393 , 2,458,653 ) |0.82

The time estimations (i.e. modes and credibility intervals) are provided in years assuming 10
generations per year. Population sizes are given in effective numbers of individuals. R2 is the
coefficient of determination.
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Discussion

The results of the performance analysis we carried out on the model choice procedure shows that,
for a dataset similar to the one we analyse in this study, the method is able to distinguish between
the two demographic scenarios we investigated in this study: the single colonization scenario (SCS),
where African and non-African populations have a non-African MRCA, and the double
colonization scenario (DCS) where these populations have an African MRCA (Figure 1.1). We also

showed that the results of the model choice procedure was stable with regard to variations of the

proportion of retained simulations Pg. These results give credibility to our finding that the SCS
provides a better fit to our observed data than the DCS.

The quality of the estimation of each parameter of the SCS can be assessed by the
coefficient of determination (R*). Previous studies have shown that parameters for which R* values
are smaller than 5-10% are usually difficult to estimate (Neuenschwander et al. 2008). For the
parameters of our best model, R* values are higher than 10% (Table 1.5) except for the parameter
representing the time of the African expansion (1% for chromosome X and 2% for chromosome 3).
These low values for this parameter could indicate that a simple expansion model is not the best
demographic model to explain the patterns of genetic diversity observed in the African population
or that the statistics we used to summarize the full dataset (Table 1.3a and 1.3b) did not capture

enough information on this parameter. As for the model choice procedure, we showed that our
parameter estimates are robust to the proportion of retained simulations Pg (Figure 1.4).

Migration of human populations towards Southeast Asia started during the last ice period
about 55-65 ky ago (Fagundes et al. 2007). Due to the current commensal relation between D.
melanogaster and humans, it could be envisioned that this species had colonized Southeast Asia
together with the first human migrants. Such an early colonization scenario has been used once to
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explain the strong morphological differentiation of the Asian populations (David et al. 1976).
However, our present demographic estimations do not support such a scenario. Rather, our results
indicate that the Southeast Asian population was founded by flies that diverged from the first non-
African populations at a later time. We estimated that the divergence between the African and the
derived population occurred about 16,800 ago (9,400 , 33,500) for the chromosome X and about
12,800 years ago (7,100 , 31,800) for chromosome 3. These results are in line with a previous
maximum-likelihood analysis of the African and European populations that suggested a date of
divergence of 15,800 years (12,000 , 19,000 ) (Li and Stephan 2006). At this time, rising
temperatures following the end of the last ice period could have favored the colonization of northern
territories. Early human sedentary settlements during the natufian period (starting 13,000 years ago)
in the Fertile Crescent (Bar-Yosef 1998) could already have helped to maintain a relatively large
population of D. melanogaster in this region.

Our results reject the hypothesis of an ancient migration of D. melanogaster to Southeast
Asia but they do not provide information about the geographic location of the split between the
European and the Southeast Asian populations. Even if it seems likely that migrating D.
melanogaster populations have entered the region of the Middle East by crossing the Sinai
peninsula, additional information, such as genetic polymorphism data from a Middle East
population, would be necessary to learn more about the geographic location of the divergence
between European and Southeast Asian populations.

Furthermore, we found that the divergence between Asian and European populations
occurred about 2500 years ago (700 , 5,200) for the chromosome X and 5000 years ago (990 ,
11,000) for chromosome 3. Although favorable climatic conditions were already present before that
time, this late colonization of Asia and Europe suggests that D. melanogaster depended on the

establishment of human populations (and perhaps agriculture) to colonize these new areas. From
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these results it appears that a long divergence time, associated with a neutral process, may not
explain the observed morphological characteristics of the Asian populations (i.e. smaller number of
ovarioles, smaller eggs, and higher fresh weight than the ancestral population), contrary to what has
been hypothesized by David et al. (1976).

We also estimated the effective size of the founding population that diverged from the
ancestral gene pool (22,100 and 32,100 individuals for chromosome X and 3, respectively; Table 1.5)
and the size of the founder population that colonized the Southeast Asian region (8,300 and 11,900
individuals for chromosome X and 3, respectively; Table 1.5). These estimates have to be taken with
caution since the impact of genetic drift on the history of the derived populations may be much
more complex than that produced by a simple population size bottleneck. Recurrent fluctuations in
population size (Pool and Nielsen 2008) as well as population substructure might also have
influenced the way genetic drift shaped the patterns of polymorphism we observe in present
populations. Therefore these estimates should be seen as a simple way of summarizing the amount
of genetic drift needed to reproduce the skew in the site frequency spectrum we observe in these
populations. This model can then be used to correct the rate of false positives of selection detection
methods that are based on the site frequency spectrum.

The results of the predictive simulations (Table 1.6) show how well our model is able to
reproduce the observed datasets. Unability to reproduce certain summary statistics of the dataset
indicates that some aspects of the demographic model are not optimal. The nature of the summary
statistics that are not well predicted by our model can also, in some cases, indicate how the model
might be improved. Although most summary statistics are correctly predicted by our best model, it
fails to account for some aspects of the observed datasets (Table 1.6). Our model predicts higher
values for the average, and lower values for the variance of Tajima's D compared to observed data on

the X- chromosome in the European population. Therefore, it seems that patterns of genetic
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variation found on the X-chromosome of European D. melanogaster cannot be fully explained by a
single population size bottleneck alone. Discrepancies between patterns of genetic variation found at
X-linked and autosomal genes in the European population could be due to biased sex-ratios and/or
different intensities of selective pressures on the X chromosome (Hutter et al. 2007). Also, predicted
values of Zps for the African populations are higher than observed values. This could indicate that
this population experienced more complicated size fluctuations than predicted by the expansion
model alone or that recombination rates in the African population are higher than what we assume

in this study. Interestingly, most aspects of the Asian dataset can be correctly predicted by our
model, with the exception of D, on the third chromosome where predictions are smaller than the

observed value.

In conclusion, our study generated a new dataset of X-linked and autosomal nucleotide
polymorphism in a Malaysian population of D. melanogaster. In addition, we performed a
demographic analysis of this data, jointly with one African and one European dataset, by employing
an ABC approach. Our results reject the hypothesis that an early migration event could have led to
the colonization of Southeast Asia and account for the observed morphological differentiation
between African, European and Asian D. melanogaster. The statistical model of demographic
evolution that we inferred suggests that D. melanogaster colonized Eurasia after the Neolithic
period, when the rise of agriculture turned small communities of hunter-gatherers into larger
sedentary settlements. Since D. melanogaster is now a human commensal, it is possible that the
adaptive history of this species is mostly characterized by adaptations to post-neolithic human
societies rather than by adaptations to the new climatic conditions that the non-African populations
encountered. Local adaptation studies that may be based on our demographic analyses will help to
answer this question by identifying the genes that were targeted by positive selection during this

colonization process.
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Table 1.6: Results of the predictive simulations

Statistics X 3 Statistics X 3
(70) up 0.87 0.89 (Z,9)eu 0.91 0.62
Var (1) .z 0.86 0.84 Var(Z ey 0.01 0.46
(S),\ 0.85 0.87 (T0) s 0.75 0.69
Var(S)r 0.77 0.78 Var (1), 0.90 0.51
(D) s 0.21 0.31 (85) s 0.80 0.76
Var(D)x 0.50 0.78 Var(S) 0.94 0.62
(K) s 0.68 0.68 (D), 0.14 0.25
Var(K),; 0.16 0.11 Var(D),s 0.81 0.31
(Z.o)nr 0.92 0.96 (K) us 0.53 0.63
Var(Z ) 0.93 0.77 Var(D),q 0.57 0.35
(70)ey 0.70 0.89 (Z,o)xs 0.63 0.62
Var ()5 0.91 0.89 Var(Z ) . 0.78 0.76
(8)ey 0.75 0.93 (D,) spru 0.80 0.86
Var(S)gy 0.89 0.87 (5¢)arpu 0.75 0.91
(D) 0.10 0.23 (D,) \pas 0.83 0.97
Var(D)g, 0.99 0.89 (5¢) apas 0.78 0.68
(K)gy 0.44 0.81 (D,)puas 0.87 0.79
Var (K gy 0.29 0.27 (54)gu.as 0.67 0.68

Values represent the probability that the simulated data is smaller than the observed value
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Chapter 2

Using coalescence to investigate seed banks and population structure in wild

tomato species

unpublished work

Abstract

The existence of seed banks is of practical importance in conservation biology to diminish the
immediate ecological impact of habitat fragmentation and prevent species extinction. From an
evolutionary perspective, seed banks increase genetic diversity and are important for buffering the
effect of varying climatic conditions. Furthermore, seed dormancy can be seen as a bet-hedging
strategy that magnifies the evolutionary effect of good years and dampens the effect of bad years.

In this study we estimate the germination rates for two wild tomato species (S. chilense and
S. peruvianum) found in western South-America in a wide range of habitats using DNA sequences
coupled to a coalescent model in combination with ecological data. We use sequences at eight
reference loci for a sample of three populations, and a species-wide sample. We develop an
Approximate Bayesian Computation framework to integrate ecological information on above ground
population census sizes, in order to estimate seed bank and metapopulation parameters for each
species. We provide the first evidence that it is possible to disentangle the effect of the

metapopulation structure from that of the seed bank on the effective population size, to obtain
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accurate estimates of germination rates with coalescent model. S. chilense is a specialist species
found in dryer areas of Northern-Chile and has an estimated germination rate of 0.14, where S.
peruvianum, a generalist species found in a wide range of habitats, shows a bigger seed bank due to
a significantly smaller germination rate of 0.06. Finally we show that regarding genetic diversity,

these species do not experience recent population loss due to human activities.

Introduction

The effective population size (N.) defines the evolutionary potential of a population because it
determines the rate at which adaptive substitutions appear and get fixed (Gossmann et al. 2010), as
well as the vulnerability to loss of genetic diversity by genetic drift. A key question in plant
evolutionary biology, which is also of practical relevance for conservation biology, is to understand
how the census size of a population above ground (N) is affected by habitat fragmentation and
ecological disturbances, and how this process affects in return the effective population size (N.)
(Lande 1988; Espeland and Rice 2010). Habitat loss and fragmentation due to human activities are
indeed an acute problem for species conservation, especially in spatially structured plant
populations where demes have often small N, and N values. Previous studies have promoted the
view that plant species should have lower N, than N, (Frankham 1995; Siol et al. 2007; Song and
Mitchell-Olds 2007; Abe et al. 2008; Oddou-Muratorio and Klein 2008). It has been suggested that
the N. of plant species increases with higher metapopulation structure (Amos and Harwood 1998;
Charlesworth et al. 2003) and longer seed banks (Templeton and Levin 1979; Hairston and Destasio
1988; Nunney 2002; Vitalis et al. 2004). However, although most plant species are characterized by
metapopulation structure and seed banks simultaneously, the respective contribution of these factors

to increasing the effective population size compared to the census size have not been measured so
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far on the basis of genetic data. In fact, metapopulation structure is common for many plant species
which exist as a spatial collection of numerous demes connected by migration and experiencing
recurrent extinction/recolonization events (Pannell and Charlesworth 1999; Wakeley and Aliacar
2001; Pannell 2003).

The first objective of our study is to develop a coalescent model with metapopulation
structure and seed bank, and to use this model to perform model-based inference within an
Approximate Bayesian Computation (ABC) framework. We combine for the first time ecological
data on census sizes with DNA sequence polymorphisms (reflecting the effective size) to estimate
the germination rates of two wild tomato species. We introduce here the use of two different spatial
samplings of populations for each species, in order to disentangle the effect of the seed bank from
that of the metapopulation on N.. Seed banks, that is, the dormancy of seeds for several generations,
are a form of storage of genetic diversity. Theory predicts that lower germination rates increase N
(Epling et al. 1960; Templeton and Levin 1979; Hairston and Destasio 1988; Levin 1990; Ellner and
Hairston 1994; Kaj et al. 2001; Nunney 2002; Vitalis et al. 2004; Siol et al. 2007; Honnay et al.
2008; Oddou-Muratorio and Klein 2008; Lundemo et al. 2009; Ayre et al. 2010), although empirical
tests of this effect are scarce (Honnay et al. 2008; Honnay et al. 2009; Lundemo et al. 2009).
Ecologically, seed banks counter-act habitat fragmentation by buffering against the extinction of
small and isolated populations, a phenomenon known as ‘temporal rescue effect’ (Honnay et al.
2008). For example, lower fragmention-driven extinction rates were found for species with long
seed banks compared to short-lived seed banks (Stocklin and Fischer 1999). Seed banks evolve as an
evolutionary stable strategy in species living in temporally or spatially unpredictable habitats for
buffering the effect of varying environment (Evans et al. 2007). It has been suggested theoretically
(Cohen 1966; Templeton and Levin 1979; Ellner 1985; Valleriani and Tielborger 2006; Rajon et al.

2009) and shown empirically (Evans er al. 2007) that adaptation for seed dormancy (variable
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germination rates) is a bet-hedging strategy to magnify the evolutionary effect of good years and to
dampen the effect of bad years. Bet-hedging is a strategy in which adults release their offspring into
several different environments to maximize the chance that some will survive.

Our second objective is to test for the evolution of two different bet-hedging strategies,
namely long and short seed banks, in two wild tomato species with different ecological habitats
using model-based parameter inference based on DNA polymorphism. We also provide a software
(msABC_SB), a modified version of Hudson’s ms (Hudson 2002) and msABC (Pavlidis et al.
2010b) to perform multi-locus ABC analysis of seed bank and metapopulation parameters.

We study two wild diploid outcrossing tomato species, Solanum peruvianum and S. chilense,
of the family Solanaceae (Peralta er al. 2008). These two species have been analysed at the
ecological level revealing differences in their habitat (Nakazato et al. 2008; Chetelat et al. 2009;
Nakazato et al. 2010): S. chilense is a specialist species found in dry to very dry habitats such as the
Atacama desert in Northern Chile, and S. peruvianum is described as a generalist species found in a
wider range of mesic to dry habitats from Central Peru to Northern Chile. These species exist as
metapopulations of hundreds of demes, undergoing recurrent extinction/recolonization (Roselius et
al. 2005; Arunyawat et al. 2007; Nakazato et al. 2010). It has been hypothesized that these two
species differ by their metapopulation structure (number of demes and migration rates) and seed
banks because of the geographical structure of the habitat and specific adaptations to different

environments (Roselius et al. 2005; Arunyawat et al. 2007; Nakazato et al. 2008; Xia et al. 2010).

Materials and Methods

Species: Wild tomatoes form a small monophyletic clade consisting of 13 closely related diploid

(2N = 24) species within the family Solanaceae (Peralta et al. 2005; Spooner et al. 2005; Peralta et
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al. 2008). All species share a high degree of genomic synteny (Nesbitt and Tanksley 2002) and are
intercrossable at various degrees (Rick 1963; Rick et al. 1976; Rick 1986). A recent taxonomic
revision places the tomato clade within the genus Solanum (formerly genus Lycopersicon) (Peralta
et al. 2005; Spooner et al. 2005; Peralta et al. 2008). In our study we focus on two Solanum species:
S. peruvianum and S. chilense as defined in the new taxonomic treatment (Peralta et al. 2008).
These two species have been studied at the ecological level revealing differences in their habitat
(Nakazato et al. 2008; Chetelat et al. 2009; Nakazato et al. 2010). Population genetics studies have
focused on revealing the spatial population structure of each species (Arunyawat et al. 2007) as well
as the degree of genetic divergence and the age of the speciation split (Roselius et al. 2005; Stadler
et al. 2005; Stadler et al. 2008). With regard to the recent adaptive evolution of these species, S.
chilense has been shown to exhibit positive selection at a gene involved in the ABA pathway
supposed to be involved in drought tolerance (Xia et al. 2010). S. peruvianum has on the other hand
been studied for response to biotic stress and coevolution with various parasites such as
Pseudomonas or the Ascomycete Cladosporium fulvum. Evidence for coevolution and balancing

selection at resistance genes has been detected in S. peruvianum (Rose et al. 2005; Rose et al. 2007).

Estimates of the deme census sizes: We first estimated the census size of demes for both species,
using data from the Tomato Genetics Resource Center (TGRC) (http://tgrc.ucdavis.edu/) at the
University of California, Davis, USA. We used the version of the database from March 2010. In total
118 accessions of S. peruvianum and 135 of S. chilense are reported in the database from sampling
in Peru and Chile. This collection is the product of over five decades of field work by C.R. Rick and
multiple investigators. They have been considered likely to be a good approximation of current
range distributions of these species (Nakazato et al. 2010). We extracted the number of plants

present in the above-ground population at the moment of sampling for each accession. We obtained
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information for 75 S. peruvianum and for 107 S. chilense accessions. This dataset is defined as the
census size of above- ground demes for each species (called N.;). We found that the indicated census
sizes of demes varied depending on the investigator and on the size of the populations. Sometimes,
only qualitative estimates of census size were given. For example, several demes (around 20 in both
species) were referred as being “large”, “huge”, or “very large”, and for populations containing
more than 100 plants, the counting is often not precise. For our first calculations, these undefined
census sizes were removed from the dataset. Our aim was to obtain the mean of the census size of
above-ground populations for each species. For this purpose we assumed that the census size of
demes in a metapopulation follows a negative exponential distribution (many demes with small
population sizes and few large demes). A negative exponential regression is fitted to the distribution
of census sizes for each species using the R software (R Development Core Team 2005). This was
realized using the /m function in R on the log transform of the distribution of census sizes. The

exponential coefficient gives the mean census size per deme for each species.

Ecological data and geographical range of each species: Nakazato et al. (2010) have correlated
the geographic distribution with ecological habitats of 10 wild tomato species, including S.
peruvianum and S. chilense. This study estimated which environmental variables (mean annual
precipitation, mean annual temperature, precipitation seasonality, sun exposure, topsoil pH, effective
soil depth) explained each species' distribution. This led the authors to estimate also the range size
(in km?), potential niche breadth, and percentage of niche filling of each species. The range area of
S. peruvianum was estimated to 80,961 km?, and the percentage of niche filling as 22.4%. S.
chilense shows a smaller range of 62,401 km?, and the percentage of niche filling was 31.5%
(Nakazato et al. 2010). We calculated from these results an estimated number of physical (or

ecological) demes per species assuming that the total number of observed accessions for S.
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peruvianum and S. chilense, 118 and 135, respectively, fill only 22.4 and 31.5% of their potential
niche. We estimated the number of physical demes to be around 526 for S. peruvianum and 428 for
S. chilense (Table 2.1). These numbers of physical (or ecological) demes should not be confounded
with the effective number of demes assumed in population genetics model of metapopulation

(Wakeley and Aliacar 2001; Charlesworth et al. 2003).

Genes sequenced: Seven unlinked nuclear loci are used in this study: CT066, CT093, CT166,
CT179, CT198, CT251 and CT268 (Table 2.2). These loci are single-copy cDNA markers originally
mapped by Tanksley et al. (1992) in genomic regions with different recombination rates (Stephan
and Langley 1998). The gene products putatively perform key housekeeping functions, and thus
purifying selection is suggested to drive their evolution (Tellier er al. 2011). These loci were
previously used in population genetic studies of S. peruvianum and S. chilense (Roselius et al. 2005;

Stéadler et al. 2005; Arunyawat et al. 2007; Stadler et al. 2008).

Table 2.1: Summary of the key ecological data for the two wild tomato species from the TGRC

collection
Number of Estimated Estimated
Total number of
populations % of niche number of demes | mean census
Species accessions in the
with census filling® in the species size per deme
TGRC database
size available range N,
S. peruvianum 118 75 22.4 526 44 — 84
S. chilense 135 107 31.5 428 33 -65

* data obtained from Nakazato et al 2010.
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Table 2.2: Chromosome location, putative function, and sizes of coding and non-coding regions of

the seven studied loci in S. peruvianum and S.chilense

Non- Coding region

Locus Chromosome Putative protein function coding non-
synonymous

region Synonymous

CT066 10 Arginine decarboxylase 0 335 1008
S-adenosylmethionine
CT093 5 359 263 765
Decarboxylase proenzyme

CT166 2 Ferredoxin-NADP reductase 823 118 322
CT179 3 Tonoplast intrinsic protein D-type 234 174 404
CT198 9 Submergence induced protein 2-like 359 90 242
CT251 2 At5g37260 gene 348 348 974
CT268 1 Receptor-like protein kinase 0 404 1476

The number of sites in each category was estimated with the method of Yang and Nielsen (2000)
and is based on the alignment of sequences for the pooled populations in S. peruvianum.

Sampling scheme: The sequence data at the seven reference loci (CT066, CT093, CT166, CT179,
CT198, CT251, CT268) obtained by Arunyawat et al. (2007) and Stddler er al. (2008) for three
populations of S. peruvianum (Tarapaca, Nazca, Canta) and S. chilense (Tacna, Moquegua,
Quicacha) are referred to as the “local” sample (Table 2.3). We follow Stédler et al. (2009) in calling
the set of sequences from all three populations together the “pooled” sample. We generated a new
set of sequences, called the “species-wide” sample, at these same seven loci. It is composed of 14
and 10 accessions from the TGRC database distributed all over the range of S. peruvianum and S.
chilense, respectively, each accession being sequenced for one allele. These three types of samples
reflect different parts of the genealogical history of the metapopulation (Stadler er al. 2009; Chikhi
et al. 2010). The local sample reflects the past history of the deme, as well as local selective events
such as purifying selection (Wakeley and Aliacar 2001; Pannell 2003, Tellier ef al. 2011). This short

coalescent phase within demes is named the scattering phase (Wakeley and Aliacar 2001). The
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major part of the metapopulation coalescent tree is not contained in the scattering phase, but in the
long collecting phase that describes the coalescences across demes (Wakeley and Aliacar 2001).
Species-wide events such as species' size fluctuations are reflected in the collecting phase. It has
been recently shown that the best sampling strategy to reveal the collecting phase of a
metapopulation is to analyse the species-wide sample, that is, one individual from each of many
different demes scattered all over the range of the metapopulation (Stadler et al. 2009; Chikhi et al.
2010). The pooled sample represents an intermediary between the local and the species-wide
schemes. Depending on the migration rates and number of demes, it can reflect small or large parts

of the collecting phase (Stidler er al. 2009).

Plant material and sequences for the population sample: The population sample is composed of
the sequences previously obtained by Arunyawat et al. (2007) and Stéadler et al. (2008). For S.
peruvianum we used data from two populations (Nazca and Canta) collected by T. Stddler in Peru in
2005 and one additional accession from the TGRC database (Tarapaca LA2744) from Chile. For S.
chilense, we used the three populations (Tacna, Moquegua and Quicacha) collected by T. Stidler in
Peru in 2005. For each population, five to six individuals were collected, and the seven loci were
sequenced, resulting in a total of 10 to 12 sequences per population. Note that we do not used the
Arequipa (S. peruvianum) and the Antofogasta (S. chilense) populations studied by Arunyawat et al.
(2007) and Stéadler et al. (2008), because it was shown, on the basis of the frequency-spectrum of
alleles, that these populations experienced some peculiar demographic events (most likely

bottlenecks or admixture) (Arunyawat et al. 2007; Stidler et al. 2008).
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Table 2.3: List of the population samples of the two studied Solanum species

Coordinates
Species Population Location
(latitude, longitude)
Tarapaca (LA2744) Northern Chile 18°33'S, 70°09'W
S. peruvianum Nazca Southern Peru 14°51'S, 74°44'W
Canta Central Peru 11°31'S, 76°41'W
Tacna Southern Peru 17°53'S, 70°07'W
S. chilense Moquegua Southern Peru 17°04'S, 70°52'W
Quicacha Southern Peru 15°37'S, 73°48'W

Where applicable, the TGRC accession numbers are indicated. S. chilense and S. peruvianum
populations have been described in Arunyawat et al. (2007).

Plant material and sequences for the species-wide sample: We used here the so- called “species-
wide sample”, for which we selected one plant per 14 accessions of S. peruvianum and 10
accessions of S. chilense from the TGRC. These populations were chosen to be distributed
uniformly over the range of both species (Table 2.4). One allele for each of the seven loci was
sequenced per plant of the species-wide sample. Genomic DNA was extracted from tomato leaves
using the DNeasy Plant Mini Kit (Qiagen GmbH, Hilden, Germany). PCR primers and PCR
conditions followed those of the previous studies of the same loci in S. peruvianum and S. chilense
(Arunyawat et al. 2007); PCR  primer information can be accessed at
http://evol.bio.Imu.de/downloads/index.html. PCR amplification was performed with High Fidelity
Phusion Polymerase (Finnzymes, Espoo, Finland), and all PCR products were examined with 1%
agarose gel electrophoresis. Generally, direct sequencing was performed on PCR products to
identify homozygotes and obtain their corresponding sequences. For heterozygotes, a dual approach
of both cloning before sequencing and direct sequencing was used to obtain the sequences of both
alleles. We developed a series of allele-specific sequencing primers whose 3'-end was anchored on

identified SNPs or indels (for details of this approach, see Stadler et al. (2005).

45


http://evol.bio.lmu.de/downloads/index.html

The first allele to be present in at least four clones was chosen. Sequencing reactions were run on an
ABI 3730 DNA analyser (Applied Biosystems and HITACHI, Foster City, USA). One allele was

sequenced for each individual, and a total of 14 (S. peruvianum) and 10 (S. chilense) sequences were

obtained for each locus — species combination. Contigs of each locus were first built and edited
using the Sequencher program (Gene Codes, Ann Arbor, USA) and adjusted manually in MacClade
4 (version 4.0 for OS X). These new sequences will be deposited in GenBank (accession numbers

XXX).

Table 2.4: List of the species-wide sample with the TGRC accession numbers from the two

Solanum species

Species Population Location 'Coordinatfzs
(latitude, longitude)

LA1930 Southern Peru 15°17'S, 74°36'W

LA1960 Southern Peru 17°05'S, 70°52'W

LA1958 Southern Peru 17°15'S, 71°15'W

LA1969 Southern Peru 17°32'S, 70°02'W

S chilense LA3355 Southern Peru 18°03'S, 70°18'W
LA2778 Northern Chile 18°23'S, 69°33'W

LA2932 Northern Chile 20°29'S, 70°10'W

LA2748 Northern Chile 21°12'S, 69°30'W

LA2750 Northern Chile 22°05'S, 70°12'W

LA2930 Central Chile 25°24'S, 70°24'W

LAO0153 Central Peru 09°57'S, 78°13'W

LAO111 Central Peru 10°48'S, 77°44'W

LA1616 Central Peru 12°05'S, 76°55'W

LA1913 Central Peru 14°23'S, 75°12'W

LA2834 Central Peru 14°46'S, 74°49'W

LA0446 Southern Peru 15°47'S, 74°23'W

S. peruvianum LA1336 Southern Peru 16°12'S, 73°37'W
LA1951 Southern Peru 16°25'S, 73°08'W

LA1333 Southern Peru 16°34'S, 72°38'W

LA3218 Southern Peru 16°57'S, 72°05'W

LA1954 Southern Peru 17°01'S, 72°05'W

LA2964 Southern Peru 17°59'S, 70°50'W

LA4125 Southern Peru 19°18'S, 69°25'W

LA2732 Southern Peru 19°24'S, 69°36'W
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Population genetics analysis of the sequence data: For both species, summary statistics were
computed for each locus and each population, for the pooled sample of three populations and for the

species-wide sample. Genetic diversity was summarized as the number of segregating sites (S) and

the population mutation rate 8w per locus (Watterson 1975). The site frequency spectrum, was
summarized by Tajima's D (Tajima 1989). The Fsr statistic measures fixation of alleles in
subdivided populations and was calculated for the population sample (Hudson et al. 1992). In the
light of the recent criticisms by Jost (2008), Fsr was used as a measure of migration between demes
integrating drift, and not as a population differentiation index. All statistics were computed using
DnaSP v5.1 for all sites, silent and synonymous sites (Rozas ef al. 2003). Gaps and multiple hits
were excluded in DnaSP. Similar values for the observed data were obtained when using the

libsequence C++ library (Thornton 2003).

Population genetics modelling: Compared to the classical Wright-Fisher model of coalescence
theory (Kingman 1982), seed banks can be seen as a departure from random mating, since there is
separation of individuals into different age classes (overlapping of generations). We used the
coalescent model proposed by Kaj et al. (2001) for seed banks. Intuitively, seed banks should slow
down the rate of coalescence because of the structure introduced in the pool of ancestors (Templeton
and Levin 1979). This is similar to the effect of geographically structured populations on
coalescence (Kaj and Lascoux 1999; Wakeley and Aliacar 2001): two lineages will “migrate” among
generations before they meet in the same ancestor plant above ground where coalescence can occur.
We summarized here the theory on coalescence with seed bank. Kaj et al. (2001) modelled a neutral

seed bank with haploid Wright-Fisher type dynamics for a single population with constant size. The
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population of plants is composed at each generation of N individuals, with a proportion b, i = 1, ...,
m, coming from seeds produced i generations ago. In other words, seeds are allowed to remain in the
seed bank for up to m generations. At a given generation, each individual is drawn from a pool of
seeds build up during the previous m generations. Each individual is obtained with the probability b,
from the seeds produced at the previous generation, b, from the seeds produced two generations
ago, ..., and b,, from the seeds produced m generations ago. Kaj et al. (2001) have calculated the
rate of coalescence in a population to be
?( ;) (1)

with r being the number of ancestral lineages at any point in time, and B, the seed bank rescaling

rate

B,=1/2ib, 2)

m

where Z ib, 1is the expected value of the seed bank age distribution. Similarly, they derive the

i=)

mutation rate y along an ancestral line in the coalescent as

y:%(b\0\+b29,+...+bm0m) 3)
where 0; is the population mutation rate for individuals produced by seeds of age j. (j=1, ..., m) (Kaj

et al. 2001).
We made here further biological assumptions to derive the rate of coalescence, the mutation
and recombination rates per population, as well as to rescale the migration rate among demes in a
metapopulation:
1) We assumed that seed germination is a memoryless process modelled as a geometric
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process in time. We supposed that the germination rate of a given seed is b. Each individual is

obtained thus with the probability b,=b(1— b)H from the seeds produced at generation i.

For clarity, this means that each individual is obtained with the probability:
e b,=b from the seeds produced at the previous generation
e b,=b(1—D) from the seeds produced two generations ago, ...,
° b, =b()'—b)""" from the seeds produced m generations ago.

We modified Hudson’s ms to introduce the rate of coalescence with seed bank with geometric

germination rates (from eq. 2):

Bi=11 ib(\=b)"" . (4)

b(1-(1=b)""")
1—=(14+bm)(1—b)"

Eq. 4 can be approximated as f,~ if m is sufficiently large.

using B, from eq. 4.

. . . 2l r
The rate of coalescence implemented in our program is thus B ( v

2) We enforced the condition from (Kaj et al. 2001) that the sum of the germination
probabilities over m generations should be equal to 1. This condition is computed in our program.
We calculate the mutation rate under a seed bank model, assuming that the mutation rate does not

depend on the age of seeds. The population mutation rate with seed bank is (from eq. 3):

y:%e)(zﬁbu—b)+...+b(1—b)m1)=%9 : ()

where 0;1s the population mutation rate without seed bank (based on N).

It has been suggested that aging of seeds can lead to an increase of the mutation rate, most of the

new mutations being deleterious (Levin 1990). However, a recent meta-analysis did not reveal high
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levels of genetic diversity accumulating in the soil seed bank (Honnay er al. 2008). Reviewing
different plant species, the authors did not find evidence for genetic differences between the
standing crop and the seed bank. When such differences were found, they are likely to be the result
of local selection acting as a filter on the alleles present in the seed bank (Honnay et al. 2008). In
our study, we analysed only neutral processes. We thus chose to keep the mutation rate constant for
any seed age assuming no selection process acts within demes on seeds in the bank.

3) We multiplied the recombination rate per nucleotide r also by B, (eq. 4). This is
because recombination only occurs in a lineage when a plant is above ground and produces seeds.

4) We rescaled the migration rate (k) between demes in a metapopulation when there is a
seed bank. We assumed here that only pollen migrates between demes, and that this occurs only

when plants are above ground. Lineages can thus only migrate between demes by pollen. The

migration rate (k) was thus multiplied as well by B, . (Note that if no rescaling is done, seeds and
pollen are assumed to migrate.)

5) A key assumption in this model is to assume that every generation, the number of
individuals (N) in Kaj et al. (2001) is equal to N in each deme. In other words, each generation
above ground and each generation in the seed bank has the same census size equal to N. The
census size used in our model was calculated above from ecological data. This approximation holds
as long as the variation between years in census sizes is reasonable (Nunney 2002).

When there is no seed bank, that is, when all seeds germinate the year after being produced,
then b = 1. In this case, we verified that equations 4 and 5 define a Wright-Fisher model. Similarly,
these equations are in line with findings from Nunney (2002) and Vitalis et al. (2004) describing the
expected heterozygosity in a population with seed bank. Table 2.5 lists all the parameters of our

coalescent models with seed banks.
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Parametrization of the demographic models: We modelled the metapopulation as an island
model with ny demes, with migration occurring among demes (Pannell and Charlesworth 1999;
Wakeley and Aliacar 2001; Pannell 2003; Wakeley and Takahashi 2004). We did not take into
account extinction/recolonization as we did not have data to estimate such parameters. However, we
assumed that each species was composed of a set of many demes which allowed us to apply the

many-demes model from Wakeley and Aliacar (2001) and Wakeley and Takahashi (2004). The

effective migration rate K is the proportion of individuals in a given deme which come from other
demes by migration. In an island model, all demes contribute equally to the migrant pool. Our
metapopulation had a current census size of Scyrent = Nes X 4. To model the demography of each
species, we assumed that the ny = 200 demes join into a single panmictic population of size S, at
time ... in the past. The time was measured here in years assuming one generation per year. Three
demographic scenarios for the whole metapopulation were considered: 1) an expansion of the
species if the ratio Sune / Scurrent < 1, 2) constant species size if Sy / Scumene = 1, and 3) a species crashes
if Sanc / Scurrent > 1. We modelled expansion up to 100-fold and crashes up to 10-fold.

Each deme has a seed bank defined by a germination rate b, which is the probability of a
seed to germinate at a given generation, and the maximum time m that this seeds can spend in the
seed bank (m is fixed to 40). Each deme was assumed to have a census population size of N as
estimated from ecological data. To compensate for the uncertainty in estimating the census size and

the fact that we may underestimate N, we assumed large priors for these values between 50 and

1,000. Each mutation happened at rate L per site per generation.
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Table 2.5: List of parameters and compound parameters in the model

Parameter name

Parameter definition

Range of possible values

Census size of each deme in the

[1 - oof

WE use averages

(non estimated)

banks (eq. 5)

Nes
metapopulation calculated from the
ecological data
b Germination rate [0-1]
Maximum time seeds can spend in the [1-o00[
m
seed bank (in generations) we use 40
Migration rate between demes (without
K (0-1]
Estimated parameters seed bank rescaling)
[1-oof
Number of demes in the
g we use values ranging
metapopulation (effective number)
from 200 to 1,000
w Mutation rate per nucleotide we use [10° — 10%]
Time of the population split in
Tevent
generations
smaller, equal or larger
Sanc Size of the ancestral population than current
metapopulation
Rescaling parameters of the seed bank
B,
(eq. 4
Population mutation rate without seed
0 0=4N.n
bank per deme
Population mutation rate with seed
Compound parameters y

Local crossing-over rates per
nucleotide per generation (obtained for
each locus from Stephan and Langley

(1998) without seed bank
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Having found the best demographic model for each species, we tested for the necessity of a seed
bank for explaining the huge genetic diversity observed in these species. Using the model choice
procedure of the ABC (see below), we compared the models with seed bank to two alternative

scenarios (list of parameter prior values in Table 2.6a and 2.6b).

First, in a model without seed bank, we tested the hypothesis that the large observed diversity
could be a relic of a large ancestral population, submitted to a population crash and habitat
fragmentation. In this scenario, an ancestral single pancreatic population (with size up to 25 times
Scurrent) SPlits into 200 demes at time f..., in the past. We kept here a small census size per deme N,
the values of which are in a prior distribution between 50 and 1,000 indiviiduals.

Second, we tested a model without seed bank, but in which no prior knowledge was assumed
about the census size of populations (N,). The prior for N was fixed between 50 and 25,000, the
values used in Stddler et al. (2009) for the effective size of each deme.

Finally, we compared several models to test for an optimal number of demes per species,
assuming the best demographic model per species and a seed bank (b varied here from 0.01 to 1).
The number of demes varied between 200 and 1,000 for S. peruvianum, and between 200 and 600
for S. chilense assuming that the maximum number of demes can be twice as high as the numbers
suggested by the ecological data. Based on the work of Nakazato et al. (2010), we assumed that the

number of ecological demes should be around 500 for S. peruvianum and 400 for S. chilense (Table

2.1).
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Table 2.6a: Summary of prior boundaries

of the ABC chosen for each tested model in S.

peruvianum
Model Parameters Min Max
Seedbank + constant
population size
Ne 50 1000
u 5%10° 10°®
b 0.01 0.5
log(x) -5 -3
Tevent 0 200
Seedbank + expansion
Ne 50 1000
u 5%10° 10°®
b 0.01 0.5
log(x) -5 -3
Tevent 0 200
Sanc (demes) 2 200
Seedbank + crash
N 50 1000
u 5%10° 10°®
b 0.01 0.5
log() -5 -3
Tevent 0 200
Sanc (demes) 200 2000
No seedbak + expansion
Nes 50 25000
u 5%10° 10°®
log () -5 -3
Tevent 0 200
Sanc (demes) 2 200
No seedbank + crash
N 50 1000
u 5%10° 10°®
log() -5 -3
Tevent 0 200
Sanc (demes) 200 5000
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Table 2.6b: Summary of prior boundaries of the ABC chosen for each tested model in S. chilense

Model Parameters Min Max
Seedbank + constant
population size
Nes 50 1000
n 5%x10° 10®
b 0.01 1
log(k) -4 2
Tevent 0 200
Seedbank + expansion
Nes 50 1000
n 5%x10° 10°®
b 0.01 1
log(k) -4 2
Tevent 0 200
Sanc (demes) 2 200
Seedbank + crash
Nes 50 1000
i 5%10° 10°®
b 0.01 1
log(k) -4 2
Tevent 0 200
Sanc (demes) 200 2000
No seedbak + expansion
Nes 50 25000
i 5%10° 10°®
log(x) -4 -2
Tevent 0 200
Sanc (demes) 2 200
No seedbank + crash
Nes 50 1000
i 5%10° 10°®
log(x) -4 -2
Tevent 0 200
Sanc (demes) 200 5000
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Approximate Bayesian inference: To estimate the posterior probabilities of different demographic

models and posterior distributions of the model parameters, we took an ABC approach. The method

relies on the comparison of a vector of summary statistics computed on the observed data, A, with

those computed on a large number of simulated datasets for which the parameters of interest are

known, Ag,. Here we implemented our ABC algorithm following Excoffier et al. (2005). The
algorithm used to estimate the parameters of a model is composed of three steps: a simulation step,
a rejection step, and an estimation step. The simulation step consisted in simulating, for every
evolutionary scenario, between 400,000 and one million datasets identical to our observed dataset in
terms of numbers of loci and sample sizes. Every evolutionary scenario was defined by a set of
parameters (germination rate, mutation rate, ancestral population size, age of demographic events
(Table 2.5) and every parameter was characterized by a prior distribution (Tables 2.6a and 2.6b). For
each evolutionary scenario we sampled from the prior distribution and used the randomly picked
parameter values to perform coalescent-based simulations. The way in which the rejection and the
estimation steps have been applied to these simulated datasets differed for the model-choice and the
parameter-estimation procedures and are described below.

To simulate these datasets we incorporated available external information about the mutation

rate (W) and the local crossing-over rates (r) per nucleotide. The mutation rate was set to 5.1 X 10~
following Stéddler et al. (2005). Since such divergence-based estimates of the mutation rate can
potentially be underestimated due to the long-term effect of purifying selection we modelled this
uncertainty. We define a prior distribution on p with lower and upper boundaries equal to 5 X 10”
and 10, The upper bound of the distribution was based on previous results concerning the intensity
of purifying selection acting on this set of genes (Tellier ef al. 2011). Similarly, external information

about the local recombination rates () was used to generate our simulated datasets. Recombination
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rates are given as the local rates of crossing-over per site per generation, and were taken from
Stephan and Langley (1998). The coalescent simulations were performed using our modified
version of the program ms as described above (Hudson 2002; Pavlidis et al. 2010b). We developed
our own code to sample parameter values from prior distributions and to compute summary
statistics on the simulated data efficiently. For this we used the GSL C++ library and the
libsequence C++ library (Thornton 2003). Simulations were launched on a 64-bit Linux cluster with

510 nodes. Source code is available upon request.

Choice of summary statistics: To summarize our datasets we computed the following statistics for

both species: 1) the average value of 0,, across loci and populations (Watterson 1975), 2) the average

Tajima's D across loci and populations (Tajima 1989), 3) the average Fsr value across populations

(Hudson et al. 1992), 4) 6,, sw, the average 0, across loci at the species-wide level, and 5) D, the
average Tajima's D across loci at the species-wide level. The rationale behind this choice is as
follows.

Statistics computed at the population level are informative on the recent demographic history of the
species. For example 0, D and Fsr are expected to correlate with the germination rate and
metapopulation structure, changes in population sizes and the migration rates, respectively.

On the other hand, the species-wide statistic D, is intended to be rather affected by demographic
events affecting the metapopulation as a whole (the collecting phase (Wakeley and Aliacar 2001))

such as ancestral population size changes.

The model choice procedure: The posterior probabilities of different demographic models can be

estimated on the basis of the Euclidean distance, 8, between the observed summarized dataset and

the summarized datasets simulated under all models. The inference procedure consists in retaining

57



only simulations for which & is smallest. Pritchard et al. (1999) proposed that the posterior
probability of a model can be approximated by the proportion of retained simulations under that
model, relative to the number of retained simulations under all models. Beaumont (2008) proposed
an improvement of the method correcting for the fact that retained simulations never exactly match
the observed data. The method is based on a weighted multinomial logistic regression procedure,
where the response variable is the indicator of the model and the predictor variables are the
summary statistics (Fagundes et al. 2007; Beaumont 2008). Here we simulated 400,000 datasets for

each of the investigated demographic models and summarized them into the set of summary
statistics, A, described in the previous section. For each demographic model we retained the 500

simulated datasets associated with the smallest & and applied the method of Beaumont (2008) to
estimate posterior probabilities. Bayes factor were calculated as the ratio of these posterior

probabilities.

Parameters estimation: To analyse more specifically the demographic models associated with the
highest posterior probabilities for S. peruvianum and S. chilense we estimated the posterior
distributions of their parameters. Therefore, for each species, we simulated 1 million datasets under
the best model and summarized them into the same set of summary statistics described above. In
this case, however, we applied to the simulated and observed sets of statistics a partial least-square
(PLS) transformation (Boulesteix et al. 2007) that reduces the uninformative signal from the dataset
and breaks down the correlations between the different summary statistics. The use of PLS
transformation in ABC estimations (Wegmann et al. 2009) has been proven to be efficient because
of the high dimensionality of datasets and the frequent correlations between summary statistics.
Note that correlations between statistics violate the condition of application of the ABC estimation

procedure (Beaumont ef al. 2002). Here we constructed the PLS latent components with 10,000
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simulated datasets under the best demographic model using the code available in the ABCtoolbox
package (Wegmann et al. 2010).

Choosing the best number of partial least square components for parameter estimations has
been done by investigating the decrease of the root mean square error (RMSE) for every parameter
as a function of the number of PLS components. The RMSE indicates the percentage of variation
unexplained by the PLS components and is constructed by comparing the simulated parameter
values with the ones predicted using a given number of PLS components (Wegmann et al. 2010).
We chose the number of components for the parameter estimation procedure such that additional
components do not decrease the RMSE of any parameter of the model. The retained PLS

components were used to transform the observed and the simulated datasets. The rejection step
consisted in computing & between simulated and observed sets of summary statistics and to retain

the 5,000 simulations closest to the observed data based on their value of d. Finally, we estimated
posterior distributions of the parameters by applying the locally weighted multivariate regression
method of Beaumont ef al. (2002) implemented in the abcEst program (Excoffier et al. 2005). We
estimated the marginal posterior probability distribution of each demographic parameter using the
kernel density estimation method implemented in the R core package and reported the mode and the
95% credibility intervals of these distributions. To avoid the posterior distributions to exceed the
upper and lower bound of our prior distributions we transformed the data as z = log[tan(1/x)] as

described in Hamilton ef al. (2005), where x is the original dataset and z is the transformed data.
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Results

Estimates of the deme census sizes: We estimate the mean census size of a deme to be 44 for S.
peruvianum and 33 for S. chilense (Figure 2.1). To test the robustness of these estimations, we
assigned different values of census size values to the 20 accessions referred as “large”, “huge” or
“very large”. Assuming values between 200 and 600 for these accessions (probable overestimates),
the means of the deme census size were increased to 84 for S. peruvianum and 65 for S. chilense
(Table 2.1). (The R-square coefficients for the exponential regression were lower than above but
above 0.9.) This uncertainty on N is taken into account when defining the priors in the ABC

method.

Population genetics analyses: Table 2.7, 2.8, and 2.9 contain the summary statistics of the genetic
polymorphism patterns that we observed in the species-wide, the population and the pooled

samples, respectively. In bold are the values of the vector of observed data used for inference in the

ABC method. We compared the genetic diversity (0,,) and shape of the coalescent tree (Tajima’s D)
between the species-wide and the pooled samples. The rationale is that difference in the shape of the
coalescent tree between these sampling schemes reflects the degree of population structure and past
demographic events (Stidler e al. 2009; Chikhi er al. 2010). The species-wide sample allowed us to
study the collecting phase of the whole metapopulation (species) coalescent (Pannell and
Charlesworth 1999; Wakeley and Aliacar 2001; Pannell 2003). On the other hand, the pooled sample
may reflect only partially the collecting phase of the metapopulation coalescent because of the rapid
coalescences occurring within demes.

Interestingly, a theoretical study has shown that in neutral models of metapopulation
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(stepping stone or island model), the pooled sample is expected to have a higher value of Tajima’s D
than the species-wide sample (Figures 1 and 2 in Stéddler er al. 2009). We observe this trend at
synonymous sites in both species (Figure 2.2).

Note, however, that for silent sites and all sites, the pooled sample shows a lower value of Tajima’s
D than the species-wide sample (except for S. chilense at silent sites, Figure 2.2). This effect is due
to the action of purifying selection which is stronger on the pooled sample than on the species-wide
sample. In fact, purifying selection acting at the population level decreases the effective population
size of each deme. Purifying selection increases the amount of drift per deme, and thus results in a
higher number of private alleles per deme than under neutral evolution (Charlesworth ez al. 1993;
Charlesworth et al. 1997; Whitlock 2003). For the pooled sample, purifying selection creates thus a
more negative Tajima’s D than under neutrality because private deleterious mutations to demes
create an excess of low frequency variants in the pooled sample compared to neutrality. To a lesser
extent the species wide sample is also affected by purifying selection (smaller variation in Tajima’s
D between the different categories of sites).

In addition to a previous study (Tellier ef al. 2011), the analysis of the shape of the coalescent
tree revealed that purifying selection occurs in each species creating a spurious excess of low-
frequency variants in the pooled and the species-wide sample datasets. We decided therefore to use
Tajima’s D values from synonymous sites to estimate the neutral processes governing the evolution

of each species and population.
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Census size distribution S. peruvianum
R2= 0.9644 y = exp(-0.02275 x)

Proportion of demes with a given size (y)

0.0 . . - : r . . .
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census size of a deme (x)

Census size distribution S. chilense
R2=0.9845 y = exp(-0.02987 x)

Proportion of demes with a given size (y)

T T , -
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census size of a deme (x)

0.0

Figure 2.1: Exponential regression for the census size of demes for
S. peruvianum and S. chilense. The coefficient of regression and
the equation of the best fitting regression are indicated.
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Table 2.7a: Summary statistics at seven loci for the species-wide sample for S. peruvianum

Number of Tajima’s D at
Population Tajima’s D atall | Tajima’s D at
segregating Synonymous
Locus mutation rate sites silent sites
sites sites
eW_SW DSW Dsi]enLSW
Sew DsynfSW
CT066 58 18.24 -1.04 -1.12 -1.12
CT093 39 12.26 -1.62 -1.42 -1.25
CT166 59 18.55 -1.6 -1.55 -1.72
CT179 54 16.98 -0.58 —-0.63 —0.82
CT198 59 18.55 —-0.61 -0.69 -0.75
CT251 94 29.56 —0.87 -0.79 —-0.83
CT268 83 26.1 -0.79 -0.18 -0.18
average across loci® 63.71 20.04 -1.02 -0.91 -0.95

* arithmetic average across loci.

Table 2.7b: Summary statistics at seven loci for the species-wide sample for S. chilense

Number of Tajima’s D at
Population Tajima’s D atall | Tajima’s D at
segregating Synonymous
Locus mutation rate sites silent sites
sites sites
ewfsw Dsw Dsilem_SW
Sew Dy sw
CT066 43 15.2 0.064 0.44 0.44
CT093 21 7.42 -1.26 -1.05 —0.64
CT166 48 16.97 -0.39 -0.32 —-0.67
CT179 39 13.79 -0.72 -0.72 -0.24
CT198 25 8.84 -1.02 -1.02 0.02
CT251 24 8.48 -0.34 —-0.53 -0.39
CT268 50 17.67 0.005 0.29 0.29
average across loci® 35.71 12.62 -0.52 -0.41 -0.17

* arithmetic average across loci.
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Table 2.8a: Summary statistics at seven loci for the population samples for S. peruvianum

Population Population Population Tajima’s D Tajima’s D Tajima’s D
Fixation
mutation mutation mutation at all sites at all sites at all sites
index
rate for rate for rate for for for for
Locus among
population population population population population population
populations
Tarapaca Nazca Canta Tarapaca Nazca Canta
FST
9W7TAR veN AZ eWﬁCAN D TAR D NAZ D CAN
CT066 13.43 7.29 13.58 -0.34 0.49 -1.03 0.21
CTO093 8.13 7.62 9.93 -0.14 -0.74 -1.07 0.11
CT166 14.27 13.25 22.52 -0.5 -1.16 -0.95 0.07
CT179 6.36 12.58 14.24 0.1 -0.51 -0.9 0.19
CT198 18.73 14.14 16.97 —-0.02 -0.02 -0.23 0.09
CT251 22.98 16.89 22.62 -0.17 0.18 —-0.33 0.14
CT268 17.67 22.19 20.53 -0.54 0.04 -0.42 0.12
average
across 14.51 13.42 17.2 -0.26 -0.25 -0.71 0.13
loci*

* arithmetic average across loci.
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Table 2.8b: Summary statistics at seven loci for the population samples for S. chilense

Population Population Population Tajima’s D Tajima’s D Tajima’s D
Fixation
mutation mutation mutation at all sites at all sites at all sites
index
rate for rate for rate for for for for
Locus among
population population population population population population
populations
Moquegua Tacna Quicacha Moquegua Tacna Quicacha
Fsr
eWiMOQ eW?TAC eWiQUI D MOQ D TAC D QUI
CT066 13.08 10.93 10.93 0.14 0.50 0.46 0.00
CT093 7.42 4.64 9.12 -0.71 0.91 -1.55 0.23
CT166 19.44 13.91 8.61 0.31 —-0.05 0.20 0.23
CT179 11.67 9.54 9.19 0.09 0.42 0.07 0.18
CT198 7.07 7.07 13.08 -0.46 -1.36 0.48 0.13
CT251 18.03 21.52 22.33 0.44 -0.02 0.81 0.12
CT268 1591 15.56 13.21 -0.11 0.05 0.41 0.27
average
across 13.23 11.88 12.35 -0.04 0.06 0.13 0.17
loci®

* arithmetic average across loci.
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Table 2.9a: Summary statistics at seven loci for the pooled sample for S. peruvianum

Number of Tajima’s D at
Population Tajima’s D atall | Tajima’s D at
segregating synonymous
Locus mutation rate sites silent sites
sites sites
eW?pnnlcd Dpooled Dsilemfpooled
Spooled Dy pooled
CT066 63 15.41 -0.61 -0.48 -0.61
CT093 60 14.67 -1.71 -1.71 -1.56
CT166 108 26.82 -1.62 -1.61 -1.94
CT179 72 17.61 -1.11 -1.02 —0.87
CT198 88 2221 -0.73 -0.71 0.02
CT251 122 30.29 —0.88 -0.72 -0.38
CT268 121 29.59 -1.01 -0.79 -1.01
average across loci® 90.57 22.37 -1.09 -1.01 -0.91

* arithmetic average across loci.

Table 2.9b: Summary statistics at seven loci for the pooled sample for S. chilense

Tajima’s D at

Number of Population Tajima’s D atall | Tajima’s D at
synonymous
Locus segregating sites [ mutation rate sites silent sites
sites
Sp(mled vepooled Dpooled Dsi]emfpcoled
Dsynfp(mled
CT066 64 15.65 -0.74 -0.42 -0.42
CT093 49 11.82 -1.03 -0.87 -0.19
CT166 74 18.1 -0.22 -0.11 —0.34
CT179 61 154 -0.71 -0.66 0.003
CT198 51 12.87 —-0.98 -1.02 -0.78
CT251 107 25.8 -0.07 0.33 1.023
CT268 84 20.26 -0.12 0.41 0.41
average across loci® 70 17.13 -0.55 -0.34 -0.04

* arithmetic average across loci.
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Figure 2.2: Mean Tajima’s D values across seven loci for all sites, silent,
and synonymous sites for both species: S. peruvianum in black, and S.
chilense in grey. The rectangles indicate the values of Tajima’s D for the
species-wide sample, and the diamonds for the pooled sample (pooling of
the three populations per species).

Model choice comparisons: Among models with seed bank, a demographic expansion was favored
for S. peruvianum (Figure 2.3a), and the two models of constant population size and expansion
could not be distinguished for S. chilense (Figure 2.3b; Bayes factor of 1.09 (Kass and Raftery
1995)). Therefore, we chose to model S. chilense with a constant species size in time (though fusion
of demes occurs at time .., in the past) because this model has one parameter less than the
expansion model. The crash model with seed bank was not favored for either species.

As expected, the species-wide sample data reflects the species demography, as found for the
expansion being assessed by the negative Tajima’s D in S. peruvianum (Table 2.7a; Stddler et al.
2009). However, the barely negative Tajima’s D in S. chilense does not indicate strong species

expansion, contrary to expectations from Stddler et al. (2009). In fact, the expectation of an

67



expansion in S. chilense was made based on analysis of the pooled sample Tajima’s D at silent or all
sites (Stadler et al. 2009). Our data on the species-wide sample at synonymous sites indicates,
however, that the expansion was small or too old to be detected (Figure 2.2), and that intronic and
non-synonymous sites are under strong purifying selection in S. chilense.

The first alternative scenario that we compared to the seed bank model was a model without
seed bank but with a large ancestral population size. This model was clearly rejected by the model

choice procedure in both species (Figure 2.3a and 2.3b). We observed in our simulations that it was

possible to generate high genetic diversity (0,,) in all samples, but that Tajima’s D values for the
species-wide sample and population sample did not fitted our observed data.

The second alternative model was parametrized without a seed bank and with a large prior

on N, € [50; 25000]. This model cannot be distinguished from the best model with seed bank
(Figure 2.3). In S. peruvianum, the model with expansion with seed bank is slightly better than the
expansion model without seed bank, though not significantly (Figure 2.3a; Bayes factor = 1.38).
Similarly in S. chilense, the model with constant population size with and without seed bank have
similar posterior probabilities (Figure 2.3b; Bayes factor = 1.5). However, when we analysed the
posterior distribution of the census size per deme (N,), in the model without seed bank, we found
the mode to be 5.624 [3,520 — 19,670] for S. peruvianum and 1,482 [784 — 2,565] for S. chilense (in
parenthesis the boundaries of the 95% high density probability interval).

We thus estimated that without seed bank, each deme of the metapopulation would present
an above-ground census size of around 5,000 for S. peruvianum and 1,500 for S. chilense, which is
significantly outside the range of plausible values collected from the TGRC database (maximum
value was 450 in one deme). We conclude that the existence of seed bank is required in both species

to explain the large N.. Note that these results were obtained with large priors on the mutation rate,

W, and the census size of demes, N,.
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Figure 2.3: Statistical evaluation of alternative evolutionary scenarios.
The posterior probabilities for each model are given. A) S. peruvianum:
Three types of past demographic event (constant population size,
expansion or crash) are tested with seed bank, and two (expansion and
crash) without seed bank. B) S. chilense: Three types of past demographic
event (constant population size, expansion or crash) are tested with seed
bank, and two (constant and crash) without seed bank.
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Finally we compared a series of demographic models, similar to the best demographic models for
each species, that only differed in their number of effective demes. The aim was to estimate the
number of demes (n4) per species. For S. chilense the highest posterior probability was found for a
model with 400 demes (Figure 2.4). We assumed that a Bayes factor of less than three in favor of a
model does not indicate that this model fits significantly better the observed data. We calculated the
Bayes factor for pairs of consecutive numbers of demes, and validated the model for which the
Bayes factor did not increased any further (by a factor 3 or more). Using the same procedure we
found that S. peruvianum was best characterized by a model with 600 demes, though higher
numbers were also found showing high probabilities (Figure 2.4). A clear conclusion is that small
numbers of demes do not explain the variability and the Fsr values found in the observed data. As
expected from the known range of both species (Table 2.1), S. peruvianum has a higher number of
effective demes than S. chilense. It is shown theoretically that a higher number of demes or a lower
migration rate contribute both equally to increasing N. of a metapopulation (Wang and Caballero

1999; Wakeley and Aliacar 2001). We show here that with the combination of several summary

statistics (0, for the three types of sampling schemes and the Fr index) in an ABC framework with
meaningful ecological parameters, it is possible to disentangle the effect of the number of demes
from that of migration. This is because we estimate the N, of the metapopulation (in the species-
wide sample), but also compute the genetic diversity and fixation index of alleles between demes,
values which are dictated by processes shaping the scattering phase of the coalescent in a

metapopulation.
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Figure 2.4: Estimate of the effective number of demes per species.

Difference in germination rate between species: Finally, using the model with the optimal
number of demes and best demographic scenario for each species, we ran 1,000,000 simulations to
estimate its parameters. We compared the posterior estimates for the parameters of the seed bank
(b), metapopulation structure (x), and demographic events (time of expansion f,.,, €xpansion
factor). S. peruvianum is estimated to have a longer seed bank, that is, a lower germination rate (b),
than S. chilense (Figure 2.5). On average, seeds would spend 17 years (roughly 1/6 (Nunney 2002))

in the seed bank for S. peruvianum and seven years in S. chilense (Table 2.10). We also document

the posterior density distributions for the nuisance parameters N, and [ (Table 2.10, Figure 2.6).
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Table 2.10: Summary of the prior and posterior distributions of each parameter

Prior Posterior
Species Parameter Lower Upper
Mode HPD 0.025 HPD 0.975
bound bound
Germination rate (b) 0.01 1 0.06 0.01 0.13
Migration rate (K) 10 10 1.15% 107 5.37x10* 2.4x% 107
5. Time of expansion (Zevenr) 0 8% 10° 4.66% 10° 1.11x 10° 7.32x 10°
. Expansion ratio 0.01 1 0.118 0.017 0.275
peruvianum Census size per deme (N) 50 200 180.37 80.27 198.09
Mutation rate (l) 5% 107 10® 8.71x 10° 5.32x10°  9.93x10°
Germination rate (b) 0.01 1 0.14 0.04 0.27
Migration rate (k) 10 10 1.66x 107  4.57x10*  6.92x 10°
S. chilense Time of split (Zeyent) 0 8% 10° 3.21x 10° 2.65x% 10* 7.81x 10°
Census size per deme (N) 50 200 180.55 56.77 196.81
Mutation rate (L) 5% 10° 10°® 9.28x 10” 5.21x 10° 9.91x 10°

The prior distributions are uniform between the lower and upper bound. The posterior distributions
are summarized as the mode and the boundaries of the 95% high probability density interval (HPD
0.025 and HPD 0.975).A rough estimate of divergence time between these species is 550,000 years
(Stidler et al. 2008). The times are calculated assuming a census size per deme of 40 individuals and

germination rate of 1/ (0.22).
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Posterior distributions of the germination rates

S. peruvianum

________ S. chilense
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Germination rate

Figure 2.5: Posterior distributions of the germination rate (b) for each species. These curves

represent the posterior densities of the germination rate (b) obtained under the best demographic

model by the Approximate Bayesian Computation analysis for S. peruvianum (dashed) and S.
chilense (dotted).
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Figure 2.6a: Posterior distributions of the parameters of an island model with demographic
expansion for S. peruvianum. Blue line: Distribution of euclidean distances. The dotted line
indicates the proportion of retained simulations. Black line: Prior distribution; Green line: Posterior
distribution based on the rejection algorithm; Red line: Posterior distribution after the regression

adjustment.
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Figure 2.6b: Posterior distributions of the parameters of an island model with demographic
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Discussion

We suggest here two hypotheses to explain our results. First, dormancy measured as the germination
rate per species (b) is a bet-hedging strategy evolving to counter-act the environmental stochasticity
over many years (Cohen 1966; Templeton and Levin 1979; Evans and Dennehy 2005). S.
peruvianum has a longer dormancy, which reflects genetic adaptation to a more unstable
environment compared to S. chilense (Bentsink et al. 2010) . S. chilense is a specialist species found
in a small range of dry to very dry habitats in Southern Peru and Northern Chile (Nakazato et al.
2008; Nakazato et al. 2010; Xia et al. 2010). We suggest that although the habitat is unfavourable,
the climatic conditions may not vary between years, as it is the case in the habitat of S.peruvianum.
Unfortunately, the variability of climatic conditions between years was not included in the
ecological study of Nakazato et al. (2010). On the other hand, S. peruvianum is a generalist species
found in a wide variety of habitats ranging from coastal plains with mesic environment (lomas) to
high altitudes in the Andes and dry habitats (Nakazato et al. 2008; Nakazato et al. 2010; Xia et al.
2010). We thus suggest that longer seed dormancy in this species compared to S. chilense can be due
to adaptation to habitats that are variable in space or in time. All habitats where S. peruvianum is
present may thus be more variable in time than the desertic habitats of S. chilense. Variability at the
spatial level between demes with different environmental characteristics could also promote a longer
seed dormancy in S. peruvianum as a generalist strategy to colonize (and reduce risks of extinction)
in new demes/habitats (Rajon et al. 2009).

Second, the difference in germination rates may not reflect different bet-hedging strategies
of the two species, but rather environmental influence on germination for each species (Fenner and
Thompson 2004; Jurado and Flores 2005). The west coast of South America is affected by the El

Nino/Southern Oscillation (ENSO), influencing the size of plant populations. The frequency and
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strength of the ENSO before historical times are difficult to establish (Devries 1987; Tudhope and
Collins 2003), but it is plausible that the current arid climate has shaped the vegetation of coastal
western South America for long period of time (Gregory-Wodzicki 2000; Hartley 2003). We suggest
that the germination rates we observe in the two species result from different ENSO occurrences in
the location of the two species. Difference in ENSO strength and occurrence may promote the
germination of seeds at different time intervals for S. peruvianum and S. chilense. The two species
could also exhibit two different adaptive germination rates, so that seeds germinate in phase with the
occurrence of ENSO. Contrary to the bet-hedging hypothesis (Evans and Dennehy 2005), Jurado
and Flores (2005) found that dormant species can constitute a large proportion of species in
environments with frost, and/or drought. This hypothesis thus states that dormancy is a selective
predictable mechanism for the co-occurrence of germination with suitable environmental
conditions, as during ENSO events.

Fluctuations in population sizes are likely to be common in wild tomato habitats. The
recurrent occurrence of the ENSO phenomenon would affect not only populations of adult plants
(Levine et al. 2008) but also the replenishment of the seed bank (Gutierrez and Meserve 2003). The
germination rate we infer is thus an estimate of the harmonic mean of census population sizes over

time, with the buffering effect of the seed bank (Nunney 2002).
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Chapter 3

msABC: A modification of Hudson's ms to facilitate multi-locus ABC analysis

Pavlidis P*, Laurent S*, Stephan W. 2010. msABC: a modification of Hudson's ms to

facilitate multi-locus ABC analysis. Mol Ecol Resour 10:723-727 (*contributed equally)

Abstract

With the availability of whole-genome sequence data biologists are able to test hypotheses regarding
the demography of populations. Furthermore, the advancement of the Approximate Bayesian
Computation (ABC) methodology allows the demographic inference to be performed in a simple
framework using summary statistics. We present here msABC, a coalescent-based software that
facilitates the simulation of multi-locus data, suitable for an ABC analysis. msABC is based on
Hudson's ms algorithm, which is used extensively for simulating neutral demographic histories of
populations. The flexibility of the original algorithm has been extended so that sample size may
vary among loci, missing data can be incorporated in simulations and calculations, and a multitude
of summary statistics for single or multiple populations is generated. The source code of msABC is

available at http://bio.Imu.de/~pavlidis/msabc or upon request from the authors.
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Introduction

Along with the increase of population genomic datasets, an important goal is to understand the
relationship between patterns of nucleotide polymorphism in natural populations and their
evolutionary history. Statistical methods have been employed to estimate demographic parameters
using likelihood approaches (Hey and Nielsen 2007) or analysing summary statistics of the data.
Among them, ABC benefits from the increase of both available data and computer power
(Beaumont ez al. 2002; Excoffier e al. 2005). ABC is applied widely in population genetics studies
and usually consists in a two-step procedure. First, simulations are used to sample from the joint
distribution of parameters and summary statistics of the simulated data for a given demographic
model. Then, a rejection algorithm is applied to retain only values of parameters that generate
summary statistics which are similar to the observed values. The retained set of parameter values is
then corrected by local linear regression (Beaumont ez al. 2002) or non-linear regression (Blum and
Francois 2010) and considered as an approximation of the posterior distribution. Hudson's (2002)
ms is a widely-used coalescent software that generates neutral polymorphism data for a genomic
locus sampled from one or more populations undergoing complex demographic scenarios (including
past population size changes, merging of populations, and migration). Furthermore, it is
computationally efficient for relatively large samples (hundreds or thousands of chromosomes) as
well as large genomic segments (tens to a few hundred kilobases). Here, we propose an extension of
ms in order to facilitate its usage within ABC and, in particular, to perform the sampling procedure.
Our aim is to provide a software that (i) draws parameter values from user-specified prior
distributions, (ii) allows to choose from a variety of summary statistics, (iii) can be used for multiple
unlinked loci, and (iv) enables the calculation of summary statistics in cases of incomplete

information (i.e. missing data). The randomly drawn parameter values are used to perform
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coalescent simulations. The simulated data are summarized into a vector of summary statistics and
written to a file. This file can then be used to perform the rejection step and the other post-sampling
adjustments using linear regression (Beaumont et al. 2002; Thornton 2009) or non-linear regression

models (Blum and Francois 2010).

Materials and Methods

Generation of data: Currently, ms allows to simulate neutral polymorphism data using a set of
constant, user-defined parameter values. Alternatively, employing the “tbs” option, ms permits some
of the parameters to be specified from the standard input. However, even in this case the parameter
values should be generated a priori. This may be tedious when many parameters need to be sampled
from one or more distributions. msABC enables the user to specify in the command line the desired
sampling distributions (uniform, normal, log-normal, gamma) for the parameters of interest. For
each simulated dataset, new parameter values (e.g. the population mutation parameter, ) are drawn
from the specified distribution. In msABC, a dataset may consist of multiple independent loci. The
sample size is allowed to vary among loci, similarly to the msnsam program (Ross-Ibarra et al.
2008), as is often the case in large genome re-sequencing projects. Furthermore, the simulation of

missing information is possible.

Calculation of summary statistics: Following the generation of a dataset, summary statistics are
calculated: (i) estimates of variability such as the Watterson's estimator, 0,, (Watterson 1975), or
equivalently the number of segregating sites S, the average pairwise differences of sequences, T

(Tajima 1983), (ii) summaries of the site frequency spectrum (SFS) such as D (Tajima 1989) and H
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(Fay and Wu 2000), and (iii) summaries based on linkage disequilibrium, for example, the average
pairwise correlation coefficient Z,s (Kelly 1997). Population differentiation statistics such as Fsr
(Hudson et al. 1992; Slatkin 1993), or pairwise Fsr have been implemented for the case of multiple
population datasets. Furthermore, fixed differences, shared and private polymorphisms can be
calculated between pairs of populations. When datasets are composed of multiple populations,
summary statistics i - iii are calculated for each population as well as for the pooled sample.
Summary statistics are calculated for each locus, and averages and variances are reported if multiple

loci are simulated.

Simulations with incomplete information: Often, in Sanger re-sequencing (e.g. Hutter et al.
2007), microchip sequencing (e.g. http://www.dpgp.org/) or high-throughput sequencing projects
(e.g. http://www.dpgp.org/), a fraction of data contains missing information, that is, non-identified
nucleotides symbolized as 'N'. Missing data affect the values of summary statistics (e.g. they
decrease variability), and therefore may bias the demographic inference. In msABC one can
simulate missing data by specifying the coordinates (position and sequence) of each 'N' in the
alignment. In a simulated dataset, segregating sites coinciding with the position of 'N' in the
alignment are replaced by the missing state. The sample size of each site is then updated and the
calculation of summary statistics is adapted. Details and examples are provided in the manual (pg.

12).
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Code availability: The source code and documentation of msABC is available at http://bio.lmu.de/
~pavlidis/msabc or upon request. msABC has been compiled and run on 32-bit Linux machines
with the gcc (version 4.2.4) compiler and on 64-bit Linux machines with the gcc (version 4.1.2)

compiler.

Results

The sampling process of an ABC analysis may consist of multiple steps. Parameter values are
sampled from the prior distribution to simulate polymorphism data. Coalescent simulation programs
such as simcoal2 (Laval and Excoffier 2004) and ms (Hudson 2002) have been used extensively for
the data generation. Then, the summary statistics are calculated using the simulation results in
appropriate software packages [e.g. the libsequence library (Thornton 2003)]. msABC integrates
these steps into one software package that efficiently performs the sampling process of the ABC.
The benefits from this integration are: (i) it allows researchers without extensive coding skills to
estimate demographic models even for complicated scenarios, when the sample size of loci varies,
or the dataset includes missing information, and (ii) computations are considerably faster than
combining sequentially the steps of the sampling process mentioned in the previous paragraph

(Figure 3.1).

Speed measurements: We compared the speed performance of msABC with the combination of
the coalescent simulator ms (Hudson 2002) and the libsequence library (Thornton 2003) to calculate
summary statistics. msABC out-competes this combination. As illustrated in Figure 3.1, msABC

(solid line with circles) is compared with the combination ms-libsequence (dashed line with
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crosses). Hudson's ms (dashed line with triangles) is used as lower bound for the time, since it
simulates data without calculating summary statistics. Simulations refer to a demographic scenario
of two populations with gene flow between them (4Nm=0.5, where N is the present day effective
population size and m is the fraction of each subpopulation made up of new migrants each

generation), with a (global) population contraction to 0.3N at time 0.01 (backwards in units of 4N).
A genome of 100 independent loci is simulated 1000 times ( 6=10 per locus, p=10 per locus). The

set of summary statistics consists of 0., @, D, H, Fsr, shared and fixed polymorphisms, and Z,s. The
speed difference is important especially for large (whole-genome) datasets (e.g. the 1001 genome
project for A. thaliana (Weigel and Mott 2009)), where simulations may require extensive time
periods. For example, based on Figure 3.1, simulating a genome of 100 independent loci 10° times
when the sample size is 500 would require about 92 days on a single computer using ms-

libsequence. On the other hand, msABC would require 17 days for the same computations.

Example of parameter estimation: We infer the parameters of a simple demographic model

characterized by two diverging populations with recombination, in order to illustrate the usage of
msABC. The model consists of three parameters: the population mutation parameter ,0, which is
identical in the present and ancestral populations; the time T at which the two populations diverged,
and the population recombination rate p. We used msABC to sample parameter values from uniform

priors U(0; 10) and U(0; 1) for 6 and 7, respectively, to simulate polymorphism dataset under this

demographic model and summarize these datasets into a series of summary statistics. In all
simulations, p=20 and the simulated datasets consist of 50 loci of 500 bp with sample size n=12.
The output of msABC allows to investigate the relations between the parameters 0, T and, summary

statistics of the simulated data. Figure 3.2A illustrates the relation between T and the amount of
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differentiation between the two populations as it is measured by Fsr. Strong correlations between
parameters and summary statistics indicate that summary statistics can be used to infer values of
demographic parameters (Figure 3.2A). Posterior distributions of parameters based on observed
summary statistics, the joint distribution of parameters, and simulated summary statistics can be
computed from the output of msABC and the rejection/regression analysis (Beaumont et al. 2002;
Excoffier et al. 2005; Thornton 2009). In order to illustrate this estimation procedure, we simulated
a dataset by setting 6=5 and t=0.5 and re-estimate the values of 6 and T using 10° simulated
datasets. Posterior distributions were estimated by summarizing the data into the mean and the
variances of the number of segregating sites, D, Z,s, and Fsr. Figure 3.2B illustrates the posterior

distribution of the parameter .
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Figure 3.1: Speed comparison (in log10 seconds) when
the sample size is between 10 and 1000. msABC is
about 6 times faster than the combination ms-
libsequence when the sample size equals 1000.
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Figure 3.2: Results obtained from msABC. A) Examining the relationship
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between the parameter and the summary statistic E(FST). B) Posterior
distribution of the parameter , obtained after applying the output of msABC in
algorithms that perform the rejection and regression steps of ABC analysis.

Discussion

msABC facilitates the sampling process of an ABC analysis. The command line is similar to the
command line of ms, thus shortening the learning curve for a user who is familiar with ms.
Although msABC can be used to simulate single loci, most demographic analyses in molecular
population genetics are characterized by large datasets composed of several chromosomal fragments
scattered along the genomes (Ometto et al. 2005; Nordborg et al. 2005; Hutter et al. 2007). msABC
can simulate multi-locus datasets, where each fragment is characterized by its own length, sample
size, recombination rate, and mutation rate. msABC provides a collection of commonly used
summary statistics that allow to quantify levels of polymorphisms, linkage disequilibrium,

population differentiation, and the shape of the frequency spectrum of derived mutations. The
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complete list of available summary statistics can be found in the wuser's manual (see
http://bio.lmu.de/~pavlidis/msabc). Furthermore, msABC extends the flexibility of Hudson's ms by
allowing variable sample size among fragments and missing data simulation. It allows to analyse
datasets that contain missing data by simulating them and then calculating summary statistics. This
may be important in demographic inference of large datasets which typically consist of a large
amount of incomplete information (e.g. http://www.dpgp.org/).

The speed performance can be important for large datasets. Assuming that simulating data of
tens or hundreds of kbs (with typical values of recombination rates) for a sample that consists of
hundreds or thousands of individuals may require months of computational time, an improvement of
five to six times shortens considerably the time of the inference project. This is especially true if the

project is carried out on personal computers instead of cluster machines (Figure 3.1).

Alternative ways to obtain summary statistics from simulated data could be implemented by
replicating ms commands with different parameters. In the best case this would require extensive
scripting for calculating the priors and summary statistics. However, when missing data are included
in the dataset or the sample sizes of loci vary, it would not be possible to perform simulations that

match the observed data.

msABC can be used to examine the relationship between parameters and summary statistics
(figure 3.2A). This helps to inspect the usability of certain summary statistics in estimating
parameters. Summary statistics that are related monotonically to target parameters are expected to
be useful for estimating them. Additionally, msABC can be used to obtain the null distributions of a

multitude of summary statistics under demographic models.

msABC outputs samples from the joint distribution of parameters and summary statistics
under a given demographic model. A follow-up step in the analysis (rejection) retains the closest

points to the observed data. The parameter values that have been used to generate those simulations
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comprise an approximation of the true posterior distribution of the parameters of interest. An
improvement of this approximation has been proposed by Beaumont ez al. (2002) that corrects for
the fact that the accepted simulations never match precisely the observed data (linear-regression). A
more sophisticated approach has been suggested by Blum and Francois (2010). msABC does not
perform the rejection and regression steps. Algorithms needed to perform these post-sampling steps
have been implemented elsewhere [e.g. abcReg by K. Thornton
(http://www.molpopgen.org/software/abcreg) or non-linear regression models by Blum and Francois

(2010) (http://membres-timc.imag.fr/Michael.Blum/my_publications.html)].

A critical point in ABC refers to the model choice (Pritchard et al. 1999; Fagundes et al.
2007). Typically, different demographic scenarios are simulated and the scenario with the highest
relative posterior probability is then used (Fagundes et al. 2007; Francois et al. 2008). However, this
model does not necessarily provide a good fit to the observed data, since it simply indicates the best
model among the tested models (Ratmann et al. 2009). Therefore, once the best model and its
parameters have been inferred, it is necessary to investigate whether simulations under this model
are able to predict the observations (predictive simulations).

Finally, in ABC the set of summary statistics may be crucial. It has been shown that
uninformative summary statistics add noise to the distance between simulations and observations
(Joyce and Marjoram 2008); thus they should be avoided. Therefore, the smallest set of summary
statistics that captures the information carried by the dataset should be used. The choice of summary
statistics is an active area of research. Joyce and Marjoram (2008) suggested a scheme for scoring
statistics according to whether they improve the inference. Alternatively, Wegmann ez al. (2009)
proposed partial least square regression (Boulesteix and Strimmer 2007) in order to reduce the
dimensionality. In Table 3.1 we suggest which summary statistics should be used to infer certain

demographic parameters. However, since the information provided by statistics may vary between
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demographic scenarios, investigating the relationship between them and demographic parameters

under various demographic scenarios of interest is necessary.

Table 3.1: Demographic parameters and population genetics summary statistics that can be used for

the inference of parameter values

Demographic parameters Summary statistics
0 (population mutation rate) 0, (or S), O,
P (population recombination rate) Zus
time of population size expansion 0, (orS), 8, D
time of population size contraction 0. (orS), 0, D, Z,s
magnitude of population size change 0, (orS), 8., D, Z,s
migration rate (island model) Fsr
T (time of divergence between two populations) | pairwise Fisy

Summary statistics are described in the section Calculation of summary statistics.
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General Discussion

The demography of Drosophila melanogaster: In our analysis of the demographic history of Asian
populations of D. melanogaster, we considered that the African population experienced an
expansion as proposed by Li and Stephan (2006). After having estimated posterior distributions for
the parameters of this model we found, however, that our best model couldn't account for all the
aspects of the African dataset. Indeed, ABC model choice analysis even showed that a population
size bottleneck was associated with a higher posterior probability than the expansion model
(unpublished results). This results are in line with a recent population genetic survey of a large
number of African populations (Pool er al. 2006) suggesting that the centre of Origin of the species
could well be located in Uganda rather than in Zimbabwe as it was assumed in our study. The
bottleneck that we detect in our dataset could therefore be the signature of past range expansions
from Uganda to Zimbabwe (Excoffier et al. 2009). If the centre of origin of D. melanogaster is
located in Uganda, an under-investigated population, then we might find there populations that are
closer to equilibrium than the Zimbabwean populations. These equilibrium populations could
greatly improve our ability to detect selective sweeps, since our methods are strongly affected by
past demographic events (Pavlidis et al. 2010a). A correct understanding of the evolutionary forces
that shaped patterns of genetic variation in the African population is also of prime importance
because this population plays a central role in the modelling of the history of derived cosmopolitan
populations. Therefore, further work is needed to understand the complete demographic history of
cosmopolitan populations.

The most important improvement to be done is to incorporate inter-continental migration in

our models. The importance of migration has appeared with the discovery that North American
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populations carry similar levels of genetic diversity as European populations (Caracristi and
Schlédtterer 2003). This observation doesn't support the idea that the American population was
founded by a single founder event, as we assumed it for the foundation of the European and Asian
populations. The reason is that such a scenario is expected to lead to a reduction of genetic
polymorphism in the derived population (Ometto et al 2005; Li and Stephan 2006). More
interestingly, entomological records indicate that D. melanogaster was observed for the first time in
North America in 1875, in the state of New York (Lintner 1882; Keller 2007). Only 25 years later,
the species has been qualified to be ,the most commonest species® all over the United States
(Howard 1900). This gives us an idea about the impressive dispersal capacities of D. melanogaster
and makes it likely that human-mediated worldwide migration events between populations can
occur on a regular basis.

Another question that remains to be answered is the interpretation of the observed ratio of X-
linked to autosomal diversity (hereafter X/A diversity ratio) in Asian populations. Under the
standard neutral model assumptions, the X/A diversity ratio would be 0.75, following the numbers
of each chromosome in a mating pair. However, Pool and Nielsen (2008) have shown that the
observed reduction of the X/A diversity ratio in the European population could be best explained by
recurrent founder events that occurred during the range expansion of D. melanogaster out of Africa.
We found that the observed X/A diversity ratio (corrected for mutational biases) was 0.63 in the
Asian population. Which is smaller than the observed value in the African population (0.87), but
larger than the value observed in the European population (0.52). One explanation for this result
would be that the recurrent founder events that have been analysed by Pool and Nielsen (2008)
could not only represent population size fluctuations associated with range expansion processes but
could also reflect the strong impact of seasonality on European populations of D. melanogaster.

Since Southeast Asian populations are expected to be less exposed to low wintry temperatures, it
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could well be that climatic seasonality is responsible for the observed differences in X/A diversity

ratios.

Although much effort has already been invested into the analysis of D. melanogaster's
history (Glinka et al. 2003; Ometto et al. 2005; Li and Stephan 2006; Thornton and Andolfatto
2006; Pool and Nielsen 2008), it seems that several questions remain unanswered. Answers to these
questions might be given soon by the analyses of the new datasets produced by next-generation
sequencing technologies (Metzker 2010) and statistical methods allowing the investigation of more

complex models (Csilléry et al. 2010).

Estimation of the germination rates of two wild tomato species: In the second project we
combined ecological and genetic data to investigate the effect of seed dormancy on the molecular
evolution of wild tomatoes from the genus Solanum. Large population sizes compared to census
sizes observed in two wild tomatoes species from western South America are explained, using
coalescence theory and ABC analysis, to be due to the existence of seed banks. We show that seed
banks increase the effective size of populations, and this effect can be distinguished from the effect
of metapopulation structure using a combination of local population and species-wide samples. The
ABC method allows us to combine genetic diversity data with ecological information on the number
of demes and census size of demes, to perform model-based inference of germination rates for each
species. We also show that two species with different ecological habitats and metapopulation
structure (different number of demes) exhibit different germination rates. This difference can

represent bet-hedging adaptation to environmental stochasticity over space and time.

One critical aspect of the statistical analysis we conducted in this project was the modest

amount of genetic information used in the ABC analysis (Tables 2.2). The small number of
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independent fragments considered in this study didn't allow us to use the variances of the statistics'
distribution across loci in the ABC analysis. Consequently, our ability to identify past fluctuations
of population sizes was greatly reduced, as these demographic events have a strong influence on the
variance of several summary statistics of polymorphism data. In this study, however, we were not as
interested in the species' past history as in identifying a specific life-history trait of these plants:
seed dormancy. The main effect of seed dormancy is to increase the level of genetic variability. We
believe that the observed average values of diversity that we measured in our samples still contain
enough information about the species average level of genetic diversity, to be compared with the

expected levels of genetic diversity based on the observed census sizes.

It seems, however, that the population size expansion that we identified in Solanum
peruvianum has been confirmed by recently developed composite likelihood methods that are
expected to make a better use of the full dataset (Lisha Naduvilezhath, personal communication).
Issues concerning the amount of information carried by our datasets, about a specific aspect of the
investigated model, will be resolved in the future by carrying out performance analyses of our ABC

estimation procedure on simulated pseudo-observed datasets.

Another critical aspect that remains to be addressed is the occurrence of very recent
demographic events that could have affected wild tomatoes populations. Recent habitat destruction
due to urbanization (Aurelien Tellier, personal communication) could be difficult to detect with our
coalescent-based inference method. This is due to the fact that very short and recent population size
fluctuations might not influence the shape of gene genealogies that can be inferred from genetic
data. It remains to be tested how good our method behaves in the presence of such recent events and

to assess the potential magnitude of these habitat reductions.
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msABC: a coalescent simulator for ABC analysis: The third project's aim was to develop a
software that would facilitate the use of ABC estimation procedures in population genetics. Our
major concern during the development of this software was to propose a tool that would completely
alleviate the necessity for the user to develop his own code at any stage of the ABC analysis. We
succeeded in this task by proposing msABC (Pavlidis et al. 2010), a software that has been created
by performing a series of modifications to the well-established software ms (Hudson 2002). Even if,
for an experienced programmer, developing specific tools for a given analysis still remains the
optimal solution, the increasing number of msABC users already indicates that it fulfils (at least
some of) the needs of biologists that are interested in interpreting observed patterns of genetic
polymorphism in a model-based framework. Other software or packages implementing ABC
methods for population genetics have been published recently (Cornuet et al. 2008; Lopes et al.
2009; Wegmann et al. 2010). Among them the ABC toolbox package generated by Wegmann et al.
(2010) is proposing, in addition to a very well documented user manual, several interesting
programs that can be used to perform the partial-least square transformation (Boulesteix et al. 2007)
as well as the regression-adjustment of the vectors of retained parameter values (Beaumont et al.
2002). It 1s likely, however, that this list of programs will be extended in the following years, since
the development of ABC methods is actually an active field of research (Ratmann et al. 2009; Blum
and Francois 2010; Bazin et al. 2010) and that interesting methodological improvements have

already been proposed.

One of these improvements for example deals with the fact that classical ABC methods only
provide information about the relative fit of a model to the observed dataset. Different models can
be compared against each other, but the model with the highest posterior probability might still

provide a poor fit to the observed dataset. To overcome this problem, Ratman ez al. (2009) proposed

ABCy, an ABC method that incorporates model diagnostics within an ABC framework. ABCU can
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identify which aspects of the dataset cannot be correctly predicted by the model and therefore

provides a powerful way to perform model refinement.
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