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Zusammenfassung

Der stellare Massenverlust (und insbesondere die entsprechendeRate) ist eine zentrale Größe in der
Beschreibung heißer, massereicher Sterne. Er beeinflusst ihre Entwicklung und ihr finales Schick-
sal, und ist entscheidend für verschiedene ‘feedback’-Effekte, wie beispielsweise ionisierende Flüsse,
stellare ‘yields’ und Energie- und Impulsabgabe. Gegenwärtige Untersuchungen legen es nahe, dass
die derzeit verwendeten Massenverlustraten von O-Sternenaufgrund des Einflusses von Windinho-
mogenitäten (‘Klumpung’) reduziert werden müssen, um eine Größenordnung oder sogar mehr. Falls
zutreffend, würde dies enorme Auswirkungen auf die Sternentwicklung massereicher Sterne und
deren feedback implizieren, und auf die große Zahl damit verbundener astrophysikalischer Anwen-
dungen.
Sowohl die Modellierung der Atmosphären massereicher Sterne als auch ihrer spektraler Energie-
verteilung unter Berücksichtigung der Windklumpung befinden sich jedoch noch in einem An-
fangsstadium, und die Resultate oben genannter Untersuchungen wurden kürzlich in Frage gestellt,
insbesondere im Hinblick auf die übliche Annahme, dass dieKlumpen optisch d̈unn für typische
Spektrallinien seien.
In vorliegender Arbeit werden neue, verbesserte Methoden für die Modellierung der Linienbildung
in strukturierten Winden heißer Sterne entwickelt. Es wurde eine detaillierte Untersuchung des
Einflussesoptisch dickerKlumpung auf die Bildung von UV Resonanz- und optischen Rekombi-
nationslinien durchgeführt, wobei diese Linien die gebr¨auchlichsten Massenverlustindikatoren sind.
Unsere Untersuchungen zeigen, dass unter typischen Bedingungen die Klumpennicht optisch dünn
bzgl. obiger Prozesse sind. Würde man trotzdem – und wie derzeit ‘üblich’ – in einer Analyse der
Resonanzlinien optisch dünne Klumpen annehmen, könnte man die Massenverlustraten bis zu eine
Größenordnungunterschätzen.
Erste quantitative Ergebnisse wurden anhand einer exemplarischenMulti-Diagnostik Analyse des
galaktischen O-̈Uberriesenλ Cep erzielt. Synthetische Spektrallinien, die auf inhomogenen
strahlungshydrodynamischen Windmodellen basieren, können diebeobachtetenLinien nicht repro-
duzieren. Deshalb wurden entsprechende stochastische Modelle entwickelt, mit dem Ziel, die Es-
senz des strukturierten Mediums empirisch zu erfassen. MitHilfe dieser Modelle wurden konsis-
tente Fits der beobachteten Daten erreicht, die darauf hindeuten, dass der innere Windbereich (er-
heblich) stärker geklumpt ist als von der Theorie vorhergesagt, und dass der Bereich beitragender
Geschwindigkeiten in den Klumpen kleiner als prognostiziert ist. Die abgeleitete Massenverlustrate
für λ Cep ist ca. zweimal niedriger als von der Theorie vorhergesagt, allerdings um einen Faktor
fünf höher als diejenige, die man aus der Annahme optisch dünner Klumpung ableiten würde. Unsere
prototypische Analyse hat damit die derzeitig diskutiertesignifikante Diskrepanz zwischen Theorie
und Beobachtung gemildert, aber nicht vollständig aufgelöst.
Darüber hinaus haben wir neue analytische Methoden zur Spektralanalyse in inhomogenen Winden



entwickelt, die unabhängig von Annahmen bzgl. der optischen Dicke der Klumpen ist. Erste vielver-
sprechende Ergebnisse wurden vorgestellt, und wir schlagen vor, die neue Methoden auf eine quantita-
tive Multi-Wellenlängenstudie (vom Röntgen- bis zum Radiobereich) inhomogener heißer Sternwinde
anzuwenden.
Ein Nebenprojekt vorliegender Arbeit ist die Untersuchungder Bildung photosphärischer Emission-
slinien von (hauptsächlich) Mg I bei 12/18µm in kühlen Sternen. Diese Linien können (u.a.) poten-
ziell dahingehend genutzt werden, Magnetfeldstärken in der oberen Photosphäre abzuleiten, aufgrund
ihrer Empfindlichkeit bzgl. der Zeeman-Aufspaltung. Bislang wurden Analysen dieser Linien je-
doch nur für zwei Zwergsterne (einschliesslich der Sonne)und zwei kühle Riesen versucht, mit sehr
unbefriedigenden Ergebnissen für letztere Objekte.
In dieser Arbeit präsentieren wir neuen Beobachtungen der12/18µm Emissionslinien in K-Riesen and
zeigen durch eine detaillierte non-LTE Modellierung für Magnesium, dass der Linienbildungsmecha-
nismus der gleiche wie in der Sonne ist. Wir zeigen auf, warumfrühere Versuche einer Modellierung
erfolglos waren, und betonen, dass die Synthetisierung dieser Linien sehr empfindlich von den atom-
aren Daten abhängt. Damit zeigen sich diese Linien auch alsentscheidende Konsistenzindikatoren für
Modellatome, wie sie in Multi-Wellenlängenstudien von Oberflächenhäufigkeiten verwendet werden.



Preface

The bulk of this thesis consists of three so-called first-author papers, two of which already have been
published in the refereed journal Astronomy & Astrophysics(Chapters 4 and 6), and one which re-
cently has been submitted to the same journal (Chapter 5). These papers are kept in their original
form, and may be read quite independently of each other. In addition, Chapter 3 attempts to examine
a little further the main topic of this thesis, namely transfer of radiation through clumpy hot star winds.
Actually, some of the results given in Chapter 3 were foundafter the connected Chapters 4 and 5 had
been written (and published, for the former), but the chapter is nevertheless placed before them in the
thesis, for I personally believe that after having read it one may better appreciate the basic methods
used later on. Naturally, this introduces some repetition of subjects in Chapters 3-5, which might be
annoying for the reader who wishes to read the thesis from ‘cover to cover’. But I hope that for most
readers, this approach instead simplifies whenever they findtime to peruse their copies. Chapter 2 is
a recent review by Puls, Sundqvist et al. (2009) and complements Chapters 3-5 by providing further
insight into the main field studied in this thesis. To this chapter is added an addendum, which updates
some of the material as well as discusses it in connection to the other chapters. In the following, how-
ever, I shall start with an introduction of the basic topics covered. The introduction roughly is divided
into two parts, the first dealing withmass loss from hot, massive starsand the second withquantita-
tive spectroscopy of stellar atmospheres(but surely these topics are highly interconnected). Finally,
Appendix A provides some more details on the radiative transfer codes developed in Chapters 4 and
5, and Chapter 7 summarizes our results and outlines some future work.
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Chapter 1

Introduction

1.1 The role of mass loss from hot, massive stars in modern astrophysics

Massive stars are fundamental in many fields of modern astrophysics. They are crucial for Galactic
evolution: In the present Universe, they dynamically and chemically shape their surroundings and
the inter-stellar medium by their output of ionizing radiation, energy and momentum, and nuclear
processed material. In the distant Universe, they dominatethe ultra-violet (UV) light from young
Galaxies. Indeed, massive stars may be regarded as ‘cosmic engines’ (Bresolin et al., 2008). Further-
more, very massive First Stars are thought to play a dominantrole in the re-ionization of the Universe
and in the first enrichment of metals (Bromm & Larson, 2004; Bromm et al., 2009), and rapidly ro-
tating massive stars are believed to be the progenitors of the most energetic cosmic flash known, the
(long-duration) gamma-ray burst (GRB) (Woosley, 1993). Hence, an accurate knowledge of massive
stars and their evolution is pivotal for understanding the Universe as a whole.

Recently, great progress has been made in evolutionary as well as in atmospheric modeling of these
objects. Nevertheless, a number of very distinct problems remains, especially concerningdynamical
processes in the stellar interior as well as in the atmosphere (mass loss, rotation, convection, pulsa-
tion). Arguably most important in this respect is themass loss. Hot, massive stars possess strong
and powerful winds, which affect evolutionary time scales,chemical surface abundances, and lumi-
nosities. Indeed, changing the mass-loss rates of massive stars by only a factor of two has a dramatic
effect on their overall evolution (Meynet et al., 1994), andeven the nature of the supernova explo-
sion critically depends on the precursor’s mass-loss history (Woosley et al., 2002). Reliable mass-loss
rates are needed when calculating stellar yields from massive stars, and thereby mass loss is important
also for the chemical evolution of galaxies (Romano et al., 2010). Furthermore, ionizing fluxes from
hot, massive stars for usage in nebula codes, spectral libraries, and population synthesis are strongly
influenced by mass loss. An important application for population synthesis is the modeling of rest-
frame UV spectra of high-redshift, star-forming, Lyman-break galaxies, whose spectral features, e.g.,
provide critical information on star formation at redshifts z>∼ 3 (Leitherer et al., 2010). Finally, at
yet earlier cosmic times, it is currently debated whether ornot the very First Stars underwent mass
loss strong enough to alter their evolution and the chemicalsignatures of their deaths (Ekström et al.,
2008; Smith, 2008).

Clearly, if research fields such as those outlined above are to move forward with confidence,reliable
prescriptions of mass-loss rates from hot, massive stars are essential.
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1.2 Stellar winds, mass loss, and evolution

Nearly all stars loose mass through a, in principle, steady and continuous surface outflow, astellar
wind. The basic requirement for driving such a wind is that there in the outer layers of the star exists
an outwards directed force able to overcome the inwards directed gravity, so that material may escape
the star. For thorough introductions to stellar winds, see the book by Lamers & Cassinelli (1999) and
the book-chapter by Owocki (2010).
Examples of stellar winds are the solar wind, which is drivenby gas pressure gradients in the hot
corona, and the strong, but slow, winds from red supergiants(RSGs) and asymptotic giant branch
(AGB) stars, which are believed to be driven by stellar pulsations and radiation pressure on dust grains.
Although these AGB and RSG stars are thought to share drivingmechanisms for their winds, the two
stellar stages do not share evolutionary origin. An AGB staris the final stage of a low/intermediate-
mass star with zero-age main-sequence massMZAMS <∼ 8M⊙ (with M⊙ the mass of the Sun). Here
the intense AGB mass loss is able to reduce the initial stellar mass to below the Chandrasekhar limit
(M∗ <∼ 1.4M⊙), leaving behind a planetary nebula and a white dwarf remnant. RSGs, on the other
hand, presumably are the evolutionary successors to hot, massive main-sequence stars in the mass
rangeMZAMS ≈ 8−40M⊙. According to the standard scenario (Conti, 1976, see also Massey 2003),
they are in a Helium burning phase and the end-result of a fastand nearly horizontal evolution from
the blue to the red part of the Hertzsprung-Russell (HR) diagram. Some massive stars terminate
their lives after this RSG stage, exploding as hydrogen richcore-collapse supernovae, whereas some
evolve back to the hot part of the HR diagram (see, e.g., Levesque, 2009), either entering a new
yellow/blue supergiant phase or forming hydrogen deficientso-called Wolf-Rayet (WR) stars (which
also experience severe mass loss). In this last case, mass loss in the RSG stage may significantly help
strip the star’s initial hydrogen envelope.
Even more massive stars (MZAMS >∼ 40M⊙) are believed to never leave the blue part of the HR diagram,
for they evolve to the WR stage either directly (stars withMZAMS <∼ 85M⊙, in one version of the
‘Conti-scenario, see Massey 2003) or via ahot Luminous Blue Variable (LBV) phase, rather than
via acool RSG stage. LBVs represent a short lived phase in massive starevolution in which the star
undergoes significant effective temperature changes, as well as in some cases violent eruptive phases
with extreme mass loss (see discussion in Puls et al., 2008b). The typical Galactic examples of LBVs
are P Cygni andη Carina. Normally it is assumed that these very massive starsafter the WR stage
explode as hydrogen poor supernovae, but recently it has been shown that the progenitor star to the
supernova 2005gl was likely in its LBV phase (Gal-Yam & Leonard, 2009), suggesting that some
stars in this mass range may actually meet death already as LBVs. Clearly, our understanding of the
late stages in massive star evolution is still far from complete. Nonetheless, it is commonly accepted
thatafter the supernova explosions most of the massive stars leave behind them neutron star remnants
or even black holes. Note also that the above stated mass ranges may perhaps only be regarded as
illustrative; they certainly depend on details in the evolutionary modeling of massive stars, and may
also be functions of metallicity. Indeed, mass-loss rates in all the evolved stages discussed above are
very challenging to determine, and pose a major uncertaintyin present-day evolution models (Woosley
et al., 2002).
Another important ingredient in massive star evolution isstellar rotation, which can significantly alter
the stars’ predicted evolution tracks (e.g., Maeder & Meynet, 2000, and subsequent papers; ‘evolution
with mass loss and rotation’). For example, rapidly rotating massive stars may experience very effi-
cient internal mixing and thereby undergochemical homogeneous evolution, in which strong chemical
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gradients never can be established (in contrast to the classic onion like structure of an evolved massive
star). Under these conditions, massive helium stars with rapidly rotating cores may form, which pre-
sumably are the progenitor stars to the long-duration GRBs (e.g., Yoon et al., 2006). Moreover,mass
lossandrotation are connected in at least two crucial ways: i) Theglobal mass-loss rates of rapidly
rotating stars may be significantly increased1, for the centrifugal force decreases the effective gravity
that whatever driving force of the wind must overcome, thus making it easier for the stellar material
to escape, and ii) mass loss tends to remove angular momentumfrom the star, thereby decreasing
its rotation rate (Langer, 1998). Although this thesis deals mostly with ‘normal’ hot, massive stars,
whose mass losses are not believed to be significantly modified by rotation, we shall comment on, for
example, the second point above (Sect. 1.4.4) and its effecton the potential creation of RGBs within
the scenario just described, which demands that the star keeps a rapid rotation until its death.

1.3 Radiation driven winds of hot, massive stars

The winds fromhot, massive stars are described by the radiative line-driven wind theory, where the
standard model (based on the pioneering works by Lucy & Solomon, 1970; Castor et al., 1975) as-
sumes the wind to be stationary, spherically symmetric, andhomogeneous. The (major part of the)
driving force within this theory comes from metal UV resonance lines, whose accumulated line force
has been shown sufficient to drive the strong and fast winds ofOB-stars, A-supergiants, LBVs in their
quiet phase, and most probably also WR stars. The main interest in this thesis has been OB-stars, with
typical mass-loss rates of 0.1−10.0×10−6M⊙yr−1. These rates are 107−9 times higher than the rate
of the solar wind, but on the same orders of magnitudes, or actually somewhat lower than, the rates of
the more evolved hot and cool stars mentioned earlier (i.e.,the LBVs, WRs, RSGs, and AGB stars).
Details on fundamental theoretical predictions for line-driven winds of OB stars, as well as com-
parisons to observations, are given in Chapter 2, where for example the wind momentum luminosity
relation and the metallicity dependence of mass loss are outlined. Moreover, the so-called ‘weak wind’
problem is covered in that Chapter, whereas ‘clumping’ (themain topic of this thesis) is introduced
already here, in the following sections.

1.4 A clumped hot star wind?

In general, numerous observational studies of hot star winds support the line-driven wind theory
(Chapter 2). Nevertheless, the theory is probably over-simplified. Comprehensive summaries of cur-
rent issues2 are given in the proceedings from the workshop ‘Clumping in hot star winds’ (Hamann
et al., 2008) and in the review of mass loss from hot, massive stars by Puls et al. (2008b). In partic-
ular, evidence for an inhomogeneous, time-dependent wind has accumulated over the past years and
become overwhelming, from the theoretical as well as the observational side.

1 If the star also have a luminosity close enough to the Eddington limit, which is the luminosity at which the gravity is
precisely balanced by the radiative acceleration from electron scattering in aspherically symmetric, homogeneous, and
radiativeatmosphere.

2 which comprise effects of, e.g., stellar rotation and magnetic fields, in addition to the ‘clumping’ and ‘weak-wind’ phe-
nomena discussed here.
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1.4.1 Theoretical predictions of a small-scale inhomogeneous wind

It was pointed out already by Lucy & Solomon (1970) that radiation line-driven winds should be intrin-
sically unstable. This was later confirmed first by linear stability analyses and then by direct radiation-
hydrodynamic modeling of the time dependent wind (e.g., Owocki & Rybicki, 1984; Owocki et al.,
1988; Feldmeier, 1995; Dessart & Owocki, 2005). The intrinsic line-driven (or line de-shadowing) in-
stability of hot star winds emerges from velocity perturbations on small scales and gives rise to density
and velocity inhomogeneities, also occurring on small spatial scales. Numerical simulations follow-
ing the non-linear evolution of the line-driven flow instability reveal that the intermediate and outer
wind (typically, at radii outside 1.3R∗, see Fig. 1.1 and Chapter 4) develop a structure consisting of
strong reverse shocks separating denser and slower shells from rarefied regions with higher velocities.
Most of the material is compressed into these spatially narrow and dense ‘clumps’ (or shells within
a spherically symmetric configuration), which are separated by large regions of much lower densi-
ties. This characteristic structure (Fig. 1.1) is the basisto our current interpretation ofwind clumping.
However, thetime/spatial-averagedmass loss from a theoretical inhomogeneous wind is very similar
to that of a homogeneous one, even if the overall wind structure at a given point in time only weakly
resembles that of a smooth wind. This is important because itsuggests that the clumpy medium might
not significantly affect theoretical mass-loss predictions calculated from the standard line-driven wind
theory3. Instead, the main effect of the inhomogeneities (at least regarding mass loss) is thought to be
on mass-loss rates derived from observations, since ‘clumping’ seriously affects the radiative transfer
models that are needed to correctly interpret the spectral signatures of stellar winds.

1.4.2 Observational indications of an inhomogeneous wind

In addition to the theoretical considerations discussed above, many observational findings strongly
suggest that hot star winds are structured and time dependent. Below we (very) briefly summarize two
of these (see Puls et al. 2008b for a more comprehensive overview), namelyline profile variabilityand
X-ray emission.
Line profile variability in the form of narrow sub-peaks, superimposed on broader emission lines, that
propagate from the line center to the line wings in time scales similar to the wind flow time, was
detected in WR stars already by Moffat et al. (1988) and Robert (1994). A similar discovery was
made for the O supergiantζ Pup by Eversberg et al. (1998). More recently, Lépine & Moffat (2008)
showed that these moving sub-peaks existed in a number of WR and O stars, which they suggested
being strong support for that stochastic wind clumping is a universal phenomenon in the radiation
driven winds of hot, massive stars.
X-ray emission from hot stars was detected already by theEINSTEIN satellite some 30 years ago
(Harnden et al., 1979). Later on, the advent of the X-ray satellites XMM -NEWTON and CHANDRA

provided increased sensitivity as well as made it possible to perform high-resolution spectroscopy
of X-ray emissionlines. An extensive review on X-ray emission from stars (hot as well as cool)
has recently been given by Güdel & Nazé (2009), to which we refer for details. Roughly, the (soft)
X-ray luminosity from hot stars scales with the bolometric luminosity asLx/Lbol ≈ 10−7. The X-
rays are believed to originate in clump-clump collisions inthe shock-heated stellar wind (Feldmeier
et al., 1997). Generally, the broad emission lines revealedby high-resolution spectra seem to support

3 but see Chapter 5, and also the outlook in Chapter 7, where we comment on that important effects from clumping on, e.g.,
the ionization wind balance might influence also theoretical predictions.
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Figure 1.1: Velocity and density structures from a snapshotof a spherically symmetric, time-
dependent, radiation-hydrodynamic wind model ofλ Cep (Chapter 5). The characteristic structure
of spatially narrow regions of very high density in these models (as indicated in the lower panel) is
the basis to our current interpretation of wind clumping .

a wind origin for the X-rays, but a number of problems have been identified with the wind-shock
scenario, arising from the line-driven instability, and various adjustments to this model in order to
better reproduce the observations are currently being debated within the community (see Güdel &
Nazé 2009 for a discussion). Regarding mass loss, the most important discovery was the one of more
symmetric observed line profiles than expected. ‘Standard’mass-loss rates predict a heavy attenuation
of X-rays, caused by absorption in the ‘cool’ part of the wind. However, photons reaching the observer
from therecedingpart of the stellar wind (as seen by the observer) must travellonger within the wind
volume than those coming from the advancing part. Consequently photons at the red side of the line-
center will be more absorbed than those on the blue side, i.e.strongly skewed profiles are predicted,
in contrast with the more symmetric ones observed. This problem can be naturally solved by simply
lowering the mass-loss rates, for then the attenuation of X-rays is reduced, which in turn implies
more symmetric profiles, consistent with the observations.However, an alternative scenario is that the
effects ofoptically thick clumpsare important to consider when modeling the observations. If clumps
are optically thick for X rays, aporouswind results, and the effective opacity may consequently be
reduced (Chapter 3). Essentially, this has the same effect on the line profiles as reducing the mass-loss
rates, and it remains to be settled which of the two scenariosis more liable (see the next subsection).

1.4.3 Indirect indications of an inhomogeneous wind

Much indirect evidence of wind clumping has arisen fromquantitative spectroscopy(see Sect. 1.5 for
an overview of quantitative spectroscopy of stellar atmospheres). As already mentioned, clumping
has severe consequences for the interpretation of observedspectra, and especially mass-loss rates
derived from the observations are affected. The main observational diagnostics of OB-star winds are



6 CHAPTER 1. INTRODUCTION

1110 1115 1120 1125 1130 1135
λ [A]

0.0

0.5

1.0

1.5

2.0

N
o

rm
al

iz
ed

 f
lu

x

PV

6520 6540 6560 6580 6600
λ [A]

0.7

0.8

0.9

1.0

1.1

1.2

1.3

N
o

rm
al

iz
ed

 f
lu

x

Hα

Figure 1.2: Observed (dotted lines) and synthetic (solid and dashed lines) PV and Hα line profiles in
λ Cep. Observed spectra are from Fullerton et al. (2006) (PV) and Markova et al. (2005) (Hα ). The
synthetic line profiles of Hα were calculated with the unified, NLTE atmospheric codeFASTWIND

(see Sect. 1.5.3), assuming asmoothwind. The profiles of PV were calculated with the Monte-Carlo
code developed in Chapter 4, also assuming a smooth wind and usingFASTWIND ionization fractions.
The dashed lines were calculated using a 20 times higher mass-loss rate than the solid lines.

UV resonance lines, Hα line emission (and other recombination lines, for example He II 4686), and
infra-red (IR) and radio continuum emission. Recently, X-ray emissionlineshave also been added to
the set (see the previous subsection). Obviously, independent of which diagnostic is used, the same
mass-loss rate for a given star should be derived. However, as outlined below, this is presentlynot the
case.
When smooth wind models are used, the mass-loss rates inferred from different diagnostics, but for the
same star, can vary substantially. As an example, we in Fig. 1.2 plot observed and synthetic profiles of
Hα and the phosphorusV (PV) UV resonance lines, for the prototypical Galactic O6 supergiantλ Cep.
Clearly, the two mass-loss indicators may not be fitted usingthe same rate; the PV lines suggest a
mass-loss rate approximately 20 times lower than the one required for a decent fit of the Hα emission.
Moreover, Puls et al. (2006) used a third diagnostic, radio continuum emission, and derived a mass-
loss rate forλ Cep that was roughly half of the Hα rate suggested from Fig. 1.2, and thereby again
much higher than the one suggested by the PV lines. That is, depending on which diagnostic is
used, the ‘observed’ mass-loss rate ofλ Cep can vary by more than an order of magnitude! This
inconsistency has been interpreted as a consequence of neglecting clumping when deriving these
rates4. We notice also that the modeled lineshapeof the Hα core is not well matched in Fig. 1.2 (the
observed absorption dip on the blue side of the line center ismissing); this as well is improved when
clumping is considered in the analysis (see Chapter 5).
Wind clumping has meanwhile been included in diagnostic tools by assuming statistically distributed
optically thin clumps and a void inter-clump medium, while keeping a smoothvelocity field (we
shall often refer to this prescription as the‘microclumping’ approach). This microclumping limit
for radiative transfer is discussed in detail in Chapter 3. Below we summarize some basicresults
arising from using this methodology. The first (and main) result is that mass-loss rates derived from

4 Actually, the stated Puls et al. rate is an upper limit of the mass-loss rate, derived by assuming a smooth wind only in the
outermost radio emitting region, whereas allowing for microclumping in the inner (Hα forming) wind regions.
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smooth models and diagnostics depending on the square of thedensity (such as Hα and IR/radio
emission) must be scaled down by the square root of the clumping factor fcl (the clumping factor
essentially describes the over-density of the clumps as compared to the mean density, see Chapter 3),
and secondly, the wind ionization balance becomes significantly modified because of the changed
recombination rates (e.g., Bouret et al. 2005). Another important effect of wind clumping, which
however is due only to the shock-heated wind andnot specifically connected to the microclumping
approximation, is the X-ray emission believed to originatein clump-clump collisions in the wind
(see the previous subsection), which can strongly influencethe metallic ionization/excitation balance
(Macfarlane et al., 1993; Pauldrach et al., 1994).

Note that,within the microclumping model, the UV resonance lines are not affected by the first point,
because they depend only linearly on density. That is, no direct down scaling of the mass-loss rates
derived from smooth models is necessary for these lines, when using the microclumping model (Chap-
ter 3). The major advantage with the microclumping model is that it allows for a relatively simple
implementation into diagnostic tools. Only one extra parameter is required,fcl, and one may simply
scale the opacities/emissivities in corresponding smoothmodels as described above (that is, opacities
are unaffected inρ-dependent processes and enhanced by a factor offcl in ρ2-dependent processes).
Nonetheless, both the occupation numbers and the radiativetransfer are affected by microclumping
(see above), so some effort is still required when modifyingalready existing diagnostic tools to prop-
erly account for it (e.g., Schmutz, 1995).

For diagnostics of WR stars, microclumping has been accounted for since the pioneering work by
Hillier (1991), and has led to a downward revision of empirical mass-loss rates from WR stars by
roughly a factor of three (reviewed in Crowther, 2007). On the other hand, for O stars clumping
started to attract considerable attention within the community only in the 21th century (although it
had been pointed out already by Abbott et al., 1981). Using newly developed line-blanketed model at-
mospheres, Repolust et al. (2004) presented an optical analysis of a large Galactic O-star sample. By
comparing the observationally inferred wind-momentum luminosity relation (WLR, see Chapter 2)
with theoretical predictions, discrepancies were found and wind clumping, which was not included in
the analysis, suggested as the origin of those. The authors argued that the derived mass-loss rates for
objects with Hα in emission (primarily supergiants) were over-estimated by factors of 2. . . 3. Such
reductions would agree well with those suggested for WR stars (see above). However, subsequent
analyses indicated even more drastic reductions. Perhaps most alarming in this respect, the so-called
’PV problem’, highlighted by the analysis of 40 Galactic O starsby Fullerton et al. (2006) (and il-
lustrated here in Fig. 1.2). These authors used the UV resonance lines of PV and derived values of
the mean ionization fraction times the mass-loss rate,〈q〉Ṁ, that were factors of (at least) 10. . .100
lower than correspondinġM values derived by smooth models and Hα /radio emission. Since NLTE
atmospheres that includemicroclumpingpredict PV to be the dominant ionization stage, i.e.〈q〉 ≈ 1,
for stars of mid O type, this would imply extremely low mass-loss rates. These results are confirmed
by us in Chapter 5, where we (for comparison reasons) use the microclumping approximation and
from a combined UV/optical analysis derive a mass-loss ratefor λ Cep that is approximately an order
of magnitude lower than what is predicted by theory. In addition, in order to simultaneously fit the
UV and optical diagnostics, we had to invoke extremely high clumping factors, at false with predic-
tions from RH models of the line-driven instability. Similar results for B stars have been found by
Prinja et al. (2005), where also more diagnostic UV resonance lines were considered, indicating that
the problem is not isolated to PV. It should be mentioned though, that these UV results rely heavily
on the ability of present-day unified model atmospheres to predict accurate ionization fractions in the
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Figure 1.3: Ionization fractions of NV (four times ionized nitrogen), for two wind models ofλ Cep,
calculated by the unified model atmosphere codeWM-Basic (not including wind clumping) (Pauldrach
et al., 2001), with and without X-rays.

wind. Recently, Waldron & Cassinelli (2010) suggested that〈q〉 for PV may be drastically reduced
due to the influence from X-rays andXUV /EUV radiation. But a similar investigation by Krtička &
Kubát (2009) indicated a negligible impact, so further investigations certainly are needed regarding
the influence of these hot radiation bands upon the formationof diagnostic UV lines (a first, tentative,
discussion on this is given by us in Chapter 5). Here we mention only that in some cases X-rays
definitely are vital to obtain reasonable ionization fractions, for example in the formation of the strong
observed UV NV lines, which are modeled much too weak when not considering X-rays, as illustrated
by the corresponding ionization fractions in Fig. 1.3.

Moreover, the basic result from X-ray line modeling for O stars is either that empirical mass-loss rates
are lower than previously thought or thatoptically thick clumpingis important for the line formation
(e.g., Feldmeier et al., 2003; Oskinova et al., 2004; Owocki& Cohen, 2006). However, some inconsis-
tencies exist in the quantitative results obtained from theX-ray line modeling performed by different
groups. Oskinova et al. (2006) used Monte-Carlo simulations and showed that the X-ray lines in the
O4 supergiantζ Pup could be reproduced when using the upper limit mass-lossrate of Puls et al.
(2006) (see footnote 4),only if optically thick clumping were properly accounted for. Whenthese ef-
fects were neglected, much more asymmetric synthetic line profiles than indicated by the observations
were obtained, and a substantial mass-loss reduction wouldbe necessary to obtain reasonable fits. On
the other hand, Cohen et al. (2010), from X-ray lines and without including effects of optically thick
clumping,deriveda mass-loss rate forζ Pup that was only marginally (∼ 20%) lower than the upper
limit of Puls et al. It was argued that this mass-loss rate, much higher than those indicated by earlier
X-ray analyses neglecting optically thick clumping, stemmed from a more careful consideration of
the atomic opacity in the wind, which for example accounted for the presumably sub-solar abundance
of the sum of the CNO elements inζ Pup. Also, Cohen et al. found a wavelength dependence in the
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observed X-ray line profile strengths, which they interpreted as an argument against optically thick
clumps, for (very) optically thick clumps would result in gray opacities (Chapter 3). Note that it
also previously had been argued by Owocki & Cohen (2006), that for significant effects of optically
thick clumping on the line profiles to occur, unrealistically large distances between clumps had to be
invoked. In contrast to this, Oskinova et al. (2006)did find significant effects also when invoking dis-
tances between the clumpsin accordancewith current RH simulations of the line-driven instability.
In conclusion, more investigations certainly are needed toclarify the role of optically thick clumping
in the formation of X-ray line profiles.
Naturally, the inconsistencies and large discrepancies among different studies outlined in this subsec-
tion drastically lowers the reliability of mass-loss ratesfor hot, massive stars currently in use, and an
explanation is urgently needed. Indeed, the ‘hot star community’ has started to question the validity
of the microclumping approximation for more diagnostics than the X-ray lines (Oskinova et al., 2007;
Owocki, 2008; Massa et al., 2008); May the failure of this approximation be the chief reason for the
apparent discrepancies, between different studies as wellas between observations and theory?
The development of radiative transfer methods that relax the microclumping approximation and prop-
erly account for clumpy wind structures with non-monotonicvelocity fields occupies the bulk of this
thesis work, together with the corresponding incorporation into diagnostic tools and interpretations of
observed stellar spectra (Chapters 3-5). Developing such new and improved diagnostic methods is im-
portant because, as discussed, mass-loss estimates based on smooth wind descriptions might actually
be quite erroneous.

1.4.4 Some implications of modified mass-loss rates due to wind clumping

Should mass-loss rates from hot, massive stars have to be further modified due to wind clumping,
it would have profound consequences for many astrophysicalapplications. Here we discuss a few of
those, with emphasis on the effects on massive star evolution. In the standard single evolution scenario
of very massive stars (Sect. 1.2), the hydrogen burning O star evolves into a LBV phase after which
it enters the hydrogen deficient WR stage, where it finally meets death5. All these phases experience
significant mass loss, however with quantitatively different rates. So when discussing mass loss in
this context, we must distinguish between the various stellar stages.
WR stars are observed with significantly lower masses than O stars. That is, if O-star mass-loss rates
are indeed lower than previously thought, very strong mass-loss rates would have to be invoked in
the LBV phase in order to preserve the ‘standard’ evolutionary scenario. Smith & Owocki (2006)
suggested that inefficient mass loss for O stars could be compensated for byeruptiveLBV phases, in
which the star sheds enormous amounts of mass in very short time scales. Indeed, it is an observational
fact that such eruptive phases exist; in the 19th Centuryη Carina lost more than 10 solar masses during
one to two decades (estimated from the surrounding Homunculus nebula, Smith et al., 2003). Another
possibility is of course that WR stars arenot the descendants of O stars; for example it has been
suggested that all WR stars are part of a close binary system (Kobulnicky & Fryer, 2007), but this
is strongly disfavored by the observed binary rate of WR stars in the MCs (Foellmi et al., 2003a,b),
which is only∼ 30−40%. So, let us for now assume that fierce mass loss during short outbursts of
LBVs is the more liable explanation.

5 As discussed in Sect. 1.2, the nature of the evolved stages depends on the initial stellar mass; in the evolution models of
Meynet & Maeder 2003 a star with initial mass 60M⊙ (an early O star) evolves into the LBV and WR phases, whereas a
star with initial mass 20M⊙ (a late O star) instead evolves into the red supergiant (RSG)phase, see Leitherer (2010).
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Now, the standard line-driven wind theory cannot drive a wind as the one indicated forη Carina by
the Homunculus nebula, with such an extreme mass loss and quite high terminal speed (Smith &
Owocki, 2006). A proposed driving mechanism for these eruptive phases is insteadcontinuum radia-
tive acceleration(from Thomson scattering) moderated by optically thick clumps in inhomogeneous
atmospheres (Owocki et al., 2004). In comparison with an inhomogeneous atmosphere consisting
of clumps optically thin for Thomson scattering, a clumpy but for this process optically thick atmo-
sphere leads to a decrease in the effective opacity of the medium (in the same manner as the proposed
reduction of X-ray line opacity, see Sect. 1.4.3), which in turn reduces the radiative acceleration.
The key to initializing a stellar wind under these conditions is that the reduced opacity inoptically
thick layersmakes it possible there for the star to formally exceed the Eddington luminosity, without
becoming gravitationally unbound. But as photons travel outward in the atmosphere, the medium
becomes less opaque and at some point clumps will inevitablybecome optically thin. Consequently
then, the opacity in these outer layers once again takes the corresponding homogeneous value (Thom-
son scattering depends only linearly on density, and so is unaffected by microclumping, Sect. 1.4.3).
Thus, if the star’s luminosity indeed exceeds the Eddingtonluminosity, gravity may then be overcome
and a very strong stellar wind initialized. It was shown by Owocki et al. (2004) that the mass loss from
such ‘super-Eddington’ atmospheres can be much higher thanthe mass loss from line-driven winds,
suggesting that continuum driving is a promising mechanismfor driving ‘super-winds’ during erup-
tive LBV phases. Moreover, the Thomson scattering that is the basic component of this driving force
shouldnot be metallicity dependent, which might open up for considerable mass loss also in the pri-
mordial Universe and perhaps even for the very First Stars (Smith & Owocki, 2006; van Marle et al.,
2008), which generally are believed to suffer no significantmass loss because of their lack of driving
metals (recall that the primary drivers of line-driven winds aremetalUV resonance lines). Actually,
strong mass loss has been suggested as a way to avoid that the presumably very massive First Stars
undergo Pair Instability Supernova (PISN) explosions (Ekström et al., 2008), whose distinct chemical
signatures never have been observed in the atmospheres of the 2nd generation low-mass, extremely
metal-poor halo stars that have survived until today (but see also Karlsson et al., 2008, who argued
that this absence might simply be due to selection effects inthe observational surveys aimed to find
these stars).
Obviously, to invoke extreme mass loss in short outbursts ofLBVs as a general (rather than deviant)
ingredient in the evolution of very massive stars, it must beobservationally established that these
eruptions actually occur regularly and are not unusual events (see discussion in Smith, 2008). Fur-
thermore, more quantitative predictions for mass-loss rates than those given in the studies discussed
above certainly are required.
Another example illustrating the importance of reliable quantitative mass-loss rates was provided
by Yoon et al. (2006). They demonstrated how the presumed decreasing mass loss with decreasing
metallicity created a threshold (Z <∼ 0.004) above which they predicted that no long-duration GRBs
should occur within the collapsar scenario (Woosley, 1993). In their calculations, the threshold came
about because at higher metallicities the strong mass loss effectively removed angular momentum,
which in turn made the stars spin down and thereby prevented creations of GRBs (recall that the
collapsar scenario requires a fast rotating stellar core toproduce a GRB, Sect. 1.2). However, it
was also pointed out how their results strongly depended on the adopted mass-loss prescriptions; an
increase in the predicted metallicity threshold would occur if the uncertain mass-loss rates of WR
stars were reduced, for example due to the effects of wind clumping.
Finally, in yet another context Voss et al. (2010) performedpopulation synthesis of massive stars in
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Orion, and argued that the kinematic and radioactive properties of this region would be very hard to
reproduce if theintegratedmass loss in current stellar models were drastically reduced due to wind
clumping.

1.5 Spectroscopic analyses of stars using model atmospheres

In the previous sections we have quite extensively discussed variousresultsof studies aiming to obtain
reliableobservedvalues of, e.g., mass-loss rates of hot, massive stars. We now turn to take a closer
look on (some of) the methods used to actually extract this type of information from the observations.
In particular, we discussquantitative spectroscopyof stellar atmospheres, which is the method that
most of the aforementioned results rely on.
The standard procedure when comparing theoretical predictions with observed stellar and wind prop-
erties, such as effective temperatures, mass-loss rates, or chemical abundances, is to derive the proper-
ties by fitting calculated synthetic spectra to observed ones (=quantitative spectroscopy). Customary
then is to usemodel atmospherestogether with suitable spectrum synthesis codes. Thus, thevalidity
of ‘observed’ stellar and wind properties relies heavily onthe authenticity of these codes. And as
we shall see, a substantial modeling effort is required for the non-trivial task of constructing reliable
model atmospheres and synthetic spectra.

1.5.1 Model atmospheres and spectrum synthesis

The classical model atmosphere is computed on the assumptions of flux conservation, hydrostatic
equilibrium, a one-dimensional (1D) plane-parallel stratification, and Local Thermodynamic Equilib-
rium (LTE) (cf. Mihalas, 1978). Also, quite often one in the computations considers only thestellar
photosphere, which essentially is the atmospheric regions from which the (main part of the) star’s
optical light emerges.
However, depending on the stellar type, as well as on the objective of the particular analysis, some
of these standard assumptions may need to be relaxed. For example, when analyzing the extended
atmospheres of giants and supergiants, the spherical extension of the star must be accounted for (by
dropping the plane-parallel assumption), and for at least supergiants of types A and earlier thestellar
wind significantly influences most of the strategic spectral lines, and should therefore be considered
in the analysis (which obviously means that the hydrostaticassumption must be dropped). Moreover,
the intense radiation field and the low densities in the atmospheres of early-type (hot) stars make
the assumption of LTE dubious for these objects. Actually, the question whether LTE is a good
approximation is a fundamental one in stellar atmosphere work; accordingly we discuss it in a little
more detail.

1.5.2 Spectral line formation and the assumption of LTE

In thermodynamic equilibrium (TE), the distribution of atoms and ions over all possible micro-states
is described by merely two thermodynamic state variables, say temperature and pressure, via the tra-
ditional equilibrium relations of statistical mechanics (the Saha and Boltzmann relations). Moreover,
particle velocities are given by the Maxwellian distribution and the relation between thermal emission
and absorption of radiation obeys Kirchhoff’s law, or in this case the Kirchhoff-Planck relation,
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Figure 1.4:Left: Schematic of the line scattering process. A photon of energyγ1 is first absorbed and
then re-emitted with the same energy.Right: Sketch of a photon’s scattering path between radiir1 and
r2 through an atmosphere, before its escape into free space.

jν = χνBν(T), (1.1)

with extinction coefficientχ , emission coefficientj, andBν(T) the Planck function for frequency
ν at temperatureT. Strictly speaking, the Kirchhoff-Planck relation and theSaha-Boltzmann and
Maxwellian distributions only apply under TE conditions with a (spatially) constant temperatureT.
Assuming LTE essentially means assuming that these relations still hold locally at every point in
the gas, despite that temperature as well as pressure gradients may exist. To establish LTE, several
requirements should be satisfied. A discussion is given below, but surely the topic is way too complex
to be thoroughly covered here. For more details we refer the reader to Mihalas (1978).

Particle velocities. A Maxwellian velocity distribution is securedif processes that only redistribute
the ‘available’ energy among particles occur more frequently than processes that actually remove, or
add, energy from, or to, the particles in the thermal pool.Elastic collisionsis the important process
of the first type, i.e. these collisions are the ones that simply shuffle the particles around and lead to
equilibrium. Two examples of the second type (perturbing processes that disturb the establishment
of an equilibrium, here taking the example of free electrons) are i) recombinations, because when a
free electron recombines this obviously hinders it from undergoing further elastic collisions, and ii)
collisional excitations followed by radiative de-excitations, because then some of the electron’s kinetic
energy is transferred to the radiation field (in the form of anemitted photon), which creates a local
sink in the electron velocities, deviating from the Maxwellian distribution. However, Mihalas (1978)
concludes that under representative stellar atmosphere conditions6, such as those considered in this
thesis, anenormousnumber of elastic collisions occur per perturbing process,for electrons as well
as for atoms and ions. Essentially this means that this aspect of the LTE assumption may safely be
assumed, and that all particles are indeed ‘Maxwellian’, characterized by asingleand unique kinetic
gas temperatureT. Actually, already this is a quite powerful assumption, forit means that we may

6 which here do not include the conditions in for example the solar corona or supernovae.
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use this absoluteT (usually taken to be the electron temperature) in the calculations of the level
populations forall atoms and ions in all atomic states, as well as in the calculations of the thermal
emissions (see below).

Level population numbers and the Kirchoff-Planck relation. As described, collisions determine
the velocitieswithin the atmosphere, and are in equilibrium. Concerning the atomiclevel popula-
tions, however, the situation is different, because here both collisions and theradiation fieldmay be
important in determining the distribution over the atomic states. And, in contrast to the collisions,
the radiation field only takes its equilibrium value (the Planck function) in very deep atmospheric
layers, because the outer layers of a stellar atmosphere arerapidly leaking photons (as we know be-
cause we can observe it) and are therefore highly anisotropic and dilute and very different from the
classical ‘hohlraum’ picture of a perfect black body. In principle, when radiative processes are im-
portant, one might expect LTE to be a reasonable assumption for the level populationsif photons are
thermalized by some collisional process before they have traveled long enough that the gas has signif-
icantly changed its thermodynamic properties. In other words, for this aspect of LTE to be valid the
atmosphere should not be subject to large temperature/pressure gradients over a photon’s mean free
path.

Under the LTE assumption one may still calculate from the Saha-Boltzmann relations (assuming, of
course, that the atmospheric temperature and pressure structures are known, as well as the chemi-
cal composition of the gas) the number densityni of excitation statei, of all chemical species and
all ionization states that are present in the atmosphere. The extinction coefficient is essentially this
number density times the atomic cross-section, so if we knowthe latter (from for example quantum
mechanical calculations or laboratory experiments), we can obtain a complete picture of extinction
coefficients. Then we may use Eq. 1.1 to obtain the corresponding emission coefficients, after which
the equations of radiative transfer

dIν
ds

=−χν Iν + jν ⇔ dIν
χνds

=−Iν +Sν (1.2)

can be solved for the specific intensityIν at any given frequencyν . The second expression introduces
the so-called source function,Sν ≡ jν/χν , which for this case isequal to the Planck function(Eq. 1.1).
Naturally, the calculated radiation field (Iν ) is allowed to depart from its equilibrium value (see above).

However, quite often the LTE assumption is interpreted in a less strict manner than just done, by
accounting also forscatteringterms in the total continuum extinction. A scattering process depends
upon the radiation field itself, and the Planck function in Eq. 1.1 must therefore, for these processes,
be replaced with the actual calculated mean intensity. Thatis, jsν/χs

ν = Jν , whereJν is the mean
intensity, obtained by angle averaging the specific intensity Iν , and a superscripts has been added to
the scattering terms to separate them from the thermal ones.Examples of scattering processes are
Thomson (electron) scattering, which always is an important opacity contributor in the atmospheres
of hot stars, and Rayleigh scattering, which can be important in the atmospheres of cool stars. A
standard way of modifying the source function to account forscattering is to write the total extinction
and emission coefficients as linear combinations consisting of a true absorptioncomponent (below
denoted with superscript a) and ascatteringcomponent,
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Sν =
j tot
ν

χ tot
ν

=
jaν + jsν

χa
ν + χs

ν
= ενBν(T)+ (1− εν)Jν , (1.3)

whereεν = χa
ν/χ tot

ν is the fraction of true absorptions7. Clearly, this ‘LTE interpretation’ is less
strict, because it allows for scattering components and consequently for deviations from the Kirchhoff-
Planck relation. The level populations are still calculated from the Saha-Boltzmann relations though,
which is why we still call it a LTE approach. Actually, we notice that this method, although very
useful, may be said to be internally inconsistent; scattering can transport photons over large distances,
in violation with the discussed requirements for LTE, but, nevertheless, feedback effects from the
scattering terms upon the level population numbers are simply ignored. On the other hand, entirely
neglecting scattering in LTE calculations is not very fruitful either, since we know that these terms
are there and (sometimes) do play an important role for the resulting radiation field. This is a first
indication that the LTE assumption for quantitative analyses of stellar atmospheres is somewhat am-
biguous, and it also suggests that one should always strive to check the validity of LTE for a given
situation with more rigorous so-called non-LTE calculations (see below and next subsection). In any
case, however, a source function such as in Eq. 1.3 is, for example, implemented in the widely used
LTE MARCS stellar atmosphere code designed for analyses of late-typestars (Gustafsson et al., 2008).

Spectral line formation. In LTE, the effects of scattering forline absorptionare not considered
(compare to the continuum case just discussed). Therefore,a spectral absorption line in LTE is formed
only by truebound-bound absorptions, in which an atomic excitation always is followed by a collision
that transfers the energy of the absorbed photon to the ‘thermal pool’, andthermalemissions, which
obey Eq. 1.1. In terms of Eq. 1.3, this means that the true absorption component for frequencies at
which one (or more) spectral line is present is modified according toχa

ν = χa,c
ν +χa,l

ν , with superscripts
c and l denoting continuum and line, respectively. Naturally, thesame modification is made for the
thermal emission component.
As described in the previous paragraph, LTE generally is valid when interactions between matter and
radiation are dominated bycollisions, and therefore it normally prevails in the deep layers of stellar
atmospheres, where densities are high. However, as we reachthe outer and observable layers of the
star, (line) photons may travel large distances before being thermalized, and thereby other processes
than those just stated, perhaps other radiative such, may become important in the formation of a
spectral line.
For example, an excitation from atomic leveli to j may now be followed by a radiative spontaneous
(or stimulated) de-excitation from levelj to i, so that no energy is transferred to the thermal pool
and a new photon is emitted, which essentially has the same properties as the old one (Fig. 1.4, left
panel). Thus, one may regard it as if the old photon ‘survives’ its absorption. When this type of
process occurs repeatedly, a single photon8 may carry with it information over large distances in the
atmosphere (Fig. 1.4, right panel). This information now reflects the conditions in the part of the
atmosphere at which the photon was originally emitted, conditions that may be quite different from
those at the physical location at which the photon experiences its final interaction with the gas (a final

7 The inclusion of scattering is the reason why we chose to callχ the extinctioncoefficient instead of theabsorption
coefficient, which sometimes is done.

8 of course this is not really thesamephoton. But it simplifies to take that point of view, also for practical purposes, see the
Monte-Carlo simulations in Chapter 4.
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interaction which may be a collisional thermalization or anemission into free space). We call this
type of processline scattering(in analogy with the continuum scattering introduced in theprevious
paragraph), and it is extensively studied in Chapters 4 & 5, for the case of resonance line formation
in inhomogeneous hot star winds. Clearly, line scattering is a highly ‘non-local’ process, distinctly
different from processes maintaining the LTE assumption.
Another important process is when a de-excitation occurs toanother atomic level than to the one from
which the first absorption came about. As an example, imaginea photon ripping an atom of its out-
ermost electron (i.e., photoionizing it). Eventually the atom will capture another free electron and
recombine. When doing so, the captured electron may connectto an atomic state with higher excita-
tion potential than the state from which the photoionization occurred. The electron may then start to
(collisionally or radiatively) de-excite toward lower states, and in every radiative step of this cascade,
a new photon with a wavelength corresponding to that particular line transition will be emitted. Now,
these emitted photons may have quite different wavelengthsthan the photon had that gave rise to the
ionization. Thus, here we in the line formation have a coupling both among differentatomic states
and among differentspectral regions. These types of cascading processes are important for, e.g., the
formation of hydrogen lines in early-type stars and infra-red emission lines in late-type stars, both of
which are studied in this thesis (Chapters 2, 5, & 6).

The equations of statistical equilibrium. The qualitative notions above suggest that in rather many
situations one may wish to replace the LTE assumption by moregeneral non-LTE (NLTE) calcula-
tions. Although NLTE is a general (and often quite loosely defined) term for whenever the conditions
for LTE are not satisfied, in stellar atmosphere work one almost always equates NLTE with assuming
statistical equilibriumwhen calculating the level population numbers (and so we shall do throughout
this thesis as well).
More generally, however, we may write a conservation equation for quantities such as mass, momen-
tum, or particles, as

∂
∂ t

(density o f quantity)+div( f lux o f quantity) = sources−sinks. (1.4)

The first term on the left hand side in this equation describesthe time variation of the investigated
quantity within a unit volume and the second one describes the transfer of this quantity across the
unit volume due to macroscopic motions. The right hand side represents any ‘creations’ and/or ‘de-
structions’ of the quantity that may occur, per unit time. Toget the customary statistical equilibrium
equations from applying Eq. 1.4 to the level population of any statei, ni , we will assumesteady state
(∂ni/∂ t = 0), and also that changes ofni in a given unit volume due to macroscopic motions are
much slower than the atomic transition time scales (i.e., weneglect the divergence term in Eq. 1.4).
Both these assumptions may be regarded as safe under typicalstellar atmosphere conditions9, due to
the very brief transition timescales. We thus arrive at the equations of statistical equilibrium (SE),
sometimes also called the NLTE rate equations, which are

0= njΣj 6=i(Rji +Cji )−niΣj 6=i(Rij +Cij ), (1.5)

and essentially state that the processes that populate any atomic leveli are exactly balanced by those
that depopulate leveli. C andRare the collision and radiative rates, per unit time, respectively.

9 here excluding, e.g., Supernova remnants.
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As outlined in the previous paragraphs, radiative rates maybe highly ‘non-local’ in nature, whereas
the collision rates depend only on local quantities, so the rule of thumb is that more collisions tend to
drive the line formation closer to the LTE case (there are, however, subtle exceptions to this rule, one
of which is studied in Chapter 6). This explains why, generally, early-type stars with low densities
(less collisions) and strong radiation fields (higher radiative rates) are very prone to NLTE effects.
The SE equations are solved numerically for most practical purposes. Various techniques for this
have been developed over the past decades, of which the classof Accelerated Lambda Iteration (ALI)
methods are the most popular ones in stellar atmosphere worknowadays. ALI methods are operator
splitting methods for which one avoids a full matrix inversion of the so-called ‘Λ -operator’, used
to obtain the source function, by introducing an (cleverly chosen)approximateoperator, which is
inverted instead. ALI has been used by stellar atmosphere modelers for a few decades now (e.g.,
Cannon, 1973; Scharmer, 1981), but the basic mathematical method is very similar to the well-known
Jacobi method for solving systems of linear equations, and is, thus, much older. For details on ALI
methods, see for example Rybicki & Hummer (1991).
The main problem in solving the SE equations lies in the dependence ofR upon the radiation field
itself. That is, the occupation numbers depend on the radiation field, which in turn depends on the
occupation numbers. Therefore these equations and the equations of radiative transfer (Eq. 1.2) must
be solvedsimultaneously, in principle for all atomic species as well as for all frequencies across the
spectrum. Obviously this is an immense problem; we now realize why the LTE assumption sometimes
appears so attractive, for it avoids all problems arising with the aforementioned couplings by simply
saying that the level populations may be calculated considering only local thermodynamic conditions.
NLTE also introduces the concept ofmodel atoms, because of the coupling among, in principle, all
states of all atoms that are present in the atmosphere. Much work has been devoted to constructing
reliable model atoms for various types of stellar atmosphere applications. It is a delicate problem,
mostly because large amounts of atomic data (oscillator strengths, ionization cross-sections, collision
cross-sections, etc.) are needed to compute the radiative and collision rates in Eq. 1.5, and it is seldom
cleara priori what levels are actually important for the formation of the spectral lines of interest, i.e.,
what levels must be included in a given model atom. This problem will be clearly demonstrated in
Chapter 6, in a NLTE analysis of infra-red Mg I lines. Moreover, theaccuracyof the input atomic
data is not always convincing. The collision cross-sections are especially problematic in this respect,
because few reliable quantum mechanical calculations or laboratory experiments exist for those. Quite
often one must rely on various semi-classical and/or semi-empirical recipes, which essentially only
provide order of magnitude estimates, at the best (see Chapter 6).

1.5.3 Comparisons of atmospheric codes - photospheric models

From the previous subsection it should be clear that atmospheric and spectrum synthesis codes may
be designed quite differently depending on what stellar domains and what applications are the main
targets. Here we discuss some major codes currently in use, and their various domains of application.
First, however, let us point out that not only have the standard assumptions stated in the beginning
of the previous subsection started to become more and more relaxed in stellar atmosphere work, but
also have the modeling techniqueswithin given assumptions become ever more refined. Perhaps
most important in this respect is that over the past decades it has become standard to consider line-
blocking/blanketing effects from up to millions of spectral lines when computing the atmospheric
structure and the emergent synthetic spectra (e.g., Gustafsson et al., 1975; Hubeny & Lanz, 1995).
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Gustafsson et al. (2008) compared different LTE codes of late-type stars, and found excellent agree-
ment between their ownMARCS models and, e.g., the Kurucz models (Kurucz, 1979; Castelli& Ku-
rucz, 2004). However, no comparisons to NLTE atmospheres were made in that study; constructions
of NLTE atmospheres of late-type stars are problematic because of the wealth of atomic and molecular
species that affects the radiation field. Often there is a lack of corresponding atomic and molecular
data, and especially cross-sections for collisions with neutral hydrogen are very uncertain (cf. As-
plund, 2005, and references therein). Nevertheless, some efforts to compute NLTE atmospheres of
late-type stars have been made, in particular by thePHOENIX team (e.g., Hauschildt & Baron, 2005),
but general results regarding the importance of NLTE feedback effects on the atmospheric structure
are still largely missing in this domain. For example, the effects from major opacity contributors such
as the negative hydrogen atom and/or iron-group elements are still open questions, and might turn out
to be important. In any case, the treatment of convection is considered more problematic for late-type
stars than LTE versus NLTE (at least regarding the atmospheric structure, although perhaps not for
spectral line formation, see below). Pioneered by Nordlundand collaborators, much work has been
devoted to construct realistic 3D, time-dependent, radiation-hydrodynamic surface convection simu-
lations (e.g., Stein & Nordlund, 1998), and it has been shownthat the temperature structures in these
models, as well as the mean synthetic line profiles calculated from these models, can be significantly
different from those resulting from classical 1D atmospheres (which normally treat convection by the
mixing-length theory). A notable example in this context is, of course, the revision of the photospheric
solar chemical abundances that emerged with the advent of line synthesis based on these models (even
though these revisions also partly are due to other observational as well as modeling improvements,
for example in atomic data) (see the review by Asplund et al.,2009). Another example that may be
worth mentioning here is the differences between classical1D and hydrodynamical 3D model atmo-
spheres of low metallicity stars, which can be profound (Collet et al., 2007) and might turn out to be
important for the many observational attempts to constraint surface abundance properties of the very
old metal-poor stars that are used as tracers of conditions in the very early Universe.
Hotter stars10 are not believed to have these strong convective zones in their photospheres. How-
ever, recently there has been been increasing interest regarding sub-surface convection (just below the
photosphere), due primarily to an iron-peak in opacity (Iglesias et al., 1992). Cantiello et al. (2009)
propose that gravity and/or acoustic waves emitted in theseweak convection zones may travel through
the radiative layer and induce surface fluctuations in density and velocity, with clumping at the base
of the wind and ‘microturbulence’ in the photosphere (in analogy with cool stars) as consequences.
Both clumping and microturbulence are indeed observed in hot stars with winds, so it is important
that careful more-D hydrodynamic simulations of these layers be carried out in the future, to confirm
or refute the above suggestions.
In any case, the focus for stellar atmosphere modelers in this domain has generally not been on re-
laxing the 1D assumption but instead on developing realistic NLTE model atmospheres (e.g., Auer
& Mihalas, 1972; Hubeny & Lanz, 1995). Nieva & Przybilla (2007) compared results for dwarfs
of B and late O types calculated from full NLTE model photospheres with those obtained using a
so-called hybrid NLTE approach. In the hybrid approach the photospheric structure is calculated in
LTE, whereas the level populations and synthetic spectra ofthe element(s) under consideration are

10It may be interesting (and perhaps a little amusing?) to notehere that stellar atmosphere workers traditionally appear
to have been divided into, sometimes quite sharp, ‘hot’ and ‘cool’ groups, whereas the natural division regarding stellar
evolution appears to be ‘massive’ and ‘low-mass’ stars. Maythe RSGs perhaps work as a bridge bringing these various
groups somewhat closer together? (See, e.g., a few contributions in Bresolin et al. 2008.)
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calculated in NLTE. For late-type stars, this technique is also called the restricted NLTE problem for
trace elements (since if the considered element is a major contributor to the total opacity one could not
validate neglecting the impact upon the atmospheric structure), and is very often used in abundance
analyses. (For some recent critique on the general applicability of this method, see Kubat 2010.) Also
in this thesis is the trace elements method used (Chapter 6),to model and analyze the photospheric IR
Mg I lines in the Sun as well as in K giants, using the above mentionedMARCS models together with
the NLTE codeMULTI (Carlsson, 1986, 1992). Accordingly, we now introduce somebasic features
of NLTE line formation of IR lines in general and the Mg I linesin particular. (We shall return to our
discussion on different atmospheric codes shortly.)

1.5.4 NLTE line formation in the infra red

The formation of the prominent solar 12µm Mg I emission lines had been subject to many controver-
sies before it was realized that the emission originated in the photosphere and simply stemmed from
NLTE effects (rather than from, e.g., the temperature inversion in the chromosphere) (Chang et al.,
1991; Carlsson et al., 1992). Solar emission lines from other chemical neutrals have also been identi-
fied in this spectral region (Brault & Noyes, 1983; Chang & Noyes, 1983), of which at least the Al I
lines are confirmed by detailed photospheric NLTE modeling to share the Mg I formation scenario
(Baumueller & Gehren, 1996). (It is however believed that all these lines are of photospheric origin
and formed similarly, see Rutten & Carlsson 1994.)
The essential point why the formation of IR lines is particularly sensitive to departures from LTE lies
in the behaviour of theline source function,Sl

ν ≡ j lν/χ l
ν , where superscriptl as before denotes line.

The NLTE line source function is (cf. Mihalas, 1978)

Sl
ν =

2hν3

c2

1
bl
bu

ehν/kT −1
, (1.6)

wherebi = ni/n∗i are the NLTEdeparture coefficients, with n∗i the LTE number density with respect
to the ground level of the next ionization state (see Appendix A for a definition). l andu denote the
lower and upper levels of the transition, respectively. Note that forbi = 1, Sl

ν = Bν , as it should11.
Now, in the limit thatδ = hν/kT < 1 (Rayleigh-Jeans limit), and writingbl/bu = 1+β , we get for
the ratio of the NLTE and LTE line source functions (cf. Mihalas, 1978, Sect. 12.4)

Sl
ν

Bν
=

ehν/kT −1
bl
bu

ehν/kT −1
≈ δ

bl
bu
(δ +1)−1

≈ 1
1+β/δ

, (1.7)

which directly shows how for agivendepartureβ the NLTE effects amplify withδ−1. The physical
reason for this is the increasing importance of stimulated emission at longer wavelengths. Actually,
Sl

ν becomesnegativewhenbu/bl > 1+δ (see the middle expression), i.e., we then enter thelasering
regimefor which light amplification instead of extinction occurs along the beam (because the total
contribution from spontaneous and stimulated emissions dominate the absorption). The solar Mg I
lines haveδ ≈ 0.23 (for T = 5000K) but do not ‘laser’ in this sense (bu/bl < 1.23 in line forming
layers). Nevertheless, the overpopulation of the upper level as compared to the lower one is still

11Actually, the LTE line source function may be recovered alsowhen population numbers departure from LTE, ifbl = bu.
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large enough to make the lines appear inemissionrather than in absorption, which a photospheric line
formed in LTE always must do. Moreover, let us point out that these IR amplifications of NLTE effects
may be even more pronounced in hot stars, because of their higher temperatures (see expression for
δ ). We in the addendum to Chapter 2 discuss this in connection with the formation of hydrogen Brα
in O stars (which for a characteristicT = 35000K hasδ ≈ 0.1), and whether this increased sensitivity
to the predicted departure coefficients might complicate the potential use of this line as a mass-loss
indicator.
The potential use of the Mg I lines as probes of upper photospheric magnetic fields in cool stars was
recognized early, and the prominent splitting of the lines seen in the active Sun has been thoroughly
analyzed (e.g., Bruls et al., 1995). In general, Zeeman linesplitting from an external magnetic field
increases with the square of the wavelength, whereas the competing Doppler broadening only has a
linear dependence. That is, the further out in the IR, the greater the sensitivity to magnetic fields.
However,stellar applications of these emission lines have so far been limited. The Mg I lines have
been observed in very few stars, due to the low stellar flux in the IR and the lack of suitable spectrom-
eters, and modeling attempts had previously been carried out only for two dwarfs (including the Sun)
(e.g., Carlsson et al., 1992; Zhao et al., 1998; Ryde et al., 2004) and two cool giants (Uitenbroek &
Noyes, 1996), with very unsatisfactory results for the latter.
In Chapter 6, we present new observations of IR emission lines at 12 and 18µm in giants of K type,
for the first time identifying stellar (i.e. non-solar) Mg I emission lines at 18µm, as well as Al I,
Si I, and Ca I lines at 12µm. We show by a detailed magnesium NLTE modeling that the sameline
formation mechanism as for the solar case is at work there. Wealso point out why previous modeling
attempts have been unsuccessful. Especially, we investigate the great sensitivity on the formation
of these lines to the inputatomic dataof the model atom, and thereby emphasize how the lines, in
addition to magnetic field studies, may be utilized as important consistency checks for model atoms
used in futuremulti-wavelengthabundance studies.

1.5.5 Comparisons of atmospheric codes - unified models

We now leave our little excursion to the infra-red, and turn once more to our ongoing discussion of
different atmospheric codes. In their investigation (see Sect. 1.5.3), Nieva & Przybilla (2007) found
that results from the full NLTE codeTLUSTY (Hubeny & Lanz, 1995) agreed well with their hybrid
results usingATLAS9 (the Kurucz models) for the atmospheric structure and an updated version of
DETAIL /SURFACE (Butler & Giddings, 1985) for the NLTE calculations. In general, a good agree-
ment was also found when comparing to observations, howeverfor the O starτ Sco the simulated
cores of Hα and He II 4686Å were too deep, because of the neglect of thestellar wind. This leads
us to the so-calledunified NLTE atmospheres, which simultaneously treat the photosphere and the
stellar wind. The development of these types of models was pioneered by the Munich group (e.g.,
Gabler et al., 1989), and has meanwhile become the standard tool when analyzing the atmospheres
of hot stars with significant wind strengths. Puls (2009) suggests that unified atmospheres should be
used if the mass-loss rate is higher thanṀ ≈ 6× 10−8M⊙yr−1(R⋆/10R⊙)(v∞/1000kms−1), which
approximately corresponds to all O stars except for late dwarfs, early B stars of luminosity classes
higher than II, and late B and A stars of classes higher than Ib. Note that, within this stellar domain,
a simple check to see whether a unified approach is necessary is provided by the observed strength
of the Hα line core, as mentioned above. But let us also point out that the unified codeFASTWIND

(described below) may be reliably used also for purephotosphericanalyses of hot stars with negligi-
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ble wind strengths, as recently demonstrated by Simón-Dı́az (2010), who derived stellar parameters
and chemical abundances for main-sequence B stars in Orion.In addition to ‘normal’ OBA-stars, the
unified models may also be used to analyze WR stars, LBVs, and even Central Stars of Planetary
Nebulae (CSPN) (see Pauldrach et al., 2004, for an example ofthe last).
Naturally, calculating realistic unified NLTE model atmospheres is a tremendous challenge. Mainly
four different codes12, all developed with specific objectives and all with different advantages and dis-
advantages, are presently in use; the two codes developed bythe Munich hot-star group,FASTWIND

(Puls et al., 2005) andWM-Basic (Pauldrach et al., 2001), andCMFGEN (Hillier & Miller, 1998) and
POWR (W.-R. Hamann and collaborators, see Gräfener et al., 2002). Since bothCMFGEN andPOWR

originally were designed for analyses of the very dense winds of WR stars, the photospheric den-
sity stratification is only approximate in these codes (assuming constant photospheric scale height).
In analyses, this shortage is often circumvented by coupling CMFGEN with the plane-parallel, hy-
drostatic codeTLUSTY. CMFGEN, POWR, andFASTWIND all use a pre-described mass-loss rate and
velocity field for the wind structure, whereas inWM-Basic the model atmosphere is calculated by ac-
tually solving the (stationary) hydrodynamic equations reaching deep into the photosphere. However,
WM-Basic was designed mainly for giving accurate predictionsof the wind dominated (E)UV fluxes
and line profiles, and the photospheric treatment in this code is therefore only approximate, making its
current version ill-suited for spectral analyses in, e.g.,the optical (however a code-update including
a more appropriate photospheric treatment is underway). Extensive comparisons between the differ-
ent codes have been carried out by our Munich group, mainly betweenFASTWIND, WM-Basic, and
CMFGEN, with generally satisfying results.
The model atmosphere code used for the main part (with the exception of Chapter 6) of the quantitative
spectroscopy performed here isFASTWIND. FASTWIND was designed for optical and IR spectroscopy
of ‘normal’ OBA-stars of all luminosity classes and wind strengths. Because of the targeted wave-
length ranges, no treatment of X rays has yet been included inFASTWIND (but we intend to do this
shortly, see Chapter 7). A major advantage of this code is itscomputational speed; a typical computa-
tion time for one model is only 30 minutes, whereas a corresponding calculation takes a few hours for
WM-Basic and 10-12 hours forCMFGEN. This remarkable gain in computational speed is achieved by
applying appropriate physical approximations to processes where very high accuracy is not needed,
in particular an efficient treatment of the metal-line background opacities has been developed (for
details, see Puls et al., 2005). The parameter space to be considered within one spectroscopic analysis
using FASTWIND is large. A simultaneous derivation must be carried out for effective temperature
Teff, gravity logg, stellar radiusR∗, mass-loss ratėM, terminal wind velocityv∞, velocity field pa-
rameter13 β , individual abundances (including the helium abundanceYHe), and the global background
metallicity z. Standard procedures to derive these stellar and wind parameters from observed optical
spectra are described in, e.g., Repolust et al. (2004).
As discussed in Sect. 1.4.3,wind clumpingmost probably is crucial for a correct interpretation of
stellar spectra from hot, massive stars. Clumping is currently included inFASTWIND, as well as in
CMFGEN andPOWR, by means of the microclumping approach. No treatment of clumping is currently
included inWM-Basic (but also this is work underway). In Chapters 4 and 5 wedevelop detailed radia-
tive transfer techniques that relax this questionable assumption, and use them to show that deviations

12We thereby disregard the earlier mentionedPHOENIXcode, since this is mainly used to analyze cool stars and supernovae,
although a few hotter stars have been considered, e.g., the Asupergiant Deneb (Aufdenberg et al., 2002).

13The stationary velocity structure of these winds is usuallydescribed byv(r) ≈ v∞(1−R⋆/r)β , as predicted by the line-
driven wind theory.
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from the microclumping approximation can be important for several spectral diagnostics of hot star
winds. Accordingly the derived mass-loss rates are affected as well. Thus, as a consequence of these
results, it has become desirable to incorporate a better description of wind clumping in the unified
atmospheric codes, which indeed is a planned project withinour group (see Chapter 7).



Chapter 2

Mass loss from OB-stars

This chapter is a copy of Puls, Sundqvist, Najarro, & Hanson (2009), ‘Mass loss from OB-stars’. At
the end of the Chapter is added an addendum, which updates some of the material as well as discusses
it in connection to the other chapters.

2.1 Abstract

We review recent developments regarding radiation driven mass loss from OB-stars. We first sum-
marize the fundamental theoretical predictions, and then compare these to observational results (in-
cluding the VLT-FLAMES survey of massive stars). Especially we focus on the mass loss-metallicity
dependence and on the so-called bi-stability jump.
Subsequently we concentrate on two urgent problems, weak winds and wind clumping, that have been
identified from various diagnostics and that challenge our present understanding of radiation driven
winds. We discuss the problems of ‘measuring’ mass-loss rates from weak winds and the potential
of the near infrared, Br-alpha line as a tool to enable a more precise quantification, and comment on
physical explanations for mass-loss rates that are much lower than predicted by the standard model.
Wind clumping, conventionally interpreted as the consequence of a strong instability inherent to ra-
diative line-driving, has severe implications for the interpretation of observational diagnostics, since
derived mass-loss rates are usually overestimated when clumping is present but ignored in the anal-
yses. Simplified techniques to account for clumping indicate overestimates by factors of 2 to 10, or
even more. If actually true, these results would have a dramatic impact on the evolution of, and the
feedback from, massive stars. We discuss ongoing attempts (including own work) to interpret the cor-
responding observations in terms of more sophisticated models. By allowing for porosity in density
and velocity space, and for a non-void inter-clump medium, such models might require only moderate
reductions of mass-loss rates.

2.2 Introduction

Massive stars are critical agents in galactic evolution, both in the present and in the early Universe
(e.g., re-ionization and first enrichment).Mass lossis a key process, which modifies chemical profiles,
surface abundances, and luminosities. Furthermore,mass losshas to be understoodquantitativelyin
order to describe and predict massive star evolution in a correct way. The standard theory to describe
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hot, massive star winds is based on radiative line-driving,and has been proven to work successfully
in most evolutionary phases (OB-stars, A-supergiants, andLBVs in their ‘quiet’ phase). Also for the
pivotal Wolf-Rayet (WR) stadium, line-driving is still themost promising acceleration mechanism
(Gräfener & Hamann, 2005, 2008).
In this review, we summarize fundamental predictions of thetheory, as well as corresponding obser-
vational evidence, and subsequently concentrate on two urgent problems that challenge our under-
standing of line-driven winds, the so-called weak-wind problem and wind clumping. We concentrate
on the winds from ‘normal’ OB-stars in all evolutionary phases (for corresponding results and prob-
lems regarding WR-winds and additional material, see the contributions by Hamann and Hillier, this
volume).

2.3 Line-driven winds from hot stars – theoretical predictions

To be efficient, radiative line-driving requires a large number of photons, i.e., a high luminosityL.
SinceL ∝ Teff

4R2
∗, not only OB-supergiants, but also hot dwarfs and A-supergiants undergo signif-

icant mass loss via this mechanism. Typical mass-loss ratesare of the order ofṀ ≈ 0.1 . . . 10
×10−6 M⊙yr−1, with terminal velocitiesv∞ ≈ 200 . . . 3,000 kms−1. Another prerequisite is the
presence of a multitude of spectral lines, with high interaction probabilities, close to flux maximum,
implying that the strength of line-driven winds should strongly depend on metallicity.
Pioneering work on this subject were performed by Lucy & Solomon (1970) and Castor et al. (1975)
(‘CAK’), where the latter still builds the theoretical foundation of our present understanding. Im-
provements with respect to aquantitativedescription and first applications were provided by Friend
& Abbott (1986) and Pauldrach et al. (1986), whereas recent reviews on the topic have been published
by Kudritzki & Puls (2000) and Puls et al. (2008b).

The principle idea of radiative line-drivingrelies on two processes.
1. Momentum is transferred to the wind matter via line absorption/emission processes, mostly reso-
nance scattering, with a net change inradial momentum

∆Pradial=
h
c
(νin cosθin −νoutcosθout) (2.1)

whereνin andνout are the frequencies of the absorbed and emitted photons, andθ is the angle between
the photon’s direction and the radial unit vector. Thanks tothe fore-aft symmetry of the emission pro-
cess, on average〈cosθout〉= 0, whereas〈cosθin〉 ≈ 1, since (most) of the absorbed photons originate
from the stellar surface. Thus,〈∆Pradial〉 ≈ hνin/c, and the total radiative acceleration exerted on a
mass element∆mper time interval∆ t can be derived from considering all participating lines,

grad=
〈∆P〉tot

∆ t∆m
=

∑
all lines

〈∆P〉i

∆ t∆m
. (2.2)

2. Due to the huge number of metallic lines as compared to the few dozens from hydrogen and
helium, mostly just the metal ions aredirectly accelerated. Their momentum needs to be transferred
to the bulk plasma (H, He), via Coulomb collisions. The velocity drift of the metal ions with respect
to H/He is compensated for by a frictional force (‘Stokes law’) as long as the ratio between drift and
thermal velocity is small (e.g., (Springmann & Pauldrach, 1992; Krtička & Kubát, 2000; Owocki &
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Puls, 2002)). Otherwise (at very low wind-densities) the metallic ions might decouple from the wind,
and the wind no longer becomes accelerated.

The real challenge is to evaluate Eq. 2.2. Following CAK, this is conventionally done by (i) applying
the Sobolev theory (Sobolev, 1960) to approximate the line optical depths and thus the interaction
probabilities, and (ii) to replace the summation by appropriate integrals over the line-strength dis-
tribution (resulting from detailed NLTE calculations), where the line-strengthk is the line-opacity
measured in units of the Thomson-scattering opacity. This distribution can be fairly well approxi-
mated by a power-law, dN(k)/dk ∝ Neff kα−2, with Neff the effective (flux-weighted) number of lines
andα ≈ 0.6. . . 0.7 (e.g., (Puls et al., 2000)). Note that both quantities depend on metallicity and spec-
tral type. As a final result,grad ∝ ((dv/dr)/ρ)α , i.e., depends on thespatialvelocity gradient and on
the inverse of the density.

2.3.1 Scaling relations and WLR

Once the above quantities are inserted into the hydrodynamic equations (adopting stationarity), the
latter can be solved (almost) analytically, returning the following scaling relations for mass-loss rate,
velocity law, and terminal velocity:

Ṁ ∝ N1/α ′

eff L1/α ′
(

M(1−Γ )
)1−1/α ′

, v(r) = v∞

(

1− R∗
r

)β
(2.3)

v∞ ≈ 2.25
α

1−α
vesc, vesc=

(2GM(1−Γ )

R∗

)
1
2
. (2.4)

with Eddington-Γ , (photospheric) escape velocityvesc, andα ′ = α −δ , whereδ ≈ 0.1 describes the
run of the ionization (Abbott, 1982). The velocity-field exponent,β , is of the order of 0.8 (for O-stars)
to 2 (for BA-supergiants).
Using these scaling relations, a fundamental prediction for line-driven winds becomes apparent if one
calculates the so-called modified wind-momentum rate,

Ṁv∞(R∗/R⊙)
1/2 ∝ N1/α ′

eff L1/α ′
(

M(1−Γ )
)3/2−1/α ′

, (2.5)

and accounts for the fact thatα ′ is of the order of 2/3. Then the wind-momentum rate becomes
independent on mass andΓ , and can be expressed in terms of thewind-momentum luminosity relation
(WLR), discovered first by Kudritzki et al. (1995),

log
(

Ṁv∞(R∗/R⊙)
1/2)≈ xlog(L/L⊙)+D(z,spectral type) (2.6)

with slopex= 1/α ′ and offsetD, which depends onNeff and thus on metallicityz and spectral type.
Originally, it was proposed to exploit the WLR for measuringextragalactic distances on intermediate
scales (up to the Virgo cluster), but nowadays the relation is mostly used to test the theory itself (see
below).

2.3.2 Theoretical 1-D models

Though the basic scaling relations for line-driven winds are known since the key paper by CAK (and
updates by (Abbott, 1982; Friend & Abbott, 1986; Pauldrach et al., 1986)),quantitativepredictions re-
quire consistent NLTE/radiative-transfer calculations,to derive the line-force as a function of spectral
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type and metallicity, as well as the inclusion of processes neglected in the original work, for example
line-overlap (e.g., Friend & Castor, 1983; Puls, 1987).
The most frequently cited theoretical wind models (stationary, 1-D, homogeneous) are those from
Vink et al. (2000, 2001). Based on the Monte-Carlo approach developed by Abbott & Lucy (1985),
they allow multi-line effects to be considered. In these models, the mass-loss rate is derived (iterated)
from global energy conservation, whilst the (β -) velocity field is pre-described and the NLTE rate
equations are treated in a simplified way. Pauldrach (1987) and Pauldrach et al. (1994, 2001), on the
other hand, obtain a consistent hydrodynamic solution by integrating the (modified) CAK equations
based on a rigorous NLTE line-force using Sobolev line transfer. Moreover, Krtička & Kubát (2000,
2001, 2004, 2009) and Krtička (2006) solve the equation of motion by means of a NLTE, Sobolev
line-force, including a more-component description of thefluid (accelerated metal ions plus H/He)
that allows them to consider questions regarding drift-velocities, non-thermal heating, and ion decou-
pling. Also, Kudritzki (2002) (see also Kudritzki et al. (1989)) provides an analytic “cooking recipe”
for mass-loss rate and terminal velocity, based on an approximate NLTE treatment, and Gräfener &
Hamann (2005, 2008) obtain self-consistent solutions (applied to WR winds) by means of a NLTE
line-force evaluated in the comoving frame (see Mihalas et al. 1975). Finally, Lucy (2007a,b) and
Müller & Vink (2008) derive the wind-properties from aregularity condition at thesonic point, in
contrast to most other solutions that invoke asingularity condition at the CAK-critical point of the
wind.

Results and predictions from hydrodynamic modeling. Most of the various approaches yield
consistent results, e.g., when comparing the “mass-loss recipe” from Vink et al. (2000) with similar
investigations utilizing different codes (Kudritzki, 2002; Pauldrach et al., 2001; Krtička & Kubát,
2004). Moreover, the WLR concept is impressively confirmed by the simulations performed by Vink
et al.: The obtained modified wind-momenta follow an almost perfect power-law with respect to stellar
luminosity alone,independent of luminosity class, and, for solar abundances, “only” two distinct
relations covering the complete spectral range have been found, one for 50 kK> Teff > 27.5 kK and
the other for 22.5 kK> Teff > 12 kK, respectively. In other words, the spectral type dependence ofx
andD in Eq. 2.6 seems to be rather mild.
Also regarding the predicted metallicity dependence, the various results agree satisfactorily (note that
thez-dependence ofv∞ is rather weak):

Kudritzki (2002): v∞ ∝ z0.12, Krtička (2006): v∞ ∝ z0.06,

Vink et al. (2001): Ṁ ∝ z0.69 for O-stars, Ṁ ∝ z0.64 for B-supergiants,

Krtička (2006): Ṁ ∝ z0.67 for O-stars,

2.4 Observations vs. Theory

In the last decade, various spectroscopic NLTE analyses of hot starsand their windshave been under-
taken, in the Galaxy and in the Magellanic Clouds, in the UV, in the optical, and in a combination of
both. For a compilation of these publications (without Galactic Center objects and objects analyzed
within theFLAMES survey of massive stars, see below), see Tables 2 and 3 in Pulset al. (2008b), to be
augmented by the UV-PV investigation of Galactic O-stars by Fullerton et al. (2006), the UV+optical
analysis of Galactic O-dwarfs by Marcolino et al. (2009), and the optical analysis of LMC/SMC O-
stars by Massey et al. (2009). Most of this work has been performed by means of 1-D, line-blanketed,
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NLTE, atmosphere/spectrum-synthesis codes allowing for the presence of winds, in particularCMF-
GEN (Hillier & Miller 1998), WM-Basic (Pauldrach et al. 2001), andFASTWIND (Puls et al. 2005).

2.4.1 Central results

The results of these investigations can be roughly summarized as follows. (i) The mass-loss rates
from SMC stars (withz≈ 0.2 z⊙, see (Mokiem et al., 2007b) and references therein) are indeed lower
than those from their Galactic counterparts. (ii) For O- andearly B-stars, the theoretically predicted
WLR from Vink et al. (2000) is met, except for O-supergiants with rather dense winds, in which the
observed wind-momenta are higher (by factors around three)than the predictions (which might be
explained by wind-clumping effects, see Sect. 2.6), and fora number of late O-dwarfs (and a few
O-giants), in which the observed wind-momenta are much lower than the predictions (this is the so-
called ‘weak-wind problem’, see Sect. 2.5). (iii) B-supergiants below the ‘bi-stability jump’ (Teff<
22 kK) show lower wind-momenta than predicted, as outlined in the following.

2.4.2 The bi-stability jump: predictions and observations

A fundamental prediction by Vink et al. (2000) is the occurrence of two distinct WLRs, one for hotter
objects and one for cooler objects, with the division located around 25±2.5 kK. This rather abrupt
change is due to the so-called bi-stability mechanism1, which relies on the fact that the mass-loss rates
of line-driven winds are, for typical chemical compositions, primarily controlled by the number and
distribution ofiron-lines, because of their dominant contribution (∼50%) to the total line acceleration
in the lower wind (Puls et al., 2000; Vink et al., 2000; Krtička, 2006). Below roughly 25 kK, the
ionization of iron is predicted to switch abruptly from FeIV to FeIII , and since FeIII has more driving
lines than FeIV at flux maximum, the mass-loss rate must increase. Quantitatively, Vink et al. (2000)
predict an increase iṅM by a factor of five and a decrease ofv∞ by a factor of two, so that, overall,
B-supergiants (except for the earliest sub-types) should have higher wind-momenta than their O-star
counterparts at the same luminosity.
Observations confirm the ‘velocity-part’ of this picture, at least qualitatively. For stars withTeff≥
23 kK, the observed ratio isv∞/vesc≈ 3, whereas it decreasesgradually towards cooler temperatures,
reaching values ofv∞/vesc≈ 1.3. . . 1.5 for stars withTeff≤ 18 kK (Evans et al., 2004; Crowther et al.,
2006; Markova & Puls, 2008). With respect to the predicted increase inṀ, however, the situation
is different. As shown by Markova & Puls (2008), the mass-loss rates of B-supergiants below the
observedbi-stability jump (Teff< 22 kK) actuallydecreaseor at least do no change. This is a first
indication that there are still problems in our understanding of line-driven winds.

2.4.3 TheFLAMES survey of massive stars

Further progress has been obtained within theFLAMES survey of massive stars (P.I. S. Smartt), a
project that performed high resolution multi-object spectroscopy of stars located within eight young
and old clusters in the Galaxy and the Magellanic Clouds. In total, 86 O-stars and 615 B-stars were
observed (for introductory papers and a brief summary, see Evans et al. 2005, 2006, 2008). The
major scientific objectives of this survey were to investigate (i) the relation between stellar rotation

1 denoted after some peculiar behaviour of theoretical models for the wind of P Cygni (Pauldrach & Puls, 1990).
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and abundances (i.e., to test the present theory of rotational mixing), (ii) the role of binarity, and (iii)
stellar mass-loss as a function of metallicity.
Regarding the last objective, Mokiem et al. (2006, 2007a) analyzed a total of∼ 60 O- and early B-
stars in the SMC and LMC, by means ofFASTWIND and using a genetic algorithm (Mokiem et al.,
2005). The results were combined by Mokiem et al. (2007b) with data from previous investigations,
to infer the metallicity dependence of line-driven mass-loss based on a significant sample of stars.
Using mean abundances ofz= 0.5 z⊙ (LMC) and z= 0.2 z⊙ (SMC), a metallicity dependence of
v∞ ∝ (z/z⊙)0.13, and a correction for clumping effects (see below) following Repolust et al. (2004),
they derived anempirical relation

Ṁ ∝ (z/z⊙)
0.72±0.15, (2.7)

with rather narrow confidence intervals. This result is consistent with theoretical predictions, both
from line-statistics (Puls et al., 2000) and from hydrodynamic models (see above).

2.5 Weak winds

The results as summarized above imply that line-driven massloss seems to be basically understood,
though certain problems need further consideration. In particular, from early on there were indications
that the (simple) theory might break down for low-density winds. E.g., Chlebowski & Garmany (1991)
have derived mass-loss rates for late O-dwarfs that are factors of ten lower than expected. By means
of UV-line diagnostics, Kudritzki et al. (1991) and Drew et al. (1994) have derived mass-loss rates
for two BII stars that are a factor of five lower than predicted, and Puls et al. (1996) have shown that
the wind-momentum rates for low-luminosity dwarfs and giants (logL/L⊙ < 5.3) lie well below the
empirical relation for “normal” O-stars.
The last investigation illuminated an immediate problem arising for low-density winds. ForṀ <
(5. . .1) ·10−8 M⊙yr−1, the conventional mass-loss indicator, Hα , becomes insensitive, and only upper
limits for Ṁ can be derived (for a recent illustration of this problem, see (Marcolino et al., 2009)).
Instead, unsaturated UV resonance lines (CIV , Si IV , C III ) might be used to obtain actual values for
Ṁ (e.g., Martins et al., 2004; Puls et al., 2008b; Marcolino etal., 2009).
By means of such UV-diagnostics, strong evidence has accumulated that a large number of late type
O-dwarfs (and a few giants of intermediate spectral type) have mass-loss rates that are factors of 10 to
100 lower than corresponding rates from both predictions and extrapolations of empirical WLRs. In
particular, suchweak windshave been found in the Magellanic Clouds (O-dwarfs in NCG 346(LMC):
Bouret et al. 2003; extremely young O-dwarfs in N81 (SMC): Martins et al. 2004) and in the Milky
Way (O-dwarfs and giants: Martins et al. 2005; late O-dwarfs: Marcolino et al. 2009).
Two points have to be stressed. (i) Until now, it is not clear whetherall or only part of the late
type dwarfs are affected by this problem. (ii) The derived UVmass-loss rates are not very well
constrained, since they might be contaminated2 from X-rays embedded in the wind (due to shocks,
see next Section). The higher the X-ray emission, the weakerthe lines, and the higher theactual
mass-loss rates (see Figs. 19 and 20 in Puls et al. (2008b)). However, to “unify” the present, very low,
Ṁ-values with “normal” mass-loss rates by invoking X-rays,unrealistically highX-ray luminosities
would be required (Marcolino et al., 2009).

2 via a modified ionization equilibrium.
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The weak-wind problem is a prime challenge for the radiativeline-driven wind theory. Martins et al.
(2004) investigated a variety of candidate processes (e.g., ionic decoupling, shadowing by photo-
spheric lines, curvature effects of velocity fields), but none of those turned out to be strong enough to
explain the very low mass-loss rates that seem to be present.At the end of this review, we will return
to this problem.

2.6 Wind clumping

During the last years, overwhelming direct and indirect evidence has accumulated that one of the
standard assumptions of conventional wind models,homogeneity, needs to be relaxed. Nowadays the
winds are thought to be clumpy, consisting ofsmall scaledensity inhomogeneities, where the wind
matter is compressed into over-dense clumps, separated by an (almost) void inter-clump medium
(ICM). Details on observations and theory can be found in the proceedings of a recent workshop,
‘Clumping in hot star winds’ (Hamann et al., 2008).
Theoretically, such inhomogeneities are considered related to structure formation due to the line-
driven (‘de-shadowing’) instability, a strong instability inherent to radiative line-driving. Time-
dependent hydrodynamic models allowing for this instability to operate have been developed by
Owocki and coworkers (1-D:Owocki et al. 1988; Runacres & Owocki 2002, 2005; 2-D:Dessart &
Owocki 2003, 2005) and by Feldmeier (Feldmeier, 1995; Feldmeier et al., 1997), and show that
the wind, for r >∼ 1.3R∗, develops extensive structure consisting of strongreverseshocks separat-
ing slower, dense material from high-speed rarefied regionsin between. Such structure is the most
prominent and robust result from time-dependent modeling,andthe basis for our interpretation and
description of wind clumping. Within the shocks, the material is heated to a couple of million Kelvin,
and subsequently cooled by X-ray emission (which has been observed by all X-ray observatories),
with typical X-ray luminositiesLX/Lbol ≈ 10−7 (for newest results, see Sana et al. 2006).

Clumping effects.Until now, most diagnostic methods to investigate the effects of clumping use the
following assumptions: The clumps areoptically thin, the ICM is void, the velocity field remains
undisturbed, and the so-called clumping factor,fcl, measures the over-density inside the clumps with
respect to the average density. This simple model ofmicro-clumpingallows one to incorporate clump-
ing into NLTE-codes without any major effort, namely by multiplying the average (wind-) density by
fcl and by multiplying all opacities/emissivities by the inverse of fcl (i.e., by the volume filling factor).
The most important consequence of such optically thin clumps is a reduction of anẏM derived from
ρ2-dependent diagnostics (e.g., recombination based processes such as Hα or radio-emission), as-
suming smooth models, by a factor of

√
f cl. That there is areduction is conceivable, since, under

the assumptions made, the square of the over-density ‘wins’against the smaller absorbing/emitting
volume. Thus, a lowerṀ is sufficient to produce the same optical depths/emission measures as in
smooth models.
Note, however, that in this scenario anyṀ derived fromρ-dependent diagnostics (e.g., UV-resonance
lines) remains uncontaminated, since in this case the over-density cancels against the smaller absorb-
ing/emitting volume. Finally, it should be mentioned that aclumpy medium also affects the ionization
equilibrium, due to enhanced recombination (e.g., Bouret et al., 2005).
Results from NLTE-spectroscopy allowing for micro-clumped winds are as follows. (i) Typical
clumping factors arefcl≈ 10. . . 50, and clumping starts at or close to the wind base, thelatter in
conflict with theoretical predictions. Derived mass-loss rates are factors of 3 to 7 lower than previ-
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ously thought (Crowther et al., 2002; Hillier et al., 2003; Bouret et al., 2003, 2005). In strong winds,
the inner region is more clumped than the outer one (f in

cl ≈ 4. . .6× f out
cl ), and the minimum reduction

of smooth Hα mass-loss rates is by factors between 2 and 3 (Puls et al., 2006).

The PV problem. From a mass-loss analysis using the FUV PV resonance line3 for a large sample
of O-stars, Fullerton et al. (2006) (see also Massa et al. 2003) concluded that the resulting mass-loss
rates area factor of 10 or more lowerthan derived from Hα and/or radio emission using homogeneous
models, implying fcl>∼ 100! Similar results have been found from unsaturated P Cygni lines from
lower luminosity B-supergiants (Prinja et al., 2005).
If such large reductions iṅM were true, the consequences for stellar evolution and feed-back would
be enormous. Note that an ‘allowed’ reduction from evolutionary constraints is at most by a factor of
2 to 4 (Hirschi, 2008).

Porosity and vorosity.A possible resolution of this dilemma might be provided by considering the
porosity(Owocki et al., 2004) of the medium, also suggested to explain the observed X-ray line emis-
sion (cf. the contributions by Oskinova et al. and Cohen et al. in Hamann et al. 2008, and particularly
the discussion on X-rays). Whenever the clumps become optically thick for certain processes, as
might be true for the PV-line, the geometrical distribution of the clumps becomes important (size vs.
separation, shape). In thismacro-clumpingapproach (see also Hamann, this volume), the effective
opacity becomes reduced, i.e., the wind becomes more transparent (‘porous’), because radiation can
propagate through the ‘holes’ provided by theICM. Additionally, clumps hidden behind other clumps
become ineffective because the first clump is already optically thick.
Oskinova et al. (2007) used a simple, quasi-analytic treatment of macro-clumping (still assuming a
smooth velocity law) to investigate PV in parallel with Hα from ζ Pup. Whereas macro-clumping
had almost no effect on Hα , since the transition is optically thin in the clumps, PV turned out to be
severely affected. Thus, only a moderate reduction of the smooth mass-loss rate (factors 2 to 3) was
necessary to fit the observations, consistent with the evolutionary constraints from above.
This model has been criticized by Owocki (2008), who pointedout that not only the distribu-
tion/optical thickness of the clumps is important, but alsothe distribution of the velocity field, since
the interaction between photons andlines is controlled by the Doppler-effect. Also the ‘holes’ in
velocity space, due to the non-monotonic character of the velocity field, lead to an increased escape
(thus, he called this process velocity-porosity = ‘vorosity’), whilst the different velocity gradients
inside the clumps lead to an additional modification of the optical depth.

Resonance line formation with porosity and vorosity.To clarify in how far the above argu-
ments/simulations depend on the various assumptions, and to characterize/quantify the various effects
from inhomogeneous winds ofdifferent sub-structures, a current project in our group investigates the
resonance-line formation in such winds. To this end, pseudo2-D hydrodynamic models (based on
different snapshots of corresponding 1-D models from Owocki and Feldmeier, aligned as independent
slices of opening angleΘ ), as well as 2-D models based on a stochastic description, have been cre-
ated (Fig. 2.1, left panel). For these models then, adetailedMonte-Carlo line transfer (discarding the
Sobolev-approximation) is performed. The right panel of Fig. 2.1 shows prototypical profiles from
such simulations, based on the stochastic 2-D wind description, for an intermediate strong line that
would be marginally saturated in smooth models (dashed). The grey dashed-dotted profile displays
the effects of porosity alone (i.e., a smooth velocity field has been used), using a rather low clumping

3 unsaturated due to the low phosphorus abundance.
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Figure 2.1:Left : Density contours of stochastic (upper) and pseudo 2-D hydrodynamic wind models
as investigated by our group.Right: Line profiles for an intermediate strong line formed in inhomo-
geneous winds with different sub-structures. See text.

factor, fcl = 3.3, and an average separation of clumps∼ R∗ in the outer wind. Already here, a strong
de-saturation of the profile is visible. The grey dashed-dotted-dotted line displays the other extreme,
namely vorosity alone (i.e., now the density is smooth), using a stochastic description of the velocity
field, characterized by a “velocity clumping factor” (as defined in Owocki 2008, Fig. 1)fvel = 0.3.
Interestingly, the de-saturation of the profile is similar to the porosity-effect alone. The solid black
line displays the combined effect from porosity and vorosity, with a further de-saturation. If com-
pared to a line from a smooth model of similar profile strength(dotted), it turns out that the effective
opacity in the structured model(s) has been reduced by a factor of 20, i.e., the actual̇M would be a
factor of 20 higher than derived from a smooth model. Thus, structured models invoking porosity and
vorosity might indeed resolve the discordance between the results by Fullerton et al. and evolutionary
constraints.
We note, however, that the profile-strength reduction presented in Fig. 2.1 corresponds to a ‘most
favourable case’, using rather ideal parameters. Our investigations have shown how details on poros-
ity, vorosity, and theICM, all are important for the formation of the line profiles. In fact, the strengths
of similar profiles calculated from our pseudo 2-D hydrodynamic models are only reduced by≈ 10%,
because of insufficient vorosity inherent to structures from present time-dependent modeling (see also
Owocki 2008). Such a modest reduction is much lower than needed to alleviate the discrepancy dis-
cussed above. Also, as it turns out, theICM is a crucial parameter if to de-saturate intermediate strong
lines and, at the same time, allowing the formation of the observed saturated profiles. Tests have
shown that, with a voidICM, the formation of saturated profiles is only possible if the average clump
separation (controlling the porosity) is very small, but then the de-saturation of intermediate strong
lines becomes marginal. Only by assuming anICM with sufficient density (≈ 0.01ρsmooth) we have
been able to form saturated lines in parallel with de-saturated ones of intermediate strength. This
finding is consistent with results from Zsargó et al. (2008), who pointed out that theICM is crucial for
the formation of highly ionized species such as OVI .
Further details and results from our investigations will begiven in a forthcoming paper (Sundqvist et
al., in prep for A&A, added note: Chapter 4), including a systematic investigation of different key
parameters and effects. Future plans include a comparison with emission lines, and the development
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of simplified approaches to incorporate porosity/vorosityeffects into NLTE models.

2.7 Weak winds again – Brα as a diagnostic tool

In the preceding paragraphs, we have argued that (i) mass-loss rates from unsaturated UV line-profiles
aremuchlower than those from Hα or radio emission, and that (ii) this discordance might be mitigated
by porosity/vorosity effects. Recall here that the mass-loss rates from weak winds discussed so far
(Sect. 2.5) rely on the same UV-line diagnostics, and the question arises whether one encounters a
similar problem, i.e., an under-estimation of the “true” mass-loss rates due to insufficient physics
accounted for in the diagnostics. Thus, to clarify in how farthe weak wind problem is a real one,
independent diagnostics are required!
Already in 1969, Auer & Mihalas, based on their first generation of NLTE, hot-star model atmo-
spheres, predicted that the IR Brα -line should show significantphotosphericcore emission, due to an
under-population of its lower level (n = 4) relative to the upper one (n = 5), resulting from a very
efficient decay channel 4→ 3. Indeed, such core emission has meanwhile been observed invarious
weak wind candidates such asτ Sco (B0.2V), HD 36861 (O8III(f)), and HD 37468 (O9.5V) (Najarro,
Hanson and Puls, in prep. for A&A). Recent simulations (Pulset al. 2008b, Figs. 21/22) actually
show that such photospheric + wind emission can fit the observations quite nicely, and that the core of
Brα is a perfect tracer for the wind density also for thinner winds (as opposed to Hα ). Astonishingly,
theheight of the peak increases for decreasingṀ, which is related to theonsetof the wind, i.e., the
density/velocity structure in the transition zone betweenphotosphere and wind, and not due to radia-
tive transfer effects. The higher the wind-density, the deeper (with respect to optical depth) this onset,
which subsequently suppresses the relative under-population of n= 4 due to efficient pumping from
the hydrogen ground-state. Moreover, Brα is only weakly affected by the presence of X-rays, and
thus an ideal tool to infer very low mass-loss rates. From fitsto the observations, it turns out thatṀ is
actually very low (of the order of 10−10M⊙yr−1 for HD 37468, and even lower, if the wind-base were
clumped).Thus, weak winds seem to be a reality!
What may then be the origin of weak winds? Krtička & Kubát (2009) argue that weak-winded stars
display enhanced X-ray emission, maybe related to extendedcooling zones because of the low wind
density. Already Drew et al. (1994) pointed out that strong X-ray emission can lead to a reduced
line acceleration, because of a modified ionization equilibrium, and since higher ions have fewer
lines. Thus, weak-winded stars might be the result of strongX-ray emission. Let us now speculate
whether such strong emission might be related to magnetic fields. Note that weak winds can be
strongly affected by relatively weakB-fields, of the order of 40 Gauss according to the scaling relations
provided by ud-Doula & Owocki (2002), which is below the present detection threshold. In this case
then, colliding loops might be generated, which in turn generate strong and hard X-ray emission
in the lower wind, which finally might influence the ionization and thus radiative driving. Future
simulations coupling magneto-radiation-hydrodynamic wind codes with aself-consistentdescription
of the line-acceleration will tell whether this mechanism might work.

2.8 Addendum

Obviously, wind clumping is much more thoroughly covered inChapters 1 and 3-5 than here, and
these chapters adequately update some of the clumping related results discussed in this review. Below
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we use this addendum to discuss the weak wind problem a littlefurther.
It was pointed out in Sect. 2.5 that X-rays as well asoptically thick clumpingmay affect the formation
of diagnostic UV lines in so-called weak winded stars. Concerning the latter effect, we in Chapters 4
& 5 indeed show that one may underestimate the ‘observed’ mass-loss rates by as much as an order of
magnitude if optically thick clumps are present in the wind but ignored in the analysis. Moreover, we
illustrate that the clump optical depthsτcl for the PV resonance lines in a model of the O6 supergiant
λ Cep areτcl ≈ 100 (see Fig. 5.4). Since the predicted theoretical mass-loss rates for the stars analyzed
by Marcolino et al. (2009) are≈ 30 times lower than the corresponding rate ofλ Cep, this may
indicate that clumps could be optically thick for PV also in these stars (if the corresponding ionization
fractions are similar), and thereby that the mass-loss rates inferred from PV could be underestimated.
Also, in Chapter 5 we demonstrate how the formation of another resonance line doublet used as a
mass-loss indicator in Marcolino et al., NV at 1240Å, also may be strongly affected by optically thick
clumping in these stars. In view of the simple estimate for PV above, this is not surprising, since the
higher nitrogen abundance generally makes these lines stronger than the PV lines. Thus, these ‘weak
winded’ objects should in the future be re-analyzed using sufficient descriptions of optically thick
clumping and X-rays, in order to investigate to which extentthe results discussed earlier might be a
consequence of in-sufficient physics accounted for when modeling the diagnostic lines. Meanwhile,
however, independent diagnostics are required to clarify in how far the weak wind problem is real.
This was discussed in Sect. 2.7, in terms of Brα as a good candidate for such a diagnostic.
However, let us point out here that the Brα modeling may be problematic for other reasons than X-
rays and/or optically thick clumping . Deviations from the LTE source function for given departure
coefficients are greatly amplified in the IR (because of the increasing contribution from stimulated
emission, see Sect. 1.5.4), which in turn means that the Brα NLTE modeling is very sensitive to the
input atomic dataof the hydrogen model atom. Actually, although for other chemical species and in
a completely different stellar domain, in this respect the Brα situation appears somewhat similar to
the one analyzed in detail in Chapter 6, namely the NLTE formation of thephotosphericIR metallic
emission lines in late-type stars. In that chapter, we show that the modeled emission lines (at 12 and 18
µm) from highly excited states of Mg I (n= 7→ 6 for the 12µm lines) are very sensitive to the input
magnesium atomic data, because small changes in the departure coefficients can cause large changes
in the modeled line source function, which in turn drastically affects the line core emission. Figs. 6.3
& 6.4 illustrate how the modeled Mg I emission peaks react strongly when the total collision rates are
modified (in this case by the inclusion of collisions betweenmagnesium and neutral hydrogen atoms),
because the changed balance between radiative and collision rates affects the decay channels feeding
the participating levels, which in turn influences the predicted departure coefficients.
Now, regarding the NLTE modeling of Brα , there might still be problems with the input atomic data
for collisions between hydrogen and free electrons, which are the collisions that must be included in
appropriate hydrogen model atoms for hot stars. Repolust etal. (2005) pointed out that newly com-
puted rates based onab initio quantum mechanical calculations by Przybilla & Butler (2004) actually
resulted in worse agreement between the IR and optical hydrogen lines than what was obtained when
using older data. Because of this, the standard option for the hydrogen model atom in, e.g.,FASTWIND

actually still is an older, presumably less accurate, collision data set. Thus the modeled Brα emission
will be sensitive not only to the adopted mass-loss rate but also to the actual choice of input atomic
data, which of course brings additional uncertainties to mass-loss rates derived from this line. In con-
clusion, a careful study of the impact from the atomic data certainly is requiredbeforeBrα should be
routinely used as a mass-loss indicator.



Chapter 3

Radiative transfer in stochastic media
and hot star winds
- microclumping, vorosity, and porosity revisited

In this chapter we shall concern ourselves with some resultsderived for the equation of transport in
stochastic media. In particular, we show that a model derived by Levermore et al. (1986), in a quite
different context than astrophysics, may be explored to understand the basic radiative transfer effects
arising in clumped hot star winds; microclumping, vorosity, and porosity. These results may be of
great help to better understand the specific techniques developed, elsewhere as well as in Chapters 4
and 5, to model the effects of these three phenomena. Moreover, we present a very simple extension
of the porosity formalisms developed forρ-dependent processes in hot star winds, to handle also
ρ2-processes.

3.1 Transfer in stochastic media

For simplicity we shall consider only the very simplest caseof apurely continuum absorbing medium
with a constant extinction coefficient. We thus disregard all frequency (settingχν = χ) as well as
spatial dependencies of the quantities, and furthermore neglect all emission contributions. Then the
standard equation of radiative transfer (Eq. 1.2) becomes

dIν
ds

=−Iν χν + jν → dI
χds

=
dI
dτ

=−I , (3.1)

with extinction coefficient (or opacity)χ and optical depthτ . The solution over some paths is the
well known exponential law for attenuation of light

I/I0 = e−χs = e−τ , (3.2)

with I0 the incident intensity. In a stochastic medium we may obtaina similar ‘transport-like’ solution
for the ensemble averaged intensity, by averaging overall possible physical realizations

〈I〉/I0 = 〈e−τ〉, (3.3)
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where we have assumed that the incident intensity is non-stochastic. We will for convenience absorb
I0 into the expression for the averaged intensity in the following, i.e. 〈I〉/I0 → 〈I〉.
Of course, one can hope to obtain a good estimate of〈I〉 by considering different realizationsone by
one, after which one sums them up and average them. For that task one may, for example, use Monte-
Carlo simulations (a variant of this is done in Chapter 4). However, it would (obviously) be more
convenient if it were possible to obtain a deterministic ‘effective’ value forχ , i.e. aχeff that could
account for the statistical nature of the problem, because then one could go back to the traditional
equation of transfer (Eq. 3.1) and only solve itonce. Similarly, if one could obtain effective values
also for the source function, generalizations to more complex situations than the pure absorption case
considered here could readily be done. (As we will see later,this is in principle what is attempted
with themicroclumpingandporosity formalisms that have been developed for radiation transport in
clumped hot star winds.)
Defining an effective value ofχ is appropriate if each considered realization (here meaning each
contribution to the optical depth) isoptically thin, for then we may in Eq. 3.3 replace the averaging
over intensities by an averaging over optical depths, i.e.〈e−τ〉 → e−〈τ〉, and obtain

〈I〉= e−〈τ〉, (3.4)

which means just this; that if we can find an average (or effective) opacity, we can obtain the ensemble
averaged intensity just by considering this quantity.
We will from now on consider atwo component stochastic medium. Later on the components will be
identified with ‘clumps’ and the ‘inter-clump medium’ in a hot star wind, but for now we designate
the componentsi asi = 0,1. Then the averaged opacity is

〈χ〉= p0χ0+ p1χ1, (3.5)

with probability pi to find the matter in componenti, within the domain ofs. Obviouslyp0+ p1 = 1.
Eq. 3.4 will be validif the characteristiclength scale li (sometimes called the chord length) of a fluid
packet in componenti is small as compared to the photon mean free path (which may bewritten as
the inverse of the absorption coefficient,χ−1

i , Pomraning 1991), i.e.,if

χi l i << 1. (3.6)

This is called theatomic mixlimit, for the smallest possible fluid packet is of course a single atom. It is
equivalent to assumingoptically thin clumpsin a clumped hot star winds (sinceχi l i = τi). In general,
however, Eq. 3.6 will not be satisfied, and if we still attemptto use the atomic mix model, quite
erroneous results may follow. We illustrate this with the following example, taken from Pomraning
(1991).
Let fluid 0 be composed of optically thin packets (χ0l0 << 1) and fluid 1 of optically thick ones
(χ1l1 >> 1). Furthermore, assume that fluid 1 is very sparse (p1 << p0). The picture now is that of
a nearly perfect vacuum with a few ‘completely black’ fluid packets in it. Radiation (or particles in
Pomraning’s description, for these authors deal with particle rather than radiation transport) incident
upon this mixture will have a great chance of escaping the matter without ever interacting with any
of the small black packets. But the atomic mixture model willstill predict the exponential attenuation
for 〈I〉, and sinceχ1 in principle can be made arbitrarily large, it is easy to set up a situation for which
Eq. 3.4 predictsno transmission through the medium. Clearly, this is very wrong, and it is the essential
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effect ofporosity(an effect that currently is quite intensively discussed inthe hot star wind literature,
for example in this thesis) which here is missing from the atomic mix model.
Thus, in general, the ensemble averaged intensity must be obtained via Eq. 3.3 instead of Eq. 3.4. We
mentioned earlier that the most straightforward approach for this probably is Monte-Carlo simulations.
However, such methods are often quite costly (as the one in Chapter 4, for example) and may not
always be applied to the more general problem, so it may also be worthwhile to try and find adirect
solution to〈I〉, with the help of a number of variables describing the structured medium, as was done
above for the atomic mix model. This task turns out to be quiteintricate and problematic though,
even for the simplest case of pure continuum absorption. Levermore et al. (1986) demonstrate the
mathematical complexity involved, when they derive ananalytic expression for atwo component
Markovian mixture. Their derivation will not be repeated here, but a few essential points will be
pointed out1.
First, the Markovian assumption is that the future state of asystem dependsonly on its present state,
andnot on its history. For example, the angle with which a resonanceline photon in a hot star wind
is re-emitted after absorption (Chapter 4) may be said to be aMarkovian process; it dependsonly on
the conditions at the point where the last absorption occurred, andnot on previous scatterings or on
how the photon actually got there (that is, not on its history). The Markovian assumption enters the
Levermore et al. model in the following way: if at some spatial point r the fluid is of type 0, then
the probability of finding fluid 1 at the pointr +dr is P0,1dr. Now, this probability is assumed to be
independentof how far back along the path the last transition (from medium 1 to 0) occurred, i.e. it
is assumed to depend only on its present state, hence to be Markovian. Under these assumptions, one
can show that the distribution of chord lengthsL0 in fluid 0 will form a classical Poisson process and
be exponentially distributed according to the probabilitydensity function

f0(L0) = l−1
0 e−L0/l0, (3.7)

with themeanof L0 thus beingl0. Furthermore, for this model one can show that the mean segment
length l0 equalsthe inverse of the transition probabilityP0,1, i.e. thatP−1

0,1 = l0. Of course, all these
arguments apply also for transitions from fluid 1 to 0. These results may be used to identify the
probabilitiespi to at any given point find the fluid in componenti, either with

pi =
l i

l0+ l1
, (3.8)

or with thevolume filling fractions,

pi =
Vi

V0+V1
, (3.9)

because according to Levermore et al. (using the results of Debye et al., 1957) the average chord
lengths are given byl i = 4Vi/A, with Vi the associated volume of fluidi andA the common surface
area between packets of type 0 and 1.
In summary, the key point here was the identification of the inverse of the transition probability den-
sity, P−1

0,1 , with the mean chord length,l0. These results may then be used to set up a probability

1 The Levermore et al. model has been recognized before by the hot star community, e.g. by Shaviv (2001b) and Feldmeier
et al. (2008), but not discussed in detail.
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density distributionf (τ ,s) for the optical depth random variable (which indeed takes a very compli-
cated expression) and a given path lengths. Finally then, the authors solve for the ensemble averaged
mean intensity

〈I(s)〉 = 〈e−τ〉=
∫ ∞

0
f (τ ,s)e−τ dτ . (3.10)

Eq. 3.10 is solvedanalytically, by Laplace transformation, with the end result

〈I〉=
( r+− σ̂

r+− r−

)

e−r+s+
( σ̂ − r−

r+− r−

)

e−r−s, (3.11)

with

2r± = 〈χ〉+ σ̂ ±
√

(〈χ〉− σ̂)2+4β , (3.12)

σ̂ = p1χ0+ p0χ1+
1
l0
+

1
l1
, (3.13)

β = (χ0− χ1)
2p0p1, (3.14)

and the averaged opacity〈χ〉 defined by Eq. 3.5.
We now show that the radiative transfer formalisms developed for describing the effects ofmicro-
clumping, vorosity, andporosity, in hot star winds may all, in principle, be understood as limiting
cases of this basic equation, despite the fact that they havenot been developed for the specific case of
a Markovian mixture.

3.2 Microclumping

The microclumping, or atomic mix, model is recovered from Eq. 3.11 whenl i << χ−1
i . Thenr+ ∼ σ̂ ,

so that the first term in Eq. 3.11 vanishes, andr− → p0χ0+ p1χ1. Thus

〈I〉= e−〈χ〉s= e−〈τ〉. (3.15)

Now we assume that our medium is a clumped hot star wind, in which the clumps are componentcl
and the inter-clump medium componentic. The volume filling fractionfV shall be the fraction of the
densegas (as is customary assumed, see Chapters 4 and 5). For the averaged optical depth we then
can write

〈τ〉= ( fV χcl +(1− fV)χic)s. (3.16)

First we consider processes dependinglinearly on the density, so that we may write the opacity as
χ = κρ , with mass absorption coefficientκ . The averaged density is of course

〈ρ〉= fVρcl +(1− fV)ρic, (3.17)

and, thus,〈τ〉 = 〈ρ〉κs. Since we require〈ρ〉 = ρsm, with ρsm the density in asmoothwind model,
we have recovered the well-known result that ‘smooth’ optical depths are preserved within the micro-
clumping model for processes depending linearly on density.
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Next we consider so-calledρ2-processes (see previous Chapters). Then the opacity can bewritten
χ = κ2ρ2, whereκ2 may be regarded as a line-strength parameter defined somewhat in analogy with
the mass absorption coefficient (see Appendix A for detailedopacity expressions ofρ2-processes for
line transitions), and we obtain

〈τ〉= 〈ρ2〉κ2s, (3.18)

with

〈ρ2〉= fVρ2
cl +(1− fV)ρ2

ic. (3.19)

Defining the so-calledclumping factoras

fcl =
〈ρ2〉
〈ρ〉2 =

fv+(1− fv)x2
ic

( fv+(1− fv)xic)2 , (3.20)

with

xic =
ρic

ρcl
, (3.21)

we may re-write the optical depth as

〈τ〉= fcl〈ρ〉2κ2s, (3.22)

which is the equally well-known result that optical depths in processes depending on the square of the
density are enhanced with a factor offcl in the microclumping model. Note that we need not to assume
a void inter-clump medium for these relations to hold (whichsometimes is stated). However,only if
we letxic → 0 do we get the additional relationfcl = f−1

V , essentially meaning that a description using
fcl, instead offV , is preferred within the microclumping model.

3.3 Vorosity

Owocki (2008) first pointed out thatline formation in hot star winds withoptically thick clumps
should be controlled primarily by the velocity field. In analogy with the case of a spatiallyporous
wind (next subsection), line photons may now escape through‘holes’ in the velocity field (velocity
porosity=’vorosity’). This is an effect caused by the rapidwind acceleration, which Doppler-shifts
line photons and makes it possible for them to interact with the material only within very narrow
spatial ranges, within the so-calledresonance zones. The situation is sketched in Fig. 3.1.
By considering Fig. 3.1, we realize that the essence of the vorosity effect may be described by Eq. 3.11,
in the limit that the chord lengths aremuch largerthan the domain of integration, i.e.l0, l1 → ∞. In
this limit r+ → χ1 andr− → χ0, so that

〈I〉= p0e−χ0s+ p1e−χ1s, (3.23)

or, for our two component wind,

〈I〉= fVe−τcl +(1− fV)e
−τic . (3.24)
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Figure 3.1: Illustration of the vorosity effect. A line photon of a given frequency can only interact
with the wind material within narrow resonance zones, denoted here by∆ rres, and clumps are of sizes
δ rcl. The dashed arrows are typical radial rays of radiation. Theright and left plot, respectively,
illustrate the typical ‘hit or miss’ situation; to the rightwe have a photon with a frequency that makes
its resonance zone coincide with one of the clumps, and vice versa to the left.

Obviously, the continuum optical depths must here be replaced by correspondingline optical depths.
A modified version of this equation is extensively used and discussed in Chapter 5. This modification
is necessary because the basic assumption of chord lengths (=clump lengths) longer than the reso-
nance zones simply is not valid for, primarily, the very slowly accelerating outer wind (resulting in
radially extended resonance zones). Moreover, we have alsomodified the equation to handle non-
monotonic velocity fields, by considering thevelocity rather than thevolumefilling fractions (for a
smooth velocity field and neglecting curvature terms they are equal, see Chapter 5). Note also that this
equation is not mentioned in Chapter 4, simply because we hadnot ‘discovered’ it when that paper
was published.

3.4 Porosity

Porosity effects in the context of clumped hot star winds have already been mentioned several times,
for example when discussing the formation of X-ray line profiles and the proposed radiative driving of
LBV ‘super-winds’ (Chapter 1), and we also commented on it ina more conceptual sense in Sect. 3.1.
A ‘fully’ porous medium may be said to consist of a small number of absorbers with essentially
infinite optical depth, embedded in a void background medium. Thus the relevant limit of Eq. 3.11 is
χ0 → ∞,χ1 → 0 andp0 << p1. Then Eq. 3.11 takes the form

〈I〉= e−s/l1. (3.25)

Notice how this equation isopacity independent, depending only on the chord lengthl1. Of course
this makes physical sense, because the matter properties are such that one fluid component already has
reached maximum optical depth, and therefore absorbs everything that comes in its way, and the other
is assumedto be completely transparent for all impinging radiation. Thus onlygeometricdistributions
and sizes matter.
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The characteristic chord length of the ‘vacuum’,l1, can be connected tol0 via the volume filling factor
of thedensecomponent,

fV =
l0

l0+ l1
≈ l0

l1
→ l1 ≈

l0
fV

≡ h, (3.26)

where the last equality defines theporosity length h(Owocki et al., 2004), andl1 = h here may be
interpreted as the mean free path of a photon traveling through the medium.
‘Porosity formalisms’ for hot star wind applications have been developed differently than the statistical
description of Levermore et al.. Formalisms have been provided by, e.g., Feldmeier et al. (2003) and
Owocki et al. (2004). In the following, we use the basic arguments given by Feldmeier et al. (2003)
(although the derivations differ somewhat), but the end results are equivalent also to those obtained by
Owocki and collaborators. The same ‘two component’ (clumpsand an inter-clump medium) stellar
wind as before is assumed.
In analogy with the atomic opacity, we may write the effective opacity of a clump ensemble as

χeff = nclAcl(1−e−τcl), (3.27)

wherencl andAcl are the number density of clumps and theeffectivecross-section of a clump, respec-
tively. The last term accounts for the probabilityP= 1−e−τcl that the photon impinging on a clump
gets absorbed (compare to the result just presented, which assumedP= 1). We slightly reformulate
Eq. 3.27 usingncl = 1/Vt , whereVt is the total volume associated with exactly one clump,

χeff =
Acl

Vt
(1−e−τcl). (3.28)

The optical depth of a clump forcontinuum opacity depending linearly on the densityis τcl = κρcllcl.
We shall here consider only the case of a void inter-clump medium (xic =0), so the clump optical depth
is (Sect. 3.2)

τcl = ρclκ lcl = 〈ρ〉κ lcl/ fV = 〈χ〉(lcl/ fV) = 〈χ〉h, (3.29)

where the last equality again (see above) uses the definitionof the porosity length,h≡ lcl/ fV .
Eq. 3.28 and 3.29 will below be used to consider the cases of i)isotropic clumps, ii) fragmented shells
in a radial stream of photons, and iii) fragmented shells including non-radial photons.

3.4.1 Isotropic clumps

This corresponds to the case studied by Owocki et al. (2004) and Owocki & Cohen (2006). For
isotropic clumps with characteristic length scaleslcl, we may write the volume of a clump asVcl ≈
l3
cl = Acllcl, and express Eq. 3.28 as

χeff =
Vcl

Vt lcl
(1−e−τcl) =

1−e−τcl

h
, (3.30)

where we have used the definition of the volume filling factor,fV ≡Vcl/(Vcl +Vic) = Vcl/Vt . Using
Eq. 3.29, we obtain the scaling of the corresponding smooth opacity

χeff = 〈χ〉1−e−τcl

τcl
, (3.31)
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which (as it should) preserves the atomic opacity for optically thin clumps, and returns our previous
result based on the Levermore et al. model (Eq. 3.25) for the case of very large clump optical depths,
χeff = 1/h. This opacity independentresult is the base for the expectation of frequency independent
(gray) opacities in the X-ray line formation in hot star winds, shouldthe clumps be (very) optically
thick for this process (Sect. 1.4.3).
We notice also that we made no explicit assumption about the geometry of the inter-clump medium
when deriving this equation, i.e., we didnot assume the distance between two clumps to be equal in
all spatial directions (Vt = l3

ic), as is sometimes done.

3.4.2 Fragmented shells, radial streaming of photons.

This and the next paragraph correspond to the Feldmeier et al. (2003) and Oskinova et al. (2004)
models. The area of a given fragmented shell at radiusr is Acl = ∆Ω r2, with ∆Ω the subtended solid
angle, whereas the volume associated with the distance between two shell fragments isVt = ∆Ω r2∆ r,
with ∆ r the radial distance between two shells. Thus Eq. 3.28 becomes

χeff =
1−e−τcl

∆ r
. (3.32)

However, in this picture of radial photons and fragmented shells, we must have∆ r = δ r/ fV = lcl/ fV =
h, i.e.,

χeff =
1−e−τcl

h
, (3.33)

which is the same result as in the case of isotropic clumps.Actually, this is not very surprising; since
all photons hit the clumps perpendicularly, the latter are of course ‘isotropic’ in a sense.
The dependence on the lateral extensions of the clumps has vanished in Eq. 3.32. Thus one might
be tempted to suggest that the same expression would apply for a clumped butspherically symmetric
wind as well, i.e. one consisting of shells covering the complete sphere (∆Ω = 4π). However, for a
spherically symmetric wind we may no longer use the analogy with the atomic opacity, and thereby
we cannot writeχeff for the optically thick clump ensemble asχeff =AclV−1

t (Eq. 3.27). Conceptually,
one easily realizes this, for if the clumps were indeed spherical shells, they would all be ‘hit’ by any
ray of radiation, i.e., no ‘holes’ would be there for photonsto escape through, and consequently all
photons would be absorbed by the first optically thick shell.Thus, the assumptions inherent in writing
Eq. 3.27 are those ofrandomizationandlateral fragmentationof spherical shells, the latter occurring
on a scale smaller than the typical area considered when setting up the expression forχeff. (Feldmeier
et al. 2003 actually considered infinitely small lateral scales for the fragments.)

3.4.3 Fragmented shells, including non-radial photons.

The effectivecross-section area of a given shell at radiusr now depends on the angleθ the photon
hits it with, i.e.,Acl → Aclµ , with µ = cosθ . The associated clump/inter-clump volumes, on the other
hand, remain as in the preceding subsection. Therefore Eq. 3.28 now takes the form

χeff = µ
1−e−τcl

h
. (3.34)
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However, the optical depths of the clumps are enhanced because of the longer path-lengths for photons
not hitting the clump perpendicularly. That is,

τcl =
〈χ〉h

µ
, (3.35)

where curvature effects have been neglected. Inserting into the expression forχeff, we obtain

χeff = 〈χ〉1−e−τcl

τcl
. (3.36)

That is,the same opacity scaling as before, however with a modified (increased for non-radial pho-
tons) clump optical depth. Because of this optical depth enhancement, one would also expect porosity
effects to increase when allowing for non-radial photons.
Indeed, when applied to X-ray line formation, the models of Oskinova et al. (including non-radial
photons) appear to predict larger porosity effects than corresponding models of Owocki et al. (using
isotropic opacity), as was discussed in Sect. 1.4.3. However, it seems unlikely that this is the sole
reason for current inconsistencies between results obtained by the two groups, because test calcula-
tions and comparisons made by Owocki (private communication), in which he modified his code to
account for non-radial photons, indicate that his X-ray line profiles still differ from those computed
by Oskinova et al., by much more than expected merely from thedifferent modeling techniques used
in the calculations. So, the inconsistencies in the X-ray results stated in Sect. 1.4.3 remain, and the
reason(s) for them still seem(s) to be unresolved.

3.4.4 A porosity formalism for ρ2-diagnostics.

Continuum porosity formalisms have been developed only forprocesses depending linearly on the
density (the attenuation of X-rays, Thomson scattering). However, for example the continuum based
mass-loss diagnostics IR and radio emission depend on the square of the density, and for these diag-
nostics the effects of optically thick clumping are completely unexplored (at least to our knowledge).
Here we show how an extension of the porosity formalisms developed in the preceding paragraphs to
handle alsoρ2 processes is, in fact, trivial.
Eq. 3.28 for the effective opacity of a clump ensemble, including non-radial photons, is repeated for
convenience,

χeff = µ
1−e−τcl

h
. (3.37)

The clump optical depth is now

τcl =
ρ2

clκ2lcl

µ
=

ρ2
smκ2lcl

f 2
V µ

=
χh
fV µ

=
χmch

µ
, (3.38)

where we have used results from Sect. 3.2 and assumed a void inter-clump medium, andχmc is the
opacity in amicroclumpedmodel. Thus, the effective opacity may simply be written as

χeff = χmc
1−e−τcl

τcl
. (3.39)
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This expression now unifies the porosity formalisms forρ- and ρ2-processes, since for the former
χmc = χsm = 〈χ〉. Actually, it illustrates how one should always measure opacity reductions from
optically thick clumping relative to microclumped models,and not relative to smooth ones. We discuss
this property further in Chapter 5, for the case of Hα line formation in O star winds (which is aρ2

process).
Let us point out that these porosity formalisms represent a class of techniques that attempt to find an
effective opacityin order to capture the essence of the statistical medium (Sect. 3.1). The effective
opacity can then be used in the ordinary equations of radiative transfer, rather than aiming to solve
for the ensemble averaged intensity directly (which the ‘vorosity’ formalism presented earlier does).
There are, however, dangers in applying these type of ‘effective opacity’ methods, as discussed in
the book by Pomraning (1991). Essentially what one does is trying to approximate the sum of two
exponentials (Eq. 3.11) with only one (Eq. 3.4). Thus the porosity formalisms are inherently approx-
imative, except for, in this case, the very limiting case of Eq. 3.25, and the errors introduced can be
very hard to estimate. On the other hand, the alternative approach, i.e. to try and find a corresponding
expression to Eq. 3.11 but for a more complex medium, certainly is everything but straightforward
(and in many cases impossible), as demonstrated in Pomraning (1991). Supposedly the best practical
approach to test the simplified approaches rather is to perform suitable Monte-Carlo simulations, and
simply compare the results stemming from the different methods (as has been done for resonance and
recombination line formation in Chapters 4-5). Note, however, that for at leastline diagnostics of hot
star winds we cannot assume a pure absorption model, as done in this chapter, but must treat also the
emission component (or, equivalently, the source function). An analytic approximation for the emis-
sion component inrecombinationlines formed in clumpy winds is provided in Chapter 5, whereas a
corresponding treatment of the re-emission inresonancelines is still to be developed (although we
comment on a possible first approximation in Sect. 5.7.2).
Finally, we notice also that whereas the Levermore et al. model was derived for the special case
of a Markovian mixture, no assumptions regarding the underlying clump statistics were made in the
corresponding techniques developed for hot star winds, suggesting that our basic results may perhaps
not be so dependent on the particular statistics of the clumps.



Chapter 4

Mass loss from inhomogeneous hot star
winds
I. Resonance line formation in 2D models

This chapter is a copy of Sundqvist, Puls, & Feldmeier (2010), Astronomy & Astrophysics, 510, A11.
The only revision from the original version is that the two appendices here have been added at the end
as normal sections (4.9 and 4.10).

4.1 Abstract

The mass-loss rate is a key parameter of hot, massive stars. Small-scale inhomogeneities (clumping)
in the winds of these stars are conventionally included in spectral analyses by assuming optically
thin clumps, a void inter-clump medium, and a smooth velocity field. To reconcile investigations
of different diagnostics (in particular, unsaturated UV resonance lines vs. Hα /radio emission) within
such models, a highly clumped wind with very low mass-loss rates needs to be invoked, where the
resonance lines seem to indicate rates an order of magnitude(or even more) lower than previously
accepted values. If found to be realistic, this would challenge the radiative line-driven wind theory
and have dramatic consequences for the evolution of massivestars. We investigate basic properties
of the formation of resonance lines in small-scale inhomogeneous hot star winds with non-monotonic
velocity fields. We study inhomogeneous wind structures by means of 2D stochastic and pseudo-2D
radiation-hydrodynamic wind models, constructed by assembling 1D snapshots in radially indepen-
dent slices. A Monte-Carlo radiative transfer code, which treats the resonance line formation in an
axially symmetric spherical wind (without resorting to theSobolev approximation), is presented and
used to produce synthetic line spectra. The optically thin clumping limit is only valid for very weak
lines. The detailed density structure, the inter-clump medium, and the non-monotonic velocity field
are all important for the line formation. We confirm previousfindings that radiation-hydrodynamic
wind models reproduce observed characteristics of strong lines (e.g., the black troughs) without apply-
ing the highly supersonic ‘microturbulence’ needed in smooth models. For intermediate strong lines,
the velocity spans of the clumps are of central importance. Current radiation-hydrodynamic models
predict spans that are too large to reproduce observed profiles unless a very low mass-loss rate is in-
voked. By simulating lower spans in 2D stochastic models, the profile strengths become drastically
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reduced, and are consistent with higher mass-loss rates. Tosimultaneously meet the constraints from
strong lines, the inter-clump medium must be non-void. A first comparison to the observed Phospho-
rus V doublet in the O6 supergiantλ Cep confirms that line profiles calculated from a stochastic 2D
model reproduce observations with a mass-loss rate approximately ten times higher than that derived
from the same lines but assuming optically thin clumping. Tentatively this may resolve discrepancies
between theoretical predictions, evolutionary constraints, and recent derived mass-loss rates, and sug-
gests a re-investigation of the clump structure predicted by current radiation-hydrodynamic models.

4.2 Introduction

Mass loss through supersonic stellar winds is pivotal for the physical understanding of hot, massive
stars and their surroundings. A change of only a factor of twoin the mass-loss rate has a dramatic
effect on massive star evolution (Meynet et al., 1994). Winds from these stars are described by the
line-driven wind theory (Castor et al., 1975; Pauldrach et al., 1986), which traditionally assumes
the wind to be stationary, spherically symmetric, and homogeneous. Despite this theory’s apparent
success (e.g., Vink et al., 2000), evidence for an inhomogeneous and time-dependent wind has over
the past years accumulated, recently summarized in the proceedings from the workshop ‘Clumping
in hot star winds’ (Hamann et al., 2008) and in a general review of mass loss from hot, massive stars
(Puls et al., 2008b).
That line-driven winds should be intrinsically unstable was already pointed out by Lucy & Solomon
(1970), and was later confirmed first by linear stability analyses and then by direct, radiation-
hydrodynamic modeling of the time-dependent wind (e.g., Owocki & Rybicki, 1984; Owocki et al.,
1988; Feldmeier, 1995; Dessart & Owocki, 2005), where the line-driven (or line-deshadowing) insta-
bility causes a small-scale, inhomogeneous wind in both density and velocity.
Direct observationalevidence of a small-scale, clumped stellar wind has, for O-stars, so far only
been given for two objects,ζ Pup and HD 93129A (Eversberg et al., 1998; Lépine & Moffat, 2008).
Much indirect evidence, however, has arisen from quantitative spectroscopy, where the standard way
of deriving mass-loss rates from observations nowadays is via line-blanketed, non-LTE (LTE: local
thermodynamic equilibrium) model atmospheres that include a treatment of both the photosphere and
the wind. Wind clumping has been included in such codes (e.g., CMFGEN (Hillier & Miller, 1998),
PoWR (Gräfener et al., 2002), FASTWIND (Puls et al., 2005))by assuming statistically distributed
optically thin density clumps and a void inter-clump medium, while keepingthe smooth velocity
law. The major result from this methodology is that any mass-loss rate derived from smooth models
and density-squared diagnostics (Hα , infra-red and radio emission) needs to be scaled down by the
square root of the clumping factor (which describes the overdensity of the clumps as compared to
the mean density, see Sect. 4.3.2). For example, Crowther etal. (2002), Bouret et al. (2003), and
Bouret et al. (2005) have concluded that a reduction of ‘smooth’ mass-loss rates by factors 3. . .7
might be necessary. Furthermore, from a combined optical/IR/radio analysis of a sample of Galactic
O-giants/supergiants, Puls et al. (2006) derived upper limits on observed rates that were factors of
2. . .3 lower than previous Hα estimates based on a smooth wind.
On the other hand, the strength of UV resonance lines (‘P Cygni lines’) in hot star winds depends
linearly on the density and is therefore not believed to be directly affected by optically thin clumping.
By using the Sobolev with exact integration technique (SEI;cf. Lamers et al. 1987) on the unsaturated
Phosphorus V (PV) lines, Fullerton et al. (2006) for a large number of Galactic O-stars derived rates
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that were factors of 10. . .100 lower than corresponding smooth Hα /radio values (provided PV is the
dominant ion in spectral classes O4 to O7). Such large revisions would conflict with the radiative
line-driven wind theory and have dramatic consequences forthe evolution of, and the feedback from,
massive stars (cf. Smith & Owocki, 2006; Hirschi, 2008). Indeed, a puzzling picture has emerged, and
it appears necessary to ask whether the present treatment ofwind clumping is sufficient. Particularly
the assumptions of optically thin clumps, a void inter-clump medium, and a smooth velocity field may
not be adequate to infer proper rates under certain conditions.

Optically thin vs. optically thick clumps. Oskinova et al. (2007) used a porosity formalism (Feld-
meier et al., 2003; Owocki et al., 2004) to scale the opacity from smooth models and investigate
impacts fromoptically thickclumps on the line profiles ofζ Pup. Due to a reduction in the effective
opacity, the authors were able to reproduce the PV lines without relying on a (very) low mass-loss
rate, while simultaneously fitting the optically thin Hα line. This formalism, however, was criticized
by Owocki (2008) who argued that the original porosity concept had been developed for continuum
processes, and that line transitions rather should depend on the non-monotonic velocity field seen in
hydrodynamic simulations. Proposing a simplified analyticdescription to account for this velocity-
porosity, or ‘vorosity’, he showed how also this effect may reduce the effective opacity.
In this first paper we attempt to clarify the most important concepts by conducting a detailed inves-
tigation on the synthesis of UV resonance lines from inhomogeneous two-dimensional (2D) winds.
We create both pseudo-2D, radiation-hydrodynamic wind models and 2D, stochastic wind models,
and produce synthetic line profiles via Monte-Carlo radiative transfer calculations. We account for
and analyze the effects from a wind clumped inbothdensity and velocity as well as the effects from
a non-void inter-clump medium. Especially we focus on lineswith intermediate line strengths, com-
paring the behavior of these lines with the behavior of both optically thin lines and saturated lines.
Follow-up studies will include a treatment of emission lines (e.g., Hα ) and an extension to 3D, and
the development of simplified approaches to incorporate effects into non-LTE models.
In Sect. 4.3 we describe the wind models and in Sect. 4.4 the Monte-Carlo radiative transfer code.
First results from 2D inhomogeneous winds are presented in Sect. 4.5, and an extensive parameter
study is carried out in Sect. 4.6. We discuss some aspects of the interpretations of these results and
perform a first comparison to observations in Sect. 4.7, and summarize our findings and outline future
work in Sect. 4.8.

4.3 Wind models

For wind models, we use customary spherical coordinates(r,Θ ,Φ) with r the radial coordinate,Θ the
polar angle, andΦ the azimuthal angle. We assume spherical symmetry in 1D models and symmetry
in Φ in 2D models. In all 2D modelsΘ is sliced intoNΘ equally sized slices, giving a lateral scale of
coherence (or an opening angle) 180/NΘ degrees. This 2D approximation is discussed in Sect. 4.7.4.
Below we describe the model types primarily used in the present analysis; two are of stochastic nature
and two are of radiation-hydrodynamic nature.

4.3.1 Radiation-hydrodynamic wind models

We use the time-dependent, radiation-hydrodynamic (hereafter RH) wind models from Puls et al.
(1993, hereafter ‘POF’), calculated by S. Owocki, and from Feldmeier et al. (1997, hereafter ‘FPP’),
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Figure 4.1:Left panel: Density contour plots of one stochastic (upper plot) and oneRH (FPP, lower
plot) model. The Cartesian coordinateZ is on the abscissa andX is on the ordinate.Right panel:
Density and velocity structures of one slice in one stochastic (upper) and one RH (FPP, lower) model.
Over densities are marked with filled dots. For model parameters and details, see Sect. 4.3.2.

and the reader is referred to these papers for details. Here we summarize a few important aspects.
POF assume a 1D, spherically symmetric outflow, and circumvent a detailed treatment of the wind
energy equation by assuming an isothermal flow. Perturbations are triggered by photospheric sound
waves. The wind consists of 800 radial points, extending to roughly 5 stellar radii. FPP also assume a
1D, spherically symmetric outflow, but include a treatment of the energy equation. Perturbations are
triggered either by photospheric sound waves or by Langevinperturbations that mimic photospheric
turbulence. The wind consists of 4000 radial points, extending to roughly 30 stellar radii. Tests have
shown that the FPP winds yield similar results for both flavors of perturbations, and, for simplicity,
we therefore use only the results of the turbulence model.
Due to the computational cost of obtaining the line force, only initial attempts to 2D RH simulations
have been carried out (Dessart & Owocki, 2003, 2005). These authors first used a strictly radial line
force, yielding a complete lateral incoherent structure due to Rayleigh-Taylor or thin-shell instabili-
ties, and in the follow-up study uses a restricted 3-ray approach to approximate the lateral line drag,
yielding a larger lateral coherence but lacking quantitative results. Therefore, and because of the
general dominance of the radial component in the radiative driving, we create fragmented 2D wind
models from our 1D RH ones by assembling snapshots in theΘ direction, assuming independence be-
tween each slice consisting of a pure radial flow. After the polar angle has been sliced intoNΘ equally
sized slices, one random snapshot is selected to represent each slice. This method for creating more-D
models from 1D ones is essentially the same as the ‘patch method’ used by Dessart & Owocki (2002),
when synthesizing emission lines for Wolf-Rayet stars, andthe method used by, e.g., Oskinova et al.
(2004), when synthesizing X-ray line emission from stochastic wind models. Fig. 4.1 displays typical
velocity and density structures from this type of 2D model.

4.3.2 Stochastic wind models

We also study clumpy wind structures created by means of distorting a smooth, stationary, and spher-
ically symmetric wind via stochastic procedures. This allows us to investigate the impacts from, and
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to set constraints on, different key parameters without being limited by the values predicted by the RH
simulations. For the underlying smooth winds we adopt a standardβ velocity lawvβ (r) = (1−b/r)β .
Here and throughout the paper, we measureall velocities in units of the terminal velocity,v∞, andall
distances and length scales in units of the stellar radius,R⋆. b is given byv(r = 1) = vmin, the velocity
at the base of the wind.vmin = 0.01 is assumed, roughly corresponding to the sound speed. Fora
givenṀ, the homogeneous density structure then follows directly from the equation of continuity. We
chooseβ = 1, which is appropriate for a standard O-star wind and allowsus to derive simple analytic
expressions for wind masses and flight times.

A model clumped in density. First we consider a two component density structure consisting of
clumps and a rarefied inter-clump medium (hereafter ICM), but keep theβ = 1 velocity law. Clumps
are released randomly in radial direction at the inner boundary, independently from each slice. The
release in radial direction means that a given clump stays within the same slice during its propagation
through the wind. The average time interval between the release of two clumps isδ t, which here and
in the following is expressed in units of the wind’s dynamic time scaletdyn = R⋆/v∞.
The average distance between clumps thus isvβ δ t, i.e. clumps are spatially closer in the inner wind
than in the outer wind, and for exampleδ t = 0.5 (in tdyn) gives an average clump separation of 0.5
(in R⋆) at the point wherev= 1 (in v∞). We further assume that the clumps preserve mass and lateral
angle when propagating outwards, and that the underlying model’s total wind mass is conserved within
every slice. This radial clumpdistribution is the same as the one used by Oskinova et al. (2006) when
simulating X-ray emission from O-stars, but differs from the one used by Oskinova et al. (2007)
when investigating porosity effects on resonance lines (see discussion in Sect. 4.7.5). The radial
clumpwidthsare here calculated from the actual wind geometry and clump distribution by assuming
avolume filling factor fv, defined as the fractional volume of the dense gas1. A related quantity is the
clumping factor

fcl ≡
〈ρ2〉
〈ρ〉2 , (4.1)

as defined by Owocki et al. (1988), where angle brackets denote temporal averages. Identifying
temporal with spatial averages one may write for a two component medium (cf. Abbott et al., 1981)

fcl =
fv +(1− fv)x2

ic

[ fv +(1− fv)xic]2
, (4.2)

with

xic ≡
ρic

ρcl
, (4.3)

the ratio of low- to high-density gas (subscript ic denotes inter-clump and cl denotes clump). For
a void (xic =0) ICM, ρcl/〈ρ〉 = f−1

v = fcl, i.e, fcl then describes the over density of the clumps as
compared to the mean density.

1 We here notice thatfv is normalized to thetotal volume, i.e., fv = 0. . .1. In some literaturefv is identified with the
straight volume ratioVcl/Vic, which then implicitly assumes thatVcl ≪Vic.
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Table 4.1: Basic parameters defining a stochastic wind modelclumped in density and with a non-
monotonic velocity field.

Name Parameter Considered range
Volume filling factor fv fv = 0.01. . .1.0
Average time interval between
release of clumps

δ t δ t [tdyn] = 0.05. . .1.5

ICM density parameter, Eq. 4.3 xic xic = 0. . .0.1
Velocity span of clump δv δv/δvβ =−10.0. . .1.0
Parameter determining the jump
velocity

vj vj/vβ = 0.01. . .0.15

A model clumped in density and velocity. Next we consider also a non-monotonic velocity law,
using the spatial distribution and widths of the clumps described in the previous paragraph. The RH
simulations indicate that, generally, strong shocks separate denser and slower material from rarefied
regions with higher velocities. Building on this basic result, we now modify the velocity fields in our
stochastic models by adding a random perturbation to the local vβ value prior to the starting point of
each clump, so that the new velocity becomesvpre. A ‘jump velocity’ is thereafter determined by a
random subtraction fromvβ , now using the added perturbation as the maximum subtraction. That is,

vpre= vβ +vj ×2R1 vpost= vβ −vj ×2R1R2, (4.4)

whereR1 andR2 are two random numbers in the interval 0 to 1.vpre− vpost is the jump velocity as
determined by the parametervj . By multiplying R1 by two, we make sure that the mean perturbation at
the ‘pre’ point isvj, andR2 allows for an asymmetry aboutvβ (see Fig. 4.2). The clump is assumed to
start atvpost, and its velocity span is set by assuming a value forδv/δvβ , whereδv is the velocity span
of the clump andδvβ the corresponding quantity for the same clump with a smooth velocity law (see
Fig. 4.2). Inspection of our RH models suggests that velocity gradients within density enhancements
primarily are negative (see also Sect. 4.7.3), and negativegradients are also adopted in most of our
stochastic models. Finally we assume a constant velocity gradient through the ICM.

Overall, the above treatment provides a phenomenological description of the non-monotonic velocity
field seen in RH simulations. The description differs from the one suggested by Owocki (2008), who
uses only one parameter to characterize the velocity field (whereas we have two). Our new formulation
is motivated by both observational and modeling constraints from strong and intermediate lines, as
discussed in Sect. 4.7.5.

The basic parameters defining a stochastic model are listed in Table 4.1. Fig. 4.1 (right panel) shows
the density and velocity structures of one slice in a stochastic model, with density parametersfv = 0.1,
δ t = 1.0, xic =0.005, and velocity parametersvj = 0.15vβ andδv=−δvβ . Clump positions have been
highlighted with filled dots and a comparison to a RH model (FPP) is given. In the RH model, we have
identified clump positions by highlighting all density points with values higher than the corresponding
smooth model. The left panel shows the density contours of the same models, where, for clarity, only
the wind tor = 5 is displayed.
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Figure 4.2: Non-monotonic velocity field and correspondingparameters in a stochastic model.

4.4 Radiative transfer

To compute synthetic line profiles from the wind models, we have developed a Monte-Carlo radiative
transfer code (MC-2D) that treats resonance line formationin a spherical and axially symmetric wind
using an ‘exact’ formulation (e.g., without resorting to the Sobolev approximation). The restriction to
2D is of course a shortage, but has certain geometrical and computational advantages and should be
sufficient for the study of general properties, as discussedin Sect. 4.7.4. A thorough description and
verification of the code can be found in Sect. 4.9.

Photons are released from the lower boundary (the photosphere) and each path is followed until the
photon has either left the wind or been backscattered into the photosphere. Basic assumptions are a
line-free continuum with no limb darkening emitted at the lower boundary, no continuum absorption
in the wind, pure scattering lines, instantaneous re-emission, and no overlapping lines (i.e., singlets).
These simplifying assumptions, except for doublet formation, are all believed to be of minor impor-
tance to the basic problem. By the restriction to singlet line formation we avoid confusion between
effects on the line profiles caused by line overlaps and by other important parameters, but on the other
hand it also prevents a direct comparison to observations for many cases (but see Sect. 4.7.6). A
consistent treatment of doublet formation will be includedin the follow-up study.

4.5 First results from 2D inhomogeneous winds

Throughout this section we assume a thermal velocity,vt = 0.005 (in units ofv∞and∼ 10 kms−1,
appropriate for a standard O-star wind), and apply no microturbulence. After a brief discussion on the
impact of the observer’s position and opening angles, we concentrate on investigating the formation
of strong, intermediate, and weak lines. In our definition, an intermediate line is characterized by a
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Figure 4.3: Synthetic line profiles calculated from 2D RH models. The abscissa is the dimensionless
frequencyx (Eq. 4.18), normalized to the terminal velocity, and the ordinate is the flux normalized
to the continuum.Upper panel: Profiles from POF models withκ0 = 5.0. The upper plot displays
profiles for an observer placed at theΘobs angles as labeled in the figure and a profile averaged over
all NΘ = 30 angles. The lower plot displays averaged profiles for three differentNΘ . Lower panel:
Averaged profiles from FPP and POF models withNΘ = 30, and withκ0 = 100.0 (upper)κ0 = 5.0
(middle), andκ0 = 0.05 (lower). For comparison, 1D, smooth profiles with the samevalues ofκ0 are
shown as well.

line strength2 κ0 = 5.0 chosen such as to almost precisely reach the saturation limit in a smoothmodel
(cf. Fig. 4.3).
By investigating these different line types, we account forthe tight constraints that exist for each
flavor: i) weak linesshould be independent of density-clumping properties as long as the clumps
remain optically thin, ii) forintermediate lineseither smooth models overestimate the profile strengths
or mass-loss rates are lower than previously thought (e.g. the PV problem, see Sect. 4.2), and iii)
strong saturated linesare clearly present in hot star UV spectra, and observed features need to be
reproduced, such as high velocity (> v∞) absorption, the black absorption trough, and the reduction
of re-emitted flux blueward of the line center.

4.5.1 Observer’s position and opening angles

The observed spectrum as calculated from a 2D wind structuredepends on the observer’s placement
relative to the star (see Sect. 4.9). As it turns out, however, this dependence is relatively weak in both
the stochastic and the RH models (the latter is demonstratedin the upper panel of Fig. 4.3). Tests
have shown that the variability of the line profile’s emission part is insignificant. The variability of the
absorption part may be detectable, at least near the blue edge, but is still insignificant for the integrated
profile strength; the equivalent width of the absorption part is almost independent of the observer’s
position. Also the opening angle, 180◦/NΘ , primarily has a smoothing effect on the profiles. In
Fig. 4.3, prominent discrete absorption features appear near the blue edge in the model withNΘ = 1
(spherical symmetry), but are smoothed out in the ‘broken-shell’ models withNΘ = 30 and 60. The
equivalent widths of the absorption parts are approximately equal for all three models.

2 with κ0 proportional to the product of mass-loss rate and abundanceof the considered ion, see Sect. 4.9.
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Table 4.2: Primary stochastic wind models and parameters

Model name fv δ t [tdyn] xic δv/δvβ vj/vβ rst
a rext

b

Default 0.25 0.5 0.0025 -1.0 0.15 1.3 ∼ 25
RHcopy 0.1 0.5 0.005 -10.0 0.15 1.3 ∼ 5
Obs1 0.11 0.5,4.0c 0.005,0.0025c -1.0 0.15 1.02 ∼ 25

a Radial onset of clumping.b Radial extent of wind.
c Left value inside the radius corresponding tovβ = 0.6, right value outside.

Because our main interest here is the general behavior of theline profiles, we choose to work only
with NΘ = 30 and profiles averaged over all observer angles from here on. Working with averaged
line profiles has great computational advantages, because roughly a factor ofNΘ fewer photons are
needed.

4.5.2 Radiation-hydrodynamic models

Fig. 4.3 (lower panel) shows line profiles from FPP and POF hydrodynamical models. For the strong
lines, the constraints stated in the beginning of this section are reproduced without adopting a highly
supersonic and artificial microturbulence. These featuresarise because of the multiple resonance
zones in a non-monotonic velocity field, and are present in spherically symmetric RH profiles as well
(see POF for a comprehensive discussion); the main difference between 1D and 2D is a smoothing
effect, partly stemming from averaging over all observer angles (see above). The absorption at veloc-
ities higher than the terminal is stronger in FPP than in POF,due to both a higher velocity dispersion
and a larger extent of the wind (rmax∼ 30 as compared tormax∼ 5, see Sect. 4.3.1); more overdense
regions are encountered in the outermost wind, which (because of the flatness of the velocity field)
leads to an increased probability to absorb at almost the same velocities.
For the intermediate lines, we again see the qualitative features of the strong lines, though less promi-
nent. As compared to smooth models, a minorabsorptionreduction is present at velocities lower than
the terminal, but compensated by the blue edge smoothing. Therefore the equivalent width of the
line profile’s absorption part in the FPP model is approximately equal to that of the smooth model,
whereas in the POF model it is reduced by∼ 10%. This minor reduction agrees with that found by
Owocki (2008), and is not strong enough to explain the observations without having to invoke a very
low mass-loss rate.
For the weak lines, the absorption part is marginally stronger than from a smooth, 1D model.

4.5.3 Stochastic models

In this subsection we use a ‘default’ 2D, stochastic model with parameters as specified in Table 4.2.
By comparing this model to models in which one or more parameters are changed, we demonstrate
key effects in the behavior of the line profiles.

Strong lines. For strong lines, the line profiles from the default model reproduce the observational
constraints described in the first paragraph of this section. As in the RH models, we apply no micro-
turbulence. Fig. 4.4 (left panels) demonstrates the importance of the ICM in the default model; the
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Figure 4.4:Left panels: Solid lines display total line profiles and the absorption part for the default
stochastic model (see Table 4.2), withκ0 = 1000 (upper),κ0 = 5.0 (middle), andκ0 = 0.05 (lower).
Dotted lines display smooth models withκ0 = 5.0 andκ0 = 0.5 (middle), andκ0 = 0.05 (lower).
Dashed/dashed-dotted lines with modifications from the default model as labeled in the figure.Right
panels: Same as the left panels, but for POF (dashed lines) and RHcopy(solid lines). Dashed-dotted
lines with modifications from RHcopy as labeled in the figure.

absorption part of a very strong line is not saturated whenxic =0. That is, with a void ICM we will,
regardless of the opacity, always have line photons escaping their resonance zones without ever inter-
acting with any matter, thereby de-saturating the line. This ICM finding agrees with that of Zsargó
et al. (2008), who point out that a non-void ICM is crucial forthe formation of highly ionized species
such as O VI. We also notice thatδv = −δvβ (used in the default model) does not permit clumps
to have velocities higher than the localvβ value, preventing absorption at velocities higher than the
terminal one when the ICM is void.
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Intermediate lines. For intermediate lines, the line profiles from the default model display the main
observational requirement if to avoid a drastic reduction in ‘smooth’ mass-loss rates3, namely a strong
absorption reduction as compared to a smooth model. The leftpanels of Fig. 4.4 show how the
integrated profile strength of the default model withκ0 = 5.0 roughly corresponds to that of a smooth
model havingκ0 = 0.5, i.e., the smooth model would result in a mass-loss rate (asestimated from
the integrated profile strength) ten timeslower than the clumped model. The figure also illustrates
how the main effect is on the absorption part of the line profile. In addition to the reduction in profile
strength, the profileshapesof the absorption parts are noticeably different for the default and smooth
models (the shapes of the re-emission parts, not shown here,are similar for the two models). We
further discuss the shapes of the profiles in Sect. 4.7.1. Thedramatic reduction in integrated profile
strength occurs because of large velocity gaps between the clumps, in which the wind is unable to
absorb (at this opacity the ICM may not ‘fill in’ these gaps with absorbing material).
We have identified|δv| as a critical parameter for the formation of intermediate lines. The importance
of the velocity spans of the clumps is well illustrated by theabsorption part profiles in Fig. 4.4 (lower-
left panel, middle plot). The absorption is much stronger inthe comparison model withδv= −5δvβ
than in the default model withδv=−δvβ , because the former model covers more of the total velocity
spacewithin the clumps, thereby closing the gapsbetweenthe clumps. Consequently the wind may,
on average, absorb at many more wavelengths.
In principle, however, this effect is counteracted by a decrease in the clump’s optical depths, because
of the now higher velocity gradients (|δv/δvβ |> 1). Consider theradial Sobolev optical depth (pro-
portional toρ/|∂v/∂ r|, see Sect. 4.9) in a stochastic wind model. As compared to a smooth model,
the density inside a clump is enhanced by a factor off−1

v (assuming a negligible ICM), but also the
velocity gradient is enhanced by a factor of|δv/δvβ |. Thus we may write for the radial Sobolev
optical depth inside a clump,

τSob≈
τSob,sm

fv|δv/δvβ |
≈ κ0

vβ fv|δv/δvβ |
, (4.5)

where ‘sm’ indicates a quantity from a smooth wind, and the expression to the right is valid for an
underlyingβ = 1 velocity law. From Eq. 4.5, we see how the effects on the optical depth from the
increased density (fv = 0.25) and the increased velocity gradients (|δv/δvβ |= 5) almost cancel each
other in this example. Thus, the clumps are still optically thick for the intermediate line (κ0 = 5),
which means that the larger coverage of the total velocity space ‘wins’, and the net effect becomes an
increase in absorption (as seen in Fig. 4.4, lower-left panel, middle plot). This will be true as long as
not fv|δv/δvβ | ≫ 1, which is never the case in the parameter range considered here.
Finally, the prominent absorption dip toward the blue edge in the default model turns out to be a quite
general feature of our stochastic models, and is discussed in Sects. 4.6.1 and 4.7.2.

Weak lines. The statistical treatment of density clumping included in atmospheric codes such as
CMFGEN, PoWR, and FASTWIND is valid for optically thin clumps and a negligible ICM, and gives
no direct effect on resonance lines scaling linearly with density. Here we test this prediction using
detailed radiative transfer4. Our default model recovers the smooth results whenκ0 = 0.05 (Fig. 4.4,

3 Recall thatfv = 0.25→ fcl ≈ 4, which impliesṀ = Ṁsmooth/2, if fcl were derived fromρ2-diagnostics assuming optically
thin clumps.

4 The indirect effect through the feedback on the occupation numbers is notincluded, because in this section we assume
constant ionization.
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Figure 4.5: Velocity (upper panel) and density (lower panel) structures for one slice in POF (dashed)
and RHcopy (dotted), see Table 4.2. Solid lines are the corresponding smooth structures, and clumps
are highlighted as in Fig. 4.1.

left panels), confirming the expected behavior. However, from calculating spectra using different
values ofκ0, we have found that significant deviations from smooth models occur for the default
model already beforeκ0 reaches unity. This occurs because the clumps start to become optically
thick, which may again be understood by considering the radial Sobolev optical depth (Eq. 4.5). With
fv ≤ 0.25 andκ0 ≥ 0.25, one findsτSob≥ 1.0.

4.5.4 Comparison between stochastic and radiation-hydrodynamic models

Our stochastic wind models have been constructed to containall essential ingredients of the RH mod-
els. Therefore they should also reproduce the RH results, atleast qualitatively, if a suitable parameter
set is chosen. To test this we used the POF model. In this model, the clumping factor increases drasti-
cally atr ∼ 1.3, from fcl ∼ 1.0 to fcl ∼ 10, after which it stays basically constant. The average clump
separation in the outer wind is roughly half a stellar radius. Important for the velocity field is that
the velocity spans of the clumps are generallylarger than corresponding ‘β spans’, i.e.,|δv/δvβ |> 1
(this is the case in FPP as well), a characteristic behavior that primarily affects the intermediate lines
(details will be discussed in Sect. 4.7.3). Finally, a suitable vj can be assigned from the position of
the blue edge in a strong line calculated from POF. Table 4.2 (entry RHcopy) summarizes all param-
eters used to create this stochastic, ‘pseudo-RH’ model. Fig. 4.5 displays one slice of the velocity
and density structures in the POF and RHcopy models, and Fig.4.4 (right panels) displays the line
profiles.
The line profiles of POF are matched reasonably well by RHcopy. The intermediate lines again
demonstrate the importance of the velocity spans of the clumps; for an alternative model withδv=
−δvβ , there is much less absorption in the stochastic model than in POF, i.e., we encounter the same
effect as discussed in the previous subsection. We concludethat in RH models it is the large velocity
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spans inside the density enhancements that prevent a reduction in profile strength (as compared to
smooth models) for intermediate lines.

4.6 Parameter study

Having established basic properties, we now use our stochastic models to analyze the influence from
different key parameters in more detail. First, however, weintroduce a quantity that turns out to be
particularly useful for our later discussion.

4.6.1 The effective escape ratio

For the important intermediate lines, it is reasonable to assume that the clumps are optically thick
and the ICM negligible (see Sect. 4.5.3 and the next paragraph). Under these assumptions, a decisive
quantity for photon absorption will be the velocity gapnot covered by the clumps, as compared to
the thermal velocity (the latter determining the width of the resonance zone in which the photon may
interact with the wind material). This is illustrated in theleft panel of Fig. 4.6, and we shall call this
quantity the ‘effective escape ratio’

η ≡ ∆v
vt

, (4.6)

where∆v is the velocity gap between two subsequent clumps, made up byall velocities not covered
by any of the clumps (see Fig. 4.6). In principle,η determines to which extent the vorosity effect
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(i.e., the velocity gaps between the clumps, cf. Owocki, 2008) is important for the line formation. As
defined,η does not contain any assumptions on thespatialstructure of the wind.η << 1 means that
the velocity gaps between the clumps are much smaller than the thermal velocity, which in turn means
that the probability for a photon to encounter a clump withinits resonance zone is high. If we assume
each clump to be optically thick, every encounter will lead to an absorption. Thus the probability for
photon absorption is high when the value ofη is low. Vice versa,η >> 1 results in a high probability
for the photon to escape its resonance zone without interacting with the wind material, i.e., a low
absorption probability. If the entire velocity space were covered by clumps,η = 0.
For the wind geometry used in our stochastic models, we may write (see Sect. 4.10 for a derivation)

η ≈ vβ δ t(1− fv|δv/δvβ |)
Lr

≈ δ t(1− fv|δv/δvβ |)
vt

vβ

r2 , (4.7)

whereLr is the radial Sobolev length of a smooth model, which forβ = 1 isLr ≈ vtr2 (as usual,r and
Lr in R⋆ andδ t in tdyn). Note that in Eq. 4.7 also the density-clumping parametershave entered the
expression forη , illustrating that there is an intimate coupling with thespatialclumping parameters,
even though the vorosity effect initially depends on velocity parameters alone. For example, consider
a wind with clumps that follow a smoothβ velocity law. By bringing the clumps spatially closer
together (for example by decreasingδ t), the velocity gaps between them decrease as well. Thus
one may choose to describe the changed situation either in terms of a less efficient porosity, because
of fewer ‘density holes’ in the resonance zone through whichthe photons can escape (as done by
Oskinova et al., 2007),or in terms of a less efficient vorosity, because of smaller velocity gaps between
the clumps. Of course, one may also obtain a lower velocity gap between the clumps by increasing
the actual velocity spans inside the clumps, as simulated inour stochastic models when|δv/δvβ |> 1.
This effect, leading to a rather low vorosity, has already been demonstrated to be at work in the RH
models (Sect. 4.5.4).
Using the parameters of our default model, Fig. 4.6 (right panel) displaysη as a function of velocity
and shows thatη increases rapidly in the inner wind, reaches a maximum atv ≈ 0.33, and then
drops in the outer wind. To compare this behavior with that ofthe line profiles, we can associate
absorption at some frequencyxobs with the corresponding value of the velocity, because absorption
occurs atxobs≈ µv≈ v (radial photons dominate). In the default model’s absorption-part line profile
(see Fig. 4.4, the middle plot in the lower-left panel), a strong de-saturation occurs directly after the
clumping is set to start (atr = 1.3, v≈ 0.23), followed by a maximum atxobs≈ 0.35, and finally an
absorption dip toward the blue edge. The behavior of the lineprofile is thus well mapped byη , and
we may explain the absorption dip as a consequence of the low value ofη in the outer wind, which in
turn stems from the slow variation of the velocity field (i.e., from radially extended resonance zones).

4.6.2 Density parameters

To isolate density-clumping effects, we use a smoothβ = 1 velocity law in this subsection. Despite
the smooth velocity field, there are still holes in velocity space (because of the density clumping, at the
locations where the ICM is present), and the expression forη (Eq. 4.7) remains valid. Since a smooth
velocity field corresponds toδv= δvβ , also the run ofη is equal to the one displayed in Fig. 4.6. In
this subsection we work only with integrated profile strengths (characterized by the equivalent width
Wλ of the line’s absorption part). The shapes of the line profiles are discussed in Sect. 4.7.1.
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Figure 4.7: Equivalent widthsWλ of the absorption parts of line profiles, normalized to the value of
a saturated line, as a function of line strength parameterκ0. The solid line is calculated from smooth
models, and the dashed, dashed-dotted, and dotted lines from stochastic models with a smooth velocity
field andδ t = 0.5, fv = 0.25, andxic as indicated.

Fig. 4.7 showsWλ as a function ofκ0, for smooth models as well as for stochastic models with
and without a contributing ICM. The figure directly tells: i)The default model (xic = 0.0025) for the
intermediate line (κ0 = 5.0) displays aWλ corresponding to a smooth model with aκ0 roughly ten
times lower. ii) Lines never saturate if the ICM is (almost) void. iii) The run ofWλ for the smooth
and clumped models decouple well beforeκ0 reaches unity. iv) For intermediate lines, the response
of Wλ on variations ofκ0 is weak for clumped models. Points one to three confirm our findings from
Sect. 4.5.3.

A variation ofδ t in the stochastic models affects primarily the highκ0 part (κ0 >∼ 1.0) of the curves
in Fig. 4.7. For example, loweringδ t in the model with a void ICM results in an upward shift of the
dashed curve and vice versa. To obtain saturation with a voidICM, δ t ≈ 0.05 is required, which may
be understood in terms of Eq. 4.7. Forδ t = 0.05, theη-values corresponding to the default model are
decreased by a factor of ten, andη reaches a maximum of only about unity, with even lower values
for the majority of the velocity space (cf. Fig. 4.6, right panel). The velocity gaps between the clumps
then become closed, and the line saturates. In this situation, however, the intermediate line becomes
saturated as well, again demonstrating the necessity of anon-voidICM to simultaneously saturate a
strong line and not saturate an intermediate line. Only a properly chosenxic parameter ensures that
the velocity gaps between the clumps become filled by low-density material able to absorb at strong
line opacities, butnot (or only marginally) at opacities corresponding to intermediate lines.

When varyingxic , the primary change occurs at the highκ0 end of Fig. 4.7. For higher (lower)
values ofxic , this part becomes shifted to the left (right), and the curvedecouples earlier (later) from
the corresponding curve for the void ICM. A higher ICM density obviously means that the ICM
starts absorbing photons at lower line strengths and vice versa. Thus, observed saturated lines could
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potentially be used to derive the ICM density (or at least to infer a lower limit),if the mass-loss rate
(and abundance) is known from other diagnostics.
The behavior of the absorption with respect to the volume filling factor is as expected from the expres-
sion forη ; the higherfv, the lower the value ofη , and the stronger the absorption. This is because a
higher fv for a fixedδ t implies that the clumps become more extended, whereas the distances between
clump centers remain unaffected. Consequently, a larger fraction of the total wind velocity is covered
by the clumps, leading to stronger absorption. For weak lines (κ0 ≈ 0.05), the ratioWλ/W̆ ,sm devi-
ates significantly from unity only whenfv <∼ 0.1. Only for such low values can high enough clump
densities be produced so that the clumps start to become optically thick.

From Fig. 4.7 it is obvious that, generally, clumped models have a different (slower) response inWλ
to an increase inκ0 than do smooth models. This behavior may be observationallytested using UV
resonance doublets (Massa et al., 2008), because the only parameter that differs between the two line
components is the oscillator strength. Thus, if a smooth wind model is used and the fitted ratio of
line strengths (i.e.,κ0,blue/κ0,red) does not correspond to the expected ratio of oscillator strengths,
one may interpret this as a signature of a clumped wind. Such behavior was found by Massa et al.
(2008), where the observed ratios of the blue to red component of Si IV λλ1394,1403 in B supergiants
showed a wide spread between unity and the expected factor oftwo. This result indicates precisely the
slow response to an increase inκ0 that is consistent with inhomogeneous wind models such as those
presented here, but not with smooth ones. In inhomogeneous models, the expected profile strength
(or Wλ ) ratio between two doublet components will depend on the adopted clumping parameters
(as demonstrated by Fig. 4.7 and the discussion above) and may in principle take any value in the
range found by Massa et al.. That is, while a profile-strengthratio deviating from the value expected
by smooth models might be a clear indication of a clumped wind, the opposite is not necessarily an
indication of a smooth wind. Furthermore, the degeneracy between a variation of clumping parameters
andκ0 suggests that un-saturated resonance lines should be used primarily as consistency tests for
mass-loss rates derived from other diagnostics rather thanas direct mass-loss estimators. We will
return to this problem in Sect. 4.7.6, where a first comparison to observations is performed for the PV
doublet.

4.6.3 Velocity parameters

The jump velocity parameter,vj , affects only the strong lines (or, more specifically, the lines for
which the ICM is significant), and determines the maximum velocity at which absorption can occur.
For example, by settingvj = 0, no absorption at frequencies higher thanx= 1 is possible (unlessδv
is positive and very high). A highervj also implies more velocity overlaps, and thereby an increased
amount of backscattering due to multiple resonance zones. Both effects are illustrated in Fig. 4.8.
Judging from the line profiles of the lower panel, the blue edge and the reduction of the re-emitted
flux blueward of the line center may both be used to constrainvj . The upper panel shows one slice of
the corresponding velocity fields, illustrating that the underlying β law is recovered almost perfectly
when usingvj = 0.01vβ andδv= δvβ . With this velocity law and a non-void ICM, the corresponding
strong line profile is equivalent to a profile from a smooth model.
In Sects. 4.5.3 and 4.5.4, we showed that a higher value of theclumps’ velocity spans led to stronger
absorption for intermediate lines. In principle this is as expected from Eq. 4.7, whereη always
decreases with increasing|δv/δvβ |. However, with the very high value of|δv/δvβ | used in, e.g.,
the RHcopy model, one realizes thatη in Eq. 4.7 becomes identically zero, becausefv|δv/δvβ |= 1.
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An η = 0 corresponds to the whole velocity space being covered by clumps, and the saturation limit
should be reached. As is clear from Fig. 4.4, however, this isnot the case. This points out two
important details not included when deriving the expression for η and interpreting the absorption in
terms of this quantity, namely that clumps are distributed randomly (withδ t determining only the
average distances between them) and that the parametervj allows for an asymmetry in the velocities
of the clumps’ starting points (see Sect. 4.3.2). These two issues lead to overlapping velocity spans
for some of the clumps, whereas for others there is still a velocity gap left between them, through
which the radiation can escape. Therefore the profiles do notreach complete saturation, despite that
on averageη = 0. This illustrates some inherent limitations when trying to interpret line formation in
terms of a simplified quantity such asη .
The impact from the velocity spans of the clumps on the line profiles also depends on the density-
clumping parameters. To achieve approximately the same level of absorption, a higher value of
δv/δvβ was required in the RHcopy model (fv = 0.1) than in the default model (fv = 0.25), see
Fig. 4.4. Sinceδvβ ∝ fvδ t (see Sect. 4.10), the actual velocity spans of the clumps aredifferent for
different density-clumping parameters, even ifδv/δvβ remains unchanged.
By changing the sign ofδv in the default model (that is, assuming a positive velocity gradient inside
the clumps), we have found that our results qualitatively depend only on|δv|. Some details differ
though. For example, aδv> 0 in our stochastic models permits absorption at velocitieshigher than
the terminal one also within the clumps, whereasδv < 0 restricts the clump velocities to below the
localvβ (see Fig. 4.2). In this mattervj plays a role as well, sincevj controls where, with respect to the
localvβ , the clumps begin. For reasonable values ofvj , however, its influence is minor on lines where
the ICM is insignificant. Finally, tests have confirmed that optically thin lines are only marginally
affected when varyingδv/δvβ .

4.7 Discussion

4.7.1 The shapes of the intermediate lines

For intermediate lines, the shape of the absorption part of the default model differs significantly from
the shape of a smooth model (see Fig. 4.4, the middle plot in the lower-left panel). We showed in
Sect. 4.6.1 that the shapes could be qualitatively understood by the behavior ofη . This is further
demonstrated here by scaling the line strength parameter ofa 1D, smooth model, using a parameteri-
zationκ0 ∝ η−1 outside the radiusr = 1.3 where clumping is assumed to start. Fig. 4.9 displays the
line profiles of 1D, smooth models withκ0 = 5.0 andκ0 = 5.0/(2η). These profiles are compared to
those calculated from a ‘real’ 2D stochastic model with density-clumping parameters as the default
model, but with aβ = 1 velocity field. η was calculated from Eq. 4.7, using the parameters of the
default model and aβ = 1 velocity law, and the factor of 2 in the denominator of the scaledκ0 was
chosen so that theintegratedprofile strength of the 2D model was roughly reproduced. FromFig. 4.9
it is clear that the 1D model with scaledκ0 well reproduces the 2D results, indicating that indeedη
governs the shape of the line profile. We notice also that these profiles display a completely black
absorption dip in the outermost wind, as opposed to the default model with a non-monotonic velocity
field (see Fig. 4.4, the middle plot in the lower-left panel).This is because theβ velocity field does
not allow for any clumps to overlap in velocity space (see thediscussion in Sect. 4.6.3), making the
mapping ofη almost perfect.
Let us also point out that the line shapes can be somewhat altered by using a different velocity law,
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Figure 4.8:Upper: Velocity structures (one slice) in two stochastic models with density-clumping
parameters as for the default model, and different velocityparameters. Dashed:δv/δvβ = 1 and
vj/vβ = 0.01. Solid:δv/δvβ =−1 andvj/vβ = 0.5 belowvβ = 0.6 andvj/vβ = 0.15 above.Lower:
Corresponding line profiles for a strong line.
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Figure 4.9: Total, absorption part, and re-emission part line profiles for 1D, smooth models with
κ0 = 5.0 (dashed-dotted lines) andκ0 = 5.0/(2η) (solid lines, see Sect. 4.7.1), and for a 2D, stochastic
model with density parameters as the default model and aβ = 1 velocity law (dashed lines).
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Figure 4.10:Upper panel: Density structures of one slice in the default stochastic model (upper), in
the default stochastic model with a modifiedδ t (middle, see Sect. 4.7.2), and in FPP (lower).Lower
panel: Line profiles for the absorption part of an intermediate linefor the default model (solid line),
for the default model with a modifiedδ t (dashed line), and for the default model with an ionization
structure decreasing with increasing velocity (dashed-dotted line, see text).

e.g.,β 6= 1. Such a change would affect the distances between clumps aswell as the Sobolev length,
and thereby the line shapes of both absorption and re-emission profiles. However, in all cases is the
shape of the re-emission part similar in the clumped and smooth models.

4.7.2 The onset of clumping and the blue edge absorption dip

We have usedr = 1.3 as the onset of wind clumping in our stochastic models, which roughly cor-
responds to the radius where significant structure has developed from the line-driven instability in
our RH models. However, Bouret et al. (2003, 2005) analyzed O-stars in the Galaxy and the SMC,
assuming optically thin clumps, and found that clumping starts deep in the wind, just above the sonic
point. Also Puls et al. (2006) used the optically thin clumping approach, onρ2-diagnostics, and
found similar results, at least for O-stars with dense winds. With respect to our stochastic models, the
qualitative results from Sects. 4.5 and 4.6 remain valid when choosing an earlier onset of clumping.
Quantitatively, the integrated absorption in intermediate lines becomes somewhat weaker, because the
clumping now starts at lower velocities, and of course the line shapes in this region are affected as
well. The onset of wind clumping will be important when comparing to observations, as discussed in
Sect. 4.7.6.
The stochastic models that de-saturate an intermediate line generally display an absorption dip toward
the blue edge (see Figs. 4.4 and 4.9), which has been interpreted in terms of low values ofη in the
outer wind (see Sect. 4.6.1). However, this characteristicfeature (not to be confused with the so-called
DACs, discrete absorption components) is generally not observed, and one may ask whether it might
be an artifact of our modeling technique. In the following wediscuss two possibilities that may cause
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our models to overestimate the absorption in the outer wind;the ionization fraction and too low clump
separations.
Starting with the former, we have so far assumed a constant ionization factor,q = 1 (cf. Eq. 4.16).
This is obviously an over-simplification. For example, an outwards decreasingq would result in less
absorption toward the blue edge. Here we merely demonstratethis general effect, parameterizing
q = v0/vβ in the stochastic default model (see Table 4.2), withv0 = 0.1 the starting point below
whichq= 1. Fig. 4.10 (lower panel, dashed-dotted lines) shows how the absorption in the outer wind
becomes significantly reduced.
The temperature structure of the wind is obviously important for the ionization balance. Whereas an
isothermal wind is assumed in POF (see Sect. 4.3.1), the FPP model has shocked wind regions with
temperatures of several million Kelvin. To roughly map corresponding effects on the line profiles, we
re-calculated profiles based on FPP models assumingq = 0 in all regions with temperatures higher
thanT = 105 K, andq= 1 elsewhere. Since the hot gas resides primarily in the low-density regions,
however, the emergent profiles were barely affected, and particularly intermediate lines remained
unchanged.
On the other hand, the X-ray emission from hot stars (believed to originate in clump-clump collisions,
see FPP) is known to be crucial for the ionization balance of highly ionized species such as C IV,
N V, and O VI (see, e.g., the discussion in Puls et al., 2008b).X-rays have not been included here,
but could in principle have an impact on our line profiles, by illuminating the over-dense regions and
thereby changing the ionization balance. Krtička & Kubát(2009), however, find that incorporating X-
rays does not influence the PV ionization significantly. Finally, non-LTE analyses including feedback
from optically thin clumping have shown that this as well hasa significant effect on the derived
ionization fractions of, e.g., PV (Bouret et al., 2005; Pulset al., 2008a). To summarize, it is clear that
a full analysis of ionization fractions must await a future non-LTE application that includes relevant
feedback effects from an inhomogeneous wind on the occupation numbers.
In RH models, the average distance between clumps increasesin the outer wind, due to clump-clump
collisions and velocity stretching (Feldmeier et al., 1997; Runacres & Owocki, 2002). Neglecting the
former effect, our stochastic models have clumps much more closely spaced in the outer wind5. We
have therefore modified the default model by settingδ t = 3 outside a radius corresponding tovβ = 0.7.
This is illustrated in the upper panel of Fig. 4.10. The mass loss in the new stochastic model is
preserved (because the clumps are more extended, see the figure), and this model now better resembles
FPP. Recall that differences in the widths of the clumps are expected, since in the default model
fcl ≈ f−1

v = 4, whereas in FPPfcl ≈ 10. The corresponding line profile shows how the absorption
outsidex≈ 0.7 has been reduced, as expected from the higherδ t.

4.7.3 The velocity spans of the clumps

In Sect. 4.5.4 it was found that|δv| > δvβ in the RH models. Fig. 4.11, upper panel, shows the
velocity spans of density enhancements (identified as having a density higher than the corresponding
smooth value) in the FPP model, and demonstrates that, afterstructure has developed,|δv| is much
higher thanδvβ throughout the whole wind. These high values essentially stem from the location of
the starting points of the density enhancements, which generally lie beforethe velocities have reached
their post shock values (see Fig. 4.11, middle and lower panels). By using aβ velocity law (which
in principle corresponds to a stochastic velocity law withvj = 0 andδv= δvβ , see Fig. 4.8) together

5 The effect is minor in POF, since these RH models only extend to r ∼ 5 (see Sect. 4.3.1).
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Figure 4.11:Upper: Velocity spans of density enhancements in the FPP model (squares) and corre-
spondingβ intervals (diamonds).Lower: Three density enhancements and corresponding velocity
spans in the FPP model, highlighted as in Fig. 4.1.

with the density structure from FPP, we simulated a RH wind with low velocity spans. Indeed, for
the corresponding intermediate line the equivalent width of the absorption part was∼ 35% lower than
that of the original FPP model. The strong line, on the other hand, remained saturated, because the
ICM in FPP is not void. So, again, the RH models would in parallel display de-saturated intermediate
lines and saturated strong lines, were it not for the large velocity spans inside the clumps.
We suggest that the large velocity span inside a shell (clump) is primarily of kinematic origin, and
reflects the formation history of the shell. The shell propagates outwards through the wind, essentially
with a β = 1 velocity law (Owocki et al., 1988). Fast gas is deceleratedin a strong reverse shock
at the inner rim of the shell. The shell collects ever faster material on its way out through the wind.
This new material collected at higher speeds resides on the star-facing side, i.e. at smaller radii, of
the slower material collected before. Thus, a negative velocity gradient develops inside the shell. The
fact that|δv| ≫ δvβ in FPP seems to reflect that the shell is formed at small radii,and then advects
outwards maintaining its steep interior velocity gradient6. From this formation in the inner, steeply
accelerating wind, velocity spans within the shells up to (afew) hundred kms−1, as seen in Fig. 4.11,
appear reasonable.
However, the dynamics of shell formation in hot star winds isvery complex due to the creation and
subsequent merging of subshells, as caused by nonlinear perturbation growth and the related excitation
of harmonic overtones of the perturbation period at the windbase (see Feldmeier, 1995). Future work
is certainly needed to clarify to which extent the large velocity spans inside the shells in RH models
are a stable feature (see also Sect. 4.8.2).

6 Actually, the velocity gradient may further steepen duringadvection, due to faster gas trying to overtake slower gas ahead
of it; however, this effect is balanced by pressure forces inthe subsonic postshock domain.
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4.7.4 3D effects

A shortcoming of our analysis is the assumed symmetry inΦ . The 2D rather than 3D treatment has
in part been motivated by computational reasons (see Sect. 4.9). More importantly though, we do not
expect ourqualitative results to be strongly affected by an extension to 3D. Withinthe broken-shell
wind model, all wind slices are treated independently, and distances between clumps increase only
in the radial direction. Therefore the expected outcome from extending to 3D is a smoothing effect
rather than a reduction or increase in integrated profile strength (similar to the smoothing introduced
by NΘ , see Sect. 4.5.1). Also, we have shown that the main effect from the inhomogeneous winds is on
the absorption part of the line profiles (see, e.g., Sect. 4.7.1). The formation of this part is dominated
by radial photons, especially in the outer wind, because of the dependence only on photons released
directly from the photosphere. This implies that most photons stay within their wind slice, restricting
the influence from any additional ‘holes’ introduced by a broken symmetry inΦ to the inner wind.
Of course, these expectations hold only within the broken shell model, because in a real 3D wind the
clumps will, for example, have velocity components also in the tangential directions.

4.7.5 Comparison to other studies

To scale the smooth opacity in the formal integral of the non-LTE atmospheric code PoWR, Oskinova
et al. (2007) used a porosity formalism in which bothfv and the average distance between clumps
enter. Other assumptions were a void ICM, a smoothβ velocity field, and a microturbulent velocity
vt ≈ 50kms−1, the last identified as the velocity dispersion within a clump. However, a direct compar-
ison between their study and ours is hampered by the different formalisms used for the spacing of the
clumps. Here we have used the ‘broken-shell’ wind model as a base (see Sect. 4.3.2), in which each
wind slice is treated independently and the distance between clumps increases only in the radial di-
rection (clumps preserve their lateral angles). This givesa radial number density of clumps,ncl ∝ v−1,
the same as used by, e.g., Oskinova et al. (2006), when synthesizing X-ray emission from hot stars.
In Oskinova et al. (2007), on the other hand, the distance between clumps increases inall spatial
directions. In a spherical expansion, this gives a radial number density of clumpsncl ∝ v−1r−2, i.e.,
clumps are distributed much more sparsely within this model, especially in the outer wind. Therefore
their choice ofL0 = 0.2 is not directly comparable withδ t = 0.2 in our models. The shapes of the
clumps differ between the two models as well; in Oskinova et al. clumps are assumed to be ‘cubes’,
whereas here the exact shapes of the clumps are determined bythe values of the clumping parameters.
Despite these differences, our findings confirm the qualitative results of Oskinova et al. that the line
profiles become weaker with an increasing distance between clumps as well as with a decreasingvt.
These results may be interpreted on the basis of the effective escape ratio,η (see Eq. 4.7). Both a
decrease invt and an increase in the distance between clumps mean that the velocity span covered
by a resonance zone becomes smaller when compared to the velocity gap between two clumps (see
Fig. 4.6, left panel), leading to higher probabilities for line photons to escape their resonance zones
without interacting with the wind material.
An important result of this paper is that models that de-saturate intermediate lines require a non-void
ICM to saturate strong lines. This is confirmed by the Oskinova et al. model, in which the ICM is
void and strong lines indeed do not saturate (Hamann et al., 2009).
Owocki (2008) proposed a simplified description of the non-monotonic velocity field to account for
vorosity, i.e., the velocity gaps between the clumps. Here,the vorosity effect has been discussed using
the quantityη (see Sect. 4.6.1), and we have introduced two new parametersto characterize a non-
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Figure 4.12: Observed FUSE spectra of the PV doubletλλ1118-1128 for the O6 supergiantλ Cep
(Fullerton et al., 2006). The synthetic spectra are calculated for two 1D models assuming optically
thin clumping (see Sect. 4.7.6) and for one 2D stochastic model with parameters as in Table 4.2, model
Obs1. The models have mass-loss ratesṀ [M⊙ yr−1] as given in the figure. The zero point frequency
is shifted to the line center of theλ1118 component, and the two arrows at the bottom of the figure
indicate in which region the two components overlap.

monotonic velocity field,δv andvj . The reason for introducing a new parameterization is that when
using a single velocity parameter, we have not been able to simultaneously meet the constraints from
strong, intermediate, and weak lines as listed in Sect. 4.5.Tests using a ‘velocity clumping factor’
fvel = δv/∆v as proposed by Owocki (2008), together with a smooth densitystructure, have shown
that this treatment indeed can reduce the line strengths of intermediate lines, but that the observational
constraints from strong lines may not be met. Still, the basic concept of vorosity holds within our
analysis. For example, one may phrase the high values ofδv in the RH models in terms of insufficient
vorosity.

4.7.6 Comparison to observations

We finalize our discussion by performing a first comparison toobservations. The two components of
the Phosphorus Vλλ1118-1128 doublet are rather well separated, and the singlet treatment used here
suffices to model the major part of the line complex. Nevertheless, the two components overlap within
a certain region (indicated in Fig. 4.12), so when interpreting the results of this subsection, one should
bear in mind that the overlap is not properly accounted for, but treated as a simple multiplication of
the two profiles.
We used observed FUSE spectra (kindly provided by A. Fullerton) from HD 210839 (λ Cep), a su-
pergiant of spectral type O6 I(n)fp. When computing synthetic spectra, we first assumed optically
thin clumping with a constant clumping factorfcl = 9 and a smoothβ = 1 velocity field. fcl = 9
agrees fairly well with the analysis of Puls et al. (2006), who derived clumping factorsfcl = 6.5 for
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r ≈ 1.2. . .4.0 and fcl = 10 for r ≈ 4.0. . .15, assuming an un-clumped outermost wind.7 We took
the ionization fractionq= q(r) of PV from Puls et al. (2008a), calculated with the unified non-LTE
atmosphere code FASTWIND for an O6 supergiant, using the Phosphorus model atom from Paul-
drach et al. (2001). The feedback from opticallythin clumping was accounted for and X-rays were
neglected. This ionization fraction was then used as input in our MC-1D code when computing the
synthetic spectra. We assigned a thermal plus a highly supersonic ‘microturbulent’ velocityvt = 0.05
(corresponding to 110 km s−1), as is conventional in this approach. The mass-loss rate was derived
using the well known relation betweenκ0 and Ṁ (e.g., Puls et al., 2008b). For atomic and stellar
parameters, we adopted the same values as in Fullerton et al.(2006).
The dashed line in Fig. 4.12 represents our fit to the observedspectrum, assuming optically thin
clumping, resulting in a mass-loss ratėM = 0.24, in units of 10−6 M⊙ yr−1. Fullerton et al. (2006)
derived〈q〉Ṁ = 0.23 for this star. Because our clumped FASTWIND model predicts an averaged
ionization fraction〈q〉 ≈ 0.9 in the velocity regions utilized by Fullerton et al., the two rates are in
excellent agreement. On the other hand, Repolust et al. (2004) for HD 210839 derivedṀ = 6.9 from
Hα assuming an unclumped wind, yieldinġMHα = 2.3 when accounting for the reduction implied

by our assumedfcl = 9 (ṀHα = ṀHα,sm f−1/2
cl ). This rate is almost ten times higher than that inferred

from PV, and thus results in PV line profiles that are much too strong (see Fig. 4.12, dashed-dotted
line). That is, to reconcile the Hα and PV rates for HD 210839 with models that assume optically
thin clumps also in PV, we would have to raise the clumping factor to fcl > 100. In addition to
this very high clumping factor, the low rate inferred from the PV lines conflicts with the theoretical
valueṀ = 3.2 provided by the mass-loss recipe in Vink et al. (2000) (using the stellar parameters
of Repolust et al., 2004), and is also strongly disfavored bycurrent massive star evolutionary models
(Hirschi, 2008).
Next we modeled the PV lines using our MC-2D code together with a stochastic 2D wind model.
The same clumping factor (fcl = 9) and ionization fraction (calculated from FASTWIND, see above)
were used. This time, we assignedvt = 0.005, i.e., applied no microturbulence. In previous sections,
e.g. 4.5.3 and 4.7.1, we showed that stochastic models generally display a line shape different from
smooth models, with a characteristic absorption dip at the blue edge as well as a dip close to the line
center. Such shapes are not seen in the PV lines inλ Cep. Thus, to better resemble the observed line
shapes, we used different values forδ t andxic in the inner and outer wind (the former modification
already discussed in Sect. 4.7.2) and let clumping start close to the wind base. Clumping parameters
are given in Table 4.2, model Obs1.
As illustrated in Fig. 4.12, the synthetic line profiles using Ṁ = 2.3, as inferred from Hα , are now
at the observed levels. Because of our insufficient treatment of line overlap, we gave higher weight
to theλ1118 component when performing the fitting, but the profile-strength ratio between the blue
and red component was nevertheless reasonably well reproduced (see also discussion in Sect. 4.6.2).
However, though the fit appears quite good, we did not aim for aperfect one, and must remember
the deficits of our modeling technique. For example, while the early onset of clumping definitely
improved the fit (using our default value, there was a dip close to line center) and might be considered
as additional evidence that clumping starts close to the wind base, the same effect could in principle
be produced by non-LTE effects close to the photosphere or byvarying the underlyingβ velocity
law. Such effects will be thoroughly investigated in a follow-up paper, which will also include a

7 This stratification has been found to be prototypical for O-supergiants and was, together with its well developed PV
P Cygni profiles, the major reason for choosingλ Cep as comparison object instead of, e.g.,ζ Pup, which displays a
somewhat unusual run offcl.
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comparison to observations from many more objects.
Clearly, a consistent modeling of resonance lines (at leastof intermediate strengths) requires the con-
sideration of a much larger parameter set than if modeling via the standard diagnostics assuming
optically thin clumping, and a reasonable fit to a single observed line complex can be obtained using
a variety of different parameter combinations. The analysis of PV lines as done here can therefore, at
present, only be considered as a consistency check for mass-loss rates derived from other, indepen-
dent diagnostics, and not as a tool for directly estimating mass-loss rates. Additional insight might be
gained by exploiting more resonance doublets, due to the different reactions of profile strengths and
shapes onκ0. The different slopes of the equivalent width as a function of κ0 in smooth and clumped
models, especially at intermediate line strengths (Sect. 4.6.2), may turn out to be decisive. However,
because of, e.g., the additional impact from the ICM density, also this diagnostics requires additional
information from saturated lines. Taken together, only a consistent analysis using different diagnostics
and wavelength bands, and embedded in a suitable non-LTE environment, will (hopefully) provide a
unique view.

4.8 Summary and future work

4.8.1 Summary

Below we summarize our most important findings:

• When synthesizing resonance lines in inhomogeneous hot star winds, the detailed density struc-
ture, the non-monotonic velocity field, and the inter-clumpmedium are all important for the line
formation. Adequate models must be able to simultaneously meet observational and theoretical
constraints from strong, intermediate, and weak lines.

• Resonance lines are basically unaffected by the inhomogeneous wind structure in the limit of
optically thin clumps, but the clumps remain optically thinonly for very weak lines.

• We confirm the basic effects of porosity (stemming from optically thick clumps) and voros-
ity (stemming from velocity gaps between the clumps) in the formation of primarily lines of
intermediate strengths.

• We point out the importance of a non-void ICM for the simultaneous formation of strong and
intermediate lines that meet observational constraints.

• Porosity and vorosity are found to be intrinsically coupledand of similar importance. To char-
acterize their mutual effect on intermediate lines, we haveidentified a crucial parameter, the
‘effective escape ratio’, that describes to which extent photons may escape their resonance
zones without ever interacting with the wind material.

• We confirm previous results that time-dependent, radiation-hydrodynamic wind models repro-
duce observed characteristics for strong lines, without applying the highly supersonic microtur-
bulence needed in smooth models.

• A significant profile strength reduction of intermediate lines (as compared to smooth models)
is for the radiation-hydrodynamic models prevented by the large velocity spans of the density
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enhancements, implying that the wind structures predictedby present day RH models are not
able to reproduce the observed strengths of intermediate lines unless invoking a very low mass-
loss rate.

• Provided a non-void ICM and not too large velocity spans inside the clumps, 2Dstochastic
wind models saturate strong lines, while simultaneously not saturating intermediate lines (that
are saturated in smooth models). Using typical volume filling factors, fv ≈ 0.25, the resulting
integrated profile strength reductions imply that these inhomogeneous models would be com-
patible with mass loss rates roughly a factor of ten higher than those derived from resonance
lines using smooth models.

• A first comparison to observations was made for the O6 supergiant λ Cep. It was found that,
indeed, the line profiles of PV based on a 2D stochastic wind model, accounting for a detailed
density structure and a non-monotonic velocity field, reproduced the observations with a mass-
loss rate almost ten times higher than the rate derived from the same lines, but with a model that
used the optically thin clumping approach. This alleviatedthe discrepancies between theoretical
predictions, evolutionary constraints, and previous mass-loss rates based on winds assumed
either to be smooth or to have optically thin clumps.

4.8.2 Future work

We have investigated general properties of resonance line formation in inhomogeneous 2D wind mod-
els with non-monotonic velocity fields. To perform a detailed and quantitative comparison to obser-
vations, and derive mass-loss rates, simplified approachesneed to be developed and incorporated into
non-LTE models to obtain reliable occupation numbers. Extending our Monte-Carlo radiative transfer
code to include line overlap effects in doublets is criticalfor more quantitative applications, and an
extension to 3D is also necessary. Further applications involve synthesizing emission lines, for exam-
ple to test the optically thin clumping limit both in the parameter range where this is thought to be
appropriate (e.g., for O-/early B-stars), and in other morecomplicated situations. Indeed, the present
generation of line-blanketed model atmospheres does not seem to be able to reproduce Hα line pro-
files from A-supergiants, which are observed as P-Cygni profiles withnon-saturatedtroughs, whereas
the simulations (assuming optically thin clumping) resultin saturated troughs (R.-P. Kudritzki, pri-
vate communication). Since Hα is a quasi-resonance line and not a recombination line in these cooler
winds (e.g., Kudritzki & Puls, 2000), this behavior might beexplained by the presence of optically
thick clumps.

Finally, it needs to be clarified if the large velocity span inside clumps generated in RH models is
independent of additional physics that is not, or only approximately, accounted for in present simu-
lations (such as more-D effects and/or various exciting mechanisms). If the large velocity span is a
stable feature, one might come to the (rather unfortunate) conclusion that either the observed clump-
ing features are not, or only weakly, related to the line-driven instability, or the discrepancies between
observed and synthetic flux distribution (from the X-ray to the radio regime) might involve processes
different from the present paradigm of wind clumping.
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4.9 The Monte-Carlo transfer code

4.9.1 The code

Here we describe our Monte-Carlo radiative transfer code (MC-2D) in some detail. For an overview of
basic assumptions, see Sect. 4.4 in the main paper. For testing purposes, versions to treat spherically
symmetric winds, either in the Sobolev approximation (MCS-1D) or exactly (MC-1D), have been
developed as well.

Geometry. For wind models in which the spherical symmetry is broken, wecan no longer restrict
photon trajectories to rays with constant impact parameters (see below). Moreover, the observed
spectrum will depend on the observer’s placement relative to the star. Fig. 4.13 illustrates the geometry
in use, a standard right-handed spherical system (r,Θ ,Φ) defined relative to a Cartesian set (X,Y,Z)
(transformations between the two may be found in any standard mathematical handbook). At each
coordinate point we also construct a local coordinate system using the local unit vectors(ru,Θu,Φu),
which for a photon propagating in directionnu is related to theradiation coordinates(θ ,φ) (see
Fig. 4.13) via

cosθ ≡ µ = ru ·nu, (4.8)

sinφ sinθ = Φu ·nu =
Zu× ru

|Zu× ru|
·nu, (4.9)

cosφ sinθ =Θu ·nu = [Φu× ru] ·nu. (4.10)

The radiation coordinates are defined on the intervalsθ = 0. . .π and φ = 0. . .2π, but due to the
symmetry inΦ , only the rangeφ = 0. . .π needs to be considered (see Busche & Hillier 2000). Also,
for this symmetry, the direction cosines ofnu simplify to

nx = µ sinΘ +
√

1−µ2cosφ cosΘ , (4.11)

ny =
√

1−µ2sinφ , (4.12)

nz = µ cosΘ −
√

1−µ2cosφ sinΘ . (4.13)

Eqs. 4.8-4.13 are used to update the physical position (r,Θ ) of the photon and the local values of the
radiation coordinates (θ ,φ ). By tracking the photon on a radial mesh, both the physical and radiation
coordinates can be updated exactly. Interpolations are necessary only when a photon is scattered or
when it crosses aΘ -boundary to another wind slice. Essentially the same coordinate system is used by,
e.g., Busche & Hillier (2000). We collect escaped photons according to theirΘ -angles at ‘infinity’8,
and bin them using the sameNΘ bins as in the underlying wind model (see Sect. 4.3).
For spherically symmetric wind models, we adhere to the customary(p,z) spatial coordinate system
with p being the impact parameter andz the direction toward the observer. Each time a photon is
scattered and its direction determined, a new impact parameter is computed from the relationp =
r
√

(1−µ2), appreciating that all points on a surface of constant radius can be treated equally in this
geometry.

8 The full 3D problem would require binning inΦ as well, which in turn would require a large increase in the number of
simulated photons.
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Figure 4.13: Illustration of the coordinate system, see text. A color version of this figure is available
in the web version.

Releasing photons. We release photons from the lower boundary uniformly inφ and with a distri-
bution function∝ µdµ in µ (e.g., Lucy, 1983). The angular coordinateΘ is selected so that photons
are uniformly distributed over the surface areadA= sinΘdΘdΦ .

Absorption. The probability of photon absorption is∝ e−τdτ , hence the optical depthτ the photon
travels before absorption can be selected according toτ = − lnR1, whereR1 is a random number
between 0 and 1. The position for absorption in the wind may then be determined by inverting the
line optical depth integral along the photon path

τν =

∫

χνds, (4.14)

with the frequency-dependent opacity

χν = κLρφν , (4.15)

with φν the absorption profile,κL the frequency integrated mass absorption coefficient, andρ the mass
density. All dependencies on spatial location are for simplicity suppressed here and in the following.
For the opacity we use the parameterization from Hamann (1981) and POF,

κLλρ =
4πR⋆v2

∞
Ṁ

κ0ρq, (4.16)

whereλ is the wavelength of the considered transition,κ0 is a ‘line-strength’ parameter taken to be
constant,Ṁ the radially and laterally averaged mass-loss rate, andq = q(r,Θ) the fraction of the
considered element that resides in the investigated ionic stage. Default here isq= 1, but effects from
other ionization structures are discussed in Sect. 4.7.2.κ0 is proportional to the product of mass-loss



4.9. THE MONTE-CARLO TRANSFER CODE 71

rate and abundance of the considered ion, and, for a smooth wind,κ0 = 1 andκ0 = 100 give a typical
medium and strong line, respectively. The parameterization as defined in Eq. 4.16 has the advantage
that for smooth winds the radial optical depth in the Sobolevapproximation collapses to

τSob=
κ0

r2vdv/dr
q, (4.17)

whenv and r are expressed in normalized units. The corresponding expression for clumpy winds
is provided in Eq. 4.5. The absorption profile is assumed to bea Gaussian with a Doppler width
vt that contains the contributions from thermal and (if present) ‘microturbulent’ velocities. To solve
Eq. 4.14, we adopt the dimensionless frequencyx with the terminal velocity of a smooth outflow as
the reference speed,

x=
ν −ν0

ν0

c
v∞

, (4.18)

and transform to the co-moving frame (hereafter CMF).ν0 is the rest-frame frequency of the line
center andc the speed of light. We now assume that between two grid pointsthe variation of the
factorκLρ/|Q| (see below) is small and may be replaced by an average value. The optical depth∆τν
between two subsequent spatial points(r,Θ) then becomes

∆τν = |λR⋆

v∞

κLρ
Q

× −∆erf[xcmf/vt]

2
|, (4.19)

where∆erf is the difference of the error-function between the points, xcmf the dimensionless CMF
frequency, andvt is calculated in units ofv∞. Q ≡ nu · ∇ (nu · ~v) is the local directional derivative
of the velocity in directionnu, with velocities measured in units ofv∞and radii in units ofR⋆. By
interpolating to the border whenever a photon crosses aΘ boundary, welocally recover the spherically
symmetric expression

Q=
∂v
∂ r

µ2+
v
r
(1−µ2). (4.20)

For spherically symmetric winds, we have written a second implementation that allows for line trans-
fer using the Sobolev approximation. With this method each resonance zone is approximated by a
point and the line only collects optical depth at atmospheric locations where the observer’s frame
frequencyxobs has been Doppler shifted to coincide with the CMF frequency for the line center. The
condition for interaction thus isxobs= µv and the last factor in Eq. 4.19 collapses to unity when calcu-
lating the Sobolev optical depth. The Sobolev approach can be expected a reasonable approximation
when the variation of the factorκLρ/|Q| is small within the whole resonance zone contributing to the
optical depth in Eq. 4.19, i.e., small on length scales at least a few times the Sobolev lengthL≡ vt/|Q|.
However, also in the Sobolev approximation more than one resonance point may be identified in a
wind with a non-monotonic velocity field.

Re-emission. We assume complete redistribution and isotropic re-emission in the CMF, allowing
for a multitude of scattering events within one resonance zone. When the Sobolev approximation
is applied, re-emission is assumed to be coherent in the CMF and for the angular re-distribution we
then use the corresponding escape probabilities (Castor, 1970), corrected for a treatment of negative
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Figure 4.14: Synthetic line profiles for spherically symmetric models, calculated with the labeled
methods. Profiles are shown for a smooth model withκ0 = 1.0 andvt = 0.2 (upper) and for two
POF snapshots withκ0 = 100 (middle) andκ0 = 5.0 (lower) andvt = 0.005. The 2D profile is for
an observer at the equator.x is the normalized observer’s frame frequency (see Eq. 4.18), and the
ordinate displays the emergent flux normalized to the continuum flux.

velocity gradients (Rybicki & Hummer 1978; POF). In this case, there is only one effective scattering
event inside the localized resonance zone.
After the photon has been re-emitted at some atmospheric location, the procedure runs again and
searches for another absorption.

4.9.2 Radiative transfer code tests

In this subsection we describe some of the verification testsof our MC radiative transfer code that we
have made. The MC-1D version was first applied on sphericallysymmetric winds, comparing profiles
from smooth, stationary winds to profiles calculated using the well-established CMF (cf. Mihalas
et al. 1975; Hamann 1981) and SEI methods, and profiles from time-dependent RH winds to profiles
calculated using the Sobolev method developed in POF. Thereafter we applied the MC-2D version on
models in which all lateral slices had the same radial structure, comparing the results to the MC-1D
version.
First we calculated line profiles for smooth, 1D winds. We have verified that for low9 values ofvt,
profiles from all the methods described above agree perfectly, whereas for higher values the MC-1D
and CMF give identical results but the SEI deviates significantly, especially for a medium-strong line
(see Fig. 4.14, upper panel). This is due to the hybrid natureof the SEI technique, which approximates
the source function with its local Sobolev value but carriesout the exact formal integral. Because
of this, the method does not account for the increasing amount of photons close to line center that

9 For a typical terminal velocity valuev∞ = 2000 km s−1, vt = 0.005 corresponds to 10 km s−1 andvt = 0.2 to 400 km s−1.
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are backscattered into the photosphere when the resonance zone grows and overlaps with the lower
boundary.10 Consequently the re-emitted flux in this region is higher when calculated via the SEI
than when calculated via the CMF or MC methods. These discrepancies between the CMF and SEI
are quite well documented and discussed (e.g., Hamann, 1981; Lamers et al., 1987), however we still
emphasize that one should exercise caution when applying the SEI method with high microturbulence
on wind resonance lines. Especially today, when increased computer-power enables us to compute
fast solutions using both methods, the CMF is preferable.
Next we calculated line profiles for structured, 1D winds. Profiles computed with all three methods
agreed for weak and intermediate lines. For strong lines, the agreement between MCS-1D and the
method from POF, which uses a Sobolev source function accounting for multiple-resonance points,
was satisfactory. However, minor discrepancies between Sobolev and non-Sobolev treatments oc-
curred for the strong line also when no microturbulent velocity was applied (see Fig. 4.14), as opposed
to the smooth case.
Finally we performed a simple test of our MC-2D code by applying it on models in which all lateral
slices had the same radial structure, i.e., the wind was still spherically symmetric and all observers
ought to see the same spectrum. We confirmed that indeed so wasthe case, both for smooth and
structured models (in Fig. 4.14 the latter case is demonstrated).

4.10 The effective escape ratio

We define the ratio of the velocity gap∆v between two clumps (see Fig. 4.6 in the main paper) and
the thermal velocityvt as

η ≡ ∆v
vt

(4.21)

In the following, we derive an expression forη , for the wind geometry used throughout this paper. If
∆vtot = ∆v+ |δv| is the velocity difference between two clumpcenters, we may write (omitting the
absolute value signs here and in the following)

∆v= ∆vtot−δv=
∆vtot

∆vtot,fi
∆vtot,fi −

δv
δvβ

δvβ , (4.22)

where we have normalized the arbitrary velocity intervals to the correspondingβ intervals.β suffixes
are used to denote parameters of a smooth velocity law. For notational simplicity we write

ξ1 =
∆vtot

∆vtot,fi
, ξ2 =

δv
δvβ

. (4.23)

Assuming radial photons,∆v may be approximated by

∆v≈
∂vβ

∂ r
∆ rtot,fi(ξ1−ξ2

δ rβ

∆ rtot,β
), (4.24)

10Remember that neither the SEI nor the CMF, as formulated here, include a transition to the photosphere, but treat the
lower boundary as sharp with a minimum velocityvmin.
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with the notations ofr following those ofv. The volume filling factor for the geometry in use is

fv ≡
Vcl

Vtot
≈ r2

1δ r

r2
2∆ rtot

(4.25)

with Vcl the volume of the clump,Vtot the total volume, andr1 ≈ r2 the radial points associated with
the beginning of the clump and the ICM. Using Eq. 4.25 and∆ rtot = vβ δ t (see Sect. 4.3.2), we obtain

∆v≈
∂vβ

∂ r
vβ δ t(ξ1−ξ2 fv), (4.26)

and forη , using the radial Sobolev length of a smooth flowLr = vt/(∂vβ/∂ r),

η ≈
vβ δ t(ξ1−ξ2 fv)

Lr
. (4.27)

In our modelsξ1 is not given explicitly, but is on the order of unity, becausewe distribute clumps
according to the underlying smoothβ = 1 velocity law. Thus we approximate

η ≈ vβ δ t(1−ξ2 fv)

Lr
. (4.28)

We notice that the porosity lengthh as defined by Owocki et al. (2004) ish= l/ fv, wherel is the length
associated with the clump. For the geometry used here this becomesh≈ δ r/ fv ≈ vβ δ t. Hence, using
ξ2 = 1 for a smooth velocity field,η represents the porosity length corrected for the finite sizeof the
clump, and divided by the radial Sobolev length.



Chapter 5

Mass loss from inhomogeneous hot star
winds
II. Constraints from a combined optical/UV study

This chapter is a copy of Sundqvist, Puls, Feldmeier, & Owocki (2010), submitted to Astronomy
& Astrophysics (A&A) in September 2010. Due to comments and suggestions by the referee is
the version presented here slightly different from the version finally published in A&A. Also in this
chapter is the original appendix added at the end as a normal section (Sect. 5.9).

5.1 Abstract

Mass loss is essential for massive star evolution, and thereby also for the variety of astrophysical
applications relying on its predictions. However, mass-loss rates currently in use for hot, massive
stars have recently been seriously questioned, mainly because of the effects ofwind clumping. We
investigate the impact of clumping on diagnostic ultra-violet resonance and optical recombination
lines often used to derive empirical mass-loss rates of hot stars. Optically thick clumps, a non-void
inter-clump medium, and a non-monotonic velocity field are all accounted for in one single model.
The line formation is first theoretically studied, after which an exemplary multi-diagnostic study of an
O-supergiant is performed. We use 2D and 3D stochastic and radiation-hydrodynamic wind models,
constructed by assembling 1D snapshots in radially independent slices. To compute synthetic spectra,
we develop and use detailed radiative transfer codes, for both recombination lines (solving the ‘formal
integral’) and resonance lines (using a Monte-Carlo approach). In addition, we propose an analytic
method to model these lines in clumpy winds, which does not rely on optically thin clumping.
The importance of the ‘vorosity’ effect for line formation in clumpy winds is emphasized. Resonance
lines are generally more affected by optically thick clumping than recombination lines. Synthetic
spectra calculated directly from present-day, radiation-hydrodynamic wind models of the line-driven
instability are unable to reproduce strategic optical and ultra-violet lines in the Galactic O-supergiant
λ Cep. Using our stochastic wind models, we obtain consistentfits essentially by increasing the
clumping in the inner wind. A mass-loss rate is derived that is approximately two times lower than
what is predicted by the line-driven wind theory, but much higher than the corresponding rate derived
when assuming optically thin clumps. Our analytic formulation for line formation is used to demon-
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strate the potential importance of optically thick clumping in diagnostic lines in so-called weak wind
stars, and to confirm recent results that resonance doubletsmay be used as tracers of wind structure
and optically thick clumping.
We confirm earlier results that a re-investigation of the structures in the inner wind predicted by line-
driven instability simulations is needed. Our derived mass-loss rate forλ Cep suggests that only
moderate reductions of current mass-loss predictions for OB-stars are necessary, but nevertheless
prompts investigations on feedback effects from opticallythick clumping on steady-state, NLTE wind
models used for quantitative spectroscopy.

5.2 Introduction

Massive stars are fundamental in many fields of modern astrophysics. In the present Universe, they
dynamically and chemically shape their surroundings and the inter-stellar medium by their output of
ionizing radiation, energy and momentum, and nuclear processed material. In the distant Universe,
they dominate the ultra-violet (UV) light from young Galaxies. Indeed, massive stars may be regarded
as ‘cosmic engines’ (Bresolin et al., 2008). Hot, massive stars possess strong and powerful winds that
affect evolutionary time scales, chemical surface abundances, and luminosities. In fact, changing
the mass-loss rates of massive stars by only a factor of two has a dramatic effect on their overall
evolution (Meynet et al., 1994). The winds from these stars are described by the radiative line-driven
wind theory, in which the standard model (based on the pioneering works by Lucy & Solomon, 1970;
Castor et al., 1975) assumes the wind to be stationary, spherically symmetric, and homogeneous.
Despite this theory’s apparent success (e.g., Vink et al., 2000), theoretical as well as observational
evidence for an inhomogeneous, time-dependent wind has over the past years become overwhelming
(for a comprehensive summary, see Puls et al., 2008b).
Direct simulations of the time-dependent wind have confirmed that the so-called line-driven instability
causes a highly structured wind in both density and velocity(Owocki et al., 1988; Feldmeier, 1995;
Dessart & Owocki, 2005). Much indirect evidence of suchsmall-scale inhomogeneities(clumping)
has arisen from quantitative spectroscopy. Clumping has severe consequences for the interpretation
of observed spectra, with the inferred mass-loss rates particularly affected. When deriving mass-loss
rates from observations, wind clumping has traditionally been accounted for by assumingoptically
thin clumps and a void inter-clump medium, while keeping a smoothvelocity field. Results based on
this microclumpingapproach have, for example, led to a downward revision of empirical mass-loss
rates from Wolf-Rayet (WR) stars by roughly a factor of three(reviewed in Crowther, 2007).
However, for O stars, highly clumped winds with very low mass-loss rates must be invoked in order to
reconcile investigations of different diagnostics withinthe microclumping model. The most alarming
example was the phosphorusV (PV) UV analysis by Fullerton et al. (2006), which indicated reductions
of previously accepted values by an order of magnitude (or even more), with dwarfs, giants, and
supergiants all affected (but see also Waldron & Cassinelli2010, who argued thatXUV radiation could
seriously alter the ionization fractions of PV). Such low mass-loss rates would be in stark contrast
with the predictions of line-driven wind theory, and have dramatic consequences for the evolution
of, and feedback from, massive stars. Naturally, the widelydiscrepant values inferred from different
observations and diagnostics drastically lower the reliability of mass-loss rates currently in use, and
an explanation is urgently needed. A key question is: Does the microclumping model fail to deliver
accurate empirical rates under certain conditions?



5.3. WIND MODELS AND RADIATIVE TRANSFER 77

Simplified techniques to account for optically thick clumpsin X-ray line formation have been devel-
oped (Feldmeier et al., 2003; Owocki et al., 2004), but it hasyet to be settled whether or not this is
important to consider when deriving empirical mass-loss rates from these diagnostics (Oskinova et al.,
2006; Cohen et al., 2010). First attempts to relax the assumptions of the microclumping model for UV
resonance lines were made by Oskinova et al. (2007) (optically thick clumps), Zsargó et al. (2008) (a
non-void inter-clump medium), and Owocki (2008) (a non-monotonic velocity field). Sundqvist et al.
(2010) (hereafter Paper I) carried out the first detailed investigation, relaxingall the above assump-
tions, and showed that, indeed, the microclumping approximation is not a suitable assumption for UV
resonance line formation under conditions prevailing in typical OB-star winds. Recently, these results
were empirically supported for the case of B supergiants by Prinja & Massa (2010), who analyzed
profile-strength ratios of the individual components of resonance line doublets and found that the ob-
served ratios were inconsistent with lines formed in a smooth or ‘microclumped’ wind. Furthermore,
Paper I demonstrated that resonance line profiles calculated from 2D, stochastic wind models were
compatible with mass-loss rates an order of magnitude higher than those derived from the same lines
but using the microclumping technique. However, as pointedout in that paper, a consistent modeling
of the resonance lines also introduces degeneracies among the parameters used to define the wind
structure, degeneracies that can only be broken by considering different diagnostics (depending on
different parameters) in parallel.
Here we make a first attempt toward such multi-diagnostic studies. We extend our 2D wind models
from Paper I to 3D, and relax the microclumping approximation also for the optical mass loss diagnos-
tics Hα and HeII 4686Å (Sect. 5.3). In Sect. 5.4 we theoretically investigate Hα and resonance line
formation in clumpy winds, and propose an analytic treatment of the lines that does not rely on the
microclumping approximation. A simultaneous optical and UV diagnostic analysis is carried out in
Sect. 5.5 for the Galactic O6 supergiantλ Cep, using time-dependent radiation-hydrodynamic (RH)
models as well as stochastic ones together with our new toolsfor the radiative transfer in clumped
winds. These results are discussed in Sect. 5.6, while two initial applications of our analytic formula-
tion are given in Sect. 5.7. We summarize the paper and outline future work in Sect. 5.8.

5.3 Wind models and radiative transfer

We create 2D and 3D RH and stochastic wind models by assembling snapshots in radially independent
wind slices. A time-dependent RH model with parameters as given in Table 5.1 has been computed
following Feldmeier et al. (1997). Stellar and wind parameters are taken from Repolust et al. (2004),
except for the mass-loss rate (see Sect. 5.5). Basic assumptions of our structured stochastic winds
were described in detail in Paper I. For resonance lines we use the Monte-Carlo code described in
Paper I, but a new radiative transfer code has been developedfor the synthesis of wind recombination
lines presented here.
We investigate the O star recombination lines Hα and HeII 4686. Recall that recombination lines and
resonance lines are formed differently. First, the opticaldepths are calculated in different ways. For
resonance lines, the optical depths may be computed via a line-strength parameter,κ0, andτ ∝ κ0.
κ0 is assumed to be constant throughout the wind and is proportional to the product of the mass-loss
rate and the abundance of the considered ion (Paper I). For Hα , the analog toκ0 is the parameter
A (Puls et al., 1996, Eqs. 1-3), andτ ∝ A. A is proportional to the mass-loss ratesquaredand to the
NLTE departure coefficient,bi , of the lower transition level (minus the correction factorfor stimulated
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Table 5.1: Parameters for the time-dependent RH model ofλ Cep (see text).

Name Parameter Value
Spectral type O6 I(n) fp
Effective temperature Teff 36 000 K
Stellar radius R∗ 21.1R⊙
Stellar luminosity logL/L⊙ 5.83
Terminal speed v∞ 2200 kms−1

Mass-loss rate Ṁ 1.5× 10−6M⊙/yr
Helium abundance nHe/nH 0.1
Projected rotation vsini 220 kms−1

velocity
CAK exponent α 0.7
Initial Langevin vturb/vsound 0.5
turbulence fluctua-
tion

emission).bi = ni/n∗i , wheren∗i is the occupation number of leveli in LTE with respect to the ground
state of the next ionization state. In addition to their different optical depths, recombination lines are
(mainly) formed by recombining ions creating wind photons,whereas resonance lines are formed by
re-distributing photospheric stellar continuum radiation by line scattering. That is, the line source
functionSl ∝ (ehν/kTbl/bu−1)−1 for recombination lines is basically unaffected by the radiation field
and its dilution. Therefore, the participating atomic levels for these lines are rather close to LTE with
respect to the next ionization state (see Fig. 5.5), which allows us to prescribe the source functions
(Puls et al., 1996, 2006) and simply carry out the ‘formal integrals’ within our stochastic and RH
winds. In the following, we simplyassumethat changes in the NLTE departure coefficients due to
optically thick clumps can be neglected for recombination-based line formation. Taking the example
of Hα in O stars, this assumption should be reasonable, for the Hα departure coefficients in this domain
are very close to unity and the ionization of hydrogen is complete. However, for the case of, e.g., A-
supergiants, the assumption no longer holds, because in that stellar domain Hα ’s lower level becomes
the effective ground state of hydrogen, which means that theline transforms to a quasi-resonance line
(and thereby thatSl depends on the radiation field, Puls et al. 1998). The potential feedback effects
of optically thick clumping on the departure coefficients will be investigated by incorporating the
analytic methods developed in Sect. 5.4 into suitable NLTE atmosphere codes, which will be reported
in a future paper.

The assumption of prescribed departure coefficients is an enormous simplification compared to the
UV resonance lines, and has enabled us to extend our 2D wind models to 3D when modeling recom-
bination lines. In the synthesis we follow the basic method introduced by Puls et al. (1996), with
appropriate modifications for the line opacities of HeII 4686. A core/halo approach is adopted, in
which a photospheric profile is used as a lower boundary input(at r = 1, with r in units of the stellar
radius) and the radiative transfer is solved only in the wind.
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Figure 5.1: Illustration of the wind geometry, see text.A color version of this figure is available in the
web-version.

5.3.1 Geometry

To construct (pseudo-)3D winds, we use the ‘patch-method’ from Dessart & Owocki (2002). A stan-
dard right-handed spherical system (r,Θ ,Φ) is used, defined relative to a Cartesian set (X,Y,Z). How-
ever, we no longer assume symmetry in the azimuthal (Φ) direction (as was done in Paper I). The
lateral scale of coherence in the wind is set by the parameterNΘ and by assuming that the physical
coherence lengths in both lateral directions are approximately equal. This assumption is reasonable
because, within our approach, which for example does not include an axis of rotation, all observer
directions should be alike. Thus, if we desire a coherence scale of 3 degrees, the number of slices in
the polar direction should beNΘ = 180/3 = 60 and in the azimuthal directionNΦ = int[2NΘ sinΘ ],
i.e., 2NΘ at the equator but fewer toward the pole in order to preserve thephysicallength scales. Wind
slices are then assigned randomly from a large number of spherically symmetric simulations (either
RH or stochastic).

The observer is assumed to be located at infinity in theZu (subscript u denoting a unit vector) direction.
The geometry is sketched in Fig. 5.1. We solve the radiative transfer using a traditional(P,Z) system
for a set of P rays, each defined by the minimum radial distanceto theZ axis and by the azimuthal
angleΦ , which is constant along a given ray. If the angle between theray and the radial coordinate is
θ , thenµ = cosθ andP= r

√

1−µ2. Thus, for rays in directionZu the radiation angleθ coincides
with the polar coordinateΘ , and it becomes trivial to calculate the physical locationsat which wind-
slice borders are crossed. The observed flux may then finally be computed by performing a double
integral of the emergent intensity overP andΦ .
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Table 5.2: Basic structure parameters defining a stochasticwind model.

Name Parameter
Clumping factora fcl

Average time interval δ t
between release of clumps
Inter-clump medium density parameterxic

Velocity span of clump δv

a fcl may be replaced by the volume filling factorfv.
The two are related viaxic (see Paper I).

5.3.2 Parameters describing a structured wind

When creating ourstochasticwind models, we take an heuristic approach and use a set of parameters
to define the structured medium. The clumping factorfcl(r)≡ 〈ρ2〉/〈ρ〉2, with the angle brackets
denoting spatially averaged quantities, is the only necessary structure parameter when calculating
spectra via the microclumping technique. Microclumping gives rise to the well known result that the
opacities for processes that depend on the square of the density (for example Hα emission in OB-
stars) are augmented byfcl as compared to a smooth model with the same mass-loss rate; incontrast,
opacities for processes that depend linearly on the density(for example theUV resonance lines) are not
directly affected. Thus, if the wind is clumped, mass-loss rates derived from smooth models applied
to Hα are overestimated by a factor of

√
fcl. In addition, the occupation numbers are modified for all

diagnostics because of the changed rates in the statisticalequilibrium equations. For a comprehensive
discussion on the effects of microclumping on various diagnostics, see Puls et al. (2008b).
If the assumptions behind the microclumping model are not satisfied (e.g. if clumps are optically thick
for the investigated diagnostic), the line formation will depend on more structure parameters than
just fcl. Thus, relaxing the microclumping approximation means that we must consider additional
parameters when describing the structured wind. These parameters (for a two component medium)
were defined and discussed in Paper I, and are listed in Table 5.2. We stress that they are essential
for the radiative transfer in an inhomogeneous medium, and not merely ‘ad-hoc parameters’ used in a
fitting procedure.
In addition to the clumping factorfcl (or alternatively fv), xic ≡ ρic/ρcl denotes the density ratio
of the interclump (ic) to clumped (cl) medium. The time interval δ t (given in units of the wind’s
dynamic time scale and not necessarily constant throughoutthe wind) effectively sets the physical
distances between clumps, also known as the porosity lengthh (Owocki et al., 2004), which in our
geometry is given byh= vβ δ t. Moreover, assuming a smooth underlying field of customaryβ -type,
vβ (r) = v∞(1−b/r)β with b set by the assumed velocity at the wind basevmin = v(r = 1), this time
interval sets thevelocity separationbetween the clumps∆v ≈ vβ δ tdvβ/dr (see Sect. 5.9). Finally,
the ratio of the clump velocity spanδv to this velocity separation (representing avelocity filling
factor; see Sect. 5.9) largely controls how strongly a perturbed velocity field affects line formation1.
In addition to these basic parameters, the radiusrcl at which clumping is assumed to start also plays
an important role for the line formation. Note also that the parameters defining these stochastic winds

1 In this paper, we do not consider the ‘jump velocity parameter’, defined in Paper I, since it was shown there that this
parameter mainly influences the formation of very strong saturated lines, which are not considered here.
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are independent of the origin to the inhomogeneities.
The stochastic models should be distinguished from the time-dependent RH simulations; in the latter
the structure arises naturally from following the time evolution of the wind and stems directly from
the line-driven instability. Thus, the time-averaged structure parameters, as functions of radius, are an
outcomeof these simulations (in contrast to the stochastic models,where they are used as fundamental
parameters defining the structured wind). Nonetheless, theexact wind structure still depends on the
chosen initial conditions, for example on whether the instability is self-excited or triggered by some
excitation mechanism (the latter is done here, see Table 5.1). Finally, as shown in Paper I, by choosing
a suitable set of structure parameters one can reconcile spectrum synthesis results stemming from the
stochastic models with those from RH simulations.
In addition to the structure parameters,NΘ enters all our models. Paper I showed that this parameter
does not change the strengths of the resonance lines. More tests have shown that also the effects on
recombination lines are modest for investigated values. Therefore all 3D models in this paper assume
NΘ = 60, meaning a coherence length of 3 degrees at the equator, which is consistent with observa-
tional constraints derived from line-profile variability analysis (Dessart & Owocki, 2002). Theoretical
constraints onNθ are still lacking, and will require a careful treatment of the lateral radiation trans-
port in RH models; the first 2D simulations by Dessart & Owocki(2003) neglected this transport and
resulted in a laterally fragmented wind down to the grid scale but the follow-up study (Dessart &
Owocki, 2005) included a simplified 3-ray approach and resulted in larger (but un-quantified) lateral
coherence scales.

5.3.3 Code verifications

The recombination line code has been extensively tested andshowed to yield equivalent results with
Puls et al. (2006) for smooth winds. Also, results based on the microclumping technique are repro-
duced for stochastic as well as RH winds with low wind densities, as expected because the clumps then
remain optically thin. In our applications, we use hydrogenand helium occupation numbers calcu-
lated byFASTWIND model atmospheres (Puls et al., 2005), under the microclumping approximation,
as input for the radiative transfer to compute synthetic spectra. Photospheric profiles are taken from
NLTE calculations of atmospheres with negligible winds. The consistency between unified (meaning
a simultaneous treatment of the photosphere and wind) modelatmosphere calculations and the simpli-
fied core/halo approach has been verified in the microclumping limit, for recombination lines as well
as for resonance lines. Moreover, we have found that averaged recombination line profiles calculated
from our earlier 2D, stochastic models are almost identicalto those calculated from our new 3D ones,
as was already anticipated for the UV resonance lines in Paper I.

The He II blend in Hα . The star’s helium abundance has of course been considered inthe calcu-
lation of the Hα wind opacity, but for simplicity we include the HeII blend only in the photospheric
profile, thus neglecting its direct contribution to the windemission. This results in a slight under-
estimate of the total wind opacity of the line complex. However, by comparing to unified model
atmosphere calculations that consistently treat the HeII blend, we have found that the direct helium
contribution is low for our typical stars of interest; in ourapplications forλ Cep it can even be ne-
glected. Although sufficient for our purposes here, this approach should obviously not be generalized;
it may yield unrealistic results for stars with parameters different from our template star.
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Figure 5.2: Panels a-d from top to bottom.Panel a:ξ (Eq. 5.2) as a function of wind velocity.Panel
b: The relative contributions toξ from fvel andCη . Curves in panelsa andb have been calculated
with κ0 = 5 andvt = 0.005 (in units ofv∞). Panels c and d:Analytic (Eq. 5.1, solid lines) and Monte-
Carlo (dashed lines) based absorption part resonance line profiles from clumped winds, as compared
to smooth results (dotted lines). Clumping starts atr = 1.3. Panel c:Profiles for three different values
of the line-strengthκ0 (indicated in the figure), with increased absorption for higher values ofκ0.
Only the κ0 = 1 profile is not saturated for smooth models.Panel d: Profiles forκ0 = 5 and two
(Monte-Carlo) and three (analytic) different values of thethermal velocityvt (values indicated in the
figure), with increased absorption for higher values ofvt.

5.4 Theoretical considerations of resonance and recombination line for-
mation in clumpy winds

Resonance line formation in clumpy hot star winds was discussed in detail in Paper I. There we iden-
tified an intrinsic coupling between the effects of porosityand vorosity (=’velocity porosity’, Owocki,
2008), which we here further elaborate upon. In particular,we propose an analytic formulation of line
formation in clumped hot star winds (that does not rely on themicroclumping approximation). As
already mentioned in Sect. 5.3, the development of such simplified approaches is important for prop-
erly including effects of optically thick clumping into atmospheric NLTE codes. For recombination
lines, we focus on Hα and discuss impacts from optically thick clumping on its formation, using our
stochastic wind models as well as an extension of the analytic treatment developed for the resonance
lines.

5.4.1 Analytic treatment of resonance lines in clumpy winds

Throughout this subsection we assume asmooth velocity field. Despite this, the vorosity effect will
be demonstrated to be important for the line formation (i.e., a non-monotonic velocity field is not
required for vorosity to be at work). Following the basic arguments of Owocki (2008), we write the
normalized absorption resonance line profileRa,x at frequencyx from a radial ray as (see Sect. 5.9)

Ra,x = ξxe−τcl,x +(1−ξx)e
−τic,x . (5.1)
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This expression describes the part of the profile that stems from absorption of continuum photons
released from the photosphere. Thetotal line profile is given byRx = Ra,x +Rem,x, whereRem,x is
the re-emission profile, and is in this case the result of linephotons escaping the wind after having
been scattered. Recall, however, thatRa,x controls the actual line-profile strengths of resonance lines,
because these are pure scattering lines formed out of re-distributed continuum radiation emerging
from the photosphere.
In Eq. 5.1 we defineξ as thefraction of the velocity field over which photons may be absorbed by
clumps, with theτ ’s representing the Sobolev optical depth for the clumped (subscript cl) and rarefied
(subscript ic) regions.ξ describes the essential effects of Owocki’s vorosity; the first term in Eq. 5.1
handles the part of the line profile emerging from absorptionwithin the clumps, whereas the second
term handles the part emerging from absorption within the inter-clump medium. What remains then
is finding an appropriate expression forξ . In Sect. 5.9 we argue that a reasonable approximation may
be

ξ ≈ δv
∆v

+C
vt

∆v
= fvel+Cη , (5.2)

with ∆v the velocity gap between two clump centers,fvel the velocity filling factor(defined in full
analogy with the traditional volume filling factor),η theeffective escape ratio(here re-defined from
Paper I, see Sect. 5.9), andC a correction factor that depends on the line strength. All radial depen-
dencies in Eq. 5.2 are suppressed for simplicity. As shown inSect. 5.9, we may write

fvel = fv
δv

δvβ
, η =

L
h
, (5.3)

whereh is the porosity length of the medium andL the (in this case radial) Sobolev length. For the
smooth velocity field considered in this subsection,δv= δvβ , which givesfvel= fv. Even though the
principle effect of the optically thick clumps on resonanceline formation is a velocity effect governed
by fvel, Eqs. 5.1-5.3 indicate there is also a dependence on spatialporosity through the ratioη = L/h.
This coupling was argued for already in Paper I. However, it appears thatξ better characterizes the
effects of clumping in resonance line formation than did ourprevious parametrization (see Sect. 5.9).
We note also that all parameters used to define our stochasticwind models (Table 5.3.2) enter the
expression forRa,x, illustrating that indeed all these are important for the general line formation prob-
lem.
The upper two panels of Fig. 5.2 plotξ as well as the relative contributions fromfvel andCη for
a resonance line with line-strength parameterκ0 = 5. For a smooth model (with ionization fraction
q= 1, assumed in this section),κ0 = 5 results in a profile at the saturation threshold. In the lower two
panels of Fig. 5.2 we show analytic absorption line profiles calculated using Eq. 5.1 and profiles calcu-
lated using our Monte-Carlo code. To make consistent comparisons between methods, we accounted
only for radial photons in the Monte-Carlo simulations. Assigned density structure parameters were
fcl=4.0,δ t =0.5, andxic =0.0025. The agreement between the methods is very good, lending support
to the proposed analytic treatment and providing a relatively simple explanation for the basic features
of the synthetic profiles.
Evidently profile-strength reductions can be quite dramatic for ‘moderately strong’ cases such as
κ0 = 5. For the very strongκ0 = 500 line also the inter-clump medium is optically thick and the
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profiles are therefore saturated (which is a necessity because such saturated profiles are observed in
hot stars). Note that, ifδv were much higher thanCvt, one could neglect the second term in Eq. 5.2
andξ would become independent of the porosity length. If one alsoneglects the inter-clump medium
(settingxic =0), and assumes that clumps are optically thick throughoutthe entire wind (appropriate
for the κ0 = 5 line), then the observer in our example would simply receive a constant residual flux
Ra,x = 1− fv = 0.75. Fig. 5.2 shows that this generally does not hold (even forthe idealized case
of zero thermal speed, the inter-clump medium still plays a role), demonstrating that, along with the
velocity filling factor fvel, in general bothxic andη also help shape the emergent profile for a wide
range of line strengths and structure parameters. Fig. 5.2 illustrates the importance of accounting for
the finite line profile width.Cη may not be neglected, even in models with very low, but finite thermal
velocity, and becomes particularly important toward the blue edge of the line profiles. This occurs
because the resonance zones in the outermost wind become very radially extended.L thus grows
whereas the distances between the clumps (determiningh) are unaffected due to the very slowly
changing velocity field. Consequentlyη becomes very high andξ eventually reaches unity. Since the
κ0 = 5.0 line is optically thick, a ‘blue absorption dip’ (extensively discussed in Paper I) is created.
Randomization effects are here neglected because we have used a smooth velocity field. When clumps
are allowed to have velocities higher and lower than those given by the mean velocity field, overlap-
ping velocity spans of the clumps lead to increased escape ofphotospheric photons. The blue absorp-
tion dip then becomes less prominent than what is displayed in Fig. 5.2, as discussed in Paper I (see
also Sect. 5.9, for some comments on randomization effects).
Nevertheless, this subsection demonstrates that the microclumping approximation can result in large
errors if indeed the wind is clumped but the clumps are not optically thin. First applications of the
analytic formulation are given in Sect. 5.7, for diagnostics of weak wind starsand for the predicted
profile-strength ratios in resonance linedoublets.

5.4.2 Recombination lines in clumpy winds

We now leave the resonance lines behind and turn to the formation of recombination lines. We focus
on Hα , the primary spectroscopic mass-loss diagnostic for O stars. HeII 4686 reacts similarly as
Hα to clumping in our primary stars of interest (because HeIII is the dominant ion in the line forming
regions) and will be considered only in our diagnostic studyof λ Cep (Sect. 5.5).
First we present results from calculating Hα line profiles using our stochastic 3D wind models. Our
main interest is to investigate differences with respect tothe microclumping model, so main re-
sults are provided in terms of the deviation of the equivalent widthsWλ between the two methods,
(Wλ ,mic −Wλ )/Wλ ,mic, as a function of mass-loss rate (hereWλ ,mic denotesWλ as calculated from a
model assuming microclumping). All models discussed in this subsection were calculated with unity
departure coefficients, wind electron and radiation temperatures as for approximatelyλ Cep (cali-
brated using unified NLTE model atmospheres, see Puls et al.,2006), and no input photospheric ab-
sorption profiles. We used structure parametersfcl=9.0,δ t =0.5,xic = 0.0025, and a smooth velocity
field characterized byβ = 1.
For typical O-supergiants, the equivalent widths of profiles calculated from stochastic models are
slightly lower than those based on the microclumping technique. Deviations stem from optically thick
clumps. The dominating effect is on the windemissionof Hα photons rather than on the wind ab-
sorption of photospheric photons (in contrast to resonancelines, see previous subsection). This is
because the source function for recombination lines is basically unaffected by the dilution of the radi-
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Figure 5.3: Upper panel: Deviations from the microclumping approximation of equivalent widths
of synthetic Hα line profiles versus mass-loss rate (see text). Values ofrcl, the onset of clumping,
as indicated in the figure.Lower panel: Hα line profiles as calculated by stochastic, analytic, and
microclumped models withfcl=9 andṀ=10× 10−6 M⊙/yr and the rest of the stellar and wind param-
eters as forλ Cep. Clumping for all models starts atrcl = 1.3. The dimensionless frequencyx (see
Sect. 5.9) is on the abscissa.

ation field, which for relatively strong and hot winds make these lines appear in emission and thereby
suffer the main effect from a clumped wind on the emission part of the line profile. Moreover, the
ρ2-dependence of recombination line-opacity increases the contrast between the optical depths for the
clumps and those for the inter-clump medium, as compared to resonance line formation. This lowers
the significance of the inter-clump medium and also causes the clump optical depths to decrease faster
for increasing radii. The latter effect results in clumps that are optically thick only in the lower wind
regions. Deviations from the microclumping limit are therefore more significant for cases with earlier
onset of clumping. For example, the equivalent widths for the models withṀ=2.5× 10−6 M⊙/yr are
reduced by 7 % and 17 % when clumping starts atrcl = 1.3 andrcl = 1.05, respectively. The effect
is thus modest, but noticeable. Note that reductions are measured against models assuming micro-
clumping; the profiles are still much stronger than profiles computed from smooth models with the
same mass-loss rate.
Our tests show that effects are confined to the line core and that the microclumping approximation
provides accurate results in the line wings. However, Fig. 5.3 reveals prominent emission strength
reductions for stronger winds, since then optical depth effects become important for ever larger por-
tions of the total wind volume. Furthermore, the onset of clumping is irrelevant in these strong winds
because the majority of the emission emerges from radii greater thanrcl. This insensitivity to the onset
of clumping also recovers the scaling invariant formicroclumpedwinds (∝

√
fclṀ, see Sect. 5.3.2).

For typical OB-supergiants, this scaling does not hold because of the strong opacity contrast between
wind radii lower than and greater thanrcl. Even though we for these strong winds have entered the WR
regime, in which a reduced hydrogen content is expected (as well as a break-down of our assumption
of an optically thin continuum), our analysis could, of course, be generalized to recombination lines
of other chemical species (as has been done for HeII 4686 in our application toλ Cep), and may point
to significant optical depth effects in the strong emission peaks of stars with very high mass-loss rates.
Indeed, lower emission peaks in the theoretical spectrum ofa WR star were found by Oskinova et al.
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Table 5.3: Structure parameters for an empirical stochastic wind model ofλ Cep

Velocity range [vβ /v∞] fcl δ t [tdyn] xic δv /δvβ
vmin - 0.15 1.0 1.0 1.0
0.15 - 0.35 28.0 0.5 0.005 -5.0
0.35 - 0.60 14.0 0.5 0.0025 -5.0
0.60 - 0.95 14.0 3.0 0.0025 -5.0
0.95 - 1.0 4.0 3.0 0.0025 -5.0

(2007), on the basis of scaling smooth opacities using a porosity formalism. However, when deriving
empirical mass-loss rates from microclumping models of WR stars one normally considers also the
electron scattering wings (which are unaffected by microclumping, see Hillier, 1991), and because
these probably are optically thin it may be that lower emission peaks would have a greater effect on
the inferred clumping factors than on the mass-loss rates.

Analytic treatment of recombination lines. We can understand the reduction in Hα emission
strengths using the same analytic treatment as outlined forresonance lines. Better yet, because the
source functionS is almost unaffected by the radiation field (see Sect. 5.3), we can for recombination
lines simulate the total profile,Rx = Ra,x +Rem,x, writing

Rem,x = Sξx(1−e−τcl,x)+S(1−ξx)(1−e−τic,x). (5.4)

Rem,x is much more influenced by non-radial photons than isRa,x, so accordingly the radial streaming
assumption from the previous subsection must be relaxed here. Details are given in Sect. 5.9.
It was mentioned already in the previous paragraph that theρ2-dependence of the line opacity lowers
the significance of the inter-clump medium in recombinationline formation. Actually, tests have
shown that, in our typical stars of interest, the opacities in the inter-clump medium are so low that the
second term in Eq. 5.4 can safely be neglected. The lower panel of Fig. 5.3 illustrates that profiles
computed using the analytic approximation agree very well with those computed using our stochastic
wind models.

5.5 A multi-diagnostic study ofλ Cep

We have carried out a detailed study of the Galactic O6 supergiant λ Cep. This star was chosen in part
to connect with Paper I and in part because it is a well observed and studied object, with significant
mass loss, that appears to be less peculiar than, e.g.,ζ Pup. A simultaneous investigation of optical
diagnostics and the PV resonance lines is performed. The ionization fractions of PV and the hydrogen
and helium departure coefficients (see Fig. 5.5) are calculated with the unified model atmosphere code
FASTWIND, under the microclumping approximation and assuming the same clumping factors as in
corresponding RH or stochastic models, with stellar and wind parameters as given in Table 5.1 and
with a solar (Asplund et al., 2005) phosphorus abundance. Stellar rotation is treated by the standard
convolution procedure of a constantvsini (neglecting differential rotation). We use observedUV FUSE

spectra from Fullerton et al. (2006), and optical spectra from Markova et al. (2005) and A. Herrero
(described in Herrero et al., 2000). In addition to Hff , HeII 4686, and PV, we also consider the wind
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Figure 5.4: Radial clump optical depths for PV and Hα as functions of wind velocity.

sensitive cores of Hfi and Hfl. However, for these diagnostics we rely entirely on the microclumping
approximation, which because of their low wind optical depths should be sufficient.

5.5.1 Clump optical depths

Theclump optical depthin the wind is the primary quantity governing the validity ofthe microclump-
ing approximation. In Paper I we provided estimates of the clumps’ radialSobolevoptical depths in
resonance lines, estimates which may readily be modified to the case of Hα by following, e.g., Puls
et al. (1996) (see also Sect. 5.4.2). However, clumps do not always cover a complete resonance zone,
so the Sobolev optical depths must be replaced by optical depths calculated by including the actual
line profile. Within our stochastic wind models, the radial extent of a clump islr = vβ δ t fv, and
therefore, by transforming to the corresponding velocity width, we may calculate the ‘actual’ clump
optical depthτcl.
Fig. 5.4 shows radialτcl for the mass-loss indicators Hα and PV in λ Cep, using constant structure
parameters as for the inner clumped region given in Table 5.3. The figure shows thatτcl is signifi-
cantly higher for PV than for Hα and, moreover, that the only linear dependence on the density for
resonance lines (as opposed to the quadratic dependence of recombination lines) causes clumps to
remain optically thick in PV throughout almost the entire wind. Based only on these simple estimates,
one might therefore expect that the basic results of Sect. 5.4 should hold in a diagnostic application
of a typical O star. That is, Hα should be affected by optically thick clumping only in the line core,
whereas resonance lines should be much more affected over the entire line profile.

5.5.2 Constraints from inhomogeneous radiation-hydrodynamic models

Fig. 5.6 displays line profiles calculated from our RH model of λ Cep. Consistent fits of the observed
diagnostics are not achieved. The Hα line wings are reasonably well reproduced but the core emission
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is much too low. The PV profiles are, actually, better reproduced, although stronger than observed
toward the blue edge of the line complex (the ‘blue edge absorption dip’ problem, see Sect. 5.4.1).
The reasonable PV fits are due both to adopting a rather low mass-loss rate forλ Cep (see Table 5.1)
and to lower velocity spans in these RH models than in those analyzed in Paper I2. The mass-loss rate
was essentially chosen from a best compromise when considering the complete diagnostic set.
The apparent mismatch between Hα emission in the core and in the wings occurs becausefcl increases
rather slowly with increasing velocity (Fig. 5.5), which for a given mass-loss rate implies that the
optical depths in the Hα core forming regions are too low as compared to the optical depths in the
wing forming regions. HeII 4686 is subject to the same mismatch as Hα , and also the cores of Hfi and
Hfl are deeper than observed. The latter feature occurs becausethe photospheric absorption profiles
are not sufficiently re-filled by emission from the only weakly clumped inner wind. Thus, the optical
wind diagnostics all indicate that the clumping factor as a function of velocity inλ Cep differs from
that predicted by the RH simulations (see also Puls et al., 2006; Bouret et al., 2008). On the other
hand, any significant increase in the mass-loss rate to obtain a better fit of the higher Balmer lines and
the core of Hα would produce stronger than observed Hα and HeII 4686 line wings (as illustrated for
Hα in Fig. 5.6) and, vice versa, a reduction of the mass-loss rate to obtain a better fit of the (blue edge
of the) PV lines would produce too weak wings.

Comparison with the microclumping technique. We now compare results from above with those
from a microclumpedFASTWIND model having the same (smoothed) clumping factors as the RH
model. The PV profiles calculated using theFASTWIND model are stronger than those calculated using
the RH model. We may characterize this difference by the difference in the equivalent widthsWλ of

2 The exact reasons for the lower spans are still under investigation, and will be reported in a future paper.
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Figure 5.6: Observed and synthetic line profiles forλ Cep. Dotted linesare the observations.Solid
line profiles are calculated from the inhomogeneous radiation-hydrodynamic model ofλ Cep (Ta-
ble 5.1), anddashed linesfrom a correspondingFASTWIND model including microclumping. The
long-dashed line in the upper left panel is from a RH model in which the density has been scaled to
mimic an increase in the mass-loss rate by 50 %.

the absorption parts of the profiles.Wλ is roughly 15 % lower for the RH model (see also Owocki,
2008). However, this moderate reduction in profile strengthactually corresponds to a reduction in
the mass-loss rate by a factor of approximately two, becauseof the resonance lines’ slow response to
mass loss.

Resonance line profiles stemming from the RH and microclumping models also display different line
shapes. For RH models, significant velocity overlaps stemming fromthe non-monotonic velocity
field ensure that the observed flux at the blue side of the line center is accurately reproduced without
invoking any artificial and highly supersonic ‘microturbulence’, as must be done when using smooth
as well as microclumping wind models. Although not analyzedhere, also the absorption at veloci-
ties>v∞ of saturated resonance lines may be reproduced by RH models without invoking additional
microturbulence (Puls et al., 1993, Paper I). For Hα and HeII 4686, the RH and microclumping mod-
els yield almost identical results. This occurs because clumps are optically thin in these diagnostics
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Figure 5.7: As Fig. 5.6, but using our stochastic models (solids) with corresponding inferred empirical
structure parameters (see text). The assumed mass-loss rate is the same as for the RH model ofλ Cep,
see Table 5.1.

throughout almost the entire wind, due to the slow increase of fcl with mean wind velocity, which in
turn results in wind densities in the inner wind unable to produce optically thick clumps (compare to
the empirical models in the following subsection).

5.5.3 Constraints from empirical stochastic models

Clearly, the RH models fail to deliver satisfactory line profiles when their structures are confronted
with UV and optical wind diagnostics. Here we use our stochastic models to modify the wind-structure
parameters and show how the results then may be reconciled. This is a first attempt toward our long-
term aim of using consistent multi-diagnostic studies to obtain unique views ofempirical mass-loss
rates and structure properties of hot star winds.

The same mass-loss rate and terminal velocity as for the RH model ofλ Cep is adopted (see Table 5.1).
In the outermost wind, we for now adhere to the constraints onfcl derived from radio emission by Puls
et al. (2006), scaled with respect to the mass-loss rate derived here. In the inner wind, both the distinct
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shape of Hα in λ Cep3 and the cores of the higher Balmer lines may be used as tracersof structure. The
Hα absorption trough followed by the steep incline to rather strong emission can only be reproduced
by our models if clumping is assumed to start quite late (see also Puls et al., 2006; Bouret et al., 2008),
at a velocity marginally lower than predicted by the RH models, however with a much steeper increase
with velocity (see Fig. 5.5). Also, in the particular case ofλ Cep, the upper limit of the mass-loss rate
derived by Puls et al. (2006) (̇M=3.0× 10−6 M⊙/yr, inferred by assuming a smooth outermost radio
emitting wind) results in densities so high in the lowermostwind that the Hα trough never reaches
below the continuum flux. Moreover, additional constraintscome from the cores of the higher Balmer
lines; the higher the densities in the lowermost wind, the stronger the re-filling of the photospheric
absorption profile by wind emission. Here as well the upper limit from Puls et al. provides shallower
than observed line cores. Thus, if we requirefcl=1 at the wind base, and if our interpretation of the
abrupt shift from absorption to emission in Hα as due to clumping is correct, rather tight constraints
on the mass-loss rate may be obtained using only optical diagnostics.
The Hα time-series of Markova et al. (2005) reveal that both the height of the emission peak and
the depth of the absorption trough depend on the observational snapshot; variations can reach 0.04
in residual flux units. Therefore it is not critical that neither the peak nor the trough is perfectly
reproduced by our models in Fig.5.7 (which displays a ‘representative’ observational snapshot). On
the other hand, the observations do not indicate any significant variation in thepositionof the emission
peak. This might be an issue; the late onset of clumping redshifts the emission peak too much (at
least when neglecting differential rotation, see Sect. 5.6.1), whereas an earlier onset of clumping
fails to produce an absorption trough. The offset in the position of the emission peak is larger than
the estimated uncertainty in the radial velocity correction, which may indicate that clumping is only
partly responsible for the shape of the Hα core. Indeed, other interpretations have been suggested, and
we comment on this in Sect. 5.6.1.
The line shape of HeII 4686 is well reproduced by our stochastic models, but not theemission
strength. The line reacts similarly to clumping as Hα . In order to increase the central emission to
the observed level we would have to raise the clumping factorin the inner wind even more, which in
turn would produce stronger than observed Hα emission as well as shallower than observed Hfi and
Hfl cores. Since hydrogen generally has more reliable and robust departure coefficients than helium,
we have given higher weights to fits of hydrogen lines. Interestingly, He II 4686 shows a similar offset
as Hα in the position of the emission peak.
The PV resonance lines are much more sensitive to the wind structure parameters (see Sect. 5.4.1)
than to the mass-loss rate. Hence these lines should be used only as a consistency check of mass-loss
rates derived from other diagnostics. Using the structure parameters given in Table 5.2, our stochastic
models yield reasonable fits of the PV lines. We use values ofδ t andxic as in Paper I but are able to
adopt a higher value of|δv /δvβ |, which however is still lower than predicted by the RH models. This
higher value stems from that we here consider also optical diagnostics and from these derive a lower
mass-loss rate and higher clumping factors than what was assumed in Paper I.
fcl in the inner wind is drastically different from that predicted by our RH model forλ Cep (Fig.5.5),
and indicates that present-day RH simulations fail to predict observationally inferred clumping factors,
at least for the inner wind. Regarding the outermost wind, let us point out that the RH simulations used
here only extend tor ≈ 35, at whichfcl is still decreasing. Simulations by Runacres & Owocki (2002),
which extend to much larger radii, indicate that the clumping factor settles at≈ 4 in the outermost

3 which only resembles the P Cygni shapes of the UV resonance lines, since it is formed differently
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wind. fcl ≈ 4 is consistent with the assumed mass-loss rateṀ=1.5× 10−6 M⊙/yr and the constraints
from radio emission derived by Puls et al. (2006) (see above). This suggests that the outermost wind
is better simulated by current RH models than the inner.

Comparison with the microclumping technique. Here we compare the stochastic models from
above with microclumped models calculated with the same clumping factors. When using the mi-
croclumping technique, the PV resonance lines are notdirectly affected by the structured wind. The
mass-loss rate adopted in the previous paragraph then produces much too strong absorption in these
lines, see Fig. 5.7. Moreover, the high clumping factor in the inner wind adopted in our stochastic
models results in so high densities that the clumps become optically thick in Hα and HeII 4686 as
well. This generally leads to weaker emission for the stochastic models than for the microclumped
ones (Sect. 5.4.2), andfcl’s drastic increase from 1 to 28 makes the deviation from the microclumping
approximation prominent in this particular case. We have confirmed that the same emission strength
reduction results when using our simplified analytic approach (Sect. 5.4.2), which supports the rather
strong emission reduction that we find in the Hα core as well as indicates that our analytic approach
indeed might be a promising tool for a consistent implementation into atmospheric NLTE codes.
In order to obtain reasonable fits of the PV lines within the microclumping approximation we had to
lower the mass-loss rate significantly, toṀ=0.4× 10−6 M⊙/yr (this is the so-called ‘PV problem’, see
also Fullerton et al. 2006). In turn this meant that extreme clumping factors,fcl ∼ 400, in the inner
wind were required to meet the observed amount of Hα wind emission. However, we have not been
able to achieve a consistent fit of the optical diagnostics using these highly microclumpedFASTWIND

models; if for example Hα is fitted then the HeII 4686 emission is much too weak. Overall, the results
in this section support the view that the extremely low empirical mass-loss rates previously indicated
from PV might be a consequence of neglecting optically think clumping when synthesizing resonance
lines.

5.6 Discussion

5.6.1 Are O star mass-loss rates reliable?

Theoretical rates. The time/spatial averaged mass-loss rate of ourλ Cep RH model differs from
the rate of the corresponding smooth start model (used for initialization) by less than 5 %. From
this one might expect that the clumped stellar wind should not significantly affect theoretical mass-
loss rates based on the line-driven wind theory. However, Krtička et al. (2008) (see also Muijres et
al. 2010, submitted to A&A) made some first tests and includedwind inhomogeneities in a (steady-
state) theoretical wind model of an O star. They found that the predicted mass-loss rate increased
when clumps were assumed to be optically thin, because of increased recombination rates that shifted
the ionization balance to lower ionic states with more effective driving lines. On the other hand, their
tentative attempts to account for optically thick clumps inthecontinuumopacity as well as for clumps
with longer length scales than the Sobolev length reduced the line force and led to lower predicted
rates.
The reduced profile strengths of resonance lines (which are the main drivers of the wind) found here
should in principle also reduce the line driving in theoretical steady-state wind models, but let us
point out that many lines that significantly contribute to the total driving force might still be saturated
because of the non-void inter-clump medium. Nevertheless,it is clear that a thorough investigation
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of the impact of clumping on predicted mass-loss rates is urgently needed. The mass-loss rate for
λ Cep derived here is approximately a factor of two lower than the theoretical rate predicted by the
mass-loss recipe in Vink et al. (2000).

Empirical rates. Our empirical mass-loss rate forλ Cep is 4.5 times lower than the rate inferred
from synthesizing Hα using a smooth wind model (Repolust et al., 2004). The best constraints on
the mass-loss rate in our analysis come from the distinct shape of the Hα line core and the higher
Balmer lines (Sect. 5.5.3). Rotation in our models is treated by the standard convolution procedure.
But λ Cep is a fast rotator (Table 5.1), so differential rotation might influence the formation of the
line profiles, particularly the Hα core. Bouret et al. (published in Bresolin et al. 2008) foundthat the
Hα line in ζ Pup can be fitted by assuming that clumping starts close to thewind base,if differential
rotation is treated consistently. Sinceζ Pup andλ Cep display similar Hα profiles, it is possible that
the same effect could be at work also in the latter star, and thereby that the rather late onset of and
the rapid increase of clumping in our stochastic model ofλ Cep could be somewhat exaggerated.
Naturally, this could then also affect the inferred mass-loss rate.
The influence of X-ray andXUV /EUV radiation as created by shocked wind regions (Feldmeier et al.,
1997) on the occupation numbers is not included in our analysis. These contributors are not important
for calculations of hydrogen occupation numbers (Pauldrach et al., 2001), but their significance for
the ionization fractions of phosphorus is still debated (Krtička & Kubát, 2009; Waldron & Cassinelli,
2010). We have used the alternative unified atmospheric codeWM-Basic (Pauldrach et al., 2001),
which treats X-ray andXUV /EUV radiation butnot wind clumping, to estimate the impact of X-
rays on the PV ionization fractions. We find that effects are negligible atwind velocities lower than
v/v∞ ≈ 0.5 but profound at higher velocities, with the PV iaonization fraction significantly reduced
when X-rays (and of course the correspondingXUV /EUV radiation tail) are included. This suggests
that a proper treatment of these hot radiation bands might resolve the earlier discussed ‘blue absorption
dip’ problem, which is clearly visible in the PV line profiles calculated from RH models (Fig. 5.6, but
note that we overcame this problem in our stochastic models by increasing the distances between
clumps in the outermost wind, see Table 5.3).

5.6.2 Structure properties of the clumped wind

We identify two main problems when confronting synthetic spectra from the time-dependent RH sim-
ulations of the line-driven instability with observed lines in the UV and optical: i) the absorption
toward the blue edge of unsaturated UV resonance lines is toodeep in the simulations, and ii) the
emission in the core of Hα is much too weak as compared to the emission in the wings. The first prob-
lem is related to the high predicted velocity spans in the RH models, and was extensively discussed
already in Paper I. Moreover, in Sect. 5.6.1 we commented on that even if the large velocity spans
turn out to be stable features, this problem might be overcome by a proper treatment of X-rays in the
calculations of ionization fractions.
The second problem arises because the predicted clumping factors in the inner wind are too low as
compared to those in the outer wind (Fig. 5.5). However, let us point out that velocity as well as
density perturbations in the inner wind of our RH simulationmay be overly damped, because we use
the so-called smooth source function (SSF) approximation when calculating the contribution to the
line force from the diffuse, scattered radiation field. In simulations that relax the SSF approximation
and account for gradients in the perturbed source function (via an ‘escape-integral source function’
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formulation, EISF, Owocki & Puls 1996, 1999), the structurein the inner wind is more pronounced
and also develops closer to the photosphere.
In any case, however, it is questionable ifself-excitedinstability simulations will be able to reproduce
the observed clumping patterns (which have been found also in earlier investigations based on the mi-
croclumping approximation, e.g., Bouret et al. 2005; Puls et al. 2006), especially considering that our
RH model ofλ Cep actually already is triggered (Table 5.1), using Langevin perturbations mimicking
photospheric turbulence (Feldmeier et al., 1997). Thus, while observations tracing the outer wind
seem to confirm the structures predicted by the line-driven instability, observations tracing the inner
wind might require the consideration of an additional triggering mechanism to be reproduced, which
perhaps must be stronger than what is currently assumed. Forexample, Cantiello et al. (2009) pro-
posed that gravity and/or acoustic waves emitted in sub-surface convection zones may travel through
the radiative layer and induce clumping already at the wind base. However, regarding gravity waves,
it is not certain that these would have high enough frequencies (i.e., higher than the atmosphere’s
acoustic cutoff frequency) that they can be radially transported through the wind. Another possibility
for a strong clumping trigger might be non-radial pulsations in the photosphere. Certainly it would be
valuable to investigate to what extent such triggers, within a line-driven instability simulation using
the EISF formulation, could produce clumping patterns in the inner wind more compatible with the
observations.

5.7 Additional considerations

In this section, we discuss two applications for the analytic formulation of line formation in clumpy
winds presented in Sect. 5.4.1.

5.7.1 Weak wind stars

The so-called weak wind problem is associated with observations of (primarily) O-dwarfs of late
types, which appear to have mass-loss rates much lower than what is predicted by the line-driven
wind theory, and also much lower than other ‘normal’ O stars of earlier spectral types. However,
a major problem with wind diagnostics in this domain is that the primary optical diagnostic, Hα ,
becomes insensitive to changes in the mass-loss rates, so that only upper limits can be inferred from
this line. Therefore one must for these objects quite often rely solely on the intrinsically stronger UV
resonance lines. For a comprehensive discussion on the weakwind problem, see Puls et al. (2008b).
In the following, we demonstrate the potential impact of optically thick clumping on diagnostic res-
onance lines in weak wind stars using the analytic formulation developed in Sect. 5.4.1. We use one
component of the NV doublet at 1240̊A, assume a solar nitrogen abundance (Asplund et al., 2005),
and take a generic O-dwarf with parametersR∗=8.0R⊙, andv∞=1500 kms−1. The NV doublet was
among the lines utilized in the study of Marcolino et al. (2009), and also our chosen parameters cor-
respond well to the parameters for the five stars analyzed andfound to have very weak winds (more
than an order of magnitude lower than predicted by theory) inthat study. To avoid problems regarding
the onset of clumping and the aforementioned ‘blue absorption dip’, we consider only the velocity
intervalv/v∞ = 0.25−0.75. Line profiles for structured winds are calculated using Eq. 5.1 and adopt-
ing the same structure parameters as in Sect. 5.4.1 (fv=0.25,xic =0.0025,δ t =0.5, and a smooth ‘β=1’
velocity field).
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Figure 5.8: Equivalent widths,Wλ (normalized to the value for a saturated line), for the absorption
part of the NV resonance line at 1240̊A, as functions of the product of the ionization fraction of NV,
〈q〉, and the mass-loss rate. The solid line is calculated from smooth models and the dashed line
from structured ones. The black dots denoteWλ ’s for models corresponding to a smooth model with
〈q〉Ṁ = 10−9; see text.

Fig. 5.8 shows the curve-of-growths for structured and smooth models, respectively, as functions of
the mean ionization fraction of NV times the mass-loss rate,〈q〉Ṁ. Clearly, mass-loss rates derived
from smooth models may be severely underestimated also for stars with weak winds. For exam-
ple, if we for this star were to infer〈q〉Ṁ = 10−9 M⊙/yr from a smooth model, the corresponding
rate inferred from a structured one would be(〈q〉Ṁ)struc= 3.8×10−8 M⊙/yr = 38(〈q〉Ṁ)smooth(see
Fig. 5.8). Thus, if using smooth models (or microclumped, since microclumping has no effect on
the resonance lines), one could easily derive mass-loss rates more than an order of magnitude lower
than corresponding rates derived from structured models, and thereby one could also misinterpret
observations as suggesting that mass-loss rates are much lower than predicted by theory.

We emphasize, however, that this simple example merely demonstrates how optically thick clumping
might be important also for resonance line diagnostics in so-called weak wind stars, and that,if the
winds are clumped, one must be careful not to simply assume that strongly de-saturated resonance
lines also imply optically thin clumps. The actual mass-loss reductions will depend critically both on
the assumed ionization fractions and on the adopted structure parameters. Thus, a multi-diagnostic
study (to constrain the structure parameters), including adetailed consideration of X-rays (to obtain
reliable ionization fractions), is required for more quantitative results. Nevertheless, we may safely
say that, because of these inherent problems in UV line diagnostics, it is important to put further
constraints on the weak wind problem by exploiting other diagnostics that are sensitive to mass loss
but neither have optically thick clumps nor are affected by X-rays (as is probably true for, e.g., the
infra-red Brα line, Najarro et al., in prep., see also Puls et al. 2009).
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5.7.2 Resonance line doublets

Massa et al. (2008) pointed out that additional empirical constraints on wind structure may be ob-
tained by considering the observed profile-strength ratiosof resonance linedoublets. The line strength
parameter,κ0, of such doublets must in a smooth (or microclumped) wind be in proportion to the os-
cillator strengths of the individual components,f , which for the cases of interest here aref b/ f r = 2,
with superscriptsb and r denoting the blue and red line components, respectively. However, if the
clumps are optically thick for the investigated lines but this is ignored in the analysis, the line-strength
ratio may in principle take any value between unity and two (see discussion in Paper I). For exam-
ple, in the case of very optically thick clumps and a void inter-clump medium, Eq. 5.1 simply gives
Ra,x = 1− ξx, i.e. the inferred line-strength ratio would be exactly one. The analogy for continuum
diagnostics, or for line diagnostics in anon-acceleratingmedium, is the well-known result that for
a medium consisting of infinitely dense absorbers embedded in a vacuum, the effective opacity is
independent of the atomic opacity (see footnote 4 in Sect. 5.9). Also for such a situation would the
inferred profile-strength ratio be exactly one.
A major advantage of this line diagnostic is that the dependence on X-rays should cancel out. Re-
cently, Prinja & Massa (2010) extended the Massa et al. work to include a large number of B super-
giants, for which they, from the SiIV λλ1400 resonance doublet, derived empirical profile-strength
ratios using smooth wind models. The stars showed a wide spread between unity and the predicted
factor of two, with the majority of them lying in the range 1.0to 1.5, and with an overall mean of 1.46
(standard deviation∼0.31). In the following, we shall discuss this diagnostic under the assumption
that the doublet components are well separated, so that eachcomponent can be treated as a single line,
which is reasonable for, e.g., the just mentioned silicon lines in typical B-supergiants and for PV in
OB-stars.
We now show that our analytic formulation for resonance lineformation indeed predicts profile-
strength ratios on the same order as those discussed above. Following the previous paragraph, we
assume a solar abundance for silicon, make use of a generic B-supergiant withR∗=30.0R⊙ and
v∞=800 kms−1, adopt the same structure parameters as before, and consider only the velocity in-
terval v/v∞ = 0.25− 0.75. We then assume that for this generic star we derive〈q〉Ṁ = 5× 10−9

from the SiIV resonance doublet formed in astructuredwind model. By once more exploiting the
curve-of-growth (as in Fig. 5.8, but now for the two components of SiIV ), we can then easily translate
the structured results to corresponding smooth ones. We findan effective ratio(κb

0/κ r
0)smooth≈ 1.4,

which agrees well with the results derived by Prinja & Massa (2010).
The doublet ratios are, in fact, almost ideal diagnostics regarding structure properties, since all other
dependencies cancel out. Therefore ratios deviating from two might be the cleanest indirect signatures
of optically thick clumping that we presently have, and may in principle be used to extract empirical
information on the behavior ofξ . We write the ratio of the blue and red absorption line profileat
frequencyx as

Rb
a,x

Rr
a,x

=
(1−ξx)e−(2τ r

ic)+ξxe−(2τ r
cl)

(1−ξx)e−τ r
ic +ξxe−τ r

cl
. (5.5)

Generally, this equation can be solved forξx only if the line optical depths and the inter-clump den-
sities are known (the latter for example from observations of saturated resonance lines, see Paper I).
However, under certain circumstances we can eliminate the need for such external knowledge. For
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example, assuming thatall clumps are optically thick, we may write

Rb
a,x

Rr
a,x

= e−τ r
ic =

Rr
a,x

1−ξx
→ ξx = 1−

(Rr
a,x)

2

Rb
a,x

. (5.6)

Applying the last formula to our line-profiles computed for Si IV using Eq. 5.1 reveals a mean value
of ξ = 0.48 in a velocity binv/v∞ = 0.4− 0.5, which agrees well with the actual mean (calculated
from the assumed structure parameters),ξ = 0.51. Thus, this approximation can provide a quite
good direct empirical mapping ofξ , without any knowledge about optical depths etc. Another case
for which the profile-strength ratio can be directly relatedto ξ is that of a completely transparent
background medium (i.e. in our case a void inter-clump medium). That limiting case of Eq. 5.5 has
been long recognized and used by the quasar community (e.g.,Ganguly et al., 1999), for the formation
of intrinsic, narrow absorption-line doublets.
However, let us point out that this theoretical example onlydemonstrates that our basic formalism
appears reasonable. In a real application, there will be a contribution also from there-emissionpart of
the line profile, i.e., what we actually measure from an observation is the total line profileRx = Ra,x+
Rem,x. Thus, to empirically inferξx from Eq. 5.6 (which involvesRa,x = Rx −Rem,x), we must either
simply neglect the re-emission contribution (which generally not will be possible) or actually calculate
Rem,x, as predicted by astructuredwind model. For resonance lines (as opposed to recombination
lines, see Sect. 5.4.2), a simplified approach forRem,x in clumpy winds is still to be developed; it
is a very demanding task because of the source function’s scattering nature. In principle though, a
treatment corresponding to the ‘smooth source function’ formalism used in our time-dependent RH
simulations (see Sect. 5.6.2) might be a reasonable first approximation.

5.8 Summary and future work

We investigate diagnostic features for deriving mass-lossrates from the clumped winds of hot, massive
stars, without relying on the microclumping approximation. It is found that present-day RH simula-
tions of the line-driven instability are not able to consistently fit the UV and optical diagnostics in a
prototypical O-supergiant. By creating empirical stochastic wind models, we achieve consistent fits
mainly by increasing the clumping in the inner wind. A mass-loss rate is derived that is approximately
a factor of two lower than what is predicted by theory. The best constraints come from the optical
diagnostics. The UV resonance lines are much more sensitiveto the wind’s structure parameters (i.e.
to the clumping factor, the inter-clump medium density, etc.) than to the mass-loss rate, and should,
thus, not be the preferred choice when deriving empirical mass-loss rates.
We discuss both recombination line and resonance line formation in detail. Resonance lines always
suffer the effects of optically thick clumping in typical diagnostic lines, and their profiles are thereby
weaker for models with a sufficient treatment of clumping than for models that rely on the micro-
clumping approximation. Recombination lines are less affected because of the lower optical depths in
typical diagnostic lines. However, emission strength reductions as compared to microclumped models
are significant for stars with high mass-loss rates (e.g., Wolf-Rayet stars) and can be so for O stars
as well,if, for example, strong clumping is present in the lower wind, as illustrated by our diagnostic
study ofλ Cep.
An analytic method to model these lines in clumpy winds, without any restriction to microclumping,
is suggested and shown to yield results consistent with those from detailed stochastic models. Some
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first results are given, illustrating the potential significance of optically thick clumps for diagnostic
lines in weak wind stars, and confirming recent results that profile-strength ratios of resonance line
doublets may be used as tracers of wind structure and optically thick clumping. We intend to refine
this method and incorporate it into suitable NLTE unified atmospheric codes, in order to investigate
effects of optically thick clumping on the occupation numbers.
It is pivotal that 3D, time-dependent RH models of the line-driven instability be developed, with an
adequate treatment of the 3D radiation transport. New models are required to investigate whether the
structure predicted by present-day simulations is stable or a consequence of current physical assump-
tions and simplifications.

5.9 Analytic treatment of line formation in clumped hot star winds

Resonance lines. We propose to write the absorption part of a resonance line formed (from a radial
ray) in a clumped wind as

Ra,x = ξ e−τcl,x +(1−ξ )e−τic,x, (5.7)

whereξ is defined as thefraction of the velocity field over which photons may be absorbed by clumps
and the optical depths are those for the clumped (subscript cl) and rarefied (subscript ic) medium.
Following Owocki (2008) we define thevelocity filling factor fvel as the fraction of the velocity field
covered by clumps (in full analogy with the volume filling factor fv). That is, fvel is the ratio of the
velocity span of the clump,δv , to the velocity separation between two clump-centers,∆v,

fvel ≡
δv
∆v

. (5.8)

In our stochastic models we haveδv ≈ (δv/δvβ )(dvβ/dr)δ r and from the definition offv (see Pa-
per I) δ r ≈ fv∆ r, with ∆ r = vβ δ t the radial distance between two clump centers. Similarly one may
approximate∆v≈ (dvβ/dr)∆ r, which leads to

fvel ≈
δv

δvβ
fv. (5.9)

Thus, a smooth velocity law (δv=δvβ ) implies fvel= fv.
Actually, Eq. 5.7 is in form equivalent to the analytic transfer solution derived by Levermore et al.
(1986), for the ensemble averaged intensity in a two-phase[i = A,B] Markovian model of a static
purely continuum absorbing medium in the limit that the length scalesl i of fragments of both compo-
nents are much longer than the domain of integration4, if we just substitutel i → δv,∆v. Thus, from
this analogy it is clear that we may setξ = fvel as long as the Sobolev-like requirementδv>>Cvt is
satisfied, whereCvt is the velocity extent over which a photon of frequencyx may be absorbed (that
is, the velocity extent of a resonance zone). This limiting situation corresponds to the case that the

4 We mention in passing that the Levermore et al. model also yields the resulte−r/h in the limit of infinitely dense absorbers
in a background vacuum, which is equivalent to the result fora fully porous wind obtained by, e.g., Owocki et al. (2004).
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line profile can be represented by a delta function, so that the sharp edges of the resonance zones pre-
vent any absorption at frequencies not Doppler shifted to the very line center, resulting in a localized
radiative transfer. The optical depths in Eq. 5.7 are then understood to be the Sobolev ones. That is,
τcl = τ/ fvel andτic = τ(xic/ fvel), with τ the optical depth in the smooth case.
However, especially in the outer wind (but, depending on theonset of clumping, also in the innermost
wind, see Fig. 5.2) we will generally haveδv<Cvt and the effective fraction of the velocity field over
which photons can be absorbed by clumps will increase. The exact form of the radiation transport is
then likely to be very complex. Nonetheless, let us in a first attempt try to simply modifyξ in order
to account for the essential effects. We write

ξ ≈ δv+Cvt

∆v
, (5.10)

where the factorCvt now represents a sort of correction to the limiting case ofδv>>Cvt. A linear
addition is chosen because the basic equation determining whether or not a photon actually can be
absorbed (i.e., whether or not it is located within its resonance zone) isxcmf = xobs−v, with xcmf and
xobs the co-moving and observer’s frame frequencies, respectively. The dimensionless frequencyx is
defined as

x=
ν −ν0

ν0

c
v∞

, (5.11)

with speed of lightc and line-center rest-frame frequencyν0.
The factorC accounts for the fact that the ‘effective resonance zone’ over which photons can be
absorbed by clumps is larger than that provided byvt (at least for relatively strong lines). Photon
absorption atx within clumps is given by the distribution functione−τcl,x , with expectation value
τcl,x = 1. Therefore we may estimateC using the ‘effective profile width’, determined by solving for
the co-moving frame frequency at which unity optical depth is reached,if a clump is present,

τcl
1−erf[xcmf/vt]

2
= 1, (5.12)

where erf is the error function. The effective profile width then isC= 2xcmf/vt, wherexcmf is given by
the solution to Eq. 5.12. Note thatC now is allowed to be velocity dependent,C→C(v). In addition,
the expression for the clump optical depth should now be modified, τ/ fvel → τ/ξ , to account for the
fact that individual clumps no longer cover a complete resonance zone. We note that including these
correction terms recovers the smooth optical depthτ in the limit ∆v<< vt (as expected because then
the individual clumps obviously are optically thin).
With C determined we can castξ in the convenient form

ξ ≈ fvel+Cη , (5.13)

whereη ≡ vt/∆v is the effective escape ratio. Note the difference between this definition ofη and
that given in Paper I. The two are related as
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η = (1− fvel)/ηold, (5.14)

whereηold denotes our earlier definition. The advantage of re-definingη is that we may now separate
out the porosity dependence inξ , writing

η =
vt

∆v
≈ vt/(dv/dr)

∆ r
=

Lr

h
, (5.15)

with h= δ r/ fv =∆ r = vβ δ t the porosity length of the medium andLr = vt/(dv/dr) the radial Sobolev
length. The coupling between vorosity and porosity becomesclear viaη .
As defined,η may in principle take arbitrarily high values, so for the examples in this paper we simply
setξ = 1 wheneverξ ≥ 1, because in a wind with a smooth velocity field the clumps obviously cannot
absorb photons over a velocity space larger than that covered by theβ velocity law. On the other hand,
if we allow for clumps to be randomly positioned in velocity space, overlapping velocity spans will
lead to a change in the effective coverage fractions. If velocity perturbations are sufficiently large, one
may simply substituteξ → (1−e−ξ ) and permitξ to take arbitrarily high values. However, it is clear
neither if velocity perturbations will be sufficiently large nor how to handle the case when more than
one clump is crossed within a resonance zone. Thus we for now consider only the simple case of a
smooth velocity field, deferring to future work a careful study of these randomization effects.
Finally, Eq. 5.7 has the proper behavior in the limiting cases of a smooth or microclumped wind. For
the former (xic =1 andτcl=τ),

Rx = e−τx , (5.16)

and for the latter (τcl << 1),

Rx ≈ 1− τx, (5.17)

where we recall that this last result is expected because resonance line formation depends linearly on
the density (see Sect. 5.3.2).

Recombination lines. The absorption part of recombination lines such as Hα may also be approxi-
mated as described above. Furthermore, since the source function in these lines can be prescribed (see
Sect. 5.3) we can make a similar approximation for the re-emission part

Rem,x = Sξ (1−e−τcl,x)+S(1−ξ )(1−e−τic,x), (5.18)

whereS is the source function at the resonance point in units of the continuum intensity. The total
line profileRx is then given byRx = Ra,x +Rem,x. It is important to realize that the re-emission profile
is much more influenced by non-radial photons than is the absorption part profile. Thus we replace
the radial approximation forξ with a corresponding line-of-sight expression,ξ → ξz, by substituting
Lr → Lz andh→ h/µ , where curvature effects for a clump have been neglected. The optical depths
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from the previous paragraph must be replaced by corresponding ones for recombination lines, where
of course care must be taken for the now angular dependentτ . Also Eq. 5.18 has the proper behavior
for smooth as well as for microclumped winds. For the former

Rem,x = S(1−e−τx), (5.19)

and for the latter

Rem,x ≈ Sτx fcl, (5.20)

which is expected because recombination line formation depends on the square of the density (see
Sect. 5.3.2).
Comparisons between the analytic approximations outlinedhere and numerical simulations using our
stochastic wind models and detailed radiative transfer codes are given in the main paper.



Chapter 6

Mg I emission lines at 12 & 18µm in K
giants

This chapter is a copy of Sundqvist, Ryde, Harper, Kruger, & Richter (2008), Astronomy & Astro-
physics, 486, 985.

6.1 Abstract

The solar mid-infrared metallic emission lines have already been observed and analyzed well, and the
formation scenario of the Mg I 12µm lines has been known for more than a decade. Detections of
stellar emission at 12µm have, however, been limited to Mg I in very few objects. Previous modeling
attempts have been made only for Procyon and two cool evolvedstars, with unsatisfactory results for
the latter. This prevents the lines’ long predicted usage asprobes of stellar magnetic fields. We want
to explain our observed Mg I emission lines at 12µm in the K giants Pollux, Arcturus, and Aldebaran
and at 18µm in Pollux and Arcturus. We discuss our modeling of these lines and particularly how
various aspects of the model atom affect the emergent line profiles.

High-resolution observational spectra were obtained using TEXES at Gemini North and the IRTF.
To produce synthetic line spectra, we employed standard one-dimensional, plane-parallel, non-LTE
modeling for trace elements in cool stellar atmospheres. Wecomputed model atmospheres with the
MARCS code, applied a comprehensive magnesium model atom, and used the radiative transfer code
MULTI to solve for the magnesium occupation numbers in statistical equilibrium. The Mg I emission
lines at 12µm in the K giants are stronger than in the dwarfs observed so far. We present the first
observed stellar emission lines from Mg I at 18µm and from Al I, Si I, and presumably Ca I at 12
µm. We successfully reproduce the observed Mg I emission lines simultaneously in the giants and in
the Sun, but show how the computed line profiles depend critically on atomic data input and how the
inclusion of energy levels withn ≥ 10 and collisions with neutral hydrogen are necessary to obtain
reasonable fits.
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6.2 Introduction

Metallic solar emission lines around 12µm were first identified by Chang & Noyes (1983), with the
most prominent lines originating from transitions1 7i → 6h (12.32µm) and 7h → 6g (12.22µm)
between Rydberg states of neutral magnesium. Additional Rydberg emission lines from Al I, Si I, and
tentatively Ca I were identified as well (Chang & Noyes, 1983;Chang, 1984). The Mg I line formation
scenario remained unclear until Chang et al. (1991) and Carlsson et al. (1992), hereafter C92, in two
independent studies reproduced the emission features by employing standard plane-parallel numerical
radiative transfer with a detailed atomic model and a reliable solar atmosphere. They confirmed an
origin below the atmospheric temperature minimum, refuteda chromospheric line contribution, and
established a non-LTE (LTE: Local Thermodynamical Equilibrium) formation scenario. The solar
lines have subsequently been used in, e.g., Mg I statisticalequilibrium analysis by Zhao et al. (1998).
C92 proposed a general Rydberg line formation mechanism forthe highly excited metal lines, which
implied that all visible metal emission lines in the solar spectrum around 12µm originated in the
photosphere. A detailed non-LTE modeling of the Al I emission has been carried out by Baumueller
& Gehren (1996), where they confirmed this mechanism.
The lack of suitable spectrometers and the low stellar flux inthe mid-infrared have in the past made
high-resolution spectroscopy in this wavelength region possible only for the Sun and a few luminous
nearby stars. Ryde et al. (2004) observed the 12µm Mg I emission features in Procyon, and success-
fully reproduced the line profiles by employing the same modeling technique as C92. Uitenbroek
& Noyes (1996) observed and modeled the evolved stars Arcturus (α Boo) and Betelgeuse (α Ori).
Using the same model atom as C92, they were unable to fit the line profiles of the 7i → 6h Mg I tran-
sition, which appeared both in emission (Arcturus) and absorption (Betelgeuse). Their observational
sample also included five M giants and supergiants, in which the line appeared in absorption. How-
ever, Ryde et al. (2006) investigated water vapor lines for Betelgeuse in the same spectral region, and
found a water line that coincided with the wavelength of the Mg I 12.32µm line. The group success-
fully modeled the water line, without considering the Mg I blend (which we predict to be very weak,
see Sect. 6.7.3). This may explain the sample of observed M star absorption at 12.32µm, since water
vapor is expected in these stars, whereas the Mg I emission line contribution should be minor.
A well known potential use for the Mg I lines is as probes of magnetic fields, which play a fundamental
role in the underlying physics of a cool stellar atmosphere.Zeeman line-splitting from an external
magnetic field increases quadratically with wavelength, while the Doppler broadening only has a
linear dependence. Thus a line’s sensitivity to magnetic fields becomes higher at longer wavelengths.
The splitting of the solar emission lines was pointed out early and has been extensively analyzed. We
have performed observations of the magnetically active dwarf ε Eridani. These will be reported on in
a forthcoming paper (Richter et al., in preparation), hencewe defer further discussions about stellar
disk-averaged magnetic fields until then.
Prior to (stellar) diagnostic applications, however, we should make sure that we are able to model and
understand these lines in a range of stars. So far, as mentioned above, modeling attempts for evolved
stars have been unsuccessful. We address this issue here by analyzing high-resolution observational
spectra, which show strong Mg I emission lines in the three giants Pollux (K0 III), Arcturus (K1.5 III),
and Aldebaran (K5 III). We model and analyze simultaneouslythe three K giants and the Sun, with
particular emphasis on influences from atomic data, and discuss why previous modeling attempts have
not succeeded. The organization of the paper is as follows; in Sect. 6.3, we describe the observations.

1 Quantum statenl, wheren denotes the principal quantum number andl the orbital
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In Sect. 6.4 we review some concepts about the formation of the infrared Mg I emission lines and in
Sect. 6.5 we describe our modeling procedure. Results are presented in Sect. 6.6 and we discuss them
and give our conclusions in Sect. 6.7.

6.3 Observations

The observations were made with TEXES, the Texas Echelon-cross-echelle Spectrograph, Lacy et al.
(2002). TEXES provides high spectral resolution in the mid-infrared and is available as a visiting
instrument at both Gemini North and at IRTF, the Infra-Red Telescope Facility. The Pollux (β Gem)
observations come from the November 2006 observing campaign at Gemini North. The Arcturus
and Aldebaran (α Tau) observations were done over many years at the IRTF. In most cases, the
observations were primarily intended for flux calibration or focus tests and not to study the stars
themselves.
When observing stars with TEXES, we nod the source along the slit, typically every 10 seconds, to
remove sky and telescope background. Before each set of 8 to 16 nod pairs, we observe a calibration
sequence that includes an ambient temperature blackbody and an observation of blank sky emission.
The difference of blackbody minus sky serves as a first order telluric correction and flatfield. Where
possible, a featureless continuum object with emission stronger than the target is also observed to
further correct for telluric features and flatfielding. The largest asteroids work very well for this
purpose, as does Sirius (α CMa) with respect to Pollux.
At the frequencies of the mid-infrared Mg I emission lines, the spectral orders from the TEXES high-
resolution echelon grating are larger than the 2562 pixel detector array. This results in slight gaps in
the spectral coverage. For the Pollux observations, which were the final observations before sunrise,
we observed in two settings and adjusted the tilt of the collimator mirror feeding the echelon grating
for the second setting. This shifts the spectral orders in the dispersion direction. By combining the
data from these separate observational settings, we were able to fill in the gaps in the spectral orders.
The Arcturus and Aldebaran data were constructed from many separate observing settings and no
particular efforts were made to fill in the gaps.
Data reduction was done using a custom FORTRAN pipeline (Lacy et al., 2002). The pipeline cor-
rects for spikes and optical distortions in the instrument,allows the user to set the wavelength scale
based on telluric atmospheric features, flatfields the data,differences nod pairs to remove the back-
ground emission, and then combines the resulting differences. Finally it extracts a spectrum based on
the spatial information within the two-dimensional echellogram. The pipeline also provides a fairly
accurate estimate of the relative noise in each pixel.
To combine data from separate observations, we first established a common wavelength scale. We
corrected each spectrum for the Earth’s motion at the time ofthe observation and then interpolated
the data onto the common scale. We used a fourth-order polynomial derived from line free regions to
normalize each spectral order. We determined the signal-to-noise (S/N) for the normalized spectrum
via a Gaussian fit to pixel values and used the relative noise estimate established during pipeline
reduction to assign a weight for each spectral pixel. When combining data, we choose to weight by
the signal-to-noise squared, which effectively means weighting by successful observing time.
Observations of low pressure gas cells near 13.7µm at the November 2006 run indicate that the instru-
mental profile for the 12µm observations of Pollux has a Gaussian core with a FWHM∼ 3.0kms−1,
corresponding to a spectral resolutionR∼ 105. As the Arcturus and Aldebaran spectra combined
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data from four different runs and possible errors from the combinations may be significant, we were
unable to make a reliable measurement of the instrumental profile in this region for these stars. At
18 µm, similar measurements indicate that these observations have a Gaussian instrumental profile
with a FWHM∼ 4.5kms−1. In Sect. 6.6 we display our observed data re-binned to approximately
the spectral resolution, except for Fig. 6.5, where the pixel scale is used. Signal-to-noise ratios in the
spectra vary but are generally high, reachingS/N ∼ 450 per pixel for Pollux and∼ 300 for Arcturus
and Aldebaran, in regions around the 12.22µm line. At 18.83µm, the ratio isS/N ∼ 40.

6.4 Departure coefficient ratios

Before proceeding to a modeling description, we briefly review some important concepts about the
formation of the 12µm emission lines. In the following we use the departure coefficientsbi = ni/n∗i ,
whereni is the actual number density (not to be confused with the principal quantum numbern)
of energy leveli andn∗i the corresponding LTE population, as calculated from the total magnesium
abundance using the complete Saha-Boltzmann relations. Ina spectral line, a departure coefficient
ratio which differs from unity,bl/bu 6= 1, at line-forming depths causes a deviation of the line source
function,Sl

ν , from the Planck function,Bν , which affects the emergent intensity:

Sl
ν

Bν
=

ehν/kT −1

bl/bu×ehν/kT −1
(6.1)

For a characteristic wavelengthλ = 12.3µm, and temperatureT = 5000K, we getehν/kT ∼ 1.26, and
may directly from Eq. 6.1 realize that already a small deviation from unity in the departure coefficient
ratio causes a significant change in the line source function. The physical reason for this is the in-
creasing importance of stimulated emission in the infrared. If bu/bl > 1 and increases outwards in the
atmosphere, we may get a rising total source function and a line profile appearing in emission despite
an outwards decreasing temperature structure. Such departure coefficient divergence occurs between
highly excited Rydberg levels in the outer layers of the modeled stellar photospheres considered in
this study, and is the reason for the modeled emission lines.
Departure coefficient ratios that deviate from unity are setup by three-body recombination from the
Mg II ground state and a ‘deexcitation ladder’ that preferably takes∆n,∆ l =−1 downward steps (see
Fig. 6.1 for an illustration). In the solar case, all Mg I Rydberg levels are strongly collisionally coupled
to each other and to the Mg II ground state. The main effects that drive the line source function out of
LTE come from lines elsewhere in the term diagram, primarilylines between levels with intermediate
excitation energies, which are optically thin in the outer atmosphere and experience photon losses
(Rutten & Carlsson, 1994). These levels impose a lower limitto the Rydberg state deexcitation ladder.
The number densities of the Rydberg energy levels adjust to the upper and lower limits, and a radiative-
collisional population flow occurs. It was shown, for the solar case by C92, how a high probability
for ∆n,∆ l = −1 downward transitions is necessary for the Rydberg state ladder to be efficient and
that these transitions dominate only if the collisional coupling is strong in the uppermost Mg I levels.
It was also shown how this high probability arises from the regular character of the collisional cross-
sections of transitions between highly excited levels. We thus remind of the remark in C92 that for
a correct description of the ladder flow between highly excited levels, it is more important to have a
consistentset of collisional data, than to have the most accurate cross-sections for a few transitions.
These considerations are important to keep in mind when we later discuss our extension of the model
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Figure 6.1: Illustration of the ‘Rydberg ladder’ (see text), using aselectedpart of the Mg I term
diagram. Five levels about the 7h→ 6g transition are labeled with corresponding quantum numbers
nl. Dots mark energy levels withn≥ 9 andl ≥ n−3. Solid lines between levels show transitions with
∆n,∆ l = −1, dashed show two alternative transitions (∆n = 2,∆ l = −1). Dashed-dotted illustrate
recombination from the Mg II continuum.

atom and the influence from collisions with neutral hydrogen. A more comprehensive description of
non-LTE effects throughout the Mg I term diagram that affectthe solar 12µm lines can be found in
Rutten & Carlsson (1994).

6.5 Modeling

To produce synthetic line spectra, we employ standard one-dimensional, plane-parallel, non-LTE
modeling for trace elements in cool stellar atmospheres. Wegenerate model atmospheres from the
MARCS code (Gustafsson et al., 1975, 2008), adopt a comprehensive magnesium model atom, and
use the radiative transfer code MULTI (Carlsson, 1986, 1992) to solve for the magnesium occupation
numbers in statistical equilibrium, while holding the structure of the atmosphere fixed.

6.5.1 Model atmospheres and stellar parameters

The MARCS hydrostatic, plane-parallel models are computedon the assumptions of LTE, chemical
equilibrium, homogeneity, and the conservation of the total flux (radiative plus convective; the latter
treated using the mixing-length theory). No chromospherictemperature rise is invoked but, as shown
by C92, omitting a chromosphere has a negligible impact on the solar Mg I 12µm transitions. The
findings in this work and that by Ryde et al. (2004) suggest that this holds true also for other investi-
gated stars. Apart from the temperature and density stratifications, a detailed MARCS radiation field
was generated using opacity samplings including millions of lines. A sampled version of this radiation
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field was used when MULTI calculated the photoionization rates, in order to properly account for the
line-blocking effect. We discuss some variations to our procedure in Sect. 6.7.
The stellar parameters we used for Pollux wereTeff = 4865K, logg= 2.75 (cgs), a solar metallicity
(as given by Grevesse et al. 2007), and a depth independent ‘microturbulence’ξ = 1.5kms−1, all
based on a spectral analysis of optical iron and calcium lines made by Drake & Smith (1991). For
the parameters of Aldebaran we adoptedTeff = 3900K, logg = 1.5 (cgs), a metallicity2 [M/H] =
−0.25, andξ = 1.7kms−1. These are from primarily Decin et al. (2003) but considering also sources
accessible at the SIMBAD astronomical database. Finally for Arcturus we usedTeff = 4280K, logg=
1.5 (cgs), [M/H]= −0.50, andξ = 1.7kms−1. A discussion of these Arcturus parameters can be
found in Ryde et al. (2002). The stars are all nearby and well-studied objects, and their parameters
should be fairly accurate. Model grids show that the effectson the lines from (reasonable) variations
in logg or Teff are smaller than effects from, e.g., atomic input data, which will be investigated in the
following sections.
We convolved our computed intrinsic line profiles with the instrumental profile, the projected rota-
tional velocity (v sini), and the ‘macroturbulence’ (none of which affect the line strength but only the
profile shape). We adoptedv sini values from Smith & Dominy (1979), which for Pollux, Arcturus and
Aldebaran are, respectively,v sini = 0.8, 2.7, 2.7kms−1. As we were unable to obtain a fair estimate
of the instrumental profile for the Arcturus and Aldebaran spectra around 12µm, we choose first to
assign an isotropic Gaussian shape with characteristic Doppler velocityvm for the combined effect of
the instrumental profile and the macroturbulence. For Pollux, where the instrumental profile could be
separated out, we obtainedvmacro∼ 3.3 kms−1. However, it became clear that the modeled line wings
of the K giants better fitted the observations when assuming aradial-tangential Gaussian shape (Gray,
1976) for the macroturbulence. Therefore we decided to assign the Pollux instrumental profile for all
three stars (the exact values are not so significant since themacroturbulence is the dominating external
line broadening), and adopted a radial-tangential macroturbulencevm,R−T = 5.5, 6.0, 5.5kms−1 to fit
the observed line-widths. Our values are∼2 kms−1 higher than those measured from Fourier analysis
in optical spectra by Smith & Dominy (1979).

6.5.2 The model atom

Our Mg I model atom is essentially an enlarged and slightly modified version of the one compiled by
C92, and a full description can be found there. The original model atom has also been used in the
analysis of solar magnetic fields (e.g., Bruls et al. 1995), for the Mg I 12µm flux profiles of Procyon
(Ryde et al., 2004), and in a previous attempt to model giants(Uitenbroek & Noyes, 1996). In short,
the atom is complete with all allowed transitions up to principal quantum numbern= 9 and includes
the ground state of Mg II. We now describe changes and tests wehave made.

Enlargement of the model atom

Lemke & Holweger (1987), who also pointed out a possible photospheric line-origin through a ris-
ing line source function, made a statistical equilibrium investigation for the Sun but were unable to
reproduce the Mg I 12µm emission due to a combination of their adopted collisionaldata treatment
and an inadequate model atom. Their exclusion of levels higher thann= 7 resulted in an incorrect

2 Here we do not specify individual metal abundances, but [M/H] is taken as the characteristic metallicity where as usual
[A/B] = log(nA/nB)∗− log(nA/nB)⊙.
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description of the replenishment of the Rydberg levels fromthe ion state. C92 experimented with the
n= 8,9 levels and confirmed that these were necessary to have top-levels that were fully dominated
by collisions and to obtain sufficient departure coefficientdifferences in line-forming layers to match
the observed solar emission features. In this work we have extended the model atom to include levels
with n≥ 10 to investigate if the departure coefficient differences are further enhanced.
The model atom was first enlarged to include all energy levelsand allowed transitions withn= 10. To
ensure homogeneity throughout the model atom, all new atomic data were calculated using the same
formalisms as those employed by C92. The only exception was absorption oscillator strengths for
transitions withl ≤ 3 for which data was drawn from the opacity project (OP) TOP-BASE (Cunto &
Mendoza, 1992), since the tabulation used by C92 (Moccia & Spizzo, 1988) only extend ton= 9. The
enlargement caused an upward shift in the Mg I departure coefficients, and the effect became more
pronounced asn increased; thus producing larger departure coefficient differences between adjacent
levels. The same effect was seen in the Mg I statistical equilibrium for all our template atmospheres.
To investigate the influence of the lowl levels, a test-run was also made where onlyn= 10 levels and
transitions withl ≥ 4 were included. This model atom and the completen= 10 atom produced almost
indistinguishable results.
After this initial enlargement, atomic models were constructed step-wise, including higher princi-
pal quantum numbers. The enhancement continued until the atom’s uppermostn level and the sec-
ond uppermost were Boltzmann populated with respect to eachother at all atmospheric layers (i.e.,
btop−1/btop = 1). This criterion was met for all atmospheric models when reachingn= 15, illustrated
for the solar case in Fig. 6.2 (where our model actually meetsthe criterion already atn= 12). Sensi-
tivity tests verified that no differences in results occurred when adding the finaln= 15 top-levels. The
main difference between the solar departure coefficients (Fig. 6.2) and those of the K giants is that the
latter have Mg II ground states that are more overpopulated relative to LTE in their outer atmospheres.
This is mainly because Mg I and Mg II are competing ionizationstates in these cooler atmospheres, so
that the ion ground state becomes more sensitive to deviations from LTE in Mg I population densities.
In Arcturus and Aldebaran, the overionization is further enhanced by the lower metallicity, which
reduces the important line-blocking effect.
As the influence from levels with lowl was negligible already forn = 10, we have confined the
enlargement to levels and transitions withl ≥ 4.

Collisional data

Ryde et al. (2004) comparedradiativebound-bound and bound-free data from our model atom with
OP data and found an overall good agreement. We have therefore restricted our analysis here to some
aspects of thecollisional data, which usually introduce the largest uncertainty in the model atom, due
to a large number of poorly known cross-sections.

Collisions with neutral hydrogen

The role of collisions with neutral hydrogen in cool stellaratmospheres has long been a subject for
debate. Despite small cross-sections (as compared to electron impacts), one may expect them to
contribute significantly to collisional rates due to largenHI/ne ratios. In the outer parts of the model
atmospheres in this study, this ratio ranges from about 104 in the Sun to 105 in the cooler and more
metal-poor Arcturus. No collisions with neutral hydrogen were considered in the original model atom.
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Figure 6.2: Solar departure coefficients for Rydberg state energy levels withn ≥ 5, as functions of
the continuum optical depth at 500 nm.b5 is indicated in the figure, and an increment of one follows
upwards in the figure. The displayed coefficients combine allbn,l coefficients with the same n and
l ≥ 4. The Mg II ground state is labeled with dots.

When inelastic collisions with neutral hydrogen are explicitly included in non-LTE calculations, a
standard procedure is to adopt the recipe of Drawin (1969), as given by Steenbock & Holweger (1984).
The Drawin formula has often been criticized. Steenbock & Holweger state an accuracy of an order
of magnitude, but a rather common remark is that the recipe may overestimate the cross-sections
with as much as one to six orders of magnitudes (see, e.g., Asplund 2005, and references therein).
Unfortunately, more reliable cross-sections are scarce, especially for non-LTE calculations that require
data for a large set of transitions. A customary way around this shortage is to adopt a scaling factor
SH to the Drawin formula, calibrated on solar or stellar observations.

In studies concerning the solar Mg I 12µm lines, the Drawin formula was adopted by Lemke & Hol-
weger (1987) and Zhao et al. (1998). The latter group scale their values with a factor that decreases
exponentially with increasing excitation energy. Consequently, they applySH = 3×10−10 for the 12
µm transitions, which give them essentially the same result as if neglecting hydrogen collisions. Re-
call also that the former group was unsuccessful in producing an emission line core in their statistical
equilibrium analysis.

Here we have estimated the collisional rates due to neutral hydrogen impacts using the Drawin for-
mula. When introduced without scaling factor, our models reveal solar 12µm lines in pure absorption
and this case will therefore not be considered. By calibrating on the solar observations, we have
adoptedSH = 10−3 in all computations involving collisions with neutral hydrogen. However, in view
of the existing uncertainties, we present results both fromincluding these collisions for all radiatively
allowed bound-bound (for which we have oscillator strengths) and all bound-free transitions, and
excluding them.
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Collisional excitation from electrons

The bulk of the collisional cross-sections from electron impacts for radiatively allowed transitions are
calculated, as was done in C92, using the impact parameter approximation (Seaton, 1962). Mashon-
kina (1996) showed that, overall, this approach predicts significantly smaller cross-sections than the
alternative semi-empirical formula of van Regemorter (1962) (applied for the solar Mg I lines in, e.g.,
Zhao et al. 1998). Avrett et al. (1994) used both formalisms when modeling the solar Mg I lines and
concluded that using van Regemorter gave somewhat weaker emission. In C92, the impact param-
eter approximation is claimed to give a consistent set of rates accurate to within a factor of two for
transitions between closely spaced levels.
Note that the above mentioned formalisms relate the collisional cross-section to the oscillator strength
and may therefore not be applied to radiatively forbidden transitions. The ‘forbidden’ cross-sections
are here set to a multiplying factor times that of the closestallowed (see C92). The original choice
(C92) for this factor was 0.05, but Bruls et al. (1995) discovered some errors regarding a few oscillator
strengths, accounted for here as well, and the factor was revised to 0.3 in order to reproduce the
previous results. We also adopt 0.3, which was used by Ryde etal. (2004) as well. A similar treatment
for solar Mg I analysis has been used by Mauas et al. (1988) whoassumed 0.1, the same value as
estimated in Allen (1973). Sigut & Lester (1996) also adopted 0.1 for Mg II (in work where they, for
B type stellar photospheres, predicted the corresponding Rydberg emission lines for Mg II), which
they found to be in rough agreement with a few more rigorouslycalculated rates from low excitation
transitions. We have tested using the enlarged model atom without collisions with neutral hydrogen
and concluded that by a raise to 0.7 times the cross-section of the nearest allowed transition we are
able to reproduce the observed solar lines, but that the modeled emission in the K giants remain far
lower than the observed.
An alternative approach for the radiatively forbidden transitions, applied in, e.g., Mg I (and II) non-
LTE abundance analyses (Zhao et al., 1998; Przybilla et al.,2001; Gehren et al., 2004; Mashonkina
et al., 2008), is to set a constant collisional strengthΩ = 1. Overall, this gives considerably lower
collisional rates. The collisional strengthΩ for collisions with electrons is related to the Maxwellian
averaged downward collisional rateCji [s−1] via:

Cji = 8.63×10−6ΩT−1/2
e g−1

j ne (6.2)

whereTe is the electron temperature,g j the statistical weight of the upper level, andne the number
density of free electrons. The upward rate,Ci j , then follows from the principle of detailed balance.
We have also tested assuming a constantΩ = 1 on the solar and Arcturus model, and verified that the
modeled emission for Arcturus still is inadequate, remaining on the same low level as that displayed
in Fig. 6.3, when collisions with neutral hydrogen are not included. The solar emission increases by
this approach, but not enough to drastically change the suitableSH factor. Overall, our experiments
with the radiatively forbidden transitions tell us that thesolar emission lines are somewhat sensitive
to these rates, whereas the models of the K giants are much less responsive.

l-changing collisions

No explicit calculations of collisional transitions of typen,l→ n,l’ with high orbital quantum numbers
(l ′ ≥ 4) were made in the original model atom, but rather it was assumed that these collisional rates
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were high enough to ensure strong coupling between closely spaced levels. This was established by
settingΩ = 105 if the difference in effective principal quantum number (n− δ whereδ is the quan-
tum defect) in the transition was less than 0.1. The high value of Ω causes very high collisional rates,
which essentially force all levels with the samen and l ≥ 4 to share a common departure coefficient
(i.e., to be Boltzmann populated with respect to each other), in agreement with the proposed assump-
tion. This, however, only holds for all relevant atmospheric layers in the Sun, whereas in the more
diluted model atmospheres of the K giants, we find deviationsbetween departure coefficients in outer
layers (for Arcturus outside logτ500 ∼ −2) for levels with relatively low orbital quantum numbers,
when settingΩ = 105. Apparently, such a value does not suffice for the K giants andwe need to
either raise the factor or explicitly estimate the rates. Note that C92 based the assumption of com-
mon departure coefficients mostly on the large cross-sections for l -changing collisions with neutral
hydrogen calculated by Omont (1977), cross-sections latershown to be over-estimated by an order of
magnitude (Hoang-Binh & van Regemorter, 1995).
In this work, we have calculated explicit electron/ion collisional rates for transitions with∆ l =
±1,∆n = 0 and l , l ′ ≥ 3 by using a cut-off at large impact parameters, as outlined by Pengelly &
Seaton (1964). We find that the radial cut-off for transitions with low l is set by the non-degeneracy
of the energy levels. For ion rates, this happens inside the radius where the strong interaction dom-
inates and hence the impact parameter approximation is not expected to be reliable. However, for
electron impacts the cut-off is at larger distances and since electron rates dominate over ion rates for
these transitions, our approach should provide rates accurate to at least an order of magnitude also
in the low l range. Ion rates surpass electron rates froml ∼9 and higher, where the cut-off is well
within the weak-interaction limit. We assume only singly ionized elements (nion = ne) with the largest
electron/ion donor being magnesium, providing∼ 40 % of the total electron/ion pool in the relevant
atmospheric layers in our MARCS models.
The calculated rates are in good agreement with the electronrates tabulated in Hoang-Binh & van
Regemorter (1994), who exclusively consideredl -changing collisions for then = 6,7 levels. Our
rates are higher than those inferred fromΩ = 105 (by typically a factor of∼ 4 for, e.g.,n= 7), hence
no changes in results occur for the solar atmosphere. For theK giants, small differences between
departure coefficients with the samen and l ≥ 4 still exist but effects from using explicit rates are
small. When forcing common departure coefficients for all equal n levels with l ≥ 4 (by drastically
increasing our computed rates), we still obtain normalizedemission peaks for the K giants that differ
only by a few percentage points.

6.6 Results

6.6.1 Emission lines at 12µm

We plot observed and computed line profiles for the Mg I 12µm lines in the Sun, Pollux, Arcturus,
and Aldebaran in Figs. 6.3, 6.4 and 6.5. In Arcturus and Aldebaran, the 12.32µm line is blended with
a water vapor absorption line (see Ryde et al. (2006) for an identification), which in the latter star is
so influential that we choose to exclude the Aldebaran 12.32µm line from the analysis. The observed
emission lines from the K giants are stronger than the solar lines. In addition to the Mg I lines, we
also identify emission lines from Si I, Al I, and Ca I in the observed spectra of Pollux and Arcturus
(three of the lines are displayed in Fig. 6.5), all identifiedasn= 7→ 6 transitions with high orbital
quantum numbers. The flux maximum in the observed and normalized spectra (and the FWHM for
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Figure 6.3: Observed and modeled line profiles in Arcturus and Aldebaran for the 12.22µm line, plot-
ted on a velocity scale. Labels as indicated in the figure; where C92 denotes the original model atom,
n=15;noH the extended excluding collisions with neutral hydrogen and n=15;H the one including
such. The filled dots denote the observed data.

Figure 6.4: Observed and modeled line profiles in Pollux and for three positions on the solar disk
(indicated in the figure) for the 12.22µm line, plotted on a velocity scale. Labels as in Fig. 6.3.
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Figure 6.5: Observed spectra around the 12.3µm region, shifted to the solar frame, for Pollux, Arc-
turus, and for two positions on the solar disk (indicated in the figure). Solar observations are from
Brault & Noyes (1983). Models for the Mg I 12.32µm line are labeled with dots, and use the n=15;H
model atom (see Fig. 6.3). The solar absorption features aretelluric lines, and the missing parts in the
Arcturus spectrum are due to gaps between spectral orders. Visible emission lines as indicated in the
figure. The Arcturus absorption line at 12.32µm is a water vapor line.

the Mg I lines) are given in Tables 6.1 and 6.2. More line data can be found in Chang & Noyes (1983)
and Chang (1984). We have also added results from modeled Mg Iflux profiles for the Sun (from a
disk integration over solar intensity profiles in a model that reproduces the observations) in Table 6.1,
to enable a fair comparison between solar and stellar observations. This illustrates that the K giants
have stronger emission than the Sun.
The line-center average depth of formation in the modeled MgI 12 µm lines is, for the Sun and Pollux,
in atmospheric layers slightly below logτ500 ∼ −3, with the weaker 12.22µm line shifted approx-
imately 0.2 dex toward the inner photosphere. In Arcturus and Aldebaran, the line formation takes
place deeper inside the atmosphere. The average depth of formation for the line-center in the 12.22
µm line in Arcturus and Aldebaran is logτ500= −1.8 and−1.6 respectively. This is partly because
of the lower amount ofH−

ff opacity in these atmospheres (due mainly to lower electron abundances),
which shifts the continuum formation to about logτ500∼ −0.8, as compared with logτ500∼ −1.2 in
Pollux.
The extension of the model atom has a significant impact on thesynthetic line spectra, with computed
intensity/flux profiles being much stronger when using the enlarged model atom. We note the failure
of the smaller atom to reproduce the observed emission for the K giants, whereas it provides a good
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Table 6.1: Summary of observed magnesium emission line properties.

Normalized FWHM
flux maximum [kms−1]

Star, line [µm] 12.22 12.32 18.83 12.22 12.32 18.83
Pollux 1.28 1.37 1.20 6.8 7.1 8.2
Arcturus 1.24 a 1.23 8.0 a 9.7
Aldebaran 1.16 a - 8.0 a -
Sunb 1.09 1.15 - 5.8 6.1 -

a Emission line blended with H2O absorption line.
b Modeled solar flux profiles (see text).

match for the solar lines, in agreement with previous studies. The larger model atom without colli-
sions with neutral hydrogen predicts emission lines well below the observed level for Arcturus and
Aldebaran, in contrast to the Sun where the modeled lines noware too strong. However, when includ-
ing collisions with neutral hydrogen (as described in Sect.6.5.2) the models reproduce the observed
emission in all cases. These different responses to the ‘added’ collisions demonstrate the complexity
of the Rydberg state deexcitation ladder, and are further discussed in Sect. 6.7.2.
Our models predict narrow absorption troughs in the Pollux lines, only matched by observations in
the red wing of the 12.22µm line. However, due to uncertainties in the observed normalized spectra
imposed by, e.g., the continuum setting, we are not able to draw any firm conclusions from the absence
of absorption troughs. A discussion about shifts in the solar absorption troughs, visible in Fig. 6.5,
can be found in, e.g., Chang (1994). We also note how the line-wings in Arcturus and Aldebaran are
too broad to be fitted by an isotropic Gaussian, and require a radial-tangential macroturbulence (see
Sect. 6.5.1).

6.6.2 Mg I emission lines at 18µm

We also observed the 8h→ 7g Mg I transition at 18.83µm in Pollux and Arcturus, and present here
the first stellar observations of this line. The emission is high here as well, see Fig. 6.6 and Table 6.1.
Our synthetic line spectra reproduce the observed emissionalso for this line, which suggest that our
model atom accounts for the Rydberg state deexcitation ladder in an accurate way. For comparison
reasons, we display also a solar disk-center intensity profile3. The observed solar line feature is barely
visible, which further illustrates the stronger emission from K giants.
The difference between departure coefficients inn= 8→ 7 transitions is of similar magnitude as that
between 7 and 6, causing comparable emission line strengths. The continuum formation is shifted
about 0.3 dex outwards when compared to the spectral region around 12µm (the H−

ff opacity in-
creases) but the average height of formation for the line-center in the 18.83µm line in Pollux is
located at logτ500∼−2.5, slightly further in than the 12µm lines. This is because the line is merely
the third strongest 8l → 7l ′ transition with∆ l =−1. We thus predict that the next two Rydberg transi-
tions in the chain (8i → 7h located at 18.99µm and 8k→ 7i at 19.03µm) should appear even stronger,
however these were not covered in our observational setup.

3 Observations from the Kitt Peak solar atlas
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Figure 6.6: Observed and modeled line profiles for the 18.83µm line in Pollux, Arcturus, and at the
solar disk-center. Labels as in Fig. 6.3. The feature to the left in the figure is an OH absorption line.
Note the scale difference between the upper and lower ordinate.

Table 6.2: Summary of observed emission line properties around 12µm (other elements than magne-
sium) for Pollux and Arcturus.

Elementa Wavenumberb Normalized
Wavelength flux maximum

[cm−1] [µm] Pollux Arcturus
Si I 810.360 12.340 1.07 1.08
Si I 810.591 12.337 1.04 1.04
Al I 810.704 12.335 1.07 1.06
Si I 811.709 12.320 1.06 1.05
Si I 813.380 12.294 1.06 1.07
Si Ic 814.273 12.281 1.04 -
Ca Id 814.969 12.270 1.05 1.02
Al I c 815.375 12.264 1.03 -
Si Ic 815.979 12.255 1.03 -

a Line identifications based on
Chang & Noyes (1983) and Chang (1984).

b From the solar observations by Brault & Noyes (1983).
c Emission line blended with OH absorption line.
d Line identification in Chang & Noyes (1983)

stated as ‘suspicious’.
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6.7 Discussion and conclusions

The model atom extension and the introduction of collisionswith neutral hydrogen remove the dis-
crepancy between observed and modeled emission in our study. Beforethe model atom was extended,
we undertook a number of tests to investigate the large discrepancies between observations and mod-
els. We therefore start our discussion by a short summary of these, with the purpose to simplify future
work.
The lines are sensitive to the photoionization rates as these affect the recombination to the Rydberg
levels. We thus made anad-hocincrease in the photospheric MARCS radiation field until themodeled
Mg I emission lines matched the observed, but found that the required additional mean intensities gave
rise to surface fluxes that by far exceeded observed ones. We included a chromospheric temperature-
rise in Arcturus and found it to have a negligible impact, with the lines forming in atmospheric layers
below the temperature minimum. We computed MARCS models in spherical geometry and employed
the spherical version of MULTI, S-MULTI (Harper, 1994), butdifferences from plane-parallel models
were small. No attempt to analyze influences from atmospheric inhomogeneities has been made in this
work. A discussion about how granulation affects the solar lines can be found in Rutten & Carlsson
(1994).

6.7.1 The model atom extension

All Mg I departure coefficients are shifted upwards (increased) by the extension of the model atom,
but the upward shift is more pronounced in the higher energy levels. It is this change in the departure
coefficientratio in the line-forming regions that is sufficient to cause a significant change in results,
i.e., higher emission peaks for the larger atom. The enhanced collisional coupling in the uppermost
Mg I levels and to the Mg II ground state strengthens the cascading process in rather the same manner
as the model atom with top-levelsn = 9 did when compared to one reaching onlyn = 7 (see Sect.
6.5.2). Qualitatively, more recombinations enter at the top-levels, channel down through transitions
that take part of the Rydberg ladder (see Fig. 6.1) and set up larger departure coefficient differences
between adjacent levels. The extension thus has a significant impact on the mid-infrared emission
lines, whereas the overall character of the Mg I statisticalequilibrium remains.
To include the energy levels withn ≥ 10 seems especially pertinent when applying the model atom
on diluted stellar atmospheres with low surface gravities (as shown by the large differences in the
modeled line profiles of the K giants). These are more influenced by radiative transitions, and thus the
extension ensures that the Rydberg level replenishment from the ion state is properly accounted for
by including top-levels that are fully dominated by collisions.

6.7.2 Effects from extra collisions

Higher rates of collisional excitation and ionization affect the 12µm lines in the implemented stellar
model atmospheres differently. Figs. 6.3 and 6.4 show how (by the introduction of collisions with
neutral hydrogen) the Mg I 12µm emission is reduced in the Sun, increased in Arcturus and Aldebaran
and almost unchanged in Pollux. Apparently, a homogeneous increase of collisional rates actually
results in stronger emission in the low surface gravity atmospheres of Arcturus and Aldebaran (which
one would perhaps not expect since, generally, collisions act to thermalize lines toward LTE).
We have analyzed this result by computing additional modelsfor the Sun and Arcturus, where we
included radiatively allowed bound-bound collisions withneutral hydrogen for 1) only the three tran-
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sitions 7i → 6h, 7h → 6g, and 7g → 6 f and 2) only transitions with∆n,∆ l = −1 andn ≥ 8 and
l ≥ 4. The first test imposes stronger collisional coupling onlyin the n = 7 → 6 transitions them-
selves, whereas the second serves to strengthen the collisional bound-bound coupling in transitions in
the uppermost levels that take part of the Rydberg ladder (see Fig. 6.1), while maintaining all other
rates.
We quantify the results of this experiment by the normalizedflux maximum in the 12.22µm line. In
the first case, both models give lower emission, as expected from the direct thermalizing effect on the
n = 7→ 6 transitions. The modeled flux maximum above the continuum decreased by∼ 30 % and
∼ 25 % for the Sun and Arcturus respectively, as compared with the model excluding collisions with
neutral hydrogen. For the second case, however, the emission increased with a similar percentage in
the solar model, whereas in Arcturus, the modeled flux maximum doubled its value. Thus, in a star
like Arcturus the enhancement effect from highly excited lines (see Sect. 6.4) dominates the reduction
effect from the higher collisional rates in the line transitions themselves, so that when introducing
collisions with neutral hydrogen homogeneously throughout the model atom, the outcome is an emis-
sion increase (as seen in Fig. 6.3). We can understand this bynoting that, e.g., the ratio between
collisional and radiative deexcitation rates for the 8i → 7h transition (supplying the 12.22µm line) is
Cji/Rji ∼ 15.0 (Sun) and∼ 0.2 (Arcturus) in typical line-forming layers when collisions with neutral
hydrogen are excluded. In principle, this means that the contribution from hydrogen is needed in the
giants to ensure an efficient Rydberg ladder.

6.7.3 Observations of Rydberg emission lines around 12µm

The observed emission-line flux spectra for Pollux and Arcturus in the 12µm region closely resembles
the solar limb intensity spectrum, whereas the solar disk-center spectrum lacks emission features from
other elements than magnesium (see Fig. 6.5). It is evident that strong emission features from the K
giants, as compared with solar-type dwarfs, appear for moremetallic Rydberg lines than magnesium,
and the observability of different elements so far follows the same pattern as in the Sun. Future
observations will tell if this observed trend remains for a larger sample. Model tests with K dwarfs
indeed predict lower Mg I emission for dwarfs than for giantsalso within the same spectral class
(supported as well by observations of the magnetically active K dwarf ε Eridani, Richter et al., in
preparation).
For cooler K giants, absorption from water vapor starts to influence the 12µm spectrum and we have
detected a blend at 12.32µm in Arcturus and Aldebaran. Observations from this spectral region in the
yet cooler M supergiant Betelgeuse (Ryde et al., 2006) reveal no emission lines above the noise level,
which is consistent with our modeling of the Mg I lines in thisstar (using the same stellar parameters
as in Ryde et al.).

6.7.4 Comparison with other studies

Uitenbroek & Noyes (1996) modeled the Mg I 12.32µm line in Arcturus and concluded that the
computed line was, roughly, half as strong as the observed. When using the ’C92’ model, we find an
even larger discrepancy for the 12.22µm line (see Fig. 6.3). As already discussed, these longstanding
discrepancies between observations and models for K giantsare removed when using our new model
atom. We note also that Uitenbroek & Noyes did not detect the water vapor absorption line, which is
blended with the Mg I 12.32µm line in our Fig. 6.5. The extension of the model atom changesthe
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results in the solar case as well (as compared with C92 and Ryde et al. 2004), placing the Mg I lines
in higher emission, but the former results are recovered by the introduction of collisions with neutral
hydrogen.
We have settled here with the rather questioned, albeit standard, Drawin recipe for collisions with
neutral hydrogen while we await results from more rigorous quantum mechanical calculations. We
have shown the influence from these collisions on the formation of the mid-infrared Mg I emission
lines, however we stress that it has not been an aim of this investigation to put detailed empirical
constraints on their efficiency. Such a task would require a larger set of lines, including also other
wavelength regions. Nevertheless, we may still compare ouradopted scaling factor to the Drawin
formula for Mg I collisions with neutral hydrogen,SH = 10−3, with other values from the literature.
Mentioned in Sect. 6.5.2 was the exponential decrease resulting in SH = 3× 10−10 for the 12µm
transitions (Zhao et al., 1998), a model which was later abandoned by the same group in favor of
a constantSH = 0.05 (Gehren et al., 2004), inferred only from optical lines. In a recent non-LTE
abundance study of magnesium in metal-poor stars (Mashonkina et al., 2008),SH = 0.1 is used. The
value we find based on the mid-infrared lines is more than one order of magnitude lower than the
values obtained from these two optical studies. Our model atom has not been applied to optical lines,
however such a combined study should be given high priority in future work. We thus conclude that
the mid-infrared emission lines from near-by giant stars may be suitable diagnostics for testing atomic
input data in future non-LTE analyses.
Finally, as we are now able to model and explain the observed emission lines for both dwarfs and
giants, diagnostic applications regarding stellar disk-averaged magnetic fields are possible.



Chapter 7

Summary and outlook

7.1 Summary

The mass-loss rate is a key parameter of hot, massive stars. It directly affects their evolution and
ultimate fates, and is furthermore crucial for various feedback effects from these stars on their sur-
roundings, such as ionizing fluxes, stellar yields, and energy and momentum releases (Sect. 1.1).
Large reductions of O-star mass-loss rates currently in usehave been suggested, by an order of mag-
nitude or even more, as due to the effects of wind inhomogeneities (clumping). If confirmed, such low
rates would have enormous implications for massive star evolution and feedback, and thereby also for
the large number of astrophysical applications relying on their predictions.
However, both atmospheric modeling and spectral synthesisaccounting for the effects of clumping are
still in their infancies, and results stemming from present-day models have recently been challenged
by several studies (Sect. 1.4). In particular, the normallymade assumption ofoptically thin clumps
(‘microclumping’) certainly is questionable for many of the spectral diagnostics used to estimate the
mass-loss rates of these stars.
Spurred by this, we have developed new, improved methods to model the structured wind and the line
formation in hot, massive star atmospheres, and investigated in detail the impacts from optically thick
clumps, a non-void inter-clump medium, and a non-monotonicvelocity field on UV resonance and
optical recombination line formation (Chapters 4-5). These lines are standard to use when deriving
‘observed’ mass-loss rates by comparing synthetic and observed spectra. It is found that, indeed, the
microclumping assumption is generally not valid for line formation under typical conditions prevailing
in clumped, hot star winds. Especially the resonance lines are affected by optically thick clumps, and
we show that if using the microclumping approximation when modeling these lines, one may seriously
underestimate the observed mass-loss rates.
First quantitative results from an exemplarymulti-diagnosticstudy are presented, using the proto-
typical Galactic O-supergiantλ Cep (Chapter 5). It is shown that synthetic spectra computedfrom
present-day inhomogeneous, time-dependent, radiation-hydrodynamic wind models are unable to re-
produce observed diagnostic lines in the optical and UV. Consequently, we develop stochastic,empir-
ical wind models aiming to capture the essence of the structured medium. By means of these models,
we obtain consistent fits of the diagnostics, essentially byassuming a higher clumping in the inner
wind, and lower intrinsic velocity widths of the clumps, than what is predicted by self-consistent
models. We derive an observed mass-loss rate forλ Cep that is approximately two times lower than
predicted by the line-driven wind theory. Note, however, that this rate is still a factor of five higher
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than the one derived when assuming microclumping. Thus, by properly accounting for the effects of
optically thick clumps in wind diagnostics, we alleviate (although not completely resolve) the very
large discrepancies between observations and theory indicated by previous studies.
Moreover, an analytic method to model resonance and recombination lines in clumpy winds, without
any restrictions to microclumping, has been developed and shown to yield results consistent with those
from detailed stochastic models. Some first, tentative but promising, results of the method are given,
and we here suggest that this method, accompanied with thosepresented for continuum diagnostics in
Chapter 3, may be explored to perform consistent, quantitative multi-wavelength studies of clumped
hot star winds, ranging from the X-ray to the radio region (see also Sect. 7.2.1).
A side project of this thesis has been an investigation of theNLTE line formation of the photospheric
emission lines of (primarily) Mg I at 12µm in cool stars (Chapter 6). These lines can, e.g., potentially
be used to measure upper photospheric stellar magnetic fields, due to their sensitivity to Zeeman
splitting. However, the lines have so far been observed in a very limited number of stars, and modeling
attempts had previously been carried out only for two dwarf stars (including the Sun) and two cool
giants, with very unsatisfactory results for the latter. Wepresent new observations of IR emission lines
at 12, and 18µm in giants of K type, and show by a detailed magnesium NLTE modeling that the
same line formation mechanism as for the solar case is at workthere. We also point out why previous
modeling attempts have been unsuccessful. It is emphasizedhow the formation of these lines are very
sensitive to the input atomic data, and thus that they, in addition to magnetic field studies, may be used
as crucial consistency checks for model atoms used inmulti-wavelengthabundance studies.

7.2 Outlook

7.2.1 Quantitative spectroscopy

The main long-term goal of the project started with this thesis, is to develop (and subsequently, of
course, to apply) reliable methods for quantitative spectroscopy of hot, massive stars with winds. Only
if our diagnostic tools are sufficiently well developed may we with some confidence draw conclusions
on various observed properties of these objects, such as effective temperatures, chemical abundances,
and mass-loss rates.
From the results of Chapters 4 and 5 we have learned that the description of clumping included
in present-day, state-of-the-art, unified model atmospheres may not be adequate under certain cir-
cumstances. Using the basic methods developed in those chapters, we intend to updateFASTWIND

(Sect. 1.5.5) shortly, with a more appropriate descriptionof wind clumping, accounting both for the
presence of optically thick clumps and for a non-monotonic velocity field. A treatment of X-rays will
be implemented as well. Thereafter we shall be ready to derive empirical mass-loss rates, as well as
structure properties, of unprecedented reliability for large samples of hot, massive stars, by means of
multi-diagnostic, multi-wavelengthstudies.
With this, we hope to set a new standard for empirical mass-loss rates from hot, massive stars, and
shed light on current conflicts between observations and theory (e.g., the clumping in the inner wind
and the velocity spans of the clumps, see previous sections). Most importantly, we aim to answer the
key question:Can we trust mass-loss rates currently in use in models of massive star evolution?
Also, chemical surface abundances of stars provide constraints on both stellar and galactic evolution
models as well as probe the conditions both in the present-day and in the early Universe. The mass-
loss rate is important when deriving chemical surface abundances of hot stars with significant wind
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strengths, for the modeled ionization equilibria and synthesized profiles are both affected by mass loss.
As an example, nitrogen is a key element for constraining massive star evolution as well as galactic
chemical evolution. However, first results from theVLT-FLAMES project (see Chapter 2) revealed
apparent conflicts between observed nitrogen surface abundances in B-stars and the predictions from
stellar interior models including rotational mixing (Hunter et al., 2007, 2009). On the other hand,
primary nitrogen, presumably produced by strong rotational mixing in massive stars, is needed in
galactic chemical evolution models, to reproduce the observed abundance patterns of the very old
low-mass, metal-poor, halo stars that have survived until today (Chiappini et al., 2006). Nitrogen
model atoms appropriate for O stars are currently being developed within our group (PhD thesis of
J. Rivero González), and reliable atmospheric structuresincluding the stellar wind (and accounting
for the effects of wind clumping, see above) will be essential in order to use these model atoms
for deriving abundances of desired accuracy, and in the extension to put further constraints on the
evolution models.
The importance of adequate model atoms in quantitative spectroscopy was also demonstrated in a side
project of this thesis, in which we used the NLTE approach fortrace elements to model and analyze
infra-red Mg I emission lines in late-type stars (Chapter 6). Although observations of these lines so
far have been scarce indeed, the advent of NASA’s airborne Stratospheric Observatory for Infrared
Astronomy (SOFIA)1 opens up for more regular observations in the future. Then itmight finally be
possible to explore these lines’ long recognized potentialto detect upper photospheric magnetic fields,
due to Zeeman splitting, as well as to use them to, e.g., empirically test the efficiency of collisions
with neutral hydrogen, which generally are a great factor ofuncertainty in NLTE spectral analyses of
cool stellar atmospheres, and to which the lines are very sensitive.
A future major (and somewhat exciting) application for quantitative spectroscopy of stars might be
analyses of AB-supergiants in distant galaxies beyond the local group. These stars are the intrinsically
brightest (‘normal’) stars in the optical, and are thus ideal objects to study when pushing the distance
limits for observations of individual stars. From studyingsingle stars in environments very different
from our own we may obtain invaluable information not only about stellar and wind properties, but
also about chemical compositions of and even distances to2 their host galaxies (for a summary of
first results, see Kudritzki et al., 2008). However, at such distances only the very brightest stars are
accessible to us, stars which indeed have strong and powerful winds. Therefore it is critical that
winds be considered in these analyses. CurrentlyFASTWIND is used only for the B supergiants,
whereas the hybrid NLTE approach (see Sect. 1.5.3) still is utilized for the A supergiants. Actually,
also present-day unified model atmospheres cannot reproduce the observed Hα line profiles from
local A-supergiants, which are observed as un-saturated lines but modeled as saturated ones. Since
Hα behaves like a quasi-resonance line in this domain (e.g., Kudritzki & Puls, 2000), this behavior
might be explained by the presence of optically thick clumps, in analogy with our findings for UV
resonance lines in O stars (Chapters 4 and 5). We will explorethis possibility anon, by making
appropriate updates ofFASTWIND.

1 which recently, finally, has made its ‘first light flight’, seehttp://www.sofia.usra.edu/
2 Via a purely spectroscopic distance indicator, the so-called flux-weighted gravity - luminosity relation, FGLR, see Ku-

dritzki et al. (2008).
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7.2.2 Theoretical wind models of hot stars

Considering the large number of astrophysical applications requiring estimates of mass loss from hot,
massive stars (Sect. 1), it is pivotal not only that adequatetheoretical wind models are developed for
these stars, but also that they are made available for simpleuse by the community. For example,
the models developed by Vink and collaborators (e.g., Vink et al., 2000) are today the most popular
ones to use in evolution calculations, which at least partlyis because the authors present a ‘mass-loss
recipe’ that is very simple to implement.

The evidence for wind clumping in hot, massive stars has overthe past years become overwhelming,
but generally it has been assumed that clumping mainly affects mass-loss rates derived from obser-
vations (Sect. 1). Thus, all available theoretical rates still are based on the standard model, and are
thereby calculated assuming a stationary, smooth, and spherically symmetric wind. But as discussed
in Chapter 5, feedback effects from clumping (optically thin as well as optically thick) upon, e.g., the
wind ionization balance may affect also these predicted mass-loss rates.

Clumping might be accounted for in various ways when calculating theoretical mass-loss rates. For
example, all radiation-hydrodynamic wind models of the line-driven instability result intime/spatial-
averaged mass-loss rates that are very similar to those of the smooth models used to initiate the simula-
tions (Sect. 1.4.1). Therefore it seems reasonable that themajor effects of wind clumping on predicted
mass-loss rates should be indirect, via for example the modified ionization equilibrium. Under this
assumption, one could use averaged structure parameters aspredicted from time-dependent simula-
tions, when calculating the line force in correspondingstationarywind models, and by this obtain
self-consistent theoretical mass-loss rates, as predicted by the line-driven wind theory and including
the effects of the line-driven instability.

However, recall that we in Chapters 4 and 5 showed that the structures predicted by present-day insta-
bility simulations were unable to reproduce diagnostic wind lines in prototypical O-star supergiants.
Obviously this prompts development of new, improved time-dependent models of the line-driven in-
stability, as already discussed in the mentioned chapters.In addition, it suggests that a second, al-
ternative, approach to obtain theoretical mass-loss ratesfrom stationary wind models, including the
effects of clumping, might be to deriveempiricalwind structures, as functions of stellar parameters,
and then to use these, rather than the theoretical structures, when calculating corresponding wind
models. In principle, this approach would correspond to ‘trusting’ the basic line-driven wind theory,
but not the structures predicted by present-day instability simulations. Indeed, initial work based on
this approach is already underway (Muijres et al., submitted to A&A, see also Krtička et al. 2008),
where the authors investigate the effects fromtypical clumping values on predicted mass-loss rates.

Finally, a third way to obtain rates accounting for clumpingis, of course, to directly rely on so-called
empiricalvalues, i.e. values inferred from observations of stars by means of quantitative spectroscopy
(see Sect. 7.2.1). Such empirical rates are standard to use for the evolved stages of massive stars
(e.g., for WR stars and LBVs), since general theoretical predictions for these stages are not available.
Thus, further theoretical investigations certainly are needed not only for the line-driven winds of OB-
stars, but also for pinning down the mass-loss rates of the more evolved stages of massive stars. For
example, the mass loss in eruptive LBV phases, presumably driven bycontinuumradiation moderated
by porosity effects, might be critical for the evolution of massive stars, especially in the early Universe
(Sect. 1.4.4), but the rates for these phases are at present almost completely unknown, with quantitative
estimates scarce indeed.
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7.2.3 Further applications

Radiative transfer through clumpy media obviously finds astrophysical applications also outside the
arena of single hot star winds. We finalize this section by mentioning a few such, but of course our
selected subset of applications is both personally biased and very limited.
In Sect. 1.4.4, we discussed how the effects of porosity may under certain circumstances allow a LBV
star to exceed its classical Eddington luminosity and initiate a very powerful stellar wind (see also
previous subsection). Actually, it is believed that when radiation pressure dominated atmospheres
come sufficiently close to the Eddington luminosity limit, they naturally develop strong instabilities,
leading to lateral inhomogeneities and thereby, if the medium is optically thick, to a reduction of
the effective opacity (e.g., Shaviv, 2001a). Thus, these ‘super-Eddington’ states may exist in other
astrophysical systems as well. For example, Shaviv (2001b)has proposed that this mechanism can
explain the observed super-Eddington luminosities and corresponding mass-loss rates of classical
novae, and very recently Dotan & Shaviv (2010) applied the idea also to slim accretion disk models
around stellar as well as super-massive black holes.
Switching context, also the propagation of ionizing radiation in H II regions may be subject to porosity
effects, due to the inhomogeneous inter-stellar medium (e.g., Giammanco et al., 2004; Wood et al.,
2005), and obviously also the predictions themselves for ionizing fluxes from hot, massive stars might
be significantly influenced by wind clumping (since they are strongly dependent on both the mass-loss
rates and the ionization equilibria, the former mentioned already in Sect. 1.1). To our knowledge, it
has never been investigated how, e.g., the by clumping modified wind ionization balance affects the
ionizing fluxes. For example, the current standard option inthe widely usedSTARBURST99 population
synthesis code (Leitherer et al., 1999) is a UV spectral library calculated by the un-clumped unified
model atmosphereWM-Basic (Sect. 1.5.5). We intend to investigate this unexplored and important
question shortly, once we have made the appropriate updatesof FASTWIND (see Sect. 7.2.1).



Appendix A

More on the radiative transfer codes

In Chapters 4 and 5 we developed and used radiative transfer methods for synthesizingresonance
and recombinationlines in clumped hot star winds. Basic assumptions and briefdescriptions of
corresponding codes were given in those Chapters. Here we add considerable detail regarding the
assumedgeometryin the codes and the calculations of theline opacities.

A.0.4 Geometry - the Monte-Carlo resonance line code

We use a standard right-handed spherical system (r,Θ ,Φ) defined relative to a Cartesian set (x,y,z)
(transformations between the two may be found in any standard mathematical handbook). Photons

Figure A.1: Illustration of the coordinate system. Note that unit vectors in this figure, as well as in
Chapters 4 and 5, are denoted by, e.g.,ru (using a subscriptu), instead of ˆr, as in this appendix. Also,
the photon propagation vector is denoted withn instead of withl . This figure is a copy of Fig. 4.13 in
Chapter 4.
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are emitted from some position on the stellar surface (givenby r = r1,Θ = Θ1,Φ = Φ1), with their
directions specified by theradiation coordinates(θ ,φ ), defined as in Fig. A.1 (see also Chapter 4).
The photon path may then be traced by customary vector addition

~r2 = ~r1+~l , (A.1)

where~l is the photon path-length vector. The vector addition can beperformed by at each point
constructing alocal coordinate system using the local unit vectors (ˆr,Θ̂ ,Φ̂). The key point here is that,
locally, the transformations of the radiation coordinatesto spherical ones behave as the transformation
between a Cartesian and a spherical system (as may be seen from Fig. A.1). That is, the photon path
lengths are

lr = l cosθ , (A.2)

lΘ = l sinθ cosφ , (A.3)

lΦ = l sinθ sinφ , (A.4)

so that for the propagation vector

~l = l cosθ r̂ + l sinθ cosφΘ̂ + l sinθ sinφΦ̂ . (A.5)

Transforming the spherical unit vectors toglobal Cartesian ones,

r̂ = x̂sinΘ cosΦ + ŷsinΘ sinΦ + ẑcosΘ , (A.6)

Θ̂ = x̂cosΘ cosΦ + ŷcosΘ sinΦ − ẑsinΘ , (A.7)

Φ̂ =−x̂sinΦ + ŷcosΦ . (A.8)

Collecting terms we then get for~r2 = x2x̂+y2ŷ+z2ẑ

x2 = r1 sinΘ1 cosΦ1 + l [cosθ sinΘ1 cosΦ1+sinθ cosφ cosΘ1 cosΦ1−sinθ sinφ sinΦ1],
(A.9)

y2 = r1 sinΘ1 sinΦ1 + l [cosθ sinΘ1 sinΦ1+sinθ cosφ cosΘ1 sinΦ1+sinθ sinφ cosΦ1],
(A.10)

z2 = r1 cosΘ1 + l [cosθ cosΘ1−sinθ cosφ sinΘ1]. (A.11)

In general, these equations should be used to track the photons on their way through the spherical
atmosphere. However, for our case of assumed symmetry inΦ , the expressions simplify considerably.
We may, without loss of generality, chooseΦ = 0, for which Eqs. A.9-A.11 reduce to

x2 = x1+ l l̃x = r1 sinΘ1 + l [cosθ sinΘ1+sinθ cosφ cosΘ1], (A.12)

y2 = y1+ l l̃y = 0 + l [sinθ sinφ ], (A.13)

z2 = z1+ l l̃z = r1 cosΘ1 + l [cosθ cosΘ1−sinθ cosφ sinΘ1], (A.14)

where we have defined the unit path lengthsl̃ i , i = x,y,z. Obviously, the calculated~r2 vector in the
next step becomes the ‘new’~r1 vector, and the same procedure may be applied again. Moreover, by
rotating the star in theΦ direction, we may then once again setΦ = 0, so that, actually, Eq. A.13 does
not need to be considered in the calculations.
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Updating the radiation coordinates. To repeatedly apply Eqs. A.12-A.14, we must know also how
to update the radiation coordinates (which are not constantin this spherical configuration, as opposed
to in a Cartesian system). By geometrical arguments, we can write

cosθ = r̂ · l̂ , (A.15)

sinφ sinθ = Φ̂ · l̂ = ẑ× r̂
|ẑ× r̂| · l̂ , (A.16)

cosφ sinθ = Θ̂ · l̂ = (Φ̂ × r̂) · l̂ . (A.17)

We may now update the radiation coordinates by noticing thatthe photon propagation direction̂l is
fix in the local Cartesian coordinates. Thus,

cosθ =
~r2 ·~l
r2l

, (A.18)

cosφ =
cosΘ2 cosθ − lz/|l |

sinθ sinΘ2
, (A.19)

where cosΘ2 = z2/r2 provides the updatedΘ angle.

The path length l . In principle, we could now track photons on a micro-grid by simply assuming
some path lengthl . However, since thephysicalparameters of the stellar wind are assumed to be
functions of the radius, it is much more convenient to do so ona micro-grid inr. From a given step
size ∆ r in r, we obviously haver2 = r1 +∆ r, and the corresponding path length is then found by
simple trigonometry in the photon plane

l = r2 cosθ2− r1cosθ1, (A.20)

whereθ2 is found from Eq. A.18, or equivalently given directly by thesine-law in the photon plane

sinθ2 =
r1

r2
sinθ1. (A.21)

The major advantage with tracking photons on a radial grid isthat weavoid all interpolations between
the grid points at which physical wind properties are specified, except for when wind-slice borders in
Θ are crossed or when a photon is scattered. (When the latter occurs, the new radiation coordinates
are randomly computed from the corresponding distributionfunctions, see Chapter 4.)

Crossing wind-slice borders inΘ . When a wind slice border inΘ is crossed, the photon will at the
crossing point no longer be on the radial micro-grid. Since the physical conditions change between
the slices, it is, thus, necessary to find the exact location for the crossing. We denote by (rc,Θc) the
point at which the crossing occurs (recall that we assume symmetry in Φ). Obviously we already
knowΘc (pre-specified by assuming some coherence-length for the wind slices, see Chapter 4), so the
question is; how to findrc?
Now, rc may be written as

rc =
zc

cosΘc
. (A.22)
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Using Eq. A.14 to update thezcoordinate we directly obtain

rc =
r1 cosΘ1+(cosθ1 cosΘ1−sinΘ1 cosφ1 sinΘ1)l

cosΘ2
. (A.23)

Eqs. A.20 and A.21 give forl

l =
√

r2
c − r2

1 sinθ2
1 −cosθ1r1. (A.24)

Combining Eqs. A.23 and A.24, we end up with a non-linear equation for rc (the square-root in
Eq. A.24), but one that may readily be solved numerically. However, each Monte-Carlo simulation
contains a large number of photons (say,∼ 106 or so) and border crossings will occur frequently
for, in principle, all photons. That is, it becomes very computationally demanding to always solve
numerically forrc. Therefore, we instead apply an analytic approximation whenever possible.
Noticing that the non-linear behavior in the equations above essentially stems from the radiation
coordinate term cosθ , we linearize inµ = cosθ

µc =

√

1− r2
1(1−µ2

1)

r2
c

(A.25)

→

µc ≈ µ1+
(1−µ2

1)∆ r
r1µ1

, (A.26)

where we have used

µc = µ(r1+∆ r)≈ µ(r1)+∆ r
dµ
dr r=r1,µ=µ1

(A.27)

dµ
dr r=r1,µ=µ1

=
1−µ2

1

r1µ1
. (A.28)

We now (again) usezc, as given by Eq. A.14, and Eq. A.20 for the photon path length,and use these
expressions to write for the update inr, ∆ r,

(r1+∆ r)µc = r1µ1+ l , (A.29)

zc = (r1+∆ r)cosΘc, (A.30)

where, obviously,rc = r1+∆ r. Using Eq. A.26 forµc and eliminatingl , we now end up with a 2nd
order equation in∆ r,

∆ r2C−∆ rD −E = 0, (A.31)

with the well-known roots

∆ r =
−D±

√
D2−4CE
2C

, (A.32)
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and with the constantsC,D, andE given by

C =
1−µ2

1

r1µ1

˜lz1, (A.33)

D = cosΘc− ˜lz1/µ1, (A.34)

E = r1(cosΘc−cosΘ1), (A.35)

˜lz1 = µ1 cosΘ1−
√

1−µ2
1 cosφ1 sinΘ1. (A.36)

Tests have shown that, for most cases, (the correct root of) this approximation provides a good estimate
for rc. However, the approximation brakes down for tangential photons (µ1 = 0, see Eq. A.26). In
practise, we use a numerical bisection method ifµ1 ≤ 10−3, and the analytic approximation otherwise.
Notice, however, that we in the code always check so that the calculatedrc is within the allowed range.
For example, should the analytic approximation (withµ1 > 10−3) fail, the numerical method is used
instead. Tests indicate that this does occur for some photons in a typical simulation, but actually quite
seldom.

Collecting escaping photons. Photons that escape the wind are collected according to their position
on a spherical surface located at infinity (r = r∞,Θ =Θ∞,Φ = Φ∞). Again we may use the symmetry
in Φ and only bin inΘ . Denoting with subscripte the position at which the photon escape the wind,
we can write

x∞ = xe+ l∞ l̃x, (A.37)

y∞ = 0 + l∞ l̃y, (A.38)

z∞ = ze+ l∞ l̃z. (A.39)

Transforming to the spherical coordinate system

r∞ =
√

x2
∞ +y2

∞ +z2
∞ =

√

l2
∞A, (A.40)

with A in the limit thatl = l∞ → ∞ given by

A=
x2

e

l2
∞
+

2xel̃x
l∞

+
z2
e

l2
∞
+

2zel̃z
l∞

+ ˜l2
x +

˜l2
y +

˜l2
z ≈ ˜l2

x + l̃2
y +

˜l2
z = 1. (A.41)

Thus we have forΘ∞

cosΘ∞ = z∞/r∞ = ze/l∞ + l̃z ≈ l̃z, (A.42)

with l̃z simply given by

l̃z = cosθecosΘe−sinθecosφesinΘe. (A.43)

However, the structured wind within our assumptions has no preferred direction (for example no axis
of rotation) (see Chapters 4 and 5). Therefore an averaged spectra computed from these winds should
be independent of observer’s position, implying that we formost practical purposes can average over
all emergingΘ angles, which of course greatly reduces the computational cost.
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A.0.5 Geometry - the recombination line code

For recombination line formation, we maypre-describethe source function and only carry out the
so-calledformal integral within our inhomogeneous wind structures (see Chapter 5). Because of
this, we have been able to drop the assumed symmetry inΦ when modeling the recombination lines
Hα and HeII 4686Å. (Note that in our Monte-Carlo simulations for resonance line formation, the
source function is implicitly given by our assumption ofpure scatteringlines.) Moreover, by using
the same arguments as above regarding no preferred direction, we may simplychooseto place the
observer atz∞. Then three crucial simplifications occur: i) the radiationcoordinateθ coincideswith
the coordinateΘ (i.e. Θ = θ , as is easily seen from Fig. 5.1 in Chapter 5), ii) the other radiation
coordinateφ is always equal toπ, and iii) the coordinateΦ is constantalong a ray. Using these
simplifications, we can solve the radiative transfer for a set of P rays, each defined by the minimum
radial distance to thez axis, p, and the constantΦ coordinate, i.e.P= P(p,Φ). Then the observed
flux F at frequencyx is proportional to

Fx ∝
∫ 2π

0

∫ p=rmax

p=0
Iem
x (p,Φ)dpdΦ , (A.44)

whereIem
x (p,Φ) is the emergent intensity at frequencyx, obtained by a standard solution to the equa-

tion of radiative transfer (Eq. 1.2) with known opacities and source functions. Moreover, because
Θ = θ andΦ = const. along a ray, it becomes trivial to analytically calculate the positions at which
photons cross a border to another wind slice.

A.0.6 Geometry - the patch wind model

Here we discuss potential effects of other geometries than the ‘patch geometry’ assumed in all our
wind models in Chapters 4 and 5. (See these chapters for a description of the patch model.) Let us
first point out, however, that most of the effects discussed here still are subjects to (sometimes quite
lively) debates among practitioners in the field, and that a real consensus regarding their importance
has not yet been reached.
As a first example, let us consider a wind consisting of spherical, isotropic clumps with characteristic
length scalesl , volumes≈ l3 (neglectingπ factors of order unity), and distancesΛ between them that
are equal in all spatial directions. AssumingΛ >> l , we havefv ≈ l3/Λ3 andh= l/ fv ≈ f 2/3

cl Λ . The
equation of continuity in a spherical expansion may be used as a constraint forΛ ’s radial dependence,
implying ncl ∝ (r2v)−1 with clump number densityncl. Sincencl = 1/Λ3, it follows thatΛ ∝ (r2v)1/3.
(This is the model used by Oskinova et al. 2007, in their application of an isotropic porosity formalism,
Sect. 3.4, toline opacity.) But consider now clumps that are spread out over the surface of the star
and start propagating radially outwards, obeying some velocity law v(r). If clumps do not collide
or merge, the physical distances between clumps in theΘ direction will beΛΘ ∝ r, but the radial
distances between clumps will be controlled by the velocitylaw. So if Λr = ΛΘ is to hold, we must
havev ∝ r. Thus, if we interpret the assumption ofΛ equal in all spatial directions strictly, we may
not let the clumps flow according to aβ -type velocity law and simultaneously assume equal distances
between clumps in all directions.
A similar problem is encountered in the combined assumptions of clumps of equal length scalesl
in all spatial directions and a constantfv; the radial distances between clumps no longer increase
in the outer wind where the asymptotic velocity is almost reached, but the distances in thetangential
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directions still increase asΛΘ ∝ r. Then if we demand thatfv must be kept constant,l must increase in
all directions to preserve the equal length scales, and willeventually becomelarger thanΛr. To avoid
this somewhat strange picture of radially overlapping clumps (which in principle is the same as having
clumps that are ‘infinite’ in the radial direction, at least as long as clumps are radially aligned, i.e. have
no or very small lateral velocity components), one must makealso the radial distances between clumps
proportional tor (either by a homologous expansion,v(r) ∝ r, or by not letting clumps flow with the
velocity field). Naturally, this would further imply thath ∝ r.
However, it may be that these apparent problems are only illusionary. The way around them is tonot
interpretΛ andl in the strict meanings of physical distances, but instead asquantities determining an
average mean free pathbetween the clumps,

m f p=
1

nclAcl
≈ Λ3

l2 =
l
fv

= h. (A.45)

In this picture, the average mean free paths, and thereby theporosity lengthsh, remain isotropic,
independent of the assumed expansion of the medium, and despite the fact that the physical distances
between the clumps are not equal in all directions. Then it isnot necessary to invokev ∝ r to obtain
a consistent wind model with isotropic clumps. In terms of the above mentioned picture of radially
elongated clumps that overlap, the essential point is that the spherical expansion opens up for holes in
between these through which photons can escape, so that themeanfree path still is preserved, also in
the radial direction. However, at least within a modification of our present patch geometry, this kind
of model might be problematic, as now discussed.

Modifying the patch geometry. Clumps in our stochastic models expand in the tangential direc-
tions preserving their solid angles. Thus for clump length scalesl , lΘ , lΦ ∝ r. On the other hand,
the clumps’ radial widthslr = vβ δ t fv are calculated bypre-describing fv andδ t . This leads to very
anisotropic ‘pancake shaped’ clumps, as is easily seen fromdensity contour plots of corresponding
models (Figs. 2.1 and 4.1). Moreover, clumps are released from the stellar surface with a complete
covering fraction.
It might be, however, that clumps do not preserve their solidangles, but experience ‘lateral break-up’
when traversing outward in the wind. As a first guess, let us assume that such lateral break-up scales
asr−2 (which essentially means that clumps keep their initial lateral extensions). Thenlr = fvΛrr2,
and we encounter the same problem as above with clumps that eventually all overlap each other in the
radial direction (since the radial distances between them are determined byvβ δ t, i.e. is constant when
the terminal speed is reached). Physically, it may be questionable that such a clump geometry, i.e. one
in which clumps are extremely long in the radial direction but have large lateral holes between them,
could exist in a hot star wind. To circumvent the radially overlapping clumps, one might assume that
also fv decreases withr−2 (which recovers the original expression forlr), but this would produce much
higher clumping factors in the outer wind than in the inner, which is not consistent with observational
constraints from radio emission (Puls et al., 2006).
Another way to modify the geometry of the patch model might beto assume that, in the tangential
directions, only afixedfraction of the total wind volume of one slice is covered by clumps. Denoting
with Cc the fraction of the total wind slice that is covered by clumps, we obtainlr = fvΛrC−1

c , i.e.
a radial extension of the clumps for a given volume filling factor, which compensates for the lateral
holes created. However, for a radial photon within a given wind slice that encounters precisely one
clump within its resonance zone, the probability of actually hitting this is nowCc instead of 1, as in the
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original patch model. Thiscoverage fractiontherefore becomes important when clumps are optically
thick; for the resonance lines a lower than unityCc would open up for additional escapes, which in
turn would reduce the profile strengths. We may connect this to the ‘broken shell’ porosity models
that were presented in Sect. 3.4; if clumps were optically thick for a specificcontinuumprocess, no
radial photons could escape through our original patch models. However, ifCc were to be used and
clumps were to be randomly positioned within the wind slice,holes would open up, and radial photons
would have a chance to escape without ever encountering a clump1. In principle, this corresponds to
the assumptions offragmentationandlateral randomizationthat are inherent in the broken shell wind
models for porosity.
As illustrated, details on clump geometry as well as on coverage fractions might be important for
the radiation transport in clumped hot star winds. Unfortunately, however, little is known of either.
Therefore we have adhered to the ‘patch geometry’ in Chapters 4 and 5 in this thesis, deferring to
future studies, e.g., the inclusion of coverage fractions into our wind models.

A.0.7 Line opacities

Resonance lines. To predict where in the wind scatterings occur in our Monte-Carlo simulations
of resonance lines, we must know theline optical depths. The continuum is assumed to be optically
thin in the wind. As described in Chapter 4, the line optical depth may be parametrized in form of a
line-strength parameter,κ0, which in turn may be described via atomic constants, the wind ionization
fraction, and some of the stellar and wind parameters, as outlined below.
For UV resonance lines, we may to a good approximation neglect stimulated emission. Thus the
frequency integrated extinction coefficient is

χ =
πe2

mec
flunijk , (A.46)

with e the electron charge,me the electron mass,c the speed of light,flu the oscillator strength of the
transition, andnijk the occupation number of the lower level. We now parametrizethe opacity using
the dimensionless quantityκ0, writing (Chapter 4, Eq. 4.16)

χ =
4πR⋆v2

∞
Ṁλ

κ0ρ , (A.47)

whereλ is the wavelength of the transition. If we measure velocities in units ofv∞ and radii in units
of R∗, we then have

κ0 =
r2vR⋆λ χ

v∞
=

r2vR⋆λ
v∞

πe2

mec
flunijk . (A.48)

The advantage of this parametrization is that the radialSobolevoptical depth in a smooth wind col-
lapses to (Chapter 4, Eq. 4.17)

τSob=
κ0

r2vdv/dr
. (A.49)

1 Note that, forline formation, the situation is different; here radial photonsmay escape simply because their complete
resonance zones are void of clumps, cf. Fig. 3.1.
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To obtain an explicit expression forκ0, we must know the occupation numbernijk of level l in ioniza-
tion statej of elementk. We write

nljk =
nljk

njk

njk

nk

nk

nH
nH = E q αk nH, (A.50)

whereE, q, andαk now denote, respectively, the excitation fraction of leveli, the ionization fraction
of state j, and the abundance of elementk, relative to hydrogen. Noticing that the bulk of the wind
mass consists of hydrogen and helium, we can approximate

ρ ≈ mHnH +mHenHe = mHnH(4YHe+1), (A.51)

whereYHe≡ nHe
nH

is thenumberabundance of helium. Normally, Eq. A.51 provides a sufficient estimate
for calculations of line profiles in OB stars, but for strongly evolved hot stars a significant amount of
metals produced by nuclear burning in the stellar core may have been mixed up the surface. In this
case one might need to consider also the contribution from the metals in the calculation of the density,
which then, in principle, requires that one knows the abundances ofall elements in the gas, rather than
only the abundances of helium and the element under consideration. We shall not consider such cases
here.
From the equation of continuity we have

ρ =
Ṁ

4πR2
⋆v∞r2v

, (A.52)

and by combining Eqs. A.48-A.52 we obtain

κ0 = qE
Ṁ

R⋆v2
∞

πe2/mec
4πmH

αk

1+4YHe
fluλ . (A.53)

In Chapters 4 and 5 we have slightly re-definedκ0 by explicitly accounting for the ionization frac-
tion q. Moreover, we there assumedE = 1 (most often sufficient for resonance lines, at least if the
considered ionization state is a majority state). In that definition then,κ0 essentially is a constant.
(In Eq. A.53,κ0 is constant only ifqE is constant as well.) For un-saturated lines formed in smooth
winds,κ0 may be empirically inferred from observations, and then translated to an ‘observed’ mass-
loss rate,if R⋆, v∞, YHe, and the abundanceαk all are known from other diagnostics. In this approach,
one sometimes chooses not to separate out the ionization fraction q, so that the derived quantity is
〈q〉Ṁ instead ofṀ directly (e.g., Fullerton et al., 2006, see also Chapter 5, Sect. 6). Furthermore, we
notice that i) the profile-strength isindependentof κ0 if the lines are saturated, so that then only lower
limits of κ0 can be inferred, and ii) it considerably complicates the analysis if the wind isstructured
rather than smooth, as extensively discussed in Chapters 4 and 5.

Recombination lines - Hα . In contrast to the UV resonance lines, Hα is a so-called recombina-
tion line under typical conditions prevailing in OB star winds, mainly because hydrogen is almost
completely ionized in these winds and Hα is formed by transitions between two excited levels (see
Chapter 5, also for some comments on Hα ’s transition to aquasi-resonanceline in the A star regime).
Moreover, for recombination line formation (especially inthe IR) we can no longer neglect stimulated
emission. Thus the frequency integrated extinction coefficient is

χ =
πe2

mec
flu(nljk −

gl

gu
nujk), (A.54)
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where l and u now denote the lower and upper levels of the transition, respectively, and we need
estimates for both levels (compare to Eq. A.46). We shall usethe departure coefficients bi ≡ ni/n∗i ,
wheren∗i is defined by the Saha-Boltzmann relation

n∗i,j,k =C1n0,j+1,kne
gi,j,k

g0,j+1,k
T−3/2

e eε/kbTe, (A.55)

whereC1 = 2.07× 10−16 in cgs units, andε is the energy difference between thei, j,k state and
the (ground level of the) next ionization state (0, j + 1,k). Note that, in this definition, the ‘LTE
population’ n∗i is definedrelative to the NLTE population of the ground state of the next ionization
stage, n0,j+1,k, and using theactual (NLTE) electron densities and temperatures. In some literature
(for example in Chapter 6) are the departure coefficients defined relative to the true LTE populations
instead,bi = ni/nLTE

i , wherenLTE
i is calculated using Eq. A.55 but with LTE values ofne, Te, and

n0,j+1,k.2

We shall assumecomplete ionizationof hydrogen, which is appropriate for OB-star winds. Thus
n0,II ,H ≈ nH and we get for the Hα opacity

χ =
πe2

mec
( flugl)C1T−3/2

e (nenH)(ble
εl/kbTe −bueεu/kbTe). (A.56)

As for the resonance lines, we assume a pure hydrogen and helium gas, which may for completely
ionized hydrogen be used to calculate the electron density

ne = np+nHeIHe =
ρ(1+YHeIHe)

mH(1+4YHe)
, (A.57)

whereIHe is the number of free electrons per helium atom, andIHe≈ 2 in a typical O-star wind (He III
is the dominant ionization state). We then have

nHne =
ρ2(1+YHeIHe)

m2
H(1+4YHe)2

. (A.58)

This relation is the reason why diagnostic lines of this typeoften are called ‘ρ2-diagnostics’. As
in the previous paragraph, we may now use the equation of continuity to translate the density to a
mass-loss rate, i.e. the greater sensitivity in density also means a greater sensitivity to mass loss,
which essentially makes these lines superior to resonance lines for inferring mass-loss rates from
observations.
In analogy with theκ0 parameter, we parametrize the opacity via a line-strength parameterA, defined
so that the radial Sobolev optical depth in a smooth wind becomes

τSob=
χλR⋆

v∞dv/dr
(∝

ρ2λR⋆

v∞dv/dr
∝

Ṁ2λ
v3

∞R3
⋆dv/drv2r4) =

A
r4v2dv/dr

. (A.59)

A then is

A=
πe2

mec
( flugl)

λC1

(4π)2m2
H

T−3/2
e

Ṁ2

R3
⋆v3

∞

(1+YHeIHe)

mH(1+4YHe)
(ble

εl/kbTe −bueεu/kbTe). (A.60)

2 Unfortunately, not everywhere is this notation for the departure coefficients used; although its definition is clear from the
text, in for example Chapter 6 we calln∗i what is here callednLTE

i .
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Inserting atomic values for the Hα transition, this becomes

A= 49.3T−3/2
e

Ṁ2

R3
⋆v3

∞

(1+YHeIHe)

mH(1+4YHe)
(ble

3.945/Te −bue1.753/Te), (A.61)

whereTe is given in units of 104 K. In addition to the line opacity we must also specify the source
function when modeling the recombination lines (recall again that the source function is only implicit
in our Monte-Carlo simulations for resonance lines). Actually, the behavior of the source function
is the main reason to the distinct differences between recombination line profiles and resonance line
profiles in OB stars, as discussed in Chapter 5. Anyway, sincewe are neglecting the continuum
contribution in the wind (see the previous paragraph), the total source function simply equals theline
source function, given by Eq. 1.6. Thus, for given departurecoefficients, radiation temperature (to set
the continuum level), and electron temperatures, we may nowcalculate synthetic Hα line profiles and,
given knowledge ofv∞, R⋆, andYHe, infer mass-loss rates from comparing to observed ones. Again,
if the wind is structured rather than smooth, this considerably complicates a derivation of a unique
mass-loss rate, see Chapter 5.
In Chapter 5, we use departure coefficients, electron temperatures, and radiation temperatures as given
by correspondingFASTWIND models (see Sect. 1.5.5) calculated under the microclumping approxi-
mation. Another, much faster but slightly less precise, approach is tocalibrate these quantities using
a grid of models, as described and done by, e.g., Puls et al. (1996, 2006).

Recombination lines - He II 4686Å. For formation of the He II 4686̊A line in OB star winds, only
small modifications with respect to the Hα approach above are necessary. First of course, the atomic
constants must be changed. Moreover, the(nenHII ) term in the Saha-Boltzmann equation should be
replaced by(nenHeIII). Now, even though He III is the dominant ionization stage throughout the major
part of a typical O-star wind, in general it may recombine in the outer wind, and, thus, it isnot
sufficient to assumenHe ≈ nHeIII when calculating the line opacity. This problem is circumvented by
introducing the ionization fraction, writingnHe = nHeq, with q= nHeIII/nHe. Then we may write

nenHeIII = (nenH)YHeq. (A.62)

Thus, Eq. A.60 must only be modified by multiplying withYHeq, and the only additional input-
parameter required, as compared to the Hα case, is the ionization fractionq of He III (which we
in Chapter 5 also take from correspondingFASTWIND calculations).



Bibliography

Abbott, D. C. 1982, ApJ, 259, 282

Abbott, D. C., Bieging, J. H., & Churchwell, E. 1981, ApJ, 250, 645

Abbott, D. C. & Lucy, L. B. 1985, ApJ, 288, 679

Allen, C. W. 1973, Astrophysical quantities (London: University of London, Athlone Press, —c1973,
3rd ed.)

Asplund, M. 2005, ARA&A, 43, 481

Asplund, M., Grevesse, N., & Sauval, A. J. 2005, in Astronomical Society of the Pacific Conference
Series, Vol. 336, Cosmic Abundances as Records of Stellar Evolution and Nucleosynthesis, ed.
T. G. Barnes III & F. N. Bash, 25–

Asplund, M., Grevesse, N., Sauval, A. J., & Scott, P. 2009, ARA&A, 47, 481

Auer, L. H. & Mihalas, D. 1969, ApJ, 156, L151

Auer, L. H. & Mihalas, D. 1972, ApJS, 24, 193

Aufdenberg, J. P., Hauschildt, P. H., Baron, E., et al. 2002,ApJ, 570, 344

Avrett, E. H., Chang, E. S., & Loeser, R. 1994, in IAU Symposium, Vol. 154, Infrared Solar Physics,
ed. D. M. Rabin, J. T. Jefferies, & C. Lindsey, 323–

Baumueller, D. & Gehren, T. 1996, A&A, 307, 961

Bouret, J., Lanz, T., Hillier, D. J., & Foellmi, C. 2008, in Clumping in Hot-Star Winds, ed. W.-
R. Hamann, A. Feldmeier, & L. M. Oskinova, 31–

Bouret, J.-C., Lanz, T., & Hillier, D. J. 2005, A&A, 438, 301

Bouret, J.-C., Lanz, T., Hillier, D. J., et al. 2003, ApJ, 595, 1182

Brault, J. & Noyes, R. 1983, ApJ, 269, L61

Bresolin, F., Crowther, P. A., & Puls, J., eds. 2008, IAU Symposium, Vol. 250, Massive Stars as
Cosmic Engines

Bromm, V. & Larson, R. B. 2004, ARA&A, 42, 79



136 BIBLIOGRAPHY

Bromm, V., Yoshida, N., Hernquist, L., & McKee, C. F. 2009, Nature, 459, 49

Bruls, J. H. M. J., Solanki, S. K., Rutten, R. J., & Carlsson, M. 1995, A&A, 293, 225

Busche, J. R. & Hillier, D. J. 2000, ApJ, 531, 1071

Butler, K. & Giddings, J. R. 1985, Newsl. Anal. Astron. Spectra, 9

Cannon, C. J. 1973, ApJ, 185, 621

Cantiello, M., Langer, N., Brott, I., et al. 2009, A&A, 499, 279

Carlsson, M. 1986, Uppsala Astronomical Observatory Reports, 33

Carlsson, M. 1992, in Astronomical Society of the Pacific Conference Series, Vol. 26, Cool Stars,
Stellar Systems, and the Sun, ed. M. S. Giampapa & J. A. Bookbinder, 499–

Carlsson, M., Rutten, R. J., & Shchukina, N. G. 1992, A&A, 253, 567

Castelli, F. & Kurucz, R. L. 2004, ArXiv Astrophysics e-prints

Castor, J. I. 1970, MNRAS, 149, 111

Castor, J. I., Abbott, D. C., & Klein, R. I. 1975, ApJ, 195, 157

Chang, E. S. 1984, Journal of Physics B Atomic Molecular Physics, 17, L11

Chang, E. S. 1994, in IAU Symposium, Vol. 154, Infrared SolarPhysics, ed. D. M. Rabin, J. T.
Jefferies, & C. Lindsey, 297–

Chang, E. S., Avrett, E. H., Noyes, R. W., Loeser, R., & Mauas,P. J. 1991, ApJ, 379, L79

Chang, E. S. & Noyes, R. W. 1983, ApJ, 275, L11

Chiappini, C., Hirschi, R., Meynet, G., et al. 2006, A&A, 449, L27

Chlebowski, T. & Garmany, C. D. 1991, ApJ, 368, 241

Cohen, D. H., Leutenegger, M. A., Wollman, E. E., et al. 2010,MNRAS, 405, 2391

Collet, R., Asplund, M., & Trampedach, R. 2007, A&A, 469, 687

Conti, P. S. 1976, Memoires of the Societe Royale des Sciences de Liege, 9, 193

Crowther, P. A. 2007, ARA&A, 45, 177

Crowther, P. A., Hillier, D. J., Evans, C. J., et al. 2002, ApJ, 579, 774

Crowther, P. A., Lennon, D. J., & Walborn, N. R. 2006, A&A, 446, 279

Cunto, W. & Mendoza, C. 1992, Revista Mexicana de Astronomiay Astrofisica, vol. 23, 23, 107

Debye, P., Anderson, Jr., H. R., & Brumberger, H. 1957, Journal of Applied Physics, 28, 679



BIBLIOGRAPHY 137

Decin, L., Vandenbussche, B., Waelkens, C., et al. 2003, A&A, 400, 709

Dessart, L. & Owocki, S. P. 2002, A&A, 383, 1113

Dessart, L. & Owocki, S. P. 2003, A&A, 406, L1

Dessart, L. & Owocki, S. P. 2005, A&A, 437, 657

Dotan, C. & Shaviv, N. J. 2010, ArXiv e-prints

Drake, J. J. & Smith, G. 1991, MNRAS, 250, 89

Drawin, H. W. 1969, Zeitschrift fur Physik, 225, 483

Drew, J. E., Hoare, M. G., & Denby, M. 1994, MNRAS, 266, 917

Ekström, S., Meynet, G., & Maeder, A. 2008, in IAU Symposium, Vol. 250, IAU Symposium, ed.
F. Bresolin, P. A. Crowther, & J. Puls, 209–216

Evans, C., Hunter, I., Smartt, S., et al. 2008, The Messenger, 131, 25

Evans, C. J., Lennon, D. J., Smartt, S. J., & Trundle, C. 2006,A&A, 456, 623

Evans, C. J., Lennon, D. J., Trundle, C., Heap, S. R., & Lindler, D. J. 2004, ApJ, 607, 451

Evans, C. J., Smartt, S. J., Lee, J.-K., & 23 coauthors. 2005,A&A, 437, 467

Eversberg, T., Lepine, S., & Moffat, A. F. J. 1998, ApJ, 494, 799

Feldmeier, A. 1995, A&A, 299, 523

Feldmeier, A., Hamann, W., Rätzel, D., & Oskinova, L. M. 2008, in Clumping in Hot-Star Winds, ed.
W.-R. Hamann, A. Feldmeier, & L. M. Oskinova, 115–

Feldmeier, A., Oskinova, L., & Hamann, W.-R. 2003, A&A, 403,217

Feldmeier, A., Puls, J., & Pauldrach, A. W. A. 1997, A&A, 322,878

Foellmi, C., Moffat, A. F. J., & Guerrero, M. A. 2003a, MNRAS,338, 360

Foellmi, C., Moffat, A. F. J., & Guerrero, M. A. 2003b, MNRAS,338, 1025

Friend, D. B. & Abbott, D. C. 1986, ApJ, 311, 701

Friend, D. B. & Castor, J. I. 1983, ApJ, 272, 259

Fullerton, A. W., Massa, D. L., & Prinja, R. K. 2006, ApJ, 637,1025

Gabler, R., Gabler, A., Kudritzki, R. P., Puls, J., & Pauldrach, A. 1989, A&A, 226, 162

Gal-Yam, A. & Leonard, D. C. 2009, Nature, 458, 865

Ganguly, R., Eracleous, M., Charlton, J. C., & Churchill, C.W. 1999, AJ, 117, 2594



138 BIBLIOGRAPHY

Gehren, T., Liang, Y. C., Shi, J. R., Zhang, H. W., & Zhao, G. 2004, A&A, 413, 1045

Giammanco, C., Beckman, J. E., Zurita, A., & Relaño, M. 2004, A&A, 424, 877
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