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1 Summary 

Monomeric actin controls the activity of the transcription factor Serum Response Factor 

(SRF) via its coactivator MAL/MRTF-A. Upon signal induction, MAL is released from actin, 

binds SRF and activates target gene expression. In order to characterise the physiological 

role of this signalling pathway, I screened on a genome wide basis for target genes by 

transcriptome analysis. 

A combination of actin binding drugs (Cytochalasin D and Latrunculin B), targeting 

monomeric actin, was used to specifically and differentially interfere with the complex 

between MAL and actin. 210 genes primarily controlled by monomeric actin were identified 

in mouse fibroblasts. Among them more than 30% have been already found in screens for 

SRF target genes, supporting the validity of the screening approach. As expected, a lot of 

genes were involved in cytoskeleton organization. However, genes having anti-proliferative 

or pro-apoptotic features were identified surprisingly to the same extent. Consistently, I 

could demonstrate an antiproliferative function of MAL. More specifically, several genes 

interfering with the MAPK pathway were identified. 

One of them was Mig6/Errfi1, a negative regulator of EGF receptors. Mig6 induction by LPA 

or FCS revealed to be dependent on MAL, monomeric actin and the small GTPases Rho. 

Activated forms of MAL or SRF were sufficient to induce Mig6 expression. Subsequently, a 

Mig6 promoter element was found to be necessary to mediate MAL/SRF induction. 

Moreover, induction of Mig6 through the Actin-MAL pathway led to the downregulation of 

the mitogenic EGFR-MAP kinase cascade. For the first time a transcriptional link between G-

actin levels sensed by MAL and the regulation of EGFR signalling was established. 

Furthermore, after having demonstrated that MAL induces apoptosis, I focused on the 

characterisation of two proapototic targets identified in the screen: Bok and Noxa. Bok and 

Noxa were induced by activators of the Rho-Actin-Mal-Srf pathway on a MAL dependent 

manner. The study of the Bok promoter revealed the existence of a response element that 

was necessary for the induction by MAL-SRF. Interestingly, apoptotic inducers like 

staurosporine, TNFα, or the DNA damaging agent Doxorubicin triggered MAL-SRF mediated 

transcription. As SRF controls the expression of the anti-apoptotic genes Bcl2 and Mcl1, the 

results from this work places thus SRF as a key transcription factor controlling the balance 

between pro and anti apoptotic genes in response to external cues. 
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2 Introduction 

2.1 The Actin-Mal-SRF signalling pathway 

2.1.1 SRF mediated transcription 

Transcription factors mediate the execution of genetic programs in response to extra- or 

intracellular signals. They play major roles to adapt the cells and tissues to changed 

demands, to control cell differentiation or the cell cycle. One of them, the Serum Response 

Factor (SRF) is essential for development as knock out of SRF leads to an early embryonic 

death in mice (Arsenian et al., 1998). SRF controls many genes including “immediate early” 

genes, cytoskeletal genes and muscle specific genes (Miano, 2003; Pipes et al., 2006; Posern 

and Treisman, 2006). However, on his own, SRF is a weak transcription factor. SRF is 

considered as a transcriptional platform controlled by its combinatorial association with 

different co-activators or repressors.  

The first described signalling pathway leading to the activation of SRF relies on the activation 

of a MAP kinase cascade by the Ras GTPase. Upon stimulation with serum or growth factors, 

the Ternary Complex Factors (TCFs) are phosphorylated by the MAP kinase/Erk cascade and 

bind SRF to trigger the expression of the target genes like the immediate early gene c-FOS 

(Figure 1).  

The serum response element of the cFos promoter is composed of one TCF binding site 

adjacent to a SRF binding site also called a CARG box that has for sequence CC(A/T)6GG 

(Figure 1). Interestingly, when the TCFs binding site of the cFos promoter was mutated, the 

cFos promoter was still partly responsive to serum and to Lysophosphatidic Acid (LPA) in a 

SRF dependent manner (Hill and Treisman, 1995). These results lead to the hypothesis of a 

new signalling pathway towards SRF. 
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Figure 1. Activation of SRF by the Classical MAP Kinase Pathway 

From (Posern and Treisman, 2006). 

 

2.1.2 Rho A controls TCFs independent SRF mediated transcription through actin 

The TCF independent activation of SRF is blocked by inhibition of Rho proteins by C3 

transferase and induced by the microinjection of activated RhoA (Hill et al., 1995). 

Moreover, activated forms of the Rho family GTPases Rac1 and CDC42 also activate 

transcription via SRF but they function independently of RhoA. Hence, functional Rho is 

required for TCF-independent SRF activation by serum but not by activated CDC42 or Rac1.  

In a screen for SRF activators, LIM kinase-1 (LIMK1) was identified as a potent activator of 

SRF mediated transcription (Sotiropoulos et al., 1999). LIMK1 activation of SRF was 

dependent upstream on RhoA and downstream on its ability to regulate actin treadmilling by 

stabilising F-actin. Yet, the overexpression of a dominant negative LIMK1 mutant had no 

effect on SRF activation by LPA or serum showing that LIMK1 activity is not essential for SRF 
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activation by these stimuli. Finally, LIM-kinase was shown to cooperate with Diaphanous to 

regulate SRF (Geneste et al., 2002). Thus, signals leading to the stabilisation of F-actin 

mediated via LIMK or Diaphanous lead to the activation of SRF (Figure 2). But it was not clear 

if SRF activity was sensing the F actin level, the ratio F/G actin or the G actin level. 

Further experiments with actin binding drugs like Cytochalasin D or Swinholide A and 

overexpression of wild type actin which does not modify the ratio F/G actin suggested that 

SRF activity responds in fact to G-actin levels (Sotiropoulos et al., 1999). The confirmation 

came by overexpressing the non polymerisable actin mutants G13R and R62D which 

inhibited SRF activity (Posern et al., 2002) (Figure 2). 

 

Figure 2. Control of SRF Activity by the Action of Rho Effectors on the Actin Cytoskeleton 

From (Geneste et al., 2002). 

 

Altogether, G-actin or a sub-population of it controls SRF activity. The problem was that no 

direct physical interaction between G-actin and SRF could be found by mammalian or yeast 

two hybrid assay. 

2.1.3 The discovery of MAL as a SRF coactivator regulated by actin 

In 2001, a new family of SRF coactivator was discovered (Wang et al., 2001). The founding 

member of this family, Myocardin, is specifically expressed in cardiac and smooth muscles. 
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Looking in silico for homologs of Myocardin ubiquitously expressed, Wang et al. discovered 

MAL (also known as MKL1, MRTFA and BSAC) and MAL-16 (also known as MKL2 or MRTFB) 

(Wang et al., 2002)(Figure 3). Independently, two other groups identified MAL. First, MAL 

was shown to be part of a fusion protein linked to a Megakaryoblastic Acute Leukaemia (Ma 

et al., 2001; Mercher et al., 2001). The fusion protein consists of nearly the whole sequences 

of MAL and OTT (also known as RBM15), a gene inhibiting myeloid differentiation in 

hematopoietic cells (Ma et al., 2007)(Figure 3). We could show that the resulting fusion 

protein OTTMAL is constitutively activating SRF mediated transcription because of a loss of 

regulation by upstream signalling (Descot et al., 2008). Second, a shorter isoform of MAL 

(BSAC) was identified in a screen for cDNA able to reverse the TNFα induced apoptosis in the 

highly apoptosis susceptible TRAF2/TRAF5 double knock out MEFs (Sasazuki et al., 2002). 

 

Figure 3. Schematic Representation of the Myocardin-Related Transcription Factor (MRTF) 

Family and the OTT–MAL Fusion Protein. 

From (Posern and Treisman, 2006). 

 

MAL was shown to accumulate in the nucleus upon serum stimulation (Miralles et al., 2003). 

Nuclear accumulation of MAL was also observed following expression of actin mutants S14C, 

V159N or G15S which lead to F-actin stabilisation and strongly activated SRF. The serum-

mediated nuclear accumulation of MAL was inhibited by blockade of RhoA by C3 transferase 
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or toxin B. The overexpression of wild type actin or the non polymerisable mutant R62D 

which inhibit SRF activity was also sufficient to inhibit MAL nuclear accumulation (Miralles et 

al., 2003). In conclusion MAL activity is regulated via the control of its localisation by the Rho 

actin pathway.  

2.1.4 Regulation of the Actin-MAL complex by actin binding drugs 

MAL localisation could be as well modulated by the actin binding drugs Cytochalasin D and 

Latrunculin B (Miralles et al., 2003).  

Cytochalasin D (from Zygusporium mansonii) represses actin polymerisation and induces 

depolymerisation by capping F-actin barbed ends and stimulates G-actin ATP hydrolysis 

(Sampath and Pollard, 1991). Latrunculin B (from Latrunculia magnificans) binds G-actin 

monomers and blocks polymerization into filaments (Spector et al., 1983). The two drugs 

impair F-actin formation and increase thereby G-actin levels but have different impact on 

MAL localisation and activity. 

Treatment of starved fibroblasts with Cytochalasin D induced the nuclear localisation of MAL 

while treatment with Latrunculin B could block the serum induced MAL nuclear localisation. 

The nuclear relocalisation of MAL by Cytochalasin D correlated with an activation of SRF 

mediated transcription (Figure 4). Latrunculin B didn’t activate SRF mediated transcription, 

but was able to block the induction serum. 

 

Figure 4. Regulation of MAL by Actin binding drugs 

(A) Induction of MAL-SRF transcription by Cytochalasin D compared to serum and repression by Latrunculin B. 

(B) Dissociation of the inhibitory complex Actin-MAL by Cytochalasin D and stabilisation by Latrunculin B 

evaluated by co-immunoprecipitation. Adapted from (Miralles et al., 2003). 
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The explanation of the differences between Cytochalasin D and Latrunculin B lies in the 

differential impact of the two drugs on an Actin-MAL complex. Cytochalasin D induced the 

dissociation of MAL from Actin while Latrunculin didn’t or even stabilized the complex 

(Figure 4). 

The modulation of this direct interaction between actin and MAL is the mechanism of 

regulation of MAL mediated transcription by endogenous stimuli like FCS or LPA. 

2.1.5 MAL binds actin via a new actin binding motif 

The affinity of MAL to actin is similar to Gelsolin, another actin binding protein (Posern et al., 

2004). The domain of MAL responsible for the interaction with actin is situated at the N-

terminus and is composed of a repetition of 3 RPEL motifs (Miralles et al., 2003)(Figure 5).  

Crystal structure of one RPEL motif with actin show that the helix α1 of RPEL motifs and 

WH2 (WASP homology domain-2) domains of actin binding proteins share the same 3D 

structure and the same interaction surface with actin (Mouilleron et al., 2008) (Figure 5). 

Each RPEL motif can bind actin. Moreover the Actin-MAL complex has a ratio of 3 to 1 

(Vartiainen et al., 2007). Therefore it is likely that one MAL molecule binds 3 actin molecules. 

However, not all RPEL motifs have the same importance for MAL regulation (Guettler et al., 

2008). Mutation of RPEL 1 or 2 doesn’t influence MAL localisation while mutation of RPEL 3 

is sufficient to partially relocalize MAL to the nucleus. Combined mutation of RPEL 1 and 2 

lead to the same partial nuclear localisation of MAL but mutation of RPEL 2 and 3 resulted in 

a complete nuclear localisation. Thus, RPEL motifs collaborate to regulate MAL localisation 

with a primordial role for RPEL 3. The importance of the RPEL 3 motif can be linked to its 

lower affinity for actin compared to RPEL 1 or 2 (Guettler et al., 2008). When the G actin 

level decreases, the RPEL domain 3 is the first to be free from actin leading immediately to a 

partial relocalisation of MAL to the nucleus. Hence, RPEL 3 depletion of actin is a critical 

regulatory step for sensing G-actin levels. 
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Figure 5. Structure of one RPEL Motif of MAL in Complex with G-Actin 

(A) Sequence alignment of individual RPEL motifs from murine MAL, myocardin (transcript variant A) and 

Phactr1. RPEL2MAL secondary structure and are shown above the sequence. Selected conserved residues are 

highlighted. (B) Two views of the RPEL2MAL:G-actin complex, related by a 901 rotation around the horizontal 

axis. Right-hand panel is the classical view of the ‘front’ surface of actin (white with subdomains labelled 1–4). 

RPEL2MAL is drawn in green (cartoon) with highly conserved RPEL residues that interact with actin shown as 

sticks. The hydrophobic cleft and the subdomain 3 ledge of actin are indicated by red dashed circles. (C) 

Structural Comparison with Known G-Actin-Binding Proteins Bottom view of superposed WH2 motif containing 

proteins together with RPEL2 motif of MAL bound to G-actin. From (Mouilleron et al., 2008). 
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2.1.6 Nuclear actin regulates the nuclear localisation and activity of MAL  

Monitoring of MAL shuttling between the cytoplasm and the nucleus by FRAP (Fluorescence 

Recovery After Photobleaching) revealed that upon stimulation the decrease of the nuclear 

export rate of MAL is the main contributor to MAL relocalisation in the nucleus (Vartiainen 

et al., 2007). The increase in import rate contributes only marginally. Moreover, a mutant 

MAL defective for actin binding harbours a strongly reduced nuclear export. Thus, nuclear 

actin regulates nuclear localisation of MAL by controlling its nuclear export (Figure 6). 

Leptomycin B, which blocks Crm1 dependent export, induced the relocalisation of MAL to 

the nucleus with the same kinetics as activating actin binding drugs (Vartiainen et al., 2007). 

However, Leptomycin B treatment is not sufficient to induce a strong MAL mediated 

transcription, even though MAL was enriched on the promoter of target genes in Leptomycin 

B treated cells. The transcription is triggered only when interaction of MAL with actin is 

abolished (Figure 6). 

 

Figure 6 Multiple Roles for Actin in MAL Regulation  

In unstimulated cells, high export rates ensure MAL is mainly cytoplasmic, whereas nuclear actin prevents SRF 

activation. Upon stimulation, decreased export induces nuclear MAL accumulation, and diminished interaction 

with actin allows SRF activation. Proteins are shown as monomers for simplicity. From (Vartiainen et al., 2007). 

 

It is not known so far if the role of nuclear actin concerning MAL regulation is independent 

or not from the functions of actin in chromatin remodelling or transcription described so far 
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(Miralles and Visa, 2006). For the RNA polymerase II, actin has to be present in the complex 

in an early step of transcription (Hofmann et al., 2004) contradicting the requirement of loss 

of actin binding for MAL mediated transcription. Therefore, the regulation of MAL by nuclear 

actin is likely to be independent from the role of nuclear actin in RNA polymerase II 

mediated transcription. 

2.1.7 Competition between TCFs and MAL family members for SRF binding 

Both the MAP kinase cascade and the Rho-Actin-MAL pathway lead to activation of SRF 

mediated transcription (q.v. 2.1.1). The two families of transcription factors TCFs and MRTFs 

contact the same surface on SRF in a mutually exclusive manner (Wang et al., 2004). Growth 

promoting signals inducing the MAP kinase cascade activate TCFs which are then able to 

displace MRTFs from SRF. In the case of smooth muscle genes, the replacement of 

Myocardin by Elk1 results in an overall repression of transcription as Myocardin is a much 

more potent transcription factor than Elk1. The competition between Elk1 and Myocardin 

has been characterised in smooth muscle cells which switch between proliferation and 

differentiation upon extra cellular signals. When the smooth muscle cells proliferate, the 

MAP kinase cascade is active and the differentiation program controlled by Myocardin is off. 

Yet, when the smooth muscle cells enter differentiation, the MAP kinase cascade is switched 

off, Myocardin can then bind SRF and trigger the expression of smooth muscle specific genes 

(Figure 7). 
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Figure 7. A Model to Account for the Modulation of Smooth Muscle Genes By Competition 

between Myocardin and Elk-1 for SRF in Response to Growth Signals 

2.1.8 Additional ways to inhibit MRTFs-SRF mediated transcription  

2.1.8.1 Posttranslational modifications of MRTFs and SRF 

2.1.8.1.1 Phosphorylation of SRF 

Another possible way to switch between proliferation and myogenic programs controlled by 

SRF is to phosphorylate SRF in the DNA binding domain at S162 (Iyer et al., 2006). This 

phosphorylation event suppresses MRTFs-SRF mediated transcription of muscle specific 

genes by preventing DNA binding. On the opposite, the pro-proliferative immediate early 

genes controlled by Elk1-SRF like Egr1 or cFos were unaffected, likely due to the stabilisation 

of the complex on the DNA by the DNA binding domain of Elk1.  

Yet, it is worth to note that SRF phosphorylation in the DNA binding domain doesn’t lead 

always to repression of myogenic targets. The Myotonic Dystrophy Protein kinase (DMPK) 

and PKCα phosphorylate SRF at T159 to activate expression of cardiac α actin (Iyer et al., 

2003). 
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2.1.8.1.2 Phosphorylation of MRTFs 

Serum stimulation activates MAL by inducing its relocalisation to the nucleus (q.v. 2.1.3). 

However, serum stimulation promotes as well the opposite (Muehlich et al., 2008). Serum or 

phorbol ester 12-O-tetradecanoyl-13-acetate (TPA) renders MAL phosphorylated by Erk 1/2 

at S454. This phosphorylation increases actin binding and therefore nuclear export. 

Additionally, a non phosphorylable MAL mutant showed a constant nuclear localisation and 

activation. This phosphorylation is likely happening after the start of MAL mediated 

transcription to terminate the induction of the target genes. Hence, modulation of MAL 

binding to nuclear actin by the MAPK regulates MAL mediated transcription (Figure 8). 

 

Figure 8. The Model for Serum Regulation of MKL1 

Serum induction results in the activation of the RhoA- and Ras/MEK/ERK pathways. RhoA activation stimulates 

MKL1 nuclear localization due to the formation of actin stress fibers and a decrease in G-actin levels, while 

nuclear export is stimulated due to ERK1/2 phosphorylation of MKL1 and increased G-actin binding. Export of 

actin-bound MKL1 reduces the amount of MKL1 available to bind to SRF and activate transcription. From 

(Muehlich et al., 2008) 

Erk 1/2 phosphorylate as well Myocardin impairing the expression of smooth muscle specific 

genes. The phosphorylation occurs on four residues (S812, S859, S866 and T893), in the 

transactivation domain of Myocardin inhibiting its interaction with acetyl transferase or 
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CREB binding proteins (Taurin et al., 2009) which are known to promote Myocardin activity 

(Cao et al., 2005). 

Moreover, Myocardin was also shown to be inhibited by GSK3 beta mediated 

phosphorylation at serines 455 to 467 and 624 to 636 to reduce cardiac hypertrophy 

(Badorff et al., 2005). The phosphorylation of Myocardin by GSK3 beta potentiates its 

degradation by the proteasome (q.v. 2.1.8.1.3; (Xie et al., 2009)). 

Other phosphorylation sites for MRTFs and SRF are described in large scale 

phosphoproteomic experiments but await functional validations e.g. (Olsen et al., 

2006)(http://www.phosida.com/). 

2.1.8.1.3 MRTFs sumoylation or ubiquitinylation 

Myocardin is ubiquitinylated by the E3 ligase C terminus of Hsc70-interacting protein (CHIP) 

and sent for degradation by the proteasome (Xie et al., 2009). The outcome is a repression 

of smooth muscle genes due to a decrease in Myocardin transcription activity. 

Transcriptional activity of transcription factors like p53 (Gostissa et al., 1999; Rodriguez et 

al., 1999), c-Jun (Muller et al., 2000) or LEF1/TCF (Sachdev et al., 2001) is modulated by 

sumoylation. MAL undergoes as well sumoylation at K499, 576, and 624 by interacting with 

the E2 conjugating enzyme UBC9 (Nakagawa and Kuzumaki, 2005). The sumoylation of MAL 

results in an impairment of MAL-SRF mediated transcription. Interestingly, sumoylation of 

MAL is triggered by serum stimulation or active RhoA which could provide a negative 

feedback. Conversely, Myocardin activity is enhanced after sumoylation by the E3 ligase 

PIAS1 at K445 in pluripotent 10T1/2 fibroblasts (Wang et al., 2007). This discrepancy could 

be explained by differences between Myocardin and MRTFs or by the different reporters 

used. More work is needed to delineate clearly the outcome of MRTFs sumoylation. 

2.1.8.2 Mutual inhibition of NFκB and Myocardin 

On top of the inhibition mechanisms presented above, Myocardin can be inhibited by 

interaction with NFκB (Tang et al., 2008). Binding to NFκB inhibits the formation of the 

complex between Myocardin SRF and DNA. The inhibition of Myocardin by NFκB is reciprocal 

as overexpression of Myocardin inhibits binding of p65 to DNA and abrogates LPS induced 

TNFα expression. As the domains required for Myocardin to interact with NFκB are 
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conserved in MAL, MAL should be reciprocally inhibited by NFκB. Repression of NFκB 

signalling is proposed to explain antiproliferative properties of Myocardin (Milyavsky et al., 

2007) (Figure 9). 

 

 

Figure 9. Model for the Mutual Inhibition of Myocardin and P65 

From (Tang et al., 2008). 

 

2.1.8.3 Competitive inhibitory binding of SRF by FHL2 

Inhibitors of MRTF-SRF mediated transcription can compete for binding to SRF like Elk1 

which displaces Myocardin from SRF (q.v. 2.1.7). The four and a half Lim domain protein 2 

(FHL2) has been identified as a transcriptional target of Rho-Actin-MAL-SRF signalling able to 

abolish MAL binding to SRF (Philippar et al., 2004). Hence, FHL2 is part of a transcriptional 

negative regulatory loop to control MAL-SRF mediated transcription. 

2.1.8.4 Inhibition of the MRTF-SRF complex by SCAI or Foxo4 

Another protein, the Suppressor of Cancer cell Invasion (SCAI) inhibits as well the complex 

MAL-SRF but on a different way than FHL2 or ELK1 (Brandt et al., 2009b). In presence of 

SCAI, the binding of MAL to SRF is preserved. SCAI binds the MAL-SRF complex sitting on the 

promoter of the target genes like Integrin β1 preventing MAL-SRF mediated transcription 

(Brandt et al., 2009a). SCAI is even able to repress the constitutive active MAL fusion protein 

OTTMAL involved in leukaemia. 
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Supposed to work on the same way as SCAI to inhibit MRTF-SRF mediated transcription, 

Foxo4 has been shown to mediate PI3K/Akt signals controlling smooth muscle cell 

differentiation by inhibiting Myocardin (Liu et al., 2005). Upon treatment of smooth muscle 

cells with the differentiation inducer insulin like growth factor 1, Akt phosphorylates Foxo4 

which is then relocalized to the cytoplasm. The Myocardin-SRF complex is then free from 

Foxo4 inhibition and can trigger the expression of smooth muscle genes. 

2.1.8.5 Inhibition by HOP 

The Homeodomain Only Protein (HOP) inhibits MRTF mediated transcription to modulate 

cardiac development likely by two mechanisms. First, HOP inhibits the binding of SRF to DNA 

(Chen et al., 2002a; Shin et al., 2002). Second, HOP recruits deacetylases to the targeted 

promoters (Kook et al., 2003). 

2.1.9 Cooperation of the MRTF-SRF complex with other transcription factors 

Depending on the tissue or the external cues, the MRTF-SRF transcription factor complex 

cooperates with other transcription factors to increase the expression of target genes.  

For example, in smooth muscle cells, Myocardin controls the expression of the smooth 

muscle gamma actin gene (ATG2) by cooperating with the transcription factor Nkx3.1 (Sun et 

al., 2009). The ATG2 promoter has several CARG boxes which could be bound by 

Myocardin/SRF complexes. Myocardin binds preferentially the CARG box which has in close 

vicinity a binding site for Nkx3.1. Binding of Nkx3.1 to Myocardin enhances the transcription 

of ATG2 on a specific manner as Nkx2.5 binds as well Myocardin but without increasing 

transcription. 

Transcription factors of the GATA family can promote Myocardin-SRF mediated transcription 

of smooth muscle genes like smooth muscle myosin heavy chain and smooth muscle alpha-

actin. However, the coactivation mediated by GATA 4 or 6 is not valid for all target genes. In 

some cases, like telokin, the interaction of GATA transcription factors with Myocardin results 

in repression of transcription (Oh et al., 2004; Yin and Herring, 2005). 

2.1.10 MRTFs controls chromatin remodelling 

By searching how MAL-SRF discriminates between smooth muscle targets and genes 

controlled by Rho-Actin, MAL was shown to interact with Brahma-related gene 1 (Brg1) part 
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of the ATP dependent SWI/SNF chromatin remodelling complex (Zhang et al., 2007a). 

Dominant negative Brg1 could repress MAL dependent expression of smooth muscle genes 

without affecting Rho-actin targets. In SW13 cells which lack Brg1, ectopic expression of Brg1 

restored the ability of MAL to control the expression of smooth muscle genes. The same 

result could be shown for Myocardin (Zhou et al., 2009). 

MRTF may play as well a direct role in chromatin remodelling in a context dependent 

manner through their SAP domain, a putative DNA-binding motif involved in chromosomal 

organization (Aravind and Koonin, 2000). For instance, deletion of the SAP domain of 

Myocardin completely abolished ANF induction mediated by Myocardin but only impaired 

the induction of SM22 (Wang et al., 2001). 

2.1.11 MRTFs mediated transcription independent of SRF 

MRTFs in complex with SRF contact DNA (Zaromytidou et al., 2006) but the interaction is too 

limited to provide MRTFs the ability to bind CARG boxes without SRF. However, MRTFs can 

bind promoters on a SRF independent manner in complex with other transcription factors. 

2.1.11.1 Interaction of MRTFs with SMAD 

TGF beta 1 signalling plays an important role in the development of smooth muscle cells 

from embryonic stem cells by activating Smad mediated transcription (Sinha et al., 2004). 

One of the targets is SM22, an early marker of smooth muscle cell development. The 

promoter of SM22 is known to be responsive to Myocardin-SRF transactivation (Du et al., 

2003). However, Myocardin is able to cooperate synergistically with Smad3 to activate a 

CARG mutated SM22 promoter (Qiu et al., 2005). The Smad 3-Myocardin complex is 

dependent on the Smad binding element to bind the SM22 promoter and on the 

transactivation domain of Myocardin to activate transcription.  

The interaction with Smad 3 is also valid for MAL as demonstrated for the control of the Slug 

promoter (Morita et al., 2007). During TGFβ induced Epithelial-Mesenchymal Transition 

(EMT), MAL binds Smad3 which recognizes a cis-element in the Slug promoter. Induction of 

Slug induces cell-cell contact dissociation by repressing E-cadherin expression (Bolos et al., 

2003; Hajra et al., 2002). 
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The Smad 1/4 have been shown as well to interact with MRTFs. MAL/Smad complexes are 

formed in response to RHO/ROCK signalling in proliferating myoblasts to trigger the 

expression of the myogenic differentiation inhibitor Id3 (Iwasaki et al., 2008). Interestingly, 

this complex can be inhibited by a forkhead transcription factor. During myoblast 

differentiation, FKHR translocates to the nucleus to prevent the association of the 

MAL/Smad complex with the Id3 promoter. 

2.1.11.2 Myocardin binds MEF2 to control the expression of smooth muscle genes 

A cardiac enriched isoform of Myocardin has been shown to interact with MEF2 through an 

additional C terminus domain which is not present in other MRTFs (Creemers et al., 2006). 

However, overexpression of MRTFA and B didn’t lead to activation of MEF2 mediated 

transcription. Then, this SRF independent mediated transcription seems to be limited to 

Myocardin. 

2.1.12 Stimuli inducing Actin-MAL-mediated transcription 

LPA signals through the GPCRs LPAR 1 to 3 to trigger MAL mediated transcription. Another 

phospholipid, sphingosine-1-phosphate (S1P) is also able to activate MAL by binding and 

stimulating the GPCRs S1PR 1 to 5. Once induced the GPCRs leads to the activation by the Gα 

subunits 12 or 13 of Guanine nucleotide exchange factors (GEFs) which then activate the Rho 

GTPAse. 

However, new ways have been described recently to activate the Actin-MAL pathway. We 

could show that dissociation of epithelial cell-cell junctions activates RhoA and Rac1 and 

triggers MAL-SRF mediated transcription on a Rac1 dependent manner (Busche et al., 2008). 

Others could demonstrate as well the activation of RhoA upon loss of epithelial cell-cell 

contacts but gave a central to the Rho-ROCK-actomyosin instead of Rac1 activation to induce 

SRF (Fan et al., 2007). E-cadherins is the sensor of cell-cell contacts controlling SRF 

transcription as cells that do not express E-cadherin cannot activate SRF mediated 

transcription upon epithelial cell-cell junction dissociation (Busche et al., 2008) while 

reexpression of E-cadherin restored SRF activation (Busche and Posern, Submitted).  
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Figure 10. Model of the Regulation of MAL/SRF-Dependent Transcription by Epithelial 

Junctions. 

 
Disassembly of E-cadherin-mediated cell-cell contacts leads to transient activation of Rac and alterations in 

actin treadmilling. This releases the G-actin-mediated inhibition of MAL. GTP-loaded Rac is both required and 

sufficient for MAL and SRF activation upon epithelial disintegration, and subsequent transcription of 

endogenous target genes such as vinculin (vcl) and smooth muscle α-actin (acta2). From (Busche et al., 2008). 

 
Accordingly, in epithelial cells loss of cell-cell contacts during Epithelial-Mesenchymal 

Transition (EMT) correlates with an induction of MAL-SRF activity. Importantly, TGFβ induced 

EMT is dependent on MAL as dominant negative MAL or knockdown of MAL prevents TGFβ 

mediated EMT. It seems to be a feed forward mechanism as overexpression of a dominant 

active MAL construct is sufficient to trigger EMT (Morita et al., 2007). 

On top of the dissociation of cell-cell contacts, shear forces sensed by integrins can activate 

as well MAL-SRF mediated transcription on a ROCK dependent manner (Zhao et al., 2007). 

This result could explain why in pressure or volume overload, the myocardium 

myofibroblasts differentiate as marked by the increased expression of the MAL-SRF target 

smooth muscle alpha actin 2 (Acta2). 

Finally, in neurons, increased synaptic activity or stimulation with the Brain Derived 

Neurotrophic Factor (BDNF) triggers as well MAL-SRF mediated transcription. Intriguingly, 



          Introduction 

19 

these two stimuli were dependent on the MAP kinase pathway as treatment with the MEK 

inhibitor UO126 impaired the induction of MAL-SRF driven transcription (Kalita et al., 2006). 

This result contrasts with the Erk mediated inhibiting phosphorylation described for MAL 

(Muehlich et al., 2008)(q.v. 2.1.8.1.2). 

2.1.13 Known functions of MRTF mediated transcription 

2.1.13.1 Phenotypes of the MRTFs knockouts 

In mice, loss of MAL has a limited phenotype. Only the development of mammary 

myoepithelial cells is affected (Li et al., 2006; Sun et al., 2006b). These cells share common 

traits with smooth muscle cells even if they originate from a different lineage. Their altered 

development in mutant mice leads to their apoptosis and the inability of the mothers to 

nurse their offspring. 

In mice, loss of MRTFB induces a defect in smooth muscle cell differentiation and 

cardiovascular development leading to death between embryonic day 17.5 and postnatal 

day 1 from cardiac outflow tract defects (Li et al., 2005; Oh et al., 2005). Remarkably, MRTFB 

restoration only in cardiac neural crest was sufficient to rescue the pathology induced by 

complete loss of MRTFB. 

Finally, loss of function of all three members of the MRTF family by expression of a dominant 

negative construct in the skeletal muscle lineage leads to a severe skeletal muscle hypoplasia 

(Li et al., 2005). The muscle fibers formed but failed to undergo hypertrophic growth like in 

the mutant mice where SRF is as well specifically deleted in the skeletal lineage. 

In conclusion, the straight single MRTFs knockouts have a mild phenotype likely due to the 

compensation mechanisms between the different MRTFs. 

2.1.13.2 Control of actin homeostasis and cytoskeleton genes 

The β-actin gene itself is a target of the actin-MAL-SRF pathway. Increased expression of β-

actin inhibits MAL-SRF signalling and therefore β-actin transcription. This regulatory loop is a 

critical element of the actin homeostasis. 

Other genes involved in cytoskeleton dynamics like Vinculin, Zyxin, Integrin β1 or Gelsolin 

have been characterised as MAL SRF targets (Miralles et al., 2003; Philippar et al., 2004; 

Schratt et al., 2002). Vinculin is an adapter protein that links the actin cytoskeleton to the 
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plasma membrane. The N terminal part of Vinculin binds Talin which interacts with β 

integrins while the C terminal part of Vinculin binds F actin. Integrin β1 associates with 

Integrin α chains to bind elements of the Extra Cellular Matrix (ECM) like fibronectin. 

Interestingly, loss of Vinculin or Integrin β1 leads to the impairment of cell adhesion and 

spreading resembling the loss of SRF (Fassler et al., 1995; Schratt et al., 2002; Xu et al., 

1998). Gelsolin is a remodelling agent of actin cytoskeleton. Gelsolin severs actin filaments 

and cap the resulting fragments to prevent regrowth. Uncapping of Gelsolin provides new 

growth competent actin filament end to adapt the actin cytoskeleton to a new situation (Sun 

et al., 1999). Accordingly, Gelsolin knockout MEFs show an increase in stress fibers (Witke et 

al., 1995). 

2.1.13.3 Role in adhesion and migration 

SRF-/- MEFs have a defect in adhesion, migration and cell spreading (Schratt et al., 2002). 

The restricted panel of known specific MAL targets lead to the assumption that the 

phenotype of MEFs SRF-/- was in part due to the loss of the expression of MRTF dependent 

SRF targets. Knockdown of MRTF A and B confirmed this hypothesis (Medjkane et al., 2009). 

Adhesion, spreading, motility and invasion were impaired in the MBA-MB231 breast 

carcinoma cell line and in the B16F2 melanoma cell line. In a colonisation model of distant 

organs by metastatic cells, cancer cells depleted for MRTFs fails to colonize lungs. This is 

likely due to the adhesion defects as the cells were able to reach the lungs but were cleared 

away by the blood flow. Two target genes of MRTF-SRF, MYH9 and MYL9 were proposed to 

mediate this phenotype (Medjkane et al., 2009). 

Moreover, inhibition by SCAI of MAL-SRF mediated signalling in MDA-MB435 inhibits 

invasion (Brandt et al., 2009a). The MAL-SRF target Integrin β1 is proposed to mediate this 

effect as knockdown of Integrin β1 or an Integrin β1 a blocking antibody rescue the gain of 

invasion mediated by knockdown of SCAI. 

2.1.13.4 Cell differentiation 

MRTFs play a major role in the switch between proliferation and differentiations of smooth 

muscle cells or myoblasts notably by competing with TCFs controlled by the MAP kinase 

pathway (Wang et al., 2004). 
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Moreover, MAL has been shown as well to control the differentiation of megakaryocytes 

(Cheng et al., 2009). MAL level is increased during megakaryocytes differentiation in mice. 

The platelet counts in the peripheral blood of mice MAL-/- are reduced as well as the ploidy 

of megakaryocytes in the bone marrow which is a megakaryocyte differentiation marker. 

Forced expression of MAL induced the megakaryocytic differentiation of primary human 

CD34(+) cells cultured in the presence of thrombopoietin. 

Finally, MKL1 plays a major role in the differentiation of two nervous system cell types. 

A first trait that is affected by MAL and SRF is the neurite outgrowth. Depletion of SRF or 

overexpression of a dominant negative MAL construct leads to an impairment of neurite 

outgrowth while overexpression of a constitutive active SRF construct promoted neurite 

elongation (Knoll et al., 2006; Shiota et al., 2006). Inhibition of MAL-SRF mediated 

transcription by the inhibiting actin mutant R62D inhibited neurite outgrowth and neuronal 

motility while activation by the mutant actin G15S activated neurite outgrowth and filopodia 

formation (Stern et al., 2009). Impairment of MAL-SRF transcription perturbs axon guidance 

and brain circuit formation (Knoll et al., 2006). 

A second trait affected by MAL-SRF is the differentiation of oligodendrocytes (Stritt et al., 

2009). SRF depletion in the forebrain of mice inhibits terminal differentiation of 

oligodendrocytes. Consistently, SRF mutants harbour a myelination defect and axon 

degeneration. Yet, the differentiation defect is non cell autonomous as an expression of the 

activated SRF construct SRFVP16 limited to neurons is sufficient to restore the 

differentiation of oligodendrocytes. CTGF was proposed to mediate the inhibition of 

oligodendrocytes maturation observed in SRF mutants. Interestingly, CTGF is a validated 

target of MAL-SRF upon serum stimulation in fibroblast but its expression is increased in the 

corpus callosum of SRF knockout mice, meaning that SRF negatively regulates CTGF 

expression in neurons. 

2.1.13.5 Control of proliferation and apoptosis 

MAL was discovered as an antiapoptotic gene involved in TNFα signalling (Sasazuki et al., 

2002). However, no further result so far supported that MRTF could promote cell survival. In 

latter reports, Myocardin has been shown to reduce cell proliferation (Chen et al., 2002b; 

Milyavsky et al., 2007; Shats et al., 2007). Myocardin inactivation by a dominant negative 
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construct or by SiRNA increased fibroblast proliferation (Milyavsky et al., 2007). 

Interestingly, the repression of proliferation mediated by Myocardin is cell density 

dependent: Myocardin is able to repress the proliferation of WI-38 human fibroblasts only at 

low cell density. Finally, Myocardin expression has been shown to be impaired in colon and 

prostate cancer. One possible mechanism for Myocardin to impair cell proliferation is to 

inhibit NFκB dependent cell cycle progression (Tang et al., 2008). Yet, it is worth to note that 

in the MDA-MB231 breast carcinoma cell line and in the B16F2 melanoma cell line, knock 

down of MRTF A and B didn’t affect either proliferation or apoptosis (Medjkane et al., 2009). 

2.1.13.6 Knowledge out of genome wide screen for SRF targets 

Until recently (Medjkane et al., 2009), the majority of the screens to identify SRF target 

genes were carried out without being able to specify if the target genes were controlled by 

the Actin-MAL pathway, by the MAPK-TCFs pathway or by other coactivators of SRF (Cooper 

et al., 2007; Philippar et al., 2004; Sun et al., 2006a). Yet, one screen did try to identify genes 

specifically controlled by MAL, but the use of the dominant negative MAL∆C weakens the 

proposed classification of the targets between MAL dependent and MAL independent 

(Selvaraj and Prywes, 2004). MAL∆C works as dominant negative construct because of the 

loss of the transactivation domain but it retains the ability to interact with SRF. Therefore 

MAL∆C may displace TCFs from SRF and consequently block indiscriminately the two 

pathways leading to SRF activation. 
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2.2 Aim of the project: Identification of G-actin regulated genes 

The primary goal of the project was to identify on a genome wide basis the genes specifically 

controlled by the Actin-MAL-SRF pathway in order to better characterise its physiological 

role and importance for the cell (Figure 11). 

The signalling pathway was targeted at the actin step by the actin binding drugs Cytochalasin 

D and Latrunculin B which respectively activates or represses MAL-SRF mediated 

transcription by destabilizing or stabilizing the G-actin-MAL complex (q.v. 2.1.4; Figure 11). 

This strategy allows screening for genes controlled by Actin-MAL-SRF but also for genes 

controlled by potentially new sets of transcription factors dependent on monomeric actin. 

 

Figure 11. Control of SRF Activity by the Rho-Actin-MAL Pathway and Actin Binding Drug 
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From the screen, only the genes which were differentially regulated by Cytochalasin D and 

Latrunculin B were considered for further characterisation. As the two drugs depolymerise 

the F-actin cytoskeleton, genes dependent on F-actin could not be differentially modulated 

and hence were excluded. 

To identify without bias on a genome wide basis the genes controlled by G-actin, the 

transcriptome of NIH3T3 fibroblast after actin binding drug treatment was monitored with 

microarrays. By this approach, the hope was to identify and characterize new target genes 

controlled by monomeric actin mediating unexpected functions sharing G-actin as a sensor. 
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3 Results part I 

3.1 Establishment of the conditions used for the identification of G-actin regulated genes 

The screen for G-actin regulated genes was realised in the mouse fibroblast NIH3T3 cell line 

(Todaro and Green, 1963; Todaro et al., 1963) where the Actin-MAL-SRF pathway is best 

characterised. As mentioned before, in order to identify G-actin regulated genes, the 

expression of the target genes was triggered with Cytochalasin D and repressed with the 

inhibiting drug Latrunculin B.  

To determine the proper concentration of the two drugs the 3DA luciferase reporter 

(Geneste et al., 2002) which monitors the SRF activity controlled by the Actin-MAL pathway 

was utilised (Figure 12 A). The best ratio between the induction mediated by Cytochalasin D 

and the repression by Latrunculin B was obtained for a concentration of 2µM Cytochalasin D 

and 5µM Latrunculin B.  

Then, the induction of the known MAL-SRF target genes Ctgf and Srf, which controls its own 

expression, was monitored over the time after actin binding drug treatment to determine 

the best time point for the screen (Figure 12 B). After 90 min of Cytochalasin D treatment, 

while Srf expression was increasing further, Ctgf expression attained a maximum and the 

repression of SRF and Ctgf mediated by Latrunculin B reached a plateau. At that time point, 

the induction by Cytochalasin D of the two target was more than 2,5 times as well as the 

repression by Latrunculin B of the Cytochalasin D induction. Therefore, the 90 minutes time 

point was chosen. This time point has the advantage as well to be short limiting the 

possibility to detect secondary regulated targets. 

In order to restrict even more the screen to primary targets, the cells were pretreated with 

the translation inhibitor cycloheximide (CHX). The final conditions are summarized on (Figure 

13). 
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Figure 12. Establishment of the Conditions Used for Gene Expression Analysis 

 
(A) NIH 3T3 cells were transiently transfected with a 3xSRF luciferase reporter and serum starved overnight. 

Following pretreatment with 0 μM, 1 μM, or 5 μM latrunculin B, cells were treated for 7 hr with 2 μM, 4 μM, or 

10 μM of cytochalasin D, as indicated. Unstimulated and serum-induced reporter activity is shown as a control. 

Arrows indicate the conditions used for subsequent microarray analysis.             

(B and C) Time course analysis of endogenous gene expression, which was analyzed following mRNA isolation 

by quantitative RT-PCR using primers specific for egr1, srf, ctgf, and hprt. The relative mRNA amount was 

calculated by normalisation to hprt. Cells were treated with 2 μM cytochalasin D for 0, 60, 90, 120, and 180 min 

(B). Cells were preincubated with 5 μM latrunculin B and subsequently treated with 2 μM cytochalasin D for 60, 

90, 120 and 180 min (C). Shown is the ratio of the relative mRNA amounts of cells treated with cytochalasin and 

cytochalasin D + Latrunculin B. 
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Figure 13. Schematic Description of the Three Conditions Used for Screening in NIH 3T3 

Fibroblasts.  

Control cells were treated with cycloheximide only (CHX, 3 mg/ml, 2 hr). G-actin-regulated genes were induced 

by treatment with cytochalasin D (CytoD, 2 mM, 90 min) and inhibited by latrunculin B (LatB, 5 mM). 

 

A first concern about the screening approach was that actin binding drugs could activate 

stress response kinases like p38 and JNK. Actually, JNK activation was not detected in the 

conditions used for the screnn while p38 was activated by the two drugs Cytochalasin D and 

Latrunculin B (Figure 14).Therefore, genes controlled by p38 phosphorylation will not score 

as differentially regulated and then then will not be considered as potential G-actin targets. 

 

Figure 14. Drug Treatment Used for Identification and Characterization of Targets Does Not 

Differentially Regulate Stress Kinases 

Cells were serum starved for 24 hr and then stimulated with cytochalasin D (CD, 5 μM), latrunculin B (LB, 5 μM) 

alone or in combination for 30 min and 90 min. Total protein lysates were immunoblotted using antibodies 

specific for anti-phospho-p38 and anti-phospho-JNK. Reblots showing equal loading were done with anti-p38 

and anti-JNK1. Serum stimulation for 30 min is shown as a positive control. 
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A second concern was that mRNAs could be degraded after actin binding drug treatment. 

The RNA samples of the 3 independent experiment used for the screen were run on agarose 

gels. No sign of degradation of the 28S or 18S ribosomal DNA could be observed (Figure 15). 

 

 

Figure 15. RNA Gels of Samples Treated with Actin Binding Drugs Used for the Microarrays 

NIH 3T3 fibroblasts were treated with cycloheximide (CHX, 3 mg/ml, 2 hr), cytochalasin D (CytoD, 2 mM, 90 

min) and latrunculin B (LatB, 5 mM, 90 min) as indicated. 

 

These 9 samples were then processed and hybridised to 9 Affymetrix GeneChip Mouse 

Genome 430 2.0 arrays allowing the analysis of the expression of over 39000 transcripts. The 

processing of the arrays as well their analysis was done externally by a collaboration partner 

(Reinhard Hoffmann, Institute of Medical Microbiology and Immunology, Technical 

University of Munich). 
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3.2 Analysis and quality control of the microarray experiment 

One of of the quality method used is the RNA digestion plot. On the GeneChip 230, a 

transcript can be monitored by several probe sets. Each probe set is composed of 11 probes 

with a perfect match plus 11 probes with a single mismatch. The in vitro reverse 

transcription proceeds from the 3’ end of the transcript towards the 5’ end. If the reverse 

transcription stops, a signal increase of probe sets present at the 3’ end of the transcripts is 

expected. This artefact from the reverse transcription is then used as a first quality control. 

The hybridisation of the samples gave rise to the expected pattern on the 9 arrays (Figure 

16). The probes located at the extreme 5’ end position (probe number=0) gave a weaker 

signal than the probes located at the extreme 3’ end position (probe number=10). The 

difference in signal intensity between the probes according to their position on the 

transcript is in the acceptable range: the samples were not degraded. 

 

Figure 16. RNA Digestion Plot 

Each curve represents the overall average expression intensity by probe position per array. The probes #0 are 

located close to the 5’ end while the probe #10 is located close to the 3’ end of the transcripts. 

 

Another quality control is the comparison of the probe signals of each array to the probe 

signals of a virtual mean array. The virtual mean array is the average of the signal of the 9 

arrays of the experiment. This comparison is done thanks to a MA plot (Dudoit et al., 2002). 
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A problem concerning the normalisation process would lead to a deviation of the probe 

signal scatter away from the horizontal M=0 line which is not the case (Figure 17). Only a 

small fraction of the transcriptome has been affected by the experiment like expected in any 

microarray experiment. 

The two quality controls presented support the idea that the actin binding drug treatment 

didn’t perturb massively RNA stability or expression and is therefore a compatible stimulus 

with a transcriptomic approach. 
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Figure 17. Control of the Normalisation of the Microarrays by M/A Plot 

M is the intensity log ratio (M= log2Iprobe x, array y-log2Iprobex, mean array). A is the average intensity (A=  (log2Iprobex, 

array y+ log2Iprobex, mean array)) where I is the probe intensity. See text and (Dudoit et al., 2002). 
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3.3 Putative G-actin regulated genes identified by microarray 

The arrays were analysed with the RMA (Irizarry et al., 2003) algorithm and its improved 

version GC-RMA (Wu et al., 2004) which takes into account the GC content of the probes 

during background normalisation. By setting a False discovery rate of 5.43 for GCRMA and 

5,17 for the RMA analysis a combined list of probe sets differentially regulated of 255 

corresponding to 210 genes was obtained. More than 30% of the genes identified were 

already present in previous screens for SRF targets supporting the screening approach. For 

example, several actin genes, the early marker of smooth muscle cell development SM22, 

the Connective Tissue Growth factor (CTGF) or Srf itself were found (Figure 18). 

 

 

Figure 18. Transcriptome Analysis of Genes Regulated by G-Actin-MAL Signaling 

List of some differentially regulated genes and controls. Shown is the induction (red) or repression (green) as a 

heat map. Genes are sorted according to the average fold induction by cytochalasin D (n = 3), with known 

MAL/SRF targets in italics. Average repression by latrunculin B is in comparison to the CytoD induction. The q 

value represents a measure of statistical significance. As controls, three housekeeping genes as well as two 

known MAL-independent SRF targets are depicted (lower panels). See annexe 1 for a complete list. 
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Unsupervised clustering of the probe sets, lead to the identification of 5 major groups of 

genes sharing the same pattern of induction/repression by the actin binding drugs (Annexe 

1). The groups 3, 4 and 5 correspond to the genes which are induced by Cytochalasin D and 

are repressed by Latrunculin B. With a total of 163 genes, they form the majority of the 

genes with significant variations. Several known MRTF-SRF or SRF dependent genes are part 

of these groups.The group 2 genes are induced by Cytochalasin D but not repressed by 

Latrunculin B and may represent genes dependent on F-actin status. Finally the group1 

genes are inversely regulated. Instead of being induced by Cytochalasin D, the expression of 

group 1 genes is repressed. These genes could be the best candidate genes controlled by 

monomeric actin but by another set of transcription factor than MAL-SRF. However, the 

relatively low induction by Latrunculin B and repression by Cytochalasin D limited the 

interest to consider at first this group. 

To validate the results monitored on the microarrays, 20 out of 210 genes were selected. 

The induction by Cytochalasin D and the repression by LatrunculinB could be confirmed by 

Real Time Quantitative PCR (RT-QPCR) for 19 genes. Only, collagen type I alpha 2 (Col1a2) 

showed a different tendency by RT-QPCR than on the arrays (Tableau 1). 

 
Tableau 1. Verification by Quantitative RT-PCR of the Gene Expressions Monitored on the 

Microarrays 

 

Gene Microarray (n=3) 
 

qRT-PCR (n=1) 

    

 

  

 

  

Arc 17,39 0,14 
 

9,04 0,31 

Pkp2 12,85 0,16 
 

4,43 0,34 

Srf 7,90 0,56 
 

5,59 0,63 

Pall 7,37 0,34 
 

5,62 0,37 

Errfi1 7,29 0,37 
 

5,59 0,46 

Rassf6 7,01 0,20 
 

4,55 0,34 

Zfp36 6,22 0,67 
 

5,99 0,81 

Ankrd1 6,12 0,25 
 

4,08 0,35 

Itga5 5,39 0,34 
 

3,13 0,55 

Lima1 5,21 0,47 
 

3,18 0,63 

Lims2 4,53 0,27 
 

3,32 0,45 

Rassf3 4,38 0,45 
 

2,44 0,57 
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Gene Microarray (n=3) 
 

qRT-PCR (n=1) 

Gpr23 4,28 0,23 
 

3,06 0,31 

Rgs16 4,25 0,31 
 

3,61 0,49 

Ctgf 4,02 0,37 
 

5,20 0,26 

Syde2 3,31 0,40 
 

2,87 0,49 

Ankrd15 3,08 0,36 
 

3,52 0,33 

Inversely regulated: 
     Gadd45B 0,38 1,46 

 
0,48 1,41 

Ccl2 0,29 1,69 
 

0,30 1,64 

Col1a2 0,22 1,22 
 

1,14 1,07 

Arrdc3 0,16 2,57 
 

0,30 2,30 

 

3.4 Mig6/Errfi1 is a Target of Actin Signalling 

The first fonctional studies were focused on Mig6 which is a negative regulator of the EGFR 

MAP kinase axis (Hackel et al., 2001) because of the importance of the interaction between 

the MAP kinase cascade and MRTFs mediated transcription. Mig6 binds preferentially to the 

activated EGF receptors (Anastasi et al., 2003; Fiorentino et al., 2000; Hackel et al., 2001) by 

an EGFR Binding Domain (EBD) shared with the Ack1 tyrosine kinase. Mig6 inhibits EGFRs by 

blocking the formation of the dimer interface between EGFRs necessary for the activation of 

downstream effectors (Zhang et al., 2007b). 

Mig6 expression was monitored on the microarrays by two different sets of pobes with high 

level of confidence (q value=0 for both probe sets). Mig6 was induced by Cytochalasin D and 

repressed by Latrunculin B like a MAL-SRF target gene. The variations monitored for Mig6 on 

the microarrays were confirmed in triplicates by qRT-PCR and compared with the variations 

observed for the known MAL-SRF target gene Ctgf (Figure 19 A).  

The induction of Mig6 was confirmed at the protein level in several cell lines by Cytochalasin 

D but also by Swinholide A and Jasplakinolide two other actin binding drugs which are known 

to activate MAL-SRF mediated transcription (Figure 19 B). Swinholide A is supposed to work 

like Cytochalasin D. On the opposite, Jasplakinolide, which stabilizes F-actin filaments (Bubb 

et al., 1994; Bubb et al., 2000), is supposed to activate MAL-SRF mediated transcription by 

depleting G-actin. Repression of Cytochalasin D induction by Latrunculin B could be also 

observed at the protein level (Figure 19 B). 
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Figure 19. Validation of Mig6 Regulation by Actin Signaling  
(A) Induction of mig6 mRNA by cytochalasin D and latrunculin B. NIH 3T3 cells were treated with vehicle (un.) 

or cytochalasin D (2 mM) for 120 min or with Cytochalasin following 30 min pretreatment with latrunculin B (5 

mM). The mRNA was isolated and subjected to quantitative RT-PCR. Shown is the average induction of mig6 

after normalization to hprt, and the known actin-MAL-regulated gene ctgf for comparison. Error bars, SEM (n = 

3). *, significant activation; **, significant repression (p < 0.05, unpaired Student’s t test). (B) Mig6 protein 

induction following treatment with various actin drugs in MEFs and liver cell lines HepG2 or HS817T. Cells were 

treated with vehicle, CytoD (2 mM), jasplakinolide (Jasp, 0.5 mM), swinholide A (SwinA, 0.3 mM), or LatB (5 

mM) for 7 hr and analyzed by immunoblotting as indicated. 

 

To characterise more precisely, the induction of Mig6 by Cytochalasin D, a dose response 

and a time course were realised. A concentration of 2µM and an induction time of 7 hours 

were sufficient to trigger a full induction of Mig6 (Figure 20 A). At any time, no significant 

increase of Erk phosphorylation was detected excluding an induction of Mig6 by the MAP 
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kinase cascade. Jasplakinolide didn’t induce either Erk phosphorylation and required as well 

around 7 hours to fully induce Mig6 expression at the protein level (Figure 20 B). 

 

Figure 20. Time Course and Dose Response of the Induction of Mig6 Mediated by Actin 
Binding Drugs 
 
(A) Dose response of Mig6 protein induction by CytoD in MEF. (B) Time course of Mig6 protein induction by 

CytoD (upper panels) or Jasp (lower panels) in MEFs.  

 

3.5 Mig6 induction by members of the Rho-Actin-Mal-Srf pathway 

More specific than actin binding drugs, over expression of activated MAL, SRF constructs or 

Myocardin was sufficient to induce the expression of Mig6 in MEFs (Figure 21 A). Over 

expression of activated MAL, SRF or Rho were sufficient as well to induce Mig6 expression in 

NIH3T3 in the same range as the other known MRTF-SRF targets Integrin alpha 5 (Itga5) and 
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Ctgf. Overexpression of MAL full length didn’t induce Mig6 expression in accordance with its 

much lower transcriptional activity than the activated form MAL∆N (Figure 21 A and B). 

 

Figure 21. Induction of Mig6 by Expression of Overexpression of Members of the Rho-

Actin-Mal-Srf Pathway 

(A) Induction of Mig6 protein by transient transfection with activated MAL DN, SRF-VP16, or Myocardin. Total 

lysates from electroporated MEFs (top panels) or lipofected NIH 3T3 (bottom panels) were immunoblotted for 

Mig6 and Erk or tubulin.(B) Regulation of mig6, itga5, and ctgf mRNA by MAL, SRF, and RhoA. NIH 3T3 cells 

were transiently transfected with the indicated constructs, and endogenous gene expression was analyzed by 

quantitative RT-PCR and normalized to hprt (error bars indicate half-range). 

 

3.6 Identification of MAL/SRF response element in the Mig6 promoter 

In order to identify in the Mig6 promoter a MAL-SRF response element, different versions in 

length of the consensus Mig6 promoter were cloned in a luciferase reporter. Promoters 

starting at -1635bp to -330bp from the transcription start site were responsive to MAL N 

and SRFVP16 while a promoter construct starting at -147bp was not inducible anymore. 

Between the base pairs -330 and -147, a degenerated possible SRF binding site 

(CCTTCTAAGG) could be identified at position -260. Deletion of this site in the -726∆CARG 

construct lead to a complete loss of inducibility by MAL and a decrease by SRF (Figure 22 A).  
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Figure 22 Identification of a MAL/SRF Response Element in the Mig6 Promoter 

(A) Deletion analysis of the mig6 promoter. The indicated promoter fragments, ranging from -1635 to +1, were 

cloned in front of a luciferase reporter and cotransfected with activated ∆NMAL and SRF-VP16. The mutated 

promoter -726 ∆CArG contains a 10 bp deletion of a putative CArG box at -260, indicated by X. Shown is the 

mean relative luciferase activity, normalized to Renilla luciferase. Error bars, SEM (n = 3). (B) Responsiveness of 

a heterologous promoter containing a -392 to -96 fragment in front of a TATA box. Error bars, SEM (n = 4). *, 

significant repression compared to the WT promoter (p < 0.05). 

 

As the Mig6 promoter is strongly active, induction by MAL or SRF of the cloned Mig6 

promoter could be impaired by this strong background activity. Therefore, a new luciferase 

reporter composed of the bases ranging from -392 to -96 upstream of a TATA box controlling 

the expression of a luciferase gene was created. This new reporter showed a better 

inducibility by MAL∆N or by SRFVP16. Mutation of the degenerated CARG box induced the 

loss of inducibility by MAL∆N like for the original Mig6 promoter. SRFVP16 induction was 

impaired by around 50% meaning that SRF may bind somewhere else in the promoter 

(Figure 22 B). 

Intriguingly, it was not possible to induce the Mig6 promoter construct with stimuli like LPA. 

The only way a Mig6 promoter could be induced by a physiological stimulus like LPA was to 
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overexpress MAL full length. LPA and MAL full length synergised to induce the activity of the 

Mig6 promoter (Figure 23). 

 

 

Figure 23 : Induction of the Mig6 Promoter by LPA when MAL is Overexpressed. 

Responsiveness to LPA of the Mig6 promoter was evaluated with or without MAL overexpression and with or 

without the putative CARG box at -260bp. 

 

3.7 Role of NFκB signalling in Mig6 expression 

A MAL-SRF response element could be identified in the mouse Mig6 promoter. However, the 

response element spotted in the mouse Mig6 promoter aligned with a sequence having 2 

further mismatches in the human Mig6 promoter compared to a consensus SRF binding site. 

Analysis of the Mig6 promoter with rVista (Loots and Ovcharenko, 2004), revealed that the 

MAL response element resembles a NFκB response element (Figure 24 A and B). 
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Figure 24. Importance of the NFκB Signalling for the Expression of Mig6 

(A) Sequence of the putative Actin-Mal-Srf response element in the murine Mig6 promoter aligned with the 

corresponding sequence in the human Mig6 promoter. (B) Consensus sequences for a SRF or a NFκB response 

element. (C) Induction of Mig6 in the NEMO-/- versus WT MEFs at the protein level or (D) at the mRNA level. 

 

Therefore, the induction of Mig6 in MEFs NEMO-/- where NFκB signalling is strongly 

impaired (Schmidt-Supprian et al., 2000) was monitored. In these cells, the background 

expression of Mig6 was almost completely lost. Yet, Cytochalasin D treatment could induce 

Mig6 expression by approximately 5 fold meaning that Actin-MAL signalling is able to induce 
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Mig6 expression in the absence of NFκB in the nucleus. Therefore, MAL is likely to control 

Mig6 expression independently of NFκB (Figure 24). 

Moreover, MAL and SRF actually bind the Mig6 promoter element identified after serum 

stimulation as shown by chromatin immunoprecipitation (Descot et al., 2009). Therefore, it 

is likely that the MAL-SRF complex controls Mig6 expression through the identified element 

even if the binding site is degenerated. 

3.8 The actin cytoskeleton controls EGFR-MAPK signalling by regulating Mig6 expression 

The physiological role of the transcriptional control of Mig6 by the Rho-Actin-MAL-SRF 

signalling was then investigated. 

Mig6 inhibits the phosphorylation of several EGFR residues including EGFRY1173 (Anastasi et 

al., 2007). Then, EGFRY1173 was used as a sensor to monitor EGFR phosphorylation after 

actin binding drug treatment. At first, HepG2 cells were chosen as a cell model because they 

express high levels of EGFR allowing biochemical analysis compared to NIH which have a 

very low density of EGFR on their plasma membrane (Velu et al., 1987). Cytochalasin D or 

Swinholide A mediated induction of Mig6 correlated with the decrease of EGF induced 

phosphorylation of EGFRY1173 (Figure 25 A). On the same way, amphiregulin induced 

phosphorylation of Erk was decreased in cells where Mig6 expression had been triggered by 

Cytochalasine D (Figure 25 B). 

In fact, Mig6 is necessary for the Cytochalasin D or Swinholide A regulation of phospho-EGFR 

as knockdown of Mig6 by ShRNA resulted in the loss of the dephosphorylation of EGFRY1173 

induced by the two actin binding drugs (Figure 25 C). 

This result could be confirmed in MEFs knockout for Mig6 where Cytochalasin D or 

Jasplakinolide can not impair EGFRY1173 phosphorylation induced by a short treatment with 

EGF like in MEFs wildtype (Figure 25 D). 

Thus, the Rho-Actin-MAL-SRF pathway controls the EGFR-MAP kinase axis by the 

transcriptional control of Mig6. 
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Figure 25. Actin-Mediated Mig6-Induction Regulates EGFR-MAPK Signalling 

(A) Hepg2 cells were treated with cytochalasin D or swinholide A for 7 hr or left untreated (un.). Subsequently, 

they were stimulated with egf (25 ng/ml) for 30 min when indicated, and total lysates were subjected to 

immunoblotting with antibodies specific for tyrosine-phosphorylated egfr, mig6, or tubulin as a control. (b) 

cells were pretreated with actin drugs as in (a) and subsequently stimulated with amphiregulin (areg, 50 

ng/ml). Erk activity was determined by immunoblotting with phosphospecific anti-erk and panerk antibodies. 

(c) cells stably transfected with mig6 shrna (knockdown) were treated with swinholide or jasplakinolide, 

followed by egf stimulation, and analyzed for mig6 expression and egfr phosphorylation. (d) mefs prepared 

from wt (mig6+/+) or mig6 knockout (mig6-/-) mice were treated with the indicated actin drugs for 7 hr prior to 

egf stimulation. The bar chart represents the relative egfr phosphorylation upon egf stimulation, as determined 

by densitometry. 
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3.9 Induction of Mig6 by serum or LPA is dependent on MAL 

The next step was to determine the physiological stimuli which could induce Mig6 

expression through MAL mediated transcription. 

Serum stimulation induces Mig6 expression in NIH3T3 and MEFs as shown by 

immunofluorescence (Figure 26). Moreover Mig6 mRNA level is induced by the known 

activators of the Rho-Actin-Mal-Srf pathway LPA and S1P within the same range as by the 

actin binding drug Cytochalasin D (Figure 27 A). FCS which is a more complex stimulus 

induced more potently Mig6 expression. However, all stimuli were unable to stably induce 

Mig6 expression over the time. Nine hours after the stimulations Mig6 levels were back to 

background.  

In order to show that MAL is necessary for LPA or FCS mediated induction of Mig6, two 

different approaches were used. First, Mig6 induction by LPA and serum could be repressed 

by two dominant negative MAL constructs (Figure 27 B). Second, knock down of MAL and 

MRTFB by shRNA impaired Cytochalasin D, LPA and serum induction of Mig6 mRNA in the 

same range as it does for a known target of the Rho-Actin-MAL-SRF pathway like Srf. The 

repression of another target Acta2, which is highly dependent on MRTFs-SRF, was much 

more pronounced (Figure 27 C). The MAL dependency for LPA or serum induction of Mig6 

could be also observed at the protein level (Figure 27 D).  

Thus, Mig6 is induced by physiological agonists of the Rho-Actin-MAL-SRF pathway like LPA 

on a MRTFs dependent manner.  
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Figure 26. Serum Induces Mig6 Expression 

Immunofluorescence micrographs showing the induction of Mig6 protein upon serum stimulation of NIH 3T3, 

wild-type (+/+), or mig6 knockout (-/-) MEF for 7 hr, in comparison to serum-starved control cells (-FCS). Mig6 

protein, detected with the rabbit polyclonal antiserum #1573 against Mig6, is shown in red, control DAPI 

staining in blue, and the merged overlay. 
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Figure 27. Serum-, LPA-, and S1P-Induced Mig6 Expression Involves MAL 

(A) Transient induction of mig6 mRNA. NIH 3T3 cells were stimulated with cytochalasin D, the GPCR ligands LPA 

and S1P, and serum (FCS) for the indicated times in minutes. The mig6 mRNA was quantified by RT-PCR and 

normalized to hprt. (B) Dominant-negative MAL inhibits mig6 expression. Cells were transfected by 

electroporation with MAL ∆N∆C or MAL ∆N∆B, which are defective for transactivation and SRF binding, 

respectively. Following serum withdrawal for 24 hr, cells were stimulated with 50 mM LPA or 15% serum for 90 

min. Shown is the average induction of endogenous gene expression compared to mock-transfected control 

cells. Error bars, SEM (n = 4). (C) Knockdown of MAL and MRTF-B affects inducibility of mig6. Cells were 

transiently infected with control retrovirus or virus expressing shRNA targeting both MAL and MRTF-B (sh 

MRTF). Four days postinfection, the relative mRNA amount of mig6 and the known MAL targets srf and acta2 in 

control and knockdown cells was quantified in triplicates by quantitative RT-PCR. Efficiency of the MAL and 

MRTF-B knockdown is shown on the right. Error bars, SEM (n = 3). (D) MAL/MRTF-B knockdown reduces Mig6 

protein induction by LPA and serum for 7 hr. Total cell lysates were analyzed by western blotting using 

antibodies against Mig6 (Mig6 (PE-16)), MAL, and tubulin. 
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3.10 The small GTPase Rho and the MAPK cascade are necessary for MIG6 expression 

In order to evaluate the role of Rho in the induction of Mig6, the cell permeable Rho 

inhibitor TAT-C3 (Sahai and Olson, 2006) was utilised. This inhibitor is composed of the HIV 

TAT leader sequence that permits transduction of the protein across the plasma membrane 

and the C3 enzyme that selectively catalyzes the ADP-ribosylation, and consequent 

inactivation, of RhoA, RhoB, and RhoC of the Rho GTPase protein family. Pretreatment of 

NIH3T3 cells with TAT-C3 impaired the induction of Mig6 mediated by LPA and FCS (Figure 

28). Cytochalasin D induction was not decreased by TAT-C3 in accordance with the fact that 

Actin is downstream of Rho GTPases. 

 

 

Figure 28. Involvement of the GTPase RhoA in Mig6 Induction 
 
(A and B) NIH3T3 cells were serum starved for 15 hr in the presence or absence of the cell permeable Rho 

inhibitor TAT-C3 (3 μM) and then stimulated with LPA (50 μM), FCS (15%), cytochalasin D (CD, 5 μM), or EGF 

(100 ng/ml) as indicated. Following 7 hr incubation, total cell lysates were subjected to western blotting using 

antibodies specific for Mig6 and tubulin as a control (A). The mRNA was isolated after 90 min stimulation and 

quantified by qRT-PCR (B). Following normalization to hprt, the relative mig6 mRNA induction is shown. Error 

bars, SEM (n = 3). 

 

In the course of the experiment the contribution of the MAP kinase cascade to the induction 

of Mig6 was evaluated. Surprisingly, inhibition of MEK, the kinase upstream of ERK, by the 

UO126 inhibitor strongly impaired Cytochalasin D mediated induction of Mig6 and 

consequently restored EGFRY1173 phosphorylation (Figure 29A).  
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Figure 29. Role of the MAP Kinase Pathway in the Mig6 Induction  

(A) Starved HepG2 cells were pretreated with the MEK inhibitor UO126 (UO, 10µM) for 30min and stimulated 

with cytochalasin D (CD, 5µM) or Swinholide A (Swin, 0,3µM) for 7 hours. Thirty minutes before lysis, the cells 

were stimulated with EGF (100nM) when indicated. (B) Induction of endogenous Mig6 by long-term stimulation 

(7 hr) with EGF alone or in combination with cytochalasin D. Lysates were immunoblotted with antibodies 

against Mig6, with panErk as a control. 

 

Then, the induction of Mig6 by the EGF-MAP kinase pathway and the Actin-MAL pathway 

were compared (Figure 29B). Even though the MAP kinase pathway was fully activated by 

treatment with EGF, addition of Cytochalasin D induced more strongly Mig6 expression 

suggesting the presence of two pathways controlling Mig6 levels. 

3.11 LPA impairs EGFR-MAPK signalling by a transactivation independent induction of 

Mig6 

Induction of Mig6 by Actin binding drugs inhibits phosphorylation of EGFR. But, does a 

physiological stimulus like LPA induce the dephosphorylation of EGFR through the 

transcriptional upregulation of Mig6? 

LPA stimulation was able to dramatically reduce the phosphorylation of EGFR in MEFs wild 

type but failed to do so in MEFs Mig6-/- showing the absolute requirement of Mig6 (Figure 

30 A). Importantly, pretreatment of cells before LPA stimulation with the MMP inhibitor 

Batimastat (BB94) or the EGFR inhibitor AG1478 from the tyrphostine family didn’t affect 

Mig6 induction singnificantly (Figure 30 B). This result demonstrate that the upregulation of 

Mig6 by LPA and consequent dephosphorylation of EGFR is independent from the 

transactivation  of EGFRs by GPCRs (Daub et al., 1996) through Matrix Metalloprotease 
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(MMP) cleavage of the EGFR pro-ligand HB-EGF (Prenzel et al., 1999). In conclusion, on top 

of their transactivation function of EGFRs, LPA and GPCRs have a delayed inhibitory function 

of EGFRs through the transcriptional induction of Mig6. 

 

 

Figure 30. LPA Attenuates Signaling through EGFR and MAPK Erk by Transactivation-
Independent Induction of Mig6 
 
(A) WT or mig6 knockout MEFs were treated with LPA for 7 hr prior to EGF stimulation (40 ng/ml). Activation of 

EGFR and MAPK Erk was determined by immunoblotting with phosphospecific EGFR and Erk antibodies. 

Densitometric quantification of the relative EGFR phosphorylation upon EGF stimulation is shown by the bar 

chart. (B) Mig6 upregulation by serum or lipid agonists is largely independent of EGFR transactivation. MEFs 

were pretreated with the EGFR kinase inhibitor AG1478 or the metalloprotease inhibitor BB94 for 30 min, 

followed by stimulation with FCS or S1P for 7 hr.  As a control for inhibitor functions, the phosphorylation of 

EGFR/Her2 was monitored.  
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3.12 MAL harbours antiproliferative features independent of Mig6 

Mig6 by downregulating the EGFR MAP kinase cascade represses cell proliferation. 

Moreover, several other genes identified in the screen like Dusp5, ZFP36, Bok or Noxa are 

considered to be antiproliferative. Therefore, the role of MAL in cell proliferation was 

investigated. 

Overexpression of MAL or MAL∆N completely blocked proliferation of NIH3T3 cells 

compared to GFP or ELK1 another coactivator of SRF controlled by the MAP kinase pathway 

(Figure 31 A and B). The dominant negative construct gave even a slight proliferative 

advantage. Colony formation assay confirmed the antiproliferative properties of MAL and 

MAL∆N (Figure 31 B and C). 

The next step was to try to rescue the antiproliferative properties monitored for MAL by 

knocking down Mig6. Decreased level of Mig6 gave a proliferative advantage to the GFP 

expressing cells but didn’t rescue the MAL antiproliferative effect (Figure 32). As control, a 

partial rescue of the antiproliferative effect of MAL was monitored in cells overexpressing 

shRNA against MRTFs. 
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Figure 31. MAL Represses Cell Proliferation 

(A) Proliferation curve of NIH3T3 cells were infected with the indicated constructs. (B) Penetrance of the 

infection shown by the GFP fluorescence. (C) Colony formation assay of NIH3T3 cells infected with the 

indicated constructs. 
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Figure 32. Mig6 Knockdown gives a Proliferative Advantage to NIH3T3 Cells but is Unable 
to Rescue for the Antiproliferative Effect of MAL. 
 
(A) NIH3T3 cells were infected with pRS vectors coding shRNA against Mig#6 or MRTF and 5 days later with 

pLPCX vectors coding for GFP, MALmet or ∆NMAL. 1 day after the cells were seeded to monitor their 

proliferation. (B) Knock down efficiency of Mig6 in the pLPCX infected cells determined by qRT-PCR. 
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In conclusion, LPA or S1P signalling through GPCRs induce the Rho-Actin-MAL-SRF pathway 

and trigger the expression of Mig6 which inhibits the EGFR-MAP kinase axis. Mig6 induction 

is likely to contribute to the antiproliferative effect of MAL overexpression but is not the 

essential mediator as knock down of Mig6 could not rescue MAL antiproliferative effect. 

Finally, the transcriptional circuit presented here add a new level of interaction between the 

two pathways controlling SRF activity (Figure 33). 

 

 

Figure 33. Model of a Negative Feedback from Actin-MAL Signaling on the EGFR-MAPK 
Pathway, Mediated by Mig6.  
 
Lipid agonists, such as LPA and S1P, induce MAL-regulated expression of Mig6, which interferes with the MAPK 

Erk pathway at the level of the EGFR. The two pathways controlling distinct SRF target genes are thereby 

regulated antagonistically through a transcriptional circuit. 
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4 Results part II 

4.1 MAL induces apoptosis 

MAL overexpression represses cell proliferation dramatically. Therefore, apoptosis in MAL 

overexpressing cells was evaluated. The first readout employed was to monitor by FACS the 

Sub-G1 population of cells stained with propidium iodide after detergent permeabilization. 

Apoptotic cells with degraded DNA appear as cells with hypodiploid DNA content (Schmid et 

al., 1994). Cells overexpressing the isoform MALmet or the activated MAL∆N harbour a huge 

increase in sub-G1 peak compared to cells overexpressing GFP, the dominant negative MAL 

construct MAL∆N∆C or the TCF Elk1, coactivator of SRF but controlled by the MAP kinase 

pathway (Figure 34 A). The second readout was the activation of the effector caspase 3 by 

proteolytic cleavage. Caspase 3 can be cleaved by the complex formed by Apaf 1, 

Cytochrome C and Caspase 9 after activation of the intrinsic apoptotic pathway or by 

Caspase 8 or 10 after activation of the extrinsic pathway (Boatright and Salvesen, 2003). 

MAL∆N infected cells harbour an activation of Caspase 3 compared to GFP, MAL∆N∆C or the 

TCF Elk1. The activation of Caspase 3 in MALmet infected cells in this experiment was barely 

detectable (Figure 34 B). It is likely, in part, due to the fact that the cells were kept at a 

higher density, which may favour survival, than in the case of the Sub-G1 readout. Another 

explanation could be that the activation of Caspase 3 is only transient in MAL induced 

apoptosis and that the time point chosen was not the optimum. Induction of apoptosis by 

MAL overexpression could be confirmed by a third readout, by annexin V staining (Descot et 

al., 2009), which recognizes the translocation of the membrane phospholipid 

phosphatidylserine (PS) from the inner to the outer leaflet of the plasma membrane which 

occurs during apoptosis (Fadok et al., 1998). 
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Figure 34. MAL Induces Apoptosis 

Apotosis in NIH3T3 cells 3 days post infection with the indicated constructs monitored by (A) propidium iodide 

staining (q.v. 6.2.2.5 for details) or (B) monitoring caspase 3 cleavage in total cell lysates by immunobloting for 

Caspase 3 and Tubulin as loading control. N.B. The cell density was superior in (B) compared to (A). 

 

4.2 Bok and Noxa are controlled by G-actin MAL-SRF signalling 

Two characterised proapoptotic genes present in the screen, Bok and Noxa, could potentially 

mediate the MAL induced apoptosis. Bok and Noxa are pro-apoptotic members of the Bcl-2 

family. The role of Noxa in response to death signals is to displace the proapototic member 

of the Bak/Bax family like Bok from an inhibitory complex with anti apoptotic proteins like 

Mcl1 (Ploner et al., 2008). Once released, Bok oligomerises as a channel in the mitochondria 

outer membrane and induces Cytochrome C release. Then, the cytochrome C assembles in 

the cytoplasm with Apaf1 and Caspase 9 to activate the effector caspase 3 and to trigger cell 

death. 
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Figure 35. Bok and Noxa are Induced by Activators of MAL/SRF Mediated Transcription. 

(A) mRNA levels of Bok and Noxa were measured by qRTPCR in NIH3T3 cells infected with the indicated 

constructs 3 days post infection or (B) in serum starved NIH3T3 cells pretreated with latrunculin B (LB, 5µM) for 

15min and treated with cytochalasin D (CD, 5µM), or jasplakinolide (JASP, 0,5µM) for 90 min as indicated. 

Bok and Noxa are induced by MAL and MAL∆N (Figure 35 A) as well by the two activating 

actin binding drugs Cytochalasin D and Jasplakinolide which are supposed to activate MAL 

mediated transcription by two different modes. Latrunculin B pretreatment could impair 

slightly the induction mediated by the two actin binding drugs (Figure 35 B). 

4.3 Bok and Noxa expression are not dependent on p53 

As Bok and Noxa have been described as p53 targets (Yakovlev et al., 2004), their induction 

by activators of the Actin-MAL-SRF pathway was examined in MEFs p53-/-. The basal 
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expression of the two genes was unchanged in MEFS p53-/- versus p53+/+. Induction of Bok 

was even possible in MEFs p53-/- by the actin binding drugs while no significant induction of 

Bok and Noxa in MEFs p53+/+ at the mRNA level could be achieved (Figure 36 and not 

shown). These initial results await to be reproduced in further experiments but suggest that 

at least induction of Bok by actin signalling is independent from p53. 

 

Figure 36. Bok and Noxa Levels are not Dependent on p53 

Serum starved MEFs p53+/+ or p53-/- were pretreated with latrunculin B (LB, 5µM) for 15min and  treated with 

cytochalasin D (CD, 5µM), or jasplakinolide (JASP, 0,5µM) for 90 min as indicated. 

4.4 Bok and Noxa induction by inducers of the Rho-actin-MAL pathway is dependent on 

MAL 

MAL and the activating actin binding drugs were able to induce Bok and Noxa expression 

(q.v. 4.2) meaning that activation of Actin-MAL signalling is sufficient to control Bok and 

Noxa expression. The next step was to investigate if MAL and MRTFB were necessary for the 

induction of Bok and Noxa by the actin binding drug Cytochalasin D but also by the known 

physiological activators of the Actin-MAL pathway, LPA and FCS. In MRTF depleted cells by 

shRNA, the induction of Bok and Noxa at the mRNA level were dramatically impaired (Figure 

37). This initial result, which need to be confirmed, shows that induction of the two 
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proapoptotic genes Bok and Noxa by inducers of the Rho-Actin-MAL pathway is strongly 

dependent on MRTF. 

 

Figure 37. Bok and Noxa Inductions are Dependent on MRTF. 

(A) Bok and (B) Noxa mRNA were monitored in serum starved NIH3T3 cells depleted or not of MRTF A and B by 

shRNA. The cells were stimulated with cytochalasin D (CD, 5µM), LPA (10µM) or FCS (15%) for 90 min as 

indicated. 

4.5 Identification of a MAL/SRF response element in the Bok promoter 

Then, in order to identify an Actin-MAL response element in the Bok and Noxa promoter, the 

proximal promoters of the two genes were cloned in a luciferase reporter. The Bok promoter 

ranging from -185bp to +127bp could be induced by Cytochalasin D, MAL∆N and SRFVP16 

but only very weakly by LPA and FCS. Mutation or deletion of a CARG box at –99bp impaired 

dramatically the Bok promoter inducibility (Figure 38). Moreover, the Bok proximal 

promoter was bound by MAL and SRF as shown by ChIP (Shaposhnikov et al., Unpublished). 

Therefore, it is likely that the MAL-SRF complex binds this element to induce Bok expression. 
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Figure 38. Identification of a MAL/SRF Response Element in the Bok Promoter 

The Bok promoter fragment ranging from -185 to +127 was cloned in a luciferase reporter and cotransfected 

with activated ∆NMAL, SRF-VP16 or an empty vector in NIH3T3 cells. The cells were serum starved overnight, 

pretreated with latrunculin B (LB, 5µM) and treated with cytochalasin D (CD, 5µM), LPA (10µM) or FCS (15%) 

for 7 hours as indicated. 

 

Concerning Noxa, the activity of the proximal promoter was not differentially regulated by 

the actin binding drugs. Moreover MAL∆N or SRFVP16 could not induce either the different 

Noxa proximal promoter construct. However, the mouse Noxa genomic locus contains a 

CARG box in the first intron which has been conserved during evolution. As SRF has already 

been shown to bind response element in intronic regions of target genes (Mack and Owens, 

1999; Sun et al., 2006a), the transcriptional activity of this intronic element was evaluated. 

The genomic DNA containing this candidate response element was cloned upstream of a 

TATA box controlling the expression of the luciferase gene. Only a slight differential 

regulation by the actin binding drugs Cytochalasin D and Latrunculin B could be monitored as 

well as an induction by SRFVP16 but not by MAL∆N (Figure 39). Hence, this site remains a 

candidate site which needs validation by ChIP before drawing any conclusion. 
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Figure 39. Transcriptional Activity of a Noxa Intronic Region 

The Noxa intronic region ranging from + 1539 to + 1905 bp was cloned in front of a TATA box in a luciferase 

reporter and cotransfected with activated ∆NMAL, SRF-VP16 or an empty vector in NIH3T3 cells. The cells were 

serum starved, pretreated with latrunculin B (LB, 5µM) and treated with cytochalasin D (CD, 5µM), LPA (10µM) 

or FCS (15%) for 7 hours as indicated. 

 

4.6 Overexpression of activated MAL leads to MCL1 degradation and Bcl2 

overexpression 

Once bound to Mcl1, Noxa triggers its proteasome mediated degradation (Ploner et al., 

2008). Therefore, Mcl1 levels were monitored in cells overexpressing MAL or MAL∆N. Cells 

infected by MAL∆N showed a reduced Mcl1 level compared to GFP, SRFVP16, ELK1 or the 

dominant negative MAL construct MAL∆N∆C (Figure 40). This result is preliminary and needs 

to be repeated. 

  

Figure 40. Over Expression of Activated ∆NMAL leads to a Degradation of Mcl1 

NIH3T3 cells were infected with viruses coding for the indicated constructs. Three days post infections, levels of 

Mcl1 and tubulin were monitored by immunobloting. 
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As Mcl1 (Townsend et al., 1999; Vickers et al., 2004) and Bcl2 (Schratt et al., 2004) are 

controlled by SRF, the expression levels of these two genes were monitored in cells 

overexpressing MAL∆N (Figure 41). Interestingly, Bcl2 but not Mcl1 was induced by MAL∆N 

consistent with the fact that MCL1 is controlled by TCF-SRF signalling. 

 

 

Figure 41. Over Expression of Activated ∆NMAL Leads to the Expression of Bcl2 but not 

Mcl1 

NIH3T3 cells were infected with viruses coding for MAL∆N or GFP as control. Three days post infections, levels 

of Bcl2 and Mcl1 mRNAs were monitored by qRTPCR. 

 

4.7 MCL1 or BCL2 overexpression is not sufficient to rescue the antiproliferative effect of 

MAL 

MCL1, but not BCL2, inhibits the proapoptotic BAK (Willis et al., 2005) which belongs to the 

same family as BOK. Therefore, the potential of MCL1 and BCL2 as control to rescue the 

antiproliferative and proapoptotic features of MAL was evaluated. If the inductions of Bok 

and Noxa are key in the inhibition of proliferation mediated by MAL, then MCL1, but not 

BCL2 overexpression should be able to rescue the proliferation of MAL infected cells. 



          Results part II 

61 

Unfortunately, neither MCL1 nor BCL2 were able to rescue the antiproliferative effect of 

MAL (Figure 42). 

 

 

Figure 42. MCL1 or BCL2 Overexpression do not Rescue the Antiproliferative Properties of 

MAL 

NIH3T3 CELLS were infected with pLPCX vectors coding for MCL1, BCL2 or the flag tag as control. Two days later 

these cells were infected a second time either with MALmet, MAL∆N or GFP as control. One day later the cells 

were seeded for growth curve analysis. 

 

4.8 Bok or Noxa overexpression in NIH3T3 cells do not induce apoptosis nor repress cell 

proliferation 

Next, the impact of Bok and Noxa overexpression on the proliferation of NIH3T3 cells was 

evaluated. Neither Bok nor Noxa could reduce cell proliferation as measured by growth 

curve or colony formation assay (Figure 43).  

Then, the effect of overexpression of Bok or Noxa on the sensitivity of NIH3T3 cells to 

apotosis inducers was analysed. Cells overexpressing BOK, NOXA or GFP as control were 
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treated with the aspecific PKC inhibitor Staurosporine, TNFα, or the DNA damaging agent 

Doxorubicine. Overexpression of NOXA or BOK alone had no effect on apoptosis and didn’t 

synergise with any of the apoptosis stimuli with may be the exception of Bok with 

Doxorubicin (Figure 44). These experiments were done only once and need to be reproduced 

before drawing final conclusions. 

  

Figure 43. Overexpression of Bok or Noxa doesn’t Impair the Proliferation of NIH3T3 cells 

(A) Proliferation curve and (B) colony formation assay of NIH3T3 cells infected with viruses coding for Bok, Noxa 

or GFP as control. 
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Figure 44. Overexpression of Noxa or Bok are Not Sufficient to Induce Apoptosis in NIH3T3 

Cells  

NIH3T3 cells were transiently infected with viruses coding for Bok, Noxa, or GFP as control and treated with 

DMSO (vehicle), staurosporine (STS, 500nM), cycloheximide (CHX, 5µg/ml), TNFα (1ng/ml), or doxorubicine 

(Doxo, 1µg/ml) for 14 hours. 

 

4.9 The actin MAL-SRF signalling is activated by apoptosis inducers 

MAL induces apoptosis and controls the expression of at least two known pro-apoptotic 

genes BOK and NOXA. In order to understand which external stimuli could trigger this 

transcriptional regulation, the hypothesis of a possible induction of MAL-SRF activity by 

apoptotic stimuli like Staurosporine, TNFα and Doxorubicine was tested. In all cases, SRF 

activity was induced. Importantly, SRF activity induction could be repressed by Latrunculin B 

treatment underscoring the role of the Actin-MAL pathway in SRF activity during apoptosis 

(Figure 45 A, B and C). 

Induction of SRF activity was also monitored in the course of anoïkis, a kind of apoptosis 

triggered in epithelial cells when they lose attachment. In the rat bladder epithelial cell line 

NBT2, activity of SRF was increased when the cells were seeded on plates with low 

adherence properties compared to regular cell culture plates (Figure 45 D). 
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Figure 45. Induction of SRF Mediated Transcription by Apoptotic Inducers 

SRF activity was monitored with the 3DA luciferase reporter (A and B) in starved NIH3T3 treated for 10 hours 

with the indicated concentrations of TNFα and Staurosporine (STS), (C) in non starved NIH3T3 treated for 24 

hours with 1µg/ml of doxorubicine where indicated or (D) in starved NBT2 plated on regular cell culture plates 

coated or not with poly Hema or on plate used for bacteria culture. Where indicated, the cells were pretreated 

with 5µM Latrunculin B (LatB). 

 

On one hand SRF by its association with MAL responds to apoptotic signals and controls the 

expression of proapoptotic genes like Bok and Noxa. On the other hand, SRF is also known to 

respond to survival signals by its association with TCFs controlled by the MAP kinase 

pathway. In this case, SRF triggers the expression of anti-apoptotic genes like Mcl1 which 

inhibits genes like Bok and is itself inhibited by NOXA. Hence, SRF could be at the centre of a 

transcriptional control of essential modulators of apoptosis (Figure 46). 
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Figure 46. Model which Places SRF at the Centre of Transcriptional Control of Apoptosis 
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5 Discussion 

5.1 MRTFs-SRF: the only set of transcription factors regulated by G-Actin? 

The goal of this project was to identify on a genome wide basis the genes controlled by the 

Actin-MAL-SRF pathway in order to reveal its physiological role. Targeting this pathway at 

the Actin level may have lead to the identification of genes controlled by transcription 

factors regulated by Actin but independent of MAL or SRF. Unfortunately, no data 

supporting this hypothesis could be produced so far. The high percentage, superior to 30%, 

of genes in the screen already identified in other screen for SRF targets alleviates the 

hypothesis of Actin regulated SRF independent targets. 

Yet, supporting arguments remain for the existence of genes regulated by Actin 

independently of MAL-SRF.  

First, the group of genes which harbour the inversely regulated pattern, repressed by 

Cytochalasin D and induced by Latrunculin B (group 1, Annexe 1), was not characterised 

extensively. This group of genes was left on the side because of the generally weak induction 

by Latrunculin B. Members of this group like Arrdc3, Ccl2, Fam43A (BC022623), Gadd45b or 

the two histone 1 genes Hist1h1c, Hist1h4i could be the starting point for a search for new 

kinds of actin responsive promoter elements.  

Second, other set of transcription factors regulated by monomeric actin may have different 

kinetics for the control of transcription than the complex MAL-SRF. Due to experimental 

limitations, only a single time point was used in the screen. This time point was determined 

by monitoring the expression of known targets of MAL-SRF after actin binding drug 

treatment. Hence, genes with a delayed response due to a slower or more complex 

regulation managed by different sets of transcription factors than MAL and SRF could have 

been missed. 

Third, simple explanations would be that the hypothetical transcription factors controlled by 

actin are not expressed in the mouse NIH3T3 fibroblast cell line used for the screen or that 

they are not regulatable under serum starved conditions. 
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One alternative approach to identify G actin regulated genes independently from MAL and 

SRF would be to look in silico for proteins having an actin binding domain recognizing the 

same interface on actin as MAL and a transcription activation domain or a nuclear 

localisation signal. So far, no such screen has been performed. 

A screen for proteins having an RPEL motif, the same actin binding domain as MAL, revealed 

the existence of three proteins named RPEL A, B and C proteins also known as PHosphatase 

and ACTin Regulators (PHACTR 1, 2 and 3) or Scapinin for RPEL C (Favot et al., 2005; Sagara 

et al., 2009). Overexpression of these proteins modified the cell shape but it is unclear if this 

effect was MAL independent as the three proteins have the potential to activate MAL 

mediated transcription by titrating MAL away from actin. The specific transcriptional 

potential, if it exists, of the RPEL proteins needs to be clarified. 

Until now, no transcription factor or coactivator of transcription factor having a WH2 

domain, which shares with RPEL motifs the same interaction surface on actin (Figure 5), has 

been characterised. 

5.2 Were some regulators of the Rho Actin MAL SRF pathway identified in the screen? 

One classical outcome of genome scale identification of genes targeted by a signalling 

pathway is the discovery of new positive or negative regulators. They may reinforce a 

signalling pathway important for a cell fate decision for example or provide a way to turn off 

rapidly the signal at the origin of their expression to maintain the cellular homeostasis. 

5.2.1 Known regulators: FHL2, actin 

In the screen, several known regulators of actin-MAL-SRF signalling like actin itself (Miralles 

et al., 2003), or FHL2, a negative regulator of the MAL-SRF complex (Philippar et al., 2004) 

were identified. Yet, new interesting candidate regulators were spotted. 

5.2.2 LPAR4: the LPA receptor 4 

Two probe sets of the LPA receptor 4 (Gpr23) which is a positive regulator of Rho signalling 

(Lee et al., 2008b; Yanagida et al., 2007) were differentially regulated by the actin binding 

drugs. Interestingly, on the opposite of LPA1, LPA4 represses cell motility (Lee et al., 2008b). 

Thus, LPA4 could be an interesting target to explain why MRTF represses cell motility in 

some cell types but promotes it in others (Leitner and Posern, Unpublished). Moreover, the 
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regulation of LPA receptors at the transcriptional level is poorly characterised which makes 

this target even more attractive. 

5.2.3 RGS16: a negative regulator of GPCR signalling 

Concerning as well the upstream part the Rho-Actin-MAL pathway, Rgs16 was identified in 

the screen. Rgs16 negatively regulates LPA mediated activation of Rho and SRF by inhibiting 

Gα13 independently of its GTPase activating protein (GAP) activity (Johnson et al., 2003). 

Rgs16 binds actually Gα13 and prevent its association with p115 Rho-GEF. 

5.2.4 What about RhoJ? 

Another target, RhoJ, may have a role in the modulation of the Rho-Actin-MAL pathway. This 

small GTPase regulates the clathrin dependent endocytosis and subsequent recycling of 

membrane receptors (de Toledo et al., 2003). It could be interesting to evaluate the impact 

of the knockdown or overexpression of RhoJ on LPA signalling.  

5.2.5 Are Mig6 and Dusp5 positive regulators of MRTF mediated transcription? 

Mig6 downregulates the MAP kinase pathway and therefore likely the TCFs like Elk1. As 

MRTFs and TCFs compete for SRF binding, the inhibition of TCFs by Mig6 induction may bring 

about an increase of MRTF mediated transcription. Another target identified in the screen, 

Dusp5, a specific phosphatase for Erk1/2 (Mandl et al., 2005), may increase as well MRTF 

mediated transcription by the same mechanism. 

Actually, by decreasing ERK phosphorylation, Mig6 and DUSP5 could increase MRTF 

mediated transcription also by relieving MAL from the inhibition mediated by G-actin which 

is dependent on ERK (Muehlich et al., 2008). 

Monitoring the transcription activity of the SM22 promoter, which is controlled by the 

competition Elk1/Myocardin, after overexpression of either Mig6 or Dusp5 should answer 

this question. 

5.3 Mig6 regulation: open questions 

The Rho-Actin-MAL-SRF pathway controls the EGF receptor inhibitor Mig6/Erffi1 expression 

in response to external stimuli. However, some points still remain to be clarified. 
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5.3.1 MAL-SRF response element in the Mig6 promoter 

Mig6 is induced by actin binding drugs in mouse and human cell lines (q.v. 3.4). Yet, the 

identified ten bases long response element in the mouse Mig6 promoter contains two 

additional mutations in the human Mig6 promoter. Therefore, the activity of this element in 

the human promoter is questionable. It could be that the MAL-SRF control of the human 

Mig6 gene relies on a differently located response element. Cloning and analysis of the 

human Mig6 promoter should answer this question. 

5.3.2 Why the cloned Mig6 promoter doesn’t respond to LPA or FCS? 

Seen the strong induction of Mig6 mRNA after LPA or FCS stimulation (q.v. 3.9), one would 

expect that a cloned Mig6 promoter would respond similarly. Unfortunately it is not the case 

even though MAL and SRF were shown to bind the proximal Mig6 promoter by ChIP (Descot 

et al., 2009). A first explanation would be that the response element identified is not the 

only MAL-SRF response element. Seen the size and complexity of the Mig6 genomic locus it 

could well be that different response elements need to cooperate. A second explanation 

could be that the transiently transfected Mig6 promoters in the cells don’t have the proper 

chromatin environment to represent with fidelity the activity of an endogenous Mig6 

promoter. 

MAL full length or LPA alone were not able to activate the promoter of Mig6. However, they 

synergised to trigger Mig6 promoter activity (Figure 23). This could lead to two different 

hypotheses. Either the transfected number of Mig6 promoters is so high that it could dilute 

different factors binding to MAL which are required for the regulation of the Mig6 promoter. 

Second, the activity of the transfected Mig6 promoter is so high compared to the 

endogenous promoter that it is not possible to monitor any increase by physiological stimuli 

unless MAL is overexpressed. 

5.3.3 Role of NFκB transcription factors in the Mig6 regulation 

The MAL-SRF response element identified in the Mig6 promoter could be bound by NFκB 

transcription factors. Interestingly, other elements link Mig6 to NFκB. First, Mig6 has been 

identified as a target of TNF alpha signalling in chromaffin cells (Ait-Ali et al., 2008). Second, 

Mig6 activates NFκB transcription (Tsunoda et al., 2002). A cleaved N terminus fragment of 

Mig6 binds IκBα on its NFκB binding domain and then releases NFκB from the inhibition 
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mediated by IκBα. Third, disruption of the actin cytoskeleton by actin binding drugs 

promotes DNA binding of NFκB family members (Nemeth et al., 2004). All in all, the 

contribution of NFκB to the transcription of Mig6 was evaluated. In the absence of NFκB 

signalling, the basal expression of Mig6 is completely impaired but not the induction by actin 

binding drugs (q.v. 3.7). It could be very interesting to identify the NFκB response element in 

the Mig6 promoter and check if it is the same as for the MAL-SRF complex or not. In this 

strategy, monitoring the activity of the cloned Mig6 promoters in MEFs NEMO-/- compared 

to NEMO+/+ would be valuable. 

5.3.4 Mig6 expression dependency on the MAP kinase pathway 

The MAP kinase pathway, as well as the Rho-Actin pathway, is sufficient and necessary for 

the induction of Mig6. Previously characterised targets like Srf or Vinculin are also 

dependent to some extent (about 40 to 50%) on MEK activity for their induction by LPA and 

FCS (Gineitis and Treisman, 2001). Yet, the almost complete block of the actin binding drug 

induction of Mig6 by UO126 is surprising. One possible explanation could come from the fact 

that MAL phosphorylation by Erk has been shown to be necessary for the induction of MAL-

SRF mediated transcription by BDNF or synaptic activity in neurons (Kalita et al., 2006). 

Therefore, it would be important to identify which sites on MKL1 are phosphorylated by ERK, 

to create some MAL mutants mimicking these phosphorylation sites and to analyse their 

transcriptional activity. Additionally, it could be interesting to monitor MAL binding to the 

Mig6 promoter by ChIP upon treatment with the MEK inhibitor UO126. This would clarify 

which step of MAL activation is inhibited as MAL can bind a promoter but stay inactive until 

it is released from actin (Vartiainen et al., 2007). 

5.3.5 Mig6 induction by LPA and transactivation 

LPA treatment activates EGFRs by transactivation in a transient fashion. After 75 min 

minutes, EGFR phosphorylation is back to the initial level in COS7 cells (Daub et al., 1997). 

Mig6 is likely to take part in the shutdown of EGFR signalling activated after transactivation. 

The LPA induction of Mig6 could be a way to prevent further activation of EGFRs. Therefore, 

it would be interesting to monitor the kinetics of the transactivation process in Mig6 

depleted cells.  
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5.4 How does MAL actually repress proliferation? 

In the screen several genes with antiproliferative or proapototic features that may 

contribute to the MAL induced repression of cell proliferation were found. Mig6, Bok and 

Noxa were already presented in the result sections. Here, I would like to discuss other 

interesting candidates from the screen. 

Dusp5 is a specific phosphatase for Erk1/2 and therefore downregulates mitogenic signals 

(Mandl et al., 2005). 

The Rassf3 and Rassf6 which mediate some of the antiproliferative properties of RAS 

appeared in the screen. Rassf6 overexpression induces apoptosis in different cell types (Allen 

et al., 2007; Ikeda et al., 2007). Interestingly, Rassf proteins functionally interact with 

MST1/2 kinases which are involved in apoptosis. First, Rassf6 and MST2 form a complex and 

inhibit each other upon static conditions. Upon activation of MST2, Rassf6 is released and 

can trigger apoptosis independently of MST kinases. Second, Rassf1 (and may be Rassf3) 

activate MST1 after stimulation with FAS.  

Intriguingly, two other targets identified in the screen are or are likely to be controlled by 

MST1 in the Hippo pathway which represses cell proliferation and control apoptosis. The 

first target is Stk38I (NDR2) which is activated by Rassf1/MST1 in response to Fas receptor 

activation and promotes apoptosis (Vichalkovski et al., 2008). The second is Mobkl2A, a 

member of the Mob family of proteins involved in cell proliferation, cell death and cell 

polarity (Vitulo et al., 2007). Mobkl2a has not been shown directly to be controlled by MST1 

but its homologs Mobkl1a and b are a substrate of MST1. Mobkl1a is activated after FAS 

ligand and is a coactivator of NRD (Vichalkovski et al., 2008). Finally, the MST kinases activity 

is linked to the status of the cytoskeleton (Densham et al., 2009). All in all, this 

antiproliferative module centered on MST kinases deserves follow up studies as a possible 

mediator of the antiproliferative effects of MAL. A first approach would be to block the two 

apoptotic pathways controlled by MSTs by knocking down NRD1/2 and Rassf6. 

ZFP36 (Tristetrapolin) is a RNA binding protein controlling the stability of mRNA containing 

AU rich elements (ARE) like certain hematopoietic cell growth factors (e.g. granulocyte-

monocyte colony stimulating factor, GM-CSF), interleukins, interferons, TNFα, and some 
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proto-oncogenes (e.g. c-fos, k-ras and pim-1). Overexpression of Zfp36 causes apoptosis 

(Johnson and Blackwell, 2002; Johnson et al., 2000). 

Two ankyrin repeat domain containing proteins (Ankrd1 and Ankrd15) were also identified. 

Ankrd1 has a caspase-associated recruitment domain (CARD). Ankrd1 knockdown promoted 

cell proliferation while overexpression inhibited cell proliferation and promoted apoptosis 

(Liu et al., 2002). Ankrd15 also known as Kank1 (kidney ankyrin repeat containing protein) 

represses renal cell proliferation (Sarkar et al., 2002). 

Jarid2, also known as Jumonji, contains a DNA-binding domain, called an AT-rich interaction 

domain (ARID). Jarid2 represses cell proliferation by binding and inhibiting the cyclin D1 

promoter in cardiac cells and in neurons (Takahashi et al., 2007; Toyoda et al., 2003). 

The Btg2 gene (also known as PC3/PIS21) is the founding member of the BTG/TOB family of 

antiproliferative genes. Btg2 impairs G1/S progression, either by a Rb-dependent pathway 

through inhibition of cyclin D1 transcription (Guardavaccaro et al., 2000), or in a Rb-

independent fashion by cyclin E downregulation (Lim et al., 1998). Btg2 is assumed to 

mediate its function by interacting with the Protein Arginine N-Methyltransferase 1 as BTG2 

growth inhibition is abrogated in PRMT1 depleted cells (Hata et al., 2007). 

All these genes are likely to contribute to MAL induced repression of cell proliferation. 

However, is there one or a limited number of genes which are absolutely required? 

Successive or combinatorial knockdown of these candidate genes could be an approach. 

However, the critical genes responsible for the antiproliferative effects of MAL may not have 

appeared in the screen because of a delayed induction or because they are secondary 

targets. Therefore, an unbiased genome wide siRNA screen would be more appropriate to 

identify the genes or the signalling pathways mediating the repression of proliferation 

monitored after overexpression of MAL.  

A less precise option would be to identify which known oncogene or cDNA sequence is able 

to rescue MAL mediated proliferation arrest. Again, this would lead us to some candidate 

cellular functions which have to be altered by MAL to block proliferation. 
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5.5 MAL and the induction of apoptosis 

5.5.1 How to explain the discrepancy between the original finding that MAL was 

antiapoptotic and the results presented in this work? 

MAL induces apoptosis. However, BSAC an isoform of MAL was discovered as anti apoptotic 

factor able to rescue the TNFα induced apoptosis (Sasazuki et al., 2002). Several 

explanations can be proposed to explain this discrepancy. 

5.5.1.1 Role of Traf5 and the TRAF2 binding protein Tifa? 

The identification of MAL as able to rescue TNFα induced apoptosis was done in 

TRAF2/TRAF5 double knockout (DKO) MEFs. These cells were supposed to be highly 

susceptible to TNF-induced cell death because of an impaired TNF-induced NFκB activation 

(Tada et al., 2001). Recent findings contradict this idea and show that Traf2 deficiency 

favours apoptosis by impairing the recruitment of antiapoptotic proteins to the TNF receptor 

independently of NFκB and that Traf5 contribution to the increased TNF α induced apoptosis 

observed in MEFs Traf2/Traf5 DKO compared to the MEFs Traf2 KO is marginal (Zhang et al., 

2009). 

In the screen, Traf5 and the Traf2 binding protein also known as TRAF-interacting protein 

with a forkhead-associated domain (Tifa) were identified as candidate targets of Actin-MAL-

SRF signalling. Traf5 being absent in the MEFs DKO, it is not the reason for the antiapoptotic 

feature of MAL observed. However, Tifa by activating furthermore IκB kinase (IKK) (Ea et al., 

2004) and consequently NFκB mediated induction of antiapoptotic genes like cIAP1/2, cFLIP, 

Bcl2 and XIAP could be a candidate for the observed anti-apoptotic features of MAL in MEFs 

DKO. 

5.5.1.2 Induction of BCL2? 

Even though not present in the screen, in the course of this work, Bcl2 was shown to be 

induced by activated MAL (Figure 41). BCL2 is a known target of SRF (Schratt et al., 2004) 

and represses TNFα induced apoptosis (Burow et al., 1998; Jaattela et al., 1995). Therefore, 

Bcl2 could be also a good candidate to explain MAL repression of apoptosis in MEFs 

Traf2/Traf5 DKO. 
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5.5.1.3 Role of the FOXOs inhibitor FKHL18? 

The forkhead like 18 protein (Fkhl18 or Foxs1) is a repressor of the proapototic Foxo3a and 

Foxo4a transcription factors (Sato et al., 2008). Foxo3a has been shown to turn the tumour 

necrosis factor receptor signaling towards apoptosis by upregulation of genes related with 

TNF receptor signaling, such as TNF-alpha, TANK (TRAF-associated NF-kappaB activator), 

TTRAP (TRAF and TNF receptor-associated protein), or IκBRas1(Lee et al., 2008a). Likely as a 

consequence of the induction of these targets, cells overexpressing Fox3a harbours an 

activation of JNK and NFκB. Moreover, Fkhl18 is assumed to inhibit other FOXO transcription 

factors like FOXO1 which controls the tumour necrosis factor receptor-associated death 

domain (TRADD) (Rokudai et al., 2002). MAL mediated induction of Fkhl18 could hence 

repress death signals from the TNF receptor. 

5.5.1.4 Induction of NFκB transcription by upregulation of Mig6? 

Mig6 can activate in a non canonical fashion NFκB (Tsunoda et al., 2002) which is known to 

inhibit TNFα mediated apoptosis (Van Antwerp et al., 1996; Van Antwerp et al., 1998). 

Therefore, Mig6, as a MAL-SRF target could also mediate MAL mediated repression of TNFα 

induced apoptosis in MEFs Traf2/Traf5 DKO. 

5.5.2 Control of Bok and Noxa by MRTFs 

The identification of proapoptotic genes from the intrinsic pathway as targets of MAL is very 

interesting but raises several questions. 

5.5.2.1 Why mitogenic signals like LPA and FCS induce Bok and Noxa? 

A first step would be to understand why mitogenic signals like LPA and FCS induce the 

proapotptotic genes Bok and Noxa. Serum induction of Bok and Noxa have been actually 

already reported (Hershko and Ginsberg, 2004; Rodriguez et al., 2006) but was proposed to 

be mediated by E2F transcription factors. The induction of proapototic genes by serum in 

part through the Rho-Actin-MAL pathway could be a contribution to the high sensitivity 

observed for G1/S cells to apoptosis inducers. Having proapoptotic genes already expressed 

when cells enter the cell cycle could be considered as a safety mechanism: if something 

wrong happens during the cell cycle then the cell trigger its death program. 
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5.5.2.2 Candidate stimuli inducing Bok and Noxa on a MAL-SRF dependent manner  

The canonical inducers of the Rho-Actin-Mal-SRF pathway, LPA and serum, induce Bok and 

Noxa. Do other stimuli of Mal mediated transcription induce Bok and Noxa? The first stimuli 

to consider would be the apoptotic inducers that activate the pathway like TNFα, DNA 

damage, staurosporine or anoïkis (q.v. 4.9). Another stimulus to consider could be the loss of 

epithelial cell-cell contact that we characterized as a MAL-SRF inducer (Busche et al., 2008). 

The loss of cell-cell contact is one step with the loss of adherence to the ECM leading to 

anoïkis. Finally, force, which activates MRTF (Zhao et al., 2007), could also induce Bok and 

Noxa to prepare the cell to apoptosis in case of damages due to mechanical stress. 

5.5.2.3 Is there a competition between TCFs and MRTFs to control BOK and Noxa? 

Concerning Bok and Noxa, another interesting point would be to evaluate the impact of the 

MAP kinase pathway on their expression. Basically, is there a competition on the Bok and 

Noxa promoter like on the SM22 promoter between TCFs and MRTFs? Prosurvival signals 

could use this mechanism to decrease the expression of these two proapoptotic genes. 

5.5.3 A conserved MAL-SRF regulation of Bcl2 family members? 

MAL and SRF can induce the Bok promoter in which a response element was identified. So 

far, no MAL-SRF response element in the Noxa proximal promoter was identified but Noxa is 

a probable direct target of MAL-SRF. Mcl1 has been shown to be controlled by SRF 

(Townsend et al., 1999; Vickers et al., 2004) like Bcl2 (Schratt et al., 2004). Moreover, MAL 

could trigger the expression of Bcl2 (Figure 41). Several key players of the control of 

apoptosis seem to be regulated by MAL and SRF. Therefore, it would be interesting to 

evaluate the possible impact of MAL-SRF on the expression of the other members of the Bcl2 

family and to try to find a possible conserved MAL-SRF response element throughout the 

Bcl2 family. 

5.5.4 Control of Bok and Noxa by MAL-SRF: a new way to couple the extrinsic and 

intrinsic apoptotic pathways? 

Finally, the complex MAL-SRF is activated upon TNFα signalling and two proapoptotic genes, 

Bok and Noxa, are triggered by MAL. MRTF-SRF mediated transcription could be a new way, 

transcriptionally dependent, to couple the extrinsic and the intrinsic pathways controlling 

apoptosis. Normally, the coupling of the two pathways is done by tBid, the product of 
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caspase 8 cleavage of Bid (Billen et al., 2008). tBID migrates to the mitochondria where it 

induces permeabilization of the outer membrane that is dependent on the pro-apoptotic 

proteins Bax and/or Bak. However, Bid independent pathways to mediate TNFα induced 

apoptosis exist. For example, even though Bid-/- hepatocytes display a higher resistance to 

TNFα mediated apoptosis, they still died from apoptosis at later time points (Chen et al., 

2007). An induction by TNFα of MAL mediated transcription could participate in the Bid 

independent TNFα apoptosis by inducing Bok and Noxa. 
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6 Material and methods 

6.1 Materials 

6.1.1 Chemicals 

Acetic acid       Merck, Darmstadt 

Acrylamid       Serva, Heidelberg 

AG1478       Alexis Biochemicals,  

Agar (DifcoTM)       BD Bioscience, Heidelberg 

Agarose       Eurogentec, Cologne 

Amphiregulin       Sigma, Taufkirchen 

Ampicillin       Roche, Mannheim 

Antipain       Fluka, Buchs 

Aprotinin       Sigma, Taufkirchen 

APS (Ammonium peroxodisulfate)    Merck, Darmstadt 

Batimastat       British Biotech, Oxford 

BES         Merck, Darmstadt 

(N,N-Bis(2-hydroxyethyl)-2-aminoethanesulfonic acid)) 

Bisacrylamide       Roth, Karlsruhe 

Bromophenol blue      Sigma, Taufkirchen 

BSA (Bovine Serum Albumin)     Sigma, Taufkirchen 

Calcium chloride      Merck, Darmstadt 

Chloroquin       Biotrend Chemikalien, Cologne 

CIAP        NEB, Frankfurt am Main 

Cycloheximide      Sigma, Taufkirchen 

Cytochalasin D      Calbiochem, Beeston, UK 

Desoxyribonucleotide     Roche, Mannheim 

DMEM        Gibco, Eggenstein 

DMSO (Dimethylsulfoxide)     Sigma, Taufkirchen 

DNA polymerase (Phusion Hot start or not)   NEB, Frankfurt am Main 

DTT (Dithiothreitol)      Sigma, Taufkirchen 

Ecl plus Western Blotting Detection System   GE Healthcare, München 

EDTA (Ethylenediaminetetraacetic acid)   Merck, Darmstadt 

Ethanol       Riedel de Haen, Hanover 

Ethidium bromide      Sigma, Taufkirchen 

EGF        Sigma, Taufkirchen  

L-glutamine       Gibco, Eggenstein 

Glycerol 100%       Merck, Darmstadt 

HCl (Hydrochloric acid),37%     Merck, Darmstadt 

Jasplakinolide       Calbiochem, Beeston, UK  

Isopropanol       Fluka, Buchs, Switzerland 
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Kanamycin       Sigma, Taufkirchen 

KCl        Merck, Darmstadt 

KH2PO4       Merck, Darmstadt 

K2HPO4,3H2O       Merck, Darmstadt 

Latrunculin B       Calbiochem, Beeston, UK 

Leupeptin        Roche Diagnostics, Basel 

LPA        Sigma, Taufkirchen 

MEM        Gibco, Eggenstein 

beta-Mercaptoethanol     Merck, Darmstadt 

Methanol       Fischer Scientific, Schwerte 

MgCl2        Merck, Darmstadt 

Moviol        Sigma-Aldrich, Taufkirchen  

NaCl        Merck, Darmstadt 

Na2HPO4       Merck, Darmstadt 

NaOH        Merck, Darmstadt 

Non essential amino acids     PAA, Cölbe 

Non fat milk powder      Töpfer Naturaflor, Kempten 

Penicilin       PAA, Cölbe 

Pepstatin        Sigma-Aldrich, Taufkirchen  

Paraformaldehyde      Sigma, Taufkirchen 

PBS         Merck, Darmstadt 

PIPES        Sigma, Taufkirchen 

Phenol        Roth, Karlsruhe 

PMSF (Phenylmethylsulfonylfluoride)   Sigma, Taufkirchen 

Polybren (Hexadimethrinbromide)    Sigma, Taufkirchen 

Ponceau S       Sigma, Taufkirchen 

Precision Plus Proteinstandard     Biorad, München 

Propidiumiodide      Sigma, Taufkirchen 

Protein A or G sepharose     Pharmacia, Freiburg 

Puromycin       Sigma, Taufkirchen 

Restriction enzymes      NEB, Frankfurt am Main  

S1P        Sigma, Taufkirchen 

SDS (sodium dodecyl sulfate)     Roth, Karlsruhe 

Sodium bicarbonate      PAA, Cölbe 

Sodium orthovanadate     Aldrich, Steinheim 

Sodium pyruvate      PAA, Cölbe 

Streptomycin       PAA, Cölbe 

Swinholide A       Calbiochem, Beeston, UK 

T4 DNA ligase       Roche, Mannheim 

TEMED (N,N,N’,N’-Tetraethylmethylendiamine)  Serva, Heidelberg 

Tris base        Sigma, Taufkirchen 
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(2-amino-2-hydroxymethyl-propane-1,3-diol)  

Triton X-100       Serva, Heidelberg 

Trypsine       PAA, Cölbe 

Tryptone (BactoTM)      BD Bioscience, Heidelberg 

Western Lightning® Western Blot     Perkin Elmer, Rodgau-Jügesheim 
Chemiluminescence Reagent Plus 
(Enhanced Luminol Reagent) 
 
Western Lightning® Western Blot     Perkin Elmer, Rodgau-Jügesheim 
Chemiluminescence Reagent Plus 
(Oxidizing Reagent) 

Xylene cyanol       Sigma, Taufkirchen 

Yeast Extract (BactoTM)     BD Bioscience, Heidelberg 
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6.1.2 Solutions and buffers: 

 

LB-Medium:  1,0% Trypton 

   0,5% Yeast  Extract 

   1,0% NaCl 

   pH 7,2 

 

TAE (10X):  400mM Tris/Acetate , pH 8,0 

   10mM EDTA 

 

Annealing buffer for DNA oligonucleotides (10x): 

   100 mM Tris HCl pH 7.5   

   1 M NaCl    

   10 mM EDTA    

 

HNTG lysis buffer: 50 mM HEPES pH 7.5 

    150 mM NaCl,  

   1% Triton X-100 

   1mM EDTA  

   10% glycerol 

    10 mM sodium pyrophosphate 

    2 mM sodium orthovanadate 

    10 mM sodium fluoride 

    1 mM phenylmethylsulphonyl fluoride  

   10 mg/ml aprotinin 

 

6x SDS gel loading buffer: 

   125mM Tris-HCl pH 6.8 

    2% SDS 

    20% glycerol 

    0.2% bromophenol blue 

 

RIPA buffer :  Tris-HCl, pH8,0 20 mM 

   NaCl 150 mM 

   Glycerin 5% (v/v) 

   EDTA 1 mM 

   Triton X-100 1% 

   Deoxycholat 0,5% 

   SDS 0,1% 
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Lämmli buffer: 20% Glycerin 

 3% SDS 

 10 mM EDTA pH 8,0 

 0,05 % Bromophenol blue 

 5% Beta-Mercaptoethanol 

 

Tris-Glycin-SDS (10x): 250 mM Tris/HCl pH 7,5 

 2 M Glycin 

 1% SDS 

 

TBST:   20 mM Tris pH 7.5 

   150 mM NaCl 

   0.1 % Triton X-100 

 

NET-gelatine:   (10X) 150 Mm NaCl 

 5 mM EDTA 

 50 mM Tris/HCl pH 7,4 

 0,05 % Triton X-100 

 

Stripping solution: 62,5mM Tris/HCl pH 6,8 

   2% SDS 

   100mM Beta-Mercaptoethanol 

 

PIPES buffer:  10mM PIPES 

   0.1M NaCl 

   2mM MgCl2 

   0.1 % Triton X-100 

   pH 6.8 

 

Propidium iodide  

staining solution:  20mg of propidium iodide diluted in 1 litre of PIPES buffer 

   200µg/ml RNase A 
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6.1.3 Antibodies 

6.1.3.1 Primary antibodies 

 

6.1.3.2 Secondary antibodies 

 

Antibody Supplier 

HRP coupled swine anti rabbit Dako Cytomation, Hamburg 

HRP coupled goat anti mouse Dako Cytomation, Hamburg 

TRITC coupled 
swine anti rabbit 

Dako Cytomation, Hamburg 

Antibody Supplier 

Flag (M2) Sigma, Taufkirchen 

HA Babco,  Berkeley 

HA-HRP (3F10) Roche Diagnostics, Basel 

Beta-Actin Sigma,  Taufkirchen 

Tubulin Sigma,  Taufkirchen 

Ki67 Transduction laboratories, Heidelberg 

Mig6 (used for the majority of the experiments 
unless indicated) 

Homemade (Hackel et al. 2001) 

Mig6 (PE-16) Sigma,  Taufkirchen 

Mig6 (rabbit polyclonal antiserum#1573) Gift from Ingvar Ferby 

EGFR Biomol, Hamburg 

P-EGFRY1173 Cell signaling, 

ERK 1,2 Transduction laboratories, Heidelberg 

P-ERK Cell signaling,  Danvers, MA 

P-EGFRY1173/PHER2Y1248  Cell signaling, Danvers, MA 

p38 Santa Cruz, Heidelberg 

P-p38 Cell Signaling, Danvers, MA 

JNK Santa Cruz, Heidelberg 

P-JNK Cell Signaling, Danvers, MA 

BOK Cell Signaling, Danvers, MA 

NOXA Acris, Herford 

Caspase3 Cell Signaling, Danvers, MA 

P53 Santa Cruz, Heidelberg 

BCL2 Transduction Laboratories, Heidelberg 

MCL1 Abcam, Cambridge 

MAL/MRTF#79 Homemade (Sina Pleiner) 

MAL/MRTF Santa Cruz, Heidelberg 

Rhodamine/Phalloidin Molecular probes, 
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Antibody Supplier 

Alexa fluor 546 Rabbit  Invitrogen, Karlsruhe 

6.1.4 Primers 

6.1.4.1 Primers for quantitative real time PCR 

The mRNA and gene structures were retrieved either from NCBI Entrez Gene or from 

Ensembl. If possible, the primers chosen were either spanning an intron larger than 1kb or 

one of the primer was binding a intron exon boundary to limit amplification from possible 

genomic DNA contaminants. The majority of the primers were designed with the Primer 3 

software using the default parameters with the exceptions listed in the following table. 

 

Parameter Default values Changed values Example of Relaxed values 

Product Size Ranges - 105-250 105-350 

GC content 20-80% 45-65% 40-70 

Max Poly-X 5 3 4 

Number of return 5 200  

Max Self complementarity 8 3 5 

Max 3’ stability 9 3 7 

 

If no primer pair could be found, one or several parameters were then relaxed. As an 

example some relaxed values are given in the above table. 

 

Target gene Forward primer Reverse primer 

For mouse genes:   

Hprt1 TCAGTCAACGGGGGACATAAA GGGGCTGTACTGCTTAACCAG 

Mig6 TGGCCTACAATCTGAACTCCC GACCACACTCTGCAAAGAAGT 

Ctgf CCCTAGCTGCCTACCGACT CATTCCACAGGTCTTAGAACAGG 

Itga5 GGTGACAGGACTCAGCAACTG GCAGACTACGGCTCTCTTGG 

Srf GGCCGCGTGAAGATCAAGAT CACATGGCCTGTCTCACTGG 

Egr1 AGCGAACAACCCTATGAGCAC TCGTTTGGCTGGGATAACTCG 

c-Fos TTCAACGCCGACTACGAG CCACGGAGGAGACCAGAGT 

MrtfA CCAGGACCGAGGACTATTTG CGAAGGAGGAACTGTCTGCTA 

MrtfA TCTCAGGCACCAAGACAGAG GAAGGCGACCACTACCTCAC 

MrtfB CCCACCCCAGCAGTTTGTTGTT TGCTGGCTGTCACTGGTTTCATC 

http://www.bioinformatics.nl/cgi-bin/primer3plus/primer3plusHelp.cgi#PRIMER_PRODUCT_SIZE_RANGE
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Target gene Forward primer Reverse primer 

Acta2 GGGAGTAATGGTTGGAATGG CAGTGTCGGATGCTCTTCAG 

Bok GGCAAGGTAGTGTCCCTGTA GCTCATCTCTCTGGCAACAAC 

Noxa CGCCAGTGAACCCAACG GGCTCCTCATCCTGCTCTTT 

Mcl1 GCTTCATCGAACCATTAGCA TGATGCCGCCTTCTAGGTC 

Dusp5 CGGTTGAAATCCTTCCCTTC CCTCCTTCTTCCCTGACACA 

Zfp36 CATCTACGAGAGCCTCCA TGAGTAGGTCCGACAGAG 

Bcl2 AGTACCTGAACCGGCATCTG GCAGGGTCTTCAGAGACAGC 

For human genes:   

MCL1 TGGTGCCTTTGTGGCTAAAC TGCCAAACCAGCTCCTACTC 

 

6.1.4.2 Primers to amplify gene promoters 

 

Promoter Forward primer Reverse primer 

Mig6 -1635bp cggcGAGCTCagcaacccagcagcccctaca gccgCTCGAGacgctccgcgcctcgcact 

Mig6 -726bp cggcGAGCTCctcacactgctcctcactgc gccgCTCGAGacgctccgcgcctcgcact 

Mig6 -330bp cggcGGTACCcttggatccaagtgcatctc gccgCTCGAGacgctccgcgcctcgcact 

Mig6 -147bp cggcGGTACCttcggtagcggcatcgcc gccgCTCGAGacgctccgcgcctcgcact 

Mig6 -329bp to -92bp cggcGGTACCcttggatccaagtgcatctc gccgGAGCTCcgcagccaatccgggcgggc 

Bok gccgGGTACCagaacttgtgctggcctttct cggcGAGCTCagttctggtttcaggacccgc 

Dusp5 cggcACGCGTcctgacactccaccggtagt gccgGCTAGCcccagaaagctggggatt 

Zfp36 gccgGAGCTCggtggcgcgaatggccttgg gccgGGTACCgtttttctctcggcttctgg 

 

6.1.4.3 Primers to mutate gene promoter constructs 

 

Target Forward primer Reverse primer 

Mig6 Del. CARG -260bp AAAACTCGGTGTCCTTAGGCTA TTGTGAGCGGCCCTGTTT 

Mig6 Mut. CARG -260bp TCGGGAAAACTCGGTGTCCTTA GAGGGTTGTGAGCGGCCCT 

Bok Del. CARG -99bp CGAAGCCCTAAGCCTGGCTT AAACGGCAACCCCCG 

Bok Mut. CARG -99bp GCCGGCGAAGCCCTAAGCCTGGCTT GAGGGAAACGGCAACCCCCGG 
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6.1.4.4 Oligonucleotides used to create shRNA coding vectors 

 

Target Sequence (5’->3’) 

For mouse 
genes: 
 

 

Mig6 sh2FW gatccccAAGGTCAAGCTTGCCCCCTttcaagagaAGGGGGCAAGCTTGACCTTtttttggaaa 

Mig6 sh2RV agcttttccaaaaaAAGGTCAAGCTTGCCCCCTtctcttgaaAGGGGGCAAGCTTGACCTTggg 

Mig6 sh3FW gatccccGAGGATCAAGTTATGTGTGttcaagagaCACACATAACTTGATCCTCtttttggaaa 

Mig6 sh3RV agcttttccaaaaaGAGGATCAAGTTATGTGTGtctcttgaaCACACATAACTTGATCCTCggg 

Mig6 sh4FW gatccccCCTCAAAGCCATCGCAGATttcaagagaATCTGCGATGGCTTTGAGGtttttggaaa 

Mig6 sh4RV agcttttccaaaaaCCTCAAAGCCATCGCAGATtctcttgaaATCTGCGATGGCTTTGAGGggg 

Mrtf shFW gatccccgCATGGAGCTGGTGGAGAAGAAttcaagagatTCTTCTCCACCAGCTCCATGtttttggaaa 

Mrtf shRV agcttttccaaaaaCATGGAGCTGGTGGAGAAGAAtctcttgaaTTCTTCTCCACCAGCTCCATGcggg 

For human 
genes: 

 

MIG 6 sh1FW gatccccggatcaagttgtatgtggtttcaagagaaccacatacaacttgatcctttttggaaa 

MIG 6 sh1RV agcttttccaaaaaggatcaagttgtatgtggttctcttgaaaccacatacaacttgatccggg 

MIG 6 sh2FW gatccccggtggaattcctaactagcttcaagagagctagttaggaattccacctttttggaaa 

MIG 6 sh2RV agcttttccaaaaaggtggaattcctaactagctctcttgaagctagttaggaattccaccggg 

 

6.1.4.5 Primers used to clone coding sequences 

 

Gene Use Sequence 

Bcl2 Inner PCR FW cggcGAATTCatggcgcaagccgggaga 

 Inner PCR RV gccgATCGATtcacttgtggcccaggtatg 

 Outer PCR FW tgcggaggaagtagactgat 

 Outer PCR RV tcgaccatttgcctgaatgt 

 GSP-RT tccatgaccacaggcacag 

Bok Inner PCR FW cggcGAATTCatggaggtgctgcggcgct 

 Inner PCR RV gccgATCGATtcatctctctggcaacaacag 

 Outer PCR FW gggtttgaatggaagggtcta 

 Outer PCR RV tgagggaggtgctttgtagg 

 GSP-RT acaccgaccctgactttctg 

Noxa Inner PCR FW cggcGAATTCatgcccgggagaaaggc 

 Inner PCR RV gccgATCGATtcaggttactaaattgaagagcttgg 

 Outer PCR FW gctggtgctgcctactgaag 

 Outer PCR RV agcgagcgtttctctcatca 

 GSP-RT ccttcatcatccctgctcag 

Mig6 Inner PCR FW cggcGAATTCatgtcaacagcaggagttgct 
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 Inner PCR RV gccgATCGATttatggagaaaccacgtagga 

 Outer PCR FW aatttgaaggcatcccagag 

 Outer PCR RV ccagcataacagcacctcat 

 GSP-RT gctgttcctccagcttgttt 

Elk1 Inner PCR FW cggcGAATTCatggacccatctgtgacgct 

 Inner PCR RV gccgATCGATtcatggcttctggggccct 

 Outer PCR FW gcttctggttgctgcttctg 

 Outer PCR RV ggaggaaatgggtgagatgt 

 GSP-RT tggagagttcaggagcataga 

SRFVP16 FW cggcGAATTCatgttaccgacccaagctg 

 RV gccgATCGATctacccaccgtactcgtcaa 

MCL1 FW cggcGAATTCatgtttggcctcaaaagaaa 

 RV gccgATCGATctatcttattagatatgccaaacca 

 

6.1.4.6 Sequencing and colony PCR primers 

Primer name Priming in : Sequence 

pRSpuroF1241 pSUPER retro puro GGAAGCCTTGGCTTTTG 

pRSpuroR1532 pSUPER retro puro TCGCTATGTGTTCTGGGAAA 

111_RTFFlucfor2 Luciferase gene CGGTCGGTAAAGTTGTTCCA 

GL2 pGL3 CTTTATGTTTTTGGCGTCTTCCA 

RV3 pGL3 CTAGCAAAATAGGCTGTCCC 

pLPCXF2844seq pLPCX AGCTCGTTTAGTGAACCGTCAGATC 

pLPCXR3026seq pLPCX ACCTACAGGTGGGGTCTTTCATTCCC 

pLPCXF2845col pLPCX GCTGGTTTAGTGAACCGTCA 

pLPCXR2930col pLPCX GGCCTTAATGGCCTAACGA 

pLPCXF2815col pLPCX CGTGTACGGTGGGAGGTCTA 

pLPCXR2930col pLPCX GGCCTTAATGGCCTAACGA 

EF+  pEF TTCTCAAGCCTCAGACAGTGG 

EF-corrected pEF TTGGACAGCAAGAAAGCGAGC 

EF- original pEF TTGGACAGCAAGAAAGGCAGC 

HRASfw460seq HRAS GGATGCCTTCTACACGTTGG 

HRASrv154seq HRAS GCACGTCTCCCCATCAAT 

RHOAfw439seq RHOA GGGTGCCTTGTCTTGTGAAT 

RHOArv147seq RHOA ACTATCAGGGCTGTCGATGG 

Diap1fw3477seq Dia1 ACTGGAGAAGCAGCAGAAGC 

Diap1rv958seq Dia1 CGGATGTGAACTCGGAAGTC 

Human MKL1rv205seq MKL1 CATCGGCTAGTCTGGCTCTC 

Human MKL1fw2651seq MKL1 ACCTGGACAGCATGGACTG 
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6.2 Methods 

6.2.1 Molecular biology methods 

6.2.1.1 Preparation of electrocompetent bacteria 

 

5 ml of LB medium were inoculated with a single, well isolated bacterial colony and 

incubated at 37°C overnight with shaking. Four 500 ml flasks containing 100 ml LB each were 

inoculated with 1 ml of the overnight culture and incubate at 37°C with shaking until the cell 

density reaches an optical density of 0.5 at 600 nm (2.5-3 h). The bacterial cultures were 

then chilled on ice for 20min and transferred afterwards into some chilled centrifuge bottles. 

The cells were collected by centrifugation in a pre-chilled centrifuge for 10 min at 1200 x g at 

4℃ (Beckmann Allegra 6KR: 2500 rpm). The supernatant was decanted and the cells washed 

by resuspension in the same amount of ice-cold sterile 10% glycerol amount (50 ml per 50 

ml tube).  The cells were incubated on ice for 20min. The cells were then pelleted as before. 

The supernatant was removed and the cells were gently resuspended in 5 ml of 10% glycerol 

per 50ml tube. The cells were unified into 2 tubes and incubated on ice for 20min. The cells 

were pelleted as before. The supernatant was removed and the cells gently resuspended in 

2ml of 10% glycerol. The cells were then ready for electroporation. They were frozen in 50µl 

aliquots in liquid nitrogen and then stored at -80°C. 

To test for transformation efficiency, one 50µl bacteria aliquot was thawed on ice and 

transferred into a chilled 2 mm electroporation cuvette. 0.1 ng of known control plasmid 

were added. The electroporation was done using a Biorad Gene Pulser at 2.5 kV, 25 µF, 200 

Ohm (typical time 4 ms). Then, 500 µl of LB medium supplemented with 10mM MgCl2 were 

added to the cuvette to resuspend the bacteria. The bacteria were then left for 1 hour at 

37°C and then plated on an agar plate containing antibiotics. The expected transformation 

rate should be 108-109 per µg DNA for ligations (lower rates only acceptable for 

retransformation of plasmids). 

6.2.1.2 Plasmid DNA preparation 

 Plasmid DNA preparation from E. coli was done by using the Qiaprep spin Miniprep or 

Maxiprep according to manufacturer protocol (Qiagen).  The selection marker was added 

shortly before use at a concentration of 100µg/ml for ampicillin and 50µg/ml for kanamycin. 
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6.2.1.3 Restriction digest of DNA and cloning 

The following reagents were mixed: 

5 µg DNA  

3 µl 10x appropriate NEB buffer and 0.3 µl BSA (only if required by enzyme) 

1 µl enzyme A 

1 µl enzyme B  

q.s. with H2O to 30µl 

The reaction was carried out for 2 hours at 37°C unless another reaction temperature was 

required. 

To dephosphorylate a vector, 0,5 µl of Calf Intestine Alkaline Phosphatase (CIP, CIAP) were 

added to the reaction mix an placed for 30 min  at 37 °C. 

To blunt DNA ends, the digestion was carried out in a larger volume, 50µl, with a maximum 

of 2µl of enzyme. After 2 hours of digestion, 2µL of klenow and 1 µl of dNTPs (2mM each) 

were added. The reaction mix was then incubated at 25°C for 20min. The reaction was then 

stopped by adding 1µl of EDTA (500mM). The DNA was then purified with a Qiagen PCR 

purification kit and cut with a second enzyme. 

Ligation 

The digested plasmid and insert were purified by agarose gel electrophoresis. The DNA were 

extracted from the gels by using the Qiaquick Gel extraction kit according to manufacturer 

protocol. The concentration of recovered DNA was then measured with a 

spectrophotometer Nanodrop (Thermo Scientific). 

For the ligation, the following reagents were mixed: 

30 to 60 fm of plasmid 

3 to 5 times more of insert than plasmid (molar ratio) 

2 µl of 10x ligase buffer containing 10mM ATP 
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1µl T4 DNA ligase (400U/µl) 

Q.S. with H2O to 20µl 

The ligation was then carried out at 16°C for at least 1 hour up to overnight. As control a 

ligation mix that doesn’t contain any insert was set up. 

Finally, 2 to 4 µl of the ligation mix without purification were electroporated in E. coli as 

described above. 

6.2.1.4 Promoter cloning 

The promoters were amplified by PCR from genomic DNA prepared from mouse liver. 

Genomic DNA isolation 

The livers from mouse C57BL/6 were minced in 25mg pieces, snap frozen and stored at -80°C 

until use. The isolation of the DNA was done by using the DNeasy kit according to 

manufacturer protocol (Qiagen).  

PCR amplification of the promoter fragments 

The primers used for the PCR were designed to amplify the consensus NCBI promoters or the 

promoters defined by the genomatix software. They possess restriction sites for subsequent 

the cloning in the pGL3 reporter vector. 

The PCR reaction mix was composed of: 

Genomic DNA:  200ng 

Forward primer (10mM): 2,5µl (0,5µM final) 

Reverse primer (10mM): 2,5µl (0,5µM final) 

HF buffer:   10µl 

10mM dNTPs:   1µL 

Phusion polymerase (2U/µl):1µl 

Q.S. H2O to:   50µL 
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The PCR program was: 

Cycle step Temp. Time Cycles 

Initial denaturation 98°C 30s-3min 1 

Denaturation 
Annealing 
Extension 

98°C 
X°C * 
72°C 

5-10s 
10-30s 
15-30 s/kb 

36 

Final extension 72°C 
4°C 

5-10min 
hold 

1 

*: The annealing temperature was determined for each primer set with the nearest-neighbour method. 

 

The PCR product was then purified by agarose gel electrophoresis and extracted with a 

Qiaquick gel extraction kit. The purified product was then digested with the proper digestion 

enzymes for cloning into the pGL3 basic vector. 

6.2.1.5 Deletion analysis and mutagenesis of the promoter constructs 

The long 5’ deletions of the promoter constructs were done by using different 5’ primers and 

using the longer promoter construct as a template for the PCR instead of the genomic DNA. 

The deletion or the mutagenesis of response elements in the promoter constructs were 

done by using phosphorylated primers as described on the Figure 47. 
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Figure 47. Mutagenesis Scheme of Promoter Constructs 

(Modified from the Phusion DNA polymerase protocol) 

 

6.2.1.6 Cloning of gene coding sequences 

RNA preparation (QIAGEN) and first strand cDNA synthesis (ABgene) were done according to 

the manufacturers' protocol. For cDNA synthesis 1 μg of RNA and anchored oligo dT primers 

or gene specific primers were used. The cDNA of interest was subsequently amplified by 

nested PCR using the primers described in 6.1.4.5. The inner PCR primers harbour restriction 

sites for cloning in the expression vectors. 
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Usually, the outer PCR mix was composed of: 

Template cDNA:  one fortieths of the RT reaction without    

    purification (RT enhancer inactivated) 

Forward primer (10mM) : 2,5µl (0,5µM final) 

Reverse primer (10mM) : 2,5µl (0,5µM final) 

HF buffer:   10µl 

10mM dNTPs:   1µL 

Phusion polymerase (2U/µl): 1µl 

Q.S. H2O to:   50µL 

 

The inner PCR mix was: 

Template :  1µL of the outer PCR mix 

Forward primer (10mM) : 2,5µl (0,5µM final) 

Reverse primer (10mM) : 2,5µl (0,5µM final) 

HF buffer:   10µl 

10mM dNTPs:   1µL 

Phusion polymerase (2U/µl): 1µl 

Q.S. H2O to:   50µL 

The PCR programs were similar as the one described in 6.2.1.4. 

The product from the inner PCR was purified on a gel and subsequently digested with the 

proper restriction enzymes and ligated with the digested and dephosphorylated pLPCX 

retroviral vector as described in 6.2.1.3. 
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6.2.1.7 Cloning of shRNA coding vectors 

Design of the shRNA 

The sequence of the shRNA matching with the target mRNA was designed by using the 

online Dharmacon software. The overall design of the oligo nucleotides is shown on Figure 

48. 

 

Figure 48. Transcription of the Designed 60 Bases Long Oligonucleotide to Hairpin RNA, 

Processed to Functional siRNA. 

(From the pSUPER-retro-puro vector protocol, Oligoengine) 

 

The oligos once annealed harbour on the 3’end a Hind3 site and on the 5’end a Bgl2 half-

site. They are then ready for ligation. After ligation the Bgl2 site is then non functional 

anymore. 

Annealing of the oligonucleotides 

The forward and reverse oligos were resuspended in water at a concentration of 3µg/µl 

(approximately 150pmol/µl). 1µl of each oligos were mixed with 5µl of 10x annealing buffer 

and 43µl of water. This reaction mix was then heated to 99°C in a pcr machine for 5min. 

Afterwards the PCR machine was switched off. The mix was then left cooling down in the 

PCR machine for 3 hours. Efficiency of the annealing was then checked on a 4% agarose gel. 
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Ligation of the annealed oligos to pSUPER retro puro vector 

The pSUPER retro puro vector was first digested with Bgl2 and Hind3 and purified on agarose 

gel. 100ng of the digested pSUPER retro puro vector, 400ng of annealed oligos, 2µl of T4DNA 

ligase, 0,5µl of BSA and water were mixed in a final volume of 20µl. The ligation was carried 

out overnight at 16°C. Before transformation, 1µl of Bgl2 restriction enzyme was added to 

the ligation mix. The Bgl2 digestion was carried at 37°C for 3 hours to decrease the number 

of false positive colonies due to undigested vector. 

Colony screening by colony PCR 

Single colonies were picked from agar plates and added directly to the colony pcr reaction 

mix composed of: 

2 units of Taq polymerase 

250 µM dNTPs 

0,5 µM forward primer pRSpuroF1241  

0,5 µM reverse primer pRSpuroR1532  

1µL of 10x standard Taq buffer 

8,25µl H2O 

The PCR program was: 

Cycle step Temp. Time Cycles 

Initial denaturation 95°C 2min 1 

Denaturation 
Annealing 
Extension 

95°C 
50°C* 
72°C 

50s 
10s 
30s 

36 

Final extension 72°C 
4°C 

5min 
hold 

1 

 

The PCR products were then loaded on 3% agarose gel. Positive PCR products have a size of 

approximately 350bp compare to 290bp for negative ones. 

The positive clones were checked by sequencing. 
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6.2.2 Cell biology methods 

6.2.2.1 Cell lines 

NIH3T3:  Immortalised mouse fibroblast (Todaro and Green, 1963) 

HEK293:  Human Embryonic Kidney cells (Shaw et al., 2002) 

MEF WT  Mouse Embryonic Fibroblast wild type 

MEF WT im.  Mouse Embryonic Fibroblast wild type immortalized with the large T 

   antigen of the Simian Vacuolating Virus 40 (SV40) 

MEF Mig6 -/-  Mouse Embryonic Fibroblast  isolated from embryos knock-out for 

   Mig6 

MEF p53 -/-  Mouse Embryonic Fibroblast  isolated from embryos knock-out for 

   p53 

HepG2:  Hepatocellular carcinoma (Aden et al., 1979) 

Hs817.T:   Hepatocellular carcinoma (ATCC # CRL-7549) 

NBT2:   Rat urinary bladder carcinoma (Toyoshima et al., 1971) 

Cell culture medium 

Dulbecco’s modified eagle medium (DMEM) : 4,5 mg/ml glucose, 2mM L-glutamine 

Minimum essential medium (MEM): 2Mm L-glutamine  

6.2.2.2 MEFs isolation and culture 

MEFs Mig6 KO and WT were isolated from E13.5 embryos. Briefly, each embryo was 

separated from its placenta and surrounding membranes. The brain and dark organs were 

cut away. The embryos were then washed with PBS to remove as much blood as possible. 

The embryos were then finely minced with a razor blade, suspended in 2 ml of trypsine per 

embryo and placed in an incubator at 37°C for 15min. DMEM supplemented with FCS and 

amphotericin B was added. Each embryos was then centrifuged, resuspended in culture 

medium and plated on a 10cm dish. Genotyping was done by PCR. 

6.2.2.3 Lipofection, electroporation and infection of mammalian cells 

Lipofection 
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Transfections of NIH 3T3 cells were carried out with Lipofectamine (Invitrogen) according to 

the manufacturer's protocols, as described previously (Posern et al., 2004). For luciferase 

assays, 50000 cells/1-cm-diameter dish (12-well plate) were transfected with 25 ng of 

indicated luciferase reporter, 50 ng of pRL-TK together with the indicated amounts of 

plasmids in a total of 500 ng DNA. For protein expression analysis, 1x106 cells were seeded in 

a 10-cm-diameter dish, transfected with 2µg of the indicated plasmids in a total of 5µg DNA 

starved in serum free DMEM for 24h and harvested. For mRNA analysis, 3,8x105 cells were 

seeded in a 6-cm-diameter dish and transfected with 600ng of the indicated plasmids in a 

total of 2µg DNA. After transfection, cells were starved in DMEM supplemented with 0,5% 

FCS for 24h and harvested. 

Electroporation: 

Electroporation of NIH3T3 cells or MEFS were carried out with a  GenePulser Xcell with CE 

and PC module (BioRad) using the exponential decay protocol (voltage, 250 V; pulse length, 

60 ms) in a 4 mm GenePulser cuvette (Biorad). For protein expression analysis in MEFS, 

8x106 cells in 200µL of Optimem were electroporated with 20µg of DNA. 50% of the cells 

were then seeded in a 6-cm- diameter dish containing DMEM supplemented with 2% FCS. 

Twenty four hours later, cells were harvested. 

Virus production and infection 

pLPCX MAL constructs were generated by subcloning the XhoI/HindIII fragment from pEF 

MAL constructs into pLPCX (Clontech). The pLPCX GFP construct was generated by 

subcloning a Eco47III/ EcoRI fragment from pEFP-C2 (Clontech) into pLPCX. 6x106 cells per 

10-cm-diameter dish of the retroviral packaging cell line phoenix E were transfected with 

20µg of DNA using the calcium phosphate precipitation method. One day later, the culture 

medium was changed. Two days later, the cell medium was harvested, filtered and 

concentrated on a Vivaspin 20 column and used to infect 1x105 NIH3T3 cells seeded in a 2.5-

cm-diameter dish in presence of Polybrene at a concentration of 8µg/ml. This procedure was 

repeated 10 hours later. 

6.2.2.4 Microscopy and immunofluorescence 

For immunofluorescence microscopy, cells were fixed with acetone/methanol for 5 minutes 

at -20°C, blocked with 10% FCS, 1% gelatine, 0.05% Triton X-100 in PBS. Staining conditions 
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were as follows: anti-Mig6 (gift from Ingwar Ferby) 1:1000 overnight at 4°C; Alexa Fluor 546 

anti rabbit 1:1000 IgG (H+L) (Molecular Probes). Micrographs were taken using a Zeiss 

Axioplan 2 with MetaVue software (Molecular Devices). 

6.2.2.5 Cell cycle analysis of unfixed, detergent-permeabilized cells stained with 

propidium iodide 

Supernatant of adherent cells containing floating cells was first collected. Adherent cells 

were then washed with PBS that was then added to the floating cells previously collected. 

The adherent cells were then trypsinized and added to the floating cells to group all the cells 

and to neutralize the trypsine. The cells were then pelleted by centrifugation and 

resuspended in PBS at a cell density comprised between 1x106 to 5x106 cells /ml. Then, 

0.2ml of this cell suspension was incubated with 2ml of propidium iodide solution (q.v. 6.1.2) 

for 20 min at room temperature. The cells were then analysed with a FACSCalibur flow 

cytometer from Becton Dickinson. Briefly, the cells were excited with an Argon Laser at 

488nm. The signal went through a photomultiplier with a 585 nm bandpass filter to detect 

the propidium iodide emission which was recorded in the FL2-H channel. Hence, the x axis, 

labelled FL2-H, represents the intensity of PI staining. The y axis represents the number of 

cells. 

6.2.3 Biochemical assays 

6.2.3.1 Reporter Assays, western blotting 

Transfections of NIH 3T3 were carried out using Lipofectamine (Invitrogen) according to the 

manufacturer's protocols, as described (Posern et al., 2004). For luciferase assays, 50,000 

cells per 1 cm ∅ dish (12 well plate) were transfected with 25 ng p3DA-Luc, 50 ng pRL-TK, 

together with the indicated amounts of plasmids in a total of 500 ng DNA. Luciferase activity 

was measured by dual luciferase assay kit (Promega) and normalised to pRL-TK luciferase. 

Figures show fold induction compared to control. Error bars usually indicate SEM of three 

independent experiments. Statistical analysis was done by unpaired student's t-test.  

For visualising proteins in HNTG or RIPA lysates, anti-phospho-Erk (1:1000; Cell Signalling) 

anti-panErk (1:1000; Transduction Laboratories), anti-tubulin (1:10000; Sigma), anti-HA 

peroxidase conjugate  (1:700; Roche), anti-phospho-EgfrY1173 (1:1000; Cell Signalling), anti-

phospho-Her2Y1248 (1:1000; Cell Signalling), anti-Egfr (1:2000; Biomol) and anti-Mig6 
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(1:1000; homemade) antibodies were used, subsequently to SDS-PAGE and western blotting 

according to standard protocols.  

6.2.3.2 Quantitative RT-PCR 

RNA preparation (QIAGEN) and first strand cDNA synthesis (ABgene) were done according to 

the manufacturer's protocol. For cDNA synthesis 1 μg of RNA and anchored oligo dT primers 

were used. For cDNA quantitation two real time PCR machine were used. When using the 

LightCycler (Roche), one fortieths of the RT reaction was mixed with gene specific primers 

(0.5 μM), MgCl2 (3 mM) and LightCycler® FastStart DNA Master SYBR Green I mix (1.5 μl; 

Roche) to a total volume of 15.5 μl. When using the StepOnePlus (Applied Biosystem), one 

fortieths of the RT reaction was mixed with gene specific primers (0.250 μM), and 

LightCycler® FastStart DNA Master SYBR Green I mix (1.5 μl; Roche) to a total volume of 15.5 

μl. 

The PCR was carried out on a LightCycler instrument (Roche) or on a StepOnePlus (Applied 

Biosystem) according to the manufacturer’s instructions. 

Calculations were done using the Ct method. 

6.2.4 Microarray analysis 

All experiments were performed in triplicate. Total cellular RNA was labelled and hybridized 

to Affymetrix Murine Genome 430 2.0 arrays (monitoring more than 45000 transcripts) as 

recommended by the manufacturer. Raw fluorescence intensity files were generated with 

Affymetrix Microarraysuite version 5 software. Data were processed and analysed with R 

and Bioconductor (Gentleman et al., 2004). Arrays were assessed for quality, GCRMA- or 

RMA-normalized, filtered for low and invariant expression, and analyzed using an empirical 

Bayes moderated t-test for paired samples.  

‘‘Quality assessment’’ consisted of RNA degradation plots, Affymetrix quality control metrics, 

sample cross-correlation, data distributions, and probe-level visualizations.  

‘‘Normalization’’ incorporated (separately for each RNA type data set) background 

correction, normalization, and probe-level summation by GCRMA or RMA. 
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Differentially expressed genes were identified by a permutation-based method (Tusher et 

al., 2001). Briefly, to control for multiple testing, a false discovery rate (FDR) (Benjamini and 

Hochberg, 1995) was calculated as the percentage of genes falsely detected as differentially 

expressed among all genes detected as differentially expressed. A score is assigned to each 

gene on the basis of change in gene expression relative to the standard deviation of 

repeated measurements. For genes with scores greater than an adjustable threshold, 

permutations of the repeated measurements are used to estimate the percentage of genes 

identified by chance, which is the FDR. The q-value is the lowest FDR at which the gene is 

called significant. Genes were considered to be differentially expressed if they were 

detected at a false discovery rate of 5,47% for the GCRMA analysis and 5,17% for the RMA 

analysis.  
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7 Abbreviations 

Acta2: alpha 2, smooth muscle, aorta 

Actb: actin, beta 

APS: Ammoniumperoxodisulfate 

bp: base pair 

Bok: BCL2-related ovarian killer 

BSA: bovine serum albumin   

CytoD: cytocalasine D 

cDNA: complementary DNA 

cFOS: FBJ (Finkel, Biskis, and Jinkins) osteosarcoma oncogene 

ChIP: Chromatin Immunoprecipitation 

CHX: Cycloheximide 

CTGF: connective tissue growth factor 

DAPI: 4´,6-diamidino-2-phenylindole  

DMSO: Dimethylsulfoxide 

DTT: dithiothreitol  

ECL: enhanced chemiluminescence  

EDTA: ethylenedinitrilotetraacetic acid 

EGFR: epidermal growth factor receptor 

Egr1: early growth response 1 

ErbB : avian erythroblastosis oncogene B 

Errfi1: ErbB receptor feedback inhibitor 1 

FACS: Fluorescence Activated Cell Sorting 

FCS: foetal calf serum  

FHL2: four and a half LIM domains 2 

FOXO: forkhead box O 

GAP: GTPase activating protein 

GEF: guanosine exchange factor 

GFP: green fluorescent protein  

GPCR: G protein-coupled receptor 

HGF: hepatocyte growth factor 

Hop: homeodomain-only protein 
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HPRT: hypoxanthine phosphoribosyltransferase 

Ig: Immunoglobulin  

IP: immunoprecipitation  

Jasp: Jasplakinolide 

LatB: Latrunculin B 

LPA: Lysophosphatidic acid  

LPAR: LPA receptor 

MAPK: Mitogen-activated protein kinase 

MAL: megakaryocytic acute leukaemia 

MCL1: myeloid cell leukaemia sequence 1 

MEF: Mouse embryonic fibroblast 

Mef2: Myocyte enhancing factor 2 

Mig6: mitogen-inducible gene 6 

MRTF: Myocardin-related transcription factor 

MKL1: megakaryoblastic leukaemia 1 

MMP: Matrix metalloproteinase 

NFκB: nuclear factor kappa B 

kb: kilo base 

kDa: kilo dalton 

KO: knock-out 

OTT: One twenty two 

PAGE:polyacrylamid gel electrophoresis 

PBS: phosphate-buffered saline  

PCR: polymerase chain reaction 

PMAIP1: Phorbol-12-myristate-13-acetate-induced protein 1 

PMSF: phenylmethylsulfonyl fluoride  

pRS: pRetroSuper vector 

RNA: ribonucleic acid  

RT: room temperature  

RBM15: RNA binding motif protein 15 

Rgs16: regulator of G-protein signaling 16 

SCAI: suppressor of cancer cell invasion 

http://en.wikipedia.org/wiki/Lysophosphatidic_acid
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SDS-PAGE: sodium dodecylsulfate polyacrylamid gelelectrophoresis  

siRNA: small interference ribonucleic acid  

SRF: serum response factor 

shRNA: short hairpin RNA 

SwinA: swinholide A 

TCF: Ternary complex factor 

TEMED: Tetramethylethylenediamine 

TGFβ: Transforming growth factor beta 

Traf: TNF-receptor-associated factor 

TNFα: Tumour necrosis factor α 

TSA: Trichostatine A 

WT: wild-type  
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12 Annexe 1: Complete list of genes significantly regulated after actin binding 

drug treatment grouped by unsupervised clustering 

 

 

 

 

 

Group 1 Group 1:34 genes, 39 probes

Probe.Set.ID Gene.Title Gene.Symbol +CytoD +CytoD+LatB q-value(%)

1428942_at metallothionein 2 Mt2 0,75 0,87 2,7

1428417_at RIKEN cDNA 3110050N22 gene 3110050N22Rik 0,71 0,75 5,4

1434896_at zinc finger protein 422, related sequence 1 MGI:3028594 0,71 0,83 3,8

1415996_at thioredoxin interacting protein Txnip 0,70 0,90 2,7

1429499_at F-box only protein 5 Fbxo5 0,68 0,78 2,0

1423350_at suppressor of cytok ine signaling 5 Socs5 0,68 0,85 0,0

1419247_at regulator of G-protein signaling 2 Rgs2 0,66 0,59 3,0

1434364_at mitogen-activated protein k inase k inase k inase 14 Map3k14 0,66 0,89 3,0

1449972_s_at zinc finger protein 97 /// cDNA sequence BC018101 Zfp97 /// BC018101 0,65 0,81 3,0

1447643_x_at snail homolog 2 (Drosophila) Snai2 0,64 0,73 3,75

1426471_at zinc finger protein 52 Zfp52 0,62 0,81 4,71

1418673_at snail homolog 2 (Drosophila) Snai2 0,62 0,74 3,01

1447830_s_at regulator of G-protein signaling 2 Rgs2 0,60 0,62 3,01

1451550_at Eph receptor B3 Ephb3 0,58 0,73 2,74

1448494_at growth arrest specific 1 Gas1 0,58 0,63 2,74

1419239_at zinc finger protein 54 Zfp54 0,55 0,69 1,99

1452769_at RIKEN cDNA 3732413I11 gene 3732413I11Rik 0,55 0,62 4,71

1427433_s_at homeo box A3 Hoxa3 0,53 0,58 2,74

1449414_at zinc finger protein 53 Zfp53 0,52 0,75 1,14

1419602_at homeo box A2 Hoxa2 0,51 0,59 2,74

1425058_at zinc finger protein 472 Zfp472 0,49 0,79 3,75

1435462_at hypothetical LOC433022 LOC433022 0,48 0,41 5,43

1433465_a_at expressed sequence AI467606 AI467606 0,48 0,68 3,01

1416101_a_at histone 1, H1c Hist1h1c 0,47 0,60 3,01

1424854_at histone 1, H4i Hist1h4i 0,43 0,48 1,14

1450971_at growth arrest and DNA-damage-inducible 45 beta Gadd45b 0,42 0,54 3,01

1451924_a_at endothelin 1 Edn1 0,42 0,17 3,01

1442873_at Fidgetin (Fign), mRNA Fign 0,40 0,46 3,01

1436994_a_at histone 1, H1c Hist1h1c 0,40 0,56 5,43

1437868_at cDNA sequence BC023892 BC023892 0,38 0,49 2,74

1449773_s_at growth arrest and DNA-damage-inducible 45 beta Gadd45b 0,38 0,55 0,00

1418072_at histone 1, H2bc Hist1h2bc 0,37 0,49 5,43

1429693_at disabled homolog 2 (Drosophila) Dab2 0,32 0,32 0,00

1427216_at interferon zeta Ifnz 0,30 0,29 1,14

1420380_at chemokine (C-C motif) ligand 2 Ccl2 0,29 0,48 3,01

1426734_at cDNA sequence BC022623 BC022623 0,27 0,62 3,01

1446326_at procollagen, type I, alpha 2 Col1a2 0,22 0,27 5,43

1460056_at RIKEN cDNA 1700109F18 gene 1700109F18Rik 0,18 0,22 3,01

1454617_at arrestin domain containing 3 Arrdc3 0,16 0,42 3,01

Group 2 Group 2:10 genes, 14 probes

Probe.Set.ID Gene.Title Gene.Symbol +CytoD +CytoD+LatB q-value(%)

1450295_s_at poliovirus receptor Pvr 2,62 2,54 3,01

1416601_a_at Down syndrome critical region homolog 1 (human) Dscr1 2,38 2,99 1,99

1417488_at fos-like antigen 1 Fosl1 2,37 2,36 3,75

1448325_at myeloid differentiation primary response gene 116 Myd116 2,26 2,11 2,74

1423905_at poliovirus receptor Pvr 2,25 2,11 0,00

1417487_at fos-like antigen 1 Fosl1 2,21 2,38 1,99

1423903_at poliovirus receptor Pvr 2,16 2,13 0,00

1423904_a_at poliovirus receptor Pvr 1,84 1,87 5,43

1449300_at CTTNBP2 N-terminal like Cttnbp2nl 1,76 1,68 1,99

1428487_s_at RIKEN cDNA 1500041J02 gene 1500041J02Rik 1,53 1,44 4,71

1436069_at inhibitor of growth family, member 5 Ing5 1,52 1,51 1,14

1425966_x_at ubiquitin C Ubc 1,42 1,37 3,75

1415779_s_at actin, gamma, cytoplasmic 1 Actg1 1,39 1,33 0,00

1423799_at eukaryotic translation initiation factor 1 Eif1 1,24 1,29 0,00
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Group 3 Group 3:66 genes, 76 probes

Probe.Set.ID Gene.Title Gene.Symbol +CytoD +CytoD+LatB q-value(%)

1427735_a_at actin, alpha 1, skeletal muscle Acta1 60,85 2,92 0,00

1456658_at actin, alpha 2, smooth muscle, aorta Acta2 31,27 2,54 0,00

1429915_at RIKEN cDNA 4930426L09 gene 4930426L09Rik 18,99 4,09 2,74

1418687_at activity regulated cytoskeletal-associated protein Arc 17,39 2,35 0,00

1425503_at glucosaminyl (N-acetyl) transferase 2, I-branching enzyme Gcnt2 16,50 3,14 0,00

1429183_at plakophilin 2 Pkp2 12,85 2,08 0,00

1452670_at myosin, light polypeptide 9, regulatory Myl9 12,48 3,34 2,74

1422340_a_at actin, gamma 2, smooth muscle, enteric Actg2 11,91 1,48 0,00

1418250_at ADP-ribosylation factor 4-like Arfl4 11,71 2,30 1,99

1416689_at tuftelin 1 Tuft1 10,28 2,12 3,01

1417917_at calponin 1 Cnn1 8,07 1,29 0,00

1423072_at RIKEN cDNA 6720475J19 gene 6720475J19Rik 7,85 1,07 1,14

1459552_at --- --- 7,47 1,50 3,75

1441768_at RIKEN cDNA 9430051O21 gene 9430051O21Rik 7,29 1,14 0,00

1449799_s_at plakophilin 2 Pkp2 7,07 1,64 1,14

1429262_at Ras association (RalGDS/AF-6) domain family 6 Rassf6 7,01 1,40 1,14

1442001_at protein k inase, AMP-activated, beta 2 non-catalytic subunit Prkab2 6,65 1,79 0,00

1437820_at forkhead-like 18 (Drosophila) Fkhl18 6,62 1,22 5,43

1428384_at DNA segment, Chr 4, Brigham & Women's Genetics 0951 expressed D4Bwg0951e 6,43 1,66 0,00

1420991_at ankyrin repeat domain 1 (cardiac muscle) Ankrd1 6,12 1,55 0,00

1421415_s_at glucosaminyl (N-acetyl) transferase 2, I-branching enzyme Gcnt2 6,02 1,29 1,14

1442077_at RIKEN cDNA 2310076G05 gene 2310076G05Rik 5,95 1,04 3,01

1444105_at actin, alpha 2, smooth muscle, aorta Acta2 5,79 1,06 0,00

1452521_a_at urok inase plasminogen activator receptor Plaur 5,39 1,66 3,01

1423268_at integrin alpha 5 (fibronectin receptor alpha) Itga5 5,39 1,84 3,75

1420992_at ankyrin repeat domain 1 (cardiac muscle) Ankrd1 5,08 1,48 0,00

1423948_at Bcl2-associated athanogene 2 Bag2 4,65 1,66 0,00

1424408_at LIM and senescent cell antigen like domains 2 Lims2 4,53 1,22 1,14

1452424_at G protein-coupled receptor 23 Gpr23 4,28 1,00 3,01

1426037_a_at regulator of G-protein signaling 16 Rgs16 4,25 1,33 3,01

1417872_at four and a half LIM domains 1 Fhl1 4,18 1,06 0,00

1423267_s_at integrin alpha 5 (fibronectin receptor alpha) Itga5 4,09 1,55 0,00

1416953_at connective tissue growth factor Ctgf 4,02 1,50 0,00

1426575_at transmembrane protein 23 Tmem23 3,98 1,38 3,01

1421073_a_at prostaglandin E receptor 4 (subtype EP4) Ptger4 3,96 1,46 3,01

1423049_a_at tropomyosin 1, alpha Tpm1 3,87 1,56 3,75

1435649_at nexilin Nexn 3,82 1,48 3,01

1420580_at RIKEN cDNA 4930429B21 gene 4930429B21Rik 3,70 0,94 3,75

1426501_a_at Traf2 binding protein MGI:2182965 3,43 1,47 1,14

1437424_at synapse defective 1, Rho GTPase, homolog 2 (C. elegans) Syde2 3,31 1,32 1,14

1423071_x_at hypothetical gene supported by BC019681; BC027236 LOC270335 3,20 1,10 2,74

1432509_at RIKEN cDNA 5033430I15 gene 5033430I15Rik 3,18 1,25 3,75

1418492_at gremlin 2 homolog, cysteine knot superfamily (Xenopus laevis) Grem2 3,10 1,23 1,14

1422053_at inhibin beta-A Inhba 3,10 1,27 5,43

1433742_at ankyrin repeat domain 15 Ankrd15 3,08 1,11 0,00

1426576_at transmembrane protein 23 Tmem23 3,04 1,39 0,00

1417040_a_at Bcl-2-related ovarian k iller protein Bok 2,92 1,26 0,00

1436499_at transmembrane protein 23 Tmem23 2,92 1,38 3,75

1452803_at GLI pathogenesis-related 2 Glipr2 2,91 1,22 3,75

1428301_at similar to hypothetical protein LOC67055 LOC544986 2,90 1,23 0,00

1422698_s_at jumonji, AT rich interactive domain 2 Jarid2 2,87 1,15 5,43

1428897_at RIKEN cDNA 2610029I01 gene 2610029I01Rik 2,83 1,15 1,14

1452731_x_at similar to hypothetical protein LOC67055LOC67055 LOC544986 2,83 1,35 3,01

1418892_at ras homolog gene family, member J Rhoj 2,82 1,37 3,75

1434186_at G protein-coupled receptor 23 Gpr23 2,76 0,98 0,00

1434458_at Follistatin (Fst), mRNA Fst 2,64 0,84 5,43

1439665_at G protein-coupled receptor 23 Gpr23 2,55 0,95 1,14

1440007_at solute carrier family 43, member 1 Slc43a1 2,35 1,15 5,43

1431894_at RIKEN cDNA 4833424O12 gene 4833424O12Rik 2,30 1,08 0,00

1425673_at LIM domain containing preferred translocation partner in lipoma Lpp 2,25 1,01 2,74

1433468_at RIKEN cDNA 6430527G18 gene 6430527G18Rik 2,23 1,26 2,74

1456544_at transmembrane protein 38B Tmem38b 2,18 1,25 1,14

1442382_at microtubule associated serine/threonine k inase family member 4 Mast4 2,12 1,11 1,99

1438210_at G protein-coupled receptor 149 Gpr149 2,10 1,10 3,75

1454256_s_at RIKEN cDNA 1700113I22 gene 1700113I22Rik 2,01 1,22 2,74

1451140_s_at protein k inase, AMP-activated, gamma 2 non-catalytic subunit Prkag2 1,98 1,15 1,14

1428336_at 1-acylglycerol-3-phosphate O-acyltransferase 1 (lysophosphatidic acid acyltransferase, delta) Agpat4 1,94 1,12 1,14

1455685_at hypothetical protein 9530064J02 9530064J02 1,86 1,08 2,74

1423942_a_at calcium/calmodulin-dependent protein k inase II gamma Camk2g 1,80 1,13 5,43

1450173_at receptor (TNFRSF)-interacting serine-threonine k inase 2 Ripk2 1,76 1,08 4,71

1420994_at UDP-GlcNAc:betaGal beta-1,3-N-acetylglucosaminyltransferase 5 B3gnt5 1,70 1,01 1,14

1418509_at carbonyl reductase 2 Cbr2 1,67 1,08 3,01

1427302_at ectonucleotide pyrophosphatase/phosphodiesterase 3 Enpp3 1,59 1,03 3,75

1417357_at emerin Emd 1,55 1,11 1,14

1424541_at transmembrane protein 70 Tmem70 1,53 1,03 1,14

1451999_at LIM domain binding 3 Ldb3 1,24 1,00 2,74
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Group 4 Group 4:65 genes, 82 probes

Probe.Set.ID Gene.Title Gene.Symbol +CytoD +CytoD+LatB q-value(%)

1450791_at natriuretic peptide precursor type B Nppb 10,37 3,14 3,75

1423505_at transgelin Tagln 9,13 2,85 3,01

1459372_at neuronal PAS domain protein 4 Npas4 8,76 4,50 1,14

1418256_at serum response factor Srf 8,71 3,40 0,00

1436229_at PREDICTED: hypothetical protein XP_488897 --- 8,37 2,83 0,00

1437199_at gene model 337, (NCBI) Gm337 8,18 3,16 0,00

1438221_at RIKEN cDNA C130065N10 gene C130065N10Rik 8,09 2,98 0,00

1456320_at cDNA sequence BC049806 BC049806 7,79 3,09 0,00

1456257_at RIKEN cDNA C130065N10 gene C130065N10Rik 7,48 3,19 0,00

1427228_at RIKEN cDNA 2410003B16 gene 2410003B16Rik 7,37 2,53 3,01

1419816_s_at ERBB receptor feedback inhibitor 1 Errfi1 7,29 2,70 0,00

1433768_at RIKEN cDNA 2410003B16 gene 2410003B16Rik 7,20 2,92 0,00

1418203_at phorbol-12-myristate-13-acetate-induced protein 1 Pmaip1 6,04 2,38 1,14

1435875_at protein k inase, AMP-activated, beta 2 non-catalytic subunit Prkab2 5,24 2,79 1,99

1425654_a_at DNA segment, Chr 15, ERATO Doi 366, expressed D15Ertd366e 5,21 2,43 1,14

1416129_at ERBB receptor feedback inhibitor 1 Errfi1 5,02 2,33 0,00

1417263_at prostaglandin-endoperoxide synthase 2 Ptgs2 4,73 2,53 4,71

1419739_at tropomyosin 2, beta Tpm2 4,70 1,93 4,71

1435091_at expressed sequence C80731 C80731 4,42 2,32 0,00

1448546_at Ras association (RalGDS/AF-6) domain family 3 Rassf3 4,38 1,96 3,01

1425810_a_at cysteine and glycine-rich protein 1 Csrp1 4,29 1,98 0,00

1448861_at Tnf receptor-associated factor 5 Traf5 4,17 2,20 1,14

1416454_s_at actin, alpha 2, smooth muscle, aorta Acta2 4,16 2,00 1,14

1436507_at interleuk in-1 receptor-associated k inase 2 Irak2 4,11 2,41 0,00

1435727_s_at DNA segment, Chr 15, ERATO Doi 366, expressed D15Ertd366e 3,98 2,38 1,99

1419149_at serine (or cysteine) peptidase inhibitor, clade E, member 1 Serpine1 3,98 2,13 3,01

1449566_at NK2 transcription factor related, locus 5 (Drosophila) Nkx2-5 3,94 1,94 2,74

1434388_at MOB1, Mps One Binder k inase activator-like 2A (yeast) Mobk l2a 3,87 2,26 0,00

1450629_at DNA segment, Chr 15, ERATO Doi 366, expressed D15Ertd366e 3,71 2,08 0,00

1423721_at tropomyosin 1, alpha Tpm1 3,68 1,60 0,00

1417613_at immediate early response 5 Ier5 3,58 1,67 5,43

1426346_at prolyl endopeptidase-like Prepl 3,52 2,10 1,14

1422499_at DNA segment, Chr 15, ERATO Doi 366, expressed D15Ertd366e 3,51 2,17 0,00

1426345_at prolyl endopeptidase-like Prepl 3,46 2,13 1,14

1419431_at epiregulin Ereg 3,33 1,55 1,99

1433943_at cDNA sequence BC063749 BC063749 3,26 1,89 3,01

1425811_a_at cysteine and glycine-rich protein 1 Csrp1 3,25 1,81 0,00

1431734_a_at DnaJ (Hsp40) homolog, subfamily B, member 4 Dnajb4 3,12 1,86 0,00

1452034_at prolyl endopeptidase-like Prepl 3,02 1,79 0,00

1419354_at Kruppel-like factor 7 (ubiquitous) Klf7 3,01 1,78 1,14

1419356_at Kruppel-like factor 7 (ubiquitous) Klf7 2,92 1,55 3,01

1418136_at transforming growth factor beta 1 induced transcript 1 Tgfb1i1 2,86 1,82 1,14

1418932_at nuclear factor, interleuk in 3, regulated Nfil3 2,76 1,53 0,00

1420514_at transmembrane protein 47 Tmem47 2,69 1,56 0,00

1449885_at transmembrane protein 47 Tmem47 2,62 1,44 1,14

1433671_at RIKEN cDNA A130022J15 gene A130022J15Rik 2,58 1,62 1,14

1416156_at vinculin Vcl 2,57 1,58 4,71

1428861_at RIKEN cDNA 4631422O05 gene 4631422O05Rik 2,55 1,49 5,43

1435878_at serine/threonine k inase 38 like Stk38l 2,46 1,40 0,00

1452045_at zinc finger protein 281 Zfp281 2,45 1,61 0,00

1451177_at DnaJ (Hsp40) homolog, subfamily B, member 4 Dnajb4 2,44 1,63 1,14

1423831_at protein k inase, AMP-activated, gamma 2 non-catalytic subunit Prkag2 2,39 1,32 4,71

1429623_at zinc finger protein 644 Zfp644 2,39 1,46 2,74

1417612_at immediate early response 5 Ier5 2,35 1,54 1,14

1415791_at ring finger protein 34 Rnf34 2,27 1,38 1,99

1434492_at RIKEN cDNA A130022J15 gene A130022J15Rik 2,24 1,32 0,00

1437763_at DCN1, defective in cullin neddylation 1, domain containing 3 (S. cerevisiae) Dcun1d3 2,18 1,41 0,00

1416084_at zinc finger, A20 domain containing 2 Za20d2 2,18 1,52 3,01

1419184_a_at four and a half LIM domains 2 Fhl2 2,18 1,39 3,01

1417408_at coagulation factor III F3 2,09 1,38 1,99

1449168_a_at A k inase (PRKA) anchor protein 2 Akap2 2,07 1,28 3,01

1449353_at wild-type p53-induced gene 1 Wig1 2,06 1,34 3,01

1448623_at RIKEN cDNA 2310075C12 gene 2310075C12Rik 2,03 1,34 0,00

1429487_at protein phosphatase 1, regulatory (inhibitor) subunit 12A Ppp1r12a 1,97 1,27 3,01

1418888_a_at selenoprotein X 1 Sepx1 1,94 1,32 0,00

1436985_at zinc finger protein 644 Zfp644 1,93 1,25 4,71

1437358_at CDNA, clone:Y1G0111C17, strand:plus --- 1,92 1,35 3,01

1424608_a_at similar to novel protein LOC432458 1,84 1,26 3,75

1452113_a_at RAB23, member RAS oncogene family Rab23 1,83 1,27 1,14

1454876_at RAB23, member RAS oncogene family Rab23 1,82 1,38 3,01

1424700_at transmembrane protein 38B Tmem38b 1,81 1,20 3,75

1427742_a_at Kruppel-like factor 6 Klf6 1,78 1,21 1,99

1417124_at destrin Dstn 1,78 1,35 0,00

1437735_at protein phosphatase 1, regulatory (inhibitor) subunit 12A Ppp1r12a 1,75 1,34 5,43

1416452_at ornithine aminotransferase Oat 1,72 1,30 0,00

1417472_at myosin, heavy polypeptide 9, non-muscle Myh9 1,72 1,31 4,71

1424002_at phosducin-like 3 Pdcl3 1,71 1,29 0,00

1429019_s_at paraoxonase 2 Pon2 1,70 1,19 1,14

1426717_at non imprinted in Prader-Willi/Angelman syndrome 2 homolog (human) Nipa2 1,63 1,27 0,00

1448810_at glucosamine Gne 1,53 1,13 1,14

1437211_x_at ELOVL family member 5, elongation of long chain fatty acids (yeast) Elovl5 1,47 1,15 3,01

1415906_at thymosin, beta 4, X chromosome Tmsb4x 1,44 1,19 0,00
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Group 5 Group 5:33 genes, 40 probes

Probe.Set.ID Gene.Title Gene.Symbol +CytoD +CytoD+LatB q-value(%)

1418255_s_at serum response factor Srf 7,90 4,43 0,00

1452519_a_at zinc finger protein 36 Zfp36 6,22 4,14 0,00

1416250_at B-cell translocation gene 2, anti-proliferative Btg2 5,98 3,99 3,01

1438133_a_at cysteine rich protein 61 Cyr61 5,83 4,05 1,14

1416442_at immediate early response 2 Ier2 4,39 3,35 0,00

1416039_x_at cysteine rich protein 61 Cyr61 4,20 3,25 0,00

1428319_at PDZ and LIM domain 7 Pdlim7 3,48 2,32 3,01

1426791_at RUN and SH3 domain containing 2 Rusc2 3,31 2,14 1,14

1415899_at Jun-B oncogene Junb 2,93 2,03 0,00

1444107_at RIKEN cDNA 9430029N19 gene 9430029N19Rik 2,77 1,99 4,71

1416431_at tubulin, beta 6 Tubb6 2,69 2,20 0,00

1417262_at prostaglandin-endoperoxide synthase 2 Ptgs2 2,65 1,99 3,01

1424880_at tribbles homolog 1 (Drosophila) Trib1 2,42 1,82 3,75

1426377_at zinc finger protein 281 Zfp281 2,42 1,73 1,14

1448467_a_at tangerin LOC114601 2,30 1,75 4,71

1424927_at GLI pathogenesis-related 1 (glioma) Glipr1 2,24 1,67 3,01

1452697_at CTD (carboxy-terminal domain, RNA polymerase II, polypeptide A) phosphatase, subunit 1 Ctdp1 2,23 1,85 3,01

1426599_a_at solute carrier family 2 (facilitated glucose transporter), member 1 Slc2a1 2,18 1,70 1,14

1416804_at tangerin LOC114601 2,15 1,60 2,74

1450981_at calponin 2 Cnn2 2,14 1,60 1,14

1426792_s_at RUN and SH3 domain containing 2 Rusc2 2,12 1,80 2,74

1426964_at RIKEN cDNA 3110003A17 gene 3110003A17Rik 2,01 1,57 0,00

1417509_at ring finger protein (C3HC4 type) 19 Rnf19 1,98 1,56 2,74

1434773_a_at solute carrier family 2 (facilitated glucose transporter), member 1 Slc2a1 1,98 1,59 3,75

1434181_at pleckstrin homology domain containing, family C (with FERM domain) member 1 Plekhc1 1,94 1,53 3,01

1416083_at zinc finger, A20 domain containing 2 Za20d2 1,92 1,63 0,00

1424723_s_at cleavage stimulation factor, 3' pre-RNA, subunit 3 Cstf3 1,85 1,56 3,01

1433883_at tropomyosin 4 Tpm4 1,80 1,51 0,00

1417508_at ring finger protein (C3HC4 type) 19 Rnf19 1,76 1,58 3,75

1423282_at phosphatidylinositol transfer protein, alpha Pitpna 1,74 1,40 0,00

1434343_at RIKEN cDNA 5730403M16 gene 5730403M16Rik 1,70 1,38 3,75

1448129_at actin related protein 2/3 complex, subunit 5 Arpc5 1,70 1,39 3,01

1423185_a_at ubiquitin-associated protein 1 Ubap1 1,67 1,42 0,00

1419198_at chromobox homolog 8 (Drosophila Pc class) Cbx8 1,66 1,35 5,43

1458365_at SCY1-like 1 binding protein 1 Scyl1bp1 1,57 1,29 5,43

1450893_a_at ubiquitin-associated protein 1 Ubap1 1,55 1,29 3,01

1420056_s_at phosphatidylserine receptor Ptdsr 1,54 1,27 1,14

1454109_a_at phosphatidylserine receptor Ptdsr 1,52 1,27 3,75

1431299_a_at RIKEN cDNA 2310014H01 gene 2310014H01Rik 1,51 1,27 3,01

AFFX-b-ActinMur/M12481_3_atactin, beta, cytoplasmic Actb 1,31 1,19 3,01

Group 6 Group 6:2 genes

Probe.Set.ID Gene.Title Gene.Symbol +CytoD +CytoD+LatB q-value(%)

1453851_a_at growth arrest and DNA-damage-inducible 45 gamma Gadd45g 1,83 0,63 3,01

1438658_a_at endothelial differentiation, sphingolipid G-protein-coupled receptor, 3 Edg3 1,13 0,82 3,01


