
Generalised Interaction Mining:

Probabilistic, Statistical and Vectorised

Methods in High Dimensional or

Uncertain Databases

Florian Verhein

Dr. rer. nat. Dissertation

Faculty of Mathematics, Informatics and Statistics

Ludwig-Maximilians-Universität, Munich, Germany

2010

ii

Generalised Interaction Mining:
Probabilistic, Statistical and Vectorised

Methods in High Dimensional or
Uncertain Databases

Dissertation zum Erreichen des Doktorgrades

an der Fakultät für Mathematik, Informatik und Statistik

der Ludwig-Maximilians-Universität München

vorgelegt von

Florian Verhein

Tag der Einreichung: 28.10.2010

Tag der mündlichen Prüfung: 15.12.2010

Berichterstatter:

Prof. Dr. Hans-Peter Kriegel, Ludwig-Maximilians-Universität München, Deutschland

Prof. Dr. Jian Pei, Simon Fraser University, Burnaby, Canada.

iii

c© Copyright 2010 Florian Verhein.

http://www.florian.verhein.com

Note: Errata and/or an ammended version may be available from

http://www.florian.verhein.com/publications

iv

http://www.florian.verhein.com
http://www.florian.verhein.com/publications

für Brigitte, Martin, Mundi & Michael

v

vi

Abstract

Knowledge Discovery in Databases (KDD) is the non-trivial process of identifying

valid, novel, useful and ultimately understandable patterns in data. The core step

of the KDD process is the application of Data Mining (DM) algorithms to e�ciently

�nd interesting patterns in large databases. This thesis concerns itself with three

inter-related themes: Generalised interaction and rule mining; the incorporation

of statistics into novel data mining approaches; and probabilistic frequent pattern

mining in uncertain databases.

An interaction describes an e�ect that variables have � or appear to have � on each

other. Interaction mining is the process of mining structures on variables describing

their interaction patterns � usually represented as sets, graphs or rules. Interac-

tions may be complex, represent both positive and negative relationships, and the

presence of interactions can in�uence another interaction or variable in interesting

ways. Finding interactions is useful in domains ranging from social network analysis,

marketing, the sciences, e-commerce, to statistics and �nance. Many data mining

tasks may be considered as mining interactions, such as clustering; frequent itemset

mining; association rule mining; classi�cation rules; graph mining; �ock mining; etc.

Interaction mining problems can have very di�erent semantics, pattern de�nitions,

interestingness measures and data types. Solving a wide range of interaction mining

problems at the abstract level, and doing so e�ciently � ideally more e�ciently than

with specialised approaches, is a challenging problem.

This thesis introduces and solves the Generalised Interaction Mining (GIM) and

Generalised Rule Mining (GRM) problems. GIM and GRM use an e�cient and in-

tuitive computational model based purely on vector valued functions. The semantics

of the interactions, their interestingness measures and the type of data considered

are �exible components of vectorised frameworks. By separating the semantics of

a problem from the algorithm used to mine it, the frameworks allow both to vary

independently of each other. This makes it easier to develop new methods by fo-

cusing purely on a problem's semantics and removing the burden of designing an

vii

viii

e�cient algorithm. By encoding interactions as vectors in the space (or a sub-space)

of samples, they provide an intuitive geometric interpretation that inspires novel

methods. By operating in time linear in the number of interesting interactions that

need to be examined, the GIM and GRM algorithms are optimal. The use of GRM

or GIM provides e�cient solutions to a range of problems in this thesis, including

graph mining, counting based methods, itemset mining, clique mining, a clustering

problem, complex pattern mining, negative pattern mining, solving an optimisation

problem, spatial data mining, probabilistic itemset mining, probabilistic association

rule mining, feature selection and generation, classi�cation and multiplication rule

mining.

Data mining is a hypothesis generating endeavour, examining large databases for

patterns suggesting novel and useful knowledge to the user. Since the database is a

sample, the patterns found should describe hypotheses about the underlying process

generating the data. In searching for these patterns, a DM algorithm makes addi-

tional hypothesis when it prunes the search space. Natural questions to ask then,

are: �Does the algorithm �nd patterns that are statistically signi�cant?� and �Did

the algorithm make signi�cant decisions during its search?�. Such questions address

the quality of patterns found though data mining and the con�dence that a user can

have in utilising them. Finally, statistics has a range of useful tools and measures

that are applicable in data mining. In this context, this thesis incorporates statis-

tical techniques � in particular, non-parametric signi�cance tests and correlation �

directly into novel data mining approaches. This idea is applied to statistically signif-

icant and relatively class correlated rule based classi�cation of imbalanced data sets;

signi�cant frequent itemset mining; mining complex correlation structures between

variables for feature selection; mining correlated multiplication rules for interaction

mining and feature generation; and conjunctive correlation rules for classi�cation.

The application of GIM or GRM to these problems lead to e�cient and intuitive

solutions.

Frequent itemset mining (FIM) is a fundamental problem in data mining. While it is

usually assumed that the items occurring in a transaction are known for certain, in

many applications the data is inherently noisy or probabilistic; such as adding noise

in privacy preserving data mining applications, aggregation or grouping of records

leading to estimated purchase probabilities, and databases capturing naturally un-

certain phenomena. The consideration of existential uncertainty of item(sets) makes

traditional techniques inapplicable. Prior to the work in this thesis, itemsets were

mined if their expected support is high. This returns only an estimate, ignores the

probability distribution of support, provides no con�dence in the results, and can

ix

lead to scenarios where itemsets are labeled frequent even if they are more likely

to be infrequent. Clearly, this is undesirable. This thesis proposes and solves the

Probabilistic Frequent Itemset Mining (PFIM) problem, where itemsets are consid-

ered interesting if the probability that they are frequent is high. The problem is

solved under the possible worlds model and a proposed probabilistic framework for

PFIM. Novel and e�cient methods are developed for computing an itemset's exact

support probability distribution and frequentness probability, using the Poisson bi-

nomial recurrence, generating functions, or a Normal approximation. Incremental

methods are proposed to answer queries such as �nding the top-k probabilistic fre-

quent itemsets. A number of specialised PFIM algorithms are developed, with each

being more e�cient than the last: ProApriori is the �rst solution to PFIM and is

based on candidate generation and testing. ProFP-Growth is the �rst probabilistic

FP-Growth type algorithm and uses a proposed probabilistic frequent pattern tree

(Pro-FPTree) to avoid candidate generation. Finally, the application of GIM leads to

GIM-PFIM; the fastest known algorithm for solving the PFIM problem. It achieves

orders of magnitude improvements in space and time usage, and leads to an intuitive

subspace and probability-vector based interpretation of PFIM.

x

Zusammenfassung

Knowledge Discovery in Datenbanken (KDD) ist der nicht-triviale Prozess, gültiges,

neues, potentiell nützliches und letztendlich verständliches Wissen aus groÿen Daten-

sätzen zu extrahieren. Der wichtigste Schritt im KDD Prozess ist die Anwendung

e�zienter Data Mining (DM) Algorithmen um interessante Muster (�Patterns�) in

Datensätzen zu �nden. Diese Dissertation beschäftigt sich mit drei verwandten

Themen: Generalised Interaction und Rule Mining, die Einbindung von statistis-

chen Methoden in neue DM Algorithmen und Probabilistic Frequent Itemset Mining

(PFIM) in unsicheren Daten.

Eine Interaktion (�Interaction�) beschreibt den Ein�uss, den Variablen aufeinander

haben. Interaktionsmining ist der Prozess, Strukturen zwischen Variablen zu �nden,

die Interaktionsmuster beschreiben. Diese werden gewöhnlicherweise als Mengen,

Graphen oder Regeln repräsentiert. Interaktionen können komplex sein und sowohl

positive als auch negative Beziehungen repräsentieren. Auÿerdem kann das Vorhan-

densein von Interaktionen andere Interaktionen oder Variablen beein�ussen. Interak-

tionen stellen in Bereichen wie Soziale Netzwerk Analyse, Marketing, Wissenschaft,

E-commerce, Statistik und Finanz wertvolle Information dar. Viele DM Methoden

können als Interaktionsmining betrachtet werden: Zum Beispiel Clustering, Frequent

Itemset Mining, Assoziationsregeln, Klassi�kationsregeln, Graph Mining, Flock Min-

ing, usw. Interaktionsmining-Probleme können sehr unterschiedliche Semantik, Mus-

terde�nitionen, Interessantheitsmaÿe und Datentypen erfordern. Interaktionsmining-

Probleme auf breiter und abstrakter Basis e�zient � und im Idealfall e�zienter als

mit spezialisierten Methoden � zu lösen, ist ein herausforderndes Problem.

Diese Dissertation führt das Generalised Interaction Mining (GIM) und das Gener-

alised Rule Mining (GRM) Problem ein und beschreibt Lösungen für diese. GIM

und GRM benutzen ein e�zientes und intuitives Berechnungsmodell, das einzig

und allein auf vektorbasierten Funktionen beruht. Die Semantik der Interaktionen,

ihre Interessantheitsmaÿe und die Datenarten, sind Komponenten in vektorisierten

Frameworks. Die Frameworks ermöglichen die Trennung der Problemsemantik vom

xi

xii

Algorithmus, so dass beide unabhängig voneinander geändert werden können. Die

Entwicklung neuer Methoden wird dadurch erleichtert, da man sich völlig auf die

Problemsemantik fokussieren kann und sich nicht mit der Entwicklung problemspez-

i�scher Algorithmen befassen muss. Die Kodierung der Interaktionen als Vektoren

im gesamten Raum (oder Teilraum) der Stichproben stellt eine intuitive geometrische

Interpretation dar, die neuartige Methoden inspiriert. Die GRM- und GIM- Algo-

rithmen haben lineare Laufzeit in der Anzahl der Interaktionen die geprüft werden

müssen und sind somit optimal. Die Anwendung von GRM oder GIM in dieser

Dissertation ermöglicht e�ziente Lösungen für eine Reihe von Problemen, wie zum

Beispiel Graph Mining, Aufzählungsmethoden, Itemset Mining, Clique Mining, ein

Clusteringproblem, das Finden von komplexen und negativen Mustern, die Lösung

von Optimierungsproblemen, Spatial Data Mining, probabilistisches Itemset Min-

ing, probabilistisches Mining von Assoziationsregel, Selektion und Erzeugung von

Features, Mining von Klassi�kations- und Multiplikationsregel, u.v.m.

Data Mining ist ein Verfahren, das Hypothesen produziert, indem es in groÿen

Datensätzen Muster �ndet und damit für den Anwender neues und nützliches Wis-

sen vorschlägt. Da die untersuchte Datenbank ein Resultat des datenerzeugenden

Prozesses ist, sollten die gefundenen Muster Erkenntnisse über diesen Prozess liefern.

Bei der Suche nach diesen Mustern macht ein DM Algorithmus zusätzliche Hypothe-

sen, wenn Teile des Suchraums ausgeschlossen werden. Die folgenden Fragen sind

dabei wichtig: �Findet der Algorithmus statistisch signi�kante Muster?� und �Hat

der Algorithmus während des Suchprozesses signi�kante Entscheidungen getro�en?�.

Diese Fragen beein�ussen die Qualität der Muster und die Sicherheit die der An-

wender in ihrer Benutzung haben kann. Da die Statistik auch eine Reihe von nüt-

zlichen Methoden bereitstellt, die für DM anwendbar sind, kombiniert diese Dis-

sertation einige statistische Methoden mit neuen DM Algorithmen, insbesondere

nicht-parametrische Signi�kanztests und Korrelation. Diese Idee wird für die folgen-

den Probleme angewandt: Signi�kante und "relatively class correlated" regelbasierte

Klassi�kation in unsymmetrischen Datensätzen, signi�kantes Frequent Itemset Min-

ing, Mining von komplizierten Korrelationsstrukturen zwischen Variablen zum Zweck

der Featureselektion, Mining von korrelierten Multiplikationsregeln zum Zwecke des

Interaktionsminings und Featureerzeugung und konjunktive Korrelationsregeln für

die Klassi�kation. Die Anwendung von GIM und GRM auf diese Probleme führt zu

e�zienten und intuitiven Lösungen.

Frequent Itemset Mining (FIM) ist ein fundamentales Problem im Data Mining.

Obwohl allgemein die Annahme gilt, dass in einer Transaktion enthaltene Items

bekannt sind, sind die Daten in vielen Anwendungen unsicher oder probabilistisch.

xiii

Beispiele sind das Hinzufügen von Rauschen zu Datenschutzzwecken, die Grup-

pierung von Datensätzen die zu geschätzten Kaufwahrscheinlichkeiten führen und

Datensätze deren Herkunft von Natur aus unsicher sind. Die Berücksichtigung von

unsicheren Datensätzen verhindert die Anwendung von traditionellen Methoden. Vor

der Arbeit in dieser Dissertation wurden Itemsets gesucht, deren erwartetes Vorkom-

men hoch ist. Diese Methode produziert jedoch nur Schätzwerte, vernachlässigt

die Wahrscheinlichkeitsverteilung der Vorkommen, bietet keine Sicherheit für die

Genauigkeit der Ergebnisse und kann zu Szenarien führen in denen das Vorkommen

als häu�g eingestuft wird, obwohl die Wahrscheinlichkeit höher ist, dass sie nur selten

vorkommen. Solche Ergebnisse sind natürlich unerwünscht. Diese Dissertation führt

das Probabilistic Frequent Itemset Mining (PFIM) ein. Diese Lösung betrachtet

Itemsets als interessant, wenn die Wahrscheinlichkeit groÿ ist, dass sie häu�g vorkom-

men. Die Problemlösung besteht aus der Anwendung des Possible Worlds Models und

dem vorgeschlagenen probabilistisches Framework für PFIM. Es werden neue und ef-

�ziente Methoden entwickelt um die Wahrscheinlichkeitsverteilung des Vorkommens

und die Häu�gkeitsverteilung eines Itemsets zu berechnen. Dazu werden die Poisson

Binomial Recurrence, Generating Functions, oder eine normalverteilte Annäherung

verwendet. Inkrementelle Methoden werden vorgeschlagen um Fragen wie "Finde

die top-k Probabilistic Frequent Itemsets" zu beantworten. Mehrere PFIM Algorith-

men werden entwickelt, wobei die E�zienz von Algorithmus zu Algorithmus steigt:

ProApriori ist die erste Lösung für PFIM und basiert auf erzeugen und testen von

Kandidaten. ProFP-Growth ist der erste probabilistische FP-Growth Algorithmus.

Er schlägt einen Probabilistic Frequent Pattern Tree (Pro-FPTree) vor, der Kan-

didatenerzeugung über�üssig macht. Die Anwendung von GIM führt schlieÿlich zu

GIM-PFIM, dem schnellsten bekannten Algorithmus zur Lösung des PFIM Prob-

lems. Dieser Algorithmus resultiert in einem um Gröÿenordnungen besseren Zeit-

und Speicherbedarf, und führt zu einer intuitiven Interpretation von PFIM, basierend

auf Unterräumen und Wahrscheinlichkeitsvektoren.

xiv

Acknowledgments

I would like to acknowledge all the people who supported me during the development

of this thesis. I can only mention some of them here, but my thanks go to all.

First I would like to express my sincere gratitude to my supervisor and �rst referee,

Professor Hans-Peter Kriegel, for his encouragement and advice. He also has a special

talent for creating an inspiring, supportive and productive environment within his

database systems research group. I would also like to thank Professor Jian Pei for

his enthusiastic willingness to be the second referee of this thesis.

This thesis bene�ted greatly from my colleagues at the database research group, who

I thank not only for the great teamwork, advice, productive discussions and exchange

of ideas, but also the fun we had. In no particular order then, my warmest thanks

go to: Dr. Matthias Renz, Andreas Zü�e, Tobias Emrich, Thomas Bernecker, Dr.

Peer Kröger, Dr. Matthias Schubert, Marisa Thoma, Franz Graf, Erich Schubert,

Dr. Arthur Zimek, Dr. Irene Ntoutsi and Dr. Elke Achtert. I am also grateful to

Susanne Grienberger and Franz Krojer for their organisational and technical support.

Some of the research in this thesis was performed while at the University of Sydney,

Australia. I would particularly like to thank my former colleagues Dr. Ghazi Al-

Naymat and Dr. Bavani Arunasalam for fruitful discussions and input.

Last but de�nitely not least, I am very grateful for the support of my family � and

in particular my parents for their never ending encouragement.

xv

xvi

Publications

Publications during the author's Doctoral and PhD candidatures are listed below.

[18] and [19] were joint work with the team in Professor Hans-Peter Kriegel's database

systems group in the Ludwig-Maximilians-Universität, Munich, Germany. [94] was

joint work with Ghazi Al-Naymat at the University of Sydney.

Publications Contributing to this Thesis

The following publications contributed to this thesis, as will be described in sec-

tion 1.2.

• [19] Thomas Bernecker, Hans-Peter Kriegel, Matthias Renz, Florian Verhein,

Andreas Zü�e: Probabilistic Frequent Pattern Growth for Itemset Mining in

Uncertain Databases

Technical report, arXiv.org, arXiv:1008.2300v1, Fri, 13 Aug 2010.

• [93] Florian Verhein: Generalised Rule Mining

The 15th International Conference on Database Systems for Advanced Appli-

cations (DASFAA'2010), 1 � 4 April 2010, Tsukuba, Japan. Lecture Notes in

Computer Science, Volume 5981/2010, pp. 85-92, Springer, 2010.

• [18] Thomas Bernecker, Hans-Peter Kriegel, Matthias Renz, Florian Verhein,

Andreas Zü�e: Probabilistic Frequent Itemset Mining in Uncertain Databases

The 15th ACM SIGKDD Conference on Knowledge Discovery and Data Mining

(SIGKDD'2009). Paris, France, June 28 � July 1 2009. pp. 119-128, ACM

Press, 2009.

• [91] Florian Verhein: Mining Complete Complex Maximal Sets of Correlated

Variables with Applications to Feature Subset Selection

2008 SIAM International Conference on Data Mining (SDM'2008). April 24-26

2008, Atlanta, Georgia, USA. pp. 597-608, SIAM, 2008.

xvii

xviii

• [94] Florian Verhein, Ghazi Al-Naymat: Fast Mining of Complex Spatial Co-

location Patterns using GLIMIT

IEEE International Conference on Data Mining Workshops (ICDM-W'2007).

28 � 31 October 2007, Omaha NE, USA. pp. 679-684, IEEE Computer Society,

2007.

• [98] Florian Verhein, Sanjay Chawla: Using Signi�cant, Positively Associated

and Relatively Class Correlated Rules For Associative Classi�cation of Imbal-

anced Datasets

IEEE International Conference on Data Mining (ICDM'2007). 28 � 31 October

2007, Omaha NE, USA. pp. 679-684, IEEE Computer Society, 2007.

• [96] Florian Verhein, Sanjay Chawla: Geometrically Inspired Itemset Mining

IEEE International Conference on Data Mining (ICDM'2006). 18 � 22 Decem-

ber 2006, Hong Kong. pp. 655-666, IEEE Computer Society, 2006.

Other Publications

The following publications constitute research performed by the author in spatio-

temporal data mining. They contributed to the author's PhD in the Faculty of

Engineering and Information Technology at The University of Sydney, Australia.

The thesis was titled �Mining Complex Spatio-Temporal Movement Patterns�.

• [92] Florian Verhein. Mining Complex Spatio-Temporal Sequence Patterns.

2009 SIAM International Conference on Data Mining (SDM'2009). April 30 �

May 2 2009, Sparks, Nevada, USA. pp. 605-616, SIAM, 2009.

• [99] Florian Verhein, Sanjay Chawla. Mining Spatio-Temporal Patterns in Ob-

ject Mobility Databases

Data Mining and Knowledge Discovery Journal (DMKD), Volume 16, Number

1 / February, 2008 (online 2007). Springer.

• [90] Florian Verhein: k-STARs: Sequences of Spatio-Temporal Association

Rules

IEEE International Conference on Data Mining Workshops (ICDM-W'2006).

18 � 22 December 2006, Hong Kong. pp. 387-394, IEEE Computer Society,

2006.

• [97] Florian Verhein, Sanjay Chawla: Mining Spatio-temporal Association Rules,

Sources, Sinks, Stationary Regions and Thoroughfares in Object Mobility Databases

xix

The 11th International Conference on Database Systems for Advanced Appli-

cations (DASFAA'2006). 12 � 15 April 2006, Singapore. Lecture Notes in

Computer Science, Volume 3882, pp. 187-201, Springer, 2006.

• [95] Florian Verhein, Sanjay Chawla. Mining Spatio-Temporal Association

Rules, Sources, Sinks, Stationary Regions and Thoroughfares in Object Mo-

bility Databases

IEEE International Conference on Data Mining Workshops (ICDM-W'2005).

Publication Outlet Ranking

At the time of writing, the outlets for the publications listed above were ranked as follows:

Acronym Conference or Journal Name CORE'07 ERA'10 MSAS

DATAMINE Data Mining and Knowledge Discovery

journal

A 3

SIGKDD ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining

A+ A 1

ICDM The IEEE International Conference on

Data Mining

A+ A 3

DASFAA The International Conference on Database

Systems for Advanced Application

A A 9

SDM SIAM (Society for Industrial and Applied

Mathematics) International Conference on

Data Mining

A A 5

CORE'07: Computing research and education association of australasia (CORE) �Final

2007 Australian Ranking of ICT Conferences�1. ICT Conferences were ranked in tiers

{A+, A,B,C}. Journals were not ranked.

ERA'10: Since late 2008, journals and conferences are ranked under the Excellence in

Research for Australia (ERA) initiative2. Conferences were ranked in tiers {A,B,C} and
journals in tiers {A∗, B, C,D}. �The A tier for conferences is equivalent to the A∗ and A

tiers for ranked journals.�3.

MAS: Microsoft Academic Search. Data mining conference and journal ranks by number

of in domain citations4. January 2011.

1Previously available from http://www.core.edu.au/rankings/ConferenceRankingMain.html
2Available from http://www.arc.gov.au/era/
3http://www.arc.gov.au/era/era_journal_list.htm
4http://academic.research.microsoft.com/

http://www.core.edu.au/rankings/Conference Ranking Main.html
http://www.arc.gov.au/era/
http://www.arc.gov.au/era/era_journal_list.htm
http://academic.research.microsoft.com/

xx

Chapter Summary

Abstract vii

Zusammenfassung xi

Aknowledgements xv

Publications xvii

Chapter Summary xxii

Contents xxxii

List of Figures xxxvi

I Preliminaries xxxvii

1 Introduction 1

2 Background 13

II Generalised Interaction Mining 21

3 Generalised Interaction Mining 23

4 Geometrically Inspired Itemset Mining in the Transpose 65

5 Fast Mining of Complex Spatial Co-location Patterns 97

xxi

xxii CHAPTER SUMMARY

6 Generalised Rule Mining 113

7 Correlated Multiplication Rules with Applications 141

III Statistical Data Mining Methods 155

8 Classi�cation of Imbalanced Databases using Signi�cant Rules 157

9 Mining Complex Correlation Structures 183

IV Mining Uncertain and Probabilistic Databases 207

10 Probabilistic Frequent Itemset Mining 209

11 Signi�cant Frequent Itemset Mining 235

12 Probabilistic Frequent Pattern Growth 251

13 Vectorised Probabilistic Frequent Itemset Mining 279

V Conclusions 291

14 Conclusions and Future Work 293

Bibliography 311

Contents

Abstract vii

Zusammenfassung xi

Aknowledgements xv

Publications xvii

Chapter Summary xxii

Contents xxxii

List of Figures xxxvi

I Preliminaries xxxvii

1 Introduction 1

1.1 Research Problems and Thesis Overview 2

1.1.1 Generalised Interaction Mining 2

1.1.2 Statistical Approaches in Interaction Mining 5

1.1.3 Probabilistic Frequent Itemset Mining in Uncertain Databases 7

1.1.4 Summary of Data Mining Problems Addressed in this Thesis 9

1.2 Publications Contributing to Chapters of this Thesis 9

xxiii

xxiv CONTENTS

2 Background 13

2.1 Knowledge Discovery in Databases 14

2.2 Data Mining . 17

II Generalised Interaction Mining 21

3 Generalised Interaction Mining 23

3.1 Introduction . 24

3.1.1 Relationship to other Chapters 26

3.1.2 Contributions . 27

3.1.3 Organisation . 27

3.2 Generalised Interaction Mining Framework 27

3.3 Generalised Interaction Mining Algorithm 32

3.3.1 Pre�x Tree . 32

3.3.2 Algorithm . 34

3.3.3 Complexity . 36

3.4 Counting Based Approaches: The Simplest Example 37

3.5 Mining Maximal Interactions . 38

3.6 Including Negative Patterns . 40

3.7 Solving Top-Down or Monotonic Problems with GIM 42

3.8 Graph Mining: When the Input is an Adjacency or Distance Matrix 44

3.8.1 Clique Mining . 44

3.8.2 Mining Maximal Cliques . 47

3.8.3 Solving the Independent Set Problem 48

3.9 Clustering . 49

3.10 Mining Uncertain or Probabilistic Databases 50

3.11 Complex (�Non-Trivial�) Interestingness Measures 52

3.11.1 Complexity . 53

3.12 Weak Anti-monotonicity and when Order is Important 55

CONTENTS xxv

3.12.1 Maximum Participation Index (maxPI) 55

3.13 Forced Anti-monotonicity . 58

3.14 High Dimensional Data and Dimensionality Reduction 59

3.15 Vector Representations and Subspace Projections 59

3.15.1 Subspaces, Projections and Geometric Interaction Mining . . 60

3.16 Applications and Examples in Other Chapters 61

3.16.1 Mining Complex, Maximal and Complete Sub-graphs and Sets

of Correlated Variables . 61

3.16.2 Geometric Itemset Mining, Frequent Itemset Mining 62

3.16.3 Mining Complex Spatial Co-location Patterns 62

3.16.4 Probabilistic Itemset Mining in Uncertain Databases 62

3.17 Conclusion . 62

4 Geometrically Inspired Itemset Mining in the Transpose 65

4.1 Introduction . 66

4.1.1 Contributions . 69

4.1.2 Organisation . 69

4.2 Some Challenges and Important Concepts 69

4.2.1 The Transposed View . 70

4.2.2 Number of Item-vectors Used 70

4.3 Related Work . 71

4.4 Item-vector Framework . 76

4.5 Algorithm . 80

4.5.1 Data Structures . 80

4.5.2 Important Facts and Properties 81

4.5.3 Algorithm Example . 83

4.5.4 Algorithm Complexity . 83

4.5.5 Algorithm Details . 87

4.6 Mining Association Rules . 88

4.7 Experiments . 91

4.8 Conclusion and Future Work . 96

xxvi CONTENTS

5 Fast Mining of Complex Spatial Co-location Patterns 97

5.1 Introduction . 98

5.1.1 Problem Statement . 101

5.1.2 Contributions . 101

5.1.3 Organisation . 102

5.2 Complex Spatial Co-location Pattern Discovery Process 102

5.3 Maximal Cliques . 103

5.4 Extracting Complex Relationships 103

5.5 Mining Interesting Complex Relationships 104

5.5.1 Mapping the Problem to GLIMIT 105

5.6 Mapping the Problem to GIM . 106

5.7 Experiments . 106

5.8 Related Work . 109

5.9 Conclusion . 111

6 Generalised Rule Mining 113

6.1 Introduction . 114

6.1.1 Contributions . 115

6.1.2 Organisation . 116

6.2 Related Work . 116

6.3 Novel and Motivational Methods Solved Using GRM 118

6.3.1 Probabilistic Association Rule Mining (PARM) 118

6.3.2 Conjunctive Correlation Rules for Classi�cation (CCRules) . 119

6.3.3 Directing the Search by Correlation Improvement 121

6.3.3.1 CCRules for Classi�cation 122

6.4 Generalised Rule Mining (GRM) Framework 123

6.5 Generalised Rule Mining Algorithm 127

6.5.1 Mutual Exclusion Constraints 127

6.5.2 Categorized Pre�x Tree . 128

CONTENTS xxvii

6.5.3 Generalized Rule Mining Algorithm 129

6.5.4 Complexity . 131

6.6 Experiments . 133

6.6.1 Complexity Experiments . 134

6.6.2 CCRules for Classi�cation . 136

6.7 Conclusion . 137

6.8 Appendix: Notes on using Pearson's Correlation for the Evaluation of

Rules . 138

7 Correlated Multiplication Rules with Applications 141

7.1 Introduction . 142

7.1.1 Contributions . 142

7.1.2 Organisation . 143

7.2 Related Work . 143

7.2.1 Rule Mining . 143

7.2.2 Correlation Rules . 144

7.3 Correlated Multiplication Rules (CMRules) 144

7.3.1 Directing the Search by Correlation Improvement 146

7.4 CMRules for Feature Selection and Generation 148

7.5 Mining CMRules . 148

7.6 Experiments . 151

7.6.1 E�ectiveness . 151

7.6.2 E�ciency . 152

7.7 Conclusion . 153

III Statistical Data Mining Methods 155

8 Classi�cation of Imbalanced Databases using Signi�cant Rules 157

8.1 Introduction . 158

8.1.1 Contributions . 158

xxviii CONTENTS

8.1.2 Organisation . 159

8.2 Background: Associative Classi�cation 159

8.2.1 Association Rule Mining . 159

8.2.2 Associative Classi�cation . 159

8.2.3 Associative Classi�cation Rule Mining 160

8.3 Signi�cance and Class Correlation Ratio for Rules 160

8.3.1 Fisher's Exact Test . 160

8.3.2 Correlation (Interest Factor) 161

8.3.3 Class Correlation Ratio . 162

8.4 Relative Correlation Bias of Con�dence (and Support) on Imbalanced

Data sets . 163

8.5 SPARCCC . 166

8.5.1 Interestingness and Rule Ranking 166

8.5.1.1 Interestingness . 166

8.5.1.2 Rule Ranking . 167

8.5.2 Search and Pruning Strategies 168

8.5.3 Rule Selection Method . 170

8.5.4 Classi�cation Method . 170

8.5.5 A Note on Interpreting the Rules 171

8.6 Mining SPARCCC Rules using GRM 172

8.7 Experiments . 174

8.7.1 Original (Balanced) Data sets 174

8.7.2 Imbalanced Data sets . 177

8.8 Related Work . 179

8.9 Conclusion . 181

9 Mining Complex Correlation Structures 183

9.1 Introduction . 184

9.1.1 Motivations . 185

CONTENTS xxix

9.1.2 Contributions . 186

9.1.3 Organisation . 187

9.2 Complete, Complex Variable Sub-graphs, Sets and Correlation 187

9.2.1 Highly Correlated, Complex Variable Sets 188

9.2.2 Uncorrelated Variable Sets . 191

9.3 Mining Complex Maximal Sets: Algorithm 192

9.3.1 Algorithm . 192

9.3.2 Complex Sets . 193

9.3.3 Maximal Complex Sets . 194

9.3.4 Mining Uncorrelated Sets . 194

9.3.5 Complexity . 196

9.4 Mining the Patterns using GIM . 197

9.5 Selecting a Representative Set: an Application to Feature Subset Se-

lection . 197

9.6 Experiments . 200

9.6.1 Run Time Performance . 200

9.6.2 Feature Selection Performance 203

9.7 Related Work . 204

9.7.1 Clique and Set Mining . 204

9.7.2 Feature Subset Selection . 205

9.8 Conclusion . 206

IV Mining Uncertain and Probabilistic Databases 207

10 Probabilistic Frequent Itemset Mining 209

10.1 Introduction . 210

10.1.1 Uncertain Data Model . 211

10.1.2 Problem De�nition . 214

10.1.3 Contributions . 214

xxx CONTENTS

10.1.4 Organisation . 215

10.2 Related Work . 215

10.3 Probabilistic Frequent Itemsets . 217

10.3.1 Probabilistic Support . 218

10.3.2 Frequentness Probability . 220

10.4 E�cient Computation of Probabilistic Frequent Itemsets 221

10.4.1 E�cient Computation of Probabilistic Support 221

10.4.1.1 Certainty Optimisation or �0-1-Optimisation� 223

10.4.2 Probabilistic Filter Strategies 224

10.4.2.1 Monotonicity Criteria 224

10.4.2.2 Pruning Criterion 225

10.5 Probabilistic Frequent Itemset Mining (PFIM) 226

10.6 Incremental Probabilistic Frequent Itemset Mining (I-PFIM) 227

10.6.1 Incremental Probabilistic Frequent Itemset Mining Algorithm 227

10.6.2 Top-k Probabilistic Frequent Itemsets Query 228

10.7 Experimental Evaluation . 229

10.7.1 Evaluation of the Frequentness Probability Calculations . . . 229

10.7.1.1 Scalability . 229

10.7.1.2 E�ect of the Density 231

10.7.1.3 E�ect of minSup . 231

10.7.2 Evaluation of the Probabilistic Frequent Itemset Mining Algo-

rithms . 231

10.8 Conclusion . 234

11 Signi�cant Frequent Itemset Mining 235

11.1 Introduction . 236

11.1.1 Problem De�nition . 236

11.1.2 Contributions . 237

11.1.3 Organisation . 238

CONTENTS xxxi

11.2 Related Work . 238

11.3 Signi�cant Frequent Itemsets . 239

11.3.1 Discussion of the Independence Assumption 240

11.3.2 Parametric Computation of the p-value 241

11.3.3 Non-Parametric Calculation of the (Exact) p-value 243

11.4 Incremental Signi�cant Frequent Itemset Mining 244

11.5 Experimental Evaluation . 245

11.5.1 Expected vs. Signi�cant Frequent Itemsets 245

11.5.2 Evaluation of the Parametric Test 247

11.5.3 Evaluating the Independence Assumption 249

11.6 Conclusion . 250

12 Probabilistic Frequent Pattern Growth 251

12.1 Introduction . 252

12.1.1 Problem De�nition and Data Model 253

12.1.2 Contributions . 254

12.1.3 Organisation . 254

12.2 Related Work . 254

12.3 Probabilistic Frequent-Pattern Tree (ProFP-Tree) 255

12.3.1 ProFP-Tree Construction . 257

12.3.1.1 Example . 258

12.3.2 Complexity . 259

12.4 Extracting Certain and Uncertain Support Probabilities 262

12.5 E�cient Computation of Probabilistic Frequent Itemsets 263

12.5.1 E�cient Computation of Probabilistic Support 264

12.5.1.1 Pruning using a Lower Bound 266

12.5.1.2 Pruning using an Upper Bound 267

12.5.1.3 Certainty Optimisation 267

12.5.1.4 Discussion . 268

xxxii CONTENTS

12.6 Extracting Conditional ProFP-Trees 269

12.7 ProFP-Growth Algorithm . 269

12.8 Experimental Evaluation . 272

12.8.1 Number of Transactions . 272

12.8.2 Number of Items . 274

12.8.3 E�ect of Uncertainty and Certainty 275

12.8.4 E�ect of MinSup . 276

12.9 Conclusion . 277

13 Vectorised Probabilistic Frequent Itemset Mining 279

13.1 Introduction . 280

13.1.1 Research Problem and Data Model 280

13.1.2 Contributions . 281

13.1.3 Organisation . 281

13.2 Related Work . 282

13.3 Solving PFIM with GIM . 282

13.4 Experiments . 284

13.4.1 Arti�cial Data Sets . 284

13.4.2 Well Known and Real World Databases 286

13.5 Conclusion . 290

V Conclusions 291

14 Conclusions and Future Work 293

Bibliography 311

List of Figures

1.1 A summary of problems addressed in this thesis. 10

2.1 The classic view of the Knowledge Discovery in Databases (KDD)

process. 16

3.1 An interaction V ′ visualised as a vector xV ′ in the space X of (3)

samples. 28

3.2 Pre�x tree examples. 34

3.3 The fringe of a pre�x tree. 41

3.4 Clique mining example. 45

4.1 Running item-vector example . 67

4.2 A complete pre�x tree. 81

4.3 Complete pre�x tree (when all itemsets are interesting). 84

4.4 GLIMIT itemset mining example part 1. 85

4.5 GLIMIT itemset mining example part 1. 86

4.6 Maximum number of item-vectors needed. 87

4.7 Run time results. Apriori, FP-Growth and GLIMIT. 92

4.8 Run time results. FP-Growth and GLIMIT. 93

4.9 Number of item-vectors needed and maximum frontier size. 94

5.1 Clique example. 98

5.2 The complete mining process. 102

5.3 Computational Performance. The minPI threshold was changed in

increments of 0.05. 108

xxxiii

xxxiv LIST OF FIGURES

5.4 The run time of GLIMIT on complex maximal cliques with negative

patterns, versus the number of interesting patterns found. 109

5.5 Number of interesting patterns found. 109

6.1 Contingency table for a rule A′ → c. 121

6.2 The rule A′ → c viewed geometrically. 123

6.3 Example of a Complete (full) Categorized Pre�x Tree. 129

6.4 Run time comparison of support based conjunctive rules. 135

6.5 Run time comparison of Probabilistic Association Rule Mining (PARM).135

7.1 Accuracy results when Correlated Multiplication Rules are used as

composite features. 151

7.2 Number of CMRules mined vs minCI on the Arrhythmia data set. . 152

7.3 Run time in comparison to the number of rules mined on the Arrhyth-

mia data set. 153

8.1 2× 2 Contingency Table for X → y. 163

8.2 Statements for lemma 8.5. ¬y means all class attribute-values other

than y. 163

8.3 The contingency table [a, b; c, d] used to test for the signi�cance of the

rule X → y in comparison to one of its generalizations X − {z} → y. 169

8.4 Accuracy on original data sets. 175

8.5 True positive rate (recall, sensitivity) of the minority class on imbal-

anced versions of the data sets. 176

8.6 Computational performance on original and imbalanced data sets. . 177

9.1 Simple Example of the lemma and corrolaries for sub-graphs of size 3. 189

9.2 Example of corrolary 9.3 . 191

9.3 Data set properties. 200

9.4 Run time results part 1. 201

9.5 Run time results part 2. 202

9.6 Accuracy results for various Classi�ers on the Arrhythmia data set. 203

LIST OF FIGURES xxxv

10.1 Example of a small uncertain transaction database and the possible

worlds it generates. 212

10.2 Example of a larger uncertain transaction database. 213

10.3 Summary of notations. 218

10.4 Probabilistic support of itemset X = {D} in the uncertain database

of �gure 10.2. 220

10.5 Dynamic computation scheme. 224

10.6 Visualisation of the pruning criterion. 225

10.7 Run time evaluation of the frequentness probability computation al-

gorithms with respect to the database size. 230

10.8 Run time evaluation of frequentness probability calculations with re-

spect to the database's density. 232

10.9 Run time evaluation with respect to minSup. 233

10.10E�ectiveness of the Incremental PFIM approach. 233

11.1 Additional notation introduced in this chapter. 239

11.2 Number of itemsets mined and run time of the expected frequent

itemsets and signi�cant frequent itemsets methods. 246

11.3 Convergence of the p-value on synthetic data sets (part 1). Continued

in �gure 11.4. 247

11.4 Convergence of the p-valueon synthetic data sets (part 2). 248

11.5 Real (retail) database, minSup = 2 249

11.6 Independence experiment. 249

12.1 An uncertain transaction database that will be used as a running

example. 253

12.2 ProFP-Tree generated from the uncertain transaction database given

in �gure 12.1. 257

12.3 Uncertain item pre�x tree after insertion of the �rst transactions. . . 259

12.4 Visualisation of the frequentness probability computation using the

generating function coe�cient method. 266

12.5 Upper bound pruning in the computation of the frequentness proba-

bility using generating functions. 267

xxxvi LIST OF FIGURES

12.6 Total run time and time required to build the ProFP-Tree in compar-

ison the the database size (number of transactions). 273

12.7 Tree size in comparison to database size for two databases. 274

12.8 E�ect of minSup. 275

12.9 Scalability with respect to the number of items. 276

12.10E�ect of uncertainty on the tree size 277

13.1 Example uncertain transaction database in terms of vectors. 282

13.2 Run time results on arti�cial data sets. 285

13.3 Run time results on the uncertain T10I4D100K data set. 287

13.4 Run time results on the uncertain T10I4D100K data set, showing each

setting for palter1. 288

13.5 Run time results on the full uncertain retail data set. 289

Part I

Preliminaries

xxxvii

Chapter 1

Introduction

This chapter introduces and motivates the three main research themes:

Generalised interaction mining, statistical approaches in data mining, and

mining probabilistic or uncertain databases. These high level research

problems are closely linked to each other, primarily through introduction

and development of the generalised interaction and rule mining problems

and the vectorised computational model and abstract frameworks which

can solve a wide range of data mining problems. This chapter provides an

overview of this thesis, explains how the problems are linked and how they

contribute to the thesis as a whole.

Note: Chapter 2 provides a background on knowledge discovery in

databases (KDD) and data mining (DM), and highlights some issues rel-

evant to this thesis.

1

2 1.1. RESEARCH PROBLEMS AND THESIS OVERVIEW

1.1 Research Problems and Thesis Overview

The research problems addressed in this thesis can be grouped into three main re-

search themes. These are organised into three parts: Part II considers interaction

mining problems and proposes novel solutions at the abstract level via generalised

frameworks and an e�cient vectorised computation model, part III considers the

integration of rigorous statistical approaches in novel data mining methods, and

part IV proposes and solves the problem of mining probabilistic frequent itemsets

in uncertain databases. The sections below introduce and motivate these problems,

describe the ways in which they are related to each other as well as providing an

overview of the thesis. The primary thread that draws the entire thesis together

is the generalised notion of interaction mining: All problems in this thesis can be

considered as interaction mining problems. Furthermore, the two main abstract com-

putational frameworks and algorithms � Generalised Interaction Mining (GIM) and

Generalised Rule Mining (GRM) � can be used to solve these problems. In fact, they

also turn out to be the most e�cient solutions.

1.1.1 Generalised Interaction Mining

An interaction is a broad term used in this thesis to describe an e�ect that variables

have on each other, or appear to have on each other. Interaction mining is the

process of mining structures on these variables that describe interaction patterns.

Usually, these structures can be represented as sets or graphs; where each variable

interacts, to some degree, with other variables in the structure. Interactions need

not be symmetric or two-way. They may also be complex, which generally means

being able to represent both positive and negative relationships, and can include

negative patterns. Furthermore, the presence of particular interactions can in�uence

another interaction or variable in interesting ways. These latter kinds of interactions

can be expressed as rules � a special type of interaction where an interaction in

the antecedent a�ects a variable in the consequent. Note that interaction mining is

unrelated to the research �eld of human-computer interaction.

Interactions are of interest in domains including social network analysis, marketing,

the sciences, to statistics and �nance. Furthermore, many data mining tasks can

be considered interaction mining, such as clustering (similar objects may be seen to

be �interacting�), frequent itemset mining (items bought frequently together suggest

these are used together), classi�cation (interactions amongst variables are exploited

for prediction or predictive rules capture potentially causal interactions), graph min-

ing (relationships between vertices can be considered interactions) etc.

Dr. rer. nat. Dissertation

CHAPTER 1. INTRODUCTION 3

The Generalised Interaction Mining (GIM) and Generalised Rule Mining (GRM)

problems introduced in this thesis are to solve a wide range of interaction mining

problems at the abstract level, and to do so very e�ciently. This means the prob-

lems must be solved at a general level, requiring the development of frameworks and

a consistent and e�cient computational model that can capture diverse interaction

mining problems. This is a challenging task since such problems have very di�er-

ent semantics governing the interactions, their structures and their interpretation.

For example, frequent itemset mining, graph mining, �nding correlation structures

between variables, clustering, rule based classi�cation, mining uncertain databases

and mining relationships in social networks (to name a few) have very di�erent prob-

lem de�nitions: The pattern de�nitions and semantics are di�erent; what makes an

interaction pattern interesting is di�erent and how the search should progress is dif-

ferent. The data is also very di�erent; for example, real valued records, a set of time

series, transaction databases, probabilistic databases, attribute value pairs produced

by discretization, instances and adjacency matrices. Finally, solving interaction min-

ing problems usually requires the simultaneous and interdependent development of

new pattern semantics and specialist algorithms for mining the respective pattern.

One may therefore conclude that it is not easy to develop a model abstract enough

to capture this variation in interaction mining problems, while at the same time

enabling the development of an equally abstract algorithm that also solves them

e�ciently � ideally, more e�ciently than specialist algorithms. Doing so is very ben-

e�cial however; it can separate the semantics of a problem from the algorithm used

to mine it. This makes it easier to develop new methods by allowing the data miner

to focus only on their problem's semantics and then plug them into a framework.

Furthermore, by removing the burden of designing an e�cient algorithm, this can

make it easier for end users to design custom data mining methods.

Solving interaction mining problems at the abstract level, as well as applications of

this to speci�c problems, is the primary focus of part II in this thesis.

Chapter 3 introduces and solves the GIM problem. GIM1 uses an e�cient and intu-

itive computational model based purely on vectors and vector valued functions. The

semantics of the interactions, their interestingness measures and the type of data

considered are all �exible components. Intuitively, each interaction is represented by

a vector in a space typically spanned by the samples in the database. The search pro-

gresses by performing functions on these vectors. By providing a layer of abstraction

between a problems semantics and the algorithm used to mine it, the computa-

tional model allows both to vary independently of each other. It also encourages

1Note that the term �GIM� refers both to the problem, as well as the model, framework and
algorithm proposed to solve interaction mining problems at the abstract level.

Florian Verhein

4 1.1. RESEARCH PROBLEMS AND THESIS OVERVIEW

an interesting geometric way of thinking about pattern mining problems in terms

of vector operations � especially when an interestingness measure has a geometric

interpretation. The GIM algorithm runs in linear time in the number of interesting

interactions and uses little space. Chapter 3 also shows how GIM can be applied to

a wide range of problems, including graph mining, counting based methods, itemset

mining, clique mining, clustering, complex pattern mining, negative pattern mining,

solving an optimisation problem, etc.

Chapter 4 presents a vectorised framework and novel algorithm called GLIMIT for

solving itemset mining problems from a geometric perspective in a transposed trans-

action database. It is shown to outperform FP-Growth and Apriori on the frequent

itemset mining task. An e�cient method for generating association rules is also

presented.

Chapter 5 considers the problem of mining complex co-location patterns between

di�erent types of objects in a real world spatial database. When applied to a large

astronomy database, this mines relationships � including negative relationships and

the e�ect of multiple occurrences � between di�erent types of galaxies. Part of this

problem can be solved e�ciently with GIM or GLIMIT.

Chapter 6 introduces and solves the Generalised Rule Mining (GRM) problem. Rules

are an important interaction pattern but existing approaches are limited to conjunc-

tions of binary literals, �xed measures and counting based algorithms. Rules can be

much more diverse, useful and interesting! The chapter rede�nes rule mining in terms

of a vectorised computational model similar to that used in GIM. This abstraction

is motivated through the introduction of three novel methods addressing problems

including correlation based classi�cation, �nding interactions for improving regres-

sion models and �nding probabilistic association rules in uncertain databases. Two

of these methods are introduced in chapter 6 (Probabilistic Association Rule Mining

(PARM) in uncertain databases and Conjunctive Correlation Rules (CCRules) for

classi�cation), while one is introduced in chapter 7.

Since interactions between variables in a database are often unknown to the detriment

of further analysis, classi�cation or mining tasks, chapter 7 proposes Correlated Mul-

tiplication Rules (CMRules). These capture interactions predictive of a dependent

variable and are the �rst rules with multiplicative semantics. Furthermore, a feature

selection and dimensionality reduction method is described whereby CMRules are

used to generate composite features. One advantage of this is that it enables linear

models to learn non-linear decision boundaries with respect to the original features.

As described in detail below, part II has a strong link to the problems considered in

Dr. rer. nat. Dissertation

CHAPTER 1. INTRODUCTION 5

parts III and IV of this thesis. The methods in part III can be solved2 e�ciently with

GIM and GRM: Chapter 8 with GRM and chapter 9 with GIM. Furthermore, GIM

turns out to be the most e�cient known solution to the probabilistic frequent itemset

mining problem considered in part IV. This thesis as a whole therefore validates GIM

and GRM's broad applicability, their ability to inspire novel approaches through the

vectorised model, the e�ciency of their algorithms � even when compared to state

of the art approaches for speci�c problems, and the usefulness of solving problems

at the abstract level.

1.1.2 Statistical Approaches in Interaction Mining

Data mining is a hypothesis generating endeavor. DM examines a large database

for patterns or interactions that suggest novel and useful knowledge to the user, as

de�ned by a pre-speci�ed interestingness measure. The database itself is a sample

drawn or generated from a process, therefore the patterns found should describe

hypotheses about the underlying process that generated the data. Furthermore,

in searching for these patterns, an algorithm usually makes additional hypothesis

pruning the search space as a result of evaluating patterns that the interestingness

measure did not rate high enough. Natural questions to ask then, are:

• Does the algorithm �nd patterns that are signi�cant? That is, are the patterns

unlikely to have occurred by chance or sampling e�ects? Patterns that have a

high probability of occurring by chance are misleading since they would not be

considered interesting in di�erent samples of the process under consideration.

Therefore, decisions based on them cannot be expected to add value to an

application relying on that process.

• Did the algorithm make a signi�cant decision during its search? That is, is a

decision to prune away part of the search justi�ed or could it have occurred by

chance alone?

These questions are often ignored in data mining. It is desirable to provide some

minimal level of con�dence that the patterns are in fact signi�cant, and do not

occur by chance. Even if the data set is not uncertain, it is still a sample generated

by a process about which the user wishes to discover knowledge. The knowledge

discovered should apply to the process, not the sample database. Nor should it be

a�ected adversely by noise in the database. Furthermore, post processing is not an

e�ective solution to this problem for two reasons: First, it does not address the second

2retrospectively

Florian Verhein

6 1.1. RESEARCH PROBLEMS AND THESIS OVERVIEW

question above. Secondly it means that what the user is ultimately interested in (the

knowledge provided at the output of post-processing) is not what the data mining

algorithm is searching for. At best, this is very ine�cient. At worst, the algorithm

never �nds those patterns that the post-processing task would rate most highly. In

addition to the issue of signi�cant decisions and results, statistics has a range of

useful tools and measures that are applicable in data mining. Again, these should

be embedded directly into the algorithm rather than applied in post-processing.

Hence, part of this thesis incorporates statistical techniques into novel data mining

approaches. The majority of this work is located in part III of this thesis, but some

methods are covered in parts II or IV for presentation purposes.

One method employed in this thesis to mine signi�cant patterns is to use signi�cance

tests within the interestingness measure. This approach is used in chapter 8, where

statistics oriented techniques are combined with a new measure � the Class Corre-

lation Ratio (CCR), for associative classi�cation of standard, and imbalanced data

sets3. Rules are interesting if they have a positive CCR, are statistically signi�cant

and positively associated. The search also progresses based on a signi�cance test and

mines signi�cant rules directly. Mining data sets with an imbalanced class distribu-

tion is more challenging than in standard data sets, but is required in applications

such as medical diagnosis and fraud detection.

A second method to deliver only signi�cant results is to mine patterns that are

interesting with a high probability; that is, to generate a signi�cance test around

an existing interestingness measure. This approach is taken in chapter 11, where

itemsets are mined if they are signi�cantly frequent. This is explained further in the

next section.

Due to the inability to make normality (or other) assumptions in many contexts,

the focus in this thesis is on non-parametric methods. For example, chapter 8 uses

Fisher's exact test, and in chapter 11 calculates the exact probability distribution of

support.

Pearson's product moment correlation coe�cient is a common statistical tool and is

used in a number of novel methods in this thesis. Chapter 9 considers the problem

of mining complex maximal cliques of correlated variables (attributes) for the pur-

pose of feature selection, meaningful dimensionality reduction, and as a data mining

3Imbalanced data sets have a skewed class distributions. This generally means that there is a
large di�erence in the frequency with which di�erent classes occur. For example, in a database of
medical tests, a disease may be present in 5% of cases. In fraud detection, only very few transactions
are fraudulent. Despite these low occurrences, it is clearly very important to predict these minority
classes. Standard DM and ML approaches generally do not perform well in imbalanced data sets
and developing learning algorithms that do is non-trivial.

Dr. rer. nat. Dissertation

CHAPTER 1. INTRODUCTION 7

technique in its own right. Complex interactions consider both positive and negative

relationships.

Parts II and III of the thesis are linked in two ways. First, GIM and GRM can be

applied to solve parts of the problems in part III; GIM can be applied to mine complex

correlation structures and GRM can be used to mine rules based on signi�cance.

Secondly, when correlation is incorporated into the vectorised frameworks of GIM

and GRM, it has a geometric interpretation as the angle between interaction vectors.

This leads to an intuitive method for predictive rule mining where the search causes

the antecedent interaction vector to move closer to the vector for the variable to be

predicted. This is used in the methods of chapters 6 and 7. Part III is linked to part

IV through the development of signi�cant frequent itemset mining in chapter 11.

1.1.3 Probabilistic Frequent Itemset Mining in Uncertain Databases

Association analysis is one of the most important �elds in data mining. It is tra-

ditionally applied to market-basket databases for analysis of consumer purchasing

behaviour, but is much more widely applicable. Such databases consist of a set of

`transactions', each containing the `items' a customer `purchased'. The database can

be analyzed to discover frequent patterns and associations among di�erent sets of

items. The most important step in the mining process is the extraction of frequent

itemsets � sets of items that occur in at least minSup transactions. It is generally

assumed that the items occurring in a transaction are known for certain, but this

is not always the case. In many applications the data is inherently noisy, such as

data collected by sensors or in satellite images. In privacy protection applications,

arti�cial noise can be added deliberately in order to prevent reverse engineering of

the data through pattern analysis. Data sets may also be aggregated: For exam-

ple, by aggregating transactions by customer, it is possible to mine patterns across

customers instead of transactions. The resulting probabilistic database shows the

estimated purchase probabilities per item per customer rather than certain items

per transaction.

In such applications, the information captured in transactions is uncertain since the

existence of an item is associated with a probability. Given an uncertain or prob-

abilistic transaction database, it is not obvious how to identify whether an itemset

is frequent because we usually cannot say for certain whether an itemset actually

appears in a transaction. This makes the problem challenging.

Prior to the work in this thesis, the expected support was used to solve this problem;

an itemset was considered interesting if the expectation of it's support was above

Florian Verhein

8 1.1. RESEARCH PROBLEMS AND THESIS OVERVIEW

minSup. This approach returns an estimate of whether an object is frequent or not

with no indication of how good this estimate is. Since it ignores the probability

distribution of support, it can lead to itemsets being labeled frequent even if the

probability that they are frequent is less than the probability that they are not

frequent. Clearly, this is a problem.

This thesis tackles the problem from a new direction: itemsets are considered inter-

esting if the probability that they are frequent is above a user speci�ed threshold τ .

This is known as the frequentness probability. Accordingly, a Probabilistic Frequent

Itemset (PFI) is de�ned as an itemset with a frequentness probability of at least τ .

This creates two main problems:

1. Given the existential probabilities of an itemset in all transactions, how can

one e�ciently calculate the probability distribution of the support and hence

the frequentness probability of the given itemset?

2. How can one mine all itemsets that satisfy the frequentness probability con-

straints e�ciently? This is called the Probabilistic Frequent Itemset Mining

(PFIM) problem. A PFIM algorithm has three main tasks: E�ciently search-

ing through the space of uncertain itemsets; e�ciently calculating the required

probabilities for 1 for each itemset that must be examined; and then using 1

to determine whether an itemset is interesting.

These problems are considered in part IV of this thesis:

Chapter 10 introduces and motivates the PFIM problem as an important research

direction. It also solves both parts of the problem: E�cient calculation of the fre-

quentness probability is achieved by employing the Poisson binomial recurrence re-

lation and using a divide and conquer scheme in a possible worlds model. Mining

the PFIs is achieved by developing ProApriori; an algorithm based on the Apriori

method with candidate generation and testing. An incremental algorithm solving

the top k PFI problem is also presented.

Chapter 12 improves on this by developing a probabilistic pattern growth approach

inspired by the FP-Growth [47] method. Here, a compact data structure called the

probabilistic frequent pattern tree (ProFP-tree) compresses probabilistic databases

and allows the e�cient extraction of the existence probabilities required for part 1

of the problem. The ProFP-Growth algorithm is subsequently proposed for mining

all PFIs without candidate generation and solves the PFIM problem an order of

magnitude faster than ProApriori. Part 1 of the problem is solved in a more intuitive

manner by employing generating functions.

Dr. rer. nat. Dissertation

CHAPTER 1. INTRODUCTION 9

Chapter 11 considers the problem of signi�cant frequent itemset mining (SiFIM).

Recall from section 1.1.2 that one method of incorporating a statistical test into a

data mining algorithm is to test whether the level of interestingness (here, support),

is high enough that it is unlikely to have occurred by chance. Both a parametric and

an exact method are developed. Additionally, the independence assumption used

in PFIM is validated experimentally. Recall that this chapter also provides a link

between part IV and III of this thesis.

Chapter 13 shows that the PFIM and SiFIM problems can be solved most intuitively

and (by far) most e�ciently by employing the GIM framework and algorithm of chap-

ter 3, resulting in the GIM-PFIM algorithm. In particular, the problem naturally

maps to the GIM framework by associating a probability vector with each itemset

that exists in the subspace spanned by the transactions in which the itemset could

exist. This provides an intuitive vectorised view of PFIM. When applied to PFIM,

the GIM algorithm solves it orders of magnitude faster, and with an order of magni-

tude less space than the specialised techniques ProApriori and ProFP-Growth. The

evaluation takes place on large, commonly used arti�cial and real databases. This

not only provides the best known solution to PFIM, but further validates the use-

fulness of the GIM idea and provides a solid link between parts IV and II of this

thesis.

1.1.4 Summary of Data Mining Problems Addressed in this Thesis

Within the themes of the above research directions, various data mining problems

are considered in this thesis to varying extents. Figure 1.1 provides an overview.

1.2 Publications Contributing to Chapters of this Thesis

This section provides a brief mapping between the chapters in this thesis and the

author's relevant publications. Where work is collaborative, it is acknowledged be-

low.

Part I

Chapter 2 contains background material on KDD and DM that is in part

derived from the author's PhD thesis at the University of Sydney.

Part II

Florian Verhein

10 1.2. PUBLICATIONS CONTRIBUTING TO CHAPTERS OF THIS THESIS

Problem Chapter
3 4 5 6 7 8 9 10 11 12 13

Generalised frameworks
and abstract algorithms
for interaction mining

X X

Graph mining X X X

Itemset mining X X X X X X

Association rule mining X X

Rule mining X X X

Feature selection or
generation

X X

Classi�cation X X

Mining probabilistic or
uncertain databases

X X X X X X

Data mining based on
statistics (signi�cance
tests or correlation)

X X X X X

Learning in imbalanced
(or skewed) databases

X

Geometric
interpretation of

interaction or pattern
mining

X X X

Mining spatial
databases

X

Mining negative or
complex patterns4

X X X

Clustering X

Figure 1.1: A summary of problems addressed in this thesis.

Chapter 3 is new and unpublished.

Chapter 4 is based on [96]. It also includes additional material and extended

related work.

Chapter 5 is based on [94]. The paper was collaborative work with Ghazi Al-

Naymat. A section describing how GIM can be used to solve this problem

has also been added.

Chapter 6 is based on [93]. The chapter contains signi�cantly more contribu-

tions, examples and details than the publication. For example, the corre-

lation improvement method (e.g. CCRules) does not appear in the paper

at all and probabilistic association rule mining (PARM) is only brie�y

mentioned in the paper. The complexity results are also only brie�y men-

Dr. rer. nat. Dissertation

CHAPTER 1. INTRODUCTION 11

tioned in the paper. Furthermore, the framework has been generalised

slightly by allowing multiple measures (adding the k > 1 and l > 1 in

section 6.4).

Chapter 7 is new and unpublished. It is closely linked to chapter 6.

Part III

Chapter 8 is based on an extended version of [98]. An analysis of how GRM

can be used to solve part of this problem has also been added.

Chapter 9 is based on an extended version of [91]. A section describing how

GIM can be used to solve this problem has also been added.

Part IV

Chapter 10 is based on [18] and has been corrected, expanded, reorganised

and a uniform terminology introduced. The paper was collaborative work

with Thomas Bernecker, Dr. Matthias Renz and Andreas Zü�e in Prof.

Hans-Peter Kriegel's research group.

Chapter 11 is new and unpublished. It is based on collaborative work with

Thomas Bernecker, Dr. Matthias Renz and Andreas Zü�e in Prof. Hans-

Peter Kriegel's research group.

Chapter 12 is based on [19], which was collaborative work with Thomas

Bernecker, Dr. Matthias Renz and Andreas Zü�e in Prof. Hans-Peter

Kriegel's research group. Additional material has been added and a num-

ber of corrections made. For example, the overall ProFP-growth algorithm

is included and described. The generating function method for computing

frequentness probability was corrected, expanded and new computation

and pruning results added.

Chapter 13 is new and unpublished.

Florian Verhein

12 1.2. PUBLICATIONS CONTRIBUTING TO CHAPTERS OF THIS THESIS

Dr. rer. nat. Dissertation

Chapter 2

Background

Data is generated from a large number of diverse sources. This data is in-

creasingly being captured with the hope of generating value from the knowl-

edge hidden within it, be this for commercial, scienti�c, predictive or de-

scriptive purposes. The challenge is how to extract valid, novel, useful and

valuable knowledge from the data, do this e�ciently and � as much as pos-

sible � automatically. Every type of data, as well as the type of knowledge

sought from that data, presents its own speci�c challenges and requirements.

This chapter provides a brief background in Knowledge Discovery in

Databases (KDD) and Data Mining (DM) and highlights some issues rele-

vant to this thesis.

13

14 2.1. KNOWLEDGE DISCOVERY IN DATABASES

2.1 Knowledge Discovery in Databases

Data is increasingly being captured because it can � and is � used to better under-

stand the wants and needs of customers; to discover new ways of improving existing

practices, products and services; to discover and evaluate new opportunities; to help

make better decisions on anything from recommending products to medical diagno-

sis; to detect and prevent fraud or threats; to automate or make business or other

processes more e�cient and to help generate, develop and test theories about phe-

nomena. Furthermore, it is becoming established that collected data has value not

only for current applications, but also for future but as yet unknown purposes. That

is, data is collected for the purpose of obtaining value from the knowledge hidden

within it, including for as yet not envisioned applications. The challenge is how to

extract this knowledge.

Knowledge Discovery in Databases (KDD) attempts to solve the problem of ex-

tracting knowledge from data (typically stored in databases) and to provide valuable

information to the user. It aims to do this � as much as possible � automatically.

This information should be �valid, novel, potentially useful, and ultimately under-

standable� [36]: It should capture valid information and be applicable to new data,

rather than capturing an artifact that occurred by chance. It should be non-obvious

and represent new information for the user. It should also be understandable and

ultimately usable to improve a given application, system or process. Extracting this

sort of information from large quantities of data is a valuable but often di�cult

proposition.

While KDD concerns itself with information discovery, not all information discov-

ery tasks constitute KDD. For example, retrieving individual customer records or

querying a database management system or search engine are primarily Information

Retrieval (IR) problems. IR is the science of searching for information to answer

speci�c queries. Since the information being sought is well de�ned and typically

understood, the problem is to e�ciently search for those documents or records that

contain the desired information. KDD on the other hand, aims to �nd knowledge

that the user did not know existed or does not yet understand. Furthermore, this

knowledge is typically more structured, complex and abstract. For example, rather

than �nding web pages on a particular topic, KDD and data mining applied to the

world wide web (known as �web mining�) may �nd information such as a hierarchical

description or taxonomy of topics and their relationships to each other, the structure

of web pages or patterns in the way web pages are used and how this changes over

time. On the other hand, similarity search is a key component in both information

retrieval and clustering, the latter being a data mining method that �nds groupings

Dr. rer. nat. Dissertation

CHAPTER 2. BACKGROUND 15

of objects that are similar to each other. KDD is a multi-disciplinary �eld and often

overlaps IR, Machine Learning (ML), statistics, algorithms, databases, probability

theory and theoretical computer science. Some aspects which di�erentiate it from

other �elds are its attention to exploratory analysis, the ability to �nd and evaluate

complex patterns, its usefulness for hypothesis generation and its applicability to

massive data sets.

Knowledge Discovery in Databases has many challenges including:

• Data sets are typically large which makes e�ciency and scalability important

in order to deliver results to the user in an acceptable time frame. In particular,

the data sets considered in KDD are typically much larger than those consid-

ered in ML. This often makes non-trivial problems that overlap the database

�eld important, such as the storage, e�cient access to and indexing of data.

• Data sets often have a high dimensionality. Methods developed for low di-

mensional data are usually not applicable to high dimensional data since data

becomes sparse, distances between data points become similar and the e�ect

of noise is ampli�ed. Furthermore, the computational cost of many analysis

methods increases rapidly with the number of dimensions.

• Data is becoming increasingly complex and heterogeneous. For example, data

instances may be graphs or multi-instance objects and attributes may be a mix

of continuous, discrete, and semi-structured data.

• It is typically not known what information is sought prior to the application

of KDD. Hence KDD is hypothesis generating and exploratory in nature, in

comparison to traditional statistics for instance where an important task is

testing hypotheses constructed by a knowledgeable user.

• The type of knowledge sought by KDD is non-trivial and often involves complex

structures, descriptions and relationships. This leads to large search spaces

which demands e�cient solutions, as will be discussed in section 2.2. OLAP, in

contrast, is suited to computing and visualising the entire data set or relatively

simple aggregates, projections and groupings of records to �nd things such as

customer purchasing trends. Similarly, hypotheses in statistics are typically

simpler.

• Since KDD is a practical endeavor, it must consider real world issues such as

noise, uncertainty and faults within the data. Ignoring these can adversely

impact the ability to extract valid knowledge or lead to misleading results.

Florian Verhein

16 2.1. KNOWLEDGE DISCOVERY IN DATABASES

Figure 2.1: The classic view of the Knowledge Discovery in Databases (KDD) process.
Solid arrows represent the �ow of Data through the KDD process, while the dotted
arrows show the typically iterative process through which a KDD application is
designed.

The classic framework for KDD attempts to separate some of these challenges. As

illustrated in �gure 2.1, the KDD process consists of three steps: data pre-processing,

data mining and post-processing of the results.

1. Data pre-processing collects, selects and transforms the raw data into an

appropriate format for subsequent analysis. It includes tasks such as: Data

aggregation from multiple and potentially distributed sources; data selection

or sub-setting to obtain the relevant features (typically columns) and samples

(typically rows); normalization of the data to avoid feature biases (for example,

di�ering scales impact distance based data mining algorithms); data �cleaning�

in an attempt to remove noise, duplicate records or outliers; application speci�c

methods for dealing with missing data (for example, should missing data be

ignored or treated as meaningful?); data transformation into a suitable format;

feature extraction; feature processing (for example, discretization); and dimen-

sionality reduction methods (for example, Principal Component Analysis).

2. Data mining is the task of e�ciently �nding potential knowledge, or patterns,

in the preprocessed data (Data Mining will be properly de�ned and discussed

in section 2.2). This is the most important and challenging step in the KDD

process. It includes the selection or development of a DM algorithm that is

appropriate for the type of knowledge desired and is able to �nd interesting

patterns in an acceptable time frame. Furthermore, setting relevant parameters

for the algorithms is a non-trivial task.

3. Post-processing attempts to ensure that only valid, useful and understand-

able results are delivered. It includes tasks such as �ltering, ranking, visualiza-

tion of results, validation and veri�cation to remove spurious results � perhaps

using statistical methods � and interpreting the patterns found by DM.

Dr. rer. nat. Dissertation

CHAPTER 2. BACKGROUND 17

While DM itself is automated, many of the pre- and post-processing tasks require

some human input and domain knowledge in order for the KDD process to be success-

ful. For example, domain knowledge is often required for e�ective feature selection.

Similarly, the output of data mining algorithms cannot simply be assumed to be

valid. The additional steps in the KDD process are essential to ensure that use-

ful and valid knowledge is derived from the data. Blind application of data-mining

methods is a dangerous activity and easily leads to the discovery of meaningless or

outright invalid patterns [35]. The reason for this is that one can �nd, for example,

statistically signi�cant patterns in any data set � even a randomly generated one

� if one searches long enough. Other problems such as noise, incorrect or lack of

normalization, careless selection of features or failing to consider outliers can also

lead to invalid patterns being found. These di�culties typically lead to an iterative

KDD process, illustrated in �gure 2.1 by the dotted arrows, where the results of all

three steps in the KDD process feed back into the decisions made in the previous

stages.

The interested reader is directed to [35] for a more in depth introduction to the high

level KDD process. While as of this writing the article is over 13 years old and

the �eld has progressed considerably, it provides a good overview and de�nitions

of KDD, the classic KDD process, its relationship to longer established �elds like

arti�cial intelligence, machine learning, statistics and databases, as well as some

early real world applications. For more concrete information about the various tasks

and algorithms in the KDD process, the reader is directed to [88] and [46] which

provide excellent introductions.

2.2 Data Mining

Data Mining (DM) is the most important and complex component of the KDD

process. There are a number of �de�nitions� of data mining. The following is most

closely related to that of [88], with the primary di�erence being the use of the term

pattern instead of information1.

1This is for two reasons: First, the author prefers the more concrete term �pattern� since, as shall
hopefully become clear in the text, this leads to a natural way of explaining and understanding the
data mining process. Secondly, the author doesn't think that patterns (or to be more speci�c, pat-
tern instances in the terminology introduced here) necessarily qualify as information or knowledge.
Patterns are the output of an automated process which together, perhaps after post processing,
visualization, validation or human interaction, may become information. It should be noted that
�pattern� is usually used in the literature in the context of association rules and itemset mining, for
example �frequent pattern mining�, but that patterns are not restricted to this sub-�eld. Pattern is
also used in the de�nition of data mining by [35].

Florian Verhein

18 2.2. DATA MINING

De�nition 2.1. Data mining is the automated process of extracting useful patterns

from typically large quantities of data.

Di�erent types of patterns capture di�erent types of structures in the data: A pattern

may be in the form of a rule, cluster, set, sequence, graph, tree, etc. and each of these

pattern types is able to express di�erent structures and relationships present in the

data. For example, a rule may tell a marketer about strong relationships between

purchased goods or services, predict customer `churn' or be used as the basis of

recommender systems. A set can indicate products that customers are purchasing

together and a cluster might tell him or her about groups of customers that have

similar purchasing patterns. These may be used as the basis for a marketing scheme

that aims to maximize response rates and sales for a given investment. A graph may

tell a biologist about strong and previously unknown gene or protein interactions

present in their experiments, or a security agent about suspicious communication

structures between potential criminals. A tree or a set of rules may describe the

decision structure that can be used to accurately predict medical conditions, perhaps

based on patient records or medical imaging data. As suggested by these examples,

patterns can be descriptive or predictive (or both). That is, they can be used to

describe, model and help better understand a process or phenomena or to predict

future events. In this work, many new types of patterns are introduced. Some are

purely descriptive and some are explicitly used for prediction purposes.

Once a pattern type has been de�ned based on the problem at hand and the structure

of the information sought, the goal � and challenge � is to automatically �nd those

pattern instances2 in the data that are interesting to the end user. That is, pattern

instances providing both useful and previously unknown (novel) information. This is

done by evaluating pattern instances for interestingness according to some measure

that, ideally, should model the value that the user obtains from being made aware of

the pattern. An interestingness measure measures how interesting a pattern instance

is expected to be. These measures must balance three important characteristics:

1. The utility that a user is expected to receive by exploiting the pattern instance.

For example; the value, �nancial gain, increase in accuracy or e�ciency or

2In the terminology used here, a pattern type describes the structure or schema of the pattern.
For example, an itemset can be de�ned as a non-empty subset of all items that may be purchased
in a supermarket. This speci�es its type. A pattern instance on the other hand is a particular
instantiation of that type. For example, {bread, butter, jam}. A pattern therefore has one type
but many instances, and these instances are �found� in the data set. This distinction between type
and instance is rarely made explicit but helps to describe the data mining process in terms of the
de�nition used in this thesis. In the literature and common usage, the term �pattern� is inherently
ambiguous and refers to both or either the type or instance, depending on the context. Outside
this section, the term will typically refer to the pattern instance of the type being discussed.

Dr. rer. nat. Dissertation

CHAPTER 2. BACKGROUND 19

ability to understand a phenomena. Modeling utility directly is usually too

di�cult in practice and simpler but objective measures are used instead, ideally

with reasoning linking them back to the users expected utility.

An important in�uence on the utility of pattern instances is how many of

them are labeled as interesting. The utility that a user gains from the results

of data mining � namely, the set of all pattern instances mined � can easily

fall if too many results are delivered, especially if many of them are similar.

One way of combating this problem is post-processing the results. Another

method, favoured in this thesis, is to mine interesting patterns directly, mine

only statistically signi�cant patterns or patterns with a high probability of

being interesting.

Finally, utility should also attempt to capture valid patterns, as opposed to

spurious ones. This is a motivation for the probabilistic and statistical methods

employed in parts of this thesis.

2. The novelty of the pattern instance. For example, simple patterns may be

useful or describe a strong relationship but if they are already known or obvious

then they provide no added value. Novelty is di�cult to take into account, but

a simple method to counter obviousness is perhaps to ensure that a user is

directed to larger or more complex patterns in favour of simple ones.

3. The complexity of calculating the measure and searching for those pattern

instances that have a high interestingness value. Usually, the goal is to develop

a complete algorithm (if possible) so that all patterns satisfying a particular

interestingness criteria will be found. Sometimes this is possible even in very

large databases as some measures allow a suitably developed algorithm to prune

away most of the search space. However, in other cases it is intractable to �nd

all interesting results. In such cases, it is possible that approximate, heuristic

or probabilistic methods can be employed. These limit the search space and

complexity while still delivering useful results. The downside is that the user is

never completely sure that all pattern instances that may be of interest to him

or her are found, or that the best or optimal pattern is found. On the other

hand, this is usually better than not being able to deliver any results. The

complexity of the resulting algorithm and properties that may be exploited are

therefore an important consideration in designing an interestingness measure.

One of the results of this thesis is that forcing good quality interestingness mea-

sures (that correlate with the users utility) to be anti-monotonic (this enables

e�cient pruning) when they do not naturally have pruning friendly proper-

ties gives much better results than using interestingness measures that allow

Florian Verhein

20 2.2. DATA MINING

pruning but are not directly related to the users utility.

With a type of pattern and interestingness measure de�ned, the challenge is to

develop an e�cient algorithm to �nd the interesting pattern instances in large data

sets. Of course, as hinted above, this may be an iterative process where the design

of the algorithm and interestingness measures a�ect each other.

One of the contributions in this thesis is the development of generalised algorithms,

frameworks and a computational model that separates the semantics of the patterns

and interestingness measures from the algorithm used to mine them. This makes the

design process much easier, as both problems can be solved independently. Further-

more, the ability to plug in interestingness measures into an e�cient framework and

algorithm allows the data miner to focus on the semantics of the problem.

Dr. rer. nat. Dissertation

Part II

Generalised Interaction Mining

21

Chapter 3

Generalised Interaction Mining

Interaction mining is the process of mining structures on variables that de-

scribe how they interact (or appear to interact) with each other. Generalised

Interaction Mining (GIM) is a model, framework and algorithm that solves

interaction mining problems at the abstract level. The semantics of the in-

teractions, their interestingness measures and the type of data considered are

�exible components. An e�cient and intuitive computational model based

on vectors and vector valued functions is developed. This functions as a

layer of abstraction between a problems semantics and the algorithm used

to mine it; allowing both to vary independently. It encourages a geometric

way of thinking about pattern mining problems in terms of vector operations

and subspaces. It allows new methods to be developed by focusing purely

on the problem's semantics. The GIM algorithm requires minimal space and

runs in linear time in the number of interesting interactions found.

The GIM framework and algorithm are a cumulative result of many problems

that the author has solved. In addition to introducing GIM, this chapter

demonstrates the breadth of problems that are solvable with GIM by showing

how it can be applied in diverse applications.

23

24 3.1. INTRODUCTION

3.1 Introduction

An interaction is a broad term used in this thesis to describe an e�ect that variables

have on each other, or appear to have on each other. Interaction mining is the process

of mining structures on these variables that describe interaction patterns. Usually,

these structures are represented sets or graphs; where each variable interacts, to some

degree, with other variables in the structure.

Many domains can bene�t from the application of interaction mining. In social

networks people interact with each other through personal contact, email, instant

messaging, telephone and social network applications. Social network analysis is

used in applications such as understanding how patterns of human contact a�ects

the spread of diseases, surveillance and counter intelligence operations, understand-

ing the spread of ideas and for marketing and promotion. In marketing, di�erent

promotional campaigns and customer facing services interact to a�ect customer re-

tention and the bottom line. In pharmacology, drugs may interact with each other.

In genetics, genes interact with each other to a�ect the phenotype (observable char-

acteristics) of organisms. In statistics, interactions between variables create e�ects

greater than the individual variables would, or may be measured by correlation or

signi�cance tests. In �nance, equities interact (or appear to interact) with each other

as re�ected by similarities in the time series of their prices. In ecology, movement

of animals over time may show behavioural interactions. Such interactions may be

complex and include both positive and negative interactions. For example, signed

graphs in social network analysis can show friendship or aversion; there are additive

or suppressive actions between drugs or genes; and mining positive an negative cor-

relations between variables could reveal useful patterns in a range of applications.

Furthermore, many data mining tasks can be considered as mining interactions, such

as clustering (similar objects may be seen to be �interacting�), frequent itemset min-

ing (items bought frequently together suggest these are used together), classi�cation

(interactions amongst variables are exploited for prediction), spatio-temporal data

mining techniques (�ocks and other co-location patterns describe interactions be-

tween objects), etc. Mining interactions between variables is therefore a general

data mining concept that covers a range of problems.

However, these problems have very di�erent semantics governing the interactions,

their structures and their interpretation. Naturally, these problems all have di�erent

de�nitions of what it means for an interaction pattern to be interesting or useful. The

Dr. rer. nat. Dissertation

CHAPTER 3. GENERALISED INTERACTION MINING 25

problems also have very di�erent types of data, such a real valued records, a set of

time series, transaction databases, attribute value pairs produced by discretization,

instances and adjacency matrices. Usually, solving such problems requires the simul-

taneous and interdependent development of new pattern semantics and specialist

algorithms for mining the respective pattern.

Generalised Interaction Mining (GIM) is a framework and method for mining inter-

actions at the abstract level. It does this by leaving the semantics of the interactions,

the interestingness measures used to evaluate the interactions and the data types in

which the interactions are to be mined as �exible components. This creates a layer of

abstraction between a problem's de�nition/semantics and the algorithm used to solve

it. Instantiations of GIM solving speci�c problems need only specify these abstract

components, and the GIM algorithm can be used to mine all interesting interactions

satisfying these constraints. This is achieved by developing a consistent but general

computation model based on vectors and vector valued functions, where each inter-

action is represented by an interaction vector in some space X. This framework is

able to capture a wide range of interaction mining problems simply by instantiating

these functions in di�erent ways. Since the framework operates as an interface be-

tween the semantics of a problem and the algorithm used to mine it, this abstraction

layer enables the problem's semantics and algorithm to vary independently of each

other. This means that new methods can be developed by focusing on the semantics

of the problem, without being concerned with how these semantics are mapped to

a new algorithm. As long as the semantics of the problem can be mapped to the

framework � and it will be shown in this chapter and thesis that many can � the

GIM algorithm can solve it e�ciently. Similarly, since the algorithm depends only

on a set of abstract vector valued functions, it is independent of the semantics of the

particular instantiation and can be swapped out � for example should a more e�-

cient one become available, to cater for di�erent trade-o�s between time and space

resources or to leverage di�erent computation architectures.

GIM's computational model also provides an intuitive �geometric� way of thinking

about problems, as it requires them to be cast into vectors and vector valued func-

tions. Every interaction is represented by a vector, called an interaction vector,

in a high dimensional space X typically spanned by the samples recorded in the

database. By combining such vectors, larger interactions can be built, with vectors

typically existing in subspaces of X. By evaluating functions over these vectors, the

interestingness of interactions can be computed.

The GIM algorithm operates purely by using these functions on interaction vectors,

and searches the space of possible interactions in the most space and time e�cient

Florian Verhein

26 3.1. INTRODUCTION

method possible. This means that interaction vectors are never created more than

once but are reused, while at the same time ensuring that the minimum number

of interaction vectors are in memory at one time. The space required is provably

linear in the size of the data set. The run-time is provably linear in the number

of interactions that need to be examined. These properties allow it to outperform

specialist algorithms when applied to speci�c interaction mining problems, such as

frequent itemset mining and probabilistic frequent itemset mining. Furthermore, the

vectorization inherent in the framework's functions provides additional avenues for

reducing the run time: On single processor architectures, vectorization allows auto-

matic parallelisation and exploitation of machine level operations for bit-vectors. On

multiprocessor architectures, vectorization also provides a point for concurrentisa-

tion [105] while on supercomputer architectures, single instruction vector processing

is directly supported [105].

3.1.1 Relationship to other Chapters

The approach described in this chapter was developed over an extended period of

time while solving other research problems e�ciently and discovering similarities in

the way these problems could be solved. While other chapters in this thesis present

problems that can be solved (retrospectively) using the GIM framework, this may

not have been done at the time. This is also one of the last chapters that was

written and therefore also functions as a broad treatment of interaction mining and

generalised pattern mining. Accordingly, the emphasis is on the abstract framework,

the GIM algorithm and presenting a sample of the many problems to which it can

be applied. Other chapters evaluate some of these problems in depth and therefore

demonstrate the superiority of applying GIM to speci�c research problems. This is

described in section 3.16.

Chapter 6 extends the concept of interaction mining to rules, introducing and de�ne-

ing the generalised rule mining (GRM) problem. This allows the capture of patterns

where an interaction in the antecedent a�ects a variable in the consequent. This can

be used to �nd patterns where interactions have seemingly causal e�ects on other

variables, in particular enabling predictive patterns to be found. For example, in

marketing, various promotions, incentive programs and media coverage interact to

a�ect consumer behaviour, such as the number of new customers, customer churn or

customer spend. Like GIM, GRM solves problems at the abstract level.

Dr. rer. nat. Dissertation

CHAPTER 3. GENERALISED INTERACTION MINING 27

3.1.2 Contributions

This chapter makes the following contributions:

• It introduces the Generalised Interaction Mining (GIM) problem and presents

an abstract framework that allows interaction mining problems to be speci�ed

in terms of functions on interaction vectors. This framework separates the

semantics of interaction mining problems from the algorithms used to mine

them, provides a generic computational model for solving GIM problems and

a useful geometric way of considering these problems in terms of vectors and

subspaces.

• It presents the GIM algorithm, which is able to solve any problems expressed

in the GIM framework e�ciently. It is proved to have linear run time in the

interesting interactions found and uses space linear in the size of the database

(usually less). Extensions are also developed for solving a range of complex

problems.

• It shows that GIM can be applied to solve a wide variety of existing and novel

problems.

• Section 3.12.1 proves that the maxPI measure, used in spatial data mining, is

anti-monotonic under an ordering of variables. Previously this was thought to

be weakly anti-monotonic. This leads to an more e�cient solution using GIM.

3.1.3 Organisation

The remainder of this chapter is organised as follows. Section 3.2 presents the Gener-

alised Interaction Mining (GIM) framework. Section 3.3 presents the GIM algorithm.

Subsequent sections show how diverse problems can be mapped to the framework

and solved by GIM; and how, through various extensions, GIM is able to solve more

complicated problems.

3.2 Generalised Interaction Mining Framework

This section presents the vectorised GIM framework. Let V = {v1, v2, ..., vm} be the
set of variables about which interaction information is desired. The data is said to

consist of a set of samples {s1, s2, ..., sn} capturing the variable's values. The goal

is to �nd interesting subsets of V , where these subsets V ′ ⊆ V � corresponding to

Florian Verhein

28 3.2. GENERALISED INTERACTION MINING FRAMEWORK

Figure 3.1: An interaction V ′ visualised as a vector xV ′ in the spaceX of (3) samples.

interactions � can have any given semantics and structure. Each possible interaction

V ′ ⊆ V is expressed as a vector, denoted by xV ′ and called an interaction vector.

These vectors exist in a space X, the dimensions of which are typically1 the samples

recorded in the data set. This is illustrated in �gure 3.1. Depending on the applica-

tion, samples may be instances, transactions, rows, points, objects located in some

space, successive values in time-series, entries in a correlation matrix, etc. In gen-

eral, each sample captures the value that each of the variables had when that sample

was recorded. Conceptually then, the database D consists of the set of interaction

vectors corresponding to individual variables, D = {xv : v ∈ V }, where the entry

xv[i] : i ∈ {1, n} records the value of v in the ith sample (dimension). Note that

interaction vectors need not be implemented as vectors or arrays as suggested here;

they only need to capture the information describing the interaction in the samples;

and all interactions � including single variables � must be able to be represented by

vectors in the same space X. The space X is dependent on the type of variables

considered. For example, in itemset mining the space is the hypercube {0, 1}n since

each item is either contained or not contained in any of the n transactions, while in

clustering, clique or graph mining the space may be Rn. Variables may be mixed

type, or may even be vector or graph valued if required. The semantics of the inter-

actions V ′ are also variable; they may be conjunctive as in frequent pattern mining,

they may represent cliques of other types of sub-graphs in graph mining applications,

or may simply be a set of variables that have some type of dependency or correlation

with each other. Recall that examples of a wide range of interactions supported by

the framework will be presented later in this chapter.

1Sometimes it is useful to store additional information in order to make the algorithm more
e�cient. One example of this is described in section 3.12.1.

Dr. rer. nat. Dissertation

CHAPTER 3. GENERALISED INTERACTION MINING 29

The �rst component of the framework is an order on the variables.

De�nition 3.1. The variables v ∈ V have a strict total order < de�ned on them.

Write vi < vj ⇐⇒ i < j.

This is trivially satis�ed in most applications as variables occur in some arbitrary

order in the data set, and the order does not impact on the resulting patterns. In

some applications a particular order is important. For example, section 3.12 shows

that the maxPI measure is anti-monotonic provided that variables have a particular

order.

Since each interaction V ′ is represented by a vector xV ′ in X, the evaluation of that

interaction is performed with a vector valued function mI(·).

De�nition 3.2. mI : X → Rk is a measure on a vector xV ′ . mI(xV ′) evaluates the

quality of the interaction V ′. k is �xed.

That is, mI evaluates an interaction based only on the information available in that

interaction's vector. k ≥ 1 allows the function to evaluate V ′ according to multiple

criteria.

.

In order to evaluate an interaction with mI(·), its interaction vector must �rst be

built. Recall that the data set contains all xv where v ∈ V are the single vari-

ables. The interaction vectors xV ′ with |V ′| > 1 are built incrementally using the

aggregation function aR(·), which maps two vectors in X onto X:

De�nition 3.3. aI : X2 → X operates on interaction vectors so that xV ′∪v =

aI(xV ′ , xv) where V ′ ⊂ V , v ∈ (V − V ′), and v occurs prior to all elements in V ′.

That is, v < v′∀v′ ∈ V ′.

In other words, aI(·) combines the vector xV ′ for an existing interaction V ′ ⊂ V with

the vector xv for a new variable v ∈ V − V ′. The resulting vector xV ′∪v represents

the larger interaction V ′ ∪ v. In this way, vectors representing interactions can be

built incrementally. Note that the resulting vector is the same as if it were calculated

Florian Verhein

30 3.2. GENERALISED INTERACTION MINING FRAMEWORK

from the original data set, but rather than examining the original data set for all

v′ ∈ V ′ ∪ v, it requires only one of the vectors (xv) as the information from the

rest is already represented in xV ′ . This is exploited by the GIM algorithm, allowing

it to e�ciently evaluate interactions without recomputing vectors or scanning the

data set. Note that aI(·) need not be commutative, even though the subscript xV ′∪v

uses set notation for simplicity. Furthermore, note that the order can be used in

applications for semantic purposes, as it is guaranteed that interaction vectors are

built in a particular and �xed order.

Note that implicitly, aI(·) de�nes the semantics of the interaction. By de�ning

how xV ′∪v is built, it must implicitly de�ne the semantics between variables in the

interaction. That is, what it means to add a variable to the existing interaction V ′.

Example 3.4. The simplest interaction mining approaches counts the number of

samples that exhibit an interaction V ′. In these cases, the interaction vector seman-

tically consists of the set of samples that contain the interaction and mI(·) is simply

the size of this set. aI(·) is the intersection operation, so that all variables must be

present in a sample for it to be counted. This leads to conjunctive semantics.

While mI(·) and aI(·) are su�cient in a number of applications, it sometimes occurs

that an interaction V ′ needs to be compared with its sub-interactions V ” : V ” ⊂ V ′

in order to compute an interestingness measure. There are a number of problems

in this thesis where this is required, including mining spatial co-location patterns.

Furthermore, it allows the explicit measurement of how much an interaction V ′

improves over its more general sub-interactions V ” : V ” ⊂ V ′, a topic that will be

considered in depth in section 3.21. The following function supports such behaviour.

De�nition 3.5. MI : Rk×|P(V ′)| → Rl is a measure that evaluates an interaction V ′

based on the values computed by mI(·) for V ′ or any sub-interaction V ′′ : V ′′ ⊂ V ′.
l is �xed.

Like mI(·), MI(·) may compute multiple values. MI(·) does not take vectors as

arguments � it evaluates a rule based on values that have already been calculated

by mI(·). This is for algorithmic e�ciency purposes and does not limit the scope of

the framework. If MI(·) does not need access to any sub-interactions to perform its

evaluation, it is called trivial since mI(·) can perform the function instead. A trivial

MI(·) simply returns mI(·) and leads to reduced run time and space usage by the

algorithm, as will be described in section 3.3.

Dr. rer. nat. Dissertation

CHAPTER 3. GENERALISED INTERACTION MINING 31

The �nal component of the framework de�nes what interactions are interesting. In-

teresting interactions are

1. Desirable and should therefore be output to the user and

2. Should be further expanded in the sense that additional variable should be

added in order to grow the interaction.

For �exibility, these two concepts may be separated.

De�nition 3.6. SI : Rl+k → {true, false} determines whether an interaction V ′

should be expanded or the search should stop at this interaction. This is determined

based on the values previously computed by mR(·) and MR(·).

In other words, more speci�c interactions � That is, larger interactions with more

variables � will only be considered if SI(·) returns true. Independently, the interest-
ingness to the user is de�ned as follows;

De�nition 3.7. II : Rl+k → {true, false} determines whether an interaction V ′

is interesting based on the values computed by mR(·) and MR(·). Only interesting

rules are output by the algorithm.

Note that an interaction may be interesting according to II(·) but not according to

SI(·). This means the interaction will be output, but no larger interaction will ever

be examined or output. Conversely, an interaction may not be interesting according

to II(·) but if SI(·) returns true, then larger interactions will be examined, some

of which may be interesting according to II(·). Of course II(·) and SI(·) may be

identical. The simplest implementation of either function is to return true if one of

the values computed by MI(·) or mI(·) is above a threshold.

Note that this framework accommodates approaches where an interaction V ′ is ex-

amined after its sub-interactions V ′′ ⊂ V ′. That is, bottom up approaches. It is pos-

sible to accommodate top-down approaches be inverting the problem, as described

in section 3.7.

An additional function PI(xV ′ , v) (de�nition 3.17) that allows early pruning and thus

avoids computing vectors in some applications will be considered in section 3.8. An

additional function N(·) (de�nition 3.13) can be included for supporting negative

patterns and will be discussed in section 3.6. The subscripts I in the functions in

this framework is used to di�erentiate them from related functions in the Generalised

Rule Mining (GRM) framework, covered in chapter 6.

Florian Verhein

32 3.3. GENERALISED INTERACTION MINING ALGORITHM

3.3 Generalised Interaction Mining Algorithm

This section presents the Generalised Interaction Mining (GIM) algorithm, which

solves any problem expressible in the GIM framework e�ciently. First, an important

data structure is presented.

3.3.1 Pre�x Tree

In order to make the algorithm easy to understand, a pre�x tree will be used to help

describe it, prove properties, and in some cases, to store a collection of interactions

in compressed form.

Since all variables v ∈ V have a strict total order (de�nition 3.1), they can be

mapped to the set of integers. Without loss of generality therefore, assume the

variables are integers V = {1, 2, ..., |V |}. An interaction can therefore be represented

as a sequence of integers, ordered in decreasing order according to < (de�nition 3.1).

A space e�cient way to store a collection of interactions (in those cases when this is

necessary) is to share common pre�xes in a tree structure. An example of a pre�x

tree is shown in �gure 3.2(b).

In a pre�x tree (PrefixTree), each node � called a PrefixNode � has a label

corresponding to a variable v ∈ V (this will be called variableId in algorithm 3.1).

The root node is special, and is labeled with∞. The tree is constructed so that each

node can only have a parent with a label greater than it's own label. Each node has

a reference to its parent, but not to its children. Maintaining only parent links is

used to increase the run time and space e�ciency of the algorithm. It also sets it

apart from a Trie [66] data structure. In particular, in many instantiations of the

framework, only a single branch (path toward the root) of a pre�x tree must ever

be retained in memory at one time. In a pre�x tree, two nodes are called siblings

if they share the same parent. Each PrefixNode represents a distinct subset of

the variables and as such represents a unique interaction. The interaction can be

re-constructed e�ciently by traversing toward the root. The root node corresponds

to the empty interaction. Each node also contains the values computed by mI(·)
(called valuem), MI(·) (called valueM) and II(·) (called interestingness). It is not
necessary to store the result of SI(·).

A �complete� pre�x tree is a tree containing all possible interactions. Therefore, it

also represents the worst case search space of GIM and contains exactly 2|V | nodes.

An example of a complete PrefixTree is given in �gure 3.2(a).

Dr. rer. nat. Dissertation

CHAPTER 3. GENERALISED INTERACTION MINING 33

Algorithm 3.1 The basic Generalized Interaction Mining (GIM) algorithm. It em-
ploys a strict depth �rst search with backtracking. For simplicity, a garbage collector
is assumes to clean up nodes that are no longer required. Functions not de�ned
here are outputInteraction(·), store(·) and evaluateMI(·). These latter two are re-
quired for non-trivialMI(·). For trivialMI(·), evaluateMI(newNode) simply returns
newNode.valuem. The simplest implementation of outputInteraction(newNode)
simply traverses from newNode toward the root and outputs the sequence of
variableIds found along the way. It can be used to implement functionally use-
ful operations too however, as will be shown later.

// Data Structure

//The nodes that constitute the PrefixTree.

class PrefixNode {
PrefixNode parent,
String variableId,
double[] valuem,
double[] valueM ,
boolean interesting};

// Initialisation

PrefixNode root = new PrefixNode(null, ε,NaN,NaN, false);
V ector x∞ = ... //initialise appropriately (e.g. all ones)

List joinTo =
... //set of all variables, ordered according to <.
GIM(root, x∞, joinTo);

//node: The PrefixNode corresponding to the interaction V ′ that
// should be expanded using the variables in joinTo.
//joinTo: Contains contains individual variables.

//xV ′: The interaction vector corresponding to V ′.
GIM(PrefixNode node, InteractionV ector xV ′, List joinTo)
List newJoinTo = newList();
PrefixNode newNode = null;
for each v ∈ joinTo
V ector xV ′∪v = aI(xV ′ , xv);
double[] valuem = mI(xA′∪v);
newNode = new PrefixNode(node, v, valuem, NaN, false);
double[] valueM =evaluateM I(newNode);
newNode.valueM = valueM;

if (I(valuem, valueM))
newNode.interesting = true;
outputInteraction(newNode);
if (S(valuem, valueM)) //expand the search

if (MI(·) is non-trivial)

store(newNode);
GIM(newNode,xV ′∪v,newJoinTo); //recursive call

newJoinTo.add(v);

Florian Verhein

34 3.3. GENERALISED INTERACTION MINING ALGORITHM

(a) A complete pre�x tree with variables V =
{1, 2, 3, 4}. A complete pre�x tree contains all
possible combinations of the variables.

(b) An example of a pre�x tree
with variables V = {1, 2, 3, 4} con-
taining the following interactions:
{{1}, {2}, {1, 3}, {3}, {2, 3}, {1, 4}, {4},
{1, 3, 4}, {3, 4}}

Figure 3.2: Pre�x tree examples. Note that the pre�x tree does not need to be
stored in memory unless access to sub-interactions is required by MI(·). This is
covered in section 3.11.

3.3.2 Algorithm

The GIM algorithm (algorithm 3.1) works by performing a strict depth �rst search

with backtracking (note the recursive call inside the for loop occurs for every single

variable in joinTo). This means that sibling nodes are not expanded until absolutely

necessary. For example, in �gure 3.2(a) the entire sub-tree under the path 〈4, 2〉 (i.e.
〈4, 2, 1〉) is completely expanded before the interaction corresponding to 〈4, 3〉 (and its
corresponding PrefixNode and interaction vector) is even built or considered. Child

nodes are expanded in increasing order (order is always maintained without sorting)

and their corresponding interaction vectors are calculated along the way. There is

no candidate-generation, as each new interaction is evaluated by mI(·) and MI(·)
immediately after it is created and before any other nodes are created or examined.

The search is limited according to the interestingness function SI(·), which stops

the search along a branch. The search progresses in depth by joining sibling nodes

Dr. rer. nat. Dissertation

CHAPTER 3. GENERALISED INTERACTION MINING 35

in the PrefixTree, so to speak. This means that an interaction 〈4, 3, 2〉 is created
by joining the siblings 〈4, 3〉 and 〈4, 2〉. Note however that while joinTo contains

individual variables, it only contains those that correspond to the last variable in

siblings of the node being expanded. This auto-prunes the search, since 〈4, 3, 2〉 can
only be created if the sibling 〈4, 2〉 exists (is was found to be interesting according

to SI(·)). If 〈4, 2〉 was not found to be interesting, then 〈4, 3, 2〉 would never be

considered. This auto pruning is useful for measures that are anti-monotonic or

weakly anti-monotonic. Should this be undesirable, it can be easily disabled by

placing the last line of the algorithm outside the if (S(valuem, valueM)) statement.

Vectors are calculated incrementally along a path in the search using aI(·). This

is done in a way so that there are never any vector re-computations while at the

same time maintaining optimal memory usage. To appreciate this, consider the

alternatives: One option is to calculate each interaction vector from the vectors

for single variables when it is needed. While this requires no additional space, it

requires |V ′| applications of aI(·) to create xV ′ and many re-computations of the

same vector (vectors for pre�xes would need to be recomputed), which is clearly

undesirable. Another alternative is to keep many interaction vectors in memory

and add variables to these with aI(·) when needed, so that it is guaranteed that

only one application of aI(·) is required to create any required xV ′ . The downside

of this is the space required to store these vectors. The GIM algorithm stores the

fewest interactions necessary in order to avoid any re-computations by only ever

storing vectors along the current path of the search, and performing a strict depth

�rst search. For example, the interaction vector x{4,3,2} is created by a(x{4,3}, x2),

where x{4,3} was just previously created in the search. Since the sub-tree under

〈4, 2〉 must have been completely examined before this is done, the vector x{4,2} is no

longer in memory (it is no longer needed since x{4,2,1}, for example, has already been

considered). Since x{4,3} is only created and tested once the entire search space under

x{4,2} has been completely examined, the search is said to be strictly depth �rst.

As the search progresses in depth, x{4,3,2,1} is created by a(x{4,3,2}, x1), utilising the

already computed x{4,3,2}. Note that one interaction expansion � where an additional

variable is added to the interaction � therefore requires only one application of aI(·)
to create its corresponding interaction vector. Furthermore, the only interaction

vectors that need to remain in memory are those on the current path of the search

(due to the recursive implementation, this corresponds to the stack). Since the search

is strictly depth �rst, there will never be a case where vectors corresponding to sibling

nodes are in memory at the same time. For example, only one of x{4,1}, x{4,2}, x{4,3}

is ever in memory at one time, even though they are siblings. There are ways to

slightly reduce this space usage further; interaction vectors for sibling nodes that

Florian Verhein

36 3.3. GENERALISED INTERACTION MINING ALGORITHM

are expanded last can be deleted as soon as their last child is created. For example,

〈4, 3〉 can be deleted as soon as x{4,3,2} is created (even though it is on the same

path) because no other variable that has not previously been added can be added to

{4, 3} without violating the order requirement of de�nition 3.1. For simplicity, this

is not implemented here but it may be adapted from the itemset mining algorithm

in chapter 4.

3.3.3 Complexity

Theorem 3.8. The run time complexity is O(|I| · |V | · (t(mI) + t(MI) + t(aI) +

t(SI) + t(II)), where I is the number of interactions for which SI(·) returns true and
t(X) is the time taken to compute function X from the framework.

Proof. For a node corresponding to an interaction V ′ to be expanded (to search for

larger interactions), SI(·) must return true for it and there must be siblings to join

to, otherwise the branch of the search space is pruned. In the worst case, each child

V ′∪v : v ∈ (V−V ′) must be examined, with none of the interactions V ′∪v found to be
interesting according to SI(·). This takes at worst O(|V |) time; for each interaction

mined, at worst O(|V |) larger interactions may have to be examined. Finally, the

processing of each interaction requires one application of each of the functions mI ,

MI , aI , II and SI . Note that |I|·|V | is an upper-bound on the number of interactions
that must be examined.

In most applications, t(aI) and t(mI) require at most O(n) time (often less if sub-

spaces can be exploited), since the operate on interaction vectors of at most length n

and t(MI) = t(SI) = t(II) = O(1). Note that if SI = II , then the run time is linear

in the number of interesting interactions found. The requirement for completeness

requires that children be examined, leading to the |V | in the run time. The algorithm

is said to be optimal in the sense that it takes time linear in the number of patterns it

�nds to be interesting. Since each interaction must be generated or output, it is not

possible to improve the run time beyond a constant factor. In practice, the algorithm

is therefore theoretically as e�cient as possible, given the frameworks functions. Of

course it should be clear that |I| is at worst 2|V |. In practical applications only a

small proportion of these interactions are interesting however. Also, note that in the

worst case, the |V | component in the run time is super�uous as there exists no inter-

action that is not interesting � |V | was included in the bound to cover interactions

that were examined but not found to be interesting. Since this does not occur in

the worst case, the algorithm is even optimal in the worst case. Interactions may

Dr. rer. nat. Dissertation

CHAPTER 3. GENERALISED INTERACTION MINING 37

be output in time linear in their length, or in constant time if they are output in

compressed format as a pre�x tree.

If MI(·) is trivial, t(MI) = O(1) and the pre�x tree is never kept in memory, leading

to low space usage. The e�ect of non-trivialMI(·) is discussed in section 3.11, where

the pre�x tree allows compression.

Theorem 3.9. The space usage is O(|V | · vs+ |V |2) if MI is trivial, where vs is the

space required by a single interaction vector.

Proof. In the worst case (all single variables are interesting interactions), all individ-

ual variables' interaction vectors must remain in memory at one point. The search

is depth �rst, and so the depth is at most |V |. At each node along the current path

of the search, a list (joinTo) of at most size |V | is kept (containing references to

objects already in memory), as well as at most one additional vector (the vector

corresponding to xV ′ required to build vectors for longer antecedents). Therefore,

at most O(|V | + |V |) = O(|V |) vectors each requiring vs space are in memory, and

O(|V |2) references to existing objects already counted.

In most applications, vs is at worst n, the number of samples. Since most databases

are sparse, sparse methods can be used to simultaneously reduce the space required

by interaction vectors and the run time of functions on them. Furthermore, the

search can often progress in subspaces. This will be described in section 3.15. Note

the order in which the xv are used. xv will only ever be needed by the algorithm

once all possible interactions that can be created from {v′ ∈ V : v′ < v} have been
mined. This means the vector will only need to be loaded into memory at this point.

Furthermore, for any variable v that is not interesting, it's vector xv is not required.

This means that the entire data set need never be in memory unless all single-variable

interactions are interesting. It is worth highlighting the fact that there will only ever

be a single interaction vector in memory at any level (depth) in the search, with the

exception of depth 1 of course. This is an important advantage of the algorithm.

A treatment of related algorithmic approaches and their key di�erences is given in

section 4.3 of chapter 4.

3.4 Counting Based Approaches: The Simplest Example

In data sets where a variable is either present or absent in a sample, the simplest

operation is to count how many times an interaction pattern occurs in the samples.

Florian Verhein

38 3.5. MINING MAXIMAL INTERACTIONS

This can be used as the basis of of more complex methods. Frequent itemset mining

(FIM) (or more generally, frequent pattern mining) is perhaps the simplest and most

widespread instance of interaction mining and aims to �nd all sets of items in a

transaction database that occur in at least minSup transactions [10]. A survey of

such methods may be found in [43] and chapter 4 considers this problem in depth.

Since FIM aims to �nd items that occur frequently together, it can be assumed that

there is some interaction between these variables in the process generating the data;

for example, an unseen variable � the human purchaser � tends to like particular

combinations of items.

FIM can be implemented e�ciently in the GIM framework as follows: Each item is

a variable, and each transaction is a sample. The database consists of the xv : v ∈ V
where each xv encodes the set of transactions in which it exists. Geometrically

then, items exist in the space spanned by the transaction identi�ers. This idea

will be covered in more detail in chapter 4. Interaction vectors xV ′ encode the

set of transaction IDs whose corresponding transactions contain V ′. One e�cient

implementation uses bit-vectors so that xV ′ [i] is 1 if the ith transaction contains V ′

and 0 otherwise2. With this encoding, a(xV ′ , xv) = xV ′ ANDxv, the bit-wise AND

operation. Since xv encodes those transaction ids for transactions containing v, and

xV ′ those containing V ′, xV ′∪v therefore encodes those transactions containing all

items in V ′ and the item v. Note that this would be the induction step in a proof of

correctness. mI(xV ′) = |xV ′ |, the number of set bits. Note that this is the support
of the itemset V ′. MI(·) is trivial. Finally, SI(·) = II(·) and returns true if and only

if the value computed by mI(xV ′) is at least minSup. Note that the pre�x tree is

not kept in memory in this application since MI(·) is trivial.

3.5 Mining Maximal Interactions

Interactions often overlap each other, and if an interaction is interesting then its

sub-interactions are usually also interesting. In a number of applications then, only

the maximal interaction is of interest. For example, this is useful in some graph

mining problems and the maximal frequent itemset mining problem.

De�nition 3.10. A maximal interaction V ′ ⊆ V is an interaction for which no

super-interaction V ′′ exists so that V ′ ⊂ V ′′ and V ′′ is interesting.

2A compressed �TID-set� or �TID-list� may also be used, which lists only the identi�ers of the
transactions containing V ′.

Dr. rer. nat. Dissertation

CHAPTER 3. GENERALISED INTERACTION MINING 39

Mining maximal interactions can be e�ciently performed in GIM through detecting

and processing �fringe� nodes.

De�nition 3.11. The fringe of a pre�x tree is the set of PrefixNodes that corre-

spond to interesting interactions and are not pre�xes of any other interesting inter-

action. Nodes in the fringe are called fringe nodes.

Note that if SI(·) = II(·) then the fringe is identical to the set of leaf nodes. Figure

3.3 shows examples of fringe nodes.

The following lemmas are useful for mining maximal interactions:

Lemma 3.12. The set of all maximal interactions is contained in the fringe of a

Prefix Tree.

Proof. If this were not the case, there would exist a maximal interesting interaction

that were a pre�x of another interesting interaction, providing a contradiction.

It will be shown later that the GIM algorithm generates all sub-interactions V ′′ ⊂ V ′

before generating V ′ (lemma 3.18). As a consequence of lemmas 3.12 and 3.18, all

maximal interactions can be mined by iterating over the fringe and discarding all

those interactions that are subsets of nodes mined later in the algorithms process.

Algorithm 3.2 shows an (on-line) incremental algorithm that performs this task as

the interactions are mined. Note that the subset checking must be done in one

direction only thanks to lemma 3.18. Furthermore, note that a new fringe node is

guaranteed to be maximal, and may only be rendered a non-maximal interaction if

a subsequently mined interesting interaction exists that subsumes it. In algorithm

3.2, addFringeNode(·) is called with the fringe nodes as they are generated. These

nodes are a subset of the nodes output by outputInteraction(·) in algorithm 3.1,

and it is not di�cult to modify algorithm 3.1 to be able to determine and hence

provide a signal to outputInteraction(·) when a node is a fringe node. This can

be done in constant time. Details are omitted here for clarity. Note that the maximal

interactions are stored e�ciently through the pre�x sharing of the pre�x tree.

The issues of mining maximal interactions e�ciently is central to the patterns mined

in chapter 9 and will be discussed in more detail there.

Florian Verhein

40 3.6. INCLUDING NEGATIVE PATTERNS

Algorithm 3.2 Incremental algorithm for maintaining the set of maximal interesting
interactions.

//Data Structure

SetmaximalInteractions = ∅;

addFringeNode(PrefixNode fringeNode)
for each PrefixNode n ∈ maximalInteractions
if n ⊂ fringeNode
maximalInteractions.remove(n);

maximalInteractions.add(fringeNode);

3.6 Including Negative Patterns

Negative patterns typically describe relationships that include the explicit lack of

events or objects. This means that not only is an objects presence important or

interesting, but so is its absence. Such patterns are (in general) not the same as

positive and negative relationships between variables � this issue will be considered

further in chapter 9. Consider an interaction pattern P1 = {a, c, d} where the set

of variables are V = {a, b, c, d, e} and suppose, for simplicity, that interestingness is

de�ned by some co-occurrence measure. P1 says that a, c and d occur together in the

database. It makes no statement about the presence or absence of the other objects

b and e. Indeed, b may always occur when {a, c, d} occur, or never occur when these

objects occur. If b always occurs, this leads to the pattern P2 = {a, b, c, d} being
found. However, if it never occurs when {a, c, d} occurs then this information is

not found � unless negative patterns are considered. Negative patterns allows such

information to be expressed; in particular, the previous example leads to the pattern

P2 = {a,¬b, c, d} where ¬ denotes the absence (negated presence). Note that P1 and

P2 are not the same and express di�erent knowledge about the database. Similarly,

suppose that a and e never occur together. That is, when a is present, e is never

present and vice versa. This is a potentially interesting interaction and can be

expressed in two patterns {a,¬e} and {¬a, e} depending on how interesting a and e

are by themselves. In contrast, not including negative patterns only allows positive

interactions to be found.

Mining negative patterns can be performed by in the GIM framework by �rst in-

cluding the negation of all variables in V . In the previous example, the variable

set would then be V = {a, b, c, d, e,¬a,¬b,¬c,¬d,¬e}. Additionally, the interaction
vectors for a negated variable need to be de�ned. This can be done using a function:

De�nition 3.13. N : X → X computes the negated vector x¬v = N(xv) corre-

Dr. rer. nat. Dissertation

CHAPTER 3. GENERALISED INTERACTION MINING 41

(a) The fringe of the pre�x tree of �gure 3.2(a). (b) Fringe of the pre�x tree of �gure
3.2(b)

Figure 3.3: The fringe of a pre�x tree is shown in grey in this �gure. Here, SI(·) =
II(·) so this corresponds to the leaf nodes.

sponding to the variable ¬v.

Since a variable v and its negation ¬v can never occur together, there is no need

to consider interactions containing both. GIM can be modi�ed to avoid examining

such cases in one of two ways. The simplest way is to employ a pre-pruning function

that will be described later in this chapter (de�nition 3.17). A more e�cient method

is to incorporate the categorised pre�x tree introduced in chapter 6 and place each

variable in a category with its negated variable. Variables in the same category are

considered mutually exclusive, and this can be exploited by modi�cations to the

algorithm that enable automatic pruning. Chapter 6 considers this in detail in the

context of Generalised Rule Mining (GRM).

Note that it is not hard to avoid explicit storage of negated vectors in the actual

algorithm. Usually it is easy and e�cient to implement this using a Decorator design

pattern [41] applied to the interaction vector, thus avoiding any additional usage of

space.

Florian Verhein

42 3.7. SOLVING TOP-DOWN OR MONOTONIC PROBLEMS WITH GIM

Example 3.14. In frequent itemset mining using bit-vectors as interaction vectors,

N(·) simple �ips all bits. Note that the anti-monotonic property holds when negative

items are included and as such the pruning technique functions identically to the

positive item case.

Example 3.15. A real world example where negative patterns are of interest is

presented in chapter 5. In that chapter, complex spatial co-location patterns were

sought.

Example 3.16. In a toy example, suppose we wish to �nd all possible algebraic

expressions with operators − and + over the set of variables so that the expression

has a value in [a, b] and holds in at least minSup samples. For example, such an

interaction may look like v1 + v2 − v3, and if this is evaluated over all samples

/ instances in the database, and evaluates to a value in [a, b] in at least minSup

samples, then it is an interesting pattern. This can be solved in the GIM framework

using an aggregation function aI(xV ′ , xv) de�ned so that xV ′∪v[i] = xV ′ [i] + xv[i],

using the variable set that includes both the positive and negated variables (where

N(xv)[i] = −xv[i]), mI(xV ′) = |{i : xV ′ [i] ∈ [a, b]}|, MI(·) is trivial, II(·) returns

true if the number computed by mI(·) is at least minSup, and SI(·) always returns
true (note that this means there is no pruning3).

3.7 Solving Top-Down or Monotonic Problems with GIM

Due to the bottom up nature of the algorithm, where interactions are grown by

adding additional variables to them, GIM is most suited to methods where the in-

terestingness measure is anti-monotonic or partially anti-monotonic, as this enables

e�cient pruning of the search space � particularly in sparse databases: if an inter-

action is not interesting, larger interactions need not be considered. This section

describes how monotonic problems can also be solved using GIM.

It is possible to solve monotonic problems in GIM by �inverting� the original problem,

thus producing an anti-monotonic problem. This means that rather than mining the

interaction itself, the GIM algorithm mines the �inverted� pattern, from which the

actual pattern sought can be recovered.

To illustrate this method, for simplicity consider the problem of mining infrequent

patterns in a database where the absence of objects is meaningful. That is, �nd

3This is just a toy example, where the primary goal it to illustrate a negative pattern, not how to
mine it e�ciently. There are methods to solve this problem more e�ciently in the GIM framework.

Dr. rer. nat. Dissertation

CHAPTER 3. GENERALISED INTERACTION MINING 43

all sets of objects that occur at most maxSup times. It should be clear that this

interestingness concept is monotonic. For example, if the set {1, 2, 3} is interesting,
then so is {1, 2, 3, 4} and any other super-set of {1, 2, 3}. Conversely, if {1, 2, 3} is not
interesting, then neither is {1, 3} or any other subset. This problem can be solved

by starting with the interaction {1, 2, 3, 4, 5} and removing variables from it. That

is, a top down approach where branches of the search may be pruned accordingly.

This can be achieved in GIM through inverting the problem and mining the inverted

problem in a bottom up manner, therefore implicitly performing the same function

as an explicitly top down algorithm. The main task is to count the occurrences of

interactions in samples. That is, to count how often the pattern ∧v∈V ′v occurs in

the rows (records, samples) r ∈ D of the database D:

count(V ′) = |{r ∈ D : v ∈ r}|

Let us skip straight into how this can be solved in the GIM framework. De�ne an

interaction vector xV ′ as an integer valued vector where xV ′ [i] is the number of times

that any v ∈ V ′ occurs in the ith sample. That is, xV ′ [i] =
∑

v∈V ′ I(v ∈ si) where si
is the ith sample and I(expr) has value 1 if expr is true, and 0 otherwise. This may

also be expressed as xV ′ [i] =
∑

v∈V ′ xv[i] where xv[i] has value 1 if v is contained in

the ith sample and 0 otherwise. Using this representation,

count(V ′) =
∑
i

I(xV ′ [i] = |V ′|)

That is, all those entries in xV ′ are counted if they match the size of V ′. The integer

vector representation of these interactions allows not only the addition of variables

to an interaction, but also (crucially) their removal. For example, xV ′−v[i] = xV ′ [i]−
xv[i]. Since GIM is based on the notion of growing interactions, it is necessary to

invert the problem so that adding variables using aI(·) in the framework semantically

corresponds to removing variables from the actual interaction being sought. This can

be done using the above observations.

Therefore, the infrequent pattern mining problem can be solved in the GIM frame-

work as follows, where i ∈ [1, n] and n is the number of samples / rows / instances.

• x∞[i] =
∑

v∈V xv[i] is the vector corresponding to the root node (the empty

interaction V ′ = ∅). Note however that due to the inversion of the problem,

the interpretation of this node is actually the set of all variables V .

• aI(xV ′ , xv) is de�ned so that xV ′∪v[i] = xV ′ [i]− xv[i]. Note that the interpre-

Florian Verhein

44
3.8. GRAPH MINING: WHEN THE INPUT IS AN ADJACENCY OR

DISTANCE MATRIX

tation of V ′ ∪ v is actually the set of variables except those in V ′ ∪ v. That is,
V − (V ′∪ v). In other words, the node in the pre�x tree corresponding to V ′ is

interpreted as the interaction V − V ′. By performing the aI(·) operation, the
algorithm will e�ectively remove the variable v from the interaction V − V ′.

• mI(xV ′) =
∑

i I(xV ′ [i] = |V |−|V ′|), that is, the number of entries in the vector
xV ′ that match the size of the desired interaction |V |− |V ′|. Here, I(expr) has

value 1 if expr is true, and 0 otherwise.

• MI(·) is trivial, therefore simply returning the result provided by mI(·).

• SI(·) = II(·) and these return true if the result of mI(·) is less than or equal to

maxSup. Note that the inversion of the problem results in an anti-monotonic

interestingness measure as far as the algorithm is concerned, and therefore the

search space is correctly pruned.

• outputInteraction(PrefixNode node) in algorithm 3.1 outputs the set of vari-

ables not present in the traversal from node to the root.

It has now been shown how a monotonic problem can be inverted and mapped to

an anti-monotonic problem and solved in the GIM framework. This is possible with

any monotonic problem � it is simply a matter of �nding the appropriate inversion.

The reader should note that this inversion is not related to the problem of �nding

negative patterns. Of course, mining positive and negative patterns with a monotonic

measure is also possible using the techniques in this section.

3.8 Graph Mining: When the Input is an Adjacency or

Distance Matrix

This section shows how problems can be solved in GIM that do not require measures

between more than two variables at a time, however still mine interactions of any size.

The result is that the input is a pre-computed adjacency matrix, which describes all

pairwise interactions between variables. The task then is to use this to �nd larger

structural interactions using this data. This is useful in clustering, clique mining and

correlation analysis for example.

3.8.1 Clique Mining

For simplicity, consider the problem of �nding all cliques in a given graph. A clique

is a fully connected sub-graph (a sub-graph where every vertex is connected to every

Dr. rer. nat. Dissertation

CHAPTER 3. GENERALISED INTERACTION MINING 45

A =


1 1 0 0 1 0
1 1 1 1 1 0
0 0 1 1 0 0
0 0 0 1 1 1
1 1 0 1 1 0
0 0 0 1 0 1



(a) The adjacency matrix A.

(b) Example directed graph for clique min-
ing. It is assumed that each vertex is reach-
able from iteself (that is, there is an implicit
edge from each vertex to itself).

Figure 3.4: Clique mining example. aij = 1 if there is an edge
from vertex i to vertex j. V = {1, 2, 3, 4, 5, 6}. The set of cliques is
{{1, 2}, {1, 5}, {2, 5}, {4, 5}, {4, 6}, {1, 2, 5}}.

other vertex, including itself). The structure of a graph may be de�ned by an

adjacency matrix, which describes which vertexes in the graph are adjacent to which

other vertexes. Speci�cally, the adjacency matrix A of a �nite graph G on |V | vertices
is the |V |× |V | matrix where the non-diagonal entry aij is the number of edges from

a vertex i to vertex j and the diagonal entry aij , depending on the convention, is

either once of twice the number of edges from vertex i to itself. Figure 3.4 shows

an example directed graph and its adjacency matrix, with the assumption that each

vertex is reachable from itself.

Mining cliques can be performed in the GIM framework as follows.

• V , the set of variables, is also the set of vertices.

• The database D is the adjacency matrix, and the samples therefore are also the

variables. Without loss of generality, take xv to be the column vector, so that

xv has xv[i] > 0 if the ith variable (vertex) is connected to v, and 0 otherwise.

Here, vector indices start at 1.

• aI(xV ′ , xv) = xV ′∪v where xV ′∪v[i] = min(xV ′ [i], xv[i]). Note that by this

Florian Verhein

46
3.8. GRAPH MINING: WHEN THE INPUT IS AN ADJACENCY OR

DISTANCE MATRIX

construction, xV ′ [i] is non-zero if vertex i is connected to all other vertices in V
′.

For example, consider x1, x4 and x5 from �gure 3.4(a). x{1,5} = [1, 1, 0, 0, 1, 0]T ,

showing that 1 and 5 are incident on each other, and 2 is incident on both.

x{1,4} = [0, 1, 0, 0, 1, 0]T , showing that 2 and 5 are both incident on 1 and 4.

If the adjacency matrix is binary, then the xV ′ are binary vectors and aI(·) is
the bit-wise AND operation.

• mI(xV ′) = [
∑

v∈V ′ I(xV ′ [v] > 0),
∑

v 6∈V ′ I(xV ′ [v] > 0)], an array of two values

where
∑

v∈V ′ I(xV ′ [v] > 0) is the number of vertices in V ′ that are reachable

from all other vertices in V ′, and
∑

v 6∈V ′ I(xV ′ [v] > 0) are those vertices not

in V ′ that are reachable from all other vertices in V ′. I(expr) is the indicator

variable whose value is 1 if expr is true, and 0 otherwise. Note that by the

construction of xV ′ by aI(·), mI(xV ′)[1] (the �rst value computed by mI(·)),
this is precisely the number of vertices in V ′ that are connected to all vertices

in V ′. If this value is equal to |V ′| then V ′ is a clique. Note the maximum

value it can take is |V ′|.

• MI(·) is trivial.

• II(·) returns true if and only if valuem[1] = |V ′|, where valuem are the values

computed by mI(·) and V ′ is the interaction being examined. Recall that if

valuem[1] < V ′ then V ′ is not a clique as it is not completely connected.

• SI(·) returns true if and only if valuem[1] = |V ′| ∧ valuem[2] > 0. If an

interaction vector does not indicate that there are any other vertices incident

on all vertices in V ′ (that is, valuem[2] > 0), then there is no point continuing

the search by expanding V ′. Therefore the search can be pruned at this point.

Note that the above approach works for both directed and undirected graphs. For

a directed graph, only cliques will be mined where each vertex is connected to each

other vertex so that all edges in such a clique are bi-directional. If it is known

that the graph is undirected then the approach can be streamlined to make it more

e�cient since the adjacency matrix is symmetric. Furthermore, note that only one

direction needs to be checked while the above method checks both (as it must for a

directed graph).

The above method can be improved slightly. Note that given an interaction vector

xV ′ , it is possible to determine exactly which variables are potential candidates, and

which are not. In particular {v 6∈ V ′ : xV ′ [v] > 0} is the set of vertices that are

incident on all vertices in V ′. Any vertices not in this set need not be examined and

can be pruned. Note however that through the operation of GIM whereby siblings

Dr. rer. nat. Dissertation

CHAPTER 3. GENERALISED INTERACTION MINING 47

are joined, some of this pruning is performed automatically. Furthermore, any nodes

passing through this automated pruning will be discarded after one application of

aI(·) and mI(·). That is, O(|V |) time. Assuming the interaction vectors are imple-

mented so that the xV ′ [v] look-up can be performed in O(1) time, it is possible to

obtain a run time improvement in cases where pruning can be applied by inserting

the following line into algorithm 3.1:

...

for each v ∈ joinTo
if (xV ′ [v] = 0) continue; //additional line

V ector xV ′∪v = aI(xV ′ , xv);

...

Where continue skips the remainder of the loop's current iteration. This is a small

check that allows the generation and evaluation of xV ′∪v to be avoided. It is possible

to include an additional function in the framework that generalises this and allows

such e�ciency improvements:

De�nition 3.17. PI(xV ′ , v) returns true if V ′ ∪ v should be examined.

With this additional function, algorithm 3.1 would look like:

...

for each v ∈ joinTo
if (PI(xV ′ , v)) continue; //additional line

V ector xV ′∪v = aI(xV ′ , xv);

...

Finally, note that the vectors need not be implemented as an explicit vector / array.

An ordered list is more space e�cient and depending on the sparsity of the graph,

may also be faster. A general discussion of vector representations is presented in

section 3.15.

3.8.2 Mining Maximal Cliques

Maximal cliques are those cliques that are not contained inside any larger clique.

Maximal cliques can be mined using GIM by using the method described in section

Florian Verhein

48
3.8. GRAPH MINING: WHEN THE INPUT IS AN ADJACENCY OR

DISTANCE MATRIX

3.5 in addition to that described above. In �gure 3.4, the maximal cliques are {4, 5},
{4, 6} and {1, 2, 5}.

A real world example where maximal cliques are useful is presented in chapter 5. In

that chapter, a specialist method for mining maximal cliques is used that functions

only on two dimensional data. That is, xv = (xi, yi). It is not e�cient for high

dimensional data as it scans over the dimensions. The method described above

can be used as an alternative, and is applicable to high dimensional data. Mining

maximal cliques is also part of the problem considered in chapter 9.

3.8.3 Solving the Independent Set Problem

The independent set problem (ISP) is not a data mining problem, but a well known

problem in algorithms. It encodes situations in which one tries to choose objects

from a collection in which there are pairwise con�icts between some of the objects.

The con�icts are encoded by edges between objects, which become the nodes in the

graph. One wishes to �nd the largest set without con�icts (the largest independent

set). Formally, given a graph G = (V,E), a set of nodes S ⊆ V is said to be

independent if no two nodes in S are joined by an edge. The ISP is stated as

follows: Given G, �nd an independent set that is as large as possible. In �gure

3.4 (note that a con�ict is an undirected concept), the largest independent sets are

{6, 3, 5} and {6, 3, 1}. The ISP is a general problem and subsumes problems such

as interval scheduling (where the goal is to schedule a resource optimally given a

set of requests) and bipartite matching. Since the ISP is NP-Complete, no e�cient

algorithm is known for solving it [51]. As a consequence, it is considered unlikely that

an algorithm exists which can solve it more quickly that an enumeration approach.

GIM can be applied to solve the ISP problem as e�ciently as can be expected by

noting that ISP can be mapped to the clique mining problem above. In clique mining,

sets of vertices are desired where every vertex is connected to every other, while in the

ISP problem, sets of vertices are desired where none of the vertices are connected to

each other. Adding a vertex that is connected to any other violates the independence

property, just like adding a vertex that is not connected to all others violates the

clique property. Therefore, de�ne a graph G∗ = (V,E∗) where an edge exists between

vertices in G∗ if and only if no edge existed in G. Hence E∗ = V × V − E and the

adjacency matrix of G∗ is the result of applying the logical NOT operation to every

entry in the adjacency matrix of G. By mining a clique V ′ in G∗, one is mining a

set of variables V ′ where all variables in V ′ are not connected to all other variables

in V ′; an independent set in G. Therefore, to solve the ISP problem with GIM, V

is the set of vertices and D is the adjacency matrix of G with all bits �ipped so

Dr. rer. nat. Dissertation

CHAPTER 3. GENERALISED INTERACTION MINING 49

that the column (or row) vectors xv have xv[i] = 0 if the ith variable (vertex) is in

con�ict with v, and 1 otherwise. Then mine cliques as described above and simply

maintain only those that have the (current) largest size (note the di�erence between

maintaining the maximal sized cliques and mining maximal cliques).

3.9 Clustering

Some clustering problems can also be solved with GIM. One example will be pre-

sented here. Consider the problem of �nding all clusters so that all points in a cluster

are at most maxDist from their cluster center. The goal therefore is the maximal

sized sets so that all points in that set are close to that set's representative point -

it's center. This approach does not require the speci�cation of the number of clusters

beforehand. However, by the problem de�nition it can lead to overlapping clusters

� that is, a point may be part of more than one cluster.

In this problem, an interaction vector xV ′ is the centroid of the cluster V ′.

(3.1) xV ′ [i] =
1

|V ′|
∑
v∈V ′

xv[i]

Note that this holds for the individual variables' interaction vectors xv also. The

search progresses by adding new points to the cluster provided that the resulting

cluster center xV ′ remains within maxDist from all variables in xV ′ . Otherwise the

search is stopped. This can be implemented in GIM as follows:

• The database is the set of vectors xv encoding the location of the variables v

in some space X. The order on V is arbitrary.

• aI(xV ′ , xv) is de�ned so that aI(xV ′ , xv)[i] = 1
|V ′|+1(|V ′| · xV ′ [i] + xv[i]). Note

that this incremental update ensures that xV ′ adheres to the result obtained

by using Equation 3.1.

• It is now necessary to deviate from the exact de�nitions of the framework

somewhat (actually, this is not necessary but it makes things clearer). Recall

that mI(xV ′) is de�ned as operating only on the vector xV ′ . However, in this

problem it is necessary to have access to the xv : v ∈ V ′ too, so that the

distances can be checked. This is not a problem as these are readily accessible.

mI(xV ′) is de�ned as follows:

Florian Verhein

50 3.10. MINING UNCERTAIN OR PROBABILISTIC DATABASES

mI(xV ′) = max
v∈V ′

dist(xv, xV ′)

Where dist(·) is an appropriate distance metric. That is, the maximum dis-

tance that an element of V ′ is away from the cluster center xV ′ .

• MI(·) is trivial.

• SI(·) = II(·) and return true if and only ifmI(xV ′) ≤ maxDist. If only clusters
of a size at leastminClusterSize are required, keep SI(·) as is and simply de�ne

II(·) to return true if and only if |V ′| ≥ minClusterSize∧mI(xV ′) ≤ maxDist.
For example, minClusterSize = 2 avoids outputting any clusters of size 1.

Note that the search is pruned whenever a variable is added to the cluster that

violates the condition of that cluster. Note that if this condition is violated, then

adding any further variables will not change this fact, and therefore the problem is

anti-monotonic. Note however that through the operation of GIM, if for example

V ′ = {1, 2, 3, 4} and adding a new variable 5 causes the centroid to be shifted so that

1 is no longer in the cluster, then while {1, 2, 3, 4, 5} is not interesting, {2, 3, 4, 5}
will still be examined later and may be interesting.

Since the user will not really be interested in all clusters that meet the criteria above,

but rather only those that are maximal, the methods of section 3.5 can be applied

in order to �nd the desired patterns.

Finally, other cluster conditions may also be used. It is important to observe two

issues however; the clustering condition should not be dependent on the order in

which variables are added, unless it is permissible to have the result be dependent

on the input order (Note the above method delivers the same result regardless of the

order on V). Secondly, the method should have some form of anti-monotonicity (or

monotonicity, in which case the approach of section 3.7 can be applied) to enable

pruning. On the other hand, if a heuristic is acceptable, then this can be implemented

using the MI(·) function.

3.10 Mining Uncertain or Probabilistic Databases

A probabilistic database can encode uncertainty about the data. The GIM framework

provides an intuitive way of solving interaction mining problems in uncertain or

probabilistic databases, where the existence of variables in samples is de�ned by a

probability vector.

Dr. rer. nat. Dissertation

CHAPTER 3. GENERALISED INTERACTION MINING 51

In probabilistic frequent itemset mining (PFIM) for example, the goal is to �nd item-

sets that are frequent with a high probability. In an uncertain transaction database,

it may not be certain whether an item is present in a transaction. For example,

noise, additive noise in privacy preserving data mining and inherent uncertainty in

the problem domain may cause this to be the case. Therefore, the event �an item

i is contained in a transaction t� is associated with a probability. Chapter 10 will

provide more details, motivation and examples. Prior to the work presented in part

IV of this thesis, all previous approaches to frequent itemset mining in uncertain and

probabilistic databases used the expected support method. While this approach has

many drawbacks as presented in chapter 10, it can also be implemented in GIM very

e�ciently. The alternative and superior method, based on computing the probability

distribution of support and used in part IV, can also be implemented in GIM and

this is considered in chapter 13.

The assumption made in work addressing this problem is that the items are indepen-

dent, and therefore that the probability that the itemset V ′ exists in a transaction

ti can be computed as Πv∈V ′P (v ∈ ti), where P (E) is the probability that event E

occurs. The expected support of an itemset V ′ is the expected number of times it

occurs in the transactions: 1
n

∑
i Πv∈V ′P (v ∈ ti) where n is the number of trans-

actions in the database. The Expected Frequent Itemset Mining (EFIM) problem is

to search for all itemsets whose expected support is above a user de�ned threshold

minExpSup. It is not hard to show that the expected support is anti-monotonic.

EFIM can be solved in GIM as follows:

• The vectors xv are de�ned so that xv[i] = P (v ∈ ti). This results in probability

vectors. The order on the variables is arbitrary.

• aI(xV ′ , xv) is computed as aI(xV ′ , xv)[i] = xV ′ [i] · xv[i]. Note that xV ′ [i] is the
probability that V ′ ⊆ ti under the independence assumption.

• mI(xV ′) = 1
n

∑
i xV ′ [i] where n is the number of transactions. Note that this

is the expectation of the support of V ′.

• MI(·) is trivial.

• II(·) = SI(·) and returns true if and only if mI(xV ′) ≥ minExpSup.

This problem naturally �ts into the vectorised framework, which provides both an

intuitive way of thinking about the problem and an e�cient solution. Consider in

contrast how this would be implemented using an Apriori style algorithm; in partic-

ular the need to determine whether a candidate itemset is present in a transaction.

Florian Verhein

52 3.11. COMPLEX (�NON-TRIVIAL�) INTERESTINGNESS MEASURES

3.11 Complex (�Non-Trivial�) Interestingness Measures

So far in this chapter, all problems considered had a trivial MI(·). This section

will consider the case when MI(·) is non-trivial. Recall from section 3.2 that this

means that sub-interactions must be examined in order to calculate a measure on

the interaction and to determine whether of not an interaction is interesting. This

requires a way to store and quickly retrieve PrefixNodes given the interaction they

represent, in order to obtain the valuem and valueM values stored within the node.

This is done using a map that maps a given sequence of variables to the corresponding

PrefixNode. Such a map is called a SequenceMap and provides constant time look-

up for the required values. An e�cient method for implementing this is to use aMap

or Hashtable that maps PrefixNodes to themselves, with identity based solely on

the sequence of variables encountered in a traversal towards the root. That is, the

hashCode() and equality is dependent solely on the variableId sequence represented

by the PrefixNode and not on the values. This allows an arbitrary sequence of

variables to be created (for example, as a chain of PrefixNodes � e�ectively a

singly linked list), and the values of that interaction can be retrieved by retrieving

the PrefixNode that the algorithm created earlier via the Map's get(·) operation.
In the worst case, this look-up operation requires O(|V ′|) time, where |V ′| is the size
of the interaction (in the case of a collision, checking if two sequences are identical

requires at most a scan over them).

The additional space used by this method is only the bucket array of the HashTable.

However, recall that algorithm 3.1 assumes a garbage collector, and hence if PrefixNodes

are not explicitly stored, they will be deleted. Storing them, as is required by a non-

trivial MI(·), leads to the pre�x tree remaining in memory. Conversely, note that

for trivial MI(·), only a single path in the pre�x tree is retained in memory and fur-

thermore, a sequence map is not required. Insertion into this map is performed by

the store(·) function in algorithm 3.1. Depending on the measure to be evaluated,

store(·) may only need to store selected nodes. For example, some measures like

minPI and maxPI require only that interactions of size 1 remain in memory for

later use by MI(·). In these cases, the memory requirement is the same as for a

trivial MI(·).

Algorithm 3.3 shows how the sequence map and the pre�x tree nodes can be used to

e�ciently retrieve all immediate sub-interactions {V ′− v : v ∈ V ′} of V ′. Of course,
non-immediate sub-interactions can also be retrieved.

The following lemma proves that all sub-interactions will be available, provided they

are interesting. This is important for two reasons:

Dr. rer. nat. Dissertation

CHAPTER 3. GENERALISED INTERACTION MINING 53

1. It proves correctness, and

2. It allows interestingness to be forced to be anti-monotonic simply by checking

whether sub-interactions of V ′ exist. If they do not exist, then they are not

interesting and neither can V ′ be if the measure is anti-monotonic. Hence,

the search may be pruned at V ′. This e�ect can be achieved by examining

only immediate sub-interaction (that is, sub-interactions of size |V ′| − 1). By

induction, this then holds over all sub-interactions. Forcing a measure to be

anti-monotonic is a heuristic that is useful in some applications and is discussed

in section 3.21.

Lemma 3.18. Algorithm 3.1 generates all sub-interactions V ′′ before generating V ′.

Proof. The algorithm progresses through the search space by joining existing Pre-

�xNode siblings together, creating interactions that are one variable larger than the

two original sibling nodes. Suppose for the purpose of contradiction that an inter-

action V ′ exists but a sub-interaction of it is mined later. Proceed by showing that

each immediate sub-interaction V ′ − v : v ∈ V ′ has already been mined, so that the

result follows by induction. First, note that each interaction can be represented by a

sequence of Pre�xNodes, which can be constructed in reverse by traversal from the

node for V ′ towards the root. The immediate sub-interactions of V ′ can be obtained

by removing one variable from V ′ at a time. Suppose v ∈ V ′ is removed, so that

V ′ = Sp∪ v∪Ss where Sp and Ss are the pre�x and su�x (either potentially empty)

of the interaction (sequence) respectively. Since the expansion of the search is done

in depth �rst fashion and with increasing order amongst the siblings (according to

their variables), Sp ∪ Ss must be expanded �rst, since by de�nition the sequences in

the Pre�xTree appear in decreasing order. Since this is true for all v ∈ V ′, the result
follows by induction and contradiction.

3.11.1 Complexity

The run time complexity is altered only by the evaluation of MI(·), as taken into

account in theorem 3.8. Clearly, computingMI(·) for measures that require compari-

son to immediate sub-interactions requires at most O(|V |) extra time per interaction.

Hence t(MI) = |V | at worst.

The space complexity is altered signi�cantly, as the PrefixNodes must be stored

in order for the algorithm to retrieve the valuems of sub-interactions at a later

Florian Verhein

54 3.11. COMPLEX (�NON-TRIVIAL�) INTERESTINGNESS MEASURES

Algorithm 3.3 Example of an algorithm that loops through all immediate sub-
interactions {V ′ − v : v ∈ V ′} of V ′ in order to compute MI(·).

//Data Structure

Map map;

//Store

store(PrefixNode node)
map.put(node, node);

//Function that retrieves all immediate sub-interactions of

//the interaction V ′ (V ′ is represented by node).
evaluateMI(PrefixNode node)
PrefixNode n = node;
PrefixNode r; //node to temporarily remove

PrefixNode value;
while(n 6= root)
r = n;
n = n.parent;
if (r 6= node)
node.parent = n;
value = map.get(node);
else

value = map.get(n);
//value is the node representing V ′ − r.variableId
//perform some computation on value.valuem and value.valueM.

//...

node.parent = r;
r.parent = n;

return the computed value.

stage. This means that the pre�x tree over the interesting interactions must remain

in memory. This is where the pre�x compression of the pre�x tree is valuable.

Consequently, the space usage increases by exactly the number of interactions that

are considered interesting according to SI(·). No other space usage implications

arise.

Theorem 3.19. If MI(·) requires access to sub-interactions, the space complexity is

O(|I| + |V | · vs + |V |2) where vs is the space required by a single interaction vector

and |I| is de�ned in theorem 3.8. Note that O(|V | · vs) is the worst case size of the

database.

Proof. If all interactions need to be stored (MR(·) is non-trivial), this takes O(|I|)

Dr. rer. nat. Dissertation

CHAPTER 3. GENERALISED INTERACTION MINING 55

space at worst as each interaction corresponds to a single pre�x node. The remaining

complexity is the same (see theorem 3.9).

3.12 Weak Anti-monotonicity and when Order is Impor-

tant

This �xed order in variables within the GIM framework and algorithm can be ex-

ploited. While in many applications this order is arbitrary, in some it can be used

to implement a useful heuristic (for example, by expanding the most promising in-

teractions �rst), while in others is can be central to the e�cient mining of patterns.

This section gives an example of a measure that was previously considered weakly

anti-monotonic, but is actually completely anti-monotonic provided the variables are

ordered in a certain fashion. Since GIM supports such an ordering, it can be used

to implement weakly anti-monotonic measures very e�ciently.

3.12.1 Maximum Participation Index (maxPI)

A sub-�eld of Data Mining concerns itself with spatial data. One problem in spatial

data mining is �nding co-location patterns. That is, sets of objects that are located

close to each other in many instances. The minimum participation index , orminPI,

is a commonly used measure in co-location mining:

(3.2) minPI(V ′) = min
v∈V ′
{count(V ′)/count({v})}

where count(V ′) is the number of occurrences of the interaction V ′ in the database.

For example, minPI will be used in chapter 5 for mining complex spatial co-location

patterns amongst the set of all complex maximal cliques in a real world astronomy

database. It is popular because it is anti-monotonic and therefore allows easy pruning

of the search space: If V ” ⊆ V ′ then minPI(V ′) ≤ minPI(V ”). This is well

known in the literature and follows readily from Equation 3.2 since support is anti-

monotonic, as is the min function. This means that if an interaction V ” is found

not to be interesting (minPI is too low) then the search can avoid considering every

super-set of V ′ and thus prune a large part of the search space.

An alternative to minPI is the maximum participation index [49], or maxPI mea-

sure, de�ned as follows:

Florian Verhein

563.12. WEAK ANTI-MONOTONICITY AND WHEN ORDER IS IMPORTANT

maxPI(V ′) = max
v∈V ′
{count(V ′)/count({v})}

This measure is not anti-monotonic due to the max function (which by itself is mono-

tonic) as can be demonstrated with a simple counterexample: With the addition of

an extra variable v to V ′ so that v occurs only with the other variables in V ′, the

ratio count(V ′)/count({v}) = 1; the maximum value. Previous work has assumed

that maxPI is only weakly anti-monotonic [16, 49]. However it is shown here that it

can be completely anti-monotonic provided the data is appropriately pre-processed.

This improves the ability to use this measure to mine patterns, simpli�es the al-

gorithms and increases the e�ciency of mining algorithms. It turns out that if an

order is imposed on the variables, so that in the mining process only those variables

are added to an existing interaction if their count(·) is greater than those previously

added, maxPI becomes anti-monotonic:

Lemma 3.20. If V ′ = V ”∪v and count(v) ≥ maxj∈V ”(count(j)) thenmaxPI(V ′) ≤
maxPI(V ”).

Proof. [Sketch] The numerator remains anti-monotonic, and any additional variable

v added will generate a smaller ratio count(V ′)/count({v}) than any existing variable
v′ ∈ V ”.

With this result, it is possible to use maxPI anti-monotonically by ordering all

variables by their count(·) values before engaging in the mining process. Recall

that since the GIM algorithm maintains this order throughout its operation, the

requirement of 3.20 is always satis�ed. Hence, the correct result will be mined using

GIM while the search space can be pruned as much as possible. The use of lemma

3.20 results in an O(|V |) factor reduction in computation time over previous methods

based on the weak anti-monotonic result.

The maxPI method can be implemented anti-monotonically in the GIM framework

as follows:

• Supposing we are concerned with a clique mining problem and the database

consists of sub-graph instances. An interaction vector xV ′ has xV ′ [i] = 1 if the

ith instance in the database contains the clique V ′.

• The strict total order < is such that vi < vj ⇐⇒ count(vi) > count(vj). This

means that variables will be added to interactions in increasing count(·) order,

Dr. rer. nat. Dissertation

CHAPTER 3. GENERALISED INTERACTION MINING 57

as required to make maxPI anti-monotonic. This ordering is performed as a

pre-processing step.

• aI(·) and mI(·) are implemented as in a counting approach (see section 3.4 for

example).

• MI(·) can evaluate the maxPI measure by using the result of mI(·) (i.e.

count(V ′)) and looking up the values previously computed by mI(·) for indi-

vidual variables (i.e. count(v) : v ∈ V ′), but this is naive. Note that due to the
order on the variables, it is guaranteed that count(v) ≥ maxj∈V ”(count(j)),

where v is the last variable added to V ′. Hence MI(·) need only compute

count(V ′)/count(v).

• II(·) = SI(·) and return true if and only if the result of MI(·), maxPI, is at
least a user de�ned threshold.

The above approach requires a non-trivial MI(·) and an evaluation ofMI(·) requires
|V ′| operations using the naive method and O(1) otherwise. It turns out that there is

an even more e�cient implementation in GIM using a trick on the encoding of the vec-

tors xv. In particular, let xv[0] be |xv| = count(v). And xV ′ [0] = maxv∈V ′{count(v)}.
That is, the otherwise binary valued vector has an additional �eld storing the max-

imum count(·) of all variables in V ′. The following instantiation makes this work:

• The order is as above, and so are vectors xv except that the additional �eld xv[0]

exists that is initiated to count(v) =
∑n

i=1 xv[i]. x∞, the vector corresponding

to the root, has x∞[0] = 0 for the below to work.

• aI(xV ′ , xv)[i] = xV ′ [i]ANDxv[i] when i ≥ 1 and max{xV ′ [0], xv[0]} when

i = 0. Note that this maintains the desired property of xV ′∪v[0] being the

maximal count(v′) : v′ ∈ V ′ ∪ v as required.

• mI(xV ′) = |xV ′ |/xV ′ [0] where |xV ′ | is the number of set bits, that is count(V ′) =∑n
i=1 xV ′ [i]. mI(·) therefore evaluates maxPI.

• MI(·) is trivial. The de�nitions of SI(·) and II(·) are as before.

This is a more e�cient approach and additionally uses a trivial MI(·). It also func-

tions as an example where a clever choice for the interaction vector xV ′ leads to a

more e�cient algorithm.

Florian Verhein

58 3.13. FORCED ANTI-MONOTONICITY

3.13 Forced Anti-monotonicity

Work in this thesis will demonstrate that it can be desirable to force anti-monotonicity,

and consequently encourages the use of this technique over selecting low quality but

anti-monotonic measures. Forcing anti-monotonicity is useful when a measure exists

that correlates highly with the concept of interestingness in the user's domain, but

does not have any properties that can be exploited for pruning. Without searching

the entire pattern space (intractable in anything but the most trivial problems) there

is no way to guarantee a complete solution. An alternative is to combine the measure

with a second measure that can be used for pruning, such as the number of instances

that match the pattern, but then the search is determined completely by the second

measure, which is usually not correlated with what the user wants. A number of con-

crete problems solved in this thesis demonstrate that forcing anti-monotonicity on

a good interestingness measure leads to much better quality results and much more

e�cient algorithms than relying on measures that have natural anti-monotonicity.

In particular, chapters 6, 7 and 8 use this idea for rules. This idea proved to be

especially useful when mining statistically signi�cant patterns.

Forcing anti-monotonicity generates a heuristic. Suppose we have a measure of in-

terestingness M(X) on a set X, and that higher values of M(·) are desirable. Anti-
monotonicity means that X ⊆ Y =⇒ M(X) ≥ M(Y), therefore allowing the

pruning of a search space; if X is not interesting, we need never consider any of its

super-sets. The following can be used to force any non-anti-monotonic measure M ′

to be anti-monotonic.

Lemma 3.21. Suppose M ′ is an arbitrary (not anti-monotonic) measure. The com-

posite measure M” is anti-monotonic:

M”(X) = M ′(X)−max
x∈X

(M ′(X − x))

Proof. By induction.

M” is therefore the improvement inM ′ achieved by the addition of an extra variable

to the interaction, since it is the di�erence between the interestingness of X and

the most interesting immediate subset. When used in GIM, M” therefore greedily

searches for new interactions that have a higher interestingness.

Implementing M” in GIM is easily achieved using the MI(·) function in the frame-

work: set mI(·) = M ′ and have MI(·) compute the equation in lemma 3.21. Recall

that algorithm 3.3 showed how to access the immediate sub-interactions.

Dr. rer. nat. Dissertation

CHAPTER 3. GENERALISED INTERACTION MINING 59

3.14 High Dimensional Data and Dimensionality Reduc-

tion

GIM is designed for high dimensional data. In particular, note from section 3.8

that it scales linearly with the dimensionality of the vectors, since the framework is

based purely on vector valued functions. Since GIM operates on vectors existing in

some space X, it is possible to reduce the dimensionality of those vectors without

a�ecting the operation of GIM. Furthermore, the semantics and scrutability of the

pattern do not change. That is, the results are still an interaction expressed as a

subset of V . For example, the clustering approach considered in section 3.9 may

easily have dimensionality reduction methods applied, since the distance measure is

usually preserved quite well in the reduced space. For dimensionality reduction to

be applicable in a GIM method, the result of mI(·) in the reduced space should be

su�ciently similar to the results when they are applied in the original space, and

aI(·) must lead to the same semantics in the reduced space as in the original space.

Chapter 4 provides some discussion on the use of Singular Value Decomposition to

reduce the space in the context of itemset mining.

3.15 Vector Representations and Subspace Projections

This section brie�y discusses the importance of di�erent vector representations in

GIM and the ability for them to exploit subspace projections. Examples in this

chapter have had real valued vectors (for example in section 3.6 and 3.10), integer

valued vectors (for example in section 3.8 and section 3.7) and of course binary valued

vectors (for example, any counting approach and some graph based approaches).

Since the GIM framework operates using only functions on vectors, the way these

vectors are implemented has a signi�cant impact on the run time of these operations

and hence the algorithm. Di�erent instantiations of functions also favour di�erent

vector implementations. While it is beyond the scope of this section to give a detailed

analysis, a few examples will be shown to demonstrate the issue and provide practical

advice.

The most basic task in interaction mining is often determining in which samples

an interaction exists. Measures on the interaction typically require only the values

corresponding to these samples. First, suppose that we are interested only in the

presence or absence and not the values. Then interaction vectors are (logically) sets

containing those sample ids that contain the interaction. There are multiple ways

to implement this. One method is to use a standard set implementation for xV ′ .

Florian Verhein

60 3.15. VECTOR REPRESENTATIONS AND SUBSPACE PROJECTIONS

This has the advantage that aI(xV ′ , xv) operates in O(max{|xV ′ |, |xv|}) time (set

intersection) and mI(xV ′) operates in O(|xV ′ |) time, where |xV ′ | is the set size and
is typically much less than the number of samples, n. A disadvantage is that such

sets have considerable computational and space overhead. A better alternative is to

use bit-vectors, where a bit xV ′ [i] is set if the ith sample contains the interaction

V ′. This has the advantage that aI(·) is the bit-wise AND operation, which is a

machine level operation and can thus be performed quickly. Also, the space usage

per sample is low. Despite fast execution times and low space per sample, the run-

time of aI(·) and mI(·) are typically O(n) and space usage is O(n) regardless of the

logical size of the set. Another e�cient method, particularly when the data is sparse,

is to use an integer array storing the indexes of those samples containing V ′. If this

array is sorted by sample id, then intersection can be implemented very quickly and

thus aI(xV ′ , xv) operates in O(max{|xV ′ |, |xv|}) time (while still maintaining the

order). mI(xV ′) can be implemented to operate in the same time and the space

usage depends on the number of non-zero values; O(|xV ′ |).

As a rule of thumb, the bit-vector approach is much faster than a set implementation.

Similarly, using one bit per sample per variable uses less space in practice than

a set-based implementation. The sparse method using a sorted integer array is

sometimes faster than the bit-vector approach, and sometimes slower. This seems

to be determined primarily by the platform used (processor and OS) and less to by

the density of the vectors. The majority of the work in this thesis uses bit-vectors,

as the sparse method was investigated only toward the end of the PhD.

The sparse vector method is easily extended to problems where the value of a variable

or interaction is required too. For example, the problems presented in sections 3.8

and 3.7 can be expected to have sparse integer vectors and mining expected or

probabilistic frequent itemsets have sparse real valued vectors. Rather than using

arrays of length n, it is only necessary to store the (index, value) pairs of the non-

zero elements. This reduces the space required and improves the computation time of

mI(xV ′) to O(|xV ′ |), where |xV ′ | is the number of non-sparse values in the interaction
vector. aI(xV ′ , xv) operates in O(max{|xV ′ |, |xv|}). Experiments have shown that

this sparse approach not only uses much less space than a full array implementation,

but is also signi�cantly faster (for example, experiments in chapter 13 demonstrate

this).

3.15.1 Subspaces, Projections and Geometric Interaction Mining

Geometrically, the sparse vector method records only those dimensions (samples)

spanning the subspace of X where the current interaction V ′ has a presence. Let

Dr. rer. nat. Dissertation

CHAPTER 3. GENERALISED INTERACTION MINING 61

π(V ′) denote this subspace. Recall that as the search progresses and the interaction

is re�ned, additional variables are added to V ′ via aI(xV ′ , xv). Note that V ′ ∪ v
exists only in the subspace formed by the intersection of the two spaces π(V ′) and

π(v), since V ′ ∪ v is present only in the space where both V ′ and v both exist.

Usually, both π(V ′) and π(v) are much smaller than the entire space X and in many

cases their intersection is much smaller again. Therefore, as the search progresses

the functions operate on smaller and smaller subspaces and become more and more

e�cient. aI(xV ′ , xv) can also be thought of as a projection of xv onto the dimensions

of xV ′ and vice versa. With this observation, GIM obtains a further geometric

interpretation: Not only is the vectorised computational model inherently geometric,

but the search progresses in terms of projections between subspaces. This observation

also has a very practical consequence: each interaction vector provides an extremely

fast way to �nd precisely the subspace containing the interaction, and hence the

records / samples containing the interaction (since these records / samples span that

space).

3.16 Applications and Examples in Other Chapters

This section brie�y describes other problems in this thesis that have or can be solved

using the GIM framework and algorithm. While the approaches described above

demonstrate the breadth in the applicability of the GIM framework, the speci�c

examples in other parts of this thesis solve problems in depth and also demonstrate

the e�ciency and superiority of GIM when experimentally compared to state of the

art approaches for the respective problems. Performing an experimental evaluation

of all the methods described above is beyond the scope of this thesis.

3.16.1 Mining Complex, Maximal and Complete Sub-graphs and

Sets of Correlated Variables

Chapter 9 considers a special structural interaction capturing the complex correlation

structures amongst variables. Part of the problem in chapter 9 can be solved by

adapting GIM. Indeed, that problem inspired a large part of the generalised approach

in this section; in particular the ability to mine maximal interactions, graphs and

cliques.

Florian Verhein

62 3.17. CONCLUSION

3.16.2 Geometric Itemset Mining, Frequent Itemset Mining

An itemset is a particular type of interaction. Chapter 4 considers the problem of

frequent itemset mining (FIM) and generalises this to interesting itemset mining,

providing a geometrically inspired framework and a algorithm (GLIMIT) also based

on vectors. It is shown to be faster than commonly used algorithms on the FIM

problem. Again, GIM drew from the authors experience in solving that problem.

3.16.3 Mining Complex Spatial Co-location Patterns

Chapter 5 considers the problem of mining complex spatial co-locations. This prob-

lem can be solved using the GIM approach. Furthermore, the maxPI method de-

scribed in section 3.12.1 can now also be applied, allowing an improved interesting-

ness measure.

3.16.4 Probabilistic Itemset Mining in Uncertain Databases

Part IV of this thesis considers the problem of mining probabilistic frequent itemsets

in uncertain or probabilistic databases, including mining the probability distribution

of support. One challenge is to compute the probability distribution e�ciently. The

other challenge is to mine probabilistic frequent itemsets using this computation.

Chapter 10 uses an Apriori style algorithm for the itemset mining task. Chapter 12

introduces the �rst algorithm based on the FP-Growth idea that is able to handle

probabilistic data. It solves the problem much faster than the Apriori style approach.

Finally, chapter 13 shows how the problem can be solved in the GIM framework, lead-

ing to the GIM-PFIM algorithm. This improves the run time by orders of magnitude,

reduces the space usage and also allows the problem to be viewed more naturally

as a vector based problem. The vectors are real valued probability vectors and the

search can bene�t from subspace projections.

3.17 Conclusion

This chapter introduced the Generalised Interaction Mining (GIM) method for solv-

ing interaction mining problems at the abstract level. Since GIM leaves the semantics

of the interactions, their interestingness measures and the space in which the interac-

tions are to be mined as �exible components; it creates a layer of abstraction between

a problem's de�nition/semantics and the algorithm used to solve it; allowing both

to vary independently of each other. This was achieved by developing a consistent

Dr. rer. nat. Dissertation

CHAPTER 3. GENERALISED INTERACTION MINING 63

but general geometric computation model based on vectors and vector valued func-

tions. The GIM algorithm presented in this chapter can solve all problems that can

be expressed in this framework. For most problems, the space required is provably

linear in the size of the data set. The run-time is provably linear in the number of

interactions that need to be examined. These properties allow it to outperform spe-

cialist algorithms when applied to speci�c interaction mining problems. This chapter

demonstrated that GIM is able to solve a wide range of useful interaction mining

problems � from itemset mining, to graph mining to optimisation and clustering �

simply by instantiating the framework's functions in di�erent ways. Other chapters

in this thesis will consider speci�c interaction mining problems in depth, complete

with experimental evaluations and comparisons to specialist algorithms.

Florian Verhein

64 3.17. CONCLUSION

Dr. rer. nat. Dissertation

Chapter 4

Geometrically Inspired Itemset

Mining in the Transpose

An important interaction in data mining is the itemset pattern. In the geo-

metric view, an itemset is a vector (item vector) in the space of transactions.

Linear and potentially non-linear transformations can be applied to the item

vectors before mining patterns. Aggregation functions and interestingness

measures can be applied to the transformed vectors and pushed inside the

mining process. This chapter shows that interesting itemset mining can be

carried out by instantiating four abstract functions: a transformation (g),

an algebraic aggregation operator (◦) and measures (f and F). For Frequent

Itemset Mining (FIM), g and F are identity transformations, ◦ is intersection
and f is the cardinality.

Based on this geometric view, a novel algorithm is presented that uses space

linear in the number of 1-itemsets to mine all interesting itemsets in a single

pass over the data, with no candidate generation. It scales (roughly) linearly

in running time with the number of interesting itemsets found. Experiments

on the frequent itemset mining problem show that it outperforms FP-Growth

on realistic data sets above a small support threshold (0.29% and 1.2% in

the experiments). It always outperforms Apriori.

65

66 4.1. INTRODUCTION

4.1 Introduction

Traditional Association Rule Mining (ARM) considers a set of transactions T con-

taining items I. Each transaction t ∈ T is a subset of the items, t ⊆ I. The most

time-consuming task of ARM is Frequent Itemset Mining (FIM), whereby all itemsets

I ′ ⊆ I that occur in a su�cient number of transactions are generated. Speci�cally,

if σ(I ′) ≥ minSup, where σ(I ′) = |{t : I ′ ⊆ t}| is the number of transactions

containing I ′. This is known as the support of I ′.

For item enumeration type algorithms such as Apriori [11, 10] or FP-Growth [47],

each transaction has generally been recorded as a row in the data set. These algo-

rithms make two or more passes, reading it one transaction at a time.

In contrast, this chapter considers the data in its transposed format: Each row x{i}

corresponds to an item i ∈ I and contains the set of transaction identi�ers (tids) of

the transactions containing i. Speci�cally, x{i} = {t.tid : t ∈ T ∧ i ∈ t}. Call x{i} an
item vector because it represents an item in the space spanned by the transactions.

For simplicity, this work will use transactions and their tids interchangeably when the

context is clear. An example of this idea is provided in �gure 4.1(a). In this example,

there are 5 possible items I = {1, 2, 3, 4, 5} and 3 transactions T = {t1, t2, t3}. Since
item 1 occurs in transaction t1 and t2, its item-vector is {t1, t2}. Similarly, item 2

occurs in all transactions therefore its item-vector is {t1, t2, t3}. These items can

be represented as vectors in the space of transactions as illustrated in �gure 4.1(b),

where each dimension corresponds to a transaction. Item 1 is represented by vector

b, 2 by f , 3 by c and so on.

Just as an item can be represented as an item vector, so too can an itemset I ′ ⊆ I:

xI′ = {t.tid : t ∈ T ∧ I ′ ⊆ t}. Figure 4.1(c) lists all itemsets that have support

greater than one, and these are represented as vectors in transaction space in �gure

4.1(b).

For example, consider x{4} = {t2, t3} located at g and x{2} = {t1, t2, t3} located at

f . x{2,4}, the vector representing the itemset {2, 4}, can be obtained using x{2,4} =

x{2}∩x{4} = {t2, t3}. In other words, x{2,4} is simply the vector of those transaction

ids that contain both item 2 and item 4. Hence, it is located at g. It should be clear

that σ(I ′) = |xI′ | = | ∩i∈I′ x{i}|.

There are a three important things to note from the above:

• An item can be represented by a vector (a set representation was used above

to encode its location in transaction space, but an alternate representation in

some other space is equally possible).

Dr. rer. nat. Dissertation

CHAPTER 4. GEOMETRICALLY INSPIRED ITEMSET MINING IN THE
TRANSPOSE 67

(a) Transposing a dataset of three transac-
tions (tid ∈ {t1, t2, t3}) containing items I =
{1, 2, 3, 4, 5}.

(b) Vectors in the space of transactions. Items and
itemsets can be represented as vectors in transac-
tion space.

(c) Itemsets with support greater than 1
in transaction space. Labels correspond
to the vectors in �gure 4.1(b).

Figure 4.1: Running item-vector example

Florian Verhein

68 4.1. INTRODUCTION

• Item vectors can be created that represent itemsets by performing a simple

operation on the item vectors (in the case above, set intersection was used).

• A measure can be evaluated using a function on the vectors (in the above case,

set size was used and the measure was support). Note that only a single vector

must be examined to do this.

These fundamental operations are all that are required for an itemset mining algo-

rithm. In section 4.4 they are generalised to a function g(·), operator ◦ and function

f(·) respectively. An additional function F (·) is added for more complicated mea-

sures. This generalisation allows the framework and algorithm to be applied to many

other itemset mining problems, and indeed opens the door for novel approaches in-

spired by the geometric view that cannot be solved with existing algorithms. For

example, while frequent itemset mining leads to binary values vectors, the frame-

work could well be used for itemset mining problems that require non-binary vectors

and/or measures other than support. One possible example where real vectors may

be useful is the use of Singular Value Decomposition or Principle Component Anal-

ysis to reduce the dimensionality of the data set and noise prior to mining frequent

itemsets. The result of such a transformation produces real valued vectors. Chap-

ter 5 will show how the framework and algorithm presented in this chapter can be

applied with a di�erent interestingness measure in the spatio-temporal domain.

While this novel approach has many theoretical and practical bene�ts, it is important

to note that there are a number of challenges in exploiting these ideas. The primary

challenge is to compute item-vectors e�ciently, and to avoid recomputing them even

though they are needed at multiple points in the search. This would typically lead

to a trade o� between space and time. However, it turns out that this challenge can

be solved using some important observations, leading to an algorithm that avoids

all re-computations while maintaining minimal space usage. This challenge will be

further discussed in section 4.2.

This chapter presents a single pass algorithm that uses time roughly linear in the

number of interesting itemsets and at worst n′ + dl/2e item-vectors of space, where

n′ ≤ n is the number of interesting 1-itemsets and l is the size of the largest interesting

itemset. This worst case scenario is only reached with extremely low support, and

most practical situations require only a small fraction of n′. Based on these facts

and the geometric inspiration provided by the item-vectors, the algorithm is called

Geometrically inspired Linear Itemset Mining In the Transpose (GLIMIT).

FP-Growth type algorithms are often the fastest FIM algorithms. Experiments show

that GLIMIT outperforms FP-Growth [47] when the support is above a small thresh-

Dr. rer. nat. Dissertation

CHAPTER 4. GEOMETRICALLY INSPIRED ITEMSET MINING IN THE
TRANSPOSE 69

old. GLIMIT is more than �just another FIM/ARM algorithm� and support is just

one of many possible interestingness measures it can use. It is a new, and fast,

class of algorithm. Furthermore, it opens possibilities for useful pre-processing tech-

niques based on the item vector framework, as well as new geometrically inspired

interestingness measures.

4.1.1 Contributions

This chapter makes the following contributions:

• An interesting consequences of viewing transaction data as item vectors in

transaction-space is introduced. A theoretical framework for operating on item

vectors is subsequently developed. This abstraction allows a new class of algo-

rithm to be developed, gives great �exibility in the measures used, inspires new

geometric based interestingness measures and opens up the potential for use-

ful transformations (such as pre-processing) on the data that were previously

impossible.

• GLIMIT, a new, e�cient and fast class of algorithm that uses the framework

to mine interesting itemsets in one pass without candidate generation is in-

troduced. It uses linear space and (roughly) time linear in the number of

interesting itemsets. It signi�cantly departs from existing algorithms. Experi-

ments show it beats FP-Growth above small support thresholds when used for

frequent itemset mining. It also beats Apriori.

4.1.2 Organisation

Section 4.3 places GLIMIT and the associated framework in the context of previous

work. Section 4.4 presents the item-vector framework. Section 4.5.1 gives the the

two data structures that can be used by GLIMIT. Section 4.5 gives the main facts

exploited by GLIMIT and follows up with a comprehensive example. The space

complexity is proved and pseudo-code provided. Section 4.6 shows how association

rules can be mined e�ciently using the output of GLIMIT. Section 4.7 presents

experimental results and this chapter is concluded in section 4.8.

4.2 Some Challenges and Important Concepts

This section brie�y discusses some challenges and important concepts that will aid

in understanding this chapter.

Florian Verhein

70 4.2. SOME CHALLENGES AND IMPORTANT CONCEPTS

4.2.1 The Transposed View

This section brie�y illustrate some of the ideas used in the GLIMIT algorithm using

�gure 4.1(a). The goal is to convey the importance of the transpose view to the

methods presented in this chapter, and introduce some of the challenges that were

solved. Too keep things simple, the instantiation of g(·), ◦, f(·) and F (·) required

for traditional frequent itemset mining are used. The algorithm algorithm scans

the transposed data set row by row. Suppose it is scanned bottom up1 so the �rst

vector read is x{5} = {t1, t3}. Assume minSup = 1. We can immediately say that

σ({5}) = 2 ≥ minSup and so itemset {5} is frequent. We then read the next row,

x{4} = {t2, t3}, and �nd that {4} is frequent. Since we now have both x{5} and

x{4}, we can create x{4,5} = x{4} ∩ x{5} = {t3}. We have now checked all possible

itemsets containing items 4 and 5. To progress, we read x{3} = {t2} and �nd that

{3} is frequent. We can also check more itemsets: x{3,5} = x{3} ∩ x{5} = ∅ and

x{3,4} = x{3} ∩ x{4} = {t2} so {3, 4} is frequent. Since {3, 5} is not frequent, neither
is {3, 4, 5} by the anti-monotonic property of support [11]. We next read x{2} and

continue the process. It should be clear from the above that:

1. A single pass over the data set is su�cient to mine all frequent itemsets,

2. Having processed any 1 < j ≤ |I| item-vectors corresponding to items in

J = {1, ..., j}, it is possible to generate generate all itemsets I ′ ⊆ J and

3. Having the data set in transpose format and using the item-vector concept

allows this method to work.

4.2.2 Number of Item-vectors Used

Each item-vector could take up signi�cant space, the algorithm may need many of

them, and operations on them may be expensive. The algorithm generates at least as

many item-vectors as there are frequent itemsets2. Since the number of itemsets is at

worst 2|I|−1, clearly it is not feasible to keep all these in memory, nor is this necessary.

On the other hand, it is important to avoid recomputing them as this is expensive.

For example, if there are n items it is possible to use n + 1 item-vectors of space

and create all itemsets, but this would require that most item-vectors be recomputed

multiple times, leading to a vastly increased time complexity. For example, suppose

1This is arbitrary and simply ensures the ordering of items in the data structure used by the
algorithm is increasing.

2It is `at least' because some itemsets are not frequent, but it is only possible to know this once
its item-vector has been calculated.

Dr. rer. nat. Dissertation

CHAPTER 4. GEOMETRICALLY INSPIRED ITEMSET MINING IN THE
TRANSPOSE 71

we have created x{1,2,3}. When we later need x{1,2,3,4}, we do not want to have to

recalculate it as x{1}∩x{2}∩x{3}∩x{4}. Instead, we would like to use the previously

calculated x{1,2,3}: one option is to compute x{1,2,3,4} = x{1,2,3}∩x{4}. The challenge
is to use as little space as necessary, while avoiding all re-computations.

4.3 Related Work

Many itemset mining algorithms have been proposed since association rules were

introduced [11, 10]. Advances can be found in [37] and [38] and a survey of frequent

itemset mining can be found in [43]. Most algorithms can be broadly classi�ed

into two groups, the item enumeration (such as [11, 47, 74, 71, 5, 6, 73, 81, 111,

113, 72, 112]) which operate with a general-to-speci�c search strategy, and the row

enumeration (such as [69, 100]) techniques which �nd speci�c itemsets �rst. Broadly

speaking, item enumeration algorithms are most e�ective for data sets where |T | >>
|I|, while row enumeration algorithms are e�ective for data sets where |T | << |I|,
such as for micro-array data [69]. Furthermore, a speci�c to general strategy can be

useful for �nding maximal frequent itemsets in dense databases [88].

Item enumeration algorithms mine subsets of an itemset I ′ before mining the more

speci�c itemset I ′. Only those itemsets for which all (or some) subsets are frequent

are generated � making use of the anti-monotonic property of support. This property

is also known as the Apriori property. Apriori-like algorithms [11] search for frequent

itemsets in a breadth �rst generate-and-test manner, where all itemsets of length k

are generated before those of length k+1. In the candidate generation step, possibly

frequent k + 1 itemsets are generated from the already mined k-itemsets prior to

counting items, making use of the Apriori property. This creates a high memory

requirement, as all candidates must remain in main memory. For support counting

(the test step), a pass is made over the database while checking whether the candidate

itemsets occur in at least minSup transactions. This requires subset checking � a

computationally expensive task especially when the transaction width is high. While

methods such as hash-trees [88] or bitmaps have been used to accelerate this step,

candidate checking remains expensive. Various improvements have been proposed

to speed up aspects of Apriori. For example, [71] proposed a hash based method for

candidate generation that reduces the number of candidates generated, thus saving

considerable space and time. [20] argues for the use of the Trie data structure for the

subset checking step, improving on the hash tree approach. Apriori style algorithms

make multiple passes over the database, at least equal to the length of the longest

frequent itemset, which incurs considerable I/O cost. GLIMIT does not perform

Florian Verhein

72 4.3. RELATED WORK

candidate generation or subset enumeration, and generates itemsets in a depth �rst

fashion using a single pass over the transposed data set.

Frequent pattern growth (FP-Growth) type algorithms are often regarded as the

fastest item enumeration algorithms. FP-Growth [47, 74] generates a compressed

summary of the data set using two passes in a cross referenced tree, the FP-tree,

before mining itemsets by traversing the tree and recursively projecting the database

into sub-databases using conditional FP-Trees. In the �rst database pass, infrequent

items are discarded, allowing some reduction in the database size. In the the second

pass, the complete FP-Tree is built by collecting common pre�xes of transactions

and incrementing support counts at the nodes. at the same time, a header table

and node links are maintained, which allow easy access to all nodes given an item.

The mining step operates by following these node links and creating (projected) FP-

Trees that are conditional on the presence of an item(set), from which the support

can be obtained by a traversal of the leaves. Like GLIMIT, it does not perform

any candidate generation and mines the itemsets in a depth �rst manner while still

mining all subsets of an itemset I ′ before mining I ′. FP-Growth is very fast at reading

from the FP-tree, but the downside is that the FP-tree can become very large and

is expensive to generate, so this investment does not always pay o�. Further, the

FP-Tree may not �t into memory. In contrast, GLIMIT uses only as much space as

is required and is based on vector operations, rather than tree projections. It also

uses a purely depth �rst search.

Many other item enumeration methods exist. [5, 6] uses a lexicographic tree and

database projections in order to reduce the CPU time for counting frequent itemsets,

and combine this with a depth �rst search. The tree is based on storing itemsets at

nodes in such a way that parent nodes represent itemsets that are lexicographically

before the present node. The approach uses the concept of projected transactions at

nodes in the tree, observing that these projections fall in size as one descends deeper

into the tree. Nevertheless, the projections must still be stored or read from disk and

the frequency of lexicographic extensions counted within the projection. A matrix

based method is used for support counting, requiring an additional matrix at each

node. The work explores depth and breadth �rst methods for constructing the tree

and mining frequent itemsets, as well as discussing the trade-o�s that these o�er.

H-Mine [73] is another projection based pattern generation approach, proposing a

data structure called a H-struct to store frequent item projections of the database.

The H-struct is composed of a header table for each item, and a set of hyperlinks

between arrays where each array corresponds to a transaction in the current pro-

jected database. The core idea is that these hyperlinks make it easy to obtain those

Dr. rer. nat. Dissertation

CHAPTER 4. GEOMETRICALLY INSPIRED ITEMSET MINING IN THE
TRANSPOSE 73

transactions containing an item of interest. In many ways, this is similar to the core

idea behind the conditional trees of FP-Growth. The downside of the H-struct is its

potential space requirement however, as the frequent item projections and header

tables must remain in memory. To overcome this, a database partitioning technique

is used. Furthermore, in dense databases a hybrid approach is proposed where H-

struct is combined with FP-Growth in order to take advantage of the transaction

pre�x sharing of FP-Trees.

Another class of item enumeration algorithm is based on the vertical approach. For

example, [111] uses a vertical TID-list database format, where each item is associ-

ated with the list of transactions in which it occurs. In contrast to the traditional

horizontal layout where rows are scanned, vertical methods consider columns in the

database. The idea behind the vertical approach is that TID-list intersections of two

itemsets X and Y give the TID-list of their union X ∪ Y . By observing that in a

lexicographic tree over the itemsets, each node corresponds not only to an itemset X

but also de�nes an equivalence class for all itemsets with the pre�x X, the search can

be decomposed. This is very similar to the decomposition and database projection

idea used in pattern generating approaches. Various algorithms are proposed based

on di�erent search strategies. For frequent itemset mining, Eclat is developed. It is

based on a breadth or depth �rst traversal of the itemset lattice. The downside of

this approach is that many TID-lists � in the worst case an exponential number �

must remain in memory since these are required to create the TID-lists for the next

level in the search.

In [112], the argument is made that vertical methods can use too much space due to

the use of TID lists. To reduce this, in particular for dense data sets, the di�set is

proposed. Here, it is observed that in a lexicographic tree over the itemsets, rather

than storing the entire TID list for an itemset X ∪ i, it is only necessary to store

the di�erence in TIDs of X ∪ i and it's pre�x X. The di�erence in the cardinality of

these sets is the reduction in support of X∪ i compared to X. Under the assumption

that the database is relatively dense, this achieves a reduction in space required.

Furthermore, since smaller sets are faster to intersect, this reduces the run time in

such databases.

[81] presents another vertical approach, called VIPER. Viper uses a vertical TID-

vector (VTV) format to represent an itemset's occurrence in transactions, encoding

this in a compressed binary vector. It uses the disk to temporarily store these

vectors for frequent itemsets and employs temporary horizontal tuples in counting the

support of candidates. It operates in a breadth �rst, level wise manner; necessitating

the disk based approach in order to reduce the the memory requirement.

Florian Verhein

74 4.3. RELATED WORK

CHARM [113] considers the closed itemset mining problem and uses a breadth or

depth depth �rst approach in an Itemset-Tidset tree (IT-Tree). This tree is also a

lexicographic tree, storing both the itemset and the TID-set at the nodes. An itemset

X is closed if there exists no proper super-set Y : X ⊂ Y such that support(X) =

support(Y) [72]. Closed itemsets are a loss-less way of reducing the itemsets that

need to be mined while still allowing the the support of all itemsets to be calculated;

for instance in the association rule discovery task. Other work on frequent closed

itemsets includes [69, 74, 29, 101]. Another vertical approach is [52], where VB-FT

Mine is introduced in order to mine fault tolerant frequent patterns.

[23] Introduce an e�cient algorithm called MAFIA for maximal frequent pattern

mining when the entire database can �t into memory, and in particular when maximal

frequent itemsets are long. By using a depth �rst search that begins along the

longest branch of a lexicographic tree, MAFIA can quickly reach the frequent itemset

boundary and may thus prune away other parts of the search for maximal frequent

itemsets. The approach uses the vertical layout and bitmaps instead of TID-lists.

A problem with most vertical approaches is that they keep the TID lists for sibling

nodes. For example, given a node for itemset X, even when the overall search

progresses in a depth �rst fashion (and except for maximal and closed approaches,

they use a breadth �rst search), the child nodes and TID lists corresponding to

{X ∪ i : i ∈ I −X} are generated and stored in memory before the search progresses

in depth to one of these. This is a form of candidate generation. This is done

since the fundamental operation in vertical approaches is the intersection of these

TID lists. This is a signi�cant downside, as it requires many TID lists to remain

in memory. For breadth �rst searches, this is even worse, since the TID-lists for all

frequent itemsets at the same level must me maintained � either in memory (which

is not feasible in realistic databases) or on disk.

In comparison to all itemset mining algorithms, GLIMIT has most in common with

vertical approaches since it also views the database column wise, by traversing the

transposed database row-wise. In contrast to these vertical approaches, GLIMIT

does not store vectors for siblings at any time. In the language of TID-lists, the

intermediate TID-lists would not need to be stored in memory, except for those on

the current path (of which there are at most l, where l is the length of the longest

frequent itemset). Indeed, an entire sub-tree under X ∪ i is completely examined

before X ∪ j is ever examined. This is termed the strict depth �rst search in this

work. Furthermore, GLIMIT can mine all frequent itemsets in typically less space

than the database (as shown in the experiments), while making only one pass over

the data. Vertical approaches typically make multiple passes. While it addresses

Dr. rer. nat. Dissertation

CHAPTER 4. GEOMETRICALLY INSPIRED ITEMSET MINING IN THE
TRANSPOSE 75

the maximal frequent itemset mining problem (thus attempting to avoid as many

frequent itemsets as possible), MAFIA [23] is perhaps the most related work to

GLIMIT on the FIM problem due to the combination of a depth �rst search and use

of bitmaps. The depth �rst search in MAFIA is di�erent for two important reasons

however: In MAFIA the longest branch is searched �rst (which aids in pruning the

search for maximal frequent itemsets early), while in GLIMIT the shortest is searched

�rst (this enables the required property that subsets are examined prior to super-sets

and also allows GLIMIT to avoid loading the entire data set into memory). Secondly,

child nodes are expanded before the depth is increased in MAFIA (leading to the

downside mentioned above), while GLIMIT is strictly depth �rst. The solving of

the maximal problem using various pruning techniques also requires that maximal

frequent itemsets and various data structures remain in memory in MAFIA.

Row enumeration techniques e�ectively intersect transactions and generate super-

sets of I ′ before mining I ′. Although it is much more di�cult for these algorithms

to make use of the anti-monotonic property for pruning, they exploit the fact that

searching the row space in data with |T | << |I| becomes cheaper than searching the

itemset-space. GLIMIT is similar to row enumeration algorithms since both search

using the transpose of the data set. However, where row enumeration intersects

transactions (rows), GLIMIT e�ectively intersect item-vectors (columns). But this

similarity is tenuous at best. Furthermore, existing algorithms use the transpose for

counting convenience rather than for any insight into the data, as is done in the

framework in this chapter. Since GLIMIT searches through the itemset space, it is

classi�ed as an item enumeration technique and is suited to the same types of data.

The transpose has never, to the best of the author's knowledge, been used in an item

enumeration algorithm.

E�orts to create a framework for support exist. Steinbach et al. [86] present one

such generalisation, but their goal is to extend support to cover continuous data.

This is very di�erent to transforming the original (non-continuous) data into a real

vector-space (which is one possibility presented by the framework). Their work is

geared toward existing item enumeration algorithms and so their �pattern evaluation

vector � summarises transactions (that is, rows). The framework presented in this

chapter operates on columns of the original data matrix. Furthermore, rather than

generalising the support measures so as to cover more types of data sets, it generalises

the operations on item-vector and the transformations on the same data set that can

be used to enable a wide range of measures, not just support.

To the author's best knowledge, Ratio Rules are the closest attempt at combining

SVD (or similar techniques such as Principal Component Analysis) and rule mining.

Florian Verhein

76 4.4. ITEM-VECTOR FRAMEWORK

Korn et al. [53] consider transaction data where items have continuous values as-

sociated with them, such as price. A transaction is considered a point in the space

spanned by the items. By performing SVD on such data sets, they observe that the

axes (orthogonal basis vectors) produced de�ne ratios between single items. The

ideas in this chapter di�er in a number of ways. This work considers items (and

itemsets) in transaction space (not the other way around) so when SVD is consid-

ered, the new axes are linear combinations of transactions � not items. Hence I is

unchanged. Secondly, this work considers mining itemsets, not just ratios between

single items. Finally, SVD is just one possible instantiation of g(·).

As shown in this work, by considering items as vectors in transaction space, it is

possible to interpret itemsets geometrically. To the author's knowledge this has not

been considered previously. As well as inspiring the algorithm, this geometric view

has the potential to lead to useful pre-processing techniques, such as dimensionality

reduction of the transactions space. Since GLIMIT uses only this framework, it

should enable the use of such techniques � which are not possible using existing FIM

algorithms.

4.4 Item-vector Framework

In section 4.1, the example of frequent itemset mining (FIM) was used to intro-

duce the ideas behind this work. However, the work in this chapter is more general

than this and the instantiations of g(·), ◦ and f(·) are straightforward for FIM. The

functions and operator formally described in this section de�ne the form of interest-

ingness measures and data-set transformations that are supported by the GLIMIT

algorithm. Not only can existing measures be mapped to this framework, but it

is the author's hope that the geometric interpretation will inspire new interesting

itemset mining approaches.

Recall that xI′ is the set of transaction identi�ers of the transactions containing

the itemset I ′ ⊆ I. Call X the space spanned by all possible xI′ . Speci�cally,

X = P({t.tid : t ∈ T}).

De�nition 4.1. g : X → Y is a transformation on the original item-vector to a

di�erent representation yI′ = g(xI′) in a new space Y .

Even though g(·) is a transformation, it's output still `represents' the item vector.

To avoid too many terms therefore, yI′ will also be referred to as an item vector.

Dr. rer. nat. Dissertation

CHAPTER 4. GEOMETRICALLY INSPIRED ITEMSET MINING IN THE
TRANSPOSE 77

De�nition 4.2. ◦ is an operator on the transformed item-vectors so that yI′∪I” =

yI′ ◦ yI” = yI” ◦ yI′ .

That is, ◦ is a commutative operator for combining item vectors to create item vectors

representing larger itemsets. It is not required that yI′ = yI′ ◦ yI′ 3.

De�nition 4.3. f : Y → R is a measure on itemsets, evaluated on transformed

item-vectors. Write valueI′ = f(yI′).

De�nition 4.4. interestingness : P(I)→ R is an interestingness measure (order)

on all itemsets.

Suppose a measure of interestingness of an itemset depends only on that itemset.

The simplest example is support. It is possible to represent this as follows, where

I ′ = {i1, ..., iq} and k = 1:

(4.1) interestingness(I ′) = f(g(x{i1}) ◦ ... ◦ g(x{iq}))

So the challenge is, given an interestingness measure, �nd suitable and useful g,◦
and f so that the above holds. For support, ◦ = ∩, f = | · | and g as the identity

function. Let us return to the frequent itemset mining motivation. First assume that

g(·) trivially maps xI′ to a binary vector. Using x{1} = {t1, t2} and x{5} = {t1, t3}
from �gure 4.1(a) we have y{1} = g(x{1}) = 110 and y{5} = g(x{5}) = 101. It should

be clear that using bit-wise AND as ◦ and f = sum() � the number of set bits �

gives the requires semantics for frequent itemset mining.

To give a motivation for these ideas, notice that sum(y{1}AND y{2}) = sum(y{1}. ∗
y{2}) = y{1} · y{2}, the dot product (.∗ is the element-wise product4). That is, the

dot product of two item-vectors is the support of the the 2-itemset. What makes

this interesting is that this holds for any rotation about the origin. Suppose we have

an arbitrary 3 × 3 matrix R de�ning a rotation about the origin. This means we

can de�ne g(x) = RxT because the dot product is preserved by R (hence g(·)). For
example, σ({1, 5}) = y{1}·y{5} = (RxT{1})·(Rx

T
{5}). Therefore, it's possible to perform

an arbitrary rotation of the item-vectors before mining itemsets of size 2. Of course

3Equivalently, ◦ may have the restriction that I ′ ∩ I” = ∅.
4(a. ∗ b)[i] = a[i] ∗ b[i] for all i, where [] indexes the vectors.

Florian Verhein

78 4.4. ITEM-VECTOR FRAMEWORK

this is much more expensive than bit-wise AND, so why would one want to do this?

Consider Singular Value Decomposition. If normalisation is skipped, it becomes a

rotation about the origin, projecting the original data onto a new set of basis vectors

pointing in the direction of greatest variance (incidentally, the covariance matrix

calculated in SVD also de�nes the support of all 2-itemsets5). If it is also used

for dimensionality reduction, it has the property that it roughly preserves the dot

product. This means it should be possible to use SVD for dimensionality reduction

and or noise reduction prior to mining frequent 2-itemsets without introducing too

much error. The drawback is that the dot product applies only to two vectors.

That is, we cannot use it for larger itemsets because the `generalised dot product'

satis�es sum(RxT{1}. ∗Rx
T
{2}. ∗ ∗Rx

T
{q}) = sum(x{1}. ∗ x{2}. ∗ ∗ x{q}) only for

q = 2. However, this does not mean that there are not other useful ◦, f(·), F (·) and
interestingness measures that satisfy Equation 4.1 and use g(·) = SV D, some that

perhaps will be motivated by this observation.

Note that the transpose operation is crucial in applying dimensionality or noise

reduction because it keeps the items intact. If the data were not transposed, the item-

space would be reduced, and the results would be in terms of linear combinations

of the original items, which cannot be interpreted meaningfully. It also makes more

sense to reduce noise in the transactions than items.

Other options for g(·) are set compression functions or approximate techniques, such

as sketches, which give estimates rather than exact values of support or other mea-

sures. However, the author believes that new geometrically inspired measures will

be the most interesting. For example, angles between item-vectors are linked to

the correlation between itemsets. Of course, it is also possible to translate existing

measures into the framework.

To complete the framework, the family of functions F (·) is de�ned as follows:

De�nition 4.5. F : R|P(I′)| → R is a measure on an itemset I ′ that supports

any composition of measures (provided by f(·)) on any number of subsets of I ′.

Write V alueI′ = F (valueI′1 , valueI′2 , ..., valueI′|P(I′)|
) where valueI′i = f(yI′i) and all

I ′i ∈ P(I ′).

It is now possible to support more complicated interestingness functions that require

more than a measure on one itemset:

5That is, CM [i, j] = σ({i, j}).

Dr. rer. nat. Dissertation

CHAPTER 4. GEOMETRICALLY INSPIRED ITEMSET MINING IN THE
TRANSPOSE 79

(4.2) interestingness(I ′) = F (valueI′1 , valueI′2 , ..., valueI′|P(I′)|
)

where the valueI′i are evaluated by f(·) as before.

That is, V alueI′ = F (·) is evaluated over measures valueI′i where all I
′
i ⊆ I ′. If F (·)

does not depend on any valueI′i , it is left out of the notation. In that sense, call F (·)
trivial if V alueI′ = F (valueI′). In this case the function of F (·) can be performed

by f(·) alone, as was the case in the examples considered before introducing F (·).

Example. Consider the minPI measure used in part for spatial co-location mining

[80]: The minPI of an itemset I ′ = {1, ..., q} is minPI(I ′) = mini{σ(I ′)/σ({i})}.
This measure is anti-monotonic and gives high value to itemsets where each member

predicts the itemset with high probability. It is used in part for spatial co-location

mining [80]. Using the data in �gure 4.1(a), minPI({1, 2, 3}) = min{1/2, 1/3, 1/1}
= 1/3. In terms of the framework g(·) is the identity function, ◦ = ∩, f =

| · | so that valueI′ = σ(I ′) and V alueI′ = F (valueI′ , value{1}, ..., value{q}) =

mini{valueI′/value{i})}. GLIMIT is used with minPI to solve a complex spatio-co-

location mining problem in chapter 5.

The GLIMIT algorithm uses only the framework described above for computations

on item-vectors. It also provides the arguments for the operators and functions very

e�ciently so it is �exible as well as fast. Because GLIMIT generates all subsets of an

itemset I' before it generates the itemset I ′, an anti-monotonic property enables it to

prune the search space. Therefore, to avoid exhaustive searches, GLIMIT generally

requires6 that the function F (·) be anti-monotonic in the underlying itemsets over

which it operates (in conjunction with ◦, g(·) and f(·)7).

De�nition 4.6. F (·) is anti-monotonic if V alueI′ ≥ V alueI” ⇐⇒ I ′ ⊆ I”, where

V alueI′ = F (·) is evaluated as per de�nition 4.5.

In the spirit this restriction, an itemset I ′ is considered interesting if V alueI′ ≥
minMeasure, a threshold. Call such itemsets F-itemsets.

6Of course, it there are few items then this constraint is not needed.
7Note that f(·) does not have to be anti-monotonic.

Florian Verhein

80 4.5. ALGORITHM

4.5 Algorithm

This section presents the GLIMIT algorithm. First, section 4.5.1 describes the re-

quired data structures. Section 4.5.2 outlines the main principles used in GLIMIT,

with an illustrative example provided in section 4.5.3. The space complexity bounds

are proved in section 4.5.4, followed by the algorithm in pseudo-code and a more

detailed explanation of its functionality in section 4.5.5.

4.5.1 Data Structures

Pre�x Tree

Recall from section 3.3.1 that a pre�x tree is an e�cient way to store interactions.

In this chapter, a pre�x tree is used to e�ciently store and build frequent itemsets.

It is de�ned a little di�erently here, but the approach is equivalent. An itemset

I ′ = {i1, ..., ik} is represented as a sequence 〈i1, ..., ik〉 by choosing a global ordering

of the items (in this chapter, i1 < ... < ik). This sequence is then stored in the tree.

An example of a PrefixTree storing all subsets of {1, 2, 3} is shown in �gure 4.2. An
example of a Pre�xTree storing all subsets of {1, 2, 3, 4} is shown in �gure 4.3. Since

each node represents a sequence (ordered itemset), the terms pre�x node, itemset and

sequence may be used interchangeably. The pre�x tree is built of PrefixNodes. Each

PrefixNode is a tuple (parent, depth, value, V alue, item) where parent points to

the parent of the node (so n.parent represents the pre�x of n), depth is its depth of

the node and therefore the length of the itemset at that node, value (V alue) is the

measure(s) of the itemset evaluated by f(·) (F (·)) and item is the last item in the

sequence represented by the node. ε is the empty item so that {ε} ∪ α = α where α

is an itemset. Its PrefixNode (the root) is (arbitrarily) (null, 0, NaN,NaN, ε). To

make the link with the item-vector framework clear, suppose the itemset represented

at a PrefixNode p is I ′ = {i1, i2, .., ik}. Then p.value = valueI′ = f(g(x{i1}) ◦
g(x{i2}) ◦ ... ◦ g(x{ik})) and p.V alue = F (·).

The tree has the property that if a sequence s is in the Pre�xTree, then so are all sub-

sequences s′ @ s by the anti-monotonic property that is required of F (·). Note that
much space is saved because the tree never duplicates pre�xes. In fact, it contains

exactly one node per interesting itemset.

Sequence Map

Recall from section 3.11 that a Sequence Map can be used to index the nodes in the

PrefixTree so that it is possible to e�ciently retrieve them. It is used in GLIMIT

Dr. rer. nat. Dissertation

CHAPTER 4. GEOMETRICALLY INSPIRED ITEMSET MINING IN THE
TRANSPOSE 81

Figure 4.2: A complete pre�x tree for all sub-sequences (subsets) of itemset {1, 2, 3},
where each node is labeled with item.

for the following purposes:

1. To check that all subsets of a potential itemset are interesting in order to

avoid unnecessary computation of new item vectors, if this is desired. The

algorithm automatically check two subsets without using the sequence map as

will be shown in fact 3 in section 4.5. However, if all should be checked, the

SequenceMap is required.

2. To �nd the the evaluated values when a non-trivial F (·) must be evaluated.

3. In the FIM application, the sequence map is also used to �nd the evaluated sup-

port of itemsets when association rules are generated. Generating association

rules will be considered in section 4.6.

4.5.2 Important Facts and Properties

The following facts are exploited in order to use minimum space while avoiding any

re-computations of item-vectors.

Facts:

1. All item-vectors yI′ can be constructed by incrementally applying the rule

yI′∪{i} = yI′ ◦ y{i}. That is, it is only necessary to use ◦ to `add' item-vectors

corresponding to single items to the end of an existing item-vector. This means

that given a Pre�xNode p that is not the root, only a single item-vector must

be kept in memory for any child of p at any point in time. If p is the root, it

is however necessary to keep its children's item-vectors in memory (the y{i}).

Florian Verhein

82 4.5. ALGORITHM

2. Following on from 1, this also means the least space is used if the algorithm

operates in a depth �rst fashion. Then for any depth (p.depth), at most only

one item-vector will be in memory at a time.

3. A new sequence is created/considered by `joining' siblings. That is, a new

sequence 〈ia, ib, ..., ii, ij , ik〉 is considered only if siblings 〈ia, ib, ..., ii, ij〉 and
〈ia, ib, ..., ii, ik〉, k > j are in the pre�x tree. Hence, only those nodes are

expanded that have one or more siblings below it. This is an exploitation of

the anti-monotonic requirements of F (·).

4. Suppose the items are I = {i1, i2, ..., in}. If the algorithm has read in k item-

vectors y{ij} j ∈ {n, n− 1, .., n− k − 1}, then it is possible to have completed

all nodes corresponding to all subsets of {in−k−1, ..., in}. Therefore, if a depth

�rst procedure is used, when a Pre�xNode p is created all Pre�xNodes corre-

sponding to subsets of p's itemset will already have been generated. As well as

being the most space e�cient approach, this is required to evaluate nontrivial

F (·). In this chapter, this is called the `bottom up' order of building the Pre�x

Tree.

5. When a Pre�xNode p with p.depth > 1 (or p.item is the top-most item) cannot

have any children (because it has no siblings by fact 3), its item-vector will no

longer be needed.

6. When a topmost sibling (the topmost child of a node) is created (or it is found

that its itemset is not interesting � e.g. not frequent � and hence don't need to

create it), the item-vector corresponding to its parent p can be deleted. That

is, the algorithm has just created the topmost (last) immediate child of p. This

applies only when p.depth > 1 or when p.item is the top-most item8. This is

because y{ia,ib,...,ii,ij} is only needed until y{ia,ib,...,ii,ij ,ik} = y{ia,ib,...,ii,ij} ◦ y{ik}
is generated where ia < ib <, ..., < ii < ij < ik (e.g.: b − a and a may both

greater then 1, etc) and {ia, ib, ..., ii, iq} : j < q < k is not interesting (e.g.

not frequent). Indeed, the algorithm may write the result of y{ia,ib,...,ij} ◦ y{ik}
directly into the item-vector holding y{ia,ib,...,ij}. Conversely, while there is

still a child to create (or test) it is not possible to delete p's corresponding

item-vector.

7. When a Pre�xNode p is created on the topmost branch (e.g.: when all itemsets

are frequent, p will correspond to 〈i1, i2, .., ik〉 for any k ≥ 1), the algorithm

can delete the item-vector corresponding to the single item p.item (e.g.: ik).

8By fact 1 it is not possible to apply this to nodes with p.depth = 1 (unless it is the topmost
node) as they correspond to single items and are still needed for later expansion.

Dr. rer. nat. Dissertation

CHAPTER 4. GEOMETRICALLY INSPIRED ITEMSET MINING IN THE
TRANSPOSE 83

Fact 6 will always apply in this case too (e.g.: the algorithm can also delete

ik−1 if k > 1). The reason behind this is that by using the bottom up method

(and the fact that itemsets are ordered), it is known that if the algorithm has

created y{i1,...,ik} then it can only ever ◦ a y{ij} with j > k onto the end.

4.5.3 Algorithm Example

This section presents an example of how the algorithm operates on the frequent item-

set mining problem in order to illustrate some of the facts and properties presented

in section 4.5.2.

Suppose we have the items {1, 2, 3, 4} and the minMeasure (in this case minSup)

threshold is such that all itemsets are considered frequent. Figure 4.3 shows the

target pre�x tree and �gures 4.4 and 4.5 show the steps performed in mining it. This

example serves to show how the algorithm manages the memory while avoiding any

re-computations of item-vectors. For now, consider the frontier list in the �gure as

a list of Pre�xNodes that have not been completed. The frontier will be discussed

in the next section to avoid complicating this example. It should be clear that a

bottom up and depth �rst procedure is used to mine the itemsets, as motivated

by facts 2 and 4. The algorithm completes all sub-trees before moving to the next

item. In �gure 4.4(c) y{3,4} = y{3} ◦ y{4} is calculated as per fact 1. Note fact 3 is

also used � {3} and {4} are siblings. Once the node for {3, 4} has been created in

�gure 4.4(c), the algorithm can delete y{3,4}by fact 5. It has no possible children

because of the ordering of the sequences. The same holds for {2, 4} in �gure 4.4(e).

In �gure 4.4(f), the node for {2, 3} is the topmost sibling (child). Hence fact 6 can

be applied in �gure 4.4(g). Note that by fact 1, the algorithm calculates y{2,3,4} as

y{2,3,4} = y{2,3} ◦ y{4}. Note also that because the algorithm needs the item-vectors

of the single items in memory it has not been able to use fact 7 yet. Similarly, fact

6 is also applied in �gure 4.5(b), (c), (e) and (f). However, note that in (c), (e) and

(f) the algorithm also uses fact 7 to delete y{2}, y{3}, and y{4}. In �gure 4.5(b) y{1}

was deleted for two reasons: Fact 6 and 7 (it is a special case in fact 6). Finally, to

better illustrate fact 3, suppose {2, 4} is not frequent. This means that {2, 3} will
have no siblings anymore. This means the algorithm does not even consider {2, 3, 4}
by fact 3.

4.5.4 Algorithm Complexity

The time complexity is roughly linear in the number of frequent itemsets because

all re-computations of item-vectors are avoided. Recall that a possible downside of

Florian Verhein

84 4.5. ALGORITHM

Figure 4.3: Complete pre�x tree (when all itemsets are interesting).

this is that the space usage could increase. The primary question therefore is; what

is the maximum number of item-vectors that the algorithm may have in memory at

any time?

There are two main factors that in�uence this.

• First, the algorithm must keep the item-vectors for individual items in memory

until it has completed the node for the top-most item (fact 1 and 7). Hence,

the `higher' up in the tree the algorithm is, the more this contributes to space

usage.

• Secondly, the algorithm must keep item-vectors in memory until it completes

their respective nodes. That is, check all their children (fact 6) or if they can't

have children (fact 5). Now, the further we are up in the tree (or any sub-

tree for that matter) without completing the node, the longer the sequence

of incomplete nodes is and hence the the more item-vectors need to be kept.

Considering both these factors leads to the situation in �gure 4.6 � that is, the

algorithm is up to the top item and the topmost path from that item so that

no node along the path is completed. As before, solid lines are parts of the tree

that have been created, dotted lines are for parts that are still to be examined,

and shaded nodes are nodes with an item-vector in memory. If there are n

items, the worst case item-vector usage is just the number of coloured nodes

in �gure 4.6. There are n item-vectors y{i} : i ∈ {1, ..., n} corresponding to

the single items (children of the root). There are a further dn/2e item-vectors

Dr. rer. nat. Dissertation

CHAPTER 4. GEOMETRICALLY INSPIRED ITEMSET MINING IN THE
TRANSPOSE 85

(a) Step 1 (b) Step 2 (c) Step 3

(d) Step 4 (e) Step 5 (f) Step 6

(g) Step 7 (h) Step 8 (i) Step 9

Figure 4.4: Mining example. Nodes are labeled with their item value. Shaded nodes
have their corresponding item-vector in memory. Dotted nodes have not been mined
yet. Solid lines are the parts of the tree that have been created. Continued in Figure
4.5.

Florian Verhein

86 4.5. ALGORITHM

(a) Step 10 (b) Step 11 (c) Step 12

(d) Step 13 (e) Step 14 (f) Step 15

Figure 4.5: Mining Example. Continuation of �gure 4.4.

along the path from node {1} (inclusive) to the last coloured node (these are the
uncompleted nodes). When n is even, the last node is {1, 3, 5, ..., n− 3, n− 1}
and when n is odd it is {1, 3, 5, ..., n−2, n}. The cardinality of both these sets,

equal to the number of nodes along the path, is dn/2e. Note that in the even

case, the next step to that shown will use the same memory (the item-vector for

node {1, 3, 5, ..., n−3, n−1} is no longer needed once {1, 3, 5, ..., n−3, n−1, n}
is created by by fact 6, and the algorithm writes y{1,3,5,...,n−3,n−1,n} directly

into y{1,3,5,...,n−3,n−1} as it is computed so both need never be in memory at

the same time). Therefore the total space required is just n+ dn/2e−1, where

the −1 is so that the item-vector for {1} is not double counted.

The above discussion considers the worst case when all itemsets are frequent. Clearly,

a closer bound can be obtained if n′ ≤ n is the number of frequent items. Hence, the

algorithm requires space linear in the number of frequent items. The multiplicative

constant (1.5) is low, and in practice (with non-pathological support thresholds), the

algorithm uses far fewer than n item-vectors or space. That is, less than the size of

Dr. rer. nat. Dissertation

CHAPTER 4. GEOMETRICALLY INSPIRED ITEMSET MINING IN THE
TRANSPOSE 87

Figure 4.6: Maximum number of item-vectors needed. There are two cases: n odd
(nodes in the oval) and n even (nodes in the rectangle).

the data set itself. Supposing we know that the longest frequent itemset has size l,

then it is additionally possible to bound the space by n′ + dl/2e − 1. Furthermore,

since the frontier contains all uncompleted nodes, the above implies that its upper

bound is dl/2e. The previous discussion is a proof sketch of the following lemma:

Lemma 4.7. Let n be the number of items, and n′ ≤ n be the number of frequent

items. Let l ≤ n′ be the largest itemset. GLIMIT uses at most n′ + dl/2e − 1

item-vectors of space. Furthermore, |frontier| ≤ dl/2e.

4.5.5 Algorithm Details

The algorithm is a depth �rst traversal through the search space, thus building the

PrefixTree in a depth �rst manner. The search is implemented using the frontier

method, whereby a list (priority queue) of states (each containing a node that has yet

to be completely expanded) is maintained. The general construct is to retrieve the

�rst state, evaluate it for the search criteria, expand it (create some child nodes), and

add states corresponding to the child nodes to the frontier. The frontier contains any

nodes that have not yet been completed, wrapped in State objects. Algorithm 4.1

describes the additional types used (such as State) and shows the initialisation and

the main loop � which calls step(·). It also describes the check(·) and calculateF (·)
methods, used by step(·).

Algorithm 4.1 describes the additional types used (such as State), shows the initial-

isation and the main loop � which calls the primary procedure step(·) in algorithm

4.2. It also shows the check(·) and calculateF (·) methods, used by algorithm 4.2.

Florian Verhein

88 4.6. MINING ASSOCIATION RULES

The pseudo-code is java-like, a garbage collector is assumed which simpli�es it, in-

dentation de�nes blocks and type casts are ignored.

Let α be the itemset of length k represented at node node (assuming node is not

the root). node.item is the last element of α. The check(node, item) method in

algorithm 4.1 checks whether α ∪ {item} can be frequent � in the sense that all its

subsets have already been found to be frequent. This is true if and only if all subsets

of size k are frequent. Note that it is already known that α and (α−{node.item()})∪
{item} (the itemset of the sibling of node) are frequent. Hence the method must

just check the other

(
k + 1

k

)
− 2 subsets. It does this by �rst traversing from

node back toward the root to obtain the itemset, and then looking up the subsets

in the SequenceMap to see if the corresponding Pre�xNode exists. By the bottom

up construction, all the required subsets have already been generated and added to

the SequenceMap (HashTree) using hashtree.add(node). It should be noted that the

correctness does not depend on check() being called. Indeed, check() can do nothing

and the correct results will still be delivered. This decision is a trade o� between

checking if subsets exist or calculating the vectors for new sets. In other words, it is

a heuristic.

It has been explicitly shown when extra item-vectors are required (allocated) and

when they are deleted through the use of the global variable totalMem that tracks the

amount of item-vectors of space needed. Note that the algorithm prepares buffer for

all the subsequent calls to step(·). Normally (when it.hasNext()), buffer cannot

be modi�ed by the receiving method as it is required again for subsequent calls.

However, then it has progressed to the 'top' of the list of siblings (it.hasNext() =

false), the receiving method can modify buffer � and will e�ectively `steal' the

item-vectors from it to reuse (reducing the size of buffer). From then on it will

be responsible for decrementing totalMem when these 'stolen' item-vectors are no

longer used. This explains the last line of the algorithm.

Finally, a few minor points: If node is the root, the algorithm is has not been

called from itself and so has not already put the item-vectors over which it iterates

in memory. Hence the memory required to read from �le must be counted. Also,

it.remove() is ignored if the Iterator is reading from �le.

4.6 Mining Association Rules

This section describes how association rules can be generated very e�ciently. Algo-

rithm 4.3 presents the method, and the following lemma describes it and proves its

Dr. rer. nat. Dissertation

CHAPTER 4. GEOMETRICALLY INSPIRED ITEMSET MINING IN THE
TRANSPOSE 89

Algorithm 4.1 Data types, initialisation, main loop and auxiliary methods. The
primary processing is done in algorithm 4.2.
Input:
(1) A data set (in inputF ile) in transpose format (may have g(·) already applied)
(2) f(·), ◦, F (·) and minMeasure.
Output: Completed PrefixTree (prefixTree) and SequenceMap (map) contain-
ing all F-itemsets.

Data Types:

Pair : (Itemvector yi, Item item)
//yi is the item-vector for item and corresponds to yi in fact 1.
//They are reused through buffer:
State : (PrefixNode node, Itemvector yI′ , Iterator itemvectors, boolean top,
Pair newPair, List buffer)
//yI′ is the item-vector corresponding to node (and yI′ in fact 1).
//buffer is used to create the Iterators (such as itemvectors) for the States
//created to hold the children of node. buffer is needed to make use of fact 3.
// itemvectors provides the yi to join with yI′ and newPair helps in doing this.

Initialisation:

initialise prefixTree with its root. Initialise map and frontier as empty.
//Create initial state:
Iterator itemvectors = newAnnotatedItemvetorIterator(inputF ile);
//Iterator is over Pair objects and reads input one row at a time and annotates
//the item-vector with the item it corresponds to. Could also apply g(·)
frontier.add(new State(prefixTree.getRoot(), null, itemvectors, false, null,
new LinkedList()));

Main Loop:

while (!frontier.isEmpty())
step(frontier.getF irst()); //See algorithm 4.2

Auxiliary Methods:

/*Let α be the itemset corresponding to node. α ∪ {item} is the itemset
represented by a child p of node so that p.item = item. value would be p.value.
This method calculates p.V alue by using map to look up the PrefixNodes
corresponding to the k required subsets of α ∪ {item} to get their value values,
value1, ..., valuek. Then it returns F (value1, ..., valuek).*/
double calculateF(PrefixNode node, Item item, double value)
//details depend on F (·)
/*Check whether the itemset α ∪ {item} could be interesting by exploiting the
anti-monotonic property of F (·): use map to check whether subsets of α ∪ {item}
(except α and (α− node.item) ∪ {item} by fact 3) exist.*/
boolean check(PrefixNode node, Item item)
//details omitted

Florian Verhein

90 4.6. MINING ASSOCIATION RULES

Algorithm 4.2 Procedure to perform one expansion. state.node is the parent of the
new PrefixNode (newNode) that we create if newNode.V alue ≥ minMeasure.
localTop is true i� we are processing the top sibling of any sub-tree. nextTop
becomes newNode.top and is set so that top is true only for a node that is along the
topmost branch of the pre�x tree.

void step(State state)
if (state.newPair 6= null) //see end of method ♣
state.buffer.add(state.newPair);
state.newPair = null; //so it won't be added again

Pair p = state.itemvectors.next();
boolean localTop =!state.itemvectors.hasNext();
if (localTop)
//Remove state from frontier (and hence delete state.yI′) as the
//the top child of node is being created in this step. Fact 6
localFrontier.removeF irst();

Itemvector yI′∪{i} = null; double value, V alue;

booleannextTop; //top in the next State we create.
if (state.node.isRoot()) //we are dealing with itemsets of length 1 (so I ′ = {ε})
value = f(p.yi); V alue = calculateF (null, {p.item}, value); yI′∪{i} = p.yi;

state.top = localTop; nextTop = localTop; //initialise tops.
else
nextTop = localTop&& state.top;
if (check(state.node, p.item)) //make use of pruning property
if (localTop&& (state.node.getDepth() > 1 || state.top)) //Fact 6 or 7
//No longer need state.yI′ as this is the last child we can create under
//state.node (and it is not a single item other than perhaps the topmost)
yI′∪{i} = state.yI′ ;

yI′∪{i}◦ = p.yi; //can write result directly into yI′∪{i}
else //need to use additional memory for the child (yI′∪{i}).

yI′∪{i} = state.yI′ ◦ p.yi;
value = f(yI′∪{i}); V alue = calculateF (state.node, {p.item}, value);

else //don't need to calculate since it is known that V alue < minMeasure
value = V alue = −∞

if (V alue ≥ minMeasure) //Found an interesting itemset - create newNode for it.
PrefixNode newNode = prefixTree.createChildUnder(state.node);
newNode.item = p.item; newNode.value = value; newNode.V alue = V alue;
sequenceMap.put(newNode);
if (state.buffer.size() > 0) //there is potential to expand newNode. Fact 5
State newState = new State(newNode, yI′∪{i}, state.buffer.iterator(),

nextTop, new LinkedList());
//add to front of frontier so depth �rst search. Fact 2.
frontier.addFront(newState); state.newPair = p;
//if state.node is not complete, p will be added to state.buffer after
// newState has been completed. See ♣

Dr. rer. nat. Dissertation

CHAPTER 4. GEOMETRICALLY INSPIRED ITEMSET MINING IN THE
TRANSPOSE 91

correctness.

Lemma 4.8. Let s = 〈i1, ..., ik〉 = αβγ be the sequence corresponding to a pre�x

node n where α, β 6= ∅. All association rules can be generated by creating all rules

α⇒ β and β ⇒ α for each leaf node in the pre�x tree.

Proof. (Sketch) Given a leaf node n corresponding to a sequence s =< i1, ..., ik >,

algorithm 4.3 generates all the rules α⇒ β and β ⇒ α for all α, β, γ where α 6= ∅ is
a pre�x of s, γ is a possibly empty su�x of s, and β 6= ∅ is the remaining sub-string

(a su�x i� γ = ∅). That is, s = αβγ. It is not possible to generate all possible

association rules that can be generated from itemset {i1, ..., ik} by considering only

node n. Speci�cally, the following are missed: (1) any rules α′ ⇒ β′ or β′ ⇒ α′

where α′ is not a pre�x of s, and (2) any such rules where there is a gap between

α′ and β′. However, by the construction of the tree there exists another node n′

corresponding to the sequence s′ = 〈α′, β′〉 (since s′ @ s). If n′ is not in the fringe,

then by de�nition s′ @ s” where s” = 〈α′, β′, γ′〉 for some γ′ 6= ∅ and n” (the node

for s”) is in the fringe. Hence α′ ⇒ β′ and β′ ⇒ α′ will be generated from node(s)

other than n. Finally, the longest sequences are guaranteed to be in the fringe, hence

all rules will be generated (and without duplication) by induction.

In this procedure, the evaluated measures (value, V alue) for α are stored in the

pre�x nodes visited by the algorithm as α is a pre�x of s. To obtain the evaluated

measures for β, the Pre�xNode (βn) corresponding to β must be obtained. This is

done using a Sequence Map (map) that has also been built by the mining algorithm.

4.7 Experiments

The GLIMIT algorithm was evaluated on two publicly available data sets from the

FIMI repository9 � T10I4D100K and T40I10D100K. These data sets have 100, 000

transactions and a realistic skewed histogram of items. They have 870 and 942 items

respectively. To apply GLIMIT, the data was �rst transposed as a pre-processing

step. This is cheap, especially for sparse matrices � precisely what the data sets in

question typically are. The data used was in the experiments was transposed in 8 and

15 seconds respectively using a naive Java implementation and without exploiting

sparse techniques.

9http://�mi.cs.helsinki.�/data/

Florian Verhein

92 4.7. EXPERIMENTS

(a) Runtime and frequent itemsets. T10I4D100K. Inset shows detail for
low support.

(b) Runtime and frequent itemsets. T40I10D100K.

Figure 4.7: Run time results. Apriori, FP-Growth and GLIMIT.

Dr. rer. nat. Dissertation

CHAPTER 4. GEOMETRICALLY INSPIRED ITEMSET MINING IN THE
TRANSPOSE 93

(a) Runtime ratios. T10I4D100K.

(b) Average time taken per frequent itemset shown on two scales.
T10I4D100K.

Figure 4.8: Run time results. FP-Growth and GLIMIT.

Florian Verhein

94 4.7. EXPERIMENTS

Algorithm 4.3 Generating association rules from the pre�x tree. This should be
called for each Pre�xNode in the fringe to output all rules. We assume the measure
is support and we evaluate for con�dence.

void generateAssociations(PrefixNode fringeNode)
for (PrefixNodeαβn = fringeNode; αβn.item 6= ε; αβn = αβn.parent)
σα∪β = αβn.M ; βsize = 1;
for (PrefixNodeαn = αβn.parent(); αn.item 6= ε; αn = αn.parent)
Sequence βseq = αβn.getSuffix(βsize+ +);
PrefixNode βn = map.get(βseq);
σα = αn.V alue; σβ = βn.V alue;
cα⇒β =

σα∪β
σα

; cβ⇒α =
σα∪β
σβ

;

/*output the rules and their σ and cs*/
output(αn, βn, σα∪β , cα⇒β);
output(βn, αn, σα∪β , cβ⇒α);

Figure 4.9: Number of item-vectors needed and maximum frontier size. Data set:
T10I4D100K.

Dr. rer. nat. Dissertation

CHAPTER 4. GEOMETRICALLY INSPIRED ITEMSET MINING IN THE
TRANSPOSE 95

GLIMIT was compared to a publicly available implementation of FP-Growth and

Apriori. The algorithms used were from ARtool10 as it is also written in Java and

has been available for some time. The algorithms were not used via the supplied

GUI, but rather the underlying classes were invoked directly to avoid overheads.

The primary goal of this section is to show that GLIMIT is fast and e�cient when

compared to existing algorithms on the traditional FIM problem. Recall that a

major contribution of this chapter however is the item-vector framework that allows

operations that previously could not be considered, and a �exible and new class of

algorithm that uses this framework to e�ciently mine data cast into di�erent and

useful spaces. The fact that it is also very fast when applied to traditional FIM is a

consequence of this. To represent item-vectors for traditional FIM, bit-vectors were

used11 so that each bit is set if the corresponding transaction contains the item(set).

Therefore g creates the bit-vector, ◦ = AND, f(·) = sum(·) and F (m) = m.

Figure 4.7(a) shows the run time12 of FP-Growth, GLIMIT and Apriori13 on T10I4D100K,

as well as the number of frequent items. The analogous graph for T40I10D100K is

shown in �gure 4.7(b). Apriori was not run in this experiment as it is too slow. These

graphs clearly show that when the support threshold is below a small value (about

0.29% and 1.2% for the respective data sets), FP-Growth is superior to GLIMIT.

However, above this threshold GLIMIT outperforms FP-Growth signi�cantly. Figure

4.8(a) shows this more explicitly by presenting the run time ratios for T40I10D100K.

FP-Growth takes at worst 19 times as long as GLIMIT. These results indicate that

GLIMIT is superior above a threshold. Furthermore, this threshold is very small and

practical applications usually mine with much larger thresholds than these.

GLIMIT scales roughly linearly in the number of frequent itemsets. Figure 4.8(b)

demonstrates this experimentally by showing the average time to mine a single fre-

quent itemset. The value for GLIMIT is quite stable, rising slowly toward the end

(as in these cases GLIMIT must still check itemsets, but very few of them turn out

to be frequent). FP-Growth on the other hand, clearly does not scale linearly. The

reason behind these di�erences is that FP-Growth �rst builds an FP-tree. This ef-

fectively stores the entire Data set (minus infrequent single items) in memory. The

FP-tree is also highly cross-referenced so that searches are fast. The downside is that

this takes signi�cant time and a lot of space. This pays o� extremely well when the

support threshold is very low, as the frequent itemsets can read from the tree very

10http://www.cs.umb.edu/ laur/ARtool/.
11The Colt (http://dsd.lbl.gov/~hoschek/colt/) BitVector implementation was used.
12Pentium 4, 2.4GHz with 1GB RAM running WindowsXP Pro.
13Apriori was not run for extremely low support as it took longer than 30 minutes for minSup ≤

0.1%

Florian Verhein

96 4.8. CONCLUSION AND FUTURE WORK

quickly. However, when minSup is larger, much of the time and space is wasted.

GLIMIT uses time and space as needed, so it does not waste as many resources,

making it fast. The downside is that the operations on bit-vectors (in our experi-

ments, of length 100, 000) can be time consuming when compared to the search on

the FP-tree, which is why GLIMIT cannot keep up when minSup is very small.

Figure 4.9 shows the maximum and average14 number of item vectors our algorithm

uses as a percentage of the number of items. At worst, this can be interpreted as the

percentage of the data set in memory. Although the worst case space is 1.5 times

the number of items, n (lemma 4.7), the �gure clearly shows this is never reached in

these experiments. The maximum was approximately 0.82n. By the time it were to

get close to 1.5n, minSup would be so small that the run time would be unfeasibly

large anyhow. Furthermore, the space required drops quite quickly as minSup is

increased (and hence the number of frequent items decreases). Figure 4.9 also shows

that the maximum frontier size is very small. (recall from lemma 4.7 it is bounded

above by dl/2e. Finally, recall that the algorithm can avoid using the pre�x tree and

sequence map on the FIM problem, so the only space required are the item vectors

and the frontier. That is, the space required is truly linear.

4.8 Conclusion and Future Work

This chapter showed interesting consequences of viewing transaction data as item-

vectors in transaction-space and developed a framework for operating on item-vectors.

This abstraction gives great �exibility in the measures used and opens up the poten-

tial for useful transformations on the data. Future work may involve �nding useful

geometric measures and transformations for itemset mining. One particular problem

of interest is to �nd a way to use SVD prior to mining for itemsets larger than 2.

This chapter also presented GLIMIT, a novel algorithm that uses the framework

and signi�cantly departs from existing algorithms. GLIMIT mines itemsets in one

pass without candidate generation, in linear space and time linear in the number

of interesting itemsets. Experiments showed that it beats FP-Growth above small

support thresholds and is always faster than Apriori.

14over the calls to step(·).

Dr. rer. nat. Dissertation

Chapter 5

Fast Mining of Complex Spatial

Co-location Patterns

Most algorithms for mining interesting spatial co-locations integrate the co-

location / clique generation task with the interesting pattern mining task

and are usually based on the Apriori algorithm. This has two downsides:

First, it makes it di�cult to meaningfully include certain types of complex

relationships � especially negative relationships � in the patterns. Secondly,

the Apriori algorithm is slow.

This work mines complex co-location relationships between object types; a

special type of interaction between variables. It considers maximal cliques of

galaxies in an astronomy dataset which are used to extract complex maximal

cliques. These are subsequently mined for interesting sets of object (galaxy)

types, including complex types such as absence and multiple occurences. It

is shown that the GLIMIT itemset mining algorithm can be applied to this

problem, leading to far superior performance than using an Apriori style

approach.

The problem may be solved directly using the GIM framework.

97

98 5.1. INTRODUCTION

5.1 Introduction

A spatial data set often describes Geo-spatial or �Astro-spatial� (astronomy related)

data. In this work, a large astronomical data-set containing the location of di�erent

types of galaxies is used [1]. Data sets of this nature are very large and provide many

opportunities and challenges for data mining applications. The use of novel data

mining approaches has the potential to uncover interesting patterns and knowledge

in such data sets.

One such pattern is the co-location pattern. A co-location pattern describes a group

of objects (such as galaxies) where each object is located in the neighborhood (within

a given distance) of another object in that group.

A clique is a special type of co-location pattern. A clique is a group of objects

such that all objects in that group are co-located with each other. In other words,

given a prede�ned distance, if a group of objects lie within this distance from every

other object in the group, they form a clique. Figure 5.1 shows 8 di�erent objects

{A1, A2, A3, B1, B2, B3, B4, C1}, with lines between them indicating that they are

co-located. The set {B1, B2, A3} is a clique. However, {B1, B2, A3, C1} is not,

because C1 is not co-located with B2 and A3. Similarly, {B1, B2, A3, C1} is a

co-location pattern but it is not a clique.

Figure 5.1: Clique example.

This work considers maximal cliques. A maximal clique is a clique that does not

appear as subset of another clique in the same co-location pattern (and there-

fore the entire data set, as each object is unique). For example, in Figure 5.1,

{A1, A2, B4} forms a maximal clique as it is not a subset of any other clique.

However, {A3, B2, B3} is not a maximal clique since it is a subset of the clique

{A3, B1, B2, B3} (which in turn is a maximal clique). The second column of Table

5.1 shows all the maximal cliques in Figure 5.1.

Dr. rer. nat. Dissertation

CHAPTER 5. FAST MINING OF COMPLEX SPATIAL CO-LOCATION
PATTERNS 99

ID Maximal
Cliques

Raw
Maximal
Cliques

Non-
Complex
Relation-
ships

Complex
Without
Negative Re-
lationships

Complex
With
Negative Re-
lationships

1 {A3, B1, B2,
B3}

{A, B, B, B} {A, B} {A, B, B+} {A, B, B+,
-C}

2 {B1, C1} {B, C} {B, C} {B, C} {-A, B, C}

3 {A1, A2, B} {A, A, B} {A, B} {A, A+, B} {A, A+, B,
-C}

Table 5.1: Representing maximal cliques of Figure 5.1 as complex relationships

In the data set used in this work, each row corresponds to an object (galaxy) and

contains its type as well as its location. The goal is to mine relationships between the

types of objects. Examples of object types in this data set are �early-type� galaxies

and �late-type� galaxies. To clarify; of interest are not co-locations of speci�c objects,

but rather, co-locations of object types types. Finding complex relationships between

such types is useful information in the astronomy domain. In Figure 5.1, there are

three types: {A,B,C}. This Chapter focuses on using maximal cliques in order to

allow mining of interesting complex spatial relationships between the object types.

A complex spatial relationship includes not only whether an object type, say A, is

present in a (maximal) clique, but also:

• Whether more than one object of its type is present in the (maximal) clique.

This is called a positive type and is denoted by A+.

• Whether objects of a particular type are not present in a maximal clique � that

is, the absence of types. This is called a negative type and is denoted by −A.

The inclusion of positive and / or negative types makes a relationship complex. This

allows mining patterns that indicate, for example, that A occurs with multiple B's

but not with a C. That is, the presence of A may imply the presence of multi-

ple object of type B and the absence of objects of type C. This is interesting in

the astronomy domain as it show complex relationships between di�erent types of

galaxies. The last two columns of Table 5.1 show examples of (maximal) complex

relationships.

This work is not concerned with maximal complex patterns (relationships) by them-

selves, as they provide only local information; that is, local information about a

particular maximal clique. Rather, this work is concerned with sets of object types

(including complex types), that appear across the entire data set � that is, amongst

Florian Verhein

100 5.1. INTRODUCTION

many maximal cliques. In other words, the goal is to �nd interesting complex spatial

relationships (sets), where �interesting� is de�ned by a global measure. Returning

to the astronomy data set, this means patterns will be found showing complex rela-

tionships between galaxy types that reoccur throughout the data set.

The global measure of interestingness used in this work is a variation of the minPI

[80] measure:

(5.1) minPI(P) = min
t∈P
{N(P)/N({t})}

Here, P is a set of complex types being evaluated and N(·) is the number of maximal

cliques that contain the set of complex types. Note that the occurrences of the

pattern (set of complex types) are counted only in the maximal cliques. This means

that if the minPI of a pattern is above α, then it is possible to say that whenever

any type t ∈ P occurs in a maximal clique, the entire pattern P will occur in at least

a fraction alpha of those maximal cliques. minPI is superior to simply using N(P)

because it scales by the occurrences of the individual object types, thus reducing

the impact of a non-uniform distribution on the object types. This is important, as

otherwise those object types that occur frequently dominate the results.

This work focuses on maximal cliques for the following reasons:

• The process of forming complex positive relationships only makes sense in

maximal cliques. Suppose we extract a clique that is not maximal, such as

{A1, B4} from Figure 5.1. We would not generate the positive relationship

{A+, B} from this, even though each of {A1, B4} are co-located with {A2}.
The correct pattern emerges only once maximal cliques are considered.

• Negative relationships are possible. For example, consider the maximal clique

in row 1 of Table 5.1. If maximal cliques were not used, then we would also con-

sider {B1, B2, B3}, and from this we would incorrectly infer that the complex

relationship {B,B+,−A} exists. However, this is not true because A is co-

located with each of {B1, B2, B3}. Therefore, using non-maximal cliques will

generate incorrect negative patterns because negative types cannot be inferred

until the maximum clique is mined.

• Each maximal clique will be considered as a single instance (transaction) for

the purposes of counting. In other words, using maximal cliques automatically

avoids counting the same objects within a maximal clique multiple times.

Dr. rer. nat. Dissertation

CHAPTER 5. FAST MINING OF COMPLEX SPATIAL CO-LOCATION
PATTERNS 101

• Using maximal cliques reduces the total number of cliques by removing all

redundancy. So not only does this lead to better quality results as outlined

above, but it also reduces the computational cost of the subsequent mining

process. Furthermore, since it is possible to mine maximal cliques directly

without �rst considering all sub-cliques, this leads to a further computational

advantage.

5.1.1 Problem Statement

Problem Statement: Given the set of maximal cliques, �nd all interesting and

complex patterns that occur amongst that set of maximal cliques. More speci�cally,

�nd all sets of object types, including positive and negative (complex) types that

have a minPI above a user de�ned threshold.

It will be shown that this problem can be mapped to an itemset mining task with

minPI used as an interestingness measure. In order to solve it very quickly, the

GLIMIT algorithm of Chapter 4 is applied, as will be described in Section 5.5.

Including negative types makes the problem much more di�cult, as it is typical for

spatial data to be sparse. This means that the absence of a type amongst maximal

cliques is very common. This is analogous to having a very large transaction width in

frequent itemset mining, which is known to be very challenging for mining algorithms.

In contrast to standard approaches relying on an Apriori style algorithm that �nd this

very di�cult, it will be shown that this is not a problem for the approach described

in this Chapter.

5.1.2 Contributions

This Chapter makes the following contributions:

• It introduces maximal cliques and describes how they make more sense than

simply using cliques in co-location mining. Furthermore, it is shown that they

allow the use of negative patterns.

• A general and modular Knowledge Discovery in Databases (KDD) process is

introduced that splits the maximal clique generation, complex pattern extrac-

tion and interesting pattern mining tasks into independent components.

• It shows that GLIMIT can be used to mine complex, interesting co-location

patterns very e�ciently in very large real world data sets. Indeed, it is demon-

Florian Verhein

1025.2. COMPLEX SPATIAL CO-LOCATION PATTERN DISCOVERY PROCESS

strated that GLIMIT can be almost three orders of magnitude faster than using

an Apriori based approach.

5.1.3 Organisation

The rest of this Chapter is organized as follows: Section 5.2 describes the complete

KDD process for mining complex spatial co-location patterns. Section 5.3 formally

de�nes maximal cliques. Section 5.4 de�nes complex relationships and shows how

these are extracted. Section 5.5 describes how the complex spatial co-location mining

problem can be considered as an itemset mining problem, while Section 5.5.1 shows

how it can be mapped to the GLIMIT framework and hence solved using the GLIMIT

algorithm. Section 5.6 shows how it can be solved using the GIM. Section 5.7 presents

experiments and an analysis of the results. Section 5.8 places the contributions in

context of related work and this Chapter is concluded in Section 5.9.

5.2 Complex Spatial Co-location Pattern Discovery Pro-

cess

Figure 5.2 shows the overall �owchart of the method described in the Chapter. First,

a maximal clique mining algorithm �nds all maximal cliques and strips them of

the object identi�ers. This produces raw maximal cliques as shown in Table 5.1.

One pass is then made over the raw maximal cliques in order to extract complex

relationships, as will be described in Section 5.4. This produces maximal complex

Figure 5.2: The complete mining process.

Dr. rer. nat. Dissertation

CHAPTER 5. FAST MINING OF COMPLEX SPATIAL CO-LOCATION
PATTERNS 103

cliques. Each of these complex, maximal cliques is then considered as a transaction,

and an interesting itemset mining algorithm, using minPI as the interestingness

measure, is used to extract the interesting complex relationships. This is described

in Sections 5.5 and 5.5.1.

As shown in Figure 5.2, the clique generation and complex relationship extraction are

local procedures, in the sense that they deal only with individual maximal cliques.

In contrast, the interesting pattern mining is global � it �nds patterns that occur

across the entire space. Secondly, subsets of maximal cliques are only considered in

the last step � that is, after the complex patterns have been extracted.

5.3 Maximal Cliques

Consider a set of objects O with �xed locations. Given an appropriate distance

measure d : O×O → R, de�ne a graph G as follows; let O be the set of vertices and

construct an edge between two objects o1 ∈ O and o2 ∈ O if d(o1, o2) ≤ τ , where τ

is a chosen distance.

De�nition 5.1. A co-location pattern is a connected sub graph in G.

De�nition 5.2. A clique C ∈ O is any fully connected sub graph of G. That is,

d(o1, o2) ≤ τ ∀{o1, o2} ∈ C × C.

As was mentioned in Section 5.1, maximal cliques are used in this work so that

complex patterns can be meaningfully de�ned and used, and to avoid double counting

which would heavily skew the results towards large cliques.

De�nition 5.3. A maximal clique CM is a clique that is not a subset (sub-graph)

of any other clique.

The mining of maximal cliques is done directly � it does not require mining all sub-

cliques �rst in an enumeration style approach. The maximal clique mining algorithm

is described in [12].

5.4 Extracting Complex Relationships

A relationship is called complex if it consists of complex types as de�ned in Section

5.1.

Florian Verhein

104 5.5. MINING INTERESTING COMPLEX RELATIONSHIPS

Extracting a complex relationship R from a maximal clique CM involves using the

following rules for every type t:

1. If CM contains an object with type t, R = R ∪ t.

2. If CM contains more than one object of type t, R = R ∪ t+.

3. If CM does not contain an object of type t, R = R ∪ −t.

Note that if R includes a positive type A+, it will also always include the basic

type A. This is necessary so that maximal cliques that contain A+ will also be

counted as containing A when they are mined for interesting patterns. Recall that

the negative type only makes sense if maximal cliques are used. The last three

columns of Table 5.1 show the result of applying Rule 1, Rule 1 and then Rule 2,

and all three rules, respectively.

5.5 Mining Interesting Complex Relationships

The complex relationships considered in this chapter are speci�c types of interac-

tions between variables, and hence can be solved using the GIM framework and

algorithm. At the time this work was performed, GIM had not been developed.

Instead, the problem is mapped to itemset mining. Solving the problem directly in

GIM is described in section 5.6.

In itemset mining, the data set consists of a set of transactions T , where each trans-

action t ∈ T is a subset of a set of items I; that is, t ⊆ I. In order to map complex

spatial co-location mining to the itemset mining task, the set of complex maximal

cliques (relationships) become the set of transactions T . The items are the object

types � including the complex types such as A+ and −A. For example, if the object

types are {A,B,C}, and each of these types is present and absent in at least one

maximal clique, then I = {A,A+,−A,B,B+,−B}. An interesting itemset mining

algorithm mines T for interesting itemsets. The support of an itemset I ′ ⊆ I is the

number of transactions containing the itemset: support(I ′) = |{t ∈ T : I ′ ⊆ t}|. So
called frequent itemset mining uses the support as the measure of interestingness.

For reasons described in Section 5.1, this work uses minPI (see Equation 5.1) which,

under the mapping described above, is equivalent to

(5.2) minPI(I ′) = min
i∈I′
{support(I ′)/support({i})}

Dr. rer. nat. Dissertation

CHAPTER 5. FAST MINING OF COMPLEX SPATIAL CO-LOCATION
PATTERNS 105

Since minPI is anti-monotonic, the search space for interesting patterns can easily

be pruned.

5.5.1 Mapping the Problem to GLIMIT

Recall from Chapter 4 that GLIMIT is a fast and e�cient itemset mining algorithm

that has been shown to outperform Apriori [11] and FP-Growth [47]. Since it is based

on a framework of functions (Section 4.4), new measures can easily be incorporated.

In particular, the minPI measure can be build on top of the frequent itemset mining

approach: Recall from example 4.4 on page 79 that it can be incorporated into

GLIMIT as follows (let I ′ = {1, 2, ..., q} for simplicity): g(·) is the identity function

(there is no transformation on the data set), ◦ = ∩ (intersection) and f(·) = | · |
(the set size). Let mI′ be the result computed by f(·) on the itemset I ′. This means

that mI′ = support(I ′), as is the case for FIM. To evaluate minPI, F (·) is used:

F (mI′ ,m1, ...,mq) = mini∈I′{mI′/mi}.

GLIMIT is used with the above instantiations of its framework to mine interesting

complex co-locations, as shown in Figure 5.2. For comparison, an Apriori [11] style

implementation will be used in the experiments.

The Apriori [11] and Apriori-like algorithms are bottom up item enumeration type

itemset mining algorithms. Apriori works in a breadth �rst fashion, making one pass

over the data set for each level expanded. This is in contrast to GLIMIT, which

makes only one pass over the entire data set. In Apriori, a candidate generation step

generates candidate itemsets (itemsets that may be interesting) for the next level,

followed by a data set pass (support counting) where each candidate itemset is either

con�rmed as interesting, or discarded. The support counting step is computationally

intensive as subsets of the transactions need to be generated. This is particularly

problematic when the transaction width is large, as is the case for spatial co-location

data that includes complex relationships. GLIMIT operates on completely di�erent

principles and does not have these drawbacks.

It is also worth noting that since all single itemsets are always interesting (by def-

inition, their minPI has the maximum value of 1), they cannot be discarded from

the search. Note that were an FP-Growth style algorithm developed for this mining

task, it would need to build an FP-Tree for the entire data set without any pruning.

Hence, it is not a practical choice for this problem.

Florian Verhein

106 5.6. MAPPING THE PROBLEM TO GIM

5.6 Mapping the Problem to GIM

GIM is more abstract than GLIMIT (which focuses only on itemset mining) and

operates on a di�erent (but related) framework and algorithm. Furthermore, while

GLIMIT performs subset checking and requires that the entire Pre�xTree remain

in memory, both of these can be avoided in GIM; saving space and time. This was

brie�y discussed in section 3.11.

While the experiments in this chapter were performed using GLIMIT, it is worth

showing how the problem can be solved directly in GIM:

• Each complex type is a variable, and complex maximal clique is a sample.

• Interaction vectors xV ′ contain the set of complex maximal clique IDs that

contain V ′, where V ′ is a complex spatial co-location pattern. Suppose xV ′ is

implemented as a bit vector.

• a(xV ′ , xv) = xV ′ ANDxv, the bit-wise AND operation.

• mI(xV ′) = |xV ′ |, the number of set bits. This is the support of the interaction
V ′

• MI(·) evaluates minPI of V ′ by using the result of mI(xV ′) and looking up

the mI(xv) : v ∈ V ′ using the sequence map. As explained in section 3.11,

store(·) only needs to store PrefixNodes corresponding to single variables.

Hence, the pre�x tree is not stored in memory.

• SI(·) = II(·) and returns true i� the value computed by MI(·) is at least equal
to the minPI threshold.

Recall that mining maximal cliques is performed using a specialist algorithm [12].

This step can also be performed using GIM, as described in Section 3.8.2.

5.7 Experiments

To evaluate the process presented in this Chapter, a real life two dimensional as-

tronomy data set from the the Sloan Sky Digital Survey (SDSS) [1] was used. All

galaxies from this data set were extracted, giving a total of 365, 425 objects. There

were 12 types of galaxies. The distance threshold used for generating the maximal

cliques was 1 Mega-parsec1.

1The mega-parsec is an astronomical distance measure. See
http://csep10.phys.utk.edu/astr162/lect/distances/distscales.html for details.

Dr. rer. nat. Dissertation

CHAPTER 5. FAST MINING OF COMPLEX SPATIAL CO-LOCATION
PATTERNS 107

A total of 121, 506 maximal cliques (transactions) were extracted in 39.6 seconds.

These were processed in a number of ways (refer to Table 5.1 for examples) as

described in Section 5.4:

• Non-Complex: All duplicate items (object types) were removed in the max-

imal cliques.

• Complex w/o Negative: Positive types were included: if an object type A

occurred more than once in a maximal clique, it was replaced with A and A+.

No negative types were included.

• Complex w Negative: The same as Complex w/o Negative, but negative

types were included.

The following table describes the resulting sets of maximal cliques used for mining

interesting patterns:

Maximal Average Size

Clique Set Items (Transaction Width)

Non-Complex 12 1.87

Complex w/o Negative 21 2.69

Complex w Negative 33 13.69

Note that the the �Complex w Negative� data set is very large. It has 121, 506

transactions (like the others), but each transaction has an average size of 13.7.

Since most co-location mining algorithms are based on the Apriori algorithm, this

was used as the comparison. That is, both GLIMIT and Apriori were evaluated for

the interesting pattern mining task of Figure 5.2.

Figure 5.5 shows the number of interesting patterns found on the di�erent sets of

cliques.

Figures 5.3(a), 5.3(b) and 5.3(c)2 show the run time3 of the pattern mining. It is

clear that GLIMIT easily outperforms the Apriori technique. In particular, note

the di�erence between the run-times when negative items are involved; namely, Fig-

ure 5.3(c). For example, with a minPI threshold of 0.85, Apriori takes 33

2An upper limit of 2,000 seconds (33 minutes) was set
3Programs were implemented in Java and run on a laptop with a 2.0GHz Pentium 4M processor

and Windows XP Pro.

Florian Verhein

108 5.7. EXPERIMENTS

(a) Runtime on non-complex maximal cliques. (b) Runtime on complex maximal cliques with-
out negative patterns.

(c) Runtime on complex maximal cliques with negative patterns.

Figure 5.3: Computational Performance. The minPI threshold was changed in
increments of 0.05.

minutes (1967 seconds), while GLIMIT takes only 2 seconds. This is a

di�erence of almost three orders of magnitude.

As can be seen from the previous table, the use of negative types increases the

average transaction width substantially. This has a large in�uence on the run time

of the Apriori algorithm, due to the support counting step where all subsets (of a

particular size) of a transaction must be generated. This is not true of GLIMIT,

which runs in roughly linear time in the number of interesting patterns found, as can

be seen in Figure 5.4. The �non-complex� and �complex w/o negative� data sets, due

to their small average transaction width, may be considered very easy. The �complex

w negative� data set is di�cult for Apriori, but very easy for GLIMIT. Indeed, even

with a minPI threshold of 0.05 it takes only 76 seconds to mine 68, 633 patterns

Dr. rer. nat. Dissertation

CHAPTER 5. FAST MINING OF COMPLEX SPATIAL CO-LOCATION
PATTERNS 109

Figure 5.4: The run time of GLIMIT on complex maximal cliques with negative
patterns, versus the number of interesting patterns found.

Figure 5.5: Number of interesting patterns found.

using GLIMIT.

5.8 Related Work

The expression �spatial data� was de�ned as location-based data by Judd [50]. How-

ever, a simple de�nition of a spatial database is a collection of data that contains

information on an observable fact of interest, such as forest condition or pollution,

and the location of an observable fact on the Earth. Spatial data consists of two types

of attributes; the normal attributes, which are de�ned as non-spatial attributes, and

spatial attributes that describe an instances location.

Florian Verhein

110 5.8. RELATED WORK

Huang et al. [49] de�ne the co-location pattern as the presence of a spatial feature in

the neighborhood of instances of other spatial features. They develop an algorithm

for mining valid rules in spatial databases using an Apriori based approach. Their

algorithm does not separate the co-location mining and interesting pattern mining

steps like the KDD process in this Chapter. Also, they do not consider complex

relationships or patterns. Speci�cally, their method cannot mine give complex rules

such as A→ B+ or B → −C and they do not allow cliques to be connected to each

other, which can lead to some cliques being ignored.

Monroe et al. [64] use cliques as a co-location patterns. Similar to the approach

in this chapter, they separated the clique mining from the pattern mining stages.

However, they do not use maximal cliques. They treat each clique as a transaction

and use an Apriori based technique for mining association rules. Since they used

cliques (rather than maximal cliques) as transactions, the counting of pattern in-

stances is very di�erent. They consider complex relationships within the pattern

mining stage. However, their de�nition of negative patterns is di�erent � they use

infrequent types while the work in this Chapter is based on the concept of absence

in maximal cliques. Therefore, in [64] a negative pattern does not necessarily mean

that type is not present. Monroe et al. also used a di�erent measure; maxPI. Fur-

thermore, they de�ne the positive relationship as a set of features that co-locates

in a ratio greater than prede�ned threshold. Perhaps a method based on maximal

cliques, as introduced in this Chapter, is simpler, leads to more useful semantics and

avoids the problems caused by the fact that large cliques have many sub-cliques.

Arunasalam et al. [16] use a similar approach to [64]. They propose an algorithm

called NP_maxPI which also uses the maxPI measure. The proposed algorithm

prunes the candidate itemsets using the weak anti-monotonic property of maxPI.

They also use an Apriori based technique to mine complex patterns. A primary goal

of their work is to mine patterns which have low support and high con�dence. As

with the work of [64], they did not use maximal cliques.

Zhang et al. [116] enhanced the algorithm proposed in [49] and used it to mine

special types of co-location relationships in addition to cliques, namely; the spatial

star, and generic patterns. Most related work makes use of anti-monotonic or weakly

anti-monotonic measures. Morimoto [62], however, used a measure that is not anti-

monotonic to mine a co-location pattern called the k-neighboring class set.

To the best of the authors knowledge, all previous work has used Apriori type algo-

rithms for mining interesting co-location patterns. This work uses GLIMIT as the

underlying pattern mining algorithm as already discussed in Section 5.5. Further-

more, this is the �rst work to apply GLIMIT on spatial data and with a measure

Dr. rer. nat. Dissertation

CHAPTER 5. FAST MINING OF COMPLEX SPATIAL CO-LOCATION
PATTERNS 111

other than support.

5.9 Conclusion

This Chapter introduced the idea of using maximal cliques for complex pattern

mining, which is fundamental to the approaches presented in this work. It was argued

that complex patterns only make sense in the context of maximal cliques. Using

maximal cliques also allowed the clique generation step to be split from the interesting

pattern mining tasks and avoided the problem of redundant cliques. This Chapter

presented a complete KDD process for the problem of mining complex spatial co-

location patterns. This Chapter showed that the complex spatial co-location pattern

mining problem can be mapped to the GLIMIT algorithm, and that this is a far more

e�cient solution than using the traditional Apriori style of algorithm, especially when

complex patterns are involved. Previous work in co-location mining used Apriori

style algorithms.

Since the problem in this chapter was one of the many in�uences in developing the

generalised interaction mining (GIM) approach of Chapter 3, the problem can also be

solved directly using GIM. Furthermore, recall that Chapter 3 showed how maxPI

can be applied to this problem e�ciently using GIM (see section 3.12.1).

Florian Verhein

112 5.9. CONCLUSION

Dr. rer. nat. Dissertation

Chapter 6

Generalised Rule Mining

Rules are an important interaction pattern in data mining, but existing ap-

proaches are limited to conjunctions of binary literals, �xed measures and

counting based algorithms. Rules can be much more diverse, useful and

interesting! This work introduces and solves the Generalised Rule Mining

(GRM) problem, which removes restrictions on the semantics of rules and

rede�nes rule mining by functions on vectors. This abstraction is moti-

vated through the introduction of three diverse and novel methods address-

ing problems including correlation based classi�cation, �nding interactions

for improving regression models and �nding probabilistic association rules in

uncertain databases. Two of these methods are introduced in this chapter,

while one is introduced in chapter 7. Furthermore, this approach can be

applied to other methods, such in chapter 8.

The proposed GRM framework and algorithm allow methods not possible

with existing algorithms, speed up existing methods, separate rule semantics

from algorithmic considerations and lend an interesting geometric interpre-

tation to the rule mining problem. The GRM algorithm scales linearly in

the number of rules found and provides orders of magnitude speed up over

fast candidate generation type approaches when these are applicable.

113

114 6.1. INTRODUCTION

6.1 Introduction

Rules are an important pattern in data mining due to their ease of interpretation and

usefulness for prediction. They have been heavily explored as association patterns

[11, 22, 81, 47, 84], �correlation� rules [22, 108] and for associative classi�cation [61,

60, 100]. These approaches consider only conjunctions of binary valued variables1,

use �xed measures of interestingness and counting based algorithms2. The rule

mining problem can be generalised by relaxing the restrictions on the semantics of

the antecedent as well as the variable types, and supporting any measure on rules.

A generalised rule A′ → c describes a relationship between a set of variables in the

antecedent A′ ⊆ A and a variable in the consequent c ∈ C, where A is the set of

possible antecedent variables and C is the set of possible consequent variables3. The

goal in Generalised Rule Mining (GRM) is to �nd useful rules A′ → c : A′ ⊆ A∧ c ∈
C ∧ c 6∈ A′ given functions de�ning the measures and semantics of the variables and

rules. Unlike in existing methods, variables do not need to be binary valued. Unlike

in existing methods, semantics are not limited to conjunction.

This work introduces and solves the Generalised Rule Mining problem by propos-

ing a vectorized framework and algorithm that are applicable to general-to-speci�c

methods4. The framework is composed of �ve functions;

1. Rules are evaluated using a vector valued distance functionmR(xA′ , xc) applied

to the vectors corresponding to the antecedent (xA′) and the consequent (xc)

of the rule A′ → c.

2. An aggregation function aR(·) incrementally builds xA′ and implicitly de�nes

the semantics of the rule.

3. MR(·) allows complex evaluations requiring comparisons to less speci�c rules,

4. IR(·) de�nes the interestingness of rules and search expansion criteria and

5. IA(xA′) allows (pre-emptive) antecedent pruning when possible.

Rule mining is a challenging problem due to its exponential search space in A ∪ C.
At best, an algorithm's run time is linear in the number of interesting rules it �nds,

1The antecedent and consequent consist of a conjunction of literals that are either true or false.
2Such algorithms explicitly count instances/transactions that apply to a rule, typically through

explicit counting, subset operations or tree/trie/graph traversals.
3Note that A and C do not need to be mutually exclusive.
4That is, methods where a less speci�c rule A”→ c : A” ⊂ A′ is mined before the more speci�c

one A′ → c.

Dr. rer. nat. Dissertation

CHAPTER 6. GENERALISED RULE MINING 115

and the GRM algorithm is provably optimal in this sense. It also scales linearly in

the dimensionality of the vectors, and can use space linear in the size of the database.

The GRM algorithm in itself is very fast. It completely avoids �candidate generation�

and does not build a compressed version of the data set � thus setting it apart from

Apriori and FP-Growth. Instead it operates directly on vectors. Furthermore, the

vectorization inherent in the framework's functions provides additional avenues for

reducing the run time: On single processor architectures, vectorization allows au-

tomatic parallelisation and exploitation of machine level operations for bit-vectors,

and optimizations for operations on �oating point arrays (real vectors). On multipro-

cessor architectures, vectorization also provides a point for concurrentisation [105]

while on supercomputer architectures, single instruction vector processing is directly

supported [105].

By abstracting rule mining, the GRM framework separates the semantics and mea-

sures of rules from the algorithm used to mine them. The GRM algorithm can

be exploited for any methodology map-able to the frameworks functions, such as

[61, 60, 98, 103], especially generalized associative type patterns and mining classi�-

cation rules. For example, methods based on counting such as support, con�dence,

lift, interest factor, all-con�dence, correlation, signi�cance tests and entropy. In par-

ticular, complete contingency tables can be calculated, including columns for sub-

rules as required by complex, statistically signi�cant rule mining methods [98, 103].

More interestingly though, it supports novel approaches including those with seman-

tics unlike any existing method.

6.1.1 Contributions

The contributions of this work are as follows:

• It de�nes the Generalized Rule Mining (GRM) problem and proposes a vec-

torised framework that solves GRM using only functions on vectors. As a side

e�ect, this provides a natural geometric interpretation of rule mining, which is

very di�erent to the counting interpretation in previous work. Together with

the algorithm, this solves the generalized rule mining problem for general-to-

speci�c rule mining with one variable in the consequent.

• It introduces the vectorized GRM algorithm, which e�ciently solves any rule

mining problem expressible in the GRM framework. It is not based on Apriori

or FP-Growth or any other counting based algorithm. It also supports/exploits

any mutual exclusion constraints on variables.

Florian Verhein

116 6.2. RELATED WORK

• To motivate and demonstrate GRM, two novel rule mining approaches are

introduced:

� First, Probabilistic Association Rule Mining (PARM) tackles association

analysis in uncertain or probabilistic transaction databases. The required

probability computations naturally �t into the vectorised GRM frame-

work.

� Secondly, Conjunctive Correlation Rules (CCRules) are used for an asso-

ciative classi�er. It uses the proposed Correlation Improvement technique

to direct the search, which also has an interesting geometric interpreta-

tion.

Aside: In addition to the motivational methods above, another technique

called Correlated Multiplication Rules (CMRules) is developed in chapter 7.

It �nds multiplicative interactions and a method is presented for mining the

best interaction terms for inclusion in linear (especially regression) models.

This enables linear models to achieve non-linear decision boundaries by using

the antecedents of CMRules as composite features and is the �rst rule mining

approach with multiplication semantics.

6.1.2 Organisation

The remainder of this chapter is organised as follows: Section 6.2 places the this

work in context of related work. Section 6.3 presents two novel techniques that are

solved e�ciently using GRM. Section 6.4 presents the GRM framework. Section 6.5

describes the GRM algorithm. Section 6.6 presents experimental results and the

chapter is concluded in section 6.7.

6.2 Related Work

Most existing rule mining methods are used for associative pattern mining or classi-

�cation. These only consider rules with conjunctive semantics of binary literals and

use counting approaches in their algorithms. Other than border traversal based tech-

niques for maximal or closed item-sets, they use general-to-speci�c searches. Associ-

ation rule mining methods [11, 47, 81] typically mine item-sets before mining rules.

Unlike GRM, they do not mine rules directly. Itemset mining methods are often ex-

tended to rule based classi�cation [110, 61, 100]. The algorithms can be categorized

into Apriori-like approaches [11] characterized by a breadth �rst search through the

Dr. rer. nat. Dissertation

CHAPTER 6. GENERALISED RULE MINING 117

item lattice and multiple database scans, tree based approaches [47] characterized

by a traversal over a pre-built compressed representation of the database, projec-

tion based approaches [100] characterised by depth �rst projection based searches

and vertical approaches [81, 34, 96] that operate on columns. Vertical bit-map ap-

proaches [81, 96] have received considerable interest due to their ability to outperform

horizontal based techniques. Of existing work, the vectorized approach in GRM is

most similar to the vertical approach. However, GRM is not limited to bitmaps or

support based techniques; for example, unlike any previous work it can usefully and

meaningfully handle real vectors as demonstrated by PARM and CMRules. It also

solves a di�erent problem, namely, the generalised rule mining problem, and mines

rules directly � without �rst mining sets. It also runs in provably linear time in the

number of interesting rules output.

Rule based classi�cation is a major application area for rules with one variable in the

consequent [110, 60, 61, 100]. Approaches in literature are speci�c to one measure

or approach, do not generalize well and are based on the above association / item

set mining algorithms. Rules based on decision trees [76] or rule induction [27] have

di�erent mining approaches generally not compatible with those considered here.

The �generalisation� of rules in this paper applies to the ability to support many

di�erent semantics, variable types and interestingness measures. This is di�erent to

the �generalization� of association rules in the literature, where it refers to quanti-

tative rules [84, 78], correlations [22] or hierarchical rules. Quantitative rules [84]

consider the number of items bought in a transaction and mine rules with quantity

ranges. More recently, the term has referred to relationships between weighted sums

of variables [78], though this is an optimisation problem rather than a rule mining

problem. Within the GRM framework, such databases correspond to integer valued

variable vectors. However, the rules are still conjunctions of binary valued literals.

Correlation rules [22] are �general� in that they use a di�erent measure on rules;

thus �generalizing� association rules from support and con�dence to correlation. But

like other approaches, this just uses another, �xed, measure. Since GRM is a true

framework, unlike existing approaches it avoids limiting the rule de�nition and solves

the problem at the abstract level. As far as the author is aware, no existing rule

mining approach considers real valued vectors, expands the rule de�nition to non-

conjunctive semantics, allows a wide range of measures, or attempts to solve the

problem at this abstracted level.

The mutually exclusive constraints considered in this paper are not hierarchical [85]

and are primarily used for classi�cation using conjunctive rules where values have

been discretised. No work was found that considers rule mining geometrically. Re-

Florian Verhein

118 6.3. NOVEL AND MOTIVATIONAL METHODS SOLVED USING GRM

lated work pertaining to the motivational methods introduced in this chapter (that

is, PARM and CCRules) is covered in the corresponding sections.

6.3 Novel and Motivational Methods Solved Using GRM

This section presents two very di�erent and novel techniques that are solved e�-

ciently using GRM. These problems can be solved orders of magnitude faster with

GRM than using a suitable alternative method. Furthermore, chapter 7 will intro-

duce another novel technique that can only be solved with GRM. In addition to these

novel methods, section 6.4 will show how existing techniques such as support based

rules are solved using the GRM framework.

6.3.1 Probabilistic Association Rule Mining (PARM)

In a probabilistic database D, each row rj contains a set of observations about

variables A∪C together with their probabilities of being observed in rj . Probabilistic

databases arise whenever there is uncertainty or noise in the data. For example, in

the medical domain each row may correspond to a patient, the variables are medical

conditions and the probabilities capture the likelihood that the patient has (or will

get) the condition based on risk factors or tests. For instance, prenatal tests to

determine chromosomal or genetic disorders in the fetus, such as cystic �brosis, return

probabilities. Risk factors such as smoking, sex, family history, etc can also provide

probability estimates of diseases. In such databases, Probabilistic Association Rules

can show interesting patterns while taking into account the uncertainty of the data.

Traditional association analysis cannot deal with probabilistic databases. Previous

work such as [25, 26, 58, 7, 57] has examined expected frequent itemsets, that is,

the itemset mining task where itemsets with an expected support above minSup are

mined. These do not consider rules. Furthermore, previous work has used Apriori

[26, 25] or FP-Growth style approaches [58, 7, 57]. No previous work that the author

is aware of has cast probabilistic pattern mining in terms of vectors.

Problem De�nition: Probabilistic Association Rule Mining (PARM): �nd

probabilistic association rules A′ → c where the expected support E(s(A′ → c)) =
1
n

∑n
j=1 P (A′ → c ⊆ rj) and expected con�dence exp_conf(A′ → c) (de�ned later)

are above thresholds minExpSup and minExpConf respectively. Under the as-

sumption that the variables' existential probabilities in the rows are determined

under independent observations, P (A′ → c ⊆ rj) = Πa∈A′P (a ∈ rj) · P (c ∈ rj).

Dr. rer. nat. Dissertation

CHAPTER 6. GENERALISED RULE MINING 119

The PARM problem could be solved using an Apriori style algorithm adapted for

rules (this is not straightforward) and where subset checking is replaced by proba-

bility evaluation. However, this leads either to large space requirements or repeated

work in the probability calculations (consider how P (A′ → c ⊆ rj) is calculated when
one adds a variable to the antecedent). It also has the usual run time disadvantages

of Apriori.

In the GRM model however, each variable is represented by a probability vector xi

expressing the probabilities xi[j] = P (i ∈ rj) : j ∈ {1, n}. That is, the probabilities
that the variable i exists in row j of the database. As will be further explained in

section 6.4, all the {P (A′′ → c ⊆ rj) : rj ∈ D : A′′ ⊆ A′} can be calculated easily

and e�ciently by incremental element-wise multiplication of individual vectors using

an appropriate aR(·) function. The GRM algorithm's use of aR(·) ensures that there
is no duplication of calculations throughout the mining process while keeping space

usage to a minimum through its depth �rst approach.

By the de�nition of P (A′ → c ⊆ rj), adding variables to A′ increases the number of

probabilities multiplied together. Hence, it can easily be shown that the following

lemma holds.

Lemma 6.1. expected support is downwards closed (anti-monotonic): E(s(A′ →
c)) ≤ E(s(A′′ → c)) : A′′ ⊆ A′

To complete the PARM method, de�ne the expected con�dence of a rule A′ → c as

exp_conf(A′ → c) = E(s(A′ → c))/E(s(A′)) where E(s(A′)) = 1
n

∑n
j=1 P (A′ ⊆

rj) and �lter out all rules not meeting the minExpConf threshold. The expected

con�dence measures the degree of association between A′ and c5. Note that the

expected support and expected con�dence reduce to the usual de�nitions of support

and con�dence [88] when the database has no uncertainty.

6.3.2 Conjunctive Correlation Rules for Classi�cation (CCRules)

This section presents a rule mining method that �nds conjunctive rules where the

antecedent is highly correlated with the consequent, and uses these rules in a classi-

�cation method. These rules, together with the method by which they are mined �

called Correlation Improvement � also have an interesting geometric interpretation

5Note that de�ning the expected con�dence as the expectation (over all rows rj) of the proba-

bilistic con�dences P (A′ → c ⊆ rj)/P (A′ ⊆ rj) is pointless under the independence assumption, as
P (A′→c⊆rj)
P (A′⊆rj)

= P (c ⊆ rj).

Florian Verhein

120 6.3. NOVEL AND MOTIVATIONAL METHODS SOLVED USING GRM

and therefore illustrate this aspect of the GRM framework. In particular, the rules

are mined in such a way that a vector representing the antecedent of the rule moves

`closer' to the vector corresponding to the consequent in comparison to more general

rules. Furthermore, the ability of the GRM algorithm to exploit mutual exclusion

amongst variables is also of bene�t for these rules.

Conjunctive rules using correlation measures have been studied in the literature,

though all are quite di�erent to those presented in this paper; [22] uses a χ2 test

to measure the signi�cance of a correlation, but measures correlation by indepen-

dence � not by Pearson's correlation. [108] uses Pearson's correlation, but this is

applied to item pairs, not rules. FOSSIL [40] mines rules for classi�cation using a

heuristic based only on Pearson's correlation, but it is an inductive logic program-

ming approach. When applied to binary data, Pearson's correlation reduces to the

φ-coe�cient. While the φ-coe�cient is often used to evaluate rules mined by other

methods [88], the author is not aware of any purely correlation based approach such

as Correlation Improvement.

In the proposed CCRules method, A is a set of attribute-value pairs as would be

the case when one has binary features, nominal attributes or discretised numeric

attributes. C is the set of possible classes. The antecedent of each rule is a conjunc-

tion of attribute-value pairs. For example, suppose we have the �Adult� / �Census

Income� Data set6 available from the UCI Machine learning repository [2]. In this

data set, the task is to predict whether a persons income is above 50, 000USD based

on census data. A rule in this domain might look like:

30 ≤ age < 40 ∧ education = Doctorate ∧ sex = female→ income > 50K

If the rule is a `good' rule and the antecedent holds, then the rule � in conjunction

with other matching rules � may be applied to classify a new instance. A `good' rule

in this work is a rule where the antecedent is correlated with the consequent, and

more so than all less speci�c rules.

Pearson's correlation coe�cient between two variables v and c may be written as

rv,c =

∑n
i=1(xv[i]− x̄v)(xc[i]− x̄c)√∑n

i=1(xv[i]− x̄v)2
√∑n

i=1(xc[i]− x̄c)2

where rv,c ∈[−1, 1], x̄v is the mean of v and xv[i] is the ith sample of variable v.

In order to use this to evaluate a conjunctive rule with binary variables, consider a

6http://archive.ics.uci.edu/ml/datasets/Adult

Dr. rer. nat. Dissertation

CHAPTER 6. GENERALISED RULE MINING 121

A′ → c c ¬c ni+ =
∑

j nij

A′ n11 n10 n1+
¬A′ n01 n00 n0+

n+j =
∑

i nij n+1 n+0 n =
∑

i,j nij

Figure 6.1: Contingency table for a rule A′ → c.

vector xA′ as containing a 1 for those samples (instances) that match the antecedent,

and 0 otherwise. Similarly, the values xc[i] is 1 if the ith instance has class c and 0

otherwise. When applied to such binary valued data, it can be shown that Pearson's

correlation coe�cient reduces to the φ− coefficient:

C(A′ → c) =
n · n11 − n1+ · n+1√

n1+ · (n− n1+) · n+1 · (n− n+1)

where n11 is the total number of instances matching A′ → c and the other ns are

de�ned in the contingency table of Table 6.1.

6.3.3 Directing the Search by Correlation Improvement

Recall that the goal is to �nd highly correlated rules. The simplest approach is to

attempt to �nd rules with a correlation above some user de�ned threshold. However,

it is problematic to direct the search space by only expanding rules with correlation

above a threshold for two reasons.

• First, it introduces an arbitrary parameter to which the approach becomes

sensitive.

• More subtly, since correlation is not downwards closed, it also introduces a

dependency on the order in which variables are added to the antecedent. This

could be addressed by �forcing� anti-monotonicity as a heuristic but the limi-

tation inherent in absolute threshold based techniques remains.

Instead, the following approach is used: A variable should only be added to the

antecedent of a rule if it improves the rule compared to its generalizations. That is,

if the variable increases the correlation compared to those less speci�c rules having

fewer variables in the antecedent. The Correlation Improvement (CI) measures this

improvement;

Florian Verhein

122 6.3. NOVEL AND MOTIVATIONAL METHODS SOLVED USING GRM

De�nition 6.2. The Correlation Improvement is CI(A′ → c) = C(A′ → c) −
maxa∈A′{C(A′ − {a} → c)} where A′ − {a} → c is a less speci�c sub rule obtained

by removing variable a from the antecedent.

Note that A′−{a} → c is a generalization (a less speci�c rule) that therefore applies

to more instances, while A′ → c is more speci�c rule that applies to less instances.

For an empty antecedent (the base case), CI(∅ → c) = C(∅ → c). The Correlation

Improvement is positive if the rule to which it is applied has a higher correlation

than any of its immediate generalizations. This means it is a better predictor of the

consequent variable than any of the less speci�c rules.

Therefore, the Correlation Improvement approach will �nd rules where the an-

tecedent is correlated with the class it predicts, and the search builds more speci�c

rules only if they improve on the existing rule base. The property that a more speci�c

rule will only ever be mined if it is better than all sub rules is very important when

such rules are applied to classi�cation or used for prediction. Of all rules match-

ing an instance, the most speci�c one should be the best. This method also avoids

contradictions when multiple rules are used to classify an unseen instance. Another

important consideration is that in a good rule A′ → c, the antecedent A′ should

be more correlated with what it predicts � that is, c � than with the alternative(s)

c′ ∈ C : c 6= c′. It turns out that this must always be the case in binary data, as is

shown and discussed in section 6.8.

Problem de�nition: Correlated Classi�cation Rules (CCRules): Find all

CCRules with CI(A′ → c) > minCI, where minC ≥ 0 is a user de�ned threshold.

(Recall that A′ is interpreted as a conjunction of attribute-values∧i∈A′ai).

Note that the base case ensures that all rules are positively correlated, and that

∅ → c will always be expanded.

Since the attribute-value pairs are binary valued, this approach can be implemented

in the GRM framework using binary vectors and bit-wise operations. This enables

the exploitation of machine level operations. Section 6.4 explains this in more detail.

6.3.3.1 CCRules for Classi�cation

CCRules are used for classi�cation as follows:

1. CCRules are mined using the GRM algorithm. Then each rule is assigned a

Dr. rer. nat. Dissertation

CHAPTER 6. GENERALISED RULE MINING 123

Figure 6.2: The rule A′ → c viewed geometrically: The antecedent and consequent
of A′ → c in the space spanned by the �rst three samples in the database.

score re�ecting how useful it is expected to be when classifying new instances:

Score(A′ → c) = C(A′ → c) · CI(A′ → c)

That is, the correlation multiplied by the correlation improvement. This is

done because a highly correlated rule is desirable, but only if it improves on

its less speci�c sub-rules.

2. In order to classify an unseen instance, the mean score is calculated over all

matching rules predicting a class. The instance is classi�ed according to the

class with the highest mean score. This ensures that each matching rule con-

tributes to the classi�cation while classifying using rules with high scores. Re-

call that there cannot be a contradiction between speci�c rules and less speci�c

ones due to the Correlation Improvement method.

Experiments show that this approach performs well.

6.4 Generalised Rule Mining (GRM) Framework

This section presents the vectorised GRM framework, shows how the motivational

methods �t into it and describes the geometric interpretation. Recall that elements

of A ∪ C are called variables and the goal is to �nd useful rules A′ → c : A′ ⊆
A ∧ c ∈ C ∧ c 6∈ A′, where the antecedent A′ can have any semantics. For example,

variables could be binary valued as in CCRules or real valued as in PARM and

in CMRules (which will be introduced in chapter 7). CMRules has multiplicative

semantics, while CCRules and PARM have conjunctive semantics. Also recall that in

Florian Verhein

124 6.4. GENERALISED RULE MINING (GRM) FRAMEWORK

the GRM framework, each possible antecedent A′ ⊆ A and each possible consequent

c ∈ C are expressed as vectors, denoted by xA′ and xc respectively. As indicated in

�gure 6.2, these vectors exist in the space X, the dimensions of which are samples

{s1, s2, ..., sn} � depending on the application these may be instances, transactions,

rows, etc. The database is the set of vectors corresponding to individual variables,

D = {xv : v ∈ A∪C}. The space X is dependent on the type of variables considered.

This work presents techniques with variables in Rn and in {0, 1}n.

Good rules have high prediction power. Geometrically, in such rules the antecedent

vector is �close� to the consequent vector.

De�nition 6.3. mR : X2 → Rk is a set of k distance measures between the an-

tecedent and consequent vectors xA′ and xc. mR(xA′ , xc) evaluates the quality of

the rule A′ → c. k is �xed.

That is, it is some form of distance metric (or metrics) that evaluate how useful the

rule is expected to be.

In PARM (section 6.3.1), mR(·) is the expectation function and calculates the ex-

pected support: mR(A′ → c) = 1
n

∑n
j=1 xA′ [j]∗xc[j]. Geometrically, this is the scaled

dot product of xA′ and xc: mR(A′ → c) =
|xA′ ||xc|

n xA′ · xc. CCRules (section 6.3.2)

uses Pearson's correlation coe�cient. Geometrically, this is the cosine of the angle θ

between xA′ and xc (see �gure 6.2). In CCRules the attribute-value pairs are binary

valued variables. It this case, recall that C(A′ → c) = n·n11−n1+·n+1√
n1+·(n−n1+)·n+1·(n−n+1)

(the

φ-coe�cient), where n11 is the number of instances matching A′ → c and the other

ns are de�ned in the contingency table of �gure 6.1. This is advantageous since these

are counts (a.k.a frequencies). Any method based on counting can be implemented

using bit-vectors in the GRM framework (sparse methods outlined in section 3.15

can of course also be applied). Each variable corresponds to a binary literal that

is true or false in the samples (instances, records, etc). A bit is set in xA′ (xc) if

the corresponding sample contains A′ (c). Then, the number of samples contain-

ing A′, A′ → c and c are simply the number of set bits in xA′ , xA′ ANDxc and

xc respectively. From these counts (n1+, n11 and n+1 respectively) and the length

of the vector, n, a complete contingency table can be constructed as in �gure 6.1.

Using this, mR can evaluate a wide range of measures such as con�dence, interest

factor, lift, φ-coe�cient and even statistical signi�cance tests. For example, all as-

sociation rules with a single variable in the consequent can be mined and evaluated

with any of these measures. Geometrically, in counting based applications mR is the

dot-product; mR(A′ → c) = xA′ · xc = n11.

Dr. rer. nat. Dissertation

CHAPTER 6. GENERALISED RULE MINING 125

Since xc corresponds to a single variable it is readily available as xc ∈ D. This is

also the case for all xa : a ∈ A. However, the xA′ : A′ ⊂ A ∧ |A′| > 1 required for

the evaluation of mR(·) on rules with |A′| > 1 must be calculated. These are built

incrementally from vectors xa ∈ D using the aggregation function aR(·):

De�nition 6.4. aR : X2 → X operates on vectors of the antecedent so that xA′∪a =

aR(xA′ , xa) where A
′ ⊆ A and a ∈ (A−A′).

In other words, aR(·) combines the vector xA′ for an existing antecedent A′ ⊆ A

with the vector xa for a new antecedent element a ∈ A − A′. The resulting vector

xA′∪a represents the larger antecedent A′ ∪ a. In this way, the vector representing

the antecedent can be built incrementally. This is equivalent to the aI(·) function

in the GIM framework of chapter 3. Note that this vector is the same as if it were

calculated from the original data set, but rather than examining the original data

set, it requires only one of the vectors (xa) since the information from the rest is

already represented in xA′ . This property can be exploited to allow the algorithm to

e�ciently evaluate the rules without recomputing vectors or scanning the data set

to construct xA′∪a.

More importantly however, note that aR(·) also de�nes the semantics of the an-

tecedent of the rule. By de�ning how xA′∪a is built, it must implicitly de�ne the

semantics between elements of A′ ∪ a. That is, what it means to add a variable to

the antecedent of a rule.

For rules with a conjunction of binary valued variables such as CCRules and associa-

tion rules, vectors are represented as bit-vectors and hence aR(xA′ , xa) = xA′ ANDxa

de�nes the required semantics; bits will be set in xA′∪a corresponding to those sam-

ples that are matched by the conjunction ∧ai∈A′ ∧ a. In PARM (section 6.3.1),

the vectors contain probabilities. Since the antecedent vector is de�ned by xA′ =

Πa∈A′P (a ∈ rj), aR(·) is de�ned by element-wise multiplication: aR(xA′ , aa)[j] =

xA′ [j] ∗ xa[j]. PARM is interpreted using conjunctive semantics.

While mR(·) and aR(·) su�ce for many measures, it often occurs that a rule A′ → c

needs to be compared with its sub-rules A” → c : A” ⊂ A′. This is particularly

useful in order to �nd more speci�c rules that improve on their less speci�c sub-

rules. Geometrically, this means the antecedent of a rule can be built by adding

more variables in such a way that the corresponding vector xA′ moves closer to the

vector representing the consequent of the rule xc. This is exactly what the Correlation

Improvement technique does. Examples from the literature that require comparison

to sub-rules include [103, 98]. The following function supports such behaviour.

Florian Verhein

126 6.4. GENERALISED RULE MINING (GRM) FRAMEWORK

De�nition 6.5. MR : Rk×|P(A′)| → Rl is a measure that evaluates a rule A′ → c

based on the value computed by mR(·) for any rule A′′ → c : A′′ ⊆ A′. l is �xed.

MR(·) does not take vectors as arguments � it evaluates a rule based on values

that have already been calculated. This is important as it enables the algorithm

to perform only one vector calculation per rule. Not that this is for algorithmic

e�ciency purposes only and does not limit the scope of the framework in any way.

If MR(·) does not need access to any sub-rules to perform its evaluation, it is called

trivial since mR(·) can perform the function instead. A trivial MR(·) simply returns

mR(·) and has advantages in terms of space and time complexity (section 6.5).

In PARM, MR(·) is trivial. The Correlation Improvement method is implemented

usingMR(·) according to de�nition 6.2. Geometrically, since C(A′ → c) =cos(θ) and

CI(·) must be positive, the search progresses by adding variables to the antecedent

in a way that the antecedent vector moves closer to the consequent vector in terms

of the subtended angle θ. In CCRules, variables will only be added if they improve

the correlation with the class to be predicted. For counting based approaches,MR(·)
can be used to evaluate measures on more complex contingency tables such as those

in [103, 98] and chapter 8. For example, to evaluate whether a rule signi�cantly

improves on its less speci�c sub-rules by using Fisher's Exact Test (see chapter 8).

Together with IR below, it can also be used to direct and prune the search space �

even `forcing' a measure implemented in mR to be downward closed.

The �nal component of the framework de�nes what rules are interesting. Interesting

rules are those that are

1. desirable and should therefore be output and

2. should be further improved in the sense that more speci�c rules should be

mined by the GRM algorithm.

De�nition 6.6. IR : Rk+l → {true, false} determines whether a rule A′ → c is

interesting based on the values produced by mR(·) and MR(·). Only interesting

rules are further expanded and output.

In other words, more speci�c rules (i.e. with more variables in the antecedent) will

only be considered if IR(·) returns true. The simplest implementation of IR(·) is to
return true ifMR(·) is above (below) a threshold. For simplicity, both interestingness

Dr. rer. nat. Dissertation

CHAPTER 6. GENERALISED RULE MINING 127

concepts have been combined in IR(·). Separating them, as is done in GIM with II(·)
and SI(·) (section 3.2) is of course also possible.

In PARM, the search space can be pruned by the expected support (lemma 6.1).

Hence IR(A′ → c) returns true if and only if mR(A′ → c) ≥ minExpSup. For

Correlation Improvement, the desired search strategy is achieved when IR returns

true for A′ → c if and only if CI(A′ → c) > minCI.

Sometimes it is possible to determine that a rule is not interesting based purely on

the antecedent. For example, in PARM the expected support of the antecedent is

always less than that of the rule and so we can avoid unnecessary computation of

rules. This pre-emptive pruning is de�ned by IA(·):

De�nition 6.7. IA : X → {true, false}. IA(xA) = false implies IR(·) = false for

all A′ → c : c ∈ C.

The framework can accommodate any approach where a rule can (or must) be exam-

ined after its generalizations are examined. In other words, it accommodates bottom

up approaches. Beyond that, the order in which rules are examined is up to the

algorithm and complexity considerations.

6.5 Generalised Rule Mining Algorithm

The GRM algorithm e�ciently solves any problem that can be expressed in the

framework. It is optimal in the sense that it uses time linear in the number of rules

found. It also uses space linear in the size of the data set. To understand the

algorithm, it is necessary to understand the The Categorised Pre�x Tree �rst, part

of which involves the ability to exploit mutual exclusion constraints.

6.5.1 Mutual Exclusion Constraints

Often, groups of variables are mutually exclusive. For instance, when numeric at-

tributes have been discretised, an attribute can take on only one of a set of values

and each of these attribute-value pairs becomes a binary variable. The reader may

recall the example for CCRules in section 6.3.2, where for example an attribute age

is split into di�erent ranges. Of course a person can only have an age in one range,

and therefore the di�erent ranges are mutually exclusive. It is pointless to check

rules which contain the same attribute but with di�erent values if these are mutually

Florian Verhein

128 6.5. GENERALISED RULE MINING ALGORITHM

exclusive, as no instances can exist with this property. Avoiding such unnecessary

computation saves computational resources. A second source of mutual exclusion oc-

curs when a user does not require certain combinations of variables to be examined

as they are not interested them.

Such intrinsic and extrinsic constraints can be expressed through a categoriza-

tion where variables in the same category are mutually exclusive. For example, all

attribute-value pairs with the same attribute will correspond to one category. Vari-

ables that have no constraints are simply placed in categories by themselves. Exploit-

ing such constraints reduces the search space from O(2|A| ·|C|) to O(|C|·Πm
i=1(ni+1)),

where ni is the number of variables in the ith category. The GRM algorithm fully

and implicitly exploits all constraints expressible by mutual exclusion through the

use of a Categorised Pre�x Tree.

6.5.2 Categorized Pre�x Tree

The Categorized Pre�x Tree (CPT) can e�ciently store rules in a compressed format.

The reader should keep in mind however, that depending on the requirements of MR,

the Categorized Pre�x Tree often does not need to be stored at all.

The CPT is an important concept in the algorithm. The following rules de�ne

it: First, an arbitrary but �xed order is chosen on the variables � in this chapter,

ascending order will be used. Variables in C must always be �rst in the order. Each

node in the CPT (a Pre�xNode) has a label corresponding to a variable v ∈ A ∪ C.
The root node is special, and is labeled with ∞. The CPT is constructed so that

each node can only have a parent with a label greater than it's own label and not in

its category.

Figure 6.3 shows a `full' CPT in that it contains all possible rules given the set

of variables and categories. In the �gure, the variables {a, b}, {1, 2} and {3, 4} are
mutually exclusive so the categorization is {{a, b}, {1, 2}, {3, 4}}. Each non-leaf node

in a complete tree represents an antecedent A′ ∈ A and each leaf node (grey in the

�gure) represents a complete rule A′ → c : c ∈ C. Then rules can be reconstructed

by traversal toward the root, which corresponds to the empty antecedent A′ = ∅.
WhenMR(·) is non-trivial, the CPT can e�ciently store rules in a compressed format

through pre�x sharing. Otherwise, only the current path the algorithm is processing

is in memory. A Complete Categorized Pre�x Tree (CCPT) such as shown in �gure

6.3 is a `full' CPT in that it contains all possible rules given the set of variables and

categories. A complete CPT therefore also represents the worst case search space of

the rule mining problem (when categories are exploited).

Dr. rer. nat. Dissertation

CHAPTER 6. GENERALISED RULE MINING 129

Figure 6.3: Example of a Complete (full) Categorized Pre�x Tree. A = {1, 2, 3, 4},
C = {a, b}, and the categorisation is {{a, b}, {1, 2}, {3, 4}}.

6.5.3 Generalized Rule Mining Algorithm

The Generalized Rule Mining algorithm (algorithm 6.1) works by performing a strict

depth �rst search (i.e. sibling nodes are not expanded until absolutely necessary),

expanding nodes in increasing order and calculating vectors along the way. There

is absolutely no �candidate-generation�. The search is limited according to the in-

terestingness function IR(·) and IA(·) and it progresses in depth by joining sibling

nodes in the PrefixTree, thus auto-pruning. Vectors are calculated incrementally

along a path in the search using aR(·). This means that there are never any vector

re-computations while at the same time maintaining optimal memory usage. Indeed,

one expansion requires only one application of aR(·) regardless how complex the

rule. This is very important. The GRM algorithm automatically avoids considering

rules that would violate the mutual exclusion constraints by carrying forward the

categorization to the sibling lists (joinTo), and only joining siblings if they are from

di�erent categories. The search space can be automatically pruned (i.e. without

requiring explicit checking, thus saving vector calculations) in two ways, according

to the de�nition of IR(·);

• First, if a rule A′∪a1 → c is not interesting, then rules A′∪a2∪a1 → c do not

have to be considered since they are more speci�c version of A′ ∪ a1 → c. For

Florian Verhein

130 6.5. GENERALISED RULE MINING ALGORITHM

example, in �gure 6.3, if 1 → a was not interesting, then 3, 1 → a would not

need to be examined by the de�nition of IR(·). This is automatically achieved

by maintaining a list of siblings (joinTo), and only joining sibling nodes. Note

that A′ ∪ a2 → c and A′ ∪ a1 → c are siblings in the CPT. Recall that only

interesting rules as speci�ed by IR(·) are to be expanded, and therefore only

interesting rules become siblings, achieving this pruning automatically.

• Secondly, if no rules with the antecedent A′ are interesting, then that node is

not further expanded. For example, if neither 3 → a or 3 → b are interesting

in �gure 6.3, then the complete sub-tree rooted at 3 can be pruned. This is

called prune early functionality and implements the semantics of IR(·).

In algorithm 6.1, evaluateAndSetMR(·) evaluates MR and sets valueM of the Pre-

�xNode. Recall that if MR is non-trivial, its evaluation requires the valuems of sub

rules. In this case, store(·) stores the PrefixNode in an index structure for later use

by evaluateAndSetMR(·). This means that the CPT will be built in memory as refer-

ences to its leaf nodes is maintained. A suitable index structure would be a hash-table

due to the constant look-up time that can be exploited by evaluateAndSetMR(·). If
MR is trivial, store(·) does nothing and rules (and hence the entire Categorized Pre-

�x Tree) are not kept in memory7. The outputRule(·) function provides rules (as

PrefixNodes) to client code. For example, to output the rule to a �le or to maintain

the top k-rules.

Despite the search being depth �rst, the following holds, proving correctness.

Lemma 6.8. All sub-rules A′′ → c : A′′ ⊂ A′ are examined before A′ → c is

examined.

Proof. The algorithm progresses through the search space by joining existing Pre-

�xNode siblings together, creating antecedents or complete rules that are one variable

larger than the two original sibling nodes. Suppose for the purpose of contradiction

that a rule r = A′ → c exists but a sub-rule of it is mined later. Proceed by showing

that each sub-rule A′ − a → c : a ∈ A′ has already been mined, so that the result

follows by induction. First, note that each rule can be represented by a sequence of

Pre�xNodes, which can be constructed in reverse by traversal from c towards the

root. The immediate sub-rules of r can be obtained by removing one variable from

the antecedent at a time. Suppose a ∈ A′ is removed, so that r = Sp ∪ a ∪ Ss → c

7algorithm 6.1 assumes a garbage collector, so such rules � and hence the entire CPT except for
the current search path � are garbage collected.

Dr. rer. nat. Dissertation

CHAPTER 6. GENERALISED RULE MINING 131

where Sp and Ss are the pre�x and su�x (either potentially empty) of the antecedent

(sequence) respectively. Since the expansion of the search is done in depth �rst fash-

ion and with increasing order amongst the siblings (according to their variables),

Sp ∪ Ss must be expanded �rst, since by de�nition the sequences in the Pre�xTree

appear in decreasing order. Since this is true for all a ∈ A′, the result follows by

induction and contradiction.

6.5.4 Complexity

Theorem 6.9. The run time complexity is at worst O(R · |A| · |C| ·(t(mR)+ t(MR)+

t(aR) + t(IR)), where R is the number of rules mined by the algorithm and t(X) is

the time taken to compute function X from the framework.

Proof. For a node corresponding to A′ to be expanded to search for more speci�c

rules, (for more variables to be added to it in an attempt to �nd larger rules), at least

one rule A′ → c : c ∈ C must have been mined, otherwise the branch of the search

space is pruned. In the worst case, each child A′∪a : a ∈ (A−A′) must be examined,

with none of the rules A′∪a→ c : c ∈ C found to be interesting. This takes at worst

O(|A| · |C|) time. Therefore, for each rule mined, at worst O(|A| · |C|) more speci�c

but non-interesting rules may have to be examined. Finally, the processing of each

rule requires one application of each of the functions mR, MR, aR and IR.

This theorem states that the performance is linear in the number of interesting rules

found by the algorithm (the number of rules for which IR(·) returns true). It is

therefore not possible to improve the algorithm other than by a constant factor since

each interesting rule must at least be output by the algorithm. Note that this result

is not the same as saying that the run time is linear in the size of the search space.

The search space is known beforehand, but the required rules are not. The search

space may be O(2|A∪C|) but if only R of these rules are interesting (and typically

R << 2|A∪C|), then the run time of GRM is linear in R, not 2|A∪C|. It is not

possible to improve on the |A| · |C| without sacri�cing completeness in a general-to-

speci�c type algorithm. The proof of theorem 6.9 implies that the number of rules

that must be examined to guarantee completeness is O(R · |A| · |C|). The cost of

garbage collection execution does not alter the complexity and the algorithm can be

implemented with the same complexity without one.

Corollary 6.10. PARM takes O(R·|A|·|C|·n) time. CCRules takes O(R·|A|2·|C|·n)

time, where n is the number of samples (instances). Mining association rules with a

Florian Verhein

132 6.5. GENERALISED RULE MINING ALGORITHM

Algorithm 6.1 Generalized Rule Mining (GRM) algorithm. The rules in the tree
of �gure 6.3 would be examined in the order: → a,→ b, 1→ a, 1→ b, 2→ a, 2→ b,
3→ a, 3→ b, 3, 1→ a, 3, 1→ b, 3, 2→ a, 3, 2→ b, 4→ a, ...

class PrefixNode {PrefixNode parent, String name, double valuem,
double valueM}
//node: the PrefixNode (corresponding to A′) to
// expand using the vectors in joinTo.
//xA′: the V ector corresponding to A

′.

GRM(PrefixNode node, V ector xA′, List joinTo)
List newJoinTo = newList();
List currentCategory = newList();
PrefixNode newNode = null;
boolean addedConsequent = false;
for each (xv, v, lastInCategory) ∈ joinTo
if (v ∈ C)
double[] valuem = mR(xA′ , xv);
newNode = new PrefixNode(node, v, valuem, NaN);
double[] valueM =evaluateAndSetMR(newNode);
if (I(valuem, valueM))
if (MR(·) non-trivial) store(newNode);
outputRule(newNode);
addedConsequent = true;
else newNode = null;
if (v ∈ A) //Note: possible that v ∈ A ∧ v ∈ C.
V ector xA′∪v = aR(xA′ , xv);
if (IA(xA′∪v))
newNode = new PrefixNode(node, v,NaN,NaN);

if (newNode 6= null)
GRM(newNode,newV ector,newJoinTo);
currentCategory.add(xv, v, lastInCategory);
else

if (v ∈ C∧!addedConsequent)
return; //prune early -- no super rules exist

if (lastInCategory∧!currentCategory.isEmpty())
currentCategory.last().lastInCategory = true;
newJoinTo.addAll(currentCategory);
currentCategory.clear();

main(File dataset)
PrefixNode root = new PrefixNode(null, ε,NaN,NaN);
V ector x∞ = //initialise appropriately (e.g. ones)

List joinTo = ... //read vectors from file

GRM(root, x∞, joinTo);

Dr. rer. nat. Dissertation

CHAPTER 6. GENERALISED RULE MINING 133

single variable in the consequent takes O(R · |A| · |C| · n) time. R is the number of

rules mined.

Proof. For all instantiations considered in this paper, t(mR) = t(aR) = O(n) where n

is the number of samples, since all functions require examining vectors. t(IR) = O(1).

For CCRules, t(MR) = O(|A|) since MR examines immediate sub-rules. For PARM

and association rule mining, t(MR) = O(1) and MR is trivial, as sub-rules do not

need to be examined due to the anti-monotonicity of support.

The complexity of outputRule(·) is dependent on the application and what is done

with the rules. Outputting a single rule can be done in O(|A|) time, storing it

in memory for later use can be done in O(1) time (add operation in a hash table

prevents garbage collection), �nding the top k rules can be done in O(k log(k)) time,

etc.

Theorem 6.11. The space usage is O(|A ∪ C| · n + |A|2) if MR is trivial, and

O(R+ |A∪C| ·n+ |A|2) if MR requires access to sub-rules8. Note that O(|A∪C| ·n)

is the size of the database.

Proof. In the worst case (all elements in A induce at least one interesting rule), all

variables' vectors must remain in memory. The search is depth �rst, and so the depth

is at most |A|+1. At each node along the current path of the search, a list of at most

size |A| is kept (containing references to objects already in memory), as well as at

most one additional vector (the vector corresponding to xA′ required to build vectors

for longer antecedents). Therefore, at most O(|A ∪ C| + |A|) = O(|A ∪ C|) vectors

of length n are in memory, and O(|A|2) references to existing objects. If all mined

rules need to be stored (MR(·) is non-trivial), this takes O(R) space at worst.

6.6 Experiments

The primary purpose of the experiments is to demonstrate and validate the run-time

complexity of the GRM algorithm and its superiority in comparison to alternative

approaches. It also provides initial e�ectivity results for the CCRule and CMRule

methods.

8Note that if the rules need to be stored, common pre�xes are shared in the Categorized Pre�x

Tree and so in practice the space usage of the rules is much less than O(R · |A ∪ C|) � at best it is
O(R). The worst case is only possible for trivial cases involving small R.

Florian Verhein

134 6.6. EXPERIMENTS

6.6.1 Complexity Experiments

GRM's run time is evaluated here for conjunctive rules with bit-vectors (therefore

covering any counting based approach) and multiplicative rules with real valued

vectors. Unfortunately, there are no existing or suitable algorithms for compar-

ison. For example, recall that previous work on uncertain transaction databases

[25, 26, 58, 7, 57] considers only itemsets, not rules. Itemset mining is very dif-

ferent to the direct mining of rules. For comparison therefore, an fast �Apriori�

style method for mining rules was developed, called FastAprioriRules. It is based

on the candidate generation and testing methodology that is common in literature.

However, it mines rules directly � that is, it does not mine sets �rst and then gen-

erate rules form these as this would be ine�cient. FastAprioriRules also exploits

the mutual exclusion optimisation which greatly reduces the number of candidates

generated, preemptively prunes by antecedents when possible and incorporates the

pruneEarly concept. Hence FastAprioriRules evaluates exactly the same number of

rules as GRM so that the comparison is fair and evaluates the characteristics of the

underlying algorithms. To check if a rule matches an instance in the counting phase,

a set based method is used, which proved to be much quicker than enumerating the

sub-rules in an instance and using hash tree based look-up methods to �nd matching

candidates. This is not surprising as instances in classi�cation data sets are large.

The data set is kept in memory to avoid Apriori's downsides of multiple passes, and

unlike the GRM experiments, I/O time is not included. The general idea was to err

on the side of giving FastAprioriRules the advantage. Two approaches were imple-

mented using the FastAprioriRule method; a generic counting method, and PARM.

Note that the latter operates on uncertain transactions.

Most rule mining methods require frequency counts. Hence, the algorithms are

compared on the task of mining all conjunctive rules A′ → c that are satis�ed by (i.e.

classify correctly) at least minCount instances. By varying minCount, the number

of interesting rules mined can be plotted against the run time. The UCI [2] Mushroom

and the 2006 KDD Cup data sets were used as they are relatively large. Figure 6.4(a)

clearly shows the linear relationship of theorem 6.9 for over three orders of magnitude

before the experiments were stopped (this also holds in linear-linear scale). When

few rules are found, setup factors dominate. More importantly, GRM is consistently

more than two orders of magnitude faster than FastAprioriRules. It is also very

insensitive to the data set characteristics, unlike FastAprioriRules. Results on

smaller data sets (UCI data sets Cleve and Heart) lead to identical conclusions and

are omitted for clarity.

PARM is evaluated in a similar fashion by varyingminExpSup. Here, the Mushroom

Dr. rer. nat. Dissertation

CHAPTER 6. GENERALISED RULE MINING 135

Figure 6.4: Run time comparison of support based conjunctive rules on the Mush-
room data set. GRM uses bit vectors. Run-time is linear in the number of rules
mined and orders of magnitude faster than FastAprioriRules. Log-log scale.

Figure 6.5: Run time comparison of PARM on three probabilistic Mushroom data
sets. GRM uses real vectors. Run-time is linear in the number of rules mined and
orders of magnitude faster than FastAprioriRules. Log-log scale.

Florian Verhein

136 6.6. EXPERIMENTS

Classi�er Breast Cleve Heart Average

NaiveBayes 97.28 82.78 83.70 87.92

BayesNet 97.28 82.78 83.70 87.92

VotedPerceptron 96.28 83.11 84.07 87.82

CCRules 96.85 82.78 82.96 87.53

SPARCCC 96.14 82.78 82.22 87.05

JRip 93.56 83.11 84.44 87.04

CBA 96.30 82.80 81.90 87.00

Logistic 92.42 84.77 83.33 86.84

RandomForrest 96.28 80.13 83.70 86.71

IBk K=3 95.28 81.13 83.70 86.70

IBk K=1 95.71 79.14 81.11 85.32

Ridor 93.71 80.46 80.37 84.85

J48 94.42 74.17 82.22 83.61

Id3 90.13 76.49 82.22 82.95

PRISM 91.27 75.50 79.63 82.13

OneR 91.56 72.85 72.22 78.88

Table 6.1: Accuracy of CCRules used for classi�cation.

data set was converted to a probabilistic data set by changing certain occurrences to a

value chosen uniformly from [0, 1) with a probability p. The resulting graph in �gure

6.5(b) shows the same linear relationship for the three values of p ∈ {0.3, 0.5, 0.7}.
Here, GRM is at least one order of magnitude faster than the FastAprioriRules

implementation.

The memory footprint of GRM remained constant throughout all experiments, as

expected.

6.6.2 CCRules for Classi�cation

Three UCI [2] data sets were used for evaluating CCRules for classi�cation, with at-

tributes discretised using the method in [61]. minCI was set to 0.05. For SPARCCC

[98], the values providing the highest accuracy were used (AggressiveS, SSp,ccr,conf ,

p = 0.001). For CBA, minSup = 1% and minConf = 0.5. All other classi�ers

are from WEKA with default parameters. Evaluation was via strati�ed 10-fold cross

validation. The results in �gure 6.1 clearly show that CCRules, while simple, per-

forms well in comparison to other classi�ers on these data sets, ranking 4th out of

the 16 classi�ers evaluated.

Dr. rer. nat. Dissertation

CHAPTER 6. GENERALISED RULE MINING 137

6.7 Conclusion

This work introduced the Generalized Rule Mining problem and solved it with the

combination of a novel vectorised framework and algorithm. The usefulness of this

abstraction was demonstrated by solving two very di�erent and novel rule mining

approaches. The next chapter shows a further approach. GRM was also demon-

strated to be orders of magnitude faster than a fast candidate generation and testing

approach on methods were this comparison is possible. Rules with novel semantics

(perhaps inspired by the geometric interpretation) that are now solvable using GRM

provide fertile avenues for future work.

Florian Verhein

138
6.8. APPENDIX: NOTES ON USING PEARSON'S CORRELATION FOR THE

EVALUATION OF RULES

6.8 Appendix: Notes on using Pearson's Correlation for

the Evaluation of Rules

Finding rules where the antecedent and consequent are correlated with each other

is intuitive, but this does not consider possible alternative consequents � perhaps

one such alternative consequent is more correlated with the antecedent than the

rule under consideration. This is undesirable � especially when rules are used for

classi�cation or prediction purposes such as is the case for CCRules: in a good

rule, the antecedent should be more correlated with what it predicts than with the

alternative(s). It turns out that this must always be the case.

Fact 6.12. When the consequent c is binary valued, C(A′ → c) = −C(A′ → ¬c). In
particular, C(A′ → c) > 0 ⇐⇒ C(A′ → c) > C(A′ → ¬c). ¬c corresponds to the

consequents other than c. A′ may be real valued.

Proof. Proof that corr(x, y) = −corr(x,¬y). ||~x − ~̄x|| · ||~y − ~̄y|| · corr(x, y) =∑n
i=1 xiyi − nx̄ȳ and (1) ||~x− ~̄x|| · || ~¬y − ¬̄~y|| · corr(x,¬y) =

∑n
i=1 xi(¬y)i − nx̄¬̄y.

Since y is binary valued, (¬y)i = 1 − yi and ¬̄y = 1 − ȳ. So (1) becomes nx̄ −∑n
i=1 xiyi − nx̄ + nx̄ȳ = −

∑n
i=1 xiyi + x̄ȳ = −||~x − ~̄x|| · ||~y − ~̄y|| · corr(x, y). Note

that ||~y − ~̄y||2 =
∑n

i=1 y
2
i − nȳ2, and so || ~¬y − ¬̄~y||2 =

∑n
i=1(1 − yi)2 − n(1 − ȳ)2

= n − 2nȳ +
∑n

i=1 y
2
i − n + 2nȳ − nȳ2 =

∑n
i=1 y

2
i − nȳ2 = ||~y − ~̄y||2. The result

follows.

Hence, if the antecedent is positively correlated with the class variable, then the rule

also has a higher correlation than the same antecedent predicting the other class(es).

As a consequence, more complicated measures that may appear to be useful at �rst

do not add any value. For example, the class correlation di�erence CCD(A′ → c) =

C(A′ → c)−C(A′ → ¬c) measures the di�erence in correlation between the rule and

its alternative(s). However, by lemma 6.12, CCD(A′ → c) = 2 · C(A′ → c) so this

measure is redundant. Similarly, if Pearson's correlation is used in a class correlation

ratio ([98], chapter 8) then CCR(A′ → c) = C(A′ → c)/C(A′ → ¬c) = −1. Note

however that chapter 8 uses an alternative correlation measure in de�ning CCR, and

so is not a�ected by this. The lemma also provides a shortcut for mining rules for

two class problems as the evaluation of a rule for one class provides the result for

the other, therefore cutting the search space in half. Note that the lemma holds

regardless of whether the variables in the antecedent is numeric or binary (the proof

applies to the general case and would be considerably simpler in the binary case).

Dr. rer. nat. Dissertation

CHAPTER 6. GENERALISED RULE MINING 139

As far as the author is aware, previous work (e.g. [40]) has noted and used this

relationship for binary valued antecedents only.

Florian Verhein

140
6.8. APPENDIX: NOTES ON USING PEARSON'S CORRELATION FOR THE

EVALUATION OF RULES

Dr. rer. nat. Dissertation

Chapter 7

Correlated Multiplication Rules

with Applications to Feature

Selection and Generation

Often, interactions between variables in a database are unknown to the

detriment of further analysis, classi�cation and mining tasks. This chapter

proposes Correlated Multiplication Rules (CMRules) which capture interac-

tions predictive of a dependent variable. CMRules are the �rst rules with

multiplicative semantics. Furthermore, a feature selection and dimensional-

ity reduction method is described whereby CMRules are used to generate

composite features. One advantage of this approach is that it allows linear

models to learn non-linear decision boundaries with respect to the original

variables. Unlike other methods, the resulting features are easy to under-

stand and initial experiments show that the proposed method can improve

classi�cation accuracy compared both to the original database and PCA

projections. Finally, it is shown that the CMRule mining problem can be

solved using the Generalised Rule Mining (GRM) framework of chapter 6.

141

142 7.1. INTRODUCTION

7.1 Introduction

Feature selection and generation is an important part of the Knowledge Discovery

process. This chapter proposes a data mining technique that �nds rules that are able

to capture interactions amongst variables that are highly correlated with a variable

of interest. In contrast to other rule mining methods, the variables may be real

valued or binary valued.

Rules are an important pattern in data mining due to their ease of interpretation and

usefulness for prediction. They have been heavily explored as association patterns

[11, 22, 81, 47, 84], �correlation� rules [22, 108] and for associative classi�cation

[61, 60, 100]. These approaches consider only conjunctions of binary valued variables

� which means that the antecedent and consequent consist of a conjunction of literals

that are either true or false [11, 22, 81, 47, 84, 108, 61].

Correlated Multiplication Rules (CMRules) consist of a set of real valued variables

multiplied together in the antecedent, and predict a variable c in the consequent:

vi ∗ vj ∗ ... ∗ vk → c. Rules with multiplication semantics and real valued variable

types are novel in the literature. CMRules �nd interactions between variables and

are successfully used as composite features, enabling linear models to learn non-linear

decision boundaries. Mixed variable types pose no problems.

Rule mining is a challenging problem due to its exponential search space in A ∪ C,
where A is the set of variables that may be in the antecedent and C is the set of

variables that may be in the consequent. At best, an algorithms run time is linear

in the number of interesting rules it �nds, and the CMRules algorithm is provably

optimal in this sense. It also scales linearly in the dimensionality of the vectors, and

can use space linear in the size of the database. The algorithm uses a depth �rst

vectorized search approach, therefore avoiding the �candidate generation� problem

inherent with Apriori style algorithms.

7.1.1 Contributions

The contributions of this work are as follows:

• A new rule pattern, Correlated Multiplication Rules (CMRules) is introduced.

It is able to �nd multiplicative interactions amongst features that predict a

dependent variable; such as a class if used for classi�cation. In a descriptive

data mining approach, it helps �nd those features that interact to a�ect the

variable being studied. Unlike other rule mining methods, it can handle real

Dr. rer. nat. Dissertation

CHAPTER 7. CORRELATED MULTIPLICATION RULES WITH
APPLICATIONS 143

valued data. An e�cient algorithm is proposed based on the Generalised Rule

Mining methodology of chapter 6.

• A feature selection, generation and reduction method is introduced whereby

the antecedent of CMRules are used as composite features. This improves the

�t and classi�cation accuracy of other algorithms by explicitly allowing them

to capture interactions. In particular, this enables linear models to achieve

non-linear decision boundaries in the original features and thus improves the

classi�cation accuracy of such models. Since the composite features are rule

antecedents, which in turn are multiplications of attributes, the approach has

the advantage that the features are still interpretable. This contrasts methods

like Principle Component Analysis (PCA).

7.1.2 Organisation

The remainder of this chapter is organised as follows: Section 7.2 places this work in

the context of existing literature, section 7.3 presents the Correlated Multiplication

Rules technique. Section 7.4 describes the method whereby CMRules can be used

for composite feature generation and selection. Section 7.5 describes the CMRules

algorithm. Experimental results are presented in section 7.6 and this chapter is

concluded in section 7.7.

7.2 Related Work

7.2.1 Rule Mining

Most existing rule mining methods are used for associative pattern mining or clas-

si�cation. These only consider rules with conjunctive semantics of binary literals

and use counting approaches in their algorithms. Association rule mining meth-

ods [11, 47, 81] typically mine item-sets before mining rules, rather than mining

rules directly. Itemset mining methods are often extended to rule based classi�ca-

tion, which consider one variable in the consequent [110, 61, 100]. The algorithms

can be categorized into Apriori-like approaches [11] characterized by a breadth �rst

search through the item lattice and multiple database scans, tree based approaches

[47] characterized by a traversal over a pre-built compressed representation of the

database, projection based approaches [100] characterised by depth �rst projection

based searches and vertical approaches [81, 34, 96] that operate on columns. However,

CMRules does not use a support based technique, requires rules rather than sets,

Florian Verhein

144 7.3. CORRELATED MULTIPLICATION RULES (CMRULES)

and most importantly; does not have conjunctive semantics and requires handling

of real valued variables. Therefore, the Generalised Rule Mining (GRM) approach

(chapter 6, [93]), is exploited. GRM abstracts rule mining and mines rules directly

and very e�ciently

7.2.2 Correlation Rules

Conjunctive rules using correlation measures have been studied in the literature,

though all are quite di�erent to those presented in this paper; [22] uses a χ2 test to

measure the signi�cance of a correlation, but measures correlation by independence

� not by Pearson's correlation. [108] uses Pearson's correlation, but this is applied to

item pairs, not rules. FOSSIL [40] mines rules for classi�cation using a heuristic based

only on Pearson's correlation, but it is an inductive logic programming approach.

While the φ-coe�cient is often used to evaluate rules mined by other methods [88],

the author is not aware of any purely correlation based approach such as Correlation

Improvement. Furthermore, note that no previous rule mining approach applied to

real valued vectors in the context of rule mining, as is done in the CMRules method.

Existing rule mining techniques are exclusively conjunctive and include association

analysis and prediction or rule based classi�cation [11, 103, 110].

7.3 Correlated Multiplication Rules (CMRules)

Linear models such as regression are important for modeling [44] and classi�cation

[104], but their power is limited by their linear decision boundary. They can be

used to model non-linearities (in terms of the original variables) by using non-linear

functions on existing variables as regressors (or `features' in machine learning). Fur-

thermore, when such functions are applied to multiple variables at a time, they

generate composite variables capable of capturing non-linear interactions between

variables. These can replace existing variables or function as additional variables in

a linear model. The use of such composite variables transforms the space in which

the (linear) model is built. If the composite features are non-linear in the original

features, the model becomes non-linear in the original variables1. This is analogous

to using kernel functions to map the space so that a non-linear decision boundary is

achieved using linear models.

Good candidates for composite variables are multiplications of sets of variables. For

example, the regression/decision problem y = α1v1 +α2v2 +α3v3 +α1,2v1v2 +β can

1Of course, it remains linear in the (composite) variables used in the model.

Dr. rer. nat. Dissertation

CHAPTER 7. CORRELATED MULTIPLICATION RULES WITH
APPLICATIONS 145

capture non linearities in v1 and v2 as well as capturing an interaction between v1

and v2 since it includes the term α1,2v1v2. Finding the right variables to multiply

together in order to achieve a better �t is a challenging problem. The best composite

variables are highly correlated with the dependent variable; they capture the non-

linearities and interactions well and therefore allow a better �t. This is a simple

but powerful idea. However, if there are m variables, there are O(mk) composite

feature size to k and, in general, there are O(2m). Therefore, an intelligent search

with pruning is required.

Example 7.1. Suppose we have the regression/decision problem P : y = α1v1 +

α2v2+β. We can add an extra (composite) variable v1v2: P
′ : y = α1v1+α2v2+β+

α1,2v1v2. This model is now capable of expressing a non-linear decision boundary

in terms of v1 and v2 and can also capture a multiplicative interaction between v1

and v2. If there are no such patterns, α1,2 will be found to be 0. If there are non-

linearities or interactions in the problem that can be approximated by v1v2 then P
′

will have α1,2 6= 0 and will �t better than P .

Correlated Multiplication Rules (CMRules) are rules of the form vi ∗ vj∗, ..., ∗vk → c,

where the vi ∈ A are observed variables and c is the dependent variable to be

predicted. Based on the above discussion, the antecedents of rules with the highest

correlations de�ne ideal composite variables and capture interactions explaining the

dependent variable c. Furthermore, such rules are easy to interpret and understand

and can therefore provide useful information to help explain interactions in the data.

The data set consists of a set of variables A and a dependent variable c. Each row in

the data set consists of samples of these variables. Each column therefore contains all

samples for a particular variable v ∈ A or c. Consider these columns as vectors and

denote these by xv and xc respectively. xv[i] is therefore the ith sample of variable

v.

The CMRules presented in this chapter use Pearson's product moment correlation

coe�cient, although other measures can easily be used in its place. Pearson's corre-

lation coe�cient between two variables v and c may be written as

rv,c =

∑n
i=1(xv[i]− x̄v)(xc[i]− x̄c)√∑n

i=1(xv[i]− x̄v)2
√∑n

i=1(xc[i]− x̄c)2

where rv,c ∈[−1, 1] and x̄v is the mean of v. If all variables are binary valued, it

reduces to the φ coe�cient.

Florian Verhein

146 7.3. CORRELATED MULTIPLICATION RULES (CMRULES)

The correlation C(A′ → c) of a rule A′ → c is de�ned as the Pearson's product

moment correlation coe�cient between the antecedent and the consequent of the

rule. Let the vector corresponding to the antecedent be denoted xA′ . C(A′ → c)

may then be written as:

C(A′ → c) =
(xA′ − x̄A′) · (xc − x̄c)
||xA′ − x̄A′ ||||xc − x̄c||

Since CMRules have multiplication semantics, the vector xA′ is de�ned by

xA′ [i] = Πv∈A′xv[i]

That is, for each sample / row in the database, the values of the variables in the

antecedent of the rule are multiplied together. Accordingly, CMRules with a high

correlation show those variables that, when multiplied together in all the samples,

are highly correlated with the dependent variable c.

7.3.1 Directing the Search by Correlation Improvement

Recall that the goal is to �nd highly correlated CMRules. The simplest approach

is to attempt to �nd rules with a correlation above some user de�ned threshold.

However, it is problematic to direct the search space by only expanding rules with

correlation above a threshold for two reasons.

• First, it introduces an arbitrary parameter to which the approach becomes

sensitive.

• More subtly, since correlation is not downwards closed, it also introduces a

dependency on the order in which variables are added to the antecedent. This

could be addressed by �forcing� anti-monotonicity as a greedy heuristic but the

limitation inherent in absolute threshold based techniques remains.

Instead, the following approach is used: A variable should only be added to the

antecedent of a rule if it improves the rule compared to its generalizations. That

is, if the variable improves the rule compared to those less speci�c rules having

fewer variables in the antecedent. The Correlation Improvement (CI) measures this

improvement in terms of correlation;

De�nition 7.2. The Correlation Improvement is

CI(A′ → c) = C(A′ → c)−max
a∈A′
{C(A′ − {a} → c)}

Dr. rer. nat. Dissertation

CHAPTER 7. CORRELATED MULTIPLICATION RULES WITH
APPLICATIONS 147

where A′ − {a} → c is a less speci�c sub rule obtained by removing variable a from

the antecedent. Note that A′ − {z} → c is a generalization (a less speci�c rule) that

therefore applies to more samples, while A′ → c is more speci�c and applies to less

samples. For an empty antecedent (the base case), CI(∅ → c) = C(∅ → c) where x∅

is a vector of 1s.

The Correlation Improvement is positive if the rule to which it is applied has a

higher correlation than any of its immediate generalizations. This means it is a bet-

ter predictor of the consequent variable than any of the less speci�c rules. This also

has a geometric interpretation: Since correlation is the cosine of the angle between

vectors (Recall �gure 6.2), using the correlation improvement technique means the

antecedent is built so that it moves closer to the consequent (in terms of the sub-

tended angle) in comparison to the immediate sub-rules.

The following lemma shows that Correlation Improvement is downward closed.

Lemma 7.3. If A′ → c is expanded (and considered interesting) only when CI(A′ →
c) ≥ 0 then Correlation Improvement is downwards closed: If A′ → c is interesting,

then so are all sub-rules.

Proof. This follows by induction over all sub-rules.

This means that A′ → c is not only more correlated than all immediate sub-rules,

but indeed all sub-rules. Consequently, Correlation Improvement is a useful method

to direct the search for CMRules.

It is now possible to de�ne the CMRule problem:

Problem de�nition: Correlated Multiplication Rules (CMRules): Find all

CMRules with CI(A′ → c) > minCI, a threshold. (Recall that A′ is interpreted as

a multiplication of variables; Πvi∈A′vi).

Note that if minCI > 0, only variable interactions that predict the dependent vari-

able better than all individual variables are found.

Finally, note that CMRules with a single variable in the antecedent are also useful �

they can (trivially) be used to select a good subset of variables (features) to use since

they simple variables that are highly correlated with the dependent variable. Recall

that CMRules can be used for automated supervised variable (feature) selection and

composite variable generation � in particular, for generating composite variables that

allow a non-linear interactions to be captured in the model.

Florian Verhein

148 7.4. CMRULES FOR FEATURE SELECTION AND GENERATION

7.4 CMRules for Feature Selection and Generation

Recall that the antecedents of CMRules are ideal candidates for composite features,

and CMRules with only a single variable in the antecedent are also useful for fea-

ture selection. This is because the interactions de�ned by the antecedent variables

are highly correlated with the dependent variable to be predicted, and since the

antecedent is the product of variables, it introduces introduces non-linearity.

In order to use CMRules for feature selection and composite feature generation,

this chapter proposes the Top Correlated Multiplication Rules (TCMR) method as

follows:

1. First, all CMRules are mined using the correlation improvement method.

2. Then, the rules are sorted according to their C(A′ → c) values and the top

ranked rules selected.

3. Finally, the antecedents of the selected rules are used as (composite) variables

in the model. This means the vectors xA′ of the selected rules A′ → c become

the new values of the composite features A′.

This simple procedure works well, as will be shown in section 7.6.

7.5 Mining CMRules

This chapter adopts the Generalised Rule Mining (GRM) method proposed in chap-

ter 6. GRM is a combination of a framework of functions on vectors and an e�cient

algorithm for mining rules directly. It solves rule mining at the abstract level. It is

used for the following reasons:

• GRM proved to be easy to apply to the problem addressed in this paper. Since

GRM solves rule mining at the abstract level, the CMRules problem can be

solved by instantiating the functions in the framework appropriately (below)

and using the GRM algorithm.

• GRM supports real valued variables and any rule semantics. Since CMRules

is the �rst rule based method with multiplicative semantics and real valued

variables, other algorithms are not applicable.

• The GRM algorithm is e�cient and uses linear time in the rules mined. It does

not use �candidate generation�, does not require multiple scans and does not

generate a compressed version of the database.

Dr. rer. nat. Dissertation

CHAPTER 7. CORRELATED MULTIPLICATION RULES WITH
APPLICATIONS 149

The core of GRM is its framework, which abstracts and vectorises rule mining. Re-

call that A is the set of variables that may be in the antecedent, and C is the set of

variables that may be in the consequent. In CMRules, C = {c}, the dependent vari-
able to be predicted. As an aside, supposing there are multiple dependent variables,

one may have |C| > 1. This is equivalent to mining CMRules for each dependent

variable separately, however the separation method takes O(|C|) times longer than

if they are mined together in one go.

In the GRM framework, each possible antecedent A′ ⊆ A and each possible conse-

quent c ∈ C are expressed as vectors, denoted by xA′ and xc respectively. Recall

that these were already de�ned in section 7.3. The GRM framework is composed of

�ve functions, which can be instantiated in the following way to solve the CMRules

problem:

1. mR : X2 → R is a distance measure between the antecedent and consequent

vectors xA′ and xc. mR(xA′ , xc) evaluates the quality of the rule A′ → c.

In CMRules, mR(xA′ , xc) = C(A′ → c), Pearson's correlation coe�cient as per

section 7.3. Geometrically, in CMRules �close� means the angle between xA′

and xc is small (�gure 6.2 on page 123).

2. aR : X2 → X operates on vectors of the antecedent so that xA′∪a = aR(xA′ , xa)

where A′ ⊆ A and a ∈ (A−A′). This means aR(·) combines the vector xA′ for
an existing antecedent A′ ⊆ A with the vector xa for a new antecedent element

a ∈ A−A′. The resulting vector xA′∪a represents the larger antecedent A′ ∪ a.
Therefore, aR(·) allows the antecedent vector required by mR(·) to be built

incrementally. Since aR(·) de�nes how the vectors are built, it also � implicitly

� de�nes the semantics of the rule.

In CMRules, aR(·) is the element-wise multiplication of (typically) real val-

ued vectors: aR(xA′ , aa)[j] = xA′ [j] ∗ xa[j]. The semantics of CMRules are

multiplicative.

3. MR : R|P(A′)| → R is a measure that evaluates a rule A′ → c based on the

value computed by mR(·) for any sub-rule A′′ → c : A′′ ⊆ A′. This supports

interestingness measures where a rule A′ → c needs to be compared with some

or all of its sub-rules.

Recall that in CMRules, the Correlation Improvement method ensures rules

are mined that are more correlated with c than their immediate sub-rules. The

Correlation Improvement method is implemented using MR(·) according to

de�nition 7.2.

Florian Verhein

150 7.5. MINING CMRULES

4. IR : R2 → {true, false} determines whether a rule A′ → c is interesting based

on the values produced by mR(·) and MR(·). Only interesting rules are output

and further expanded (i.e. more speci�c rules are examined) by the algorithm.

In CMRules, the desired search strategy is achieved when IR returns true

for A′ → c if and only if CI(A′ → c) > minCI. Geometrically, since

C(A′ → c) =cos(θ) and CI(·) must be positive, the search progresses by adding
variables to the antecedent in a way that the antecedent vector moves closer to

the consequent vector in terms of the subtended angle θ (�gure 6.2 on page 123).

Recall that this means variables will only be added to the antecedent if they

improve the correlation with the dependent variable c in comparison to all the

immediate sub-rules, and therefore, by lemma 7.3, all sub-rules.

5. Sometimes it is possible to determine that a rule is not interesting based purely

on the antecedent. This is supported by IA : X → {true, false}. IA(xA) =

false implies IR(·) = false for all A′ → c : c ∈ C.
In CMRules, IA(xA′) = true for all A′ since it is not possible to prune the

search based on the antecedent only.

With the above instantiations of the GRM framework, the GRM algorithm (algo-

rithm 6.1 on page 132) is used to mine all CMRules e�ciently.

Theorem 6.9 on page 131 gives the run time complexity of any approach that can

be implemented in GRM, given the times t(X) taken to compute function X in the

framework.

Lemma 7.4. Mining all CMRules takes O(R · |A|2 · |C| · n) time, where n is the

number of samples (instances) and R is the number of rules mined.

Proof. Using theorem 6.9; t(mR) = t(aR) = O(n) where n is the number of samples,

since all functions require examining each element of the vector once. t(IR) = O(1).

t(MR) = O(|A|) since MR examines immediate sub-rules.

This result states that the performance is linear in the number of interesting rules

found by the algorithm. That is, the number of CMRules output. It is therefore

not possible to improve the algorithm other than by a constant factor since each

CMRule must at least be output by the algorithm. Note that this result is not the

same as saying that the run time is linear in the size of the search space. The search

space is known beforehand, but the required rules are not. The search space may be

O(2|A∪C|) but if only R of these rules are interesting (and typically R << 2|A∪C|),

then the run time is linear in R, not 2|A∪C|.

Dr. rer. nat. Dissertation

CHAPTER 7. CORRELATED MULTIPLICATION RULES WITH
APPLICATIONS 151

Algorithm FD279 PCA30 TCV30 TCMR30

Logistic 63.27 75.22 75.44 77.43

NaiveBayes 76.55 71.02 73.23 75.89

J48 76.99 68.14 74.12 74.56

VotedPerceptron 75.22 70.58 74.78 76.33

Jrip 75.22 68.58 72.79 73.67

Average 73.45 70.71 74.07 75.58

Figure 7.1: Accuracy results when Correlated Multiplication Rules are used as com-
posite features. FD279: Full data set of 279 real valued attributes. PCA30: top 30
principle components. TCV30: top 30 correlated variables (TCMR limited to rules
with |A′| = 1). TCMR30: full TCMR method.

7.6 Experiments

This section evaluates the e�ectiveness of CMRules when used for feature selection

and generation. Run time performance of the mining algorithm is also evaluated.

7.6.1 E�ectiveness

To evaluate the TCMR method, the UCI [2] Arrhythmia data set was chosen for its

large number of numeric attributes. It contains 279 attributes, one class variable and

452 instances. Missing values were replaced by the attribute mean and the classes

were merged into two: Arrhythmia and no Arrhythmia.

The e�ectiveness was tested by evaluating the classi�cation accuracy of various clas-

si�cation algorithms. Experiments were performed using:

• The original data set.

• The top 30 principle components of the data set. That is, Principle Component

Analysis (PCA) was performed and the the database was projected onto the

30 principle components that best captured the variance in the data set. 30

variables explained at least 95% of the variance in the database, which is why

this number was chosen.

• The top 30 Top Correlated Variables (TCV). This is the TCMR method but

using only those antecedents with a single variable. This functions as a feature

selection (but not feature generation) method.

• The full TCMR method using the top 30 rules.

Florian Verhein

152 7.6. EXPERIMENTS

In all cases, the attributes were standardized (zero mean, unit variance). Classi�ca-

tion accuracy was evaluated using strati�ed 10-fold cross validation and algorithms

from WEKA [104] with default parameters, resulting in �gure 7.1.

The results show a noticeable improvement using TCMR, in particular for Logistic

Regression, where it improves the accuracy substantially despite using only 30 fea-

tures (11% of the 279 attributes in the original data set). In fact, the TCMR and

Logistic Regression combination achieved the highest classi�cation accuracy overall.

This is to be expected, as TCMR allows logistic regression to learn a non-linear

decision boundary.

TCMR also consistently outperformed PCA for all classi�ers. It is interesting to

note that 12 out of the top 30 rules found by TCMR had multiple variables in

the antecedent, demonstrating that interactions and non-linearites expressible by

multiplication were present in this data set, and that multiplying variables together

can improve their correlation with the dependent variable. Furthermore, only two

variables that were present in a multiplication were also present as single variables,

showing that CMRules can capture hidden correlations.

Figure 7.2: Number of CMRules mined vs minCI on the Arrhythmia data set.

7.6.2 E�ciency

Recall that the most di�cult and computationally expensive component of the

TCMR approach is the mining of the CMRules. To evaluate the run time per-

Dr. rer. nat. Dissertation

CHAPTER 7. CORRELATED MULTIPLICATION RULES WITH
APPLICATIONS 153

Figure 7.3: Run time in comparison to the number of rules mined on the Arrhythmia
data set.

formance, the minCI parameter was varied and all CMRules mined that setting.

Figure 7.2 shows the number of rules mined for various minCI settings. Figure 7.3

shows the run time in comparison to the number of rules mined in log-log scale.

Above about the �rst 10 rules, it is clear to see that the run time is linear in the

number of rules mined.

7.7 Conclusion

Often, interactions between variables in a database are unknown to the detriment

of further analysis, classi�cation and mining tasks. This paper proposed Correlated

Multiplication Rules (CMRules) which are able to capture interactions predictive

of a dependent variable. CMRules are the �rst rules with multiplicative semantics

and are applied to feature selection and dimensionality reduction. This method uses

CMRules to generate composite features, enabling linear models to learn non-linear

decision boundaries with respect to the original variables. The resulting features are

easy to understand and initial experiments showed that the proposed method can

improve classi�cation accuracy compared both to the original database and PCA

projections. Finally, it is shown that the CMRule mining problem can be solved

e�ciently using the Generalised Rule Mining (GRM) framework.

Florian Verhein

154 7.7. CONCLUSION

Dr. rer. nat. Dissertation

Part III

Statistical Data Mining Methods

155

Chapter 8

Using Signi�cant, Positively

Associated and Relatively Class

Correlated Rules for Classi�cation

of Imbalanced Databases

The application of association rule mining to classi�cation has led to a new

family of classi�ers which are often referred to as Associative Classi�ers

(ACs). The advantage of using rule based approaches is that they are easy

to interpret and perform a global search, compared to many other rule based

approaches that use a greedy search strategy.

Rule-based classi�ers can play an important role in applications such as

medical diagnosis and fraud detection where data sets are almost always

imbalanced. The focus of this chapter is to extend ACs for classi�cation on

imbalanced data sets using statistics based techniques.

This work combines the use of statistically signi�cant rules with a new mea-

sure, the Class Correlation Ratio (CCR), to build an AC called SPARCCC.

A detailed set of experiments show that in terms of classi�cation quality,

SPARCCC performs comparably on balanced data sets and greatly outper-

forms other AC techniques on imbalanced data sets. It also has a signif-

icantly smaller rule base and is more computationally e�cient than tradi-

tional support-con�dence based associative classi�ers.

157

158 8.1. INTRODUCTION

8.1 Introduction

Since the introduction of CBA [61] many variations on Associative Classi�ers (ACs)

have been proposed in the literature [60, 13, 110, 100, 28, 30, 15, 89]. Most of the

ACs are based on rules discovered using the support-con�dence paradigm and the

classi�er itself is a collection of rules ranked using con�dence or variation thereof.

In many application domains, the data sets are imbalanced, i.e., the proportion

of samples from one class is much smaller than the other class(es). Additionally,

the smaller class is the class of interest. For example; fraud detection and medical

diagnoses. Unfortunately, the support-con�dence framework does not perform well

in such cases.

Many of the rules mined using support-con�dence are spurious and are irregularities

in the data rather than properties of the underlying population or process, motivating

the statistically signi�cant rules proposed by Webb [103]. The same holds true of

rules used for classi�cation. It is also well known that con�dence has non-intuitive

properties in imbalanced data sets. For example, high con�dence rules can also be

negatively correlated. This chapter combines statistically signi�cant rules with a

new measure, the Class Correlation Ratio (CCR), which leads to a better classi�er.

Furthermore, the proposed method does not use the support-con�dence paradigm.

8.1.1 Contributions

This chapter makes the following contributions:

• It proposes the Class Correlation Ratio (CCR), which measures the relative

class correlation of a rule. A high CCR is desirable because it means the rule

is more positively correlated with the class it predicts than the alternative(s).

CCR also forms the basis of an e�ective rule ranking method that does not

require con�dence.

• It proves that con�dence and support are biased toward the majority class

in imbalanced data sets in the context of CCR. This result also motivates a

correction for con�dence's bias, and is a key component in making the classi�er

perform well on both balanced and imbalanced data sets.

• An associative classi�er is proposed that is based on statistical techniques. The

method is called Signi�cant, Positively Associated and Relatively Class Corre-

Dr. rer. nat. Dissertation

CHAPTER 8. CLASSIFICATION OF IMBALANCED DATABASES USING
SIGNIFICANT RULES 159

lated Classi�cation (SPARCCC) because it uses only rules that are statistically

signi�cant and positively associated, and where the antecedent is more corre-

lated with the class it predicts than with the other class(es). It also searches

directly for signi�cant rules and uses this to prune the search space. SPARCCC

outperforms support-con�dence based associative classi�ers on balanced data

sets in terms of computational performance, and on imbalanced data sets in

both computational and classi�cation performance. SPARCCC is parameter-

free, in the sense that it does not use thresholds � except standard levels of

signi�cance � to prune rules. Finally, since the rules are statistically signi�cant

and relatively class correlated, they may be examined for insights into the data.

8.1.2 Organisation

The the remainder of this chapter is organised as follows: Section 8.2 gives a brief

background in associative classi�cation. Section 8.3 describes the class correlation

ratio and the signi�cance test used. Section 8.4 proves that con�dence (and support)

are biased against the minority class under CCR. Section 8.5 describes the SPARCCC

technique. Section 8.7 contains experimental results. Related work is surveyed in

section 8.8 and this chapter concludes in section 8.9.

8.2 Background: Associative Classi�cation

8.2.1 Association Rule Mining

In Association Rule Mining (ARM), the data is a set of transactions T = {t1, ..., t|T |},
each of which is a subset of the set of items: ti ⊆ I, I = {i1, ..., i|I|}. The support

of an itemset X ⊆ I is sup(X) = |{ti : X ⊆ ti ∧ ti ∈ T}|. An association rule

X → Y is an implication between two mutually exclusive itemsets X and Y . The

support of X → Y is sup(X → Y) = sup(X ∪ Y) and its confidence, an estimate

of the probability that Y occurs given that X occurs, is conf(X → Y) = sup(X →
Y)/sup(X).

8.2.2 Associative Classi�cation

This chapter assumes a discrete data set D with attributes A = {a1, a2, ..., a|A|},
one of which is the class attribute ac. In every instance d ∈ D, each attribute

ai ∈ A takes one of a �nite number of possible values Vi = {vi,1, ..., vi,|Vi|} so that

d = [v1,j , v2,k, ..., v|A|,l] (for some j, k, ..., l). As an ARM task, the attribute-value

Florian Verhein

160 8.3. SIGNIFICANCE AND CLASS CORRELATION RATIO FOR RULES

pairs become items (Namely, i|V1|+...+|Vi−1|+j ≡ (ai = vi,j)) and the instances become

corresponding transactions. The previous instance d then becomes a transaction

t = {(a1 = v1,i), (a2 = v2,j), ..., (a|A| = v|A|,k)}. Clearly, there will be
∑|A|

i=1 |Vi| = |I|
items and each transaction will have size |A|. Since the described mapping is a

bijection, one can freely interchange instances and transactions when convenient.

8.2.3 Associative Classi�cation Rule Mining

The Associative Classi�cation Rule Mining (ACRM) task is to �nd interesting rules

X → y whereX is a set of legal (an attribute cannot occur more than once) attribute-

value pairs and y is one of the class attribute-value pairs. �Interesting� rules are rules

that, in conjunction with other mined rules, are likely to perform well for classi�cation

of unseen data.

8.3 Signi�cance and Class Correlation Ratio for Rules

8.3.1 Fisher's Exact Test

There are strong arguments for mining statistically signi�cant rules [103]. These

also hold true when the rules are used for classi�cation, as one would like to make a

decision based on signi�cant evidence.

Support is often used as a measure of �signi�cance�, the reasoning being that rules

that have high support are �intuitively� more likely to capture the underlying process

generating the data, rather than being artifacts of the data set or generated by noise.

However, this is simply not the case and one can easily generate counterexamples

showing insigni�cant high support or signi�cant low support rules.

This work considers rules X → y that are statistically signi�cant in the positively

associated direction. Toward that end, Fisher's Exact Test (FET) is used on contin-

gency tables of the form of �gure 8.11.

1Statistical tests on such tables determine whether there is a signi�cant association between
the variables, compared to the null hypothesis of no association. If the sampling scheme is such
that only the total (n) is �xed (or it is unrestricted), then the null hypothesis is that the variables
are independent of each other, in the sense that the probability of falling into a particular row
is independent of the column a particular subject is in, and vice versa (This symmetry means
that the tests give the same result for [a, b; c, d] as they do for [a, c; b, d].) [31]. For example,
P (V1, V2) = P (V1) · P (V2). Statistical tests compute the probability (the p-value) of obtaining a
table at least as unusual as the observed table. If the p-value is below a level of signi�cance, then
there is assumed to be su�cient evidence to reject the null hypothesis and therefore we can say
with some con�dence level that the variables are correlated.

Dr. rer. nat. Dissertation

CHAPTER 8. CLASSIFICATION OF IMBALANCED DATABASES USING
SIGNIFICANT RULES 161

FET is an exact test (permutation test) that computes the p-value of an observed

contingency table by explicitly calculating the probability of di�erent table con�gu-

rations, rather than using an approximate or limiting distribution. This work uses

the positive one sided FET to test whether rules are signi�cant in the positive direc-

tion. Given a table [a, b; c, d], FET will �nd the probability (p-value) of obtaining the

given table or a table where X and y are more positively associated under the null

hypothesis that {X,¬X} and {y,¬y} are independent, and that the margin sums

are �xed. The p-value is given by:

p([a, b; c, d]) =

min(b,c)∑
i=0

(a+ b)!(c+ d)!(a+ c)!(b+ d)!

n!(a+ i)!(b− i)!(c− i)!(d+ i)!

Only rules whose p-values are below the level of signi�cance desired are used, as they

are statistically signi�cant in the positively associated direction.

FET's continuous approximation � the χ2 test � could also be used, but since it is a

two sided test it cannot distinguish positive associations and is thus less desirable.

8.3.2 Correlation (Interest Factor)

Correlation also forms an important component of the technique in this work. This

chapter proposes that rules X → y should be used when X is more positively corre-

lated with y than it is with ¬y. The following de�nition of correlation2 is used:

ˆcorr(X → y) =
sup(X ∪ y) · |D|
sup(X) · sup(y)

=
a · n

(a+ c) · (a+ b)

X and y are positively (negatively) correlated if ˆcorr(X → y) > 1 (< 1), and

independent otherwise. Note that ˆcorr(X → y) = I(X, y), where I(X, y) is the

Interest Factor [88]. This measure has downsides when used by itself. It is clear to

see that increasing the size of the data set by increasing d (refer to �gure 8.1) will

increase the correlation between X and y � even though it is actually increasing the

association between ¬X and ¬y. The reverse holds for decreasing d.

Example 8.1. Consider the table T1 = [100, 20; 20, 10] where X and y are have a

strong association but ˆcorr(X → y) = 1.04 (almost independent). If d is increased

to get T2 = [100, 20; 20, 200], then clearly ¬X and ¬y are strongly associated, but

ˆcorr(¬X → ¬y) = 1.4 while now ˆcorr(X → y) = 2.36. This is clearly undesirable.

2To be more precise, ˆcorr(X → y) this is the estimate of corr(X → y) = P (X∪y⊆t)
P (X⊂t)·P (y∈t) , where

corr(X → y) is de�ned over the underlying process that generates the data.

Florian Verhein

162 8.3. SIGNIFICANCE AND CLASS CORRELATION RATIO FOR RULES

This problem arises only in imbalanced data sets; note that changing d alters the

class distribution.

Therefore, SPARCCC does not search for positively correlated rules using ˆcorr.

When a rule is described as being positively associated or correlated, the author

means using the one sided test of signi�cance using FET. FET does not have the

downside described above because of the constant margin sum restriction. Indeed,

p(T1) = 0.041 (signi�cant at the 0.05 level) and p(T2) = 1.07 · 10−44 (highly signi�-

cant).

8.3.3 Class Correlation Ratio

SPARCCC uses ˆcorr(·) to measure how correlated X is with y compared to ¬y using
the proposed Class Correlation Ratio (CCR):

De�nition 8.2. The Class Correlation Ratio (CCR) is de�ned as:

CCR(X → y) =
ˆcorr(X → y)

ˆcorr(X → ¬y)
=
a · (b+ d)

b · (a+ c)

The CCR measures how much more positively the antecedent is correlated with

the class it predicts, relative to the alternative class(es). This avoids the downsides

of using an absolute correlation measure � indeed, terms cancel out. Furthermore,

intuitively one would not want to use a rule that is more correlated with classes other

than the one it predicts!

Example 8.3. Returning to Example 8.1, CCR(X → y) = 1.25 for T1 and CCR(X →
y) = 9.17 for T2. This also says that X → y is a better rule under T2 than under

T1. This is true � it is much more discriminative because under T1, y is already the

majority class and therefore the rule does not provide much additional information.

In fact, the information gain of using X → y over ∅ → y is only 0.072 bits under T1

but is 0.215 bits under T2. Recall also that the rule was much more signi�cant under

T2.

SPARCCC uses only rules with CCR > 1, so that no rules are used that are more

positively associated with the classes they do not predict. Furthermore, CCR is also

used in the strength score � which used to rank rules for classi�cation � in order to

correct for the bias of con�dence. This will be covered shortly.

Dr. rer. nat. Dissertation

CHAPTER 8. CLASSIFICATION OF IMBALANCED DATABASES USING
SIGNIFICANT RULES 163

X ¬X Σrows

y a b a+ b

¬y c d c+ d

Σcols a+ c b+ d n = a+ b+ c+ d

≡ [a, b; c, d]

Figure 8.1: 2 × 2 Contingency Table for X → y. The notation [a, b; c, d] will often
be used as shorthand in the text.

Statement... ...about sample (data set) estimate for lemma 8.5.

A sup(y) < sup(¬y)

B CCR(X → y) > 1

B' CCR(X → y) < 1

C conf(X → y) > conf(X → ¬y)≡ sup(X → y) > sup(X →
¬y)

C' conf(X → y) < conf(X → ¬y)≡ sup(X → y) < sup(X →
¬y)

Figure 8.2: Statements for lemma 8.5. ¬y means all class attribute-values other
than y.

8.4 Relative Correlation Bias of Con�dence (and Sup-

port) on Imbalanced Data sets

Con�dence is widely used as a measure of strength of a classi�cation rule X → y

because it is an estimate (the data set is a sample) of the probability that, given

the attribute-value pairs in X appear in an instance d generated by the underlying

process, the instance will have the class label y. That is, conf(X → y) ≈ P (y ∈
d|X ⊂ d). The con�dence of a signi�cant rule is therefore a useful measure of the

rule strength in classi�cation � but only in balanced data sets. In the following, it

is shown that con�dence (and support) are biased toward the majority class under

the CCR. This result is useful for explaining why using con�dence to rank rules for

classi�cation of imbalanced data sets can give poor performance. It also provides

additional reasons to use CCR for ranking rules. Section 8.5.1 describes a method

that attempts to correct for the bias.

Example 8.4. Note that in Example 8.1, conf(X → y) = 0.83 in both T1 and T2

despite the rule being clearly better in T2.

Lemma 8.5. Con�dence (and support) are biased toward the majority class under

the Class Correlation Ratio. Speci�cally (statements in parentheses are de�ned in

Florian Verhein

164
8.4. RELATIVE CORRELATION BIAS OF CONFIDENCE (AND SUPPORT)

ON IMBALANCED DATA SETS

�gure 8.2):

1. If X → y is more positively correlated than X → ¬y but has a lower con�dence
(support), then y must be the minority class: (B ∧ C ′ =⇒ A).

2. If X → y is more positively correlated and more con�dent (frequent) than

X → ¬y, we cannot say anything about whether y is the minority or majority

class: (B ∧ C 6 =⇒ A and B ∧ C 6 =⇒ ¬A).

3. If y is the minority class and X → y is more con�dent (frequent) than X → ¬y,
then it is also more positively correlated: (A ∧ C =⇒ B).

4. If y is the minority class and X → y is less con�dent (frequent) than X → ¬y,
there is no relationship between the correlation of the rules:

(A ∧ C ′ 6 =⇒ B and A ∧ C 6′ =⇒ ¬B).

5. If y is the minority class and X → y is less positively correlated than X → ¬y,
it is also less con�dent (frequent): (A ∧B′ =⇒ C ′).

6. If y is the minority class and X → y is more positively correlated than X → ¬y,
then we cannot say anything about their con�dences (supports):

(A ∧B 6 =⇒ C ′ and A ∧B 6 =⇒ ¬C ′).

Proof. For each corresponding statement:

1. C ′ =⇒ 1 > sup(X ∪ y)/sup(X ∪ ¬y),B =⇒ sup(X ∪ y)/sup(X ∪ ¬y) >

sup(y)/sup(¬y), hence B ∧ C ′ =⇒ A.

2. Counter examples: If sup(y) = 0.3 · n = n − sup(¬y), sup(X) = 0.5 · n,
sup(X ∪ y) = 0.3 · n and sup(X ∪ ¬y) = 0.2 · n, a contradiction is obtained

for B ∧ C =⇒ ¬A. If sup(y) = 0.7 · n = n − sup(y), sup(X) = 0.8 · n,
sup(X ∪ y) = 0.6 · n and sup(X ∪¬y) = 0.2 · n, a contradiction is obtained for

B ∧ C =⇒ A.

3. C =⇒ sup(X∪y)·n
sup(X)·sup(y) >

sup(X∪¬y)·n
sup(X)·sup(¬y) ·

sup(¬y)
sup(y) , which, using A, is greater than

sup(X∪¬y)·n
sup(X)·sup(¬y) = corr(X → ¬y).

4. Counter examples: Let sup(y) = 0.3 · n = n− sup(¬y).

(a) If sup(X ∪ y) = 0.2 · n and sup(X ∪ ¬y) = 0.3 · n and sup(X) = 0.5 · n
contradicts A ∧ C 6 =⇒ ¬B.

Dr. rer. nat. Dissertation

CHAPTER 8. CLASSIFICATION OF IMBALANCED DATABASES USING
SIGNIFICANT RULES 165

(b) If sup(X ∪ y) = 0.2 · n and sup(X ∪ ¬y) = 0.6 · n and sup(X) = 0.8 · n
contradicts A ∧ C 6′ =⇒ B.

5. B′ =⇒ sup(X∪y)
sup(X) < sup(X∪¬y)

sup(X) ·
sup(y)
sup(¬y) , which, usingA, is less than

sup(X∪¬y)
sup(X) =conf(X →

y).

6. Counter examples: Let sup(y) = 0.3 · n = n − sup(¬y) and sup(X) = 0.5 · n.
If sup(X ∪ y) = 0.2 · n and sup(X ∪ ¬y) = 0.3 · n, a contradiction is obtained

for A ∧ B =⇒ ¬C ′. If sup(X ∪ y) = 0.3 · n and sup(X ∪ ¬y) = 0.2 · n, a
contradiction is obtained for A ∧B =⇒ C ′.

Suppose the user has a two class problem and y describes the minority class. 3)

says that if X → y is more con�dent than X → ¬y, then it is also more positively

correlated. However, the reverse does not hold as described by 4). That is, ifX → ¬y
is more con�dent than X → y, then it may or may not be more positively correlated.

This means that using support or con�dence, the user may receive a highly con�dent

rule for the majority class, X → ¬y (that is more con�dent than X → y), but is

actually less positively correlated than X → y � this is very undesirable! In the

opposite case, 5) says that a rule in the minority class, X → y, with lower relative

correlation will also have lower con�dence than X → ¬y. Again, this does not hold
for the majority class. Since higher con�dence (support) for a rule in the minority

class implies higher relative correlation (CCR > 1), and lower relative correlation

(CCR < 1) in the minority class implies lower con�dence, but neither of these are

true for the majority class, con�dence (support) tends to bias the majority class.

This is because con�dence (support) and CCR can only `contradict' each other in

the majority class.

In a related matter, 1) says that if X → y is more positively correlated than X → ¬y
but is less con�dent, then y must be the minority class. Again, the reverse does not

hold in general. Hence, if a user chooses high con�dence (support) rules, they are

more likely to miss rules that have CCR > 1 applying to the minority class than

in the majority class. Furthermore, when ranking by con�dence (support), a user

is likely to use rules with CCR < 1 predicting the majority class over rules with

CCR > 1 predicting the minority class.

Example 8.6. Consider an imbalanced data set with sup(y) = 15 and sup(¬y) =

100. A possible contingency table is [5, 10; 10, 90]. Despite conf(X → y) = 1
3 <

conf(X → ¬y) = 2
3 , X has a signi�cant positive association with y (pvalue = 0.02).

Florian Verhein

166 8.5. SPARCCC

Also, corr(X → y) = 2.56 and corr(X → ¬y) = 0.77 so this rule has a high CCR

(CCR = 3.32 >> 1) and is thus a very good rule at distinguishing between classes.

8.5 SPARCCC

There are four components to SPARCCC. How they �t together is brie�y described

here, and the subsequent sections outline them in detail.

1. The Interestingness and Rule Ranking technique (section 8.5.1) determines

which of the potentially interesting rules mined by the search and pruning

strategy (see below) are in fact interesting. It also assigns them a strength score,

which is later used to rank the rules according to their expected usefulness in

making a classi�cation decision.

2. The search and pruning strategy (section 8.5.2) determines how the space of

all possible rules is examined and pruned. This determines the candidate rules

� the potentially interesting rules. The choice of strategy determines the com-

putational performance and this chapter evaluates three possibilities.

3. The rule selection method (section 8.5.3) determines which of the interesting

rules are to be used for classi�cation. It makes use of the rule ranking strategy

and outputs selected rules.

4. The classi�cation method (section 8.5.4) determines how an unseen instance is

classi�ed by using the selected rules. It makes use of the rule ranking strategy

and in�uences the rule selection algorithm.

8.5.1 Interestingness and Rule Ranking

8.5.1.1 Interestingness

SPARCCC performs the following tests to determine whether a potentially interesting

rule is interesting:

• It checks the signi�cance of a rule X → y by performing FET on the con-

tingency table of �gure 8.1 and records the pvalue. The rule is signi�cant if

pvalue < significanceLevel, a speci�ed level of signi�cance. This ensures that

the rule is not a spurious relationship and that it is positively associated.

Dr. rer. nat. Dissertation

CHAPTER 8. CLASSIFICATION OF IMBALANCED DATABASES USING
SIGNIFICANT RULES 167

• It checks whether CCR(X → y) > 1. If this is not the case, the rule is not

interesting because it is more correlated with the alternative class(es) than it

is with the class it predicts.

The interesting rules � those that pass the above two tests � are candidates for the

classi�cation task.

8.5.1.2 Rule Ranking

In order to use the rules to make a classi�cation, a ranking (ordering) is required

that captures the ability of the rule to make a correct classi�cation. This ordering is

de�ned by the Strength Score (SS) of the rule: SS(X → y). Based on the discussions

in sections 8.3 the following is used as the strength score:

SSp,CCR(X → y) = (1− pvalue) · CCR(X → y)

Con�dence is an estimate of the probability that, given X occurs, y will occur.

Therefore in balanced data sets, choosing the rule with the highest con�dence gives

the highest expected probability of making a correct classi�cation. For comparison

therefore, the following strength score is also evaluated:

SSp,conf (X → y) = (1− pvalue) · conf(X → y)

However, as lemma 8.5 showed, con�dence has a bias toward the majority class.

While SSp,conf performs well on balanced data sets, it performs very poorly on

imbalanced data sets. Recall that a) a highly con�dent rule predicting the majority

class may in fact be more negatively correlated than the same rule predicting the

other class(es), and b) a rule that is more positively correlated but predicts the

minority class may have much lower con�dence than the same rule predicting the

other class(es). The interestingness criteria above excludes case a), but it does not

correct for the bias in con�dence for less extreme cases and it does nothing to �x

case b). Therefore, this chapter suggests that this can be corrected using CCR:

SSp,conf,CCR(X → y) = (1− pvalue) · conf(X → y) · CCR(X → y)

This works by giving poor rules a lower score (in comparison to better rules) and

scaling up cases of b): CCR(X → y) > 1. In terms of a suitable classi�cation

Florian Verhein

168 8.5. SPARCCC

performance P (·), experiments show that on relatively balanced data sets:

P (SSp,CCR) ≈ P (SSp,conf,CCR) ≈ P (SSp,conf)

While on imbalanced data sets (as would be expected):

P (SSp,CCR) >> P (SSp,conf,CCR) >> P (SSp,conf)

That is, the use of CCR achieves the highest performance on imbalanced data sets

while performing comparably on balanced data sets. As expected, this agrees nicely

with the discussions and theoretical results in sections 8.3 and 8.4. Furthermore,

note that in a completely balanced data set, CCR(X → y) reduces to sup(X→y)
sup(X→¬y) =

conf(X→y)
conf(X→¬y) which shall be called the Class Support Ratio and the Class Con�dence

Ratio respectively. E�ectively, the more imbalanced the data set, the higher the e�ect

of CCR. Finally, note that the pvalue has little impact in the �nal score, because it

varies at most by the signi�cance level. It's inclusion therefore favors more signi�cant

rules only if the other components of SS are similar. Based on both the theory and

the experimental results, the author recommends the use of SSp,c,CCR.

Example 8.7. Recall Example 8.6 where a highly positively correlated and signi�-

cant rule had a very low con�dence of 1
3 , so SSp,conf = 0.33. However, CCR(X →

y) = 2.56
0.77 = 3.33. Inclusion of this in the strength score raises it from 0.33 to

SSp,conf,CCR = 0.33 · 3.33 = 1.09. In comparison, if the classes had been equally dis-

tributed, the rule would have been negatively correlated, insigni�cant and CCR(X →
y) would have been 1

2 . This demonstrates how CCR can be used to counteract the

bias of conf(·) in imbalanced data sets. Clearly, SSp,CCR = 3.27.

8.5.2 Search and Pruning Strategies

This section describes the techniques used to prune the search space for classi�cation

rules. The overall strategy is a bottom up enumeration technique, as all the less

speci�c rules X ′ → y : X ′ ⊂ X will be examined before a more speci�c rule X → y

is generated and examined. The underlying algorithm used to perform this search is

beyond the scope of this chapter. A number of approaches may be applied, however,

the author recommends the use of GRM (chapter 6) due to its space and run time

advantages.

The idea of a rule being statistically signi�cant is not anti-monotonic. To avoid exam-

ining all rules, search strategies are used that ensure the concept of being potentially

Dr. rer. nat. Dissertation

CHAPTER 8. CLASSIFICATION OF IMBALANCED DATABASES USING
SIGNIFICANT RULES 169

t : X ⊂ t t : X − {z} ⊂ t ∧ z 6∈ t t : X − {z} ⊂ t
t : y ∈ t a b a+ b

t : ¬y ∈
t

c d c+ d

a+ c b+ d a+ b+ c+ d

In terms of support :

t : X ⊂ t t : X − {z} ⊂ t ∧ z 6∈ t t : X − {z} ⊂ t
t : y ∈ t sup(X → y) sup(X − {z} →

y)− sup(X → y)
sup(X − {z} → y)

t : ¬y ∈
t

sup(X → ¬y) sup(X − {z} →
¬y)− sup(X → ¬y)

sup(X − {z} → ¬y)

sup(X) sup(X − {z})− sup(X) sup(X − {z})

Figure 8.3: The contingency table [a, b; c, d] used to test for the signi�cance of the rule
X → y in comparison to one of its generalizationsX−{z} → y for theAggressive-S
search strategy. The entries in the tables are the transactions satisfying the condi-
tions.

interesting is anti-monotonic � i.e. X → y might be considered as potentially in-

teresting if and only if all {X ′ → y|X ′ ⊂ X} have been found to be potentially

interesting: The author believes that �forcing� measures that are related to classi�-

cation performance to have a property they do not naturally have is better than using

a measure (such as support) that has the property, but is not related to classi�er

performance.

The following search strategies are used to mine potentially interesting rules:

• Select a new attribute-value in such a way that it makes a signi�cant posi-

tive contribution to the rule, when compared to all immediate generalizations.

Speci�cally, �gure 8.3 describes how to test for the signi�cance of the rule

X → y in comparison to one of its generalizations X − {z} → y. The rule

X → y is potentially interesting only if the test passes for all immediate gener-

alizations {X−{z} → y : z ∈ X}. This technique prunes the search space most

aggressively, as it performs |X| tests per rule. However, this also means that

it greatly favors shorter rules, as they have fewer tests to pass. This approach

is borrowed from Webb [103]. It is called Aggressive-S in this chapter.

• Use FET as described in section 8.3 and force it to be anti-monotonic3. This

strategy is called Simple-S. It performs one test per rule and examines more

3That is, if and only if all rules {X − {z} → y : z ∈ X} are potentially interesting, then the
contingency table of �gure 8.1 is used to determine whether X → y is potentially interesting. Note
that this is recursive.

Florian Verhein

170 8.5. SPARCCC

of the search space.

• For comparison, a minimum support threshold strategy is also used. All rules

with supp(X → y) ≥ minSup are potentially interesting. This strategy is

called Support in the experiments.

For Aggressive-S and simple-S, de�ne sup(∅) = |D| so that it is possible to evaluate

a pvalue (usually high) for so-called �default rules� � rules with no antecedent that

can be applied when no other rules match an instance.

8.5.3 Rule Selection Method

The rule selection algorithm (algorithm 8.1) returns the set of highest ranking rules

so that each training instance is covered by (and correctly classi�ed by) enough rules

for it to have minGroups groups of rules, where each group is made up of rules with

the same scores. This is a type of covering technique. The concept of groups is

required by the classi�cation method used.

8.5.4 Classi�cation Method

The classi�cation algorithm (algorithm 8.2) classi�es an unseen instance based on

the highest ranked (according to the strength score) matching rules. If there is one

rule with the highest score, or multiple rules with the same score but predicting the

same class, then the choice is straightforward � simply pick the class predicted by

the rules. However, if there are multiple rules with the same score but predicting

di�erent classes, then the class is picked that is predicted by the majority of the

rules in the group. In cases where there is no single majority, �rst remove from

consideration any classes that are not in the majority. Then, the next group of rules

is used to make a decision between the remaining classes. This process is continued

until there is a majority in a group. If the rules run out, a random choice is made

between the remaining classes4.

4SPARCCC ensures that it does not make a decision due to running out of rules for any of these
classes. For example, suppose there are 3 matching rules, and further suppose there are two rules
predicting di�erent classes in the top group. It is not possible to make a decision based on the top
group alone. Hence, the next group is considered. Suppose a decision were to be made based on
the single remaining rule even though the other class is not represented in this group (recall the
rules for it have run out, and there was a higher ranked rule for that class in the previous group).
Note also that the single rule used may have a very low score. This were to create a bias toward the
class that has the most rules, even if they are of poor quality. This is not fair to the class for which
fewer rules were found (for whatever reason � for example, this could happen if it was the minority
class). So in this case, a random choice is made in place of relying on left over rules. Indeed, it

Dr. rer. nat. Dissertation

CHAPTER 8. CLASSIFICATION OF IMBALANCED DATABASES USING
SIGNIFICANT RULES 171

Algorithm 8.1 Rule selection algorithm for SPARCCC.

// R is the set of rules found
// T is the set of training instances (transactions)
SR = ruleSelectionByGroups(R,minGroups)
sort R in descending order by the rule's score (r.score)
SR = ∅ // the selected rules
for each t ∈ T
prevScore =∞, groups = 0
for each r ∈ R and while groups < minGroups
if (r.X ⊆ t.X ∧ r.y == t.y)
// the rule applies to and correctly classi�es t
SR = SR ∪ r
if (r.score < prevScore)
groups+ +
prevScore = r.score

return SR

Recall that the rule selection pruning algorithm ensures that there are at most

minGroups groups of rules with the same score for each training instance. Therefore,

one can expect to have up to minGroups groups to base a decision on when classi-

fying. In practice, minGroups can be set low since the top group is often enough.

minGroups = 3 was used in this work.

8.5.5 A Note on Interpreting the Rules

Since the proposed method performs many tests of signi�cance, it is not possible

to say that a particular rule is statistically signi�cant because of the multiple tests

problem [3]. Since each rule has a (low) chance of occurring by chance alone (at most

the level of signi�cance), one could �nd a signi�cant rule by chance simply by testing

rules until one is found. This is not a problem for the classi�cation task because a

set of rules is being used, rather than a particular rule. However, the multiple tests

problem must be kept in mind if an attempt is made to interpret the rules as part

of knowledge discovery.

was found that making a prediction based solely on the class that has the majority of rules (i.e.:
ignoring the score) can have poor performance. In practice, when testing this on a few data sets,
the random choice was never exercised.

Florian Verhein

172 8.6. MINING SPARCCC RULES USING GRM

Algorithm 8.2 Classi�cation algorithm for SPARCCC.

// t is an instance to classify
// SR is the set of selected rules.
c = classifyByGroups(t)
M = {r|r.X ⊆ t ∧ r ∈ SR} // the matching rules.
C = {r.y|r ∈M} // classes predicted by matching rules.
min = minc |{r.y == c ∧ r ∈M}|
//the minimum number of matching rules for a class.

min = min · |C| // the number of rules we can use without
// running out of rules for any class

keep the �rst min rules in M when sorted in descending
order by r.score and delete the rest

group the rules in M by equal score
counts[|C|] = [0, ..., 0]
for each group g, from highest to lowest score
for each c ∈ C
counts[c]+ = |{r|r ∈ g ∧ r.y == c}|
// the number of rules in g predicting c

max = maxc∈C{counts[c]}
for each c ∈ C
if (counts[c] < max) // not a majority.
C = C − c

if (|C| == 1) // have one standout majority class
return the only c ∈ C

return a randomly chosen c ∈ C.

8.6 Mining SPARCCC Rules using GRM

The search and pruning strategy (rule mining) part of SPARCCC can be implemented

in GRM as follows. Note that the terminology of chapter 6 is used, with rules A′ → c

instead of the X → y notation used in thie chapter.

• The database is the set of vectors corresponding to individual variables, D =

{xv : v ∈ A ∪ C}, where A is the set of attribute-value pairs and C is the set

of classes. xa[i] = 1 : a ∈ A if the attribute-value pair a is present in the ith

instance. Similarly, xc[i] = 1 : c ∈ C if the ith instance has class c. In all other

cases, the ith entry of the vectors is 0.

• mR(xA′ , xc) calculates the contingency table [n11, n10, n01, n00] (�gure 6.1), as

described in section 6.4. This corresponds to the contingency table [a, c, b, d]

Dr. rer. nat. Dissertation

CHAPTER 8. CLASSIFICATION OF IMBALANCED DATABASES USING
SIGNIFICANT RULES 173

of �gure 8.1 in this chapter (note the di�erent order due the di�erent table

headings). n11 = xA′ · xc; the dot-product of the two vectors. Note that

this is the number of instances in which the rule A′ → c holds (it's support).

n10 = |xA′ |−n11, n01 = |xc|−n11 and n00 can be calculated as n−n11−n01−n10
where n is the length of the vectors. From this, it can calculate the p value

(pvalue) of the rule, it's CCR and it's con�dence (conf) as described in this

chapter. Let the result of mR(·) evaluated on the rule A′ → c be the array

valuem(A′ → c) = [n11, n10, n01, n00, pvalue, CCR, conf]. For simplicity, let the

notation valuem(A′ → c).n11 refer to the n11 entry, etc.

• aR(xA′ , xa) is de�ned so that xA′∪a[i] = xA′ [i]ANDxa[i]. Hence, xA′∪a[i] = 1

if the antecedent A′ ∪ a matches the ith instance.

• MR(·) is de�ned di�erently, depending on the search and pruning strategy used.

� For Agressive-S, it must evaluate the signi�cance of A′ → c in com-

parison to all the rule's immediate generalisations. The contingency table

[a, b, c, d] of �gure 8.3 can be obtained as follows: a = valuem(A′ → c).n11,

b = valuem(A′− x→ c).n11− a (where A′− z → c is a subrule of A′ → c

obtained by removing z ∈ A′), c = valuem(A′ → c).n10 (the number of in-

stances supporting the rule A′ → ¬c), and d = valuem(A′−z → c).n10−c.
By constructing this table for all immediate sub-rules and testing the

signi�cance as described in this chapter, MR(·) can determine whether

the A′ → c signi�cantly improves on it's immediate generalisations. Let

AggresiveS.pvalue be the maximum pvalue of all these tests. Of course,

the computation can be aborted early one any of the tests deliver an

insigni�cant pvalue, in which case set AggresiveS.pvalue = 1.

� For Simple-S, M(·) must check to see if A′ → c as well as all it's imme-

diate sub-rules are signi�cant as determined by the signi�cance test imple-

mented inmR(·). Let SimpleS.pvalue = max{valuem(A′ → c).pvalue,maxz∈A′(valuem(A′−
z → c).pvalue)}.

� For Support, M(·) is trivial.

• IR(·) determines which rules are interesting and should be expanded. Again,

this is determined by the strategy used:

� For Agressive-S, IR(·) returns true if and only if AggresiveS.pvalue <

significanceLevel.

� For Simple-S, IR(·) returns true if and only if SimpleS.pvalue < significanceLevel.

Florian Verhein

174 8.7. EXPERIMENTS

� For Support, IR(·) returns true if and only if valuem.n11 ≥ minSup.

• IA(·) can only be exploited in the Support method, in which case it returns

false if |xA′ | ≤ minSup. In all other methods, IA(·) is always true.

The above instantiation of GRM e�ciently mines all potentially interesting rules. It

also calculates all the values required by the interestingness and rule ranking strategy.

8.7 Experiments

Experiments were performed5on relatively balanced well known UCI data sets [65] as

well as imbalanced variations of them. The data sets used were {Australia, breast,

Cleve, Diabetes, Heart, Horse}6.

In the tables, the proposed methods are denoted by �SPARCCC� with the search

strategy in parentheses. For comparison, a purely support and con�dence based

technique was also used, denoted by �Support-Con�dence�. It �nds all rules satisfying

the support and con�dence thresholds and uses con�dence as the strength score7.

Any techniques using a support based search (such as CBA and CMAR) have exactly

the same search space (and at least the same run time) as �Support-Con�dence�.

Hence these are not reported separately.

8.7.1 Original (Balanced) Data sets

This section presents experiments on the original data sets, where the class distribu-

tions are roughly balanced. Figure 8.4 shows that (on average) SPARCCC performs

comparably to CBA, CMAR and C4.58, and is insensitive to the choice of SS. How-

ever, there are large di�erences in the search space examined and hence the run

times, as shown in �gures 8.6(a) and 8.6(b). Also, much fewer rules are found as can

be seen in �gure 8.6(d). Despite having very similar accuracy, the search space ex-

plored by �Aggressive-S� is {1.6%, 1.4%, 1.3%} (for signi�cances of {0.05, 0.01, 0.001}
respectively) of that explored using a support based technique with minSup = 1%9.

For the less aggressively pruned search, �Simple-S�, it is {18.9%, 10%, 6%}.
5The experiments were performed on an laptop with: Intel Pentium M 2.0GHz, 1GB of RAM,

Windows XP Professional. Programs written in Java. Strati�ed 10-fold cross validation was used
for measuring all performance indicators.

6Continuous variables were discretised using the technique of [61]
7That is, there is no use of signi�cance tests or correlation at all. The rule selection and classi-

�cation procedure is as described in this paper.
8The reported accuracy levels for C4.5, CBA and CMAR were obtained from [60].
9It should be noted that minSup = 1% is usually recommended. minSup = 5% performs worse,

and as will be shown, is terrible on skewed data sets.

Dr. rer. nat. Dissertation

CHAPTER 8. CLASSIFICATION OF IMBALANCED DATABASES USING
SIGNIFICANT RULES 175

Figure 8.4: Accuracy on original data sets.

Florian Verhein

176 8.7. EXPERIMENTS

Figure 8.5: True positive rate (recall, sensitivity) of the minority class on imbalanced
versions of the data sets.

Dr. rer. nat. Dissertation

CHAPTER 8. CLASSIFICATION OF IMBALANCED DATABASES USING
SIGNIFICANT RULES 177

(a) Search space size on original datasets

(b) Training time on original datasets

(c) Search space size on imbalanced versions of the datasets.

(d) Number of rules found (prior to rule selection) on the original datasets.

Figure 8.6: Computational performance on original and imbalanced data sets.

So, picking the best accuracy (83.6%, �Aggressive-S� using signi�cance of 0.001 and

SSp,conf,CCR) SPARCCC can obtain comparable accuracy while searching only 1.3%

of the space, using 0.08% of the time and �nding 0.03% of the rules, when compared

to support based methods � for example; CBA and CMAR.

8.7.2 Imbalanced Data sets

Highly imbalanced versions of the data sets were obtained by keeping the majority

class and randomly selecting a subset of the minority class so that the ratio was

Florian Verhein

178 8.7. EXPERIMENTS

1 : 9. That is, the percentage of instances with the minority class was 10%. Figure

8.5 shows the True Positive Rate (TPR) of the minority class. Note that accuracy

is a poor performance measure for imbalanced data sets because one can obtain

high (at least 90%) accuracy by predicting the majority class. TPR (also known

as sensitivity and recall) is a much better performance indicator. The accuracy is

therefore not shown for space reasons. It remains high however.

The e�ect of using CCR in the SS is large. One can clearly see the following rela-

tionship:

TPR(SSp,CCR) >> TPR(SSp,conf,CCR) >> TPR(SSp,conf)

For example, when using �Aggressive-S�, SSp,conf,CCR is on average (over data sets

and signi�cance levels) 2.87 times better than SSp,conf and SSp,CCR is 1.58 times

better than SSp,conf,CCR and 4.44 times better than SSp,conf . A similar, though

slightly smaller e�ect occurs for �Simple-S� and �Support-S�.

The proposed methods also score much higher than other rule based techniques such

as CBA and CCCS, the latter of which was designed speci�cally for imbalanced data

sets. The highest average TPR overall is for �Aggressive-S� with a signi�cance level

of 0.05. This was 45.8% better than CBA and 26.1% better than CCCS. Unlike for

the original data sets, the signi�cance level has a large impact on the classi�cation

performance on imbalanced data sets, likely due to the pruning of the search space.

Interestingly, the use of CCR had the unexpected bene�t of reducing this e�ect. It

was also noticed that much fewer rules were generated overall. Finally, the compu-

tational performance favors the proposed techniques even more on imbalanced data

sets. Figure 8.6(c) for example shows that �Aggressive-S�, at a signi�cance level of

0.05, explores only 0.29% of the space considered by a support based method with

minSup = 1% � and the training time is even less. For �Simple-S� it is 6.2%. Note

also that the performance of any support based technique with minSup = 5% is

very poor, as is to be expected on such an imbalanced data set.

Overall, the experiments show that, by using SPARCCC with a signi�cance based

search strategy, one can achieve much better classi�cation performance on skewed

data sets than techniques such as CBA (which is outperformed it by up to 45.8%

when using a signi�cance level of 0.05) while using dramatically fewer computational

resources (0.29% of those used by support based methods).

Dr. rer. nat. Dissertation

CHAPTER 8. CLASSIFICATION OF IMBALANCED DATABASES USING
SIGNIFICANT RULES 179

8.8 Related Work

CBA [61] was the �rst Associative Classi�er (AC) proposed and most other ACs

are variations on the original CBA design which consists of three components: 1)

rule mining, 2) rule selection (classi�er building) and 3) classi�cation. For rule

mining, CBA mines all rules passing support and con�dence thresholds (minSup

and minConf). Additionally, it ignores rules based on a �pessimistic error based

pruning method� borrowed from C4.5 [76]. Unfortunately, minSup and minConf

need to be set very low for decent accuracy, generating tens of thousands of rules

� most of which perform poorly. Therefore, a rule selection process is needed to

select a small subset likely to perform well. Rules are selected so that each training

instance is covered by the highest ranked rule that matches the instance, and each

rule, when considered together with the others, will be used to correctly classify at

least one training instance. New instances are classi�ed according to the highest

ranked rule that is applicable. Rules are ranked according to con�dence, support,

and size.

CMAR [60] has many similarities to CBA. The main di�erences10 are the use of

a χ2 test instead of the error based pruning and a more complicated classi�cation

procedure involving an empirically chosen weighted χ2 measure applied to multiple

matching rules. CMAR uses the same contingency table (�gure 8.1) as one of the

interestingness criteria proposed in this chapter. However, the χ2 test does not

distinguish between directions of association and therefore the claim in [60] that only

positively correlated rules are found is not necessarily correct. Negatively associated

rules are just as likely to pass the test as positively associated ones. For example,

the table [4, 25; 12, 15] is signi�cant at the 0.05 level but X is negatively associated

(correlated) with y. Though CMAR checks for signi�cance, it is still based on the

support-con�dence framework.

In general, rules with CCR(·) < 1 will incorrectly classify the training data. The

above techniques still work because, in balanced data sets, choosing high support

and con�dence rules tends to favor positively correlated rules, but this is not the

case in imbalanced data sets as lemma 8.5 shows.

CBA, CMAR and related techniques rely heavily on support and con�dence for

searching, pruning and ranking rules. While popular and convenient, there is little

evidence to suggest they are any good at �nding useful classi�cation rules. Indeed,

both CMAR and CBA need to use minSup = 1% and minConf = 0.5 in their

10We note that CBA is based on the Apriori algorithm, while CMAR is based on FP-Growth.
Such di�erences do not change the rules that are found, just the way in which they are found, and
hence are irrelevant for this discussion.

Florian Verhein

180 8.8. RELATED WORK

experiments to beat C4.5 [61, 60], generating tens of thousands of rules. Note that

CMAR's χ2 test, CBA's error rate pruning and the use of con�dence does not reduce

the search space. A large number of rules found, many of which are poor, dictates

the requirement of often complex rule selection methods. It is not uncommon for

these to discard 99% of the mined rules [61, 60] � meaning the search by support

and con�dence has an e�ective precision of only 1%.

It is not surprising then, that techniques using the support-con�dence framework

perform poorly on imbalanced data sets. The approach in this chapter is much sim-

pler: the rule mining method �nds statistically signi�cant and positively associated

rules. Since the number of rules found is typically very small, and SPARCCC directly

mines for rules that are expected to perform well for classi�cation, there is no need for

rule selection. SPARCCC has a very simple classi�cation method; a simple strength

score is used to rank the rules and the highest ranked matching rule is used. This

straightforward technique performs comparably on balanced data sets, much better

on imbalanced data sets and has greatly reduced computational requirements.

The CCCS [15] technique was proposed to �nd positively correlated rules. It takes

into account imbalanced class distributions, enabling it to outperform other tech-

niques on imbalanced data sets while performing competitively on balanced data

sets. Another upside is that it is relatively parameter free. It does not rely on sup-

port to prune the search space, but instead forces correlation to be locally monotonic

and uses a top down row enumeration algorithm. However, there is no guarantee that

the rules found are statistically signi�cant, and this algorithm generates many thou-

sands of rules. It is also very computationally intensive an does not scale well for

traditional data sets where there are more instances than attributes.

Morishita et al. [63] use the same test as CMAR but �nd upper-bounds on χ2 for

search space pruning. It is an association rule mining technique and is not used for

classi�cation.

Webb [103] proposed the use of Fisher's Exact Test (FET) to examine the signif-

icance of association rules in more detail than [60, 63]. The technique is used in

the Aggressive-S search strategy employed in this chapter for pruning the search

space. Webb does not use the rules for classi�cation � instead it is used for knowl-

edge discovery. This requires consideration of the issue of multiple tests. Since the

mined rules are not validated, it is very di�cult to determine whether the rules are

useful. This chapter mines signi�cant rules under a number of di�erent strategies

and uses them for classi�cation � which also requires additional work such as rule

selection, ranking and classi�cation. This gives a very good performance indicator �

performance on unseen data in comparison to other algorithms. As a side e�ect, the

Dr. rer. nat. Dissertation

CHAPTER 8. CLASSIFICATION OF IMBALANCED DATABASES USING
SIGNIFICANT RULES 181

author believes that this also provides extra weight to the method proposed in [103].

8.9 Conclusion

The traditional measures of support and con�dence are fundamental in association

rule mining and associative classi�ers. However, they have many downsides, espe-

cially when used for classi�cation of imbalanced data sets. Many rules found under

such schemes are statistically insigni�cant, negatively correlated, the antecedent and

consequent are independent of each other, or the antecedent is more positively corre-

lated with the alternate classes than the class it predicts. Furthermore, in imbalanced

data sets these measures favor the majority class, and in this chapter this was proved

in the context of the Class Correlation Ratio. If this is not corrected, classi�cation

performance su�ers. There is also little evidence that support is good for anything

other than pruning the search space, and even then, it must be set to very low values

in order to capture useful rules. However, at this point many thousands of rules

can be generated � most of which will be discarded (sometimes even 99% [60]). The

author believes this support and con�dence approach is ine�cient and that there is

an over-reliance on these measures for historical or simplicity reasons.

This chapter makes the case that searching directly for signi�cant rules is more appro-

priate. From a theoretical standpoint, it makes sense to use statistically signi�cant

and positively correlated rules, and additionally require that they are more positively

correlated with the class they predict than with the alternatives. This has been val-

idated by experiments on the novel associative classi�er introduced in this chapter �

SPARCCC. The experiments showed similar classi�cation performance on balanced

data sets, and higher classi�cation performance on imbalanced data sets compared

to other ACs. Furthermore, by searching directly for signi�cant rules, SPARCCC is

faster as it does not need to explore as much of the search space. Finally, it also

uses much fewer rules, suggesting that it is much better at �nding quality predictive

rules.

The author feels that this work lends some weight to the argument that it is better to

focus on measures that are statistically sound and are linked to classi�er performance,

and if necessary, force these to be anti-monotonic for computational e�ciency � than

to use approaches which are not directly related to classi�er accuracy but have an

inherent anti-monotonic property.

Florian Verhein

182 8.9. CONCLUSION

Dr. rer. nat. Dissertation

Chapter 9

Mining Complex Sub-graphs of

Correlated Variables with

Applications to Feature Selection

Finding interactions between variables is a fundamental concept in Data

Mining. This chapter considers correlations between variables using Pear-

son's product moment correlation coe�cient and mines complex, complete,

and maximal sub-graphs describing the correlation structure between vari-

ables. Both positive and negative (complex) correlations are considered. It is

proved that under a constraint on the minimum level of correlation desired,

there are useful guarantees on the graph's structure; the sign of the correla-

tion between vertices can be mapped to the vertices themselves, leading to

complex sets. Therefore, complex interactions become simpler to understand

and a novel algorithm is presented that mines complex interactions in the

same run time as if negative correlations were not considered.

The approach is useful for examining complex correlation structures in

databases and mining representative subsets. The latter idea is extended

to a feature subset selection method that gives guarantees on the minimum

correlation required for features to be considered interchangeable (redun-

dant), while guaranteeing that the selected features are not correlated with

each other. Experiments show the approach performs well.

183

184 9.1. INTRODUCTION

9.1 Introduction

Finding interactions between variables is a fundamental concept in Data Mining.

This chapter investigates the correlation structure between variables. In the graph

view, each variable is a vertex, and an edge exists between vertices if the magnitude

of the correlation between the corresponding variables exceeds a threshold. Graphs

de�ned by a lack of correlation are also brie�y considered. The sign of the correlation

(positive or negative) is taken into account and the edge labeled accordingly.

In this work, completely connected sub-graphs (cliques) are of interest because these

guarantee that every variable in the sub-graph is highly correlated with each other

variable, therefore describing a strong symmetric relationship. An application of

this structure is to use one variable in place of the variables in the sub-graph. Being

completely connected is useful here; the user may de�ne a level of correlation over

which the variables are considered to be equivalent � or more precisely; of insu�cient

di�erence to warrant inclusion of more than one of them. This is the basis for

applying the approach to feature subset selection in section 9.5.

It is important to consider both positive and negative correlations � that is, �com-

plex� sub-graphs. If only positive or high magnitude correlations are considered,

much of the structure will be missed as negative correlations will not be included.

For example, A may be highly correlated with D, but both of these may also be

negatively correlated with B and C. This methods in this chapter mine complete

and complex sub-graphs capturing such a structure. The goal is to represent these

as complex sets of variables � sets of variables that may include negated variables �

that are all highly positively correlated with each other. For instance, the complex

set {A,−B,−C,D} indicates that A, −B (negative B), −C and D are highly pos-

itively correlated, describing the above-mentioned pattern. Without consideration

for complex relationships, either a) two separate sets {A,B} and {C,D} would be

mined instead or b) the set {A,B,C,D} would be mined � in both cases failing to

show the complete structure of the interaction.

This chapter shows that under a practical constraint on the correlation coe�cient,

mining complex sub-graphs can be reduced to mining complex sets of variables, as

a majority of the edge combinations are impossible. Furthermore, the positive and

negative labeling of variables in the sets can be achieved for free. This achieves

signi�cant computational savings and makes complex interaction patterns easier to

understand: Suppose there is a complete sub-graph G′ on the variables V ′ ⊆ V ,

where V is the set of all variables. There are |V ′|2/2 edges in G′ and therefore

2|V
′|2/2 possible labellings of edges as either positive or negative. Hence, there are

Dr. rer. nat. Dissertation

CHAPTER 9. MINING COMPLEX CORRELATION STRUCTURES 185

2|V
′|2/2 di�erent complex correlation structures. The results in this chapter show

that under the constraint, only 2|V
′| of these are possible. This is precisely the

number of labellings of vertices in G′, which means that instead of mining and

reporting entire sub-graphs including edge labels � and incurring the correspondingly

higher complexity � the same problem can be solved by mining complex sets of

variables. Furthermore, of the 2|V
′| possibilities, half are the negation of all variables

in another combination, leaving 2|V
′|−1 con�gurations. Finally, it will be shown

that the labellings can be achieved for free using the proposed algorithm: searching

through all possible subsets of all vertices V takes O(2|V |) time, but the algorithm

also labels the variables within this time. Therefore, the results in this chapter reduce

the complexity of the problem from O(2|V
′|2/2) to O(2|V

′|).

Since mining these complex sets creates the problem of redundancy (each set of size

k will contain 2k − 1 subsets), this work focuses on mining maximal sets (maximal

complete sub-graphs).

9.1.1 Motivations

Each maximal complex set of variables indicates that all the variables in that set

are highly positively correlated with every other variable. Furthermore, no other

variable (or its negation) can be added to the set without breaking this property.

Such correlation structures are interesting in their own right and can indicate near

duplicate variables or �ag previously unknown complex interactions. By comparison,

analysing or graphing a correlation matrix usually hides interactions that involve

more than two variables at a time.

Each maximal complex set can also be thought of as capturing an underlying fea-

ture, or �factor�, in the process captured by the data set. Of course, there are other

approaches for doing this, namely Principle Component Analysis (PCA) [44], Sin-

gular Value Decomposition (SVD) � which is related to PCA � and Factor Analysis

[44] � which uses PCA. In these approaches, each principle component capture a

source of variability in the data � that is, a factor. While it is possible to examine

the coe�cients of a principle component in order to determine what variables are

associated with it, it is a technique that does not provide the type of guarantees on

the correlation structure that the approach in this chapter does. It also becomes

di�cult to do when many variables are involved. The advantages of the proposed

technique are that it gives guarantees on the correlations in a set, it maintains the

actual variables (unlike PCA), and the resulting patterns are easy to interpret.

A concrete application of this idea is to provide suggestions for selecting a represen-

Florian Verhein

186 9.1. INTRODUCTION

tative set of features. It is therefore applied to the problem of feature subset selection

[88] using a three stage �lter [88] approach: First, maximal complex sets of variables

(features) are mined. The variables in such a set are considered interchangeable,

as they are highly correlated with each other. Then, a representative variable for

each set is found, taking account the overlap between other sets. This is intended

to remove from consideration any redundant, duplicate, or otherwise unnecessary

variables while capturing the primary factors in the underlying process. Finally, a

subset of the representative variables is chosen so that none of them are correlated

with each other.

The approach allows the user to de�ne the minimal correlation required for fea-

tures to be considered interchangeable, and provides a guarantee that the features

selected will not be correlated. Another advantage is that a subset of the original

features are used as selected features. This means models such as trees and rules

built on these remain highly interpretable, contrasting approaches such as PCA or

SVD which produce features that are linear combinations of all original features.

Linear combinations as features make the resulting models very di�cult to interpret.

Furthermore, they do not reduce the number of attributes that need to be collected

in future: The principle components are only orthogonal if the linear combination is

not truncated. This means that while the algorithm uses fewer features, the features

used are still a function of all the original features.

9.1.2 Contributions

This chapter makes the following contributions:

• Complete, complex and maximal sub-graphs (sets) of correlated variables are

proposed as useful patterns for describing complicated correlation structures

in an easily understood manner.

• It is proved that under a constraint on the minimum correlation desired, there

is a speci�c structure on the correlations between variables that allows edge

relationships to be mapped to the vertices, and thus allows complex sets to

capture the same information as complete complex sub-graphs.

• An algorithm is developed that mines all complex maximal sets of variables.

This is a data mining technique, where the patterns mined highlight interesting

and complex interactions between variables that would otherwise be hidden.

Experiments show the algorithm is very e�cient at mining such sets, due also

in part to the extensive pruning it employs.

Dr. rer. nat. Dissertation

CHAPTER 9. MINING COMPLEX CORRELATION STRUCTURES 187

• The approach is further developed for mining a representative subset of the

variables and in particular, for the feature subset selection problem. As a result,

an unsupervised feature subset selection method is proposed. Experiments on

the UCI cardiac arrhythmia data set show that it outperforms PCA when used

for feature selection.

9.1.3 Organisation

The remainder of this chapter is organised as follows: Section 9.2 presents the theory,

section 9.3 describes the data mining algorithm, section 9.5 describes the feature

subset selection algorithm, section 9.6 provides experimental results, section 9.7 puts

the contributions in the context of previous work, and section 9.8 concludes this

chapter.

9.2 Complete, Complex Variable Sub-graphs, Sets and

Correlation

Recall that the graph on the variables was de�ned as follows: each variable is a vertex

and there is an edge between vertices if the corresponding variables are correlated:

Given a threshold t, an edge exists between two variables A and B if |ρA,B| ≥ t.

The weight of the edge is ρA,B and of speci�c interest is whether ρA,B is positive or

negative � called the label of the edge. Later, the problem of mining uncorrelated

sets is also considered, where |ρA,B| ≤ t.

Pearson's correlation coe�cient between two random variables A and B is

ρA,B =
cov(A,B)

σAσB
=
E((A− µA)(B − µB))

σAσB

If the data is centered, that is, E(A) = E(B) = 0, then

ρA,B =
~a ·~b
||~a|| ||~b||

= corr(~a,~b)

where ~a and ~b are the vectors of samples for the variables A and B. In this work,

corr(~a,~b) is used, and the data is assumed to be centered1. The use of the dot

1Centering the data is not necessary, and this is sometimes preferred in practice, but in that
case it does not equal ρA,B .

Florian Verhein

188
9.2. COMPLETE, COMPLEX VARIABLE SUB-GRAPHS, SETS AND

CORRELATION

product also means that the kernel trick is applicable � potentially allowing non-

linear correlations to be used. However, this is not explored in this chapter.

Recall that the goal is to mine complete, complex and maximal sub-graphs of vari-

ables, and to be able to represent these as complex maximal sets. Recall that a

sub-graph is complete if it is completely connected. A set will only ever be used to

describe a complete sub-graph. Recall that the term complex describes the inclusion

of negative and positive relationships (labellings of edges or variables). Recall that

a complete sub-graph is called maximal if no other complete sub-graph subsumes it.

Equivalently, a set is maximal if no super-set exists.

Section 9.2.1 considers the problem of mining maximal and complex sets of highly

correlated variables � which is the focus of this paper. Section 9.2.2 brie�y considers

the problem of mining uncorrelated variables.

9.2.1 Highly Correlated, Complex Variable Sets

This section develops the theory required to mine highly correlated, complex variable

sets.

Lemma 9.1. corr(~a,~b) > t ∧ corr(~b,~c) > t ∧ |corr(~a,~c)| > t =⇒ corr(~a,~c) > t if

and only if t ≥ 0.5. In other words, if (~a,~b) are highly positively correlated and (~b,~c)

are highly positively correlated and (~a,~c) are highly positively or negatively correlated,

then (~a,~c) are in fact highly positively correlated. In this case, �highly� means with a

correlation coe�cient above 0.5.

Proof. Without loss of generality, assume {~a,~b,~c} are all unit vectors (this does not
change the correlation: ~a·~b

||~a|| ||~b||
= (~a

||~a|| ·
~b

||~b||
)/(|| ~a||~a|| || ||

~b

||~b||
||)). Then corr(~a,~b) = ~a ·~b �

the dot product. The following identity is used:
∑

i(ai+ci−bi)2 =
∑

i[(a
2
i +b2i +c2i)+

2(aici−bici−aibi)] = 3+2(~a·~c−~b·~c−~a·~b). The last equality follows as the vectors are
unit vectors (i.e. ||~a|| = 1 =⇒

∑
i a

2
i = 1). Using the thresholds ~a ·~b > t and ~b ·~c > t

and the fact that
∑

i(ai+ci−bi)2 ≥ 0 gives: 0 ≤ 3+2(~a·~c−~b·~c−~a·~b) < 3+2~a·~c−4t.

To avoid a contradiction we must therefore have ~a · ~c ≥ 2t − 1.5 If ~a · ~c < −t then
−t > 2t − 1.5 ⇐⇒ t < 0.5. Therefore, when t ≥ 0.5, a · c < −t provides a

contradiction and therefore we must have ~a · ~c > t.

In the reverse direction, we have ~a ·~c > t (as the implication is true). Suppose for the

purpose of a contradiction that t < 0.5. Then we can see from ~a · ~c ≥ 2t − 1.5 that

it is possible to have ~a ·~c < −t � providing the contradiction (for example substitute

any value t < 0.5).

Dr. rer. nat. Dissertation

CHAPTER 9. MINING COMPLEX CORRELATION STRUCTURES 189

(a) Lemma 9.1 followed by Theorem 9.3.

(b) Corollary 9.2 followed by theorem 9.3.

Figure 9.1: Simple Example of the lemma and corrolaries for sub-graphs of size 3.
Recall that an edge exists between two variables a, b if |corr(a, b)| ≥ t. It is assumed
t ≥ 0.5 so the lemma and corrolaries apply. In the �rst step (implication) in (a),
lemma 9.1 is applied. In the �rst step in (b), corrolary 9.2 is applied. The second
step of both (a) and (b) shows the application of corrolary 9.3, choosing a as the
arbitrary + variable. Hence, the relationships can be represented as the complex
sets {a, b, c} for (a) and {a, b,−c} for (b).

A corrolary follows immediately:

Corollary 9.2. corr(~a,~b) > t∧corr(~b,~c) < −t∧|corr(~a,~c)| > t =⇒ corr(~a,~c) < −t
if and only if t ≥ 0.5

Proof. Replace ~c with −~c in lemma 9.1.

These are illustrated graphically in the left hand implications of �gures 9.1 (a) and

(b).

These results imply that given a complete complex sub-graph of size three, the sign of

the third edge can be obtained from the sign of the other two, simply by multiplying

them together. Since this works for any triple in a complete sub-graph, this can be

extended to the entire sub-graph. Furthermore, it allows the signs of the edges to be

mapped to the variables themselves. The following corrolary describes this:

Theorem 9.3. If t ≥ 0.5, then relationships between variables in a complete sub-

graph can be assigned to the variables themselves (without loss of information) using

Florian Verhein

190
9.2. COMPLETE, COMPLEX VARIABLE SUB-GRAPHS, SETS AND

CORRELATION

the following procedure:

1. Select an arbitrary variable a and label it +.

2. For each other variable b in the sub-graph, label it according to the sign of it's

correlation to a.

All relationships between two variables can be inferred (reconstructed) from their

labeled sign: if they have the same (di�erent) sign, they have a positive (negative)

correlation.

Proof. In the procedure, every variable b ∈ V : b 6= a will clearly be assigned only

one sign. It su�ces to show that after this has been done, the reconstruction of

edge signs works. Consider two variables b 6= a and c 6= a. By the construction,

the sign of their correlation with a is known. The sign of corr(b, c) can therefore be

determined by lemma 9.1. By considering all such pairs (b, c), every edge's sign can

be constructed.

Actually, there are exactly two ways of labeling every complete complex sub-graph,

both of which express exactly the same edge relationships. In theorem 9.3, a may

be arbitrarily labeled − (instead of +), which simply �ips all the other signs also.

Of course this would be redundant, hence only one representation is used. In the

algorithm, an arbitrary order is imposed on variables and the greatest variable in a

sub-graph is arbitrarily chosen to be +. A simple example is shown in �gure 9.1.

Theorem 9.3 also means that the sign of the edges between variables in the graph

can be assigned to the variables themselves. This has two important consequences:

• Complex sets completely describe the relationships. This means that with the

assigned signs, every variable in a complex set is highly positively correlated

with each other variable in the set. This makes the structure very easy for the

user to understand as a set is a simpler construct than a graph.

• The search space of the mining algorithm is signi�cantly decreased, as the

problem is reduced to mining sets of variables, rather than sub-graphs.

Observe that the inclusion of negative correlations only makes sense if theorem 9.3

holds � otherwise it is not possible to assign the direction of the correlation between

variables to the variables themselves: When t < 0.5 it is not possible to report a set

of variables such as {a,−b, c, d} with the interpretation that these four variables are

Dr. rer. nat. Dissertation

CHAPTER 9. MINING COMPLEX CORRELATION STRUCTURES 191

(a) A con�guration like
this is possible only
when t < 0.5. It cannot
be mapped to a com-
plex set.

(b) When t ≥ 0.5, any complete complex sub-
graph can be mapped to a complex set. The
signs on the dotted edges can be inferred from
the others.

Figure 9.2: Example of corrolary 9.3

highly positively correlated with each other, since it is possible that corr(a, b) < −t,
corr(a, c) > t but corr(b, c) > t. In this case there exists no labeling of variables

that can produce a set so that each element is positively correlated with the others.

Accordingly, complex sets are not meaningful when t < 0.5. The reader may like to

try this on the example in �gure 9.2(a). Following the procedure of theorem 9.3 does

not work as the edges cannot be reconstructed, so it is impossible to map the complex

sub-graph it to a complex set. On the other hand, the example in �gure 9.2(b) does

work and demonstrates the procedure.

In section 9.3, a method of enumerating the possible sets will be presented that, in

conjunction with theorem 9.3, means that all complex complete variable sets can

be mined and labeled in O(2|V |) time � the same complexity as without considering

the sign of the correlations. For comparison, note that a naive approach would be

to enumerate possible sets, and for each, apply corrolary 9.3. This would require

O(|V | · 2|V |) time due to the O(|V |) operations used for labeling the extra O(|V |)
edges added whenever another variable is added in the search.

9.2.2 Uncorrelated Variable Sets

An interesting but simpler problem is to �nd maximal sets of variables that are

pairwise uncorrelated, in the sense that the absolute correlation is below a threshold.

That is, an edge exists between two variables A and B if |corr(A,B)| ≤ t, where t

is a (usually small) threshold. This mines sets of uncorrelated variables. Of course,

complex relationships don't make sense for these.

Florian Verhein

192 9.3. MINING COMPLEX MAXIMAL SETS: ALGORITHM

9.3 Mining Complex Maximal Sets: Algorithm

9.3.1 Algorithm

Recall from section 3.3.1 that a PrefixTree can be used to represent the search

space for mining interactions. Here, each node in the pre�x tree (called a Node in

algorithm 9.1) corresponds to a complete set of variables. Without loss of generality,

assume the variables are integers V = {1, 2, ..., n}. The only information stored

at each node is a variable (v) and a sign label (sign). For ease of presentation,

consideration of the sign is deferred for the moment.

The algorithm (algorithm 9.1) works by performing a depth �rst traversal of the

search space, expanding sibling nodes in increasing order � which is important as

described later � and pruning the search as soon as possible.

Speci�cally, the following properties are exploited. Here, a set is called complete if

the corresponding sub-graph is complete. Elsewhere in the paper this is implicit.

1. Whenever a new variable v2 is considered to be added to a complete set C, and

v2 is not highly correlated with each variable in C, then neither C ∪ v2 or any
super-set of C ∪ v2 can be complete. That is, the corresponding sub-graphs

will also be missing at least one edge. One consequence of this is the following:

Since by construction v2 < v1∀v1 ∈ C, the entire sub-tree rooted at the node

corresponding to C ∪ v2 may be pruned. The case C = ∅ holds trivially by

de�ning it as complete.

2. When checking whether a new variable v2 can be added to a complete set C∪v1,
the algorithm only needs to consider those v2 for which C ∪ v2 is complete, by

property 1. That is, if C ∪ v2 is not complete, then neither can its super-set

C∪v1∪v2 be. Now, if C∪v1 and C∪v2 are complete, then C∪v1∪v2 is complete

if and only if v1 ∪ v2 is complete (that is, if and only if v1 and v2 are highly

positively or negatively correlated). The reason for this is straightforward: the

only edge that can be missing in the sub-graph de�ned by C∪v1∪v2 is (v1, v2),

as the existence of all the other edges has already been established. Translated

to the pre�x tree and the algorithm, this means that only siblings need to be

considered � note that C∪v1 and C∪v2 will become siblings in the pre�x tree,

with common pre�x C. The algorithm is said to progress by joining siblings.

3. The above two properties also work in combination. If C ∪ v2 is not complete,

then neither can C ∪ v1 ∪ v2 be. By never creating the node for C ∪ v2 (recall

Dr. rer. nat. Dissertation

CHAPTER 9. MINING COMPLEX CORRELATION STRUCTURES 193

this part of the search space is pruned), C ∪ v1 will have one less sibling that

must be considered.

In algorithm 9.1, properties 2 and 3 are achieved using the newSiblings list, which

is used as the siblings list for expanding new child nodes in the depth �rst search.

Property 1 is achieved by not adding the corresponding node or expanding the search

(no recursive call). Note that the for loop in algorithm 9.1 traverses the siblings in

increasing order.

It can be of use to report the minimum correlation between any pair or variables in

a set. This is useful, as it provides a bound that is generally higher than t. This can

be achieved by storing the minimum at the corresponding node, and computing the

new minimum for a new node as the minimum over the siblings and the additional

link.

Note that the algorithm works by growing sets, and using heavy pruning. This

approach is appropriate when the graph of correlations is sparse � precisely what

happens when high correlations are desired.

9.3.2 Complex Sets

The only thing left in the search part of the algorithm is to label the variables.

Accordingly, recall that each node also has a sign associated with it � either + or

− (in the algorithm, Node.sign). The sign corresponds to the relationship that the

node's variable has to the �rst node in the sequence � the node whose parent is the

root.

Without loss of generality2, the children of the root are labeled +. The sign of a

new node is calculated as follows. When joining the siblings corresponding to C ∪ v1
and C ∪ v2, the sign of C ∪ v1 ∪ v2 is the sign of C ∪ v1 multiplied by the sign of

the correlation between v1 and v2. This is a direct consequence of lemma 9.1 and

corrolary 9.2 applied to the variables v1, v2 and x, where x is the �rst node in the

sequence (the �rst element of C). Note that this is the application of the procedure

in theorem 9.3. Furthermore, by that theorem, the signs of the relationships between

any of the variables can be derived from the sign of the node (variable). When the

sets are output by a traversal toward the root, the sign also becomes the sign of the

variable.

2There are two equivalent labellings for variables in complex sets � just �ip the sign of each
variable.

Florian Verhein

194 9.3. MINING COMPLEX MAXIMAL SETS: ALGORITHM

9.3.3 Maximal Complex Sets

The algorithm must also calculate the maximal complex sets. It does this by main-

taining the current maximal sets, and as new sets are added, deleting any subsets.

Labels can be ignored during this process. The following lemma makes this easier.

Lemma 9.4. Subsets of a set represented by a node currently being examined can

only occur in a part of the tree that has already been examined by the algorithm.

Proof. This can be proved analogously to lemma 3.18.

Note that this is why the order of expansion of siblings is important. More speci�-

cally, maintaining a consistent (but possibly arbitrary) order is important.

The algorithm only updates the maximalSets list with sets (nodes) that are known

to be maximal so far and in the near future in the search. The �rst constraint

is trivially met by lemma 9.4. The second constraint is met by adding those sets

(nodes) that have no children when that path is complete, as such a set may only

be a subset of a node on a di�erent path of the search, which occurs later (that is,

only after the current path is completed). Because of lemma 9.4, new maximal sets

can only replace existing ones, and therefore only sets that have been mined earlier

must be checked for being subsets of a new one.

Finally, note that since the Pre�x-Tree shares as many nodes as possible, the space

of the collection of maximal sets is minimized since pre�xes of the stored maximal

sets are shared.

Considering all of the above, the resulting algorithm can be written surprisingly

simply � especially in recursive form as shown in algorithm 9.1.

9.3.4 Mining Uncorrelated Sets

In order to mine sets where each variable is uncorrelated with every other, algo-

rithm 9.1 is modi�ed as follows. �|corr(v1, v2)| ≥ t� in mine(, ,) is replaced with

�|corr(v1, v2)| ≤ t�, and �return 1� in corr(,) is replaced with �return 0�. The sign

of the variables should also be ignored, as they cannot represent all relationships.

However, it should be pointed out that data sets generally have many uncorrelated

variables, so using the enumeration approach of algorithm 9.1 is not the most prac-

tical method as it is designed for mining sets de�ned by high correlations, as this

allows it to take maximum advantage of the pruning abilities.

Dr. rer. nat. Dissertation

CHAPTER 9. MINING COMPLEX CORRELATION STRUCTURES 195

Algorithm 9.1 Simpli�ed algorithm for mining complete and maximal complex
correlated sets when t ≥ 0.5. The algorithm assumes a garbage collector, or an
alternative approach to delete nodes in the Pre�x-Tree that are no longer required.

Input:
double corr[][] //precomputed correlation matrix
double t //correlation threshold, t ∈ [0, 1]

Output:
maximalSets //complete, maximal sets
//as Pre�xTree nodes

Data Type:
Node(Node parent, int v, int sign)
//nodes in the Pre�xTree

List〈int〉V = [1, 2, ..., corr[0].length] //variables
List〈Node〉maximalSets = ∅
mine(V, ∅, Node(null,∞, 1)) //

mine(List〈int〉 siblings, List〈int〉newsiblings, Node n)
int v1 = n.v
booleanhasChild = false
for each (int v2 in siblings)
if (|corr(v1, v2)| ≥ t)
Nodenn = Node(n, v2, n.sign ∗ corr(v1, v2))
mine(newsiblings, ∅, nn) //recursive, DFS
newsiblings.add(v2) //new sibling was created
hasChild = true

else //no need to expand search
if (!hasChild) //super-set known to exist
addCompleteSet(n) //n is maximal so far

addCompleteSet(Noden)
for each (Noden2 in maximalSets)
if (n2 subsetof n) //simple linear traversal
maximalSets.remove(n2) //not maximal

maximalSets.add(n)

double corr(int v1, int v2)
if (v1 =∞) return 1 //root of Pre�xTree.
else return corr[v1 − 1][v2 − 1]

Florian Verhein

196 9.3. MINING COMPLEX MAXIMAL SETS: ALGORITHM

9.3.5 Complexity

For completeness, this section brie�y considers the worst case complexity of the

algorithm and can be skipped without loosing the �ow of the chapter.

Lemma 9.5. The time complexity of algorithm 9.1 is at most O(|V |2 ·|S|)+O(2|V |)+

O(|V | · 22|V |) = O(|V | · 22|V |), where |S| is the number of samples.

Proof. Calculating the correlations is done in O(|V |2 · |S|), enumerating the sets

takes at worst O(2|V |) (the number of nodes in the search), since there are a constant

number of operations per node (recall this is a consequence of exploiting the theory

in this chapter). The maximum number of maximal sets is bounded above by 2|V |,

and computing the maximal sets given m candidates takes m2/2 comparisons, each

of which is O(|V |) (traversal of the node sequence to check whether one is a subset).

Hence this part is O(|V | · 22|V |).

In practice, due to the nature of real data sets and the pruning used, this is not

a realistic re�ection of run time performance. In particular, the computation of

maximal sets generally takes less time that the enumeration of sets, despite having

higher worst case complexity. This is because the set of maximal sets is continually

reduced as the algorithm progresses (which is not re�ected in the worst case), and the

number of candidate maximal sets is much fewer that the number of sets enumerated

by the search. Finally, the worst case occurs when every variable is highly correlated

with every other variable, which generally does not happen in practice.

Lemma 9.6. The space complexity is at most O(|V |2)+O(|V |2)+O(

(
|V |
|V |/2

)
) <

O(2|V |)

Proof. This is simply the space of the correlation matrix, plus the space of a depth

�rst search including the sibling list (the maximum depth and sibling list size is

|V |), plus the maximum number of maximal item-sets at any one time. It can be

shown that the latter is

(
|V |
|V |/2

)
, since this is the maximum number of subsets

of equal size, and the maximum number of maximal sets must all have equal size

(proof omitted). A bound on this is 2|V |.

Again, in practice this is misleading since computing the maximal sets continuously

Dr. rer. nat. Dissertation

CHAPTER 9. MINING COMPLEX CORRELATION STRUCTURES 197

prunes the list. If needed, an alternative disk based method for processing the

maximal sets can easily reduce the memory requirement.

9.4 Mining the Patterns using GIM

The reader may have noticed that the preceding algorithm has some similarities

to the GIM algorithm. GIM is an abstract approach and generalisation developed

by considering many di�erent problems and drawing inspiration from solving them

e�ciently. The problem in this chapter is one of these. Accordingly, with a small

modi�cation, GIM can be used to solve this problem too. Showing how to mine

cliques and maximal cliques with GIM was covered in section 3.8. However, this

does not include the ability to handle positive and negative patterns, or the labeling

of the nodes. Using the method for handling negative variables outlined in section 3.6

is ine�cient for the problem in this chapter, since it was proved that the correlation

structure is such that only certain structures are possible. Hence, to implement the

approach in GIM, one can start with the method described in section 3.8 as the basis,

and cleverly implement the labeling within the MI(·) function. Note from algorithm

9.1 that the labeling of a new node nn requires access only to the current node n

to obtain its sign, and the sign of the correlation between n.v and the variable v2.

Hence, to compute the sign of nn, nn.parent.sign is multiplied with the sign of the

correlation between nn.v and nn.parent.v. This can be done as follows:

evaluateMI(PrefixNode nn)

PrefixNode n = nn.parent;

return [n.valueM [0] ∗ corr(nn.variableId, n.variableId)]

Where nn.valueM is an array of size one and valueM [0] is equivalent to the sign in

algorithm 9.1. Since MI(·) only requires access to the current node and its parent,

which can be reached directly through the parent link, there is no need to store any

pre�x nodes. Accordingly, store(·) does nothing and the pre�x tree is not retained

in memory.

9.5 Selecting a Representative Set: an Application to

Feature Subset Selection

Recall that maximal sets of correlated variables can be presumed to capture sets of

variables that are interchangeable with each other and therefore can be represented

Florian Verhein

198
9.5. SELECTING A REPRESENTATIVE SET: AN APPLICATION TO

FEATURE SUBSET SELECTION

by one member of the set. In this section, this idea is developed for the purpose

of feature subset selection. The goal is to select variables in such a way that they

�cover� (represent) the original data set, but at the same time are not correlated

with each other. The primary complication is the overlap between maximal sets of

variables, which requires some care. The approach is as follows:

1. Mine all maximal sets, where variables are connected if |corr(A,B)| ≥ t, using
algorithm 9.1. Call the result � a set of such sets � M . Note that a set

containing a single variable may be maximal. Clearly, all variables will be

present in at least one element ofM and in that sense, the data set is completely

�covered�.

2. Select a representative variable from each maximal set C ∈ M . This is a two

step procedure, complicated by overlap between elements of M :

(a) Recall that the weight of each edge (vi, vj) is the correlation between the

variables. For each C ∈ M select the representative variable v ∈ C as

follows, breaking ties arbitrarily:

v = arg max
v

(
∑
vj∈C

|corr(v, vj)|)

In other words, the most central variable is chosen, measured by it being

the most correlated with all the other variables in the set C. The variable

v is taken to represent the other variables and to capture the underlying

factor of the set. The remaining variables C − {v} are assumed to be

redundant.

(b) Due to the frequent overlap between the C ∈M (di�erent maximal sets of-

ten share a common subset), it is not possible to treat each C in isolation,

as a redundant variable in one maximal set may be the representative

(non-redundant) variable of another � overlapping � maximal set. The

problem with this is that two or more variables can be chosen that are in

fact in the same maximal set (and therefore correlated with each other).

To partially remedy this, assign each variable v ∈ V an integer weight.

When considering each C ∈ M as above, the chosen variable v ∈ C has

it's weight incremented by the number of variables it replaces in C � that

is, |C|. Every other (redundant) variable v′ ∈ C − {v} has it's weight

decremented by |C| − 1. Note that a variable may be determined to be

a representative (redundant) variable for some C ∈ M , but a redundant

(representative) variable in other C('s).

Dr. rer. nat. Dissertation

CHAPTER 9. MINING COMPLEX CORRELATION STRUCTURES 199

Only variables with a positive weight after the procedure has completed

are retained. This means that a variable is only retained if it is more rep-

resentative than non-representative, measured by the number of variables

it represents minus the number of variables that it does not represent.

The reason for decrementing by |C| − 1 rather than C is to avoid vari-

ables �canceling� each other out when representing two overlapping sets

of equal size.

Call the resulting set of variables Vc. Generally, Vc contains fewer variables

than V and so the number of features has been reduced. However, Vc is

only considered a candidate set of selected features, as it's elements may

still be correlated with each other. This can occur, for example, when two

sets of equal size overlap, or when two sets are connected to each other.

In the latter case they don't overlap, but some elements of one set may be

correlated with elements of the other. This is undesirable, as the selected

variables should not be correlated with each other.

3. This step ensures that none of the selected variables are correlated with each

other. First, the �cumulative sum� of correlations is computed for each variable:

cum_sum(v) =
∑
C∈M

∑
vj∈C,v 6=vj

|corr(v, vj)|

Note that this can be done as part of step 2a. A variable with a higher cumu-

lative sum is more representative, and therefore is more desirable. This is used

to decide between pairs of correlated variables. The procedure is as follows;

Loop through each v ∈ Vc, and check if it is correlated with another variable

v′ ∈ Vc. If not, add v to Vs. If it is, add it to V ′c if the cumulative sum of it's

correlations (as described above) is higher than that of v′. Set Vc to V
′
c and

repeat the procedure until Vc is empty. The �nal set of selected variables is Vs.

Note that complex relationships are not applicable for feature selection. That is, of

interest is only whether there is a high correlation � the sign of the correlation is

irrelevant. Therefore, algorithm 9.1 can be used as Step 1 of the feature selection

procedure for any value of t.

Note that this is an unsupervised approach. If a variable to be predicted is present,

it must be removed from |V | prior to applying the procedure.

The approach �covers� the data set, in the sense that every variable is taken into ac-

count by the �nal selected set � provided that this does not lead to selected attributes

being correlated with each other.

Florian Verhein

200 9.6. EXPERIMENTS

Data set Attributes Instances

MADOLEN 500 2000

SYLVA 216 13086

Arrhythmia 279 452

Figure 9.3: Data set properties.

The threshold t functions in two ways: First, it allows the user to de�ne the minimum

correlation magnitude between variables that signi�es that variables can be consid-

ered redundant. Secondly, no variables in the �nal selected set will be correlated with

each other (have a correlation magnitude greater than t). The technique therefore

generates a representative subset of the original variables while guaranteeing that

the selected variables are uncorrelated.

An advantage of this feature selection approach, in addition to the guarantees pro-

vided on the correlations and redundant features, is the simplicity of the resulting

features � they are just variables.

9.6 Experiments

An implementation of algorithm 9.1 is �rst evaluated on some large data sets for

the purpose of run time analysis. Then, the approach is applied to feature selection

using the technique described in section 9.5.

9.6.1 Run Time Performance

Experiments were performed on three data sets: MADOLEN, SYLVA and Arrhyth-

mia. The MADOLEN data set was obtained form [67] and SYLVA was obtained

from [102]. The data sets were part of feature selection and performance prediction

challenges respectively. No pre-processing was done on them and the �training data�

sets were used. The Arrhythmia data set was obtained from the UCI repository

[2], and all missing values replaced by the mean of the corresponding attribute. In

all data sets, the class variable was omitted. All data sets were chosen for a large

number of numeric features and high density in order to attempt to challenge the

algorithm. In particular, the Arrhythmia data set is one of the larger data sets in

the UCI repository, and due to the problem domain, many variables are related.

Properties of the data sets are listed in �gure 9.3.

The run time results for various levels of t are shown in �gures 9.4 and 9.5. For

the SYLVA and MADELON data sets (�gure 9.4) the run time remains relatively

Dr. rer. nat. Dissertation

CHAPTER 9. MINING COMPLEX CORRELATION STRUCTURES 201

(a) MADELON Dataset

(b) SYLVA dataset

Figure 9.4: Run time results part 1. See also �gure 9.5. Total Sets Examined is
the exact number of sets that the search has examined. That is, the size of the
space examined. Maximal Complete Complex Sets is the number of such sets mined.
Mining time is the run time of the entire algorithm in milliseconds.

Florian Verhein

202 9.6. EXPERIMENTS

(a) Arrhythmia Dataset

(b) Arrhythmia Dataset, vertical axis in log scale

Figure 9.5: Run time results part 2. See also �gure 9.4.

Dr. rer. nat. Dissertation

CHAPTER 9. MINING COMPLEX CORRELATION STRUCTURES 203

Algorithm Accuracy,
original
data set

Accuracy,
after
PCA

Accuracy,
reduced
data set

Accuracy
improve-
ment
over

original
data set

Accuracy
improve-
ment
over
using
PCA

J48 76.99 66.81 65.04 -11.95 -1.77

J48graft 78.32 67.48 65.71 -12.61 -1.77

NaiveBayes 76.99 71.68 72.12 -4.87 0.44

IBK, K=5 63.72 57.74 63.94 0.22 6.19

IBK, K=1 63.72 57.30 62.39 -1.33 5.09

DecisionStump 65.93 60.62 64.60 -1.33 3.98

ZeroR 54.20 54.20 54.20 0.00 0.00

OneR 54.20 59.07 54.87 0.66 -4.20

DecisionTable 71.68 68.14 66.37 -5.31 -1.77

ADtree 79.65 71.02 67.92 -11.73 -3.10

BaysianNet 77.21 72.12 70.35 -6.86 -1.77

Jrip 65.27 61.50 65.93 0.66 4.42

SimpleCart 77.88 68.36 69.03 -8.85 0.66

RandomForest 75.00 66.81 69.25 -5.75 2.43

Kstar 57.52 53.98 63.05 5.53 9.07

Logistic 63.27 67.48 69.47 6.19 1.99

SimpleLogistic 75.22 74.78 71.68 -3.54 -3.10

PART 76.77 72.12 68.81 -7.96 -3.32

Average 69.64 65.07 65.82 -3.82 0.75

Figure 9.6: Accuracy results for various Classi�ers on the Arrhythmia data set.

constant. It is only when the threshold becomes very small that the search space

expands signi�cantly. In the Arrhythmia data set (�gure 9.5) on the other hand,

many more correlations are exhibited. Indeed, this is expected as the variables in

the data set are related in the domain. A threshold of t = 0.2 took over 10 minutes,

at which point the experiment was stopped.

The results also show that on these data sets, which are presumed to be typical,

there are relatively few complete maximal sets when t is above about 0.4. This

means that the enumeration approach considered is ideal, as it allows heavy pruning

of the search space and therefore allows it to progress quickly.

9.6.2 Feature Selection Performance

The approach of section 9.5 is used here to perform feature selection on the Arrhyth-

mia data set. t was set to 0.5, resulting in 111 attributes being selected out of the

279 original attributes. If only positive correlations are considered, 135 attributes

would have been selected.

Florian Verhein

204 9.7. RELATED WORK

In addition to comparing classi�cation results on the reduced data set to the original

data set, a comparison to PCA was also performed. PCA was performed using the

algorithm from WEKA [104], and options were set so the same number of attributes

� 111 � were chosen. The 111 principle components cover 96% of the variance of the

data set.

Figure 9.6 shows the results on various classi�ers in WEKA [104] (version 3.5.7),

evaluated over the original data set, the data set with features extracted using PCA,

and the subset of the attributes selected using the approach in section 9.5. Unless

otherwise stated, default values were used in the ML algorithms. The 16 classes

in the original data set were amalgamated into two classes, representing normal

heart rhythms (245 instances) and cardiac arrhythmia (207 instances). 10-fold cross

validation was used for the evaluation of classi�cation accuracy in all cases. The

approach in this paper performs comparably to PCA, having only 0.75 percentage

points better accuracy on average. On average, the accuracy is 3.82% lower than on

the original data set. Therefore, not only can this approach compete well against

PCA, but it maintains the interpretability of the model. That is, the rules and

decision trees built on the data set retain the actual attributes, in contrast to when

PCA is used.

9.7 Related Work

9.7.1 Clique and Set Mining

A complete set and a clique are equivalent. The latter is often used in social network

situations or in spatial data sets. In spatial applications, the space in which variables

exist is usually low dimensional so enumeration approaches to mine them are not

appropriate. Also, distances are used, rather than correlations (angles). �Complex�

cliques have been considered [64], but this is in relation to absence of objects.

Graph based clustering approaches are also related. In some sense, the approach

described in this paper is related to agglomerative clustering [88]. The desire for

complete sub-graphs (sets) is the same as the clique pattern, or in distance based

approaches, the MAX approach [88]. The maximal set idea could be considered as

the highest level in a hierarchy de�ned over subsets, but the method does not �t into

hierarchical clustering. In particular, the threshold is �xed. The approach in this

paper is not really a clustering method. It is best described as a method of mining

interactions between variables, with those interactions having a speci�c structure and

being de�ned by correlation. The consideration of complex interactions in particular

Dr. rer. nat. Dissertation

CHAPTER 9. MINING COMPLEX CORRELATION STRUCTURES 205

sets it well apart from clustering approaches.

The algorithmic approach has a closer relationship to itemset mining than it does

to clustering. Items are a special type of variable, and itemsets are sets of vari-

ables possessing some interesting property � usually that they occur frequently. The

similarity to item enumeration approaches is that the enumeration is over sets of

variables, from the bottom up. The fundamental di�erence to itemset mining is that

the itemset mining problem cannot be mapped to graph mining, as it cannot be

reduced to pairwise relationships. Complex relationships therefore also don't mean

the same thing. While the absence of an item can be considered, this is di�erent

to the complex relationships (both negative and positive correlations) considered in

this chapter.

It should also be emphasised that the use of correlation is a core component of

this work, in particular, the lemma and corollaries that are developed under the

completely connected sub-graph structure. Correlation is generally not used for

clustering, and it cannot be used for itemset mining, as it does not translate to

more than two variables at a time. Unlike distance measures, it has both positive

and negative values � therefore techniques based on it necessarily have di�erent

semantics.

9.7.2 Feature Subset Selection

Feature subset selection comes in three �avours; wrapper, embedded or �lter [88]. In

the wrapper or embedded approaches, it is used in conjunction with a data mining or

machine learning algorithm in some form of supervised or semi-supervised process.

The wrapper approach uses the DM or ML algorithm as an objective function, while

in the embedded approach the DM or ML algorithm decides what features to discard

as part of its operation. The �lter approach selects a subset independently of the

subsequent DM/ML algorithm. It may or may not be supervised. The approach

described in section 9.5 �ts into the unsupervised �lter category. One �lter approach

using correlation for feature subset selection is presented in [45]. However, this is

a hill climbing, supervised, optimizing approach. It is also based on entropy � not

statistical correlation.

Finding representative sets is considered in [70] using an entropy based approach on

binary data. The algorithm in [70] also mines a representative set directly (this work

performs it as a second step).

As earlier mentioned, the idea of maximal complex sets representing underlying

factors of the data set has similarities to the way principle components can be applied.

Florian Verhein

206 9.8. CONCLUSION

But as also mentioned earlier, these are very di�erent approaches.

In summary, the work in this paper is related to various bodies of work in Data

Mining, but to the author's knowledge, is quite di�erent to each.

9.8 Conclusion

This chapter presented and exploited useful results about the correlation structures

between variables. Additionally, it proposed the `complete, complex and maximal

sub-graphs or sets of highly correlated variables' pattern. This approach is useful as

a data mining technique in its own right, or, as also demonstrated in this paper, as

the core component of an unsupervised feature subset selection procedure.

Solving the problem considered in this chapter was one of the many inspirations

behind developing the generalised interaction mining approach introduced in this

thesis.

A useful avenue of future work is to consider only signi�cant patterns. For example,

considering correlation graphs de�ned by signi�cant correlation, in order to reduce

the e�ects of noise and the probability that seemingly interesting patterns are found

by chance alone.

Dr. rer. nat. Dissertation

Part IV

Mining Uncertain and

Probabilistic Databases

207

Chapter 10

Probabilistic Frequent Itemset

Mining in Uncertain Databases

Probabilistic frequent itemset mining in uncertain transaction databases

semantically and computationally di�ers from traditional frequent itemset

mining techniques applied to standard �certain� transaction databases. The

consideration of existential uncertainty of item(sets), indicating the proba-

bility that an item(set) occurs in a transaction, makes traditional techniques

inapplicable. This chapter introduces new probabilistic formulations of fre-

quent itemsets based on possible world semantics. In this probabilistic con-

text, an itemset X is called frequent if the probability that X occurs in at

least minSup transactions is above a given threshold τ . This is the �rst ap-

proach addressing this problem and does so under possible worlds semantics.

In consideration of the probabilistic formulations, a framework is presented

which is able to solve the Probabilistic Frequent Itemset Mining (PFIM)

problem e�ciently. An extensive experimental evaluation investigates the

impact of the proposed techniques and shows that the approach is orders of

magnitude faster than straight-forward approaches.

209

210 10.1. INTRODUCTION

10.1 Introduction

Association rule analysis is one of the most important �elds in data mining. It is

commonly applied to market-basket databases for analysis of consumer purchasing

behaviour. Such databases consist of a set of transactions, each containing the items

a customer purchased. The database can be analyzed to discover associations among

di�erent sets of items. The most important and computationally intensive step in

the mining process is the extraction of frequent itemsets � sets of items that occur

in at least minSup transactions.

It is generally assumed that the items occurring in a transaction are known for

certain. However, this is not always the case. For instance;

• In many applications the data is inherently noisy, such as data collected by

sensors or in satellite images.

• In privacy protection applications, arti�cial noise can be added deliberately in

order to prevent reverse engineering of the data through pattern analysis [107].

Finding patterns despite this noise is a challenging problem.

• Data sets may also be aggregated. By aggregating transactions by customer,

it is possible to mine patterns across customers instead of transactions. In the

resulting database, this produces estimated purchase probabilities per item per

customer rather than certain items per transaction. This application is used

as an example later.

In such applications, the information captured in transactions is uncertain since the

existence of an item is associated with a likelihood measure or existential probability.

Given an uncertain transaction database, it is not obvious how to identify whether

an item or itemset is frequent because we generally cannot say for certain whether

an itemset appears in a transaction. In a traditional (certain) transaction database,

one can simply perform a database scan and count the transactions that include the

itemset. This does not work in an uncertain transaction database.

Dealing with such databases is a di�cult but interesting problem. While a naive

approach might transform uncertain items into certain ones by thresholding the

probabilities 1, this loses useful information and leads to inaccuracies. Existing ap-

proaches in the literature are based on expected support, �rst introduced in [26].

Chui et. al. [25, 26] take the uncertainty of items into account by computing the

1For example, by treating all uncertain items with a probability value higher than 0.5 as being
present, and all others as being absent.

Dr. rer. nat. Dissertation

CHAPTER 10. PROBABILISTIC FREQUENT ITEMSET MINING 211

expected support of itemsets. Itemsets are considered frequent if the expected sup-

port exceeds minSup. E�ectively, this approach returns an estimate of whether

an object is frequent or not with no indication of how good this estimate is. Since

uncertain transaction databases yield uncertainty with respect to the support of an

itemset, the probability distribution of the support and, thus, information about the

con�dence of the support of an itemset is very important. This information, while

present in the database, is lost using the expected support approach.

Example 10.1. Consider a department store selling various types of products. To

maximize sales, customers may be analysed to �nd sets of items that are all purchased

by a large group of customers. This information could be used for advertising directed

at this group. For example, by providing special o�ers that include all of these items

along with new products, the store can encourage new purchases. Figure 10.1(a)

shows such customer information. Here, customer A purchases games every time he

visits the store and music (CDs) 20% of the time. Customer B buys music in 70% of

her visits and videos (DVDs) in 40% of them. The supermarket uses a database that

represents each customer as a single uncertain transaction, shown in �gure 10.1(b).

10.1.1 Uncertain Data Model

The uncertain data model applied in this paper is based on the possible worlds

semantic with existential uncertain items.

De�nition 10.2. An uncertain item is an item x ∈ I whose presence in a transaction
t ∈ T is de�ned by an existential probability P (x ∈ t) ∈ (0, 1). A certain item is an

item where P (x ∈ t) ∈ {0, 1}. I is the set of all possible items.

De�nition 10.3. An uncertain transaction t is a transaction that contains uncertain

items. A transaction database T = {t1, . . . , t|T |} containing uncertain transactions

is called an Uncertain Transaction Database (UTB).

An uncertain transaction t is represented in an uncertain transaction database by

the items x ∈ I associated with an existential probability value2 P (x ∈ t) ∈ (0, 1].

Example uncertain transaction databases are depicted in �gures 10.1 and 10.2.

2If an item x has an existential probability of zero, it does not need to be recorded in the
transaction.

Florian Verhein

212 10.1. INTRODUCTION

Customer Item Probability item
is purchased by

customer

A Game 1.0

A Music 0.2

B Video 0.4

B Music 0.7
(a) Customer purchase probabilities.

Transaction
Identi�er

Transaction

tA {Game : 1.0,Music : 0.2}
tB {V ideo : 0.4, Music : 0.7}

(b) Corresponding uncertain transaction database.

World Transaction database in world wi Probability world
wi exists (P (wi))

w1
tA = {Game}
tB = {} 0.144

w2
tA = {Game,Music}
tB = {} 0.036

w3
tA = {Game}
tB = {V ideo} 0.096

w4
tA = {Game,Music}
tB = {V ideo} 0.024

w5
tA = {Game}
tB = {Music} tA = {Game} 0.336

w6
tA = {Game,Music}
tB = {Music} 0.084

w7
tA = {Game}
tB = {V ideo,Music} 0.224

w8
tA = {Game,Music}
tB = {V ideo,Music} 0.056

(c) All corresponding possible worlds.

Figure 10.1: Example of a small uncertain transaction database and the possible
worlds it generates.

Dr. rer. nat. Dissertation

CHAPTER 10. PROBABILISTIC FREQUENT ITEMSET MINING 213

Id Transaction

t1 {A : 0.8, B : 0.2, D : 0.5, F : 1.0}
t2 {B : 0.1, C : 0.7, D : 1.0, E : 1.0, G : 0.1}
t3 {A : 0.5, D : 0.2, F : 0.5, G : 1.0}
t4 {D : 0.8, E : 0.2, G : 0.9}
t5 {C : 1.0, D : 0.5, F : 0.8, G : 1.0}
t6 {A : 1.0, B : 0.2, C : 0.1}

Figure 10.2: Example of a larger uncertain transaction database containing 6 trans-
actions and items {A,B,C,D,E, F,G}. A : 0.8 states that the transaction contains
item A with probability 0.8.

To interpret an uncertain transaction database, this chapter applies the possible world

model : An uncertain transaction database generates possible worlds, where each

world is de�ned by a �xed set of (certain) transactions. That is, each possible world

corresponds to one certain transaction database. A possible world is instantiated by

generating each transaction ti ∈ T according to the occurrence probabilities P (x ∈
ti). Consequently, each probability 0 < P (x ∈ ti) < 1 derives two possible worlds per

transaction: One possible world in which x exists in ti, and one possible world where

x does not exist in ti. Thus, the number of possible worlds of a database increases

exponentially in both the number of transactions and the number of uncertain items

contained in it.

Each possible world w is associated with a probability that that world exists, P (w).

Figure 10.1(c) shows all possible worlds derived from �gure 10.1(b). For example, in

world 6 both customers bought music, customer B decided against a new video and

customer A bought a new game.

This work assumes that uncertain transactions are mutually independent. Thus,

the decision by customer A has no in�uence on customer B. This assumption is

reasonable in real world applications. Additionally, independence between items is

often assumed in the literature [25, 26]. This can be justi�ed by the assumption that

the items are observed independently. The independence assumption is discussed

in more detail and justi�ed experimentally in chapter 11. Under this independence

assumption, the probability that a world w exists is given by:

P (w) =
∏
t∈I

(
∏
x∈t

P (x ∈ t) ·
∏
x/∈t

(1− P (x ∈ t)))

For example, the probability of world 5 in �gure 10.1(c) is P (Game ∈ tA) ∗ (1 −
P (Music ∈ tA))∗P (Music ∈ tB)∗(1−P (V ideo ∈ tB)) = 1.0∗0.8∗0.7∗0.6 = 0.336.

In the general case, the occurrence of items may be dependent. For example, the

Florian Verhein

214 10.1. INTRODUCTION

decision to purchase a new music video DVD may mean they are unlikely to purchase

a music CD by the same artist. Alternatively, some items must be bought together.

If these conditional probabilities are known, they can be used in the methods in this

thesis. For example, the probability that both a video and music are purchased by

customer B is P ({V ideo,Music} ∈ tB) = P (V ideo ∈ tB) ∗ P (Music ∈ tB|V ideo ∈
tB).

10.1.2 Problem De�nition

An itemset is a frequent itemset if it occurs in at least minSup transactions, where

minSup is a user speci�ed parameter. In uncertain transaction databases however,

the support of an itemset is uncertain; it is de�ned by a discrete probability distri-

bution function (p.d.f). Therefore, each itemset has a frequentness probability3 � the

probability that it is frequent (de�ned formally in de�nition 10.10). This chapter

focuses on the problem of e�ciently calculating this p.d.f. (called the support prob-

ability distribution function and de�ned formally in de�nition 10.8) and extracting

all probabilistic frequent itemsets:

De�nition 10.4 (Probabilistic Frequent Itemset). A Probabilistic Frequent Itemset

(PFI) is an itemset with a frequentness probability of at least τ .

The parameter τ is the user speci�ed minimum con�dence in the frequentness of an

itemset. If τ is set close to 1 then the user is interested only in itemsets that have a

very high probability of being frequent, while a small value for τ (close to 0) would

lead to results that also include itemsets which are frequent in very few possible

worlds � that is, that have a very low probability of being frequent.

The problem may now be de�ned as follows:

De�nition 10.5 (Probabilistic Frequent Itemset Mining). Given an uncertain trans-

action database T , a minimum support scalar minSup and a frequentness probabil-

ity threshold τ , Probabilistic Frequent Itemset Mining (PFIM) problem is to �nd all

probabilistic frequent itemsets.

10.1.3 Contributions

This chapter makes the following contributions:

3Frequentness is the rarely used word describing the property of being frequent.

Dr. rer. nat. Dissertation

CHAPTER 10. PROBABILISTIC FREQUENT ITEMSET MINING 215

• It proposes a probabilistic framework for frequent itemset mining in uncertain

transaction databases, based on the possible worlds model. Furthermore, it

proposes the probabilistic frequent itemset mining (PFIM) problem.

• It presents a dynamic computation method for computing the probability that

an itemset is frequent (the frequentness probability), as well as the entire prob-

ability distribution function of the support of an itemset, in O(|T |) time4.

Without this technique, it would run in exponential time in the number of

transactions. Using this approach, the algorithm has the same time complex-

ity as methods based on the expected support [25, 26, 58] but yields much

better e�ectiveness.

• It proposes an algorithm � ProApriori � to mine all itemsets that are frequent

with a probability of at least τ . This chapter also proposes an additional

algorithm that incrementally outputs the probabilistic frequent itemsets in the

order of their frequentness probability. This ensures that itemsets with the

highest probability of being frequent are output �rst. This has two additional

advantages; �rst, it makes the approach free of the parameter τ . Secondly, it

solves the top k itemsets problem in uncertain databases.

10.1.4 Organisation

The remainder of this chapter is organised as follows: Section 10.2 surveys related

work. Section 10.3 presents the probabilistic support framework. Section 10.4 shows

how to compute the frequentness probability in O(|T |) time. Section 10.5 presents

ProApriori � a probabilistic frequent itemset mining algorithm. Section 10.6 presents

the incremental algorithm. Experiments are presented in section 10.7 and this chap-

ter concludes in section 10.8.

10.2 Related Work

There is a large body of research on Frequent Itemset Mining (FIM), a survey can

be found in [43]. Recall also that section 4.3 provided an overview of FIM. However,

very little work addresses FIM in uncertain databases [25, 26, 58]. Indeed, the

problem is a recent one. The approach proposed by Chui et. al [26] computes the

expected support of itemsets by summing all itemset probabilities in their U-Apriori

algorithm. Later, in [25], they additionally proposed a probabilistic �lter in order

4Assuming minSup is a constant.

Florian Verhein

216 10.2. RELATED WORK

to prune candidates early. In [58], the UF-growth algorithm is proposed. Like U-

Apriori, UF-growth computes frequent itemsets by means of the expected support,

but it uses the FP-tree [48, 47] approach in order to avoid expensive candidate

generation. In contrast to the probabilistic approach in this chapter, itemsets are

considered frequent if the expected support exceeds minSup. The main drawback of

this estimator is that information about the uncertainty of the expected support is

lost; [25, 26, 58] ignore the number of possible worlds in which an itemsets is frequent.

[114] proposes exact and sampling-based algorithms to �nd likely frequent items in

streaming probabilistic data. However, they do not consider itemsets with more than

one item. Finally, except for [96], existing FIM algorithms assume binary valued

items which precludes simple adaptation to uncertain databases. The approach in

this thesis is the �rst that is able to �nd frequent itemsets in an uncertain transaction

database in a probabilistic way.

Existing approaches in the �eld of uncertain data management and mining can be

categorized into a number of research directions. Most related to the work in this

chapter are the two categories �probabilistic databases� [17, 77, 79, 14] and �proba-

bilistic query processing� [32, 54, 109, 83].

The uncertainty model used in this chapter is very close to the model used for proba-

bilistic databases. A probabilistic database denotes a database composed of relations

with uncertain tuples [32], where each tuple is associated with a probability denoting

the likelihood that it exists in the relation. This model, called �tuple uncertainty�,

adopts the possible worlds semantics [14]. A probabilistic database represents a set

of possible �certain� database instances (worlds), where a database instance corre-

sponds to a subset of uncertain tuples. Each instance (world) is associated with the

probability that the world is �true�. The probabilities re�ect the probability distri-

bution of all possible database instances. In the general model description [79], the

possible worlds are constrained by rules that are de�ned on the tuples in order to

incorporate object (tuple) correlations. The ULDB model proposed in [17], which is

used in Trio[9], supports uncertain tuples with alternative instances which are called

x-tuples. Relations in ULDB are called x-relations containing a set of x-tuples. Each

x-tuple corresponds to a set of tuple instances which are assumed to be mutually ex-

clusive, i.e. no more than one instance of an x-tuple can appear in a possible world

instance at the same time. Probabilistic top-k query approaches [83, 109, 77] are

usually associated with uncertain databases using the tuple uncertainty model. The

approach proposed in [109] was the �rst approach able to solve probabilistic queries

e�ciently under tuple independency by means of dynamic programming techniques.

This chapter adopts the dynamic programming technique for the e�cient computa-

Dr. rer. nat. Dissertation

CHAPTER 10. PROBABILISTIC FREQUENT ITEMSET MINING 217

tion of probabilistic frequent itemsets (PFIs).

Another uncertainty model also exists, called attribute uncertainty [24]. In this

model, each tuple is assumed to be �certainly� existent, but their attributes are un-

certain. Therefore, each attribute is instantiated by a range of values associated with

a probability distribution. This model is often used in the context of probabilistic

similarity queries over uncertain vector data [24, 54].

While managing uncertain data has been studied for a considerable time [115], re-

cently there has been an increasing interest in algorithms and applications on un-

certain data. [8, 115] provide surveys and categorise the three main research areas

in this �eld: Modeling uncertain data, which considers the process of capturing the

uncertainties in the data while keeping the data useful for database management ap-

plications; uncertain data management / analysing uncertain data, which considers

the issue of incorporating uncertain data semantics into database management sys-

tem and problems such as query processing, joins and indexing; and mining uncertain

data, which develops data mining techniques that take into account the uncertainty

of the data. A tutorial on mining uncertain and probabilistic data may be found

in [75]. The work in this chapter falls primarily into the third category, since it

proposes a new approach to frequent itemset mining that explicitly and e�ectively

deals with a database's uncertainty. The solution to the top-k probabilistic frequent

itemset query falls into the second category, while the probabilistic framework for

itemset mining based on possible world semantics falls into the �rst.

10.3 Probabilistic Frequent Itemsets

Recall that previous work was based on the expected support [25, 26, 58].

De�nition 10.6. Given an uncertain transaction database T , the expected support

E(X) of an itemset X is de�ned as E(X)=
∑

t∈T P (X ⊆ t).

Considering an itemset frequent if its expected support is above minSup has a ma-

jor drawback. Uncertain transaction databases involve uncertainty concerning the

support of an itemset. It is important to consider this when evaluating whether an

itemset is frequent or not. However, this information is forfeited when using the

expected support approach. Returning to the example shown in �gure 10.2, the ex-

pected support of the itemset {D} is E({D}) = 3.0. The fact that {D} occurs for
certain in one transaction, namely in t2, and that there is at least one possible world

Florian Verhein

218 10.3. PROBABILISTIC FREQUENT ITEMSETS

Notation Description / De�nition

W Set of all possible worlds, W = {w1, w2, ...w|W |}
w or wi Possible world instance w ∈W
T Uncertain transaction database (UTB)

T = {t1, t2, ..., t|T |}
t or ti Uncertain transaction t ∈ T
I Set of all items

X Itemset X ⊆ I
x Item x ∈ I, x ∈ X

S(X,w) Support of X in world w

P (w) Probability that world w exists.

Pi(X) Probability that the support of X is exactly i. The
support probability.

P≥i(X) Probability that the support of X is at least i. When
i = minSup, this is the frequentness probability .

Pi,j(X) Probability that i of the �rst j transactions contain X

P≥i,j(X) Probability that at least i of the �rst j transactions
contain X

Figure 10.3: Summary of notations.

where D occurs in �ve transactions are ignored when using the expected support in

order to evaluate the frequency of an itemset. Indeed, suppose minSup = 3; do we

call {D} frequent? And if so, how certain can we even be that {D} is frequent? By

comparison, consider itemset {G}. This also has an expected support of 3, but its

presence or absence in transactions is more certain. It turns out that the probability

that {D} is frequent is 0.7 and the probability that G is frequent is 0.91. While both

have the same expected support, we can be quite con�dent that {G} is frequent,

in contrast to {D}. An expected support based technique does not di�erentiate

between the two.

The con�dence with which an itemset is frequent is very important for interpreting

uncertain itemsets in a meaningful way. In order to address this problem, this

section formally introduces the concept of probabilistic frequent itemsets (PFIs).

10.3.1 Probabilistic Support

In uncertain transaction databases, the support of an item or itemset cannot be

represented by a unique value, but must be represented by a discrete probability

distribution.

De�nition 10.7. Given an uncertain transaction database T and the set W of

Dr. rer. nat. Dissertation

CHAPTER 10. PROBABILISTIC FREQUENT ITEMSET MINING 219

possible worlds (instantiations) of T , the support probability Pi(X) of an itemset X

is the probability that X has the support i. Formally,

Pi(X) =
∑

wj∈W,(S(X,wj)=i)

P (wj)

where S(X,wj) is the support of X in world wj .

Intuitively, Pi(X) denotes the probability that the support of X is exactly i . The

support probabilities associated with an itemset X for di�erent support values form

the support probability distribution of the support of X.

De�nition 10.8. The probabilistic support of an itemset X in an uncertain trans-

action database T is de�ned by the support probabilities of X (Pi(X)) for all pos-

sible support values i ∈ {0, ..., |T |}. This probability distribution is called Sup-

port Probability Distribution Function (SPDF) . The following statement holds:∑
0≤i≤|T | Pi(X) = 1.0.

Returning to the example of �gure 10.2, �gure 10.4(a) shows the support probability

distribution of itemset {D}.

The number of possible worlds |W | that need to be considered for the computation

of Pi(X) is extremely large. In fact, we have O(2|T |·|I|) possible worlds, where |I|
denotes the total number of items. In the following, this chapter shows how to

compute Pi(X) without materializing all possible worlds.

Lemma 10.9. For an uncertain transaction database T with mutually independent

transactions and any 0 ≤ i ≤ |T |, the support probability Pi(X) can be computed

as follows:

(10.1) Pi(X) =
∑

S⊆T,|S|=i

(
∏
t∈S

P (X ⊆ t) ·
∏

t∈T−S
(1− P (X ⊆ t)))

Note that the transaction subset S ⊆ T contains exactly i transactions.

Proof. The transaction subset S ⊆ T contains i transactions. The probability of a

world wj where all transactions in S containX and the remaining |T−S| transactions

Florian Verhein

220 10.3. PROBABILISTIC FREQUENT ITEMSETS

0 35

0,4

0,45

Pi ({D})

0,2

0,25

0,3

0,35

0

0,05

0,1

0,15

support i

0

0 1 2 3 4 5 6

(a) Support probability distribution of {D}

P
 minSup ({D})

1,2

0 6

0,8

1

0,2

0,4

0,6

minimum support (minSup)

0

0 1 2 3 4 5 6

(b) Frequentness probabilities of {D}

Figure 10.4: Probabilistic support of itemset X = {D} in the uncertain database of
�gure 10.2.

do not contain X is P (wj) =
∏
t∈S P (X ⊆ t) ·

∏
t∈T−S(1 − P (X ⊆ t)). The sum

of the probabilities according to all possible worlds ful�lling the above conditions

corresponds to the equation given in de�nition 10.7.

10.3.2 Frequentness Probability

Recall that the PFIM problem introduced in this chapter considers the probability

that an itemset is frequent.

De�nition 10.10. Let T be an uncertain transaction database and X be an itemset.

P≥i(X) denotes the probability that the support of X is at least i, i.e. P≥i(X) =∑|T |
k=i Pk(X). For a given minimal support minSup ∈ {0, . . . , |T |}, the probability

P≥minSup(X), called the frequentness probability of X, denotes the probability that

the support of X is at least minSup.

Figure 10.4(b) shows the frequentness probabilities of {D} for all possible minSup

values in the database of �gure 10.2. For example, the probability that {D} is

frequent when minSup = 3 is approximately 0.7, while its frequentness probability

when minSup = 4 is approximately 0.3.

The intuition behind P≥minSup(X) is to show how con�dent one can be that an

itemset is frequent. With this policy, the frequentness of an itemset becomes

subjective and the decision about which candidates should be reported to the user

depends on the application. Hence, this chapter uses the minimum frequentness

probability τ as a user de�ned parameter. Some applications may need a low τ ,

Dr. rer. nat. Dissertation

CHAPTER 10. PROBABILISTIC FREQUENT ITEMSET MINING 221

while in other applications only highly con�dent results should be reported (high

τ).

In the possible worlds model, P≥i(X) =
∑

wj∈W :(S(X,wj)≥i) P (wj). This can be

computed according to Equation 10.1 by

(10.2) P≥i(X) =
∑

S⊆T,|S|≥i

(
∏
t∈S

P (X ⊆ t) ·
∏

t∈T−S
(1− P (X ⊆ t))).

Hence, the frequentness probability can be calculated by enumerating all possible

worlds satisfying the minSup condition through the direct application of Equation

10.2. This naive approach is very ine�cient however and can be sped up signi�cantly.

First, note that typically minSup << |T | and the number of worlds with support i

is at most

(
|T |
i

)
. Hence, enumeration of all worlds w in which the support of X is

greater than minSup is much more expensive than enumerating those where the sup-

port is less than minSup. Using the following easily veri�ed lemma, the frequentness

probability can be computed exponentially in minSup << |T |.

Lemma 10.11. P≥i(X) = 1−
∑

S⊆T :|S|<i(
∏
t∈S P (X ⊆ t) ·

∏
t∈T−S(1−P (X ⊆ t))).

Despite this improvement, the complexity of the above approach, called Basic in the

experiments, is still exponential with respect to the number of transactions. Section

10.4 describes this can be reduced to linear time.

10.4 E�cient Computation of Probabilistic Frequent Item-

sets

This section presents the dynamic programming approach, which avoids the enu-

meration of possible worlds in calculating the frequentness probability and the sup-

port distribution. It is based on the Poisson binomial recurrence. This section also

presents probabilistic �lter and pruning strategies which further improve the run

time.

10.4.1 E�cient Computation of Probabilistic Support

The key to calculating the frequentness probability e�ciently is to consider the prob-

lem in terms of sub-problems. First, appropriate de�nitions are required;

Florian Verhein

222
10.4. EFFICIENT COMPUTATION OF PROBABILISTIC FREQUENT

ITEMSETS

De�nition 10.12. The probability that i of j transactions contain itemset X is

Pi,j(X) =
∑

S⊆Tj :|S|=i

(
∏
t∈S

P (X ⊆ t) ·
∏

t∈Tj−S
(1− P (X ⊆ t)))

where Tj = {t1, ..., tj} ⊆ T is the set of the �rst j transactions. Similarly, the

probability that at least i of j transactions contain itemset X is

P≥i,j(X) =
∑

S⊆Tj :|S|≥i

(
∏
t∈S

P (X ⊆ t) ·
∏

t∈Tj−S
(1− P (X ⊆ t)))

Note that P≥i,|T |(X) = P≥i(X), the probability that at least i transactions in the en-

tire database containX. The key idea is to split the problem of computing P≥i,|T |(X)

into smaller problems P≥i,j(X), j < |T |. This can be achieved as follows. Given a

set of j transactions Tj = {t1, ..., tj} ⊆ T , if we assume that transaction tj contains

itemset X, then P≥i,j(X) is equal to the probability that at least i− 1 transactions

of Tj\{tj} contain X. Otherwise, P≥i,j(X) is equal to the probability that at least i

transactions of Tj\{tj} contain X. By splitting the problem in this way, the recur-

sion in lemma 10.13 can be used to compute P≥i,j(X) by means of the paradigm of

dynamic programming.

Lemma 10.13. P≥i,j(X) =

P≥i−1,j−1(X) · P (X ⊆ tj) + P≥i,j−1(X) · (1− Pj(X ⊆ tj))

where

P≥0,j(X) = 1 ∀.0 ≤ j ≤ |T |, P≥i,j = 0 ∀.i > j

The above dynamic programming scheme is an adaption of a technique previously

used in the context of probabilistic top-k queries by Kollios et. al [109].

Proof. P≥i,j(X) =
∑j

k=i Pk,j(X)
[Kollios et al]

=∑j
k=i Pk−1,j−1(X)·P (X ⊆ tj)+

∑j
k=i Pk,j−1(X)·(1−P (X ⊆ tj))

[P≥i,j=0 ∀.i>j]
= P (X ⊆

tj)·
∑j−1

k=i Pk−1,j−1(X) +·(1−P (X ⊆ tj))·
∑j−1

k=i Pk,j−1(X)= P (X ⊆ tj)·P≥i−1,j−1(X)+

(1− P (X ⊆ tj)) · P≥i,j−1(X).

Using this result, it is possible to e�ciently compute the frequentness probability

of itemset X by calculating the cells shown in �gure 10.5, where the entry in the

Dr. rer. nat. Dissertation

CHAPTER 10. PROBABILISTIC FREQUENT ITEMSET MINING 223

ith row and jth column is P≥i,j(X). According to lemma 10.13, the probabilities

P≥i−1,j−1(X) and P≥i,j−1(X) are required to compute P≥i,j(X) . That is, the entry

to the left and the entry to the lower left of P≥i,j(X). Since by de�nition P≥0,j(X) =

1 : 0 ≤ j ≤ |T | (it is certain that the support is at least 0) and P≥i,j(X) = 0 : i > j

(the support can not be greater than the number of transactions), the computation

begins by computing entry P≥1,1(X). P≥1,j(X) can then be computed by using the

previously computed P≥1,j−1(X). P≥1,j(X) can in turn be used to compute P≥2,j(X)

and so on. Note that since the target value is P≥minSup,|T |(X), in each row i of the

matrix in �gure 10.5, j only needs to vary from i to |T | −minSup+ i. Larger values

of j are not required for the computation of PminSup,|T |, and smaller values are not

required either. This approach continues as shown by the dotted lines in �gure 10.5

until i = minSup and j = |T | and we obtain P≥minSup,|T |(X); the frequentness

probability (de�nition 10.10).

Lemma 10.14. The computation of the frequentness probability P≥minSup requires

at most O(|T | ∗minSup) = O(|T |) time and at most O(|T |) space.

Proof. Using the dynamic computation scheme as shown in �gure 10.5, the number

of computations is bounded by the size of the depicted matrix. The matrix contains

|T | ∗minSup cells. Each cell requires an execution of the equation in lemma 10.13,

which is performed in O(1) time. Note that a matrix is used here for illustration

purpose only. The computation of each probability Pi,j(X) only requires information

stored in the current line and the previous line to access the probabilities Pi−1,j−1(X)

and Pi,j−i(X) . Therefore, only these two lines (of length |T | −minSup + 1) need

to be preserved requiring O(|T |) space (actually, a trick can be used so that only

one line is required). Additionally, the probabilities P (X ⊆ tj) have to be stored,

resulting in a total of O(|T |) space.

10.4.1.1 Certainty Optimisation or �0-1-Optimisation�

It is possible to save computation time whenever an itemset is certain in a trans-

actions. If a transaction tj ∈ T contains itemset X with a probability of zero,

i.e. P (X ⊆ tj) = 0, transaction tj can be ignored for the frequentness probability

computation because P≥i,j(X) = P≥i,j−1(X) holds (lemma 10.13). Ignoring these

transactions can be thought of as using a subset T ′ ⊂ T of the transactions. Further,

note that if |T ′| is less than minSup, then X can be pruned immediately since, by

de�nition, P≥minSup,T ′ = 0 if minSup > |T ′|. That is, there are not enough transac-

tions left in which X could appear for the support to reach minSup. The dynamic

Florian Verhein

224
10.4. EFFICIENT COMPUTATION OF PROBABILISTIC FREQUENT

ITEMSETS

Figure 10.5: Dynamic computation scheme.

computation scheme can also omit transactions tj where P (X ⊆ tj) = 1 because

then P≥i,j(X) = P≥i−1,j−1(X). Therefore, if a transaction tj contains X with a

probability of 1, then the jth column can be omitted if minSup is reduced by one in

order to compensate for this known-for-certain support.

As a consequence of these observations, the computation of the frequentness prob-

ability only has to consider uncertain entries in the database. This trick is called

�certainty optimisation� or �0-1-optimization�.

10.4.2 Probabilistic Filter Strategies

To further reduce the computational cost, probabilistic �lter strategies are introduced

which reduce the number of probability computations required. The probabilistic

�lter strategies exploit the following monotonicity criteria:

10.4.2.1 Monotonicity Criteria

If the minimum support required (i) is increased, then the frequentness probability

of an itemset decreases.

Lemma 10.15. P≥i,j(X) ≥ P≥i+1,j(X).

Proof. P≥i+1,j(X) = P≥i,j(X)− Pi+1,j(X) ≤ P≥i,j(X) using de�nition 10.10.

This result is intuitive since the predicate �the support is at least i+ 1� implies �the

support is at least i� and hence the second event is at least as likely as the �rst.

Dr. rer. nat. Dissertation

CHAPTER 10. PROBABILISTIC FREQUENT ITEMSET MINING 225

Figure 10.6: Visualisation of the pruning criterion. The computation can be pruned
whenever a value P≥minSup−d,|T |−d(X), 1 ≤ d ≤ minSup is less than τ .

The next criterion says that an extension of the uncertain transaction database leads

to an increase of the frequentness probability of an itemset.

Lemma 10.16. P≥i,j(X) ≤ P≥i,j+1(X).

Proof. P≥i,j+1(X) = P≥i−1,j(X) ·P (X ⊆ tj+1)+P≥i,j(X) ·(1−P (X ⊆ tj+1))
Lemma
≥

P≥i,j(X) ·P (X ⊆ tj+1)+P≥i,j(X) ·(1−P (X ⊆ tj+1)) = P≥i,j(X) using lemma 10.13

in the �rst = and lemma 10.15 for the �rst ≥.

The intuition behind this lemma is that one more transaction could increase the

support of an itemset, since it could exist in that transaction. Putting these results

together;

Lemma 10.17. P≥i,j(X) ≥ P≥i+1,j+1(X).

Proof. P≥i+1,j+1(X) = P≥i,j(X) · P (X ⊆ tj+1) + P≥i+1,j(X)(1 − P (X ⊆ tj+1)) ≤
P≥i,j(X) · P (X ⊆ tj+1) + P≥i,j(X)(1− P (X ⊆ tj+1)) = P≥i,j using lemma 10.13 in

the �rst = and lemma 10.15 in the �rst ≤.

The next section describes how these monotonicity criteria can be exploited to prune

the frequentness probability computation.

10.4.2.2 Pruning Criterion

Lemma 10.17 can be used to quickly identify non-frequent itemsets. Figure 10.6

shows the dynamic programming scheme for an itemset X. Keep in mind that

Florian Verhein

226 10.5. PROBABILISTIC FREQUENT ITEMSET MINING (PFIM)

the goal is to compute P≥minSup,|T |(X). Lemma 10.17 states that the probabilities

P≥minSup−d,|T |−d(X), 1 ≤ d ≤ minSup (highlighted in �gure 10.6), are conservative

bounds of P≥minSup,|T |(X). Thus, if any of the probabilities P≥minSup−d,|T |−d(X), 1 ≤
d ≤ minSup is lower than the user speci�ed parameter τ , then the computation can

be immediately pruned since it is already clear that X cannot be a PFI.

10.5 Probabilistic Frequent Itemset Mining (PFIM)

The previous section section showed how to e�ciently identify whether a given item-

set X is a probabilistic frequent itemset (PFI). This section shows how to �nd all

probabilistic frequent itemsets in an uncertain transaction database. Traditional fre-

quent itemset mining is based on support pruning by exploiting the anti-monotonic

property of support: S(X) ≤ S(Y) where S(X) is the support of X and Y ⊆ X. In

uncertain transaction databases however, support is de�ned by a probability distri-

bution and itemsets are mined according to their frequentness probability. It turns

out that the frequentness probability is anti-monotonic:

Lemma 10.18. ∀Y ⊆ X : P≥minSup(X) ≤ P≥minSup(Y). In other words, all subsets

of a probabilistic frequent itemset are also probabilistic frequent itemsets.

Proof. P≥i(X) = 1
|W |
∑|W |

i=1 P (wi) · IS(X,wi)≥minSup, since the probability is de�ned

over all possible worlds. Here, IZ is an indicator variable that is 1 when z = true

and 0 otherwise. In other words, P≥i(X) is the relative number of worlds in which

S(X) ≥ minSup holds, where each occurrence is weighted by the probability of

the world occurring. Since world wi corresponds to a normal transaction database

with no uncertainty, S(X,wi) ≤ S(Y,wi)∀Y ⊆ X due to the anti-monotonicity of

support. Therefore, IS(X,wi)≥minSup ≤ IS(Y,Wi)≥minSup∀i ∈ |W |, ∀Y ⊆ X and, thus,

P≥i(X) ≤ P≥i(Y), ∀Y ⊆ X.

The contra-positive of lemma 10.18 can be used to prune the search space for PFIs.

That is, if an itemset Y is not a PFI (P≥minSup(Y) < τ), then all itemsets X ⊇ Y

cannot be probabilistic frequent itemsets either.

The �rst algorithm presented in this chapter is based on the combination of tradi-

tional frequent itemset mining methods and the PFI identi�cation method described

earlier. In particular, a probabilistic frequent itemset mining (PFIM) approach is

proposed based on the Apriori algorithm ([11]). Like Apriori, the method iteratively

generates the PFIs using a bottom-up strategy. Each iteration is performed in two

Dr. rer. nat. Dissertation

CHAPTER 10. PROBABILISTIC FREQUENT ITEMSET MINING 227

steps, a join step for generating new candidate PFIs and a pruning step for calculat-

ing the frequentness probabilities and identifying the PFIs from the set of candidates.

In turn, these are used to generate candidates in the next iteration. Lemma 10.18 is

exploited to prune the search space. The data set is stored in memory in a way that

allows fast access to the P (xi ∈ tj); in particular the vertical database layout [88] can
be exploited e�ectively. This avoids the subset checking problem in the traditional

Apriori algorithm. The algorithm is called ProApriori in this thesis.

10.6 Incremental Probabilistic Frequent Itemset Mining

(I-PFIM)

Probabilistic frequent itemset mining (PFIM) allows the user to control the con�-

dence of the results using τ . However, since the number of results also depends on τ ,

it may prove di�cult for a user to correctly specify this parameter without additional

domain knowledge. Furthermore, it can be expected that the user is interested in

receiving the best results �rst. Therefore, this section shows how to e�ciently solve

the following problems, which do not require the speci�cation of τ ;

• Top-k probabilistic frequent itemsets query: return the k itemsets that have the

highest frequentness probability, where k is speci�ed by the user.

• Incremental ranking queries: successively return the itemsets with the highest

frequentness probability, one at a time.

The problems are collectively called incremental PFIM (I-PFIM).

10.6.1 Incremental Probabilistic Frequent Itemset Mining Algo-

rithm

The I-PFIM method computes the next most probable frequent itemset in each

step, as shown in algorithm 10.1. The algorithm keeps an Active Itemsets Queue

(AIQ) that is initialized with all one-item sets. The AIQ is sorted by frequentness

probability in descending order. Without loss of generality, itemsets are represented

in lexicographical order to avoid generating them more than once. In each iteration

of the algorithm, i.e. each call of the getNext()-function, the �rst itemset X in the

queue is removed. X is the next most probable frequent itemset because all other

itemsets in the AIQ have a lower frequentness probability due to the order on the

AIQ, and all of X's super-sets (which have not yet been generated) cannot have a

Florian Verhein

228
10.6. INCREMENTAL PROBABILISTIC FREQUENT ITEMSET MINING

(I-PFIM)

higher frequentness probability due to lemma 10.18. Before X is returned to the

user, it is re�ned in a candidate generation step. In this step, super-sets of X are

generated by adding single items x to the end of X. This is done in such a way that

the lexicographical order of X ∪x is maintained, thus avoiding duplicates. These are

then added to the AIQ after their respective frequentness probabilities are computed

(section 10.4). The user can continue calling the getNext()-function until he or she

has all required results. Note that during each call of the getNext()-function, the size

of the AIQ increases by at most |I|. The maximum size of the AIQ is 2|I|, which is

no worse than the space required to sort the output of a non-incremental algorithm.

10.6.2 Top-k Probabilistic Frequent Itemsets Query

It is likely that relatively few top probabilistic frequent itemsets are required in

practice. For instance, the store in Example 10.1 may want to know the top k = 100.

Top-k most probable frequent itemsets queries can be e�ciently computed by using

algorithm 10.1 and constraining the length of the AIQ to k − m, where m is the

number of highest frequentness probability items already returned. Not that this

also provides a strict bound on the space required. Any itemsets that �fall o�� the

end of the AIQ can safely be ignored. The rational behind this approach is that for

an itemset X at position p in the AIQ, p − 1 itemsets with a higher frequentness

probability than X exist in the AIQ. Additionally, any of the m itemsets that have

already been returned must have a higher frequentness probability. Consequently,

the top-k algorithm constrains the size of the initial AIQ to k and reduces its size

by one each time a result is reported. The algorithm terminates once the size of the

AIQ reaches zero.

Algorithm 10.1 Incremental probabilistic frequent itemset mining algorithm.

//initialise

AIQ = new PriorityQueue

for each item x ∈ I
AIQ.add([x,P≥minSup(x)]);

//return the next probabilistic frequent itemset

getNext() returns itemset X
X =AIQ.removeFirst();

for each x ∈ I \X : x = lastInLexiographicalOrder(X ∪ x)
AIQ.add([X ∪ x,P≥minSup(X ∪ x)]);

Dr. rer. nat. Dissertation

CHAPTER 10. PROBABILISTIC FREQUENT ITEMSET MINING 229

10.7 Experimental Evaluation

This section present e�ciency and e�cacy experiments. First, the algorithm and

all optimisations and variations for computing the frequentness probability (sections

10.3 and 10.4) are evaluated and compared. Then, the performance and utility of

the PFIM algorithm (ProApriori) and the incremental PFIM algorithm (sections

10.5 and 10.6) are evaluated.

Additional experiments can be found in chapter 13, where ProApriori is compared

to algorithms developed in subsequent chapters on large, well known arti�cial and

real databases.

10.7.1 Evaluation of the Frequentness Probability Calculations

The frequentness probability calculation methods were evaluated on several arti�cial

data sets with varying database sizes |T | (up to 10, 000, 000) and densities. The

density of an item denotes the expected number of transactions in which an item

may be present (i.e. where its existence probability is in (0, 1]). The probabilities

themselves were drawn from a uniform distribution. Note that the density is directly

related to the degree of uncertainty. If not stated otherwise, a database consisting of

10, 000 uncertain transactions, 20 items, a density of 0.5 and frequentness probability

threshold τ = 0.9 were used.

The following notations are used for the frequentness probability calculation algo-

rithms:

Basic: basic probability computation (section 10.3.2)

Dynamic: dynamic probability computation (section 10.4.1)

Dynamic+P: dynamic probability computation with pruning (section 10.4.2)

DynamicOpt: dynamic probability computation utilizing certainty optimisation;

�0-1-optimization� (section 10.4.1) and

DynamicOpt+P: 0-1-optimized dynamic probability computation method with

pruning.

10.7.1.1 Scalability

Figure 10.7 shows the scalability of the frequentness probability calculation ap-

proaches when the number of transactions, |T |, are varied. The run time of the

Florian Verhein

230 10.7. EXPERIMENTAL EVALUATION

(a) minSup = 10

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0
5
0
0

1
0
0
0

1
5
0
0

2
0
0
0

2
5
0
0

3
0
0
0

3
5
0
0

4
0
0
0

4
5
0
0

5
0
0
0

5
5
0
0

6
0
0
0

6
5
0
0

7
0
0
0

7
5
0
0

8
0
0
0

8
5
0
0

9
0
0
0

9
5
0
0

1
0
0
0
0

R
u
n
ti
m
e

 [
m
s]

Database size

Dynamic

Dynamic+P

(b) minSup = 25%

0

500

1000

1500

2000

2500

0
5
0
0

1
0
0
0

1
5
0
0

2
0
0
0

2
5
0
0

3
0
0
0

3
5
0
0

4
0
0
0

4
5
0
0

5
0
0
0

5
5
0
0

6
0
0
0

6
5
0
0

7
0
0
0

7
5
0
0

8
0
0
0

8
5
0
0

9
0
0
0

9
5
0
0

1
0
0
0
0

R
u
n
ti
m
e

 [
m
s]

Database size

Dynamic

Dynamic+P

(c) minSup = 50%

0

200

400

600

800

1000

1200

1400

1600

1800

0
5
0
0

1
0
0
0

1
5
0
0

2
0
0
0

2
5
0
0

3
0
0
0

3
5
0
0

4
0
0
0

4
5
0
0

5
0
0
0

5
5
0
0

6
0
0
0

6
5
0
0

7
0
0
0

7
5
0
0

8
0
0
0

8
5
0
0

9
0
0
0

9
5
0
0

1
0
0
0
0

R
u
n
ti
m
e

 [
m
s]

Database size

Dynamic

Dynamic+P

(d) minSup = 75%

Figure 10.7: Run time evaluation of the frequentness probability computation algo-
rithms with respect to the database size; |T |. Results shown for �xed minSup = 10
and for minSup as percentage of |T |.

Basic approach increases exponentially in minSup as explained in section 10.3.2,

and is therefore not applicable for a |T | > 50 as can be seen in �gure 10.7(a). The

proposed approachesDynamic+P andDynamicOpt+P scale linearly as expected

when using a constant minSup value (�gure 10.7(a)). The 0-1-optimization has an

impact on the run time whenever there is some certainty in the database. The per-

formance gain of the pruning strategies depends on the minSup value. In �gures

10.7(b), 10.7(c) and 10.7(d) the scalability of Dynamic and Dynamic+P is shown

for di�erent minSup values expressed as percentages of |T |. Note that the run time

complexity of O(|T | ∗minSup) becomes O(|T |2) if minSup is chosen relative to the

database size. Also, it can be observed that the higher the minSup, the higher the

di�erence between Dynamic and Dynamic+P. This occurs since a higher minSup

causes the frequentness probability of itemsets to fall overall, thus allowing earlier

pruning.

Dr. rer. nat. Dissertation

CHAPTER 10. PROBABILISTIC FREQUENT ITEMSET MINING 231

10.7.1.2 E�ect of the Density

This section evaluates the e�ectiveness of the pruning strategy with respect to the

density of the database. minSup is important here too, so results for di�erent values

are reported in �gure 10.8. τ was 0.95 in these experiments. The pruning works well

for data sets with low density and has no e�ect on the run time for higher densities.

The reason is straightforward; the higher the density, the higher the probability

that a given itemset is frequent and thus cannot be pruned. minSup also has an

e�ect: a larger minSup decreases the probability that itemsets are frequent and

therefore increases the number of computations that can be pruned. The break-even

point between pruning and non-pruning in the experiments is when the density is

approximately twice the minSup value, since, due to the method of creating the

data sets, this corresponds to the expected support. At this value, all itemsets are

expected to be frequent.

Overall, with reasonable parameter settings the pruning strategies achieve a signi�-

cant speed-up for the identi�cation of probabilistic frequent itemsets.

10.7.1.3 E�ect of minSup

Figure 10.9 shows the in�uence of minSup on the run time when using di�erent

densities. The run time of Dynamic directly correlates with the size of the dynamic

computation matrix (�gure 10.5). A low minSup value leads to few matrix rows

which need to be computed, while a high minSup value leads to a slim row width

(see �gure 10.5). The total number of matrix cells to be computed is the number of

rows times their width; minSup ∗ (|T | −minSup+ 1), which obtains it's maximum

when minSup = |T |+1
2 . As long as the minSup value is below the expected support

value, the approach with pruning shows similar characteristics; in this case, almost

all item(sets) are expected to be frequent. However, the speed-up due to the pruning

rapidly increases for minSup above this break-even point.

10.7.2 Evaluation of the Probabilistic Frequent Itemset Mining Al-

gorithms

This section evaluates ProApriori and the incremental PFM algorithm. Experiments

were run on a subset of the real-world data set accidents5, denoted by ACC. It

consists of 340, 184 transactions and 572 items whose occurrences in transactions

5The accidents data set [42] was derived from the Frequent Itemset Mining Data set Repository
(http://�mi.cs.helsinki.�/data/)

Florian Verhein

232 10.7. EXPERIMENTAL EVALUATION

0

100

200

300

400

500

600

700

800

900

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
u
n
ti
m
e

 [
m
s]

Density

Dynamic

Dynamic+P

DynamicOpt+P

DynamicOpt

(a) minSup = 10%

0

500

1000

1500

2000

2500

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
u
n
ti
m
e

 [
m
s]

Density

Dynamic

Dynamic+P

DynamicOpt+P

DynamicOpt

(b) minSup = 25%

Dynamic

Dynamic+P

DynamicOpt+P

DynamicOpt

0

500

1000

1500

2000

2500

3000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
u
n
ti
m
e

 [
m
s]

Density

(c) minSup = 50%

0

500

1000

1500

2000

2500

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
u
n
ti
m
e

 [
m
s]

Density

Dynamic

Dynamic+P

DynamicOpt+P

DynamicOpt

(d) minSup = 75%

Figure 10.8: Run time evaluation of frequentness probability calculations with re-
spect to the database's density.

were randomized: With a probability of 0.5, each item appearing for certain in a

transaction was assigned a value drawn from a uniform distribution in (0, 1]. In �gure

10.10, ProApriori denotes the Apriori-based PFIM algorithm Incremental PFIM

is the incremental probabilistic frequent itemset mining algorithm.

Top-k queries were performed on the �rst 10, 000 transactions of ACC usingminSup =

500 and τ = 0.1 (specifying a τ is not necessary but if set, it can be used for pruning).

Figure 10.10(a) shows the result of Incremental PFIM. Note that the frequent-

ness probability of the resulting itemsets is monotonically decreasing. In contrast,

ProApriori returns probabilistic frequent itemsets in the classic way; in descend-

ing order of their size, i.e. all itemsets of size one are returned �rst, etc. While

both approaches return the same PFIs, ProApriori returns them in an arbitrary

frequentness probability order, while Incremental PFIM returns the most relevant

itemsets �rst.

Dr. rer. nat. Dissertation

CHAPTER 10. PROBABILISTIC FREQUENT ITEMSET MINING 233

0

500

1000

1500

2000

2500

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
u
n
ti
m
e

 [
m
s]

Minimum support

Dynamic

Dynamic+P

(a) Density = 0.2

0

500

1000

1500

2000

2500

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
u
n
ti
m
e

 [
m
s]

Minimum support

Dynamic

Dynamic+P

(b) Density = 0.5

Figure 10.9: Run time evaluation with respect to minSup.

(a) Output: AP vs. IP (b) E�ectiveness of ranking queries

Figure 10.10: E�ectiveness of the Incremental PFIM approach.

Next, ranking queries were performed on the �rst 100, 000 itemsets (�gure 10.10(b)).

In this experiment, the aim was to �nd the m-itemset X with the highest frequency

probability of all m-itemsets, where m ∈ {2, 3, 4}. The number of itemsets returned

before the target X is returned was measured. It can be seen that the speed up factor

for ranking (and thus top-k queries) is several orders of magnitude in comparison to

a non-incremental approach, and increases exponentially in the length of requested

itemset length. The reason is that a PFIM algorithm such as ProApriori must

return all frequent itemsets of length m − 1 before processing itemsets of length

m, while Incremental PFIM is able to quickly rank itemsets in order of their

frequentness probability, therefore leading to better quality results that are delivered

to the user much earlier.

Florian Verhein

234 10.8. CONCLUSION

10.8 Conclusion

The Probabilistic Frequent Itemset Mining (PFIM) problem is to �nd itemsets in

an uncertain transaction database that are (highly) likely to be frequent. The work

in this chapter (and the paper it is based on, [18]) is the �rst to address this prob-

lem, and does so using a framework built on possible world semantics. This chapter

theoretically and experimentally showed that the proposed dynamic computation

technique is able to compute the exact support probability distribution and the fre-

quentness probability of an itemset in linear time in the number of transactions.

This is in comparison to the exponential run time of a non-dynamic approach. Fur-

thermore, it was demonstrated that various probabilistic pruning strategies further

improved the run time. In addition, a PFIM algorithm � ProApriori � was presented

to mine all probabilistic frequent itemsets (PFIs). Finally, the incremental PFIM

problem was introduced, where the most likely frequent itemsets are mined and re-

ported incrementally. This was used to solve problems such as querying the top-k

PFIs.

Dr. rer. nat. Dissertation

Chapter 11

Signi�cant Frequent Itemset

Mining

Frequent itemset mining in uncertain transaction databases (UTDBs) se-

mantically and computationally di�ers from traditional techniques applied

to standard �certain� databases since the support of an itemset is de�ned by

a probability distribution rather than a single scalar.

This chapter introduces and solves the Signi�cant Frequent Itemset Mining

(SiFIM) problem for UTDBs. An itemset X is signi�cantly frequent if,

given a desired level of signi�cance, we can reject the null hypothesis that

its support is below minSup. This chapter formulates both a parametric and

a non-parametric (exact) test to achieve this. The non-parametric approach

is an adaptation of the PFIM method in chapter 10.

An incremental signi�cant frequent itemset mining method is also proposed,

which may help reduce the e�ects of the multiple tests problem. An extensive

experimental analysis evaluates all methods. Furthermore, the independence

assumption used in PFIM and SiFIM is validated and a demonstration of the

the downsides of the Expected Frequent Itemset Mining (EFIM) method is

provided.

235

236 11.1. INTRODUCTION

11.1 Introduction

It is usually assumed that the items in a transaction are �certain�, that is; an item

is either present or absent. In practice this is not always the case � the presence of

an item may be uncertain. Recall from section 10.1 that such situations may occur

due to inherently noisy data, the addition of noise for privacy protection purposes

[107] or through aggregation of records in order to produce purchase probabilities.

Furthermore, data sets are generated from observations of a process and, even when

the results of those observations are known for certain, they implicitly contain noise

when the underlying process is noisy.

Dealing with uncertain databases is a di�cult but interesting problem. Prior to the

work in chapter 10 ([18]), existing approaches in the literature were based on the

expected support, �rst introduced in [26]. Recall that in this method, itemsets are

considered frequent if the expected support exceeds minSup [25, 26]. Also recall

that this approach e�ectively returns an estimate of whether an object is frequent or

not with no indication of how good this estimate is � in fact, an expected frequent

itemset can be infrequent with high probability.

This chapter builds on chapter 10 and introduces the concept of signi�cant frequent

itemsets. A signi�cant frequent itemset is an itemset where, given a desired level

of signi�cance, we can reject the null hypothesis that its support is below minSup.

This chapter develops the theory and method for both a parametric and a non-

parametric test for determining whether an arbitrary itemset is signi�cantly frequent.

By building on this, it introduces the �rst signi�cant frequent itemset mining (SiFIM)

method that can be used for uncertain, probabilistic or noisy data. The advantage

of this approach is that the user can be con�dent that the reported itemsets are

indeed frequent, thus greatly reducing the risk that frequent itemsets are reported in

error. This can be achieved without much computation overhead in comparison to

the expectation approach. The approach is also used to demonstrate the downsides

of the expected frequent itemset approach; in particular, most expected frequent

itemsets are insigni�cant and can occur by chance alone.

11.1.1 Problem De�nition

An itemset is a frequent itemset if it occurs in at least minSup transactions, where

minSup is a user speci�ed parameter. In uncertain or noisy transaction databases

however, an itemset's support is a probability distribution and in general, one cannot

be sure whether an itemset is frequent or whether it just appears to be frequent by

chance, due to the noise or uncertainty in the database.

Dr. rer. nat. Dissertation

CHAPTER 11. SIGNIFICANT FREQUENT ITEMSET MINING 237

De�nition 11.1. A Signi�cant Frequent Itemset (SFI) is an itemset where we can

reject, at a desired signi�cance level α, the null hypothesis that the support is less

than minSup.

The signi�cance level α is typically 0.05 or 0.01. Intuitively, a signi�cant frequent

itemset has a very high (statistically signi�cant) probability of being frequent (fre-

quentness probability). The problem de�nition is as follows:

De�nition 11.2. Given an uncertain transaction database T , a minimum support

scalar minSup and a signi�cance level α, the Signi�cant Frequent Itemset Mining

Problem (SiFIM) is to �nd all SFIs.

The development of signi�cance tests requires an appropriate probability model to

derive the required approximate and exact distributions. The possible worlds model

introduced in chapter 10 is used for this purpose. The reader may like to refer back

to section 10.1.1 for an explanation and the de�nitions applying to this model, and

�gure 10.3 for a summary of the notation.

11.1.2 Contributions

This chapter makes the following contributions:

• It formally introduces and e�ciently solves the Signi�cant Frequent Itemset

Mining (SiFIM) problem.

• A parametric signi�cance test for �nding signi�cant frequent itemsets is de-

veloped, and its advantages and limitations are investigated. As a side e�ect,

this approach can be adapted to approximately solve the probabilistic frequent

itemset mining problem of chapter 10 in O(|T |) time.

• An e�cient non-parametric signi�cance test is developed. No assumptions

about the distribution of item and itemsets are made, leading to exact p-values.

Exact tests are usually much slower than their parametric counterparts. In-

deed, a straightforward implementation would run in exponential time in the

number of transactions |T |. However, based on the work in chapter 10, a

method is developed that runs in O(|T | ·minSup) time.

• All methods are evaluated experimentally. Furthermore, it is shown that de-

spite the independence assumption made in this and previous work, dependent

Florian Verhein

238 11.2. RELATED WORK

itemsets can still be mined. The shortcomings of the expected support method

is also demonstrated experimentally.

11.1.3 Organisation

The remainder of this chapter is organised as follows: Section 11.2 brie�y surveys

related work and puts the contributions in context. Section 11.3 introduces the model

and signi�cance tests. Section 11.3.1 discusses the independence assumption. Section

11.3.2 presents the parametric signi�cance test, while section 11.3.3 presents the non

parametric (exact) test. An incremental mining method, useful in overcoming the

multiple tests problem, is discussed in section 11.4. Experiments are presented in

section 11.5 and this chapter concludes in section 11.6.

11.2 Related Work

Recall that section 10.2 provided a discussion of work related to frequent itemset

mining in uncertain and probabilistic databases. This section brie�y covers work

speci�c to signi�cant itemset mining, of which there seems to be little.

[114] proposes exact and sampling-based algorithms to �nd likely frequent items in

streaming probabilistic data. In [114], an e�cient approach is presented to �nd

signi�cant frequent items (that is, itemsets of size one) in uncertain databases and

is based on the possible worlds semantics and the X-Relation model. [114] also

proposes sampling-based algorithms to �nd signi�cantly frequent items in streaming

data. The main restriction of [114] is that it is only applicable for itemsets of size

one.

While it is a separate research problem and does not consider uncertain or proba-

bilistic databases, several approaches have been proposed to de�ne and measure the

signi�cance of association rules. For example, [98, 103] �nd signi�cant association

and classi�cation rules based on Fisher's exact test. The approach proposed in [82]

measures the signi�cance of association rules via the chi-squared test of independence

to evaluate correlations among items. Itemsets can be called signi�cant if both the

minimum support and minimum correlation criteria are met. Testing for signi�cant

correlations is a well-known statistical problem, and the reader is referred to to [55]

which gives a closer insight into the theory. In [61] the chi-squared tests are used

for pruning and summarizing association rules. In order to e�ectively prune and

extract meaningful association rules, [87] presents three adaptive Apriori association

rule mining methods. These methods are able to discover itemsets with low and

Dr. rer. nat. Dissertation

CHAPTER 11. SIGNIFICANT FREQUENT ITEMSET MINING 239

Notation Description /

p-value(X)
The p-value of a signi�cance test on whether X is
frequent. p-value(X) = 1− P≥minSup(X).

P̂i(X)
The parametric approximation to the probability
that the support of X is i

P̂≥i(X)
The parametric approximation to the probability
that the support of X is at least i

P̂i,j(X)
The parametric approximation to the probability
that i of the �rst j transactions contain X

ˆP≥i,j(X)
The parametric approximation to the probability
that at least i of the �rst j transactions contain X

Figure 11.1: Additional notation introduced in this chapter. Recall that �gure 10.3
contains the basic notations required for itemset mining in probabilistic databases.
The probabilities listed there are the exact probabilities.

high frequency. There are several further approaches to assessing the signi�cance of

itemsets, including methods using re-sampling-based permutation tests [68], meth-

ods using union-type bounds to estimate probability of an itemset under a random

(Bernoulli) model [106] and methods based on generative models for transactions

in the form of Itemset Generating Models (IGMs). These can be used to formally

connect the process of frequent itemsets discovery with the learning of generative

models [56]. In [33], the �signi�cance� is measured by means of the ratio of actual-

to-baseline frequencies based on a baseline frequency for each itemset. None of the

above work is based on uncertain or probabilistic databases.

11.3 Signi�cant Frequent Itemsets

Recall from section 10.3.1 that, given an uncertain transaction database T and the

set W of possible worlds (instantiations) of T , the support probability Pi(X) of an

itemset X is the probability that X has the support i (de�nition 10.7). Formally,

Pi(X) =
∑

wj∈W,(S(X,wj)=i)

P (wj)

where S(X,wj) is the support of X in world wj and P (wj) is the probability that

world wj exists. Recall that the notations are summarised in �gure 10.3. Figure

11.1 summarises additional notation used in this chapter. The support probabilities

associated with an itemset X for di�erent support values form the support probability

distribution of X (de�nition 10.8).

Florian Verhein

240 11.3. SIGNIFICANT FREQUENT ITEMSETS

In order to test whether an itemset is signi�cantly frequent, the following method-

ology is used. The Null Hypothesis states that an itemset X is not frequent under

the assumption that the items of X are mutually independent. The probability that

the null hypothesis holds is then calculated � p-value(X). The null hypothesis can

be rejected if p-value(X) is low enough. More formally, we have the following two

hypotheses:

• Null hypothesis H0: the support of itemset X is less than minSup.

• Alternative hypothesis H1: the support of itemset X is at least minSup.

The null hypothesis is rejected if the probability is at most α that the itemset X has

a support value at most minSup− 1. Therefore;

De�nition 11.3. The p-value for the signi�cance test on an itemset X under H0 is

p-value(X) = P<minSup(X) :=
∑minSup−1

k=0 Pk(X).

H0 is rejected for itemset X in favour of H1 if p-value(X) < α. If H0 is rejected, X

is called a Signi�cant Frequent Itemset (de�nition 11.1).

11.3.1 Discussion of the Independence Assumption

In previous literature, independence between items is assumed [25, 26] and is justi�ed

by the assumption that the items are observed independently. This chapter considers

this issue more thoroughly.

Under the independence assumption, the probability that an itemset X is contained

in a transaction t ∈ T is

P (X ⊆ t) = Πx∈XP (x ∈ t).

If dependency information among items is supplied, then the corresponding condi-

tional probabilities can be used in the method considered in this chapter1. However,

1For example, assume that two items x and y are mutually dependent and this dependency is
known in advance. Then the probability that the itemset X = {x, y} is contained in a transaction
t ∈ T is

P (X ⊆ t) = P (y ∈ t|x ∈ t) · P (x ∈ t),
where P (y ∈ t|x ∈ t) is the conditional probability that item y is in transaction t under the
assumption that item x is in t.

Dr. rer. nat. Dissertation

CHAPTER 11. SIGNIFICANT FREQUENT ITEMSET MINING 241

it is not practical or necessary. By de�nition, an uncertain transaction databases

lacks the ability to represent dependency information since it records the existence

probability per item per transaction (see de�nitions 10.2 and 10.3). Even if the def-

inition were extended, two problems arise: First, dependency information is di�cult

to collect. Secondly, capturing it would require exponential space, since there are an

exponential number of conditional probabilities amongst a set of items. Hence, in

practice, we have little choice but to assume independence.

The signi�cance test based on the independence assumption helps identify dependen-

cies between items that are inherent in the data. For example, if customers typically

buy a set of products together and do so frequently, then one might expect a de-

pendency between those products for that customer. It actually makes sense that

under the null hypothesis, the occurrence of items in transactions are assumed to

be independent for the purpose of calculating the p-value, since the signi�cance test

methodology involves assuming no relationship between items, but proving other-

wise.

Finally, and perhaps most importantly, the experimental evaluation in section 11.5.3

shows that the dependencies between items are found accurately, despite the use of

the independence assumption. This validates the assumption in practice.

In addition to the assumption that uncertain items in a transaction are mutually in-

dependent, it is also assumed that uncertain transactions are mutually independent.

This is valid in practice. For instance, in a UTDB containing aggregated customer

data, this means that a decision by one customer has no in�uence on another cus-

tomers decisions. In transaction databases without such aggregation, it simply means

the transactions are independent.

11.3.2 Parametric Computation of the p-value

In the possible world model, the occurrence of itemsets are implicitly modeled as

Bernoulli random variables, with the existence probability as the mean of these.

That is, the existence probability �generates� the possible worlds according to the

Bernoulli distribution. Conversely, for the parametric computation the existence

probability is treated as the expected number of worlds in which the itemset is

present.

Therefore, in the model for the parametric test, the occurrence of an itemset X in

transaction t is a Bernoulli random variable with an expected value of P (X ⊆ t)

Florian Verhein

242 11.3. SIGNIFICANT FREQUENT ITEMSETS

and variance P (X ⊆ t) · (1 − P (X ⊆ t)). Note that while these random variables

are independent due to the independence of uncertain transactions, they are not

identically distributed.

The support of an itemset X is simply the sum of these |T | independent (but not
identically distributed) Bernoulli random variables. Call this sum S|T |(X). Since the

expectation of a sum is the sum of the expectations, and the variance of the sum of

uncorrelated variables is the sum of the variances, the following holds:

µX = E(S|T |(X)) =
∑
t∈T

P (X ⊆ t)

σ2X = V ar(S|T |(X)) =
∑
t∈T

P (X ⊆ t) · (1− P (X ⊆ t))

Under the Central Limit Theorem, provided |T | is large enough, S|T |(X) converges

to the Normal distribution. With a continuity correction, this provides a good ap-

proximation. Note that the number of transactions |T | is very large in transaction

databases. In summary:

Lemma 11.4. The support probability distribution of an itemset X is approximated

by the Normal distribution with mean µX and variance σ2X as de�ned above. There-

fore,

P̂≤i(X) =
1

σX
√

2π

∫ i+0.5

−∞
e
− (x−µX)2

2σ2
X

where the i+ 0.5 is the continuity correction to compensate for the fact that S|T |(X)

is discrete.

The p-value is therefore p-value(X) = P̂<minSup(X).

Since the cumulative Normal has no closed form solution, this work uses the Abro-

mowitz and Stegun approximation [4] to evaluate it quickly. The result is a fast

parametric signi�cance test for determining whether an itemset is a signi�cant fre-

quent itemset.

Lemma 11.5. The run time of the parametric test is O(|T |)

Proof. The method requires only the computation of the mean, variance and then the

Abromowitz and Stegun approximation to the cumulative normal distribution.

Dr. rer. nat. Dissertation

CHAPTER 11. SIGNIFICANT FREQUENT ITEMSET MINING 243

While this parametric test works on average and converges as expected, its drawback

is that it can lead to errors in comparison to the exact method for individual itemsets.

These errors can be larger than α, which is problematic. Furthermore, it may not

be strictly anti-monotonic when applied to itemset mining. In the next section, the

non-parametric (exact) method is presented. The advantages of this are that there

is no need to make any assumptions or arguments based on limiting distributions.

The downside is that it takes longer to compute. By adapting the method in chapter

10 however, this chapter shows how to achieve it in O(|T | ·minSup) time.

11.3.3 Non-Parametric Calculation of the (Exact) p-value

In order to calculate the exact (non-parametric) p-value, the possible worlds model

is used. There are no additional assumptions to those in section 11.3.

Recall from section 11.3 that the support probability distribution was de�ned by the

probabilities Pi(X). From de�nition 10.7 we know that these can be calculated by

enumerating the possible worlds P (w). Recall that under the independence assump-

tion, the probability that a w exists is given by:

P (w) =
∏
t∈I

(
∏
x∈t

P (x ∈ t) ∗
∏
x/∈t

(1− P (x ∈ t)))

To compute p-value(X), it is possible to simply sum the probabilities of all the

worlds where support of itemset X is at most i:

p-value(X) = P<minSup(X) =
∑

w∈W :(S(X,w)<i)

P (w)

Unfortunately, the number of possible worlds |W | that need to be considered using

this enumeration approach is large since there are O(2|T |·|I|) possible worlds, where

I is the set of items.

Note that computing the p-value is equivalent to computing P≥minSup(X) since

p-value(X) = P<minSup(X) = 1 − P≥minSup(X). It is therefore possible to apply

the results of chapter 10: P≥i(X) can be computed very e�ciently in O(|T |) using

an adaption of the Poisson Binomial Recurrence.

P≥i(X) = P≥i,T (X) = P≥i−1,T\t(X) · P (X ⊆ t) + P≥i,T\t(X) · (1− P (X ⊆ t))

Florian Verhein

244 11.4. INCREMENTAL SIGNIFICANT FREQUENT ITEMSET MINING

P≥0,T ′(X) = 1, P≥i,T ′(X) = 0 ∀.i > |T ′|∀.T ′ ⊆ T

where P≥i,T ′(X) denotes the probability that the support of itemset X is at least i

in the set of transactions T ′ ⊆ T .

As a consequence of this adaptation of PFIM, it should also be clear that the SiFIM

problem is anti-monotonic.

11.4 Incremental Signi�cant Frequent Itemset Mining

The SiFIM approach allows the user to control the level of signi�cance required by

using the parameter α. However, since the number of results also depends on α,

it may prove di�cult for a user to correctly specify this parameter; depending on

minSup, even a reasonable α = 0.01 may yield too many results.

More importantly, if the user wishes to take the multiple tests problem into account

to keep the false positive rate constant (according to their experimental conditions),

for instance by adjusting α using the Bonferroni adjustment [3], then the number of

itemsets tested is critical. When one performs more than a single hypothesis test,

α can no longer be interpreted as the probability that the test reports a signi�cant

result by chance. The more tests one performs, the higher the likelihood that one

of those tests will report a signi�cant result by chance and therefore the lower the

signi�cance of the hypothesis that was labeled signi�cant.

Solving the following problems do not require the speci�cation of α and limit the

e�ect of the multiple tests problem by allowing the user complete control over the

number of signi�cant itemsets mined. The number of itemsets tested (which enables

adjustment for the multiple tests problem) can also be output.

• Top-k signi�cant frequent itemsets query: return the k itemsets that are fre-

quent at the highest level of signi�cance, where k is speci�ed by the user.

• Incremental ranking queries: successively return the itemsets in increasing or-

der of their p-value. That is, return the most signi�cant frequent itemsets one

at a time.

Both these problems can be solved by adapting the methods in section 10.6. In

particular, the AIQ is now sorted by the p-value of the corresponding SiFIMs in

increasing order.

Please note that a complete treatment of the multiple tests problem and how to

overcome it is beyond the scope of this chapter and depends on the users needs

Dr. rer. nat. Dissertation

CHAPTER 11. SIGNIFICANT FREQUENT ITEMSET MINING 245

and experimental setup. However, the Bonferroni adjustment is a commonly used

method that is applicable to the current problem.

11.5 Experimental Evaluation

The evaluation begins by demonstrating the problems with using expected frequent

itemsets in UTDBs, which contributes to the motivation for this chapter and indeed

all the chapters in part IV of this thesis. Then, the e�cacy of the parametric method

is evaluated by comparing its calculated p-values to those of the exact method. While

the parametric method is e�ective on average and converges, the convergence can

sometimes be slow and errors larger than α = 0.05 can occur. This motivates the

exact method, which is a little slower. Subsequently, all methods are evaluated in

terms of database properties and sensitivity to parameter settings. Then, the useful-

ness of the incremental signi�cant frequent itemset mining algorithm is demonstrated

using the exact method. Finally, it is demonstrated that the independence assump-

tion does not prevent the method from �nding dependent itemsets. This experiment

therefore validates the independence assumption in part IV of this thesis.

The underlying itemset mining algorithm used is based on Apriori, as was the case

in chapter 10. A number of experiments were performed on arti�cial data sets with

varying database sizes and levels of uncertainty. The degree of uncertainty in is

expressed by the �density� of uncertain items. The density denotes the relative

number of transactions in which the items are uncertain, i.e. have a probability

between zero and one. Unless otherwise stated, these probabilities were drawn from

a uniform distribution. The real data sets is introduced when needed.

11.5.1 Expected vs. Signi�cant Frequent Itemsets

Recall that prior to the work in this thesis, existing approaches dealing with itemset

mining in UTDBs were based on expected support. This section demonstrates that

mining expected frequent itemsets (EFI) returns many insigni�cant itemsets: While

the itemsets have expected support above minSup, the probability that this is the

case can often be so low that it can easily have occurred by chance alone. Indeed, it

is even possible that an itemset with expected support above minSup has a greater

probability of having support below minSup than above it! This can occur when

the support probability distribution is skewed. Usually, with typical values for α, a

Florian Verhein

246 11.5. EXPERIMENTAL EVALUATION

p-value Expected Frequent Itemsets

Itemsets 253

Run time (ms) 6569
(a) Expected frequent itemsets.

Signi�cant Frequent Itemsets (Exact)

p-value 0.05 0.01 0.001

Itemsets 56 17 1

Run time (ms) 48458 15084 11870
(b) Signi�cant frequent itemsets using the exact method.

Signi�cant Frequent Itemsets (Parametric)

p-value 0.05 0.01 0.001

Itemsets 51 14 1

Run time (ms) 710 119 82
(c) Signi�cant frequent itemsets using the parametric method.

Figure 11.2: Number of itemsets mined and run time of the expected frequent item-
sets and signi�cant frequent itemsets methods.

signi�cant frequent itemset is also an expected frequent itemset, though the reverse

does not hold.

A synthetic data set was used, consisting of 10, 000 transactions, 500 items, a density

of 0.1 and minSup = 500. All expected and signi�cant frequent itemsets were mined.

As can be seen from �gure 11.2, there were 253 expected frequent itemsets, but

only 56 (22.1%) of these were signi�cant frequent itemsets at the 0.05 level. At the

0.01 and 0.001 levels, only 17 (6.7%) and 1 (0.4%) were signi�cant, respectively.

Examining the results in more detail, it was found that among the expected frequent

itemsets, some had p-values of 0.48. That is, itemsets that, while reported to be

frequent using EFI, are likely frequent only by chance. Furthermore, there were also

itemsets with exactly the same expected support as these false positives but with a

very low p-value.

Not only does the expected frequent itemset approach yield many false positives,

these false positives also require it to examine more of the search space. For example,

even though the parametric method takes longer per itemset (run time experiments

are given below) than the expected support approach, overall it is faster since it �nds

only the high quality solutions.

Dr. rer. nat. Dissertation

CHAPTER 11. SIGNIFICANT FREQUENT ITEMSET MINING 247

0

0.1

0.2

0.3

0.4

0.5

0.6

0 200 400 600 800 1,000

A
v
e
ra
g
e

 p
!V
a
lu
e

Database Size

Exact

Parametric

(a) minSup = 8%

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 200 400 600 800 1,000

M
e
a
n

 A
b
s
o
lu
te

 E
r
ro
r

Database Size

(b) minSup = 8%

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 200 400 600 800 1,000

A
v
e
ra
g
e

 p
!V
a
lu
e

Database Size

Exact

Parametric

(c) minSup = 9%

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 200 400 600 800 1,000

M
e
a
n

 A
b
s
o
lu
te

 E
r
ro
r

Database Size

(d) minSup = 9%

Figure 11.3: Convergence of the p-value on synthetic data sets (part 1). Continued
in �gure 11.4.

11.5.2 Evaluation of the Parametric Test

In these experiments, the p-value is calculated using the parametric and non-parametric

methods. Experiments were performed on a synthetic and a real data set, as can be

seen in �gure 11.3. The synthetic data set consists of 1, 000 transactions and 100

items, and was created with a density of 0.2. Figures 11.3(a) to 11.4(d) show results

on the synthetic data set. The averages in Figures 11.3(a) to 11.4(b) are calculated

over 100 randomisations of the data set. These �gures show that the parametric

approach converges, but it can take some time for this to happen and the errors can

remain large � i.e. larger than typical signi�cance levels. On average the p-value

returned by the parametric method is higher than the exact value (this is not always

the case for particular itemsets or databases) which results in false negatives rather

than false positives. The e�ect of these di�erences on the overall itemset mining

algorithm can be seen in �gure 11.2, where the parametric method always returns

Florian Verhein

248 11.5. EXPERIMENTAL EVALUATION

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 200 400 600 800 1,000

A
v
e
ra
g
e

 p
!V
a
lu
e

Database Size

Exact

Parametric

(a) minSup = 9.5%

0

0.1

0.2

0.3

0.4

0.5

0.6

0 200 400 600 800 1,000

M
e
a
n

 A
b
s
o
lu
te

 E
r
ro
r

Database Size

(b) minSup = 9.5%

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 200 400 600 800 1,000

p
 V
a
lu
e

Database!Size

Exact

Parametric

(c) Single item, minSup = 9.5%

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 200 400 600 800 1,000

A
b
s
o
lu
te

 E
r
ro
r

Database Size

(d) Single item, minSup = 9.5%

Figure 11.4: Convergence of the p-valueon synthetic data sets (part 2).

fewer signi�cant itemsets than the exact method. Figures 11.4(c) and 11.4(d) show

one particular result (i.e. no averaging). As is to be expected, the error is greater

when the convergence for speci�c itemsets is considered, compared to the average

case.

Figures 11.5(a) and 11.5(b) show the average p-value and mean absolute error com-

puted for a chosen item and averaged over 100 randomisations of the real data set.

Here, the retail data set [21] was used. The �rst 10, 000 transactions were taken and

randomised by converting the probabilities of half the (certain) items to a probabil-

ity uniformly distributed in [0, 1). The parametric method does not perform well on

real data sets. This example was particularly bad. Overall, the parametric method

converges and usually generates reasonable results (on average) once there are many

transactions. Its drawbacks motivate the exact method.

Dr. rer. nat. Dissertation

CHAPTER 11. SIGNIFICANT FREQUENT ITEMSET MINING 249

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2,000 4,000 6,000 8,000 10,000

A
v
e
ra
g
e

 p
!V
a
lu
e

Database Size

Exact

Parametric

(a)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 2,000 4,000 6,000 8,000 10,000

M
e
a
n

 A
b
s
o
lu
te

 E
r
ro
r

Database Size

(b)

Figure 11.5: Real (retail) database, minSup = 2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.
5 1

1.
5 2

2.
5 3

3.
5 4

4.
5 5

A
cc
ur
ac
y,
Co

rr
el
at
io
n

Standard deviation of noise

|T|=1000
|T|=500
|T|=300
|T|=100
Avg Correlation

Figure 11.6: Independence experiment. Accuracy vs database size and noise. The
average correlation between dependent items for a given σ is also shown.

11.5.3 Evaluating the Independence Assumption

This experiment demonstrates the validity of the independence assumption in prac-

tice. A data set was generated with a density of 0.5 containing independent and

dependent itemsets. Probabilities for both were generated by the same uniform

distribution between 0 and 1. In order to generate dependent itemsets of size k,

additive Gaussian noise was added while �copying� an item's probabilities k times.

Equal numbers of dependent and independent itemsets were generated. To evaluate

the accuracy, the incremental mining algorithm was used: the number of dependent

itemsets that were returned by the algorithm in the �rst j itemsets was calculated,

Florian Verhein

250 11.6. CONCLUSION

where j is the number of dependent itemsets created. The results in �gures 11.5 and

11.6 clearly show that, provided the number of transactions is not too low, a very

high accuracy is achieved even when the standard deviation of the noise is increased

substantially. That is, as expected, the methods presented �nd the itemsets that are

dependent, even though it was assumed that they were independent in the signi�-

cance calculations. This result validates the independence assumption made in part

IV of this thesis.

11.6 Conclusion

Prior to the work in chapter 10, existing methods dealing with frequent itemsets

in uncertain transaction databases mine expected frequent itemsets, which is shown

in this chapter to be inadequate as it returns itemsets that may be infrequent with

high probability. This chapter introduced and solved the signi�cant frequent item-

set mining problem. Both parametric (approximate) and non-parametric (exact)

tests were proposed. An extensive experimental section evaluated these methods.

Furthermore, the e�ect of the independence assumption was evaluated and it was

shown that dependent itemsets are mined with high accuracy, despite the indepen-

dence assumption, thus validating this assumption for itemset mining in uncertain

databases.

Dr. rer. nat. Dissertation

Chapter 12

Probabilistic Pattern Growth for

Itemset Mining in Uncertain

Databases

Uncertain transaction databases (UTDBs) consist of sets of existentially

uncertain items. The uncertainty of items in transactions makes traditional

frequent itemset mining techniques inapplicable. This chapter tackles the

Probabilistic Frequent Itemset Mining (PFIM) problem, where all Proba-

bilistic Frequent Itemsets (PFIs) are mined e�ciently.

In this context, this chapter makes the following contributions: The �rst

probabilistic FP-Growth (ProFP-Growth) algorithm and associated proba-

bilistic FP-Tree (ProFP-Tree) are proposed. It is used to mine all probabilis-

tic frequent itemsets in uncertain transaction databases without candidate

generation, resulting in a faster algorithm than the previous state of the

art algorithm proposed in chapter 10. In addition, this chapter proposes

an e�cient technique to compute the support probability distribution of an

itemset using the concept of generating functions. This is an alternative,

and more intuitive approach to the method proposed in chapter 10. An

extensive experimental section evaluates the impact of the proposed tech-

niques and shows that the ProFP-Growth approach is much faster than the

Apriori based algorithm.

251

252 12.1. INTRODUCTION

12.1 Introduction

Mining probabilistic frequent itemsets is a recent and challenging problem [18]. Re-

call that in an uncertain transaction database, the information captured in transac-

tions is uncertain as the existence of an item is associated with a likelihood measure

or existential probability. An example of a small uncertain transaction database is

given in �gure 12.1. This data set will be used as a running example in this chapter.

Recall from section 10.1 that given an uncertain transaction database, it is generally

not possible to determine whether an item or itemset is frequent because it is not cer-

tain whether or not it appears in transactions. In a traditional (certain) transaction

database on the other hand, an algorithm can simply perform a database scan and

count the transactions that include the itemset. Since this approach does not work

in an uncertain transaction database, traditional frequent itemset mining methods

cannot be applied to uncertain databases.

Prior to [18] (on which chapter 10 is based), expected support was used to deal with

uncertain databases [25, 26, 58]. It was shown in chapters 10 and 11 that the use

of expected support in probabilistic databases has signi�cant drawbacks that can

lead to misleading and even incorrect results. The proposed alternative was based

on computing the entire probability distribution of itemsets' support and mining

probabilistic frequent itemsets � itemsets where the probability of being frequent is

high. In chapter 10, this was achieved this in linear time by employing the Poisson

binomial recurrence relation. Chapter 10 adopted an Apriori-like approach to the

PFIM problem, which was based on an anti-monotone Apriori property1 [11] and

candidate generation. However, it is well known that Apriori-like algorithms su�er a

number of disadvantages. First, all candidates generated must �t into main memory

and the number of candidates can become prohibitively large. Secondly, checking

whether a candidate is a subset of a transaction is non-trivial. Finally, the entire

database needs to be scanned multiple times. In uncertain databases, the e�ective

transaction width is typically larger than in a certain transaction database which in

turn can increase the number of candidates generated as well as the resulting space

and time costs.

In certain transaction databases, the FP-Growth algorithm [47, 48] has become the

established alternative. By building an FP-Tree � e�ectively a compressed and highly

indexed structure storing the information in the database � candidate generation

and multiple database scans can be avoided. However, extending this idea to mine

probabilistic frequent patterns in uncertain transaction databases is non-trivial. It

1If if an itemset X is not frequent, then any itemset X ∪ Y is not frequent.

Dr. rer. nat. Dissertation

CHAPTER 12. PROBABILISTIC FREQUENT PATTERN GROWTH 253

Id Transaction

t1 {A : 1.0, B : 0.2, C : 0.5}
t2 {A : 0.1, D : 1.0}
t3 {A : 1.0, B : 1.0, C : 1.0, D : 0.4}
t4 {A : 1.0, B : 1.0, D : 0.5}
t5 {B : 0.1, C : 1.0}
t6 {C : 0.1, D : 0.5}
t7 {A : 1.0, B : 1.0, C : 1.0}
t8 {A : 0.5, B : 1.0}

Figure 12.1: An uncertain transaction database that will be used as a running exam-
ple. The set of items is I = {A,B,C,D}. Each item is associated with its probability
of existing in a transaction. Items with an existence probability of 0 are not recorded.
In this database, the probability that the world exists in which t1 contains items A
and C and t2 contains only item D (and all other transactions are ignored for sim-
plicity) is P (A ∈ t1) ∗ (1 − P (B ∈ t1)) ∗ P (C ∈ t1) ∗ (1 − P (A ∈ t2) ∗ P (D ∈ t2) =
1.0 · 0.8 · 0.5 · 0.9 · 1.0 = 0.36.

should be noted that all previous extensions of FP-Growth to uncertain databases

used the expected support approach [7, 57], which is much easier to adapt to FP-

Growth since it is based on a single value, not an entire probability distribution.

This chapter proposes a compact data structure called the probabilistic frequent

pattern tree (ProFP-tree) which compresses probabilistic databases and allows the

e�cient extraction of the existence probabilities required to compute the support

probability distribution and frequentness probability. Additionally, this chapter pro-

poses the novel ProFP-Growth algorithm for mining all probabilistic frequent item-

sets without candidate generation.

12.1.1 Problem De�nition and Data Model

This chapter solves the Probabilistic Frequent Itemset Mining (PFIM) problem (def-

inition 10). Like chapter 10, it focuses on the two distinct problems of e�ciently

calculating the support probability distribution (de�nition 10.8) and e�ciently ex-

tracting all probabilistic frequent itemsets (PFIs) (de�nition 10.4).

The uncertain data model applied in this chapter is based on the possible worlds

semantic with existential uncertain items as introduced in chapter 10. If necessary,

the reader may like to refer back to section 10.1.1 for an explanation and the required

de�nitions. Also, recall that a summary of the notation was provided in �gure 10.3.

As with chapters 10 and 11 it is assumed that uncertain transactions are mutually

independent, and items within transactions are mutually independent. Recall this

Florian Verhein

254 12.2. RELATED WORK

was justi�ed theoretically in chapters 10 and 11 and experimentally in chapter 11.

12.1.2 Contributions

This chapter makes the following contributions:

• It introduces the Probabilistic Frequent Pattern Tree (ProFP-Tree) and shows

how it is built e�ciently. This is the �rst FP-Tree type approach for han-

dling uncertain or probabilistic data. This tree e�ciently stores a probabilistic

database and enables e�cient extraction of itemset occurrence probabilities

and database projections (conditional ProFP-Trees).

• It proposes ProFP-Growth, an algorithm based on the ProFP-Tree which mines

all PFIs without using expensive candidate generation.

• It presents an intuitive and e�cient method for computing the frequentness

probability, as well as the entire support probability distribution, in O(|T | ·
minSup) time. This has the same time complexity as the approach based on

Poisson binomial recurrence / dynamic programming technique in chapter 10,

but it is more intuitive and thus o�ers advantages.

12.1.3 Organisation

The remainder of this chapter is organized as follows; section 12.2 surveys related

work. Section 12.3 presents the ProFP-Tree, explains how it is constructed and

brie�y introduces the concept of conditional ProFP-Trees. Section 12.4 describes

how probability information is extracted from a (conditional) ProFP-Tree. Section

12.5 introduces the generating function approach for computing the frequentness

probability and the support probability distribution in linear time. Section 12.6 de-

scribes how conditional ProFP-Trees are built. Finally, section 12.7 describes the

ProFP-Growth algorithm by drawing together the previous sections. The experi-

mental evaluation is presented in section 12.8 and this chapter concludes in section

12.9.

12.2 Related Work

Recall that section 10.2 provided an in depth discussion of work related to frequent

itemset mining in uncertain and probabilistic databases. This also applies to the

work in this chapter.

Dr. rer. nat. Dissertation

CHAPTER 12. PROBABILISTIC FREQUENT PATTERN GROWTH 255

Prior to the work in this chapter, state-of-the-art (and only) approach for probabilis-

tic frequent itemset mining (PFIM) in uncertain databases was proposed in chapter

10 (and the associated publication [18]). That approach used an Apriori-like algo-

rithm to mine all probabilistic frequent itemsets and the Poisson binomial recurrence

to compute the support probability distribution function (SPDF). This chapter pro-

vides a faster solution by proposing the �rst probabilistic frequent pattern growth

approach (ProFP-Growth), thus avoiding expensive candidate generation and al-

lowing PFIM to be performed in large databases. Furthermore, a more intuitive

generating function method is proposed in order to compute the SPDF.

Previous methods extending FP-Growth [47] to uncertain databases (such as the UF-

Growth algorithm in [58]) use the expected support method, which is much simpler

to apply but has signi�cant disadvantages which were outlined in chapters 10 and

11.

FP-Growth is based on the idea of generating a compact in memory tree structure

that captures the support information of the entire database. When this tree � the

FP-Tree � �ts in memory, the candidate generation and multiple database passes of

the Apriori method are avoided. Furthermore, the FP-Growth algorithm avoids the

subset-checking that makes Apriori sensitive to databases with a wide transaction

width. A good introduction to the FP-Growth method can be found in [88].

12.3 Probabilistic Frequent-Pattern Tree (ProFP-Tree)

This section introduces a novel pre�x-tree structure that enables fast detection of

probabilistic frequent itemsets without the costly candidate generation or multiple

database scans that plague Apriori style algorithms. By itself, it functions as an

e�cient compressed data structure that allows the fast retrieval of all item probabil-

ities. The proposed structure is based on the frequent-pattern tree (FP-Tree [47]).

In contrast to the FP-tree, the ProFP-tree has the ability to compress uncertain and

probabilistic transactions. If a data set contains no uncertainty it reduces to the

(certain) FP-Tree.

De�nition 12.1. A Probabilistic Frequent Pattern Tree (ProFP-Tree) is composed

of the following three components:

1. Uncertain item pre�x tree : A root labeled �null� pointing to a set of pre�x

trees each associated with uncertain item sequences. Each node n in a pre�x

tree is associated with an (uncertain) item ai and consists of �ve �elds:

Florian Verhein

256 12.3. PROBABILISTIC FREQUENT-PATTERN TREE (PROFP-TREE)

• n.item denotes the item label of the node. Let path(n) be the set of items

on the path from root to n.

� n.count is the number of certain occurrences of path(n) in the database.

� n.uft, denoting �uncertain-from-this�, is a set of transaction ids (tids).

A tid for transaction t is contained in uft if and only if n.item is

uncertain in t (i.e. 0 < P (n.item ∈ t) < 1) and P (path(n) ⊆ t) > 0.

� n.ufp, denoting �uncertain-from-pre�x�, is a set of transaction ids. A

tid for transaction t is contained in ufp if and only if n.item is certain

in t (P (n.item ∈ t) = 1) and 0 < P (path(n) ⊆ t) < 1.

� n.nodeLink links to the next node in the tree with the same item

label if there exists one. Otherwise nodeLink is null.

2. Item header table : This table maps all items to the �rst node in the Uncer-

tain item pre�x tree with the same item label.

3. Uncertain-item look-up table : This table maps (item, tid) pairs to the

probability that item appears in ttid for each transaction ttid contained in a uft

of a node n with n.item = item.

The two sets, uft and ufp, are specialized �elds required in order to handle the

existential uncertainty of itemsets in transactions associated with path(n). These

two sets are required in order to distinguish where the uncertainty of an itemset

(path) comes from. Generally speaking, the entries in n.uft are used to keep track of

existential uncertainties where the uncertainty is caused by n.item, while the entries

in ufp keep track of uncertainties of itemsets caused by items in path(n) − n.item
but where n.item is certain.

Figure 12.2 illustrates the ProFP-tree of the example database of �gure 12.1. Each

node of the uncertain item pre�x tree is labeled by the �eld item. The labels next

to the nodes refer to the node �elds in the following notation: count : uft ufp. The

dotted lines denote the nodeLinks.

The ProFP-tree has similar advantages of a FP-tree, in particular;

1. It avoids repeatedly scanning the database since the uncertain item information

is e�ciently stored in a compact structure.

2. Multiple transactions sharing identical pre�xes can be merged into one, where

the number of certain occurrences are registered by count and the uncertain

occurrences re�ected in the transaction sets uft and ufp. Note however that

this merging is more complicated in the probabilistic ProFP-Tree.

Dr. rer. nat. Dissertation

CHAPTER 12. PROBABILISTIC FREQUENT PATTERN GROWTH 257

Null

A B C4 [2 8][] 0 [5][] 0 [6][]A B C4:[2,8][] 0:[5][] 0:[6][]

C DB3:[1][8] 0:[][5] 0:[6][]Header Table
Item header

D
C D2:[1][] 0:[4][]

0:[][2]
A

B

C [][]C

D

D0:[3][]

(a) Uncertain item pre�x tree with item header table. The labels next to the nodes refer to
the node �elds in the following notation: count : uft ufp.

(1, B)→ 0.2 (1, C)→ 0.5 (2, A)→ 0.1

(3, D)→ 0.4 (4, D)→ 0.5 (5, B)→ 0.1

(6, C)→ 0.1 (6, D)→ 0.5 (8, A)→ 0.5
(b) Uncertain-item lookup table. This �gure simply
lists the entries that would be stored in a map or
hashtable.

Figure 12.2: ProFP-Tree generated from the uncertain transaction database given
in �gure 12.1.

12.3.1 ProFP-Tree Construction

The ProFP-Tree can be constructed from an UTDB T as de�ned by algorithm 12.1

as follows: After initializing the components of the ProFP-Tree, that is, the uncertain

item pre�x tree, item header table (iht) and the uncertain-item look-up table (ult),

the tree is constructed by sequentially adding the transactions in T . Assume that

the (uncertain) items in the transactions are lexicographically ordered (an ordering

is required for pre�x tree construction). The transactions are added to the tree in

insert-transaction(). This method starts at the root of the tree and traverses it,

following an existing path as long as the pre�x of the current transaction ti matches

with that already present. When the transactions pre�x no longer matches, a new

branch of the tree is created to represent the remainder of the transaction (its su�x).

During this traversal, the items and their probabilities are registered at the nodes

visited by calling the update-node-entries(). This method increments the count

Florian Verhein

258 12.3. PROBABILISTIC FREQUENT-PATTERN TREE (PROFP-TREE)

of a node if the current item and all preceding items are certain in ti. If the current

item is certain but one of its preceding items not, then ti is registered in ufp. If

the current item is uncertain, then ti is registered in uft. This insertion process is

repeated until all transactions are added to the tree.

12.3.1.1 Example

For further illustration, refer to the example database of �gure 12.1 and the corre-

sponding ProFP-tree in �gure 12.2.

The algorithm �rst creates the root of the uncertain item pre�x tree labeled �null �.

It then reads the uncertain transactions one at a time. While scanning the �rst

transaction t1, the �rst branch of the tree can be generated leading to the �rst path

composed of entries of the form (item, count, uft, ufp, node− link). In the example,

the �rst branch of the tree is built by the following path:

〈root, (A, 1, [], [], null), (B, 0, [1], [], null), (C, 0, [1], [], null)〉

Note that the entry �1� in the �eld uft of the nodes associated with B and C indicate

that item B and C are existentially uncertain in t1. Next, the second transaction

(t2) is scanned and the tree structure is updated accordingly. Since t2 shares a pre�x

with t1, the algorithm follows the existing path in the tree starting at the root and

updates this path. Since the �rst item A in t2 is existentially uncertain � that is,

it exists in t2 with a probability of 0.1 � the count of the �rst node in the path is

not incremented. Instead, t2 is added to uft of this node. The next item D in t2

does not match the next node on the existing path and thus a new branch leading

to a new leaf node n with entry (D, 0, [], [2], null) is added. Although item D is

existentially certain in t2, the count of n is initialized with zero because n represents

the set {A,D} and this path from the root to node n is existentially uncertain in t2

due to the existential uncertainty of item A. Hence, transaction t2 is counted in the

uncertain-from-pre�x (ufp) �eld of n. This results in the ProFP-Tree illustrated in

�gure 12.3(a).

The next transaction to be scanned is t3. Again, due to matching pre�xes the

algorithm follows the already existing path 〈A,B,C〉2 while scanning the (uncertain)
items in t3. The resulting tree is illustrated in �gure 12.3(b). Since the �rst item A

exists for certain, count of the �rst node in the pre�x path is incremented by one.

2To simplify matters, the item �elds are used to address the nodes in a path. That is, the values
of the nodes are omitted.

Dr. rer. nat. Dissertation

CHAPTER 12. PROBABILISTIC FREQUENT PATTERN GROWTH 259

Null

A 1:[2][]A 1:[2][]

DB0:[1][]
0:[][2]

C0:[1][]

(a) After inserting t1 and t2

Null

A 2:[2][]A 2:[2][]

DB1:[1][]
0:[][2]

C1:[1][]

D0:[3][]

(b) After inserting t1, t2 and t3

Figure 12.3: Uncertain item pre�x tree after insertion of the �rst transactions.

The next items, B and C, are registered in the tree in the same way by incrementing

the count �elds. The rational for these count increments is that the corresponding

pre�x itemsets are certain in t3. That is, {A}, {A,B} and {A,B,C} are certain

itemsets in t3. The �nal item D is processed by adding a new branch below the node

C and leading to a new leaf node with the �elds: (D, 0, [3], [], ptr), where the link

ptr points to the next node in the tree labeled with D. Since D is uncertain in t3

the count �eld is initialized with 0 and t3 is registered in the uft set: uft = [3].

The uncertain item pre�x tree is completed by scanning all remaining transactions

in a similar fashion. Whenever a new node is created where the item does not occur

anywhere else in the tree, a new entry (item, ptr) is created in the item header table

where the link ptr points to the new node. Furthermore, for each new entry tid in a

uft set of a node, a new entry (tid, item, p) is added in the uncertain-item look-up

table, where p denotes the probability that item exists in transaction ttid. The �nal

ProFP-tree when all transactions are added is shown in �gure 12.2.

12.3.2 Complexity

The construction of the ProFP-tree requires a single scan of the uncertain transaction

database T . The processing of a transaction requires the algorithm to traverse and

update or construct a single path of the ProFP-Tree. This path has length equal

to the number of items in the corresponding transaction, and each of the updates is

completed in constant time. Therefore the ProFP-tree is constructed in linear time

Florian Verhein

260 12.3. PROBABILISTIC FREQUENT-PATTERN TREE (PROFP-TREE)

Algorithm 12.1 ProFP-Tree Construction algorithm. Note that it is not hard to
add an additional scan whereby the items are sorted in decreasing order by their
frequentness probability and only those items that are probabilistic frequent are
used to build the tree, analogous to the sorting of items by support in the (certain)
FP-Growth algorithm.

Input: An uncertain transaction Database T with

lexicographically ordered items, and a minimum

support threshold minSup.

Output: A probabilistic frequent pattern tree (ProFP-Tree).

Method:

Create the (null) root of an uncertain item prefix tree tree;
Initialize an empty item header table (iht);

Initialize an empty uncertain-item look-up table (ult);

for each uncertain transaction ti ∈ T
assume ti is a string <it1, · · · , itn> of tuples itj=(item,prob),
where the field item identifies a(n) (un)certain item of ti
and the field prob denotes the probability P (itj .item ∈ ti).
Call insert-transaction (<it1, · · · , itn>,i,tree.root,0)

insert-transaction (transaction,i,node,u_flag)
for each it ∈transaction
if node has a child n with n.item = it.item
//follow an existing path

call update-node-entries (it,i,n,u_flag);
else //create a new path:

create new child n of tree;
call update-node-entries (it,i,n,u_flag);
if it.item not in iht

insert (it.item,n) into iht ;

else

insert n into the node list associated with it.item ;
//update uncertain item lookup table

if it.prob < 1.0

insert (i,it.item,it.prob) into ult ;

node = N;

update-node-entries (it,i,n,u_flag)
if it.prob = 1.0

if u_flag = 0

increment n.count by 1;

else

insert i into n.ufp ;
else

insert i into n.uft ;
u_flag = 1;

Dr. rer. nat. Dissertation

CHAPTER 12. PROBABILISTIC FREQUENT PATTERN GROWTH 261

with respect to the size of the database � O(|T | · |I|) where |T | is the number of

transactions and |I| is the number of items.

Since the ProFP-Tree is based on the original FP-Tree (that is, the pre�x-tree part

has the same structure), it inherits its compactness properties. In particular, the size

of a ProFP-Tree is bounded by the overall occurrences of the items in the database

and its height is bounded by the maximal number of items in a transaction.

For any transaction ti in T , there exists exactly one path in the ProFP-Tree starting

below the root node. Each item within a transaction in the transaction database

can create no more than one node in the tree and the height of the tree is bounded

by the number of items in a transaction (path). Note that as with the FP-Tree, the

compression is obtained by sharing common pre�xes.

It is now shown that the values stored at the nodes do not a�ect the bound on the

size of the tree. In particular, the following lemma bounds the uncertain-from-this

(uft) and uncertain-from-pre�x (ufp) sets. Note that count and nodeLink have

constant size.

Lemma 12.2. Let tree be the ProFP-Tree generated from an uncertain transaction

database T . The total space required by all the transaction-id sets (uft and ufp) in

all nodes in tree is bounded by the the total number of entries in transactions with

an existential probability in (0, 1). That is, the number of probabilities in (0, 1) in T .

Proof. Each occurrence of an uncertain item (with existence probability in (0, 1))

in the database yields at most one transaction-id entry in one of the transaction-id

sets assigned to a node in the tree. In general there are three update possibilities for

a node n: If the current item and all pre�x items in the current transaction ti are

certain, there is no new entry in uft or ufp as count is incremented. ti is registered

in n.uft if and only if n.item is existentially uncertain in ti while ti is registered in

n.ufp if and only if n.item is existentially certain in in ti but at least one of the

pre�x items in ti is existentially uncertain. Therefore each occurrence of an item in

T leads to either a count increment (which does not require additional space) or one

new entry in uft or ufp.

Finally, it should be clear that the size of the uncertain item look-up table is bounded

by the number of uncertain (non zero and non 1) entries in the database.

This section showed that the ProFP-Tree inherits the compactness of the original FP-

tree. The next section shows that the information stored in the ProFP-Tree su�ces to

retrieve all probabilistic information required for PFIM, thus proving completeness.

Florian Verhein

262
12.4. EXTRACTING CERTAIN AND UNCERTAIN SUPPORT

PROBABILITIES

12.4 Extracting Certain and Uncertain Support Proba-

bilities

Unlike the (certain) FP-Growth approach where it is easy to extract the support of

an itemset X by summing the support counts along the node-links for X in a suitable

conditional ProFP-Tree, this chapter is concerned with the support distribution of

X in the probabilistic case. Before this can be computed however, both the number

of certain occurrences as well as the probabilities 0 < P (X ∈ ti) < 1 are required.

Both can be e�ciently obtained using the ProFP-Tree as follows:

• To obtain the certain support of an item x, the algorithm follows the node-links

from the item header table and accumulates both the counts and the number

of transactions in which x is uncertain-from-pre�x. The latter is counted since

the support of x is required and by construction, transactions in ufp are known

to be certain for x (but uncertain from the pre�x).

• To �nd the set of transaction ids in which x is uncertain, the algorithm fol-

lows the node-links as above and accumulate all transactions that are in the

uncertain-from-this (uft) list.

Example 12.3. Consider item C in the ProFP-Tree of �gure 12.2. By traversing

the node-list for C, we can reach three nodes which are accumulated as follows in

order to calculate the certain support: (2 + |∅|) + (0 + |{t5}|) + (0 + |∅|) = 3. Note

there is one transaction in which C is uncertain-from-pre�x (t5). Similarly, in this

same traversal it is easy to obtain the transaction ids for the transactions in which

C is uncertain: [1] ∪ ∅ ∪ [6] = [1, 6]. That is, the only transactions in which C is

uncertain are t1 and t6. The exact appearance probabilities in these transactions can

be obtained from the uncertain-item look-up table (�gure 12.2(b)): the probabilities

of C appearing in transactions t1 and t6 are 0.5 and 0.4, respectively. By comparing

these results to the original database in �gure 12.1), it is easy to see that the tree

allows the certain support as well as the transaction ids where C is uncertain to be

found e�ciently.

To compute the support of an itemset X = {B,C,D, ...,K}, the conditional tree for
{C,D, ...,K} is required, from which the certain support and uncertain transaction

ids for the nodes labeled B can be obtained. These implicitly correspond to the

entire itemset X. Since it is somewhat involved, the construction of conditional

ProFP-Trees is deferred to section 12.6. For now it su�ces to state that by using

Dr. rer. nat. Dissertation

CHAPTER 12. PROBABILISTIC FREQUENT PATTERN GROWTH 263

Algorithm 12.2 Algorithm to extract the probabilities for an item, or the proba-
bilities for an itemset if tree is a conditional ProFP-Tree.

//calculate the certain support and the uncertain

//transaction ids of an item derived from a ProFP-Tree

extract(item,ProFPTree tree)
certSup = 0; uncertainSupT ids = ∅;
for each ProFPNode in tree reachable

from header table[item]

certSupp+ = n.certSupp;
certSupp+ = |n.ufp|;
uncertainSupT ids = uncertainSupT ids ∪ n.uft;
return certSupp,uncertainSupT ids;

//calculate the existential probabilities of an itemset

calculateProbabilities(itemset, uncertainSupTids)

probabilityV ector = ∅;
for (t ∈ uncertainSupT ids)
p = Πi in itemsetuncertainItemLookupTable[i, t];
probabilityV ector.add(p);
return probabilityV ector;

the conditional tree, the above method provides the certain support of X (certSup)

and the exact set of transaction ids in which X is uncertain (utids). To compute the

probabilities P (X ∈ ti) : ti ∈ utids where utids are the transaction ids in which 0 <

P (X ∈ ti) < 1, the independence assumption is used: P (X ⊆ ti) = Πx∈XP (x ∈ ti).

Recall that P (x ∈ ti) is an O(1) look-up in the uncertain-item look-up table.

It has now been described how the certain support and all probabilities P (X ∈
t) : X uncertain in t can be e�ciently computed from the ProFP-Tree. Algorithm

12.2 shows the concrete algorithm for performing this task. Section 12.5 describes

how this information is used to to e�ciently calculate the support distribution and

frequentness probability of X.

12.5 E�cient Computation of Probabilistic Frequent Item-

sets

This section presents a technique to compute the probabilistic support (the support

probability distribution) of an itemset using generating functions. The problem can

be de�ned as follows:

Florian Verhein

264
12.5. EFFICIENT COMPUTATION OF PROBABILISTIC FREQUENT

ITEMSETS

De�nition 12.4. Given a set ofN mutually independent but in general non-identical

Bernoulli random variables P (X ∈ ti), 1 ≤ i ≤ N , compute the probability distribu-

tion of the random variable Sup =
∑i=1

N Xi.

Note that N is the number of transactions, |T |. A naive solution is to count all possi-

ble worlds in which exactly k transactions contain X and accumulate the respective

probabilities for every possible support value k: 0 ≤ k ≤ N . This approach has

a complexity of O(2N) due to the enumeration of the possible worlds. Chapter 10

proposed an approach that achieves a O(N ·minSup) complexity using the Poisson

binomial recurrence. This work proposes a di�erent approach that, albeit having the

same asymptotic complexity, has other advantages.

12.5.1 E�cient Computation of Probabilistic Support

This chapter applies the concept of generating functions as proposed in the context

of probabilistic ranking in [59]. Consider the function: F(x) =
∏n
i=1(ai + bix). The

coe�cient of xk in F(x) is given by:∑
β:|β|=k

∏
i:βi=0

ai
∏
i:βi=1

bi

where β = 〈β1, ..., βN 〉 is a boolean vector and |β| denotes the number of 1`s in β.

Note that the sum is over all possible β and therefore covers all possible combinations

in which x has a power of k.

Consider the following generating function:

F j(x) =
∏

t∈{t1,t2,...,tj}

(1− P (X ∈ t) + P (X ∈ t) · x) =
∑

i∈{0,...,j}

ci,jx
i.

The coe�cient ci,j of x
i in the expansion of F j(x) is the probability that X occurs

in exactly i of the �rst j transactions; that is, Pij(X) (recall the notation from �gure

10.3). Note therefore that the probability that X occurs in at least i of the �rst j

transactions is P≥i,j =
∑

k≥i ck,j , and the frequentness probability can be calculated

as P≥minSup =
∑

k≥i ck,N where the ck,N are taken from FN (x).

Since F j(x) contains at most j + 1 nonzero terms and by observing that

F j(x) = F j−1(x) · (1− P (X ∈ tj) + P (X ∈ tj) · x)

Dr. rer. nat. Dissertation

CHAPTER 12. PROBABILISTIC FREQUENT PATTERN GROWTH 265

it follows that F j(x) can be computed in O(j) time given F j−1(x) (this is the time

taken to expand the terms). Since F0(x) = 1x0 = 1 is the starting point (this is the

probability that an itemset occurs 0 times in the �rst 0 transactions), FN (x) can be

computed in O(N2) time. This run time complexity can be reduced by exploiting

the fact that only the coe�cients ci where i < minSup need to be considered in

FN (x). The reasons for this are as follows: The frequentness probability of X is

de�ned as

P (X is frequent) = P≥minSup(X) = P (Sup(X) ≥ minSup))

= 1− P (Sup(X) < minSup) = 1−
minSup−1∑

i=0

ci

and a coe�cient ci,j in F j(x) is independent of any ck,j−1 in F j−1(x) where k > i.

That means in particular that the coe�cients ck,j , k ≥ minSup are not required to

compute the ci,j , i < minSup.

Thus, considering only the coe�cients ci,j where i < minSup, F j(x) contains at

most minSup coe�cients that need to be evaluated, leading to a total complexity

of O(minSup ·N). Recall that N = |T | and that this is the same complexity as the

method based on the Poisson binomial recurrence of chapter 10.

Example 12.5. Consider itemset {A,B} in the example database of �gure 12.1.

Recall that using a conditional ProFP-Tree, it is easy and e�cient to extract, for

each transaction ti, the probability P ({A,B} ∈ ti) where 0 < P ({A,B} ∈ ti) < 1

as well as the number of certain occurrences of {A,B}. Itemset {A,B} occurs for
certain only in t4 and occurs in t1, t2 and t3 with a probability of 0.2, 0.1, and 0.3

respectively. Let minSup be 2. Then:

F1(x) = F0(x) · (0.8 + 0.2x) = 0.2x1 + 0.8x0

F2(x) = F1(x) · (0.9 + 0.1x) = ...+ 0.26x1 + 0.72x0

F3(x) = F2(x) · (0.7 + 0.3x) = ...+ 0.418x1 + 0.504x0

Thus, P (sup({A,B}) = 0) = 0.504 and P (sup({A,B}) = 1) = 0.418. Consequently,

P (sup({A,B}) ≥ 2) = 0.078 (1 − 0.504 − 0.418). Thus, A,B is not returned as a

frequent itemset if τ is greater than 0.078. Indeed, it is very unlikely that {A,B} is
frequent. In the above Equations, note that only the ci where i < minSup needed

to be computed.

Florian Verhein

266
12.5. EFFICIENT COMPUTATION OF PROBABILISTIC FREQUENT

ITEMSETS

Figure 12.4: Visualisation of the frequentness probability computation using the
generating function coe�cient method.

This approach can be visualised using the matrix in �gure 12.4. Each cell ci,j =

Pi,j(X) and therefore the matrix contains the entire probability distribution of the

support of X. The jth column contains the coe�cients of F j(x). Hence, the com-

putation progresses by calculating the columns one at a time, as shown in the �gure.

Note that the frequentness probability P≥minSup,|T |(X) can be calculated by sub-

tracting the column sum from 1, as the jth column sum is the probability that X

has support less than minSup in the �rst j transactions. In contrast, recall that the

computation matrix for the Poisson binomial computation method in chapter 10 has

cells with P≥i,j(X) and computed one row at a time.

In order to compute each successive column, only the previous column is needed,

hence the space required is O(minSup). Note that this is less than the O(|T |) space
required by the Poisson binomial method.

12.5.1.1 Pruning using a Lower Bound

Note that after the calculation of the �rst minSup coe�cients of each F j(x), it is

possible to stop the computation when PminSup,j(X) = 1−
∑

i<minSup ci,j ≥ τ since

this means that the respective itemset is frequent with probability at least τ . Intu-

itively, if an itemset X is already a PFI considering only the �rst j transactions, X

will still be a PFI if more transactions are considered as the frequentness probability

can only increase (recall this was encoded in lemma 10.15). This pruning method

can be used if the exact frequentness probability does not need to be calculated.

Note that an application where this is useful is the Signi�cant Frequent Itemset

Mining (SiFIM) method of chapter 11. Recall that signi�cant frequent itemsets can

Dr. rer. nat. Dissertation

CHAPTER 12. PROBABILISTIC FREQUENT PATTERN GROWTH 267

Figure 12.5: Upper bound pruning in the computation of the frequentness probability
using generating functions.

be computed by adapting the frequentness probability computation. By adapting

the method presented here, the computation can be stopped if it is clear that the

itemset is signi�cant. The pV alue is not required.

Figure 12.5 illustrates this pruning concept. Note that this pruning method is not

the same as the pruning criterion proposed in chapter 10. In fact, the method used

here cannot be applied in the Poisson binomial recurrence approach as it requires i

to reach minSup. Therefore, it is suited to methods where columns are computed.

In chapter 10, the calculation progressed row-wise, and therefore by the time the

pruning could be employed, almost the entire matrix would have been computed

already.

12.5.1.2 Pruning using an Upper Bound

A natural question to ask is whether the pruning from chapter 10 can be applied here.

Recall that if P≥minSup−d,|T |−d(X) < τ, 1 ≤ d ≤ minSup, then the computation can

be immediately pruned since it is already clear that X cannot be a PFI by lemma

10.17. This can be applied to the method above at every such cell. Note however

that using this pruning method saves some columns, while in the method of chapter

10 it saves the computation of rows. Since typically minSup << |T |, one can expect

that pruning rows is more e�cient.

12.5.1.3 Certainty Optimisation

Note that the approach introduced in chapter 10 for avoiding the consideration of

P (X ∈ t) = 0 or P (X ∈ t) = 1 is directly applicable here too. Recall that trans-

Florian Verhein

268
12.5. EFFICIENT COMPUTATION OF PROBABILISTIC FREQUENT

ITEMSETS

actions t where P (X ∈ t) = 0 can be ignored, and transactions with P (X ∈ t) = 1

can be ignored by decrementing minSup. Note that the �rst optimisation is done

automatically when one used the ProFP-Tree, and the second one is made much

easier with the ProFP-Tree as it stores the certain support separately.

12.5.1.4 Discussion

The generating function technique is di�erent to the Poisson binomial recurrence

method, but has the same run time complexity. This section weights up their re-

spective bene�ts and downsides.

Using generating functions instead of the recursion formula gives a di�erent and

intuitive view of the problem. It can be argued that it is clearer, since the coe�cients

correspond to the support distribution. It also leads to a method for computing the

frequentness probability in less space. The column wise computation method allows a

new pruning method that cannot be applied to the recurrence method. An additional

advantage of this approach is that it allows an iterative database scan in a candidate

generation type method. By storing an array of length minSup for each candidate,

one can scan the database one transaction at a time and update all the coe�cients per

transaction. In one scan, all the probabilities for all candidates can be incrementally

computed. As described above, itemsets can be pruned before all transactions are

considered using both a lower bound and an upper bound. In contrast, the row

based method does not lend itself to such a method, because probabilities in all

transactions are required to compute the �rst � and all subsequent � rows. While

this observation is not an advantage in the ProFP-Growth algorithm, it could be

an advantage in ProApriori � allowing it to use less space and avoid keeping the

database in memory.

In addition, the generating function approach allows the support probability density

function to be updated easily if the probability that a transaction ti contains an

itemset X changes. That is, if the probability p = P (X ∈ ti) changes to p′, then it

is possible to update the support probability distribution by dividing the generating

function by px + (1 − p) (using polynomial division) in order to remove the e�ect

of ti, and subsequently, multiplying this result by p′x + (1 − p′) to incorporate the

new probability p′. That is, F j′(x) = F j(x) : (px + 1 − p) × (p′x + 1 − p′), where
F j′ is the generating function for the support probability distribution of X in the

�rst j transactions in the altered database. Note that this chapter does not consider

transactions as mutable, but this possibility may be useful in some other applications.

Dr. rer. nat. Dissertation

CHAPTER 12. PROBABILISTIC FREQUENT PATTERN GROWTH 269

12.6 Extracting Conditional ProFP-Trees

This section describes how conditional ProFP-Trees are constructed from other (po-

tentially conditional) ProFP-Trees. The method for doing this is more involved than

the analogous operation for the certain FP-Growth algorithm, since the information

capturing the source of the uncertainty must remain correct. That is, whether the

uncertainty at that node comes from the pre�x or from the present node. Recall from

section 12.4 that this is required in order to extract the correct probabilities from

the tree. A conditional ProFP-Tree for itemset X (treeX) is equivalent to a ProFP-

Tree built on only those transactions in which X occurs with a non-zero probability.

In order to generate a conditional ProFP-Tree for itemset X ∪ i (treeX∪i) where

i occurs lexicographically prior to any item in X, �rst begin with the conditional

ProFP-Tree for X. When X = ∅, treeX is simply the complete ProFP-Tree. treeX∪i

is constructed by propagating the values at the nodes for i upwards and accumulat-

ing these at the nodes closer to the root as listed in algorithm 12.3. Let Ni be the

set of nodes with item label i (These are obtained by following the links from the

header table). The values for every node n in treeX∪i are calculated as follows:

• n.count =
∑

ni∈Ni ni.count since these represent certain transactions.

• n.uft = ∪ni∈Nini.uft since treeX∪i conditions on an item that is uncertain in

these transactions and hence any node in the �nal conditional tree will also be

uncertain for these transactions.

• When collecting transactions for n that are uncertain from the pre�x (i.e.

t ∈ ufp), it is necessary to determine whether the item n.item caused this

uncertainty. If the corresponding node in treeX contained transaction t in

ufp, then t is also in n.ufp (n.item was not uncertain in t). If n.item was

uncertain in t, then the corresponding node in treeX would have t listed in

uft and this must also remain the case for the conditional tree. If t ∈ n.ufp is
neither in the corresponding ufp nor uft in treeX , then it must be certain for

n.item and n.count is incremented.

12.7 ProFP-Growth Algorithm

This chapter has described four fundamental operations required for the ProFP-

Growth algorithm; building the ProFP-Tree (section 12.3); e�ciently extracting

the certain support and uncertain transaction probabilities from it (section 12.4);

Florian Verhein

270 12.7. PROFP-GROWTH ALGORITHM

Algorithm 12.3 Construction of a conditional ProFP-Tree treeX∪i by extracting
item i from the conditional ProFP-Tree treeX .

//Accumulates transactions for nodes when

//propagating up the values from a node being extracted.

class Accumulator
count = 0; uft = ∅; ufp = ∅;
orig_ufp = the original upf list

add(ProFPNode n)
count+ = n.count;
uft = uft ∪ n.uft;
for (t ∈ n.ufp)
if (orig_ufp.contains(t)) ufp = ufp ∪ t;
else if (orig_uft.contains(t)) uft = uft ∪ t;
else count+ +;

buildConditionalProFPTree(ProFPTree treeX, item i)
returns treeX∪i
treeX∪i =clone of the sub-tree of treeX reachable

from header table for i;
associate an Accumulator with each node in treeX∪i
and set orig_ufp;

propagate(treeX∪i,i);
set the certSup, uft, ufp values of nodes in treeX∪i
to those in the corresponding Accumulators;

propagate(ProFPTreetree, itemi)
for(ProFPNode n accessible from header table for i)
ProFPNode cn = n;
while(cn.parent 6= null)
call add(n) on Accumulator for cn;
cn = cn.parent;

calculating the frequentness probability and determining whether an item(set) is

a probabilistic frequent itemset (section 12.5); and construction of the conditional

ProFP-Trees (section 12.6). Together with the fact that probabilistic frequent item-

sets possess an anti-monotonicity property, as proved in lemma 10.18 of chapter 10, it

is now possible to describe the ProFP-Growth algorithm. It uses a similar approach

to the certain FP-Growth algorithm and the four operations outlined in previous

sections to mine all probabilistic frequent itemsets.

Like the FP-Growth algorithm, ProFP-Growth operates by extracting items and re-

cursively building conditional ProFP-Trees for larger and larger itemsets. Algorithm

12.4 provides a listing of the ProFP-Growth algorithm.

Dr. rer. nat. Dissertation

CHAPTER 12. PROBABILISTIC FREQUENT PATTERN GROWTH 271

Algorithm 12.4 Simpli�ed ProFP-Growth algorithm. Note that if the heuristic
whereby an additional database scan is used to sort items by frequentness probabil-
ity, output probabilistic frequent items and remove those that are not probabilistic
frequent, then the entire if α = ∅ part of the algorithm may be omitted.

Input: A ProFP-Tree tree constructed based on algorithm 12.1,

the minimum support minSup, and

the minimum frequentness probability τ.

Output: The complete set of probabilistic frequent itemsets.

Method: call ProFPGrowth(tree,∅)

//tree is the conditional ProFP-Tree for α
ProFPGrowth(ProFP-Tree tree, Set α)
if α = ∅
for each item x in iht in lexicographically increasing order

(certSupport, uncertainSupT ids) = extract(x,tree)
//Algorithm 12.2

vector = calculateProbabilities({x},uncertainSupT ids)
//Algorithm 12.2

calculate the support probability p
//Section 12.5.1

if (p ≥ τ)
output x, p
treeα∪x =buildConditionalProFPTree(tree, x)
//Algorithm 12.3

ProFPGrowth(treeα∪x,{x})
else

iht.remove(x)
else

for each item x in iht lexicographically before elements of α
(certSupport, uncertainSupT ids) = extract(x,tree)
//Algorithm 12.2

vector = calculateProbabilities({x},uncertainSupT ids)
//Algorithm 12.2

calculate the support probability p
//Section 12.5.1

if (p ≥ τ)
output x, p
treeα∪x =buildConditionalProFPTree(tree, α ∪ {x})
//Algorithm 12.3

ProFPGrowth(treeα∪x,{x})

Florian Verhein

272 12.8. EXPERIMENTAL EVALUATION

12.8 Experimental Evaluation

This section presents performance experiments on the proposed ProFP-Growth algo-

rithm and compares the results to the Apriori-based solution (ProApriori) presented

in chapter 10. In all experiments, the Poisson binomial recurrence method of chapter

10 was used in order to remove this as a variable.

This section also analyzes how various database characteristics and parameter set-

tings a�ect the performance of the ProFP-Growth algorithm. For the �rst set of

experiments, arti�cial data sets were used with a variable number of transactions

and items. In these databases, each item x has a probability P1(x) of appearing for

certain in a transaction, and a probability P0(x) of not appearing at all in a trans-

action. With a probability of 1−P0(x)−P1(x) item x is uncertain in a transaction.

In this case, the probability that x exists in such a transaction is picked randomly

from a uniform (0, 1) distribution. For the scalability experiments3, unless other-

wise stated, the number of items and transactions were varied and P0(x) = 0.5 and

P1(x) = 0.2 were chosen for each item. Unless otherwise stated, minSup = 0.1 · |T |
and τ = 0.9 in the run time experiments.

Additional experiments on larger well known and real databases can be found in

chapter 13.

12.8.1 Number of Transactions

The number of transactions was varied and a �xed number of items (20) was used.

The results can be seen in �gure 12.6(a). It can be observed that ProFP-Growth

signi�cantly outperforms ProApriori. The time required to build the ProFP-Tree in

comparison with the number of transactions is shown in �gure 12.6(b). The linear

time complexity indicates a constant time required to insert transactions into the

tree. This is expected since the maximum height of the ProFP-Tree is equal to

the number of items, which is constant in this experiment. Finally, the size of the

ProFP-Tree was evaluated in this experiment as shown in �gure 12.7(a). The number

of nodes in the ProFP-Tree increases sub-linearly in comparison to the number of

transactions. This occurs since new nodes are created for a transaction only if it

has a su�x that is not yet contained in the tree. As the number of transactions

increases, this overlap of pre�xes increases, requiring fewer new nodes to be created.

It can be expected that this overlap is more probable when the items' appearance

are correlated with each other. Therefore, a real database was also used in this

3All experiments were performed on an Intel Xeon with 32 GB of RAM and a 3.0 GHz processor.

Dr. rer. nat. Dissertation

CHAPTER 12. PROBABILISTIC FREQUENT PATTERN GROWTH 273

0
50,000
100,000
150,000
200,000
250,000
300,000
350,000
400,000
450,000
500,000

0 20,000 40,000 60,000 80,000

Ru
nt
im

e
[m

s]

Database size

ProApriori

ProFPGrowth

(a) Total Runtime

0
100
200
300
400
500
600
700
800
900

1,000

0 20,000 40,000 60,000 80,000

Re
qu

ir
ed

 t
im

e
to
 b
ui
ld
 t
he

 t
re
e

[m
s]

Database size

(b) Tree Generation

Figure 12.6: Total run time and time required to build the ProFP-Tree in comparison
the the database size (number of transactions).

evaluation. The size of the ProFP-Tree was evaluated on subsets of the real-world

data set accidents4, denoted by ACC. It consists of 340, 184 transactions and a

reduced number of 20 items whose occurrences in transactions were randomized in

order to obtain an uncertain database: With a probability of 0.5, each item appearing

for certain in a transaction was assigned a value drawn from a uniform distribution

in (0, 1]. This database size was varied up to the �rst 300, 000 transactions. As can

be seen in �gure 12.7(b), there is more overlap between transactions since the growth

in the number of nodes used is slower (compared to �gure 12.7(a)).

4The accidents data set [42] was derived from the Frequent Itemset Mining Data set Repository
(http://�mi.cs.helsinki.�/data/)

Florian Verhein

274 12.8. EXPERIMENTAL EVALUATION

0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

N
um

be
r
of
 tr
ee

 n
od

es

Database size

(a) Tree size

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

18,000

0 100,000 200,000 300,000

N
um

be
r
of
 tr
ee

 n
od

es

Database size

(b) Tree size (ACC)

Figure 12.7: Tree size in comparison to database size for two databases.

12.8.2 Number of Items

Next, the number of items was varied from 5 to 100 using a �xed number of 1, 000

transactions. The run times can be seen in �gure 12.9(a), which shows the expected

exponential run time inherent in the FIM problem. It can clearly be seen that

ProFP-Growth outperforms ProApriori. In �gure 12.9(b) the number of nodes of

the ProFP-Tree is shown. Except when there are very few items, the number of

nodes in the tree grows linearly. The reason for this is that the likelihood of two

transactions having a common pre�x of size 10 or more is low here. Hence � except

for possibly the �rst few items � each transaction requires new nodes to be created

for each item.

Dr. rer. nat. Dissertation

CHAPTER 12. PROBABILISTIC FREQUENT PATTERN GROWTH 275

0
10,000
20,000
30,000
40,000
50,000
60,000
70,000
80,000
90,000
100,000

0 0.1 0.2 0.3 0.4 0.5

Ru
nt
im

e
[m

s]

Minimum support

ProApriori

ProFPGrowth

Figure 12.8: E�ect of minSup.

12.8.3 E�ect of Uncertainty and Certainty

This experiment evaluates the e�ect of the level of certainty and uncertainty on the

ProFP-Growth algorithm. The number of transactions used was 1, 000, the number

of items used was 20 and the parameters P0(x) and P1(x) were varied.

For the experiment shown in �gure 12.10(a), the probability that items are uncertain

(1−P0(x)−P1(x)) was �xed at 0.3 and P1(x) was successively increased from 0 (which

means that no items exist for certain) to 0.7. The results show that the number of

nodes initially increases. This is expected, since more items existing in the database

increases the nodes required. However, as the number of certain items increases, an

opposing e�ect reduces the number of nodes in the tree. This e�ect is caused by

the increasing overlap of the transactions � in particular, the increased number and

length of shared pre�xes. When P1(x) reaches 0.7 (and thus P0(x) = 0), each item

is contained in each transaction with a probability greater than zero, and thus all

transactions contain the same items with a non-zero probability. In this case, the

ProFP-Tree degenerates to a linear list containing exactly one node for each item.

Note that the size of the look-up table is constant here, since the expected number

of uncertain items is constant at 0.3 · |T | · |I| = 0.3 · 1, 000 · 20 = 6, 000.

In �gure 12.10(b), P1(x) was �xed at 0.2 and P0(x) was successively decreased from

0.8 to 0. This increases the probability that items are uncertain from 0 to 0.8. A

similar pattern in the number of nodes used emerges in the results (�gure 12.10(a)).

As expected in this experiment, the size of the look-up table increases as the number

Florian Verhein

276 12.8. EXPERIMENTAL EVALUATION

0
10,000
20,000
30,000
40,000
50,000
60,000
70,000
80,000
90,000
100,000

0 20 40 60 80 100

Ru
nt
im

e
[m

s]

Number of items

ProApriori

ProFPGrowth

(a) Runtime

0
5,000
10,000
15,000
20,000
25,000
30,000
35,000
40,000
45,000
50,000

0 20 40 60 80 100

N
um

be
r
of
 tr
ee

 n
od

es

Number of items

(b) Tree size

Figure 12.9: Scalability with respect to the number of items.

of uncertain items increases.

12.8.4 E�ect of MinSup

Here, the minimum support threshold minSup was varied on an arti�cial database

of 10, 000 transactions and 20 items. Figure 12.8 shows the results. For low val-

ues of minSup, both algorithms have a high run time due to the large number of

probabilistic frequent itemsets. It can be observed that ProFP-Growth signi�cantly

outperforms ProApriori for all settings of minSup.

Dr. rer. nat. Dissertation

CHAPTER 12. PROBABILISTIC FREQUENT PATTERN GROWTH 277

7,000 Size of the
lookup table

5 000

6,000

en
t

lookup table

4,000

5,000

ui
re
m
e

3,000

,

e
re
qu

2,000
Sp
ac
e

1,000

S

Number of tree nodes
0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

u be o t ee odes

P1(X)

(a) Varying the probability of certain occurences while keep-
ing uncertain occurences �xed.

16 000

18,000

14,000

16,000

en
t Size of the lookup table

10,000

12,000

ui
re
m

8,000

10,000

e
re
qu

4,000

6,000

Sp
ac
e

0

2,000

S

Number of tree nodes0

0 0.2 0.4 0.6 0.8

Number of tree nodes

1‐P0(X)‐P1(X)

(b) Varying the probability of uncertain occurences while
keeping certain occurences �xed.

Figure 12.10: E�ect of uncertainty on the tree size

12.9 Conclusion

The Probabilistic Frequent Itemset Mining (PFIM) problem is to �nd itemsets in an

uncertain transaction database that are (usually highly) likely to be frequent. This

problem has two components; e�ciently computing the support probability distri-

bution and frequentness probability, and e�ciently mining all probabilistic frequent

itemsets. To solve the �rst problem e�ciently, a novel method based on generating

functions was proposed. To solve the second problem, this chapter proposed the

�rst probabilistic frequent pattern tree (ProFP-Tree) and pattern growth algorithm

(ProFP-Growth). Experiments demonstrated that this signi�cantly outperforms the

Florian Verhein

278 12.9. CONCLUSION

previous state of the art ProApriori approach to PFIM (presented in chapter 10).

Dr. rer. nat. Dissertation

Chapter 13

Vectorised Probabilistic Frequent

Itemset Mining using GIM

Uncertain transaction databases consist of sets of existentially uncertain

items. The uncertainty of items in transactions makes traditional frequent

itemset mining techniques inapplicable. This chapter tackles the Probabilis-

tic Frequent Itemset Mining (PFIM) problem.

In this context, this chapter makes the following contributions: The �rst

vectorised algorithm for solving the PFIM problem is proposed, resulting in a

much faster algorithm than the previous state of the art algorithms proposed

in chapters 10 and 12. In particular, it is shown that the PFIM problem

can be solved by the Generalised Interaction Mining (GIM) framework and

algorithm of chapter 3. An extensive experimental section evaluates GIM-

PFIM and shows that it is orders of magnitude faster and used orders of

magnitude less space than ProFP-Growth and Pro-Apriori.

279

280 13.1. INTRODUCTION

13.1 Introduction

Mining probabilistic frequent itemsets is a recent and challenging problem [18]. Re-

call from chapter 10 that in an Uncertain Transaction Database (UTDB), the infor-

mation captured in transactions is uncertain as the existence of an item is associated

with a likelihood measure or existential probability. Figure 12.1 shows the UTDB

that will be used as a running example in this chapter.

Recall from section 10.1 that given an uncertain transaction database, it is generally

not possible to determine whether an item or itemset is frequent because it is not

certain whether or not it appears in transactions. Consequently, traditional frequent

itemset mining methods cannot be applied to UTDBs.

Prior to the work in chapters 10, 11 and 12, expected support was used to deal with

uncertain databases [25, 26]. This method was shown to have signi�cant drawbacks,

causing misleading and even incorrect results. The proposed alternative is based on

computing the entire support probability distribution, but doing so very e�ciently.

Subsequently, either probabilistic frequent itemsets (chapters 10 and 12) or signi�cant

frequent itemsets (chapter 11) were mined.

However, the algorithm in which these methods were embedded has a large impact

on the run time of the overall mining algorithm. Chapter 10 developed ProApriori;

an Apriori style algorithm which is based on candidate generation and checking of

PFIMs. Chapter 12 improved on this by developing a probabilistic pattern growth

approach inspired by the FP-Growth method. Here, a compact representation of

the data set as an interlinked tree storing both certain and uncertain occurrences

enables faster run times than ProApriori. This chapter uses the GIM framework and

algorithm by casting the PFIM problem in terms of vectors and functions of vectors.

This mapping is both intuitive and allows the application of the GIM algorithm.

The resulting approach, called GIM-PFIM, is shown to be signi�cantly faster and

use much less memory than both ProApriori and ProFP-Growth. The improvement

in space usage and run time is about an order of magnitude better than ProFP-

Growth.

13.1.1 Research Problem and Data Model

This chapter solves the Probabilistic Frequent Itemset Mining (PFIM) problem (def-

inition 10) and the Signi�cant Frequent Itemset Mining (SiFIM) e�ciently. There

are two parts to these problems:

Dr. rer. nat. Dissertation

CHAPTER 13. VECTORISED PROBABILISTIC FREQUENT ITEMSET
MINING 281

1. Given the existential probabilities of an itemset in all transactions, calculating

the support probability distribution and hence the frequentness probability or

the signi�cance of the given itemset.

2. Mine all itemsets that satisfy the frequentness or signi�cance constraints by

(a) Searching through the space of uncertain itemsets,

(b) Calculating the required probabilities for 1. and

(c) Using 1. to determine whether an itemset is interesting (a PFI or a SFI).

This chapter focuses on solving the second part of the problem very e�ciently. The

PFIM problem is solved by plugging in the methods for computing the frequentness

probability (either the Poisson binomial recurrence method of chapter 10 or equiv-

alently the generating function method of chapter 12). The SiFIM problem can be

solved by plugging in either of the two signi�cance tests proposed in chapter 11.

The uncertain data model applied in this chapter is based on the possible worlds

semantic with existential uncertain items as introduced in chapter 10.

13.1.2 Contributions

This chapter makes the following contributions:

• It shows that the PFIM problem can be cast into the vectorised GIM frame-

work, and hence that it can be solved using the GIM algorithm. The resulting

method for solving the PFIM problem, called GIM-PFIM, is orders of magni-

tude faster and requires orders of magnitude less space than the previous state

of the art algorithms for solving PFIM. This chapter is also the �rst work to

evaluate and compare all solutions to PFIM on well known and full sized real

world data sets.

• As a side e�ect, this work strengthens the argument for solutions at the abstract

level and further validates the �exibility, e�ciency and e�ectiveness of the GIM

framework and algorithm.

13.1.3 Organisation

The remainder of this chapter is organised as follows: Section 13.2 brie�y puts this

chapter in context, section 13.3 shows how the PFIM problem can be solved with

GIM, section 13.4 presents in depth experiments and this chapter concludes in section

13.5.

Florian Verhein

282 13.2. RELATED WORK

TID Transaction ti

1 {a : 0.8, b : 0.2, d : 0.5, e : 1.0}
2 {b : 0.1, c : 0.7, d : 1.0}
3 {a : 0.5, d : 0.2, e : 0.5}
4 {d : 0.8, e : 0.2}
5 {c : 1.0, d : 0.5, e : 0.8}
6 {a : 1.0, b : 0.2, c : 0.1}
(a) Uncertain transaction database.

Item v Sparse Vector xv Full Vector xv

a [1 : 0.8, 3 : 0.5, 6 : 1.0] [0.8, 0, 0.5, 0, 0, 1.0]

b [1 : 0.2, 2 : 0.1, 6 : 0.2] [0.2, 0.1, 0, 0, 0, 0.2]

c [2 : 0.7, 5 : 1.0, 6 : 0.1] [0, 0.7, 0, 0, 1.0, 0.1]

d [1 : 0.5, 2 : 1.0, 3 : 0.2, 4 : 0.8, 5 : 0.5] [0.5, 1.0, 0.2, 0.8, 0.5, 0]

e [1 : 1.0, 3 : 0.5, 4 : 0.2, 5 : 0.8] [1.0, 0, 0.5, 0.2, 0.8, 0]
(b) Vectorised uncertain transaction database.

Figure 13.1: Example uncertain transaction database in terms of vectors. The pos-
sible items (variables) are V = {a, b, c, d, e} and there are 6 uncertain transactions.

13.2 Related Work

Recall that section 10.2 provided an in depth discussion of work related to frequent

itemset mining in uncertain and probabilistic databases. This thesis presented PFIM

(the problem was introduced and �rst solved in the publication [18] and the corre-

sponding chapter 10) and the subsequent major advances in solving this problem

e�ciently. Therefore, the relevant competing methods have already been presented

in chapters 10 and 12. GIM is a novel framework and algorithm based on a vec-

torised view of interaction mining, and itemset mining is one form of interaction

mining. GIM is covered in chapter 3 and has its roots in solving many of the other

problems presented in this thesis. Relevant literature on the itemset mining problem

can be found in section 4.3.

13.3 Solving PFIM with GIM

PFIM can be cast into the vectorised model proposed by GIM resulting in an intuitive

way of thinking about the PFIM problem. A probabilistic frequent itemset (PFI)

captures an interaction between items in an uncertain database. In the vectorised

GIM view, each item is a variable and each itemset (set of variables) V ′ ⊂ I can be

represented by a vector xV ′ in the probability space X = [0, 1]|T | spanned by the

uncertain transactions T . In particular, xV ′ [i] is the probability that the itemset V ′ is

Dr. rer. nat. Dissertation

CHAPTER 13. VECTORISED PROBABILISTIC FREQUENT ITEMSET
MINING 283

contained in the ith transaction. Note therefore that xV ′ provides all the information

necessary to compute the frequentness probability (or signi�cance) of the itemset V ′

using the methods in chapters 10, 11 or 12. The vectors xv for each uncertain

item v ∈ I are easily read from an uncertain transaction database by recording the

existence probabilities P (c ∈ ti) in xv[i]. Of course, sparse or compressed formats

can be used. Figure 13.1 shows two vector representations of the example database

of �gure 10.2, �rst in a sparse format where only those dimensions (transactions)

containing the item with a non-zero probability is listed, and the full format where

each dimension is recorded.

Under the independence assumption (see chapters 10 and 11 for an explanation and

justi�cation), it is easy to compute the interaction vector for a probabilistic itemset as

follows: xV ′ [i] = Πv∈V ′xv[i]. For example, x{a,e} = [1 : 0.8, 3 : 0.25] or in full vector

form; [0.8, 0, 0.25, 0, 0, 0]. Determining the existence probabilities of V ′ ∪ v when a

new item v ∈ I is added to an existing itemset V ′ is therefore simply a matter of

element-wise multiplication of its vector xv with the existing xV ′ . Note that due to

the operation of GIM, such a vector xV ′ will have been created previously on the

current path of the search. Indeed, recall that the GIM algorithm never recomputes

any parts of vectors while using the least amount of space possible. When used for

PFIM, this means that the probabilities Πv∈V ′P (v ∈ ti) are computed incrementally

by reusing prior results. This contrasts the methods used in ProApriori and ProFP-

Growth. Further, note that using the sparse representation, only that subspace where

both V ′ and v exist are recorded. Since this subspace (spanned by the transactions

in which V ′ ∪ v have a non-zero probability of existing) becomes smaller as the size

of the itemset increases (the space is the intersection of the spaces in which V ′ and v

exist), this further increases both the space and run-time e�ciency of the algorithm

as it progresses. Furthermore, this automatically prunes away any 0's before the

frequentness probability is calculated, removing the need to do this explicitly as part

of the certainty optimisation (see for example section 10.4.1.1).

Based on the above discussion, PFIM can be solved in GIM as follows:

• The vectors xv are de�ned so that xv[i] = P (v ∈ ti). The order on the variables
(items) is arbitrary. Recall that a sparse vector method is most e�cient, so

only P (v ∈ ti) greater than 0 need to be stored.

• aI(xV ′ , xv) is computed so that aI(xV ′ , xv)[i] = xV ′ [i] ·xv[i]. Recall that xV ′ [i]
is the probability that V ′ ⊆ ti under the independence assumption.

• mI(xV ′) computes the frequentness probability of V ′ (or the signi�cance level

if used for SiFIM).

Florian Verhein

284 13.4. EXPERIMENTS

• MI(·) is trivial.

• II(·) = SI(·) and returns true if and only if mI(xV ′) ≥ τ (or if the pvalue is

below a given level of signi�cance for SiFIM).

With this instantiation, GIM solves the PFIM (or SiFIM) problem. The resulting

algorithm is called GIM-PFIM (GIM-SiFIM). The space requirement is that of the

database in sparse format (actually less, since it is easy to avoid storing xv for any

v that is not a PFI). The run time is linear in the number of itemsets that need to

be examined, making GIM-PFIM optimal (see theorem 3.8).

13.4 Experiments

This section experimentally1 compares GIM applied to the PFIM problem with the

previous state of the art methods ProApriori and ProFP-Growth. Both arti�cial and

well known real world data sets were used. All algorithms used the Poisson binomial

recurrence computation method with certainty optimisation as outlined in chapter

10. As a side note, all GIM experiments using sparse vectors shown in this section

had no problems running on a small netbook with a 1.6GHz Atom processor and

default JVM settings (< 64MB RAM). Both ProApriori and ProFP-Growth on the

other hand required considerably more computational resources (at least an order

of magnitude more). In order to remove the e�ects of i/o operations, the data sets

were retained in memory in the experiments.

13.4.1 Arti�cial Data Sets

In order to evaluate the run time on databases with di�erent characteristics, a series

of small but representative arti�cial databases was generated. These consisted of 50

items, 1000 transactions and were generated as follows: First, a certain database

was generated by including an item in a transaction with probability p1 so that

on average, each item occurs in p1 transactions. Then, with probability palter1 the

certain occurrences were changed to a uniformly distributed value in [0, 1]. palter1

therefore determines the level of uncertainty. The minimum frequentness probability

τ was set to 0.9 so that only itemsets were found that are highly likely to be frequent.

Note that τ only a�ects the run time for calculating the frequentness probability.

Since all algorithms use exactly the same evaluation, little is gained from varying τ .

1Experiments were performed on an Opteron Dual Core * 2, 2.6GHz, 32GB RAM computer
running SuSE-Linux 10.2 and Java 1.6. One core was utilised.

Dr. rer. nat. Dissertation

CHAPTER 13. VECTORISED PROBABILISTIC FREQUENT ITEMSET
MINING 285

(a) p1 = 0.25, palter = 0.5

(b) p1 = 0.5, palter = 0.5. Experiments were aborted once
the comulative time hit 30 minutes.

Figure 13.2: Run time results on arti�cial data sets.

Furthermore, the run time results would be similar for SiFIM (chapter 11) or for the

expected support method (except that all algorithms would be a little faster). By

varying minSup, it is possible to generate a graph showing the run time behaviour

of the algorithms in terms of the number of probabilistic frequent itemsets mined.

Figure 13.2 shows the performance of ProApriori, ProFP-Growth and GIM-PFIM

(showing both sparse and non-sparse vector implementations). ProFP-Growth is

faster than ProApriori, as expected from previous results. GIM-PFIM however is at

least an order of magnitude faster than both. Furthermore, it can be seen that the

sparse vector implementation further improves the run time e�ciency, and this e�ect

increases as the number of itemsets mined increases. Recall that sparse methods

corresponds to mining projected subspaces. As the size of the probabilistic frequent

Florian Verhein

286 13.4. EXPERIMENTS

itemsets increase, they de�ne smaller and smaller subspaces that need to be mined.

Hence the vectors become smaller and operations on these become faster.

The wave like e�ect that can be observed over the orders of magnitude is likely due

to the way the data sets were generated2.

13.4.2 Well Known and Real World Databases

The algorithms were also evaluated on two large, publicly available data sets: The

well known FIM database (T10I4D100K) consisting of 870 items and 100, 000 trans-

actions; and the real world retail data set with 16, 470 items and 88, 162 transactions.

Both are available from the FIM data set repository [39]. Being certain data sets,

these were altered as above to generate various uncertain databases. palter1 was var-

ied to values in {0, 0.25, 0.5, 0.75, 1}, where palter1 = 0 corresponds to the data set

remaining certain, and palter1 = 1 corresponding to a completely uncertain database

where no item exists for certain in any transaction. In the graphs, palter1 is denoted

by P (Alter1). GIM was used with sparse real vectors only.

T10I4D100K

Figures 13.3 and 13.4 show the results on the T10I4D100K data set. Again, minSup

was varied from 1000 to 2 to obtain the graph. The total time allowed for each

series of experiments (line in the graph) was limited however; 30 minutes for GIM,

and 2 hours for ProFP-Growth and ProApriori. In the completely uncertain data

set and for the lowest minSup setting (minSup = 2), ProFP-Growth achieves the

same run time as GIM. However, this setting corresponds to a support of only 2

out of the 100, 000 transactions, or 0.002%. Furthermore, it generates far too many

probabilistic frequent itemsets to be useful. When there is less uncertainty, this

crossover point increases to minSup = 17, or 0.017%. Such settings are pointless in

practice, where higher support is desired. It can clearly be seen that regardless of the

level of uncertainty in the data set, GIM outperforms ProFP-Growth for practical

levels of minSup, usually by one order of magnitude. ProApriori is over an order of

magnitude slower than ProFP-Growth, and at least two orders of magnitude slower

than GIM.
2Since the probabilities were generated from the same distribution, all itemsets of size k can

be expected to have similar probabilities of being frequent but the larger the itemsets become, the
smaller their existence probabilities but the more of them there are. Further, the random number
generator is not a particularly robust. These e�ects lead to ranges for minSup where many itemsets
must be examined while few are interesting, and other settings (when minSup is increased above
a certain threshold) where suddenly a higher percentage of the itemsets examined end up being
probabilistically frequent.

Dr. rer. nat. Dissertation

CHAPTER 13. VECTORISED PROBABILISTIC FREQUENT ITEMSET
MINING 287

Figure 13.3: Run time results on the uncertain T10I4D100K data set. The results
are split up by palter1 value in �gure 13.4.

There is also a large di�erence in memory required between GIM and ProFP-Growth.

All the GIM experiments ran on the default JVM settings and required at most 48MB

of RAM. ProFP-Growth on the other hand, required up to about 7.4GB of RAM

� over one order of magnitude more. ProApriori generally used a few GB of RAM.

Incidentally, all GIM experiments happily run on a small netbook with the same run

time characteristics, albeit at a constant factor slower due to the slower CPU.

Florian Verhein

288 13.4. EXPERIMENTS

(a) palter = 1. Crossover point at
minSup = 0.002%

(b) palter = 0.75.

(c) palter = 0.5. (d) palter = 0.25.

(e) palter = 0. Crossover point at
minSup = 0.017%

Figure 13.4: Run time results on the uncertain T10I4D100K data set, showing each
setting for palter1.

Dr. rer. nat. Dissertation

CHAPTER 13. VECTORISED PROBABILISTIC FREQUENT ITEMSET
MINING 289

Figure 13.5: Run time results on the full uncertain retail data set.

Retail

Figure 13.5 show the run time results on the retail data set. While T10I4D100K had

few items in comparison to the number of transactions (870/100000 = 0.87%), the

retail data set has over an order of magnitude more items (16, 470/88126 = 18.7%)

while still having a large number of transactions (88% of those in T10I4D100K). It

therefore provides a more challenging test in addition to an evaluation on a real world

data set. Again, minSup was varied as described above, but ProFP-Growth had to

be run for an extra 2 hours per line in order to get the results displayed. ProApriori

failed to run on the retail data set; most likely due to the high number of items

causing too many candidates to be generated; even with the JVM set to allow up

Florian Verhein

290 13.5. CONCLUSION

to 20GB or RAM. The results clearly show that GIM-PFIM is superior to ProFP-

Growth for all minSup settings and all levels of uncertainty. The improvement

ranges up to over 2 orders of magnitude.

13.5 Conclusion

Probabilistic frequent itemset mining (PFIM) is a challenging problem, requiring

both e�cient computation of the support probability distribution, and algorithms

able to mine all probabilistic itemsets e�ciently. This chapter presented the fastest

and most e�cient algorithm to date for PFIM. It beats the previous state of the art

algorithms by at least an order of magnitude. In addition, the results in this chapter

lend weight to the wide ranging applicability, e�ectiveness and e�ciency of the GIM

framework and algorithm.

Dr. rer. nat. Dissertation

Part V

Conclusions

291

Chapter 14

Conclusions and Future Work

This thesis was organised into three main research themes: Part II considered vari-

ous interaction mining problems and proposed novel solutions at the abstract level

via generalised frameworks and an e�cient vectorised computation model. Part III

considered the integration of rigorous statistical approaches in novel data mining

methods, and part IV proposed and solved the problem of mining probabilistic fre-

quent itemsets in uncertain databases.

Uncertain or probabilistic databases pose signi�cant challenges for the KDD process.

They require the development of specialist algorithms that take into account the

probability distributions of the data in order to deliver useful results to the user.

This was demonstrated in the context of frequent itemset mining, where existing

work treated itemsets as being interesting if their expected support was high. This

is known as the expected FIM (EFIM) problem. While the EFIM approach lead to

the relatively easy extension of FIM algorithms, it has the fundamental �aw that

it provides no con�dence in the result. Indeed, it was shown in this thesis that it

leads to scenarios where itemsets are labeled frequent even if they are actually more

likely to be infrequent. It was also demonstrated that the expected support approach

labeled many patterns interesting in a random database, even though these patterns

were statistically insigni�cant. Clearly, this is undesirable.

In response to these problems, part IV of this thesis proposed and solved the Prob-

abilistic Frequent Itemset Mining (PFIM) problem, where itemsets are considered

interesting if the probability that they are frequent is high. PFIM delivers high qual-

ity patterns and does not su�er the downsides of EFIM since it uses the probability

distribution of an itemset's support. This methodology made the problem much

more challenging however. In particular, two problems needed to be addressed:

293

294

First, an e�cient method was required to calculate an itemset's support probabil-

ity distribution (SPDF) and frequentness probability. This thesis used the possible

worlds model and a proposed probabilistic framework to solve this problem in var-

ious ways: Novel methods based on the Poisson binomial recurrence (chapter 10)

and generating functions (chapter 12) were developed. Despite calculating the ex-

act SPDF and frequentness probability, these avoided the exponential run time of

naive solutions and had run times close to the EFIM method. Approximate results

using a Normal approximation are also investigated (chapter 11). Secondly, novel

algorithms needed to be developed in order to e�ciently calculate and feed itemsets'

existence probabilities to the frequentness probability computation method, and in

turn search through the space of itemsets. Since more probability information is re-

quired in comparison to EFIM, specialist algorithms had to be developed. This thesis

�rst developed ProApriori, which is based on the candidate generation and testing

framework (chapter 10). Then, ProFP-Growth was proposed in chapter 12. This was

the �rst probabilistic FP-Growth type algorithm and used a proposed probabilistic

frequent pattern tree (Pro-FPTree) to avoid candidate generation, while being able

to compress the uncertain transaction database in a loss-less manner. Finally, the

PFIM problem was mapped to the GIM framework, casting PFIM as a vectorised

interaction mining problem in chapter 13. The resulting GIM-PFIM algorithm is

the current fastest known algorithm for solving the PFIM problem. In comparison

to ProApriori and ProFP-Growth, it achieved orders of magnitude improvements in

space and time usage. Furthermore, it lead to an intuitive subspace and probability-

vector based interpretation of PFIM. Incremental methods were also proposed to

answer queries such as �nding the top-k probabilistic frequent itemsets.

This thesis identi�ed a fundamental problem with the prior state of the art approach

to mining itemsets in uncertain databases, proposed an alternative approach that

overcame these problems and examined it in depth. This demonstrates the need

and advantages of developing specialist algorithms that take account the probability

distribution of the target measure in uncertain or probabilistic databases. It also

showed that doing so can not only lead to higher quality output for the user, but very

e�cient algorithms. This thesis contributed a range of methods that e�ciently �nd

high quality probabilistic frequent patterns in uncertain or probabilistic databases,

potentially rendering the previous expectation based method obsolete.

Another hypothesis considered in this thesis was that statistical techniques embedded

within data mining and machine learning methods lead to better descriptive and

predictive outcomes. Therefore, signi�cance tests and Pearson's correlation were

used to develop various novel data mining approaches. The use of signi�cance tests

Dr. rer. nat. Dissertation

CHAPTER 14. CONCLUSIONS AND FUTURE WORK 295

was based on the observation that data mining is a hypothesis generating endeavour,

and that DM algorithms make decisions in their search for interesting patterns. Since

the database is a sample, the patterns found should describe hypotheses about the

underlying process that generated the data. Furthermore, a DM algorithm should

ideally deliver patterns that are statistically signi�cant, so that they are unlikely to

have occurred by chance, noise or sampling e�ects. Finally, the decisions made by an

algorithm during its search should ideally also be signi�cant, so that the search itself

is not sensitive to `chance'. These issues are often ignored. It is desirable to provide

some minimal level of con�dence that the patterns found are in fact signi�cant, and

that the algorithm does not make decisions likely to have occurred by chance. Post

processing is not an e�ective solution to these problem for two reasons: First, it

cannot address the issue of signi�cant algorithmic decisions. Secondly, it means that

what the user is ultimately interested in (the knowledge provided at the output of

post-processing) is not what the data mining algorithm is actually searching for. At

best, this is very ine�cient. At worst, the algorithm never �nds those patterns that

the post-processing task would rate most highly.

One method used in this thesis to mine signi�cant patterns is to use signi�cance

tests within the search and interestingness measures themselves. This means that

both the decisions made by the search, as well as the patterns found, have high con-

�dence. This approach was used in chapter 8, which addressed the problem of rule

based classi�cation of standard and in particular, highly imbalanced (skewed) data

sets. Mining data sets with an imbalanced class distribution is challenging and is re-

quired in applications such as medical diagnosis and fraud detection. In the proposed

SPARCCC method, rules are interesting if they have a positive class correlation ratio,

are statistically signi�cant based on Fisher's exact test and are positively associated.

The search also progresses based on signi�cance tests and therefore mines signi�cant

rules directly. In contrast, many other associative classi�cation methods were based

on the support framework and subsequent �ltering. This was found to lead to rules

with a bias against the minority class, rules that were statistically insigni�cant or

could be correlated more highly with an alternative class to the one they predict.

By relying on the popular support-con�dence framework and �ltering the results in

post processing, these methods were also very ine�cient; requiring that many rules

be mined but discarding up to 99% of them in order to achieve acceptable classi�-

cation performance. SPARCCC on the other hand achieved the same accuracy on

balanced data sets and much higher classi�cation performance on imbalanced data

sets, discovered orders of magnitude fewer � but high quality � rules and discarded

none of them.

Florian Verhein

296

A second method to deliver only signi�cant results is to mine patterns that are in-

teresting with a high probability; that is, to generate a signi�cance test around an

existing interestingness measure. This approach is taken in chapter 11, where item-

sets are mined if they are signi�cantly frequent. Again, a non-parametric method was

used and the results had a higher quality than the alternative expectation approach.

Finally, Pearson's product moment correlation coe�cient was used in a number of

novel methods in this thesis. Chapter 9 considered the problem of mining complex

maximal cliques of correlated variables (attributes) for the purpose of feature selec-

tion, meaningful dimensionality reduction, and as an interaction mining technique

in its own right. An e�cient algorithm was developed based on a proven structural

constraint on complex correlation graphs. Correlation was also used successfully for

mining correlated multiplication rules for interaction mining and feature generation;

and conjunctive correlation rules for classi�cation.

Together then, these results support the hypothesis that better predictive and de-

scriptive patterns are mined by the incorporation of statistical techniques embedded

directly within novel data mining methods.

This thesis developed a range of data mining methods that can be covered by the

term interaction mining. While solving these problems, it was discovered that many

aspects were similar when regarded from a suitably abstracted view: In general, a

data set can be considered as a set of variables about which one has samples. In-

teraction mining is the process of mining structures on these variables that describe

interaction patterns. Usually, these structures can be represented as sets or graphs;

where each variable interacts, to some degree, with other variables in the structure.

Such interactions can also be complex, representing both positive and negative rela-

tionships, and can include negative patterns. Furthermore, the presence of particular

interactions can in�uence another interaction or variable in interesting ways. These

latter kinds of interactions can be expressed as rules. Recall that interactions are

of interest in many domains, ranging from social network analysis, marketing, the

sciences, to statistics and �nance. Furthermore, many data mining tasks can be

considered as mining interactions, such as clustering, frequent itemset mining, rule

based classi�cation, graph mining, etc.

Therefore, the research problem was to develop abstract frameworks, a computational

model and algorithms capable of modeling, capturing and solving a wide range of

such interaction mining problems at the abstract level, and to do so very e�ciently.

This was a challenging task since such problems have very di�erent semantics govern-

ing the interactions, their structures and their interpretation: The pattern de�nitions

Dr. rer. nat. Dissertation

CHAPTER 14. CONCLUSIONS AND FUTURE WORK 297

and semantics are di�erent; what makes an interaction pattern interesting is di�er-

ent; how the search should progress is di�erent and the data is also very di�erent.

Finally, solving interaction mining problems usually requires the simultaneous and

interdependent development of new pattern semantics and specialist algorithms for

mining the respective pattern. One can therefore conclude that it is not easy to

develop models abstract enough to capture this variation in interaction mining prob-

lems, while at the same time enabling the development of equally abstract algorithms

that also solves them e�ciently � ideally, more e�ciently than specialist algorithms.

But this is what part II of this thesis achieved:

Chapter 3 introduced and solved the GIM problem. GIM uses an e�cient and

intuitive computational model based purely on vectors and vector valued functions.

The semantics of the interactions, their interestingness measures and the type of data

considered are all �exible components. Intuitively, each interaction is represented by

a vector in a space typically spanned by the samples in the database. The search

progresses by performing functions on these vectors. The GIM algorithm runs in

linear time in the number of interesting interactions and uses little space. Chapter 3

showed how GIM can be applied to a wide range of problems, including graph mining,

counting based methods, itemset mining, clique mining, clustering, complex pattern

mining, negative pattern mining, solving an optimisation problem, etc. Later, it was

shown that it can solve many of the problems considered in other parts of this thesis.

For example, it turns out to be the most e�cient solution to the PFIM problem

considered in part IV. It can also solve the problems considered in chapter 9 and 5.

Other interaction mining problems considered in this thesis are covered in chapters

4 and 5. Chapter 4 presented a vectorised framework and novel algorithm called

GLIMIT for solving abstract itemset mining problems from a geometric perspective

in a transposed database. It is shown to outperform FP-Growth and Apriori on

the frequent itemset mining task. An e�cient method for generating association

rules was also presented. Chapter 5 considered the problem of mining complex co-

location patterns between di�erent types of objects in a real world spatial database.

When applied to a large astronomy database, this mines relationships � including

negative relationships and the e�ect of multiple occurrences � between di�erent types

of galaxies. Part of this problem was solved with GLIMIT but can be solved directly

with GIM.

Chapter 6 introduced and solved the Generalised Rule Mining (GRM) problem.

Rules are an important interaction pattern but existing approaches were limited to

conjunctions of binary literals, �xed measures and counting based algorithms. Rules

can be much more diverse, useful and interesting! The chapter rede�ned rule mining

Florian Verhein

298

in terms of a similar vectorised computational model to that used in GIM. This ab-

straction was motivated through the introduction of three diverse and novel methods

addressing problems including correlation based classi�cation, �nding interactions for

improving regression models and �nding probabilistic association rules in uncertain

databases. Two of these methods were introduced in chapter 6 (Probabilistic As-

sociation Rule Mining (PARM) in uncertain databases and Conjunctive Correlation

Rules (CCRules) for classi�cation), while one was introduced in chapter 7. Fur-

thermore, the SPARCCC method can also be solved with GRM, as was outlined in

chapter 8. Since interactions between variables in a database are often unknown to

the detriment of further analysis, classi�cation or mining tasks, chapter 7 proposes

Correlated Multiplication Rules (CMRules). These capture interactions predictive

of a dependent variable and are the �rst rules with multiplicative semantics. Fur-

thermore, a feature selection and dimensionality reduction method was described

whereby CMRules are used to generate composite features. One advantage of this is

that it enables linear models to learn non-linear decision boundaries with respect to

the original variables.

In summary then, in addition to proposing and solving the PFIM problem and

developing useful methods based on statistical approaches in data mining, this the-

sis successfully abstracted and solved the problem of mining interactions between

variables. The interaction mining problem was solved through the development of

abstract frameworks and algorithms operating on a vectorised computational model.

By doing this, one can separate the semantics of an interaction mining problem from

the algorithm used to mine it, allowing both to vary independently of each other.

This makes it easier to develop new methods by allowing the data miner to focus

only on their problem's semantics and then plug them into a framework. Further-

more, the frameworks make it easy to push good interestingness measures (such as

signi�cance tests and correlation) directly into the mining process. This leads to

higher quality results, more e�cient solutions and less reliance on measures that are

traditionally easier to implement but are not necessarily correlated with predictive

or descriptive performance (for example, support). Examples where these aspects

were demonstrated in this thesis include chapters 3, 5, 6, 7, 8, 9 and 13. Results

in this thesis also suggest that forcing good quality interestingness measures (that

correlate with the user's utility) to be anti-monotonic to allow for e�ective pruning

when they do not naturally have pruning friendly properties (for example, using the

improvement methods described in chapter 3 and 6), gives much better results than

using interestingness measures that are not directly related to the users utility, but

allow good pruning.

Dr. rer. nat. Dissertation

CHAPTER 14. CONCLUSIONS AND FUTURE WORK 299

By removing the burden of designing an e�cient algorithm, it is also easier for end

users to design custom data mining algorithms. By allowing the algorithms to vary

independently of the problem, new ones can be developed that can be immediately

be applied to solve many problems. Since it was shown that all problems considered

in this thesis can (at least retrospectively) be mapped to and solved by GIM or GRM,

any new GIM or GRM algorithm can immediately speed up all of these problems

without specialisation or modi�cation. This property is particularly advantageous

when DM is embedded into practical applications. The GIM and GRM algorithms

are already e�cient however, achieving the asymptotically optimal linear run time

in the number of interactions that must be examined and using little space. When

applied to speci�c problems, they turned out to be most e�cient. For example, the

PFIM problem was solved not only most e�ciently, but also most intuitively using

the GIM framework.

The vectorised computational model introduced in this thesis also encourages an

interesting geometric way of thinking about pattern mining problems in terms of

vector operations and subspaces � especially when an interestingness measure has

a geometric interpretation. Such a geometric interpretation leads to new insights

and can inspire new methods. For example, mining rules based on reducing the

angle between a vector representing the antecedent and the vector representing the

consequent. This idea was used successfully in chapters 6 and 7. Developing methods

that are now possible are also fruitful avenues for future work. For example, prior to

the development of GRM, multiplication rules were never considered and could not be

mined with existing methods. However, their use in chapter 7 turned out to be useful

for feature generation and interaction mining. Evaluating this application further

is a candidate for future work. GIM also provided a novel vector and subspace-

search interpretation of the search for interesting patterns. For example, this was

discussed in the context of probabilistic databases. There is plenty of scope for the

evaluation of other existing or novel methods using the GIM and GRM frameworks.

For example, recall that it was shown in chapter 3 that GIM may be used to solve a

wide range of problems, from itemset mining to complex pattern mining to clustering

to graph mining to optimisation. Later in the thesis, a number of these problems

were considered in detail, together with experimental evaluations and comparison to

the state of the art where applicable. Evaluating the others in depth, or developing

new methods inspired by the vectorised framework are also promising directions for

future work.

Florian Verhein

300

Dr. rer. nat. Dissertation

Bibliography

[1] Sloan digital sky survey / skyserver, http://cas.sdss.org/dr6/en/.

[2] D.J. Newman A. Asuncion. UCI machine learning repository, 2007.

[3] Herve Abdi. Bonferroni and sidak corrections for multiple comparisons. 2007.

[4] Abramowitz and Stegun. Handbook of Mathematical Functions With Formulas,

Graphs, and Mathematical Tables. 10 edition, 1972.

[5] Ramesh C. Agarwal, Charu C. Aggarwal, and V. V. V. Prasad. Depth �rst

generation of long patterns. In ACM SIGKDD international conference on

Knowledge discovery and data mining, pages 108�118. ACM Press, 2000.

[6] Ramesh C. Agarwal, Charu C. Aggarwal, and V. V. V. Prasad. A tree pro-

jection algorithm for generation of frequent itemsets. Journal of Parallel and

Distributed Computing, 61:350�371, 2000.

[7] Charu C. Aggarwal, Yan Li, Jianyong Wang, and Jing Wang. Frequent pattern

mining with uncertain data. In Proc. of the 15th ACM SIGKDD international

conference on Knowledge discovery and data mining, 2009.

[8] Charu C. Aggarwal and Philip S. Yu. A survey of uncertain data algorithms

and applications. IEEE Trans. on Knowl. and Data Eng., 21(5):609�623, 2009.

[9] Parag Agrawal, Omar Benjelloun, Anish Das Sarma, Chris Hayworth, Shubha

Nabar, Tomoe Sugihara, and Jennifer Widom. Trio: A system for data, un-

certainty, and lineage. In 32nd International Conference on Very Large Data

Bases. VLDB 2006 (demonstration description), 2006.

[10] Rakesh Agrawal, Tomasz Imielinsk, and Arun Swami. Mining association rules

between sets of items in large databases. In SIGMOD '93: Proceedings of the

1993 ACM SIGMOD international conference on Management of data, pages

207�216. ACM Press, 1993.

301

302 BIBLIOGRAPHY

[11] Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for mining asso-

ciation rules. In Proceedings of 20th International Conference on Very Large

Data Bases VLDB, pages 487�499. Morgan Kaufmann, 1994.

[12] Ghazi Al-Naymat, Sanjay Chawla, and Bavani Arunasalam. Enumeration of

maximal clique for mining spatial co-location patterns. tr 615. Technical report,

School of Information Technologies, University of Sydney, Australia, 2007.

[13] Maria-Luiza Antonie and Osmar R. Zaiane. An associative classi�er based on

positive and negative rules. In 9th ACM SIGMOD workshop on Research Issues

in Data Mining and Knowledge Discovery(DMKD-04), pages 64�69, 2004.

[14] L. Antova, T. Jansen, C. Koch, and D Olteanu. Fast and simple relational

processing of uncertain data. In IEEE International Conference on Data En-

gineering (ICDE08), pages 983 � 992. IEEE, 2008.

[15] Bavani Arunasalam and Sanjay Chawla. Cccs: a top-down associative classi�er

for imbalanced class distribution. In Proceedings of the 12th ACM SIGKDD

international conference on Knowledge discovery and data mining, pages 517�

522, New York, NY, USA, 2006. ACM Press.

[16] Bavani Arunasalam, Sanjay Chawla, and Pei Sun. Striking two birds with

one stone: Simultaneous mining of positive and negative spatial patterns. In

Proceedings of the Fifth SIAM International Conference on Data Mining, pages

173�182, 2005.

[17] Omar Benjelloun, Anish Das Sarma, Alon Halevy, and Jennifer Widom. Uldbs:

databases with uncertainty and lineage. In VLDB '06: Proceedings of the

32nd international conference on Very large data bases, pages 953�964. VLDB

Endowment, 2006.

[18] Thomas Bernecker, Hans-Peter Kriegel, Matthias Renz, Florian Verhein, and

Andreas Zü�e. Probabilistic frequent itemset mining in uncertain databases. In

Proceedings of the 15th ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining (SIGKDD'09), pages 119�128. ACM, 2009.

[19] Thomas Bernecker, Hans-Peter Kriegel, Matthias Renz, Florian Verhein, and

Andreas Zü�e. Probabilistic frequent pattern growth for itemset mining in

uncertain databases (technical report). CoRR, abs/1008.2300, 2010.

[20] Ferenc Bodon. A fast apriori implementation. In In Proceedings of the IEEE

ICDM Workshop on Frequent Itemset Mining Implementations, 2003.

Dr. rer. nat. Dissertation

BIBLIOGRAPHY 303

[21] Tom Brijs, Gilbert Swinnen, Koen Vanhoof, and Geert Wets. Using association

rules for product assortment decisions: A case study. In Knowledge Discovery

and Data Mining, pages 254�260, 1999.

[22] Sergey Brin, Rajeev Motwani, and Craig Silverstein. Beyond market baskets:

generalizing association rules to correlations. In ACM SIGMOD International

Conference on Management of Data, pages 265�276. ACM, 1997.

[23] Doug Burdick, Manuel Calimlim, and Johannes Gehrke. Ma�a: A maximal

frequent itemset algorithm for transactional databases. In In International

Conference on Data Engineering, pages 443�452, 2001.

[24] Reynold Cheng, Dmitri V. Kalashnikov, and Sunil Prabhakar. Evaluating

probabilistic queries over imprecise data. In SIGMOD '03: Proceedings of the

2003 ACM SIGMOD international conference on Management of data, pages

551�562. ACM, 2003.

[25] Chun Kit Chui and Ben Kao. A decremental approach for mining frequent

itemsets from uncertain data. In The 12th Paci�c-Asia Conference on Knowl-

edge Discovery and Data Mining (PAKDD), pages 64�75, 2008.

[26] Chun Kit Chui, Ben Kao, and Edward Hung. Mining frequent itemsets from

uncertain data. In 11th Paci�c-Asia Conference on Advances in Knowledge

Discovery and Data Mining, PAKDD 2007, Nanjing, China, pages 47�58, 2007.

[27] William W. Cohen. Fast e�ective rule induction. In International Conference

on Machine Learning. Morgan Kaufmann, 1995.

[28] Gao Cong, Anthony K.H.Tung, Xin Xu, Feng Pan, and Jiong Yang. Farmer:

Finiding interesting rule groups in microarray datasets. In 23rd ACM SIGMOD

International Conference on Management of Data Proceedings, pages 145�154,

2004.

[29] Gao Cong, Kian-Lee Tan, Anthony K.H.Tung, and Feng Pan. Mining frequent

closed patterns in microarray data. In 2004 IEEE International Conference on

Data Mining (ICDM'04) Proceedings, pages 363�366, 2004.

[30] Gao Cong, Kian-Lee Tan, Anthony K.H.Tung, and Xin Xu. Mining top-k

covering rule groups for gene expression data. In ACM SIGMOD/PODS 2005

Proceedings, pages 670�681, 2005.

[31] Gerard E. Dallal. The little handbook of statistical practice.

http://www.statisticalpractice.com.

Florian Verhein

304 BIBLIOGRAPHY

[32] N. Dalvi and D. Suciu. E�cient query evaluation on probabilistic databases.

The VLDB Journal, 16(4):523�544, 2007.

[33] William DuMouchel and Daryl Pregibon. Empirical bayes screening for multi-

item associations. In KDD '01: Proceedings of the seventh ACM SIGKDD

international conference on Knowledge discovery and data mining, pages 67�

76. ACM, 2001.

[34] Brian Dunkel and Nandit Soparkar. Data organization and access for e�cient

data mining. In International Conference on Data Engineering (ICDE99),

pages 522�529, 1999.

[35] Usama Fayyad, Gregory Piatetsky-shapiro, and Padhraic Smyth. From data

mining to knowledge discovery in databases. AI Magazine, 17:37�54, 1996.

[36] Usama M. Fayyad, Gregory Piatetsky-Shapiro, and Padhraic Smyth. From

data mining to knowledge discovery: an overview. Advances in knowledge

discovery and data mining, pages 1�34, 1996.

[37] Workshop on frequent itemset mining implementations 2003.

http://�mi.cs.helsinki.�/�mi03.

[38] Workshop on frequent itemset mining implementations 2004.

http://�mi.cs.helsinki.�/�mi04.

[39] Frequent itemset mining dataset repository. http://�mi.cs.helsinki.�/data/.

[40] Johannes Fürnkranz. Fossil: A robust relational learner. In Machine Learning:

ECML94, volume 784 of Lecture Notes in Computer Science, pages 122�137.

Springer Berlin / Heidelberg, 1994.

[41] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design

Patterns: Elements of Reusable Object-Oriented Software. Addison Wesley

Professional, 1994.

[42] Karolien Geurts, Geert Wets, Tom Brijs, and Koen Vanhoof. Pro�ling high

frequency accident locations using association rules. In Proceedings of the 82nd

Annual Transportation Research Board, Washington DC. (USA), January 12-

16, page 18pp, 2003.

[43] B. Goethals. "Survey on frequent pattern mining.". In Technical report,

Helsinki Institute for Information Technology, 2003.

Dr. rer. nat. Dissertation

BIBLIOGRAPHY 305

[44] Joseph Hair, Bill Black, Barry Babin, Rolph Anderson, and Ronald Tatham.

Multivariate Data Analysis (6th Edition). Pearson, November 2005.

[45] M.A. Hall and L.A. Smith. Feature subset selection: a correlation based �lter

approach. In N. Kasabov and et al., editors, Proc Fourth International Con-

ference on Neural Information Processing and Intelligent Information Systems,

pages 855�858, Dunedin, New Zealand, 1997.

[46] Jiawei Han and Micheline Kamber. Data Mining: Concepts and Techniques.

Morgan Kaufmann Publishers, 2000.

[47] Jiawei Han, Jian Pei, and Yiwen Yin. Mining frequent patterns without candi-

date generation. In ACM SIGMOD International Conference on Management

of Data (SIGMOD'00). ACM Press, 2000.

[48] Jiawei Han, Jian Pei, Yiwen Yin, and Runying Mao. Mining frequent patterns

without candidate generation: A frequent-pattern tree approach. Data Mining

and Knowledge Discovery, pages 53�87, 2004.

[49] Yan Huang, Hui Xiong, Shashi Shekhar, and Jian Pei. Mining con�dent co-

location rules without a support threshold. In Proceedings of the 18th ACM

Symposium on Applied Computing ACM SAC, 2003.

[50] Damon D. Judd. What's so special about spatial data? Earth Observation

Magazine, 2005.

[51] Jon Kleinberg and Eva Tardos. Algorithm Design. Addison Wesley, 2006.

[52] Jia-Ling Koh and Pei-Wy Yo. An e�cient approach for mining fault-tolerant

frequent patterns based on bit vector representations. In Lecture Notes in

Computer Science: DASFAA05: Database Systems for Advanced Applications.

Springer-Verlag, 2005.

[53] Flip Korn, Alexandros Labrinidis, Yannis Kotidis, and Christos Faloutsos.

Quanti�able data mining using ratio rules. VLDB Journal: Very Large Data

Bases, 8(3�4):254�266, 2000.

[54] H.-P. Kriegel, P. Kunath, M. Pfei�e, and M. Renz. "Probabilistic Similarity

Join on Uncertain Data". In Proc. 11th Int. Conf. on Database Systems for

Advanced Applications, Singapore, pp. 295-309, 2006.

[55] H.O. Lancaster. The chi-squared distribution. In John Wiley & Sons Ltd,

1969.

Florian Verhein

306 BIBLIOGRAPHY

[56] Srivatsan Laxman, Prasad Naldurg, Raja Sripada, and Ramarathnam Venkate-

san. Connections between mining frequent itemsets and learning generative

models. In ICDM '07: Proceedings of the 2007 Seventh IEEE International

Conference on Data Mining, pages 571�576, Washington, DC, USA, 2007.

IEEE Computer Society.

[57] Carson Leung, Mark Mateo, and Dale Brajczuk. A tree-based approach for

frequent pattern mining from uncertain data. In Advances in Knowledge Dis-

covery and Data Mining, volume 5012 of Lecture Notes in Computer Science,

pages 653�661. Springer Berlin / Heidelberg, 2008.

[58] Carson Kai-Sang Leung, Christopher L. Carmichael, and Boyu Hao. E�cient

mining of frequent patterns from uncertain data. In ICDMW '07: Proceedings

of the Seventh IEEE International Conference on Data Mining Workshops,

pages 489�494, 2007.

[59] Jian Li, Barna Saha, and Amol Deshpande. A uni�ed approach to ranking in

probabilistic databases. Proceedings of the VLDB Endowment, 2(1):502�513,

2009.

[60] Wenmin Li, Jiawei Han, and Jian Pei. Cmar: Accurate and e�cient classi-

�cation based on multiple class-association rules. In Proceedings of the 2001

IEEE International Conference on Data Mining (ICDM01), pages 369�376.

IEEE Computer Society, 2001.

[61] Bing Liu, Wynne Hsu, and Yiming Ma. Integrating classi�cation and asso-

ciation rule mining. In Knowledge Discovery and Data Mining, pages 80�86,

1998.

[62] Yasuhiko Morimoto. Mining frequent neighboring class sets in spatial

databases. In Proceedings of the Seventh ACM SIGKDD international confer-

ence on Knowledge discovery and data mining, pages 353 � 358. ACM Press-

New York, 2001.

[63] Shinichi Morishita and Jun Sese. Traversing itemset lattice with statistical

metric pruning. In Symposium on Principles of Database Systems, pages 226�

236, 2000.

[64] Rob Munro, Sanjay Chawla, and Pei Sun. Complex spatial relationships. In

Proceedings of the 3rd IEEE International Conference on Data Mining, ICDM

2003, pages 227�234. IEEE Computer Society, 2003.

Dr. rer. nat. Dissertation

BIBLIOGRAPHY 307

[65] P. M. Murphy and D. W. Aha. UCI repository of machine learning databases.

Machine-readable data repository, University of California, Department of In-

formation and Computer Science, Irvine, CA, 1992.

[66] Gonzalo Navarro and Veli Mäkinen. Compressed full-text indexes. ACM Com-

puting Surveys, 39(1):2, 2007.

[67] Nips 2003 workshop on feature extraction.

http://clopinet.com/isabelle/projects/nips2003.

[68] Balaji Padmanabhan and Alexander Tuzhilin. On characterization and discov-

ery of minimal unexpected patterns in rule discovery. IEEE Trans. on Knowl.

and Data Eng., 18(2):202�216, 2006.

[69] F. Pan, G. Cong, A. Tung, J. Yang, and M. Zaki. Carpenter: Finding closed

patterns in long biological datasets. In Proceedings of the Ninth ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining. Morgan

Kaufmann, 2003.

[70] Feng Pan, Wei Wang, Anthony K. H. Tung, and Jiong Yang. Finding repre-

sentative set from massive data. In ICDM '05: Proceedings of the Fifth IEEE

International Conference on Data Mining, pages 338�345, Washington, DC,

USA, 2005. IEEE Computer Society.

[71] Jong Soo Park, Ming-Syan Chen, and Philip S. Yu. An e�ective hash-based

algorithm for mining association rules. In SIGMOD '95: Proceedings of the

1995 ACM SIGMOD international conference on Management of data, pages

175�186, New York, NY, USA, 1995. ACM.

[72] Nicolas Pasquier, Yves Bastide, Ra�k Taouil, and Lot� Lakhal. Discovering

frequent closed itemsets for association rules. In Database Theory (ICDT99),

volume 1540 of Lecture Notes in Computer Science, pages 398�416. Springer,

1999.

[73] Jian Pei, Jiawei Han, Hongjun Lu, Shojiro Nishio, Shiwei Tang, and Dongqing

Yang. H-mine: Hyper-structure mining of frequent patterns in large databases.

In IEEE International Conference on Data Mining (ICDM01), pages 441�448,

2001.

[74] Jian Pei, Jiawei Han, and Runying Mao. CLOSET: An e�cient algorithm for

mining frequent closed itemsets. In ACM SIGMOD Workshop on Research

Issues in Data Mining and Knowledge Discovery, pages 21�30, 2000.

Florian Verhein

308 BIBLIOGRAPHY

[75] Jian Pei and Ming Hua. Mining uncertain and probabilistic data: prob-

lems, challenges, methods, and applications. In Proceeding of the 14th ACM

SIGKDD international conference on Knowledge discovery and data mining

(SIGKDD08), New York, NY, USA, 2008. ACM.

[76] Ross Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann,

1993.

[77] Christopher Ré, Nilesh Dalvi, and Dan Suciu. E�cient top-k query evaluation

on probalistic databases. In International Conference on Data Engineering

(ICDE07), pages 886�895, 2007.

[78] Ulrich Ruckert, Lothar Richter, and Stefan Kramer. Quantitative association

rules based on half-spaces: An optimization approach. In International Con-

ference on Data Mining (ICDM04), pages 507�510. IEEE Computer Society,

2004.

[79] P. Sen and A. Deshpande. Representing and querying correlated tuples in

probabilistic databases. In International Conference on Data Engineering

(ICDE07), 2007.

[80] Shashi Shekhar and Yan Huang. Discovering spatial co-location patterns: A

summary of results. Lecture Notes in Computer Science, 2121:236+, 2001.

[81] Pradeep Shenoy, Gaurav Bhalotia, Jayant R. Haritsa T, Mayank Bawa,

S. Sudarshan, and Devavrat Shah. Turbo-charging vertical mining of large

databases. In ACM SIGMOD International Conference on Management of

Data, pages 22�33, 2000.

[82] Craig Silverstein, Sergey Brin, and Rajeev Motwani. Beyond market baskets:

Generalizing association rules to dependence rules. Data Mining and Knowl-

edge Discovery, 2(1):39�68, 1998.

[83] M.A. Soliman, I.F. Ilyas, and K. Chen-Chuan Chang. Top-k query process-

ing in uncertain databases. In International Conference on Data Engineering

(ICDE07), pages 896�905, 2007.

[84] Ramakrishnan Srikant and Rakesh Agrawal. Mining quantitative association

rules in large relational tables. In ACM SIGMOD International Conference on

Management of Data, pages 1�12. ACM, 1996.

[85] Ramakrishnan Srikant, Quoc Vu, and Rakesh Agrawal. Mining association

rules with item constraints. In International Conference on Knowledge Discov-

ery in Databases (KDD97), pages 67�73. AAAI Press, 1997.

Dr. rer. nat. Dissertation

BIBLIOGRAPHY 309

[86] Michael Steinbach, Pang-Ning Tan, Hui Xiong, and Vipin Kumar. Generalizing

the notion of support. In The Tenth ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining KDD'04, 2004.

[87] Rani J. Swargam and Mathew J. Palakal. The role of least frequent item sets

in association discovery. In International Conference on Digital Information

Management (ICDIM07), pages 217�223. IEEE, 2007.

[88] Pang-Ning Tan, Michael Steinbach, and Vipin Kumar. Introduction to Data

Mining. Addison Wesley, 2006.

[89] Adriano Veloso, Wagner Meira Jr., and Mohammed J. Zaki. Lazy associative

classi�cation. In IEEE International Conference on Data Mining (ICDM06),

pages 645�654. IEEE Computer Society, 2006.

[90] Florian Verhein. k-stars: Sequences of spatio-temporal association rules. In

The 1st Workshop on Spatial and Spatio-temporal Data Mining (SSTDM'06),

Workshops Proceedings of the 6th IEEE International Conference on Data Min-

ing (ICDM 2006), pages 387�394. IEEE Computer Society, 2006.

[91] Florian Verhein. Mining complex, maximal and complete sub-graph and sets of

correlated variables with applications to feature subset selection. In Proceedings

of the SIAM International Conference on Data Mining, SDM 2008, April 24-

26, 2008, Atlanta, Georgia, USA, pages 597�608, 2008.

[92] Florian Verhein. Mining complex spatio-temporal sequence patterns. In Pro-

ceedings of the SIAM International Conference on Data Mining (SDM 2009),

pages 605�616. SIAM, 2009.

[93] Florian Verhein. Generalised rule mining. In Proceedings of the 15th Inter-

national Conference on Database Systems for Advanced Applications (DAS-

FAA'06), Lecture Notes in Computer Science. Springer, 2010.

[94] Florian Verhein and Ghazi Al-Naymat. Fast mining of complex spatial co-

location patterns using glimit. In Workshops Proceedings of the 7th IEEE

International Conference on Data Mining (ICDM'07). IEEE Computer Society,

2007.

[95] Florian Verhein and Sanjay Chawla. Mining spatio-temporal association

rules, sources, sinks, stationary regions and thoroughfares in object mobility

databases. InWorkshops Proceedings of the 5th IEEE International Conference

on Data Mining (ICDM 2005), pages 41�52. IEEE Computer Society, 2005.

Florian Verhein

310 BIBLIOGRAPHY

[96] Florian Verhein and Sanjay Chawla. Geometrically inspired itemset min-

ing. In Proceedings of the 6th IEEE International Conference on Data Mining

(ICDM'06), pages 655�666. IEEE Computer Society, 2006.

[97] Florian Verhein and Sanjay Chawla. Mining spatio-temporal association

rules, sources, sinks, stationary regions and thoroughfares in object mobility

databases. In The 11th International Conference on Database Systems for Ad-

vanced Applications (DASFAA'06), volume 3882 of Lecture Notes in Computer

Science, pages 187�201. Springer, 2006.

[98] Florian Verhein and Sanjay Chawla. Using signi�cant, positively and rela-

tively class correlated rules for associative classi�cation of imbalanced datasets.

In Proceedings of the 7th IEEE International Conference on Data Mining

(ICDM'07). IEEE Computer Society, 2007.

[99] Florian Verhein and Sanjay Chawla. Mining spatio-temporal patterns in object

mobility databases. Data Mining and Knowledge Discovery, 2008.

[100] Jianyong Wang and George Karypis. Harmony: E�ciently mining the best

rules for classi�cation. In SIAM International Conference on Data Mining

(SDM05), 2005.

[101] Jianyong Wang and Jian Pei. Closet+: searching for the best strategies for

mining frequent closed itemsets. In ACM SIGKDD International Conference

on Knowledge Discovery in Databases, pages 236�245, 2003.

[102] Performance prediction challenge, wcci model selection workshop, 2006.

http://www.modelselect.inf.ethz.ch/datasets.php.

[103] Geo�rey I. Webb. Discovering signi�cant rules. In 12th ACM SIGKDD Inter-

national Conference on Knowledge Discovery and Data Mining (SIGKDD06),

pages 434�443. ACM Press, 2006.

[104] Ian H. Witten and Eibe Frank. Data Mining: Practical machine learning tools

and techniques, 2nd Edition. Morgan Kaufmann, 2005.

[105] Michael Wolfe. Vector optimization vs. vectorization. In Supercomputing, Lec-

ture Notes in Computer Science. Springer, 1988.

[106] Sun X. and A.B. Nobel. Signi�cance and recovery of block structures in bi-

nary matrices with noise. In Technical report, pages 217�223. Department of

Statistics and Operations Research, UNC Chapel Hill, 2005.

Dr. rer. nat. Dissertation

BIBLIOGRAPHY 311

[107] Yi Xia, Yirong Yang, and Yun Chi. Mining association rules with non-uniform

privacy concerns. In DMKD '04: Proceedings of the 9th ACM SIGMOD work-

shop on Research issues in data mining and knowledge discovery, pages 27�34,

2004.

[108] Hui Xiong, Shashi Shekhar, Pang-Ning Tan, and Vipin Kumar. Exploiting a

support-based upper bound of pearson's correlation coe�cient for e�ciently

identifying strongly correlated pairs. In ACM SIGKDD International Confer-

ence on Knowledge Discovery in Databases, pages 334�343. ACM, 2004.

[109] K. Yi, F. Li, G. Kollios, and D. Srivastava. E�cient processing of top-k queries

in uncertain databases. In 24th International Conference on Data Engineering

(ICDE'08), 2008.

[110] Xiaoxin Yin and Jiawei Han. CPAR: Classi�cation based on predictive asso-

ciation rules. In Proceedings of the Third SIAM International Conference on

Data Mining. SIAM, 2003.

[111] Mohammed J. Zaki. Scalable algorithms for association mining. IEEE Trans-

actions on Knowledge and Data Engineering, 12:372�390, 2000.

[112] Mohammed J. Zaki and Karam Gouda. Fast vertical mining using di�sets.

In 9th ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining (SIGKDD'03), pages 326�335, 2003.

[113] Mohammed J. Zaki and Ching jui Hsiao. Charm: An e�cient algorithm for

closed itemset mining. In In 2nd SIAM International Conference on Data

Mining, pages 457�473, 2002.

[114] Qin Zhang, Feifei Li, and Ke Yi. Finding frequent items in probabilistic data.

In Jason Tsong-Li Wang, editor, SIGMOD Conference, pages 819�832. ACM,

2008.

[115] Wenjie Zhang, Xuemin Lin, Jian Pei, and Ying Zhang. Managing uncertain

data: Probabilistic approaches. In The Ninth International Conference on

Web-Age Information Management (WAIM '08), 2008.

[116] Xin Zhang, Nikos Mamoulis, David W. Cheung, and Yutao Shou. Fast mining

of spatial collocations. In Proceedings of the tenth ACM SIGKDD international

conference on Knowledge discovery and data mining, pages 384 � 393. ACM

Press-New York, 2004.

Florian Verhein

	Abstract
	Zusammenfassung
	Aknowledgements
	Publications
	Chapter Summary
	Contents
	List of Figures
	I Preliminaries
	Introduction
	Research Problems and Thesis Overview
	Generalised Interaction Mining
	Statistical Approaches in Interaction Mining
	Probabilistic Frequent Itemset Mining in Uncertain Databases
	Summary of Data Mining Problems Addressed in this Thesis

	Publications Contributing to Chapters of this Thesis

	Background
	Knowledge Discovery in Databases
	Data Mining

	II Generalised Interaction Mining
	Generalised Interaction Mining
	Introduction
	Relationship to other Chapters
	Contributions
	Organisation

	Generalised Interaction Mining Framework
	Generalised Interaction Mining Algorithm
	Prefix Tree
	Algorithm
	Complexity

	Counting Based Approaches: The Simplest Example
	Mining Maximal Interactions
	Including Negative Patterns
	Solving Top-Down or Monotonic Problems with GIM
	Graph Mining: When the Input is an Adjacency or Distance Matrix
	Clique Mining
	Mining Maximal Cliques
	Solving the Independent Set Problem

	Clustering
	Mining Uncertain or Probabilistic Databases
	Complex (``Non-Trivial'') Interestingness Measures
	Complexity

	Weak Anti-monotonicity and when Order is Important
	Maximum Participation Index (maxPI)

	Forced Anti-monotonicity
	High Dimensional Data and Dimensionality Reduction
	Vector Representations and Subspace Projections
	Subspaces, Projections and Geometric Interaction Mining

	Applications and Examples in Other Chapters
	Mining Complex, Maximal and Complete Sub-graphs and Sets of Correlated Variables
	Geometric Itemset Mining, Frequent Itemset Mining
	Mining Complex Spatial Co-location Patterns
	Probabilistic Itemset Mining in Uncertain Databases

	Conclusion

	Geometrically Inspired Itemset Mining in the Transpose
	Introduction
	Contributions
	Organisation

	Some Challenges and Important Concepts
	The Transposed View
	Number of Item-vectors Used

	Related Work
	Item-vector Framework
	Algorithm
	Data Structures
	Important Facts and Properties
	Algorithm Example
	Algorithm Complexity
	Algorithm Details

	Mining Association Rules
	Experiments
	Conclusion and Future Work

	Fast Mining of Complex Spatial Co-location Patterns
	Introduction
	Problem Statement
	Contributions
	Organisation

	Complex Spatial Co-location Pattern Discovery Process
	Maximal Cliques
	Extracting Complex Relationships
	Mining Interesting Complex Relationships
	Mapping the Problem to GLIMIT

	Mapping the Problem to GIM
	Experiments
	Related Work
	Conclusion

	Generalised Rule Mining
	Introduction
	Contributions
	Organisation

	Related Work
	Novel and Motivational Methods Solved Using GRM
	Probabilistic Association Rule Mining (PARM)
	Conjunctive Correlation Rules for Classification (CCRules)
	Directing the Search by Correlation Improvement
	CCRules for Classification

	Generalised Rule Mining (GRM) Framework
	Generalised Rule Mining Algorithm
	Mutual Exclusion Constraints
	Categorized Prefix Tree
	Generalized Rule Mining Algorithm
	Complexity

	Experiments
	Complexity Experiments
	CCRules for Classification

	Conclusion
	Appendix: Notes on using Pearson's Correlation for the Evaluation of Rules

	Correlated Multiplication Rules with Applications
	Introduction
	Contributions
	Organisation

	Related Work
	Rule Mining
	Correlation Rules

	Correlated Multiplication Rules (CMRules)
	Directing the Search by Correlation Improvement

	CMRules for Feature Selection and Generation
	Mining CMRules
	Experiments
	Effectiveness
	Efficiency

	Conclusion

	III Statistical Data Mining Methods
	Classification of Imbalanced Databases using Significant Rules
	Introduction
	Contributions
	Organisation

	Background: Associative Classification
	Association Rule Mining
	Associative Classification
	Associative Classification Rule Mining

	Significance and Class Correlation Ratio for Rules
	Fisher's Exact Test
	Correlation (Interest Factor)
	Class Correlation Ratio

	Relative Correlation Bias of Confidence (and Support) on Imbalanced Data sets
	SPARCCC
	Interestingness and Rule Ranking
	Interestingness
	Rule Ranking

	Search and Pruning Strategies
	Rule Selection Method
	Classification Method
	A Note on Interpreting the Rules

	Mining SPARCCC Rules using GRM
	Experiments
	Original (Balanced) Data sets
	Imbalanced Data sets

	Related Work
	Conclusion

	Mining Complex Correlation Structures
	Introduction
	Motivations
	Contributions
	Organisation

	Complete, Complex Variable Sub-graphs, Sets and Correlation
	Highly Correlated, Complex Variable Sets
	Uncorrelated Variable Sets

	Mining Complex Maximal Sets: Algorithm
	Algorithm
	Complex Sets
	Maximal Complex Sets
	Mining Uncorrelated Sets
	Complexity

	Mining the Patterns using GIM
	Selecting a Representative Set: an Application to Feature Subset Selection
	Experiments
	Run Time Performance
	Feature Selection Performance

	Related Work
	Clique and Set Mining
	Feature Subset Selection

	Conclusion

	IV Mining Uncertain and Probabilistic Databases
	Probabilistic Frequent Itemset Mining
	Introduction
	Uncertain Data Model
	Problem Definition
	Contributions
	Organisation

	Related Work
	Probabilistic Frequent Itemsets
	Probabilistic Support
	Frequentness Probability

	Efficient Computation of Probabilistic Frequent Itemsets
	Efficient Computation of Probabilistic Support
	Certainty Optimisation or ``0-1-Optimisation''

	Probabilistic Filter Strategies
	Monotonicity Criteria
	Pruning Criterion

	Probabilistic Frequent Itemset Mining (PFIM)
	Incremental Probabilistic Frequent Itemset Mining (I-PFIM)
	Incremental Probabilistic Frequent Itemset Mining Algorithm
	Top-k Probabilistic Frequent Itemsets Query

	Experimental Evaluation
	Evaluation of the Frequentness Probability Calculations
	Scalability
	Effect of the Density
	Effect of minSup

	Evaluation of the Probabilistic Frequent Itemset Mining Algorithms

	Conclusion

	Significant Frequent Itemset Mining
	Introduction
	Problem Definition
	Contributions
	Organisation

	Related Work
	Significant Frequent Itemsets
	Discussion of the Independence Assumption
	Parametric Computation of the p-value
	Non-Parametric Calculation of the (Exact) p-value

	Incremental Significant Frequent Itemset Mining
	Experimental Evaluation
	Expected vs. Significant Frequent Itemsets
	Evaluation of the Parametric Test
	Evaluating the Independence Assumption

	Conclusion

	Probabilistic Frequent Pattern Growth
	Introduction
	Problem Definition and Data Model
	Contributions
	Organisation

	Related Work
	Probabilistic Frequent-Pattern Tree (ProFP-Tree)
	ProFP-Tree Construction
	Example

	Complexity

	Extracting Certain and Uncertain Support Probabilities
	Efficient Computation of Probabilistic Frequent Itemsets
	Efficient Computation of Probabilistic Support
	Pruning using a Lower Bound
	Pruning using an Upper Bound
	Certainty Optimisation
	Discussion

	Extracting Conditional ProFP-Trees
	ProFP-Growth Algorithm
	Experimental Evaluation
	Number of Transactions
	Number of Items
	Effect of Uncertainty and Certainty
	Effect of MinSup

	Conclusion

	Vectorised Probabilistic Frequent Itemset Mining
	Introduction
	Research Problem and Data Model
	Contributions
	Organisation

	Related Work
	Solving PFIM with GIM
	Experiments
	Artificial Data Sets
	Well Known and Real World Databases

	Conclusion

	V Conclusions
	Conclusions and Future Work
	Bibliography

