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Zusammenfassung

Diese Dissertation befasst sich mit der Kopplung optischer Mikroresonatoren an mikro- und
nanomechanische Oszillatoren. Die auf Lichtdruck basierende wechselseitige optomecha-
nische Kopplung zwischen Mikroresonator und einem mechanischen Freiheitsgrad, der die
räumliche Struktur des Resonators moduliert, ermöglicht dabei, die Bewegung des mecha-
nischen Freiheitsgrads durch das in den Resonator gekoppelte Lichtfeld sowohl auszulesen
als auch zu steuern.

Der erste Teil der Dissertation beschreibt einen neuartigen experimentellen Ansatz,
der auf evaneszenten, mittels eines Toroid-Mikroresonators überhöhten Nahfeldern beruht.
Dieser Ansatz ermöglicht die Ausweitung dispersiver, resonatorverstärkter optomechani-
scher Kopplung auf subwellenlängenskalige nanomechanische Oszillatoren, die als Grund-
lage für eine Reihe hochauflösender Messmethoden dienen. Die experimentell analysierte
optomechanische Kopplung stimmt dabei gut mit theoretischen Vorhersagen überein. Die
entwickelte Plattform ermöglicht das Auslesen nanomechanischer Schwingungen mit außer-
gewöhnlich hoher Empfindlichkeit, die den bisherigen Stand der Technik übertrifft. Dabei
wird erstmals eine Messungenauigkeit erreicht, die unter der Schwelle, die dem Standard-
Quanten-Limes entspricht, liegt. Bereits in den gegenwärtigen Messungen sollte die Quan-
ten-Rückwirkung die Messempfindlichkeit dominieren, wird allerdings von thermischen
Fluktuationen überdeckt. Dies könnte jedoch die Grundlage für den erstmaligen experi-
mentellen Nachweis der Quanten-Rückwirkung des Strahlungsdrucks auf einen festkörper-
basierten mechanischen Oszillator liefern. Zudem wird gezeigt, dass die durch Lichtdruck
erzeugte Wechselwirkung zwischen evaneszentem Resonatorfeld und nanomechanischem
Oszillator zum Antreiben und Steuern des mechanischen Bewegungszustands des Oszilla-
tors verwendet werden kann. Sowohl Verstärkung dessen Bewegung, die zu sich selbst er-
haltenden mechanischen Oszillationen führen kann, als auch Kühlung durch die dynamische
Rückwirkung des Lichtdrucks wird erreicht. Des Weiteren wird gezeigt, dass die Nahfeld-
Plattform auch resonante Kopplung eines nanomechanischen Oszillators an zwei optische
Moden sowie quadratische Kopplung ermöglicht.

Im zweiten Teil der Dissertation werden monolithische, chip-basierte Resonatoren entwi-
ckelt, die ultraniedrige mechanische und optische Dissipation vereinen. Hierzu werden
die intrinsischen mechanischen Moden von Toroid-Mikroresonatoren detailliert untersucht.
Hochsensitive Messungen gestatten dabei, eine Fülle mechanischer Moden zu beobachten,
welche gut mit den Ergebnissen aus Simulationen übereinstimmen. Insbesondere die Dis-
sipationsmechanismen, die die mechanischen Güten bestimmen, werden dabei analysiert.



xviii Zusammenfassung

Aufhängeverluste werden als bei Raumtemperatur vorherrschender Verlustkanal identi-
fiziert und durch eine neue geometrische Struktur systematisch minimiert. Dies führt zu
Speichenresonatoren, deren mechanische Güten durch materialspezifische Verluste limitiert
sind und den besten publizierten Werten für mechanische Oszillatoren ähnlicher Frequen-
zen gleichkommen.



Abstract

This thesis reports on coupling optical microresonators to micro- and nanomechanical
oscillators. The mutual optomechanical coupling based on radiation pressure between the
microcavity and a mechanical degree of freedom modulating its spatial structure thereby
allows both transduction and actuation of the motion of the mechanical degree of freedom
by the light field launched into the microcavity.

The first part of the thesis reports on a novel experimental approach based on cavity
enhanced evanescent near-fields of toroid microresonators. It enables the extension of dis-
persive cavity optomechanical coupling to sub-wavelength scale nanomechanical oscillators
which are at the heart of a variety of precision measurements. The optomechanical coupling
present in the developed system is carefully analyzed experimentally and good agreement
with theoretical expectations is found. The demonstrated platform allows transduction of
nanomechanical motion with an exceptionally high sensitivity, outperforming the previous
state-of-the-art transducers. Thereby, for the first time a measurement imprecision lower
than the level of the standard quantum limit is achieved. In the present measurements,
quantum backaction should already be the dominating contribution to the measurement
sensitivity which is however masked by thermal noise. This may pave the way to the first
experimental demonstration of radiation pressure quantum backaction on a solid-state
mechanical oscillator. Moreover, the radiation pressure interaction between evanescent
cavity field and nanomechanical oscillator is shown to enable actuating and controlling
the motional state of the oscillator. Both amplification, leading to self-sustained mechan-
ical oscillations, and cooling by radiation pressure dynamical backaction is reported. In
addition, the capability of the near-field platform to implement resonant interaction of a
mechanical mode with two optical modes is shown as well as the feasibility of quadratic
coupling to the nanomechanical oscillators.

In the second part of the thesis monolithic on-chip resonators that combine ultra-low
optical and mechanical dissipation are designed. To this end, the intrinsic mechanical
modes of toroid microresonators are analyzed in detail. High-sensitivity measurements
enable the observation of a plethora of mechanical modes and good agreement with finite
element modelling is found. In particular the dissipation mechanisms limiting their me-
chanical quality are studied. Clamping losses are identified as the dominant loss mechanism
at room temperature. Using a novel geometric design, these are systematically minimized
which leads to spoke-supported microresonators with intrinsic material-loss limited me-
chanical quality factors rivalling the best published values at similar frequencies.
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Chapter 1

Introduction

A harmonic oscillator is one of the simplest textbook examples in both classical and quan-
tum physics. Its mechanical manifestation, i.e. a mechanical oscillator, is probably the
most tangible and intuitive realization thereof. During the last decades, solid-state me-
chanical oscillators have been used in a variety of fields both in science and technology.
Scientific applications range from micron-scale cantilevers used in atomic-force microscopy,
to metre-scale mechanical oscillators in the form of interferometer mirrors intended for
probing gravitational waves. Triggered by the compatibility with planar microelectronics,
particularly microelectromechanical systems have vastly influenced technology [13] in the
form of micromechanical accelerometers, steering micromirrors or inertial sensors.

In recent years, the combination of the fields optical microcavities [14] and micromechan-
ical systems has triggered a rapid development of the research field Cavity Optomechanics
[15–17]. Most generally speaking, this field of research investigates the interaction of light
with a mechanical oscillator via radiation pressure where the strength of the interaction
is enhanced using an optical cavity. Technological advances in micro- and nanofabrication
have thereby brought about a variety of experimental systems spanning several orders of
magnitude in size. A particularly intriguing aspect of this field is the prospect of realizing
quantum mechanical experiments which have so far been restricted to single particles with
tangible mechanical oscillators. This would open up a new arena for quantum physics.

The first chapter of this thesis will give an introduction into the basic principles of
cavity optomechanics and set up a theoretical framework for the experimental work of this
thesis. Moreover, the optical cavities employed in this thesis, toroid microresonators will
be introduced.

Subsequently, the second chapter is dedicated to near-field cavity optomechanical ex-
periments. Thereby the evanescent near-field of toroid microresonators is employed for
radiation pressure coupling to sub-wavelength scale nanomechanical oscillators which en-
ables the extension of cavity optomechanics to the nanoscale. Results of this chapter have
partially been published in Ref. [4], Ref. [2] and Ref. [3].

In the third chapter, the dissipation of the internal mechanical modes of toroid mi-
croresonators is studied in detail, leading to the development of monolithic on-chip micro-
optomechanical resonators combining ultra-low optical and mechanical dissipation. Those
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results have partly been published in Ref. [6], Ref. [7] and Ref. [9].

1.1 Cavity optomechanics

Einstein’s theory of general relativity [18] and the concomitant prediction of gravitational
waves have triggered a century of experimental efforts to measure the tiny dilatations of
space-time associated with gravitational waves. The most promising approach thereby uses
an electromagnetic resonator parametrically coupled to a mechanical oscillator which has
to date allowed relative displacement measurements down to a level of < 10−21 [19, 20].
The fact that such an impressive sensitivity has still not proven to be sufficient for detecting
direct experimental signatures of gravitational waves underpins the experimental challenge
of these experiments. In the light of the outstanding sensitivities required in the search for
gravitational waves, it has been realized that in fact quantum effects will be of relevance in
the displacement measurements although dealing with macroscopic bodies. The associated
quantum limits to displacement detection have thus been theoretically derived already
more than two decades ago [21, 22]. These have their origin in the radiation pressure
that is exerted by electromagnetic fields, which had interestingly already been postulated
by Kepler in 1619. Moreover, it has been shown that the radiation pressure exerted by
the electromagnetic field in a resonator may cause a bistability of the system [23] and it
has been predicted that it can also lead to an oscillatory instability of the resonator, or
contrarily cool the resonator [24, 25]. All these effects had to be considered when planning
more and more advanced gravitational wave interferometers.

The transfer of these ideas and principles to the microscale, i.e. to low mass mechanical
oscillators, which was facilitated by the progress in microfabrication techniques witnessed
in recent years, has made them much more easily experimentally accessible and, even
more important, changed their perception as caveats in gravitational wave astronomy to
resources for a variety of experimental applications. Thus, gravitational wave detection may
be regarded as the godfather of the recent surge in cavity optomechanical experiments.

In 2005, it was shown that in fact the radiation pressure of light can be used to drive
laser-like oscillations of a micromechanical oscillator [26–28], also referred to as “phonon
lasing”. The application of such compact, low-power photonic oscillators as frequency
references is currently investigated [29–31]. Moreover, it has been demonstrated that mi-
cromechanical oscillators may be efficiently cooled by radiation pressure [32–34]. In partic-
ular the feasibility of ground state cooling using radiation pressure has been theoretically
shown [35, 36]. Subsequently, a variety of research groups pursued experiments aiming at
initializing a solid-state mechanical oscillator in its quantum-ground state using radiation
pressure cooling [8, 10, 37–41]. This would provide a novel route to the new regime of quan-
tum physics dealing with tangible mechanical oscillators which has recently been entered
[42]. Just as reaching the ultimate limits in displacement detection and thus maximizing
the performance of mechanical sensors of mass [43], charge [44] and magnetic field [45], this
is an ongoing and very actively pursued paradigm in the field of Cavity Optomechanics.

The first part of this section is dedicated to the introduction of the basic theoretical
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concepts in cavity optomechanics. It will start with the standard Hamiltonian of cavity
optomechanical systems before a theoretical framework based on the quantum Langevin
approach is derived. Then, building on this framework, the ability of cavity optomechanical
systems to perform as nearly ideal transducers of mechanical motion is considered, in
particular looking at the corresponding limitations due to quantum noise. Then, the effects
of radiation pressure will be discussed, with a focus on dynamical backaction that provides
a tool for controlling the motional state of mechanical oscillators. In the second part of this
section, the optical properties of the cavities used in this thesis–toroid microresonators–will
be discussed.

1.1.1 Linear Hamiltonian of cavity optomechanical systems

Here, a generic cavity optomechanical system which realizes parametric coupling between
an optical resonator 1 and a mechanical oscillator will be considered. The optical resonance
frequency ω(x0) shall first of all, however, depend on the position x0 of the mechanical
oscillator in a general fashion. It is only required that the typical harmonic oscillations
x of the mechanical oscillator around its equilibrium position x0 are sufficiently small to
safely linearize the position dependent frequency around x0. This leads to the following
linear dependence of the optical resonance frequency on the position fluctuations x:

ω(x0 + x) = ω(x0) + g · x . (1.1)

Here, we have introduced g = ∂ω/∂x which is typically referred to as the optomechanical
coupling coefficient. For simplicity we will from now on assume a fixed equilibrium position
x0 and identify ω(x0) ≡ ω. The Hamiltonian H of the coupled optomechanical system may
then be written as a sum of the optical and mechanical subsystems’ Hamiltonians Hopt and
Hmech, respectively, as well as the coupling Hamiltonian Hom [46]:

H = ~ωa†0a0 + i~
√
κex(s0a

†
0e−iωdt − s†0a0 eiωdt) +Hκ

+~Ωmb
†b+HΓm

+~g0(b† + b)a†0a0 . (1.2)

The creation (annihilation) operators of the optical and mechanical modes are denoted as
a†0 (a0) and b† (b) with corresponding resonance frequencies ω and Ωm. The optical mode
is coupled to an external port with a rate κex, supplying a (laser) drive field s0 e−iωdt with
photon flux 〈s†0s0〉 and frequency ωd. The Hamiltonians HΓm and Hκ describe the damping
of the mechanical [57] and optical [58] modes with energy decay rates Γm and κ. The latter
consists of coupling to the external port κex and losses within the resonator κ0 = κ− κex.
The interaction energy between optical and mechanical degree of freedom is determined
by the vacuum optomechanical coupling rate

g0 ≡ g × xzpf , (1.3)

1 The theoretical description presented throughout this section is not restricted to the
optical domain. It can be directly transferred to any electromagnetic resonator.
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System g0/2π [Hz] κ/2π[Hz] Γm/2π [Hz] Ωm/κ xzpf [fm] Ref.

Crystalline microresonator 1 2 · 105 1 · 103 12 0.003 [47]
Movable mirror 2 · 10−3 2 · 104 0.06 0.01 0.01 [48]
Microsphere 1 · 103 3 · 107 8 · 104 5 0.04 [49]
Micromirror 1 2 · 106 80 0.4 0.01 [32]
Micromirror 5 8 · 105 30 1 0.5 [50]
Micromirror 300 8 · 108 600 0.001 40 [51]
Spoke-microresonator 500 5 · 106 500 5 0.2 [6]
Membrane-in-the-middle 5 2 · 105 0.1 0.6 1 [37]
Double-microdisk 8 · 104 1 · 108 2 · 103 0.06 3 [52]
Optomechanical crystal 2 · 105 5 · 109 2 · 106 0.5 3 [53]
Photonic crystal cavity 6 · 105 2 · 109 8 · 104 0.004 5 [49]
Nanomechanical rod − 8 · 108 300 0.002 − [54]
Near-field nanomechanics 500 5 · 106 100 2 20 [2]
Near-field nanomechanics 50 2 · 109 5 · 104 0.02 20 [55]
Microwave nanomechanics∗ 1 3 · 106 10 0.4 30 [56]
Microwave nanomechanics∗ 2 6 · 105 6 2 30 [41]

Table 1.1: Overview of recent cavity optomechanical systems (∗requiring operation in a
dilution refrigerator). Both systems developed in this thesis are in italics. The spoke-
supported resonators (see chapter 3) exhibit the advantage of monolithic design and large
resolved-sideband factors Ωm/κ. The near-field platform (see chapter 2) displays essentially
equal vacuum coupling rates g0 and optical damping rates κ but offers the additional benefit
of smaller mechanical damping rates Γm and larger zero-point motion xzpf .

which is given by the product of optomechanical coupling coefficient g and the zero-point-
fluctuations

xzpf =
√

~/(2mΩm) (1.4)

of the mechanical oscillator (m denotes the oscillator mass). The Hamiltonian Hom =
~g0(b† + b)a†0a0 implements a mutual optomechanical coupling. It has its origin in the
cavity resonance frequency which depends on the position of the mechanical oscillator via
Eq. (1.1). It also, however, represents a radiation pressure force F that can be interpreted
as

〈F 〉 = −
〈
∂H

∂x

〉
= −~g

〈
a†0a0

〉
, (1.5)

thus leading to a per-photon force −~g acting on the mechanical oscillator.
Table 1.1 shows an overview of recently studied cavity optomechanical systems that

realize the Hamiltonian (1.2), along with both systems developed in this thesis. As can
be seen, the corresponding system parameters vary over many orders of magnitude. A
common feature of all studied systems is that the vacuum optomechanical coupling rate
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g0 is at least three orders of magnitude smaller than the optical decay rate κ. For a few
systems, however, g0 can exceed the mechanical decay rate Γm.

1.1.2 Quantum Langevin equations

Using the standard Heisenberg picture formalism, the above Hamiltonian allows the deriva-
tion of the Heisenberg-Langevin equations of motion for the relevant time dependent system
operators a and x. Transforming all optical fields into the frame of the drive field (rotating
at ωd) these take the form:

ȧ0 = (i∆− κ/2)a0 − igxa0 +
√
κexs0 +

√
κ0svac (1.6)

ẍ = −Ω2
mx− Γmẋ−

~g
m
a†0a0 +

√
Γmξth , (1.7)

where ∆ = ωd − ω denotes the detuning of the drive field from cavity resonance. The
mechanical oscillator is coupled to a thermal bath ξth at temperature T via Γm whereas
the coupling of the optical field to the vacuum port svac

2 is mediated by κ0.
In experimental situations, one mostly deals with large input fields 〈s†0s0〉 leading to

large occupation 〈a†0a0〉 � 1 of the intracavity field. Using a semiclassical approximation,
we will correspondingly assume mean amplitudes for both drive and intracavity fields and
introduce s0 =: s̄+ s and a0 =: ā+ a. Then, s̄ and ā denote the (large) mean amplitudes
whereas s and a denote the small (quantum) fluctuations around these amplitudes. Keeping
only first order terms, Eq. (1.7) yields the following expression for the intracavity mean-
field

ā =

√
κex

κ/2− i∆
s̄ , (1.8)

which we can choose to be real. This simply requires an appropriate choice of the arbitrary
phase of the input field s̄ = eiϕs · |s̄|, i.e.

eiϕs =
κ/2− i∆√
κ2/4 + ∆2

. (1.9)

Note that then the mean intracavity photon number is simply given by ā2.
Looking at Eq. (1.7) one can see that the mean field ā exerts a static radiation pressure

force onto the mechanical oscillator, shifting its mean position by −~gā2/Ω2
m. This subtlety

can in fact lead to a bistability in oscillator position and intracavity power as experimentally
demonstrated in 1983 [23] using a very low frequency mechanical oscillator (Ωm ∼ 1 Hz).
A detailed description of this effect is given for example in Ref. [59]. This bistability has
been proposed as a resource for optomechanically induced squeezing of the light field [60],

2 Here, the number of thermal photons, ∼ kBT/(~ω) < 0.03 (for T < 300 K and optical
frequencies ω) is neglected. For systems operating at microwave frequencies, however,
the thermal bath can be of relevance, even for cryogenic temperatures and would have
to be considered, here.



6 1. Introduction

analogous to Kerr squeezing [61]. Here, we assume for simplicity that the system resides
in a stable solution for ā at equilibrium position x0.

Using a standard input-output formalism [62] combined with Eq. (1.8) then allows the
derivation of the mean output field s̄out:

s̄out = s̄−
√
κex ā =

(
1− κex

κ/2− i∆

)
s̄ . (1.10)

Fig. 1.1 shows both the corresponding amplitude and phase of the output field s̄out as a
function of the pump laser detuning ∆. Moreover, Eqs. (1.6)-(1.7) can be simplified to the
following set of linearized quantum Langevin equations for the fluctuations s, a and x of
the input field, the intracavity field and the mechanical oscillator position

ȧ = (i∆− κ/2) a− igxā+
√
κex s+

√
κ0 svac (1.11)

ẍ = −Ω2
m x− Γm ẋ−

~g
m
ā(a† + a) +

√
Γm ξth . (1.12)

The corresponding output field fluctuations sout are given by

sout = s−
√
κexa . (1.13)

The above set of equations (1.11)-(1.13) forms a basic framework for cavity optomechanics
which allows the description of a variety of cavity optomechanical phenomena.

It is very instructive to Fourier transform Eqs. (1.11)-(1.13). The Fourier transforms
c[Ω] and c†[Ω] of operators c(t) and c†(t) are generally defined as 3:

c[Ω] =

∫ ∞
−∞

c(t)eiΩtdt (1.14)

c†[Ω] =

∫ ∞
−∞

c†(t)eiΩtdt . (1.15)

In Fourier space, the quantum Langevin equations obtained from Eqs. (1.11)-(1.12) then
read:

− iΩa[Ω] = (i∆− κ

2
) a[Ω]− iāg x[Ω] +

√
κex s[Ω] +

√
κ0 svac[Ω] (1.16)

−iΩa†[Ω] = (−i∆− κ

2
) a†[Ω] + iāg x[Ω] +

√
κex s

†[Ω] +
√
κ0 s

†
vac[Ω] (1.17)

−Ω2x[Ω] = −Ω2
mx[Ω] + iΩΓmx[Ω]− ~g

m
ā(a†[Ω] + a[Ω]) +

√
Γm ξth[Ω] . (1.18)

The optical and mechanical noise operators svac[Ω] and ξth[Ω] are characterized by the

3 The inverse transform is then given by c(t) = 1/(2π)
∫∞
−∞ c[Ω]e−iΩtdΩ
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~k
~1/k

2

Figure 1.1: Output field s̄out of a cavity. The left panel shows the normalized power |s̄out|2
transmitted by the cavity according to Eq. (1.13) as a function of normalized detuning
(for κex/κ = 0.6). The right panel shows the corresponding phase of the output field s̄out.

correlation functions [57, 58] 4:〈
svac[Ω]s†vac[Ω

′]
〉

= 2π δ(Ω + Ω′) , (1.19)

〈ξth[Ω]ξth[Ω′]〉 = 2π δ(Ω + Ω′)
1

m
~Ω

(
coth

(
~Ω

2kBT

)
+ 1

)
. (1.20)

These non-zero correlation functions ensure non-zero fluctuations of x and a, respectively,
even in the absence of external driving, as required by the fluctuation-dissipation theorem
in the presence of the damping rates Γm and κ0. Note that a quantum-limited input field
s (which can be obtained from a shot-noise limited laser source) has the same correlation
function as the vacuum field svac given by Eq. (1.19).

From (1.16) and (1.17), the intracavity field fluctuations can be derived:

a[Ω] =
1

κ/2− i(∆ + Ω)
(−iāg x[Ω] +

√
κex s[Ω] +

√
κ0 svac[Ω]) (1.21)

a†[Ω] =
1

κ/2 + i(∆− Ω)

(
iāg x[Ω] +

√
κex s

†[Ω] +
√
κ0 s

†
vac[Ω]

)
. (1.22)

The fluctuations x[Ω] of the mechanical oscillator are thus imprinted into the intracavity
field and transferred to the output field sout[Ω] via Eq. (1.13)

sout[Ω] =
i
√
κex āg

κ/2− i(∆ + Ω)
x[Ω] +

κ0−κex

2
− i(∆ + Ω)

κ/2− i(∆ + Ω)
s[Ω]−

√
κexκ0

κ/2− i(∆ + Ω)
svac[Ω] (1.23)

4 The corresponding correlation functions in time domain are:〈
svac(t)s†vac(t′)

〉
= δ(t− t′) ,

〈ξth(t)ξth(t′)〉 = 1
m

∫∞
−∞ ~Ω e−iΩ(t−t′)

(
coth

(
~Ω

2kBT

)
+ 1
)
dΩ
2π .
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such that the mechanical oscillator’s displacement x[Ω] can be retrieved from the cavity
output field fluctuations. The fluctuations of the vacuum port svac[Ω] as well as the input
field s[Ω] thereby constitute a background noise. In the next chapter the quantum limits
associated with the measurement of x via the cavity output field will be discussed in detail.

Another interesting feature arising from Eq. (1.18) is the fluctuating radiation pressure
force given by the fluctuations of the intracavity field a[Ω] and a†[Ω], respectively. Using
expression (1.21) and (1.22), the radiation pressure force term in Eq. (1.18) can be written
as

− ~g
m
ā
(
a†[Ω] + a[Ω]

)
= −~g

m
ā (ax · x [Ω] + aq) , (1.24)

where

aq =

√
κex s[Ω] +

√
κ0 svac[Ω]

κ/2− i(∆ + Ω)
+

√
κex s

†[Ω] +
√
κ0 s

†
vac[Ω]

κ/2 + i(∆− Ω)
(1.25)

ax = āg

[(
∆− Ω

κ/2 + (∆− Ω)2
+

∆ + Ω

κ/2 + (∆ + Ω)2

)
+i

(
κ/2

κ/2 + (∆− Ω)2
− κ/2

κ/2 + (∆ + Ω)2

)]
. (1.26)

The first term leads to a backaction force, randomly driving the mechanical oscillator. The
second term, having both a component in phase and out of phase with the mechanical
oscillator’s motion, modifies its spring constant and damping rate as will be shown in the
following.

Inserting the above expressions in Eq. (1.18), one obtains:

x[Ω]m

(
Ω2

m − Ω2 − iΩΓm +
~g
m
ā · ax

)
︸ ︷︷ ︸

χ−1
eff

= m
√

Γm ξth[Ω]− ~g ā · aq . (1.27)

The right hand side of this equation has two contributions. The first one is the usual
thermal Langevin force m

√
Γm ξth[Ω]. The second term, arising from the (quantum) fluc-

tuations of both the input field s and the vacuum port svac, constitutes a (quantum)
backaction force −~g ā · aq. Both forces drive the mechanical oscillator. Moreover, the
in-phase and out-of-phase components of ax modify the susceptibility of the mechanical
oscillator with which it reacts to the aforementioned forces. The effective susceptibility
χeff can be written as:

χ−1
eff /m =

(
Ω2

m +
~g
m
ā · Re (ax)

)
︸ ︷︷ ︸

Ω2
eff

−Ω2 − iΩ
(

Γm − i
~g
m
ā · Im (ax) /Ω

)
︸ ︷︷ ︸

Γeff

(1.28)

The real and imaginary parts of ax thus change the effective resonance frequency Ωeff and
damping rate Γeff of the mechanical oscillator. Using Eq. (1.26), the modified resonance
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frequency Ωeff is given by:

Ωeff = Ωm

√
1 + 2

g2
0

Ωm

ā2

(
∆ + Ω

κ2/4 + (∆ + Ω)2
+

∆− Ω

κ2/4 + (∆− Ω)2

)
. (1.29)

If we assume only weak perturbation, |Ωeff − Ωm| � Ωm and Γeff � min{Ωm, κ}, then the
effective frequency shift can be approximated by

Ωdba ≡ Ωeff − Ωm ≈ g2
0 ā

2

(
∆ + Ωm

κ2/4 + (∆ + Ωm)2
+

∆− Ωm

κ2/4 + (∆− Ωm)2

)
, (1.30)

Thus, the presence of a non-zero intracavity field can lead to a shift in the mechanical
oscillator’s eigenfrequency. This will be discussed in somewhat more detail in section
1.1.5.

In the same weak perturbation limit, the additional damping rate Γdba can be written
as

Γdba ≡ Γeff − Γm ≈ g2
0 ā

2

(
κ

κ2/4 + (∆ + Ωm)2
− κ

κ2/4 + (∆− Ωm)2

)
. (1.31)

As will be shown in detail in section 1.1.4, this change in effective damping rate can give
rise to both cooling and amplification of the mechanical oscillator’s motion.

1.1.3 Standard quantum limit of continuous position measure-
ments

As can be seen in Fig. 1.1, close to resonance the properties of the field transmitted by a
cavity very sensitively depend on the laser-cavity detuning ∆. This allows very sensitive
measurements of mechanical motion using high-Q optomechanical cavities which can be
understood in simple terms: First, close to the optical resonance the phase shift of the
light transmitted through the optomechanical system induced by a position fluctuation x
(leading to δω = g · x) of the mechanical oscillator is amplified by 1/κ, as indicated in
Fig. 1.1 (right panel). Second, using optical fields these amplified phase-fluctuations can
be measured in a quantum-limited fashion, i.e. without introducing excess classical noise
during the measurement. Thus, this technique allows measurements of mechanical motion
with a sensitivity whose limitations are only given by quantum noise. These limitations
will be described in this section.

Using Eqs. (1.11)-(1.13) allows calculating the intracavity field fluctuations a[Ω], a†[Ω]
(Eqs. 1.21 and 1.22) as well as the transmitted field’s fluctuations sout[Ω], s†out[Ω] (cf. Eq.
1.23). These, in turn, allow the derivation of the associated quantum limits of displacement
detection. It is convenient to perform the calculations for the respective in-phase and
quadrature fluctuations.

In general, the fluctuations of the operators c [Ω] and c† [Ω] around the mean field c̄
may be expressed in terms of their respective amplitude and phase quadratures pc[Ω] and
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qc[Ω] as (
pc[Ω]
qc[Ω]

)
= R(ϕ)

(
c[Ω]
c†[Ω]

)
, (1.32)

where R is defined as

R(ϕ) =

(
e−iϕ eiϕ

−ie−iϕ ieiϕ

)
, (1.33)

and ϕ is the phase of the corresponding mean field, i.e. eiϕ = c̄/ |c̄|.
Performing these transformations on Eqs. (1.16), (1.17) and using Eq. (1.13), the

spectra of the output field’s quadratures Spout [Ω], Sqout [Ω] as well as the intracavity field’s
quadratures Spa [Ω], Sqa [Ω] can be derived. Note that the double-sided spectrum Sds

c [Ω] of
a variably c can be defined via the correlation function in frequency domain as

2π δ(Ω + Ω′)Sds
c [Ω] = 〈c[Ω]c[Ω′]〉 . (1.34)

The corresponding symmetrized spectrum Sc[Ω] can then be defined as

Sc[Ω] =
(
Sds
c [Ω] + Sds

c [−Ω]
)
/2 . (1.35)

See appendix A for the general results for Spout [Ω], Sqout [Ω], Spa [Ω] and Sqa [Ω]. For the
special case of resonant probing (∆ = 0) the output field’s phase quadrature reads

Sqout [Ω] =

(
1− 4 ηc (1− ηc)

1 + 4 Ω2/κ2

)
Sqin [Ω] +

4 ηc (1− ηc)

1 + 4 Ω2/κ2
Sqvac [Ω]

+
16 η2

c

1 + 4 Ω2/κ2

P

~ω
4 g2

κ2
Sx [Ω] , (1.36)

where P = |s̄|2 denotes the input power launched to the resonator and ηc = κex/κ
(ηc ∈ [0, 1]) is the coupling efficiency. In brief, this result can be obtained from Eq.
(1.23) (and the respective expression for s†out[Ω]), taking into account the relative phases
of input, output and intracavity mean fields (1.8)-(1.10) and assuming that all fields are
uncorrelated.

Thus, the mechanical spectrum Sx [Ω] can be retrieved from the phase fluctuation
spectrum Sqout [Ω] of the output field sout. The phase fluctuations of the input and vacuum
fields Sqin and Sqvac (first and second terms in the above expression) thereby constitute a
measurement background noise which is typically referred to as measurement imprecision.
Assuming quantum limited correlations (1.19) for both input field and the vacuum port
results in

Sqin = Sqvac = 1 (1.37)

and expression (1.36) simplifies to:

Sqout [Ω] =
16 η2

c

1 + 4 Ω2/κ2

4 g2

κ2

P

~ω
Sx [Ω] + 1 . (1.38)
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Thus, the signal proportional to Sx rides on top of a flat measurement background given
by quantum shot noise. The equivalent mechanical noise amplitude corresponding to the
shot-noise background in Eq. (1.38) can then be written as

Simp
x [Ω] =

1 + 4 Ω2/κ2

16 η2
c

κ2

4 g2

~ω
P
. (1.39)

The measurement imprecision caused by shot noise 5 can thus, in principle, reach arbitrarily
low values, provided sufficiently large power P and/or coupling g2/κ2 can be applied.

As the measurement imprecision is lowered, however, a second source of noise comes into
play which has already been seen in Eq. (1.27): the radiation pressure quantum backaction
of the measurement. From Eq. (1.27) one can derive that the (non-symmetrized) photon
number fluctuations

SN [Ω] = ā2 κ

κ2/4 + (∆ + Ω)2 (1.40)

inside the optical resonator lead to an additional force acting on the mechanical oscillator.
Its motional spectrum while performing a measurement can then be written as

Sx [Ω] = |χeff [Ω]|2
(
SL
F + Sqba

F [Ω]
)
, (1.41)

where the correlation functions (1.19)-(1.20) define the magnitude of the thermal Langevin
force spectrum SL

F [Ω] and the quantum backaction force spectrum Sqba
F [Ω]:

SL
F [Ω] = 2mΓmkBT

[
~Ω

2 kBT

(
1 + coth

(
~Ω

2kBT

))]
(1.42)

kBT�~Ω
≈ 2mΓmkBT

Sqba
F [Ω] = (~g)2 ā2 κ

κ2/4 + (∆ + Ω)2
. (1.43)

The mechanical spectrum is thus driven not only by the thermal Langevin force but also by
the measurement induced quantum backaction force. Note that the asymmetry of Sqba

F [Ω]
with respect to frequency reflects the possibility of creating and annihilating energy quanta.

For resonant probing (∆ = 0), the (symmetrized) measurement induced excess me-
chanical noise can be written as:

Sqba
x [Ω] = |χm [Ω]|2 16 ηc

1 + 4 Ω2/κ2

(~g)2

κ2

P

~ω
, (1.44)

where the identity of effective susceptibility χeff [Ω] and intrinsic susceptibility

χm[Ω] = m−1
(
Ω2

m − Ω2 − iΩΓm

)−1
, (1.45)

5 The flat shot-noise becomes frequency dependent when scaled into units of mechanical
displacement due to the resonator’s cut-off frequency κ beyond which the transduction
efficiency of the system reduces.



12 1. Introduction

for vanishing detuning (∆ = 0) is used. This contribution is typically termed the quantum
backaction noise of the measurement [21, 22]. If one introduces the normalized coupling
power

p ≡ 2 η3/2
c

~ |χm [Ω]| g2

(κ/4)2

P/(~ω)

1 + 4 Ω2/κ2
, (1.46)

the total noise of the measurement (at a fixed Fourier frequency Ωmeas), taking into account
both sources of uncertainty, imprecision and backaction, and assuming resonant probing
(∆ = 0) can be written as:

Stot
x [Ωmeas] =

~ |χm [Ωmeas]|
2
√
ηc

(
p+

1

p

)
. (1.47)

This function is depicted in Fig. 1.2a, for a measurement at resonance, i.e. Ωmeas = Ωm. For
low power levels, p � 1, the measurement noise is dominated by imprecision noise which
reduces ∝ 1/p for increased coupling. For large coupling power, p� 1, the measurement is
on the other hand dominated by quantum backaction noise that increases ∝ p for increased
coupling. At optimum coupling power, p = 1, the minimum measurement uncertainty is
achieved

Smin
x [Ωmeas] =

1
√
ηc

~ |χm [Ωmeas]| . (1.48)

The minimum uncertainty for an ideal measurement (ηc = 1) has been termed the standard
quantum limit (SQL) of continuous position measurement:

SSQL
x [Ωmeas] = ~ |χm [Ωmeas]| . (1.49)

When considering a measurement at the resonance frequency of the mechanical oscillator
it can by written as

SSQL
x [Ωm] = Szpf

x [Ωm] , (1.50)

where Szpf
x [Ωm] = ~/(mΓmΩm) denotes the mechanical oscillator’s (double sided) zero-

point fluctuations.

The optimum coupling power p = 1 necessary to reach the standard quantum limit,
then corresponds to an input power of

PSQL/ (~ω) =
Γm

16

(κ/2)2

g2
0

(
1 + 4 Ω2

m/κ
2
)
. (1.51)

Correspondingly, the optimum power for reaching the minimum uncertainty Smin
x [Ωm] in

the case of ηc 6= 1 is given by Pmin = PSQL × η−3/2
c .
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Figure 1.2: Standard quantum limit of continuous position measurement. a, Displacement
sensitivity (for an ideal measurement, i.e. ηc = 1) at resonance (Ωmeas = Ωm) as a func-
tion of normalized coupling power. The shot-noise (QBA-noise) decreases (increases) for
increased coupling. At P = PSQL the optimum sensitivity equal to the zero-point fluc-
tuations of the mechanical oscillator (dashed line) is achieved. b, Expected spectrum of
a measurement at the SQL. The background is given by shot-noise and QBA-noise. At
resonance, these add up to half an energy quantum of corresponding mechanical motion
such that the measured mechanical peak lies at two times the zero-point fluctuations, even
if the oscillator rests in its ground state, as assumed here. For ηc < 1, the minimum un-
certainty, the optimum power and the shot-noise level are increased (by ×η−1/2

c , ×η−3/2
c ,

×η−2
c ) whereas the quantum backaction is reduced (by ×ηc).
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When the actually measured spectra at the SQL are considered, the measurement
background

SSQL
x [Ω] =

Szpf
x [Ωm]

2

(
1 + 4 Ω2/κ2

1 + 4 Ω2
m/κ

2
+ |χm [Ω]|2 (mΓmΩm)2 1 + 4 Ω2

m/κ
2

1 + 4 Ω2/κ2

)
(1.52)

thus consists of the contribution caused by shot-noise at the detector (imprecision), as given
by the first term in the above equation, which is flat around the mechanical resonance for a
measurement within the cavity bandwidth, i.e. Ω < κ. The second contribution is given by
increased motion of the measured oscillator (backaction) caused by quantum backaction,
as given by the second term and thus scales with the mechanical oscillator’s susceptibility.
This situation is depicted in Fig. 1.2b. Even if the mechanical oscillator resides in its
quantum ground state, at resonance (Ω = Ωm) a peak corresponding to 2×Szpf

x [Ωm] is found
due to the additive noise of Szpf

x [Ωm] /2 contributed by both backaction and imprecision (cf.
Eq. 1.52). In this context it is also instructive to normalize to the (apparent) mechanical
noise quanta nmeas caused by the measurement. From Eq. (1.47) one obtains at resonance
(Ω = Ωm)

nmeas =
1

4
√
ηc

(
p+

1

p

)
. (1.53)

This expression further shows that at optimum coupling (p = 1, ηc = 1), the measurement
adds 1/2 energy quantum of excess noise to the intrinsic mechanical oscillator motional
state. 1/4 quantum of excess noise is thereby real motion imprinted onto the mechanical
oscillator (caused by quantum backaction) and another 1/4 quantum of apparent motion
is imprinted onto the measured spectrum at the detector (caused by shot-noise at the
detector). Thus, the measured mechanical peak is always increased by at least half a noise
quantum due to both imprecision and backaction.

Operating at the shot-noise limit when measuring a mechanical oscillator’s position can
simply be achieved by employing a sufficiently low-noise laser. The situation where quan-
tum backaction is the dominant source of uncertainty has, in contrast, to date never been
experimentally accessed with solid-state mechanical oscillators. In principle, as mentioned
earlier, it should simply be achieved by increasing the coupling power p. However, due to
practical limitations both in g which cannot be engineered to arbitrarily high values and
P which is limited by available laser power and adverse thermal effects typically present
in real systems, this regime has to date not been reached. Besides the mere demonstration
of the quantum limits in continuous displacement measurements this regime is interesting
from several points of view.

First of all, if the mechanical oscillator is predominantly driven by radiation pressure
shot-noise this can be used as a resource for squeezing the output field of the cavity [60, 63]
since the optomechanical system behaves like an effective Kerr-medium. Moreover, as in
such a regime the statistics of the light field fluctuations are imprinted onto the mechanical
oscillator’s motion, measuring its position (with a second laser field), in principle allows
quantum-non-demolition measurements of the intracavity field [64–66].
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In addition, measurement techniques have been proposed [67–69] that are sensitive
only to a single quadrature of the mechanical motion and hence offer the possibility of
back-action evasion. Thus, quantum non-demolition measurements of one quadrature of
motion can be achieved. That such a measurement is feasible in principle has recently been
demonstrated [70]. If applied in a situation where the quantum backaction would limit a
linear measurement, a total sensitivity below the standard quantum limit can be achieved
for the measured quadrature via backaction evasion. The further the transducer operates
in the quantum backaction dominated regime, the better the attainable sensitivity thereby
may become. Moreover, such a measurement offers the additional prospects of creating a
squeezed mechanical oscillator state [69].

1.1.4 Radiation pressure force - dynamical backaction

Now, let us have a look at dynamical radiation pressure effects occurring in cavity optome-
chanical systems.

The optomechanical coupling rate g0 indeed can give rise to Raman-like scattering of
photons interacting with the mechanical degree of freedom via the radiation pressure quan-
tum backaction term, cf. Eq. (1.43). Fig. 1.3a illustrates both Stokes and anti-Stokes
scattering process which lead to creation and annihilation of a phonon accompanied by a
photon energy shift corresponding to the phonon energy ~Ωm. Using Fermi’s golden rule,
the corresponding rates can be derived from the (non-symmetrized) photon number fluctu-
ations SN [Ω] (1.40), leading to radiation pressure force fluctuations as SF [Ω] = (~g)2SN [Ω]

g0
2 SN

x [+Ω  ]mg0
2 SN

x [-Ω  ]m

A  =+ A  =-

hΩm n   A  -

(n+1)   A  +x

 x

a, b,

Figure 1.3: Radiation pressure induced photon-phonon scattering. a, Stokes (anti-Stokes)
scattering processes with amplitude A+[Ωm] (A−[Ωm]) lead to a red (blue)-shift of the
photon energy by ~Ω and the creation (annihilation) of a phonon (black) with energy
~Ωm. b, The asymmetry provided by the optical resonance for non-zero detuning provides
a net rate |A− − A+| 6= 0 extracting energy quanta (~Ωm) from or transferring energy
quanta to the mechanical oscillator. The latter corresponds to the depicted case of blue
detuned pumping. It is noted that the probability of Stokes (anti-Stokes) process scales as
∝ n̄+ 1 (∝ n̄), where n̄ is the mechanical oscillator’s mean occupation.



16 1. Introduction

Figure 1.4: Normalized dynamical backaction rate Γdba/ |Γmax
dba |. For negative (positive)

detuning the backaction rate is positive (negative) leading to (anti-) damping of the me-
chanical oscillator provided by the light field. Depending on the ratio κ/Ωm, the functional
form of Γdba changes from a broad dispersive feature around zero detuning (κ/Ωm � 1) to
two sharp peaks centered around ∆ = ±Ωm (κ/Ωm � 1).

(1.43). The rates A∓ for phonon annihilation/creation can then be written as [36]

A∓ = g2
0 × SN [±Ωm] , (1.54)

as long as the coupling is sufficiently weak (āg0 � κ,Ωm ) and the mechanical damping is
small enough (Qm = Ωm/Γm � 1 and Γm � κ).

The sum of both rates gives rise to a net damping/amplification rate of the mechanical
oscillator induced by the light field:

Γdba = A− − A+ = g2
0 ā

2

(
κ

κ2/4 + (∆ + Ωm)2
− κ

κ2/4 + (∆− Ωm)2

)
. (1.55)

This is exactly the additional damping rate given by Eq. (1.31), derived from the quantum
Langevin equations in section 1.1.2. For negative detuning Γdba always exhibits positive
values indicating additional damping of the mechanical oscillator provided by the light field.
Contrarily, for positive detuning, Γdba is always negative leading to anti-damping or driving
of the mechanical oscillator. For large κ/Ωm the backaction rate follows a dispersive shape
(as a function of detuning ∆) with a width given by κ/2. For smaller ratios, a crossover
occurs into a regime where Γdba shows two sharp peaks around ∆ = ±Ωm whose linewidths
approach κ. For given pump power P , couplings g0, ηc and mechanical frequency Ωm the
maximum backaction rate is indeed found at ∆ = ±Ωm for κ→ 0, where the variation of
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the intra-cavity mean-field given by Eq. (1.8) is explicitly taken into account. One thus
finds a maximum backaction rate of

Γmax
dba = ∓4 ηc

g2
0

Ω2
m

P

~ω
. (1.56)

Fig. 1.4 shows the corresponding normalized shape of the dynamical backaction rate
Γdba/|Γmax

dba | as a function of the normalized detuning ∆/Ωm for different values of κ/Ωm

but constant input power P and couplings g0 and ηc.
In the following two sections both the possibility of cooling and amplification mediated

by Γdba will be discussed.

1.1.4.1 Radiation pressure cooling

In the case of negative detuning, the dynamical backaction rate is positive, which can give
rise to cooling of the mechanical oscillator. The fact that a positive dynamical backaction
rate which at first glance is simply an additional source of damping can give rise to cooling
can be understood by considering the effective temperature of the equivalent heat-bath
which the mechanical oscillator is coupled to via the dynamical backaction rate. Owing
to the coherent laser input, which has quantum limited noise properties, this effective
temperature is typically considerably lower than even cryogenic temperatures, provided
that κ . Ωm, as will be shown below. Thus, coupling the mechanical oscillator to such a
cold bath, leads to a net flux of energy from the mechanical oscillator into the cold bath
until equilibrium is reached.

Detailed balance [71] demands that in equilibrium the rate of optomechanically created
phonons (n + 1) × A+ equals the rate of annihilated phonons n × A−. Using Eq. (1.54)
and assuming Bose-Einstein statistics for the mechanical oscillator this would lead to an
effective equilibrium temperature Tqba given by

exp

[
~Ωm

kBTqba

]
=
κ2/Ω2

m + 4 (∆/Ωm − 1)2

κ2/Ω2
m + 4 (∆/Ωm + 1)2

. (1.57)

Thus, the temperature of the effective heat bath provided by the laser field Tqba vanishes if
∆ = −Ωm and κ/Ωm → 0, for which the right hand side of the above expression diverges.
The equilibrium phonon number nqba corresponding to Eq. (1.57) evaluates to

nqba =
κ2/4 + (∆ + Ωm)2

−4 ∆Ωm

. (1.58)

The same result can be derived from the quantum backaction force spectral density Sqba
F [Ω]

obtained using the quantum Langevin approach (Eq. 1.43) which leads to excess motion
of the mechanical oscillator Sqba

x [Ω] (cf. Eq. 1.41). The mean squared displacement caused
by quantum backaction can be written as〈

x2
〉

qba
=

1

2π

∫ ∞
−∞
|χeff [Ω]|2 Sqba

F [Ω]dΩ , (1.59)
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and corresponds to excess motional quanta

n′qba =
1

2 ~
mΩm

〈
x2
〉

qba
− 1

2
(1.60a)

= nqba (1.60b)

where the second equality is valid only in the relevant limit (āg0 � κ,Ωm; Qm � 1 and
Γm � κ), as derived in Ref. [72].

nqba is minimized for a detuning of ∆opt = −Ωm

√
κ2/(4Ω2

m) + 1 where one obtains the
lowest, in principle achievable occupation number n0 of

n0 =
1

2

(√
1 +

(κ/2)2

Ω2
m

− 1

)
. (1.61)

Thus, the cooling limit crucially depends on the ratio κ/Ωm and small values are required
in order to allow ground-state cooling. For κ/Ωm =

√
12 one obtains n0 = 1/2 marking the

threshold where the effective heat bath is sufficiently cold to achieve ground state-cooling.
For reaching values n0 → 0 ratios κ/Ωm → 0 are necessary. This regime has been termed
resolved-sideband regime or good cavity limit [35, 36].

Very similar theoretical considerations and limits have been applied to laser cooling of
trapped ions or atoms much earlier [73]. There, an essentially identical criterion of resolved
sidebands was found, requiring a cooling transition (of the trapped ion or atom) that is
narrower than the trapping frequency.

So far, the analysis completely neglected the thermal bath to which the mechanical
oscillator is connected to via its intrinsic damping rate Γm. To complete our considerations
we thus have to consider that the mechanical oscillator is in fact coupled to two competing
temperature baths with temperatures T and Tqba (or equivalently two fluctuating force

spectra, SL
F [Ω] and Sqba

F [Ω]), respectively, which will lead to an equilibrium occupation n̄
of the mechanical oscillator determined by the following rate equation [36]

n̄ (Γdba + Γm) = nqbaΓdba + nthΓm , (1.62)

where nth denotes the mean thermal occupation of the mechanical oscillator caused by the
thermal Langevin force in the absence of dynamical backaction. Since nth is typically much
larger than nqba (since T � Tqba), the coupling to the thermal bath via Γm will prevent
from reaching the cooling limit (1.61). We then obtain the equilibrium occupation

n̄ =
Γm

Γdba + Γm

nth +
Γdba

Γdba + Γm

nqba . (1.63)

Again, this result can also be derived using the quantum Langevin approach. Integrating
the spectra in Eq. (1.41) in the aforementioned limit directly yields Eq. (1.63), as shown
in Ref. [72].

The above equation illustrates that the final equilibrium occupation number n̄ will lie
between nth and nqba, depending on the relative weight of Γm and Γdba. Thus, in order to
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be able to cool the mechanical oscillator to the ground state a second requirement has to
be fulfilled, besides having small enough nqba: The backaction rate Γdba has to be strong
enough to overcome the fluctuations caused by the thermal environment. This is ensured
for

Γdba

Γm

& 2nth . (1.64)

As the framework of the above equations requires that the damping of the mechanical
oscillator is smaller than its oscillation frequency, this leads to an additional constraint:
the intrinsic quality factor of the mechanical oscillator has to be sufficiently large, Qm >
2nth, such that after increasing the damping rate by the factor (1.64) one still has Qeff =
Ωm/Γdba > 1. Moreover, using Eq. (1.56), (1.64) can be recast into the following condition
for ground-state cooling in terms of experimental parameters:

2Qm
g2

0

Ω2
m

P

ω
> kBT . (1.65)

As mentioned earlier, the Stokes and anti-Stokes optical sidebands have relative weights of
(n̄+ 1)×A+ and n̄×A− [35]. Once the mechanical oscillator is close to its ground state,
i.e. n̄→ 0, the anti-Stokes sideband is correspondingly expected to be strongly suppressed.
Thus, spectroscopy of both sidebands may provide a convenient and unambiguous way to
measure the equilibrium phonon number n̄ close to the ground state.

1.1.4.2 Heating and amplification

The opposite case, positive detuning, leads to an anti-damping of the mechanical oscillator,
as depicted in Fig. 1.4. As long as Γdba + Γm > 0 this regime may be described, in analogy
to the previous chapter, as coupling the mechanical oscillator to an effective bath whose
temperature in this case has to be formally treated as a negative temperature bath [74],
according to Eq. (1.57). Thus, the occupation n̄ of the mechanical mode is increased above
its thermal equilibrium nth, according to Eq. (1.63).

Note that as long as |Γdba| < Γm the mechanical oscillator thus finds itself in a thermal
state with an increased occupation dominated by the contribution nth (in typical experi-
mental situations for which |nqba| � nth).

The situation changes, however, when the threshold Γdba + Γm → 0 is reached. There,
the description of the dynamical backaction as an effective temperature bath breaks down.
The mechanical oscillator becomes undamped and its motion can no longer be described
as thermal but rather undergoes a driven, sinusoidal or coherent oscillation. This regime
has been termed radiation pressure parametric instability [75, 76]. Using Eq. (1.55), the
input power Pth, necessary to reach this regime at detuning ∆ = Ωm (which is close to the
optimum detuning for κ . Ωm) can be written as

Pth

~ω
=

κ

κex

Γm

16

(κ/2)2

g2
0

(
1 + 4Ω2

m/κ
2
) (

4 + κ2/
(
4Ω2

m

))
. (1.66)
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This power scale that also describes the power needed to cool the oscillator by a factor
of ×2 coincides (up to the factor (4 + κ2/4Ω2

m) /ηc) with the power needed to reach the
SQL (1.51) and thus can be regarded as a quite universal figure of merit. It describes both
the transducer’s ability to control the motional state of the oscillator and to read out its
motion in a quantum limited way.

In the regime of the parametric instability, the mechanical oscillator can be rigorously
described by solving Langevin equations (1.6, 1.7) for the intracavity mean-field ā and
the mechanical oscillation amplitude, assuming a sinusoidal oscillation. Rich nonlinear
dynamics can be found, giving rise to a complex attractor diagram for stable solutions
of the mechanical oscillation amplitude x̄ [77–79]. Here, we will focus on considering a
fixed positive detuning ∆ = Ωm. Then, the harmonic oscillation amplitude can be shown
to depend solely on the normalized driving strength D = 2 ā2κ2g2

0/Ω
4
m [78], until the

oscillation will eventually become chaotic [27].

The analogy of this transition to the threshold found in lasers has attracted significant
interest recently among various physical realizations [80–83]. In particular the mechanical
oscillator’s linewidth is considerably narrowed above threshold. Indeed an expression very
close to the formulae derived by Schawlow and Townes for lasers and masers [84, 85] is
found [86] for the oscillator linewidth Γ0

Γ0 = Γm
nth + A+

nc

. (1.67)

Here, nc denotes the number of phonons contributing to the coherent motion of the oscil-
lator which is limited to

√
nc . κ/(4 g0) whereas nth is the number of thermal phonons.

A+ describes the backaction limit to the linewidth in analogy to the spontaneous emission
terms limiting laser and maser linewidths. The ability to thus create and control narrow
linewidth optomechanical oscillators possibly ranging from medium to ultra-high frequen-
cies triggered efforts to explore the suitability of such systems for frequency reference
purposes [29–31].

1.1.5 Optical spring effect

The radiation pressure force arising from the imaginary part of ax (cf. Eq. 1.26) modifies
the linewidth of the mechanical oscillator and can be viewed as a viscous force. It can
give rise to considerable cooling or heating/amplification of mechanical motion, as shown
in the previous section. The radiation pressure force, however, can also have a component
in phase with the mechanical oscillation originating from the real part of ax (cf. Eq. 1.26)
and thus affect the mechanical oscillator’s eigenfrequency as given by Eq. (1.30). This so
called optical spring effect can both soften or stiffen the mechanical oscillator’s intrinsic
rigidity and will be briefly discussed in this section.

It is interesting to note that Ωdba can also directly be calculated from SN (Eq. 1.40)
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Figure 1.5: Normalized optical spring effect Ωdba/ |Ωdba|, leading to a change of the me-
chanical oscillator’s eigenfrequency. Depending on the ratio κ/Ωm the sign of Ωdba can be
positive or negative for the same detuning. Moreover, the functional form of Ωdba changes
from a single, broad dispersive feature around zero detuning (κ/Ωm � 1) to three narrow
dispersive features around ∆/Ωm = ±1 and ∆ = 0 (κ/Ωm � 1).

using a Kramers-Kronig type relation [36]

Ωdba = g2
0

∞∫
−∞

SN [Ω]

(
1

Ωm − Ω
− 1

Ωm + Ω

)
dΩ

2π
. (1.68)

Using the residue theorem, one then obtains the corresponding shift Ωdba induced by a
particular SN . For the case of a single optical resonance (i.e. using Eq. 1.40), Eq. (1.30)
is recovered.

Similar to the case of the dynamical backaction rate Γdba (1.55), Ωdba for given input
power P , couplings g0, ηc and mechanical frequency Ωm is maximized for κ→ 0, however
at ∆ = ±κ/2. Then, the maximum frequency shift

Ωmax
dba = ∓2

g2
0

Ω2
m

ηc
P

~ω
(1.69)

is obtained. The normalized frequency shift Ωdba/ |Ωmax
dba | is shown in Fig. 1.5 as a function

of normalized detuning (∆/Ωm) and for various ratios κ/Ωm. For large ratios κ/Ωm, one
obtains a dispersive feature around zero detuning, leading to a softening (stiffening) of
the mechanical oscillator for ∆ < 0 (∆ > 0). The maxima in this regime are located at
∆ ≈ ±κ/(2

√
3). Similar to the dynamical backaction rate, also the optical spring effect

exhibits a more complex dependence on detuning if the mechanical oscillation frequency is
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in the range of the optical bandwidth, as shown in Fig. 1.5. In the limit κ/Ωm → 0, one
obtains three dispersive features at ∆ = ±Ωm and ∆ = 0.

If the maximum optical spring effect (1.69) is compared to the attainable dynamical
backaction rate (1.56), one obtains Ωmax

dba /Γ
max
dba = 1/2, for the resolved-sideband regime

(κ � Ωm). Thus, both effects are comparable in absolute terms. However, when con-
sidering high Q mechanical oscillators, i.e. Ωm � Γm, the relative dynamical backaction
induced shift is much larger for the oscillator’s linewidth than for its frequency. Cooling
by a factor ×2, for example, i.e. a factor ×2 increase in linewidth, implies the possibility
to obtain a relative resonance frequency shift of only 1/(2Qm)� 1. Thus, for experiments
with κ . Ωm the optical spring effect is typically less important. In the Doppler regime
(κ� Ωm), however, the ratio of both quantities scales as (κ/Ωm) and strong optical springs
may be obtained despite comparatively low dynamical backaction rates [48, 87].
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1.2 Toroid microresonators and their optical proper-

ties

The work presented in this thesis is based on toroid microresonators [88]. These monolithic
on-chip whispering gallery mode optical microcavities exhibit an exceptional combination
of small mode volume and very long photon storage times leading to an optical finesse
that can exceed one million. The optical properties of toroid microresonators have been
exploited for various research areas ranging from non-linear optics, such as frequency comb
generation [89–91] or Raman lasing [92], to molecular recognition [93] and cavity QED
[94–96].

In this thesis, they are exploited for cavity optomechanics. Thereby, two conception-
ally entirely different approaches to cavity optomechanics are studied, both based on toroid
microresonators. The first one exploits the evanescent optical near-field of the toroid mi-
croresonators to couple their optical modes to separate nanomechanical oscillators. This
approach extends dispersive cavity optomechanics to sub-wavelength scale nanomechani-
cal oscillators and constitutes a nano-optomechanical system. The experiments performed
with this system will be presented in chapter 2. The second approach explores the in-
teraction of the toroid microresonator’s optical with its intrinsic mechanical modes that
are naturally parametrically coupled to each other as discovered in 2005 [26–28]. This
study and the resulting system, monolithic ultra-low dissipation micro-optomechanical res-
onators, will be presented in chapter 3. Since both build upon the same optical resonator
its fundamental optical properties will be presented in this section.

First, an analytic approximation for the optical modes of toroid microresonators along
with the respective mode volume will be discussed and compared to results from finite
element simulations. Then tapered fibre coupling to the optical modes will be briefly
described.

1.2.1 Optical mode profile

The eigenmodes ~̃Ej(~r, t) = ~Ej(~r) e
−iωjt (j ∈ N) of a dielectric body are in principle given

by the solutions of the wave equation:(
∇2 − ε(~r)

c2

)
∂2

∂t2
~̃Ej(~r, t) = 0 , (1.70)

where c denotes the speed of light in vacuum and ε(~r) denotes the position dependent
relative dielectric constant, reflecting the geometric structure of the dielectric. Solutions
of the wave equation follow the dispersion relation kj(~r)

2 = ε(~r)(ωj/c)
2 and fulfill the

Helmholtz equation: (
∇2 + ε(~r)

ω2
j

c2

)
~Ej(~r) = 0 . (1.71)
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For spherical resonators, this equation can be solved exactly by separation of variables.
Due to their resemblance to toroids, the solution for spheres will briefly be described here.

Using spherical coordinates and assuming transverse electric (TE) and transverse mag-
netic (TM) modes, respectively, Eq. (1.71) leads to the well known whispering gallery
modes of spheres [97, 98] characterized by the mode number triplet (`, m, q). The az-
imuthal dependence of these is simply sinusoidal in nature (∝ e±i`ϕ), with the azimuthal
mode number ` ∈ N describing the number of full wave trains along the sphere’s equator.
The polar dependence of the modes can be expressed in terms of associated Legendre poly-
nomials P `

m(cos(θ)) with the polar mode number m ∈ {−`, . . . , `} related to the number
of field nodes in polar direction via |l−m|. Finally, the radial dependence of the field can
be written in terms of cylindrical Bessel functions Jm+1/2 within the sphere and cylindrical
Hankel functions Hm+1/2 outside the sphere. Continuity relations of the field across the
sphere boundary fix the third, radial mode number q ∈ N which also indicates the number
of field nodes q− 1 in radial direction. The full solutions and their detailed derivation can
be found in Refs. [97, 98].

For toroids, in contrast, no such closed analytic solutions exist. However, an analytic
approximation based on a spheroid approximation in cylindrical coordinates (ϕ, ρ, z) has
been developed [99, 100]. For a toroid with major radius R and minor radius r, the optical
field of a fundamental (|m− `| = 0, q = 1) mode with mode number ` may, in the vicinity
of the equatorial plane, be expressed as:

Eζ ≈

E0 exp
[
− z2

2r2
z

]
J`
(
T`1

ρ
R̄

)
ei`ϕ , ρ < R ,

1
P
E0 exp

[
− z2

2r2
z

]
J`
(
T`1

R
R̄

)
ei`ϕe−α(ρ−R) , ρ > R ,

(1.72)

where R̄ = R + P
k0

√
n2−1

is an effective radius and T`1 denotes the first zero of J`
6. The

refractive index of the toroid is denoted by n and k0 is the (vacuum) wavenumber k0 =
2π/λ, where λ denotes the (vacuum) wavelength. Note that unlike for spheres the optical
modes of spheroids and toroids respectively are strictly speaking not pure transverse electric
(TE) or transverse magnetic (TM) [99]. The modes can however be approximately treated
as TE-like modes, for which P = 1 and ζ ≈ z and TM-like modes for which P = 1/n2 and
ζ ≈ ρ. The mode width rz in z direction is given by

rz =
R3/4r1/4

√
`

1

(1−R/(4`2r))1/4
. (1.73)

The evanescent part of the field decays on a length scale α−1 ∼ λ/(2π). More precisely,
the decay length α−1 can be approximated by:

α−1 ≈ λ

2π

(
1√

n2 − 1
− α1n

2(3− 2P 2)

6(n2 − 1)3/2

(
`

2

)−2/3
)
≈ λ

2π
√
n2 − 1

, (1.74)

6 for `� 1, as is the case here, these can be approximated by T`1 = `+1.8558`1/3+O(`−1/3)
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Figure 1.6: Fundamental optical mode of toroid microresonators (left column: TM-like
mode at 797 nm; right column: TE-like mode at 800 nm; both for n = 1.45). Top row:
colour-coded field distribution obtained by finite element simulations (Emax denotes the
field maximum). Second row: radial, axial and azimuthal field components as a function
of the position x (at z = 0) obtained from both the finite element simulation and the
analytic model in Eq. (1.72). Bottom row: field components as a function of z for various
values of x. The TM-like mode has a considerable admixed azimuthal field component
whereas the TE-like mode has a more pure polarization (xmax denotes the x-coordinate of
the field maximum position). Overall, the analytic model yields a good approximation of
the finite element simulation results.
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where α1 denotes the negative first zero of the Airy function (α1 ≈ 2.33811). In the same
approximation, the mode number ` of the fundamental modes can be expressed via the
following equation:

nk0R =

√
T 2
`1 + `

√
R/r − Pn√

n2 − 1
. (1.75)

Fig. (1.6) shows an overview of the normalized field amplitudes of TE and TM modes
for a toroid with typical geometry (R = 16µm, r = 1.7µm) calculated both by the
above approximation and by finite element method (FEM) simulations 7. Good agreement
between Eq. (1.72) and the FEM results to a level of a few percent is typically found. Also
the resonance frequencies predicted by Eq. (1.75) typically deviate less than 1% from the
FEM values.

1.2.2 Optical mode volume

The volume of an optical cavity mode is an important quantity that is influencing the
coupling of the resonator to other systems such as atoms studied in cavity quantum elec-
trodynamics [102, 103] but also to mechanical oscillators explored in the field of cavity
optomechanics [15, 16]. In particular, it will be of relevance in chapter 2 of this thesis.
Usually [92, 104], it is defined as

V` =

∫
ε(~r)| ~E`(~r)|2d~r

ε(~rmax) max
~r
| ~E`(~r)|2

, (1.76)

for a particular mode ~E` (~rmax denotes the position of the electric field maximum). Using
the above approximation, the cavity mode volume of a toroid microresonator can then (for
both TE- and TM-like modes) be approximated as:

V` = π3/2R̄2rz
J ′`(T`1)2

J2
` (T ′`1)

, (1.77)

where T ′`1 > 0 is the the first local maximum of J` and J ′` denotes its derivative. Keeping
only first order terms, the mode volume can thus be written as

V` ≈ 15.1
R11/4r1/4

`7/6
≈ 1.15R19/12r1/4λ7/6 . (1.78)

It is interesting to note that the toroid’s minor radius r has evidently only very little
influence on the cavity mode volume. Fig. 1.7 shows the mode volume as a function of
wavelength for different major and minor radii according to the above equation as well as
using FEM simulations. Due to the approximations used in Eq. (1.72) the accuracy is
best for large ` and small R/r. For the most relevant parameter space used in this thesis,
excellent agreement (< 10%) between model and FEM simulation is found.

7 The code used for these simulations using Comsol Multiphysics is adapted from [101] and
given in appendix D.
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Figure 1.7: Optical mode volume of fundamental TM-like toroid microresonator modes.
For a variety of parameters (see inset) the mode volume is evaluated as a function of
wavelength using both finite element simulation (dots) and the simplified analytic model
(lines) given by Eq. (1.78). Good agreement, in particular for small R/r, is found.

1.2.3 Tapered fibre coupling

Coupling light in and out of whispering gallery mode microresonators has been achieved
using several different methods. Prism coupling (see e.g. Ref. [105]) has provided a
flexible and also efficient method to couple free-space laser beams to whispering gallery
modes. It requires, however, a rather bulky setup and is not easily compatible with micron
scale systems. Subsequently, also side-polished fibres were used for coupling, providing

Figure 1.8: Micrographs of a toroid microresonator coupled to a single-mode tapered optical
fibre. Top view (left, field of view ∼ 100µm) and side view (right, ∼ 200µm).
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the convenience of having a single-mode optical fibre as input and output coupler. The
efficiency of this method, however, is comparatively low. With tapered fibre coupling a
method has been found [106] that combines both the convenience of fibre coupling and
an efficiency that enables coupling of more than 99% of the input field into a whispering
gallery mode [107]. Thereby, a single-mode optical fibre is adiabatically tapered down to
a diameter of only a few hundred nanometres. The mode guided within the fibre becomes
partially evanescent and thus spatially overlapping evanescent fields of tapered fibre and
whispering gallery mode (of toroid microresonators in our case) can couple light in and out
of the resonator. Fig. 1.8 shows a micrograph of a toroid coupled to a tapered optical fibre.
The diameter of the fibre taper is thereby adjusted such that the propagation constants of
the fields within the taper and the toroid match. Highly efficient and stable coupling to
toroid microresonators of various sizes is achieved at wavelenghts ranging from 800 nm to
1550 nm with tapers that can maintain a transmission exceeding 99%. The fabrication of
the fibres used in this thesis is described in appendix B.2.1.



Chapter 2

Near-field cavity optomechanics

The mutual coupling of optical resonators and mechanical degrees of freedom has in recent
years become an area of intense research [15–17], as introduced in the previous chapter.
Until 2009, the vast majority of cavity optomechanical systems relied on Fabry-Perot type
resonator configurations where a light beam is trapped between a fixed and a moveable
mirror. This experimental setting which has its origin in the power recycling cavities
of laser gravitational wave interferometers enabled extremely sensitive measurements of
the moveable mirror’s motion down to a sensitivity of 10−19 m/

√
Hz already in the 1990s

[108, 109]. In the subsequent decade, advances in microfabrication have, moreover, allowed
miniaturization of the employed cavity mirrors and thus a concomitant drastic increase of
their susceptibility to external forces. This lead to the observation of dynamic radiation
pressure phenomena that were predicted already decades ago, such as radiation pressure
cooling of micromechanical oscillators [25, 32–34]. Using the aforementioned experimental
configuration, the miniaturization of the resonators is, however, fundamentally bound by
the optical diffraction limit. The reflecting element must not be smaller than the diffraction
limited optical spot size in order to prevent diffraction from degrading the optical quality
factor of the employed cavity. Thus, this approach does not allow straightforward extension
of quantum-limited measurements of mechanical motion or radiation pressure actuation to
nanomechanical oscillators.

Such an extension, in turn, would be interesting from several points of view. First,
nanomechanical oscillators have been successfully used as ultra-sensitive probes of mass and
external forces, allowing single atomic-mass resolution [43] or single electron-spin detection
[45] despite the fact that the detection methods were partially far from being quantum-
limited. Improved and possibly quantum-limited transduction of nanomechanical motion
could thus lead to further leaps in the performance of nanomechanical oscillators as sensitive
probes. Second, the fact that in recent years nanomechanical elements that combine high
mechanical quality, i.e. low coupling to the thermal environment, with extremely small
effective mass (when compared to micromechanical elements) have been developed makes
them highly interesting for probing quantum limits of mechanical motion.

In this thesis an approach based on cavity-enhanced optical near-fields (schematically
shown in Fig. 2.1) will be reported that for the first time enabled extending quantum-
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Figure 2.1: Schematic of the experimental principle. a, A toroid microresonator is pumped
using a tapered optical fibre. The near-field of the optical cavity mode allows dispersive
coupling to nanomechanical oscillators, here in the form of nanomechanical strings. b,
Microscope top view of a toroid microresonator (R = 16µm) suitable for near-field probing,
as explained in the text. c, (False colour) scanning electron micrograph of a typical silicon
nitride string used for the experiments shown in this chapter (15× 0.5× 0.1µm3).

limited cavity optomechanical coupling to nanomechanical oscillators. The developed sys-
tem, moreover, allowed for the first time a measurement imprecision below the standard
quantum limit for nanomechanical oscillators, a long sought-after goal [49, 110–115], as
shown in Fig. 2.2.

In a sense, the employed approach bypasses the optical diffraction limit by resorting to
evanescent optical near-fields which have also been very successfully used in the domain of
near-field microscopy [116]. Already in 1983, Braginsky and Vyatchanin envisioned to use
the evanescent near-field of an optical whispering-gallery resonator to couple to a dielectric
“stick” parallel to the propagation direction of the optical field [117]. Several years later,
around 1990, the optical forces between microspheres evanescently coupled to each other
were studied both experimentally and theoretically [118, 119]. In the light of the advances
in microfabrication, the idea of near-field coupling was then, during the last five years,
extended to optical waveguides [120–122]. The mechanical element and the photons in such
a near-field coupling configuration exchange momentum via the optical gradient force, as
opposed to the scattering force used in the traditional Fabry-Perot setups. The pioneering
work of Ashkin [123, 124] experimentally demonstrated that optical gradient fields can
be used to exert considerable forces on particles and indeed provide a powerful tool for a
variety of applications such as optical tweezers, complementing the impressive capabilities
of the scattering force for cooling or amplifying a solid state mechanical oscillator’s motion
[25] or for cooling atoms and ions [73], as first proposed by Hänsch and Schawlow [125]
and widely used today. In Ref. [126], a recent overview of the optical gradient force and
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Figure 2.2: Measurement imprecision of nanomechanical motion approaching and bypass-
ing the SQL in the past years, using various techniques. The approach reported in this
section (stars) allowed for the first time a measurement imprecision below the level of the
SQL in 2009 [4] and a ∼ 100 times reduction of necessary input power in 2010 [2]. The blue
data points represent experiments requiring cryogenic operation, performed in the groups
of Cleland [44], Schwab [111, 112], Lehnert [56, 113, 114] and van der Zant [115] (SET:
single-electron transistor, APC: atomic point contact, Squid: superconducting quantum
interference device, MW Cavity: microwave cavity). The red data points correspond to
systems operating at room temperature realized in the group of Painter [49, 53] (PC Cavity:
photonic crystal cavity) and in the course of this thesis [2, 4].

its applications in the context of optomechanical systems is given.

The first experimental implementation of a nanomechanical element whose motion was
actuated and transduced by optical gradient fields was reported in 2008 [127] and an
electrical implementation thereof soon afterwards [128]. In 2009, the first cavity-enhanced
systems incorporating a nanomechanical element were studied using a photonic crystal
structure [49] and a toroid microresonator [4]. The latter work has been performed in the
context of this thesis and will be reported on in this section: an experimental platform
that for the first time enabled dispersive cavity optomechanics with sub-wavelength scale
nanomechanical oscillators.

The evanescent near-field of toroid microresonators (see chapter 1.2) is used to couple
their optical modes to the motion of dielectric nanomechanical oscillators. One type of
nanomechanical oscillators studied in this thesis are strained silicon nitride nanomechanical
strings as shown in Fig. 2.1c. In order to be able to bring nanomechanical oscillators
which are fabricated on a silicon chip (see appendix B.1.2 for fabrication details) into the
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Figure 2.3: Toroid microresonator near-field sensor. a, (False colour) scanning electron
micrograph of a toroid microresonator (R = 18µm) near-field sensor. The silica toroid
(blue) resides on top of a silicon pedestal (brown) such that the toroid extends across the
chip support. b, Transmission through the tapered fibre around a WGM resonance of a
toroid near-field sensor. The spectrum reveals a doublet of coupled clock- and counter-
clockwise modes [129] with linewidths of κ/2π = 1.9 MHz. This corresponds to an optical
quality factor of Q = 1.9× 108 and a finesse of F = 0.95× 106.

vicinity of the optical modes of a toroid–which rests on a separate chip–the toroid has to
be fabricated at the edge of its chip support such that the silica torus extends across the
silicon chip. Such a toroid is shown in Fig. 2.3a (see also Fig. 2.1b). This requirement
makes the fabrication of toroids suitable for near-field interactions slightly more complex
than for normal on-chip toroids. The fabrication of such toroids is described in detail
in appendix B.1.1. Here it shall suffice to mention that these devices can be fabricated
with similarly high finesse (∼ 106) as regular toroids, which is shown in Fig. 2.3b. They
are probed using regular tapered fibre coupling (cf. section 1.2.3). The tapered fibre
is thereby attached to a compact mount (cf. appendix B.2.1) such that the evanescent
near-field of the free-standing cavity part can be accessed by nanomechanical oscillators.
These, residing on a silicon chip, are mounted on a three axis piezo cube (Attocube) that
allows both translational fine- and coarse-positioning of the nanomechanical oscillators.
Using a mirror mount, the respective rotational degrees of freedom of the nanomechanical
oscillators can be fine-tuned. All experiments reported in this thesis are carried out in a
vacuum chamber in order to rule out any gas damping of the nanomechanical oscillators.
The optomechanical coupling region is however designed sufficiently close to a window in
the chamber to allow optical access by a long working distance (∼ 25 mm) microscope. The
actual experimental apparatus and its alignment are explained in more detail in appendix
B.2.

In the first section of this chapter, the optomechanical coupling in this system is the-
oretically analyzed. Good agreement is found with the experimental values derived in
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the static measurements of the second section. The dynamic optomechanical coupling to
nanomechanical oscillators is thoroughly characterized in the third section. The fourth sec-
tion describes the first observation of radiation pressure dynamical backaction on nanome-
chanical oscillators giving rise to laser-like coherent nanomechanical oscillations as well
as cooling of nanomechanical motion. Quantum limited measurements of nanomechanical
motion that allowed for the first time measurements of nanomechanical motion with an
imprecision below the standard quantum limit are reported in the fifth section. After sec-
tion six which reports optomechanical coupling to multiple optical modes, an experiment
exhibiting quadratic optomechanical coupling is described in section seven. Section eight
gives the prospects of coupling to graphene mechanical oscillators.
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2.1 Theoretical characterization of the optomechani-

cal coupling

Before discussing the experimental results, the evanescent optomechanical coupling be-
tween the optical modes of a toroid microresonator and a dielectric positioned in its evanes-
cent near-field is examined. First, a general expression based on perturbation theory is
derived. Then, using this general expression and the approximations presented in section
1.2, specific results for toroid microresonators are given. Finally, these are compared to
results of a finite element simulation.

2.1.1 Perturbation theory

In this section, a general analytic expression for the optomechanical coupling based on
perturbation theory is derived. Starting from the general wave equation, a perturbative
expression for the optomechanical coupling between an optical resonator and a dielectric
can be obtained.

Let ~̃E
(0)
j (~r, t) = ~E

(0)
j (~r) e−iω

(0)
j t (j ∈ N) be a set of normalized, orthogonal eigenmodes of

the wave equation (1.70) with the dispersion relations k
(0)
j (~r)2 = ε(0)(~r)(ω

(0)
j /c)2 and E

(0)
j (~r)

fulfilling the Helmholtz equation (1.71). We will now choose a particular mode E
(0)
i (~r) and

calculate the shift of the resonance frequency induced by a small external perturbation.
Let ε(1)(~r) describe this perturbation of the system caused by positioning a dielectric object
of volume Vdiel in the evanescent near-field of the toroid. The approach used below does
not necessitate ε(1)(~r)� ε(0)(~r), in fact the experimental situation implies ε(1)(~r) > ε(0)(~r).
However, locality of the perturbation, that is

∫
(ε(1)(~r)−1)d~r �

∫
(ε(0)(~r)−1)d~r, is required.

The new solution of the perturbed system may then be expressed as a linear combination
of the unperturbed solutions ~E

(0)
j (~r):

~E
(0)
i (~r) + ~E

(1)
i (~r) =

(
1 + c

(1)
i

)
~E

(0)
i (~r) +

∑
j 6=i

c
(1)
j
~E

(0)
j (~r) . (2.1)

Inserting this perturbative solution into equation (1.71) one obtains (keeping only first
order terms): ∑

j 6=i

c
(1)
j ε(0)(~r)
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(0)
j )2 − (ω

(0)
i )2

)
~E
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Multiplying the above expression by
(
~E

(0)
i (~r)

)∗
and integrating over the entire volume,



36 2. Near-field cavity optomechanics

only the second line yields relevant first order contributions 1 and one obtains:

ω
(1)
i

ω
(0)
i

= −1

2

∫
ε(1)(~r)| ~E(0)

i (~r)|2d~r∫
ε(0)(~r)| ~E(0)

i (~r)|2d~r
. (2.3)

Using the optical resonator’s mode volume, Eq. (2.3) can be written as

ω
(1)
i

ω
(0)
i

= −1

2

∫
Vdiel

(εdiel(~r)− 1)| ~E(0)
i (~r)|2d~r

n2Vi|Emax|2
. (2.4)

Here, ~Emax denotes the maximum of the electric field max
~r
| ~E(0)

i (~r)|, εdiel(~r) is the relative

dielectric constant of the material causing the perturbation and n is the refractive index
of the optical resonator, which is assumed to be constant.

2.1.2 Analytic approximation for toroid microresonators

In the following, we we will use the analytical approximations for the eigenmodes of a
toroid (major radius R and minor radius r) introduced in section 1.2 in order to obtain
analytic approximations of Eq. (2.4) and thus the optomechanical coupling coefficient.
Let us define ξ as the ratio of the field amplitude at the toroid’s (vacuum) surface and the
maximum field amplitude

ξ =
|E(ρ = R, z = 0, ϕ)|2

|Emax|2
. (2.5)

For a fundamental mode with angular mode number ` this ratio is given by

ξ =
1

P 2

(
J`(T`1R/R̄)

J`(T ′`1)

)2

. (2.6)

To first order, this ratio can (for both TE- and TM-like modes) be approximated by
ξ ≈ 1.2 (λ/R)2/3, i.e. it increases for smaller cavity radii and for larger wavelengths. The
relative frequency shift (2.4) can then be written as

ω(1)

ω(0)
= −1

2

ξ

V

∫
Vdiel

(ε(1)(~r)− 1)e
− z2

r2
z e−2αx0d~r , (2.7)

with the distance of the toroid’s rim to the surface of the dielectric x0 = ρ−R. Thus, we
are now in a position to calculate the optomechanical coupling coefficient g ≡ ∂ω(1)/∂x0:

g = αω(0) ξ

V

∫
Vdiel

(ε(1)(~r)− 1)e
− z2

r2
z e−2αx0d~r . (2.8)

1 Note the orthonormality of the unperturbed eigenmodes
∫
~E

(0)
j (~r) ~E

(0)
i (~r)∗ = δji and the

locality of the perturbation
∫

(ε(1)(~r)− 1)d~r �
∫

(ε(0)(~r)− 1)d~r.
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Using equations (1.77) and (2.6) a simple first order expression can be found for the term
ξ/V

ξ

V
=

√
2

π

n5/2

n2 − 1
λ−1/2R−9/4r−1/4 . (2.9)

Keeping only first order terms and assuming a point-like dielectric with refractive index
ndiel positioned in the equatorial plane, the following simple expression for the coupling
coefficient g is found (for both TE- and TM-like modes):

g =
ω

λ

(
23/2 n5/2

√
n2 − 1

) (
n2

diel − 1
) Vdiel

R9/4 r1/4 λ1/2
exp

[
−4π
√
n2 − 1

λ
x0

]
. (2.10)

Employing the traditional Fabry-Perot type cavity approach enables coupling coefficients
g = ω/L where for the characteristic cavity length one typically has L� λ. The term ω/λ
in the above equation implies that, in principle, using the gradient field approach, much
larger optomechanical coupling can be achieved. Indeed to fully harness this possibility and
enable g ∼ ω/λ, the gap x0 has to be considerably smaller than the corresponding typical
1/e distance , i.e. x0 � 100 nm (for λ ∼ 850µm and n = 1.45), which is experimentally
feasible. Moreover, for typical geometry parameters of a toroid (R ∼ 16µm, r ∼ 2µm) and
assuming ndiel = 2, a sampled volume of order Vdiel ∼ (3µm)3 is necessary in order to reach
a coupling of g = ω/λ. This is large considering that a point-like dielectric was assumed
earlier on. So, a more detailed analysis is necessary to conclude how closely g = ω/λ can
be approached and will be given in the next section.

Moreover, it is interesting to note that using the near-field approach a stronger scaling
of the optomechanical coupling with wavelength is found compared to the scattering force
approach. There, the coupling g is simply inversely proportional to wavelength, whereas
here–in the case of a point-like dielectric–it scales as g ∝ λ−2.5. Regarding the coupling
coefficient, short wavelengths therefore seem to be highly advantageous.

Two types of dielectric mechanical oscillators have been studied during the course of
this thesis: micromechanical membranes (typical dimensions: (50−1000µm)2×30 nm) and
nanomechanical strings (30µm × 500 nm × 100 nm). In the following the optomechanical
coupling coefficients for these particular geometries will be evaluated.

2.1.2.1 Micromechanical membrane

We first consider a thin dielectric membrane positioned tangentially at a distance x0 from
the toroid, as depicted in Fig. 2.4. The electric field amplitude at volume element (x, y, z)
can be expressed in terms of z and its in-plane distance d =

√
(R + x)2 + y2−R from the

toroid. The optomechanical coupling between toroid and a membrane of area A = ly × lz
and thickness t is thus given by:

αω
ξ

V
(n2

diel − 1)

x0+t∫
x=x0

ly/2∫
y=−ly/2

lz/2∫
z=−lz/2

e
− z2

r2
z e−2α

√
(x+R)2+y2−R dxdydz . (2.11)
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Figure 2.4: Typical geometry (top
view) for a thin dielectric positioned
tangentially at a distance x0 from
the toroid. The electric field at po-
sition (x, y) can be expressed as a
function of the distance d(x, y) =√

(x+R)2 + y2 −R.

R

x

y

d

The integral over the z-coordinate yields the sampling length in this direction 2:

l̄z =

lz/2∫
z=−lz/2

e
− z2

r2
z dz =

√
π rzErf

(
lz

2rz

)
. (2.12)

In all practical cases of this thesis lz/2 ≥ 25µm is much larger than rz ∼ 1µm (for typical

parameters) and thus to a very good approximation Erf
(

lz
2rz

)
= 1. The sampling length

in z-direction is thus given by

l̄z =
√
π rz ≈

λ1/2r1/4R1/4

√
2n

, (2.13)

where Eqs. (1.73) and (1.75) are used.
Assuming y � R the integral over x and y can be simplified. This approximation is

justified since for all relevant experimental realizations |E(x, y)|2 < 0.01 × |E(x, 0)|2 as
soon as y > 0.2× R. The integral over x and y can then be broken into two independent
integrals such that the sampling length along the y-axis can be approximated as

l̄y =
√
π
√
Rα−1 ≈

√
Rλ/2√
n2 − 1

, (2.14)

using Eq. (1.74). The coupling coefficient is thus given by:

g (x0) = αω
ξ

V
(n2

diel − 1) l̄z l̄y

x0+t∫
x=x0

e−2αx dx

=
1

2
ω
ξ

V
(n2

diel − 1) l̄z l̄y (1− e−2αt) e−2αx0 . (2.15)

Keeping terms to first order, one arrives at a coupling coefficient of

g (x0) =
1

23/2π

ω

R

n2(n2
diel − 1)

(n2 − 1)5/4

√
λ

R

(
1− e−2αt

)
e−2αx0 , (2.16)

2 The usual convention of defining the error function as Erf(x) = 2√
π

∫ x
0

e−t
2

dt is used.
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or a corresponding optical frequency shift ω(1) (x0) = −g (x0) /2α

ω(1) (x0) = − ω

27/2π2

(
λ

R

)3/2
n2(n2

diel − 1)

(n2 − 1)7/4

√
λ

R

(
1− e−2αt

)
e−2αx0 . (2.17)

The above coupling coefficient (2.16) is approximately ×20 smaller than the intrinsic op-
tomechanical coupling to the internal mechanical modes of the toroid microresonator ω/R,
assuming x0 � 2/α and typical parameters (ly×lz×t = 50×40×0.03µm3, ndiel = 2.1). This
loss in coupling coefficient is, however, overcompensated by typically more than ×20 larger
zero-point-motion of the membrane’s fundamental mode (compared to a typical toroid
mode, cf. sections 2.3.1 and 3) such that even larger vacuum optomechanical coupling
rates g0 are expected for evanescent near-field coupling to a membrane. For the point-like
coupling shown in the previous section, the optomechanical coupling scales as ∝ λ−5/2.
Here, in this three-dimensional analysis the scaling is reduced to ∝ λ−3/2 (in the limit
t� α) since for shorter wavelengths the optical mode is more strongly confined leading to
reduced sampling lengths l̄y, l̄y ∝

√
λ. Moreover, using this configuration, optomechanical

coupling coefficients up to g ∼ 0.005× ω/λ are expected for typical parameters.

2.1.2.2 Nanomechanical string

The second geometrical structure which is used in the experiments described in this thesis
are nanomechanical strings. These can, based on the calculations in the previous section,
be treated as a membrane with a strongly reduced width. The width of the employed
(rectangular) strings, i.e. their extension in z-direction, lz varies from 300 nm to 1000 nm
whereas their thickness t is typically ∼ 100 nm. In order to calculate the effective length

sampled in z-direction l̄z, the error function Erf
(

lz
2rz

)
in Eq. (2.12) has therefore to be

evaluated individually as its argument lz
2rz

may take values approximately spanning the
interval [0.1, 1].

The sampling length l̄y ≤ 5µm, however, is typically much smaller than the length of the
nanomechanical strings (≥ 15µm) such that all other expressions derived in the previous
section on micromechanical membranes can be used. The optomechanical coupling may
thus be expressed as:

g (x0) =
1

23/2π

ω

R

√
λ

R

n2(n2
diel − 1)

(n2 − 1)5/4
Erf

(
lz

2rz

) (
1− e−2αt

)
e−2αx0 , (2.18)

with the corresponding frequency shift ω(1) (x0) = −g/2α given by

ω(1) (x0) = − ω

27/2π2

(
λ

R

)3/2
n2(n2

diel − 1)

(n2 − 1)7/4
Erf

(
lz

2rz

) (
1− e−2αt

)
e−2αx0 . (2.19)

For a lz = 0.8µm wide string, the loss in coupling compared to the membrane case lz ≥
40µm, as described by the error function in the above expression, is typically only a factor



40 2. Near-field cavity optomechanics

Figure 2.5: Negative optical resonance frequency shift according to the analytic approxi-
mation 2.19 and FEM simulations as explained in the text for a TM-like mode, with typical
parameters R = 16µm, r = 1.7µm, ` = 171 (corresponding to λ ∼ 800 nm) and a nanome-
chanical string with cross-section 100 nm× 700 nm (Fit model: sum of two exponentials).

of ∼ 2. This reflects the optimized geometry where lz/2 is now comparable to rz and thus
minimizes the mass of the dielectric without considerable loss of optomechanical coupling
coefficient which results in optimized vacuum optomechanical coupling rates g0.

2.1.3 Comparison to finite element modelling results

As introduced in chapter 1.2, FEM simulations provide a powerful tool for calculating the
optical properties of microtoroids. Here, these are applied to simulate the optomechanical
coupling between a silica microtoroid and a dielectric in its evanescent field. The simu-
lation assumes an axisymmetric geometry which holds true for the toroid itself, but not
the nanomechanical element. To correct for this, the frequency shifts calculated in the
axisymmetric simulation are re-scaled by the actual tangential sampling length l̄y of the
evanescent cavity field as derived in the previous section 2.1.2, cf. Eq. (2.14).

Fig. 2.5 shows the cavity resonance frequency shift according to Eq. (2.19) as well as
calculated by FEM simulations for a TM optical mode and typical experimental param-
eters. See appendix D for the code used for implementing the FEM simulations. Good
agreement on a level of 15% is found between the analytic approxmations of the resonance
frequency shift and the results of the FEM simulation. Only for very small distances
x0 < 50 nm, the frequency shift evaluated by FEM shows a deviation from first order
perturbation theory. This deviation is caused by the fact that for small distances the
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Figure 2.6: Distortion of the profile of TM- and TE-like optical microtoroid modes induced
by a silicon nitride nanomechanical oscillator in the evanescent field. The top left panel
shows the radial distribution of a TM mode for varying distances x0 to the nanomechanical
oscillator (100 nm×700 nm). The top right panel shows the corresponding field distribution
for x0 = 500 nm and x0 = 5 nm, respectively. For small x0 a perturbation of the optical
mode becomes evident, pulling the mode locally towards the vacuum. The field is sharply
enhanced in the gap between nanomechanical oscillator and silica toroid. This leads to
the deviation from first order perturbation theory, as described in the text. In the case
of a TE mode (bottom panels) which is also pulled towards the vacuum an even stronger
perturbation might arise if the short nanomechanical string supports an optical mode at
the toroid resonance frequency. Then the mode can be pulled into the nanomechanical
oscillator which then acts as a waveguide.
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dielectric can significantly disturb the optical mode profile, pulling it slightly out of the
silica structure and thus leading to larger frequency shifts. This effect is shown in Fig.
2.6 where the dependence of the mode pattern on the nanomechanical oscillator’s position
is shown for both TE and TM mode. For large distances x0 the modes are only slightly
perturbed by the presence of the dielectric. For smaller gaps, however, the optical modes
are considerably pulled towards the vacuum side. The TM mode is thereby sharply en-
hanced in the gap between dielectric cavity and nanomechanical oscillator. This explains
the aforementioned discrepancy of the optical frequency shift predicted by the analytic
model (Eq. 2.19) and the values calculated via FEM for small gaps (≤ 50 nm). There, the
first order modifications of the optical mode profile caused by the dielectric mechanical os-
cillator cannot be neglected anymore and lead to a deviation from first order perturbation,
as developed in section 2.1.1. In the case of TE modes, the field can be pulled into the
dielectric nanomechanical oscillator which can lead to a resonant coupling of light into the
nanomechanical oscillator (then acting like an optical waveguide), as shown in Fig. 2.6.
This phenomenon is, however, not studied in this thesis.
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2.2 Static measurement of the optomechanical cou-

pling

After having characterized the optomechanical coupling both analytically and using FEM
simulations, we will now turn to the experimental side of this chapter. This section will be
dedicated to a careful experimental examination of the static optomechanical coupling (the
dynamic coupling coefficients will be considered in section 2.3) between toroid microres-
onator and nanomechanical oscillators via the evanescent optical field. First the coupling
to a single optical mode is analyzed, resulting in good agreement with the numerical values
obtained in the previous section. Second, effects related to the simultaneous coupling to
two different optical modes of similar optical frequency will be shown.

2.2.1 Dispersive optomechanical coupling

The simplest way to characterize the optomechanical coupling coefficient g is based on
static measurements of the cavity resonance frequency. To this end, the nanomechanical
oscillator’s distance x0 to the cavity is gradually changed while a sweeping laser tracks
the cavity resonance frequency ω(x0). By taking the derivative ∂ω/∂x0 of the measured
frequency shift, the position dependent optomechanical coupling coefficient g(x0) can thus
be derived.

In the first series of measurements the convenient telecommunication wavelength range
is used (λ ∼ 1550 nm). Fig. 2.7 shows the measured optical frequency shift as a function of
the distance to the microresonator for both a silicon nitride membrane (50×40×0.03µm3,
commercially available at SPI Supplies) and a nanomechanical string (25× 0.8× 0.11µm3,
see appendix B.1.2 for fabrication details). As expected from the considerations in the
previous chapter, an exponential shift of the cavity resonance frequency is found. The
cavity linewidth is, moreover, not altered by the presence of the dielectric in the evanescent
field even for the smallest distances x0. Thus, the coupling is purely dispersive. An
exponential fit allows the extraction of an optical decay length α−1 = 226 nm (string)
and α−1 = 249 nm (membrane). The experimental parameters are n = 1.44, R = 29µm,
r = 2.9µm, λ = 1539 nm (string), λ = 1557.4 nm (membrane) and refractive indices of
nst

diel = 2.0 [130, 131] and nm
diel = 2.1 [130, 132] for the silicon nitride string and membrane

are assumed 3. The value expected from Eq. 1.74 is thus ᾱ−1 ∼ 220 nm, yielding good
agreement of order 10% with the measured values (since experimentally TE and TM like
modes are not distinguished, the average ᾱ−1 ≡ (α−1

TE + α−1
TM)/2 is used for comparison,

here). The measured maximum absolute optical frequency shifts are 0.72 GHz (string) and
2.25 GHz (membrane). The right axes in Fig. 2.7 show the corresponding optomechanical
coupling coefficients obtained by taking the derivative of the exponential fit (which simply
leads to a scaling weighted by the decay constant). Values of order g/2π = 10 MHz/nm

3 The refractive index depends on the silicon concentration of the silicon nitride. An error
of ±0.1 is estimated [130, 132], larger than the index variation ∼ 0.05 as a function of
wavelength between 600 nm and 1600 nm [133, 134].
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Figure 2.7: Evanescent coupling coefficients at λ ∼ 1550 nm wavelength. Linewidth (red)
and negative optical frequency shift (blue) of a R = 29µm microtoroid as a function of
the distance x0 to a silicon nitride string (25 × 0.8 × 0.11µm3, left panel) and a Si3N4

membrane (50 × 40 × 0.03µm3, right panel). The frequency shifts follow an exponential
dependence and the data reveal in both cases purely dispersive coupling without introduc-
ing a measurable degradation of the microcavities’ optical linewidth. The right axes show
the dispersive optomechanical coupling g(x0)/2π, as given by the negative derivative of the
fitted frequency shift data (blue alone). Note that the absolute position of x0 = 0 has an
uncertainty of ∼ 100 nm. Fig. adapted from Ref. [4].

are achieved for both the silicon nitride string and the membrane.
The above coupling coefficients are significantly smaller then the ones expected from the

analytic model which predicts values of g/2π ∼ 100 MHz/nm for both elements at vanishing
distance x0 → 0. For the membrane, whose lateral dimensions are larger than the optical
sampling lengths lx and ly, the rotational degree of freedom along the y-axis is most critical
when optimizing its position in the evanescent optical field. For the nanomechanical strings,
however, both the rotation along y- and x-axes as well as the absolute position in z-direction
are very critical. All degrees of freedom are carefully optimized experimentally. The
discrepancy between calculated and measured values is, however, caused by the fact that
the absolute distance between nanomechanical element and toroid in the experiments does
not approach zero 4. The optomechanical coupling renders the cavity resonance frequency
very sensitive to relative vibrations between nanomechanical oscillator and microresonator
chips within the experimental apparatus. These practically limited the gaps which allowed
stable measurements to an estimated value of x0 ∼ 100 nm in this first series of experiments.

In a second experimental step, efforts were made to increase the accessible optomechan-
ical coupling coefficients. First, the vibration isolation of the experimental chamber was
improved by mounting the chamber on a passive rubber vibration isolation system which

4 The silicon nitride membranes were observed to break when touching the optical cavity,
i.e. at x0 = 0. Contrarily, the silicon nitride strings which are under larger tension do
not break nor degrade the optical resonator upon touching, thus allowing in principle
values down to x0 = 0.
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a, b,

Figure 2.8: Optomechanical coupling between toroid and silicon nitride nanomechani-
cal string–theory and measurement. a, Negative optical frequency shift (full blue dots)
and cavity linewidth (red dots) as a function of the distance to a nanomechanical string
(30×0.3 × 0.1µm3) along with fits using a double (single) exponential decay for the fre-
quency shift (linewidth). Empty dots: FEM simulation; dashed line: analytic approxima-
tion (Eq. 2.18), both for TM-like mode. b, Red and blue dots represent the reactive and
dispersive optomechanical coupling coefficients γ and g, as given by the derivative of the
exponential fits in a. Good agreement of the measured dispersive coupling with the FEM
results (solid blue line) is found.

was found to significantly reduce the vibrations transmitted through the floating optical
table on which the experiment was mounted. Moreover, the vibration isolation to the vac-
uum pumping station was improved reducing the vibrations induced by the vacuum pumps.
In particular aiming, moreover, at improved coupling to nanomechanical strings, the ex-
perimental parameters according to Eqs. (2.18) and (1.74), g ∝ (1−e−13.2 t/λ)/

√
λR3, were

optimized. First, working at shorter wavelength was pursued, moving from the telecommu-
nication wavelength band to the range of a titanium-sapphire laser (λ ∼ 800 nm) enhancing
the attainable coupling by a factor ∼ 2. Second, the fabrication of the toroid near-field
sensors was optimized (see appendix B.1.1) to allow for smaller cavity radii strongly in-
creasing the coupling (at the cost of making the experimental alignment more challenging).
High-finesse cavities with radii down to 16µm and a finesse ∼ 106 were achieved with the
fabrication steps described in appendix B.1.1. This lower bound in radius is similar to the
one found for standard toroid microresonators in Ref. [135].

Fig. 2.8a shows the measured frequency shift induced by a narrower nanomechanical
string (30×0.3×0.1µm3) for a resonance at 838 nm wavelength of a 18.4µm-radius cavity
along with the shift expected from both FEM simulations and the analytic approximation
(see Eq. 2.19). A maximum frequency shift of 9 GHz is measured and good agreement with
both FEM simulation and analytic model is found, assuming a closest distance of 25 nm.
For very small gap sizes x0 < 50 nm the measured frequency shift deviates from the uniform
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exponential behaviour and follows a steeper slope, in agreement with the FEM simulation.
This is attributed to the deviation from first order perturbation, as described in section
(2.1.3). Another important aspect is that given the increased dispersive coupling, now for
small x0 also the cavity linewidth considerably increases, as shown in Fig. 2.8a. This effect
cannot be explained by absorption of photons in silicon nitride. Based on an upper bound
for the ratio of imaginary to real part of the refractive index (the complex refractive of
high stress SiN was measured to be . 0.6 · 10−5 at a wavelength of 935 nm in Ref. [136]),
absorption should, in the case of Fig. 2.8a, lead to an increase of the linewidth by < 1 MHz,
two orders of magnitude smaller than the observed value. The increased optical losses are
rather attributed to increased surface scattering at both silicon nitride and silica surfaces
since for small gap sizes, the optical mode is considerably pulled towards these, as depicted
in Fig. 2.6. Fig. 2.8b shows the dispersive and reactive coupling coefficients derived from
the data shown in panel a. For all values of x0 the dispersive contribution by far dominates
the interaction. The measured dispersive coupling coefficients show very good agreement
with the coefficients obtained from FEM simulations reaching values g/2π > 200 MHz/nm.
This corresponds to a one order of magnitude improvement compared to the initial values,
attributed to shorter wavelength, smaller cavity radius and improved stability, i.e. smaller
x0. The reactive coupling, in turn, reaches values up to γ/2π ≤ 13 MHz/nm.

The largest dispersive coupling was measured using wider nanostring oscillators with a
cross-section of 700×100 nm2 reaching a value of g/2π = 290 MHz/nm which corresponds to
a vacuum optomechanical coupling rate of g0/2π ∼ 5 kHz (with the zero-point fluctuations
of this particular string given by xzpf ∼ 18 fm, cf. section 2.3).

2.2.2 Simultaneous coupling to several optical modes

In the previous section the optomechanical coupling of a nanomechanical oscillator to a
single optical resonance was described. Due to the rich mode spectrum of toroid microres-

Figure 2.9: Spatial profile of optical toroid microresonator modes as inferred by the trans-
mission of the tapered optical fibre at varying distance. Fundamental (a, |m| = `), second
order (b, |m| = `− 1), second and third order (c, |m| = `− 2) modes can be distinguished.
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Figure 2.10: Avoided crossing and Fano-type interference of optical microresonator modes
induced by dielectric nanostrings. a, Negative optical resonance frequency shift (top) and
linewidth (bottom) of two adjacent optical WGM microtoroid modes as a function of the
distance to a nanomechanical silicon nitride string. For large distances only the higher
frequency mode is coupled to the nanomechanical oscillator. Correspondingly, it is pulled
towards the lower frequency mode as the nanomechanical string is approached. The dielec-
tric nanomechanical oscillator distorts and couples both modes to each other via scattering
which gives rise to an avoided crossing. b, shows the corresponding cavity absorption spec-
tra. c, Fano-like interference of optical microresonator modes. The situation is similar to
b. Here, however, the higher frequency mode has a broad linewidth (broader than the
coupling rate between both modes). Thus, it effectively acts as a continuum leading to a
Fano-type interference.

onators, however, a situation might arise where two or more optical resonances closely
spaced in frequency couple to the nanomechanical oscillator simultaneously.

Fig. 2.9 shows the measured vertical optical mode profiles of several optical modes.
These are acquired by measuring the transmission of the tapered fibre while scanning
both its position along the z-axis (the distance to the toroid is kept fixed) and the laser
frequency. Fig. 2.9a shows a fundamental optical mode characterized by a single lobe along
the z-coordinate. Fig. 2.9b and c, however, show higher order optical modes with two and
three lobes along the z-coordinate. Obviously, the coupling of a nanomechanical string to
an optical mode doublet, as shown in Fig. 2.9c, will strongly depend on its position along
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the z-axis. Depending on the exact location of the nanomechanical string both optical
modes should experience different optical frequency shifts and indeed interesting effects
can be observed.

Fig. 2.10a-b shows a situation where a nanomechanical string is coupled to an optical
mode doublet. It is positioned close to a maximum (minimum) of the higher (lower) fre-
quency mode. As the nanostring is approached to the toroid the higher frequency mode is
exponentially shifted towards lower frequencies whereas the lower frequency mode is not
affected. As the frequencies of both optical modes approach each other, the scattering in-
duced by the nanomechanical oscillator strongly couples both modes, leading to an avoided
crossing. During the avoided crossing both optical modes also switch their respective op-
tical linewidth, as expected from a simple coupled oscillator model. It is noted that the
corresponding coupling frequency is as large as ∼ 3 GHz, much larger than in a previously
studied microsphere system [137] which could be caused by a Purcell enhancement of the
scattering [137, 138] into the adjacent high Q optical modes (Q ∼ 5 · 105 and Q ∼ 3 · 107).
For the closest distance x0 ∼ 25 nm, the higher frequency optical mode is shifted by 18 GHz
and a dispersive coupling coefficient of g/2π = 270 MHz/nm is achieved in this configura-
tion. If the coupling between both optical modes is weaker than one of the optical mode’s
intrinsic decay rates, a Fano-type interference is observed as both modes are tuned into
resonance with each other. This situation is depicted in Fig. 2.10c where a very broad
resonance (linewidth ∼ 5 GHz) is used.
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2.3 Transduction and actuation of nanomechanical mo-

tion

With the previously characterized static optomechanical coupling coefficients which were
obtained by displacing the nanomechanical oscillator as a whole, we will now turn to
the intrinsic mechanical modes of the employed nanomechanical oscillators. To this end,
nanomechanical oscillators positioned at a fixed distance x0 to the microresonator will be
considered. We will both actively drive the resonators and passively examine the motion
of their eigenmodes via the dispersive optomechanical coupling g. The Brownian motion of
the nanomechanical oscillators (section 2.3.2) as well as their response to a modulated light
field (section 2.3.3) will be used to calibrate the optomechanical coupling in an independent,
dynamic way confirming the static values obtained in section 2.2.1 and yielding an absolute
calibration of the nanomechanical oscillators’ displacement. First, however, the notion of
a mechanical oscillator’s effective mass will be introduced which is crucial for the correct
scaling of the optomechanical interaction.

2.3.1 Effective mass of the nanomechanical oscillators

In chapter 2.2.1 the optomechanical coupling was defined as the static optical resonance
frequency shift induced by an infinitesimal change in oscillator position x0, ∆ω ≡ ∆x0 · g.
Here, we will consider the cavity frequency noise Sω[Ω] induced by the Brownian position
fluctuations Sx[Ω] of a particular mechanical mode of the nanomechanical oscillator Sω[Ω] =
gdyn · Sx[Ω]. The cavity frequency noise spectrum Sω can be measured in absolute terms,
as will be shown in section 2.3.2 (see also appendix B.3). The quantities on the right
hand side of the above equation are, however, a-priori not that well-defined. Typically, the
convention of matching static and dynamic coupling coefficients gdyn(x0) ≡ g(x0) has been
pursued in the optomechanical literature (which leads to the well-known g(l) = ω/l for a
Fabry-Perot cavity of length l). This convention necessitates to carefully define the actually
measured effective coordinate of each mechanical oscillator mode, taking into account the
spatial overlap of the optical and mechanical mode shape used for measurement. Moreover,
this convention requires the notion of an effective mass [139] for each mechanical oscillator
mode in order to fulfill the equipartition theorem. Following a different convention, one
could e.g. also absorb the overlap between optical and mechanical modes into an effective
optomechanical coupling which would then lead to different optomechanical coupling for
each individual mechanical mode and in particular different static and dynamic coupling
coefficients. Then, in turn, the notion of constant motional mass for all mechanical modes
could be adopted.

Here, we follow the former, more frequently used convention as then both static and
dynamic coupling coefficients are identical for all mechanical modes. Since each convention
is somewhat arbitrary a simple method for characterizing the optomechanical coupling via
the vacuum optomechanical coupling rate without having to introduce effective masses or
effective coupling coefficients will be described in section 2.3.5. In the following, the effec-
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tive coordinates and corresponding effective masses for a nanomechanical string positioned
horizontally in the evanescent optical microresonator field will be derived. The results for
vertical coupling, as well as nanomechanical membranes will also be given.

The j-th eigenmode of a doubly clamped rectangular string of length L, Young’s mod-
ulus Y and cross-sectional inertia I = wt3/12 (where the thickness t is understood along
the axis of oscillation and the width w corresponds to the lateral dimension) oscillates at
frequencies given by [140]:

Ωj
m/(2π) =

j2π

2L2

√
Y I

ρA

√
1 +

ASL2

j2Y Iπ2
. (2.20)

In the limit of large internal tensile stress (S � (jπt/L)2Y/12), the mode patterns of a
nanomechanical string extending from y = 0 to y = L are given by

uj (y) = uj, 0 sin

(
jπ

L
y

)
. (2.21)

Each mechanical mode fulfills the equipartition theorem:

1

2
mΩ2

m

〈
u2
j

〉
= kBT , (2.22)

where m = ρ twL denotes the oscillator’s physical mass and
〈
u2
j

〉
= 1/L

∫
L
uj(y)2dy is the

mean squared displacement amplitude averaged along the string’s length 5.
In general, however, the measured coordinate deviates from

〈
u2
j

〉
since it is weighted

by the geometry of the measurement apparatus. For the presented system the measured
coordinate is given by the spatial distribution of the normalized optical mode profile v0(y)
(
∫∞
−∞ v0(y)2dy = 1), sampling the nanomechanical string. This results in a normalized

squared displacement of

〈uj〉2v2
0

=

(∫
L

uj(y)v0(y)2dy

)2

, (2.23)

which generally does not equal 〈uj〉2. In order to maintain equipartition for the actually
measured coordinate the oscillator’s mass correspondingly has to be adjusted. This leads
to an individual effective mass meff for each mechanical mode. Using Eq. (2.22), the
effective mass of the j-th mode can then generally be written as

m
(j)
eff = m

〈
u2
j

〉
〈uj〉2v2

0

= m
1/L

∫
L
uj(y)2dy(∫

L
uj(y)v0(y)2dy

)2 . (2.24)

Assuming for example a point like measurement at the centre of the string, i.e. v0(y)2 =
δ(y−L/2), the effective mass of the eigenmodes which are symmetric around y = L/2 (i.e.

5 Note that for the space and time averaged root mean square amplitude ūj one obtains
ū2
j =

〈
u2
j

〉
/2 and thus the usual mΩ2

mū
2
j/2 = kBT/2.
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j=1

j=2

j=3

j=4
j=5 Figure 2.11: Effective mass

of the lowest mechanical
modes of a nanomechanical
string for symmetric probing
around a central antinode as
a function of β−1, according
to Eq. (2.27). The effective
mass meff of the fundamental
mode is always close to half
its physical mass m whereas
for higher order modes small
β−1 is required to maintain
small effective masses.

j ∈ 2N− 1) evaluates to m/2. The effective mass of all antisymmetric modes (i.e. j ∈ 2N)
in contrast diverges for any symmetric probing around y = L/2.

The approximate expression of the toroid field as obtained in the previous section reads

v2
0(y) =

√
α

πR
e−α(y−y0)2/R , (2.25)

with the field maximum along the string residing at y = y0. Inserting this expression as
well as the fundamental mode pattern of the strings (2.21) into Eq. (2.24) one obtains the
following expression for the effective mass mj

eff of the j-th mode:

mj
eff

m
=
πR

Lα

∫ L
0

sin2( jπ
L
y)dy(∫ L

0
sin( jπ

L
y)e−α(y−y0)2/Rdy

)2 (2.26)

or

mj
eff =

m

2

(∫ 1

0

β sin(jπu)Exp
[
−πβ2(u− y0

L
)2
]
du

)−2

, (2.27)

where β2 = L2α
πR

= L/l̄y reflects the string’s length L weighted by the transverse optical
sampling length l̄y.

Typical experimental parameters used during this thesis yield β � 1. For the fun-
damental mechanical modes (j = 1) and symmetric probing around the string’s centre
(y0 = L/2), the integrand in the above expression thus approximately represents a normal-
ized Gaussian (centered at u = 1/2 with a width � 1). Correspondingly, values close to 1
are found for the integral. Thus, the effective mass of the fundamental modes is typically
given by half the oscillator’s physical mass, i.e. meff ≈ m/2. This can be intuitively under-
stood as follows: β � 1 indicates a point like measurement of the mode at the centre of
the string. Thus, the measured coordinate is given by the the squared peak displacement
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u2
1, 0 which is ×2 larger than the mean squared displacement 〈u2

1〉 averaged along the full
length of the string. Accordingly, the measured mechanical oscillator mode effectively can
be described by a ×2 smaller mass, i.e. its effective mass is given by meff = m/2. For
higher order mechanical modes whose motion is more localized, however, the deviation
from mj

eff = m/2 can be large. Fig. 2.11 illustrates the effective mass of the first five
fundamental modes as a function of β for symmetric probing around a central antinode of
the mechanical mode.

Equivalently, the effective mass for vertical coupling (string positioned along the z-axis)
is given by:

mj
eff, v =

m

2

(∫ 1

0

βz sin(jπu)e−πβ
2
z (u− z0

L
)2

du

)−2

, (2.28)

where β2
z = L/l̄z (cf. Eq. 2.13). Similarly one can show that the effective mass for

membrane modes is given by:

mj,k
eff =

m

4

(∫ 1

0

βy sin(jπu)e
−πβ2

y(u− y0
Ly

)2

du×
∫ 1

0

βz sin(kπu)e−πβ
2
z (u− z0

Lz
)2

du

)−2

, (2.29)

where β2
ζ = Lζ/l̄ζ (ζ ∈ {y, z}). For all experimental cases studied in this thesis the effective

mass of the fundamental mode can be safely approximated by m
(1,1)
eff = m/4.

Employing the correct effective mass as defined above for the thermal Langevin force
spectrum SL

F [Ω] (cf. Eq. 1.42) as well as the susceptibility χm[Ω] ( χm[Ω]−1 = meff(Ω2
m −

Ω2 − iΓmΩ)) of each mechanical mode then ensures that equipartition (2.22) is fulfilled.

2.3.2 Transduction of Brownian motion

The dispersive optomechanical coupling g transduces the Brownian motion of the nanome-
chanical oscillators into cavity frequency noise Sω[Ω] via:

Sω[Ω] = g2 × Sx[Ω] . (2.30)

When the cavity is probed by a laser field, the Brownian noise Sx will thus be imprinted
onto phase and amplitude noise of the field transmitted through the tapered optical fiber
coupled to microresonator and nanomechanical oscillator (cf. appendix A). In the follow-
ing the cavity will be probed on resonance to avoid dynamical backaction (cf. section
1.1.4) and thus all the cavity frequency noise is encoded in the phase quadrature of the
transmitted field according to Eq. (1.36). The phase fluctuations of the transmitted light
can be analyzed in several ways. Here, a Pound-Drever-Hall [141] technique is used, as
depicted in Fig. 2.12b whereas in chapter 2.5 also homodyne measurements will be per-
formed. By adding a well-known frequency modulation to the measurement laser using an
electro-optic modulator (EOM), the cavity frequency noise can be calibrated in absolute
terms (cf. appendix B.3.2). The frequency noise spectra recorded at varying distances
between toroid and a nanomechanical string are depicted in Fig. 2.12a. Note that all
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Figure 2.12: Brownian motion (single-sided) of a nanomechanical string (25 × 0.8 ×
0.11µm3). a, Measured frequency noise spectra around the fundamental resonance of
the nanomechanical string for varying distances between string and microresonator. These
allow the extraction of the optomechanical coupling coefficient g/2π (inset). b, Schematic
of the employed Pound-Drever-Hall frequency noise measurement setup. Fig. adapted
from Ref. [4].

experimentally obtained spectra are understood as single-sided spectra 6. The Brownian
noise peak induced by the string’s fundamental mechanical mode around 10 MHz can be
clearly seen with increasing signal to noise ratio for decreasing gap size x0, reflecting the
increase in optomechanical coupling g(x0). We will now, in the following consider the
measured spectra calibrated in terms of displacement.

From Eqs. (1.41), (1.42), (1.45), the Brownian noise of a mechanical mode in equilib-
rium with the thermal bath at temperature T , characterized by the (double sided) spectral
density Sx[Ω] can be obtained:

Sx[Ω] =
2 ΓmkBT/meff

(Ω2
m − Ω2)2 + Γ2

mΩ2

[
~Ω

2kBT

(
1 + coth

(
~Ω

2kBT

))]
, (2.31a)

kBT � ~Ωm/2
=

2 ΓmkBT/meff

(Ω2
m − Ω2)2 + Γ2

mΩ2
, (2.31b)

where the term in square brackets tends to 1 in the limit of kBT � ~Ωm/2, as is the
case here. Fitting the frequency noise spectra in Fig. 2.12a to Eq. (2.31b) and a constant
background noise floor allows extracting both the resonance frequency Ωm and the linewdith
Γm of the respective mechanical mode. By using the effective mass defined in the previous
section 7 and the statically determined optomechanical coupling coefficients we could now

6 This convention is closer to the actual quantity measured by an electronic spectrum
analyzer and is simply given by twice the (symmetrized) double-sided spectral density.

7 For LPCV deposited high-stress silicon-nitride a mass density of 3·103 kg/m3 is expected,
see Ref. [131] (and references therein).
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determine the mode temperature of each mechanical mode from the measured frequency
noise spectra.

We will however turn this reasoning around. Here, the heating of the nanomechanical
oscillators induced by light absorption can be shown to be negligible and, in the presented
measurements, a mode temperature of 300 K, i.e. thermalization with the environment
can be safely assumed. No dependence of the mechanical oscillator’s mode temperature
on the optical input power could be found within the measurement error bars (unless
dynamical backaction effects come into play). This is in agreement with FEM simulations
based on the complex refractive index of SiN (nim . 0.6× 10−5, [136]). Very conservative
estimates yield a maximum heating power of < 500 nW (for the highest coupling power
levels employed) leading to a maximum relative temperature increase of less than 1% (for
a typical nanostring). Thus, the Brownian motion of the nanomechanical oscillators at
ambient temperature is well-known and can be used in order to extract the optomechanical
coupling coefficients from the Brownian noise measurements. Thereby, the optomechanical
coupling can be measured in a second independent way, based on the actual mechanical
modes of the nanomechanical oscillators. Good agreement on a level of 30% is hereby
typically found with the statically determined values, as shown in section 2.2.1. In the
next section, the agreement between static and dynamic coupling will be quantified in
more detail.

2.3.3 Radiation pressure actuation

In this section, the nanomechanical oscillators are actuated by an intensity modulated laser
beam. It will be shown that the most dominant contribution to the nanomechanical oscil-
lators’ response is given by radiation pressure whose magnitude is in excellent agreement
with the values expected for the optical dipole force. Within our measurement accuracy,
no thermal contribution can be found. The coupling coefficients extracted from this force
response measurement correspondingly are in good agreement with the statically measured
values. Moreover, the sign of the dipole force can be determined confirming the attractive
nature of the optical dipole force interaction.

Fig. 2.13 shows the setup employed for measuring the nanomechanical oscillator’s re-
sponse. Two lasers emitting at around 1550 nm are employed. A fibre-coupled diode laser
operating at 1530 nm serves as pump laser. Together with a fibre-coupled amplitude mod-
ulator it provides a sinusoidally modulated input power δP (t), which in turn causes the
optical resonances to periodically shift in frequency via thermal effects due to light absorp-
tion, via light-force induced mechanical displacement of both the toroid and the nanome-
chanical oscillator, but also via the Kerr-nonlinearity of silica (i.e. its intensity dependent
refractive index). These shifts are read out with a weak 1560 nm probe laser resonantly
locked to a microcavity resonance. Its transmitted phase reflecting the induced cavity res-
onance frequency shifts is read out using a Pound-Drever-Hall technique. Modulating the
power of the strong pump laser and demodulating the detected probe error signal with the
same (swept) frequency via a network analyzer, allows observation and discrimination of
the different mechanisms contributing to the system’s response. The light transmitted by
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Figure 2.13: Experimental setup used for radiation pressure response measurements. The
amplitude modulated pump and the probe beam (both at resonance of two separate optical
modes) are sent to the cavity via a fibre coupled beam combiner. The transmitted signals
of both pump and probe beam are accessed individually via a fibre coupled splitter and
tunable optical filters (TOF). The probe beam is amplified via an EDFA before detection
to allow probing of the cavity-nanomechanical-oscillator system’s response to the pump
beam (via a Pound-Drever-Hall technique) at low probe power.

the oscillator-cavity system is split using a 90/10 coupler and the separation between the
pump and probe fields (separated by 30 nm) is ensured by means of tunable optical filters.
The main port serves for probing as well as locking the probe laser. The probe beam is
amplified after the microresonator by an erbium doped fibre amplifier (EDFA) in order
to read out the response of the cavity resonance frequency with simultaneously low input
power and large signal to noise ratio. This ensures that the measurement is not perturbed
by the presence of the probe beam inside the optomechanical system. The weak port is
used to maintain the pump laser on resonance. It is made sure that residual crosstalk is
more than 10 dB below the weakest signals detected.

Fig. 2.14 (inset) shows the broadband response of the system which is the sum of several
phenomena. At low frequencies, the microcavity response to the intensity modulation is
dominated by thermal mechanisms, described in detail in Ref. [142]. The most prominent
is the temperature induced refractive index change that affects the optical path length of
the cavity. The thermorefractive contribution strongly reduces with frequency, and above
1 MHz a plateau corresponding to the silica Kerr effect contribution is observed as well as
a few resonances corresponding to the first mechanical modes of the toroid (the mechanical
modes of the nanomechanical oscillator are not resolved due to their high mechanical Q).
Note that we do not see a change of any broad-band noise when the cavity is probed
with and without nanomechanical oscillator which implies that the thermal response of
the nanomechanical oscillator is much smaller than the toroid’s thermal response.

Let us now turn to the resonant response of the nanomechanical oscillators which is
shown in Fig. 2.14 for a silicon nitride membrane (50×40×0.03µm3) at different gap sizes
x0. The measured response is made up of the Lorentzian response of the nanomechanical
oscillator around its eigenfrequency, interfering with the flat Kerr background. The Kerr
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Figure 2.14: Resonant response of a silicon nitride membrane’s fundamental mechanical
mode to radiation pressure interfering with the constant Kerr response of the cavity, for
constant modulated laser power. The magnitude of the mechanical oscillator’s response
compared to the Kerr plateau allows the extraction of the optomechanical coupling co-
efficient g/2π (inset) as explained in the text, confirming the statically measured values.
Inset: Broadband response of the cavity-nanomechanical oscillator system. Fig. adapted
from Ref. [4].

response of silica can be used as a reference, calibrating the response of the nanomechanical
oscillators. Under a modulation δP of the intracavity power, the Kerr effect causes an
optical resonance frequency modulation given by:

δωKerr[Ω] = −ω n2

nAmode

δPintra[Ω] , (2.32)

where n2 = 3 · 10−16 cm2 W−1 is the Kerr coefficient of silica and Amode the optical mode
area. The intracavity power modulation δPintra is linked to the input power modulation δP
by δPintra = F

π
δP in the case of critical coupling, where F = c/(nRκ) denotes the optical

finesse (the linewidth of the pump mode is 120 MHz, such that the cavity cut-off can be
safely neglected for the modulation frequencies below 15 MHz considered here). From the
flat Kerr background an effective mode area of Amode = 34µm3 (where δP = 8µW was
used) can be extracted.

Moreover, via the optomechanical coupling g, the modulated intracavity power also
exerts a modulated dipolar force δF [Ω] on the nanomechanical oscillator that in turn
modulates the microcavity optical resonance according to:

δωnano[Ω] = gprobeδx[Ω] = gprobeχm[Ω]δF [Ω] , (2.33)

where gprobe is the coupling rate of the probe optical mode and δx[Ω] is the oscillation
amplitude of the nanomechanical oscillator. The modulated optical force applied to the
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oscillator can be written as:

δF [Ω] = −~gpump
2πRn

c

δP [Ω]

~ω
. (2.34)

We have assumed equal effective mass associated with both optical modes, here. We
have, however, differentiated between the coupling parameters for the pump (gpump) and
probe (gprobe) modes since they exhibit slightly different spatial profiles. Both coupling
parameters have been separately measured, statically. The total response of the system is
the coherent sum of the various mechanisms contributing. Since here we are only interested
in the local response around the nanomechanical oscillator’s resonance, we only consider
Kerr and mechanical responses:

δωtot

δωKerr
[Ω] = 1 +

a1

Ω2
m − Ω2 − iΩΓm

, where a1 =
gprobegpump

ω2

2πRn2Amode

cn2meff

. (2.35)

The frequency response data, normalized to the Kerr background, is accordingly fitted using
this model which represents the coherent sum of a damped driven harmonic mechanical
oscillator and a unity (Kerr) background response. The interference between the response
of the mechanical mode and the instantaneous Kerr response is due to the fact that the
former gets out of phase with the latter when the modulation frequency is swept over the
resonance frequency (at resonance the mechanical oscillator response is π/2 out of phase
with the driving force). Thus, a dispersive shape of the total response curve is expected.
As shown in Fig. 2.14, this effect is indeed observed with an excellent agreement between
the data and the fit model. The frequency dependence of the mechanical susceptibility,
i.e. the fact that it responds in phase (out of phase) at frequencies lower (higher) than
its eigenfrequency, allows accessing the sign of the measured force. Importantly, the fact
that the interference dip is present at frequencies higher than the mechanical resonance
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Figure 2.16: Frequency dispersion
of a 50 × 40 × 0.03µm3 silicon
nitride membrane’s eigenmodes.
The frequencies expected from the
strain model (2.36) are fitted to the
measured frequencies using the ra-
tio

√
S/ρ as fit parameter. Ex-

cellent agreement up to the (7, 2)
mode is found with an average de-
viation of less than 2% (dashed
line, right). The full red line (left)
simply represents a linear fit.

frequency confirms the attractive nature of the optical force, oriented towards the region of
higher optical intensity.

The results from the fits for different oscillator positions (the coefficients a1) yield
the effective force-response coupling rate geff =

√
gpump gprobe using an effective mass of

meff = m/4 = 4 · 10−14 kg 8. Good agreement at a level of 10%, within the experimental
errorbars, is found between the static and the force-response based determination of the
coupling coefficient geff , underpinning the fact that the force acting on the nanomechanical
oscillator is dominated by the optical dipole force.

2.3.4 Frequency dispersion and mode patterns of nanomechani-
cal oscillators

In this section the properties of the employed nanomechanical oscillators will be charac-
terized in somewhat more detail. For the nanomechanical strings and membranes intrinsic
mechanical quality factors ranging from 104 to > 105 are found (for frequencies of 5 MHz
to 15 MHz) in vacuum (pressure < 10−5 mbar) depending on the cleanliness of the samples.
These are similar to the values reported elsewhere for nanostrings [128, 131]. To our knowl-
edge, however, similarly small membranes have not been examined by other researchers so
far. For much larger membranes (edge lengths ≥ 500µm) considerably higher mechanical
Q has been found [37, 136]. The measured mechanical quality factors are most likely lim-
ited by two level systems within the amorphous silicon nitride [143, 144] (see also section
3 for an in-depth analysis of different mechanical damping mechanisms). In the following,
we will focus on the mode structure of both nanomechanical strings and membranes.

The eigenmodes of a thin membrane (thickness t, edge lengths ly and lz, mass density

8 Here, a density of ρ = 2.5 · 103 kg/m3 [37] is assumed for the low-stress silicon nitride.
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b,a,

Figure 2.17: Modes of a 40 × 0.7 × 0.1µm3 nanomechanical string. a, Out-of-plane (tri-
angles) and in-plane mechanical modes (circles). The out-of-plane mode family follows a
harmonic frequency ladder whereas the in-plane mode family increases faster in frequency
owing to the larger in-plane cross-sectional inertia. Displacing the toroid along the string’s
axis allows recording the nanomechanical string’s spatial mode patterns, as shown in b:
peak squared displacement of the second (upper panel) and fourth (lower panel) out-of-
plane mode normalized to the fundamental mode. Good agreement with Eq. (2.20) (dashed
lines) is found, when the finite sampling length of the microresonator l̄y (cf. Eq. 2.14) is
taken into account (full lines).

ρ) dominated by its internal tensile stress S (force per cross-sectional area) are given by

Ω(j,k)
m /(2π) =

1

2

√
S

ρ

√
j2/l2y + k2/l2z . (2.36)

Fig. 2.16 shows the measured frequencies of the first 28 eigenmodes of a 50×40×0.03µm3

membrane (up to order (7, 2)) along with the expected frequencies according to Eq. (2.36).
For the latter, the ratio

√
S/ρ is adjusted in a least square fit to the measured val-

ues. Excellent agreement is found between theory and experiment with the membrane
frequencies fully described by the strain model. From this fit one obtains a value of
S/ρ = (1.0 ± 1) × 105 m2/s2. Using the density of ρ = (2.5 ± 0.5) kg/m3 [37] for low-
stress silicon nitride, this yields a tensile stress of (260± 70) MPa.

For the strained nanomechanical strings, however, deviations from the purely strain-
dominated model are found. Their frequencies for arbitrary intrinsic stress are given by
Eq. (2.20). Fig. 2.17a shows the nine lowest order eigenmodes of a 40 × 0.7 × .1µm3

nanomechanical string. The out-of-plane modes follow a linear dependence on mode num-
ber, here up to the fifth mode at 25 MHz since their motion is dominated by the internal
tensile stress, i.e. S � (jπt/L)2Y/12 (cf. Eq. 2.20). The spatial displacement patterns
of these modes can be measured by displacing the toroid microresonator with respect to
the centre of the nanostring. Fig. 2.17b shows the squared oscillation amplitude of the
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second and fourth out-of-plane modes normalized to the fundamental out-of-plane mode.
The measured amplitudes are in good agreement with the theoretical expectation taking
into account the transverse optical sampling length l̄y (see Eq. 2.14). In fact, mini-
mizing the signal of even eigenmodes constitutes a simple way to find the centre of the
nanostrings and thus optimize the transduction of the fundamental mode. The measured
out-of-plane modes allow inferring the ratio S/ρ = (1.6 ± 0.1)105 m2/s2. For LPCV de-
posited high-stress silicon-nitride a density of (3±0.5)103 kg/m3 is expected, see Ref. [131]
and references therein. Thus, the resulting tensile stress in this particular sample is given
by S = (0.5 ± 0.1) GPa. Values up to S = 0.8 GPa were, however, obtained using other
samples. The measurement is moreover also sensitive to in-plane modes of the string (a
higher order optical mode is used for this measurement). Owing to the high aspect-ratio
of the nanomechanical oscillators, these exhibit considerably different frequencies and in
particular do not follow linear dispersion, as shown in Fig. 2.17a. This is due to the in-
creased value of the cross-sectional inertia (by a factor (w/t)2) for modes oscillating along
the longer axis of the string. With this additional mode family, the Young’s modulus of
the employed strings can be calculated. Using the above value for density and stress in
order to fit expression (2.20) to this mode family (see Fig. 2.17a), one obtains a Young’s
modulus of Y = (55 ± 9) GPa which is lower than the value measured in Ref. [131] for
higher stress (S ≈ 1.2 GPa) LPCVD silicon nitride (Y ≈ 200 GPa).

2.3.5 Vacuum optomechanical coupling rate

In the previous section, we followed the convention of normalizing the nanomechanical oscil-
lator’s displacement by the overlap of optical and mechanical modes. This is a very intuitive
approach and has its origin in Fabry-Perot type cavities [139] following the aforementioned
conceptual identity of static and dynamic optomechanical coupling coefficients g for all me-
chanical modes. Using integrated structures, however, the notion of static coupling rates
is far less intuitive. In complex structures, e.g. photonic crystal cavities with very complex
three-dimensional displacement patterns, the choice of a single one-dimensional coordinate
becomes less obvious and thus the separation of coupling coefficient and displacement be-
comes somewhat arbitrary. A quantity that is, however, a-priori well-defined is the cavity
frequency noise spectrum Sω induced by the mechanical oscillator’s motion. In order to
characterize the optomechanical coupling without the necessity of introducing a coupling
coefficient g and a corresponding effective mass that both depend on the definition of the
displacement coordinate, the zero-point coupling rate g0 = g × xzpf (cf. section 1.1.1) is
ideally suited as it is independent of the actual definition of the measured displacement.
It can be expressed solely in terms of the cavity frequency noise spectrum and thus avoids
the ambiguity in the definition of coupling coefficient and corresponding displacement. It
can be written as [3]

g0 =

√
~Ωm

2 kBT

∫ ∞
0

Sss
ω [Ω]

dΩ

2π
, (2.37)
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~ g0

Figure 2.18: Experimental determination of the vacuum optomechanical coupling rate.
The (single-sided) frequency noise induced by the fundamental mode of a nanomechanical
string is fitted with a Lorentzian. The integral of the corresponding trace (shaded area)
directly yields the vacuum optomechanical coupling rate g0/2π according to Eq. (2.37),
without having to introduce effective masses or coupling coefficients.

where the superscript in Sss
ω stresses the fact that here, the experimentally acquired single-

sided spectrum is used 9. Provided that the mechanical mode thermalizes to its surrounding
bath (which can be easily verified e.g. by measuring the frequency spectrum Sω at varying
input power levels), this quantity is thus most easily experimentally accessible. Besides the
cavity frequency noise spectrum Sω[Ω] only the mechanical oscillator’s eigenfrequency Ωm

is required which can be simply extracted from the measured spectrum. Fig. 2.18 shows a
calibrated frequency noise spectrum Sω [Ω] (see appendix B.3.2 for details on the calibra-
tion), reflecting the Brownian motion of a nanomechanical string (30×0.7×0.1µm3). Fit-
ting the measured trace and directly integrating the Lorentzian frequency noise spectrum
(without the constant measurement background) yields a value of g0/2π = (520± 50) Hz.
The error bar reflects both the uncertainty in the frequency noise calibration and in the
Lorentzian fit. Using the conventions introduced in the previous chapters, a zero-point
motion of xzpf ∼ 20 fm and correspondingly a coupling coefficient of g/2π ∼ 30 MHz/nm
is obtained. In contrast to these, the evaluated zero-point coupling g0 is independent of
the particular definition of the oscillator mass and thus yields an unambiguous measure
for the optomechanical interaction strength. Here, g0 is larger than the typical mechanical
dissipation rates Γm/2π ∼ 100 Hz. However, it is considerably smaller than the typical
optical dissipation rates κ/2π ∼ 5 MHz. Compared to other cavity optomechanical sys-
tems one finds a huge variation of attainable coupling rates, ranging from g0/2π ∼ 1 Hz in

9 Double-sided spectra correspondingly have to be integrated also over negative frequencies.
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moveable mirror setups (e.g. Ref. [39]) up to g0/2π ∼ 100 kHz in optomechanical crystals
[53]. All systems, however, share the common feature that the optomechanical coupling
rate is orders of magnitude smaller than the optical cavity decay rate κ. Thus, in order to
reach the regime of strong optomechanical coupling, which leads to normal mode splitting
[36, 145], a strong intracavity field ā, enhancing the vacuum optomechanical coupling rate
to an effective coupling rate ā × g0, is required. Strong coupling was first experimentally
demonstrated in Ref. [39] using an input power of 11 mW.
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2.4 Dynamical backaction

In this section dynamical backaction effects are presented. In particular the first demon-
stration of radiation pressure dynamical back-action on a nanomechanical oscillator [4]
allowing the creation of laser-like mechanical oscillations is discussed. Exceptionally low
threshold power levels (P < 1µW) for the onset of regenerative nanomechanical oscilla-
tions are found. Moreover, the feasibility of cooling nanomechanical motion by radiation
pressure is demonstrated.

2.4.1 Backaction amplification - parametric instability

In section 1.1.4 the radiation pressure parametric instability was discussed. Its first ex-
perimental observation was reported in 2005 [26, 28]. Here, it is for the first time possible
to transfer this effect into the domain of nanomechanical oscillators. To this end, the
microcavity is excited with a blue detuned cw laser beam leading to anti-damping of the
employed nanomechanical string which can lead to maser/laser-like [85] amplification of
mechanical motion, as described in section 1.1.4. Thereby, the mechanical oscillator re-
sumes the role of the photon field in the laser. The cavity, in turn, has the role of the
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Figure 2.19: Radiation pressure parametric instability of a nanomechanical oscillator.
Left panel: Dynamical backaction for blue detuned pumping (∆/2π = 6 MHz) leads to
linewidth narrowing of the nanomechanical oscillator (Ωm/2π = 10.8 MHz, Qm = 70′000,
meff = 3.6 · 10−15 kg) when increasing the optomechanical coupling g. Fitting the data
obtained for different input power levels yields good agreement with the dipolar force (in-
set). Right panel: Oscillation amplitude of the nanomechanical string (derived from a
30-Hz bandwidth power measurement). It increases as the effective damping is reduced by
dynamical backaction. Once the backaction rate exceeds the intrinsic damping rate there
is a clear threshold for the onset of large self-sustained oscillations driven by the the light
field. The amplitude saturates for amplitudes of several nanometres. Fig. adapted from
Ref. [4].
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(phonon) gain medium. As in the case of a laser, the canonical signs of this phenomenon
are linewidth narrowing, threshold behaviour and eventual saturation of the oscillation.
All of these features are observed with the nanomechanical strings as shown in Fig. 2.19.

In the experiment a 31µm radius cavity is pumped by a laser with fixed blue-detuning
∆ = κ/2. The resonator is evanescently coupled to a nanomechanical string. This leads to
a dynamical backaction rate increasing as Γdba ∝ −g2 ·P (cf. Eq. 1.31) and correspondingly
to a reduced linewidth of the nanomechanical oscillator, as depicted in Fig. 2.19a. Fitting
the measured oscillator linewidths yields good quantitative agreement with the actually
employed input power levels (Fig. 2.19a, inset), confirming that the dynamical backaction is
indeed caused by the dispersive radiation pressure optomechanical coupling via the optical
dipole force. The narrowing of the mechanical linewidth is connected to a increase of the
oscillator’s temperature, as shown in section 1.1.4. Correspondingly, its mean oscillation
amplitude increases for increased optomechanical coupling which is shown in Fig. 2.19b.
When the backaction rate eventually equals the intrinsic mechanical damping rate Γm, the
nanomechanical oscillator experiences net gain causing an onset of coherent mechanical
oscillations and its linewidth is narrowed below the resolution limit (1 Hz) of the employed
spectrum analyzer. A clear threshold of the mechanical oscillation amplitude can be seen
in Fig. 2.19b, followed by a saturation of the mechanical motion once the frequency shift
caused by the mechanical oscillator exceeds the cavity linewidth, leading to gain saturation.
These large coherent oscillations of up to 10 nm in amplitude can lead, remarkably and
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Figure 2.20: Temporal behaviour of self-sustained oscillations. The coherent nanomechan-
ical oscillations cause near-unity modulation of the cavity transmission (a, same oscillator
as shown in Fig. 2.19). Here, an input power of ∼ 10µW and a coupling coefficient of
g ∼ 5 MHz/nm is used. For higher coupling power the transmission through the optical res-
onator becomes nonlinear as depicted in b and period doubling can be observed, c. These
data were obtained for a 7.8 MHz nanomechanical string (P ∼ 5µW, g ∼ 25 MHz/nm).
The nonlinear oscillations are, however, less stable in amplitude as can been seen in the
corresponding phase diagrams.
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Figure 2.21: Threshold
power for the onset of
self-sustained mechanical
oscillations. Pth is shown
as a function of the op-
tomechanical coupling g.
The lowest threshold power
obtained is 400 nW. The
solid line is the theoretical
expectation from Eq. (1.66)
with no fit parameters. The
dashed line is a guide to the
eye.

despite the nanoscale nature of the strings, to near-unity modulation depth of the optical-
cavity transmission, as shown in Fig. 2.20a, when the oscillation amplitude is close to
κ/(2g). The corresponding phase diagram, recorded over more than 4000 oscillation cycles,
shows the coherent nature of these oscillations.

The observation of radiation pressure induced coherent oscillations constitutes the first
report of dynamical backaction amplification or cooling of nanomechanical motion using
radiation pressure (in contrast to thermal effects [49, 146]), and in particular using optical
gradient or dipole forces. A radiation pressure induced optical spring effect within a nano-
optomechanical system has been reported in Ref. [49] using a photonic crystal cavity.
Dynamical backaction cooling or amplification of nanomechanical oscillators had earlier
on, however, been achieved only using single electron transistors [112] or microwave fields
[38] which require cryogenic operation and, owing to more than four orders of magnitude
longer wavelength, show much lower coupling coefficients.

As the coupling coefficient g (or equivalently
√
P ) is increased in the presented near-field

system, the mechanical oscillations may shift the cavity resonance frequency by more than
its linewidth such that the transmission of the optomechanical system becomes non-linear.
This is shown in Fig. 2.20b-c. These nonlinear oscillations are achieved with minute input
powers of only P ∼ 5µW. This is about three orders of magnitude less than the power
levels used in [27] where similar behaviour is reported for a micromechanical oscillator.

The threshold power Pth needed to reach the regime of self-sustained mechanical oscilla-
tions has been given in Eq. (1.66). Fig. 2.21 shows the measured threshold power as a func-
tion of the employed optomechanical coupling. A remarkably low value of Pth = 400 nW
is found for a nanomechanical string (Ωm/2π = 8.4 MHz, Qm = 60′000, meff = 3 · 10−15 kg)
using a coupling coefficient of g/2π = 45 MHz/nm.

The radiofrequency signal caused by the mechanical oscillator in the parametric os-
cillation regime have been proposed to serve as a photonic clock [31] motivated by their
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Figure 2.22: Dynamical backaction cooling and heating of a nanomechanical oscillator. The
blue (red) trace shows the (single-sided) motional spectrum of a nanostring (properties as
described in the text) measured with a negative (positive) detuning of |∆| ∼ 10 MHz.
Correspondingly its effective temperature is reduced (increased) to 70 K (520 K).

ultra-narrow linewidth (cf. section 1.1.4). As such, low-power, radiation pressure driven
nanomechanical oscillators might be able to serve as on-chip frequency references replac-
ing the commonly used bulkier quartz crystals. Such an application, however, requires a
thorough study and minimization of the signal’s phase noise [29–31] to reach the quality
of a quartz oscillator.

2.4.2 Radiation pressure cooling

In the previous chapter dynamical backaction amplification was described. The opposite
regime, namely dynamical backaction cooling, is also feasible, yielding a tool for radiation
pressure cooling nanomechanical motion which had earlier on only been demonstrated using
cryogenic microwave resonators [38]. Fig. 2.22 shows the spectra recorded with a nanome-
chanical string (Ωm/2π = 10.8 MHz, Qm = 50′000, meff = 3.2 · 10−15 kg, κ/2π = 8 MHz,
P = 14µW, g/2π = 4 MHz/nm) with both a positively and negatively detuned diode laser.
The former (∆/2π ∼ 10 MHz) leads to linewidth narrowing, and a corresponding effective
temperature increase to Teff = 570 K. The latter (∆/2π ∼ −10 MHz) increases the oscilla-
tor’s intrinsic linewidth Γm/2π = 220 Hz via dynamical backaction to Γeff = 940 Hz which
leads to cooling by a factor Γeff/Γm ∼ 4.3, i.e. a temperature of 70 K 10.

Recent experiments with micromechanical oscillators have demonstrated much stronger
backaction cooling, reaching temperatures of ∼ 5 K [10, 32–34] (i.e. cooling by ×102) or
even in the low mK-range [37] (i.e. cooling by ×104), starting from room temperature.

10 The effective temperature is in both cases inferred by the oscillator linewidth.
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Cryogenic implementations of micro-optomechanical systems have, moreover, reached oc-
cupation numbers of only ten or a few tens of quanta [8, 40, 50, 147] with a backaction
cooling contribution ranging within 10 − 103. Radiation pressure backaction cooling of
nanomechanical oscillators, however, has previously only been shown using superconduct-
ing microwave systems which have been able to realize cooling factors of ×5 [38] and ×100
[41], limited by thermal effects.

With the employed parameters κ/Ωm = 0.74 <
√

12 as used here, in principle cooling
to a final occupation below 1/2 is possible (cf. Eq. 1.61). In order to achieve this goal,
considerably larger cooling factors would, however, have to be achieved. This corresponds
to using larger optomechanical coupling, larger input power or higher mechanical Q. A
×10 larger coupling coefficient as well as two times higher mechanical Q are in principle
easily accessible. This would hypothetically then require a still realistic but nevertheless
very large input power, i.e. P = 9.4 mW, to reach an occupation below unity from room
temperature. The strong thermal bistability of toroid microresonators [105, 142, 148, 149]
would certainly render it very difficult to reliably lock such a high power beam to the red
wing of the optical resonance. At temperatures accessible using He-4 cryostats (T = 1.6 K),
however, cooling below unity should be feasible with an estimated (based on the above
parameters) input power of only P = 50µW, where the expected increase in mechanical
Q of silicon nitride based resonators at cryogenic temperatures [143] is not even taken into
account.
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2.5 Quantum measurements

One of the major research directions in the context of nanomechanical oscillators has
been the design of transducers enabling quantum limited measurements of nanomechanical
motion (cf. section 1.1.3). Here we will examine the ability of the near-field system to
perform quantum-limited measurements. As will be shown in this section, it enabled for
the first time measurements of nanomechanical motion with an imprecision at the SQL [4].

The first part of this section will introduce the two different employed measurement
techniques. Then, the classical noise sources that may limit the measurements at room
temperature will be discussed. Both have their origin in the finite temperature of the
optical resonator serving as transducer: mechanical Brownian motion and thermorefractive
frequency noise of the optical microresonator. Despite these noise sources an imprecision
3 dB below the SQL is reached, as will be shown in the third section. Moreover, the
quantum-limited imprecision is shown to reach values more than 10 dB below the SQL [2].
This chapter concludes with an estimation of the radiation pressure quantum backaction
present in the current measurements and an outlook.

2.5.1 Measurement techniques

The total effective displacement spectrum Sx[Ω] carried by the measurement laser after
coupling to the near-field cavity optomechanical system consists of the following contribu-
tions:

Sx [Ω] = Snano
x [Ω] +

1

g2

(
Slaser
ω [Ω] + Sthr

ω [Ω] +
ω2

R2
Sµx [Ω]

)
, (2.38)

where Sthr
ω and ω2/R2 Sµx are the frequency fluctuations caused by thermorefractive and

mechanical noise within the microcavity which will be discussed in the next section. Snano
x

and Slaser
ω denote the actual motion of the nanomechanical oscillator and the equivalent

frequency noise caused by laser noise. In order to reduce the latter to shot-noise Sshot
ω ,

a quantum-noise limited laser (at the Fourier frequencies of interest) is required. In this
thesis two quantum-limited laser sources have been employed: an Erbium-doped fibre laser
(emitting at λ = 1550 nm) and a titanium-sapphire laser (emitting at λ = 800 nm).

2.5.1.1 Titanium-sapphire laser and homodyne measurement

The layout of the employed titanium-sapphire laser (Coherent MBR-110) is sketched in
Fig. 2.23. A 10 W pump laser emitting at 532 nm (Coherent Verdi V-10) is used to pump
a titanium-sapphire crystal embedded in a monolithic bow-tie cavity, yielding more than
1 W continuous wave (cw) output power over a wide wavelength range from ∼ 700 nm to
∼ 900 nm. The coarse tuning of the laser wavelength is accomplished by manually tuning a
birefringent filter within the resonator. The electronics supplied with the laser allow single-
frequency operation as well as fine-tuning of the laser frequency by using an error signal
created by the internal etalon. Moreover, the laser can be locked to the Invar reference
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Figure 2.23: The titanium-sapphire laser system. The left panel shows a schematic of the
laser system (PD: photodiode, BF: birefringent filter). The right panel shows the measured
level of frequency noise Sω as a function of laser power along with a fit yielding an exponent
of −0.97, close to −1, as expected for quantum noise.

cavity (typical finesse ∼ 50) which is tunable via a piezo. Brewster plates and a small
piezo mounted on mirror M3 (cf. Fig. 2.23) provide additional slow and fast actuation
of the laser frequency. Overall, the laser can be tuned mode-hop free over a range of
40 GHz. The reference cavity can moreover be locked to an external error signal using the
integrated electronic feedback circuit supplied by the manufacturer (locking bandwidth
∼ 10 kHz). The measured laser noise performance is quantum-limited in both phase and
amplitude at the Fourier frequencies of interest (> 500 kHz) for sufficiently large power
levels (> 200µW) at the detectors. Fig. 2.23 shows a measurement of the laser frequency
noise for varying power levels. The magnitude of the frequency noise spectrum Sω thereby
reduces linearly with power, as expected for quantum noise.

The homodyne detection scheme which is used in combination with this laser system
is depicted in Fig. 2.24. Using a polarizing beam-splitter (PBS 2, cf. Fig. 2.24), the laser
light is divided into a high-power local oscillator beam and a low power signal beam (PBS 1
is used for controlling the overall laser power). Both beams are fiber-coupled and the signal
beam is sent into the vacuum chamber where it couples to the nanomechanical oscillator
via the toroid microresonator and tapered optical fiber. Its polarization is only partly
(≈ 50%) adjusted to the optical WGM. The fraction of the light (≈ 50%) that has due to
the wrong polarization not coupled to the microresonator and nanomechanical oscillator
(signal arm probe beam) is picked off by a combination of waveplates and PBS 3. The
local oscillator polarization is adjusted such that most of its power (≥ 1 mW) is transmitted
through PBS 3. The small portion of the local oscillator beam reflected by PBS 3 is brought
to interference with the signal arm probe beam using PBS 4. This interference signal is
used to actively lock the relative phase of both interferometer arms to zero, as depicted in
Fig. 2.24b, employing a movable mirror and a motorized translation stage, similar to Ref.
[7]. The signal arm measurement beam that has interacted with the cavity is reflected off
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Figure 2.24: Homodyne measurement setup. a, Schematic of the employed setup. See
text for details. b, Sinusoidal error signals at the phase control detector (auxiliary arm)
and the homodyne detector (note that the x-axis has arbitrary units for these traces). By
locking the auxiliary arm signal (phase control lock), the phase difference of signal and
local oscillator can be controlled. The locked traces are shown versus time, reflecting the
stability of the setup. c, Homodyne error signal obtained when coupling to the optical
microresonator for zero phase difference between local oscillator and signal arm.

PBS 3 and brought to interference with the local oscillator at a balanced photo detector
after passing through PBS 5. The resulting dispersive signal indicates the phase difference
between local oscillator and signal measurement beam. Since the relative phases of both
beams acquired by propagating through the system are exactly equal (as ensured by the
phase control lock), the phase difference is solely due to interaction of the signal beam with
the optical microresonator. Thus, the interference signal indicates the laser detuning with
respect to the cavity and its low frequency (≤ 10 kHz) part is used to lock the laser to
cavity resonance. The corresponding error signal for a κ/2π = 7 MHz resonance is shown
in Fig. 2.24c. The high frequency part of the interference signal is sent to an electronic
spectrum analyser thus recording the cavity frequency noise spectrum which is calibrated
via a known frequency modulation by means of an electro-optic modulator (cf. Fig. 2.24a,
see appendix B.3.2 for calibration details). The optomechanical coupling coefficients g allow
the transformation of the frequency noise spectra into equivalent displacement spectra of
the nanomechanical oscillators, which can be thus recorded in a shot-noise limited fashion.
An additional diode laser proved very helpful for quick characterization and diagnostics.
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2.5.1.2 Fibre laser and Pound-Drever-Hall measurement

The second laser source that was used for high-sensitivity monitoring in the course of this
thesis is an Erbium-doped fibre laser (Koheras Basik E15). It is a turn-key style laser, that
emits in a band of 1 nm in the range of 1550 nm. The laser employed here, yields an output
power of ∼ 10 mW around 1547 nm. Its wavelength can be tuned via applying voltages
to two separate input ports. The first one controls the laser temperature and provides
(slow) coarse tuning of the wavelength. The second one actuates a piezo that allows fast
(bandwidth: ∼ 20 kHz) fine tuning (responsivity: ∼ 10 MHz/V) of the laser frequency.

It is a convenient laser system with quantum-limited noise performance for Fourier
frequencies above ∼ 5 MHz and has been used combined with a Pound-Drever-Hall de-
tection scheme (see Fig. 2.12b for the corresponding measurement setup). However, its
comparatively small tunability (1 nm) combined with the large free-spectral range of toroid
microcavities (13 nm for R = 20µm) are limiting its application.

2.5.2 Classical noise sources

Let us first discuss the classical sources of frequency noise leading to measurement impre-
cision, given by thermorefractive noise Sthr

ω and Brownian motion of the microresonator
ω2/R2 Sµx . A broadband measurement illustrating these is shown in Fig. 2.25.

2.5.2.1 Thermorefractive noise

The thermodynamic temperature fluctuations within a given volume element scale inversely
proportional to its size [150]. By means of a temperature dependent refractive index,
these temperature fluctuations lead to a fluctuating phase of electromagnetic waves when
propagating through the volume element. In an electromagnetic resonator this effect thus
causes fluctuations of its resonance frequency: thermorefractive frequency noise, which
particularly plays a role for small mode-volume resonators. The fundamental temperature
fluctuations ST [Ω] within the cavity mode volume lead to thermorefractive frequency noise
given by

Sthr
ω [Ω] = (ω/n · dn/dT )2 × ST [Ω] . (2.39)

For spherical optical WGM microresonators an analytic model of the temperature fluc-
tuation spectrum ST [Ω] has been developed [150]. This model is adapted to the toroid
microresonators employed in this work [2]. To this end, the optical mode profile is ap-
proximated by a Gaussian ellipse with semi-axes rz given by Eq. (1.73) and rx given by
b = 0.77R/`2/3 11. From Eq. (1.75) (see also Ref. [151]), the angular mode number ` of
the fundamental optical mode can be deduced:

`+ 1.8558`1/3 +
1

2

√
R

r
− Pn√

n2 − 1
= nk0R . (2.40)

11 This corresponds to the equivalent mode radius when the Bessel function in Eq. (1.72)
is approximated by a Gaussian.
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Figure 2.25: Broadband frequency noise (single-sided) of a toroid microresonator. a, The
predominant noise source is thermorefractive noise. A fit according to Eq. (2.41) yields
good agreement (red line). The equivalent frequency noise caused by shot-noise (grey) is
much lower due to sufficiently high input power (Pin ∼ 10µW). The mechanical modes
of the microresonator (pink dashed line) have negligible off-resonant contribution (8 MHz:
calibration marker), here. b, Thermorefractive cavity frequency noise is expected to con-
tinuously reduce for lower temperatures, particularly taking the temperature dependence
of silica’s material parameters into account. For 30 K, a suppression of 25 dB compared
to room temperature is expected. Also the toroid mechanical background noise reduces
with temperature despite the concomitant decrease of mechanical quality factors (see sec-
tion 3.5.2 for details) which is explicitly taken into account, here. The right axis shows
the corresponding noise floor in displacement units, assuming a coupling coefficient of
g/2π = 50 MHz/nm.

The optical mode volume is given by V = 2π2rxrzR. Defining a cut-off time τ via τ−1 =
(4/π)1/3D (1/r2

x + 1/r2
z), where D denotes the thermal diffusivity of silica one arrives at

the following approximation for the (single-sided) thermorefractive frequency noise for a
fundamental mode:

Sthr
ω [Ω] =

(
ω

n

dn

dT

)2

× (16π)1/3kBT
2τ

V ρC
√

Ωτ

1

(1 + (Ωτ)3/4)2
, (2.41)

where C and ρ are the heat capacity (per unit mass) and density of silica. The approxi-
mation is valid for Fourier frequencies Ω/2π � D/(2πr2) ∼ 40 kHz.

The resonator used for obtaining the data shown in Fig. 2.25 has a major radius of
R = 18.4µm and a minor radius of r = 1.8µm. For a temperature of T = 300 K, the
probe wavelength of λ = 853 nm and the refractive index of silica n = 1.45, expression
(2.41) and the constant shot-noise background of Sshot

ω [Ω] = (2π 6
√

Hz)2 are fitted to the
measured data by keeping all parameters fixed and using only the mode axes rx and rz
as fit parameters. Increasing rz by ×1.42 and decreasing rx by ×0.75 (thus increasing the
mode volume by 7%), the fit yields excellent agreement with the measured data as shown in
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T dn/dT (K−1) C (J/kgK) k (J/msK)

300 K 8.7 · 10−6 730 1.38
100 K 3.5 · 10−6 260 0.64
30 K 1.2 · 10−6 60 0.26

Table 2.1: Material parameters of silica from Refs. [153] and [154].

Fig. 2.25. The parameter adjustments are attributed to the deviation of the actual mode
profile from its Gaussian approximation and the simplified boundary conditions assumed
in the analytic approximation.

In total, to a level of ∼ 10% good agreement between measurement and model is found.
Thus, thermorefractive noise which may be of relevance also for other nano-optomechanical
transducers [49, 152] is well understood in our system. This allows an extrapolation of
its behaviour to lower temperatures. In addition to its direct temperature dependence,
expression (2.41) also indirectly depends on temperature via the temperature dependent
material parameters dn

dT
, C and D = k/(ρC), where k is the thermal conductivity of silica.

In order to extrapolate the temperature dependence we fit the tabulated values of these
parameters [153, 154] via polynomials. Table 2.1 shows values of dn

dT
, C and k for a few

representative temperatures. The overall temperature dependence of Eq. (2.41) predicts
a steady reduction of thermorefractive noise for lower temperatures. In Fig. 2.25b, the
thermorefractive noise contributions expected for 100 K and 30 K are compared to the room
temperature data. At 30 K the level of thermorefractive noise is reduced by approximately
25 dB compared to the room temperature value. Thus, already at 30 K its contribution
to the measurement imprecision would be negligible. Since the temperature dependence
of the refractive index of silica is known only above 30 K we cannot estimate its exact
quantitative behavior for lower temperatures. Most likely it will, however, continue to
decrease further for lower temperatures and in similarly sensitive measurements [8] no
evidence for thermorefractive frequency noise in toroid microresonators was found.

2.5.2.2 Toroid mechanical modes

As can be seen in Fig. 2.25, also mechanical modes of the toroid contribute to the measure-
ment background. Other than thermorefractive noise, these are, however, peaked around
their respective resonance frequencies. By appropriate choice of the cavity geometry, no
mechanical mode will be present below 12 MHz, i.e. the frequency range of interest, here.
Thus, it is essentially the low frequency tail of all mechanical modes present in the toroid
that contributes to the background noise in the frequency band of interest. Since the low

frequency tail of a mechanical mode scales as Sx
Ω→0∝ Γm/Ω

4
m it is desirable to maximize

both the quality factors and the resonance frequencies of the toroid modes. The latter can
be simply accomplished by minimizing the size of the cavity and the undercut of the silica
disk. This requirement thus nicely coincides with the properties needed for large optome-
chanical coupling. In order to obtain high mechanical quality factors of the mechanical
modes, the rotational symmetry of the toroid as well as the supporting silicon pillar are cru-
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cial since asymmetries always give rise to low quality factor mechanical modes. Satisfying
symmetry can be achieved although the resonators are fabricated at the edge of their chip
support by careful microfabrication (see appendix B.1.1 for details) and thus the current
measurements are not limited by mechanical noise of the microresonator. In chapter 3, the
mechanical modes of the toroid microresonator will be analyzed more extensively. As will
also be shown there, the mechanical quality factor of the intrinsic silica microcavity modes
deteriorates at lower temperatures (see section 3.5.2), as opposed to the mechanical quality
factor of silicon nitride nanomechanical oscillators [143]. The micromechanical background
noise expected for different cryogenic temperatures taking into account the known temper-
ature dependence of the mechanical quality factors of toroid microresonators (see section 3
for details) is depicted in Fig. 2.25b. Despite the reduced quality factors, this noise source
also reduces sufficiently fast with temperature and should not limit the sensitivity to val-
ues above the shot-noise level. Consequently, at low temperatures shot-noise should be the
only relevant contribution to the measurement imprecision and an imprecision at the level
of 10−17 m/

√
Hz should be feasible (assuming a coupling coefficient g/2π = 50 MHz/nm),

as shown in Fig. 2.25b.

2.5.3 Sub-SQL imprecision

Having characterized the different background noise contributions, now the actual measure-
ments of nanomechanical motion will be presented. It is interesting to note that according
to Eq. (2.38), all sources of both classical and quantum-mechanical noise are uniformly
suppressed by increasing the coupling coefficient g. This is depicted in Fig. 2.26, where the
measurement imprecision for a nanomechanical string (30× 0.7× 0.1µm3, Ωm = 8.3 MHz,
Qm = 30′000, meff = 3 · 10−15 kg) is shown as a function of optomechanical coupling for
two different input power levels. For large enough coupling coefficients, the imprecision is
lowered below the SQL.

As a second variable of the measurements, the input power can be used to vary the
shot noise contribution Sshot

ω , which as opposed to the other contributions to Sx depends
on the optical input power Sshot

ω ∝ 1/P (cf. Eq. 1.39). Correspondingly, it is limiting for
low input power levels. For large enough power levels, it can however be reduced below
the classical noise sources, as already shown in Fig. 2.25.

The first measurements with an imprecision below the SQL for a nanomechanical oscilla-
tor were obtained using a 1550 nm Erbium-doped fibre laser combined with Pound-Drever-
Hall detection, as described in section 2.5.1.2. Employing a κ/2π = 50 MHz resonance,
a coupling coefficient of g/2π = 3.8 MHz/nm and 65µW input power, an imprecision of
Sx = (0.5 +0.5

−0.25 )SSQL
x is achieved for a 4.9·10−15 kg nanomechanical string (Ωm/2π = 8 MHz,

Qm = 40′000) [4]. This measurement represents the first time that a nanomechanical oscil-
lator is measured with an imprecision below the SQL. In absolute terms, the imprecision
corresponds to a displacement noise floor of

√
Sx = 570 · 10−18 m/

√
Hz. The error bar in

this measurement however amounts to 3 dB. The exceptional dynamic range of > 60 dB in
addition to the nanomechanical oscillator’s narrow linewidth leads to a washing out of the
peak of the spectrum in the presence of small drifts of the mechanical resonance frequency
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Figure 2.26: Measurement imprecision for a nanomechanical string as a function of coupling
coefficient. The measurement imprecision reduces with increased coupling g, irrespective
of its origin. It can be lowered below the SQL for both P = 1µW (red) and P = 8µW
(blue), using homodyne detection. The black lines are guides to the eye. Inset: FEM
simulation of the fundamental mode of a nanomechanical string.

on the Hz-level. Thus, the mechanical quality factor (and hence the level of the SQL for
the respective measurement) can only approximately be determined from the data which
leads to a 3 dB error bar.

As mentioned earlier, in order to increase the optomechanical coupling the experiment
was transferred to shorter wavelength and smaller cavities. This allowed an increase of the
optomechanical coupling by more than one order of magnitude. Consequently the power
needed to reach the SQL (cf. Eq. 1.51) could be reduced by two orders of magnitude.
These measurements were performed with the titanium-sapphire laser system presented
in section 2.5.1.1. Fig. 2.27a shows a spectrum acquired with a coupling coefficient of
g/2π = 40 MHz/nm and a cavity resonance with a critically coupled linewidth of κ/2π =
20 MHz (Q0 = 7.2 ·107). Already 1µW of input power is sufficient to obtain an imprecision
below the SQL, Sx = (0.47 ± 0.2)SSQL

x
12. By increasing the input power, the shot-noise

limited imprecision can be lowered to values > 10 dB below the SQL, using only 8µW,
as depicted in Fig. 2.27b. Due to the thermal instability of toroid microresonators in
connection with residual vibrations in the optomechanical system, however, the coupling
coefficient has to be slightly reduced for this measurement (to g/2π = 15 MHz/nm) in
order to allow a stable laser lock. Consequently, the higher power measurement is partly
limited by thermorefractive frequency noise (Sthr

ω ∼ (2π14)2 Hz at Ω ∼ 8 MHz).

12 The mechanical quality factor is evaluated using small coupling. Data whose fitted quality
factor deviates by more than 15% from the low coupling value are discarded. This leads
to the reduced error bar compared to the previous measurement.
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>10 dB
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b,

Figure 2.27: Measurement imprecision below the SQL for a nanomechanical string
(30 × 0.7 × 0.1µm3, Qm = 30′000, meff = 3 · 10−15 kg). Spectra (blue, single-sided) and
corresponding fits (red) of the nanomechanical oscillator’s fundamental mode at 8.35 MHz.
a, The measurement imprecision (grey, acquired by removing the nanomechanical oscillator
from the microresonator, i.e. at g = 0) lies 3 dB below the SQL (dashed line). 8.4 MHz:
in-plane mode of the nanomechanical oscillator, 8 MHz: calibration marker, 9 MHz: me-
chanical modes of the microtoroid. b, Using higher input power (P = 8µW), the shot-noise
level (grey, measured by detuning the laser from cavity resonance) is lowered more than
10 dB below the SQL (dashed line).
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Figure 2.28: Measurement sensitivity (blue line) for an ideal measurement as a function of
normalized coupling power. Both shot-noise and quantum backaction (grey) whose values
are also given for an impedance matched measurement (dashed grey lines) contribute.
The full squares correspond to the measured shot-noise of the traces in Fig. 2.27 whereas
the stars mark the corresponding measured total imprecision. The measured shot-noise
is fitted by the black line. The empty squares denote the calculated quantum backaction,
corresponding to approximately nqba = 10 and nqba = 20 noise quanta, respectively.

The measurements shown here are so far the only measurements of nanomechanical
motion enabling an imprecision at and below the SQL at room temperature (cf. Fig. 2.2).
With the coupling coefficients g/2π > 200 MHz/nm demonstrated in section 2.2.1 even an
imprecision deeply below the SQL would be possible. As mentioned above, the thermal
bistability of the toroid microresonator as well as residual vibrations prevent from obtaining
a sufficiently stable laser lock in that parameter range for the continuous measurements
shown here. By increasing the stability of the employed experimental apparatus (e.g.
by exchanging the employed turbomolecular with a vibration free ion-getter pump) and
thus the accessible optomechanical coupling, considerable further improvements should be
possible.

2.5.4 Backaction of the measurement

Let us point out once again that achieving an imprecision below the SQL does not imply
that we have beaten a quantum limit. In principle, the measurement imprecision can be
arbitrarily low, as outlined in section 1.1.3. Thus, there is no fundamental obstacle to
reaching sub-SQL imprecision. Such an imprecision has however in the past not been
achieved for nanomechanical oscillators merely due to a lack of quantum limited detection
(this would correspond to large Slaser

ω in Eq. 2.38) combined with low coupling coefficients.
Being able to lower the measurement imprecision below the SQL is, however, prerequisite
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for a quantum-limited measurement which requires an imprecision that corresponds to
exactly 0.5 × SSQL

x . This was enabled for the first time by the demonstrated near-field
system as described in the previous section. It might thus facilitate measurements at the
SQL in the future and in particular the observation of quantum backaction which comes
into play once the imprecision is lowered below the SQL (cf. Fig. 1.2). Let us now
turn to an estimation of the level of quantum backaction that should be present in the
measurements shown in the previous section. The fact that a critically coupled resonator
is employed for the measurements (κ0 = κex = κ/2) gives in fact rise to a shot-noise
(quantum-backaction) level that is increased (reduced) compared to the case of an ideal
measurement by a factor ×4 (×2), according to Eq. (1.39) and (1.44). Fig. 2.28 shows
the position of both measurement traces depicted in Fig. 2.27 with respect to the SQL. In
both cases, the power needed to reach the SQL, PSQL, is evaluated and the input power
is scaled to the respective value of PSQL. Corresponding power levels of P = 60× PSQL in
the first and P = 130× PSQL in the second case are found. Although the measured shot-
noise is slightly larger than expected (which is attributed to losses in the tapered optical
fibre and imperfect photo-detectors), a lowest shot-noise level of 0.09 × SSQL

x is achieved
for P = 130 × PSQL. Based on PSQL, the expected quantum backaction contribution can
be estimated. For the second measurement (P = 130 × PSQL) a quantum backaction
contribution of nqba ≈ 20 quanta is found, as shown in Fig. 2.28. Hence, QBA should
already in the present measurements be the dominating contribution to the measurement
sensitivity, much larger than the imprecision caused by thermorefractive (nthr ≈ 0.5) and
shot noise (nshot < 0.1). But in the current experiment the QBA contribution is masked
by the large number of thermal quanta (n̄ ≈ 7.5× 105) in the nanomechanical oscillator.

It is, however, not unrealistic to envisage experimental parameters that would allow a
level of quantum backaction that is comparable to the thermal occupation even at room
temperature. The ratio of quantum backaction and thermal noise may, using Eqs. (1.44)
and (2.31b), be written in simple terms

Sqba
x [Ω]

Sthermal
x [Ω]

= 4
g2

0

κΓm

ncav

nth

1

1 + 4 Ω2/κ2
, (2.42)

where ncav = ā2 denotes the number of intracavity photons (1.8) and nth is the number
of thermal phonons. It can be seen that in order to enhance the QBA contribution it is
desirable to combine large vacuum optomechanical coupling rates (requiring large coupling
coefficients and zero-point motion) with low optical and mechanical damping κ and Γm,
respectively. Transforming to more accessible experimental parameters, this expression
reads:

Sqba
x [Ω]

Sthermal
x [Ω]

=

(
g/2π

50 MHz/nm

)2(
P

20µW

)(
λ

850 nm

)(
300 K

T

)(
5 MHz

κ/2π

)2
2κex/κ

1 + 4Ω2
m/κ

2

×
(

15 pg

meff

)(
Qm

106

)(
1 MHz

Ωm/2π

)
. (2.43)

Thus, by combining a nanomechanical silicon nitride string with the properties demon-
strated in Ref. [155] (Ωm/2π = 1 MHz, Qm = 106, meff = 15 · 10−15 kg, dimensions:
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275× 0.35× 0.11µm3) with the already demonstrated optomechanical parameters, a ratio
of unity should be well within experimental reach. In particular, assuming κ/2π = 5 MHz
at λ = 850 nm and T = 300 K as well as critical coupling, only an input power of 24µW is
required to reach a ratio of unity. These intriguing numbers provide a promising outlook
for an experiment demonstrating for the first time radiation pressure quantum backaction
acting on a solid state mechanical oscillator. This would allow quantum optomechanical ex-
periments [156] such as QND measurements of the intracavity field [64–66] or optomechan-
ically induced squeezing [60, 63] of the optical output field at room temperature. Moreover,
beating the SQL for one quadrature of the mechanical oscillator using backaction evading
techniques would become feasible [67–70] (cf. also section 1.1.3).
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2.6 Optomechanical coupling to multiple optical modes

So far, we have only considered a single electromagnetic mode coupled to a single me-
chanical mode, according to Eq. (1.2). In the literature, however, also the interaction
of several optical modes with a mechanical oscillator has been studied both theoretically
[75, 76, 157] and experimentally [82, 158]. Such an interaction can considerably enhance
both dynamical backaction and transduction of motion.

As mentioned earlier, the power needed to reach the SQL, cf. Eq. (1.51) (or similarly
the threshold power for reaching the parametric instability, Eq. 1.66) is a universal figure
of merit describing the performance of an optomechanical system. In general, PSQL is
reduced by using high quality factor optical resonances, i.e. by using small κ. In the
case (κ � Ωm) the optical resonator’s response, however, becomes too slow to follow
the mechanical oscillator’s dynamics which cancels the effects of high optical Q. Thus,
the system’s performance saturates to a value independent of the cavity bandwidth κ.
It has been shown that coupling a mechanical oscillator to three optical modes spaced
by its mechanical resonance frequency, allows overcoming this limitation [157]. Pumping
the central resonance, the motional sidebands at ±Ωm are resonant with the adjacent
optical modes, enhancing the transduction of motion. Thus, the SQL may be reached at
P ∼ κ2/(4 Ω2

m)×PSQL, which can be much lower than in the case of a single optical mode.
Similarly, if two optical modes spaced by exactly the mechanical oscillator’s resonance

frequency are both parametrically coupled to a mechanical mode, the radiation pressure
dynamical backaction can be significantly enhanced. When pumping the higher or lower
optical resonance, the weight of the Stokes and anti-Stokes sidebands are strongly asym-
metric, very similar to the resolved sideband case of a single resonance (cf. section 1.1.4).
However, the fact, that the pump laser is now, in contrast to the resolved sideband case,
resonantly coupled to one of the optical cavity’s resonances enhances the dynamical back-
action roughly by a factor ∼ 4 Ω2

m/κ
2. This may allow a drastic reduction of the power

levels needed to achieve ground-state cooling.
Here the feasibility of three-mode interactions–two optical modes coupled to one me-

chanical mode–using toroid microresonators is discussed. Thereby, the fact that clock-
and counterclockwise propagating modes in toroid microresonators, that are intrinsically
degenerate, can be coupled via scattering [129, 159, 160] and thus form a doublet is the
key ingredient. Before looking at the experimental data, we will first have a look at back-
scattering induced mode splitting in whispering gallery mode microresonators.

2.6.1 Modal coupling in whispering gallery microresonators

Following a coupled mode approach [62] the two equations governing coupled clock- and
counterclockwise modes acw and accw may be written as

ȧcw =
(
i∆− κ

2

)
acw +

√
κex s+ i

γ

2
accw (2.44)

ȧccw =
(
i∆− κ

2

)
accw + i

γ

2
acw . (2.45)
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Figure 2.29: Mode doublet of a WGM resonator. a, Transmission of a κ0/2π = 1 MHz
mode doublet with γ/2π = 7 MHz for various external coupling κex, as explained in the text.
b, Total intracavity energy |acw|2 + |accw|2 (black) as well as the individual contributions
of the hybridized lower frequency |b1|2 (red) and higher frequency mode |b2|2 (blue) for
κ/2π = 2.6 MHz and γ/2π = 7 MHz.

For simplicity it is assumed that both modes exhibit the same decay rates κ. Only the
clockwise mode is pumped via the input field s (cf. Eq. 1.7). The former is, however,
also coupled to the counterclockwise mode via the scattering rate γ. Here, the detuning
∆ is defined with respect to the frequency of the originally degenerate optical modes. The
steady state solution to this set of equation can be readily found (see Ref. [160] for further
details):

acw =
√
κex

i∆− κ/2
∆2 − κ2/4− γ2/4 + i∆κ

s (2.46)

accw = −i γ/2

i∆− κ/2
acw . (2.47)

Only acw is coupled to the output mode sout. The output field sout, which is shown in Fig.
2.29a, thus only depends on acw via sout = s−√κex acw (cf. Eq. (1.13)). The population of
the mode accw, in turn, leads to light being partly reflected from the cavity, sr = −iκex accw.

It can be clearly seen that the coupling of both modes to each other leads to the
formation of a mode doublet. The doublet can be transformed into a pair of symmetric
and antisymmetric modes b1 = 1/

√
2 (acw + accw) and b1 = 1/

√
2 (acw − accw), representing

the lower (higher) frequency mode. This is shown in Fig. 2.29b, along with the total
intracavity field energy |acw|2 + |accw|2. Both modes form sine- and cosine-shaped standing
wave patterns [137].
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Figure 2.30: Three mode interaction. a, Transmission of the tapered fibre when scanning
across a mode doublet with a splitting of γ/2π = 7 MHz and an intrinsic linewidth of
κ0/2π = 2 MHz. b, Recorded frequency noise spectra. The orange trace is taken in the
overcoupled regime (g = 0). At low frequency, thermorefractive noise dominates, whose
magnitude decreases with frequency. The blue trace is recorded in the undercoupled regime
(g = 0). The transduction of thermorefractive noise decays faster. It is, however, enhanced
for frequencies around γ. The violet trace is recorded when coupling to a nanomechanical
oscillator whose resonance matches the splitting γ. Since the higher frequency optical mode
is used for transduction, the motion of the nanomechanical oscillator is amplified due to
dynamical backaction.

2.6.2 Transduction of motion and dynamical backaction using
two optical modes

Experimentally, coupling an optical mode doublet to a mechanical oscillator, requires some
tunability of either the optical splitting frequency or the mechanical oscillator’s resonance
frequency in order to match both. This is difficult to achieve using systems that incorporate
optical and mechanical degrees of freedom within the same element and do not allow tuning
optical and mechanical properties independently.

In toroid microresonators, the optical mode splitting is defined by the density of scatter-
ing centres within each optical mode’s volume [160] which determines the scattering rate γ.
Thus, although the order of magnitude of typical splitting frequencies can be increased by
deliberately implanting defect centers [138], its exact value is random and cannot be tuned
in-situ. Thus, the mechanical degree of freedom has to act as the tunable element. Using
the near-field approach, this can be nicely implemented since the mechanical resonance
frequency can be chosen independently. To this end, arrays of nanomechanical oscilla-
tors with gradually changing lengths (and thus gradually changing resonance frequency)
are fabricated. Thus, exactly matching mechanical oscillation frequency and optical mode
splitting can be achieved.

Fig. 2.30a shows the transmission of a toroid microresonator resonance doublet with a
splitting of γ/2π ∼ 7 MHz. When tuning the laser to either sideband, the transduction of
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equivalent cavity frequency noise is expected to be enhanced at frequencies matching the
optical splitting frequency γ. This is shown in Fig. 2.30b (γ/2π = 7 MHz). The blue reso-
nance of the optical doublet is pumped with a diode laser (slightly blue-detuned) and the
corresponding amplitude noise spectrum is recorded consisting of thermorefractive noise
and mechanical noise of both the cavity itself and the nanomechanical oscillator. When the
cavity is strongly overcoupled and thus the splitting is removed (cf. Fig. 2.29a), the ther-
morefractive noise exhibits the typical shape (cf. section 2.5.2.1), as shown in Fig. 2.30b.
When the same measurement is performed in an undercoupled regime, the transduction
of thermorefractive frequency noise shows a fast cut-off, due to narrow cavity bandwidth
(κ/2π ∼ 2 MHz). However, an apparent peak at 7 MHz is found, which corresponds to
the enhancement of frequencies ∼ γ/2π due to the presence of the second optical mode.
If, in addition, a nanomechanical oscillator (Ωm/2π = 7.5 MHz) is coupled to the cavity,
the degree of coincidence between splitting γ/2π and mechanical frequency Ωm/2π can
be directly derived from the recorded RF spectrum. This is shown in Fig. 2.30b where
pumping the blue resonance in addition leads to dynamical backaction, amplifying the
nanomechanical oscillator’s motion.

The dynamical backaction rate in the case of three-mode coupling can be derived from
the photon statistics within the cavity, as shown in section (1.1.4). In Ref. [157], the
spectrum of the intracavity photon number fluctuations has been derived for the case of
resonantly pumping the red (blue) sideband of a mode doublet

SN [Ω] = |ā|2 4κ(−2 Ω± γ)2

4 Ω2 (±γ − Ω)2 + κ2(±γ − 2 Ω)2
. (2.48)

The dynamical backaction rate (for pumping the red and blue sidebands, respectively) is
then calculated to be:

Γ
(2)
dba = ± |ā|2 1

9 + 16 Ω2
m/κ

2

64 g2
0Ω2

m

κ3

Ωm�κ≈ ±4 |ā|2 g
2
0

κ
, (2.49)

where the geometric factor describing the overlap between both optical and mechanical
modes [75] is neglected for simplicity. If one compares this result with the corresponding
limit for a single optical resonance (Ωm � κ), one arrives at the result that the dynam-
ical backaction rate per intracavity photon is reduced in the two-mode case by a factor
(1 + 16 Ω2

m/κ
2) / (9 + 16 Ω2

m/κ
2) which approaches unity for κ/Ωm → 0. Thus, if the back-

action rate is limited by effects due to absorption within the cavity, one does not gain in
the regime of two optical modes. One does, however, gain considerably in terms of neces-
sary input power. Since in the two-mode case, the cavity can be pumped resonantly, the
dynamical backaction rate can be written as 13

Γ
(2)
dba ≈ ±8 ηc

g2
0

κ2

P

~ω
. (2.50)

13 Note that in the presence of splitting the resonant intracavity photon number is reduced
by ×2 compared to the case without splitting (1.8).
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Figure 2.31: Dynamical backaction via two optical modes. Pumping the red (blue) reso-
nance of an optical doublet (splitting γ/2π = 7 MHz) leads to dynamical backaction cool-
ing (heating) of the nanomechanical oscillator (meff = 1.6 · 10−15 kg, Ωm/2π = 7.51 MHz,
Qm = 30′000).

Compared to the single-mode case (Eq. 1.56), this corresponds to an enhancement of
×2 Ω2

m/κ
2, which can be considerable and correspondingly may significantly lower the in-

put power levels necessary for a certain cooling factor. Moreover, the fact that resonant
pumping can be used, may facilitate strong cooling from room-temperature since oper-
ating in the thermally unstable regime of red detuned locking [105, 142, 148, 149] is not
necessary, as opposed to the single resonance case. Fig. 2.31, shows that both cooling
and amplification of nanomechanical oscillators is possible using two optical resonances.
Dynamical backaction rates of order 100 Hz are achieved. Eq. (2.50) suggests that consid-
erably stronger backaction rates should in principle be feasible. However, the non-unity
overlap of both optical and mechanical modes would have to be taken into account for a
quantitative comparison. Further experiments along these lines would therefore be inter-
esting in order to explore the corresponding limitations. At least in principle, cooling rates
bringing the nanomechanical oscillator close to the quantum ground state even from room
temperature are accessible. However, also the limitations owing to the finite mechanical
Q factor (Qm > nth ≈ 8 · 105, is required for ground state cooling [35, 36]) and the ther-
morefractive noise floor have to be considered in future studies. The latter constraint is a
fundamental obstacle, whereas the former may be met by employing mechanical oscillators
with larger quality factors Qm > nth, as demonstrated e.g. in Ref. [136].
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2.7 Quadratic optomechanical coupling to nanome-

chanical oscillators

In this section, the feasibility of leaving the regime of linear optomechanical coupling and
realizing quadratic coupling to nanomechanical oscillators using toroid microresonators is
demonstrated. Quadratic optomechanical coupling was proposed in 2008 [37]. Thereby, the
first order derivative of the optical resonance frequency with respect to the nanomechanical
oscillator’s position vanishes. The position dependent optical resonance frequency may
thus be written as ω(x0 + x) = ω(x0) + g(2) · x2, where the quadratic coupling term
g(2) = ∂2ω (x0) /∂2x0 is introduced. The corresponding interaction Hamiltonian H(x0) =
~ (ω(x0 + x)− ω(x0)) a†0a0 may then, using the rotating wave approximation, be written
as [37]

H(2)
om = ~g(2) x2

zpf

(
b†b+

1

2

)
a†0a0 . (2.51)

In contrast to the linear interaction Hamiltonian (1.2), H
(2)
om commutes with the occupation

number of the mechanical oscillator, i.e.
[
H

(2)
om, b†b

]
= 0. Thus, in principle, the quadratic

interaction Hamiltonian H
(2)
om allows QND measurements of mechanical quanta [37]. QND

measurements in various contexts have in the past allowed impressive experiments, demon-
strating e.g. quantum jumps of electrons [161–163] or the occupation number of microwave
modes [164]. Similarly, observing quantum jumps of a tangible mechanical oscillator may
become reality employing quadratic optomechanical coupling [165].

A scheme allowing access to quadratic coupling has first been proposed using a Fabry-
Perot cavity and a silicon nitride membrane within the cavity [37]. Here the feasibility of
such a situation using nanomechanical oscillators coupled to toroid microresonators will be
discussed. Thereby, the fact that clock- and counterclockwise propagating modes in toroid
microresonators, that are intrinsically degenerate, can be coupled via scattering plays a
key role.

As outlined in the previous chapter, optical WGM resonators can enter a regime where
the doubly degenerate clockwise and counterclockwise optical modes form doublets [129,
159, 160]. So far, the nanomechanical oscillators have been coupled horizontally to the
optical microresonator modes. In order to harness the standing wave patterns of the
mode doublets for quadratic optomechanical coupling and to selectively couple to the
sine or cosine modes b1 and b2 (cf. Fig. 2.29b), we use vertical coupling, as depicted in
Fig. 2.32, i.e. the strings are positioned perpendicular to the propagation of the light
field. When a nanomechanical string is approached to the toroid vertically, the frequency
shift of the respective optical mode is proportional to the squared field amplitude at the
string’s position (cf. section 2.1 for details). Correspondingly, the relative frequency shifts
experienced by modes b1 and b2 which exhibit standing wave patterns, changes as the
nanomechanical oscillator’s position is scanned tangentially to the toroid’s equator. This
is shown in Fig. 2.32a, where the color-coded cavity transmission is depicted as a function
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Figure 2.32: Quadratic optomechanical coupling to nanomechanical oscillators. a, Colour-
coded transmission spectrum of a toroid microresonator doublet (arbitrary units) as a
function of the lateral nanomechanical oscillator position y0 which is oriented vertically
(cf. inset b). At the turning points of the sinusoidal oscillations, the linear optomechanical
coupling vanishes and the interaction is quadratic. This is the case at e.g. the location
indicated by the red arrow, for which the transmission spectrum is plotted in b.

of the lateral position of a nanomechanical string. The lateral periodicity corresponds
as expected to half the wavelength within the optical resonator (λ/2n ≈ 500nm for λ ≈
1550nm).

At the turning points of the sinusoidally oscillating cavity resonance frequencies indi-
cated by the red arrow in Fig. 2.32a (corresponding to the transmission plotted in panel
b) the system exhibits a quadratic optical frequency shift with respect to the in-plane
motion of the string (see section 2.3.4), i.e. a non-zero ∂2

∂y2ω0 = g(2), whereas ∂
∂y
ω0 = 0.

In this vertical coupling configuration scattering due to the nanostring is observed which
is unequally distributed among the two modes, as shown in Fig. 2.32b, since they sense
either a maximum (leading to non-negligible scattering) or a node (leading to negligible
scattering) at the nanomechanical oscillator’s position. The regions where both optical
modes cross each other in frequency should in fact exhibit avoided crossings, since both
modes are coupled to each other via scattering by the nanomechanical oscillator, leading to
additional quadratic coupling points. These are, however, not well resolved in the current
measurements. Fitting the data shown in Fig. 2.32a nevertheless yields quadratic coupling
coefficients (at the region of the red arrow) of g(2)/2π ∼ 1 kHz/nm2.

The data shown here was recorded before the optimization of the optomechanical
coupling (cf. section 2.2.1). Using shorter wavelength (λ ∼ 800 nm) and smaller cavi-
ties (R ∼ 16µm) as employed in section 2.2.1, quadratic coupling coefficients of order
g(2)/2π ∼ 20 kHz/nm2 are expected, similar to the values initially shown in Ref. [37]. In
Ref. [166] considerably larger coupling g(2)/2π ∼ 30 MHz/nm2 has recently been demon-
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strated. In order to assess the feasibility of measuring quantum jumps, however, one has
to compare the frequency shift induced by a single phonon ∝ g(2) × x2

zpf to the shot-noise
limit of the measurement [37], given by Eq. (1.39). Thus, using the low-mass nanome-
chanical strings employed here, which have a ∼

√
500 times larger zero-point motion than

the mechanical oscillators (silicon nitride membranes with 1000× 1000× 0.05µm3) of Ref.
[166] makes the expected single-phonon frequency shift expected for the toroid near-field
system comparable. Still, resolving the expected quantum jumps is currently a few orders
of magnitude out of experimental reach [166]. However, measuring non-classical phonon
shot-noise [167] might be feasible with current systems.
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2.8 Prospects for graphene sheets as mechanical os-

cillators

In this section, the feasibility of coupling to nanomechanical oscillators fabricated from
graphene will be examined.

Since its experimental realization [168, 169] graphene has attracted enormous interest
in recent years due to its exceptional electronic [170, 171], thermal [172] and mechanical
properties [173–175] (see Ref. [176] for a recent review). The fact that graphene can be
fabricated as single atomic layer sheet of carbon (single-layer graphene) makes it the ulti-
mate version of a two-dimensional solid state mechanical oscillator. Its exceptionally small
motional mass combined with large surface makes it very interesting for applications such
as mass detection or force/charge sensing. So far, nanomechanical oscillators have been
fabricated out of single- [177, 178] to few-layer [174, 177] graphene sheets with width and
length of one to a few micron. Thereby, oscillation frequencies around 100 MHz have been
found in single-layer graphene and an inverse dependence on the length of the respective
ribbon/string has been found [178], indicating internal tensile stress. The room tempera-
ture quality factors found were only around 100, similar to the values found in early studies
of carbon nanotubes whose mechanical quality factors have meanwhile been improved up to
Qm > 105 [179]. Recently, mechanical quality factors as high as 14′000 have been reported
for a 130 MHz single-layer graphene mechanical mode [178]. This value has been measured
at low temperature (T = 50 K). However, it is not clear if this is a pristine temperature
effect or simply due to the increased tensile stress within the graphene resonator obtained
for the specific setup used in Ref. [178].

All the so far employed transducers have fallen short of being able to measure the
Brownian motion of single-layer graphene. Here, we will show that this should in principle
be possible using a graphene resonator coupled to the near-field of a microtoroid.

2.8.1 Characterization of graphene membranes

One of the experimental challenges, the fabrication of well defined and free-standing
graphene membranes has been solved. Fig. 2.33 shows a microscope image of a double-layer
graphene sheet suspended over a 5 × 5µm2 window etched into a silicon chip fabricated
in the group of Jannik Meyer. The layer thickness can be reliably examined by Raman
spectroscopy [180]. Even simpler, one can exploit the fact that each layer of graphene
absorbs an astounding 2.3% of incident light over the whole visible spectrum. This value
is surprisingly solely defined by the fine structure constant α which leads to transmittiv-
ity T given by T = 1 − πα ≈ 97.7% [181]. Fig. 2.33 shows the transmission through a
double-layer graphene sheet and the corresponding measurement using an empty window.
From these measurements an absorption of (2.4± 0.2)% per layer can be deduced, in good
agreement with the expected 2.3%. Although the reflectivity of a single graphene layer
is very small (R = (πα/2)2 T ≈ 10−4, [181]), the graphene layer can also be detected in
reflection (cf. Fig. 2.33, inset) when exposed to a bright source.
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5 µm 

Figure 2.33: Double-layer graphene membrane. The transmission of white light across the
center of a double-layer graphene sheet suspended over a 5 × 5µm2 window (red) and of
empty windows (blue) is shown. The averaged absorption per layer is measured to be
(2.4± 0.2)%. Despite its low reflectivity, the presence of a graphene sheet on the window
can also be verified in reflection (upper inset). The lower inset shows a microscope image
of a suspended double-layer graphene membrane.

2.8.2 Optomechanical coupling of graphene

In this section the optomechanical coupling properties of a 5× 5µm2 single-layer graphene
sheet coupled to the optical near-field of a microtoroid will be estimated. From Eqs. (2.16)
and (2.18) one can deduce that for optimum positioning, the coupling coefficients of a
5µm2 graphene sheet should be smaller than the respective coupling to a silicon nitride
string (width lz, thickness t) by a factor

χ ∼
n2

g − 1

n2
SiN − 1

1

Erf (lz/(2rz))

1− e−2αtg

1− e−2αt
(2.52)

where ng and tg denotes the refractive index and thickness of the graphene membrane.
We will, in the following, assume real and imaginary refractive index of graphene to be
identical to the values measured for bulk graphite: ng = 3, nim

g = 1.9 [182]. Moreover, the
thickness tg is assumed to be given by the lattice constant in graphite tg = 0.3 nm. For
typical values (R = 18µm, r = 1.8µm, λ = 850 nm, lz = 300 nm, t = 100 nm), one then
obtains χ ∼ 7 × 10−2. For an ideally positioned graphene sheet, the dispersive coupling
coefficient is therefore expected to be ∼ 15 times smaller than the ones accessible for sili-
con nitride nanostrings. Thus, coupling coefficients of g/2π . 10 MHz/nm or equivalently
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static frequency shifts of ∆ω/2π . 500 MHz may be expected. These values should in
principle allow the observation of the Brownian motion of a single-layer graphene sheet.
Assuming a frequency of Ωm/2π ∼ 15 MHz (extrapolated from Refs. [173, 178]) a mechan-
ical Q of 100 and a mass of meff = 4 · 10−18 kg (based on a density of ρ = 2000 kg/m3), the
(single-sided) Brownian noise at resonance evaluates to Sx [Ωm] ∼ 5 · 10−25 m2/Hz. With a
dispersive coupling coefficient of g/2π = 1 MHz/nm this should lead to a frequency noise
of Sν = 5 · 105 Hz. For such a coupling coefficient the cavity linewidth is estimated to
be broadened to κ/2π ∼ 1 GHz using a simple model based on the real and imaginary
refractive indices. Nevertheless, this should still allow the detection of the frequency noise
Sν = 5 ·105 Hz induced by the graphene sheet (the role of the dispersive coupling coefficient
is neglected, here).

The experimental challenge, however, is the correct positioning of the graphene samples
with respect to the toroid. Using silicon nitride oscillators, the dispersive cavity resonance
frequency shift caused by the silicon nitride in the evanescent field can be conveniently
used as a signal for coarse positioning as it is distinct from the predominantly reactive
shift induced by the silicon substrate 14. When considering graphene, each induced dis-
persive frequency shift will always be accompanied by a considerable increase of the cavity
linewidth owing to its relatively large imaginary refractive index. Thus, the static shifts
exerted by graphene and the silicon substrate are expected to be very similar to each other
and might not easily be distinguished experimentally. In order to simplify “finding” the
graphene membrane’s modes, a piezo actuator that drives the mechanical resonances could
be used in order to facilitate locating these.

14 This is caused by light leaking into the large refractive index bulk silicon substrate which
supports a continuum of optical modes, see also appendix B.2
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Chapter 3

Monolithic ultra-low dissipation
optomechanical resonators

Since their inception in 2003 [88], the exceptional optical properties of toroid microres-
onators have been exploited in a variety of fields. Applications range from non-linear optics,
e.g. frequency comb generation [89–91] or Raman lasing [92] to molecular recognition [93]
and cavity QED [94–96]. In 2005, it was found that they also host a variety of mechanical
modes which are naturally parametrically coupled to their optical whispering gallery modes
and can be driven via radiation pressure [26–28]. One year later, toroid microresonators
[34] were among the first solid-state mechanical oscillators that were cooled via radiation
pressure dynamical backaction [32–34]. Moreover, they enabled for the first time resolved-
sideband cooling of a micromechanical oscillator [10]. In this chapter, the mechanical
properties of toroid microresonators are thoroughly analyzed. First, the optomechanical
coupling within toroid microresonators is briefly reviewed before their mechanical mode
structure is analyzed in detail. Following a summary of relevant loss mechanisms leading
to mechanical dissipation in general, clamping losses are elucidated in detail and identified
as the leading contribution limiting the quality factors of the most prominent microtoroid
mode, the fundamental radial breathing mode. Subsequently, spoke-supported microres-
onators that minimize clamping losses are presented. They allow realizing the ultimate
material-loss limit of the attainable mechanical quality factor in silica-based systems.

3.1 Optomechanical coupling

As already shown in chapter 2, the presence of thermally excited mechanical modes within
toroid microresonators leads to clear signatures in their optical frequency noise spectra.
The displacement of the cavity boundaries caused by the Brownian motion of the toroid’s
eigenmodes leads to a change in the effective round-trip length of the cavity 1 and thus its

1 The concomitant strain-fields also contribute an effective length change via a strain de-
pendent refractive index. Their contribution can be estimated to be only on the order of
20% compared to the displacement contribution [142] and are thus neglected, here.
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Figure 3.1: Polarization spec-
troscopy. Only a small polarization
component of the Nd:YAG laser
is adjusted to match the toroid’s
whispering gallery mode polariza-
tion. The larger fraction (with
orthogonal polarization) of the field
bypasses the cavity and serves as
a local oscillator. It is brought to
interference with the output field of
the cavity using a quarter waveplate
and a polarizing beam splitter. The
resulting signal is recorded using a
balanced detector. Figure adapted
from Ref. [6].

FPC: Fibre polarization controller
PBS: Polarizing beamsplitter
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ELO

ToroidTaper
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resonance frequency. To model this optomechanical coupling, a universal coupling coeffi-
cient of g = ω/R is chosen, irrespective of the actual optical or mechanical modes involved.
This choice is motivated by the experimentally most interesting mode, the radial breath-
ing mode (RBM). As shown in more detail later on, this mode comprises predominantly
radial motion. Considering this radial motion of the toroid’s boundary within a simple
ray picture, a change ∆x of the toroid’s radius R would lead to a frequency shift given
by ∆ω/∆x = ω/R, i.e. exactly the shift described by the assumed coupling g. Moreover,
as a photon travels along the cavity boundary over an angle ϕ it transfers a momentum
of ∆p = −ϕp (p denotes the photon momentum within the cavity) to the cavity which
leads to a per-photon force of F = −~ω/R. Thus, also the per-photon force in this picture
is correctly reproduced by the choice g = ω/R. As outlined in section 2.3.1, the choice
of a uniform coupling coefficient, however, necessitates the notion of an individual effec-
tive mass for each particular combination of optical and mechanical mode which can be
extracted either from measurements or finite element simulations.
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3.2 Mechanical mode spectrum

In this section, the mechanical mode spectrum of toroid microresonators will be thoroughly
examined. In order to obtain high sensitivity which is desirable for a detailed characteriza-
tion of the spectrum, a quantum-noise limited Nd:YAG laser (neodymium-doped yttrium
aluminum garnet; type Mephisto from Innolight GmbH) emitting at λ = 1064 nm is em-
ployed. Combined with a polarization spectroscopy (Hänsch-Couillaud) technique [183],
as shown in Fig. 3.1, it enables shot-noise limited detection of the cavity frequency noise.
The laser is fibre-coupled and sent to the vacuum chamber where a tapered-fibre region
allows coupling to the microresonators. The laser polarization is chosen such that only
a small fraction of the field matches the polarization of the respective WGM. The larger
fraction thus bypasses the resonator and is used as local oscillator which is brought to
interference with the signal emerging from the resonator using a waveplate and a polar-
izing beam splitter (cf. Fig. 3.1). This enables a dispersive error signal as a function
of the laser detuning from cavity resonance [183]. Its low frequency part is used to lock
the laser to resonance whereas the high frequency part enables extracting the respective
cavity frequency noise. Compared to the homodyne detection scheme employed in the
previous chapter, this setup is considerably less complex as it does not need any active
stabilization. The strong asymmetry between local oscillator (Plo � 50µW) and signal
power levels (Ps < 5µW), however, makes the measured signals very sensitive to drifts of
the input field’s polarization. In practice, this limits the long-term stability and applicable
power ratios Plo/Ps using polarization spectroscopy.

Fig. 3.2a shows the displacement spectrum of a toroid (R = 23µm) which reveals
16 mechanical modes in the range 0 − 100 MHz. Using FEM simulation, all measured
frequencies can be attributed to a particular mechanical eigenmode. To this end, the
geometry parameters obtained from a microscope image of the sample are used as start
values and subsequently fine-tuned in order to fit the simulated to the measured frequencies.
Excellent agreement with an average deviation of less than 2% is found, as shown in Fig.
3.2b. The corresponding mode patterns are depicted in Fig. 3.2c. Only three out of the 19
modelled modes are experimentally not observable which is attributed to a combination of
low mechanical Q and large effective mass. Due to the composite geometric structure of
microtoroids, resulting in a relatively complex geometry (when e.g. compared to strings
or membranes) microtoroids exhibit a diverse set of eigenmodes. Several mode families
can nevertheless be distinguished in which the motion of the silica disk, the silica torus
and the silicon pillar partially decouple. The mode showing the lowest effective mass
and hence the most interesting mode is the RBM (mode 14 in Fig. 3.2). Most previous
work has therefore focused on this mode [26, 34]. An equivalent mode has been studied
in a microdisk structure [184] where it was termed radial contour mode. In contrast,
the torsional mode (mode number 4 in Fig. 3.2) where the silica disk shows an in-plane
rotation should not be optomechanically coupled at all to first order. Interestingly, this
torsional mode can nevertheless be observed experimentally. One particular mode family
that can be identified are the radially symmetric flexural modes (modes 2 and 8 in Fig.
3.2) in which the motion of the free standing part of the silica disk resembles the modes
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Figure 3.2: Mechanical mode spectrum of a toroid microresonator. a, Displacement noise
spectrum of a R = 23µm microtoroid in the range 0− 100 MHz. All measured frequencies
can be attributed to a particular mode as derived by FEM simulations with an average
deviation of less than 2%, b. The corresponding mode patterns are shown in c (colour
code: total displacement in arbitrary units), where the shaded modes are not observed
experimentally. Fig. adapted from Ref. [7].

of a cantilever. The fundamental frequencies of a cantilever of length L can in general be
expressed as Ωi/2π = C ·

√
ki/2π, where C is a material constant and the wavenumber ki

satisfies [185]

cos (ki · L) · cosh (ki · L) + 1 = 0 . (3.1)

Fig. 3.3 shows the measured frequencies of the two lowest order flexural modes (modes 2
and 8 from Fig. 3.2) and, in addition, the first five flexural modes of a different sample
plotted as a function of the wavenumber ki , where the free standing part of the silica
disk is taken as equivalent cantilever length L (13.2µm and 39.6µm, respectively). Both
sets of data allow an accurate uniform quadratic fit of the fundamental radially symmetric
modes. Thus, the latter can indeed be regarded as cantilever modes following the same
quadratic dispersion for microtoroids of different sizes. The absolute measured frequen-
cies deviate only by −25% from the crude approximation of an ideal cantilever [185] with
length L, taking into account the material parameters of silica. A further seperate mode
family which is characterized by sinusoidal oscillations of the torus itself (modes 1, 3, 5,
7, 11 and 16 in Fig. 3.2) can be identified. The dispersion diagram of these modes, which
are referred to as crown-modes, is depicted in Fig. 3.3. The respective wavelength λi is
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Figure 3.3: Dispersion of crown (cir-
cles) and cantilever modes (squares).
Both mode families follow a uniform
quadratic dependence on wavenumber
measured for two different samples
(black: R = 23µm, blue: R = 45µm).
Inset: FEM mode patterns of eighth or-
der crown and second order cantilever
modes (colour code: total displacement
in arbitrary units). Fig. adapted from
Ref. [7].

defined by twice the distance between two adjacent nodes of each mode. The frequencies
Ωi/2π of the crown modes observed in microtoroids of different major and minor radius
(23µm/2.6µm and 45µm/2.8µm) allow a simultaneous fit following a quadratic depen-
dence on the wavenumber ki = 2π/λi. The uniform dependence shows that the silica torus,
despite its attachment to the silica disk, behaves effectively like an independent element.
The quadratic dispersion, moreover, rules out the presence of radial tensile stress within
the torus as this would lead to linear dispersion characteristic of a vibrating string, cf. Eq.
(2.20). This can be explained by the laser reflow process which the microtoroids undergo
[88] and which relaxes all potentially present stress. The absolute frequencies of the crown
modes, however, are ×4 larger than predicted by Eq. (2.20) for an ideal silica string which
is due to the attachment to the silica disk causing additional stiffness.
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3.3 General sources of mechanical dissipation

It became evident already in the previous section that the various mechanical modes present
in microtoroids exhibit vastly different mechanical quality (cf. Fig. 3.2). In this section,
relevant contributions which lead to mechanical dissipation in general and thus determine
the mechanical quality will briefly be reviewed. When modelling a damped harmonic
oscillator, all damping contributions are typically summed up to a single damping rate Γm

and correspondingly to a total mechanical quality factor Qm = Ωm/Γm. Thereby, the total
damping rate is given by the sum of the rates relating to the individual sources of loss, i.e.
Γm =

∑
i Γi. Correspondingly, the mechanical quality factor can be written as

Q−1
m =

∑
i

Q−1
i . (3.2)

In the following, we start with the loss mechanisms that can in principle be eliminated
completely (or at least to a negligible amount) by using a suitable experimental setting
(gas damping, clamping losses) before more fundamental sources are discussed (two-level
systems, thermoelastic damping and phonon-phonon interaction).

3.3.1 Gas damping

Operating a mechanical oscillator in a gaseous environment will lead to energy dissipa-
tion from the mechanical oscillator into the heat bath provided by the surrounding gas
molecules. For large pressures, the gas may thereby be treated as a fluid. Correspondingly,
the viscosity of the gas dominates the damping, leading to a quality factor Q ∝ p−1 [186].
This regime is typically referred to as viscous damping regime. For lower pressures, this
source of damping becomes negligible. Another component has, however, to be taken into
account, given by individual collisions of gas molecules with the mechanical oscillator. The
resulting damping mechanism leads to a weaker pressure dependence Q ∝ p−1/2 [186, 187]
and has been termed molecular gas damping regime. However, for practically all mechani-
cal oscillators gas damping can be lowered to negligible values by using moderate pressure
levels in or even above the high-vacuum range.

3.3.2 Clamping losses

The fact that typically, solid state mechanical oscillators are not freely suspended but
rather attached to some kind of support leads to dissipation into the supporting structure.
This is typically referred to as clamping losses. In principle this source of loss can be
eliminated to a level where the loss is only given by phonon-tunneling [188]. Although
universal for all “clamped” structures, clamping losses can vary to a large amount within
different resonator geometries and thus have to be specifically optimized for each particular
mechanical oscillator, individually. In particular, the support of test masses employed for
gravitational wave detection has been extensively studied in the past [189–191]. But also
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in the micromechanics community considerable efforts have been devoted to a clever design
of the mechanical oscillators’ support [192–194].

3.3.3 Two-level systems

In virtually all amorphous materials, a loss mechanism which can be regarded as more
fundamental than the previously mentioned ones is present. It is caused by the lack of long-
range order characteristic of amorphous solids and the concomitant structural defects [195].
The precise microscopic origin of these defects is not known to date. The phenomenology of
the mechanical damping that is associated with these defects, however, can be accurately
reproduced by modelling them as a distribution of effective two-level systems (TLS) which
can change their conformation. Thereby, the defects (that may be comprised of single
atoms or groups of atoms) have two equilibrium positions which are given by the two
minima of an asymmetric double well potential [196–201]. Following the notation of Ref.
[202], the phonon strain field e deforms the lattice of the solid which modulates the energy
difference Λ between the energy minima. This leads to a coupling between strain field and
the TLS described by 2 γ = ∂Λ/∂e. Combined with a relaxation of the population at rate
τ−1 this perturbation gives rise to a frictional force acting on the mechanical mode which
limits the quality factor to [202]

Q−1
tls =

γ2

ρv2kBT

+∞∫
−∞

dΛ

+∞∫
0

dV P (Λ, V ) sech2

(
Λ

2 kBT

)
Ωτ

1 + Ω2τ 2
, (3.3)

where v and ρ denote the speed of sound in and the density of the particular material.
P (Λ, V ) is the density of TLS with energy splitting Λ and barrier height V (the energy
maximum lies V + Λ/2 above the ground state of the lower energy well). Note that Qtls

depends on both temperature and frequency. The relaxation time is given by

τ = τ0eV/T sech

(
Λ

2 kBT

)
, (3.4)

where τ0 is inversely proportional to the oscillation frequency within the individual wells.
Assuming a phenomenological density function

P (Λ, V ) ∝
(
V

V0

)−ζ
exp

(
−1

2

V 2

V0

)
exp

(
−1

2

Λ2

Λc

)
, (3.5)

with cut-off energies V0 and Λc (ζ < 1), expression (3.3) can be approximated by:

Q−1
tls = C Erf

(√
2 kBT

Λc

)
1

kBT

∞∫
0

(
V

V0

)−ζ
exp

(
−1

2

V 2

V 2
0

)
Ωτ0 exp (V/(kBT ))

1 + Ω2τ 2
0 exp (2V/(kBT ))

dV .

(3.6)
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Thus, the temperature and frequency dependent damping due to TLS is characterized by
the material coefficients C, Λc, V0, ζ and τ0. The model (3.6) universally describes the
damping found in virtually all amorphous materials [195]. For silica, taking into account
measurements spanning from 11 kHz to above 200 MHz and from a few up to a few hundred
Kelvin allows the extraction of ζ = 0.28± 0.03, V0/kB = (667± 21) K, V0/Λc = 7.7± 0.7,
τ0 = 10−12.2±0.18 s and C = (1.45± 0.35)× 10−3 [202].

TLS can be the dominant loss channel in amorphous solids. In order to avoid this source
of dissipation one has to resort to crystalline materials. These can exhibit almost perfect
long-range order and thus negligible damping due to defect induced two-level fluctuators.

3.3.4 Thermoelastic damping

A fundamental source of dissipation inherent to all material (also crystals) is given by
thermoelastic damping. It can be understood from the fact, that the strain fields associated
with a mechanical mode alter the temperature of the lattice via the coefficient of thermal
expansion (which is a consequence of non-linear terms in the lattice potential). Delayed
heat flow between regions of different strain (and thus temperature) thereby cause damping
of the mechanical mode. This thermodynamic source of dissipation (requiring a phonon
mean-free path that is smaller than the dimensions of the oscillator) has first been described
already in the 1930s by Zener [203, 204]. For a vibrating beam, the mechanical damping
associated with this phenomenon can be written as [203]

Q−1
ted = ∆E

Ωτw
1 + Ω2τ 2

w

. (3.7)

The time scale τw is defined by the thermal diffusivity and the width of the beam in the
direction of oscillation w, τw = w2/(π2D) [203, 205]. The prefactor ∆E is given by

∆E =
Y α2T

ρCp
, (3.8)

where α denotes the linear coefficient of thermal expansion, Cp is the heat capacity per unit
mass for constant pressure and Y is the Young’s modulus. Thus, for oscillation periods
both much larger and smaller compared to the time scale τw, thermoelastic damping tends
to negligible values. Its maximum of Q−1

ted = ∆E/2 is found at Ω = 1/τw. Besides its
frequency dependence, thermoelastic damping should also show both a direct temperature
dependence ∝ T and an indirect dependence via the material parameters Y , α and Cp.
This source of dissipation has been shown to be the dominant loss mechanism in a range of
materials [190, 206, 207] resulting in Q factors between 104 and 107, depending on material,
geometry and frequency. It can be mitigated by interrupting the heat-flow within the
mechanical oscillator via voids [208] or resorting to low temperatures where it is expected
to vanish. Using the material parameters of silica (Y = 73 GPa, α = 5 · 10−7 K−1, ρ =
2200 kg/m3, Cp = 730 J/(kg ·K)), expression (3.7) yields a lower limit for the attainable
quality factor of Qted ≥ 2/∆E ≈ 5 · 105 at room temperature.
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3.3.5 Phonon-phonon interaction

Dissipation of mechanical modes can also be caused by interaction of individual phonon
modes with each other, i.e. phonon-phonon scattering. In crystals, this damping mecha-
nism is known as Akhiezer effect as first studied by Akhiezer in 1938 [209]. The interaction
can be viewed as an effective anharmonicity of the local phonon potential. A modulation
of the lattice constant caused by the excitation of phonons modulates the frequencies of the
individual phonon modes and thus their effective temperatures. As the phonon modes re-
lax to the equilibrium temperature on a certain time scale this gives rise to damping [210].
Although this process has been originally studied for crystals, it has also been shown to be
of relevance in amorphous materials where propagating phonon modes can interact with
localized phonon modes [211].

The dependence of the mechanical Q factor caused by Akhiezer damping is phenomeno-
logically given by

Q−1
akh = γ2

G

CpTv

2 v3
D

Ωτanh

1 + Ω2τ 2
anh

, (3.9)

where γG is the Grüneisen parameter characterizing the mean anharmonicity, Cv is the
volumetric specific heat, v is the speed of sound, vD is the Debye velocity. The anharmonic
relaxation time τanh is a material specific function of temperature.

For crystals this effect has often been found to be limiting the measured mechanical
quality (see e.g. Ref. [212] and references therein). For amorphous materials, however,
Akhiezer damping is typically smaller than the damping caused by two-level fluctuators (cf.
section 3.3.3). For silica, in particular, the parameter γ2

G = 3.6 (assuming v3
D = 0.322v3)

has been found [202, 211] and the temperature dependence of τanh has been measured in
Ref. [211].
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3.4 Clamping losses in toroid microresonators

In this section, the relevant dissipation mechanisms limiting the mechanical Q of the RBM
(cf. section 3.2) in toroid microresonators will be discussed. All experiments are performed
in a vacuum chamber with a pressure below 0.1 mbar (unless otherwise specified) such that
gas damping is negligible [6]. Clamping losses are experimentally found and theoretically
confirmed as the dominant sources of damping at room temperature.

In an ideal radial breathing mode, such as the case e.g. in a freely suspended ring, only
in-plane motion is present. The asymmetric clamping conditions of a microtoroid—the
torus is clamped with an offset to the silica disk [213] which in turn is rigidly attached to
the silicon pillar at its bottom but free on its top face—lead to an out-of-plane oscillation
component which is always admixed to the radial breathing mode. It is precisely this
out-of-plane motional component that is found to strongly influence the clamping losses.
The coupling between radial and out-of-plane flexural modes thereby strongly depends on
the toroid geometry. Fig. 3.4a, shows the Q factors and frequencies of radial breathing
and adjacent third order cantilever modes of a microtoroid for varying relative undercut u
(defined as the length of the free-standing part of the cavity divided by its radius, cf. Fig.
3.4b, inset). The breathing mode’s frequency only slightly changes with varying relative
undercut whereas the cantilever mode is more strongly affected (in fact, its frequency
approximately scales as ∝ u−2, as shown in section 3.2). As the toroid’s undercut is
gradually increased, the frequencies of both modes therefore approach each other. They
do not, however, cross but rather show an avoided crossing. This behaviour can accurately
be described by a coupled harmonic oscillator model:

ẍr/f + Γr/f ẋr/f + Ω2
r/fxr/f + ς2xf/r = 0 , (3.10)

where xr/f , Ωr/f , Γr/f denote the amplitude, bare frequency and damping rate of the radial
and flexural modes which are coupled by ς. The complex eigenvalues of the coupled system
can then be calculated to satisfy

λ± =
Ωr + Ωf

2
+ i

Γr + Γf

4
±

√(
Ωr − Ωf

2
+ i

Γr − Γf

4

)2

+
ς4

4 ΩrΩf

, (3.11)

with eigenfrequencies Ω± = Re (λ±) and quality factors Q± = Re (λ±) /(2 Im (λ±)). First,
the bare frequencies and Q factors are approximated as linear functions of the relative
undercut and fitted to the measured data, as shown in Fig. 3.4a. Then, the coupled
oscillator model according to Eq. (3.11) is fitted to the measured coupled frequencies
and quality factors, where the coupling rate ς serves as fit parameter. Good agreement
between model and data is found, as shown in Fig. 3.4, and a relatively large coupling
rate of ς/2π = 14 MHz is extracted (ς � Γr/f). It leads not only to an avoided crossing
of the coupled frequencies but also to a mixing of the mechanical quality factors Q±.
The originally higher quality mode described by λ+ turns into a low Q mode after the
avoided crossing (and vice versa). In the avoided crossing region, the quality factor of both
modes is low. This leads to a strong modulation of the radial breathing mode’s Q factor
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Figure 3.4: Geometry dependence of mechanical Q. a, Mechanical Q and frequencies of
RBM and third order flexural mode (R = 28µm, oxide thickness: t = 1µm) for vary-
ing relative undercut u = L/R (cf. inset of b). Mutual coupling of both modes leads
to an avoided crossing. The coupled oscillator model (full lines) yields good agreement
with the data, assuming a linear dependence of the bare frequencies and Q on undercut
(dashed lines). b, The normal mode coupling leads to a strong dependence of the RBM’s
mechanical Q on the relative undercut (R ≈ 28µm, t = 2µm). Data in b, is recorded
at atmospheric pressure. Inset: Definition of undercut u = L/R and scanning electron
micrographs of toroids with small (left) and large (right) u. c, The measured mechanical
Q factors accurately follow the model D up to a constant scaling factor ∼ 3. Fig. adapted
from Ref. [6].

as the undercut is varied. Fig. 3.4b shows the measured Q factors of the RBM for six
different samples of similar geometry over a wide range of undercut. Three dips can be
distinguished. These, can all be attributed to normal mode coupling to the three lowest
order flexural modes and the concomitant avoided crossing as their frequency approaches
the RBM frequency. The mechanical quality might thus be optimized by choosing undercut
regions where the coupling between radial and flexural modes and hence the out-of-plane
motional component of the RBM is minimized, e.g. u ∼ 0.9 in Fig. 3.4b.

With the insight that the out-of-plane motion (induced by coupling to flexural modes)
predominantly influences the mechanical quality, the phenomenological parameter

D =

 vρ

Emech

Ωm

∫
Ap

|∆z (r)|2 dA


−1

, (3.12)

is devised, describing the emission of sound waves from the silica disk into the silicon pillar
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(ρ, v: density and speed of sound in silica; Emech: total energy stored in the mechanical
oscillation). The out-of plane oscillation amplitude ∆z of the silica disk, integrated across
the clamping region Ap, as described by D indeed follows the measured quality factors
for both radial and flexural mode remarkably well, as shown in Fig. 3.4c. A relation of
Q ≈ 3 · D is found, clearly confirming that the mechanical quality factor of the RBM
is dominated by the geometry-dependent clamping losses modelled by D. The clamping
losses can thus be conveniently calculated using FEM simulations. This provides a useful
tool for an overall optimization of the toroid design, as described in the next section.
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3.5 Design of ultra-low dissipation spoke-supported

resonators

Having shown that the clamping losses within toroid microresonators can be a-priori cal-
culated with the model described in the previous section, we can now use it a as a tool
to devise optimized geometries mitigating clamping losses. One such geometry will be
described in this section: spoke-supported microtoroids. The basic idea is to replace the
silica disk, which usually connects the torus to the silicon pillar and mediates clamping
losses, by a few thin silica bridges. The length of these bridges can then precisely be
chosen such that they do not support modes at the radial breathing mode’s resonance
frequency. Thus, the radial breathing mode is decoupled from the supporting silicon pillar
and clamping losses can be strongly suppressed. Following a procedure shown in detail
in appendix C, such toroids can in fact be fabricated using a combination of standard
wet- and dry-etching techniques. Fig. 3.5 shows a corresponding electron micrograph of a
spoke-supported toroid.

3.5.1 Room-temperature quality factors

Finite element simulations predict that the clamping losses as described by Eq. (3.12) may
be reduced by several orders of magnitude by integrating a spoke-support into the silica disk
and choosing appropriate geometries. The measurements confirm this expectation. Fig.
3.6 shows the actually measured mechanical quality factors of spoke-supported toroids (and
also regular toroids) as a function of the corresponding simulated value D. The fabricated
samples exhibit values of D that are increased by more than three orders of magnitude

Figure 3.5: Scanning electron micrographs of spoke-supported microresonators (scale bar:
5µm). Fig. adapted from Ref. [6].
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compared to regular toroids. Correspondingly, larger mechanical Q factors are obtained,
as shown in Fig. 3.6a. However, Fig. 3.6a also clearly indicates a saturation of the Q
factors for large D. Nevertheless Q factors up to 50’000 are achieved (corresponding to
approximately one order of magnitude increase in Q compared to the values at the initial
stage of the study [34]). As will be shown in the next section, the saturation of the Q
factors is due to intrinsic losses caused by TLS present in amorphous silica. Thus, using
a spoke-support that minimizes the clamping losses D−1, in fact material loss limited Q
factors are achieved.

It is emphasized that the optical properties of the optomechanical resonator are not
affected by using the spokes design, since the laser reflow process enabling ultra-high optical
Q can still be applied, as shown in appendix C. This is exemplified by Fig. 3.6c, where
the transmission of a spoke-supported microtoroid is shown, indicating a cavity finesse
of F = 230′000. The mechanical degrees of freedom within microtoroids can thus be
optimized individually via the spokes length, width and position without compromising
the exceptional optical properties. Meanwhile, similar spoke geometries in connection with
double-disk structures have been used for static and dynamic tuning of the device geometry
via optical forces [214, 215].

3.5.2 Temperature dependence of mechanical Q

In the previous chapter, the clamping losses in toroid microresonators were successfully
understood and modelled. Consequently, these could be considerably reduced by an opti-
mized geometric design. As shown in Fig. 3.6, however, the measured mechanical quality
factors saturate at values of approximately 50′000 despite a much stronger reduction of
clamping losses. In order to elucidate this saturation the temperature dependence of the
mechanical quality factors is studied across a wide range of temperatures, both above and
below room temperature. Fig. 3.7 shows the inverse quality factor of the RBM at 38 MHz
as a function of temperature. The damping of Q−1

m = 1/32′000 measured for this sample
at room temperature continuously decreases when the temperature is increased. In partic-
ular, at 410 K a highest value of Qm = 80′000 is attained. The corresponding frequency-Q
product Qm · Ωm/2π = 3 · 1012 Hz is amongst the best values for micromechanical oscilla-
tors achieved to date [216]. Besides demonstrating a further reduction of dissipation, the
observed temperature dependence allows a detailed understanding of the limitations to the
mechanical quality. The inset in Fig. 3.7 shows the damping Q−1

m (T ) obtained with a
34 MHz sample measured from 10 K to 300 K. A strong temperature dependence becomes
evident. In order to fit the measured data, the relevant losses caused by TLS (cf. section
3.3.3), the Akhiezer contribution (cf. section 3.3.5) and a constant background attributed
to clamping losses are included. The constant background and the variables τ0 and C in
the TLS term (Eq. 3.6) are used as fit parameters, keeping all other variables both within
the TLS and the Akhiezer term (Eq. 3.9) fixed (but taking the measured temperature
dependence of the material parameters [153, 211] into account). Excellent agreement with
the data over the full temperature range is found. The fit parameters τ0 = 10−12.1 s and
C = 1.8 · 10−3 fall within the range reported in Ref. [202] (see section 3.3.3). Using the
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Figure 3.6: Material loss-limited optomechanical microresonators. a, The measured me-
chanical Q factor (blue: RBM of spoke-supported resonators, black: radially symmetric
modes of optimized regular toroids) is shown for the corresponding simulated values of D.
For small D the linear relation between D and Q is confirmed (the dashed line corresponds
to the fit shown in Fig. 3.4c). For large D, a saturation towards the material loss limit is
found (cf. section 3.5.2). The red line denotes a fit according to Q−1

m = a/D + b, where a
and b are used as fit parameters. Inset: FEM simulation of the RBM of a spoke-supported
toroid. b, Single-sided displacement spectrum of the RBM, showing a Q of 50’000 at
24 MHz. c, Optical transmission spectrum of a spoke-supported microtoroid exhibiting
mode splitting (cf. section 2.6.1) and an intrinsic finesse of 230’000. Fig. adapted from
Ref. [6].

same fit for the high-temperature data (295 K to 410 K) also yields excellent agreement
(τ0 = 10−12.05 s and C = 1.8 · 10−3). Moreover, the extracted temperature-independent
background sets an upper bound for the remaining clamping losses of Q−1

cl = 1/140′000,
experimentally confirming that indeed a strong reduction of clamping losses is achieved.
For this specific sample the D model, however, predicts even six times lower clamping
losses. Thus, it is likely that slight asymmetries in the structure cause additional clamping
losses not taken into account in the above FEM model and lead to the observed back-
ground of Q−1

cl = 1/140′000. The intrinsic losses of silica (that is, those caused by TLS
and Akhiezer damping) are known to exhibit a local minimum at a temperature of around
500 K [195] and thus a further increase in temperature would likely yield even higher Q
factors than those achieved at 410 K. It is noted that thermoelastic damping, for which an
upper bound of Q−1

ted = ∆E/2 = 2× 10−6 is found at room temperature (cf. section 3.3.4),
can safely be neglected in this analysis.

For operation at cryogenic temperatures, which is required for experiments pursuing
ground-state cooling of the RBM [8], the presence of TLS leads to a strong degradation
of the mechanical quality factors compared to the room temperature values. Particularly
in the frequency range of interest here (10-100 MHz), the Q factors exhibit a minimum of
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Figure 3.7: Temperature dependent mechanical Q factors. a, The mechanical damping
(for a RBM at 38 MHz) reduces down to a value of 1/80′000 at 410 K, as the temperature
is increased. The data are fitted using a constant clamping loss background Q−1

cl , the
contributions of Akhiezer damping Q−1

akh and TLS losses Q−1
tls . The fit yields good agreement

with the data and a clamping loss limit of Qcl = 1/140′000 can be extracted. Inset: The
dependence of the low-temperature (from 300 K to 10 K) damping is dominated by TLS
losses. The fit as explained in the text yields excellent agreement with the data. b, Q
factors at low temperatures. Below T = 10 K, the Q factors of two different samples (dots
and diamonds) first show a plateau, before increasing ∝ T 3 below a frequency dependent
threshold. The dotted line denotes a measurement from Ref. [195] at 43 MHz. Fig. adapted
from Refs. [6] and [9].

Qtls ∼ 600 at T ∼ 50 K (cf. Fig. 3.7a, inset). For even lower temperatures, the mechanical
quality factors recover slightly and a temperature independent plateau of Qtls ∼ 1′000 is
measured for T < 10 K [9], which is in agreement with previous measurements [195]. Note
that in this temperature regime Q−1

tls is no longer accurately described by Eq. (3.6) since the
tunneling term which dominates at low temperatures is neglected, there. Below a frequency
dependent cut-off temperature, the Q factors increase again according to Qtls ∝ Ωm/T

3

[217], as can be seen in Fig. 3.7b, for two measurements at different RBM frequencies. The
threshold for this increase approximately lies at T ∼ 2 K for frequencies Ωm/2π ∼ 50 MHz
and is moved to higher temperatures for higher oscillation frequencies. For a frequency of
43 MHz, a Q of 50′000 has been recovered at T ∼ 450 mK [195]. Measurements in a He-3
cryostat show that indeed Q factors well above 104 are accessible within microtoroids at
temperatures of T ∼ 500 mK and the clamping loss limit of regular toroid microresonators
is reached again at these low temperatures [147]. Spoke-supported microresonators with
low clamping losses may in this regime enable sufficiently high mechanical Q to achieve
ground-state cooling.



Chapter 4

Summary

In this thesis, two conceptionally entirely different approaches to cavity optomechanics have
been reported. Both are, however, based on the exceptional optical properties of toroid
microresonators whose whispering gallery modes exhibit a combination of ultra-high optical
quality factors and small mode volume.

First, nanomechanical oscillators were dispersively coupled to the optical modes of
toroid microresonator using their evanescent near-field. The resulting hybrid system al-
lowed the extension of dispersive cavity optomechanics to the realm of nanomechanical
oscillators. In particular, radiation pressure actuation and cooling of nanomechanical os-
cillators were achieved. Moreover, for the first time nanomechanical motion was measured
with an imprecision lower than the standard quantum limit using this system. It is shown
that the versatility of the developed platform also offers the capability of coupling mechan-
ical motion resonantly or quadratically to an optical mode doublet. In currently ongoing
experiments, the developed system may enable the demonstration of radiation pressure
quantum backaction on a solid-state mechanical oscillator which has remained an elusive
goal so far. Moreover, the near-field approach has the flexibility to be combined with almost
arbitrary mechanical oscillator geometries and materials and thus offers wide applicabil-
ity. For example graphene oscillators may be studied and, combined with low frequency
oscillators, the application as a sensitive probe for small forces can be envisioned.

Second, the properties of the intrinsic mechanical modes of toroid microresonators were
elucidated in detail. Both the spectrum and the origin of the mechanical quality factors
of the mechanical modes were analyzed experimentally as well as using finite element sim-
ulation. A thorough understanding of the mechanical quality factors allowed their subse-
quent optimization which resulted in the development of spoke-supported microresonators.
These combine both ultra-low optical and state-of-the-art mechanical dissipation in a sin-
gle monolithic device. Their properties might, in a next generation of experiments, enable
the first observation of a solid-state mechanical oscillator which is cooled to its quantum
ground-state using radiation pressure.
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Appendix A

Solution of the linearized quantum
Langevin equations

In this appendix the solutions of the linearized quantum Langevin equation (1.11) and
(1.13) will be given and general expressions for the intracavity field as well as the output
field fluctuations will be derived.

A.1 Equations for the field quadratures

First, taking the Fourier transform of the quantum Langevin equation (1.11) and its her-
mitian conjugate one obtains:

− iΩa[Ω] = (i∆− κ

2
) a[Ω]− iāg x[Ω] +

√
κex s[Ω] +

√
κ0 svac[Ω] (A.1a)

−iΩa†[Ω] = (−i∆− κ

2
) a†[Ω] + iāg x[Ω] +

√
κex s

†[Ω] +
√
κ0 s

†
vac[Ω] . (A.1b)

These expressions may be written in matrix form as follows:

M

(
a
a†

)
+

(
i
−i

)
āgx−

√
κex

(
s
s†

)
−
√
κ0

(
svac

s†vac

)
= 0 , (A.2)

where

M =

(
κ
2
− i(∆ + Ω) 0

0 κ
2

+ i(∆− Ω)

)
(A.3)

and, for simplicity, the argument of the fields Ω is omitted. Now, the optical field operators
are replaced by the corresponding amplitude and phase quadratures p and q, respectively.
To this end, one has to consider that for a mean field c̄ with phase ϕ, these can be written
in terms of the field fluctuations c and c† via the rotation matrix R as described in Eq.
(1.32) and (1.33). The intracavity mean-field ā was assumed to be real in section (1.1.2)
and thus has a vanishing phase. The corresponding phases of s̄ and s̄out, ϕs and ϕsout (with
respect to ā) can be obtained from Eqs. (1.8) and (1.10), respectively.
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Thus re-writing Eq. (A.2), the amplitude and phase quadratures of the intracavity field
fluctuations may be written as(

pa

qa

)
= R(0)M−1

[(
−i
i

)
āgx+

√
κexR(ϕs)

−1

(
ps
qs

)
+
√
κ0R(0)−1

(
pvac

qvac

)]
. (A.4)

A.2 Solutions for the intracavity field quadratures

Solving the system (A.4) for pa and qa and assuming that all quadratures are uncorrelated
with each other one obtains the following solutions for the symmetrized spectral densities
of the intra-cavity amplitude and phase quadratures Spa and Sqa :

Spa =
4/κ

(1 + ∆̄2)2 + 2(1− ∆̄2)Ω̄2 + Ω̄4

[
κex

κ

(
(1 + ∆̄2 +

Ω̄2

1 + ∆̄2
)Sps +

∆̄2Ω̄2

1 + ∆̄2
Sqs

)
+
κ0

κ

(
(1 + Ω̄2)Spvac + ∆̄2 Sqvac

)
+ 4

ā2

κ
∆̄2g2 Sx

]
, (A.5)

Sqa =
4/κ

(1 + ∆̄2)(∆̄4 + 2∆̄2(1− Ω̄2) + (1 + Ω̄2)2)

[κex

κ

(
∆̄2Ω̄2Sps + (1 + Ω̄2 + 2∆̄2 + ∆̄4)Sqs

)
+
κ0

κ

(
∆̄2(1 + ∆̄2)Spvac + (1 + Ω̄2)(1 + ∆̄2)Sqvac

)
+ 4

ā2

κ
(1 + Ω̄2)(1 + ∆̄2)g2 Sx

]
.

(A.6)

For better readability, the reduced Fourier frequency Ω̄ = 2 Ω/κ and detuning ∆̄ = 2 ∆/κ,
normalized by the cavity field decay rate κ/2 were introduced.

Using the above expression, the spectral density of the intracavity photon number
fluctuations SN as well as the phase fluctuations of the intracavity field Sϕ can then be
calculated:

SN = ā2 · Spa , (A.7)

Sϕ =
1

4 ā2
· Sqa . (A.8)

A.3 Solution for the output field quadratures

Inserting the quadrature components according to expression (1.32) into Eq. (1.13) and
including its hermitian conjugate one obtains the following system of equations which
describes the quadrature fluctuations pout and qout of the output field sout:(

pout

qout

)
= R(ϕsout)

[
R(ϕs)

−1

(
ps
qs

)
−
√
κexR(0)−1

(
pa
qa

)]
. (A.9)
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Substituting pa and qa with the solutions of (A.4) yields:

(
Spout

Sqout

)
= C

(
A1 B1 B2 B3 B4

A2 B2 B1 B4 B3

)
Sx
Spin

Sqin
Spvac

Sqvac

 , (A.10)

where

C =
[(

1 + ∆̄2
) (

(1− 2 ηc)
2 + ∆̄2

) (
1 + (∆̄− Ω̄)2

) (
1 + (∆̄ + Ω̄)2

)]−1
(A.11)

A1 = 64
(g
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4 (1− ηc)

2 + Ω̄2
) P
~ω

(A.12)
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B1 = Ω̄2
[(
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)2

Ω̄2 + 2
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(A.14)

B2 = 4 ∆̄2 η2
c Ω̄2

(
4 (1− ηc)

2 + Ω̄2
)

(A.15)

B3 = 4 ηc (1− ηc)
((

(1− 2 ηc)− ∆̄2
)2

+ (1− 2 ηc)
2 Ω̄2

) (
1 + ∆̄2

)
(A.16)

B4 = 4 ∆̄2 ηc (1− ηc)
(
4 (1− ηc)

2 + Ω̄2
) (

1 + ∆̄2
)
. (A.17)

Here, P , as in the main part of this thesis, is defined as the optical input power.
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Appendix B

Experimental techniques for
near-field cavity optomechanics

In this appendix several important experimental techniques used in chapter 2 will be de-
scribed. Besides the microfabrication techniques also the experimental setup for coupling
tapered optical fibre, toroid microresonator and nanomechanical oscillator will be discussed.
Moreover, the optical homodyne detection scheme and the calibration of the corresponding
acquired frequency noise spectra is shown in more detail.

B.1 Microfabrication techniques

In this section, the fabrication of toroid near-field sensors and strained silicon nitride
nanostrings will be discussed.

B.1.1 Fabrication of toroid near-field sensors

In order to get physical access to the evanescent near-field of toroid microresonators these
have to be fabricated at the edge of their silicon chip support. To this end, a few special
steps have to be added to the fabrication of regular toroid microresonators [88].

Starting point are undoped 3′′ silicon wafers with a 1µm film of thermally grown wet
oxide (commercially obtained from Virginia Semiconductor). First, circular silica pads are
created by UV lithography and subsequent wet-etching in buffered hydrofluoric acid (HF).
At the beginning of this thesis, these standard steps which do not differ from the general
recipe for fabricating toroid microresonators were carried out in the cleanroom facilities of
the chair of solid state physics (Prof. Kotthaus) at LMU Munich. The following parameters
were used:

� Spin-coating of adhesion promoter hexamethyldisilazane (HDMS) on the wafer at
3000 rpm for 20s

� Baking at 110 ◦C for 60 s
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� Spin-coating of photoresist S-1813 on the wafer at 4000 rpm for 60 s

� Baking for 70 s at 110 ◦C

� Illuminating the wafer for 40 s using a MJB 3 mask aligner (Süss Microtech).

� Developing for 40− 60 s using MF-319 developer

� Baking for 10 min at 110 ◦C

� Etching for 9− 11 min using 5% buffered HF solution

� Cleaning with acetone and isopropanol

Later on, also samples fabricated in a similar manner on 4′′ wafers in the CMI cleanroom at
the EPF Lausanne were used. The final fabrication of all samples, however, was performed
in the cleanroom of MPQ:

First, the wafers are cleaved into 5 × 15 mm2 chips each containing a row of 35 silica
pads. The subsequent fabrication steps are summarized in Fig. B.1. A layer of photoresist
(S-1813) is spin-coated on these chips individually with the same parameters as mentioned
above. After hardbaking for 10 min at 110 ◦C, the chips are cleaved again perpendicular
to the row of silica pads in order to break the chip close to a silica pad. Typically, the
distance of the outmost silica pad to the rim of the chip is on the order of 100µm. It is
critical that the cleave in this step is straight both along the cleave axis and perpendicular
to the cleave axis.

In the next step, a pulsed flow of XeF2 gas is used to etch the whole chip from the side,
the photoresist serving as an etch mask. Silicon is thereby etched by XeF2 according to
the following reaction:

2 XeF2 + Si
 2 Xe + SiF4 . (B.1)

At the same time the chip is monitored from the top using a microscope such that the
etching depth can be controlled to a precision of ∼ 1µm. The chip is etched continuously
until the distance of the silica pad to the rim of the chip is approximately 5µm. The
previous hardbaking of the chip turns out to be critical for this etch, as without it the
photoresist is very often penetrated by XeF2. Subsequently, the photoresist is removed
using hot acetone and isopropanol. The result of this etching and cleaning step is depicted
in Fig. B.1 (3). The best optical quality is obtained when the chip is additionally cleaned
with oxygen plasma (typically 5 min at 250 W).

Now, the silica pad, located at the edge of the silicon chip is subjected to a second
XeF2 etch. The etching speed of silicon bound in silica is reduced by a factor of ∼ 1000
and thus the silica pad is underetched isotropically. Two subtleties have, however, to be
considered in order to obtain an isotropic underetch. First, in the used system the XeF2

gas enters the circular etching chamber evenly from all sides. Due to saturation effects,
thus the lateral faces of the chip will be etched more strongly. In order to compensate for
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Figure B.1: Fabrication of microcavity near-field sensors. The left panel shows a rendering
of the fabrication process. The right panel shows microscope images taken during the
experimental fabrication process in the XeF2 etching chamber (1-4) and the experimental
vacuum chamber (5-6) (scale bars mark 50µm in (1)-(5); in (6) the contour of (5) is
indicated). (1)-(2) show how the silicon chip (protected by photoresist) is etched from the
side until the silica pad sits ∼ 5µm away from the edge of the chip. (3) shows the chip
after removing the photoresist and in (3b-c) it is isotropically underetched. The etching
at the initial stage (3b) progresses faster at the lateral face (as explained in the text) such
that the ∼ 5µm gap is etched away before the silica pad is significantly underetched. In (4)
the underetch is completed and the microtoroid created by laser-induced reflow is shown in
(5). (6) shows the toroid in the experimental setup, together with a tapered optical fibre
and an array of nanomechanical strings (right: a mirror image is reflected by the smooth
silicon surface of the chip hosting the nanomechanical oscillators).



122 B. Experimental techniques for near-field cavity optomechanics

this and still obtain an isotropic underetch of the silica pad despite its location at the edge
of the chip, it is advantageous to place an additional silicon chip next to the free side of
the silica pad. Thus, a similar concentration of XeF2 reaches the silica pad from all sides
leading to an isotropic underetch. Second, during the first few etching pulses, the lateral
faces of the chip are more strongly etched than the top faces which is attributed to a layer
of oxide typically formed on the top face due to exposure to air. Thus, best results are
obtained when the silica pads do not exactly sit at the edge of the silicon chip support but
rather at a distance of approximately 5µm. Then, the thin oxide layer on the top face is
typically etched away exactly as the lateral face of the chip reaches the edge of the silica
pad.

Finally, the underetched silica pad is illuminated with a 30 W CO2 laser (Synrad)
emitting at a wavelength of 10.6µm. As at this wavelength silica strongly absorbs whereas
the silicon substrate essentially acts as a mirror the silica pad heats up with the silicon chip
serving as a heat sink. For sufficiently large laser power the silica melts at its periphery and
due to surface tension an ultra-smooth toroid is formed. Typically less than 3 W of optical
power are sufficient to induce this melting process. In order to obtain a highly symmetric
toroid which supports whispering gallery modes with ultra-high optical Q a symmetric
undercut of the silica pads is crucial. Moreover, a symmetric support also allows accessing
sufficiently high mechanical quality such that the mechanical background noise floor caused
by intrinsic mechanical toroid modes is suppressed (cf. section 2.5.2.2).

B.1.2 Fabrication of nanomechanical oscillators

The nanomechanical oscillators used in this thesis were initially fabricated at LMU Munich
in the cleanroom facilities of the chair of solid state physics (Prof. Kotthaus). In the later
phase also oscillators fabricated at EPF Lausanne were employed. Here, a brief overview
of the fabrication of these nanomechanical strings will be given. The fabrication is shown
in Fig. B.2. Starting point is a 4′′ undoped silicon wafer with a 2µm layer of SiO2 (e.g.
from Virginia Semiconductor). After chemical cleaning, a 100 nm device layer of high
stress silicon nitride is deposited on the oxide via low pressure chemical vapour deposition.
After spin-coating a negative photoresist (Fig. B.2b), the pattern of the nanomechanical
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Figure B.2: Fabrication of silicon nitride nanomechanical oscillators. See text for details.
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oscillators is written into the resist by electron beam lithography. The photoresist is
developed (Fig. B.2c) and subsequently its pattern is transferred into the silicon nitride
layer (Fig. B.2d) by reactive ion etching using C4F8-CH4 chemistry. Then, the resist is
removed (Fig. B.2e) and the nanomechanical oscillators are released by a buffered HF etch
that removes the sacrificial oxide layer underneath the oscillators (Fig. B.2f).
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B.2 Experimental setup

In this section, the experimental setup will be described in somewhat more detail. The
fabrication of compact tapered optical fibres and the coupling setup itself will be discussed.

B.2.1 Compact tapered optical fibres

The tapered fibre used for coupling light in and out of toroid microresontators is fabri-
cated out of a standard single-mode fiber. Thereby, after stripping of the fibre’s buffer, it
is clamped at two points separated by approximately 10 mm. Melting the fibre in a hy-
drogen flame and at the same time pulling the clamping points apart allows adiabatically
reducing the fibre’s diameter from its original value 125µm down to a few hundred nanome-
tres across a tapered region of typically 30 mm length. At the same time the transmission
of the tapered part can be kept at values exceeding 99%. Fig. B.3a, shows the experimental
setup used for fibre-pulling. In principle the fibre can be directly used for experiments after
pulling. Due to space constraints within the experimental chamber, and in particular for
enabling the microscope access necessary for coupling to nanomechanical oscillators, the
fibre is transferred from the bulky holder used for pulling to a small u-shaped aluminium
part for the experiments described in chapter 2. As shown in Fig. B.3b, the aluminium
holder is positioned underneath the fibre until it slightly lifts up the tapered part. Subse-
quently, the taper is glued to the aluminium holder using standard ultraviolet-cured epoxy
glue for optical elements (Thorlabs), cf. inset in Fig. B.3b. The aluminium holder and the
glued fibre-taper are then mounted into the experimental chamber, as shown in Fig. B.3c.

Figure B.3: Compact tapered optical fibre. a, After stripping off the fibre’s buffer layer,
it is cleaned using ethanol and clamped at two positions. A hydrogen flame is positioned
underneath the fiber and the clamping points are pulled until the desired fibre diameter is
reached. A microscope is used for monitoring the process. b, For the near-field experiments
the taper is subsequently transferred onto a u-shaped aluminum piece onto which it is glued
by a drop of ultraviolet-cured epoxy glue. The inset shows a zoom on the transition between
free-hanging taper and glued region. c, The tapered fibre as used in the experimental
chamber is shown.
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B.2.2 Coupling setup

Fig. B.4 shows a drawing as well as a photograph of the experimental coupling region in-
cluding the tapered optical fibre, the horizontal chip hosting the toroid microresonator as
well as the vertical chip with the nanomechanical oscillators. As can be seen, careful trans-
lational and rotational alignment of all three elements with respect to each other has to be
achieved. To this end, both the nanomechanical oscillator- and the toroid microresonator-
chips are mounted on a common motor stage that allows coarse positioning of both ele-
ments with respect to the tapered optical fibre, as shown in Fig. B.4. The fibre in turn
is mounted on a piezo cube that allows fine-tuning its position in the evanescent near-
field of the microcavity. It can, moreover, be rotated around the two axes perpendicular
to its own axis which is necessary for parallel alignment with both nano- and microchip.
The nanomechanical oscillators’ alignment with respect to the microtoroid is performed by
three long-range piezo actuators on which the nanochip is mounted onto the motor stage.
Their rotational degrees of freedom can be adjusted using a mirror mount on top of the
piezo actuators.

The experimental coupling geometry and the mounting of the tapered optical fibre
are designed in a compact way such that the actual coupling region resides sufficiently
close to a vacuum window on top of it to allow optical access by a long-working distance
(∼ 25 mm) microscope objective. The positioning of the tapered fibre in the evanescent
near-field is conveniently done using the microscope and in principle this would even be
possible without the objective. Given the much smaller dimensions of the nanomechanical
oscillators, the microscope objective, however, is indispensable for coarse positioning of
the nanomechanical oscillators in the near-field of the toroids. The fine-positioning of the

Figure B.4: Experimental setup. The left panel shows a drawing of the experimental setup.
The tapered fibre is mounted on a short range piezo cube (sr pzt). Both the toroid and
a stack of three long range piezo cubes (lr pzt) are mounted on a motorized translation
stage. The nanomechanical oscillator chip is mounted on a mirror mount (inset) on top
of the long range cubes. A photograph of the coupling region is shown in the right panel
with the tapered fibre, the horizontal microresonator chip and the vertical nanomechanical
oscillator chip which is attached to a mirror mount.
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nanomechanical oscillators is performed using two further steps. First, the distinct optical
response of the toroid microresonator’s resonance to the presence of the dielectric in its
evanescent field is used to optimize the nanomechanical oscillator’s position. The silicon
substrate produces a predominantly reactive shift in the microtoroid’s optical resonances,
i.e. the resonances are broadened whereas the dispersive frequency shift is very small. Thus,
the presence of silicon or silicon nitride (which causes a predominantly dispersive frequency
shift, as shown in section 2.2.1) in the evanescent near-field can be clearly distinguished.
Once, the dispersive signal of a nanomechanical oscillator is found and both horizontal and
vertical position are optimized accordingly, its position is further optimized in a second
step. Thereby, the mechanical modes of the nanomechanical strings are used to fine tune
the position. Minimizing the signal obtained for the second order mechanical modes (which
exhibit a node at the centre of the strings) and at the same time maximizing the signal of
the fundamental mode allows reliably tuning to the centre of the respective nanomechanical
string.
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B.3 Homodyne interferometer signal and frequency

noise calibration

In this section the homodyne error signal, as employed in the setup described in chapter
2.5, will be derived. Moreover, the calibration of the thus measured frequency noise spectra
is described in more detail.

B.3.1 Homodyne signal

The fields emerging from the signal and local oscillator arms (cf. Fig. 2.24), Es and Elo,
are superimposed on a beam-splitter (denoted as PBS 5 in Fig. 2.24) using a half-wave
plate. Thereby, the wave plate is adjusted such that both fields Es and Elo are split
equally between both detectors of the balanced receiver. Thus, the fields impinging on
each detector can be written as:

E± =
1√
2

(Elo ± Es) . (B.2)

The phase shift of π between both fields is induced by the half-wave plate which rotates the
orthogonally polarized fields onto each other in a 45◦ angle with respect to the following
beam-splitter. At the balanced detector one then obtains a photocurrent of

I ∝ |E+|2 − |E−|2 . (B.3)

Assuming a relative phase of φ between Es and the local oscillator field Elo in the uncoupled
case (i.e. for κex → 0) and taking into account the phase imprinted onto Es by the
optomechanical system (Eq. 1.13) the photocurrent as a function of the laser detuning
evaluates to:

I = R
2
√
PloPs

1 + 4 ∆2/κ2

[(
1 + 4 ∆2/κ2 − 2κex/κ

)
cos (φ) + 4∆κex/κ

2 sin (φ)
]
, (B.4)

where Plo (Ps) is the power launched into the local oscillator (signal) arm and R denotes
the responsivity (in A/W) of the employed detector. This expression is shown in Fig.
B.5 as a function of normalized detuning. For optimizing the transduction of the phase
quadrature at zero detuning, the relative phase φ is crucial. Experimentally, it is controlled
by the length of the local oscillator arm. To this end, a piezo-driven motor stage is
employed which allows matching the path-length of both arms with a precision of ∼ 1µm.
Pumping the interferometer with a diode laser whose wavelength is scanned across its
maximum tuning range and minimizing the concomitant change in homodyne signal has
been a useful technique to closely match the path-lengths of both interferometer arms. The
phase difference of both arms is moreover fine-tuned using a piezoelement that actuates
the position of a movable mirror in the local oscillator arm. During measurements the
phase difference φ is actively stabilized, as shown in Fig. 2.24 using a low frequency lock
(bandwidth < 10 kHz) applied to both elements. Choosing the phase φ = −π/2 thereby
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Figure B.5: Homodyne interferometer signal. Normalized photocurrent of the balanced
homodyne receiver, as a function of the normalized laser-cavity detuning ∆/κ for φ = 0
(red) and φ = −π/2 (blue).

enables a dispersive homodyne signal, as shown in Fig. B.5. Correspondingly, at cavity
resonance the phase fluctuations of Es caused by the optomechanically induced cavity
frequency fluctuations are probed.

B.3.2 Frequency noise calibration

In order to calibrate the measured cavity frequency noise spectra in absolute terms, a
well-known frequency modulation is applied to the measurement laser using an electro-
optic modulator. It can be shown that the transduction functions of both laser frequency
modulation and cavity frequency fluctuations into the phase noise spectrum of Es are
equivalent. Thus, the knowledge of the applied frequency modulation’s magnitude allows
extracting a scale for the measured frequency noise spectra. First, the calibration of the
applied frequency modulation is discussed. Then, it is shown how exactly the applied phase
modulation is used to calibrate the measured spectra.

B.3.2.1 Calibrated phase modulation

By applying a bias-voltage to an electro-optic modulator, the phase of the light field transit-
ing the modulator can be shifted. The modulators used in this thesis are all fibre-coupled,
have typical bandwidths exceeding a GHz and typically the voltage necessary for a phase
shift of π (Vπ) is in the range of a few volts. The manufacturers typically specify the max-
imum value of Vπ which can, however, range within individual devices. Therefore, each
device has to be calibrated individually. To this end, a laser beam (with field E0, power
P oscillating at angular frequency ωd) is sent to the phase modulator and its wavelength
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is scanned across the resonance of an optical cavity. At the same time, a sinusoidally
modulated voltage V cos (Ωmodt) is applied to the modulator. The field exiting the phase
modulator can be written as:

E = E0 · eiβ(V )cos(Ωmodt) , (B.5)

where the phase modulation depth β(V ) depends on the amplitude of the applied voltage.
It does not, however, depend on the modulation frequency Ωmod/2π for the frequencies
1 − 100 MHz, well within the modulator bandwidth, considered here. Using the Jacobi-
Anger identity 1, E can be written as

E = E0

(
J0(β) +

∞∑
n=1

inJn(β)
(
einΩmodt + e−inΩmodt

))
. (B.6)

From the linear expression (1.10), one can then obtain the total output field emerging
from the cavity as a function of the laser detuning from cavity resonance ∆ = ωd − ω by
summing the individual field components:

s̄tot
out = J0(β) s̄out(∆) +

∞∑
n=1

inJn(β)
(
s̄out(∆ + nΩmod)einΩmodt + s̄out(∆− nΩmod)e−inΩmodt

)
.

(B.7)

Keeping only DC terms, one thus obtains a total DC photocurrent at the detector given
by:

I = R× Pin

∞∑
n=−∞

J2
n(β)

(
1− κex (κ− κex)

(κ2/4 + ∆− nΩmod)2

)
. (B.8)

Thus, the transmitted field consists of the regular absorption dip at ∆ = 0 and symmetric
sidebands at ∆ = ±nΩmod all weighted by the respective Bessel-function Jn(β). Fig.
B.6a shows the transmission of a κ/2π = 20 MHz linewidth cavity using a frequency-
modulated input laser. The transmission trace which clearly exhibits sidebands is fitted
according to Eq. (B.8) up to second order which yields good agreement. Correspondingly
the modulation index β can be extracted. Fig. B.6b shows the thus obtained modulation
index as a function of voltage applied to the electro-optic modulator. A linear fit allows
extracting β(V ) = π V/Vπ, with Vπ = (5.3± 0.5) V.

B.3.2.2 Calibration of frequency noise spectra

The calibrated phase modulation which is applied to the measurement laser can now be
used in order to calibrate the measured radio-frequency noise spectra in terms of frequency

1 The Jacobi-Anger identity reads
eiβcos(φ) =

∑∞
n=−∞ inJn(β)einφ, β, φ ∈ R.
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a, b,

Figure B.6: Calibration of the electro-optic phase modulator. a, The transmission of
a phase-modulated laser through a cavity resonance is shown as a function of the laser
detuning. The data allows an excellent fit according to Eq. (B.8) and yields β = 0.9. b,
The modulation index β measured as a function of the modulation voltage is shown. A
linear fit through the origin allows extracting Vπ = 5.3 V.

noise. It can be shown from Eqs. (A.10)-(A.17) that both cavity frequency noise Sω and
laser phase noise Sφ are transduced into fluctuations SI of the cavity output field with the
same transduction factor K [Ω] (see Ref. [3] for more details):

SI [Ω] = K [Ω]
(
Sφ [Ω] + Sω [Ω] /Ω2

)
. (B.9)

Sending the signal SI to a spectrum analyzer yields the following measured convolved
spectrum:

Smeas [Ω] = F [Ω] ∗
[
K [Ω]

(
Sφ [Ω] + Sω [Ω] /Ω2

)]
, (B.10)

where F [Ω] denotes the filter function of the electronic spectrum analyzer. Applying the
previously calibrated phase modulation with modulation index β (as defined in Eq. B.5)
leads to a delta distributed spectrum of the input laser phase:

Sφ [Ω] = π (δ (Ω− Ωmod) + δ (Ω + Ωmod)) β2/2 . (B.11)

If the measured signal Smeas [Ωmod] at the modulation frequency is dominated by Sφ [Ω],
the transduction factor K [Ω] can thus be calculated:

K [Ωmod] = 4 ENBWSmeas [Ωmod] /β2 , (B.12)

where ENBW denotes the effective noise bandwidth of the filter function F [Ω] 2. Now, if
the transduction factor is sufficiently flat across the frequency window of interest (which is

2 The effective noise bandwidth is usually defined via ENBW · F [0] =
∫∞
−∞ F [Ω] dΩ

2π .
For a normalized filter function one has thus: ENBW = 1/F [0].
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typically the case, since Γm � κ), the measured cavity frequency noise can be calibrated
in absolute terms. If the ENBW is chosen much narrower than the spectral features in
Smeas, using the above expressions one obtains:

Sds
ω [Ω] =

1

Smeas [Ωmod]

Ω2
modβ

2

4 ENBW
× Smeas [Ω] , (B.13)

where the superscript in Sds
ω [Ω] emphasizes that we refer to a double-sided spectrum, here.

Equivalently, for the single-sided spectrum one obtains:

Sss
ω [Ω] =

1

Smeas [Ωmod]

Ω2
modβ

2

2 ENBW
× Smeas [Ω] . (B.14)
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Appendix C

Fabrication of spoke-supported
microresonators

In this appendix, the fabrication of spoke-supported microresonators is described. As
depicted in Fig. C.1, it requires two UV-lithography steps. The first one is performed in
the cleanroom of Prof. Kotthaus at LMU. Starting with an undoped silicon wafer with a
1− 3µm oxide layer (Virginia Semiconductor), first, the spokes pattern is etched into the
oxide layer using UV-lithography and a buffered hydrofluoric wet etch. This fabrication
step follows the same recipe as used for regular toroids and described in appendix B.1.1.

Now, a second lithography step is required. An immediate XeF2 dry etch which is
used to underetch the glass disks would also etch through the gaps which define the spokes
patterns and thus make it difficult to achieve the desired geometry with free-standing
spokes. In order to prevent this, a layer of photoresist (AZ 5214F) that does not react with
XeF2 is deposited on top of the silica disk and circular pads covering the gaps between the
spokes are defined. This step which requires precise alignment of the spokes pattern and
the photomask turned out to be very difficult to perform with the MJB 3 mask aligner
used in the standard process. Therefore, this step was performed in the cleanroom of Prof.
Feldmann and Prof. Kersting at LMU where a mask-aligner with a better microscope
could be used (MA 6, Süss Microtech). The following recipe was used for fabricating the
circular pads:

� Spin-coating of adhesion promoter HDMS on the wafer at 3000 rpm for 20s

� Baking at 110 ◦C for 60 s

� Spin-coating of photoresist AZ-5214 F on the wafer at 4000 rpm for 60 s

� Baking for 70 s at 110 ◦C

� Illuminating the wafer for 35 s using a MA 6 mask aligner (Süss Microtech).

� Developing for 40− 60 s using AZ-726 MIF developer



134 C. Fabrication of spoke-supported microresonators

Figure C.1: Fabrication of spoke-supported microresonators. a, Silica disk with spokes on
silicon wafer. b, A protective layer of photoresist is deposited on top of the spokes. c, The
silica structure is underetched from the side using XeF2 gas. d, The photoresist is removed
with oxygen plasma. e, The silica structure is illuminated with a CO2 laser melting the
structure at its rims such that a toroid is formed f, via surface tension. g, A second XeF2

etch releases the spokes such that the silica structure is only supported at its centre. Fig.
adapted from Ref. [6]

.

Subsequently, the XeF2 underetch can be performed as for regular toroids. Afterwards
the protective photoresist pad is removed by acetone and oxygen plasma (Fig. C.1c). In
order to obtain ultra-high optical Q-factors the rim of the spokes pattern is melted using
a CO2 laser-assisted reflow process. For this reflow process it has to be made sure that
the spokes are still fully supported by the silicon substrate after the XeF2 etch. Only that
way, sufficient heat conduction from the silica to the silicon substrate is ensured, allowing
controlled melting along the circumference of the silica disk. Doing so, it is possible to
perform the full laser reflow process without harming the silica spokes even if these are very
thin. By a final XeF2 etching step the spokes sitting on the silica substrate are released
and the desired relative undercut can be reached.



Appendix D

Code for FEM whispering gallery
mode simulations

The following code is used for simulating the optical whispering gallery modes of a toroid
microresonator with a dielectric nanomechanical oscillator present in its evanescent field.
It is based on the code for axisymmetric problems supplied in Ref. [101].

% Input variables:
% - R: Major toroid radius in micron
% - r: Minor toroid radius in micron
% - modeM: angular mode number l
% - nfusedsilica:refractive index of silica
% - startvalue: optical frequency used as start value
% - width: thickness of the dielectric nanomechanical oscillator in micron
% - height: width of the dielectric nanomechanical oscillator in micron
% - x0: distance of the nanomechanical oscillator to the cavity in micron
%
% Output variables:
% - Field distribution (a.u.)
% - Resonance frequency in Hz
% - Mode volume in micronˆ3

function frequency(R,r,modeM,nfusedsilica,startvalue,width,height,x0)

% COMSOL version
clear vrsn
vrsn.name = 'COMSOL 3.2';
vrsn.ext = '';
vrsn.major = 0;
vrsn.build = 224;
vrsn.rcs = '$Name: $';
vrsn.date = '$Date: 2005/10/24 07:30:19 $';
fem.version = vrsn;

flclear fem
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global fem

% Constants
fem.const = {'c','299792458', 'fc','4*piˆ2/cˆ2', 'alpha','1', 'M',modeM, ...
'e1','n silicaˆ2', 'e2','n SiNˆ2', 'e3','1.0', 'e4','1.0', 'e5','1.0', ...
'eperp1','9.2725', 'epara1','11.3486', 'eperp2','1.0', 'epara2','1.0', ...
'eperp3','1.0', 'epara3','1.0', 'eperp4','1.0', 'epara4','1.0', ...
'eperp5','1.0', 'epara5','1.0', 'n silica',nfusedsilica, 'n SiN','2.0'};

% Draw Geometry
g1=rect2(6+2*r,6+2*r,'base','corner','pos',[R-3-2*r,-r-3]);
g2=rect2(3+r,'1','base','corner','pos',{R-3-2*r,-1},'rot','0');
g3=ellip2(r,r,'base','center','pos',[R-r,0]);
g4=geomcomp({g2,g3},'ns',{'g51','g52'},'sf','g51+g52','edge','all');
g42=rect2(width,height,'base','corner','pos',{R+x0,-height/2},'rot','0');

clear s
s.objs={g1,g4,g42};
s.name={'R2','CO2','R3'};
s.tags={'g1','g4','g42'};

fem.draw=struct('s',s);
fem.geom=geomcsg(fem);

% Initialize mesh
fem.mesh=meshinit(fem, ...

'hmaxfact',0.55, ...
'hgrad',1.25, ...
'hcurve',0.25, ...
'hcutoff',0.0005);

%Refine mesh
fem.mesh=meshrefine(fem, ...

'mcase',0, ...
'boxcoord',[(R-2*r) (R+3) -r-1 r+1], ...
'rmethod','regular');

% (Default values are not included)
% Application mode 1
% Before using the code, REMOVE LINEBREAKS within curly brackets {} in equ.weak!
clear appl
appl.mode.class = 'FlPDEW';
appl.dim = {'Hrad','Hazi','Haxi','Hrad t','Hazi t','Haxi t'};
appl.name = 'Axisymmetric Dielectric Resonator Simulator';
appl.gporder = 4;
appl.cporder = 2;
appl.assignsuffix = ' Axisymmetric Dielectric Resonator Simulator';
clear bnd
bnd.constr = {'Hrad*nx+Haxi*ny',{'Hazi';'-Haxi*nx+Hrad*ny'},0,{'-Hrad'; ...
'-Hazi';'-Haxi'}};
bnd.name = {'tangential H','normal H','null',''};
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bnd.ind = [1,1,1,4,1,4,1,4,4,4,4,1,4,4,4,4];
appl.bnd = bnd;
clear equ
equ.weak = {{'((test(Hazi)*Hazi-M*(test(Hazi)*Hrad+Hazi*test(Hrad))
+Mˆ2*(test(Hrad)*Hrad+test(Haxi)*Haxi))/x+(test(Hazix)*(Hazi-M*Hrad)
+Hazix*(test(Hazi)-M*test(Hrad)))-M*(test(Haxi)*Haziy+Haxi*test(Haziy))
+x*(test(Hazix)*Hazix+((test(Haxix)-test(Hrady))*(Haxix-Hrady)
+Haziy*test(Haziy))))'; 'alpha*((test(Hrad)*Hrad-M*(test(Hazi)*Hrad
+Hazi*test(Hrad))+Mˆ2*test(Hazi)*Hazi)/x+(test(Haxiy)
+test(Hradx))*(Hrad-M*Hazi)+(test(Hrad)-M*test(Hazi))*(Hradx+Haxiy)
+x*(test(Hradx)+ test(Haxiy))*(Hradx+Haxiy))'}, ...
{'((test(Hazi)*Hazi-M*(test(Hazi)*Hrad+Hazi*test(Hrad))
+Mˆ2*(test(Hrad)*Hrad+test(Haxi)*Haxi))/x+(test(Hazix)*(Hazi-M*Hrad)
+Hazix*(test(Hazi)-M*test(Hrad)))-M*(test(Haxi)*Haziy+Haxi*test(Haziy))
+x*(test(Hazix)*Hazix+((test(Haxix)-test(Hrady))*(Haxix-Hrady)
+Haziy*test(Haziy))))/e1'; 'alpha*((test(Hrad)*Hrad-M*(test(Hazi)*Hrad
+Hazi*test(Hrad))+Mˆ2*test(Hazi)*Hazi)/x+(test(Haxiy)
+test(Hradx))*(Hrad-M*Hazi)+(test(Hrad)-M*test(Hazi))*(Hradx+Haxiy)
+x*(test(Hradx)+test(Haxiy))*(Hradx+Haxiy))'}, ...
{'((test(Hazi)*Hazi-M*(test(Hazi)*Hrad+Hazi*test(Hrad))
+Mˆ2*(test(Hrad)*Hrad+test(Haxi)*Haxi))/x+(test(Hazix)*(Hazi-M*Hrad)
+Hazix*(test(Hazi)-M*test(Hrad)))-M*(test(Haxi)*Haziy+Haxi*test(Haziy))
+x*(test(Hazix)*Hazix+((test(Haxix)-test(Hrady))*(Haxix-Hrady)
+Haziy*test(Haziy))))/e2'; 'alpha*((test(Hrad)*Hrad-M*(test(Hazi)*Hrad
+Hazi*test(Hrad))+ Mˆ2*test(Hazi)*Hazi)/x +(test(Haxiy)
+test(Hradx))*(Hrad-M*Hazi)+(test(Hrad)-M*test(Hazi))*(Hradx+Haxiy)
+x*(test(Hradx)+test(Haxiy))*(Hradx+Haxiy))'}};

equ.dweak = 'fc*x*(Haxitt*test(Haxi)+Hazitt*test(Hazi)+Hradtt*test(Hrad))';
equ.name = {'dielectric 0:vacuum','isotrop diel 1','isotrop diel 2'};
equ.ind = [1,2,3];
appl.equ = equ;
fem.appl{1} = appl;
fem.border = 1;
fem.units = 'SI';

% Subdomain expressions
clear equ
equ.ind = [1,2,3];
equ.dim = {'Hrad','Hazi','Haxi'};
equ.expr = {'erel',{1,'e1','e2'}};
fem.equ = equ;

% Scalar expressions
fem.expr = {'DivH','(Hrad-Hazi*M+(Haxiy+Hradx)*x)/x', ...
'MagEnDens','Hrad*Hrad+Hazi*Hazi+Haxi*Haxi', ...
'Drad','(Haxi*M-Haziy*x)/x', ...
'Dazi','-Haxix+Hrady', ...
'Daxi','(Hazi-Hrad*M+Hazix*x)/x', ...
'Erad','Drad/erel', ...
'Eazi','Dazi/erel', ...
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'Eaxi','Daxi/erel', ...
'ElecMagSqrd','Erad*Erad+Eazi*Eazi+Eaxi*Eaxi', ...
'ElecEnDens','Erad*Drad+Eazi*Dazi+Eaxi*Daxi'};

% Descriptions
clear descr
descr.expr= {'Eaxi','axial el. field strength', 'DivH','div. of magn. field', ...
'ElecEnDens','el. energy density', ...
'ElecMagSqrd','el. field strength magnitude squared', ...
'Eazi','azimuthal el. field strength', 'Drad','radial el. displacement', ...
'Dazi','azimuthal el. displacement', 'Erad','radial el. field strength', ...
'Daxi','axial el. displ.', 'MagEnDens','logarithmic magn. energy density'};
fem.descr = descr;

% Coupling variable elements
clear elemcpl

% Integration coupling variables
clear elem
elem.elem = 'elcplscalar';
elem.g = {'1'};
src = cell(1,1);
src{1} = {{},{},{}};
elem.src = src;
geomdim = cell(1,1);
geomdim{1} = {};
elem.geomdim = geomdim;
elem.var = {};
elem.global = {};
elem.maxvars = {};
elemcpl{1} = elem;
fem.elemcpl = elemcpl;

% Descriptions
descr = fem.descr;
descr.const= {'c','speed of light', 'n SiN','refracvtive index of SiN', ...
'M','angular mode number', 'n silica','refractive index of silica', ...
'fc','constant used internally --do not modify', ...
'e1','relative permittivity of isotropic dielectric 1', ...
'alpha','penalty coefficient on Div H'};
fem.descr = descr;

% Multiphysics
fem=multiphysics(fem);

% Extend mesh
fem.xmesh=meshextend(fem);

% Solve problem
fem.sol=femeig(fem, ...

'symmetric','on', ...
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'solcomp',{'Hazi','Haxi','Hrad'}, ...
'outcomp',{'Hazi','Haxi','Hrad'}, ...
'neigs',1, ...
'shift',startvalue, ...
'maxeigit',2000, ...
'linsolver','spooles');

% Save current fem structure for restart purposes
fem0=fem;

% Get mode volume and frequency
I2=postint(fem,'2*pi*x*ElecEnDens','dl',[1]);
I3=postint(fem,'2*pi*x*ElecEnDens','dl',[2]);
I4=postint(fem,'2*pi*x*ElecEnDens','dl',[3]);

Energy=I2+I3+I4;
Engmax=postmax(fem,'ElecEnDens');

fem.modevolume=Energy/Engmax;
fem.frequency=fem.sol.lambda*1e6;

% Visualise solution
postplot(fem, ...

'tridata',{'log10(ElecMagSqrd+1e-2)','cont','internal'}, ...
'trimap','jet(1024)', ...
'arrowdata',{'Erad','Eaxi'}, ...
'arrowxspacing',15, ...
'arrowyspacing',13, ...
'arrowscale',1.2, ...
'arrowtype','arrow', ...
'arrowstyle','proportional', ...
'arrowcolor',[1.0,1.0,1.0], ...
'maxminsub','ElecEnDens', ...
'title', 'log10(ElecMagSqrd+1e-2)', ...
'axis',[R-3-2*r,R+3,-r-3,r+3,-1,1]);
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[137] A. Mazzei, S. Götzinger, L. de S. Menezes, G. Zumofen, O. Benson and V. Sandogh-
dar. Controlled coupling of counterpropagating whispering-gallery modes by a single
rayleigh scatterer: A classical problem in a quantum optical light. Physical Review
Letters 99, 173603 (2007).

[138] T. J. Kippenberg, A. L. Tchebotareva, J. Kalkman, A. Polman and K. J. Vahala.
Purcell-factor-enhanced scattering from si nanocrystals in an optical microcavity.
Physical Review Letters 103, 027406 (2009).

[139] M. Pinard, Y. Hadjar and A. Heidmann. Effective mass in quantum effects of radi-
ation pressure. European Journal of Physics D 7, 107 (1999).

[140] W. Weaver, S. P. Timoshenko and D. H. Young. Vibration Problems in Engineering .
John Wiley and Sons (1990).

[141] E. D. Black. An introduction to Pound–Drever–Hall laser frequency stabilization.
American Journal of Physics 69, 79 (2001).

[142] A. Schliesser. Cavity Optomechanics and Optical Frequency Comb Generation with
Silica Whispering-Gallery-Mode Microresonators . Ph.D. thesis, Ludwig-Maximilians
Universität München (2009).

[143] D. R. Southworth, R. A. Barton, S. S. Verbridge, B. Ilic, A. D. Fefferman, H. G.
Craighead and J. M. Parpia. Stress and silicon nitride: A crack in the universal
dissipation of glasses. Physical Review Letters 102, 225503 (2009).

[144] Q. P. Unterreithmeier, T. Faust and J. P. Kotthaus. Damping of nanomechanical
resonators. Physical Review Letters 105, 027205 (2010).

[145] J. M. Dobrindt, I. Wilson-Rae and T. J. Kippenberg. Parametric normal-mode
splitting in cavity optomechanics. Physical Review Letters 101, 263602 (2008).

[146] M. Zalalutdinov, A. Zehnder, A. Olkhovets, S. Turner, L. Sekaric, B. Ilic,
D. Czaplewski, J. M. Parpia and H. G. Craighead. Autoparametric optical drive
for micromechanical oscillators. Applied Physics Letters 79, 695 (2001).
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und kompetente Hilfe bei technischen Anliegen aller Art. Auch Philipp Altpeter gilt mein
Dank für die Unterstützung im Reinraum.
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