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"From the standpoint of daily life, however, there is one thing we do know: that we 

are here for the sake of each other - above all for those upon whose smile and well-

being our own happiness depends, and also for the countless unknown souls with 

whose fate we are connected by a bond of sympathy. Many times a day I realize 

how much my own outer and inner life is built upon the labors of my fellow men, 

both living and dead, and how earnestly I must exert myself in order to give in 

return as much as I have received." 

 

-Albert Einstein 
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Summary 

 

With the dawn of the „omics‟ era, bioinformatics has been catapulted from being a passive 

service component of molecular biology to a multifaceted scientific discipline that now actively 

drives major biomedical endeavors. In the past decade bioinformatics has played key roles in the 

success of genomics and seamlessly integrated itself into the fabric of contemporary biology. 

Owing to recent advances in mass spectrometry (MS) instrumentation, proteomics too has joined 

in the league of high throughput technologies
1,2

. Modern proteomics experiments generate 

massive amount of data of complex structure and high dimensionality. Analysis of such datasets 

presents many novel challenges hitherto unknown to proteomics researchers, therefore 

bioinformatics is gaining wider acceptance in proteomics research. This thesis applies 

bioinformatics to systematic knowledge mining and comprehensive functional analysis of mass 

spectrometry based proteomics datasets.  

 

Proteomics in itself builds upon an arsenal of innovative analytical, technological and molecular 

biology methodologies. It is important to appreciate how these diverse technologies and 

methodologies coexist and co-operate to facilitate high throughput investigations at the protein 

level. Breakthroughs in mass spectrometric instrumentation and protein ionization techniques 

have played pivotal roles in the advancement of proteomics, which has been timely supported by 

innovations in experimental strategies. With the introduction of various quantitation methods, 

mass spectrometry based proteomics is now ready for systems-wide measurement of cellular 

protein expression levels
2
.  Chapters 1 through 3 of the thesis provide a brief introduction to 

these aspects of proteomics, namely mass spectrometry instrumentation, ionization techniques 

and quantitative proteomics techniques.  

 

The data structures generated by mass spectrometers are a collection of mass spectra, which form 

a three dimensional space of mass-to-charge ratio (m/z), time (t) and intensity (I). In simpler 

terms these mass spectra are the signal generated by the ionized peptides from digested proteins 

and contain peptide identification and quantitation information.  The process of decoding peptide 

identity and quantity from collection of mass spectra is an intensive multi-level algorithmic 
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exercise, now widely studied in the sub-discipline of Computational Proteomics. Computational 

proteomics spans a gamut of computational, statistical and machine learning methods and 

algorithms especially dedicated for peptide (and protein) identification and quantitation. 

Moreover, it harbors a few of the most exciting algorithmic research problems in biology for data 

disambiguation, interpretation and presentation, and is essentially the cornerstone of proteome 

informatics
3
. Chapter 4 of the thesis briefly discusses this very important facet of the proteomics 

workflow. 

 

The analysis of raw mass spectrums by computational proteomics algorithms and applications 

usually generate a data matrix containing protein identity and quantity information for different 

biological conditions or samples. Essentially, this inventory of identified proteins and their 

quantitative map (if present) contain a wealth of information that needs to be mapped onto 

biological knowledge and insights. This transformation from the data to the knowledge domain is 

facilitated by bioinformatics. Bioinformatics itself has come to prominence in the last decade due 

to the large scale genome sequencing projects. But application of bioinformatics to solve 

biological problems is not a recent trend and can be traced back to the earliest days of the 

computing revolution
4,5

. As this thesis primarily centers on bioinformatics application, an 

understanding of current state-of-the-art in this field will help put proteomics related 

bioinformatics activities in broader context of integrative systems biology. Chapter 5 discusses 

some of the major research directions in bioinformatics which is now also becoming an integral 

part of the regular proteomics workflow. 

 

This thesis discusses four projects illustrating wide-ranging functional analysis of mass 

spectrometry based proteomics datasets by bioinformatics. The data generated by current 

proteomics research endeavors are mainly of two types - qualitative whereby only the qualitative 

aspect of the constituent proteome is studied, and quantitative where in addition to cataloguing 

proteins the quantitative information of their changes across conditions are also reported. The 

scope of functional analysis and the analytical directions that can be taken are largely dependent 

on the type of data generated. In qualitative proteomics most of the bioinformatics activities are 

focused on functional data mining by integration of various annotational data sources - to extract 

the global biological theme underlying the proteome. Additionally, in quantitative proteomics 
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machine and statistical learning approaches can be employed to explore quantitative dimensions 

of the proteome datasets that are not initially obvious to humans.  

 

The first project of this thesis showcases the breadth of biological knowledge that can be 

extracted from a proteome inventory by applying an array of bioinformatics tools and algorithms. 

In this project the proteome of the 3T3-L1 adipocyte (a fat cell line) was studied in-depth after 

fractionation into four sub-cellular fractions, namely cytosol, nuclei, mitochondria and 

membrane. State-of-the-art MS-based protein identification technology developed recently in our 

laboratory allowed us to identify more than 3,200 proteins with essentially no false positives.  

Extensive bioinformatics analysis and comparison with transcriptome data revealed several 

layers of information related to the adipocytes proteome that were in turn mapped to an ensemble 

of interesting biological processes, functions and pathways. Our findings concur with recent 

scientific re-evaluation of adipocytes function and pathophysiology, which renounces the view 

that they are mere lipid depots and implicates them in myriad cellular and organismal 

processes
6,7

. Additionally, by using a systemic protein prioritization methodology described 

recently for functional genomics
8
 we predicted candidate proteins hitherto not known to be 

involved in insulin-dependent vesicular trafficking. Chapter 6 discusses the proteomics and 

bioinformatics analysis of the 3T3-L1 adipocyte along with key findings in detail. 

 

The second project relates to systems level quantitative proteomic comparison of the mouse 

hepatoma cell line Hepa1-6 with the non-transformed mouse primary hepatocytes. The 

experiment was performed by employing the Stable Isotope Labeling by Amino Acids in Cell 

culture (SILAC) approach
9
, whereby Hepa1-6 was completely labeled by the „heavy‟ 

13
C6-forms 

of arginine and lysine and combined with the primary hepatocytes. To characterize the features 

of these two proteomes, quantitation information (i.e. protein ratios between the two cell types) 

was used to divide all proteins into five quantiles. Each quantile was clustered according to the 

Gene Ontology (GO) and KEGG pathway database information to assess their enriched 

functional groups and signaling pathways. To integrate this information at the systems level, 

hierarchical clustering based on the enrichment p-value obtained from GO and KEGG clustering 

was performed. Using this novel bioinformatics algorithm for functional data mining, the 

proteomic phenotypes of the primary cells and transformed cells are immediately apparent. 
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Primary hepatocytes are enriched in mitochondrial functions such as metabolic regulation and 

detoxification, as well as liver functions with tissue context such as secretion of plasma and low-

density lipoprotein (LDL). In contrast, the transformed cancer cell line Hepa1-6 is enriched in 

cell cycle and growth related functions. Interestingly, several aspects of the molecular basis of 

the “Warburg effect” described in many cancer cells became apparent in Hepa1-6, such as 

increased expression of glycolysis markers and decreased expression of markers for tricarboxylic 

acid (TCA) cycle
10

. Many of these bioinformatics findings could directly be verified at cellular 

compartment level by light microscopic comparison of the cell types. This is the first systematic 

proteome level evaluation of a cell line model against its cognate in vivo cell counterpart and 

chapter 7 discusses the experimental procedure, bioinformatics steps and results obtained. 

 

The third project banks on bioinformatics analysis of one of the most important aspects of any 

biological process, which is time course progression through a cellular event. In this project the 

SILAC approach was combined with latest MS technology, large scale phosphopeptide 

enrichment, sophisticated computational proteomics and novel bioinformatics - to study time 

course progression of cell cycle in HeLa cell line at the proteome and phosphoproteome level. 

The dataset comprised of 6 time points capturing different temporal stages of cell cycle and was 

analyzed separately by a novel time course guided supervised clustering approach. The clusters 

recapitulated known behavior of key cell cycle players but also revealed interesting patterns of 

biological functions when analyzed by an extended version of the proteomic phenotypic method 

described in chapter 7. Moreover, we used directional statistics methods to reveal the cellular 

component level organization of the proteome during the course of cell cycle progression. 

Comparison of proteome changes with transcriptome showed interesting regulatory aspects 

wherein proteins regulated at both the mRNA and the protein level showed an enrichment of cell 

cycle related functions, whereas proteins regulated at neither of the levels were preferentially 

involved in homeostatic and basic metabolic processes. Additionally, analysis of 

phosphoproteome showed time dependent regulation of cell cycle regulated kinase substrates, 

and in particular identified MCM6 protein as a substrate for the DNA damage response network.  

More interestingly, systems level integration of proteome, transcriptome and phosphoproteome 

revealed that E2F transcriptional targets are regulated during the cell cycle through lamina 
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association. Chapter 8 discusses the experimental protocols, bioinformatics analysis and results 

obtained from this global cell cycle phosphoproteomics study. 

 

The fourth project explores the spatial aspect of cellular proteomes to elucidate the mitochondrial 

proteome of mouse brown adipose tissue (BAT) and white adipose tissue (WAT). Here we build 

on the strength of quantitative proteomics by SILAC and complement it by a novel 

bioinformatics approach for sub-cellular localization prediction.  In a set of two parallel 

experiments we mix mitochondrial fraction from each of the adipose tissue subtypes (brown and  

white) with either SILAC labeled nuclear or SILAC labeled post mitochondrial fraction from the 

cognate cell types (brown adipocyte, 3T3-L1 adipocyte).  The resultant relative quantitative 

ratios were then modeled as bimodal Gaussian distributions, and subsequently used to assign 

localization probability to the proteins based on their quantitative ratios using Bayesian 

framework. This enabled us to disentangle the mitochondrial proteome from nuclear or post 

mitochondrial populations. Our prediction results concurred very well with known Gene 

Ontology mitochondrial annotations – 94% of those proteins were sorted correctly.  We then 

used this compendium of mitochondrial proteins to filter a separate in vivo quantitative 

mitochondrial proteome of BAT versus WAT. This quantitative proteomic map of adipose tissue 

mitochondria provided interesting insights into the divergence of key metabolic processes and 

pathways. For instance, strongly up-regulated pathways in BAT mitochondria were ubiquinone 

biosynthesis, oxidative phosphorylation, and citrate cycle. In WAT mitochondria systemic up-

regulation of pathways was less pronounced, and significantly up-regulated pathways were 

androgen/estrogen metabolism, fatty acid synthesis, pyruvate metabolism, and – interestingly - 

metabolism of xenobiotics. Chapter 9 discusses the experimental protocols, bioinformatics 

analysis and results obtained from this mitochondrial organellar proteomics study. In addition to 

the work discussed here, I contributed bioinformatics expertise and analysis to several projects in 

the Department of Proteomics and Signal Transduction at the Max Planck Institute for 

Biochemistry. The list of publication generated in my thesis‟s work so far can be found at the 

end of this summary.  

 

The studies reported in this thesis exemplify extensive applications of bioinformatics tools and 

algorithms for analysis of high throughput proteomics data. The work presented here samples 
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important directions in proteomics related bioinformatics research. There are other analytical 

directions and applications that are currently being reported in the literature and they have been 

cited at appropriate places throughout the thesis. Extensive application of bioinformatics to 

proteomics is a relatively recent development, and has been particularly driven by the very large 

amount of data that is being generated by current proteomics studies. This on one hand has 

opened newer vistas for data analysis and knowledge mining, and on another presented novel 

challenges to biomedical informatics researchers. It is rapidly becoming apparent that 

bioinformatics is indispensable part of the contemporary high throughput proteomics workflows, 

and that it will continue to play an integral role in proteomics research. We envisage that the role 

of bioinformatics in proteomics will evolve where not only it will be at the core of functional 

analysis, but will also provide important pointers for hypothesis generation and testing. 

Concurrent to developments in bioinformatics, proteomics will also advance to generate fine 

grained and comprehensive data, amenable for integrative systems level analysis and 

exploration. Proteomics equipped with bioinformatics is poised to change the outlook of systems 

biology and is now ready to engender profound changes in biomedical and translational research. 

Chapter 10 discusses some of the current challenges for bioinformatics research especially in 

context of its applications to proteomics, and provides perspectives for its symbiosis with mass 

spectrometry based proteomics in future. 
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1. Mass spectrometry-based proteomics 

 

The „central dogma‟ of molecular biology is that biological information flows from DNA to 

RNA to protein by well defined molecular processes or „algorithms‟, whereas proteins do not 

change the genetic code. With some notable exceptions, all living cells conform to this rule. 

DNA, the genetic material, also termed the “book of life” contains all necessary information for 

RNA (and consequently protein) production, and hence serves as the blueprint for building the 

entire cellular machinery. Therefore, the beginning of the twenty first century witnessed a 

remarkable scientific project towards deciphering the genetic constitution of organisms. The 

sequencing of the complete genome of an organism has been a landmark in the history of 

biomedical research, which was the result of concerted scientific and technological orchestration 

between various disciplines of biomedical, physical and material sciences.  

 

 The efforts and advances made in large-scale sequencing of a large number of genomes, 

including the human genome, have generated a wealth of useful information, which is 

revolutionizing our understanding of the complex molecular biology responsible for different 

physiological processes. Genomics has undoubtedly furthered the human race‟s endeavors 

towards global and holistic understanding of organismal function, evolution and disease 

pathophysiology. However, detailed study of genomes at DNA and RNA levels have also 

revealed that these digital pieces of information are just one part of the immense and very 

intriguing scientific puzzle called “life”
11

, and may a times not be sufficient to answer many 

fundamental questions - like the apparent differences between two very closely related species. 

For instance, when comparing the chimpanzee genome to the human one, focusing on base pair 

substitutions, more than 98.5 percent of our DNA sequence is identical between the two 

species
12

. Since the human genome is not very different from that of a chimpanzee, or even a 

mouse, there must be something else explaining the complexity of the human body and brain. 

This explanation may largely lie in the gene products, the proteins, which are the active players 

in living cells in contrast to the static DNA. Supporting this notion, it turns out that the 

transcriptome and the proteome (especially in the brain) is significantly different between 

humans and chimpanzees
13

. A similarly interesting example is the discovery that humans have 
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fewer proteins-coding genes (~ 20,500 ref
14

) than many plants, again adding to the growing body 

of evidence that the complexity of human species is largely due to multiple protein forms that 

result from alternative splicing of RNAs
15

 and post translational modifications such as 

phosphorylation, methylation and glycosylation.  

 

With growing appreciation of the dynamic role of proteins in almost every cellular process and 

direct implication of their altered behavior or malfunctioning in myriad disease pathologies, the 

task of mapping the protein repertoire of an organism figures prominently on the agenda of 

twenty first century biomedical science
16,17

. For this reason as well as many others, one of the 

major challenges in the post-genomic era is to understand the structure, dynamics and 

interactions of proteins
18

. This knowledge can be acquired in a large-scale fashion by a relatively 

new “omics”-discipline; namely proteomics
19

. While the origin of proteomics can be traced back 

to the 1970-80s, it was named by Marc Wilkins in 1994 when he was searching for an alternative 

to the phrase “the protein complement of the genome”
20, 21

. 

 

Proteomics is now broadly defined by the range of technologies that allow large-scale 

investigation of genetic and cellular function directly at the protein level. Although the field of 

proteomics builds on an array of analytical, technical and molecular biology methodologies - 

including protein microarrays
22

, global two hybrid analyses
23

, and high throughput protein 

production and crystallization
24

, it has in the past decade been particularly driven by the rapid 

advances made in instrumental technologies, mainly mass spectrometry (MS)
1,25

. 

 

1.1 Generic Workflow of MS-based Proteomics  

Mass spectrometry is an analytical technique that characterizes a molecule on the basis of the 

mass to charge ratio (m/z) of its charged gas-phase particles (ions). MS-based proteomics refers 

to the application of mass spectrometry to the study of proteins. In MS-based proteomics, the 

m/z values of peptides or intact proteins are measured, which can provide their added amino acid 

molecular weight and as well as the weight of potential post-translational modifications. 

Currently, two complementary strategies are commonly employed for characterizing proteins - 

bottom-up proteomics and top-down proteomics. 
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The bottom-up approach is the most pervasive and by far the most successful method in 

proteomics (Figure 1.1). Proteins of interest are enzymatically cleaved at specific sites to yield 

short peptides of typically 6-20 amino acid residues. The resulting peptide mixture is analyzed in 

a mass spectrometer in two stages. In the first (survey scans or MS
1
 scans), the masses of the 

intact peptides are determined; in the second, these peptide ions are fragmented by low energy 

collision with an inert gas (MS/MS fragmentation) to produce amino acid sequence related 

information. Taking a protein database as a reference, mass spectra are correlated to amino acid 

sequences with the aid of computational algorithms. The assigned peptide sequences are then 

mapped to parent proteins, which ultimately leads to protein identification. 

 

Figure 1.1 General workflow for bottom-up MS-based proteomics. Proteomics samples come from 

tissues, cell lines, body fluids etc. Protein or peptide samples can be fractionated by different means to 

reduce complexity and subsequently separated by HPLC. This separated peptide mixture is then 

introduced into a mass spectrometer for MS and MS/MS analysis thereby generating mass spectra read 

outs. Computer algorithms match mass spectra to amino acid sequences. The outcome of the 

experiment is a list of identified proteins which are then used for functional proteomics analysis. 

 

In the top-down approach, intact proteins are ionized and sprayed into mass spectrometers where 

peptide fragments are subsequently generated using one of a variety of activation methods such 
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as CID, ECD, ETD, and IRMPD methods (see abbreviation page). Top-down proteomics 

consists of fragmenting intact proteins in the mass spectrometer, without prior enzymatic 

digestion. It provides an alternative approach in proteomics to peptide based approaches. It 

obtains better sequence coverage of protein identifications and is especially suited for elucidating 

the primary structure, splice variants, and post translational modification (PTM) of whole 

proteins
26

. So far, the applicability and throughput of this method has been limited, because of its 

limited sensitivity, the heterogeneity of most proteins and the difficulty of fragmenting proteins 

efficiently, resulting in prolonged acquisition times and necessitating a combination of different 

fragmentation techniques. It has also been difficult to combine this methodology with online LC-

MS analysis. However, with recent advances in mass spectrometric instrumentation, top-down 

MS could become a powerful and practical addition to bottom-up in the future
27,28

. 

 

Proteomics frequently deals with complex protein or peptide mixtures. As dynamic range and 

sequencing speed are the limiting factors in current MS technology
29

 for dealing with these 

mixtures.  To reduce the complexity of a biological sample (cell lysate, purified organelle, body 

fluid) it is often desirable to fractionate and separate the proteins or peptides by at least two 

orthogonal separation techniques before MS analysis. Separation with reversed phase 

chromatography (HPLC) connected on-line to the mass spectrometer has proven to be a useful 

method (Figure 1.1).The C18 reversed phase HPLC column elutes peptide mixtures with linearly 

increasing organic solvent, e.g. acetonitrile (MeCN). The gradual elution (typically at a few 

hundred nanoliter per minute) with shallow gradients increases available sequencing time in the 

MS. Prior to this hydrophobicity-based peptide separation, complex samples can be separated by 

one dimensional gel
1
, isoelectric focusing

30
, ion-exchange

31,32
, molecular size

33
, and affinity 

binding such as immunoprecipitation
34,35

, IMAC
36,37

 and TiO2 enrichment
29,38,39

. For less 

complex samples, static electrospray – called nanoelectrospray –can be used which often yields 

better identification results. In particular static spray is beneficial for targeted modification 

studies
40

. 
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1.2 Computational and Functional Proteomics  

 

One of the primary goals of any MS-based proteomics experiment is to identify and quantify 

proteins in a biological sample of interest. This task is performed in the penultimate step of the 

MS-based proteomics workflow, now widely recognized as “Computational Proteomics”
41

. A 

large number of computational and algorithmic approaches are now available for identification 

of proteins and their post translational modifications
42-44

 as well as for their quantitation
45

. As 

further functional analyses rely on the accuracy of protein identification and quantitation, a range 

of research activities have emerged for accessing the quality of identification and 

quantitation
46,47

. 

The ultimate goal of any proteomics endeavor is to gain important insights into the physiology of 

the biological system under study. Functional proteomics analysis therefore forms the 

cornerstone of such an enterprise. Data analysis and mining takes place at the end of the work 

flow and comes under the auspices of “Bioinformatics”. Depending upon the nature of the data 

(qualitative or quantitative) specialized analytical directions are undertaken. Annotation 

databases such as Gene Ontology
48

, pathway resources like KEGG
49

, disease databases like 

OMIM are frequently used to group proteins according to their common biological themes
50-52

. 

Various statistical and machine learning methods have been employed to analyze proteomics 

datasets
53-55

. Additionally, integration of other “omics” datasets (genome, transcriptome, 

epigenome and interactome) can complement the analysis and provide deeper insights into 

proteome organization, function and dynamics
30,56-60

. The amalgamation of proteomics with 

other contemporary “omics” disciplines heralds the beginning of a concerted scientific effort by 

which the future promises of “systems biology” will be realized and delivered
61-63

.  
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2. Mass spectrometry 

 

Mass spectrometry (MS) has become the most important technology in proteomics today
1
 

because it is a versatile tool that encompasses several unique features at once, such as 

identification of individual proteins in a complex mixture
51

, quantification of proteins in a cell or 

organism
64

 and characterization of important post-translational modifications (PTMs) of proteins 

(e.g. phosphorylation, methylation, acetylation)
65

.  

MS is essentially a technique for weighing molecules, but the measurements are obviously not 

performed with a conventional balance or scale. Instead, the basis of MS is the production of 

gas-phase ions, which are subsequently separated or filtered according to their mass-to-charge 

(m/z) ratio in a magnetic or electrostatic field and finally recorded by a detector. The resulting 

mass spectrum is a plot of the relative abundances of the produced ions as a function of their m/z 

ratio (Figure 1.1).  

Because every peptide molecule and modification has a characteristic mass, MS in proteomics is 

a very useful and nearly universal tool for analysis, which can provide a nearly unique feature of 

the molecule. Peptides furthermore have distinct fragmentation patterns that provide structural 

information to identify their amino acid sequences and modifications. 

 

2.1 Types of ionization and Mass Spectrometers used in proteomics  

 

2.1.1 Electrospray Ionization - ESI (2+, 3+)  

In the early 1980s John Fenn and coworkers reported a significant refinement of an ionization 

principle, originally reported by Malcolm Dole
66

 almost two decades earlier. He developed the 

electrospray ionization (ESI) method as a mass spectrometric technique
67

 (Figure 2.1). ESI 

allows for large, non-volatile molecules (such as peptides and proteins) to be non-destructively 

ionized directly from a liquid phase (usually a mixture of volatile organic solvent and acidified 

water).  In electrospray, a liquid is passed through a needle to which a high voltage is applied. 

The charged liquid becomes unstable as it is forced to hold more and more charges. Soon the 

liquid reaches a critical point and at the tip of the liquid stream in front of the needle it blows 

apart into a cloud of tiny, highly charged droplets. These droplets rapidly shrink as solvent 
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molecules evaporate from their surface increasing the electric field at the droplet surface. By a 

process of „ion evaporation‟ (Iribarne and Thomson model) or simple solvent evaporation 

(charged residue model), the “naked” biomolecule becomes a gas-phase ion.  

 

Figure 2.1 Electrospray ionization process schematic (adapted from ref68 ) 

  

2.1.2 Matrix-assisted laser desorption ionization –MALDI(1+) 

Another “mild” ionization technique for biomolecules is named Matrix-assisted laser desorption 

ionization (MALDI) and was also developed in the late 1980s (by Franz Hillenkamp and 

Michael Karas at the University of Münster in Germany)
69

(Figure 2.2).  In this technique, 

analyte molecules are co-crystallized with an UV- or IR-absorbing substance termed the matrix, 

which is usually an organic carboxylic acid such as 2,5-dihydroxybenzoic acid (UV-absorbing) 

or succinic acid (infrared absorbing). The analytes are desorbed and ionized by a laser beam 

(pulsed laser irradiation) from the solid surface containing the organic matrix compound in 

approximately thousand-fold excess. Although the exact ionization process of MALDI, like that 
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of electrospray, is still not entirely clear, the matrix plays a key role in this technique by 

absorbing the laser light energy and causing a small part of the target substrate to vaporize. A 

widely accepted view is that, following their desorption as neutrals, the sample molecules are 

ionized by acid-base proton transfer reactions with the protonated carboxylic acid matrix ions in 

a dense „selvage‟ phase just above the surface of the matrix.  

 

Figure 2.2  MALDI ionization process 

 

The MALDI technique has some similarities with the soft laser desorption (SLD) technique 

described by Koichi Tanaka in 1987
70

. Tanaka discovered that by mixing ultra fine metal powder 

in a glycerol matrix an analyte molecule can be ionized resulting in stable gas-phase ions with 

intact primary structure. Tanaka was awarded the Nobel Prize in Chemistry in 2002 for his work, 

although this raised a major controversy in the MS community, because most mass 

spectrometrists felt that the award should have been given to Hillenkamp instead.  
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Like ESI, MALDI is capable of efficiently ionizing large biomolecules such as peptides and 

proteins and is often used with time-of-flight (TOF) mass spectrometers due to the vacuum-

compatibility and pulsing nature of the technique (the laser frequency can easily be synchronized 

with the TOF extraction pulse). Both the ESI and MALDI techniques have enabled biological 

molecules exceeding one million Daltons to be introduced into mass spectrometers
71

. 

For peptide analysis, the main difference between the two ionization methods is that ESI 

predominately produces multiply charged ions, MHn
n+

, whereas MALDI almost exclusively 

generates singly-charged peptide ions, MH
+
, which can be difficult to sequence by the low-

energy dissociation methods available on most proteomic mass analyzers. 2D-gel based 

proteomics is almost exclusively driven by MALDI-TOF MS analysis, whereas many other areas 

of proteomics are mainly based on ESI, because of the possibility to couple ESI directly with 

online LC-MS/MS.  

 

2.2 Traditional mass analyzers in proteomics: TOF, quadrupoles and ion 

traps 

 

2.2.1 Time-of-flight mass spectrometry 

A time-of-flight mass spectrometer (TOF-MS) measures the (mass-to-charge dependent) time it 

needed for ions of different masses to travel from the ion source region to reach the detector
72

. 

This requires that the starting time (the time at which the ions leave the ion source) is well 

defined. Therefore, ions are either formed by a pulsed ionization method such as MALDI or 

various kinds of rapid electric field switching which are used as a 'gate' to release the ions from 

the ion source in a very short time interval.   

 

An electric field accelerates all ions into a field-free drift region with a kinetic energy of:  

 

Where, q is the ion charge and U is the applied voltage. Since the ion kinetic energy is equal to 

, lighter ions have a higher velocity than heavier ions and reach the 

detector at the end of the drift region sooner;  
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 Since the transit time (t) through the drift tube is  , where d is the length of the drift tube 

the following equations are used to produce and calibrate a mass spectrum from the signal 

produce at the detector:        

 

Figure 2.3 Reflectron time-of-flight mass analyser with a dual stage ion extraction source 

 

The ions leaving the ion source of a TOF mass spectrometer have neither exactly the same 

starting times nor exactly the same kinetic energies, which results in peak broadening and 

decreased mass accuracy. Various time-of-flight mass spectrometric designs have been 

developed to compensate for these differences. A reflectron is an ion optic device in which ions 

in a time-of-flight mass spectrometer pass through a "mirror" or "reflectron" and their flight 

direction is reversed (Figure 2.3). The reflectron is composed of a series of rings or grids that act 

as an ion mirror. This mirror compensates for the spread in kinetic energies of the ions as they 

enter the drift region and improves the resolution of the instrument. The output of an ion detector 

is measured as a function of time to produce the mass spectrum. Reflector TOF analyzers can 

easily baseline resolve multiply-charged peptide ions and current instruments used in proteomics 

usually provide mass accuracy measurements of better than 50 ppm. 
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2.2.2 Quadrupole ion trap MS 

There are two types of ion trap mass analyzers; dynamic and static ion traps. 3-dimensional 

quadrupole ion traps (QIT) are dynamic traps and Fourier transform ion cyclotron resonance 

(FT-ICR) mass spectrometers contain static traps. Both types of instruments work by trapping 

ions in electric or magnetic field, respectively, and by manipulating the ions through DC or DC 

and RF electric fields in a series of carefully timed events. The 3D-ion trap mass spectrometer 

(also know as the Paul trap, Figure 2.4) was the first integrated and easy to use proteomic 

analyzer that combined online HPLC with fast scanning tandem MS. 

 

Figure 2.4 Quadrupole ion trap (Paul trap) 

 

The quadrupole ion trap is based on the same principle as a quadrupole mass filter, except that 

the quadrupole field is generated within a three-dimensional trap. The 3D ion trap consists of a 

ring electrode and two end caps (Figure 2.5). Ions are formed within the ion trap or (in 

proteomics) injected into the trap from an external source. The ions are dynamically trapped by 

the applied RF potentials with the help of a "bath gas" which confines them in the trap. The 

trapped ions can be manipulated by RF fields analogous to a quadrupole mass spectrometer. A 

mass spectrum is obtained by changing the electrode voltages to eject the ions from the trap in 

turn (i.e. scanning the ions out to the detector).  
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Figure 2.5 Linear ion trap 

 

The Paul trap has very high sensitivity (sub-femtomole) and fast sequencing speed (msec 

timescale), but large-scale proteomic analysis can be severely hampered by the low mass 

accuracy and dynamic range of this instrument. The main weakness of Paul traps is their limited 

dynamic range, which is due to a low trapping and storage capacity (in a point-like three 

dimensional volume in the middle of the trap) holding less than 10,000 ions before the onset of 

space-charge distortions.  

To overcome these drawbacks of conventional 3D-ion traps, a new generation of ion traps with 

superior ion capacity, dynamic range, scan speed and sensitive has been introduced
73,74

 These are 

the linear ion traps (or 2D ion traps); essentially segmented rf/dc-quadrupole mass filters, 

capable of trapping and detecting a factor hundred more ions than traditional 3D-ion traps.  

 

2.3 Hybrid instruments - State-of-the-art MS analyzers 

 

The term hybrid mass spectrometer refers to a combination of two MS analyzer types. In 

proteomics, the term was originally given to the combination of a quadrupole analyzer with a 
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time-of-flight detector, namely the qTOF type instruments (Q-TOF and QSTAR
75,76

. The idea is 

that a hybrid instrument combines the strengths of each analyzer type while minimizing the 

compromises that might result from interfacing the two or more MS technologies.  

 

In a quadrupole time-of-flight instrument, the high-resolution and sensitivity of the reflector TOF 

are combined with the tandem MS capabilities of an electrospray quadrupole instrument. This 

combination represents an instrument that is very well suited for large-scale proteomics projects, 

and which can easily be coupled to online nano-HPLC for high-throughput analyses. This 

instrument was a real boost to proteomics when it was introduced in the 1990s. However, today 

it has been somewhat eclipsed by the latest generation of hybrid mass spectrometers, the linear 

ion trap – Fourier transform instrument combinations described below. 

 

2.3.1 LTQ-FT - a linear quadrupole ion trap – 7T-FTICR mass spectrometer  

Although Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) has shown 

great promise and potential in proteomics research for more than a decade
77,78,79

 it was not until 

recently, with the introduction of a linear ion trap - Fourier transform mass spectrometer (the 

LTQ-FT
80

), that FTICR mass spectrometry really became practical and offered adequate 

sensitivity and speed for large-scale proteomics research (Figure 2.6).  

 

Figure 2.6 High-resolution analyzer: Linear ion trap – FTICR mass spectrometer 
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The LTQ-FT is a hybrid instrument that can provide sub-ppm mass accuracy with acquisition 

speed of less than one second per scan. The FTICR-detection (Figure 2.7) combined with 

automatic-gain control; AGC in the ion trap mass spectrometer allows for controlling the number 

of ions in the ICR cell during nanoLC-MS measurements, and hence provides high-mass 

accuracy measurements of peptide ions of less than 2 ppm root-mean-square (RMS) across LC 

elution profiles. This feature together with its high dynamic range and comparative ease of use 

makes the hybrid instrument very powerful in identifying peptides via database search 

algorithms with very high confidence.  

 

 

Figure 2.7 Detection principle of an ICR instrument (adapted from ref81 ). The ion cyclotron frequency is 

directly proportional to the magnetic field and inversely proportional to the mass to charge of the 

detected ion.  Fourier transformation generates a mass spectrum from the overlapping frequency 

spectrum of several compounds.  

 

In order to maximize the dynamic range and sensitivity of the FT-detector for complex mixture 

analysis, we and others
82,83

 have injected very high numbers of ions into the FT part of the hybrid 

instrument for FT survey scans. These ion target values are close to the maximum ion capacity of 

the upstream ion trap of 5-10 E6. However, at high-target values (ACG > 1,000,000) the mass 
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measurement accuracy of LTQ-FT-MS is greatly affected by space-charge effects in the ICR 

cell. Space-charging gives rise to a non-linear ion intensity-dependent cyclotron frequency-shift 

of the ions and as a consequence of the mass measurement accuracy fluctuates 25 ppm or more. 

This presents a problem for confident peptide identification. To minimize this effect we have 

developed an acquisition method that utilizes the fast and very sensitive selected ion monitoring 

(SIM) scan capabilities of the LTQ-FT
84

. Briefly, by accumulating only a small mass range and a 

limited and defined ion population, space charge effects are eliminated allowing very high mass 

accuracy and better quantitative accuracy. By employing FT-SIM scans for all parent ions 

selected for sequencing we have shown that it is possible to measure peptide ions with mass 

errors less than 2 ppm. On the downside, although the LTQ-FT allows for parallel detection by 

both ion trap and FT-detectors simultaneously, the SIM scans still takes away valuable analysis 

time during an online LC-MS/MS experiment.  

 

2.3.2 LTQ-Orbitrap 

A major breakthrough in proteomics came very recently with the introduction of a novel mass 

spectrometer, the LTQ-Orbitrap
85

. The Orbitrap is the first fundamentally new mass analyzer in 

more than 20 years (Figure 2.8). 

Figure 2.8 LTQ-Orbitrap mass spectrometer 

 

 The instrument contains three components. Like the LTQ-FT it has a linear quadrupole ion trap 

(LTQ), in which it is possible to control and manipulate (e.g. accumulate and collisionally 
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activate) ions in the sub-second time-scale. Detection can be achieved in two ways. In the linear 

ion trap ions can be ejected radially through slots (holes) in the quadrupole-rods and detected by 

two electron multiplier detectors. Alternatively, ions are ejected axially from the ion trap and 

transferred via octopole-ion guides into another ion trap (the C-trap) were they are collisionally 

cooled and focused, before they are orthogonally injected into the third component of the 

instrument, the high-vacuum Orbitrap FT-MS analyzer.  

 

This hybrid instrument exhibits a several-fold increase in sensitivity and dynamic range as 

compared to a state-of-the-art hybrid ICR mass spectrometer (LTQ-FT). Based on the highly 

accurate mass determination combined with high resolution and sensitivity, the novel instrument 

not only allows for routine analysis in a high throughput manner, but also for the straightforward 

analysis of intact proteins without chemical or enzymatic digestion. Since it is easier to stabilize 

a magnetic field than an electric field, the LTQ-FT is expected to achieve higher mass accuracies 

than the LTQ-Orbitrap. However, we developed an internal recalibration method for the LTQ-

Orbitrap that offers sub-ppm mass measurement accuracies of peptide ions throughout an online 

LC-MS/MS experiment even when operating the orbitrap analyzer at high target values
86

. 

Utilizing a special lock-mass recalibration feature that this hybrid triple-MS instrument provides 

we are able to recalibrate all ions in FT-MS and MS
n
 to better than 2 ppm mass error. Briefly, 

because the C-trap is a second ion trap we can perform multiple ion fillings in this trap and store 

several “different” ion populations that have been accumulated and axially ejected from the 

linear ion trap before injecting them into the Orbitrap. The lock-mass recalibration approach 

takes advantage of this unique feature providing an opportunity to do internal recalibration of all 

ions by introducing a small number of known recalibration mass ions into every ion population 

that is filled into and stored in the C-trap. During online nanoLC-MS/MS measurements we 

chose to make use of a polycyclodimethylsiloxane (PCM) ion as our lock-mass. PCMs are 

contaminants from ambient air that easily ionize by electrospray ionization and are therefore 

present throughout the whole chromatographic run. The LTQ-Orbitrap instrument is particularly 

suitable for both qualitative and quantitative analysis of complex peptide mixtures, because of 

the high dynamic range and sequencing speed. This allow for sequencing of thousands of 

peptides by tandem MS in less than one hour of LC-MS/MS analysis. Clearly, the new 

generation hybrid instruments already have and will continue to set the standards for large-scale 
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proteomic analyses. Especially the demands for faster sequencing abilities, higher dynamic 

range, and sensitivity and mass accuracy will be met by these hybrid instruments. 
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3. Quantitative Proteomics 

 

Any study of biological processes benefits immensely from the knowledge of quantitative 

change of the entities that form the components of that process. As proteins are the key 

mediators and final effectors in most of the cellular processes, the study of protein amounts and 

their quantitative changes has always been an important task in biomedical research. In that 

context various protein quantitation methods have been developed in the past decades. The 

emergence of mass spectrometry (MS) as a tool for protein quantitation is a recent development. 

Protein quantitation by MS depends on measurement of peptide signal intensities and has been 

mostly done by metabolic incorporation of stable isotopes in proteins or by stable isotope tagging 

of peptides. Recently comparison of signal intensity of unlabeled peptides by advanced machine 

learning and statistical models has been developed and is termed label free quantitation
47

. In this 

chapter we briefly review these methods which are at the core of proteomics workflows.  

 

3.1 Stable isotope dilution 

Although mass spectrometry has proven itself as an extraordinary tool for protein 

characterization, peptides and proteins cannot be directly quantified by MS analysis alone
87

. The 

reason for this is that peptide responses (signals) in the mass spectrometer are extremely 

variable, because the ionization efficiency is highly dependent on their chemical structure.  

To overcome this problem, proteomic investigators have adapted a quantitative method that has 

been employed for many years in small-molecule MS, stable isotope dilution
88

. In this procedure 

heavy stable isotope atom(s), such as deuterium (D), carbon-13 (
13

C), nitrogen-15 (
15

N) or 

oxygen-18 (
18

O), is covalently incorporated into peptides derived from one of the proteomes to 

be analyzed by MS. The physical characteristics and properties of the “heavy” stable isotope 

labeled peptides remain essentially the same as the corresponding “light” versions. When 

peptides from two cell states are analyzed concurrently (after mixing), they will appear as pairs 

in the spectrum - spaced by the mass-shift introduced by the isotopic labeling. Relative 

quantitation is measured by comparing
 
the intensity of the signals of the identical, however 

isotopically distinct,
 
peptides. 
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In the last decade several techniques based on stable isotope dilution for protein quantitation by 

mass spectrometry have emerged. They all enable peptides derived from two or more samples to 

be distinguished in the mass spectrometer. Many different isotope tag techniques have been 

described but a few have attracted most of the attention. These include isotope-coded affinity 

tags (ICAT), metabolic labeling by 
15

N-incorporation, stable isotope labeling of amino acids in 

culture (SILAC), enzymatic 
18

O-labeling and the very recently introduced chemical labeling by 

tandem mass tags iTRAQ
9, 89-92

.  

 

3.2 Isotope coded affinity tags (ICAT) 

ICAT
™

 was the first real breakthrough approach to quantitative expression analysis of complex 

protein mixtures (Figure 3.1). It was developed in Ruedi Aebersold‟s laboratory at the University 

of Washington
89

. ICAT was devised as an LC-MS based approach but it also works with 1D- and 

2D-gels.  

 

Figure 3.1 Isotope coded affinity tag (ICAT) 

 

The method uses a cysteine thiol-reactive chemical tag that contains biotin, which is used as an 

affinity tag to specifically isolate the tagged peptides by avidin-affinity chromatography. 

Although this methodology efficiently reduces the complexity of the protein mixture under 

investigation, in its original version it had some severe disadvantages. The isotope-mass shift 

was introduced by the incorporation of eight deuterium atoms in the heavy version of the ICAT -

reagent and this resulted in a quantitation problem arising from the fact that the light and heavy 

labeled version of the same peptide did not co-elute during reversed-phase LC-MS, because of 
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the so-called deuterium-effect. This RP-LC separation effect is due to the different 

hydrophobicity of hydrogen (H) and deuterium (D) atoms covalently bound to carbon-atoms 

(deuterium isotope effects are primarily attributed
 
to the shorter bond length of C-D versus C-H, 

this decreases the hydrophobicity of deuterated peptides). Another problem with the original 

version of the ICAT-reagent was the generation of very abundant fragment ions from the biotin-

group during MS/MS analysis. This made database search identification of ICAT-labeled peptide 

sequences very difficult. As a consequence of these problems, a new and improved version of the 

reagent has been introduced with a 
13

C9-label and an internal acid-cleavable bond, which allows 

removal of the biotin-moiety prior to MS analysis.  

 

3.3 HysTag 

Olsen et al. developed an isotope coded affinity tag called the HysTag
93

, which is an inexpensive 

and elegant alternative to the ICAT reagent (Figure 3.2). The HysTag reagent is a 10-mer 

derivatized peptide, H2N-(His)6-Ala-Arg-Ala-Cys(2-thiopyridyldisulfide)-CO2H, which consists 

of four functional elements: an affinity ligand (His6-tag), a tryptic cleavage site (-Arg-Ala-), an 

isotope label; Ala-9 residue that contains four (d4) or no (d0) deuterium atoms, as well as a thiol-

reactive group (2-thiopyridyl disulfide). For differential analysis cysteine residues in the samples 

to be compared are modified using either (d4) or (d0) reagent. The HysTag peptide is preserved 

in Lys-C digestion of proteins and allows charge-based selection of cysteine-containing peptides, 

whereas subsequent tryptic digestion reduces the labeling group to a di-peptide (-Cys-Ala), 

which does not hinder effective fragmentation. Surprisingly, it was found that HysTagged 

peptides containing Ala-d4 co-elute with their d0-labeled counterparts during RP-LC-MS/MS 

analysis making the HysTag reagent very economical.  

Figure 3.2 The HysTag reagent 
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The reagent is very easy to manufacture by the well-established solid-phase Fmoc-peptide 

synthesis and by using a deuterium label the cost of the reagent is low.  Olsen et al. have 

successfully studied the plasma membrane proteomes of distinct mouse brain compartments with 

this approach
93

 (Figure 3.3). The HysTag reagent and small scale organellar purification 

protocols allowed, for the first time, quantification of large numbers of membrane proteins in a 

single animal.  

 

Figure 3.3 The HysTag flowchart for differential analysis of membrane proteins from distinct areas of 

mouse brain 
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3.4 Metabolic labeling 

There are several different ways to metabolically isotope label cells during growth. Stable 

isotope incorporation in newly synthesized proteins can be achieved by a stable-isotope labeled 

compound, which represents the sole source of an element, typically nitrogen (
15

N) or carbon 

(
13

C). This methodology is very simple, but requires a well-defined cell culture system, where 

the cells of interest are capable of synthesizing all the necessary amino acids from the isotope 

labeled compound. Hanno Langen introduced this method and applied it to E. coli bacteria and 

yeast cells
94

. Chait and coworkers reported the 
15

N labeling in yeast for protein quantitation and 

phosphorylation study
90

. Heck and coworkers reported a two-step approach to 
15

N-encode 

higher-multicellular organisms. Metabolic labeling of the model organisms C. elegans and D. 

Melanogaster was accomplished by feeding them on completely 
15

N-labeled E. coli or yeast 

cells
95

. Yates and coworkers even attempted to isotope label an entire mammalian organism, a 

rat, by feeding it a diet consisting of 
15

N as the single source of nitrogen
96

.  

 

3.5 Stable Isotope Labeling by Amino acids in Cell Culture (SILAC) 

Our laboratory described a whole cell metabolic labeling strategy termed stable isotope labeling 

of amino acids in cell culture („SILAC‟)
97

. SILAC makes proteins from one cell population 

(isotope-encoded with an essential amino acid such as 
13

C6-Arg) distinguishable from proteins 

from another cell population (cultured in media containing „normal‟ 
12

C6-Arg) (Figure 3.5). 

Unlike 
15

N-labeling, SILAC can directly isotope-label mammalian cell lines. One of the main 

advantages of SILAC over many other labeling approaches is that it allows the total lysates from 

the two SILAC-encoded populations to be combined before any separation or purification steps, 

which minimizes the often dominant quantitation errors that are otherwise introduced in parallel 

purification procedures. In SILAC, the relative protein quantity between samples can be directly 

read-out by measuring the isotopic ratio of peptides by MS after tryptic digestion. Any essential 

amino acid for the cell culture system under investigation can be used for SILAC encoding, and 

from the observed mass-difference between the SILAC pair the total number of labeled amino 

acids in a given peptide sequence can immediately be deduced.  Due to the simplicity, ease-of-

use and accuracy of SILAC, the approach is becoming very popular and has been validated in 

many different areas of cell culture-based quantitative proteomics. Our laboratory has recently 
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established stable isotopic labeling of living model animals like the mouse
98

 thereby facilitating 

proteome comparison in different physiological states. SILAC is particularly well-suited to study 

post-translational modifications (PTMs) such as phosphorylation changes. We have used SILAC 

specifically to study diverse cell signaling systems by quantitatively determining the signaling 

molecules involved and their phosphorylation sites (see refs
82,37

 and below).   

 

Figure 3.5 Quantitative proteomics by Stable isotope labeling of amino acids in cell culture (SILAC). GF, 

growth factor.  
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 3.6 Enzymatic isotope labeling (
18

O)  

Peptides can also be isotope labeled via enzymatic reactions. This approach involves specific 

proteases such as trypsin that incorporate water into the carboxy-termini of peptides during 

proteolysis
76

. The isotope labeling is accomplished by performing digestion in the presence of 

stable isotopically enriched water (H2
18

O). Depending on the protease utilized and duration of 

digestion either one or two 
18

O atoms can be incorporated into a peptide. Endoproteases such as 

trypsin, Lys-C and Glu-C are all capable of incorporating two 
18

O atoms per peptide.  

Trypsin digestion in 
18

O-water therefore results in mass spectra with labeled peptide ion pairs 

spaced by 2 or 4 Da (
18

O-labeled vs. the corresponding analogous peptide digested in natural 

water). Unfortunately, it seems like this methods have some drawbacks that derives from back-

exchange of 
18

O for 
16

O from solvent during storage and handling of sample
99

. They are 

therefore not very frequently used. 

 

3.7 Tandem mass tags - iTRAQ 

As discussed above, proteins can be quantified relative to each other by comparing the intensities 

from MS
1
 mass spectra of isotope label peptides originating from two different cell states 

combined in one sample. Alternatively, quantitative information can also be derived from 

fragment ions in tandem mass spectra. iTRAQ™ is a recently developed protein quantitation 

method that utilizes isobaric amine specific tags
92

 (Figure 3.6).  

 
Figure 3.6 iTRAQ reagent 
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Each tag consists of a reporter and balance group, which is prone to fragmentation, see figure 

3.6. The technique is based on chemically tagging the free N-terminus and lysine- -amino group 

on peptides generated from protein digests that have been isolated from cells in different states. 

The tagged samples are then combined, fractionated by nanoLC and analyzed by tandem MS. In 

MS
1
 spectra the differentially labeled versions of a peptide are indistinguishable. However, in 

MS/MS spectra each tag generates a unique reporter ion (immonium-like ion). Protein 

quantitation is then achieved by comparing the intensities of the reporter ions in the MS/MS 

spectra. There are eight tags available enabling up to eight different conditions to be analyzed in 

one experiment. 

 

3.8 AQUA and Absolute SILAC for absolute quantitation  

In addition to the wealth of isotope labeling strategies that have been developed in proteomics 

for relative quantitation, Gerber et al. have developed a simple approach to measure absolute 

quantity of peptides and proteins called AQUA
100

.  This quantitation technique is based on 

internal peptide standards, which are synthesized using stable isotope (
13

C / 
15

N) labeled amino 

acids. Known amounts of the peptide or peptides of interest are introduced (“spiked”) into the 

sample and the absolute quantity of the endogenous peptide can readily be derived from the 

relative ratio observed by MS.  

 

However, due to the costs associated with synthesis of isotopically labeled peptides this strategy 

has mainly been applied in targeted approaches where a single or few peptides were monitored at 

the same time. Another drawback of the AQUA strategy is that the peptides are introduced after 

the digestion step; therefore strictly speaking the absolute amount of peptide at this purification 

stage rather than in the original sample is determined. Another approach to absolute quantitation 

is QCAT
101

, which is a multiplexed absolute quantitation method using plasmids to synthesize 

isotope-labeled (
15

N) proteins. Recently, we developed a new and more robust method for 

absolute quantitation called “Absolute SILAC”
102

. In this method SILAC-labeled recombinant 

proteins produced in vivo or in vitro are used as internal standards, which are directly mixed into 

lysates of cells or tissues - thereby minimizing the systematic errors resulting from differences in 

sample processing. Successful application of this approach resulted in precise quantitation of 
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Grb2 copy numbers in HeLa, HepG2 and C2C12 cell lines against the backdrop of whole cell 

lysate. 

 

3.9 Alternative methods – Quantitation without Stable isotopes 

Stable isotope labeling of proteins is not always practical and is relatively expensive. There are 

several alternative methods for MS quantitation. Although these methods are not as precise and 

elegant as isotope-labeling approaches they can be used to extract useful information from MS 

data sets. The most simple and inaccurate approach is called subtractive proteomics, where two 

samples are compared with MS by subtracting all proteins identified in one sample from all those 

identified in the other. This is obviously not a very good approach for quantification, because 

even replicates of the same sample have been shown to have poor overlaps in complex peptide 

mixture analysis.  For example, it has been observed that two replicate MudPIT experiments 

produced two sets of protein identifications with only 65% overlap
103

.  

 

A more elegant way to quantify proteins between a set of samples is to use the extracted ion 

chromatogram (area under the curve as the peptide elutes from the column), which is in principle 

available for all peptides if the resolution is sufficiently high. Signal-intensity based quantitation 

successfully discriminated between true centrosomal proteins and unspecific ones by “protein 

correlation profiling” of adjacent sucrose fractions
104

. The accuracy of quantitation in this 

experiment was estimated to be within 30% between peptides derived from the same protein.  

 

Finally, there are of course traditional biochemical methods such as radioactive-labeling, 

differential 2D-gel dyes and western-blotting approaches. However, these methods are only 

useful for quantitation of known proteins or require a difficult extra identification step for 

unknown components. 
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 4. Mass spectrometry data analysis - from ions to protein 

identification and quantitation 

 

The broad application of proteomics in different biological and medical fields, as well as the 

diffusion of high-throughput platforms, leads to increasing volumes of available proteomics data 

requiring efficient algorithms, new data management capabilities and novel analysis, inference 

and visualization techniques. Computational proteomics is an emerging field of biomedical 

informatics research arising from the demand of high throughput analysis in numerous large-

scale experimental proteomics projects
46

. Data analysis in MS based proteomics is a two-tier 

process where the first few steps are related to the identification and quantitation of proteins (and 

their post-translationally modified counterparts) followed by the last step of functional 

proteomics analysis by bioinformatics (Figure 4.1). Computation proteomics mainly deals with 

the first step of this workflow and has evolved as a separate discipline in itself over the past 

decade
41

.  

 

Figure 4.1 Data flow in MS based proteomics(adapted from ref3). PFF, peptide fragmentation 

fingerprinting; PMF, peptide mass fingerprinting 
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In a proteomics experiment different steps can be identified,
 
each one having one or more 

parameters of choice: (i) sample
 

preparation, including separation and labeling; (ii) MS 

experiment,
 
including mass spectrometer choice and configuration; (iii)

 
spectra preprocessing, 

including spectra signal deconvolution, often performed by the spectrometer software, baseline 

subtraction, noise removal, dimension reduction, peak extraction, outlier detection; (iv) 

peptide/protein identification, including database searching, perhaps coupled with de novo 

sequencing or sequence tagging and (v) peptide/protein quantitation, either performed through 

stable isotope labeling or through intensity profiling. Each of these steps has important 

implications on the algorithmic and analytical aspects of computational proteomics. The 

computational facets of all these steps are discussed elaborately in literature and can be found in 

these reviews
3,105

.  

 

4.1 Peptide and Protein identification  

Protein identification by peptide sequencing is at the heart of bottom-up or top-down 

proteomics
42

. The cornerstone in protein identification are peptide database search algorithms 

such as MASCOT and SEQUEST (based on database and signal processing paradigm)
106,107

, 

which allow automatic matching and scoring of peptide fragment ion spectra against protein 

sequence databases. This approach for protein identification is also known as “searching of 

uninterpreted mass spectra” or “probability based scoring”. When a peptide ion is fragmented in 

an MS/MS experiment, there are two pieces of information that are known for each peptide. The 

first is the molecular weight of the peptide and the second is the list of fragment ion masses and 

their intensities. This information is used by the search algorithm in an attempt to identify the 

peptide sequence in a given protein database. All entries in the database are digested “in silico” 

using the appropriate enzyme and possible modification masses are added to the mass of the 

resulting peptides. Every experimentally recorded peptide mass is then compared to all in-silico 

peptides of the same mass, within operator set mass tolerances, and all theoretical peptides with 

other masses are discarded. Then, the calculated fragment ion masses for all of the peptides in 

the selected mass range are compared to the experimentally observed fragment ion masses for 

the peptide - again within operator set mass tolerances - and an peptide score is assigned. The 

output from the search displays the best matching peptide sequence (if any) in the database for 
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each MS/MS spectrum and an associated score that indicates how good the match is. In 

probability based algorithms like MASCOT, the score for an MS/MS match can be given as –

10*Log10(p), where p roughly corresponds to the probability that the observed match between 

the experimental data and the database sequence is a random event. In the result output the 

search-software also groups peptides matching the same protein sequence. 

 

Many more bioinformatics approaches to protein identification have been developed in recent 

years which draw insights from various computational methods, for instance graph theory
108

, 

statistical learning
109

 and machine learning approach
110

. Additionally, the identification of post 

translationally modified peptides and proteins pose formidable computational challenges
111,112

, 

which needs specialized algorithmic treatment 
108,113

. 

 

4.2 Peptide and Protein Quantitation 

Protein quantitation by MS depends on either comparison of labeled (or tagged) peptides or by 

label-free methods for comparison of identical peptides across different biological states
45,114

. 

With advances in MS technology and experimental setups for proteomics, a typical proteomic 

experiment can produce gigabytes of data
115

. Therefore manual analysis of such datasets to 

extract quantitative information is not possible by proteomics researchers and can only be done 

in an automated way by using advanced computational algorithms and analytical pipelines. 

Unlike microarray technology, the lack of standardized and comprehensive quantitation software 

for MS data has been one of the largest challenges and bottlenecks for proteomics
46,116

. To date 

various empirical methods like peptide counting
117

 and spectral counting has been used
118,119

 for 

protein quantitation. The past few years has witnessed application of machine learning and 

mathematical and statistical methods for quantitative proteomics
120

. But most of these methods 

are inherently inaccurate and were developed for low resolution MS data. Therefore they fail to 

deliver when MS data is highly resolved and fine grained as generated by the latest generation of 

mass spectrometers. Our laobratory has recently developed a suite of integrated algorithms 

specifically for high resolution, quantitative MS data based on state-of-the-art data modeling, 

correlation analysis and graph theory
47

. Though still in its infancy, computational proteomics for 

protein quantitation is one of the most exciting area for bioinformatics researchers and it is 
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witnessing rapid developments in computational frameworks, data standardization
121

 and 

software development
3
. 
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5. Bioinformatics for high throughput “omics” sciences 

 

The foundations of modern molecular biology were laid in the early 1950s by pioneering work 

carried out for elucidating the sequence and biomolecular structures of DNA and proteins
122-124

 

(Figure 5.1). Since then this field has caused a paradigm shift in biomedical research, and played 

very instrumental roles in our current understanding of cellular biology.  

 

Figure 5.1 Timeline of solved structures of some key biomolecules (adapted from ref125 ). 

 

One of the most impressive achievements of molecular biology has been that it bridged the gap 

between experimental and computational research thereby transforming biology into a 

quantitative, information driven discipline
126,127

. Some of the most fundamental and scientifically 

significant questions addressed by molecular biology presented novel, interesting and at times 

formidable algorithmic problems, and relied heavily on computational resources
4,5

. For instance, 

the structure of DNA
128

, the encoding of genetic information for proteins
129

, the factors 
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governing protein structure
130,131

, the structural properties of protein molecules
132-135

, the 

evolution of biochemical pathways
136

 and gene regulation
137

, and the chemical basis for 

development
138

 all contain seeds of some of the problems that were only possible to address by 

computation in the ensuing decades.  Application of computer technology and computational 

methods to molecular biology is not a recent trend
5
.  

 

Large scale genome sequencing of model organisms and humans at the beginning of the twenty 

first century
97,139,140

 has been a landmark achievement in biomedical sciences that was fueled by 

extraordinary advances in molecular biology and computer science. This in turn helped in 

redefining the synergy between biology, mathematics and information sciences, thereby leading 

to emergence of bioinformatics as a scientific discipline. Bioinformatics involves the integration 

of computers, computational algorithms, software tools, and databases in an effort to address 

biological questions. Bioinformatics approaches are often used for major initiatives that generate 

large data sets. In the post genomic era bioinformatics has embedded itself into the very fabric of 

contemporary biology and become an indispensable part of any ambitious molecular biology 

enterprise.  

 

5.1 Current state-of-the-art in Bioinformatics 

Initial bioinformatics research and applications were primarily focused on analysis of biological 

sequence data, genome content, and rearrangement, and for prediction of function and structure 

of macromolecules
141-143

(Figure 5.2). With the advent of high throughput “omics” disciplines in 

the past few decades, it is now feasible to systematically profile a biological system at different 

levels of molecular and cellular organization, including its epigenome, transcriptome, 

metabolome, proteome, and interactome
62

. Owing to the largely disparate nature and scale of 

these data types, newer analysis and research directions have spawned from conventional 

bioinformatics, for instance - comparative genomics
144

, functional genomics
145

, network 

biology
146

, and computational proteomics
41

. Moreover, with the further realization that the 

complete understanding of the physiology of biological systems entails an undertaking of multi-

level data integration and analysis, computational systems biology has come into prominence
147

.  
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Figure 5.2 The Use of Computers to Process Biological Information.  
(A) The wealth of genome sequencing information has required the design of software and the use of 
computers to process this information. (Image adapted from Joanne Fox article URL:  
http://bioinformatics.ubc.ca/about/what_is_bioinformatics/). (B) The evolutionary trace (ET)  method 
for identifying specificity residues in proteins (adapted from ref148). An alignment of related sequences 
to a protein of interest is created (left panel). The level of conservation of columns in the alignment is 
calculated (colors represent a sliding scale in which the most conserved residues = red, those with 
intermediate conservation = green and the least conserved = blue) and conserved positions are mapped 
onto the structure or sequence of the unknown protein. In the right panel a comparison of the actual 
substrate-binding residues and predicted residues when the ET method was applied to the ATP-grasp 

domain of a d‑Ala–d-lactate ligase (Protein Data Bank entry 1EHI). It can be seen that the ET method 
achieves a close prediction of the substrate-binding site. 

http://bioinformatics.ubc.ca/about/what_is_bioinformatics/
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The quest for systems level understanding of biological systems has led to evolution of 

bioinformatics as a multifaceted and complex scientific ecosystem, with active research activities 

in each of its sub-disciplines. In this section current state-of-the-art in modern bioinformatics 

research in the context of “omics” disciplines are briefly reviewed, more detailed accounts can 

be found in the huge body of literature published in last decade
149-152

 

 

5.1.1 Bioinformatics for Gene Expression - Functional Genomics 

Microarrays have now permeated literally every field of biology and have found numerous 

applications in applied and translational research
153-155

. Large-scale microarray studies are also 

becoming crucial to a new way of conceiving experimental biology
156

. Since the inception of this 

technology, one of the primary challenges for bioinformatics researchers has been to analyze and 

mine the high-dimensional dataset generated in a typical microarray experiment
157

. Furthermore, 

these challenges are accentuated by the diversity of biological questions being investigated by 

this platform. Microarray data is being used in conjunction with computational algorithms and 

various machine learning paradigms which finds wider application in drug discovery, basic 

research and target discovery, biomarker determination, pharmacology, toxicogenomics, 

development of prognostic tests, population genomics and disease subclass determination. 

Inferential
158,159

 and descriptive statistical
160-162

 methods have been successfully applied to 

microarray data to uncover patterns of gene expression and behavior of genetic markers in 

diseases, especially cancer
163-166

 (Figure 5.3). Reverse engineering of gene networks using gene 

expression data based on Bayesian statistics (probabilistic models)
167

(Figure 5.4) , Boolean 

networks
168

, Relevance Networks
169

, and graph theoretic algorithms
170

 has gained momentum in 

recent years
171-173

.  The diversified field of analysis of microarray data falls under the umbrella of 

Microarray Bioinformatics. 
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Figure 5.3 DNA-microarray analyses can identify relevant clinical subsets of gliomas (adapted from 

ref174). (A) and (B) show that different subtypes of gliomas have distinct gene-expression profiles as 

revealed by multidimensional scaling and hierarchical clustering respectively. (C) and (D) show 

identification of molecular subsets of microscopically identical glioblastomas by hierarchical clustering 

and multidimensional scaling respectively. (E)  Hierarchical clustering of 85 high-grade glioma samples 

on the basis of the expression of 595 genes that are highly differentially expressed in patients with 

relatively good survival times versus those with shorter survival times. Four subsets of patients are 

detected. (F)  Kaplan–Meier survival analysis shows that these genes can identify the subset of patients 

who are most likely to have prolonged survival times (E, cluster 1A, black). 
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Figure 5.4. Regulatory network architecture learnt from microarray data using reverse engineering 

algorithms ( figure adapted from ref173).  Shown is an unconstrained acyclic network where each gene 

can have a different regulator set. This is a fragment of a network learned in the analysis of Pe'er et 

al.175, performed on Rosetta compendium of expression profiles from budding yeast by Hughes et al.156 . 

A summary of direct neighbor relations among the genes is shown based on bootstrap estimates. 

Degrees of confidence are denoted by edge thickness. A sub-network of genes involved in the yeast-

mating pathways was automatically identified with high-confidence relations among them. The colors 

highlight genes with known function in mating, including signal transduction (yellow), transcription 

factors (blue), and downstream effectors (green). 

 

5.1.2 Bioinformatics of Gene Regulation 

The completion of various genome sequencing projects has provided us with the genetic 

blueprint of genomic organization and structure, thereby leading to many intriguing 

observations. Foremost among them is the discovery that cells and organisms devote a 

significant fraction of their DNA to encode cis-regulatory programs that control and coordinate 

gene expression at the transcript level
176

. Trans-acting protein and cis-regulatory sequences are 

the principle components of these molecular programs which act in response to a particular 

cellular context (state) and extra-cellular inputs, and have pivotal role in organismal development 

and evolution
177

. A complete understanding of this molecular algorithm will have profound 

impact on biological research that will be essential for gaining insights into development, cellular 
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responses to environmental and genetic perturbations and the molecular basis of many 

diseases
178

. While the unraveling of the entire network of gene regulation is a distant goal, 

promising results in this direction have started to emerge from diverse studies which include 

bioinformatics approach for identification of cis-regulatory sequences (reviewed in ref
179

), and 

development of in-silico mathematical models for gene regulatory networks based on 

experimental observations
180-182

. With recent interesting discoveries in transcriptional regulation 

by regulatory RNAs (miRNA,siRNA,piRNA) and current appreciation of the role of epigenetics, 

the bioinformatics research in this domain has gained impetus in computational prediction of the 

key players of gene regulations including various regulatory RNAs and their targets
183-185

 and 

prediction and modeling of epigenetic information and contexts
186

. The bioinformatics of gene 

regulation is currently one of the most exciting areas of computational research. 

 

5.1.3 Network Bioinformatics 

Cells and organisms have evolved amazingly elaborate and intricate mechanisms to carry out 

their basic functions. These functions emerge largely as a result of the dynamic interplay 

between cellular components- genes, proteins, and metabolites, which are further interwoven in 

complex biological networks including webs of protein-protein interactions, regulatory circuits 

linking transcription factors and cis-regulatory targets, signal transduction pathways and 

metabolic pathways. Recent scientific and technological breakthroughs in high-throughput 

genomics
187,188

  and proteomics
189

 are enabling us to discover the molecular programs carried out 

by these networks. But we are still far from a complete understanding of the design principles, 

architecture and dynamics of these networks. Promising results in this direction have started to 

emerge from diverse studies which include mathematical modeling and simulation of pathways, 

graph-theory analysis of global network structure, application of engineering concepts to 

network analysis, partitioning of networks into functionally related modules & motifs, and de 

novo design of networks
190-192

. Graph-theory analysis proposed by Barabasi et al.146
 provides 

details about the static topological properties (degree distribution, clustering coefficient), internal 

organization (hubs, motifs) and evolution of these networks (Figure 5.5). Application of 

engineering concepts to biological network analysis has revealed that biological networks share 

structural principles of modularity, robustness and recurrent circuit elements with their 

engineering counterparts
193-195

.  



Bioinformatics for high throughput “omics” sciences 

     

 

48 

 

 

Figure 5.5 A map of protein–protein interactions in Saccharomyces cerevisiae (adapted from Jeong et 

al.196), which is based on early yeast two-hybrid measurements197, illustrates that a few highly connected 

nodes (known as hubs) hold the network together. The largest cluster, which contains 78% of all 

proteins, is shown. The color of a node indicates the phenotypic effect of removing the corresponding 

protein (red = lethal, green = non-lethal, orange = slow growth, yellow = unknown). 

 

Reverse engineering of networks
173,198

 based on machine-learning approach has gained 

momentum in recent years because of the availability of high throughput data, especially from 

microarrays, yeast two-hybrid screens (Y2H) and chromatin immunoprecipitation (ChIP) 

experiments.  Additionally, approaches dealing with dynamics of gene regulatory and protein-

protein interaction networks have been recently reported
199,200

. Integration of phenotypic, drug 

target and disease annotation information with protein interaction and metabolic networks has 

led to interesting insights into disease mechanisms, morbidity and drug actions
201-203

.  
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Metabolic network analysis spans another dimension of network bioinformatics whereby 

specialized analytical methods based on constraint-based approach such as flux variability 

analysis (FVA) have been popularized by Palsson et al.204-206
(Figure 5.6). In recent years 

network bioinformatics has successfully integrated into the theme of wet biology by providing 

testable hypothesis to biologists
207, 208

.  

Figure 5.6 A map of some of the reactions in glycolysis and the pentose phosphate pathway of E. coli 

(adapted from Becker et al.209). Using Flux Variability Analysis (FVA), the minimum (min) and maximum 

(max) allowable flux values for each reaction were determined using the E. coli model iJR904. The values 

shown in the table correspond to the min and max allowable fluxes for each reaction shown in the map 

when the predicted growth rate is constrained to 90% of the optimal value under glucose-limiting 

conditions. The results were further characterized by the direction of predicted flux (bidirectional or  

unidirectional) computed using FVA. The black arrows in the figure show the predicted unidirectional 

direction of flux for reversible reactions that can potentially operate in either direction. 
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5.2 Bioinformatics for high-throughput mass-spectrometry proteomics data 

Mass spectrometry based proteomics has undergone tremendous advances over the past few 

years largely due to technological breakthroughs in instrumentation and state-of-the-art 

innovations in computational proteomics
2
. Proteomics is now a very data intensive discipline that 

requires extensive analytical and data-mining support, and bioinformatics has thus become a 

pivotal constituent of this discipline. Proteomics research endeavors can be classified into two 

broad categories, namely qualitative proteomics and quantitative proteomics. The scope of 

functional proteomics analysis and the analytical direction that can be taken are largely 

dependent on the type of dataset generated by these research endeavors, and are discussed next. 

 

5.2.1 Bioinformatics for Qualitative Proteomics 

In qualitative proteomics the focus is on enumeration of the proteome constitution of a system of 

interest - body fluid, cell type, organelle, tissue or an entire organism
50-52,57,210

. Most of the 

bioinformatics activities therein focus on functional data mining of the dataset to extract the 

global biological theme underlying the proteome. In recent years genome-wide annotational 

datasets like gene ontology (GO)
48

, protein domain organization (PFAM, InterPro)
211,212

, 

pathways (KEGG)
49

, and disease mutations(OMIM) have been successfully used for functional 

grouping of the proteomes
213

. These annotations can be further used in conjunction with 

statistical tests to find over/under-represented functional categories
50,52

. Additionally, integration 

with other high throughput “omics” datasets (microarray, ChIP-chip) and annotations has 

provided valuable insights into proteome expression and turnover, and their role in disease 

mechanisms
30,57,214-216

. In the same vein, augmentation of genome annotation
108,217,218

, and search 

for gene models based on high confidence peptide information has shown interesting results in 

predicting novel genes and splice variants
52,219

. 

  

5.2.2 Bioinformatics for Quantitative Proteomics 

Quantitative mass-spectrometry (MS) adds another dimension to proteomics studies by providing 

quantitative data of proteome changes in the cellular states being investigated
45

. This may be 

either studied on a binary level of protein changes (normal vs. cancer, stimulated with a growth 

factor vs. non-stimulated) or on multiple levels of protein changes (temporal steps of cell cycle, 
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maturation of organelle or differentiation of cells).  Supervised and non-supervised machine 

learning approaches have found wider applications in analyzing such datasets
120

. The 

hierarchical clustering approach has been adopted in various proteomics studies to cluster 

phospho-proteomic and proteomic datasets across multiple conditions or samples
220

. In the first 

global analysis of temporal profile of phosphoproteome dynamics, I used fuzzy k-means 

clustering approach to cluster data across four time points
65

. As part of creating an organelle map 

of mouse liver proteome Foster et al. used a supervised approach to assign organelle localization 

to proteins based on the correlation to organelle specific marker protein dynamics
58

. Dunkley et 

al. used principal component analysis (PCA) methodology to assign organelle localization to 

protein based on their quantitative data across multiple organelles
221

. Rinner et al. employed a 

combinatorial workflow of label-free mass spectrometry and computational analysis based on an 

ensemble of k-means clustering and expectation maximization (EM), to confidently identify 

interaction partners in protein complexes
222

. In clinical applications of proteomics, biomarker 

discovery by comparison of proteome profiles of healthy and disease individuals or cohorts rely 

heavily on pattern mining approaches – using for instance genetic algorithms
223

, and on building 

classification models for disease predictions
224

.   

 

5.3 Prologue to the thesis work study 

In chapters 6-9 of the thesis I discuss specific projects illustrating applications of bioinformatics 

for the functional and systematic analysis of high throughput proteomics data. The projects will 

be discussed as complete entities with the relevant experimental, computational methods and 

results. The analysis workflow and computational methods for each of them were developed as 

part of my PhD study in Department of Proteomics and Signal Transduction at the Max Planck 

Institute for Biochemistry.  
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6. In-depth Analysis of the Adipocyte Proteome by Mass 

Spectrometry and Bioinformatics 

 

This work is included as a manuscript that has been published with the following citation: 

 

Jun Adachi
φ

, Chanchal Kumar
φ

, Yanling Zhang, Matthias Mann 

In-depth Analysis of the Adipocyte Proteome by Mass Spectrometry and Bioinformatics 

(2007) Mol Cell Proteomics; 6(7):1257-1273 

φ
 These authors contributed equally to this work 

6.1 Introduction 

Obesity has become a global health epidemic, which leads to
 
an increased population risk for 

obesity-related complications
 
such as hypertension, dyslipidemias, type II diabetes mellitus,

 
and 

cardiovascular diseases associated with the onset of insulin
 
resistance

225,226
. Studies in the last 

few years have transformed
 
our thinking about the function of adipocytes (fat cells) in

 
physiology 

in general and obesity in particular
227

. They are
 
no longer regarded just as a passive depot for 

storing excess
 
energy in the form of triglyceride but as endocrine cells

 
that actively regulate the 

pathways responsible for energy
 
balance by the secretion of various bioactive substances termed

 

adipocytokines. Furthermore recent research has highlighted
 
the lipid droplet as a dynamic and 

actively regulated organelle
228,229

. To elucidate the pleiotropic functions of the adipocyte,
 
several 

proteomics studies had been conducted. However, a large scale proteomics
 
study of adipocytes 

has not been reported before and could serve
 
as a useful resource for fundamental biomedical 

research. These considerations
 
as well as our interest in insulin signaling and the metabolic

 

syndrome prompted us to perform an in-depth proteomics analysis
 
of the cellular and organellar 

proteome of adipocytes. We used
 
a combination of one-dimensional gel electrophoresis and on-

line
 
electrospray tandem mass spectrometry with biochemical procedures

 
for sub-fractionation of 

the cellular proteome (Figure 6.1). State
 
of the art protein identification technology recently 

developed
 
in our laboratory, involving a linear ion trap (LTQ) -FTICR

 
mass spectrometer with 

very high mass accuracy
84

, allowed
 
us to identify more than 3,200 proteins with extremely 

stringent
 
identification criteria.  

javascript:AL_get(this,%20'jour',%20'Mol%20Cell%20Proteomics.');
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Figure 6.1 An overview of the experimental and bioinformatics procedures used for analysis of the 

adipocyte proteome. MAPU database: Max-Planck Unified Proteome database. 

 

Extensive bioinformatics analysis and
 
comparison with transcriptome data revealed

 
several layers 

of information related to the adipocyte proteome
 
that were in turn mapped to an ensemble of 

biological processes,
 

functions, and pathways. Additionally by using a systemic protein
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prioritization methodology described recently
8
 we predicted

 
candidate proteins hitherto not 

known to be involved in insulin-dependent
 
vesicular trafficking. 

 

6.2 Materials and Methods 

 

6.2.1 Cell culture 

The maintenance and differentiation of mouse 3T3-L1 preadipocytes were essentially as 

described
230,231

. Briefly, two days after the cells reached confluence, a cocktail of 0.5 mM 3-

isobutyl-1-methyxanthine (mix; Sigma), 1 µM dexamethasone
 
(Sigma), and 167 nM insulin 

(Sigma) was supplied during culture (day 0). After 48 h (day 2), the cocktail was replaced with 

only 167 nM insulin. An additional 48
 
h (day 4) later, insulin was withdrawn, and the medium 

was changed
 
every second day. Fat accumulation was measured by Oil Red O staining and 

differentiated cells at day 9 were used for further experiments.  

 

6.2.2 Subcellular fractionation and western blotting 

Differential centrifugation was used to fractionate adipocytes as described previously 
232,233

. 

Briefly, cells were sheared by 10 passages through a 25-gauge needle and centrifuged at 1,000 g 

for 10 min at 4 °C. The supernatant was called crude cytoplasm and served as the source of 

cytosol, mitochondria and membranes. The pellet contained nuclei. (1) To obtain pure nuclei, the 

pellet was resuspended in sucrose-TKM buffer and overlaid in the 1.6 - 2.3M sucrose gradient. 

After centrifugation at 160,000 g for 1 h (Sorvall surespin 630 rotor), the nuclei settled at the 2.1-

2.3 M interface. This nuclear layer was isolated, diluted and centrifuged at 2,700 g for 10 min. 

The final nuclear pellet was resuspended in 200 μl of HES buffer. (2) To obtain pure 

mitochondria, the crude cytoplasm was centrifuged at 16,000 g for 1 h. The resulting pellet was 

suspended in TES buffer and centrifuged at 16,000 g for 20 min. The pellet was suspended, 

while the supernatant served as the microsomal and cytosolic fraction. This supernatant was 

overlaid with 0.58 - 1.55 M sucrose step gradient and centrifuged at 160,000 g for 1 h.  The 

mitochondrial layer at the 1.29-1.55 M interface were isolated, diluted in 15 ml of 0.25 M HES 

buffer and centrifuged at 16,000 g for 20 min. The purified mitochondrial pellet was resuspended 

in 300 μl of HES buffer. (3) To obtain pure membrane fraction, the post-mitochondrial 
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cytoplasmic fraction was centrifuged at 160,000 g for 1 h. The supernatant served as the 

cytosolic fraction. The pellet was resuspended in HES buffer and centrifuged again at 160,000 g 

for 1 h. The purified membrane pellet was resuspended in 200 μl of HES buffer. (4) To enrich 

proteins in the cytosolic fraction, Centriprep YM-3 membrane concentrators (Millipore, 

Billerica, MA) were used. Total protein in all fractions was then quantified using the Coomassie 

Protein Assay Kit (Pierce, Rockford, IL) and stored at -80 ºC. Equal protein amounts (7 μg) from 

each of the subcellular fractions were loaded onto 10 and 15% SDS-polyacrylamide gels, 

electrophoresed, transferred to nitrocellulose membranes, and immunoblotted with antibodies 

against histone H3 (Cell signaling technology, Beverly, MA), cytochrome C (BD Pharmingen, 

San Diego, CA), insulin receptor β chain (Santacruz Biotechnology, Santacruz, CA) and MEK1 

(upstate, Lake Placid, NY), followed by HRP-conjugated secondary antibodies. The membranes 

were subjected to chemiluminescent detection according to manufacturer's instructions (ECL, 

GE Healthcare, Piscataway, NJ). 

 

6.2.3 1D-SDS-PAGE and in-gel digest  

Proteins (100, 150, 150 and 150 µg) from  each of the subcellular fractions (nuclear, 

mitochondrial, membrane and cytosol fractions, respectively) were separated by one dimensional 

SDS-PAGE, using NuPage
® 

Novex Bis-Tris gels and NuPage
® 

MES SDS running buffer 

(Invitrogen, Carlsbad, CA) according to instructions of the manufacturer. The gel was stained 

with Coomassie using Colloidal Blue Staining Kit (Invitrogen). Protein bands were excised and 

subjected to in-gel tryptic digestion essentially as described
234

. Briefly, the gel pieces were 

destained and washed, and, after dithiothreitol reduction and iodoacetamide alkylation, the 

proteins were digested with porcine trypsin (modified sequencing grade; Promega, Madison, WI) 

overnight at 37 °C. The resulting tryptic peptides were extracted from the gel pieces with 30% 

acetonitrile, 0.3% trifluoroacetic acid and 100% acetonitrile. The extracts were evaporated in a 

vacuum centrifuge to remove organic solvent, then desalted and concentrated on reversed-phase 

C18 StageTips as previously described
235

.  

 

6.2.4 Nanoflow LC- MS
2
 or MS

3 

All nanoflow LC-MS/MS and MS/MS/MS experiments were performed basically as described 

previously
84,236

. All digested peptide mixtures were separated by online reversed-phase (RP) 
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nanoscale capillary liquid chromatography (nanoLC) and analyzed by electrospray mass 

spectrometry (ES MS/MS and MS/MS/MS). The experiments were performed on an Agilent 

1100 nanoflow system connected to an LTQ-FTICR mass spectrometer (Thermo Electron, 

Bremen, Germany) equipped with a nanoelectrospray ion source (Proxeon Biosystems, Odense, 

Denmark). Binding and chromatographic separation of the peptides took place in a 15 cm fused 

silica emitter (75 μm inner diameter) in-house packed with reversed-phase ReproSil-Pur C18-AQ 

3 μm resin (Dr. Maisch GmbH, Ammerbuch-Entringen, Germany). Peptide mixtures were 

injected onto the column with a flow of 500 nl/min and subsequently eluted with a flow of 250 

nl/min from 10% to 64% acetonitrile in 0.5% acetic acid, in a 105 min gradient. Data were 

acquired in data-dependent mode using Xcalibur software. The precursor ion scan MS spectra 

(m/z 300–1575) were acquired in the FT ICR with resolution R = 25000 at m/z 400 (the number 

of accumulated ions 5 × 10
6
). The three most intensive ions were isolated and fragmented in 

linear ion trap by collisionally induced dissociation using 3 × 10
4
 accumulated ions. They were 

simultaneously scanned by FT ICR-selected ion monitoring with 10-Da mass range, R = 50000 

and 5 × 10
4 

accumulated ions for even more accurate molecular mass measurements. For MS
3
, 

most intense ion with m/z > 300 in each MS
2
 spectra were further isolated and fragmented. In 

data-dependent LC/MS
2
 experiments dynamic exclusion was used with 30-s exclusion duration.   

 

6.2.5 Proteomic data analysis 

Proteins were identified via automated database search (Mascot; Matrix Science, London, United 

Kingdom) of all tandem mass spectra against an in-house curated version of the Mouse 

International Protein Index protein sequence database (IPI, versions 3.07) containing all mouse 

protein entries from Swiss-Prot, TrEMBL, RefSeq and Ensembl as well as frequently observed 

contaminants (porcine trypsin, achromobacter lyticus lysyl endopeptidase and human keratins). 

A „decoy database‟ was prepared by reversing the sequence of each entry and appending this 

database to the forward database. Carbamidomethyl cysteine was set as fixed modification, and 

oxidized methionine, protein N-acetylation, N-pyroglutamate and deamidation of asparagine and 

glutamine were searched as variable modifications. Initial mass tolerances for protein 

identification on MS peaks were 5 ppm and on MS/MS peaks were 0.5 Da. Two “missed 

cleavages” was allowed. The instrument setting for the Mascot search was specified as “ESI-

Trap”. Peptide identification information was extracted from the Mascot result file into 
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EPICenter (Proxeon Biosystems)
237

. Besides the standard search engine results used for peptide 

assignment (score, expected versus calculated fragment ions, delta mass), additional empirical 

information was computed by the EPICenter peptide validation module to assist in the 

assignment
237

.  Peptides satisfying the following four criteria were accepted for identification. 1) 

Peptides for which MS
2
 score were above the 99

th
 percentile of significance (Mascot score > 32); 

2) Fully tryptic peptides with sequence length 7 or longer; 3) Peptides for which delta scores (the 

difference in score between 1st and 2nd scoring peptide) were at least 5.0; and 4) Peptides for 

which y-ion or b-ion score was at least 50.0. The Mascot result file was also imported into 

MSQuant, open source software available at http://msquant.sourceforge.net, and the MS
3 

score 

was calculated automatically. Finally the protein identification list was created by accepting the 

peptides (which passed our criterion mentioned before) and consolidating them as per the 

following method. Proteins with at least two peptides and a MS
2
 score of at least 64 were 

counted as identified proteins. This protein identification criterion corresponds to the confidence 

of p = 0.0001 if both peptide identifications are considered independent. For proteins identified 

by a single peptide, we required the presence of an MS
3
 spectrum and a combined score for MS

2
 

and MS
3
 of above 52 which corresponding to a level of false positives of p = 0.0001. EPICenter 

automatically assigns identified peptides to proteins and organizes all proteins with shared 

peptides
 
into a single group (protein group). EPICenter selects the protein with

 
most of the 

peptides an anchor protein and marks proteins that are identified by at least one distinct and 

separate peptide as conclusively identified proteins. We counted proteins as identified only when 

a protein conclusively identified as described above or a protein group consisted of only isoforms 

or overlapping database entries.  

 

6.2.6 Enrichment analysis of Gene Ontology (GO) categories 

BinGO
238

 - the Cytoscape
239

 plugin for finding statistically over or under represented Gene 

Ontology (GO) categories, was used for the enrichment analysis of our liver proteome dataset. 

The 3T3-L1 proteome dataset was compared against a reference set of complete mouse proteome 

(IPI mouse v 3.07) GO annotations. A custom GO ontology file for the reference set of the whole 

IPI version 3.13 mouse dataset was created by extracting the GO annotations available for mouse 

IPI IDs from EBI GOA Mouse 22.0 (containing 32,776 protein annotations). The analysis was 

done using the “HyperGeometric test” and we selected all GO terms which were significant with 
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p < 0.001, after correcting for multiple term testing by “Benjamini & Hochberg False Discovery 

Rate”. The analysis was done separately for GO biological process and molecular function 

categories, and fold enrichment for every over-represented term in the two GO categories were 

calculated. In the following we discuss the fold enrichment calculation for GO biological process 

and the same procedure applies for the molecular function category. Suppose the set of over-

represented biological process GO terms is called GOB . For each term iBGO  in set GOB  the fold 

enrichment measure was calculated by following formula:
)(%

)(%
)(

iBIPIMouse

iBAdipocyte
iBfold

GO

GO
GO

. 

Where 
)_____(

)___(
)(%

processBioGOinannotatedAdipocyteCount

iBwithannotatedAdipocyteCount
iBAdipocyte GO

GO
 and, 

)_____(

)___(
)(%

processBioGOinannotatedIPIMouseCount

iBwithannotatedIPIMouseCount
iBIPIMouse GO

GO . 

 

 

6.2.7 InterPro domain enrichment for insights into protein function 

InterPro (release 13.0) annotations were used for finding statistically enriched protein domains in 

our dataset. We used the Cytoscape
239

 plugin BiNGO
238

 for domain enrichment analysis. For 

domain enrichment we needed three components: 1) the test dataset of identified 3T3-L1 

proteome; 2)The InterPro ontology which was built by parsing the “interpro.xml” file (for release 

13.0) available at ftp://ftp.ebi.ac.uk/pub/databases/interpro/ using in-house scripts; and  3) the 

reference set of InterPro annotation for the complete mouse proteome, which was created by 

parsing the “ipi.MOUSE.IPC” file that contains all the InterPro matches for IPI mouse 3.19 

database, available at ftp://ftp.ebi.ac.uk/pub/databases/IPI/current/ as part of IPI 3.19 release. 

The test set of 3T3-L1 proteome was compared against the InterPro annotations of the IPI mouse 

reference set using the custom InterPro ontology as the reference. The enrichment analysis was 

done using the “HyperGeometric test” and we selected all InterPro domains which were 

significant with p < 0.001, after correcting for multiple term testing by “Benjamini & Hochberg 

False Discovery Rate”. The set of over-represented InterPro terms is called enrichI . 

For each term kIenrich  in set enrichI  the fold enrichment measure was calculated by the following 

formula: )(%

)(%
)(

kIIPIMouse

kIAdipocyte
kIfold

enrich

enrich
enrich

. 
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Where )___(

)___(
)(%

InterproinannotatedAdipocyteCount

kIwithannotatedAdipocyteCount
kIAdipocyte enrich

enrich

 and,  

)___(

)___(
)(%

InterproinannotatedIPIMouseCount

kIwithannotatedIPIMouseCount
kIIPIMouse enrich

enrich

. Subsequently these enriched 

InterPro domains were grouped in functional categories as per their representative biological 

functions. 

 

6.2.8 Proteome mRNA concordance analysis for 3T3-L1 adipocytes 

To estimate the depth of the proteome we covered in our survey, we compared our identified 

proteome list with the microarray dataset for normal 3T3-L1 adipocyte available at the DGAP 

site (http://www.diabetesgenome.org/chipperdb/expt.cgi?id=60). The available dataset is in 

triplicates for Affymetrix MG_U74A, B and C array types. We used only MG_U74A (containing 

12,654 probe sets) data for analysis because of practical limitations in data analysis. This was 

primarily because of the difference among the probe-sets for these 3 platforms, which makes 

comparison difficult. We used “DCHIP” software for the analysis of the microarray data 

(http://biosun1.harvard.edu/complab/dchip/). The analysis was carried out in two steps. In the 

first step we estimated the basal expression of the 3T3-L1 adipocyte transcriptome and in second 

we mapped our 3T3-L1 adipocyte proteome dataset on the trascriptome data. The expression of 

probe-sets on the triplicates was calculated using “PM-only model”, and was further normalized 

using “invariant set normalization” method
165

. The expression values were then converted to 

log2 scale. The data was further filtered based on the Present (P) verses Absent (A) call 

percentage which are widely accepted measure of micro array data quality. We used a criterion 

of 66% P call for accepting a probe set as expressed i.e. a probe-set was accepted if it had a P 

call in two out of three samples. Only 5,148 probe sets out of 12,654 met this criterion and they 

were taken as surrogate for basal 3T3-L1 mRNA expression. Subsequently we mapped our 

proteome list on the estimated basal expression set. We used Ensembl MartView 

(http://www.ensembl.org/Multi/martview) release 39 and the “Mus musculus genes NCBIM36” 

dataset, to map adipocyte IPI IDs to their Ensembl counterparts. The Ensembl IDs were then 

used to retrieve the MG_U74A probe-sets ids using Affymetrix‟s NetAffx Analysis Center 

(http://www.affymetrix.com/analysis/index.affx). Thus we could map 3,287 IPI identifiers to 

2,113 MG_U74A probe-sets. Finally the overlap of the adipocyte basal (5,148) probe-sets and 

http://biosun1.harvard.edu/complab/dchip/
http://www.ensembl.org/Multi/martview


In-depth analysis of the adipocyte proteome by mass spectrometry and bioinformatics 

     

 

61 

 

our survey (2,113) probe-sets was calculated. This gave us a final number of 1,755 probe-sets 

which were found in both datasets. Hence these 1,755 probe-set data were regarded as the genes 

which we could identify and remaining 3,393 probe sets were used as the not-identified set. We 

use this consolidated information to calculate the average mRNA expression for the identified 

verses non-identified proteome using the expression levels of 5,148 probe-sets.  

 

6.2.9 Protein prioritization analysis 

The recently reported software application for the computational prioritization of genes - 

Endeavour
8
 was used for protein prioritization. 3T3-L1 proteins (IPI IDs) were mapped to human 

orthologs (Ensembl Gene ids) using Ensembl MartView  release 39 and   the “Mus musculus 

genes NCBIM36” dataset. In total 2,990 IPI protein ids were successfully mapped to human 

Ensemble gene ids. The training set ( TrainingS ) was created by choosing  29 genes involved in 

vesicular trafficking in insulin signaling pathway as shown in Figure 6C. The mapped 3T3-L1 

proteome Ensembl list was taken as candidate test set ( TestS ). The following data sources were 

used for ranking: 1) literature (abstracts in EntrezGene); 2) functional annotation (Gene 

Ontology); 3) microarray expression (Atlas gene expression); 4) EST expression (EST data from 

Ensembl); 5) protein domains (InterPro); 6) pathway membership from KEGG(Kyoto 

Encyclopedia of Genes and Genomes); 7) cis-regulatory modules (TOUCAN); and  8) sequence 

similarity (BLAST) data. The model for “vesicular trafficking” genes was created in Endeavour 

using the above mentioned data sources. Finally the candidate test set ( TestS ) genes were ranked 

for their putative role in vesicular trafficking in insulin pathway by measuring their similarity 

with genes in training set ( TrainingS ).  

 

6.2.10 Annotating hypothetical proteins using orthology based annotation transfer 

To assign putative functions to 335 “hypothetical protein” IDs we used Blast2GO
240

 tool 

(http://www.blast2go.de/) which assigns GO annotation to an unknown protein based on its 

sequence similarity (orthology) to other protein sequences in a pre-selected database. The GO 

annotations are assigned based on a four-tier annotation mapping procedure as described in the 

original paper (ref
240

). We used Swiss-Prot database for this analysis as it serves as the most 

comprehensive experimentally validated protein database.   
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6.2.11 Hierarchical clustering of cellular compartment profiles of the adipocyte proteome  

A cellular compartment distribution matrix was created for the 3,287 IPI ids that we identify in 

our analysis. Briefly suppose C is the 3,287 by 4 cellular compartment matrix corresponding to 

3,287 proteins and 4 compartments (nuclei, mitochondria, membrane, cytosol). For a particular 

IPI say i, 3287,1i  and a particular compartment column j, 4,1j  if the IPI was observed 

with k unique peptides in the compartment, we place C[i, j] = k. Else if the IPI i was not observed 

in compartment column j  then we place C[i, j] = 0. This 3287 by 4 matrix was called cellular 

compartment distribution matrix.  The matrix was further converted to a probability distribution 

matrix probC  of same dimensions (3287 by 4) with each element calculated by the following 

formula:
4

1

,

,
,

j

prob

jiC

jiC
jiC . The matrix probC  was then used for one dimensional hierarchical 

clustering using Genesis
241

 software. The distance metric used was “Euclidean” and the 

clustering was done using “Average Linkage clustering” technique. Subsequently the data from 

earlier large scale studies
242,243

 was overlaid on the clustered dendrogram to ascertain the 

proteome concordance and depth of our fractionation and sub-cellular identification. Also, the 

available GO cellular component terms corresponding to the 4 compartments were extracted for 

the 3,287 IPIs and overlaid on the clustered dendrogram. 

 

6.2.12 Pathway mapping of identified proteins in subcellular compartments  

We used the recently developed functional mapping tool GenMapp version 2.1 

(http://www.genmapp.org)
244

 to map our 3T3-L1 adipocyte dataset on publicly available mouse 

MAPPs.  IPI IDs were mapped to their MGI counterparts using IPI Protein cross reference 

information as available for IPI mouse version 3.13. Overall 3,124 IPI IDs (95.0% of the total) 

could be mapped to their respective MGI ids. Subsequently we created a compartment wide list 

for the mapped MGI ids based on the presence/absence of a particular protein in either of four 

compartments and the data was mapped to latest available mouse MAPPs. 
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6.3 Results 

 

6.3.1 High confidence protein identification of mouse adipocyte organelles 

In order to reduce the complexity of the proteome and obtain compartment specific information 

in adipocytes, we performed differential ultracentrifugation from differentiated 3T3-L1 

adipocyte cells. The proteome of four compartments (nuclei, mitochondria, membrane and 

cytosol) were examined using the workflow depicted in Figure 6.1.  As shown in Figure 6.2, 

purity of subcellular compartments was excellent as visualized by Western blots of organellar 

markers across the four fractions.   

 

Figure 6.2 Distribution of known organelle markers in subcellular fractions isolated from 3T3-L1 

adipocytes 

 

To further reduce sample complexity and dynamic range in protein abundance levels, proteins in 

each compartment were separated on 1D-SDS-PAGE, and 11 or 12 bands were excised and 

subjected to in-gel tryptic digestion. In total, 45 fractions were analyzed by liquid 

chromatography (LC) on-line coupled to electrospray mass spectrometry. We employed a hybrid 

mass spectrometer consisting of a linear ion trap coupled to a high resolution Ion Cyclotron 

Resonance (LTQ-FTICR) instrument. The mass spectrometer was programmed to perform 

survey scans of the whole peptide mass range, select the three most abundant peptide signals and 

perform narrow range, selected ion monitoring (SIM) scans for high mass accuracy 

measurements. Simultaneously with the SIM scans, the linear ion trap fragmented the peptide, 

obtained an MS/MS spectrum and further isolated and fragmented the most abundant peak in the 
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MS/MS mass spectrum to yield the MS
3
 spectrum

236
. Figure 6.3A shows a mass spectrum (MS) 

of eluting peptides (see ref
42

 for an introduction to peptide sequencing). A selected peptide was 

measured in SIM mode and fragmented (MS
2
) (Figure 6.3B). The most intense fragment in the 

MS
2
 spectrum was selected for the second round of fragmentation (Figure 6.3C). As can be seen 

in the figure, high mass accuracy, low background level and additional peptide sequence 

information obtained from MS
3
 spectra yield high confidence peptide identification. Total cycle 

time for the analysis described above was approximately five seconds. To obtain the protein 

„parts list‟ of adipocytes, high confidence protein identification and reporting were essential. We 

applied a stringent multistep filter to minimize false-positive identifications while maintaining 

favorable detection of lower-abundance and lower-molecular weight proteins (See Section 

6.2.5). In addition to standard search engine results i.e. the Mascot probability score
106

, MS
3
 

score and additional empirical information (y-ion and b-ion score, number of sibling peptides 

and proline score)
237

 were employed for peptide and protein identification. Proteins were 

identified with criteria corresponding to an estimated probability of false positives of p = 0.0001. 

We also performed a decoy database search
245

 to test the experimental level of false positive rate 

in our data set. After applying the stringent criteria mentioned above, we found no false positives 

for protein identified with two or more peptides and only two false positive protein hits with one 

peptide. These results indicate a false-positive identification rate of 2/3287 or 0.06%, at the 

protein level. Thus we conclude that our data set contains no or very few false positive 

identifications. Determining the identities of proteins from sequenced peptides is complicated 

because the same peptide
 
sequence can be present in multiple different proteins or protein

 

isoforms
246

. Standard search engines such as Mascot report proteins even when they do not have 

distinct peptides with their sequence specific to these proteins. Thus, sharing information on 

identified peptides was  
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Figure 6.3 High confidence peptide identification by two consecutive stages of mass spectrometric 

fragmentation (MS3). The precursor of a peptide, YVISAIPPVLTAK (A), was selected for fragmentation 

from a full scan of mass to charge ratio range (shown in red). A fragment of the above, y7 ion (B), was 

subsequently fragmented. A characteristic pattern for charge-directed fragmentation is observed in the 

MS3 spectra (C) and confirms the identification of the above peptide. 
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checked by EPICenter
237

 and manually verified. EPICenter organizes all entries with shared 

peptides
 
into a single group (protein group). The protein that contains

 
most of the peptides is 

selected as an anchor, and all group
 
members that are identified by at least one distinct and 

separate peptide
 
are marked as conclusively identified. We counted proteins as identified only 

when a protein had at least one distinct peptide. If a protein group consisted of only isoforms or 

overlapping database entries indistinguishable by MS, then only the anchor protein was counted, 

thus the number of identified proteins is a lower boundary of the actual value.  

 

From 45 LC-MS/MS/MS runs, 182,271 MS/MS spectra were submitted to Mascot database 

search and 52,585 MS/MS spectra satisfied the criteria for peptide validation. Among these, 

22,706 represent unique sequences in the four cellular fractions. A total of 3,287 proteins were 

identified from four fractions with 8,953 unique peptides. Of all proteins, 20.4% were identified 

with single peptide identification and two stages of peptide fragmentation. Interestingly, 71.3% 

of the total was identified within only one cellular fraction whereas 16.7%, 7.8% and 4.2% were 

identified within 2, 3 and 4 fractions, respectively. This confirms the relatively high quality of 

organellar separation as already suggested by marker analysis in the western blotting 

experiments in Fig. 2. In two previous studies analyzing several mouse tissues each similarly 

separated into four subcellular compartments, protein overlap among compartments was deeper 

and fewer than 50% of total identified proteins were specific to one compartment
243,247

. 

 

6.3.2 Depth and Coverage of the 3T3-L1 Adipocyte Proteome assessed by Comprehensive 

Bioinformatics 

 

6.3.2.1 Qualitative comparison with earlier studies 

We compared our proteome dataset with the recently published mouse liver organelle proteome 

map
242

 and the above mentioned study of six mouse tissues (brain, heart, kidney, liver, lung and 

placenta)
243

. As shown in Figure 6.4A, more than two third of the proteins identified by us in 

adipocytes overlapped with these other proteome.  These proteins are candidates for the 

„household proteome‟, i.e. proteins performing general cellular functions and therefore present in 

different cell lines and tissues. However, the proportion of proteins specific to adipocytes in our 

study (28.7%) is also relatively high. In contrast, in a previous study that compared six human 
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cell lines, specific proteins (proteins that were exclusively found in a single cell line) account for 

only 6% to 36% of all identified proteins
248

. As shown in Figure 6.4B, nearly half of our 

cytoplasm proteins overlapped with the combined cytoplasmic proteins from six human cell 

lines
248

. Secreted proteins were enriched approximately 3.5 fold in identified cytoplasmic 

proteins from adipocyte compared with cytoplasmic proteins from the six cell line proteome.  

 

Figure 6.4 Two-thirds of adipocyte cell line proteins are also found in recent mouse organelle studies. 

(A) Mouse proteins reported recently in membrane-enclosed organelles of mouse liver (Foster et al.242) 

and a study of six mouse tissues (but without fat tissue) (Kislinger et al.243) were BLASTed against 

identified proteins in the current study by ProteinCenter (Proxeon Bioinformatics). Only proteins with at 

least 95% identity were considered to match. (B) The adipocyte cytoplasmic proteins were "BLASTed" 

against the combined cytoplasmic six-cell line proteome (Schirle et al.248). Only proteins with at least 

80% sequence identity were considered to match. 

 

Figure 6.4 clearly shows our proteome dataset contains many proteins which were not identified 

in previous large-scale proteome analysis using both tissues and cell lines. Our result may reflect 
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the depth of high-confidence analysis now possible and/or the specificity of adipocyte for their 

critical role in energy balance and whole body homeostasis. 

 

6.3.2.2 Microarray comparison precludes any abundance related bias in proteome 

identification 

Previously microarray studies have been undertaken to unravel various aspects of 3T3-L1 

adipocyte differentiation, development and function
249-252

 and they serve as a useful resource for 

gaining insights into mRNA expression and cellular dynamics. Moreover microarray studies 

provide an estimate of the transcriptome in a particular biological state at any given time, and we 

wished to use this data as a reference for estimating the coverage and depth of our large-scale 

proteome study. We analyzed the gene expression levels of normal 3T3-L1 adipocyte from 

Affymetrix microarray data generated in the Diabetes Genome Anatomy Project (DGAP). The 

available dataset was in triplicates for each of the MGU_74A, B, C Affymetrix array types. We 

combined the three array type datasets for our analysis. In total they contain 37,886 probe sets of 

which 7,656 were deemed „present‟ by using the 66% Present (P) call criterion (see section 

5.2.8). Out of these 7,656 probes, 2182 could be mapped to our identified proteome. We then 

divided the genes judged to be expressed in 3T3-L1 according to the microarray data into two 

groups: those identified in our study and those not identified (Figure 6.5A).  If proteomics was 

biased to detect only high abundance proteins, we would expect a large difference in mRNA 

signal between the two groups. Remarkably, the distribution of mRNA expression levels was 

less than 2-fold higher for the genes whose products were detected in our proteomic analysis as 

compared to those that were not identified. To further substantiate this finding, we also compared 

our proteome data with the Gene Atlas V2 mouse microarray data for adipose tissue
253

. Again we 

observed that the distribution of mRNA expression level was less than 2-fold higher for the 

genes whose products were detected in our proteomic analysis as compared to those that were 

not (Figure 6.5B). This suggests that proteomics experiments, despite  remaining limitations in 

complex mixture analysis
254

, have become quite comprehensive and able to detect low-

abundance proteins in cellular proteomes. Our previous study on mouse tissue mitochondria, in 

contrast, still showed a substantial tendency of mass spectrometry to preferentially detect 

products of high abundance messages
57

. 
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Figure 6.5 Cumulative probability distribution of the mRNA levels of identified versus not identified 

proteins. (A) Proteins identified in adipocytes were mapped onto DGAP 3T3-L1 mRNA data. The 

cumulative probability distributions of mRNA abundance for the genes whose protein products were 

detected (green) or not detected (pink) by proteomics are shown. The mean expression levels for both 

groups are indicated. (B) Proteins identified in adipocytes were mapped to GNF mouse atlas V2. The 

cumulative probability distributions of mRNA abundance for the genes whose protein products were 

detected (green) or not detected (red) by proteomics are shown. 
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6.3.2.3 Coverage of proteome in terms of pathways and annotated complexes 

We then analyzed the coverage of our proteome in terms of protein complex and pathways 

known to be present in adipocytes. We mapped identified proteins onto KEGG pathways
255

.  As 

shown in Figure 6.6A and 6.6B, almost all of the known proteins in the ribosome and 

proteasome complexes were identified. It is interesting that in the membrane fraction only the 

core 20S proteasome and not the 19S (PA700) and 11S (Psme1-3) regulatory complex were 

identified (Figure 6.6A).  

Figure 6.6 Pathway mapping of identified proteins in the four subcellular fractions. Proteins identified 

in four cellular compartments (cytosol, membrane, mitochondria, and nuclei) were mapped to known 

pathways using GenMAPP. (A) Proteasome degradation; (B) Cytoplasmic ribosomal proteins; (C) Insulin 

signaling pathway. The compartments are represented by four different colors for each gene symbol. 
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Figure 6.6(B) Continued 

 

The precise distribution of 20S and 19S complex at the cellular organelle level has not been 

reported in the literature. However, in agreement with our observations, Brooks et  al  reported  

20S, 11S and 19S complexes localized predominantly in the cytosol and also localized in nuclear 

and membrane fractions prepared from rat liver
256

. The function of the 20S proteasome at the 

adipocyte membrane is unknown and would be interesting to elucidate in future studies. In 

contrast, less than half of the known proteins in the insulin pathway map were identified (Figure 

6.6C). Coverage of kinases and transcription factors was low, while we detected more than half 

of the proteins related to vesicular trafficking. Interestingly, in the analysis of 3T3-L1 microarray 

data half of the key components of the insulin signaling pathway were also flagged as not 

expressed (i.e. filtered out by microarray quality measures when using the Present P calls > 66% 
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criterion).  This suggests that the limitation of detection of low abundant proteins/genes such as 

kinases and transcription factors are no worse for MS based proteomics then for other high-

throughput “omics” technologies. 

 

Figure 6.6(C) Continued 

 

 

 

 

 



In-depth analysis of the adipocyte proteome by mass spectrometry and bioinformatics 

     

 

73 

 

6.3.3 Visual interpretation of proteome sub-cellular localization by hierarchical clustering 

and its concordance with earlier studies and genome wide annotations 

In order to compare our subcellular fractions and detection coverage we benchmarked our data 

against previously reported large-scale proteomic analyses of mouse organelles
242,243

 and Gene 

Ontology annotations. For our proteome, we built a cellular compartment distribution matrix 

(3,287 proteins by 4 fractions) by first counting peptides of each protein in each fraction. Then 

we normalized the data to arrive at a probability matrix for the distribution of each protein in the 

four compartments (see Section 5.2.11). Hierarchical clustering of this matrix shows that more 

than 70% of the proteins localized to four clusters with propensity for one specific fraction 

(Figure 6.7). A fifth cluster contained proteins for which there was no clear pattern of 

distribution. Additionally, we overlaid the data of the two large-scale mouse tissue experiments 

as well as cellular compartment annotations from Gene Ontology on the clustered dendrogram. 

As seen in the figure, most of the adipocyte cytosolic proteome showed high concordance with 

the experimental studies. Similarly, the membrane cluster shows good agreement. For the 

miotochondral and nuclear fractions there is excellent correlation, however the depth of our 

study was much greater. (Only the top part of our clusters detected counterparts in the other 

studies.) The GO annotations agreed well for the mitochondrial and nuclear specific clusters. No 

major enrichment is seen for the membrane and cytoplasmic fractions, which seem to be less 

well annotated in GO.  

 

6.3.4 Protein Domain Enrichment for Insights into Protein Function 

Classification of proteins based on their amino acid sequence or three-dimensional structure is 

one of the most established practices in protein science and also adopted by current large-scale 

structural genomics endeavors
257

. Moreover knowledge of independently folding protein 

domains can provide useful pointers into the complex interplay of proteome interactions and 

regulation by post translational modifications
258

. In order to obtain an additional perspective of 

the adipocyte proteome we performed InterPro domain enrichment analysis using our adipocyte 

proteome data set and the proteome data sets obtained from six mouse tissues
243

 and extracted 

InterPro domains enriched only in the adipocyte proteome (Figure 6.8).  
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Figure 6.7 Concordance among subcellular location of our study, recently published mouse organelle 
datasets, and Gene Ontology annotation. One-dimensional hierarchical cluster dendrogram for the 
3T3-L1 adipocyte cellular compartment profiles overlaid with data from recently reported large scale 
proteomics studies and GO cellular compartment terms is shown. The dark blue color represents the 
3T3-L1 adipocyte proteome; light blue corresponds to the mouse tissue proteome study data by 
Kislinger et al.243; light green corresponds to the liver organelle protein study data by Foster et al.58, 
yellow corresponds to the gene ontology (GO) cellular compartment annotations for the four 
compartments (nuclei, mitochondria, membrane, and cytosol) in our study 
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Figure 6.8 Significantly over-represented InterPro domains for the set of identified adipocyte proteins. 

Significantly over-represented InterPro terms with p < 0.001 and not also over-represented in the mouse 

tissue analysis are shown. For each InterPro term the bar shows the enrichment -fold ratio for the 

identified 3T3-L1 proteome in our survey with respect to the InterPro annotations of the entire mouse 

proteome. The InterPro terms are further grouped by representative biological function shown with text 

in blue. SH3, Src homology 3; FKBP, FK506-binding protein. OB, oligosaccharide/oligonucleotide-binding 
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The function of these enriched domains were mainly related to signal transduction, redox system,  

protein transport, translation, transcription, protein degradation, fatty acid metabolism, phospho 

lipid biosynthesis, in agreement with the enriched GO terms described before. Enrichment of 

redox related domains, such as the thioredoxin domain is interesting, because it has been 

suggested that the reduced redox state encourages triglyceride synthesis, adipocyte 

differentiation, and the development of adipose tissue
259

 while an increase in the markers of 

systemic oxidative stress has been associated with obesity and metabolic syndrome
260

. Similarly 

the domains related to vesicular protein transport, such as Ras small GTPase, Rab type, t-snare, 

Longin-like and a domain Zinc finger, Tim10/DDP-type which is related to protein import into 

mitochondrial inner membrane were substantially enriched.  

 

Domains related to transcription and translation were also enriched, specially three domains of 

aminoacyl-transfer RNA synthetases, namely Aminoacyl-tRNA synthetase, class 1a, anticodon-

binding, Aminoacyl-transfer RNA synthetase, class II, and Aminoacyl-tRNA synthetase, class I. 

Transcription and translation are basic functions of the cell, thus proteins related to such 

functions are generally thought to be housekeeping proteins. This observed enrichment may not 

reflect basic adipocyte biology but simply the fact that a rapidly growing cell line needs to 

express more proteins than the comparatively more inert tissue. Further insights may be obtained 

by quantitative study of protein expression in different cell lines and tissues, and by creating a 

protein expression atlas similar to a gene expression atlas
261,262

. 

 

6.3.5 An integrative genomics approach for protein prioritization analysis of vesicular 

trafficking in adipocytes 

One of the important features of adipocytes is insulin regulated glucose uptake. In adipocytes, 

the majority of this glucose uptake results from the translocation of the glucose transporter 4 

(GLUT4) to the cell surface membrane. Since the cloning of GLUT4 in 1989 in several 

laboratories
263-267

 numerous studies have attempted to elucidate the molecular basis of insulin 

receptor-signaling pathway and membrane-trafficking processes. One of the unresolved 

questions is the connection between Akt activation and GLUT4 translocation. GO term 

enrichment analysis revealed that protein transport was enriched in the adipocyte proteome (see 

above) and some of the identified vesicular trafficking proteins are known to be involved in the 
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insulin signaling pathway (Figure 6C). As 26%, 35% and 36% of identified proteins in our study 

were not annotated by Gene Ontology molecular function, biological process and cellular 

component categories, respectively, we tried to predict candidate proteins involved in GLUT4 

translocation using a bioinformatics approach. Very recently, an algorithm termed Endeavour 

was developed for gene prioritization to rank genes involved in human diseases and biological 

processes
8
. The concept of prioritization by Endeavour is that candidate test genes are ranked 

based on their similarity with a set of known training genes. The similarity measure is in turn 

calculated by integrating functional, process, gene ontology (GO), pathway and sequence 

similarity information obtained from diverse data sources. As training genes we choose 29 genes 

involved in vesicular trafficking which are on the map of Figure 6C. We used 2,990 proteins 

which were identified and mapped to human Ensembl gene Identifiers in our study as test genes. 

For 41 gene products we obtained highly significant values (p < 0.0002) for association with our 

set of proteins known to be involved in vesicular traffic (Table 6.1). Candidate proteins highly 

ranked by Endeavour contain many ras-related GTP-binding proteins (Rabs) and soluble N-

ethylmaleimide-sensitive factor attachment protein receptors (SNAREs). While it is not 

surprising that these proteins are involved in vesicular trafficking, they do serve as a positive 

control of the algorithm. We found that proteins recently associated with insulin signaling or 

GLUT4 translocation were ranked high in the candidate proteins. For example, Rab10, Rab14, 

Rab2, vesicle transport through interaction with t-SNAREs 1B homolog, vacuolar protein sorting 

45, vesicle-associated membrane protein 8 and syntaxin 12 are known to be contained in GLUT4 

vesicles
268,269

. Rab2, Rab10 and Rab14 were identified as targets of Akt substrate of 160-kDa 

(AS160) whereas Rab4 was reported to be involved in insulin-induced GLUT4 translocation
270

. 

ADP-ribosylation factor 5 (Arf5) was observed to exhibit modest re-distribution to the plasma 

membrane in response to insulin
271

 and cdc42, a Rho GTPase family member mediates insulin 

signaling to glucose transport in 3T3-L1 adipocytes
272

.  The above examples show that the 

protein prioritization by Endeavour is reasonable. By extension, candidates in Table 6.1 with no 

obvious connection to insulin signaling and GLUT4 are now excellent candidates for further 

functional study in this context.  
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TABLE 6.1 Putative proteins involved in the vesicular trafficking in insulin signaling predicted by the 

method of gene prioritization 

IPI Description

Gene 

symbol p-value

IPI00116770 RAB18, member RAS oncogene family Rab18 2.57E-06

IPI00221615 ADP-Ribosylation factor 5 Arf5 3.82E-06

IPI00271059 RAB4B, member RAS oncogene family Rab4b 4.77E-06

IPI00132276 vesicle-associated membrane protein 3 Vamp3 6.03E-06

IPI00113849 cell division cycle 42 homolog Cdc42 6.83E-06

IPI00331663 unnamed protein product Arf4 7.24E-06

IPI00122965 RAB3A, member RAS oncogene family Rab3a 8.52E-06

IPI00114560 RAB1, member RAS oncogene family Rab1 9.91E-06

IPI00137227 RAB2, member RAS oncogene family Rab2 1.07E-05

IPI00132410 RAB5A, member RAS oncogene family Rab5a 1.13E-05

IPI00118217 Syntaxin-7. Stx7 1.24E-05

IPI00453589 Vesicle-associated membrane protein 8 (VAMP-8) Vamp8 1.43E-05

IPI00126042 RAB14, member RAS oncogene family Rab14 1.49E-05

IPI00230011 Rab6 protein Rab6 1.61E-05

IPI00137647 synaptobrevin like 1 Sybl1 1.71E-05

IPI00321581 GS32 protein Snap29 1.90E-05

IPI00124291 vacuolar protein sorting 45 Vps45 2.35E-05

IPI00331128 cell line NK14 derived transforming oncogene Rab8a 2.36E-05

IPI00116729 Ras-related protein Rab-22A (Rab-22) (Rab-14) Rab22a 3.24E-05

IPI00125880 protein kinase C and casein kinase substrate in neurons 2 Pacsin2 4.34E-05

IPI00111416 syntaxin 12 Stx12 4.87E-05

IPI00469799 splice isoform 2 of golgi autoantigen, golgin subfamily A member 3 Golga3 4.91E-05

IPI00416303 aminopeptidase-like 1 Npepl1 5.52E-05

IPI00224219 sec1 family domain containing 1 Scfd1 6.32E-05

IPI00109506 unnamed protein product Stx6 6.79E-05

IPI00224518 Ras-related protein Rab-5C Rab5c 7.15E-05

IPI00225581 Dedicator of cytokinesis protein 1(Fragment) Dock1 7.19E-05

IPI00134941 c-K-ras2 protein Kras 9.95E-05

IPI00116558 ras homolog gene family, member G Rhog 9.96E-05

IPI00121335 thymoma viral proto-oncogene 2 Akt2 1.09E-04

IPI00116688 RAB3D, member RAS oncogene family Rab3d 1.09E-04

IPI00378015 Drebrin-like protein (SH3 domain-containing protein 7) Dbnl 1.17E-04

IPI00130118 RAB10, member RAS oncogene family Rab10 1.28E-04

IPI00378145 RAB6B, member RAS oncogene family Rab6b 1.30E-04

IPI00453776 early endosome antigen 1 Eea1 1.40E-04

IPI00453771 prenylated SNARE protein Ykt6 Ykt6 1.41E-04

IPI00132685 blocked early in transport 1 homolog Bet1 1.41E-04

IPI00229483 SEC24 related gene family, member C Sec24c 1.43E-04

IPI00131445 Dynamin-2 (Dynamin UDNM) Dnm2 1.49E-04

IPI00331284 vesicle transport through interaction with t-SNAREs 1B homolog Vti1b 1.50E-04

IPI00130554 SNAP-associated protein Snapap 1.94E-04
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6.4 Discussion  

Adipocytes are central players in energy metabolism and the
 
obesity epidemic, yet their protein 

composition remains largely
 
unexplored. Elucidating the protein composition of this versatile 

cell type is the first step towards understanding its role in various cellular processes and disease 

pathophysiologies. Our adipocyte proteomics study using enriched cellular compartments and 

state of the art mass spectrometry, involving very high mass accuracy and two stages of mass 

spectrometric fragmentation, allowed us to establish a high-confidence set of adipocyte proteins 

consisting of 3,287 proteins. Our analysis provides one of the largest and most confident set of 

proteins present in any cell line or tissue. Not only the identified protein list, but also the data on 

putative proteins - involved in vesicular trafficking in insulin signaling reported here should 

serve as a useful reference for more extensive experimental characterization of adipocyte 

functions. In order to share the data presented in this study, we have made the adipocyte 

proteome accessible at the Max-Planck Unified Proteome database (MAPU database, 

http://proteome.biochem.mpg.de/adipo/)
273

. While the MS technologies are already in place to 

elucidate comprehensive proteomes of model organisms
64

, continuing advances in the sensitivity 

and automation of MS-based proteomics will soon make acquisition of complex cellular 

proteomics routine. The analytical and bioinformatics analysis framework applied here can then 

serve as the template for processing and data mining of such cellular proteomes.

http://proteome.biochem.mpg.de/adipo/
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7. Comparative proteomic phenotyping to assess functional 

differences between primary hepatocyte and the Hepa1-6 cell line 

 

This work is included in a manuscript accepted for publication in Molecular Cellular 

Proteomics: 

 

Cuiping Pan
φ

, Chanchal Kumar
φ

, Sebastian Bohl, Ursula Klingmueller, Matthias Mann 

Comparative proteomic phenotyping of cell lines and primary cells to assess preservation 

of cell type specific functions 

φ
 These authors contributed equally to this work 

 

7.1 Introduction 

The development of tissue culture techniques and establishment of cell lines has been 

indispensable for biological research for several decades
274

. However, disadvantages of cell lines 

are that they are usually derived from tumors and have adapted to growth in culture. Although 

cell culture tries to create a close-to-physiology milieu by adding appropriate amounts of salt, 

glucose, amino acids, vitamins, and serum, the lack of tissue architecture and heterogeneous 

population of cell types often abolishes cell-cell interaction, secretion, and other functions based 

on tissue context. Cells in culture are prone to genotypic and phenotypic drifting. Thereby cell 

lines can lose tissue specific functions and acquire a molecular phenotype quite different from 

cells in vivo. Acceptance of cell lines as model for biological function varies between fields. Cell 

biological studies on basic mechanisms, such as the cell cycle are routinely and overwhelmingly 

carried out in long-established cell lines
275

. This is particularly the case for microscopy studies, 

including large-scale siRNA screens with imaging read out. In contrast, there is substantial 

controversy of how well cell lines – which are often established from late stage cancer – preserve 

aspects of the disease and whether or not they should be used in cancer drug development
276-278

. 

Thus animal experiments or studies in primary cell lines are often preferred despite their added 

complexity. Accurate molecular phenotypes to determine if the function to be investigated is 

preserved in cell lines would enable a rational choice of the most appropriate experimental 
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system
279

. In biotechnology and the pharmaceutical industry this goal obtains added urgency in 

light of efforts to reduce animal experimentation to a minimum. 

In this work we ask how primary cells and cell lines differ in their functions. This question has 

been addressed by comparing gene expression profiles at the transcriptome level in a substantial 

body of literature (for recent examples see
280,281

). However, transcriptome studies are not 

quantitative with respect to changes at the proteome level. Ideally, the different molecular 

phenotypes should be assessed by quantitatively comparing the proteomes of the primary cells 

vs. the cell lines. Here we report such a study and develop an algorithm to extract functional 

phenotypes from the resulting differential protein distributions. 

 

7.2 Material and Methods 

 

7.2.1 Materials and reagents 

Mouse hepatoma cell line Hepa1-6 was obtained from American Type Culture Collection 

(ATCC). L-arginine, L-lysine, L-
13

C6
15

N4-arginine and L-
13

C6
15

N2-lysine were purchased from 

Sigma-Aldrich. Chemicals for the „in solution‟ and „in gel‟ digests were purchased from Sigma-

Aldrich, Endoproteinase Lys-C was obtained from Waco and sequencing grade modified trypsin 

was from Promega. 

 

7.2.2 Isolation of mouse primary hepatocytes  

Isolation and culture of mouse hepatocytes was performed according to standard operation 

procedures
282

. For biological and analytical reproducibility, primary hepatocytes were isolated 

from two mice and processed separately. After cultivation for 14 hours, the cells were placed on 

ice and the medium was removed. The cells were lysed in RIPA buffer.  

 

7.2.3 SILAC labeling of mouse hepatoma cell line Hepa1-6 

Hepa1-6 cells were grown in SILAC “light” (L-arginine and L-lysine) and “heavy” (L-
13

C6
15

N4-

arginine and L-
13

C6
15

N2-lysine) conditions for 8 passages before the experiment. This period 

lasted around 3 weeks. Unless stated otherwise, cell culture medium contained 4.5 g/L glucose 
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by following the standard culture condition from ATCC.  Other cell culture conditions were 

essentially the same as described
35

. 

 

7.2.4 Fluorescence microscopy 

Primary hepatocytes were isolated and seeded at a density of 2 10
5
 cells per well in collagen I 

coated 12-well plates. Hepa1-6 cells were grown to a density of 2 10
5
 cells per well in 12-well 

plates. Cells were stained for 15min with 15nM Mitotracker Orange CMTMRos (Invitrogen) and 

1:5000 Hoechst 333342 (Sigma-Aldrich) at 37°C in the corresponding cultivation medium. After 

three washing steps in cultivation medium cells were viewed with a ZeissAxioVert 200M 

fluorescence microscope using a 40  LD-Plan Neofluor objective (n.a. 1.5). Cells were viewed 

under visible light, or excited with 345nm (Hoechst 333342) or 550nm (Mitotracker). 

 

7.2.5 Protein harvest, digestion  

Primary hepatocytes and Hepa1-6 cells were lysed in a buffer containing 1% NP-40, 0.1% 

sodium deoxycholate, 150 mM NaCl, 1mM EDTA, 50 mM Tris, pH 7.5, 1 mM sodium 

orthavanadate, 5 mM NaF, 5 mM beta-glycerophosphate and protease inhibitors (Complete 

tablet, Roche Diagnostics). The lysates were centrifuged in cold with 17,000g for 15 minutes to 

pellet cellular debris. Supernatant was collected and a Bradford method was used to determine 

the protein concentrations. Equal amount of the proteins from the primary hepatocyte sample and 

Hepa1-6 sample were mixed, resulting in 100 µg proteins in total.  

Protein mixtures were added with four volumes of methanol, one volume of chloroform and 

three volumes of distilled water in a sequential manner. The addition of each solvent was 

followed by a short vortex. After centrifugation of 20,000g for 1 minute, proteins were focused 

between organic and inorganic phases. The aqueous phase was discarded. Four starting volumes 

of methanol were added to the protein pellet followed by a short vortex. After spinning at 

20,000g for 2 minutes, methanol was removed and the protein pellet was air-dried. 

Precipitated proteins were redissolved in a buffer containing 6 M urea, 2 M thiourea, 10 mM 

Hepes, pH 7.5. Proteins were reduced with 1 mM dithiothreitol for 1 hour, alkylated with 5.5 

mM iodoacetamide for 45 minutes in dark, and digested for four hours with endoproteinase Lys-

C (1/50 w/w). After diluting four times with 20 mM ammonium bicarbonate, samples were 
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digested overnight with sequencing grade modified trypsin (1/50 w/w). The digestion was 

quenched by adding trifluoroacetic acid to reach pH <3.  

 

7.2.6 Peptide preparation for mass spectrometry 

Peptides were separated based on their isoelectric points in the Agilent 3100 OFFGEL 

Fractionator (Agilent, G3100AA) and the 3100 OFFGEL Low Res Kit, pH 3-10 (Agilent, 5188-

6424) according to the manufacturer. Peptides were focused for 20 kVh at maximum current of 

50A and maximum power of 200 mW. Each peptide fraction was mixed with 10 µl solvent 

containing 30% acetonitrile, 5% acetic acid and 10% trifluoroacetic acid. The resulting solution 

was loaded into C18 reverse phase StageTips
235

.  Peptides were eluted from the StageTips by 

applying 80% acetonitrile, 0.5% acetic acid. Samples were dried down to 3 µl and mixed with 

equal volume of solvent containing 2% acetonitrile and 1% TFA. 5 µl samples were applied for 

LC-MS/MS analysis.  

 

7.2.7 Mass spectrometry and data analysis 

Samples were injected via autosampler into a 15-cm fused silica emitter (75- m inner diameter; 

Proxeon Biosystems) packed in-house with reverse-phase ReproSil-Pur C18-AQ 3- m resin
84

 

and eluted with nanoflow in Agilent 1200 liquid chromatography system (Agilent Technologies, 

Waldbronn, Germany). The gradient induced a linear increase of 4-40% acetonitrile in 0.5% 

acetic acid over 90 minutes. Eluted peptides were sprayed into a 7-T LTQ-FT or LTQ-Orbitrap 

mass spectrometer (Thermo Electron, Bremen, Germany) via a nanoelectrospray ion source 

(Proxeon Biosystems, Odense, Denmark) and analyzed as described previously
84

. Raw MS 

spectra were processed using in-house developed software MaxQuant (version 1.0.7.4)
2,283

 which 

performs peak list generation, SILAC- and extracted ion current-based quantitation, posterior 

error probability (PEP) and false discovery rate (FDR) based on search engine results, peptide to 

protein group assembly , and data filtration and presentation
283

.  The derived peak list was 

searched with the Mascot search engine (version 2.1.04, Matrix Science, London, UK) against a 

concatenated database combining 52,326 proteins from International Protein Index (IPI) mouse 

protein database version 3.24, 27 commonly observed contaminants (forward database) and the 

reversed sequences of all proteins (reverse database). Carbamidomethylation was set as fixed 
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modification. Variable modifications included oxidation (M), N-acetylation (protein), pyro (N-

term QC). Full tryptic specificity was required and up to three missed cleavages were allowed. 

Initial mass deviation of precursor ion and fragment ions were up to 10 ppm and 0.5 Da, 

respectively. Maximum peptide PEP was set to 0.1 and peptide FDR and protein FDR were set to 

0.01. 

  

7.2.8 Gene Ontology and KEGG enrichment analysis based hierarchical clustering 

In the primary against cell line study the quantified proteome was divided into 5 quantiles 

corresponding to probability cutoffs of 0, 0.15, 0.25, 0.75, 0.85, and 1. The enrichment analysis 

for gene ontology (GO) biological process and cellular component were done separately for 

these quantiles with respect to the whole quantified proteome by conditional hypergeometric test 

available in the GOstats package
284

 in the R statistical environment
285

. For hierarchical clustering 

we first collated all the categories obtained after enrichment along with their p-values, and then 

filtered for those categories which were at least enriched in one of the quantiles with p-value < 

0.05. The categories which did not have a defined p-value after collation in any quantile because 

the reference category members were missing were provided a p-value of 1. This filtered p-value 

matrix was transformed by the function x = –log10 (p-value).  Finally these x values were 

transformed to z-score for each GO category by using the transformation . These z-

scores were then clustered by one-way hierarchical clustering using “Euclidean distance” as 

distance function and “Average Linkage clustering” method available in Genesis
241

. KEGG 

pathway enrichment analysis was done in the same way, except that the hypergeometric test was 

employed and the reference set was complete mouse KEGG annotation. 

 

7.3 Results 

 

7.3.1 Quantitative analysis of Hepa1-6 against primary hepatocytes 

To characterize phenotypic differences between cell lines and primary cells, we SILAC-

labeled
9,286

 a murine hepatoma cell line, Hepa1-6
287

, and compared its proteome to that of 

primary hepatocytes prepared according to standard operating procedures(SOP) established by 

the German systems biology competence network HepatoSys
282

 (Figure 7.1). We used high 
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resolution MS to identify 3,400 proteins while quantifying more than 3,350 of them (see Section 

7.2.7). We repeated the experiment with hepatocytes from another mouse and obtained excellent 

reproducibility (Pearson correlation coefficient 0.95; Figure 7.2). We then combined the two 

datasets and analyzed them together using stringent and unified criteria. At a false positive rate 

of less than one percent, a total of 4,063 proteins were identified and quantified between the two 

cell populations.  

 

 

Figure 7.1 Strategy for comparing primary cells with immortalized cell lines. Primary hepatocytes were 

isolated and grown for 14 h. The Hepa1-6 cell line was completely SILAC-labeled with 13C6
15N4-arginine 

and 13C6
15N2-lysine. Cell extracts were combined and analyzed by online high-resolution MS on a linear 

ion trap Fourier transform instrument (LTQ-FT).  

 

The primary and cell line proteomes overlap qualitatively but are very different quantitatively, 

with more than half of the proteome changing at least two-fold between the two conditions 

(Figure 7.3A,7.3B). Many proteins are expressed at much lower levels in the immortalized cell 

line than in the primary cells whereas comparatively few were up-regulated in Hepa1-6. This is 

surprising since cancer cells are thought to be de-differentiated and to express many genes 
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inappropriately. It is usually recommended to cultivate Hepa1-6 cells in high glucose medium 

(38 mM). Therefore we asked whether some of the observed phenotypic changes are attributable 

to this circumstance. To address this experimentally, we performed another SILAC experiment 

comparing cells cultured in high glucose against physiological glucose levels in mice (8 mM) for 

three weeks (Figure 7.4A).  

 

Figure 7.2 Replicate experiments of comparing Hepa1-6 cell line with primary hepatocytes from two 

mice achieved very high degree of reproducibility at both identification and quantitation level (about 

4,000 proteins quantified; Person correlation coefficient 0.95). 

 

In this experiment, there were hardly any overall changes in the proteome and 96% of the 

proteins were of constant abundance within a factor of two. This was also confirmed in a 

replicate experiment (Figure 7.4B). These results rule out a dominant role of the 

superphysiological glucose level in the proteome differences between primary cells and cell 
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lines. Furthermore, they demonstrate excellent quantitative accuracy of our experiment on a 

proteome-wide basis. 

 

 

Figure 7.3 Fold-change distributions of the proteome (A) Quantitative comparison of the primary 

against the Hepa1-6 cell line proteome. The distribution was divided into five quantiles as follows. High 

relative expression in primary cells (0-15%, at least four-fold down-regulation), mostly expressed in 

primary cells (15-25%, -4 to -1.5 fold regulation), not highly regulated proteins (25-75%; - 1.5 to +2.8), 

mostly expressed in Hepa1-6 (75-85; 2.8 to 3.6 fold), highly expressed in Hepa1-6 (85-100%, more than 

3.6 fold change). Color coding of these categories is indicated at the top of the panel. (B) Biological 

replicate of the experiment showing excellent reproducibility 
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Figure 7.4 Quantitative comparison of the Hepa1-6 proteome cultured in high glucose (38 mM) and 

physiological glucose concentration (8 mM). Two independent comparisons (A) and (B) were performed 

starting from cell culture and SILAC labeling. 

 

 

7.3.2 A novel bioinformatics method for proteomic phenotyping 

To functionally understand the differences between the two cell populations, we divided the fold-

change distribution between primary hepatocytes and the Hepa1-6 cell line into five quantiles 

according to relative protein expression (Figure. 7.3A, 7.3B). Each quantile was assessed 

separately for overrepresented pathways, biological processes and cellular components with 

Gene Ontology (GO) and KEGG pathway analysis
49,288

  (Figure 7.5; Section 7.2.8). We retained 

each functional category that reached at least 95% statistical significance in one of the quantiles 

and then performed one-way unsupervised clustering of the p-values of the resulting categories 

(Fig. 7.6). This analysis differs from the more familiar clustering of overrepresented genes 

themselves, which is frequently employed in microarray-based experiments. It integrates the 

strength of statistical testing (taking p-values as input for clustering) with the intuitive simplicity 

of hierarchical clustering. By automatically classifying related processes and pathways based on 

their up or down-regulated protein measurements, it provides an unbiased global portrait of 

representative biological functions, enabling visual interpretation of the phenotype in terms of 

aggregate functional modules on a systems level.  
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Figure 7.5 Bioinformatics workflow for proteomic phenotyping (detail in section 7.2.8) 
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We verified the robustness of these functional assignments by comparing the shared p-value 

matrix of the replicate experiments against each other. This correlation was 0.86 for KEGG, 0.85 

for GO biological process and 0.92 for GO cellular compartment. 

 

Figure 7.6 Functional phenotyping of the proteome. The five quantiles (see Figure 7.2) were separately 

analyzed for enriched KEGG pathways and clustered for the z-transformed p -values. The color bar on 

top represents the quantiles. Representative pathways enriched in the protein population of each 

quantile are annotated. 
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7.3.3 Proteomic differences between Hepa1-6 and primary hepatocytes revealed by 

systematic bioinformatics 

The most prominent cluster of proteins expressed at higher levels in Hepa1-6 relates to cell 

division and encompasses categories such as cell cycle (p < 10
-9

) (Figure 7.7), DNA synthesis (p 

< 10
-4

) and RNA polymerase (p < 10
-3

). This cluster consists of 10 enriched pathways, of which 

at least five relate to increased cell proliferation. Biologically, this is not surprising since 

hepatocytes in the liver and in our primary culture are largely arrested in the GO phase of the cell 

cycle, whereas Hepa1-6 cells double every 18 hours. Nevertheless, the fact that this phenotypic 

trait is so clearly grouped in the cluster analysis makes it an excellent positive control.  

 

Figure 7.7 KEGG pathway mapping of cell cycle. The color bar on top represents the quantiles. Proteins 

that are marked with two colors are likely to represent isoforms 
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One of the most enriched categories in the quantile most expressed in primary cells is the P450 

family of enzymes (p < 10
-16

). These enzymes are mainly involved in metabolizing endogenous 

substances and xenobiotics
289

, a prototypical function of the liver. We identified 32 different 

P450 proteins and 25 of them were down-regulated at least tenfold in the cell line. Furthermore, 

the flavin monooxygenase (FMO), UDG-glucuronosyltransferase (UGT), sulfotransferase 

(SULT), and glutathione S-transferase (GST) - additional prominent drug metabolizing enzyme 

families (DMEs) - were also severely down-regulated in Hepa1-6 (Table 7.1).  

 

Table 7.1 Protein ratios for Cytochrome P450s drug metabolizing enzymes 

 

Only three P450s were up-regulated. Two of them (CYP1A1 and CYP2S1) are known to be 

regulated by the aryl hydrogen receptor
290,291

. This receptor was also more highly expressed in 

Protein 

Names

Uniprot 

ID

# of 

peptides

# of unique 

peptides

Ratio H/L 

Normalized

Ratio H/L 

Count

CYP1A2 P00186 9 5 0.07 3

CYP27 Q9DBG1 13 13 0.02 23

CYP2A12 P56593 24 21 0.04 29

CYP2A4 P15392 5 1 0.07 4

CYP2B19 O55071 6 1 0.01 3

CYP2B20 Q62397 16 11 0.09 17

CYP2C29 Q64458 11 6 0.04 12

CYP2C37 P56654 9 1 0.05 4

CYP2C40 P56657 6 6 0.03 10

CYP2C44 Q3UEM4 3 3 0.14 2

CYP2C54 Q6XVG2 9 2 0.01 1

CYP2C70 Q91W64 17 17 0.07 9

CYP2D10 P24456 12 4 0.02 16

CYP2D26 Q8CIM7 16 12 0.02 22

CYP2D9 P11714 10 6 0.02 7

CYP20 Q05421 10 10 0.03 7

CYP2F2 P33267 22 22 0.03 31

CYP2J5 O54749 3 3 0.03 3

CYP39A1 Q9JKJ9 3 3 0.07 3

CYP3A11 Q64459 4 4 0.04 3

CYP3A13 Q64464 6 6 0.06 12

CYP4A12 Q91WL5 11 11 0.07 8

CYP4F13 Q99KY6 2 2 0.18 2

CYP4F14 Q9EP75 2 2 0.02 2
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Hepa1-6, providing a ready explanation for the up-regulation. The third up-regulated P450 

protein (RIKEN clone E130013F06) has only been characterized on the basis of sequence 

homology and may have functions different from traditional P450 enzymes. Reduction of DME 

activity is a notorious difficulty in toxicological assays in cell lines. Toxicologists therefore 

attempt to stimulate liver cell lines with the aim of boosting DME activity
292

. Quantitative 

knowledge of the changes in the profile of DME could provide a rational basis to adapt cell 

systems to more closely mimic hepatocytes in vivo. 

 

Another prominent and cell-specific function of hepatocytes is production of plasma proteins. 

Figure 3 reveals that „complement and coagulation cascade‟ is specific for the primary cells (p < 

10
-2

). Inspection of the pathway involved shows that major liver-produced factors, such as C3, 

C4, MBP-C, F2, F5, A2M, Serpin A1/C1 and apolipoproteins are down-regulated more than 

five-fold in Hepa1-6. Thus, loss of tissue context allows the cell line to shut down this function, 

which is nonessential for propagation in culture. The cellular compartments most 

overrepresented in the primary cells are mitochondria (p < 10
-62

) (Figure 7.8A) and extracellular 

matrix (p < 10
-18

). Apparently, the cell line under-expresses proteins related to communication 

with stroma and with tissue maintenance. Our proteome contained a total of 479 proteins 

annotated as mitochondrial in GO. Of these, 69% were in the asymmetric tail of the distribution, 

indicating they were expressed several fold lower in Hepa1-6 cells than in primary hepatocytes. 

We independently confirmed this observation by DAPI and Mitotracker staining (Figure 7.8B). 

Indeed, primary hepatocyte nuclei were smaller whereas in these cells mitochondria were more 

abundant with respect to Hepa1-6.  Concurrent with this, fatty acid metabolism was drastically 

down-regulated according to enrichment analysis of KEGG pathways (Figure 7.9A). Likewise, 

„oxidative phosphorylation‟ (p < 10
-29

; Figure 7.9B), „urea cycle‟ (p < 10
-4

) and „steroid 

biosynthesis‟ (p < 10
-2

 ; Figure7.9C) were statistically significantly enriched in the quantile most 

expressed in primary hepatocytes. These down-regulated metabolic functions at least partially 

take place in mitochondria. Conversely, parts of the glycolysis pathway were up-regulated in 

Hepa1-6 (Figure 7.9D). Together, our results portray a drastic metabolic rearrangement, away 

from oxidative metabolism in the mitochondria and towards less efficient anerobic metabolism. 

These findings provide evidence for the Warburg hypothesis, that cancer cells shift towards 

glycolytic metabolic pathways
10

.  
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Figure 7.8 Phenotypic proteome comparison at the cellular component level. (A) The quantiles resulting from 

quantitative proteome comparison in Figure 7.3 were separately analyzed for enriched Gene Ontology Cellular 

Components and clustered for the z-transformed p-values. The color bar on top represents the quantiles. 

Representative categories enriched in the protein population of each quantile are annotated. Prominent 

mitochondria related categories for the primary cells are highlighted in red and prominent nucleus related 

categories in blue. (B) Nuclear (DAPI) and mitochondrial (Mitotracker) staining of primary hepatocytes and Hepa1-

6 cells. Most primary hepatocytes are binuclear
293

. 
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Figure 7.9 KEGG pathway mapping (A) Almost the entire fatty acid metabolism module is 

downregulated several-fold in Hepa1-6. Proteins are color-coded according to their relative expression 

in the two cell types according to the scheme in Figure 7.3. Proteins that are marked with two colors are 

likely to represent isoforms. (B) Oxidative phosphorylation, legends as in (A) 
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Figure 7.9 (C) Biosynthesis of steroids, legends as in Figure 7.9(A) 
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Figure 7.9 (D) Glycolysis pathway, legends as in Figure 7.9(A) 
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In the category containing the 50% of proteins with the least change, many household functions 

and organelles including ribosome (p < 10
-2

), proteasome (p < 10
-3

), splicing (p < 10
-4

) and Golgi 

apparatus (p < 10
-3

) are significantly enriched. Interestingly, several signaling pathways are also 

preferentially located in this quantile. These include the ErbB and PI3K signaling pathways 

(Figure 7.10).  

 

Figure 7.10 Phenotypic proteome comparisons at the pathway level. KEGG pathway mapping of ErbB 

and PI3K signaling pathway shows that they are equally present in primary cells and the cell line. 

 

This finding is in agreement with the requirement of growth factor containing serum for the 

maintenance of most cell lines. Conversely, TGFβ-mediated signaling is more highly represented 

in the Hepa1-6 cell line and the canonical members TGFβ R1, Smad2/3, Smad4, p107 and p15 

are all up-regulated significantly (Figure 7.11). This was unexpected because TGFβ is usually 

associated with growth inhibition whereas Hepa1-6 has an increased proliferation rate compared 

to primary hepatocytes. However, the biological actions of TGFβ are complex and it is thought 

to shift from a growth inhibitory to a growth promoting role during cancer development
294

. Thus 

up-regulation of this pathway suggests that in the Hepa1-6 tumor cells, TGFβ may have growth 
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promoting effects. Taken together, our data indicate that biological functions related to many 

important signaling pathways are well preserved in Hepa1-6.  

 

Figure 7.11 Proteomics phenotyping at the pathway level. KEGG pathway mapping shows that TGFβ 

signaling pathway is predominantly present in the cell line. 

 

Some categories shared by both cell types and enriched when analyzed using the  KEGG 

database represent  non-liver functions (such as „long term potentiation‟) or even non-animal 

functions (such as „CO2 fixation‟).  However, the enzymes found in these categories function 

both in liver tissue as well as in neurons or plants. Therefore, overrepresentation of these 

categories reflects the still evolving state of annotation of pathway databases rather than a 

limitation of our technology.  
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7.4 Discussion 

Taking advantage of the ability of SILAC to compare the levels of thousands of proteins in 

different cellular states
2,283

 and a novel bioinformatics approach, we have, for the first time, 

compared the proteomes of primary cells to cell lines. The overall picture that emerges is that 

Hepa1-6 has lost many of the specific functions typical of hepatocytes in vivo. Examples are the 

DMEs, complement production and synthesis of extracellular matrix. Conversely, the cell line 

shifts more of its resources into functions associated with proliferation, but maintains important 

cell signaling pathways. This phenotype is „rational‟ for rapidly dividing and not nutrient limited 

cells and may partly reflect Darwinian selection of cell clones.  

 

Our technology is accurate, relatively rapid and should now allow selection of the appropriate 

cell system based on a global and unbiased profile according to desired biological function. 

Furthermore, it can be used to manipulate the cell line system to better reflect the in vivo 

situation at the proteome level. While we have based our analysis on protein expression levels, it 

could just as well be applied to assess fidelity of signaling pathways in cell lines using SILAC-

based quantitative and global phosphoproteomics
65

.  

 

Our bioinformatics analysis differs in important points from the more familiar measurement of 

mRNA levels by microarray and its associated bioinformatics
295

. Even though reproducibility of 

microarray chips has become much better during recent years, the data is not quantitative with 

respect to the final, desired parameter – the global change in protein levels. Furthermore, results 

of any specific transcript on the chip generally have to be validated by RT-PCR and then by 

quantitative immunoblotting. This is impractical for large numbers of proteins. In contrast, 

quantitative proteomics inherently contains the fold-change for each protein, and increasingly 

also that of specific isoforms. The quantitative nature of our results also made it possible to 

directly group overrepresented functions and processes instead of the genes themselves. 

 

Here we have analyzed interesting, but relatively general phenotypic traits of two cell 

populations. While many of the resulting observations can be immediately rationalized in terms 

of biological function, they have never been quantified in a global and unbiased way. Our data 
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furthermore contains a wealth of functional leads that could not be explored in depth here. The 

combination of very high quantitative accuracy at the proteome level with increasingly accurate 

pathway databases should allow even richer assessment of the phenotypic state of any cell 

population in the future.  
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8. A systems view of the cell cycle by quantitative phospho-

proteomics  

 

This work is included in a manuscript under submission:  
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φ

, Michiel Vermeulen
φ

, Anna Santamaria
φ

, Chanchal Kumar
φ

, Martin L. 

Miller, Lars J. Jensen, Florian Gnad, Juergen Cox, Thomas S. Jensen, Erich A. Nigg, Søren 
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A systems view of the cell cycle by quantitative phosphoproteomics 

φ
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8.1 Introduction 

The cell cycle is a highly regulated and evolutionarily conserved process that results in the 

duplication of the cell's content and involves a large number of dedicated protein complexes and 

signaling pathways. Deregulation of key players that coordinate this process is implicated in 

tumorigenesis
296,297

. Global analyses of the cell cycle have so far been limited to microarray 

studies of the transcriptome
298

. However, regulated protein phosphorylation and protein 

degradation both play pivotal roles in controlling the cell cycle, but these are not always directly 

reflected by mRNA changes. Recent advances in proteomics technology, in particular high-

resolution mass spectrometry (MS), now allow large-scale quantitation of the proteome and the 

phosphoproteome. For example, we have recently quantified more than six thousand 

phosphorylation sites in response to cell stimulation
65

 using a metabolic labeling technique 

termed SILAC
9
. Here we combine this technology with global proteome quantitation to obtain a 

systems-biology view of protein and phosphorylation dynamics during the human cell cycle. We 

SILAC-encoded three HeLaS3 cell populations using light, medium and heavy stable isotopic 

versions of arginine and lysine. Light and heavy populations were synchronized in six different 

stages of the cell cycle and mixed with medium labeled asynchronously growing cells (Figure 

8.1A). Because of their different molecular weights, peptides from the three populations are 

separated in the mass spectrometer and are directly quantifiable against each other.  



A systems view of the cell cycle by quantitative phosphoproteomics 

     

 

104 

 

 
Figure 8.1 Quantitative proteomic analysis of the human cell cycle. (A) HeLa S3 cells were SILAC labeled 
with three different isotopic forms of arginine and lysine. Three individual populations of heavy and light 
SILAC cells were pre-synchronized using a thymidine-block and then collected at six different time-points 
across the cell cycle following release from the thymidine arrest. Two samples were collected after an 
additional nocodazole-arrest and release. Cells were lysed and mixed in equal amounts using an 
asynchronously growing cell population (medium SILAC) as the internal standard allowing normalization 
between experiments. Three independent experiments were performed to cover six cell cycle stages. (B) 
Immunoblot analysis of known cell cycle marker proteins in the different cell populations. (C) 
Fluorescence Activated Cell Sorting (FACS) profiles of the individual synchronized HeLa S3 populations. 
Cells were fixed, collected by centrifugation after which the DNA content of the cells was determined 
using propidium iodide. 
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This results in relative quantitation of the proteome and the phosphoproteome during the cell 

cycle in three experiments with the asynchronous population present in each experiment for 

normalization. Following harvesting, cells from the three experiments were combined and 

processed as described in section 8.2 for proteome and phosphoproteome analyses. We 

monitored synchronization of SILAC cell cultures by Western blotting and FACS analyses 

(Figure 8.1B and 8.1C). 

 

8.2 Materials and Methods 

8.2.1 Cell culture and sample preparation 

HeLa S3 cells were SILAC labeled as previously described using three different isotopic 

versions of lysine and arginine
9
. Cells were synchronized in G1/S overnight using a thymidine 

block at a concentration of 4 mM (Sigma, St. Louise, MO). Cells were then released from 

thymidine block and subsequently collected at four different time points; 0 h (G1/S-phase), 2.5 h 

(Early S-phase), 5.5 h (Late S-phase) and 7.5 h (G2-phase) after removal of thymidine. Two sets 

of cells were arrested overnight using nocodazole following the 7.5 hours release from 

thymidine. The next morning these cells were released for either 0.5 h (M-phase) or 3 h (G1-

phase). Western blotting and FACS analyses were performed to monitor the efficiency of the 

cell-cycle arrest (Fig. 8.1B,C).  

 

8.2.2 Fluorescence-activated Cell Sorting Analysis  

Cell suspensions were fixed with 80% ethanol, permeabilized by treatment for 5 min with 0.25% 

Triton X-100 in PBS, and incubated with 0.1% RNase and 10 µg/ml Propidium Iodide. Cellular 

DNA content was determined by flow cytometry using FACSCalibur (BD Biosciences Clontech, 

San Jose, CA) system and CellQuest software (Becton-Dickinson, Lincoln Park, NJ). 

 

8.2.3 Western blotting 

Cells were washed once with ice-cold PBS containing 1 mM phenylmethylsulfonyl fluoride, 

scraped off the plate, and resuspended in ice-cold HEPES lysis buffer (50 mM HEPES, pH 7.4, 

150 mM NaCl, and 0.5% Triton X-100) containing 1 mM DTT, 30 µg/ml RNase A, 30 µg/ml 

DNase, protease, and phosphatase inhibitors. After 15 min on ice, lysed cells were centrifuged at 

13,000 rpm for 15 min at 4°C. Protein concentrations in the cleared lysate were determined using 
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the Dc protein assay (Bio-Rad), and equal protein amounts were loaded on SDS-PAGE gels. 

Separated proteins were transferred to nitrocellulose membranes (Whatman Schleicher and 

Schuell). For Western blot analysis, rabbit anti-cyclin D (St. Cruz Biotechnology), mouse mAb 

anti-cyclin E (clone HE-12 tissue culture supernatant), goat anti-cyclin A (St. Cruz 

Biotechnology), mouse anti cyclin-B (BD Transduction Laboratories), mouse mAb anti-α-

tubulin (Sigma-Aldrich), rabbit anti-Geminin (gift from Roland A. Lasckey), rabbit mouse anti-

Bub1 (clone 61–22–2, tissue culture supernatant), rabbit anti-Eg5
299

, mouse anti-Aurora B (BD 

Transduction Laboratories), mouse anti-Plk1 (clone PL2, tissue culture supernatant), mouse anti-

securin (Abcam), mouse anti-TPX2 (Abcam), rabbit anti-Kif20A (gift from Thomas U. Mayer), 

mouse anti-pT210 Plk1  (BD Transduction Laboratories), anti-pT14 Cdk1, rabbit and rabbit anti-

pS10 Histone 3 (Upstate Biotechnology) were used and detected by ECL Supersignal (Pierce 

Chemical) using a digital Fujifilm LAS-1000 camera attached to an Intelligent darkbox II 

(Raytest).  

Arrested cells were lysed in modified RIPA buffer
65

 after which protein extracts were clarified 

by centrifugation to pellet chromatin and other insoluble material. This insoluble pellet was 

redissolved in 8M urea/1% N-octylglucoside supplemented with phosphatase inhibitors and 

benzonase. The soluble proteins in the RIPA extract were precipitated overnight at -20 °C by 

adding 4 volumes of ice-cold acetone. Following centrifugation, precipitated proteins were 

redissolved in 8M urea/1% N-octylglucoside supplemented with phosphate-inhibitors. The 

protein concentration of all the fractions was determined using the Bradford assay. Protein 

extracts derived from the different cell-cycle arrest stages were then mixed 1:1:1 accordingly 

using an asynchronous cell population as the internal standard. 20% of the protein mixtures were 

separated by 1D-SDS PAGE, sliced in 20 gel-plugs and digested with trypsin in-gel
300

. 30% of 

the extracted peptide mixtures were used for quantitative proteome analysis by LC-MS, whereas 

the other 70% of the extracted peptides were subjected to titanium dioxide enrichment in the 

presence of 2,5-DHB
38

 and analyzed by LC-MS. The remaining 80% of protein mixtures were 

not fractionated by 1D SDS PAGE but directly reduced with DTT, alkylated using 

iodoacetamide and subsequently digested with endoproteinase Lys-C and trypsin as described
65

. 

The resulting peptide mixtures were either directly subjected to titanium oxide enrichment or 

first fractionated by strong-cation chromatography followed by titanium dioxide enrichment. 
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8.2.4 Mass Spectrometry 

All experiments were performed on an LTQ-Orbitrap instrument connected to an online 

nanoflow HPLC (Agilent 1100 system) via a nanoelectrospray ion-source (Proxeon Biosystems). 

The tryptic peptide mixtures were autosampled onto a 15 cm long 75 µm ID column packed in-

house with 3-um C18-AQUA –Pur Reprosil reversed-phase beads (Dr. Maisch) and eluted with a 

linear gradient from 8% to 40% MeCN in 2 hrs. The separated peptides were electrosprayed 

directly into an LTQ-Orbitrap mass spectrometer (Thermo Fisher Scientific), which was operated 

in the data-dependent acquisition mode to automatically switch between one orbitrap full-scan 

and five ion trap tandem mass spectra. The tandem mass spectra were acquired with the multi-

stage activation enabled for neutral loss of phosphoric acid (32.66, 48.99 and 97.97 amu)
301

. All 

full-scan spectra were recalibrated in real-time using the lock-mass option
86

. 

 

8.2.5 Data processing and analysis  

Mass spectrometric data were analyzed using the in-house developed software MaxQuant 

version 1.0.12.0
2
. Which performs peak list generation, SILAC- and XIC-based quantitation, 

estimation of false discovery rates for search engine results, peptide to protein group assembly, 

as well as data filtering and presentation. The MS/MS spectra were searched against the human 

International Protein Index sequence database (IPI version 3.37) supplemented by frequently 

observed contaminants, concatenated with reversed versions of all sequences. Mascot (version 

2.2.04) was used for the database search. Enzyme specificity was set to trypsin, allowing for 

cleavage N-terminal to proline and between aspartic acid and proline. Carbamidomethyl cysteine 

was set as fixed and oxidized methionine, N-acetylation, loss of ammonia from N-terminal 

glutamine as well as phosphorylation of seine threonine and tyrosine as variable modifications. 

Spectra determined to result from medium or heavy labeled peptides by pre-search MaxQuant 

analysis were searched with the additional fixed modifications Arg6 and Lys4 or Arg10 and 

Lys8, respectively, while spectra with a SILAC state not determinable a priori were searched 

with Arg10 and Lys8 as additional variable modifications. A maximum of three missed 

cleavages and three labeled amino acids (arginine and lysine) were allowed. The required false 

discovery rate was set to 0.01 at the peptide and at the protein level and the minimum required 

peptide length to 6 amino acids. If the identified peptide sequence set of one protein was equal to 

or contained another protein‟s peptide set, these two proteins were grouped together by 
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MaxQuant and not counted as independent protein hits. Protein SILAC ratios are reported as the 

median of the ratios derived from SILAC triplets assigned to the protein. For phosphopeptides 

the phosphorylation site(s) were assigned by using a modified version of the PTM score
65

 in 

MaxQuant. All high-confidence phosphosites (FDR<0.01) together with their cell cycle 

dependent ratios were uploaded to Phosida (http://www.phosida.com), which is a freely 

accessible phosphorylation site repository
302

. 

 

8.2.6 Peak time index calculation for (phospho)-proteomic temporal profiles 

The workflow of the analysis is shown in Figure 8.3. The fold ratios (r1 through r6) for each 

protein over the 6 time points (t1=1 through t6=6) were scaled between range [0, 1]. Then for 

each protein we calculated a time peak index (tpeak) by weighted mean of the expression ratio of 

maximal expression (i.e. ri=1) at time point ti with respect to its adjacent time points (ti-1 and ti+1). 

In order to maintain the cyclicity we made two assumptions: (a) if the maximal expression was at 

t1 (i.e. r1 = 1) then t1 was preceded by t0=0 with expression r6, and (b) if the maximal expression 

was at t6 (i.e. r6 = 1) then t6 was followed by t7=7 with expression r1. The equations for the peak 

time (tpeak) calculation are as follows: 

 

The protein expression profiles were subsequently ordered in increasing order to get a temporal 

map of cell cycle. For the purpose of rendering according to their increasing tpeak the original 

(unscaled) expression profile for each protein was z-transformed prior to rendering as in Figure 

8.4.  

 

8.2.7 Cyclic angular peak calculations based on peak time index of (phospho)-proteomic 

temporal profiles 

The time peak measure for any protein j, tpeak(j) was further converted to an angular peak measure 

θpeak(j)  in the range [0,360°] by following equation: 

 

www.phosida.com
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Thus, the time peak measures tpeak(j) were converted to a polar coordinate system with the radial 

coordinate r=1  and the polar angle θpeak(j). By definition the polar coordinate system has an 

anticlockwise orientation with 0° ray as the polar axis. However, in order to represent and 

analyze our proteomics data according to the standard cell cycle stages beginning with “Mitosis” 

we further wished to choose a transformed polar coordinate system having clockwise orientation 

with 90° ray as the polar axis. In such a polar coordinate space θpeak(j) has to be transformed by 

following equation:   .These  values were used to render the 

z-transformed protein profiles in the transformed polar coordinate space as shown in Figure 8.8.  

 

8.2.8 Enrichment analysis for Gene Ontology Cellular Component (CC) based on circular 

statistics 

For each of the Gene Ontology
288

  cellular component category C the circular peak angles of the 

complete protein set (N proteins) was used to derive a 1×N vector θC  such that its jth entry was 

 if protein j was annotated with C else “NA”. This θC vector was tested for non-

homogeneous distribution across the unit circle in the transformed polar coordinate system (θ*
) 

by using the “Rayleigh test”
303

. Only categories which had a p-value < 0.05 were considered 

significant. The mean(θC) provided mean direction of enrichment for the category C and was 

used to render the category at particular angles in Figure 8.8.  

 

8.2.9 Comparison with cell cycle microarray dataset  

The microarray dataset of ref
298

 experiment no. 4 (Thy-Noc) was chosen for comparison with our 

proteomics dataset as the experimental conditions therein paralleled our study. The complete 

microarray dataset was categorized into changing (1,100 probes) and non-changing (39,484 

probes). The complete identified proteome was divided into regulated (2,857 IPIs) and non-

regulated (3,169 IPIs) proteins. The IPI identifiers of the proteomics data were mapped to the 

microarray probes using common EntrezGene identifiers. Some of the IPIs could be mapped to 

more than one EntrezGene identifiers and hence were multiplicatively mapped for each identifier 
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thereby resulting in 11,826 probe entries in common. This final mapped dataset was categorized 

into 4 classes as shown in following contingency table:  

 

These set of clusters were then analyzed using GO based clustering method for enriched 

biological processes (BP) by a method similar to the one described in section 8.2.11. 

  

8.2.10 Comparison with steady-state HeLa microarray data 

We used a recently published microarray data set
304

, which employed the Affymetrix HGU133A 

GeneChip with 22,283 probe sets that map to 12,999 Entrez gene identifiers. We downloaded the 

data from the four control data sets representing the normal HeLa transcriptome. In accordance 

with practice in our proteomics experiment, we defined a transcript as present if the MAS5 p-

values were at least 0.01 in three out of the four experiments (the MAS5 probability values are a 

standard measure of the presence of a transcript, and they are calculated from the signals of the 

different elements in each probe set). We then mapped the 8,161 probe sets with a “present call” 

on the Affymetrix probe set to 5,791 unique Entrez gene identifiers. Our quantified proteome of 

6,026 IPI entries was mapped to 5,455 unique Entrez gene identifiers. Subsequently the overlap 

between the two datasets was calculated by common Entrez gene identifiers. Figure 8.2 shows 

their overlap with the proteomic HeLa data set.  

 

8.2.11 Gene Ontology and KEGG pathways enrichment based clustering for protein groups 

based on peak time 

The enrichment analysis for Gene Ontology (GO)
288

 Biological Process(BP) and Cellular 

Component(CC) were done separately for each of the peak clusters (M peak, G1 peak, G1/S 

peak, Early S peak, Late S peak, G2 peak) derived from peak time index clustering (Figure 8.4) 

with respect to the whole quantified proteome by the ”conditional hypergeometric test” available 

in the GOstats
284

 package in the R statistical environment
305

. For further hierarchical clustering 

based on GO terms we first collated all the categories obtained after enrichment along with their 

Regulated Non-regulated

Cycling Cluster A(311) Cluster B(226)

Non-cycling Cluster C(5,493) Cluster D(5,796)

Proteins

m
R

N
A
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p-values, and then filtered for those categories that were at least enriched in one of the clusters 

with p-value < 0.05. This filtered p-value matrix was transformed by the function x = –log10 (p-

value). Finally these x values were z-transformed for each GO category. These z-scores were 

then clustered by one-way hierarchical clustering (Euclidean distance, Average Linkage 

clustering) using Genesis
241

. KEGG pathway
306

 enrichment analysis was done in the same way, 

except that the „hypergeometric test‟ was employed and the reference set were the complete 

human KEGG annotations. 

 

8.2.12 Analysis of kinase–substrate relationships during phases of the cell cycle  

In order to predict kinase-substrate relationships all identified class I serine and threonine 

phosphorylation sites (pS/T) were scored with NetPhosK
307

. We found that the overall score 

distribution of the cycling pS/T is significantly different from the score distribution of the non-

cycling counterparts (P < 10
-10

, Chi-square test). For each time point in the cell cycle we 

investigated which kinases contribute most to the observed differences in score distributions 

compared to non-cycling pS/T. This was plotted with the “heatmap” package in R (the time 

points in the cell cycle were z-score scaled) (Figure 8.11C).  

 

8.2.13 New candidates in the DRR network 

We found 479 pS/T sites in the data set that matched the pS/T-Q DNA Damage Repair (DDR) 

kinase consensus motif.  Out of these sites we defined a dynamic subset that was regulated on 

multiple levels. This subset consisted of 13 sites regulated on phosphorylation (high confidence) 

and protein levels as well as 8 sites regulated on phosphorylation (intermediate confidence) and 

mRNA levels. We next used the NetworKIN algorithm
308

 to classify which upstream kinases 

target the particular phosphorylation sites and found that 15 pS/T-Q sites in 14 proteins were 

contextually linked to ATM or DNA-PK. 
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8.3 Results 

 

8.3.1 High throughput identification of proteome changes during the cell cycle  

LC-MS/MS data from 144 gel slices for the quantitative proteome and 300 fractions for the 

phosphoproteome were together analyzed using the MaxQuant software
2
 applying unified 

statistical criteria. At a false discovery rate of one percent this resulted in the identification of 

6,695 proteins, of which 6,281 were directly associated to 5,878 unique Ensembl genes. For 

6,027 proteins, quantitative profiles were obtained. About 70% of the proteome was 

phosphorylated (4,795) and a total of 23,765 phosphorylation sites were identified – again at a 

false discovery rate of one percent. We could confidently assign 18,037 unique phosphorylation 

sites in the peptide sequences (Class I sites
65

). As our phosphoproteome measurement is 

extensive but still not complete, our data suggests that the majority of all human proteins are 

phosphorylated to some degree.  

 

8.3.2 Coverage of the proteome 

To assess if our measured HeLa cell proteome is biased against „difficult‟ protein classes such as 

low-abundance regulatory proteins or membrane proteins and determined to which extent we 

covered these categories and well-known protein complexes. Typically we identified at least 

70%, suggesting the HeLa cell proteome contains at least 10,000 proteins of which we quantified 

a majority. Classical cell-cycle proteins, such as cyclins, CDKs and components of the anaphase 

promoting complex/cyclosome (APC/C) were measured essentially completely. This is the 

largest quantified proteome to date, similar in size to typical dynamic transcriptome profiles of 

human cell lines (see section 8.2.10, Figure 8.2). The quality of the proteome-wide quantitation 

is demonstrated by the dynamic MS-based profiles for the marker proteins shown by Western 

blotting in Figure 8.1B and other key cell-cycle proteins. Expression levels of a fifth of the 

proteome changed by at least four-fold over the cell cycle.  A four-fold change also best 

accounted for the dynamics of already described cell-cycle components. A recently published 

global study using RNAi identified a cell-cycle phenotype for more than 1,000 proteins
309

. Both 

numbers are large compared to the number of known central cell-cycle actors.  
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Figure 8.2 Comparison of steady state HeLa transcriptome with the quantified proteome. The 

microarray data for four samples of unsynchronized HeLa cells taken from the dataset of Carson et al. 

were analyzed as explained in section 8.2.10. The Venn diagram shows the overlap between two 

datasets based on common Entrez gene identifiers. In total 3,433 entries were common between the 

two datasets with a similar number of entries identified exclusively by only microarray or MS-based 

proteomics.  

 

8.3.3 Analyzing proteome time course by novel bioinformatics approach  

In order to discover the patterns of expressions across 6 time points we devised a new metric 

taking into account the maximal expression of proteins with respect to its peaking time and 

called it “peak time index” (Figure 8.3; Section 8.2.6). Ordering the proteins according to their 

“peak time index” revealed distinct up- and down-regulated clusters corresponding to each cell-

cycle stage (Figure 8.4). Key players of cell cycle stages were found to show clearly discernible 

and already established kinetics as marked in Figure 8.4. The peak patterns were then divided 

into six sub-clusters (M peak, G1 peak, G1/S peak, Early S peak, Late S peak, G2 peak) 

depending on the concerted proteome peaking in respective cell cycle stages (annotated by blue 

gradient coloring in Figure 8.4). Each of these sub clusters were analyzed by a proteomic 

phenotypic approach using KEGG and Gene Ontology (GO) as annotational resources to reveal 

distinct functional characteristics and cellular contexts. 
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Figure 8.3 Bioinformatics workflow to cluster and circularize proteome and phosphoproteome changes. The proteome time profiles were first 

scaled in range [0,1] and then assigned a time peak index (section 8.2.6). The complete proteome was then clustered as per the increasing time 

peak index as shown in step (C).The time peak index was further transformed into an angular peak measure (section 8.2.7) in the range [0,360] 

degrees. This angular peak measure was used to render the z-transformed proteome profile as shown in step (D). Subsequent bioinformatics 

analysis was done using circular statistical methods on the polar coordinates of these proteins. 
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Figure 8.4 Dynamics of the proteome during the cell cycle. Proteins that were found to be regulated at 

least four-fold during the cell cycle were clustered in all cell-cycle stages by calculating a time peak index 

by weighted mean of the expression ratio of maximal expression. For each cell cycle stage, there are 

clear patterns of up and down-regulation. 
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Figure 8.5 KEGG pathway enrichment analysis applied to the individual clusters derived from the cell 

cycle regulated HeLa proteome (marked in Figure 8.4 with blue gradient colors).  

 

KEGG pathways enrichment based clustering provided a systems level peek into the diverse role 

of these proteins ranging from pivotal signaling pathways (p53, insulin, mTOR, GnRH), disease 

(Glioma, AML, Type II diabetes mellitus), and metabolic networks (OXPHOS) (Figure 8.5).  
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Figure 8.6 Gene Ontology (GO) enrichment analysis of biological processes (BP) applied to the individual 

clusters derived from the cell cycle regulated HeLa proteome (marked in Figure 8.4 with blue gradient 

colors) 
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Figure 8.7 Gene Ontology (GO) enrichment analysis of cellular components (CC) applied to the individual 

clusters derived from the cell cycle regulated HeLa proteome (marked in Figure 8.4 with blue gradient 

colors) 
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Analysis of these clusters using GO biological process revealed clear functional enrichment of 

categories that would be expected in these cell cycle clusters; for instance M-phase, cell cycle, 

mitotic chromosome condensation among others were clearly enriched in the “M peak” cluster 

(Figure 8.6), and additionally many novel functions relevant to each of the six clusters shown in 

figure 8.4. Similarly, analysis of GO cellular components highlighted enrichment of distinct 

cellular compartments that are clearly defined sites of many of the biological processes and 

pathways found to be enriched in those clusters thereby substantiating the results found in 

previous analysis (Figure 8.7). 

8.3.4 Directional statistics based enrichment of protein profiles reveal co-regulated 

complexes  

To determine when in the cell-cycle specific proteins and protein groups peaked we circularized 

the clustered proteins on a cell-cycle timeline by mapping the peak times onto a transformed 

polar coordinate system
310

 (Figure 8.8). Subsequently directional statistics based on the 

“Rayleigh test” was used to find enriched GO cellular components and complexes (see Section 

8.2.7). Co-regulation of subunits within cell cycle regulated complexes namely APC/C (P < 

0.02), Mediator complex (P < 1E-05), DNA replication factor A complex (P < 0.007) was 

observed (Figure 8.8). Likewise, proteins from sub-cellular organelles were found to be co-

regulated, for example, mitochondrial proteins (P < 1.6E-25), nucleolar proteins (P < 0.01) and 

ER-Golgi components (P < 0.001). 
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Figure 8.8 Dynamic cell cycle proteome rendered in cyclic order along with enriched gene ontology 

(GO) cellular compartments and complexes. The data shown in Figure 8.4 was circularized to determine 

the angle in the cell cycle where particular proteins peak. Around the circle co-regulated protein 

complexes and organellar proteins for particular cell cycle stages are indicated. 
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8.3.5 Proteome transcriptome comparison reveals similar depth of coverage and weak 

expression correlation 

We next compared the dynamics of the proteome to a published cell-cycle transcriptome that 

made use of the same cell type and a related experimental procedure for cell synchronization
298

. 

Detected proteome and transcriptome overlapped to 63% and covered the expressed genome to 

similar depth (Figure 8.2). Steady-state message levels did not correlate well with steady state 

protein levels as estimated by summed peptide intensities (R=0.38, Figure 8.9A; R=0.46 when 

correcting for protein length, Figure 8.9B). This is not surprising since different transcripts and 

proteins have different half-lives.  

 

Figure 8.9 Transcriptome versus proteome comparison reveals an uncorrelated behavior (A) Summed 

peptide intensity vs. mRNA expression on log2 scale (B) Corrected summed peptide intensity vs. mRNA 

expression on log2 scale 
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However, 59% of the genes that significantly changed at the transcriptome level and that were 

quantified as proteins changed significantly (ratio-change >4) at the proteome level as well. We 

found that 21% of all observed proteins significantly change in abundance during the cell cycle, 

whereas only 10% of the transcriptome was reported to change
298

. This most likely reflects 

differences in the statistical analyses and experimental setup as well as the contribution of post-

transcriptional regulation. Reassuringly, Gene Ontology (GO) analysis confirmed a cell-cycle 

function for proteins regulated at both the mRNA and the protein level, whereas proteins 

regulated at neither of the levels are preferentially involved in homeostasis and basic metabolic 

processes (Figure 8.10). The only functional class of proteins that are specifically regulated at the 

protein level but not at the mRNA level is the transcriptional machinery. 

8.3.6 Analysis of cell cycle phosphorylation by ensemble bioinformatics approach 

To determine phosphorylation sites that show dynamic profiles due to changes in 

phosphorylation state rather than due to changes in protein abundance, we normalized the 

measured phosphopeptide ratios by the corresponding protein changes. Subsequently we 

clustered the phosphoproteome time course data by increasing peak time index (section 8.2.6). 

The phosphoproteome is three times as large as that of our group‟s recent growth factor signaling 

study
65

. It encompasses 70% of those sites and was distributed across cellular compartments as 

observed before. Interestingly, the level of phosphorylation of more than half of the 

phosphorylation sites changed at least two-fold over the cell cycle; of these again about half were 

maximally phosphorylated in M-phase (Figure 8.11A). Compared to single-stimulus studies, this 

is a much larger proportion, highlighting the involvement of many more signaling processes in 

the cell cycle. Inspection of known cell-cycle-regulated phosphorylation sites showed the 

expected kinetics, as exemplified for the activation loop phosphorylation site  (pT161) and the 

inhibitory sites (pT14 and pY15) of CDK1, which show opposing kinetics (Figure 8.11B). 
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Figure 8.10 Comparison of mRNA and protein dynamics during the cell cycle. Measured protein 

dynamics were correlated to mRNA data published by Whitfield et al. (3). Proteins were grouped on the 

Y-axis in four categories from top to bottom: unchanging mRNA and protein, changing mRNA and 

unchanging protein, changing mRNA and unchanging protein and changing mRNA and changing protein. 

In addition, proteins were clustered on the X-axis according to their gene ontology. 
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8.3.7 Kinase substrate relationship prediction and novel insights into phosphorylation 

mediated cellular processes 

 

Next we used NetPhosK to predict kinase-substrate relationships and constructed a heat map 

based on the dynamic phosphoproteome
307

. For each stage of the cell cycle this map indicates the 

degree of over- or under-representation of substrates of different kinase groups (Figure 8.11C).  

Figure 8.11  Dynamics of the phosphoproteome during the cell cycle. A. Clustering of regulated phosphorylation 

sites in all cell cycle stages as described for the proteome in Figure 8.4. More than half of all identified regulated 

phosphorylation sites peak in mitosis. B. Dynamic profile of two CDK1 phosphopeptides during the cell cycle. The 

activating site T161 clearly peaks in mitosis, whereas the inhibitory sites T14 and Y15 are down-regulated in 

mitosis. C. Heat map of cell-cycle-regulated kinase substrates. The NetPhosK algorithm was used to construct a 

heat map based on the cell cycle phosphoproteome and reveals overrepresentation of particular kinases during 

different stages of the cell cycle as shown. Strikingly, ATM and DNAPK kinases were found to be globally active 

during S phase. 
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As expected, predicted CDK substrates are most highly phosphorylated in M-phase.  PKB/AKT-

related signaling is most active in G1 whereas PKC-related substrates are preferentially 

phosphorylated in G1/S, which presumably reflects their growth-associated roles
311

.  

Interestingly, substrates of the DNA damage response (DDR) kinases ATM/ATR and DNA-PK 

are significantly overrepresented in S phase, which is most likely due to the coupling between 

DNA replication and repair. While this has been reported for individual phosphoproteins, our 

data show that it is a general phenomenon since 124 sites that match the ATM/ATR and DNA-

PK kinase motifs peak in S phase. Many of these phosphoproteins are known to be involved in 

DNA repair, such as RAD50, MDC1, TP53BP1 and ERCC6. A recent phosphoproteomic study 

of DNA damage also identified some of these sites
312

.  

Figure 8.12 Regulation of mini-chromosome-maintenance (MCM) complexes in response to DNA 

damage. (A) Tandem mass spectrum of a phosphopeptide derived from MCM6 that contain the pS13. 

(B) Left panel, MCM2-7 is one of several complexes involved in initiation of DNA replication. In response 

to DNA damage, the subunits MCM2 and MCM3 are phosphorylated on S108 and S535, respectively. We 

identify a novel pS-Q phosphorylation site (S13) on the MCM6 subunit, which is phosphorylated during 

S-phase. Right panel, during the elongation phase of DNA replication, only the subcomplex MCM4/6/7 is 

part of the replication fork. The novel phosphorylation site on MCM6 provides a plausible mechanism by 

which the DDR kinases can halt ongoing DNA replication in response to DNA damage. 
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The DDR kinases
313

 coordinate cell-cycle checkpoints and DNA repair mechanisms and almost 

exclusively phosphorylate substrates with linear sequence motifs that match pS/T-Q
314

. Out of 

479 pS/T-Q sites in the data set we selected 21 sites in proteins that are regulated at multiple 

levels. These were analyzed with the NetworKIN algorithm, which increases the accuracy in 

classifying kinase-substrate relationships by combining prediction of kinase substrate motifs with 

contextual information
308

.  This analysis tied 14 substrates to ATM and DNA-PK, of which five 

are known to be part of the DDR apparatus. The DDR kinases also phosphorylate the MCM2 and 

MCM3 subunits of the hexameric mini-chromosome-maintenance (MCM) complex
315

, which is 

essential for initiation of DNA replication. In agreement with this, we show that S108 of MCM2 

is most highly phosphorylated during S-phase. However, this does not explain how the DDR 

kinases can halt ongoing DNA replication in response to DNA damage, since only the 

MCM4/6/7 helicase subcomplex is involved in the elongation process
316

. We identify a novel pS-

Q site within this subcomplex (S13 of MCM6, Figure 8.12A) which is phosphorylated 

specifically during S-phase and hence provides a plausible mechanism by which DDR kinases 

could inhibit ongoing DNA replication (Figure 8.12B). 

8.3.8 Systematic study of cell cycle control regulation by integrating proteome, 

phosphoproteome and transcriptome 

Apart from regulated phosphorylation, targeted protein degradation is a key regulatory 

mechanism in cell-cycle control. To analyze our data with respect to degradation motifs, we 

integrated the different levels of signal processing and gene expression at the protein and 

transcriptome levels. Degradation signals are significantly overrepresented in proteins that are 

cell-cycle regulated; this is true both for transcriptional regulation (KEN boxes, P < 10
-18

; PEST 

regions, P < 0.002), regulation of protein levels (KEN boxes, P < 0.002; PEST regions, P < 0.02) 

and periodic phosphorylation (KEN boxes, P < 10
-4

; PEST regions, P < 0.001). As expected, 

proteins that are regulated at multiple levels are more enriched in degradation signals than the 

individual sets; for example, proteins that are regulated by phosphorylation and transcription 

show a 2.6-fold enrichment for KEN boxes, whereas phosphorylation alone leads to a 1.4-fold 

enrichment only.  
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If gene products that are regulated at the phosphoproteome or proteome level are highly enriched 

for proteins that have important functions during the cell cycle, then knock-down of these 

proteins should result in cell-cycle defects. Indeed, of 39 genes that show a cell-cycle phenotype 

in a siRNA pilot study
317

, 14 were regulated at the phosphoproteome in M-phase, and 29 at the 

proteome level (Table 8.1).  

Table 8.1 Comparison of our cell cycle regulated proteome and phospoproteome to RNAi phenotype 

study by Neumann et al.317 

Gene name RNAi phenotype observed in study by Neumann et al. 

[Nature Methods  2006. 3(5) 385-390]

Timing of 

phenotype

Proteomics Max 

Difference

M-phase specific 

Phosphorylation?

RGPD5 Medium mitosis and apoptosis phenotype Early onset 2.23 -

NU153 NUP153 - Medium mitosis and apoptosis phenotype Early onset 1.55 -

SYNE2 Medium mitosis, shape and apoptosis phenotype Early onset 1.5 -

RAD21 Medium mitosis and apoptosis phenotype Medium onset 1.76 -

ANC1 medium all Early mitosis 1.96 -

NUP62 Medium shape Late 1.64 -

SEH1L Medium mitosis and apoptosis phenotype Early onset 1.37 -

CDC27 Weak mitosis and medium apoptosis phenotype Early onset 1.38 -

ANC2 Medium all Late onset 1.93 -

NUP37 Medium shape Late 1.23 -

NU107 NUP107 - Medium mitosis & apoptosis phenotype Early onset 1.15 -

MD2L1 Medium shape Late onset 1.38 -

NUMA1 NUMA1 - Medium mitosis and apoptosis phenotype Early onset 1.01 -

ANC5 medium all Early mitosis 1.19 Yes

LMNA Weak mitosis and medium apoptosis phenotype Late onset 0.95 Yes

SUV42 Weak mitosis and medium apoptosis phenotype Late onset 1.45 Yes

APC10 Weak mitosis and medium apoptosis phenotype Late onset 1.16 Yes

POM121 Medium mitosis and apoptosis phenotype Early onset 0.99 Yes

CBX1 Weak mitosis and medium apoptosis phenotype Medium onset 0.16 Yes

CBX3 Medium mitosis and apoptosis phenotype Medium onset 0.13 Yes

DUS3 medium shape, early onset 0.82 -

COPB Strong apoptosis Early 0.17 Yes

CAPG Medium mitosis and shape Medium 0.25 Yes

SEC13 Medium all early 0.27 Yes

MP2K3 Medium shape Late 1.5 -

CBX5 Weak mitosis and medium apoptosis phenotype Medium onset 0.16 Yes

CDK7 Medium shape Medium onset 0.75 -

EGFR Weak mitosis and medium apoptosis phenotype phospho? 0.37 Yes

H2AY Weak mitosis and medium apoptosis phenotype Medium onset 0.85 -

CENPH Weak mitosis and medium apoptosis phenotype Medium/Late 0.61 Yes

CENPB Medium mitosis and apoptosis phenotype Late onset 0.7 Yes

KIF11 Strong mitosis phenotype Early 1.82 -

KIF23 Medium all, stronger mitosis Early 2.3 -

AURKB Medium mitosis, shape and apoptosis phenotype Early onset 1.69 -

DUS14 Medium shape, weak mitosis and apoptosis Early 3.28 -

TPX2 Medium mitosis, shape and apoptosis phenotype Early onset 2.83 -

SMC4 Weak mitosis and medium apoptosis phenotype Early onset 3.11 -

PLK1 Strong mitosis phenotype Early 4.48 -

CCNB2 Weak mitosis and medium apoptosis phenotype Late onset 3.05 -
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We found 27 gene products that exhibit periodic regulation of phosphorylation states, protein 

levels, and transcription (Table 8.2).  

Table 8.2 Protein regulated at multiple levels during the cell cycle. The table contains the HGNC name, 

the IPI identifier, the number of detected phosphorylation sites (with the number of periodic 

phosphorylation sites in parenthesis) and the presence/absence of degradation motifs (D for D-box, K 

for KEN box and P for PEST region) for each of the 27 proteins. 

Among these are two genes, LMNB1 (Lamin B1) and TMPO (Lamina-associated polypeptide 2), 

which encode lamina-related proteins that influence nuclear envelope stability. TMPO contains a 

Lamin-B-binding domain that mediates its interaction with LMNB1
318

. This interaction is 

HUGO IPI id Phosphorylation sites

Degradation 

signal

DSP IPI00013933 40(9) D/K/P

BIRC2 IPI00013418 8(1) -

GMNN IPI00026309 9(1) K/P

UNG IPI00011069 6(2) P

TROAP IPI00029680 8(1) P

BRIP1 IPI00012500 10(1) D/P

NUSAP1 IPI00000398 15(4) K

KIF23 IPI00293884 17(1) K/P

ZNF24 IPI00306446 5(5) P

LMNB1 IPI00217975 22(4) P

GPSM2 IPI00642575 8(1) D

RAD18 IPI00024579 6(2) K/P

TMPO IPI00030131 14(1) D/P

GAS2L3 IPI00185219 5(2) P

MKI67 IPI00413173 3(3) P

ATAD2 IPI00170548 11(2) -

NUP35 IPI00329650 26(12) -

C4A IPI00032258 5(4) D/P

PLK1 IPI00021248 3(1) -

RRM2 IPI00011118 5(1) K

SHCBP1 IPI00168691 6(1) P

CASP2 IPI00291570 2(2) -

PRR11 IPI00305822 8(3) D/K/P

TACC3 IPI00002135 12(1) K/P

SFRS12 IPI00375462 4(1) -

TPX2 IPI00008477 10(1) D/K

KPNA2 IPI00002214 16(7) -
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disrupted by phosphorylation of TMPO in mitosis
319

. Our data now identifies the M-phase-

specific site of phosphorylation (S306), which is located within the Lamin-B-binding domain of 

TMPO, as being responsible for this disruption. Other lamina-related gene products, LMNA 

(Lamin A), LMNB2 (Lamin B2), and LBR (Lamin B Receptor) were also found to cycle at 

multiple levels. Very recently, it was shown that the regions that surround lamina-associated 

chromosomal domains contain binding sites for certain transcription factors
320

. Most of these are 

E2Fs and other G1/S transcription factors, which is intriguing since TMPO has been shown to 

regulated cell-cycle progression via the Rb–E2F pathway
321

. Thus it is tempting to speculate that 

lamina-related proteins regulate G1/S transcription both by interacting with known G1/S 

transcription factors and by binding close to their downstream target genes. 

8.4 Discussion 

In this work we present the first global and unbiased analysis of proteome and phosphoproteome 

dynamics during the cell cycle at a depth of about 6,000 proteins and the quantitation of more 

than 18,000 unique phosphorylation sites. Our quantitative proteomics dataset provides a 

valuable resource for large-scale studies of in vivo phosphorylation dynamics at a systems-

biology level. Complemented with novel bioinformatics analysis and the inferences gathered 

therein we provide a global compendium of cell cycle related pathways, functions and 

components. We expect it to be useful for the cell-cycle and cancer communities as it directly 

connects gene expression changes with protein regulatory information at a proteome-wide level. 
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9. Protein localization assignment in brown and white adipose tissue 

mitochondria by multiplexed quantitative proteomics and 

systematic bioinformatics approach 

 

The bioinformatics approach for mitochondrial protein localization discussed in this project is 

part of the work included in a manuscript under submission:  

 

Francesca Forner, Chanchal Kumar, Christian A. Luber, Martin Klingenspor and Matthias 

Mann 

Pathway analysis of mitochondria in brown versus white adipocytes by quantitative 

proteomics 

 

9.1 Introduction  

The imminent goal of understanding a cell at the „systems level‟ hinges on the accurate 

knowledge of the dynamic, spatial and temporal aspects of its sub-cellular components including 

RNAs, proteins and metabolites. One definitive step towards this is mapping the sub-cellular 

localization of proteins which provides key insights into their cellular function and interaction 

with other entities
62

. Until now systematic experimental studies of subcellular localization of 

proteins have been performed with the help of cellular fractionation or fluorescent microscopy. 

The first proteome wide localizome study of budding yeast using green fluorescent protein (GFP) 

fusion proteins has been published
322

. In more complex eukaryotes and mammalian systems GFP 

based methods face numerous challenges, and has been recently shown to result in experimental 

artifacts such as translocation to nucleus causing spurious localization
323

. Alternatively, 

antibodies or other affinity reagents have been successfully used to visualize protein sub-cellular 

localization. While this method has several advantages over GFP based methods, one of its 

largest drawbacks is the lack of availability of comprehensive antibody inventory to probe the 

protein localization on a global and high-throughput scale. One of the most comprehensive 

studies based on fluorescently labeled antibodies coupled with confocal microscopy has recently 

reported the localization of 1,899 human gene products
324

.  
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Additionally, numerous bioinformatics methods for protein localization prediction have been in 

use for many years and have provided pointers towards function of hypothetical or novel and 

uncharacterized proteins
325-327

. As they are mainly based on sequence features they can be 

applied for genome wide studies of protein localization predictions for organisms which have 

already been sequenced. But because of the underlying algorithms and the input constraints, they 

are very specific for particular class of proteins (eukaryotic vs. prokaryotic, secretory, 

mitochondrial, nuclear, chloroplast) and therefore limited or specialized in application
328-331

. 

Moreover, they provide mere indications towards protein localizations which need to be 

ultimately verified by cell-biological or biochemical methods. 

 

Proteomics methods specifically applied to characterization of sub-cellular organelle proteomes 

has been referred in literature as Organellar Proteomics and refers to the ensemble of innovative 

experimental methods, MS techniques and specialized bioinformatics algorithms employed for 

characterization of organelle proteomes
332,333

. Organellar proteomics methods have been 

successfully applied to unravel the proteomes of various organelles including mitochondria, 

nucleolus, isolated synaptic vesicles, clathrin coated vesicles, endosomes, phagosomes, 

endoplasmic reticulum, and Golgi apparatus, as well as Golgi-derived COPI vesicles
58,333-336

. 

Quantitative proteomics methods add another dimension to organellar proteomics thereby 

facilitating study of the dynamics of organelles and their constitutive proteomes under various 

cellular states
45

. SILAC is a valuable method for quantitative proteomics and has found 

numerous applications in basic and translational research. Recently organellar proteomics 

methods based on SILAC have been successful employed to map the dynamics of protein 

trafficking in human nucleolus and to model the phagosome maturation process
337,338

 

 

As protein localization is contingent upon many factors which are at play in a given cellular 

context, a dynamic picture of protein localization calls for a special approach and methodology. 

Following this idea we devised a comprehensive framework and workflow for assigning 

simultaneous protein localization in two sub-cellular organelles, compartments and fractions by 

integrating SILAC, organelle enrichment, quantitative mass-spectrometry analysis and a novel 

probabilistic bioinformatics approach. Given the limitations of obtaining totally purified 

organelles and the fact that in any fractionation method a part of the protein population is always 
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present as contaminant in different sub-fractions, we reasoned that a probabilistic approach of 

localization assignment in separate fractions is more rational. The workflow described is suited 

for simultaneous protein localization assignment in two sub-cellular compartments or fractions 

and could easily be extended to more fractions.  

 

9.2 Materials and Methods 

 

9.2.1 Preparation of SILAC reference 

3T3-L1 and brown preadipocytes were sub-cultured and differentiated in DMEM supplemented 

with 10% dialyzed fetal bovine serum (Gibco) and antibiotics in 5% CO2 at 37°C. SILAC 

labeling was performed as described
339

 with L-Lysine-13C6,-15N2 and L-Arginine-13C6,-15N4. 

3T3-L1 preadipocytes were grown and differentiated as described previously (Kratchmarova et 

al. 2002). Brown preadipocytes were obtained from C.R. Kahn‟s laboratory and differentiated as 

described
340

. Cells were harvested with Trypsin (Gibco), diluted with DMEM supplemented with 

protease inhibitors (Roche) and centrifuged at 1000 g for 10 min. Cells were then resuspended 

with 250 mM sucrose, 10 mM Hepes pH 7.4, 0.1 mM EGTA supplemented with protease 

inhibitors (Roche) and washed twice. The suspension was homogenized on a 7 ml Dounce 

homogenizer. Mitochondria and nuclei were isolated as described below. The crude 

mitochondrial fraction was purified on a 30% Percoll self-forming gradient. Equal amounts of 

brown and white adipocyte mitochondria were mixed 1:1 based on the protein amount and 

served as the internal standard (am-IS). The post mitochondrial fraction (PMF) was the 

supernatant obtained after the first centrifugation at 10000 g (see below). The PMF was 

concentrated by with 5000 MWCO membranes (Millipore).  

 

9.2.2 Preparation of mitochondrial sample 

Interscapular brown adipose tissue and epididymal white adipose tissue from C57BL/6 mice (5 -

10 weeks) were excised, immersed in HBSS, cleaned free of connective tissue under a binocular 

microscope, minced and digested with 1 mg/ml collagenase A (Roche) at 37°C for 30 min. After 

digestion, the slurry was passed through 250 μm mesh opening fiber material (Sefar) and 

centrifuged at 500 g for 1 min. The floating adipocytes were removed with a plastic pipette and 
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centrifuged three additional times in HBSS. No visible stromal vascular fraction was present 

after the fourth centrifugation. Floating adipocytes were homogenized using a 10 µm clearance 

cell homogenizer (Isobiotec) pre-cooled in ice. Membrane disruption was checked with Trypan 

blue staining. The tissue homogenate was centrifuged twice at 800 g for 10 min at 4°C to pellet 

the crude nuclear fraction. The supernatant was centrifuged at 10000 g for 10 min at 4°C. The 

crude mitochondrial pellet was resuspended in 250 mM sucrose, 10 mM Hepes pH 7.4, 0.1 mM 

EGTA  supplemented with protease inhibitors (Roche). The suspension was further centrifuged 

at 7000 g for 10 min at 4°C and purified with the protease treatment as described
341

. For the 

localization study, mitochondria from the brown and from the white adipose tissues were mixed 

1:1 with post mitochondrial (PMF) and nuclear fractions (N) isolated from the SILAC-labeled 

brown adipocytes or 3T3-L1 respectively (see section 9.2.1). For quantitative proteomics, 

mitochondria from the brown and from the white adipose tissues were each mixed 1:1 with the 

am-IS based on protein amount (Bradford).   

  

9.2.3 Protein fractionation and mass spectrometric analysis of proteins and relative 

quantitation.  

Protein samples were separated on 1D gels, trypsin-digested and extracted as described
342

. 

Peptides were desalted and concentrated on C18 stage tips as described
235

 and analyzed by LC-

MS/MS on a LTQ-Orbitrap mass spectrometer (Thermo Fischer Scientific) connected to an 

Agilent 1200 nanoflow HPLC system via a nanoelectrospray source (Proxeon Biosystems). MS 

full scans were acquired in the orbitrap analyzer by using internal lock mass recalibration in real-

time. MS full scans were acquired in two different m/z ranges (350-1000 and 1000-1800). 

Tandem mass spectra of the 6 most intense ions of the lower mass range and of the 4 most 

intense ions of the higher mass range were simultaneously recorded in the linear ion trap. 

Peptides were identified from MS/MS spectra by searching them against the IPI mouse database 

(version 3.24) using the Mascot search algorithm (www.matrixscience.com) and SILAC pairs 

were quantified by MaxQuant
47

. 
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9.2.4 Finite Mixture modeling and Bayesian approach for protein localization 

 

The section explains the Bayesian inference methodology of localization probability assignment 

for brown adipocytes experiment shown in Figure 9.1A. The same approach was applied to the 

3T3-L1 white adipocytes experimental setup. Below we discuss the two cases namely case 1: 

mitochondrial (Mito) vs. post mitochondrial fraction (PMF), and case 2: mitochondrial (Mito) vs. 

nuclear fraction (Nuc).  

Case 1: We used the statistical method of finite mixture modeling to model the abundances of 

the
Mito

PMF
2log ratios based on the assumption that the “Mito” and “PMF” protein ratios originate 

from two different Gaussian distributions MitoMitoxf ,; and PMFPMFxf ,; respectively. To 

estimate these distributions we used expectation maximization (EM) algorithm
343

 with an initial 

assignment of the protein ratios
Mito

PMF
x 2log  to either the mitochondrial class (CMito) or the PMF 

class(CPMF) by the criteria: 
PMF

Mito

Cxxif

Cxxif

),5.1(

),5.1(
. The cutoff -1.5(on log2 scale) was chosen as it 

corresponds to ~ 3 fold up/down ratios and enables a preliminary separation of the dataset as 

observed from manual inspection. The EM algorithm iteratively finds the best estimates for the 

Gaussian distributions for the two classes given the SILAC ratios for all the proteins identified in 

that experiment. The class membership (or localization) probability for each protein was 

calculated by the equations defined below. Briefly, given a protein ratio
Mito

PMF
x 2log , the 

following two equations calculate the class membership probability PMito and PPMF of its 

membership to mitochondrial class (CMito) and PMF class(CPMF) respectively.  

    
)(*)|()(*)|(

)(*)|(
)|(

PMFPMFMitoMito

MitoMito
MitoMito

CPCxRatioPCPCxRatioP

CPCxRatioP
xRatioCPP  

And,  

 

Where, 

 

   

 

)(*)|()(*)|(

)(*)|(
)|(

PMFPMFMitoMito

PMFPMF
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CPCxRatioP
xRatioCPP

MitoMitoMito xfCxRatioP ,;)|(

PMFPMFPMF xfCxRatioP ,;)|(



Protein localization by multiplexed quantitative proteomics and systematic bioinformatics 

     

 

136 

 

Case 2: As in case 1 expectation maximization (EM) algorithm was used to model the 

abundances of the
Mito

Nuc
2log ratios based on the assumption that the “Mito” and “Nuc” protein 

ratios originate from two different Gaussian distributions MitoMitoxf ,; and NucNucxf ,;

respectively. The initial assignment of the protein ratios
Mito

Nuc
x 2log  to either mitochondrial 

class (CMito) or nuclear class(CNuc) was done by the criteria 
Nuc

Mito

Cxxif

Cxxif

),5.1(

),5.1(
 similar to case 

1. The EM algorithm iteratively finds the best estimates for the Gaussian distributions for the two 

classes given the SILAC ratios for all the proteins identified in that experiment. These estimates 

for the two class distributions were in turn used to assign the class membership probabilities. 

Given a ratio, 
Mito

Nuc
x 2log , the following two equations calculate the membership probability 

PMito and PNuc of its membership to mitochondrial class (CMito) and nuclear class(CNuc) 

respectively.  

)(*)|()(*)|(

)(*)|(
)|(

NucNucMitoMito

MitoMito
MitoMito

CPCxRatioPCPCxRatioP

CPCxRatioP
xRatioCPP  

And,  

  

Where, 

 

  

 

This complete analysis was done using “MCLUST” version 3 package
344

 in the R statistical 

environment
345

. 
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9.2.5 Categorization of proteins in discrete classes based on probability cutoff 

The proteins were finally assigned to separate categories based on the localization probability 

values. Below we discuss the two cases pertaining to our study of brown adipocytes, namely case 

1: mitochondrial (Mito) vs. post mitochondrial fraction (PMF), and case 2: mitochondrial (Mito) 

vs. nuclear fraction (Nuc). A similar approach was employed for classifying proteins in the 3T3-

L1 white adipocyte experimental setup 

 

Case 1: Based on the PMito and PPMF membership probabilities for each protein, we categorized 

the proteins in 3 exclusive categories by the following criterion: (a) MITO: if (PMito >= 0.75), (b) 

BORDER: if((PMito < 0.75)  AND (PPMF < 0.75)), and (c) Non-MITO: if (PPMF >= 0.75). 

 

Case 2: Based on the PMito and PNuc membership probabilities for each protein, we categorized 

the proteins in 3 exclusive categories by the following criterion: (a) MITO: if (PMito >= 0.75), (b) 

BORDER: if((PMito < 0.75)  AND (PNuc < 0.75)), and (c) Non-MITO: if (PNuc >= 0.75). 

 

9.2.6 Gene Ontology based localization concordance matrices 

The accuracy metrics for our localization approach were defined with respect to known GO 

cellular compartment annotations available for IPI version 3.24 downloaded from the EBI GOA 

website (version gene_association.goa_mouse.32.gz). As the premise of our approach was 

to identify mitochondrial proteins we specifically choose the available annotation pertaining to 

“mitochondrion” (GO:0005739) for each of the four dataset( two each for BAT and WAT). The 

percentage of true-positive and false-negative mitochondrial proteins assigned by this approach 

were quantified by two metrics namely True Localisation Percentage (TLP) and False 

Localization Percentage (FLP) as defined below: 

 

  

 

 

 

 

(Proteins  in MITO class)  AND  (Annotated as Mitochondrial (GO:0005739)) 
TLP  *  100

All Proteins Annotated as Mitochondrial(GO:0005739) in dataset

(Proteins  in Non-MITO class)  AND  (Annotated as Mitochondrial (GO:0005739)) 
FLP  *  100

All Proteins Annotated as Mitochondrial(GO:0005739) in dataset
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9.3 Results 

 

9.3.1 Multiplexed proteomics approach to obtain mitochondrial localizations in Brown and 

White Adipose Tissue 

 

Mitochondria (Mito) from brown adipose tissue (BAT) and white adipose tissue (WAT) were 

purified by density gradient centrifugation. In separate experiments nuclear (Nuc) and the post-

mitochondrial fractions (PMF) were isolated from SILAC-labelled brown adipocytes and 3T3-

L1. We then mixed BAT mitochondria with (1) SILAC-labeled brown adipocyte PMF and (2) 

with SILAC-labeled brown adipocyte Nuc in a 1:1 ratio (Figure 9.1A). Likewise, we mixed 

WAT mitochondria with (1) SILAC-labeled 3T3-L1 PMF and (2) with SILAC-labeled 3T3-L1 

Nuc in a 1:1 ratio (Figure 9.1B). The four samples were separated in 40 fractions on 1D gels and 

measured by high resolution mass spectrometry. 

 

The PMF/Mito and Nuc/Mito protein ratios provided the relative protein abundance over the 

three subcellular fractions, based on the assumption that relatively high PMF/Mito or Nuc/Mito 

ratios designated non-mitochondrial proteins (higher abundance in the PMF or Nuc fraction) 

whereas relatively low PMF/Mito or Nuc/Mito ratios designated mitochondria-associated 

proteins. Plotted ratio distributions were more distinctly bimodal for brown adipocytes/BAT than 

for 3T3-L1/WAT. Manual inspection of the datasets confirmed that the left tails (lower ratios) 

were highly enriched in mitochondrial proteins, as expected from the lower PMF/Mito or 

Nuc/Mito ratios. In total 3,689 proteins were identified with quantified SILAC ratios in at least 

one of the four experiments.  
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Figure 9.1 Workflow of mitochondrial protein localization based on quantitative proteomics and bioinformatics analysis (A). Mitochondria 

were enriched from the brown fat and mixed on one to one ratio with nuclear and post-mitochondrial enriched fractions obtained from SILAC 

labeled cell line of brown adipocytes. Plotted protein ratios distributions appeared bimodal and were interpolated with the expectation 

maximization algorithm (EM) to calculate the probability of mitochondrial localization. (B) The procedure described in (A) was repeated with 

mitochondria enriched from white adipocytes, whereas nuclear and post-mitochondrial fractions were enriched from SILAC-labeled 3T3-L1. 
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9.3.2 Probability based localization assignment of mitochondrial proteins 

Our next goal was to establish core mitochondrial proteomes from this rich dataset. One of the 

simplest empirical methods could have been to choose an arbitrary cut-off of PMF/Mito and 

Nuc/Mito ratios and then categorise the proteins as mitochondrial, PMF or Nuclear. This 

criterion is very inconsistent for multiple datasets of similar origin but with distinct features like 

the one here, as in each case we would have to define a separate cut-off. Moreover this approach 

is not amenable to automation and depends on manual curation, validation, individual expertise 

and bias. We wanted to avoid all of these above pitfalls in our data analysis and sought to devise 

a generic bioinformatics approach which could be consistently applied to any such dataset. Given 

the data in hand and the nature of the problem to be solved we adopted a probabilistic model 

based on Bayesian inference to assign probabilities to the proteins based on their SILAC ratios. 

Bayesian methods have found myriad applications in bioinformatics and have been successfully 

applied to sequence analysis, microarray data analysis, network inference and systems 

biology
346

. Our proposed analysis methodology is a two step process. In the first step we model 

the abundances of the protein ratios based on the assumption that the ratios would originate from 

two different Gaussian distribution functions pertaining to (a) Mitochondrial proteins, and (b) the 

PMF or Nuclear proteins, under the given experimental strategy. Expectation Maximization 

(EM) algorithm
343

 was employed to model these Gaussian distributions. In the second step we 

use these estimates to assign a probabilistic measure of locality (PMito, PPMF/PNuc) using sets of 

Bayesian equations (for details see section 9.2.4).  

 

9.3.3 Grouping of proteins in organelle classes based on Bayesian probabilities 

For each experiment we categorized the proteins as “MITO”, “BORDER” and “Non-MITO” 

based on conservative probability values (see section 9.2.5 and Figure 9.2). The rationale behind 

defining a BORDER class was twofold - on a computational level these are proteins which could 

not be confidently assigned to either of the two categories based on their obtained probability 

values and so they are borderline cases, and from a biological perspective these could be proteins 

which are present on the interface of the two organelles (like proteins associated with the outer 

membrane) or proteins which have more tightly coupled dynamics between the organelles. 

Moreover, GO annotations for these BORDER proteins revealed that they contained some 

interesting mitochondrial proteins in each case. Finally, we applied a very conservative threshold  
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of PMito > 0.75 to define core mitochondrial proteome in each experiment. Though the BORDER 

proteins were not included in the core set, in subsequent discussion we show the implication of 

their inclusion or exclusion on our results assessment metrics. Figure 9.2 provides the summary 

of results obtained by our categorization approach for the two experiments against the backdrop 

of their quantitative proteomics ratios (PMF/M or N/M) and the estimated Gaussian 

distributions. The number of proteins in each category is represented with the class labels. It is 

evident that setting an arbitrary cut-off would have been difficult and completely arbitrary to 

categorize the data. Interestingly, in each set of experiments the combined set of MITO and 

Border class together contained (1) 97% and 94% of GO annotated mitochondrial proteins for 

WAT and (2) 95% and 97% of GO annotated mitochondrial proteins for BAT respectively; 

thereby demonstrating the power of our method in sorting out true mitochondrial proteins from 

non-mitochondrial ones. As a first step towards validation we checked for the classification of 

known mitochondrial residents (e.g. respiratory chain subunits, Krebs cycle enzymes, fatty acid 

oxidation enzymes, translocases of the outer membrane) and cytoplasmic/mitochondrial isoforms 

of a certain protein (e.g. aspartate aminotransferase) were correctly classified. 
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Figure 9.2: Categorization of proteins in three classes (MITO, Border, and Non-MITO) based on the 

calculated localization probability values. (A) The number of proteins categorized in BAT experiments 

against the backdrop of quantitative proteomics ratios (in black bars) and the estimated Gaussian 

distributions (enveloped by colored areas). In each plot the left distribution pertains to estimated 

mitochondrial population. The ratio cutoffs corresponding to the categorization criterion are shown as 

vertical blue lines and the number of proteins in each class is provided in parentheses. (B) The number 

of proteins categorized in WAT experiments. The details of the legends are as in (A) 
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9.3.4 Concordance of probabilistic localization with Gene Ontology annotations  

To provide a quantitative measure to the accuracy of our method we defined two metrics. True 

Localisation Percentage (TLP) and False Localization Percentage (FLP) which would be 

respectively analogous to true-positive and false-negative rates in machine learning vocabulary 

but defined with respect to Gene Ontology(GO) annotations
48

 (see section 9.2.6 for definition). 

GO annotations have been used as the benchmark in many studies on localization predictions, 

therefore we decided to use GO as the reference for calculating the (true/false) localization 

percentages for each dataset
214,347

. We compared our localization assignments with the GO 

cellular compartment annotations available for IPI Mouse 3.24 database from GOA website 

(Figure 9.3).  

Figure 9.3 Localization concordance results for the mitochondrial localization experiments (A) Localization 

concordance results for the BAT mitochondrial localization. The black bars show the True Localization 

Percentage (TLP) and the grey bars represent False Localization Percentages (FLP) for MITO class proteomes 

(PMito>= 0.75). The error bars TLP show the gain % in TLP when Border proteins are included in the MITO set. 

The number on top of the green bars denotes the TLP for the core proteome sets with the increased TLP in 

parentheses (with a green arrow).  The error bars on FLP shows the decrease % in FLP when multiply localized 

mitochondrial proteins are removed from FLP calculations. The number on top of the red bars denotes the 

FLP for the core proteome sets with the decreased FLP in parentheses (with a red arrow). (B) Localization 

concordance results for the WAT mitochondrial localization. The details of legends are as in (A) 
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9.3.4.1 High accuracy of mitochondrial localization in brown adipose tissue (BAT) 

Figure 9.3A shows the results for TLP and FLP of the core mitochondrial proteomes for the two 

BAT experiments. For the PMF vs. Mito experiment we get TLP of 93% and FLP of 5% while 

for the Nuc vs. Mito experiment we get TLP of 93% and FLP of 9%. The relatively lesser TLP 

and relatively higher FLP for the Mito vs. Nuc experiments (as compared to PMF vs. Mito ones) 

may be due to the fact that there exists a strong trafficking of  proteins between nucleus and 

mitochondria as suggested by large body of literature on mitochondrial-nuclear 

communication
348

. This is further substantiated by our observation on the increase in TLP when 

we included GO annotated mitochondrial BORDER proteins in the core proteome set. In the 

PMF vs. Mito experiments the TLP increased to 95 % (an increase of 2%) but in the Nuc vs. 

Mito exp the increase was 97 % (an increase of 5%). This higher gain in the latter case could be 

a reflection of the dynamics of nuclear-encoded mitochondria-targeted proteins in the particular 

cellular contexts during our experimentation. As the highest FLP in this case was 9% and though 

it was comparable w.r.t the experimental and computational localization assignment methods, 

but still we sought to probe the reason behind this. After careful study of the GO annotations for 

the proteins which accounted for FLP calculation we observed that most of them indeed had 

multiple localizations besides mitochondria, so they were not exactly “false-negatives” in the 

true sense and could be localised to other compartments. Therefore to get a more logical statistic 

we recalculated the FLP by removing proteins which had any other GO localization that could be 

part of PMF(peroxisome, membrane, lysosome, ER, cytoplasm) or Nuclear fractions 

(nucleus,nucleolus), in addition to mitochondrial annotations. Thereby the corrected-FLP was 

now 4%( a decrease of 1%) for the BAT(PMF/Mito) and 3%(a decrease of 6%) for 

BAT(Nuc/Mito) ( Figure 9.3 A). In total we could confidently assign mitochondrial localization 

to 650 proteins across these 2 experiments. 

 

9.3.4.2 High accuracy of mitochondrial localization in white adipose tissue (WAT) 

Figure 9.3B shows the results for TLP and FLP of the core mitochondrial proteomes for the two 

WAT experiments. For the PMF vs. Mito experiment we get TLP of 93% and FLP of 3% while 

for the Nuc vs. Mito experiment we get TLP of 84% and FLP of 6%. As in the case of BAT the 

relatively lesser TLP and relatively higher FLP for the Mito vs. Nuc experiments (as compared to 

PMF vs. Mito ones) may be due to the fact that there exists a strong trafficking of proteins 
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between nucleus and mitochondria. Similarly, we observed a remarkable increase in TLP when 

we included GO annotated mitochondrial BORDER proteins in the core proteome set. In the 

PMF vs. Mito experiments the TLP increased to 97 % ( an increase of 4%) but in the Nuc vs. 

Mito exp the increase was 94 % ( an increase of 10%). This was again similar to the results in 

case of BAT localizations. Again, similar to the BAT case, we recalculated the FLP by removing 

proteins which had any other GO localization that could be part of PMF (peroxisome, membrane, 

lysosome, ER, cytoplasm) or Nuclear fractions (nucleus,nucleolus), in addition to mitochondrial 

annotations. Thereby the corrected-FLP was now 1.5% (a decrease of 1.5%) for the 

WAT(PMF/Mito) and 5%(a decrease of 1%) for WAT(Nuc/Mito) ( Figure 9.3B). In total we 

could confidently assign mitochondrial localization to 1,512 proteins across these two 

experiments. 

 

9.3.5 Integration of multilevel sub-cellular localization information to elucidate 

mitochondrial proteome of mouse adipose tissue 

The two parallel localization experiments for each of the adipose tissue types i.e. BAT and WAT 

(Figure 9.1) provides us with two levels of confidence for a protein to be localized in either 

mitochondrion versus its post mitochondrial fraction or nuclei. Subsequently, as described in 

section 9.3.3 and illustrated in figure 9.2, for each experiment we categorize each protein as 

either being MITO, BORDER or Non-MITO by using conservative probability cutoffs (section 

9.2.5). Furthermore, we used this dual localization evidences for each tissue type to define the 

core mitochondrial proteome of that tissue type. The classification contingency matrix along 

with the numbers of proteins identified as mitochondrial or non-mitochondrial are illustrated in 

Figure 9.4. In BAT we putatively assign 650 proteins to mitochondria (out of 1,753) and in WAT 

we assign 1,512 proteins to mitochondria (out of 3,345). Though in terms of the numbers the 

BAT mitochondrial proteome is approximately one-third of the WAT mitochondrial proteome, 

this disparity diminishes when we look at the percentage coverage of BAT and WAT 

mitochondrial proteome w.r.t the quantified proteome in each tissue type.  BAT mitochondrial 

proteins cover roughly 37% of the total tissue specific organelle proteome while WAT covers 

45%. Lastly, we use the union of these two tissue type mitochondrial proteomes to arrive at 

1,517 putative mitochondrial proteins in adipose tissue of mouse.  
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Figure 9.4 contingency matrixes for combining evidence from two parallel experiments each in BAT and 

WAT to define core-mitochondrial proteome of adipose tissue (WAT). The class assigned (Mito, Border, 

Nuc/PMF) in each experiment ( Nuc vs. Mito and PMF vs. Mito; Figure 9.1) were combined to assign a 

final class to the proteins as shown in the matrix. Blue boxes contain the mitochondrial protein numbers 

in BAT (upper matrix) and WAT (lower matrix). In total we obtained 1,517 core mitochondrial proteins.  

 

 

9.4 Discussion 

Protein localization studies in sub-cellular organelles have become a mainstay in current systems 

biology enterprises, and are definitely the first steps towards realizing their promises and 

goals
147,349

. In recent years many proteomics methods based on MS technology have been 

reported for establishing the protein localization and organelle localizomes332-334
. The most 
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effective of these methods combine elaborate cellular fractionation, mass-spectrometry and 

quantitative proteomics. Protein Correlation Profiling (PCP) and Localization of Organelle 

Proteins by Isotope Tagging (LOPIT) are the representative approaches in this category
104,350

. 

While they provide definite results they also require simultaneous analysis of many fractions and 

are limited by the efficiency of fractionation, most importantly they require prior knowledge of 

organelle marker proteins. We devised a simpler and generic approach whereby we build upon 

the strengths of quantitative proteomics and SILAC and do away with multiple fractionations. 

Furthermore we use a probabilistic localization method with simplest computational assumptions 

(or model) and do not require prior knowledge of organelle marker proteins. As a proof of 

concept we use this framework to assign putative localization to proteins identified from BAT 

and WAT mitochondria.  

 

Mitochondria have been one of the most widely studied sub-cellular organelles and they play 

pivotal roles in myriad biological processes including growth, division, energy metabolism and 

apoptosis
351-353

. Due to their expansive role in cellular processes they are also implicated in 

myriad diseases including obesity, diabetes, cancer, neurodegenerative and cardio-vascular 

disorders
354,355

.  The advent of high throughput “omics” disciplines has helped tremendously in 

generating parts list of mitochondria at various levels of organization including genome, 

proteome, metabolome and interactome; thereby providing valuable insights into its biology and 

cellular function
356

. The study of mammalian mitochondrial proteomes is a challenge owing to 

its dynamic constitution, and the complexity of the cellular milieu in these systems. In the recent 

past proteomics and functional genomics approaches have been employed for establishing the 

mitochondrial proteome of mouse and humans
57,59,342,357

. According to the latest estimates there 

are ~1500 mitochondrial proteins in humans
358

. While recent systemic analysis approaches are 

trying to enumerate the complete mitochondrial proteome in model organisms
359

, there is still 

clear consensus that many more mitochondrial proteins remain to be discovered and 

characterized
360

. Moreover, study of the tissue specific organellar proteome is of immense value 

as it correctly portrays the physiology which is often not captured by studying cell lines of 

similar origin
342

. Therefore we sought to explore the mitochondrial proteome from brown and 

white adipose tissue of mouse as a model system for humans
361

.   
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In two sets of parallel experiments we were able to quantify and elucidate 650 (BAT) and 1,512 

(WAT) putative mitochondrial proteins according to very high probability scores obtained by our 

bioinformatics approach. These proteins show very high concordance with the known Gene 

Ontology mitochondrial localizations. Furthermore, by combining the localization evidences 

from these two separate tissue specific experiments we were able to derive a set of 1,517 putative 

mitochondrial proteins in mouse adipose tissue. This candidate mitochondrial catalogue was 

further used in a setup for systems level analysis of in vivo quantitative profiling of 

mitochondrial proteome of BAT and WAT. Figure 9.5 shows the schematic of this experiment; 

briefly tissue mitochondria were isolated and quantified against mitochondria isolated from 

SILAC labeled cognate cell types (3T3-L1 and brown adipocytes). The mitochondrial proteome 

identified and quantified in this experiment was filtered against the candidate mitochondrial 

catalogue established in earlier steps to arrive at high confidence in vivo quantitative BAT vs. 

WAT mitochondrial proteome of 978 proteins. The relative ratios of proteins in two tissue types 

provided a quantitative landscape of the differences in BAT versus WAT mitochondrial proteins, 

which were further shown to be involved in many biological processes and pathways. One of the 

key findings therein was that there is considerable specialization and divergence of key 

mitochondrial pathways in the two tissue types as shown in Figure 9.6. For instance, strongly up-

regulated pathways in BAT mitochondria were ubiquinone biosynthesis (p=2.8E-12), oxidative 

phosphorylation (p=7.6E-28), and citrate cycle (p=8.6E-10). In WAT mitochondria up-regulation 

of pathways was less pronounced, and significantly up-regulated pathways were 

androgen/estrogen metabolism (p=3.8E-3), fatty acid synthesis (p=2.4E-3), pyruvate metabolism 

(p=1.6E-4), and metabolism of xenobiotics (p=8.4E-2).  
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Figure 9.5 Strategy of quantitative proteomic analysis of mitochondria in BAT vs. WAT. Mitochondria 
isolated from brown and white adipocytes were mixed with SILAC labeled mitochondria isolated from 
bat and 3T3-L1 cells that served as internal standards. In vivo relative protein levels of BAT versus WAT 
were obtained from the “ratio of ratios” of peptide levels measured by mass spectrometry. The final 
dataset was the WB-mitochondrial core proteome. Proteins were qualified into one of five protein 
categories obtained by subdividing the BAT/WAT distribution in percentiles (10%, 25%, 75%, and 90%). 
The categories were named vH-BAT, H-BAT, 1to1, H-WAT, and vH-WAT to express their relative 
abundance in BAT versus WAT. 
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Figure 9.6 Map of metabolic pathways in primary adipocyte mitochondria from the systematic analysis of quantitative proteomic data. Relative activity of 
pathways in BAT and WAT mitochondria were inferred from the protein ratios obtained from quantitative proteomics(Figure 9.5).  Proteins were subdivided 
into five categories (see Figure 2) and color-coded based on their BAT/WAT protein ratios: vH-BAT (red), H-BAT (orange), 1to1 (grey), H-WAT (green), vH-WAT 
(dark green). Non-filled boxes represent proteins that were not identified in our proteomic survey or that were non-mitochondrial based on our localization 
assignment. A tentative localization of MCC-32 with its putative interaction partners as obtained from our preliminary experiments is also shown.
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In summary our framework adds to the growing toolkit of organellar proteomics and is very 

generic in terms of applicability. The simplicity and flexibility of our approach makes it 

amenable for global-study of other organelle proteomes and opens newer vistas towards creation 

of organelle cellular maps
334

. The framework and the mitochondrial database generated will be 

of great value to the ongoing systems biology and „omics‟ endeavors. 
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10. Conclusions, challenges and perspective 

 

Mass spectrometry based proteomics is now a multidisciplinary scientific endeavor with 

extensive applications and far-reaching impact. This transition from a previous niche domain to 

one of the strongest stakeholders of post-genomics science has been propelled by technological 

advances in mass spectrometry instrumentation complemented by experimental and 

bioinformatics innovations. A simple comparison of PubMed indexed publications appearing in 

last 15 years (starting from 1994 when the term “proteomics” was coined) in the field of 

proteomics and genomics reveals that proteomics is now as widely entrenched in contemporary 

biomedical research as genomics (Figure 10.1). This in itself is a testimony to the power and 

importance of this relatively young discipline in current scientific ecosystem.  

 

Figure 10.1 Number of publications in PubMed with title or abstract containing term “Genomics” or 

“Proteomics” from 1, January 1994 till 30, September 2008. The graph shows the extrapolated values for 

the end of the year 2008 based on the number of publications till 30, September 2008. The trend 

illustrates the pervasiveness of proteomics in post genomics biomedical research.  

 

Analogous to every emerging paradigm, proteomics too has brought in its unique set of 

challenges that are of varying constitution - scientific, technological, experimental and 

computational. The very nature, scale and novelty of these challenges have attracted serious 

attention from the stakeholders of proteomics community. Concerted scientific and technical 

efforts are now underway to harness the untapped potential of proteomics.  
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Modern high resolution mass spectrometry instruments can produce gigabytes of data per run 

and a large proteomics project may employ several stages of upfront protein or peptide 

fractionation and consist of hundreds of runs. As proteomics endeavors become more ambitious 

and more comprehensive, the analytical challenges are further compounded. The high 

dimensionality and complexity of MS data pose novel computational, analytical and 

infrastructural challenges hitherto unseen by biomedical informatics researchers.  

 

Proteomics in its current form requires extensive informatics support, therefore computational 

proteomics and bioinformatics have become key constituents of this field. While computational 

proteomics helps in extracting protein identity and quantity information from mass spectra, 

bioinformatics subsequently serves in discovering knowledge models, verifying hypothesis and 

providing biological insights. Throughout my PhD studies I have concentrated on this latter 

aspect of proteomics dataset analysis by bioinformatics. As proteomics progresses towards 

achieving the same kind of depth and comprehensiveness as genomics
2,64

 it cannot be 

overemphasized that the analysis of current proteomics datasets necessitates elaborate 

bioinformatics infrastructure and support. Proteomics has opened up newer vistas for 

bioinformatics researcher and now drives a major part of current biomedical informatics research 

initiatives. In that context I have adopted two approaches towards proteomics data analysis: (1) 

adapting functional genomics databases, tools and algorithms for obtaining insights into 

proteomics dataset and, (2) developing novel analysis algorithms, frameworks and workflows for 

proteomics dataset. Taking specific examples of typical datasets that are being currently 

generated in our laboratory (beginning with qualitative catalogues to quantitative multi-time 

course datasets), I have tried to showcase the diversity of analysis which is needed in typical 

proteomics experimental scenarios. In this thesis I have discussed some of the novel analytical 

workflows and algorithms we have developed in our group for functional analysis of high 

throughput proteomics data using bioinformatics algorithms, tools and databases. All of the 

projects discussed in this work also showcase the importance of collaborative and 

interdisciplinary science wherein active dialogue and synergy is required between bioinformatics 

and experimental biological scientists.  
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Current trends in proteomics data analysis also indicate that the present bioinformatics resources 

and approaches will not be sufficient or adequate to mine proteomics datasets, and novel 

algorithms and approaches will have to be developed to integrate these datasets with disparate 

“omics” datasets for knowledge discovery. In that direction novel data mining, analytical and 

visualization software needs to be developed to harness the uniqueness of such dataset. At the 

same time one of the biggest challenges faced by current proteomics researcher is the relative 

scarcity of protein centric annotational knowledgebases. Still today most of the annotational 

databases are “gene” centric, and while they have been of immense value to researchers they still 

do not meet the numerous and at times unique demands of the proteomics community. Therefore 

more scientific investments are required to have a unified and comprehensive proteomics 

database on the lines of GenBank or Ensemble.  

 

Modern proteomics technologies and its applications span a broad spectrum of biological 

explorations on various levels of cellular organization. These investigations cover nearly all 

aspects of cellular composition and architecture including, elucidation of structural, spatial, 

temporal and relational constitution - at the proteome level. The availability of such data types 

has in turn infused vigor into the ongoing bioinformatics efforts towards assimilating this 

important piece of information into the broader framework of systems biology
59,362,363

. Future 

bioinformatics activities in proteomics will focus more and more on integrative systems biology, 

as there are still many open ended questions which can only be answered by adopting this 

approach. For instance, we still do not have a comprehensive understanding of how protein 

expression is controlled and regulated as a function of regulatory mechanisms at epigenetic, 

transcriptional, translational and post-translational levels
215

. Current debates in biomedical 

informatics research are replete with many such questions.  

 

In the post-genomic era proteomics along with other “omics” disciplines provides the 

foundations on which future promises of systems biology will be realized and delivered. The 

next steps in this direction is consolidation and integration of datasets and information across 

different layers of the “omics” hierarchy
364

(Figure 10.2), ultimately leading to physiologically 

exact and clinically relevant in silico models of biological processes and systems. Proteomics has 
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the potential of making a huge impact in this endeavor by providing comprehensive and 

quantitative data of constituent proteomes for the systems of interest.  

Figure 10.2. The Wheel of Biological Understanding. System biology strives to understand all aspects of 

an organism and its environment through the combination of a variety of scientific fields (image adapted 

from Joanne Fox article URL:  http://bioinformatics.ubc.ca/about/what_is_bioinformatics/) 

 

One of the ultimate litmus tests for proteomics is to be able to generate data of the nature and 

scale which is necessary for incorporation into multi-scale simulation and modeling 

frameworks
365

.  Moreover, augmentation of modeling languages is needed to incorporate 

proteomics datasets and results into the framework of executable cell biology
366

. In that context 

innovative experimental strategies and scalable instrumentation capabilities have to be developed 

so that fine grained, comprehensive and quantitative datasets are generated in the future, which 

are amenable for in silico modeling and execution. Recent results indicate that proteomics is well 

equipped to handle this challenge and is poised to transform the landscape of system biology, 

thereby engendering profound changes in translational research.  
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Abbreviations 

2D: two dimensional 

3D: three dimensional 

A2M: alpha-2-macroglobulin 

AC: alternating current 

ADP: Adenosine diphosphate  

AGC: automatic gain control 

AKT: protein kinase B, or Rac (RAC-alpha serine/threonine-protein kinase). The term AKT 

originates from the transformed AKR mouse strain. 

AML: Acute myeloid leukemia 

APC/C: Anaphase promoting complex/cyclosome 

AQUA: Absolute Quantitation 

ATM: Ataxia telangiectasia mutated 

ATP: adenosine triphosphate 

BAT: Brown adipose tissue 

bis-Tris :2-[bis(2-hydroxyethyl)amino]-2-(hydroxymethyl)propane-1,3-diol 

BiNGO: Biological Networks Gene Ontology tool  

BLAST, Basic Local Alignment and Search Tool 

CDKs: cyclin-dependent kinases 

ChIP: Chromatin innunoprecipitation 

CID: collision induced fragmentation 

DC: direct current 

DDA: DNA damage response 

DGAP: Diabetes Genome Anatomy Project 

DHB: 2,5-dihydroxy benzoic acid 

DMEs: drug metabolizing enzymes 

DMEM: Dulbecco‟s modified Eagle‟s medium 

DMSO: dimethyl sulfoxide 

DNA: deoxyribonucleic acid 

DNA-PK: DNA-activated protein kinase 
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ECD: electron capture dissociation 

ECM: extracellular matrix 

EDTA: ethylenediaminetetraacetic acid 

EGFR: epidermal growth factor receptor 

EM: Expectation Maximization 

ErbB: epidermal growth factor receptor (EGFR) family 

ER: Endoplasmic reticulum 

ESI: electrospray ionization 

EST: expressed sequence tag 

ET: Evolutionary trace 

ETD: electro transfer dissociation 

FACS: Fluorescent-activated cell sorting 

FDR: false discovery rate 

FKBP: FK506-binding protein 

FLP: False localization percentage 

FMO: Flavin monooxygenase 

FT: Fourier transform 

FTICR: Fourier transform ion cyclotron resonance 

FVA: Flux variability analysis 

GAP: GTP activated protein 

GFP: Green fluorescent protein 

GLUT4: glucose transporter 4 

GnRH: Gonadotropin-releasing hormone 

GO: Gene Ontology 

GOA: Gene Ontology Annotation 

GST: glutathione S-transferase 

GTP: guanosine triphosphate 

HPLC: high performance liquid chromatography 

ICAT: Isotope-Coded Affinity Tagging 

IMAC: immobilized metal ion affinity chromatography, 

IP: immunoprecipitation 
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IPI: International protein index 

IRMPD: infrared multiphoton dissociation 

iTRAQ: isobaric tag for relative and absolute quantitation 

KEGG: Kyoto Encyclopedia of Genes and Genomes 

LBR: Lamin B Receptor 

LDL: low-density lipoprotein 

LMNA: Lamin A 

LMNB1: Lamin B1 

LMNB2: Lamin B2 

LOPIT: Localization of Organelle Proteins by Isotope Tagging  

LTQ: linear quadrupole ion trap 

m/z: mass to charge ratio 

MALDI: matrix-assisted laser desorption/ionization 

MAPU: Max Planck Unified Proteome 

MBP-C: mannose-binding protein C 

MCM: Mini-choromosome maintenance complex 

MeCN: acetonitrile 

miRNA: micro RNA 

MS: mass spectrometry 

MGI: Mouse Genome Informatics 

mTOR: mammalian target of rapamycin 

nanoESI: nanoelectrospray ionization 

OB: Oligosaccharide/Oligonucleotide binding 

OMIM: Online Mendelian Inheritance in Man  

OXPHOS: Oxidative phosphorylation 

PBS: phosphate buffered saline 

PCA: Principal component analysis 

PCM: polycyclodimethylsiloxane 

PCP: Protein correlation profiling 

PCR: polymerase chain reaction 

PEP: posterior error probability 
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PFAM: Protein family 

piRNA: Piwi-interacting RNA 

PI3K: Phosphatidylinositol-4,5-bisphosphate 3-kinase 

PMF: Post mitochondrial fraction 

PTM: post translational modification 

QCAT: concatemer of Q peptides 

QIT: Quadrupole ion trap 

QTOF: Quadrupole time-of-flight 

Rb: retinoblastoma 

RF: radio frequency 

RMS: Root mean square 

RNA: Ribonucleic acid 

RNAi: RNA interference 

ROS: reactive oxygen species 

RP HPLC: reverse phase high performance liquid chromatography 

RT-PCR: Reverse transcription polymerase chain reaction 

SCX: strong cation exchange 

SDS-PAGE: sodium dodecyl sulfate polyacrylamide gel electrophoresis 

SH3: Src homology 3 

siRNA: Small interfering RNA 

SILAC: stable isotope labeling by amino acids in cell culture 

SIM: selected ion monitoring 

SLD: Soft laser desorption 

Smad2/3: mothers against decapentaplegic homolog 2/3 

SNARE: soluble N-ethylmaleimide-sensitive factor attachment protein receptor 

SOP: standard operating procedures 

SORI: sustained off resonance irradiation 

Src: proto-oncogene tyrosine-protein kinase Src 

SULT: sulfotransferase 

TCA: tricarboxylic acid 

TFA: trifluoroacetic acid 
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TGFβ: transforming growth factor β 

TGFβ R1: transforming growth factor β type 1 receptor 

TMPO: Lamina-associated polypeptide 2 

TOF: Time of flight 

TLP: True localization percentage 

TrEMBL : Translated EMBL 

t-SNARE: target SNARE 

UGT: UDG-glucuronosyltransferase 

WAT: White adipose tissue 

Y2H: Yeast two hybrid
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